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ABSTRACT

ALEXANDER KEIL: HEALTHY WORKER SURVIVOR BIAS IN A COHORT OF
URANIUM MINERS FROM THE COLORADO PLATEAU

(Under the direction of David Richardson)

Radon, a ubiquitous gas present in breathing air and concentrated in the indoor

environment, is a well established risk factor for lung cancer. Primarily, evidence for

this association originated in studies of miners occupationally exposed to high con-

centrations of radon. Much work has been done to predict lung cancer risk due to

lower dose exposures in residences using dose-response curves derived from long-

term, high-dose miner studies and shorter-term, low-dose residential studies. While

residential studies suffer from a high probability of exposure misclassification at low

exposures, miner studies present an opportunity to apply more precise estimates of the

lung cancer-radon association to risk assessments. However, potential bias due to the

Healthy Worker survivor bias has not been addressed in previous studies of occupa-

tional exposure to radon. The Healthy Worker survivor bias occurs when workers with

poor prognosis leave work sooner than those with better prognosis, thus creating an

apparent association between low cumulative occupational exposures and mortality.

Healthy worker survivor bias has been shown to substantially bias dose-response esti-

mates in other settings, but it has not been explored in occupational studies of radon

exposure. We apply two g-methods designed for addressing healthy worker survivor

bias that cannot be controlled using conventional statistical methods. We utilize data

from the Colorado Plateau uranium miners cohort, which comprises 4,137 male ura-

nium miners who agreed to participate in a health study between 1950 and 1960 and

were followed up for mortality through 2005. Our results suggest that there may be
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healthy worker survivor bias of the association between cumulative radon exposure

and both lung cancer and all cause mortality. This work highlights the need for non-

standard approaches to controlling time-varying confounding in occupational data.

We show that, under certain conditions, g-methods can control this confounding, but

that careful consideration should be made in the choice of method.
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CHAPTER I: INTRODUCTION

1.1 Radon

1.1.1 Public health significance

Elemental radon is a naturally occurring gas at room temperature and is carcino-

genic to humans when it is part of the breathing air due to the radioactivity of both

radon and its progeny (IARC (2012)). The most common isotope, 222R n and its progeny

shown in Figure 2 1.1 contribute most of the radiation dose (IARC (1988, 2001); ICRP

(2010); Chen et al. (2014)). Because radon is ubiquitous in air, soil, and water and

concentrates in indoor air, there is substantial exposure potential in populations who

spend time indoors NRC (1999). This problem may be compounded by the use of cer-

tain building materials, which also release radon (Gierl et al. (2014); Zhukovsky and

Vasilyev (2014)).

222R n has an unstable nucleus and decays with a half-life of around four days by

releasing an α particle (a particle with two protons and two neutrons) and starting a

chain of rapid, α and β particle releasing decays from what are known as the radon

progeny (historically, radon daughters, figure 1.1), which can be inhaled directly or can

adhere to airborne particles that are also inhaled. The α particles are sources of high

linear-energy-transfer (high-LET) ionizing radiation ICRU (2011c,a), resulting in more

concentrated cellular damage than some other types of radiation, such as γ radiation

(e.g. from atomic bombs dropped on Japan in World War II Preston et al. (2003)) or β

radiation from radio-iodine (e.g. from releases following the nuclear power accident in

Chernobyl (Brenner et al. (2011))), provided that theαparticles are exposed to sensitive

1



tissue, such as lung tissue.

The Committee to Study the Biological Effects of Ionizing Radiation (BEIR VI com-

mittee) estimates that radon in indoor air is the second leading cause of lung cancer

and plays a role in 15,000 to 22,000 lung cancer deaths per year in the United States,

though risk projections are consistent with estimates from 3,000 to 33,000 (NRC (1999)).

Unfortunately, increasing energy efficiency in homes may be resulting in an increase

in indoor radon concentrations (Jiránek and Kačmařikova (2014); Yarmoshenko et al.

(2014)), which may exacerbate this problem. Importantly, radon exposures can be re-

duced through measures such as home radon mitigation (Steck (2012)). Thus, the pub-

lic health impact of radon on lung cancer is high, we may be heading towards an in-

crease in the average population exposure, but there are possible interventions that

can help reduce the burden of health impacts from radon exposure. However, because

radon mainly comes from the soil, we can realistically only hope to reduce, rather than

eliminate exposure, so epidemiologists have a role in estimating the public health im-

pact of radon.

Radium 226 Radon 222
3.82d

Polonium 218
3.05m

(Radium A)

 α

Short lived
radon progeny

(Historical names)

Astatine 218
2s

 β

Lead 214
26.8m
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 α

Radon 218
0.035s

 β

Bismuth 214
19.7m

(Radium C)

 α

Polonium 214
0.000164s

(Radium C)

 α

 β  β

Thallium 210
3.1m

 α

Lead 210
22y
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 β Bismuth 210
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Lead
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 β  β

Uranium 238/234

Figure 1.1: 222R n Decay Chain from 238U or 234U . Thoron (220R n) and acton (219R n)
produce different progeny.
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As noted above, there are many lung cancer deaths in the US that are possibly at-

tributable to radon. However, radon exposure occurs over the entire life course, and

biologically meaningful exposure can potentially occur over that whole period. Thus,

the health effects of radon are difficult to study without having some measurement or

estimate of radon exposure over a long period of time. Factors such as the age at ex-

posure, the intensity or rate of exposure, the duration of exposure, and smoking may

all modify the degree to which radon exposure increases the rate of lung cancer (NRC

(1999)), which only increases this difficulty. To simplify the analysis, radon exposure

has often been operationalized using a time-integrated metric of exposure, such as cu-

mulative exposure. Cumulative exposure combines exposure rate with exposure dura-

tion to form a single summary measure across time.

Evidence from animal and human studies suggests that the relative risk of lung

cancer from radiation exposure is well summarized by a linear fit with no threshold

below which no effects occur (Brenner (2009)). Thus, a standard approach in studies

of radon exposure is to present a linear dose-response for cumulative exposure. The

time-related factors noted above (and discussed in more detail in Appendix C.2) are

one reason why cumulative exposure may be too simple to accurately model radon

exposure in relation to lung cancer. However, there may be other issues with aggregate

exposure metrics that are not strongly appreciated in the radon literature. In the cur-

rent manuscript, we summarize the some of the lines of research on the public health

impact of radon on lung cancer, discuss methodologic issues related to the aggregate

exposure metrics used in previous radon research, propose and implement possible

solutions to one of those issues, and discuss the implications for our knowledge about

the health effects of radon on lung cancer.
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1.1.2 Lines of research of the public health impact of radon on lung cancer inci-
dence and mortality

Substantial work has been done to model the population impact of radon expo-

sure and cancers in the respiratory tract and lungs, which are the primary exposure

sites for radon ICRP (1993). Generally, the lines of research into models of radon car-

cinogenesis have followed one of three approaches: 1) an empirical or statistical mod-

eling approach, which is focused on explaining macro-level trends in radon induced

lung cancer, such as dose-response, dose-rate effects or empirical induction periods, 2)

mechanistic modeling, which seek to link observed data directly to biologic processes

using biologic models for the observed data (e.g. Richardson (2009a)) or 3) the dosi-

metric approach, which involves extrapolating radiation dose-response curves from

other ionizing radiation (particularly those derived from the atomic bomb cohort in

Japan, e.g. Preston et al. (2007)) (NRC (1999)).

Much of the evidence of the human health effects of radon derives from studies of

uranium miners, who are exposed to relatively high levels of radon due to the pres-

ence of radioactive element deposits in the mines and poor ventilation. The Colorado

Plateau uranium miners cohort holds a unique place within this field of study due to

its long follow-up and large variation in exposures that allow for precise dose-response

measures to be estimated (NRC (1999)). Recent monographs by major ionizing radia-

tion committees have advocated the use of residential data with correction for expo-

sure misclassification for summary measures of public health impact and risk assess-

ment (ICRP (2010); UNSCEAR (2008)), but outstanding questions still exist that can

be best answered using miner study data, especially with respect to time-related as-

pects of the radon-lung cancer association. Previous results based on miners studies

have also ignored a potential source bias particular to occupational studies, known as

healthy worker survivor bias, which has potentially led to biased risk projections gen-

erated by miner data.
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1.1.2.1 Miner studies of the radon-lung cancer association

The epidemiologic literature on the radon-lung cancer association in miners has

a long history and spans multiple countries with large cohort studies of underground

miners, such as those from Canada (e.g. Lane et al. (2010)), the Czech Republic (e.g.

Tomásek (2011)), France (e.g. Rage et al. (2012)), Germany (e.g. Kreuzer et al. (2012)),

Sweden (e.g. Jonsson et al. (2010)) and the United States (e.g. Schubauer-Berigan et al.

(2009)). Several pooled analyses of these (and other) cohorts have been performed in

an effort to increase the precision of association parameters (Lubin (1994); NRC (1988,

1999); Leuraud et al. (2011); Fornalski and Dobrzynski (2011)). The Committee on the

Biological Effects of Ionizing Radiations from the National Research Council (United

States) periodically releases summary reports of scientific literature on the health risks

due to radiation, including the two reports on the risk of lung cancer due to radon in

miners given in NRC (1988) and NRC (1999). The United Nations Scientific Committee

on the Effects of Atomic Radiation (UNSCEAR) have summarized miner data in a re-

port to the General Assembly (UNSCEAR (2008)). Additionally, the International Com-

mission on Radiological Protection (ICRP) has released two summaries of epidemio-

logic data pertinent to the radon-lung cancer association ICRP (1993, 2010), which are

shown in Table 1.1 (adapted from ICRP (2010)). Each publication provided a table with

the major summary estimates of the excess relative risk per 100 working level months

(WLM - defined as any combination of exposure rate in working levels [130,000 MeV

of potential α energy per liter of air] and employment time that leads to an average

exposure of 1 working level over 170 hours).

As shown in Table 1.1 there is substantial heterogeneity of the estimate of the excess

relative rate (ERR, defined as the rate ratio - 1) per 100 WLM within each combined

analysis. In the BIER VI report, for example, the ERR per 100 WLM ranged from 0.16 in

the Chinese tin miner cohort to 5.1 in the Radium Hill uranium miner cohort. In the

BEIR VI report, NRC (1999) cited lack of adequate data on lung cancer risk factors as
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a reason for heterogeneity in results. The BEIR VI committee was able to estimate the

modification of the ERR by age at exposure, duration of exposure, and exposure rate,

however, and came up with a set of preferred models, discussed in §1.3 of the current

manuscript. In the following, we discuss another possible source of heterogeneity that

may derive from differences between cohorts in the complex relationships between

employment and health.

1.2 Healthy worker survivor bias

1.2.1 Description

Radon is one of many occupational agents that may have persistent negative effects

on health. Exposure from the past may have an effect on current disease status. Ex-

posure duration may also play a role in disease as cellular repair pathways from prior

insults may be overburdened and not able to cope with more recent insults. One way

of approaching analyses of the health effects of such agents is to aggregate exposure to

them over time. Within the miner literature, cumulative exposure to radon, duration

of exposure, average exposure, or exposure accrued within specific time windows are

all examples of such aggregation. While these are all simplifications of a complex, dy-

namic process of how exposure may change over time, they are nonetheless very useful

for summarizing the effects of exposures and for projecting the effects of exposure in

other populations who have long term exposures.

In occupational studies, it is frequently observed that the healthiest workers in a

given industry tend to remain employed longer than less healthy workers (Fox and

Collier (1976)). When this scenario occurs, healthier workers can accrue larger cumu-

lative exposures simply for the fact that they remain employed longer. If the health

related factors that influence employment also influence the health outcomes of in-

terest, there may be spurious relationships between aggregated exposures and those

6
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health outcomes. This process is referred to in the occupational epidemiologic litera-

ture as healthy worker survivor bias (Buckley et al. (2014)).

Healthy worker survivor bias has been traditionally considered simultaneously with

a second bias, the healthy hire effect. This second bias describes a cohort selection

process whereby unhealthy individuals are less likely to enter into employment (Ar-

righi and Hertz-Picciotto (1994, 1993)). Often, these biases are considered as a part of

a single process termed the healthy worker effect. Both of these aspects of the healthy

worker effect can be seen as specific instances of unmeasured confounding (Breslow

and Day (1987)), but their unique characteristics and apparent ubiquity warrant spe-

cial treatment here.

The healthy hire effect describes an unmeasured difference in health status be-

tween the working population and the target population for inference. Because of this,

comparisons of disease rates between occupational cohorts and other populations can

yield biased estimates of effects of occupational exposures. This issue is circumvented

through internal analyses of occupational groups, in which rates of disease are com-

pared across exposure levels within the cohort. If exposure is well characterized, in-

ternal analyses can result in an estimate of the dose-response – how the disease rates

change over increments of exposure – which can inform occupational limits and public

health efforts. However, effect estimates from internal analyses can be subject healthy

worker survivor bias.

The healthy worker effect in aggregate has been acknowledged by the BEIR com-

mittee as a source of bias in uranium miner studies (NRC (1998, 1988)). However,

healthy worker survivor bias has not been directly assessed in any major dose-response

analysis of the radon-lung cancer association. Several lines of evidence suggest that

healthy worker survivor bias may bias dose-response estimation in miner cohorts. Thus,

risk projection of miner-based evidence to the general population may be based on bi-

ased associations. The work by Robins (1986) suggests that the existence of a healthy
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worker survivor bias is a structural component to occupational studies and would be

expected in any study of the health effects of aggregated exposures within a dynamic

workforce. Further, under certain models, healthy worker survivor bias is intractable

to conventional statistical methods and may require more advanced approaches (Ar-

righi and Hertz-Picciotto (1994, 1993); Flanders et al. (1993); McNamee (2003); Pearce

et al. (2007)).

1.2.1.1 Notation

Throughout the remainder of the current manuscript, we adopt the notation shown

in table 1.2.
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Table 1.2: Notation used in this document referring to observed quantities

Variable∗ Interpretation Examples
k A particular point in time Age 30, 1930

Xk Exposure of interest at time k ∗∗ Radon exposure at age 19

X̄ k Exposure history at time k ∗∗ Annual exposures up to age 30,
Monthly exposures from 1955 to
1960

X̄k Summary exposure history∗∗ Cumulative radon exposure up to
age 30, Mean exposure up to age
30, Exposure duration up to age 30

L k Study covariates at time k ∗∗ Employment status at age 19, Job
title in 1930

L̄ k Covariate histories at time k ∗∗ Employment duration at age 19,
Number of jobs worked by 1930

V Study covariates fixed in time
within the study†

Age at hire, birth cohort, race

T Time to event of interest Age at death from lung cancer

U Unmeasured variables Underlying health status, frailty,
smoking (if unmeasured)

Note: all subscripts denoting individuals are suppressed for clarity
∗ Bolded variables refer to a possible vector (e.g. the collection of race, birth cohort,
and age at hire), non-bold variables refer to a scalar (e.g. cumulative exposure at age
40), while lowercase variables refer to a realization (e.g. 10 WLM of exposure)
∗∗ Also referred to as time-varying covariate
† Also referred to as a time-fixed covariate
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1.2.1.2 A model for healthy worker survivor bias based using directed acyclic graphs

Robins (1986) proposed that healthy worker survivor bias could be (partially) ex-

plained by a general set of causal mechanisms in occupational studies and showed

that, under this assumed model, that conventional statistical methods cannot ade-

quately reduce the amount of bias that results from these mechanisms. He posited

that healthy worker survivor bias occurs when:

1. Employment status (whether or not at work) is an independent population risk

factor for a disease outcome of interest, possibly because of association through

an unmeasured health determinant that affects both employment and the out-

come U .

2. Previous employment status affects subsequent exposure (for example, if expo-

sure only happens at work)

3. Previous exposures impact the rate of leaving work

Using the language of directed acyclic graphs (hereafter causal diagrams), we can

formally express these relationships using simple graphs (Pearl (1995); Greenland et al.

(1999)). These diagrams allow a simple assessment of conditional dependence of a set

of variables of interest - typically these variables are the exposure of interest, the out-

come of interest, and all known confounders of the exposure-outcome association.

The causal diagrams are formal representations of graph-theory, which allows a for-

mal assessment of possible structural biases (Greenland and Pearl (2008)) and can be

extended to other situations such as bias due to missing data (Daniel et al. (2011)).

When one has some idea about causal relationships in the data, causal diagrams

are a useful tool for selecting an analytic plan. Causal diagrams, for example, are useful

in occupational studies for determining when regression based methods can be used

to control confounding bias (Buckley et al. (2014)). As an example, Figure 1.2 shows
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a possible mechanism underlying healthy worker survivor bias proposed by Robins

(1986).

Xk−1

U
Lk

TXk

Figure 1.2: Causal diagram showing causal relationships possibly underlying healthy
worker survivor bias in a hypothetical occupational studies with notation given in Ta-
ble 1.2.

This diagram can be used to show that regression based methods will be biased in

this scenario. Using the variables shown in figure 1.2, consider a proportional hazards

model of the form

λ(k |Xk , Xk−1, Lk ) =λ0(k )exp(β1Xk +β2Xk−1+β3Lk )

Where λ(k |Xk , Xk−1, Lk ) is the hazard at time k conditional on Xk , Xk−1, Lk , and λ0(t )

is an unspecified baseline hazard for individuals at the referent level of each variable.

The vector ofβ parameters represent the log hazard ratio for a one unit change in each

variable, while holding the other variables constant.

We are interested in estimating the effects of exposure X̄ k ≡ (Xk , Xk−1) on the haz-

ard or time to death. That implies we are primarily interested in β1 and β2. The di-

agram shows that there is confounding of the Xk → T association along the pathway

Xk ← Lk → U → T . This is how the healthy worker survivor bias can be conceptu-

alized: confounding that occurs because a common factor causes both attrition from

the workforce and the outcome of interest. This is often referred to as time-varying, or

time-dependent confounding (Robins (1992); Daniel et al. (2013)).

In our model, we can control this confounding by including Lk in the model. How-

ever, including employment status would cause bias in the coefficient β2. The variable
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Lk is referred to as a collider on the path between Xk−1 and k because, along the path

Xk−1 → Lk ←U → T , two arrow heads “collide” at Lk . Adjusting for Lk in this model

will up a non-causal, backdoor path from exposure to outcome, a situation known as

collider bias (Cole and Hernán (2002); Greenland (2003); Cole et al. (2010)).

To see this bias, consider an individual at time k . Prior exposure and poor health

can both cause individuals to leave work, so if that individual is off work, we know

he either likely to be highly exposed or of poor baseline health. If he is unemployed

and highly exposed, he is more likely to have good health and less likely to suffer the

outcome of interest. Thus, within strata of employment, exposure and the outcome

are associated, even if there is no effect of exposure on the outcome.

More relevantly, collider bias will still occur if we consider cumulative exposure

(Xk−1 + Xk ) as the exposure of interest (or any summary of both time-specific expo-

sures). That is equivalent to our model above if we add the restriction that β1 = β2.

Because we know that β2 is biased if we adjust for Lk , and β1 is biased if we do not ad-

just for Lk , the association between cumulative exposure and the outcome will also be

biased . Note that, had we measured U , we could control this confounding by adjust-

ing for it in the model, instead of Lk . Given the limited nature of occupational data,

which is often limited to employment records, it is unlikely that we could adequately

capture U in most circumstances.

Bias would also occur if employment status directly affected the outcome (figure

1.3, say, by an increase in smoking after leaving a non-smoking workplace, or a loss of

insurance benefits), and bias would be present even if exposure did not have an effect

on the outcome (Rosenbaum (1984)). This bias occurs because Lk is an intermedi-

ate between Xk−1 and the outcome, so adjusting for it would be equivalent controlling

some of the effect of exposure.

In Robins’ model for healthy worker survivor bias, it is worth highlighting that there

are two central biases at play: 1) not accounting for employment status as a time vary-
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Xk−1

Lk

TXk

Figure 1.3: Causal diagram showing causal alternative relationships possibly underly-
ing healthy worker survivor bias with notation given in Table 1.2. Employment directly
affects the outcome of interest.

ing confounder, or 2) bias from improperly accounting for employment status. The

observed bias when considering cumulative exposure is generally downward because

low cumulative exposures result from individuals leaving work who have a poor prog-

nosis. Adjustment through conventional means may also yield a downward bias, how-

ever, since it is conditioning out part of the total effect of exposure. Thus, based only

on the simple model shown in figure 1.3 one might conceivably adjust for employment

status in a regression model and see no change in the effect estimate because one bias

has been traded for another.

Note that, if employment status is not affected by prior exposure (i.e. only 1 and

2 from Robins’ conditions for healthy worker survivor bias hold), then less restrictive

methods could be used to adjust for time-varying confounding by employment status

(Pearce (1992); Steenland and Stayner (1991)). Further, Pearce et al. (2007) notes that,

along with employment status, job-title or work area can also function as time-varying

covariates that function like employment status. That is, exposure can cause irrita-

tion, leading to a transfer of positions, or, alternatively, sensitive individuals can also

be transferred to low-exposure jobs - this leads to a similar selection process to that

posited by Robins. In the nuclear industry, if an employee reaches his or her exposure

limit, a job transfer to a less exposed job (or termination) could occur, suggesting that

exposure could be a strong risk factor for job changes or employment status changes.
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1.2.2 Evidence of a possible healthy worker survivor bias in occupational radon
studies

Healthy worker survivor bias has historically been of concern only when it results

in benign or deleterious exposures appearing to be beneficial. For example, in a co-

hort of Swedish iron-ore miners, Björ et al. (2013) observed negative trends in multiple

outcomes with increasing employment time and employment time underground, as

shown in Figure 1.4. These trends occurred even though the miners are exposed to

radon, silica, and diesel exhaust, and dust in the underground environment - previ-

ous analyses found associations between cumulative radon exposure and lung cancer

(Jonsson et al. (2010)). The negative association between employment time and rectal

cancer may be present due to beneficial effects of the physical activity inherent in min-

ing (Slattery (2004)), but the positive effect of physical activity is not strong enough to

induce such associations. Thus, there is evidence of healthy worker survivor bias in a

cohort of radon exposed miners, but it may not be apparent with respect to lung can-

cer because radon has highly specific effects and the effects are large enough to out-

weigh any downward bias. This bias may be of little concern when testing hypotheses

about highly deleterious exposures. However, when one is interested in characterizing

a dose-response, healthy worker survivor bias should be considered a potential prob-

lem even if it does not completely eliminate apparent associations.

1.2.2.1 Health related selection is observable in miner cohorts

Evidence of the healthy hire effect in miner cohorts may provide indirect evidence

of a healthy worker survivor bias. Presence of a healthy hire effect suggests that em-

ployment depends on some underlying health status. As shown in the simple causal

diagram in Figure 1.5, it is apparent that healthy worker survivor bias and the healthy

hire effect differ by only one arrow on the diagram. In this scenario, we define k − 1

as the time at which the cohort was formed, so Lk−1 represents initial employment in
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FIGURE 1.

Mortality, Cancer and Iron-Ore Mining 535

Figure 1.4: Figure 1 from Björ et al. (2013) showing negative trends in multiple out-
comes with employment duration in an iron mine
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the industry under study. The dashed arrow in Figure 1.5 represents the difference be-

tween these two biases. Healthy worker survivor bias suggests that underlying health

status U affects employment status at all time points (i.e. the dashed arrow in figure

1.5 is present). When the healthy hire effect (and not healthy worker survivor bias)

is present, then U affects employment status only at time k − 1 (the dashed arrow is

absent). This diagram is an obvious over-simplification of the complex forces that

drive employment changes across time. However, it highlights the similarity of the

two sources of bias in occupational studies and clarifies the specific conditions under

which one could observe a healthy hire effect but expect no healthy worker survivor

bias.

T

U

Lk−1

Lk

Xk−1 Xk

Figure 1.5: Directed acyclic graphs comparing a model for healthy worker survivor bias
(dashed arrow is present) with a model for the healthy hire effect (dashed arrow is ab-
sent)

Often, standardized mortality ratios (SMRs) are interpreted as evidence of the healthy

hire effect if they are below one. Deleterious effects of occupational exposures may

counterbalance this effect, and strongly deleterious exposures may cause an excess of

mortality in working populations. In an early analysis of the Colorado Plateau ura-

nium miners, Archer et al. (1976) estimated an all cause SMR of 0.86 for American Indi-

ans, with an SMR for heart disease estimated to be 0.10, and a deficit of mortality from

non-accidental, non-respiratory causes among white miners. Schubauer-Berigan et al.

(2009) estimated an all cause (except for lung cancer) SMR of 1.22, while the SMR for is-

chemic heart disease was 1.05, suggesting that the healthy hire effect has not persisted

in this cohort. Among a cohort of Canadian miners, Howe et al. (1988) noted deficits
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of circulatory diseases (SMR=0.65), non-lung cancer respiratory diseases (SMR=0.75),

and non-respiratory cancers (SMR=0.80), while the all cause mortality SMR of 1.03

suggests that occupationally related diseases (e.g. accidents, SMR=1.86 and lung can-

cer, SMR=1.90) may be masking a healthy hire effect in this population. The low SMR

for non-lung cancer respiratory diseases remained in deficit in the most recent update

of this population (SMR=0.80) while the all-cause mortality SMR remained near unity

(SMR=0.97) (Lane et al. (2010)).

Stayner et al. (2003) attributes non-linearity observed Colorado uranium miners

(see Hornung and Meinhardt (1987)) and in Czechoslovakian uranium miners (see Sevc

et al. (1993)) to a lower than expected risk at high exposure levels. Because the phe-

nomenon is not generally observed in miner studies (see NRC (1999)), Stayner et al.

(2003) posited that non-linearity results from particular aspects of the cohorts under

study, such as measurement error or healthy worker survivor bias. In an analysis of

non-respiratory cancers in 11 underground miner cohorts, Darby et al. (1995) noted

that, both within each cohort and in the joint analysis, SMRs were nearly all higher for

workers that had been employed at least 10 years versus those employed fewer than

10 years, indicating some health related selection. NRC (1999) have noted the non-

linearity at high exposures but addressed it by truncating person-time-at-risk when

individuals reach the highest exposure levels. Thus, there is reason to suspect that het-

erogeneity in the ERR/WLM from the miner studies may result partially from healthy

worker survivor bias, which may be stronger in some cohorts.

1.3 Models of the dose-response relationship between radon and lung cancer

As we postulate in §1.2.2, there may be healthy worker survivor bias in studies of

radon exposure in miners. However, as we noted in §1.2.1.2, this bias may not be re-

duced by controlling for time-varying confounding by employment status in a regres-

sion model. We review some of the recent models used in dose-response analyses for
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the radon-lung cancer dose-response and comment on the implications for healthy

worker survivor bias.

Case reports of respiratory diseases in miners date back to Paracelcus (see Jacobi

(1993) for a history). However, uranium miner cohort studies did not begin in earnest

until the 1960s. Since that time the radon-lung cancer dose-response has been exten-

sively studied. Recent efforts have focused on estimating a dose-response at the “low”

radon concentrations observed in residential settings using meta-analysis or pooled

data from miners studies (e.g. Lubin (1994); Lubin et al. (1995a, 1997); Leuraud et al.

(2011)), residential studies (e.g. Lubin and Boice (1997); Lubin (2003); Krewski et al.

(2005, 2006)), a combination (e.g. Fornalski and Dobrzynski (2011)), or specific sub-

groups of miners or residential populations (e.g. Lubin et al. (1994)).

Much work has been put into creating parsimonious models of the radon-lung can-

cer dose response that follow basic principles. One of these principles, the linear-no-

threshold (LNT) assumption, is common to many radiation studies. This assumption

implies that the dose-response between radon and health outcomes will be linear and

that exposure to radon at any level will increase the risk of adverse health outcomes

(see Brenner and Sachs (2006) for review of the mechanistic basis for the LNT).

The Committee on the Biological Effects of Ionizing Radiation VI (BEIR VI) (based

on models developed by Lubin (1994)), chose to model the radon-lung cancer associ-

ation using a linear excess relative rate (ERR) model, shown in equation 1.1.

λ(k |X̄k−5;β ) =λ0(k )(1+β X̄k−5) (1.1)

An ERR model says that the rate of disease λ(k ) increases linearly with the exposure of

interest - here expressed as cumulative radon with a 5 year lag X̄k−5 and β represents

the ERR per unit of additional exposure, given a baseline rate of disease λ0(k ). The

baseline rate may be specified as a parametric distribution, such as the exponential
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distribution, or it may be left unspecified as in a semi-parametric Cox proportional

hazards model. This model can be expressed equivalently as

E R R (X̄k−5;β ) =β X̄k−5 (1.2)

For risk projections, the authors of the BEIR VI report considered categorical ver-

sions of both the “exposure-age-duration” and “exposure-age-concentration” models

(known collectively as the BEIR VI models NRC (1999), p. 80). The BEIR VI models al-

lowed for the ERR to vary over categories of time since exposure attained age and either

exposure duration (cumulative up to time k ) or exposure concentration (average up to

time k ) as in

E R R (X̄ k−5L̄k 1, L̄k 2;β ,θ ,φ,γ) =β (X̄k−[5,15)+θ1X̄k−[15,25)+θ2X̄k−25)×φLk 1×γLk 2 (1.3)

where X̄ k−5 = (Xk−[5,15), Xk−[15,25), Xk−[25+)) is the exposure to radon in working level months

for the period 5-15 years, 15-25, or 25+ years years prior. There is modification of the

ERR by attained age L̄k 1, and L̄k 2 can be either exposure rate (in working levels) or expo-

sure duration. The coefficient β is the ERR/WLM at the reference level of all modifiers,

the θ parameters represent the factor by which the ERR/WLM is multiplied for the

time-window specific exposure, and φ and γ are the factors by which the ERR/WLM

is multiplied for their respective covariate. This model is equivalent to fitting a model

with the three windows of exposure within strata of each of the time-varying factors,

but the model given in gives explicit parameters for the strength of effect measure mod-

ification by the time varying factors. Note that the model assumes that exposures in

the previous five years have no effect on lung cancer outcomes (i.e. they assumed a

five year lag).

Many recent analyses in individual miner cohorts utilize models similar to the BEIR

VI models. In an analysis of German uranium miners, Kreuzer et al. (2010) used a model
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which differs from the BEIR VI models only in that time since exposure is not consid-

ered to modify the relative risk of lung cancer by radon exposure.

While the BEIR VI models include factors that multiply the ERR on a linear scale,

there is no restriction on the modification. For example, in the model shown in 1.3,

there is no restriction on φ, so strong modification by exposure rate could lead to the

estimate of a negative ERR.

To get around this issue, other models were developed in which which modifying

factors (e.g. time since exposure) are considered to have a log-linear relationship with

the relative risk of lung cancer. For example, in a cohort of Canadian uranium workers,

Lane et al. (2010) and in a joint analysis of French and Czech miners Tomásek et al.

(2008) considered (in addition to the BEIR VI “exposure-age-concentration” model),

models of the general form

R R (X̄ 5, L̄ k ;β ,γ) = 1+ X̄ 5β exp
�

L̄ kγ
�

(1.4)

This model allows modifiers to enter the model as linear terms (rather than categorical

as in the BEIR models) - otherwise, a linear trend may predict a negative ERR for certain

combinations of exposure and the modifiers.

Leuraud et al. (2011) considered a model that further generalizes that in 1.4 by al-

lowing for modification of the baseline rate (at the reference level for all exposures and

modifiers) by fitting a model of the type

R R (X̄ 5, L̄ k ,Sk ;β ,γ,θ ) = exp (Skθ )
�

1+ X̄ 5β exp
�

L̄ kγ
��

(1.5)

Where Sk in the study was current smoking status. Note that for β = 0 this corresponds

to a standard log-linear rate model.

Each of the models given in 1.3-1.5 is an attempt at capturing important aspects of

exposure history that predict subsequent risk better than cumulative exposure, as in
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the simple model given in 1.2. An equivalent approach has been applied to the rela-

tionship between smoking and lung cancer (Vlaanderen et al. (2014)) as an attempt to

improve on the pack-years metric (Thomas (2014)), which is the analog of the cumu-

lative exposure used in the radon literature.

A shortcoming of each of the models 1.3-1.5 is that the modifiers they consider are

restricted to modification by historical summaries or current values of the modifiers.

Generally, historical summaries are needed for factors such as exposure rate (e.g. av-

erage exposure rate up to age k ) and age at exposure (e.g. age at median exposure)

because mortality generally does not occur until long after exposure has ceased.

As a more general approach to modeling the time-related aspects of exposure his-

tory, Richardson et al. (2012) considered an approach that was not a simple variation

on the models 1.3-1.5. Rather than considering how time related aspects of exposure

might modify the effects of cumulative exposure, the authors considered how these

factors might modify the cumulative exposure itself. In this model, given in 1.6, the

summary exposure metric changes with modifying factors. The summary metric can

be considered a time varying weighted sum of exposure
∑k

u=0 X̄ u wu , such that when

the weight w̄k = (w0, ..., wk ) is always one, this summary metric is equal to the cumula-

tive exposure. Otherwise, this weight varies as a function of the collection of modifiers

included in L̄ k and the parameter vector γ, which quantifies the strength of this mod-

ification.

E R R (X̄ k , L̄ k ;β ,γ) = 1+
k
∑

u=0

X̄ uβ exp
�

L̄ uγ
�

(1.6)

Summary, and implications for healthy worker survivor bias The fields of radiation

and occupational epidemiology have been concerned mainly about the modification

of the effect of radon over time. The two approaches consider modification of the as-

sociation between cumulative exposure and lung cancer or weighting of the relevant

aspect of the exposure metric. Notably, all of these models are unified in that they
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consider some time-varying summary of exposure history to be the relevant predic-

tor of lung cancer mortality, rather than, say only current exposure. When some of

these potential modifiers may also be confounders, however, this set of approaches

may be biased. As shown in §1.2.1.2, if exposure at prior time points can affect the

subsequent evolution of these modifiers, then bias will result. For example, if prior ex-

posure influences the rate of leaving employment, then models that do not stratify by

some function of employment history may be biased due to confounding. However,

models that stratify by such factors - including exposure duration, which is strongly

affected by employment history - will also be biased. Thus, the possible presence of

healthy worker survivor bias in studies of radon exposed populations motivates the

need for models that can account for a time-evolving exposure while not being subject

to the shortcomings of regression models. We explore such models in the next section.

1.4 Existing analytic methods proposed for reducing bias due to healthy worker
survivor bias

1.4.1 Parametric g-computation algorithm

Robins formulated the concept of healthy worker survivor bias as a case of time-

varying confounding in which (some) of the confounders also mediate the exposure-

disease relationships (Robins (1987b,a, 1986); Robins et al. (2004)). In his original for-

mulation, he proposed use of the parametric g-computation algorithm to identify causal

effects in cohorts in there is healthy worker survivor bias. The parametric g-computation

algorithm, also known in various formulations as g-computation, the g-formula, para-

metric g-formula (Taubman et al. (2009)), and model-assisted g-computation algo-

rithm (Robins (1989)), is based on standardization. A simple example of a standardized

(marginal) probability that A = 1, given a binary variable B can be expressed as:
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P r (A = 1) =
∑

b∈(0,1)

P r (A = 1|B = b )×P r (B = b ) (1.7)

Unlike the representation of the ERR model in equation 1.1, this way of express-

ing standardization requires use of discrete time - and slightly different notation. In

this case, the outcome of interest is an outcome Dk that is measured at discrete points

in time, such as a study visit. We define the g-formula using a simple data structure

in which, at time k exposure (X k ), employment status (L k ), and the death (Dk ) are all

dichotomous variables. The cumulative incidence, Ik is the proportion of individu-

als who have died by time k . To estimate Ik we can factor P r (Dk = 1) as in 1.7. The

standardized (marginal) cumulative incidence (Ik ) of the dichotomous outcome Dk

(assuming no censoring) can be expressed using the g-formula as:

Ik = P r (Dk = 1) = (1.8)

k
∑

j=1

∑

l

∑

x

P r (Dj = 1|X̄ j = x̄ j , L̄ j = L̄ j , Dj−1 = 0)×

j
∏

m=1

[P r (Xm = xm |L̄ m = l̄ m , X̄ m−1 = x̄ m−1, Dm−1 = 0)×

P r (Lm = lm |L̄ m−1 = l̄ m−1, X̄ m−1 = x̄ m−1, Dm−1 = 0)×

P r (Dm−1 = 0|L̄ m−1 = l̄ m−1, X̄ m−1 = x̄ m−1, Dm−2 = 0)]

Where variables with subscripts ≤ 0 drop out if m <= 2.

The g-formula can be used for effect estimation by estimating the cumulative inci-

dence under different interventions on exposure. For example, I x̄ k
k is the cumulative

incidence at time k we would expect under the intervention s e t (X̄ k = x̄ k ). The cumu-

lative incidence under an intervention is estimated using the g-formula by replacing x̄ k

with the value to which we wish to set exposure. For example, setting the exposure to

always equal zero would would be the intervention “never exposed.” To estimate the
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risk difference at time k for always versus never exposed, we can take the difference

between two interventions I 1̄
k -I 0̄

k .

Non-dichotomous data, moderate to small sample size and extended follow up (i.e.

any condition that results in sparse strata) necessitate use of models and Monte Carlo

sampling. This approach is referred to as the parametric g-formula (see examples in

Robins et al. (2004); Taubman et al. (2009); Westreich et al. (2012); Cole et al. (2013);

Keil et al. (2014a)). Recently, Edwards et al. (2014) used the g-formula to estimate the

effects on mortality of implementing and enforcing a series of different occupational

limits on exposure in the study population used in the analyses in chapters 3.1 and 3.2,

the Colorado Plateau uranium miners.

We note that the g-methods (the parametric g-formula, g-estimation of structural

nested models, inverse probability weighted marginal structural models) originate in

the causal inference literature and under the assumptions given in Appendix C.3 the

parameters from these methods may have a causal interpretation. Without necessar-

ily assuming we have identified a causal effect, however, g-methods have some advan-

tages over standard regression models. Under the conditions for healthy worker sur-

vivor bias outlined by Robins (1986), g-methods appropriately adjust for time-varying

confounding in which some of the confounders are also intermediates. Namely, as

shown with the g-formula examples, the parameter of interest is the marginal inci-

dence under an intervention I x̄ k
k . This marginal incidence is not stratified by the time-

varying confounder, so it does not fall prey to the pitfalls of stratifying or condition-

ing on a variable affected by exposure that we noted in §1.2.1.2 and were discussed by

Rosenbaum (1984) and Weinberg (1993).

1.4.2 Other proposed solutions

Arrighi and Hertz-Picciotto (1993, 1994, 1996) review several other methods for con-

trolling bias due to healthy worker survivor bias, and Arrighi and Hertz-Picciotto (1996)
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compare them in an analysis of the association between arsenic exposure and cancer

outcomes in a cohort of copper smelters, while Hertz-Picciotto et al. (2000) compare

the methods using the same cohort in an analysis of the arsenic-cardiovascular disease

association. Three methods were compared with the g-null test (an early g-method

similar to the parametric g-computation algorithm - see Robins (1987b)): exposure lag,

adjustment for employment status, cohort restriction. Using causal diagrams we can

show the specific conditions under which these analyses may control healthy worker

survivor bias.

Exposure lag Gilbert (1982) employed use of an exposure lag to control healthy worker

survivor bias under the rationale that the most recent exposures could only be accrued

by employees that survived/stayed at work (namely, the healthiest employees). Under

figure 1.6, this is equivalent to removing the arrow Xk → T. Doing so, and not includ-

ing Xk in the model for lung cancer, ensures that exposure is not confounded by Lk ,

since Lk only confounds the Xk → T association. If there is, in reality, a Xk → T asso-

ciation, then there will be induction of some measurement error due to the fact that

were are ignoring Xk . If we consider a more realistic setting, then there will be a likely

trade-off between measurement error due to ignored exposure and confounding by

employment status that depends on the length of lag used.

In an analysis of the arsenic-lung cancer association, Arrighi and Hertz-Picciotto

(1996) observed increased rate ratios for lags of 10 and 15 years (versus no lag) across

multiple exposure levels, but a lag of 20 years produced rate ratios that were both more

variable and generally lower than the other lags. These findings suggest some trade-

off may be occurring between reduction of confounding due to healthy worker sur-

vivor bias and some increase in the variance of the rate ratio estimate (and reduction of

the effect estimate, in the extreme), which is consistent with measurement error (that

is, error in measuring etiologically relevant exposures) introduced due to lagging. It
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should be noted that exposure lagging in this context is identical to exposure lagging

to account for the empirical latency period between exposure and disease onset Roth-

man (1981); Richardson et al. (2011). The results of Arrighi and Hertz-Picciotto (1996)

could also be a consequence of modeling the disease process more effectively in mod-

els using a lag that approaches the average empirical latency period in the cohort.

In a simple model of healthy worker survivor bias shown in figure 1.6, utilizing a lag

of one unit of time would appropriately adjust for confounding by employment status

without inducing additional bias. Using this diagram, confounding occurs along Xk ←

Lk ←U → T , and by excluding Xk (through the lag), we have eliminated confounding

of the effect of the exposure of interest X̄k = (Xk−1, Xk ). This model requires that there

is no time-varying confounding of Xk−1 → T and is not likely to hold in any realistic

setting. Note that lags may still be appropriate to address disease latency, but analysis

of our causal diagram in Figure 1.6 suggests that exposure lagging will not be sufficient

to control healthy worker survivor bias. However, it may be useful in concert with other

methods (e.g. Garshick et al. (2012),Naimi et al. (2014a)).

Xk−1

Lk

TXk

Figure 1.6: Causal diagram showing assumption under which a 1 unit exposure lag
controls confounding by employment status

Adjustment for employment status Gilbert and Marks (1979) proposed that stratify-

ing person-time by current employment status (on versus off work) could be used to

control aspects of bias due healthy worker survivor bias. The relationships shown in

Figures 1.2-1.3 again suggest scenarios in which employment status stratification (ad-

justment) could reduce this bias. Employment status at time k lies on a non-causal,
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backdoor path between exposure at k and the outcome. Stratification on current em-

ployment status would block confounding pathways for X t , but would also block part

of the total effect of exposure at time 1, thus biasing the estimate of total exposure.

Additionally, this adjustment induces collider-stratification-bias by opening up a non-

causal, backdoor path Xk−1→��Lk ←U → T , where��Lk means that the model was strati-

fied by Lk (Greenland (2003); Cole et al. (2010)). If exposure does not affect subsequent

employment status - i.e. if exposure has no effect on health during employment, then

stratification of person time would function to eliminate confounding by employment

status (e.g. the causal diagram shown in figure 1.3). If the confounding through Lk is

strong relative to the indirect effect of prior exposure (Xk−1) through Lk , then adjust-

ment may increase effect estimates. Steenland and Stayner (1991) observed such an in-

crease and concluded that employment status is an important variable for adjustment

in occupational studies. Such an increase does not rule out collider bias, however.

A similar approach was proposed by Flanders et al. (1993), who explored an em-

pirical model for the healthy hire effect in which they proposed adjustment for time-

since-hire to reduces bias due to healthy worker effects. The authors also posited that

the healthy hire effect faded over time through a mechanism in which the hazard in-

creased in proportion to the number of years employed, suggesting that cumulative

work (conditional on age) actually makes workers more sick. Interestingly, the authors

observed a downward bias due in risk ratios (compared to employment duration ad-

justed models) to their hypothesized set of effects, which is same as that seen by Steen-

land and Stayner (1991) among several work forces. Cardis et al. (2007) observed a 0.31

ERR/Sv for radiation dose effects on all cancers (excl. leukemia) before adjustment by

duration of employment and a 0.97 ERR/Sv after adjustment in the 15 country study

of radiation exposed nuclear workers. These results conform to the theoretical direc-

tion of bias due to healthy worker survivor bias in work by McNamee (2003) and Robins

(1986). Flanders et al. (1993) posited that the bias due to healthy worker survivor bias
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could be eliminated by adjusting for time-since-hire, but Arrighi and Hertz-Picciotto

(1995) suggests using results from two cohorts that the empirical model of Flanders

et al. (1993) does not hold due to apparent confounding of the time-since-hire effect

by age and employment status.

Richardson et al. (2004) showed in simulations that bias patterns observed in healthy

worker survivor bias could result from a strong correlation between cumulative expo-

sure and time-since termination. The authors noted in simulations that large, spurious

associations could be induced by simply adjusting for a binary indicator of employ-

ment status, whereas adjustment for time-since-termination returned the expected re-

sult. The methods were replicated in a cohort of utility workers with the same pattern

of results, and later applied by Garshick et al. (2008) to a cohort of trucking industry

workers. Steenland and Stayner (1991) observed that the SMR during inactive (unem-

ployed) person time was higher than that during employment, and a decrease in the

SMR by duration of employment - the confluence of which is consistent with sick work-

ers leaving, rather than employment increasing the health of employees. These results

emphasize the importance of considering employment status as a time-varying factor

in any occupational study, as well as considering a set of employment status “history”

variables that could include time-since termination or duration of employment.

Cohort restriction Following observations that SMRs for multiple diseases among

vinyl-chloride exposed workers with 15+ years at work were elevated versus those with

5+ or 10+ years at work, (Fox and Collier (1976, 1977)) Fox and Collier advocated re-

striction of occupational cohorts to those with at least 15 years of employment. The au-

thors attributed this shift to health related selection from the workforce that decreased

after time spent in the industry. Arrighi and Hertz-Picciotto (1996) also explored co-

hort restriction in a cohort of copper smelters exposed to arsenic and found elevated

rate ratios for respiratory in cohorts restricted to 20+ years of work, but not in those
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restricted to 10+ or 15+.

In the causal diagram in Figure 1.6, this method can be expressed as restricting the

cohort to those with L2 = 1. This restriction is fraught with the same issues as regres-

sion adjustment for L2. Further, there is no reason to suspect that selection effects from

healthy worker survivor bias are decreased at all in restricted cohorts, and it is impos-

sible to disentangle possible control of any healthy worker effects from the effects of

selection bias induced by restricting analysis cohort that has a) survived long enough

to be in the cohort and b) been subjected to more exposure than others.

The g-null test The g-null test was another approach developed by Robins (1986) to

address healthy worker survivor bias when exposure may influence employment. This

method is similar to g-estimation of structural nested models (discussed in §1.5.1), but

is less general. The approach relies on creating nested matched sets individuals, where

the matching is on exposure and covariate history. Each nested set is analyzed with the

equivalent of a conditional logistic model where a case is defined as an individual who

eventually dies of the disease of interest. The test was low powered, so Robins (1987b)

developed a slightly more powerful version that was applied by Hertz-Picciotto et al.

(2000) to study the effects of arsenic on circulatory disease. While the approach might

be tenable for short term studies with only categorical covariates, it appears that g-

estimation of structural nested models may offer the same advantages without any of

the disadvantages of the g-null test.

Summary Robins’ model for healthy worker survivor bias is inclusive of many pre-

viously suggested models (e.g. McNamee (2003); Flanders et al. (1993); Pearce (1992);

Richardson et al. (2004)). The causal diagrams in figures 1.2-1.6 are all examples of

causal structures for which exposure effects can be appropriately estimated without in-

ducing other biases (Robins and Wasserman (1997)). Doing so requires using g-methods,

such as the parametric g-formula, g-estimation of structural nested models, or inverse
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probability weighted marginal structural models. In Figures 1.2-1.5, if exposure does

not influence subsequent employment, then adjustment for employment status would

also be expected to remove confounding without introducing additional bias. Ulti-

mately, these simplified scenarios are useful for suggesting approaches in certain sce-

narios, but the often unobservable complexity of relationships between the external

environment and health implies that we can only approximate the truth with models.

The flexibility of g-methods makes them a useful tool to in a wider array of environ-

ments than standard regression models.

1.5 Proposed solutions considered in this dissertation

Two methods aside from the g-formula designed for the study of exposure effects

under time varying confounding are inverse probability of exposure weighted marginal

structural models (MSM), and g-estimated structural nested models. Of these, inverse

probability weighted Cox MSMs and structural nested accelerated failure-time mod-

els (SNAFT model) have utility for data in which the effect of cumulative exposures

on a binary outcome are of interest. Both models can potentially be used to control

time varying confounding by employment status and employment history, which We

hypothesize will control healthy worker survivor bias. We propose to apply these two

methods, and We describe simple examples of them in §1.5.1 and §1.5.2.

1.5.1 Structural Nested Accelerated Failure Time models

Robins proposed the use of structural nested models (specifically Structural Nested

Accelerated Failure Time [SNAFT]models in the case of survival outcomes) as a way to

estimate causal effects in the presence of time-varying mediating confounders (Robins

and Tsiatis (1992)). These models adjust for confounding by time-varying covariates

using g-estimation (Robins (1989)). G-estimation allows estimation of a marginal pa-
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rameter, as with the parametric g-formula, and is not subject to the pitfalls of regres-

sion models noted above.

A SNAFT model can be expressed in a simple case as

T 0̄ =

T
∫

k=0

exp(ψXk )d k (1.9)

Where T 0̄ is the failure time we would observe if the individual had never been ex-

posed. The parameter of interest exp(−ψ) is interpreted as the factor by which expo-

sure contracts one’s lifespan, For example, if exp(−ψ) = 1/2, exposure cuts the amount

of potential time one could live in half - that is, the failure time observed under con-

stant exposure is half that we would observe under no exposure. To account for time

varying exposures, we have to integrate the exposure function over the observed time.

This model allows us to calculate the potential failure time under no exposure using

the data. For example, ifψ= 0.2 for an individual with an observed failure time T = 2.2

and exposure history X̄ k = (1, 0, 1), the survival time under the exposure history “never

exposed” (X̄ k = (0, 0, 0)) would be

T 0̄ = e 0.2∗1 ∗ (1−0)years + e 0.2∗0 ∗ (2−1)years + e 0.2∗1 ∗ (2.2−2)years = 2.47 years

Estimation of the SNAFT model is done using g-estimation Robins (1989); Robins and

Tsiatis (1992). A simple g-estimation algorithm would proceed as follows:

First, take a guess atψ (called eψ) and use equation 1.9 to generate a set of the po-

tential failure times under no exposure at eψ called eT 0̄ as in

eT 0̄ =

T
∫

k=0

exp( eψXk )d k .

Next, one uses an estimating equation to evaluate the association between eT 0̄ and
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Xk . This could be a logistic model such as

l o g i t [P r (Xk = 1|V L̄ k , X̄ k−1, eT 0̄, T > k ;β ,θ )] =β0k +V β1+ L̄ kβ2+ X̄ k−1β3+ eT
0̄θ (1.10)

in which the dependent variable is the exposure at time k (Witteman et al. (1998); Hernán

et al. (2005)). The model includes a interceptβ0k that may be time varying. Because the

outcome we would observe under no exposure can only depend on exposure if there

is unmeasured confounding (i.e. T 0̄ is treated as a baseline variable determined prior

to any exposure or covariates), if all confounders are accounted for in the right side of

equation 1.10, eT 0̄ will equal T 0̄ when θ = 0 (Robins (1989)). One can perform a grid

search over a reasonable range of eψ, and the eψ that yields a Z-statistic for θ equal to 0

(or very close to 0) is the estimate ψ̂. G-estimation is the term given to this search.

To develop some intuition, one could consider T 0̄ to be the “residual” outcome

once the net effects (the parameter of interest) of exposure are removed. It is the vari-

ation in the observed outcome that is not due to exposure. The ψ parameter corre-

sponds to this net effect. Once we have removed the variation in the outcome not due

to exposure, then the residual outcome should be independent with an increment of

exposure (Xk ). We might expect that the residual outcome would vary between indi-

viduals with different employment and exposure histories, so we test for this indepen-

dence within strata of these variables.

The formulation of a SNAFT model described in this section assumes that all out-

comes are observed. This model requires modification when when some outcomes

are unobserved due to censoring. A description of the g-estimation of a SNAFT model

in the presence of censoring can be found in Witteman et al. (1998), or in Joffe et al.

(2012) (the latter of which is more technical).

The positivity assumption for g-estimation As discussed in Appendix C.3, the posi-

tivity assumption requires that we observe all levels of the exposure in all levels of the
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covariates. Using the estimating equation 1.10 as an example, note that occupational

studies are sensitive to this assumption. If exposure cannot occur off of work, then

the probability of exposure when Lk = 0 (currently off work, a component of L̄ k ) will

always be zero. In such a case, the coefficients β1,β2 and θ are not estimable in a sat-

urated model.

G-estimation can overcome such violations of the positivity assumptions, provided

we replace it with another assumption (Joffe et al. (2010)). An example of this assump-

tion was given by Chevrier et al. (2012), who used a modified estimating equation of

the form

l o g i t
�

P r (Xk = 1|V , X̄ k−1, eT 0̄, T > k , Lk = 1;β ,θ )
�

=β0k +V β1+ X̄ k−1β2+ eT 0̄θ

Where the estimating equation is only used on the person-years of active employ-

ment in the data (Lk = 1). Using occupational data, we can estimate all coefficients

in this model because there is no longer a violation of positivity. This amounts to a

relaxation of the assumption of no unmeasured confounding (see appendix C.3) so

that it only applies to the person time at work. Joffe et al. (2010) refer to this as a se-

lective ignorability assumption and offer several examples in which, even though the

assumption of no unmeasured confounding does not hold for all data, information

from a subset in which it does hold (e.g. subsets with better exposure measurement or

no missing covariates) can be leveraged to estimate causal effects with less bias than

would be possible using the full data.

An alternative to the approach of Chevrier et al. (2012) is to fit the model in equation

1.10 using an unsaturated model. In that case, empty strata will be smoothed over.

However, in occupational data, the approach of Chevrier et al. (2012) is likely more

defensible, since the smoothing done by the model would amount to allowing some

individuals to be exposed off work. The smoothing approach is likely a good choice
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when nonpositivity may happen because of sparse data, such as in analyses of data

with long follow-up and many potential confounders.

The validity of this approach relies on specification of the structural nested model

and the model proposed for the estimating equation. This is fewer models than are

required by the g-formula, but more than a standard regression approach. Most ex-

amples of structural nested models in the literature are relatively simple models with

dichotomous exposures (Joffe et al. (1998); Hernán et al. (2005); Chevrier et al. (2012);

Neophytou et al. (2014)) and there are relatively few examples of fitting SNAFT models

with quantitative exposures (Joffe et al. (2012); Naimi et al. (2014a)). Even in simulated

data, SNAFT models may not perform well in reasonably sized data sets (Young et al.

(2010)), and Joffe et al. (2012) noted difficulties with g-estimation when trying to es-

timate multiple SNAFT model parameters. However, these models may complement

standard regression models, and they appear promising for wider use in occupational

studies to control healthy worker survivor bias (Joffe (2012)).

1.5.2 Marginal structural models

Robins and colleagues also described marginal structural models, another class of

models that can adequately control for time-varying-confounders that mediate the

exposure-outcome association (Robins (1997, 1999); Robins et al. (2000)). A marginal

structural model is a tool for analysis that estimates associations between exposure

and an outcome, much like standard regression models. They are relatively simple in

implementation and provide parameters with familiar interpretation. Thus they are

an attractive tool for epidemiologists.

A trivial example of marginal structural model involves some exposure that is un-

confounded (as treatment in a clinical trial) and all outcomes are observed (no cen-

soring) (Robins (1997)). In that case, the marginal structural model is equivalent to a

crude (i.e. marginal) model for the exposure. Observational studies are often subject
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to confounding, however, so this trivial model is not usually of interest. Assuming that

all confounders are measured, one can estimate a marginal structural model using in-

verse probability weighting (Horvitz and Thompson (1952)).

Returning to the notation used in previous sections (shown in table 1.2), these weights

can be estimated using data via

Ŵk =
k
∏

j=0

P r [X j = x j |L̄ j = l̄ j , X̄ j−1 = x̄ j−1, V = v ]−1

Informally, inverse probability weighting relies on the principal that the same types

of individuals are present in both exposed and unexposed groups, but in different pro-

portions that can be weighted to a common standard. The weights are applied to data

so that each individual is represented by Ŵk copies in the data. The weighting results

in a “pseudo-population” in which confounders included in the weight model are bal-

anced over the levels of exposure. An inverse probability weighted marginal structural

model using weights Ŵk is just a crude model fit to the pseudo-population, rather than

the observed population.

A non-trivial example of using inverse probability weighting is to fit a marginal

structural Cox proportional hazards model. For a binary exposure, this model esti-

mates the change in the relative hazard for a one unit increase in exposure. Hernán

et al. (2000) interprets the coefficient from such a model as the “ratio of the mortality

(hazard) rate at any time t had all subjects been continuously exposed... compared

with the hazard rate at time t had all subjects remained unexposed” (p 563). This def-

inition has not been previously extended to a cumulative exposure.

The positivity assumption for inverse probability weighting Note that if

1/Ŵk =
k
∏

j=0

P r [X j = x j |L̄ j = l̄ j , X̄ j−1 = x̄ j−1, V = v ] = 0
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for any individual - that is, the probability of being exposed (or unexposed) at time k is

0, then Wk is undefined (or infinite). It is also an indication that there are no individuals

to which appropriate weights can be applied. This implies that a pseudo-population

created with such weights contains strata of exposure in which the covariates are not

balanced (thus not controlling bias due to confounding). The necessity that all indi-

viduals in a study must have a positive (non-zero) probability of exposure is known

as the positivity assumption (Cole and Hernán (2008); Westreich and Cole (2010)) or

experimental treatment assignment assumption (Petersen et al. (2012)).

Marginal structural models have been popular with epidemiologists since their in-

troduction. However, their use in the occupational literature has only two examples.

Dumas et al. (2013) estimated the effect of occupational exposure to asthmagens on

asthma expression using marginal structural models in a clinical population. Thyge-

sen et al. (2011) estimated the association between employment as an electrician and

mortality using marginal structural models. Robins et al. (2000) anticipated this use

of marginal structural models, but noted that the models should not be used in occu-

pational data due to problems with nonpositivity. Naimi et al. (2011) confirmed that

marginal structural models could not remove confounding in simulated occupational

data. When employment status is considered a confounder of interest, it will result in

nonpositivity when exposure cannot occur outside of employment. The recommen-

dation of Robins et al. (2000) was based on the model of healthy worker survivor bias in

which employment status is the confounder of interest. Both Dumas et al. (2013) and

Thygesen et al. (2011) used inverse probability weighting in occupational scenarios in

which nonpositivity may be of less concern, but they were likely limited in the extent

to which they could control healthy worker survivor bias. Still, these examples suggest

that there may be some questions in occupational epidemiology that can be answered

well using marginal structural models.
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CHAPTER II: METHODOLOGY

2.1 Overview

We propose two approaches from the causal inference literature for reducing po-

tential bias due to healthy worker survivor bias in data from the Colorado Plateau ura-

nium miners study. The first approach will utilize g-estimation of a structural nested

accelerated failure time (SNAFT) model, while the second approach will involve a mod-

ified application of a marginal structural model (MSM) using imputed background

radon exposure to avoid violations of the positivity assumption. Both SNAFT models

and MSMs have been shown in other settings to appropriately adjust for time-varying

confounding without inducing additional bias by conditioning on variables influenced

by exposure to radon in a regression model (e.g. Cole et al. (2005, 2007); Hernán et al.

(2005); Chevrier et al. (2012)).

2.2 Colorado Plateau uranium miners study

Mainly due to increased demand for uranium due to broader development of the

nuclear program by the United States military, extensive mining and processing of ura-

nium began in Colorado in the 1940s and 50s (Ringholz (2002)). Radiation exposure

had previously been suspected of suspected of having a link to lung cancer in earlier

decades in the Saxony region. However, radon concentrations in the Colorado Plateau

mines were thought to be considerably lower than the mines of the Saxony region and

did not warrant monitoring (Schüttmann (1993); Jacobi (1993)). No radon concentra-

tion measurements were taken until the 1950s, when the United States Public Health
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Service (USPHS) began health surveys of miners that included sporadic measurement

of radon concentrations in mine-shaft air. These initial studies led to the formation

of a cohort of miners in the Colorado Plateau carried out by the USPHS and then by

the National Institute for Occupational Safety and Health (NIOSH) (NRC (1988)). This

study of the Colorado Plateau uranium miners cohort, which is the subject of the pro-

posed analyses, has been subject to repeated follow-up (Archer (1962); Wagoner et al.

(1964); Lundin Jr et al. (1969); Archer et al. (1976); Whittemore and McMillan (1983);

Hornung and Meinhardt (1987); Roscoe (1997)) for continued exposure data and vital

status, most recently by Schubauer-Berigan et al. (2009).

2.2.1 Cohort definition

The data comprise over 4,000 white and Native American male underground ura-

nium miners in the Colorado Plateau uranium miners cohort recent follow-up for vital

status. The cohort includes all miners from the original cohort (e.g. Archer (1962)) who

responded to one or more surveys from the U.S. Public Health Service between 1 Jan-

uary, 1950 and 31 December, 1959 and who had at least one month of underground

uranium mining employment before 1 January 1964 (Archer et al. (1976)). These data

include miners with mining experience prior to date of entry into the study, which is

defined as the date of first examination by the Public Health Service (Lundin Jr et al.

(1969)). Each member of the cohort was followed until the earliest of death (N=2,428),

loss-to-follow-up (N=14), or 31 December, 2005. The surveys from 1957 and 1960 cov-

ered approximately 90% of the miners in areas visited by the USPHS (Roscoe (1997)).

2.2.2 Data acquisition

The Colorado Plateau uranium miners cohort data are available from the National

Institute of Occupational Safety and Health upon request.
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2.2.3 Vital status and cause of death information

As of December 31, 2005, the 2,428 of the 3,358 white cohort members were known

to have died over the course of 95,867 person-years. Follow-up through 1990 was per-

formed using records from the Social Security Administration, the Internal Revenue

Service, the National Death Index, and Health Care Financing Administration, and

death certificates were coded by a qualified nosologist for cause of death informa-

tion (Roscoe et al. (1989)). For miners who were not known to have died before 1 Jan-

uary, 1990, vital status and cause of death information was obtained using the National

Death Index and the Social Security Administration’s mortality file. Imperfect matches

on date of birth, name, and Social Security number were manually reviewed. Fourteen

miners who died before the advent of the National Death Index in 1979 were lost to

follow up. Lung cancer was listed as the cause of death for 549 individuals, and cause

of death could not be determined for 22 individuals (Schubauer-Berigan et al. (2009)).

2.2.4 Employment history data

Employment history data was included as part of the USPHS surveys of the 1950s,

and subsequent surveys in the 1960s. Additionally, the USPHS supplemented the data

from initial questionnaires through an annual census of all US uranium miners from

1954 through 1969 (Archer et al. (1976)).

2.2.5 Radon exposure data

Estimated monthly radon exposure in Working Levels for each miner were based on

one of four methods: 1) actual measurement, 2) interpolation or extrapolation in time

3) geographic area estimation, or 4) pre-1950 (when air monitoring began) estimates

were based on knowledge of ore, ventilation practices, and subsequent measurements

(Roscoe et al. (1989)). Between 1950 and 1968, the USPHS helped to make nearly 43,000
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measurements of radon-progeny concentration in 2,500 Colorado Plateau uranium

mines. Nearly 50% of the area estimates for each mine were made by interpolation

of measurements in the same year (Whittemore and McMillan (1983)). Because radon

exposures are not limited to Uranium mines, the USPHS also recorded history of work

in hard-rock mines, though no radon measurements were made in these mines and

estimated radon exposures are generally low relative to exposure due to uranium mine

work (Whittemore and McMillan (1983)). Monthly radon exposures through 1969 for

each miner have been estimated based on the conducted measurements and estimates

of area-level radon concentrations and work history data collected in the USPHS sur-

veys. Radiation levels dropped sharply after 1967, when only 12% of the cohort re-

mained working, so mining exposure histories are essentially complete for the cohort

(Archer et al. (1976)). It should be noted that some cumulative exposures in this cohort

are extremely high (> 5,000 WLM), which has been cited as a source of non-linearity

of effect estimates in this cohort - as well as providing a challenge to external validity.

NRC (1999) and Lubin (1994) restricted analyses to miner-years with fewer than 3,200

cumulative WLM.

2.2.6 Smoking data

Detailed smoking information was initially obtained at study entry and in subse-

quent follow up examinations (Archer et al. (1976)). Smoking start dates, stop dates,

and estimates of smoking intensity in pack-years were obtained at each time of follow-

up (Whittemore and McMillan (1983)). The most recent follow-up of the Colorado

Plateau uranium miners data by Schubauer-Berigan et al. (2009) includes a final smok-

ing history survey given in 1985 by NIOSH in which 2/3 of the miners, or next of kin

proxies for deceased miners responded. Prior smoking was more prevalent among

non-respondents than among respondents. Prior to 1985, the most recent survey to

assess smoking status was in 1969 (Hornung et al. (1995)).
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2.3 Background Radon

Estimates of background radon exposures can be imputed based on an assumption

of a parametric distribution fitted to measured radon concentrations from the High-

Radon Project, a project of the Lawrence Berkeley National Laboratory (Price et al.

(2011)). Based on 1443 measurements made in Colorado between 1986 and 1987, the

median alpha activity measured was 3.3 pCi/L (121 B q/m 3). Figure 2.1 shows a his-

togram of the readings below 50 pCi/L (1780 B q/m 3) with a fitted log-normal curve

with geometric mean and standard deviation equal to those in the data (3.2, and 1.0).

Individual background radon radiation will be imputed for each miner based on a

draws from a log-normal distribution that approximately fits the data, and then av-

eraged over the draws.
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Figure 2.1: 1443 measured radon concentrations in 48 Colorado counties from 1986-
1987 by the High-Radon Project, Lawrence Berkeley National Laboratory (Price et al.
(2011))

2.4 Statistical Methods

The proposed analyses involve two estimation procedures for longitudinal data de-

veloped by Robins (1989, 1997), which are part of a larger class of statistical methods
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for causal inference known as g-methods.

Both of these proposed methods are considered generally here and in more specific

detail in §3.1 and 3.2.

2.4.1 G-estimation of structural nested accelerated failure time models

The simple SNAFT model model shown in § 1.5.1 can be generalized to continuous

radon exposures, as observed in the Colorado Plateau uranium miners. We propose to

first fit a basic SNAFT model

T 0̄ =

T
∫

0

exp(ψX̄k−5)d k

where X̄k−5 is the cumulative radon exposure in working level months up to time t

with a lag of 5 years to allow for latency between lung cancer induction and mortal-

ity T . Because many time related factors mediate the radon-lung cancer association,

We will also fit models of the allowing the time ratio to vary over time varying factors

(time since exposure, age at exposure, smoking, exposure rate) of the relationship be-

tween radon and lung cancer. For example, to assess effects of time-since-exposure in

correspondence with BEIR VI models, We will fit the model

T 0̄ =

T
∫

0

exp(ψ1X̄k−(5:14)+ψ2X̄k−(15:24)+ψ3X̄k−(25+))d k

Where X̄k−(a :b ) corresponds to the cumulative exposure accrued from a to b years prior

to time k . We will estimate these models using the g-estimation procedure described

in § 1.5.1. The structural model can also be used to explore lag functions, since the

lag functions used or estimated under standard regression models (e.g.Langholz et al.

(1999); Hauptmann et al. (2001)) will not necessarily hold for causal models. The lag

can either be a fixed number, as expressed in the structural model here, or it can be
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treated as a stochastic variable (Richardson (2009b); Richardson et al. (2011)).

Joffe et al. (2012) described a different set of structural models useful for allowing

the effects of a continuous exposure to vary over time-varying factors. However, prac-

tical issues related to implementation of estimation algorithms limited exploration of

effect measure modification in the analysis.

G-estimation of a SNAFT model in occupational data has previously been shown

to be feasible by Chevrier et al. (2012). Additionally, the investigators showed several

ways to generate other effect measures usingψ estimates from g-estimation. Because

SNAFT models are well suited for overcoming the non-positivity that characterizes bias

due to healthy worker survivor bias, We will estimate other effect measures for com-

parability, especially the hazard ratio as a method of evaluating the MSM described in

§ 2.4.2. An alternative approach is that taken by Naimi et al. (2014a), who compared

SNAFT model parameters to parameters from a parametric accelerated failure time

model.

2.4.1.1 Inference under measurement error of exposures and covariates

G-estimation can be used in any subset of the data for which conditional exchange-

ability holds, and Joffe et al. (2010) note that this can include a subset of the data in

which the measurement error is less, thus reducing the impact of exposure misclassi-

fication. Based on the variation in measurement sources across time shown in figure

C.2, the estimating equation could be limited to a subset of the data in which measure-

ment error was least (e.g after 1950), but full inference for the data is still possible. This

feature of g-estimation could also allow estimation in a subset with complete smoking

information, thus extending to a number of possibilities regarding focused analyses on

single modifiers or sensitivity analyses.
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2.4.2 Marginal structural models using inverse probability weighting

The second proposed analysis of the Colorado Plateau uranium miners data in-

volves a MSM of the form

λX (k ) =λ0(k )exp(β X̄k−5)

Where X̄k−5 is again the 5-year lagged radon concentration in WLM and T is the

time to lung cancer, which We will estimate using a weighted Cox proportional hazards

model with estimated weights Ŵ (k ) as described in § 1.5.2, but using a continuous

exposure.

Ŵk =
k
∏

j=0

f [X j |X̄ j−1, V ]

f [X j |L̄ j , X̄ j−1, V ]

In principal, SNAFT models should more naturally allow for exploration of effect

measure modification. However, as noted in the previous section, practical issues have

limited the use of SNAFT models. The MSM may be the appropriate model to explore

effect measure modification, in that case. While MSMs are noted to have shortcom-

ings when addressing effect measure modification under certain circumstances (e.g.

Hernán et al. (2001)), several authors have shown how to assess effect measure modi-

fication or to estimate joint effects using inverse-probability weighting (Hernán et al.

(2001); Petersen et al. (2007); Chiba et al. (2009); VanderWeele and Vansteelandt (2011)).

As in the SNAFT model, the MSM is potentially useful for estimating a latency func-

tion, particularly when considering a weighted exposure history where weights are

proportional to the expected contribution to disease at a given time. These latency

model weights work naturally with the inverse probability weights (Langholz et al. (1999);

Richardson (2009b)). Further, inverse probability weights have not been applied previ-

ously to a linear excess relative risk model, and the model is relatively straightforward

to estimate once weights are estimated. This model may provide a useful comparison

to previous analyses.
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Because inverse probability weighting is sensitive to violations of the positivity as-

sumption, non-positivity due to the lack of off-work exposures must be addressed in

this analysis. We propose estimating the effect of total radon exposure (occupational

+ residential) using existing background radon estimates from Price et al. (2011). As an

example, residential monitoring data for the state of Colorado (which holds part of the

Colorado Plateau) is shown in figure 2.1. By combining residential with occupational

exposure, the conditional probability density of exposure f [Xk |·]will be> 0 for all par-

ticipants. These data are approximately log-normally distributed, and adding them

to the Colorado Plateau uranium miners exposure estimates will likely create difficul-

ties estimating the exposure density, given that the true density will be the sum of two

approximately log-normally distributed variables.
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CHAPTER III: RESULTS

3.1 Structural nested accelerated failure time models to control healthy worker
survivor bias (AIM 1)

3.1.1 Abstract

Cohort mortality studies of underground miners have been used to estimate the

number of lung cancer deaths attributable to radon. In the US, for example, it has been

estimated approximately 20,000 lung cancer deaths per year are attributable to radon.

However, the findings of prior analyses of radon-lung cancer associations among un-

derground miners may be subject to healthy worker survivor bias, a type of time-varying

confounding by employment status. This bias is problematic for standard regression

models because radon exposure may influence employment status. We re-examined

radon-lung cancer mortality associations in the Colorado Plateau uranium miners co-

hort study, one of the major cohorts included in prior pooled analyses of associations

between radon and lung cancer among miners. Accelerated failure time models were

fit to estimate the time ratio (the relative decrease in the median survival time) per

100 working level months (WLM - radon exposure averaging 130,000 MeV of potential

alpha energy per liter, per working month). We adjusted for healthy-worker survivor

bias using G-estimation of structural nested models. After controlling for this bias, the

time ratio (95% confidence intervals) per 100 WLM was 1.168 (1.152, 1.174). In an un-

adjusted model the estimate was 1.102 (1.099, 1.112), a 39% decrease. We observed a

similar decrease for all-cause mortality. We estimate that among 617 miners who died

from lung cancer, 6,071 person-years of life were lost due to occupational radon expo-

sure. Our analysis suggests a healthy worker survivor bias in standard analyses of the
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miner data, warranting re-examination of current estimates of radon’s carcinogenic

effects.

3.1.2 Background

Radon is a ubiquitous gas that concentrates in indoor air and is a leading cause

of lung cancer in the United States. Reliable estimates of the burden of lung cancer

attributable to residential radon exposure is of considerable interest, given the high

potential costs of compliance with the current EPA action level for radon, on the one

hand, and the potential public health impacts of reducing that action level (as sug-

gested by the Presidents Cancer Panel) on the other hand. (Krewski et al. (2005); Darby

et al. (2005); USEPA (2003)). Radon exposure is protracted and may have persistent ef-

fects, so researchers frequently model radon-lung cancer associations using a cumu-

lative metric of radon exposure. Among the most influential estimates of radon-lung

cancer associations, for regulators and others involved in risk assessments, have been

results of occupational cohort mortality studies of underground miners (USEPA (2003);

NRC (1988); World Health Organization (2009); ICRP (2010); NRC (1999)). Typically,

occupational studies are better suited than residential studies for estimating precise

dose-response parameters (NRC (1999)); however, occupational studies are subject to

unique biases that can reduce the applicability of their results to other settings.

One of the biases particular to occupational settings is healthy worker survivor bias.

This bias results when workers at higher risk for the outcome of interest tend to leave

work at higher rates than workers at lower risk. When the exposure of interest is ag-

gregated over time this phenomenon can result in higher exposures among healthier

individuals (Arrighi and Hertz-Picciotto (1994)). The disease rates of employed and

unemployed are generally not comparable, even among those with identical cumu-

lative exposure. Issues of comparability in the radon literature have typically been

addressed using multivariable regression models that include population predictors
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of cancer outcomes, such as age and birth cohort (NRC (1999); ICRP (2010); USEPA

(2003); Hornung et al. (1998, 1995)).

Healthy worker survivor bias can be conceptualized as a form of confounding by

employment status (Robins (1986)). The health related factors that underlie the abil-

ity to stay at work may also influence the outcome under study. Multivariable regres-

sion methods used in previous studies can control this confounding in some cases.

However, regression methods cannot completely control this bias when exposure in

the past affects subsequent employment (Figure 3.1) (Pearce (1992)). The potential

for this bias has not been evaluated in miner studies, though methodologic advances

have made such an evaluation possible (Robins and Tsiatis (1992)). We estimate dose-

response parameters between radon and lung cancer and all-cause mortality using

methods developed to control confounding when the confounders may be affected

by past exposure.

Xk−1

U
Lk

TXk

Figure 3.1: Causal diagram showing hypothesized relationships that necessitate use of
special methods to control healthy worker survivor bias in the Colorado Plateau Ura-
nium Miners data. Xk is radon exposure and Lk is active employment status in month
k .

3.1.3 Materials and methods

3.1.3.1 Study population

The Colorado Plateau uranium miners cohort includes 4,137 miners who agreed

to participate in a health study by the United States Public Health Service, completed
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at least one health exam and interview between January 1, 1950 and December 31,

1959 and who were currently mining or started mining during follow-up (Holaday et al.

(1957)).

Follow-up for mortality was assessed through 12/31/2005 (Roscoe (1997); Schubauer-

Berigan et al. (2009)). Cause of death information was obtained from death certificates

before 1979 and the National Death Index for deaths occurring thereafter. We define

death from lung cancer using the code for the underlying cause of death indicating

malignant neoplasms of the trachea, bronchus or lung (using ICD revision in use at

time of death).

Monthly radon exposures in working level months (WLM defined as any combi-

nation of exposure rate in working levels [130,000 MeV of potential alpha energy per

liter of air] were derived from raw data files (Schubauer-Berigan et al. (2009)). These

exposure data were originally derived from a job-exposure matrix for the years 1950-

1969 using area measurements and extrapolations from nearby mine-shafts, mines, or

regional averages. In 1950, 25% of the exposures were derived from expert opinion. Es-

timated radon exposure due to previous work in hard-rock (i.e. non-uranium) mines

was included as a covariate. Three miners were excluded who had lifetime cumulative

exposures greater than 10,000 WLMs and employment time that leads to an average

exposure of 1 working level over 170 hours).

Individual information on smoking histories was obtained from surveys conducted

in 1985. We excluded 10 miners with unknown smoking status. Employment status

(active versus inactive) was assumed to be continuous between hire and termination

dates.

Our analytic dataset included a record for every person-month between study en-

rollment and the minimum of death, loss to follow-up, or 12/31/2005.
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3.1.3.2 Statistical Methods

We estimate the change in the expected age at death due to an increment of cu-

mulative radon exposure under a linear dose-response assumption by fitting an accel-

erated failure time model. This quantity is expressed as the time-ratio (TR the relative

decrease in the median survival time for an additional unit of exposure) and is reported

along with associated 95% confidence intervals (CI) for a 100 WLM increase in cumu-

lative radon exposure. Analyses examined death due to lung cancer and all-cause mor-

tality. Inference in accelerated failure time models is similar to that in models for the

hazard ratios or disease rate ratios. Under an exponential survival time distribution,

the TR (as we have estimated it, in which a value > 1 indicates harmful exposure) and

hazard ratio will be identical, though this equivalence does not hold for other distribu-

tions (Kalbfleisch and Prentice (2002)). Our exposure of interest was the radon expo-

sure that accumulates after study enrollment, and we defined employment history as

the cumulative time at work after enrollment.

We estimated the TR using a structural nested accelerated failure time model (SNAFT

model) fit by g-estimation (Robins (1989)). Here we provide a basic explanation of the

SNAFT model in a study with no censoring; we fully describe our approach with the

miner data in the online appendix.

We used age as the analytic time scale, and we defined entry into the study as the

age at first health exam. Some entry exams were conducted long after hire because

uranium mining in the Colorado plateau began before 1950. This may be problematic

because any deaths before 1950 would not be recorded, leading to study entry criteria

that depended on remaining alive and employed. Therefore, we considered exposure

estimates and employment duration before study entry to be time-fixed covariates.

Cumulative exposure and employment duration was defined as zero at entry. Cumu-

lative radon exposure began accruing only after a 5 year lag from the study entry, while

employment status was not lagged.
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Our SNAFT model was:

T 0̄ =m +

T
∫

m

(1+ψX̄k−60)d k (3.1)

Where T is the observed age at death, in months, m is the age at study entry, X̄k−60 is

cumulative radon exposure with a 60 month (5 year) lag,ψ is the parameter of interest

and T 0̄ is the expected survival time, given no radon exposure during follow-up. Time

is denoted by k.

Consistent with much of the prior radon literature, in which the excess relative

rate (rate ratio - 1) is modeled on a linear scale (Lubin (1988)), the parameter ψ in-

creases linearly with exposure and is defined as the excess relative time (TR-1). This

approach contrasts with previous uses of SNAFT models, which are typically log-linear

(e.g. Hernán et al. (2005)). As a technical note, our model places no bounds onψ (un-

like the constraint the must be placed upon the parameter describing the radon dose

effect in a linear excess relative rate model), so our model potentially allows for a neg-

ative time ratio in the case of beneficial exposures.

Usually, accelerated failure time models require specification of the baseline sur-

vival distribution for the disease of interest. In SNAFT models this distribution can be

left unspecified. In these models, the baseline time, T 0̄, can be interpreted as a po-

tential outcome. The outcome represents the time of death we would observe, had

we intervened to prevent exposure at work (for example, by a ventilation system that

completely replaced mine air with air containing no radon). This interpretation allows

one to easily calculate the years of life lost (among cases) due to exposure as T − T 0̄,

which we use to supplement the TR as an estimate of the impact of radon exposure. We

calculated the years of life lost due to exposure for all-cause mortality and lung cancer

mortality.

T 0̄ is treated as an individual level variable that can be deterministically derived
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from the model shown in (1) positing a value forψ and using the observed quantities:

age at death, cumulative exposure, and age at entry. The best estimate of the parameter

ψ is obtained by iteratively searching for the value ofψ at which the T 0̄ is independent

of monthly radon exposure Xk , conditional on covariates.

Testing the conditional independence of T 0̄ and Xk can be done by including the

potential outcome as a covariate in a model that predicts monthly exposures (the ex-

posure model), conditional on prior covariates. The coefficient for T 0̄ in the exposure

model can be used to test this conditional independence. At the best estimate ofψ, the

variation of radon exposure within groups of similar individuals in any given month

should not be associated with T 0̄. A point estimate and associated 95% confidence in-

terval for ψ was obtained using a line-search algorithm that iteratively fit the SNAFT

over a range of values forψ (Hernán et al. (2005)). Under our model, a TR greater than

1 indicates a harmful exposure. Technical details of the exposure model are shown in

the appendix.

3.1.3.3 Assessing the presence of healthy worker survivor bias

SNAFT models can adjust for time-varying confounding due to current employ-

ment status and history of prior employment status and exposure, which we hypoth-

esized would control healthy worker survivor bias. Current employment status was

controlled for by restricting the exposure model to periods of active employment (i.e.

Lk = 1) and we adjust for exposure and employment history (X̄k , L̄k ) by including a

terms for the history variables described in Appendix Table A.1 up to, and including

time k . We refer to this model as our adjusted SNAFT model.

We also fit an unadjusted SNAFT model that does not adjust for time-varying con-

founding. The exposure model for the unadjusted SNAFT model was used to estimate

the expected cumulative exposure (rather than monthly exposures), conditional only

on the covariates fixed at study entry.
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To quantify the magnitude of the healthy worker survivor bias in all models, we

report the percent difference between adjusted and unadjusted models calculated as

100% ∗ (ψa d j u s t e d −ψuna d j u s t e d )/ψa d j u s t e d . A negative value was interpreted as evi-

dence that the radon effect is underestimated due to healthy worker survivor bias.

In order to describe variation in radon-lung cancer association with time since ex-

posure, similar to previous analyses we also estimated the TR for windows of exposure

from the preferred model of the Committee on the Biological Effects of Ionization Ra-

diation (NRC (1999)). This analysis involves a model of the form:

T 0̄ =m +

T
∫

m

(1+ψ1X̄k 1+ψ2X̄k 2+ψ3X̄k 3)d k (3.2)

Where X̄k 1, X̄k 2, and X̄k 3 correspond to the exposure accrued (since follow up began)

between 5-14 years, 15-24, and 25+ years prior.

Our analytic dataset includes both prevalent (miners already employed at study en-

try) and incident hires (miners who were enrolled in the study at the time they started

mining). Because prevalent and incident hires may differ with respect to health status

at time of entry into follow-up (Applebaum et al. (2011)), we assessed the impact of

including long-term prevalent hires by restricting models to miners that worked <20,

<10, <5, <2.5 or 0 years before enrollment. In these models we collapsed birth cohort

from eight to four time periods: <1910 (ref), 1910-1919, 1920-1929, >1929.

3.1.4 Results

3.1.4.1 Demographics and exposure distribution

Our cohort comprised 769 non-white miners and 3355 white miners who were fol-

lowed for 27,343 and 107,626 person-years (Table 3.1). No cause of death could be de-

termined for 22 miners and 14 were lost to follow-up before 1979. A majority (70% non-
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white, 75% white) of the miners died before 12/31/2005, and 8.1% of non-whites and

16.5% of whites died of lung cancer (a difference previously attributed to differences

in smoking patterns) (Roscoe et al. (1995)). Non-white miners were followed-up for

longer (median 38.6 years versus 34.1 years for white miners) and worked longer dur-

ing follow-up than white miners (median 10.8 years versus 7.4 years for white miners),

despite similar employment time before follow-up (2.5 and 2.4 years for non-whites

and whites). Across both racial groups, employment duration (as well as radon expo-

sure duration), median monthly exposure (in WLM) among employed person-months,

and cumulative exposure (in 100 WLM) at study entry and over follow-up were higher

in those who eventually developed lung cancer than in non-cases. Median cumula-

tive exposure was higher during follow-up than prior to first interview (2.4 X 100 WLM

vs. 0.76 X 100 WLM for non-whites and 1.9 X 100 WLM vs. 1.2 X 100 WLM for whites).

Monthly exposure distributions were highly right skewed (Figure 3.2).
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Figure 3.2: Illustrative monthly exposure distributions for white males born from 1920-
1929 up to 35 WLM. Months selected represent the 5th, 50th, and 95th percentile for
the mean monthly exposure from 1950-1969. Lines of fit are for visualization only and
do not represent actual fit of exposure models. Lines below histogram represent actual
monthly exposures for individual miners.
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Table 3.1: Demographic and exposure distributions in the miner data
White Other Race

N=3355 N=769
107,626 PY 27,343 PY

N(%)
Vital status∗ Alive 781 (23.3) 208 (27.0)

Deceased - unknown cause 51 (1.5) 20 (2.6)
Deceased- known cause 2514 (74.9) 535 (69.6)
Deceased - lung cancer 554 (16.5) 63 (8.1)

Lost to follow-up 9 (0.0) 6 (0.1)

Birth cohort <1900 171 (5.1) 21 (2.7)
1900-1909 460 (13.7) 76 (9.8)
1910-1919 857 (25.5) 131 (16.8)
1920-1929 890 (26.5) 284 (36.5)
1930-1939 890 (26.5) 258 (33.1)
1940-1949 87 (2.6) 9 (1.2)

Age at first uranium
mining exposure

Never exposed 5 (0.1) 3 (0.4)
<35 2113 (62.9) 565 (73.5)

35-54 1132 (33.7) 188 (24.5)
55+ 105 (3.1) 13 (1.7)

Median (IQR)
Years of follow-up Cases∗∗ 28.0 (18.7, 37.4) 31.1 (24.7, 40.3)

Non-Cases∗∗ 35.9 (19.8, 45.6) 39.8 (26.3, 48.5)
Total 34.1 (19.5, 45.5) 38.6 (26.2, 47.1)

Active employment
years during follow-up

Cases∗∗ 7.4 (3.6, 10.9) 10.8 (7.5, 12.5)
Non-Cases∗∗ 3.5 (0.8, 7.7) 5.6 (1.5, 8.9)

Total 4.0 (1.0, 8.2) 5.6 (1.5, 9.6)

Active employment
years at baseline

Cases∗∗ 2.4 (0.79, 6.0) 2.5 (1.1, 4.0)
Non-Cases∗∗ 1.3 (0.30, 3.9) 1.2 (0.21, 3.0)

Total 1.5 (0.29, 4.0) 1.4 (0.29, 3.0)

Monthly exposure
among active work time
(WLM)

Cases∗∗ 4.5 (2.4, 9.0) 3.8 (2.5, 8.1)
Non-Cases∗∗ 3.1 (1.4, 6.6) 2.6 (1.1, 5.8)

Total 3.4 (1.6, 7.2) 2.9 (1.2, 6.1)

Cumulative Radon
exposure during
follow-up (100 WLM)

Cases∗∗ 4.6 (1.8, 9.5) 6.2 (3.3, 11.1)
Non-Cases∗∗ 1.6 (0.44, 4.1) 2.0 (0.6, 5.2)

Total U mining 1.9 (0.55, 4.9) 2.4 (0.65, 5.8)

Cumulative Radon at
baseline (X100 WLM)

Cases∗∗ 2.7 (0.59, 8.6) 1.7 (0.47, 6.7)
Non-Cases∗∗ 1.0 (0.15, 3.9) 0.68 (0.11, 2.3)

Total U mining 1.2 (0.19, 4.6) 0.76 (0.13, 2.7)
Hard rock mining 0.30 (0.00, 17.8) 0.00 (0.00, 0.00)

∗ Vital status as of 31 December, 2005
∗∗Cases = individuals with underlying cause of death listed as lung cancer
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3.1.4.2 Dose-response analyses

Using a model for all-cause mortality under a 5-year cumulative radon exposure

lag, we estimated the adjusted TR (95% CI) per 100 WLM was 1.054 (1.041, 1.068), while

the unadjusted TR was 1.012 (1.013, 1.015) a decrease of 74% (Table 3.2). Based on

our adjusted model, we estimate that, among 3,120 miners who died during follow-

up, occupational radon exposure after enrollment was associated with 10,118 person-

years of life lost due to premature death (not shown).

Table 3.2: Time ratios and 95% confidence intervals per 100 working level months, 5
year lag. Male uranium miners, Colorado Plateau, USA 1950-2005.

Lung Cancer All Causes
Model∗ TR 95% CI % diff† TR 95% CI % diff†

Adjusted∗ 1 1.167 (1.152, 1.174) ref 1.054 (1.041, 1.068) ref
Unadjusted∗∗ 3 1.102 (1.099, 1.112) -39 1.014 (1.013, 1.015) -74

∗ Adjusted for: baseline exposure from uranium mining, race, prior mining exposure,
birth cohort, date of hire, annual exposure during follow-up from 1, 2, 3, 4, 5 and cu-
mulative exposure from 6-10 years and 10+ years prior, current employment status,
and cumulative time at work during follow-up.
∗∗ Adjusted for: baseline exposure from uranium mining, race, prior mining exposure,
birth cohort, date of hire
† Percent difference inφ from fully adjusted model

For lung cancer, the adjusted TR (95% CI) per 100 WLM was 1.168 (1.152, 1.174)

while that for the unadjusted model was 1.102 (1.099, 1.112) a decrease of 39% (Table

3.2). Based on our adjusted model, we estimate that, among 617 miners who died from

lung cancer during follow-up, occupational radon exposure after enrollment was as-

sociated with 6,071 person-years of life lost due to premature lung cancer death (not

shown).

To evaluate variation in the dose-response for lung cancer with time-since-exposure

we fitted a model with exposure time-windows. The estimated TR (95% CI) for lung
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cancer per 100 WLM was 1.188 (1.116, 1.230) for exposures 5 to 15 years prior, 1.128

(1.050, 1.294) for exposures, 15-25 years priors, and 1.022 (0.950, 1.198) for exposures

25+ years prior (Table 3.3).

Table 3.3: Time ratios and 95% confidence intervals for windows of exposure from ad-
justed model for lung cancer

Exposure window∗ TR∗∗ 95% CI

5-15 years 1.188 (1.116, 1.230)
15-25 years 1.128 (1.050, 1.294)

25+ years 1.022 (0.950, 1.198)

∗ Cumulative exposure within the exposure window
∗∗Adjusted for: baseline exposure from uranium mining, race, prior mining exposure,
birth cohort, date of hire. annual exposure during follow-up from 1, 2, 3, 4, 5 and cu-
mulative exposure from 6-10 years and 10+ years prior active employment status, and
cumulative time at work during follow-up.

To evaluate the sensitivity of our results to including prevalent hires in the cohort

analysis we repeated analyses after excluding people who had long durations of em-

ployment prior to start of follow-up. To prevent model instability from sparse strata in

this analysis, we reduced the number of birth cohorts to 3 (from 8 in the main analysis).

This reduced the TR relative to our main analysis. The adjusted TR decreased slightly

after excluding workers with substantial employment before study entry (Table 3.4).

G-methods are necessary for cohort analyses of cumulative exposure-mortality as-

sociations under certain conditions, namely when prior exposure affects employment

status, and employment affects subsequent exposure and disease. Following previous

reports (Naimi et al. (2013)), we assessed whether these conditions hold by fitting two

standard proportional hazards models. First we estimated whether prior exposure af-

fects current employment status by fitting a model adjusted for all covariates including

employment history. The hazard for terminating employment was lower in workers

with cumulative radon exposure above the median (1.2 X 100 WLM) vs. those with cu-
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Table 3.4: Sensitivity analysis for the change in the TR of the radon/lung cancer asso-
ciation by excluding short to long term prevalent hires in the study cohort.

Max. employment
prior to
enrollment∗

TR 95%CI

20 years 1.092 1.087 1.112
10 years 1.094 1.085 1.114

5 years 1.086 1.075 1.089
2.5 years 1.082 1.074 1.088

Incident hires only 1.070 1.063 1.076

Full cohort∗∗ 1.095 1.087 1.117

∗ For each row, workers were excluded if they worked longer than this amount before
study enrollment
∗∗Birth cohort was represented by 3 indicator variables (versus 8 in the main analyses),
resulting in different TRs between these analyses and analyses reported in Table 3.2

mulative exposure less than the median (referent); HR (95% CI) = 0.90 (0.84, 0.98), not

shown. Second, we fit a model for the comparing the hazard of death between not

employed as a uranium miner and employed (referent) person time, adjusted for co-

variates including cumulative exposure with a lag of 2 years; HR (95% CI) = 3.3 (2.4,

4.3). Thus, parametric models adjusting for employment history will be biased and

SNAFT models are needed to appropriately adjust for time-varying confounding by

employment status.

3.1.5 Discussion

Healthy-worker survivor bias can occur in occupational studies when exposure ac-

crues over time and workers with better prognoses are less likely to leave employment.

Compared to models in which we adjusted for healthy worker survivor bias, we ob-

served a 39% decrease in the TR for lung cancer and a 74% decrease in the TR for

all-cause mortality in unadjusted models. Our analysis supports previous speculation
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that there may be healthy worker survivor bias in the Colorado Plateau uranium miner

data (Stayner et al. (2003)). Further, our analysis suggests this bias results in an un-

derestimate of the dose-response between radon and both lung cancer and all-cause

mortality.

Previous authors have conceptualized healthy worker survivor bias as a result of

time-varying confounding by employment status (Robins (1986, 1987b); Pearce (1992)).

Controlling this confounding by including employment status in a regression model

for the RR (or TR) is potentially biased because employment status may be affected by

prior exposure. Any model with cumulative exposure stratified by employment status

will be stratifying the RR (or TR) by an effect of the exposure, leading to bias of the

dose-response (Rosenbaum (1984); Weinberg (1993); Robins and Wasserman (1997)).

We observed that prior radon exposure is associated with leaving work in the miner

data, so multivariable regression models will be subject to this bias. SNAFT models can

adequately control healthy worker survivor bias in this scenario because the models

achieve confounder control without stratification (Robins (1989)).

Previous analyses of miner data may be subject to uncontrolled or improperly con-

trolled healthy worker survivor bias. For example, in their most recent report, the Com-

mittee on the Biological Effects of Ionizing Radiation based risk estimates the so-called

exposure-age-duration and exposure-age-concentration Poisson regression models.

These models estimate the relative rate per 100 WLM of radon exposure, stratified on

age-at-exposure, attained age, and duration (or concentration) of exposure. Exposure

duration is a strong proxy for employment history. Under our hypothesis, risk param-

eters from the exposure-age-concentration model may be biased downward due to

confounding by employment status, and those from the exposure-age-duration model

may be biased after stratifying by a proxy for employment history.

We assessed the magnitude of healthy worker survivor bias by comparing an ad-

justed model to an unadjusted model. Other authors have assessed this bias by com-
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paring SNAFT models with Cox regression models (Chevrier et al. (2012)). or paramet-

ric accelerated failure time models (Naimi et al. (2014a)). In contrast, our approach

uses a straightforward comparison of two SNAFT models. However, our analysis re-

mains sensitive to misspecification of the exposure model. Part of the difference be-

tween the adjusted and unadjusted SNAFT models could be due to misspecification of

one of the exposure models. To reduce issues of model misspecification, most previous

examples have used simpler models than our own, by fitting models for binary expo-

sures (Robins et al. (1992); Witteman et al. (1998); Joffe et al. (1998); Keiding et al. (1999);

Korhonen et al. (1999); Cole and Chu (2005); Hernán et al. (2005)). or exposure quan-

tiles (Naimi et al. (2014a)). In contrast, we report SNAFT models under a zero-inflated,

log-linear model for exposure, which allows for a skewed exposure distribution and in-

clusion of unexposed individuals (Li et al. (2011)). In our online appendix, we also fit

SNAFT models under alternative exposure models. While results are somewhat sen-

sitive to the choice model, our preferred exposure model fit the data best (based on

Aikiake’s Information Criteria) among the candidate models that we evaluated.

We estimate the effects only of exposure that occurs following the initial health in-

terview. Because radon exposure itself may cause attrition from the workforce, the

miners in our dataset were subject to a pre-enrollment selection process that may in-

troduce bias. Within our data, miners hired before the study inception in 1950 may

be systematically different from the miners who were hired after the study began. To

address these possible differences, we adjusted for pre-enrollment exposure and em-

ployment history as baseline covariates and used them only for control of confound-

ing. Additionally, we did not consider individuals at-risk during the pre-enrollment

person-time, which should be considered immortal person time (Suissa (2008)). Esti-

mating a dose-response using only post-enrollment exposures is not conventional in

the miner literature, but it is not clear from published reports whether studies of ma-

jor miner cohorts are subject to bias from immortal person-time. To illustrate the po-
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tential bias, we repeated our SNAFT analysis with lung cancer but included immortal

person time and pre-enrollment exposures in the cumulative exposure metric. This

change resulted in a 34% decrease in the value of TR-1 for the adjusted model (not

shown).

Another way to address concerns about including data from before study enroll-

ment is to consider differences between prevalent and incident hires (Applebaum et al.

(2007)). As shown in Table 3.4, the apparent magnitude of healthy worker survivor

bias decreases after excluding workers with long periods of employment before follow-

up, suggesting that this bias is stronger among the prevalent hires. The stronger bias

among prevalent hires may be partly explained by the longer duration of employment

during follow-up by prevalent hires (median 4.5 years, not shown) than incident hires

(median 3.8 years). Incident hires comprised only 10% of the workforce (n=389, 34

lung cancer deaths; not shown), so inference regarding biases in this group is subject

to greater uncertainty. Confidence intervals are narrower in analyses excluding miners

with 5 or more years of employment before enrollment, versus analyses with fewer ex-

clusions. This observation may be due to the reduction in variation of other risk factors

for lung cancer that vary by year of hire, such as smoking.

Smoking is a strong risk factor for both of our outcomes of interest. In our data,

smoking data were captured via a 1985 survey of living miners or proxy interviewees

(Schubauer-Berigan et al. (2009)). Consequently, we do not have adequate information

to evaluate the role of smoking as a time-varying confounder. Previous analyses have

suggested that smoking may modify the effect of the radon-lung cancer association

(Tomásek (2011)), but is not a source of strong time-fixed (Leuraud et al. (2011)). or

time-varying confounding (Richardson et al. (2012)). In our context, smoking may af-

fect both employment status and the outcomes under study, a point previously raised

by Pearce and colleagues (Pearce et al. (2007)). SNAFT models can adequately control

this bias by adjustment for employment history, if we assume that smoking is not asso-
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ciated with exposure, independent of employment history and the baseline covariates.

This assumption may be violated if individuals who start smoking are preferentially

placed in lower (or higher) exposed jobs within the mine. This phenomenon would

likely present as apparent time-fixed confounding by smoking, as well, which suggests

that any residual confounding by smoking is small.

We have mainly addressed issues of confounding by time-varying factors in this

analysis. However, the effects of cumulative exposure to radon may be heterogeneous

over other time-varying covariates, such as exposure concentration or time since expo-

sure (Richardson et al. (2012); Lubin et al. (1995b)). As we have shown, SNAFT models

are well suited to address questions regarding time-varying covariates. Unfortunately,

the estimation algorithm did not converge in a SNAFT model to estimate modifica-

tion of the TR by exposure concentration, so we were unable to assess the TR over lev-

els of exposure concentration (not shown). This problem echoes previous difficulties

raised with addressing modification in SNAFT models raised by Joffe et al, and may

be a shortcoming of using SNAFT models in practice (Joffe et al. (2012)). The SNAFT

model yields a TR that is marginalized with respect to the distribution of confounders

in the study population, so TR heterogeneity by exposure concentration would not ex-

plain the different results between our adjusted and unadjusted SNAFT models. Our

models fit using time windows of exposure agreed qualitatively with previous analyses

(Langholz et al. (1999); Tomásek (2012)), suggesting that correction for healthy worker

survivor bias does not alter the apparent decrease in the impact of cumulative expo-

sure on mortality with time since exposure.

3.1.6 Conclusion

SNAFT models are useful for estimating a dose-response for cumulative exposures

in occupational studies. While G-estimation provides unique challenges in estima-

tion and requires more computational resources and analyst time than most regres-
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sion analyses, it does not suffer from the pitfalls that may prevent regression models

from adequately controlling healthy worker survivor bias. While we address one kind

of bias, any study using miner data is subject to other biases from exposure measure-

ment error that reduces our ability to control confounding (Armstrong (1998)), and

biases the dose response (Stram et al. (1999)), co-exposure to other lung carcinogens

such as arsenic (Arrighi and Hertz-Picciotto (1996)), diesel exhaust, or silica (Bergdahl

et al. (2010)). and reliance on death certificate data. The relative impact of these issues

for SNAFT models (compared to regression) is unknown. Further refinement of anal-

yses to include possible dose-response modification by exposure concentration, pos-

sibly using pooled data, may better inform risk projection. Our analysis demonstrates

that current risk estimates for radon based on occupational studies may not accurately

reflect the net effects of radon exposure. We show evidence that healthy worker sur-

vivor bias has resulted in underestimates in prior studies, and improved handling of

employment history as a confounder is a necessary step in reducing this bias.
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3.2 Marginal structural models in occupational cohort studies (AIM 2)

3.2.1 Abstract

Occupational epidemiologists are often concerned with estimating the impact on

health of exposures within the workplace. It is common practice to form aggregate

measures of exposure over time, such as cumulative exposure. When there are fac-

tors, such as employment status, that strongly influence exposure and are associated

with the outcome of interest, confounding may result. If exposure influences these

factors, then regression models will be biased. Marginal structural models, usually fit

by inverse probability weighting, were developed to address confounding when the

confounders may be influenced by prior exposure. However, Robins and colleagues

(2000) noted that a technical issue with inverse probability weighting negates the use

of marginal structural models in occupational studies. We explore these issues and

recommend situations in which marginal structural models may be of use to occupa-

tional epidemiologists. We ground our discussion in a small synthetic example and

include an example using the Colorado Plateau uranium miners cohort. In the miners

cohort, we show that efforts to avoid technical issues with inverse probability weights

may induce bias that negates the control of confounding. We suggest a limited list of

occupational settings in which inverse probability weighting can be used. Further, we

suggest that marginal structural models fit using the parametric g-formula may be a

way to implement this useful statistical tool to reduce bias in occupational studies.

3.2.2 Introduction

Occupational epidemiologists are often concerned with estimating the impact on

health of exposures within the workplace. When these exposures have persistent health

effects, it is common practice to form aggregate measures of exposure over time, such

as cumulative exposure. This approach is attractive in that effect measures of cumula-
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tive exposures are easily interpretable and easy to communicate. The simplicity of this

approach comes with costs, however. Cumulative exposures in occupational settings

are determined partly by employment duration. As a consequence, dose-response

analyses of cumulative exposures in occupational cohorts are subject to bias when

employment duration is affected by health. Healthier workers will tend to remain em-

ployed longer than less-healthy workers and can be exposed for longer durations and

to higher cumulative amounts of workplace hazards (Arrighi and Hertz-Picciotto (1994)).

The underlying factors that influence both employment and the health outcomes

of interest are often not recorded in occupational data, even if some are known. In

lieu of such measures, a common approach is to treat this bias as confounding by em-

ployment status (Gilbert (1982)). Bias of cumulative exposure effect estimates from

time-varying confounding by employment status is often referred to as healthy worker

survivor bias (Buckley et al. (2014)).

Reducing healthy worker survivor bias is not straightforward when occupational

exposures may be associated with subsequently leaving work (Pearce (1992)). Marginal

structural models are a set of analytic tools to address this form of time-varying con-

founding in which prior exposure may affect the confounder at subsequent time points.

Thus, these models appear to be a promising method to this bias. However, in their

seminal paper on marginal structural models, Robins, Hern{’an and Brumbeck (2000)

note that these models should not be used in occupational cohort studies due to tech-

nical issues with the method commonly used to fit the models, inverse probability

weighting (Robins et al. (2000)). In the current manuscript, we study the use of marginal

structural models for occupational studies of cumulative exposure-disease associa-

tions. We first revisit the recommendation made by Robins, Hernán and Brumbeck;

next we refine its scope; and, finally, we give illustrative examples in which marginal

structural models will, and will not, succeed in reducing bias in analyses of occupa-

tional studies.
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3.2.3 Methods

We consider the setting of an occupational cohort followed over time and assessed

for a continuous health outcome at the end of follow up (e.g. systolic blood pressure).

To simplify our discussion, we focus on a hypothetical cohort followed for two years.

Within this cohort we measure exposure to an occupational agent, X , employment sta-

tus, L , and disease status, Y . Letting subscripts index the year of the study, all workers

enter the study employed (L1 = 1) and on the first annual visit a worker may be ex-

posed (X1 = 1) or unexposed (X1 = 0). For the second visit, our data include exposure

(X2) and employment status [left employment just prior to year 2 (L2 = 0) or remained

employed (L2 = 1)]. An employee who left work at the start of year 2 was considered to

be unexposed in that year.

We are interested in the net effect of cumulative exposure (Xk = X1 + X2) on the

outcome (Y ) at the end of year 2. Without sacrificing generality, we focus on estimating

the difference in the mean of the outcome per unit increase in cumulative exposure

(hereafter, mean difference).

In Table 3.5, we show data on cumulative exposure, employment status, and the

outcome in this hypothetical study. A crude linear regression model yielded a mean

difference of 8, while a model adjusted for employment status yielded a mean differ-

ence of 11 (Table 3.5). However based on the relationships underlying our data shown

in Figure 3.3, both of these estimates may be biased.

The crude estimate is subject to confounding because L2 (the confounder) affects

exposure in year 2 and the outcome of interest. The estimate adjusted for L2 may be

biased because L2 is also a causal intermediate for exposure in year 1 (Rosenbaum

(1984)). This is the underlying problem for some cohort studies in which healthy worker

survivor bias is of concern.
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Table 3.5: Mean outcome (E [Y ]) by cumulative exposure
�∑

Xk

�

and employment sta-
tus (L2) in a hypothetical occupational cohort

∑

Xk
∗ L2 N E [Y ]

0 0 200 35
0 1 100 11
1 0 400 43
1 1 200 28
2 1 60 37

Xk−1

Lk

YXk

Figure 3.3: Diagram showing causal structure underlying the hypothetical example
shown in tables 1 and 2. This diagram reflects hypothesized mechanisms underlying
healthy worker survivor bias (Buckley et al. (2014)).
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3.2.4 Marginal structural models

Marginal structural models can be used to estimate the effect of an exposure of

primary interest when there is a confounder that is affected by prior exposure, as in

Figure 3.3. Marginal structural models are typically fit using inverse probability of ex-

posure weights. These models yield an effect measure that will be unconfounded by

the factors defining these weights, including by time-varying confounders. Informally,

the weights (W x ) are defined as the inverse probability of receiving ones own exposure

history. For example, for a worker with X1 = 1, X2 = 0, W x is one over the probability

of having had that particular set of exposures, given the set of possible exposure his-

tories and the observed confounders. Weights are typically derived through a model

for the probability of exposure, conditional on previous values of exposure and con-

founders (Cole and Hernán (2008)). Making W x copies of each observation yields a

pseudo-population in which confounders are balanced over levels of exposure. This

is analogous a clinical trial in which treatment is randomized and one expects covari-

ate balance across treatment groups. An unconfounded estimate of association can

be obtained by fitting a crude (or baseline adjusted) model to the pseudo-population

data rather than the observed data. A marginal structural model effect estimate an

interpretation as a standardized effect estimate (Hernán and Robins (2006)).

3.2.5 Marginal structural models in occupational studies

Returning to our example, we wish to estimate the net effect of cumulative exposure

(Xk = X1+X2) on the outcome using the data in Table 3.5. In Table 3.6, we display the

same data in a slightly different manner. We have disaggregated exposure to show the

calculation of the inverse probability weights needed for a marginal structural model.

We define our inverse probability weights as W x =W1W2 where

W2 = P r (X2 = x2|L2 = l2, X1 = x1)
−1
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Table 3.6: Mean outcome (E [Y ]), stabilized inverse probability weights (SW x ) and
pseudo-population cell sample size by strata of exposure (X1, X2) and employment sta-
tus (L2) in a hypothetical occupational cohort

X1 L2 X2 E [Y ] N SW x∗ p s e ud o −N ∗

0 0 0 35 200 0.63 125
0 0 1 ? 0 ** **
0 1 0 11 100 1.75 175
0 1 1 29 180 0.58 105
1 0 0 43 400 0.88 350
1 0 1 ? 0 ** **
1 1 0 19 20 3.50 5
1 1 1 37 60 0.17 75

Overall† 960 0.87 835

∗ Pseudo-population cell sample size (SW x N )
∗∗ Division by zero yields undefined weights and pseudo-population cell sample size
† SU M (N ), SU M (p s e ud o −N ), M E AN (SW x )

and W1 is a constant that can be ignored because exposure is randomized in the first

year this will not hold in general but it simplifies our example. Lowercase letters are

used to denote realizations (e.g. 1 or 0) of each variable. In table 2, we report stabilized

weights SW x , where SW x = SW1SW2 and SW2 =W2P r (X2 = x2X1 = x1) SW1 is equal

to one in our example, so SW x = SW2. The weight is undefined in all strata in which

L2 = 0 and X2 = 1 (off-work, exposed). This occurs because no unemployed individuals

are exposed, yielding a zero in the denominator.

For each row j in table 3.6, the pseudo-population size, pseudo-N, is defined as

SW x
j Nj . The mean of the stabilized weights should equal 1.0, implying that the total

pseudo-population size should equal the size of the cohort, N. When the mean of the

stabilized weights does not equal 1.0, it can serve as an informal diagnostic of problems

with estimation of the weights.

A marginal structural linear model fit using these weights yields a mean difference
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of 11.3 (Table 3.8). However, we have strong indications that this estimate is biased –

the mean stabilized weight is 0.87, while it should equal 1.0.

3.2.6 Nonpositivity

Robins and colleagues (2000) noted that marginal structural models should not be

used in occupational cohort studies (p 557) because of a common problem with es-

timating inverse probability weights, sometimes termed nonpositivity (Robins et al.

(2000)). The condition that exposure must take on all possible values in all strata of

confounders is known as positivity. Violations of this condition are referred to as non-

positivity (Westreich and Cole (2010)). This is exactly the problem we are experiencing

in the hypothetical cohort.

As a heuristic example, if inverse probability weighting works in our cohort, em-

ployment status in year 2 should be balanced over levels of exposure in the pseudo-

population. When a binary exposure can only take one value in some strata of con-

founders, weighting does not produce this balance and thus does not remove con-

founding (Cole and Hernán (2008)). In our example, software will yield a pseudo-N of 0

in all strata of exposed, unemployed. In that case, the proportion of workers employed

in year two in the pseudo-population will be (175+70)/(175+70+350+125)=0.34 for

X2 = 0 but it will be (105+10)/(105+10)=1.0 for X2 = 1. Because 0.34 does not equal

1.0, the weights have failed to balance the covariate over levels of exposure and con-

founding remains.

Nonpositivity can occur in any study due to sparse data within strata of confounders.

In occupational studies, nonpositivity can occur more systematically. Those that leave

employment are often assumed to be unexposed. This leads to nonpositivity when one

includes employment status as a confounder.
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3.2.7 Appropriate uses of marginal structural models in occupational studies

Nonpositivity results due to our particular choices of the exposure to study and

our confounder(s) of interest. In our hypothetical cohort, the exposure could not oc-

cur off work, and our confounder happened to be employment status. In that case,

nonpositivity is assured. However, occupational epidemiology is not limited solely to

the study of exposures that can occur at work, and employment status is not always

a confounder of interest. There may be specific scenarios in which inverse probabil-

ity weighting will succeed in occupational studies. Further, marginal structural models

should be viewed as distinct from inverse probability weighting, and alternative strate-

gies to fit a marginal structural model may be of use.

Control for bias due to movement out of dirty jobs or areas Consideration of healthy

worker survivor bias has generally been confined to analyses in which illness may cause

attrition from the workforce under study. However, the same types of bias can occur

within a workforce of individuals that remain employed. For example, Christiani and

colleagues examined the relationship between lung function and long-term exposure

to endotoxin and cotton dust in a cohort of cotton textile workers (Christiani et al.

(1999)). The authors observed feedback between lung function (measured by FEV1)

and dust exposures. That is, working in high exposure areas influenced changes in

FEV1, and workers with low FEV1 tended to move to lower exposed jobs. In princi-

pal, inverse probability weighting could have been used to estimate the association

between cotton dust exposure and FEV1 using these data, while controlling for con-

founding that occurs due to changes in work area. Such confounding could occur if,

for example, workers with asthma tended to avoid higher exposure work areas.

This type of analysis may be best suited for settings in which workforce attrition

over follow-up is low and the effects of exposure do not have long latent periods. Po-

tentially, use of inverse probability of censoring weights (Cain and Cole (2009)) could
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be used to appropriately deal with workers leaving employment, as speculated previ-

ously by Joffe et al. (2012). However, the use of such weights has not performed well in

practice due to a strong underlying assumption that one has measured all covariates

that could confound the association between leaving employment and the outcome of

interest (Picciotto et al. (2013)).

Returning to our hypothetical example, imagine now that when workers left their

jobs (L2 = 0), they moved simply to another job at which they could be exposed. The

data shown in Table 3.7 represent our original data, had we collected data on exposure

among those who had left work. This results in a change in four cells of our table:

a reallocation of individuals from the strata in which L2 = 0, X2 = 0 to the strata in

which L2 = 0, X2 = 1. The mean of the stabilized weights is 1.0 in these data and our

pseudo-population is the same size as the original population. Marginal structural

models fit using inverse probability weighting yielded an unbiased mean difference of

18, while the crude and L2-adjusted estimates are biased (mean difference= 17.8, 12.8,

respectively, Table 3.8).

Control for bias using MSMs without IP weighting Marginal structural models fit

using inverse probability weighting are attractive for their simplicity. However, the

parametric g-formula (Robins (1986); Keil et al. (2014a)) allows one to fit a marginal

structural model as well. The parametric g-formula is a tool used to estimate the dis-

tribution of the outcome under interventions on the exposure. This method can be

used when there is nonpositivity. In inverse probability weighting, there is no extrap-

olation to empty strata strata with a weight (and Pseudo-N) of zero are not included

in the marginal structural model. In contrast, the parametric g-formula can be used

to extrapolate results to empty strata of exposure and covariates. In our example, the

parametric g-formula can yield unbiased estimates of the dose response as long as the

effect of increasing exposure by one unit is homogeneous between the employed and
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Table 3.7: Mean outcome (E [Y ]), stabilized inverse probability weights (SW x ) and
pseudo-population cell sample size by strata of exposure (X1, X2) and employment sta-
tus (L2) in a hypothetical occupational cohort in which exposure is measured off work
(and positivity holds)

X1 L2 X2 E [Y ] N SW x∗ p s e ud o −N ∗

0 0 0 35 105 0.81 85
0 0 1 53 95 1.21 115
0 1 0 11 100 1.20 120
0 1 1 29 180 0.89 160
1 0 0 43 10 2.50 25
1 0 1 61 390 0.96 375
1 1 0 19 20 0.25 5
1 1 1 37 60 1.25 75

Overall∗∗ 960 1.00 960

∗ Pseudo-population cell sample size (SW x N ) rounded to nearest integer
∗∗ SU M (N ), SU M (p s e ud o −N ), M E AN (SW x )

Table 3.8: Results of analysis on synthetic data from table 2 and table 3
Nonpositivity Analysis MD∗∗ %Bias†

Yes Crude 8.0 -56
L adjusted 11.0 -38
IPW-MSM 11.3 -37

G-formula-MSM 18.0 0

No Crude 17.8 -1
L adjusted 12.8 -29
IPW-MSM 18.0 0

G-formula-MSM 18.0 0

∗ Data shown in 3.6 (nonpositivity) and 3.7 (positivity holds)
∗∗ Mean difference in the outcome per unit of exposure, the true value is 18
† %Bias =100*(estimate-truth)/truth
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the unemployed.

The parametric g-formula uses predictive models and Monte Carlo sampling to

generate a set of pseudo-data that represent the cohort under study, had we inter-

vened on exposure. The outcome distribution in these pseudo-data is interpreted as

the standardized outcome distribution under the intervention. A marginal structural

model for our example fit with the g-formula is simply a model for the outcome that

includes exposure as the only regressor, fit to pseudo-data in which the intervention is

to randomize exposure.

Using the data shown in Table 3.6 in which nonpositivity occurs, the parametric g-

formula algorithm given in appendix 2 yielded an unbiased mean difference of 18 (Ta-

ble 3.8). For the data shown in Table 3.7 in which positivity holds, this method yielded

an unbiased mean difference of 18, as well. The parametric g-formula treats the empty

cells like sparse data, and smooths over them. Thus, it is not subject to the same bias

from nonpositivity as inverse probability weighting.

Control for bias when exposure occurs off work A key assumption behind Robins

and colleagues recommendation to avoid marginal structural models in occupational

studies was that exposure could not occur off work. However, this assumption may

rarely hold in practice. The agents of interest that motivate occupational cohort stud-

ies often are found outside the workplace. This can occur because these agents are

transported from the worksite (e.g. on workers clothes or sold as a consumer product)

or because the agents are not implicit characteristics of the worksite (e.g. particulate

matter or radon exposure).

Nonpositivity arises in studies of some occupational exposures only as a function

of our inability to capture exposure that occurs outside of employment (or because

the investigator assumes that exposure does not occur outside of employment). In a

population in which exposure could occur (and was measured) off work, the inverse
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probability weights in the strata X2 = 1, L2 = 0 would no longer be undefined.

In some settings it is infeasible to continue follow-up for exposure measurements

of employees who have left work. For some occupational exposures, however, popu-

lation estimates of non-occupational exposure are available. These population level

estimates may be useful to impute individual, off-work exposures, thus reducing or

eliminating bias from nonpositivity. One might be willing to accept some misclassifi-

cation of exposure (by using imputed exposures) in order to reduce bias due to con-

founding and nonpositivity.

To illustrate, consider an example from an occupation cohort of uranium miners,

who are exposed to high levels of radon gas (Schubauer-Berigan et al. (2009)). Details

about population characteristics, occupational radon exposure, and employment time

have been reported previously (Keil et al. (2014b)). Occupational exposure to radon

was estimated for workers during their period of employment. Residential radon ex-

posures were not measured for the members of this cohort, but radon is a ubiquitous

exposure that occurs in any enclosed space.

We imputed residential radon exposures for all person years under observation and

added these radon exposures to occupational exposures to estimate total annual radon

exposure. We evaluated results over a range of possible average radon exposures con-

sistent with publically available estimates (Price et al. (2011)). We estimated the inverse

probability weights using a multinomial logistic model for deciles of annual exposure

(as in Naimi et al. (2014b)) adjusted for baseline covariates (race, birth cohort, year of

hire, and mining related radon exposure and years employed as a uranium miner at

baseline) and time varying covariates (prior annual exposures for 1,2,3,4,5, 6-9 years

and cumulative exposure accrued 10 years prior and duration of employment since

baseline). For a single set of imputed exposures, there is no guarantee that total radon

exposure will be free from nonpositivity due to chance (i.e. we must observe individ-

uals in each decile of exposure in all strata of covariates). To ameliorate this problem,
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we created 200 copies of the original cohort, with unique imputations of residential

exposures, and analyzed these copies in a pooled analysis.

Over a range of possible residential exposures, the hazard ratio varied from 1.0 at

large exposures to about 1.08 at smaller imputed residential exposures (Figure 3.4, top

panel). The mean stabilized inverse probability weights were close to 1.0 for expo-

sures with a log-geometric mean less than -0.5, but the weights were very large for im-

puted residential exposures with log-geometric means greater than -0.5, likely due to

non-positivity (Figure 3.4, bottom panel). The hazard ratio for the marginal structural

model appeared to be biased downward relative to the crude hazard ratio of 1.05 for

values of residential exposures that yielded weights with a mean close to 1.0.

Figure 3.4: Bias tradeoff between nonpositivity and measurement error in the analysis
of miner data; Top panel) Hazard ratio per 100 working level months from marginal
structural Cox model (MSM) by imputed log-geometric mean of residential exposures,
with grey reference line at the crude HR with no exposure imputation; Bottom panel)
Mean inverse probability of exposure weights used in marginal structural Cox models
by imputed log-geometric mean of residential exposures
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3.2.8 Discussion

Occupational studies often involve settings of repeated or protracted exposure, which

introduce potential problems due to time-varying confounding affected by prior expo-

sure. Marginal structural models should not be eliminated from the toolbox of occu-

pational epidemiologists, provided that they are used with care.

For a repeated binary exposure, Hernán et al define the effect measure from a marginal

structural model as the ratio or difference in the outcome distribution at any time

t had all subjects been continuously exposed compared with the outcome distribu-

tion at time t had all subjects remained unexposed (Hernán et al. (2000) p553). Effect

measures from such a model may also be interpreted as the ratio or difference in the

mean outcome per unit increase in cumulative exposure, which is the same interpreta-

tion given to more familiar regression models. Thus, marginal structural models allow

easy contextualization of results within the larger literature of regression-based dose-

response estimates. Inverse probability weighting is also a relatively simple estimation

procedure.

Likely because of these attractive features, marginal structural models fit with in-

verse probability weights have seen some use in the occupational literature. However,

modifications were necessary to prevent nonpositivity. Dumas et al utilized marginal

structural models to estimate the effect of occupational exposure to asthmagens on

asthma expression in a clinical population (Dumas et al. (2013)). This approach is sim-

ilar to our approach, in that they do not limit exposure estimates to a single workforce.

However, Dumas et al do not consider off-work exposures to asthmagens and do not

account for active employment status, a likely source of confounding in their popula-

tion (Le Moual et al. (2008)), which is a mix of employed and unemployed individuals.

Similarly, Thygesen et al use marginal structural models to estimate the association

between employment as an electrician in years 1 and 3 on mortality at the end of year

3 (Thygesen et al. (2011)). The confounder of interest was employment in year 2. The
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authors avoid issues of nonpositivity by ignoring possible confounding by exposure in

year 2 and employment in years 1 and 3. Both sets of authors reported mean weights

close to 1.0, suggesting they had little or no bias from nonpositivity. There would al-

most certainly be bias from nonpositivity had both studies included the noted con-

founders, however.

These examples and our example with the miner data suggest that there is a trade-

off between bias from nonpositivity and bias from any approach to avoid it. We can

identify the direction of the bias in our miner example by comparing it to a previous

analysis in which we controlled healthy worker survivor bias using a method that is

not subject to nonpositivity (Keil et al. (2014b)). In that case, the bias from confound-

ing by employment history was downward, indicating that our current example does

not result in a net reduction in bias once we reduce or eliminate nonpositivity. As in

the analyses by Dumas et al and Thygesen et al, we will not always have this prior infor-

mation, however. To choose the solution with lower overall bias, we would first need

to quantify the magnitude of bias from nonpositivity.

Petersen et al developed a method to detect and quantify bias from nonpositivity

(Petersen et al. (2012)). The authors approach was to compare a marginal structural

model fit using inverse probability weighting to a marginal structural model fit using

the parametric g-formula. If both models are correctly specified, the difference be-

tween them is the bias from nonpositivity. This method is of limited practical use when

nonpositivity is guaranteed. Once one has gone through the effort of using the para-

metric g-formula, there is hardly any need to use inverse probability weighting. In-

stead, for occupational studies the parametric g-formula can be used in general, and

inverse probability weighting can be used when one can reasonably assume that non-

positivity will not occur.

Using the parametric g-formula allows us to retain the simple interpretation of the

marginal structural model. Using the same miner data used in our analysis, Edwards
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et al recently used the g-formula to estimate the effect of occupational radon expo-

sure on lung cancer mortality (Edwards et al. (2014)). In contrast to our approach, the

authors did not estimate a simple dose-response, however. The authors proposed es-

timating the change in the incidence of lung cancer under different caps on occupa-

tional exposure levels. To estimate the effects of these interventions, the authors had

to develop models for exposure, employment status, and lung cancer mortality. This

suggests several potential difficulties with applying the parametric g-formula to cohort

studies. The need for multiple models increases the potential bias due to model mis-

specification and contrasts with the relative simplicity of inverse probability weighting.

Nonetheless, fitting marginal structural models with the parametric g-formula remains

widely applicable in occupational studies, in spite of the paucity of applications in the

occupational literature (Cole et al. (2013); Edwards et al. (2014)).

An alternative to marginal structural models, structural nested models, have been

used to estimate dose-response parameters in occupational studies when nonpositiv-

ity is a concern (Naimi et al. (2014a), §3.1 of the current manuscript). These models,

while appealing with respect to control of confounding by time-varying covariates, are

more technically challenging and can suffer from convergence problems (Joffe (2001)).

Structural nested models are limited with respect to the effect measures that can be

estimated, necessitating further assumptions to translate effect measures to more fa-

miliar ones (Chevrier et al. (2012)). Structural nested models may be more useful than

marginal structural models, however, when there is nonpositivity and one is concerned

about model misspecification in the parametric g-formula.

3.2.9 Conclusions

Bias of exposure-outcome relationships can come from many sources, and im-

provements in study design and implementation can minimize bias from many of these

sources. In occupational studies, however, we are limited to the extent we can prevent
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bias due to time-varying confounders. This limitation necessitates the use of analytic

methods to control this source of bias. As our synthetic example shows, conventional,

regression based approaches can fail to control confounding, and in some cases can

increase bias. Marginal structural models should not be ruled out as an alternative to

such methods in occupational studies. Under a limited set of occupational settings,

inverse probability weighting can be used to estimate dose-response parameters in a

marginal structural model. This supplements the possible use of marginal structural

models noted by Joffe to estimate other parameters of interest in occupational studies

(Joffe (2012)). Our cautionary example, and limited use in the literature shows that cer-

tain strategies to avoid nonpositivity may result in an increase, rather than a decrease

in bias. More generally, marginal structural models can be used in occupational set-

tings when they are fit using the parametric g-formula. Marginal structural models are

rarely used in occupational studies, but their proper use should complement that of

structural nested models when addressing time-varying confounding.

3.2.10 Appendix

Why inverse probability weighting fails when there is non-positivity To understand

why inverse probability weighting fails when there is nonpositivity, note that the tech-

nique was originally developed to make inference from survey samples (Horvitz and

Thompson (1952)). Weighting relies on treating the observed population as though

it were sampled from a target population, with sampling fractions that are propor-

tional to (SW x )−1. In our case, the target population is a hypothetical population in

which covariates are balanced over exposure. In some strata of the covariates of the ob-

served population, there are zero individuals, so there are no individuals to weight-up

to represent individuals from these strata in the target population. Thus, the pseudo-

population is not a good substitute for the target population, and bias results. This is

analogous to the problems that would arise with making population inferences from

81



US census data if, say, no individuals under the age of 30 were surveyed.

Note that, the weights in our hypothetical population from Table 2 are not incor-

rect, even though they do not correspond to weights referring to a target population.

Further, the software we use may not help detect nonpositivity. For example, we es-

timated the weights for Table 3.6 using the LOGISTIC procedure in SAS 9.3. This ap-

proach yielded a warning message in the log regarding quasicomplete separation of

the data points, which is an indication of empty cells in a tabular analysis (Albert and

Anderson (1984)). In contrast, the same task done using the GLM function of R 3.1.0

yielded no warning. Weight estimates from both programs were identical. If we treat

this as a problem of sparse data by, for example, adding 0.5 to each cell for weight es-

timation, the bias will persist even if the warning messages stop (see Appendix B.1 for

an example of this).
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CHAPTER IV: CONCLUSION

4.1 Overview

Healthy worker survivor bias has had a long history in the occupational literature

as a potential problem for estimating the impacts of occupational exposures. This bias

was detected in frequently surprising settings in which cumulative exposure was asso-

ciated with improving health, contrary to what was known from experimental evidence

or studies done in other settings. A parallel, and older observation of healthy hire bias,

was that working populations selected for study often had lower disease and mortality

rates - this observation occurred independent of exposures because the only aspect

under study was employment. While there have been substantial efforts to distinguish

these two phenomena from each other, they can also been seen as two distinct out-

comes from a rather simple principle: on average, employed people are healthier than

unemployed people.

The detection of healthy worker survivor bias often relied on studying exposures

with small enough effects that the bias would produce non-sensical results. Some work

has been done to show that unexpected curvature in the dose-response curve can re-

sult from this bias. In the radon literature, however, no occupational studies exist in

which radon appeared to be beneficial, and there are several alternative explanations

for curvature in what should be a linear dose-response. Thus, there are no useful crite-

ria under which we would expect healthy worker survivor bias of the radon-lung cancer

dose-response. A unifying principle “employed people are healthier than unemployed

people” suggests evidence of this bias in such studies, even though none of the clas-

sical criteria have been met. There are many examples of apparent healthy hire bias
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in the miner literature, which may be evidence of this principle. The primary aims of

this dissertation were to quantify healthy worker survivor bias in the Colorado Plateau

and to suggest possible new approaches to quantifying and ameliorating such bias. To

address this problem, we sought to apply two models from the causal inference litera-

ture: structural nested accelerated failure time (SNAFT) models and inverse probabil-

ity weighted marginal structural models. We further sought to elaborate on previous

authors’ assessments about when inverse probability weighting will and and will not

be a desirable approach in occupational studies.

4.2 Summary of results and future directions

In the current manuscript, we have shown that structural nested models are use-

ful for estimating cumulative dose-response metrics in occupational data subject to

healthy worker survivor bias. Further, we suggest that healthy worker survivor bias

may be present in at least one miner study that has been used to estimate population

risk from radon exposure. We show that inverse probability weighted marginal struc-

tural models may not be useful in miner studies to estimate this dose-response, but we

speculate that these models may be useful in other areas of occupational epidemiol-

ogy. The results of our analysis suggest that the population impact of residential radon

exposures may be underestimated when they are based on relative rate parameters

from miner studies, and we propose that reanalysis may warranted.

To close, we speculate on some possible directions in which the use of g-methods

may be useful for occupational epidemiologists, and we suggest some improvements

that may make estimation of such models more robust.
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4.2.1 Moving past cumulative exposure metrics in g-methods

Cumulative exposure is a summary metric that accounts simultaneously for expo-

sure duration and average exposure intensity. It is a useful metric that has proven to

provide robust predictions of exposure rates in several settings (Thomas (2014)) and

results in effect measures that are simple to communicate. The work of Langholz et al.

(1999),Richardson and Ashmore (2005), Richardson (2009b), and Richardson et al. (2012)

has suggested another route of modeling using an aggregated exposure that is a weighted

sum of time specific exposures, where the weights can account for factors such as la-

tency or exposure intensity. This more general approach may be possible using struc-

tural nested models by considering models of the form

T 0̄ =

T
∫

k=0



1+

k
∫

u=0

ψXu wu



d k

Where wu is some function that weights the aggregate exposure metric X̄k =
∫ k

u=0
Xu

by possibly time varying factors. As in Richardson et al. (2012), if we let wu be of the

relative effect of age at exposure wu = exp(γ× ageu ), such an approach can be used

to estimate the modification by age at exposure that does not force the use of the cu-

mulative exposure metric and thus may cohere better to our understanding of disease

processes from acute exposures (e.g. the study of the atomic bomb survivors Preston

et al. (2007)). This approach is well suited for structural nested models because of the

selective ignorability assumption (Joffe et al. (2010)). This implies that we could fit such

a model only to the data in which exposure occurs (as in the current analysis), thus re-

ducing the need for an “age at exposure” metric that is summarized across many time

periods. The difficulties encountered in the main analyses with fitting models for mod-

ification of the time ratio suggest that this approach might be best attempted using

pooled data from multiple cohorts.
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4.2.2 Unifying g-methods with classical risk projection models

One strength of the g-methods (g-estimation of structural nested models, the para-

metric g-formula, inverse probability weighted marginal structural models) is that they

can be easily used to compare outcome distributions under different exposure regimes.

For example Chevrier et al. (2012) used SNAFT models to estimate the cancer mortal-

ity under an exposure regime “expose to metalworking fluids for 5 years.” Similarly

Cole et al. (2013) and Edwards et al. (2014) used the parametric g-formula to estimate

the effects on mortality of different occupational limits on asbestos or radon exposure.

These approaches are ideal in that they represent estimates of public health interven-

tions and are ideally suited for informing decision makers.

Another approach is to transport the relative rate estimates from miner studies to

estimate the population risk from residential radon. The typical approach from the

BEIR VI committee and the USEPA (among others) is to use miner data to inform es-

timates of the impact of residential exposure to radon (NRC (1999); USEPA (2003)).

Their approach is to take estimates of the relative rate parameters from the miner stud-

ies and, after accounting for differences in the expected equilibrium of radon with its

progeny and differences in respiration, multiply these relative rate parameters by the

baseline cancer rates under various intensities of residential exposure. Using life ta-

bles, these expected rates are compounded over the life-course of a standard popu-

lation to estimate lifetime risks for the general population. G-methods are suited for

such an analysis that may generalize this approach to relax some of the assumptions

in such an analysis.

Using the g-formula given in Equation (1.8) as an example, if we have a standard

population in which we have measures of V , L̄ k , and X̄ k and an occupational cohort

in which we have estimated P r (Lk |·), P r (V |·), P r (Xk |·), and P r (Dk |·), it is a simple ex-

tension of available formulations of the g-formula (e.g. Keil et al. (2014a)) to estimate

the incidence of disease in the standard population by using the probability models
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generated in the occupational cohort. This is a form of indirect standardization to es-

timate the impact of exposures in the general population, informed by occupational

data.

4.2.3 Contrasting structural approaches for exposures whose effects may be per-
sistent

The approach taken in the current analysis to summarize the effect of radon ex-

posure on mortality is to consider an approach in which exposure at one time can in-

fluence the outcome at multiple time-points. This approach is typical of regression

models in which some aggregated exposure is included a model for the hazard or mor-

tality rate.

The way in which data are analyzed is to split up the duration of follow-up into

discrete periods of time. For example, a version of the relative rate model similar to

models shown in §1.3 can be expressed as

λ(k |X̄k ;β ) =λ0k e x p (β X̄k )

can be expressed in terms of its partial likelihood

Lp (β ) =
∏

k=Ti

exp(β X̄ i k )
∑

j∈Ri
exp(β X̄ j k )

Which is evaluated at the event times Ti . It is necessary to include cumulative expo-

sure (or some time integrated exposure X̄k ) if we believe that exposure has persistent

effects. To see this, note that if we substitute X̄k with current exposure Xk , the expo-

sure at some previous time is not accounted for in the partial likelihood. Such a model

may be useful if we believe that some agent has very prompt, but temporary effects on

an outcome of interest. The issues remain identical if we fit a marginal structural (MS)

Cox proportional hazards model, in which case the partial likelihood is augmented by
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separate weight terms for the cases and the risk set members (cf Cole and Hudgens

(2012)).

Contrast this model with the SNAFT model used in the current analysis as well as

by Hernán et al. (2005) and Naimi et al. (2014a):

T 0̄ =

T
∫

k=0

exp(ψX̄k )d k .

Again, we include cumulative exposure in the model. However, note that if we re-

place X̄k with current exposure Xk , the exposure will still have an effect on the time ra-

tio even if it occurs long before the outcome. This happens because, unlike the marginal

structural Cox model, the SNAFT model includes exposure in the integration term.

Thus, the SNAFT model can include only current exposures and still detect persistent

effects of exposure, whereas the MSM cannot.

As an example, consider an exposure that affects a disease with a 5 year latency

period and has persistent effects - assume this period is the same for every member of

the population. If current exposure is used in the model, a MS Cox model using only

current exposure will fail to detect any effect of exposure, while the SNAFT model will

detect this effect in a large sample.

The difference between these two approaches has implications for how exposures

are modeled in SNAFT models. A different set of authors (Chevrier et al. (2012); Neo-

phytou et al. (2014); Picciotto et al. (2014)) has previously used SNAFT models for oc-

cupational agents with potentially persistent effects (metalworking fluids). These au-

thors fit SNAFT models that included only current exposure in the model, in contrast

with our approach, but they still observed positive associations with outcomes that oc-

curred long after the exposure ceased (note that this does not exclude bias as a source

of the observed association). These authors’ approach may seem unfamiliar to epi-

demiologists more familiar with models for the rate or hazard, but highlights a key dif-
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ference between such models and accelerated failure time models. Accelerated failure

time models allow for current exposure at any time in the life course to influence the

final outcome, whereas exposure must be aggregated across time in a rate or hazard

model to allow for persistent effects.

Our approach is desirable in that we are able to easily compare parameters from

our SNAFT model with more standard approaches, whereas the approach of Chevrier

et al. (2012) required comparing potential outcomes T 0̄ with potential outcomes un-

der 5 years of exposure using a Cox model. This extra step was necessary, because

their time ratio compared the potential outcomes under “unexposed” with “always ex-

posed” whereas ours compares “unexposed” with “kept at a constant cumulative expo-

sure of 100 working level months.” Our intervention may be more realistic intervention

for an occupational setting. However, cumulative exposure may not be the metric that

yields the best prediction of public health benefits.

Future work should contrast these two approaches using SNAFT models. There are

likely implications or for estimating time-related aspects of exposure effects, such as

when considering effect measure modification by age at exposure. One possible av-

enue to approach this work is the instantaneous-rate SNAFT model discussed in sec-

tions 7 and 8 of Robins (1998). These models allow for effects on the failure time (time

of death, time to disease) of exposures that occur only within a certain window of time

before the event. If the exposure does not occur within that time, it is assumed to have

no effect on the outcome. The instantaneous-rate SNAFT model may coincide better

with biologic knowledge in some areas of cancer research, in which cellular repair pro-

cesses may, over time, reduce the cellular damage from environmental insults such as

radon.
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4.2.4 Flexible approaches to exposure modeling with structural nested models

In sensitivity analysis for the SNAFT models shown in Appendix A, we attempted

to fit several alternative models for the exposure. The estimating equations approach

we took utilizes information in the “novel” part of the exposure. This is the variation

in an individual’s exposure from the predicted exposure. The approach contrasts this

with the potential outcome (or, in more efficient versions of the estimating equations,

the “novel” part of the potential outcome, as well). Thus, there is a need to find an

exposure model that both does not poorly fit the expected exposure, but also does not

over-fit the exposure so as to remove some of the “novelty” from the exposure. We have

taken a parametric approach to modeling exposure, which is especially prone to poor

predictions. Thus, it may be of use to find flexible prediction models that can avoid

over-fitting.

We attempted to address this potential shortcoming in a sensitivity analysis in which

we fit an exposure model using generalized additive models or discrete approximations

with a multinomial model. However, these approaches did not lead to convergence of

the SNAFT model. One possible future avenue is to use Super Learner, which is a cross

validated prediction method that utilizes model averaging over a library of predictive

models (van der Laan et al. (2007); Polley and van der Laan (2010)). Super Learner

could be used to predict the exposure in a way that avoids the restrictive assumptions

of parametric models but is nonetheless useful to avoid over fitting. Because the esti-

mating equations approach requires only a single prediction model for the algorithm,

this approach would not lead to a substantially longer time for analysis relative to our

approach.
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APPENDIX A: FURTHER DETAILS OF STRUCTURAL NESTED MODEL ANALYSIS OF
THE COLORADO PLATEAU URANIUM MINER COHORT

A.1 Covariates and notation used in the analysis of the Colorado Plateau uranium
miner data in Appendix A
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Table A.1: Notation used to refer to quantities in the Colorado Plateau Uranium Miner
(CPUM) data

Symbol∗ Interpretation CPUM Variables

Xk Primary exposure Monthly radon exposure in 100
working level months, lagged 5
years

L̄k Time varying confounders Employment status (yes or no), unlagged

X̄ k History of exposure Separate terms for annual
exposure lagged 1, 2, 3, 4, 5, and
6-10 years, and cumulative
exposure 10 lagged 10 years

V Baseline covariates Race (white, other), smoking
status at 1985 interview (current,
former, never), birth cohort
(<1890, 1890-1899, 1900-1909,
1910-1919, 1920-1924, 1925-1930,
1930-1934, 1935-1939, >1939),
prior radon exposure from hard
rock mining (working level
months), baseline radon from
uranium mining, baseline
number of years employed in
uranium mining, year of hire
(cubic polynomial)

Dk Outcome of interest in month k
(yes or no)

Date of death from lung cancer, other causes

T Time to outcome of interest Date of death from lung cancer, other causes

T 0 Potential time to outcome of
interest if never exposed

Not identified in data

∗ Vectors are shown in bold and scalars shown in regular typeface. Time varying quan-
tities are subscripted by month k .
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A.2 Technical details: g-estimation of a structural nested accelerated failure time
model

A.2.1 G-estimation algorithm accounting for censoring by end of follow-up and
competing risks

We now describe further the structural nested model used to estimate the time ratio

per 100 WLM of exposure in the main text. We note that our choice of the model for

the effect of exposure (repeated from the text) is shown in A.1.

T 0̄ =m +

T
∫

m

(1+ψX̄k )d k (A.1)

This SNAFT model differs from typical published examples (such as that shown in

modelA.2 and e.g. Witteman et al. (1998); Chevrier et al. (2012); Naimi et al. (2014a)).

T 0̄ =m +

T
∫

m

e x p (ψX̄k )d k (A.2)

However, we show that our model is a valid form for a SNAFT model. Equation A.1 can

be expressed equivalently using the function that relates the observed failure times to

the potential failure times as:

T 0̄ =m +

T
∫

m

(1+ψX̄k )d k = h (T , X̄k ,ψ) (A.3)

Thus, the function h (T , X̄k ,ψ) takes as its input the observed failure time, the expo-

sure of interest, and the value of 1-TR and yields the potential failure times we would

observe under no exposure.

Robins notes that the function h (T , X̄k ,ψ) should satisfy three criteria:

1. identity: h (t , X̄k ,ψ) = t if X̄k is always 0 from m to t
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2. consistent with null-hypothesis: h (t , X̄k ,ψ = 0) = t so thatψ = 0 represents the

null hypothesis of no effect of exposure on the time of death

3. monotonicity: h (t , X̄k ,ψ)> h (u , X̄k ,ψ) if t > u

The model shown in (A.3) meets conditions 1 and 2 by noting that if eitherψ=0 or

X̄k is always 0, that the function reduces to m +
∫ t

m
1d k = t . In the case of radon and

lung cancer, (A.3) meets the third criteria by the linear-no threshold assumption under-

lying the carcinogenic effects of radon. Practically, this implies that the TR will always

be positive. In the case of parameter estimates that imply a protective effect of radon,

we need only assume thatψ ∗M AX (X̄k )>−1, which guarantees monotonicity. In the

miner data, we observed a maximum cumulative exposure of around 60*100 WLM,

implying that we would observe practical violations of monotonicity for estimates of

the TR < 0.983. Our analyses uniformly indicate TR> 1, so this is not a concern in the

miner data.

Censoring occurs in our analysis of the CPUM under three separate mechanisms:

individuals are considered censored if they a) are lost to follow-up prior to death, b)

die from a cause other than lung cancer or c) survive until the end of the study on 31

December 2005. Following other analyses of the CPUM, we consider a. and b. to be

equivalent and we assume that there are no unmeasured risk factors for the censoring

event. Under censoring events a, b or c, where C is the time at censoring, analysis of

time to event data typically considers estimation using Z ≡M I N (T , C ) and∆≡ I (T <

C ), where I (·) is the indicator function taking on values 1 or 0.

For the SNAFT model, we consider similar variables Z 0̄ ≡M I N (T 0̄, C 0̄) and ∆0̄ ≡

I (T 0̄ <C 0̄). Redefining the administrative censoring time C as C 0̄ is necessary because

of one of the following reasons 1) if exposure is harmful (ψ> 0), then we would expect

that some of the events observed under no exposure would be unobserved if, in fact,

the individual had been unexposed (i.e. life would be extended past C by remaining

unexposed) and C 0̄ should allow potential failure times to be observed only if they
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would have been observed under the minimum exposure; or 2) if exposure is beneficial

(ψ< 0), then those with the shortest potential times under no exposure will (in general)

be the highest exposed, so C 0̄ should allow potential failure times to be observed only

if they would have been observed under the maximum exposure. If exposure has no

effect on survival (ψ= 0), then censoring times do not need to be adjusted.

Since radon is an established risk factor for lung cancer, we only need consider this

calculation when ψ̃ > 0. If we define the age at start of follow-up as m, then a possible

function for C 0̄ under our SNAFT model is

C 0̄ =m + (1+ ψ̃M I N (X̄k ))(C −m ) (A.4)

In other words, since the minimum possible cumulative radon exposure is 0, C 0̄ =

C . This function results in wider confidence intervals than the optimal functions for

C 0̄ discussed by Robins and Tsiatis (1992), but it is much simpler to calculate.

Because exposure may affect how many events are observed under administrative

censoring, C 0̄, rather than C is used to define the set (Z 0̄,∆0̄) so that the identifying

assumption of no unmeasured confounding (see §C.3)an be written as

(Z 0̄,∆0̄)⊥ Xk |L̄k , X̄k−1, V0, T > k (A.5)

Under the assumption of no unmeasured confounding, we can test (A.5) using the

methods given in A.2.3, which forms the basis of g-estimation.

To adjust for selection bias due to possibly informative censoring due to deaths

from other causes or loss to follow-up. We utilized inverse probability of censoring

weights, where, at each time k , we estimate the weight Wk as

W c
k =

P r (Ck = 0|X̄k−1, V0, Ck−1 =Dk−1 = 0)
P r (Ck = 0|L̄k−1, X̄k−1, V0, Ck−1 =Dk−1 = 0)

(A.6)

The weight model is fit to data before 12/31/2005, since we account for censoring
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due to end of follow-up as described above. While we do not include the effects of

smoking in our exposure model, we include smoking status as of 12/31/1985 (never,

former, <1 pk/day, 1 pk/day, >1pk/day) in V0 to allow for the effect of smoking on

deaths due to other causes.

A.2.2 Description of exposure model used for g-estimation algorithm

Adjusted model The estimating equation relies on knowing (or estimating) p (Xk ),

the time specific expected value of the exposure, conditional on the covariates included

in (3). Because radon is recorded as a quantitative variable (and because we are inter-

ested in the dose-response of the radon-lung cancer relationship), the expected value

of radon exposure at age k is sensitive to the choice of parametric model for the mean.

Preliminary analysis indicated that monthly exposures while working as a miner ap-

proximately follow a zero-inflated, right skewed distribution. We define the predicted

exposure as

p (Xk ) = p r (Xk > 0|·)E (Xk |Xk > 0, ·) (A.7)

Where · is the set (L̄k , X̄k−1, V0, T > k ), p r (Xk > 0|·) is estimated in a data-set of person-

month records using pooled logistic regression over all person-months and E (Xk |Xk >

0, ·) is estimated using a log-linear model for exposure fit to all exposed person-month

records. Thus, the expected radon exposure at time k is the proportion exposed to any

radon times the mean radon exposure, in strata of the predictors of exposure. We refer

to this model as a “zero-inflated log-linear model,” which we fit with a joint-likelihood

similar to that shown in Li et al. (2011), but with a log-linear (e.g. the mean of the

distribution is an exponential function of predictors, but the error term is considered

to have a Gaussian distribution) component in place of the log-normal component.

Using this general methodology, we fit other such “zero inflated” models, discussed
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more in §A.4.1.

Unadjusted model SNAFT models do not yield a parameter that estimates the mag-

nitude of healthy worker survivor bias. It is of interest to know the magnitude of this

bias to understand the potential impact of this bias on the accuracy of current risk pro-

jection models. Therefore, we fit a separate “unadjusted” model that could be com-

pared with the adjusted model. Namely, such a model can be derived under the as-

sumption that there is no time-varying confounding of the radon-mortality associa-

tion, which, more formally, can be stated as the assumption of no unmeasured con-

founding for cumulative exposure:

(Z 0̄,∆0̄)⊥ X̄k |V0, T > k (A.8)

Which suggests a model for the exposure given as:

p (X̄k ) = p r (X̄k > 0|V0, T > k )E (X̄k |X̄k > 0, V0, T > k ) (A.9)

Essentially, A.8 states the underlying assumption necessary to give a causal inter-

pretation to a standard accelerated failure time model. However, by using a SNAFT

model to estimate the acceleration parameter, we ensure that the models do not differ

with respect to assumptions about the shape of the baseline survival function. As noted

in 3.1, however, our approach requires fitting multiple exposure models. We opted for

our approach cecause we are more confident in our ability to characterize the exposure

distribution than in our ability to accurately parameterize the shape of the underlying

survival function. Here, the underlying survival function is the distribution of survival

times we would observe, had the cohort never been exposed to radon. This is not a

quantity typically reported in analyses of miner data.

97



A.2.3 G-estimation using estimating equation methodology

In the SNAFT analysis from chapter 3.1, we estimated ψ using the g-estimation

algorithm described by Robins and Tsiatis (1992) and in detail by Hernán et al. (2005)

and in the appendix of Joffe et al. (2012). This algorithm uses a modified score function

U (ψ̃) similar to that described in Chapter 6 in Kalbfleisch and Prentice (2002). The

estimate ψ̂ is the value of ψ̃ for which the score function is zero. This is analogous to

maximum likelihood methods, in which the score function (the partial derivative of

the likelihood function) will equal zero at a local maximum in the likelihood function.

This approach is advantageous in that U (ψ̃) is easy to calculate and a full regression

model is not needed for each candidate ψ̃.

To find ψ̂, we used the estimating equation

U (ψ̃) =
mi n (Ti ,kLi

)
∑

k=m

N
∑

i=1

[(X i k −p (X i k )]∆
0
i k (ψ̃)W

c
i k (A.10)

where X i k is the exposure in month k for individual i , p (X i k ) is the expected monthly

radon exposure (described in §A.2.2) in month k , given the exposure and covariate

history and that the miner is still at risk for lung cancer. ∆0
i k (ψ̃) is the indicator of

whether or not the individual is not censored by the end of follow up or a competing

risk (0=censored, 1=experiences event of interest), under the candidate value for the

time ratio -1 ψ̃. The weight W c
i k is the inverse probability of censoring (due to compet-

ing risks) weight shown in Equation A.6. The solution ψ̃=ψ is found by finding value

of ψ̃ at which U (ψ̃) = 0 either through a grid search, a non-gradient-based optimiza-

tion algorithm, or any optimization algorithm that calculates an empirical gradient

and can be run with multiple initial values. Gradient-based optimizers can be used

effectively when U (ψ̃) = 0 is a smooth function, such as if a cohort is followed to ex-

tinction, but due to our choice of estimating equation, our estimating equation is not

a smooth function, as can be seen in Figures A.1 and A.2. Joffe et al. (2012) describe the
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performance of several optimization routines. The lack of a smooth estimating func-

tion also implies that U (ψ̃) = 0 will not equal 0 for any value of ψ̃, instead the value

closest to 0 is used. The exposure model for p (Xk ) can typically be fit using standard

software for generalized linear models, but solving the estimating equation requires a

separate procedure.
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Figure A.1: G-function for SNAFT model for lung cancer mortality reported in §3.1

To estimate confidence intervals for ψ̂, we again followed the approach outlined by

Joffe et al. (2012). Briefly, this approach involves minimizing a χ2 test statistic that can

be calculated by

χ2(ψ̃) =U (ψ̃)V (U (ψ̃))U (ψ̃) (A.11)

Where V (U (ψ̃)) is the empirical variance of U (ψ̃), calculated as

V (U (ψ̃)) =
mi n (Ti ,kLi

)
∑

k=m

N
∑

i=1

�

[(X i k −p (X i k )]∆
0
i k (ψ̃)W

c
i k

� �

[(X i k −p (X i k )]∆
0
i k (ψ̃)W

c
i k

�′
(A.12)

In large samples χ2(ψ̃) has an expected χ2 distribution with degrees of freedom
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Figure A.2: G-function for SNAFT model for all cause mortality reported in §3.1

equal to the dimension ofψ. Since U (ψ̃) is a discrete function of potential survival in-

dicators∆0̄, the minimumχ2(ψ̃)will not reach 0,χ2(ψ̃)will be a step function and may

not be monotonic. Instead U (ψ̃) (and χ2(ψ̃)) were calculated over a grid of potential

ψ̃ values and the (mean) value(s) of ψ̃ for which χ2(ψ̃) was smallest were accepted as

the estimate ψ̂, the log time-ratio for a 100 working level month increase in cumulative

radon exposure. We perform g-estimation using a grid search for models with a single

ψ parameter and utilize an active-set algorithm with multiple start points for models

with multipleψ parameters. The full g-functions for the grid searches for our primary

analyses with lung cancer and all cause mortality are shown in Figures A.1 and A.2.

For our primary analysis, we calculated 95% confidence intervals as the set of ψ̃ val-

ues surrounding the point estimate for whichχ2(ψ̃)< 3.84. Our method yields conser-

vative values for the 95% confidence intervals, but is considerably less computationally

intensive than alternative methods, such as the bootstrap.

As noted above, a g-estimation algorithm can also be fit by adding∆0̄ to the expo-

sure model, but this method is much more computationally intensive, since a model

for exposure is fit for every value of ψ̃ in a grid search, whereas U (ψ̃) is generated us-
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ing relatively fast matrix calculations (Hernán et al. (2005); Joffe et al. (2012)), and U (ψ̃)

readily incorporates multi-dimensional ψ̃ (i.e. if we were interested in the effects of

multiple exposures). Further, optimization routines may be implemented as an alter-

native to grid searches as a way to estimateψ, though this approach may be problem-

atic in practice (Joffe et al. (2012)).
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A.3 Simulation studies: Fitting structural nested accelerated failure time models
using g-estimation

To assess the success of our g-estimation algorithm in estimating causal parame-

ters, We performed simulations under a data generating structure that produced ob-

served data similar to that in the CPUM.

A.3.1 Data generation algorithm

Data were simulated according to a structural nested accelerated failure time model

based on a modified version the algorithm described originally by Robins (1992) Robins

(1992) and refined by Young and colleagues (2010) Young et al. (2010), which proceeds

according to the following steps.

1. Generate a set of potential failure times T 0̄ under a Weibull distribution with

shape ρ and scale λ, W (ρ,λ)

2. Generate frailty variable F = s q r t (T 0̄)

3. Generate baseline versions time varying covariates (L0) and exposure (X0) which

are, by convention 0

4. Start at t = 1, the end of the first time period (e.g. year) of the study

5. Generate static covariates, V , time varying covariates (Lk ) and exposure (Xk )

(a) V follows a Bernoulli distribution B (p ) where p = P r (V = 1) = e x p i t (r0 +

f f F )

(b) Lk follows a Bernoulli distribution B (p )where p = P r (L t = 1) = e x p i t (g0+

g t

p
t + gv V + gC l L̄k−1+ g l Lk−1+ g x X̄k−1+ g f F ),

(c) Xk follows a log-normal distribution LN (µ,σ) where µ = l n (E (X t )) = a0 +

at

p
t +av V +aC l L̄k−1+al Lk−1+ax Xk +aC x X̄ t−10 andσ∼N (0, 1)
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(d) X̄k−1 =
∑k−1

u=0 Xu , L̄k−1 =
∑k−1

u=0 Lu

6. Generate variable Hk based on inverse of the structural model Hk = e x p (ψ∗ X̄k )

7. If Hk > T 0̄, then observed event time T = (t − 1) + (T 0̄−Hk − 1)e x p (−ψX̄k ), and

Yk = 1 else Yt = 0, set t = t + increment (where increment is set to 0.1 to ap-

proximate a study in which exposure and employment status are recorded on a

monthly basis) and repeat #s 6 and 7

8. Accumulate L̄k and X̄k to represent history variables.

9. If Hk > T 0̄ and t=80, then set Yt = 0 and stop (censoring by end of follow-up)

Intuitively, the simulations proceed according to the causal model proposed for

healthy worker survivor bias. Methods relying on stratification to control confounding

cannot remove confounding due to the time varying covariate, Lk , but methods such as

g-estimation of a structural nested accelerated failure time model can remove the bias.

Confounding of the relationship between cumulative exposure (X̄k ) and the time to

event outcome (T ) occurs through the unblocked backdoor pathways Xk ←V ←U →

T and X ← Lk ←U → T where the role ofU in our example is taken the frailty indicator

F. Because neither V nor Lk are causes of the outcome, the model easily allows recovery

of the marginal parameterψ, which can be interpreted as the total (net) effect of Xk on

T Rosenbaum (1984).

We were primarily interested in the performance of the SNAFT model when no

time-varying confounding (i.e. no healthy worker survivor bias) was present. The per-

formance of SNAFT models under time varying confounding has been previously de-

scribed Young et al. (2010). Under no time-varying confounding, we expect that both

the adjusted and fully adjusted models to yield unbiased parameter estimates. This

scenario can be simulated by setting g f = 0 in step 6b of our data generating algorithm.
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A.3.2 Simulation analyses

We fit SNAFT model models under the structural models denoted by

T 0̄ =m +

T
∫

m

e x p (ψX̄k )d k (A.13)

We fit adjusted and unadjusted models, as in §3.1. Briefly, the exposure model for

the adjusted model was fit based on the full data generating function of the data. The

unadjusted model was fit to cumulative exposures conditional only on V and time.

Estimation of the SNAFT model parameters was performed by grid search parame-

ters using the same estimation procedures described in §A.1. Due to difficulties docu-

mented by Joffe et al. (2012), small-sample characteristics were difficult to characterize

using our estimation algorithm. Partly, this is due to the fact that the estimating func-

tion in (A.10) is not guaranteed to be smooth nor to be monotonic, as discussed for

similar functions in Chapter 7 of Kalbfleisch and Prentice (2002). Therefore, simula-

tions were carried out in single large samples (N=50,000) in an effort to reduce simu-

lation bias. A preferable method would be to simulate multiple cohorts of a size that

approximates the uranium miner data - however, this technique proved to be unten-

able for simulated samples with long follow-up. We speculate that simulating from a

skewed exposure distribution often led to cohorts in which the G-function would not

converge to reasonable values. For more details on why simulation in small samples is

not ideal (in practice) for G-estimation, see Joffe et al. (2012).

Though small sample simulations proved untenable in samples that closely mim-

icked the miner data, we explored small sample properties using a simplified data gen-

eration algorithm. We generated the frailty variable F = I (T 0̄ < 8), set the maximum

time of follow-up to 6, and changed step five to be as follows:

1. V follows a Bernoulli distribution B (p )where p = P r (V = 1) = 0.5
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2. Lk follows a Bernoulli distribution B (p ) where p = P r (L t = 1) = e x p i t (O g ),

where the vectors g = (g0, g t , g l , g x , gv , g f ) and O = (1, t , Lk−1, X̄k−1, V , F ),

3. Xk follows a log-normal distribution LN (µ,σ)where µ= l n (E (X t )) =O ∗a where

the vectors a = (a0, at , al , aC x , av )O ∗ = (1, t , Lk−1, X̄k−1, V ) andσ∼N (0, 1)

We emulate healthy worker survivor bias by setting values of a and g such that

Lk is a time-varying confounder affected by prior exposure. Parameter values for the

data generating mechanism are given in table A.3. We generated data for under time

ratios of 1 and 1.14 and analyzed each sample using both a log-linear and a linear expo-

sure model, as described above. We calculated bias as the average difference between

the estimated log time ratio and the true log time ratio. Confidence intervals were es-

timated using the methods given in §3.1, and we estimated coverage proportion for

nominal 95% confidence intervals using the sample proportion of values in which the

confidence intervals contained the true time ratio. For each scenario, we fit both an

adjusted and unadjusted SNAFT model, as discussed in §3.1. Some samples did not

yield valid confidence intervals (i.e. the confidence region could not rule out time ra-

tios on one side of the estimated value due to numeric difficulties), and these samples

were discarded.

A.3.3 Simulation results

For large samples, under the data simulation model (Log-normal), SNAFT model

results for adjusted and unadjusted models were essentially unbiased (Table A.2) for

all exposure models, though the algorithm did not converge to an estimate in the un-

adjusted model using a log-linear exposure model. The unbiased results suggest that

our unadjusted model represents a valid comparison model. For repeated samples of

N=4,000, we observed that bias was essentially zero for all models in which no time-

varying confounding was present, while only adjusted models were unbiased when
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time-varying confounding was present. Confidence interval coverage approached nom-

inal values for all adjusted models and for unadjusted models under no time-varying

confounding when there was a non-null effect of exposure. Under no time varying

confounding, coverage for unadjusted models was lower than the nominal 95% (about

70% actual coverage). This issue may have arisen due to the way in which some sam-

ples were discarded, which may have resulted in an over-representation of samples

with narrow confidence regions. The nearly nominal coverage (92%) of the unadjusted

model when there is a non-null exposure effect suggests that confidence interval cov-

erage is appropriate at the nominal level.

Table A.2: Structural nested model results for simulations: large sample characteristics

Exposure model Adjustment Set Log time ratio Bias∗

Log-normal Adjusted 0.075 0
Unadjusted NC∗∗ NC

Log-linear Adjusted 0.077 -0.002
Unadjusted 0.074 0.001

Linear Adjusted 0.074 0.001
Unadjusted 0.074 0.001

∗ True log time ratio is 0.075
∗∗ Algorithm did not converge
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Table A.3: Structural nested model results for simulations: small sample characteristics
for N=4000, t=6, 200 samples.

Time varying Exposure SNAFT True Estimated
confounding model Model TR TRa Biasb Coveragec

Nod

Log-linear Adjusted 1.00 0.99 -0.01 93.0
Log-linear Unadjusted 1.00 1.01 0.01 68.5

Linear Adjusted 1.00 0.99 -0.01 91.5
Linear Unadjusted 1.00 1.01 0.01 71.0

Log-linear Adjusted 1.14 1.14 0.00 95.5
Log-linear Unadjusted 1.14 1.13 -0.00 92.0

Linear Adjusted 1.14 1.14 0.00 95.5
Linear Unadjusted 1.14 1.13 -0.00 92.0

Yese

Log-linear Adjusted 1.00 1.01 0.01 93.0
Log-linear Unadjusted 1.00 0.95 -0.06 3.5

Linear Adjusted 1.00 1.02 0.02 92.5
Linear Unadjusted 1.00 0.94 -0.06 4.0

Log-linear Adjusted 1.14 1.13 -0.00 93.0
Log-linear Unadjusted 1.14 0.97 -0.16 2.0

Linear Adjusted 1.14 1.11 -0.03 89.5
Linear Unadjusted 1.14 0.96 -0.16 1.5

b Mean(Estimated TR)
b Mean(Log(true TR) - Estimated TR)
c 100*Proportion of confidence intervals containing true TR
d g = (log(1/25), log(1.140), 0, 0, log(3.5), 0), a = (log(0.2), log(0.9), 0, 0, log(3.0))
e g = (log(1/25), log(1.140), log(0.85), log(1/0.35), log(5.5), log(17.5)), a = (log(0.1),
log(0.9), log(0.65), log(1.01), log(1.5))
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A.4 Sensitivity analyses for structural nested models

A.4.1 Sensitivity analysis: exposure model used for g-estimation

A.4.1.1 Methods

Alternative exposure model To assess the sensitivity of the TR to parametric as-

sumptions of the exposure model, we fit several SNAFT models under different as-

sumptions about the exposure. Namely we fit the following exposure models

• Zero-inflated log-linear model (as reported in the text)

• Zero-inflated log-linear model with a log transform on time variables

• Zero-inflated linear model for exposure

• Zero-inflated log normal model for exposure, as in Li et al. (2011)

• Zero-inflated three parameter Gamma model for exposure

• Zero-inflated multinomial model (cumulative logit) for exposure deciles, as in

Kelley and Anderson (2008)

• Generalized additive model for exposure

We fit the adjusted exposure model as in the text along with an “exposure adjusted

only” SNAFT model in which we removed employment duration from the exposure

model. The latter model provides partial adjustment for healthy worker survivor bias

and may be useful for considering model fit.

A.4.1.2 Results

Similar to the model in the main text, the “zero-inflated” models are simply models

with two-part likelihoods that factorize into a binary (logistic) model for any exposure
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(X > 0) and a separate Log-normal or Gamma model fit among the exposed. These

have also been referred to as generalized linear models with composite links and ex-

ploded likelihoods (Rabe-Hesketh and Skrondal (2007)). The only models for which

our SNAFT model converged to an estimate were the Zero-inflated log-linear model

and the Zero-inflated linear model (Table A.4). The fully adjusted linear models yielded

smaller time ratios and smaller apparent differences between exposure adjusted and

fully adjusted models.

Table A.4: Comparing alternative exposure models for SNAFT model for the radon-
lung cancer dose-response

95% CI
Exposure model Adjustment set Time ratio U L AIC*

Zero-inflated log-linear** Adjusted 1.166 1.152 1.174 -313202
Exposure only 1.088 1.084 1.090 -305054

Zero-inflated log-linear Adjusted 1.167 1.152 1.172 -313240
(log-time in model) Exposure only 1.091 1.086 1.100 -304848

Zero inflated linear Adjusted 1.057 1.047 1.075 -309094
Exposure only 1.048 1.032 1.059 -305354

*AIC = -2*(log-likelihood - p) where p is total number of parameters estimated in the
model, estimation algorithms did not converge for zero-inflated log-normal, zero-
inflated gamma, or a generalized additive model, so these models are not included
**Also reported in the main text

A.4.1.3 Discussion

Because our SNAFT model model requires a model for the exposure, a model that

does not accurately characterize the patterns of exposure in the CPUM data may result

in bias. To see why, note that the independence function shown in 8 tests the indepen-

dence between exposure and the potential outcome within strata of prior confounders.

Another way to conceptualize this is to think of testing the independence of the “resid-
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ual” outcome and the “residual” exposure, where the residual outcome is the part of

the outcome variable that remains after subtracting (or dividing) out the part of the

outcome due to exposure effects and the residual exposure is the part of the exposure

variable that remains after subtracting out the part of the exposure that is predicted

by prior covariates. Thus, in order for the SNAFT model to accurately characterize the

exposure effects, the residual outcome and residual exposure will appear to be inde-

pendent for the residual outcome at the true time ratio. However, if the exposure model

is incorrect, the “residual” exposure will characterize not only the novel part of the ex-

posure (the part of not predicted by prior covariates), but it will also reflect a poor cor-

respondence between the model and the population function from which exposures

arise.

The robustness of SNAFT model results to misspecification of a parametric expo-

sure model is of some interest. While it is worth exploring alternative parametric or

semi-parametric models for the exposure, in the CPUM there are limits to the useful-

ness of such an approach. Namely, exposure data are derived from records that record

the date of reaching a certain cumulative exposure threshold. We created monthly ex-

posure data using these records using a linear interpolation of the exposure rate, such

that the exposure rate was assumed to be constant within each interval of time between

exposure thresholds. As a consequence, model fit statistics for the exposure model are

biased at best and may be misleading if used in a model selection algorithm. For ex-

ample, a linear model for exposure could appear to provide a good fit to the data, but

this may be a strong artifact of the way in which the data were generated. Figure A.3

shows the distribution of intervals between exposure readings in the CPUM. While a

majority of the 19,260 records are more frequent than 1 year (median= 244 days), only

six percent of the records are 31 days long or shorter. Thus, there is an inherent tension

between capturing the variation in exposure over short intervals (to accurately capture

the time-varying nature of the data) and bias in parametric modeling of exposure due
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to inclusion of large amounts of linearly interpolated data.
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Figure A.3: Frequency of interval (days) between exposure readings in source data from
Colorado Plateau Uranium miners data. Inset is histogram showing conditional distri-
bution of intervals less than 1000 days (the largest bar in the primary figure).

Joffe et al 2012 also noted in an analysis of mortality among hemodialysis patients

that some parametric exposure models did not ultimately yield estimates from a SNAFT

model. This can occur either due to difficulties with an optimization algorithm or due

to more fundamental issues with G-estimation. Namely, G-estimation relies on a series

of nested hypothesis tests to establish independence between exposure and the poten-

tial outcome under the exposure regime “never exposed”. If, for example the potential

outcome is not independent of exposure at any realistic value of the time ratio, then

the SNAFT model will not yield a time ratio estimate. Under the fully adjusted, zero-

inflated log-linear model from the main text, the G-function (the χ2 value testing the

null hypothesis of no association between the exposure and the potential outcome un-

der some value for the time ratio) has a clear minimum atψ= 0.067 (TR=1.069, figure

A4). Contrast this with the SNAFT G-function under a zero-inflated log-normal model

for exposure, in which theχ2 value never drops below 130. While the G-function clearly

trends towards a minimum, the strong association between the potential outcome and
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exposure suggests that the zero-inflated log-linear model for exposure does not fit the

data well. Consequently, we do not report results for SNAFT models in which the ex-

posure model was a zero-inflated log-normal model, the zero-inflated gamma model,

nor a generalized additive model.

Since, to be valid, the exposure model used in G-estimation needs only to provide a

valid hypothesis test of the association between the potential outcome and exposure,

the linear model may seem like a useful model since it is known to be relatively robust

to misspecification. However, while the results from Table A.2 show that the using a

linear model for log-linearly distributed exposure data results in a relatively unbiased

SNAFT parameter, the G-function may also support several different estimates of ψ.

As shown in Figure A.4, which is typical of the simulation results for linear models, the

G-function reaches a minimum around ψ = 0.075, but the confidence interval set (in

which values of the χ2 statistic is below 3.8) includes values all the way to the bottom

of the grid search at ψ = 0.03. The G-functions fit to the CPUM data did not show

this same characteristic. While existing algorithms for simulating from a SNAFT model

(Young et al. (2010)) are useful, there is more work needed to develop more robust ways

of simulating more realistic scenarios.

A.4.2 Sensitivity analysis: structural nested accelerated failure time model

A.4.2.1 Extensions of structural models

To allow for effect measure modification, we also fit a SNAFT model allowing for

different time ratios per 100 WLM by duration of exposure and attained age, following

the practices outlined in major publications for estimating population impact of res-

idential radon exposures using miner data.(BEIR IV, VI, ICRP). This requires fitting a

SNAFT model of the following form:
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Figure A.4: G-function using a grid search algorithm for a simulated data set for 50,000
individuals. The figure shows data from the fully-adjusted linear model (Row 1 in table
A.2).

T 0̄ =m +

T
∫

m

(1+ψ1X̄k−60+ψ2X̄k−60Lk )d k (A.14)

Where X̄k−60 is the cumulative exposure to radon with a 5 year (60 month) lag,ψ1 is

the log time-ratio for a 100 WLM increase in cumulative exposure in the time-varying

covariate Lk ,ψ1 is the log time-ratio for a 100 WLM increase in the cumulative exposure

in the referent level of the time-varying covariate and exp(ψ2) is the factor by which the

time ratio is multiplied per unit increase Lk . As in Joffe et al (2012), algorithms did not

converge in models for effect measure modification and we do not report results.

A.4.2.2 Leveraging the conditional exchangeability assumption to ameliorate bias
from exposure measurement error

Because radon estimates were likely much more error prone in 1950 (BEIR VI), the

conditional independence function may be subject to bias when including data from

this period. Thus, as reported in the text, we fit a model in which our exposure model

was restricted to times after 31 December 1950. The structural model is still fit to the
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entire data set, but, assuming that radon affects lung cancer with similar magnitude

throughout the study period, we need only show that the potential outcome is in-

dependent of exposure in a portion of the data (Joffe et al 2010). This model some-

what reduces bias due to radon measurement error. Because this model relies on a re-

stricted set of data, we collapsed birth cohorts into four groups in the exposure model.

Compared with the TR/100 WLM (95%CI) from the adjusted log-linear SNAFT model

(shown in Table A.5) of 1.088 (1.081, 1.092), the TR after fitting a model to post 1950

data was slightly higher 1.102 (1.087, 1.112). This analysis suggests that exposure mis-

classification may be lead to a downward bias in the Colorado Plateau uranium miner

data, which agrees qualitatively with a previous report by Stram et al. (1999).

A.4.2.3 Latency

To assess sensitivity of our results to assumptions about latency, we fit an addi-

tional models assuming a lag of 0 years. The TR/100 WLM (95%CI) from the adjusted

log-linear SNAFT model was 1.027 (1.024, 1.030) (not shown), which was slightly lower

than the TR under a lag of 5 years; 1.035 (1.028, 1.039) shown in Table A.5. The g-

estimation algorithm did not converge under a 0 year lag for lung cancer for the linear

SNAFT model, but yielded an adjusted TR/100 WLM (95%CI) of 1.113 (1.105, 1.134)

(not shown), which was slightly lower than the TR under a 5 year lag.

A.4.2.4 Non-malignant causes of death

To assess possible artifactual associations between mortality and radon exposure,

we fit an additional model for non-malignant causes of death under a linear-SNAFT

model, which yielded an adjusted TR/100 WLM (95%CI) of 0.987 (0.984, 0.996). The

lack of positive dose response suggests that the dose responses observed between radon

and lung cancer and radon and all-cause mortality is not explained by confounding by

other mining related exposures, such as silica, that may have non-malignant effects.
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Table A.5: Sensitivity analysis: alternative SNAFT models for quantifying the healthy
worker survivor bias

Lung Cancer All Causes
Model∗ TR 95% CI % diff TR 95% CI % diff

Log-linear 1 1.088 (1.081, 1.092) ref 1.035 (1.028, 1.039) ref
2 1.044 (1.042, 1.045) -49 1.019 (1.017, 1.023) -44
3 1.040 (1.039, 1.043) -54 1.012 (1.011, 1.013) -65

Linear excess 1 1.167 (1.152, 1.174) ref 1.054 (1.041, 1.068) ref
2 1.088 (1.084, 1.094) -47 1.027 (1.021, 1.031) -50
3 1.102 (1.099, 1.112) -39 1.014 (1.013, 1.015) -74

∗ Log-linear SNAFT model versus linear excess (from primary analyses) 1=Adjusted,
2=Remove employment history, 3=Unadjusted
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A.5 Comparing structural nested model estimate with that from a conventional re-
gression model

A.5.1 Methods

We also fit parametric accelerated failure time models with similar adjustment sets

to the SNAFT models. We also refer to these as adjusted, and unadjusted. We assumed

a generalized gamma distribution for the baseline survival distribution and transform

the parameters in the model so that a TR>1 indicates a deleterious effect of exposure.

All covariates used for confounder control are shown in Table 1. A comparison between

the parametric models is used to quantify the magnitude of healthy worker survivor

bias under the assumption that radon exposure does not affect the rate of leaving work.

To facilitate comparison, we fit a log-linear SNAFT model, rather than the linear SNAFT

model that was reported in the text

A.5.2 Results

Under a parametric accelerated failure time model with an assumed gamma dis-

tributed baseline survival function, the TR (95% CI) was 1.020 (1.012, 1.027) for the

adjusted model and 1.037 (1.027, 1.047) for the unadjusted model. In these models,

there was an 86-92% increase in the TR upon removing employment status from the

model. Note that this is the opposite direction from that observed in the log-linear

SNAFT models (Table A.6). Recall that the parametric models will be biased when ex-

posure influences employment status.

A.5.3 Discussion

In a sensitivity analysis, regression models to adjust for time-varying confound-

ing, yielded a 92% decrease in the TR in the adjusted model relative to an unadjusted

model. We hypothesize that both unadjusted and adjusted parametric models are bi-
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Table A.6: Comparing SNAFT model with parametric AFT model
Model TR 95% CI % diff

SNAFT Fully adjusted 1.088 (1.081, 1.092) ref
Unadjusted 1.040 (1.039, 1.043) -54

Parametric AFT Fully adjusted 1.020 (1.012, 1.027) ref
Unadjusted 1.037 (1.027, 1.047) 86

ased because of employment status acts as a confounder and, in the miner data, cu-

mulative exposures were associated with the hazard of leaving work. In contrast, the

adjusted SNAFT model will be unbiased. Also note that the time ratio from the unad-

justed SNAFT model is similar to that from the parametric model, supporting our use

of the unadjusted SNAFT model as a comparison model. The TRs from Table A.6 differ

from those in the primary analysis because we use a log-linear SNAFT model, which is

on the same scale as the parametric model, leading to more comparable models.
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A.6 Years of life lost due to occupational radon exposure during follow-up

A.6.1 Distribution of survival times

As reported in §3.1, SNAFT models yield an estimate of the expected time at death

from the cause under investigation, had exposure been eliminated during follow-up.

In the miner data, this corresponds to an intervention in which occupational radon

exposure could be eliminated for each miner after his first health interview, such as by

a mandatory respirator program. Occupational radon exposures (as shown in Figure

A.5) are much higher than residential exposures which, as noted in §C.1, would be av-

erage approximately 16 WLM for an individual who lives to age 70. Thus, this potential

survival time T 0 can be viewed as only a slight over-estimate of the survival time we

would observe if radon exposure could be reduced to background levels through more

realistic interventions, such as strong mine ventilation programs.

The distribution of the observed time of death due to lung cancer is shown (in gray)

in Figure A.6. Additionally, this figure shows the distribution of the the age at death

from lung cancer we would expect under an intervention to prevent exposure during

follow-up. Because we would expect that this intervention would extend the lifetime,

some individuals would survive past the end of follow-up in 2005 and are considered

censored on that date. As noted by Picciotto et al. (2014), this analysis makes the as-

sumption that an individual who is observed to die from a specific cause would also

die from that cause under any hypothesized intervention on exposure. Thus, the esti-

mate of 6,071 years of life lost among 617 lung cancer cases due to radon exposure dur-

ing follow-up (Figure A.6) can be considered an upper bound because any competing

causes of death could only reduce this number. For all cause mortality, our estimate

of 10,118 years of life lost among the cohort (Figure A.7)) is more easily interpretable

because there are no competing causes of death and loss to follow up is extremely rare

in this cohort (Table 3.1).
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Figure A.5: Percentiles of cumulative radon exposure by age and ages of lung cancer
deaths (rug plot) in the miner data.
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Figure A.6: Distribution of age at death from lung cancer (gray bars), and potential age
at death from lung cancer or artificial censoring under no exposure (black outlined
bars) in the miner data.
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Figure A.7: Distribution of age at death from any cause (gray bars), potential age at
death from any cause or artificial censoring under no exposure (black outlined bars)
in the miner data.

A.6.2 Previous estimates

We identified one other study that has quantified the years of life lost due to ex-

posure in the miners cohort (Park et al. (2002)). Using life-table methods, the authors

calculated the excess years of potential life lost, a metric that characterizes the years

lost, relative to life expectancy, in the excess cases of lung cancer in a sub-cohort of

2,721 white men hired between 1950 and 1963. These authors estimated that the ex-

cess years of potential life lost among the 267 lung cancer cases (1,271 total deaths) in

the sub-cohort was 4,338 (8,431). These numbers are not directly comparable to the

estimates given in the current manuscript due to differences in the cohort definition.

Another difference between these authors’ analysis and the current manuscript is

that the current manuscript focuses on years of life lost due to occupational radon ex-

posure, whereas Park et al. (2002) estimated the excess years of life lost due to all expo-

sures that occur in the mining environment. Thus, additional years lost due to other
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mining exposures such as silica, diesel exhaust, gamma radiation, and uranium dust,

may result in substantial differences between results of the current manuscript and

those of Park et al. (2002). Finally, the estimates of these authors are likely subject to

underestimation due to differences in life expectancy between the general population

and miners, the latter of whom may experience, on average, lower background mor-

tality rates. That is, the healthy hire effect (healthy hire bias) may result in an underes-

timate. For lung cancer, efforts were made to reduce this bias by making assumptions

about the background rate of lung cancer that would be expected, had the miners not

smoked nor been exposed to radon.

A.6.3 Methodologic considerations

Morfeld (2004) discusses the strong assumptions necessary to apply a causal inter-

pretation for years of life lost in cohort analyses. The author stresses that estimates

of these parameters may be biased when there are competing risks, as we discussed

above. Using inverse probability of censoring weights helps to ameliorate this prob-

lem to some extent, provided that we view the estimate of years of life lost due to ex-

posure among lung cancer cases as an upper bound. In part, the bias of the years of

life lost due to exposure for a specific cause of death is rooted in an assumption inher-

ent in survival analysis models regarding independence between disease rates of the

cause of interest and the rates of censoring events, conditional on covariates. We con-

sidered competing events (for lung cancer) to be censoring events and accounted for

censoring using inverse probability weights.

A.6.4 Biological considerations

An underlying assumption not noted by Morfeld (2004) relates to the consistency

assumption noted in §C.3. That is, under a model in which we propose that exposure

shifts the age at death from lung cancer, a causal interpretation may be complicated
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if prognosis following lung cancer incidence differs according to age. For example, we

observe in §3.1 that radon reduces the expected age at which death from lung cancer

occurs. If an individual who develops incident lung cancer at age 55 would otherwise

develop lung cancer at age 70, we would not expect survival following cancer initiation

would be identical for the individual at both ages. This could occur due to the corre-

lation between young age at diagnosis and tumor aggression. Alternatively, younger

individuals tend to respond better to treatment than older individuals, thus increas-

ing survival among younger cases. Albain et al. (1991) observed in a cohort of 2,531

extensive-stage non-small-cell lung cancer patients that age was associated with im-

proved 1-year survival in females (34% survival for age > 70, 11% for age < 45) but not

males (not reported), suggesting that survival differences by age may not be important

in the miner data. By the consistency assumption, we assume that individuals who

would have their lifetimes extended by eliminating exposure would have similar prog-

noses (had they been unexposed) as individuals who developed lung cancer at older

ages.

Lung cancer is an ideal health outcome for studying mortality because of the rel-

atively low survival of individuals with incident lung cancer. For example, Ries et al.

(2005) report that the 5-year survival rate for lung cancer in the United States was

15.7% from 1995-2001, whereas it was only 12.5% from 1974 to 1976, and Howlader

et al. (2013) report 5-year survival to be 17% from 2004 to 2010. Thus, this particular

aspect of the consistency assumption may be weaker than studies of say, female breast

cancer in which women with certain breast cancer subtypes experience 5-year survival

rates as high as 95% (O’Brien et al. (2010)).

Few miner studies have data on incident lung cancer. However, Lane et al. (2010)

observed that within seven strata of cumulative radon exposure, the relative rates of

lung cancer incidence and lung cancer mortality were within 10% of each other. This

observation suggests that results from miner studies are not subject to substantial vi-
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olations from this aspect of the consistency assumption.

A.7 Left truncation in structural nested accelerated failure time models

The analyses described in §3.1 and §3.2 both utilize age as the time scale. A second

approach, using time-on-study as the time scale, was not used because of the strong

dependence of carcinogenic processes on age. Further, use of age as the time scale

has been recommended for epidemiologic studies due to potential residual bias from

covariates that might vary with age Thiébaut and Bénichou (2004), but that the choice

should be purpose-driven Cheung et al. (2003). Partly, use of this time scale is moti-

vated by the idea that two individuals of equal age are more likely to have similar haz-

ards for cancer than are two individuals who begin follow-up at the same time but are

very different ages. As shown in Figure A.8, time-on-study roughly, but not perfectly,

corresponds to calendar time. Thus, another motivating factor is the lack of clear in-

terpretation of time-on-study as a time scale. Because we can model two out of the

list comprising age, period, and birth cohort, age was a clear choice of time scale be-

cause it has a clear interpretation and it is relevant to this list of time-related factors

important to cancer trends.

Use of age as the time scale may be problematic if not everyone enters follow-up

at the same age. This process is referred to as late entry or left truncation. If cohort

members that enter the study at one age are not exchangeable with respect to the out-

come under study (i.e. their hazards are identically distributed), then interpretability is

compromised. This compromise occurs because we are interested in some marginal

or conditional distribution of the age at lung cancer mortality, but the person-time

distribution would no longer reflect our population of interest if individuals enter late,

because entering into the study would depend on non-random processes. For exam-

ple, if smoking miners tend to die much earlier, then the proportion of smokers in the

cohort will underestimate the proportion in the target population. This exchangeabil-
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Figure A.8: Calendar time distribution of pre-follow-up employment time (black), em-
ployment time under observation (medium gray) and post-employment time (light
gray) in the miner data - each horizontal line represents a single miner. The lines are
grouped according to vital status at exit from the study.
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ity assumption is similar to that made with respect to censoring: individuals who are

in the study represent those who have left the study (or have yet to enter the study). If

this assumption holds within strata of measured covariates, then late entry does not

change the interpretation of our results, provided we adjust for those covariates. We

could, for example, assume that smokers who are in the study are exchangeable with

smokers who died before entering the study, so that the population is exchangeable

within strata of the measured covariates. In this case, we would say that late entry is

ignorable in strata of smoking. This can generalize to other covariates.

In the structural models presented in §3.1 and §3.2, we may be sensitive to assump-

tions about late entry. As shown in Figure A.9, there was variation in the age of starting

the study. In the methods of §3.2, we adjusted the marginal structural model for base-

line covariates. Assuming that late entry is ignorable given the baseline covariates, the

marginal structural model is not subject to interpretation problems due to late entry.

For the methods in §3.1, the structural nested model was marginal with respect to study

covariates, and so remains subject to this problem with late entry. Because all struc-

tural nested models are subject to this caveat, we expect that the time-ratio may incur

some bias. However, left truncation could not explain our observation that healthy

worker survivor bias may be present in analyses with the miner data.

There are no current examples of correcting for late entry in structural nested mod-

els. We note that previous examples of structural nested models have circumvented

this problem by using time-on-study as the time scale Witteman et al. (1998); Hernán

et al. (2005); Chevrier et al. (2012); Naimi et al. (2014a) Analogous issues arise with

right-censoring in our study, in that we assume that censoring is ignorable, given the

measured covariates. Censoring is handled in §3.1 and §3.2 using inverse probability

of censoring weights. These weights correct for non-ignorable censoring by applying

weights to individuals in the study so that they represent themselves and any similar

individuals who have been censored. A similar approach may be possible with respect
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Figure A.9: Age distribution of pre-follow-up employment time (black), and time un-
der observation (gray) - each horizontal line represents a single miner. The lines are
grouped according to vital status at exit from the study.
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to late entry, in which individuals on the study can be weighted in such a way that they

represent both themselves and individuals who have yet to enter the study. Develop-

ment of such a technique may prove valuable for both marginal structural models and

structural nested models.
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APPENDIX B: FURTHER DETAILS OF MARGINAL STRUCTURAL MODELS IN
OCCUPATIONAL STUDIES

B.1 Why inverse probability weighted MSMs with non-positivity cannot be treated
like a sparse data problem

In tabular methods, it is common to introduce what is called a continuity correction

when there are empty cells in a table (Plackett (1964)). We continue our example from

table 2 in the main text and show the application of a simple continuity correction in

inverse probability weighting.

We consider the data in Table B.1, note that this is identical to the data in table 2 of

the main text, with two exceptions.

1. We have added the (mean) potential outcomes Y (00), Y (10), Y (01), Y (11) to the

table. These correspond to the average outcome we would observe in each stra-

tum, had exposure been set to the value in the parentheses. For example, Y (01)

corresponds to the average outcome we would observe if we could set X1 = 0

and X1 = 1. By the consistency assumption, we note that the observed outcome

for each stratum is equal to the potential outcome, given the actual exposure re-

ceived (VanderWeele (2009); Cole and Frangakis (2009))

2. We have added 0.5 to each cell as a continuity correction in the calculation of

the weights, so there are technically no empty cells in the weight model. To add

concreteness, we refer to this added 0.5 as a “half-individual.” In this case, note

that the weights for the empty strata are no longer undefined, since there is a

non-zero probability of falling into each stratum.

Fitting an inverse probability weighted marginal structural model using these data

does not result in an unbiased estimate of the mean difference. To see this, note that,

even if we supplement the weight data with 0.5 individuals in each cell, the true out-

come for those individuals is unknown. We have the luxury of seeing the potential
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outcomes, and, were we able to directly impute the potential outcomes, we could ob-

tain an unbiased estimate using inverse probability weighting. Indeed, we estimate

an unbiased mean difference of 18 using a marginal structural model fit using inverse

probability weighting when we can correctly impute the potential outcome for the two

half-individuals who are not at work but are exposed.

However, we cannot observe these outcomes. In simple tabular data, we could, in

principal, impute these outcomes. Note, however, that the weights in these two strata

are well over 100, implying that the results will be highly sensitive to assumptions about

what those potential outcomes actually are. Also note that, if we knew the potential

outcomes to begin with, there would be no need to fit a model, since we could infer

the dose response from a simple comparison of potential outcomes.

As an example, note that in Table B.2 we utilize a continuity correction in both

the weight estimation and the marginal structural model. Using the observed data

and four possible sets of assumptions, we imputed the outcomes for the two half-

individuals who were considered to be exposed off work. Our four possible assump-

tions based on the observed outcomes are:

No effect of employment status on the outcome The potential outcome for the half-

individuals is equal to the observed outcome for those who are exposed at work

No effect of exposure on the outcome The potential outcome for the half-individuals

is equal to the observed outcome for those who are exposed at work.

Max outcome The potential outcome for the half-individuals is equal to the largest

observed outcome.

Min outcome The potential outcome for the half-individuals is equal to the smallest

observed outcome.

The mean differences under each of these assumptions are all biased by at least 50%,

and the bias is greater than that observed for the adjusted regression model in the main
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text. Unfortunately, the range of these mean differences does not contain the true

mean difference, so this approach is not useful for deriving bounds on the causal effect

of exposure. Note that the true potential outcomes that would be observed (Y (01) = 71

in the second row of Table B.2 and Y (11) = 61 in the fifth row) are not equal to the

observed outcome for any strata. Indeed, they are higher than the average observed

outcome in any other stratum.

Table B.1: Continuity correction as an attempt to salvage causal effects in data subject
to nonpositivity - continuity correction for weights only

X1 L2 X2 Y (00) Y (10) Y (01) Y (11) Y ∗ N ∗∗ SW x∗∗ p N

0 0 0 35 53 53 71 35 200 0.63 201
0 0 1 35 53 53 71 ? 0 151.00 †
0 1 0 11 29 29 47 11 100 1.75 281
0 1 1 11 29 29 47 29 180 0.58 281
1 0 0 25 43 43 61 43 400 0.87 401
1 0 1 25 43 43 61 ? 0 101.50 †
1 1 0 1 19 19 37 19 20 3.45 81
1 1 1 1 19 19 37 37 60 0.17 81
0 0 0 35 53 53 71 35 200 0.63 201

∗ Unobserved in the strata X1 = x1, L2 = 0, X2 = 1
∗∗ N, Weight after adding 0.5 to each cell in model for weights
† Pseudo-population continues to be undefined
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Table B.2: Continuity correction as an attempt to salvage causal effects in data subject
to nonpositivity - continuity correction for both weight and marginal structural model

X1 L2 X2 Y (00) Y (10) Y (01) Y (11) Y ∗ N ∗∗ SW x∗∗ p N
0 0 0 35 53 53 71 35 200.5 0.63 201
0 0 1 35 53 53 71 ? 0.5 151.0 201
0 1 0 11 29 29 47 11 100.5 1.75 281
0 1 1 11 29 29 47 29 180.5 0.58 281
1 0 0 25 43 43 61 43 400.5 0.87 401
1 0 1 25 43 43 61 ? 0.5 101.5 401
1 1 0 1 19 19 37 19 20.5 3.45 81
1 1 1 1 19 19 37 37 60.5 0.17 81
0 0 0 35 53 53 71 35 200.5 0.63 201

Assumption MD† %Bias
1 E [Y (X1 = 1|L2 = 0] = E [Y (X1 = 1|L2 = 1] 8 -56
2 E [Y (X1 = 1|L2 = 0] = E [Y (X1 = 0|L2 = 0] 10.5 -42
3 E [Y (X1 = 1|L2 = 0] =M a x (E [Y ]) = 43 10.5 -42
4 E [Y (X1 = 1|L2 = 0] =M i n (E [Y ]) = 11 -2.8 -116

∗ Unobserved in the strata X1 = x1, L2 = 0, X2 = 1
∗∗ N after adding 0.5 to each cell
† Mean difference from marginal structural linear model: true mean difference is 18
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B.2 Estimating an MSM using the parametric G-formula

The g-formula can be defined for the expected outcome under a static intervention

d. The intervention d implies setting X1 = X2 = d , in this case, so d takes on values

one or zero for the interventions always- or never-exposed. Following the notation in

Robins et al 2004 (cite), we define a g-formula under intervention d to be

fd (Y ) =

∞
∫

−∞

f (Y |L2, d )× f (l2|d )dµ(l2) (B.1)

In words, the marginal probability density of Y under intervention d is equal to the in-

tegrated (over values of L2) product of the conditional probability density of Y , given

L2 = l2 and d times the conditional probability that L2 = l2, given d . Because we are in-

terested in the marginal structural model for the mean difference per unit of exposure

γ1, where Ed (Y ) = E0(Y ) +γ
∑2

t=1 dt , we are after the expectation of Y , rather than the

full distribution fd (Y ). Ed (Y ) can be estimated as

Ed (Y ) = E (Y |L2 = 1, d )×P r (L2 = 1|d ) +E (Y |L2 = 0, d )×P r (L2 = 0|d ) (B.2)

See proof in Appendix B.3. We note that, in the data in table 2 the value E (Y |L2 =

0, d ) for d = 1 is not identified in our data, since this is the expected outcome for an

individual who is always exposed, even when unemployed. The parametric g-formula

uses a model for E (Y |L2 = 0, d ) that extrapolates beyond the observed data and allows

estimation of the quantity Ed (Y ).

A parametric g-formula analysis of the data using a Monte Carlo algorithm in table

2 proceeds as follows:

1. Fit a predictive logistic model for L2: P r (L2 = 1|X1;α) = e x p i t (α0+α1X1)

2. Fit a predictive linear model for Y : E (Y |X1, L2, X2;β ) =β0+β1X1+β2L2+β3X2
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3. Create a “pseudo-data” dataset with a large sample size (e.g. 2,000,000), and ran-

domize X1 = X2 = 1 (always exposed) or X1 = X2 = 0 (never exposed) for each

“pseudo-individual.”

4. Impute values for L2 by taking a Bernoulli draw from the distribution P r (L2 =

1|X1 = x1), where X1 is set by the intervention

5. Impute values for Y as equal to E (Y |X1 = x1, L2 = l2, X2 = x2), where X1 and X2

are set by the intervention and L2 is predicted in step 4.

6. In the pseudo-data, fit a linear model E (Y |X1, X2;γ) = γ0+γ1(X1+X2) the estimate

of γ1 is the g-formula standardized mean difference.

We present R code for this algorithm in appendix 3, and the pseudo-data created by

this algorithm are shown in Table B.3.

As noted in the text, a marginal structural model fit with this parametric g-formula

algorithm yields an unbiased mean difference of 18. To see that this is unbiased, note

that, using the potential outcomes from table A1, one could simply infer the true mean

difference of 18 in any stratum by taking the difference of the potential outcomes:

Y (11)−Y (01) = Y (11)−Y (10) = Y (01)−Y (00) = Y (10)−Y (00) = (Y (11)− (Y 00))/2= 18

In data, one would typically be interested in the variance of the mean difference,

which is straightforward to estimate using bootstrap analysis.
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Table B.3: Pseudo-data created in parametric g-formula algorithm used to estimate the
mean difference per unit of cumulative exposure

X1 L2 X2 E [Y ]

0 0 0 416741 35
0 1 0 582425 11
1 0 1 833851 61
1 1 1 166983 37

Total 200
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B.3 Algebraic proof of the g-formula results for table 2

The mean difference of the outcome Y between interventions d ∈ (0, 1) correspond

to always or never exposed, can be stated as:

E1(Y )−E0(Y ) (B.3)

The quantity Ed (Y ) can be expressed as

Ed (Y ) = E (Y |L2 = 1, d )×P r (L2 = 1|d ) +E (Y |L2 = 0, d )×P r (L2 = 0|d ) (B.4)

PROOF

Under the assumptions of consistency and no unmeasured confounding the g-

formula for the probability distribution of Y under intervention d given in Robins et al.

(2004)

fd (y ) =

∞
∫

−∞

f (y |l2, d )× f (l2|d )dµ(l2)

The expectation of the outcome can be expressed as:

Ed (Y ) =

∞
∫

−∞

fd (Y )d y

If L2 is binary

fd (Y ) = f (Y |L2 = 1, d )×P r (L2 = 1|d ) + f (Y |L2 = 0, d )×P r (L2 = 0|d )

and
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Ed (Y ) =

∞
∫

−∞

[ f (Y |L2 = 0, d )×P r (L2 = 0|d ) + f (Y |L2 = 1, d )×P r (L2 = 1|d )]d y

= E (Y |L2 = 0, d )×P r (L2 = 0|d ) +E (Y |L2 = 1, d )×P r (L2 = 1|d )

If the mean difference (γ) per unit of exposure X t is defined in the following equa-

tion:

Ed (Y ) = E0(Y ) +γ
2
∑

t=1

dt (B.5)

Where
∑2

t=1 dt is 0 for the intervention never exposed and 2 for the intervention

always exposed. Therefore, for the data in table 2, the marginal structural model pa-

rameter can be defined as

γ=
Ed (Y )−E0(Y )

2
(B.6)

Which can be estimated using a linear model for Ed (Y ) given the cumulative expo-

sure under intervention d . That is, each individual can be assigned his or her expected

outcome under the intervention and a regression run with that expected outcome as

the dependent variable and the cumulative exposure under the intervention as the sole

dependent variable.
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B.4 R code to perform the g-formula analysis given in the main text

#carry out g-formula using simple example from table 2

#Step 0: read in data

dat <- structure(list(X1 = c(0, 0, 0, 0, 1, 1, 1, 1),

L2 = c(0, 0, 1, 1, 0, 0, 1, 1),

X2 = c(0, 1, 0, 1, 0, 1, 0, 1),

N = c(200, 0, 100, 180, 400, 0, 20, 60),

Y = c(35, NA, 11, 29, 43, NA, 19, 37)),

.Names = c("X1", "L2", "X2", "N", "Y"),

row.names = c(NA, -8L), class = "data.frame")

#Step 1: predictive model for L2, given X1

#pr(L|X1)

ml <- glm(L2 ~ X1, weight=N, data=dat, family="binomial")

#Step 2: predictive model for Y, given X1, X2, L2

#f(Y|L, X1, X2)

my <- glm(Y ~ L2 + X1 + X2, weight=N, data=dat)

#Step 3: generate randomized exposures (always vs. never)

set.seed(1983430)

mc.size = 2e6 #Monte Carlo dataset size

X1 <- X2 <- rbinom(mc.size, 1, 0.5)

mc.dat <- data.frame(X1, X2)

#Steps 4,5: impute values for L2 and Y based on predictive

#distributions from step 2
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#always exposed

mc.dat$L2 <- rbinom(mc.size, 1, predict(ml, type="response",

newdata=mc.dat))

mc.dat$Y <- predict(my, type="response", newdata=mc.dat)

#Step 6: Fit a linear model for the cumulative exposure

#model for g-formula standardized mean difference

glm(Y ~ I(X1+X2), data=mc.dat)

# Coefficients:

# (Intercept) I(X1 + X2)

# 21.01 18.00

# The estimate is unbiased
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APPENDIX C: FURTHER ISSUES IN CAUSAL INFERENCE AND RADON
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C.1 Notes on units of ionizing radiation used in this manuscript

We report multiple units of radiation in the manuscript. The following provides a

rough conversion for working level months and picoCuries/L and provides some con-

text for the levels of exposure discussed in this manuscript versus that which we ob-

serve in modern residences. These conversions contain many assumptions and should

be taken to provide conversion with a large margin of error - nonetheless, they may be

useful to understand the order of magnitude of each exposure measure.

• Units of radiation quantities reported in the current text

working level months WLM - any combination of exposure rate in working lev-

els [130,000 MeV of potentialα energy per liter of air] and employment time

that leads to an average exposure of 1 working level over 170 hours.

bequerels - Bq - nuclear disintegrations per second in a volume of air (see ICRU

(2011b))

• The US Environmental Protection Agency “action level” for radon remediation

(taking action to reduce indoor radon levels) is 4 picoCuries/Liter (pCi/L USEPA

(2003)).

• 1 pCi/L corresponds to 37 bequerels per cubic meter Bq/m3, so the action level

corresponds to approximately 150 Bq/m3 (USEPA (2003)).

• The average exposure over 70 years at average domestic radon levels in the United

States is equal to 16 working level months (Lubin et al. (1997)).

• Radon exposure occurs at approximately 1.8 working level months/year (WLM/y)

in a home with a radon concentration of 370 Bq/m3 (Lubin et al. (1997)).

• A miner exposed to 25 working level months is assumed to have approximately

the same exposure as an individual living 25 years in a home with a 370 Bq/m3
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radon concentration (Lubin and Boice (1997)).

Cumulative radon daughter exposures are measured in working level

months (WLM), a unit devised originally for occupational applications. Ex-

posure is proportional to concentration (WL) and time, with exposure to 1

WL for 170 h being defined as 1 WLM. To convert from residential expo-

sures expressed in pCi/L, the BEIR VI committee assumed that the fraction

of time spent indoors is 70%. It follows that an indoor radon concentra-

tion of 1 pCi/L would on average result in an exposure of 0.144 WLM/y =

(1 pCi/L) [(0.7)(0.004) WL/(pCi/L)] (51.6 WLM/WL-y)

-USEPA (2003) p 17
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C.2 Critical issues for inference in studies radon and lung cancer

Cohort studies, such as the miner studies discussed above, are potentially rich sources

of information regarding relationships between environmental and occupational agents

and health outcomes. Their longitudinal nature allows for nuanced questions regard-

ing the evolving web of complex relationships between various health indicators. Radon

exposure occurs over the entire life course, so miner studies with long exposure his-

tory and extended follow-up for disease status are invaluable at answering such ques-

tions. Healthy worker survivor bias is one concern about how a dynamic interplay be-

tween factors in the occupational environment and employment may bias any param-

eter that attempts a simultaneous analysis of exposures that occur across the lifespan.

This dynamism also allows researchers to answer other questions relating to the time-

varying factors that may influence the strength of associations between radon and dis-

ease. Any attempt to address healthy worker survivor bias should be cognizant of such

issues. In both the miner literature and the wider literature on the effects of ionizing

radiation on disease, lines of question have addressed modification by smoking, at-

tained age, age at exposure, exposure rate, and time since exposure. Below, we address

some of the literature on these factors as well as concerns about possible confounding

by smoking and the impact of measurement error in miner studies.

C.2.1 Radon and smoking

Tobacco smoking is strongly related to rates of lung cancer in humans. Effect mea-

sure modification and confounding of the radon-lung cancer association are both of

interest. With respect to effect measure modification, it is often noted that smoking

may be an important modifier in both miner studies (NRC (1999); UNSCEAR (2008))

and in pooled residential studies (Darby et al. (2005); Krewski et al. (2005)). When

(NRC (1999)) analyzed animal data from COGEMA (France), they observed synergism
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(higher than expected joint effects, given the marginal effects) when radon dose was

followed by a dose of cigarette smoke, but no synergism was found if the order was

reversed. The data from Colorado Plateau uranium miners includes data on smoking

taken from initial surveys and subsequent follow-up (Archer et al. (1976); Schubauer-

Berigan et al. (2009)). In the Colorado Plateau uranium miners, (Schubauer-Berigan

et al. (2009)) found a super-additive, sub-multiplicative interaction between radon and

smoking status at the most recent survey. Tomásek (2011) found similar interaction, in-

termediate between additive and multiplicative, reflecting lower baseline rates of can-

cer among non-smokers (ERR/WLM among smokers = 0.011, among non-smokers =

0.044). Leuraud et al. (2011) fit a mixing model in which a parameter which ranged

from 0 (fully additive) to 1 (fully multiplicative) indicating the model of best fit for the

smoking-radon interaction, and they observed the lowest deviance model at a value of

0.5 for the mixing parameter, indicating a super-additive, sub-multiplicative interac-

tion.

While exposure to tobacco smoke may modify the effect of radon on lung cancer,

the evidence suggest that confounding by smoking in miner studies is small. Schnelzer

et al. (2010) found in a case-cohort study of German miners in which smoking his-

tory was taken from retrospective interviews and medical records abstraction that the

unadjusted ERR/ WLM was 0.0025, whereas after adjustment for smoking the ERR/

WLM was 0.0023, and a similarly small change in estimate was observed in a French

case-control study among miners (unadjusted ERR/WLM = 0.011, smoking adjusted

ERR/WLM = 0.007) (Amabile et al. (2009)). Bijwaard et al. (2011) investigated the con-

founding effects of smoking in an analysis in which smoking rates from a case-control

study were projected onto a cohort of German miners. The investigators applied mech-

anistic models to the data. Similar to the animal models of COGEMA, the investiga-

tors observed that smoking mainly acts in later rate-limiting steps of cancer develop-

ment, but that including smoking in the model did not change risk projections. In a
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joint analysis of three case-control studies of miners (French, Czech, and German),

(Leuraud et al. (2011)) observed an unadjusted ERR/WLM of 0.010 and a smoking ad-

justed ERR/WLM of 0.008, suggesting a minimal effect of smoking on the radon-lung

cancer dose response. Identifying confounding by smoking using the change in esti-

mate approach (which is the approach informally used here) is complicated by non-

collapsibility of the ERR as well as the apparent effect measure modification by smok-

ing. Because smoking is a strong risk factor for lung cancer, one could reasonably ex-

pect non-collapsibility of the ERR over smoking strata. While no correlation between

smoking intensity and radon exposure rates were given, Hornung et al. (1998) found

that including cumulative smoking in lung cancer models did not appreciably change

the relative rate for lung cancer per unit of radon exposure in the Colorado Plateau

Uranium miners. There is little a priori evidence to suspect that smoking levels are as-

sociated with radon exposure, and observational studies of miners do have evidence

that such an association is strong enough to result in appreciable bias.

C.2.2 Attained age

Because radon exposures occur over the life course, it is difficult to disentangle

time-related effects of exposure. For example, estimating the effects of exposure re-

ceived at young ages (age at exposure) will be complicated by considering by time

since exposure and attained age because the latter two will by correlated in individ-

uals exposed at similar times. One approach is to look at these factors individually, or

mutually adjusted for each other. For example NRC (1999) reported models in which

the association between cumulative radon exposure and lung cancer was stratified

over levels of attained age and windows of time since exposure. The authors esti-

mated a decreasing relative risk with attained age in 10 year categories of age over age

55. This approach may be useful when focused on risk prediction when the specific

source of the variation may be less important than accurately estimating stratum spe-
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cific rates or risks. A similar approach was used in a recent analysis of the Eldorado

(Canadian) uranium miner cohort, in which the relative rates of lung cancer mortal-

ity per 100 WLM were modified by a factor of 1 (ref), 1.62, 0.82, 0.19 for attained ages

< 55, 55−64, 65−74, and 75+ (Lane et al. (2010)). This pattern held for lung cancer in-

cidence, as well. Similarly, Leuraud et al. (2011) noted monotonically decreasing RRs

across age groups < 55, 55 − 65,> 65 while not adjusting for other time related fac-

tors, a pattern that is potentially explainable as either an artifact of the effect mea-

sure - lung cancer incidence increases with age, so relative risks will decrease for linear

dose-response relationships - or as a fading of the effectiveness of dose over time since

exposure, a pattern observed in latency analysis in the CPUM (Langholz et al. (1999)).

Alternatively, a fading effect over attained age is also consistent with an accelerated

life/accelerated failure-time model in which radon exposure influences lung cancer

rates by accelerating the time to lung cancer incidence, rather than strictly by causing

cases that would otherwise not occur.

C.2.3 Age at exposure

As noted below, different models exist for the modifying effects of age at exposure.

In a joint study of Czech and French uranium miners (Tomásek et al. (2008)), for exam-

ple estimated that the ERR for lung cancer (adjusted for cumulative exposure) was 0.52

per decade of age at median exposure (centered at 30), indicating that exposed person-

time in older ages incurred a lower relative risk of lung cancer than exposed person-

time at younger ages. In a similar model among German uranium miners (Walsh et al.

(2010b)) observed a RR per decade of 0.70. Effects of age on exposure have not been

explored in recent updates of the Colorado Plateau uranium miners (Hornung et al.

(1998); Schubauer-Berigan et al. (2009)). Leuraud et al. (2011) observed an RR per

decade of 0.70 in a joint case-control study of three countries. The observations of

lower relative risks for lung cancer from radon exposure at older ages agrees with other
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findings from individuals exposed to ionizing radiation in a cohort of atomic bomb sur-

vivors (Preston et al. (2007)) and several cohorts of nuclear workers (Richardson et al.

(2001)).

C.2.4 Exposure rate

At an average of 800 WLM per five years of exposure, the Colorado Plateau uranium

miners exposure concentrations are high relative to the other miner cohorts included

in the BEIR VI report and relative to residential exposures which average 14 WLM over

a lifetime (NRC (1999)). Exposure rates were higher in earlier periods than in later pe-

riods in this cohort (Figure C.1). Extrapolation of risk parameters from miner studies

to other populations exposed at lower dose rates is hampered by potential dose-rate

effects, namely what has been termed the “inverse-dose-rate-effect.” (Darby and Doll

(1990)) showed that the summary ERR/WLM for each miner cohort in the BEIR VI re-

port was smaller for cohorts with a higher dose rate. (NRC (1999)) truncated person

time to lower cumulative exposure levels due to non-linearity of the effect after in-

cluding higher doses, which all came from the Colorado Plateau uranium miners. At

relatively high levels of radiation, cell killing effects can reduce the effectiveness of a

given dose of radiation, but at lower doses, microdosimetric factors such as interac-

tion between radiation exposures and the cell cycle may influence the dose rate effect

(Brenner and Hall (1990); Brenner et al. (1993)).

In the Colorado Plateau uranium miners (Hornung et al. (1998)) observed a nega-

tive coefficient for average exposure rate of -0.013 (RR = 0.98) per WL in a model that

also adjusted for time since last exposure, and smoking. Initial model building indi-

cated a possible non-linear effect of dose, but when exposure rate was included in the

model, the non-linear term did not improve fit of the model. In a joint analysis of Czech

and French miners, a cohort with much lower dose-rate than that in the Colorado

Plateau uranium miners, stratification of the ERR for cumulative measured (rather
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Figure C.1: Percentiles of monthly radon exposure by year in the Colorado Plateau ura-
nium miners.

than estimated) exposure by categories of exposure rate below 4 WL did not improve

model fit in a model that included time since median exposure and age at median ex-

posure. The ERR/WLMs in each category of exposure rate (< 0.5, .5−1, 1−2, 2,> 4 WL)

were 0.060, 0.018, 0.042, 0.040, 0.032, which did not differ substantially from the sum-

mary ERR/WLM of 0.042 in a model controlling for age at median exposure and time

since median exposure. In the largest uranium miners cohort in Germany, (Walsh et al.

(2010b)) observed a monotonic decrease in the ERR/WLM over categories of increas-

ing exposure rate, with categories < 0.5, .5−1, 1−3, 3−5, 5−15, 15+ (ERR/100 WLM =

6.14, 3.56, 2.76, 2.35, 1.98, ref), consistent with the patterns observed in the BEIR VI

report (NRC (1999)).

C.2.5 Latency and time since exposure

A final time related aspect of the radon lung cancer association involves the time

period over which an increment of exposure to radon affects lung cancer rates, and

the time at the peak, rate of increasing effects to reach that peak, and the rate of de-
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cline of the effect after the peak. Investigators often specify a priori a lag of five years

when studying the association between radon exposure and lung cancer. Under this

assumption, exposures incurred within the previous five years of an observation are

ignored while exposures after 5 years are weighted equally. However, unless the inter-

val between exposure and outcome in a cohort is exactly equal for all members, this

leads to misclassification of the etiologically relevant exposure. Langholz et al. (1999)

demonstrated the utility of a simple bivariate lag function that weights exposures using

a triangle-shaped kernel, such that exposures proximal and distal from to the observed

period are down-weighted, but in some intermediate period exposures are given a full

weight of one, corresponding to the observed peak effect of exposure. This method of-

fers a simple parametric way to address latency in occupational cohorts, and is easily

applied to other other models (Richardson (2009b)).

(Hornung et al. (1998)) modeled time since last exposure as a linear term in an ERR

model including exposure rate and smoking and observed a negative slope (RR=0.96)

per year of time since last exposure. Tomásek (2011) observed a monotonic decrease

in the ERR/WLM over categories of increasing time since exposure (starting with 5-

19 years) across estimates of a mixture model used to assess the nature of the effect

measure modification between smoking and radon. Among German uranium miners

(Walsh et al. (2010a)) observed an RR of 0.5 per decade of time since last exposure (as

a log linear term), indicating agreement with other cohorts and with (NRC (1999)).

C.2.6 Misclassification and measurement error

Measurement error (misclassification, in categorical variables), or differences be-

tween the measured and actual values, can affect both the validity and the the pre-

cision of effect estimates when considering error in measuring the exposure and the

outcome (Rothman et al. (2008)), chapter 9. Measurement error of covariates can also

reduce the ability to control for confounding and selection bias (Marshall et al. (1999);
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Fewell et al. (2007)).

Outcome misclassification Estimation of effects of exposures incurred at younger

ages on chronic conditions that occur most often in older ages requires long-term

follow-up of workers. In the Colorado Plateau uranium miners cohort, this has been

achieved through data-linkage with the National Death Index and the Social Security

Administration death files (Roscoe (1997); Schubauer-Berigan et al. (2009)) or death

certificate data before the advent of the National Death Index (Whittemore and McMil-

lan (1983)). Since, in the case of the Colorado Plateau uranium miners, the highest ex-

posures occurred in the 1950s and 1960s (NRC (1999)), early loss to follow up would be

likely to impact the precision of the estimates, but it is not likely to impact estimates

for all-cause mortality, since loss to follow up in the Colorado Plateau uranium min-

ers cohort was 0.3% before 1979 (Schubauer-Berigan et al. (2009)). Cowper et al. (2002)

summarized the accuracy of both the National Death Index and the Social Security

administration using studies that could validate the sensitivity and specificity of the

searches using previously validated deaths National Death Index sensitivity estimates

varied from 87% to 98%, while specificity varied from 92% to 100%.

Potential misattribution of causes of death are of greater concern than unidenti-

fied deaths. Cause of death in the Colorado Plateau uranium miners has been deter-

mined by review of death certificates, following determination of mortality and follow

up with death registries for the location of the death certificate (Sathiakumar et al.

(1998)). Schubauer-Berigan et al. (2009) reported that, cause of death could not be

determined for fewer than 1% of miners, indicating that nearly all of the miners have

some attributed cause. However, the authors observed an excess of deaths from silico-

sis and postulated that, while miners may have been exposed to silica dust, it was also

likely that radon-related disease was misclassified as silicosis for some of the miners.

Doria-Rose and Marcus (2009) reported a sensitivity of around 89% and a specificity
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of 99% for accurate coding of lung cancer as the cause of death among participants in

the Mayo Lung Project in Minnesota from 1971-1983. Since radon was a suspected lung

carcinogen, sensitivity may be better in the Colorado Plateau uranium miners cohort.

In the French uranium miner cohort, (Laurier et al. (2004)) found that identified errors

in the cause of death impacted SMRs, but did not substantially bias dose-response es-

timates. The impact of outcome misclassification likely depends not the nature of the

disease of interest. Diseases with poor prognosis and high case-fatality rates may be

less likely misidentified than other diseases. Additionally, mortality data for diseases

with low survival also allow one to make inferences about incidence, whereas effect

measures for other diseases may be affected by factors such as treatment or prognos-

tic factors related to exposure. For white, US males in 2007, the age-standardized in-

cidence rate of lung cancer was 84.9 per 100,000 men, while the mortality rate was

69.8 (Kohler et al. (2011)). By contrasting the incidence/mortality ratio for lung cancer

(84.9/69.8 = 1.2) to that for all cancers combined (552.5/225.4 = 2.5), the use of lung

cancer as an outcome in a study utilizing death certificate data is less prone to bias due

to outcome misclassification than would be a study based on use of all cancer mortality

(and, by extension, many other possible outcomes of interest).

Exposure measurement error Exposure measurement is of concern in the Colorado

Plateau uranium miners due not only to attenuation of dose-response estimates due

to errors in personal exposure estimates, but also due to variation across time in the

quality of radon measurements. In the Colorado Plateau uranium miners, exposure

measurement error has been documented to occur due to both the stochastic pro-

cesses of measurement devices as well as to systematic processes. As shown in figure

C.2, exposure estimates from the Colorado Plateau uranium miners are based solely

on area measurements, area estimations (average of several measurements in a sin-

gle area), extrapolations (taking estimates from previous or subsequent years), and, in
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Figure C.2: Sources of exposure assignment in the Colorado Plateau uranium miners,
1950-1969. Source (NRC (1999)), Annex E

1950, what (NRC (1999)) terms as “Guestimation” where mine experts judged the prob-

able radon levels using physical characteristics of the mine and measurements per-

formed at later dates. Most of the exposure estimation was performed by taking area

estimates based on nearby (if possible) measurements. Typically, the type of measure-

ment error in which group averages are assigned to an individual result in increased

uncertainty, but little attenuation of dose response (Armstrong (1998)). However, the

machines that measured radon concentrations were subject to errors as well, which

would tend to attenuate dose responses. Further, the quality of measurements var-

ied across time, as did exposure levels, so the quality of measurement is associated

with cumulative exposures, thus complicating interpretation of dose-response esti-

mated for cumulative exposure when all mine data are used. In a simulation based on

a French uranium miner cohort (Allodji et al. (2012)) proposed that measurement error

contributes to a 60% attenuation of the ERR per 100 WLM. Within the actual cohort,

(Vacquier et al. (2009)) observed an order of magnitude increase in dose-response esti-

mates for exposed person time beginning in 1956, when personal doses were dramat-

ically decreased and the number and quality of exposure measurements dramatically
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increased. In a joint analysis of the French and Czech cohorts, (Tomásek et al. (2008))

estimated an ERR/WLM that was 80-85% higher in the person-years with high quality

personal dosimetery versus the ERR/WLM in person-years with estimated exposures

based on area measures. In the WISMUT (German) cohort of uranium miners, (Walsh

et al. (2010b)) observed in an ERR model adjusted for age-at- and time-since-median

exposure an ERR/WLM of 0.45 in person-time with measured exposures, and 0.34 in

person-time with estimated exposures. Because exposure rates tend to correlate with

measurement quality, the influence of measurement error and dose-rate-effects is dif-

ficult to disentangle.

Some exposure measurements in the Colorado Plateau uranium miners are sub-

ject to systematic errors, as well. Schiager (1989) noted an early practice of taking area

level radon progeny measurements during only the summer months, when air circu-

lation may be lowest due to reduced convection. Lundin Jr et al. (1971) also noted that,

because measurements made after 1960 were made for control purposes, they system-

atically over-estimated the exposures after that time. An attempt at dose correction by

Stram et al. (1999) indicates that the dose-response may be under-estimated in this

cohort, though their analysis was limited by its assumption that there were no system-

atic measurement errors of the type cited above. Many exposure estimates made after

1960 were excluded due to suspicion that the exposure measurements (made by the

mining companies for regulatory control) may have been “reduced to avoid regulatory

action” (NRC (1999)), p. 308, but the excluded estimates are lost to time and the impact

of measurement culling is unknown.

Covariate misclassification: employment status, age, time aspects, smoking Em-

ployment status, whether or not a miner was employed in a particular year, is an es-

sential factor for controlling bias by the methods proposed in this manuscript. A gen-

eral rule of thumb is that measurement errors in covariates considered for confound-
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ing (consider employment status to be a member of the set of covariates to control

confounding of the radon-lung cancer association) affects the ability to control con-

founding by that covariate, leading to residual confounding (Armstrong (1998)). Work

history in the Colorado Plateau uranium miners is assigned by self-report from ques-

tionnaires given to the miners by the US Public Health Service as well as follow-up in-

terviews, which ceased in 1969. Misclassification of work time has not previously been

explored in the Colorado Plateau uranium miners, thus, the extent to which residual

confounding may bias estimates is unknown.

In the statistical methods used in the current manuscript (structural nested accel-

erated failure time models and marginal structural models), employment status is con-

sidered as a confounder because it affects subsequent exposure (i.e. unemployed in-

dividuals are, by definition, unexposed) and is likely associated with the age at lung

cancer mortality either through an unmeasured common cause (e.g. frailty - sick indi-

viduals are more likely to terminate) or because it is a causal risk factor for lung cancer

mortality (e.g. through changes in behavioral risk factors following termination). Em-

ployment status changes over time, and it is thus termed a time-varying confounder.

Because job termination is a memorable event, it is unlikely that an event such as re-

tirement or termination from a mining job is substantially mis-measured. However,

intermittent work stoppages, which might occur if a particular uranium deposit was

exhausted and a miner spent some time finding a job with a new mining company,

may be subject to more substantial error. Further, if these intermittent stoppages are

related to health status (e.g. if illness caused a temporary break from work), then ad-

justment for employment status will result in some residual confounding.

It is also possible that miners moved from a mine that was included in the Colorado

Plateau uranium miners to one that was not included, in which case termination date

(and exposures) would be under-estimated.

Perhaps a more fundamental issue of consideration of employment status as a con-
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founder is that, while it is generally considered as a binary indicator of current em-

ployment in the industry of interest, the effect of employment status on mortality is

likely heterogeneous. For example, a worker that terminates in one industry to move

to another likely has a different health status from one who terminates in an industry

and does not seek new employment due to chronic illness. Additionally, occupational

exposures likely influence subsequent employment status in a heterogeneous way, as

well. Given a similar time-since-hire, individuals who terminate due to early stage res-

piratory disease are likely to have higher occupational radon exposures than individu-

als who leave uranium mining for other industries. Unfortunately, individual reasons

for employment status changes are not recorded in Colorado Plateau uranium miners

data.

Measurement error and misclassification in other covariates reduces the ability to

control for confounding and biases stratum specific measures for misclassified effect

measure modifiers of the radon-lung cancer association. Because the timing of em-

ployment is self-reported, there is potential for misclassification of the factors dis-

cussed in §C.2. Smoking habits were recorded in surveys in the Colorado Plateau ura-

nium miners into the 1970s, but recent smoking follow-up has been less complete, ne-

cessitating interpolation and extrapolation of smoking habits (Roscoe (1997); Schubauer-

Berigan et al. (2009)). Assessment of effect measure modification by strata of ever/never

smoking may be less prone to bias than assessment on categories of smoking intensity,

but doing so also restricts the validity of effect measures, since someone who smoked

for a year as a young person is likely at much lower risk of lung cancer than a lifetime

smoker.

C.2.7 Summary

Miner studies are useful for addressing questions about time-related issues in the

radon-lung cancer association, due to the extensive measurement history and long-
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term follow-up. Many of these time related aspects function as effect measure modi-

fiers that can be explored using the methods proposed in Chapter II.
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C.3 Sufficient assumptions for a causal interpretation of estimated associations

To employ a causal interpretation, all methods all rely on the identifying assump-

tions of conditional exchangeability, consistency, non-interference, and positivity. These

assumptions can be expressed as follows, where T z is the failure-time we would ob-

serve under the intervention of setting Z = z , as in a clinical trial where z could be

“take the placebo.”

These are often referred to as identifiability assumptions, which are reviewed in

detail by Daniel et al. (2013).

Conditional exchangeability Xk ⊥ T xk |X̄ k−1, L̄ k , V where A ⊥ B |C is interpreted as “A

is independent of B, conditional on C.” The outcome we would observe under

exposure at time k being set to Xk = xk is independent of the actual exposure at

time k , given the past values of the exposure and covariates (cf Greenland and

Robins (2009))

Treatment version irrelevance T x̄ k = T |X̄ k = x̄ k . The outcomes we would observe if

we set X̄ k = x̄ k in some intervention is the same set of outcomes we would ob-

serve if individuals were observed to have X̄ k = x̄ k (cf Cole and Frangakis (2009);

VanderWeele (2009))

Non-interference T x̄ k i x̄ k j = T x̄ k i , for all units i 6= j . The potential outcome of an indi-

vidual is independent of the hypothetical treatment regime of any other unit (cf

Rosenbaum (2007))

Positivity f (Xk |X̄ k−1, L̄ k , V ) > 0 with probability 1 if f (X̄ k−1, L̄ k , V ) > 0. The probabil-

ity (density) of exposure taking on any value is non-zero for every observed strata

of prior covariates and exposure (cf appendix A.1 of Hernán and Robins (2006),

Westreich and Cole (2010))
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