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ABSTRACT 

Daniel Laurence Albaugh: Functional Connectivity of the Rodent Striatum 
(Under the Direction of Yen-Yu Ian Shih) 

 
 

The striatum serves as the major input nucleus of the basal ganglia circuitry, 

important for its varied roles in cognition, motivation, and sensorimotor function. Despite 

decades of study, fundamental features of the striatum’s functional organization and 

broader role(s) within the basal ganglia circuitry remain contentious and/or poorly 

defined. Given the diverse and critical roles of striatal activity in normal brain function and 

a multitude of disease states (including neurodegenerative and psychiatric disorders), a 

better understanding of this nucleus’ functional organization is imperative. The use of 

electrophysiological tools, which predominate the field, allow for in-depth 

characterizations of discrete, pre-selected brain regions, but are not appropriate for 

delineating functional neural circuit interactions on large spatial scales in an unbiased 

manner. A complementary approach to these studies is the use of functional magnetic 

resonance imaging (fMRI), which provides global, unbiased measures of functional neural 

circuit and network connectivity.  

In the first two studies described herein (Chapters 2 and 3), we used fMRI to map 

the functional response patterns to electrical DBS of the rat nucleus accumbens (NAc; 

ventral striatum), as well as the dual striatal outputs: external globus pallidus (GPe), and 

substantia nigra pars reticulata. Notable findings included the presence of negative fMRI 
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signals in striatum during stimulation of each nuclei, robust prefrontal cortical modulation 

by NAc- and GPe-DBS, and marked functional connectivity changes by high frequency DBS.  

 We next used optogenetic tools to more selectively map the brain-wide responses to 

stimulation of GPe neurons in healthy and Parkinson’s disease model rats (Chapter 4), as 

well as dorsal striatal neurons and their motor cortical inputs (Chapter 5). Optogenetic 

stimulation of each nuclei elicited an intriguing dorsal striatal negative fMRI signal, 

observed during direct striatal stimulation as well as putative recruitment of both 

excitatory both inhibitory striatal inputs, and thus suggestive of neurovascular uncoupling. 

Additionally, results from our GPe experiments revealed that this signal may be 

compromised in certain neurological disease states (e.g., Parkinson’s disease). Collectively, 

the studies described in this dissertation have exploited fMRI tools to reveal novel features 

of striatal connectivity, which may shed light on striatal function in health and disease. 
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CHAPTER 1: GENERAL INTRODUCTION 
 
1.1 The Basal Ganglia: Anatomy and Functional Circuitry 
 
 The basal ganglia comprise a grouping of forebrain and midbrain structures, densely 

interconnected and multifunctional with respect to behavioral output. In brief, the basal 

ganglia comprises: the striatum, internal and external globus pallidus (GPi/GPe), 

subthalamic nucleus (STN), and substantia nigra pars reticulata (SNr). The striatum serves 

as the major input nucleus of the basal ganglia, whereas the GPi (entopeduncular nucleus in 

rodents) and SNr represent the canonical output nuclei. In rodents, the SNr is the major 

output whereas the entopeduncular nucleus may serve a minimal role (1); thus, only the 

SNr will be reviewed here. Basal ganglia inputs from cortex and the dopaminergic neurons 

of the midbrain (the A8-10 groupings of the retrorubral area, substantia nigra pars 

compacta [SNpc] and ventral tegmental area [VTA] (2)) are integral to the circuit and will 

thus also be reviewed. In an effort to restrain scope, the below description of the basal 

ganglia circuitry will largely focus on basic and functional neuroanatomy; for additional 

information on the cognitive-behavioral functions of the basal ganglia in health and 

disease, the reader is referred to several excellent recent reviews (3-11).  

 
1.1a. Cortical Inputs to the Basal Ganglia 
   
Inputs to Striatum 
 
 Cortical innervation of striatum (i.e., the corticostriatal pathway) arises from 

multiple, distinct classes of cortical projection neurons, including the intratelencphalic (IT) 
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and pyramidal tract (PT), as well as inhibitory projections. IT neurons reside in cortical 

layers 2-6, provide bilateral striatal inputs, and do not target extratelencephalic areas (12). 

In contrast, PT neurons reside exclusively in cortical layer Vb, innervate the striatum 

unilaterally, and also target a wide number of other brain areas (thalamus, brainstem) all 

the way to their caudal-most destinations in spinal cord (12). Both IT and PT cortical 

projections are excitatory and glutamatergic, forming asymmetric and axospinous 

synapses in striatum (13). Interestingly, available data suggest that IT neurons provide 

non-reciprocal inputs to PT neurons, implying a cortical hierarchy among these 

corticostriatal projections (14).  A third, recently-defined class of corticostriatal inputs 

arise from somatostatin-expressing inhibitory projection neurons that monosynaptically 

inhibit striatal projection cells (15). 

 Among the additional major anatomical features of corticostriatal projections are 

cortical topography and patterns of innervation selectivity among striatal target neurons. 

Cortical inputs to striatum are topographically-organized so that different portions of the 

cortex project to different areas of striatum, with the entire cortex providing inputs (16-

18); these observations have sustained the long-standing conceptual modeling of the 

cortico-basal ganglia circuits as functionally and somatotopically-organized parallel circuits 

(18). With respect to striatal targets, cortical projections target both striatal projection 

neurons and interneurons (19-21). Striatal projection neurons are broadly classified as 

members of the direct or indirect pathways, distinguished based upon their distinct 

molecular makeups and projection patterns (thoroughly described below). A recent study 

has conclusively shown that IT and PT cortical projections innervate both types of striatal 

projection neuron (21). However, there does appear to be a bias in the regional distribution 
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of direct vs. indirect pathway cortical inputs, for example, with primary motor cortex 

showing a strong bias towards innervation indirect pathway projection cells (19). The 

functional significance of such cortical region-dependent input biases remains unknown. 

 
Inputs to STN 
 
 Cortical inputs to the STN, referred to as the “hyperdirect” pathway, have received 

increasing attention in recent years (13, 22-24).  Compared to the corticostriatal projection, 

these inputs (arising mostly from cortical layer V) are relatively sparse (25), and appear to 

exhibit a more limited topographical organization (26). Functionally, it is critical to note 

that the hyperdirect pathway is likely to provide more rapid (and net inhibitory) 

modulation of basal ganglia output than its corticostriatal counterparts, and has been 

proposed to “prime” the basal ganglia system for incoming corticostriatal inputs (13). 

 
1.1b. Thalamic Inputs to Striatum 
 
 In addition to cortex, the striatum also receives dense excitatory input from the 

thalamus, particularly the intralaminar (parafascicular and central lateral) nuclei (27, 28). 

Similar to corticostriatal inputs, thalamostriatal afferents are topographically-organized 

and target both striatal projection neurons and interneurons (28-30). However, notable 

distinctions also exist between the corticostriatal and thalamostriatal systems; these 

include the type of vesicular glutamate transporter expressed presynaptically (VGLUT 1 

and 2 for cortical and thalamic inputs, respectively), as well as the location of synaptic 

boutons (axonspinous and axodendritic [shafts] for cortical and thalamic inputs, 

respectively) (28). Based on VGLUT1 expression, it can be estimated that at least a quarter 

of all glutamatergic synapses in striatum arise from thalamus (28). Despite this remarkable 
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percentage, very little is known about the functional nature of the thalamostriatal system in 

health or disease.  

 
1.1c. Striatum: Major Input Nucleus of the Basal Ganglia 
 
 The striatum comprises the caudate and putamen nuclei, anatomically separated by 

the internal capsule in primates but not rodents; the fused structure is therefore termed 

the “caudate-putamen”, or simply “striatum” in rodents. Below the caudate/putamen lies 

the ventral striatum, also known as the nucleus accumbens (NAc), notable for its limbic 

functions and unique neural connectivity patterns ( the latter reviewed in part within this 

section). Medium spiny neurons (MSNs), the projection neurons of the striatum, comprise 

roughly 95% of all striatal neurons (10, 31). MSNs, so-named due to their size and spine-

dense dendrites (largely sites of glutamatergic input), are GABAergic and inhibitory to their 

projection targets (32). The major, classically-defined sites of striatal innervation are the 

GPe and SNr/GPi (i.e., the basal ganglia output nuclei). The MSNs that target the GPe vs. 

GPi/SNr form two largely-distinct neuronal subtypes, referred to as “indirect” and “direct” 

pathway MSNs, respectively. Neurochemically, MSNs of the indirect pathway are 

identifiable based on their expression of D2 dopamine and A2A adenosine receptors, as 

well as enkephalin; direct pathway MSNs express D1 dopamine receptors, substance P, and 

dynorphin (33, 34). There appears to be little to no overlap in the expression of these 

proteins (though see (35)), allowing for the often-used selective genetic targeting of direct 

vs. indirect pathway MSNs (e.g., by placing transgenes under the D1 vs. A2A receptor 

promoter) (36). D1 and D2 receptors are positively and negatively coupled to cAMP 

signaling, respectively; thus dopamine has been classically modeled as exerting opposing 

influences on direct and indirect pathway MSNs, acutely increasing or decreasing their 
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excitability (37).  The modulatory role of dopamine signaling within the basal ganglia is 

further explored below. 

  The projection pathway specificity of direct and indirect pathway MSNs is perhaps 

the most salient feature of the traditional classification scheme of the basal ganglia (38). 

Recruitment of direct pathway MSN output is associated with inhibition of the tonically 

active basal ganglia output nuclei, which is further correlated with motor action (39, 40). In 

contrast, electrophysiological recordings have demonstrated that GABAergic transmission 

within the STN drives excitation of the downstream SNr/GPi (41). Indirect pathway-

mediated inhibition of GPe neurons can thus be expected to disinhibit the STN and facilitate 

activity within the SNr and GPi. Although this functional architecture may suggest that the 

direct and indirect pathway MSNs would exhibit some level of temporal isolation in their 

activity (lest they compete for control of the output nuclei), both cell types are 

simultaneously active during movement (42). Additional complexities arise from 

anatomical deviations within the direct/indirect pathway scheme. For example, striatal 

neurons of the direct pathway may send collaterals to the GPe (43). In the ventral striatum, 

the entire classification scheme of direct/indirect pathways has recently been called into 

question; a controversy arising in part from the observation that both D1 and D2 receptor 

expressing MSNs project to the ventral pallidum (44). 

 Topographical compartmentalization of the striatum is present in at least two-major 

levels (45). First, the striatum is broadly divided into dorsal and ventral subdivisions based 

on their input/output organization. Sensorimotor cortical input preferentially innervate 

dorsolateral striatal component (putamen), whereas associative regions innervate the 

dorsomedial component (caudate) (4).  The ventral striatum receives prefrontal cortical 
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input, and is further subdivided into core and shell territories, with dissociable anatomical 

and functional characteristics (46).  The topographical orientation of the striatum is at least 

partially conserved throughout the downstream basal ganglia circuitry, e.g., as 

demonstrated through functionally distinct subterritories of the pallidum and SNr (1, 47, 

48). A second major feature of striatal organization concerns the so-called patch/matrix 

organization (45). The striatal patches (or “striosomes”), enriched with mu-opioid 

receptors (as well as other dissociating histochemical features compared to matrix), 

contain striatonigral neurons that preferentially innervate the dopaminergic neurons of the 

pars compacta (45, 48).  In contrast, the dopaminergic neurons of the SNr, preferentially 

distributed in its dorsal tier, preferentially target striatal neurons of the matrix 

compartment (45). In the initial report of the patch/matrix organization by Gerfen, it was 

also demonstrated that patches receive prelimbic cortical input, whereas the matrix 

receives sensorimotor cortical input (49). The dendrites of MSNs in each patch do not cross 

patch/matrix borders (although interneurons may do so) (10). The functional relevance of 

this striatal organization has remained fairly elusive, although recent progress has been 

made using modern experimental tools (50). 

 Comprising approximately 5% of its neuronal population, striatal interneurons are 

both highly functionally diverse and behaviorally-relevant (10, 51-54). Large, aspiny 

cholinergic interneurons represent approximately 1% of striatal interneurons, notable for 

their tonic activity (approximately 5 Hz) (55) and regulation of dopamine and GABA 

release from nigrostriatal terminals (56, 57). Parvalbumin-positive fast-spiking 

interneurons (FSI’s) receive excitatory cortical input and provide powerful feedforward 

inhibition to neighboring MSNs (51). Other interneuron subtypes, including persistent and 
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low-threshold spiking (somatostatin, neuropeptide Y-positive) and calretinin-positive 

subtypes are also present, yet their functions remain poorly-defined, possibly due to their 

rarity (10, 51). Interestingly, interneuron numbers and wiring patterns may be altered in 

animal models of basal ganglia-oriented movement disorders such as Parkinson’s and 

Huntington’s diseases (58). 

 In addition to interneurons, MSNs themselves may provide a source of MSN 

inhibition via local GABAergic collaterals (i.e., lateral inhibition), both in the dorsal and 

ventral striatum (31, 59-63). Anatomically, these collaterals are known to be present on 

distal dendrites and spines of MSNs, and may thus be poised to modulate dendritic 

potentials (64). Physiological investigations of lateral inhibition among MSNs have 

traditionally been conducted with paired recording in vitro electrophysiology, which have 

been remarkably inconsistent in reporting the presence and strength of lateral inhibition 

(31). Czubayko and Plenz identified GABA-A receptor-mediated IPSP’s (driven by MSN 

collaterals) in less than 50% of MSN pairings, with a synaptic failure rate also above 50% 

(60). In another study, the investigators were unable to identify collateral inhibition among 

MSNs at all (65). Findings such as these have led some investigators to question the 

strength of collateral synapses as a potent form of MSN feedback inhibition (31, 64, 65). 

However, even if lateral inhibition by a single MSN-MSN pairing is weak, the sheer number 

of striatal MSNs provides a means by which lateral inhibition may potently influence 

striatal activity (10). Further suggestive of functional relevance, lateral inhibition among 

MSNs is subject to acute modulation, for example by dopamine or histamine (62, 66), and is 

also sharply reduced in experimental Parkinsonism (67). Additional work is clearly needed 

to unravel the functional significance of MSN lateral inhibition, particularly in vivo. 
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1.1d. The External Globus Pallidus (GPe): A Relay Nucleus and More 
 
 The GPe is downstream of the striatum (via D2R-expressing MSNs) in the basal 

ganglia’s indirect pathway. It is an inhibitory nucleus, comprised largely of GABAergic 

neurons and a small population of cholinergic neurons (approximately 5%) clustered along 

its medial-ventral borders (68, 69). The GABAergic neurons of the GPe can be broadly 

divided into two separate yet intermingled classes, based on their developmental origins, 

molecular makeup, firing properties, and innervation patterns (69-73). Prototypical GPe 

neurons represent the major inhibitory input to the subthalamic nucleus, and are thus 

those neurons classically modeled in traditional basal ganglia circuit diagrams (38). These 

neurons arise from the medial ganglionic eminence, express parvalbumin and are 

concentrated within the lateral GPe (73, 74). Electrophysiologically, prototypical GPe 

neurons recorded in vivo in rat display regular activity with mean firing rates above 10Hz 

(sometimes substantially higher, e.g., 50Hz) (70). These neurons, which make up 

approximately 70% of the GPe neurons, are thus excellently poised to provide tonic 

inhibitory inputs to the STN (69). A second subclass of GABAergic GPe neurons have 

recently been examined in great detail by many groups: the arkypallidal group. 

Arkypallidal neurons arise from the lateral and causal ganglionic eminence, express the 

opioid precursor preproenkephalin and the transcription factor FoxP2 (69, 73). In contrast 

to the STN-projecting prototypical subclass, arkypallidal GPe neurons largely innervate the 

striatum in a presumptive negative feedback loop (69, 72). Very recently, it has been 

demonstrated that striatal MSNs of both direct and indirect pathway classes are subject to 

arkypallidal innervation, as well as striatal interneurons (75). Compared to prototypical 
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neurons, arkypallidal cells are electrophysiologically defined by irregular/bursty, low-rate 

firing patterns (as measured in awake rat, in vivo) (70). 

 The identification of a direct GPe output to frontal cortical areas, both in rodent and 

monkey, has added to the growing appreciation of the GPe as a complex (i.e., not a simple 

relay) nucleus (76, 77). Many of the GPe neurons within this pallidocortical pathway are 

cholinergic, but also drive monosynaptic, GABA-mediated IPSC’s in pyramidal cells and 

interneurons across cortical layers (76). In vivo spike recordings in frontal cortex have 

revealed a complex mixture of excitations and inhibitions driven by optogenetic 

stimulation of pallidostriatal fibers (76). Pallidostriatal neurons correspond, at least in part, 

to the cholinergic population distributed in the medial/ventral GPe (near the cholinergic 

nucleus basalis). However, pallidostriatal neurons receive striatal input and project to the 

STN, justifying their inclusion in the basal ganglia circuitry (i.e., they are not simply 

ectopically-placed cells of the nucleus basalis) (69). 

 
1.1e. The Subthalamic Nucleus (STN): The Basal Ganglia’s Excitatory Nucleus 
 
 The STN is the sole excitatory nucleus of the basal ganglia, and the second 

intermediary nucleus of the indirect pathway, receiving GPe innervation and projecting to 

the output nuclei of the GPi and SNr (78-81). It is located above the zona incerta and below 

the cerebral peduncle, in a heavily fibrous region (79, 82). As in other basal ganglia areas, 

there exists ample functional and anatomical evidence for a topographical organization of 

the STN, including motor, associative, and limbic territories (26, 79, 81).  Physiologically, 

STN neurons are characterized by irregular activity, with average firing rates of 7-12Hz (in 

anesthetized rat) (83). However, STN neurons are also capable of firing at far greater 

frequencies, at least 250Hz during movement (83). Cortical stimulation drives a complex 
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cascade of responses in STN, reflecting its intimate crosstalk with both cortex (via the 

hyperdirect pathway) and other basal ganglia nuclei. Observed first is a fast excitation 

driven by direct cortical afferents, followed by a pause, then a second, delayed excitation, 

and finally a long-lasting inhibition (83). The delayed excitation and inhibition are likely to 

reflect internal basal ganglia processing, including cross-talk with the GPe. 

 In addition to its relay innervation of the GPi and SNr, the STN also sends projects 

back to the GPe (84). Excitation of the GPe by the STN may provide a mechanism of 

feedback inhibition that dampens the STN’s activity in response to excitatory (cortical) or 

disinhibitory (indirect pathway) inputs. A number of studies have suggested that the 

reciprocal connectivity of the STN and GPe may subserve more complex neural processing 

(85). Of particular interest, although the activity of STN and GPe neurons are generally 

uncorrelated in healthy rats (recorded in vivo), in rats with nigrostriatal lesions and in 

isolated in vitro preparations, their activity becomes bursty and highly synchronized (83, 

85). Thus, reciprocal activity within the STN-GPe circuit may be an important correlate 

and/or contributor of certain motor disorder symptoms.  

 
1.1f. Mesencephalic Dopamine Inputs to the Basal Ganglia 
 
 Midbrain dopaminergic neurons provide substantial input to the basal ganglia, most 

notably to the striatum (both dorsal and ventral subdivisions). These dopamine neurons 

are segregated into three separate groupings: the retrorubral area, SNpc, and VTA (2). Each 

of these populations has unique inputs and projection patterns (48, 86). The VTA, located 

most ventromedially, predominantly sends projections to the ventral striatum/nucleus 

accumbens, as well as a substantial pre/frontal cortical input (i.e., the mesocorticolimbic 

dopamine pathway). In turn, the ventral striatum, particularly the NAc shell, send 



 18 

reciprocal projections from MSN projection neurons to the VTA, as well as portions of the 

dorsal SNpc (87). Dopamine cells of the SNpc are located immediately dorsal and lateral to 

the VTA in a characteristic “moustache”-like distribution. These neurons form the 

nigrostriatal pathway that heavily innervates the dorsal striatum, and also sends input to 

frontal cortex. Whereas the medial portion of the SNpc also sends projections to ventral 

striatum, the lateral SNpc (as well as dopamine neurons of the SNr) appear to exclusively 

target the dorsal striatum (48). Reciprocal striatal inputs to the SNpc come from both 

dorsal and ventral striatum (48).  Lastly, the retrorubral area, located dorsally and caudally 

to the SNpc, targets and receives reciprocal input from both dorsal and ventral striatum (2, 

48).  

 Mesencephalic dopamine neurons target both striatal and extra-striatal regions of 

the basal ganglia (37, 88). Little is known regarding the role(s) of extrastriatal dopamine 

signaling in the basal ganglia, although pharmacological studies have demonstrated 

electrophysiological and behavioral changes following local administration of dopamine 

receptor agonists (89-92); for example, D1 and D2 receptor agonists both facilitate 

pacemaking activity in the STN, recorded in rat brain slices (93). The role of dopamine 

signaling in extra-striatal basal ganglia areas has been most thoroughly examined in the 

context of Parkinson’s Disease, where dopaminergic drugs have been demonstrated to, in 

some cases, ameliorate motor impairments in diseased animal models (89-91). However, 

far less is known about dopaminergic signaling in these areas (in health or disease) 

compared to the rich field of dopamine signaling in striatum (37, 94, 95). Here, we will only 

briefly address a subset of salient physiological features regarding dopaminergic regulation 

of striatal physiology.  
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 Dopamine regulates activity in the striatum both acutely and through long-term 

plasticity mechanisms. Acutely, both corticostriatal afferents and MSNs (among other 

striatal microcircuit elements) are subject to dopaminergic modulation. Corticostriatal 

terminals express D2 dopamine receptors (Gi coupled), which serve to transiently reduce 

the probability of neurotransmitter release in the presence of extracellular dopamine (96). 

Because this presynaptic inhibition is biased for less active terminals, it has may serve as a 

filtering mechanism to remove “noise” from the corticostriatal signal. At the level of MSNs, 

dopamine gates the well-described up/down state transition, wherein MSNs exhibit 

bistable shifts (of approximately 30mV) in membrane potential, with cortically-driven 

spiking occurring during the plateau depolarization (up-states) (97, 98). In rats with 

nigrostriatal dopamine lesions, MSNs spend significantly more time in the up-state, and are 

more excitable in both up- and down (hyperpolarized) states (99). Similar to the case for 

regulation of acute regulation of corticostriatal terminal release probability, these findings 

again suggest that dopamine gates and filters corticostriatal inputs (the presumptive 

drivers of MSN excitability). On longer time-scales, dopamine also regulates corticostriatal 

long-term plasticity (100). For example, a presynaptic long-term depression observed at 

corticostriatal synapses is facilitated and blocked by D2 receptor antagonists and agonists, 

respectively (although the location of the responsible D2 receptors are unknown, 

potentially being presynaptic, postsynaptic, or on interneurons) (101).    

  In addition to dopaminergic neurons, additional cell types may be present in these 

heavily-dopaminergic regions. The best such example of a non-dopaminergic population 

are the GABAergic neurons of the VTA, which send inhibitory projections to the prefrontal 

cortex, ventral striatum, and locally to neighboring dopamine neurons (102, 103). 
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Functionally, selective stimulation of these neurons has been shown to generate pauses in 

the activity of tonically-firing cholinergic interneurons and suppress dopamine release in 

the ventral striatum (102, 104).  A second layer of complexity concerns the presence of 

neurotransmitter co-release (105), which has been convincingly demonstrated at 

dopaminergic synapses in both the dorsal and ventral striatum. GABA is co-released by 

dopaminergic neurons in both dorsal and ventral striatum, dependent upon the non-

canonical presynaptic packaging of this transmitter in the vesicular monoamine 

transporter type 2 (VMAT2) (106, 107). Dopamine itself has also been suggested to directly 

interact with certain forms of the GABA-A receptors (108). In addition to GABA, glutamate 

co-release has also been demonstrated to occur from dopaminergic terminals, however it 

appears restricted to the ventral striatal division (109). 

 
1.1g. The Substantia Nigra pars reticulata (SNr) 
 
 The SNr is the main output nucleus of the rodent basal ganglia, receiving inputs 

from both the direct and indirect pathways (via the striatum and STN, respectively), and 

projecting to multiple extra-basal ganglia targets; these include thalamus, superior 

colliculus, and the pontine tegmentum. It is through the regulation of these nigral outputs 

that the basal ganglia is ultimately believed to influence behavior. 

 The SNr is located ventrolaterally to the SNpc, where it is further differentiated by 

its relative lack of cellular density, strong enrichment of GABAergic neurons, and absence 

of dopaminergic neurons (although some are present, particularly in the caudal and ventral 

regions) (1). Glutamatergic neurons, which may also express tyrosine hydroxylase, have 

also been identified, forming a unique SNr subpopulation that targets the parafascicular 

and reticular thalamus (110). Interneurons generally appear absent in the SNr, although 
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local inhibition occurs through GABA release from projection neuron collaterals, which 

arise in the SNr and target both SNr and SNpc (1, 111).  

 The topographical organization of the basal ganglia would perhaps mean very little 

if it were not conserved at the output level of the SNr. The SNr does indeed maintain this 

topography in the form of lammelar, “onion-like” divisions, including a “core” located 

dorsolaterally (112, 113). The somatotopic arrangement of this structure has been mapped 

(1), and also functionally divided into sensorimotor and associative territories. 

 SNr projection neurons fire spontaneously and tonically at frequencies of 25-30Hz 

(measured in awake rodent) (114). The tonic firing of these neurons provides a putative 

means for bidirectional control of basal ganglia output by the direct and indirect pathways; 

namely, excitation and inhibition of the direct and indirect pathways, respectively, serves 

to relieve tonic SNr-mediated inhibition of basal ganglia output target regions (e.g., 

thalamic relays) via disinhibition. Suppression and excitation of the direct and indirect 

pathways facilitates and perhaps strengthens this tonic SNr-mediated target suppression. 

Evidence for this mode of disinhibitory action is mixed, and at the very least, 

oversimplified. For example, in the avian basal ganglia, where paired recordings of pallidal 

presynaptic terminals are possible alongside their thalamic inputs (experimentally feasible 

due to the large size of avaian pallidal boutons), both inputs and outputs are 

simultaneously excited (115). Such a finding is certainly difficult to reconcile with modern 

models of basal ganglia function. 
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1.2. Neural Circuit and Network Mapping with Functional Magnetic Resonance 
Imaging (fMRI) 
 
 The series of studies described in this dissertation employed fMRI toolsets to map 

the circuits and networks recruited by exogenous stimulation of various basal ganglia 

circuit elements. Broadly, the impetus behind these studies was to elucidate how basal 

ganglia nuclei interact and influence extra-basal ganglia areas on a global level using 

spatially unbiased tools. Despite decades of study using increasingly powerful anatomical 

and physiological toolsets, even the most fundamental aspects of basal ganglia functional 

connectivity remain openly disputed (115-117). Thus, mapping of functional brain 

modulation by basal ganglia circuits and networks, over spatial scales far larger than those 

commonly used in preclinical studies, and without the experimental and analytical 

constraints of a priori hypotheses, facilitates the identification of unexpected features of 

basal ganglia connectivity. Insights gleaned from such fMRI studies can then, in turn, 

support finer-grain mechanistic analyses on smaller spatial scales (e.g., electrophysiology) 

to ultimately develop updated models of basal ganglia function. 

 This section begins with an introduction to the fMRI toolsets employed in this 

dissertation: evoked and functional connectivity MRI, followed by a brief examination of 

the electrophysiological correlates of the measured fMRI signals. I then move to discussion 

of the two stimulation means chosen to acutely modulate activity with select basal ganglia 

circuit elements: electrical deep brain stimulation and optogenetic toolsets. Broadly, these 

tools differ widely in their translational relevance and specificity with respect to stimulated 

circuit elements.    
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1.2a. Overview of fMRI: Evoked and Functional Connectivity MRI Paradigms  

 fMRI is a highly versatile toolkit used to examine whole-brain neural activity in a 

relatively unbiased manner, noninvasively. Blood oxygenation, volume, and/or flow are 

measured, which then serve as indirect metrics of neural activity (based on principles of 

neurovascular coupling) (118, 119). The use of varying pulse sequences, coil configurations, 

and other flexible experimental parameters broaden the utility of fMRI to capture neural 

dynamics at varying spatial and temporal resolutions. Two major types of experimental 

paradigms are used with fMRI, referred to as task-based and resting-state in the human 

fMRI literature. Task-based measures compare neural activity measure by fMRI during an 

experimental task (e.g., reading, listening to music, playing a game) when compared to 

baseline periods. A comparison of neural responses during the task and no task periods 

then reveals task-specific changes in brain activity. In animal models, a similar design can 

be used to probe the neural circuit-level responses of sensory or otherwise exogenous 

brain stimulation (e.g., peripheral or deep brain stimulation); these studies are referred to 

as “evoked-fMRI”. In comparison to task-based/evoked-fMRI, the second type of fMRI 

paradigm, resting state, measures spontaneous hemodynamic fluctuations that occur in the 

absence of a task, when the subject is at rest (120, 121). These spontaneous fluctuations, 

which occur at low frequencies (commonly detected at <0.1Hz in humans), are then 

correlated by region to identify putative, functionally connected neural networks. Many of 

the “canonical” resting state networks defined in this manner match well to networks 

previously detected by other means (e.g., positron emission tomography), and in some 

cases, analogous networks have been identified in nonhuman primates and rodents (121, 

122). In recognition of the fact that such animal “resting state” studies are not conducted in 
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a deliberate resting-state, we broadly refer to these as “functional connectivity” MR 

experiments. 

  
1.2b. Neurophysiological Correlates of fMRI Signals 
 
 The use of hemodynamic signals as a surrogate measure of neural activity presents 

a major challenge to any straightforward interpretation of fMRI data. In recognition of this 

caveat, it is prudent to discuss the known correlates of fMRI signals with respect to more 

“ground-truth” measures of neuronal activity, such as electrophysiological recordings. A 

number of experiments have been conducted comparing fMRI-based signals (commonly 

BOLD, or local neural tissue oxygen saturation as a surrogate) to electrophysiological 

readouts obtained in the same brain region during an identical stimulus (123, 124), 

occasionally even as measured simultaneously (125, 126). Among the electrophysiological 

readouts that one may obtain are: isolated single units (spike discharge from a single 

neuron near the electrode tip), multi-unit activity (MUA; non-isolated discharge from 

multiple neurons, generally located in a 100-300μm radius from the tip), and the local field 

potential (LFP; low frequency components of the extracellular potential reflecting both 

spiking and perisynaptic activity over a few millimeters, generally low-pass filtered at 

250Hz) (119, 127). 

 In a seminal study by Logothetis and colleagues, simultaneous electrophysiological 

and BOLD-fMRI recordings were conducted in monkeys during visual stimulation 

(electrodes in visual cortex) (128). Comparing the visual stimulation-evoked BOLD signal in 

visual cortex to MUA and LFP’s revealed several interesting findings. The LFP signal change 

during the BOLD signal-evoking stimulus was greater in magnitude than the MUA change, 

with the greatest increases occurring around the 80Hz portion of the LFP (gamma band). 
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Moreover, the LFP generally persisted over the stimulus duration, whereas MUA increases 

were transient, showing strong stimulus adaptation. Thus, it was concluded that compared 

to the MUA, LFP signals were more strongly correlated with the BOLD signal. 

 Because the LFP reflects perisynaptic activity in addition to spiking, it has been 

hypothesized that fMRI signals are strongly biased towards presynaptic spiking and local 

processing (i.e., inputs), rather than regional spiking activity. The strongest evidence for 

this hypothesis has come from an elegant study by Vishwanathan and Freeman, employing 

dual LFP/MUA and oxygen amperometry recordings in the cat visual system (123). 

Compared to its relay projection target of visual cortex, the lateral geniculate nucleus of the 

thalamus (LGN) is tuned to higher frequencies of visual stimulation. Thus, using 30Hz light 

pulses, the authors were able to evoke spiking activity in the LGN, without any detectable 

MUA signals in primary visual cortex. In this way, the authors could examine local changes 

in tissue oxygenation (a surrogate measure of the BOLD signal) that occur in visual cortex 

in the absence of spiking activity. Remarkably, despite no detectable MUA response, a clear 

rise in tissue oxygenation was observed, as well as LFP magnitude increases. These results 

provide strong evidence that spiking activity is not required for the generation of the BOLD 

signal, and further that the LFP is better predictive of fMRI signals than spiking activity. 

Such dissociations between spiking activity and fMRI signals have since been observed 

using fMRI signals directly, rather than oxygen amperometry (126).  

 For as little as is known about the electrophysiological correlates of evoked-fMRI 

signals, even less is known about the neuronal underpinnings of fcMRI signals (129). In a 

seminal study by Schölvinck and colleagues, LFP signals were obtained from monkey 

cortex during simultaneous fcMRI measurements, revealing positive correlations between 
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LFP and widespread fcMRI signals (130). In particular, LFP signals above 40Hz, in the 

upper gamma band, were most strongly correlated to fcMRI signals with a hemodynamic 

delay of 6-8 seconds. More recently, fcMRI network modulation has been reported during 

selective stimulation of genetically-defined neuronal populations in rats, providing perhaps 

more causal evidence for a neuronal contribution to fcMRI signals (131). 

 
1.2c. Brain Stimulation Tools for fMRI-Based Circuit Mapping 
 
 How do we map neural circuit relationships using fMRI modalities in animal 

models? The presentation of sensory stimuli inside the scanner, including peripheral 

electrical stimulation, odorants, and flashing lights has proven very useful to map primary 

sensory pathways. However, for mapping many neural circuits, including the basal ganglia 

nuclei that form the subject of this dissertation, more invasive stimulation methods may be 

required. Among these brain stimulation tools are deep brain electrical stimulation (DBS) 

and optogenetics. 

 

Electrical DBS-fMRI 

 DBS provides a relatively straightforward means of mapping the functional circuit 

architecture of a targeted neural structure. With appropriate experimental considerations, 

including the application of MR-compatible electrodes (132), DBS-fMRI experiments (in 

rodents) can be employed with relative ease (133). Perhaps more challenging is the 

interpretation of DBS-fMRI datasets, as electrical stimulation may modulate local cell 

bodies, afferents, and efferents of the targeted area, as well as fibers of passage. Thus, a 

highly conservative approach is required in generating experimental conclusions. However, 

that is not to say that these tools do not hold incredible value for fMRI-based circuit 
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mapping- far from it. Compared to the more selective stimulation modality of optogenetics 

(described below), only electrical DBS allows for the mapping of the afferent fibers to a 

targeted region (modulated in many cases via antidromic signal propagation) (134). 

Second, and perhaps more importantly, DBS-fMRI experiments in animal models may 

provide important insights into the neural circuit mechanisms of DBS therapy, as applied in 

clinical settings for the treatment of a broad range of neurological and neuropsychiatric 

diseases (135-137). The efficacy of DBS therapy depends upon several known factors, 

including the target of stimulation (substantial debate exits regarding the optimal target(s) 

for many disorders in which DBS is applied), as well as the frequency and pattern of 

stimulation (138, 139). In principal, determining the fMRI-based neural correlates to DBS at 

varying targets, and using therapeutically effective vs. ineffective stimulation parameters, 

may provide unique insights into the mechanism of DBS action. Unfortunately, due to safety 

concerns pertaining to the introduction of DBS equipment into the MRI scanner 

environment, such studies are generally not feasible in clinical populations. Thus, many 

research groups, including our own, have turned to animal models to study the fMRI signals 

generated by DBS at therapeutically-relevant targets (140-142). 

 
Optogenetic fMRI 
 
 Optogenetics broadly refers to the genetic targeting and manipulation of light-

sensitive proteins (opsins) to perturb and measure cellular function (143, 144). In 

neuroscience, the term is more specifically used to refer to the transgenic application of 

microbial opsins (generally ion channels or pumps (145)) alongside opsin-stimulating light 

delivery methods, to manipulate neuronal membrane potentials in a cell type-specific 

manner. The rapid and substantial integration of optogenetic tools by the neuroscience 
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community over the past decade is in large part due to the unprecedented cellular 

specificity and tight temporal control that these tools provide in manipulating select 

neuronal populations. A hallmark example is provided in a seminal study by Kravitz et al., 

who used the blue light-gated cation channel ChannelRhodopsin-2 (ChR2) to selectively 

target the striatal MSNs of the direct and indirect pathways(36). Direct and indirect 

pathway MSNs, being spatially intermingled, could not be selectively targeted using 

electrical stimulation, and pharmacological manipulations are similarly hampered by slow 

onset/offsets, and caveats to selectivity (e.g., the indirect pathway MSN-defining D2 

dopamine receptor is present on both indirect pathway MSNs and certain corticostriatal 

presynaptic terminals). Using the D1R and D2R/A2A receptors as molecular labels to 

selectively target opsins to direct or indirect-pathway MSNs, Kravitz and colleagues 

demonstrated that, in mice, locomotion is facilitated by artificial (light-evoked) recruitment 

of the direct pathway, and suppressed by recruitment of the indirect pathway. These 

findings conform to the traditional models of basal ganglia pathway function established 

decades earlier (38, 47). 

 The merger of optogenetic tools and fMRI readouts, hereafter referred to as “opto-

fMRI” was a fairly intuitive step for the preclinical fMRI field (146). The relatively unbiased, 

global brain readouts of fMRI, coupled with the neuronal targeting selectivity of 

optogenetics, provides an attractive means to identify novel functional neural circuit 

connections and networks in vivo. Similarly, it provides a powerful toolset for identifying 

the contributions of select circuits and cell populations to hemodynamic signals more 

generally; these findings are then hoped to translate to human fMRI studies, which provide 

the large bulk of fMRI research programs and are generally based on the loose 
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interpretation of neural hemodynamic signals without reference to circuit- or cell-type 

contributions. Thus, both basic scientific and translational initiatives strongly converge on 

the adoption of opto-fMRI toolsets in animal models. 

   
1.3. Dissertation Aims 
 
 The studies presented in this dissertation broadly aimed to examine the neural 

circuit and network relationships of various basal ganglia nuclei (with an emphasis on 

striatum, as well as its inputs/outputs), using preclinical fMRI experiments with 

simultaneous deep brain stimulation techniques. The first of these studies, described in 

Chapter 2, employed electrical DBS of the ventral striatum/NAc to map the functional 

neural modulation achieved by stimulating this brain region, with an emphasis on the 

changes evoked at clinically therapeutic stimulation parameters. Next, in Chapter 3, 

electrical stimulation with simultaneous fMRI was used to functionally map the circuit and 

network connectivity of the two chief striatal output nuclei- the GPe and SNr. Chapter 4 

extended upon this work by examining the functional circuit connectivity of the GPe, using 

more selective (optogenetic) stimulation tools, in both healthy and Parkinsonian subjects. 

Lastly, in Chapter 5, I describe optogenetic-fMRI studies aimed to elucidate the neural 

circuit-basis of a unique negative dorsal striatal fMRI signal observed in all of the previous 

chapters. The data presented herein hold implications for: 1) the neural circuit and 

network mechanisms of DBS therapy, 2) the neural circuit and network architecture of the 

striatum and its inputs and outputs, and 3) the interpretation of fMRI signal underpinnings.  
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CHAPTER 2: FUNCTIONAL MAGNETIC RESONANCE IMAGING OF  
DEEP BRAIN STIMULATION AT THE RAT NUCLEUS ACCUMBENS 

 
2.1 Introduction  
 
 Therapeutic deep brain stimulation (DBS) therapy has become an increasingly 

important clinical tool in neuropsychiatry (147, 148). Among several targets under active 

clinical consideration for neuropsychiatric DBS, the nucleus accumbens (NAc, ventral 

striatum) is perhaps the most common. Functionally interfaced with both limbic and 

executive circuitry (46), the NAc has emerged as a promising target for several 

neuropsychiatric conditions, including obsessive-compulsive disorder (OCD) (149) and 

treatment-resistant depression (150).  

 A longstanding issue with DBS therapy is the unpredictability of the cellular, circuit- 

and network-level responses to site-specific electrical stimulation, particularly at the high 

stimulation frequencies that are commonly employed (>100Hz) (151). Indeed, despite 

active clinical use, the therapeutic mechanisms of NAc-DBS are poorly understood, 

impeding the development and refinement of this promising therapy. Functional brain 

mapping tools, including positron emission tomography (PET) and functional magnetic 

resonance imaging (fMRI), are promising avenues for the study of circuit and network 

modulation by DBS therapy (152, 153). The key strengths to fMRI-based studies of DBS 

include the ability to detect dynamic changes in stimulus-evoked activity and connectivity, 

in vivo, across the whole brain with reasonably high spatiotemporal resolution. 

Unfortunately, the implementation of fMRI tools to study NAc-DBS in clinical populations is
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strongly limited by both obstructive electrode imaging artifacts and appropriate safety 

considerations (largely pertaining to dangers associated with the introduction of DBS 

equipment to the MR environment) (154).  

 In contrast to clinical populations, animal models of DBS can be readily studied with 

fMRI under far more flexible experimental conditions (133, 140, 141, 155). For example, 

long-duration scan sessions can be conducted to map the acute neural responses to DBS at 

varying stimulation frequencies. This is particularly important as DBS therapy for both 

movement and neuropsychiatric disorders is commonly employed only at high stimulation 

frequencies, suggesting frequency-dependent mechanism(s) of action (151). In the case of 

NAc-DBS, the effects of stimulation frequency on neural circuit modulation have not been 

extensively explored using neuroimaging tools. DBS-fMRI in animal models also offers 

flexibility in electrode choice, in particular those built using more MR-compatible materials, 

reducing obstructive imaging artifacts (132).  

 In the present study, we employed simultaneous DBS and multimodal fMRI to study 

the circuit and network-level effects of NAc stimulation in a healthy rat model. This model 

was chosen based on its widespread use in preclinical studies of NAc-DBS (156-161). 

Electrical stimulation of the NAc strongly modulated prefrontal cortex and a diverse 

complement of subcortical limbic regions, including many areas not previously detected by 

DBS-fMRI. We also provide the first global functional connectivity mapping of NAc-DBS at 

therapeutic stimulation parameters. Broadly, these DBS-fMRI measurements provide 

critical information regarding both the pathways modulated by NAc-DBS, as well as the 

strength of modulation by DBS at therapeutic parameters. Interestingly, the detected 

pattern and size of CBV modulation by NAc DBS was largely insensitive to stimulation 
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frequency. Supplementing our electrical DBS findings, we describe exploratory 

optogenetic-fMRI experiments with selective stimulation of NAc neurons.   

 
2.2 Materials and Methods 
 
Subjects            

 A total of 15 male Sprague-Dawley rats (300-500g, Charles River Laboratories, 

Wilmington MA) were included in this study. Rats were individually housed in cages with 

food and water available ad libitum and 12:12 day–night cycles with control of humidity 

and temperature.  All procedures were performed in accordance with the National 

Institutes of Health Guidelines for Animal Research (Guide for the Care and Use of 

Laboratory Animals) and approved by the University of North Carolina Institutional Animal 

Care and Use Committee. 

 
Experimental Overview           
 
 This study broadly consisted of four different experiments: 1) Evoked-fMRI of 

electrical NAc-DBS at 130 Hz (300 μA stimulation); 2) Evoked-fMRI of electrical NAc-DBS to 

examine frequency-dependency of fMRI responses (10, 40, 70, 130, 200 Hz; 500 μA 

stimulation); 3) Functional connectivity (fc) MRI measurements of network-level 

responses to NAc-DBS at 130 Hz (300 μA stimulation); and 4) A pilot experiment 

examining evoked-fMRI responses to selective stimulation of NAc neurons. Evoked- and 

fcMRI experiments were conducted in the same group of subjects (and scanning session), 

whereas optogenetic experiments were conducted in a separate group of subjects. 
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Stereotactic Surgery 

 For all surgical procedures, rats were endotracheally intubated and mechanically 

ventilated using a small animal ventilator (CWE Inc., SAR-830/PA, Ardmore, PA). 

Anesthesia was maintained under a constant flow of 2% isoflurane mixed with medical air, 

and physiological parameters were continuously monitored and maintained within normal 

ranges using capnometry (Surgivet, Smith Medical, Waukesha, WI) and pulse oximetry 

(MouseOx Plus, STARR Life Science Corp., Oakmont, PA). Animals were head-fixed to a 

stereotactic frame (Kopf Instruments, Model 962, Tujunga, CA), and burr holes were 

prepared according to experimental coordinates. For electrical DBS experiments, 

homemade MRI-compatible two-channel tungsten microelectrodes were fabricated as 

previously described (132), and targeted to the mediodorsal boundary of the NAc 

core/shell (2.28 mm anterior to bregma, 1.2 mm right of midline, and 6.6 mm ventral to 

cortical surface). Two electrode leads (50 μm each in diameter, approximately 1 cm in 

length), were adhered with a saturated sucrose solution for minimal interspace distance. 

These electrodes were fully insulated with polyimide except at the tips, with an in vitro 

impedance of 18-22 kΩ at 1 kHz (132). For optogenetic DBS experiments, viral 

microinjections were targeted to the same stereotactic coordinates used for electrode 

implantations. Injections were administered as either 1 or 2 μl volumes at a flow rate of 0.1 

and 0.2 μl/min, respectively (total infusion time= 10 min). An additional 10 min was given 

for virus diffusion prior to slow retraction of the microsyringe needle. Chronically-

implantable optic fibers (200 μM; NA: 0.37) (162) were placed 0.5 mm above virus 

injection sites.  
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 For all experiments, MR-compatible miniature brass screws (Item # 94070A031, 

McMaster Carr, Atlanta, GA) were anchored to the skull, and dental cement was used to seal 

implanted components. Surgical sutures were employed to further protect the surgical site. 

For electrical DBS experiments, a recovery period of at least 24 h was given prior to fMRI, 

while at least three weeks were given for optogenetics experiments to allow for sufficient 

virus expression. The relatively short surgical recovery period for electrical DBS was 

necessitated by the fragility of the implanted microwires, is consistent with published DBS-

fMRI experiments from other groups (141, 163, 164), and is further justified by the 

observation that therapeutic DBS efficacy may be observed immediately following 

implantation (at least for movement disorders). 

 
Functional MRI Scan Preparation 
 
 In preparation for fMRI procedures, rats were endotracheally intubated and 

mechanically ventilated using a small animal MR-compatible ventilator (CWE Inc., MRI-1, 

Ardmore, PA). Anesthesia was initially maintained under constant isoflurane (1.5-2%) 

mixed with medical air. Next, tail vein catheterization was performed for intravenous drug 

and contrast agent injections (see below). Immediately following intubation and tail vein 

catheterization, animals were placed within a head-holder, and harnessed to a small animal 

cradle (both plastic and custom-made). The cradle was lined with a circulating water 

blanket connected to a temperature-adjustable water bath located outside the scanner 

room (Thermo Scientific, Waltham, MA). A rectal probe was employed and core body 

temperature was maintained at 37 ± 0.5°C. Mechanical ventilation volume and rate were 

adjusted to maintain EtCO2 of 2.8-3.2% and SpO2 above 96%, using capnometry (Surgivet, 

Smith Medical, Waukesha, WI) and pulse oximetry (MouseOx Plus, STARR Life Science 
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Corp., Oakmont, PA). EtCO2 values from the capnometry system were previously calibrated 

against invasive sampling of arterial blood gas, reflecting a pCO2 level of 30–40 mm Hg 

(165, 166). 

 
Functional MRI  
 
 MR images were acquired on a 9.4-Tesla Bruker BioSpec system with a BGA-9S 

gradient insert (Bruker Corp., Billerica, MA). A homemade single-loop surface coil with an 

internal diameter of 1.6 cm, placed directly over the head, was used as a transceiver. 

Toothpaste was applied within the open coil loop to minimize MR susceptibility artifacts. 

The set-up of the coil and DBS electrode is shown in Figure 2.1A.  

 Magnetic field homogeneity was optimized first by global shim and followed by local 

first- and second-order shims using the FASTMAP protocol (167). For anatomical 

referencing, a T2-weighted RARE pilot image was taken in the mid-sagittal plane to localize 

the anterior commissure; this structure is located at approximately 0.36 mm posterior to 

the bregma and served as a reference for anteroposterior slice positioning in subsequent 

anatomical and functional scans. T2-weighted anatomical images were obtained using a 

RARE sequence (scan parameters: TR = 2500 ms, TEeff = 33 ms, RARE factor = 8, slice 

thickness = 1 mm, matrix size = 256 x 256, FOV = 2.56 x 2.56 cm2). Twelve coronal slices 

were acquired, with the 5th slice from the anterior direction aligned with the anterior 

commissure (as revealed in the previous T2-weighted pilot scan). The reduced electrode 

distortion artifact (Supplemental Figure S2.1), together with standardized slice 

positioning, rendered these images sufficient to localize the electrode tip placement, as 

previously described (132, 140). As visualized slices were 1mm thick, all correctly targeted 

electrodes fell within approximately the same anteroposterior plane; we deemed this 
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resolution adequate given the relatively large anteroposterior size of the NAc. For 

optogenetic-fMRI experiments, optic fiber placements above the NAc virus injection site 

were similarly visualized using the anatomical scan image. Electrode and optic fiber 

placements within the NAc were confirmed for each rat (Figure 2.1B and Supplemental 

Figure S2.1); animals with placements outside of the target regions or defective electrodes 

were discarded for subsequent experiments (n = 3). 

 Following setup processes and immediately prior to cerebral blood volume (CBV) 

fMRI scan acquisition, rats were administered a monocrystalline iron oxide contrast agent 

(MION; Feraheme; 30 mg Fe/kg, i.v.). Subsequently, anesthesia was switched from 1.5-2% 

isoflurane to sedation using dexmedetomidine (dexdomitor; 0.05 mg/kg/hr, i.v.) cocktailed 

with the paralytic agent pancuronium bromide (0.5 mg/kg/hr, i.v.) (to facilitate mechanical 

ventilation). This cocktail was administered for the remaining scan duration, continuously 

supplemented by 0.5% isoflurane (168). A delay of at least 10 min was given before 

beginning fMRI experiments, to allow animals for animals to adjust to sedation. Total 

experimental duration was limited to a maximum of three hours (following Feraheme 

injection) for all subjects.  

 CBV fMRI was chosen against the more traditional blood-oxygen-level-dependent 

(BOLD) fMRI due to its superior contrast-to-noise ratio (169). CBV fMRI scans were 

acquired using a multi-slice single-shot gradient echo echo-planar imaging sequence (GE-

EPI) (scan parameters: TR = 1000 ms, TE = 8.1 ms, bandwidth = 250 kHz, slice thickness = 

1 mm, matrix size = 80 x 80 (zero-padding to 128 x 128), and FOV = 2.56 x 2.56 cm2. Image 

slice geometry was imported from the previously acquired T2-weighted anatomical image 

(12 slices).  
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Deep Brain Stimulation (DBS) 
 
 Simultaneous electrical DBS with CBV fMRI was acquired in the same manner for all 

subjects showing accurate electrode placement (n = 9), using bipolar and uniformly-

distributed unilateral stimulation of the right NAc. Subjects with inaccurate electrode 

placement were excluded for subsequent experiments. Each stimulation period consisted 

of a series of TTL-triggered biphasic, charge-balanced square-wave pulses delivered at 130 

Hz, with a stimulation intensity of 300 μA and pulse duration of 90 μs (Experiment 1). A 70 

s block design paradigm was implemented (adopted from one of our previous DBS-fMRI 

studies) (140), consisting of 20 s of rest (stimulation OFF) followed by 10 s of stimulation 

ON, and an additional 40 s of rest (stimulation OFF). In a second set of experiments 

designed to test frequency-dependency of DBS-evoked CBV modulation (Experiment 2), 

higher current amplitude was employed (500 μA). These experiments, conducted prior to 

the observation of detectable CBV responses at 300 μA, nevertheless fall within normal 

amplitude ranges (or lower) for rodent DBS-fMRI experiments (140, 170). Stimulation 

frequencies were varied in a pseudo-randomized order (i.e., 130, 40, 70, 200, 10 Hz), 

consistent across subjects yet designed to eliminate potential stimulation frequency order 

effects. The application of a fixed pulse duration in this experiment (i.e., 90 μs), while 

varying total charge delivered by stimulation frequency, was chosen to mimic the short 

pulse durations used clinically, which may be biased for targeting axons over somata (171). 

Each DBS frequency scan was repeated 5-times per rat for within-subject/session 

averaging (note that all descriptions of n refer to total rat number). An additional rest 

period of at least two min was given between all evoked-fMRI DBS scans (electrical and 

optogenetic [see below]) to allow for neurovascular recovery.  
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 For Experiment 3, fcMRI scans were acquired using EPI scan parameters identical to 

those for evoked-fMRI data (see above), however with a 5 min (300 frame) scan duration 

(n = 7). First, a pre-stimulation (“resting”) baseline scan was acquired, wherein no NAc-DBS 

was applied. Immediately afterwards, a second fcMRI scan was acquired with 

simultaneous, continuous 130 Hz NAc-DBS (300 μA). This was again followed by a resting, 

post-stimulation scan in which no DBS was applied.  

 In Experiment 4, a pilot experiment examining the evoked-fMRI responses to 

optogenetic stimulation at NAc (n = 4 for ChR2; n = 2 for EYFP control), a 473 nm 

wavelength diode-pumped solid-state (DPSS) laser (model BL473T8-200, Shanghai Laser & 

Optics Century, Shanghai, China) was connected via coupler to a homemade patch cable 

terminating above the chronically-implanted optic fibers. Wavelength-specific light output 

at the terminating end of the patch cable was pre-calibrated to 20 mW using a wattage 

meter. Optogenetic stimulation periods consisted of a series of TTL-triggered light pulses 

with a stimulation frequency of 40 Hz and pulse duration of 5 or 10 ms. A 100 s block 

design paradigm was implemented, consisting of 20 s rest (stimulation OFF) followed by 

two 10 s stimulation periods (stimulation ON), with intervening and final rest periods of 30 

s. The use of a two stimulation period design was chosen to enhance detection sensitivity 

for within-scan optogenetically-driven fMRI signal changes through the inclusion of two 

stimulation periods, and matches prior studies from our group demonstrating robust 

optogenetically-driven fMRI responses (172, 173). 

 
Stimulus-Evoked Data Processing and Statistical Analyses 
 
 Preprocessing and image analysis was performed using SPM codes and a custom-

written program in Matlab (MathWorks Inc., Natick, MA) similar to our previous DBS-fMRI 
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studies (132, 133, 140). CBV fMRI data were automatically realigned to the first volume of a 

well-positioned subject. These datasets were semi-automatically skull-stripped using a 

thresholding method and coregistered to an anatomical MRI rat atlas (174). 

 Functional DBS response maps were generated using the general linear model 

(GLM), statistical significance was set at p ≤ 0.05. To control for multiple comparisons, the 

Benjamini and Hochberg/ Yekutieli procedure for controlling false discovery rate was 

utilized (175). All images were smoothed by applying a mean filter with a 3 × 3 kernel, and 

overlaid on an anatomical MRI rat atlas (174) or group-averaged raw EPI data for 

visualization. Responses are expressed in T-score units ranging from 2 to 10.  

 For temporal analysis of electrical DBS-evoked CBV changes, 3-dimensional regions 

of interest (ROIs) were defined a priori according to anatomical structural boundaries (174, 

176), and applied onto the coregistered data. The ROIs chosen for time-course analysis 

included only those regions showing statistically significant modulation during 130 Hz DBS 

with 300 μA current (see Figure 2.2).   

 The effect of DBS stimulation frequency on ΔCBV change was calculated by 

averaging CBV values from the 10 second stimulation epochs. The baseline ΔR2* value was 

calculated as follows: Baseline ΔR2* = -1/TE ln(Sprestim/S0), where Sprestim and S0 represents 

MR signal intensity after and before Feraheme injection. Stimulus evoked ΔR2* values 

were calculated as follows: Stimulus evoked ΔR2*= -1/TE ln(Sstim/Sprestim), where Sstim and 

Sprestim are the MR signal intensities during and before stimulation, respectively. Cerebral 

blood volume changes were calculated by dividing stimulus-evoked ΔR2* by baseline Δ

R2* values; because Sprestim is used, this corrects for any potential baseline drift. Statistical 
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comparisons of DBS frequency effects on ΔCBV for each ROI were conducted using 

Graphpad Prism software (San Diego, CA). Two-tailed, one-way repeated measures ANOVA 

tests were conducted with Tukey post-hoc analyses. Statistical significance was set at p ≤ 

0.05.  

 
Functional Connectivity Data Processing and Statistical Analyses 
 
 Functional scans were preprocessed using the Analysis of Functional NeuroImages 

software suite (AFNI v2011-12-21-1014). The workflow included discarding the first 20 

volumes, slice-timing correction, motion correction, alignment to a pre-existing high-

resolution T2-weighted template, spatial smoothing (Gaussian kernel FWHM = 1.5 mm), 

low-pass filtering (0.001 Hz), and regression of whole brain signal and the six motion 

parameters. The number of volumes discarded was increased from the traditional number 

(approximately 3-10) in order to ensure DBS-related changes from the initial stimulation 

were minimized. Furthermore, warping in the alignment procedure was limited to shifts 

and rotations to avoid unnecessary shearing and scaling of brain regions with signal drop-

out associated with the DBS electrode. fcMRI analyses were conducted using the temporal 

correlation method. Fisher-Z transformed correlation matrices were generated using the 

average functional time series extracted for each region-of-interest (ROI) in the template 

atlas. Left (LH) and right hemispheres (RH; ipsilateral to DBS electrode) ROIs were 

analyzed separately yielding correlation matrices detailing within and between 

hemisphere connectivity. The ROIs were further separated into two putative networks, a 

NAc-DBS network consisting of regions with robust DBS-evoked responses, as well as the 

ventral tegmental area (due to its highly established involvement in NAc circuitry)(46) 

versus Other, a network made up of 30 miscellaneous brain regions. The NAc-DBS network 
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included the following 15 regions: prelimbic cortex (PLC), infralimbic cortex (ILC), 

orbitofrontal cortex (OFC), cingulate cortex (CC), insula, nucleus accumbens (NAc), anterior 

striatum (AS), ventral pallidum (vPall), septum (Sept), lateral hypothalamus (lHyp), 

amygdala (Amyg), bed nucleus of the stria terminalis (BNST), mediodorsal thalamus 

(MDT), ventral hippocampus (vHipp), and the ventral tegmental area (VTA). Repeated 

measures analyses of variance (MATLAB, rANOVA) were implemented in order to test the 

effects of the stimulation paradigm (Pre-DBS Rest, DBS, Post-DBS Rest) and the interaction 

with mean connectivity responses within and between hemispheres (RH, LH, RH↔LH) 

across animals (n = 7). P-values were assessed using the more conservative lower-bound 

estimate (plb) in order to correct for potential violations in symmetry.  

 Individual connections, or pair-wise correlations (i.e. NAc↔OFC, etc), were further 

evaluated in the context of the stimulation paradigm and relative direction of effect 

(Connectivity versus Condition). Direction of effect was determined by fitting each 

significant (rANOVA, p ≤ 0.05 uncorrected) set of pair-wise connections with a 2nd-order 

polynomial. The resulting sign of the quadratic term was used to categorize connections as 

either enhanced (increased correlation) or suppressed (increased anti-correlation). Pair-

wise connections with weak modulation (|Z-corr.| < 0.10) were ignored. Finally, connections 

were grouped based on network classifications (sensorimotor, executive, limbic, and 

between network connections) and then visualized on coronal and volumetric 

representations of the rat template brain.  
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Optogenetic Constructs           
 
 For optogenetic experiments, neuronal opsin expression was achieved using adeno-

associated viral vectors (AAV, serotype 5), encoding either a humanized variant of 

ChannelRhodopsin-2 (hChR2; H134R) fused to an enhanced yellow fluorescent protein 

(EYFP), or EYFP alone. Both constructs were placed under the calcium-calmodulin kinase 

IIα (CaMKIIα) promoter to target striatal neurons. Viral titers were approximately 5.0 x 

1012 viral genome/ml. All viruses were obtained from the Vector Core at the University of 

North Carolina at Chapel Hill. 

 
Histology 
 
 Following scan procedures, rats were deeply anesthetized with a 1-2 ml cocktail of 

pentobarbital sodium and phenytoin sodium (Euthasol) and transcardially perfused with 

saline followed by 10% formalin. Extracted brains were stored overnight in 10% formalin 

and transferred to a 30% sucrose solution (in DI water) for 2-3 days, until brains sunk to 

bottom of storage bottles. Brains were cut to 40 μm thick sections on a freezing microtome 

and mounted on glass slides for fluorescent imaging. Vectashield mounting medium with 

DAPI stain (Vector laboratories, Item # H-1200) was used to provide a cell body 

counterstain. Slides were imaged using a Zeiss 780 confocal microscope.  

 
2.3 Results   
 
 Electrode targeting accuracy within the NAc was verified using T2-weighted 

anatomical scans (Figure 2.1B). Given the possibility of current spread to the shell region 

during DBS, we did not differentiate between these anatomical subdivisions in this study. 
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Figure 2.1. (A) Schematic of experimental imaging setup with a custom single loop surface 
coil and a tungsten microwire electrode. (B) Electrode tip mapping to the NAc for all 
electrical DBS subjects (n = 9). Tip placements were estimated using T2-weighted anatomical 
scans, which we deemed satisfactory given the relatively large size of the NAc (including 
anteroposterior distance), as well as the reduced electrode artifact. 
_________________________________________________________________________________________________________ 
 
 To evaluate the downstream neural circuitry modulated by NAc-DBS at 130 Hz (300 

μA), CBV functional activation maps were generated using an evoked-fMRI acute 

stimulation paradigm (Figure 2.2). These maps revealed positive CBV responses to NAc-

DBS in many brain regions with known executive and/or limbic functions; these included: 

amygdala, infralimbic cortex, lateral hypothalamus, NAc, prelimbic cortex, septum, ventral 

hippocampus, and ventral pallidum. Positive CBV changes observed along the electrode 

tract were time-locked to the stimulation period, and not present in DBS-fMRI studies 

conducted with the same electrode at different targets (e.g., thalamus) (132), strongly 

suggesting a neural origin. Minor CBV decreases were also detected in a small subregion of 

the dorsolateral striatum. Interestingly, although each of these regions has known 

anatomical connectivity with the NAc (in many cases as nonreciprocal glutamatergic inputs 

to the NAc) (177), anatomical connectivity alone was insufficient to predict responsive 

brain regions. For example, the ventral tegmental area, which is densely and reciprocally 
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connected to the NAc (178, 179), did not show detectable CBV modulation by 130 Hz NAc-

DBS (see Figure 2.2 and Supplemental Figure S2.3).  

_________________________________________________________________________________________________________ 

 
Figure 2.2. Functional CBV activation maps by 130 Hz NAc-DBS (300 μA; n = 5). CBV 
modulation was largely ipsilateral to the stimulated hemisphere, was predominantly 
positive in direction, and included both cortical and subcortical CBV modulation. Notable 
regions demonstrating CBV increases included the prefrontal cortex, NAc, lateral 
hypothalamus, amygdala, ventral hippocampus and others. CBV decreases were also 
detected within a small region of the ipsilateral dorsal striatum. 12 slices were acquired in 
each scan, with numbers below slices denoting relative distance from bregma (in mm). Color 
bar denotes t score values obtained by GLM analyses, with a significance threshold of p < 
0.05. Functional activation maps for all additional tested frequencies are located in 
Supplemental Figures S2.4. 
_________________________________________________________________________________________________________ 
 
 Next, we undertook fcMRI experiments to study the effects of NAc-DBS over longer 

time periods (minutes). Previous electrophysiological and neuroimaging studies have 

provided evidence of network synchrony modulation by high frequency NAc-DBS (156, 

180). Exploiting the capability of fcMRI to measure functional connectivity on a whole-

brain scale, we mapped global network changes induced by NAc-DBS at 130 Hz (300 μA). 

Mean correlation matrices were generated for each stimulus condition (Pre-DBS, DBS, 
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Post-DBS) across 90 anatomically-defined ROIs (45 ROI’s per brain hemisphere) (Figure 

2.3A). These ROIs were grouped into two pre-defined networks, based on our evoked fMRI 

findings (see Methods; NAc-DBS [#s 1-15] and Other [#’s 16-45]). A complete listing of 

ROIs and network groupings is provided in the Figure 2.3 key and associated figure 

caption. For the Pre-DBS condition, bilateral connectivity was evident between homologous 

ROIs, and for certain structures appeared more robust (i.e. PLC, ILC, OFC, CC, Insula, Motor, 

etc). The presence of bilateral functional connectivity, as displayed in our datasets, 

represents a key feature of fcMRI (181). Except for a small number of ROIs (i.e. NAc↔OFC), 

within hemisphere connectivity was overall low in the Pre-DBS condition, possibly due to 

the short sampling period (5 mins per trial). However, during NAc-DBS of the RH NAc, 

within RH connectivity (i.e. ipsilateral to the DBS site) increased between many of the 

“NAc-DBS related network” ROIs, whereas there was little apparent modulation in the 

“Other network”. Between NAc-DBS network connectivity also appeared slightly modulated 

in the DBS condition but for a smaller number of ROIs (i.e. PLC, ILC). Post-DBS connectivity 

for the DBS-NAc network was similar, or perhaps intermittent to the pre-DBS / DBS 

conditions. Next, histograms were generated (Figure 2.3B) and fit as t-distributions for 

each stimulus condition, network, and connectivity grouping (within and between 

hemispheres) using average measures from the connectivity matrices. Consistent with the 

previous observations, NAc-DBS network connectivity within the RH was the only 

distribution to show enhanced positive correlations during DBS stimulation of the RH NAc.  

Repeated measures analyses of variance (rANOVA) were used to statistically validate these 

results across animals. For the NAc-DBS network, the stimulus condition (Pre-DBS, DBS, 

Post-DBS) and interaction between condition and connectivity (RH, LH, RH↔LH) were 
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significant (plb ≤ 0.05); Condition F(2,41) = 7.45, plb = 0.014 and Condition*Connectivity  

F(4,41) = 4.15, plb = 0.033.  

_________________________________________________________________________________________________________ 
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Figure 2.3. fcMRI modulation by 130 Hz NAc-DBS. (A) Mean correlation matrices (n = 7) for 
each stimulus condition (Pre-DBS, DBS, Post-DBS) using 45 regions-of-interest (ROIs, see 
Figure Key). ROIs were chosen a priori, with reference to anatomical regions described in a 
standard rat brain atlas (176). Note the presence of between-hemispheric regional 
connectivity (displayed as a red diagonal line) in all matrices. (B) Histograms and t-
distribution fits for each stimulus condition, network (NAc-DBS [ROIs #s 1-15] and Other 
[ROIs #’s 16-45]) and connectivity grouping (within and between hemispheres) using 
correlation measures from the average correlation matrices. Abbreviations: PLC: Prelimbic 
Cortex; ILC: Infralimbic Cortex; OFC: Orbitofrontal Cortex; CC: Cingulate Cortex; Insula: 
Insular Cortex; NAc: Nucleus Accumbens; AS; Anterior Striatum; vPAll: Ventral Pallidum; 
Sept: Septum; lHyp: Lateral Hypothalamus; Amyg: Amygdala; BNST: Bed Nucleus of the 
Stria Terminalis; MDT: Mediodorsal Thalamus; vHipp: Ventral Hippocampus; VTA: Ventral 
Tegmental Area; AC: Auditory Cortex; AOB: Accessory Olfactory Bulb; DLS: Dorsolateral 
Striatum; DMS: Dorsomedial Striatum; ENT: Entorhinal Cortex; GPe: External Globus 
Pallidus; Motor: Motor Cortex (Primary and Secondary); OT: Olfactory Tubercle; PAG: 
Periaqueductal Grey; PPTg: Pedunculopontine Tegmental Nucleus; PC: Parietal Cortex; 
Piriform: Piriform Cortex; pHyp: Posterior Hypothalamus; pThal: Posterior Thalamus; S2: 
Secondary Somatosensory Cortex; SN: Substantia Nigra; Somato: Primary Somatosensory 
Cortex; STN: Subthalamic Nucleus; TeA: Temporal Association Cortex; VL: Ventrolateral 
Thalamus; VPL: Ventral Posterolateral Thalamus; Visual: Visual Cortex (Primary and 
Secondary); ZI: Zona Incerta; dHipp: Dorsal Hippocampus; dRaphe: Dorsal Raphe Nucleus; 
lHab: Lateral Habenula; mPOA: Medial Preoptic Area; SC: Superior Colliculus; vHyp: Ventral 
Hypothalamus. 
_________________________________________________________________________________________________________ 
 

Visualization of significantly (rANOVA, p < 0.05 uncorrected, ΔZ-Corr > 0.10) enhanced 

(increased correlation) or suppressed (decreased correlation or increased anti-correlation) 

individual pair-wise connections grouped by functionally-defined networks (Sensorimotor, 

Executive, Limbic, and Between Network Connections) paralleled the above observations 

and revealed additional information that was not readily apparent in the original 

classification of the data (Figure 2.4; blue-suppressed, red-enhanced). Enhancement was 

primarily restricted to connections between RH limbic structures, however consistent 

suppression was also evident, mainly within the sensorimotor network and between limbic 

and motor regions. The sensorimotor network showed no significant enhancement, and 

moreover, the executive network was devoid of suppressed connections. Enhancement was 
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relatively robust (Figure 2.4, ΔZ-Corr > 0.20 thick red lines) for the following connections; R-

NAcR-Sept, R-PLC and R-ILCR-PLC. Additional analyses of fcMRI data are provided in 

Supplemental Figures S2.5-6. 

 

 
Figure 2.4. Network-level visualization of pair-wise fcMRI modulations during 130 Hz 
NAc-DBS. Significant (rANOVA, p ≤ 0.05 uncorrected, ΔZ-Corr > 0.10) enhanced (red) or 
suppressed (blue) individual pair-wise connections grouped by functionally-defined 
networks (Sensorimotor, Executive, Limbic, and Between Network Connections). Thick red 
lines represent ΔZ-Corr > 0.20 at R-NAcR-Sept, R-PLC and R-ILCR-PLC. 
_____________________________________________________________________________________________________ 
 
 To investigate the frequency-dependency of CBV responses to NAc-DBS, we next 

conducted additional evoked-fMRI experiments with five DBS frequencies (10, 40, 70, 130 

and 200 Hz). To achieve a more robust measurement of the frequency effects and 

circumvent the issue of low DBS-fMRI sensitivity at low stimulus amplitude (182) this 

experiment was conducted using a slightly higher current intensity at 500 µA. The results 

generated CBV response patterns that were qualitatively similar, yet more robust 

responses than 300 μA (see Supplemental Figure S2.4). This current remains to be lower 



 49 

than in many previously reported DBS-fMRI studies (132, 140, 182, 183), and we thus do 

not expect significant off-target effects. To further reduce bias towards characterizing off-

target areas with this stronger current amplitude, we only evaluated anatomical ROIs that 

were significantly modulated with 300 μA stimulation (at 130 Hz; Figure 2.2). This ROI-

based analysis included two complementary measures of regional activity modulation: CBV 

time-courses and amplitudes; both are quantitative measures of percent CBV changes. CBV 

time-courses generated from 10 Hz NAc-DBS resulted in weak or no change in CBV (though 

see Supplemental Figure S2.4 demonstrating sparse CBV increases in and surrounding 

the NAc), whereas all other frequencies resulted in region-specific CBV increases of similar 

amplitudes and rise/decay kinetics (Figure 2.5A). The absence of distal CBV responses 

with 10 Hz NAc-DBS is remarkable, as DBS at this stimulation frequency has been shown to 

generate robust downstream fMRI signals at other target locations (e.g., the 

ventroposteromedial thalamus) (182). In general, NAc-DBS induced sharp rises in CBV that 

returned to baseline values by the end of the test period (i.e., with 40 s of recovery). The 

largest CBV increases were detected in the NAc, infralimbic, and prelimbic cortices, each 

displaying maximal increases in CBV ~20% above baseline values. Among all regions 

showing significant and detectable responses, the ventral hippocampus displayed perhaps 

the weakest, with a maximal CBV increase of just over ~5% from baseline. Interestingly, 

the duration to peak CBV amplitude varied in a region-specific manner. For example, CBV 

continued to increase in the lateral hypothalamus and septum for the duration of the 

stimulation period, while CBV values peaked and decayed more rapidly in prefrontal 

cortex. Quantitative comparisons of CBV amplitude modulation by NAc-DBS at varying 

frequencies are shown in Figure 2.5B. One-way ANOVAs revealed a significant main effect 
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of NAc-DBS frequency on the amplitude of CBV change for all regions examined. 

Remarkably, post-hoc testing revealed that while 40-200 Hz NAc-DBS significantly 

increased CBV compared to the 10 Hz condition, no other significant frequency-dependent 

effects of NAc-DBS on CBV amplitude were noted. That is, increasing the frequency of NAc-

DBS from 40 to 200 Hz, a five-fold difference, did not further modulate the functional 

circuit responses in the structures that we investigated. Critically, evoked responses were 

generally consistent across multiple stimulation trials, arguing against the possibility of 

stimulation-induced neural damage.  

____________________________________________________________________________________________________ 

Figure 5. Temporal dynamics (A) and amplitudes (B) of CBV responses to NAc-DBS across 
five stimulation frequencies (10, 40, 70, 130, 200 Hz; n = 8 per frequency), demonstrating 
that CBV responses to NAc-DBS were largely stimulation frequency-insensitive. All subjects 
were scanned with 500 μA DBS, except one subject with 600 μA. CBV responses are 
expressed as a percent change from pre-stimulation baseline values. Amplitudes were 
calculated as mean percent CBV changes during stimulation epochs (10 seconds; scan frames 
21-30). Anatomically-defined ROIs are highlighted as figure inserts in 5A (Single slice 
shown; note that many ROIs encompassed multiple slices). *p ≤ 0.05 for 10 Hz compared to 
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all other frequencies (no other statistically significant comparisons). Datapoints are 
presented as mean ± SEM. 
_______________________________________________________________________________________________________ 
  
 In addition to electrical stimulation, optogenetic tools are being increasingly 

exploited for mapping functional connectivity among neural circuits. Several studies have 

also employed optogenetic stimulation to elucidate potential mechanisms of therapeutic 

DBS action, including at the nucleus accumbens target (184). In preliminary experiments 

reported here, we explored the possibility of using optogenetic NAc stimulation to induce 

detectable downstream fMRI signals. This pilot experiment was performed in rats that 

received viral injections of an adeno-associated virus encoding ChR2 under the neuron-

specific CaMKIIα promoter. A representative example of virally-mediated ChR2 expression 

in NAc neurons is provided in Figure 2.6A. Optogenetic stimulation at 40 Hz evoked a local 

positive CBV signal in the NAc, with no significant CBV modulation observed outside the 

target region (Figure 2.6B-C). Ongoing studies in our laboratory using a completely 

identical experimental setup and analysis pipeline have revealed robust optogenetic-

induced responses in downstream areas far from the stimulation site (172, 173). Thus, we 

are confident that our findings do not reflect a technical failure to manipulate NAc neurons 

optogenetically. 

 A recent study has demonstrated hemodynamic changes following blue light laser 

stimulation (50% duty cycle) in naïve rat brain, possibly due to a laser heating artifact 

(185). To evaluate the possibility of such an artifact as the source of the observed 

optogenetic response at the NAc, we repeated our optogenetic-fMRI experiments in control 

rats expressing an inert EYFP fluorophore in the NAc. In these animals, no significant CBV 

modulation by NAc-DBS was observed (Figure 2.6B-C). It is worth noting that our laser 
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pulse duration was substantially shorter than that previously reported to induce laser 

artifacts, likely explaining the absence of such a response caused by laser heating. Local 

heating artifacts in optogenetic-fMRI experiments have since been examined in greater 

detail, including suggested control experiments to rule out such artifacts as causal in fMRI 

signal generation (186). 

______________________________________________________________________________________________________ 

 
Figure 2.6. Optogenetic stimulation at NAc evokes local CBV increases. (A) Schematic of 
optogenetic stimulation at NAc (top), representative confocal image confirming ChR2 
expression (green) in the NAc (bottom). Counterstain is DAPI (blue). ChR2 expression 
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appeared strongest in the core subregion of the NAc. (B) Functional CBV responses induced 
by 40 Hz optogenetic stimulation at NAc in animals expressing ChR2 or EYFP (AAV5 using 
the CaMKIIα promoter; n = 4 and 2, respectively). Note that optogenetic stimulation of the 
NAc resulted in CBV increases locally within the stimulated region, with no detected 
downstream responses. No responses were observed in EYFP subjects. Anteroposterior slice 
coordinates are as described for Figure 2.2. Temporal CBV dynamics (C) and amplitudes (D) 
within the NAc during local optogenetic stimulation. Stimulation-evoked CBV amplitude 
changes were calculated as described in Methods. 
_____________________________________________________________________________________________________ 
 
 
2.4 Discussion 
 
 In this study, we performed multimodal fMRI procedures to identify neural circuitry 

modulated by NAc-DBS in a healthy rat model.  Evoked fMRI with electrical DBS uncovered 

a broad range of cortical and subcortical regions displaying stimulation-induced CBV 

increases, including prefrontal cortex, lateral hypothalamus, amygdala, septum, and ventral 

hippocampus. fcMRI provided corroborative evidence of robust network modulation by 

NAc-DBS, including suppression of sensorimotor and enhancement of executive and limbic 

network connectivity. Lastly, we performed opto-fMRI with selective and direct stimulation 

of NAc neurons, showing time-locked CBV increases exclusively localized in the NAc during 

40 Hz optical stimulation. 

 Although high frequency DBS is generally reported to locally silence neuronal 

activity (187, 188), we noted only CBV increases in the target region (i.e., the NAc) across all 

tested stimulation frequencies. This finding is consistent with a number of human 

neuroimaging studies reporting increases in hemodynamic responses or glucose 

metabolism in the subthalamic nucleus (STN) during STN-DBS (152). Notably, each of these 

studies (including our own) uses indirect measures of neuronal activity, and thus this 

seeming paradox may possibly be explained by an uncoupling of hemodynamic responses 

from neuronal spiking during high frequency stimulation. DBS may induce both 
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depolarization blockade and augmented presynaptic activity, either of which may 

potentially increase local metabolic demand in the absence of somatic spiking (189). In this 

context, it is also interesting to note several reports of local increases in c-fos expression 

following DBS of the NAc, STN, or pedunculopontine tegmental nucleus in rats (190-192).  

Future studies may determine the nature and extent of this possible uncoupling, which has 

strong implications for the interpretations of neuronal activity based on indirect 

experimental measures such as fMRI or immediate early gene expression.   

 Complementing our evoked-fMRI findings of direct limbic circuit modulation by 

NAc-DBS, fcMRI measurements revealed robust enhancements in functional connectivity 

between many of these same regions. More generally, limbic and executive network 

connections were primarily enhanced but those in the sensorimotor network were largely 

suppressed. These findings suggest that NAc-DBS modulates multiple functional network 

domains, spanning the entire brain. Although these functional connectivity maps alone do 

not allow for causal inferences relating to the therapeutic mechanism of NAc-DBS, they 

should provide an invaluable resource for the generation of future, hypothesis-driven DBS 

studies. 

 A central tenet of DBS therapy is its dependence upon high stimulation frequencies. 

One widely held hypothesis of DBS action posits that high frequency stimulation masks 

pathological endogenous circuit activity, thus creating an “informational lesion” at the DBS 

target (although other mechanisms have also been posited) (193-195). We were thus 

surprised to find that the functional activation profile obtained by NAc-DBS in rats was 

remarkably insensitive to a wide range of stimulation frequencies; indeed, 40 Hz 

stimulation modulated CBV across all tested areas in a manner quantitatively similar to all 
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higher frequencies tested, including 200 Hz. Although we used a healthy rodent model, 

precluding behavioral tests of DBS efficacy, our evoked-fMRI results highlight strong 

parallels in circuit modulation by either moderate or high frequency stimulation of the NAc. 

Further, a recent preclinical study of NAc-DBS for cocaine addiction reported similar 

attenuation of reinstated drug-seeking behavior at 20 or 160 Hz, suggesting that some 

behavioral effects of NAc-DBS may also be frequency-insensitive (158). The frequency 

sensitivity of symptom amelioration by NAc-DBS would be interesting to study in the 

clinical setting, particularly in light of the possibility of prolonging the battery life of DBS 

pulse generators using lower frequency stimulation protocols.  

 In this study, we have also provided preliminary data concerning the fMRI signal 

pattern generated by optogenetic stimulation of the NAc in a small number of subjects. We 

were surprised to discover that, in our setup, optogenetic NAc stimulation evoked 

detectable CBV increases solely within the NAc, whereas identical parameters used at other 

target regions revealed significant downstream responses (172, 173). The lack of distal 

responses in the present experiment is particularly perplexing in that neural activity within 

the target region itself was clearly and robustly modulated by optogenetic stimulation. The 

reason for such large differences in circuit modulation patterns between optogenetic and 

electrical NAc stimulation is unclear, although several possibilities exist. First, stimulus 

intensity differed between optogenetic and electrical DBS in this study, which may 

contribute to the differing activation patterns. Second, although we have assumed that both 

electrical and optogenetic stimulation delivered at 40 Hz would activate (rather than 

suppress) neural circuits, this was not formally tested. Another possibility concerns more 

fundamental differences between these stimulation approaches, such as the confinement of 
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optogenetic stimulation to the opsin-expressing neurons and their efferent fibers. 

However, we also cannot entirely rule out the possibility that ChR2 was expressed in a 

small population of non-neuronal cells. The most likely explanation for our findings, in our 

opinion, is that most of the circuits recruited by NAc-DBS arose from antidromic activation 

of axons or fibers of passage. In this scenario, no modulation of these circuits (i.e., those 

that send nonreciprocal afferents to the NAc) would be expected during optogenetic NAc 

stimulation. Future studies, more comprehensively mapping fMRI (and 

electrophysiological) responses to optogenetic vs. electrical NAc stimulation, may be 

undertaken to more directly test this hypothesis .  

 There are several limitations to the present study to consider. First, although the 

NAc is generally considered to be comprised of two related, yet distinct subdivisions (core 

and shell) each with distinct circuit features (46, 177). We did not distinguish between 

these two areas in our experiments. Indeed based on the obtained functional response 

profiles, both regions were likely recruited by our stimulation paradigm. The core and shell 

subregions are both candidate therapeutic targets for neuropsychiatric DBS, but the 

efficacy of each may strongly depend upon the disorder being treated. For example, NAc-

DBS for OCD generally targets the core region (196, 197), while some preclinical studies 

suggest that the shell is more effective for addictive disorders (160, 191, 198). Other 

behavioral phenotypes, such as quinpirole-induced checking behavior (a pharmacological 

model of OCD symptoms), are similarly influenced by NAc-DBS of the core or shell (199). 

Further studies are necessary to elucidate the downstream circuitry that confers unique 

therapeutic properties of DBS at either NAc subdivision. 
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 A second major limitation of our study was the usage of dexmedetomidine sedation 

(168, 181), which may alter the responsivity of neural circuits to the effects of DBS. Related 

to this point, we were unable to reliably achieve robust fMRI responses with current 

amplitudes below 300 μA (data not shown), and thus our experiments relied upon higher 

amplitudes than those generally used in preclinical DBS studies in awake rodents (typically 

100-150 μA) (156, 157, 160), although amplitudes higher than 150 μA have been reported 

for studies in both awake and anesthetized states (159, 200). We postulate that the 

relatively higher current amplitudes needed for DBS effects in our model may have been 

necessitated by the sedation state, the detection sensitivity of our fMRI measurements, or 

both.  

 A third limitation concerns the use of an acute stimulation paradigm, which was 

necessary in the context of our experimental MR setup.  Similar OFF-ON-OFF paradigms are 

traditionally used in DBS-fMRI studies (140, 141, 155, 201), although they may provide a 

biased perspective on DBS-evoked changes in functional connectivity. A recent report by 

Ewing and Grace highlights the importance of studying DBS network effects under chronic 

stimulation conditions (156). In that study, local field potentials (LFPs) were recorded in 

multiple brain regions of rats receiving continuous NAc-DBS for a period of 5 days. Some of 

the observed DBS-induced network changes were transient, including enhanced delta 

power in the mediodorsal thalamus and orbitofrontal cortex, whereas other network 

effects emerged over time (e.g., decreased alpha power in the mediodorsal thalamus). This 

work highlights the importance of studying DBS effects over more translationally-relevant 

timespans (days or weeks, if experimentally feasible). fcMRI, which does not require 
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within-session baseline (“OFF”) periods, provides an ideal experimental measure for future 

longitudinal examinations of DBS effects across time and brain regions.    

 In the present study, we identified a robustly recruited network of cortical and 

subcortical circuits modulated by NAc-DBS, many of which are likely to be antidromically-

stimulated. Remarkably, the extent of this circuit modulation was relatively frequency-

insensitive, as demonstrated by our evoked-fMRI findings. Collectively, our findings should 

facilitate the understanding of DBS mechanisms and mapping of therapeutic circuits at this 

important clinical target. Future NAc-DBS fMRI studies should examine the circuit- and 

network-level responses to therapeutic stimulation in neuropsychiatric disease models, 

wherein pathology-specific circuit disruptions (and putative amelioration by DBS) may be 

explored. 
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CHAPTER 3: FUNCTIONAL CIRCUIT MAPPING OF STRIATAL OUTPUT NUCLEI  
USING SIMULTANEOUS DBS-FMRI 

 
 
3.1 Introduction 
 
 The striatum represents the major input nucleus of the basal ganglia, critical for the 

processing and regulation of motor, cognitive, and limbic functions. Striatal output 

pathways within the basal ganglia are classified as “direct” or “indirect”, based on 

neurochemical phenotype and axonal projection patterns. Specifically, direct pathway 

striatal neurons express the D1 dopamine receptor and project to the substantia nigra pars 

reticulata (SNr) and/or internal globus pallidus (GPi) (i.e., the canonical basal ganglia 

outputs), whereas indirect pathway striatal neurons express the D2 dopamine receptor 

and innervate the external globus pallidus (GPe). Both the direct and indirect pathways 

ultimately converge upon thalamocortical relays, through direct innervation of the basal 

ganglia outputs (SNr/GPi), or a polysynaptic route (GPe -> STN), respectively. According to 

long-upheld models of the basal ganglia, these pathways are functionally antagonistic; the 

direct pathway activates thalamocortical circuits, whereas the indirect pathway facilitates 

their suppression (via disinhibition of the SNr/GPi) (38, 202).   

 In recent years, this relatively simplistic framework of direct/indirect pathway 

function has come under increasing scrutiny (22, 42, 115, 116, 203-205). Although evidence 

continues to support the notion of functional antagonism between these pathways (36, 39, 

206), additional anatomical and functional studies have identified unanticipated circuit 
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connectivity in both the SNr and GPe (among other basal ganglia nuclei). Recent examples 

in the GPe include the identification of a pallidocortical projection that entirely bypasses 

thalamic relays to modulate frontal cortex (76, 77), as well as pallidostriatal innervation by 

so-called “arkypallidal” GPe neurons (70, 72). The SNr, generally conceptualized as an 

inhibitory nucleus, contains a subset of glutamatergic neurons recently mapped to 

innervate and excite the reticular thalamus, a higher-order non-relay region (207). The 

functional roles of these novel circuit elements are likely complex and not easily predicted. 

Experimental approaches that allow for the large-scale characterization of functional 

circuit connections will greatly facilitate our understanding of SNr and GPe connectivity, 

further elucidating the functional roles of both traditional and newly-established circuits. 

 Functional magnetic resonance imaging (fMRI) represents a powerful tool to study 

neural circuit modulation on a global scale. When combined with neural stimulation 

approaches (e.g., deep brain stimulation; DBS), fMRI allows for the relatively unbiased 

identification of brain areas functionally interconnected with the stimulation target (133, 

140, 146, 152, 155, 163, 182, 207-209). Electrical DBS is notable as a neural stimulation 

method for its ability to modulate activity within both inputs and outputs of the target 

nucleus (the former through antidromic signal propagation), although it does lack cell-type 

specificity and is also capable of affecting fibers of passage (171). In addition to identifying 

putatively connected areas, DBS-fMRI might also shed light on their functional excitatory 

and/or inhibitory relationships (based on whether the hemodynamic change is positive or 

negative). Importantly, both the recruitment of select circuits, as well as the directionality 

of their fMRI responses, may be strongly contingent upon stimulation frequency. For 

example, low frequency (10 Hz) electrical stimulation of the ventrolateral thalamus in pigs 
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generated a positive blood-oxygen-level-dependent (BOLD) response in motor cortex, 

whereas high frequency (130 Hz) stimulation evoked a negative BOLD response in the 

same region (210). Thus, in varying stimulation parameters, DBS-fMRI can shed light on the 

tuning properties of functionally connected circuits. To our knowledge, neither the SNr nor 

GPe have previously been studied by DBS-fMRI.  

 In the present study, we employed simultaneous DBS-fMRI in the normal rat to map 

the functional circuits of the SNr and GPe. These areas represent the major striatal output 

nuclei of the rat direct and indirect pathways, respectively. Evoked-fMRI revealed cerebral 

blood volume (CBV) modulation by GPe- or SNr-DBS in a diverse complement of both 

overlapping and distinct brain regions, including convergent and unexpected CBV 

decreases within striatum, and GPe-DBS-evoked positive modulation of frontal cortex. 

Functional connectivity, measured with functional connectivity fMRI (fcMRI) (122, 211), 

was preferentially modulated in the hemisphere ipsilateral to SNr- or GPe-DBS, and readily 

reversed following cessation of stimulation. Notably, both circuit and network modulation 

by DBS at both targets (measured by evoked- and fcMRI, respectively) was sensitive to 

stimulation frequency. 

 
3.2 Materials and Methods 
 
Subjects 
 
 Thirteen adult male Sprague-Dawley rats (300–500 g body weight; Charles River 

Laboratories, Wilmington, MA, USA) were used in this study. All procedures were 

performed in accordance with the National Institutes of Health Guidelines for Animal 

Research (Guide for the Care and Use of Laboratory Animals) and approved by the 

University of North Carolina Institutional Animal Care and Use Committee. Animals were 
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housed under environmentally-controlled conditions (12 h normal light/dark cycles, 20-

23°C and 40-60% relative humidity), with food and water provided ad libitum. 

 
DBS Electrode Implantation Surgery 
 
 Rats were anesthetized using nosecone-supplied isoflurane (1.5-2%), and head-

fixed within a stereotaxic frame (Model 962, Kopf Instruments, Tujunga, CA, USA).  

Following head shaving and exposure of the skull, four small burr holes were drilled: three 

for the positioning of MR-compatible miniature brass screws (Item #94070A031, 

McMaster Carr, Atlanta, GA, USA) and one for the insertion of a bipolar DBS electrode. Each 

electrode was custom-made using two-channel tungsten microelectrodes (A-M Systems, 

WA, U.S.A.), with a 50 μm diameter (single lead), as previously described (132). These 

electrodes were fully insulated with polyimide except at the tips, and the leads were 

adhered for direct contact using a saturated sucrose solution. The in vitro impedance of 

these electrodes was previously measured as 18-22 kΩ at 1 kHz (132). 

  Electrodes were implanted targeting either the right SNr or GPe (n = 6 and 7, 

respectively). Stereotactic implantation coordinates were generated using a standard rat 

brain atlas (176), and are described as follows, in reference to bregma (anteroposterior, 

AP; mediolateral, ML) and cortical surface (dorsoventral, DV): SNr (AP -5.5 mm, ML +2.2 

mm, DV -7.7 mm); GPe (AP -0.96 mm, ML +2.8 mm, DV -5.8 mm). Following electrode 

implantation, the placement was sealed using dental acrylic and the wound site was further 

protected with surgical sutures. A post-surgical recovery period of at least 24 hours was 

given prior to fMRI acquisition for each subject. 
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Functional MRI 
 
 The DBS-fMRI experimental protocol is illustrated in Supplemental Figure S3.1. 

Detailed fMRI procedures, including animal handling and scan optimization, are as 

described in Chapter 2 Methods.  

 
Deep Brain Stimulation (DBS) 
 
 Simultaneous DBS with CBV fMRI was acquired in the same manner for all subjects, 

with bipolar and uniformly-distributed unilateral stimulation of the SNr or GPe.  Each 

stimulation period consisted of a series of TTL-triggered biphasic, charge-balanced square-

wave pulses with a pulse width of 500 μs and a stimulation intensity of 300 μA. A 90 second 

block design paradigm was implemented, consisting of a 20 second baseline period 

(stimulation OFF) followed by 10 seconds of stimulation ON, and an additional 60 seconds 

of rest (stimulation OFF). An additional rest period of at least two minutes was given 

between each DBS scan to allow for neurovascular recovery. Stimulation frequencies were 

varied in a pseudo-randomized order (10, 40, 70, 130, 200 and 400 Hz), and each DBS 

frequency scan was repeated 5-times per rat for within-subject/session averaging (see 

Section 2.5).    

 Immediately following evoked-fMRI scan acquisition, fcMRI scans were conducted 

in each subject. These scan series consisted of five, 5 minute scans during which either no 

stimulation or continuous DBS was applied (OFF and ON, respectively; ON consisted of 

stimulation of 300 μA, 500 μs pulse width, varied frequency). The fcMRI scans were 

conducted in succession without rest periods in the following order: Rest1, Stim 40 Hz, 

Rest2, Stim 130 Hz, and Rest3.  
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Evoked-fMRI Data Processing and Statistical Analyses 
 
 Preprocessing and image analysis was performed using SPM codes and custom-

written Matlab (MathWorks Inc., Natick, MA). Details concerning functional response map 

generation are as described in Chapter 2 Methods.  

 For temporal analysis of DBS-evoked CBV changes, 3-dimensional regions of 

interest (ROIs) were defined a priori according to anatomical structural boundaries (174, 

176), and applied onto the coregistered data. The ROIs were chosen according to the 

anatomical areas showing statistically significant modulation in the functional response 

maps. Nineteen ROIs were identified for analysis, all ipsilateral to the DBS target unless 

otherwise noted: cingulate cortex, dorsolateral striatum (ipsi- and contralateral), 

dorsomedial striatum (ipsi- and contralateral), GPe, infralimbic cortex, motor cortex, 

nucleus accumbens, orbitofrontal cortex, pedunculopontine tegmental nucleus, posterior 

hypothalamus, prelimbic cortex, SNr, somatosensory cortex, superior colliculus, ventral 

tegmental area, ventrolateral thalamus, and zona incerta (see Supplemental Figure S3.2). 

The baseline and stimulus evoked ΔR2* values were calculated as described in Chapter 2 

Methods. For each ROI, the CBV signal time-course was plotted across all 90 time frames. 

 DBS-evoked changes in CBV amplitude were also compared across stimulation 

frequencies and ROIs. Stimulus-evoked CBV responses were averaged across the 

stimulation period for each DBS frequency and ROI. These data are presented as mean ± 

SEM. Statistical comparisons of DBS frequency effects on ΔCBV for each ROI were 

conducted using Graphpad Prism software (San Diego, CA). Two-tailed, one-way repeated 

measures ANOVA (rANOVA) tests with Tukey post-hoc analyses were conducted to 

evaluate frequency-dependent responses. Significance level was set at p < 0.05. 
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fcMRI Data Processing and Statistical Analyses 
 
 Functional connectivity MRI datasets were preprocessed using the Analysis of 

Functional NeuroImages software suite (AFNI v2011-12-21-1014).  The workflow included 

discarding the first 20 volumes, slice-timing correction, motion correction, alignment to a 

pre-existing high-resolution T2-weighted template, spatial smoothing (Gaussian kernel 

FWHM = 1.5 mm), band-pass filtering (0.001 – 0.5 Hz), and regression of whole brain signal 

and the six motion parameters. The number of volumes discarded was increased from the 

traditional number (approximately 3-10) in order to ensure DBS-related changes from the 

initial stimulation were minimized. Furthermore, warping in the alignment procedure was 

limited to shifts and rotations to avoid unnecessary shearing and scaling of brain regions 

with signal drop-out associated with the DBS electrode. fcMRI analyses were conducted 

using the temporal correlation method. Fisher-Z transformed correlation matrices were 

generated using the average functional time series extracted for each region-of-interest 

(ROI) in the template atlas. Ipsilateral and contralateral hemispheres ROIs were analyzed 

separately yielding correlation matrices detailing mean within and between hemisphere 

connectivity (SNr: n = 6, GPe: n = 7). Individual connections were further evaluated across 

animals using repeated measures ANOVA models and categorized based on direction of 

effect. For each significant pairwise connection (rANOVA, p < 0.01) a basic correlation 

analysis was carried using a tent function and the resulting sign was used to categorize 

connections as either enhanced (increased correlation) or suppressed (increased anti-

correlation). Each set of significantly modulated connections (enhanced or suppressed) 

was then reanalyzed using post-hoc ANOVAs in order to test the overall effect of condition: 
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Rest1-3, 40 Hz, and 130 Hz. Pair-wise connections with weak modulation (|ΔZ-corr.| < 

0.10) were ignored. Significant main-effects were followed by pair-wise comparisons to 

test for significant differences between conditions. Furthermore, in order to assess the 

potential contribution of global signal regression (GSR), these analyses were repeated 

using data without GSR. The global signal across conditions and animals was also 

compared. Specifically, we calculated the pairwise Fisher’s Z-correlation of the global signal 

across stimulation conditions (Rest1-3, 40 Hz, and 130 Hz) and animals resulting in 10 pairs 

per animal. These values were then analyzed using repeated measures ANOVA to 

determine if there was an overall effect, i.e. a difference in the temporal correlation, which 

would suggest that one or more of the global signals vary as a function of condition. Finally, 

connections were grouped based on network classifications (sensorimotor, executive, 

limbic, and between network connections).  

 
3.3 Results 
 
 The setup for the surface coil and implanted tungsten microwire is shown in Figure 

1A. Electrode tip placements within the SNr and GPe were verified for each subject using 

T2-weighted RARE anatomical images using methods described previously (132, 133, 140) 

(Figure 3.1B-C).  Animals with electrode placements outside of the target regions were 

discarded from the study and excluded from all further experimental analyses. 
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Figure 3.1. (A) Schematic of the experimental setup, including custom surface coil and 
microwire DBS electrode. (B-C) Electrode tip placements within the SNr (B) and GPe (C) of 
all experimental subjects. Tip placements were estimated using T2-weighted anatomical 
scans, which we deemed satisfactory given the relatively large size (including 
anteroposterior distance) of our targets, as well as the minimal electrode artifact.  
_________________________________________________________________________________________________________ 
 
Evoked fMRI 
 
 Both SNr- and GPe-DBS produced significant and frequency-dependent CBV 

responses in several brain structures both within and outside the basal ganglia (Functional 

response maps: Figure 3.2: 40 and 130 Hz; Supplemental Figures S3.4-5: all other 

frequencies; Supplemental Figure S3.3: 130Hz SNr-DBS displayed on EPI). In addition to 

generating functional response maps, CBV time-courses for each DBS target and 

stimulation frequency were calculated for 19 anatomical ROIs (Figures 3.3-4 and 

Supplemental Figures S3.6-7).  
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Figure 3.2. Functional activation maps of CBV modulation by SNr- and GPe-DBS. Two DBS 
stimulation frequencies are shown for each target: SNr- DBS at 40 or 130 Hz (A and B, 
respectively), GPe-DBS at 40 or 130 Hz (C and D, respectively). Notable observations include 
CBV decreases in the striatum at both targets, as well as large, ipsilateral frontal cortical 
modulation by GPe-DBS. At both targets, stimulation responses were largely ipsilateral and 
stronger at 130 Hz compared to 40 Hz. 12 slices were acquired in each scan, with numbers 
below slices denoting relative distance from bregma (in mm). Color bar denotes t score 
values obtained by GLM analyses, with a significance threshold of p < 0.05. Functional 
activation maps for all additional tested frequencies are located in Supplemental Figures 
S3.4-5. 
_________________________________________________________________________________________________________ 
  

10 Hz DBS at either target produced no significantly modulated voxels, including 

within the electrode target region. In contrast, significant and extensive CBV modulation 

was noted at all other frequencies tested (40-400 Hz). The spatial pattern of CBV 

modulation was qualitatively similar across stimulation frequencies, and in some respects 

also similar between SNr and GPe stimulation targets. For example, both GPe- and SNr-DBS 

resulted in CBV changes predominantly ipsilateral to the stimulation site, with the 

exception of the dorsal striatum, which was bilaterally modulated by DBS at either target. 
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SNr-DBS produced negative CBV changes bilaterally in striatum, whereas GPe-DBS 

produced a pattern of positive and negative CBV changes in the ipsi- and contralateral 

dorsal striatum, respectively. Also of note, a “double peak” of CBV modulation was a 

characteristic response to DBS in certain regions, including the ipsilateral somatosensory 

cortex (both DBS targets), and dorsal striatum (SNr-DBS) (Figures 3.3-4), possibly due to 

the recruitment of two distinct circuitries or a delayed neurotransmission effect. Future 

work is necessary to confirm the neuronal mechanism(s) underlying this double-peak 

response. 

 SNr-DBS (40-400 Hz) evoked positive CBV changes in multiple basal ganglia nuclei 

(GPe, substantia nigra striatum), as well as additional areas intimately tied to the basal 

ganglia (pedunculopontine tegmental nucleus, zona incerta, ventral tegmental area) (see 

Figure 3.3 and Supplemental Figure S3.6). Of all regions examined, the substantia nigra 

showed the largest CBV changes (nearly 30% CBV increases at 200 or 400 Hz DBS). In stark 

contrast to GPe-DBS, frontal and prefrontal cortical modulation by SNr-DBS was relatively 

sparse; functional activation maps revealed spatially restricted vasodilation (e.g., in 

cingulate cortex), as well as contralateral vasoconstriction in prefrontal cortex (most 

apparent at 130 Hz). However, a closer examination of this data by means of CBV traces 

revealed that many of these areas (e.g., motor, somatosensory, prelimbic cortices) were 

likely positively modulated by 200 Hz SNr-DBS, albeit with a long delay (and thus not 

detected with our functional activation maps). Also of note, the superior colliculus, which 

receives direct innervation from the SNr (1, 212), had little to no detectable CBV changes 

during SNr-DBS.  
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Figure 3.3. SNr-DBS evoked CBV changes at select, anatomically-defined regions of 
interest. CBV traces (10-400 Hz; yellow bar denotes stimulation epoch; note different Y axis 
scales across ROIs) are accompanied by bar graphs displaying percent changes in CBV 
amplitude changes during the stimulation period (mean ± SEM CBV values for the DBS 
stimulation period). *’s denote significant differences in CBV amplitude from 10 Hz (p < 
0.05). Insert depicts representative slice example for each pre-defined ROI (note that most 
ROIs encompassed multiple slices). Unless otherwise denoted, all ROIs are ipsilateral to the 
DBS hemisphere. (A) External globus pallidus (B) Substantia nigra (C) Ipsilateral 
dorsolateral striatum (D) Contralateral dorsolateral striatum (E) Posterior hypothalamus 
(F) Somatosensory cortex. Additional ROIs (total = 19) are located in Supplemental 
Figure S3.6. 
_________________________________________________________________________________________________________ 
 
 During GPe-DBS (40-400 Hz), robust CBV increases were observed in ipsilateral 

frontal and prefrontal cortices, including cingulate, motor, prelimbic, infralimbic, and 

orbitofrontal cortices. A wealth of subcortical areas also showed positive CBV responses, 

including the substantia nigra, nucleus accumbens, ventral tegmental area, zona incerta, 

and others (see Figure 3.4 and Supplemental Figure S3.7).  Of all regions examined, peak 
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CBV responses to GPe-DBS were strongest in orbitofrontal cortex, reaching nearly 30% 

CBV increases with 400 Hz stimulation.  

 

 

 
Figure 3.4. GPe-DBS evoked CBV changes at select, anatomically-defined regions of 
interest. CBV traces (10-400 Hz; yellow bar denotes stimulation epoch; note different Y axis 
scales across ROIs) are accompanied by bar graphs displaying percent changes in CBV 
amplitude changes during the stimulation period (mean ± SEM CBV values for the DBS 
stimulation period). * denotes significant differences in CBV amplitude from 10 Hz (p < 
0.05). Insert depicts representative slice example for each pre-defined ROI (note that most 
ROIs encompassed multiple slices). Unless otherwise denoted, all ROIs are ipsilateral to the 
DBS hemisphere. (A) External globus pallidus (B) Substantia nigra (C) Ipsilateral 
dorsolateral striatum (D) Contralateral dorsolateral striatum (E) Prelimbic cortex (F) 
Somatosensory cortex. Note that the displayed ROI’s for Panel E differ between Figures 3 
and 4. Additional ROIs (total = 19; including Posterior hypothalamus) are located in 
Supplemental Figure S3.7. 
_________________________________________________________________________________________________________ 
 
 
 Lastly, to determine the frequency-dependency of DBS responses at both targets, the 

amplitude of CBV responses was quantified for a subset of ROIs: GPe, substantia nigra, 
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dorsolateral striatum (ipsi- and contralateral, somatosensory cortex, posterior 

hypothalamus (SNr-DBS only), and prelimbic cortex (GPe-DBS only) (Figure 3.3-4). These 

amplitude measures correspond to the mean CBV changes during the stimulation epoch for 

each DBS frequency (see Methods); because of differences in the characteristic trace 

dynamics for each ROI (e.g., hemodynamic delays), the calculated values are best compared 

across frequencies but not across ROI’s. A main effect of DBS frequency was found for each 

ROI analyzed (p < 0.05), and post-hoc testing revealed that 10 Hz DBS drove CBV amplitude 

changes that often significantly differed from other frequencies. However, as suggested by 

the CBV traces, the influence of stimulation frequency on CBV responses was inconsistent 

across ROIs. For example, CBV amplitudes for some ROIs scaled positively with DBS 

frequency (e.g., the GPe during SNr-DBS), whereas peak amplitudes occurred at frequencies 

below 400 Hz for other ROIs (e.g., prelimbic and somatosensory cortices during SNr-DBS) 

(see Figures 3.3 and S3.6).   

 
fcMRI 
 
 Complementing our evoked-fMRI findings, fcMRI measurements revealed global and 

frequency-dependent modulation by DBS at both targets. Mean correlation matrices were 

generated for each stimulus condition (Rest1, Stim 40 Hz, Rest2, Stim 130 Hz, and Rest3) 

and DBS target (SNr and GPe); Figure 3.5A. The cross-correlational matrices, displaying 

functional connectivity strength between 90 discrete brain regions (45 per hemisphere), 

revealed modulation that appeared specific to the 130 Hz DBS condition, including both 

enhancements (increased correlation) and suppressions (increased anti-correlation) of 

connectivity. This modulation of fcMRI signals appeared moderately reversible, as the post 

130 Hz stimulation “rest” scan (conducted immediately following the 130 Hz DBS fcMRI 
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scan), was qualitatively similar to prior non-stimulation scans. Functional connectivity 

modulation by 40 Hz DBS was less apparent at both targets. Significant individual fcMRI 

connections were computed (rANOVA, p < 0.01 uncorrected, ΔZ-Corr > 0.10) and 

categorized according to modulation direction; Supplemental Tables S3.1 (SNr) and 

Table S3.2 (GPe). Post-hoc comparison of the significantly modulated connections 

confirmed the qualitative observations; Figure 3.5B. For both DBS targets (SNr and GPe) 

and modulation directions (Enhanced and Suppressed) there was a significant main-effect 

of condition (ANOVA p < 0.001); SNr: FE(4,165) = 25.13 and FS(4,75) = 11.79, GPe: 

FE(4,190) = 24.39  and FS(4,190) = 26.49. Further post-hoc pair-wise comparisons between 

conditions revealed 130 Hz stimulation specificity; i.e. 130 Hz was significantly different 

from all rest conditions and 40 Hz stimulation, p < 0.001. Furthermore, no statistical 

differences were detected between any other conditions, including Rest3, suggesting the 

stimulation effect was indeed reversible.  
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Figure 3.5. fcMRI Modulation via DBS of the SNr and GPe. (A) Mean correlation matrices 
(SNr n = 6, GPe n = 7) for each stimulus condition  (Rest1, Stim 40 Hz, Rest2, Stim 130 Hz, 
Rest3) using 45 region-of-interests (ROIs: 1-45 Ipsilateral, 46-90 Contralateral, see Figure 
Key). (B) Post-hoc comparison of significantly modulated connections. Significance of 
individual connections (see Supporting Material: Supplemental Tables 1-2) was 
determined using repeated measures analysis of variance across animals (rANOVA, p ≤ 
0.01 uncorrected, Z-correlation ≥ 0.10).  Connections were grouped according to modulation 
direction (Enhanced: increased correlation; Suppressed: increased anti-correlation) and 
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then two-sample t-tests (see Supporting Material: Table S3) were used to statistically 
compare stimulus conditions (Rest, 40 Hz, and 130 Hz, see Figure Key). Data plotted as 
mean ± standard error of the mean (SEM).  *’s denote pair-wise significant (p < 0.001) 
differences. Abbreviations: PLC: Prelimbic Cortex; ILC: Infralimbic Cortex; OFC: 
Orbitofrontal Cortex; CC: Cingulate Cortex; Insula: Insular Cortex; NAc: Nucleus 
Accumbens; AS; Anterior Striatum; vPAll: Ventral Pallidum; Sept: Septum; lHyp: Lateral 
Hypothalamus; Amyg: Amygdala; BNST: Bed Nucleus of the Stria Terminalis; MDT: 
Mediodorsal Thalamus; vHipp: Ventral Hippocampus; VTA: Ventral Tegmental Area; AC: 
Auditory Cortex; AOB: Accessory Olfactory Bulb; DLS: Dorsolateral Striatum; DMS: 
Dorsomedial Striatum; ENT: Entorhinal Cortex; GPe: External Globus Pallidus; Motor: 
Motor Cortex (Primary and Secondary); OT: Olfactory Tubercle; PAG: Periaqueductal Grey; 
PPTg: Pedunculopontine Tegmental Nucleus; PC: Parietal Cortex; Piriform: Piriform 
Cortex; pHyp: Posterior Hypothalamus; pThal: Posterior Thalamus; S2: Secondary 
Somatosensory Cortex; SN: Substantia Nigra; Somato: Primary Somatosensory Cortex; 
STN: Subthalamic Nucleus; TeA: Temporal Association Cortex; VL: Ventrolateral Thalamus; 
VPL: Ventral Posterolateral Thalamus; Visual: Visual Cortex (Primary and Secondary); ZI: 
Zona Incerta; dHipp: Dorsal Hippocampus; dRaphe: Dorsal Raphe Nucleus; lHab: Lateral 
Habenula; mPOA: Medial Preoptic Area; SC: Superior Colliculus; vHyp: Ventral 
Hypothalamus. 
_________________________________________________________________________________________________________ 
 
Several connections showed more robust modulation (Figure 3.6, and see Supplemental 

Tables S3.1-2: |ΔZ-Corr| > 0.20). Here, we focus on describing the enhanced connections 

given the potential confound of global signal regression (see next paragraph). Specifically, 

SNr-DBS produced several ipsilateral enhancements; VTA (#15)  Insula (#5), pHyp (#28) 

 Insula (#5), STN (#31)  GPe (#21), ZI (#39)  GPe (#21), ZI (#39)  GPe (#STN). Only 

one connection demonstrated robust enhancement in the contralateral hemisphere: SNr-

DBS, dHipp (#85)  Somato (#77). Similarly, GPe-DBS produced robust ipsilateral 

enhancement for the following connections; Motor (#22)  Insula (#5), ZI (#39)  Insula 

(#5), VC (#38)  AC (#16), and ZI (#39)  Motor (#22).   

 In order to assess the sensitivity of the observed enhancements/suppressions to 

GSR, we re-capitulated the post-hoc comparisons of the previously defined modulated 

connections using pre-processed data without GSR. The main-effect of condition for both 
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DBS targets was maintained for enhanced but not for suppressed connections (see 

Supplemental Figure S3.8); SNr: FE(4,165) = 6.81 p < 0.001 and FS(4,75) = 0.92 p = 0.460, 

GPe: FE(4,190) = 5.71 p < 0.001 and FS(4,190) = 1.85 p = 0.121. Some trends were still 

evident for the suppressed connections however all conditions and groupings exhibited 

substantial shifts towards more positive values. Moreover, 130 Hz specificities were 

maintained for the enhanced connections; SNr p ≤ 0.016, GPe ≤ 0.006. Finally, we further 

evaluated the similarity (cross-correlation) of the global signal (GS) across conditions. The 

main-effect of condition was insignificant for both DBS targets suggesting there was a high 

degree of similarity in the GS regardless of condition (rANOVA); SNr: F(9,45) = 1.63 P = 

0.134, GPe; F(9,54) = 0.85 P = 0.572.  

 Next, significant modulations were considered in the context of functional network 

groupings: Sensorimotor, Executive, Limbic, and Between network connections. Categorical 

listing for each brain region are provided in the supporting material; Supplemental 

Tables S3.1-2. Between network connections reflect connections that crossed functional 

category (e.g., between sensorimotor and limbic regions). Of connections meeting 

significance criteria, a larger proportion of enhancements were observed for the SNr: 34 

enhanced, 16 suppressed. Enhancement and suppression were equivalent for GPe 

stimulation; 39 enhanced and suppressed. In terms of overall network modulation, most 

DBS-sensitive connections fell within the Between network category (SNr: 33; GPe, 48) 

followed by the Sensorimotor, Limbic, Executive networks, respectively. Finally, many of 

the robust modulations either localized to the Sensorimotor network, or involved 

sensorimotor regions.   
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Figure 3.6. Robust Functional Connectivity Modulation. Enhanced connections 
demonstrating more robust modulation (ΔZ-Corr > 0.20) overlaid on volume rendering of 
the rat brain (also see Tables S3.1-2). Green – SNr-DBS, Orange – GPe-DBS.  
_________________________________________________________________________________________________________ 
 
3.4 Discussion 
 
 The present study was undertaken to map the functional circuit and network 

connectivity of the SNr and GPe, and to further evaluate the influence of stimulation 

frequency on the measured connectivity profiles. Although both regions have traditionally 

been classified as simple relay nuclei, our DBS results reveal extensive functional circuit 

and network interconnectivity, consistent with “extra-relay” processing power. Below, we 

highlight the major findings and limitations of this work. 

 
Frequency-dependency of evoked DBS responses 
 
 The usage of multiple stimulation frequencies in DBS-fMRI studies allows for the 

characterization of frequency tuning in neural circuits (132, 140, 170, 182, 210, 213). The 

demonstration of DBS frequency-sensitive fMRI signals Is likely due to both passive and 
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active electrical membrane properties, including voltage-sensitive ion channel 

complements and their associated channel refractory periods (171). 10 Hz stimulation of 

either the SNr or GPe did not result in any detectable fMRI signal changes, while the 

stimulation frequency that evoked the largest CBV responses varied considerably by 

region. Perhaps the most compelling example of frequency selective circuit modulation in 

the present study occurred with 200 Hz SNr-DBS. At both lower and higher frequencies 

(40-130, 400 Hz), prefrontal and frontal cortical regions (e.g., infralimbic, motor, cingulate 

cortices) responded to SNr-DBS with CBV increases that were modest and time-locked to 

the stimulation period. However, these brain regions responded to 200 Hz stimulation with 

CBV increases that were much larger than at other frequencies, and peaked with a long 

delay (in certain case, after the cessation of stimulation). The reasoning behind such 

remarkably frequency selectivity in these responses, with highly unique temporal 

characteristics (in relation to the stimulation period), is an interesting area for future 

study. Finally, the inclusion of very high stimulation frequencies in the present study (e.g., 

130 Hz) is notable in the context of therapeutic DBS (see below section on Translational 

Relevance).  

 
Striatal and Thalamic CBV modulation by SNr- and GPe-DBS  
 
 Both the GPe- and SNr are downstream targets of the striatum, receiving GABAergic 

input through the so-called indirect and direct pathways, respectively. Although striatal 

activity changes may thus be anticipated during either GPe- or SNr-DBS, our demonstration 

of striatal modulation by DBS at each target is of remarkable interest for several reasons. 

First, although the basal ganglia are frequently modeled as intrahemispheric systems, we 

observed pronounced bilaterality in striatal modulation by GPe- or SNr-DBS. Irrespective of 
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whether this modulation occurs through feedforward thalamo-cortico-striatal loops, 

antidromic recruitment of striatal fibers, or other means, our results strongly suggest that 

presence of powerful bilateral connectivity within the basal ganglia systems. Of further 

interest is the directionality of this striatal hemodynamic response; prominent CBV 

decreases were noted within the dorsal striatum during DBS of either the SNr or GPe, and 

occurred across a wide range of stimulation frequencies (40Hz and higher). Such striatal 

vasoconstriction is highly reminiscent of fMRI responses obtained during evoked 

nociceptive peripheral stimulation (214, 215). The extent and magnitude of the DBS-evoked 

signals was greater at the SNr target compared to the GPe, and was also greater in the 

hemisphere contralateral to stimulation (although ipsilateral decreases were also observed 

with both DBS targets). Although it may be intuitive to interpret our data as DBS-evoked 

neuronal inhibition, the situation appears to be particularly muddled in striatum, wherein 

dopaminergic neurotransmission has been hypothesized to induce vasoconstriction 

independent of direct activity changes within striatal neurons (216) or regional 

metabolism (217). In addition, striatal CBV decreases have previously been shown with 

heightened local neuronal activity, as observed in rats during noxious forepaw stimulation 

(215, 218), or epileptic slow-wave discharge (219). In light of these complexities, further 

work will be necessary to determine the underlying mechanism of striatal CBV decreases 

evoked during GPe- and SNr-DBS. 

 The directionality of CBV responses was also perplexing in the basal ganglia output-

receiving thalamic areas (e.g., ventral thalamus), which are modeled as receiving 

functionally antagonistic modulation by the GPe and SNr (38, 202). The framework of this 

model, and the observation that electrical stimulation of the rat SNr generates GABA-
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mediated inhibition in ventral thalamus (220), suggest that SNr-DBS should drive CBV 

signal decreases in ventral thalamus (and other nigral outputs) consistent with neuronal 

inhibition. Yet, we observed only positive CBV responses in thalamic regions during DBS 

delivered at either the GPe or SNr. Among the many possible explanations for SNr-DBS 

evoked thalamic CBV increases are: 1) bona fide thalamic activity increases downstream of 

non-canonical nigral circuits; 2) “off target” circuit modulation due to the nonselectivity of 

electrical stimulation (discussed in Section 4.6, Limitations); and 3) neurovascular 

uncoupling mechanisms similar to as discussed for the striatal CBV signals. Future DBS-

fMRI studies coupled with more selective stimulation modalities (e.g., optogenetics) and 

electrophysiological recordings will be necessary to distinguish between these possibilities. 

 
Frontal cortical CBV increases evoked by GPe-DBS 
 
 One major unexpected finding in this study was the robust modulation of frontal 

cortical areas (including prefrontal and motor cortices) by GPe-DBS. Historically, the GPe 

has been viewed primarily as a basal ganglia relay nucleus with only indirect control over 

cortical activity (38, 202). Very recently, however, two studies have identified a direct, 

ipsilateral projection from GPe to frontal cortex in mouse, rat, and monkey (76, 77). The 

GPe neurons that make up this projection are GABAergic and express the GABA vesicular 

transporter (vGAT), with a large subset additionally being cholinergic (expressing choline 

acetyltransferase (ChAT)). This pathway innervates all layers of cortex, targeting both 

pyramidal cells and interneurons. Unsurprisingly, selective optogenetic stimulation of this 

pathway results in mixed patterns of modulation among frontal cortical neurons, with both 

inhibition and enhanced firing rates observed in vivo (76). As expected based on 

neurochemical makeup, selective stimulation of this projection is predominantly inhibitory 
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for cortical neurons. However, given that this projection has been reported to biasedly 

innervate cortical interneurons, it is possible that inhibitory mechanisms within cortex 

result in enhanced cortical activity and vasodilatation. The robust modulation of frontal 

cortex by GPe-DBS observed in the present study may be the result of such pallido-cortical 

transmission, although the use of nonselective electrical stimulation precludes a definitive 

interpretation. 

 
fcMRI 
 
 Complementing our evoked-fMRI findings, fcMRI measurements revealed 

frequency-dependent functional connectivity modulation by DBS at both targets. More 

specifically, we observed significant modulation of global functional connectivity 

(compared to baseline scans) with 130 Hz, but not 40 Hz, stimulation. This observed 

frequency-dependence of DBS-induced fcMRI network modulation is perplexing in that 

robust circuit modulation (measured with evoked-fMRI) was observed at both 40 and 130 

Hz DBS. It is not clear why 40 Hz DBS of the GPe or SNr was insufficient to significantly 

modulate fcMRI networks, however this finding suggests that fcMRI networks may be more 

rigid than evoked-fMRI circuits (although this interpretation is highly speculative). The GPe 

and SNr are both pacemaker nuclei, with some neurons exhibiting intrinsic firing rates as 

high as 50 Hz (GPe) and 80 Hz (SNr) (1, 70). It is possible that, given these relatively high 

intrinsic firing rates, exogenous stimulation by DBS may need to be employed at very high 

frequencies (e.g., 130 Hz) to override the normal network contributions of the GPe and SNr.  

 During GPe- and SNr-DBS at 130 Hz, both enhancements and suppressions in 

functional connectivity were noted between a wide number of brain regions, spanning 

large-scale functional and anatomical boundaries. Interestingly, compared to enhanced 
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connections, suppressed (i.e. shifts towards negative connectivity) demonstrated much 

greater sensitivity to global signal regression. Increased sensitivity to “negative 

correlations” following GSR has been well documented in BOLD fcMRI studies (221), 

therefore GSR may have similar effects on CBV-based connectivity. CBV-weighted 

functional connectivity has been shown to largely mirror BOLD-based connectivity in the 

rat (222), though with lower overall connectivity strength and slightly different frequency 

spectra. Overall, functional connectivity studies using cerebral blood measures are still 

relatively scarce, and thus interpretations should be made with caution. This is particularly 

the case given that GSR remains a controversial topic in the BOLD fcMRI field (221, 223), 

therefore we are hesitant to draw any major conclusions from the observed “suppression” 

effects. Nonetheless, it is important to note that suppressed connections were only 

detected after accounting for large-scale CBV-weighted changes.  

 Focusing on enhanced connections, the most robust effects were largely ipsilateral 

to the DBS target and demonstrated interesting patterns. Some spatial overlap between 

enhanced networks was observed, with the insula and zona incerta appearing in both DBS-

targeted networks (Figure 3.6). Consistent with the evoked responses, SNr-DBS enhanced 

connectivity involving the GPe and dorsal striatum (Table S3.1), however connectivity 

with the latter was not enhanced by GPe-DBS. This could be related to the fact that mixed 

(positive and negative) evoked responses were observed in the ipsilateral striatum during 

GPe-DBS, suggesting that more specific ROIs might be necessary to detect related 

functional connectivity modulation. Also of note, most enhanced connections did not 

directly involve the DBS target, but rather downstream and/or polysynaptic targets, 

particularly ‘between’ networks (Sensorimotor, Executive, and Limbic). The ability to 
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manipulate functional circuits using exogenous sources, as demonstrated here, has the 

potential to elucidate unique relationships between evoked signals and functional 

connectivity changes, and their relationships in different disease models; however, further 

experimentation/considerations are necessary, particularly in the context of GSR as 

outlined above. To our knowledge, this work provides the first example of electrical DBS-

induced frequency-dependent functional connectivity modulation. 

 
Translational Relevance 
 
 High frequency DBS targeting select brain nuclei or fiber tracts is now routinely 

employed in clinical settings for the treatment of certain intractable neurological and 

neuropsychiatric disorders (137, 148). The most prominent examples of successful DBS 

therapy are perhaps the targeting of the subthalamic nucleus (STN) or internal globus 

pallidus (GPi) for motor symptom alleviation in late-stage Parkinson’s disease (139, 224). 

Given the dense interconnectivity of the basal ganglia, and the ability of DBS to modulate 

large-scale circuits and networks (135), it is not surprising that other basal ganglia nuclei 

have emerged as promising targets for DBS therapy (at least for those diseases involving 

basal ganglia dysfunction). Indeed, both GPe- and SNr-DBS have been reported to alleviate 

motor signs in Parkinson’s disease (225-227). In certain cases, DBS at such noncanonical 

targets may offer some therapeutic advantages over STN/GPi-DBS for Parkinson’s disease, 

for example, in alleviating axial motor symptoms (228). There is also emerging evidence 

that GPe and/or SNr-DBS may be clinically useful beyond the treatment of Parkinson’s 

disease; for example, recent animal and patient studies of SNr-DBS have shown promise for 

the treatment of epilepsy (229-232). 
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 Several findings in the present study may aid in the understanding of the neural 

mechanisms of GPe- and SNr-DBS therapy. Although GPe- and SNr-DBS have not been 

rigorously compared in the clinical setting, our findings suggest that both overlapping and 

distinct neural circuits may be modulated by these therapies. Among the most notable 

distinctions, ipsilateral prefrontal and frontal cortical areas were modulated to a far greater 

degree (as measured by evoked-fMRI) with GPe- compared to SNr-DBS. Given such 

profound differences in DBS-evoked circuit modulation, distinct therapeutic and/or 

adverse clinical responses would not be unexpected between DBS applied at each target. 

Also of interest is the presence of bilateral striatal responses during DBS at both targets. 

Therapeutic DBS, even applied unilaterally, can often exert bilateral behavioral responses 

(224), although the neural mechanisms underlying such response bilaterality are poorly 

understood. Our findings identify the contralateral striatal modulation as a candidate 

mechanism underlying bilateral clinical responses during both GPe- and SNr-DBS.  

 
Limitations 
 
 Our study includes several limitations that are generally characteristic of preclinical 

fMRI-DBS experiments. The usage of anesthesia, as is commonly employed in preclinical 

fMRI experiments (140, 141, 213, 233), may alter the responsivity of neural circuits to the 

effects of DBS. One possible means by which an anesthetic effect may be evident could be in 

the stimulation strength threshold for detectable fMRI responses (see Chapter 2 

Discussion). 

 With respect to our fcMRI experiments, DBS was employed continuously for 5 min 

durations; a stimulation length that has the potential to introduce drastic physiological 

changes. However, in our experiments, network responses to DBS appeared largely 
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reversible, as the post-DBS period connectivity was qualitatively and quantitatively similar 

to pre-DBS. Nonetheless, it may be beneficial in future DBS-fMRI studies to explore the use 

of interleaved DBS OFF-ON-OFF fcMRI paradigms with shorter stimulation periods. 

 The use of electrical stimulation for circuit mapping may be viewed as either a 

strength or weakness in the present study; it is highly translationally-relevant in the 

context of clinical DBS therapy, yet comes with limitations of circuit recruitment specificity. 

As suggested above, electrical stimulation may be prone to off-target circuit recruitment, 

and may present another limitation to the present study. Electrical stimulation is capable of 

recruiting fibers of passage, and current may also spread beyond the anatomical 

boundaries of the target region; in either instance, “off-target” areas may be recruited by 

DBS. An additional, related point concerns the directionality of connectivity between the 

DBS target region and other modulated areas. Because DBS can recruit connected brain 

areas through both ortho- and antidromic signal propagation across fibers (134, 234), this 

approach to functional circuit mapping cannot readily distinguish between up- and 

downstream circuit elements. The use of opto- and/or pharmacogenetic tools should 

provide a more precise means for functional imaging-based circuit mapping (131, 146, 

235), although at the likely expense of translational relevance in the context of therapeutic 

DBS in clinical settings.  

 
Conclusions 
 
 This study implemented a simultaneous DBS-fMRI approach to investigate the 

functional connectivity of the GPe and SNr, the two major striatal output nuclei. Through 

their roles in the basal ganglia loops, these regions have a diverse number of functional 

roles in cognition, motor control, and emotional processing. As demonstrated here and 
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elsewhere, DBS-fMRI provides a global perspective of a brain region’s functional 

connectivity profile, ultimately allowing for the identification and characterization of novel 

circuit connections. In the present work we identified, among other results, DBS-evoked 

negative fMRI signals in the bilateral striatum, as well as frequency-dependent, large-scale 

functional connectivity changes. Broadly, our work contributes to a growing literature 

demonstrating functional connectivity of the striatal outputs outside of canonical thalamic 

relay connections. Further, the inclusion of high frequency stimulation in our DBS 

experiments facilitates a translational perspective on our connectivity maps, as high 

frequency DBS at the GPe or SNr has demonstrated therapeutic benefits in certain 

neurological disease states (e.g., Parkinson’s Disease).  
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CHAPTER 4: FUNCTIONAL CIRCUIT MAPPING OF THE EXTERNAL GLOBUS PALLIDUS 
IN THE HEALTHY AND PARKINSONIAN RAT: AN OPTOGENETIC-FMRI STUDY 

 
4.1 Introduction 
 
 In Chapter 3, we have presented functional activation maps achieved by electrically 

stimulating the external globus pallidus (GPe) and substantia nigra pars reticulata (SNr).  

This work has generated several interesting findings, including the observance of bilateral 

striatal modulation (chiefly vasoconstriction) during electrical stimulation of either target. 

The neural elements responsible for such striatal modulation are not readily apparent (e.g., 

passing fibers, afferents, and/or efferents), in large part due to the nonspecificity of 

electrical stimulation methods. This is particularly the case for electrical stimulation of the 

GPe, which can, in principle, modulate striatal afferent fibers terminating in the GPe 

(indirect pathway), as well as those in route to the SNr (direct pathway). The use of more 

selective stimulation tools, such as optogenetics, may aid considerably in the development 

of functional connectivity maps concerning the striatal output nuclei. In the present study, 

we take such an approach, using optogenetic-fMRI to map the functional circuit 

connections of the GPe.  

 In addition to providing optogenetic-fMRI maps of the GPe in healthy rats, we also 

extend this research trajectory to include 6-hydroxydopamine (6-OHDA)-lesioned rats, a 

widely used rodent model of Parkinson’s Disease (236-238). In the standard application of 

this model, unilateral intracranial microinjections of 6-OHDA, targeting the medial 

forebrain bundle or other dopamine neuron cell body/fiber sites acutely renders an 
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extensive lesioning of substantia nigra pars compacta neurons and their striatal afferents. 

This model has revealed widespread anatomical and functional circuit/network changes 

that occur in the basal ganglia following loss of dopaminergic tone, likely reflecting both 

pathological consequences of, and compensatory responses to neurodegeneration (10, 58, 

237, 239, 240). With respect to the GPe, electrophysiological studies have revealed a loss of 

rhythmic pacemaker activity in the GPe following 6-OHDA lesioning, in favor of lower 

frequency bursting (237, 240, 241). Concerning GPe connectivity patterns in the 

parkinsonian state, most studies have focused on the GPe->STN (“prototypical”) pathway. 

For example, the GPe has been shown to generate proliferative inhibitory synapses in the 

STN, providing a potentially compensatory means of blunting activity in the pathologically 

overactive indirect pathway (242). Network changes involving the GPe and STN are also 

evident, with hypersynchronization often reported (239) and hypothesized to contribute to 

pathological oscillatory activity throughout the parkinsonian basal ganglia network (64).  

 In the present study, it is our aim to elucidate the circuit connectivity patterns of the 

GPe in both the healthy and parkinsonian state, using selective and spatially unbiased 

optogenetic-fMRI tools. We report that stimulation of GPe neurons drives downstream 

negative fMRI signals in the ipsilateral striatum, which are broadly attenuated in 

parkinsonian animals. Moreover, detectable modulation of ipsilateral prefrontal and frontal 

cortices (hereafter termed (pre)frontal cortex) emerges in the parkinsonian state. This 

work thus suggests novel features of GPe-centered circuit remodeling following chronic 

dopamine loss. 
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4.2 Materials and Methods 
 
Subjects 
 
 Twelve adult male Sprague-Dawley rats (300–500g body weight; Charles River 

Laboratories, Wilmington, MA, USA) were used in this study. All procedures were 

performed in accordance with the National Institutes of Health Guidelines for Animal 

Research (Guide for the Care and Use of Laboratory Animals) and approved by the 

University of North Carolina Institutional Animal Care and Use Committee. Animals were 

housed under environmentally-controlled conditions (12h normal light/dark cycles, 20-

23°C and 40-60% relative humidity), with food and water provided ad libitum. 

 
Optogenetic Constructs  
 
 Neuronal opsin expression was achieved using adeno-associated viral vectors (AAV, 

serotype 5), encoding either a humanized variant of ChannelRhodopsin-2 (hChR2; H134R) 

fused to an enhanced yellow fluorescent protein (EYFP), or EYFP alone. Both constructs 

were placed under the human Synapsin (hSyn) promoter to target GPe neurons. All viruses 

were obtained from the Vector Core at the University of North Carolina at Chapel Hill.  

 
Surgery 
 
 For all surgical procedures, rats were endotracheally intubated and mechanically 

ventilated using a small animal ventilator (CWE Inc., SAR-830/PA, Ardmore, PA). 

Anesthesia was maintained under a constant flow of 2% isoflurane mixed with medical air, 

and physiological parameters were continuously monitored and maintained within normal 

ranges using capnometry (Surgivet, Smith Medical, Waukesha, WI) and pulse oximetry 

(MouseOx Plus, STARR Life Science Corp., Oakmont, PA). Animals were head-fixed to a 
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stereotactic frame (Kopf Instruments, Model 962, Tujunga, CA) and the skull was exposed. 

Burr holes were drilled for the positioning of MR-compatible miniature brass screws (4 per 

skull; Item #94070A031, McMaster Carr, Atlanta, GA, USA), as well as for microinjections 

and chronic optic fiber placement (162). 

 For optogenetics, viral microinjections were targeted to the GPe with the following 

stereotactic injection coordinates (in reference to bregma and cortical surface, in mm): AP: 

-0.96mm, ML: +2.8mm, DV: -5.8mm. Viral injections were administered as 2μl volumes at a 

flow rate of 0.2μl/min, with a total infusion time of 10min. An additional 10 minutes was 

given for virus diffusion prior to slow retraction of the microsyringe needle. Chronically 

implantable optic fibers were placed 0.5mm above virus injection sites (see Fig. 1c). At 

least three weeks were given before opto-fMRI experiments were undertaken, to allow for 

sufficient virus expression.  

 In a subset of ChR2-injected rats (n = 5 of 10), unilateral microinjections (ipsilateral 

to viral microinfusions) of 6-OHDA (5μl volume, 3μg/μl dissolved in saline containing 

0.02% ascorbic acid as an antioxidant) were targeted to the medial forebrain bundle (MFB) 

(see Fig. 1b). Stereotactic injection coordinates were as follow (in reference to bregma and 

cortical surface, in mm): AP: -4.5mm, ML: +1.4mm, DV: -8.0mm. Injections were made at an 

infusion rate of 0.5μl/min; the needle was left at the injected site for 10min following toxin 

delivery prior to being withdrawn.  

 
Functional MRI 
 
 Detailed fMRI procedures, including animal handling and scan optimization, are as 

described in Chapter 2 Methods.  
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 For anatomical referencing, a T2-weighted RARE pilot image was taken in the mid-

sagittal plane to localize the anterior commissure; this structure is located at 

approximately 0.8 mm posterior to the bregma and served as a reference for 

anteroposterior slice positioning in subsequent anatomical and functional scans. T2-

weighted anatomical images were obtained using a RARE sequence (scan parameters: TR = 

2500 ms, TE = 33 ms, RARE factor = 8, slice thickness = 1 mm, matrix size= 256 x 256, FOV= 

2.56 x 2.56 cm2). Twelve axial slices were acquired, with the 5th slice from the anterior 

direction aligned with the anterior commissure (as acquired in the previous T2-weighted 

pilot scan). These images were used to confirm optic fiber placement within the GPe for 

each subject.  

  

Optogenetic Stimulation 
 
 For optogenetic stimulation of the GPe (n = 10 for ChR2; n = 2 for EYFP control), a 

473nm wavelength diode-pumped solid-state (DPSS) laser (model BL473T8-200, Shanghai 

Laser & Optics Century, Shanghai, China) was connected via a coupler to a homemade patch 

cable terminating above the chronically implanted optic fibers. Wavelength-specific light 

output at the terminating end of the patch cable was calibrated to 20mW using a wattage 

meter. Optogenetic stimulation periods consisted of a series of TTL-triggered light pulses 

with a stimulation frequency of 40Hz and pulse duration of 10ms. A 100 second block 

design paradigm was implemented, consisting of 20 seconds of rest (stimulation OFF) 

followed by two 10 seconds stimulation periods (stimulation ON), with intervening and 

final rest periods of 30 seconds (i.e. 20sOFF-10sON-30sOFF-10sON-30sOFF) (see Fig. 

4.1b).  
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Histology 
 
 Following scan procedures, rats were deeply anesthetized with 1-2ml Euthasol and 

transcardially perfused with saline followed by 10% formalin. Extracted brains were 

stored overnight in 10% formalin and transferred to a 30% sucrose solution (in DI water) 

for 2-3 days, until brains sunk to bottom of storage bottles. Brains were cut to 40μm thick 

sections on a freezing microtome and GPe-containing sections were directly mounted on 

glass slides for fluorescent imaging. Vectashield mounting medium with DAPI stain (Vector 

laboratories, Item # H-1200) was used to provide a cell body counterstain. Slides were 

imaged using a Zeiss 780 confocal microscope to verify the transfected area. A 

representative example of virally-mediated ChR2 expression in GPe neurons is provided in 

Fig. 1c.  

 To confirm successful lesioning of dopamine neurons in 6-OHDA-treated subjects, 

tyrosine hydroxylase expression was examined in striatal and substantia nigra-containing 

brain sections. Sections were processed according to standard immunhistochemical 

procedures with DAB reaction, using a rabbit anti-tyrosine hydroxylase primary antibody 

(1:5000), and biotinylated goat anti-rabbit secondary antibody (1:50). Mounted sections 

were imaged by means of brightfield microscopy (Nikon Eclipse 80i) following 

immunohistochemical procedures.  

 
fMRI Data Processing and Statistical Analyses 
 
 Preprocessing and image analysis was performed using SPM codes and custom-

written Matlab (MathWorks Inc., Natick, MA). Evoked-fMRI datasets were first grouped by 

subject and DBS frequency, and realigned to the first volume of a well-positioned subject 



 93 

using a least squares approach and a 6 parameter rigid body spatial transformation. Skull-

stripping was next employed using a semi-automatic threshold method with manual 

masking, followed by image coregistration to an anatomical MRI rat atlas (174). One SNr-

DBS subject was excluded for evoked-fMRI analysis after image quality control. 

 Functional response maps for averaged SNr- or GPe-DBS datasets were generated 

using the general linear model (GLM), with reference to baseline (frames 1-20) and 

incorporating a hemodynamic delay of 5 frames, similar to our previous DBS-fMRI studies 

(132, 133, 140). A Bonferroni correction was applied to adjust for the multiple comparisons 

of fMRI maps by the number of brain voxels (corrected p < 0.05 for positive and negative 

responses). All images were smoothed by applying a mean filter with a 3 × 3 kernel, and 

overlaid on an anatomical atlas for visualization (174). 

 For temporal analysis of stimulation-evoked CBV changes, 3-dimensional regions of 

interest (ROIs) were defined a priori according to anatomical structural boundaries (174, 

176), and applied onto the coregistered data. The ROIs were chosen according to the 

anatomical areas showing statistically significant modulation in the functional response 

maps. Six ROIs were identified for analysis, all ipsilateral to the site of stimulation: GPe, 

prelimbic cortex, orbitofrontal cortex, dorsolateral striatum, dorsomedial striatum, 

infralimbic cortex. The baseline and stimulus evoked ΔR2* values were calculated as 

described in Chapter 2 Methods. For each ROI, the CBV signal time-course was plotted 

across all 100 time frames. 

 Stimulation-evoked changes in CBV amplitude were compared across subject 

groups for each ROI. These data are presented as mean ± SEM. Statistical comparisons of 

DBS frequency effects on ΔCBV for each ROI were conducted using Graphpad Prism 
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software (San Diego, CA). Two-tailed, one-way repeated measures ANOVA (rANOVA) tests 

with Tukey post-hoc analyses were conducted to evaluate frequency-dependent responses. 

Significance level was set at p < 0.05. 

 
 
4.3 Results 
 

A depiction of the experimental paradigm is provided in Figure 4.1. Based on 

chosen atlas coordinates and optic fiber tract placements, optogenetic experiments were 

likely biased towards stimulation of the ventral portions of the GPe (see Fig. 4.1c for 

representative image of virus expression and optic fiber tract).  

_________________________________________________________________________________________________________ 

 

Figure 4.1. (A) Schematic of experimental imaging setup. (B) Optogenetic stimulation 
evoked-fMRI stimulus paradigm. (C) Cartoon of optogenetic targeting of the GPe (left), and 
representative image of ChR2 expression (green) in GPe (right).  
_________________________________________________________________________________________________________ 

Several major regions of modulation were detected during optogenetic stimulation 

of the GPe in healthy rats (Figure 4.2; top left). The GPe itself showed unilateral CBV 

increases, providing strong evidence that local stimulation experiments were successful. 

Also unilateral to the stimulation site, robust dorsal striatal CBV decreases were observed 

across its entire rostrocaudal axis, both within the medial and lateral subdivisions of this 
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nucleus. Lastly, bilateral responses were noted within canonical visual pathway sites (e.g., 

optic tectum), which we attribute to visual stimulation from the laser light. Note that these 

responses were largely present in EYFP control animals (Figure 4.2; top right), strongly 

suggesting that they are not consequences of optogenetic GPe stimulation.  

_________________________________________________________________________________________________________ 

 
Figure 4.2. 6-OHDA infusions into the medial forebrain bundle (MFB) (left) resulting in 
near-complete loss of TH expression in ipsilateral striatum (brown stain, right image is 
representative histological section from a single subject). 
_________________________________________________________________________________________________________ 

 

Following our characterization of optogenetic responses to GPe stimulation in 

healthy rats, we extended this study to include hemiparkinsonian rats lesioned using 6-

OHDA. The surgical targeting of 6-OHDA to the medial forebrain bundle (ipsilateral to GPe 

manipulations), and representative image of resulting loss of tyrosine hydroxylase 

expression in the ipsilateral striatum, are both depicted in Figure 4.3.   Compared to 

healthy rats, the evoked CBV response within the GPe during optogenetic stimulation was 

larger in size and intensity; this was particularly the case for the anterior portion of the 

GPe, which showed notable CBV increases in hemiparkinsonian, but not healthy subjects 

(Figure 4.2; bottom left). Conversely, the downstream striatal CBV response, while 

negative in both healthy and hemiparkinsonian subjects, was far reduced in the latter 
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group.  Moreover, the striatal fMRI response became less distinct, exhibiting a more 

scattered spatial profile, particularly in the anterior half of the striatum. Finally, a negative 

CBV signal was observed within the ipsilateral frontal cortex, including the prelimbic, 

orbitofrontal, motor, and cingulate cortices; no such negative frontal cortical response was 

observed in healthy subjects. 

_________________________________________________________________________________________________________ 

    
Figure 4.3. Functional activation maps of CBV modulation by optogenetic stimulation of 
the GPe (40 Hz). In healthy rats (top left), CBV increases were observed in the target region 
(GPe), whereas CBV decreases were apparent in the ipsilateral striatum. In 
hemiparkinsonian rats (top right), the GPe response was larger in size and magnitude, 
whereas the ipsilateral striatal CBV decreases were weaker and more scattered compared 
to healthy subjects. Moreover, a negative CBV response was noted in the ipsilateral 
(pre)frontal cortex. Visual pathway responses were observed in both healthy and 
hemiparkinsonian ChR2 subjects, and were also partially present in EYFP control rats 
(bottom left), likely attributable to non ChR2-mediated visual responses to laser light.    
12 slices were acquired in each scan; anteroposterior distance relative to bregma (in mm) 
is as listed for Figure 2.2. Color bar denotes t score values obtained by GLM analyses, with 
a significance threshold of p < 0.05.  
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___________________________________________________________________________________________________ 
 

To further compare the obtained CBV responses across experimental conditions, we 

plotted the CBV time-courses and amplitudes changes across several anatomically defined 

regions of interest (ROI’s); these are quantitative measures of percent CBV changes (Figure 

4.4). As these ROI’s were developed a priori based on anatomical borders rather than 

functional response patterns, they will underestimate CBV response magnitude in several 

regions. CBV increases were significantly larger in the GPe of hemiparkinsonian, compared 

to healthy subjects (ChR2 or EYFP), but were not significantly different between healthy 

ChR2 and EYFP subjects (likely attributable to effect wash-out as the response was not 

present throughout the entire GPe ROI). In the dorsolateral striatum, GPe stimulation 

evoked CBV decreases in healthy and hemiparkinsonian rats greater than 2.5 and 5% from 

baseline, respectively; both groups were significantly different from EYFP controls. 

Dorsomedial striatal CBV decreases were significant compared to control for 

hemiparkinsonian, but not healthy ChR2 subjects. With respect to (pre)frontal cortical 

regions, hemiparkinsonian subjects displayed significant decreases in CBV within the 

orbitofrontal, prelimbic, and infralimbic cortices. In contrast, healthy ChR2 subjects had 

weak but significant increases in infralimbic cortical CBV, but were not different from 

control in the other regions examined (prelimbic or orbitofrontal cortices).  

_________________________________________________________________________________________________________ 
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Figure 4.4. Optogenetic GPe stimulation-evoked CBV changes at select, anatomically-
defined regions of interest. CBV traces (blue bars denote stimulation epochs; note different 
Y axis scales across ROIs) are accompanied by bar graphs displaying percent changes in 
CBV amplitude changes during the stimulation period (mean ± SEM CBV values for the 
optogenetic stimulation period). * denotes significant differences in CBV amplitude from 
EYFP control subjects (p < 0.05). Insert depicts representative slice example for each pre-
defined ROI (note that most ROIs encompassed multiple slices). All ROIs are ipsilateral to 
the stimulated hemisphere.  
_________________________________________________________________________________________________________ 
 
4.4 Discussion 
 
 In this study, we demonstrate that optogenetic stimulation of the GPe in healthy rats 

evokes local CBV increases and robust CBV decreases in the ipsilateral dorsal striatum. 

Remarkably, in 6-OHDA-treated hemiparkinsonian subjects, the strength of the local GPe 

response was increased, whereas the downstream striatal response was weaker. Moreover, 
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stimulation-evoked vasoconstriction was observed in several areas of the ipsilateral 

(pre)frontal cortex, only in hemiparkinsonian subjects.  

 That optogenetic stimulation of the GPe evokes positive CBV increases was an 

expected finding, however it is not clear why this local response was larger in 

hemiparkinsonian subjects. In vivo electrophysiological recordings have demonstrated that 

firing rates of prototypical GPe neurons are reduced in 6-OHDA treated rats, whereas the 

firing rates of arkypallidal neurons appear relatively unaltered (70). Both populations, 

however, fire more synchronously in the dopamine-depleted state, in each case coupled to 

cortical slow wave activity (70). Additional notable features of GPe activity pattern changes 

in the parkinsonian state concerns the loss of pacemaking in favor of burst-firing, and the 

emergence of beta-frequency oscillations (15-30 Hz), as measured in the local field 

potential; both of these changes have hypothesized causal roles in parkinsonian motor 

deficits (239, 240). In our data, the presence of larger local CBV increases in the 

optogenetically stimulated GPe may reflect (among many possibilities), changes in the 

efficacy of optogenetic stimulation and/or the baseline activity state of the GPe. Whereas 

there is no straightforward reason to expect changes in the efficacy of optogenetically-

evoked neuronal spiking in healthy vs. parkinsonian rats, changes in GPe baseline activity 

are likely to have occurred. In particular, the reduced firing rate of prototypical neurons, 

coupled with periods of quiescence due to loss of pacemaking, may broadly render the GPe 

hypoactive in the parkinsonian state. Such reduced baseline activity, in the absence of any 

other changes, may in principle be sufficient to generate larger CBV responses during local 

GPe stimulation. Additional experiments using electrophysiological measures would be 

necessary to confirm this hypothesis. A more direct approach to test this hypothesis may 
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include manipulations to modulate inhibitory tone and/or pacemaking ability in the GPe 

(e.g., HCN channel knockdown), with pre-and post-manipulation opto-fMRI recordings 

during GPe stimulation. 

 The most straightforward explanation for GPe stimulation-evoked striatal 

vasoconstriction is the recruitment of inhibitory arkypallidal inputs. However, this 

hypothesis is difficult to reconcile with the attenuation of the striatal fMRI response 

in the parkinsonian state, where arkypallidal inputs are strengthened as opposed to 

reduced (75).  Striatal modulation downstream of other GPe outputs, including the 

subthalamic nucleus and frontal cortex, are potentially also involved through more 

complex circuit interactions. Finally, it is worth noting that striatal fMRI signals appear 

relatively complex compared to other brain regions, and may not always correlate with 

locally recorded electrophysiological changes. This point is discussed in detail elsewhere in 

this dissertation (e.g., see Chapter 2 discussion, Chapter 5, and General Discussion). An 

important future experiment will be to determine if acute pharmacological blockade of 

dopaminergic transmission is sufficient to attenuate the GPe stimulation-evoked striatal 

response; this data will help us to evaluate whether the attenuated striatal fMRI response is 

due to loss of dopamine signaling per se, or if other circuit changes following 6-OHDA 

treatment are involved (e.g., compensatory circuit remodeling). 

The emergence of a negative CBV response in the ipsilateral (pre)frontal cortex of 

parkinsonian, but not healthy rats was a largely unexpected finding. Data presented in 

Chapter 3 of this dissertation demonstrates that, in healthy rats, electrical stimulation of 

the GPe results in robust CBV increases in the ipsilateral (pre)frontal cortex. The general 

absence of a similar response using more selective optogenetic stimulation tools suggests 
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that this response may be due to circuit mechanism outside of direct recruitment of GPe 

outputs, such as antidromic signaling and passing fiber recruitment with electrical but not 

optogenetic GPe stimulation). Of course, other differences between these stimulation tools 

must also be considered (detailed in Chapter 2 discussion). That (pre)frontal CBV 

modulation emerged during optogenetic stimulation of the GPe in the parkinsonian state 

suggests that GPe-(pre)frontal cortical interactions may be strengthened following 

dopamine lesioning. Of particular interest would be the examination of pallidocortical 

pathway changes following dopamine lesioning, particularly as examined using anatomical 

and electrophysiological tools. One must also consider the possibility that 6-OHDA-

mediated neurodegeneration unmasked pre-existing circuit features, which may have also 

contributed to the observed functional connectivity differences in the healthy vs. 

parkinsonian state. 
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CHAPTER 5: OPTOGENETIC-FMRI CIRCUIT MAPPING OF THE STRIATUM AND ITS 
CORTICOSTRIATAL INPUT 

 
5.1 Introduction 
 

The tight coupling between neuronal activity and hemodynamic signaling in brain 

(i.e., neurovascular coupling) is a fundamental tenet of fMRI, critical for the interpretation 

of nearly all fMRI data. Despite decades of research, various fundamental features of 

neurovascular coupling remain contentious, including the relative contribution(s) of pre- 

vs. postsynaptic neuronal activity to hemodynamic changes. Driven by a seminal study in 

the cat visual system (123), the input theory posits that presynaptic activity is the major 

driver of neurovascular changes (as opposed to local spiking and postsynaptic activity) 

(119, 126, 189). Although this and other corroborative studies of the input theory were 

based on evaluation of cortical fMRI signals, the input theory proposes a predominant 

presynaptic contribution to fMRI signals throughout the brain. Investigations of the rodent 

striatum suggest that neurovascular coupling in this region may not be as straightforward 

as in cortex, particularly as multiple studies have reported inverse coupling of striatal spike 

unit activity and hemodynamic changes (215, 219). With this in mind, we used optogenetic-

fMRI tools to test if the input theory is valid for the corticostriatal circuit, a massive, 

nonreciprocal excitatory projection from cortex to striatum. We demonstrate that 

optogenetic activation of corticostriatal projection neurons drives negative hemodynamic 

changes in striatum, a finding that is at odds with the input theory. We also provide 

evidence that local striatal circuit interactions are responsible for activity-evoked negative 
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fMRI signals in striatum. Broadly, this work provides a strong challenge to the universality 

of the input theory of fMRI signals. 

 
5.2 Materials and Methods 
 
Subjects  

Eleven adult male Sprague-Dawley rats (300–500g body weight; Charles River 

Laboratories, Wilmington, MA, USA) were used in this study. All procedures were 

performed in accordance with the National Institutes of Health Guidelines for Animal 

Research (Guide for the Care and Use of Laboratory Animals) and approved by the 

University of North Carolina Institutional Animal Care and Use Committee. Animals were 

housed under environmentally-controlled conditions (12h normal light/dark cycles, 20-

23°C and 40-60% relative humidity), with food and water provided ad libitum. 

 
Optogenetic Constructs  

Neuronal opsin expression was achieved using adeno-associated viral vectors (AAV, 

serotype 5), encoding either a humanized variant of ChannelRhodopsin-2 (hChR2; H134R) 

fused to an enhanced yellow fluorescent protein (EYFP), or EYFP alone. Both constructs 

were placed under the calcium-calmodulin kinase IIα (CaMKIIα) promoter to target either 

excitatory motor cortical projection neurons or striatal neurons. Viral titers were 

approximately 5.0 x 1012 viral genome/ml. All viruses were obtained from the Vector Core 

at the University of North Carolina at Chapel Hill.  

Surgery 

For all surgical procedures, rats were endotracheally intubated and mechanically 

ventilated using a small animal ventilator (CWE Inc., SAR-830/PA, Ardmore, PA). 
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Anesthesia was maintained under a constant flow of 2% isoflurane mixed with medical air, 

and physiological parameters were continuously monitored and maintained within normal 

ranges using capnometry (Surgivet, Smith Medical, Waukesha, WI) and pulse oximetry 

(MouseOx Plus, STARR Life Science Corp., Oakmont, PA). Animals were head-fixed to a 

stereotactic frame (Kopf Instruments, Model 962, Tujunga, CA) and the skull was exposed. 

Burr holes were drilled for the positioning of MR-compatible miniature brass screws (3-4 

per skull; Item #94070A031, McMaster Carr, Atlanta, GA, USA), as well as for 

microinjections and chronic optic fiber placement (162). 

For optogenetics, viral microinjections were targeted to either deep-layer motor 

cortex or dorsolateral striatum. For motor cortex, a single injection was made (1μl volume), 

whereas for striatum targeting, two injections were made of either 0.5 or 1 μl volumes. The 

viral injection flow rate was 1 μl/min, with a total infusion time of 10min for all 

experiments. An additional 10 minutes was given for virus diffusion prior to slow 

retraction of the microsyringe needle. Stereotactic injection coordinates were as follows (in 

reference to bregma and cortical surface, in mm): Deep-Layer Motor Cortex: AP: +3.0mm, 

ML: ±2.5mm, DV: -1.5mm; Dorsolateral Striatum (Site 1): AP: +0.0mm, ML: +3.0mm, DV: -

4.5mm; Dorsolateral Striatum (Site 2): AP: +1.5mm, ML: +2.8mm, DV: -4.4mm. 

Chronically implantable optic fibers were placed 0.5mm above virus injection sites 

for cell body targeting (site 1 for striatum experiments). For targeting of the striatonigral 

pathway, optic fibers were placed dorsally within the substantia nigra pars reticulata (SNr), 

using the following stereotactic coordinates: AP: -5.5mm, ML: +2.2mm, DV: -7.2mm. At 

least three or five weeks were given before opto-fMRI experiments were undertaken (for 
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cell body and terminal stimulation experiments, respectively), to allow for sufficient virus 

expression.  

 
Functional MRI 
 
 Detailed fMRI procedures, including animal handling and scan optimization, are as 

described in Chapter 2 Methods.  

 
Optogenetic Stimulation 
 
 For optogenetic stimulation, a 473nm wavelength diode-pumped solid-state (DPSS) 

laser (model BL473T8-200, Shanghai Laser & Optics Century, Shanghai, China) was 

connected via a coupler to a homemade patch cable terminating above the chronically 

implanted optic fibers. Wavelength-specific light output at the terminating end of the patch 

cable was calibrated to 15-20mW using a wattage meter. Optogenetic stimulation periods 

consisted of a series of TTL-triggered light pulses with a stimulation frequency of 40Hz and 

pulse duration of 5-10ms. For motor cortical and local striatal optogenetic stimulation 

experiments, a 100 second block design paradigm was implemented, consisting of 20 

seconds of rest (stimulation OFF) followed by two 10 seconds stimulation periods 

(stimulation ON), with intervening and final rest periods of 30 seconds (i.e. 20sOFF-10sON-

30sOFF-10sON-30sOFF). For striatonigral afferent stimulation experiments, a 920 second 

block design was implemented, consisting of 120 seconds OFF followed by five 40 second 

epochs stimulation ON, , with intervening and final rest periods of 120 seconds (i.e. 

120sOFF-40sON-120sOFF-40sON-120sOFF-40sON-120sOFF-40sON-120sOFF-40sON-

120sOFF). 
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fMRI Data Processing and Statistical Analyses 
 
 Preprocessing and image analysis was performed using SPM codes and custom-

written Matlab (MathWorks Inc., Natick, MA). Optogenetic evoked-fMRI datasets were first 

grouped by subject, and realigned to the first volume of a well-positioned subject using a 

least squares approach and a 6 parameter rigid body spatial transformation. Skull-

stripping was next employed using a semi-automatic threshold method with manual 

masking, followed by image coregistration to an anatomical MRI rat atlas (174).  

 Functional response maps for averaged fMRI datasets were generated using either 

cross-correlation methods (motor cortical and striatonigral experiments) or the general 

linear model (GLM) (local striatum stimulation experiment), with reference to baseline 

(frames 1-20) and incorporating a hemodynamic delay of 5 frames, similar to our previous 

DBS-fMRI studies (132, 133, 140). A Bonferroni correction was applied to adjust for the 

multiple comparisons of fMRI maps by the number of brain voxels (corrected p < 0.05 for 

positive and negative responses). All images were smoothed by applying a mean filter with 

a 3 × 3 kernel, and overlaid on an anatomical atlas for visualization (174). 

 For temporal analysis of stimulation-evoked CBV changes, functionally-defined 

cubic ROIs (5x5 voxels) were applied onto the coregistered data. The ROIs were chosen 

according to the anatomical areas showing statistically significant modulation in the 

functional response maps. The baseline and stimulus evoked ΔR2* values were calculated 

as described in Chapter 2 Methods. For each ROI, the CBV signal time-course was plotted 

across all time frames. 

 In some cases, stimulation-evoked changes in CBV amplitude were compared across 

subject groups at functionally-defined ROIs. These data are presented as mean ± SEM. 
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Statistical comparisons of DBS frequency effects on ΔCBV for each ROI were conducted 

using Graphpad Prism software (San Diego, CA). Two-tailed, one-way repeated measures 

ANOVA (rANOVA) tests with Tukey post-hoc analyses were conducted to evaluate 

frequency-dependent responses. Significance level was set at p < 0.05. 

 

Histology  

Following scan procedures, rats were deeply anesthetized with a 1-2 ml cocktail of 

pentobarbital sodium and phenytoin sodium (Euthasol) and transcardially perfused with 

saline followed by 10% formalin. Extracted brains were stored overnight in 10% formalin 

and transferred to a 30% sucrose solution (in DI water) for 2-3 days, until brains sunk to 

bottom of storage bottles. Brains were cut to 40 μm thick sections on a freezing microtome 

and mounted on glass slides for fluorescent imaging. Vectashield mounting medium with 

DAPI stain (Vector laboratories, Item # H-1200) was used to provide a cell body 

counterstain. Slides were imaged using a Zeiss 780 confocal microscope. 

 

5.3 Results 

Deep-Layer Motor Cortex Opto-fMRI 

Transient optogenetic stimulation of the motor cortex elicited robust positive CBV 

responses locally, maximally reaching above 20% CBV increases from baseline (Figure 

5.1b). In the dorsolateral striatum, which receives large-scale excitatory input from cortex 

(preferentially motor cortex), CBV decreased. This downstream striatal vasoconstriction 

was generally weak (less than 5% maximal change from CBV baseline), and lagged behind 

the motor cortical response. For this study, a within-subject EYFP control was employed 
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targeting the contralateral motor cortex. No significant responses were noted in either 

motor cortex or dorsolateral striatum during stimulation of the EYFP injected region 

(Figure 5.1c). 

_________________________________________________________________________________________________________ 

 

Figure 5.1. (A) Schematic of optogenetic targeting of deep layer motor cortical projection 
neurons (n= 4 for ChR2, n= 2 for EYFP controls). For this portion of the study, EYFP control 
experiments were conducted in a subset of experimental subjects, in the hemisphere 
contralateral to ChR2 stimulation. (B)  Functional activation maps of CBV modulation by 
optogenetic stimulation of motor cortex (40 Hz), displaying marked CBV increases in motor 
cortex (right slice), and concomitant CBV decreases in the ipsilateral dorsolateral striatum 
(left slice). Insert image is of ChR2 expression (green) in motor cortex. Anteroposterior 
slice locations relative to bregma (in mm) are as follows: +2.64 right slice, +1.64 left slice. 
Color bar denotes t score values obtained by cross-correlational analyses, with a 
significance threshold of p < 0.05. (C) Temporal traces (left) and amplitudes (right) of CBV 
responses to optogenetic motor cortical stimulation at functionally-defined ROIs. Blue bars 
on graph of CBV traces denotes stimulation epochs. CBV changes induced by motor cortical 
stimulation in healthy subjects was significantly different from the EYFP control condition 
(* p < 0.05). 
_________________________________________________________________________________________________________ 
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Compared to other optogenetic-fMRI targets discussed within this dissertation, local 

motor cortical responses to optogenetic stimulation were the most reliably elicited. The 

downstream dorsal striatal response, in contrast, was not consistently elicited- even in 

cases where motor cortical CBV increases were evident (data not shown). Preliminary data 

obtained from follow-up experiments in which larger portions of motor cortex were 

optogenetically stimulated (by use of multiple 1 μl viral injections) suggests that this 

approach may more reliably evoke dorsal striatal vasoconstriction (data not shown).     

 
Striatonigral Pathway Opto-fMRI 
 

The demonstration of dorsal striatal vasoconstriction in response to recruitment of 

cortical excitatory input suggests that excitation, rather than inhibition of striatal neurons 

may contribute to striatal vasoconstriction. Thus, we next evaluated if stimulating striatal 

projection neurons of the direct pathway could similarly elicit a striatal negative CBV 

response. Due to the absence of experimental tools for direct delivery of opsins selectively 

to direct pathway MSNs, we took an alternative approach, virally infecting striatal neurons 

nonselectively, but stimulating striatal afferent fibers within the SNr. This approach thus 

selectively targets direct pathway MSNs selectively, at the level of their presynaptic 

terminals.  

  Optogenetic stimulation of striatonigral afferents elicited a robust negative CBV 

response that was qualitative similar, yet larger than that elicited by motor cortical 

stimulation (although the stimulation periods were also longer in this experiment; 40 sec 

here vs. 10 sec for motor cortical stimulation) (Figure 5.2b). Striatal CBV decreases grew 

in magnitude over the course of each stimulation epoch, reaching maximal values near 15% 

reductions from baseline, and rapidly returned to baseline following cessation of 
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stimulation (see Figure 5.2c). In EYFP control animals, no significant CBV responses were 

noted in the striatum. 

_________________________________________________________________________________________________________

  
Figure 5.2. (A) Schematic of optogenetic targeting of striatonigral afferents (n= 4). (B)  
Functional activation maps of CBV modulation by optogenetic stimulation of striatonigral 
afferents (40 Hz), displaying marked CBV decreases in the ipsilateral dorsal striatum. 
Insert image is of ChR2 expression (green) in striatum. Anteroposterior slice location 
relative to bregma (in mm) is +1.64 for displayed imaging slice. Color bar denotes t score 
values obtained by cross-correlational analyses, with a significance threshold of p < 0.05. 
Temporal CBV trace of striatal CBV response is displayed on right; blue bars denote 
stimulation epochs. 
_________________________________________________________________________________________________________ 

 
Striatal Cell Body Opto-fMRI 
 

Striatonigral afferent stimulation could potentially elicit striatal vasoconstriction via 

multiple circuit mechanisms, including antidromic stimulation of direct pathway MSN 

somata, or orthodromic signaling through the cortico-basal ganglia loops. Thus, we next 

undertook a complementary experiment, examining the local fMRI response to optogenetic 

stimulation of striatal neurons at the cell body-level. This experiment revealed a unique 

mixture of striatal responses, characterized by vasodilation at the fiber stimulation site, 
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surrounded by a ring of widespread vasoconstriction (Figure 5.3). This data thus confirms 

our hypothesis that activation of striatal neurons is sufficient to elicit local striatal 

vasoconstriction. Additional downstream responses were also observed, including CBV 

increases within the GPe. This finding is particularly notable, as striatal activation would be 

expected to suppress GPe activity (through inhibitory indirect pathway inputs).  

_________________________________________________________________________________________________________

 
Figure 5.3. Functional activation maps of CBV modulation by optogenetic stimulation of 
the striatum (40 Hz). CBV increases were observed in a spatially confined region of 
striatum (proximal to the optic fiber), and surrounded by a “ring” of vasoconstriction that 
enveloped the surrounding area. CBV increases were also observed in the GPe, as were 
visual pathway responses (the latter likely attributable to non ChR2-mediated visual 
responses to laser light). 12 slices were acquired in each scan; anteroposterior distance 
relative to bregma (in mm) is listed below each slice. Color bar denotes t score values 
obtained by GLM analyses, with a significance threshold of p < 0.05 

_____________________________________________________________________________________________________ 
 
5.4 Discussion 

The data presented in this chapter broadly challenges the universality of the input 

theory of fMRI signals. Specifically, we have demonstrated that optogenetic stimulation of 

motor cortical projection neurons, which nonreciprocally innervate dorsal striatum, drives 
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negative CBV changes in the dorsolateral striatum.  Thus, the input theory-based prediction 

that input activity predominates fMRI signal generation does not hold in striatum, as 

recruitment of excitatory inputs drives negative fMRI signals in this nucleus. Moreover, 

preliminary data not reported here demonstrates that dorsal striatal blood-oxygen-level-

dependent (BOLD) signal decreases similarly emerge during optogenetic stimulation of 

motor cortical projection neurons. This is an important point, as CBV and BOLD signals 

may in certain cases be dissociated (243).  

Although the neural correlates of this negative striatal response cannot be fully 

explained based on our data, additional optogenetic-fMRI experiments reported here 

provide some important clues. Specifically, we show that optogenetic stimulation of either 

striatal neuronal somata (nonselectively) or striatonigral terminals each drives striatal CBV 

decreases. The latter experimental approach, likely resulting in antidromic stimulation of 

direct pathway striatal MSNs, suggests that recruitment of striatal projection neurons is 

sufficient to generate negative fMRI signals. Thus, it is exceedingly likely that 

postsynaptically-mediated circuit interactions, rather than cortical input activity, mediates 

corticostriatal pathway stimulation-evoked striatal vasoconstriction. 

Optogenetic-fMRI experiments in which striatal neuronal subtypes are targeted 

more selectively would likely be helpful in evaluating the microcircuit-level mechanisms of 

excitation-evoked striatal fMRI signal decreases. In addition to evaluating the fMRI signals 

generated by stimulation of striatal interneurons vs. MSNs, direct and indirect pathway 

MSNs may be selectively targeted using cell type-specific gene promoters. A recent study 

by the Lee lab has done just that, reporting local BOLD signal increases following selective 

optogenetic stimulation of either direct or indirect pathway MSNs (244). This data is quite 
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difficult to reconcile with our findings, although our studies substantially differ in many 

ways, including animal model (rat vs. mouse), as well as methods of data acquisition and 

analysis. In the final chapter of this dissertation (Chapter 6; General Discussion), I propose 

several potential mechanisms for the seemingly paradoxical striatal vasoconstriction 

observed in our work. 
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CHAPTER 6: GENERAL DISCUSSION 
 
 
6.1 Patterns and Putative Sources of Dorsal Striatal Vasoconstriction 
 
 A common theme observed among all of the studies presented in this dissertation is 

the observance of dorsal striatal vasoconstriction during electrical or optogenetic 

stimulation of various basal ganglia circuit elements. Specifically, dorsal striatal 

vasoconstriction was observed in response to the following stimulations: motor cortex 

(optogenetic), dorsal striatum (optogenetic), striatonigral afferents (optogenetic), ventral 

striatum (electrical), GPe (optogenetic and electrical), and the SNr (electrical). Thus, local 

excitation as well as modulation of various inputs (motor cortex and GPe) and outputs 

(striatonigral terminals) is all capable of driving dorsal striatal vasoconstriction. Even if we 

assume that similar downstream mechanisms are involved in each of these cases, the 

identification of the circuit-level underpinnings of the vasoconstrictive response is a 

tremendous task. Below, I describe a few clues, and suggest future studies aimed to 

elucidate potential mechanisms. 

 The possibility that dopamine signaling is involved in striatal vasoconstriction is 

raised by data from our group as well as others. Noxious forepaw stimulation evokes 

bilateral striatal vasoconstriction that is strongly attenuated by D2 receptor antagonism 

(215). Further, pharmacological-fMRI studies in rat and monkey have shown that D2 

receptor agonists drive striatal vasoconstriction, whereas antagonism drives vasodilation 

(245, 246). Taken together, these results suggest D2 receptor activation as a potential 
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source of the observed striatal vasoconstriction in our studies. At least one finding from the 

present set of experiments also hints at a potential dopaminergic mechanism. Specifically 

data presented in Chapter 4 shows that optogenetic stimulation of GPe neurons drives 

ipsilateral striatal vasoconstriction that is greatly reduced in 6-OHDA-treated 

hemiparkinsonian rats. Although other acute and chronic neurological changes occur in 

this model, this work certainly suggests further exploration of the dopamine system. Such 

future studies will have to take into account that, in addition to the direct and modulatory 

properties of dopaminergic signaling on neuronal activity in striatum, dopamine is also a 

vasoactive compound (one of perhaps many in striatum, e.g., adenosine signaling), with D1 

and D5 receptors being present on striatal microvessels (245). It should also be noted in 

this context that multiple groups (including our own) have observed positive dorsal striatal 

fMRI signals (CBV and BOLD) in response to selective optogenetic stimulation of midbrain 

dopamine neurons (131, 172). Thus, bulk dopamine release (as likely elicited by 

optogenetic stimulation of dopamine neurons), is an unlikely inductor of  

striatal vasoconstriction. 

 Lateral inhibition among striatal MSNs provides another attractive possible means 

for the excitation-driven vasoconstriction in the dorsal striatum. As elaborated upon in the 

General Introduction, striatal MSNs are interconnected via inhibitory collaterals. If a subset 

of striatal MSNs were excited by, e.g., local excitation, excitation of excitatory inputs, or 

disinhibition of inhibitory inputs, MSN collateral GABA release could, in theory, drive 

striatal vasoconstriction. The CBV response pattern observed in response to direct 

optogenetic stimulation of the dorsal striatum (see Figure 5.3) is particularly interesting in 

the context of this hypothesis. A similar ring-shaped border of negative fMRI signals has 
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been reported in response to selective stimulation of cortical parvalbumin interneurons, 

the shape of which was attributed to lateral inhibitory mechanisms (146). 

 There are potential criticisms to both dopamine signaling and lateral inhibition as 

putative mechanisms for the dorsal striatal vasoconstriction observed in our studies. Chief 

among them, as dopamine signaling and lateral inhibition are fundamental circuit features 

of the entire striatum, it is difficult to resolve why local optogenetic stimulation of the 

ventral striatum drives vasodilation instead of constriction (compare Figures 2.6 and 5.3). 

This finding is corroborated by the observance of ventral striatal BOLD signal increases 

driven by optogenetic stimulation of the rat prefrontal cortex (247). Perhaps this regional 

discrepancy in stimulation-evoked fMRI responses reflects generally understudied 

variations in the micro- and long-range circuit architecture of striatal subterritories, 

including differences in neurotransmitter receptor expression (e.g., acetylcholine receptor 

subtypes) (248), presence or absence of dopamine/glutamate corelease (109), and 

direct/indirect pathway striatal projection specificity (44). 

 
6.2 Suggestions for Future Experimental Directions 
 
 The data presented in this dissertation both raise questions and suggest 

experimental directions for future fMRI-based circuit/network mapping studies of the 

basal ganglia. Here, I will discuss three major future study directions: 1) the determination 

of electrophysiological correlates to observed fMRI signals, 2) pharmacological fMRI 

interrogations of circuit stimulation-induced fMRI signals and 3) the application of more 

selective transgenic approaches to target basal ganglia nuclei subpopulations for 

optogenetic-fMRI experiments. Many of the technical weaknesses of our fMRI-based 

approach to circuit and network mapping, and associated alternative approaches (e.g., 
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awake animal imaging to avoid anesthesia confounds) are described in detail elsewhere 

and will not be reviewed here (e.g., see Discussion sections for Chapters 2 and 3). 

 
Determination of Electrophysiological Correlates 
 
 Because fMRI-based measurements describe neuronal activity patterns only very 

indirectly, the implementation of in vivo electrophysiological procedures would greatly 

benefit all of the studies described in this dissertation. For example, data presented in 

Chapter 2 suggests that neural circuit responses to NAc-DBS may be relatively frequency-

insensitive; thus, it would be highly interesting to determine if unit activity or LFP 

modulation by DBS at certain downstream regions (e.g., amygdala, prefrontal cortex) is 

similarly DBS frequency-insensitive. Perhaps none of the observed evoked-fMRI signals 

could benefit more greatly from corroborative in vivo electrophysiological studies than the 

striatal vasoconstriction observed during several basal ganglia circuit manipulations. As 

discussed elsewhere (e.g., see Chapter 3 Discussion), neurovascular uncoupling has been 

previously reported in rodent striatum (215, 219); thus, in the absence of any 

electrophysiological data, only the most conservative interpretations can be made 

regarding neuronal contributions to striatal vasoconstriction.  Ideally, the complementary 

electrophysiological examinations would take place simultaneously with fMRI data 

acquisition, a technical feat given the electrical noise introduced by the MR scanner 

environment. A suitable alternative would be to conduct electrophysiological studies 

outside the scanner in a separate group of animals, using identical anesthesia/sedative 

regimens and neural circuit stimulation protocols.    
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Pharmacological-fMRI Studies 

 Pharmacological-fMRI studies, combined with optogenetic tools, may allow for the 

generation of experiments to test the causal roles of dopaminergic and/or GABAergic 

signaling (among other transmission mechanism) in striatal vasoconstriction. For example, 

dopaminergic receptor antagonists may be injected acutely in the scanner following the 

observation of optogenetically-evoked striatal vasoconstriction. Modulation of the 

presence and/or intensity of the striatal fMRI signal post-drug may then be used to argue a 

role for the dopamine system in striatal vasoconstriction. Similarly, to test the role of 

lateral inhibitory mechanisms of action, pharmacological modulators of GABAergic 

signaling (eg., benzodiazepines), or histaminergic antagonists may be used (reported to 

selectively block lateral inhibition in striatum (66)). Although such experiments may 

provide corroborative evidence for a chosen hypothesis, this pharmacological-fMRI 

approach also suffers from caveats that will preclude definitive identification of a 

mechanism of striatal vasoconstriction. For example, as fMRI signals reflect changes from a 

hemodynamic baseline, any drug that persistently alters the baseline has the potential to 

induce a floor or ceiling effect regarding evoked fMRI signal changes. Pharmacological 

interrogations also generally suffer from varying levels of nonselectivity with respect to 

modulation of targeted vs. off-target circuits, an issue that may be reduced, but not 

eliminated by intracranial as opposed to systemic administration of the experimental 

compound. Finally, anecdotally, in many cases optogenetic-fMRI signals could not be 

reliably evoked across longer experimental scan sessions (i.e., optogenetic responses may 

dissipate, even when physiological parameters are within normal range and light-evoked 
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visual responses persist); this observation suggests that caution needs to be taken in the 

interpretation of drug-induced losses of optogenetically-evoked fMRI signals. 

 
 
Selective Targeting Approaches for Optogenetic-fMRI 
 
 Many of the optogenetic experiments described in this work could generally benefit 

from more selective targeting of neuronal populations. This is particularly the case for the 

GPe and striatum, each of which holds large, intermingled populations of projection 

neurons that differ in both molecular phenotypes and input/output patterns. The fMRI 

signal reflects the spatially-summed activity within each voxel (with likely biased 

contributions from different classes of neurons; e.g., due to differing metabolic demand 

(119)); thus, when intermingled neuronal populations are simultaneously modulated (e.g., 

from optogenetic stimulation), cell-type-specific contributions to the resulting fMRI signal 

are exceedingly difficult to resolve.  Even in cases such as with optogenetic-fMRI 

stimulation of the GPe (Chapter 4), wherein anatomical considerations provide relatively 

straightforward interpretations of downstream fMRI signal origins (i.e, prominent striatal 

vasoconstriction due to stimulation of striatum-projecting arkypallidal neurons), the 

independent contributions of other stimulated cell classes, as well as interactions between 

stimulated cell classes, cannot be easily ruled out. For example, with respect to the above 

example of optogenetic GPe stimulation, the observed striatal vasoconstriction could also 

be due to recruitment of STN-projecting prototypical GPe neurons via less straightforward 

polysynaptic route(s). Similarly, it would be highly informative to know the contributions 

of direct vs. indirect pathway MSNs to striatal stimulation-evoked vasoconstriction (see 

Chapter 5). 
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 How can more selective opsin expression be achieved in these complex nuclei? In 

mice, which at present are far more genetically tractable than rats, the common approach is 

to employ transgenic animals in which recombination enzymes (e.g., Cre-recombinase) 

with germline transmission are placed under the gene promoter of interest. Viral vectors 

encoding recombination-inducible constructs then allow for straightforward targeting of 

selective cell populations. Unfortunately, such technology has generally been lacking in 

rats, where few such transgenic models are available (249). Some transgenic rat lines of 

interest (with respect to the present work) have been developed through the National 

Institute of Drug Addiction’s Trangenic Rat Project (National Institutes of Health), including 

Cre-lines under the parvalumbin and dopamine D1 and D2 receptor promoters 

(http://irp.drugabuse.gov/OTTC/rats.php). Employing this parvalbumin-Cre line, it may be 

possible to selectively target  prototypical neurons of the GPe; to the author’s knowledge, 

no similar Cre lines exist for the complementary targeting of the arkypallidal GPe neurons 

(which are labeled by both Lim homeobox x-6 (Lhx6) and Npas1 (74, 75).  

 A second, conceptually similar approach is to target molecularly-defined neural 

subclasses using a selective gene promoter incorporated directly into the viral vector. For 

example, our motor cortical optogenetic-fMRI experiments took advantage of the CaMKIIα 

promoter based on its ability to preferentially target excitatory principal cells in cortex 

(144). Although the flexibility of promoter choice using this approach is largely limited by 

gene size considerations (250), some useful viruses may be available for extending the 

present work. For example, Neumaier and colleagues have developed lentiviral vectors, 

encoding DREADD-based pharmacogenetic constructs (251), that selectively target direct 

and indirect pathway MSNs (via the use of enkephalin and dynorphin promoters, 

http://irp.drugabuse.gov/OTTC/rats.php
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respectively) (252). Pharmacogenetic-fMRI experiments using this viral vector, or 

optogenetic-fMRI experiments using a similar vector, may allow for the extension of our 

striatum circuit-mapping fMRI experiments (Chapter 5) to evaluate the contribution of 

both MSN subtypes in stimulation-evoked local vasoconstriction. Unfortunately, a pilot 

fMRI study using these lentiviral DREADD-encoding viruses was unsuccessful (data not 

shown).  

  Lastly, neuronal subclasses may be optogenetically-targeted based on their 

projection patterns, for example, via local stimulation of opsin-expressing fibers, or cell 

targeting using retrograde viral vectors (e.g., Cre-encoding canine adeno virus[CAV] (253)) 

infused in terminal fields. Using the former approach, I have demonstrated striatal 

vasoconstriction in response to optogenetic stimulation of the direct pathway striatonigral 

projection (see Figure 5.2). Although antidromic spiking following fiber stimulation may 

have, in principle, allowed for selective modulation of direct pathway MSNs in this 

experiment, the interpretability and physiological relevance of somatic activity induced in 

such a manner is debatable. The use of retrograde viral tools to induce somatic opsin 

expression (either directly or through the dual-targeting approach of terminal infusion of 

Cre-encoding retrograde viruses and cell body infusion of Cre-inducible opsin-encoding 

vectors (254)) is a more attractive approach. A pilot study by the author to induce Cre 

expression in direct and indirect pathway MSNs using this method was unsuccessful (data 

not shown). Future experimental attempts, perhaps using larger CAV viral volumes for GPe 

and SNr infusions (greater than 0.5ul), would be worth pursuing. This approach could also 

be easily employed for targeting the arkypallidal and protototypical GPe neurons by 

infusing the retrograde virus into the striatum or STN, respectively. 
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6.3 Summary 
 
 The studies described in this dissertation have employed preclinical fMRI measures 

of neural circuit and network connectivity, focusing on the basal ganglia network. Among 

the major findings of this work, we have reported that NAc-DBS may modulate neural 

circuits in a relatively frequency-insensitive manner (Chapter 2), and that striatal 

vasoconstriction is a broad consequence of activation of multiple basal ganglia circuit 

elements (motor cortical inputs, GPe, dorsal striatum). With respect to GPe stimulation-

evoked striatal vasoconstriction (Chapter 4), we also report that this downstream response 

is modified in a widely used Parkinson’s model. Future studies, particularly 

electrophysiological assessments, should aid considerably in determining the neuronal 

activity correlates of this disease-sensitive striatal fMRI signal. 
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APPENDIX 2.1: SUPPLEMENTAL MATERIALS FOR CHAPTER 2 
 
 

 
 
Figure S2.1. Representative T2-weighted anatomical images displaying electrode 
placement in the NAc (A) and optic fiber placement above the NAc (B). Note the minimal 
electrode artifact with the tungsten microwire electrode. 

 
 
 
 

 
 
Figure S2.2. NAc-DBS-evoked functional activation maps (130 Hz; 300 μA) overlaying 
on group-averaged EPI images (n = 5), presented on group-averaged EPI data (A). For 
comparison, the template-overlaid images are presented in Figure 2.2B. A sample of 
raw, unaveraged EPI images from 3 subjects is provided in (B). As we achieved robust 
evoked-fMRI responses in all animals, no data was discarded, including subject EPI data 
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displaying artifacts. Additional details regarding these images are located in the Figure 
2.2 caption. 
 
 
 

 
 
Figure S2.3. Temporal dynamics of VTA CBV responses to NAc-DBS across five 
stimulation frequencies (10, 40, 70, 130, 200 Hz; n = 8 per frequency) showing a lack of 
detectable evoked responses. All subjects were scanned with 500 μA DBS, except one 
subject with 600 μA. Additional details are provided in the Figure 2.5 caption. 
 
 

 
 
Figure S2.4. Functional activation maps of CBV modulation by NAc-DBS at 10, 40, 70, 
200, and 400 Hz (500 μA; except for one subject with 600 μA) (n = 8 per frequency). NAc-
DBS delivered at 10 Hz resulted in sparse CBV increases within and around the NAc. 
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DBS delivered at all other tested frequencies resulted in large-scale CBV modulation in 
both cortical and subcortical areas, which further were remarkably similar in spatial 
patterning across DBS frequencies (see also Figure 2.5). Additional details regarding 
these images are located in the Figure 2.2 caption. Slice locations (reference to the 
Bregma in mm) are labeled at the bottom of the figure.  

 
 
 

 
 
Figure S2.5. Network-level visualization of pair-wise fcMRI modulations during 130 Hz 
NAc-DBS. Significant (rANOVA, p ≤ 0.05 uncorrected, ΔZ-Corr > 0.10) individual pair-
wise connections grouped by functionally-defined network (Sensorimotor, Executive, 
Limbic, and Between Network Connections) and plotted as Z-Correlation vs Stimulus 
Condition (Pre-DBS, DBS, Post-DBS). Pathways with enhanced connectivity are shown 
in (A) and suppressed connectivity are shown in (B). Individual lines represent group 
means (n = 7).  
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Figure S2.6. Sliding window analysis (90 s width; i.e., 1-90 s, 2-91 s…) of averaged z-
correlations during the 130 Hz DBS stimulation fcMRI scan period. This analysis was 
conducted for ROIs within the right hemisphere (RH), ipsilateral to the stimulation site. As 
described in the Methods, ROIs were separated into two separate networks: the NAc-
DBS Network, and Other Network. Note that, for the NAc-DBS Network (top traces), 
average z-correlations (i.e., connectivity strength) generally remained higher for the DBS 
period compared to Pre/Post-DBS periods, and were highest at the onset of stimulation. 
However, no significant differences were detected between the first- and second-half of 
the data (paired t-test; p > 0.05). For the Other Network (bottom traces), there were no 
observable differences in connectivity strength between the DBS and Pre/Post periods. 
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APPENDIX 3.1: SUPPLEMENTAL MATERIALS FOR CHAPTER 2 
 
 

Supplemental Figures 
 
 
 

 
 
Figure S3.1. Experimental protocol. In preparation for fMRI procedures, rats were 
endotracheally intubated for mechanical ventilation and tail vein catheterization was 
applied for injection of the contrast agent (MION). Animals were then placed within a head-
holder, and harnessed to a small animal cradle, after which they were transported to the MR 
scanner. Scanning started with a series of preparation scans to optimize location and 
magnetic field homogeneity. T2-weighted images (T2w) were obtained for anatomical 
reference. Immediately prior to fMRI scan acquisition, rats were administered MION. A series 
of evoked fMRI scans with simultaneous DBS were obtained with a rest period of at least two 
minutes between each scan to allow for neurovascular recovery. Stimulation frequencies 
were varied in a pseudo-randomized order (freq. 1-6). Immediately following evoked fMRI 
scan acquisition, fcMRI scans were conducted in each subject. These scan series consisted of 
five, 5 minute scans during which either no stimulation or continuous DBS (40 or 130 Hz) 
was applied.  
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Figure S3.2. Seventeen anatomically-defined regions of interest (ROIs), used for the analysis 
of evoked-fMRI CBV traces (see Figures 3.3-4, S3.6-7), overlaid on the anatomical MR-
template. Slice locations (reference to the Bregma in mm) are labeled at the bottom of the 
figure. 
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Figure S3.3. SNr-DBS-evoked functional activation maps (130 Hz) overlaying on 
representative group-averaged EPI images. For comparison, the template-overlaid images 
are presented in Figure 3.2B. Additional details regarding these images is located in the 
Figure 3.2 caption. Numbers below each slice refer to anteroposterior slice location 
(reference to the Bregma in mm). 

 
 
Figure S3.4. Functional activation maps of CBV modulation by SNr-DBS at 10, 70, 200, and 
400 Hz. Note that SNr-DBS delivered at 10 Hz results in no significant CBV changes in any 
voxel. 70-200 Hz SNr-DBS resulted in CBV modulation within the targeted area as well as 
additional cortical and subcortical regions across the brain, including negative CBV signals 
within the striatum. Additional details regarding these images is located in the Figure 3.2 
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caption. Slice locations (reference to the Bregma in mm) are labeled at the bottom of the 
figure.  
 

 
 
 
Figure S3.5. Functional activation maps of CBV modulation by GPe-DBS at 10, 70, 200, and 
400 Hz. Note that GPe-DBS delivered at 10 Hz results in no significant CBV changes in any 
voxel. 70-200 Hz GPe-DBS resulted in CBV modulation within the targeted area as well as 
additional cortical and subcortical regions across the brain, including large prefrontal CBV 
increases and negative CBV signals within the striatum. Additional details regarding these 
images is located in the Figure 3.2 caption. Slice locations (reference to the Bregma in mm) 
are labeled at the bottom of the figure. 
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Figure S3.6. SNr-DBS evoked CBV changes at additional anatomically-defined regions of 
interest. (A) Cingulate (B) Motor cortex (C) Prelimbic cortex (D) Pedunculopontine 
tegmental nucleus (E) Ventrolateral thalamus (F) Infralimbic cortex (G) Zona incerta (H) 
Orbitofrontal cortex (I) Ventral tegmental area (J) Nucleus accumbens (K) Superior 
colliculus (L) Ipsilateral dorsomedial striatum (M) Contralateral dorsomedial striatum.  
 
 

 
Figure S3.7. GPe-DBS evoked CBV changes at additional anatomically-defined regions of 
interest. (A) Cingulate (B) Motor cortex (C) Prelimbic cortex (D) Pedunculopontine 
tegmental nucleus (E) Ventrolateral thalamus (F) Infralimbic cortex (G) Zona incerta (H) 
Orbitofrontal cortex (I) Ventral tegmental area (J) Nucleus accumbens (K) Superior 
colliculus (L) Ipsilateral dorsomedial striatum (M) Contralateral dorsomedial striatum. 
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Figure S3.8. fcMRI Modulation via DBS of the SNr and GPe – without Global Signal 
Regression (GSR). Previously identified significant enhanced and suppressed connections 
(see Figure 3.5B and Supporting Material: Supplemental Tables S3.1-2) were re-analyzed 
using data without GSR in the pre-processing pipeline. The main-effect of condition for both 
DBS targets was maintained for enhanced but not for suppressed connections; SNr: 
FEnhanced(4,165) = 6.81, p < 0.001 and FSuppressed(4,75) = 0.92, p = 0.460; GPe: FEnhanced(4,190) 
= 5.71,               p < 0.001 and FSuppressed(4,190) = 1.85, p = 0.121. For the enhanced connections, 
130 Hz was significantly different from all other conditions for both DBS targets; * SNr p ≤ 
0.016, GPe ≤ 0.006. 

Supplemental Tables 
 
Table S3.1. SNr-DBS significantly (rANOVA, p ≤ 0.01 uncorrected, Z-correlation ≥ 0.10) 
modulated individual connections corresponding to Figure 5A. Data sorted based on 
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network grouping and modulation strength. ROI abbreviations are listed in Figure 3.5 
caption. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table S3.2. GPe-DBS significantly (rANOVA, p ≤ 0.01 uncorrected, Z-correlation ≥ 0.10) 
modulated individual connections corresponding to Figure 5A. Data sorted based on 
network grouping and modulation strength. ROI abbreviations are listed in Figure 5 
caption. 
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Table S3.3. Summary statistics for post-hoc comparison (two-sample t-tests: Rest vs. 40 Hz, 
Rest vs. 130 Hz, and 40 Hz vs. 130 Hz) across significantly modulated connections (Table 
S3.1 and S3.2) grouped by DBS target (SNr and GPe) and modulation direction (Enhanced: 
increased correlation; Suppressed: increased anti-correlation). 
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