METHODS FOR STRENGTHENING THE DESIGN AND ANALYSIS OF
CLINICAL TRIALS TO SHOW NON-INFERIORITY OF A NEW TREATMENT
TO A REFERENCE TREATMENT FOR A BINARY RESPONSE VARIABLE

Rebekkah S. Dann

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctorate of Public Health in the
School of Public Health (Biostatistics)

Chapel Hill
2006

Approved by:
Gary Koch

Amy Herring
Lisa LaVange
Jeanenne Nelson

John Preisser



ABSTRACT
Rebekkah S. Dann: Methods for Stregthening the Design and Analysis of Clinical Trials to
Show Non-inferiority of a New Treatment to a Reference Treatment for a Binary Response
Variable
(Under the direction of Gary G. Koch)

Non-inferiority clinical trials are increasingly becoming more prominent in research
and development of new pharamaceuticals. The objective of such trials is to show that the
amount by which a new treatment is worse than an active control is below a specified
amount. Methodology specifically for the design and analysis of these trials is essential for
the assurance of quality trials that are statistically defensible in the scientific community as
well as in a regulatory setting, where traditionally focus has been on superiority.

Standard methodology must be reviewed and assessed as to its appropriateness for
addressing the non-inferiority hypothesis. Categorical data analysis for a dichotomous
primary endpoint may include analysis of a risk ratio or a risk difference which compares the
test and active control treatments. The effect of sample size allocation and other parameters
of interest on the performance of these methods will be assessed. In addition, appropriate
sample size formulas will be developed and evaluated to aid in trial planning.

In some non-inferiority trials, it is possible to include a placebo arm as well as an
active control arm which allows non-inferiority to be assessed relative to the percentage of

the difference between the control and placebo arms that the test treatment preserves over

placebo. Methodology for this assessment is also of interest along with appropriate sample

il



size calculations. This setting also presents an area of research for discussion of the one
versus two trials paradigm.

Extensions to the methodology for the risk ratio and risk difference are assessed when
stratification is necessary, specifically for large subgroups such as gender. Methods for
stratification are an important component, and additionally the effects of stratification in a
non-inferiority setting need evaluation.

Review, development, and assessment of this methodology for categorical
data as specifically focused on the non-inferiority setting is an important addition to the
current statistical practice. This research is a cohesive presentation for each of the measures
of interest through assessment of methodology and its relation to appropriate design
components such as sample size calculation. The importance of helping statisticians

understand and implement methods in these areas is of most concern.
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INTRODUCTION

Non-inferiority clinical trials are increasingly becoming more prominent in the
research and development of new pharamaceuticals. Methodology specifically for the
design and analysis of these trials is an essential component for the assurance of quality
trials that are statistically defensible in the scientific community as well as in a regulatory
setting, where traditionally the focus has been on superiority.

The main goal of non-inferiority trials is to show that the new experimental
medication (test treatment) is not unacceptably worse than the current standard of care
(active control treatment) by a specified amount, but the test treatment may have other
desirable aspects such as a better safety profile or properties which make patient
compliance better. This is a reversal from the goals of a superiority trial which generally
includes the test treatment in comparison to a placebo where the goal is to show that this
new treatment is more effective than placebo. In certain disease areas such as infections,
the use of a placebo control arm is unethical due to widespread use of the active control
for treatment of the disease.

There are specific guidance documents which discuss the issues surrounding the
design and implementation of non-inferiority trials. The ICH-E10 guidance' on the
“Choice of Control Group and Related Issues in Clinical Trials” provides the rationale for
use of an active-control treatment in a non-inferiority setting. In addition, the trial must

address assay sensitivity through historical evidence of efficacy, and the conduct of the



trial must make efforts to increase compliance and minimize dropouts, since poor trial
conduct can bias these trials toward non-inferiority. Additionally, the choice of a margin for
testing the inferiority hypothesis must be established by clinical and statistical
judgmentz.These issues are all very important aspects in the design of a non-inferiority trial.
However, the current discussion will assume that these issues are appropriately addressed
and the focus will include statistical issues related to sample size calculation, sample size
allocation, and analysis in non-inferiority trials. These issues are essential for statisticians
who need to know how to better design and analyze these trials, with specific emphasis on
methods related to dichotomous categorical data.

Standard methodology must be reviewed and assessed as to its appropriateness for
addressing the non-inferiority hypothesis. Categorical data analysis for a dichotomous
primary endpoint may include analysis of a risk ratio or a risk difference which compares the
test and active control treatments. This assessment of non-inferiority is performed by
computing a confidence interval and determining if the applicable limit is below (or similarly
above) the pre-specified non-inferiority margin. A test statistic can also be used for this
assessment where rejection of the null hypothesis of inferiority would require a p-value less
than the pre-specified alpha level. Methods for computing either the confidence interval or
the corresponding test statistic will be assessed according to their performance with respect
to type I error and power through simulations for relevant scenarios. The effect of sample
size allocation on the performance of these methods will also be assessed. In addition,
appropriate sample size formulas will be developed to aid in trial planning.

In some non-inferiority trials it is possible to include a placebo arm as well as an

active control arm. This placebo arm can address issues related to assay sensitivity and



appropriate trial conduct. This also allows non-inferiority to be assessed relative to the
placebo arm, using the percentage of effect that the test treatment has over placebo compared
to the effect that the control treatment preserves over placebo. Methodology for this
assessment is also of interest along with appropriate sample size calculations. This setting
also presents an area of research for discussion of the one versus two trials paradigm.
Frequently, regulatory agencies require two confirmatory trials. However, if these trials are
run in an identical manner with similar protocols, it may be beneficial to run one large trial.
The implications of these scenarios are assessed related to type I error control and the
resulting power for rejecting the null hypothesis of inferiority.

Extensions to the methodology for the risk ratio and risk difference are assessed when
stratification is necessary, specifically for large subgroups such as gender. Methods for
stratification are an important component, and additionally the effects of stratification in a
non-inferiority setting.

Review, development, and assessment of this methodology for dichotomous data
specifically focused on the non-inferiority setting is an important addition to the current
statistical practice. This research is a cohesive presentation for each of the measures of
interest through assessment of methodology and its relation to appropriate design
components such as sample size calculation. The importance of helping statisticians

understand and implement methods in these areas is of most concern.
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Chapter 1
Review and Evaluation of Methods for Computing Confidence Intervals for the Ratio of Two

Proportions and Considerations for Non-inferiority Clinical Trials

1. Introduction

Ratios of proportions are often called risk ratios in a clinical trials setting. These
ratios are used to compare two independent groups, usually on two different treatments. A
non-inferiority clinical trial can compare an active control group to a group taking a new
treatment for an efficacy outcome (or a placebo group to a group taking a new treatment for a
safety outcome). The goal is to show that the new treatment is not unacceptably worse than
the active control (or placebo) treatment'. The new treatment may have other beneficial
aspects such as a reduction in severity of side effects, easier use, or lower cost.

Assessing non-inferiority is often done through a confidence interval for the risk ratio
of the two groupsl, particularly if control failure rates are small (e.g., < 0.20) or control
success rates are large (e.g., > 0.80). If failure rates are very small (e.g., < 0.05) then the odds
ratio can be conservatively used to approximate the risk ratio (when defined so as to have the
larger expected rate in the numerator and the smaller expected rate in the denominator). For

situations where failure rates are larger (e.g., > 0.20), then the difference in rates is typically



emphasized2’3’4. In some cases, if the new treatment group has a risk that is not more than
twice that of the control group for a failure outcome through an upper confidence limit of 2
or less, then the new treatment will be judged non-inferior. This non-inferiority limit can be
set at a variety of pre-determined levels' denoted 0. Accordingly, a corresponding test of

non-inferiority has the null hypothesis as Hp: 0 = mr / mc 2 6 and the alternative hypothesis
as HA: 0 = p / e < 0p where 0 = mr / e is the population risk ratio for the test group versus

the control group with mr as the population proportion of events in the test group and nc as
the population proportion of events in the control group, and 6y=2 was the previously
mentioned example.

There are many methods in existence for computing a confidence interval for a risk
ratio. Several of the methods for forming confidence intervals for ratios of two independent
binomial proportions will be reviewed and evaluated for their statistical performance. These
methods include use of a Taylor Series expansion to estimate variance, solutions to a
quadratic equation, and maximum likelihood methods. Simulations were used to identify the
better methods for controlling the type I error rate while maintaining power. Applications of
these findings include sample size calculations which arise in randomized clinical trials

conducted to show non-inferiority.

II. Methods

A. Taylor Series Expansion Methods



The literature contains many methods for forming confidence intervals for risk ratios.
The first group of these uses a variance formed through a Taylor Series expansion. The
following method seen in (1.1), hereafter called the Taylor Series method, is the simplest in
this group discussed by Katz, Baptista, Azen and Pike’ and used by SAS in the FREQ

procedure® and by EquivTest’ to form a 100(1-2a)% confidence interval for a risk ratio:

1/2
/
Yc/nc Yr Yc¢ 10Ot D¢

where yr is the number of events and nr is the total sample size in the treatment group, yc is
the number of events and nc is the total sample size in the control group, and z, is the 100(1-
o) percentile from a standard normal distribution.

In 1988, Gart and Nam® revised this original method so that the confidence interval
would be defined if yr or yc were equal to zero. The formula seen in (1.2) is this modified

confidence interval used by StatXact® for risk ratios.

exp{log{(yﬁo.S)/(nT+0.5)]+Z{ 1 1 1 1 } } (1.2)
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This Modified Taylor Series method adds a half to the event count for each group as well as
the total sample size for each group.

The last method in this group of Taylor Series expansion methods is adapted from a
confidence interval for a single binomial proportion proposed by Agresti and Coull". For a
confidence interval for a single binomial proportion, Agresti and Coull suggested adding half
the squared z-value (at the corresponding alpha level) to each outcome for each group to
produce a more conservative interval. This strategy was adapted for a test of non-inferiority

where the null hypothesis is not one of equality. The additional 2z, counts must be



distributed to each group according to the null hypothesis (6p) and the allocation of sample

size to each group (R=ny/nc) as seen in (1.3)

1/2
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For example, at an 0=0.025 level an additional ZZi = 2(1.96)2 ~ 8 counts must be added. For

a setting with twice as many patients allocated to the test group than the control group, R=2,
and a null hypothesis of 6p=2, there are a total of y1=3.56 events added to the test group,
vc=0.89 events added to the control group with a total of yro,7=5.33 added to the overall
number of patients in the test group and yroc=2.67 patients added to the control group.

The Taylor Series Adjusted Alpha method was added so as to correct inflation of type
I error by the Taylor Series method seen in initial simulations. This method is the Taylor
Series method with an alpha level that is 0.0025 less than the alpha level for the a=0.025
scenario. For example, this method would use an alpha level of 0.025 — 0.0025 = 0.0225
when a=0.025 was specified. The choice of 0.0025 was motivated by findings from the
simulations for the specific scenarios presented where this modification was needed to offset
the small inflation in type I error of the Taylor Series method. This 0.0025 adjustment of the
alpha level is dependent on the application at hand and simulations can be used to determine

the appropriate adjustment for any scenario. This adjustment to the alpha level is a way to



address studies with finite samples rather than infinite (or very large) samples by increasing
the z-criterion for significance slightly (i.e., for alpha=0.025 the z-criterion would increase

from 1.96 to 2.00).

B. Solution to Quadratic Equation Methods

The next group of methods is slightly more complicated because the confidence limits
are the solutions to a quadratic equation. After algebraic manipulations, a quadratic form of
the equations provided below are then solved for 6. The upper and lower confidence limits
are the smaller and larger of the two solutions, respectively. However, these methods may
produce complex-valued results (when square roots of negative numbers are involved).

Fieller'' first presented the most basic of these methods in 1944 as seen in (1.4),

hereafter called the Quadratic method where py =y /ng and pe =y /nc.

A a2
(Py ~BPc) =7 (1.4)
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The second of this group of methods in (1.5) was proposed by Bailey in 1987'* which
is a modification of the Quadratic method to produce limits with more desirable properties as

will be discussed in more detail in the literature review section.
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The last of this group of methods was proposed by Farrington and Manning in 1990*

with three possible variations on the equation in (1.6).

(IST _eﬁC)2 - 22 (16)
{ﬁT(l—ﬁT) o2 ?cc(l—?cc)} *

0 Y6
Each variation suggests computing % and T;in a different manner. The first of these, F-M
1, uses the observed values and sets T = pcand T =pr. The second variation, F-M 2,

eo(an)T +an)C)and 5 (npPr +ncpe)
o=

(Oyny +nc) (Opny +n¢)

uses fixed marginal totals to compute T, =

The third variation, F-M 3, uses maximum likelihood estimation under the null hypothesis to
obtain % and Ty with details found in Farrington and Manning’s paper” and solutions for

7 and T below:

— — 2_
I ;a 43¢ nd %o =%, /R

where a :1+n—c, b =—{60(1+n—cﬁcj+n—c+fn}, and ¢ =90(IA)T +n—cf)cj'
n n n

Ny T T T
In addition, Gart and Nam?® summarize an interval attributed to Noether where the

equation in (1.7) is solved for 6 to yield upper and lower confidence limits, O;, and 6y.

(ﬁT /ﬁc _H)z — 2 (1'7)
{92<1—ﬁc>+0<1—%c>} ’
nePe n (p)

C. Maximum Likelihood Methods
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The third group of confidence interval methods includes those that use maximum
likelihood estimators for the proportion of events in the treatment and control groups based
on the joint distribution of the events as the product of two independent binomial
distributions for the treatment and control groups. The first of these methods calculates a

deviance statistic as seen in (1.8)
Deviance =2 *[logL(7t;, T ) — log L(Gofc* A (1.8)
where 77 and 7 are the maximum likelihood estimators of wr and mc under the alternative

hypothesis and (60fc*) and 7t are the corresponding maximum likelihood estimators under

the null hypothesis 6 = 6.
The second of these maximum likelihood methods is based on a Pearson statistic in

the form of [(observed — expected)z/ expected] in (1.9).

A K

{yT _GOnT/Z\-*}Z + {(nT _yT)_nT(l_eoﬁ-*)}z n {yC _ncﬂ' }2 4 {(nC —yc)_nc(l_/i_*)}Z
O ny (1-6,7") neit’ ne(1-7)

(1.9)
using eofc* and 7 , the maximum likelihood estimators of 7wt and 7 under the null
hypothesis 6 = 6,. Koopman'® proposed this method in 1984, and StatXact’ is a software
package that provides these confidence intervals.

In addition, Bedrick'* discusses a set of methods termed the power divergence

methods seen in (1.10) where various values of A can be used, with this discussion focusing

on A=-0.5, 0.5, 0.67, 1.0, and 1.25.
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The Deviance, Pearson, and Power Divergence methods produce test statistics for
which p-values can be obtained using the chi-square distribution under one degree of
freedom. The appropriate confidence limits can be found through an iterative process. The
hypothesized ratio 0 of 7y to mc is modified until the desired p-value (e.g., 0.05 or 0.025) is
obtained. This process identifies the largest 6, that would not be rejected as Hy: 6 > 6. The
ratio that produces the desired p-value is then the upper confidence limit. This iterative
process requires changing the maximum likelihood estimator pertaining to the null
hypothesis as 0y changes. This group of methods is more complicated than the others due to
the iterative nature of finding the confidence intervals as all hypotheses not rejected, thus
requiring intensive computer resources.

A summary of available software resources for the computation of the methods

described can be found in Table 1.1.

II1. Review of Literature

Different combinations of the methods described above have been compared in the
literature. In 1978, Katz et al.” compared the Taylor Series method and the Quadratic method
using simulations and calculating coverage probabilities. Katz et al. suggested that the
Quadratic method could be erratic and may not produce confidence limits at all; the Taylor

Series method was recommended for use instead of the Quadratic method.
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Again in 1984, Koopman13 used simulations and coverage probabilities to compare
the Taylor Series method and the Pearson maximum likelihood method. Findings suggested
that the Pearson method maintains a coverage probability closer to the (1 - 2a) level, and in
addition, the one-sided probabilities of exceeding the upper limit or being lower than the
lower limit are much closer to a. Therefore, Koopman recommended use of the Pearson
method.

In 1987, Bailey12 extended the Quadratic method to produce Bailey’s method, which
should reduce the skewness of the confidence interval as well as maintain the nominal
coverage probability better than the Quadratic method. This new method is also compared to
the Taylor series method and the Pearson method. Bailey concluded that his method results
in confidence limits that are closer to the nominal level than the Taylor Series method. In
addition, Bailey’s method more often maintains the nominal coverage probability better than
the Pearson method.

Gart and Nam® produced a comprehensive comparison of the methods presented
previous to 1988. They indicated that the Quadratic method and Bailey’s method tend to
produce confidence limits that are either above or below the nominal coverage probability,
whereas the Modified Taylor Series method and the Pearson method achieve coverage
probabilities close to the nominal level, with the Pearson method slightly better. They also
discuss a skewness-corrected score method, which is iterative in nature, that is slightly better
than the Power Divergence method (A=0.5) of Bedrick'.

In 1990, Farrington and Manning4 presented results on the three variations of

quadratic methods for producing confidence limits for risk ratios. Their recommendation was
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the third of these methods, F-M 3, based on maximum likelihood estimation for the

proportions.

IV. Confidence Limit Comparisons

An initial comparison of the methods includes computing the upper confidence limits
for selected cases. At a one-sided alpha level of 0.025, the upper confidence limits are
presented for each of the methods producing confidence limits and p-values for the methods
producing a test statistic (with confidence limits computed through an iterative process). The
methods are grouped by the three method types: the Taylor Series variance expansion
methods (Table 1.2), the quadratic methods (Table 1.3), and the maximum likelihood
methods (Table 1.4).

Within the Taylor Series variance expansion methods, the Taylor Series method and
the Taylor Series Adjusted Alpha method produce higher confidence limits for the 1:2
allocation whereas the Adapted Agresti method has higher confidence limits for the
allocations that place more sample size in the test treatment for the 3:2, 2:1, and 3:1
allocations. The Quadratic method and Farrington-Manning method 1 produce very similar
upper confidence limits due to their similarity in computation. Noether’s method produces
higher confidence limits for all sample size allocations. Farrington-Manning methods 2 and 3
also produce similar upper confidence limits for the selected cases presented. The Deviance
and Pearson methods produce similar p-values. The group of Power Divergence methods

yields decreasing p-values for increasing choices of A.
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V. Simulations

Data were generated from known distributions to compare the behavior of the
methods with respect to power and type I error. Scenarios included varying the following

parameters:

p—

. T, the population proportion of events in the control group: 0.10, 0.15, 0.20, 0.25
2. 0= my/nc, the population risk ratio: 0.667, 0.800, 1.000, 1.250, 1.500, 2.000, 2.500
3. mr, the population proportion of events in the test group: mr= 0nc

4. 0o, the null hypothesis risk ratio: 1.5, 2.0, 2.5

5. a, the one-sided alpha level: 0.005, 0.025, 0.050

6. nc, the sample size in the test group is calculated to have 85% power to contradict

the null hypothesis 6y, given a risk ratio of 1 for test versus control with ny=Rn¢:

ool ]
{In(1/6,)

7. Sample size allocation for test:control as 1:2, 1:1, 3:2, 2:1, 3:1

nC:

For each combination of the parameters, 100,000 simulations were generated using a
random sample from the two binomial distributions of yt ~ bin(nr, 7r) and yc ~ bin(nc, 7c).
For each combination of yr and yc, upper confidence limits or test statistics with
corresponding p-values for all methods were calculated. If yr or yc were equal to zero or the
method failed to produce a valid result, then the exact confidence limit for the odds ratio was
the default. This modification using the odds ratio is conservative because it employs exact

methodology and because the odds ratio exceeds the risk ratio when both exceed one. As a
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note, if yc=0 then the upper confidence limit for the odds ratio is essentially infinite, and so it
was set to 100 and the null hypothesis of inferiority was not rejected. This modification,
where the upper confidence limit was set to 100, is also necessary in cases where the group
of quadratic methods lead to square roots of negative numbers (i.e., complex solutions) or
where the Deviance or Pearson methods fail to produce interpretable results because of
computational singularities. No modifications were necessary for the Modified Taylor Series
or the Adapted Agresti methods.

For each method, an indicator variable was created for each simulation that takes the
value of 1 if the upper confidence limit produced was less than 6y and 0 otherwise or
similarly if the p-value was less than alpha the indicator takes the value 1 and O otherwise.
This indicator was then averaged across all 100,000 simulations to produce a probability. For
0 < 0y, this probability is the power for the test of non-inferiority and can be written in the
following manner: power = pr(reject Ho: O=mr/mc > 0 | Ha: 0 < 6 true). For 6 = 0y, this
probability is the type I error rate for the test of non-inferiority, and can be written in the
following manner: o = type I error = pr(reject Ho: O=nr/mc > 09 | Ho: 0 > 0y true).

A summary of the type I error of the methods generated from the 100,000 simulations
is displayed in Figure 1.1 for the Taylor Series methods, Figure 1.12 for the quadratic
methods, and Figure 1.3 for the maximum likelihood methods. Farrington-Manning method 1
is dropped from summaries due to its similarities to the Quadratic method. Displays include
only the a=0.025 level with similar patterns seen for the other alpha levels.

The performance of the methods with respect to the type I error varies in relation to
the sample size allocation of treatment to control. All of the Taylor series expansion methods

have approximately nominal type I error rates for the 1:2 allocation. However, as more
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sample size is placed in the test group, the type I error rates become inflated higher than the
nominal level. The Adapted Agresti method yields type I error rates closest to the nominal
level, but this method still shows inflation for the 3:2, 2:1, and 3:1 allocations.

Out of the group of quadratic methods, the Quadratic method and Noether’s method
have type I error rates that are consistently below the nominal level for all allocations.
However, Bailey’s, F-M 2, and F-M 3 have appropriate type I error rates for the 1:2 and 1:1
allocations with higher than nominal type I error rates for the 3:2, 2:1, and 3:1 scenarios.

The group of maximum likelihood methods perform similarly for the 1:2 allocation,
with type I errors approximately nominal or just slightly higher than nominal. The Deviance
method performs adequately for all sample size allocation scenarios with type I errors close
to the nominal level. The Pearson method has slightly inflated type I errors for all other
scenarios. The group of power divergence methods yields higher type I errors as A increases
with A=-0.5 yielding lower than nominal type I errors and A=1.25 yielding higher than
nominal type I errors.

Figure 1.4 provides a graphical summary of the methods with better type I error
performance including the Taylor series method, Adapted Agresti method, Bailey’s method,
and Deviance method. Discussions of power will be limited to these methods for scenarios
where the simulated type I error is appropriately controlled.

The Deviance method seems to perform appropriately for all sample size allocation
scenarios, with slightly higher type I errors for the 1:2 allocation. Figure 1.5 compares the
Taylor Series power to the Deviance power for the 1:2 allocation, for the null hypothesis
00=2. These methods tend to perform similarly in this setting. Figure 1.6 is a comparison of

the Adapted Agresti and Deviance simulated powers for the allocations including 1:2 and
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1:1. The Deviance method produces similar or slightly higher simulated powers in these
scenarios. Figure 1.7 displays Bailey’s method compared to the Deviance method for the 1:1
allocation setting, also showing similar simulated powers between the two methods.

These findings suggest that in the 1:2 or 1:1 allocation settings, the simpler Taylor
Series or Adapted Agresti methods perform similarly to the computer intensive Deviance
method with respect to power. However, the Deviance method may be the preferred method
for allocations with more sample size in the test group in order to maintain the nominal type I

error level.

VI. Sample Size Calculations

An immediate application of these results arises in the design of non-inferiority
clinical trials. The Taylor Series method provides a fairly straightforward form from which to

obtain sample size calculations. A conservative form of the variance is seen in (1.11).
1 1 1 1
oo 222) L, 1)
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Motivation for obtaining a sample size formula begins with formulation of a z-statistic in

(1.11)

(1.12) where 0y is the value of 0 under the null hypothesis.

o log. 6—1log. 6,

N

(1.12)
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The equation in (1.13) results from squaring equation (1.12) and writing z in terms of the

type I and type 1I errors which produces equation (1.14) after algebraic manipulations.

6 2
(loge Oj
S S (1.13)

- (1.14)

This form is then solved for the sample size, nc, and can be written as in (1.15)

) (1T
2ot 2p) {RC(OR-H)}

ne = > (1.15)
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which depends only on a pre-specified one-sided type I error (o), power (1-3), event rate in

the control group (nc), the sample size allocation (R=nt/nc), and a hypothesized ratio of
events in the treatment versus the control group (0) with 0y, the null hypothesis, specified.
This formula is useful in practice due to ease of computation.

To evaluate whether formula (1.15) produces sample sizes that maintain the pre-
specified power, results were compared to those obtained from simulations. These results
were based on 100,000 simulations. The sample size formula (1.15) was written in terms of

power as seen in equation (1.16)

moge(ej

)

—z, (1.16)
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where power = ®(zg) and ®(.) is the standard normal probability. In addition, this sample
size formula and power calculation in (1.15) and (1.16) can be modified for the Taylor Series
Adjusted Alpha method which controls type I error better than the Taylor Series method
(although in allocations with more subjects in the test group, the type I error is still above the
nominal level). This adjustment uses an alpha level of 0.0025 lower than that specified. For
example, at a specified a=0.025 the critical value would be calculated at 0.025-
0.0025=0.0225.

In addition Farrington and Manning® present sample size formula (1.17) and power

formula (1.18) based on their methods.

2
{za\/ﬁT(l—ﬁT)+R98%C(l—%c)+ZB\/TcT(l—nT)+R9(2)nC(l—nC)}

N =
! (TCT —0y7c )2

(1.17)

ny (T —Gonc)—za\/?cT(l—FcT)+R6(2,?cC(1—FcC)}

\/nT(l—nT)wLRO(Z)nC(I—nC)

(1.18)

ZB:

where T, and T are specified differently for each of the three methods. The first method
presented by Farrington and Manning use 7 = ny and 7. = 1. The second of these
methods uses the following values:

~ _ GO(HTTCT +ncnc)

(N +NeTe)
Tp = =

and T =
(Oyny +ne) (Opny +n¢)

Farrington-Manning method 3 replaces T and T using the following equations:

. —b-+b*—4dac
v = 2a

and T =7 /R

n n n n
Ny nr Ny nr
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For combinations of a, ¢, 0, R, and n¢ generated in the 100,000 simulations, a
power based on the sample size formula was calculated using formula (1.16) and the Taylor
Series Adjusted Alpha formula. Power was also calculated using the sample size formulas
presented by Farrington and Manning for F-M method 1, F-M method 2, and F-M method 3.
This calculated power was then compared to the power obtained from the simulations for
each method.

Figures 1.8 — 1.14 graphically display the comparison between the calculated and
simulated power for the Taylor Series, Taylor Series Adjusted Alpha, F-M 1, F-M 2, and F-
M 3 methods, at an alpha level of 0.025 for a null hypothesis 6p=2. For most cases, the
simulated power is similar to or larger than the calculated power; therefore the sample size
formulas are somewhat conservative which is beneficial when determining sample size for
clinical trials.

The Deviance method does not have a corresponding sample size formula, therefore
the simulated power from this method is compared to the calculated Taylor series power in
Figure 1.3f and the calculated F-M 3 power in Figure 1.3g. The simulated Deviance power is
both larger and smaller than the Taylor Series calculated power for specific scenarios.
However, the calculated F-M 3 power seems to agree consistently with the Deviance power
for scenarios with power higher than 0.80. For power values lower than 0.80, the F-M 3
calculated power yields slightly higher values. However, when planning a trial it is usually
necessary to have at least 0.80 power and in these cases the F-M 3 calculations would be

appropriate.
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VI1I. Conclusions

The properties and behavior of many different methods for computing confidence
intervals for risk ratios have been reviewed. The performance of the methods tends to vary
according to the sample size allocation. The Deviance method seems to consistently perform
at the nominal type I error level for most settings, and specifically for allocations with equal
sample sizes or more sample size in the test group compared to the control group. The Taylor
series method and the Adapted Agresti method tend to perform fairly well for the 1:2 and 1:1
sample size allocation settings while being easier to implement.

Problems due to small event rates were avoided due to use of methods for exact odds
ratios. Due to this modification, the performance of the methods may be slightly different
than that presented previously in the literature.

The straightforward sample size formula for the Taylor Series method makes it
attractive for use in designing non-inferiority clinical trials, but may be appropriate for
scenarios with allocations of 1:2 or 1:1. The sample size formula presented by Farrington and
Manning based on method 3 is useful in trial design for the other allocation settings and

agrees with the Deviance method for trials designed with fairly high power.

23



References

10.

1.

12.

13.

14.

Hung, H. M. J., Wang, S. J., Tsong Y., Lawrence, J., and O’Neill, R. T. Some
Fundamental Issues with Non-Inferiority Testing in Active Controlled Trials.
Statistics in Medicine 2003, 22, 213-225.

Blackwelder, W. C. “Proving the Null Hypothesis™ in Clinical Trials. Controlled
Clinical Trials 1982, 3: 345-353.

nQuery Advisor Version 5.0 User’s Guide. Statistical Solutions Ltd.: Cork, Ireland,
2002.

Farrington, C. P., and Manning, G. Test Statistics and Sample Size Formulae for
Comparative Binomial Trials with Null Hypothesis of Non-zero Risk Difference or

Non-unity Relative Risk. Statistics in Medicine 1990, 9, 1447-1454.

Katz, D., Baptista, J., Azen, S. P., and Pike, M. C. Obtaining Confidence Intervals for
the Risk Ratio in Cohort Studies. Biometrics 1978, 34, 469-474.

SAS Online Doc®, Version 8. SAS Institute, Inc: Cary, NC, 1999.

EquivTest 1.0. Software for the statistical analysis of equivalence and bioavailability
studies. Statistical Solutions Ltd.: Cork, Ireland, 2000.

Gart, J. J., and Nam, J. Approximate Interval Estimation of the Ratio of Binomial
Parameters: A Review and Corrections for Skewness. Biometrics 1988, 44, 323-338.

StatXact4 for Windows User Manual. CYTEL Software Corporation: Cambridge,
MA, 1990, 435-452.

Agresti, A. and Coull, B. A. Approximate is Better than ‘Exact’ for Interval
Estimation of Binomial Proportions. The American Statistician 1998, 52, 119-126.

Fieller, E. C. A Fundamental Formula in the Statistics of Biological Assay and Some
Applications. Quarterly Journal of Pharmacy and Pharmacology 1944, 17, 117-123.

Bailey, B. J. R. Confidence Limits to the Risk Ratio. Biometrics 1987, 43, 201-205.

Koopman, P. A. R. Confidence Intervals for the Ratio of Two Binomial Proportions.
Biometrics 1984, 40, 513-517.

Bedrick, E. J. A Family of Confidence Intervals for the Ratio of Two Binomial
Proportions. Biometrics 1987, 43, 993-998.

24



Table 1.1 Software Resources for Methods

Method Software Resources
. SAS using PROC FREQ®
Taylor Series EquivTest’

Taylor Series Adjusted Alpha

Modified Taylor Series

Adapted Agresti
Quadratic
Farrington-Manning 1
Farrington-Manning 2
Farrington-Manning 3
Bailey
Noether
Deviance
Pearson

Power Divergence

SAS using PROC FREQ® "

SAS using PROC FREQ®*
StatXact’

SAS using PROC FREQ®*

No resources available

No resources available

No resources available

No resources available

No resources available

No resources available
SAS using PROC GENMOD®
SAS using PROC GENMOD®

No resources available

1 The alpha level can be modified to produce this interval
1 Event counts can be modified to produce this interval
€ Additional programming is required to use this computer resource
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Table 1.2 Summary of Selected Upper Confidence Limits

Tavlor Series Expansion Methods

Sanple
Size Tavlor
Allo- Series Modified
cation Risk Taylor Ldjusted Taylor Adapted
Alpha T:C nTnCyTywv C Ratio Series Alpha Seriez LAgresti
0.025 1:2 50 100 15 5 2.000 3.755 3.810 3.690 3.490
20 1.500 2.671 2.706 2.651 2.583
25 1.200 2.0&65 2.080 2.062 2.045
1:1 100 100 15 15 1.000 1.934 1.964 1.911 1.939
20 0.7530 1.37%9 1.359% 1.376 1.424
25 0.600 1.068 1.083 1.072 1.122
3:2 150 100 15 15 0.667 1.302 1.322 1.288 1.366
20 0.500 0.92% 0.942 0.92% 0.9%58
25 0.400 0.720 0.730 0.724 0.784
2:1 200 100 15 15 0.500 0.981 0.996 0.972 1.061
20 0.375 0.701 0.711 0.701 0.772
25 0.300 0.543 0.550 0.546 0.605
3:1 300 100 15 15 0.333 0.657 0.668 0.652 0.738
20 0.250 0.46%9 0.476 0.470 0.534
25 0.200 0.364 0.36%9 0.367 0.418
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Takle 1.3 Summary of Selected Upper Confidence Limits

Sample
Size
Allo- fumadratic Equation Methods
cation Risk
Llpha T:CnTnCywy¥ Ty C Ratio (uadratic F-M 1 F-M 2 F-M 3 EBailey HNoether
0.025 1:2 50 100 15 15 2.000 4.086 4 086 4.2 4.250 3.802 4,123
20 1.500 2.752 2.752 2.752 2.752 2.6871 2.793
25 1.200 2.066 2.066 2.058 2.055 2.050 2.104
1:1 100 100 15 15 1.000 2.074 2.074 1.97% 1.9574 1.948 2.183
20 0.750 1.401 1.401 1.361 1.357 1.372 1.484
25 0.600 1.054 1.054 1.051 1.046 1.055 1.117
3:2 150 100 15 15 0.6687 1.380 1.390 1.27 1.26% 1.308 1.483
20 0.500 0.940 0.940 0.902 0.8%% 0.8522 1.010
25 0.400 0.708 g.708 ©0.708 0.705 0.710 0.760

1]
[
[}
(=]
=]

100 15 13 0.3500 1.043 1.045 0.9%34 0.5%32 0.%585 1.132
20 0.375 0.707 L707 0.6T74 0.672 0.685 .T65
25 0.300 0.532 0.532 0.534 0.532 0.535 0.576

]
=]

3:1 300 100 15 15 0.333 0.6598 0.698 0.608 0.606 0.65% 0.763
20 0.250 0.473 .473 0.448 0.4496 0.465 .515
25 0.200 0.356 0.356 0.35% 0.338 0.3358 0.388

=]
=]
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Table 1.4 Summary of Selected One-S5ided P-values

Sample Maximum Likelihood Methods
Size
Allo- Power Divergence Methods
cation Risk
Theta T:CnTnCyTy C Ratio Chi-Sguare Deviance Pearson L=-0.5 L=0.5 L=0.8&T7 I=1.0 L=1.25
1.5 1:2 50 100 15 15 2.000 0.814 0.814 0.814 0.814 0.3814 0.814 0.814 0.814
20 1.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
25 1.200 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207
1:1 100 100 15 15 1.000 0.113 0.115 0.113 0.117 0.114 0.114 0.113 0.112
20 0.750 0.011 0.012 0.011 0.013 0.012 0.012 0.011 0.011
25 0.600 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
3:2 150 100 15 15 0.667 0.008 0.010 0.008 0.011 0.009 0.008 0.008 0.007
20 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2:1 200 100 15 15 0.500 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.000
20 0.375 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 0.300 0.000 0.000 0.000 0.000 O0.000 0.000 0.000 0.000
3:1 300 100 15 15 0.333 0.000 0.000 0.000 0.000 O0.000 0.000 0.000 0.000
20 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Deviance Power (Sirmulated
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Figure 1.7 Comparison of Simulated Power
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Figure 1.8 Comparisen of Simulated and Calculated Fower
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Taylor Series Adjusted Alpha Power {Simulated)

F—M 1 Power {Sirmulated)

Figure 1.9 Comparisen of Simulated and Calculated Fower
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Alpho=0.022, ThetaHD=2

T T I I T T T T T I I
oo 0. 02 o3 0.4 0.E 0.e 0.7 0B 0.9 1.0

Taylor Series Adjusted Alpha Power {Caolculoted}

Population Risk Ratio @ ® ® &7 0.200
=09 000 @EEe 1250
*e® 1500

Figure 1.10 Comparigson of Simulated and Calculated Power
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F—M 2 Power {Sirmulated)

F—M 3 Power {Sirmulated)

Figure 1.11 Comparison of Simulated and Calculated Power

Farmington—Manning 2 Method
By Population Risk Ratio
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Farmington—Manning 3 Method
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Deviance Power (Sirmulated
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Figure 1.135 Comparison of Simulated and Calculated Fower
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Chapter 2
Review of Methods for One-Sided Testing of the Difference between Proportions and

Sample Size Considerations

1. Introduction

Proportions are used in many clinical trials to describe the distributions of
dichotomous response variables with independent binomial distributions for treatments under
study. Comparisons between treatment groups are often made through one-sided confidence
intervals on the difference in the two treatment group proportions. In a non-inferiority
setting, the goal is to show that the investigational treatment (test) group is no worse than an
active control group by a predetermined non-inferiority margin. For proportions pertaining to
favorable response, the lower confidence bound on the difference between the test and
control groups must usually be larger than this margin in order to conclude that the test
treatment is not inferior to the active control with respect to efficacy. Such a lower
confidence bound must exceed zero to demonstrate superiority.

There are many methods in the statistical literature for computing the confidence
interval for the difference between two independent binomial proportions. However, each

method has both advantages and disadvantages to its use. It is important to understand in



which settings these methods are more useful and appropriate. Scenarios include a wide

range of proportions of favorable response of 0.60 and higher.

II. Review of Methods in the Literature

Historically, the most well known method for computing the confidence interval for a
difference between two independent binomial proportions is the Wald method as based on a
normal approximation. This method as seen in (2.1) is easy for computation and
understanding, and so it is presented in most basic statistics textbooks and implemented in

standard statistical software packages.

(I
{ﬁT—ﬁc}iza\/pT( Pr) Pl Pe) 2.1
nr ne

In (2.1), py= yr/nr is the observed proportion for favorable response in the test group with
yr representing the total number of such outcomes in a total sample size of nr and p.= yc/nc

is the observed proportion for favorable response in the control group with yc representing
the total number of such outcomes in a total sample size of nc. Also, z, is the (1-a) quantile
of the standard normal distribution. This method has traditionally been shown to have poor
performance for even moderate sample sizes with respect to excessive inflation of the type I
error rate when consideration includes the entire confidence interval using both the upper and
lower bounds'*. However, Roebruck and Kiihn® found this method to perform adequately for
sample sizes large enough to yield power of at least 0.70 where the sample size allocation for

test:control is 3:2 for the one-sided limit as a one-sided test. Li and Chuang-Stein® also found
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this method to perform well in an equal allocation setting when event rates were moderate
enough so as to provide expected cell frequencies of at least 15 for all cells.

For alleviation of some of these issues, a continuity corrected version of the Wald
method is suggested as seen in (2.2).

{m—ﬁc}i{zaﬁrﬂ—ﬁmﬁcﬂ—ﬁa ﬁ&g}} 2

n, ne 2\ n, ng

This method should resolve the inflation of the type I error rate, while perhaps being overly
conservative by reducing the power to test the hypothesis that the difference between
treatment groups does not equal a predetermined value?. In addition, these methods are also
presented using an unbiased estimate of the variance with (nr-1) and (nc-1) used in the

denominators for p;(1-pr)and p-(1-pc), but these methods are rarely found in standard

statistical software packages.

Agresti and Caffo' developed an adjustment to the Wald confidence interval to
produce results that maintain the nominal type I error of a statistical test, analogous to a
confidence interval including a predetermined value, while still being simple to calculate.
This method as seen in (2.3) uses adjusted proportions when computing the confidence

interval.

~ ~ ﬁr(l_ﬁr) ﬁc(l_ﬁc)
- tz + 2.3
{Pr—Pe} \/ 2 ) (2.3)

In (2.3), pr=(yr+ )/(nt + 2)and p-= (yc+ 1)/(nc + 2). These proportions are calculated by

adding one success and one failure to each group and thereby two successes and two failures
in total. Zhou et. al.” also agree that Agresti and Caffo’s method performs well at the 0.95

two-sided confidence level (for which it was designed), but the performance is unknown at
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other levels. In addition, Zhou et. al. point out that although the method is easy to implement,
the theoretical properties of this method are still unknown.

Newcombe” provides a method based on the Wilson score method for a single
proportion that is more complicated to compute than the Wald or Agresti and Caffo methods,

but suggests that it has better coverage properties. This Newcombe hybrid score interval

solves | Dr — f)T| =2z, \/ pr (1= p,)/n, for prresulting in two solutions, It and ut. Similarly,

the equation | Dc — ﬁc| =z, \/ pc(d=pc)/n. is solved for pc yielding solutions Ic and uc. In

addition, a continuity corrected version is proposed where the two solutions for pr solve the

following equation |p, — p,|-—=z, JPr(1=p,)/n, and the two solutions for pc solve

2n,

the following equation | Pc — ﬁc| — % =z, \/ pcd—=p-)/n. . The lower and upper bounds
ne

of the interval are then computed as in (2.4) for both the Newcombe hybrid score and the

continuity corrected version, using the solutions previously obtained.

{br —Pe}=(Br =10)” + (e =pe)* {pr —Be ) +(ur —pr)* + (e —1e)’ 24)
Newcombe recommends this method over the Wald methods and the other methods reviewed
in his paper” because of its performance with respect to coverage in the setting which
involves both upper and lower confidence limits. In addition, Agresti and Caffo' suggest that
this method is an appropriate method with the limitation of being more complicated to
implement. Agresti and Caffo' also suggest that the Newcombe hybrid score method is an
appropriate method except when proportions are close to 0 or 1. Zhou et. al.” use the
Newcombe hybrid score as one of the best known methods in their paper, but suggest that its

use be limited because the theoretical properties are not known.
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Instead, Zhou et. al.” propose two new methods which are theoretically defensible and
perform similarly to the Newcombe hybrid score and the Agresti and Caffo methods. These
methods make adjustments to address limitations of using a normal approximation to
estimate an interval when sample sizes may not be large or when the distribution of the data
is skewed. The first proposed interval uses an Edgeworth expansion of the Wald statistic and
corrects the interval using the error term to adjust for the skewed nature of the distribution.

This Edgeworth expansion interval takes the form in (2.5).

pr(1—p pc(1—p " 1/2 A
{ﬁT_ﬁC}_{PT( PT)+Pc( Pc)} {Zl_a_(nT+nC)’ Q(zl_a,z)},

n n
! ¢ ) (2.5)
A pr(l=pr)  pc=Dpc) 2 A
{pT_pC}_{pT pT +pC pC {Za_(nT'i‘nc) 1/2Q(Za/2)}
nr ne
The components of the interval in (2.5) are defined in (2.6).
o .8 o~ (p+no)d-2pp) S
Q(t)=6""(a+bt?), A=——, b= -—,
667 2ny 667
N N 1/2
N N +ne . N N +nge . N
6= {MPT(l—pTFMpc(l—pc)} (2.6)
Ny i¥e
+ 2 + ?
A [(ny+n N N N N +n N N N
6=(T—CJ pT(l—pT><1—2pT>—(T—CJ pe=Ppe)(1-2pe)
Dy Dy
In addition, Zhou et. al.” propose an additional method to address skewness by using a
Transformation approach as seen in the interval in (2.7).
pr (1= pr)  Pel=po)|"
~ ~ - p - D /2 A
{pT _pc}_{pT Pr += € } {Zlfa —(n; +n¢) 1/2g I(Zlfa/Z)}’
n, ne
s (2.7)
PO pr(l=pr)  pcd=pe) 12 Ae
{pT _pc}_{pT =4 =€ < {Za —(n; +n¢) g 1(Za/2)}
ny ne
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In(2.7), 7' () = (ng +nc)”2(66)—1{[1+3(66XnT +nc) P t—(ng +nc)_1§6]1/3 —1} and

the additional components are as defined in the Edgeworth expansion method described in
(2.6). Zhou et. el. suggest that the Edgeworth expansion method has poor coverage when
proportions are near O or 1, but otherwise it is their recommended method for computing a
confidence interval on the difference in proportions. They also suggest that this method has
slightly better coverage properties than the Newcombe hybrid score method or the Agresti
and Caffo method. When proportions are near O or 1, they recommend the Transformation
method on the basis of similar coverage properties to the best known methods of Newcombe
and Agresti and Caffo.

There are other methods presented by Newcombe? in his review of methods used to
compute confidence intervals for the difference between proportions. These include a method

attributed to Beal and Haldane as seen in the interval in (2.8).

O*tw (2.8)
Dr — D 1-2y) . ..
Wlth e*z(pT pC)+Z2a‘}( W)’W :l(pT+pC)’u:l L—}—L 5
I+z,u 2 4\ n, ng
{1 1 2 ~ ~ n A 2 ~ A n
v ——— | and w=— [l (=)~ (b, = hc)* }+ 201 = 27)(hy — b )+
4\ n, n. I+z,u

dziu (=g +z5v> (1=29)° "2

In addition, an adjustment to the Beal’s Haldane method is presented and identified as the

Beal’s Jeffreys-Perks interval and is similar to the Beal’s Haldane method but with

2

\lel Y +0.5+yC +0.5
np +1 ne+1

j . These methods were developed in an attempt to fix the
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problems associated with the use of the Wald and Wald continuity corrected intervals.
Newcombe’ suggests that they provide improvements but still do not have properties which
surpass those of the Newcombe hybrid score interval.

Dunnett and Gent® discuss methods to compute p-values instead of confidence
intervals for a test of a predetermined margin of non-inferiority for the difference between
proportions. These methods include modifications of the Wald and Wald continuity corrected

intervals that use modified proportions in the computation of the variance estimate with these

. . +y.+n.A . +y.—n;A
adjustments represented by p, = Yr T Ve TReBo yng Pe= Yr T Ye "o
nT + nc nT + nc

which are

constrained by the null hypothesis (Ay) and fixed marginal totals. The test statistic (termed

the Wald Adjusted method) is written in the form of a confidence interval as seen in (2.9).

by~ e} ZGJ B 2.9)

nr ne
. o . . 1|1 1 .
The Wald adjusted continuity corrected interval simply adds . + — | to the right of
Nt 1I¢
(2.9).

Dunnett and Gent® describe test statistics based on a Chi-square distribution which
can be used to produce a test of the null hypothesis of inferiority. These statistics have been
modified from those presented so that they follow a standard normal distribution. The Chi-
squared statistic is seen in (2.10) with the continuity corrected form seen in (2.11) which uses

the adjusted proportions as in the Wald adjusted intervals.
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. 1 1 1 1

{yT—nTpT}{ —+ —+ —+ - } (2.10)
Ngpr Yr+Yc NP N —Ngpp Nc—=Yr—Yc+NgPr
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1/2
flv =mp —1}{ 4 1 } @11)
2)(nepr Yr*Ye~MpPp Mg =NpPp N = Yp = Yo thppy
Dunnett and Gent suggest that the continuity corrected Chi-square test statistic is the most
preferred method out of those presented in their paper.
Farrington and Manning’ also propose a series of methods for the difference in

proportions. Their methods all follow the general from see in (2.12) but with varying

estimates for T, and T .

{ﬁT—ﬁc}iza\/ﬁ”l_ﬁ”jc(l_’?c) (2.12)

nr ne
The first of these suggested by Farrington and Manning uses the observed proportions p and
pc for T and T which results in an interval that is identical to the Wald interval. The

second of these methods uses estimates of p*r and p'¢ which yields an identical interval to
the Wald adjusted interval. Finally, the third method proposed by Farrington and Manning

(F-M 3) uses estimates of T and T which are maximum likelihood estimates under the null

hypothesis of inferiority at Ay, and Farrington and Manning discuss their computation as

closed form solutions seen in (2.13).

T, =2u cos(w)—% and 7. =7, —A, (2.13)

a:1+n—c,b:—{1+n—c+ Dr +n—cfyc +A0(n—c+2j},

nr ny nr ny

where ¢ =A,’ +A0(21§T +n—c+1j+1§T +n—cﬁc,d =—p;A(1+A)),

nT T

2 1/2 3
u = sign(v) b > R b T bc2 -Fi,w:l H+cosl(l3j
Ba)® 3a Ba)” 6a 2a 3 u
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Software, such as SASS, can be used to compute the maximum likelihood estimates 7t and
T, and these values can then be placed in (2.12) to produce F-M 3 confidence limits. In this

regard for implementation in SAS through PROC GENMOD, a procedure used to fit general
linear models, there would be specification of a binomial distribution with an identity link.
The model statement fits only the intercept and includes an offset term where the offset for
the control group is zero and for the test group is set equal to the specified non-inferiority
margin A. Farrington and Manning recommend this last method because of closer to
nominal coverage probabilities than the Wald or Wald Adjusted intervals.

Falk and Koch’ suggest an additional method which attempts to improve on the Wald

interval using a more appropriate unbiased estimator of the variance as seen in (2.14).

{ﬁT - ﬁc}i{zwlvér% +%{L+L} (2.14)

ny ne

z,0-7;)

e n.(1-7.)

with var, =C,
ny ne

”T:ﬁ'*‘pAo’ﬁc:}_)_(l_p)Ao’p ’}_):(l_p)ﬁr‘*‘pﬁc’

nr +l’lc

11 1

where p2[+J (1-p) (Jrj
n n n n

C.=1+ ¢ C, =1+ r <

L= P TT [ L= p?
Ay ne ny ne

Brown and Li'® include in their list of methods the Yule’s method as seen in (2.15)

which is similar to the Wald interval but uses an average estimate of the proportion

p=(yr +yc)/(ng +nc)in the variance, which Brown and Li suggest estimates the variance

better when nty — ne=0.
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{Pr — Pejt Za\/(i+i]ﬁ(l—ﬁ) (2.15)

np ne
Brown and Li'"° present a Modified Yule’s interval as seen in (2.16) which modifies the
estimate of the proportion p = (ncf)T +n1Pc )/ (nT + nc) used in the variance that should

perform better when the sample sizes are not equal.

{Pr — Peft Za\/(i+i]ﬁ(l—ﬁ) (2.16)

n; N

The Yule’s method and Modified Yule’s method are equivalent when nt = nc.
Another modification of the Wald method is based on Bayesian methodology, using a
modification from a single proportion based on a prior distribution, and attributed as the

Jeffrey’s interval which adds one to each group, with half being attributed to an event where
p; =(yr +0.5)/(ny +1) and pz =(yc +0.5)/(n; +1) with the interval calculated as in

(2.17).

{p;_p*}iza\/pT(l—pT)+Pc(l_Pc) (2.17)

nr ne
A refinement of this interval is the Approximate Jeffrey’s interval which adjusts the

denominator of the variance estimate as seen in (2.18).

. pr(l—p;)  pe(-pp)
N N 2.18
{pT pC} Za\/ ny +2 ne+2 =19

Brown and Li" develop the new Recentered interval which they suggest performs
well in relation to coverage probabilities of the interval. This interval uses an estimate

p=(ncpp +npPe )/(ng +nc) as seen in the Modified Yules interval for the variance but
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forces a truncated estimate p to meet the conditions in (2.19) so that p is never estimated

out of the appropriate range.

Aong I(ny +n.) if p<Ajn./l(n; +n.)
pP=3p if Apng. l(n, +n.)< p<1-Ajn, (n, +n.) (2.19)
1-Agn, I(ny +n.) ifp>1-An, [(n, +n.)

The Recentered interval is seen in (2.20) where « is the 1-a quantile of the t-distribution with

(nt + nc — 2) degrees of freedom.

A A N2
K\/{1+K2 /(nT +nc){1+1j§(1_§)_(pT_pc)
f)T _f)C + Ny Ne (nT +nC)

(2.20)

1+K2/(HT+HC) 1+K2/(HT+HC)

Pan'! also presents a new interval for the difference in proportions which he suggests
is an improvement on the Wald and Agresti and Caffo intervals. Pan’s interval seen in (2.21)
is similar to the Agresti and Caffo interval but uses a critical value from the t-distribution

with degrees of freedom as specified in (2.22) instead of using a critical value from a

standard normal distribution to account for use of asymptotic methodology for finite samples.

~ o~ pr(=py) p-(A-=pc)
o R R 2.21)
ny +2 ne+2

np+2 ne+2

2{5T<l—5T>+5C<l—5C>F
df

~ L L (2.22)
Q(pp,ng +2)+Q(pc.n¢ +2)

(p-p°)
3

where Q(p,n) = + [p +(6n—-"7)p* +4(n—-1)(n-3)p* - 2(n-1(2n -3)p° ]/n5
n
—2[p+(2n —-3)p? —2(n —1)p3]/n4

Other methods produce tests for significance of the non-inferiority hypothesis based

on estimators obtained from maximum likelihood methods for the proportion of events in the
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treatment and control groups based on the joint distribution of the events as the product of
two independent binomial distributions for the treatment and control groups. The first

method is based on the Deviance statistic in (2.23) where T and 7 are the maximum
likelihood estimators under the alternative hypothesis Ha: (7t - c) > Ao, and (7?* - AO) and
i are the corresponding maximum likelihood estimators under the null hypothesis Hy: (7t -
Tic) < Ay.

2{log L(%,, 7. )~ log L(# *—A,, 7 *)} (2.23)
The second of these methods is based on a Pearson statistic in the form of [(observed —
expected)2 / expected] as seen in (2.24) using (7%* - AO) and 7", the maximum likelihood

estimators of nr and e under the null hypothesis.

{yT _"T(ﬁ*_Ao)}2 n {("T _yT)_nT(l_ﬁ*+A0)}2 n

nT(ﬁ'*—AO) nT(l—ﬁ'*+A0) (2.24)
{yc_ncﬁ'*}z_,_{(”c_yc)_nc(l_ﬁ*)}z '
I’ZC/Z\'* nc(l_ﬁ-*)

Additionally, a method produced using proportions restricted under the null

hypothesis using weighted least squares for estimation instead of maximum likelihood

estimation ( p;,,s and p.,¢) yields a test statistic as seen in (2.25) where

v = ﬁT,WLS (1 - ﬁT,WLS ) and v. = ﬁC,WLS (1 - ﬁC,WLS )
! (n, —1) ‘ (ne -0

« A )
(pT,WLS ~Pcwrs — Ao)
VT + VC

Qs =

(2.25)

These methods produce test statistics for which p-values can be obtained by using the chi-

square distribution under one degree of freedom.
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In addition to the methods described above, there are other methods which are
iterative in nature and require intensive computational resources. These include Gart’s
method®, the Score test'’, the Real J effrey’s interval'’, the Approximate unconditional exact
test12, and the methods by Meez, Miettinen & Nurminenz, the Profile likelihood methodz, the
Profile likelihood method based on exact tail areasz, and the Profile likelihood method based
on ‘mid-p’ tail areas”.

The lower limit of the confidence interval for the difference in proportions exceeding
the non-inferiority margin (Ap) is used as the counterpart to a test statistic for Hy: (7 - c) <
Ao versus Ha: (my - me) > Ag as the alternative hypothesis for non-inferiority. Also, Ag =0
corresponds to a one-sided assessment of superiority. Due to the one-sided nature of the non-
inferiority hypothesis, the alpha level of interest is one-sided. Discussion and results will
focus on the lower confidence limit through its provision of a one-sided test. Results may be
entirely different when assessment includes the upper confidence limit and similarly the two-
sided test, but they are outside the scope of this discussion.

For some hypothetical illustrations, Table 2.1 displays selected one-sided lower
confidence limits from the confidence limit methods. Scenarios are provided for the one-
sided 0.975 confidence level. Table 2.2 summarizes methods which consistently yield the
largest lower confidence limits including Falk & Koch, Beal’s-Haldane, Transformation, and
Wald Adjusted methods. These methods seem to be less conservative than the other methods.

Table 2.1 summarizes methods which result in the smallest lower confidence limits
including Wald Adjusted Continuity Corrected, Wald Continuity Corrected, Newcombe
Hybrid Score Continuity Corrected, Edgeworth Expansion, Recentered, and Pan methods.

These methods seem to be the most conservative methods.
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Table 2.1 also summarizes methods that have small lower confidence limits for
sample size allocations of 1:2 or 1:1 and have increasingly larger lower confidence limits for
allocations which place more subjects in the test group (3:2, 2:1, 3:1). These methods include
Beal’s Jeffreys-Perks, Yules, Modified Yules, Jeffrey’s, and Approximate Jeffrey’s.

The methods summarized in Table 2.1 produce moderate lower confidence limits
including Wald, Agresti & Caffo, Newcombe Hybrid Score, and F-M 3 methods. Table 2.2
summarizes the one-sided p-values for those methods producing test statistics (with
confidence limits available through an iterative process). These methods include Chi-Square,

Chi-Square Continuity Corrected, Weighted Least Squares, Deviance, and Pearson.

III. Simulations for Non-inferiority

Simulations were used to study the properties of these methods in a non-inferiority
setting. Scenarios included varying the following parameters:

1. mc, the population proportion of events in the control group: 0.60, 0.65, 0.70, 0.75,
0.80, 0.85, 0.90, 0.95

2. A=mr-nc, the population risk difference: -A, -Ay/2, -0.01, 0. 0.01, 0.025, 0.05

3. mr, the population proportion of events in the test group: mr= ¢ + A

4. A,, the null hypothesis risk difference: -0.10, -0.075, -0.05

5. a, the one-sided alpha level: 0.005, 0.025, 0.05

6. nc, the sample size in the control group is calculated to have 85% power to contradict

the null hypothesis A for equality of test and control groups, nt=Rnc
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(z, + 2, FIR+)rc(1-70))
RA’,

ncz

7. Sample size allocation for test:control as 1:2, 1:1, 3:2, 2:1, 3:1

For each of the 100,000 replications performed, a sample from the specified binomial
distribution was drawn separately for the test group and for the control group. All of the
confidence limits and p-values were computed for the same replication and a conclusion of
non-inferiority or not was determined according to whether or not the one-sided lower
confidence limit exceeded the specified non-inferiority margin or similarly if the p-value
exceeded the alpha level. The average of zero or one indicator variables for demonstration of
non-inferiority or not resulted in a simulated power for the methods when the specified
difference in proportions is better than the non-inferiority margin and a type I error rate when
the specified difference in proportions is equal to (or poorer than) the non-inferiority margin.
If the number of failures in either group was equal to zero or the method failed to produce a
logical confidence limit, then the Agresti and Caffo method was used in place of the
methods. In practice, an alternative (exact) method might be used for small event rates
greater than zero, but the performance of the methods with this minimal modification is
adequate for this discussion without additional modifications.

A summary of the type I error can be found in Figures 2.1 — 2.4 for a=0.025. Similar
results are seen for other alpha levels. Patterns observed for the selected scenarios from
Tables 2.1-2.4 are similar for the simulated type I error rates. Methods including the Chi-
Square, Chi-Square Continuity Corrected, Falk & Koch, Beal’s-Haldane, Transformation,
and Wald Adjusted consistently yield type I errors above the nominal level as seen in Figure

2.1. The opposite is observed in Figure 2.2 for the Wald Adjusted Continuity Corrected,
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Wald Continuity Corrected, Newcombe Hybrid Score Continuity Corrected, Edgeworth
Expansion, Recentered, and Pan methods with type I error levels consistently below the
nominal level. Figure 2.3 summarizes methods which produce higher than nominal type I
errors for sample size allocations of 1:2 and 1:1, but with approximately nominal type I error
levels for the 3:2, 2:1, and 3:1 allocations. These methods include Beal’s Jeffreys-Perks,
Yules, Modified Yules, Jeffrey’s, Approximate Jeffrey’s, and Weighted Least Squares.

The methods summarized in Figure 2.4 will be the focus of further discussion. These
methods generally yield approximately nominal type I errors, at least for certain sample size
allocations. The Wald method has higher than nominal type I error rates for the 1:2 and 1:1
allocations, but nominal values for 3:2, 2:1, and 3:1 allocations. The Agresti & Caffo method
generally produces nominal type I error levels, with values becoming closer to nominal as
more sample size is placed in the test group (3:2, 2:1, 3:1). The F-M 3method consistently
produces nominal type I error rates, but increasing as more sample size is placed in the test
group. Similar patterns are also seen with the Newcombe Hybrid Score and Pearson methods.
The Deviance method generally has nominal rates but has higher type I error rates for the 1:2
and 1:1 allocations, with lower rates for allocations with more sample size in the test group.

These methods are also summarized by the non-inferiority margin in Figure 2.5. The
performance of these methods seems to be unaffected by the choice of margin. Figure 2.6
summarizes the type I error by values of nc, with type I error values becoming more variable
with larger values of mc. The most plausible reason for this is that the expected cell
frequencies become smaller as ¢ increases. Therefore, the asymptotic assumption may not

be appropriate for larger mc depending on the sample sizes in each treatment group.
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Figures 2.7 — 2.10 summarize the simulated power for varying scenarios of A=n;- 7,
the population risk difference. As would be expected, if a trial was planned for equality of the
treatment groups, and this was misspecified as in Figure 2.7 with A=Ay/2, the power is
drastically reduced and falls below 0.40 for most cases. However, if the equality assumption
is valid as in Figure 2.8 with A=0, then the simulated power hovers around the planned power
of 0.85 with the 1:2 allocation yielding lower simulated power and the allocations with more
sample size in the test group yielding power higher than 0.85. If the test group is better than
the control group as seen in Figure 2.9 for A=0.01 and Figure 2.10 for A=0.025, the simulated
power is higher than 0.85.

The most appropriate discussion of power is focused on situations where the methods
perform close to the nominal level for type I error. The Newcombe Hybrid Score, F-M 3, and
Pearson methods tend to yield close to nominal type I error levels for the 1:2 and 1:1 sample
size allocation settings. Figures 2.11 — 2.13 compare each of these methods with respect to
simulated power for the setting where A=0 and a=0.025. These methods have similar
simulated powers, with the Newcombe Hybrid Score method yielding slightly higher power
than the Pearson and F-M 3 methods.

The Wald, Agresti & Caffo, and Deviance methods tend to perform at the nominal
type I error level for sample size allocations of 3:2, 2:1, and 3:1. Figures 2.14 — 2.16 compare
the simulated power of these methods. Both the Deviance and Agresti & Caffo methods tend
to have higher simulated power than the Wald method in these settings. The Deviance
method yields slightly higher power for the 3:1 scenario, with the Agresti & Caffo method

being slightly higher in the 3:2 and 2:1 settings.
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IV. Sample Size Considerations

In addition to appropriate methods for analyses when the difference between
proportions is the measure of interest for treatment comparisons in a one-sided non-
inferiority setting, it is important to have corresponding sample size formulas in the planning
stages of the trial. Sample size calculation based on the Wald method is a popular and
straightforward way to plan for patient recruitment in non-inferiority trials for the difference
in proportions. This sample size calculation (with respect to Ap<0) is shown in (2.26) for the

test group, with the sample size in the control group defined as nc=n/R where R=ny/nc.

_ {Zl—(x TZ1p }2 {TCT (1 — T )+ Rnc (1 —Tc )}

T {TCT_TCC_AO}2

(2.26)

This sample size formula, through algebraic manipulation, can be written to produce power

for specified sample sizes in the test and control groups as in (2.27)

\/E{RT —T¢c — Ao} (2.27)

“p = \/TCT(l—TCT)-f‘ Rr(1-7c) e

where power is obtained as the probability (1-B) from z_ as the (1-f) quantile of the
standard normal distribution.
Additionally, Farrington and Manning’ provide the sample size formula in (2.28) that

is analogous to their methods, with the appropriate proportions substituted for 7 and
7 where for F-M 3 the values from solving the maximum likelihood equations under the

null hypothesis are used. As a note, (2.28) reduces to (2.26) if T, =n; and T = 7.

2
-7t RA. (-7 -y )+ R (1
nT:{zlaJnT( ip) + Ritc (1= Tic) + 2y g7y (1= 7y )+ R ( nC)} (2.28)

{TCT —Tc _A0}2
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The corresponding power calculation is seen in (2.29).

(2.29)

A

_ g (g = 7o = Ag) = 2y_o[Ter (1= Ry ) + R (1- T
' Jrr(l=7p )+ R (1-7c )

The calculated power from the F-M 3 sample size formula is compared to the
simulated power from the F-M 3 method in Figure 2.17 for the 1:2 and 1:1 sample size
allocation settings. The simulated power is consistently equal to or greater than the calculated
power. Similar patterns are seen when the Newcombe Hybrid Score and Pearson simulated
powers are compared to the F-M 3 calculated power as seen in Figures 2.18 and 2.19 for the
1:2 and 1:1 allocations. Table 2.3 includes a summary of selected scenarios for the 1:2 and
1:1 sample size allocations with the simulated power for the F-M 3, Newcombe Hybrid
Score, and Pearson methods along with the calculated power based on the F-M 3 method.

The sample size formula based on the Wald method is useful in the 3:2, 2:1, and 3:1
allocation settings. The Wald, Deviance, and Agresti & Caffo simulated powers seen in
Figures 2.20, 2.21, and 2.22 are higher than the calculated power. However, in some cases,
especially as more sample size is placed in the test group (3:1 allocation), the simulated
power may be higher than the calculated power by over 0.05. Having a conservative sample
size formula is beneficial in trial design, however with limited resources too much
conservatism may be costly. Therefore, in these situations the sample size calculations could
be reduced slightly to match more closely with the simulated final power so as to conserve
resources if necessary. Table 2.4 summarizes selected scenarios for the 3:2, 2:1, and 3:1
sample size allocations with the simulated power for the Wald, Agresti & Caffo, and Pearson

methods as well as the calculated power based on the Wald method.
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V. Discussion

There are many methods available in the literature for a non-inferiority setting
focused on the difference between two proportions. Research involving these methods shows
that the performance related to maintaining the nominal type I error rate depends on the
sample size allocation of interest. For the 1:2 and 1:1 settings for test:control, the F-M 3,
Newcombe Hybrid Score, and Pearson methods perform appropriately. Use of the sample
size calculation based on the F-M 3 method allows for appropriate planning of a non-
inferiority trial with slightly conservative sample sizes calculations.

In the scenarios with allocations of 3:2, 2:1, and 3:1 with more sample size allocated
to the test group, the Wald, Agresti & Caffo, and Deviance methods are appropriate. In
addition, the Wald sample size calculation can be used in trial design with the caviat that as

more sample size is placed in the test group this formula may become fairly conservative.
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Table 2.1 Summary of S5elected Lower Confidence Limits at One—-sided 0.875

Sample

Size Lower Confidence Limits
Allo-
cation Falk & Beal's Trans-— Wald

T:C n T n€C ywvwC ¥ T Eoch Haldane formation Adjusted

1:2 120 240 218 101 -0.1375 -0.1433 -0.1373 -0.1436
305 o610 511 267 -0.0118 -0.0107 -0.0075 -0.0143
860 1720 1362 687 -0.0261 -0.0263 -0.0253 -0.0270

1:1 180 160 146 134 -0.1405 -0.1457 -0.1428 -0.1466
410 410 342 358 -0.0067 -0.00%4 -0.0075 -0.0091
1150 1150 9S08 918 -0.0225 -0.0235 -0.0228 -0.0234

F:2 185 130 11% 164 -0.1364 -0.1414 -0.1404 -0.1427
510 340 283 446 -0.000% -0.0063 -0.0051 -0.0033
1440 960 757 1151 -0.0207 -0.0221 -0.0216 -0.0215

%)
[
[p%]
s
=]

120 110 202 -0.1338 -0.1385 -0.1385% -0.1389
620 310 258 542 ©0.0011 -0.00682 -0.0055 -0.0013
1720 8e0 &78 1375 -0.0200 -0.0218 -0.0215 -0.0209

F:1 330 110 101 286 -0.1000 -0.105%2 -0.1114 -0.1035%9

g1i0 270 232 T17 -0.008% -0.01%3 -0.01%5 -0.0120
2310 770 607 1847 -0.015%0 -0.0214 -0.0213 -0.0159%9
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Sanple
S5ize
Allo-
cation

T:

C

Table

2.1 Summary of

Selected Lower Confidence Limits at One-sided 0.975

Lower Confidence Limits

Wald

Adjusted

Wald

Hewcombe
Hybrid
Score

Edgeworth
Cont Corr Cont Corr Cont Corr Expansion Recentered

3%

P

%]

120
305
860

160
410
1150

135
510
1440

330
810
2310

240
610
1720

160
410
1150

130
340
960

120
310
860

110
270

T7T0

211
1362

146
342
308

-0.
-0.
-0.

-0.
-0.
-0.

-0.
-0.
-0.

14399
0167
0279

1528
0115
0243

1491
0058
0224

1462
L0037
0217

.1120
.0144
.0208

.1477
.0120
.0268

1533
L0117
.0243

L1509
.0093
0232

.148%5

.00%96
L0230

57

-0.
-0.
-0.

-0.
-0.
-0.

-0.
-0.
-0.

-0.
-0.0
0221

-0.
-0.
-0.

1533
0141
0273

1528
0112
0241

1468
0074
0225

3
68

1109
0133
0215

L1508
L0137
L0271

1548
L0128
.0245

L1518
.0101
D232

.1483
.0101
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Table 2.1 Summary of Selected Lower Confidence Limits at One-sided 0.975

Sanple Lower Confidence Limits
Size
Allo- Beal's
cation Jeffreys- Modified Approximate
T:C nT nC vC wT Perks Tules Yules Jeffrey's Jeffrev's
1:2 120 240 218 101 -0.1438 -0.1383 -0.1418 -0.1432 -0.1426
305 €10 511 267 -0.0108 -0.0113 -0.009& -0.0103 -0.0102
860 1720 1362 687 -0.0263 -0.0261 -0.0260 -0.0262 -0.0261
1:1 160 160 146 134 -0.1463 -0.1475 -0.1475 -0.1471 -0.1467
410 410 342 358 -0.0095 -0.00594 -0.0094 -0.0085 -0.00594
1150 1150 S08 91% -0.0235 -0.0235 -0.0235 -0.0235 -0.0235
3:2 1585 130 115 164 -0.1421 -0.1488 -0.1450 -0.1438 -0.1434
510 340 283 446 -0.0064 -0.0058 -0.0089 -0.00&67 -0.0066
1440 9S&0 757 1151 -0.0221 -0.0222 -0.0223 -0.0223 -0.0222
2:1 40 120 110 202 -0,139%1 -0.14585 -0.1431 -0.1414 -0.1410
620 310 258 542 -0.0063 -0.0053 -0.0072 -0.0068 -0.0067
1720 860 78 1375 -0.0218 -0.0220 -0.0222 -0.0220 -0.0220
3:1 330 110 101 286 -0.1100 -0.1218 -0.1147 -0.1128 -0.1123
10 270 232 T17 -0.01%4 -0.01850 -0.0210 -0.0203 -0.0202
2310 770 607 1847 -0.0214 -0.0216 -0.0219 -0.0217 -0.0216
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Table 2.1 Summary of Selected Lower Confidence Limits at One-szided 0.975

Sample Lower Confidence Limits
SZize
Allo- Newcombe Farrington
cation Agresti Hybrid & Manning
T:C nT nC v C v T Wald & Caffo Score 3
1:2 120 240 218 101 -0.1415 -0.1443 -0.148B3 -0.144&
305 10 511 267 -0.,0095 -0.0110 -0.0121 -0.0152
860 1720 1362 687 -0.0260 -0.0263 -0.0267 -0.0271
1:1 160 160 146 134 -0.1470 -0.1468 -0.148B6 -0.1477
410 410 342 358 -0.0093 -D.0096 -0.0085 -0.0106
1150 1150 908 91% -0.0235 -0.0235 -0.0235 -0.0236
3:2 185 130 115 164 -0.1445 -0.1426 -0.142%9 -0.1440
510 340 283 446 -0.006% -0.0085 -0.0057 -0.0052
1440 960 757 1151 -0.0223 -0.0221 -0.021% -0.0217
2:1 240 120 110 202 -0.1427 -0.1398 -0.1387 -0.1413
620 310 258 542 -0.0072 -0.0063 -0.0051 -0.0033
1720 860 &78 1375 -0.0222 -0.0218 -0.0215 -0.0210
3:1 330 110 101 286 -0.1145 -0.1106 -0.1075 -0.1094
810 270 232 717 -0.0210 -D.0195 -0.0176& -0.0145
2310 770 w07 1847 -0.0219% -0.0214 -0.0209 -0.0201
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Table 2.2 Summary of Selected One-sided P-wvalues

Sample One-5ided FP-wvalues
Size
Allo- Weighted
cation HNHull Chi-Square Least
T:C Hyp n T ¥ T n C v C Chi-5guare Cont Corrc Squares Deviance Pearson
1:2 -0.10 120 101 240 218 0.1855 0.2336 0.1922 0.197& 0.2008
-0.08 305 267 610 511 0.0000 0.0000 0.0000 0.0000 0.0000
-0.05 860 687 1720 1362 0.0005 0.00086 0.0004 0.0005 0.0005
1:1 -0.10 160 134 160 1486 0.2326 0.291% 0.2488 0.2454 0.2501
-0.08 410 358 410 342 0.0000 0.0000 0.0000 0.0000 0.0000
-0.05 1150 919 1150 908 0.0002 0.0002 0.0002 0.0002 0.0002
3:2 -0.10 1%5 1e4 130 118 0.21439 0.276%9 0.2376 0.2357 0.2353
-0.08 510 44& 340 283 0.0000 0.0000 0.0000 0.0000 0.0000
-0.05 1440 1151 960 757 0.0001 0.0001 0.0002 0.0001 0.0001
2:1 -0.10 240 202 120 110 0.2090 0.2718 0.2352 0.2312 0.2298
-0.08 620 542 310 258 0.0000 0.0000 0.0000 0.0000 0.0000
-0.05 1720 1375 860 678 0.0001 0.0001 0.0002 0.0001 0.0001
3:1 -0.10 330 286 110 101 0.0265 0.0453 0.0664 0.0547 0.0505
-0.08 810 717 270 232 0.0000 0.0000 0.0000 0.0000 0.0000
-0.05 2310 1847 770 &07 0.0001 0.0001 0.0001 0.0001 0.0001
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Tabkle 2.3 Summarvy of Simulated & Calculated Power
Sample S5ize Allocations — 1:2, 1:1

Calculated
Sample Simulated Power Power
Size

One- Allo- Hon Hewcombe

Sided cation Inf Hybrid
Blpha T:CMargin n T nC PLiCPiT F-M 3 Score Pearson F-M 3
0.025 1:2 -0.100 65 130 0.950 0.3850 0.6682 0.6682 0.66T78 0.6229
120 240 0.900 0.900 0.7677 0.7677 0.7643 0.7551
170 340 0.850 0.850 0.8018 0.8019 0.8036 0.7973
215 430 0.800 0.800 0.8200 0.8213 0.8218 0.81593
255 510 0.750 0.750 0.8357 0.8364 0.8352 0.8344
285 570 O0.700 0.700 0.8391 0.8402 0.8396 0.8405
305 10 0.&50 0.8650 0.8423 0.8432 0.8431 0.8410
325 650 0.600 0.8600 0.84594 0.8496 0.8503 0.8486
-0.075 115 230 0.950 0.850 0.65994 0.6994 0.6987 0.68486
215 430 0.9%900 0.%00 0.7876 0.7510 0.T7865 0.7T836
305 610 0.850 0.850 0.8172 0.8174 0.8140 0.813%
385 770 0.800 0.800 0.82%95 0.8295 0.8281 0.8295
450 900 0.750 0.750 0.8374 0.8375 0.8368 0.8361
505 1010 0.700 O0.700 0.8413 0.8421 0.8419 0.8418
545 1090 0.650 0.8650 0.8420 0.8425 0.8429 0.8442
575 1150 0.600 0.800 0.8472 0.8472 0.8486 0.8471
-0.050 255 510 0.950 0.950 0.7511 0.7570 0.7526 0.7421
485 970 0.900 0.900 0D.8118 0.8118 0.8139 0.8089
685 1370 0.850 D.850 0.8258 0.8258 0.8274 0.8258
860 1720 0.800 0.800 0.8357 0.8359 0.8359 0.8343
1010 2020 0.750 0.750 0.8403 0.8403 0.8408 0.8400
1130 2260 0.700 0.700 0.8421 0.8421 0.8444 0.8428
1225 2450 0.650 0.650 0.845%9 0.8461 0.8451 0.8455
1295 2590 0.600 0.600 0.8476 0.8476 0.8488 0.8481
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Tabkle 2.3 Summary of Simulated & Calculated Power
Sample S5ize Allocations - 1:2, 1:1

Calculated
Sample Simmlated Power Power
Zize
One- Allo- Hon Hewcomnbe
S5ided cation Inf Hybrid

Alpha T:CMargin n T nC PiCPiLiT F-M 3 Score Pearson F-M 3
0.025 1:1 -0.100 S0 90 0.950 0.850 0.7978 0.7978 0.7950 0,7532
160 160 0.900 0.900 0.8278 0.834 0.8242 0.8143
230 230 0.850 0.850 0.8488 0.8488 D.84&8 0.8405
290 290 0,800 0.800 0.8526 0.8554 0.8507 0.8493
340 340 0.750 0.750 0.8572 0.8588 0.8531 0.8526
380 380 0.700 O0.700 0.854%9 0.8569 0.8531 0.8534
410 410 0.650 0.650 0.8543 0.8552 0.8540 0.8528

430 430 0.600 0.600 0.8524 0.8553 0.8507 0.8512
-0.075 150 150 0.950 0.850 0.7796 0.7954 0.7796 0.7650

290 290 0.900 0.900 0.8412 0.8449 D.8411 0.8342
410 410 0.850 0.850 0.8466 0.8494 0.8498 0.8460
510 510 O.800 0.800 0.8488 0.845%5 0.8477 0.8471
600 w00 0.750 0.750 0.8518 0.8529 0.8523 0.8503

670 670 0.700 O0.700 0.8510 0.8517 D.8487 0.8502
730 T30 0.650 0.650 0.8534 0.8544 0.85286 0.8526
770 770 0.600 0.600 0.8547 0.8557 D.8548 0.8529
-0.050 340 340 0.950 0.850 0.8198 0.8213 0.8224 0.8077
650 650 0.900 0.800 0.843%9 0.8461 0.8473 0.8428
920 9520 0.850 0.850 0.8511 0.8522 0.8504 0.8485
1150 1150 0.800 0.800 0.8498 0.8506 0.8489 0.8491
1350 1350 0.750 0.750 0.8506 0.8511 D.8528 0.8506
1510 1510 O.700 O0.700 0.8518 0.8523 0.85086 0.8505
1630 1630 0.650 0.650 0.8506 0.8511 0.84%92 0.8495
1720 1720 0.600 0.600 0.8467 0.8471 0.8495 0.8497
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Table 2.4 Summary of Simumlated & Calculated Power
Sample S5ize Rllocations — 3:2, 2:1, 3:1

Sample Calculated
Size Simmlated Power Power
One- Allo- Hon
S5ided cation Inf Agresti &
Alpha T:CHMargin n T nC Pi CPLT Wald Caffo Deviance Wald
0.025 3:2 -0.100 105 70 0.950 0.850 0.8767 0.8557 0.8523 0.8446
185 130 0.900 0.800 0.8533 0.868 0.858 0.8374
285 180 0.850 0.850 0.8580 0.8652 0.8631 0.848
360 240 0.800 0.800 0.8562 0.8641 0.8632 0.8508
420 280 0.750 0.750 0.8533 0.8602 0.8588 0.8453
465 310 0.700 0.700 0.847T6 0.8532 0.8535 0.8452
5310 340 0.650 0.830 0.8516 0.8558 0.8548 0.8456
540 360 0.600 0.600 0.84594 0.8524 0.8572 0.8508
-0.075 185 130 0.950 0.950 0.8730 0.8660 0.8627 0.8598
360 240 0.900 0.%200 0.8644 0.86385 0.8710 0.8508
510 340 0.850 0.850 0.8578 0.8638 0.8625 0.8508
645 430 O0.800 0.B8B00 0.858 0.8640 0.8634 0.8535
750 500 0.750 0.750 0.8537 0.8589 0.8591 0.8508
B840 5&0 0.700 0.700 0.8538 0.8563 0.8567 0.8508
915 610 0.650 0.650 0.8543 0.8572 0.8562 0.8527
960 640 0.600 0.600 0.8527 0.85486 0.9063 0.8508
-0.050 420 280 0.950 0.850 0.8710 0.8713 0.8611 0.8446
810 540 0.900 0.800 0.858 0.8644 0.8648 0.8508
1140 760 0.850 0.850 0.8525 0.8566 0.8568 0.848
1440 960 0.800 0.800 0.8533 0.8566 0.8578 0.8508
1680 1120 O0.750 0.750 0.8504 0.8530 0.8550 0.848583
1890 1260 0.700 0.700 D.8528 0.8547 0.8551 0.8508
2040 1360 0.650 0.8650 0.8522 0.8538 0.8524 0.8456
2160 1440 0.600 0.800 0.8533 0.8546 0.8528 0.8508
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Table 2.4 Summary of Simmlated & Calculated Power
Sample 5ize Lllocations - 3:2, 2:1, 3:1

Sample Calculated
S5ize Simmlated Power Power
Cne—- Allo- Hon
S5ided cation Inf Agrestl &
Alpha T:CHMargin n T nC PLi CP1L1T Wald Caffo Deviance Wald
0.025 2:1 -0.100 120 60 0.950 0.950 0.8850 0.8851 0.8833 0.8269
240 120 0.900 0.500 0.8778 0.8%909 0.888%9 0.8465
340 170 0.850 0.850 0.8614 0.8751 0.8737 0.53465
440 220 0.800 0.800 0.8675 0.8800 0.8802 0.8572
500 250 0.750 0.750 0.8534 0.8640 0.8650 0.8465
560 280 0.700 0.700 D.8531 0.8604 0.8585 0.8465
620 310 0.650 0.650 0D.8573 0.8627 0.8641 0.8541
640 320 0.600 0.600 D.848 0.8529 0.8548 0.8465
-0.075 220 110 0.950 0.950 0.8798 0.8992 0.8814 0.8382
440 220 0.900 0.300 0.8752 0.8883 0.8877 0.8572
620 310 0.850 0.850 0.8669 0.8767 0.8785 0.8553
760 380 0.800 0.800 0.8564 0.8632 0.8635 0.8472
900 450 0.750 0.750 0.8571 0.8635 0.8647 0.8508
1000 500 O0.700 O0.700 0.8531 0.8581 0.8557 0.8481
1080 540 0.650 0.650 0.8518 0.8554 0.8549 0.8470
1140 570 0.600 0.600 0.8492 0.8520 0.8515 0.8472
-0.050 520 260 0.950 0.950 0.8798 0.8956 0.8897 0.8555
960 480 0.900 0.300 0.8808 0.8718 0.8689 0.8465
1380 &90 0.850 0.850 0.8593 0.8662 0.8677 0.8516
1720 860 0.800 0.800 0.8547 0.8595 0.8601 0.8492
2020 1010 0.750 0.750 0.8531 0.8572 0.85594 0.8500
2260 1130 0.700 0.700 0.8551 0.8583 0.8565 0.84%96
2460 1230 0.650 0.650 0.8522 0.8545 0.8550 0.8513
2580 12590 0.600 0.600 0.849%9 0.851%9 0.8523 0.54%92
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Table 2.4 Summary of Simumlated & Calculated Power
Sample S5ize Rllocations — 3:2, 2:1, 3:1

Sample Calculated
Size Simmlated Power Power
One- Allo- Hon
S5ided cation Inf Agresti &
Alpha T:CHMargin n T nC Pi CPLT Wald Caffo Deviance Wald
0.025 3:1 -0.100 180 60 0.950 0.850 0.9475 0.89525 0.9528 0.8682
330 110 ©0.900 0.800 0.8997 0.9214 0.5211 0.8572
450 150 0.850 0.850 0.8692 0.8888 0.8945 0.8438
570 150 ©0.800 0.800 0.8648 D.8788 0.8811 0.8472
660 220 0.750 0.750 0.8543 0.8675 0.86596 0.8425
750 250 0.700 0.700 0.858 0.8681 0.86583 0.8481
810 270 0.650 0.830 0.8543 0.8618 0.8627 0.347T0
B70 290 0.600 0.600 0.85680 0.8618 0.8620 0.8532
-0.075 300 100 0.950 0.950 0.9131 0.9348 0.938 0.8462
570 190 0.900 0.%200 0.87686 0.8985 0.9034 0.8472
810 270 0.850 0.850 0.8672 0.8822 0.8862 0.848
1020 340 0.800 0.800 0.8622 0.8738 0.8743 0.848585
1200 400 0.750 0.750 0.8595 0.8690 0.8701 0.8508
1350 450 0.700 0.700 0.8576 0.8642 0.8658 0.8524
1440 480 0.650 0.8650 0.8516 0.8572 0.858 0.8470
1530 510 0.600 0.600 0.8538 0.8574 0.8563 0.8455
-0.050 650 230 0.950 0.850 0.8976 0.9176 0.9158 0.8538
1250 430 0.900 0.8200 0D.8673 0.8826 0.8861 0.8452
1830 610 0.850 0.850 0.8617 0.8726 0.8706 0.8487
2310 770 0.800 0.800 0.8574 0.8652 0.86583 0.8517
2700 900 O0.750 0.750 0.8556 0.8614 0.8615 0.8508
3030 1010 O0.700 0.700 D.8553 0.8594 0.8613 0.8515
3270 1090 0.650 0.650 0.8532 0.8565 0.8581 0.8502
3450 1150 0.600 0.600 0.8511 0.8531 0.8528 0.8502
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Type | Error

Type | Error

Figure 2.1 Summary of Simulated Type | Error
By Somple Size Alocation
Apho=0.025

[WARLE

o075

0,06+

[WAE=E

0.0

003

ooz

oo

.00

3z

2 21

Sarnple Size Allocotion {Test:Control}

® Chi—Sguare
® Bealz—Haldane

* % ® Folk & Koch

se
ss Wald Adj

® ® ® Chi—Square CC
® & @ Transformation

Figure 2.2 Summary of Simulated Type | Error
By Somple Size Alocation
Apho=0.025

[WARLE

L0

0,06+

[WAE=E

[WAVEE

0031

ooz

SES| |

.01

0,00

:

"

rﬂ»'I 0 .Il!

32 21

Sarnple Size Allocotion {Test:Control}

& @& YWold Adj CC
& & Fdgeworth Expansion

Wald CC

® ® @ Newcombe hybrid score GG
® & & Fecentered LI N

an

66



Type | Error

Type | Error

Figure 2.3 Summary of Simulated Type | Error
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Type | Error

Type | Error
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Power {Sirmulated}

Power {Sirmulated}

Figure 2.7 Summary of Simulated Power
By Somple Size Alocation
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Figure 2.8 Summary of Simulated Fower
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Power {Sirmulated}

Power {Sirmulated}

Figure 2.9 Summary of Simulated Power

By Somple Size Alocation
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Figure 2.10 Summary of Simulated Power
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Mewcombe Hybrd Score Power {Sirmulated)

F—M 3 Power {Sirnulated)

Figure 2.11 Comparison of Simulated Power

Newcombe Hybrid Score and Pearson Methods
By Somple Size Mlocation
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Figure 2.12 Comparison of simulated Fower
Farmington—Manning 3 and Pearson Methods
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F—M 3 Power {Sirnulated)

Agresti & Caffo Power {Sirmulated)

Figure 2.13 Comparison of Simulated Power

Farmington—Manning 3 and Mewcormbe Hybrnd Score Methods
By Somple Size Mlocation
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Figure 2.14 Comparison of simulated Fower
Agresti & Caffo ond Deviance Methods
By Somple Size Mlocation
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Wald Power {Sirmulated)

Wald Power {Sirmulated)

Figure 2.15 Comparison of Simulated Power

Wald and Deviance Methods
By Somple Size Mlocation
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Figure 2.1 Comparison of simulated Fower
Wald and Agresti & Coffo Methods
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F—M 3 Power {Sirnulated)

Mewcombe Hybrd Score Power {Sirmulated)

Figure 2.17 Comparison of Simulated and Calculated Power
F—M 3 Method
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Figure 2.18 Comparison of Simulated and Calculated Power
MNewcornbe Hybnd Score Sirmulated Method 8 F—M 3 Calculated Methiod
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Wald Power {Sirmulated)

Figure 2.19 Comparison of Simulated and Calculated Power
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Figure 2.20 Comparison of Simulated and Calculated Power
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Figure 2.21 Comparizon of Simulated and Calculated Fower
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Figure 2.27 Comparison of Simulated and Calculated Fower
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Chapter 3

Methods for Analyzing Three-arm Trials with Binomial Proportions as the Primary Endpoint

1. Introduction

Non-inferiority clinical trials are used in a setting where the new experimental
medication, test treatment, must be not unacceptably worse than the current active control
treatment by a specified amount related to a condition of interest. Their importance in the
pharmaceutical industry is becoming more Widespreadl. In many settings, it is also important
to include a placebo arm in these trials for reasons discussed by Koch & Rohmel including
situations where the active control may lack compelling proof of efficacy, the effect of the
active control is small compared to the placebo effect, the active control effect over placebo
is widely variable among trials, and the understanding of the condition of interest is not
completel. Three-arm trials are then used to conclude non-inferiority of the test treatment to
the active control by showing that the test treatment preserves a certain pre-determined
percentage of effect over placebo that the active control treatment preserves over placebo.

Frequently the primary endpoint of these three-arm trials is a dichotomous outcome
resulting in a proportion for each treatment. Pigeot et. al.” and Schwartz® have discussed

methodology for assessing the percentage of effect preserved related to the non-inferiority



hypothesis for a continuous outcome. Tang and Tang® have modified these methods to use
proportions from binomial endpoints. Additionally, sample size and power formulas are of
interest for this setting to aid in the planning of three-arm trials with proportions as the

primary endpoint.

II. Methods for Assessing Non-inferiority in a Three-arm Trial

The null hypothesis of inferiority in these three-arm trials is created to perform a
statistical test of the percentage of effect that the test treatment to placebo preserves over the
effect of the active control treatment to placebo, and can be written as Hy: (7tr-mtp)/(7tc-mtp) = A
< Ao with the alternative hypothesis as Ha: (mtr-mp)/(7tc-1tp) = A > Ao with 7r, mc, and mp
representing the population proportion of patients having the outcome of interest in the test,
active control, and placebo groups, respectively. The pre-determined percentage of effect that
the test treatment must preserve is 100A.

The first of these methods creates a Wald statistic® using heterogeneous variances for

the treatment groups as seen in (3.1).

(P —2oPc —(—20)Bp}
%%ﬁc(l—ﬁc)+<1—xo>216p<1—16p)}

Zy= 3.1)

1 |. n
{pT(l_pT)J’_

Ny Cc Cp

where pr, P, and pp are the observed proportions of the outcome of interest in the test,

active control, and placebo groups, respectively. Additionally, the sample size in the test

group is represented as nr with the sample sizes in the active control and placebo groups
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represented as a proportion of the sample size in the test group where nc = Ccenr and np =
Cpnr. This statistic can be compared to a standard normal distribution yielding a p-value for
the test of the null hypothesis.

A confidence interval for A can be computed from this statistic based on Fieller’s
method to yield a lower and upper limit which contains all possible values of A which would
not be rejected using the Wald statistic, Zyw in (3.1). These confidence limits are the solutions

to the equation in (3.2)

nT{ﬁT _XISC —(I—X)ﬁp}2 — Z2 (3 2)
o Mpe=pe) (=0)pp-7 ¢ '
{pT(l_pT)+ pC( pC)+( ) pP( pP)}
CC CP

where zis the 100(1-a) percentile for a standard normal distribution. The equation in (3.2)

is then solved for A to produce the upper and lower confidence limits (Awr, Awy). These limits

are computed as in (3.3). The lower limit, Awy, is the focus of the current discussion.

— B, —+/B2 —4A,C —B,, ++/B2 —4A,C
ﬁWL — w ZX wW~wW ,lWU — w ZX W ~wW (33)
114 114

2 A A 2 A A~
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AW:{(pC_pP)Z_ pC pC _ pP pP
C.n; Cpn;

2Z§13p(1—13p)}

By, :{_ 2(ﬁc _ﬁP)(ﬁT _ﬁP)"'
Cpn;

2 A A 2 A A
A 2, Pr(1=pr)  z2,pp(d—Dp)
CW:{(pT_pP)Z_ pT pT _ pP pP
nT CPnT

Another method for assessing the non-inferiority hypothesis is one that is modified
from that for the difference in proportions as proposed by Agresti and Caffo’. This method

adds one success and one failure to each group, thereby adding three successes and three

failures in total. This Modified Agresti & Caffo statistic as seen in (3.4) where
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Dr = +DI(n; +2), po = +D/(n. +2),and p, =(y, +1)/(n, +2) can also be

compared to a standard normal distribution yielding a p-value for the test of the null

hypothesis of inferiority.

z .- {Br — 2B == 2P| 3.4)
Pr=Pp) , APc(=Pc) , (1=4)*Bp(1-P))
n, +2 ne+2 n, +2

A confidence interval as similar to that computed for the Wald statistic can be
computed for the Agresti & Caffo method by solving the equation in (3.5) for A to produce

upper and lower confidence limits (Ascr, Aacu), With the current discussion focusing on Aacr,

the lower confidence limit.

. _ {ﬁT AyPe —(1-4 )pP} _ Zi (3.5)
prd=pr) AoPe(l- Pe) (-4 )’ Pr(1=Pp)
ny +2 ne + 2 n, +2

These limits are computed as in (3.6).
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Non-inferiority can also be assessed through the use of estimators obtained from
maximum likelihood methods for the proportion of events in the test, active control, and

placebo groups based on the joint distribution of the events as the product of three
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independent binomial distributions for the three groups. The first is based on the Deviance
statistic which is computed as the -2 times the difference in the natural logarithms of the
likelihood using the proportions computed from the maximum likelihood estimators under
the alternative hypothesis and the likelihood using the proportions computed from the
maximum likelihood estimators under the null hypothesis. The second of these is based on a
Pearson statistic in the form of [(observed — expected)2 / expected] using the maximum
likelihood estimators under the null hypothesis. These methods produce test statistics for
which p-values can be obtained by using the chi-square distribution under one degree of
freedom.

Additionally, Tang and Tang4 present results for a test statistic based on maximum
likelihood estimates (RMLE) of the proportions restricted under the null hypothesis. These
RMLE estimates are used in the denominator for (3.1) to replace the observed proportions.
This statistic is also compared to a standard normal distribution to produce a corresponding
p-value. These RMLE estimates do not have a closed-form solution and therefore require
additional resources for their computation. Software such as SAS® can be used to obtain these
estimates through PROC GENMOD, a procedure used to fit generalized linear models, with
a specification of a binomial distribution and an identity link. The model statement fits one
parameter for the control group, one parameter for the placebo group, with the test group
being restricted by the null hypothesis Ay for the parameter for the control group and (1- A)
for the parameter for the placebo group.

Another method can be used which replaces the observed proportions used in the
denominator in (3.1) with proportions restricted by the null hypothesis, but using weighted

least squares for estimation instead of maximum likelihood estimation. These estimates can

81



also be obtained using software such as SAS® through PROC CATMOD, a procedure used to
fit categorical models, with a similar specification as in the above model using weighted least
squares to estimate the means.

The methods previously discussed, including the Deviance method, Pearson method,
RMLE method, and the weighted least squares (WLS) method are described in the form of a
test statistic. It is possible to produce corresponding confidence limits through an iterative
process of computing an interval of all possible values of the null hypothesis which the test

statistic does not reject at the specified alpha level.

II1. Performance of Methods based on Simulations for Assessing Non-inferiority

Simulations were used to study the properties of these methods in various scenarios to
assess type I error and power. Scenarios included varying the following parameters:

1. mc, the population proportion of events in the control group: 0.6, 0.7, 0.8, 0.9

2. mp, the population proportion of events in the placebo group: 0.2, 0.3, 0.4, 0.5, 0.6,
0.7

3. o, the percentage of effect that the test treatment must preserve under the null
hypothesis: 0.6, 0.7, 0.8, 0.9

4. A=(mr - wp)/( mc - Tp), the population percentage of effect that the test treatment
preserves: Ao, (1+20)/2, 1, 1.1

5. mr, the population proportion of events in the test group: r = Anc + (1- A)mtp

6. a, the one-sided alpha level: 0.000625, 0.005, 0.01, 0.025
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7. nr, the sample size in the test group is calculated to have 85% power to contradict
the null hypothesis for the specified placebo proportion and no difference

between the test and active control treatment groups with Cc=nc/nt and Cp=np/nt

Gt ) I B2 )+ -2 7, (- 7,))
- (=2 (e —7,)°

as n,

8. ng, the sample size in the active control group: nc=Ccnr
9. np, the sample size in the placebo group: np=Cpnt
10. Sample size allocation for test:active control:placebo as 1:1:1, 2:1:1, 2:2:1, 3:1:1,

3:2:1, 3:3:1

For each of the 10,000 replications performed, a sample from the specified binomial
distribution was drawn separately for the test, active-control, and placebo groups. All of the
test statistics were computed for the same replication and a conclusion of non-inferiority or
not was determined for the applicable one-sided test according to whether or not the p-value
from the corresponding test statistic was smaller than the nominal alpha level. The average of
these indicator variables for the demonstration of non-inferiority produced a simulated power
for the methods when the true percentage of effect preserved for test over active control
exceeded the null hypothesis and a type I error rate when this true percentage of effect was
equal to the null hypothesis.

When the number of events in any of the treatment groups was zero or if a method
failed to produce a logical test statistic, because of estimated proportions being outside of the

(0,1) range, then the Agresti and Caffo method was used as a replacement.
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IV. Results of Simulations

A brief summary of the simulation results can be found in Table 3.1. Discussion will
include type I error considerations, power considerations, and sample size calculations for the

design of these non-inferiority trials.

A. Type I Error Considerations

The Wald method generally yielded the highest type I errors as compared to all other
methods. The WLS method also tended to yield higher type I error rates than other methods.
The RMLE, Deviance, and Pearson methods tended to produce type 1 errors closest to the
nominal level for most scenarios, as displayed in Figures 3.1 — 3.6 by the parameters varied
in the simulations.

The type I error performance of the methods was similar across alpha levels, although
these results are not shown. The type I error performance was closer to the nominal level for
the Wald method when allocations included 2:1 or 3:1 for test:control. The opposite was seen
for the WLS method with type I errors further from the nominal level for allocations of 2:1 or
3:1 for test:control as seen in Figure 3.1. The performance of the Deviance, Pearson, and
RMLE methods seem to be unaffected by the choice of sample size allocation.

The simulated type I error rates were much closer to the nominal level and less
variable with larger non-inferiority margin (Ao) in Figure 3.2, smaller event rates in the
control group (T¢) in Figure 3.3, and larger event rates in the placebo group (Tp) in Figure
3.4; with these specific scenarios having smaller sample size as well. The Wald, Agresti &

Caffo, and WLS methods tended to have type I errors higher than the nominal level when
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1c=0.8, 0.9 and np=0.2, 0.3 where event rates may have been small. These patterns are seen
in Figure 3.5 which displays type I errors by nc- mp. The larger the difference between the
event rates in the control and placebo groups, the more type I error violations occur for the
Wald, Agresti & Caffo, and WLS methods. Type I error violations also occur for smaller

sample sizes as seen in Figure 3.6.

B. Power Considerations

Discussion of power will focus only on situations where the methods maintained the
approximate nominal type I error levels. The RMLE, Deviance, and Pearson methods tend to
maintain nominal type I error levels for all scenarios. The RMLE and Pearson methods yield
almost identical power results as seen in Figure 3.7. Therefore, further discussions will
include only the RMLE method. The Deviance method tends to produce slightly higher
power than the RMLE method as seen in Figure 3.8, but this difference is not very large for
most cases with the largest discrepancies for larger values of nc, specifically nc =0.9.

In the cases where the Wald, Agresti & Caffo, and WLS methods maintained
appropriate nominal type I error levels, the RMLE method yields similar power as seen in
Figure 3.9 for the Wald method, Figure 3.10 for the Agresti & Caffo method, and Figure 3.11

for the WLS method.

C. Sample Size Allocations
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In three-arm non-inferiority trials, the sample size should be allocated according to
economic feasibility, power related to the non-inferiority hypothesis, and ethical arguments
when assigning patients to the placebo arm. These considerations may result in allocations
other than a 1:1:1 balanced allocation for the three groups, usually with fewer patients
randomized to the placebo group. These may include allocating sample size for test:active-
control: placebo as 2:1:1, 2:2:1, 3:1:1, 3:2:1, and 3:3:1. Tang and Tang4 suggest that the 3:2:1
allocation is most powerful out of the 1:1:1 and the 2:2:1 that they reviewed. The current
simulations also show that power is higher when, using the same total sample size, more
subjects are allocated to the test and the active control arms than the placebo arm. Figure 3.12
shows that the equal allocation scenario (1:1:1) yields the lowest power for the same overall

sample size using the RMLE method.

V. Sample Size Formulas

Calculation of sample size for a specified level of power is an important aspect in

designing three-arm trials to assess non-inferiority. Koch and Tangen’ present a formula for

the calculation of sample size as seen in (3.7) for nt, where nc = Ccny and np = Cpnr.

2 2
(Z, +ZB)2{TET(1—TET)+ Mome(=me)  A=Ro) 7TP(l_np)}

CC CP
h=2o) (ne — 7))’

3.7

Ny =

This formula can also be solved to obtain the power for a specified sample size as seen in
(3.8) where power is obtained as the probability (1-B) from z 1-p as the (1-B) quantile of the

standard normal distribution.
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Another sample size formula can be used to design a three-arm trial based on the
RMLE method. The calculation of nt in (3.9) uses maximum likelihood estimates of the

proportions restrained by the null hypothesis in its computation for 7, , 7., and 7,. Again,

these estimates can be obtained using PROC GENMOD in SAS. A specification of a
binomial distribution and an identity link are specified and the model statement is fit as
described previously. However, the events/trials syntax requires an observed number of
events out of a sample size for each treatment group. These can be specified by assigning
arbitrary n’s for each treatment group, as long as the appropriate allocation is maintained.
The number of events in each treatment group is simply the population proportion in the
treatment group multiplied by this arbitrary n. The maximum likelihood estimates under the
null hypothesis will be calculated for each treatment group, and then can be implemented in
(3.9). These estimates will be the same, regardless of the arbitrary n chosen as long as the
sample size allocation is maintained for the treatment groups.

An analogous sample size formula using (3.9) is based on the weighted least squares

estimates of the proportions restrained by the null hypothesis for 7., 7., and 7. These

estimates can also be obtained using SAS, through PROC CATMOD and then implemented
in (3.9), following the same process, as described above using PROC GENMOD, of using

arbitrary n’s to obtain the weighted least squares estimates under the null hypothesis.
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This formula can also be written to yield power as the probability (1-B) from a standard
normal distribution for a specified sample size as seen in (3.10).
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The calculated power based on the methods previously described is compared with
the simulated power for the methods and scenarios performed in the simulations. The
simulated power and calculated power based on the RMLE method are fairly similar, with
the simulated power being slightly higher in certain scenarios as displayed in Figure 3.13 —
3.18 by the parameters varied in the simulations.

Figure 3.19 compares the Wald simulated and calculated power for all scenarios and
additionally only for those cases where the type I error is controlled at the nominal level in
Figure 3.20. The Wald simulated power is slightly greater then the calculated power, but only
for those cases where type I error is controlled at the nominal level.

Figure 3.21 summarizes the WLS calculated and simulated powers. These are similar,
but the calculated power is slightly higher than the simulated power, even in cases where the
nominal type I error is achieved as seen in Figure 3.22.

The RMLE calculated power is a good method to use when comparing it to the

simulated power of Agresti & Caffo. The simulated power is slightly higher than this RMLE
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calculated power (Figure 3.23), especially in cases where the nominal type I error is
maintained as seen in Figure 3.24.

Additionally, the RMLE sample size method is also appropriate for use with the
Deviance method. Figure 3.25 shows that the simulated Deviance power is similar or slightly

higher than the RMLE calculated power.

VI. Assessing Non-inferiority in a Three-arm Trial: 1 vs 2 Trials Paradigm

In a regulatory setting, it is often the standard to require two confirmatory trials for
efficacy in order to obtain approvalg. There are compelling reasons for this convention,
however in many cases these two separate trials are run under very similar protocols and are
run separately simply to adhere to this convention. Maca et. al.” discuss this scenario and
include reasons in some circumstances why these two separate trials could be combined to
yield a larger base of knowledge regarding the efficacy of the drug of interest. However,
there may still be interest in ensuring that the two separate trials meet at least some minimum
level of efficacy so that the combined data is not driven entirely by only one of the two trials.

In the two trials setting, a one-sided p-value of 0.025 (generally) would be required
for each of the two trials separately. This would result in an overall alpha level of 0.000625
for the combined project (both trials together). Maintaining this overall alpha level at
0.000625 can also be easily done by simply combining the two trials and analyzing this
combined data at an alpha level of 0.000625. Maca et. al.” show that the overall project alpha

level can also be maintained at the 0.000625 level by requiring each single trial to meet a
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criteria, say 0.10, and requiring the alpha level for the combined data to meet a 0.0007005
significance level. As the individual alpha level for the studies increases, the combined alpha
level decreases in order to maintain this project level alpha at 0.000625. Other selected cases
are summarized in Table 3.2.

The benefits of implementing these modified alpha levels are evident in discussions
related to the overall power of the project. In scenario 1, using the simple two separate trials
approach, if each trial is designed with 80% power then the overall project power is 64%, by
relying on the independence of the trials and therefore multiplying the powers together. Maca
et. al.” have shown that Scenario 2, which only makes a requirement on the combined data,
yields a much higher power than this. However, to ensure that each separate trial is also
providing adequate signals for efficacy, implementing Scenarios 3, 4, or 5 yields lower but
similar power to Scenario 2 while resulting in a much higher power than the traditional
separate trials in Scenario 1.

The performance of the methods under current discussion for the non-inferiority
hypothesis in a three-arm trial is of interest for the five scenarios discussed by Maca et. al.
Simulations were designed in an identical manner to those used in Section III for the one-trial
scenario for assessing non-inferiority with 10,000 replications. The sample size was also
calculated in a similar fashion and then split in half for each of the separate trials so that total
overall sample sizes remain the same. The type I error and power will be discussed for each
of the five scenarios summarized above, with methods for assessing non-inferiority including
the Wald method, the Agresti & Caffo method, and the RMLE method.

The simulated type I errors for these methods are summarized by sample size

allocation in Figures 3.26 — 3.28, by non-inferiority margin in Figures 3.29 — 3.31, by the
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population event rate in the control group in Figures 3.32 — 3.34, and by the population event
rate in the placebo group in Figures 3.35 — 3.37. These figures have bands around the
nominal 0.000625 level which show the precision of the 10,000 simulations as approximately
+0.0005. Each of the five scenarios have fairly similar type I error rates, within each method
or parameter of interest. The type I error rates are dependent on the non-inferiority margin A,
T, and 7p as was the case in the simulations discussed previously for a single three-arm non-
inferiority trial. However, the RMLE method has type I error levels closer to the nominal
level for all settings.

The more obvious distinctions in the five scenarios relate to the power of the test for
non-inferiority. In all situations, the power for Scenario 1 is much lower than that for
Scenarios 2-5. The highest power is seen in Scenario 2 for the simple combined analysis with
only an overall alpha level of 0.000625 specified and then drops slightly for Scenarios 3, 4,
and 5 as shown for each of the methods in Figures 3.38 — 3.40 by the sample size allocation,
in Figures 3.41 — 3.43 by the non-inferiority margin, in Figures 3.44 — 3.46 by the population
event rate in the control group, and in Figures 3.47 — 3.49 by the population event rate in the
placebo group. The power for the RMLE method is lower than that for the Wald and Agresti
& Caffo methods, but with the benefit of more closely maintaining type I error at the nominal
level.

The results of these simulations affirm the discussion by Maca et. al. and further
confirm the use of these scenarios in this specific application for three-arm non-inferiority
trials. The implications of choosing to design a trial using scenarios 3, 4, or 5 are a higher
project power using the same sample size, and therefore a potential reduction in total number

of subjects and cost in implementing the trial.
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VII. Performance of Methods based on Simulations for Assessing Dual Endpoints of

Superiority and Non-inferiority

In addition to assessing the non-inferiority hypothesis of the percentage of effect that
the test treatment preserves compared to the active control treatment over placebo, regulatory
agencies may also require proof that the test treatment is superior to the placebo treatment. In
most settings, assessment of superiority of test over placebo is performed in the first step of
the analyses. If superiority is shown, then analysis proceeds to the non-inferiority assessment
of the test treatment compared to active control treatment' . If superiority is not shown in the
first step of the analyses, then testing ends and does not proceed to the non-inferiority
hypothesis.

In a simple setting with one trial, superiority can be assessed at a specified alpha level
and if significant, then testing can proceed to the non-inferiority hypothesis at this same
alpha level. This approach controls the type I error for multiple testing of the superiority and
non-inferiority hypotheses through the use of hierarchical testing. Testing of the superiority
hypothesis has little effect on type I error or power because the sample size required for the
non-inferiority hypothesis makes the power for the superiority hypothesis very large and
close to 1 as evidenced in Table 3.3 where the sample size needed for superiority at o is
much smaller than the sample size needed for non-inferiority at o.

Although the setting described above requires confirmation of both superiority of the
test treatment to placebo and non-inferiority of the test treatment to the active control
(relative to placebo), regulatory agencies may desire a stronger degree of comfort

surrounding the superiority hypothesis. This is especially the case because the superiority
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hypothesis is greatly overpowered in a trial designed to show non-inferiority as previously
discussed.

The results obtained by Maca et. al.” can be used to place more stringent requirements
on the superiority hypothesis. In this setting, the overall trial can be divided into two smaller
trials for only the test of superiority. The five different scenarios from Maca et. al. seen in
Table 3.2 are used for the test of superiority. If this is significant, then testing proceeds to
non-inferiority on the combined trials at the usual 0.025 alpha level.

The simulations were again implemented for similar scenarios as described in Section
IIT with 10,000 replications. The F-M 3" method described in Chapter 2 for the difference in
proportions was used to assess the superiority hypothesis and the RMLE method was used to
assess the non-inferiority hypothesis. The more stringent requirements placed on the alpha
level when implementing the Maca et. al. scenarios for the superiority test do not seem to
change the results because, again, even reducing the alpha level still makes the superiority
test sufficiently powered for the sample sizes required for the non-inferiority hypothesis.
Simulated type I error is summarized in Figures 3.50 — 3.53 where the observed percentage
of effect is the specified non-inferiority margin for the test of non-inferiority but with
superiority maintained for the test treatment over the placebo treatment. Simulated power is
summarized in Figures 3.54 — 3.57 by the sample size allocation, non-inferiority margin, and
the population event rates in the control and placebo groups.

Sample size calculations are provided in Table 3.3 for the non-inferiority and
superiority hypotheses. The non-inferiority calculations are provided for the Wald, F-M 3,
and WLS sample size methods. The superiority calculation for test versus placebo is

provided using the Wald sample size method for the difference in proportions. The sample
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size needed for the test of superiority at o is, in most cases, less than half the sample size

needed for the non-inferiority test at a.
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Table 3.1 Summary of Simulation and Sample Size Calculation Results

Method Type I Error Violations | Power Considerations* | Sample Size
Calculations
Wald - Sample size allocations | RMLE has higher power | Wald
T:C=1:1, 3:2
-1c=0.8, 0.9
- 1p=0.2, 0.3
Agresti & Caffo | - nc=0.8, 0.9 RMLE has similar power | RMLE
- 1p=0.2, 0.3
RMLE Good power RMLE
Deviance Good power RMLE
Pearson Good power RMLE
WLS - Sample size allocations | RMLE has similar power | WLS

T:C =2:1, 3:1
-1c=0.8, 0.9
-p=0.2, 0.3

*For scenarios where type I error is appropriately controlled at the nominal level
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Table 3.2 Summary of Scenarios which maintain Project Level a=0.0006250

from Maca et. al.’

Scenario | Separate Trials o | Combined Trials a
1 0.025 None
2 None 0.0006250
3 0.15 0.0006574
4 0.10 0.0007005
5 0.05 0.0008905
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Takle 3.3 Sample S5izes for Three-frm Trial Scenaric at 0.85 Power
For Non-inferiority and Superiocrity Hypothesis
Semple S5ize Allocation l1:1:1

Non-inferiority Superiority
Semple alpha=0.025 alpha=0.025"2
Size n per group I per group
Bllocation Null
T:C:P Hyp Pi T PiC Pi P Wald F-M 3 WLS Wald
1:1:1 0.6 0.60 0.80 0.2 23 125 125 45
0.30 224 227 227 91
0.40 12 517 017 218
0.70 0.70 0.2 70 74 74 27
0.30 112 1138 117 48
0.40 202 210 210 91
0.50 457 470 459 209
0.80 0.80 0.30 =1 85 63 27
0.40 a0 100 8 45
0.50 1al 175 172 g3
0.a0 358 380 377 182
0.90 0.90 0.50 57 73 67 39
0.a0 100 21 114 &7
0.70 2149 249 240 136
0.7 0.60 0.80 0.2 232 234 233 45
0.30 417 420 420 91
0.70 0.70 0.2 131 136 134 27
0.30 207 214 212 48
0.40 i 380 3748 91
0.80 0.80 0.2 70 78 76 18
0.30 103 113 110 27
0.40 la2 175 171 45
0.50 289 306 302 B
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Takle 3.3 Sample Sizes for Three-Arm Trial Scenarioc at 0.85 Power
For Non-inferiority and Superiority Hypothesis
Sample Size Allocation 1:1:1

Hon-inferiority Superiority
Sample alpha=0.025 alpha=0.025~2
Size n per group n per group
Allocation Null
T:=C:P Hyp Pi T Pi C Pi P Wald F-M 3 WLS Wald
1:=1:1 0.7 0.80 0.20 0.&0 648 673 6649 1z2
0.90 0.90 0.30 42 57 50 15
0.40 62 79 12 2
0.50 9z lis 114 39
0.&0 173 1339 129 67
0.70 3a2 4139 408 134
0.2 0.60 0.60 0.20 561 563 563 45
0.70 0.70 0.2 315 321 319 27
0.30 435 502 501 43
0.20 0.20 0.2 lag 178 173 1la
0.30 2 255 251 27
0.40 382 398 391 5
0.50 & 698 693 23
0.90 0.90 0.2 71 28 77 9
0.30 a7 117 104 15
0.40 141 1a3 152 2
0.50 22 248 235 39
0.&0 392 425 411 67
0.9 0.90 0.90 0.2 301 325 308 9
0.30 412 437 420 15
0.40 594 a2 605 24
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RMLE Power {Simulated)

RMLE Power {Sirnulated)

Figure 5.7 Compdadrizon of Simulated Fower
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RMLE Power {Simulated)

RMLE Power {Sirnulated)

Figure 5.9 Compadadrizon of Simulated Fower
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Figure 3.10 Comparison of Simulated Fower
FMLE & Agresti & Caffo Simulated Power
By Mon—inferionty Margin
Alpho=0.025, Lamda=1, Fi C«=0.7, P P»=0.4

1.04

.94

0.8

0.7

[WR=E

T T T T T
1.0

0.8

o7 0.3 .9
Agresti & Caffo Power {Simuloted)

MNon—inferionty Margin

104



RMLE Power {Simulated)

FMLE Power

Figure 3.11 Comparison of Simulated Power
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RMLE Power {Simulated)

RMLE Power {Sirnulated)

Figure 5.15 Comparizon of Simulated and Calculated Fower
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RMLE Power {Simulated)

RMLE Power {Sirnulated)

Figure 5.1% Comparison of Simulated and Calculated Fower
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RMLE Power {Simulated)

RMLE Power {Sirnulated)

Figure 5.17 Comparison of Simulated and Calculated Fower
RMLE Method
By (PiC — Fi P}
Alpho=0.025, Lambda=1

T T T T T
0.8 o7 0.8 W] 1.0

RMLE Power {Calculated )

(FIC—FiF) ww® 2
88 04
"8 06

oo
it ta

Figure 3.18 Comparison of Simulated and Calculated Power
RMLE Method
By Total Sarmple Size
Alpho=0.025, Larmbdo=1

T T T T T
0.8 o7 0.2 o9 1.0

RMLE Power {Calculated )

Total Sarmple Size ees =200 2=400
eW® =G0 ®®® P00
ae8 1000 ae® =2000

= 2000

108



Wald Power {Simulated)

Wald Power {Sirmulated)

Figure 3.19 Comparison of Simulated and Calculated Power
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WLS Power {Sirmulated)

WLS Power {Simulated)

Figure 5.21 Comparison of Simulated and Calculated Fower
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Agresti & Caffo Power {Simulated )

Agresti & Caffo Power (Sirmulated

Figure 5.25 Comparison of Simulated and Calculated Fower
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Deviance Power (Sirmulated

Type | Error

Figure 5.2% Comparison of Simulated and Calculated Fower
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Figure 3.26 Summary of Simulated Type | Error
Mon—inferionty in Two Separote Trals
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Figure 3.27 Summary of Simulated Type | Error
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Figure 3.28 Summary of Simulated Type | Error
Mon—inferionty in Two Separote Trals
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Figure 3.31 Summary of Simulated Type | Error

MNon—inferonty in Two Separate Trals
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Figure 3.33 Summary of Simulated Type | Error
MNon—inferonty in Two Separate Trals
Agresti & Caffo Method
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Figure 3.34 Summary of Simulated Type | Error
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Figure 3.35 Summary of Simulated Type | Error
MNon—inferonty in Two Separate Trals
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Figure 3.36 Summary of Simulated Type | Error
Mon—inferionty in Two Separote Trals
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Figure 3.37 Summary of Simulated Type | Error
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Figqure 3.29 Summary of Simulated Fower
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Figure 3.40 Summary of Simulated Fower
Mon—inferionty in Two Separote Trals
RMLE Method
By Somple Size Alocation

1.04
0.9 o .
na{ 3 - T RE
07| ® W F % w
i it
% g A 4 X R
iy
0.6 % g N MR,
§ ¥
0.5 % #*
¥
* ok
¥
044 al
1:1:1 21 3231 2:2:1 2:1:1 221
Sarnple Size Alocation {Test:Control:Placsba)
w® W S1: Sep 0.025 # ® W 2 Comb CLOOOE250
R 53 Sep 0015, Comb DLOOCSST4 W 2 % 54 Sep 0.10, Comb 0.0COT00S
® W& 55 Sep 0.05, Comb 0.OOC0B905

119



Fower

Fower

Figure 3.41 Summary of Simulated Power
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Figure 3.45 Summary of Simulated Power
MNon—inferionty in Two Separate Trals
RMLE Method
By Mon—inferionty Margin

1.0
ity =t .
0.9 " JN
0.8 £ 7 % -
% ; » o ™
el W ¥ ki :f_'s ﬁ
0.7 L oy o W
N # #
kB, 35007
0.5 % %
2 52
g 1
0.5 E O % P
ok W
¥
0,41
0.6 0.7 0.3
Mom—inferiorty Margin
#* * & 51; Sep 0025 #* % % 52: Cornb DUDOODE250
® X & S3; Sep 0.15, Comb 0.0006574 % ® % S4; Sep 0.10, Comb 0.0C07005
#* % & 55; Sep 0.05, Comb D.0ODBOCS
Figure 3.44 Summary of Simulated FPower
Mon—inferionty in Two Separate THals
Wald Method
By Fi G
1.0
0.9
@
0.8
o7
0.5 !
0.5
0,41
0.8 0.7 0.3
Fic
& 8 8 51 Sep 0025 ® ® ® S2: Cornb D0OS250
® 8 8 =3 Sep 0,15, Cornb D.00DE574 @ @ @ S4: Sep 0,10, Comnb 0.0C0700S
® @ @ =5 Sep 0.05, Comb 0.00CBI0S

121




Fower

Fower

Figure 3.45 Summary of Simulated Power
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Figure 3.57 Summary of Simulated Power
MNon—inferionty:Cornbined Data using RMLE Method
Superionty:Two Separate Trals using F—M 2 Method
By Fi P

Fower

phls g A

28 5 I
s ® L
§ﬁﬁ*ﬁ ﬁgﬁﬁﬁ
frofd oA
fﬁﬁﬁﬁ ¥ N N
AR ¥
LR
WP
g o %
$
¥
0.2 0.3 0.4 0.3 0.8 0.7
Fi P
W R 51 Sep DLO2S W 52; Comb OUOODOE250
® W W 53 Sep 0,15, Comb D.00DCBS 74 ® W WS4 Sep 0L10, Comb DL.OCOT700S
WO W 25 Sep 0L0S, Comb 0LOOCE9GS

128




Chapter 4

Methods for Analyzing Stratified Non-inferiority Trials with Binomial Proportions as the

Primary Endpoint with Criteria for the Risk Ratio or the Risk Difference

1. Introduction

Non-inferiority trials are designed for settings where the objective is showing the new
experimental test treatment is not unacceptably worse than the current active control
treatment by a specified amount. The test treatment may be equivalent in efficacy, but have
less severe adverse events or a better dosing regimen for patient compliance. In the design of
these trials, there may be strata that have to be accounted for in the initial planning and also
in the final analyses. These strata could be different geographic regions of patient recruitment
or they could be based on covariates thought to have some differential effect related to the
efficacy outcome of interest such as gender or age groups.

The focus of the present discussion includes dichotomous primary endpoints with
criteria for analyzing the risk ratio or the risk difference for the test and active control
treatments, while accounting for the stratification variable. A review of the current
methodology and modifications of them will be presented. Simulations will be used to

investigate the performance of these methods for various situations related to type I error and



power. Additionally, sample size and power formulas will be discussed for the planning of

these non-inferiority trials when taking into account stratification.

II. Assessing Non-inferiority of a Risk Ratio in a Stratified Trial

A. Methods for the Stratified Risk Ratio

The hypotheses for testing non-inferiority of the test treatment compared to the active
control treatment for the risk ratio rely on a pre-determined non-inferiority limit, 6y, which is
seen in Hy : O = wrw/Tten > 09 and Ha: 6y = mpn/mten < 0p where 0 = mrn/men is the population
risk ratio for the test group versus the active control group in the Ath stratum, with h=1, 2, ...,
H and with nr, and mc, representing the population proportion of patients with the
unfavorable outcome of interest in the test and active control groups, respectively, for the Ath
stratum.

A test of the null hypothesis of inferiority can be performed using a test statistic and
comparing the subsequent p-value to the specified alpha level or through the computation of
a confidence interval and the evaluation of its inclusion of the null value, 0y. Both of these
approaches to testing the null hypothesis are seen in the methods presented.

Gart' proposed a method based on the test statistic in (4.1) which follows a standard

normal distribution and produces a corresponding p-value
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(Vg =1, D)
)

h (1_ﬁrh)

{z v, (6, P, )}

75(0y) = 4.1)

Ry, Py,

ny, (0, — pp) + 1, (1= py,)

where v, (6,, pe,) =

In (4.1), ym, is the observed number of events in the test group for the Ath stratum out of nyy,
total subjects in the test group and ycy, is the observed number of events in the active control
group for the Ath stratum out of ncy, total subjects in the active control group. The proportions

Py and Py, =0,Pcy, are maximum likelihood estimates under the null hypothesis and can be
computed in a closed-form manner by solving the equation a, pg, + by, Pcy, +¢; =0 where

ay = (g, +0,)00, by = —{(Yen +01)00 + Y + 0y | and ¢, = (Y, + Yeu) - These
estimates can also be obtain using SAS® through PROC GENMOD, a procedure used to fit
generalized linear models, where there would be specification of a binomial distribution with
a log link. The model statement fits only the intercept and includes an offset term where the
offset for the control group is zero and the offset for the test group is the natural logarithm of
the non-inferiority margin 6y. This is done separately for each stratum to obtain the maximum
likelihood estimates for the test and control groups. Gart' first presented this test statistic as a
form from which to iteratively compute a confidence interval for the risk ratio. Gart also
suggested that when the sample sizes in the treatment groups were unequal or when the
observed proportions in the treatment groups were near O or 1, then the statistic may be
skewed.

In 1988, Gart and Nam? extended this method to add a skewness correction to the test

statistic seen in (4.2).
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This method was also designed to yield a confidence interval through iterative solutions
using the test statistic in (4.2), and for this confidence interval, Gart and Nam suggest that it
appropriately provides (1-2a)% coverage when the minimum cell count is > 2.5.

Yanagawa, Tango, and Hiejima® presented a method to calculate a test statistic for the
hypothesis of non-inferiority for the risk ratio in a stratified setting as seen in (4.3). This
method is an extension to that presented by Farrington and Manning® for the unstratified

setting.

Z(yTh _nThﬁTh)

2y (0) = : (4.3)
npNey, Py (L= Py, )’
{z P )}

e Oung, (1= pe) +ng, (1-

where p., and p,, are the maximum likelihood estimates under the null hypothesis as

described previously. Yanagawa et. al. provide simulations of this test statistic for the three
strata scenario which yields approximately nominal type I error rates, except when the
sample sizes are small.

Although not evaluated as part of the current discussion, Miettinen and Nurminen®
proposed a method that calculates a test statistic for the stratified risk ratio which follows a
chi-square distribution. This method is iterative in nature and updates initial weights with

better estimates as the iterations progress.
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All of the methods described in (4.1) - (4.3) can be iteratively solved for values of 6
that do not reject the null hypothesis, thus resulting in a lower and upper bound on 6 which
yields a confidence interval. Calculating these confidence intervals can be computationally
intensive, especially as the number of strata increases.

Methods for the test of non-inferiority that produce confidence intervals directly
include those produced by SAS in the FREQ procedure”. The first of these is based on a

Mantel-Haenszel combined risk ratio across strata with a point estimate of

2 (Yymney) /(g +0¢y)
Oy = — and the corresponding confidence interval seen in (4.4).
%(YChnTh ) /(o +0cp)

{0y €XD(~2,6),6,,, exp(z,6)} (4.4)

Z[nThnCh (Y +Yen) = YmYen (g, + 10y )]/(nTh +nCh)2

where 67 = V[In(0,y)]= 1 - -
{Z YtnDcn Hz Ycen D }
h (D, +0¢y) ) (0 (g, +0y,)

The second of these methods is based on a Logit combined risk ratio across strata with a

> w, In(6,)
point estimate of 8; = exp{-*———— - and the corresponding confidence interval seen in
w
e W
4.5).
0, exp S ,0, exp Lo 4.5)
S22 2
h h
/ 1-p 1-p

where 9, =™ = and v[in(@, )] = — L™ 4 -~ Pen

Yen /Den V[ln Oy ] Th Ycn
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A modification of the Logit interval in (4.5) (termed Agresti method) uses
proportions based on the Adapted Agresti method from Chapter 1 seen in (1.3) which adds
additional counts to those observed distributed according to the null hypothesis (8p) and the
allocation of sample size to each treatment group.

An additional modification of the Logit interval in (4.5) (termed ML Logit method)
uses proportions obtained as the maximum likelihood estimates under the null hypothesis as

described above as p., and p,, for the estimates in the variance, using

v[ln(Hh)]: 1-py, " 1-Dpg, .

Y Yen

A method for the stratified risk ratio is based on a Deviance statistic as twice the
difference in the log likelihood values for likelihoods under the null and the alternative
hypotheses. This can be implemented using PROC GENMOD in SAS? and a test statistic
computed by subtracting the two deviances. Implementation using SAS includes fitting the
model under the null hypothesis by specifying a binomial distribution with a log link. The
model would include an intercept parameter and a parameter for strata with an offset for the
control group that is zero and an offset for the test group that is the natural logarithm of the
non-inferiority margin 6y. Additionally the alternative hypothesis is fit by also specifying a
binomial distribution with a log link. The model includes an intercept parameter and
parameters for treatment and strata without any offset values specified. The difference in -2
Log Likelihood values between the two models is the value of the test statistic. This statistic
is compared to the chi-square distribution with one degree of freedom to obtain a
corresponding p-value. Additionally, a Wald test statistic can be calculated based on the
parameter estimate and corresponding standard error produced by fitting the likelihood under

the alternative hypothesis, using the parameter for the treatment effect.
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B. Performance of Methods for the Stratified Risk Ratio

Simulations were used to study the properties of the methods in various scenarios to

assess type I error and power. Scenarios for the stratified risk ratio include varying the

following parameters:

1.

2.

10.

H, the total number of strata: H=2

Ticn, the population proportion of events in the control group: nc;=0.05 — 0.20,
nep=0.15 — 0.30, where 1c; £ e

On=Ttmn/Tcn, the population risk ratio: 0.667, 1.000, 1.500, 2.000

Tth, the population proportion of events in the test group: wrm=0n7cn

09, the null hypothesis risk ratio: 1.5, 1.75, 2.0

a, the one-sided alpha level: 0.0005, 0.005, 0.025

Sample size allocation for test:control = nty:nch, = 1:2, 1:1, 2:1

Sample size allocation for strata 1:strata 2 = N;:N, = 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1
nc.=nc;+ncy, the total sample size across strata for the control group is calculated
simplistically to have 85% power to contradict the null hypothesis 0, for equivalence
of the average of the test and control groups across strata with sy=nty/( ny+ncp),

Tp =g + 7)) 2, o = (7o + 7o) 2 as

(2, +24)° 1 s
ST G s )7, T
{in(1/6,)

nch, the sample size in the control group for the Ath stratum: ncj=tinc,, ncy=(1-t;)nc,

ne =

where t;=N1/(N;+N>)
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11. np,, the sample size in the test group for the Ath stratum: nrj=t;nt, npp=(1-t;)nr,

For each combination of the parameters, 10,000 replications were generated using a
random sample from the binomial distributions of y, ~ bin(ny, ry) and ycp ~ bin(nep, 7en)
for each of the h=1, 2 strata. For each replication, upper confidence limits or test statistics
with corresponding p-values for the stratified risk ratio methods were calculated. If any of the
event counts were equal to zero or the method failed to produce a valid result, then the
Agresti method was used as the default because this method yields an upper confidence limit
in all scenarios.

For each method, an indicator variable was created for each replication that is set
equal to 1 if the upper confidence limit for the stratified risk ratio was less than the null
hypothesis, 09, (or the p-value for the test was less than alpha) and set equal to 0 otherwise.
This indicator was then averaged across the 10,000 replications to produce a probability. For
scenarios where 6<0y, this probability is the power for the test of non-inferiority as the
probability of rejecting the null hypothesis when it is false. For scenarios where =0y, this
probability is the type I error rate for the test of non-inferiority as the probability of rejecting
the null hypothesis when it is true. The power and type I error results are also summarized
with respect to other parameters that were varied in the simulations.

Figures 4.1 — 4.6 summarize the simulated type I error rates for each of the methods
where the sample size is allocated equally across the two strata for an alpha level of 0.025.
Results are similar for other values of alpha, although these are not graphically summarized.
All of the methods maintain the approximate nominal type I error level for the allocation of

sample size to the treatment groups of Test:Control as 1:2. However, only the Gart-SC

136



method and the Deviance method maintain the type I error for the 1:1 and 2:1 allocations as
seen in Figure 4.1. The other methods have higher than nominal type I error rates in these
situations. The Gart method and YTH method have higher than nominal type I errors in the
1:1 and 2:1 allocations, but these methods perform fairly well with slightly higher type I
errors than the Gart-SC and Deivance methods.

The methods have type I errors closer to the nominal level for smaller null hypothesis
risk ratios (i.e., Bp=1.5) seen in Figure 4.2. As the total sample size increases, the type I error
is closer to the nominal level (Figure 4.6). Due to this factor, the effect of the null hypothesis
may be connected to the total sample size as less stringent null hypotheses require smaller
sample sizes.

There is no effect of the control proportions on the type I error in either strata 1
(Figure 4.3) or strata 2 (Figure 4.4). However, as the difference in the control proportions
across the strata increases, the type I error is closer to the nominal level (Figure 4.5).

Discussions of power will focus on situations where the type I error is controlled at
the nominal level. Figure 4.7 compares the Gart-SC and Deviance methods where the
population proportion in the treatment groups for each strata is equal (6=1). These methods
are very similar with respect to simulated power, with the Gart-SC method having slightly
higher power for the 2:1 treatment allocation scenario.

Comparison of the Gart and YTH methods shows that the Gart method yields slightly
higher power in all situations (Figure 4.8). The Gart method also yields higher power than
the Gart-SC method (Figure 4.9), but only for the 1:1 and 2:1 allocation settings where the
type I error of the Gart method is not quite controlled at the nominal level. For the 1:2

treatment allocation setting, the power for these methods is very similar.
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The ML Logit method and the Mantel-Haenszel (MH) method have similar simulated
power for the treatment allocation scenario of T:C as 1:2 (Figure 4.10) where the type I error
is controlled at the nominal level. The Logit method yields higher power in this scenario
compared to the Agresti method (Figure 4.11). However, the MH method has higher power
than the Logit method (Figure 4.12). The Wald and MH methods are very similar, with the
Wald method having slightly higher power for the 1:2 treatment allocation setting (Figure
4.13). Although these methods may be appropriate for the treatment allocation setting of 1:2,
the Gart-SC method yields higher power than these methods even in this setting as is shown
compared to the Wald method in Figure 4.14.

In many trials, it may not be feasible to enroll subjects equally among the strata.
There may be smaller populations of subjects for one strata compared to another or there may
be economical reasons for differential allocations. Even without any of the constraints
previously discussed, differential allocations to the strata may have impacts on type I error or
power for the stratified risk ratio methods. Figures 4.15 — 4.17 summarize the simulated type
I error for the better methods including Gart, Gart-SC, YTH, and Deviance, for scenarios
where the sample size is allocated differently across strata. These figures display this
summary for treatment allocations of Test: Control as 1:2 (Figure 4.15), 1:1 (Figure 4.16),
and 2:1 (Figure 4.17). The type I error is similar across strata allocation scenarios.

While the type I error is unaffected by strata allocation, the power depends directly on
the allocation of sample size to the strata. The simulation scenarios were chosen so that the
control proportion in the first strata was always equal to or smaller than the control
proportion in the second strata (mc;<nc2). In this setting, it is obvious that as more sample

size 1s placed in the strata with the larger control proportion, strata 2, the power increases.
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Figures 4.18 — 4.20 display this graphically, separately for the treatment allocations of

test:control as 1:2 (Figure 4.18), 1:1 (Figure 4.19), and 2:1 (Figure 4.20). When designing

these non-inferiority trials, particular attention should be made to ensure that the sample size

is allocated appropriately to the strata so as to maximize the power for a fixed number of

subjects.

C. Sample Size Formulas for the Stratified Risk Ratio

Calculation of sample size for a specified level of power is an important aspect in

designing non-inferiority trials. In the setting of a stratified analysis, it is important to

understand the implications of adjusting for the strata when calculating sample sizes. Nam’

discusses a sample size formula for the stratified risk ratio based on the score test as

described by Gart' seen in 4.6).

H _ 1/2
N =|Z {z thsh (1_Sh)7z-Th } +
N s, 6, -D)+A-7,)

d-s,)m,

h=

LN

ﬂ{it s, 1-

{i 1,8, (7T, — ﬁTh)/(l_ﬁTh)}:|

h=1

(4.6)

[(O-ze)=z) [ s0ma
E, (1—7?Th)2(1_”c11)

F

(1-7y) ' (A-1p)

H
where E, =27, —(1-0,70)+s,0-n,)—60,0-74),N =Z(nc,, +1y,),
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maximum likelihood estimates under the null hypothesis. These proportions can be obtained
using PROC GENMOD in SAS? as similar to that described previously. The Nam sample

size formula in (4.6) can also be solved for power as seen in (4.7).

< ~ o~ _ & s, (=) 7y, "
{ {;tsh(ﬂTh 7Z'Th)/(1 ”Th)}} Za{;sh(90—1)+(1—7?m)} ]/

{Zt s,(1—s )[(l_ﬁc’l)(l_”ﬁ)jz( 5400 e N (I—s,)7p, J}
" " E, 7 )2 ~ 2

h=1 (1_7[Th) (l_ﬂ-c;,) (1_7Z-Ch) (l_ﬂ-Th)

4.7)

The sample size formula from chapter 1 (1.15), based on the Taylor Series method is

H
modified for stratified analysis seen in (4.8) where n,. = ZnCh ,ands, = S
h=1 Ny, + Ny
d 1
2
( + 2. p) {zl‘ ( +
(s /(1 )V 4 V4
nc. — h=1 h h Th Ch (48)

()

The sample size for each treatment group in each strata can be calculated in the following

manner: n,, =t,Rn. and n., =t,n. This Taylor Series formula in (4.8) can be solved for

power as seen in (4.9) where power:d)(zl_B) and z,.4 is the (1-B) quantile of the standard

normal distribution.
H
NS Zthz ln(e"]
z _ h=1 90 —z
oy ( | | j E (4.9)
>, +
=1 (s, [(L=s, N7y, 7g,

It is important that the sample size formulas used to design the stratified risk ratio

trials to assess non-inferiority are operating at the specified power level. The Nam formula
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and the Taylor Series formula will be compared to the simulated powers of the methods to
assess the appropriateness of their use in designing these trials.

The Gart-SC method yields nominal type I error rates and fairly high power
compared to the other methods. A comparison of the simulated power from the Gart-SC
method and the Nam calculated power is presented for treatment allocation of test:control as
1:2 (Figure 4.21), 1:1 (Figure 4.22), and 2:1 (Figure 4.23). The Gart-SC simulated power is
higher than the Nam calculated power for the 1:2 scenario and approximately equal for the
1:1 scenario. However, the Gart-SC simulated power is slightly lower than the Nam
calculated power for the 2:1 situation, and more so as more sample size is allocated to strata
1 with the smaller control proportion. This difference in calculated and simulated power is
not large, especially for situations designed to have fairly high power.

The Gart simulated power is always slightly larger than the Nam calculated power for
all treatment allocation scenarios (Figures 4.24 — 4.26). However, the Gart method may not
maintain the nominal type I error as well for the 1:1 and 2:1 settings.

Calculated power for the Taylor Series method is displayed in Figures 4.27 — 4.29
compared to the Gart-SC simulated power. The Taylor Series sample size formula is much
simpler than the Nam formula. However, it is conservative and requires more sample size
than necessary for the specified power level when the difference in control proportions for
the strata is larger (>0.20). When (tc2-nic;) 1s smaller, this method has a lower calculated
power than the Nam simulated power and may not provide enough sample size for the

necessary power.
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IIT. Assessing Non-inferiority of a Risk Difference in a Stratified Trial

A. Methods for the Stratified Risk Difference

The hypotheses for testing non-inferiority of the test treatment compared to the active
control treatment for the risk difference rely on a pre-determined non-inferiority limit, Ao
which is seen in Hy : Ay = 7t - 7ten < Ag and Ha: Ap = 7ty - Tten > Ag where Ap = 7oy - Ttep 1S
the population risk difference for the test group versus the active control group in the ith
stratum, with A=1, 2, ..., H and 71, and mcp representing the population proportion of patients
with the favorable outcome of interest in the test and active control groups, respectively, for
the Ath stratum.

Similar to the setting where the risk ratio is of interest, when the risk difference is of
primary interest for analysis, a test statistic can be formulated to produce a p-value for the
null hypothesis of inferiority. Iterative methods can be used to compute a corresponding
confidence interval which includes all values for which the null hypothesis would not be
rejected at the specified alpha level.

Gart and Nam® present a method based on a standard normal statistic that is computed
as in (4.10) where yty, is the observed number of events in the test group for the Ath stratum
out of nty, total subjects in the test group and ycy, is the observed number of events in the

active control group for the Ath stratum out of n¢y, total subjects in the active control group

Z(yTh — Ny, Pp) Vi
Zan (Ag) =

V2 (4.10)
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h Np, D¢y

with the proportions py, and p,, computed as maximum likelihood estimates of the

proportions under the null hypothesis with closed-form solutions defined as

~ b ~ ~ : .
Dy, = 2u, cos(w,) —3—" and p., = p; —A, with the following components:
a,

a, =1+nﬂ, b, =—{1+nﬂ+ﬁm +nﬂﬁc,, +A0(nﬂ+2j},

Ny, Ny, Th Ny,

N n ~ n ~ ~
Cp = A02 +A0(2pm +£+1J+pm +ipcw d, ==pplA (1+A),

Ny Th
b, " b b, d 1
u, = sign(v,) %—C—" , V= ”c'; +—" w, ==<I+cos™ v—"3
(3a,)” 3a, (Ba,)” 6a,” 2a, 3 u,

These estimates can also be obtained using PROC GENMOD in SAS® with specification of a

binomial distribution with a identity link. The model statement fits only the intercept and
includes an offset term where the offset for the control group is zero and for the test group is
set equal to the specified non-inferiority margin Aq. This model is fit separately for each
stratum to produce maximum likelihood estimates for the test and control groups.

Gart and Nam® propose a skewness-corrected version of the test statistic in (4.10) as
seen in (4.11), which should reduce the skewed nature of the corresponding confidence

interval from (4.10).
Zane (Ag) = Zoy (D) =7 (Ao )z, —1)/6 4.11)

PRTENEYY . ) )
where y(A,) = h{]T and [, (Ag) = Vy {vTh (1=2pm) /0y = Ve, (- 2pCh)/nCh}
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Yanagawa, Tango, and Hiejima4 provide a test statistic for the risk difference seen in
(4.12) which can be compared to a standard normal distribution to obtain a p-value for

comparison against the specified alpha level.

Z[yTh _nThﬁTh]

Zymy = RS — (4.12)
Ny, Py (L= Dyy)
Ny Py (L= Pey) + 1, Py (1= P,

This test statistic also uses the proportions pp, and p, calculated from score equations as

described previously for the method by Gart and Nam in (4.10). This method is a stratified
extension to that proposed by Farrington and Manning’ and studied in chapter 2 on the risk
difference. Yanagawa et. al.* provide limited simulation results which suggest this method
controls the type I error at approximately the nominal level except for scenarios with small
sample sizes.

A method for the stratified risk difference is based on a Deviance statistic as twice the
difference in the log likelihood values for likelihoods under the null and alternative
hypotheses. This can be implemented using PROC GENMOD in SAS? and a test statistic
computed by subtracting the two deviances. Implementation using SAS includes fitting the
model under the null hypothesis by specifying a binomial distribution with an identity link.
The model would include an intercept parameter and a parameter for strata with an offset for
the control group that is zero and an offset for the test group that is the non-inferiority margin
Ap. Additionally the alternative hypothesis is fit by also specifying a binomial distribution
with an identity link. The model includes an intercept parameter and parameters for treatment
and strata without any offset values specified. The difference in -2 Log Likelihood values

between the two models is the value of the test statistic. This statistic is compared to the chi-
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square distribution with one degree of freedom to obtain a corresponding p-value. An
additional method uses the parameter estimate for treatment from the model fit under the
alternative hypothesis to create a Wald statistic.

While not implemented in the current discussion, Miettinen and Nurminen® propose
an iterative method for producing a test statistic for the risk difference which is similar to that
mentioned for the risk ratio and follows a chi-square distribution. This process is computer
intensive and requires more resources for simply computing the test statistic than those
mentioned above.

The methods in (4.10) — (4.12) also require iterative methods if a confidence interval
is desired in addition to the test statistic. A confidence interval can be computed for each of
these methods by finding values of A for which the test statistic fails to reject the null
hypothesis of inferiority for the specified alpha level.

O’Gorman et. al.” compare two methods of producing confidence intervals for the
stratified setting. The first of these is based on a weighted least squares methodology for

computing the weights as seen in (4.13), originally described by Kleinbaum, Kupper, and

Morgansternlo.

Lo
dys £ 172 (4.13)

{ZWWLS,h}
h
2 Wyisndy n A n N -1
’ A4 Pr(d=Pp)  Pa(d=Dg)
where dy; s = *—————, d}, =Py —Pcp» and Wiy, :{ 8 I Lh
%WWLS,h ng, ne,

O’Gorman et. al.” also present a confidence interval using Cochran-Mantel-Haenszel weights

as seen in (4.14), which was presented by Cochran''.
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deyy * 2, 2 (4.14)
{zwm,,,}

2 Wemnndsy gy Ny
s Wempn =—————» and

_h
where dqyy =
% Wemn.h Ny, + Ny

3 3
Yrn (M =Y )0y +Yon ey — Yeon )0 }

] |
{nThnCh (g, +0¢y) }

O’Gorman et. al. recommended the CMH weights over the WLS weights for computing the
confidence interval for a stratified risk difference because the CMH method showed
approximate nominal coverage while the WLS method varied widely in its coverage
probabilities for the entire confidence interval. This recommendation is based on simulation
results for scenarios using at least 8 strata and small proportions less than 0.10.

The intervals in (4.13) for the WLS method can be modified to extend the Agresti and
Caffo method'? for the unstratified setting for the risk difference seen in chapter 2 (2.3). This
interval replaces the observed event rates in (4.13) with rates which add one success and one
failure to each treatment group with p th=(yth+1)/(nTh+2) and p ch=(ycn+1)/(nch+2).

Sato"? proposes a method based on the CMH interval in (4.14) which yields a
confidence interval by using a Fieller-type method to obtain the lower and upper limits as
seen in (4.15). There is no assessment of the performance of this interval within Sato’s

discussion.

2C_ B, ++B2 —4AC, @.15)
B_++B?—4AC_ 2A
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where A=W, +25) 5 :
(g, + 1) (g, +ng, =1

1 n;n [n +ng =2y, +y )]
B, =2W. d +- W _Zi Th' cn Lt Ch Th Ch ’
+ [ CMH ™ CMH 2} CMH ; (I’lTh + nCh )2 (nTh + nCh _ 1)

2
C. = {WCMH deyy l} - ZszCMH s Wemn = ZM , and
2 h (N, +Ny)

v _ znThnCh (Yrn +Yen) My + 0y =Y — Yen)
CMH = )
h (M, +n¢y)" (N +0¢, =1

B. Performance of Methods for the Stratified Risk Difference

Simulations were used to study the properties of the methods in various scenarios to
assess type I error and power. Scenarios for the stratified risk difference include varying the
following parameters:

1. H, the total number of strata: H=2

2. Tch, the population proportion of events in the control group: mc;=0.60 — 0.75,
1c2=0.70 — 0.95, where nc1<nc

3. Ap=mrh-Ttch, the population risk difference: Ay, Ao/2, 0, 0.025, 0.05

4. 7, the population proportion of events in the test group: mrp=mch+An

5. Ao, the null hypothesis risk difference: -0.10, -0.075, -0.05

6. a, the one-sided alpha level: 0.0005, 0.005, 0.025

7. Sample size allocation for test:control = npp:ncp = 1:2, 1:1, 2:1

8. Sample size allocation for strata 1:strata 2 = Nj:N, = 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1
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9. nc=nc;+ncy, the total sample size across strata for the control group is calculated to
have 85% power to contradict the null hypothesis A for equivalence of the weighted
average of the test and control groups across strata with sp=n1y/( npy+ncp),

Ty =y 7)) 2, wp = (o) +7w0y) 12 as

_ (z, + zﬂ)z([sh [A=s)]+D7z.(1-7.)
[s, /(1—s,)]AT

ne,

10. ncy, the sample size in the control group for the Ath stratum: ncj=tinc,, ncy=(1-t;)nc.
where t;=N1/(N;+N>)

11. ny,, the sample size in the test group for the Ath stratum: np;=t;nt, np=(1-t;)nr,

For each of the 10,000 replications performed, a sample from the specified binomial
distribution as yt, ~ bin(nty, T,) and ycn ~ bin(ney, men) for each of the h=1, 2 strata was
generated separately. The confidence limits and p-values for the methods were computed for
the same replication and a conclusion of non-inferiority or not was determined according to
whether the one-sided lower confidence limit exceeded the specified non-inferiority margin
or similarly if the p-value was below the alpha level. The average of the zero or one indicator
variables for demonstration of non-inferiority or not resulted in a probability. This
probability corresponds to the power of the methods when the population difference in
proportions is better than the non-inferiority margin. The probability results in a type I error
when the specified population difference in proportions is equal to or below the non-
inferiority margin. If the number of events in any of the groups was equal to zero or the
method failed to produce a logical result, then the Agresti method was implemented because

this method yields a result in all scenarios. The simulated type I error and power will be
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summarized, specifically to reflect the effect of varying parameters in the different scenarios
of the simulations.

The simulated type I error for an alpha level of 0.025 is summarized in Figures 4.30 —
4.35. Results are similar for other alpha levels, although these are not graphically displayed.
The performance of the methods for the stratified risk difference does vary according to the
treatment allocation as seen in Figure 4.30. The Gart & Nam, Gart & Nam-SC, YTH, and
Deviance methods perform at approximately the nominal type I error level for the 1:2
treatment allocation setting. These methods also perform fairly well in the 1:1 setting, but the
other methods also have closer to nominal simulated type I error rates. For the 2:1 treatment
allocation setting, the WLS, Deviance, and Wald methods have type I errors closer to the
nominal level.

The simulated type I error of the methods becomes less variable and closer to the nominal
level for smaller (more stringent) non-inferiority difference margins as seen in Figure 4.31.
This may be a consequence of the larger sample sizes required for testing smaller non-
inferiority differences. As seen in Figure 4.35, as the total sample size increases, the methods
are better at achieving the nominal type I error.

Although there do not appear to be differences in performance of the methods for the
control proportions in strata 1 (Figure 4.32), it appears that smaller control proportions in
strata 2 (Figure 4.33) have closer to nominal type I error rates. There do appear to be
performance discrepancies related to the difference in the control proportions in the strata
(mca-mer) seen in Figure 4.34. As the difference between control proportions in the two strata

decreases, the type I error of the methods is closer to the nominal level.
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Discussions of power will focus on situations where the type I error is controlled at the
nominal level. Overall, the Gart & Nam, Gart & Nam-SC, YTH, and Deviance methods tend
to control type I error fairly well across all scenarios. Comparison of the Gart & Nam method
to the Gart & Nam-SC method in Figure 4.36 shows very similar simulated power for the 1:1
treatment allocation setting. However, the Gart & Nam method has slightly higher power for
the 2:1 setting and the Gart & Nam-SC method has slightly higher power in the 1:2 setting.
The Gart & Nam method has consistently higher power than the YTH method (Figure 4.37),
especially as the control proportion in strata 2 (nc2) increases. The Gart & Nam method
compared to the Deviance method yields similar results (Figure 4.38) as with the Gart &
Nam-SC method, where the Deviance method has higher power in the 1:2 treatment
allocation setting. Figure 4.39 compares the Gart & Nam-SC method to the Deviance
method, and suggests that the Deviance method has slightly higher power in the 1:2
treatment allocation setting.

The CMH method tends to have appropriate type I error in the 1:1 and 2:1 treatment
allocation settings. This method is compared to the Gart & Nam method in this setting in
Figure 4.40. The CMH power is lower than the Gart & Nam power, especially as ¢
increases.

In the 2:1 treatment allocation setting, the Gart & Nam method yields higher power
compared to the WLS method (Figure 4.41) and the Wald method (Figure 4.42), but the Gart
& Nam method has type I errors that are slightly higher than nominal level in this situation.
The Wald method yields slightly higher power than the WLS method in this 2:1 setting

(Figure 4.43).
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As has just been shown, the methods have different performance depending on the
treatment allocation. In addition, the methods may be affected by the sample size allocation
to each of the strata. Figures 4.44 — 4.46 summarize the simulated type I error for the
methods which perform better for the treatment allocation scenarios, with the 1:2 allocation
in Figure 4.44 for the Gart & Nam, Gart & Nam-SC, and Deviance methods; the 1:1
allocation in Figure 4.45 for the Gart & Nam, Gart & Nam-SC, CMH, and Deviance
methods; and the 2:1 allocation in Figure 4.46 for the Gart & Nam, WLS, CMH, and Wald
methods. The type I error is fairly similar across strata allocation scenarios and is similar to
that already summarized for the 1:1 strata allocation scenario.

However, the power does depend on the allocation of sample size to the strata. The
simulation scenarios were chosen so that the control proportion in the first strata was always
equal to or smaller than the control proportion in the second strata (¢ <nc2). As more sample
size 1s placed in this second strata with the higher proportion, the power increases although
this increase is not as marked as in the stratified risk ratio setting, except for the CMH
method. Figures 4.47 — 4.49 summarize these scenarios as similar to that summarized for the
type I error rates across the strata allocation settings. Yet, the power does not seem to be as
dependent on the allocation to the strata as in the risk ratio setting. This difference in power
is more obvious between settings such as 1:2 versus 2:1 for the strata allocation, but is not
quite as distinct for small increases in sample size to the second strata as in going from 1:2 to
1:3 allocation settings. The power displayed in these figures has a fairly wide range and is
dependent on the proportion in the second strata. As this proportion increases, the power

increases.
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C. Sample Size Formulas for the Stratified Risk Difference

Nam'* developed a stratified sample size formula based on the risk difference from

the score test described by Gart and Nam® in (4.10). This sample size formula is seen in

H
(4.16) for N =" (ny, +ng,) where ny, =s,t,N and ng, =(1-s,)t,N .
h=1

1/2 17212
yon% +2Z, 5V
N:{”‘O R } (4.16)
r
where 7 = S {thsh(”m _ﬁTh)} v _i{ t,s,(1=s,) }
= . — L, Vy = _ - - - i
it o (L= 70,) it (S e (A =7 g ) + (A =5,)7, (1= 7p,)
ul t,s, (1- +
v, = Z _ _ I;Sh( S5) _ — N ,and t, = Ny, T Ny
h=1 Sh[”Ch(l_ﬂ'Ch)] +(1_sh)[”Th(1_”Th)] Ny, +Ng, N
o (1=7g,) T (1= 703,)

Nam compares this sample size formula to an analogous formula ignoring stratification. The
results suggest that ignoring strata in the design of a trial results in an overestimate of sample
size. The sample size formula in (4.16) can be solved for power as seen in (4.17) where

power = d)(zl_B) is the (1-B) quantile of the standard normal distribution.

NNr—z,v)?

s e (4.17)

A sample size formula can be obtained as an extension to the Wald sample size

formula (2.26) presented in chapter 2 on the risk difference. This sample size formula is seen

H
in (4.18) for n, =Y ny, .
h=1
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(Za T2 4 )z{zthﬂm (I=7p) +1,ls, [A=s )], (-7, )}
h=1

{ith (7T — 7, _Ao)}

(4.18)

np =

The sample size formula in (4.18) can be solved for power seen in (4.19) where power =

D(z l-B) is the (1-B) quantile of the standard normal distribution.

\/n_T.{ith (7T — 7 _Ao)}

Zp = =2, 4.19)
{zth”Th(l_”Th)"'th[sh /(l_sh)]ﬂch(l_ﬂ’-ch)}

h=1

These sample size formulas can only be useful in the design of a non-inferiority
stratified risk difference trial if the resulting sample size yields a power similar to that
specified in the calculations. The Nam formula and the Wald formula for sample size
calculations are compared to the simulated powers of select methods to assess their
appropriateness for use in the design of these trials.

The Gart & Nam method for assessing the stratified risk difference is compared to the
Nam calculated power obtained from (4.17) in Figure 4.50 by treatment allocation and in
Figure 4.51 by the control proportion in strata 2. The simulated and calculated power of these
methods agrees very closely, with slight variation but of small magnitude with increasing
power for increasing nco. The Deviance simulated power is also compared to the Nam
calculated power in Figure 4.52 by treatment allocation and in Figure 4.53 for values of nc».
These methods also agree very closely.

The Wald method controls the type I error slightly better in the 2:1 treatment
allocation setting than the Gart & Nam method. The Wald simulated power is compared to

the Nam calculated power in Figure 4.54, but in the 2:1 treatment allocation setting the Wald
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power is slightly lower than this Nam calculated power. This suggests that sample size may
need to be slightly increased in a 2:1 allocation scenario in order to yield the appropriate
power when using the Wald method for assessing the stratified risk difference.

The simpler Wald sample size calculation in (4.18) with the power calculation in
(4.19) is compared to the Gart & Nam method in Figure 4.55 and to the Wald method in
Figure 4.56 by the control proportion in strata 2. The Gart & Nam power is generally higher
than the Wald calculated power, especially as mc, decreases. This Wald formula can yield
large discrepancies when compared to the simulated power and my not be operating at the

desired power specified in the calculations.

IV. Implications for Overall Significance with Conditions on Individual Strata

The methods for the stratified risk ratio and stratified risk difference do not include
any verification of homogeneity of effects across the strata. This homogeneity is an important
consideration, especially if the strata have differing treatment proportions. Trial design may
include two strata for males and females or in an anti-infective setting the strata may be two
different strains of the bacteria, one which has developed resistance and the other which has
not. In these settings, it is important to show non-inferiority overall but also to show that each
strata is also trending in the correct direction. Additionally, regulatory agencies may require
these conditions on the strata to ensure the overall effect is appropriate. This issue is
addressed by requiring the test of non-inferiority in the individual strata to meet a larger, but
trending alpha level along with the stratified test of non-inferiority across strata meeting a

smaller alpha level. The effects of adding these additional criteria for each of the strata will
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be assessed related to the type I error and power overall including the individual and
stratified tests.

Simulations for the stratified risk ratio are similar to those already presented, but with
more limited scenarios using 10,000 replications. Specifically, strata allocations include only
the 1:3, 1:1, and 3:1 setting. Additionally, the population risk ratio is set at equality (6=1).
The stratified alpha level is set at 0.025 with the individual strata alpha levels at 0.05, 0.10,
and 0.15. Focus of this discussion will include assessment of the stratified risk ratio using the
Gart-SC method and the individual strata assessments made using the power divergence
method, A=0.5 as explained in chapter 1 (1.10).

Figures 4.57 — 4.59 summarize the type I error for these scenarios for each of the
treatment allocation settings. The figures display the type I error for the Gart-SC method
without requiring that each individual strata meet the specified additional alpha level. These
type I errors are similar to those already presented and are maintained at approximately the
nominal level (in this scenario 0=0.025). However, with the additional conditions placed on
the individual strata, the overall alpha level drastically decreases below the nominal 0=0.025.
As is expected, as the alpha level on the individual strata becomes more stringent, the type |
error is lower. This suggests that when these side conditions are required for the individual
strata, the alpha level for the stratified test could be increased over the nominal level to still
maintain control of the type I error. For example, the stratified test alpha level could be set
slightly greater than 0=0.025 with the individual strata side conditions, and the overall type I
error would still be maintained at a=0.025.

Placing these additional criteria on the individual strata also results in a reduction in

overall power, which is smaller as the alpha level for the individual strata decreases. The
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overall power with the additional criteria is compared to the power without these criteria for
the Gart-SC method in Figure 4.60 for a=0.05 for the individual strata, Figure 4.61 for
a=0.10 for the individual strata, and Figure 4.62 for 0=0.15 for the individual strata by the
strata allocation and differences between the control proportions in each of the strata. As the
difference in proportions between control groups for the strata increases, the power with the
side conditions is much smaller than the power without these conditions regardless of choice
of strata allocation. However, it is much worse for the strata allocation which places fewer
subjects in the strata with the larger proportion (and therefore the larger variance) as seen for
strata allocations of 3:1 (because in the simulations n¢;<mc;). The effect on power of
requiring these additional criteria can be somewhat mitigated by allocating more sample size
to the strata with the larger control proportion as seen for the strata allocation of 1:3. In this
setting, power for the setting which requires this additional criteria on the individual strata is
similar for even larger differences in the control groups to the power with the additional
criteria for a 1:1 strata allocation setting with small differences between the control groups.
As is expected, the power with the additional criteria becomes much smaller than the setting
without these criteria as the alpha level for the individual strata decreases.

The overall power with the side conditions on the individual strata may be increased
by allowing the test of the stratified risk ratio to be performed at a slightly higher alpha level
because the method is operating at a much lower overall type I error than the nominal
0=0.025, when the side conditions on the strata are added.

These additional criteria for the individual strata were also studied for the stratified
risk difference. Simulations used were similar to those previously described for the stratified

risk difference, but with fewer scenarios including only strata allocations of 1:3, 1:1, and 3:1,
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an overall alpha level of 0.025, and with the criteria for the individual strata of a=0.05, 0.10,
and 0.15 for the 10,000 replications. The Gart & Nam-SC method was used for the test of the
overall stratified risk difference. The Farrington-Manning 3 method (2.12) from chapter 3 on
the risk difference was used for the test of non-inferiority for the individual strata.

Results for the stratified risk difference with the additional criteria are summarized in
Figures 4.63 — 4.65 for the type I error for the Gart & Nam-SC method without these criteria
and with the criteria for the different alpha levels. Again, the overall type I error with these
criteria is much lower than the 0.025 level.

The simulated power is compared for the setting with and without the side conditions
on the individual strata in Figure 4.66 for a=0.05 for the individual strata, Figure 4.67 for
0=0.10 for the individual strata, and Figures 4.68 for 0=0.15 for the individual strata. These
figures are summarized by the strata allocation scenarios and the differences between control
proportions in each of the strata. Again, it is seen that with lower alpha levels required for the
individual strata the power decreases drastically. However, allocation of sample size to the
strata yields similar power for the 1:3 and 1:1 settings with lower power for the 3:1 setting.
The power with the additional criteria on the strata is not as affected (i.e., more closely
agrees with the stratified power without the conditions) when more sample size has
allocation to strata 1 but is much more affected when more sample size has allocation to

strata 2 as in the 1:3 allocation.

V. Discussion
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Methods for the analysis of the risk ratio and the risk difference in a stratified setting
including two strata have been reviewed. The performance of these methods is dependent on
the treatment allocation, the control proportion, and the overall sample size. Performance of
these methods can be improved if more sample size is allocated to the strata with the larger
influence on the applicable variance.

Sample size formulas for these stratified settings have also been identified and
assessed for similarities with the simulated power of the proposed methods Such evaluation
addresses the need for statisticians to be able to appropriately plan and power these stratified
non-inferiority trials.

The issue of confirming homogeneity across the strata is addressed by adding side
conditions that the test of non-inferiority in the individual strata also be significant at a
trending alpha level. Adding these additional criteria reduces the overall type I error below
the nominal level used to perform the stratified test. Increasing the alpha level for the
stratified test could be allowable while still maintaining an overall type I error at the nominal

level.
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Figure 4.5 Summary of Simulated Type | Error for Stratified Risk Ratio
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Figure 4.5 Summary of Simulated Type | Error for Stratified Risk Ratio
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Figure 4.6 Summary of Simulated Type | Error for Stratified Risk Ratio
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Figure 4.7 Compadrison of Simulated Fower for Stratified Risk Ratio
Gart—5C & Deviance Simulated Power
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Figure 4.8 Compadrison of Simulated Fower for Stratified Risk Ratio
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Figure 4.9 Compadrison of Simulated Fower for Stratified Risk Ratio
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Figure 4,10 Comparison of Simulated Power for Stratified Rigk Ratio
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Figure 4.11 Comparison of Simulated Power for Stratified Rigk Ratio
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Figure 4.12 Comparison of Simulated Power for Stratified Rigk Ratio
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Figure 4,13 Comparison of Simulated Power for Stratified Rigk Ratio

MH & 'Wald Simulated Power
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Figure 4.14 Comparison of Simulated Power for Stratified Rigk Ratio
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Figure 4.15 Summary of Simulated Type | Error for Stratified Risk Ratio
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Figure 4.16 Summary of Simulated Type | Error for Stratified Risk Ratio

By Strota Allocation
M pho=0.025, Treatrnent Allocation 1:1

[WAE=E

00,04 4

B E B = E =

0,02 4

Type | Error

.01

0,00

1: 3 1:2 23 1 :1 32 21 31
Strata Allocation {Strata 1:Strata 2}

e W ot &R Got-SC
e wTH & & & Devionce

168



Figure 4.17 Summary of Simulated Type | Error for Stratified Risk Ratio
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Figure 4.18 Summary of Simulated Power for Stratified Rigk Ratio
By Strota Allocation
Alpho=0.025, Treatrment Allocation=1:2
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Figure 4.19 Summary of Simulated Power for Stratified Rigk Ratio
By Strota Allocation
Alpho=0.025, Treatrment Allocation=1:1
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Figure 4.20 Summary of Simulated Power for Stratified Rigk Ratio
By Strota Allocation
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Figure 4.21 Compuarison of Simulated & Calculated Fower for Stratified Risk Raotio
Gort—5C Simulated & MNam Calculated Power
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Figure 4.22 Compuarison of Simulated & Calculated Fower for Stratified Risk Raotio
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Figure 4.23 Compuarison of Simulated & Calculated Fower for Stratified Risk Raotio
Gort—5C Simulated & MNam Calculated Power
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Figure 4.24 Compuarison of Simulated & Calculated Fower for Stratified Risk Raotic
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Figure 4.25 Compuarison of Simulated & Calculated Fower for Stratified Risk Raotio
Gart Sirulated & Mam Calculated Power
By Strota Allocation
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Figure 4.28 Compuarison of Simuloted & Calculated Fower for Stratified Risk Raotio
Gart Sirulated & Mam Calculated Power
By Strota Allocation
Alpha=0.025, Theta=1, Treatrment Allocation=2:1

Gart Power {Sirmulated)

os (W) o7 [0:) 09 1.0
Marn Power {Calculated)
Strata Allocation aaw 3 1:2 >0 8 3
a99 11 32 LR N BvR|
LB |

173



Figure 4.27 Compuarison of Simulated & Calculated Fower for Stratified Risk Raotio
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By {Pi C2 — Fi C1}
Alpha=0.025, Theta=1, Treatrent Allocation=1:2

Gart—SC Power {Sirmulated )

T T T I T T
0.5 0.8 o7 0.2 (W] 1.0

TS Power {Calculoted)

{Fi G2 — Fi C1)

Figure 4.28 Compuarison of Simulated & Calculated Fower for Stratified Risk Raotio
Gort—5C Simulated & TS Calculated Power
By {Pi C2 — Fi C1}
Alpha=0.025, Theta=1, Treatrment Allocation=1:1

Gart—SC Power {Sirmulated )

T T T I T T
0.5 0.8 o7 0.2 (W] 1.0

TS Power {Calculoted)

{PiC2 — FiC1) 88 00D A
88 00 @&8 5
"8 020 @88 0I5

174



Figure 4.29 Compuarison of Simulated & Calculated Fower for Stratified Risk Raotio
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Figure 4.30 Summary of Simulated Type | Errer for Stratified Risk Difference

By Treatrnent Allocation
Alpho=00025, Strota Allocation=1:1

0.5

0.04 e

[

N [BAVER e
E - |
LLI —ee]
o
E: —
" ooed

0.01

.00

1 2 1T 01 2 : 1

Treatrnent Allocation {Test:Control )

8 ® ot & Mam 08 ot & Nam—5S0C ® 8 e yTH
e w s "o e CyvH Sato
@ ® Ageesti & Coffo & & ® [Devionce Wald

175



Figure 4.31 Summary of Simulated Type | Errer for Stratified Risk Difference

By Mull Hypothesis Risk Difference
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Figure 4.32 Summary of Simulated Type | Error for Stratified Risk Difference
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Figure 4.33 Summary of Simulated Type | Errer for Stratified Risk Difference
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Figure 4.34 Summary of Simulated Type | Errer for Stratified Risk Difference
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Figure 4.35 Summary of Simulated Type | Errer for Stratified Risk Difference
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Figure 4.36 Comparison of Simulated Power for Stratified Risk Difference
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Figure 4.37 Comparison of Simulated Power for Stratified Risk Difference
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By Fi 02
Alpho=0.0235, Strata Allocotion=1:1, Delto=0

GM Power {Sirmulated)

¥TH Power {Sirmulated)

Ficz @®&8 070 @88 075
4% ® QO30 @88 O3S
ase 0O0 0.5

Figure 4.38 Comparison of Simulated Power for Stratified Risk Difference
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Figure 4.39 Comparison of Simulated Power for Stratified Risk Difference
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Figure 4.40 Comparison of Simulated Power for Stratified Risk Difference
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Figure 4.41 Comparison of Simulated Power for Stratified Risk Difference
Gart & Marn and WLE Simulated Power
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Figure 4.42 Comparison of Simulated Power for Stratified Risk Difference
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Figure 4.43 Comparison of Simulated Power for Stratified Risk Difference
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Figure 4.44 Summary of Simulated Type | Errer for Stratified Risk Difference
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Figure 4.45 Summary of Simulated Type | Errer for Stratified Risk Difference

Type | Error

By Strota Allocotion
Apha=0.025, Treatrment Allocation 1:1

[WAE=E
004+
[BR L]

LSS IEIEIRIBIE

.01

0,00

1:3 1:2 2:3 1:1 3:2 2:1 31
Strata Allocation {Strata 1:Strata 2}

®®® Got & Mam * 8 R Gort & Mom—50C
®®®ChvH ® ® ® Devianes

Figure 4.46 Summary of Simulated Type | Errer for Stratified Risk Difference
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Figure 4.47 Summary of Simulated Power for Stratified Risk Difference

By Strota Allocation
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Figure 4.48 Summary of Simulated Power for Stratified Risk Difference
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Figure 4.49 Summary of Simulated Power for Stratified Risk Difference

By Strota Allocation
Alpha=0.025, Treatrent Allocation 2:1, Delta=0
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Figure 4.50 Comparison of Simulated & Calculated Power for Stratified Risk Difference
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Figure 4.51 Comparison of Simulated & Calculated Power for Stratified Risk Difference
Gart & MNam Simulated ond Mom Colouloted Power
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Figure 4.52 Comparison of Simulated & Calculated Power for Stratified Risk Difference
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Figure 4.53 Comparison of Simulated & Calculated Power for Stratified Risk Difference
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Figure 4.55 Comparison of Simulated & Calculated Power for Stratified Risk Difference
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Figure 4.57 Summary of Simulated Type | Error for Stratified Risk Ratio

with Side Conditions on Individual Strata
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Figure 4.58 Summary of Simulated Type | Error for Stratified Risk Ratio

with Side Conditions on Individual Strata
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Figure 4.59 Summary of Simulated Type | Error for Stratified Risk Ratio

with Side Conditions on Individual Strata
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Figure 4.60 Comparison of Simulated Fower for Stratified Risk Ratie
with Side Conditions on Individual Strata
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Figure 4.61 Comparison of Simulated Fower for Stratified Risk Ratie
with Side Conditions on Individual Strata
Gart—5C Method
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Figure 4.63 Summary of Simulated Type | Errer for Stratified Risk Difference

with Side Conditions on Individual Strata
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Figure 4.64 Summary of Simulated Type | Errer for Stratified Risk Difference

with Side Conditions on Individual Strata
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Figure 4.82 Summary of Simulated Type | Error for Stratified Risk Difference
with Side Conditions on Individual Strata
Gart & Marn—5C Method
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Figure 4.66 Comparison of Simulated Power for Stratified Risk Difference
with Side Conditions on Individual Strata
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Figure 4.67 Comparison of Simulated Power for Stratified Risk Difference
with Side Conditions on Individual Strata
Gart & Marm—SC Method
By Strato Allocation & {Pi &2 — Fi C1}
Delto=0, Overall Strata Alpha=0.028, Individual Strota Alpho=0.10
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Figure 4.68 Comparison of Simulated Power for Stratified Risk Difference
with Side Conditions on Individual Strata
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DISCUSSION AND FUTURE RESEARCH

This body of work is meant to provide practicing statisticians with clarity around the
design and implementation of non-inferiority clinical trials with dichotomous endpoints.
Methodology for the risk ratio has been assessed and new methods have been developed
including the Adapted Agresti method to address the non-inferiority hypothesis. Existing
methods for the risk difference as well as the Deviance and Weighted Least Squares methods
have been developed to address the non-inferiority hypothesis. Performance of these methods
for type I error and power were considered as related to changing various population
parameters of interest. Specifically, the sample size allocation to the treatment groups is
influential in the performance of these methods. The treatment allocation and the other
parameters specified in the simulations were sparsely addressed in the existing literature
through more limited simulations, but these parameters were directly addressed within this
research.

The methods for both the risk ratio and the risk difference were assessed in all
situations specified, even if the counts were small or if the methods failed to produce an
appropriate solution. In these cases substitutions were made to these methods with the exact
odds ratio used for the risk ratio and the Agresti & Caffo method used for the risk difference

because these replacements yield solutions in all scenarios. These modifications have not



been previously considered in the literature, but this pattern of substituting with use of an
alternate method would be used in practice if assumptions for the standard methodology were
not met. Therefore, these simulations are more similar to performance of the methods in
practical situations.

The need for cohesive methods to calculate sample size for the design of the trial and
also analyze the resulting data has been addressed for the risk ratio and the risk difference.
Existing calculations were assessed and new formulas for sample size were developed,
including the Taylor Series method for the risk ratio. Discussion included comparison of the
planned power versus the simulated power.

Additionally, the non-inferiority trial which has a placebo arm as well as an active-
control arm has been discussed as related to methodology for analyzing the percentage of
effect maintained by the test group over the control group, relative to the placebo group.
Performance of these methods has been extensively assessed and corresponding sample size
calculations related back to these methods for appropriateness of use. The effect of sample
size allocation to the treatment groups and additionally the other parameters varied in the
simulations were assessed as to the effect on type I error and power of the methods. This
setting also presents an opportunity to understand the implications of requiring proof of non-
inferiority using two separate but similar trials compared to using one larger trial. This one
larger trial setting may require fewer subjects for the same power. Proof may also be required
that the test treatment is superior to the placebo treatment group in addition to the non-
inferiority of test to active-control. This also presents scenarios where the type I error and

power for overall testing are maintained at appropriate levels.
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Extensions of the methodology for the risk ratio and risk difference were developed
and reviewed to address analysis using strata. Focus included two strata which may represent
relevant sub-populations within the larger trial such as gender or disease severity. Sample
size formulas were also included within this discussion to understand how the planned power
relates to the resulting power at the end of the trial. Homogeneity of effects across strata is
addressed by requiring the strata to reject the null inferiority hypothesis in addition to the
overall stratified test having to reject the null hypothesis. This may be a regulatory
requirement to ensure consistency of effect across the entire population of subjects and
within the relevant subgroups in the trial. Additional research may include defining the
necessary individual strata alpha levels and the stratified alpha level necessary to achieve a
specified overall alpha level for the tests.

This assessment of the null hypothesis using stratified methods only included cases
where the treatment effect was consistent across the strata and the null hypothesis of interest
was also the same for each of the strata. The methodology presented should be able to
address scenarios where the treatment effect and the null hypothesis of interest is not the
same for the strata. Additional research would be needed to ensure appropriate performance
of the methods in these scenarios. Also, sample size formulas should be assessed for

appropriateness of use in these situations.
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