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ABSTRACT

Rebekkah S. Dann: Methods for Stregthening the Design and Analysis of Clinical Trials to
Show Non-inferiority of a New Treatment to a Reference Treatment for a Binary Response

Variable
(Under the direction of Gary G. Koch)

Non-inferiority clinical trials are increasingly becoming more prominent in research

and development of new pharamaceuticals. The objective of such trials is to show that the

amount by which a new treatment is worse than an active control is below a specified

amount. Methodology specifically for the design and analysis of these trials is essential for

the assurance of quality trials that are statistically defensible in the scientific community as

well as in a regulatory setting, where traditionally focus has been on superiority.

Standard methodology must be reviewed and assessed as to its appropriateness for

addressing the non-inferiority hypothesis. Categorical data analysis for a dichotomous

primary endpoint may include analysis of a risk ratio or a risk difference which compares the

test and active control treatments. The effect of sample size allocation and other parameters

of interest on the performance of these methods will be assessed. In addition, appropriate

sample size formulas will be developed and evaluated to aid in trial planning.

In some non-inferiority trials, it is possible to include a placebo arm as well as an

active control arm which allows non-inferiority to be assessed relative to the percentage of

the difference between the control and placebo arms that the test treatment preserves over

placebo. Methodology for this assessment is also of interest along with appropriate sample
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size calculations. This setting also presents an area of research for discussion of the one

versus two trials paradigm.

Extensions to the methodology for the risk ratio and risk difference are assessed when

stratification is necessary, specifically for large subgroups such as gender. Methods for

stratification are an important component, and additionally the effects of stratification in a

non-inferiority setting need evaluation.

Review, development, and assessment of this methodology for categorical

data as specifically focused on the non-inferiority setting is an important addition to the

current statistical practice. This research is a cohesive presentation for each of the measures

of interest through assessment of methodology and its relation to appropriate design

components such as sample size calculation. The importance of helping statisticians

understand and implement methods in these areas is of most concern.
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INTRODUCTION

Non-inferiority clinical trials are increasingly becoming more prominent in the

research and development of new pharamaceuticals. Methodology specifically for the

design and analysis of these trials is an essential component for the assurance of quality

trials that are statistically defensible in the scientific community as well as in a regulatory

setting, where traditionally the focus has been on superiority.

The main goal of non-inferiority trials is to show that the new experimental

medication (test treatment) is not unacceptably worse than the current standard of care

(active control treatment) by a specified amount, but the test treatment may have other

desirable aspects such as a better safety profile or properties which make patient

compliance better. This is a reversal from the goals of a superiority trial which generally

includes the test treatment in comparison to a placebo where the goal is to show that this

new treatment is more effective than placebo. In certain disease areas such as infections,

the use of a placebo control arm is unethical due to widespread use of the active control

for treatment of the disease.

There are specific guidance documents which discuss the issues surrounding the

design and implementation of non-inferiority trials. The ICH-E10 guidance1 on the

“Choice of Control Group and Related Issues in Clinical Trials” provides the rationale for

use of an active-control treatment in a non-inferiority setting. In addition, the trial must

address assay sensitivity through historical evidence of efficacy, and the conduct of the
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trial must make efforts to increase compliance and minimize dropouts, since poor trial

conduct can bias these trials toward non-inferiority. Additionally, the choice of a margin for

testing the inferiority hypothesis must be established by clinical and statistical

judgment2.These issues are all very important aspects in the design of a non-inferiority trial.

However, the current discussion will assume that these issues are appropriately addressed

and the focus will include statistical issues related to sample size calculation, sample size

allocation, and analysis in non-inferiority trials. These issues are essential for statisticians

who need to know how to better design and analyze these trials, with specific emphasis on

methods related to dichotomous categorical data.

Standard methodology must be reviewed and assessed as to its appropriateness for

addressing the non-inferiority hypothesis. Categorical data analysis for a dichotomous

primary endpoint may include analysis of a risk ratio or a risk difference which compares the

test and active control treatments. This assessment of non-inferiority is performed by

computing a confidence interval and determining if the applicable limit is below (or similarly

above) the pre-specified non-inferiority margin. A test statistic can also be used for this

assessment where rejection of the null hypothesis of inferiority would require a p-value less

than the pre-specified alpha level. Methods for computing either the confidence interval or

the corresponding test statistic will be assessed according to their performance with respect

to type I error and power through simulations for relevant scenarios. The effect of sample

size allocation on the performance of these methods will also be assessed. In addition,

appropriate sample size formulas will be developed to aid in trial planning.

In some non-inferiority trials it is possible to include a placebo arm as well as an

active control arm. This placebo arm can address issues related to assay sensitivity and
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appropriate trial conduct. This also allows non-inferiority to be assessed relative to the

placebo arm, using the percentage of effect that the test treatment has over placebo compared

to the effect that the control treatment preserves over placebo. Methodology for this

assessment is also of interest along with appropriate sample size calculations. This setting

also presents an area of research for discussion of the one versus two trials paradigm.

Frequently, regulatory agencies require two confirmatory trials. However, if these trials are

run in an identical manner with similar protocols, it may be beneficial to run one large trial.

The implications of these scenarios are assessed related to type I error control and the

resulting power for rejecting the null hypothesis of inferiority.

Extensions to the methodology for the risk ratio and risk difference are assessed when

stratification is necessary, specifically for large subgroups such as gender. Methods for

stratification are an important component, and additionally the effects of stratification in a

non-inferiority setting.

Review, development, and assessment of this methodology for dichotomous data

specifically focused on the non-inferiority setting is an important addition to the current

statistical practice. This research is a cohesive presentation for each of the measures of

interest through assessment of methodology and its relation to appropriate design

components such as sample size calculation. The importance of helping statisticians

understand and implement methods in these areas is of most concern.
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Chapter 1

Review and Evaluation of Methods for Computing Confidence Intervals for the Ratio of Two

Proportions and Considerations for Non-inferiority Clinical Trials

I. Introduction

Ratios of proportions are often called risk ratios in a clinical trials setting. These

ratios are used to compare two independent groups, usually on two different treatments. A

non-inferiority clinical trial can compare an active control group to a group taking a new

treatment for an efficacy outcome (or a placebo group to a group taking a new treatment for a

safety outcome). The goal is to show that the new treatment is not unacceptably worse than

the active control (or placebo) treatment1. The new treatment may have other beneficial

aspects such as a reduction in severity of side effects, easier use, or lower cost.

Assessing non-inferiority is often done through a confidence interval for the risk ratio

of the two groups1, particularly if control failure rates are small (e.g., ≤ 0.20) or control

success rates are large (e.g., ≥ 0.80). If failure rates are very small (e.g., < 0.05) then the odds

ratio can be conservatively used to approximate the risk ratio (when defined so as to have the

larger expected rate in the numerator and the smaller expected rate in the denominator). For

situations where failure rates are larger (e.g., > 0.20), then the difference in rates is typically
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emphasized2,3,4. In some cases, if the new treatment group has a risk that is not more than

twice that of the control group for a failure outcome through an upper confidence limit of 2

or less, then the new treatment will be judged non-inferior. This non-inferiority limit can be

set at a variety of pre-determined levels1 denoted θ0. Accordingly, a corresponding test of

non-inferiority has the null hypothesis as Ho: θ = πT / πC ≥ θ0 and the alternative hypothesis

as HA: θ = πT / πC < θ0 where θ = πT / πC is the population risk ratio for the test group versus

the control group with πT as the population proportion of events in the test group and πC as

the population proportion of events in the control group, and θ0=2 was the previously

mentioned example.

There are many methods in existence for computing a confidence interval for a risk

ratio. Several of the methods for forming confidence intervals for ratios of two independent

binomial proportions will be reviewed and evaluated for their statistical performance. These

methods include use of a Taylor Series expansion to estimate variance, solutions to a

quadratic equation, and maximum likelihood methods. Simulations were used to identify the

better methods for controlling the type I error rate while maintaining power. Applications of

these findings include sample size calculations which arise in randomized clinical trials

conducted to show non-inferiority.

II. Methods

A. Taylor Series Expansion Methods



8

The literature contains many methods for forming confidence intervals for risk ratios.

The first group of these uses a variance formed through a Taylor Series expansion. The

following method seen in (1.1), hereafter called the Taylor Series method, is the simplest in

this group discussed by Katz, Baptista, Azen and Pike5 and used by SAS in the FREQ

procedure6 and by EquivTest7 to form a 100(1-2α)% confidence interval for a risk ratio:
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where yT is the number of events and nT is the total sample size in the treatment group, yC is

the number of events and nC is the total sample size in the control group, and zα is the 100(1-

α) percentile from a standard normal distribution.

In 1988, Gart and Nam8 revised this original method so that the confidence interval

would be defined if yT or yC were equal to zero. The formula seen in (1.2) is this modified

confidence interval used by StatXact9 for risk ratios.
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This Modified Taylor Series method adds a half to the event count for each group as well as

the total sample size for each group.

The last method in this group of Taylor Series expansion methods is adapted from a

confidence interval for a single binomial proportion proposed by Agresti and Coull10. For a

confidence interval for a single binomial proportion, Agresti and Coull suggested adding half

the squared z-value (at the corresponding alpha level) to each outcome for each group to

produce a more conservative interval. This strategy was adapted for a test of non-inferiority

where the null hypothesis is not one of equality. The additional 2zα
2 counts must be
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distributed to each group according to the null hypothesis (θ0) and the allocation of sample

size to each group (R=nT/nC) as seen in (1.3)
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For example, at an α=0.025 level an additional 2z2 α = 2(1.96)2 ≈ 8 counts must be added. For

a setting with twice as many patients allocated to the test group than the control group, R=2,

and a null hypothesis of θ0=2, there are a total of γT=3.56 events added to the test group,

γC=0.89 events added to the control group with a total of γTot,T=5.33 added to the overall

number of patients in the test group and γTot,C=2.67 patients added to the control group.

The Taylor Series Adjusted Alpha method was added so as to correct inflation of type

I error by the Taylor Series method seen in initial simulations. This method is the Taylor

Series method with an alpha level that is 0.0025 less than the alpha level for the α=0.025

scenario. For example, this method would use an alpha level of 0.025 – 0.0025 = 0.0225

when α=0.025 was specified. The choice of 0.0025 was motivated by findings from the

simulations for the specific scenarios presented where this modification was needed to offset

the small inflation in type I error of the Taylor Series method. This 0.0025 adjustment of the

alpha level is dependent on the application at hand and simulations can be used to determine

the appropriate adjustment for any scenario. This adjustment to the alpha level is a way to
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address studies with finite samples rather than infinite (or very large) samples by increasing

the z-criterion for significance slightly (i.e., for alpha=0.025 the z-criterion would increase

from 1.96 to 2.00).

B. Solution to Quadratic Equation Methods

The next group of methods is slightly more complicated because the confidence limits

are the solutions to a quadratic equation. After algebraic manipulations, a quadratic form of

the equations provided below are then solved for θ. The upper and lower confidence limits

are the smaller and larger of the two solutions, respectively. However, these methods may

produce complex-valued results (when square roots of negative numbers are involved).

Fieller11 first presented the most basic of these methods in 1944 as seen in (1.4),

hereafter called the Quadratic method where TTT n/yp̂ = and CCC n/yp̂ = .
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The second of this group of methods in (1.5) was proposed by Bailey in 198712 which

is a modification of the Quadratic method to produce limits with more desirable properties as

will be discussed in more detail in the literature review section.
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The last of this group of methods was proposed by Farrington and Manning in 19904

with three possible variations on the equation in (1.6).
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The third variation, F-M 3, uses maximum likelihood estimation under the null hypothesis to

obtain C
~π and T

~π with details found in Farrington and Manning’s paper4 and solutions for
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~π below:
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In addition, Gart and Nam8 summarize an interval attributed to Noether where the

equation in (1.7) is solved for θ to yield upper and lower confidence limits, θL and θU.
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C. Maximum Likelihood Methods
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The third group of confidence interval methods includes those that use maximum

likelihood estimators for the proportion of events in the treatment and control groups based

on the joint distribution of the events as the product of two independent binomial

distributions for the treatment and control groups. The first of these methods calculates a

deviance statistic as seen in (1.8)

)]ˆ,ˆ(Llog)ˆ,ˆ(L[log*2Deviance **
0CT ππθ−ππ= (1.8)

where Tπ̂ and Cπ̂ are the maximum likelihood estimators of πT and πC under the alternative

hypothesis and )ˆ( *
0πθ and *π̂ are the corresponding maximum likelihood estimators under

the null hypothesis θ = θ0.

The second of these maximum likelihood methods is based on a Pearson statistic in

the form of [(observed – expected)2 / expected] in (1.9).
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using *
0π̂θ and *π̂ , the maximum likelihood estimators of πT and πC under the null

hypothesis θ = θ0. Koopman13 proposed this method in 1984, and StatXact9 is a software

package that provides these confidence intervals.

In addition, Bedrick14 discusses a set of methods termed the power divergence

methods seen in (1.10) where various values of λ can be used, with this discussion focusing

on λ=-0.5, 0.5, 0.67, 1.0, and 1.25.
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The Deviance, Pearson, and Power Divergence methods produce test statistics for

which p-values can be obtained using the chi-square distribution under one degree of

freedom. The appropriate confidence limits can be found through an iterative process. The

hypothesized ratio θ of πT to πC is modified until the desired p-value (e.g., 0.05 or 0.025) is

obtained. This process identifies the largest θ0 that would not be rejected as H0: θ ≥ θ0. The

ratio that produces the desired p-value is then the upper confidence limit. This iterative

process requires changing the maximum likelihood estimator pertaining to the null

hypothesis as θ0 changes. This group of methods is more complicated than the others due to

the iterative nature of finding the confidence intervals as all hypotheses not rejected, thus

requiring intensive computer resources.

A summary of available software resources for the computation of the methods

described can be found in Table 1.1.

III. Review of Literature

Different combinations of the methods described above have been compared in the

literature. In 1978, Katz et al.5 compared the Taylor Series method and the Quadratic method

using simulations and calculating coverage probabilities. Katz et al. suggested that the

Quadratic method could be erratic and may not produce confidence limits at all; the Taylor

Series method was recommended for use instead of the Quadratic method.
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Again in 1984, Koopman13 used simulations and coverage probabilities to compare

the Taylor Series method and the Pearson maximum likelihood method. Findings suggested

that the Pearson method maintains a coverage probability closer to the (1 - 2α) level, and in

addition, the one-sided probabilities of exceeding the upper limit or being lower than the

lower limit are much closer to α. Therefore, Koopman recommended use of the Pearson

method.

In 1987, Bailey12 extended the Quadratic method to produce Bailey’s method, which

should reduce the skewness of the confidence interval as well as maintain the nominal

coverage probability better than the Quadratic method. This new method is also compared to

the Taylor series method and the Pearson method. Bailey concluded that his method results

in confidence limits that are closer to the nominal level than the Taylor Series method. In

addition, Bailey’s method more often maintains the nominal coverage probability better than

the Pearson method.

Gart and Nam8 produced a comprehensive comparison of the methods presented

previous to 1988. They indicated that the Quadratic method and Bailey’s method tend to

produce confidence limits that are either above or below the nominal coverage probability,

whereas the Modified Taylor Series method and the Pearson method achieve coverage

probabilities close to the nominal level, with the Pearson method slightly better. They also

discuss a skewness-corrected score method, which is iterative in nature, that is slightly better

than the Power Divergence method (λ=0.5) of Bedrick14.

In 1990, Farrington and Manning4 presented results on the three variations of

quadratic methods for producing confidence limits for risk ratios. Their recommendation was
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the third of these methods, F-M 3, based on maximum likelihood estimation for the

proportions.

IV. Confidence Limit Comparisons

An initial comparison of the methods includes computing the upper confidence limits

for selected cases. At a one-sided alpha level of 0.025, the upper confidence limits are

presented for each of the methods producing confidence limits and p-values for the methods

producing a test statistic (with confidence limits computed through an iterative process). The

methods are grouped by the three method types: the Taylor Series variance expansion

methods (Table 1.2), the quadratic methods (Table 1.3), and the maximum likelihood

methods (Table 1.4).

Within the Taylor Series variance expansion methods, the Taylor Series method and

the Taylor Series Adjusted Alpha method produce higher confidence limits for the 1:2

allocation whereas the Adapted Agresti method has higher confidence limits for the

allocations that place more sample size in the test treatment for the 3:2, 2:1, and 3:1

allocations. The Quadratic method and Farrington-Manning method 1 produce very similar

upper confidence limits due to their similarity in computation. Noether’s method produces

higher confidence limits for all sample size allocations. Farrington-Manning methods 2 and 3

also produce similar upper confidence limits for the selected cases presented. The Deviance

and Pearson methods produce similar p-values. The group of Power Divergence methods

yields decreasing p-values for increasing choices of λ.
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V. Simulations

Data were generated from known distributions to compare the behavior of the

methods with respect to power and type I error. Scenarios included varying the following

parameters:

1. πC, the population proportion of events in the control group: 0.10, 0.15, 0.20, 0.25

2. θ= πT/πC, the population risk ratio: 0.667, 0.800, 1.000, 1.250, 1.500, 2.000, 2.500

3. πT, the population proportion of events in the test group: πT= θπC

4. θ0, the null hypothesis risk ratio: 1.5, 2.0, 2.5

5. α, the one-sided alpha level: 0.005, 0.025, 0.050

6. nC, the sample size in the test group is calculated to have 85% power to contradict

the null hypothesis θ0, given a risk ratio of 1 for test versus control with nT=RnC:
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7. Sample size allocation for test:control as 1:2, 1:1, 3:2, 2:1, 3:1

For each combination of the parameters, 100,000 simulations were generated using a

random sample from the two binomial distributions of yT ~ bin(nT, πT) and yC ~ bin(nC, πC).

For each combination of yT and yC, upper confidence limits or test statistics with

corresponding p-values for all methods were calculated. If yT or yC were equal to zero or the

method failed to produce a valid result, then the exact confidence limit for the odds ratio was

the default. This modification using the odds ratio is conservative because it employs exact

methodology and because the odds ratio exceeds the risk ratio when both exceed one. As a
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note, if yC=0 then the upper confidence limit for the odds ratio is essentially infinite, and so it

was set to 100 and the null hypothesis of inferiority was not rejected. This modification,

where the upper confidence limit was set to 100, is also necessary in cases where the group

of quadratic methods lead to square roots of negative numbers (i.e., complex solutions) or

where the Deviance or Pearson methods fail to produce interpretable results because of

computational singularities. No modifications were necessary for the Modified Taylor Series

or the Adapted Agresti methods.

For each method, an indicator variable was created for each simulation that takes the

value of 1 if the upper confidence limit produced was less than θ0 and 0 otherwise or

similarly if the p-value was less than alpha the indicator takes the value 1 and 0 otherwise.

This indicator was then averaged across all 100,000 simulations to produce a probability. For

θ < θ0, this probability is the power for the test of non-inferiority and can be written in the

following manner: power = pr(reject HO: θ=πT/πC ≥ θ0 | HA: θ < θ0 true). For θ = θ0, this

probability is the type I error rate for the test of non-inferiority, and can be written in the

following manner: α = type I error = pr(reject HO: θ=πT/πC ≥ θ0 | HO: θ ≥ θ0 true).

A summary of the type I error of the methods generated from the 100,000 simulations

is displayed in Figure 1.1 for the Taylor Series methods, Figure 1.12 for the quadratic

methods, and Figure 1.3 for the maximum likelihood methods. Farrington-Manning method 1

is dropped from summaries due to its similarities to the Quadratic method. Displays include

only the α=0.025 level with similar patterns seen for the other alpha levels.

The performance of the methods with respect to the type I error varies in relation to

the sample size allocation of treatment to control. All of the Taylor series expansion methods

have approximately nominal type I error rates for the 1:2 allocation. However, as more
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sample size is placed in the test group, the type I error rates become inflated higher than the

nominal level. The Adapted Agresti method yields type I error rates closest to the nominal

level, but this method still shows inflation for the 3:2, 2:1, and 3:1 allocations.

Out of the group of quadratic methods, the Quadratic method and Noether’s method

have type I error rates that are consistently below the nominal level for all allocations.

However, Bailey’s, F-M 2, and F-M 3 have appropriate type I error rates for the 1:2 and 1:1

allocations with higher than nominal type I error rates for the 3:2, 2:1, and 3:1 scenarios.

The group of maximum likelihood methods perform similarly for the 1:2 allocation,

with type I errors approximately nominal or just slightly higher than nominal. The Deviance

method performs adequately for all sample size allocation scenarios with type I errors close

to the nominal level. The Pearson method has slightly inflated type I errors for all other

scenarios. The group of power divergence methods yields higher type I errors as λ increases

with λ=-0.5 yielding lower than nominal type I errors and λ=1.25 yielding higher than

nominal type I errors.

Figure 1.4 provides a graphical summary of the methods with better type I error

performance including the Taylor series method, Adapted Agresti method, Bailey’s method,

and Deviance method. Discussions of power will be limited to these methods for scenarios

where the simulated type I error is appropriately controlled.

The Deviance method seems to perform appropriately for all sample size allocation

scenarios, with slightly higher type I errors for the 1:2 allocation. Figure 1.5 compares the

Taylor Series power to the Deviance power for the 1:2 allocation, for the null hypothesis

θ0=2. These methods tend to perform similarly in this setting. Figure 1.6 is a comparison of

the Adapted Agresti and Deviance simulated powers for the allocations including 1:2 and
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1:1. The Deviance method produces similar or slightly higher simulated powers in these

scenarios. Figure 1.7 displays Bailey’s method compared to the Deviance method for the 1:1

allocation setting, also showing similar simulated powers between the two methods.

These findings suggest that in the 1:2 or 1:1 allocation settings, the simpler Taylor

Series or Adapted Agresti methods perform similarly to the computer intensive Deviance

method with respect to power. However, the Deviance method may be the preferred method

for allocations with more sample size in the test group in order to maintain the nominal type I

error level.

VI. Sample Size Calculations

An immediate application of these results arises in the design of non-inferiority

clinical trials. The Taylor Series method provides a fairly straightforward form from which to

obtain sample size calculations. A conservative form of the variance is seen in (1.11).
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Motivation for obtaining a sample size formula begins with formulation of a z-statistic in

(1.12) where θ0 is the value of θ under the null hypothesis.

*v

loglog
z 0ee θ−θ
= (1.12)
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The equation in (1.13) results from squaring equation (1.12) and writing z in terms of the

type I and type II errors which produces equation (1.14) after algebraic manipulations.
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This form is then solved for the sample size, nC, and can be written as in (1.15)
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which depends only on a pre-specified one-sided type I error (α), power (1-β), event rate in

the control group (πC), the sample size allocation (R=nT/nC), and a hypothesized ratio of

events in the treatment versus the control group (θ) with θ0, the null hypothesis, specified.

This formula is useful in practice due to ease of computation.

To evaluate whether formula (1.15) produces sample sizes that maintain the pre-

specified power, results were compared to those obtained from simulations. These results

were based on 100,000 simulations. The sample size formula (1.15) was written in terms of

power as seen in equation (1.16)
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where power = Φ(zβ) and Φ(.) is the standard normal probability. In addition, this sample

size formula and power calculation in (1.15) and (1.16) can be modified for the Taylor Series

Adjusted Alpha method which controls type I error better than the Taylor Series method

(although in allocations with more subjects in the test group, the type I error is still above the

nominal level). This adjustment uses an alpha level of 0.0025 lower than that specified. For

example, at a specified α=0.025 the critical value would be calculated at 0.025-

0.0025=0.0225.

In addition Farrington and Manning4 present sample size formula (1.17) and power

formula (1.18) based on their methods.
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where T
~π and C

~π are specified differently for each of the three methods. The first method

presented by Farrington and Manning use TT
~ π=π and CC
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For combinations of α, πC, θ, R, and nC generated in the 100,000 simulations, a

power based on the sample size formula was calculated using formula (1.16) and the Taylor

Series Adjusted Alpha formula. Power was also calculated using the sample size formulas

presented by Farrington and Manning for F-M method 1, F-M method 2, and F-M method 3.

This calculated power was then compared to the power obtained from the simulations for

each method.

Figures 1.8 – 1.14 graphically display the comparison between the calculated and

simulated power for the Taylor Series, Taylor Series Adjusted Alpha, F-M 1, F-M 2, and F-

M 3 methods, at an alpha level of 0.025 for a null hypothesis θ0=2. For most cases, the

simulated power is similar to or larger than the calculated power; therefore the sample size

formulas are somewhat conservative which is beneficial when determining sample size for

clinical trials.

The Deviance method does not have a corresponding sample size formula, therefore

the simulated power from this method is compared to the calculated Taylor series power in

Figure 1.3f and the calculated F-M 3 power in Figure 1.3g. The simulated Deviance power is

both larger and smaller than the Taylor Series calculated power for specific scenarios.

However, the calculated F-M 3 power seems to agree consistently with the Deviance power

for scenarios with power higher than 0.80. For power values lower than 0.80, the F-M 3

calculated power yields slightly higher values. However, when planning a trial it is usually

necessary to have at least 0.80 power and in these cases the F-M 3 calculations would be

appropriate.
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VII. Conclusions

The properties and behavior of many different methods for computing confidence

intervals for risk ratios have been reviewed. The performance of the methods tends to vary

according to the sample size allocation. The Deviance method seems to consistently perform

at the nominal type I error level for most settings, and specifically for allocations with equal

sample sizes or more sample size in the test group compared to the control group. The Taylor

series method and the Adapted Agresti method tend to perform fairly well for the 1:2 and 1:1

sample size allocation settings while being easier to implement.

Problems due to small event rates were avoided due to use of methods for exact odds

ratios. Due to this modification, the performance of the methods may be slightly different

than that presented previously in the literature.

The straightforward sample size formula for the Taylor Series method makes it

attractive for use in designing non-inferiority clinical trials, but may be appropriate for

scenarios with allocations of 1:2 or 1:1. The sample size formula presented by Farrington and

Manning based on method 3 is useful in trial design for the other allocation settings and

agrees with the Deviance method for trials designed with fairly high power.
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Table 1.1 Software Resources for Methods

Method Software Resources

Taylor Series
SAS using PROC FREQ6

EquivTest7

Taylor Series Adjusted Alpha SAS using PROC FREQ6 †

Modified Taylor Series
SAS using PROC FREQ6 ‡

StatXact9

Adapted Agresti SAS using PROC FREQ6 ‡

Quadratic No resources available

Farrington-Manning 1 No resources available

Farrington-Manning 2 No resources available

Farrington-Manning 3 No resources available

Bailey No resources available

Noether No resources available

Deviance SAS using PROC GENMOD6 €

Pearson SAS using PROC GENMOD6 €

Power Divergence No resources available
† The alpha level can be modified to produce this interval
‡ Event counts can be modified to produce this interval
€ Additional programming is required to use this computer resource
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Chapter 2

Review of Methods for One-Sided Testing of the Difference between Proportions and

Sample Size Considerations

I. Introduction

Proportions are used in many clinical trials to describe the distributions of

dichotomous response variables with independent binomial distributions for treatments under

study. Comparisons between treatment groups are often made through one-sided confidence

intervals on the difference in the two treatment group proportions. In a non-inferiority

setting, the goal is to show that the investigational treatment (test) group is no worse than an

active control group by a predetermined non-inferiority margin. For proportions pertaining to

favorable response, the lower confidence bound on the difference between the test and

control groups must usually be larger than this margin in order to conclude that the test

treatment is not inferior to the active control with respect to efficacy. Such a lower

confidence bound must exceed zero to demonstrate superiority.

There are many methods in the statistical literature for computing the confidence

interval for the difference between two independent binomial proportions. However, each

method has both advantages and disadvantages to its use. It is important to understand in
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which settings these methods are more useful and appropriate. Scenarios include a wide

range of proportions of favorable response of 0.60 and higher.

II. Review of Methods in the Literature

Historically, the most well known method for computing the confidence interval for a

difference between two independent binomial proportions is the Wald method as based on a

normal approximation. This method as seen in (2.1) is easy for computation and

understanding, and so it is presented in most basic statistics textbooks and implemented in

standard statistical software packages.

{ }
C

CC

T

TT
CT n

pp

n

pp
zpp

)ˆ1(ˆ)ˆ1(ˆ
ˆˆ

−
+

−
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In (2.1), Tp̂ = yT/nT is the observed proportion for favorable response in the test group with

yT representing the total number of such outcomes in a total sample size of nT and Cp̂ = yC/nC

is the observed proportion for favorable response in the control group with yC representing

the total number of such outcomes in a total sample size of nC. Also, zα is the (1-α) quantile

of the standard normal distribution. This method has traditionally been shown to have poor

performance for even moderate sample sizes with respect to excessive inflation of the type I

error rate when consideration includes the entire confidence interval using both the upper and

lower bounds1,2. However, Roebruck and Kühn3 found this method to perform adequately for

sample sizes large enough to yield power of at least 0.70 where the sample size allocation for

test:control is 3:2 for the one-sided limit as a one-sided test. Li and Chuang-Stein4 also found
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this method to perform well in an equal allocation setting when event rates were moderate

enough so as to provide expected cell frequencies of at least 15 for all cells.

For alleviation of some of these issues, a continuity corrected version of the Wald

method is suggested as seen in (2.2).
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This method should resolve the inflation of the type I error rate, while perhaps being overly

conservative by reducing the power to test the hypothesis that the difference between

treatment groups does not equal a predetermined value2. In addition, these methods are also

presented using an unbiased estimate of the variance with (nT-1) and (nC-1) used in the

denominators for )p̂1(p̂ TT − and )p̂1(p̂ CC − , but these methods are rarely found in standard

statistical software packages.

Agresti and Caffo1 developed an adjustment to the Wald confidence interval to

produce results that maintain the nominal type I error of a statistical test, analogous to a

confidence interval including a predetermined value, while still being simple to calculate.

This method as seen in (2.3) uses adjusted proportions when computing the confidence

interval.
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In (2.3), Tp~ = (yT + 1)/(nT + 2)and Cp~ = (yC + 1)/(nC + 2). These proportions are calculated by

adding one success and one failure to each group and thereby two successes and two failures

in total. Zhou et. al.5 also agree that Agresti and Caffo’s method performs well at the 0.95

two-sided confidence level (for which it was designed), but the performance is unknown at
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other levels. In addition, Zhou et. al. point out that although the method is easy to implement,

the theoretical properties of this method are still unknown.

Newcombe2 provides a method based on the Wilson score method for a single

proportion that is more complicated to compute than the Wald or Agresti and Caffo methods,

but suggests that it has better coverage properties. This Newcombe hybrid score interval

solves TTTTT nppzpp /)1(ˆ −=− α for pT resulting in two solutions, lT and uT. Similarly,

the equation CCCCC nppzpp /)1(ˆ −=− α is solved for pC yielding solutions lC and uC. In

addition, a continuity corrected version is proposed where the two solutions for pT solve the

following equation TTT
T

TT nppz
n

pp /)1(
2

1
ˆ −=−− α and the two solutions for pC solve

the following equation CCC
C

CC nppz
n

pp /)1(
2

1
ˆ −=−− α . The lower and upper bounds

of the interval are then computed as in (2.4) for both the Newcombe hybrid score and the

continuity corrected version, using the solutions previously obtained.

{ } { } 2
CC

2
TTCT

2
CC

2
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Newcombe recommends this method over the Wald methods and the other methods reviewed

in his paper2 because of its performance with respect to coverage in the setting which

involves both upper and lower confidence limits. In addition, Agresti and Caffo1 suggest that

this method is an appropriate method with the limitation of being more complicated to

implement. Agresti and Caffo1 also suggest that the Newcombe hybrid score method is an

appropriate method except when proportions are close to 0 or 1. Zhou et. al.5 use the

Newcombe hybrid score as one of the best known methods in their paper, but suggest that its

use be limited because the theoretical properties are not known.
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Instead, Zhou et. al.5 propose two new methods which are theoretically defensible and

perform similarly to the Newcombe hybrid score and the Agresti and Caffo methods. These

methods make adjustments to address limitations of using a normal approximation to

estimate an interval when sample sizes may not be large or when the distribution of the data

is skewed. The first proposed interval uses an Edgeworth expansion of the Wald statistic and

corrects the interval using the error term to adjust for the skewed nature of the distribution.

This Edgeworth expansion interval takes the form in (2.5).
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The components of the interval in (2.5) are defined in (2.6).
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In addition, Zhou et. al.5 propose an additional method to address skewness by using a

Transformation approach as seen in the interval in (2.7).
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In (2.7), ( )( )[ ]
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the additional components are as defined in the Edgeworth expansion method described in

(2.6). Zhou et. el. suggest that the Edgeworth expansion method has poor coverage when

proportions are near 0 or 1, but otherwise it is their recommended method for computing a

confidence interval on the difference in proportions. They also suggest that this method has

slightly better coverage properties than the Newcombe hybrid score method or the Agresti

and Caffo method. When proportions are near 0 or 1, they recommend the Transformation

method on the basis of similar coverage properties to the best known methods of Newcombe

and Agresti and Caffo.

There are other methods presented by Newcombe2 in his review of methods used to

compute confidence intervals for the difference between proportions. These include a method

attributed to Beal and Haldane as seen in the interval in (2.8).
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problems associated with the use of the Wald and Wald continuity corrected intervals.

Newcombe2 suggests that they provide improvements but still do not have properties which

surpass those of the Newcombe hybrid score interval.

Dunnett and Gent6 discuss methods to compute p-values instead of confidence

intervals for a test of a predetermined margin of non-inferiority for the difference between

proportions. These methods include modifications of the Wald and Wald continuity corrected

intervals that use modified proportions in the computation of the variance estimate with these

adjustments represented by
CT

CCT
T nn

nyy
p

+
∆++

= 0` and
CT

TCT
C nn

nyy
p

+
∆−+

= 0` which are

constrained by the null hypothesis (∆0) and fixed marginal totals. The test statistic (termed

the Wald Adjusted method) is written in the form of a confidence interval as seen in (2.9).
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The Wald adjusted continuity corrected interval simply adds 
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Dunnett and Gent6 describe test statistics based on a Chi-square distribution which

can be used to produce a test of the null hypothesis of inferiority. These statistics have been

modified from those presented so that they follow a standard normal distribution. The Chi-

squared statistic is seen in (2.10) with the continuity corrected form seen in (2.11) which uses

the adjusted proportions as in the Wald adjusted intervals.
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Dunnett and Gent suggest that the continuity corrected Chi-square test statistic is the most

preferred method out of those presented in their paper.

Farrington and Manning7 also propose a series of methods for the difference in

proportions. Their methods all follow the general from see in (2.12) but with varying

estimates for T
~π and C

~π .
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The first of these suggested by Farrington and Manning uses the observed proportions Tp̂ and

Cp̂ for T
~π and C

~π which results in an interval that is identical to the Wald interval. The

second of these methods uses estimates of p`T and p`C which yields an identical interval to

the Wald adjusted interval. Finally, the third method proposed by Farrington and Manning

(F-M 3) uses estimates of T
~π and C

~π which are maximum likelihood estimates under the null

hypothesis of inferiority at ∆0, and Farrington and Manning discuss their computation as

closed form solutions seen in (2.13).
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Software, such as SAS8, can be used to compute the maximum likelihood estimates T
~π and

C
~π , and these values can then be placed in (2.12) to produce F-M 3 confidence limits. In this

regard for implementation in SAS through PROC GENMOD, a procedure used to fit general

linear models, there would be specification of a binomial distribution with an identity link.

The model statement fits only the intercept and includes an offset term where the offset for

the control group is zero and for the test group is set equal to the specified non-inferiority

margin ∆0. Farrington and Manning recommend this last method because of closer to

nominal coverage probabilities than the Wald or Wald Adjusted intervals.

Falk and Koch9 suggest an additional method which attempts to improve on the Wald

interval using a more appropriate unbiased estimator of the variance as seen in (2.14).
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Brown and Li10 include in their list of methods the Yule’s method as seen in (2.15)

which is similar to the Wald interval but uses an average estimate of the proportion

)nn/()yy(p CTCT ++= in the variance, which Brown and Li suggest estimates the variance

better when πT – πC=0.
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Brown and Li10 present a Modified Yule’s interval as seen in (2.16) which modifies the

estimate of the proportion ( ) ( )CTCTTC nn/p̂np̂np ++=( used in the variance that should

perform better when the sample sizes are not equal.
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The Yule’s method and Modified Yule’s method are equivalent when nT = nC.

Another modification of the Wald method is based on Bayesian methodology, using a

modification from a single proportion based on a prior distribution, and attributed as the

Jeffrey’s interval which adds one to each group, with half being attributed to an event where

)1n/()5.0y(p TT
*
T ++= and )1n/()5.0y(p CC

*
C ++= with the interval calculated as in

(2.17).
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A refinement of this interval is the Approximate Jeffrey’s interval which adjusts the

denominator of the variance estimate as seen in (2.18).
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Brown and Li10 develop the new Recentered interval which they suggest performs

well in relation to coverage probabilities of the interval. This interval uses an estimate

( ) ( )CTCTTC nn/p̂np̂np ++=( as seen in the Modified Yules interval for the variance but
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forces a truncated estimate p~ to meet the conditions in (2.19) so that p~ is never estimated

out of the appropriate range.
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The Recentered interval is seen in (2.20) where κ is the 1-α quantile of the t-distribution with

(nT + nC – 2) degrees of freedom.
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Pan11 also presents a new interval for the difference in proportions which he suggests

is an improvement on the Wald and Agresti and Caffo intervals. Pan’s interval seen in (2.21)

is similar to the Agresti and Caffo interval but uses a critical value from the t-distribution

with degrees of freedom as specified in (2.22) instead of using a critical value from a

standard normal distribution to account for use of asymptotic methodology for finite samples.
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Other methods produce tests for significance of the non-inferiority hypothesis based

on estimators obtained from maximum likelihood methods for the proportion of events in the
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treatment and control groups based on the joint distribution of the events as the product of

two independent binomial distributions for the treatment and control groups. The first

method is based on the Deviance statistic in (2.23) where Tπ̂ and Cπ̂ are the maximum

likelihood estimators under the alternative hypothesis HA: (πT - πC) > ∆0, and ( )0
*ˆ ∆−π and

*π̂ are the corresponding maximum likelihood estimators under the null hypothesis H0: (πT -

πC) ≤ ∆0.

( ) ( ){ }*ˆ,*ˆlogˆ,ˆlog2 0 ππππ ∆−− LL CT (2.23)

The second of these methods is based on a Pearson statistic in the form of [(observed –

expected)2 / expected] as seen in (2.24) using ( )0
*ˆ ∆−π and *π̂ , the maximum likelihood

estimators of πT and πC under the null hypothesis.
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Additionally, a method produced using proportions restricted under the null

hypothesis using weighted least squares for estimation instead of maximum likelihood

estimation ( WLSTp ,ˆ and WLSCp ,ˆ ) yields a test statistic as seen in (2.25) where
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These methods produce test statistics for which p-values can be obtained by using the chi-

square distribution under one degree of freedom.
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In addition to the methods described above, there are other methods which are

iterative in nature and require intensive computational resources. These include Gart’s

method6, the Score test10, the Real Jeffrey’s interval10, the Approximate unconditional exact

test12, and the methods by Mee2, Miettinen & Nurminen2, the Profile likelihood method2, the

Profile likelihood method based on exact tail areas2, and the Profile likelihood method based

on ‘mid-p’ tail areas2.

The lower limit of the confidence interval for the difference in proportions exceeding

the non-inferiority margin (∆0) is used as the counterpart to a test statistic for H0: (πT - πC) ≤

∆0 versus HA: (πT - πC) > ∆0 as the alternative hypothesis for non-inferiority. Also, ∆0 = 0

corresponds to a one-sided assessment of superiority. Due to the one-sided nature of the non-

inferiority hypothesis, the alpha level of interest is one-sided. Discussion and results will

focus on the lower confidence limit through its provision of a one-sided test. Results may be

entirely different when assessment includes the upper confidence limit and similarly the two-

sided test, but they are outside the scope of this discussion.

For some hypothetical illustrations, Table 2.1 displays selected one-sided lower

confidence limits from the confidence limit methods. Scenarios are provided for the one-

sided 0.975 confidence level. Table 2.2 summarizes methods which consistently yield the

largest lower confidence limits including Falk & Koch, Beal’s-Haldane, Transformation, and

Wald Adjusted methods. These methods seem to be less conservative than the other methods.

Table 2.1 summarizes methods which result in the smallest lower confidence limits

including Wald Adjusted Continuity Corrected, Wald Continuity Corrected, Newcombe

Hybrid Score Continuity Corrected, Edgeworth Expansion, Recentered, and Pan methods.

These methods seem to be the most conservative methods.
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Table 2.1 also summarizes methods that have small lower confidence limits for

sample size allocations of 1:2 or 1:1 and have increasingly larger lower confidence limits for

allocations which place more subjects in the test group (3:2, 2:1, 3:1). These methods include

Beal’s Jeffreys-Perks, Yules, Modified Yules, Jeffrey’s, and Approximate Jeffrey’s.

The methods summarized in Table 2.1 produce moderate lower confidence limits

including Wald, Agresti & Caffo, Newcombe Hybrid Score, and F-M 3 methods. Table 2.2

summarizes the one-sided p-values for those methods producing test statistics (with

confidence limits available through an iterative process). These methods include Chi-Square,

Chi-Square Continuity Corrected, Weighted Least Squares, Deviance, and Pearson.

III. Simulations for Non-inferiority

Simulations were used to study the properties of these methods in a non-inferiority

setting. Scenarios included varying the following parameters:

1. πC, the population proportion of events in the control group: 0.60, 0.65, 0.70, 0.75,

0.80, 0.85, 0.90, 0.95

2. ∆= πT-πC, the population risk difference: -∆0, -∆0/2, -0.01, 0. 0.01, 0.025, 0.05

3. πT, the population proportion of events in the test group: πT= πC + ∆

4. ∆0, the null hypothesis risk difference: -0.10, -0.075, -0.05

5. α, the one-sided alpha level: 0.005, 0.025, 0.05

6. nC, the sample size in the control group is calculated to have 85% power to contradict

the null hypothesis ∆0 for equality of test and control groups, nT=RnC
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7. Sample size allocation for test:control as 1:2, 1:1, 3:2, 2:1, 3:1

For each of the 100,000 replications performed, a sample from the specified binomial

distribution was drawn separately for the test group and for the control group. All of the

confidence limits and p-values were computed for the same replication and a conclusion of

non-inferiority or not was determined according to whether or not the one-sided lower

confidence limit exceeded the specified non-inferiority margin or similarly if the p-value

exceeded the alpha level. The average of zero or one indicator variables for demonstration of

non-inferiority or not resulted in a simulated power for the methods when the specified

difference in proportions is better than the non-inferiority margin and a type I error rate when

the specified difference in proportions is equal to (or poorer than) the non-inferiority margin.

If the number of failures in either group was equal to zero or the method failed to produce a

logical confidence limit, then the Agresti and Caffo method was used in place of the

methods. In practice, an alternative (exact) method might be used for small event rates

greater than zero, but the performance of the methods with this minimal modification is

adequate for this discussion without additional modifications.

A summary of the type I error can be found in Figures 2.1 – 2.4 for α=0.025. Similar

results are seen for other alpha levels. Patterns observed for the selected scenarios from

Tables 2.1-2.4 are similar for the simulated type I error rates. Methods including the Chi-

Square, Chi-Square Continuity Corrected, Falk & Koch, Beal’s-Haldane, Transformation,

and Wald Adjusted consistently yield type I errors above the nominal level as seen in Figure

2.1. The opposite is observed in Figure 2.2 for the Wald Adjusted Continuity Corrected,
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Wald Continuity Corrected, Newcombe Hybrid Score Continuity Corrected, Edgeworth

Expansion, Recentered, and Pan methods with type I error levels consistently below the

nominal level. Figure 2.3 summarizes methods which produce higher than nominal type I

errors for sample size allocations of 1:2 and 1:1, but with approximately nominal type I error

levels for the 3:2, 2:1, and 3:1 allocations. These methods include Beal’s Jeffreys-Perks,

Yules, Modified Yules, Jeffrey’s, Approximate Jeffrey’s, and Weighted Least Squares.

The methods summarized in Figure 2.4 will be the focus of further discussion. These

methods generally yield approximately nominal type I errors, at least for certain sample size

allocations. The Wald method has higher than nominal type I error rates for the 1:2 and 1:1

allocations, but nominal values for 3:2, 2:1, and 3:1 allocations. The Agresti & Caffo method

generally produces nominal type I error levels, with values becoming closer to nominal as

more sample size is placed in the test group (3:2, 2:1, 3:1). The F-M 3method consistently

produces nominal type I error rates, but increasing as more sample size is placed in the test

group. Similar patterns are also seen with the Newcombe Hybrid Score and Pearson methods.

The Deviance method generally has nominal rates but has higher type I error rates for the 1:2

and 1:1 allocations, with lower rates for allocations with more sample size in the test group.

These methods are also summarized by the non-inferiority margin in Figure 2.5. The

performance of these methods seems to be unaffected by the choice of margin. Figure 2.6

summarizes the type I error by values of πC, with type I error values becoming more variable

with larger values of πC. The most plausible reason for this is that the expected cell

frequencies become smaller as πC increases. Therefore, the asymptotic assumption may not

be appropriate for larger πC depending on the sample sizes in each treatment group.
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Figures 2.7 – 2.10 summarize the simulated power for varying scenarios of ∆=πT- πC,

the population risk difference. As would be expected, if a trial was planned for equality of the

treatment groups, and this was misspecified as in Figure 2.7 with ∆=∆0/2, the power is

drastically reduced and falls below 0.40 for most cases. However, if the equality assumption

is valid as in Figure 2.8 with ∆=0, then the simulated power hovers around the planned power

of 0.85 with the 1:2 allocation yielding lower simulated power and the allocations with more

sample size in the test group yielding power higher than 0.85. If the test group is better than

the control group as seen in Figure 2.9 for ∆=0.01 and Figure 2.10 for ∆=0.025, the simulated

power is higher than 0.85.

The most appropriate discussion of power is focused on situations where the methods

perform close to the nominal level for type I error. The Newcombe Hybrid Score, F-M 3, and

Pearson methods tend to yield close to nominal type I error levels for the 1:2 and 1:1 sample

size allocation settings. Figures 2.11 – 2.13 compare each of these methods with respect to

simulated power for the setting where ∆=0 and α=0.025. These methods have similar

simulated powers, with the Newcombe Hybrid Score method yielding slightly higher power

than the Pearson and F-M 3 methods.

The Wald, Agresti & Caffo, and Deviance methods tend to perform at the nominal

type I error level for sample size allocations of 3:2, 2:1, and 3:1. Figures 2.14 – 2.16 compare

the simulated power of these methods. Both the Deviance and Agresti & Caffo methods tend

to have higher simulated power than the Wald method in these settings. The Deviance

method yields slightly higher power for the 3:1 scenario, with the Agresti & Caffo method

being slightly higher in the 3:2 and 2:1 settings.
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IV. Sample Size Considerations

In addition to appropriate methods for analyses when the difference between

proportions is the measure of interest for treatment comparisons in a one-sided non-

inferiority setting, it is important to have corresponding sample size formulas in the planning

stages of the trial. Sample size calculation based on the Wald method is a popular and

straightforward way to plan for patient recruitment in non-inferiority trials for the difference

in proportions. This sample size calculation (with respect to ∆0<0) is shown in (2.26) for the

test group, with the sample size in the control group defined as nC=nT/R where R=nT/nC.
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This sample size formula, through algebraic manipulation, can be written to produce power

for specified sample sizes in the test and control groups as in (2.27)
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where power is obtained as the probability (1-β) from z1-β as the (1-β) quantile of the

standard normal distribution.

Additionally, Farrington and Manning7 provide the sample size formula in (2.28) that

is analogous to their methods, with the appropriate proportions substituted for T
~π and

C
~π where for F-M 3 the values from solving the maximum likelihood equations under the

null hypothesis are used. As a note, (2.28) reduces to (2.26) if TT
~ π=π and CC

~ π=π .
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The corresponding power calculation is seen in (2.29).
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The calculated power from the F-M 3 sample size formula is compared to the

simulated power from the F-M 3 method in Figure 2.17 for the 1:2 and 1:1 sample size

allocation settings. The simulated power is consistently equal to or greater than the calculated

power. Similar patterns are seen when the Newcombe Hybrid Score and Pearson simulated

powers are compared to the F-M 3 calculated power as seen in Figures 2.18 and 2.19 for the

1:2 and 1:1 allocations. Table 2.3 includes a summary of selected scenarios for the 1:2 and

1:1 sample size allocations with the simulated power for the F-M 3, Newcombe Hybrid

Score, and Pearson methods along with the calculated power based on the F-M 3 method.

The sample size formula based on the Wald method is useful in the 3:2, 2:1, and 3:1

allocation settings. The Wald, Deviance, and Agresti & Caffo simulated powers seen in

Figures 2.20, 2.21, and 2.22 are higher than the calculated power. However, in some cases,

especially as more sample size is placed in the test group (3:1 allocation), the simulated

power may be higher than the calculated power by over 0.05. Having a conservative sample

size formula is beneficial in trial design, however with limited resources too much

conservatism may be costly. Therefore, in these situations the sample size calculations could

be reduced slightly to match more closely with the simulated final power so as to conserve

resources if necessary. Table 2.4 summarizes selected scenarios for the 3:2, 2:1, and 3:1

sample size allocations with the simulated power for the Wald, Agresti & Caffo, and Pearson

methods as well as the calculated power based on the Wald method.
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V. Discussion

There are many methods available in the literature for a non-inferiority setting

focused on the difference between two proportions. Research involving these methods shows

that the performance related to maintaining the nominal type I error rate depends on the

sample size allocation of interest. For the 1:2 and 1:1 settings for test:control, the F-M 3,

Newcombe Hybrid Score, and Pearson methods perform appropriately. Use of the sample

size calculation based on the F-M 3 method allows for appropriate planning of a non-

inferiority trial with slightly conservative sample sizes calculations.

In the scenarios with allocations of 3:2, 2:1, and 3:1 with more sample size allocated

to the test group, the Wald, Agresti & Caffo, and Deviance methods are appropriate. In

addition, the Wald sample size calculation can be used in trial design with the caviat that as

more sample size is placed in the test group this formula may become fairly conservative.



55

References

1. Agresti A., and Caffo B. Simple and Effective Confidence Intervals for Proportions
and Difference of Proportions Results from Adding Two Successes and Two Failures.
The American Statistician 2000, 54(4): 280-288.

2. Newcombe G. Interval Estimation for the Difference Between Independent
Proportions: Comparison of Eleven Methods. Statistics in Medicine 1998, 17: 873-
890.

3. Roebruck P, Kühn A. Comparison of tests and sample size formulae for proving
therapeutic equivalence based on the difference of binomial probabilities. Statistics in
Medicine 1995; 14: 1583-1594.

4. Li Z, Chuang-Stein C. A note on comparing two binomial proportions in
confirmatory noninferiority trials. Drug Information Journal 2006; 40: 203-208.

5. Zhou X., Tsao M., and Qin G. New Intervals for the Difference Between Two
Independent Binomial Proportions. Journal of Statistical Planning and Inference
2004, 123: 97-115.

6. Dunnett C. W., and Gent M. Significance Testing to Establish Equivalence Between
Treatments, with Special Reference to Data in the Form of 2 x 2 Tables. Biometrics
1977, 33(4): 593-602.

7. Farrington, C. P., and Manning G. Test Statistics and Sample Size Formulae for
Comparative Binomial Trials with Null Hypothesis of Non-zero Risk Difference or
Non-unity Relative Risk. Statistics in Medicine 1990, 9: 1447-1454.

8. SAS®, Version 8.02. SAS Institute Inc.: Cary, NC, 1999.

9. Falk R. W., and Koch G. G. Testing a Specified Difference Between Proportions.
Biometrics 1998, 54(4): 1602-1614.

10. Brown L., and Li X. Confidence Intervals for Two Sample Binomial Distribution.
Journal of Statistical Planning and Inference 2005, 130: 359-375.

11. Pan W. Approximate Confidence Intervals for One Proportion and Difference of Two
Proportions. Computational Statistics & Data Analysis 2002, 40: 143-157.

12. Kang S.-H., and Chen J. J. An Approximate Unconditional Test of Non-inferiority
Between Two Proportions. Statistics in Medicine 2000, 19: 2089-2100.



56



57



58



59



60



61



62



63



64



65



66



67



68



69



70



71



72



73



74



75



76



Chapter 3

Methods for Analyzing Three-arm Trials with Binomial Proportions as the Primary Endpoint

I. Introduction

Non-inferiority clinical trials are used in a setting where the new experimental

medication, test treatment, must be not unacceptably worse than the current active control

treatment by a specified amount related to a condition of interest. Their importance in the

pharmaceutical industry is becoming more widespread1. In many settings, it is also important

to include a placebo arm in these trials for reasons discussed by Koch & Röhmel including

situations where the active control may lack compelling proof of efficacy, the effect of the

active control is small compared to the placebo effect, the active control effect over placebo

is widely variable among trials, and the understanding of the condition of interest is not

complete1. Three-arm trials are then used to conclude non-inferiority of the test treatment to

the active control by showing that the test treatment preserves a certain pre-determined

percentage of effect over placebo that the active control treatment preserves over placebo.

Frequently the primary endpoint of these three-arm trials is a dichotomous outcome

resulting in a proportion for each treatment. Pigeot et. al.2 and Schwartz3 have discussed

methodology for assessing the percentage of effect preserved related to the non-inferiority



78

hypothesis for a continuous outcome. Tang and Tang4 have modified these methods to use

proportions from binomial endpoints. Additionally, sample size and power formulas are of

interest for this setting to aid in the planning of three-arm trials with proportions as the

primary endpoint.

II. Methods for Assessing Non-inferiority in a Three-arm Trial

The null hypothesis of inferiority in these three-arm trials is created to perform a

statistical test of the percentage of effect that the test treatment to placebo preserves over the

effect of the active control treatment to placebo, and can be written as H0: (πT-πP)/(πC-πP) = λ

≤ λ0 with the alternative hypothesis as HA: (πT-πP)/(πC-πP) = λ > λ0 with πT, πC, and πP

representing the population proportion of patients having the outcome of interest in the test,

active control, and placebo groups, respectively. The pre-determined percentage of effect that

the test treatment must preserve is 100λ0.

The first of these methods creates a Wald statistic4 using heterogeneous variances for

the treatment groups as seen in (3.1).
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where Tp̂ , Cp̂ , and Pp̂ are the observed proportions of the outcome of interest in the test,

active control, and placebo groups, respectively. Additionally, the sample size in the test

group is represented as nT with the sample sizes in the active control and placebo groups
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represented as a proportion of the sample size in the test group where nC = CCnT and nP =

CPnT. This statistic can be compared to a standard normal distribution yielding a p-value for

the test of the null hypothesis.

A confidence interval for λ can be computed from this statistic based on Fieller’s

method to yield a lower and upper limit which contains all possible values of λ which would

not be rejected using the Wald statistic, ZW in (3.1). These confidence limits are the solutions

to the equation in (3.2)
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where αz is the 100(1-α) percentile for a standard normal distribution. The equation in (3.2)

is then solved for λ to produce the upper and lower confidence limits (λWL, λWU). These limits

are computed as in (3.3). The lower limit, λWL, is the focus of the current discussion.
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Another method for assessing the non-inferiority hypothesis is one that is modified

from that for the difference in proportions as proposed by Agresti and Caffo5. This method

adds one success and one failure to each group, thereby adding three successes and three

failures in total. This Modified Agresti & Caffo statistic as seen in (3.4) where
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)2/()1(~ ++= TTT nyp , )2/()1(~ ++= CCC nyp , and )2/()1(~ ++= PPP nyp can also be

compared to a standard normal distribution yielding a p-value for the test of the null

hypothesis of inferiority.
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A confidence interval as similar to that computed for the Wald statistic can be

computed for the Agresti & Caffo method by solving the equation in (3.5) for λ to produce

upper and lower confidence limits (λACL, λACU), with the current discussion focusing on λACL,

the lower confidence limit.

{ } 2

2
0

2
0

2
00

2

)~1(~)1(

2

)~1(~

2

)~1(~

~)1(~~
αλλ

λλ
z

n

pp

n

pp

n

pp

ppp

P

PP

C

CC

T

TT

PCT =









+
−−

+
+
−

+
+
−

−−−
(3.5)

These limits are computed as in (3.6).
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Non-inferiority can also be assessed through the use of estimators obtained from

maximum likelihood methods for the proportion of events in the test, active control, and

placebo groups based on the joint distribution of the events as the product of three



81

independent binomial distributions for the three groups. The first is based on the Deviance

statistic which is computed as the -2 times the difference in the natural logarithms of the

likelihood using the proportions computed from the maximum likelihood estimators under

the alternative hypothesis and the likelihood using the proportions computed from the

maximum likelihood estimators under the null hypothesis. The second of these is based on a

Pearson statistic in the form of [(observed – expected)2 / expected] using the maximum

likelihood estimators under the null hypothesis. These methods produce test statistics for

which p-values can be obtained by using the chi-square distribution under one degree of

freedom.

Additionally, Tang and Tang4 present results for a test statistic based on maximum

likelihood estimates (RMLE) of the proportions restricted under the null hypothesis. These

RMLE estimates are used in the denominator for (3.1) to replace the observed proportions.

This statistic is also compared to a standard normal distribution to produce a corresponding

p-value. These RMLE estimates do not have a closed-form solution and therefore require

additional resources for their computation. Software such as SAS6 can be used to obtain these

estimates through PROC GENMOD, a procedure used to fit generalized linear models, with

a specification of a binomial distribution and an identity link. The model statement fits one

parameter for the control group, one parameter for the placebo group, with the test group

being restricted by the null hypothesis λ0 for the parameter for the control group and (1- λ0)

for the parameter for the placebo group.

Another method can be used which replaces the observed proportions used in the

denominator in (3.1) with proportions restricted by the null hypothesis, but using weighted

least squares for estimation instead of maximum likelihood estimation. These estimates can
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also be obtained using software such as SAS6 through PROC CATMOD, a procedure used to

fit categorical models, with a similar specification as in the above model using weighted least

squares to estimate the means.

The methods previously discussed, including the Deviance method, Pearson method,

RMLE method, and the weighted least squares (WLS) method are described in the form of a

test statistic. It is possible to produce corresponding confidence limits through an iterative

process of computing an interval of all possible values of the null hypothesis which the test

statistic does not reject at the specified alpha level.

III. Performance of Methods based on Simulations for Assessing Non-inferiority

Simulations were used to study the properties of these methods in various scenarios to

assess type I error and power. Scenarios included varying the following parameters:

1. πC, the population proportion of events in the control group: 0.6, 0.7, 0.8, 0.9

2. πP, the population proportion of events in the placebo group: 0.2, 0.3, 0.4, 0.5, 0.6,

0.7

3. λ0, the percentage of effect that the test treatment must preserve under the null

hypothesis: 0.6, 0.7, 0.8, 0.9

4. λ=(πT - πP)/( πC - πP), the population percentage of effect that the test treatment

preserves: λ0, (1+ λ0)/2, 1, 1.1

5. πT, the population proportion of events in the test group: πT = λπC + (1- λ)πP

6. α, the one-sided alpha level: 0.000625, 0.005, 0.01, 0.025
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7. nT, the sample size in the test group is calculated to have 85% power to contradict

the null hypothesis for the specified placebo proportion and no difference

between the test and active control treatment groups with CC=nC/nT and CP=nP/nT

as
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8. nC, the sample size in the active control group: nC=CCnT

9. nP, the sample size in the placebo group: nP=CPnT

10. Sample size allocation for test:active control:placebo as 1:1:1, 2:1:1, 2:2:1, 3:1:1,

3:2:1, 3:3:1

For each of the 10,000 replications performed, a sample from the specified binomial

distribution was drawn separately for the test, active-control, and placebo groups. All of the

test statistics were computed for the same replication and a conclusion of non-inferiority or

not was determined for the applicable one-sided test according to whether or not the p-value

from the corresponding test statistic was smaller than the nominal alpha level. The average of

these indicator variables for the demonstration of non-inferiority produced a simulated power

for the methods when the true percentage of effect preserved for test over active control

exceeded the null hypothesis and a type I error rate when this true percentage of effect was

equal to the null hypothesis.

When the number of events in any of the treatment groups was zero or if a method

failed to produce a logical test statistic, because of estimated proportions being outside of the

(0,1) range, then the Agresti and Caffo method was used as a replacement.
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IV. Results of Simulations

A brief summary of the simulation results can be found in Table 3.1. Discussion will

include type I error considerations, power considerations, and sample size calculations for the

design of these non-inferiority trials.

A. Type I Error Considerations

The Wald method generally yielded the highest type I errors as compared to all other

methods. The WLS method also tended to yield higher type I error rates than other methods.

The RMLE, Deviance, and Pearson methods tended to produce type I errors closest to the

nominal level for most scenarios, as displayed in Figures 3.1 – 3.6 by the parameters varied

in the simulations.

The type I error performance of the methods was similar across alpha levels, although

these results are not shown. The type I error performance was closer to the nominal level for

the Wald method when allocations included 2:1 or 3:1 for test:control. The opposite was seen

for the WLS method with type I errors further from the nominal level for allocations of 2:1 or

3:1 for test:control as seen in Figure 3.1. The performance of the Deviance, Pearson, and

RMLE methods seem to be unaffected by the choice of sample size allocation.

The simulated type I error rates were much closer to the nominal level and less

variable with larger non-inferiority margin (λ0) in Figure 3.2, smaller event rates in the

control group (πC) in Figure 3.3, and larger event rates in the placebo group (πP) in Figure

3.4; with these specific scenarios having smaller sample size as well. The Wald, Agresti &

Caffo, and WLS methods tended to have type I errors higher than the nominal level when
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πC=0.8, 0.9 and πP=0.2, 0.3 where event rates may have been small. These patterns are seen

in Figure 3.5 which displays type I errors by πC- πP. The larger the difference between the

event rates in the control and placebo groups, the more type I error violations occur for the

Wald, Agresti & Caffo, and WLS methods. Type I error violations also occur for smaller

sample sizes as seen in Figure 3.6.

B. Power Considerations

Discussion of power will focus only on situations where the methods maintained the

approximate nominal type I error levels. The RMLE, Deviance, and Pearson methods tend to

maintain nominal type I error levels for all scenarios. The RMLE and Pearson methods yield

almost identical power results as seen in Figure 3.7. Therefore, further discussions will

include only the RMLE method. The Deviance method tends to produce slightly higher

power than the RMLE method as seen in Figure 3.8, but this difference is not very large for

most cases with the largest discrepancies for larger values of πC, specifically πC =0.9.

In the cases where the Wald, Agresti & Caffo, and WLS methods maintained

appropriate nominal type I error levels, the RMLE method yields similar power as seen in

Figure 3.9 for the Wald method, Figure 3.10 for the Agresti & Caffo method, and Figure 3.11

for the WLS method.

C. Sample Size Allocations



86

In three-arm non-inferiority trials, the sample size should be allocated according to

economic feasibility, power related to the non-inferiority hypothesis, and ethical arguments

when assigning patients to the placebo arm. These considerations may result in allocations

other than a 1:1:1 balanced allocation for the three groups, usually with fewer patients

randomized to the placebo group. These may include allocating sample size for test:active-

control: placebo as 2:1:1, 2:2:1, 3:1:1, 3:2:1, and 3:3:1. Tang and Tang4 suggest that the 3:2:1

allocation is most powerful out of the 1:1:1 and the 2:2:1 that they reviewed. The current

simulations also show that power is higher when, using the same total sample size, more

subjects are allocated to the test and the active control arms than the placebo arm. Figure 3.12

shows that the equal allocation scenario (1:1:1) yields the lowest power for the same overall

sample size using the RMLE method.

V. Sample Size Formulas

Calculation of sample size for a specified level of power is an important aspect in

designing three-arm trials to assess non-inferiority. Koch and Tangen7 present a formula for

the calculation of sample size as seen in (3.7) for nT, where nC = CCnT and nP = CPnT.
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This formula can also be solved to obtain the power for a specified sample size as seen in

(3.8) where power is obtained as the probability (1-β) from z1-β as the (1-β) quantile of the

standard normal distribution.
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Another sample size formula can be used to design a three-arm trial based on the

RMLE method. The calculation of nT in (3.9) uses maximum likelihood estimates of the

proportions restrained by the null hypothesis in its computation for Tπ~ , Cπ~ , and Pπ~ . Again,

these estimates can be obtained using PROC GENMOD in SAS. A specification of a

binomial distribution and an identity link are specified and the model statement is fit as

described previously. However, the events/trials syntax requires an observed number of

events out of a sample size for each treatment group. These can be specified by assigning

arbitrary n’s for each treatment group, as long as the appropriate allocation is maintained.

The number of events in each treatment group is simply the population proportion in the

treatment group multiplied by this arbitrary n. The maximum likelihood estimates under the

null hypothesis will be calculated for each treatment group, and then can be implemented in

(3.9). These estimates will be the same, regardless of the arbitrary n chosen as long as the

sample size allocation is maintained for the treatment groups.

An analogous sample size formula using (3.9) is based on the weighted least squares

estimates of the proportions restrained by the null hypothesis for Tπ~ , Cπ~ , and Pπ~ . These

estimates can also be obtained using SAS, through PROC CATMOD and then implemented

in (3.9), following the same process, as described above using PROC GENMOD, of using

arbitrary n’s to obtain the weighted least squares estimates under the null hypothesis.
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This formula can also be written to yield power as the probability (1-β) from a standard

normal distribution for a specified sample size as seen in (3.10).
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The calculated power based on the methods previously described is compared with

the simulated power for the methods and scenarios performed in the simulations. The

simulated power and calculated power based on the RMLE method are fairly similar, with

the simulated power being slightly higher in certain scenarios as displayed in Figure 3.13 –

3.18 by the parameters varied in the simulations.

Figure 3.19 compares the Wald simulated and calculated power for all scenarios and

additionally only for those cases where the type I error is controlled at the nominal level in

Figure 3.20. The Wald simulated power is slightly greater then the calculated power, but only

for those cases where type I error is controlled at the nominal level.

Figure 3.21 summarizes the WLS calculated and simulated powers. These are similar,

but the calculated power is slightly higher than the simulated power, even in cases where the

nominal type I error is achieved as seen in Figure 3.22.

The RMLE calculated power is a good method to use when comparing it to the

simulated power of Agresti & Caffo. The simulated power is slightly higher than this RMLE
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calculated power (Figure 3.23), especially in cases where the nominal type I error is

maintained as seen in Figure 3.24.

Additionally, the RMLE sample size method is also appropriate for use with the

Deviance method. Figure 3.25 shows that the simulated Deviance power is similar or slightly

higher than the RMLE calculated power.

VI. Assessing Non-inferiority in a Three-arm Trial: 1 vs 2 Trials Paradigm

In a regulatory setting, it is often the standard to require two confirmatory trials for

efficacy in order to obtain approval8. There are compelling reasons for this convention,

however in many cases these two separate trials are run under very similar protocols and are

run separately simply to adhere to this convention. Maca et. al.9 discuss this scenario and

include reasons in some circumstances why these two separate trials could be combined to

yield a larger base of knowledge regarding the efficacy of the drug of interest. However,

there may still be interest in ensuring that the two separate trials meet at least some minimum

level of efficacy so that the combined data is not driven entirely by only one of the two trials.

In the two trials setting, a one-sided p-value of 0.025 (generally) would be required

for each of the two trials separately. This would result in an overall alpha level of 0.000625

for the combined project (both trials together). Maintaining this overall alpha level at

0.000625 can also be easily done by simply combining the two trials and analyzing this

combined data at an alpha level of 0.000625. Maca et. al.9 show that the overall project alpha

level can also be maintained at the 0.000625 level by requiring each single trial to meet a
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criteria, say 0.10, and requiring the alpha level for the combined data to meet a 0.0007005

significance level. As the individual alpha level for the studies increases, the combined alpha

level decreases in order to maintain this project level alpha at 0.000625. Other selected cases

are summarized in Table 3.2.

The benefits of implementing these modified alpha levels are evident in discussions

related to the overall power of the project. In scenario 1, using the simple two separate trials

approach, if each trial is designed with 80% power then the overall project power is 64%, by

relying on the independence of the trials and therefore multiplying the powers together. Maca

et. al.9 have shown that Scenario 2, which only makes a requirement on the combined data,

yields a much higher power than this. However, to ensure that each separate trial is also

providing adequate signals for efficacy, implementing Scenarios 3, 4, or 5 yields lower but

similar power to Scenario 2 while resulting in a much higher power than the traditional

separate trials in Scenario 1.

The performance of the methods under current discussion for the non-inferiority

hypothesis in a three-arm trial is of interest for the five scenarios discussed by Maca et. al.

Simulations were designed in an identical manner to those used in Section III for the one-trial

scenario for assessing non-inferiority with 10,000 replications. The sample size was also

calculated in a similar fashion and then split in half for each of the separate trials so that total

overall sample sizes remain the same. The type I error and power will be discussed for each

of the five scenarios summarized above, with methods for assessing non-inferiority including

the Wald method, the Agresti & Caffo method, and the RMLE method.

The simulated type I errors for these methods are summarized by sample size

allocation in Figures 3.26 – 3.28, by non-inferiority margin in Figures 3.29 – 3.31, by the
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population event rate in the control group in Figures 3.32 – 3.34, and by the population event

rate in the placebo group in Figures 3.35 – 3.37. These figures have bands around the

nominal 0.000625 level which show the precision of the 10,000 simulations as approximately

±0.0005. Each of the five scenarios have fairly similar type I error rates, within each method

or parameter of interest. The type I error rates are dependent on the non-inferiority margin λ0,

πC, and πP as was the case in the simulations discussed previously for a single three-arm non-

inferiority trial. However, the RMLE method has type I error levels closer to the nominal

level for all settings.

The more obvious distinctions in the five scenarios relate to the power of the test for

non-inferiority. In all situations, the power for Scenario 1 is much lower than that for

Scenarios 2-5. The highest power is seen in Scenario 2 for the simple combined analysis with

only an overall alpha level of 0.000625 specified and then drops slightly for Scenarios 3, 4,

and 5 as shown for each of the methods in Figures 3.38 – 3.40 by the sample size allocation,

in Figures 3.41 – 3.43 by the non-inferiority margin, in Figures 3.44 – 3.46 by the population

event rate in the control group, and in Figures 3.47 – 3.49 by the population event rate in the

placebo group. The power for the RMLE method is lower than that for the Wald and Agresti

& Caffo methods, but with the benefit of more closely maintaining type I error at the nominal

level.

The results of these simulations affirm the discussion by Maca et. al. and further

confirm the use of these scenarios in this specific application for three-arm non-inferiority

trials. The implications of choosing to design a trial using scenarios 3, 4, or 5 are a higher

project power using the same sample size, and therefore a potential reduction in total number

of subjects and cost in implementing the trial.
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VII. Performance of Methods based on Simulations for Assessing Dual Endpoints of

Superiority and Non-inferiority

In addition to assessing the non-inferiority hypothesis of the percentage of effect that

the test treatment preserves compared to the active control treatment over placebo, regulatory

agencies may also require proof that the test treatment is superior to the placebo treatment. In

most settings, assessment of superiority of test over placebo is performed in the first step of

the analyses. If superiority is shown, then analysis proceeds to the non-inferiority assessment

of the test treatment compared to active control treatment1. If superiority is not shown in the

first step of the analyses, then testing ends and does not proceed to the non-inferiority

hypothesis.

In a simple setting with one trial, superiority can be assessed at a specified alpha level

and if significant, then testing can proceed to the non-inferiority hypothesis at this same

alpha level. This approach controls the type I error for multiple testing of the superiority and

non-inferiority hypotheses through the use of hierarchical testing. Testing of the superiority

hypothesis has little effect on type I error or power because the sample size required for the

non-inferiority hypothesis makes the power for the superiority hypothesis very large and

close to 1 as evidenced in Table 3.3 where the sample size needed for superiority at α2 is

much smaller than the sample size needed for non-inferiority at α.

Although the setting described above requires confirmation of both superiority of the

test treatment to placebo and non-inferiority of the test treatment to the active control

(relative to placebo), regulatory agencies may desire a stronger degree of comfort

surrounding the superiority hypothesis. This is especially the case because the superiority
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hypothesis is greatly overpowered in a trial designed to show non-inferiority as previously

discussed.

The results obtained by Maca et. al.9 can be used to place more stringent requirements

on the superiority hypothesis. In this setting, the overall trial can be divided into two smaller

trials for only the test of superiority. The five different scenarios from Maca et. al. seen in

Table 3.2 are used for the test of superiority. If this is significant, then testing proceeds to

non-inferiority on the combined trials at the usual 0.025 alpha level.

The simulations were again implemented for similar scenarios as described in Section

III with 10,000 replications. The F-M 319 method described in Chapter 2 for the difference in

proportions was used to assess the superiority hypothesis and the RMLE method was used to

assess the non-inferiority hypothesis. The more stringent requirements placed on the alpha

level when implementing the Maca et. al. scenarios for the superiority test do not seem to

change the results because, again, even reducing the alpha level still makes the superiority

test sufficiently powered for the sample sizes required for the non-inferiority hypothesis.

Simulated type I error is summarized in Figures 3.50 – 3.53 where the observed percentage

of effect is the specified non-inferiority margin for the test of non-inferiority but with

superiority maintained for the test treatment over the placebo treatment. Simulated power is

summarized in Figures 3.54 – 3.57 by the sample size allocation, non-inferiority margin, and

the population event rates in the control and placebo groups.

Sample size calculations are provided in Table 3.3 for the non-inferiority and

superiority hypotheses. The non-inferiority calculations are provided for the Wald, F-M 3,

and WLS sample size methods. The superiority calculation for test versus placebo is

provided using the Wald sample size method for the difference in proportions. The sample
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size needed for the test of superiority at α2 is, in most cases, less than half the sample size

needed for the non-inferiority test at α.
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Table 3.1 Summary of Simulation and Sample Size Calculation Results

Method Type I Error Violations Power Considerations* Sample Size
Calculations

Wald - Sample size allocations
T:C = 1:1, 3:2
- πC=0.8, 0.9
- πP=0.2, 0.3

RMLE has higher power Wald

Agresti & Caffo - πC=0.8, 0.9
- πP=0.2, 0.3

RMLE has similar power RMLE

RMLE Good power RMLE

Deviance Good power RMLE

Pearson Good power RMLE

WLS - Sample size allocations
T:C = 2:1, 3:1
- πC=0.8, 0.9
- πP=0.2, 0.3

RMLE has similar power WLS

*For scenarios where type I error is appropriately controlled at the nominal level
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Table 3.2 Summary of Scenarios which maintain Project Level α=0.0006250

from Maca et. al.9

Scenario Separate Trials α Combined Trials α
1 0.025 None
2 None 0.0006250
3 0.15 0.0006574
4 0.10 0.0007005
5 0.05 0.0008905
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Chapter 4

Methods for Analyzing Stratified Non-inferiority Trials with Binomial Proportions as the

Primary Endpoint with Criteria for the Risk Ratio or the Risk Difference

I. Introduction

Non-inferiority trials are designed for settings where the objective is showing the new

experimental test treatment is not unacceptably worse than the current active control

treatment by a specified amount. The test treatment may be equivalent in efficacy, but have

less severe adverse events or a better dosing regimen for patient compliance. In the design of

these trials, there may be strata that have to be accounted for in the initial planning and also

in the final analyses. These strata could be different geographic regions of patient recruitment

or they could be based on covariates thought to have some differential effect related to the

efficacy outcome of interest such as gender or age groups.

The focus of the present discussion includes dichotomous primary endpoints with

criteria for analyzing the risk ratio or the risk difference for the test and active control

treatments, while accounting for the stratification variable. A review of the current

methodology and modifications of them will be presented. Simulations will be used to

investigate the performance of these methods for various situations related to type I error and
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power. Additionally, sample size and power formulas will be discussed for the planning of

these non-inferiority trials when taking into account stratification.

II. Assessing Non-inferiority of a Risk Ratio in a Stratified Trial

A. Methods for the Stratified Risk Ratio

The hypotheses for testing non-inferiority of the test treatment compared to the active

control treatment for the risk ratio rely on a pre-determined non-inferiority limit, θ0, which is

seen in H0 : θh = πTh/πCh ≥ θ0 and HA: θh = πTh/πCh < θ0 where θh = πTh/πCh is the population

risk ratio for the test group versus the active control group in the hth stratum, with h=1, 2, …,

H and with πTh and πCh representing the population proportion of patients with the

unfavorable outcome of interest in the test and active control groups, respectively, for the hth

stratum.

A test of the null hypothesis of inferiority can be performed using a test statistic and

comparing the subsequent p-value to the specified alpha level or through the computation of

a confidence interval and the evaluation of its inclusion of the null value, θ0. Both of these

approaches to testing the null hypothesis are seen in the methods presented.

Gart1 proposed a method based on the test statistic in (4.1) which follows a standard

normal distribution and produces a corresponding p-value
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In (4.1), yTh is the observed number of events in the test group for the hth stratum out of nTh

total subjects in the test group and yCh is the observed number of events in the active control

group for the hth stratum out of nCh total subjects in the active control group. The proportions

Chp~ and Ch0Th p~p~ θ= are maximum likelihood estimates under the null hypothesis and can be

computed in a closed-form manner by solving the equation 0cp~bp~a hChh
2
Chh =++ where

0ChThh )nn(a θ+= , { }ChTh0ThChh ny)ny(b ++θ+−= , and )yy(c ChThh += . These

estimates can also be obtain using SAS2 through PROC GENMOD, a procedure used to fit

generalized linear models, where there would be specification of a binomial distribution with

a log link. The model statement fits only the intercept and includes an offset term where the

offset for the control group is zero and the offset for the test group is the natural logarithm of

the non-inferiority margin θ0. This is done separately for each stratum to obtain the maximum

likelihood estimates for the test and control groups. Gart1 first presented this test statistic as a

form from which to iteratively compute a confidence interval for the risk ratio. Gart also

suggested that when the sample sizes in the treatment groups were unequal or when the

observed proportions in the treatment groups were near 0 or 1, then the statistic may be

skewed.

In 1988, Gart and Nam3 extended this method to add a skewness correction to the test

statistic seen in (4.2).
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This method was also designed to yield a confidence interval through iterative solutions

using the test statistic in (4.2), and for this confidence interval, Gart and Nam suggest that it

appropriately provides (1-2α)% coverage when the minimum cell count is ≥ 2.5.

Yanagawa, Tango, and Hiejima4 presented a method to calculate a test statistic for the

hypothesis of non-inferiority for the risk ratio in a stratified setting as seen in (4.3). This

method is an extension to that presented by Farrington and Manning5 for the unstratified

setting.
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where Chp~ and Thp~ are the maximum likelihood estimates under the null hypothesis as

described previously. Yanagawa et. al. provide simulations of this test statistic for the three

strata scenario which yields approximately nominal type I error rates, except when the

sample sizes are small.

Although not evaluated as part of the current discussion, Miettinen and Nurminen6

proposed a method that calculates a test statistic for the stratified risk ratio which follows a

chi-square distribution. This method is iterative in nature and updates initial weights with

better estimates as the iterations progress.
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All of the methods described in (4.1) - (4.3) can be iteratively solved for values of θ

that do not reject the null hypothesis, thus resulting in a lower and upper bound on θ which

yields a confidence interval. Calculating these confidence intervals can be computationally

intensive, especially as the number of strata increases.

Methods for the test of non-inferiority that produce confidence intervals directly

include those produced by SAS in the FREQ procedure2. The first of these is based on a

Mantel-Haenszel combined risk ratio across strata with a point estimate of

∑ +

∑ +
=θ

h
ChThThCh

h
ChThChTh

MH )nn/()ny(

)nn/()ny(
and the corresponding confidence interval seen in (4.4).
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The second of these methods is based on a Logit combined risk ratio across strata with a

point estimate of
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A modification of the Logit interval in (4.5) (termed Agresti method) uses

proportions based on the Adapted Agresti method from Chapter 1 seen in (1.3) which adds

additional counts to those observed distributed according to the null hypothesis (θ0) and the

allocation of sample size to each treatment group.

An additional modification of the Logit interval in (4.5) (termed ML Logit method)

uses proportions obtained as the maximum likelihood estimates under the null hypothesis as

described above as Chp~ and Thp~ for the estimates in the variance, using

[ ]
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A method for the stratified risk ratio is based on a Deviance statistic as twice the

difference in the log likelihood values for likelihoods under the null and the alternative

hypotheses. This can be implemented using PROC GENMOD in SAS2 and a test statistic

computed by subtracting the two deviances. Implementation using SAS includes fitting the

model under the null hypothesis by specifying a binomial distribution with a log link. The

model would include an intercept parameter and a parameter for strata with an offset for the

control group that is zero and an offset for the test group that is the natural logarithm of the

non-inferiority margin θ0. Additionally the alternative hypothesis is fit by also specifying a

binomial distribution with a log link. The model includes an intercept parameter and

parameters for treatment and strata without any offset values specified. The difference in -2

Log Likelihood values between the two models is the value of the test statistic. This statistic

is compared to the chi-square distribution with one degree of freedom to obtain a

corresponding p-value. Additionally, a Wald test statistic can be calculated based on the

parameter estimate and corresponding standard error produced by fitting the likelihood under

the alternative hypothesis, using the parameter for the treatment effect.
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B. Performance of Methods for the Stratified Risk Ratio

Simulations were used to study the properties of the methods in various scenarios to

assess type I error and power. Scenarios for the stratified risk ratio include varying the

following parameters:

1. H, the total number of strata: H=2

2. πCh, the population proportion of events in the control group: πC1=0.05 – 0.20,

πC2=0.15 – 0.30, where πC1 ≤ πC2

3. θh=πTh/πCh, the population risk ratio: 0.667, 1.000, 1.500, 2.000

4. πTh, the population proportion of events in the test group: πTh=θhπCh

5. θ0, the null hypothesis risk ratio: 1.5, 1.75, 2.0

6. α, the one-sided alpha level: 0.0005, 0.005, 0.025

7. Sample size allocation for test:control = nTh:nCh = 1:2, 1:1, 2:1

8. Sample size allocation for strata 1:strata 2 = N1:N2 = 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1

9. nC.=nC1+nC2, the total sample size across strata for the control group is calculated

simplistically to have 85% power to contradict the null hypothesis θ0 for equivalence

of the average of the test and control groups across strata with sh=nTh/( nTh+nCh),

2/)( 21 TTT πππ += , 2/)( 21 CCC πππ += as
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10. nCh, the sample size in the control group for the hth stratum: nC1=t1nC., nC2=(1-t1)nC.

where t1=N1/(N1+N2)
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11. nTh, the sample size in the test group for the hth stratum: nT1=t1nT., nT2=(1-t1)nT.

For each combination of the parameters, 10,000 replications were generated using a

random sample from the binomial distributions of yTh ~ bin(nTh, πTh) and yCh ~ bin(nCh, πCh)

for each of the h=1, 2 strata. For each replication, upper confidence limits or test statistics

with corresponding p-values for the stratified risk ratio methods were calculated. If any of the

event counts were equal to zero or the method failed to produce a valid result, then the

Agresti method was used as the default because this method yields an upper confidence limit

in all scenarios.

For each method, an indicator variable was created for each replication that is set

equal to 1 if the upper confidence limit for the stratified risk ratio was less than the null

hypothesis, θ0, (or the p-value for the test was less than alpha) and set equal to 0 otherwise.

This indicator was then averaged across the 10,000 replications to produce a probability. For

scenarios where θ<θ0, this probability is the power for the test of non-inferiority as the

probability of rejecting the null hypothesis when it is false. For scenarios where θ=θ0, this

probability is the type I error rate for the test of non-inferiority as the probability of rejecting

the null hypothesis when it is true. The power and type I error results are also summarized

with respect to other parameters that were varied in the simulations.

Figures 4.1 – 4.6 summarize the simulated type I error rates for each of the methods

where the sample size is allocated equally across the two strata for an alpha level of 0.025.

Results are similar for other values of alpha, although these are not graphically summarized.

All of the methods maintain the approximate nominal type I error level for the allocation of

sample size to the treatment groups of Test:Control as 1:2. However, only the Gart-SC
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method and the Deviance method maintain the type I error for the 1:1 and 2:1 allocations as

seen in Figure 4.1. The other methods have higher than nominal type I error rates in these

situations. The Gart method and YTH method have higher than nominal type I errors in the

1:1 and 2:1 allocations, but these methods perform fairly well with slightly higher type I

errors than the Gart-SC and Deivance methods.

The methods have type I errors closer to the nominal level for smaller null hypothesis

risk ratios (i.e., θ0=1.5) seen in Figure 4.2. As the total sample size increases, the type I error

is closer to the nominal level (Figure 4.6). Due to this factor, the effect of the null hypothesis

may be connected to the total sample size as less stringent null hypotheses require smaller

sample sizes.

There is no effect of the control proportions on the type I error in either strata 1

(Figure 4.3) or strata 2 (Figure 4.4). However, as the difference in the control proportions

across the strata increases, the type I error is closer to the nominal level (Figure 4.5).

Discussions of power will focus on situations where the type I error is controlled at

the nominal level. Figure 4.7 compares the Gart-SC and Deviance methods where the

population proportion in the treatment groups for each strata is equal (θ=1). These methods

are very similar with respect to simulated power, with the Gart-SC method having slightly

higher power for the 2:1 treatment allocation scenario.

Comparison of the Gart and YTH methods shows that the Gart method yields slightly

higher power in all situations (Figure 4.8). The Gart method also yields higher power than

the Gart-SC method (Figure 4.9), but only for the 1:1 and 2:1 allocation settings where the

type I error of the Gart method is not quite controlled at the nominal level. For the 1:2

treatment allocation setting, the power for these methods is very similar.
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The ML Logit method and the Mantel-Haenszel (MH) method have similar simulated

power for the treatment allocation scenario of T:C as 1:2 (Figure 4.10) where the type I error

is controlled at the nominal level. The Logit method yields higher power in this scenario

compared to the Agresti method (Figure 4.11). However, the MH method has higher power

than the Logit method (Figure 4.12). The Wald and MH methods are very similar, with the

Wald method having slightly higher power for the 1:2 treatment allocation setting (Figure

4.13). Although these methods may be appropriate for the treatment allocation setting of 1:2,

the Gart-SC method yields higher power than these methods even in this setting as is shown

compared to the Wald method in Figure 4.14.

In many trials, it may not be feasible to enroll subjects equally among the strata.

There may be smaller populations of subjects for one strata compared to another or there may

be economical reasons for differential allocations. Even without any of the constraints

previously discussed, differential allocations to the strata may have impacts on type I error or

power for the stratified risk ratio methods. Figures 4.15 – 4.17 summarize the simulated type

I error for the better methods including Gart, Gart-SC, YTH, and Deviance, for scenarios

where the sample size is allocated differently across strata. These figures display this

summary for treatment allocations of Test: Control as 1:2 (Figure 4.15), 1:1 (Figure 4.16),

and 2:1 (Figure 4.17). The type I error is similar across strata allocation scenarios.

While the type I error is unaffected by strata allocation, the power depends directly on

the allocation of sample size to the strata. The simulation scenarios were chosen so that the

control proportion in the first strata was always equal to or smaller than the control

proportion in the second strata (πC1≤πC2). In this setting, it is obvious that as more sample

size is placed in the strata with the larger control proportion, strata 2, the power increases.
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Figures 4.18 – 4.20 display this graphically, separately for the treatment allocations of

test:control as 1:2 (Figure 4.18), 1:1 (Figure 4.19), and 2:1 (Figure 4.20). When designing

these non-inferiority trials, particular attention should be made to ensure that the sample size

is allocated appropriately to the strata so as to maximize the power for a fixed number of

subjects.

C. Sample Size Formulas for the Stratified Risk Ratio

Calculation of sample size for a specified level of power is an important aspect in

designing non-inferiority trials. In the setting of a stratified analysis, it is important to

understand the implications of adjusting for the strata when calculating sample sizes. Nam7

discusses a sample size formula for the stratified risk ratio based on the score test as

described by Gart1 seen in (4.6).
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maximum likelihood estimates under the null hypothesis. These proportions can be obtained

using PROC GENMOD in SAS2 as similar to that described previously. The Nam sample

size formula in (4.6) can also be solved for power as seen in (4.7).
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The sample size formula from chapter 1 (1.15), based on the Taylor Series method is

modified for stratified analysis seen in (4.8) where ∑
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The sample size for each treatment group in each strata can be calculated in the following

manner: .ChTh Rntn = and .ChCh ntn = This Taylor Series formula in (4.8) can be solved for

power as seen in (4.9) where power=Φ(z1-β) and z1-β is the (1-β) quantile of the standard

normal distribution.
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It is important that the sample size formulas used to design the stratified risk ratio

trials to assess non-inferiority are operating at the specified power level. The Nam formula
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and the Taylor Series formula will be compared to the simulated powers of the methods to

assess the appropriateness of their use in designing these trials.

The Gart-SC method yields nominal type I error rates and fairly high power

compared to the other methods. A comparison of the simulated power from the Gart-SC

method and the Nam calculated power is presented for treatment allocation of test:control as

1:2 (Figure 4.21), 1:1 (Figure 4.22), and 2:1 (Figure 4.23). The Gart-SC simulated power is

higher than the Nam calculated power for the 1:2 scenario and approximately equal for the

1:1 scenario. However, the Gart-SC simulated power is slightly lower than the Nam

calculated power for the 2:1 situation, and more so as more sample size is allocated to strata

1 with the smaller control proportion. This difference in calculated and simulated power is

not large, especially for situations designed to have fairly high power.

The Gart simulated power is always slightly larger than the Nam calculated power for

all treatment allocation scenarios (Figures 4.24 – 4.26). However, the Gart method may not

maintain the nominal type I error as well for the 1:1 and 2:1 settings.

Calculated power for the Taylor Series method is displayed in Figures 4.27 – 4.29

compared to the Gart-SC simulated power. The Taylor Series sample size formula is much

simpler than the Nam formula. However, it is conservative and requires more sample size

than necessary for the specified power level when the difference in control proportions for

the strata is larger (>0.20). When (πC2-πC1) is smaller, this method has a lower calculated

power than the Nam simulated power and may not provide enough sample size for the

necessary power.
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III. Assessing Non-inferiority of a Risk Difference in a Stratified Trial

A. Methods for the Stratified Risk Difference

The hypotheses for testing non-inferiority of the test treatment compared to the active

control treatment for the risk difference rely on a pre-determined non-inferiority limit, ∆0

which is seen in H0 : ∆h = πTh - πCh ≤ ∆0 and HA: ∆h = πTh - πCh > ∆0 where ∆h = πTh - πCh is

the population risk difference for the test group versus the active control group in the hth

stratum, with h=1, 2, …, H and πTh and πCh representing the population proportion of patients

with the favorable outcome of interest in the test and active control groups, respectively, for

the hth stratum.

Similar to the setting where the risk ratio is of interest, when the risk difference is of

primary interest for analysis, a test statistic can be formulated to produce a p-value for the

null hypothesis of inferiority. Iterative methods can be used to compute a corresponding

confidence interval which includes all values for which the null hypothesis would not be

rejected at the specified alpha level.

Gart and Nam8 present a method based on a standard normal statistic that is computed

as in (4.10) where yTh is the observed number of events in the test group for the hth stratum

out of nTh total subjects in the test group and yCh is the observed number of events in the

active control group for the hth stratum out of nCh total subjects in the active control group
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These estimates can also be obtained using PROC GENMOD in SAS2 with specification of a

binomial distribution with a identity link. The model statement fits only the intercept and

includes an offset term where the offset for the control group is zero and for the test group is

set equal to the specified non-inferiority margin ∆0. This model is fit separately for each

stratum to produce maximum likelihood estimates for the test and control groups.

Gart and Nam8 propose a skewness-corrected version of the test statistic in (4.10) as

seen in (4.11), which should reduce the skewed nature of the corresponding confidence

interval from (4.10).
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Yanagawa, Tango, and Hiejima4 provide a test statistic for the risk difference seen in

(4.12) which can be compared to a standard normal distribution to obtain a p-value for

comparison against the specified alpha level.
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This test statistic also uses the proportions Thp~ and Chp~ calculated from score equations as

described previously for the method by Gart and Nam in (4.10). This method is a stratified

extension to that proposed by Farrington and Manning5 and studied in chapter 2 on the risk

difference. Yanagawa et. al.4 provide limited simulation results which suggest this method

controls the type I error at approximately the nominal level except for scenarios with small

sample sizes.

A method for the stratified risk difference is based on a Deviance statistic as twice the

difference in the log likelihood values for likelihoods under the null and alternative

hypotheses. This can be implemented using PROC GENMOD in SAS2 and a test statistic

computed by subtracting the two deviances. Implementation using SAS includes fitting the

model under the null hypothesis by specifying a binomial distribution with an identity link.

The model would include an intercept parameter and a parameter for strata with an offset for

the control group that is zero and an offset for the test group that is the non-inferiority margin

∆0. Additionally the alternative hypothesis is fit by also specifying a binomial distribution

with an identity link. The model includes an intercept parameter and parameters for treatment

and strata without any offset values specified. The difference in -2 Log Likelihood values

between the two models is the value of the test statistic. This statistic is compared to the chi-
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square distribution with one degree of freedom to obtain a corresponding p-value. An

additional method uses the parameter estimate for treatment from the model fit under the

alternative hypothesis to create a Wald statistic.

While not implemented in the current discussion, Miettinen and Nurminen6 propose

an iterative method for producing a test statistic for the risk difference which is similar to that

mentioned for the risk ratio and follows a chi-square distribution. This process is computer

intensive and requires more resources for simply computing the test statistic than those

mentioned above.

The methods in (4.10) – (4.12) also require iterative methods if a confidence interval

is desired in addition to the test statistic. A confidence interval can be computed for each of

these methods by finding values of ∆ for which the test statistic fails to reject the null

hypothesis of inferiority for the specified alpha level.

O’Gorman et. al.9 compare two methods of producing confidence intervals for the

stratified setting. The first of these is based on a weighted least squares methodology for

computing the weights as seen in (4.13), originally described by Kleinbaum, Kupper, and

Morganstern10.
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O’Gorman et. al.9 also present a confidence interval using Cochran-Mantel-Haenszel weights

as seen in (4.14), which was presented by Cochran11.
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O’Gorman et. al. recommended the CMH weights over the WLS weights for computing the

confidence interval for a stratified risk difference because the CMH method showed

approximate nominal coverage while the WLS method varied widely in its coverage

probabilities for the entire confidence interval. This recommendation is based on simulation

results for scenarios using at least 8 strata and small proportions less than 0.10.

The intervals in (4.13) for the WLS method can be modified to extend the Agresti and

Caffo method12 for the unstratified setting for the risk difference seen in chapter 2 (2.3). This

interval replaces the observed event rates in (4.13) with rates which add one success and one

failure to each treatment group with p`Th=(yTh+1)/(nTh+2) and p`Ch=(yCh+1)/(nCh+2).

Sato13 proposes a method based on the CMH interval in (4.14) which yields a

confidence interval by using a Fieller-type method to obtain the lower and upper limits as

seen in (4.15). There is no assessment of the performance of this interval within Sato’s

discussion.
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B. Performance of Methods for the Stratified Risk Difference

Simulations were used to study the properties of the methods in various scenarios to

assess type I error and power. Scenarios for the stratified risk difference include varying the

following parameters:

1. H, the total number of strata: H=2

2. πCh, the population proportion of events in the control group: πC1=0.60 – 0.75,

πC2=0.70 – 0.95, where πC1≤πC2

3. ∆h=πTh-πCh, the population risk difference: ∆0, ∆0/2, 0, 0.025, 0.05

4. πTh, the population proportion of events in the test group: πTh=πCh+∆h

5. ∆0, the null hypothesis risk difference: -0.10, -0.075, -0.05

6. α, the one-sided alpha level: 0.0005, 0.005, 0.025

7. Sample size allocation for test:control = nTh:nCh = 1:2, 1:1, 2:1

8. Sample size allocation for strata 1:strata 2 = N1:N2 = 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1
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9. nC.=nC1+nC2, the total sample size across strata for the control group is calculated to

have 85% power to contradict the null hypothesis ∆0 for equivalence of the weighted

average of the test and control groups across strata with sh=nTh/( nTh+nCh),
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10. nCh, the sample size in the control group for the hth stratum: nC1=t1nC., nC2=(1-t1)nC.

where t1=N1/(N1+N2)

11. nTh, the sample size in the test group for the hth stratum: nT1=t1nT., nT2=(1-t1)nT.

For each of the 10,000 replications performed, a sample from the specified binomial

distribution as yTh ~ bin(nTh, πTh) and yCh ~ bin(nCh, πCh) for each of the h=1, 2 strata was

generated separately. The confidence limits and p-values for the methods were computed for

the same replication and a conclusion of non-inferiority or not was determined according to

whether the one-sided lower confidence limit exceeded the specified non-inferiority margin

or similarly if the p-value was below the alpha level. The average of the zero or one indicator

variables for demonstration of non-inferiority or not resulted in a probability. This

probability corresponds to the power of the methods when the population difference in

proportions is better than the non-inferiority margin. The probability results in a type I error

when the specified population difference in proportions is equal to or below the non-

inferiority margin. If the number of events in any of the groups was equal to zero or the

method failed to produce a logical result, then the Agresti method was implemented because

this method yields a result in all scenarios. The simulated type I error and power will be
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summarized, specifically to reflect the effect of varying parameters in the different scenarios

of the simulations.

The simulated type I error for an alpha level of 0.025 is summarized in Figures 4.30 –

4.35. Results are similar for other alpha levels, although these are not graphically displayed.

The performance of the methods for the stratified risk difference does vary according to the

treatment allocation as seen in Figure 4.30. The Gart & Nam, Gart & Nam-SC, YTH, and

Deviance methods perform at approximately the nominal type I error level for the 1:2

treatment allocation setting. These methods also perform fairly well in the 1:1 setting, but the

other methods also have closer to nominal simulated type I error rates. For the 2:1 treatment

allocation setting, the WLS, Deviance, and Wald methods have type I errors closer to the

nominal level.

The simulated type I error of the methods becomes less variable and closer to the nominal

level for smaller (more stringent) non-inferiority difference margins as seen in Figure 4.31.

This may be a consequence of the larger sample sizes required for testing smaller non-

inferiority differences. As seen in Figure 4.35, as the total sample size increases, the methods

are better at achieving the nominal type I error.

Although there do not appear to be differences in performance of the methods for the

control proportions in strata 1 (Figure 4.32), it appears that smaller control proportions in

strata 2 (Figure 4.33) have closer to nominal type I error rates. There do appear to be

performance discrepancies related to the difference in the control proportions in the strata

(πC2-πC1) seen in Figure 4.34. As the difference between control proportions in the two strata

decreases, the type I error of the methods is closer to the nominal level.
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Discussions of power will focus on situations where the type I error is controlled at the

nominal level. Overall, the Gart & Nam, Gart & Nam-SC, YTH, and Deviance methods tend

to control type I error fairly well across all scenarios. Comparison of the Gart & Nam method

to the Gart & Nam-SC method in Figure 4.36 shows very similar simulated power for the 1:1

treatment allocation setting. However, the Gart & Nam method has slightly higher power for

the 2:1 setting and the Gart & Nam-SC method has slightly higher power in the 1:2 setting.

The Gart & Nam method has consistently higher power than the YTH method (Figure 4.37),

especially as the control proportion in strata 2 (πC2) increases. The Gart & Nam method

compared to the Deviance method yields similar results (Figure 4.38) as with the Gart &

Nam-SC method, where the Deviance method has higher power in the 1:2 treatment

allocation setting. Figure 4.39 compares the Gart & Nam-SC method to the Deviance

method, and suggests that the Deviance method has slightly higher power in the 1:2

treatment allocation setting.

The CMH method tends to have appropriate type I error in the 1:1 and 2:1 treatment

allocation settings. This method is compared to the Gart & Nam method in this setting in

Figure 4.40. The CMH power is lower than the Gart & Nam power, especially as πC2

increases.

In the 2:1 treatment allocation setting, the Gart & Nam method yields higher power

compared to the WLS method (Figure 4.41) and the Wald method (Figure 4.42), but the Gart

& Nam method has type I errors that are slightly higher than nominal level in this situation.

The Wald method yields slightly higher power than the WLS method in this 2:1 setting

(Figure 4.43).
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As has just been shown, the methods have different performance depending on the

treatment allocation. In addition, the methods may be affected by the sample size allocation

to each of the strata. Figures 4.44 – 4.46 summarize the simulated type I error for the

methods which perform better for the treatment allocation scenarios, with the 1:2 allocation

in Figure 4.44 for the Gart & Nam, Gart & Nam-SC, and Deviance methods; the 1:1

allocation in Figure 4.45 for the Gart & Nam, Gart & Nam-SC, CMH, and Deviance

methods; and the 2:1 allocation in Figure 4.46 for the Gart & Nam, WLS, CMH, and Wald

methods. The type I error is fairly similar across strata allocation scenarios and is similar to

that already summarized for the 1:1 strata allocation scenario.

However, the power does depend on the allocation of sample size to the strata. The

simulation scenarios were chosen so that the control proportion in the first strata was always

equal to or smaller than the control proportion in the second strata (πC1≤πC2). As more sample

size is placed in this second strata with the higher proportion, the power increases although

this increase is not as marked as in the stratified risk ratio setting, except for the CMH

method. Figures 4.47 – 4.49 summarize these scenarios as similar to that summarized for the

type I error rates across the strata allocation settings. Yet, the power does not seem to be as

dependent on the allocation to the strata as in the risk ratio setting. This difference in power

is more obvious between settings such as 1:2 versus 2:1 for the strata allocation, but is not

quite as distinct for small increases in sample size to the second strata as in going from 1:2 to

1:3 allocation settings. The power displayed in these figures has a fairly wide range and is

dependent on the proportion in the second strata. As this proportion increases, the power

increases.
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C. Sample Size Formulas for the Stratified Risk Difference

Nam14 developed a stratified sample size formula based on the risk difference from

the score test described by Gart and Nam8 in (4.10). This sample size formula is seen in

(4.16) for ∑
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Nam compares this sample size formula to an analogous formula ignoring stratification. The

results suggest that ignoring strata in the design of a trial results in an overestimate of sample

size. The sample size formula in (4.16) can be solved for power as seen in (4.17) where

power = Φ(z1-β) is the (1-β) quantile of the standard normal distribution.
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A sample size formula can be obtained as an extension to the Wald sample size

formula (2.26) presented in chapter 2 on the risk difference. This sample size formula is seen

in (4.18) for ∑
=
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The sample size formula in (4.18) can be solved for power seen in (4.19) where power =

Φ(z1-β) is the (1-β) quantile of the standard normal distribution.
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These sample size formulas can only be useful in the design of a non-inferiority

stratified risk difference trial if the resulting sample size yields a power similar to that

specified in the calculations. The Nam formula and the Wald formula for sample size

calculations are compared to the simulated powers of select methods to assess their

appropriateness for use in the design of these trials.

The Gart & Nam method for assessing the stratified risk difference is compared to the

Nam calculated power obtained from (4.17) in Figure 4.50 by treatment allocation and in

Figure 4.51 by the control proportion in strata 2. The simulated and calculated power of these

methods agrees very closely, with slight variation but of small magnitude with increasing

power for increasing πC2. The Deviance simulated power is also compared to the Nam

calculated power in Figure 4.52 by treatment allocation and in Figure 4.53 for values of πC2.

These methods also agree very closely.

The Wald method controls the type I error slightly better in the 2:1 treatment

allocation setting than the Gart & Nam method. The Wald simulated power is compared to

the Nam calculated power in Figure 4.54, but in the 2:1 treatment allocation setting the Wald
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power is slightly lower than this Nam calculated power. This suggests that sample size may

need to be slightly increased in a 2:1 allocation scenario in order to yield the appropriate

power when using the Wald method for assessing the stratified risk difference.

The simpler Wald sample size calculation in (4.18) with the power calculation in

(4.19) is compared to the Gart & Nam method in Figure 4.55 and to the Wald method in

Figure 4.56 by the control proportion in strata 2. The Gart & Nam power is generally higher

than the Wald calculated power, especially as πC2 decreases. This Wald formula can yield

large discrepancies when compared to the simulated power and my not be operating at the

desired power specified in the calculations.

IV. Implications for Overall Significance with Conditions on Individual Strata

The methods for the stratified risk ratio and stratified risk difference do not include

any verification of homogeneity of effects across the strata. This homogeneity is an important

consideration, especially if the strata have differing treatment proportions. Trial design may

include two strata for males and females or in an anti-infective setting the strata may be two

different strains of the bacteria, one which has developed resistance and the other which has

not. In these settings, it is important to show non-inferiority overall but also to show that each

strata is also trending in the correct direction. Additionally, regulatory agencies may require

these conditions on the strata to ensure the overall effect is appropriate. This issue is

addressed by requiring the test of non-inferiority in the individual strata to meet a larger, but

trending alpha level along with the stratified test of non-inferiority across strata meeting a

smaller alpha level. The effects of adding these additional criteria for each of the strata will
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be assessed related to the type I error and power overall including the individual and

stratified tests.

Simulations for the stratified risk ratio are similar to those already presented, but with

more limited scenarios using 10,000 replications. Specifically, strata allocations include only

the 1:3, 1:1, and 3:1 setting. Additionally, the population risk ratio is set at equality (θ=1).

The stratified alpha level is set at 0.025 with the individual strata alpha levels at 0.05, 0.10,

and 0.15. Focus of this discussion will include assessment of the stratified risk ratio using the

Gart-SC method and the individual strata assessments made using the power divergence

method, λ=0.5 as explained in chapter 1 (1.10).

Figures 4.57 – 4.59 summarize the type I error for these scenarios for each of the

treatment allocation settings. The figures display the type I error for the Gart-SC method

without requiring that each individual strata meet the specified additional alpha level. These

type I errors are similar to those already presented and are maintained at approximately the

nominal level (in this scenario α=0.025). However, with the additional conditions placed on

the individual strata, the overall alpha level drastically decreases below the nominal α=0.025.

As is expected, as the alpha level on the individual strata becomes more stringent, the type I

error is lower. This suggests that when these side conditions are required for the individual

strata, the alpha level for the stratified test could be increased over the nominal level to still

maintain control of the type I error. For example, the stratified test alpha level could be set

slightly greater than α=0.025 with the individual strata side conditions, and the overall type I

error would still be maintained at α=0.025.

Placing these additional criteria on the individual strata also results in a reduction in

overall power, which is smaller as the alpha level for the individual strata decreases. The
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overall power with the additional criteria is compared to the power without these criteria for

the Gart-SC method in Figure 4.60 for α=0.05 for the individual strata, Figure 4.61 for

α=0.10 for the individual strata, and Figure 4.62 for α=0.15 for the individual strata by the

strata allocation and differences between the control proportions in each of the strata. As the

difference in proportions between control groups for the strata increases, the power with the

side conditions is much smaller than the power without these conditions regardless of choice

of strata allocation. However, it is much worse for the strata allocation which places fewer

subjects in the strata with the larger proportion (and therefore the larger variance) as seen for

strata allocations of 3:1 (because in the simulations πC1≤πC2). The effect on power of

requiring these additional criteria can be somewhat mitigated by allocating more sample size

to the strata with the larger control proportion as seen for the strata allocation of 1:3. In this

setting, power for the setting which requires this additional criteria on the individual strata is

similar for even larger differences in the control groups to the power with the additional

criteria for a 1:1 strata allocation setting with small differences between the control groups.

As is expected, the power with the additional criteria becomes much smaller than the setting

without these criteria as the alpha level for the individual strata decreases.

The overall power with the side conditions on the individual strata may be increased

by allowing the test of the stratified risk ratio to be performed at a slightly higher alpha level

because the method is operating at a much lower overall type I error than the nominal

α=0.025, when the side conditions on the strata are added.

These additional criteria for the individual strata were also studied for the stratified

risk difference. Simulations used were similar to those previously described for the stratified

risk difference, but with fewer scenarios including only strata allocations of 1:3, 1:1, and 3:1,
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an overall alpha level of 0.025, and with the criteria for the individual strata of α=0.05, 0.10,

and 0.15 for the 10,000 replications. The Gart & Nam-SC method was used for the test of the

overall stratified risk difference. The Farrington-Manning 3 method (2.12) from chapter 3 on

the risk difference was used for the test of non-inferiority for the individual strata.

Results for the stratified risk difference with the additional criteria are summarized in

Figures 4.63 – 4.65 for the type I error for the Gart & Nam-SC method without these criteria

and with the criteria for the different alpha levels. Again, the overall type I error with these

criteria is much lower than the 0.025 level.

The simulated power is compared for the setting with and without the side conditions

on the individual strata in Figure 4.66 for α=0.05 for the individual strata, Figure 4.67 for

α=0.10 for the individual strata, and Figures 4.68 for α=0.15 for the individual strata. These

figures are summarized by the strata allocation scenarios and the differences between control

proportions in each of the strata. Again, it is seen that with lower alpha levels required for the

individual strata the power decreases drastically. However, allocation of sample size to the

strata yields similar power for the 1:3 and 1:1 settings with lower power for the 3:1 setting.

The power with the additional criteria on the strata is not as affected (i.e., more closely

agrees with the stratified power without the conditions) when more sample size has

allocation to strata 1 but is much more affected when more sample size has allocation to

strata 2 as in the 1:3 allocation.

V. Discussion
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Methods for the analysis of the risk ratio and the risk difference in a stratified setting

including two strata have been reviewed. The performance of these methods is dependent on

the treatment allocation, the control proportion, and the overall sample size. Performance of

these methods can be improved if more sample size is allocated to the strata with the larger

influence on the applicable variance.

Sample size formulas for these stratified settings have also been identified and

assessed for similarities with the simulated power of the proposed methods Such evaluation

addresses the need for statisticians to be able to appropriately plan and power these stratified

non-inferiority trials.

The issue of confirming homogeneity across the strata is addressed by adding side

conditions that the test of non-inferiority in the individual strata also be significant at a

trending alpha level. Adding these additional criteria reduces the overall type I error below

the nominal level used to perform the stratified test. Increasing the alpha level for the

stratified test could be allowable while still maintaining an overall type I error at the nominal

level.
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DISCUSSION AND FUTURE RESEARCH

This body of work is meant to provide practicing statisticians with clarity around the

design and implementation of non-inferiority clinical trials with dichotomous endpoints.

Methodology for the risk ratio has been assessed and new methods have been developed

including the Adapted Agresti method to address the non-inferiority hypothesis. Existing

methods for the risk difference as well as the Deviance and Weighted Least Squares methods

have been developed to address the non-inferiority hypothesis. Performance of these methods

for type I error and power were considered as related to changing various population

parameters of interest. Specifically, the sample size allocation to the treatment groups is

influential in the performance of these methods. The treatment allocation and the other

parameters specified in the simulations were sparsely addressed in the existing literature

through more limited simulations, but these parameters were directly addressed within this

research.

The methods for both the risk ratio and the risk difference were assessed in all

situations specified, even if the counts were small or if the methods failed to produce an

appropriate solution. In these cases substitutions were made to these methods with the exact

odds ratio used for the risk ratio and the Agresti & Caffo method used for the risk difference

because these replacements yield solutions in all scenarios. These modifications have not
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been previously considered in the literature, but this pattern of substituting with use of an

alternate method would be used in practice if assumptions for the standard methodology were

not met. Therefore, these simulations are more similar to performance of the methods in

practical situations.

The need for cohesive methods to calculate sample size for the design of the trial and

also analyze the resulting data has been addressed for the risk ratio and the risk difference.

Existing calculations were assessed and new formulas for sample size were developed,

including the Taylor Series method for the risk ratio. Discussion included comparison of the

planned power versus the simulated power.

Additionally, the non-inferiority trial which has a placebo arm as well as an active-

control arm has been discussed as related to methodology for analyzing the percentage of

effect maintained by the test group over the control group, relative to the placebo group.

Performance of these methods has been extensively assessed and corresponding sample size

calculations related back to these methods for appropriateness of use. The effect of sample

size allocation to the treatment groups and additionally the other parameters varied in the

simulations were assessed as to the effect on type I error and power of the methods. This

setting also presents an opportunity to understand the implications of requiring proof of non-

inferiority using two separate but similar trials compared to using one larger trial. This one

larger trial setting may require fewer subjects for the same power. Proof may also be required

that the test treatment is superior to the placebo treatment group in addition to the non-

inferiority of test to active-control. This also presents scenarios where the type I error and

power for overall testing are maintained at appropriate levels.
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Extensions of the methodology for the risk ratio and risk difference were developed

and reviewed to address analysis using strata. Focus included two strata which may represent

relevant sub-populations within the larger trial such as gender or disease severity. Sample

size formulas were also included within this discussion to understand how the planned power

relates to the resulting power at the end of the trial. Homogeneity of effects across strata is

addressed by requiring the strata to reject the null inferiority hypothesis in addition to the

overall stratified test having to reject the null hypothesis. This may be a regulatory

requirement to ensure consistency of effect across the entire population of subjects and

within the relevant subgroups in the trial. Additional research may include defining the

necessary individual strata alpha levels and the stratified alpha level necessary to achieve a

specified overall alpha level for the tests.

This assessment of the null hypothesis using stratified methods only included cases

where the treatment effect was consistent across the strata and the null hypothesis of interest

was also the same for each of the strata. The methodology presented should be able to

address scenarios where the treatment effect and the null hypothesis of interest is not the

same for the strata. Additional research would be needed to ensure appropriate performance

of the methods in these scenarios. Also, sample size formulas should be assessed for

appropriateness of use in these situations.


