RECONSTRUCTING MODERN AND PLIOCENE (C. 5.4-2.4 MA) DECADAL CLIMATE VARIATIONS IN THE PALEOENVIRONMENTS OF THE MIDDLE ATLANTIC BIGHT USING ISOTOPE AND INCREMENT SCLEROCHRONOLOGY

Joel Wayne Hudley

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Geological Sciences

Chapel Hill
2012

Approved by:
Dr. Donna M. Surge
Dr. John M. Bane.
Dr. Larry Benninger
Dr. Joseph G. Carter
Dr. Jonathan M. Lees
© 2012
Joel Wayne Hudley
ALL RIGHTS RESERVED

Abstract

JOEL W. HUDLEY: Reconstructing modern and Pliocene (c. 5.4-2.4 Ma) decadal climate variations in the paleoenvironments of the Middle Atlantic Bight using isotope and increment sclerochronology (Under the direction of Donna Surge)

Ocean characteristics on geologic timescales are poorly understood, have varied in the past, and are critical to understanding how the ocean may respond to future humaninduced climate change. Recent climate studies have identified that environmental variations in the Mid-Atlantic Bight (MAB) are related to larger global climate variations throughout the Late Cenozoic such as the Atlantic meridional overturning circulation pattern and ocean-atmospheric teleconnections. Modern physical oceanographic studies in the MAB using the modern instrument records show high interannual variability with longer, multi-decadal warming trends. The goal of this investigation is to reveal annual to multi-decadal variations in sea surface temperatures of the MAB during the Pliocene (5.4-1.8 Million years ago (Ma). This investigation employs isotope and increment records from marine bivalves as proxies for ocean bottom temperature in conjunction with a basic understanding of the modern physical oceanographic flow model along the Atlantic continental shelf.

In the present study, live-collected bivalves from the MAB and fossil bivalve shells from Pliocene deposits along the US Mid-Atlantic Coastal Plain (MACP) were used to estimate oceanic conditions (seawater temperature, salinity, etc.) and ocean/atmosphere internal oscillations that currently dominate the basin. Sclerochronologic and stable isotope analyses were used to study this problem. Using the growth increments and

isotope records of the modern Hemimactra as a comparison, Pliocene surf clams were employed to estimate paleoecologic and paleoclimatologic conditions along with the MACP. Pliocene surf clams documented annual increment marks and oxygen isotope ratios indicating greatly reduced seasonality, similar to the modern S. s. similis, but with similar average temperatures relative to modern SST at the same latitude. Since the surf clams present within the Pliocene MACP represent the short-lived species (~ 5 years old), in order to investigate multi-decadal variations during the Pliocene new bivalve proxies were explored. Large and abundant MACP bivalves, Glycymeris americana and Panopea reflexa were identified as having annual growth increments and significant longevity. Ages of fossil shells were comparable to extant species G. glycymeris (~ 100 years) and were used to reconstruct regional SST and a spectral analysis of past NAO. Oxygen isotope values were consistent with previous bivalve studies.

ACKNOWLEDGEMENTS

I would most like to thank Dr. Donna Surge for allowing me to create this project. Without her, I would not have gained so many valuable experiences. I am truly grateful to Dr. Jay Burnett of NOAA Northeast Fisheries Science Center, who generously donated me the Jeep Cherokee full of live collected Spisula and Arctica and answered all my questions on shell aging. I would like to extend my great thanks to my committee members, Dr. John M. Bane, Jr., Dr. Larry Benninger, Dr. Joseph G. Carter, and Dr. Jonathan Lees for their advice. Thank you Surge Lab: Ann Goewert, Jose Rafa Garcia March, Ting Wang and Ian Winklestern. Lastly, I must thank my family for their endless love and encouragement. This is especially true for my sweet and beautiful wife Melissa and my mother Janice Edgerson who proofread early drafts even though she claims to know nothing about geology.

TABLE OF CONTENTS

TABLE OF CONTENTS VII
LIST OF TABLES X
LIST OF FIGURES VIII
LIST OF ABBREVIATIONS AND SYMBOLS IX
CHAPTER 1: INTRODUCTION, PURPOSE, DISSERTATION ORGANIZATION. 10
1.1 Introduction 10
1.2 Research Purpose 14
1.3 Dissertation Organization 15
LITERATURE CITED 19
CHAPTER 2: BACKGROUND 23
2.1 PURPOSE 23
2.2 BACKGROUND 25
2.2.1 Physical Geographic Setting. 25
2.2.2 Sedimentology 31
2.2.3 Oceanographic Setting 32
2.2.4 Geologic Setting and Stratigraphy 36
2.2.5 Sclerochronology 37
2.3. CONCLUSIONS 40
REFERENCES 42
CHAPTER 3: ADDRESSING THE SINGLE COUNTER PROBLEM USING A COMPUTER-ASSISTED IMAGE AGING METHOD 57
3.1 INTRODUCTION 58
3.2 MATERIALS AND METHODS 60
3.2.1 Materials 60
3.2.2 Visual aging method 62
3.2.3 Computer-assisted aging 63
3.2.4 Comparison of aging methods 65
3.3 RESULTS 66
3.3.1 Visual aging 66
3.3.2 Computer-assisted aging 66
3.3.3 Comparison of aging methods 67
3.3.4 Other Bivalve Proxy Results 68
3.4 DISCUSSION 69
3.5. CONCLUSIONS 70
ACKNOWLEDGEMENTS 71
REFERENCES 72
CHAPTER 4: COMPARATIVE SCLEROHRONOLOGY OF MODERN AND MID-PLIOENE SURF CLAM (MACTRIDAE) ALONG THE WESTERN MID- ATLANTIC: THE ARCHETYPE REVISITED 79
4.1 INTRODUCTION 80
4.1.1 ECOLOGY OF MODERN ATLANTIC SURF CLAM 83
4.1.2 MODERN LOCATION 85
4.1.3 GEOLOGIC CONTEXT 87
4.2 MATERIALS AND METHODS 88
4.2.1 COLLECTION AND GROWTH INCREMENTS 88
4.2.2 STABLE ISOTOPES 93
4.3 RESULTS 97
4.3.1 Shell Ages and Growth Parameters 97
4.3.2 VARIATIONS IN GROWTH INCREMENTS 97
4.3.3 VARIATIONS IN STABLE ISOTOPES 98
4.4 DISCUSSION 100
4.4.1 COMPARISON OF GROWTH PARAMETERS 100
4.4.2 SGI COMPARISONS 104
4.4.3 SPECIES STABLE ISOTOPE DISTINCTIONS 106
4.5 CONCLUSIONS 110
ACKNOWLEDGEMENTS 110
REFERENCES 112
CHAPTER 5: IN SEARCH OF LONG-LIVED BIVALVES FROM THE PLIOCENE MID-ATLANTIC: STABLE ISOTOPE AND INCREMENT ANALYSIS OF LARGE MARINE BIVALVES, VIRGINIA \& NORTH CAROLINA, U.S.A 141
5.1 INTRODUCTION. 142
5.2 Geological and Paleoenvironmental Setting 146
5.3 METHODS 148
5.3.1 Fossil bivalve shell preparation and growth increment reading 148
5.3.2 Isotope sclerochronology 150
5.3.3. Temperature estimates. 151
5.3.4 Growth analysis 152
5.3.5 Increment analysis 154
5.3.6 Spectral analysis 155
5.4 RESULTS 157
5.4.1 Isotope sclerochronology 157
5.4.2 Aging 159
5.4.3 Growth models 160
5.4.4 Increment analysis 160
5.4.5 Spectral analysis 161
5.5 DISCUSSION 162
5.5.1 Oxygen Isotope ratios in Panopea 162
5.5.2 Interpretations of paleotemperature estimates from Glycymeris 164
5.5.3 G. americana as a multi-decadal climate archive. 169
5.6. CONCLUSIONS 172
ACKNOWLEDGMENTS 173
APPENDIX A: SPISULA 189
APPENDIX B: GLYCYMERIS AND PANOPEA 246
REFERENCES 293

LIST OF TABLES

Table 3.1 Descriptive statistics of the Visual and Computer counters. 78
Table 4.2. VBGM parameters from natural populations of modern and fossil Spisula along the Atlantic coast of the United States. 120

Table 4.3. Isotopic composition of shells. Samples taken from the Spisula were micromilled from the chondrophore. Samples were run at the University of Arizona's Environmental Isotope Laboratory

Table 4.4. Summary statistics for $\delta^{18} \mathrm{O}, \delta^{13} \mathrm{C}$, and $\delta^{18} \mathrm{O}$ based temperature estimates preserved in modern and Mid-Pliocene aged Spisula shells. Temperature estimates calculated using the equation reported by Schöne et al. (2005) as modified from Grossman and Ku (1986).126

Table 4.5. Standardize growth indices (SGI) from around the New York Bight and along the New Jersey shore with sample depth (S.D.) 128

Table 4.6. Standardize growth indices (SGI) from off the Delmarva peninsula and
Hampton roadstead with sample depth (S.D.). .. 129
Table 5.1. Isotopic composition of shells. Specimens were collected from the Morgarts Beach and Rushmere members of the Yorktown Formation, Pliocene Age.187
LIST OF FIGURES
Figure 2.1. Physical Setting of eastern North America and the western Atlantic Ocean Basin. 50
Figure 2.2 Generalized onshore embayment and major structural features map othe Atlantic Coastal Plain (after Ward et al., 1991). 51
Figure 2.3. Schematic map and cross-section of the eastern North American coastal plain and western Atlantic basin. 52
Figure 2.4. Filled contour map showing the percent sand-sized sediment along the eastern North American continental shelf and slope. 53
Figure 2.5. Pliocene stratigraphic nomenclature for the coastal plain of a combined North Carolina and Virginia. 54
Figure 2.6. Flow chart showing the conventional methods employed in isotope paleothermometry. 55
Figure 2.7 Bivalves examined for this study. 56
Figure 3.1. Collection localities for Spisula spp. collected alive on the continental shelf, and Pliocene fossil specimens collected from coastal plain deposits 75
Figure 3.2. Example comparison of visual count versus computer-assisted count picks on sample number 6321621994. 76
Figure 3.3. Age-bias plot. Counter age versus average test age. 77
Figure 4.1 Collection localities for modern and Pliocene specimens. 130
Figure 4.2 Example of how Spisula shells were measured and sectioned. 131
Figure 4.3 Graph of valve length versus chondrophore length. 132
Figure 4.4 Plot comparing von Bertalanffy growth model parameters k and L_{∞} of MAB and MACP Spisula arranged by species and region 133
Figure 4.5 Oxygen and carbon isotopic profiles from Spisula solidissima specimens andS. s. similis specimen134
Figure 4.6 Temperature $\left({ }^{\circ} \mathrm{C}\right)$ estimates for Spisula S. s. solidissima and S. s. similis specimens. 135
Figure 4.7 Sea water temperatures records from nearby NOAA stations 136
Figure 4.8 Covariance of $\delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values from modern Spisula spp. and Pliocene S.confraga.137
Figure 4.9 Oxygen and carbon isotopic profiles from S. confraga specimens 138
Figure 4.10 Temperature $\left({ }^{\circ} \mathrm{C}\right)$ estimates for S. confraga specimens 139
Figure 4.11 Comparison of individual and all annual standardized growth indices) to mean annual temperature and salinity index 140
Figure 5.1. Location of collection sites along the Middle Atlantic Coastal Plain. 178
Figure 5.2 Shells of Glycymeris americana and Panopea reflexa cut through the axis of maximum growth to show annual growth increments. 179
Figure 5.3 Variation of $\delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values (\% VPDB) versus distance (in millimeters) from the umbo to the ventral edge in shells of G. americana (GLY-A \& -C). 180
Figure 5.4 Variation of $\delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values (\% VPDB) versus distance from the umbo to the ventral edge in cardinal tooth of P. reflexa (PR-C \& -D). 181
Figure 5.5 Histogram: Age versus frequency plot of Yorktown and Chowan River Formation G. americana populations 182
Figure 5.6 Growth model comparison 182
Figure 5.7 Temperature estimates $\left({ }^{\circ} \mathrm{C}\right.$) versus distance (in millimeters) from the umbo to the ventral edge of the cardinal tooth in P. reflexa (PR-C \& -D) shells 183
Figure 5.8 Temperature estimates $\left({ }^{\circ} \mathrm{C}\right)$ versus distance (in millimeters) from the umbo to the ventral edge of G. americana (GLY-A \& -C) valves. 184
Figure 5.9 Spectral densities for four time series as computed by the SSA-MTM method.($\log _{10} \mathrm{y}$-axis scale versus frequency on the x -axis).185
Figure 5.10 Spectral densities for Yorktown SGI time series as computed by the SSA- MTM method. 187
Figure 5.11 Spectral densities for Chowan River time series as computed by the SSA- MTM method. 188

LIST OF ABBREVIATIONS AND SYMBOLS

1. \pm	plus or minus
2. $\%$	per mil or parts per thousand
3. ${ }^{13} \mathrm{C}$	carbon isotope 13
4. ${ }^{14} \mathrm{C}$	radiocarbon isotope 14
5. ${ }^{18} \mathrm{O}$	oxygen isotope 18
6. A. islandica	Arctica islandica
7. AMS	accelerator mass spectrometry
8. cm	centimeter
9. DIC	dissolved inorganic carbon
10. et al.	and others
11. GBS	Georges Bank-Scotian Shelf
12. GI	Growth index
13. G. americana	Glycymeris americana
14. G. glycymeris	Glycymeris glycymeris
15. HCO_{3}	bicarbonate
16. i.e.,	that is
17. MAB	Middle Atlantic Bight
18. MACP	Middle Atlantic Coastal Plain
19. MPWP	Mid Pliocene Warm Period
20. mm	millimeter
21. NBS	National Bureau of Standard
22. NOAA	National Oceanographic and Atmospheric Agency
23. ${ }^{\circ} \mathrm{C}$	degrees Celsius
24. P. abrupta	Panopea abrupta
25. P. reflexa	Panopea reflexa
26. psu	practical salinity units
27. RWI	Ring width index
28. S. confraga	Spisula confraga
29. S. modicello	Spisula modicello
30. S. s. similis	Spisula solidissima similis
31. S. s. solidissima	Spisula solidissima
32. SGI	Standardized growth index
33. SHW	Shelf Water
34. SLW	Slope Water
35. spp.	Species pluralis or Genus, species unidentified
36. SST	sea surface temperature
37. T	temperature
38. USGS	United States Geological Survey
39. VBGM	Von Bertalanffy growth model
40. VPDB	Vienna Pee Dee Belemnite
41. VMNH	Virginia Museum of Natural History
42. VSMOW	Vienna Standard Mean Ocean Water
43. $\delta^{13} \mathrm{C}$	carbon isotope ratio
44. $\delta^{18} \mathrm{O}$	oxygen isotope ratio

45. $\delta^{18} \mathrm{O}_{\mathrm{W}}$
46. $\alpha^{13} \mathrm{C}$
47. $\mu \mathrm{g}$
oxygen isotope ratio of water
carbon isotope 13 fractionation factor microgram, 10^{-6} gram

CHAPTER 1: INTRODUCTION, PURPOSE, DISSERTATION ORGANIZATION

1.1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) projects a future warmer climate through the $21^{\text {st }}$ century (IPCC WG1,2007). The predicted increase in air temperature is related to the observed and forecasted increases in anthropogenic greenhouse gases. The potential effects of a future warmer climate include sea level rise, extreme weather events, migrating ecosystems, and changing resources. Climate scientists and policy makers responsible for making decisions on the mitigation of and adaptation to human-induced climate change have determined that understanding past warm climate states is critical to evaluate its response to increasing greenhouse gas concentrations (IPCC WG1, 2007). Determining mitigation and adaptation strategies to lessen the resulting worldwide socio-economic stresses requires efforts to reduce the uncertainties associated with the nature and rate of projected climate change (IPCC, 2007; Robinson and Dowsett, 2010). To reduce the uncertainties, geologists and paleoclimatologists use proxy records to extend the instrumental record and study analogs to projected future warm climate.

Instrumental records can only assess large-scale climate changes over roughly the past century, whereas proxy-based reconstructions appear to explain relatively well the major surface temperature changes of the past millennium. The expansion and
improvement in the networks of available proxy data sets that can be used to develop spatial maps (with associated errors) for each season of the last few millennia is essential (Jones and Mann, 2004). There is a need to develop high-resolution reconstructions as templates for calibrating the longer, lower resolution proxy data networks. To achieve this goal, reliable proxies must be "calibrated" and independently "validated" against instrumental records. Tree rings and coral isotopic data are currently the most widespread sources of annually and sub-annually resolved proxies, but both proxies are limited in spatial and temporal coverage. Early successes in the development of annual chronologies using the long-lived bivalve Arctica islandica (Wiedman and Jones, 1994) demonstrate that molluscan shell records are effective high-resolution proxy indicators that can potentially serve as useful data sets to develop multi-proxy climate reconstructions.

Over the last 30 years, many scientific papers have asserted that intervals in Earth history can be used as an analogue for future climate change. To be considered an appropriate analogue, the warm climate interval must result from increased concentrations of atmospheric greenhouse gases due to a transient forcing and have similar regional and global climate patterns due to continental configuration and orogenic effects. Studies of potential analogues have focused on warm intervals during the Cenozoic including the early Holocene, last interglacial, early Pliocene, early Miocene, and early Eocene. (e.g. Zubakov and Borzenkova, 1988; Crowley, 1991; Zachos et al., 2001).

The warm intervals of the Quaternary (early Holocene and the Pleistocene interglacials) all have the same position of continents and mountain ranges. However, evidence from trace gas records in ice cores indicate that atmospheric concentrations of CO_{2} are already higher than at any time during the last 800,000 years (Siegenthaler et al., 2005; Loulergue et al., 2008). Evidence from new alkenone-based, boron isotope-based and stomatal density-based CO_{2} proxy data indicate that the current concentration of CO_{2} (394.45 ppm recorded in 2012; data from the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory, Mauna Loa Observatory) in the atmosphere may not have been reached in the last 3 million years. There is oceanic and terrestrial evidence for a transient forcing-induced warming during the PaleoceneEocene Thermal Maximum (PETM) (Kennett and Stott, 1991; Zachos et al., 2005). However, the rate of climatic and ocean geochemical change is likely to have been an order of magnitude slower (Rigwell, 2007; Zeebe et al., 2009) and the configurations of continents, ocean gateways, and orogenic belts are widely dissimilar for intervals in Earth history earlier than the late Miocene (23.3-5.3 Ma). The search for an appropriate analogue of future global warming continues even though research concluded that no satisfactory warm intervals in Earth history could be used as a frame of reference or even a possible analogue for future atmospheric CO_{2}-induced warming (Crowley, 1991; Haywood et al., 2011).

Current research indicates that the mid-Pliocene Warm Period (MPWP; 3.3-3.0 Ma), representing warm interglacials during the Piacenzian Stage of the Pliocene Epoch, serves as the most robust analog to predicted climate changes (IPPC, 2007; Haywood et
al., 2011). The Pliocene was remarkably similar to modern climate when compared to other geologically recent warm intervals in terms of positions of the continents, the thermal isolation of Antarctica (Zachos et al., 2001), and atmospheric CO_{2} concentrations (Haywood et al., 2009). Even so, Pliocene interglacials reflected long-term equilibrium for a given ambient CO_{2} level following the long-term negative trend in atmospheric CO_{2} through the Cenozoic and not a rapid transient forcing on climate (Haywood et al., 2011). Evidence from faunal-based transfer functions and isotopic proxies of paleotemperature show the MPWP was approximately $2-3^{\circ} \mathrm{C}$ warmer than today (Robinson et al., 2008). Moreover, the spatial distribution of global sea surface temperature (SST) during the MPWP was different from today because northern high latitudes were warmer, while temperatures in the tropics were similar (Dowsett et al., 2010; Federov et al., 2006).

General circulation models (GCM) using MPWP boundary conditions produce surface temperature anomalies in the range of late twenty-first century climate projections (Haywood et al., 2001). Still, discrepancies exist between proxy evidence and GCM simulations (Dowsett et al., 2009). For example, hypotheses for both permanent El Niño and La Niña conditions have been modeled and documented in alkenone-based SST reconstructions (Lawrence et al., 2006; Dowsett and Robinson, 2010). A Pliocene climate dominated by either permanent state is significantly different from modern climate conditions. The discrepant results are likely due to proxy resolution. The temporal resolution of the paleoceanographic data based on microfossil analyses to determine MPWP boundary conditions is at best one sample spanning 10,000 years (Wara et al., 2005). High-resolution (annual to multi-decadal) paleoclimate records potentially
provide SST variability at a resolution capable of testing the environmental response to interannual atmospheric/oceanic phenomena.

1.2 Research Purpose

The purpose of this dissertation is to develop and employ classic and new highresolution bivalve proxy records to reconstruction oceanic conditions in the near and distant past. In this series of studies, high-resolution records from live-collected clams from the Mid Atlantic Bight (MAB) and fossil Pliocene bivalves from fossiliferous units along the US Mid Atlantic Coastal Plain (MACP) are examined and compared to modern instrument records. High-resolution data sets recorded in bivalve shells are more analogous to instrumental observations than fossil assemblage data. Comparing modern climate records to Pliocene data series is necessary to better constrain uncertainties of future climate prediction. The estimation and comparison of past sea water temperatures to modern records allow the study of other larger questions about global warming intervals, such as: (1) are significant changes in interannual variability experienced along the western Mid Atlantic Shelf; (2) are there shifts in the boundaries of shelf province waters due to these changes; and (3) are past natural (pre-industrial) ocean-atmospheric interactions similar to baseline anthropogenically-altered modern analogues.

Previous research using faunal assemblages of ostracodes, foraminifera, molluscs, bryozoans, and echinoids have established that SST along the western mid-Atlantic shelf was warmer than the present throughout most of the Cenozoic (Dowsett et al., 2009). Mean SST decreased from Early to Late Pliocene, following the Cenozoic cooling trend
into the Pleistocene. While previous research has examined Pliocene SST variation and seasonality in MACP deposits, little is known about interannual variability in the Pliocene and how it compares to present conditions. Interannual variability of modern SST in the MAB is related to a combination of local atmospheric processes and advection of water masses into the shelf area (Mountain, 2003). Warmer SST in the Pliocene may result from more frequent and northern penetration of warm water masses, a decline in the influence of northern cold waters, and/or different tropical perturbations to atmospheric circulation.

Much warmer winter SST during the Pliocene indicates reduced seasonality in MACP shelf waters, suggesting more stable warming mechanisms and diminished interannual variability (Krantz, 1990; Cronin, 1991). However, this scenario conflicts with colder winter and summer MPWP temperatures and a larger seasonal range in Virginia (Goewert and Surge, 2008). A more likely scenario is that winter SST along the MACP was warmer, but that the large interannual variability exhibited in the modern MAB also existed in the Pliocene. This hypothesis agrees with observed faunal data from the MACP. A reconstruction of interannual to decadal trends in SST provides evidence to test the validity of previously conflicting results.

1.3 Dissertation Organization

This research uses fossil bivalves as seawater temperature proxies for a Pliocene paleoenvironmental reconstruction capable of examining interannual to decadal trends in MAB shelf water variability. Bivalve proxies were used to explore aspects of climate
change along the coastal shelf regions of the eastern United States. This research is based on modern analog techniques. All methods and data are compared to instrumental data from the late Holocene, but the overall goal is investigating the climate of the Pliocene (5.4-1.8 Million years ago (Ma)). The MACP is an ideal location for this research. The present MAB shelf is well instrumented, and the modern bivalve proxies are well studied due to commercial exploitation. Also, MACP shell beds contain numerous wellpreserved molluscs and well-documented biostratigraphy and chronology. This work provides much needed proxy data for models attempting to reconstruct environmental and climatic changes in shallow marine settings along the low to mid-latitudal gradient of the western Atlantic shelf and those evaluating the response of regional teleconnections such as North Atlantic Oscillation.

Chapter 2 provides the background to the dissertation. This includes a brief review of the geologic history and large physiographic provinces of the eastern United States, modern oceanographic setting, and instrumental records and studies used to examine average and anomalous climate conditions in and along the MAB. A review of the North Carolina and Virginia fossil beds is also provided. Chapter 2 details the known ecology of the selected bivalve proxies, basic sclerochronological methods and assumptions, and previous works using growth increment and/or isotopic methods to investigate these proxies.

Chapter 3 is the first of the original research studies. It addresses precision of a single shell reader and how the lack of a second experienced shell reader is dealt with by
means of computer-assisted quality control. Age determination for live-caught bivalves is simple, but labor intensive if there is a large number of samples. Good practices assume that each sample must be examined by several readers, several times for age determination to be considered accurate, and thus requires time. This challenge is addressed by using a novel image analysis-based method of discriminating annual increments in the shell.

Chapter 4 is a reexamination of the infaunal bivalve species Spisula (Hemimactra) solidissima (Dillwyn, 1817), the archetype for contemporary increment and isotope sclerochronology experiments. S. s. solidissima studies by Jones (1983) set standard sclerochronological practices that remain unchanged, but the potential applications expressed in those earlier works are currently possible with the expanded number and range of new S. (s). solidissima specimens. Using isotope sclerochronology, this work investigates the periodicity of growth intervals in the species S. s. solidissima, S. s. similis (Say, 1822), and S.(Hemimactra) confraga (Conrad, 1833)(Pliocene), and estimates paleoenvironmental conditions during the Recent and the Pliocene using isotope and increment comparisons to instrumental records. These data increase our knowledge of Pliocene climate along the MACP, and are compared to modern environmental conditions.

Chapter 5 is an investigation of the periodicities in growth-lines for aging two species of bivalves, Glycymeris americana, the American bittersweet, and Panopea reflexa, a geoduck. The purpose of the study is to identify whether these species, both
large and abundant in MACP fossiliferous units, can be useful in constraining climatic variables of the Pliocene. G. americana is currently found in the waters off North Carolina, but no previously published research has confirmed age or paleoenvironmental calibration. Studies on the extant species G. glycymeris show annual growth-lines and maximum lifespans of ~ 100 years (Ramsay et al., 2009). Previous work on extant species of geoduck (P. zelandica (Quoy \& Gaimard, 1835), P. abbreviate (Valenciennes, 1839) and P. abrupta (Conrad, 1849)) indicate the genus has annual growth-lines, is long-lived with maximum lifespans of 34 to 146 years, and is suitable for regional SST reconstructions (Black et al., 2009).

LITERATURE CITED

Chandler, M., D. Rind, and R. Thompson. (1994). Joint investigations of the middle Pliocene climate: II. GISS GCM Northern Hemisphere. Global Planetary Change, 9:197-219.

Cronin, T.M. (1991). Pliocene shallow water paleoceanography of the North Atlantic Ocean based on marine ostracodes. Quaternary Science Review, 10: 175-188.

Crowley, T. J. (1991). Are there any satisfactory geologic analogs for a future greenhouse warming. Journal of Climatology. 3, 1282-1292.

Dowsett, H. J., Robinson, M., Haywood, A. M., Salzmann, U., Hill, D. J., Sohl, L., Chandler, M. A., Williams, M. Foley, K. and Stoll, D. (2010). The PRISM3D paleoenvironmental reconstruction. Stratigraphy, 7, 123-139.

Dowsett, H.J., M.A. Chandler, T.M. Cronin, and G.S. Dwyer. (2005). Middle Pliocene sea surface temperature variability. Paleoceanography, 20: 1-8.

Dowsett, H.J., J.A. Barron, R.Z. Poore, R.S. Thompson, T.M. Cronin, S.E. Ishman, and D.A.Willard. (1999). Middle Pliocene paleoenvironmental reconstruction: PRISM2. U.S.Geological Survey Open File Report, 99-535: 1-33.

Dowsett, H.J. and R.Z. Poore. (1991). Pliocene sea surface temperatures of the North Atlantic Ocean at 3.0 Ma. Quaternary Science Review, 10: 189-204.

Dowsett, H.J. and T.M. Cronin (1990). High eustatic sea level during the middle Pliocene: Evidence from the southeastern U.S. Atlantic Coastal Plain. Geology, 18: 435-438.

Fedorov, A. V., Brierley, C. M. \& Emanuel, K. (2010). Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature , 463, 1066-1070.

Fedorov, A. V., P. S. Dekens, M. McCarthy, A. C. Ravelo, P. B. deMenocal, M. Barreiro, R. C. Pacanowski, and S. G. Philander, (2006). The Pliocene paradox (mechanisms for a permanent El Niño). Science, 312, 1485-1489.

Goewert, A.E. and D. Surge. (2008). Seasonality and growth patterns using isotope sclerochronology in shells of the Pliocene scallop, Chesapecten madisonius. GeoMarine Letters 28: 327-338.

Goman, M., Ingram, B.L., Strom, A., (2008). Composition of stable isotopes in geoduck (Panopea abrupta) shells: A preliminary assessment of annual and seasonal paleoceanographic changes in the northeast Pacific. Quaternary International, 188: 117-125.

Haywood, AM, Ridgwell, A, Lunt, DJ, Hill, DJ, Pound, MJ, Dowsett, HJ, Dolan, AM, Francis, JE and Williams, M (2011). Are there pre-Quaternary geological analogues for a future greenhouse warming? Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 369, 1938.

Haywood, A. M., Chandler, M. A., Valdes, P. J., Salzmann, U., Lunt, D. J. \& Dowsett, H. J. (2009). Comparison of Mid-Pliocene climate predictions produced by the HADAM3 and GCMAM3 general circulation models. Glob. Planet. Change, 66, 208-224.

Haywood, A.M., Valdes, P.J., Sellwood, B.W., Kaplan, J.O. Dowsett, H.J. (2001). Modelling Middle Pliocene warm climates of the USA. Palaeontologia Electronica, v.4, art.5. (available at: http://palaeo electronica.org/2001_1/climate/issue1_01.htm)

Haywood, A.M., P.J. Valdes, and B.W. Sellwood. (2000). Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results. Global and Planetary Change, 25: 239-256

International Panel on Climate Change (2007), Climate change 2007: The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor \& H. L. Miller). Cambridge, UK: Cambridge University Press.

Jones, D.S. and I.R. Quitmyer. (1996). Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios, 11: 340-346.

Jones, D.S. (1983). Sclerochronology: reading the record of the molluscan shell. American Scientist, 71: 384-391.

Jones, D.S., D.F. Williams, and M.A. Arthur (1983). Growth history and ecology of the Atlantic surf clam Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments. J. Exp. Mar. Biol. Ecol., 13: 225-242.

Jones, D.S. (1981). Annual growth increments in shells of Spisula solidissima record marine temperature variability. Science, 211, 4478: 165-167.

Jones, D.S. (1980). Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology, 6(3): 331340.

Jones, D.S., I. Thompson, and W. Ambrose (1978). Age and growth rate determinations for the Atlantic surf clam Spisula solidissima (Bivalvia: Mactracea), based on internal growth lines in shell cross-sections. Marine Biology, 47: 63-70.

Jones, P.D., K.R. Briffa, T.P. Barnett and S.F.B. Tett (1998). High-resolution palaeoclimate records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. The Holocene, 8(4). 455-471

Jones, P. D., and M. E. Mann (2004), Climate over past millennia, Rev. Geophys., 42, RG2002

Krantz, D.E. (1990) Mollusk-Isotope Records of Plio-Pleistocene Marine Paleoclimate, U.S. Middle Atlantic Coastal Plain. Palaios, 5: 317-335.

Kennett, J. P. and Stott, L. D. (1991), Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353, 225-229.

Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, Kitoh, R.Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver, Z.-C. Zhao. (2007). Global climate projections. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Eds.), The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.

Lawrence KT, Liu ZH, Herbert TD (2006). Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation . Science , 312 5770:79-83

Loulergue, L. et al. 2008 Orbital and millennial-scale features of atmospheric CH_{4} over the past 800,000 years. Nature, 453, 383-386.

Molnar, P. and M.A. Cane. (2002). El Niño's tropical climate and teleconnections as a blueprint for pre-Ice Age climates. Paleoceanography, 17: 11.1-11.12

Mountain, D. G. (2003). Variability in the properties of Shelf Water in the Middle Atlantic Bight, 1977-1999, Journal of Geophysical Research, 108(C1), 3014

Ridgwell, A. (2007). Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography, 22, PA4102.

Robinson, M. M., Dowsett, H. J., Dwyer, G. S. \& Lawrence, K. T. (2008). Reevaluation of mid-Pliocene North Atlantic sea-surface temperatures.
Paleoceanography, 23, PA3213
Siegenthaler, U. et al. 2005 Stable carbon cycle-climate relationship during the Late Pleistocene. Science, 310, 1313-1317.

Wara, M. W., A. C. Ravelo, and M. L. Delaney, (2005). Permanent El Niño-like conditions during the Pliocene warm period. Science, 309, 758-761.

Weidman, C.R., Jones, G.A. and Lohmann, K.C. (1994). The long-lived mollusk Arctica islandica- A new paleoceanographic tool for reconstruction of bottom temperatures for the continental shelvs of the northern North-Atlantic Ocean. Geophys. Res.-Oceans, 99: C9, 18305.

Zachos, J. C. et al. (2005), Rapid acidification of the ocean during the PaleoceneEocene Thermal Maximum. Science, 308, 1611-1615.

Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. (2001). Trends, rhythms, and aberration in global climate 65 Ma to present. Science, 292: 686-693.

Zeebe, R. E., Zachos, J. C. and Dickens, G. R. (2009). Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nat. Geosci. 2, 576-580.

Zubakov, V. A. and Borzenkova, I. I. (1988). Pliocene palaeoclimates: past climates as
possible analogues for mid-twenty-first century climate. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 65, 35-49.

CHAPTER 2: BACKGROUND

2.1 PURPOSE

The study of climate in the past, present and future is essential to society This dissertation focuses on using bivalve proxies to explore aspects of climate change along the coastal shelf regions of the eastern United States. All of the methods and data are anchored in late Holocene/Anthropocene climate studies, but the overall goal is investigating the climate of the Pliocene (5.4-1.8 Million years ago (Ma)). The Pliocene represents the last epoch before the Earth shifted completely into an icehouse world after the long Cenozoic transition from the late Mesozoic greenhouse. There is welldocumented evidence that global temperature and atmospheric CO_{2} levels are directly related, and that both steadily declined through the Cenozoic. They reached their lowest levels during the Quaternary. However, in the last decades of the Holocene, atmospheric CO_{2} levels rose and are now projected to reach levels not present in the atmosphere since the Pliocene.

The mechanisms driving atmospheric CO_{2} levels in the late Holocene are different than the mechanisms altering atmospheric CO_{2} concentrations during the Pliocene. Natural forcing mechanisms operating on timescales of thousands to millions of years forced CO_{2} levels to rise and fall during the Pliocene. In comparison, atmospheric CO_{2} concentrations are rising in the late Holocene in hundreds of years.

However, some conditions during the Pliocene are similar to today or the probable near future. For example, the distribution of continents and ocean basins are in similar configurations. Estimates of mid-ocean spreading and continental collision rates are unchanged since Pliocene times, so mountain ranges are in the same locations and similar in elevation, ocean basins are similar in width, and volcanic activity is likely comparable. The physical and biological processes that sculpt our dynamic planet (insolation, wind and ocean circulation patterns, weather, erosion, respiration, photosynthesis, bioturbation, etc.) remain unchanged, though the exact biological species and topography do vary. Most importantly for society (at least for government planners), though the rate of cause and effects are different, the concentrations of CO_{2} and the expected temperatures are similar.

Methods successful in deciphering shell isotopic data from the mid Pliocene Warming Period (MPWP; 3.2-2.5 Ma) and various Quaternary intervals demonstrate that marine bivalve fossil records potentially provide a unique opportunity to study environmental trends during climate change episodes prior to the instrumental record. Results from this dissertation research provides much needed proxy series data for modelers attempting to reconstruct environmental and climatic changes in shallow marine settings along the low to mid-latitudal gradient of the Atlantic Coastal Plain. These proxy time series also have temporal resolution high enough to investigate interannual to decadal climate phenomenon.

Earth's climate is a result of incoming solar radiation interacting with the dynamic earth systems of the hydrosphere, lithosphere, atmosphere, asthenosphere and biosphere. Today's climate is the outcome of the complex interactions and feedbacks between all of these systems, integrated over the billions of years of Earth history. For scientists to accomplish the essential societal task of predicting future climate, an understanding of present day and past climate is necessary. The continuing debate over future climate change stems from the temporal limitations of the instrumental record. The paleoscientific community, espousing uniformitarian idealism, asserts that effective proxies can expand the instrumental record into the past and reduce the large uncertainties in future climate projections. But if to say that the study of climate since ~ 1900 (global instrumental record) is difficult and marginally adequate, then the study of much earlier climate is even more demanding and uncertain. Paleoclimatology, paleoceanography and paleoecology are based on robust physical and chemical geologic principles, (e.g., the movement of continents, distribution of ocean basins, etc.) and plausible assumptions underlying proxy estimations (e.g., biological uniformitarianism, climate effects on biologically induced mineralization, etc.). To effectively study present and past regional climate along the coastal regions of the eastern United States, it is important to distinguish between these extremes by summarizing what is known and what is assumed.

2.2 BACKGROUND

2.2.1 Physical Geographic Setting

The western North Atlantic continental margin is a passive margin junction between the continent and the ocean basins. The secondary physiographic features on the continent include the mountains, hills, plateaus, plains, and shelves. These physiographic
features are separated by major faults, systems of folds and faults, and measurable differences in elevation and relief (Figure 2.1). Smaller physiographic features are formed through irregular erosion and deposition by geologic agents such as glaciers, streams, marine currents, waves and mass movements. Most of the Atlantic continental margin has been smoothed by sediments brought to the ocean by streams that eventually become eroded by wave action. These sediments prograde seaward across the continental shelf and slope and have constructed continental rises and abyssal plains, burying the irregular underlying topography.

The oldest and largest physiographic province, extending from the Arctic Circle to the St. Lawrence Valley and the Great Lakes, is the Laurentian Upland. The Laurentian Upland is the shield of Precambrian igneous and metamorphic rocks that was originally a mountainous region that has since eroded and produced the great quantities of sediment that were deposited in surrounding areas to form most of the other land area of North America. Glaciation during the Pleistocene Epoch produced surface erosional features on the bedrock and depositional features of glacial excavation and drift.

The Interior Plains province lies south of the Laurentian Upland and forms the broad saddle between the Appalachian Mountains and the Rocky Mountains. The central and southern portions of the Interior Plains consist of Paleozoic basins and domes of terrigenous beds, carbonate rocks, and evaporites overlain by Cenozoic alluvium. The northern edge is occupied by the Great Lakes, depressions carved by Pleistocene glaciers by way of the St. Lawrence River. Glaciers also had a considerable effect on the
sedimentary regime of the continental shelf throughout the Susquehanna River to the Chesapeake Bay and the Mohawk and Hudson Rivers to the New York area of the MidAtlantic Bight. The northeasterly extension of the Interior Plains, the St. Lawrence Lowland, was depressed as much as 180 m during the glaciations. During glacial retreat drainage shifted from the Mississippi River to the northeastern river basins, sometimes with catastrophic outburst floods (Lewis and Teller, 2007).

The Appalachian Highlands occur on the Atlantic side of the Interior Plains. They extend from New England about 1,900 km to the southeastern United States and consist of the Adirondacks, Valley and Ridge, Blue Ridge, Appalachian Plateau, and Piedmont provinces. While well exposed in the northeast, the Appalachians dip and are buried beneath the coastal plain in the southeast. The Appalachian Plateau is the westernmost province, where the rocks consist mainly of late Paleozoic terrigenous sedimentary units, are nearly horizontal and undisturbed. The province is bounded on all sides by in-facing slopes that reflect a general synclinal structure. The Plateau province has undergone considerable fluvial erosion, and the northern part has been altered by glaciation.

The Piedmont is the easternmost province of the Appalachian Highlands and is the least mountainous. Its elevation above modern sea level ranges from about 60 m in the north to about 550 m in the south. The Piedmont is the expression of uplands with moderate relief containing several lowlands floored with Triassic sedimentary rocks. These Triassic basins, which represent fault troughs, extend from Canada to Florida and
demarcate the rift zone of the early Atlantic basin. The boundary between the Piedmont and the Atlantic coastal plain is known as the Fall Line, where differences in the hardness of rocks on either side cause the rivers descending onto the coastal plan to drop over a series of rapids and waterfalls.

The coastal plain along the Atlantic coast of the eastern United States consists of one carbonate plateau (the Florida platform) and two terrigenous embankments (the Atlantic and Gulf coasts). The Atlantic terrigenous embankment extends from Cape Cod to northern Florida, and the one in the Gulf of Mexico lies between Florida and the Yucatan platforms. The Atlantic embankment is divided into a northern embayment, the Mid-Atlantic Bight (MAB),that extends from Cape Cod to Cape Hatteras, and the South Atlantic Bight (SAB) that extends from Cape Hatteras to northern Florida. These embayments are characterized by estuaries that extend inland as far west as the Fall Line, and narrow peninsulas (called arches) separate the embankments (Figure 2.2). The coastal plain consists of Cenozoic silisiclastic and carbonate strata overlaying Cretaceous evaporites and Paleozoic basement. East of New York City, the coastal plain is completely submerged except for a chain of islands formed by moraines and glacial outwash deposited during the latest glacial advance. These islands are part of an escarpment (the Orangeburg Scarp, Figure 2.3-cross-section) that can be traced from the Grand Banks as far south as the Chesapeake Bay. The crest of the Orangeburg Scarp consists of Upper Cretaceous strata that are overlain seaward by Tertiary beds. The SAB portion of the Atlantic coastal plain differs from the MAB by its lesser submergence.

The escarpment topography (Figure 2.3-cross-section) is less well developed than farther north.

The Florida platform is a region dominated by carbonate deposits and consisting of a high central area (the Ocala uplift-Peninsular arch) surrounded by extensive marine terraces, swampland, karst topography, and active and inactive coral reefs. The Ocala high is the major surface structural feature of the Florida peninsula, and uplift appears to have begun during the Eocene and continued into the Miocene. Prior to the Ocala uplift, the ancestral Gulf Stream (Florida Current) flowed through the Gulf Trough and Suwannee Strait of northern Florida and Georgia resulting in the warm current flowing across portions of the Carolina shelf, facilitating subtropical skeletal carbonate deposition (Coffey and Read, 2007). The Florida platform also displays a well-developed artesian system, having springs that discharge along the shore and on the continental shelf. These features formed during the lower sea level of glacial episodes of the Plio-Pleistocene (Swart and Price, 2002).

Topographic and sedimentary studies indicate that the surface of the coastal plain is indented by broad, flat areas termed "terraces" (Figure 2.3-cross-section). Various workers have used these coastal terraces to reconstruct former shorelines, former sea levels, and the complex stratigraphic sequences of marine and continental deposits along the Atlantic coastal plain (Blackwelder, 1981; Cronin, 1988; Krantz, 1991). As many as nine of these features, ranging in elevation from 3 to 82 m , exist along the Atlantic coast. They dip gently seaward and commonly are separated by distinct changes in slope that
are escarpments probably carved by marine erosion. The most prominent are the Surry and Suffolk scarps (elevations 27-30 m and 6-9 m, respectively). These coastal scarps likely indicate interglacial stages when sea level was higher than at present. The recovery of Pleistocene-aged micro- and macrofossils indicate that the linear features and flat surfaces below the Surry scarp are marine in origin and Pleistocene in age. Features above the Surry scarp are the result of late Miocene to late Pliocene marine erosion and deposition followed by preglacial alluvial and estuarine deposition (Cronin, 1981; Gibson, 1983; Dowsett and Cronin, 1991). Analogous features, like Block Island (-40 m) and Fortune Shores (-80), are subtidal terraces that represent the position of a stillstand sea level during the Pleistocene (Krantz, 1991).

The continental shelf off the eastern United States can be divided into three major sections and associated with the chief process that shaped their topography. These three sections are Georges Bank-Scotian Shelf (GBS; glacial, meltwater, and marine deposition), MAB shelf (glacial, meltwater and marine deposition), and SAB shelf (marine deposition). The average width of the shelf is about 200 km , with the widest lengths to the shelf break in the northern GBS section ($\sim 500 \mathrm{~km}$). Along the MAB section, the shelf is again widest in the northern portion and narrows to less than $\sim 25 \mathrm{~km}$ adjacent to Cape Hatteras. After Cape Hatteras the SAB shelf widens but again narrows to less than a kilometer along the southern Florida coast.

2.2.2 Sedimentology

The continental shelf is dominated by siliciclastics (deposition of eroded Laurentian terrains) with a transition zone to a mixed carbonate-siliciclastic system south of the Carolinas (Figure 2.4, sediment sand percentage). The surficial sediments are primarily Tertiary in age and are overlain in locations by Quaternary alluvium (Reid et al., 2005). Glacial till and outwash deposits are present in both the GBS and MAB sections. Along the GBS section glacial deposits are less than 30 m thick, occurring along the shallowest bank tops, while in the MAB glacial deposits form the irregular island chain (end moraines, Long Island to Block Island) atop the Orangeburg escarpment.

Moving south along the MAB and into the SAB , coarse sediments (sands and shell hash) form waves and ridges nearly perpendicular to the shore. Near shore sand waves and ripples are altered by tides and major storm events and move generally southeastward along the shelf. Modern movement of deeper water sand waves on the continental shelf is less likely than in shallow water. Studies have found that the coarsegrained features are rather persistent, and there is little evidence of onshore sediment transport from deep waters (Gutierrez et al., 2005). These studies indicate that near shore deposits are likely former barrier beaches, while deeper sandy areas on the continental shelf are relicts from times of lower sea level.

Most all subtidal sediments are covered with a thin (millimeters) fluffy and easily re-suspended layer of fine-grained particles dominated by calcium carbonate
(foraminifera) and lesser amounts of illite and chlorite clays (glacial and terrigenous in origin) (Walsh et al., 1988; Biscaye et al., 1994). This easily re-suspended sediment layer is underlain by a tens of centimeters thick layer of compacted sediment with the same biologically dominated components. Large-scale sediment surveys using cores and grab samples, such as those deployed by the USGS (usSEABED) and the Shelf Edge Exchange Processes (SEEP) experiments, indicate that this fine sediment is a late Holocene accumulation (since the flattening of post glacial sea level rise). Though easily transported along the MAB shelf, only a small portion escapes the shelf and is transported to the slope (Biscaye et al., 1994; Reid et al., 2005).

2.2.3 Oceanographic Setting

Shelf Water (SHW) is the primary water mass in the MAB (Chapman et al., 1986; Mountain 2003). It is generally cooler and lower in salinity than the oceanic waters seaward of the shelf, commonly termed the Slope Water (SLW). The boundary between these two water masses occurs in a narrow transition region, the shelf/slope front. Much of SHW in the MAB is formed as a water mass in the Gulf of Maine. Cold, low-salinity Scotian Shelf water (SSW) enters the gulf in the surface layer around Cape Sable, and the warmer, more saline SLW enters the gulf at depth through the Northeast Channel (Fairbanks, 1982). These two water masses mix as they circulate around the gulf. From the western gulf the product of this mixing enters onto the northern side of Georges Bank to flow clockwise around the bank and then westward from the bank's southern flank past Nantucket Shoals and into the MAB. Once in the MAB, the properties of the SHW are modified locally by seasonal heating and cooling, by local precipitation and river runoff,
and by mixing with the offshore SLW. However, much of the freshwater component of the SHW in the MAB is part of a large scale, buoyant coastal current system that extends from Labrador to Cape Hatteras (Fairbanks, 1982; Chapman et al., 1986; Chapman and Beardsley, 1989).

SHW leaves the MAB through several processes. Some SHW traverses the length of the MAB and leaves the shelf near Cape Hatteras, where it flows eastward along the northern edge of the Gulf Stream (GS) (Churchill et al., 1989, 1993). Warm core GS rings can entrain SHW when they impinge upon the edge of the shelf. Smaller scale mixing and exchange also occur between the SHW and SLW at the shelf/slope front. The SEEP I (Walsh et al., 1988) and SEEP II (Biscaye et al., 1994) did extensive studies of the cross frontal exchange in the MAB. While the transport of SHW into the MAB can be directly measured (e.g., Beardsley et al., 1985, Lentz, 2005b), the processes removing SHW from the MAB are much more difficult to measure and act along the entire length of the shelf. Quantitative estimates of the rate SHW is removed by the various processes listed above and of seasonal or interannual variations in those rates are not well documented.

The hydrography of the southern Mid-Atlantic Bight (MAB) has many features that are characteristic of the entire bight (Beardsley et al., 1976; Csandv and Hamilton, 1988; Mountain, 2001). The overall drift of the shelf waters is to the southwest (Mountain, 2001; Lentz, 2008a). A permanent thermohaline front exists between the relatively fresh shelf surficial waters and the more marine waters of the slope. The SHW
undergoes large seasonal variations and stratification fluctuations from winter to summer. Large direct runoff into the MAB is primarily by fresh water discharge from the Hudson, Delaware, and Susquehanna Rivers. Freshwater discharges are modified through wave and tidal mixing as they pass through their associated embayments (New York, Delaware and Chesapeake Bays), and SHW salinity is also modified by the proximity of the GS and eddies shed from it (Figure 2.3).

The vigorous vertical and horizontal mixing in the MAB is caused by cooling and storms that occur during the late winter-early spring that resets the shelf each year(Beardsley et al., 1976; Csandv and Hamilton, 1988; Mountain, 2001). At this time the shelf is vertically well mixed and the mid-shelf horizontal property gradients are at a minimum. The shelf, because of its relatively shallow depths, is colder as well as fresher than the SHW offshore. Mid-shelf temperatures reach their seasonal minima between 5 and $7{ }^{\circ} \mathrm{C}$, while mid-shelf salinities are about 34 psu (practical salinity units). Offshore of the shelfbreak front, slope water temperatures and salinities for the same depth range are typically about $12^{\circ} \mathrm{C}$ and 35.3 psu , respectively (Csandy and Hamilton, 1988). The low salinity water flows southward close to shore because the prevailing winds during this period are from the northeast.

In late spring, the decrease in wind forcing, combined with increased insolation, causes the near-surface waters to warm, forming a $10-15 \mathrm{~m}$ thick seasonal thermocline at a depth of about 20 m . Below the thermocline, remnant winter water is isolated from the seasonal warming. This substantial body of cold water is referred to as the "cold pool"
and is regularly found along the outer half of the shelf (Houghton et al., 1982). The water within the cold pool flows southward and is replenished from farther north, causing the annual minimum bottom temperatures on the outer shelf to occur in summer. The cold pool waters along the shelf warm gradually through heat flux from above (Wallace, 1994) and through the shelf-slope front (Houghton et al., 1994). These cold pool waters remain enriched in nutrients as surficial waters become depleted, resulting in a near constant supply of food to bottom-dwelling fauna (Wood and Sherry, 1993). The constant density of this chlorophyll-rich water may contribute to the nutrient budget of Atlantic surface waters through a long loop of circulation that transports deep water from the Labrador Sea to Cape Hatteras (Wood and Sherry, 1993).

Surface water salinity is also lower in the summer, partly as a result of increased freshwater discharge from the bays and the Hudson River. Contributing to the lower surface salinities are the prevailing summertime winds from the south. These upwellingfavorable winds tend to retard the southward, near-shore flow of the fresh water and drive the surface water offshore. The seasonal thermocline dominates the density structure of the upper water column, diffusing the intensity of the shelf-slope front at the surface. Even though the shelf surface temperatures reach $20-25^{\circ} \mathrm{C}$, surface temperatures tend to increase offshore due to the impact of the warm Gulf Stream waters on the slope sea (Mountain and Holzwarth, 1989).

2.2.4 Geologic Setting and Stratigraphy

This study focuses on unconformity-bound marine deposits of the Pliocene of North Carolina and Virginia (Figure 2.2). These locations were chosen because of their proximity to important oceanographic and atmospheric circulation features. For example, the GS, which strengthened during the Miocene, became enhanced with the closure of the Panama Isthmus during the Pliocene (Cronin 1988; Cronin and Dowsett, 1996; Haug and Tiedemann, 1998, Haug et al., 2001). Moreover, as stated in the 2007 IPCC report, the mid Pliocene is important because it is similar to projections of future 21st century climate change (Meehl, et al., 2007). Similarities include: the continents and oceans have similar configurations, the interior of the continents were and are expected to be arid, estimated temperature ranges are similar, atmospheric CO_{2} levels were and are expected to be higher than today, and sea and continental ice were and are expected to be reduced. The report explicitly states that the mid Pliocene "presents a view of the equilibrium state of a globally warmer world."

Pliocene sampling focused on the unconsolidated Tertiary sediments of the US Middle Atlantic Coastal Plain (MACP). The lithostratigraphy, biostratigraphy, and chronostratigraphy of the MACP have been extensively studied since the 19th century (Figure 2.5). The MACP was also the first study area that Pliocene Research, Interpretation and Synoptic Mapping project (PRISM) used to test the feasibility of their transfer function (Dowsett and Poore, 1990). PRISM was initially devised to reconstruct surface conditions from a focused stratigraphic interval (3.264-3.025 Ma = PRISM interval). The PRISM2 reconstruction (Dowsett et al, 1999) represents the most complete
and detailed global reconstruction of climate and environmental conditions older than the last glacial maximum (18-21 ka) (CLIMAP, 1982). Bivalve shells were collected from the Rushmere (3.5-3.1 Ma) and Moore House (3.1-2.5 Ma) Members of the Yorktown Formation (Fm) (PRISM Mid-Pliocene Warm period (MPWP)) of Hampton Roadstead and the Edenhouse Member of the Chowan River Fm (2.5-1.9 Ma) of North Carolina (Mansfield, 1931; Petuch, 1982; Krantz, 1990). The litho- and biostratigraphy of the Yorktown and Chowan River Fms indicate open-marine conditions with normal-marine salinity (Ward and Strickland, 1985). The Yorktown Fm represents tropical to warmtemperate climatic conditions and has been dated using nannofossil assemblages (Hazel, 1971; Cronin and Hazel, 1980; Cronin et al., 1984) and molluscan biozones (Ward and Blackwelder, 1976; Blackwelder, 1981b). The Rushmere and Moore House Members contain molluscan assemblages (including Strigilla and Dinocardium), which indicate a pronounced episode of warming reflecting tropical conditions (Ward, 1998). The Chowan River Fm contains a molluscan assemblage entirely warm-temperature in nature, and therefore represents cooling conditions (Ward and Gilinsky, 1993). These different assemblages represent the shifting influence between warm tropical waters penetrating more northward during the middle Pliocene and cool boreal waters reaching Cape Hatteras, North Carolina post-Yorktown.

2.2.5 Sclerochronology

Sclerochronology is the study of shell and skeletal growth lines and increments, and provides a means to investigate differences in growth rates, life history, ecology, and environmental conditions (Jones, 1983; Jones and Quitmyer, 1996; Marchitto et al., 2000;

Schöne et al., 2002; Schöne et al., 2003; Walker and Surge, 2006; and many others). The discipline is based on the long accepted knowledge that most bivalves precipitate their shells in isotopic equilibrium with the ambient water, and accrete their shells in response to certain environmental and biological factors. The prominent annual growth lines and increments formed during seasonal temperature stresses are identified from the exterior and cross-section of the shell and are regularly used to determine age of an individual. In long-lived species (e.g. Arctica islandica, M. mercenaria, and Spisula s. solidissima), aging is done by counting the annual increments. Dates can be assigned to increments, if the time of death is known (Jones, 1979; Jones et al, 1983; Jones, 1989). If the animal was collected alive, articulated and/or the time of death known, then a precise chronology can be constructed. Multiple animals can be cross-dated to extend a chronology past the lifetime of a single individual. Constructing such master chronologies is similar to dendrochronology or 'tree-ring' records.

Most bivalve shells grow in isotopic equilibrium with the waters they inhabit (Williams et al., 1982). Shell growth is primarily related to temperature, but is also related to species fractionation, nutrient supply, and other environmental and biological parameters (Figure 2.6). Shell records of annual growth widths have been used to construct a master chronology along a latitudinal transect and to determine the spatial sensitivity of bivalve individuals to environmental parameters (Schöne et al., 2002). Using variations in the oxygen isotope ratio of shell carbonate $\left(\delta^{18} \mathrm{O}\right)$ between annual growth lines, sea surface temperature (SST) can be estimated with sub-annual or mean annual resolution assuming the $\delta^{18} \mathrm{O}_{\text {water }}$ value is known or can be constrained (Jones,

1983; Jones and Quitmyer, 1996; Marchitto et al., 2000; Surge et al., 2001; Schöne et al, 2002). Therefore, the combination of sclerochronology and stable isotopes can be used to investigate the physical, chemical, and thermal oceanographic divisions in the MACP primarily caused by the changing intensity and penetration of the tropical and boreal waters.

Two socially important implications of this type of research are: (1) the effective management of on- and offshore commercial fisheries and shellfisheries; and (2) ecosystem and environmental monitoring. Fisheries managers keep track of catch amounts and ages to ensure that overfishing will not be the leading cause of a fish stock collapse. This is an essential task to ensure a stable commercial fishing market and the jobs, consumers, and communities associated with fishing. The purpose of ecosystem and environmental monitoring can refer to either tracing pollutants, for example humanmade runoff into Chesapeake and Florida Bays that kill oyster bars and reef tracks, or to using bivalve biological responses to monitor long-term variations like those from climate change.

Two geological important implications of growth lines are sources of paleoecology and paleoenvironment information. For example, periodic lines can provide evidence on the time of year an organism was born, its lifespan, rate of growth, breeding periodicity, and season of death. Applied to fossil populations, similarity in the patterns of disturbance lines or of periodic lines can potentially determine which members of the population had lived (and died) at the same place and time. In some circumstances it may
be possible to overlap the records of individuals in a population and construct a chronology of events far exceeding any single lifespan. The presence of disturbance lines or the variation in the spacing of periodic lines can provide paleoenviromental information (e.g., evidence for a variable environment and variability argues for relatively shallow water). Similarly, the presence of an annual growth line may suggest a subtidal habitat or a climate with well-defined seasons, while tidal periodicity lines imply a habitat in or near the intertidal zone. Differences between growth increment series recorded in adjacent populations can be interpreted as there being a physical or chemical barrier between the populations.

2.3. CONCLUSIONS

Climate scientists, science managers, and policy makers responsible for making policy decisions on the intervention and mitigation of human-induced climate must understand the past states of Atlantic circulation to determine its response to increasing greenhouse gas concentrations (IPCC WG1, 2007). To do this, they must understand the geologic boundary settings that permit present conditions. Much of the geologic and hydrologic information about the MAB and MACP region is well documented. Properly using this knowledge to in interpret past conditions is essential in the following studies.

The methods used in this dissertation produce long, sub-annually resolved climate reconstructions of significantly important intervals during the late Cenozoic along the western margin of the North Atlantic basin. Successfully deciphering shell isotopic data from the Recent and MPWP endemic species allow further investigation of various

Quaternary events (e.g. Little Ice Age, Young Dryas, and the Holocene extinction), and demonstrate that marine bivalve fossil records permit a unique opportunity to study physical ocean trends during climate change episodes on long time scales. The results of this work provide much needed proxy series data for modelers attempting to reconstruct environmental and climatic changes in shallow marine settings along the low to midlatitude gradient of the MACP.

This research is innovative because it incorporates both increment and isotope sclerochronology, and paleoclimatology to understand, reconstruct and compare variations in environmental patterns during warming climate intervals. The estimations and comparisons of past parameter values to modern records allow the study other larger questions about global warming intervals, such as: (1) are there changes in the intensity of geostrophic and thermohaline circulation experienced along the western boundary of the North Atlantic; (2) are there shifts in the boundaries of shelf provinces waters due to these changes in intensity; and (3) are past natural (pre-industrial) ocean-atmospheric interactions similar to the baseline anthropogenically-altered modern analogs or are they radically different?

REFERENCES

Abbott, R.T., (1974), American Seashells, second edition. New York, Van Nostrand Reinhold Company, 663 p.

Abbott, R.T., (1984), Collectible Florida Shells: Melbourne, FL, American Malacologists, Inc., 64 p.

Andrews, Jean, (1971). Shells and shores of Texas: Austin, TX, University of Texas, 365 p.

Arthur, M.A., D.F. Williams and D. S. Jones (1983). Seasonal temperature-salinity changes and thermocline development in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology, 11: 655-659

Bailey, R. H., (1973).Paleoenvironment, Paleoecology, and Stratigraphy of Molluscan Assemblages from the Yorktown Formation (Upper Miocene - Lower Pliocene) of North Carolina; Thesis, University of North Carolina at Chapel Hill

Bane, J.M and D.A. Brooks (1979). Gulf Stream meanders along the continental margin from the Florida Straits to Cape Hatteras. Geophysical Research Letters, 6(4). 280-282.

Baringer, M. O. (2001), Sixteen years of Florida current transport at 27 N, Geophys. Res. Lett., 28, 3179-3182

Black, B.A., (2009). Climate driven synchrony across tree, bivalve, and rockfish growth increment chronologies of the northeast Pacific. Marine Ecology. Progress Series 378, 37-46.

Black, B.A., Boehlert, G.W., Yoklavich, M.M., (2008). A tree-ring approach to establishing climate-growth relationships for yelloweye rockfish in the northeast Pacific. Fisheries Oceanography 5, 368-379.

Black, B.A., Gillespie, D., MacLellan, S.E., Hand, C.M., (2008). Establishing highly accurate production-age data using the tree-ring technique of crossdating: a case study for Pacific geoduck (Panopea abrupta). Canadian Journal of Fisheries and Aquatic Sciences.

Blackwelder, B.W. (1981a). Late Cenozoic stages and molluscan zones of the middle U.S. Atlantic Coastal Plain. Journal of Paleontology, Memoir, 12: Part II.

Blackwelder, B.W. (1981b). Stratigraphy of upper Pliocene and lower Pleistocene marine and estuarine deposits of northeastern North Carolina and southeastern Virginia. U.S. Geological Survey Bulletin, 1502-B: B1-B16.

Brunner, C. A. (1983). Evidence for increased volume transport of the Florida Current in the Pliocene and Pleistocene, Mar. Geol., 54, 223-235.

Bunn, A.G. (2007). dplR: Dendrochronology Program Library in R. R package version 1.0 URL http://www.R-project.org.

Bunn, A.G. (2008). A dendrochronology program library in R (dplR).
Dendrochronologia, 26: 115-124

Campbell, L.D. (1976). Paleoecology of the Lone Star Industries Pit, Yorktown Formation (Pliocene), Chuckatuck, Virginia. Ph.D Dissertation: University of South Carolina, XII +184.

Campbell, L.D. (1993). Pliocene molluscs from the Yorktown and Chowan River Formations in Virginia, Virginia Division of Mineral Resources. 127: 1-259.

Campbell, Matthew R., (1998), Plio-Pleistocene Bivalvia of the Western Atlantic Ocean: Temporal and Taxonomic Resolution and the Anatomy of an Extinction; Thesis, University of North Carolina at Chapel Hill

Carter, J. G., T. J. Rossbach, Z. P. Mateo, and M. J. Badiali. (2003). Summary of lithostratigraphy and biostratigraphy for the Coastal Plain of the southeastern United States. Biostratigraphy Newsletter, 4: 1 chart

Chapman, D.C., J.A. Barth, R.C. Beardsley, and R.G. Fairbanks (1986). On the continuity of mean flow between the Scotian Shelf and the Middle Atlantic Bight. Journal of Physical Oceanography, 16: 758

Chiang, T., C. Wu, and S. Chao (2008). Physical and geographical origins of the south China Sea Warm Current. Journal of Geophysical Research, 113: C08028

Chintala M.M. and Grassle J.P. (2001). Comparison of recruitment frequency and growth of surfclams, Spisula solidissima (Dillwyn, 1817), in different inner-shelf habitats of New Jersey. Journal of Shellfish Research, 20: 1177-1186.

Cronin, T.M. (1981). Rates and possible causes of neotectonic vertical crustal movements of the emerged southeastern United States Atlantic Coastal Plain. Geological Society of America Bulletin, 92 : 812-833.

Cronin, T.M. (1988). Evolution of marine climates of the U.S. Atlantic coast during the past four million years. In: Shackleton, N.J., West, R.G., Bowen, D.Q. (Eds.), The Past Three Million Years; Evolution of Climatic Variability in the North Atlantic Region; a Discussion, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 318, Royal Society of London, London, 411-430.

Cronin, T.M. (1991). Pliocene shallow water Paleoceanography of the North Atlantic Ocean based on marine ostracodes. Quaternary Science Review, 10: 175-188.

Cronin, T.M. and H.J. Dowsett. (1996). Biotic and oceanographic response to the Pliocene closing of the central American Isthmus. In: Jackson, J.B.C., Budd, A.F., Coates, A.G. (Eds.), Evolution and Environment in Tropical America. University of Chicago, IL, 76-104.

Cronin, T.M. and J.E. Hazel. (1980). Ostracode biostratigraphy of Pliocene and Pleistocene deposits of the Cape Fear Arch region, North and South Carolina. U.S. Geological Survey Professional Paper, 1125-B: B1-B25.

Cronin, T.M., H.J. Dowsett, G.S. Dwyer, P.A. Baker, and M.A. Chandler. (2005). Mid-Pliocene deep-sea bottom-water temperatures based on ostracode $\mathrm{Mg} / \mathrm{Ca}$ ratios. Marine Micropaleontology, 54: 249-261.

Cronin, T.M., L.M. Bybell, R.Z. Poore, B.W. Blackwelder, J.C. Liddicoat, and J.E. Hazel. (1984).Age and correlation of emerged Pliocene and Pleistocene deposits, U.S. Atlantic Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 47: 2151.

Dowsett, H.J. and L.B. Wiggs. (1992). Planktonic foraminiferal assemblages of the Yorktown Formation, Virginia, USA. Micropaleontology, 38: 75-86.

Dowsett, H.J. and T.M. Cronin (1990). High eustatic sea level during the middle Pliocene: Evidence from the southeastern U.S. Atlantic Coastal Plain. Geology, 18: 435-438.

Elliot, M., P.B. deMenocal, K.L. Braddock, S.S. Howe. (2003). Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochemistry, Geophysics, Geosystems, 4: 1056-1072

Emery, K.O. and E. Uchupi (1972). Western North Atlantic Ocean: Topography, rocks, structure, water life, and sediments. Tulsa, Oklahoma., American Association of Petroleum Geologists, p 532.

Fenger, T., D. Surge, B.R. Schöne, and N. Milner. (2007). Sclerochronology and geochemical variation in limpet shells (Patella vulgata). A new tool to reconstruct Holocene coastalsea surface temperature. Geochemistry Geophysics Geosystems, 8.

Fritts, H.C., 1976. Tree Rings and Climate. Academic Press, New York. 567 pp.
Gardner, J. (1944). Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina, Part 1: Pelecypoda. United States Geological Survey Professional Paper, 199-A: 1-178.

Gardner, J. (1948). Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina, Part 2: Scaphopoda and Gastropoda. United States Geological Survey Professional Paper, 199-B: 1-310.

Gibson, T.G., (1983), Stratigraphy of Miocene through lower Pleistocene strata of the United States central Atlantic Coastal Plain, in Ray, C.E., ed., Geology and paleontology of the Lee Creek mine, North Carolina, I: Smithsonian Contributions to Paleobiology 53, p. 35-80.

Gibson, T.G., and Bybell, L.M., (1984), Foraminifers and calcareous nannofossils of Tertiary strata in Maryland and Virginia; A summary, in Frederiksen, N.O., and Krafft, Kathleen, eds., Cretaceous and Tertiary stratigraphy, paleontology, and structure, southwestern Maryland and northeastern Virginia; Field trip volume and guidebook (for field trip held October 17, 1984): Reston, Va., American Association of Stratigraphic Palynologists, p. 181-189.

Goewert, A.E. and D. Surge. (2008). Seasonality and growth patterns using isotope sclerochronology in shells of the Pliocene scallop, Chesapecten madisonius. GeoMarine Letters 28: 327-338.

Grossman, E.L., and T. Ku. (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology, 59: 705 59-74.

Haug, G.H. and R. Tiedemann. (1998). Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393: 673-676.

Haus, B.K., H.C. Graber, L.K. Shay, and T.M. Cook (2003). Alongshelf Variability of a Coastal Buoyancy Current during the relaxation of downwelling favorable winds. Journal of Coastal Research, 19(2). 409-422

Hazel, J.E. (1971). Ostracode biostratigraphy of the Yorktown Formation (upper Miocene and lower Pliocene) of Virginia and North Carolina. U.S. Geological Survey Professional Paper, 704:1-13.

Hogg, N.G., (1992). On the transport of the Gulf Stream between Cape Hatteras and the Grand Banks. Deep-Sea Research, 39, 1231-1246.

Hogg, N.G., R.S. Pickart, R.M. Hendry, and W.J. Smethie Jr., (1986), The Northern Recirculation Gyre of the Gulf Stream. Deep-Sea Research, 33, 1139-1165.

Johns, W.E., T.J. Shay, J.M. Bane, D.R. Watts, (1995). Gulf Stream structure, transport, and recirculation near 68° W. Journal of Geophysical Research, 100, 817838.

Jones, D.S. (1980). Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology, 6(3): 331340.

Jones, D.S. (1981). Annual growth increments in shells of Spisula solidissima record marine temperature variability. Science, 211, 4478: 165-167.

Jones, D.S. (1983). Sclerochronology: reading the record of the molluscan shell. American Scientist, 71: 384-391.

Jones, D.S. and I.R. Quitmyer. (1996). Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios, 11: 340-346.

Jones, D.S., B.J. MacFadden, S.D. Webb, P.A. Mueller, D.A. Hodell, and T.M. Cronin. (1991). Integrated geochronology of a classic Pliocene fossil site in Florida: linking marine and terrestrial biochronologies. Journal of Geology, 99: 637-648.

Jones, D.S., D.F. Williams, and M.A. Arthur (1983). Growth history and ecology of the Atlantic surf clam Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments. J. Exp. Mar. Biol. Ecol., 13: 225-242.

Jones, D.S., I. Thompson, and W. Ambrose (1978). Age and growth rate determinations for the Atlantic surf clam Spisula solidissima (Bivalvia: Mactracea), based on internal growth lines in shell cross-sections. Marine Biology, 47: 63-70.

Jones, D.S., M.A. Arthur, and D.J. Allard (1989). Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Marine Biology, 102: 225-234.

Jossi, J.W. and R.L. Benway (2003) Variability of temperature and salinity in the middle Atlantic bight and Gulf of Maine based on data collected as part of the MARMAP Ships of Opportunity Program, 1978-2001. NOAA Tech Memo NMFS NE 172; 1-92.

Krantz, D.E. (1990) Mollusk-Isotope Records of Plio-Pleistocene Marine Paleoclimate, U.S. Middle Atlantic Coastal Plain. Palaios, 5: 317-335.

Krantz, D.E. (1991). A chronology of Pliocene sea-level fluctuations: the U.S. Middle Atlantic Coastal Plain record. Quaternary Science Reviews, 10: 163-174

Lentz, S.J. (2008a). Observations and a model of the mean circulation over the Middle Atlantic bight continental shelf. Journal of Physical Oceanography, 30(6), 1203-1221.

Lentz, S.J. (2008b). Seasonal variation in the circulation over the Middle Atlantic bight continental shelf. Journal of Physical Oceanography, 38(7), 1486-1500.

Lewis, M.F.C. and J.T. Teller (2007). North American late-Quaternary meltwater and floods to the oceans: Evidence and impact - Introduction, Palaeogeography, Palaeoclimatology, Palaeoecology, 246, 1, 1-7.

Lund, D. C. and W. B. Curry (2006), Florida Current surface temperature and salinity variability during the last millennium, Paleoceanography, 21, PA2009.

Lund, D.C. and W. B. Curry (2004), Late Holocene variability in Florida Current surface density; patterns and possible causes, Paleoceanography, 19, 17.

Lynch-Stieglitz, J., W. B. Curry, and N. Slowey (1999), A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic Foraminifera, Paleoceanography, 14, 360-373.

Ma, H., J.P. Grassle, and J.M. Rosario (2006). Initial recruitment and growth of surfclams (Spisula solidissima Dillwyn) on the inner continental shelf of New Jersey. Journal of Shellfish Research, 25(2): 481- 489.

Marchitto, T.M., D.S. Jones, G.A. Goodfriend, and C.R. Weidman. (2000). Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quaternary Research, 53(2). 236-246.

Marine Resources Monitoring, Assessment, and Prediction website:
http://www.nefsc.noaa.gov/nefsc/publications/crd/crd0408/\#dt
Mountain, D. G. (2003). Variability in the properties of Shelf Water in the Middle Atlantic Bight, 1977-1999, Journal of Geophysical Research, 108(C1), 3014.

Mountain, D.G. and T.J. Holzwarth. (1989). Surface and bottom temperature distribution for the northeast continental shelf. NOAA Tech. Mem. NMFS-F/NEC73; 32 p .

Mountain, D.G.; Taylor, M.H.; Bascuñán, C. (2004). Revised procedures for calculating regional average water properties for Northeast Fisheries Science Center cruises. Northeast Fisheries Science Center Reference Document 04-08; 53 p. Available from: National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.

Olsson, A.A., and Petit, R.E., (1964), Some Neogene Mollusca from Florida and the Carolinas: Bulletins of American Paleontology, v. 47, no. 217, p. 509-567.

Peterson, C.H., P.B. Duncan, H.C. Summerson, and G.W. Safrit Jr. (1983). A markrecapture test of annual periodicity of internal growth band deposition in shells of hard clams, Mercenaria Mercenaria, from a population along the southeastern United States. Fishery Bulletin, 81:765-779.

Popenoe, P. (1985). Cenozoic Depositional and Structural History of the North Carolina Margin from Seismic-Stratigraphic Analyses. In: C.W. Poag (Eds.),

Geologic evolution of the United States Atlantic margin. New York, Van Nostrand Reinhold Company. 87-123.

Reid, J.M., Reid, J.A., Jenkins, C.J., Hastings, M.E., Williams, S.J., and Poppe, L.J, (2005). usSEABED: Atlantic coast offshore surficial sediment data release: U.S. Geological Survey Data Series 118, version 1.0. Online at http://pubs.usgs.gov/ds/2005/118/

Schöne, B.R (2003). A 'clam-ring' master-chronology constructed from a short-lived bivalve mollusk from the northern Gulf of California, USA. The Holocene., 13(1). 39-49.

Schöne, B.R., Castro, A.D.F, Fiebig, J., Houk, S.D., Oschmann, W., Kröncke, We., (2004), Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 212, p. 215-232.

Strom, A., Francis, R.C., Mantua, N.J., Miles, E.L., Peterson, D.L., (2004). North Pacific climate recorded in growth rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophysical Research Letters 31, L06206.

Sverdrup, H.U., M.W. Johnson, and R.H. Fleming, 1942: The Oceans, Englewood Cliffs, NJ Prentice Hall, 1087 pp.

Walker R.L., Heffernan P.B. (1994). Age, growth rate, and size of the southern surfclam, Spisula solidissima similis (Say, 1822). Journal of Shellfish Research, 13:433-441

Ward, L.W. and B.W. Blackwelder. (1980). Stratigraphic revision of upper Miocene and lower Pliocene beds of Chesapeake Group, middle Atlantic Coast Plain. U.S. Geological Survey Bulletin, 1482-D: 1-61.

Ward, L.W. and Blackwelder, B.W. (1987). Late Pliocene and Early Pleistocene Mollusca From the James City and Chowan River Formations at the Lee Creek Mine, In: Ray, C.E., ed. Geology and Paleontology of the Lee Creek Mine, North Carolina, II, Smithsonian Contributions to Paleobiology, 61: 1-283.

Ward, L.W. and G.L. Strickland. (1985). Outline of Tertiary stratigraphy and depositional history of the U.S. Atlantic Coastal Plain. In: C.W. Poag (Eds.), Geologic evolution of the United States Atlantic margin. New York, Van Nostrand Reinhold Company. 87-123.

Ward, L.W. and Powars, D.S. (1989). Tertiary stratigraphy and paleontology, Chesapeake Bay Region, Virginia and Maryland: Chesapeake Bay Region, Virginia and Maryland, July 15-July 1. Washington, D.C., American Geophysical Union.

Weinberg, J.R. (1998). Density-dependent growth in the Atlantic surfclam, Spisula solidissima, off the coast of the Delmarva Peninsula, USA. Marine Biology, 130: 621630.

Weinberg, J.R. (1999). Age-structure, recruitment, and adult mortality in populations of the Atlantic surfclam, Spisula solidissima, from 1978 to 1997. Marine Biology, 134: 113-125.

Weinberg, J.R. (2005) Bathymetric shift in the distribution of atlantic surfclams: response to warmer ocean temperature. ICES journal of Marine Science, 62: 14441453.

Weinberg, J.R. and T.E. Helser (1996). Growth of the Atlantic surfclam, Spisula solidissima, from Georges bank to the Delmarva Peninsula, USA. Marine Biology, 126: 663-674.

Wigley, T.M.L., Briffa, K.R., Jones, P.D., (1984). On the average value of correlated timeseries, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23, 201-213.

Williams, D.F., M.A. Arthur, D.S. Jones, and N. Healy-Williams (1982). Seasonality and mean annual sea surface temperatures from isotopic and sclerochronological records. Nature, 269: 432-434.

Witbaard, R., M.I. Jenness, K. van der Borg, and G. Ganssen (1994). Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Netherlands Journal of Sea Research, 33(1). 91-101.

Base map is from the ETOPO2v2 Global Gridded 2-minute Database, National Geophysical Data Center, National Oceanic
and Atmospheric Administration, U.S. Dept. of Commerce, http://www.ngdc.noaa.gov/mgg/global/etopo2.html.
Figure 2.1. Physical Setting of eastern North America and the western Atlantic Ocean Basin.

Figure 2.2 Generalized onshore embayment and major structural features map othe Atlantic Coastal Plain (after Ward et al., 1991).

Figure 2.3. Schematic map and cross-section of the eastern North American coastal plain and western Atlantic basin. Upper panel shows cold (blue) and warm water (red) surface currents. Lower panel is a cross-section through Virginia from the Appalachian Highlands to the 250 meter bathymetric line (500× vertical exaggeration).

Figure 2.4. Filled contour map showing the percent sand-sized sediment along the eastern North American continental shelf and slope. (USGS usSEABED Data Series 118 (2005)).

Figure 2.5. Pliocene stratigraphic nomenclature for the coastal plain of a combined North Carolina and Virginia. Column also shows the mid Pliocene Warm Interval slab according to the PRISM Reconstruction.

Figure 2.6. Flow chart showing the conventional methods employed in isotope paleothermometry.

Figure 2.7 Bivalves examined for this study. 1) Spisula (Hemimactra) solidissima (Dillwyn, 1817), 2) Spisula (Hemimactra) solidissima similis (Say, 1822), 3) Spisula (Hemimactra) confraga (Conrad, 1833), 4) Spisula modicella (Conrad, 1833), 5) Glycymeris americana (DeFrance, 1826), 6) Costaglycymeris subovata (Say, 1824), and 7) Panopea reflexa (Say, 1824).

CHAPTER 3: ADDRESSING THE SINGLE COUNTER PROBLEM USING A COMPUTER-ASSISTED IMAGE AGING METHOD

Joel Hudley and Donna Surge
Department of Geological Sciences, University of North Carolina, Chapel Hill, 104 South
Rd., CB\#3315, Chapel Hill, NC 27599-3315, USA email: jhudley@unc.edu

Short running title: Computer-assisted Image Aging

Keywords: age determination, image analysis, Spisula (Hemimactra) solidissima
(As submitted to Journal of Shellfish Research)

Abstract

The ages of individual specimens of the surf clam, Hemimactra (Spisula) solidissima, (Dillwyn, 1817) collected from the Middle Atlantic Bight, were estimated by visual inspection (traditional method) and computer-assisted image analysis. The traditional method employed a non-expert age reader examining shell chondrophore under a microscope. The computer-assisted method used standard imaging software to acquire a grayness intensity profile across each chondrophore, and then used a mathematical model to determine peak intensity values significantly different from the rest of the profile. The precision between the methods was 10% with a coefficient of

variance of 16.84 . The precision of the computer-assisted method proved below that of the non-expert reader, and systematically underestimated ages of the surf calm population.

3.1 INTRODUCTION

Early seminal works by Hudson et al. (1976) and Jones and Ambrose (1978) showed that the internal growth lines in corals and clams chronicled both growth history and environmental information, similar to tree rings chronologies. Calling this new subdiscipline of geosciences "sclerochronology", Jones (1983) claimed that bivalve chronologies were the marginal marine answer to dendrochronology and dendroclimatology. However, following Williams et al. (1982) who reported on methods to employ both increment and isotopes to reconstruct sea surface temperature, most sclerochronology studies are more analogous to dendrochemistry, purely dependent on isotopic results. Few sclerochronology paleo-studies report reconstructions derived from increment records, independent of isotopes.

One explanation for the lack of increment-based experiments is that no systematic methodologies and common practices exist for such experiments. In a review of fisheries management aging programs worldwide, Campana and Thorrold (2001) reported that 1-2 million fish were aged globally in 1999. The number of otoliths is massive in comparison to the tens of thousands of shellfish aged annually, and suggests that the majority of sclerochronologists are employed in successful increment programs. These increment programs employ basic quality monitoring techniques such as multiple examinations of the same specimen multiple times by various expert readers. These
laboratories train age readers and keep aged reference collections of the species they examine. Many of these government run aging laboratories develop and exchange aging methods, validate growth curves, and verify daily to annual resolution of taxa growth increments without the use of isotopes. The use of non-isotope methods is often practical, as costs can be enormously prohibitive for large-scale isotopic analysis.

Another possible explanation for the dearth of increment sclerochronology studies in academic, geologic and marine science departments is the laboratory research structure. Most paleoclimate sclerochronology labs are administered by a single Principle Investigator (PI) overseeing a transient caste of graduate and undergraduate research assistants. The PIs must balance their time between teaching, research and mentoring, and then endeavor to find time to train, monitor, and recheck all the shells being processed in their laboratory. The monitoring and rechecking problem might be answered by an exchange of materials with another laboratory to compare measurements. However, cost and time may be prohibitive, and standard methods are comparable between academic laboratories.

Another possible explanation is the materials used for sclerochronological paleoclimate studies. Many researchers acquire specimens from fossiliferous deposits, museum collections, archeological sites, and fisheries research cruises. Since many of these acquisitions are through happenstance, the number of specimens is often small, the preservation dubious, and the proxies short-lived. Also, if the specimens are from a time prior to the instrumental record, then using important environmental factors related to
bivalve growth to verify growth increment interpretations is suspicious. By using isotope analysis, past environmental information can be gathered from any well-preserved specimens.

The Single Counter Problem refers to the errors of one reader's bias. This bias is an introduction of human error due to difficulties recognizing and inconsistently counting (aging) and measuring growth increment series. The purpose of this study is to determine if a novel image analysis method previously employed for shellfish fisheries management could be used to: (1) reduce the labor and time consumed by age estimation, and (2) act as a computer guide for age monitoring. Harding et al. (2008) presented a method for using standard computer imaging software to estimate ages of Artica islandica (Linnaeus, 1767). We employed those methods, and then compared a single, non-expert age reader to the image analysis method. For comparison, we calculated the precision to describe the agreement ratio between readings by the two different readers. On the basis of our results, we discuss the validity of the computer-assisted aging method.

3.2 MATERIALS AND METHODS

3.2.1 Materials

Live caught specimens for this study were acquired from the NOAA Fisheries Service Northeast Regional Fishery Science Center (NEFSC): Fishery Biology Program which until recently conducted stock assessments of commercial bivalves in the MidAtlantic Bight (ranging from George's Bank to just south of Cape Hatteras) every 3-4
years. Specimens of Spisula (Hemimactra) solidissima solidissima (Dillwyn, 1817) came from surveys conducted from 1992 through 2005. Each specimen came from a NOAA sampling station with associated location, depth, salinity, and bottom and surface temperatures (Figure 1). Pliocene specimens of S. confraga [Mactra fragosa] (Conrad, 1833), S. modicella (Conrad, 1833), Panopea reflexa (Say, 1824) and Glycymeris americana (DeFrance, 1826) were collected from various Pliocene Mid-Atlantic Coastal Plain (MACP) fossiliferous deposits in southern Virginia and acquired from the Virginia Museum of Natural History (VMNH) (Figure 1).

All bivalve specimens were cleaned in a dilute bleach solution and rinsed with water. One valve from each shell was radially sectioned along the maximum axis of growth using a lapidary saw, ground down using 600 grit, and polished down to 6 micron diamond suspension grit on a variable speed grinder-polisher (Buehler). Depending on their fragility, some shells were coated with fast-hardening epoxy resin before cutting (JB Kwik Weld). When paired-valves were available, the left valve was employed because many of the NOAA specimens had only one remaining valve (the left) after original aging (Ropes, 1985). Once dried, shells were affixed to a slide using epoxy and thick sections were cut again a Buehler IsoMet slow speed saw. Slides were labeled with unique sample identification, and the remaining shell valves returned to storage for reference. Slides were ground and polished following the methods outlined above. A cross section of the hinge region for each polished valve was photographed, using an Olympus stereomicroscope with a 12.5 megapixel DP71 digital camera connected to a Windows-based computer.

3.2.2 Visual aging method

The standard visual aging method used to determine a clam's age the hinge plate (chondrophore) is by counting couplets of alternating patterns of translucent (dark $=$ slow growth) and opaque (light = rapid growth) segments representing one year's growth (Arnold et al. 1991; Jones, 1996) (Figure 2). It is generally recognized that in bivalves the opaque increments form under good growth conditions and the dark increment under poor conditions (Rhoads and Lutz, 1980). Jones (1983) demonstrated that the dark zones of Spisula shells begin to form in late summer, followed by slow growth during the coldest winter months. Full color images of each hinge were used to visually age each specimen. Increment widths were measured using the Olympus Imaging Solutions Software. The determination of age by visual counter method was made by one reader (Reader 1). Reader 1, with limited experience determining the age of the multiple species, aged each specimen twice. The second count was made several months after the first count. Ages of live-caught S. s. solidissima were better constrained using patterns in the growth lines to cross-date the chronologies, a standard practice in both dendro- and sclerochronology. Cross-dating could not be used on the floating Pliocene increment series. In total, 343 S. s. solidissima, 17 S. confraga, 4 S. modicella, 12 P. reflexa, and a 134 G. americana were aged. 172 S. s. solidissima, 17 S. confraga, 4 S. modicella, 7 P. reflexa, and 3 G. americana chondrophores were used to compare our standard method to a computer-assisted aging method.

3.2.3 Computer-assisted aging

We used the 30 S. s. solidissima live caught as the example for this method because of the manageable number and the shells' easily readable growth lines. Using the Olympus Imaging Software, the full color images of each hinge were converted into gray scale, and the 'smooth' command was used to remove fine fluctuations in the image. The image was processed by optimizing the contrast to better distinguish the dark and light increments of the shell. Using the 'Intensity Profile' tool in the 'Measurements' menu of the Olympus Imaging Solutions Software, a single line 1 pixel wide was drawn across the length of the shell section from the dorsal end of the umbo to the ventral along the curvature of growth. The intensity profile command produced a graph of grayness values along the selected line, divided into intensity level from 0 to 255 . In this grayness scale, level 255 is white and level 0 is black. The x -axis of the graph represents the distance from the umbo and the y-axis is grayness intensity at each pixel. Each graph's grayness was then inverted to make zero white and increasing intensity darker. Inversion was not necessary, but was done to aid visual interpretation of the intensity profiles.

After we imported all the intensity profiles series into MS Excel, we began following the methods and assumptions outlined by Harding et al. (2008). The underlying principle of Harding's method is that significant line types, such as annual growth bands, should be distinctly darker than other growth lines (Thompson et al. 1980b) and should exist as a distinctive group of uniform grayness within the array of growth lines observed from the lightest to the darkest grayness level. In order to identify yearly growth bands, Harding et al. (2008) presented a method to test if some groups of
growth lines are distinctly more uniform in darkness than other growth lines, and to detect peaks on the intensity profile that intersected those predetermined intensity levels. Harding's method was performed as follows. The data set was composed of chondrophore length and a series of intensity profiles at grayness intensities of 0-225 for (30) S. s. solidissima between 1.403 and 2.470 mm in length. Line counts were initially evaluated in 5-intensity-unit intervals $\left(\mathrm{I}_{\mathrm{i}}\right)$ from 5-120 grayness units, with $\mathrm{I}_{1}=5-10$ and $\mathrm{I}_{23}=115-120$. Intensity levels outside this range were either too sensitive and thus produced unreasonably high line counts or not sensitive enough and thus produced unreasonably low line counts. We plotted the average rate of change in line count (LC) as a function of change in intensity step (I), wherein the number of lines from one intensity step to another declines in magnitude with increasing grayness, and found a regression line for that series. We noted local minima intensities ranges. We plot a frequency diagram of zero differences between the numbers of lines counted from one 5-intensityunit level to the next and found local maxima and minima intensities. Using the regression equation from Step 3, we obtained a series of residuals for each of the 30 shells and grayness intensities in the range of 25-140 grayness units, plotted the mean residual against grayness intensity and revealed which intensity levels the most negative mean residuals occurred. After we ranked the residuals, we perform a one-way ANOVA and a Tukey's HSD (honestly significant difference) to test the null hypothesis that the means of the residuals were equal across a range of grayness intensities. Finding the null hypothesis false, we displayed the results of how frequently one set of residuals differed significantly from another, and then assessed the likelihood that each difference might have occurred by chance. We then used analyses from the previous steps to show unique
ranges of grayness in the grayness spectrum. Those unique ranges on each of the 172 surf clam intensity profiles were graphed, and the location of where intensity peaks intersected those predetermined intensity levels were recorded. Ages from the Visual Count (VC) of Reader 1 and the ages for the corresponding specimen's Intensity Profile (IP) Count were recorded and compared using their descriptive statistics (mean age, minimum and maximum age, standard deviation, counts, number of samples, and confidence level)(Table 1).

3.2.4 Comparison of aging methods

Valid comparisons between our aging methods can be made because we used the two methods on the same individual clams. We assumed that the computer-assisted method represents a valid second reader. To automate the calculations of the various measurements of age precision, we used the NOAA Fishery Biology Programs Templates for Calculating Aging Precisions (http://www.nefsc.noaa.gov/fbp/age-prec/\#bow). The templates were designed to calculate various measurements of aging precision, including percent agreement between agers and the total coefficient of variance (CV, Chang, 1982). Templates from NOAA were also used to generate an age-bias plot (Figure 3) and an age matrix table (Hoenig et al., 1995). In these precision calculations, VC Age is considered to be the final (first-and-second count) age attached to a clam, as age Reader 1 worked twice with the entire sample set. IP Age is a single aging of each clam by the computerassisted method.

3.3 RESULTS

3.3.1 Visual aging

After two counts of 172 S. s. solidissima shells by Reader 1, the mean and median ages of the clams were 14.0 ± 4.1 years old. Ages ranged from a minimum of 4 years to a maximum of 26 years (range, 22 years). The agreement between Reader 1's first and second count was high ($97 \%, 4$ non-agreements).

3.3.2 Computer-assisted aging

The mean age of the IP aging method were 11.5 ± 3.7 years, with ages ranging from 2 years to a maximum of 20 years. These 172 ages were based on grayness intensity levels 65-70, derived from the 30 clam test set. That intensity range was found following the methods in Harding et al. (2008). Local minima were identified at intensities 35-45, 65-70, 85-90, and 115-120. Overall minima are found at the two intensities 35-40 and 65-70 along the continuously decreasing section of the relationship between Intensity Range and Average Rate of Change. The fewest lines are lost in increments across these two ranges of grayness intervals. One might expect that annual bands would be of sufficient strength compared to other growth lines that a step in grayness intensity would not change the line count. Where the number of cases in which an increment of 5 grayness units produced the same line count for these 30 clams, local maxima were observed at grayness intensities of 20-25, 35-40 and 55-60. Local maxima are succeeded by minima at $30-35,40-45$, and $60-75$. Using the regression equation, the most negative mean residuals are encountered at the 40-45 and 70-75 grayness intensities. This is consistent with Figures 3.4 A and 3.4 B , indicating that, for most shells,
the rate of change in line count is distinctly lower in the two grayness ranges from 35-45 and 65-75 than elsewhere in the grayness spectrum. We anticipated that these grayness ranges are associated with significant life history events, such as yearly shifts in growth. The null hypothesis that all grayness intensities were the same was tested false when grayness intensities 45-50, 65-70, and 85-90 exhibit significant divergence from chance ($\mathrm{P}<0.001$). Collectively, the analyses identified two unique ranges of grayness at 45-50 and 65-70. Grayness ranges >80 resulted in lower than acceptable ages. The average line count for the lower grayness intensity is about double that of the higher grayness intensity. Following the assumptions in Harding et al. (2008), this ratio suggests that annual bands are detected at intensities of 65-70 and seasonal bands or spawning breaks are detected at intensities of 45-50. However, this was not proven. The 65-70 intensity level (the one chosen for the entire population count) does consistently match with many of the annuliseen in the images (Figures 3.2). However, the 45-50 grayness intensity matches growth checks in the early years (Figure 3.2, Area B), but also annual growth marks near the ventral end of the chondrophore (Figure 3.2, Area C). By disregarding the lower grayness intensity level, we systematically underestimate the ages of the shells. If we combine the counts of both intensity levels, thus incorporating the missed annual growth marks and the early growth checks, we will grossly overestimate ages.

3.3.3 Comparison of aging methods

The percent agreement between the visual and the computer-assisted aging methods is 10.5%, with only 18 agreements out of the 172 clams aged. The CV, a measure of precision, was 16.84%. This result being greater than the reference point of
5%, suggests that the ages are relatively imprecise (Campana, 2001). On the ageagreement table (Figure 5), the main diagonal represents the frequency for which the two methods obtained the same age, and cells off the diagonal represent differences in ages between methods. IP Age (the computer-assisted method), in the upper space, shows systematically underestimated ages of clams after year 4 or 5 (Figure 5). The same result of IP age underestimation is shown in the age-bias plot (Figure 6), where the average test age moved away from a 1:1 agreement between the more accurate counter (Reader 1) and the computer-assisted method.

3.3.4 Other Bivalve Proxy Results

We followed the same procedures from Harding et al. (2008), for Pliocene surf clams S. confraga and S. modicella, the geoduck P. reflexa, and bittersweet cockle G. americana. These bivalves were chosen as potentially useful proxies of environmental variations on subannual to decadal resolution because they were considered abundant in Pliocene localities (Ward, 1994) and well preserved.

The results from the 17 S. confraga chondrophore indicated that significant grayness intensities were found at 65-70 and 105-110, with 65-70 representing the annulus. The maximum IP age of S. confraga was 10 years, with a mean age of 6 ± 2 years. From the 4 S. modicella, the maximum aged specimen was 12 years old, with mean of 7 ± 3 years old for the small population. Statistically different grayness intensities were indicated at 65-70 and 120-125, and again 65-70 represented the annulus. The
average age of the geoduck P. reflexa was 21 ± 6 years, with a maximum IP Age of 33 years. Grayness intensity levels along the geoduck hinge plate of 35-40 and 120-125 were indicated as significantly different, with 35-40 representing the annulus. Only 3 Pliocene G. americana were aged using the hinge. The annual growth lines were represented by the 35-40 grayness intensity level. The maximum cockle aged using the computerassisted method was 45 years old.

3.4 DISCUSSION

Image analysis is often employed for detecting and measuring the growth widths of trees (Guay et al., 1990; WinDENDRO©) and was recently used on otoliths (Calliet et al., 1996; Takashima et al., 2000). These image analyses are used as supplementary tools for age determination and not for automatic reading. In this study, we used a method that determines significantly different grayness intensities from intensity profiles of clam shells to develop a computer-assisted method to age the entire population. Both counting methods, the standard visual aging and the computer-assisted, were considered consistent between repeat counts. However, the accuracy and precision of the computer-assisted method constantly underestimated the age of cross-dated live caught specimens.

The IP aging method proves inferior to a non-expert age estimation (Reader 1) for multiple reasons. One explanation is that the method, though simple, probably fails to detect peaks just outside the identified the grayness intensities. The significantly different intensities work for most of the 30 shells used in the test set. However, many
shells (Specimens 3, 7, 8, 13, 16, 22, 24, 27 and 29) had extremely low line counts when using the 45-50 and 65-70 intensity levels. This outcome may result from variations in the quality of the images, not only in the test set, but in the entire population. Shadows, light reflection angles, and lighting intensity could not be held constant throughout the entire image collection process. Light areas and closer spaced annuli may have missed certain growth lines or clumped older ages, hence the systematic underestimates of age. Even with improved imaging software, the causes of image quality variation (due to the processes of cutting, grinding, polishing, and mounting) are inherently unavoidable. The Harding et al. (2008) method seemed effective at creating a power function for an age-atlength relationship for A. islandica less than 80 mm , but using the method to age an entire population proves inadequate. If the computer method used in Harding et al. (2008) could be improved, it might be useful in age determination studies. The computer is acceptable to use for early growth, but it is not calibrated to read older growth lines accurately. In this study, the method was used as a supplement for finding and confirming the earliest (1-3 years) growth lines in all the taxa aged.

3.5. CONCLUSIONS

In this study, we addressed the challenges of relying on a single non-expert age reader for sclerochronological analysis by using a novel image analysis method for differentiating significant grayness intensities in the shell grayness profile. This method was relatively rapid, only taking 2 days to age and measure 172 chondrophore, compared to the standard visual aging method, which took 4 weeks total time. It is especially rapid when comparing ages after second processes like acetate peels and staining.

Unfortunately, the image analysis method systematically underestimates ages compared to ages counted using cross-dating of the visual aging. Therefore, though subjective and potentially biased, the standard visual aging and measuring methods employed by researchers to interpret the periodic features of calcified structures must continue for the foreseeable future.

ACKNOWLEDGEMENTS

We thank Jay Burnett (NOAA-retired) and the Northeast Fisheries Science Center (NEFSC) Fishery Sampling Branch. Thank you also to Lauck Ward (VMNH) for the use of specimens, species identification, and directions to collecting localities. Many Pleistocene and late Holocene shells that were used as references were donated and identified by Lynn Wingard (USGS). Funding was provided in part by the Preston Jones and Mary Elizabeth Frances Dean Marin Trust (UNC) and National Science Foundation Grants \#ATM-0455974 to DS and \#HRD-0450099 to Valerie Ashby (UNC).

REFERENCES

Beamish, R. J. \& G. A. McFarlane. 1983. The forgotten requirement for age validation in fisheries biology. Trans. Am. Fish. Soc. 112:735-743.

Blackwelder, B. W. 1981. Late Cenozoic stages and molluscan zones of the united-states middle Atlantic coastal-plain. J. Paleontol. 55:1-34.

Blackwelder, B.W. 1981b. Stratigraphy of upper Pliocene and lower Pleistocene marine and estuarine deposits of northeastern North Carolina and southeastern Virginia. U.S. Geological Survey Bulletin, 1504-B: B1-B16.

Cailliet, G. M., L. W. Botsford, J. G. Brittnacher, G. Ford, M. Matsubayashi, A. King, D. L. Watters \& R. G. Kope. 1996. Development of a computer-aided age determination system: Evaluation based on otoliths of bank rockfish off California. Trans. Am. Fish. Soc. 125:874-888.

Campana, S. E. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish Biol. 59:197242.

Campana, S. E., M. C. Annand \& J. I. McMillan. 1995. Graphical and statistical-methods for determining the consistency of age-determinations. Trans. Am. Fish. Soc. 124:131138.

Campana, S. E. \& J. D. Neilson. 1985. Microstructure of fish otoliths. Can. J. Fish. Aquat. Sci. 42:1014-1032.

Campana, S. E. \& S. R. Thorrold. 2001. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci. 58:30-38.

Chang, W. Y. B. 1982. A statistical-method for evaluating the reproducibility of agedetermination. Can. J. Fish. Aquat. Sci. 39:1208-1210.

Elliot, M., P. B. deMenocal, B. K. Linsley \& S. S. Howe. 2003. Environmental controls on the stable isotopic composition of Mercenaria mercenaria: Potential application to paleoenvironmental studies. Geochem. Geophys. Geosyst. 4.

Fenger, T., D. Surge, B. Schöne \& N. Milner. 2007. Sclerochronology and geochemical variation in limpet shells (Patella vulgata): A new archive to reconstruct coastal sea surface temperature. Geochem. Geophys. Geosyst. 8.

Goewert, A. E. \& D. Surge. 2008. Seasonality and growth patterns using isotope sclerochronology in shells of the Pliocene scallop Chesapecten madisonius. Geo-Mar. Lett. 28:327-338.

Guay, R. G., R. J. Gagnon \& H. Morin. 1992. A new automatic and interactive tree ring measurement system based on a line scan camera. The Forestry Chronicle 68:138-141.

Harding, J. M., S. E. King, E. N. Powell \& R. Mann. 2008. Decadal trends in age structure and recruitment patterns of ocean quahogs Arctica islandica from the midAtlantic bight in relation to water temperature. Journal of Shellfish Research 27:667-690.

Hoenig, J. M., M. J. Morgan \& C. A. Brown. 1995. Analyzing differences between 2 agedetermination methods by tests of symmetry. Can. J. Fish. Aquat. Sci. 52:364-368.

Jones, D. S. 1983. Sclerochronology - reading the record of the molluscan shell. Am. Scientist 71:384-391.

Jones, D. S., B. J. Macfadden, S. D. Webb, P. A. Mueller, D. A. Hodell \& T. M. Cronin. 1991. Integrated geochronology of a classic Pliocene fossil site in Florida - linking marine and terrestrial biochronologies. J. Geol. 99:637-648.

Jones, D. S. \& I. R. Quitmyer. 1996. Marking time with bivalve shells: Oxygen isotopes and season of annual increment formation. Palaios 11:340-346.

Marchitto Jr., T. M., G. A. Jones, G. A. Goodfriend \& C. R. Weidman. 2000. Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quaternary Research 53:236-246.

Quitmyer, I. R., D. S. Jones \& W. S. Arnold. 1997. The sclerochronology of hard clams, mercenaria spp., from the south-eastern USA: A method of elucidating the zooarchaeological records of seasonal resource procurement and seasonality in prehistoric shell middens. J. Archaeol. Sci. 24:825-840.

Robinson, W.J., Evans, R. 1980. A microcomputer-based tree-ring measuring system. Tree-Ring Bulletin 40:59-64.

Schöne, B. R., A. D. F. Castro, J. Fiebig, S. D. Houk, W. Oschmann \& I. Kroncke. 2004. Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea).
Paleogeogr. Paleoclimatol. Paleoecol. 212:215-232.
Schöne, B. R., D. H. Goodwin, K. W. Flessa, D. L. Dettman \& P. D. Roopnarine. 2002. Sclerochronology and growth of the bivalve mollusks Chione (chionista) fluctifraga and C. (chionista) cortezi in the northern gulf of California, Mexico. Veliger 45:45-54.

Surge, D., K. Lohmann \& G. Goodfriend. 2003. Reconstructing estuarine conditions: Oyster shells as recorders of environmental change, southwest Florida. Estuarine, Coastal and Shelf Science 57:737.

Ward, L. W. 1992. Molluscan biostratigraphy of the Miocene, middle Atlantic coastal plain of North America /. Martinsville Virginia Museum of Natural History. Pages pp.

Figure 3.1. Collection localities (open circles) for Spisula spp. collected alive on the continental shelf, and Pliocene fossil specimens (white circles) collected from coastal plain deposits.

Figure 3.2. Example comparison of visual count versus computer-assisted count picks on sample number 6321621994. The horizontal dashed-white line at 65 grayness intensity represents first choice intensity level used by the computer counter. The horizontal gray line at $\mathbf{4 5}$ grayness intensity represents the best alternative intensity level for a computer count. Dashed and solid lines connect the 65 and 45 intensity levels to growth lines matches on the chondrophore. Areas around letters A, B, and C are areas of early, middle, and late growth.

Figure 3.3. Age-bias plot. Counter age versus average test age. Error bars indicate $\mathbf{9 5 \%}$ confidence intervals and solid line is the $1: 1$ line.

Table 3.1 Descriptive statistics of the Visual and Computer counters.

	Mean Age	SD	Min Age	Max Age Count			
	13.88	4.10	4	26	2388	172	0.62
Visual Counter	11.38	3.68	2	20	1958	172	0.55
Computer Counter	$1.95 .0 \%)$						

CHAPTER 4: COMPARATIVE SCLEROHRONOLOGY OF MODERN AND MID-PLIOENE SURF CLAM (MACTRIDAE) ALONG THE WESTERN MIDATLANTIC: THE ARCHETYPE REVISITED

Joel Hudley and Donna Surge
Department of Geological Sciences, University of North Carolina, Chapel Hill, 104 South
Rd., CB\#3315, Chapel Hill, NC 27599-3315, USA email: jhudley@unc.edu

Keywords: Sclerochronology, climate, Pliocene, Yorktown, Hemimactra, Spisula
(To be submitted to the journal Palaios)

Abstract

Modern and fossil species of the genus Spisula potentially serve as the archetype bivalve proxy record for contemporary increment and isotope sclerochronology studies. However, this genus has not been sufficiently utilized as paleoclimate and paleoecologic indicators of past temperature regimes in mid- to low-latitude marine realms. Previous studies have limited specimen sampling to small spatial and temporal ranges and focused on the importance of long-lived species. Here, we review and expand the sclerochronologic data for Spisula along the western Atlantic margin across a greater portion of its natural range, ecologic amplitude, and deeper into geologic time. This was accomplished by comparing growth parameters, standardized increment time series and

stable isotope data series from Spisula populations. This study tests the conclusions of some of the foundational sclerochronologic studies and confirms the usefulness of Spisula as annual to multi-decadal environmental proxies.

4.1 INTRODUCTION

The early pioneering studies by Jones (1980 and 1981) and Williams et al. (1982) proposed that the combination of growth increment and isotopic time-series records in the shells of long-lived bivalves are useful subannual climate proxies in modern and ancient shallow-marine environments through geologic time, in regions and on time scales unresolvable by more traditional proxy records from corals or trees (Jones, 1983). Over the last three decades, bivalve sclerochronology has been a powerful tool for paleoenvironmental reconstruction, equivalent to and possibly exceeding its longer established sister-field, dendrochronology (Schöne and Surge, 2005; 2012). Time-series data from dozens of marine and freshwater bivalve taxa, have demonstrated the value of bivalve shell records to reconstruct environmental and climate changes.

Jones (1983) predicted that the ocean quahog, Arctica islandica (Linnaeus, 1767), would become the exemplar species for marine sclerochronology because of it's reported longevity (over 150 years Thompson et al., 1980; over 700 years, Richardson and Wannamaker, 2011). Almost three decades later, this prediction holds true. However, it is unexpected that the genus Spisula (e.g. Spisula (Hemimactra) solidissima solidissima (Dillwyn, 1817))), the archetype bivalve proxy for contemporary increment and isotope sclerochronology procedures (Jones 1978; Jones et al., 1981, Williams et al., 1982;

Stecher et al., 1996; Ivany et al., 2003), has not been more utilized. Spisula is present in
many important geologic settings where A. islandica absent, such as along the western Atlantic margin prior to the Holocene.

The Mid Pliocene Warm Period (MPWP, ~ 3.3 to 3.0 Ma) is among the most critical geologic intervals for studying the Earth during a warm, relatively high atmospheric CO_{2} state (Jansen et al., 2007; Salzmann et al., 2011). Moreover, the 2007 report by the Intergovernmental Panel on Climate Change (IPCC, 2007) stated that the middle Pliocene may be an analogue to projections of future 21st century climate change (Meehl, et al., 2007). Similarities include: the continents and oceans have similar configurations, the interior of the continents were and are expected to be arid, estimated temperature ranges are similar, atmospheric CO_{2} levels were and are expected to be higher than today, and sea and continental ice were and are expected to be reduced. The report explicitly states that the mid Pliocene "presents a view of the equilibrium state of a globally warmer world." Paleoclimate data available from the United States Geological Survey (USGS) Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) project and a variety of independent studies enable modeling of global climatic conditions during the Pliocene (Dowsett et al., 2011). Lacking in these data are sufficiently high-resolution time series that can potentially provide more detailed information about annual temperature cyclicity (seasonality) and regional climate variability. Unlike A. islandica, Spisula are present in the early PRISM deposits investigated by USGS researchers (Dowsett, H.J. and L.B. Wiggs, 1992; Dowsett et al., 1992), and they represent a proxy capable of providing important high-resolution data.

In this study we review and significantly add to the sclerochronologic data for Spisula along the eastern coast of North America using modern examples of S.s. solidissima and S. s. similis (Say, 1822) collected alive and Pliocene aged fossil Spisula spp. from mid-Atlantic coastal plain (MACP) formations. This study employs growth increment methods (using the von Bertalanffy growth equation constants and regionally standardized growth increment time series) and stable isotope ratios $\left({ }^{18} \mathrm{O} /{ }^{16} \mathrm{O},{ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}\right)$ as independent paleoenvironmental proxies. In conjunction with the data from previously published works, this combination of techniques enables a comparative investigation of changes in sea water temperature, depth, seasonality, and interannual variability during modern and mid-Pliocene globally warm conditions. The objectives of this study are to: (1) supplement previous increment and isotope sclerochronologic data on modern Spisula spp. by examining shell growth patterns across a greater portion of its natural range and across its ecologic amplitude; (2) test if modern Spisula spp. shells consistently record regional environmental patterns when compared to instrumental records across its natural range; and (3) assess whether fossil Spisula collected from MACP high stands deposited during the MPWP are useful paleoclimate archives of seasonal variability in seawater temperature. We tested the following hypotheses: (1) S. s. solidissima living in shelf waters exhibit increment width growth and isotopic patterns that more significantly reflect local seawater conditions in which they grow than those not living in the same region; (2) estimated regional sea water conditions derived from live-collected bivalve growth patterns are significantly similar to conditions based on direct instrumental measurements; and (3) fossil Spisula from the MACP can be used as paleoclimate
archives by comparing patterns in fossil shells to patterns in shells found living along the region today.

4.1.1 Ecology of modern Atlantic surf clam

Large Spisula, such as the Atlantic surf clam S. s. s. solidissima, are commercially important molluscs (Bivalvia: Mactridae) occurring in abundance in the North Atlantic since at least the Eocene. In the North Atlantic basin, commercially exploited species include S. s. s. solidissima and Mactromeris polynyma (Stimpson, 1860) along the western margin, and S. elliptica (Brown, 1827), S. solida (Linnaeus, 1758), and S. subtruncata (da Costa, 1778) along the eastern margin. Along the western shelf, S. s. s. solidissima is found in continental shelf waters along North America between the Gulf of St. Lawrence and North Carolina (the western Atlantic boreal biogeographic province; Briggs and Bowen, 2012) and commercially harvested between Cape Cod and New Jersey (the mid-Atlantic Bight (MAB)) (Weinberg and Helser, 1996; Hare and Weinberg, 2005). Smaller subspecies, S. s. similis (Say, 1822) and S. s. raveneli (Conrad, 1832) (synonyms), are primarily found in shallower waters south of Cape Hatteras and into the Gulf of Mexico (Carolinian province; Briggs and Bowen, 2012), but also occupy a narrow range of coastal habitats as far north as Long Island Sound (Walker and Heffernan, 1994; Hare et al., 2010). A similar distribution occurs along the eastern Atlantic margin with S. solida and S. subtruncata ranging south of Iceland to Spain and Morocco, while S. elliptica extends north from Ireland to the Barents Sea. Though surf clams are morphologically convergent, DNA variations display net divergence, indicating
long-term reproductive isolation of all species and subspecies (Hare and Weinberg, 2005).

Spisula are infaunal, siphonate suspension feeders occupying water depths extending from approximately 5 to 65 m (Cargnelli et al., 1999) and inhabit sanddominated sediments in high-energy neritic, subtidal zones (Snelgrove et al., 1998). Surf clams are found primarily in marine waters, in salinities higher than 28 psu , but are capable of surviving in salinities as low as 12.5 psu and as high as 52 psu (Castagna and Chanley, 1973). The optimal temperature for burrowing activity is between $16-26^{\circ} \mathrm{C}$. The lethal temperature in laboratory experiments is $37^{\circ} \mathrm{C}$, though surf clams in the field survive in temperatures between $2^{\circ} \mathrm{C}$ and $26^{\circ} \mathrm{C}$ with adult upper limits of $28-30^{\circ} \mathrm{C}$ (Goldberg and Walker, 1990).

Growth rate in MAB surf clams is not uniform throughout the year (Jones, 1978; Jones, 1980; Cargnelli et al., 1999). Though shell growth is potentially affected by various environmental conditions, growth is most significantly correlated with temperature. Shell accretion rate is positively correlated with warmer temperatures and negatively correlated with variations in temperature with optimal shell accretion centered around $11^{\circ} \mathrm{C}$ (Jones 1980; Ivany et al., 1999). Studies measuring conditional indices of meat dry weight to shell length indicate that optimal growth is at bottom water temperature around $20^{\circ} \mathrm{C}$ (Weinberg, 2005). Individual S. s. solidissima are reported to attain significant longevity, estimates of 37 years, and a maximum shell length (dorsal to ventral) of 226 mm (Ropes and Jerald 1987). S. s. similis is shorter lived, 5-10 years
(significant longevity in the animal kingdom), and grows to a smaller maximum size of 121 mm (Walker and Heffernan, 1994).

4.1.2 Modern Location

The MAB is commonly defined as the continental shelf region extending from Cape Hatteras to Nantucket Shoals (Figure 4.1). It has a temperate climate and a broad continental shelf adjacent to a coast dominated by micro-tidal, inshore estuaries, with three major river inputs. These river inputs include the Hudson and Delaware Rivers, and large estuaries of the Chesapeake Bay. This area is characterized by a cold and warm season as shown by instrumental records of daily air temperature (1976-2008) at the Ambrose Light, NY (C-MAN ALSN6) and Cape Hatteras (MB 41001) (http://www.ndbc.noaa.gov/). The warmest average monthly sea surface temperature (SST) at the Ambrose Light is $22 \pm 1.4^{\circ} \mathrm{C}$ and $26.2 \pm 1.2^{\circ} \mathrm{C}$ at Cape Hatteras, while the coldest SST is $4.2 \pm 1.4^{\circ} \mathrm{C}$ off New York and $14.9 \pm 3.8^{\circ} \mathrm{C}$ off North Carolina. Maximum warm SSTs are reached in July off New York and August off North Carolina, while coldest SSTs are reached February and March, respectively.

Recent scientific interests in the region is expansive, and studies from the preceding decades that focus mostly on mean circulation and dynamics as overviews include (Bumpus (1973); Beardsley et al. (1976); Beardsley and Boicourt (1981); and Lentz (2008)). The character of MAB water is generally cooler and lower in salinity than the oceanic waters seaward of the shelf ($\sim 30-35 \mathrm{psu}$, MARMAP, Appendix A, Figures 3 and 4). MAB water is the product of a cold, low salinity water mass originating from
along the southern coast of Greenland (Chapman and Beardsley, 1988), flowing through the Gulf of Maine and then locally modified by inter-annually variable seasonal heating and cooling, precipitation and river runoff, and mixing with oceanic waters (Fairbanks, 1982; Mountain, 2003). Though there are few long-term records of currents, the mean circulation direction over the MAB shelf is equatorward along the shelf, and the speed generally increases with distance from shore (Beardsley et al. (1976); Lentz (2008)

Recent observations demonstrate that MAB circulation is subject to both seasonal and interannual variability due to through-flow flux. This flux relates to the time a volume of water enters the MAB from the north and exits either through the Gulf Stream (GS) or through an unknown pathway to the south. MAB circulation is, therefore, directly connected to both northern cold, freshwater areas via buoyant, southward surface currents and thermohaline driven meridional overturning mechanisms via the cold, bottom currents and the GS (Häkkinen and Rhines, 2004;Shoosmith, 2005; Hamilton, 2005; Lund, 2006). This includes features such as distinctive bands of cold bottom water located over the mid- and outer shelf, colloquially named the "cold pool". The cold pool persists from the winter throughout the summer until the thermocline deepens in the fall to allow water column mixing, and this modulates annual nutrient compositions across the shelf (Mountain, 2003). Observations also indicate that the MAB, with its adjacent oceanic gyre regions, should be considered as a complex system rather than the generally accepted straight "pipes".

4.1.3 Geologic context

The US MACP is the low-lying area between the Appalachian Highlands and Piedmont regions and the MAB. Geologically, the MACP is a tectonically stable area with numerous emergent marine deposits of Cenozoic age that provide evidence for regional marine climates and relative sea level positions. Emergent Pliocene age marine deposits from Virginia (Figure 4.1) were chosen for their proximity to important oceanographic and atmospheric circulation features. Such features include the surficial (GS) and deep western boundary currents which became enhanced with the closure of the Panama Isthmus during the Pliocene (Keigwin, 1982; Cronin 1988; Haug et al., 2001; Molnar and Cane, 2002) and Labrador Current water system, which developed during the Pliocene ($\sim 2.5 \mathrm{Ma}$) (Berggren and Hollister, 1977).

Radiometric chronologies indicate the Yorktown Formation (Fm) in Virginia and North Carolina is restricted in age to $4.8-2.4 \mathrm{Ma}$ (Cronin et al., 1993). According to litho- and biostratigraphy evidence, the Yorktown Fm of Virginia represents tropical to temperate climatic conditions and has been dated using nannofossil assemblages (Hazel, 1971; Cronin and Hazel, 1980; Cronin et al., 1984) and molluscan biozones (Ward and Blackwelder, 1976; Blackwelder, 1981). Paleoecological evidence also indicates open marine conditions with normal marine salinity (Mansfield, 1931; Petuch, 1982; Ward and Strickland, 1985; Krantz, 1990). The Yorktown Fm contains molluscan assemblages (including Dinocardium) which indicate a pronounced episode of warming (MPWP) reflecting a mixture of warm-temperate to tropical conditions (Ward, 1998). This assemblage, different from today's, represents either a northward shift of warm tropical waters during the early to mid- Pliocene and/or less cool boreal waters reaching the
current physiographic and biogeographic divide at Cape Hatteras, NC. Presently, the Yorktown Fm is at the southern limit of the cold-temperate zone (Briggs and Bowen, 2012).

4.2 MATERIALS AND METHODS

4.2.1 Collection and growth increments

Modern S. s. solidissima shells were collected by the National Oceanic and Atmospheric Administration (NOAA) Fisheries Service Northeast Regional Fishery Science Center (NEFSC): Fishery Biology Program located at Woods Hole, MA. This unit conducts stock (i.e., population) assessments of commercial bivalves. Modern Spisula were collected alive from adjacent shelf waters ($\sim 50-200$ meters (m) depth). NOAA surveys shellfish every 3 years. They collected individuals from 5 surveys during 1992 through 2002 in 10 NOAA statistical areas(Figure 4.1). The NOAA-NEFSC employs a random stratified survey sampling technique where they have no fixed-stations but a wide sampling distribution within the $1^{\circ} \times 1^{\circ}$ statistical areas along the shelf (Azarovitz, 1981). Data comprising the dates of harvest and spatial characteristics (e.g. latitude, longitude, depth, etc.) for the surf clams used are available in NEFSC Resource Survey Reports (http://www.nefsc.noaa.gov/esb/rsr.html) (this study subset in Appendix A, Table 1). A change in dredge opening size from earlier (1980s) surveys limited the capture of smaller individuals (<4 years old). Twenty five S. s. similis specimen provided by G.L Wingard (USGS) and 4 additional S. s. similis shells were collected by hand in the near shore sub-tidal zone from Playa Linda Beach, eastern coast of Florida.

Specimens were cleaned in a dilute bleach solution, rinsed with water, and allowed to dry. Once clean, shells were photographed and weighed (using a Sartorius electronic balance, accurate to 0.0001 g). The length of the maximum growth axes (width, length, and height) of each shell was measured across the valve and chondrophore using digital calipers (0.01 mm) and grade of preservation recorded (Figure 4.2; Appendix A, Table 1). Pliocene Spisula shells were collected from the Yorktown Fm (Yorktown locality) and provided by the Virginia Museum of Natural History (VMNH). All fossil specimens were selected based on taxonomy, similarity of paleoenvironments (e.g. fully marine, depth, and salinity) and physical and chemical preservation. Shells collected and identified by Lauck Ward (USGS, VMNH retired) are from the Yorktown Monument, Rice's and Zook's Pit localities in southeastern Virginia (Figure 4.1). Pliocene specimens were identified by Ward as S. (Hemimactra) confraga (Conrad) and S. modicello (Conrad). Due to the ancient and fragile nature of the shells, all fossil specimens were broken. Shells with both dorsal and ventral margins were measured for length. Only fragments with intact umbonal regions were examined for age and growth rate, totaling 17 specimens.

All well preserved shells with unbroken chondrophores from NOAA live collections and Pliocene locations underwent standard sclerochronologic increment analysis (Williams et al., 1982; Jones et al., 1983). One valve from each shell (either the only remaining or most complete valve) was radially sectioned from umbo to ventral margin, along the axis of maximum length (height), using a Lortone Model FS6 lapidary saw equipped with a diamond blade. Prior to cutting, fast-hardening epoxy was applied to the exteriors of the shells to reduce breakage. Half of each sectioned shell was affixed to
a slide using epoxy and cut into thick sections with a Buehler IsoMet low speed saw. The thick sections were ground down using 600 grit and polished down to $1 \mu \mathrm{~m}$ suspended diamond polish, on a variable speed grinder-polisher (Buehler). Shells were again cleaned, rinsed and allowed to dry. The thick sections were digitized using an Olympus stereomicroscope with a 12.5 megapixel DP71 digital camera. Using the Discover image analysis software, shell length, age, and annual growth increment width were measured and recorded (Appendix A, Tables 2 and 5). Age was determined by counting alternating patterns of translucent (dark = slow growth) and opaque (light = rapid growth) segments under reflected light (Jones et al., 1978; Ropes and O’Brien, 1979). Dark/light couplets in relatively long-lived Spisula represent annual growth (Jones, 1996). The reference S. s. simils were not sectioned; however, aging was determined by counting couplets using light transmitted through the intact shell (Walker and Heffernan, 1994).

Using the growth increment measurements, growth curves were plotted to determine whether comparisons between modern and Pliocene populations serve as a proxy for paleoenvironmental conditions, specifically SST and depth. Latitudinal variations in growth, related to temperature and subspecies, have been examined in modern surf clam population along the Canadian and United States shelf (Jones et al., 1978; Walker and Heffernan, 1994, up to age 3 years; Weinberg and Hessler, 1996, MAB region). The modern growth versus depth relationship is consistently noted in population studies, but tested in inshore versus offshore populations (Jones et al., 1978; Ambrose et al., 1980; increments) and in Pleistocene fossil populations (Jones, 1980, increments; Krantz et al., 1987, isotopes). Neither connection has been tested in Pliocene Spisula populations. The von Bertalanffy growth model (VBGM) was employed to
quantitatively test this relationship (von Bertalanffy, 1957):

$$
E_{t}=L_{\infty}\left[1-e^{-k\left(t-t_{0}\right)}\right]
$$

where $E_{t}=$ the expected or mean length at time (or age) $t, L_{\infty}=$ the asymptotic average length, $k=$ the Brody growth rate coefficient $\left(\mathrm{yr}^{-1}\right)$, and $t_{o}=$ the time or age when the average length was zero. The VBGM is commonly used in Spisula growth studies (Jones, 1978; Cerratto and Keith, 1992; Castro and Monteiro, 1995; etc.) and many other bivalve growth studies for population comparisons. The parameters L_{∞} and k enabled direct comparisons between the growth of modern and fossil populations. However, for comparisons to be significant, according to Cerrato (1990) VBGM analyses require sample sizes in excess of 300 measurements to produce k and L_{∞} parameter values that do not violate curvature effects and inaccurate outcomes. In addition to our data, modern growth data were compiled from previous publications with large measurement data sets, similar processing methods, and available VBGM parameters and arranged by species from north to south (Jones et al. 1978; Serchuk and Murawski, 1980; Cerrato and Keith, 1992; Walker and Heffernan, 1994; Weinberg and Helser, 1996; Weinberg et al., 2005). Though some previous studies used slightly different curve-fitting methods (computer programs) or VBGM equations incorporating non-zero t_{o} values, reported L_{∞} and k were accepted as-is because minor differences among studies should not affect qualitative interpretation of the parameter trends as the non-zero t_{o} values are very small and methods so similar.

Using standard dendrochronologic techniques, individual specimen growth was detrended (Briffa et al., 1992). Growth trends due to phylogeny were detected by first
examining the average growth model curve of shell population series (Briffa et al., 1992) (Appendix A, Figure 1). The mean species growth trend is used to detrend and standardize all the individual ontogenic growth patterns. A dimensionless index is used to visually and statistically cross-date the live-collected specimens to form a chronology for the 8 NOAA statistical areas and the MAB as a whole. Pliocene Spisula could not be cross-dated, thus their chronology was based on stratigraphic evidence. The models for ontogenetic curves of all the shells were modeled using the standard individual-based detrending developed by Cook and Peters (1981) and employed by various bivalve studies (e.g. Schöne et al., 2003; Ivany et al., 2011). In this individual-based detrending method, the raw increment data series from each individual shell was formatted using the decadal-format CASE program in the University of Arizona's Dendrochronology Program Library (DPL) (Holmes, 1999) and loaded into dendrochronology program library in $\mathrm{R}(\mathrm{dplR})$. The dendrochronology program library in $\mathrm{R}(\mathrm{dplR})$ was developed by Bunn (2008) to emulate the DPL programs such as COFECHA and ARTSAN. For each individual, a cubic smoothing spline was fitted to the series of measured growth increments $\mathrm{I}_{\mathrm{t}}(\mathrm{t}=1,2 \ldots \mathrm{n})$ using the detrend command (series, method= 'Spline) in dplR with a spline frequency response of 50% to obtain a series of expected increment growth G_{t}. Using dplR, individual growth ring width indices (RWI) for all shells and regional chronologies for modern shells were computed and recorded. Standardized growth indices (SGI) were computed using the residuals of the splines and the means of the residual population. SGI increment width series are an expression of the number of standard deviations away from zero (zero represents expected growth from the VBGM) with thinner bands being less than and wider bands being greater than expected growth.

4.2.2 Stable isotopes

Two S. s. solidissima (identification number: SS0190702, live-collected June 4, 2002, and SS3070299, live-collected June 27, 1999), one S. s. similis (SSFLA1, collected articulated July 1997), and two Pliocene Yorktown Fm. S. confraga (SC001A and SC003) were analyzed isotopically to compare shell records to present marine environmental conditions (Appendix A, Figure 2). Specimen SS0190702 was collected from the shelf off the southeastern shore of Long Island (NOAA statistical area 613, depth ~24.5 m) and SS3070299 from the shelf east of the Albemarle Sound (NOAA statistical area 631, depth $\sim 36.0 \mathrm{~m}$). These specimens were chosen because of their locations, near the apparent entry and exit points of MAB shelf water, depths, their size and age ($\sim 112 \mathrm{~mm}$ length, 17 and 15 years respectively). Subannual oxygen and carbon isotope records from the young portions (4-7 annuli) of these two shells should capture shelf water characteristics at the ends of the MAB and overlap temporally.
S. s. similis was examined to determine if there were any species-specific differences in isotopic ratios. Commonly found in the SAB and near shore, modern specimen SSFLA1 was collected dead, but articulated, in the intertidal zone along Playa Linda Beach, Florida ($28.6^{\circ} \mathrm{N}, 80.6^{\circ} \mathrm{W}$). S. s. similis was examined because of its morphological similarity to S. confraga and S. s. solidissima when found in the field along the MAB and MACP. A recent study using mitochondrial DNA markers found S. s. similis in Long Island Sound $\left(41^{\circ} \mathrm{N}\right)$ well north of its typically reported range (Hare et al., 2010). This range extension northward past the modern physiographic and biogeographic boundary at Cape Hatteras calls into question the taxonomy of some specimens used in previous near shore S. solidissima studies (Jones 1978; 1980; 1981; Cerrato and Keith,
1992) and demonstrates that: 1) some Spisula in the shallow waters of the MAB are potentially S. s. similis misidentified as S. s. solidissima; and/or 2) Spisula (e.g. S. confraga and S. modicello) in Yorktown MACP deposits may be compared to these "southern" surf clams that breach the Cape Hatteras biogeographic boundary in the past.
S. confraga specimens SC001A and SC003 were collected at Rice's Borrow Pit in Hampton County, VA (Yorktown Fm, USGS locality 26112, $37.0^{\circ} \mathrm{N}$, and $76.4^{\circ} \mathrm{W}$). The exposed surficial deposit is part of the Morgarts Beach Member (3.6-2.6 Ma) of the Yorktown Fm, corresponding to Molluscan Zone 5 (M5, Burwellian Stage) (Blackwelder, 1981) and within the MPWP (Dowsett, 1992; Haywood et al., 2009).

To acquire high-resolution, subannual samples, sectioned Spisula chondrophores were microsampled across the visible growth lines. Before microsampling, the microstructures of all shells were screened under a stereomicroscope to evaluate preservation of original aragonite (Appendix A, Figure 2). If original aragonite was present, then it was assumed the specimen was not diagenetically altered. Sampling strategy was guided by the dark increments, whose locations were noted during sampling. For S. s. solidissima shells, microsamples were collected from the younger portions of the shells because growth rates throughout the populations are rapid for the first 2 years of growth and the individual growth diverge from the rest of the population depending on water depth (Jones et al., 1980; Jones et al., 1983). The chondrophore of modern specimens SSFLA1, SC001A, and SC003 were sampled across their entire lengths. Shells were microsampled at 5-14 samples per year, depending on the width of the increment, to achieve subannual resolution. The sampling resolution was lower for these smaller
chondrophore (SSFLA1, SC001A, and SC003) because of the smaller area and sampling strategy. Microsampling was performed on a Merchentek micromill fitted with a 0.3 mm dental burr. Each digitized drilling path produced approximately $50 \mu \mathrm{~g}$ of carbonate powder for isotopic analysis. Oxygen and carbon isotope ratios of the powdered shell carbonate samples were measured using a gas-ratio mass spectrometer (Finnigan MAT 252) coupled to an automated carbonate preparation device (Kiel-III) housed at the Environmental Isotope Laboratory at the University of Arizona. Powdered samples were reacted with dehydrated phosphoric acid under vacuum at $70^{\circ} \mathrm{C}$ for one hour. Isotopic ratios were calibrated based on repeated measurements of NBS-19 (National Bureau of Standard) and NBS-18. The precision of the measurements was $\pm 0.1 \%$ for $\delta^{18} \mathrm{O}(1 \sigma, 1$ standard deviation) and $\pm 0.06 \%$ for $\delta^{13} \mathrm{C}(1 \sigma)$. The results are reported in per mil units (\%) relative to the VPDB (Vienna Pee Dee Belemnite) standard. Reported $\delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values were plotted against distance from umbo along with annotations showing the locations of the dark growth increments.

To evaluate whether $\delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values in Spisula shells can be used to estimate MAB and MACP seawater, we compared: 1) $\delta^{18} \mathrm{O}, \delta^{13} \mathrm{C}$, and estimated temperatures between modern and Pliocene shells; and 2) estimated temperatures based on $\delta^{18} \mathrm{O}$ measurements of Spisula shells to modern instrument records. Estimated temperature was calculated following procedures from Williams et al. (1982) and using the equation reported by Grossman and Ku (1986):

$$
T^{\circ} \mathrm{C}=20.6-4.34\left(\delta^{18} O_{C}-\left(\delta^{18} O_{S W}-0.27 \% 0\right)\right)
$$

where $\delta^{18} \mathrm{O}$ (VPDB) is the isotope ratio from the shell carbonate (aragonite) and $\delta^{18} \mathrm{O}_{\text {sw }}$ is the oxygen isotope ratio of sea water (VSMOW; Vienna-Standard Mean Ocean Water). Note that the original equation subtracted -0.2% from the $\delta^{18} \mathrm{O}_{\text {SW }}$ value to account for the different scales on which carbonate and water are measured (i.e., VPDB and VSMOW, respectively). Gonfiantini et al. (1995) has since reported this correction as -0.27%. To estimate seawater temperature from $\delta^{18} \mathrm{O}$ values of modern shells, regional MAB $\delta^{18} \mathrm{O}_{\text {SW }}$ values were estimated using the $\delta^{18} \mathrm{O}_{\text {water-salinity mixing equation reported }}$ by Fairbanks (1982):

$$
\delta^{18} O_{M A B W(V S M O W)}=0.258 \times \text { salinity }-9.14
$$

where $\delta^{18} \mathrm{O}_{\text {MABW(VSMOW) }}$ is the oxygen isotope ratio of MAB water. Based on the mean annual bottom salinity from NEFSC-MARMAP corresponding to the period of growth for the specimens investigated, a $\delta^{18} \mathrm{O}_{\text {MABW }}$ value of $-0.88 \pm 0.5 \%$ ($32.02 \pm 1.92 \mathrm{psu}$) was used for specimen SS0190702 and a value of $-0.6 \pm 0.55 \%$ ($32.02 \pm 1.92 \mathrm{psu}$) was used for specimen SS3070299. MARMAP salinity data displayed a range of average annual salinity values between 27.69 and 33.81 psu for both locales. For modern specimen SSFLA1, a $\delta^{18} \mathrm{O}_{\mathrm{SW}}$ value of $+0.9 \%$ was used. Oxygen isotope ratios of seawater along central and south Florida range between 0% and $+1 \%$ depending on the proximal location of the GS (regionally called the Florida Current) and seasonal to interannual precipitation patterns (Swart et al., 1989). The 0.9% value was based on a compilation and distribution of global $\delta^{18} \mathrm{O}_{\mathrm{W}}$ values reported by Biggs and Rohls (2000) and consistent with values from Levitus (1993). No standard deviations were reported in these references. A $\delta^{18} \mathrm{O}_{\mathrm{SW}}$ value of $+1.1 \%$ was used for Pliocene aged Spisula based on
model predictions reported by Williams et al. (2009) for all members of the Yorktown Formation.

4.3 RESULTS

4.3.1 Shell Ages and Growth Parameters

The median age of all live collected S. s. solidissima is 11 years, the modal age is 6 years, and the mean age is 10.7 ± 4.4 years. The youngest modern S. s. solidissima is 3 years old, while the 2 oldest specimens are 23 years old. Fossil S. confraga from the Yorktown Fm had minimum age of 4 years and a maximum age of 10 years with a mean age of 6 ± 2 years. Pliocene S. modicello has a mean age of 7 ± 3 years, with a minimum age of 4 years and a maximum age of 12 years.

Calculated k and L_{∞} parameter values from all modern MAB S. S. s. solidissima populations are 0.150 and 163.00 mm , respectively. Calculated k and L_{∞} parameter values for S. s. similis from the Florida Atlantic coast are 0.43 and 72.34 mm , respectively. Pliocene S. modicello and S. confraga from the Yorktown Fm have calculated k-values of 0.62 and 0.24 , respectively, and maximum lengths of 44.32 mm and 43.23 mm , respectively.

4.3.2 Variations in growth increments

Calculated annual mean SGIs for the statistical areas used in our study are given in Tables 4 and 5. The SGIs for areas 621 and 626 (off the Delmarva Peninsula; Figure
4.1) were excluded because of low numbers of individuals that can be used for crossdating. The cross-dated individuals provided a time series of SGIs from 1972 to 200, longer than most RWI and on similar timescale to the continuously sampled MARMAP record (Tables 4 and 5). In comparison, individual RWIs that includes those individuals that could not be used for cross-dating extended back to 1969 (Appendix A, Tables 3 and 4). The maximum length of the SGIs was 30 years (Area 613; Table 4) with a mean time range of 23 ± 3 years. The number of cross-dated individuals in each SGI increases from 1972 to 2001. Individual SGIs, MAB-wide, and MAB-regional chronologies were plotted along with mean annual surface and bottom SST and salinity measurements from the NEFSC Marine Resources Monitoring, Assessment, and Prediction (MARMAP) program (http://www.nefsc.noaa.gov/nefsc/publications/crd/crd0408/\#dt) (Appendix A, Figures 5 and 6.

4.3.3 Variations in stable isotopes

All Spisula exhibited temporal variations of $\delta^{18} \mathrm{O}$ values following a relatively sinusoidal trend. Oxygen isotope ratios for S. s. solidissima SS0190702 ranged from -1.0% to $+1.6 \%$ with a mean of $+0.2 \pm 0.7 \%$ ($n=49$; Figure 4.5 , Table 4.2). Values from specimen SS3070299 ranged from $+0.4 \%$ to $+2.3 \%$ with a mean of $1.5 \pm 0.5 \%$ ($n=40$; Figure 4, Table 2). Values of $\delta^{18} \mathrm{O}$ recorded in S. s. similis SSFLA1 ranged from -1.0% to $+0.8 \%$ with a mean of $0.1 \pm 0.5 \%$ ($n=27$; Figure 4.5 , Table 4.2). Specimen SS190702 exhibited the largest range of $\delta^{18} \mathrm{O}$ values (2.6%). SS3070299 and SSFLA1 displayed similar ranges of 1.8% and 1.9%, respectively. Oxygen isotope ratios for Pliocene age S.
confraga SC001A ranged from $+1.4 \%$ to $+2.9 \%$ with a mean of $+2.1 \pm 0.4 \%$ ($n=28$;
Figure 4.9, Table 4.2), and SC003 ranged from $+1.6 \%$ to $+3.2 \%$ with a mean of $2.5 \pm 0.4 \%$ ($n=31$; Figure 4.9, Table 4.2). Both shells displayed similar ranges of 1.6% and 1.5%, respectively.

Like $\delta^{18} \mathrm{O}$ values, the temporal variation of $\delta^{13} \mathrm{C}$ values recorded in modern and fossil Spisula shells displayed a more or less sinusoidal pattern. However, the patterns were not in phase with and were smaller than the associated $\delta^{18} \mathrm{O}$ values. Carbon isotope ratios of modern Spisula ranged from $+0.6 \%$ to $+2.4 \%$ with a mean of $+1.7 \pm 0.4 \%$ (SS0190702), $+1.2 \%$ to $+2.7 \%$ with a mean of $+1.9 \pm 0.4 \%$ (SS3070299), and -0.4% to $+1.0 \%$ with a mean of $+0.5 \pm 0.4 \%$ (SSFLA1) (Figure 4.5, Table 4.2). Pliocene shells ranged from +0.7 to $+2.0 \%$ (SC 001 A) and $+0.3 \%_{0}$ to $+1.7 \%$ (SC003) with both having a mean of $+1.2 \pm 0.3 \%$ (Figure 4.9, Table 4.2). No clear secular trend was exhibited by the modern Spisula $\delta^{13} \mathrm{C}$ value series; however, the Pliocene S. confraga series SC001A and SC003 displayed $\delta{ }^{13} \mathrm{C}$ values that noticeably decreased with ontogenetic age (i.e., away from the umbo). No significant correlation was observed between $\delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values in either modern or Pliocene species of Spisula (Figure 4.8, Table 4.3).

4.4 DISCUSSION

4.4.1 Comparison of growth parameters

VBGM parameters measured from western North Atlantic surf clams reveal trends within and among species related to latitude and depth. L_{∞} values from the modern MAB S. s. s. solidissima populations show a difference in the maximum length attained between shallow (inshore) and deeper (offshore) populations south of New Jersey (statistical areas 614 and 615), but there is no clear latitudinal trend (Figure 4.4). Following Richardson et al. (1999), we evaluated whether there are morphological differences between inshore and offshore populations. When comparing the linear relationship between chondrophore and valve length reveals slopes of the trend lines are influenced by depth (Figure 4.3). Shells from depths greater than 50 m have the steepest slope, whereas those from less than 25 meters fall along the most shallow slope. The apparent difference in slope is, however, small. For all depth bins, the measured lengths is a 1:1 relationship and f-tests for variance between the regressions indicate the greatest variance between the shallowest and deepest bins. However, the f-tests fail to reject the null hypothesis that the populations are significantly different $\left(\mathrm{f}=0.362, \mathrm{f}_{\text {crit }}=0.591\right.$, <25m vs. > 50m). L L_{∞} values of S. s. s. solidissima from this study are also shorter than previous studies with the notable exception of Jones et al. (1978; inshore). These values are very similar to the St. Joseph Bay population (Walker and Heffernan, 1994), but our samples did not attain the same maximum length.

Unlike L_{∞} values, k-values generally decrease with decreasing latitude for populations of S. S. s. solidissima, both on- and offshore with notable exceptions near the New Jersey shelf region. That same latitudinal trend is shown with S. s. similis k-values and generally for maximum shell length. There is no latitudinal difference between Pliocene Spisula samples/species. Our values are indistinguishable from NOAA-NEFSC studies that analyzed many of the same individuals but used the right instead of the left valve. (Weinberg and Hesler, 1996; Weinberg et al., 2005) (Table 4.1). MAB sub-region parameters are also very similar. The differences in k-values between adjacent subregions (inshore versus offshore) in our study are 0.002 to 0.107 with the largest difference occurring in the New Jersey shelf region.

Our observations are consistent with previous Atlantic surfclam growth studies that propose that both decreasing latitude and water depth result in higher k-values, earlier age of maturity, and shorter lifespans likely occur under natural conditions (Ropes, 1980; Jones, 1980; Walker and Heffernan, 1994; Chintala and Grassle, 2001; and others). Intraspecific (S. S. s. solidissima) variations of these k-value occurrences (small sized, shorter life span, etc.) are largely related to latitudinal temperature and depth related temperature variations across the species' natural range. Assuming that Spisula inhabiting the more marginal environments of their natural range likely experience and exhibit less than optimal growth conditions than individuals in the center of range will experience more ideal growth conditions, then using k-values allows us to infer where within the range an individual grew. If k-value trends are viewed on the three range
dimension axes (latitude, distance from shore, and depth), trend lines should have high k values on the ends with a low in middle as in instead of a simple linear trend. High ends of the latitude axis are seen at Georges Banks (GB) and southern Delmarva with the low near northern New Jersey (Figure 4). The anomalously high k-values that dominate where the low should be on the latitude axis are consistent if they represent the shallow end of depth axis. This interpretation is consistent with a map view of offshore conditional indices for S. S. s. solidissima (Marzec et al., 2010, Figures 1, 3, and 5) where highest conditions are along the -20 to -30 isobaths and diminish as they move farther offshore. As in the present study, Marzec et al. (2010) sample populations in federal waters (offshore), but inshore (Chang et al., 1976; Chintala and Grassle, 2001) growth and length-weight studies are consistent with Jones’ (1980) high k-value.

The same growth parameter relationship trends should hold true for interspecific (Mactridae) growth trends. Polar and equatorial species should have populations where larger growth and greater longevity are common, and variations in depth modulate these characteristics. The narrow ecological amplitude and depth ranges of the warm water surfclam species (S. s. similis, S. modicello, and S. confraga) we investigated enables us to best related lower latitude (biogeographic province) to k-values and longevity, but paleodepth effects are difficult to determine because of the limited sample ranges. S. s. similis parameters show a similar trend over a large latitude range (Long Island Sound to Florida). Unfortunately, all populations are shallow, either collected by dredges or divers ($<15 \mathrm{~m}$) or as articulated beach drift. Consistent with our prediction of trends, the end members of the range (LIS and FL Gulf) are on average older (age 7-12 years) than those found in middle (example Walker and Heffernan, 1994, Figure 4).

The calculated k-values for the Yorktown shell populations fall within the variable ranges for modern S. S. s. solidissima populations living at the warm-temperate latitude margin, or the deeper or cold-temperate latitude margin of S. s. similis. Pliocene Spisula growth parameters are challenging to compare since they were sampled at the same latitude and display very different k-values. This may be due to different shell thicknesses. Thin S. confraga look very similar to S. s. similis, and were measured to have a maximum age of 10 years with a mean age of 6 ± 2 years. All of the S. modicello shells were very worn, but their original thickness and shell shape is similar to the modern, tropical Mactrellona alata (Spengler). The more robust S. modicello had a mean age of 7 ± 3 years, with a maximum aged of 12 years. These ages are comparable to shallow, northern S.s. similis ages (Cerrato and Keith, 1992; Hare et al., 2010, Long Island Sound). The high k-values and relative abundance and longevity of both these species lead us to reason that they are "warm" water species living either near the center of their conditional range or closer to the colder (northern and/or deeper) margin of that range. Listed occurrences of S. confraga and S. modicello are limited to the Pliocene Virginia localities, but S. subparilis and Spisula spp. are found in more southern localities (Florida). Paleodepth estimates for our sample localities place them on a fully marine shell (>25 m) (Ward and Blackwelder, 1976; Blackwelder, 1981). This is consistent with succeeding estimates of emergent Pliocene deposits paleodepth (Cronin et al., 1989; Dwyer and Chandler, 2005). However, all of our samples are worn and broken (evidence of transport) and may have migrated either along or down isobaths. Previous studies indicated that a high ratio of Plio-Pleistocene Spisula fossils exhibited morphology of modern individuals living above the seasonal thermocline (Jones, 1980; Arthur et al.,
1983). Anomalously high VBGM k-value, in terms of both inter- and intra-specific variations, are most likely related to decreasing depths (larger SST variation, lower salinities, and higher predation) but are inseparable associated with decreasing latitude (warmer average temperatures).

4.4.2 SGI Comparisons

A plot of the population-wide SGI indices from the MAB indicated that S. s. solidissima growth displayed interannual variation over the interval 1972-2001 (Figure 4.10, bottom panel; Statistical Areas, Appendix A, Figures 5 and 6). SGIs were plotted along with regional NEFSC-MARMAP bottom temperature and salinity anomaly instrumental records which initiated in 1977. The SGIs series are expressed as the number of standard deviations away from zero, with an SGI of 0.0 equaling the expected growth in S. S. s. solidissima in an area or the entire MAB. Yearly SGI values >0.0 denoted years of higher than expected growth, whereas years with SGI values <0.0 represented years of poorer than expected growth. All SGI time series within the MAB contain similar clusters of years having greater than expected growth: years 1980-1984, 1993-1996, and 2001 (Tables 4.3 and 4.4, Figure 4.10; Appendix A, Tables 3 and 4, Figures 5 and 6). Between these clusters were several years of slightly above or slightly below expected growth, except for a lower than predicted episode between 1975 and 1980.

SGI time series and yearly NEFSC-MARMAP instrumental records for the period 1977-2001 appeared closely related (Figure 4.10; Appendix A Figures 5 and 6). Most

SGI increments of significantly greater than expected growth coincide with years of colder than normal bottom water temperatures, and slower than expected growth occurs during years with higher than normal bottom water temperatures. Least-squares regressions were used to test the relationship between mean annual bottom water temperatures, mean annual salinity anomaly, and the SGI profiles. A weak correlation exists between shell increment growth in S. s. solidissima and MAB water temperatures $\left(r=0.15, p\right.$-value $\left.=4.5 \times 10^{-14}\right)$. Separated into statistical areas, linear regressions showed correlations were weak to insignificant, and ranged between $r=0.05, p=4.7 \times 10^{-14}$ (Area 625) and $r=0.43, p=2.8 \times 10^{-16}$ (Area 613). The observed negative relationship between SGI and water temperature consistently occurs between 1985 and 1997, but diverges at the beginning and ends of the chronologies where the number of cross-dated individuals was low. The relationship between SGI series and MAB salinity was insignificant ($r=0.01, p=0.06$), as was the relationship between measured MAB bottom water temperature and salinity $\left(r=0.01, p=2.11 \times 10^{-29}\right)$.

The strong correlation between temperature and SGI reported by Jones (1980) and (1983) for inshore ($0-25 \mathrm{~m}$) specimens is consistent with the known influence of temperature on the growth of S. S. s. solidissima, but is not consistently demonstrated in the SGIs of the populations from this study. However, positive correlations exist during the years 1977-1982 and 1985-1989. The lack of significant correlation between growth and temperature in this study does not reject previous findings nor does it invalidate our conclusions.

Our growth parameter results indicate that most of the offshore specimens sampled are experiencing the high to medium growth conditions near the center of their range and ecological amplitude. This is demonstrated by relatively flat (low interannual variability) SGIs in 4 of regions in the mid-1990s to 2000, during intervals with large numbers of cross-dated individuals. The offshore SGIs, producing complacent (i.e., low amplitude) time series, should be rejected due to poor site selection for producing bivalve-increment time series sensitive to local environmental variability. The SGI for all MAB S. S. s. solidissima demonstrate a weak correlation, and most though weak likely represents a time series capable of capturing MAB-wide anomalies in volume, temperature, and salinity related to larger physical oceanographic variations (Mountain, 2003).

4.4.3 Species stable isotope distinctions

Estimated SST from modern specimens were plotted using mean, maximum, and minimum $\delta^{18} \mathrm{O}_{\mathrm{W}}$ values (Figure 4.6). Modern Spisula temperature estimate ranges were plotted against instrumental records in proximity to their collection locations (Figure 4.6). Pliocene estimates were graphed along with modern instrumental and bivalve proxybased seawater temperature ranges for adjacent shelf and corresponding Yorktown deposits. Spisula $\delta^{18} \mathrm{O}, \delta^{13} \mathrm{C}$, and estimated temperatures were also compared to each other (Table 4.2).

Our study is consistent with previous studies that isotopic proxy data from Spisula shells can be used for paleotemperature reconstruction (Jones et al., 1983; Krantz et al.,
1987). The clear annual cycles in both modern and fossil shell is strong evidence that there were minimal effects of diagenesis on the data and that shell growth in the early years of ontogeny were consistent. In all the shells observed, dark increments corresponded with the coldest recorded temperatures. This is consistent with previous studies on Spisula growth that indicate these marks are annual (Jones 1978; 1980; etc.)),though the actual timing of marks likely varies slightly through the range due to the small offset in annual shelf water temperature cycles.

Estimated temperatures, based on $\delta^{18} \mathrm{O}$ values, for S. s. solidissima in the MAB showed a general range of $6.8^{\circ} \mathrm{C}$ to $19.9{ }^{\circ} \mathrm{C}$ (Figure 4.4, Table 4.2). Estimated temperature for SS 0190702 ranged from $8.6^{\circ} \mathrm{C}$ to $19.9^{\circ} \mathrm{C}$ with a mean of $14.6 \pm 3.2^{\circ} \mathrm{C}$ (Figure 4.4, Table 4.2). The warmest estimated temperatures in SS 0190702 (at $\delta^{18} \mathrm{O}$ lows within the light growth increments) ranged from $14.6^{\circ} \mathrm{C}$ to $21.11^{\circ} \mathrm{C}$ with a mean of $18.1 \pm 2.7^{\circ} \mathrm{C}$ ($n=7$; Figure 4.4, Table 4.2). Coldest estimated temperatures (near dark increments) ranged from 8.6 to 12.6 with a mean of $10.1 \pm 1.3^{\circ} \mathrm{C}(n=8$; Figure 4.4 , Table 4.2). The estimated temperature range for SS0190702 encompassed almost all of the range in seawater temperature measured at the Ambrose Light (NOAA-ALSN6, water depth: 21 m) during 1986-1993 (Figure 4.6). Two periods of $>24^{\circ} \mathrm{C}$ were not captured. SS3070299 estimated temperature values ranged from $6.8^{\circ} \mathrm{C}$ to $15.0^{\circ} \mathrm{C}$ with a mean of $10.3 \pm 2.1^{\circ} \mathrm{C}$ (Figure 4.4, Table 4.2). The warmest estimated temperatures in SS3070299 ranged from $11.53^{\circ} \mathrm{C}$ to $15.1^{\circ} \mathrm{C}$ with a mean of $13.8 \pm 1.6^{\circ} \mathrm{C}(n=4)$, while the coldest ranged from $6.8^{\circ} \mathrm{C}$ to $8.5^{\circ} \mathrm{C}$ with a mean of $7.5 \pm 0.7^{\circ} \mathrm{C}$ ($n=4$; Figure 4.4). Plotted against SST measurements from NOAA buoy 44009 (water depth: 28 m , sampling depth: 0.6 m), SS3070299 estimated temperatures failed to capture measured SST $<5^{\circ} \mathrm{C}$ and $>16^{\circ} \mathrm{C}$.

However, when compared to NEFSC-MARMAP bottom temperatures (mean: 9.77 ± 2.16 ${ }^{\circ} \mathrm{C}$, range: $6.34-14.08{ }^{\circ} \mathrm{C}$), SS3070299 estimated temperatures enclosed that entire range.

SSFLA1 estimated temperature values ranged from $20.0^{\circ} \mathrm{C}$ to $27.7^{\circ} \mathrm{C}$ with a mean of $23.1 \pm 2.3^{\circ} \mathrm{C}$ (Figure 4.4, Table 4.2). The warmest estimated temperatures in SSFLA1 were $27.7^{\circ} \mathrm{C}$ and $26.9^{\circ} \mathrm{C}$ with a mean of, while the coldest estimated temperatures calculated were $19.9^{\circ} \mathrm{C}$ and $20.7^{\circ} \mathrm{C}$ (Figure 4.4). SSFLA1 temperature estimates only captured the warmest measured SST from the nearest active shoreline NOAA meteorological station (SAUF1; depth 0 m) during its lifespan. Station 41009, the an offshore buoy 20 nautical miles (37.4 km) east of Cape Canaveral (depth 44.2 m) exhibited measured SSTs range from $23.0^{\circ} \mathrm{C}$ to $27.6^{\circ} \mathrm{C}\left(Q_{3}\right)$ with a mean of $25.2 \pm 2.7^{\circ} \mathrm{C}$, corresponding well to the estimated temperature range (Figure 4.6).

Estimated temperature for S. confraga SC001A ranged from $11.5^{\circ} \mathrm{C}$ to $18.3^{\circ} \mathrm{C}$ with a mean of $15.1 \pm 1.8^{\circ} \mathrm{C}$ (Figure 4.8, Table 4.2), and SC003 values ranged from $10.4^{\circ} \mathrm{C}$ to $17.1^{\circ} \mathrm{C}$ with a mean of $15.5 \pm 1.9^{\circ} \mathrm{C}$ (Figure 4.8 , Table 4.2). The S. confraga displayed similar ranges of $6.8^{\circ} \mathrm{C}$ and $6.7^{\circ} \mathrm{C}$. The warmest estimated temperatures in SC001A ranged from $17.5^{\circ} \mathrm{C}$ to $18.3^{\circ} \mathrm{C}$ with a mean of $18.8 \pm 0.4^{\circ} \mathrm{C}(n=3)$, while the coldest ranged from $8.6^{\circ} \mathrm{C}$ to $13.2^{\circ} \mathrm{C}$ with a mean of $11.6 \pm 2.1^{\circ} \mathrm{C}(n=4$; Figure 4.4). The warmest estimated temperatures in SC003 ranged from $15.8^{\circ} \mathrm{C}$ to $17.1^{\circ} \mathrm{C}$ with a mean of $16.5 \pm 0.6^{\circ} \mathrm{C}(n=5)$, while the coldest ranged from $10.3^{\circ} \mathrm{C}$ to $11.8^{\circ} \mathrm{C}$ with a mean of $11.1 \pm 0.7^{\circ} \mathrm{C}$ ($n=5$; Figure 4.4). When compared to previously published bivalve $\delta^{18} \mathrm{O}$ temperature estimate data from the MACP Yorktown Fm (Krantz, 1990; Goewert and Surge, 2008), only the warmest S. confraga temperature estimates overlapped the
published range (Figure 4.9). S. confraga mean estimated temperatures of $14.2 \pm 1.0^{\circ} \mathrm{C}$ straddled the mean SST and standard deviation $\left(15.5 \pm 7.0^{\circ} \mathrm{C}\right)$ of the NOAA station CHLV2 (Chesapeake Light, http://www.ndbc.noaa.gov/) (Figure 4.9).

The largest modern estimated temperature range of $11.3^{\circ} \mathrm{C}$ was exhibited by SS0190702, the most northern MAB surf clam, and the smallest $\left(7.7^{\circ} \mathrm{C}\right)$ by SSFLA1, collected off Florida. The largest standard deviation of all Spisula estimated temperature series was recorded by $\operatorname{SS} 0190702\left(\pm 3.2^{\circ} \mathrm{C}\right)$, while the smallest standard deviations $\left(\pm 1.8-1.9^{\circ} \mathrm{C}\right)$ were displayed and the S. confraga (SC001A and SC003; MACP, Yorktown Fm). Similar standard deviations about their means were recorded by S. s. solidissima SS30702 and S. s. similis SSFLA1 $\left(\pm 2.1^{\circ} \mathrm{C}\right.$ and $\pm 2.3^{\circ} \mathrm{C}$, in that order).

The live-collected S. s. s. solidissima shells did not have a similar $\delta^{18} \mathrm{O}$ ranges. This offset of about 0.5% reduced the range of temperature estimates captured by SS3070299 below the full range of the continuous SST buoy record but close to southern MARMAP bottom temperature values. Yorktown Spisula displayed similar $\delta^{18} \mathrm{O}$ ranges, but these ranges are just above previously published $\delta^{18} \mathrm{O}$ values for the Yorktown and smaller in range than the $\delta^{18} \mathrm{O}$ recorded by modern S. s. similis. The colder than previously published bivalve $\delta^{18} \mathrm{O}$ temperature estimate data from the MACP Yorktown Fm might be: (1) an artifact of low shell sampling not resolving the warmest portions of the year, (2) a systematic difference between the aragonite shell mineralization in the surfclam and the calcite in the scallops, or (3) the actual temperatures recorded, just during different times and at different depths within the Pliocene. Overall, estimated temperature profiles from Yorktown Fm Spisula shells document greatly reduced
seasonality, similar to the modern S. s. similis, but with similar average temperatures relative to modern SST at the same latitude.

4.5 CONCLUSIONS

With their abundance, size, relative longevity, easily measured growth marks, wide distribution, and good preservation species of Spisula remain excellent archetypes for bivalve sclerochronology. Spisula is a consistently useful environmental recorder of sea water temperature, depth, seasonality, and interannual variability during modern and ancient shelf conditions, and along their entire western Atlantic coast range, it consistently records annual growth marks during the coldest season and dependably displays regional environmental patterns within its shells when compared to instrumental records. Further comparison of growth parameters across wide natural ranges should enable more reliable paleoecological interpretations and site selection for the increment derived time series.

ACKNOWLEDGEMENTS

Thanks to the Virginia Museum of Natural History for providing the fossil shells picked and identified by Dr. Lauck Ward. Thanks to Dr. Jay Burnett (NOAA-retired) and the Northeast Fisheries Science Center (NEFSC) Fishery Sampling Branch for the livecollected surf clams. Thanks to Dr. G. Lynn Wingard (USGS) for providing shells from South Florida and fossil references. Dr. David Dettman at the Environmental Isotope Laboratory at the University of Arizona performed isotopic analysis of carbonate
samples. This paper is largely derived from a dissertation written under the guidance of DS, and made possible by the stimulus and support of the Preston Jones and Mary Elizabeth Frances Dean Martin Trust (UNC-Chapel Hill) and National Science Foundation Grants \#AGS-0602422 (DS) and \#HRD-0450099 (Valerie Ashby, UNCAGEP).

REFERENCES

Azarovitz, TR. (1981). A brief historical review of the Woods Hole Laboratory trawl survey time series. In: Doubleday, WG and Rivard, D, eds. Bottom trawl surveys. Canadian Special Publication of Fisheries and Aquatic Sciences 58, p. 62-67

Bailey, R. H. and S. A. Tedesco. (1986). Paleoecology of a Pliocene coral thicket from North Carolina: an example of temporal change in community structure and function. Journal of Paleontology 60(6):1159-1176.

Blackwelder, B.W. (1981a). Late Cenozoic stages and molluscan zones of the middle U.S. Atlantic Coastal Plain. Journal of Paleontology, Memoir, 12: Part II.

Blackwelder, B.W. (1981b). Stratigraphy of upper Pliocene and lower Pleistocene marine and estuarine deposits of northeastern North Carolina and southeastern Virginia. U.S. Geological Survey Bulletin, 1502-B: B1-B16.

Briggs, J.C. and B.W. Bowen (2012). A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography, 39, 12-30.

Cargnelli, L.M., S.J. Griesbach, D.B. Packer, and E. Weissberger (1999). Essential fish habitat source document: Atlantic surfclam, Spisula solidissima, life history and habitat characteristics. NOAA Tech. Memo. NMFS-NE-142.

Cronin, T.M. (1991). Pliocene shallow water paleoceanography of the North Atlantic Ocean based on marine ostracodes. Quaternary Science Review, 10: 175-188.

Cronin, T.M. and H.J. Dowsett. (1996). Biotic and oceanographic response to the Pliocene closing of the central American Isthmus. In: Jackson, J.B.C., Budd, A.F., Coates, A.G. (Eds.), Evolution and Environment in Tropical America. University of Chicago, IL, 76-104.

Cronin, T.M. and J.E. Hazel. (1980). Ostracode biostratigraphy of Pliocene and Pleistocene deposits of the Cape Fear Arch region, North and South Carolina. U.S. Geological Survey Professional Paper, 1125-B: B1-B25.

Cronin, T.M., H.J. Dowsett, G.S. Dwyer, P.A. Baker, and M.A. Chandler. (2005). Mid-Pliocene deep-sea bottom-water temperatures based on ostracode $\mathrm{Mg} / \mathrm{Ca}$ ratios. Marine Micropaleontology, 54: 249-261.

Cronin, T.M., L.M. Bybell, R.Z. Poore, B.W. Blackwelder, J.C. Liddicoat, and J.E. Hazel. (1984). Age and correlation of emerged Pliocene and Pleistocene deposits, U.S. Atlantic Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 47: 21-51.

Dowsett, H.J. and L.B. Wiggs. (1992). Planktonic foraminiferal assemblages of the Yorktown Formation, Virginia, USA. Micropaleontology, 38: 75-86.

Dowsett, H.J. and R.Z. Poore. (1991). Pliocene sea surface temperatures of the North Atlantic Ocean at 3.0 Ma. Quaternary Science Review, 10: 189-204.

Dowsett, H.J. and T.M. Cronin (1990). High eustatic sea level during the middle Pliocene: Evidence from the southeastern U.S. Atlantic Coastal Plain. Geology, 18: 435-438.

Dowsett, H.J., J.A. Barron, and R.Z. Poore. (1996). Middle Pliocene sea surface temperatures: a global reconstruction. Marine Micropaleontology, 27: 13-25.

Dowsett, H.J., J.A. Barron, R.Z. Poore, R.S. Thompson, T.M. Cronin, S.E. Ishman, and D.A. Willard. (1999). Middle Pliocene paleoenvironmental reconstruction: PRISM2. U.S. Geological Survey Open File Report, 99-535: 1-33.

Dowsett, H.J., M.A. Chandler, T.M. Cronin, and G.S. Dwyer. (2005). Middle Pliocene sea surface temperature variability. Paleoceanography, 20: 1-8.

Dowsett, H.J., T.M. Cronin, R.Z. Poore, R.S. Thompson, R.C. Whatley, and A.M. Wood. (1992). Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the Pliocene. Science, 258: 1133-1135.

Elliot, M., P.B. deMenocal, K.L. Braddock, S.S. Howe. (2003). Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochemistry, Geophysics, Geosystems, 4: 1056-1072.

Fairbank, R.G. (1982). The origin of continental-shelf and slope water in the New York Bight and Gulf of Maine-Evidence from $\delta 180 / \delta 160$ ratio measurements. Journal of Geophysical Research: Oceans and Atmospheres, 87: 5796-5808.

Gardner, J. (1944). Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina, Part 1: Pelecypoda. United States Geological Survey Professional Paper, 199-A: 1-178.

Gardner, J. (1948). Mollusca from the Miocene and Lower Pliocene of Virginia and North Carolina, Part 2: Scaphopoda and Gastropoda. United States Geological Survey Professional Paper, 199-B: 1-310.

Gaspar, M B, M Castri and C C Monteiro (1995). Age and growth rate of the clam, Spisula solida L., from a site off Vilamoura, south Portugal, determined from acetate replicas of shell sections. Scientia Marina 59 (supl. 1): 87-93

Goewert, A.E., Surge, D., (2008). Seasonality and growth patterns using isotope sclerochronology in shells of the Pliocene scallop Chesapecten madisonius. GeoMarine Letters 28, 327-338.

Goodwin, D.H., Schöne, B.R., Dettman, D.L., (2003). Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18, 110-125.

Gonfiantini, R., Stichler, W., Rozanski, K., (1995). Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements, Reference and intercomparison materials for stable isotopes of light elements. I.A.E.A., pp. 13-29

Grossman, E.L., and T. Ku. (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology, 59: 705 59-74.

Hare, M.P. and J.R. Weinberg (2005). Phylogeography of surfclams, Spisula solidissima, in the western North Atlantic based on mitochondrial and nuclear DNA sequences. Marine Biology, 146: 707-716.

Hare, M.P., J. Weinberg, O. Peterfalvy, and M. Davidson (2010). The "southern" surfclam (Spisula solidissima similis) found north of its reported range: A commercially harvested population in Long Island Sound, New York. Journal of Shellfish Research, 29, 4, 799-807.

Haug, G.H. and R. Tiedemann. (1998). Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393: 673-676.

Haug, G.H., R. Tiedemann, R. Zahn, and A.C. Ravelo. (2001). Role of Panama uplift on oceanic freshwater balance. Geology, 29: 207-210.

Haus, B.K., H.C. Graber, L.K. Shay, and T.M. Cook (2003). Along shelf Variability of a Coastal Buoyancy Current during the relaxation of downwelling favorable winds. Journal of Coastal Research, 19(2): 409-422

Haywood, A.M. and P.J. Valdes (2004). Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218: 363377.

Haywood, A.M., P. Dekens, A.C. Ravelo, and M. Williams. (2005). Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean-atmosphereGCM. Geochemistry, Geophysics, and Geosystems, 6: 120.

Haywood, A.M., P.J. Valdes, and B.W. Sellwood. (2000). Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results. Global and Planetary Change, 25: 239-256

Haywood, A.M., Valdes, P.J., Sellwood, B.W., Kaplan, J.O. Dowsett, H.J. 2001. Modelling Middle Pliocene warm climates of the USA. Palaeontologia Electronica, v.4, art.5. (available at: http://palaeoelectronica.org/2001_1/climate/issue1_01.htm)

Hazel, J.E. (1971). Ostracode biostratigraphy of the Yorktown Formation (upper Miocene and lower Pliocene) of Virginia and North Carolina. U.S. Geological Survey Professional Paper, 704:1-13.

Helama, S. and J.K. Nielsen (2008). Construction of statistically reliable sclerochronology using subfossil shells of river pearl mussel. Journal of Paleolimnology, 40: 247-261.

Johns, W.E., T.J. Shay, J.M. Bane, D.R. Watts, (1995). Gulf Stream structure, transport, and recirculation near $68^{\circ} \mathrm{W}$. Journal of Geophysical Research, 100, 817838.

Jones, D.S. (1980). Annual cycle of shell growth increment formation in 2 continental-shelf bivalves and it paleoecologic significance. Paleobiology, 6 (3)m 331-340.

Jones, D S (1981). Reproductive cycles of the Atlantic surf clam Spisula solidissima and the ocean quahog Arctica islandica off New Jersey. Journal of Shellfish Research 1(1): 23-32

Jones, D.S., D.F. Williams and M.A. Arthur (1983). Growth history and ecology of the Atlantic surf clam, Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments. J. Exp. Mar. Biol. Ecol, 73: 225-242

Jones, D.S., I. Thompson and W. Ambrose (1978). Age and growth rate determinations of the Atlantic surf clam Spisula solidissima (Bivalvia: Mactracea), based on internal growth lines in shell cross-sections. Marine Biology 47: 63-70

Jones, D.S. (1983). Sclerochronology: reading the record of the molluscan shell. American Scientist, 71: 384-391.

Jones, D.S., B.J. MacFadden, S.D. Webb, P.A. Mueller, D.A. Hodell, and T.M. Cronin. (1991). Integrated geochronology of a classic Pliocene fossil site in Florida: linking marine and terrestrial biochronologies. Journal of Geology, 99: 637-648.

Jones, P. D., and M. E. Mann (2004), Climate over past millennia, Rev. Geophys., 42, RG2002.

Jones, P.D., K.R. Briffa, T.P. Barnett and S.F.B. Tett (1998). High-resolution palaeoclimate records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. The Holocene, 8(4): 455-471.

Jossi, J.W. and R.L. Benway (2003). Variability of temperature and salinity in the middle Atlantic bight and Gulf of Maine based on data collected as part of the MARMAP Ships of Opportunity Program, 1978-2001. NOAA Tech Memo NMFS NE 172; 1-92.

Kelly, K.A., (1991). The meandering Gulf Stream as seen by the Geosat altimeter: surface transport, position and velocity variance from 73° to $46^{\circ} \mathrm{W}$. Journal of Geophysical Research, 96, 16721-16738.

Krantz, D. E., Williams, D. F. and Jones, D. S., (1987). Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology, 58:249 266.

Krantz, D.E. (1990) Mollusk-Isotope Records of Plio-Pleistocene Marine Paleoclimate, U.S. Middle Atlantic Coastal Plain. Palaios, 5: 317-335.

Krantz, D.E. (1991). A chronology of Pliocene sea-level fluctuations: the U.S.
Middle Atlantic Coastal Plain record. Quaternary Science Reviews, 10: 163-174.
Krauss, W., (1986). The North Atlantic Current. Journal of Geophysical Research, 91, 5061-5074.

Lentz, S.J. (2008a). Observations and a model of the mean circulation over the Middle Atlantic bight continental shelf. Journal of Physical Oceanography, 30(6), 1203-1221.

Lentz, S.J. (2008b). Seasonal variation in the circulation over the Middle Atlantic bight continental shelf. Journal of Physical Oceanography, 38(7), 1486-1500.

Lunt, D.J., Valdes, P.J., Haywood, A., Rutt, I.C., (2008). Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Climate Dynamics 30, 1-18.

Marchitto, T.M., D.S. Jones, G.A. Goodfriend, and C.R. Weidman. (2000). Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quaternary Research, 53(2):236-246.

Marine Resources Monitoring, Assessment, and Prediction website: http://www.nefsc.noaa.gov/nefsc/publications/crd/crd0408/\#dt

McConnaughey, T.A., Gillikin, D.P., (2008). Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28, 287-299.

Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver, Z.-C. Zhao. (2007). Global climate projections. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Eds.), The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.

Mountain, D. G. (2003). Variability in the properties of Shelf Water in the Middle Atlantic Bight, 1977-1999, Journal of Geophysical Research, 108(C1), 3014.

Mountain, D.G. and T.J. Holzwarth. (1989). Surface and bottom temperature distribution for the northeast continental shelf. NOAA Tech. Mem. NMFS-F/NEC73; 32 p .

Mountain, D.G.; Taylor, M.H.; Bascuñán, C. (2004). Revised procedures for calculating regional average water properties for Northeast Fisheries Science Center cruises. Northeast Fisheries Science Center Reference Document 04-08; 53 p. Available from: National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.

National Research Council. (2002). Abrupt Climate Change: Inevitable Surprises. Washington, DC, National Academy Press.

O'Hare, G., Johnson, A., Pope, R., (2005). Current shifts in abrupt climate change: the stability of the North Atlantic Conveyor and its influence on future climate. Geography 90, 250-266.

Raymo, M.E., B. Grant, M. Horowitz, and G.H. Rau. (1996). Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Marine Micropaleontology, 27: 313-326.

Ropes J W and L O'Brien (1979) A unique method of aging surf clams. ICES C.M. 1979/K:28

Ropes, J W (1968) Reproductive cycle of the surf clam, Spisula solidissima, in offshore New Jersey. Biological Bulletin (Woods Hole) 135: 349 - 365.

Schöne, B.R, (2003). A 'clam-ring' master-chronology constructed from a short-lived bivalve mollusc from the northern Gulf of California, USA. The Holocene, 13, 3949.

Schöne, B.R., D.H. Goodwin, K.W. Flessa, D.L. Dettman, and P.D. Roopnarine. (2002). Sclerochronology and growth of the bivalve mollusks Chione (Chionista)
fluctifraga and Chione (Chinista)cortezi in the northern Gulf of California, Mexico. Veliger, 45: 45-54.

Schöne, B.R., Surge, D. (Eds.), (2005). Looking back over skeletal diaries - highresolution environmental reconstructions from accretionary hard parts of aquatic organisms. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 228, pp. 1-192.

Stecher, H.A, III, Krantz, D.E., Lord, C.J. III, Luther, G.W III, and K.W. Bock (1996). Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells, Geochimica et Cosmochimica Acta, Volume 60, Issue 18, Pages 3445-3456

Surge, D., Kelly, G., Arnold, W. S., Walker, K. J., and A. Goewert (2008). Isotope sclerochronology of Mercenaria mercenaria, M. campechiensis, and their natural hybrid form (Bivalvia): Does genotype matter? Palaios, 23:559-565.

Ward, L.W. (1992). Molluscan biostratigraphy of the Miocene, Middle Atlantic Coastal Plain of North America, Virginia Museum of Natural History Memoir 2: pp. 159.

Ward, L.W. (1998). Mollusks from the lower Miocene Pollack Farm Site, Kent County, Delaware: a preliminary analysis, In: Benson, R.N., ed. Geology and paleontology of the lower Miocene Pollack Farm Fossil Site, Delaware: Delaware Geological Survey Special Publication, 21: 59-131.

Ward, L.W. and B.W. Blackwelder. (1980). Stratigraphic revision of upper Miocene and lower Pliocene beds of Chesapeake Group, middle Atlantic Coast Plain. U.S. Geological Survey Bulletin, 1482-D: 1-61.

Ward, L.W. and Blackwelder, B.W. (1987). Late Pliocene and Early Pleistocene Mollusca From the James City and Chowan River Formations at the Lee Creek Mine, In: Ray, C.E., ed. Geology and Paleontology of the Lee Creek Mine, North Carolina, II, Smithsonian Contributions to Paleobiology, 61: 1-283.

Ward, L.W. and G.L. Strickland. (1985). Outline of Tertiary stratigraphy and depositional history of the U.S. Atlantic Coastal Plain. In: C.W. Poag (Eds.), Geologic evolution of the United States Atlantic margin. New York, Van Nostrand Reinhold Company. 87-123.

Ward, L.W., Bailey, R.H., Carter, J.G., (1991). Pliocene and Early Pleistocene stratigraphy, depositional history, and molluscan paleobiogeography of the coastal plain. In: Horton, J.W., Zullo, V.A. (Eds.), The geology of the Carolinas: Carolina Geological Society fiftieth anniversary volume. University of Tennessee Press, Knoxville, TN, pp. 274-289.

Weinberg J R (1999) Age-structure, recruitment and adult mortality in populations of the Atlantic surfclam, Spisula solidissima, from 1978 to 1997. Marine Biology 134: 113-125

Weinberg, J R (1998) Density-dependent growth in the Atlantic surfclam, Spisula solidissima, off the coast of the Delmarva Peninsula, USA Marine Biology 130: 621 630.

Weinberg, J R and T E Helser (1996) Growth of the Atlantic surfclam, Spisula
Williams, M., Haywood, A.M., Harper, E.M., Johnson, A.L.A., Knowles, T., Leng, M.J., Lunt, D.J., Okamura, B., Taylor, P.D., Zalasiewicz, J., (2009). Pliocene climate and seasonality in North Atlantic shelf seas. Philosophical Transactions of the Royal Society. London A367, 85-108.

Williams, M., Haywood, A.M., Hillenbrand, C.D., Wilkinson, I.P., (2005). Efficacy of $\delta 180$ data from Pliocene planktonic foraminifer calcite for spatial sea surface temperature reconstruction: comparison with a fully coupled ocean-atmosphere GCM and fossil assemblage data from the mid Pliocene. Geological Magazine 142399 417.

Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. (2001). Trends, rhythms, and aberration in global climate 65 Ma to present. Science, 292: 686-693.

Zachos, J.M., L.D. Stott, and K.C Lohmann. (1994). Evolution of early Cenozoic marine temperatures. Paleoceanography, 9: 353-387.

Table 4.2. VBGM parameters from natural populations of modern and fossil Spisula along the Atlantic coast of the United States.

Location	k	\boldsymbol{L}_{∞}	Source
S. s. s. solidissima			
George's Bank	0.242	154.10	Weinberg and Helser, 1996
S. New England	0.300	164.70	Weinberg and Helser, 1996
Long Island	0.251	161.00	Weinberg and Helser, 1996
New Jersey	0.217	163.70	Weinberg and Helser, 1996
New Jersey	0.273	158.70	Serchuk and Murawski, 1980
Delmarva	0.177	164.00	Weinberg and Helser, 1996 ${ }^{1}$
Delmarva	0.298	163.80	Serchuk and Murawski, 1980
Point Pleasant, NJ (Offshore)	0.249	148.69	Jones et al. 1978
Chincoteague Inlet, VA (Inshore)	0.456	108.36	Jones et al. 1978
Long Island	0.209	152.74	This study
New York Bight	0.133	152.70	This study
N. New Jersey, < 25 m	0.148	149.31	This study
N. New Jersey, > 25 m	0.110	144.10	This study
N. Delmarva, < 25 m	0.132	163.00	This study
N. Delmarva, > 25 m	0.173	144.55	This study
S. Delmarva, < 25 m	0.175	147.95	This study
S. Delmarva, > 25 m	0.110	137.27	This study
Mid-Atlantic Bight	0.150	163.00	This study
Mid-Atlantic Bight	0.156	163.00	Weinberg et al., 2005 NEFSC
S. s. similis			
Long Island Sound, NY	0.46	84.09	Cerrato and Keith, 1992 ${ }^{2}$
Wassaw Island, GA	0.74	75.77	Walker and Heffernan, 1994
St. Joseph Bay, FL	0.46	121.50	Walker and Heffernan, 1994
Playa Linda, FL	0.43	72.34	This study
Spisula modicello (Pliocene)			
Yorktown Fm, MACP	0.62	44.32	This study
Spisula confraga (Pliocene)			
Yorktown Fm, MACP	0.24	43.23	This study

${ }^{1}$ Samples collected from shallower strata, < 27 m , were excluded because of the presence of south subspecies and morphs.
${ }^{2}$ Original reported as multiple populations of S. s. s. solidissima, but evidence from recent studies suggest that western LIS populations are S. s. similis (Hare et al, 2010).

Table 4.3. Isotopic composition of shells. Samples taken from the Spisula were micro-milled from the chondrophore. Samples were run at the University of Arizona's Environmental Isotope Laboratory

Sample ID	min.	Distance (mm)	$\begin{gathered} \hline \text { d13C } \\ \text { VPDB } \end{gathered}$	$\begin{gathered} \hline \mathrm{d} 180 \\ \text { VPDB } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { std dev } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \text { std dev } \end{gathered}$	Voltage
SS190702-01	arag	0.383	1.32	1.61	0.038	0.033	1.48
SS190702-02	arag	0.765	1.74	0.25	0.026	0.050	1.57
SS190702-03	arag	1.148	1.96	-0.81	0.013	0.031	1.55
SS190702-04	arag	1.53	1.94	-0.75	0.011	0.055	1.49
SS190702-05	arag	1.913	1.93	0.04	0.016	0.070	1.48
SS190702-06	arag	2.295	1.55	1.58	0.024	0.031	1.66
SS190702-07	arag	2.678	1.61	1.25	0.049	0.029	1.80
SS190702-08	arag	3.06	1.64	1.23	0.019	0.004	2.34
SS190702-09	arag	3.443	1.64	0.49	0.011	0.021	1.70
SS190702-10	arag	3.825	1.87	0.03	0.070	0.018	1.32
SS190702-11	arag	4.208	1.89	-0.26	0.047	0.039	1.34
SS190702-12	arag	4.59	1.97	-0.57	0.014	0.039	2.84
SS190702-13	arag	4.86	1.83	-0.53	0.013	0.015	2.24
SS190702-14	arag	5.071	2.01	-0.46	0.064	0.030	2.91
SS190702-15	arag	5.281	2.10	-0.55	0.008	0.041	2.03
SS190702-16	arag	5.492	2.35	-0.39	0.032	0.228	1.89
SS190702-17	arag	5.703	2.30	-0.20	0.006	0.033	1.48
SS190702-18	arag	5.914	2.39	0.19	0.042	0.016	2.45
SS190702-19	arag	6.125	1.90	1.04	0.023	0.054	1.42
SS190702-20	arag	6.335	1.91	0.88	0.046	0.012	1.71
SS190702-21	arag	6.546	1.50	0.01	0.013	0.041	1.74
SS190702-22	arag	6.757	1.65	-0.52	0.012	0.066	2.36
SS190702-23	arag	6.968	1.84	-0.86	0.056	0.038	1.99
SS190702-24	arag	7.179	2.10	-0.99	0.013	0.033	2.28
SS190702-25	arag	7.389	2.03	-0.99	0.005	0.083	1.37
SS190702-26	arag	7.6	2.24	-0.37	0.015	0.096	1.60
SS190702-27	arag	7.983	2.11	-0.13	0.063	0.027	1.86
SS190702-28	arag	8.365	1.97	1.17	0.008	0.037	2.67
SS190702-29	arag	8.747	1.91	1.23	0.016	0.039	2.52
SS190702-30	arag	9.13	1.86	0.24	0.042	0.009	2.82
SS190702-31	arag	9.512	1.78	0.50	0.094	0.062	2.14
SS190702-32	arag	9.894	2.18	-0.66	0.018	0.025	1.43
SS190702-33	arag	10.277	2.13	-0.06	0.051	0.024	2.40
SS190702-34	arag	11.299	2.17	0.03	0.041	0.088	1.45
SS190702-35	arag	11.609	1.75	0.55	0.014	0.033	2.03
SS190702-36	arag	11.919	1.84	0.68	0.024	0.028	2.37
SS190702-37	arag	12.229	1.06	0.31	0.055	0.018	1.92

Sample ID	min.	$\begin{gathered} \text { Distance } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \hline \text { d13C } \\ \text { VPDB } \end{gathered}$	$\begin{gathered} \hline \mathrm{d18O} \\ \text { VPDB } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { std dev } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \text { std dev } \end{gathered}$	Voltage
SS190702-40	arag	12.534	1.27	0.28	0.014	0.044	2.08
SS190702-38	arag	12.539	0.95	0.78	0.018	0.031	1.94
SS190702-41	arag	12.880	1.56	1.37	0.023	0.066	1.57
SS190702-42	arag	13.188	1.24	0.59	0.023	0.070	2.32
SS190702-43	arag	13.496	1.16	0.04	0.022	0.018	2.76
SS190702-44	arag	13.805	0.65	0.67	0.035	0.024	1.55
SS190702-45	arag	14.113	0.88	1.25	0.017	0.033	2.29
SS190702-46	arag	14.421	1.46	0.83	0.013	0.030	1.42
SS190702-47	arag	14.729	1.69	0.24	0.011	0.062	2.39
SS190702-48	arag	15.038	1.50	0.67	0.015	0.074	1.46
SS190702-49	arag	15.346	1.13	1.43	0.026	0.077	1.62
SS30702-01	arag	0.297	1.21	2.12	0.010	0.030	2.7
SS30702-02	arag	0.593	2.05	2.01	0.063	0.042	1.42
SS30702-03	arag	0.89	1.52	1.78	0.032	0.029	2.14
SS30702-04	arag	1.186	2.47	1.56	0.099	0.156	0.94
SS30702-05	arag	1.482	2.58	1.90	0.049	0.008	2.77
SS30702-06	arag	1.779	2.33	1.79	0.026	0.066	1.87
SS30702-07	arag	2.075	2.70	1.34	0.036	0.057	1.54
SS30702-08	arag	2.372	2.52	1.39	0.049	0.039	2.24
SS30702-09	arag	2.669	2.33	1.17	0.027	0.060	1.03
SS30702-10	arag	2.965	2.29	0.88	0.081	0.033	1.35
SS30702-11	arag	3.523	2.04	0.55	0.077	0.039	1.76
SS30702-12	arag	3.871	1.96	0.38	0.034	0.076	2.53
SS30702-13	arag	4.368	1.94	0.55	0.018	0.050	2.94
SS30702-14	arag	4.684	2.11	1.38	0.023	0.080	1.46
SS30702-15	arag	5	2.42	1.30	0.016	0.023	1.85
SS30702-16	arag	5.316	2.41	1.65	0.042	0.028	2.11
SS30702-17	arag	5.632	2.17	1.78	0.005	0.039	2.59
SS30702-18	arag	5.948	2.10	1.87	0.073	0.050	2.08
SS30702-19	arag	6.264	1.91	1.86	0.009	0.056	2.14
SS30702-20	arag	6.58	1.98	1.50	0.012	0.020	1.52
SS30702-21	arag	6.895	2.05	1.23	0.057	0.058	2.42
SS30702-22	arag	7.211	2.24	1.04	0.055	0.026	2.05
SS30702-23	arag	7.527	2.00	1.24	0.014	0.071	1.76
SS30702-24	arag	7.827	1.84	1.00	0.022	0.034	1.53
SS30702-25	arag	8.021	1.58	0.59	0.005	0.068	2.25
SS30702-26	arag	8.215	1.86	1.09	0.034	0.049	2.58
SS30702-27	arag	8.409	1.79	1.47	0.086	0.062	1.65
SS30702-28	arag	8.603	1.71	2.11	0.011	0.094	1.83
SS30702-29	arag	8.797	1.60	2.11	0.005	0.021	2.26
SS30702-30	arag	8.991	1.62	1.91	0.010	0.032	1.44

Sample ID	min.	$\begin{gathered} \text { Distance } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \hline \text { d13C } \\ \text { VPDB } \end{gathered}$	$\begin{aligned} & \hline \text { d18O } \\ & \text { VPDB } \end{aligned}$	$\begin{gathered} \mathrm{C} \\ \text { std dev } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \text { std dev } \end{gathered}$	Voltage
SS30702-31	arag	9.184	1.63	1.58	0.045	0.018	2.20
SS30702-32	arag	9.39	1.52	0.88	0.039	0.042	1.42
SS30702-33	arag	9.589	1.17	1.53	0.045	0.050	2.15
SS30702-34	arag	9.789	1.73	1.75	0.037	0.013	1.96
SS30702-35	arag	9.989	1.65	1.85	0.014	0.031	1.42
SS30702-36	arag	10.188	1.70	2.26	0.033	0.063	1.97
SS30702-37	arag	10.388	1.68	2.05	0.033	0.060	2.73
SS30702-38	arag	10.588	1.81	1.48	0.041	0.082	1.63
SS30702-39	arag	10.787	1.48	1.40	0.026	0.020	2.56
SS30702-40	arag	10.791	1.17	1.21	0.019	0.013	1.5
SSFLA1-01	arag	0.055	0.21	0.07	0.025	0.009	1.95
SSFLA1-02	arag	0.111	0.14	0.18	0.016	0.070	2.54
SSFLA1-03	arag	0.166	0.28	0.06	0.026	0.010	1.50
SSFLA1-04	arag	0.221	0.29	0.60	0.016	0.052	2.46
SSFLA1-05	arag	0.277	0.27	0.76	0.050	0.058	1.74
SSFLA1-06	arag	0.332	0.41	-0.03	0.033	0.034	1.64
SSFLA1-07	arag	0.387	0.52	0.40	0.031	0.049	1.92
SSFLA1-08	arag	0.443	0.23	0.66	0.048	0.062	1.42
SSFLA1-09	arag	0.498	0.95	0.10	0.009	0.051	1.65
SSFLA1-10	arag	0.553	1.04	0.33	0.057	0.074	1.93
SSFLA1-11	arag	0.609	0.85	0.61	0.054	0.026	1.48
SSFLA1-12	arag	0.98	0.91	0.71	0.026	0.048	1.23
SSFLA1-13	arag	1.04	0.45	0.18	0.035	0.026	1.95
SSFLA1-14	arag	1.099	0.05	-0.23	0.028	0.036	1.61
SSFLA1-15	arag	1.159	0.35	-0.92	0.050	0.048	1.54
SSFLA1-16	arag	1.219	0.79	-0.25	0.057	0.065	1.61
SSFLA1-17	arag	1.278	0.56	-1.02	0.014	0.024	1.31
SSFLA1-18	arag	2.195	1.00	-0.44	0.022	0.024	1.63
SSFLA1-19	arag	2.421	1.03	0.23	0.077	0.036	2.48
SSFLA1-20	arag	2.647	0.71	0.60	0.028	0.012	1.96
SSFLA1-21	arag	2.873	0.59	0.40	0.033	0.032	1.81
SSFLA1-22	arag	3.099	0.60	0.42	0.015	0.083	1.66
SSFLA1-23	arag	3.325	0.51	0.32	0.028	0.010	1.82
SSFLA1-24	arag	3.551	0.52	-0.10	0.048	0.045	2.13
SSFLA1-25	arag	3.777	0.25	-0.36	0.009	0.008	2.03
SSFLA1-26	arag	4.002	-0.18	-0.82	0.015	0.016	2.57
SSFLA1-27	arag	4.227	-0.44	-0.83	0.034	0.040	1.97
SC001A-01	arag	0.319	1.44	2.48	0.069	0.042	2.48
SC001A-02	arag	0.638	1.38	2.51	0.036	0.078	2.49
SC001A-03	arag	0.958	1.26	2.22	0.038	0.041	1.69
SC001A-04	arag	1.277	1.48	1.85	0.027	0.055	1.84

Sample ID	min.	$\begin{gathered} \text { Distance } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \hline \text { d13C } \\ \text { VPDB } \end{gathered}$	$\begin{gathered} \hline \text { d18O } \\ \text { VPDB } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { std dev } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \text { std dev } \end{gathered}$	Voltage
SC001A-05	arag	1.596	1.48	1.63	0.008	0.062	1.29
SC001A-06	arag	1.915	1.88	1.53	0.012	0.046	2.27
SC001A-07	arag	2.253	1.95	2.47	0.021	0.055	2.77
SC001A-08	arag	2.59	1.71	2.93	0.003	0.067	2.69
SC001A-09	arag	2.928	1.59	2.56	0.013	0.010	2.31
SC001A-10	arag	3.266	1.52	2.27	0.004	0.010	2.37
SC001A-11	arag	3.604	1.51	1.69	0.032	0.021	1.52
SC001A-12	arag	3.941	1.26	1.36	0.016	0.032	2.83
SC001A-13	arag	4.279	1.16	1.39	0.059	0.019	1.74
SC001A-14	arag	4.546	0.93	1.60	0.013	0.064	1.98
SC001A-15	arag	4.813	1.03	2.24	0.009	0.016	2.63
SC001A-16	arag	5.08	1.09	2.61	0.020	0.009	2.78
SC001A-17	arag	5.347	1.25	2.17	0.037	0.030	1.70
SC001A-18	arag	5.614	1.24	1.92	0.029	0.046	2.10
SC001A-19	arag	5.881	1.27	1.75	0.061	0.046	2.48
SC001A-20	arag	6.148	1.07	1.54	0.061	0.030	1.67
SC001A-21	arag	6.529	0.96	1.90	0.006	0.033	1.74
SC001A-22	arag	6.911	1.07	2.27	0.037	0.036	1.97
SC001A-23	arag	7.293	0.88	2.41	0.025	0.071	1.84
SC001A-24	arag	7.675	0.87	2.30	0.003	0.031	1.48
SC001A-25	arag	8.057	0.81	2.16	0.036	0.043	2.37
SC001A-26	arag	8.314	1.15	2.17	0.054	0.025	2.23
SC001A-27	arag	8.55	0.88	2.53	0.013	0.038	2.16
SC001A-28	arag	8.865	0.67	2.34	0.016	0.081	1.62
SC003-01	arag	0.319	1.30	2.32	0.012	0.033	1.74
SC003-02	arag	0.638	1.41	2.67	0.069	0.071	1.38
SC003-03	arag	0.958	1.05	2.77	0.031	0.067	1.59
SC003-04	arag	1.277	1.42	2.93	0.030	0.012	1.60
SC003-05	arag	1.596	1.57	2.81	0.015	0.024	2.03
SC003-06	arag	1.915	1.71	2.41	0.047	0.031	1.44
SC003-07	arag	2.253	1.59	1.86	0.027	0.024	1.88
SC003-08	arag	2.59	1.69	2.51	0.051	0.061	1.77
SC003-09	arag	2.928	1.28	2.92	0.031	0.021	1.35
SC003-10	arag	3.266	1.34	2.83	0.025	0.066	2.68
SC003-11	arag	3.604	1.38	2.45	0.039	0.059	1.52
SC003-12	arag	3.941	1.57	2.18	0.030	0.022	2.29
SC003-13	arag	4.279	1.35	1.80	0.008	0.022	1.9
SC003-14	arag	4.546	1.52	1.66	0.021	0.027	2.80
SC003-15	arag	4.813	1.54	2.01	0.026	0.042	1.58
SC003-16	arag	5.08	1.34	2.45	0.054	0.040	1.62
SC003-17	arag	5.347	1.55	3.04	0.019	0.031	2.65

Sample ID	min.	Distance $(\mathbf{m m})$	d13C VPDB	d18O VPDB	C std dev	O std dev	Voltage
SC003-18	arag	5.614	1.21	3.19	0.011	0.056	1.92
SC003-19	arag	6.148	1.07	3.06	0.065	0.039	1.69
SC003-20	arag	6.529	1.19	2.34	0.032	0.009	1.51
SC003-21	arag	6.911	0.83	1.74	0.053	0.010	1.68
SC003-22	arag	7.293	1.23	2.40	0.047	0.047	1.67
SC003-23	arag	7.675	1.16	2.83	0.021	0.033	2.15
SC003-24	arag	8.057	0.77	2.85	0.015	0.080	1.48
SC003-25	arag	8.314	0.61	2.23	0.046	0.022	2.02
SC003-26	arag	8.55	0.90	1.65	0.028	0.035	1.88
SC003-27	arag	8.865	1.22	2.33	0.051	0.044	1.73
SC003-28	arag	9.18	1.16	2.74	0.034	0.008	1.90
SC003-29	arag	9.495	0.69	2.72	0.032	0.022	2.01
SC003-30	arag	9.81	0.33	1.93	0.033	0.035	2.05
SC003-31	arag	10.125	1.11	2.51	0.042	0.012	1.64

Table 4.4. Summary statistics for $\delta^{18} \mathrm{O}, \delta^{13} \mathrm{C}$, and $\delta^{18} \mathrm{O}$ based temperature estimates preserved in modern and Mid-Pliocene aged Spisula shells. Temperature estimates calculated using the equation reported by Schöne et al. (2005) as modified from Grossman and Ku (1986).

	Summary Statistics	$\begin{gathered} \square^{13} \mathrm{C} \\ \left(\%{ }_{0}\right. \text { VPDB) } \end{gathered}$	$\begin{gathered} \square^{18} \mathrm{O} \\ \left(\% \mathrm{~V}_{\mathrm{V}}\right. \end{gathered}$	Temperature (\square C)
$\begin{aligned} & \text { N} \\ & \hat{8} \\ & \hat{\theta} \\ & \hat{\theta} \end{aligned}$	Mean	1.7	0.2	14.6
	S.D.	0.4	0.7	3.2
	Range	1.7	2.6	11.3
	Minimum	0.6	-1.0	8.6
	Maximum	2.4	1.6	19.9
	Count (n)	49	49	49
$\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { N} \\ & \text { N } \end{aligned}$	Mean	1.9	1.5	10.3
	S.D.	0.4	0.5	2.1
	Range	1.5	1.9	8.2
	Minimum	1.2	0.4	6.8
	Maximum	2.7	2.3	15.0
	Count (n)	40	40	40
$\begin{aligned} & \underset{3}{3} \\ & \sqrt[3]{3} \end{aligned}$	Mean	0.5	0.1	23.1
	S.D.	0.4	0.5	2.3
	Range	1.5	1.8	7.7
	Minimum	-0.4	-1.0	20.0
	Maximum	1.0	0.8	27.7
	n	27	27	27
$\begin{aligned} & \mathbb{3} \\ & \underset{0}{8} \end{aligned}$	Mean	1.2	2.1	15.1
	S.D.	0.3	0.4	1.8
	Range	1.3	1.6	6.8
	Minimum	0.7	1.4	11.5
	Maximum	2.0	2.9	18.3
	Count (n)	28	28	28
${\underset{\sim}{0}}_{0}^{0}$	Mean	1.2	2.5	13.5
	S.D.	0.3	0.4	1.9
	Range	1.4	1.5	6.7
	Minimum	0.3	1.6	10.4
	Maximum	1.7	3.2	17.1
	Count (n)	31	31	31

Table 4.5. Correlation by simple linear regression between $\delta{ }^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ in each shell.

Shell	$\mathbf{r}^{\mathbf{2}}$	F-statistic	\boldsymbol{n}	\boldsymbol{p}-value
SS190702	0.257	16.242	49	$2.03 \mathrm{E}-04$
SS30702	0.018	0.691	40	0.411
SSFLA1	0.135	3.905	27	0.059
SC001A	$1.17 \mathrm{E}-04$	0.003	28	0.956
SC003	0.007	0.213	31	0.648

Table 4.5. Standardize growth indices (SGI) from around the New York Bight and along the New Jersey shore with sample depth (S.D.)

	Area 612		Area 613		Area 614		Area 615	
Year	SGI	S.D.	SGI	S.D.	SGI	S.D.	SGI	S.D.
1972			1.14	2				
1973			-0.46	2				
1974			-0.25	2				
1975			0.20	2				
1976			-1.33	6				
1977			0.50	7				
1978	-2.552	2	0.19	7	-1.55	2		
1979	2.186	4	-0.43	8	0.20	3		
1980	-1.393	4	0.14	9	-0.59	4		
1981	1.14	7	0.55	11	2.86	4		
1982	0.717	8	0.60	11	1.95	6		
1983	1.028	9	0.55	12	-0.94	8	-1.74	2
1984	-1.324	11	0.40	13	-1.44	8	1.00	3
1985	-0.769	14	0.34	16	0.40	9	1.01	4
1986	-0.273	16	0.39	18	0.03	10	-0.96	5
1987	-0.332	17	0.16	19	-0.42	11	-0.22	6
1988	-0.29	19	0.24	21	-0.94	11	0.08	6
1989	0.801	19	0.22	23	-0.63	12	0.17	6
1990	0.132	21	0.27	24	-0.25	12	0.12	7
1991	0.072	22	0.27	24	-0.06	12	0.06	7
1992	-0.479	16	0.36	25	0.92	12	-0.30	7
1993	-0.004	18	0.29	25	0.10	12	0.30	7
1994	0.43	13	0.39	13	0.20	12	-0.46	6
1995	-0.616	13	0.21	13	-0.04	12	-0.14	6
1996	0.606	13	0.21	13	0.05	12	0.05	6
1997	0.271	6	0.23	9	0.21	8	0.69	5
1998	0.026	6	0.37	9	0.11	8	0.99	5
1999			0.27	9	-0.39	3	0.16	5
2000			0.23	9	-1.00	3	0.35	5
2001			0.21	9	1.21	3	0.62	5

Table 4.6 Standardize growth indices (SGI) from off the Delmarva peninsula and Hampton roadstead with sample depth (S.D.).

	Area 625		Area 626		Area 631		Area 632	
Year	SGI	S.D.	SGI	S.D.	SGI	S.D.	SGI	S.D.
1972								
1973								
1974								
1975								
1976								
1977								
1978	0.76	3			-0.02	2	-1.88	7
1979	0.39	4			-2.06	4	-0.28	16
1980	0.01	6			1.21	4	0.83	20
1981	-0.68	9			-0.77	7	0.20	30
1982	1.09	9			0.71	13	0.19	32
1983	-0.16	9	0.59	2	-1.41	17	0.24	35
1984	0.39	9	1.22	2	-1.35	19	-0.23	37
1985	-1.75	11	0.14	2	0.35	22	-0.18	37
1986	-1.48	12	-0.14	2	0.12	24	0.06	39
1987	0.42	13	-0.44	6	0.55	28	-0.08	39
1988	0.15	14	-0.39	7	0.02	31	-0.15	40
1989	-0.26	15	0.25	7	-0.48	33	-0.06	40
1990	0.12	15	-0.51	8	-0.33	36	0.90	40
1991	0.71	16	0.34	9	-0.24	38	0.56	41
1992	0.22	16	-0.17	11	-1.12	35	-0.29	17
1993	1.11	16	0.82	11	0.92	38	0.57	17
1994	-0.45	13	0.48	12	0.24	27	0.51	13
1995	-0.73	13	0.07	13	-0.33	27	0.49	10
1996	0.57	13	0.30	16	0.45	27	0.02	10
1997	0.74	8	-0.14	18	-1.22	16	-0.77	5
1998	-0.92	8	0.15	19	0.98	16	-0.12	5
1999	0.68	3	0.34	21	-0.10	6	2.26	3
2000	0.34	3	0.16	23	-0.02	6	1.47	3
2001	1.64	3	1.32	24	2.10	6	-1.68	3

Figure 4.1 Collection localities for modern and Pliocene specimens. Spisula solidissima collected alive on the continental shelf (blue circles). Mid-Pliocene age Spisula specimens were collected from the Yorktown Formation (red circles). Black circles are the locations of standard MARMAP stations in Middle Atlantic Bight. The map has a bathymetric contour interval of 250 meters.

Figure 4.2 Example of how Spisula shells were measured and sectioned. Measurements of maximum length ($L-L$ '), width (W-W'), and chondrophore length (L-C). Aging used growth increment lines along both the chondrophore and valve (arrows).

Figure 4.3 Graph of valve length (mm) versus chondrophore length (mm). Shell populations separated into depth bins of $<\mathbf{2 5} \mathbf{~ m}$ (gray diamonds, solid linear regression line), $25-50 \mathrm{~m}$ (open squares, dashed linear regression line), and $>50 \mathrm{~m}$ (black triangles, dashed-dotted linear regression line).

Figure 4.4 Plot comparing von Bertalanffy growth model parameters \boldsymbol{k} (growth constant, clear shapes) and L_{∞} (maximum shell length in mm, black shapes) of MAB and MACP Spisula arranged by species and region. Species include live collected S. s. solidissima are separated into offshore (squares) and inshore (diamonds), S. s. similis (triangles), and Pliocene aged S. modicello and S. confraga (circles).

Figure 4.5 Oxygen (black circles) and carbon (white circles) isotopic profiles from Spisula solidissima specimens SS190702 (top), SS30702 (middle), and S. s. similis specimen SSFLA1 (bottom). X-axis displays distance from umbo (mm) with direction of growth toward higher values. Gray vertical lines approximate location and widths of dark growth increments.

Figure 4.6 Temperature (${ }^{\circ}$ C) estimates for Spisula S. s. solidissima and S. s. similis (SSFLA1) specimens. Dashed lines represent the ranges of values calculated using the maximum and minimum $\delta^{18} \mathrm{O}$ seawater values at each location over the time interval corresponding to shell growth.

Figure 4.7 Sea water temperatures (black/gray sinusoidal lines) records from nearby NOAA stations during the growth of Spisula s. solidissima specimens SS190702/ALSN6 (top), SS30702/44009 (middle), and S. s. similis specimen SSFLA1/41009 (black) and SAUF1(gray) (bottom). Horizontal gray bands denote temperature estimate range from the corresponding shell.

Figure 4.8 Covariance of $\delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values from modern Spisula spp. (top) and Pliocene S. confraga (bottom).

Figure 4.9 Oxygen (black circles) and carbon (white circles) isotopic profiles from S. confraga specimens SC001A (top) and SC003 (bottom). X-axis displays distance from umbo (mm) with direction of growth toward higher values. Gray vertical lines approximate location and widths of dark growth increments. Light gray horizontal band indicates the $\delta^{18} \mathrm{O}$ value range of published Pliocene Chesapecten from the Yorktown Fm (Williams et al., 2009).

Figure 4.10 Temperature (${ }^{\circ} \mathrm{C}$) estimates (black line with circles) for S. confraga specimens SC001A (top) and SC003 (bottom). Light gray horizontal band denotes the instrumental temperature range of the Chesapeake Light station (NOAACHLV2, http://www.ndbc.noaa.gov), while the darker gray horizontal band represents estimated temperature range for the Pliocene Yorktown Fm based on Chesapecten (Williams et al., 2009).

Figure 4.11 Comparison of individual and all annual standardized growth indices (black line) to mean annual temperature (red line) and salinity index (dashed blue line) (MARMAP). The two indices are plotted on the same axes.

CHAPTER 5: IN SEARCH OF LONG-LIVED BIVALVES FROM THE PLIOCENE MID-ATLANTIC: STABLE ISOTOPE AND INCREMENT ANALYSIS OF LARGE MARINE BIVALVES, VIRGINIA \& NORTH CAROLINA, U.S.A

Joel W. Hudley and Donna Surge
Department of Geological Sciences, University of North Carolina, Chapel Hill, 104 South
Rd., CB\#3315, Chapel Hill, NC 27599-3315, USA email: jhudley@unc.edu

Keywords: Pliocene, isotopes, increments, Glycymeris, Panopea, Yorktown
(To be submitted to the journal Palaeogeography, Palaeoclimatology, Palaeoecology)

Abstract

The Pliocene was the last time in Earth's history when reduction in polar ice sheets and higher sea levels were a consequence of higher atmospheric carbon dioxide concentrations comparable to levels projected for the late $21^{\text {st }}$ century. To investigate the climate variability during the Pliocene, variations in isotope ratios in shells of the bivalves Glycymeris americana (DeFrance, 1826) and Panopea reflexa (Say, 1824) were assessed. The purpose of this study is to identify whether these species, both large and abundant in United States Atlantic coastal plain fossiliferous units, exhibit annually resolved primary growth increments. Previous work on extant species of geoduck (P. abrupta) (Conrad, 1849)and dog cockles (G. glycymeris (Linnaeus, 1758)) shells indicate the genera have annual growth lines and reach maximum lifespans of 40 to 160 years.

Fossil bivalves were collected from the Pliocene Yorktown Formation in Virginia and the Chowan River Formation in North Carolina. Most specimens of G. americana and P. reflexa were collected articulated and unaltered by diagenesis.

Sclerochronological studies of the growth patterns and the oxygen isotope ratios clearly exhibited annual cycles confirming periodic formation in shells of G. americana. Several specimens of G. americana reached ontogenetic ages of more than 70 years. P. reflexa growth increments could not be verified as annual. Oxygen isotope ratios of fossil G. americana and P. reflexa shells were consistent with previous bivalve studies of modern genera. Spectral analysis of long-lived G. americana showed that shell growth indices exhibit periodicities related to the North Atlantic Oscillation (NAO). The bivalve shells investigated here provide high-resolution data on seasonal to decadal climate variation and may therefore serve as an ancient analogue for predicted climate shifts along the United States Atlantic coastal plain.

HIGHLIGHTS

- Glycymeris americana form annual increments and exhibit significant longevity
- Panopea reflexa growth resolution could not be verified using isotope methods
- Shell growth indexes exhibit periodicities similar to the NAO

5.1 INTRODUCTION

Our current knowledge of past climate variability is based primarily on the use of short-lived, seasonal to annually resolved biological proxies. CLIMAP (Climate: Long range Investigation, Mapping, and Prediction) (CLIMAP, 1981), PRISM (Pliocene

Research, Interpretation and Synoptic Mapping) (Dowsett et al., 1996), and the Cenozoic oxygen isotope curve (Zachos et al., 2001) are cornerstones of paleoclimate research and remain the most used and/or only global temperature reconstructions for the three most important time periods (the Last Glacial Maximum, the mid-Pliocene, and the Cenozoic) prior to the late Holocene and modern instrumentation. Assuming the Intergovernmental Panel on Climate Change estimates of a $2-4.5^{\circ} \mathrm{C}$ increase in global mean temperature is likely for the late twenty-first century (Jansen et al. 2007), then the Pliocene is the most appropriate past analogue for future climate conditions (Hansen et al., 2006; Dowsett, 2007; Chandler et al., 2008; Haywood et al., 2011). The PRISM framework (see Dowsett et al., 1996, 1999), with continents basically in their current positions and atmospheric CO_{2} similar to projected late twenty-first century values, represents the most robust and only alternative for evaluating future climate scenarios using coupled atmosphere and ocean general circulation models (GCM). However, coupled climate models do not reproduce conditions indicated by PRISM data, and these unresolved discrepancies have led researchers to raise concerns about model estimates of future climate change.

To address these concerns, over the last decade groups of Pliocene researchers have used innovative tools, developed new proxies, and practiced multi-proxy methods incorporating faunal-based transfer functions with isotope and organic molecule paleothermometry to develop synoptic boundary conditions at seasonal and 12-month resolutions (Dowsett et al., 2006; Robinson et al., 2007; Dowsett and Robinson, 2009; Dowsett et al., 2009). The records derived from microfossils in the PRISM slab represent a static picture of the mid Pliocene, encompassing ~300,000 years and multiple
glacial/interglacial cycles. Though mean annual and monthly temperatures can be displayed (see http://geology.er.usgs.gov/eespteam/prism/), little is known about continuous subannual to multi-decadal interannual temperature variability. Neogene paleoclimatology is based on long, continuous, high-resolution time series that provide millennial to sub-millennial resolution (Niemitz and Bilups, 2005; Williams et al., 2009). However, these data are inadequate to address important issues associated with multidecal phenomena such as global or regional teleconnections like the El Niño Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Williams et al. (2009) state that many Pliocene studies acknowledge this lack of high-resolution data, and have portended that shell carbonate of long-lived fauna will provide data capable of addressing these issues and fill the current dearth of well-calibrated, high-resolution proxies in important Pliocene deposits.

Long-lived bivalves potentially represent the most widespread sources of annually and sub-annually resolved proxies that are not limited in spatial (latitudinal) or temporal coverage. In modern-day climate studies, the molluscan shell record bridges the gap between well-developed and cross-dated tree-ring networks (terrestrial, high-latitude) and continuously sampled coral skeleton geochemical records (low-latitude, shallow shelf) (Mann, 2002; Jones and Mann, 2004)(see Helma et al., 2007; Black et al., 2009 for examples). Only a dozen non-colonial animals have a lifespan >100 years (Ziuganov et al., 2000). Many of them are bivalves including the longest lived, Arctica islandica (Linnaeus, 1767) with a reported maximum lifespan of >500 years (Schöne et al., 2005; Wanamaker et al., 2012), and Margaritifera margaritifera (Ršding,1798) at 190 years
(Ziuganov et al., 2000). The freshwater mussel, M. margaritifera, and the marine quahog, A. islandica, are the archetypes for isotopic and increment sclerochronology studies. A. islandica studies show that long-lived individuals are capable of reliably recording environmental variables (e.g. seawater temperature, salinity, ocean productivity, and the NAO) on daily to centennial scales (Schöne et al., 2003; -2004; -2005; Wannamaker et al., 2009). Unfortunately, most long-lived bivalves, including the hard clam, Eurhomalea exalbida (Lomovasky et al., 2002), and the fossil ark clam, Cucullea raea, from Eocene Antarctic deposits (Buick and Ivany, 2004) inhabit high-latitude, cold water environments and are not found in Pliocene deposits of the Mid-Atlantic Coastal Plain (MACP). In order for sclerochronology to provide critical information about the Pliocene and other important Cenozoic climate intervals, more long-lived bivalve proxies must be found.

The aim of this study is to determine if the extant cockle, Glycymeris americana (Defrance, 1829), and the extinct geoduck, Panopea reflexa (Say, 1824), both common and abundant in MACP Neogene deposits, exhibit the resolution and longevity to preserve environmental records of Pliocene interannual to multi-decadal variability. Our objectives are to: (1) employ isotope sclerochronology to verify regular timing of primary growth lines; (2) compare the synchronicity of oxygen isotope ratios in this study to previously published bivalve $\delta^{18} \mathrm{O}$ values and modern instrumental ranges; and (3) and compare growth models derived from increment widths to growth models of related species. We also used increment sclerochronology and spectral analysis to investigate and interpret interannual to multi-decadal periodicity of the Pliocene MACP. We
selected G. americana and P. reflexa because of their large and easily identifiable shells and because extant, cold-water species in their genera, G. glycymeris (Linnaeus, 1758) and P. abrupta (Conrad, 1849), are documented to reach ages of >100 years (Ramsay et al., 2000; 2011; Bureau et al., 2002).

5.2 Geological and Paleoenvironmental Setting

Specimens were collected from the upper early and middle Pliocene RushmereMorgarts Beach (3.5-3.1 Ma) and Moore House (3.1-2.5 Ma) Members of the Yorktown Formation at Petersburg, Virginia and the late Pliocene Edenhouse Member (2.5-1.9 Ma) of the Chowan River Formation at Colerain, North Carolina (Carter et al., 2003) (Figure 5.1). These two formations are shallow-marine successions comprised of unconsolidated sand, clay, and shell marls that accumulated in the basins along the continental passive margin. The lithology and biostratigraphy of the Yorktown and Chowan Formations indicate inner to outer neritic conditions with normal marine salinity (Ward and Strickland, 1985). The Yorktown Formation represents tropical climatic conditions based on nannofossil assemblages (Hazel, 1971; Cronin and Hazel, 1980; Cronin et al., 1984) and molluscan biozones (Ward and Blackwelder, 1976; Blackwelder, 1981b). The Rushmere and Moore House Members contain molluscan assemblages which indicate a pronounced episode of warming (Mid Pliocene Warm Interval, MPWP) reflecting tropical conditions (Ward, 1998). The Chowan Formation contains a molluscan assemblage entirely warm-temperature in nature, and therefore represents cooling conditions following the tropical assemblages of the early Pliocene (Ward and Gilinsky, 1993). These assemblages represent the shifting influence between warm tropical waters
penetrating more northward during the early and mid- Pliocene and cool boreal waters reaching Cape Hatteras, North Carolina post-Yorktown. Paleontological studies suggesting a tropical to temperate temperature shift are supported by oxygen isotope paleothermometry (Krantz, 1990; Goewert and Surge, 2008; Williams et al., 2009).

Age control of the MACP is based primarily on well-developed regional biostratigraphy of molluscs and microfossils (Cronin and Hazel, 1980; Blackwelder, 1981b) and limited paleomagnetic and radiometric data (Cronin et al., 1984). Though few open-ocean specimens are present, Pliocene MACP formations are tied globally with planktonic foraminifera records from deep sea cores (Dowsett \& Cronin, 1990; Dowsett \& Wiggs, 1992). The time span of deposition for each member of the Pliocene MACP has been estimated by correlating each transgressive sedimentary unit with deep-ocean $\delta^{18} \mathrm{O}$ records (Krantz, 1991). Individual shell specimen ages should be considered as 'floating' within and representative of the entire litho-stratigraphic unit. Relative ages of fossil specimens recovered were considered in stratigraphic order because many specimens were collected from beds with little evidence of post-depositional transport or bioturbation. Other studies have also noted specimens from the high-energy shell marls and deep-burrowers of the MACP deposits in excellent conditions of preservation (Thompson, 1970; Bailey and Tedesco, 1986; Ward et al., 1987). In this study, many specimens of Glycymeris spp. and all specimens of Panopea reflexa were found articulated, some in life position, slightly worn but overall well preserved.

5.3 METHODS

5.3.1 Fossil bivalve shell preparation and growth increment reading

Fossil shells of Glycymerididae $(\mathrm{N}=154)$ and P. reflexa $(\mathrm{N}=18)$ were picked from highstand deposits of the Yorktown and Chowan River Formations, and then processed at the University of North Carolina. Shells were cleaned, photographed, weighed (using a Sartorius electronic balance, accurate to the 0.0001 g) and the length and height measured using digital calipers to the 0.01 mm (Appendix B, Table 1). Multiple species of Glycymerididae are found in the deposits of the MACP (Thompson, 1970; 1975). Measurements of the physical characteristics of the Glycymerididae shells were used to properly differentiate small, worn, and/or asymmetric G. americana (DeFrance, 1826) from the rugose polymorph (Nicol, 1950) and the costate (ribbed) Costaglycymeris subovata (Ward, 1992) (Appendix Figure 1). Using an Olympus SZX7 microscope with an attached DP71 12 megapixel camera, the external shell surfaces of the Glycymerididae were magnified $(15 x)$ and digitally recorded along the maximum growth path. Following methods previously used to determine the resolution of G. glycymeris increments (Berthou et al., 1986; Reynolds, 2011a), photomicrographs of the external growth increments were digitally measured using the Olympus Imaging Solutions Software to the nearest $(0.001 \mathrm{~mm})$ (Figure 5.2, Appendix B Table 2). Abrasion and bioerosion can remove portions of the outer shell making it difficult to distinguish growth increments. External counts were not taken if too much of an individual specimen's outer shell was destroyed.

Fast-hardening epoxy was applied to the shells prior to sectioning. They were sectioned through the umbo and along the axis of maximum growth using a diamond band saw. Half of each sectioned shell was affixed to a slide using epoxy and cut again using a Buehler IsoMet low speed saw. The thinly sliced shells were ground down using 600 grit and polished using $6 \mu \mathrm{~m}$ and $1 \mu \mathrm{~m}$ diamond polish on a Buehler variable speed grinder-polisher. Shells were again cleaned, rinsed and allowed to dry. Each slide was stained using Mutvei's solution (Schöne et al, 2001) and inspected for diagenetic alteration under reflected light using the Olympus microscope setup. The purposes of staining were to: (1) identify microstructural layers and growth lines; and (2) evaluate the preservation of the original mineralogy.

Fossil aragonite shells were only lightly stained by the alcian blue during the staining process (Schöne et al., 2001), and the process better revealed microstructure and evaluate petrography. With the stain applied, shell microstructure was shown to consist of an outer and an inner crossed-lamellar layer separated by a thin layer of prismatic myostracum tracing the ontogenetic path of the pallial line (Figures 5.2b and d). Glycymeris spp. and Panopea spp. shell composition is entirely aragonite (Thompson, 1975; Strom et al., 2004; Hallman et al., 2008). Areas of secondary calcification, other debris, and heavily etched and cracked locations from handling, processing and staining were more darkly stained by the Mutvei's solution than the rest of the shell. Areas along the valve presumed to be annual bands, distinctly darker in color in the cross-lamellar part of the outer hinge in living shells (Thompson, 1970; Ramsay et al., 2000), appeared lighter than the surrounding stained area on some shells. These observations are
consistent with other studies using fossil Glycymerididae from the Eocene (Zirkel and Schöne, 2010). These multiple lines of evidence indicate the exceptional preservation of the original material.

5.3.2 Isotope sclerochronology

To determine whether fossil shells of G. americana and P. reflexa: (1) deposit shell carbonate in regular annual intervals between visible growth increments; and (2) exhibit temperature representing the entire annual range, standard oxygen and carbon isotope sclerochronology methods were employed on four shells. Two fossil G. americana from the Yorktown Formation were microsampled at 8-12 samples per year across the fifth to tenth growth increments to achieve subannual resolution ($\mathrm{N}=69$). Samples were taken from these growth increments because the large area of these increments enabled identification of different portions of the valve. The samples were taken from the outer cross-lamellar portion of each valve. The chondrophore of Glycymerididae was used for aging but not for isotopes because it is part of the inner shell layer and in continuous contact with inner extrapallial cavity fluids (Thompson, 1970). Two P. reflexa shells from the Yorktown Formation formation were microsampled along the chondrophore area following similar sampling strategies of Goman et al., (2007) and Hallman et al. (2008). Visible growth lines used to guide sampling were only distinguishable in the chondrophore. Microsamples were taken from the first twelve years of growth at sampling rates of 5-7 per year in fast-growing shell regions near the umbo and diminishing numbers of samples in slower growing, older shell portions ($\mathrm{N}=75$). Microsampling was performed on a Merchentek micromill fitted
with a 0.1 mm carbide scribe bit. Each digitized drilling path consisted of multiple passes to a drilling depth of approximately 10 to $50 \mu \mathrm{~m}$. To obtain subannual resolution, drill paths were made parallel to the growth lines. Approximately 20-40 $\mu \mathrm{g}$ of carbonate powder was collected for each isotopic analysis. Isotopic analysis was performed at the University of Arizona's Environmental Isotopes Laboratory (Department of Geosciences). Oxygen and carbon isotope ratios of shell carbonate were measured using a Kiel-III automated sampler coupled to a Finnigan MAT 252 gas-ratio mass spectrometer. Powdered samples were reacted with dehydrated phosphoric acid under vacuum for one hour at $70^{\circ} \mathrm{C}$. The isotope ratio measurements were calibrated based on repeated measurements of National Bureau of Standard NBS18 and NBS-19. Precision was $\pm 0.1 \%$ for $\delta^{18} \mathrm{O}$ and $\pm 0.08 \%$ for $\delta^{13} \mathrm{C}$. The results are reported in per mil units (\%) relative to the Vienna Pee Dee Belemnite (VPDB) standard (Table 1).

5.3.3. Temperature estimates

Estimated temperature was calculated using the equation reported by Grossman and $\mathrm{Ku}(1986)$:

$$
T^{\circ} \mathrm{C}=20.6-4.34\left(\delta^{18} O_{C}-\delta^{18} O_{\mathrm{SW}}\right)
$$

where $\delta^{18} \mathrm{O}_{\mathrm{C}}$ (VPDB) is the isotope ratios from the shell carbonate. The regional seawater $\delta^{18} \mathrm{O}_{\mathrm{SW}}$ value of 1.1% (VSMOW) is from a model predicted Pliocene seawater value for all members of the Yorktown Formation as reported by Williams et al. (2009). To account for subtracting oxygen isotope ratios from the two different scales, 0.27% was subtracted from the $\delta^{18} \mathrm{O}_{\mathrm{w}}$ value (Gonfiantini et al., 1995). The Grossman and Ku (1986) equation does not account for possible differences in vital effects for different
species of bivalves. We compared $\delta^{18} \mathrm{O}$ values and estimated temperature in this study to modern instrumental records and previously published values of Pliocene bivalve shells from the same formations. Published stable isotope data of bivalves from the Pliocene MACP formations are based on the analyses of extinct pectinids Chesapecten jeffersonius, C. madisonius and C. eboreus (Krantz, 1990; Goewert and Surge, 2008). We used the revised temperature estimates for Chesapecten spp. based on the Williams et al. (2009) $\delta^{18} \mathrm{O}_{\mathrm{SW}}$ value of 1.10%. The modern seawater temperature values and ranges are from the NOAA station CHLV2 - Chesapeake Light off Virginia (http://www.ndbc.noaa.gov/data/climatic/CHLV2.txt, download September 2011).

5.3.4 Growth analysis

All sectioned shells were aged and the internal growth increments measured using an Olympus SZX7 Microscope with a DP71 12.5 megapixel, 12-bit digital color camera setup with Olympus imaging software. G. americana shell increments $\left(\mathrm{I}_{\mathrm{t}}\right)$ were measured between the consecutive couplets of dark increments (viewed under reflected light), starting at the ventral margin (commissure edge) and counted back along the valve to the umbo (Figure 5.2). Measurements were halted a few increments preceding broken ventral margins and later in ontogeny where increments became too difficult to discern because of slowed growth. P. reflexa shell counts were measured from the chondrophore (hinge plate, cardinal tooth) area (Figure 5.2). Previous work on live-caught specimens of P. abrupta (Shaul and Goodwin, 1982; Strom et al., 2004, 2005; Hallmann et al., 2008) found that cross-sections through the cardinal tooth provided the clearest and most
reliable view of the growth increments. Measurements were made along a transect from the origin of growth to the farthest (ventral) edge of the cardinal tooth.

For each G. americana and P. reflexa shell measured, the sum of all growth increments widths in the chondrophore gave the length of the chondrophore. Chondrophore increments were converted to growth increment in shell height using the formula reported by Steíngrímsson, (1989):

$$
\mathrm{SH}_{\mathrm{inc}}=\frac{\mathrm{SH}_{\mathrm{tot}}}{\mathrm{CL}_{\mathrm{tot}}} \times \mathrm{A}
$$

where $\mathrm{SH}_{\mathrm{inc}}$, = growth increment in shell width, $\mathrm{A}=$ the growth increment age in the chondrophore measured from the digital image, $\mathrm{SH}_{\mathrm{to}}$, $=$ the total shell height measured with calipers before sectioning, and $\mathrm{CL}_{\text {tot }}=$ the total length of the chonodrophore (the sum of A from the origin of growth to the farthest edge of the chondrophore). Directly measured increment widths from sectioned G. americana shells were used to construct growth curves for the entire 134 shells and separate Yorktown Formation and Chowan River Formation populations. The calculated growth data were used to construct growth curves for each usable P. reflexa in the population (15 shells) from the Yorktown Formation.

Growth curves of all the shells were modeled by fitting a von Bertalanffy (1957) growth function to the age-shell height data. This function is described by the equation (Ogle, 2011):

$$
E_{t}=L_{\infty}\left[1-e^{-K\left(t-t_{0}\right)}\right]
$$

where $E_{t}=$ the expected or mean length at time (or age) $t, L_{\infty}=$ the asymptotic average length, $K=$ the Brody growth rate coefficient (units are yr^{-1}), and $t_{o}=$ is said to represent the time or age when the average length was zero $\left(L_{0}=0\right)$. The von Bertalanffy growth model (VBGM) was fitted to the data using fishR, a fisheries analysis tool performed in the R software environment (Ogle, 2011). This non-linear regression technique gives an estimate for L_{∞}, K, and a 95% confidence interval for the evaluated asymptotic shell height and rate constant. This method has been used to model shell growth in G. americana in the same Pliocene formations (Thompson, 1970, 1975) and G. glycymeris, P. abrupta and P. zelandica in late Holocene localities (Menesguen and Dreves, 1987; Steingrímsson, 1989; Gibben and Creese, 2005; Strom, 2006).

5.3.5 Increment analysis

Eight G. americana shells with long increment records were selected for spectral analysis to examine interannual variability and spectral frequencies. The selected shells included 4 from the Yorktown Formation (44, 49, 51, and 55 years) and 4 from the Chowan River Formation (68, 70, 70 and 74 years). There are two standard methods for removing the ontogenetic growth trend of decreasing increment widths with increasing age. The first detrending method is done by removing the VBGM curve (above section) from the raw increment series of the shells to get growth indices based on the population. Growth indices $\left(\mathrm{GI}_{\mathrm{t}}\right)$ were computed by:

$$
G I_{t}=I_{t} / E_{t}
$$

This method is representative of the fixed logarithmic transformations used in a number of bivalve studies (e.g. Schöne, 2003; Butler et al., 2009) in which a large number of shells (>25) were measured. The second method employed is the standard individual-based detrending developed in dendrochronology (Cook and Peters, 1981) and employed by various bivalve studies (e.g. Schöne et al., 2003; Ivany et al., 2011) with limited numbers of long increment series. In this adaptive individual-based detrending method, the raw increment data series from each individual shell was recorded using the decadal-format CASE program in the University of Arizona's Dendrochronology Program Library (DPL) (Holmes, 1999) and loaded into 'dplR', a dendrochronology program library in R developed by Bunn (2008). For each individual, a cubic smoothing spline was fitted to the series of measured growth increments $I_{t}(t=1,2 \ldots \mathrm{n}$; detrend (series, method= 'Spline)) command in dplR with a spline frequency response of 50% to obtain a series of expected increment growth G_{t}. Standardized growth indices (SGI) were plotted using the residuals of the spline and the mean of the residual population. SGI increment width series are expressed as the number of standard deviations away from zero with thinner bands being less than and wider bands being greater than expected growth.

5.3.6 Spectral analysis

Spectral analysis was used to identify any significant periodicities in the SGI series. Using a standard spectral analysis procedure, we compared the 8 G. americana growth indices to instrumental data from the middle Atlantic coast. These procedures were done to determine: (1) if the SGI records displayed oscillation patterns; and (2) if
those patterns were similar to modern MACP seawater patterns. Instrument records representing the MACP included the winter NAO Index (1950-2011) from the NOAA Climate Prediction Center
(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao, downloaded September 2011), NAO Reconstruction (1049-1995) (Trouet et al., 2009), mean monthly temperature data from Cape Hatteras, North Carolina (1874-2005), and the Long Branch Oakhurst, New Jersey (1907-1997) Global Historical Climatology Network (GHCN) stations (http://www.ncdc.noaa.gov/ghenm/, downloaded September 2011). The Cape Hatteras and Long Branch Oakhurst monthly instrument records were converted into lower resolution summer (June-July-August) mean annual series so that all time series were annually resolved. A smoothed periodogram, i.e. a spectral plot, and a fast Fourier transform (FFT) plot were constructed for each times series to first check that the shell SGIs and the station data exhibited oscillation patterns. We employed a two-step procedure using the software package kSpectra by SpectraWorks Inc. following Ivany et al. (2011). A singular spectrum analysis (SSA) was first applied to each short time series [SSA; settings: window length 16, covariance estimation by Vautard \& Ghil [Vautard and Ghil, 1989] approach, Monte Carlo significance test] to reduce the noise level in the time series. kSpectra output ranked the first ten SSA components. Following Ivaney et al. (2011), the first eight SSA components (which captured more than 65% of total variance in each SGI) were used to construct a "filtered" SGI time series. In the second step, these "filtered" SGI time series were subjected to a multi-taper method (MTM) [MTM; settings: significance $=$ "red noise", 3 tapers, adaptive procedure, robust background noise]. This procedure allowed construction of a MTM spectrum with
distinct peaks that could be verified against the corresponding FFT plots. Lastly, SSAMTM spectrograms were plotted against previously proposed periods of the NAO, and the distinct structures and intervals of high confidence were compared to the FFT and periodogram. SSA-MTM and other low-pass filtering methods are common in paleoclimatology (Mann and Lees, 1996; Schöne et al., 2004), especially for relatively short time series.
[Spectral procedures were also performed using the "multitaper" (Rahim, 2010), "RSEIS" (Lees, 2008), "rssa" (Korobeynikov, 2010) and "stats" (R Core Team) packages in R. We applied SSA to reduce the noise in each time series and decompose each in to a trend (secular variation), cyclic and slow (irregular) component series (new SSA settings: window length 5, full singular value decomposition (SVD) method by Korobeynikov (2010)). The "slow" component of each time series, representing the filtered residuals of the original time series, underwent a general multi-taper spectral analysis method (spec.mtm; settings: 5 tapers, adaptive calculations, F-test, jackknife 95% confidence intervals).

5.4 RESULTS

5.4.1 Isotope sclerochronology

Oxygen isotope time series in G. americana shells exhibits a saw-tooth patterns and consistent amplitude between minimum and maximum values (Figure 5.3). Cuspate peaks occur at the most positive values and valleys coincide with the lowest values. Prominent growth lines are located at or just prior to the most positive $\delta^{18} \mathrm{O}$ values at the
peaks in the time series. The oxygen isotope ratios of GLY-A ranged from -0.57% to 2.04% with a mean of $0.62 \pm 0.18 \%(\mathrm{~N}=39)$. Specimen GLY-C ranged from 1.71% to 2.24% with a mean of $2.03 \pm 0.62 \%(\mathrm{~N}=3)$.

Unlike G. americana, the oxygen isotope time series in both P. reflexa specimens do not exhibit a saw-tooth pattern (Figure 5.4). Prominent growth lines did not regularly coincide with any particular features (i.e., peaks or valleys) within the time series; however, they did appear to form closer together with increasing age. The oxygen isotope ratios of PR-C ranged from 1.71% to 3.32% with a mean value of $2.32 \pm 0.04 \%(\mathrm{~N}=35)$. Specimen PR-D ranged from 0.92% to 2.38% with an average of $1.83 \pm 0.04 \%(\mathrm{~N}=40)$.

Variations in $\delta^{13} \mathrm{C}$ values generally showed no consistent trend through time in either species. The carbon isotope ratios of GLY-A ranged from 1.78% to 2.77% with a mean of $2.17 \pm 0.03 \%(\mathrm{~N}=39)$. GLY-C recorded values that ranged from 1.71% to 2.24% with a mean of $2.03 \pm 0.3(\mathrm{~N}=30)$. Both G. americana $\delta^{13} \mathrm{C}$ values showed a slight decreasing trend through time (Figure 5.3). The carbon isotope ratios of P. reflexa specimen PR-C ranged from -1.04% to 0.89% with a mean of $0.07 \pm 0.03 \%(\mathrm{~N}=35)$. Specimen PR-D recorded values that ranged from -0.91% to 0.36% with a mean of $-0.11 \% \pm 0.03 \%(\mathrm{~N}=40)$. No significant correlation was observed between $\delta^{18} \mathrm{O}$ and $\delta^{13} \mathrm{C}$ values in either species (Figure 5.4, Appendix B, Figure 2).

5.4.2 Aging

Internal growth marks could clearly be identified and counted macroscopically along the valves of G. americana and hinge plates of P. reflexa. Marks near the ventral margins became faint and closely spaced, making counts and measurements increasingly subjective. However, even as growth increments thinned, it was clear that they continued to form throughout ontogeny. After isotopic verification that primary increments were annually resolved and likely preserved in G. americana (see discussion below), annual increments were used for age reading and growth measurements. We excluded P. reflexa from further growth increment and ontogenetic analysis because annual increment formation could not be verified in our isotopic study (see discussion below). No primary annual increment could be verified for P. reflexa (see above). The unverifiable counts of primary growth increments of 7 P. reflexa specimens (Appendix B, Table 3) resulted in a maximum count of 63 and a mean of 31 (Hudley and Surge, 2010).
G. americana from the Yorktown and Chowan River populations were aged from 15 to 75 years old with a mean and median age of approximately 38 and 36 years, respectively $(\mathrm{N}=134$; Figure 5.5$)$. There is a positive relationship between age and total shell length $\left(r^{2}=0.630, p=0.0004\right)$. Some individuals may have been longer lived than what was counted, especially those individuals whose ventral margins were eroded or exceptionally difficult to read due to closely spaced growth marks. About 37\% (N = 37) of the population lived for >50 years. The maximum length measured was 93.4 mm . Previous studies showed that Pliocene specimens commonly reached 105 mm (Campbell, 1993) to 113.4 mm long (Nicol, 1953).

5.4.3 Growth models

The VBGM analysis of G. americana resulted in a growth pattern that had a clear sigmoidal form (Figure 5.6). This curve was exhibited for both the Yorktown and Chowan River populations. Growth rates revealed some variation among individuals and populations. The growth rate was exponential in the first eight to twelve years of life, and increment width decreased with age. After the early period of exponential growth, annual increments declined to a minimum of about 0.07 mm in the oldest animals (Appendix B, Tables 5 and 6). For the Yorktown and Chowan River populations, respectively, the VBGM results yielded asymptotic shell lengths (L_{∞}) of 82.4 mm and 79.1 mm and growth rate constants (k) of 0.106 and 0.086 . The shape of the growth curve was similar to other studies of Glycymeris (G. americana-MACP, Thomas, 1970; G. glycymeris-Isle of Man, UK, Steíngrímsson, 1989) with high growth rates in the first eight years of life. All populations had similarly high infinite lengths (L_{∞}) but slight differences in growth rate constants (k), which likely relate to differences in shell curvature.

5.4.4 Increment analysis

Fixed logarithmic (VBGM) and adaptive individual-based detrending and standardization methods did not compare well to each other. Growth increment timeseries that were detrended using population-specific VBGM all exhibited a similar pattern. The SGIs displayed high variation oscillations away from normal growth for the
first $\sim 10-12$ years of life. After that point, the oscillations diminished and time-series flattened between $\sim 20-50$ years. The SGI developed using individual-based adaptive splines displayed greater variation, with continuous oscillations though ontogeny. This is the pattern more commonly plotted in increment studies, and presumes that the specimen's indeterminate growth rate should show variations throughout ontogeny, and does not become constant in senescence. The individual-based SGIs all exhibited different patterns. When both detrending methods were compared, the fraction of VBGM-SGI growth increments with less than normal growth was 59% while less than normal growth years comprises 58% of SGIs using the individual-base model $(N=550)$. Only the individual-based detrending method resulted in time-series used for spectral analysis. Interestingly, both methods displayed patterns were $\sim 60 \%$ of the SGI showed less than normal growth even though the stages where most of that growth was displayed was different for each method (Appendix B, Figures 3-8).

5.4.5 Spectral analysis

SSA-MTM analyses of the SGIs, SST (Jun-Aug), and NAO Index (Dec-Feb) time series revealed weak spectral structures at frequencies centered on $0.050,0.109$, 0.40 and $0.50 \mathrm{yr}^{-1}$ corresponding to commonly reported frequencies of the NAO. The 1950-2011 NAO Index SSA-MTM exhibited power only at low frequencies but displayed structures high frequencies attributed to NAO. The NAO Reconstruction (1050-2011) only had significant power in the high frequencies. The Cape Hatteras and Long Branch Oakhurst observation records SSA-MTM displayed patterns similar to the instrument NAO. The SGI spectrum from Yorktown Formation (specimens GLY-LA02,

GLY-LA03, GLY-LA04, and GLY-YKTC) exhibit a trend of maximum spectral power at the lowest frequencies $\left(0.0-0.1 \mathrm{yr}^{-1}\right)$ with and much lower relative power in the higher frequencies. Chowan River Formation SGIs SSA-MTM spectrum also displayed most of their power in the lower frequencies.

5.5 DISCUSSION

5.5.1 Oxygen Isotope ratios in Panopea

Estimated temperature in P. reflexa falls below the reported Pliocene paleotemperature range for the Yorktown Formation $\left(13.6^{\circ} \mathrm{C}-29.7^{\circ} \mathrm{C}\right.$; Williams et al., 2009) and historic instrument records from the NOAA station Chesapeake Light off Virginia (Figure 5.7). Moreover, the lack of a sinusoidal pattern in the $\delta^{18} \mathrm{O}$ time series of P. reflexa does not support that the primary growth marks found in the umbo are annual increments. One explanation for our findings is that the cardinal tooth region of P. reflexa is out of isotopic equilibrium. although other isotope sclerochronology studies indicate that Panopea is sensitive to environmental variables (e.g., temperature, food resources, and habitat topography) at seasonal and annual scales (Strom et al., 2004; Goman et al., 2008; Black et al., 2009; Nielsen and Nielsen, 2009), we cannot verify this for P. reflexa. In Strom et al. (2004) and Goman et al. (2007), temperature estimates derived from oxygen isotopic measurement in the cardinal teeth of P. abrupta were found to correlate well with local instrumental records. Contrary to the findings of these previous studies, Hallman et al. (2008) indicated that interpretation of isotopic time series in modern P. abrupta hinge plates is problematic, which is consistent with our findings. Hallman et al. (2008) sample the cardinal tooth and corresponding growth intervals in the
inner and outer layer of the valve. Although growth patterns (age) were similar in all areas of the shell, results suggest that the $\delta^{18} \mathrm{O}$ data from the cardinal tooth and inner valve layer were shifted away from equilibrium by up to approximately $0.7-0.9 \%$ toward less positive values in most years. Hallman et al. (2008) proposed that the cardinal tooth is precipitated from the inner extrapallial fluid (EPF) and is not in elemental or isotopic equilibrium with either the outer EPF or environmental waters. They further determined the outer prismatic layer is more appropriate for isotopic analysis and aging studies. However, sampling P. reflexa along the outer prismatic layer is difficult as shells often have damaged surfaces and cracks throughout the interior of the valve despite that they may have been found articulated and well preserved (Figure 5.2).

We considered two alternative explanations: (1) an introduction of a systematic sampling error (i.e., time averaging bias) and/or; (2) misidentification of the paleoenvironment. Time averaging bias can occur during intervals of slowed growth (e.g., advanced ontogenetic age). Such time averaging biases with increasing ontogenetic age has been documented by decreasing amplitudes and periods in the isotopic time series of several bivalve taxa (Jones 1980; Thompson et al. 1980; Weidman et al. 1994; and many others). This explanation does not best explain the lack of a clear sinusoidal pattern in the $\delta^{18} \mathrm{O}$ time series of P. reflexa. The decreasing amplitudes reported for other taxa seem to be present in the decreasing width of successive growth increments (space between dark lines indicated by black triangles along x-axis in Figure 5.7). However, neither PR-C nor PR-D exhibit a systematic change from high amplitude sinusoids in early growth to decreasing amplitude with advanced age (Figure 5.7). Misidentification
of the paleoenvironment can potentially invalidate the assumed $\delta^{18} \mathrm{O}_{\text {seawater }}$ value. Perhaps P. reflexa were not growing in fully marine conditions. Though we assumed that the Yorktown fossiliferous beds were outer neritic (Hazel, 1971; Blackwelder, 1981a; Cronin, 1991), some biostratigraphical and lithological interpretations of the Rushmere and Morgarts Beach Members imply estuarine influences (Ward, 1992). Estuarine influences may result in freshwater/seawater mixing complicating the constraint of the $\delta^{18} \mathrm{O}$ value of ambient water. Therefore, our use of a constant Pliocene $\delta^{18} \mathrm{O}_{\text {seawater }}$ value (1.1\%) may be unsuitable in this case. Panopea spp. has broad ecological amplitude and are found in sands, muddy-sands, and muddy sediment depositional environments (Strom, 1997; Alexander and Dietl, 2005; Gribben and Creese, 2005). Deep-burrowing Panopea spp. are found in various environments including inner-neritic, outer-neritic and deltaic deposits (Franz, 1982). This explanation is unlikely because Chesapecten, a fully marine genus, were abundant at the same localities. Extant scallops tolerate only small fluctuations in marine salinity and are not commonly found in sequences deposited under strong fluvial influences. Therefore, our preferred explanation is that the cardinal tooth region of P. reflexa is out of isotopic equilibrium and cannot be used as a reliable paleotemperature proxy capable of resolving seasonal and annual variations. Given the probable isotopic disequilibrium, oxygen isotope time series cannot be used to determine whether or not primary growth marks are annual in this species.

5.5.2 Interpretations of paleotemperature estimates from Glycymeris

The oxygen isotope time series of G. americana records seasonal variability. The regular saw-tooth patterns exhibited in the time series are generally interpreted as cycles
displaying both a time of growth, when environmental conditions are within speciesspecific tolerances, and time of shutdown, when conditions fall outside of that range. Prominent growth lines occurring prior to or at the most positive $\delta^{18} \mathrm{O}$ values formed in fall or winter, respectively (Figure 5.3). Our findings of winter growth cessation from G. americana is consistent with Steíngrímsson (1989) who indicated the populations of G. glycymeris in Irish Sea deposited dark growth lines in the winter months. Our findings are consistent with Goewert and Surge (2008), who reported winter growth cessation in Chesapecten shells from the Chuckatuck-Riddick's Pit locality in the same member (Moore House member) of Yorktown. Goewert and Surge (2008) found seasonal temperatures ranging from $3.2^{\circ} \mathrm{C}$ to $20.8^{\circ} \mathrm{C}$ (cooler than reported Yorktown temperatures), and concluded that the winter growth cessation lines might be ascribed to eddies and cold filaments of the Labrador Current that may have penetrated the marine environment during the deposition of the Yorktown Formation. However, recalculation of the Goewert and Surge (2008) Chesapecten estimates using $\delta^{18} \mathrm{O}_{\mathrm{w}}$ by Williams et al. (2009) indicates a revised temperature range from $10.1^{\circ} \mathrm{C}$ to $28.5^{\circ} \mathrm{C}$. Both the Krantz (1990) and Goewert and Surge (2008) revised estimated temperatures of winter growth cessation in Chesapecten are similar to the winter cessation temperature of $8-9^{\circ} \mathrm{C}$ of the extant scallops, Pecten maximus (Owen et al., 2002). The revised value of $10.1^{\circ} \mathrm{C}$ is lower than other Yorktown proxies (Williams et al. (2009) revised MPWI scenario Yorktown temperatures of $13.6^{\circ} \mathrm{C}$ to $30.1^{\circ} \mathrm{C}$), but is not inconsistent with the leading scenario of greater influence of Gulf Stream waters transported onto the shelf during the time the Yorktown Formation was deposited (Figure 5.8).

Our finding of winter growth cessation is inconsistent with sclerochronology studies of molluscs from temperate provinces, which document growth cessation in warmer months (Jones, 1980; Jones and Quitmyer, 1996; Quitmyer et al., 1997; Arnold et al., 1998; Surge et al., 2008; Quitmyer and Jones, 2012; Jones et al., 2012; Surge et al., in review). Studies that document growth cessation during cooler seasons are from molluscan taxa inhabiting temperate regions (Jones and Quitmyer, 1996; Surge et al, in review). This pattern of seasonal timing of slowed growth is more complicated, however. Elliott et al. (2003) isotopically sampled Mercenaria shells from localities within the warm- and cold-temperate zone. All specimens formed dark increments during the summer regardless of location. More recently, Henry and Cerrato (2007) isotopically analyzed M. mercenaria shells from various locations in Narragansett Bay, Rhode Island, and compared their results to the earlier studies of Jones et al. (1989) and Bernstein (1993). Examining chronologically the seasonal timing of dark increment formation over several decades revealed a progression from slow growth only in winter to an annual pattern of slowed growth during summer, fall, and winter (Henry and Cerrato, 2006). Henry and Cerrato (2007) suggested that changes in the marine environment may have altered seasonal growth patterns and may have accompanied an increase in water temperature over time in Narragansett Bay.

Estimated seawater temperature from specimens GLY-A and GLY-C ranged from $14.1^{\circ} \mathrm{C}$ to $26.7^{\circ} \mathrm{C}$ (Figure 5.8). Averaging the coldest and warmest temperatures recorded across all years in both shells resulted in mean winter and summer temperatures of $16.2 \pm 1.4^{\circ} \mathrm{C}$ and $24.4 \pm 1.5^{\circ} \mathrm{C}$, respectively, and an average seasonal temperature range of
$\sim 8.2^{\circ} \mathrm{C}$. Reported Pliocene palaeotemperatures for the Yorktown Formation based on isotopic proxy records from Chesapecten shells (Krantz, 1990) fall within that range of $13.6-30.1^{\circ} \mathrm{C}$ (Williams et al., 2009). Our winter and summer temperature estimates fall within the previously reported values, and the seasonal range in our study is lower than these previous studies. One explanation for our lower range is that Glycymeris and Chesapecten are recording seawater temperature from different regions on the shelf (Figure 5.8, darker areas). However, fossil Chesapecten and Glycymeris are both common and abundant in the same beds at most of our Pliocene sampling localities. Extant Pectinidae (i.e., Aequipecten and Argopecten) are also commonly found in abundance with G. americana in deep (>30 m) gravel-bottom assemblages in the South Atlantic Bight (Wolfe, 2008). Therefore, this explanation is unlikely. Another alternative explanation for the differences in temperature recorded in these two taxa is that neither species precipitates their shells in equilibrium with the water. An isotopic study of extant Pectinidae (Pecten maximus) by Owen et al. (2002) determined that at times of low shell growth rates (intervals of cessation) shell $\delta^{18} \mathrm{O}$ deviated from equilibrium $+0.6 \%$, a temperature equivalency of approximately $-3^{\circ} \mathrm{C}$. Similarly, a study of G. glycymeris by Royer et al. (in press) demonstrated oxygen isotope-derived temperatures closely related to bottom water temperatures but overestimated temperature from $0.1^{\circ} \mathrm{C}$ to more than $2{ }^{\circ} \mathrm{C}$ when using the Grossman and $\mathrm{Ku}(1986)$ equation. These studies demonstrate the critical importance of a species-specific paleotemperature equation for each of these bivalve proxies. Unfortunately, Chesapecten is extinct and a species-specific calibration of G. americana has not yet been calibrated. The differences in temperature estimates between Chesapecten and G. americana may be a result of disequilibrium with water, but
if calibrated Glycymeris species may capture the entire seasonal range of seawater temperature.

Compared to modern instrumental records reported in Williams et al. (2009), our temperature estimates record a more narrow range of seasonal amplitude with warmer winters and cooler summers (Figure 5.8). This observation is similar to other paleotemperature estimates from the Yorktown based on molluscan archives. Our findings are consistent with interpretations that during the Pliocene, warm southern waters penetrated north of what is now the physiographic and thermal barrier of Cape Hatteras and extended the biogeographic range to outer tropical (Carolinian) fauna (Ward and Strickland, 1985; Cronin 1988). Dowsett et al. $(1999,2005)$ documented intensification of the Gulf Stream, thus potentially enhancing the warmth of the Carolina Coastal Current. The northward flowing Carolina Current in the South Atlantic Bight (SAB) is influenced by a mixture of wind, seawater density, and Gulf Stream incursions (Atkinson et al., 1983). More incursions of vigorous, warm Gulf Stream filaments may explain warmer temperatures farther north along the Pliocene shelf than present day. However, a reduced latitudinal SST gradient implies weaker atmospheric forcing of surface oceanic circulation, and hence weaker oceanic heat transport from Equator to higher latitudes (Crowley 1996).

Another possible explanation is that cold, southward flowing waters (e.g., the Virginia Coastal Current and MAB modified Labrador Current waters) did not penetrate as far south as they do in present day winters. Cold, bouyant Labrador Current system
water represents a significant water mass, reaching $\sim 45^{\circ} \mathrm{N}$ during the present day winter. Though the Labrador Current water system is reported to have developed during the Pliocene ($\sim 2.5 \mathrm{Ma}$) (Berggren and Hollister, 1977), the system was likely not as strong as today due to reduced sea cover and terrestrial ice sheet development. This weaker Labrador Current system is consistent with Pliocene simulations using the HadCM3 GCM with PRISM SST boundary conditions. Simulations predict both reductions in sea ice cover and greater Gulf Stream velocity compared to pre-industrial simulations along with weaker thermohaline circulation and a shallower depth for North Atlantic Deep Water formation (Haywood \& Valdes, 2004).

5.5.3 G. americana as a multi-decadal climate archive.

To determine whether G. americana can potentially serve as a multi-decadal archive to reconstruct Pliocene marine climate, we evaluated whether this species is long lived using results from the VBGM analysis. Growth curves from this study were compared to previously published curves of: (1) populations of G. americana in the same stratigraphic formations; and (2) Glycymeris populations of the same genus in different localities and time (Figure 5.6). Counts based on internal growth marks show that $\sim 80 \%$ of the Pliocene G. americana attained at least 30 years of age, and almost 40% reach an age 50 years (Figure 5.5). None our specimens are as large as those found in the Pliocene MACP localities (105 mm (Campbell, 1993); 113.4 mm long (Nicol, 1953)), thus

Pliocene G. americana likely attain true ages at death greater than those we show here. Modern Glycymeris (e.g. G. glycymeris) populations from the Irish Sea show growth patterns and age distributions with individuals reaching ages >100 years (Ramsey et al,

2000; Reynolds, 2011b) with a lower L_{∞} (Figure 5.6). G. glycymeris share the same boreal habitat and distribution as the long-lived ocean quahog, Arctica islandica (>500 years, Wanamaker et al., 2012). The long life span and slow growth of A. islandica are often associated with cold temperature and great depth. In contrast, G. americana occurs along the Atlantic coast from Virginia to Brazil. Cold temperatures cannot be associated with its longevity. However, some studies suggest that limited food supply is the more important factor for longevity in A. islandica (Witbaard et al., 1999; Schöne et al., 2004) and Eocene Cucullaea raea, (Buick and Ivany, 2004; Ivany et al., 2011). Our results from Pliocene G. americana support the hypothesis that physiological stress associated with limited food could be responsible for increase longevity in some bivalve species. Thomas $(1970,1975)$ noted that Glycymeris spp. are physiologically unspecialized bivalves, adapted to a relatively narrow range of environments, which are rather inhospitable to bivalves in general. If food limitation is a primary factor, then marginal living Glycymeris spp. likely exhibits this longevity throughout its range and, therefore, potentially serves as an important archive for multi-decadal proxies for paleoecologicial and paleoclimatic investigations in areas where traditional multi-decadal proxy records do not exist.

After we confirmed that G. americana lived for several decades, we evaluated results from our SGI analysis to assess their potential for recording interannual and multidecadal climate variability along MACP during the Pliocene. Spectral densities originated from detrended increment series and instrument SST data show structures at the periods associated with the NAO: 20, 6-10, 4.8, and 2-3 years (Rogers, 1984; Hurrell
and van Loon, 1997), but with most below the 95% significance level relative to the estimated red noise background (Figures $5.9-5.11$). The NAO instrumental series (Figure 5.9A; Appendix B, Figure 3) and NAO reconstruction series (Figure 5.9B; Appendix B, Figure 3) both exhibit significant power at the period around 20 years, however only the NAO instrument SSA-MTM (Figure 5.9A) exhibits potential structures near the smaller reported NAO periodicities. The Long Branch Oakhurst (Figure 5.9C; Appendix B, Figure 4) and Cape Hatteras (Figure 5.9D; Appendix B, Figure 4) observation records SSA-MTM displayed structures at $0.109,0.187,0.414$, and 0.402 , corresponding to periods of $9.2,5.3,2.4$, and 2.5 years all at or near reported NAO periods. In the Yorktown Formation, GLY-LA02 displayed weak but high-confidence structures at periods 20.0, 7.7, and 3.2 years (Figure 5.10A). The periodogram mean spectrum of GLY-LA02 is at period 7.3 years, and neither the periodogram nor the FFT showed significant structures other than the $20-$ year $\left(0.054 \mathrm{yr}^{-1}\right)$ period (Appendix B, Figure 5 lower left panel). GLY-LA03 SSA-MTM displayed power corresponding to periods of 20.0 to 7.0 years (Figure 5.10B). A mean spectrum at period 7.6 year was calculated and the most significant structure was at 18 years $(\mathrm{p}=0.016)$, while The FFT displayed structures corresponding to 21.7, 10.7, and 2.3 years (Appendix B, Figure 5 lower right panel). GLY-LA04 SSA-MTM was the only series not to exhibit significant power at the 20 year period (Figure 5.10C). GLY-YKTC had distinct structures at period 20, 7.7, and around 4.8 years (5.10D). The Chowan River SSA-MTM time series (Figure 5.11; Appendix B, Figures 7 and 8) mostly followed the trend of displaying some power at NAO reported periods.

The periodicity at 20 years may not be significant because none of our growth increment series exhibit continuous sequences longer than 75 year. The same might be concluded about the NAO instrumental time series. Accepting the high frequency bands, SSA-MTM spectral analysis of shell increment records coincide with the primary periodicities found in the modern NAO and MACP shelf instrument records. A general comparison of modern records to SGIs from the Yorktown and Chowan River Formations shows that MACP seawater variability was likely similar in the both the midand late Pliocene. Our findings that the NAO remains relatively unchanged are similar to a MTM spectral analysis of tree-ring and isotope records from Pliocene Ellesmere Island (Ballantyne et al., 2006) and support model simulations of mid-Pliocene climate (Chandler et al., 1994; Haywood et al., 2000; Haywood \& Valdes, 2004; Haywood et al., 2008).

5.6. CONCLUSIONS

Pliocene G. americana preserves records of growth and climate at seasonal to multi-decadal variation in $\delta^{18} \mathrm{O}$ and growth increments, and exhibits longevity not often found in warm-temperate and tropical bivalves. Through isotope sclerochronology we determined the primary growth marks of G. americana are annually resolved, exhibiting both periodicity and synchronicity when compared against records from other Pliocene bivalves. Glycymeris paleotemperature estimates exhibit warmer than modern winter temperatures, supporting previous interpretations of diminished seasonality in Yorktown deposits. This work demonstrates that spectral analysis of long, standardized growth increment records from G. americana shells display periodicities similar to those of the
modern NAO in both the mid- and late Pliocene.Using the isotope sclerochronology methods, oxygen isotope compositions of P. reflexa showed no periodicity or synchronicity and could not be verified as annual.

ACKNOWLEDGMENTS

Thanks to David Dettman at the University of Arizona's Environmental Isotopes Laboratory for isotopic analysis and to Joseph Carter (UNC) and Lauck Ward (VMNH) for their guidance on MACP collection localities. We thank Janice Edgerson for her proof reading of the early drafts of this paper. Thanks also to Melissa Hudley and Ian Winklestern for assistance in field collections. We would like to thank JH's doctoral committee for their constructive influences on this manuscript. This project is supported in part by the Preston Jones and Mary Elizabeth Frances Dean Martin Trust and National Science Foundation Grants \# HRD-0450099 (V. Ashby) and \# AGS-0602422 (DS).

Table 5.1: Isotopic composition of shells. Specimens were collected from the Morgarts Beach and Rushmere members of the Yorktown Formation, Pliocene Age. Samples from Glycymeris were taken from the valve and represent (4) annuals. Samples from the Panopea were micromilled from the umbo. Samples were run at the University of Arizona's Environmental Isotope Laboratory.

Shell	ID	Mineral	Sample	Distance	$\begin{gathered} \text { 813C } \\ \text { VPDB } \\ \hline \end{gathered}$	$\begin{gathered} \delta 180 \\ \text { VPDB } \end{gathered}$	$\begin{gathered} \hline \text { C } \\ \text { std } \\ \text { dev } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{O} \\ \text { std } \\ \text { dev } \\ \hline \end{gathered}$	Voltage
GLY-A	GLY-A-001	aragonite	1-54	28.23	1.97	1.51	0.051	0.029	1.8
GLY-A	GLY-A-002	aragonite	2-54	28.82	2.48	1.27	0.043	0.085	1.88
GLY-A	GLY-A-003	aragonite	3-54	29.409	2.77	0.60	0.018	0.024	2.83
GLY-A	GLY-A-004	aragonite	4-54	29.999	2.42	0.06	0.007	0.004	2.54
GLY-A	GLY-A-005	aragonite	5-54	30.588	2.11	0.12	0.026	0.049	1.43
GLY-A	GLY-A-006	aragonite	6-54	31.177	1.98	0.26	0.017	0.079	1.74
GLY-A	GLY-A-007	aragonite	7-54	31.767	1.88	0.24	0.007	0.036	2.39
GLY-A	GLY-A-008	aragonite	8-54	32.357	1.88	0.21	0.034	0.055	2.65
GLY-A	GLY-A-009	aragonite	9-54	32.946	1.97	0.31	0.006	0.036	1.97
GLY-A	GLY-A-010	aragonite	10-54	33.536	2.15	0.92	0.030	0.030	2.13
GLY-A	GLY-A-011	aragonite	11-54	34.125	2.24	1.53	0.013	0.058	1.35
GLY-A	GLY-A-012	aragonite	12-54	34.715	2.28	2.04	0.011	0.031	2.50
GLY-A	GLY-A-013	aragonite	13-54	35.231	2.34	1.13	0.013	0.073	1.96
GLY-A	GLY-A-014	aragonite	14-54	35.747	2.49	0.90	0.050	0.076	2.70
GLY-A	GLY-A-015	aragonite	15-54	36.264	2.31	0.69	0.035	0.067	2.63
GLY-A	GLY-A-016	aragonite	16-54	36.78	2.25	0.04	0.022	0.063	2.44
GLY-A	GLY-A-017	aragonite	17-54	37.297	2.07	0.17	0.008	0.008	2.72
GLY-A	GLY-A-018	aragonite	18-54	37.813	1.94	0.25	0.045	0.042	1.45
GLY-A	GLY-A-019	aragonite	19-54	38.33	1.86	0.28	0.010	0.007	1.89
GLY-A	GLY-A-020	aragonite	20-54	38.846	1.92	0.62	0.006	0.055	1.71
GLY-A	GLY-A-021	aragonite	21-54	39.363	1.78	0.86	0.013	0.021	2.05
GLY-A	GLY-A-022	aragonite	22-54	39.879	2.09	1.66	0.026	0.084	1.42
GLY-A	GLY-A-023	aragonite	23-54	40.395	2.16	1.70	0.025	0.032	1.64
GLY-A	GLY-A-024	aragonite	24-54	41.033	2.16	0.98	0.021	0.013	2.19
GLY-A	GLY-A-025	aragonite	25-54	41.67	2.19	0.53	0.012	0.019	2.53
GLY-A	GLY-A-026	aragonite	26-54	42.307	2.28	0.18	0.014	0.053	2.06
GLY-A	GLY-A-027	aragonite	27-54	42.945	2.10	-0.30	0.039	0.036	2.56
GLY-A	GLY-A-028	aragonite	28-54	43.582	1.98	-0.57	0.021	0.049	1.55
GLY-A	GLY-A-029	aragonite	29-54	44.219	2.05	0.07	0.025	0.043	2.62
GLY-A	GLY-A-030	aragonite	30-54	44.856	2.48	0.67	0.019	0.021	1.66
GLY-A	GLY-A-031	aragonite	31-54	45.494	2.21	1.31	0.060	0.009	1.70
GLY-A	GLY-A-032	aragonite	32-54	46.001	2.03	0.90	0.047	0.021	1.63
GLY-A	GLY-A-033	aragonite	33-54	46.508	2.12	0.64	0.070	0.024	1.57

GLY-A	GLY-A-034	aragonite	34-54	47.016	2.24	0.23	0.047	0.080	2.15
-A	GLY-A-035	aragonite	35-54	47.523	2.23	-0.38	0.013	0.046	7
LY-A	GLY-A-036	aragonite	36-54	48.031	2.29	-0.26	0.067	0.053	1.91
LY-A	GLY-A-037	aragonite	37-54	48.538	2.37	0.05	0.035	0.025	1.40
LY-A	GLY-A-038	aragonite	38-54	49.046	2.40	0.91	0.028	0.047	2.66
LY-A	GLY-A-039	aragonite	39-54	49.553	2.29	1.73	0.003	0.060	1.96
LY-C	GLY-C-001	aragonite	1-66	44.815	2.17	2.34	0.035	0.047	1.46
LY-C	GLY-C-002	aragonite	2-66	45.15	1.99	1.68	0.037	0.023	1.75
-	GLY-C-003	aragonite	3-66	45.485	2.22	1.20	0.032	0.046	2.75
LY-C	GLY-C-004	aragonite	4-66	45.82	2.14	0.79	0.017	0.017	2.09
GLY-C	GLY-C-005	aragonite	5-66	46.155	2.24	0.88	0.009	0.023	2.95
GLY-C	GLY-C-006	aragonite	6-66	46.49	2.08	0.69	0.030	0.003	2.9
LY-C	GLY-C-007	aragonite	7-66	46.825	2.18	0.32	0.021	0.042	2.73
LY-C	GLY-C-008	aragonite	8-66	47.16	2.08	0.19	0.036	0.083	1.96
GLY-C	GLY-C-009	aragonite	9-66	47.495	2.11	0.61	0.069	0.085	1.65
GLY-C	GLY-C-010	aragonite	10-66	47.831	2.10	0.89	0.012	0.060	1.78
LY-C	GLY-C-011	aragonite	11-66	48.166	2.02	1.38	0.019	0.017	2.25
LY-C	GLY-C-012	aragonite	12-66	48.5	1.95	2.13	0.039	0.085	2.08
GLY-C	GLY-C-013	aragonite	13-66	48.835	2.02	1.60	0.096	0.016	2.6
GLY-C	GLY-C-014	aragonite	14-66	49.17	1.93	1.30	0.011	0.066	2.13
LY-C	GLY-C-015	aragonite	15-66	49.506	2.12	0.99	0.020	0.048	2.01
LY-C	GLY-C-016	aragonite	16-66	49.841	1.98	0.36	0.030	0.043	2.05
GLY-C	GLY-C-017	aragonite	17-66	50.176	2.04	0.13	0.028	0.013	2.2
GLY-C	GLY-C-018	aragonite	18-66	50.511	2.13	-0.05	0.050	0.009	2.9
GLY-C	GLY-C-019	aragonite	19-66	50.846	2.08	0.21	0.004	0.032	2.58
LY-C	GLY-C-020	aragonite	20-66	51.181	2.00	1.01	0.020	0.048	2.57
GLY-C	GLY-C-021	aragonite	21-66	51.516	1.99	1.48	0.030	0.084	2.05
LY-C	GLY-C-022	aragonite	22-66	51.851	1.98	2.05	0.045	0.040	2.3
GLY-C	GLY-C-023	aragonite	23-66	52.186	1.71	1.53	0.046	0.033	2.70
LY-C	GLY-C-024	aragonite	24-66	52.521	1.78	1.10	0.017	0.010	1.63
GLY-C	GLY-C-025	aragonite	25-66	52.856	1.89	1.23	0.010	0.020	1.9
GLY-C	GLY-C-026	aragonite	26-66	53.191	1.83	0.66	0.093	0.047	2.05
GLY-C	GLY-C-027	aragonite	27-66	53.526	1.95	0.44	0.043	0.047	1.53
GLY-C	GLY-C-028	aragonite	28-66	53.861	2.14	0.73	0.028	0.038	2.35
GLY-C	GLY-C-029	aragonite	29-66	54.196	2.01	1.27	0.022	0.061	2.03
GLY-C	GLY-C-030	aragonite	30-66	54.531	2.02	1.84	0.038	0.060	1.66
PR-C	PR-C-001	aragonite	1-56	0.067	-0.17	2.16	0.046	0.047	1.32
PR-C	PR-C-002	aragonite	2-56	0.134	-0.21	2.17	0.030	0.056	1.48
PR-C	PR-C-003	aragonite	3-56	0.201	-0.11	1.87	0.032	0.025	1.56
PR-C	PR-C-004	aragonite	4-56	0.268	-0.22	2.15	0.017	0.063	1.58

PR-C	PR-C-005	aragonite	5-56	0.335	-0.16	2.30	0.035	0.007	2.69
PR-C	PR-C-006	aragonite	6-56	0.402	-0.29	2.40	0.029	0.028	1.96
PR-C	PR-C-007	aragonite	7-56	0.469	-0.52	2.39	0.016	0.074	2.20
PR-C	PR-C-008	aragonite	8-56	0.536	-0.44	2.41	0.011	0.022	2.2
PR-C	PR-C-009	aragonite	9-56	0.603	-0.07	2.35	0.066	0.021	1.83
PR-C	PR-C-010	aragonite	10-56	0.67	0.03	2.48	0.013	0.035	1.68
PR-C	PR-C-011	aragonite	11-56	0.737	0.18	2.26	0.016	0.019	2.34
PR-C	PR-C-012	aragonite	12-56	0.804	-0.10	2.11	0.026	0.024	1.47
PR-C	PR-C-013	aragonite	13-56	0.871	-0.02	2.65	0.025	0.056	1.44
PR-C	PR-C-014	aragonite	14-56	0.938	-0.43	2.11	0.019	0.012	1.44
PR-C	PR-C-015	aragonite	15-56	1.005	-1.04	2.25	0.040	0.058	1.91
PR-C	PR-C-016	aragonite	16-56	1.072	-0.82	2.67	0.021	0.034	2.80
PR-C	PR-C-017	aragonite	17-56	1.139	0.22	2.74	0.019	0.079	1.4
PR-C	PR-C-018	aragonite	18-56	1.206	0.35	2.07	0.031	0.051	1.39
PR-C	PR-C-019	aragonite	19-56	1.273	0.22	2.54	0.047	0.009	1.61
PR-C	PR-C-020	aragonite	20-56	1.34	0.47	2.51	0.033	0.048	2.72
PR-C	PR-C-021	aragonite	21-56	1.407	0.21	1.93	0.053	0.040	2.0
PR-C	PR-C-022	aragonite	22-56	1.474	-0.12	2.39	0.015	0.026	2.73
PR-C	PR-C-023	aragonite	23-56	1.541	-0.06	2.75	0.026	0.004	1.7
PR-C	PR-C-024	aragonite	24-56	1.608	0.28	3.32	0.010	0.053	2.3
PR-C	PR-C-025	aragonite	25-56	1.675	0.89	2.42	0.047	0.045	1.54
PR-C	PR-C-026	aragonite	26-56	1.742	0.48	1.71	0.031	0.079	1.72
PR-C	PR-C-027	aragonite	27-56	1.809	0.49	1.85	0.035	0.083	2.16
PR-C	PR-C-028	aragonite	28-56	1.876	0.39	2.07	0.012	0.016	1.6
PR-C	PR-C-029	aragonite	29-56	1.943	0.42	2.30	0.007	0.076	2.82
PR-C	PR-C-030	aragonite	30-56	2.01	0.39	2.53	0.041	0.010	2.69
PR-C	PR-C-031	aragonite	31-56	2.077	0.68	2.15	0.068	0.090	1.17
PR-C	PR-C-032	aragonite	32-56	2.144	0.49	2.22	0.026	0.042	2.52
PR-C	PR-C-033	aragonite	33-56	2.211	0.49	2.35	0.021	0.016	1.22
PR-C	PR-C-034	aragonite	34-56	2.278	0.29	2.44	0.052	0.022	2.71
PR-C	PR-C-035	aragonite	35-56	2.278	0.37	2.24	0.105	0.125	0.62
PR-D	PR-D-001	aragonite	1-48	0.113	-0.17	1.81	0.055	0.039	2.42
PR-D	PR-D-002	aragonite	2-48	0.227	-0.39	1.76	0.030	0.007	1.58
PR-D	PR-D-003	aragonite	3-48	0.34	-0.11	1.41	0.022	0.069	1.95
PR-D	PR-D-004	aragonite	4-48	0.454	0.04	1.25	0.079	0.035	2.06
PR-D	PR-D-005	aragonite	5-48	0.567	0.07	0.92	0.047	0.056	1.60
PR-D	PR-D-006	aragonite	6-48	0.681	0.26	0.96	0.022	0.041	1.92
PR-D	PR-D-007	aragonite	7-48	0.794	-0.05	1.28	0.027	0.056	2.20
PR-D	PR-D-008	aragonite	8-48	0.908	-0.59	1.58	0.076	0.052	1.45
PR-D	PR-D-009	aragonite	9-48	1.021	-0.44	1.41	0.042	0.023	1.32

PR-D	PR-D-010	aragonite	$10-48$	1.135	-0.22	1.91	0.036	0.072	1.71
PR-D	PR-D-011	aragonite	$11-48$	1.248	-0.61	1.81	0.029	0.044	2.20
PR-D	PR-D-012	aragonite	$12-48$	1.361	-0.91	2.12	0.039	0.042	1.82
PR-D	PR-D-013	aragonite	$13-48$	1.475	-0.82	2.14	0.015	0.085	2.46
PR-D	PR-D-014	aragonite	$14-48$	1.588	-0.38	1.66	0.024	0.029	1.46
PR-D	PR-D-015	aragonite	$15-48$	1.702	0.00	1.98	0.015	0.060	2.59
PR-D	PR-D-016	aragonite	$16-48$	1.815	-0.01	2.04	0.016	0.061	2.21
PR-D	PR-D-017	aragonite	$17-48$	1.929	0.01	2.10	0.021	0.042	2.12
PR-D	PR-D-018	aragonite	$18-48$	2.042	0.03	2.15	0.033	0.044	2.65
PR-D	PR-D-019	aragonite	$19-48$	2.156	-0.03	2.27	0.039	0.077	2.22
PR-D	PR-D-020	aragonite	$20-48$	2.269	-0.05	2.12	0.012	0.026	1.97
PR-D	PR-D-021	aragonite	$21-48$	2.383	0.06	2.10	0.005	0.028	2.57
PR-D	PR-D-022	aragonite	$22-48$	2.496	-0.23	2.38	0.071	0.030	2.13
PR-D	PR-D-023	aragonite	$23-48$	2.609	-0.15	1.92	0.024	0.018	1.73
PR-D	PR-D-024	aragonite	$24-48$	2.723	-0.13	2.07	0.043	0.071	2.25
PR-D	PR-D-025	aragonite	$25-48$	2.836	-0.01	1.91	0.025	0.018	2.46
PR-D	PR-D-026	aragonite	$26-48$	2.95	0.12	2.13	0.059	0.034	2.45
PR-D	PR-D-027	aragonite	$27-48$	3.063	-0.06	2.26	0.022	0.022	2.72
PR-D	PR-D-028	aragonite	$28-48$	3.177	-0.30	2.22	0.017	0.033	2.57
PR-D	PR-D-029	aragonite	$29-48$	3.29	-0.07	2.06	0.015	0.061	2.37
PR-D	PR-D-030	aragonite	$30-48$	3.404	-0.38	1.86	0.013	0.068	2.02
PR-D	PR-D-031	aragonite	$31-48$	3.517	-0.34	1.91	0.023	0.011	1.44
PR-D	PR-D-032	aragonite	$32-48$	3.631	-0.20	1.81	0.015	0.065	2.61
PR-D	PR-D-033	aragonite	$33-48$	3.744	0.14	1.76	0.018	0.033	2.43
PR-D	PR-D-034	aragonite	$34-48$	3.857	0.18	1.55	0.028	0.065	1.44
PR-D	PR-D-035	aragonite	$35-48$	3.971	0.17	1.63	0.011	0.027	1.73
PR-D	PR-D-036	aragonite	$36-48$	4.084	0.12	1.67	0.024	0.043	2.34
PR-D	PR-D-037	aragonite	$37-48$	4.198	0.23	1.72	0.037	0.010	3.03
PR-D	PR-D-038	aragonite	$38-48$	4.311	0.18	1.66	0.043	0.029	1.49
PR-D	PR-D-039	aragonite	$39-48$	4.425	0.36	1.80	0.009	0.037	1.92
PR-D	PR-D-040	aragonite	$40-48$	4.425	0.23	1.92	0.022	0.050	1.87

Figure 5.1. Location of collection sites along the Middle Atlantic Coastal Plain. Map shows the approximate limits of marine and marginal marine deposition during the Late Neogene along the mid-Atlantic Coast of the United States. Localities at Lieutenants Run (LTR), Yorktown Monument (YKTN), and Colerain Landing (CL) are denoted with bullets.The lighter more inland dashed line delineates Burwellian (M5) stage while the darker more shoreward dashed line delineates Wiltonian (M6) stage. Based on MACP chronostratgraphic stages (Blackwelder, 1981).

Figure 5.2 Shells of Glycymeris americana and Panopea reflexa cut through the axis of maximum growth to show annual growth increments. Panel A highlights the inner and outer shell layers and interior growth lines of G. americana. Panel B shows sample measurements of external growth lines. Panel C highlights the inner and out shell layers and cardinal tooth (umbo) of P. reflexa. Panel D illustrates the method of counting and sampling P. flexa along the longest growth axis of the hinge plate.

Figure 5.3 Variation of $\delta^{18} \mathrm{O}$ (filled diamonds) and $\delta^{13} \mathrm{C}$ (open circles) values (\% VPDB) versus distance (in millimeters) from the umbo to the ventral edge in shells of G. americana (GLY-A \&-C). Black triangles on the x-axis represent the location of prominent growth lines, and the gray triangles represent disturbance lines. The dark background area represents the range of $\delta^{18} \mathrm{O}$ values previously published in Yorktown bivalves (from Williams et al., 2009).

Figure 5.4 Variation of $\delta^{18} \mathrm{O}$ (filled diamonds) and $\delta^{13} \mathrm{C}$ (open circles) values (\% VPDB) versus distance (in millimeters) from the umbo to the ventral edge in cardinal tooth of P. reflexa (PR-C \& -D). Black triangles on the x-axis represent the location of prominent growth lines, and the gray triangles represent disturbance lines. The dark background area represents the range of $\delta^{18} \mathrm{O}$ values previously published in Yorktown bivalves (from Williams et al., 2009).

Figure 5.5 Histogram: Age versus frequency plot of Yorktown and Chowan River Formation G. americana populations ($\mathrm{N}=134$).

Figure 5.6 Growth model comparison: VGBM curves of Age (in years) versus expected Length (in millimeters). Curve (1) Yorktown Fm, (2) Chowan River Fm, (3) Duplin Fm (Thomas, 1970 curvature values), (4) Isle of Man, Port St. Mary, UK
(Steingrímsson, 1989), and (5) Isle of Man, Calf of Man, UK (Steingrímsson, 1989) populations.

Figure 5.7 Temperature estimates $\left({ }^{\circ} \mathrm{C}\right.$) versus distance (in millimeters) from the umbo to the ventral edge of the cardinal tooth in P. reflexa (PR-C \& -D) shells. Black triangles on the x-axis represent the location of prominent growth lines, and the gray triangles represent disturbance lines. The lighter highlighted background (on the left) represents the modern mean annual temperature range along the Virginia coast (NOAA station CHLV2). The darker highlighted background (on the
right represents) the currently accepted temperature range for the Pliocene Yorktown Formation based on multiple proxies (from Williams et al., 2009).

Figure 5.8 Temperature estimates $\left({ }^{\circ} \mathrm{C}\right.$) versus distance (in millimeters) from the umbo to the ventral edge of G. americana (GLY-A \& -C) valves. Black triangles on the x-axis represent the location of prominent growth lines, and the gray triangles represent disturbance lines. The lighter highlighted background (on the left
represents) the modern mean annual temperature range along the Virginia coast (NOAA station CHLV2). The darker highlighted background (on the right) represents the currently accepted temperature range for the Pliocene Yorktown Formation based on multiple proxies (from Williams et al., 2009).

Figure 5.9 Spectral densities (black lines) for four time series as computed by the SSA-MTM method. $\left(\log _{10} y\right.$-axis scale versus frequency on the x-axis). (A)

Instrument record of winter NAO Index (1950-2011), (B) NAO Reconstruction (1049-1995) (Trouet et al., 2009), (C) Long Branch Oakhurst, New Jersey (19071997) NOAA-GHCN station, and (D) Cape Hatteras, North Carolina (1874-2005) NOAA-GHCN station. Gray bands with periodicities in years given at top indicate modern spectral power for NAO. Solid red line is the 95% significance level relative to the estimated red noise background.

Figure 5.10 Spectral densities (black lines) for four SGI time series as computed by the SSA-MTM method. ($\log _{10} y$-axis scale versus frequency on the x-axis). Panels (A$D)$ are SGIs of growth increments in fossil bivalve from the Yorktown Formation. Gray bands with periodicities in years given at top indicate modern spectral power for NAO. Solid red line is the $\mathbf{9 5 \%}$ significance level relative to the estimated red noise background.

Figure 5.11 Spectral densities (black lines) for four time series as computed by the SSA-MTM method. ($\log _{10} y$-axis scale versus frequency on the x-axis). Panels (A-D) are SGIs of growth increments in fossil bivalve from the Chowan River Formation. Gray bands with periodicities in years given at top indicate modern spectral power for NAO. Solid red line is the $\mathbf{9 5 \%}$ significance level relative to the estimated red noise background.

APPENDIX A: SPISULA

Table 1. Data on live-collected Hemimactra (Spisula) solidissima. Data includes Unique Identification (UID), shell length (mm), width (mm), height (mm), valve, age counted through visual inspection of internal growth increments, date of harvest, NOAA-NEFSC Statistical Area, and location characteristics of latitude, longitude and ocean depth (m).

167-06-	126.9	168.				8/5/199		3654.	7455.	
94	6	07	42.65	LEFT	13	4	632	01	01	40.0
167-07-	114.5	151.				8/5/199		3654.	7455.	
94	9	69	38.50	LEFT	14	4	632	02	02	40.0
167-08-	102.5	135.				8/5/199		3654.	7455.	
94	7	78	34.46	LEFT	13	4	632	03	03	40.0
181-01-	102.6	135.				8/5/199		3706.	7520.	
94	0	82	34.47	LEFT	17	4	625	00	00	27.0
181-14-		119.				8/5/199		3706.	7515.	
94	90.18	38	30.30	LEFT	13	4	625	00	00	34.0
181-16-		124.				8/5/199		3703.	7525.	
94	94.40	96	31.71	LEFT	13	4	625	00	00	29.5
187-01-		117.				8/5/199		3708.	7459.	
94	88.57	25	29.76	LEFT	10	4	626	00	00	41.5
187-03-		114.				8/5/199		3719.	7457.	
94	86.17	07	28.95	LEFT	11	4	626	00	00	39.5
189-02-		114.				8/5/199		3725.	7459.	
94	86.17	07	28.95	LEFT	12	4	626	00	00	32.5
189-05-		127.				8/5/199		3723.	7445.	
94	96.56	82	32.44	LEFT	12	4	626	00	00	58.0
189-2B-	118.9	157.				8/5/199		3724.	7451.	
94	6	48	39.97	LEFT	13	4	626	00	00	44.0
190-01-	109.3	144.				8/2/199		3958.	7351.	
94	8	79	36.75	LEFT	14	4	615	00	00	24.5
305-01-	111.0	146.				8/6/199		3806.	7434.	
94	2	96	37.30	LEFT	15	4	621	00	00	39.0
305-02-		114.				8/6/199		3806.	7434.	
94	86.66	71	29.11	LEFT	13	4	621	01	01	39.0
305-03-	109.7	145.				8/6/199		3806.	7434.	
94	9	34	36.88	LEFT	13	4	621	02	02	39.0
305-04-	107.2	141.				8/6/199		3806.	7434.	
94	1	92	36.02	LEFT	15	4	621	03	03	39.0
311-02-	120.4	159.				8/7/199		3823.	7426.	
94	5	45	40.47	LEFT	15	4	621	00	00	42.5
311-05-		121.				8/7/199		3823.	7426.	
94	91.92	68	30.88	LEFT	13	4	621	01	01	42.5
311-06-	121.0	160.				8/7/199		3823.	7426.	
94	7	27	40.68	LEFT	12	4	621	02	02	42.5
323-01-	116.0	153.				8/7/199		3851.	7345.	
94	6	64	38.99	LEFT	16	4	622	01	01	46.5
323-04-		122.				8/7/199		3851.	7345.	
94	92.27	14	31.00	LEFT	9	4	622	00	00	46.5
004-05-	103.7	137.				6/8/199		4004.	7351.	
97	9	40	34.87	LEFT	13	7	612	00	00	27.0
005-01-		119.				6/9/199		4011.	7356.	
97	90.38	65	30.37	LEFT	10	7	612	00	00	15.0

$005-12-$	117.1	155.				$6 / 9 / 199$		4011.	7356.	
97	9	13	39.37	LEFT	15	7	612	01	01	22.5
$041-01-$	133.7	177.				$6 / 10 / 19$		3919.	7417.	
97	5	05	44.93	LEFT	19	97	614	00	00	19.0
$048-01-$		129.				$6 / 10 / 19$		3907.	7426.	
97	98.18	97	32.99	LEFT	12	97	614	00	00	19.0
$048-03-$	111.1	147.				$6 / 10 / 19$		3907.	7426.	
97	6	15	37.34	LEFT	14	97	614	05	05	23.0

			Heig							
UID	$\frac{\text { Leng }}{\underline{\text { th }}}$	$\begin{aligned} & \frac{\text { Widt }}{\underline{\underline{h}}} \\ & \frac{(\underline{m m}}{)} \end{aligned}$	$\begin{gathered} \overline{\mathrm{ht}} \\ \frac{(\mathrm{~mm}}{2} \end{gathered}$	$\frac{\text { Valv }}{\underline{\mathbf{e}}}$	$\frac{\mathbf{A g}}{\underline{\mathbf{e}}}$	$\frac{\text { Harvest }}{\text { ed }}$	$\frac{\text { Are }}{\mathbf{a}}$	Lat.	Long.	$\frac{\text { Dept }}{(\underline{\mathbf{h}}}$
054-01-		92.1				6/10/19		3844.	7503.	
97	68.30	2	19.60	LEFT	5	97	621	18	43	20.0
054-02-		85.3				6/10/19		3844.	7503.	
97	61.21	5	17.99	LEFT	5	97	621	28	51	19.0
054-03-		72.0				6/10/19		3844.	7503.	
97	54.45	1	17.08	LEFT	4	97	621	38	59	21.0
054-04-		66.4				6/10/19		3844.	7503.	
97	48.15	7	14.47	LEFT	3	97	621	48	67	19.0
054-05-		65.5				6/10/19		3844.	7503.	
97	48.28	0	13.43	LEFT	3	97	621	58	75	18.0
072-01-		120.				6/16/19		4058.	7201.	
97	91.03	51	30.58	LEFT	9	97	613	01	00	22.0
072-02-	107.6	142.				6/16/19		4058.	7200.	
97	3	48	36.16	LEFT	12	97	613	00	00	18.0
108-03-	107.6	142.				6/19/19		3926.	7332.	
97	9	56	36.18	LEFT	11	97	615	00	00	35.5
119-01-	107.1	141.				6/19/19		3843.	7424.	
97	0	78	35.98	LEFT	10	97	621	00	00	32.5
119-01-	111.7	148.				6/19/19		3843.	7424.	
97	6	48	30.91	LEFT	11	97	621	01	01	32.0
119-03-		125.		RIG		6/19/19		3843.	7424.	
97	97.98	15	25.01	HT	9	97	621	02	02	31.5
119-04-	109.3	142.				6/19/19		3843.	7424.	
97	3	96	27.91	LEFT	11	97	621	03	03	31.0
119-06-	112.6	151.				6/19/19		3843.	7424.	
97	3	66	28.84	LEFT	11	97	621	04	04	30.5
119-07-	111.0	154.		RIG		6/19/19		3843.	7424.	
97	3	83	30.58	HT	11	97	621	05	05	30.0
123-01-		75.4		RIG		6/19/19		3843.	7354.	
97	56.18	5	16.50	HT	4	97	621	00	00	47.5
123-02-		98.4				6/19/19		3843.	7354.	
97	73.06	0	21.74	LEFT	6	97	621	01	01	47.0
123-04-	74.08	98.0	22.89	LEFT	6	6/19/19	621	3843.	7354.	46.5

97		2				97		02	02	
123-05-		11.5				6/19/19		3843.	7354.	
97	89.00	2	22.36	LEFT	8	97	621	03	03	46.0
123-06-		105.				6/19/19		3843.	7354.	
97	80.60	51	19.85	LEFT	7	97	621	04	04	45.5
123-07-		96.7				6/19/19		3843.	7354.	
97	73.93	2	21.44	LEFT	6	97	621	05	05	45.0
123-08-		96.5				6/19/19		3843.	7354.	
97	73.49	8	20.20	LEFT	6	97	621	06	06	44.5
123-09-		78.9				6/19/19		3843.	7354.	
97	63.41	6	17.90	LEFT	5	97	621	07	07	44.0
128-01-		100.				6/20/19		3821.	7413.	
97	78.92	08	20.62	LEFT	6	97	621	00	00	55.0
128-02-		96.2		RIG		6/20/19		3821.	7413.	
97	75.64	3	18.38	HT	6	97	621	03	03	55.5
128-03-		102.				6/20/19		3821.	7413.	
97	79.24	38	22.92	LEFT	6	97	621	05	05	55.0
129-01-		102.		RIG		6/20/19		3824.	7421.	
97	79.37	75	21.80	HT	6	97	621	02	02	45.5
129-02-	126.4	167.				6/20/19		3824.	7421.	
97	5	39	42.48	LEFT	18	97	621	00	00	45.0
129-02-	122.2	165.				6/20/19		3824.	7421.	
97	7	71	36.35	LEFT	13	97	621	04	04	44.5
129-03-	106.0	140.				6/20/19		3824.	7421.	
97	6	13	32.17	LEFT	10	97	621	06	06	44.0
129-04-		100.				6/20/19		3824.	7421.	
97	76.09	43	30.43	LEFT	6	97	621	10	10	43.0
129-07-	105.5	138.				6/20/19		3824.	7421.	
97	0	31	32.21	LEFT	10	97	621	08	08	46.0
154-02-	144.5	191.				6/21/19		3739.	7501.	
97	5	35	48.56	LEFT	19	97	625	00	00	32.0
155-03-		126.				6/21/19		3734.	7455.	
97	95.88	93	32.21	LEFT	11	97	626	00	00	32.0
164-04-	109.2	144.				6/21/19		3731.	7506.	
97	8	66	36.71	LEFT	19	97	625	00	00	28.5
165-05-	125.4	166.				6/21/19		3736.	7508.	
97	5	07	42.15	LEFT	20	97	625	00	00	27.0
165-06-	100.4	132.				6/21/19		3736.	7508.	
97	1	92	33.73	LEFT	12	97	625	05	05	28.0
233-02-		125.				6/24/19		3625.	7539.	
97	94.63	27	31.79	LEFT	14	97	631	00	00	24.0
255-01-	106.4	140.				6/25/19		3644.	7451.	
97	8	95	35.77	LEFT	15	97	632	00	00	46.0
255-01-		135.				6/25/19		3644.	7451.	
97	93.80	20	27.33	LEFT	8	97	632	00	00	47.0
255-02-	113.4	150.	38.11	LEFT	14	6/25/19	632	3644.	7451.	47.0

97	2	15				97		03	03	
$255-02-$		119.				$6 / 25 / 19$		3644.	7451.	
97	87.65	45	23.63	LEFT	7	97	632	02	02	46.5
$255-03-$		132.				$6 / 25 / 19$		3644.	7451.	
97	99.97	35	33.59	LEFT	13	97	632	05	05	48.0
$255-03-$		125.				$6 / 25 / 19$		3644.	7451.	
97	94.11	43	25.31	LEFT	8	97	632	04	04	47.5
$255-04-$		91.8				$6 / 25 / 19$		3644.	7451.	
97	67.33	9	21.11	LEFT	5	97	632	06	06	46.0
$255-05-$		90.9				$6 / 25 / 19$		3644.	7451.	
97	66.48	6	18.89	LEFT	5	97	632	08	08	48.0
$255-06-$		77.8				$6 / 25 / 19$		3644.	7451.	
97	57.91	0	18.44	LEFT	4	97	632	10	10	47.0
$255-07-$		82.0		RIG		$6 / 25 / 19$		3644.	7451.	
97	62.79	8	17.40	HT	5	97	632	12	12	46.5
$255-08-$		73.7				$6 / 25 / 19$		3644.	7451.	
97	55.18	0	15.30	LEFT	4	97	632	14	14	47.0
$255-09-$		74.5				$6 / 25 / 19$		3644.	7451.	
97	55.45	6	15.80	LEFT	4	97	632	16	16	47.0

Heig

Widt ht

UID	$\begin{aligned} & \frac{\text { Leng }}{\underline{\text { th }}} \\ & \underline{(\underline{\mathrm{mm}})} \end{aligned}$	$\begin{aligned} & \underline{\underline{\mathrm{h}}} \\ & \frac{(\mathrm{~mm}}{2} \end{aligned}$	$\frac{(\mathbf{m m}}{2}$	$\frac{\text { Valv }}{\underline{\mathrm{e}}}$	$\frac{\underline{\mathbf{A g}}}{\underline{\mathbf{e}}}$	$\frac{\text { Harvest }}{\underline{\text { ed }}}$	$\frac{\text { Are }}{\underline{\mathbf{a}}}$	Lat.	Long.	$\begin{aligned} & \frac{\text { Dept }}{\underline{\mathbf{h}}} \\ & \underline{(\mathbf{m})} \\ & \hline \end{aligned}$
275-04-	116.9	154.				6/26/19		3754.	7446.	
97	4	81	39.29	LEFT	17	97	626	05	05	34.0
276-01-	134.0	182.				6/26/19		3759.	7445.	
97	4	29	36.18	LEFT	17	97	626	10	50	30.0
276-02-	136.6	185.				6/26/19		3759.	7445.	
97	2	92	33.12	LEFT	18	97	626	08	25	31.0
276-03-		102.		RIG		6/26/19		3759.	7444.	
97	77.86	80	19.90	HT	6	97	626	00	00	30.0
276-04-	128.4	174.				6/26/19		3759.	7445.	
97	9	47	33.95	LEFT	15	97	626	06	00	30.0
276-05-	102.4	135.				6/26/19		3759.	7445.	
97	8	66	34.43	LEFT	12	97	626	00	00	29.0
276-05-	132.6	180.				6/26/19		3759.	7444.	
97	1	27	34.08	LEFT	16	97	626	04	75	31.5
276-06-	111.5	147.				6/26/19		3759.	7444.	
97	2	63	37.47	LEFT	13	97	626	05	00	31.0
276-06-	113.1	146.				6/26/19		3759.	7444.	
97	4	21	32.36	LEFT	12	97	626	02	50	30.5
009-01-		112.				6/4/199		4036.	7302.	
99	84.85	32	28.51	LEFT	9	9	612	35	50	21.5
011-01-	111.1	147.				6/4/199		4031.	7342.	
99	5	14	37.34	LEFT	14	9	612	03	32	20.0

019-07-		120.				6/4/199		4031.	7342.	
99	90.91	34	30.54	LEFT	8	9	612	07	37	21.0
021-01-		125.				6/5/199		3941.	7400.	
99	94.79	48	31.84	LEFT	10	9	614	29	02	20.0
022-03-	121.9	161.				6/5/199		3941.	7404.	
99	3	41	40.96	LEFT	16	9	614	15	66	16.
034-04-	124.5	164.				6/5/199		3918.	7416.	
99	2	83	41.83	LEFT	17	9	614	78	78	17.
123-01-	116.3	154.				6/9/199		3853.	7358.	
99	8	07	39.10	LEF	14	9	622	66	63	43.
125-06-	107.9	142.				6/9/199		3901.	7422.	
99	5	91	36.27	LEFT	13	9	614	24	82	26.
210-01-	112.9	149.				7/7/199		3901.	7444.	
99	2	48	37.94	LEFT	19	9	614	17	64	14.0
284-01-		124.				6/26/19		3723.	7514.	
99	93.71	06	31.48	LEFT	10	99	625	63	82	28.
295-05-	114.7	151.				6/26/19		3708.	7519.	
99	3	89	38.55	LEFT	12	99	625	96	25	29.5
305-02-	113.7	150.				6/27/19		3646.	7504.	
99	5	58	38.22	LEFT	12	99	631	01	06	29.
306-03-	114.3	151.				6/27/19		3646.	7504.	
99	9	42	38.43	LEFT	16	99	631	05	09	34.0
306-04-		132.				6/27/19		3646.	7504.	
99	99.82	14	33.54	LEFT	9	99	631	15	19	35.0
307-02-	112.0	148.				6/27/19		3646.	7504.	
99	9	38	37.66	LEFT	15	99	631	20	20	36.
307-03-		102.				6/27/19		3646.	7504.	
99	77.76	93	26.12	LEFT	9	99	631	25	21	35.0
310-01-	114.9	152.				6/27/19		3653.	7458.	
99	1	12	38.6	LEF	15	99	632	81	36	35.
310-02-	120.3	159.				6/27/19		3653.	7458.	
99	7	34	40.4	LEFT	13	99	632	86	42	36.0
323-01-	123.2	163.				6/27/19		3654.	7458.	
99	0	09	41.39	LEFT	14	99	632	86	90	37.
413-26-	119.0	157.				7/9/199		3741.	7502.	
99	6	62	40.00	LEF	19	9	625	09	86	26.
413-38-	120.8	160.				7/9/199		3736.	7500.	
99	8	02	40.61	LEFT	18	9	625	12	78	25.
413-57-	134.9	178.				7/9/199		3736.	7511.	
99	5	65	45.3	LEFT	20	9	625	03	04	28.
421-13-		128.				7/9/199		3713.	7452.	
99	96.70	01	32.49	LEFT	8	9	626	86	26	49.
421-14-		111.				7/9/199		3713.	7452.	
99	84.49	84	28.38	LEFT	6	9	626	08	44	49.
432-08-		126.				7/10/19		3726.	7442.	
99	95.33	20	32.03	LEFT	11	99	626	34	72	

$432-15-$		109.				$7 / 10 / 19$		3726.	7442.	
99	82.40	08	27.68	LEFT	10	99	626	04	54.	52.5
$015-01-$	101.8	134.				$6 / 4 / 200$		4047.	7229.	
02	8	86	34.23	LEFT	12	2	613	85	42	24.0
$015-01-$	123.2	155.				$6 / 4 / 200$		4047.	7229.	
02	7	87	28.06	LEFT	14	2	613	79	55	25.0
$015-02-$		122.				$6 / 4 / 200$		4047.	7229.	
02	90.65	57	19.89	LEFT	8	2	613	79	55	25.0
$018-14-$		85.8		RIG		$7 / 7 / 200$		4041.	7240.	
02	62.33	8	18.87	HT	5	2	613	22	31.	31.0
$019-01-$	117.6	154.				$6 / 4 / 200$		4036.	7258.	
02	5	89	27.44	LEFT	12	2	613	38	21	26.0
$019-02-$	129.0	170.				$6 / 4 / 200$		4036.	7257.	
02	3	81	43.35	LEFT	18	2	613	21	20	23.5
$019-02-$	144.4	196.				$6 / 4 / 200$		4036.	7257.	
02	2	91	33.68	LEFT	21	2	613	27	54	24.0
$019-06-$	117.8	159.				$6 / 4 / 200$		4036.	7258.	
02	4	47	31.33	LEFT	12	2	613	35	04	24.0
$019-07-$	113.1	149.				$6 / 4 / 200$		4036.	7257.	
02	9	84	38.03	LEFT	17	2	613	24	37	24.5
$019-07-$	134.1	182.				$6 / 4 / 200$		4036.	7257.	
02	3	42	33.51	LEFT	17	2	613	30	71	25.0
$019-09-$		114.				$6 / 4 / 200$		4036.	7258.	
02	83.39	68	23.32	LEFT	7	2	613	41	38	24.0
$019-10-$	111.2	145.				$6 / 4 / 200$		4036.	7257.	
02	8	50	26.98	LEFT	11	2	613	32	87	23.0
$019-11-$		94.8		RIG		$6 / 4 / 200$		4036.	7258.	
02	69.64	8	17.40	HT	5	2	613	44	55	25.0
$059-01-$	123.7	167.				$6 / 6 / 200$		3951.	7350.	
02	9	85	32.24	LEFT	14	2	615	05	53	25.0

02		13				2		01	49	
059-09-		89.2				6/6/200		3951.	7350.	
02	65.16	1	15.98	LEFT	5	2	615	01	49	25.0
059-10-		85.4				6/6/200		3951.	7350.	
02	63.02	0	17.51	LEFT	5	2	615	00	48	25.0
060-01-	127.6	173.				6/6/200		3948.	7346.	
02	3	26	32.15	LEFT	15	2	615	66	93	28.0
060-01-	133.9	177.				6/6/200		3948.	7346.	
02	2	28	44.99	LEFT	18	2	615	66	93	28.0
060-02-	117.8	144.				6/6/200		3948.	7346.	
02	4	56	30.87	LEFT	12	2	615	65	92	28.5
060-03-	120.1	154.				6/6/200		3948.	7346.	
02	5	92	31.40	LEFT	13	2	615	64	91	27.5
060-04-		84.6				6/6/200		3948.	7346.	
02	59.35	9	17.84	LEFT	4	2	615	63	90	28.0
060-05-		122.				6/6/200		3948.	7346.	
02	93.97	36	25.93	LEFT	8	2	615	62	89	28.0
060-06-		105.				6/6/200		3948.	7346.	
02	80.92	19	21.67	LEFT	7	2	615	61	87	28.5
060-07-		97.7				6/6/200		3948.	7346.	
02	70.78	7	20.82	LEFT	6	2	615	60	86	27.5
060-08-	125.0	169.		RIG		6/6/200		3948.	7346.	
02	2	58	35.42	HT	14	2	615	59	85	28.0
060-09-		105.		RIG		6/8/200		3948.	7346.	
02	77.57	35	22.55	HT	6	2	615	57	84	27.0
062-01-	134.8	183.				6/6/200		3941.	7346.	
02	4	42	33.47	LEFT	17	2	615	43	92	18.0
062-02-	111.2	151.				6/6/200		3941.	7346.	
02	6	18	26.84	LEFT	11	2	615	44	94	19.0
062-03-		133.				6/6/200		3941.	7346.	
02	93.05	63	22.75	LEFT	8	2	615	46	95	17.0
062-04-		78.2				6/6/200		3941.	7346.	
02	58.23	0	13.50	LEFT	4	2	615	47	96	18.0
062-05-		129.				6/6/200		3941.	7346.	
02	93.47	73	21.50	LEFT	8	2	615	48	97	19.0
062-06-		126.				6/6/200		3941.	7346.	
02	92.76	83	21.98	LEFT	8	2	615	49	99	17.0
062-07-	131.7	179.				6/6/200		3941.	7347.	
02	6	08	32.31	LEFT	16	2	615	51	00	18.0
062-08-	109.7	133.				6/6/200		3941.	7347.	
02	1	47	28.91	LEFT	11	2	615	52	01	19.0
062-09-	135.4	184.				6/6/200		3941.	7347.	
02	1	22	35.23	LEFT	17	2	615	53	02	17.0
062-10-		115.				6/6/200		3941.	7347.	
02	81.61	84	20.75	LEFT	7	2	615	54	04	18.0
062-11-	76.92	101.	20.01	LEFT	6	6/6/200	615	3941.	7347.	19.0

$200-06-$		60.1				$6 / 12 / 20$		3846.	7429.	
02	45.08	0	12.02	LEFT	3	02	621	69	80	35.0
$200-07-$	124.2	168.				$6 / 12 / 20$		3847.	7430.	
02	7	53	22.68	LEFT	14	02	621	79	90	33.0
$200-08-$		103.				$6 / 12 / 20$		3848.	7431.	
02	78.29	77	13.65	LEFT	6	02	621	88	99	31.0
$202-01-$	121.4	137.				$6 / 12 / 20$		3849.	7426.	
02	9	28	23.88	LEFT	13	02	621	00	68	22.0
$202-02-$	140.1	190.				$6 / 12 / 20$		3849.	7426.	
02	9	95	30.57	LEFT	19	02	621	00	68	22.0
$202-03-$	126.2	171.				$6 / 12 / 20$		3849.	7426.	
02	1	26	26.25	LEFT	14	02	621	00	68	22.0
$202-03-$	103.5	137.				$6 / 12 / 20$		3849.	7426.	
02	5	08	34.79	LEFT	14	02	621	00	67	22.0
$202-04-$	130.0	176.				$6 / 12 / 20$		3849.	7426.	
02	4	65	31.68	LEFT	16	02	621	00	67	22.0
$202-06-$		110.				$6 / 12 / 20$		3849.	7426.	
02	80.56	72	16.82	LEFT	7	02	621	00	67	22.0
$202-07-$		94.4				$6 / 12 / 20$		3849.	7426.	
02	68.09	1	12.66	LEFT	5	02	621	00	67	22.0
$227-01-$	100.7	128.				$6 / 13 / 20$		3933.	7333.	
02	5	09	24.13	LEFT	9	02	615	73	04.	36.0
$227-02-$	105.4	136.				$6 / 13 / 20$		3933.	7333.	
02	4	23	28.40	LEFT	10	02	615	72	03	36.5
$227-03-$	119.3	150.				$6 / 13 / 20$		3933.	7333.	
02	4	73	29.81	LEFT	13	02	615	71	02	35.0
$227-03-$	130.2	172.				$6 / 13 / 20$		3933.	7333.	
02	8	46	43.77	LEFT	17	02	615	73	04.	36.0
$227-04-$		89.1		RIG		$6 / 13 / 20$		3933.	7333.	
02	69.98	9	18.66	HT	5	02	615	70	01	36.0
$227-05-$		126.		RIG		$6 / 13 / 20$		3933.	7332.	
02	94.35	63	27.60	HT	8	02	615	69	99	36.0
$227-05-$	103.1	136.				$6 / 13 / 20$		3933.	7333.	
02	7	57	34.66	LEFT	12	02	615	69	19.	36.0
$228-01-$		131.				$6 / 13 / 20$		3933.	7323.	
02	98.81	75	26.35	LEFT	9	02	615	11	84	33.0
$228-02-$	128.5	174.				$6 / 13 / 20$		3933.	7323.	
02	7	58	29.45	LEFT	15	02	615	10	83.	33.5
$228-02-$	112.2	148.				$6 / 13 / 20$		3933.	7323.	
02	2	56	37.70	LEFT	15	02	615	11	84	33.0
$228-06-$		66.7				$6 / 13 / 20$		3933.	7323.	
02	50.06	5	13.35	LEFT	4	02	615	10	82.	32.5
$228-07-$		127.				$6 / 13 / 20$		3933.	7323.	
02	95.44	25	25.45	LEFT	9	02	615	09	82.	33.0
$228-08-$	134.0	182.		RIG		$6 / 13 / 20$		3933.	7323.	
02	8	35	32.25	HT	17	02	615	08	81	32.5

228-09-	110.8	138.				6/13/20		3933.	7323.	
02	1	59	27.28	LEFT	11	02	615	08	81	33.5
228-10-		116.				6/13/20		3933.	7323.	
02	87.28	87	19.85	LEFT	7	02	615	07	80	33.0
228-11-		65.3				6/13/20		3933.	7323.	
02	48.98	0	13.06	LEFT	3	02	615	06	79	33.0
229-01-		117.				6/13/20		3934.	7325.	
02	86.65	49	22.46	LEFT	7	02	615	95	68	41.0
229-02-		100.				6/13/20		3936.	7327.	
02	76.81	96	18.96	LEFT	6	02	615	83	56	41.5
229-03-		107.		RIG		6/13/20		3938.	7329.	
02	79.14	21	21.11	HT	6	02	615	71	44	40.5
229-04-		99.8		RIG		6/13/20		3940.	7331.	
02	74.85	0	19.96	HT	6	02	615	59	32	41.0
229-05-	115.1	143.				6/13/20		3942.	7333.	
02	3	65	26.88	LEFT	12	02	615	48	21	41.5
229-06-		77.6				6/13/20		3944.	7335.	
02	56.68	3	15.61	LEFT	4	02	615	36	09	40.5
229-07-	113.7	140.		RIG		6/13/20		3946.	7336.	
02	1	60	28.06	HT	12	02	615	24	97	41.0
229-08-		69.4				6/13/20		3948.	7338.	
02	54.71	1	15.72	LEFT	4	02	615	13	85	41.5
229-09-	115.6	151.		RIG		6/13/20		3950.	7340.	
02	6	50	27.84	HT	12	02	615	01	74	40.5
229-10-	127.7	173.				6/13/20		3951.	7342.	
02	1	37	29.51	LEFT	15	02	615	89	62	41.0
229-10-	121.2	160.				6/13/20		3933.	7323.	
02	1	46	40.72	LEFT	19	02	615	06	99	34.0
229-11-		65.0				6/13/20		3953.	7344.	
02	48.08	2	12.92	LEFT	3	02	615	77	50	41.0
260-02-	109.1	174.				6/20/20		3816.	7438.	
02	7	62	28.76	LEFT	11	02	621	02	48	32.0
260-03-	123.4	167.				6/20/20		3816.	7438.	
02	9	43	27.92	LEFT	14	02	621	02	48	32.0
260-03-	114.5	151.				6/20/20		3816.	7438.	
02	5	65	38.49	LEFT	14	02	621	13	52	32.0
260-04-	102.9	138.				6/20/20		3816.	7438.	
02	9	56	24.77	LEFT	10	02	621	02	48	32.0
260-05-	111.3	152.				6/20/20		3816.	7438.	
02	6	87	23.35	LEFT	11	02	621	02	48	32.0
260-06-		121.				6/20/20		3816.	7438.	
02	91.08	78	21.64	LEFT	8	02	621	02	48	32.0
262-01-	113.9	153.				6/20/20		3806.	7434.	
02	0	71	24.24	LEFT	12	02	621	13	74	35.0
262-02-	106.2	139.				6/20/20		3806.	7434.	
02	4	60	21.25	LEFT	10	02	621	13	74	35.0

262-04-	106.		16.77	LEFT	7	6/20/20		$\begin{gathered} 3806 . \\ 13 \end{gathered}$	$\begin{gathered} 7434 . \\ 74 \end{gathered}$	35.0
02	81.80	33				02	621			
262-05-		127.				6/20/20		3806.	7434.	
02	97.60	83	21.33	LEFT	9	02	621	13	74	35.0
283-01-	119.0	150.		RIG		6/21/20		3746.	7500.	
02	8	02	27.59	HT	13	02	625	20	68	28.0
			Heig							
		Widt	ht							
	Leng	b								Dept
	th	(mm	(mm	Valv	Ag	Harvest	Are			$\underline{\text { h }}$
UID	(mm)	2	2	$\underline{\text { e }}$	$\underline{\text { e }}$	ed	\underline{a}	Lat.	Long.	(m)
283-03-	104.1	131.				6/21/20		3746.	7500.	
02	2	23	25.42	LEFT	10	02	625	18	66	28.5
283-04-	106.5	137.				6/21/20		3746.	7500.	
02	6	95	26.41	LEFT	10	02	625	16	64	29.0
283-04-	104.6	138.				6/21/20		3746.	7500.	
02	2	49	35.15	LEFT	17	02	625	20	68	27.5
283-05-	117.5	152.				6/21/20		3746.	7500.	
02	7	82	27.58	LEFT	12	02	625	15	63	28.0
283-05-	113.1	149.				6/21/20		3746.	7500.	
02	5	79	38.02	LEFT	14	02	625	18	62	28.0
283-06-	101.2	134.				6/21/20		3746.	7500.	
02	5	04	34.02	LEFT	11	02	625	15	59	28.5
290-01-		135.				6/21/20		3736.	7500.	
02	99.78	37	25.23	LEFT	9	02	625	19	59	16.0
290-02-		71.8		RIG		6/21/20		3736.	7500.	
02	52.50	4	11.19	HT	4	02	625	19	59	16.0
290-03-		81.0		RIG		6/21/20		3736.	7500.	
02	57.31	0	14.51	HT	4	02	631	19	59	16.0
319-01-	102.6	139.				6/23/20		3653.	7522.	
02	9	87	24.74	LEFT	10	02	631	93	35	28.0
319-02-	113.2	144.				6/23/20		3653.	7522.	
02	8	17	23.88	LEFT	12	02	631	93	35	28.0
319-02-	127.9	169.				6/23/20		3653.	7522.	
02	1	33	42.97	LEFT	18	02	631	91	21	28.0
331-01-		110.				6/24/20		3633.	7450.	
02	79.53	33	21.78	LEFT	6	02	632	65	63	45.0
331-01-	117.6	155.				6/24/20		3633.	7450.	
02	4	73	39.52	LEFT	11	02	632	65	63	45.0
331-02-		101.				6/24/20		3633.	7450.	
02	74.00	15	18.95	LEFT	6	02	632	62	60	45.5
331-03-		85.7				6/24/20		3633.	7450.	
02	64.53	3	14.42	LEFT	5	02	632	59	57	46.0
331-04-		51.9				6/24/20		3633.	7450.	
02	39.21	6	9.75	LEFT	3	02	632	56	54	45.0
334-01-	89.48	119.	18.98	LEFT	8	6/24/20	632	3643.	7450.	46.0

02		64				02		90	70	
334-01-		94.9				6/24/20		3643.	7450.	
02	71.70	2	24.09	LEFT	10	02	632	94	74	46.0
334-02-		110.				6/24/20		3643.	7450.	
02	83.33	85	19.10	LEFT	7	02	632	91	71	46.0
334-02-		129.				6/24/20		3643.	7450.	
02	98.01	75	32.93	LEFT	8	02	632	93	73	46.0
334-03-		101.				6/24/20		3643.	7450.	
02	78.31	43	17.69	LEFT	6	02	632	92	72	46.0
340-01-		72.2				6/25/20		3643.	7504.	
02	52.77	7	9.62	LEFT	4	02	631	66	88	27.0
340-02-		82.8				6/25/20		3643.	7504.	
02	58.26	4	11.43	LEFT	4	02	631	66	88	27.0
340-03-		87.1				6/25/20		3643.	7504.	
02	63.83	5	11.81	LEFT	5	02	631	66	88	27.0
340-04-		81.4				6/25/20		3643.	7504.	
02	59.59	1	11.34	LEFT	4	02	631	66	88	27.0
340-05-		98.1				6/25/20		3643.	7504.	
02	70.77	5	13.99	LEFT	6	02	631	66	88	27.0
340-06-		112.				6/25/20		3643.	7504.	
02	84.51	32	17.14	LEFT	7	02	631	66	88	27.0
340-07-		121.				6/25/20		3643.	7504.	
02	92.62	32	19.37	LEFT	9	02	631	66	88	27.0
340-07-		121.				6/25/20		3643.	7504.	
02	92.62	32	19.37	LEFT	9	02	631	66	88	27.0
340-08-		121.				6/25/20		3643.	7504.	
02	96.12	91	21.77	LEFT	9	02	631	66	88	27.0
340-09-	102.9	138.				6/25/20		3643.	7504.	
02	5	50	21.70	LEFT	10	02	631	66	88	27.0
340-10-	108.8	144.				6/25/20		3643.	7504.	
02	7	12	23.54	LEFT	10	02	631	66	88	27.0
340-10-	108.8	144.				6/25/20		3643.	7504.	
02	7	12	23.54	LEFT	10	02	631	66	88	27.0
346-01-	112.4	150.				6/25/20		3651.	7502.	
02	4	02	22.66	LEFT	11	02	631	15	66	31.0
346-02-	100.0	129.				6/25/20		3651.	7502.	
02	0	59	20.85	LEFT	9	02	631	15	66	31.0
346-02-	100.5	133.				6/25/20		3651.	7502.	
02	5	11	33.78	LEFT	11	02	631	28	66	31.0
356-04-		132.				6/25/20		3703.	7452.	
02	99.76	06	33.52	LEFT	12	02	626	77	70	49.0
356-26-		130.				6/25/20		3703.	7452.	
02	98.29	11	33.02	LEFT	14	02	626	79	57	48.0
356-01-		97.3				6/25/20		3707.	7456.	
02	71.42	5	18.73	LEFT	6	02	631	57	35	47.0
356-02-	86.38	110.	21.43	LEFT	7	6/25/20	631	3706.	7455.	47.0

02		01				02		31	09	
356-03-		130.				6/25/20		3705.	7453.	
02	96.07	02	25.58	LEFT	9	02	631	05	83	48.0
356-04-		128.				6/25/20		3703.	7452.	
02	93.40	35	25.52	LEFT	8	02	631	79	57	49.0
357-01-		72.1				6/25/20		3713.	7454.	
02	54.47	0	18.30	LEFT	6	02	626	78	79	42.0
357-01-		98.1		RIG		6/25/20		3708.	7457.	
02	73.60	5	23.68	HT	6	02	631	83	61	48.0
357-02-		105.				6/25/20		3710.	7458.	
02	78.58	01	21.62	LEFT	6	02	631	09	88	49.0
357-03-		91.5				6/25/20		3711.	7460.	
02	77.25	6	20.60	LEFT	6	02	631	36	14	43.0
357-04-		87.8				6/25/20		3712.	7461.	
02	67.20	2	17.36	LEFT	5	02	631	62	40	42.0
357-05-		73.0				6/25/20		3713.	7462.	
02	54.98	9	16.55	LEFT	4	02	631	88	66	42.0
			Heig							
	Leng	Widt	$\underline{\text { ht }}$							ept
	th	$\underline{(\underline{\mathbf{m}} \mathbf{m}}$	(mm	Valv	Ag	Harvest	Are			$\underline{\text { h }}$
UID	(mm)	L	2	$\underline{\text { e }}$	$\underline{\text { e }}$	ed	\underline{a}	Lat.	Long.	(m)
493-02-	111.2	145.				7/7/200		4038.	7158.	
02	8	04	28.29	LEFT	11	2	613	66	72	73.0
493-03-		114.				7/7/200		4038.	7158.	
02	91.24	07	24.01	LEFT	8	2	613	68	74	72.0
493-06-	121.1	153.				7/7/200		4038.	7158.	
02	5	80	33.13	LEFT	13	2	613	69	76	58.0
493-07-		101.				7/7/200		4038.	7158.	
02	74.93	86	22.63	LEFT	6	2	613	71	77	58.0
493-08-		120.				7/7/200		4038.	7158.	
02	90.49	65	24.13	LEFT	8	2	613	73	79	73.0
493-09-		112.				7/7/200		4038.	7158.	
02	84.68	90	22.58	LEFT	7	2	613	74	80	58.0
493-10-	120.4	163.				7/7/200		4038.	7158.	
02	6	16	33.90	LEFT	13	2	613	76	82	58.0

Table 2. Raw increment ring width data from live-collected Hemimactra (Spisula) solidissima valves collected from the continental shelf of the Mid-Atlantic Bight. These data are formatted in standard tree-ring raw width data file format for upload to NOAA-NCDC. Measurements are in units of .001 mm of the thickness of increment ring width for each year. The end of series and missing value code is 999. The 10 values following the decade are the 10 annual measurements for the 10

years of that decade. First and last decade rows for each core may contain less than 10 values.

6121 Continental Shelf WIDTH_RING HSSV CONDRO-
6122 United States of America Hemimactra Spisula solidissima-
6123 HUDLEY JOEL-
$\begin{array}{lllllllll}200405 & 1983 & 236 & 419 & 265 & 69 & 131 & 291 & 155\end{array}$
$\begin{array}{lllllllll}200405 & 1990 & 97 & 51 & 26 & 30 & 29 & 59 & 999\end{array}$
2005041989579
$\begin{array}{lllllllll}200504 & 1990 & 271 & 172 & 153 & 146 & 103 & 71 & 999\end{array}$
$\begin{array}{llllll}200501 & 1986 & 144 & 282 & 316 & 236\end{array}$
$\begin{array}{lllllllll}200501 & 1990 & 553 & 418 & 299 & 129 & 52 & 37 & 999\end{array}$
$\begin{array}{lllll}200502 & 1987 & 320 & 519 & 465\end{array}$
$\begin{array}{lllll}200502 & 1990 & 147 & 999\end{array}$
$\begin{array}{llllllll}200503 & 1984 & 885 & 271 & 284 & 151 & 119 & 93\end{array}$
$\begin{array}{lllllllll}200503 & 1990 & 77 & 68 & 58 & 54 & 39 & 50 & 999\end{array}$
$\begin{array}{llllllllll}200505 & 1982 & 772 & 318 & 190 & 164 & 131 & 133 & 110 & 40\end{array}$
$2005051990 \quad 46999$
$\begin{array}{lllllllllll}200512 & 1981 & 472 & 453 & 70 & 180 & 258 & 196 & 124 & 74 & 57\end{array}$
$\begin{array}{lllllllll}200512 & 1990 & 40 & 32 & 37 & 36 & 40 & 41 & 999\end{array}$
$\begin{array}{llllllll}200902 & 1993 & 298 & 279 & 300 & 327 & 222 & 999\end{array}$
200901198999
$\begin{array}{lllllllllll}200901 & 1990 & 102 & 181 & 172 & 52 & 107 & 260 & 233 & 197 & 999\end{array}$
$\begin{array}{llllllllllll}201801 & 1980 & 697 & 262 & 292 & 235 & 209 & 131 & 118 & 76 & 85 & 48\end{array}$
$201801 \quad 1990 \quad 56999$
$\begin{array}{lllllll}201803 & 1985 & 342 & 550 & 202 & 231 & 227\end{array}$
$\begin{array}{lllll}201803 & 1990 & 112 & 999\end{array}$
$2018041987 \quad 159 \quad 310 \quad 311$
2018041990426999
$\begin{array}{lllllllll}201805 & 1983 & 603 & 288 & 492 & 323 & 211 & 173 & 149\end{array}$
$2018051990 \quad 75 \quad 999$
$\begin{array}{lllllllll}201903 & 1992 & 500 & 807 & 156 & 196 & 181 & 89 & 999\end{array}$
$\begin{array}{lllllllllll}201907 & 1990 & 207 & 207 & 187 & 738 & 151 & 188 & 165 & 77 & 999\end{array}$
$2033231977136421 \quad 233$
$\begin{array}{llllllllllll}203323 & 1980 & 362 & 325 & 228 & 187 & 96 & 79 & 41 & 46 & 29 & 29\end{array}$
$\begin{array}{llllll}203323 & 1990 & 28 & 34 & 51 & 999\end{array}$
$\begin{array}{llllllll}200406 & 1984 & 493 & 316 & 220 & 203 & 220 & 102\end{array}$
$\begin{array}{lllllllll}200406 & 1990 & 78 & 45 & 19 & 54 & 29 & 34 & 999\end{array}$
$\begin{array}{lllllll}200507 & 1992 & 357 & 581 & 405 & 114 & 999\end{array}$
$\begin{array}{lllllll}201101 & 1985 & 550 & 524 & 240 & 360 & 150\end{array}$
$\begin{array}{lllllllllll}201101 & 1990 & 134 & 70 & 82 & 51 & 37 & 29 & 35 & 71 & 999\end{array}$
$\begin{array}{llllllll}201112 & 1984 & 258 & 339 & 560 & 302 & 307 & 195\end{array}$
$\begin{array}{lllllllllll}201112 & 1990 & 134 & 80 & 80 & 60 & 48 & 47 & 41 & 72 & 999\end{array}$
$2033071978 \quad 203 \quad 98$
$\begin{array}{llllllllllll}203307 & 1980 & 50 & 261 & 279 & 351 & 167 & 145 & 111 & 72 & 60 & 49\end{array}$
$\begin{array}{llllll}203307 & 1990 & 57 & 39 & 48 & 999\end{array}$

```
203308 1980
203308 1990 35 44 18 999
203309 1979 548
203309}1980 348 389 345 199 104 93 66 71 59 52,
203309}1990 42 21 23-999
203310}1980 117 442 653 303 182 105 67 62 62 56 54
203310}1990 31 54 71 999
```

6131 Continental Shelf WIDTH_RING HSSV CONDRO-
6132 United States of America Hemimactra Spisula solidissima-
6133 HUDLEY JOEL-
$\begin{array}{lllllll}300103 & 1975 & 340 & 73 & 170 & 109 & 174\end{array}$
$\begin{array}{llllllllllll}300103 & 1980 & 282 & 303 & 254 & 160 & 94 & 62 & 70 & 54 & 29 & 47\end{array}$
$3001031990 \quad 27 \quad 23 \quad 35 \quad 999$
$3001041968 \quad 244 \quad 214$
$\begin{array}{llllllllllll}300104 & 1970 & 344 & 285 & 137 & 203 & 177 & 66 & 90 & 59 & 108 & 62\end{array}$
$\begin{array}{llllllllllll}300104 & 1980 & 59 & 40 & 77 & 72 & 41 & 21 & 23 & 17 & 24 & 24\end{array}$
$3001041990 \quad 22 \quad 27 \quad 24 \quad 999$
300301197957
$\begin{array}{llllllllllll}300301 & 1980 & 226 & 300 & 128 & 342 & 157 & 220 & 258 & 179 & 77 & 54\end{array}$
$3003011990 \quad 46999$
$\begin{array}{llllllll}301501 & 1984 & 476 & 313 & 377 & 321 & 267 & 190\end{array}$
$\begin{array}{llllllllllll}301501 & 1990 & 105 & 73 & 56 & 48 & 25 & 34 & 32 & 44 & 28 & 22\end{array}$
$3015012000 \quad 17999$
$\begin{array}{lllllllll}301901 & 1983 & 76 & 93 & 459 & 247 & 508 & 232 & 185\end{array}$
$\begin{array}{llllllllllll}301901 & 1990 & 119 & 147 & 58 & 47 & 36 & 53 & 57 & 45 & 41 & 21\end{array}$
$3019012000 \quad 17999$
3019021989223
$\begin{array}{llllllllllll}301902 & 1990 & 136 & 129 & 227 & 153 & 272 & 311 & 355 & 191 & 189 & 60\end{array}$
$301902 \quad 2000 \quad 55999$
$\begin{array}{llllllll}301906 & 1984 & 92 & 120 & 144 & 125 & 366 & 245\end{array}$
$\begin{array}{llllllllllll}301906 & 1990 & 375 & 168 & 136 & 81 & 91 & 45 & 46 & 35 & 41 & 39\end{array}$
301906200044999
$3019071983 \quad 25045024970 \quad 212 \quad 109236$
$\begin{array}{llllllllllll}301907 & 1990 & 145 & 82 & 75 & 66 & 66 & 108 & 77 & 71 & 49 & 50\end{array}$
$301907 \quad 2000 \quad 148 \quad 999$
$\begin{array}{lllllllll}301910 & 1992 & 202 & 159 & 171 & 618 & 338 & 177 & 158 \\ 50\end{array}$
$3019102000 \quad 53999$
3072011979111
$\begin{array}{llllllllllll}307201 & 1980 & 259 & 203 & 493 & 373 & 232 & 182 & 164 & 83 & 64 & 69\end{array}$
$\begin{array}{lllllllll}307201 & 1990 & 47 & 43 & 30 & 38 & 13 & 36 & 999\end{array}$
$\begin{array}{lllllll}346903 & 1976 & 367 & 362 & 422 & 249\end{array}$
$\begin{array}{llllllllllll}346903 & 1980 & 241 & 113 & 105 & 52 & 115 & 46 & 101 & 36 & 37 & 33\end{array}$
$\begin{array}{llllll}346903 & 1990 & 28 & 29 & 19 & 999\end{array}$

```
346905}1984 469 586 357 202 172 128
346905 1990
346906 1979 233
346906}1980 396 521 325 230 146 113 73 65 71 33
346906 1990 28 27 33 999
```



```
346911}1980 171 126 50 51 30 42 48 29 14 36
346911}1990 46 32 47 999
349302}199
349302 2000 71 999
349310}1991 254 270 349 274 255 163 170 65 73
349310 2000 97 999
```

6141 Continental Shelf WIDTH_RING HSSV CONDRO-
6142 United States of America Hemimactra Spisula solidissima-
6143 HUDLEY JOEL-

```
402101 1985
402101}199
402203 1989 126
402203 1990 192 145 407 157 372 182 193 118 999
403404 1988 117 154
403404 1990}194 280 222 275 132 146 75 55 999
404101}198
404101}199
404801 1978 203 291
404801}1980 364 196 187 92 78 66 66 44 38 42 
404801}1990053 27 36 27 24 18 999 
404803 1983 401 390 300 118
404803 1990
405001}198
405001}199
407701}199
407701 2000 179 999
407801 1985 244 208 235 456 198
407801}190
407801 2000 29 999
407802 1980}10142 115 121 161 252 250 149 103 84 112,
407802}199
407802 2000 16 999
421001 1985
421001}199
4 1 2 5 0 6 ~ 1 9 7 9 ~ 5 5 ~
412506 1980}2238 161 227 134 337 209 104 85 62 67
412506}199
```

```
412507 1985 488 271 360 234 197
412507}199
6151 Continental Shelf WIDTH_RING HSSV CONDRO-
6152 United States of America Hemimactra Spisula solidissima-
6153 HUDLEY JOEL-
\(\begin{array}{lllllll}506001 & 1985 & 117 & 394 & 211 & 340 & 232\end{array}\)
\(\begin{array}{llllllllllll}506001 & 1990 & 105 & 75 & 71 & 44 & 63 & 42 & 55 & 54 & 41 & 39\end{array}\)
\(5060012000 \quad 54999\)
\(\begin{array}{lllllllll}506002 & 1983 & 147 & 87 & 87 & 404 & 281 & 127 & 80\end{array}\)
\(\begin{array}{llllllllllll}506002 & 1990 & 133 & 47 & 45 & 58 & 132 & 87 & 52 & 38 & 48 & 57\end{array}\)
\(506002 \quad 2000 \quad 58 \quad 999\)
5108031979243
\(\begin{array}{llllllllllll}510803 & 1980 & 97 & 209 & 426 & 319 & 205 & 142 & 55 & 52 & 82 & 44\end{array}\)
\(\begin{array}{lllllllll}510803 & 1990 & 61 & 59 & 68 & 80 & 68 & 70 & 999\end{array}\)
\(\begin{array}{lllllll}510804 & 1985 & 46 & 125 & 281 & 220 & 262\end{array}\)
\(\begin{array}{lllllllll}510804 & 1990 & 241 & 208 & 185 & 105 & 55 & 46 & 999\end{array}\)
5190011979124
\(\begin{array}{llllllllllll}519001 & 1980 & 180 & 89 & 74 & 61 & 41 & 55 & 64 & 55 & 70 & 48\end{array}\)
\(\begin{array}{llllll}519001 & 1990 & 43 & 36 & 34 & 999\end{array}\)
\(\begin{array}{llllllll}519002 & 1974 & 251 & 302 & 342 & 133 & 411 & 300\end{array}\)
\(\begin{array}{llllllllllll}519002 & 1980 & 97 & 76 & 169 & 374 & 351 & 134 & 71 & 34 & 33 & 34\end{array}\)
\(\begin{array}{llllll}519002 & 1990 & 29 & 48 & 57 & 999\end{array}\)
5227031989202
\(\begin{array}{llllllllllll}522703 & 1990 & 123 & 61 & 65 & 43 & 41 & 55 & 45 & 31 & 34 & 41\end{array}\)
\(5227032000 \quad 38 \quad 999\)
\(\begin{array}{llllllll}522704 & 1984 & 198 & 164 & 112 & 91 & 140 & 119\end{array}\)
\(\begin{array}{llllllllllll}522704 & 1990 & 150 & 286 & 371 & 265 & 211 & 121 & 71 & 62 & 51 & 82\end{array}\)
522704200060999
5227051989159
\(\begin{array}{llllllllllll}522705 & 1990 & 380 & 261 & 131 & 71 & 30 & 62 & 63 & 107 & 111 & 60\end{array}\)
\(5227052000 \quad 45999\)
\(5227061987 \quad 280 \quad 177 \quad 242\)
\(\begin{array}{llllllllllll}522706 & 1990 & 190 & 189 & 300 & 198 & 124 & 96 & 94 & 121 & 87 & 43\end{array}\)
\(5227062000 \quad 69999\)
\(\begin{array}{llllll}522802 & 1986 & 81 & 134 & 311 & 242\end{array}\)
\(\begin{array}{llllllllllll}522802 & 1990 & 93 & 68 & 64 & 68 & 48 & 47 & 51 & 41 & 45 & 35\end{array}\)
\(5228022000 \quad 48999\)
\(\begin{array}{llllllllll}522803 & 1982 & 111 & 246 & 156 & 505 & 474 & 271 & 115 & 174\end{array}\)
\(\begin{array}{llllllllllll}522803 & 1990 & 210 & 151 & 96 & 119 & 82 & 34 & 52 & 47 & 43 & 50\end{array}\)
\(5228032000 \quad 31 \quad 999\)
\(\begin{array}{llllllllll}522910 & 1982 & 79 & 213 & 277 & 218 & 282 & 224 & 169 & 126\end{array}\)
\(\begin{array}{llllllllllll}522910 & 1990 & 84 & 78 & 56 & 44 & 48 & 39 & 40 & 38 & 28 & 30\end{array}\)
\(5229102000 \quad 26999\)
```

```
522911 1991 57 217 357 412 279 191 132 108 115
```

522911200089999

6211 Continental Shelf WIDTH_RING HSSV CONDRO-
6212 United States of America Hemimactra Spisula solidissima-
6213 HUDLEY JOEL-
$\begin{array}{lllll}120203 & 1987 & 58 & 386 & 444\end{array}$
$\begin{array}{llllllllllll}120203 & 1990 & 334 & 220 & 193 & 74 & 61 & 67 & 59 & 37 & 45 & 44\end{array}$
$1202032000 \quad 63999$
$1260031987286 \quad 288 \quad 245$
$\begin{array}{llllllllllll}126003 & 1990 & 155 & 367 & 261 & 250 & 126 & 96 & 57 & 64 & 51 & 35\end{array}$
$1260032000 \quad 51999$
$\begin{array}{llll}130501 & 1978 & 16 & 124\end{array}$
$\begin{array}{llllllllllll}130501 & 1980 & 239 & 364 & 328 & 260 & 236 & 135 & 78 & 41 & 34 & 57\end{array}$
$\begin{array}{llllll}130501 & 1990 & 29 & 62 & 49 & 999\end{array}$
$\begin{array}{llllllllllll}130502 & 1980 & 56 & 284 & 251 & 271 & 197 & 84 & 175 & 155 & 152 & 110\end{array}$
$\begin{array}{llllll}130502 & 1990 & 55 & 35 & 59 & 999\end{array}$
$\begin{array}{llllllllllll}130503 & 1980 & 66 & 206 & 114 & 265 & 291 & 244 & 171 & 109 & 80 & 58\end{array}$
$\begin{array}{llllll}130503 & 1990 & 51 & 27 & 43 & 999\end{array}$
$1305041978 \quad 191 \quad 248$
$\begin{array}{llllllllllll}130504 & 1980 & 265 & 279 & 298 & 266 & 242 & 117 & 95 & 57 & 39 & 30\end{array}$
$\begin{array}{llllll}130504 & 1990 & 32 & 37 & 42 & 999\end{array}$
$1311021978 \quad 83 \quad 125$
$\begin{array}{llllllllllll}131102 & 1980 & 644 & 356 & 311 & 181 & 105 & 86 & 48 & 32 & 40 & 31\end{array}$
$\begin{array}{llllll}131102 & 1990 & 42 & 38 & 35 & 999\end{array}$
$\begin{array}{llllllllllll}131105 & 1980 & 143 & 759 & 252 & 226 & 148 & 98 & 78 & 38 & 39 & 39\end{array}$
$\begin{array}{llllll}131105 & 1990 & 32 & 38 & 59 & 999\end{array}$
$\begin{array}{lllllllllll}131106 & 1981 & 68 & 133 & 61 & 278 & 340 & 248 & 251 & 136 & 78\end{array}$
$\begin{array}{llllll}131106 & 1990 & 68 & 33 & 42 & 999\end{array}$
$\begin{array}{llllll}111901 & 1986 & 48 & 245 & 232 & 74\end{array}$
$\begin{array}{lllllllll}111901 & 1990 & 110 & 64 & 48 & 65 & 49 & 51 & 999\end{array}$
$\begin{array}{lllllllllll}111904 & 1981 & 303 & 255 & 299 & 327 & 267 & 211 & 222 & 181 & 92\end{array}$
$\begin{array}{lllllllll}111904 & 1990 & 262 & 264 & 258 & 226 & 131 & 71 & 999\end{array}$
$1129021978 \quad 72 \quad 43$
$\begin{array}{llllllllllll}112902 & 1980 & 93 & 100 & 78 & 125 & 90 & 62 & 60 & 36 & 70 & 62\end{array}$
$\begin{array}{lllllllll}112902 & 1990 & 72 & 63 & 67 & 49 & 52 & 81 & 999\end{array}$
$\begin{array}{llllll}112903 & 1976 & 357 & 105 & 133 & 202\end{array}$
$\begin{array}{llllllllllll}112903 & 1980 & 114 & 306 & 308 & 97 & 104 & 294 & 163 & 260 & 98 & 59\end{array}$
$\begin{array}{lllllllll}112903 & 1990 & 32 & 34 & 36 & 45 & 38 & 37 & 999\end{array}$
$\begin{array}{llll}120001 & 1978 & 70 & 329\end{array}$
$\begin{array}{llllllllllll}120001 & 1980 & 417 & 275 & 103 & 97 & 64 & 73 & 71 & 77 & 66 & 72\end{array}$
$\begin{array}{llllllllllll}120001 & 1990 & 30 & 73 & 53 & 50 & 50 & 35 & 22 & 42 & 39 & 39\end{array}$
120001200076999
$1200021988 \quad 40323$

```
120002 1990 246 275 296 158 140 130 70 74 68 44
120002 2000 59 999
212301}1984 134 373 353 272 219 153
212301}199
232301}197
232301}1980 294 204 156 108 85 93 56 30 37 38
232301}1990 43 51 49 999
232304}1984182 191 196 206 109 106
232304}1990 80 89 53 999 
```

6251 Continental Shelf WIDTH_RING HSSV CONDRO-
6252 United States of America Hemimactra Spisula solidissima-
6253 HUDLEY JOEL-
$\begin{array}{lllllll}512011 & 1985 & 70 & 183 & 168 & 152 & 140\end{array}$
$\begin{array}{llllll}512011 & 1990 & 204 & 55 & 31 & 999\end{array}$
$\begin{array}{lllll}515402 & 1977 & 479 & 380 & 282\end{array}$
$\begin{array}{llllllllllll}515402 & 1980 & 174 & 137 & 65 & 67 & 33 & 46 & 38 & 50 & 27 & 49\end{array}$
$\begin{array}{lllllllll}515402 & 1990 & 47 & 45 & 53 & 41 & 30 & 54 & 999\end{array}$
$\begin{array}{lllll}516404 & 1977 & 77 & 243 & 247\end{array}$
$\begin{array}{llllllllllll}516404 & 1980 & 239 & 192 & 89 & 61 & 45 & 33 & 50 & 45 & 27 & 49\end{array}$
$\begin{array}{lllllllll}516404 & 1990 & 62 & 51 & 60 & 26 & 81 & 32 & 999\end{array}$
$\begin{array}{llllll}516505 & 1976 & 227 & 672 & 349 & 263\end{array}$
$\begin{array}{llllllllllll}516505 & 1980 & 153 & 126 & 107 & 85 & 59 & 51 & 90 & 85 & 61 & 127\end{array}$
$\begin{array}{lllllllll}516505 & 1990 & 94 & 96 & 105 & 77 & 109 & 79 & 999\end{array}$
$\begin{array}{llllllll}516505 & 1984 & 64 & 302 & 182 & 175 & 257 & 118\end{array}$
$\begin{array}{lllllllll}516506 & 1990 & 289 & 230 & 197 & 67 & 61 & 39 & 999\end{array}$
$\begin{array}{llllll}518101 & 1976 & 163 & 246 & 384 & 355\end{array}$
$\begin{array}{llllllllllll}518101 & 1980 & 283 & 191 & 109 & 95 & 43 & 45 & 52 & 55 & 51 & 39\end{array}$
$\begin{array}{llllll}518101 & 1990 & 32 & 32 & 66 & 999\end{array}$
$\begin{array}{llllllllllll}518114 & 1980 & 224 & 395 & 320 & 298 & 108 & 92 & 113 & 50 & 35 & 51\end{array}$
$\begin{array}{llllll}518114 & 1990 & 52 & 54 & 71 & 999\end{array}$
$\begin{array}{llllllllllll}518116 & 1980 & 160 & 278 & 382 & 946 & 172 & 81 & 89 & 86 & 55 & 35\end{array}$
$\begin{array}{llllll}518116 & 1990 & 54 & 45 & 80 & 999\end{array}$
$\begin{array}{llllllll}528304 & 1984 & 394 & 279 & 252 & 228 & 207 & 65\end{array}$
$\begin{array}{llllllllllll}528304 & 1990 & 32 & 36 & 66 & 51 & 56 & 53 & 36 & 23 & 66 & 46\end{array}$
$5283042000 \quad 37999$
$\begin{array}{llllll}528305 & 1987 & 147 & 107 & 72\end{array}$
$\begin{array}{llllllllllll}528305 & 1990 & 193 & 121 & 298 & 248 & 145 & 74 & 96 & 68 & 60 & 46\end{array}$
528305200049499
$\begin{array}{llllllllllll}528306 & 1990 & 199 & 232 & 396 & 316 & 113 & 166 & 133 & 38 & 31 & 37\end{array}$
$5283062000 \quad 51999$
$5284011988 \quad 210 \quad 292$
$\begin{array}{lllllllllll}528401 & 1990 & 402 & 393 & 212 & 196 & 122 & 83 & 142 & 52 & 999\end{array}$
$5295051986 \quad 201 \quad 133 \quad 244 \quad 380$

```
529505 1990}304 276 171 107 97 108 77 24 999
541326 1979 204
541326}198
541326}199
541338}1980 119 279 259 216 104 106 61 44 58 52
541338}199
541357 1978 107 189
541357}198
541357}1990 29 45 42 52 46 54 71 77 999
```

6261 Continental Shelf WIDTH_RING HSSV CONDRO-
6262 United States of America Hemimactra Spisula solidissima-
6263 HUDLEY JOEL-

```
615503 1985 225 253 571 442 272
```

$\begin{array}{lllllllll}615503 & 1990 & 161 & 142 & 88 & 91 & 95 & 53 & 999\end{array}$
$\begin{array}{lllllllll}618701 & 1983 & 158 & 448 & 151 & 122 & 126 & 177 & 103\end{array}$
$\begin{array}{llllll}618701 & 1990 & 85 & 58 & 54 & 999\end{array}$
$\begin{array}{llllllllll}618703 & 1982 & 69 & 216 & 259 & 168 & 223 & 53 & 58 & 62\end{array}$
$\begin{array}{llllll}618703 & 1990 & 92 & 46 & 67 & 999\end{array}$
$\begin{array}{lllllllllll}618902 & 1981 & 115 & 357 & 319 & 224 & 427 & 207 & 250 & 113 & 75\end{array}$
$\begin{array}{llllll}618902 & 1990 & 67 & 42 & 48 & 999\end{array}$
$\begin{array}{lllllllllll}618905 & 1981 & 135 & 274 & 349 & 403 & 332 & 159 & 44 & 46 & 48\end{array}$
$\begin{array}{llllll}618905 & 1990 & 74 & 38 & 50 & 999\end{array}$
$\begin{array}{llllllllllll}627502 & 1980 & 60 & 407 & 320 & 526 & 348 & 248 & 186 & 122 & 153 & 88\end{array}$
$\begin{array}{lllllllll}627502 & 1990 & 50 & 48 & 61 & 50 & 53 & 37 & 999\end{array}$
$6275041979 \quad 165$
$\begin{array}{llllllllllll}627504 & 1980 & 344 & 585 & 386 & 405 & 244 & 143 & 153 & 133 & 131 & 76\end{array}$
$\begin{array}{lllllllll}627504 & 1990 & 60 & 51 & 67 & 74 & 52 & 62 & 999\end{array}$
$\begin{array}{llllllll}627605 & 1984 & 253 & 442 & 337 & 408 & 280 & 198\end{array}$
$\begin{array}{lllllllll}627605 & 1990 & 172 & 96 & 53 & 73 & 40 & 50 & 999\end{array}$
$\begin{array}{lllllllll}627606 & 1983 & 232 & 203 & 201 & 282 & 328 & 308 & 190\end{array}$
$\begin{array}{lllllllll}627606 & 1990 & 135 & 74 & 67 & 52 & 34 & 53 & 999\end{array}$
6356041989129
$\begin{array}{llllllllllll}635604 & 1990 & 254 & 258 & 223 & 103 & 52 & 116 & 53 & 39 & 41 & 49\end{array}$
$6356042000 \quad 64999$
$\begin{array}{lllll}635626 & 1987 & 120 & 250 & 145\end{array}$
$\begin{array}{llllllllllll}635626 & 1990 & 182 & 188 & 225 & 176 & 94 & 53 & 103 & 59 & 52 & 44\end{array}$
$6356262000 \quad 43999$
$\begin{array}{lllllll}635701 & 1995 & 82 & 133 & 271 & 317 & 170\end{array}$
$\begin{array}{llll}635701 & 2000 & 76 & 999\end{array}$
$\begin{array}{lllllllll}642114 & 1992 & 92 & 204 & 346 & 208 & 121 & 90 & 999\end{array}$
$\begin{array}{lllll}643208 & 1987 & 43 & 73 & 112\end{array}$
$\begin{array}{lllllllllll}643208 & 1990 & 119 & 140 & 111 & 70 & 56 & 42 & 51 & 38 & 999\end{array}$
$\begin{array}{llllllllllll}618902 & 1980 & 82 & 310 & 372 & 322 & 185 & 185 & 161 & 68 & 52 & 29\end{array}$

```
618902 1990
```

631 1 Continental Shelf WIDTH_RING HSSV CONDRO-
6312 United States of America Hemimactra Spisula solidissima-
6313 HUDLEY JOEL-

111401	1986	429	170	252	245					
111401	1990	108	999							
111404	1987	519	338	284						
111404	1990	120	999							
113601	1988	787	485							
113601	1990	314	999							
113602	1988	555	456							
113602	1990	282	999							
111402	1987	588	332	350						
111402	1990	125	999							
111403	1987	591	299	223						
111403	1990	103	999							
116105	1981	412	196	102	264	201	121	88	99	101
116105	1990	33	25	33	999					
116202	1981	619	403	188	160	181	126	63	52	5

116202	1990	48	62	24	999

$\begin{array}{llllllllllll}116203 & 1980 & 504 & 268 & 293 & 138 & 208 & 186 & 89 & 75 & 46 & 68\end{array}$
$\begin{array}{llllll}116203 & 1990 & 59 & 46 & 40 & 999\end{array}$
$\begin{array}{llllllllll}116204 & 1981 & 21 & 22 & 82 & 31 & 54 & 69 & 50 & 80 \\ 105\end{array}$
$\begin{array}{llllll}116204 & 1990 & 260 & 242 & 855 & 999\end{array}$
$\begin{array}{lllll}116701 & 1977 & 549 & 319 & 169\end{array}$
$\begin{array}{llllllllllll}116701 & 1980 & 175 & 158 & 91 & 65 & 46 & 60 & 56 & 38 & 21 & 36\end{array}$
$\begin{array}{llllll}116701 & 1990 & 33 & 36 & 40 & 999\end{array}$
$\begin{array}{llll}116702 & 1978 & 631 & 407\end{array}$
$\begin{array}{llllllllllll}116702 & 1980 & 255 & 174 & 72 & 125 & 97 & 70 & 57 & 50 & 43 & 26\end{array}$
$\begin{array}{llllll}116702 & 1990 & 70 & 33 & 20 & 999\end{array}$
$\begin{array}{llllll}116704 & 1976 & 422 & 255 & 199 & 354\end{array}$
$\begin{array}{llllllllllll}116704 & 1980 & 217 & 100 & 124 & 72 & 63 & 49 & 55 & 32 & 58 & 39\end{array}$
$\begin{array}{llllll}116704 & 1990 & 18 & 19 & 18 & 999\end{array}$
$\begin{array}{llllllll}116706 & 1984 & 293 & 243 & 234 & 295 & 187 & 126\end{array}$
$\begin{array}{lllllll}116706 & 1990 & 118 & 121 & 155 & 999\end{array}$
$\begin{array}{lllllllllll}116707 & 1981 & 322 & 196 & 204 & 299 & 170 & 153 & 183 & 154 & 115\end{array}$
$\begin{array}{llllll}116707 & 1990 & 80 & 54 & 89 & 999\end{array}$
$\begin{array}{lllllllllll}116708 & 1981 & 226 & 263 & 278 & 245 & 228 & 115 & 89 & 69 & 52\end{array}$
$\begin{array}{llllll}116708 & 1990 & 37 & 51 & 25 & 999\end{array}$
$1220041978 \quad 164359$
$\begin{array}{llllllllllll}122004 & 1980 & 406 & 267 & 116 & 93 & 76 & 57 & 56 & 54 & 46 & 21\end{array}$
$\begin{array}{lllllllll}122004 & 1990 & 40 & 27 & 22 & 27 & 20 & 27 & 999\end{array}$
$\begin{array}{llllllllllll}122005 & 1980 & 164 & 576 & 323 & 159 & 136 & 51 & 49 & 65 & 45 & 53\end{array}$

131903	2000	48	999						
134010	1992	448	424	299	173	115	111	135	162
134010	2000	125	999						
134011	1991	27	313	226	316	279	173	120	92

6321 Continental Shelf WIDTH_RING HSSV CONDRO-
6322 United States of America Hemimactra Spisula solidissima-
6323 HUDLEY JOEL-
$\begin{array}{llllllllllll}201602 & 1980 & 292 & 393 & 382 & 177 & 79 & 81 & 131 & 40 & 22 & 28\end{array}$
$\begin{array}{llllll}201602 & 1990 & 18 & 25 & 48 & 999\end{array}$
$\begin{array}{llll}214101 & 1978 & 249 & 410\end{array}$
$\begin{array}{llllllllllll}214101 & 1980 & 502 & 312 & 223 & 127 & 92 & 108 & 84 & 56 & 36 & 41\end{array}$
$\begin{array}{lllll}214101 & 1990 & 31 & 999\end{array}$
$\begin{array}{llllllllll}214102 & 1982 & 107 & 260 & 511 & 400 & 231 & 110 & 79 & 57\end{array}$
$\begin{array}{llll}214102 & 1990 & 38 & 999\end{array}$
$\begin{array}{llllllllllll}214104 & 1980 & 294 & 465 & 320 & 344 & 185 & 132 & 122 & 82 & 85 & 33\end{array}$
$2141041990 \quad 58999$
$214501 \quad 1977337 \quad 650358$
$\begin{array}{llllllllllll}214501 & 1980 & 212 & 72 & 124 & 50 & 37 & 54 & 31 & 32 & 37 & 33\end{array}$
$\begin{array}{llll}214501 & 1990 & 43 & 999\end{array}$
$\begin{array}{lllll}214502 & 1977 & 159 & 314 & 536\end{array}$
$\begin{array}{llllllllllll}214502 & 1980 & 291 & 277 & 105 & 56 & 69 & 79 & 66 & 23 & 15 & 33\end{array}$
$2145021990 \quad 30999$
2145031978313305
$\begin{array}{llllllllllll}214503 & 1980 & 496 & 267 & 227 & 125 & 82 & 69 & 61 & 26 & 48 & 68\end{array}$
$2145031990 \quad 48 \quad 999$
2145041979351
$\begin{array}{llllllllllll}214504 & 1980 & 409 & 244 & 242 & 146 & 101 & 107 & 48 & 58 & 38 & 45\end{array}$
$\begin{array}{llll}214504 & 1990 & 39 & 999\end{array}$
$2145051978 \quad 86 \quad 243$
$\begin{array}{llllllllllll}214505 & 1980 & 687 & 361 & 271 & 93 & 62 & 65 & 63 & 46 & 34 & 49\end{array}$
$2145051990 \quad 44999$
$\begin{array}{llllllllllll}214507 & 1980 & 235 & 474 & 289 & 248 & 148 & 84 & 108 & 56 & 76 & 54\end{array}$
$214507 \quad 1990 \quad 62 \quad 999$
$214508 \quad 1979 \quad 257$
$\begin{array}{llllllllllll}214508 & 1980 & 178 & 458 & 256 & 130 & 118 & 76 & 81 & 57 & 42 & 32\end{array}$
$2145081990 \quad 18999$
$\begin{array}{llllllllllll}214509 & 1980 & 160 & 285 & 343 & 197 & 144 & 149 & 81 & 52 & 49 & 35\end{array}$
$2145091990 \quad 33 \quad 999$
$\begin{array}{llllllllllll}216101 & 1980 & 351 & 302 & 394 & 381 & 237 & 158 & 69 & 93 & 66 & 46\end{array}$
$\begin{array}{llllll}216101 & 1990 & 54 & 54 & 48 & 999\end{array}$
$\begin{array}{llllll}216105 & 1976 & 148 & 243 & 593 & 359\end{array}$
$\begin{array}{llllllllllll}216105 & 1980 & 293 & 119 & 76 & 47 & 47 & 54 & 20 & 23 & 30 & 20\end{array}$

```
216105 1990
216108 1978 130 389
216108 1980}435
216108}1990 15 39 33-999 
216109}1980 172 148 350 352 282 137 122 68 47 50
216109 1990 58 44 48 999
216201}1980 220 833 390 235 159 98 114 82 53 45
216201}1990 43 54 41 999
216202 1979 115
216202}1980 190 350 356 200 170 157 104 69 50 58
216202}1990 35 47 27 999
216203 1979 34
216203}1980 193 323 281 262 173 166 173 76 67 54
216203 1990
216204 1985 104 240 294 226 237
216204}199
216306}1982 22 167 228 281 201 99 99 80
216306 1990
216706}198
216706}1990 47 50 34 999
216707 1979 109
216707}1980 209 200 172 297 191 165 158 145 65 60
```



```
216708}1980 100 193 286 178 105 230 197 105 80 75
216708}1990 44 54 57 999
225501 1978 174 159
225501}198
225501 1990 45 999
225501}198
225501}199
233101}199
233101 2000 48 999
233402}199
233402 2000 39 999
233404}199
233404 2000 60 999
214103 1980
214103 1990 59 999
214506}1980 171 349 632 252 172 101 78 92 54 100
214506 1990 58 999
216207}1982\mp@code{234
216207 1990 93-999
216302 1979 78
```



```
216302 1990 50 43 34 999
216303 1980}2338 231 266 431 248 138 64 89 85 79
```

```
216303 1990
225502 1987 174 326 330
225502}199
225503}1982 53 223 205 312 236 115 62 73 233 117
225503 1990
225504 1985 279 244 235 157 144
225504}1990 63 123 83 42 49 58 999
225505}198
225505}199
231001 1983 35 379 435 323 222 121 70
231001}199
```



```
231002}199
231003 1985 65 447 406 243 177
231003}1990 121 62 55 53 64 55 61 43 999 
231004}198
231004}199
232301}198
232301}199
```



```
232302}1990 164 214 136 204 349 190 319 290 999
```

Table 3. Individual shell Increment ring width index (RWI) data from live-collected Hemimactra (Spisula) solidissima valves after the removal of ontogenetic growth using a spline function. Measurements are in units of .001 mm of the thickness of increment ring width for each year. The end of series and missing value code is 9.999. The 10 values following the decade are the 10 annual measurements for the 10 years of that decade. First and last decade rows for each core may contain less than 10 values.

	$\underline{\text { Yea }}$										
$\underline{\text { UID }}$	$\underline{\mathbf{\mathbf { n }}}$	$\underline{\mathbf{0}}$	$\underline{\mathbf{1}}$	$\underline{\mathbf{2}}$	$\underline{\mathbf{3}}$	$\underline{\mathbf{5}}$	$\underline{\mathbf{5}}$	$\underline{\mathbf{6}}$	$\underline{\mathbf{8}}$	$\underline{\mathbf{9}}$	
$001-04-$	196	0.66									
94	9	8									
$001-04-$	197	0.79	1.01	1.09	1.03	1.05	1.06	1.02	1.00	0.98	0.99
94	0	0	4	4	6	4	6	0	6	5	8
$001-04-$	198	0.99	0.99	0.98	0.99	1.00	1.00	1.00	1.00	0.99	0.99
94	0	2	0	3	5	8	8	3	0	6	6
$001-04-$	199	0.99	0.99	0.99	1.00	0.00	0.00	0.00	0.00	0.00	1.00

94	0	6	6	8	0	0	0	0	0	0	8
001-04-	200	0.99	0.98	9.99							
94	0	3	2	9							
015-02-	199	0.99	0.94	1.08	0.91	1.04	0.97	0.98	1.02	1.03	1.00
02	0	0	6	1	7	1	6	1	1	0	4
015-02-	200	0.99	0.99	9.99							
02	0	4	3	9							
019-01-	199	1.11	0.95	0.98	0.96	1.01	1.00	1.02	1.00		
02	2	0	7	9	4	9	0	1	3		
019-01-	200	1.00	0.99	9.99							
02	0	0	5	9							
019-02-	198	2.74	0.49	0.95	0.90	1.10	1.06				
02	4	9	5	7	7	1	7				
019-02-	199	1.04	1.01	1.01	1.00	0.98	0.98	0.98	0.99	1.00	0.99
02	0	2	1	9	0	9	2	6	4	0	5
019-02-	200	0.99	1.00	9.99							
02	0	1	1	9							
019-06-	199	1.01	0.94	1.01	1.00	1.01	0.99	1.01	0.99		
02	2	9	4	4	4	3	6	4	3		
019-06-	200	0.99	1.00	9.99							
02	0	2	0	9							
019-07-	198	1.58									
02	9	3									
019-07-	199	0.85	0.88	1.01	0.98	1.03	1.02	1.00	0.99	1.00	0.99
02	0	6	4	6	5	3	7	7	5	2	2
019-07-	200	0.99	1.00	9.99							
02	0	5	0	9							
019-07-	198	7.52	1.01	0.85	0.75	0.96					
02	5	8	2	7	5	7					
019-07-	199	0.97	1.08	1.05	1.03	1.00	1.00	0.99	0.99	0.98	0.99
02	0	5	5	2	2	6	5	4	2	9	8
019-07-	200	1.00	0.98	9.99							
02	0	1	7	9							
019-10-	198	1.59									
02	9	5									
019-10-	199	0.72	1.09	0.93	1.01	1.00	0.99	1.00	1.00	1.01	0.92
02	0	4	7	8	7	6	8	8	5	4	1
019-10-	200	0.86	1.17	9.99							
02	0	8	7	9							
060-01-	198	1.00	0.52	0.47	2.09	1.49	0.75				
02	4	5	8	7	4	8	8				
060-01-	199	0.56	0.90	0.80	0.94	0.71	1.17	0.86	1.19	1.20	1.21
02	0	6	9	7	8	1	9	7	7	4	4
060-01-	200	1.03	1.20	9.99							
02	0	8	8	9							
077-01-	198	1.00	0.86	1.02							

02	7	8	2	9							
077-01-	199	1.16	1.02	0.90	1.10	1.09	0.70	1.08	0.81	0.75	0.78
02	0	8	7	7	7	3	2	0	0	9	8
077-01-	200	0.81	1.21	9.99							
02	0	2	8	9							
078-01-	198	1.44	0.50	0.75	1.36	0.74	0.92	0.82	1.47		
02	2	5	3	8	5	1	6	1	0		
078-01-	199	1.17	0.89	0.93	0.59	1.17	1.04	1.19	1.04	1.09	0.86
02	0	5	4	8	3	6	1	9	0	5	9
078-01-	200	0.80	1.42	9.99							
02	0	0	7	9							
078-02-	197	0.27									
02	9	9									
078-02-	198	1.36	1.85	1.36	0.59	0.67	0.53	0.74	0.86	1.09	1.06
02	0	9	8	7	5	1	8	4	4	3	5
078-02-	199	1.28	0.58	1.51	1.15	1.14	1.19	0.86	0.54	0.99	1.13
02	0	9	3	1	8	9	9	2	2	8	2
	Yea										
UID	$\underline{1}$	0	1	2	3	4	5	6	7	8	9
078-02-	200	0.83	1.20	9.99							
02	0	1	2	9							
200-01-	198	0.28									
02	9	9									
200-01-	200	0.94	1.18	9.99							
02	0	9	2	9							
202-03-	198	0.26	1.35								
02	8	6	6								
202-03-	199	1.39	1.10	0.86	1.00	0.55	0.68	1.09	1.25	0.90	0.92
02	0	8	0	2	0	5	7	0	6	1	9
202-03-	200	1.13	1.05	9.99							
02	0	2	2	9							
227-03-	198	1.10	1.03	0.79	0.72	1.21					
02	5	5	3	7	1	2					
227-03-	199	1.13	1.32	0.76	0.97	0.76	0.83	1.25	1.11	0.81	1.09
02	0	4	4	7	2	2	8	2	6	9	7
227-03-	200	0.64	1.20	9.99							
02	0	4	7	9							
227-05-	199	0.91	0.97	0.89	1.40	1.03	0.79	0.76	0.89	1.31	1.07
02	0	7	1	2	4	4	1	3	0	0	2
227-05-	200	1.34	0.90	9.99							
02	0	3	8	9							
228-02-	198	0.59	0.77	1.54							
02	7	4	1	4							
228-02-	199	1.16	1.07	0.89	0.69	1.09	0.98	0.53	1.01	1.06	0.96
02	0	1	6	6	8	9	8	5	7	5	4
228-02-	200	1.10	1.02	9.99							

02	0	5	5	9							
229-10-	198	0.47	1.09	1.29	0.97	1.29	1.10	0.96			
02	3	0	6	4	9	0	9	1			
229-10-	199	0.86	0.72	0.86	0.80	0.81	1.08	1.02	1.17	1.21	1.07
02	0	7	7	9	9	0	2	7	7	7	3
229-10-	200	0.87	1.41	9.99							
02	0	1	1	9							
260-03-	198	1.01	1.05								
02	8	4	8								
260-03-	199	0.92	0.59	1.42	1.08	1.20	0.78	0.81	0.68	1.05	1.52
02	0	8	5	1	1	9	1	7	5	2	5
260-03-	200	1.05	0.85	9.99							
02	0	2	0	9							
283-04-	198	1.07	0.90	0.98	1.11	1.32					
02	5	7	1	5	5	8					
283-04-	199	0.58	0.40	0.62	1.39	1.18	1.34	1.28	0.87	0.54	1.01
02	0	0	8	4	7	7	4	1	0	6	1
283-04-	200	0.96	1.27	9.99							
02	0	4	1	9							
283-05-	198	1.27	0.86								
02	8	1	5								
283-05-	199	0.52	1.19	0.65	1.49	1.29	0.89	0.57	0.97	0.90	0.73
02	0	0	4	5	7	8	2	9	9	1	3
283-05-	200	1.03	1.35	9.99							
02	0	8	1	9							
283-06-	199	0.88	0.85	1.34	1.17	0.54	1.07	1.25	0.57	1.09	
02	1	0	5	3	7	0	7	1	8	2	
283-06-	200	0.71	1.19	9.99							
02	0	5	5	9							
319-02-	198	1.23	0.86	0.88	0.62	1.24	1.14	0.80			
02	3	8	0	3	1	0	4	8			
319-02-	199	1.28	1.08	0.60	1.21	0.67	0.81	1.53	1.24	0.89	1.08
02	0	6	2	6	6	8	3	4	2	2	8
319-02-	200	0.80	1.27	9.99							
02	0	6	3	9							
319-02-	198	0.48	1.59	1.04	1.06	0.91	0.98				
02	4	3	4	9	0	2	5				
319-02-	199	1.04	0.75	1.15	0.85	0.85	0.89	0.77	0.95	1.40	1.34
02	0	5	3	2	6	1	2	3	5	2	5
319-02-	200	1.41	0.53	9.99							
02	0	5	4	9							
331-01-	199	0.32	1.74	0.68	0.96	1.45	0.62	0.80	0.67	1.33	
02	1	8	7	6	5	0	9	2	8	5	
331-01-	200	1.20	0.69	9.99							
02	0	9	0	9							
334-01-	199	0.69	1.12	0.96	1.38	0.64	0.96	0.64	1.04		

02	2	6	3	3	1	2	6	9	3		
334-01-	200	0.99	0.80	9.99							
02	0	6	5	9							
334-02-	199	1.08	0.75	1.24	0.73	1.15	0.97				
02	4	7	9	6	3	8	3				
334-02-	200	0.88	1.15	9.99							
02	0	1	2	9							
340-07-	199	0.80	1.01	1.23	1.07	0.72	0.91	1.09			
02	3	6	5	8	4	1	1	4			
340-07-	200	1.43	0.58	9.99							
02	0	9	8	9							
	Yea										
UID	$\underline{\mathbf{r}}$	$\underline{0}$	1	$\underline{2}$	$\underline{3}$	4	5	$\underline{6}$	7	$\underline{8}$	$\underline{9}$
340-10-	199	0.96	1.10	1.03	0.87	0.82	0.91	0.84			
02	3	0	1	4	5	3	1	2			
340-10-	200	1.09	1.06	9.99							
02	0	5	4	9							
340-10-	199	0.29	1.47	0.82	1.09	1.09	0.89	0.87	0.73		
02	2	1	3	6	6	0	3	2	8		
340-10-	200	1.13	1.21	9.99							
02	0	0	0	9							
346-02-	199	1.24	0.72	0.70	1.32	1.09	1.14	0.84	0.62	0.92	
02	1	9	4	8	5	0	4	2	2	0	
346-02-	200	1.01	1.15	9.99							
02	0	6	8	9							
356-04-	199	0.68	1.20	1.21	1.19	0.71	0.49	1.47	0.89	0.81	0.98
02	0	0	4	8	8	6	5	5	5	9	4
356-04-	200	0.99	1.15	9.99							
02	0	1	3	9							
356-26-	198	0.74	1.40								
02	8	1	8								
356-26-	199	0.78	0.95	0.99	1.26	1.14	0.75	0.54	1.31	0.92	1.12
02	0	0	8	7	8	2	8	4	4	4	0
356-26-	200	0.88	0.99	9.99							
02	0	0	2	9							
357-02-	199	1.09	0.82	1.04	0.99						
02	6	1	6	3	7						
357-02-	200	1.00	0.99	9.99							
02	0	0	8	9							
493-02-	198	1.02	0.88	0.87	1.09						
02	6	3	1	5	1						
493-02-	199	1.04	1.01	1.01	1.00	0.99	0.99	0.99	0.99	0.99	1.00
02	0	8	7	2	6	0	6	5	8	8	1
493-02-	200	1.00	0.99	9.99							
02	0	2	5	9							
493-10-	198	1.29	0.91	0.83	0.85	0.98	1.07	1.06	1.03	1.01	

02	1	3	5	0	8	6	7	5	5	0	
493-10-	199	1.02	1.00	0.99	0.99	0.99	0.98	0.99	0.99	0.99	9.99
02	0	0	6	7	7	3	8	6	3	6	9
003-01-	197	1.03	0.85	0.87	0.92	1.09	1.08	1.00	1.02		
92	2	1	7	0	2	3	2	9	3		
003-01-	198	1.02	1.00	0.99	0.98	0.98	0.99	0.99	0.98	0.99	1.00
92	0	7	5	7	7	9	6	5	9	2	0
003-01-	199	1.00	1.00	9.99							
92	0	0	5	9							
005-02-	198	0.98									
92	9	2									
005-02-	199	1.01	1.01	0.95	9.99						
92	0	1	4	9	9						
005-05-	198	1.13	0.77	0.81	1.09	1.07	1.19				
92	4	3	3	8	3	0	6				
005-05-	199	1.19	0.62	1.17	9.99						
92	0	3	4	2	9						
018-01-	198	1.19	0.63	0.99	1.05	1.17	0.93	1.06	0.86		
92	2	1	7	6	3	9	5	5	3		
018-01-	199	1.18	0.81	1.13	9.99						
92	0	3	6	9	9						
018-03-	198	0.87	1.28	0.68							
92	7	6	7	1							
018-03-	199	1.01	1.15	0.90	9.99						
92	0	1	1	3	9						
018-04-	198	0.97									
92	9	4									
018-04-	199	1.04	0.96	1.00	9.99						
92	0	1	5	8	9						
018-05-	198	1.10	0.67	1.26	1.00	0.88					
92	5	2	4	8	2	3					
018-05-	199	0.97	1.12	0.93	9.99						
92	0	2	9	6	9						
114-01-	198	1.04	0.79	1.08							
92	7	7	9	3							
114-01-	199	1.05	0.92	9.99							
92	0	5	7	9							
114-02-	198	1.01	0.93								
92	8	4	5								
114-02-	199	1.06	0.94	9.99							
92	0	9	5	9							
114-03-	198	1.01	0.95								
92	8	0	7								
114-03-	199	1.04	0.98	9.99							
92	0	4	3	9							
114-04-	198	1.00	0.96								

92	8	7	9								
$114-04-$	199	1.03	0.97	9.99							
92	0	7	3	9							
$136-01-$	198	1.00									
92	9	4									
	$\underline{\text { Yea }}$										
$\mathbf{\text { UID }}$	$\underline{\mathbf{r}}$	$\underline{\mathbf{0}}$	$\underline{\mathbf{1}}$	$\underline{\mathbf{2}}$	$\underline{\mathbf{3}}$	$\underline{\mathbf{4}}$	$\underline{\mathbf{5}}$	$\underline{\mathbf{6}}$	$\underline{\mathbf{7}}$	$\underline{\mathbf{8}}$	$\underline{\mathbf{9}}$
$136-01-$	199	0.98	1.01	9.99							
92	0	6	1	9							
$136-02-$	198	0.99									
92	9	6									
$136-02-$	199	1.00	0.99	9.99							
92	0	9	3	9							
$141-01-$	197	0.73									
92	9	1									
$141-01-$	198	1.10	1.36	0.97	0.90	0.72	0.74	1.18	1.19	1.01	0.82
92	0	6	2	5	3	3	5	2	1	8	7
$141-01-$	199	1.15	1.08	9.99							
92	0	6	2	9							
$141-02-$	198	0.72	0.87	1.30	1.08	0.86	0.69	0.90			
92	3	8	7	7	2	6	5	6			
$141-02-$	199	1.14	1.40	9.99							
92	0	5	9	9							
$141-02-$	198	0.83	1.15	1.01	1.20	0.93	0.77	0.87	0.93	0.85	1.27
92	0	0	5	4	4	1	9	7	9	1	1
$141-02-$	199	1.33	0.79	9.99							
92	0	3	3	9							
$141-04-$	198	0.81	1.25	0.92	1.17	0.83	0.82	1.05	0.94	1.26	
92	1	4	7	7	4	0	5	3	7	6	
$141-04-$	199	0.62	1.28	9.99							
92	0	1	3	9							
$145-01-$	197	0.70	1.53								
92	8	4	9								
$145-01-$	198	1.04	0.85	0.43	1.18	0.76	0.86	1.63	1.04	1.06	1.14
92	0	7	2	6	5	9	3	4	5	7	2
$145-01-$	199	0.92	1.07	9.99							
92	0	2	9	9							
$145-02-$	197	0.58	1.00								
92	8	9	0								
$145-02-$	198	1.61	0.95	1.12	0.59	0.47	0.85	1.37	1.54	0.71	0.56
92	0	4	4	3	2	1	9	3	4	3	7
$145-02-$	199	1.33	1.21	9.99							
92	0	4	9	9							
$145-03-$	197	0.89									
92	9	8									
$145-03-$	198	0.86	1.45	0.90	1.00	0.78	0.78	0.99	1.21	0.61	1.09

92	0	4	4	9	1	7	2	0	5	3	6
145-03-	199	1.39	0.90	9.99							
92	0	2	3	9							
145-04-	198	0.91	1.21	0.87	1.09	0.88	0.83	1.21	0.74	1.14	0.89
92	0	0	5	5	9	4	9	9	3	8	0
145-04-	199	1.15	1.07	9.99							
92	0	7	1	9							
145-04-	198	0.65	0.98	1.63	0.78	0.77	0.72	0.84	1.27	0.79	
92	1	1	3	3	1	1	1	9	0	8	
145-04-	199	1.44	0.85	9.99							
92	0	8	8	9							
145-05-	197	0.44									
92	9	0									
145-05-	198	0.77	1.79	0.99	0.95	0.50	0.56	0.97	1.36	1.20	0.91
92	0	9	4	3	9	1	2	7	8	1	2
145-05-	199	1.22	1.01	9.99							
92	0	6	3	9							
145-07-	198	0.72	1.40	0.95	1.02	0.85	0.70	1.24	0.80	1.22	
92	1	2	8	0	5	6	7	2	8	8	
145-07-	199	0.92	1.07	9.99							
92	0	1	5	9							
145-08-	198	0.95	0.63	1.63	1.04	0.69	0.86	0.78	1.14	1.06	1.04
92	0	9	7	7	6	0	9	7	2	7	7
145-08-	199	1.12	1.03	9.99							
92	0	0	0	9							
145-09-	198	0.74	1.12	1.31	0.86	0.81	1.12	0.88	0.83	1.08	
92	1	6	4	4	8	0	9	1	0	6	
145-09-	199	1.00	1.18	9.99							
92	0	6	5	9							
255-01-	197	1.00									
92	9	0									
255-01-	198	1.10	0.99	0.65	1.12	1.08	1.09	1.00	0.88	0.85	1.32
92	0	4	1	4	3	7	6	1	7	7	0
255-01-	199	0.78	1.08	9.99							
92	0	5	1	9							
255-02-	198	0.77	1.16								
92	8	4	0								
255-02-	199	1.15	1.01	0.76	0.75	1.22	0.86	1.13	9.99		
92	0	8	5	1	6	8	3	4	9		
255-03-	198	0.99	0.99	1.10	0.88						
92	6	7	0	6	0						
255-03-	199	0.94	1.18	0.70	1.26	0.88	0.97	1.04	9.99		
92	0	8	4	9	6	3	9	5	9		
001-01-	197	0.66	0.89	0.97	1.07						
94	6	2	3	2	7						
UID	Yea	$\underline{0}$	1	2	3	4	5	6	7	$\underline{8}$	$\underline{9}$

$\underline{1}$											
001-01-	198	1.05	1.05	1.02	1.00	0.97	0.99	0.98	1.00	1.00	0.99
94	0	3	8	0	3	8	3	4	3	0	8
001-01-	199	0.99	0.99	1.00	0.99	9.99					
94	0	8	8	0	6	9					
001-01-	197	0.61	1.11	1.12	0.97						
94	6	8	3	5	8						
001-01-	198	1.00	0.96	1.02	1.03	1.01	1.00	0.99	0.98	1.00	1.00
94	0	5	4	4	0	2	0	0	4	0	3
001-01-	199	1.00	0.99	0.98	1.01	9.99					
94	0	3	3	3	3	9					
001-02-	198	0.85	1.05	1.03	1.00	1.00					
94	5	5	9	8	0	0					
001-02-	199	1.00	0.99	0.97	1.01	9.99					
94	0	2	4	5	6	9					
001-02-	197	1.16	0.89	0.78							
94	7	3	5	2							
001-02-	198	1.01	1.07	1.04	1.02	1.02	1.00	0.99	0.99	0.99	0.99
94	0	8	2	5	4	2	2	1	3	3	6
001-02-	199	0.99	1.00	0.99	1.00	9.99					
94	0	5	0	4	0	9					
001-03-	197	0.68									
94	9	9									
001-03-	198	0.88	1.07	1.06	1.04	1.01	1.00	0.98	0.98	0.99	1.00
94	0	4	8	9	4	4	1	8	5	3	1
001-03-	199	1.00	0.99	0.99	1.00	9.99					
94	0	0	8	7	0	9					
001-03-	197	1.32	0.97	0.97	0.88						
94	6	2	0	1	0						
001-03-	198	0.87	0.95	1.03	1.06	1.05	1.02	1.00	1.00	0.99	0.99
94	0	8	8	0	3	2	6	3	0	7	0
001-03-	199	0.99	0.99	0.99	0.99	9.99					
94	0	5	4	2	7	9					
016-02-	198	0.81	1.18	1.33	0.82	0.52	0.78	1.77	0.80	0.67	
94	1	3	0	8	1	9	3	0	1	3	
016-02-	199	1.15	0.77	0.87	1.27	9.99					
94	0	8	6	7	8	9					
033-08-	198	1.10	0.79	1.23	0.64	1.07	1.28	0.69	1.02		
94	2	6	9	6	9	6	4	9	6		
033-08-	199	0.95	1.31	0.82	1.30	0.76	9.99				
94	0	1	7	8	8	4	9				
033-08-	198	1.42	0.62	0.27	1.25	1.22	1.54	0.82	0.86	0.85	0.74
94	0	4	3	8	2	2	6	4	9	9	6
033-08-	199	0.83	0.87	1.22	0.96	1.32	9.99				
94	0	3	4	7	2	0	9				
033-09-	198	1.08	0.81	1.09	1.21	0.93	0.67	0.85	0.83	1.14	1.13

94	0	4	4	7	9	1	8	6	4	8	0
033-09-	199	1.12	1.30	1.18	0.72	1.03	9.99				
94	0	3	8	2	6	4	9				
033-09-	198	0.41	1.19	1.64	0.88	0.73	0.66	0.70	1.04		
94	2	3	6	2	3	2	2	6	3		
033-09-	199	1.27	1.35	0.72	1.04	1.12	9.99				
94	0	3	1	4	7	0	9				
033-23-	197	1.07	0.79								
94	8	3	9								
033-23-	198	1.10	1.10	1.11	1.02	0.76	0.75	0.83	1.02	0.71	1.16
94	0	1	0	6	0	5	4	7	5	5	2
033-23-	199	1.18	1.68	1.13	0.97	0.84	9.99				
94	0	0	4	4	4	4	9				
033-23-	197	0.53									
94	9	7									
033-23-	198	1.48	0.77	1.21	1.17	0.96	1.00	0.70	0.84	0.66	1.11
94	0	4	8	3	5	5	3	5	6	5	5
033-23-	199	0.95	1.08	0.99	1.01	1.27	9.99				
94	0	8	9	1	9	0	9				
120-11-	198	0.76	1.22	0.99	0.91						
94	6	8	4	3	5						
120-11-	199	0.86	1.38	0.61	1.14	9.99					
94	0	0	2	4	6	9					
161-01-	197	0.97									
94	9	6									
161-01-	198	0.85	1.14	1.23	0.95	0.88	0.57	1.11	1.06	0.90	1.13
94	0	1	7	5	7	3	0	5	9	1	1
161-01-	199	1.13	1.00	9.99							
94	0	7	6	9							
161-05-	198	1.22	0.75	0.49	1.43	1.23	0.88	0.78	1.07		
94	2	7	5	0	6	7	5	3	1		
161-05-	199	1.38	0.62	0.70	1.50	9.99					
94	0	0	5	2	6	9					
161-05-	197	0.52	0.78	1.84							
94	7	5	5	5							
161-05-	198	1.18	1.14	0.60	0.54	0.51	0.80	1.46	0.82	1.21	1.62
94	0	6	1	4	7	3	7	7	0	5	9
161-05-	199	0.94	0.89	0.93	1.25	9.99					
94	0	0	5	1	4	9					
	Yea										
UID	\underline{r}	$\underline{0}$	1	2	$\underline{3}$	$\underline{4}$	5	6	7	8	$\underline{9}$
161-08-	197	0.47									
94	9	6									
161-08-	198	1.32	1.47	0.98	0.86	0.64	1.02	1.28	0.75	0.98	0.56
94	0	2	2	0	7	1	0	5	8	1	4
161-08-	199	1.15	0.59	1.53	1.24	9.99					

| 94 | 0 | 9 | 0 | 9 | 0 | 9 | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $161-09-$ | 198 | 0.95 | 0.63 | 1.27 | 1.24 | 1.12 | 0.71 | 0.91 | 0.77 | 0.78 | |
| 94 | 1 | 0 | 7 | 2 | 1 | 5 | 3 | 1 | 0 | 1 | |
| $161-09-$ | 199 | 1.05 | 1.31 | 1.00 | 1.07 | 9.99 | | | | | |
| 94 | 0 | 0 | 5 | 2 | 0 | 9 | | | | | |
| $162-01-$ | 197 | 0.48 | | | | | | | | | |
| 94 | 9 | 3 | | | | | | | | | |
| $162-01-$ | 198 | 1.80 | 0.96 | 0.77 | 0.76 | 0.70 | 1.19 | 1.17 | 0.97 | 0.96 | 0.98 |
| 94 | 0 | 2 | 9 | 4 | 3 | 9 | 7 | 8 | 7 | 9 | 2 |
| $162-01-$ | 199 | 1.24 | 0.95 | 9.99 | | | | | | | |
| 94 | 0 | 1 | 1 | 9 | | | | | | | |
| $162-02-$ | 198 | 1.11 | 0.99 | 0.67 | 0.84 | 1.31 | 1.22 | 0.82 | 0.86 | | |
| 94 | 2 | 3 | 6 | 9 | 0 | 0 | 8 | 3 | 1 | | |
| $162-02-$ | 199 | 1.09 | 1.00 | 1.46 | 0.69 | 9.99 | | | | | |
| 94 | 0 | 1 | 9 | 3 | 6 | 9 | | | | | |
| $162-02-$ | 197 | 0.67 | 0.85 | | | | | | | | |
| 94 | 8 | 0 | 1 | | | | | | | | |
| $162-02-$ | 198 | 1.34 | 1.33 | 0.83 | 0.85 | 1.00 | 0.89 | 0.82 | 0.80 | 1.20 | 0.88 |
| 94 | 0 | 5 | 9 | 3 | 2 | 5 | 5 | 0 | 8 | 5 | 6 |
| $162-02-$ | 199 | 1.40 | 0.96 | 9.99 | | | | | | | |
| 94 | 0 | 2 | 9 | 9 | | | | | | | |
| $162-03-$ | 198 | 1.14 | 0.78 | 1.10 | 0.66 | 1.21 | 1.32 | 0.82 | 0.91 | 0.70 | |
| 94 | 1 | 3 | 0 | 3 | 3 | 4 | 7 | 0 | 2 | 6 | |
| $162-03-$ | 199 | 1.20 | 1.15 | 1.00 | 0.98 | 9.99 | | | | | |
| 94 | 0 | 3 | 4 | 2 | 8 | 9 | | | | | |
| $162-03-$ | 197 | 0.30 | 1.05 | | | | | | | | |
| 94 | 8 | 1 | 4 | | | | | | | | |
| $162-03-$ | 198 | 1.37 | 1.10 | 1.07 | 0.80 | 0.92 | 1.21 | 0.71 | 0.84 | 0.86 | 1.05 |
| 94 | 0 | 5 | 3 | 0 | 2 | 5 | 7 | 2 | 3 | 1 | 4 |
| $162-03-$ | 199 | 0.99 | 1.22 | 9.99 | | | | | | | |
| 94 | 0 | 4 | 8 | 9 | | | | | | | |
| $162-04-$ | 198 | 0.81 | 0.60 | 1.85 | 0.68 | 1.23 | 1.63 | 1.04 | 1.07 | | |
| 94 | 2 | 5 | 5 | 5 | 3 | 7 | 3 | 5 | 3 | | |
| $162-04-$ | 199 | 0.75 | 1.00 | 0.55 | 1.26 | 9.99 | | | | | |
| 94 | 0 | 4 | 8 | 2 | 6 | 9 | | | | | |
| $162-04-$ | 198 | 0.81 | 1.08 | 1.10 | 0.88 | 1.03 | 0.95 | | | | |
| 94 | 4 | 9 | 7 | 9 | 7 | 9 | 4 | | | | |
| $162-04-$ | 199 | 1.05 | 0.95 | 9.99 | | | | | | | |
| 94 | 0 | 7 | 2 | 9 | | | | | | | |
| $162-04-$ | 198 | 1.00 | 0.99 | 1.00 | | | | | | | |
| 94 | 7 | 5 | 2 | 7 | | | | | | | |
| $162-04-$ | 199 | 0.95 | 1.05 | 1.02 | 0.92 | 9.99 | | | | | |
| 94 | 0 | 1 | 7 | 5 | 8 | 9 | | | | | |
| $162-04-$ | 198 | 0.83 | 1.02 | 1.23 | 1.01 | 0.98 | 0.80 | 0.82 | 1.08 | 0.87 | |
| 94 | 1 | 6 | 5 | 2 | 0 | 6 | 0 | 9 | 4 | 8 | |
| $162-04-$ | 199 | 0.76 | 1.28 | 9.99 | | | | | | | |
| 9 | | | | | | | | | | | |

94	0	7	6	9							
163-02-	198	0.96	0.85	0.91	1.51	1.02	0.76	0.51	0.97	1.14	
94	1	7	4	9	0	3	8	2	4	6	
163-02-	199	1.22	0.88	1.15	0.95	9.99					
94	0	3	6	8	9	9					
163-02-	197	0.56	0.43								
94	8	3	6								
163-02-	198	1.75	1.29	0.94	0.82	0.65	0.67	0.77	1.08	1.09	1.38
94	0	5	0	6	1	3	4	7	8	1	9
163-02-	199	1.18	0.93	9.99							
94	0	3	5	9							
163-06-	198	0.33	1.11	1.08	1.24	1.02	0.66	0.90	0.95	1.27	
94	1	8	0	8	6	1	4	2	4	2	
163-06-	199	0.82	1.12	9.99							
94	0	1	1	9							
167-01-	197	1.20	0.91								
94	8	1	1								
167-01-	198	0.65	0.94	1.19	0.96	0.93	0.85	1.32	1.40	1.06	0.63
94	0	9	7	3	0	6	2	4	3	2	3
167-01-	199	1.10	0.98	1.02	1.06	9.99					
94	0	5	7	2	9	9					
167-02-	197	1.15									
94	9	2									
167-02-	198	0.97	0.84	0.84	0.51	1.26	1.30	1.16	1.10	1.07	0.99
94	0	4	9	4	7	9	1	1	2	5	3
167-02-	199	0.63	1.79	0.95	0.69	9.99					
94	0	1	6	5	6	9					
167-04-	197	1.15	0.80	0.72							
94	7	2	2	4							
167-04-	198	1.50	1.11	0.65	1.04	0.79	0.90	0.88	1.18	0.79	1.60
94	0	4	7	0	5	7	7	5	6	0	7
167-04-	199	1.24	0.68	0.90	1.12	9.99					
94	0	3	9	6	6	9					
	Yea										
UID	$\underline{1}$	$\underline{0}$	1	2	3	4	5	6	7	8	$\underline{9}$
167-06-	198	1.03	0.92	0.92	1.25	0.96					
94	5	5	1	7	1	5					
167-06-	199	0.84	0.93	0.95	1.09	9.99					
94	0	5	9	8	4	9					
167-06-	197	1.21									
94	9	5									
167-06-	198	0.63	0.98	1.04	1.00	1.26	1.00	0.78	0.96	1.01	0.74
94	0	0	7	6	1	5	9	5	8	8	9
167-06-	199	1.13	1.21	9.99							
94	0	8	9	9							
167-07-	198	1.13	0.77	0.87	1.36	0.85	0.85	1.13	1.10		

94	2	5	5	6	9	6	6	9	2		
$167-07-$	199	0.99	0.86	0.70	1.31	9.99					
94	0	6	0	1	4	9					
$167-07-$	197	0.75	1.19								
94	8	3	2								
$167-07-$	198	1.00	0.80	1.36	0.93	0.90	1.02	1.17	0.69	0.82	0.69
94	0	6	7	9	4	9	9	8	1	8	8
$167-07-$	199	1.30	1.16	9.99							
94	0	1	5	9							
$167-08-$	198	0.89	1.01	1.09	1.05	1.16	0.77	0.84	0.92		
94	2	5	9	6	3	8	6	1	7		
$167-08-$	199	0.96	0.88	1.48	0.92	9.99					
94	0	2	2	4	5	9					
$167-08-$	197	0.69									
94	9	7									
$167-08-$	198	1.07	1.42	0.89	0.55	1.28	1.24	0.82	0.82	1.02	0.75
94	0	2	4	4	6	6	2	3	5	0	5
$167-08-$	199	1.06	1.20	9.99							
94	0	3	7	9							
$181-01-$	198	0.65	0.90	1.35	1.28	1.14	0.93	0.69	0.82	0.52	0.75
94	0	3	7	5	6	3	2	1	6	7	8
$181-01-$	199	1.11	1.36	1.35	1.04	0.81	0.73	1.34	9.99		
94	0	5	3	1	1	3	6	2	9		
$181-14-$	198	0.73	1.26	1.09	1.22	0.60	0.73	1.30	0.83	0.75	
94	1	3	8	7	4	1	6	9	3	5	
$181-14-$	199	1.16	1.08	0.96	1.08	9.99					
94	0	4	4	7	2	9					
$181-16-$	198	0.71	0.81	0.88	2.13	0.49	0.36	0.68	1.16	1.19	
94	1	4	3	6	0	4	2	6	4	2	
$181-16-$	199	0.93	1.30	0.85	1.17	9.99					
94	0	5	3	6	9	9					
$187-01-$	198	0.64	1.68	0.69	0.74	0.89	1.34				
94	4	3	0	0	0	6	6				
$187-01-$	199	0.92	0.97	0.88	1.10	9.99					
94	0	1	1	2	7	9					
$187-03-$	198	0.56	1.20	1.24	0.84	1.36	0.46	0.73			
94	3	9	0	1	6	9	7	5			
$187-03-$	199	0.95	1.47	0.75	1.09	9.99					
94	0	4	8	8	4	9					
$189-02-$	198	0.58	1.36	1.06	0.71	1.41	0.78	1.19	0.74		
94	2	0	3	4	9	2	5	2	9		
$189-02-$	199	0.73	0.99	0.91	1.58	9.99					
94	0	8	0	8	3	9					
$189-02-$	198	0.45	1.23	1.27	1.12	0.75	0.95	1.13	0.71	0.86	
94	1	8	0	4	8	6	6	6	8	4	
$189-02-$	199	0.72	1.15	1.32	1.09	9.99					
4											

94	0	1	2	3	6	9					
189-05-	198	0.68	1.01	1.09	1.24	1.20	0.80	0.36	0.64		
94	2	4	6	7	8	1	5	3	4		
189-05-	199	0.98	1.73	0.90	1.15	9.99					
94	0	0	1	5	1	9					
190-01-	198	1.32	0.76	0.46	0.81	1.58	1.54	0.74	0.57	0.44	0.72
94	0	9	8	0	1	0	6	0	2	7	1
190-01-	199	1.05	0.93	1.29	1.22	9.99					
94	0	5	7	0	9	9					
305-01-	197	0.20									
94	9	8									
305-01-	198	0.79	1.07	1.36	1.17	1.00	1.08	0.81	0.67	0.53	0.64
94	0	9	1	0	6	4	6	7	5	3	4
305-01-	199	1.37	0.75	1.54	1.12	9.99					
94	0	6	6	3	8	9					
305-02-	198	0.39	1.42	1.08	1.18	0.96	0.48	1.11	1.07	1.19	
94	1	5	,	9	3	6	0	0	4	9	
305-02-	199	1.07	0.71	0.63	1.46	9.99					
94	0	2	9	1	5	9					
305-03-	198	0.67	1.36	0.58	1.15	1.20	1.09	0.93	0.80	0.85	
94	1	2	6	6	3	3	3	9	9	1	
305-03-	199	0.89	1.10	0.76	1.47	9.99					
94	0	5	1	3	3	9					
305-04-	197	0.85									
94	9	4									
305-04-	198	1.00	1.00	1.03	1.12	1.10	1.18	0.74	0.83	0.73	0.75
94	0	9	7	1	8	3	9	2	7	8	3
	Yea										
UID	$\underline{1}$	$\underline{0}$	1	$\underline{2}$	3	4	5	6	7	8	$\underline{9}$
305-04-	199	0.81	1.05	1.27	1.41	9.99					
94	0	3	4	8	6	9					
311-02-	197	0.43									
94	9	6									
311-02-	198	0.47	2.03	1.10	1.08	0.79	0.63	0.77	0.68	0.71	1.23
94	0	4	3	2	0	1	6	9	4	1	0
311-02-	199	1.08	1.44	1.21	1.03	9.99					
94	0	9	6	3	1	9					
311-05-	198	0.39	1.99	0.75	0.87	0.82	0.83	1.06	0.80	1.13	
94	1	1	3	3	8	4	8	1	9	2	
311-05-	199	1.24	0.93	0.91	1.15	9.99					
94	0	4	7	9	0	9					
311-06-	198	1.05	1.13	0.35	1.21	1.30	0.97	1.14	0.82		
94	2	1	2	4	5	1	0	4	0		
311-06-	199	0.68	0.93	0.76	1.97	9.99					
94	0	9	8	3	1	9					
323-01-	197	1.19	0.20								

94	8	5	5								
323-01-	198	1.67	1.17	0.94	0.89	0.80	0.83	1.22	0.98	0.67	0.96
94	0	3	2	8	7	3	6	0	1	7	8
323-01-	199	1.01	1.08	1.16	1.02	9.99					
94	0	9	3	9	2	9					
323-04-	198	0.96	0.98	1.02	1.19	0.79					
94	5	8	6	2	0	0					
323-04-	199	0.98	0.90	1.20	0.92	9.99					
94	0	2	8	4	2	9					
469-03-	198	0.84	1.01	1.05	1.02	1.00	0.99	0.98			
94	3	1	6	3	8	8	5	3			
469-03-	199	0.98	1.00	1.00	1.00	9.99					
94	0	9	3	1	0	9					
469-05-	197	0.62	0.88	1.09	1.07						
94	6	7	5	6	0						
469-05-	198	1.07	1.02	1.00	0.99	0.99	0.98	0.98	0.98	1.00	0.99
94	0	2	8	4	3	4	9	7	9	1	8
469-05-	199	1.00	1.00	1.00	0.99	9.99					
94	0	2	1	0	5	9					
469-06-	198	0.82	1.03	1.07	0.99	1.00	1.01	0.99	0.99	0.99	
94	1	3	2	6	8	6	2	7	1	1	
469-06-	199	0.99	1.00	1.00	1.00	9.99					
94	0	8	0	1	0	9					
469-10-	198	0.65	1.03	1.11	1.01	1.01	1.01	1.00	0.99	0.99	0.99
94	0	7	7	0	3	1	4	0	0	7	0
469-10-	199	0.99	0.99	1.00	1.00	9.99					
94	0	2	8	0	2	9					
469-11-	198	1.07	0.95	0.96	1.03						
94	6	1	3	4	0						
469-11-	199	1.01	0.99	0.99	1.00	9.99					
94	0	1	3	7	1	9					
004-05-	198	1.10	0.90	0.82	0.97						
97	6	8	8	3	6						
004-05-	199	1.36	0.86	0.97	0.84	0.49	1.64	0.93	1.12	9.99	
97	0	3	8	1	2	5	2	9	5	9	
004-05-	198	0.76	1.47	1.09	0.34	0.72					
97	5	9	5	1	4	7					
004-05-	199	1.71	1.07	0.90	0.72	0.58	0.89	0.85	1.44	9.99	
97	0	4	5	9	8	4	8	5	1	9	
005-01-	199	0.98	1.03	0.98	1.04	0.88	0.86	1.37	9.99		
97	1	0	7	5	6	7	5	2	9		
005-01-	198	0.79	1.12								
97	8	8	9								
005-01-	199	1.12	0.87	1.12	0.86	0.94	1.09	0.99	0.98	9.99	
97	0	3	0	4	6	3	5	5	3	9	
005-03-	198	1.25	0.57	0.97	0.85						

97	6	7	7	3	9						
005-03-	199	1.08	1.19	1.20	1.17	1.07	1.07	0.82	1.09	9.99	
97	0	0	1	1	5	5	1	4	9	9	
005-04-	199	0.97	1.03	0.98	0.98	9.99					
97	4	2	3	4	3	9					
005-12-	198	1.08	1.29	0.25	0.82	1.41	1.29	1.03			
97	3	7	7	7	2	2	8	9			
005-12-	199	0.82	0.86	0.82	0.83	1.09	1.07	1.14	1.10	9.99	
97	0	4	9	6	6	0	6	4	2	9	
041-01-	197	0.84	1.03								
97	8	9	4								
041-01-	198	1.19	0.48	1.60	1.32	0.95	0.60	0.66	0.73	0.62	0.99
97	0	8	6	8	5	8	6	7	0	7	4
041-01-	199	1.26	1.12	1.47	1.05	1.00	0.91	0.95	9.99		
97	0	0	5	2	5	9	7	2	9		
048-01-	198	1.04	0.65	1.07	1.32	1.03					
97	5	9	2	6	6	2					
048-01-	199	1.01	0.80	0.69	0.85	0.85	1.42	1.03	9.99		
97	0	7	7	7	7	2	2	7	9		
048-03-	198	1.07	0.68	0.92	1.51	1.21	0.80	0.62			
97	3	5	1	8	8	2	1	2			
	Yea										
UID	$\underline{\mathbf{r}}$	$\underline{0}$	1	$\underline{2}$	3	4	5	$\underline{6}$	7	$\underline{8}$	$\underline{9}$
048-03-	199	0.37	0.91	0.91	1.43	1.47	0.86	0.76	9.99		
97	0	1	3	6	8	2	9	3	9		
050-01-	197	0.56	1.02								
97	8	1	0								
050-01-	198	0.56	1.68	1.59	1.00	0.51	0.96	0.67	0.66	0.83	1.13
97	0	1	0	2	7	0	9	9	5	2	6
050-01-	199	0.97	1.08	1.25	1.03	1.13	0.86	1.15	9.99		
97	0	5	5	9	8	6	8	7	9		
072-01-	198	1.18	1.02								
97	8	0	2								
072-01-	199	0.85	1.07	0.94	1.03	1.00	1.00	0.98	9.99		
97	0	7	5	9	8	4	8	7	9		
072-01-	198	1.39	0.93								
97	8	6	2								
072-01-	199	0.76	1.07	1.05	1.00	1.00	0.99	0.99	9.99		
97	0	6	2	0	3	8	1	0	9		
072-02-	198	1.22	0.95	0.93							
97	7	2	0	3							
072-02-	199	1.01	0.98	1.03	0.99	1.00	1.00	0.99	9.99		
97	0	1	6	2	7	9	0	0	9		
072-02-	198	1.14	1.03	0.94	1.01	0.93					
97	5	8	1	8	1	4					
072-02-	199	0.96	0.99	1.04	1.02	1.02	0.99	0.97	9.99		

97	0	2	2	3	0	6	5	5	9		
$108-03-$	198	0.69	0.85	1.32	0.89						
97	6	9	1	1	4						
$108-03-$	199	1.03	1.00	0.98	1.09	0.87	0.74	1.38	9.99		
97	0	0	0	5	4	6	9	1	9		
$119-01-$	198	0.48	1.46	1.21							
97	7	7	1	2							
$119-01-$	199	0.38	1.16	1.05	1.03	1.07	0.88	0.94	9.99		
97	0	1	3	0	8	0	9	5	9		
$129-02-$	197	0.93									
97	9	8									
$129-02-$	198	0.37	0.75	1.69	1.55	0.47	0.51	1.50	0.90	1.64	0.76
97	0	5	5	0	6	9	7	8	2	6	3
$129-02-$	199	0.60	0.44	0.63	0.87	1.33	1.31	1.47	9.99		
97	0	1	3	6	4	2	2	1	9		
$154-02-$	197	1.08	1.05								
97	8	5	7								
$154-02-$	198	1.00	0.83	0.91	0.63	0.96	0.68	1.24	1.17	1.54	0.78
97	0	3	0	7	5	9	6	9	0	6	5
$154-02-$	199	1.30	1.16	1.05	1.20	0.92	0.66	1.17	9.99		
97	0	7	3	7	8	1	5	0	9		
$155-03-$	198	0.88	0.73	1.40	1.13						
97	6	7	4	2	2						
$155-03-$	199	0.87	0.73	0.95	0.83	1.07	1.32	0.90	9.99		
97	0	7	9	9	5	9	0	6	9		
$164-04-$	197	0.42	1.27								
97	8	0	7								
$164-04-$	198	1.30	1.34	1.23	0.70	0.62	0.61	0.59	1.10	1.10	0.67
97	0	0	1	4	4	7	7	3	2	8	6
$164-04-$	199	1.16	1.37	1.07	1.21	0.52	1.61	0.65	9.99		
97	0	5	5	0	8	1	8	0	9		
$165-05-$	197	0.53	1.77	1.06							
97	7	7	4	8							
$165-05-$	198	0.97	0.71	0.76	0.85	0.87	0.74	0.71	1.28	1.16	0.77
97	0	5	5	4	0	3	2	8	9	2	4
$165-05-$	199	1.49	1.04	1.03	1.11	0.81	1.16	0.85	9.99		
97	0	5	6	3	3	6	4	5	9		
$165-06-$	198	0.46	1.66	0.89	0.82	1.18					
97	5	1	7	9	8	6					
$165-06-$	199	0.53	1.31	1.12	1.17	0.56	0.85	1.42	9.99		
97	0	9	0	2	1	3	5	3	9		
$220-04-$	197	0.55									
97	9	1									
$220-04-$	198	1.26	1.56	1.19	0.64	0.67	0.73	0.74	0.97	1.21	1.28
97	0	7	2	3	2	0	5	7	8	6	2
$220-04-$	199	0.69	1.47	1.07	0.91	1.15	0.86	1.16	9.99		
9											

97	0	0	2	3	7	3	2	1	9		
220-05-	198	0.47	1.78	1.16	0.73	0.87	0.48	0.68	1.23	1.03	
97	1	5	9	6	5	2	2	2	3	4	
220-05-	199	1.31	1.03	1.14	1.15	0.84	1.23	0.82	9.99		
97	0	5	1	9	2	7	3	9	9		
220-06-	198	0.52	1.26	1.23	1.27	0.76	0.98	0.99	0.68	0.86	
97	1	2	5	7	2	9	2	8	6	5	
220-06-	199	0.78	0.85	1.23	1.14	1.28	1.24	0.75	9.99		
97	0	3	1	3	1	2	9	7	9		
220-08-	198	0.94	0.99	1.30	0.69						
97	6	4	2	0	5						
220-08-	199	0.98	1.13	0.85	1.12	0.86	0.94	1.15	9.99		
97	0	3	7	7	2	5	6	1	9		
220-09-	198	0.60	0.88	1.57	1.01	1.00					
97	5	3	9	6	8	0					
	Yea										
UID	\underline{r}	$\underline{0}$	1	2	3	4	5	6	7	$\underline{8}$	$\underline{9}$
220-09-	199	0.54	0.90	0.97	1.23	1.10	0.50	1.36	9.99		
97	0	9	6	7	5	7	1	5	9		
233-01-	198	1.06	0.96	1.10	0.93	0.68	0.85	0.95	1.45		
97	2	3	1	6	5	9	9	8	6		
233-01-	199	0.74	1.13	0.99	1.53	1.03	0.69	1.11	9.99		
97	0	8	8	0	5	3	6	0	9		
233-02-	198	0.84	1.14	1.06	1.06						
97	6	0	4	3	5						
233-02-	199	0.96	0.89	0.68	1.11	1.05	1.03	1.07	9.99		
97	0	2	9	9	5	7	0	5	9		
233-02-	198	0.51	1.06	1.24	1.12	1.19	0.97	0.63			
97	3	3	3	6	8	0	1	5			
233-02-	199	0.59	1.04	0.83	1.35	1.18	0.67	1.32	9.99		
97	0	8	6	0	2	6	8	9	9		
233-03-	199	0.92	1.08	1.06	0.83	0.92	1.16	0.96	9.99		
97	0	3	6	7	1	1	0	8	9		
233-04-	199	0.97	1.03	1.03	0.91	0.99	1.05	9.99			
97	1	6	6	3	2	8	1	9			
233-06-	199	1.00	1.00	0.98	1.02	0.98	9.99				
97	2	0	4	2	9	3	9				
255-01-	198	0.78	0.69	1.61	1.27	0.87	0.71	0.88	0.59	1.14	1.11
97	0	1	6	5	6	9	9	3	5	5	3
255-01-	199	0.74	1.50	0.93	0.87	1.12	9.99				
97	0	2	0	6	9	9	9				
255-02-	198	0.41	1.25	0.96	1.41	1.19	0.73	0.54	0.87	0.68	
97	1	3	2	8	8	1	4	0	0	7	
255-02-	199	1.71	0.79	0.90	1.08	1.08	9.99				
97	0	2	8	8	1	1	9				
255-03-	198	0.55	1.46	0.89	0.65	1.19	1.34	1.03	0.47		

97	2	3	2	7	2	0	2	7	6		
255-03-	199	1.19	1.04	0.68	0.96	1.28	9.99				
97	0	2	8	6	2	0	9				
275-02-	198	0.27	1.39	0.94	1.47	1.04	0.86	0.81	0.69	1.17	
97	1	1	5	1	8	3	9	6	9	4	
275-02-	199	0.92	0.70	0.85	1.25	1.12	1.26	0.94	9.99		
97	0	1	6	8	9	2	6	5	9		
275-04-	198	0.52	0.97	1.56	1.05	1.21	0.86	0.62	0.84	0.94	1.19
97	0	6	8	5	1	2	0	5	9	5	2
275-04-	199	0.87	0.84	0.82	1.15	1.30	0.91	1.09	9.99		
97	0	8	9	6	6	3	9	1	9		
276-05-	198	0.76	1.23	0.93	1.20	0.96					
97	5	9	7	1	1	7					
276-05-	199	0.87	1.03	0.84	0.67	1.28	0.89	1.34	9.99		
97	0	3	7	0	9	0	1	2	9		
276-06-	198	1.08	0.89	0.80	1.04	1.18	1.20				
97	4	8	0	8	1	0	2				
276-06-	199	0.91	0.88	0.71	0.95	1.02	0.83	1.44	9.99		
97	0	1	4	1	1	7	4	6	9		
009-01-	199	1.00	0.98	0.98	1.04	0.96					
99	5	9	2	4	8	7					
009-01-	200	9.99									
99	0	9									
009-01-	199	0.98	0.82	1.28	1.28	0.42	0.72	1.33	1.06	0.89	
99	1	1	0	3	1	6	8	4	3	8	
009-01-	200	9.99									
99	0	9									
011-01-	198	0.99	1.15	0.67							
99	7	0	5	8							
011-01-	199	1.33	0.77	0.99	0.84	1.15	1.09	1.00	1.00	0.79	1.20
99	0	7	3	2	9	4	4	5	3	9	5
011-01-	200	9.99									
99	0	9									
011-01-	198	0.76	0.93	1.51	0.88						
99	6	5	2	2	6						
011-01-	199	1.07	0.88	0.85	0.65	1.15	1.04	0.98	0.81	0.84	1.38
99	0	1	3	1	8	4	4	4	2	7	2
011-01-	200	9.99									
99	0	9									
019-02-	199	0.85	1.36	0.48	1.06	1.21	0.91				
99	4	9	2	3	1	0	7				
019-02-	200	9.99									
99	0	9									
019-07-	199	1.13	0.88	0.55	1.73	0.47	0.91	1.18	0.97		
99	2	3	1	7	3	7	5	2	3		
019-07-	200	9.99									

99	0	9									
021-01-	198	0.65									
99	9	5									
021-01-	199	0.96	1.09	1.17	0.93	0.88	0.86	0.93	1.15	1.01	9.99
99	0	4	7	6	8	0	9	5	7	4	9
022-03-	198	0.48	1.53	0.82	1.41	1.13	0.83	0.39			
99	3	9	9	1	6	4	5	9			
022-03-	199	0.50	0.76	1.86	1.32	0.87	0.69	0.91	1.09	1.09	9.99
99	0	1	0	1	1	1	5	6	1	4	9
	Yea										
UID	$\underline{\underline{r}}$	$\underline{0}$	$\underline{1}$	$\underline{2}$	$\underline{3}$	4	5	$\underline{6}$	7	$\underline{8}$	$\underline{9}$
034-04-	198	1.12	0.42	0.84	1.67	1.32	0.99	0.86	0.44		
99	2	8	0	6	8	8	0	4	7		
034-04-	199	0.57	1.16	0.74	1.10	1.04	1.12	1.23	0.98	0.96	9.99
99	0	1	9	8	8	8	9	5	6	2	9
123-01-	198	0.53	1.33	1.23	1.03	1.00	0.93				
99	4	8	4	3	4	3	0				
123-01-	199	0.61	0.92	0.77	1.22	0.86	1.30	0.96	1.11	9.99	
99	0	3	0	3	8	9	9	9	2	9	
125-06-	198	1.11	0.74	1.18	0.93						
99	6	4	3	1	5						
125-06-	199	0.97	1.15	1.06	0.77	0.73	1.10	0.59	1.42	0.96	9.99
99	0	7	9	8	0	2	6	8	5	5	9
210-01-	198	0.39	1.45	0.87	1.15	0.66	1.72	1.18	0.69	0.70	0.64
99	0	9	5	6	4	7	8	4	6	3	7
210-01-	199	0.88	0.98	1.46	0.64	0.97	1.06	1.21	1.02	1.12	9.99
99	0	3	8	3	6	8	6	6	7	8	9
284-01-	198	0.90									
99	9	5									
284-01-	199	0.94	1.13	1.16	0.79	1.01	0.88	0.76	1.52	0.76	9.99
99	0	5	0	2	4	2	1	5	5	3	9
295-05-	198	1.14	0.61	0.94							
99	7	3	8	2							
295-05-	199	1.31	1.06	1.09	0.85	0.71	0.85	1.24	1.26	0.73	9.99
99	0	2	1	5	4	1	4	7	9	8	9
305-02-	198	1.02	0.91	1.02							
99	7	9	8	6							
305-02-	199	1.10	0.90	0.97	1.06	1.05	0.92	0.81	0.89	1.33	9.99
99	0	9	9	8	0	7	7	4	1	2	9
305-02-	198	0.37	1.52	0.98							
99	7	5	9	6							
305-02-	199	0.98	1.14	0.82	0.89	1.09	0.95	0.91	1.04	1.10	9.99
99	0	5	8	1	8	4	7	2	3	2	9
305-03-	198	0.71	1.34	1.01	1.07	0.87					
99	5	1	7	2	6	1					
305-03-	199	0.93	1.08	0.74	1.29	1.01	0.54	1.38	0.51	1.36	9.99

99	0	8	6	3	1	6	8	4	4	6	9
$305-03-$	198	0.38	1.14	1.37	1.04	1.09	0.89	0.86			
99	3	3	9	8	9	7	6	8			
$305-03-$	199	1.17	0.82	0.62	0.83	1.14	1.13	1.09	0.98	1.12	9.99
99	0	4	6	2	2	2	4	7	7	4	9
$305-04-$	199	0.97	1.05	0.88	1.21	0.79	0.93	1.13	9.99		
99	2	2	4	7	4	0	6	2	9		
$305-04-$	199	0.97	1.08	0.71	1.20	0.93	1.20	0.86	0.77	1.22	9.99
99	0	3	7	9	2	7	7	2	9	2	9
$307-02-$	198	0.97	0.92	1.28	0.83	0.96	1.19	0.83			
99	3	4	7	4	4	8	7	9			
$307-02-$	199	0.86	0.60	1.13	1.25	1.23	0.96	0.70	0.91	1.23	9.99
99	0	6	6	6	4	2	9	4	2	9	9
$307-02-$	198	0.39	1.13	1.20	1.62	0.61	1.03				
99	4	1	2	9	2	8	5				
$307-02-$	199	0.86	0.84	0.59	1.16	1.12	0.60	1.25	1.09	1.02	9.99
99	0	8	8	2	9	3	0	1	1	8	9
$307-03-$	199	0.95	1.14	0.72	1.31	0.73	1.09	9.99			
99	3	0	4	2	6	2	6	9			
$307-03-$	199	0.84	1.16	0.70	1.29	0.79	1.32	0.69	1.01	1.04	9.99
99	0	6	5	8	6	4	2	0	6	5	9
$310-01-$	198	1.03	1.08	1.01	0.73	1.08	0.59	0.97			
99	3	3	4	0	6	7	3	6			
$310-01-$	199	0.94	1.97	0.81	1.08	0.77	0.74	0.92	1.33	1.00	9.99
99	0	6	4	0	4	5	7	6	3	3	9
$310-01-$	198	0.15	1.41	1.50	1.17	0.95	0.67	0.53	0.92		
99	2	9	5	0	2	2	2	1	3		
$310-01-$	199	1.07	1.14	0.99	0.99	0.97	1.02	1.18	9.99		
99	0	8	3	5	6	8	6	4	9		
$310-02-$	198	0.92	1.25	0.90	0.57						
99	6	8	6	5	7						
$310-02-$	199	1.45	0.78	1.02	1.02	1.05	1.15	0.84	0.80	1.15	9.99
99	0	5	2	2	0	8	5	9	2	8	9
$310-02-$	198	0.29	1.53	1.31	0.89	0.85	0.85				
99	4	1	7	8	8	7	1				
$310-02-$	199	0.67	0.86	1.01	1.26	1.07	1.19	0.87	9.99		
99	0	0	3	5	9	4	2	2	9		
$323-01-$	198	0.25	1.88	1.05	0.97	0.90	0.57	0.00			
99	3	0	9	8	1	2	1	7			

Table 7. Chronology data statistics for live-collected Hemimactra (Spisula) solidissima. Columns include unique specimen identification, first and last years,
number of years (age), mean index value, median index value, index standard deviation, and index skew, mean sensitivity, and first order autocorrelation.

UID	first	last	Age	mean	median	stdev	skew	sens	ar1
001-01-94	1976	1993	18	1.918	2.175	0.713	-1.11	0.142	0.771
001-01-94	1976	1993	18	1.679	1.841	0.638	-0.639	0.131	0.768
001-02-94	1985	1993	9	1.633	1.786	0.582	-0.702	0.196	0.537
001-02-94	1977	1993	17	1.752	2.099	0.768	-0.96	0.183	0.799
001-03-94	1979	1993	15	1.787	2.037	0.65	-1.167	0.159	0.714
001-03-94	1976	1993	18	1.583	1.911	0.712	-0.577	0.112	0.859
001-04-94	1969	1993	25	1.835	2.049	0.635	-1.082	0.095	0.829
003-01-92	1972	1991	20	1.692	1.974	0.65	-1.03	0.117	0.818
004-05-97	1985	1996	12	0.151	0.09	0.145	1.012	0.457	0.589
004-05-97	1984	1996	13	0.143	0.097	0.124	0.829	0.563	0.549
005-01-97	1990	1996	7	0.295	0.299	0.229	0.066	0.44	0.659
005-01-97	1987	1996	10	0.189	0.162	0.082	0.17	0.279	0.529
005-02-92	1988	1991	4	0.363	0.392	0.167	-0.283	0.541	-0.153
005-03-97	1985	1996	12	0.179	0.085	0.237	2.134	0.301	0.263
005-04-97	1993	1996	4	0.364	0.381	0.193	-0.19	0.652	-0.026
005-05-92	1983	1991	9	0.212	0.133	0.226	1.597	0.373	0.3
005-12-97	1982	1996	15	0.141	0.07	0.148	1.255	0.365	0.515
009-01-99	1994	1998	5	0.285	0.298	0.039	-0.576	0.152	-0.356
009-01-99	1990	1998	9	0.156	0.172	0.07	0.032	0.439	0.301
011-01-99	1986	1998	13	0.184	0.08	0.181	1.042	0.321	0.631
011-01-99	1985	1998	14	0.176	0.108	0.158	0.937	0.375	0.748
015-02-02	1990	2001	12	1.239	1.32	0.701	-0.316	0.297	0.769
016-02-94	1981	1993	13	0.132	0.079	0.137	0.913	0.466	0.765
018-01-92	1981	1991	11	0.201	0.131	0.186	1.595	0.317	0.317
018-03-92	1986	1991	6	0.277	0.229	0.152	0.723	0.444	0.097
018-04-92	1988	1991	4	0.302	0.31	0.109	-0.183	0.32	0.001
018-05-92	1984	1991	8	0.289	0.25	0.18	0.531	0.439	0.261
019-01-02	1992	2001	10	1.184	1.306	0.639	-0.286	0.256	0.737
019-02-02	1984	2001	18	1.736	2.095	0.784	-0.992	0.192	0.812
019-02-99	1993	1998	6	0.322	0.188	0.277	0.768	0.562	0.201
019-06-02	1992	2001	10	1.315	1.485	0.596	-0.527	0.223	0.693
019-07-02	1989	2001	13	1.487	1.764	0.778	-0.49	0.221	0.789
019-07-02	1985	2001	17	1.429	1.771	0.751	-0.619	0.193	0.843
019-07-99	1991	1998	8	0.24	0.188	0.206	1.693	0.527	-0.159
019-10-02	1989	2001	13	0.901	1.01	0.488	-0.421	0.24	0.792
021-01-99	1989	1998	10	0.196	0.162	0.12	0.557	0.382	0.578
022-03-99	1983	1998	16	0.128	0.072	0.111	1.203	0.45	0.538
UID	first	last	Age	mean	median	stdev	skew	sens	ar1
033-08-94	1979	1993	15	0.133	0.098	0.099	0.843	0.404	0.59

033-09-94		199	15	0.	0.07	0.	1.029	0.266	0.681
33-09-94	1981	199	13	0.169	0.071	0.188	1.455	0.	. 636
33-23-94	1977	199	17	0.1	0.056	0.	0.877	0.305	㖪
33-23-94	1978	199	16	0.1	0.088	0.132	0.7	57	84
034-04-99	1982	1998	1	0.134	0.08	0.11	1.299	0.388	0.65
041-01-97	1978	1996	19	0.136	0.07	0.122	0.958	0.334	0.653
048-01-97	1985	1996	12	0.161	0.136	0.106	0.559	0.355	0.729
048-03-97	1983	1996	14	0.144	0.109	0.107	0.781	0.446	0.652
050-01-97	1978	1996	19	0.14	0.068	0.141	1.54	0.358	0.671
060-01-02	1984	2001	18	0.103	0.073	0.094	2.083	0.364	0.495
072-01-97	1988	1996	9	1.049	1.026	0.652	-0.088	0.328	0.701
072-01-97	1988	1996	9	1.224	1.488	0.69	-0.375	0.275	0.718
072-02-97	1987	1996	10	0.994	1.105	0.569	-0.275	0.286	0.74
072-02-97	1985	1996	12	1.315	1.296	0.78	-0.033	0.21	0.802
077-01-02	1987	2001	15	0.17	0.181	0.105	0.113	0.241	0.818
078-01-02	1982	2001	20	0.098	0.075	0.071	2.461	0.337	0.192
078-02-02	1979	2001	23	0.097	0.07	0.101	2.079	0.363	0.703
108-03-97	1986	1996	11	0.161	0.185	0.089	-0.119	0.381	0.536
114-01-92	1987	1991	5	0.241	0.245	0.121	0.452	0.514	-0.251
114-02-92	1988	199	4	0.349	0.341	0.189	0.092	0.519	-0.04
114-03-92	1988	199	4	0.304	0.261	0.208	0.418	0.561	0.118
114-04-92	1988	199	4	0.315	0.311	0.164	0.056	0.469	0.124
119-01-97	1987	1996	10	0.181	0.229	0.089	-0.422	0.538	0.006
120-11-94	1986	1993	8	0.125	0.146	0.065	-0.27	0.463	0.104
123-01-99	1984	1997	14	0.135	0.07	0.121	0.853	0.357	0.771
125-06-99	1986	1998	13	0.175	0.123	0.135	0.923	0.409	0.562
129-02-97	1979	1996	18	0.119	0.084	0.102	0.919	0.468	0.468
136-01-92	1989	1991	3	0.529	0.485	0.24	0.176	0.451	-0.017
136-02-92	1989	1991	3	0.431	0.456	0.138	-0.175	0.334	-0.016
141-01-92	1979	1991	13	0.175	0.108	0.15	0.846	0.334	0.793
141-02-92	1983	1991	9	0.199	0.11	0.166	0.694	0.503	0.594
141-02-92	1980	1991	12	0.165	0.11	0.124	0.448	0.314	0.795
141-04-92	1981	1991	11	0.193	0.132	0.141	0.549	0.377	0.719
145-01-92	1978	1991	14	0.148	0.052	0.183	1.533	0.451	0.679
145-02-92	1978	1991	14	0.147	0.074	0.153	1.192	0.468	0.701
145-03-92	1979	1991	13	0.164	0.082	0.144	0.887	0.387	0.717
145-04-92	1980	1991	12	0.152	0.104	0.129	0.766	0.296	0.733
145-04-92	1981	1991	11	0.187	0.101	0.173	1.485	0.509	0.514
145-05-92	1979	1991	13	0.162	0.065	0.189	1.636	0.446	0.547
145-07-92	1981	1991	11	0.167	0.108	0.132	1.026	0.403	0.638
145-08-92	1980	1991	12	0.142	0.1	0.128	1.157	0.412	0.522
UID	first	last	Age	mean	median	stdev	skew	sens	ar1
145-09-92	1981	1991	11	0.139	0.144	0.104	0.643	0.311	0.72

97	1978	1996	19	0.11	0.05	0.13	1.714	0.334	2
155-03-97	1986	1996	1	0.218	0.161	0.162	0.948	0.337	0.636
161-01-94	1979	1991	13	0.173	0.093	0.139	0.493	0.281	0.797
161-05-94	1982	1993	12	0.14	0.102	0.113	1.062	0.456	0.344
161-05-94	1977	1993	17	0.128	0.054	0.158	1.627	0.413	0.712
161-08-94	1979	1993	15	0.139	0.119	0.132	1.03	0.477	0.734
161-09-94	1981	1993	13	0.144	0.122	0.114	0.797	0.292	0.741
162-01-94	1979	1991	13	0.182	0.098	0.221	1.937	0.405	0.462
162-02-94	1982	1993	12	0.165	0.094	0.177	1.468	0.368	0.522
162-02-94	1978	1991	14	0.138	0.11	0.108	0.882	0.347	0.754
162-03-94	1981	1993	13	0.155	0.089	0.136	1.222	0.351	0.478
162-03-94	1978	1991	14	0.141	0.121	0.097	0.505	0.317	0.674
162-04-94	1982	1993	12	0.156	0.075	0.234	2.167	0.543	0.239
162-04-94	1987	1993	7	0.219	0.248	0.062	-1.162	0.201	0.267
162-04-94	1984	1991	8	0.191	0.204	0.071	-0.128	0.319	0.265
162-04-94	1981	1991	11	0.172	0.117	0.127	0.448	0.355	0.823
163-02-94	1981	1993	13	0.156	0.089	0.117	0.887	0.319	0.696
163-02-94	1978	1991	14	0.134	0.069	0.143	1.431	0.361	0.592
163-06-94	1981	1991	11	0.122	0.099	0.085	0.526	0.404	0.562
164-04-97	1978	1996	19	0.09	0.06	0.077	1.206	0.438	0.751
165-05-97	1977	1996	20	0.151	0.1	0.144	2.474	0.345	0.559
165-06-97	1985	1996	12	0.165	0.178	0.094	0.035	0.518	0.1
167-01-94	1978	1993	16	0.118	0.058	0.14	1.926	0.306	0.531
167-02-94	1979	1993	15	0.142	0.07	0.17	1.736	0.451	0.566
167-04-94	1977	1993	17	0.123	0.063	0.124	1.135	0.382	0.604
167-06-94	1985	1993	9	0.197	0.187	0.072	0.187	0.204	0.589
167-06-94	1979	1991	13	0.132	0.12	0.072	0.277	0.31	0.707
167-07-94	1982	1993	12	0.168	0.162	0.082	0.475	0.312	0.467
167-07-94	1978	1991	14	0.139	0.152	0.074	0.373	0.303	0.625
167-08-94	1982	1993	12	0.14	0.102	0.099	0.215	0.29	0.82
167-08-94	1979	1991	13	0.131	0.105	0.077	0.574	0.386	0.525
181-01-94	1980	1996	17	0.132	0.066	0.118	0.944	0.278	0.873
181-14-94	1981	1993	13	0.143	0.092	0.123	0.867	0.33	0.754
181-16-94	1981	1993	13	0.189	0.086	0.249	2.115	0.499	0.351
187-01-94	1984	1993	10	0.148	0.124	0.113	1.732	0.411	0.169
187-03-94	1983	1993	11	0.119	0.069	0.081	0.602	0.474	0.441
189-02-94	1982	1993	12	0.187	0.161	0.131	0.438	0.442	0.451
189-02-94	1981	1993	13	0.144	0.082	0.123	0.639	0.361	0.714
189-05-94	1982	1993	12	0.163	0.105	0.139	0.555	0.411	0.783
190-01-94	1980	1993	14	0.116	0.074	0.113	1.351	0.397	0.67
200-01-02	1989	2001	13	0.148	0.13	0.103	0.503	0.356	0.486
UID	first	last	Age	mean	median	stdev	skew	sens	ar1
202-03-02	1988	2001	14	0.149	0.065	0.142	0.954	0.368	0.681

210-01-99	198	1998	19	0.10	0.067	0.09	1.09	86	0.544
220-04-97	1979	1996	18	0.104	0.055	0.119	1.471	0.338	4
220-05-97	1981	1996	16	0.11	0.05	0.145	2.105	0.383	55
220-06-97	1981	1996	16	0.128	0.067	0.117	0.906	0.288	0.781
220-08-97	1986	1996	11	0.169	0.157	0.114	0.557	0.236	0.667
220-09-97	1985	1996	12	0.127	0.082	0.098	1.224	0.487	0.582
227-03-02	1985	2001	17	0.082	0.061	0.051	0.781	0.237	0.675
227-05-02	1990	2001	12	0.139	0.122	0.071	0.701	0.318	0.646
228-02-02	1987	2001	15	0.112	0.082	0.084	0.993	0.364	0.703
229-10-02	1983	2001	19	0.11	0.078	0.09	0.73	0.245	0.833
233-01-97	1982	1996	15	0.154	0.081	0.171	1.297	0.362	0.683
233-02-97	1986	1996	11	0.183	0.137	0.125	0.389	0.253	0.817
233-02-97	1983	1996	14	0.149	0.085	0.126	0.654	0.418	0.801
233-03-97	1990	1996	7	0.231	0.177	0.145	0.282	0.349	0.614
233-04-97	1991	1996	6	0.301	0.298	0.165	-0.011	0.308	0.582
233-06-97	1992	1996	5	0.327	0.33	0.067	-0.423	0.143	0.258
255-01-92	1979	1991	13	0.077	0.06	0.045	1.039	0.29	0.637
255-01-97	1980	1994	15	0.121	0.08	0.103	1.326	0.388	0.681
255-02-92	1988	1996	9	0.168	0.117	0.105	0.552	0.382	0.684
255-02-97	1981	1994	14	0.115	0.068	0.09	0.913	0.442	0.63
255-03-92	1986	1996	11	0.161	0.145	0.064	0.582	0.246	0.577
255-03-97	1982	1994	13	0.116	0.11	0.071	0.6	0.479	0.453
260-03-02	1988	2001	14	0.167	0.14	0.112	0.264	0.334	0.658
275-02-97	1981	1996	16	0.172	0.105	0.153	0.922	0.391	0.633
275-04-97	1980	1996	17	0.184	0.133	0.156	1.15	0.297	0.762
276-05-97	1985	1996	12	0.2	0.185	0.144	0.349	0.375	0.758
276-06-97	1984	1996	13	0.166	0.19	0.104	0.139	0.275	0.812
283-04-02	1985	2001	17	0.113	0.056	0.112	1.148	0.365	0.691
283-05-02	1988	2001	14	0.123	0.102	0.077	0.963	0.41	0.48
283-06-02	1991	2001	1	0.156	0.133	0.122	0.609	0.426	0.657
284-01-99	1989	1998	10	0.21	0.203	0.121	0.378	0.405	0.634
295-05-99	1987	1998	12	0.177	0.152	0.106	0.413	0.388	0.656
305-01-94	1979	1993	15	0.137	0.078	0.117	0.653	0.502	0.775
305-02-94	1981	1993	13	0.145	0.152	0.087	0.281	0.454	0.44
305-02-99	1987	1998	12	0.157	0.152	0.095	0.197	0.2	0.751
305-02-99	1987	1998	12	0.113	0.108	0.068	0.297	0.338	0.411
305-03-94	1981	1993	13	0.133	0.109	0.092	0.474	0.441	0.617
305-03-99	1985	1998	14	0.154	0.145	0.098	0.673	0.48	0.701
305-03-99	1983	1998	16	0.125	0.072	0.095	0.62	0.277	0.756
305-04-94	1979	1993	15	0.149	0.117	0.108	0.117	0.216	0.887
305-04-99	1992	1998	7	0.217	0.262	0.112	-0.143	0.349	0.469
UID	first	last	Age	mean	median	stdev	skew	sens	ar1
305-04-99	1990	1998	9	0.17	0.15	0.093	0.313	0.418	0.414

307-02-99	1983	1998	16	0.125	0.07	0.106	0.869	0.291	0.763
07-02-99	1984	1998	15	0.103	0.069	0.075	1.273	0.452	0.522
307-03-99	1993	1998	6	0.255	0.245	0.121	0.131	0.536	-0.128
307-03-99	1990	1998	9	0.181	0.149	0.1	0.553	0.509	0.092
310-01-99	1983	1998	16	0.139	0.07	0.154	1.351	0.372	0.689
310-01-99	1982	1996	15	0.135	0.07	0.137	1.125	0.354	0.665
310-02-99	1986	1998	13	0.146	0.153	0.051	0.329	0.318	0.138
310-02-99	1984	1996	13	0.142	0.064	0.139	1.214	0.364	0.566
311-02-94	1979	1993	15	0.144	0.083	0.172	1.724	0.404	0.519
311-05-94	1981	1993	13	0.15	0.078	0.197	2.195	0.42	0.297
311-06-94	1982	1993	12	0.145	0.106	0.106	0.546	0.491	0.585
319-02-02	1983	2001	19	0.119	0.054	0.128	1.764	0.423	0.565
319-02-02	1984	2001	18	0.133	0.088	0.119	1.249	0.325	0.677
323-01-94	1978	1993	16	0.132	0.072	0.13	1.27	0.427	0.316
323-01-99	1983	1996	14	0.12	0.074	0.106	1.796	0.352	0.305
323-04-94	1985	1993	9	0.135	0.109	0.059	0.019	0.208	0.626
331-01-02	1991	2001	11	0.122	0.102	0.066	0.162	0.608	-0.328
334-01-02	1992	2001	10	0.142	0.143	0.068	0.404	0.537	-0.042
334-02-02	1994	2001	8	0.201	0.2	0.089	-0.431	0.541	0.004
340-07-02	1993	2001	9	0.172	0.133	0.095	0.679	0.342	0.63
340-10-02	1993	2001	9	0.212	0.162	0.144	0.589	0.362	0.595
340-10-02	1992	2001	10	0.179	0.149	0.1	0.135	0.429	0.218
346-02-02	1991	2001	11	0.155	0.102	0.107	0.755	0.392	0.621
356-04-02	1990	2001	12	0.115	0.083	0.084	0.714	0.41	0.709
356-26-02	1988	2001	14	0.124	0.111	0.071	0.316	0.352	0.598
357-02-02	1996	2001	6	0.175	0.152	0.1	0.324	0.536	0.269
413-26-99	1980	1998	19	0.087	0.058	0.07	1.461	0.245	0.799
413-38-99	1981	1998	18	0.095	0.06	0.077	1.352	0.377	0.743
413-57-99	1979	1998	20	0.078	0.053	0.062	1.5	0.249	0.83
421-01-99	1991	1998	8	0.168	0.148	0.097	0.775	0.431	0.358
421-14-99	1993	1998	6	0.177	0.162	0.098	0.608	0.519	0.221
432-08-99	1988	1998	11	0.078	0.07	0.036	0.396	0.284	0.664
432-12-99	1989	1998	10	0.121	0.097	0.086	1.651	0.494	0.041
469-03-94	1983	1993	11	1.29	1.457	0.393	-1.218	0.144	0.583
469-05-94	1976	1993	18	1.402	1.564	0.473	-1.19	0.126	0.742
469-06-94	1981	1993	13	1.368	1.524	0.4	-1.153	0.12	0.641
469-10-94	1980	1993	14	1.498	1.7	0.484	-1.301	0.146	0.642
469-11-94	1986	1993	8	0.859	0.898	0.459	-0.051	0.27	0.643
493-02-02	1986	2001	16	1.548	1.785	0.613	-0.923	0.142	0.781
493-10-02	1981	2001	21	1.327	1.55	0.579	-0.811	0.129	0.85

Table 8. Raw increment ring width data from Pliocene S. confraga valves collected from the coastal plain in Virginia. Measurements are in units of $\mathbf{0 0 1 m m}$ of the
thickness of increment ring width for each year. Unique identification displays valve. Numbers refer to increment age.

UID	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
SC001R	0.40	0.38	0.19	0.19	0.24	0.17	0.08	0.04	0.06	0.08
SC003L	0.22	0.16	0.31	0.47						
SC004R	0.20	0.19	0.29	0.18						
SC005R	0.24	0.36	0.16	0.20						
SC006R	0.39	0.20	0.17	0.10	0.12					
SC007R	0.32	0.22	0.07	0.21	0.12	0.16				
SC008R	0.38	0.04	0.12	0.15	0.12	0.02				
SC009L	0.27	0.28	0.22	0.12	0.13					
SC010L	0.34	0.15	0.17	0.13						
SC011R	0.49	0.22	0.29	0.14	0.11					
SC012L	0.32	0.17	0.20	0.11	0.16					
SC013L	0.19	0.20	0.25	0.15	0.02					
SC014L	0.15	0.21	0.17	0.18						
SC015R	0.16	0.34	0.20	0.21						
SC016R	0.21	0.29	0.16	0.12	0.16	0.08	0.09			
SC017L	0.21	0.15	0.23	0.12	0.09					
SC018L	0.20	0.19	0.13	0.08	0.05	0.07	0.08	0.17	0.12	

Figure 1. Comparison of valve and chronodrophore lengths (mm) against age for live-collected Hemimactra (Spisula) solidissima from along the mid-Atlantic Bight. Valve and chrondrophore length versus age display similar growth curves. Valve versus chondrophore length displays a linear relationship $\left(R^{2}=0.84, p=1.64 \times 10^{-20}\right)$.

Figure 12. Black and white images of the Spisula chondrophore prior to sampling for isotopic analysis. SS30702 and SS190702 are S. solidissima (modern), SSFLA1 is S.s.simlis, (modern), and SC001A and SC003 are S. confraga (Pliocene).

Figure 3. Mean average surface and bottom seawater temperature and salinity from the northern mid-Atlantic Bight. Data is from the Northeast Fisheries Science center (NEFSC) Marine Resources Monitoring, Assessment, and Prediction (MARMAP) program years 1977-2002.

Figure 4. Standardized growth indices from the regional area chronologies in the New York Bight (612 \& 613) and off the New Jersey shore (614 \& 615) (black line) plotted with mean annual surface and bottom seawater temperatures (red line) and salinity (blue dashed line) from the northern mid-Atlantic Bight (NEFSCMARMAP data).

Figure 5. Standardized growth indices from the regional area chronologies off the Delmarva peninsula (625 \& 626) and off the Hampton roadstead (631 \& 632) (black line) plotted with mean annual surface and bottom seawater temperatures (red line) and salinity (blue dashed line) from the northern mid-Atlantic Bight (NEFSCMARMAP data).

APPENDIX B: GLYCYMERIS AND PANOPEA

Table 1. Shell genus and species identification and measurements of preservation, weight, length, width and valve for unpaired Glycymerididae

Identificati on	Genus	Species ${ }^{1}$	$\underset{2}{7} \text { Broken }$	Weigh $\mathrm{t}(\mathrm{~g})$	Length (mm)	Width (mm)	$\begin{aligned} & \hline \hline \text { Valv } \\ & \mathrm{e} \\ & \hline \end{aligned}$
CHR-A01	Costaglycymer is	subovata american		10.18	54.35	57.76	Righ t
CHR-A02	Glycymeris	a american		27.63	67.06	65.65	Left
CHR-A03	Glycymeris	a american		22.15	61.53	71.19	Left
CHR-A04	Glycymeris	a american		25.21	67.58	69.27	Left
CHR-A05	Glycymeris	a american		40.64	74.63	76.08	Left
CHR-A06	Glycymeris Costaglycymer	a	YES	20.12	66.35	71.24	Left Righ
CHR-A07	is	subovata american		26.61	60.48	62.13	t
CHR-A08	Glycymeris Costaglycymer	a		8.40	51.27	53.31	Left
CHR-A09	is	subovata american		16.97	58.14	61.06	Left
CHR-A10	Glycymeris Costaglycymer	a		23.72	65.04	65.65	Left Righ
CHR-B01	is Costaglycymer	subovata		13.95	54.4	58.11	$\begin{aligned} & \mathrm{t} \\ & \text { Righ } \end{aligned}$
CHR-B02	is	subovata		13.40	54.65	54.42	t
CHR-B03	Glycymeris Costaglycymer	?	YES	10.29	51.42	55.53	Left
CHR-B04	is Costaglycymer	subovata		11.03	47.85	51.85	Left
CHR-B05	is Costaglycymer	subovata		16.39	59.66	62.25	Left
CHR-B06	is Costaglycymer	subovata		21.20	60.85	62.14	Left
CHR-B07	is	subovata american		16.46	54.97	57.5	Left
CHR-B08	Glycymeris	a	YES	15.26	62.27	65.08	Left

	Costaglycymer is	subovata american		28.18	60.23	68.57		
CHR-B09		Righ t						
CHR-B10	Glycymeris	american		14.26	60.85	64.39		Righ
:---								
t								

CHR-I09	Glycymeris	american	YES	18.76	59.87	63.09	Left Righ
		a					
		american					
CHR-I10	Glycymeris	a		29.16	71.95	68.79	
		american					Righ
CHR-J01	Glycymeris	a		31.39	65.35	67.98	t
		american					
CHR-J02 Identificati on	Glycymeris Genus	a	Broken	12.45	57.1	59.9	Left
		Species ${ }^{1}$		Weigh t (g)	Length (mm)	Width (mm)	Valv e
CHR-J03	Costaglycymer						
	is	subovata		20.71	58.71	58.77	Left
		american					
CHR-J04	Glycymeris	a		23.17	64.72	71.29	Left
		american					
CHR-J05	Glycymeris	a		40.68	73.52	77.72	Left
		american					
CHR-J06	Glycymeris	a		30.82	76.02	74.13	Left
		american					Righ
CHR-J07	Glycymeris	a		25.40	65.01	67.27	t
		american					
CHR-J08	Glycymeris	a		25.18	66.43	68.62	Left
		american					Righ
CHR-J09	Glycymeris	a		17.38	59.04	63.18	t
		american					Righ
CHR-K02	Glycymeris	a		18.03	67.61	69.01	t
		american					
CHR-K03	Glycymeris	a		29.88	64.87	69.69	Left
		american					
CHR-K04	Glycymeris	a		33.60	69.5	68.95	Left
		american					Righ
CHR-K05	Glycymeris	a		21.83	65.27	67.35	t
		american					Righ
CHR-K06	Glycymeris	a	YES	20.02	63.76	69.02	t
		american					
CHR-K07	Glycymeris	a		22.88	63.69	64.19	Left
		american					Righ
CHR-K08	Glycymeris	a		22.48	64.55	69.38	t
		american					
CHR-K09	Glycymeris	a		24.94	61.19	63.82	Left
		american					
CHR-K10	Glycymeris	a	YES	16.83	--	--	--
		american					Righ
CHR-L01	Glycymeris	a		25.11	71.77	69.76	t
		american					Righ
CHR-L02	Glycymeris	a		25.17	70.76	74.37	t

${ }^{1}$ Identification based on R.D.K. Thomas 1970 and L. W. Ward. 1992
${ }^{2}$ 'Broken' refers to a state of preservation where more than fifty-percent of the valve is unmeasureable (either missing or too fragmented) using calipers.

Table 29. Shell genus and species identification and measurements of preservation, articulated shell weight, right valve weight, best preserved length and width for paired Glycymeris
$\left.\begin{array}{llllllll}\hline \hline \text { UID } & \text { Genus } & \text { Species }^{1} & \begin{array}{l}\text { Broken } \\ 2\end{array} & \begin{array}{l}\text { Weigh } \\ \mathrm{t}(\mathrm{g})\end{array} & \begin{array}{l}\text { Right } \\ \text { Valve } \\ \text { Weigh }\end{array} & \begin{array}{l}\text { Lengt } \\ \mathrm{h} \\ (\mathrm{mm})\end{array} & \begin{array}{l}\text { Widt } \\ \text { h } \\ (\mathrm{mm})\end{array} \\ \hline & & & & & \\ \mathrm{t}(\mathrm{g})\end{array}\right]$

CHR-P09	Glycymeris	a american	YES	33.45	16.14	65.89	65.94
		a					
		american					
CHR-P10	Glycymeris	a		26.85	14.42	60.28	61.85
CHR-		american					
Q01	Glycymeris	a		34.90	18.71	64.30	65.29
CHR-		american					
Q02	Glycymeris	a		24.86	12.36	55.55	58.34
CHR-	Costaglycymeri						
Q03	s	subovata		36.23	19.37	60.04	60.89
CHR-		american					
Q04	Glycymeris	a	YES	20.38	--	--	--
CHR-		american					
Q05	Glycymeris	a		18.98	9.77	51.77	55.57
CHR-		american					
Q06	Glycymeris	a		17.96	8.55	47.67	51.29
CHR-		american					
Q07	Glycymeris	a		12.58	6.64	49.47	51.33
CHR-	Costaglycymeri						
Q08	s	subovata		29.40	14.66	53.64	56.63
CHR-	Costaglycymeri						
Q09	s	subovata		36.61	17.17	53.45	56.81
CHR-	Costaglycymeri						
Q10	s	subovata american		26.78	13.88	50.69	55.95
LTR-A01	Glycymeris	a		94.90	46.45	68.92	73.18

${ }^{1}$ Identification based on R.D.K. Thomas 1970 and L. W. Ward. 1992
${ }^{2}$ 'Broken' refers to a state of preservation where more than fifty-percent of the valve is unmeasureable (either missing or too fragmented) using calipers.

Table 3. Shell genus and species identification and measurements of preservation, weight, length, width and valve for unpaired Panopea reflexa

Identificati on	Genus	Specie s^{1}	Broke n^{2}	Weight (g)	Length (mm)	Width (mm)	Valv e
	Panope a	reflexa		33.72	64.45	106.85	Left Righ
LTR-W01	a Panope a	reflexa		37.96	68.77	100.96	t

LTR-W03	a Panope	reflexa		48.77	71.17	107.5	t
LTR-W04	Panope	reflexa	YES	45.49	74.31	--	Left Righ
LTR-W05	$\begin{aligned} & \text { Panope } \end{aligned}$	reflexa	YES	25.48	69.53	--	t
LTR-W06	a Panope	reflexa		48.91	65.13	110.24	
LTR-W07	$\begin{aligned} & \text { Panope } \end{aligned}$	reflexa		51.34	63.9	103.8	
LTR-W08	Panope	reflexa		36.06	67.94	101.08	Left Righ
LTR-W09	Panope	reflexa		21.67	60.05	100.05	t
LTR-W10	$\begin{aligned} & \text { Panope } \end{aligned}$	reflexa		42.68	74.59	113.43	Left Righ
LTR-X01	Panope	reflexa	YES	43.83	--	--	$\begin{aligned} & \mathrm{t} \\ & \text { Righ } \end{aligned}$
LTR-X02	$\begin{aligned} & \text { Panope } \end{aligned}$	reflexa	YES	26.79	--	--	Righ
LTR-X03	$\begin{aligned} & \text { a } \\ & \text { Panope } \end{aligned}$	reflexa		71.74	71.15	111.96	t ${ }^{\text {Righ }}$
LTR-X04	a	reflexa		73.58	65.96	94.72	t

[^0]Table 4. Shell genus and species identification and measurements of preservation, articulated shell weight, right valve weight, best preserved length and width for paired Panopea reflexa

UID	Genus	Species 1	Broken 2	Weight (g)	Right Valve Weight (g)	Length (mm)	Width (mm)
LTR-X05	Panopea	reflexa	49.27	24.62	63.18	97.29	
LTR-X06	Panopea	reflexa		78.45	38.36	65.53	107.37
LTR-X07	Panopea	reflexa	139.68	70.26	68.79	109.04	

${ }^{1}$ Identification based on L. W. Ward. 1992
${ }^{2}$ 'Broken' refers to a state of preservation where more than fifty-percent of the valve is unmeasureable (either missing or too fragmented) using calipers.

Table 10. These are measurements in the units of $\mathbf{. 0 0 1} \mathbf{~ m m}$ for the thickness of external (EX) increment widths for specimens of Glycymeris americana from the Yorktown and Chowan River Formations. Missing values and end of record code is -999. The unique identification (UID) of each shell is listed next to age arranged in decades (floating chronology). The $\mathbf{1 0}$ values following the decade are the $\mathbf{1 0}$ annual measurements for the $\mathbf{1 0}$ years of the decade.

UID	D	1	2	3	4	5	6	7	8	9	0
A02-EX		11.04	16.03		6.37		4.12	3.91	3.22	3.08	2.00
	0	6	6	4.964	1	4.619	9	3	5	1	4
	1				1.45		1.00	1.37	0.83	1.03	0.79
A02-EX	0	1.317	1.407	2.052	3	1.069	8	8	5	6	7
	2				0.59		0.39	0.69	0.49	0.55	0.43
A02-EX	0	0.505	0.466	0.515	6	0.487	6		9	5	3
	3				0.68		0.47	0.46	0.36	0.36	0.52
A02-EX	0	0.546	0.523	0.259	8	0.343	5	8	6	2	0
	4				0.50		0.37	0.24	0.48	0.53	0.54
A02-EX	0	0.616	0.461	0.621	1	0.596	2	8	2	8	9
	5										
A02-EX	0	0.787	0.304	-999							
					6.01		3.72	2.22	2.93	3.41	2.55
A03-EX	0	3.531	7.442	6.876	2	6.828	3	0	3	4	2
	1				1.66		0.77	1.01	1.22	0.89	0.78
A03-EX	0	1.549	1.596	2.240	7	1.821	8	3	6	7	3
	2				1.66		0.77	1.01	1.22	0.89	0.78
A03-EX	0	1.549	1.596	2.240	7	1.821	8	3	6	7	3
	3				0.26		0.23	0.15	0.26		
A03-EX	0	0.337	0.200	0.222	5	0.248	3	9	0	-999	
					4.88		5.58	4.83	4.58	2.88	4.26
A04-EX	0	3.312	5.537	3.957	6	7.139	0	9	0	8	4
	1				4.88		5.58	4.83	4.58	2.88	4.26
A04-EX	0	3.312	5.537	3.957	6	7.139	0	9	0	8	4
	2				0.53		0.46	0.52	0.60	0.11	0.10
A04-EX	0	0.589	0.567	1.073	6	0.603	9	4	5	3	6
	3				0.34		0.25	0.18	0.42	0.44	0.27
A04-EX	0	0.893	0.402	0.332	8	0.470	9	2	6	5	6

	4							3.32	2.92	5.70	4.60
A04-EX	0	0.151	0.083	0.154	-999		3.18				
					4.19						
A06-EX	0	1.679	3.064	4.175	2	2.640	2	9	7	2	1
	1				2.45		2.66	1.87	0.94	1.57	1.54
A06-EX	0	4.584	2.213	1.985	0	2.613	4	7	6	2	1
	2				0.22		0.47	0.55	0.39	0.51	0.64
A06-EX	0	1.705	1.506	0.588	3	0.174	2	1	6	6	2
	3										
A06-EX	0	1.067	-999								
					6.26		3.15	3.15	1.65	2.10	0.03
A08-EX	0	4.127	7.649	8.216	0	5.233	6	9	6	9	9
	1				0.67		1.05	1.22			
A08-EX	0	0.950	0.950	0.475	4	0.580	8	1	-999		
					5.06		5.61	5.57	3.02	3.33	5.23
A10-EX	0	0.873	1.142	3.779		5.034	1	5	2	6	4
	1				1.35		1.82	1.21	1.12	1.32	1.40
A10-EX	0	2.916	2.717	2.773	1	1.244	5	4	9	0	7
	2				0.84		0.07	0.38	0.43	0.28	0.51
A10-EX	0	1.187	0.685	0.614	3	0.626	0	8	0	,	4
	3				0.45		0.15	0.10	0.14	0.20	0.31
A10-EX	0	0.348	0.443	0.217	8	0.240	9	8	0	5	9
	4										
A10-EX	0	-999									
			12.17		9.96		5.58	1.43	0.87	1.11	1.07
B03-EX	0	4.236	4	8.283	1	5.138	8	0	1	1	3
	1										
B03-EX	0	0.567	-999								
					5.19		5.55	2.64	4.14	2.79	2.42
B10-EX	0	3.658	4.688	7.948	8	6.960	9	1	2	7	1
	1				0.67		0.71	0.74	1.10	0.58	0.35
B10-EX	0	2.024	1.524	0.623	3	1.843	5	3	0	1	9
	2				0.33		0.39	0.50	0.45		
B10-EX	0	0.292	0.171	0.261	0	1.144	8	7	7	-999	
					4.20		5.41	5.97	3.91	3.42	3.78
C01-EX	0	4.944	5.255	5.793	8	3.669	0	3	6	5	4
	1				0.66		0.84	0.99			
C01-EX	0	0.896	1.168	1.637	9	0.828	4	0	-999		
					6.69		3.63	5.09	6.07	3.42	2.74
C02-EX	0	4.713	3.879	4.347	4	3.274	7	8	5	3	3
	1				0.51		0.38	0.47	0.39	0.68	0.57
C02-EX	0	2.531	2.376	0.438	5	0.915	7	6	8	3	9
	2										
C02-EX	0	-999									
					2.92		4.19	2.93	3.42	3.02	2.34
C04-EX	0	1.414	2.431	3.567	8	3.093	7	3	2	5	9

$\left.\begin{array}{llllllllllll} & 1 & & & & & 2.08 & & 1.80 & 1.98 & 1.07 & 2.06\end{array}\right) 0.83$

D05-EX	2				0.28		1.18	0.96	0.75	0.48	0.76
	0	0.457	0.479	0.541	0	0.450	3	9	3	0	7
	3				0.43		0.57	0.62	0.37	0.56	0.49
D05-EX	0	0.540	0.656	0.561	2	0.350	3	7	9	1	6
	4										
D05-EX	0	-999									
					2.96		5.64	5.20	6.42	7.48	5.59
E01-EX	0	6.917	4.861	5.575	6	4.458	6	5	9	5	9
	1				0.71		0.79	1.16	0.23		
E01-EX	0	0.649	0.538	0.359	5	0.828	8	1	7	-999	
					4.21		2.77	2.64	2.56	1.65	1.38
E05-EX	0	3.285	4.322	5.111	8	3.585	3	1		5	9
	1				1.40		0.94	1.45	3.95	0.61	0.61
E05-EX	0	1.360	1.531	2.003	1	0.556	7	2	6	0	1
	2				0.71		0.75	0.93	0.65	0.74	1.37
E05-EX	0	1.087	0.723	0.796	9	0.363	3	2	8	7	3
	3										
E05-EX	0	-999									
					1.88		5.20	5.17	3.63	2.73	2.28
E10-EX	0	3.908	4.296	6.248	7	2.143	4	1	1	4	1
	1				0.94		1.02	0.78	0.70	1.30	0.90
E10-EX	0	1.907	1.974	1.728	3	0.970	6	7	4	0	2
	2				0.55						
E10-EX	0	0.557	0.391	0.438	1	-999					
					9.35		6.05	5.48	3.83	3.01	2.63
F03-EX	0	3.574	4.214	5.474	2	6.199	2	6	2	4	9
	1				0.75		0.73	0.81			
F03-EX	0	3.779	2.357	1.106	2	0.785	9	1	-999		
					4.16		4.20	2.63	2.36	2.55	1.37
F04-EX	0	4.243	6.876	6.966	6	4.368	4	8	5	3	7
	1				1.26		0.63	0.94	1.11	0.89	0.78
F04-EX	0	1.139	1.142	1.227	0	0.673	2	1	7	1	8
	2				1.04		0.92	0.99	0.51	1.22	1.33
F04-EX	0	0.770	0.986	0.959	0	0.844	6	1	3	7	3
	3				0.29		0.35	1.30			
F04-EX	0	0.497	0.590	0.316	7	0.253	2	7	-999		
					5.75		6.08	3.30	2.69	2.69	2.38
F08-EX	0	5.718	7.200	6.570	4	4.574	7	0	4	6	6
	1				0.95		0.63	1.02	0.60	0.84	1.02
F08-EX	0	2.228	1.571	1.562	9	0.697	0	4	6	7	3
	2				0.57		0.84	0.68	0.29	0.47	0.49
F08-EX	0	1.003	0.528	0.451	2	0.550	7	8	8	3	2
	3										
F08-EX	0	0.314	-999								
					6.79		4.52	2.63	3.52	3.01	2.15
F09-EX	0	3.699	5.738	6.894	9	5.559	4	9	5	6	5

F09-EX	1				2.19		0.96	1.53	1.55	1.07	2.05
	0	1.177	0.016	0.952	9	2.954	3	9	4	3	2
	2				0.78		0.45	0.82	1.22	0.92	0.77
F09-EX	0	1.387	0.777	1.614	2	0.529	3	7	1	4	8
	3				0.36		0.94	0.23	0.31	0.42	0.43
F09-EX	0	0.739	0.540	0.336	9	0.938	4	3	4	2	6
	4										
F09-EX	0	0.462	0.355	-999							
					6.62		5.91	4.33	2.23	2.95	2.71
G02-EX	0	3.494	4.082	8.279	7	6.505	9	8	9	1	2
	1				1.08		1.65	0.40	0.62	0.58	0.95
G02-EX	0	2.299	0.734	0.855	8	0.958	0	2	1	3	1
	2				0.62		0.36	0.24	0.26	0.16	0.53
G02-EX	0	0.828	0.491	0.469	2	0.466	0	6	5	8	6
	3				0.28		0.20				
G02-EX	0	0.611	0.353	0.138	6	0.284	9	-999			
					4.39		5.23	4.85	5.31	3.61	2.50
G03-EX	0	2.739	3.670	3.851	3	5.558	4	7	2	5	1
	1				0.98		0.97	0.82	0.70	0.60	0.45
G03-EX	0	2.751	2.409	2.037	4	0.942	9	1	3	2	8
	2				0.45		0.66	0.69	0.99	0.57	0.35
G03-EX	0	0.591	0.922	0.703	1	0.362	6	1	2	4	3
	3				0.33						
G03-EX	0	0.348	0.594	0.495	0	0.402	-999				
					6.87		5.69	2.09	2.75	2.75	2.88
G04-EX	0	3.499	3.603	4.518	7	5.831	6	2	2	2	8
	1				2.12		1.44	2.65	2.28	1.14	1.24
G04-EX	0	3.603	2.629	2.313	1	5.905	4	0	3	,	0
	2				0.54		0.44	0.39	0.46	0.34	0.56
G04-EX	0	0.500	0.622	0.523	7	0.804	5	6	0	0	1
	3				0.25		0.72	0.33	0.27		
G04-EX	0	0.370	0.636	0.303	8	0.392	6	7	7	-999	
					2.84		3.14	3.31	2.92	2.64	2.68
G05-EX	0	5.398	3.582	5.936	6	4.451	5	3	5	6	6
	1				1.91		1.06	1.57	1.33	0.68	0.75
G05-EX	0	3.383	2.520	1.499	4	1.551	5	3	5	6	9
	2				0.62						
G05-EX	0	0.800	1.010	1.066	7	-999					
					6.88		5.62	5.02	2.89	2.49	1.56
G06-EX	0	4.177	6.708	5.709	1	4.451	9	0	9	6	8
	1				2.00		1.42	0.58	6.60	0.90	1.37
G06-EX	0	1.255	1.849	2.256	7	1.859	4	9	2	8	
	2				0.55		0.59	0.17	0.52	0.48	0.59
G06-EX	0	0.329	0.575	0.744	7	0.391	1	8	7	3	1
	3				0.70		0.54	0.46	0.68	0.38	0.47
G06-EX	0	0.548	0.401	0.443	5	0.454	0	2	5	6	3

	4										
G06-EX	0	-999									
					6.21	10.60	4.81	3.61	3.73	3.04	1.35
G08-EX	0	3.502	4.912	6.035	4	8	4	5	5	3	4
	1				0.94		0.53	0.62	0.67	0.49	0.83
G08-EX	0	1.197	1.525	1.498	2	1.020	2	8	1	6	1
	2										
G08-EX	0	-999									
					2.74		4.73	5.25	5.17	5.03	3.47
G09-EX	0	2.733	3.387	4.753	4	3.997	5	0	3	4	7
	1		14.10		1.80		1.10	1.26	5.06	1.07	0.69
G09-EX	0	2.520	8	2.028	5	0.995	7	7	2	8	5
	2				1.21		0.39	0.20	0.63	0.18	0.26
G09-EX	0	0.438	0.288	0.470	3	5.210	5	1	1	6	3
	3				0.40		0.56	0.54			
G09-EX	0	0.310	0.746	0.382	3	0.429	1	2	-999		
					3.26		4.94	4.51	2.78	2.30	1.68
G10-EX	0	2.226	4.703	4.011	5	5.358	2	8	0	1	8
	1				1.17		4.06	1.50	1.79	1.23	
G10-EX	0	1.791	1.969	2.132	1	1.238	4	9	3	8	1. ${ }^{13} 5$
	2				0.77		1.04	0.40	0.29	1.57	1.52
G10-EX	0	1.035	0.439	0.928	9	0.381	6	7	1	6	5
	3				0.56		0.44				
G10-EX	0	1.440	0.568	0.551	0	0.644	1	-999			
GLYA-					7.54		4.09	4.74	4.36	2.69	2.22
EX	0	7.600	3.984	4.870	1	2.368	2	3	7	5	3
GLYA-	1				1.08		1.42	0.74	0.71	0.49	0.65
EX	0	1.078	0.994	1.570	8	0.982	6	3	0	5	6
GLYA-	2				0.96		1.11	1.01			
EX	0	0.589	0.600	0.551	6	0.560	2	2	-999		
GLYC-				10.65	7.43		4.69	2.29	1.56	3.77	2.75
EX	0	6.415	6.293	9	3	5.116	7	8	9	1	1
GLYC-	1				0.97		0.57	0.03	0.52	0.60	0.58
EX	0	0.913	0.781	1.091	8	0.573	7	5	2	1	1
GLYC-	2				0.46		0.41	0.44	0.24	0.23	0.28
EX	0	0.531	0.455	0.542	8	0.296	2	4	2	2	5
GLYC-	3				0.44		0.31	0.21	0.22	0.14	0.16
EX	0	0.338	0.188	0.176	2	0.226	4	0	9	4	5
GLYC-	4				0.23		0.35	0.45			
EX	0	0.128	0.118	0.292	6	0.183	8	7	-999		
					5.32		3.94	3.16	3.78	2.79	1.96
H03-EX	0	2.786	2.625	5.243	5	4.848	0	0	0	1	2
	1				1.49		0.55	0.35	0.49	0.78	0.34
H03-EX	0	3.531	2.636	2.075	2	1.262	4	2	7	6	3
	2										
H03-EX	0	-999									

H05-EX		5.485	4.415	4.409	3.66		1.74	2.69	1.11	4.78	3.08
	0				6	4.432	0	2	9		7
	1				1.52		1.15	0.90	1.10	0.68	1.01
H05-EX	0	4.058	1.565	1.961	3	1.948	3	8	1	1	1
	2				1.04		0.87	0.30	0.46	0.20	0.17
H05-EX	0	0.457	0.358	1.177	9	0.344	7	7	5	4	2
	3										
H05-EX	0	-999									
					5.38		2.58	2.45	4.03	2.25	1.98
H06-EX	0	3.559	4.656	4.275	5	3.850	8	4	2	0	6
	1				0.97						
H06-EX	0	2.839	2.369	1.025	4	-999					
					3.93		3.43	4.70	3.04	1.88	1.67
H09-EX	0	1.575	1.942	8.548	8	3.521	9	2	7	9	4
	1				1.17		1.15	1.39	1.47	1.54	0.95
H09-EX	0	2.566	1.533	1.912	0	2.224	5	7	5		8
	2				0.57		0.58	0.49	0.23		
H09-EX	0	0.275	0.353	0.341	2	0.485	6	0	2	-999	
					5.50		5.28	3.46	4.45	3.50	2.99
H10-EX	0	3.492	4.032	3.774	6	7.096	1	0	1	9	6
	1				0.53		1.77	1.62	1.26	1.22	1.29
H10-EX	0	3.013	4.389	0.799	4	0.794	1	7	8	9	5
	2				0.97		0.38	0.59	0.66	2.03	0.74
H10-EX	0	1.503	1.202	1.046	2	0.581	5	4	1	5	3
	3				0.70						
H10-EX	0	0.369	0.497	0.633	9	-999					
					4.45		4.47	4.30	5.00	4.11	2.42
I02-EX	0	3.107	4.199	8.768	1	5.294	0	4	3	4	6
	1				0.32		0.30	0.44	0.30		
I02-EX	0	1.458	1.821	0.797	5	0.475	4	6	3	-999	
					4.95		4.37	4.35	3.30	2.24	1.86
I03-EX	0	3.303	4.066	8.251		5.631	8	8	4	8	7
	1				0.75		1.24	0.90	0.93	0.60	0.53
I03-EX	0	1.746	2.498	0.775	9	0.813	5	0	4	7	2
	2										
I03-EX	0	-999									
					5.82		5.87	3.40	4.01	2.20	1.24
I04-EX	0	3.772	4.563	5.301	5	6.023	3	6	8	6	9
	1				0.70		0.91	1.52	1.42	0.97	0.54
I04-EX	0	2.891	1.727	1.397	6	0.804	3	7	2	9	8
	2				0.78						
I04-EX	0	0.491	0.853	0.835	0	0.761	-999				
					3.22		3.70	4.02	2.58	2.33	2.07
I06-EX	0	3.345	4.393	2.620	0	1.668	0	8	6	5	2
	1				4.10		3.56	2.61	1.86	0.91	1.04
I06-EX	0	1.838	3.763	3.766	3	4.772	7	2	3	2	9

I06-EX	2	0.745	0.552	0.959	0.64	0.720	0.63	0.72	0.76	$\begin{aligned} & 0.60 \\ & 9 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 8 \end{aligned}$
	0				9			2			
	3				0.46		0.51	0.49	0.38	0.35	0.40
I06-EX	0	0.433	0.369	0.454	7	0.452	2	2	8	6	2
	4				0.44						
I06-EX	0	0.375	0.310	0.550	9	0.289	-999				
					4.98		5.20	4.36	3.36	2.56	2.57
J01-EX	0	3.062	4.760	7.481	6	4.195	8	1	9	3	7
	1				1.29		1.03	1.02	1.32	1.01	0.77
J01-EX	0	2.368	1.515	1.254	4	1.016	6	7	1	5	4
	2				0.35		0.50	0.39	0.67	0.40	0.31
J01-EX	0	0.595	0.384	0.554	8	0.422	7	7	3	8	9
	3				0.35		0.31	0.85	0.23	0.11	0.34
J01-EX	0	0.275	0.330	0.521	3	0.465	1	2	4	1	1
	4				0.23						
J01-EX	0	0.217	0.201	0.473	7	0.223	-999				
					6.04		4.09	1.99	2.74	2.83	1.66
J02-EX	0	4.206	8.202	7.802	1	4.522	6	4	6	9	3
	1				1.28		0.55	0.70	1.36	0.73	0.41
J02-EX	0	2.265	0.872	0.948	7	0.891	3	8	7	8	9
	2										
J02-EX	0	0.247	-999								
					5.20		5.56	4.67	4.08	2.11	2.63
J04-EX	0	4.277	4.079	5.037	6	4.347	7	7	2	2	1
	1				1.67		1.25	1.32	1.13	0.53	0.58
J04-EX	0	2.488	2.773	1.992	7	2.005	1	0	3	2	3
	2				0.34		0.43	0.56	0.31		
J04-EX	0	0.726	0.651	0.665	1	0.374	3	1	7	-999	
					4.62		4.40	4.05	5.18	4.05	3.31
J05-EX	0	2.486	3.510	3.899	2	3.007	2	7	2	3	2
	1				2.05		1.65	1.81	1.30	1.14	1.27
J05-EX	0	2.871	2.894	2.114	1	1.773	8	4	1	5	0
	2				2.78		2.47	0.69	0.28	0.30	0.29
J05-EX	0	1.048	0.859	0.720	2	0.427	4	6	6	8	9
	3				0.24		0.37	0.62	0.35	0.37	0.38
J05-EX	0	0.631	0.315	0.305	6	0.526	5	1	2	8	2
	4				0.50		0.37	0.37	0.45		
J05-EX	0	0.547	0.352	0.335	3	0.473	2	8	1	-999	
					7.37		5.76	4.19	2.66	2.39	1.88
J06-EX	0	5.832	7.664	5.771	7	5.362	6	3	3	8	7
	1				0.93		1.44	0.88	0.99	0.66	0.55
J06-EX	0	1.385	2.006	1.476	7	1.058	0	7	0	6	0
	2				0.90		0.65	0.74	0.86	0.50	0.33
J06-EX	0	0.705	0.602	0.525	5	0.386	7	5	1	5	0
	3				2.21		0.25	0.31	0.34	0.27	0.40
J06-EX	0	1.137	0.375	0.458	6	0.383	1	0	2	6	7

J06-EX	4				0.22		0.16	4.17	0.24	0.44	0.31
	0	0.345	0.272	0.411	0	0.286	5	6	0	1	0
	5										
J06-EX	0	0.289	0.344	0.275	-999						
					3.21		5.10	4.08	3.51	3.85	3.31
J07-EX	0	1.575	4.037	2.934	9	4.998	2	3	5	9	6
	1				1.75		1.67	1.18	0.94	0.81	0.97
J07-EX	0	2.178	1.485	2.091	8	1.840	2	0	7	4	1
	2				0.34		0.58	0.68	0.60	0.79	0.85
J07-EX	0	1.012	0.671	0.320	3	0.025	3	2	5	3	8
	3				0.31		0.31	0.60	0.29	0.60	0.34
J07-EX	0	0.342	0.913	0.594	0	0.243	0	5	7	5	1
	4				0.42		0.26	0.15	0.28	0.31	0.27
J07-EX	0	0.253	0.386	0.080	9	0.221	6	6	7	1	8
	5										
J07-EX	0	0.396	-999								
					5.70		5.61	4.29	3.32	2.48	0.92
J08-EX	0	2.920	6.761	6.712	9	5.985	1	0	3	6	1
	1				0.77		0.63	1.24	0.86	0.82	0.88
J08-EX	0	1.456	1.925	1.131	0	0.836	9	3	1	5	7
	2				0.85		0.95	0.53	0.16	0.64	0.39
J08-EX	0	0.803	0.492	0.727	8	0.617	7	7	0	4	7
	3				0.59		0.50				
J08-EX	0	0.496	0.408	0.176	8	0.508	6	-999			
					7.10		2.72	4.07	2.69	4.26	1.79
J09-EX	0	3.841	4.284	5.542	1	2.442	3	6	5	9	7
	1				0.94		1.05	1.25	2.21	2.03	1.36
J09-EX	0	2.420	1.493	2.087	0	0.473	7	1	1	6	4
	2										
J09-EX	0	1.211	0.924	0.991	-999						
					6.74		5.98	4.26	4.09	3.49	3.24
J10-EX	0	3.082	4.658	4.181	4	5.061	6	9	2	2	7
	1				2.47		0.76	2.08	0.50	0.35	0.44
J10-EX	0	2.361	1.905	2.875	9	1.993	2	6	2	0	7
	2				0.46		0.23	0.37	0.41		
J10-EX	0	0.339	0.280	0.363	4	0.271	7	5	4	-999	
					7.88		6.50	4.54	4.52	2.51	2.58
K02-EX	0	2.844	7.363	6.670	1	6.678	6	2	6	7	2
	1				1.36		1.16	0.95	0.86	0.43	0.87
K02-EX	0	2.266	1.890	1.421	0	0.693	7	9	8	0	2
	2				0.35		0.17	0.76	0.28		
K02-EX	0	0.221	0.662	0.554	5	0.176	4	0	6	-999	
					4.70		5.20	6.72	3.93	3.62	2.01
K04-EX	0	2.387	2.559	6.772	4	3.872	9	6	4	1	5
	1				1.39		1.22	1.33	1.12	1.33	0.90
K04-EX	0	1.761	1.548	1.623	5	1.145	2	1	3	5	5

	1				0.66		0.85	0.61	0.93	1.17	0.77
N03-EX	0	2.289	2.289	1.318	0	1.091	8	6	5	8	1
	2				0.57		0.83	0.71	0.67	0.20	
N03-EX	0	0.999	0.524	0.605	2	0.604	9	6	6	4	-999
					6.06		2.39	2.69	4.52	1.04	2.32
N04-EX	0	3.020	4.110	6.210	8	4.070	0	9	5	9	2
	1				0.82		1.21	1.24	1.14	0.76	1.47
N04-EX	0	2.763	2.322	1.848	1	0.717	5	4	1	7	5
	2				1.13		0.97	0.81	0.39	0.39	
N04-EX	0	1.382	1.475	0.745	8	0.785	3	3	7	3	-999
					7.15		6.31	3.41	2.87	1.87	1.46
N05-EX	0	5.919	6.300	6.976	8	4.987	6	0	7	1	1
	1				1.60		1.02	0.89	0.66	0.89	0.77
N05-EX	0	1.678	2.037	2.607	6	1.144	4	7	9	7	6
	2				0.47		0.31	0.35	0.29	0.29	0.38
N05-EX	0	0.743	1.144	0.578	9	0.622	4	8	7	7	6
	3										
N05-EX	0	0.358	0.627	0.254	-999						
					3.53		4.82	6.74	6.33	2.95	3.42
P01-EX	0	2.799	5.479	4.153	4	3.472	4	1	3	5	6
	1				2.00		1.41	1.32	1.23	0.93	0.71
P01-EX	0	3.273	3.198	3.163	2	1.221	5	2	8	9	1
	2				0.73		0.27	0.21	0.30		
P01-EX	0	0.956	0.785	0.807	0	0.769	3	1	6	-999	

Table 11. These are measurements in the units of $\mathbf{. 0 0 1} \mathrm{mm}$ for the thickness of internal (INT) increment widths for specimens of Glycymeris americana from the Yorktown and Chowan River Formations. Missing values and end of record code is -999. The unique identification (UID) of each shell is listed next to age arranged in decades (floating chronology). The $\mathbf{1 0}$ values following the decade are the $\mathbf{1 0}$ annual measurements for the $\mathbf{1 0}$ years of the decade.

UID	\mathbf{D}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{0}$
		10.90			3.32		4.17	3.60	4.40	2.98	3.67
A03-INT	0	8	8.249	3.460	1	5.923	3	2	9	5	2
	1				1.50		0.91	0.86	0.76	0.79	1.04
A03-INT	0	3.006	2.829	2.525	7	1.808	6	8	4	5	0
	2				0.54		0.62	0.71	0.61	0.61	0.63
A03-INT	0	1.039	0.950	0.761	4	0.903	1	5	4	7	9
	3				0.65						
A03-INT	0	0.623	0.651	0.668	4	0.463	-999				
					5.47		3.03	3.54	1.87	1.63	3.40
A04-INT	0	4.282	8.191	4.337	2	3.046	2	7	9	3	3

A04-INT	1				1.89		1.57	0.69	0.58	1.03	1.75
	0	4.576	3.671	4.285	7	2.386	3	1	1	9	0
	2				1.06		1.01	0.58	0.39	0.84	0.58
A04-INT	0	0.954	0.817	0.556	0	0.633	4	8	8	8	8
	3				0.43		0.47	0.43	0.35	0.60	0.44
A04-INT	0	0.647	0.603	0.484	6	0.532	1	6	0	0	2
	4				0.25						
A04-INT	0	0.220	0.220	0.272	3	-999					
					5.73		7.06	3.76	3.74	3.35	3.32
A05-INT	0	6.976	6.729	3.541	3	7.333	0	7	3	2	7
	1				1.74		1.17	0.67	0.79	1.64	1.26
A05-INT	0	1.826	2.160	2.126	2	2.149	3	1	6	0	6
	2				0.68		1.94	0.33	0.67	0.45	0.60
A05-INT	0	0.929	0.810	0.933	1	1.021	3	7	5	5	4
	3				0.82		0.69	0.66	0.39	0.73	0.58
A05-INT	0	0.814	0.542	0.786	3	0.431	1	2	3	6	8
	4				0.61		0.13	0.96	0.46	0.25	0.37
A05-INT	0	0.447	0.246	0.591	8	0.249	2	6	8	3	3
	5				0.60		0.42	0.30	0.32		
A05-INT	0	0.399	0.490	0.711	8	0.415	0	5	8	-999	
					2.81		1.74	6.08	6.08	4.22	4.09
A06-INT	0	6.840	5.442	5.841	4	3.605	6	1	3	8	0
	1				2.34		3.35	1.54	1.85	2.01	1.16
A06-INT	0	2.174	2.042	2.669	0	3.064	8	7	7	5	0
	2				0.43		0.78	0.59	0.77	0.35	0.33
A06-INT	0	0.752	0.376	0.378	2	0.787	2	8	2	7	1
	3										
A06-INT	0	0.463	0.428	-999							
					3.76		4.99	2.99	2.96	3.28	2.75
A08-INT	0	4.203	4.845	4.541	3	3.722	7	3	5	6	3
	1				2.00		0.77	0.76	0.56	0.69	0.68
A08-INT	0	2.190	3.378	3.434	5	2.206	9	7	8	7	3
	2										
A08-INT	0	-999									
					5.66		5.95	5.69	6.19	2.64	1.93
A10-INT	0	4.334	3.676	4.500	9	5.195	7	7	0	0	8
	1				1.26		2.50	1.42	0.66	0.92	0.91
A10-INT	0	3.101	2.400	3.357	5	0.892	5	7	5	3	2
	2				0.45		0.81	0.43	0.36	0.56	0.46
A10-INT	0	0.615	1.125	0.908	6	0.531	5	3	1	0	3
	3				0.49		0.38	0.20	0.31	0.38	0.21
A10-INT	0	0.358	0.509	0.410	8	0.393	7	9	0	8	7
	4				0.15		0.28	0.22	0.34	0.27	
A10-INT	0	0.551	0.228	0.468	5	0.302	7	5	3	7	-999
					7.35		4.31	2.45	3.45	1.52	4.26
B03-INT	0	6.177	3.810	4.709	6	8.356	4	2	7	0	3

| | 1 | | | | 0.49 | | | 0.36 | 0.78 | 0.63 | 0.73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.96

D03-INT		6.205	9.454	6.691	6.27		3.40				2.81
	0				3	3.365	0				7
	1				1.96		2.12	2.47	1.53	1.00	0.79
D03-INT	0	3.223	1.885	0.830	5	3.384	9	4	0	4	8
	2				1.22		0.61	0.81	0.79	0.41	0.33
D03-INT	0	1.400	0.817	0.738	1	0.815	3	2	6	8	6
	3				0.22		0.36	0.40	0.31	0.29	0.28
D03-INT	0	0.371	0.408	0.458	4	0.530	6	3	7	8	2
	4				1.24		0.77	0.39			
D03-INT	0	0.482	0.747	0.369	3	0.126	9	5	-999		
					4.49		9.02	3.54	3.15	1.95	2.61
D05-INT	0	6.175	3.011	5.415	9	3.280	3	4	6	7	0
	1				2.33		1.73	1.24	2.22	1.41	0.80
D05-INT	0	2.034	1.349	2.436	8	0.831	1	9	6	8	7
	2				0.76		0.62	0.95	0.38	0.58	0.70
D05-INT	0	0.615	0.292	0.705	2	1.343	4	8	9	2	7
	3				0.55		0.35	0.45	0.73	0.85	0.72
D05-INT	0	0.857	0.580	0.965	1	0.357	0	4	2	1	0
	4										
D05-INT	0	0.564	0.554	-999							
					5.44		3.75	4.91	2.76	3.31	3.51
D07-INT	0	4.227	3.073	3.028	1	4.515	1	8	6	4	8
	1				2.41		2.56	1.88	1.43	0.97	1.32
D07-INT	0	2.540	2.517	5.019	9	1.766	4	3	8	2	9
	2				0.61						
D07-INT	0	0.796	0.580	0.295	2	-999					
					5.78		2.87	2.39	2.20	1.07	1.00
D10-INT	0	6.091	3.671	5.730	1	5.786	4	8	5	4	5
	1				2.60		2.16	1.07	0.88	0.81	0.85
D10-INT	0	2.280	1.571	2.321	4	1.716	8	9	2	4	2
	2				1.48		0.74	0.42	0.72	0.58	0.24
D10-INT	0	1.023	0.313	0.671	3	0.917	5	0	1	4	3
	3				0.38		0.18	0.43	0.38	0.44	0.60
D10-INT	0	0.382	0.446	0.692	4	0.382	5	5	0	0	3
	4				0.30		0.71	0.65	0.41	0.62	0.55
D10-INT	0	0.308	0.400	0.400	1	0.360	3	0	8	5	9
	5										
D10-INT	0	0.310	-999								
					5.48		1.58	2.03	2.70	2.82	2.65
E05-INT	0	5.625	5.404	5.362	5	3.464	8	1	2	5	2
	1				2.00		1.30	1.30	1.12	1.16	0.78
E05-INT	0	1.542	2.925	1.592	0	1.928	3	3	5	4	2
	2				0.53		1.10	1.36	1.15		
E05-INT	0	0.867	0.907	0.651	7	0.572	5	6	3	-999	
					2.20		3.86	3.95	2.77	2.47	5.19
E10-INT	0	4.886	4.929	3.922	7	2.751	1	1	7	0	1

G09-INT					7.15		4.84	5.15	4.37	3.70	3.82
	0	7.826	5.650	5.587	8	5.432	4	8	9	4	0
	1				1.41		0.66	1.32	0.76	0.61	0.38
G09-INT	0	2.813	2.513	1.690	6	1.375	5	5	8	8	9
	2				0.65		0.29	0.71	0.37	0.28	0.35
G09-INT	0	0.507	1.091	0.991	7	0.764	0	7	0	6	9
	3				0.47		0.23	0.44	0.29	0.32	0.24
G09-INT	0	0.455	0.384	0.650	3	0.297	4	2	6	2	0
	4										
G09-INT	0	0.680	0.301	0.291	-999						
					3.81		4.94	4.41	4.88	4.88	4.62
G10-INT	0	8.676	5.493	4.292	7	4.750	1	2	4	7	5
	1				1.06		0.47	1.10	0.74	1.02	0.40
G10-INT	0	2.598	1.873	1.744	9	0.938	6	6	5	7	2
	2				0.35		0.35	0.57	0.68	0.57	0.21
G10-INT	0	0.713	0.395	0.168	4	0.422	1	0	8	8	5
	3				0.10		0.17	0.45	0.15		
G10-INT	0	0.210	0.254	0.354	3	0.170	3	7	9	-999	
		12.64			6.00		5.00	5.03	3.17	3.32	2.60
H01-INT	0	7	4.756	8.460	7	6.097	7	6	1	7	3
	1				1.03		0.55	0.36	0.44	0.21	0.26
H01-INT	0	1.312	1.830	1.611	5	0.515	7	6	8	5	2
	2				0.35		0.19	0.47	0.66	0.39	0.42
H01-INT	0	0.277	0.299	0.395	4	0.414	1	2	8	6	8
	3				0.45		0.77	0.65	0.31	0.37	0.62
H01-INT	0	0.673	0.408	0.608	2	0.630	3	7	1	3	6
	4				0.24		0.54	0.60	0.31		
H01-INT	0	0.408	0.387	0.537	4	0.185	0	9	0	-999	
					4.69		4.51	3.80	2.24	3.70	2.06
H03-INT	0	6.623	5.094	4.818	4	5.858	9	7	6	9	0
	1				1.70		0.46	0.55	0.66	0.77	0.74
H03-INT	0	0.551	3.051	2.862	7	1.743	5	6	0	8	4
	2										
H03-INT	0	0.783	1.386	0.431	-999						
					6.10		7.30	5.43	5.06	4.26	4.60
H05-INT	0	6.964	4.196	4.621	6	2.795	3	5	1	9	3
	1				2.03		0.63	0.37	0.36	0.47	0.32
H05-INT	0	4.846	1.637	2.141	3	0.703	8	9	6	3	4
	2				0.36		0.39	0.45	0.39	0.31	0.39
H05-INT	0	0.448	0.509	0.473	5	0.445	5	2	5	5	8
	3										
H05-INT	0	0.366	0.359	0.513	-999						
					4.24		3.88	5.15	5.97	3.24	1.16
H06-INT	0	5.645	4.197	5.190	9	4.799	9	6	9	5	4
	1				0.75		1.43	1.48	0.22		
H06-INT	0	0.925	1.252	1.120	1	0.584	8	7	5	-999	

H09-INT		6.090	4.391	4.214	6.21	3.929	3.74	3.359	2.31	3.017	3.967
	0				0						
	1				3.22		2.50	1.27	1.38	2.10	0.75
H09-INT	0	2.408	2.949	3.055	6	2.448	0	7	1	8	1
	2				0.65		0.30	0.94	0.64	0.61	0.45
H09-INT	0	0.865	0.836	0.634	1	0.314	0	0	2	6	5
	3										
H09-INT	0	1.143	-999								
					3.97		6.67	5.87	2.65	4.21	3.71
H10-INT	0	7.542	5.411	4.628	8	5.798	9	7	1	1	1
	1				0.80		0.83	1.62	1.43	1.72	1.18
H10-INT	0	2.747	3.580	3.664	3	1.123	7	1	0	4	4
	2				1.18		0.65	0.56	0.69	0.89	0.26
H10-INT	0	1.533	1.652	1.350	3	1.255	6	6	1	6	2
	3				0.67		0.36	0.50	0.27	0.32	0.45
H10-INT	0	0.731	0.844	0.934	6	0.381	4	5	2	3	3
	4										
H10-INT	0	0.209	-999								
					7.39		5.75	4.24	4.26	2.62	2.85
I02-INT	0	5.771	4.894	4.773	7	5.660	8	2	8	0	3
	1				1.05		0.67	0.71	0.56	0.22	0.23
I02-INT	0	4.278	2.926	1.444	3	0.827	5	0	4	3	5
	2				0.42		0.29	0.23			
I02-INT	0	0.848	0.514	0.202	8	0.334	4	8	-999		
					8.25	10.70	4.59	3.96	4.43	4.21	2.18
I03-INT	0	6.084	3.294	4.682	0	3	5	1	7	0	1
	1				0.62		0.68	0.51	0.62	0.49	0.45
I03-INT	0	1.621	0.691	0.895	9	0.592	4	4	9	5	0
	2				0.99						
I03-INT	0	0.587	1.003	1.465	5	-999					
					7.08		3.69	5.70	5.77	3.44	2.60
I05-INT	0	6.689	5.884	7.813	3	5.815	6	4	9	0	7
	1				0.83		1.24	1.21	1.20	0.86	0.53
I05-INT	0	1.859	1.443	1.381	9	2.124	1	8	4	0	9
	2				0.37		0.39	0.96	0.47	0.30	0.32
I05-INT	0	0.657	0.433	0.424	9	0.415	6	2	9	2	8
	3				0.40		0.44	0.41	0.29	0.31	0.20
I05-INT	0	0.483	0.396	0.337	8	0.433	3	2	1	4	9
	4				0.55		0.70	0.38	0.32	0.18	0.23
I05-INT	0	0.355	0.330	0.618	3	0.400	3	5	8	5	4
	5				0.34		0.35	0.30	0.30	0.38	0.37
I05-INT	0	0.216	0.256	0.250	7	0.743	5	1	1	1	0
	6				0.56		0.47				
I05-INT	0	0.355	0.400	0.530	4	1.396	1	-999			
					7.69		5.37	2.21	3.49	2.52	1.99
I10-INT	0	9.353	4.550	5.796	3	6.535	1	2	1	3	9

$\left.\begin{array}{llllllllllll} & 1 & & & & & 1.48 & & 1.85 & 0.77 & 1.16 & 1.35\end{array}\right) 0.98$

	2			0.77			0.76	0.53	0.41	0.35	0.20
J05-INT	0	1.495	0.768	0.674	6	0.602	0	9	9	2	3
	3				0.36		0.55	0.49	0.79	0.59	0.26
J05-INT	0	0.283	0.580	0.389	3	0.354	6	2		6	2
	4				0.44		0.48	0.34	0.29	0.42	0.12
J05-INT	0	0.419	0.351	0.314	2	0.295	8	0	2	0	4
	5				0.33		0.19	0.43	0.20	0.30	0.20
J05-INT	0	0.477	0.554	0.227	1	0.339	4	1	7	2	7
	6				0.10		0.21	0.20	0.13	0.09	0.07
J05-INT	0	0.179	0.340	0.220	7	0.206	7	6	0	2	4
	7				0.37						
J05-INT	0	0.118	0.192	0.194	4	-999					
					6.60		6.53	4.61	3.72	3.03	2.15
J06-INT	0	8.081	7.862	8.018	4	6.312	2	5	2	4	7
	1				3.16		2.13	0.96	1.34	0.71	0.96
J06-INT	0	1.916	1.327	1.300	9	0.987	0	2	5	6	5
	2				0.27		0.30	0.23	0.50	0.28	0.65
J06-INT	0	0.805	0.831	0.479	6	0.307	5	4	3	3	6
	3				0.19		0.17	0.42	0.37	0.43	0.42
J06-INT	0	0.389	0.568	0.398	5	0.248	6	9	9	7	0
	4				0.22		0.25	0.61	0.43	0.30	0.35
J06-INT	0	0.484	0.262	0.476	1	0.380	6	7	7	3	2
	5				0.56		0.42	0.41	0.58		
J06-INT	0	0.642	0.517	0.437	8	0.331	3	2	3	-999	
					3.63		5.70	4.71	4.26	3.64	3.92
J07-INT	0	5.446	3.598	5.584	2	3.185	2	6	8	2	0
	1				1.47		1.36	1.43	1.56	1.48	1.01
J07-INT	0	2.906	2.605	1.362	9	1.611	7	0	6	5	3
	2				0.95		0.41	0.49	0.71	0.42	0.39
J07-INT	0	0.748	0.851	0.822	5	0.626	2	5	5	9	9
	3				0.43		0.62	0.36	0.27	0.67	0.40
J07-INT	0	0.475	0.280	0.379	8	0.475	1	4	2	4	6
	4				0.32		0.44	0.23	0.64	0.40	0.56
J07-INT	0	0.638	0.523	0.335	5	0.623	5	8	8	8	,
	5				0.42		0.28	0.29	0.31	0.36	0.25
J07-INT	0	0.295	0.526	0.348	3	0.381	0	7	3	6	7
	6				0.16						
J07-INT	0	0.379	0.240	0.235	4	0.198	-999				
					7.17		5.70	2.38	3.39	4.42	3.56
J08-INT	0	6.430	5.626	7.040	2	6.093	3	8	6	2	3
	1				1.82		1.80	1.25	1.09	1.25	0.95
J08-INT	0	2.603	0.987	1.664	5	2.016	0	0	8	7	7
	2				0.77		0.84	0.68	0.61	0.62	0.54
J08-INT	0	0.935	0.618	0.766	2	0.811	6	1	8	6	0
	3				1.19		0.53	0.77	0.49	0.23	0.25
J08-INT	0	0.572	0.423	0.518	6	0.660	1	5	5	3	3

| | | | | | 3.59 | | | 6.21 | 4.56 | 3.96 | 4.96 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 4.52

LA02-	5										
INT	0	0.475	-999								
LA03-					7.78		6.05	4.66	2.89	2.00	2.57
INT	0	8.949	6.844	8.286	2	3.709	2	4	1	5	3
LA03-	1				0.92		0.50	0.73	0.81	0.57	1.86
INT	0	1.571	1.320	1.003	6	0.702	3	7	9	7	9
LA03-	2				0.42		0.44	0.42	0.58	0.28	0.49
INT	0	0.770	0.518	0.593	6	0.386	4	3	1	6	1
LA03-	3				0.53		0.32	0.35	0.46	0.39	0.95
INT	0	0.344	0.792	0.434	4	0.370	1	1	5	0	0
LA03-	4				0.33		0.24	0.20	0.36	0.35	0.43
INT	0	0.695	1.247	0.508	8	0.247	1	4	7	8	7
LA03-	5				1.48						
INT	0	0.615	0.645	0.544	7	0.757	-999				
LA04-					5.40		8.68	6.49	3.32	3.63	4.44
INT	0	7.132	4.220	5.217	8	6.793	4	5	5	5	0
LA04-	1				2.84		1.06	0.78	0.77	1.08	0.80
INT	0	4.037	5.077	3.883	5	1.673	4	0	2	6	8
LA04-	2				0.74		0.74	0.44	0.49	0.87	0.31
INT	0	0.661	0.555	0.640	8	0.785	8	0	6	1	9
LA04-	3				0.50		0.69	0.55	0.37	0.55	0.25
INT	0	0.290	0.206	0.251	5	0.314	3	0	6	1	4
LA04-	4				0.68		0.76	0.19	0.58	0.43	
INT	0	0.344	0.515	0.211	2	0.706	2	3	2	1	-999
			12.19		7.19		6.80	6.67	4.44	2.65	2.84
N01-INT	0	7.432	0	5.983	5	6.896	7	1	8	6	3
	1				1.88		1.40	1.38	1.15	1.03	0.49
N01-INT	0	1.730	2.265	2.184	3	1.204	8	6	8	4	5
	2				0.79		0.60	0.46			
N01-INT	0	1.597	0.894	0.579	6	0.588	6	8	-999		
					6.58		6.58	5.44	4.08	3.45	2.15
N02-INT	0	8.761	6.609	6.234	8	6.184	4	5	1	3	9
	1				1.69		1.48	0.94	1.40	0.77	1.00
N02-INT	0	2.097	2.436	1.730	1	1.386	1	5	0	9	6
	2				0.47		0.77	0.74	0.44	0.52	0.53
N02-INT	0	0.936	1.132	0.664	8	0.605	9	7	0	3	0
	3				0.33						
N02-INT	0	0.769	0.418	0.571	2	0.249	-999				
					4.01		2.24	4.48	1.63	4.53	3.07
N04-INT	0	7.350	3.701	2.569	0	3.683	1	1	9	7	9
	1				2.35		2.05	2.69	2.54	1.58	2.44
N04-INT	0	4.853	3.250	2.941	9	2.850	7	9	8	1	8
	2				0.43						
N04-INT	0	2.898	1.214	1.245	0	-999					
					4.32		4.14	3.58	5.44	4.83	5.15
N06-INT	0	5.547	4.131	3.399	4	4.411	2	2	3	6	2

N06-INT	1			2.49			1.49	2.72	$\begin{aligned} & 1.58 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 8 \end{aligned}$	0.638
	0	2.956	3.748	2.849	8	1.572	7	6			
	2				0.60		0.35	0.57	0.40	0.19	0.31
N06-INT	0	1.215	0.934	0.899	8	0.510	5	3	6	4	5
	3										
N06-INT	0	0.581	0.268	-999							
					6.60		5.34	3.49	3.35	4.36	2.75
N08-INT	0	8.072	4.544	7.152	7	6.343	7	7	7	1	9
	1				2.41		1.82	2.67	0.61	1.37	0.76
N08-INT	0	2.454	2.434	2.311	6	2.625	2	1	9	4	4
	2										
N08-INT	0	-999									
					4.24		3.78	4.62	4.36	4.13	5.61
N09-INT	0	5.219	3.526	5.603	8	3.663	1	0	7	6	9
	1				2.57		1.77	1.59	0.76	0.98	0.94
N09-INT	0	3.616	3.456	3.437	7	1.841	0	,	8	1	1
	2				0.64		0.86	0.61	0.47	1.78	0.91
N09-INT	0	1.204	1.212	0.492	8	0.681	1	2	4	4	4
	3										
N09-INT	0	0.618	0.955	0.756	-999						
			11.67		6.98		5.10	5.96	4.73	4.23	2.30
N10-INT	0	6.724	4	6.170	7	6.133	6	1	9	8	0
	1				1.87		0.30				
N10-INT	0	1.946	1.487	1.904	9	0.716	0	-999			
					3.48		5.36	3.47	4.67	6.96	4.72
P01-INT	0	5.964	3.321	2.889	8	2.847	4	4	4	5	6
	1				2.70		1.73	1.55	1.88	1.06	1.47
P01-INT	0	4.316	3.520	4.107	6	3.158	8	9	6	0	8
	2				0.66		0.48	0.38	0.54	0.31	0.28
P01-INT	0	0.894	0.808	1.376	3	0.756	1	2	3	5	8
	3				0.28		0.32	0.17			
P01-INT	0	0.461	0.459	0.345	0	0.658	0	7	-999		
					7.21		4.39	2.14	4.94	4.35	2.99
P02-INT	0	5.778	2.978	4.169	8	2.285	9	0	4	0	1
	1				2.48		2.04	3.90	2.91	2.14	2.02
P02-INT	0	3.901	2.782	1.955	0	2.753	2	1	5	7	5
	2				0.76		0.97	0.81	0.74	0.53	0.54
P02-INT	0	1.917	1.573	0.972	9	0.831	1	4	7	8	4
	3				0.50		0.70	0.62	0.72	0.53	0.78
P02-INT	0	0.716	0.676	0.611	8	0.628	1	8	4	8	9
	4				0.44		0.62	0.54	0.36	0.47	0.64
P02-INT	0	0.404	0.425	0.422	4	0.374	7	9	4	8	6
	5				0.37		0.31	0.14	0.21	0.20	
P02-INT	0	0.389	0.640	0.590	9	0.554	1	2	4	9	-999
					7.02		6.91	6.36	5.21	4.37	2.75
P03-INT	0	5.513	3.809	5.736	0	7.419	9	1	0	5	9

P03-INT	1				0.58		0.68	1.10	0.65	1.01	0.36
	0	3.159	0.918	1.126	7	0.836	0	5	7	1	6
	2				0.80		0.30	0.58	0.85	0.72	0.70
P03-INT	0	0.574	0.676	0.564	0	0.679	3	0	4	9	5
	3				0.32		0.32	0.21	0.18	0.25	0.23
P03-INT	0	0.264	0.350	0.505	8	0.393	8	5	1	3	5
	4				0.19		0.41	0.40	0.33	0.12	0.27
P03-INT	0	0.217	0.370	0.303	1	0.331	8	4	7	7	6
	5										
P03-INT	0	0.838	0.608	0.240	-999						
					2.86		5.00	3.82	3.49	3.43	2.96
P05-INT	0	4.685	0.602	2.455	6	5.017	4	2	6	0	3
	1				3.16		3.14	2.00	1.17	0.98	0.92
P05-INT	0	1.953	2.892	2.104	4	2.376	5	1	0	3	2
	2				0.83		1.00	0.75	0.98	0.73	0.48
P05-INT	0	1.533	0.757	1.300	6	0.613	1	1	3	0	6
	3				0.68		0.78	1.13	0.62	0.57	0.60
P05-INT	0	0.636	0.653	0.700	8	0.575	3	8	5	2	3
	4				0.27		0.80	1.58	2.58	1.85	3.31
P05-INT	0	0.408	0.185	0.130	1	0.603	3	3	4	6	2
	5										
P05-INT	0	2.879	-999								
					4.62		6.80	4.15	4.67	4.54	4.91
P07-INT	0	5.678	4.802	5.634	3	4.440	8	1	9	6	9
	1				4.22		0.81	0.42	0.29		
P07-INT	0	2.540	1.720	2.717	0	1.208	1	0	7	-999	
				13.87	7.20		5.38	5.88	6.60	2.67	2.51
P08-INT	0	3.067	7.859	5	0	6.219	5	0	2	8	3
	1				1.68		1.12	0.67	1.50	1.08	0.77
P08-INT	0	2.613	1.088	2.179	1	1.545	6	8	0	7	5
	2				0.90		0.58	0.33	0.57	0.51	0.38
P08-INT	0	0.628	0.465	0.831	7	1.134	1	8	2	1	9
	3				0.38		0.46	0.32	0.37	0.46	0.34
P08-INT	0	0.685	0.330	0.944	8	0.282	0	7	2	9	3
	4				0.33						
P08-INT	0	0.211	0.501	0.158	7	-999					
					2.60		4.68	5.10	1.95	3.79	3.46
P09-INT	0	6.141	8.941	2.101	0	4.518	0	0	2	8	2
	1				2.03		2.21	1.73	2.02	1.60	0.49
P09-INT	0	4.334	2.608	3.193	2	1.659	9	1	9	4	3
	2				1.98		0.76	0.37	0.42	0.27	0.60
P09-INT	0	0.836	1.222	1.524	3	0.528	6	1	1	4	9
	3				0.82		0.74	0.44	0.56	0.45	0.36
P09-INT	0	1.105	0.901	1.643	1	0.549	3	6	0	9	6
	4				0.59		0.45	0.40	0.33	0.38	0.71
P09-INT	0	0.299	0.246	0.192	3	0.566	8	5	2	0	0

P09-INT	5			0.63			0.61	0.64	0.52	0.25	0.43
	0	0.345	0.263	0.294	4	0.694	5	0	0	0	
	6				0.51						
P09-INT	0	0.911	0.304	1.263	6	0.231	-999				
					6.24		4.31	5.88	4.90	3.69	3.25
P10-INT	0	5.038	3.680	4.471	5	4.922	8	1	5	9	2
	1				2.55		1.00	1.16	0.96	1.88	0.87
P10-INT	0	3.298	1.911	3.583	4	2.107	8	9	7	1	3
	2				0.45		0.86	0.61	0.36	0.27	0.25
P10-INT	0	0.639	0.642	0.728	5	0.805	1	4	1	8	3
	3										
P10-INT	0	-999									
					4.33		5.97	6.38	2.77	2.72	1.89
Q01-INT	0	6.593	3.058	7.139	9	3.859	5	8	1	8	0
	1				0.87		1.48	1.79	1.65	2.55	0.45
Q01-INT	0	1.210	0.755	0.974	0	1.370	5	2	7	9	8
	2				0.28		0.25	0.10	0.22	0.28	0.28
Q01-INT	0	0.781	0.562	0.527	8	0.272	1	9	7	6	2
	3				0.40		0.51	0.22	0.68	0.59	0.22
Q01-INT	0	0.351	0.168	0.509	8	0.242	4	7	0	4	7
	4				0.46		0.36	0.30	0.51	0.40	2.17
Q01-INT	0	0.251	0.540	0.708	1	0.556	6	2	4	5	8
	5				0.15		0.72	1.07	0.25	0.40	0.77
Q01-INT	0	0.119	0.110	0.067	0	0.098	9	9	5	7	5
	6										
Q01-INT	0	0.660	0.153	0.231	-999						
					6.96		4.23	3.87	0.99	2.66	3.95
Q02-INT	0	5.526	3.820	5.110	2	5.919	5	9	9	5	6
	1				0.87		1.22	0.73	1.81	1.47	1.74
Q02-INT	0	3.543	2.846	1.962	2	1.827	8	1	5	8	1
	2				0.64						
Q02-INT	0	1.223	1.098	0.534	5	-999					
					4.44		4.10	4.18	5.96	4.85	4.45
Q03-INT	0	5.097	2.487	4.147	9	5.571	1	0	3	5	8
	1				1.40		1.33	2.84	2.31	1.98	0.41
Q03-INT	0	4.358	4.526	3.903	8	1.172	9	9	4	1	2
	2										
Q03-INT	0	0.313	0.867	0.418	-999						
					4.39		7.34	6.71	3.39	3.38	3.20
Q06-INT	0	5.800	2.932	6.085	4	3.145	5	1	3	7	1
	1				0.92		1.14	0.72	0.46	0.46	0.44
Q06-INT	0	1.332	1.983	1.289	5	0.291	5	5	3	4	4
	2										
Q06-INT	0	0.268	0.078	-999							
					5.55		6.03	4.72	4.58	3.59	3.37
Q08-INT	0	6.116	3.288	3.938	3	5.394	1	0	1	4	4

	1				1.98		1.48	0.37			
Q08-INT	0	2.283	1.565	1.100	3	0.717	1	9	-999		
QO5-					3.37		3.45	6.86	6.73	4.78	4.21
INT	0	6.863	6.104	3.334	6	3.481	7	2	8	5	9
QO5-	1				1.20		0.78	0.95	0.92	0.94	0.85
INT	0	2.664	0.470	1.019	2	0.439	2	0	7	0	1
QO5-	2				0.24						
INT	0	1.178	0.958	0.289	0	-999					
QO8-					5.55		6.03	4.72	4.58	3.59	3.37
INT	0	6.116	3.288	3.938	3	5.394	1	0	1	4	4
QO8-	1				1.98		1.48	0.37			
INT	0	2.283	1.565	1.100	3	0.717	1	9	-999		

Figure 13. Graphs showing the relationships between length (mm) and weight (g) and width (mm) and length for G. americna and [Costa]glycymeris subovata specimens from the Yorktown and Chowan River Formations.

Figure 2. Graphs showing the relationship between $\delta^{18} \mathrm{O} \%$ (VPDB) and $\delta^{13} \mathrm{C} \%$ (VPDB) for samples of aragonite micro-milled from specimens of G. americana and P. reflexa taken from the Yorktown and Chowan River Formations.

Figure 3. NAO Index (instrumental: 1950-2011) and NAO index (Reconstruction 1050-2011). Top Panels: Plot of the mean annual time series (black solid) with a trend (thick-dashed line), cyclic (thin-dashed), and slow (red) component series. Center Panels: A plot of SSA-MTM spectrum with $\mathbf{9 5 \%}$ confidence interval. Bottom Panels: A smoothed periodogram (gray line) and a FFT plot (black line).

Figure 4. Cape Hatteras, NC and Long Branch Oakhurst, NJ sea surface temperatures. Top Panels: Plot of the mean annual time series (black solid) with a trend (thick-dashed line), cyclic (thin-dashed), and slow (red) component series. Center Panels: A plot of SSA-MTM spectrum with $\mathbf{9 5 \%}$ confidence interval. Bottom Panels: A smoothed periodogram (gray line) and a FFT plot (black line).

Figure 5. GLY-LA02 and GLY-LA03 standardized growth indices. Top Panels: Plot of the mean annual time series (black solid) with a trend (thick-dashed line), cyclic (thin-dashed), and slow (red) component series. Center Panels: A plot of SSA-MTM spectrum with $\mathbf{9 5 \%}$ confidence interval. Bottom Panels: A smoothed periodogram (gray line) and a FFT plot (black line).

Figure 6. GLY-LA04 and GLY-YKTC standardized growth indices. Top Panels: Plot of the mean annual time series (black solid) with a trend (thick-dashed line), cyclic (thin-dashed), and slow (red) component series. Center Panels: A plot of SSAMTM spectrum with 95\% confidence interval. Bottom Panels: A smoothed periodogram (gray line) and a FFT plot (black line).

Figure 7. GLY-SI05 AND GLY-SJ01 standardized growth indices. Top Panels: Plot of the mean annual time series (black solid) with a trend (thick-dashed line), cyclic (thin-dashed), and slow (red) component series. Center Panels: A plot of SSA-MTM spectrum with $\mathbf{9 5 \%}$ confidence interval. Bottom Panels: A smoothed periodogram (gray line) and a FFT plot (black line).

Figure 8. GLY-SJ05 AND GLY-SK04 standardized growth indices. Top Panels: Plot of the mean annual time series (black solid) with a trend (thick-dashed line), cyclic (thin-dashed), and slow (red) component series. Center Panels: A plot of SSAMTM spectrum with $\mathbf{9 5 \%}$ confidence interval. Bottom Panels: A smoothed periodogram (gray line) and a FFT plot (black line).

```
'R' Environment Code
#### Clear console & load Libraries
rm(list=ls())
library(Rssa)
library (dplR)
library(multitaper)
library(RODBC)
library(TSA)
library(RSEIS)
library(dplR)
###Read in raw increment files and detrend in dpIR
glchwn <- read.rwl('gly_chwn.rwl')
glyktn <- read.rwl('gly_yktn.rwl')
glchwn.rwi <- detrend(glchwn, method='Spline')
glyktn.rwi <- detrend(glyktn, method='Spline')
####Read in annual times series
GlyRwi <- read.table(file = "GlyRwi.txt",sep="\t", header = TRUE)
NAO <- read.table(file = "NAO.txt",header = TRUE)
cape <- read.table(file = "cape_annual.txt",header = TRUE)
monj <- read.table(file = "longoak_annual.txt", sep="\t", header = TRUE)
```

```
### (x) variables
```


(x) variables

glyla02 <- GlyRwi(,2)
glyla02 <- GlyRwi(,2)
glyla03 <- GlyRwi(,3)
glyla03 <- GlyRwi(,3)
glyla04 <- GlyRwi(,4)
glyla04 <- GlyRwi(,4)
glyyktC <- GlyRwi(,5)
glyyktC <- GlyRwi(,5)
glysi05 <- GlyRwi(,6)
glysi05 <- GlyRwi(,6)
glysj01 <- GlyRwi(,7)
glysj01 <- GlyRwi(,7)
glysj05 <- GlyRwi(,8)
glysj05 <- GlyRwi(,8)
glysk04 <- GlyRwi(,9)
glysk04 <- GlyRwi(,9)
glys101 <- GlyRwi(,10)
glys101 <- GlyRwi(,10)
cap <- cape(,2)
cap <- cape(,2)
monj <- longoak(,2)
monj <- longoak(,2)
nao <- NAO(,2)

```
nao <- NAO(,2)
```


\#\#\# make a FFT and simple Periodogram

```
fourier<-fft(x) \# calculate fft of data
magnitude<-Mod(fourier) \# extract the power spectrum
phase<-Arg(fourier)\# extract the phase which is atan(Im(fourier)/Re(fourier))
\#\#\# select only first half of vectors
magnitude_firsthalf <- magnitude(1:(length(magnitude)/2))
phase_firsthalf<-phase(1:(length(magnitude)/2))
```

\#\#\# generate x -axis
x.axis <- 1:length(magnitude_firsthalf)/length(magnitude)
\# plot the power spectrum
$\operatorname{plot}\left(x=x . a x i s, y=m a g n i t u d e _f i r s t h a l f, t y p e=11 "\right)$
\#\#\#export to clipboard
write.table(x.axis,"clipboard",sep="\t",col.names=NA)
write.table(magnitude_firsthalf,"clipboard",sep="\t",col.names=NA)

\#\#\#Singular Spectrum Analysis

s <- new.ssa(x, L, svd_method = c("svd")) \# Perform the decomposition using the L
window length and full svd
summary(s) \# Show various information about the decomposition
plot(s) \# Show the plot of the eigenvalues
$\mathrm{f}<-\operatorname{reconstruct}(\mathrm{s}$, groups $=\operatorname{list}(1, \mathrm{c}(2,3), 4))$ \# Reconstruct into 3 series
plot(pste, type='l') \# Plot the original series
lines($\mathrm{f} \$ \mathrm{~F} 1$, col = "blue") \# Extract the trend
lines($\mathrm{f} \$ \mathrm{~F} 1+\mathrm{f} \$ \mathrm{~F} 2$, col = "red") \# Add the periodicity
lines(f\$F1+f\$F2+f\$F3, col = "green") \# Add slow-varying component
trend <- f\$F1
period <- $\mathrm{f} \$ \mathrm{~F} 1+\mathrm{f} \$ \mathrm{~F} 2$
slow <- $\mathrm{f} \$ \mathrm{~F} 1+\mathrm{f} \$ \mathrm{~F} 2+\mathrm{f} \$ \mathrm{~F} 3$
write.table(pste,"clipboard",sep="\t",col.names=NA)
write.table(trend,"clipboard",sep="\t",col.names=NA)
write.table(period,"clipboard",sep="\t",col.names=NA)
write.table(slow,"clipboard",sep="|t",col.names=NA)
plot(slow, type='1')
\#\#\#Take SSA = slow from above and use Multitaper Method
resSpec $1<-$ spec.mtm(slow, $\mathrm{k}=10$, nw=5, nFFT = "default",
centreWithSlepians $=$ TRUE, dpssIN $=$ NULL,
returnZeroFreq $=$ TRUE, Ftest $=$ FALSE,
jackknife $=$ TRUE, jkCIProb $=0.95$, plot $=$ TRUE $)$

```
###Retrieve MTM frequency and spectrum magnitude and 95% confidence interval
spe <- resSpec1(("spec"))
fre<- resSpec 1(("freq"))
jkmax <- resSpec1$mtm$jk$upperCI
jkmin <- resSpec1$mtm$jk$lowerCI
write.table(fre,"clipboard",sep="\t",col.names=NA)
write.table(spe,"clipboard",sep="\t",col.names=NA)
write.table(jkmax,"clipboard",sep="\t",col.names=NA)
write.table(jkmin,"clipboard",sep="\t",col.names=NA)
```


REFERENCES

Atkinson, L.P., Lee, T.N., Blanton, J.O. and Chandler, W.S. (1983). Climatology of the southeastern United States continental shelf waters. Journal of Geophysical Research, 88, C8, 4705-4718.

Berggren, W.A., Hollister, C.D. (1977). Plate tectonics and paleocirculationcommotion in the ocean. Tectonophysics 38:11-48

Berthou P., Blanchard, M., Noel, P., Vergnaud-Grazzini, C. (1986). The analysis of stable isotopes of the shell applied to the determination of the age of four bivalves of the Normano-Breton Gulf, Western Channel. ICES 1986/K:16.
R. H. Bailey and S. A. Tedesco (1986). Paleoecology of a Pliocene coral thicket from North Carolina: an example of temporal change in community structure and function. Journal of Paleontology 60(6):1159-1176

Black, B. A., C. Copenheaver, D. C. Frank, M. J. Stuckey, and R. E. Kormanyos (2009). Multi-proxy reconstructions of northeastern Pacific sea surface temperature data from trees and Pacific geoduck, Palaeogeography, Palaeoclimatoloy, Palaeoecology, 278, 40-47.

Blackwelder, B.W. (1981a). Late Cenozoic stages and molluscan zones of the middle U.S.Atlantic Coastal Plain. Journal of Paleontology, Memoir, 12: Part II.

Blackwelder, B.W. (1981b). Stratigraphy of upper Pliocene and lower Pleistocene marine andestuarine deposits of northeastern North Carolina and southeastern Virginia. U.S. Geological Survey Bulletin, 1502-B: B1-B16.

Buick, D. P., and L. C. Ivany (2004). 100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica, Geology, 32, 921-924.

Bunn, A.G. (2008). A dendrochronology program library in R (dplR).
Dendrochronologia,26:115-124
Chandler, M., D. Rind, and R. Thompson. (1994). Joint investigations of the middle Pliocene climate: II. GISS GCM Northern Hemisphere. Global Planetary Change, 9: 197-219.

CLIMAP (1981). Seasonal reconstructions of the Earth's surface at the last glacial maximum in Map Series, Technical Report MC-36. Boulder, Colorado: Geological Society of America.

Cronin, T.M. (1991). Pliocene shallow water paleoceanography of the North Atlantic Ocean based on marine ostracodes. Quaternary Science Review, 10: 175-188.

Cronin, T.M. and J.E. Hazel. (1980). Ostracode biostratigraphy of Pliocene and Pleistocene deposits of the Cape Fear Arch region, North and South Carolina. U.S. Geological Survey Professional Paper, 1125-B: B1-B25.

Cronin, T.M., H.J. Dowsett, G.S. Dwyer, P.A. Baker, and M.A. Chandler. (2005). Mid-Pliocene deep-sea bottom-water temperatures based on ostracode $\mathrm{Mg} / \mathrm{Ca}$ ratios. Marine Micropaleontology, 54: 249-261.

Dowsett, H. J., Robinson, M. M., and Foley, K. M. (2009). Pliocene threedimensional global ocean temperature reconstruction, Climate of the Past, 5, 769-783.

Dowsett, H., Robinson, M., Dwyer, G., Chandler, M. and Cronin, T., (2006). PRISM3 DOT1 Atlantic basin reconstruction. U.S. Geological Survey Data Series, 189: 4p.

Dowsett, H.J. (2007). Faunal re-evaluation of Mid-Pliocene conditions in the western equatorial Pacific. Micropaleontology, 53(6): 447-456.

Dowsett, H.J., Chandler, M.A., Cronin, T.M. and Dwyer, G.S., (2005). Middle Pliocene sea surface temperature variability. Paleoceanography, 20(2):PA2014.

Dowsett, H.J., Robinson, M.M., Stoll, D.K. and Foley, K.M., (2010). Mid-Piacenzian mean annual sea surface temperature analysis for data-model comparisons. Stratigraphy 7: 189-198.

Dowsett, H.J., T.M. Cronin, R.Z. Poore, R.S. Thompson, R.C. Whatley, and A.M. Wood. (1992). Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the Pliocene. Science, 258: 1133-1135.

Goewert, A.E. and D. Surge. (2008). Seasonal growth patterns in shells of the Pliocene scallop, Chesapecten madisonius. Geo-Marine Letters Special Issue: Advances in Mollusc Sclerochronology,

Goman, M., Ingram, B.L., Strom, A., (2007). Composition of stable isotopes in geoduck (Panopea abrupta) shells: a preliminary assessment of annual and seasonal paleoceanographic changes in the northeast Pacific. Quaternary International, 188, 117-125.

Hallmann, N., B.R. Schöne, A. Strom, and J.Fiebig (2008), An intractable climate archive - Sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 269, Issues 1-2, 4 November 2008, Pages 115-126.

Hansen, J., M. Sato, R. Ruedy, K. Lo, D.W. Lea, and M. Medina-Elizade, (2006). Global temperature change. Proc. Natl. Acad. Sci., 103, 14288-14293

Haywood, A.M. and P.J. Valdes (2004). Modeling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218: 363377.

Haywood, A.M., P. Dekens, A.C. Ravelo, and M. Williams. (2005). Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean-atmosphere GCM. Geochemistry, Geophysics, and Geosystems, 6: 120.

Hill, D.J.; Csank, A.Z.; Dolan, A.M.; Lunt, D.J. (2011). Pliocene climate variability: Northern Annular Mode in models and tree-ring data. Palaeogeography, Palaeoclimatology, Palaeoecology, 309 (1-2). 118-127

Ivany, L.C., T. Brey, M. Huber, D.P. Buick and B.R. Schöne (2011). El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica. Geophysical Research Letters, 38, L16709, doi:10.1029/2011GL048635.

Jansen, E., J. Overpeck, K.R. Briffa, J.-C. Duplessy, F. Joos, V. Masson-Delmotte, D. Olago, B. Otto-Bliesner, W.R. Peltier, S. Rahmstorf, R. Ramesh, D. Raynaud, D. Rind, O. Solomina, R. Villalba, and D. Zhang, 2007: Palaeoclimate. In Climate Change (2007) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, Eds. Cambridge University Press, pp. 433-497

Jones, D.S. (1980). Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology, 6(3): 331340.

Jones, D.S. (1983). Sclerochronology: reading the record of the molluscan shell. American Scientist, 71: 384-391.

Jones, D.S. and I.R. Quitmyer. (1996). Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios, 11: 340-346

Korobeynikov, A. (2010). Computation- and space-efficient implementation of SSA. Statistics and Its Interface, Vol. 3, No. 3, p. 257-268

Krantz, D.E. (1990) Mollusk-Isotope Records of Plio-Pleistocene Marine Paleoclimate, U.S. Middle Atlantic Coastal Plain. Palaios, 5: 317-335.

Krantz, D.E. (1991). A chronology of Pliocene sea-level fluctuations: The U.S. Middle Atlantic Coastal Plain record. Quaternary Science Reviews, 10: 163-174.

Ramsay K., Kaiser M.J.., Richardson C.A., Veale L.O. and Brand A.R. (2000). Can shell scars on dog cockles (Glycymeris glycymeris L.) be used as an indicator of fishing disturbance? Journal of Sea Research, 43, 167-176.

Raymo, M.E., B. Grant, M. Horowitz, and G.H. Rau. (1996). Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Marine Micropaleontology, 27: 313-326.

Reynolds, D.J., (2011a). Stable isotope analysis of biogenic carbonate within the internal growth increments of marine bivalve Glycymeris glycymeris. Quaternary Newsletter, 123, 67-69.

Reynolds, D.J, (2011b). Establishing multi-bivalve species sclerochronology. PhD Thesis, Bangor University.

Robinson, M. M., H. J. Dowsett, G. S. Dwyer, and K. T. Lawrence, 2008. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures, Paleoceanography, 23, PA3213

Schöne, B. R., J. Fiebig, M. Pfeiffer, R. Gleß, J. Hickson, A. L. A. Johnson, W. Dreyer, and W. Oschmann (2005), Climate records from a bivalve Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeography, Palaeoclimatoloy, Palaeoecology, 228, 130-148.

Schöne, B. R., W. Oschmann, J. Rössler, A. Freyre Castro, S. D. Houk, I. Kröncke, W. Dreyer, R. Janssen, H. Rumohr, and E. Dunca (2003),North Atlantic oscillation dynamics recorded in shells of a long-lived bivalve, Geology, 31, 1037-1040.

Schöne, B.R., Castro, A.D.F, Fiebig, J., Houk, S.D., Oschmann, W., and W. Kröncke, (2004), Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 212, p. 215-232.

Schöne, B.R., Dunca, E., Fiebig, J. and M. Pfeiffer (2005). Mutvei's solution: An ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 149-166.

Steíngrímsson, S.A., (1989). A comparative ecological study of two Glycymeris glycymeris (L.) populations off the Isle of Man. PhD Thesis, University of Liverpool.

Strom, A., (2003). Climate and fisheries in the Pacific Northwest: historical perspectives from geoducks and early explorers. Thesis (M.S.). University of Washington. 55pp.

Strom, A., R. C. Francis, N. J. Mantua, E. L. Miles, and D. L. Peterson (2004). North Pacific climate recorded in growth rings of geoduck clams: A new tool for paleoenvironmental reconstruction, Geophysical Research Letters, 31, L06206.

Thompson, R.D.K. (1970). Functional morphology, ecology and evolution in the genus Glycyemeris (Bivalvia). Dissertation, Harvard University, Cambridge, MA.

Thompson, R.D.K. (1975). Functional morphology, ecology, and evolutionary conservatism in the Glycymerididae (Bivalvia). Palaeontology, 18, Part 2, 217-254.

Trouet V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D. and Frank, D.C. (2009). Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly, Science, Vol. 324, No. 5923, pp. 78-80.

Von Bertalanffy, L., (1957), Quantitative Laws in Metabolism and Growth: The Quarterly Review of Biology, v. 32, p. 217-231.

Wara, M. W., A. C. Ravelo, and M. L. Delaney (2005), Permanent El Niño-like conditions during the Pliocene warm period, Science, 309, 758-761.

Ward, L.W. (1992). Molluscan biostratigraphy of the Miocene, Middle Atlantic Coastal Plain of North America, Virginia Museum of Natural History Memoir 2: pp. 159.

Ward, L.W. and Blackwelder, B.W. (1987). Late Pliocene and Early Pleistocene Mollusca From the James City and Chowan River Formations at the Lee Creek Mine, In: Ray, C.E., ed. Geology and Paleontology of the Lee Creek Mine, North Carolina, II, Smithsonian Contributions to Paleobiology, 61: 1-283.

Ward, L. W., and Gilinsky, N. L.,(1993). Molluscan assemblage of the Chowan River Formation, Part A. Biostratigraphic analysis of the Chowan River Formation (upper Pliocene) and adjoining units, the Moore House Member of the Yorktown Formation (upper Pliocene) and the James City Formation (lower Pleistocene): Virginia Museum of Natural History Memoir 3, part A., 33 p.

Ward, L.W. and G.L. Strickland. (1985). Outline of Tertiary stratigraphy and depositional history of the U.S. Atlantic Coastal Plain. In: C.W. Poag (Eds.), Geologic evolution of the United States Atlantic margin. New York, Van Nostrand Reinhold Company. 87-123.

Williams, M. and Haywood, A. M. and Harper, E. M. and Johnson, A. L. A. and Knowles, T. and Leng, M. J. and Lunt, D. J. and Okamura, B. and Taylor, P. D. and Zalasiewicz, J. (2009). Pliocene climate and seasonality in North Atlantic shelf seas. Philosophical Transactions of the Royal Society A, 367 (1886). pp. 85-108.

Witbaard, R., M.I. Jenness, K. van der Borg, and G. Ganssen (1994). Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Netherlands Journal of Sea Research, 33(1). 91-101.

Wolfe, D.A. (2008). Mollusks taken by Beam Trawl in the vicinity of Gray's Reef National Marine Sanctuary on the Continental Shelf off Georgia, Southeastern U.S. NOAA Technical Memorandum NOS NCCOS 88.40 pp.

Zachos, J., Pagani, M., Sloan, L., Thomas, E. \& Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686-693.

Zirkel, J. and Schöne B.R. (2010). Fossile Funde aus dem Kasseler Meeressand. Hessen Archäologie 2009, Jahrbuch für Archäologie und Paläontologie in Hessen. Konrad Theiss Verlag GmbH, Stuttgart, 2010, 18-19.

[^0]: ${ }^{1}$ Identification based on L. W. Ward. 1992
 ${ }^{2}$ 'Broken' refers to a state of preservation where more than fifty-percent of the valve is unmeasureable (either missing or too fragmented) using calipers.

