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ABSTRACT

MICHAEL LAMM: Confidence intervals for solutions to stochastic variational inequalities
(Under the direction of Shu Lu)

This dissertation examines the effects of uncertain data on a general class of optimization

and equilibrium problems. The common framework used for modeling these problems is a

stochastic variational inequality. Variational inequalities can be used to model conditions

that characterize an equilibrium state, or describe necessary conditions for solutions to

constrained optimization problems. For example, Cournot-Nash equilibrium problems and

the Karush-Kuhn-Tucker conditions for nonlinear programming problems both fit in the

framework of a variational inequality. Uncertain model data can be incorporated into a

variational inequality through the use of an expectation function. A variational inequality

defined in this manner is referred to as a stochastic variational inequality (SVI).

For many problems of interest the SVI cannot be solved directly. This can be due

to limited distributional information or an expectation function that lacks a closed form

expression and is difficult to evaluate. When this is the case, the SVI must be replaced with

a suitable approximation. A common approach is to solve a sample average approximation

(SAA). The SAA problem is a variational inequality with the expectation function replaced

by a function that depends on a sample of the uncertain data. A natural question is then

how the solution of the SAA problem compares to the true solution of the SVI. To address

this question, this dissertation examines the construction of simultaneous and individual

confidence intervals for the true solution of an SVI.
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CHAPTER 1

Introduction

Variational inequalities model a general class of equilibrium problems and also arise as

first-order necessary conditions of optimization problem, see (Attouch et al., 2009; Facchinei

and Pang, 2003; Ferris and Pang, 1997a,b; Giannessi and Maugeri, 1995; Giannessi et al.,

2001; Harker and Pang, 1990; Pang and Ralph, 2009). A variational inequality, defined

formally in §1.1, is characterized by a set S and a function f . In many problems of interest,

data defining the function are subject to uncertainty. One way to handle such uncertainty is

to treat f as an expectation function, and this gives rise to a stochastic variational inequality

(SVI). For many problems the expectation function lacks a closed form expression and a

numerical approximation is generally required. Such approximations usually make use of

some sampling procedure. Based on how sampling is incorporated into the approximation

scheme, SVI algorithms can be classified into stochastic approximation (SA) methods and

sample average approximation (SAA) methods. SA methods as introduced in (Robbins and

Monro, 1951) update iterate points with samples taken at each step. The application of SA

methods to SVIs have been studied in (Chen et al., 2014; Jiang and Huifu, 2008; Juditsky

et al., 2011; Koshal et al., 2013; Nemirovski et al., 2009a) and references therein. For

the development of SA methods in stochastic optimization, see (Nemirovski et al., 2009b;

Polyak, 1990; Polyak and Juditsky, 1992) and references therein.

In this dissertation we consider the case when a sample average approximation (SAA)

is used. The SAA method uses a single sample to estimate the unknown function f with

a sample average function, defined formally in §1.1. A solution to the SAA problem is a

solution to the variational inequality defined by the sample average function and set S.

A natural question to consider is how the solution to the SAA problem compares to the

solution of the original SVI. Under certain regularity conditions, SAA solutions are known

to converge almost surely to a true solution as the sample size N goes to infinity, see



(Gürkan et al., 1999; King and Rockafellar, 1993; Shapiro et al., 2009). Xu (Xu, 2010)

showed the convergence of SAA solutions to the set of true solutions in probability at an

exponential rate under some assumptions on the moment generating functions of certain

random variables; related results on the exponential convergence rate are given in (Shapiro

and Xu, 2008). Working with the exponential rate of convergence of SAA solutions, Anitescu

and Petra in (Anitescu and Petra, 2011) developed confidence intervals for the optimal value

of stochastic programming problems using bootstrapping. Limiting distributions for SAA

solutions were obtained in (King and Rockafellar, 1993, Theorem 2.7) and (Shapiro et al.,

2009, Section 5.2.2). For random approximations to deterministic optimization problems,

universal confidence sets for the true solution set were developed by Vogel in (Vogel, 2008)

using concentration of measure results.

The major contribution of this dissertation is the development methods for the efficient

calculation of confidence intervals for the true solution to an SVI from a single SAA solution,

based on the asymptotic distribution of SAA solutions. To our knowledge, the computation

of confidence sets for an SVI’s solution based upon the asymptotic distribution of SAA

solutions started from the dissertation of Demir (Demir, 2000). By considering the normal

map formulation (to be defined formally in §1.1) of variational inequalities, Demir used the

asymptotic distribution to obtain an expression for confidence regions of the solution to

the normal map formulation of an SVI. Because some quantities in that expression depend

on the true solutions and are not computable, Demir proposed a substitution method to

make that expression computable. He did not, however, justify why that substitution

method preserves the weak convergence property needed for the asymptotic exactness of

the confidence regions. Standard techniques for the required justification cannot be used

due to the general nonsmooth structure of S and the discontinuities this creates in certain

quantities.

In (Lu and Budhiraja, 2013) Lu and Budhiraja provided and justified a new method

of constructing asymptotically exact confidence regions for z0. The confidence regions were

computable from a solution to the normal map formulation of a single SAA problem (1.3);

the latter solution is denoted by zN and is formally defined in Theorem 1. The approach in

(Lu and Budhiraja, 2013) was to combine the asymptotic distribution of zN with its expo-
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nential rate of convergence, and involved calculating a weighted-sum of a family of functions.

The method was later simplified by Lu in (Lu, 2012) by using a single function from the

family. Due to the potentially piecewise linear structure that underlies the asymptotic dis-

tribution of SAA solutions, the methods in (Lu, 2012; Lu and Budhiraja, 2013) may require

working with piecewise linear transformations of normal random vectors. Lu in (Lu, 2014)

proposed a different method to construct asymptotically exact confidence regions, by using

only the asymptotic distribution and not the exponential convergence rate. The method in

(Lu, 2014) is easier to use since it has the advantage of working (with high probability) with

linear transformations of normal random vectors, even when the asymptotic distribution of

zN is not normal.

Component-wise confidence intervals for the true solution are generally easier to visu-

alize and interpret compared to confidence regions. By finding the axis-aligned minimal

bounding box of a confidence region of z0 (or x0), one can find simultaneous confidence

intervals that jointly contain z0 (or x0) with a probability no less than a prescribed con-

fidence level. Additionally, individual confidence intervals provide a quantitative measure

of the uncertainty in each individual component, and therefore cary important information

not covered by larger confidence sets. Individual confidence intervals that can be obtained

by using confidence regions are too conservative for any practical use, especially for large

scale problems. A method to construct individual confidence intervals for z0 using linear

estimates was analyzed in (Lu, 2014). While computationally efficient, the method requires

some restrictive assumptions to guarantee that the specified level of confidence is met.

The methods for computing individual confidence intervals we develop in this disserta-

tion are shown to achieve the guaranteed confidence levels in more general situations. This

attribute differentiates our methods from existing approaches that consider the specialized

case when the asymptotic distribution is Gaussian or generate conservative confidence sets

based on error bounds. The methods we develop are also able to limit the computational

burden of working with the possibly piecewise linear transformations. Another contribution

of this dissertation is to provide a direct approach to finding individual confidence intervals

for components of x0. As noted above, the confidence region/interval methods in (Demir,

2000; Lu, 2012, 2014; Lu and Budhiraja, 2013) are mainly designed for z0. The points z0

3



and x0 are related by the equality x0 = ΠS(z0). From a confidence set of z0, one can obtain

a confidence set for x0, by projecting the confidence set of z0 onto S. The resulting set will

cover x0 with a rate at least as large as the coverage rate of the original confidence set for

z0. When S is a box, individual confidence intervals of x0 can be obtained from projecting

the individual confidence intervals of z0 onto S. We shall refer to such approaches as “indi-

rect approaches.” The indirect approaches are convenient to implement when the set S is a

box, or has a similar structure that facilitates taking (individual) projections. Beyond those

situations, it would be hard to use the indirect approaches for finding confidence intervals

for x0.

In Section 1.1 the SVI and SAA problems are formally defined along with their normal

map formulations. Pertinent properties of piecewise affine functions are reviewed in §1.2

along with the notion of B-differentiability. Previous works on the relationship between the

SVI and SAA problems are summarized in §1.3, and §1.4 outlines the methods for interval

computation discussed in remainder of this dissertation.

1.1 Stochastic variational inequalities

An SVI is defined as follows. Let (Ω,F , P ) be a probability space, and ξ be a random vector

defined on Ω and supported on a closed subset Ξ of Rd. Let O be an open subset of Rn, and

F be a measurable function from O × Ξ to Rn, such that E‖F (x, ξ)‖ <∞ for each x ∈ O.

Let S be a polyhedral convex set in Rn. The SVI problem is to find a point x ∈ S ∩O such

that

0 ∈ f0(x) + NS(x), (1.1)

where f0(x) = E [F (x, ξ)] and NS(x) ⊂ Rn denotes the normal cone to S at x:

NS(x) = {v ∈ Rn|〈v, s− x〉 ≤ 0 for each s ∈ S} .

Here 〈·, ·〉 denotes the scalar product of two vectors of the same dimension.

It is often the case that the function f0 does not have a closed form expression and

is difficult to evaluate, in which case an SAA problem may be solved instead. The SAA

4



method takes independent and identically distributed (i.i.d) random variables ξ1, ξ2, . . . , ξN

with the same distribution as ξ and constructs a sample average function. The sample

average function fN : O × Ω→ Rn is defined by

fN (x, ω) = N−1
N∑
i=1

F (x, ξi(ω)). (1.2)

The SAA problem is to find a point x ∈ O ∩ S such that

0 ∈ fN (x, ω) + NS(x). (1.3)

Solutions of (1.1) are referred to as true solutions, whereas solutions of (1.3) are refereed to

as SAA solutions.

The formulations of the SVI and SAA problems as given in (1.1) and (1.3) involve the

set valued mapping NS(·). In their normal map formulations the set valued mapping is

removed and solutions are identified as the zeros of single-valued non-smooth functions.

For the SVI, the function is the normal map induced by f0 and S, fnor
0,S : Π−1

S (O) → Rn,

defined as

fnor
0,S (z) = f0 ◦ΠS(z) + (z −ΠS(z)). (1.4)

Here ΠS denotes the Euclidian projector onto the set S, Π−1
S (O) is the set of all points

z ∈ Rn such that ΠS(z) ∈ O, and f0 ◦ ΠS is the composite function of f0 and ΠS . The

normal map formulation of (1.1) is to find a point z ∈ Π−1
S (O) such that

fnor
0,S (z) = 0. (1.5)

The two formulations are related by the fact that x ∈ O∩S solves (1.1) only if z = x−f0(x)

satisfies (1.5). Moreover when this equality is satisfied it additionally holds that ΠS(z) = x.

The normal map induced by fN and S is similarly defined on Π−1
S (O) to be

fnor
N,S(z) = fN ◦ΠS(z) + (z −ΠS(z)). (1.6)

5



The normal map formulation of the SAA problem is then to find z ∈ Π−1
S (O) such that

fnor
N,S(z) = 0, (1.7)

where (1.7) and (1.3) are related in the same manner as (1.5) and (1.1). In general, for a

function G mapping from a subset D of Rn back into Rn, the normal map induced by G

and S is a map defined on Π−1
S (D) with Gnor

S (z) = G ◦ΠS(z) + z −ΠS(z).

By assumption, S is a polyhedral convex set, so the Euclidian projector ΠS is a piece-

wise affine function. In the next section we provide a summary of pertinent properties of

piecewise affine functions, in particular the notion of B-differentiability.

1.2 Piecewise affine functions

A continuous function f : Rn → Rm is piecewise affine if there exists a finite col-

lection of affine functions fj , j = 1, . . . , l, such that for all x ∈ Rn the inclusion

f(x) ∈ {f1(x), . . . , fl(x)} holds. The affine functions fj are refereed to as the selection

functions of f . When each fj is a linear function f is called piecewise linear.

Closely related to piecewise affine functions is the concept of a polyhedral subdivision.

A polyhedral subdivision of Rn is defined to be a finite collection of convex polyhedra,

Γ = {P1, . . . , Pl}, satisfying the following three conditions:

1. Each Pi is of dimension n.

2. The union of all the Pi is Rn.

3. The intersection of any two Pi and Pj , 1 ≤ i 6= j ≤ l, is either empty or a common

proper face of both Pi and Pj .

If each of the Pi is additionally a cone, then Γ is referred to as a conical subdivision. As

seen in (Scholtes, 2012, Proposition 2.2.3), for every piecewise affine function f there is a

corresponding polyhedral subdivision of Rn such that the restriction of f to each Pi is an

affine function. When f is piecewise linear the corresponding subdivision is conical, and

the restriction of f to each cone of the subdivision a linear function.
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We next consider the special case of the Euclidian projector onto a polyhedral convex set

S, a thorough discussion of which can be found in (Scholtes, 2012, Section 2.4). Let F be the

finite collection of all nonempty faces of S. On the relative interior of each nonempty face

F ∈ F the normal cone to S is a constant cone, denoted as NS(riF ), and the set addition

CF = F + NS(riF ) results in a polyhedral convex set of dimension n. The collection of all

such sets CF form the polyhedral subdivision of Rn corresponding to ΠS . This collection

of sets is also referred to as the normal manifold of S, with each CF called an n-cell in

the normal manifold. Each k-dimensional face of an n-cell is called a k-cell in the normal

manifold for k = 0, 1, . . . , n. The relative interiors of all cells in the normal manifold of S

form a partition of Rn.

Next we introduce the concept of B-differentiability. A function h : Rn → Rm is said

to be B-differentiable at a point x ∈ Rn if there exists a positive homogeneous function,

H : Rn → Rm, such that

h(x+ v) = h(x) +H(v) + o(v).

Recall that a function H is positive homogeneous if H(λx) = λH(x) for all positive numbers

λ ∈ R and points x ∈ Rn. The function H is referred to as the B-derivative of h at x and

will be denoted dh(x). When dh(x) is also linear, dh(x) is the classic Fréchet derivative

(F-derivative).

A piecewise affine function f , while not F-differentiable at all points, is B-differentiable

everywhere. More precisely, let Γ be the polyhedral subdivision associated with f . At

points x in the interior of a polyhedron Pi ∈ Γ, df(x) is a linear function equal to dfi(x),

the F-derivative of the corresponding selection function fi. When x lies in the intersection

of two or more polyhedra, let Γ(x) = {Pi ∈ Γ|x ∈ Pi}, I = {i |Pi ∈ Γ(x)} and Γ′(x) =

{Ki = cone(Pi − x)|i ∈ I}. That is, Γ(x) is the collection of elements in Γ that contain x,

and Γ′(x) is the “globalization” of Γ(x) along with a shift of the origin. With this notation,

df(x) is piecewise linear with the family of selection functions given by {dfi(x)|i ∈ I} and

the corresponding conical subdivision given by Γ′(x).

The relation between the normal manifold of S and ΠS extends to the form of the B-

derivative dΠS(x). First we define the tangent cone to a polyhedral convex set S at x ∈ S
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to be

TS(x) = {v ∈ Rn| there exists t > 0 such that x+ tv ∈ S},

and the critical cone to S at a point z ∈ Rn to be

K(z) = TS(ΠS(z)) ∩ {z −ΠS(z)}⊥.

As shown in (Robinson, 1991, Corollary 4.5) and (Pang, 1990, Lemma 5), for any point

z ∈ Rn and any sufficiently small h ∈ Rn the equality

ΠS(z + h) = ΠS(z) + ΠK(z)(h) (1.8)

holds, which implies

dΠS(z) = ΠK(z). (1.9)

The connection to the normal manifold of S follows from the fact that for all points z in the

relative interior of a k-cell the critical cone K(z) is a constant cone; see (Lu and Budhiraja,

2013, Theorem 8), and thus dΠZ(z)(·) is the same function for all z in the relative interior

of a k-cell. For points z and z′ in the relative interior of different k-cells dΠS(z)(·) and

dΠS(z′)(·) can be quite different, and as a result small changes in the choice of z can result

in significant changes in the form of dΠS(z)(·).

To illustrate these concepts we end this section with an example. Take S =

R2
+, where R+ = {x ∈ R, x ≥ 0}. The set S has four nonempty faces with F ={
R2

+, R+ × {0}, {0} × {0}, {0} × R+

}
. The corresponding 2-cells in the normal manifold

of S are the orthants R2
+, R+ × R−, R2

− and R− × R+. There are five k-cells with k < n.

Four 1-cells are the half-lines defined by the positive and negative axes, R+×{0}, {0}×R+,

R− × {0}, {0} × R−, and the fifth k-cell with k = 0 is the origin {0} × {0}.

The restriction of ΠS to each 2-cell is a linear function, with the functions represented

by the matrices  1 0

0 1

 ,
 1 0

0 0

 ,
 0 0

0 0

 and

 0 0

0 1

 .
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At x = (0, 1) ∈ ri ({0} × R+), ΠS is not F-differentiable but has B-derivative dΠS(x)(·)

dΠs(x)(h) =

 v 0

0 1


 h1

h2

 where v =

 1 if h1 ≥ 0,

0 if h1 ≤ 0.

In contrast, for a point x′ = (ε, 1) ∈ ri
(
R2

+

)
for ε > 0, the B-derivative dΠS(x′)(·) is a linear

function represented by the identity matrix.

1.3 Background

In this section we discuss previous work on the computation of confidence sets for the

true solution to an SVI. This section begins with a review of conditions under which the

SAA solutions will have the required asymptotic properties. These properties include the

almost sure convergence of the SAA solutions to a true solution, an exponential rate for the

convergence in probability, and the weak convergence of SAA solutions.

The following notation will be used throughout this section and the remainder of this

dissertation. Let x0 and xN denote solutions to the true SVI and SAA problems (1.1) and

(1.3). We use Σ0 to denote the covariance matrix of F (x0, ξ), and ΣN to denote the sample

covariance matrix of {F (xN , ξ
i)}Ni=1. A normal random vector with mean µ and covariance

matrix Σ shall be denoted by N (µ,Σ). A χ2 random variable with l degrees of freedom

will be denoted by χ2
l . Weak convergence of random variables Yn to Y will be denoted as

Yn ⇒ Y .

Assumption 1. (a) E‖F (x, ξ)‖2 <∞ for all x ∈ O.

(b) The map x 7→ F (x, ξ(ω)) is continuously differentiable on O for a.e. ω ∈ Ω, and

E‖dxF (x, ξ)‖2 <∞ for all x ∈ O.

(c) There exists a square integrable random variable C such that for all x, x′ ∈ O

‖F (x, ξ(ω))− F (x′, ξ(ω))‖+ ‖dxF (x, ξ(ω))− dxF (x′, ξ(ω))‖ ≤ C(ω)‖x− x′‖,

for a.e. ω ∈ Ω.
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From Assumption 1 it follows that f0 is continuously differentiable on O, see, e.g.,

(Shapiro et al., 2009, Theorem 7.44). For any nonempty compact subset X of O, let

C1(X,Rn) be the Banach space of continuously differentiable mappings f : X → Rn,

equipped with the norm

‖f‖1,X = sup
x∈X
‖f(x)‖+ sup

x∈X
‖df(x)‖. (1.10)

Then in addition to providing nice integrability properties for fN , as shown in (Shapiro

et al., 2009, Theorem 7.48) Assumption 1 will guarantee the almost sure convergence of

the sample average approximation function fN to f0 as an element of C1(X,Rn) and that

df0(x) = E [dxF (x, ξ)].

Assumption 2. Suppose that x0 solves the variational inequality (1.1). Let z0 = x0 −

f0(x0), L = df0(x0), K0 = TS(x0)∩{z0−x0}⊥, and assume that Lnor
K0

is a homeomorphism

from Rn to Rn, where Lnor
K0

is the normal map induced by L and K0.

Assumption 2 guarantees that x0 is a locally unique solution and that (1.1) has a

locally unique solution under sufficiently small perturbations of f0 in C1(X,Rn), see (Lu

and Budhiraja, 2013, Lemma 1) and the original result in (Robinson, 1995). Since the

critical cone K0 is a polyhedral convex cone, Lnor
K0

is a piecewise linear function. It was

shown in (Robinson, 1992) that Lnor
K0

is a homeomorphism if and only if the determinants

of the matrices representing its selections functions all have the same nonzero sign. Shorter

proof of this result can be found in (Ralph, 1994) and (Scholtes, 1996). A piecewise linear

function with this property is said to be coherently oriented. A special case in which the

coherent orientation condition holds is when the restriction of L on the linear span of K0

is positive definite. In particular, if f0 is strongly monotone on O, then the entire matrix L

is positive definite and Lnor
K0

is a global homeomorphism. Another special case is when the

cone K0 = Rn+, the nonnegative orthant; for such a case the coherent orientation condition

on Lnor
K0

is equivalent to the requirement that L is a P -matrix.

The normal maps Lnor
K0

and fnor
0,S are also related through the B-differentiability of ΠS .

Following the discussion of B-differentiability above Assumption 1, let Γ′(z0) denote the

conical subdivision that corresponds to dΠS(z0). Since f0 is differentiable under Assumption
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1, the chain rule of B-differentiability implies that fnor
0,S is B-differentiable, with its B-

derivative at z0 given by

dfnor
0,S (z0)(h) = df0(x0) ◦ dΠS(z0)(h) + h− dΠS(z0)(h) (1.11)

with corresponding conical subdivision Γ′(z0).

Applying (1.9) to z0, one can see the normal map Lnor
K0

is exactly dfnor
0,S (z0), a result that

first appeared in (Robinson, 1992). Note that the B-derivative for the normal map fnor
N,S ,

denoted by dfnor
N,S(·), will take an analogous form to (1.11).

The following theorem is adapted from (Lu and Budhiraja, 2013, Theorem 7). It pro-

vides the almost sure and weak convergence of the SAA solutions zN and xN . Those results

are obtained by combining convergence properties of the sample average function fN with

sensitivity analysis techniques originally developed in (Robinson, 1995) for deterministic

variational inequalities. Similar results were also shown in (King and Rockafellar, 1993,

Theorem 2.7) using the concept of subinvertibility and a set of assumptions that are im-

plied by those used here.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let Y0 be a normal random vector

in Rn with zero mean and covariance matrix Σ0. Then there exist neighborhoods X0 of x0

and Z of z0 such that the following hold. For almost every ω ∈ Ω, there exists an integer

Nω, such that for each N ≥ Nω, the equation (1.7) has a unique solution zN in Z, and the

variational inequality (1.3) has a unique solution in X0 given by xN = ΠS(zN ). Moreover,

lim
N→∞

zN = z0 and lim
N→∞

xN = x0 almost surely,

√
N(zN − z0)⇒ (Lnor

K0
)−1(Y0), (1.12)

√
NLnor

K0
(zN − z0)⇒ Y0, (1.13)

and
√
N(ΠS(zN )−ΠS(z0))⇒ ΠK0 ◦ (Lnor

K0
)−1(Y0). (1.14)
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The results of Theorem 1 follow from the convergence of fN to f0 in C1(X,Rn), and

the existence of locally unique solutions to (1.1) for sufficiently small perturbations of f0 in

this same space. In particular, Assumptions 1 provides a sufficient conditions for the weak

convergence of
√
N(fN − f0) in C1(X,Rn) which combined with Assumption 2 yields the

asymptotic distributions in (1.12), (1.13) and (1.14).

In his dissertation (Demir, 2000), Demir developed methods to compute confidence

regions for true solutions of SVIs using (1.13). Recognizing that the resulting expression

depended on the true solution through both Σ0 and Lnor
K0

, he proposed to use ΣN and

dfnor
N,S(zN ) in the expression for the confidence regions. He did not, however, justify how

such a replacement preserves the weak convergence property needed for the asymptotic

exactness of the confidence regions. The discontinuity of dΠS(z) with respect to z, and in

particular the fact that dΠS(zN ) does not in general converge to dΠS(z0), prevents standard

techniques from being applicable for such a justification. The issue that arises is that when

dΠS(z0) is piecewise linear the probability of dΠS(zN ) being a linear map goes to one as

the sample size N goes to infinity; see (Lu, 2014, Proposition 3.5). While this poses a

challenge for establishing the exactness of confidence regions constructed using dfnor
N,S(zN )

as an estimate for Lnor
K0

, it also illustrates the desirability of using such regions since their

expression would with high probability involve only linear functions.

To establish the exactness of confidence regions constructed using dfnor
N,S(zN ) Lu in (Lu,

2014, Theorem 3.3 and 4.1) examined the relationship between dfnor
0,S (z0)(zN − z0) and

−dfnor
N,S(zN )(z0 − zN ) and proved the following results.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then for each ε > 0 we have

lim
N→∞

Pr{
√
N‖dfnor0,S (z0)(zN − z0) + dfnorN,S(zN )(z0 − zN )‖ > ε} = 0. (1.15)

Consequently, we have

−
√
NdfnorN,S(zN )(z0 − zN )⇒ Y0. (1.16)
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Moreover, if Σ0 is nonsingular, then

−
√
NΣ

−1/2
N dfnorN,S(zN )(z0 − zN )⇒ N (0, In). (1.17)

If Σ0 is singular, let ρ > 0 be the minimum of all positive eigenvalues of Σ0, and let l be

the number of positive eigenvalues of Σ0 counted with regard to their algebraic multiplicity.

Decompose ΣN as

ΣN = UTN∆NUN

where UN is an orthogonal n× n matrix, and ∆N is a diagonal matrix with monotonically

decreasing elements. Let DN be the upper-left submatrix of ∆N whose diagonal elements

are at least ρ/2. Let lN be the number of rows in DN , (UN )1 be the submatrix of UN that

consists of its first lN rows, and (UN )2 be the submatrix that consists of the remaining rows

of UN . Then for almost every ω the equality lN = l holds for sufficiently large N . Moreover,

N
[
dfnorN,S(zN )(z0 − zN )

]T
(UN )T1 D

−1
N (UN )1

[
dfnorN,S(zN )(z0 − zN )

]
⇒ χ2

l (1.18)

and

NdfnorN,S(zN )(z0 − zN )T (UN )T2 (UN )2df
nor
N,S(zN )(z0 − zN )⇒ 0. (1.19)

Using (1.17), (1.18) and (1.19) we can give computable expressions for asymptotically

exact confidence regions for z0. To this end, for any α ∈ (0, 1) and integer k let χ2
k(α) be

the (1 − α) percentile of a χ2 random variable with k degree’s of freedom, and let ‖ · ‖∞
denote the ∞-norm for a vector x ∈ Rn. Then for any ε > 0 and integer N we define sets

RN when ΣN is nonsingular, and RN,ε when ΣN is singular, to be

RN =
{
z ∈ Rn

∣∣∣N[dfnor
N,S(zN )(z − zN )

]T
Σ−1
N

[
dfnor
N,S(zN )(z − zN )

]
≤ χ2

n(α)
}
,

(1.20)

RN,ε =

z ∈ Rn

∣∣∣∣∣∣∣∣
N
[
dfnor
N,S (zN )(z − zN )

]T
(UN )T1D

−1
N (UN )1

[
dfnor
N,S (zN )(z − zN )

]
≤ χ2

lN
(α)

‖
√
N(UN )2df

nor
N,S (zN )(z − zN )‖∞ ≤ ε

 .
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Depending on if ΣN is singular or not, by Theorem 2 we will have that either

lim
N→∞

Pr {z0 ∈ RN} = 1− α or lim
N→∞

Pr {z0 ∈ RN,ε} = 1− α.

Note that the expression for confidence regions in the nonsingular case is the same as that

proposed by Demir. Since the nonsingular case can be treated as a specialization of the

singular case with lN = n and ε = 0, moving forward we focus on the singular case and

consider regions RN,ε.

While the regions RN,ε have a specified asymptotic level of confidence, they are not

necessarily amenable to easy interpretation and visualization. It was thus suggested in

(Lu, 2014) to construct easier to interpret simultaneous confidence intervals by finding the

axis-aligned minimal bounding box that contains the region RN,ε. We examine questions

raised by this approach to building simultaneous confidence intervals in an application to a

stochastic Cournot-Nash equilibrium problem of moderate size in Chapter 2.

We now move our focus to the question of computing individual confidence intervals

for components of z0. A first approach would be to use the component interval of the

simultaneous confidence intervals considered above, but such intervals are too conservative

for any practical use. In (Lu, 2014) a natural expression for individual confidence intervals

suggested by (1.17) was analyzed. Recall that (1.17) required the additional assumption that

Σ0 be nonsingular. Since this assumption is used throughout the discussion of individual

confidence intervals we formally declare it as

Assumption 3. Let Σ0 denote the covariance matrix of F (x0, ξ). Suppose that the deter-

minant of Σ0 is strictly positive.

The primary purpose of Assumption 3 will be to provide a sufficient condition for

certain limits in the convergence results in Theorems 5, 6 and 7 to be well defined. Under

Assumptions 1 and 2, the sample covariance matrix ΣN converges almost surely to Σ0, see

(Lu, 2014, Lemma 3.6). A well conditioned ΣN will therefore give us high confidence that

Assumption 3 is true. Even if ΣN is ill conditioned, it is possible to relax Assumption 3

in Theorems 5, 6 and 7; the way to relax it differs for each theorem and is noted after

the proofs of those theorems. One can inspect if the relaxed conditions hold by checking
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properties of ΣN as well as the locations of F (xN , ξ
i), i = 1, . . . , N , with respect to the

normal manifold of S.

Before summarizing the results for the confidence intervals suggested by (1.17) some

notation must be introduced. Let dfnor
0,S (z0) be piecewise linear with l pieces and the cor-

responding conical subdivision {K1, . . . ,Kl} .Then dfnor
0,S (z0)|Ki = Mi for each i = 1, . . . , l,

where Mi stands for the matrix that represents dfnor
0,S (z0) on Ki. Under Assumption 2,

dfnor
0,S (z0) is a global homeomorphism so each matrix Mi is invertible. We then define

Y i = M−1
i Y0. Since Y0 is a multivariate normal random vector each Y i is a multivariate

normal random vector with covariance matrix M−1
i Σ0M

−T
i .

We define the number

rij =

√
(M−1

i Σ0M
−T
i )jj

for each i = 1, . . . , l and j = 1, . . . , n. Then for each α ∈ (0, 1) it follows that

Pr

(
|(Y i)j | ≤ rij

√
χ2

1(α)

)
= 1− α.

With this notation the following theorem was shown in (Lu, 2014, Theorem 5.1)

Theorem 3. Suppose that Assumptions 1, 2 and 3 hold. Let Ki,Mi, Y
i and rij be defined as

above. For each integer N with d(fN )S(zN ) being an invertible linear map, define a number

rNj =
√
dfnorN,S(zN )−1ΣNdfnorN,S(zN )−T )jj

for each j = 1, . . . , n. Then for each real number α ∈ (0, 1) and for each j = 1, . . . , n,

lim
N→∞

Pr

(√
N |(zn − z0)j |

rNj
≤
√
χ2

1(α)

)

=

l∑
i=1

Pr

(∣∣∣(Y i)j
rij

∣∣∣ ≤√χ2
1(α) and Y i ∈ Ki

) (1.21)

Moreover, suppose for a given j = 1, . . . , n that the following equality

Pr

(∣∣∣(Y i)j
rij

∣∣∣ ≤√χ2
1(α) and Y i ∈ Ki

)
= Pr

(∣∣∣(Y i)j
rij

∣∣∣ ≤√χ2
1(α)

)
Pr
(
Y i ∈ Ki

)
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holds for each i = 1, . . . , l. Then for each real number α ∈ (0, 1),

lim
N→∞

Pr

(
|(zN − z0)j | ≤

√
χ2

1(α)rNj√
N

)
= 1− α.

We see in (1.21) that this method of constructing individual confidence intervals, while

easily computable using only the sample data, produces intervals whose asymptotic level of

confidence is dependent on the true solution, unless the condition below (1.21) is satisfied.

The latter condition is satisfied, when dfnor
0,S (z0) is a linear function or has only two selection

functions, in which case the intervals computed from this method will be asymptotically

exact. However, in general the level of confidence for such intervals cannot be guaranteed.

The issue with the linear estimate dfnor
N,S(zN ) is that it does not properly account for the

possibly piecewise linear structure of dfnor
0,S (z0). This limitation motivates the development

of the methods proposed in Chapter 3 and 4. The three methods all produce intervals that

maintain their desired asymptotic properties in the general setting by using estimates that

capture the possibly piecewise linear structure of dfnor
0,S (z0). To construct such estimates we

will need the following additional assumption.

Assumption 4. (a) For each t ∈ Rn and x ∈ X, let

Mx(t) = E [exp {〈t, F (x, ξ)− f0(x)〉}]

be the moment generating function of the random variable F (x, ξ)− f0(x). Assume

1. There exists ζ > 0 such that Mx(t) ≤ exp
{
ζ2‖t‖2/2

}
for every x ∈ X and every

t ∈ Rn.

2. There exists a nonnegative random variable κ such that

‖F (x, ξ(ω))− F (x′, ξ(ω))‖ ≤ κ(ω)‖x− x′‖

for all x, x′ ∈ O and almost every ω ∈ Ω.

3. The moment generating function of κ is finite valued in a neighborhood of zero.
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(b) For each T ∈ Rn×n and x ∈ X, let

Mx(T ) = E [exp {〈T, dxF (x, ξ)− df0(x)〉}]

be the moment generating function of the random variable dxF (x, ξ)− df0(x). Assume

1. There exists ς > 0 such that Mx(T ) ≤ exp
{
ς2‖T‖2/2

}
for every x ∈ X and every

T ∈ Rn×n.

2. There exists a nonnegative random variable ν such that

‖dxF (x, ξ(ω))− dxF (x′, ξ(ω))‖ ≤ ν(ω)‖x− x′‖

for all x, x′ ∈ O and almost every ω ∈ Ω.

3. The moment generating function of ν is finite valued in a neighborhood of zero.

First note that when Assumption 4 holds the conditions of Assumption 1 are satisfied.

From Assumption 4 it follows that fN converges to f0 in probability at an exponential rate,

as shown in (Lu and Budhiraja, 2013, Theorem 4) based on a general result (Shapiro et al.,

2009, Theorem 7.67). That is, there exist positive real numbers β1, µ1,M1 and σ1, such

that the following holds for each ε > 0 and N :

Pr (‖fN − f0‖1,X ≥ ε) ≤ β1 exp {−Nµ1}+
M1

εn
exp

{
−Nε

2

σ1

}
. (1.22)

Revisiting Theorem 1, if one additionally supposes that Assumption 4 holds, then as shown

in (Lu and Budhiraja, 2013, Theorem 7), there exist positive real numbers ε0, β0, µ0,M0

and σ0, such that the following holds for each ε ∈ (0, ε0] and each N :

Pr (‖xN − x0‖ < ε) ≥ Pr (‖zN − z0‖ < ε)

(1.23)

≥ 1− β0 exp {−Nµ0} −
M0

εn
exp

{−Nε2
σ0

}
.
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The convergence of SAA solutions to the set of true solutions in probability at an exponential

rate was also shown using the concept of subinvertibility in (Xu, 2010) with an assumption

similar to Assumption 4.

The exponential rate of convergence as given in (1.23) was used in (Lu and Budhiraja,

2013) to estimate dfnor
0,S (z0) by a weighted-sum of a family of functions. The estimates

were later simplified in (Lu, 2012) by using a single function from the family. Due to the

computational ease of using a single function we focus our presentation to the estimates

for dfnor
0,S (z0) used in (Lu, 2012). In this approach a point near zN is used in the estimate

for dΠS(z0). More precisely, for each cell Ci in the normal manifold of S define a function

di : Rn → R by

di(z) = d(z, Ci) = min
x∈Ci
‖x− z‖, (1.24)

and a function Ψi : Rn → Rn by

Ψi(·) = dΠS(z)(·) for any z ∈ riCi. (1.25)

In (1.24) any norm for vectors in Rn can be chosen, and in (1.25) any z ∈ riCi can be chosen

since dΠS(z) is the same function on the relative interior of a cell. Next, choose a function

g : N→ R satisfying

1. g(N) > 0 for each N ∈ N.

2. lim
N→∞

g(N) =∞.

3. lim
N→∞

N
g(N)2

=∞.

4. lim
N→∞

g(N)n exp
{
−σ0

N
(g(N))2

}
= 0 for σ0 = min

{
1

4σ0
, 1

4σ1
, 1

4σ0(E[C])2

}
, where σ0, and

σ1 are as in (1.22) and (1.23) respectively and C as in Assumption 1.

5. lim
N→∞

Nn/2

g(N)n exp
{
−σg(N)2

}
= 0 for each positive real number σ.

Note that g(N) = Np for any p ∈ (0, 1/2) satisfies the above requirements.

Now for each integer N and any point z ∈ Rn, choose an index i0 by letting Ci0 be a

cell that has the smallest dimension among all cells Ci such that Ci is a face of an n-cell
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that contains z and di(z) ≤ 1/g(N). Then define functions ΛN (z) : Rn → Rn by

ΛN (z)(h) = Ψi0(h), (1.26)

and ΦN : Π−1
S (O)× Rn × Ω→ Rn by

ΦN (z, h, ω) = dfN (ΠS(z)) ◦ ΛN (z)(h) + h− ΛN (z)(h). (1.27)

Moving forward we will be interested in ΦN (zN (ω), h, ω), which for convenience we will

express as ΦN (zN )(h) with the ω suppressed. We shall use z∗N to denote a point in the

relative interior of the cell Ci0 associated with (N, zN ). With this notation it follows that

dΠS(z∗N ) = Ψi0 and

ΦN (zN )(h) = dfN (ΠS(zN )) ◦ dΠS(z∗N )(h) + h− dΠS(z∗N )(h). (1.28)

We end the review of previous works with the following results shown in (Lu, 2012,

Corollaries 3.2 and 3.3).

Theorem 4. Suppose that Assumptions 2 and 4 hold. For each N ∈ N, let ΛN and ΦN be

as defined in (1.26) and (1.27). Then

lim
N→∞

Pr [ΛN (zN )(h) = dΠS(z0)(h) for all h ∈ Rn] = 1, (1.29)

and there exists a positive real number θ, such that

lim
N→∞

Pr

[
sup

h∈Rn,h 6=0

‖ΦN (zN )(h)− dfnor0,S (z0)(h)‖
‖h‖ <

θ

g(N)

]
= 1. (1.30)

Moreover suppose Assumption 3 holds, and let ΣN be as defined above. Then

√
NΣ

−1/2
0 ΦN (zN )(zN − z0)⇒ N (0, In),

and
√
NΣ

−1/2
N ΦN (zN )(zN − z0)⇒ N (0, In). (1.31)
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1.4 Outline

In the remainder of this dissertation we develop methods to compute confidence intervals

for the true solution to an SVI, and apply those methods in stochastic optimization and

equilibrium problems. In Chapter 2 we begin by examining the computation of simultaneous

confidence intervals from the confidence regions given in (1.20) using the approach suggested

in (Lu, 2014). Of particular interest will be the sensitivity of the interval widths and

performance to the choice of the two parameters that arises in the case of a degenerate

covariance matrix. The sensitivity of the interval’s width to the parameters is first examined

through a discussion of the interval’s computation and the role of the parameters in these

computations. The chapter then introduces the framework of stochastic Cournot-Nash

equilibrium problems. The procedures for computing confidence regions and intervals are

then applied to an example of the European gas market with numerical comparisons and

sensitivity analysis results for both the confidence regions and intervals.

In Chapter 3 we propose two methods for constructing individual confidence interval

for components of the true solution to the normal map formulation of an SVI. The two

methods differ from the approach considered in Theorem 3 in terms of how they estimate

the potentially piecewise linear transformation that appears in the asymptotic distribution

of SAA solutions. The first method replaces the linear estimate used in Theorem 3 with

the potentially piecewise linear estimate (1.27). The method produces intervals that will be

asymptotically exact with less restrictive assumptions than those necessary for the method

in Theorem 3. This improvement in interval accuracy comes with a computational cost.

When an estimate for the transformation is piecewise linear with more than two selection

functions, the intervals lack closed form expressions, and the computation necessary for

finding an interval’s width increases with the number of selection functions. This motivates

the development of the second method of Chapter 3. The second method also uses the

potentially piecewise linear estimate (1.27) but makes use of the SAA solution to limit

the number of selection functions used in an interval’s computation. Both of the methods

proposed in Chapter 3 belong to the aforementioned indirect approaches. Approaches for

computing the intervals are presented in Chapter 3 along with the establishment of upper
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bounds for the interval lengths. The chapter ends with a comparison of the different methods

using three numerical examples.

In Chapter 4 we propose a direct method for constructing individual confidence intervals

for components of the true solution to an SVI as formulated in (1.1). The approaches for

constructing confidence intervals for the normal map formulation of an SVI proposed in

Chapter 3 cannot be applied to this problem due to the addition of a possibly noninvertible

function to the asymptotic distribution. The new function also raises an issue unique

to this chapter, namely, the possibility of components of the SAA solutions equaling the

corresponding components of the true solution with a nonzero probability. This possibility

provides a potential lower bound on the performance of any interval that contains the SAA

solution, and therefore shifts the focus from asymptotically exact intervals to intervals for

which a lower bound on the level of confidence can be guaranteed. A method for constructing

intervals is then presented along with a theoretical justification. The chapter ends with two

numerical examples.

In Chapter 5 we consider the computation of individual confidence intervals when the

results of Theorem 4 do not hold and ΦN (zN ) may not be a consistent estimate of dfnor
0,S (z0).

This would allow us to relax the condition that zN converge to z0 in probability at an

exponential rate, and therefore omit Assumption 4. To do so, we allow for some limited

error in the estimation of a selection function of dfnor
0,S (z0). This error is then offset by

adjusting the target probabilities used in the second indirect method of Chapter 3 and the

direct method of Chapter 4. As a result, the method we propose produces intervals that

meet a minimum level of confidence.
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CHAPTER 2

Simultaneous confidence intervals

2.1 Construction simultaneous confidence intervals

In this chapter we examine the computation and performance of confidence regions and

simultaneous confidence intervals for z0. We focus on the case when the sample covariance

matrix is singular, from which the nonsingular case can then be treated as a specialization.

The singular case is of additional interest due to the dependence of the confidence regions

on the choice of the parameter ε and value lN . By Theorem 2, the confidence regions RN,ε

in (1.20) are asymptotically exact for all ε > 0, but it remains to be seen how sensitive

their performance is to the choice of ε for fixed sample sizes. For the choice of lN , recall

that lN determines the matrices DN , (UN )1, and (UN )2, and corresponds to the number of

eigenvalues of ΣN that are treated as nonzero. In Theorem 2, the smallest eigenvalue of

Σ0 is used to determine lN . In practice, since only sample data are available, lN and the

matrices DN and (UN )1 must be determined in a different manner.

To compute the simultaneous confidence intervals we use the approach suggested in (Lu,

2014) and find the minimal axis-aligned bounding box that contains the confidence regions

RN,ε. In the remainder of this section we discuss the computation of simultaneous confidence

intervals using this approach. From this discussion follows Proposition 1 which provides

a closed form expression for the widths of the component intervals when the estimate

dfnor
N,S(zN ) is a linear function. In §2.2 we introduce the framework of stochastic Cournot-

Nash equilibrium problems and illustrate the procedures of computing confidence intervals

using an example of the European gas market. Numerical comparisons and sensitivity

analysis results are provided for both the confidence regions and simultaneous confidence

intervals.



To begin, finding the left and right endpoints of the simultaneous confidence intervals

requires solving

zrj =maximum (z)j and zlj = minimum (z)j

z ∈ RN,ε z ∈ RN,ε
(2.1)

for j = 1, 2 . . . , n, where (z)j denotes the jth component of the vector z. If dfnor
N,S(zN )

is a piecewise linear function with corresponding conical subdivision {K1, . . . ,Km}, then

problems in (2.1) needs to be further broken down to the following problems

zri,j =maximum (z)j and zri,j = minimum (z)j

z ∈ RN,ε ∩Ki z ∈ RN,ε ∩Ki

(2.2)

for j = 1, 2 . . . , n and i = 1, . . . ,m, to account for the different expressions for dfnor
N,S(zN )

on each Ki. The right and left endpoints for the jth component interval are then zrj =

max
i=1,...,m

zri,j and zlj = min
i=1,...,m

zli,j .

Computation of the endpoints is greatly simplified when dfnor
N,S(zN ) is a linear function.

In this case, the simultaneous confidence intervals are given by

[
(zN )1 − wεN,1, (zN )1 + wεN,1

]
× · · · ×

[
(zN )n − wεN,n, (zN )n + wεN,n

]
(2.3)

where wεN,j is the optimal value of the following problem:

maximize (w)j

subject to N
[
dfnor
N,S(zN )(w)

]T
(UN )T1 D

−1
N (UN )1

[
dfnor
N,S(zN )(w)

]
≤ χ2

lN
(α)

‖
√
N(UN )2df

nor
N,S(zN )(w)‖∞ ≤ ε.

(2.4)

We are therefore able to express the confidence intervals in terms of the optimal values of n

quadratically constrained convex programs with linear objective functions. Since dfnor
N,S(zN )

is with high probability a linear function, regardless of whether dfnor
0,S (z0) is piecewise linear

or linear (Lu, 2014, Proposition 3.5), we will expect to experience the computational benefit

from the linearity of dfnor
N,S(zN ).
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Note that both lN and ε are responsible for determining the constraints in (2.4), the

problem to find an interval’s endpoints. The first constraint in that problem

N
[
dfnor
N,S(zN )(w)

]T
(UN )T1 D

−1
N (UN )1

[
dfnor
N,S(zN )(w)

]
≤ χ2

lN
(α) (2.5)

defines an unbounded set whenever lN is strictly less than n. With the linear independence

between the rows of (UN )1 and (UN )2, the second constraint

‖
√
N(UN )2df

nor
N,S(zN )(w)‖∞ ≤ ε (2.6)

complements the first constraint to yield a bounded feasible region and therefore a guaran-

teed finite optimal solution to (2.4). In the following proposition we see that wεN,j depends

on ε as an affine function whose slope and intercept are determined by lN .

Proposition 1. Suppose that dfnorN,S(zN ) is a linear homeomorphism and ΣN has decompo-

sition ΣN = UTN∆NUN , where UN is an orthogonal matrix with rows uN,1, . . . , uN,n and ∆N

is a diagonal matrix with elements λ1 ≥ λ2 ≥ · · · ≥ λn. For a choice of lN with λlN > 0,

let DN be a diagonal matrix with elements λ1, . . . , λlN ,

(UN )1 =


uN,1

...

uN,lN

 and (UN )2 =


uN,lN+1

...

uN,n

 .

Then for each j = 1, . . . , n, the optimal value of (2.4) is an affine function of ε with

wεN,j =

√
χ2
lN

(α)
∑lN

i=1(cN,juTN,i)
2λi

N
+

ε√
N

n∑
i=lN+1

|cN,juTN,i|, (2.7)

where cN,j is the jth row of dfnorN,S(zN )−1.

Proof. Let VN and TN be the subspaces spanned by
{
uTN,1, . . . , u

T
N,lN

}
and{

uTN,lN+1, . . . , u
T
N,n

}
, respectively. Then VN is the orthogonal complement of TN and any
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vector d(fN )S(zN )(w) can be decomposed as

dfnor
N,S(zN )(w) = v + t

with v ∈ VN and t ∈ TN . Denoting the jth row of dfnor
N,S(zN )−1 by cN,j , (2.4) can be

reformulated as

maximize cN,jv + cN,jt

subject to N [vT (UN )T1 D
−1
N (UN )1v] ≤ χ2

lN
(α)

‖
√
N(UN )2t‖∞ ≤ ε

v ∈ VN , t ∈ TN .

(2.8)

By expressing v ∈ VN as v =
∑lN

i=1 siu
T
N,i and t ∈ WN as t =

∑n
i=lN+1 siu

T
N,i for si ∈ R we

can separate (2.8) into the following two problems

maximize

lN∑
i=1

(cN,ju
T
N,i)si

subject to N

lN∑
i=1

s2
iλ
−1
i ≤ χ2

lN
(α)

(2.9)

and

maximize
n∑

i=lN+1

(cN,ju
T
N,i)si

subject to
−ε√
N
≤ si ≤

ε√
N

i = lN + 1, . . . , n.

(2.10)

It immediately follows that (2.10) has optimal value ε√
N

∑n
i=lN+1 |cN,juTN,j |, and it

can be easily checked using KKT conditions for (2.9) that it has optimal value

N−1/2
√
χ2
lN

(α)
∑lN

i=1(cN,juTN,i)
2λi, proving the result.

From (2.7) we observe that lN determines the upper index of the summation in the

intercept of wεN,j , the degrees of freedom of the χ2 random variable in the intercept, and

the lower index of the summation in the slope of wεN,j . Therefore increasing lN from k to

k + 1 increases wεN,j for values of ε below some threshold and decreases wεN,j for values of

ε above this threshold. It is possible for the width of the confidence interval to be constant

with respect to ε for some components j. This occurs only when (dfnor
N,S(zN )−1)j is a linear
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combination of the rows of (UN )1, in which case increasing lN from k to k+1 only increases

the value of wεN,j . In the next section we use the expressions for RN,ε and wεN,j to investigate

the sensitivity of the confidence regions and simultaneous confidence regions to the choices

of ε and lN .

2.2 Application to a stochastic Cournot-Nash equilibrium problem

In this section, we consider a stochastic equilibrium model of the European natural gas

market, compute confidence intervals for the true solution of this model, and examine the

sensitivity of the confidence regions and confidence intervals to the choice of lN and ε.

The model is adapted from (Gürkan et al., 1999), and is an example of a Cournot-Nash

equilibrium problem.

In a Cournot-Nash equilibrium problem, m competitive players are assumed to produce

a homogenous product and must simultaneously decide their level of production and how

to distribute their production between n markets. In each of the markets, the price the

product sells for is a function of the total quantity allocated to that market by all of the

players. The uncertainty in the model arises from the dependence of each player’s profit

function, denoted by Υi , on a random vector ξ ∈ Rb.

Let xi denote the decision vector of player i, Si ⊂ Rdi denote the set of feasible decisions

for player i, and x = (x1, . . . , xm) ∈ S1 × · · · × Sm be the concatenation of all players’

decisions. With φi0(x) = E [Υi(x, ξ)] denoting the expected profit function for player i,

x∗ = (x∗1, . . . , x
∗
m) is a Cournot-Nash equilibrium if

x∗i ∈ argmaxxi∈Siφi0(x∗1, . . . , x
∗
i−i, xi, x

∗
i+1, . . . , x

∗
m) for each i = 1, . . . ,m.

When the expected profit functions are continuously differentiable, a necessary condition

for a point to be a Cournot-Nash equilibrium can be expressed as a variational inequality.

In the example considered in this chapter, Si = Rdi+ for each i = 1, · · · ,m, and the first

order necessary condition for player i’s profit maximization problem is

0 ∈ −∂φi0
∂xi

(x) + NRdi+
(xi).
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Let S = Rd1+ × · · · × Rdm+ and

f0(x) =


−∂φ10

∂x1
(x)

...

−∂φm0
∂xm

(x)

 .

A necessary condition for x∗ to be a Cournot-Nash equilibrium is

0 ∈ f0(x∗) + NS(x∗). (2.11)

The above condition is sufficient when each of the expected profit functions is concave.

For (2.11) to fit the framework of an SVI we require a function F (x, ξ) such that f0(x) =

E [F (x, ξ)] and E‖F (x, ξ)‖ <∞ for all x ∈ S. The natural candidate

F (x, ξ) =


−∂Υ1
∂x1

(x, ξ)

...

−∂Υm
∂xm

(x, ξ)


will meet these criteria if the profit functions Υi satisfy the conditions of Assumption 1. In

this case the SVI (2.11) gives rise to the SAA problem

0 ∈ fN (x) + NS(x) (2.12)

where

fN = N−1
N∑
k=1

F (x, ξk).

In the European gas market model that we consider, there are four players, indexed

by i = 1, 2, 3, 4. These four players represent the gas producing countries Russia, the

Netherlands, Norway, and Algeria. There are six European markets, indexed by j, which

represent markets of the United Kingdom, the Netherlands, Italy, France, France and Ger-

many (FRGer), and Belgium and Luxembourg (BelLux). Producers decide on the quantity

of gas to ship each year during time period t, for t = 1, 2, 3, 4, to the six markets. There

are 24 decision variables for each producer, denoted by xti,j , corresponding to the amount

of natural gas shipped by producer i to market j each year in time period t. In the model’s

27



formulation, the following parameters are used :

Dt
j : the domestic gas production of market j each year in time period t,

cti: the constant marginal transportation cost of shipping for producer i in time period t,

etj : the price elasticity of demand for natural gas in market j in time period t,

yt: the number of years in time period t, taken to be 5 years for time periods 1, 2, 3, and

20 years for time period 4.

In time period t, the yearly production cost for producer i is given by

Gi(x) = ai − bi ln(Xi −
6∑
j=1

xti,j),

where ai, bi and Xi are parameters. The parameter Xi provides an upper bound on the

yearly production of producer i. Values for the parameters indexed by player i are given in

Table 2.1 and values for the parameters indexed by market j are given in Table 2.2.

Table 2.1: Producer parameter values

Producer a b X c1 c2 c3 c4

Russia 1.606 51 80 .58 .56 .55 .55
Netherlands 1.212 67 80 .14 .13 .13 .12

Norway 1.507 85 80 .35 .34 .34 .33
Algeria 2.102 96 80 .70 .69 .64 .62

Table 2.2: Values for price elasticity e and demand D

Market Period 1 Period 2 Period 3 Period 4

BelLux -1.07 0.00 -1.26 0.00 -1.34 0.00 -1.42 0.00
FRGer -1.46 13.70 -1.58 13.80 -1.68 13.80 -1.79 13.80
France -.81 4.80 -1.19 2.90 -1.57 3.00 -2.01 3.00

Italy -1.15 10.40 -1.36 10.00 -1.45 10.00 -1.54 10.40
Netherlands -.94 22.93 -1.13 20.96 -1.29 24.11 -1.45 23.90

UK -.61 33.70 -.87 35.00 -1.10 37.00 -1.30 38.00

The uncertainty in the problem is associated with the price of natural gas in the different

markets. The price of natural gas in market j for time period t is determined by the total

amount of natural gas available annually, as well as ξt the random price of oil in time period

t, and is given by

P tj (x, ξ
t) = ptj(ξ

t)

(
Qtj(x)

qtj(ξ
t)

)1/etj
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In the above equation, Qtj(x) = Dt
j +

∑6
i=1 x

t
i,j is the total amount of natural gas available

in market j annually throughout time period t. The functions ptj(ξ
t) and qtj(ξ

t) provide the

base price and the base demand for natural gas as a function of the price of oil, and are

defined as

ptj(ξ
t) = p0tj

(
ξt/ort

)
and qtj(ξ

t) = q0tj
(
ξt/ort

)ηt
with parameters:

p0tj : reference price of natural gas in market j in time period t,

q0tj : reference demand for natural gas in market j in time period t,

ort: reference price for oil in time period t,

ηt: the elasticity relating the relative demand for natural gas to the relative price of oil.

We assume that the prices of oil in each time period are independent and uniformly

distributed with lower and upper bounds Lt and Ut. The values for the parameters in the

base price and demand functions are given in Tables 2.3 and 2.4.

Table 2.3: Reference prices p0 and demands q0

Market Period 1 Period 2 Period 3 Period 4

BelLux 5.12 7.8 2.56 9.4 3.41 9.4 5.12 9.5
FRGer 5.27 40.7 2.64 46.2 3.52 46.5 5.27 44.6
France 5.25 23.6 2.62 28.3 3.50 9.8 5.25 28.5
Italy 5.15 25.3 2.57 34.9 3.43 37.5 5.15 37.2
Netherlands 5.16 28.9 2.58 29.9 3.44 32.2 5.16 29.7
UK 4.54 43.8 2.27 50.3 3.03 56.4 4.54 53.7

Table 2.4: Time period parameters in base price demand function

t ηt ort Lt Ut
1 -0.10 30 16 34
2 -0.12 15 12 18
3 -0.24 30 24 36
4 -0.36 35 28 42

To account for the multiple time periods of the model, all income and costs are consid-

ered in terms of their present value. Assuming a fixed annual interest rate of r = 0.1, for
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each time period we use the factor ft to express the future value of money with

ft =

(
(1 + r)yt − 1

r

)(
1

(1 + r)
∑t
s=1 ys

)
.

The net present value profit function for producer i is then defined to be

Υi(x, ξ) =

4∑
t=1

ft

 6∑
j=1

(
P tj (x, ξ

t)− cti
)
xti,j −Gi(x)

 . (2.13)

Taking the expectation of (2.13) reduces to calculating E
[
P tj (x, ξ

t)
]

and provides us with

an expression for φi0 . Under the assumption that the oil prices are uniformly distributed

we have

E
[
P tj (x, ξ

t)
]

= p0tj
(
Qtj(x)q0tj

)1/etj orηt/etj−1

t

(
U

2−ηt/etj
t − L2−ηt/etj

t

)
1

(Ut − Lt)(2− ηt/etj)
.

With expressions for Υi and φi0 we are able to obtain explicit formulas for both f0(x) and

fN (x).

To find solutions to both the true SVI (2.11) and its SAA (2.12) we make use of the

fact that S = R96
+ . For any x ∈ S, the normal cone to S at x is

NS(x) =
{
v ∈ R96| vi = 0 if xi > 0 and vi ≤ 0 if xi = 0

}
.

Therefore, the variational inequalities (2.11) and (2.12) are equivalent to the mixed com-

plementarity problems (MCPs)

0 ≤ x ⊥ f0(x) ≥ 0 and 0 ≤ x ⊥ fN (x) ≥ 0

respectively. To solve the MCPs, we use the PATH solver (Dirkse and Ferris, 1995b) imple-

mented in GAMS (Rosenthal, 2012). With this knowledge of the true solution, we observe

that dfnor
0,S (z0) is a linear function and Σ0 is degenerate. To calculate the confidence regions

RN,ε and formulate the problems in (2.1) to find the simultaneous confidence intervals, re-
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quires evaluating fN (x, ξ), dfN (x, ξ), and the B-derivative of the projection onto S = R96
+

at a point z which is equal to

dΠS(z)(h) =


λ1 · · · 0

...
. . .

...

0 · · · λ96



h1

...

h96

 where λi =



1 (z)i > 0,

1 (z)i = 0 and hi ≥ 0,

0 (z)i = 0 and hi ≤ 0,

0 (z)i < 0.

The calculation of confidence regions and simultaneous confidence intervals is done in (MAT-

LAB, 2010) using the MATLAB/GAMS interface (Ferris, 2005) to pass the SAA and true

solutions between programs.

To analyze the performance of the confidence regions and corresponding simultaneous

confidence intervals, we generate 2,000 replications of the SAA problem at each sample size

of N =20, 200, 2,000, and 20,000. For each sample, dfnor
N,S(zN ) is linear and the simultaneous

confidence intervals take the form of (2.3). To determine lN , all eigenvalues of ΣN larger

than a threshold ρN are treated as nonzero. Three different procedures are considered for

choosing the threshold ρN . In the first, ρN,1 = N−1/3, while in the second and third ρN

is held constant at ρN,2 = 10−10 and ρN,3 = 0.001 respectively. Note that the choice of

ρN,1 will be asymptotically correct if ΣN converges to Σ0 in probability at an exponential

rate. This would occur if in Theorem 2 we replace Assumption 1 with Assumption 4. The

use of ρN,1 results in four eigenvalues being treated as nonzero across all samples, while

the constant thresholds results in values of lN that vary slightly between samples. When

ρN,2 is used lN equals either eight or nine and when ρN,3 is used lN equals either four or

five. In Table 2.5, we summarize the coverage rates of z0 by the confidence regions RN,ε for

each choice of ρN and values of ε =0.0001, 0.1, 1, and ∞. For example, with the choices

of ρN,1 and ε = 0.1, the true value of z0 is covered by 83.3% of the 95% confidence regions

computed from the 2,000 replications at N = 20.

For all three methods of determining lN , we observe extremely poor coverage of z0

for ε ≤ .0001, even at large sample sizes. The sensitivity of the confidence regions to the
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Table 2.5: Coverage rates of confidence regions for z0, α = .05

N = 20 N = 200 N = 2, 000 N = 20, 000

ρN,1

ε = .0001 0% 0% 0% 0%
ε = .1 57% 78.8 % 95.1% 94.05%
ε = 1 83.3% 94.4 % 95.35% 94.2%
ε =∞ 85.15% 94.4 % 95.35% 94.2%

ρN,2

ε = .0001 0% 0.2% 0.75% 7.6%
ε = .1 2.25% 24.75 % 49.05% 73.85%
ε = 1 2.25% 24.75 % 49.05% 73.85%
ε =∞ 2.25% 24.75 % 49.05% 73.85%

ρN,3

ε = .0001 0% 0% 0% 0%
ε = .1 56.7% 78.05 % 94.75% 94.5%
ε = 1 81.25% 93.55 % 94.75% 94.5%
ε =∞ 83% 93.55 % 94.75% 94.5%

choice of lN is seen in the different coverage rates of z0 for values of ε ≥ 0.1. In the liberal

classification scheme that uses ρN,2, near zero eigenvalues are included in DN . When DN

is inverted the reciprocals of these near zero eigenvalues offset the increase in the degrees

of freedom of the χ2 random variable on the right hand side of (2.5), resulting in poor

coverage of z0. The classification schemes that use ρN,1 and ρN,3 have a higher threshold

for treating eigenvalues as nonzero. As a result these thresholds avoid the inclusion of overly

large values in D−1
N and produce regions that perform largely in line with the specified level

of confidence. The choice of ε = ∞ corresponds to the percentage of samples that satisfy

(2.5) and provides an upper bound on the coverage rates.

Next, as we examine the performance of simultaneous confidence intervals we observe

that their coverage rates keep increasing as ε increases, and eventually reach 100% for ε

sufficiently large, see Table 2.6. This is consistent with the analytical results in Proposition

1, since for this example each sample and choice or ρN results in wεN,j being an affine

function of ε with positive slope. In contrast, while the size of the confidence regions also

increases with ε their coverage of z0 never reaches 100% due to the constraint (2.5). A

further difference between the confidence regions and simultaneous confidence intervals, is

the coverage rates of z0 at small values of ε. While the confidence regions largely fail to

cover z0 for values of ε ≤ .0001, the simultaneous confidence intervals not only cover z0,
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Table 2.6: Coverage rates of simultaneous confidence intervals for z0, α = .05

N = 20 N = 200 N = 2, 000 N = 20, 000

ρN,1

ε = 0 84.05% 85.35% 99.05% 98.9%
ε = .01 88.05% 88.15% 99.55% 99.5%
ε = .1 94.05% 99.35% 99.9% 100%
ε = 1 100% 100% 100% 100%

ρN,2

ε = 0 92% 89.9% 99.95% 100%
ε = .01 93.35% 90.15% 99.95% 100%
ε = .1 94.4% 100% 100% 100%
ε = 1 100% 100% 100% 100%

ρN,3

ε = 0 84.9% 86.95% 99.55% 99.65%
ε = .01 88.6% 88.9% 99.65% 99.9%
ε = .1 94.05% 99.45% 100% 100%
ε = 1 100% 100% 100% 100%

but for the larger sample sizes do so at a conservative rate. The conservative performance

at small values of ε is most obvious with the choice of ρN,2. As noted after Proposition 1

treating more eigenvalues as nonzero increases the intercept term of (2.7), which increases

the interval’s length for ε sufficiently small.

Next, we examine the computation of individual confidence intervals, and compare

them with the simultaneous confidence intervals. In this example dfnor
0,S (z0) is linear and

dfnor
0,S (z0)−1Σ0df

nor
0,S (z0)−T has nonzero diagonal elements. Therefore, by Theorem 3, the

formula (1.21) will provide asymptotically exact intervals for this example. Using this for-

mula we consider individual confidence intervals at both α = .05 and with a Bonferroni

adjustment of α′ = .05
96 . Below, we refer to intervals produced using the Bonferroni adjust-

ment as adjusted confidence intervals, and will examine their performance as simultaneous

confidence intervals.

The individual confidence intervals with α = .05 perform largely in line with expecta-

tions. At the sample size of N = 20, coverage rates of the different components (z0)i range

from 71.1% to 96.4% with an overall average of 93.1%. For the samples of size N = 20, 000,

the coverage rates range from 94.05% to 96.2% with an overall average of 95.09%. For the

adjusted confidence intervals we examine their rates of jointly covering z0. At the sample

sizes of N =20, 200, 2,000 and 20,000, the coverage rates of the adjusted confidence inter-
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vals are 88.2%, 88.4%, 99.75%, and 99.75%, respectively. These rates are comparable to

the coverage rates of the simultaneous confidence intervals calculated using (2.4) for small

values of ε as given in Table 2.6.

To observe differences between the adjusted and simultaneous confidence intervals we

compare their interval lengths. Table 2.7 summarizes the half widths of the individual,

adjusted, and simultaneous confidence intervals for (z0)59 for a single replication at each

sample size. Half widths of the individual and adjusted confidence intervals do not depend

on ρN . However, in Table 2.7 their values are repeated for each choice of ρN , to be compared

with the corresponding simultaneous confidence intervals. With the choice of ρN,2, even the

Table 2.7: Half-widths of intervals for (z0)59, α = .05

hε59

Individual Adjusted ε = 0 ε = 0.01 ε = 0.1 ε = 1

ρN,1

N = 20 0.2879 0.5098 0.4525 0.5213 1.1406 7.3331
N = 200 0.0717 0.1270 0.1127 0.1360 0.3458 2.4435
N = 2, 000 0.0224 0.0396 0.0352 0.0420 0.1035 0.7184
N = 20, 000 0.0070 0.0124 .0110 0.0133 0.0347 0.2483

ρN,2

N = 20 0.2879 0.5098 0.6043 0.6713 1.2742 7.3028
N = 200 0.0717 0.1270 0.1505 0.1731 0.3759 2.4043
N = 2, 000 0.0224 0.0396 0.0470 0.0535 0.1124 0.7018
N = 20, 000 0.0070 0.0124 .01476 0.0170 0.0378 0.2458

ρN,3

N = 20 0.2879 0.5098 0.4888 0.5573 1.1741 7.3416
N = 200 0.0717 0.1270 0.1127 0.1360 0.3458 2.4435
N = 2, 000 0.0224 0.0396 0.0380 0.0448 0.1061 0.7190
N = 20, 000 0.0070 0.0124 .0118 0.0142 0.0356 0.2492

smallest simultaneous confidence interval with ε = 0 contains the adjusted confidence in-

terval at each sample size. This is indeed the case across all components and samples. The

simultaneous confidence intervals calculated using ρN,2 therefore contain the conservative

Bonferroni adjusted simultaneous confidence intervals, which illustrates the overly conser-

vative interval lengths obtained when using ρN,2. Choosing either ρN,1 or ρN,3 changes this

effect, and the adjusted confidence intervals contain the simultaneous confidence intervals

with ε = 0 across all components and samples. Using (2.7), we calculate the value of ε for

which the jth components of the simultaneous and adjusted confidence intervals equal one

another. This value varies largely depending on the component considered. When ρN,1 is
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used, this value of ε is between 8.86×10−4 and 0.1728, and between 3.57×10−4 and 0.1395

when using ρN,3.

As noted after Proposition 1, the choice of lN determines the degrees of freedom of

the χ2 random variable, as well as the upper index of summation in the intercept, and

the lower index of summation in the slope of wεN,j . When comparing interval lengths for

different choices of ρN and ε = 0, the differences are largely the result of changes in the

degrees of freedom of the χ2 random variable. This is seen by comparing the ratio of w0
N,j

for two choices of ρN to the ratio of the square root of χ2
lN

for the same choices of ρN .

The difference between these two ratios is on the order of 10−4 across all components and

samples.

So far, we have considered only confidence regions and intervals for z0, the true solution

to the normal map formulation. In most problems, the true solution to the variational

inequality, namely x0, has a more direct interpretation and is of greater interest. The

relation ΠS(z0) = x0 and the easily observed fact that

Pr (z0 ∈ IN (ω)) ≤ Pr (ΠS(z0) ∈ ΠS(IN (ω))) , for any random set IN (ω),

provides one indirect approach for obtaining confidence intervals for x0 that cover the true

solution with a rate that is at least as large as the coverage rate of z0 by IN (ω). With

S = R96
+ , projecting the simultaneous confidence intervals for z0 onto S reduces to replacing

negative endpoints of these intervals with zero. Comparing the coverage rates of x0, as

summarized in Table 2.8, to the coverage rates of z0, we observe the largest increase for the

smaller sample sizes and values of ε.

The expression for wεN,j in (2.7) and the analysis of this example provides useful insights

for choosing ε and lN when the sample covariance matrix is singular. When choosing lN

care should be taken to avoid classifying overly small eigenvalues as nonzero. In the case of

confidence regions, such care can prevent poor coverage performance due to large elements

of D−1
N offsetting the increases to the right hand side of (2.5). For simultaneous confidence

intervals, too large a value of lN is undesirable since it inflates the intercept of wεN,j and

produces excessively long intervals. The choice of ε depends on the specific set of interest.
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Table 2.8: Coverage rates of simultaneous confidence intervals for x0, α = .05

N = 20 N = 200 N = 2, 000 N = 20, 000

ρN,1

ε = 0 94.75% 99.9% 99.65% 99.65%
ε = .01 94.9% 99.9% 99.95% 99.8%
ε = .1 95.2% 100% 100% 100%
ε = 1 100% 100% 100% 100%

ρN,2

ε = 0 95.2% 100% 99.95% 100%
ε = .01 95.2% 100 % 99.95% 100%
ε = .1 95.2% 100 % 100% 100%
ε = 1 100% 100 % 100% 100%

ρN,3

ε = 0 94.8% 99.9% 99.9% 99.85%
ε = .01 94.95% 99.95 % 99.95% 99.9%
ε = .1 95.2% 100 % 100% 100%
ε = 1 100% 100 % 100% 100%

When the confidence regions are the primary set of interest, small values of ε often lead

to poor coverage performance, and there is an upper bound on the coverage rate as ε goes

to infinity. These properties suggest choosing a larger value of ε to obtain the desired

level of coverage by the confidence regions. When the confidence regions are to be used to

build simultaneous confidence intervals for z0 or x0, a small value of ε, even the extreme

choice of ε = 0, appears appropriate. This is based on the expression for wεN,j in (2.7) and

the conservative performance of the simultaneous confidence intervals demonstrated in this

numerical example.
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CHAPTER 3

Confidence intervals for the normal map solution

3.1 Introduction

This chapter presents two new methods for constructing individual confidence intervals

for the normal map formulation of an SVI. For both methods, a level of confidence can be

specified under general situations. While our main interest is on SVIs and their normal map

formulations, the ideas of those two methods work for general piecewise linear functions. We

outline the ideas below, and leave formal definitions and proofs to §3.2 and §3.3. Recalling

the notation introduced in Chapter 1, we use (v)j to denote the jth coordinate of a vector

v, and (M)j to denote the jth row of a matrix M . Similarly for an invertible function f :

Rn → Rn, (f)j will denote the jth component function of f and (f−1)j the jth component

function of f−1.

Suppose f : Rn → Rn is a piecewise linear homeomorphism with a family of selection

functions {M1, . . . ,Ml} and the corresponding conical subdivision {K1, . . . ,Kl}, so f is

represented by the linear map Mi when restricted to Ki. Suppose zN is an n-dimensional

random vector such that
√
N(zN −z0)⇒ f−1(Z), where z0 ∈ Rn is an unknown parameter,

Z ∼ N (0, In), and In is the n× n identity matrix. Our objective is to obtain a confidence

interval for (z0)j , j = 1, · · · , n. The idea of the first method is to look for a number a

such that Pr(|(f−1)j(Z)| ≤ a) equals a prescribed confidence level, and then use [(zN )j −

aN−1/2, (zN )j + aN−1/2] as the interval. For situations considered in this chapter, z0 and

zN are solutions to the normal map formulations of (1.1) and (1.3) respectively, and the

unknown function f is substituted by an estimator obtained from approaches in (Lu, 2012)

and (Lu and Budhiraja, 2013). Such a substitution does not affect the asymptotic exactness

of confidence intervals computed from this method, as we show in Theorem 5. In addition,



to allow for some choice in where the interval is centered, we introduce a parameter r and

consider the probability Pr(|(f−1)j(Z)− r| ≤ a).

A challenge that arises with the first method is that when the function f is piecewise

linear we lack a closed form expression for the value of a. The computation of a satisfying

Pr(|(f−1)j(Z) − r| ≤ a) for a fixed r requires enumerating all pieces of f−1, and for each

piece one needs to compute the probability for some normal random vector to belong to a

certain polyhedron. Thus, the calculations necessary to find a confidence interval increase

with the number of pieces in f . These limitations lead to the consideration of upper bounds

for interval half-widths, presented in §3.4, and the development of the second method in

this chapter.

The second method uses the idea of conditioning. For any point x ∈ intKi there exists

a number ηαj (f, x) such that the following conditional probability

Pr
(
|(f−1)j(Z)| ≤ ηαj (f, x), f−1(Z) ∈ Ki

)
Pr (f−1(Z) ∈ Ki)

equals 1 − α. If we choose a point x to be contained in the same cone Ki that contains

zN − z0, the interval

[(zN )j − ηαj (f, x)N−1/2, (zN )j + ηαj (f, x)N−1/2]

will have a level of confidence equal to 1 − α. In situations considered in this chapter, we

will again use an estimator to replace the unknown f , and follow an approach in (Lu, 2012)

to choose x. The method is justified with a convergence result in Theorem 6. The second

method avoids the enumeration of all pieces f by conditioning on the cone that contains

zN − z0. The ability to work with a single piece of f provides the second method with a

dramatic computational advantage over the first method, and makes it possible to apply

the second method to problems with a large number of selection functions. In the third

numerical example of §3.5, the number of selection functions we need to handle for some

SAA problems is 212. While the first method failed in those cases, the second method was

able to finish the computation very quickly.
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3.2 The first method

This section presents the first method to compute individual confidence intervals. This

method differs from the approach examined in Theorem 3 in how it estimates the transfor-

mation dfnor
0,S (z0)−1. The estimate dfnor

N,S(zN )−1 used for the approach examined in Theorem

3 has the benefit that it is with high probability a linear function and the interval will have

a closed form expression. The limitation of this approach is that it does not account for how

the location zN − z0 in the conical subdivision associated with dfnor
0,S (z0) affects the form of

dΠS(zN ) and thus dfnor
N,S(zN ). Therefore as seen in (1.21), when dfnor

0,S (z0) is piecewise linear

the intervals produced using the linear estimate dfnor
N,S(zN ) may have an asymptotic level of

confidence different than that indicated by the choice of α.

To guarantee the asymptotic exactness of intervals with less restrictive assumptions

than those necessary in Theorem 3, the method proposed in this section uses ΦN (zN ) as in

(1.28) to estimate dfnor
0,S (z0). The convergence of ΦN (zN ) to dfnor

0,S (z0), see Theorem 4 (1.31),

allows us to directly account for the effect that dfnor
0,S (z0) being piecewise linear has on the

intervals’ performance. The cost of using this approach is that when ΦN (zN ) is piecewise

linear we no longer have a closed form expression for the intervals and the computational

costs of determining an interval’s width increases with the number of selection functions.

The width of an interval produced using the method of this section is determined by (3.1)

with the exactness of the intervals proven in Theorem 5, see (3.6), the proof of which uses

properties of transformations of normal random vectors.

To begin let f : Rn → R be a continuous function, and Z ∼ N (0, In). Suppose that

Pr (f(Z) = b) = 0 for all b and Pr (b1 < f(Z) < b2) > 0 for all b1 < b2. Then given any

α ∈ (0, 1) and r ∈ R there exists a unique point ar(f) ∈ (0,∞) such that

Pr (−ar(f) ≤ f(Z)− r ≤ ar(f)) = 1− α.

Let α ∈ (0, 1) be fixed. For any function g : Rn → R, define

ar(g) = inf{` ≥ 0|Pr (−` ≤ g(Z)− r ≤ `) ≥ 1− α}. (3.1)
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It then follows that

1. ar(g) <∞.

2. Pr (−ar(g) ≤ g(Z)− r ≤ ar(g)) ≥ 1− α.

3. Pr (−(ar(g)− δ) ≤ g(Z)− r ≤ ar(g)− δ) < 1− α for all δ > 0.

In the proof of Theorem 5 we use the following two lemmas. Here is a comment about

notation. We use fN to denote the sample average function (1.2) unless explicitly stated

otherwise. In some lemmas and propositions we use fN for different meanings, which will

be made clear in the statements of those results. For example, fN in Lemma 1 stands for

a deterministic function from Rn to R.

Lemma 1. Let f be as above and {fN}∞N=1 be a sequence of functions from Rn to R that

converges pointwise to f . Then for any r ∈ R, limN→∞ a
r(fN ) = ar(f).

Proof. Note supN a
r(fN ) < ∞. This follows from the fact that fN (Z) converges to f(Z)

a.s. and so {fN (Z)}∞N=0 is tight. Next fix a subsequence, again indexed by N , along which

ar(fN )→ a∗. It suffices to show a∗ = ar(f).

Note that a∗ 6= 0. If this were the case then for every ε > 0

1− α ≤ lim
N→∞

Pr (−ε ≤ fN (Z)− r ≤ ε) = Pr (−ε ≤ f(Z)− r ≤ ε) .

Since ε is arbitrary this would imply Pr (f(Z) = r) ≥ 1− α, a contradiction.

Assume now without loss of generality that infN a
r(fN ) > 0. Then

1− α ≤ lim
N→∞

Pr

(
−1 ≤ fN (Z)− r

ar(fN )
≤ 1

)
= Pr

(
−1 ≤ f(Z)− r

a∗
≤ 1

)
. (3.2)

Applying the same argument for all 0 < δ < infN a
r(fN ) we see that

Pr

(
−1 ≤ f(Z)− r

(a∗ − δ) ≤ 1

)
≤ 1− α.
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Sending δ to 0 we obtain Pr (−a∗ ≤ f(Z)− r ≤ a∗) ≤ 1 − α, which combined with (3.2)

gives

Pr (−a∗ ≤ f(Z)− r ≤ a∗) = 1− α.

Thus a∗ = ar(f), and limN→∞ a
r(fN ) = ar(f).

Let C(Rn,R) denote the space of continuous functions from Rn to R. Equipped with

the local uniform topology, this is a Polish space.

Lemma 2. Let {fN}∞N=1 be a sequence of C(Rn,R) valued random variables which con-

verges in distribution to f . Also let {ZN}∞N=1 be a sequence of Rn valued random variables

converging in distribution to Z. Then for any r ∈ R,

Pr (−ar(fN ) ≤ fN (ZN )− r ≤ ar(fN ))→ 1− α.

Proof. By Lemma 1 and the convergence of fN to f , it follows that ar(fN ) → ar(f) in

probability. Also since ar(f) > 0,

1

ar(fN )
1ar(fN )>0 →

1

ar(f)

in probability, where 1ar(fN )>0 is the indicator random variable for the event ar(fN ) > 0.

Let AN denote the event that ar(fN ) > 0. Then

Pr (−ar(fN ) ≤ fN (ZN )− r ≤ ar(fN )) = Pr

(
AN ; −1 ≤ fN (ZN )− r

ar(fN )
≤ 1

)
+ Pr (AcN ; −ar(fN ) ≤ fN (ZN )− r ≤ ar(fN )) .

By ar(fN )→ ar(f) in probability and ar(f) > 0, it follows that Pr (AN )→ 1. Therefore,

Pr (AcN ; −ar(fN ) ≤ fN (ZN )− r ≤ ar(fN ))→ 0 as N →∞.
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Let BN be the event that −1 ≤ fn(ZN )−r
ar(fN ) 1ar(fN )>0 ≤ 1. By the convergence of fN to f and

ZN to Z, we have fN (ZN )⇒ f(Z), and therefore

Pr (BN )→ Pr

(
−1 ≤ f(Z)− r

ar(f)
≤ 1

)
= Pr (−ar(f) ≤ f(Z)− r ≤ ar(f)) = 1− α.

Consequently, Pr (−ar(fN ) ≤ fN (ZN )− r ≤ ar(fN ))→ 1− α.

The application of these lemmas to our problem of interest is facilitated by the following

two propositions.

Proposition 2. (a) Let f : Rn → Rn be a piecewise linear function and {fN}∞N=1 a sequence

of piecewise linear functions from Rn to Rn with

sup
h∈Rn,h 6=0

‖fN (h)− f(h)‖
‖h‖ → 0. (3.3)

Suppose that there exists a conical subdivision Γ = {K1,K2 . . .Kl} of Rn such that for all N

sufficiently large the restrictions of fN and f on each Ki are represented by matrices MN,i

and Mi respectively. Then

sup
h∈Rn,h6=0

‖MN,ih−Mih‖
‖h‖ → 0 for i = 1, . . . , l. (3.4)

(b) Suppose in addition that f is a homeomorphism. Then for all N sufficiently large

fN is a homeomorphism and f−1
N converges uniformly on compacts to f−1.

Proof. By (3.3), suph∈Ki,h6=0
‖MN,ih−Mih‖

‖h‖ converges to 0 as N → ∞, for each i = 1, . . . , l.

As Γ is a conical subdivision of Rn, Ki is of dimension n which means that it contains a

ball in Rn. The fact that ‖MN,ih−Mih‖ converges to 0 for all h in a ball implies that the

matrix MN,i converges to Mi, giving (3.4).

To prove (b) first note that since f is a homeomorphism, M−1
i is well defined for each i

and
{
M−1

1 ,M−1
2 , . . . ,M−1

l

}
provides a family of selection functions for f−1 (Scholtes, 2012,

Proposition 2.3.2). Moreover we have that f−1 is Lipschitz continuous with the constant

δ = max
1≤i≤m

(
‖M−1

i ‖
)
<∞.
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Similarly for N sufficiently large the functions fN − f will be piecewise linear with a

family of selection functions given by {MN,1 −M1, . . . ,MN,l −Ml}, and therefore Lipschitz

continuous with the constant

ρN = max
1≤i≤m

(‖MN,i −Mi‖)

From part (a) we have limN→∞ ‖MN,i −Mi‖ = 0 for each i, so for all N sufficiently large

ρN < δ−1. From (Robinson, 1991, Lemma 3.1) it then follows that fN is a homeomorphism

for N sufficiently large.

To show f−1
N → f−1 uniformly on compacts, first note that limN→∞M

−1
N,i = M−1

i

implies that {f−1
N }∞N=v is uniformly Lipschitz continuous for v large enough. Accordingly,

for any compact set X and any subsequence of f−1
N , there exists a further subsequence, f−1

Nk
,

that converges uniformly on X to some function g. To prove part (b) it suffices to show

that g(x) = f−1(x).

To show this, let x ∈ X,αk = f−1
Nk

(x), and α = g(x). From αk → α and fNk → f it

follows that fNk(αk)→ f(α). Also, for each k,

fNk(αk) = fNk(f−1
Nk

(x)) = x.

This gives x = f(α) = f(g(x)), or g(x) = f−1(x), the desired result.

Proposition 3. Suppose that Assumptions 2, 3 and 4 hold, and for each N ∈ N let ΦN (zN )

be as in (1.28). Then ΦN (zN )−1Σ
1/2
N converges to dfnor0,S (z0)−1Σ

1/2
0 in probability, uniformly

on compacts.

Proof. As previously noted, when Assumption 4 holds the conditions of Assumption 1 are

satisfied, and under Assumptions 1 and 2 ΣN converges almost surely to Σ0. Convergence

of ΣN to Σ0 and (1.30) imply that for all ε > 0

lim
N→∞

Pr

(
sup

h∈Rn,h6=0

‖Σ−1/2
N ΦN (zN )(h)− Σ

−1/2
0 dfnor

0,S (z0)(h)‖
‖h‖ < ε

)
= 1. (3.5)
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By a standard subsequential argument, we can assume without loss of generality that almost

surely

sup
h∈Rn,h6=0

‖Σ−1/2
N ΦN (zN )(h)− Σ

−1/2
0 dfnor

0,S (z0)(h)‖
‖h‖ → 0.

We will apply Proposition 2 to show the almost sure convergence of ΦN (zN )−1Σ
1/2
N to

dfnor
0,S (z0)−1Σ

1/2
0 . To this end, it suffices to show that the conditions of Proposition 2 are

satisfied for a.e. ω, with Σ
−1/2
N (ω)ΦN (zN (ω)) and Σ

−1/2
0 dfnor

0,S (z0) playing the roles of fN

and f in that proposition.

From the expressions for dfnor
0,S (z0) in (1.11), ΦN (zN ) and z∗N in (1.28), it is clear that the

conditions in part (a) of Proposition 2 will be satisfied if we can find a conical subdivision

Γ′ such that dΠS(z)|Ki is equal to a linear function for every Ki ∈ Γ′ and z ∈ Rn.

Let C1, . . . , Cl be all of the k-cells in the normal manifold of S, k = 0, 1, . . . , n. Then

for every z ∈ Rn, z ∈ riCj for some j, and dΠS(z)(·) = Ψj(·) for Ψj defined as in (1.25).

The desired subdivision Γ′ can be constructed by taking the collection of all cones with

non-empty interior of the form K = ∩mj=1Kj where each Kj is from a conical subdivision of

Ψj .

Finally, by Assumptions 2 and 3, Σ
−1/2
0 dfnor

0,S (z0) is a homeomorphism, satisfying the

condition in part (b) of Proposition 2. The result follows.

At this point we are able to present the main result for our first method on computation

of asymptotically exact individual confidence intervals.

Theorem 5. Suppose that Assumptions 2, 3 and 4 hold. Let α ∈ (0, 1), r ∈ R, and let

ar(· ) be as defined in (3.1). Then for every j = 1, . . . , n,

lim
N→∞

Pr
(∣∣√N(zN − z0)j − r

∣∣ ≤ ar ((ΦN (zN )−1Σ
1/2
N )j

))
= 1− α. (3.6)

Proof. By Proposition 3, (ΦN (zN )−1Σ
1/2
N )j converges to ((Lnor

K0
)−1Σ

1/2
0 )j , in probability.

Since (Lnor
K0

)−1Σ
1/2
0 is a piecewise linear homeomorphism it follows that for Z ∼ N(0, In)

and each j = 1, . . . , n,

Pr

((
(Lnor

K0
)−1Σ

1/2
0

)
j

(Z) = b

)
= 0 for all b (3.7)
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and

Pr

(
b1 <

(
(Lnor

K0
)−1Σ

1/2
0

)
j

(Z) < b2

)
> 0 for all b1 < b2. (3.8)

Let ZN =
√
NΣ

−1/2
N ΦN (zN )(zN − z0); by Theorem 4 (see (1.31)) ZN converges in distribu-

tion to Z. Since

(ΦN (zN )−1Σ
1/2
N )j

(√
NΣ

−1/2
N ΦN (zN − z0)

)
=

√
N(ΦN (zN )−1Σ

1/2
N )j

(
Σ
−1/2
N ΦN (zN − z0)

)
=

√
N(zN − z0)j ,

it follows from an application of Lemma 2 with (ΦN (zN )−1Σ
1/2
N )j and (L−1

K Σ
1/2
0 )j playing

the roles and fN and f that

Pr
(
−ar

(
(ΦN (zN )−1Σ

1/2
N )j

)
≤
√
N(zN − z0)j − r ≤ ar

(
(ΦN (zN )−1Σ

1/2
N )j

))

converges to 1− α as N →∞.

It is possible to relax Assumption 3 in the proof of Theorem 5. This would require

some minor modifications to the definition of ar. In particular, ar would need to depend

on two separate arguments, one for the estimate for Σ0 and another for that of dfnor
0,S (z0).

The statements of the supporting results would need to be adjusted accordingly. We can

then replace Assumption 3 with conditions that guarantee equations (3.7) and (3.8) to hold.

These equations ensure that the limit in (3.6) is well defined.

A limitation of this first approach is that evaluating ar
(
(ΦN (zN )−1Σ

1/2
N )j

)
requires

working with each selection function of ΦN (zN ), making it computationally intractable

when there are a large number of selection functions. This is an issue, since the number

of selection functions can grow exponentially with the problem size. Additionally, as we

shall see in the third example of §3.5, considering each selection function also makes this

approach sensitive to errors in the estimation of dΠS(z0). These limitations motivate the

development of the second method. The second method limits the computational burden of

working with a piecewise linear function, by restricting the computation to only a subset of
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selection functions indicated by zN − z∗N . This subset will generally consist of only a single

selection function, leading to dramatic computational savings.

3.3 The second method

In this section we propose a second method for the construction of asymptotically exact

individual confidence intervals. Like the approach of §3.2 the exactness of the intervals will

depend on the use of ΦN (zN ) as an estimate for dfnor
0,S (z0). Specifically this approach relies

upon the fact that with ΦN (zN ) one can accurately estimate both the conical subdivision

of dfnor
0,S (z0) and the location of zN − z0 in the subdivision. The calculation of an interval’s

width with the second method uses only the selection functions indicated by these estimates,

reducing the computational burden of working with ΦN (zN ).

As will be discussed further in the main result of this section, Theorem 6, the probability

of zN − z0 being in the interior of a cone in the conical subdivision of dfnor
0,S (z0) approaches

one as the sample size goes to infinity. Therefore the method proposed in this section will

(with high probability) require working with only a single selection function. This leads

to the following comparison to the method of constructing confidence intervals considered

in Theorem 3. Recall that the limitation of using dfnor
N,S(zN ) as an estimate for dfnor

0,S (z0)

when computing a confidence interval is that this approach does not account for a possible

dependence between how the function dfnor
N,S(zN ) is estimated and how intervals produced

using the estimate will perform. The method in this section will with high probability

calculate an interval’s width using a single linear selection function. Since the domain

of this section function is restricted by a cone in the conical subdivision, the dependence

between when an estimate is used to calculate an interval and the interval’s performance

can be accounted for by using the idea of conditioning.

The asymptotic exactness of the intervals proposed in this section is proven in Theorem

6, see (3.11). We begin the discussion of the second method by defining what replaces ar(·)

and determines an interval’s width. Let f : Rn → Rn be a piecewise linear homeomorphism

with a family of selection functions {M1, . . . ,Ml}, and the corresponding conical subdivision

{K1, . . . ,Kl}. As before Z ∼ N (0, In). For any choice of cone Ki, i = 1, . . . , l, component
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j = 1, . . . , n and α ∈ (0, 1) we first define ηαj (f, x) for points x ∈ intKi as the unique and

strictly positive number satisfying

Pr
(
|
(
f−1(Z)

)
j
| ≤ ηαj (f, x), f−1(Z) ∈ Ki

)
= (1− α) Pr

(
f−1(Z) ∈ Ki

)
, (3.9)

where
(
f−1(Z)

)
j

stands for the jth component of the random variable f−1(Z). Note that

ηαj (f, x) is the same number for all x ∈ intKi, since nothing in the above definition depends

on the exact location of x, except that Ki has to be the cone containing x in its interior.

Because f is a homeomorphism we can rewrite (3.9) as

Pr
(
|
(
M−1
i Z

)
j
| ≤ ηαj (f, x), M−1

i Z ∈ Ki

)
= (1− α) Pr

(
M−1
i Z ∈ Ki

)
. (3.10)

For points x ∈ ⋂k
s=1Kis define ηαj (f, x) = max

s=1,...,k
ηαj (f, xis) where xis ∈ intKis .

The following Lemma for deterministic functions will play a similar role in the proof of

Theorem 6 as Lemma 1 did in the proof of Theorem 5.

Lemma 3. Let {fN}∞N=1 be a sequence of piecewise linear functions, such that fN and f

have a common conical subdivision {K1, . . . ,Kl} for all N sufficiently large, with

sup
h∈Rn,h 6=0

‖fN (h)− f(h)‖
‖h‖ → 0.

Then, for all N sufficiently large fN is a homeomorphism. Moreover, for all α ∈ (0, 1),

x ∈ Rn and j = 1, . . . , n, one has ηαj (fN , x)→ ηαj (f, x).

Proof. From Proposition 2 it follows that fN will be a homeomorphism for all N sufficiently

large. The convergence of ηαj (fN , x) to ηαj (f, x) can be shown using an argument analogous

to the one used in the proof of Lemma 1 and is therefore omitted.

In the proof of Theorem 6 below, we make use of the notation introduced before Theorem

3. With this notation Γ′(z0) = {K1, . . . ,Kl} is the conical subdivision associated with

dfnor
0,S (z0) such that dfnor

0,S (z0)|Ki = Mi and Ki = cone(Pi − z0) where P1, . . . , Pl are all

n-cells in the normal manifold of S that contain z0. As before, we write Y0 = Σ
1/2
0 Z and
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Y i = M−1
i Σ

1/2
0 Z for i = 1, . . . , l. Finally we define Y ∗ = dfnor

0,S (z0)−1Σ
1/2
0 Z, and note that

Y ∗1Y ∗∈Ki = Y i1Y i∈Ki .

Theorem 6. Let Assumptions 2, 3 and 4 hold, and let ΦN (zN )(·) and z∗N be as defined in

(1.28). For all j = 1, . . . , n and α ∈ (0, 1),

Pr
(√

N |(zN − z0)j | ≤ ηαj (Σ
−1/2
N ΦN (zN ), zN − z∗N )

)
→ 1− α. (3.11)

Proof. Let Ci, i = 1, . . . ,m be all of the cells in the normal manifold of S, and for each N

define the event

AN =

{
ω

∣∣∣∣{i|di(zN (ω)) ≤ 1/g(N)
}

=
{
i|z0 ∈ Ci

}}
. (3.12)

By the remarks below (1.28), if ω ∈ AN then the two points z∗N and z0 belong to the

relative interior of the same cell in the normal manifold of S, with Γ′(z0) = Γ′(z∗N (ω)) and

dfnor
0,S (z0) and ΦN (zN (ω)) share the conical subdivision {K1, . . . ,Kl}. Moreover as shown

in (Lu, 2012, Theorem 3.1) limN→∞ Pr (AN ) = 1, so it follows from (3.5)

lim
N→∞

Pr

(
AN ; sup

h∈Rn,h6=0

‖Σ−1/2
N ΦN (zN )(h)− Σ

−1/2
0 dfnor

0,S (z0)(h)‖
‖h‖ < ε

)
= 1. (3.13)

Combining this with Lemma 3 it follows that ηαj (Σ
−1/2
N ΦN (zN ), x) converges in probability

to ηαj (Σ
−1/2
0 dfnor

0,S (z0), x) for all fixed x.

Next, let B be a fixed neighborhood of z0 such that B ∩ (z0 + Ki) = B ∩ Pi for each

i = 1, . . . , l. We then have

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ ηαj (Σ
−1/2
N ΦN (zN ), zN − z∗N )

)
= lim

N→∞
Pr
(√

N |(zN − z0)j | ≤ ηαj (Σ
−1/2
N ΦN (zN ), zN − z∗N ); AN

)
= lim

N→∞

l∑
i=1

Pr
(√

N |(zN − z0)j | ≤ ηαj (Σ
−1/2
N ΦN (zN ), zN − z∗N ); AN ; zN ∈ B ∩ intPi

)
= lim

N→∞

l∑
i=1

Pr
(√

N |(zN − z0)j | ≤ ηαj (Σ
−1/2
N ΦN (zN ), xi); AN ; zN ∈ B ∩ intPi

)
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where xi in the last expression is any point in intKi. The first equality above follows from

limN→∞ Pr (AN ) = 1, and the second from limN→∞ Pr
(
zN ∈ Rn\ ∪li=1 B ∩ intPi

)
= 0 as

shown in (Lu, 2014, Proposition 3.5). For the final equality, recall that ω ∈ AN implies that

z∗N and z0 belong to the relative interior of the same cell in the normal manifold. Since the

latter cell is a face of each Pi, i = 1, · · · , l, by the additional requirement zN ∈ intPi one

has zN − z∗N ∈ cone(intPi− z∗N ) and the latter set is exactly cone(intPi− z0), namely intKi.

When l = 1, z0 is contained in the interior of an n-cell P1 and K1 = Rn. In this case

Y ∗ ∼ N
(

0,M−1
1 Σ0M

−T
1

)
, and (3.11) follows from the fact

√
N(zN − z0)j

ηαj (Σ
−1/2
N ΦN (zN ), x1)

⇒ (Y ∗)j

ηαj (Σ
−1/2
0 dfnor

0,S (z0), x1)
.

Next, we consider the case when l ≥ 2. For all j = 1, . . . , n and i = 1, . . . , l let v̄i,j ∈ Rn

be such that v̄i,j 6∈ Ki and |(v̄i,j)j | > ηαj (Σ
−1/2
0 dfnor

0,S (z0), xi). Define random variables

vi,jN =
√
N(zN − z0)1zN∈B∩intPi + v̄i,j1zN 6∈B∩intPi ,

Ŷ i,j = Y i1Y i∈intKi + v̄i,j1Y i 6∈intKi ,

η̂i,jN = ηαj

(
Σ
−1/2
N ΦN (zN ), xi

)
1zN∈B∩intPi + ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)
1zN 6∈B∩intPi ,

and note that

η̂i,jN ⇒ ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)
.

For all Borel sets W ⊂ intKi, we have

Pr
(
vi,jN ∈W

)
= Pr

(√
N(zN − z0) ∈W, zN ∈ B ∩ intPi

)
= Pr

(√
N(zN − z0) ∈W, zN ∈ B

)
,
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and therefore

lim
N→∞

Pr
(
vi,jN ∈W

)
= lim

N→∞
Pr
(√

N(zN − z0) ∈W, zN ∈ B
)

= lim
N→∞

Pr
(√

N(zN − z0) ∈W
)

= Pr (Y ∗ ∈W ) = Pr
(
Y i ∈W

)
= Pr

(
Ŷ i,j ∈W

)
. (3.14)

Since zN → z0 in probability and intKi = cone(intPi − z0), it follows that as N →∞,

Pr
(√

N(zN − z0) ∈ (intKi)
c, zN ∈ B ∩ intPi

)
→ 0,

and

Pr (zN 6∈ B ∩ intPi)→ Pr (Y ∗ 6∈ intKi) = Pr
(
Y i 6∈ intKi

)
= Pr

(
Ŷ i,j 6∈ intKi

)
.

Accordingly, for any Borel set D in Rn,

lim
N→∞

Pr
(
vi,jN ∈ D ∩ (intKi)

c
)

= lim
N→∞

1D∩(intKi)c(v̄
i,j) Pr (zN 6∈ B ∩ intPi)

= 1D∩(intKi)c(v̄
i,j) Pr

(
Ŷ i,j 6∈ intKi

)
= Pr

(
Ŷ i,j ∈ D ∩ (intKi)

c
)
. (3.15)

By combining (3.14) with (3.15), and noting that η̂i,jN and ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)
are

strictly positive under our assumptions, we find

vi,jN
η̂i,jN
⇒ Ŷ i,j

ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

) ,
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and

lim
N→∞

Pr

(∣∣∣(vi,jN )j

η̂i,jN

∣∣∣ ≤ 1

)
= Pr

∣∣∣ (Ŷ i,j)j

ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)∣∣∣ ≤ 1


= Pr

∣∣∣ (Y i)j

ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)∣∣∣ ≤ 1, Y i ∈ intKi

 ,

where we have used the fact |(v̄i,j)j | > ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)
. The latter fact also implies

lim
N→∞

Pr

(∣∣∣ (v̄i,j)j
η̂i,jN

∣∣∣ ≤ 1

)
= 0, so it follows that

lim
N→∞

Pr

(
√
N

|(zN − z0)j |
ηαj (Σ

−1/2
N ΦN (zN ), xi)

≤ 1; AN ; zN ∈ B ∩ intPi

)

= lim
N→∞

Pr

(
√
N
|(zN − z0)j |

η̂i,jN
≤ 1, zN ∈ B ∩ intPi

)
= lim

N→∞
Pr

(
|(vi,jN )j |
η̂i,jN

≤ 1

)

= Pr

∣∣∣ (Y i)j

ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)∣∣∣ ≤ 1, Y i ∈ intKi


= Pr

(
|(M−1

i Σ
1/2
0 Z)j | ≤ ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)
, M−1

i Σ
1/2
0 Z ∈ Ki

)
= Pr

(
|(dfnor

0,S (z0)−1Σ
1/2
0 Z)j | ≤ ηαj

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)
, dfnor

0,S (z0)−1Σ
1/2
0 Z ∈ Ki

)
= (1− α) Pr

(
dfnor

0,S (z0)−1Σ
1/2
0 Z ∈ Ki

)
.

Finally, since we have zN − z∗N ∈ intKi on AN ,

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ ηαj (Σ
−1/2
N ΦN (zN ), zN − z∗N )

)
= lim

N→∞

l∑
i=1

Pr

(
√
N

|(zN − z0)j |
ηαj (Σ

−1/2
N ΦN (zN ), xi)

≤ 1; AN ; zN ∈ B ∩ intPi

)

=

l∑
i=1

(1− α) Pr
(
dfnor

0,S (z0)−1Σ
1/2
0 Z ∈ Ki

)
= (1− α)

l∑
i=1

Pr
(
dfnor

0,S (z0)−1Σ
1/2
0 Z ∈ Ki

)
= 1− α.
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As in the proof of (3.6), Assumption 3 is used primarily to ensure that the limit in equa-

tion (3.11) is well defined. To omit Assumption 3 without affecting the convergence results,

two conditions must be satisfied for each selection function of dfnor
S,0 (z0). First, for each cone

Ki in the conical subdivision of dfnor
S,0 (z0) and the corresponding matrix Mi = dfnor

S,0 (z0)|Ki ,

the equation (3.10) must have a unique strictly positive solution when Z is replaced by

Y0. Second, for each Ki and all ` > 0 the polyhedra
{
x ∈ Rn

∣∣M−1
i x ∈ Ki, |(M−1

i x)j | ≤ `
}

must be continuity sets with respect to the random vector Y0. These two conditions are

required to hold for each selection function, so that the convergence is well defined when

restricted to each cone. These are similar to the way to relax Assumption 3 for Theorem 5.

Compared to the first method, the second method is computationally much more effi-

cient as it with high probability restricts the computation to a single cone in the conical

subdivision of ΦN (zN ), namely the cone that contains zN − z∗N in its interior. When the

event AN in (35) holds, that cone also contains zN − z0 in its interior. In the third example

of §3.5, we also observe that the second method is more robust than the first when the

sample size is small and AN does not hold.

While (3.6) and (3.11) provide computable asymptotically exact intervals in general

both ar(·) and ηαj (·, ·) lack closed form expressions, an issue addressed in the next section.

For ease of exposition moving forward we will suppress the arguments of ar, ηαj and υαj ,

where υαj is the half-width for the intervals considered in Theorem 3.

3.4 Interval computation

This section discusses the computation of ar and ηαj , and discusses how to find upper

bounds for these quantities. We begin by considering ar with the results for ηαj following

in a similar fashion. Throughout this section we shall use Γ′(z∗N ) = {K1, . . . ,Kl} to denote

the conical subdivision for a realization of ΦN (zN ). The matrix representations for the

selection functions of Σ
−1/2
N ΦN (zN ) on Ki will be denoted by MN,i, for i = 1, . . . , l.

Finding ar requires a search over values of ` > 0 and evaluating

Pr
(
|(ΦN (zN )−1Σ

1/2
N )j(Z)− r| ≤ `

)
.
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To evaluate this probability we rewrite it in terms of the individual selection functions. The

conical subdivision of ΦN (zN )−1Σ
1/2
N is given by {T1, . . . , Tl}, where

Ti = Σ
−1/2
N ΦN (zN )(Ki) = MN,i(Ki)

and ΦN (zN )−1Σ
1/2
N |Ti = M−1

N,i.

For any two cones Tv and Tu with v 6= u, their intersection is either empty or a proper

face of both cones, and hence Pr (Z ∈ Tv ∩ Tu) = 0. The probability we need to evaluate

can then be rewritten as

l∑
i=1

Pr
(
|(ΦN (zN )−1Σ

1/2
N )j(Z)− r| ≤ ` and Z ∈ Ti

)
=

l∑
i=1

Pr
(
|(M−1

N,i)jZ − r| ≤ ` and Z ∈ Ti
)
. (3.16)

Note the connection between (3.16) and what must be considered to find ηαj . Finding

ηαj requires us to evaluate

Pr
(
|(M−1

N,i)jZ| ≤ ` and M−1
N,iZ ∈ Ki

)
= Pr

(
|(M−1

N,i)jZ| ≤ ` and Z ∈ Ti
)
, (3.17)

for different values of `, but only for those indices i such that zN − z∗N ∈ Ki. This difference

provides the indirect method of §3.3 with a significant computational advantage over the

method of §3.2. Recall from the proof of Theorem 6 that

lim
N→∞

l∑
i=1

Pr (AN and zN ∈ B ∩ intPi) = 1,

where l was the number of selection functions for dfnor
0,S (z0), B is a certain neighborhood of

z0, AN is as defined in (3.12) and Ki = cone(Pi− z0). When AN holds and zN ∈ B ∩ intPi,

it was shown that zN − z∗N ∈ intKi. Therefore with high probability finding ηαj will involve

evaluating (3.17) for a single index i. In contrast, (3.16) involves a similar calculation for

every cone in the subdivision. For this reason, the conditioning based method is scalable

with respect to the number of selection functions. Such scalability is very useful, particularly
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because the simpler approach given in Theorem 3, which requires the least amount of

computation among all methods, cannot be guaranteed to produce asymptotically exact

intervals in the piecewise case.

The question of finding ar and ηαj now becomes how to evaluate

Pr (|bN,iZ − r| ≤ ` and Z ∈ Ti) , (3.18)

where the row vector bN,i is given by (M−1
N,i)j . When l ≤ 2 (that is, when ΦN (zN ) has

no more than 2 selection functions) and r = 0, we can evaluate (3.18) using percentiles of

standard normal random variables. To see this, consider the case l = 1 first. In this case

T1 = Rn and M−1
N,1Z = ΦN (zN )−1Σ

1/2
N (Z). Then from basic properties of normal random

vectors,

a0 = ηαj =
√
χ2

1(α)‖(M−1
N,1)j‖2 and hαj =

√
χ2

1(α)‖(QN,1)jM
−1
N,1‖2

where ‖ · ‖ is the Euclidian norm. In this case both intervals for (z0)j are the same as the

interval proposed in Theorem 3. Next consider the case l = 2; we observe that the two

cones satisfy T1 = −T2 and that Z and −Z have the same distribution. It then follows that

Pr (|bN,iZ| ≤ ` and Z ∈ Ti) = 1/2 Pr (|bN,iZ| ≤ `)

= Pr (Z ∈ Ti) Pr (|bN,iZ| ≤ `) .

Thus, when l = 2, ηαj can again be computed using a simple formula; finding a0 in this case

may still require a search over different values of ` but the probabilities needed to evaluate

for each ` can be obtained from the cumulative distribution function of standard normal

random variables.

When l > 2, our approach to evaluating (3.18) is to rewrite it as the probability of

a normal random vector being in a possibly unbounded box. Once formulated in this

manner, the probability can be evaluated using the Monte Carlo or Quasi-Monte Carlo

methods of (Genz and Bretz, 2009, Chapter 4), both of which are implemented in the R

54



package mvtnorm (Genz and Bretz, 2009; Genz et al., 2013). Below, we discuss details

about this for complementarity problems as well as general SVI’s.

When the SVI is a complementarity problem with S = Rm ×Rn−m+ , where Rk+ denotes

the nonnegative orthant, each of the polyhedral cones Ki ∈ Γ′(z∗N ) can be expressed as an

n-dimensional box,

Ki = [li1, u
i
1]× · · · × [lin, u

i
n]

with lij and uij taking values in {0,∞,−∞}. Since ΦN (zN )−1Σ
1/2
N is a homeomorphism, for

each i = 1, . . . , l and x ∈ Rn the following equivalences hold:

x ∈ Ti ⇔ ΦN (zN )−1Σ
1/2
N (x) ∈ Ki ⇔ M−1

N,ix ∈ Ki.

Therefore we can write

Pr
(
|(M−1

N,i)jZ − r| ≤ ` and Z ∈ Ti
)

= Pr
(
r − ` ≤ (M−1

N,i)jZ ≤ r + ` and M−1
N,iZ ∈ Ki

)
= Pr

(
M−1
N,iZ ∈ [li1, u

i
1]× · · · × [max(lij , r − `),min(uij , r + `)]× · · · × [lin, u

i
n]
)

= Pr
(
Z̃ ∈ [li1, u

i
1]× · · · × [max(lij , r − `),min(uij , r + `)]× · · · × [lin, u

i
n]
)

where Z̃ ∼ N
(

0,M−1
N,iM

−T
N,i

)
.

For a general SVI, to compute ar and ηαj we can use the structure of Ti as a polyhedral

cone and express it by linear inequalities,

Ti = {x ∈ Rn|Aix ≤ 0v}

with some v × n matrix Ai and the v-dimensional zero vector 0v. We then rewrite

Pr
(
|bTN,iZ − r| ≤ ` and AiZ ≤ 0v

)
= Pr

(
Z̄ ∈ (−∞, 0]× · · · × (−∞, 0]× [r − `, r + `]

)
where Z̄ ∼ N

(
0v+1, DiD

T
i

)
and Di =

 Ai

bN,i

 .
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Since finding ar and ηαj in the piecewise case requires a search over values of `, we are

motivated to look for upper bounds for those quantities that do not require a search to

compute. Below we discuss how to find upper bounds for ar; this idea works similarly for

ηαj .

A natural conjecture related to the upper bound is that ar(f) ≤ ar(bk) for a piecewise

linear function f with selection functions represented by row vectors b1, . . . , bk with ‖b1‖ ≤

‖b2‖ ≤ · · · ≤ ‖bk‖. This conjecture is not true in general. For example, take

b1 =

[
1/5 7/5

]
, b2 =

[
7/5 1/5

]
, b3 =

[
1 1

]
,

and Ti =
{
x ∈ R2|Aix ≤ 0

}
for i = 1, . . . , 5, where

A1 =

 1 −1

2 −1

 , A2 =

 −1 1

−1 2

 , A3 =

 −2 1

1 −2

 ,
A4 =

[
1 −1

]
and A5 =

[
−1 1

]
.

Note both {T1, T2, T3} and {T4, T5} are conical subdivisions of R2. Define f1 and f2 to be

z2

z1

Figure 3.1: Sets R1 (shaded) and R2 for α = .05

piecewise linear functions such that f1|Ti = bi for i = 1, 2, 3, f2|T4 = b1 and f2|T5 = b2 . It
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follows that a0(bi) = a0(f2) =
√

2χ2
1(α), i = 1, 2, 3. Next, let

R1 =
{
z ∈ R2| − a0(f2) ≤ f1(z) ≤ a0(f2)

}
,

R2 =
{
z ∈ R2| − a0(f2) ≤ f2(z) ≤ a0(f2)

}
.

As shown in Figure 3.1, the set R2 includes R1 as a subset with D = R2 \ R1 having

a non-empty interior. Thus Pr (Z ∈ R1) < Pr (Z ∈ R2) and a0(f2) < a0(f1), showing that

max a0(bi) is not an upper bound for a0(f1).

To construct a valid upper bound for ar we will use the following Lemma.

Lemma 4. Let f : Rn → R be a piecewise linear function with selection functions repre-

sented by n dimensional row vectors b1, . . . , bl, with the corresponding conical subdivision

Γ = {K1, . . . ,Kl}. Let Z ∼ N (0, In), ci = Pr (Z ∈ Ki), α ∈ (0, 1) and r ∈ R. Suppose

` > 0 satisfies

Pr (|biZ − r| ≤ `) ≥ 1− ciα

for i = 1, . . . , l. Then Pr (−` ≤ f(Z)− r ≤ `) ≥ 1− α.

Proof. Let Ei be the event that {|biZ − r| ≤ ` and Z ∈ Ki}. As argued previously

Pr(|f(Z)− r| ≤ `) =
l∑

i=1
Pr(Ei). Next note

Pr (Eci ) ≤ Pr (Z ∈ Kc
i ) + Pr (|biZ − r| > `)

≤ 1− ci + ciα = 1− (1− α)ci.

Thus Pr (Ei) ≥ (1− α)ci and

Pr (|f(Z)− r| ≤ `) =
l∑

i=1

Pr (Ei) ≥ (1− α)
l∑

i=1

ci = 1− α.

Corollary 1. Let f , Ki, bi, α and Z be as Lemma 4. Let αi = αPr (Z ∈ Ki). Then `i =

‖bi‖
√
χ2

1(αi) satisfies Pr (|biZ| ≤ `i) = 1 − αi, and ` = max
1≤i≤l

`i satisfies Pr (|f(Z)| ≤ `) ≥

1− α.
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While Corollary 1 provides an upper bound for a0(f), Lemma 4 can be analogously

used to find upper bounds for ar when r 6= 0. The similar idea can be used to find upper

bounds for ηαj by considering only cones Ki that contain zN − z∗N .

3.5 Numerical examples

This section applies the proposed methods and the method of Theorem 3 to three numerical

examples. The first example is a complementarity problem used in (Lu, 2012, 2014; Lu and

Budhiraja, 2013), the second a complimentarily problem of a slightly larger size. The third

example is a nonlinear complementarity problem adapted from (Floudas et al., 1999) and

(Dirkse and Ferris, 1995a). When calculating ar or ηαj for a function with three or more

selection functions the approach used throughout the examples is to perform a binary search

with probabilities calculated as in §3.4 using the methods of (Genz and Bretz, 2009, Chapter

4). This search terminates when either the distance between the upper and lower bounds

for the half-width or the probability of the value being tested is within specified tolerance

levels.

In each example, we are able to find the true solution allowing us to examine the

coverage rates for the different methods. For the first two example we generate 2,000 SAA

problems at each sample size of N=50, 100, 200 and 2,000. For each sample the value of r

used for ar is chosen by generating i.i.d. Zv ∼ N (0, In), calculating

rN = 10−3
103∑
v=1

Φ−1
N (zN )Σ

1/2
N (Zv),

and taking the appropriate coordinate of this vector. The use of this procedure will be

indicated with the notation arN .

The third example is chosen to examine the performance of the proposed methods when

the estimates used to compute interval lengths deviate from their asymptotic properties at

small sample sizes. In particular, for this example the true solution z0 lies in the interior of

an n-cell of the normal manifold of S, but is close to a number of k-cells of lower dimensions.

As a result, the estimates z∗N obtained from some SAA solutions with small sample sizes

does not lie in the relative interior of the same cell that contains z0 it its relative interior,
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so ΦN (zN ) has a different structure from the linear function dfnor
0,S (z0). For this example we

solve 1,000 SAA problems at sample sizes of N=100 and 3,000 and consider ar with r = 0.

3.5.1 Example 1

For the first example, we consider a complementarity problem with S = R2
+,

F (x, ξ) =

 ξ1 ξ2

ξ3 ξ4


 x1

x2

+

 ξ5

ξ6

 ,
and ξ uniformly distributed over the box [0, 2]× [0, 1]× [0, 2]× [0, 4]× [−1, 1]× [−1, 1]. In

this case

f0(x) =

 1 1/2

1 2


 x1

x2

 ,
and the SVI and its corresponding normal map formulation have true solutions x0 = z0 = 0.

The function dfnor
0,S (z0) is then piecewise linear with family of selection functions given by

the matrices  1 1/2

1 2

 ,
 1 0

1 1

 ,
 1 1/2

0 2

 and

 1 0

0 1


and corresponding conical subdivision R2

+,R+×R−,R−×R+ and R2
−. With this information

we evaluate (1.21) for α = .05 and observe values of .9450 and .9448 for j = 1 and 2

respectively. This means that confidence intervals proposed in Theorem 3 will cover (z0)1

and (z0)2 with those probabilities in the limit.

In Tables 3.1 and 3.2 we summarize the coverage rates of (z0)1 and (z0)2 for each interval

determined by υαj , arN and ηαj . We see that the three approaches overall performance is

υα1 arN ηα1
N=50 93.65% 94.25% 94.25%

N=100 94.05% 94.85% 94.35%

N=200 94.4% 95% 95.05%

N=2,000 93.65% 94.25% 94.8%

Table 3.1: Coverage rates (z0)1 α = .05

υα2 arN ηα2
N=50 93.5% 94.4% 93.7%

N=100 94.4% 94.65% 94.65%

N=200 94.75% 95.35% 95.4%

N=2,000 93.95% 94.5% 94.45%

Table 3.2: Coverage rates (z0)2, α = .05
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generally comparable and in line with the specified 95% level of confidence (for arN and

ηαj ), or as predicted by the values of (1.21) (for υαj ).

Differences between the methods become apparent in Figure 3.2, where the interval

lengths for N = 2, 000 are divided by which cone contains zN − z0. These differences are

also apparent in Table 3.3, where we break down the coverage rates of (z0)2 and average

interval lengths by which Ki contains zN − z0.

0.01 0.03

R+ × R+

R+ × R−

R− × R+

R− × R−

υα2
0.01 0.03

R+ × R+

R+ × R−

R− × R+

R− × R−

arN
0.01 0.03

R+ × R+

R+ × R−

R− × R+

R− × R−

ηα2

Figure 3.2: Intervals widths for (z0)2 by cone, N = 2, 000

Table 3.3: Coverage rates of (z0)2 and half-widths for (z0)2 by cone, N = 2, 000

Coverage rate Average length
Cone (samples in cone) υα2 arN ηα2 υα2 arN ηα2

R− × R−(513) 94.15% 97.66% 93.37% .0253 .0246 .0253

R− × R+ (553) 93.85% 99.64% 95.84% .0127 .0246 .0133

R+ × R− (739) 92.29% 87.28% 94.05% .0358 .0246 .0379

R+ × R+ (195) 100% 98.97% 98.46% .0238 .0245 .0106

As shown in Figure 3.2(a) and the column under υα2 in Table 3.3, the interval lengths

and coverage rates produced by the method of Theorem 3 vary significantly depending on

the location of zN − z0. This is because the linear functions dfnor
N,S(zN ) used to calculate

υα2 are dramatically different when zN − z0 belongs to different cones. The expression for

υα2 does not account for the piecewise structure of dfnor
0,S (z0). Because the values of (1.21)

are close to to the desired 95% for this example, the overall coverage rates by υα2 are only

slightly smaller than those of other methods, as shown in Tables 3.1 and 3.2. In general,

one cannot expect the overall coverage rates of υα2 to be at the desired level, as opposed to

our proposed methods based on the estimate ΦN (zN )

When ΦN (zN ) is piecewise linear, our estimate for the limiting distribution of zN − z0

has a piecewise structure. Evaluating ar requires considering each piece of this estimate.

Since ΦN (zN ) converges to dfnor
0,S (z0), the value of ar converges to a fixed value. This value
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leads to asymptotically exact intervals by averaging out the performance across the different

pieces of the limiting distribution. As a result we see intervals of consistent lengths, but

with varying performance depending on the location of zN − z0.

Computation of ηα2 , the second method proposed in this paper, uses the same estimate

for the limiting distribution. However, instead of enumerating all pieces of the piecewise

distribution, the calculation of ηα2 only requires considering the cone that contains zN − z∗N
in the conical subdivision of ΦN (zN ). Since the probability of z∗N and z0 being contained

in the relative interior of the same cell goes to one, this approach can accurately condition

on which piece of the limiting distribution describes zN − z0. The definition of ηαj uses this

idea of conditioning to vary the intervals widths and achieve a more consistent coverage

rate across the different cones.

3.5.2 Example 2

In this example, S = R5
+,

F (x, ξ) =



ξ1 1.5 .5 .75 .9

1.5 ξ2 0 .8 1.5

.5 0 ξ3 .75 1.7

.75 .8 .75 ξ4 1

.9 1.5 1.7 1 ξ5





x1

x2

x3

x4

x5


+



ξ6

ξ7

ξ8

ξ9

ξ10


,

with ξ uniformly distributed over the box

[2, 4]× [0, 4]× [0, 3]× [2, 6]× [−1, 6]× [−1, 1]× [−.5, .5]× [−2, 2]× [−.75, .75]× [−1, 1] .

The SVI and its normal map formulation have solutions x0 = z0 = 0. Moreover ΠR5
+

=

dΠR5
+

(z0) with
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dΠR5
+

(z0)(x) =



h1 0 0 0 0

0 h2 0 0 0

0 0 h3 0 0

0 0 0 h4 0

0 0 0 0 h5





x1

x2

x3

x4

x5


where hi =

 0 if xi ≤ 0,

1 if xi ≥ 0,

so d(f0)R5
+

(z0)(·) is piecewise linear with 32 selection functions. Taking α = .05, we first

consider confidence intervals for (z0)j . By evaluating the value of (1.21) for each j = 1, . . . , 5,

we find the asymptotic confidence levels of intervals proposed in Theorem 3 to be 93.85%,

93.33%, 94.38%, 93.39% and 92.96% respectively.

Table 3.4: Coverage rates for (z0)3

υα3 arN ηα3
N = 50 93.05% 96.3 % 93.3%

N = 100 92.85% 99.95 % 92.8%

N = 200 94% 94.7 % 94.95%

N = 2, 000 94.35% 94.6 % 94.8%

Coverage rates of the confidence intervals we obtain for this example are largely in line

with the specified level of confidence (for arN and ηαj ), or as predicted by the values of (1.21)

(for υαj ). Table 3.4 summarizes the coverage rates of (z0)3 for each approach and sample size

considered. Given the large number of selection functions relative to the number of SAA

problems, it is not practical to observe the performances of the different methods broken

down by where zN − z0 falls in the conical subdivision associated with dfnor
0,S (z0). What we

are able to observe is the consistency of values of arN across samples, as compared to the

varied values of υαj and ηαj , as shown in Figure 3.3 for (z0)3 and N =2,000.

In this example the computational benefits of ηαj are clear. For almost all of the samples

calculating arN requires working with a piecewise linear function with 32 selection functions,

whereas for all of the samples calculating ηαj only involves a single selection function. This

difference leads to a dramatic reduction in the computation needed for ηαj .
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Figure 3.3: Intervals lengths for (z0)3, N = 2, 000

With this example we also examine how upper bounds satisfying the conditions of

Lemma 4 compare to the actual interval half-widths. Table 3.5 summarizes the average and

median ratios between the bounds and the actual half-widths for sample size N = 2, 000.

While easier to compute, the bounds can be quite conservative, especially those for arN .

Table 3.5: Ratios of upper bounds to interval half-widths

arN ηαj
Average ratio Median ratio Average ratio Median ratio

N = 2, 000

(z0)1 6.20 6.33 3.04 2.18
(z0)2 15.53 13.44 3.58 2.92
(z0)3 4.00 3.49 2.25 1.55
(z0)4 5.27 5.26 3.69 2.37
(z0)5 9.20 8.04 2.80 2.12

3.5.3 Example 3

The third example is the invariant capital stock problem from (Dirkse and Ferris, 1995a;

Floudas et al., 1999; Hansen and Koopmans, 1972). This problem considers an economy

growing over an infinite time horizon. The time horizon is assumed to have discrete periods,

and at each time period the economy determines activity levels for the production of capital

and consumption goods. The activity levels are constrained by the resources available at the

start of each time period and the investment in capital goods made in the previous period.

A reward is derived from the consumption goods produced, and the problem is to determine

an initial investment of the capital goods that maximizes the sum of the discounted rewards

and at the same time results in a constant investment of capital goods over all time periods.

63



With appropriate conditions on the reward function and constraints, the problem can

be solved by finding a solution to the nonlinear complementarity problem,

0 ≤ ∇v(q) + (A− γB)T + CTu ⊥ q ≥ 0

0 ≤ (B −A)q ⊥ y ≥ 0

0 ≤ −Cq + w ⊥ u ≥ 0.

Here q ∈ R10
+ denotes the activity levels for the production processes, and A and B

denote the capital input and output matrices respectively. The resource input matrix is

denoted by C, and w equals the constant amount resources available at the start of each

time period. Dual variables for the resource and capital constraints are given by u and y in

R2
+. The nonlinear reward function v is given by

v(q) = (q1 + 2.5q2)0.2(2.5q3 + q4)0.2(2q5 + 3q6)0.2

and γ ∈ (0, 1) is the discount factor. To formulate this problem as an SVI we assume that

the elements of w and the matrices A,B and C are uniformly distributed over intervals of

length one; that their expectation equal the quantities in (Floudas et al., 1999); and that for

each column of the matrix A, B or C, the components of the vector are dependent with a

correlation of one-half. With these assumptions ξ ∈ R62
+ and the vector of decision variables

is given by x = (q, y, u) ∈ R14
+ .

All components of the true solution z0 are nonzero. Three components of z0 are less

than 0.1 in absolute value, and all are between -0.6575 and 0.6833. While dfnor
S,0 (z0) is linear,

for moderate sample sizes it is likely that dΠS(z∗N ) and ΦN (zN ) are piecewise linear when

the function g(N) = N1/3 is used to determine z∗N . This example therefore allows us to

examine the performance of the proposed methods when the estimates z∗N and ΦN (zN )

deviate from their asymptotic properties at finite sample sizes.

We generate 1,000 replications of the SAA problem at samples sizes N = 100 and 3, 000.

For each replication, the SAA solution zN has components small enough in absolute value

to lead to an incorrect estimate z∗N , in the sense that z∗N does not lie in the interior of the
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Table 3.6: Coverage rates for (z0)j , N = 100 and N = 3, 000, α = .05

N = 100 N = 3, 000
Component υαj ηαj υαj ηαj a0

(z0)1 89.6% 93% 95.4% 95.5% 83.7%

(z0)2 88.8% 93.4% 93.9% 93.9% 83.7%

(z0)3 89.3% 92.6% 94.2% 94.3% 83.7%

(z0)4 89.7% 93.1% 94.9% 94.9% 83.7%

(z0)5 89.8% 91% 95.2% 95.2% 83.7%

(z0)6 88.3% 91.5% 95.4% 95.4% 83.7%

(z0)7 89.5% 91.9% 96.1% 96.1% 83.7%

(z0)8 89.7% 92.6% 95.2% 95.2% 83.6%

(z0)9 91% 94.2% 95% 95.1% 83.6%

(z0)10 95.1% 96.4% 95.1% 95.2% 83.7%

(z0)11 90.5% 92% 95.3% 95.3% 83.7%

(z0)12 90.7% 93.7% 94.7% 95.1% 83.7%

(z0)13 88.9% 93% 95.4% 95.4% 83.7%

(z0)14 92% 93.3% 93.8% 93.8% 83.7%

n-cell that contains z0. The performances of the different intervals for (z0)j are given in

Table 3.6. The method of §3.2 is most sensitive to the use of the incorrect estimate dΠS(z∗N ).

For each replication with N = 100 the estimate ΦN (zN ) has 212 selection functions, and

evaluating a0 is computationally impractical. Even with N =3,000, for about eight percent

of the replications no intervals can be computed for a0. This poor performance is due to

the inclusion of all selection functions of ΦN (zN ) in the calculation of a0. The evaluation

of a0 becomes intractable, when the number of selection functions becomes too large to

enumerate each piece, or when a selection function has a singular of near singular matrix

representation. Moreover, even when a0 can be evaluated, the performance of those intervals

is heavily impacted by the incorrect identification of selection functions, because the method

of a0 is designed to achieve the desired level of confidence by averaging out the performance

across the different pieces of the limiting distribution.

In contrast to the poor performance of intervals computed using a0, the intervals com-

puted using ηαj (i.e., the second approach) perform well. Even for the cases in which

N = 100 and ΦN (zN ) has 212 selection functions, this conditioning based approach can

quickly compute an interval’s length. Not only is this approach computationally feasible at

this relatively small sample size, its performance is close to the desired level of 95%. The
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computation efficiency is due to the fact that only a single selection function of the estimate

ΦN (zN ) is needed for the computation of an interval’s length. This selection function is

characterized by its matrix representation and the corresponding cone in the conical subdivi-

sion. The matrix representation depends on zN , while the choice of the cone is determined

by z∗N . Because the incorrect selection functions do not directly affect the computation,

they have less impact on the interval length. What is especially noteworthy is that at small

sample sizes the intervals computed using ηαj with “incorrect” choices of z∗N outperform the

intervals using υαj . This may look surprising, because the method using υαj is asymptotically

exact for this example. The intuition behind this observation is that the “incorrect” choices

of z∗N is in part a reflection of the difference between the distribution of zN at small sample

sizes and its asymptotic distribution. The computation of ηαj therefore incorporates these

differences in a limited manner, whereas the linear function used to calculate υαj does not

capture these differences. As the sample size increases, the asymptotic equivalence of ηαj

and υαj becomes apparent.
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CHAPTER 4

Direct confidence intervals

4.1 Motivation

In this chapter we propose a direct method for constructing individual confidence intervals

for the solution to an SVI as formulated in (1.1). We begin the chapter with a motivat-

ing discussion on how this problem differs from the construction of individual confidence

intervals for the solution to the normal map formulation.

To begin, comparing (1.12) and (1.14) we see the difference between the asymptotic

distributions for SAA solutions to the normal map and direct formulation is the addition in

the latter of ΠK0 , the projection onto the critical cone to S at z0. Since ΠK0 is generally non-

invertible, neither of the methods presented in Chapter 3 can be used to directly construct

intervals for (x0)j , because both methods require the function that defines the asymptotic

distribution to be invertible.

An indirect approach to constructing confidence intervals for (x0)j using the methods

of Chapter 3 would be projecting confidence intervals for (z0)j onto the set S. As noted in

§2.2 for a random set IN (ω)

Pr (z0 ∈ IN (ω)) ≤ Pr (ΠS(z0) ∈ ΠS(IN (ω))) = Pr (x0 ∈ ΠS(IN (ω))) .

Intervals found in this way will then cover x0 with a rate that is at least as large as

the coverage rate of z0 by IN (ω). The indirect approaches are convenient to implement

when the set S is a box, or has a similar structure that facilitates taking (individual)

projections. Beyond those situations, it would be hard to use the indirect approaches for

finding confidence intervals for x0.



When developing a direct method for calculating confidence intervals for (x0)j we would

like to emulate the method of §3.3 due to the benefits of working with only a single selection

function. As stated above, this method cannot be applied directly since the definition of

ηαj (f, x) requires that the piecewise linear function f be invertible. In this definition it is the

function f−1 that is used primarily in the calculation of ηαj (f, x). The role of f is limited to

using its conical subdivision to define a partition of the range of f−1, which combined with

x identifies the selection functions of f−1 to be considered. An initial attempt to extend

this method to general piecewise linear functions would be to identify selection functions

by using a partition of the function’s range that does not require it to be invertible.

In the case of building individual confidence intervals for (x0)j the function of interest

is the transformation appearing in the right hand side of (1.14),

g = ΠK0 ◦ dfnor
0,S (z0)−1Σ

1/2
0 (·),

whose range is the critical cone K0. Taking ΦN (zN ) and z∗N to be as in (1.28) we define

ΠKN = dΠS(z∗N ) = ΛN (zN ), (4.1)

and

gN = ΠKN ◦ ΦN (zN )−1Σ
1/2
N (·).

From (1.9) and Theorem 4 it follows that

lim
N→∞

Pr (ΠKN = ΠK0) = 1 (4.2)

suggesting the use of gN as an estimate for g when constructing confidence intervals. Since

K0 is a polyhedron a natural partition to consider would be the relative interiors of the

faces of K0. The shortcoming of this approach is that there can exist a face of K0, say Ci,

such that multiple selection functions of g map to riCi and Pr (g(Z) ∈ riCi) > 0. When

such a face Ci exists, we would no longer have the desired property that as the sample size

goes to infinity the probability of working with a single selection function of gN goes to one.
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One could attempt to avoid this issue by instead choosing the selection functions based

on a point in a function’s domain. For the function g of interest such a partition of the

domain would depend on the conical subdivision associated with dfnor
0,S (z0)−1. When con-

structing intervals using the estimates gN , the partition would depend on the conical subdi-

vision associated with ΦN (zN )−1. The issue with this approach is that while the probability

of ΦN (zN ) and dfnor
0,S (z0) sharing a common conical subdivision goes to one as the sample

size goes to infinity, such a result will not hold for their inverses. Thus evaluating the

performance of intervals produced using this approach would require addressing the case

when the point falls in a region that identifies selection functions of g and gN that do not

correspond to one another.

The presence of ΠK0 in the asymptotic distribution also complicates the aim of con-

structing intervals with an exact level of confidence. Consider the following extreme exam-

ple. If one modifies the SVI used in §3.5.1 by changing the function F (x, ξ) to be

F (x, ξ) =

 ξ1 ξ2

ξ3 ξ4


 x1

x2

+

 ξ5 + 1

ξ6 + 1

 ,
the solution to (1.1) is still x0 = (0, 0), while the solution to (1.5) becomes z0 = (−1,−1).

With this change the critical cone K0 = {(0, 0)} and ΠK0 can be expressed as the zero

matrix. Moreover, both ξ5 and ξ6 are bounded below by negative one so for all samples

xN = (0, 0) = x0. Therefore any interval containing (xN )j will cover (x0)j due to the

complete lack of variability in SAA solutions.

Removing our modification to the function F (x, ξ) and considering the SVI as given in

Section 3.5.1 we see a second less extreme example. In this case with z0 = (0, 0) one has

K0 = R2
+ and ΠK0 is piecewise linear. Now it is the restriction ΠK0 to the negative orthant

that can be expressed as the zero matrix, and one can similarly observe that for all samples

such that zN ∈ R2
−, xN = (0, 0) = x0 and any interval containing (xN )j will cover (x0)j .

For zN ∈ R− × R+ it is only true that (xN )1 = (x0)1 and the performance of intervals for

(x0)2 centered at (xN )2 will depend on how the intervals’ widths are chosen.
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In these examples we see that it is possible for Pr ((xN )j = (x0)j) > 0, providing a lower

bound for any confidence interval that contains (xN )j . Therefore the aim should not be to

construct asymptotically exact confidence intervals, but instead intervals for which a lower

bound on the level of confidence is met. In the remainder of this chapter we propose an

approach of constructing such intervals, with Theorem 7 providing the theoretical justifi-

cation for the proposed method. In §4.3 we apply the proposed method to two numerical

examples.

4.2 Methodology

To determine the width of an interval the proposed method replaces ηαj (·, ·) with a function

hαj (f, g, x) where f and g are piecewise linear functions from Rn to Rn that share a common

conical subdivision, {K1, . . . ,Kl}, with only g required to be invertible. For any choice of

cone Ki, i = 1, . . . , l, component j = 1, . . . , n and α ∈ (0, 1) we first define hαj (f, g, x) for

points x ∈ intKi to be

inf
{
l ≥ 0

∣∣Pr
(
|
(
f(g−1(Z))

)
j
| ≤ l and g−1(Z) ∈ Ki

)
≥ (1− α) Pr

(
g−1(Z) ∈ Ki

)}
.

For all points x ∈ intKi the function hαj (f, g, x) will take the same value and the above

definition is equivalent to

hαj (f, g, x) = inf

{
` ≥ 0

∣∣∣ Pr
(
|(Qi)jM−1

i Z| ≤ ` and M−1
i Z ∈ Ki

)
Pr
(
M−1
i Z ∈ Ki

) ≥ (1− α)

}
. (4.3)

where Qi and Mi are the matrices that satisfy f |Ki = Qi and g|Ki = Mi, and (Qi)j denotes

the jth row of Qi. For points x ∈ ⋂v
s=1Kis define hαj (f, g, x) = maxs=1,...,v h

α
j (f, g, xis)

where xis ∈ intKis . The following lemma shows that the location of x and the selection

functions of f determine when hαj (f, g, x) = 0.

Lemma 5. Let (Qi)j denote the jth row of Qi, the matrix that satisfies f |Ki = Qi. Then

for any x ∈ ⋂v
s=1Kis, j = 1, . . . , n, and α ∈ (0, 1), hαj (f, g, x) = 0 if and only if (Qis)j is

the zero vector for all s = 1, . . . , v.
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Proof. It suffices to prove the result for x ∈ intKi. If hαj (f, g, x) = 0,

0 < (1− α) Pr
(
M−1
i Z ∈ Ki

)
≤ Pr

(
|(Qi)jM−1

i Z| ≤ 0 and M−1
i Z ∈ Ki

)
,

which implies

0 < Pr
(
(Qi)jM

−1
i Z = 0 and M−1

i Z ∈ Ki

)
≤ Pr

(
(Qi)jM

−1
i Z = 0

)
. (4.4)

Since (Qi)jM
−1
i Z ∼ N

(
0, ‖(Qi)jM−1

i ‖2
)
, where ‖ · ‖ denotes the Euclidian norm, (4.4)

implies that ‖(Qi)jM−1
i ‖ = 0, and thus (Qi)j is a vector of zeroes. The reverse implication

is immediate.

When using hαj (f, g, x) to construct confidence intervals for solutions to (1.1) based on

(1.14), ΠK0 and Σ
−1/2
0 dfnor

0,S (z0) play the roles of f and g respectively. These functions

will be estimated by dΠS(z∗N ) and Σ
−1/2
N ΦN (zN ). From (1.9) and (1.29) it follows that the

probability of dΠS(z∗N ) equalling ΠK0 goes to one as the sample size goes to infinity. By

adapting this setting to deterministic functions, we prove the following lemma.

Lemma 6. Let f, g : Rn → Rn be piecewise linear functions with g being a homeomor-

phism. Suppose that {fN}∞N=1 and {gN}∞N=1 are two sequences of piecewise linear functions

satisfying the following conditions.

1. fN = f for all N sufficiently large.

2. f , g and gN all share a common conical subdivision {K1, . . . ,Kl} for all N sufficiently

large.

3. sup
h∈Rn,h 6=0

‖gN (h)−g(h)‖
‖h‖ → 0.

Then gN is a homeomorphism for all N sufficiently large. Moreover, lim
N→∞

hαj (fN , gN , x) =

hαj (f, g, x) for all x ∈ Rn, α ∈ (0, 1) and j = 1, . . . , n.

Proof. From Proposition 2 it follows that for all N sufficiently large gN is a homeomorphism

and that g−1
N converges uniformly on compacts to g−1. Without loss of generality we can

assume that for all N the functions gN are invertible, fN = f and f , g and gN share
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a common conical subdivision {K1, . . . ,Kl}. To finish the proof, it suffices to show that

hαj (f, gN , x)→ hαj (f, g, x) for any x ∈ intKi, i = 1, . . . , l.

When x ∈ intKi and hαj (f, g, x) = 0, it follows from Lemma 5 that hαj (f, gN , x) = 0. In

the case of x ∈ intKi and hαj (f, g, x) > 0, the convergence can be shown using an argument

analogous to the proofs of Lemma 1 and Lemma 3 and is therefore omitted.

The main result of this section, Theorem 7, can now be proven. We will use the same

notation used in Theorem 6. The conical subdivision associated with dfnor
0,S (z0) is denoted

by Γ′(z0) = {K1, . . . ,Kl}, with dfnor
0,S (z0)|Ki = Mi. Each Ki is given by Ki = cone(Pi− z0),

where P1, . . . , Pl are all n-cells in the normal manifold of S that contain z0. As before, we

define the following random variables:

Y i = M−1
i Σ

1/2
0 Z, Y0 = Σ

1/2
0 Z and Y ∗ = dfnor

0,S (z0)−1Σ
1/2
0 Z.

Additionally, we use ΠK0 |Ki = Qi to denote the selection function of ΠK0 on Ki.

Theorem 7. Let Assumptions 2, 3 and 4 hold. Let ΦN (zN )(·) and z∗N be as defined in

(1.28). For all j = 1, . . . , n and α ∈ (0, 1),

lim
N→∞

Pr
(√

N |(xN − x0)j | ≤ hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), zN − z∗N )

)
≥ 1− α. (4.5)

Proof. As in the proof of Theorem 6, let Ci, i = 1, . . . ,m denote the cells in the normal

manifold of S, and for each N let the event AN be as defined in (3.12). For ω ∈ AN the

equality ΠK0 = dΠS(z∗N ) holds, and {K1, . . . ,Kl} provides a common conical subdivision

for ΠK0 , dfnor
0,S (z0) and ΦN (zN (ω)). From (3.13) and Lemma 6 it follows that for all fixed

u, hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), u) converges in probability to hαj (ΠK0 ,Σ

−1/2
0 dfnor

0,S (z0), u).
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Next let B be a fixed neighborhood of z0 such that B∩(z0+Ki) = B∩Pi for i = 1, . . . , l.

We then have

lim
N→∞

Pr
(√

N |(xN − x0)j | ≤ hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), zN − z∗N )

)
= lim

N→∞
Pr
(√

N | (ΠS(zN )−ΠS(z0))j | ≤ hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), zN − z∗N ); AN

)
= lim

N→∞

l∑
i=1

Pr
(√

N | (ΠK0
(zN − z0))j | ≤ hαj (dΠS(z∗N ),Σ

−1/2
N ΦN (zN ), zN − z∗N ); AN ; zN ∈ B ∩ intPi

)
=

l∑
i=1

lim
N→∞

Pr
(√

N |(Qi)j(zN − z0)| ≤ hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), ui); AN ; zN ∈ B ∩ intPi

)
(4.6)

where ui in the last expression is any point in intKi. The first equality uses the relation

between the solution to a variational inequality and that of its normal map formulation,

while the second equality combines the almost sure convergence of zN to z0 with (1.8).

The final equality holds, because both zN − z0 and zN − z∗N will be contained in intKi

whenever ω ∈ AN and zN ∈ intPi, in which case zN − z∗N may be replaced with ui and

ΠK0(zN − z0) = Qi(zN − z0).

Evaluation of each term in (4.6) depends on whether (Qi)j is zero or not. If (Qi)j is

the zero vector for some i, then

lim
N→∞

Pr
(√

N |(Qi)j(zN − z0)| ≤ hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), ui); AN ; zN ∈ B ∩ intPi

)
= lim

N→∞
Pr
(√

N(zN − z0) ∈ intKi

)
= Pr (Y ∗ ∈ intKi)

= Pr
(
d(f0)−1

S (z0)Σ
1/2
0 Z ∈ Ki

)
. (4.7)

On the other hand, if (Qi)j is a nonzero vector (i.e., it contains at least one nonzero

element) for some i, we define a vector v̄i,j to be such that v̄i,j 6∈ Ki and |(Qi)j v̄i,j | >
hαj (ΠK0 ,Σ

−1/2
0 dfnor

0,S (z0), ui). With these we define random vectors

vi,jN =
√
N(zN − z0)1zN∈B∩intPi

+ v̄i,j1zN 6∈B∩intPi
,

Ŷ i,j = Y i1Y i∈intKi
+ v̄i,j1Y i 6∈intKi

,

ĥi,jN = hαj

(
dΠS(z∗N ),Σ

−1/2
N ΦN (zN ), ui

)
1zN∈B∩intPi

+ hαj

(
ΠK0 ,Σ

−1/2
0 dfnor

0,S (z0), ui
)
1zN 6∈B∩intPi

.
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Using the same arguments as in Theorem 6 it follows that

vi,jN
ĥi,jN
⇒ Ŷ i,j

hαj

(
ΠK0 ,Σ

−1/2
0 dfnor

0,S (z0), ui

)
and

lim
N→∞

Pr

(
√
N

|(Qi)j(zN − z0)|
hαj (dΠS(z∗N ),Σ

−1/2
N ΦN (zN ), ui)

≤ 1; AN ; zN ∈ B ∩ intPi

)
= (1− α) Pr

(
dfnor

0,S (z0)−1Σ
1/2
0 Z ∈ Ki

)
. (4.8)

Combining (4.7) and (4.8), with the fact that zN − z∗N ∈ intKi on AN , we have

lim
N→∞

Pr
(√

N |(xN − x0)j | ≤ hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), zN − z∗N )

)
= lim

N→∞

l∑
i=1

Pr
(√

N |(Qi)j(zN − z0)| ≤ hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), ui); AN ; zN ∈ B ∩ intPi

)
≥ (1− α)

l∑
i=1

Pr
(
dfnor

0,S (z0)−1Σ
1/2
0 Z ∈ Ki

)
= 1− α.

Again it is possible to relax Assumption 3 in the above theorem. In addition to the

conditions specified after Theorem 6, a strict inequality needs to hold in (4.4) for each

selection function when Z is replaced by Y0. With these conditions, the limit in equation

(4.5) will remain well defined and converge to the same quantity.

An important fact that can be seen in the proof of Theorem 7 is that

lim
N→∞

Pr
(√

N |(xN − x0)j | ≤ hαj (ΠKN ,Σ
−1/2
N ΦN (zN ), zN − z∗N )

)
> 1− α

if and only if there exists a cone Ki in the conical subdivision of ΠK0 such that the jth

component of ΠK0 |Ki is zero. Let Pi be the n-cell in the normal manifold of S that contains

z0 and satisfies Ki = cone (Pi − z0). If zN ∈ intPi, then

(xN (ω)− x0)j =
(
ΠS(zN (ω))−ΠS(x0)

)
j

= (Qi)j (zN (ω)− z0) = 0
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and by Lemma 5

hαj (dΠS(z∗N ),Σ
−1/2
N ΦN (zN ), zN − z∗N ) = 0.

This means that the method of Theorem 7 returns the correct point estimate (xN (ω))j =

(x0)j whenever zN ∈ intPi. Therefore, equation (4.5) holds as a strict inequality if and only

if there is nonzero probability for the event (xN )j = (x0)j to happen. While such point

estimates are asymptotically correct, an incorrect estimate may be returned at small sample

sizes if zN is contained in an n-cell Pk for which the jth component of ΠS |Pk is zero but

z0 6∈ Pk. By Lemma 5, the third method may be made robust against returning incorrect

point estimates, by replacing (Qi)j = 0 with any nonzero vector. This modification does

not change the third method’s asymptotic level of confidence, but ensures that an interval

with nonzero length is always returned.

We also observe from the proof of Theorem 7 that this approach for building confidence

intervals, like the method in §3.3, will with high probability require working with only a

single selection function. Moreover hαj is computed in largely the same manner as ηαj using

the approach of Section 3.4.

4.3 Numerical examples

In this section we apply the direct method of computing individual confidence intervals to

two numerical examples. The first example is the same nonlinear complementarity problem

considered in §3.5.3. This example will again allow us to examine the proposed method

when the estimate z∗N deviates from its asymptotic properties at small sample sizes. For

the second example we consider an SVI where the set S that defines the problem is not a

box. In this case the indirect methods based on the approaches of Chapter 3 cannot be

applied.

For each of the examples, we will use the more conservative implementation of the direct

approach that does not return point estimates. To do so, whenever dΠS(z∗N ) has a selection

function with jth component equal to zero, we replace that component with the unit vector

ej whose jth element is one. With this modification a value which is equal to ηαj will be

returned instead of zero. While the resulting interval is more conservative than the point
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estimate, this modification does not change the intervals’ asymptotic level of confidence and

can be more robust at small sample sizes, as discussed after Theorem 7.

4.3.1 Example 1

Recall the invariant capital stock problem in §3.5.3, which can be formulated as the nonlinear

complementarity problem,

0 ≤ ∇v(q) + (A− γB)T + CTu ⊥ q ≥ 0

0 ≤ (B −A)q ⊥ y ≥ 0

0 ≤ −Cq + w ⊥ u ≥ 0.

Assuming the same distribution used in §3.5.3 for the elements of A, B, C and w, we find

that all components of z0 are nonzero and between -0.6575 and 0.6833. Moreover we observe

that the true solution x0 has components (x0)j = 0 for j = 1, 4, 5, 8, 9, and 13.

In addition to the direct approach proposed in this chapter, we can also apply the in-

direct approach of projecting individual confidence intervals for (z0)j onto S. Since the set

S = R14
+ , each selection function of dΠS(z) is represented by a diagonal matrix with values

of zero and one along the diagonal. With the conservative implementation of the direct

approach, we replace a selection function’s jth row by the basis vector ej , if that row has

all zero entries. In view of (3.10) and (4.3), the value of hαj from such a replacement will

be equal to ηαj . If additionally (zN )j ≥ 0, then the direct approach of §4.2 will produce the

same interval for (x0)j as the indirect approach of §3.3. If (zN )j < 0, then the indirect ap-

proach of §3.3 returns the interval
[
0,max

{
0, (zN )j +N−1/2ηαj

}]
, whereas the conservative

implementation of the direct approach returns the interval
[
0, N−1/2hαj

]
=
[
0, N−1/2ηαj

]
.

Thus, if the jth row of a selection function contains all zeros, then the above two approaches

will provide the same coverage rate for (x0)j = 0, with the approach of §4.2 returning a

slightly longer interval when (zN )j is negative.

Solving the same 1,000 replications of the SAA problem for N =100 and 3,000, used in

§3.5.3, we see the benefit of not returning point estimates for (x0)j when using the direct

approach of §4.2. For eighty two replications at N = 100, the SAA solution zN lies in
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a different n-cell from z0. For each of these replications (zN )10 < 0 < (x0)10, and the

original implementation will return an incorrect point estimate for (x0)10. Similar, but less

frequent, errors occur for (x0)j for j = 2, 3, 6, 7 and 14. The conservative implementation

fixes those errors effectively. The remaining components of (x0)j are equal to zero, and the

conservative implementation does not affect their coverage rates. At the larger sample size

N = 3, 000, zN and z0 are always contained in the same n-cell and both implementations

of the direct approach result in the same coverage rates.

Table 4.1: Coverage rates for (x0)j , N = 100 and N = 3, 000, α = .05

N = 100 N = 3, 000
Component υαj ηαj hαj υαj ηαj hαj a0

(x0)1 99.7% 99.7% 99.7% 100% 100% 100% 91.5%

(x0)2 88.8% 93.4% 93.4% 93.9% 93.9% 93.9% 83.7%

(x0)3 89.3% 92.6% 92.6% 94.2% 94.3% 94.3% 83.7%

(x0)4 99.7% 99.7% 99.7% 100% 100% 100% 91.5%

(x0)5 99.7% 99.7% 99.7% 100% 100% 100% 91.5%

(x0)6 88.3% 91.4% 91.4% 95.4% 95.4% 95.4% 83.7%

(x0)7 89.5% 91.9% 91.9% 96.1% 96.1% 96.1% 83.7%

(x0)8 99.7% 99.7% 99.7% 100% 100% 100% 91.5%

(x0)9 97.3% 97.3% 97.3% 100% 100% 100% 91.5%

(x0)10 95.1% 96.4% 96.4% 95.1% 95.2% 95.2% 83.7%

(x0)11 90.5% 92% 92% 95.3% 95.3% 95.3% 83.7%

(x0)12 90.7% 93.7% 93.7% 94.7% 95.1% 95.1% 83.7%

(x0)13 99.7% 99.7% 99.7% 100% 100% 100% 91.5%

(x0)14 92% 93.3% 98.8% 93.8% 93.8% 93.8% 83.7%

The coverage rates for the direct approach and indirect approach using ηαj are largely

the same. The one component for which their performance differs is (xN )14 when N = 100.

This is also due to the small sample size deviations in the location of zN . The slightly longer

interval obtained by the direct approach when (zN )j < 0 results in the higher coverage rate

due to the samples where (zN )14 < 0 < (x0)14. Overall, at N = 100 both conditioning

based approaches perform largely in line with (or exceed) the desired level of confidence,

and the coverage rates are further improved at N = 3000.

77



4.3.2 Example 2

For the second example, the SVI is defined by

S =

x ∈ R2
∣∣∣
 .5 −1

−2 1


 x1

x2

 ≤
 0

0


 and F (x, ξ) =

 4 0

3 2


 x1

x2

+

 ξ1

ξ2

 ,
where ξ is uniformly distributed over the box [−1, 1]× [−2, 2]. In this case

f0(x) =

 4 0

3 2


 x1

x2

 ,
and the 2-cells in the normal manifold are of the form Ci =

{
x ∈ R2|Aix ≤ 0

}
with

A1 =

 .5 −1

−2 1

 , A2 =

 2 −1

−.5 −1

 , A3 =

 .5 1

−2 1

 and A4 =

 −2 −1

−.5 1

 .
These four cones provide the conical subdivision associated with fnor

0,S . The corresponding

family of selection functions for fnor
0,S are given by matrices

 4 0

3 2

 ,
 1.6 1.2

1 3

 ,
 1 0

0 1

 and

 3.4 1.2

2.8 2.4

 .
The SVI and its normal map formulation have true solutions x0 = z0 = 0. The function

dfnor
0,S (z0) is equal to the fnor

0,S , with its conical subdivision given by Ki = cone (Ci − 0) = Ci,

i = 1, · · · , 4.

Table 4.2: Coverage rates of (x0)i, α = .05

(x0)1 (x0)2

N=50 96.05% 96.2%

N=100 97% 97.25%

N=200 97.1% 97.15%

N=2,000 97% 97.05%

For this example we consider 2,000 replications of the SAA problem at samples sizes of

N = 50, 100, 200, and 2,000. Since the set S defining the SVI is not a box, for any real num-
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bers l ≤ u neither ΠS(R× [l, u]) nor ΠS([l, u])×R) results in sets that yield meaningful con-

fidence intervals for (x0)1 or (x0)2. Therefore the indirect approach of projecting confidence

intervals for (z0)j onto S cannot be used and only the direct approach is applicable. Com-

bining (4.5) and the fact S ⊂ R2
+ we consider

[
max{0, (xN )j−N−1/2hαj }, (xN )j+N−1/2hαj

]
as the confidence interval for (x0)j . Table 4.2 summarizes the coverage rates for (x0)1 and

Table 4.3: Intervals for (x0)i by cone, N = 2, 000, α = .05

Coverage rate Average length
Cone (samples in cone) (x0)1 (x0)2 (x0)1 (x0)2

K1(80) 88.75% 90% .0104 .0132

K2 (689) 95.36% 95.36% .0089 .0177

K3 (824) 100% 100% .0246 .0526

K4 (407) 95.33% 95.33% .0073 .0036

(x0)2 obtained from 2,000 problems at each sample size with α = .05. In Table 4.3 we exam-

ine the coverage rates and interval lengths from the SAA problems with N = 2, 000, broken

down by the location of zN − z0. Since the selection function corresponding to dΠS(z0)|K3

is represented by the zero matrix, the equality (xN )j = (x0)j holds when zN − z0 ∈ K3,

leading to coverage rates of 100% for that case. The nonzero interval lengths we obtain for

this case are due to the aforementioned conservative implementation of the direct method.
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CHAPTER 5

Relaxed confidence intervals

5.1 Introduction

In this chapter we consider relaxing the conditions required for the methods developed in

Chapters 3 and 4, and propose a procedure for computing intervals that meet a minimum

level of confidence under the relaxed conditions. In particular, the method we develop does

not require the use of the consistent estimate ΦN (zN ). This allows us to omit Assumption

4 and the condition that zN converge to z0 in probability at an exponential rate. The

exponential rate of convergence is required for the the appropriate choice of z∗N . The

conditioning based approaches of §3.3 and §4.2 rely on z∗N to construct consistent estimates

for the transformations in (1.12) and (1.14), and to identify a single selection function of

these estimates. The approach developed in this chapter builds from these conditioning

based approaches but uses only zN to estimate the selection function used to compute an

interval’s width.

The compromise we make for omitting Assumption 4 is to allow for some error in the

estimation of the selection function used to compute the width of an interval. Without a

known rate for the convergence of zN to z0, we are unable to specify what the probability

of an error occurring converges to as the sample size increases. We are able to provide an

asymptotic upper bound for this probability and can then make conservative adjustments

to the calculations that follow the estimation of the selection function. These adjustments

allow us to specify a minimum level of confidence for the resulting intervals. The justification

for this approach follows from the more general framework considered in Theorems 8 and

9, where we consider a set of estimates for the selection function that contains a consistent

estimate with a sufficiently large probability. In §5.2 we formally define and justify the

proposed approach, and in §5.3 we apply the proposed method to a numerical example.



5.2 Methodology

The conditioning based approaches to computing individual confidence intervals require

estimating the selection function of dΠS(z0) characterized by the matrix Mi(zN ) and cone

Ki(zN ), where Ki(zN ) is contained in the conical subdivision of dΠS(z0), zN − z0 ∈ Ki(zN ),

and dΠS(z0)|Ki(zN )
= Mi(zN ). The approaches taken in §3.3 and §4.2 require estimates

MN (ω) and KN (ω) that satisfy,

lim
N→∞

Pr
(
KN = Ki(zN )

)
= 1 (5.1)

and that for all ε > 0,

lim
N→∞

Pr

(
sup

h∈Rn,h6=0

‖MNh−Mi(zN )h‖
‖h‖ ≤ ε

)
= 1. (5.2)

In Chapters 3 and 4, the estimates MN (ω) and KN (ω) are selected using the location of

zN − z∗N in the conical subdivision of dΠS(z∗N ). The high probability of choosing a correct

z∗N and satisfying (5.1) and (5.2), followed from Assumption 4 and the resulting convergence

of zN to z0 in probability at an exponential rate.

Our approach to computing intervals that maintain their desired asymptotic properties

without requiring Assumption 4 is to relax (5.1) while still satisfying (5.2). To do so we make

use of the following observation. Let PN be a set in the polyhedral subdivision associated

with ΠS with zN ∈ intPN . Then for any z ∈ PN we have zN −z ∈ cone(intPN −z) = intKz,

and

dΠS(z)|Kz = MN = dΠS(zN ).

The estimate dΠS(zN ) therefore satisfies (5.2) since under Assumptions 1 and 2 for a.e.

N sufficiently large there exists a set PN in the polyhedral subdivision of ΠS such that

zN ∈ intPN and z0 ∈ PN .

We next allow for (5.1) to be relaxed in two ways. First, we allow for the cone KN to be

replaced with a set of estimates. Second, we will only require that the limiting probability

of this set containing Ki(zN ) be greater than or equal to a target value. More formally, we
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require a set Kα1
N comprised of polyhedral cones of dimension n with

lim
N→∞

Pr
(
Ki(zN ) ∈ Kα1

N

)
≥ 1− α1. (5.3)

To incorporate this relaxation into the computation of the confidence intervals we consider

the follow generalization of the function ηαj . Let M be an invertible n × n matrix and

K =
{
K̃1, . . . , K̃m

}
be a collection of polyhedral convex sets of dimension n. We then

define the function η̃α2
j (K,M) to be,

inf

{
` ≥ 0

∣∣∣ Pr
(
|(M−1Z)j | ≤ `, and M−1Z ∈ Ki

)
Pr (M−1Z ∈ Ki )

≥ 1− α2 for all Ki ∈ K
}

Using the function η̃α2
j to determine an interval’s width, we can now show the following

convergence result analogous to (3.11) in Theorem 6. As before let Γ′(z0) = {K1, . . . ,Kl}

denote the conical subdivision associated with dfnor
0,S (z0) such that dfnor

0,S (z0)|Ki = Mi and

Ki = cone(Pi− z0) where P1, . . . , Pl are all n-cells in the normal manifold of S that contain

z0.

Theorem 8. Suppose that Assumptions 1, 2, and 3 hold, and that Kα1
N satisfies (5.3) for

α1 ∈ (0, 1]. Then for every j = 1, . . . , n and α2 ∈ (0, 1),

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ η̃α2
j

(
Kα1
N ,Σ

−1/2
N dfnorN,S(zN )

))
≥ 1− (α1 + α2). (5.4)

Proof. For each N let,

Φ0(zN )(h) = df (ΠS(zN )) ◦ dΠS(z0)(h) + h− dΠS(z0)(h)

and define the event AN =
{
Ki(zN ) ∈ Kα1

N

}
. Let B be a fixed neighborhood of z0 such that

B ∩ (z0 +Ki) = B ∩ Pi for i = 1, . . . , l. Then
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lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ η̃α2
j

(
Kα1
N ,Σ

−1/2
N dfnor

N,S(zN )
))

≥ lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ η̃α2
j

(
Kα1
N ,Σ

−1/2
N dfnor

N,S(zN )
)

; AN

)
=

l∑
i=1

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ η̃α2
j

(
Kα1
N ,Σ

−1/2
N dfnor

N,S(zN )
)

; AN ; zN ∈ B ∩ intPi

)

Note that when AN holds and zN ∈ B ∩ intPi, it follows that, Ki(zN ) = Ki, Φ0(zN )|Ki =

dfnor
N,S(zN ), and

Pr
(
|(dfnor

N,S(zN )−1Σ
1/2
N Z)j | ≤ η̃α2

j

(
Kα1
N ,Σ

−1/2
N dfnor

N,S(zN )
)

and dfnor
N,S(zN )−1Σ

1/2
N Z ∈ Ki

)
Pr
(
dfnor
N,S(zN )−1Σ

1/2
N Z ∈ Ki

)
≥

Pr
(
|(Φ0(zN )−1Σ

1/2
N Z)j | ≤ ηα2

j

(
Σ
−1/2
N Φ0(zN ), xi

)
and Φ0(zN )−1Σ

1/2
N Z ∈ Ki

)
Pr
(

Φ0(zN )−1Σ
1/2
N Z ∈ Ki

)
where xi is any point in intKi.

Next we observe that,

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ η̃α2
j

(
Kα1
N ,Σ

−1/2
N dfnor

N,S(zN )
))

≥
l∑

i=1

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ ηα2
j

(
Σ
−1/2
N Φ0(zN ), xi

)
; AN ; zN ∈ B ∩ intPi

)
= lim

N→∞

l∑
i=1

Pr
(√

N |(zN − z0)j | ≤ ηα2
j

(
Σ
−1/2
N Φ0(zN ), xi

)
; zN ∈ B ∩ intPi

)
−

l∑
i=1

Pr
(√

N |(zN − z0)j | ≤ ηα2
j

(
Σ
−1/2
N Φ0(zN ), xi

)
;AcN ; zN ∈ B ∩ intPi

)
≥ lim

N→∞

l∑
i=1

Pr
(√

N |(zN − z0)j | ≤ ηα2
j

(
Σ
−1/2
N Φ0(zN ), xi

)
; zN ∈ B ∩ intPi

)
−

l∑
i=1

Pr (AcN zN ∈ B ∩ intPi)

= lim
N→∞

l∑
i=1

[
Pr
(√

N |(zN − z0)j | ≤ ηα2
j

(
Σ
−1/2
N Φ0(zN ), xi

)
; zN ∈ B ∩ intPi

)]
− Pr (AcN )

≥ lim
N→∞

l∑
i=1

[
Pr
(√

N |(zN − z0)j | ≤ ηα2
j

(
Σ
−1/2
N Φ0(zN ), xi

)
; zN ∈ B ∩ intPi

)]
− α1

83



where the final inequality follows from the definition of AN and (5.3).

Under Assumptions 1 and 2, for all ε > 0,

lim
N→∞

Pr

(
sup

h∈Rn,h6=0

‖Φ0(zN )(h)− dfnor
0,S (z0)‖

‖h‖ ≤ ε
)

= 1

which by Lemma 3 and Assumptions 3 implies that

ηα2
j

(
Σ
−1/2
N Φ0(zN ), xi

)
⇒ ηα2

j

(
Σ
−1/2
0 dfnor

0,S (z0), xi

)
.

Therefore by the same argument used to prove Theorem 6 it follows that

lim
N→∞

l∑
i=1

Pr
(√

N |(zN − z0)j | ≤ ηα2
j

(
(Σ
−1/2
N Φ0(zN ), xi

)
; zN ∈ B ∩ intPi

)
= 1− α2

and thus

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ η̃α2
j

(
Kα1
N ,Σ

−1/2
N dfnor

N,S(zN )
))
≥ 1− (α1 + α2).

Before discussing approaches for choosing the collection of cones Kα1
N and the compu-

tation of intervals using η̃α2
j , we present the analogous extension of the direct approach for

computing confidence intervals. To do so, let M and K =
{
K̃1, . . . , K̃m

}
be as above, and

let Q be a n× n matrix. We then define the function h̃α2
j (K, Q,M) to be,

inf

{
` ≥ 0

∣∣∣ Pr
(
|(Q)jM

−1Z| ≤ `, and M−1Z ∈ Ki

)
Pr (M−1Z ∈ Ki )

≥ 1− α2 for all Ki ∈ K
}
.

Theorem 9. Suppose that Assumptions 1, 2, and 3 hold, and that Kα1
N satisfies (5.3) for

α1 ∈ (0, 1]. Then for every j = 1, . . . , n and α2 ∈ (0, 1),

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ h̃α2
j

(
Kα1
N , dΠS(zN ),Σ

−1/2
N dfnorN,S(zN )

))
≥ 1− (α1 +α2). (5.5)
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Proof. For each N define let,

Φ0(zN )(h) = df (ΠS(zN )) ◦ dΠS(z0)(h) + h− dΠS(z0)(h)

and define the event AN =
{
Ki(zN ) ∈ Kα1

N

}
. Let B be a fixed neighborhood of z0 such that

B ∩ (z0 + Ki) = B ∩ Pi for i = 1, . . . , l. Then using the same arguments in Theorem 8 it

follows that for ui ∈ intKi,

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ h̃α2
j

(
Kα1
N , dΠS(zN ),Σ

−1/2
N dfnor

N,S (zN )
))

≥
l∑
i=1

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ h̃α2
j

(
Kα1
N , dΠS(zN ),Σ

−1/2
N dfnor

N,S (zN )
)

; AN ; zN ∈ B ∩ intPi
)

≥
l∑
i=1

lim
N→∞

Pr
(√

N |(zN − z0)j | ≤ hα2
j

(
dΠS(z0),Σ

−1/2
N Φ0(zN ), ui

)
; AN ; zN ∈ B ∩ intPi

)
≥ lim
N→∞

l∑
i=1

[
Pr
(√

N |(zN − z0)j | ≤ hα2
j

(
dΠS(z0),Σ

−1/2
N Φ0(zN ), ui

)
; zN ∈ B ∩ intPi

)]
− Pr (AcN )

≥ lim
N→∞

l∑
i=1

[
Pr
(√

N |(zN − z0)j | ≤ hα2
j

(
dΠS(z0),Σ

−1/2
N Φ0(zN ), ui

)
; zN ∈ B ∩ intPi

)]
− α1

≥ 1− (α1 + α2).

The results (5.4) and (5.5) will still hold with the appropriate relaxations of Assumption

3 discussed after Theorems 6 and 7.

While we have a good deal of latitude in how to choose Kα1
N , for the methods of Theorems

8 and 9 to be computationally tractable we would like to limit the number of cones Ki ∈ Kα1
N .

In the following Lemma we show that from the sample data we can identify a single cone

that will satisfy (5.3). To do so we use the asymptotically exact confidence regions in

equations (1.20) to identify a subset of k-cells in the normal manifold of S, and select a cell

with the lowest dimension from this subset. The proof of Lemma 7 does not require ΣN

to be invertible. To limit the notation involved we will use RN,ε to denote the confidence

region, though the same argument will hold when the confidence regions RN are used. In

the proof of Lemma 7 we will use the same notation as in Theorem 6. With this notation,

the conical subdivision of dΠS(z0) is comprised of sets Ki = cone(Pi − z0) where P1, . . . , Pl

are all n-cells in the normal manifold of S that contain z0. The element of the conical
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subdivision of dΠS(z0) that contains zN − z0 for a particular sample shall be denoted by

Ki(zN ).

Lemma 7. Suppose that Assumptions 1 and 2 hold. Let α1 ∈ (0, 1) and RN,ε be a (1 −

α1) ∗ 100% confidence region for z0 as given in equation (1.20). Let PN be the n-cell in the

normal manifold of S with zN ∈ PN and let CiN be the k-cell that has the smallest dimension

of all cells that intersect RN,ε and PN . Then for z̃iN ∈ ri CiN , Kα1
N = {cone(PN − z̃iN )}

satisfies (5.3)

Proof. Let C1, . . . , Cm denote all of the k-cells in the normal manifold of S, di(z) be as

defined in equation (1.24) and I = {i | z0 6∈ Ci} be the collection of indices for the k-cells

that do not contain z0. Then mini∈I di(z0) = δ > 0 since there are finitely many k-cells,

each of which is a closed set. Let Ci0 denote the unique k-cell that contains z0 in its relative

interior. As shown in (Lu and Budhiraja, 2013, Proposition 5.1) the cell Ci0 is the cell of

lowest dimension to contain z0. Then for any cell Ci with Ci 6= Ci0 and dimension less than

or equal to that of Ci0 , it follows that i ∈ I.

For any i ∈ I and z ∈ Ci,

‖zN − z‖ = ‖z0 − z + zN − z0‖

≥ ‖z0 − z‖ − ‖zN − z0‖

≥ δ − ‖zN − z0‖. (5.6)

Let GN denote the event that δ/2 ≥ mini∈I di(zN ), then by (5.6) and the almost sure

convergence of zN to z0, that Pr(GN )→ 1.

Next, recall the simultaneous confidence intervals for z0 computed by finding the min-

imum axis aligned bounding box that contains RN,ε. Let ΣN = UTN∆NUN , where UN is

an orthogonal matrix with rows uN,1, . . . , uN,n and ∆N is a diagonal matrix with elements

λ1 ≥ λ2 ≥ · · · ≥ λn. Then by Proposition 1, each component interval, j = 1, . . . , n, has

half-width

wεN,j =

√
χ2
lN

(α)
∑lN

i=1(cN,juTN,i)
2λi

N
+

ε√
N

n∑
i=lN+1

|cN,juTN,i|.
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where cN,j is the jth row of dfnor
N,S(zN )−1. Let wN = (wεN,1, . . . , w

ε
N,j). From the almost sure

convergence of ΣN to Σ0 and dfN (zN ) to df0(z0), it follows that ‖wN‖ → 0 almost surely.

Define the event AN to be {‖wN‖ < δ/2 and z0 ∈ RN,ε}, and let B be a fixed neigh-

borhood of z0 such that B ∩ (z0 +Ki) = B ∩ Pi for i = 1, . . . , l. Then,

lim
N→∞

Pr
(
Ki(zN ) = cone(PN − z̃iN )

)
= lim

N→∞

l∑
i=1

Pr (Ki = cone(Pi − z̃iN ); zN ∈ B ∩ intPi)

≥ lim
N→∞

l∑
i=1

Pr (Ki = cone(Pi − z̃iN ); AN ; GN ; zN ∈ B ∩ intPi)

= lim
N→∞

l∑
i=1

Pr (AN ; GN ; zN ∈ B ∩ intPi) .

The final equality follows from the fact that when AN and GN both occur, for any z ∈ RN,ε,

‖zN − z‖ ≤ ‖wN‖ < δ/2 ≤ min
i∈I

di(zN ),

and thus no k-cell with index i ∈ I intersects with RN,ε. Since AN requires z0 ∈ RN,ε, it

follows that Ci0 is the cell of lowest dimension to intersect with RN,ε. Therefore Ci0 = CiN

and

lim
N→∞

Pr
(
Ki(zN ) = cone(PN − z̃iN )

)
≥ lim

N→∞

l∑
i=1

Pr (AN ; GN ; zN ∈ B ∩ intPi)

= lim
N→∞

Pr (AN ; GN )

≥ lim
N→∞

Pr (z0 ∈ RN,ε) = 1− α1

and Kα1
N = {cone(PN − z̃iN )} satisfies (5.3)

From the proof of Lemma 7 we see that the same result will hold if we use the simul-

taneous confidence intervals computed from RN,ε to identify the set of k-cells from which

CiN is chosen. When the set S is a box, working with the simultaneous confidence in-

tervals has the computational benefit of allowing us to identify the cell CiN by making n
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component wise comparisons. For more general sets S the search for this face can still be

simplified by using the fact that it is required to have the lowest possible dimension. We

can begin by identifying the facets of PN that intersect RN,ε as this is typically an easier

problem, and from these facets we can then restrict the search to only their intersection.

An algorithm for finding the desired cell can be initialized with a cell of the lowest possible

dimension, designed to search over faces of increasing dimension, and terminate as soon as

a cell that intersects RN,ε is found. Checking if a cell intersects with RN,ε reduces to solving

a quadratic programming problem.

Examining the combination of Lemma 7 and Theorems 8 and 9, we see how the proposed

methods generalize the conditioning based approaches of §3.3 and §4.2. In Lemma 7 we use

the confidence regions to estimate which k-cell in the normal manifold of S contains z0 in

its relative interior, and therefore the choice of cone KN . Since the limiting probability of

making a correct choice is bounded below by the regions’ level of confidence, we are able

to adjust for this error in the calculation as η̃α2
j . In the equations (5.4) and (5.5) we see

that this approach allows us to construct intervals that meet at least a (1−α) ∗ 100% level

of confidence by balancing between the error in estimating the cone, bounded above by α1,

and the probability of not covering the true component using the correct cone, which equals

α2. This is similar to the approaches of §3.3 and §4.2, but in those settings the exponential

rate of convergence allows us to remove the error in estimating the cone and set α1 = 0 and

α2 = α.

Additionally, the framework of Theorems 8 and 9 considers more conservative ap-

proaches were we include multiple cones in the set Kα1
N . This provides us with an oppor-

tunity to balance between increasing how conservative an interval may be and the amount

of additional computation required. This may range from the choice of a single cone as

in Lemma 7, to the choice of a potentially large set of cones that will always contain the

correct choice, in which case η̃α2
j would provide a bound on the width of an asymptotically

exact confidence interval.
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5.3 Numerical example

For this example we consider the linear complementarity problem

0 ≤Mx+ ξ ⊥ x ≥ 0

where x ∈ R20. The matrix M is of the form

M =

 M1 0

0 M2


where each Mi is a 10× 10 row diagonally dominant matrix. We generate each component

of ξ from a uniform distribution over an interval of length 1.5, with with E[ξi] > 0, i =

1, 2, 4, 5, 8, E[ξi] < 0, i = 3, 6, 7, 9, 10, and E[ξi] = 0, i = 11, . . . , 20. With this distribution

of ξ and the block diagonal form of the matrix M , dfnor
0,S (z0) has 210 selection functions.

Similar to the invariant capital stock example in §3.5.3 and §4.3.1, this example poses a

challenge to the proposed method as all nonzero components of z0 are less than 1 in absolute

value, with one component less than 0.01.

We consider 1,000 SAA problems at each sample size of N = 100 and 2,000. When

implementing the approach of §5.2, we select z̃iN from a k-cell of that has the lowest dimen-

sion of cells which intersect a set of 97.5% simultaneous confidence intervals for z0. For the

samples with N = 100 this resulted in eleven to thirteen components of z̃iN equaling zero,

and between nine to eleven components equaling zero at the samples of size N = 2, 000.

For this example, the method of §3.3 would also be appropriate. Using this approach with

component wise comparisons of zN to N−1/3, z∗N had either fifteen or sixteen components

equal to zero for the samples with N = 100 and twelve components equal to zero for the

samples of size N = 2, 000. For comparison, we also consider the intervals computed using

the method analyzed in Theorem 3.

In Table 5.1 we summarize the performance of the intervals computed using all three

approaches. We see that the large number of selection functions for dfnor
0,S (z0) results in

poor performance for the method of Theorem 3 which does not account for the effects of
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Table 5.1: Coverage rates for (z0)j , N = 100 and N = 2, 000, α1 = α2 = .025

N = 100 N = 2, 000
Component υ.05

j η.05
j η̃.025

j υ.05
j η.05

j η̃.025
j

(z0)1 81.5% 94.2% 96.9% 81.9% 95.7% 97.4%

(z0)2 80.7% 94.1% 96.4% 81.4% 95% 96.9%

(z0)3 82.3% 95.2% 98.1% 81.9% 96% 98.2%

(z0)4 81.5% 95.8% 97.7% 81.2% 94.7% 97.2%

(z0)5 81.9% 95.1% 97.2% 81.7% 95.5% 98.3%

(z0)6 82.8% 94.3% 97.5% 81.2% 95% 96.9%

(z0)7 81.1% 95.3% 97.7% 80.7% 94.5% 98%

(z0)8 81% 94.5% 96.6% 80.4% 95.5% 97.4%

(z0)9 87.8% 97.3% 98.5% 82.6% 95.9% 98%

(z0)10 79.7% 94.5% 97.8% 80.4% 93.7% 96.9%

(z0)11 81.1% 94.2% 97% 82.2% 95.9% 98.5%

(z0)12 80.8% 95.5% 97.7% 79.5% 94.5% 96%

(z0)13 79.8% 93.8% 96.9% 80.5% 93.2% 97.6%

(z0)14 82.1% 95.6% 98.1% 80.2% 95% 97.2%

(z0)15 80.8% 95.5% 97.4% 81.3% 95.3% 97.2%

(z0)16 82.1% 94.9% 97% 80.6% 94.7% 97.5%

(z0)17 79.3% 93.5% 96.8% 80.1% 95.4% 97.7%

(z0)18 79.3% 94.5% 97.1% 78.9% 94.7% 97.4%

(z0)19 82.6% 96.2% 97.9% 81.6% 94.6% 97.2%

(z0)20 81.6% 95.3% 97.4% 79.9% 95.4% 98%

the piecewise structure of dfnor
0,S (z0). At the sample size N = 2, 000, this approach does

not cover any component of (z0)i at a rate exceeding 83%. In this example we also see the

potentially conservative performance of the intervals with width η̃α2 . The potential error in

estimating the cone Ki(zN ) is conservatively accounted for by setting α1 = α2 = 0.025, but

for this example the error in estimating Ki(zN ) does not have a large impact on the intervals’

performance. As a result, the intervals perform largely in line with a (1− α2) ∗ 100% level

of confidence.

When computing confidence intervals for (x0)j we use the robust approach that does not

return a point estimate when (z0)j < 0. This approach is once again seen to be beneficial,

since at the sample size of N = 100 for 214 samples, (zN )9 < 0 < (z0)9 = (x0)9, and

an incorrect point estimate would be returned if no adjustment is made. In Table 5.2 we

summarize the coverage rates of (x0)i for the intervals computed using h0.05
j , h̃0.025

j and by

projecting the intervals for (z0)j with width υ0.05
j onto S. Comparing the coverage rates

of (z0)j and (x0)j , we see an increase for the components with (z0)j = 0 for all three
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Table 5.2: Coverage rates for (x0)j , N = 100 and N = 2, 000, α1 = α2 = .025

N = 100 N = 2, 000

Component υ.05
j h.05

j h̃.025
j υ.05

j h.05
j h̃.025

j

(x0)1 100% 100% 100% 100% 100% 100%

(x0)2 100% 100% 100% 100% 100% 100%

(x0)3 82.3% 95.2% 98.1% 81.9% 96% 98.2%

(x0)4 100% 100% 100% 100% 100% 100%

(x0)5 100% 100% 100% 100% 100% 100%

(x0)6 82.8% 94.3% 97.5% 81.2% 95% 96.9%

(x0)7 81.2% 95.3% 97.7% 80.7% 94.5% 98%

(x0)8 100% 100% 100% 100% 100% 100%

(x0)9 90.1% 97.6% 98.6% 82.6% 95.9% 98%

(x0)10 79.7% 94.5% 97.8% 80.4% 93.7% 96.9%

(x0)11 91.2% 97.5% 98.9% 92.3% 98.6% 99.7%

(x0)12 93.3% 98.6% 99.5% 92% 97.6% 98.7%

(x0)13 84.8% 94.7% 97.3% 85.4% 94.5% 96.4%

(x0)14 92% 98.2% 99.2% 90.7% 98.1% 99.1%

(x0)15 91.8% 99% 99.3% 92.9% 98.4% 98.9%

(x0)16 89.1% 96.4% 97.8% 87.8% 96.3% 98.2%

(x0)17 92% 97.8% 99.1% 93% 98.6% 99.5%

(x0)18 90.6% 97.5% 98.5% 90.2% 97.5% 98.9%

(x0)19 92.6% 98.2% 99.1% 91.8% 97.7% 98.8%

(x0)20 89.9% 97.3% 98.4% 89.8% 98.4% 99.1%

methods, and 100% coverage of (x0)j for those components with (z0)j < 0. At the sample

size of N = 100 we also observe an increase in the coverage of (x0)9 due to the samples

for which (zN )9 < 0 < (z0)9 = (x0)9. Comparing the three methods for the components

with (x0)j > 0, we see similar performance as in the case of the normal map solutions. In

particular, the intervals with width υαj are not close to the desired level of confidence for

such components, while the intervals with width hαj and h̃α2
j perform largely in line with

the values of α = 0.05 and α2 = 0.025 respectively.
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