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Abstract

SE HEE KIM: Semiparametric Models for Joint Analysis of Longitudinal
Data and Counting Processes.

(Under the direction of Dr. Donglin Zeng.)

In this dissertation, we study statistical methodology for joint modeling that cor-

rectly controls for the interplay among longitudinal and counting processes and makes

the most efficient use of data. Three types of joint modeling approaches are proposed

based on three different purposes of studies.

In the first topic, we develop a method for joint modeling of longitudinal data

and recurrent events in the presence of an informative terminal event. We focus on

data from patients who experience the same type of event at multiple times, such

as multiple infection episodes or recurrent strokes, have longitudinal biomarkers, and

may be subject to an event, for example death, that makes further observations

impossible. To analyze such complicated data, we propose joint models based on a

likelihood approach. A broad class of transformation models for the cumulative inten-

sity of recurrent events and the cumulative hazard of the terminal event is considered.

We propose to estimate all the parameters using nonparametric maximum likelihood

estimators (NPMLE), and we provide computationally efficient EM algorithms to im-

plement the proposed inference procedure. Asymptotic properties of the estimators

are shown to be asymptotically normal and semiparametrically efficient. Finally, we

evaluate the performance of the proposed method through extensive simulations and

application to real data.

In the second topic, we develop a method for joint modeling of longitudinal and
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cure-survival data. By cure-survival data, we mean time-to-event data in which a

certain proportion of patients never have any event during a sufficiently long follow-up

period. These patients are believed to have been cured by treatment, such as radiation

therapy or an initial surgery, and are often the source of heavy tail probabilities in

survival curves. To take into account the possibility of patients being cured, we

propose to model time-to-event through a transformed promotion time cure model,

jointly with a linear mixed effects model for longitudinal data. Due to transformations

applied to the promotion time cure model, the proposed method is able to be used

in cases where the proportionality assumption does not hold. All the parameters are

estimated using NPMLEs, and inference procedures are implemented via a simple

EM algorithm. Asymptotic properties of the proposed NPMLEs are derived based

on empirical process theory. Simulation studies are conducted and the method is

applied to the ARIC data in order to demonstrate the small-sample performance of

the proposed method.

In the third topic, we develop a partially linear model for longitudinal data with

informative censoring, where the main interest is in making inferences about the in-

dividual’s trajectory of longitudinal responses, which may be informatively censored.

Since a fully parameterized mean structure may be insufficient to capture the un-

derlying patterns of longitudinal and event processes, we propose to use a partially

linear model for longitudinal responses, where an unspecified underlying function is

formulated along with linear covariate effects, and a transformation model is used

for informative censoring times. We employ a sieve estimation for the nonparametric

trajectory of longitudinal responses, where the unknown trajectory is approximated

by cubic B-spline basis functions. All parameters are estimated based on a likelihood

approach, and inference procedures are implemented via the EM algorithm. We also

investigate a reliable way to select the number of knots and the best transformation.
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Through empirical process theory, asymptotic properties of the proposed estimators

are shown to provide desirable properties. The validity of the proposed method is

confirmed by simulated and real data examples.
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Chapter 1

Introduction

Joint modeling of longitudinal data and counting processes becomes increasingly pop-

ular in a wide range of applications. In these applications, the longitudinal data serve

as an outcome variable or a covariate with measurement errors, which are observed

at a series of times, while the counting process often represents time to single- or

multiple-endpoints, informative observation process, or informative censoring. Joint

modeling starts from separate model building for each process and links the models

together via correlated or common latent random effects in a variety of ways. Using

the joint modeling approach, we can build a model to assess the effect of covariates on

both longitudinal measures and time to events, can optimize the use of data through

the information shared between the processes, and can correct the biases due to the

dependence between the processes. In this dissertation, we focus on simultaneous

inferences for both longitudinal measures and time to single or multiple events, while

accounting for the dependence between them.



1.1 Joint Models of Longitudinal Data and Recur-

rent Events with Informative Terminal Event

We first consider joint modeling of longitudinal data and recurrent events along with

another event that discontinues further observations, such as death. We refer to

the latter event as a terminal event. Examples of recurrent events include multiple

strokes, the number of bladder tumors, or informative measurement times such as

emergency hospital visiting times. To model such a complicated system, we propose

joint models; a linear mixed effects model is used to model longitudinal data, and a

broad class of transformation models is used for the cumulative intensity and hazard

functions of recurrent and terminal events, respectively. Through transformations,

the proposed method is applicable more generally without the proportional hazards

or odds assumption. Random effects in the longitudinal model and other dependent

random effects in the recurrent event model are shared in the terminal event model,

and hence they account for their respective dependencies with the terminal event.

1.2 Joint Modeling of Longitudinal Data and Cure-

Survival Data

We next focus on the joint analysis of longitudinal and cure-survival data. By cure-

survival data, we mean time-to-event data in which a certain proportion of patients

never have any event during a sufficiently long follow-up period. These patients are

believed to being cured by treatment, such as radiation therapy or an initial surgery.

The potential of being cured can produce a heavy tail probability in the survival

curve, and ignoring the true cure proportion may be a source of bias in the estimates

of model parameters.
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To take into account the possibility of patients being cured in survival data, we

model time to event through the promotion time cure model, jointly with a linear

mixed effects model for longitudinal data. The promotion time cure model does not

separate the population into cured or uncured subpopulations intentionally, unlike

other commonly used mixture cure rate models, and hence it does not involve identi-

fiability issues. Conditional on covariates and the shared random effects between the

two models, we assume longitudinal data are independent of cure-survival data. The

proposed method is flexible in terms of the fact that the proportionality assumption

does not need to be true for the survival event.

1.3 Partially Linear Model for Longitudinal Data

with Informative Censoring

Longitudinal data analysis has been challenged by informative censoring where the

censorship can provoke biases in estimating model parameters. Most existing methods

for jointly modeling longitudinal data and censored event assume the full paramet-

ric specification for the mean structure of longitudinal responses. While parametric

approaches are useful, questions always arise about the adequacy of the model as-

sumptions. Apparently, many longitudinal studies, for example HIV/AIDS clinical

trials, show that the parametric models are not sufficient to reveal the complicated

patterns of responses with covariates in practice. This motivates us to consider a par-

tially linear model that combines the unspecified underlying trajectory of longitudinal

responses with linear covariate effects.

Specifically, we propose a partially linear model for longitudinal responses and a

transformed survival model for informative censoring. This semiparametric modeling

approach allows sufficient flexibility to disclose complex patterns of longitudinal re-

3



sponses. In the proposed method, the dependence of longitudinal data on informative

censorship is modeled by shared latent effects.
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Chapter 2

Literature Review

In this chapter, we review literature on statistical methods for longitudinal and

survival data in Section 2.1, for longitudinal and cure-survival data in Section 2.2, for

longitudinal data and recurrent events in Section 2.3, and for recurrent and terminal

events in Section 2.4.

2.1 Models for Longitudinal and Survival Data

In survival analysis, the most attractive models are the Cox proportional hazards

model (Cox, 1972) and the proportional odds model (Bennett, 1983), which have

been fully explored in theory and extensively used in practice. For two sets of co-

variate values, the proportional hazards models assume that the associated ratio of

the hazards to be constant over time, while the proportional odds models assume the

associated odds ratio of survival to be constant over time. The two models are spe-

cial cases of linear transformation models, which provide many useful alternatives. In

Section 2.1.1, we review the transformation models for survival analysis. These trans-

formation models will be one of the important features of the three topics proposed in

this dissertation. In longitudinal data analysis, the main interest lies in the pattern

or mean changes of responses measured at a series of observation times. To identify



the complicated trajectory of repeated measures, there has been increasing interest

and activity in the general area of partially linear regression models. In Section 2.1.2,

we review the methods and techniques developed for the partially linear models. The

acquired knowledge and skills for the partially linear regression models will be an

essential part for accomplishing the proposed work in Chapter 5. In longitudinal and

survival data analysis, joint modeling approaches are one of the most popular ways

to describe or control the dependence between longitudinal data and a time-to-event

from the same subject. Depending on the purpose of study, various joint modeling

approaches have been useful in different applications. In Section 2.1.3, we review the

various joint modeling approaches for longitudinal and survival data.

2.1.1 Transformation Models for Survival Data

A class of transformation models for survival functions was proposed by Cheng et al.

(1995), in which an unknown transformation of the survival time is linearly related

to the covariates with completely specified error distributions. Specifically, let T be

the failure time and let Z be a vector of covariates. We denote the survival function

of T given Z by SZ(t). Then, the Cox proportional hazards model can be written

as log(− log(SZ(t))) = H(t) +βTZ, and the proportional odds model can be written

as −logit(SZ(t)) = H(t) + βTZ, where H(t) is a completely unspecified strictly

increasing function, and β is a vector of unknown regression coefficients. A natural

generalization of these models is

g(SZ(t)) = H(t) + βTZ,

6



where g is a known continuous and decreasing function. It is easy to see that the above

equation is equivalent to the linear transformation model by Cheng et al. (1995),

H(t) = −βTZ + ε, (2.1)

where ε is a random error with a known distribution function F , where F = 1−g−1. If

F is the extreme value distribution F (s) = 1−exp{− exp(s)}, (2.1) is the proportional

hazards model, while if F is the standard logistic distribution, that is P [ε > s] =

exp(s)/{1 + exp(s)}, (2.1) is the proportional odds model. We note that model (2.1)

is appealing in that it is a familiar linear model and includes the proportional hazards

and the proportional odds models as special cases. However, model (2.1) cannot

handle time-dependent covariates or cannot be generalized to counting processes such

as recurrent events.

Zeng and Lin (2006) proposed a class of semiparametric transformation models for

general counting processes to accommodate time-varying covariates on the intensity

functions of recurrent events. In particular, let N∗(t) be the number of events that

occurred by time t, and let Z(·) be a vector of time-varying covariates. Then, the

cumulative intensity function for N∗(t) conditional on {Z(s); s 6 t}, denoted by

ΛZ(t), takes the form

ΛZ(t) = G

(∫ t

0

R∗(s) eβ
TZ(s) dΛ(s)

)
, (2.2)

where R∗(·) is the indicator process for the risk set, Λ(·) is an arbitrary increasing

function, and G is a continuously differentiable and strictly increasing function with

G(0) = 0, G(∞) = ∞ and G′(0) > 0. As examples of the transformation function

7



G(·), the class of Box-Cox transformations,

G(x) =
(1 + x)ρ − 1

ρ
, ρ > 0

with ρ = 0 corresponding to G(x) = log(1 + x) and the class of logarithmic transfor-

mations

G(x) =
log(1 + γx)

γ
, γ > 0

with γ = 0 corresponding to G(x) = x can be considered. In both cases, the choice of

G(x) = x yields the proportional intensity or hazards models, while G(x) = log(1+x)

leads to the proportional odds models. We note that when N∗(t) has a single jump at

the survival time T and Z is time-invariant, (2.2) reduces to the linear transformation

model (2.1) in that

log Λ(T ) = −βTZ + logG−1(− log(ε∗)),

where ε∗ has a uniform distribution.

Zeng and Lin (2007a) further extended the class of semiparametric transforma-

tion models for the intensity function of counting process with random effects, which

allows non-proportional intensity and various frailty distributions. By introducing

the random effects, the proposed models account for the dependence of the recur-

rent event times within the same subject. Let X(·) and Z(·) be vectors of possibly

time-dependent covariates associated with the fixed and random effects, respectively.

Conditional on {Z(s),X(s), b ; s 6 t}, the cumulative intensity function for N∗(t)

has the form of

Λ(t|X,Z; b) = G

(∫ t

0

R∗(s) eβ
TX(s)+bTZ(s) dΛ(s)

)
, (2.3)

8



where b is a set of random effects with a parametric density function. These models

are substantially flexible in the sense that one can have a wide variety of options for

the transformation G as well as the distribution of the random effects.

2.1.2 Partially Linear Models for Longitudinal Data

Parametric regression models for longitudinal data have received tremendous atten-

tion, and the related methods have been well developed. However, a major limitation

of these methods is that the fully parameterized mean structure may be insufficient in

modeling the complicated relationship between the responses and covariates in various

longitudinal studies. Examples include trajectories of CD4 cell counts in HIV/AIDS

research (Zeger and Diggle, 1994; Lin and Ying, 2001; Huang et al., 2002; Brown

et al., 2005); time-varying effects of gender and HIV status on the growth of infants

born from HIV infected mothers (Hoover et al., 1998); age effects on childhood respi-

ratory disease (Diggle et al., 2002); and treatment effects on the longitudinal number

of bladder tumors (Sun et al., 2005; Liang et al., 2009). These practical applica-

tions encouraged significant developments of nonparametric regression methods for

longitudinal data, in which unspecified functions of time or covariates provide enough

flexibility to reflect the complicated relationship between longitudinal outcomes and

covariates. Despite the fact that, a semiparametric partially linear regression model is

more desirable than modeling every covariate effect nonparametrically in many cases,

only limited work has been done on semiparametric regression for correlated data. We

review three ways of estimating parameters in the semiparametric regression models

using kernal smoothing, smoothing splines, and regression splines.

Kernal smoothing was considered by Zeger and Diggle (1994) and Lin and Carroll

(2001) for models with linear covariate effects and a nonparametric function of time

with correlated observations, among others. Let Yij = Yi(tij) (i = 1, . . . , n; j =

9



1, . . . ,mi) be the jth outcome of the ith subject at time tij. Zeger and Diggle (1994)

and Moyeed and Diggle (1994) proposed a semiparametric mixed effects model for

longitudinal data

Yij = µ(tij) +XT
ijβ +Wi(tij) + εij, (2.4)

where µ(t) is a twice-differentiable smooth function of time t, β is a vector of regres-

sion coefficients associated with covariates X ij, Wi(t) is a subject-specific stationary

Gaussian process with mean zero, and εij is a white measurement noise with constant

variance σ2. They suggested a backfitting procedure which initially estimates µ(t)

by a kernel smoother with the bandwidth parameter chosen via cross-validation, and

then iteratively estimates µ(t) and β using generalized least squares. For clustered

data, Lin and Carroll (2001) considered a marginal partially generalized linear model

and the profile-kernel method where the nonparametric function is estimated using

the local linear kernel regression and the regression coefficients are estimated using

the profile estimating equations. Surprisingly, the resulting regression parameter es-

timators by the conventional profile-kernel method failed to achieve semiparametric

efficiency.

A smoothing spline can be an alternative choice of the nonparametric estimation

of µ(t), which uses a piecewise polynomial function with all the observation times used

as knots and smoothness constraints imposed at the knots. The most commonly used

smoothing spline is the natural cubic smoothing spline, which approximates µ(t) by

a piecewise cubic function with boundary constraints. The natural cubic smoothing

spline was studied by Zhang et al. (1998) to estimate the nonparametric function of

time in the partially linear model which was expanded from (2.4) with the addition of

subject-specific random effect terms. They estimated β and µ(t) as a natural cubic
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spline by maximizing the penalized likelihood function with the penalty term

λ

2

∫ T2

T1

[µ′′(t)]2 dt =
λ

2
µTKµ,

where λ > 0 is a smoothing parameter controlling the balance between the goodness

of fit and the roughness of the estimated µ(t), T1 and T2 specify the range of t,

µ = (µ(t11), . . . , µ(tn,mn))T , and K is the nonnegative definite smoothing matrix

defined in the equation (2.3) of Green and Silverman (1994). A key feature of this

approach is that the proposed semiparametric model can be represented as a modified

parametric linear mixed model. Therefore, the smoothing parameter and variance

components can be estimated simultaneously using the restricted maximum likelihood

estimator.

Another attractive method to estimate the nonparametric function is regression

splines. The smoothing spline has the merit of not involving the knot selection issue

since it uses all the observation points as knots. However, when the sample size

is large, computational demands substantially grow and make it difficult to work

properly. In contrast, a key advantage of regression splines is its computational

simplicity. The regression splines is a basis function-based nonparametric regression

method, which uses a small number of knots and implements a parametric regression

using the bases. The most commonly used basis function for regression splines is

the B-spline basis. Rice and Wu (2001) adopted the B-spline basis with equally

spaced knots in estimating µ(t) and a smooth random function Wi(t) in (2.4). The

approximated mean function is,

µ(t) =

p∑
k=1

ξkBk(t),

where {Bk(·)} is a basis for spline function on the time range with a fixed knot
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sequence. Similarly, the random function for the ith subject can be approximated

with splines

Wi(t) =

q∑
k=1

νikB̃k(t),

where {B̃k(·)} is a basis for random spline function, which may be a different basis

than {Bk(·)}, and νik are random coefficients with mean zero and covariance matrix

V. Then, conditional on p and q, the approximated model is a classical linear mixed

effects model. Estimation of the parameters β, ξ, σ2, and the covariance matrix V can

be accomplished by the EM algorithm. In terms of regression splines method, choices

of the number and location of the knots for the splines are critical since estimation of

µ(t) and Wi(t) could be very sensitive to these choices. Rice and Wu (2001) suggested

using model selection techniques such as Akaike information criterion (AIC) and

Bayesian information criterion (BIC), and leave-one-subject-out cross-validation.

2.1.3 Joint Models for Longitudinal Data and Survival Event

Analysis of longitudinal and survival data can be classified into three categories,

depending on how one factors the joint distribution of repeated measurements and

an event time to meet the study objective. A joint model of the vector of repeated

measurement Y and the event time T corresponds to the factorization

f(Y, T ) = f(Y |T )f(T ) = f(T |Y )f(Y ),

where f(.) denotes a density function. The three categories are referred to as a selec-

tion model, a pattern-mixture model, and a simultaneous model. First, in selection

models, time-to-event is the endpoint of interest, and the common primary objective

of the study is to assess the relationship between the event time and longitudinal

covariate process with measurement error. One example is modeling the probability
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of death given trajectory of CD4 cell counts, that is f(T |Y ). Second, in pattern-

mixture models, the repeated measures are the primary endpoint, and investigators

are focusing on modeling f(Y |T ) and mainly interested in the effect of covariates on

the longitudinal outcomes, while accounting for possible correlation with an event

such as non-ignorable dropout or death. In these cases, the longitudinal process is

subject to right-censoring because it is unobservable after the censoring time. Third,

in simultaneous models, repeated measures and survival time are both important

outcomes, namely f(Y, T ) are focused. The primary goal of the joint analysis is to

evaluate simultaneously the effect of covariates on the two types of outcomes, while

accounting for the relationship between longitudinal and event time data. In all three

types of joint models, it is commonly assumed that observation times of the longitu-

dinal outcomes are usually not informative because they are measured at scheduled

follow-up visits. Recent literature is briefly reviewed in the subsequent paragraphs.

Selection models The association of longitudinal covariates with a failure time as

the primary endpoint can be assessed through joint modeling of the Cox proportional

hazards model of the failure time and a random process model of the longitudinal

covariates when the longitudinal covariates are intermittently measured with errors.

In this situation, the longitudinal covariates may not be observed at the failure times.

The presence of random error in a measured covariate causes the parameter estimators

to be biased toward the null (Prentice, 1982). A naive approach is to substitute the

closest observed covariate value prior to the failure time, often termed ‘last value

carried forward’, in the Cox partial likelihood for each subject at each failure time.

However, it is well known that substituting mismeasured values for true covariates in

the Cox model leads to biased estimation (Prentice, 1982). Various approaches have

been proposed to deal with measurement error.
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Tsiatis et al. (1995) proposed use of a two-stage method where, in the first stage,

empirical Bayes estimates of the random covariates are computed, and in the second

stage, they are imputed into the partial likelihood of the Cox model as true values of

time-dependent covariates at each event time point. However, the two-stage model

did not use any survival information in modeling the covariate process, and hence

information is not utilized as efficiently as it could be. In addition, the estimated

covariate values from stage one are regarded as fixed in stage two, thus the approach

does not convey uncertainty from stage one to stage two. Instead of simply utilizing

the predicted covariate values to find the parameters in the Cox model, Wulfsohn

and Tsiatis (1997) studied the two-stage method in a different way to maximize the

joint likelihood of the covariate process and survival data. The joint maximization

makes more efficient use of the data by utilizing information from both the longitu-

dinal covariates and survival simultaneously. Wulfsohn and Tsiatis (1997) used the

EM algorithm to estimate all the parameters in covariate and survival processes to-

gether, assuming random effects that characterize the longitudinal covariate process

are normally distributed. An attractive feature of this likelihood-based approach is

its robustness against departure from the normal random effects assumption. Hsieh

et al. (2006) confirmed that the likelihood-based procedure with normal random ef-

fects can be very efficient and robust as long as the longitudinal data are not too

sparse or do not carry too large measurement errors.

In contrast, considering other situations where the normality assumption on ran-

dom effects is violated or regarded as being too strict, Tsiatis and Davidian (2001)

proposed conditional score estimators. The underlying idea of the conditional score

approach was to treat the random effects as nuisance parameters for which a sufficient

statistic may be derived and construct a set of estimating equations conditioning on

the sufficient statistic. Then, the resulting estimating equations can be free of the
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random effects. The proposed model is semiparametric in the sense that it does

not require any distributional assumption on the random effects. Song et al. (2002)

also proposed another semiparametric model in which parametric assumptions on the

distribution of random effects may be relaxed to those following a smooth density.

They took a likelihood-based approach with the EM algorithm for the estimation

procedure. An important feature of this procedure, in contrast to the conditional

score approach, is that the investigation of robustness to parametric assumptions on

the random effects is possible. Song and Wang (2008) proposed an even more flex-

ible semiparametric model by adapting time-varying coefficients to the proportional

hazards model of the failure time, which allows the effect of coefficients to vary over

time, in addition to no distributional assumptions on the underlying longitudinal co-

variate process. An estimation procedure was constructed based on the conditional

score estimators, and asymptotic properties of the estimators were derived based on

martingale and empirical process theories.

Pattern-mixture models Vonesh et al. (2006) presented a joint model of longi-

tudinal and survival data, focusing on the estimation and comparison of serial trends

over time while adjusting for possible informative censoring due to patient dropout.

They strongly addressed the need for accounting for non-ignorable dropout/death

through extensive simulation studies. They used the generalized linear mixed effects

model for repeated measurements and a family of accelerated failure time (AFT)

models for conditioning the event time. The presented joint model was relatively

flexible in that the family of AFT models includes various proportional hazards mod-

els (e.g. Weibull, extreme value, piecewise exponential) and non-proportional hazards

models (e.g. log-normal). An alternative joint model was introduced by Liu et al.

(2007) for medical cost repeatedly recorded at fixed time intervals in the presence of

a terminating event, such as death. Both Vonesh et al. (2006) and Liu et al. (2007)
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modeled the terminal event as a function of covariates and linked the terminal event

to the pattern of repeated measures through shared random effects by the longitu-

dinal and survival components. Taking the likelihood-based approach, Vonesh et al.

(2006) used maximum likelihood (ML) estimation with the approximated observed

log-likelihood through the second-order Laplace’s method, while Liu et al. (2007) used

the ML estimation through the EM algorithm.

Simultaneous models Henderson et al. (2000) considered both longitudinal data

and recurrent or single event time to be equally important endpoints and jointly for-

mulated them via correlated latent Gaussian processes. For clustered data, Ratcliffe

et al. (2004) proposed a joint model for longitudinal and survival outcomes of interest,

which linked the two outcomes at the cluster-level random effects. In their method,

repeated measures were modeled using a mixed effects model that incorporates both

subject-level and cluster-level random effects, and survival data were modeled using

a Cox model with the cluster-level random effects to allow for between-cluster hetero-

geneity. While most of the joint models associated repeated measures with survival

data via common random effects or latent processes, Zeng and Cai (2005a) allowed

every unobserved random factor to differently affect the longitudinal measure and

survival time. Commonly, ML estimation was used with EM algorithm in Henderson

et al. (2000), Ratcliffe et al. (2004), and Zeng and Cai (2005a). However, the asymp-

totic properties of the proposed ML estimators were established for the first time by

Zeng and Cai (2005a).

2.2 Models for Cure-Survival Data

A cure model is applicable when there exist ‘immunes’ or ‘long-term survivors’ in

survival data. As a result of cure, cured subjects never experience an event endpoint
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but are censored because cure can never be observed. On the other hand, susceptible

subjects would eventually develop the endpoint if followed for long enough. The

primary interest in such studies can be on the effect of covariates on the cure rate as

well as on the time-to-event. In this section, we review the approaches of modeling

cure in survival analysis, which do not involve any longitudinal data, in Sections 2.2.1

- 2.2.3.

2.2.1 Mixture Cure Models

One of the commonly used cure models is the so-called ‘mixture model’, named after

the basic concept that the underlying population consists of two subpopulations of the

cured and non-cured. The mixture cure model is the mixture of a certain proportion

π(Zi) belonging to the cured subpopulation and the remaining fraction 1 − π(Zi)

being not cured, such that

Spop(t |Zi) = π(Zi) + {1− π(Zi)}Suc(t),

where Zi is the vector of covariates, and Suc(t) is the conditional survival function for

the uncured population. It is assumed that all patients in the non-cured subpopula-

tion will eventually experience the event while those in the cured subpopulation will

never. Early work on such models was done by Berkson and Gage (1952), Farewell

(1982, 1986), and Yamaguchi (1992) under completely specified parametric models.

Berkson and Gage (1952) used a mixture of exponential distributions with a constant

cure fraction π(Zi) = π. Farewell (1982) adopted the Weibull regression for survival

and the logistic regression for the cure fraction give by

π(Zi) = exp(βTZi)/(1 + exp((βTZi)). (2.5)
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Yamaguchi (1992) applied a cure model with a logistic mixture probability model

(2.5) and an accelerated failure time model with generalized gamma distribution.

Laska and Meisner (1992) extensively studied the cure model, specifically non-

parametric failure time models, adapting Kaplan and Meier (1958) estimation. More

recent work has focused on semiparametric approaches, mixtures of the cure fraction

modeled through a logistic link (2.5) and the survival distribution with a complete or

partial nonparametric component. Taylor (1995) introduced a more flexible mixture

cure model, an extension of Farewell (1982), by retaining the conditional survival dis-

tribution for uncured individuals as a completely unspecified function. To investigate

the effects of covariates on the time to event, other semiparametric mixture models

have been proposed (Kuk and Chen, 1992; Sy and Taylor, 2000; Peng and Dear, 2000;

Lu and Ying, 2004). Kuk and Chen (1992) estimated the regression parameters first

by eliminating the baseline survival function via a Monte Carlo approximation of a

marginal likelihood, and then estimated the baseline survival function using an EM

algorithm, given the regression parameter estimates. However, Sy and Taylor (2000)

and Peng and Dear (2000) studied alternative estimation techniques using the clas-

sic EM algorithm, to compute estimates for both the parametric and nonparametric

components. The theoretical properties of the resulting estimators for the propor-

tional hazards cure model remain to be established. Lu and Ying (2004) considered

a class of transformation models for the event time. They proposed to use general-

ized estimating equations for parameter estimation, and the asymptotic properties

were established by the usual counting process and its associated martingale theory.

However, their approach was limited to only time-independent covariates due to the

form of transformations. Although the mixture cure model is intuitively appealing,

it involves several unresolved issues discussed by Farewell (1986), Laska and Meisner

(1992), Taylor (1995), Chen et al. (1999) and Ibrahim et al. (2001). One problem
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associated with the mixture model is identifiability. This arises due to the lack of

information at the end of the follow-up period, caused by a significant proportion of

censored subjects before the end of study. As a result, we can have difficulties in

distinguishing whether the information from the censored subjects should be a part

of cured group or susceptible group.

2.2.2 Promotion Time Cure Models

An alternative way to incorporate the cure fraction in survival analysis is the pro-

motion time cure model, or referred to as the bounded cumulative hazard model

(Yakovlev et al., 1996). The literature existing on the promotion time cure models

is mainly the Bayesian context since the population survival function is improper.

These models have been proposed and studied by Yakovlev et al. (1996), Tsodikov

(1998), and Chen et al. (1999), among others. The promotion time cure model was

motivated by cancer clinical trials under the biological assumption that a patient

has N metastatic tumor cells remaining after treatment. Let Ni be the number of

metastatic cancerous cells of the ith patient, which is an unobservable latent variable.

The Ni’s are assumed to have a Poisson distribution with mean π(Zi). We denote

the time for the kth metastatic cancer cell to produce a detectable tumor (promotion

time) by T̃k (k = 1, . . . , Ni) and assume that, conditional on Ni, T̃k’s are identically

independently distributed with the cumulative distribution function F (t). If we un-

derstand F (t) = 1−Suc(t), it can be interpreted similarly to the distribution function

for the uncured patients in the mixture model. Then, the time to relapse of cancer

for the ith patient, defined by Ti = min{T̃1, . . . , T̃Ni}, has a form of the population
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survival function

Spop(t|Zi) = P [Ni = 0] +
∑
k>1

P
[
T̃1 > t, . . . , T̃Ni > t |Ni = k

]
P [Ni = k]

= exp{−π(Zi)}+
∑
k>1

{1− F (t)}k π(Zi)
k exp{−π(Zi)}

k!

= exp{−π(Zi)F (t)}. (2.6)

In the promotion time cure model (2.6), the survival function is integrated into one

formulation regardless of cured or uncured. The hazard function is given by π(Zi)f(t),

where f(t) = dF (t)/dt. Thus, we can see that the model (2.6) retains the proportional

hazards structure when the covariates Zi are formulated through π(Zi) = exp(βTZi).

Moreover, if the regression coefficients β include an intercept term, say β0, the baseline

cumulative hazard function is equal to exp(β0)F (t), which implies that the model (2.6)

becomes the Cox’s proportional hazards model with a bounded baseline cumulative

hazard. For the cured patients, the survival rate at t =∞ can be interpreted as the

cure rate, i.e., the cure rate is Spop(∞) = exp{−π(Zi)} 6= 0, leading to an improper

survival function.

2.2.3 Transformation of Promotion Time Cure Models

In model (2.6), the independent assumption on {T̃k |Ni; k = 1, . . . , Ni} may not be

realistic in practice since they have common features shared by the same patient, such

as the patient’s underlying health condition or dietary habits. As a solution to adjust

the correlated cancer progression times, Zeng et al. (2006) have introduced a subject-

specific frailty ζi and assumed that, given (Ni, ζi), T̃k’s are mutually independent

with the distribution function F (t). Moreover, ζi makes the most of an opportunity

to reflect the underlying heterogeneity for the rate of metastatic cancer cells by the
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assumption that Ni follows the Poisson distribution with mean ζiπ(Zi), conditional

on (Zi, ζi). Following the similar derivation to (2.6), the resulting survival function

for the time to relapse T takes a form

S(t|Zi) = Eζi [exp{−π(Zi)F (t)ζi}] , (2.7)

where Eζi denotes the expectation with respect to ζi. Explicitly specifying the distri-

bution for ζi as a gamma distribution with unit mean and variance η, we can express

(2.7) as

S(t|Zi) = [1 + ηπ(Zi)F (t)]−1/η

= Gη (π(Zi)F (t)) , (2.8)

where Gη(.) has a form of transformations with a parameter η such that

Gη(x) =

 (1 + ηx)−1/η, η > 0

exp(−x), η = 0.

This class of transformations includes the proportional hazards model (when η = 0)

and the proportional odds model (when η = 1) as special cases.

2.3 Models for Longitudinal Data and Recurrent

Events

For the analysis of longitudinal data with informative observation times, a variety of

joint models have been developed. Instead of considering a common set of observa-

tion times across all subjects, Lin and Ying (2001), Lin et al. (2004), and Sun et al.
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(2005), among others, proposed to use counting processes to describe arbitrary ob-

servation times. The counting process approach allowed subject-specific observation

times through directly adjusted covariate effects, thereby providing a flexible tool for

modeling the observation process. For the longitudinal component, Lin and Ying

(2001) and Sun et al. (2005) modeled the pattern of longitudinal outcomes using a

partially linear model, whereas Lin et al. (2004) modeled that using a nonparametric

function of linear coviariate effects.

In these models, different assumptions have been made for the longitudinal out-

come and observation processes. In Lin and Ying (2001), the observation process is

assumed to be independent of the longitudinal outcome process after adjusting for

some external covariates. In Lin et al. (2004), the intensity of the observation at

time t is assumed to be independent of the longitudinal outcomes at that time point

given the past observed data; whereas in Sun et al. (2005), the longitudinal outcome

at time t is assumed to be dependent only on some external covariates and the past

observation history such as the total and recent numbers of observations. Among

them, the commonly used approaches were the marginal models based on estimating

equations for both longitudinal data and time processes. Under these marginal ap-

proaches, it is challenging to obtain efficient estimators and also impossible to predict

future outcomes of an individual given the past information.

An alternative approach was suggested by Liang et al. (2009). Based on the

idea that the observation process may be correlated with the longitudinal outcomes

through some unmeasured confounders even after conditioning on external covariates

in practice, they studied the joint modeling approach using random effects. The lon-

gitudinal outcomes with irregular observation times were modeled through a partially

linear mixed model and the informative observation process was modeled by adopt-

ing a frailty nonhomogeneous Poisson process structure. However, their method is
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limited to the case where both the distribution of frailty and the conditional linear

mean structure between the random effects in longitudinal and observation processes

can be specified.

2.4 Models for Recurrent and Terminal Events

In this section, we review previous research on joint modeling of recurrent and termi-

nal events. Statistical methodology and theory for analyzing recurrent event data are

typically developed based on non-informative censoring times. In many applications,

however, when a failure event serves as a part of the censoring mechanism, mean-

ing that the failure event terminates observing further recurrent events (so-called

informative censoring), the independent censoring assumption can be violated. For

example, if the rate of recurrent tumors is high in a patient, this patient is also sub-

ject to increased risk of death. The most popular solution to model or control the

dependence of recurrent events with a terminal event or informative censoring is a

joint modeling approach.

Joint (or shared) frailty (or random effects) models have been studied by several

authors. In these models, the dependence between recurrent and terminal events were

specified via a common frailty variable allowed to have a multiplicative effect on their

respective rates. The most popular distributional assumption on the frailty was a

gamma distribution with unit mean to avoid the non-identifiability issue (Lancaster

and Intrator, 1998; Liu et al., 2004; Ye et al., 2007; Huang and Liu, 2007). Lancaster

and Intrator (1998) considered joint parametric modeling of recurrent event and sur-

vival data, using Poisson processes for the rate functions of the recurrent and terminal

events. Liu et al. (2004) considered proportional hazards frailty models where the re-

current and terminal event processes were jointly modeled by a shared gamma frailty.
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The frailty effect was allowed to be different for the two processes and time-dependent

covariates could be incorporated separately in both processes. A Monte Carlo EM

algorithm with a Metropolis-Hastings sampler in the E-step was adapted to obtain

the maximum likelihood estimators. However, the Monte Carlo EM algorithm is of-

ten computationally inefficient and less accurate than the standard EM algorithm.

Instead, Rondeau et al. (2007) studied a penalized likelihood approach, to estimate

parameters in the model proposed by Liu et al. (2004), adopting the sum of squared

norms of the second derivatives of the intensity and hazard functions as the roughness

penalty.

Without distributional assumptions on the latent variables and censoring time,

Wang et al. (2001) modeled the occurrence rate function for recurrent events with

informative censoring in semiparametric and nonparametric ways. They assumed

a subject-specific nonstationary Poisson process via a latent variable. However, the

proposed model is not applicable to situations where inferences for both the recurrent

and terminal events are of interest. To overcome this limitation, Huang and Wang

(2004) presented a joint model for recurrent event process and a failure time, while

informative censoring is allowed for observing both the recurrent events and failure

times. They assumed that the recurrent, failure, and censoring events are mutually

independent conditioning on the covariates and latent variables. They proposed a

“borrow-strength estimation” procedure, in which first the value of the latent variable

was estimated from recurrent event data, then the estimated value was used in the

failure time model. Since the proposed approach did not utilize the information of

the failure times in estimating the latent effect, it might be less efficient than it

could be. The semiparametric models proposed by Wang et al. (2001) and Huang

and Wang (2004) are flexible in that no parametric assumption was imposed on the

frailty by treating as a nuisance parameter, however, these models are not applicable
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to time-dependent covariates.

Most of the existing work required the proportional intensity or hazards assump-

tion and assumed time-independent covariates. Recently, Zeng and Lin (2009) de-

veloped transformation models for the recurrent and terminal events that can deal

with non-proportional hazards as well as time-varying covariates. Their proposed

models are flexible enough as one can choose different forms of transformation for

the respective events and as the class of transformations includes a variety of models

of interest such as the proportional hazards model and the proportional odds model.

Also, there is a wide range of choices open for the distribution of the shared random

effects as long as satisfying the imposed conditions.
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Chapter 3

Joint Models of Longitudinal Data

and Recurrent Events with

Informative Terminal Event

3.1 Introduction

In many biomedical studies, data are collected from patients who experience the same

type of event multiple times, such as repeated hospital admissions or medical emer-

gency episodes, recurrent strokes, multiple infection episodes, or tumor recurrences.

At the same time, some longitudinal biomarkers are observed either at the time of

occurrence of the event or at regular clinic visits. In addition, some subjects may

experience a terminal event such as death. As longitudinal markers, recurrent events,

and death are dependent on and informative of one another, analyzing one or two

of these processes but ignoring the dependence from the other processes may lead

to bias or result in inefficient inference. Therefore, it is important to jointly model

longitudinal markers, recurrent events, and death altogether. In this way, we will be

able to make the most efficient use of all data and identify the effects of variables



after correctly controlling the interplay among these processes.

There is scant literature considering the dependence of a terminal event in mod-

eling both repeated measures and recurrent event processes. Most recently, Liu and

Huang (2009) have developed a joint model for repeatedly measured CD4 cell counts

and related opportunistic infection recurrences while associating their relationship

with the mortality of HIV patients in the CPCRA (AIDS) study. In this study, since

the CD4 cell counts were observed at scheduled visits, the observation times were

non-informative. However, when the CD4 cell counts are measured at emergency

admissions or unexpected hospitalizations, the information of the number and times

of observations is critical, and hence it should be taken into account in modeling.

By treating the hospital visits as recurrent events, Liu et al. (2008) presented a joint

model of the medical cost process for chronic heart failure patients in the presence of

informative observation times and a dependent death event. The joint modeling ap-

proaches by Liu et al. (2008) and Liu and Huang (2009) required the proportionality

assumption for both recurrent and terminal events. In cases where the proportion-

ality assumption does not hold, their joint models may yield biased estimators. In

their inference procedures, the piecewise constant functions were adopted for estimat-

ing the underlying baseline intensity and hazards functions; however, there was no

general rule for selecting the number of knots that led to the best reflection of the

underlying baseline intensity functions. Moreover, the theoretical properties of the

suggested estimators have not been established.

In this paper, we will use general transformation models for both the recurrent

events and the terminal event, while accounting for the dependence among these

two event processes and longitudinal data. Our transformation models include the

proportional hazards models and the proportional odds models as special cases. We

will propose efficient estimates and establish their asymptotic properties. The rest
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of the chapter is organized as follows. In Section 3.2, we introduce joint models for

longitudinal measurements and recurrent events in the presence of a terminal event.

In Section 3.3, we estimate all the parameters using the nonparametric maximum

likelihood estimation (NPMLE) and provide computationally simple algorithms to

implement the proposed inference procedure. The theoretical work that shows the

weak convergence and efficiency of the proposed NPMLEs is given in Section 3.4.

Section 3.5 evaluates the performance of the proposed method through extensive

simulation studies, and the application to the Atherosclerosis Risk in Communities

(ARIC) data is reported in Section 3.6. We conclude with some remarks in Section

3.7. In Section 3.8, the EM algoritm is described in more detail, and the proof of the

established asymptotic properties are provided in Section 3.9.

3.2 Joint Models

Let Y (t) denote the longitudinal outcome measured at time t, N∗(t) denote the

number of the recurrent events occurring by time t, and T be the time to the terminal

event. We introduce latent random effects to account for the association among these

processes. Particularly, let b = (bT1 , b
T
2 )T denote the subject-specific random effects

following a multivariate normal distribution with mean zeros and covariance matrix

Σb. Let Z(t) be a vector of external covariates, possibly time-varying at time t, plus

the unit component. We assume that Y (·), N∗(·), and T are independent conditional

on Z(·) and b. We then propose the following joint models:

Y (t|Z; b) = βT1 Z1(t) + bT1 Z̃1(t) + ε(t), (3.1)

ΛR(t|Z; b) = GR(

∫ t

0

exp
{
βT2 Z2(s) + bT2 Z̃2(s)

}
dΛR(s)), (3.2)

ΛT (t|Z; b) = GT (

∫ t

0

exp
{
βT3 Z3(s) + (b ◦ φ)T Z̃3(s)

}
dΛT (s)), (3.3)
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where βT = (βT1 , β
T
2 , β

T
2 ) is a vector of unknown regression parameters, ΛR(·) and

ΛT (·) are unspecified increasing functions, φT = (φT1 , φ
T
2 ) is a set of unknown con-

stants, and b ◦ φ denotes the component-wise product of b and φ. Both Zi(t) and

Z̃i(t) (i = 1, 2, 3) are some subsets of Z(t), but Z2(t) and Z3(t) do not have the unit

component. This allows that each of three outcomes (Y (·), N∗(·), T ) can depend on

different sets of predictors. Additionally, ε(t) is a white noise process with mean zero

and variance σ2
e . Both GR and GT are continuously differentiable and strictly increas-

ing transformation functions to be specified in the analysis. For example, GR(x) and

GT (x) can take a form of the logarithmic transformation,

 log(1 + γx)/γ, γ > 0

x, γ = 0,

or a form of the Box-Cox transformation,

 {(1 + x)γ − 1}/γ, γ > 0

log(1 + x), γ = 0.

According to the choice of γ in both classes of transformations, the transformation

model can be the proportional hazards model or the proportional odds model.

Note in (3.3) that the hazards of the terminal event depends on longitudinal

measures through the shared b1 and on recurrent events through the shared b2, re-

spectively. Thus, φ characterizes a degree of dependence explained by unobserved

latent factors in (3.1) and (3.2); φ = 0 implies that the dependence can be fully ex-

plained by the observed covariates. In addition, longitudinal measures are related to

recurrent events through correlations between b1 and b2.

Let C be the non-informative censoring time assumed to be independent of (Y (·),

N∗(·), T , b) given Z, and let X = min(T , C) denote the observed terminal event
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time. The observed data for the ith subject with mi repeated measurements are

{Yi(tik), Ni(t), Xi, ∆i, Z(t) ; tik 6 Xi, t 6 Xi, i = 1, . . . , n, k = 1, . . . ,mi}, where

Ni(t) = N∗i (t ∧ Xi), ∆i = I(Ti 6 Ci) with I(·) being the indicator function. Under

models (3.1)-(3.3), the log-likelihood function of the observed data from a random

sample of n subjects is given by

n∑
i=1

log

∫
b

mi∏
k=1

[
1√

2πσ2
e

exp

{
−(Yi(tik)− βT1 Z1i(tik)− bT1 Z̃1i(tik))

2

2σ2
e

}]

×
∏
t

[
λR(t) eβ

T
2 Z2i(t)+b

T
2 Z̃2i(t) G′R(

∫ t

0

eβ
T
2 Z2i(s)+b

T
2 Z̃2i(s) dΛR(s))

]Ri(t)∆N∗i (t)

× exp

{
−GR(

∫ Xi

0

eβ
T
2 Z2i(t)+b

T
2 Z̃2i(t) dΛR(t))

}
×
[
λT (Xi) e

βT3 Z3i(Xi)+(b◦φ)T Z̃3i(Xi) G′T (

∫ Xi

0

eβ
T
3 Z3i(t)+(b◦φ)T Z̃3i(t) dΛT (t))

]∆i

× exp

{
−GT (

∫ Xi

0

eβ
T
3 Z3i(t)+(b◦φ)T Z̃3i(t) dΛT (t))

}
× f(b; Σb) db,

where Ri(t) = I(Xi > t) is the indicator for the risk set, ∆N∗i (t) denotes the jump

size of the underlying recurrent event at time t, f(b; Σb) denotes the multivariate

normal density function of b with covariance matrix Σb, and λR(t) = Λ′R(t) and

λT (t) = Λ′T (t) are the derivatives of ΛR and ΛT , respectively. Note in (3.1) and (3.2)

that the obervation times of longitudinal outcomes do not need to be the same as the

recurrent event times. Instead, the longitudinal measures may be observed at some

scheduled visits or at the times when the recurrent events occur.
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3.3 Inference Procedure

3.3.1 Nonparametric Maximum Likelihood Estimation

We propose to use the nonparametric maximum likelihood estimation (NPMLE) for

estimating parameters (β, φ, σ2
e , Σb) and infinite-dimensional parameters ΛR(t) and

ΛT (t). In the log-likelihood, we assume the cumulative intensity function ΛR(t) and

the cumulative hazards function ΛT (t) to be step functions with the jumps at the

observed event times, and we replace the intensity λR(t) and the hazards λT (t) with

the jump size of ΛR and ΛT at time t, denoted by ΛR{t} and ΛT{t}, respectively.

The modified log-likelihood function is given by

ln(β, φ, σ2
e , Σb, ΛR, ΛT )

=
n∑
i=1

log

∫
b

mi∏
k=1

[
1√

2πσ2
e

exp

{
−(Yi(tik)− βT1 Z1i(tik)− bT1 Z̃1i(tik))

2

2σ2
e

}]

×
∏
t

[
ΛR{t} eβ

T
2 Z2i(t)+b

T
2 Z̃2i(t) G′R(

∫ t

0

eβ
T
2 Z2i(s)+b

T
2 Z̃2i(s) dΛR(s))

]Ri(t)∆N∗i (t)

× exp

{
−GR(

∫ Xi

0

eβ
T
2 Z2i(t)+b

T
2 Z̃2i(t) dΛR(t))

}
×
[
ΛT{Xi} eβ

T
3 Z3i(Xi)+(b◦φ)T Z̃3i(Xi) G′T (

∫ Xi

0

eβ
T
3 Z3i(t)+(b◦φ)T Z̃3i(t) dΛT (t))

]∆i

× exp

{
−GT (

∫ Xi

0

eβ
T
3 Z3i(t)+(b◦φ)T Z̃3i(t) dΛT (t))

}
× f(b; Σb) db. (3.4)

Hence the likelihood can be expressed as a function of a finite number of parameters,

which include (β, φ, σ2
e , Σb) and the jump sizes of ΛR and ΛT .

3.3.2 EM Algorithm

To obtain the NPMLEs and their variance estimators, we use the expectation-maximization

(EM) algorithm (Dempster et al., 1977), treating the subject-specific random effects
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bi as missing data. In the E-step, we compute the conditional expectations of the log-

likelihood for the complete data, given the observed data and the current parameter

estimates. Particularly, using numerical approximation methods such as the Gaussian

quadrature, we can evaluate the integration of certain functions of bi, say g(bi). We

denote such expectation by Ê[g(bi) |Yi(t), Ni(t), Xi,∆i, Z(t)], hereafter abbreviated

as Ê[g(bi)]. In the M-step, we maximize the conditional expectation of the complete-

data log-likelihood function given the observed data. Specifically, the closed-forms of

the maximizers exist for (β1, σ2
e , Σb) as follows:

β̂1 = (ZT
1 Z1)−1ZT

1 (Y − Ê[Z̃1b1]),

σ̂2
e = Ê[(Y − Z1β1 − Z̃1b1)T (Y − Z1β1 − Z̃1b1)] /

n∑
i=1

mi,

Σ̂b = Ê[b1 b
T
1 ],

where Y denotes the vector of longitudinal measurements at the observed times, and

Z1 and Z̃1 denote matrices with each row equal to the observed covariates Z1(t)T and

Z̃1(t)T at the same times, respectively. For the rest of parameters (β2, β3, φ, ΛR{.},

ΛT{.}), the quasi-Newton algorithm is used to update the parameter estimates at

each M-step.

When covariates of the recurrent and terminal events (Z2, Z̃2, Z3, Z̃3) are time-

independent, we propose to use recursive formulae, provided in Section 3.8, in order to

reduce the number of parameters to be maximized to a very small set of parameters.

Basic ideas of the recursive formulae can be described as follows. In the forward

recursive formula, since ΛR(t) and ΛT (t) can be calculated from the jumps which are

observed before time t, only (λ1R, λ1T ) are involved in the quasi-Newton iteration,

where λ1R and λ1T are the jump sizes at the first observed event times of the recurrent

and terminal events, respectively. In the backward recursive formula, similarly, ΛR(t)

33



and ΛT (t) can be expressed as a function of the jumps which are observed after time t

and the sum of all jumps. Thus, the backward recursive formula requires to maximize

only the last jump sizes and the sums of all observed jump sizes of the recurrent and

terminal events.

To estimate the variances and covariances of the NPMLEs, we compute the ob-

served information matrix via the Louis formula (Louis, 1982) as given in Section 3.8.

Then, the inverse of the observation information is the estimator of the covariance

matrix of the NPMLEs.

3.4 Asymptotic Properties

Let θ be the vector of (β, φ, σ2
e , Vec(Σb)) and let (θ0, Λ0R(t), Λ0T (t)) be the true

parameter values of (θ, ΛR(t), ΛT (t)), where Vec(Σb) denotes the vector consisting of

the upper triangular elements of Σb. We then establish the asymptotic properties of

the NPMLEs under the following conditions:

(A1) The parameter value θ0 belongs to the interior of a compact set Θ within the

domain of θ. Additionally, Λ′0R(t) > 0 and Λ′0T (t) > 0, for all t ∈ [0, τ ], where τ is

the duration of the study.

(A2) With probability 1, Z(.) is left-continuous with uniformly bounded left and right

derivatives in [0, τ ].

(A3) For some constant δ0, P (C > τ |Z) > δ0 > 0 with probability 1.

(A4) E[N∗(τ)] <∞ with probability 1.

(A5) For some positive constant M0, M−1
0 < σ2

0e < M0 and M−1
0 < cTΣ0b c < M0 for

any constant vector ‖c‖ = 1.

(A6) The transformation functions GR(.) and GT (.) are four-times differentiable with

34



GR(0) = GT (0) = 0, G′R(0) > 0, and G′T (0) > 0. In addition, there exist pos-

itive constants µ0 and κ0 such that for any integer m > 0 and for any sequence

0 < x1 < ... < xm 6 y,

m∏
j=1

{(1 + xj)G
′
R(xj)} exp{−GR(y)} 6 µm0 (1 + y)−κ0 , and

(1 + x)G′T (x) exp{−GT (x)} 6 µ0(1 + x)−κ0 .

Furthermore, there exists a constant ρ0 > 0 such that

sup
x

{
|G′′R(x)|+ |G(3)

R (x)|+ |G(4)
R (x)|

G′R(x) (1 + x)ρ0

}
+sup

x

{
|G′′T (x)|+ |G(3)

T (x)|+ |G(4)
T (x)|

G′T (x) (1 + x)ρ0

}
<∞,

where G
(3)
R , G

(4)
R , G

(3)
T , and G

(4)
T are the third and fourth derivatives.

(A7) For some t ∈ [0, τ ], if there exist a deterministic function c(t) and v such that

c(t) + vTZ(t) = 0 with probability 1, then c(t) = 0 and v = 0.

(A8) For some t ∈ [0, τ ], Z̃T
i (t)Z̃i(t) (i = 1, 2) has full rank with some positive proba-

bility.

(A9) Let K be the number of repeated measures and let db be the dimension of b1.

With probability one, P (K > db) > 0.

Conditions (A1) - (A3) are the standard assumptions for survival analysis. Con-

ditions (A4) - (A5) are necessary to prove the existence of the NPMLEs. It can be

easily verified that Condition (A6) holds for all transformations commonly used, in-

cluding the classes of Box-Cox and logarithmic transformations described in Section

3.2. Conditions (A7) - (A8) entail the linear independence of covariates for the fixed

and random effects. Condition (A9) prescribes that some subjects have at least db

repeated measures.
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Under the above conditions, the following theorem shows the consistency of the

NPMLEs (θ̂, Λ̂R, Λ̂T ).

Theorem 3.1. Under Conditions (A1) - (A9),

|θ̂ − θ0| → 0, sup
t∈[0,τ ]

|Λ̂R(t)− Λ0R(t)| → 0, sup
t∈[0,τ ]

|Λ̂T (t)− Λ0T (t)| → 0, a.s.

Theorem 3.1 then leads to the following results on the asymptotic normality of

(θ̂, Λ̂R, Λ̂T ) and the asymptotic efficiency of θ̂.

Theorem 3.2. Under Conditions (A1) - (A9),
√
n (θ̂−θ0, Λ̂R−Λ0R, Λ̂T−Λ0T ) weakly

converges to a zero-mean Gaussian process in Rdθ × BV [0, τ ] × BV [0, τ ], where dθ

is the dimension of θ and BV [0, τ ] denotes the space of all functions with bounded

variations in [0, τ ]. Furthermore, the asymptotic covariance matrix of
√
n (θ̂ − θ0)

achieves the semiparametric efficiency bound for θ0.

Furthermore, in Section 3.9, we show that the inverse of the observed information

matrix is a consistent estimator of the asymptotic covariance matrix of the NPMLEs.

This result allows us to make inference for any functional of (θ,ΛR,ΛT ). To prove

Theorems 3.1 - 3.2, we apply the general asymptotic theory of Zeng and Lin (2007).

The desired asymptotic properties of the NPMLEs are established followed by the

arguments in Appendix B of Zeng and Lin (2007) if we can verify that their regular-

ity conditions hold for our joint model setting. Checking the regularity conditions,

however, is challenging in our cases. The detailed proofs are provided in Section 3.9.

3.5 Simulation Studies

In this section, we examined the performance of the proposed methods through ex-

tensive simulation studies. We considered a dichotomous covariate of Z1 taking the
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value of 0 or 1 with the equal probability of 0.5 and a continuous covariate of Z2

randomly sampled from the uniform distribution on [-1, 1]. We generated data

for the longitudinal outcomes from Y (t |Z1, Z2; b1) = 0.7 + Z1 + 0.5Z2 + b1 + ε(t),

where ε(t) ∼ N(0, σ2
e) with σ2

e = 1, the recurrent event process from the cumu-

lative intensity of ΛR(t |Z1, Z2; b2) = GR(eZ1+0.5Z2+b2ΛR(t)), where ΛR(t) = ν1t,

and the terminal event time from the cumulative hazards of ΛT (t |Z1, Z2; b1, b2) =

GT (eZ1+0.5Z2+b1φ1+b2φ2ΛT (t)), where ΛT (t) = ν2t
2.

For each subject, the correlation within repeated measures was reflected by a

random effect of b1∼N(0, σ2
1), and the correlation within recurrent event times was

reflected by another random effect of b2 ∼ N(0, σ2
2). In addition, the dependence

between the longitudinal measures and the recurrent event times was given by ρ,

which was the correlation between (b1, b2). Particularly, we chose σ2
1 = σ2

2 = ρ = 0.5.

We considered two cases of φ = (0.5, 0.2) and (0, 0.2), where we simulated some

positive dependence between the longitudinal measures and the terminal event (i.e.,

φ1 = 0.5) or no dependence explained by random effect b1 (i.e., φ1 = 0) in the

latter. Also, combinations of the proportional intensity or hazards models and the

proportional odds models were considered to be the transformations for GR(.) and

GT (.).

The non-informative censoring time Ci was randomly sampled from the uniform

distribution on [1, 5], and (ν1, ν2) was chosen according to the considered transforma-

tion models in order to achieve the desired total number of recurrent event times of 2∼

3 and the desired censoring rate of 35%, on average. We set longitudinal observation

times to be fixed intervals so that a subject had about six longitudinal measurements,

on average.

The results presented in Table 3.1 and Table 3.2 are based on 1000 replications for

n=200 and n=400. Table 3.1 - 3.2 include the difference between the estimate and true
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parameter (Bias), the sample standard deviation of the parameter estimators (SE),

and the average of the standard error estimators (SEE), and the coverage probability

of 95% confidence intervals (CP). The confidence intervals for ΛR(.) and ΛT (.) are

constructed based on the log transformation, and those for ρ are based on the Fisher

transformation. In addition, we use the Satterthwaite approximation to compute the

confidence intervals of σ2
e , σ

2
1, and σ2

2.

Table 3.1 shows that the NPMLEs under GR(x) = x and GT (x) = x are noticeably

unbiased, the standard error estimators calculated via the Louis formula well reflect

the true variations of the proposed estimators, and the coverage probabilities are in

a reasonable range, even with a moderate sample size of 200. As the sample size

increases to 400, the biases slightly increase for some estimates; however, they are

still very small comparing to the sizes of true parameter values and the variations

of the parameter estimators become smaller, and hence the coverage probabilities

still lie in a reasonable range. The simulation results shown in Table 3.2 are similar

to those for Table 3.1, indicating that the proposed method seems to work well for

the transformation models of GR(x) = x and GT (x) = log(1 + x). We also studied

other combinations of transformations such as (GR(x), GT (x)) = (x, log(1 + x)) and

(GR(x), GT (x)) = (log(1 + x), log(1 + x)), and the results are similar and hence

omitted here.

3.6 Data Application

We apply the proposed method to the data from the cohort components of the

Atherosclerosis Risk in Communities (ARIC) study. The cohort component was de-

signed to investigate the trends in rates of hospitalized myocardial infarction (MI)

and fatal coronary heart diseases (CHD) in men and women aged 45-64 years from
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four US communities; Minneapolis suburbs (Minnesota), Forsyth County (North Car-

olina), Washington County (Maryland), and Jackson County (Missisippi). It is well

known that some risk factors for coronary heart diseases differ considerably by race

and gender, therefore, our research focuses on a total of 1651 subjects who are white

males living in Forsyth County.

The existing studies (Chambless et al., 2003; Wattanakit et al., 2005) found that

systolic blood pressure (SBP) is an important risk factor for both incidence and

recurrence of CHD event in the ARIC data. Also, we observe from the preliminary

analysis that patients who have experience more recurrent CHD events are likely to be

in a higher risk of death. Thus, the primary objective of this analysis is to characterize

these relationships between SBP changes over time, recurrent CHD events, and death,

to assess the effects of baseline covariates on these three outcomes, and to utilize the

final models for the accurate prediction of risk of recurrent CHD events and death.

To model such a complicated system, we propose a joint transformation random effect

model for the main outcomes consisting of three components: (a) longitudinal systolic

blood pressure (SBP) measures, (b) recurrent CHD events, and (c) death.

Beginning with the first screen examination (baseline) in 1987-89, longitudinal

measures were collected at approximately three-year intervals, in 1990-92, 1993-95,

and 1996-98. The recurrent event of interest is the (multiple) occurrences of CHD

events including definite MI, probable MI, definite fatal CHD, definite fatal MI, or

possible fatal CHD events, which are classified based on Mortality and Morbidity

Classification Committee (MMCC) reviews or computer algorithm if MMCC reviews

are not required. Follow-up process for the recurrent CHD events and death continued

until 2005 through reviewing death certificates and hospital discharge records and

investigating out-of-hospital deaths, while the follow-up for longitudinal measures

ended with each patient’s last examination (up to 1998). The median follow-up time
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was 16.8 years with the largest follow-up time being 19 years, and 24% of patients

died during the study period. 221, 41, and 15 patients have experienced one, two,

and more than two CHD events, respectively.

In our joint model, we included the baseline covariates of age, Body Mass Index

(BMI), SBP, use of hypertension lowering medications, and existence of diabetes, and

visiting time in years, which were significant variables from preliminary studies fit-

ting separate models for each of the three outcomes of interest. The subject-specific

random intercepts b1 and b2 are included in the joint model to cope with correlations

within and between three outcomes. We also considered the class of transforma-

tions log(1 + γx)/γ for GR(x) and GT (x). This class includes the proportional inten-

sity/hazards and proportional odds models. We used the Akaike information criterion

(AIC) to determine the best transformation model. Figure 3.1 shows the surface of

the log-likelihood function corresponding to the combination of transformations for

GR(x) and GT (x). The combination of GR and GT with the largest log-likelihood

value corresponds to the proportional intensity model for the recurrent CHD events

and the proportional odds model for death.

Table 3.3 summarizes the estimation results under the selected best model. Both

age at entry and baseline measures of SBP were significant for all three outcomes.

Elder patients with higher levels of SBP at baseline had the elevated SBP levels over

time, a higher intensity rate of CHD occurrences, and a higher risk of death. Sur-

prisingly, baseline BMI affected all three outcomes jointly with other factors such

as a patient’s age and baseline SBP level. Interactions between baseline BMI and a

patient’s age had a significant effect on the rates of CHD and death, while those be-

tween baseline BMI and SBP were statistically significant in explaining SBP changes

over time. If a patient who had SBP higher than 152 mmHg and took hypertension

medications at baseline, then the patient was likely to have lower longitudinal SBP
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levels over time than those who did not take the medications. We also find that

patients diagnosed with diabetes were at higher risks of CHD events and death.

For the model association, the observed covariates in the fitted model seemed

to fully explain dependence between the longitudinal observations of SBP and CHD

events as well as dependence between repeated measures of SBP and death. However,

there seemed to be some positive correlation between recurrence of CHD and death

due to the unobserved random factor. This result coincided with the expectation that

patients who get admitted to hospital more frequently with CHD are at even higher

risk of death. These findings may lead us some interesting application points of the

analysis: 1) to predict the survival distribution after the incidence of CHD at a fixed

time s, and 2) to estimate the expected SBP levels over time after the incidence of

CHD at a fixed time s. To answer the question 1), the conditional survival distribution

can be calculated as

P [T > t |Z,∆N∗(s) = N∗(s) = 1, T > s; t > s]

=

∫
b
e
−GT

(∫ t
0 e

βT3 Z3(u)+(b◦φ)T Z̃3(u) dΛT (u)
)
f(∆N∗(s) = N∗(s) = 1, T > s|Z, b) f(b; Σb) db∫

b
f(∆N∗(s) = N∗(s) = 1, T > s|Z, b) f(b; Σb) db

.

Also, for the question 2), the conditional expectation of longitudinal SBPs is given

by, for t > s,

E[Y (t) |Z,∆N∗(s) = N∗(s) = 1, T > s; t > s]

=

∫
b

{
βT1 Z1(t) + bT1 Z̃1(t)

}
f(∆N∗(s) = N∗(s) = 1, T > s|Z, b) f(b; Σb) db∫

b
f(∆N∗(s) = N∗(s) = 1, T > s|Z, b) f(b; Σb) db

.

For illustration purposes, the predicted survival distribution and the longitudinal SBP

levels for a subject who had one CHD event at study year 5 and average baseline

measures of age, BMI, and SBP with neither hypertension nor diabetes are displayed
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in Figure 3.2, along with the point-wise 95% confidence intervals. The confidence

intervals are obtained by applying the functional delta method and evaluating at the

NPMLEs.

3.7 Concluding Remarks

We have presented joint transformation models for repeated measures and recurrent

event times with an informative terminal event. We have provided an efficient EM

algorithm to compute the maximum likelihood estimators of the cumulative intensity

and hazards functions as well as regression parameters. The nonparametric maxi-

mum likelihood estimators are shown to be consistent, asymptotically normal, and

asymptotically efficient. The proposed approach has been applied to the ARIC data,

and the resulting joint models can be used in predicting a patient’s future survival

rate and longitudinal measures given his/her past history.

To obtain the variance estimates of (θ̂, Λ̂R(t), Λ̂T (t)), we have used the inverse of

the observed information matrix evaluated at the NPMLEs. Even if this approach

yields consistent variance estimators, inverting such a large dimensional matrix may

be intimidating if there are a large number of observations. This limitation can be

overcome by using a profile likelihood (Murphy and van der Vaart, 2000) rather than a

full likelihood if the parameter of interest is only θ. Particularly, let p`n(θ) be the pro-

file log-likelihood function for θ, expressed as p`n(θ) = sup{ΛR,ΛT }
∑n

i=1 `i(θ,ΛR,ΛT ),

where `i(θ,ΛR,ΛT ) is the observed log-likelihood function for the ith subject. Then

the negative second-order numerical difference of p`n(θ) at θ = θ̂ can approximate the

inverse of the asymptotic variance of θ̂ (Zeng and Cai, 2005b). In this approach, we

need to compute Λ̂Rθ and Λ̂Tθ which maximize the observed log-likelihood function

for a fixed θ in the neighborhood of θ̂. By utilizing the EM algorithm in Section 3.3.2,
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but holding θ fixed all the time in both the E-step and M-step, we can calculate Λ̂Rθ

and Λ̂Tθ.

Our model assumes that longitudinal measures are linearly related to all covari-

ates considered. Where it is believed that the longitudinal measures are nonlinearly

related to some predictors, we can increase the flexibility of our joint models by includ-

ing some nonparametric functions of those predictors additively in the longitudinal

components. We can also extend our model to multiple types of recurrent and/or

terminal events.

3.8 E-step and M-step in EM Algorithm

In this section, we describe numerical algorithms to obtain the NPMLEs and their

variance estimators along with recursive formulae for the jumps of the cumulative

intensity and hazards functions. For simplicity, we consider time-invariant covariates

in the models for recurrent and terminal events, and we define q2i = eβ
T
2 Z2i+b

T
2 Z̃2i and

q3i = eβ
T
3 Z3i+(b◦φ)T Z̃3i . In the E-step, we calculate the conditional expectation of g(b),

b = (bT1 , b
T
2 )T given the observed data Oi = {Yi(tik), Ni(t), Xi,∆i, Z(t) ; tik 6 Xi, t 6

Xi, i = 1, . . . , n, k = 1, . . . ,mi} and current parameter estimates as follows:

Ê[g(b)] =

∫
b
g(b)h(Oi| b)f(b; Σb) db∫
b
h(Oi| b)f(b; Σb) db

,

where

h(Oi| b) = exp

{
−

mi∑
k=1

[
(bT1 Z̃1i(tik))

2 − 2(Yi(tik)− βT1 Z1i(tik))b
T
1 Z̃1i(tik)

]
/2σ2

e

}

× exp

{∑
t

[
Ri(t)∆N

∗
i (t){bT2 Z̃2i + logG

′

R(q2iΛR(t))
]
−GR(q2iΛR(Xi))

}

× exp
{

∆i[b ◦ φ+ logG
′

T (q3iΛT (Xi))]−GT (q3iΛT (Xi))
}
.
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An appropriate numerical approximation, such as Gaussian quadrature with Hermite

orthogonal polynomial, can be considered to evaluate the integrals in conditional

expectations. In the M-step, we maximize the following objective function of the

expected log-likelihood for complete data:

n∑
i=1

mi∑
k=1

{
− log σ2

e/2− Ê
[
(Yi(tik)− βT1 Z1i(tik)− bT1 Z̃1i)

2/2σ2
e

]}
+

n∑
i=1

∫
Ri(t)

{
log ΛR{t}+ βT2 Z2i + Ê[b2]T Z̃2i + Ê[logG

′

R(q2iΛR(t))]
}
dN∗i (t)

+
n∑
i=1

∆i

{
log ΛT{Xi}+ βT3 Z3i + Ê[b ◦ φ]T Z̃3i + Ê[logG

′

T (q3iΛT (Xi))]
}

−
n∑
i=1

{
Ê[GR(q2iΛR(Xi)) +GT (q3iΛT (Xi))

}
+

n∑
i=1

Ê[log f(b; Σb)]. (3.5)

Maximizing (3.5) over (β1, σ
2
e , Σb) is simple, while the rest of parameters do not yield

the closed-form of maximizers, and hence it is required to involve a reliable numerical

approach. We consider one-step Quasi-Newton algorithm to find a maximazer of the

objective function over a set of parameters (β2, β3, φ, ΛR{.}, ΛT{.}).

Maximizing over a high dimension of ΛR{.} and ΛT{.} may cause a computation

problem. Accordingly, we introduce a forward recursive formula and a backward

recursive formula that lessen the burden on maximization. Let w1r < w2r < ... < wmrr

be the ordered recurrent event times observed and λ1R, λ2R, ..., λmrR be the jump sizes

of ΛR corresponding to those ordered time points, where mr is the total number of the

observed recurrent events. In a similar way, let w1t < w2t < ... < wmtt be the observed

terminal event times and λ1T , λ2T , ..., λmtT be the jump sizes of ΛT corresponding to

those ordered time points, where mt is the total number of the observed terminal

events. By differentiating (3.5) with respect to λjR (j = 1, ... ,mr) and setting the
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derivative to be zero, we have

0 =
1

λjR
+

n∑
i=1

∫
Ri(t) Ê

[
I(t > wjr)

G
′′
R(q2iΛR(t)) q2i

G
′
R(q2iΛR(t))

]
dN∗i (t)

−
n∑
i=1

Ê
[
I(Xi > wjr)G

′

R(q2iΛR(Xi)) q2i

]
,

where G
′′
R(x) = d2GR(x)/dx2. Since the derivatives with respect to λjR and λj+1,R

are both equal to zero, we obtain the following equation of

1

λj+1,R

=
1

λjR
+

n∑
i=1

∫
Ri(t) Ê

[
I(wjr 6 t < wj+1,r)

G
′′
R(q2iΛR(t)) q2i

G
′
R(q2iΛR(t))

]
dN∗i (t)

−
n∑
i=1

Ê
[
I(wjr 6 Xi < wj+1,r)G

′

R(q2iΛR(Xi)) q2i

]
, (3.6)

for j = 1, ..., (mr−1). The fact that ΛR(s) = λ1R + λ2R + ... + λjR for time s such

that wjr 6 s < wj+1,r yields a forward recursive formula of (3.6) that calculates

λj+1,R from (λ1R, ..., λjR). To obtain a backward recursive formula, we define ζr =

ΛR(wmrr) =
∑mr

j=1 λjR and fjr = λjR/ζr, then fjr is calculated from (fj+1,r, ..., fmrr)

and ζr. The backward recursive fomula for the cumulative intensity function is given

by

1

fjr
=

1

fj+1,r

− ζr
n∑
i=1

ni∑
l=1

Ê

[
I(wjr 6 Til < wj+1,r)

G
′′
R(q2iΛ̌R(Til)) q2i

G
′
R(q2iΛ̌R(Til))

]
+ ζr

n∑
i=1

Ê
[
I(wjr 6 Xi < wj+1,r)G

′

R(q2iΛ̌R(Xi)) q2i

]
, (3.7)

where Til is the lth observed recurrent event time, ni is the total number of the

recurrent events for the ith subject, and Λ̌R(s) = ζr(1 −
∑mr

l=j+1 flr) for wjr 6 s <

wj+1,r. Similarly, the forward recursive formula for λj+1,T and the backward recursive
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formula for fjt take a form of

1

λj+1,T

=
1

λjT
+

n∑
i=1

∆i Ê

[
I(wjt 6 Xi < wj+1,t)

G
′′
T (q3iΛT (Xi)) q3i

G
′
T (q3iΛT (Xi))

]
−

n∑
i=1

Ê
[
I(wjt 6 Xi < wj+1,t)G

′

T (q3iΛT (Xi)) q3i

]
, (3.8)

where G
′′
T (x) = d2GT (x)/dx2 and ΛT (s) =

∑j
l=1 λlT for wjt 6 s < wj+1,t, and

1

fjt
=

1

fj+1,t

− ζt
n∑
i=1

∆i Ê

[
I(wjt 6 Xi < wj+1,t)

G
′′
T (q3iΛ̌T (Xi)) q3i

G
′
T (q3iΛ̌T (Xi))

]
+ ζt

n∑
i=1

Ê
[
I(wjt 6 Xi < wj+1,t)G

′

T (q3iΛ̌T (Xi)) q3i

]
, (3.9)

where ζt = ΛT (wmt,t) =
∑mt

j=1 λjT , fjt = λjT/ζt, and Λ̌T (s) = ζt(1 −
∑mt

l=j+1 flt)

for wjt 6 s < wj+1,t. We note that the forward recursive equations (3.6) and (3.8)

diminish parameter sets for ΛR{.} and ΛT{.} needed to be maximized in (3.5) from

(λ1R, ..., λmrR, λ1T , ..., λmtT ) to (λ1R, λ1T ), and so do the backward recursive equations

(3.7) and (3.9) from (λ1R, ..., λmrR, λ1T , ..., λmtT ) to (ζr, fmrr, ζt, fmtt).

To obtain the NPMLEs, we iterate the E-step and M-step until the maximizers

converge at a certain rate. The variances of the NPMLEs can be estimated from the

inverse of the observed information matrix for (β, φ, σ2
e ,Σb, λ1R, ..., λmrR, λ1T , ..., λmtT ).

The observation information matrix can be computed from the complete-data log-

likelihood function denoted by `ci for the ith subject using the following formula of

−
n∑
i=1

Ê[∇2`ci(bi) |Oi]−
n∑
i=1

{
Ê[∇`ci(bi)⊗2 |Oi]− Ê[∇`ci(bi) |Oi]

⊗2
}
,

where u⊗2 = uuT , ∇ and ∇2 denote the first and the second derivatives with respect

to parameters, and Ê denotes the conditional expectation of a function of b given the

observed data.
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3.9 Proof of Asymptotic Properties

This section proves Theorems 3.1 - 3.2 stated in Section 3.4 by applying the general

asymptotic theory of Zeng and Lin (2007). Specifically, it is easy to see that our

conditions (A1) - (A9) imply (C1) - (C4), (C6), (C8) of Zeng and Lin (2007b), and

it remains to prove the two identifiability conditions (C5) and (C7) of Zeng and

Lin (2007b). The first identifiability is the key step to prove the consistency of the

NPMLEs, and the second is to entail the invertibility of the observed information

matrix at the true parameters for the proof of the asymptotic normality.

Proof of the First Identifiability

Proof. First, we verify the first identifiability condition (C5) in Appendix B of Zeng

and Lin (2007b). Suppose that the likelihood function for (β, φ, σ2
e , Σb, ΛR, ΛT ) is

the same as that for the true parameter values (β0, φ0, σ
2
0e, Σ0b, Λ0R, Λ0T ). That is,

∫
b

m∏
k=1

[
1√

2πσ2
e

exp

{
−(Y (tk)− βT1 Z1(tk)− bT1 Z̃1(tk))

2

2σ2
e

}]

×
∏
t

[
λR(t) eβ

T
2 Z2(t)+bT2 Z̃2(t) G

′

R(q2(t))
]R(t)∆N∗(t)

×
[
λT (X) eβ

T
3 Z3(X)+(b◦φ)T Z̃3(X) G

′

T (q3(X))
]∆

× exp {−GR(q2(X))−GT (q3(X))} f(b; Σb) db

=

∫
b

m∏
k=1

[
1√

2πσ2
0e

exp

{
−(Y (tk)− βT01Z1(tk)− bT1 Z̃1(tk))

2

2σ2
0e

}]

×
∏
t

[
λ0R(t) eβ

T
02Z2(t)+bT2 Z̃2(t)G

′

R(q02(t))
]R(t)∆N∗(t)

×
[
λ0T (X) eβ

T
03Z3(X)+(b◦φ0)T Z̃3(X)G

′

T (q03(X))
]∆

× exp {−GR(q02(X))−GT (q03(X))} f(b; Σ0b) db, (3.10)
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where q2(t) =
∫ t

0
eβ

T
2 Z2(s)+bT2 Z̃2(s) dΛR(s), q3(t) =

∫ t
0
eβ

T
3 Z3(s)+(b◦φ)T Z̃3(s) dΛT (s), and

q02(t), q03(t) are q2(t), q3(t) evaluated at the true parameter values, and f(b; Σb)

is the density function of the (multivariate) normal distribution with mean zeros and

covariance matrix Σb. From now, we take the following actions on both sides of (3.10).

Step 1. For the proof of the identifiability of the longitudinal component, we con-

sider a case with the observed longitudinal measures at time s11, . . . , s1K for arbitrary

K, R(t) = 1, ∆N∗(t) = 0, ∆ = 0, and X ≈ 0.

Considering E[Y (s1k)] and using the fact that

∫
b1 f(b1; Σb) db1 =

∫
b1 f(b1; Σ0b) db1 = 0,

we have βT1 Z1(s1k) = βT01Z1(s1k), for k = 1, . . . , K. By Condition (A7), we prove

β1 = β01. Now, we consider Var(Y (s1k)) and obtain

∫
b

{
σ2
e + bT1 Z̃1(s1k)Z̃1(s1k)

T b1

}
f(b; Σb) db

=

∫
b

{
σ2

0e + bT1 Z̃1(s1k)Z̃1(s1k)
T b1

}
f(b; Σ0b) db,

for k = 1, . . . , K. Then, we have σ2
e = σ2

0e from (A8).

Step 2. For the recurrent events and the terminal event components, set R(·) = 1,

∆ = 0, X = t3, and suppose that N∗(·) has jumps at s21, . . . , s2K , s
′
21, . . . , s

′
2M for

any arbitrary (K +M) in [0, t3].

For simplicity, we can drop the longitudinal component in (3.10) by integrating

over y(t) for the observation times t. We integrate (3.10) with respect to s21, . . . , s2K

from 0 to t21, . . . , t2K , while integrating with respect to s
′
21, . . . , s

′
2M from 0 to t3. Since

s21, . . . , s2K are arbitrary, multiplying 1
M !

∏K
k=1(iwk)

ak/ak! and taking summation over
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M and a1, . . . , ak from 0, 1, . . . , ∞ results in

∫
b

exp

{
K∑
k=1

iwkGR(q2(t2k))−GT (q3(t3))

}
f(b; Σb) db

=

∫
b

exp

{
K∑
k=1

iwkGR(q02(t2k))−GT (q03(t3))

}
f(b; Σ0b) db.

This equation implies that GR(q2(t2k)) and GR(q02(t2k)) for k = 1, . . . , K are the same

in distribution as a function of b ∼ e−GT (q3(t3))f(b; Σb) and b ∼ e−GT (q03(t3))f(b; Σ0b),

respectively. By the one-to-one mapping of GR and logarithm function, the distribu-

tion of log( d
dt2k

q2(t2k)) and log( d
dt2k

q02(t2k)) are the same for k = 1, . . . , K. That is,

for ∀(t2, t3) such that t2 < t3,

∫
b

{
log λR(t2) + βT2 Z2(t2) + bT2 Z̃2(t2)

}
e−GT (q3(t3))f(b; Σb) db

=

∫
b

{
log λ0R(t2) + βT02Z2(t2) + bT2 Z̃2(t2)

}
e−GT (q03(t3))f(b; Σ0b) db.

From the equality of
∫
b
e−GT (q3(t3))f(b; Σb) db =

∫
b
e−GT (q03(t3))f(b; Σ0b) db and the con-

dition (A7), we can show β2 = β02 and λR(t) = λ0R(t), and hence

exp {−GT (q3(t3))} f(b; Σb) = exp {−GT (q03(t3))} f(b; Σ0b).

By setting t3 = 0 in the foregoing equation, we obtain f(b; Σb) = f(b; Σ0b) fol-

lowed by Σb = Σ0b because b is normally distributed. Subsequently, it is true that

exp{−GT (q3(t3))} = exp{−GT (q03(t3))}. Applying similar arguments above, we can

obtain the following equation

log λT (t3) + βT3 Z3(t3) + bT (φ ◦ Z̃3(t3))

= log λ0T (t3) + βT03Z3(t3) + bT (φ0 ◦ Z̃3(t3)).
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Since E[b] = 0 on both sides, we conclude that β3 = β03 and log λT (t) = log λ0T (t) by

(A7). Clearly, φ = φ0 by (A8).

Proof of the Second Identifiability

Proof. Next, we verify the second identifiability condition (C7) in Appendix B of Zeng

and Lin (2007b). It starts from the score equation along with the path (β01 + ην1,

β02+ην2, β03+ην3, σ2
0e+ην4, φ0+ηνφ, Σ0b+ηνb, Λ0R+η

∫
h1 dΛ0R, Λ0T +η

∫
h2 dΛ0T ).

Step 1. To make the score equation simple for the proofs of ν1 = 0 and ν4 = 0, we

consider the same setting as used in Step 1 of the first identifiability proof. We define

V −1
b = Σ−1

0b1
+
∑
k

Z̃1(s1k)Z̃
T
1 (s1k)/σ

2
0e, and µb =

∑
k

ckZ̃1(s1k)/σ
2
0e,

then, the score equation is given by

(
1√

2πσ2
0e

)K

|Σ0b1|−
1
2 |Vb|

1
2 exp

{
−

K∑
k=1

c2
k/(2σ

2
0e) + µTb Vbµb/2

}

× [
K∑
k=1

ν4

2σ4
0e

{
c2
k − 2µTb VbZ̃1(s1k)ck + µTb VbZ̃1(s1k)Z̃

T
1 (s1k)Vbµb + Z̃T

1 (s1k)VbZ̃1(s1k)
}

−K ν4

2σ2
0e

+
K∑
k=1

νT1 Z1(s1k)

σ2
0e

{
ck − µTb VbZ̃1(s1k)

}
], (3.11)

where ck = y(s1k)− βT01Z1(s1k), and K is the number of repeated measures.

Since ∀ε > 0, Pr
[
|Y (t)− βT01X1(t)| < ε

]
> 0, we have

(2σ2
0e)
−1 ν4

[
K −

∑
k

Z̃T
1 (sk)VbZ̃1(sk)/σ

2
0e

]
= 0.

Under (A9), we conclude ν4 = 0 because tr[
∑

k Z̃
T
1 (sk)VbZ̃1(sk)/σ

2
0e] < db, where db
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stands for the dimension of b1. Then, (3.11) becomes equivalent to

νT1 Z
T
1

σ2
0e

[
I − Z̃1VbZ̃1

T

σ2
0e

]
(Y − Z1β01) = 0,

where Y T = (y(s11), . . . , y(s1K)), ZT
1 = (Z1(s11), . . . , Z1(s1K)), and Z̃T

1 = (Z̃1(s11),

. . . , Z̃1(s1K)). Followed by the fact that
[
I − Z̃1VbZ̃1

T
/σ2

0e

]
is positive definite, we

just prove ν1 = 0.

Step 2. For the second identifiability of the recurrent and terminal events, we repeat

the same process as Step 2 of the first identifiability proof with the score equation

and obtain

∫
b

[
K∑
k=1

C1(t2k, b)− C2(t3, b) +
f ′(b; Σ0b)

Tνb
f(b; Σ0b)

]

× exp

{
K∑
k=1

iwkGR(q02(t2k)−GT (q03(t3))

}
f(b; Σ0b) db = 0, (3.12)

where

C1(t, b) =

∫ t

0

(
νT2 Z2(s) + h1(s)

)
q′02(s) ds G′R(q02(t))/GR(q02(t)), and

C2(t, b) =

∫ t

0

(
νT3 Z3(s) + (b◦νφ)T Z̃3(s) + h2(s)

)
q′03(s) ds G′T (q03(t))/GT (q03(t)).

Application of the Fourier transformation to (3.12) results in

∑
kEb

[
C1(t2k, b) e

−GT (q03(t3)) |GR(q02(t21)) = ξ1, . . . , GR(q02(t2K)) = ξK
]
fξ

− Eb
[
C2(t3, b) e

−GT (q03(t3)) |GR(q02(t21)) = ξ1, . . . , GR(q02(t2K)) = ξK
]
fξ

+ Eb

[
f ′(b; Σ0b)

Tνb
f(b; Σ0b)

e−GT (q03(t3)) |GR(q02(t21)) = ξ1, . . . , GR(q02(t2K)) = ξK

]
fξ

= 0, (3.13)
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where fξ = f(ξ1, . . . , ξK) is the joint density of {GR(q02(t21)), . . . , GR(q02(t2K))}. By

integrating out (ξ1, . . . , ξK) and setting t3 = 0, we make each term of (3.13) zero. From

the first term Eb [C1(t2k, b)] = 0 (k = 1, . . . , K), it follows that νT2 Z2(t2k) + h1(t2k)

has a trivial solution. Under the assumption (A7), we show that ν2 = 0 and h1 = 0.

Subsequently, the similar argument for t3 > 0 leads (3.13) to

−C2(t3, b) +
f ′(b; Σ0b)

Tνb
f(b; Σ0b)

= 0.

Clearly, f ′(b; Σ0b)
Tνb = 0 yields νb = 0 because f ′ is the derivative of the normal

density. Finally, we attain to νT3 Z3(t3) + (b ◦ νφ)T Z̃3(t3) + h2(t3) = 0 followed by

ν3 = 0, νφ = 0, and h2 = 0. We complete the proofs of Theorems 3.1 - 3.2 by

Theorems 1 - 2 in Zeng and Lin (2007b).

Let In denote the negative Hessian matrix of the observed log-likelihood function

with respect to (θ, ΛR{·}, ΛT{·}). As a remark, by following Theorem 3 in Zeng and

Lin (2007b), we can show that In is invertible for large n, and

(νT , UT
R , U

T
T )nI−1

n (νT , UT
R , U

T
T )T

is the consistent estimator of the asymptotic variance of

√
n

{
νT (θ̂ − θ0) +

∫
uR(t) d(Λ̂R − Λ0R) +

∫
uT (t) d(Λ̂T − Λ0T )

}
,

where UR and UT are vectors of uR(·) and uT (·) at the observed recurrent and terminal

event times, respectively.
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Table 3.1: Simulation results for GR(x) = GT (x) = x.

N = 200 N = 400

Parameter True Bias SE SEE CP Bias SE SEE CP

φ = (0.5, 0.2)
β1 0.7 -.011 .083 .081 .934 -.010 .059 .058 .944

1.0 -.012 .123 .118 .935 -.012 .086 .083 .946
0.5 -.008 .102 .108 .947 -.007 .072 .072 .953

σ2
e 1.0 .002 .041 .041 .958 -.000 .031 .029 .940
β2 1.0 -.012 .138 .138 .951 -.021 .094 .097 .955

0.5 -.007 .118 .119 .952 -.009 .084 .083 .949
ΛR(τ/4) 1.0 -.014 .111 .112 .948 -.012 .077 .079 .955
ΛR(τ/2) 2.0 -.033 .213 .215 .942 -.026 .149 .152 .946
β3 1.0 .019 .199 .204 .962 -.003 .137 .141 .957

0.5 .012 .175 .171 .954 -.000 .118 .118 .954
φ 0.5 .028 .214 .211 .960 .005 .147 .143 .944

0.2 -.016 .219 .219 .960 -.010 .153 .149 .945
ΛT (τ/4) 0.1 -.003 .022 .022 .962 -.002 .016 .016 .953
ΛT (τ/2) 0.4 -.009 .069 .069 .953 -.003 .048 .049 .960
σ2

1 0.5 -.013 .068 .067 .951 -.006 .049 .048 .951
σ2

2 0.5 .013 .095 .092 .946 .013 .063 .064 .947
ρ 0.5 -.006 .091 .095 .955 -.005 .066 .066 .961

φ = (0, 0.2)
β1 0.7 -.009 .082 .082 .939 -.009 .057 .058 .950

1.0 -.014 .116 .118 .947 -.016 .084 .083 .936
0.5 -.001 .101 .103 .947 -.005 .072 .072 .952

σ2
e 1.0 .001 .042 .041 .952 -.000 .029 .029 .949
β2 1.0 -.016 .139 .139 .940 -.017 .099 .097 .932

0.5 -.004 .121 .118 .947 -.008 .082 .083 .949
ΛR(τ/4) 1.0 -.012 .108 .113 .955 -.015 .082 .079 .938
ΛR(τ/2) 2.0 -.028 .209 .216 .949 -.031 .159 .152 .942
β3 1.0 .015 .196 .191 .950 .003 .135 .133 .947

0.5 .009 .163 .160 .946 .003 .107 .110 .960
φ 0.0 .001 .204 .200 .954 .007 .139 .135 .953

0.2 -.008 .234 .221 .944 -.018 .157 .148 .947
ΛT (τ/4) 0.1 -.002 .022 .022 .958 -.001 .015 .015 .941
ΛT (τ/2) 0.4 -.001 .068 .067 .960 -.001 .047 .047 .944
σ2

1 0.5 -.007 .069 .068 .954 -.004 .046 .047 .960
σ2

2 0.5 .010 .092 .093 .946 .010 .063 .064 .948
ρ 0.5 -.002 .096 .094 .947 -.003 .066 .065 .941
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Table 3.2: Simulation results for GR(x) = x and GT (x) = log(1 + x).

N = 200 N = 400

Parameter True Bias SE SEE CP Bias SE SEE CP

φ = (0.5, 0.2)
β1 0.7 -.009 .084 .082 .935 -.008 .058 .058 .949

1.0 -.003 .120 .119 .956 -.006 .085 .084 .939
0.5 -.007 .104 .103 .943 -.002 .074 .073 .940

σ2
e 1.0 .002 .041 .041 .955 .001 .030 .029 .946
β2 1.0 -.003 .157 .156 .957 -.006 .107 .108 .956

0.5 -.009 .135 .132 .950 -.001 .091 .092 .949
ΛR(τ/4) 0.6 -.006 .081 .080 .949 -.006 .056 .056 .943
ΛR(τ/2) 1.2 -.012 .156 .154 .953 -.016 .109 .107 .939
β3 1.0 .010 .282 .284 .952 .001 .198 .198 .954

0.5 .004 .228 .241 .966 .005 .168 .169 .951
φ 0.5 -.009 .349 .367 .969 .007 .245 .246 .957

0.2 -.012 .436 .444 .969 -.011 .301 .299 .949
ΛT (τ/4) 0.1 .004 .036 .037 .965 -.002 .026 .026 .966
ΛT (τ/2) 0.4 -.000 .136 .131 .953 .000 .093 .092 .948
σ2

1 0.5 -.009 .070 .069 .956 -.004 .049 .049 .949
σ2

2 0.5 .015 .145 .112 .945 .009 .078 .078 .941
ρ 0.5 -.002 .108 .108 .961 -.004 .073 .075 .953

φ = (0, 0.2)
β1 0.7 -.008 .082 .082 .950 -.008 .057 .058 .954

1.0 -.001 .120 .119 .953 -.005 .084 .084 .948
0.5 .001 .106 .103 .945 -.006 .071 .072 .958

σ2
e 1.0 .001 .041 .041 .947 .001 .028 .029 .953
β2 1.0 -.011 .151 .152 .956 -.005 .111 .108 .938

0.5 .005 .134 .130 .944 -.002 .092 .092 .944
ΛR(τ/4) 0.15 -.001 .081 .079 .944 -.007 .056 .055 .943
ΛR(τ/2) 0.6 -.005 .151 .151 .947 -.019 .106 .106 .949
β3 1.0 .013 .276 .276 .951 .023 .193 .192 .947

0.5 .009 .234 .235 .950 .003 .163 .164 .947
φ 0.0 .014 .367 .357 .963 .008 .246 .241 .956

0.2 -.029 .459 .440 .956 -.045 .297 .293 .942
ΛT (τ/4) 0.1 -.004 .036 .036 .955 -.004 .025 .025 .949
ΛT (τ/2) 0.4 .004 .126 .128 .959 -.010 .085 .087 .952
σ2

1 0.5 -.006 .070 .068 .951 -.005 .049 .048 .955
σ2

2 0.5 .007 .112 .110 .943 .011 .077 .077 .946
ρ 0.5 -.007 .108 .107 .959 -.004 .073 .074 .959
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Table 3.3: Analysis results for the ARIC study. The Fisher transformation is used
for testing ρ, while the 50:50 mixture of χ2 distributions is used for testing variances.

Effect Estimate Std.Error p-value

Longitudinal measures of SBP
Intercept -0.093 0.025 0.0002
Age 0.126 0.024 < .0001
BMI (kg/m2) 0.009 0.015 0.5441
SBP (baseline, mmHg) 0.615 0.020 < .0001
Hypertension medication (yes vs. no) 0.238 0.040 < .0001
Visit Year 0.038 0.003 < .0001
BMI * SBP -0.059 0.015 < .0001
SBP * Hypertension medication -0.149 0.042 0.0004
σ2
e 0.280 0.008 < .0001

Recurrent CHD event
Age 0.974 0.160 < .0001
BMI (kg/m2) 0.115 0.066 0.0786
SBP (baseline, mmHg) 0.222 0.093 0.0164
Diabetes (yes vs. no) 1.168 0.225 < .0001
Age * BMI -0.238 0.089 0.0074

Terminal event
Age 2.521 0.667 0.0002
BMI (kg/m2) 0.206 0.118 0.0806
SBP (baseline, mmHg) 0.264 0.152 0.0819
Diabetes (yes vs. no) 1.273 0.460 0.0057
Age * BMI -0.439 0.160 0.0062
φ1 -0.141 0.329 0.6684
φ2 1.962 0.498 < .0001

Variance components for random effect
σ2

1 0.183 0.011 < .0001
σ2

2 2.905 0.511 < .0001
ρ 0.059 0.055 0.2819
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Figure 3.1: Log-likelihood surface under the logarithmic transformations for the ARIC
study. The x-axis and y-axis correspond to the transformation parameter γ for re-
current events and terminal event, respectively.
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Figure 3.2: Predicted survival probability (a) and the expected longitudinal SBP
levels (b) for a subject who had one CHD event at the 5th year of study. The solid
curves are point estimates, and the dotted curves are the 95% confidence bands.
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Chapter 4

Joint Modeling of Longitudinal

and Cure-Survival Data

4.1 Introduction

In many medical studies, patients are repeatedly followed-up with a series of clinical

markers measured until some survival event occurs. To investigate the association be-

tween such longitudinal biomarkers and time to the event, joint modeling approaches

have become more and more popular (Wulfsohn and Tsiatis, 1997; Xu and Zeger,

2001; Tsiatis and Davidian, 2001, 2004; Hsieh et al., 2006; Vonesh et al., 2006; Liu

et al., 2007; Song and Wang, 2008). When the event of interest is an event other

than death, it is not uncommon that a certain proportion of subjects might never

experience such an event; these patients are considered cured. For example, patients

can be cured when cancer is treated by radiation therapy or an initial surgical inter-

vention if the treatment removes all the cancer cells. The survival data with cured

subjects generally present a heavy censoring rate at the end of a long follow-up, and

the joint modeling approaches based on the classic survival models may not always

be appropriate. It has been shown by Brown and Ibrahim (2003b) that joint cure



rate models performed better than joint models ignoring cure in terms of biasedness

of regression coefficients when a true cure proportion existed in the study population.

Two classes of cure rate models are commonly used to analyze cure-survival data:

mixture cure model and promotion time cure model. For a detailed examination of

these models, we refer readers to Section 2.2. There has been scant literature about

jointly modeling longitudinal and survival data with a cure fraction. The mixture

cure model with a longitudinal disease progression marker as a covariate has been

studied by Law et al. (2002), Yu et al. (2004), and Yu et al. (2008) to model a clinical

recurrence, for which a fraction of patients are cured by the treatment and are immune

from recurrence. Specifically, they used a mixed-effects model and a time-dependent

Cox proportional hazards model conditioning on the unobserved random effects to

build a model for the patients who are susceptible to recurrence in the uncured sub-

population. In these models, different assumptions have been made for the baseline

hazard function. Law et al. (2002) assumed the baseline hazard to be nonparametric

and obtained maximum likelihood estimators of the parameters via a Monte Carlo

EM algorithm. In contrast, Yu et al. (2004) took a Bayesian approach with the base-

line hazard following a Weibull distribution. The Weibull assumption was made for

the computational simplicity in using Markov chain Monte Carlo methods. Their es-

timation results were similar to those achieved by the maximum likelihood estimation

in Law et al. (2002). Yu et al. (2008) extended the use of a Weibull baseline hazard

to a generalized Weibull baseline hazard in order to allow more flexibility.

On the other hand, Brown and Ibrahim (2003b) and Chen et al. (2004) have

proposed joint models with a proportional hazards structure for longitudinal and

survival data with a cure fraction, where the promotion time cure models were used

to fit event times. Brown and Ibrahim (2003b) focused on modeling the association

between the longitudinal markers and time to survival endpoint with the possibility
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of cured patients. Chen et al. (2004) employed a mixed-effects model for longitudinal

biomarkers and the promotion time cure model with a proportional hazards structure

for survival times. In this model, random effects were shared by the longitudinal and

survival components to account for the correlation between them. In both Brown

and Ibrahim (2003b) and Chen et al. (2004), a piecewise exponential distribution was

considered to estimate the baseline distribution function, and Bayesian approaches

were used for inference.

In this paper, to correctly handle the heavy tail of survival distribution by long-

term survivors, we propose a mixed-effects model for longitudinal data and a trans-

formed promotion time cure model for survival times in data where a portion of the

patients can be cured. These two models share the same frailty, but with differ-

ent magnitude. Using transformation gives a flexible way to fit survival data. We

propose to use nonparametric maximum likelihood estimation for efficient inference.

In Section 4.2, we introduce the proposed joint models. In Section 4.3, we provide

the nonparametric maximum likelihood estimators (NPMLE) and describe a sim-

ple algorithm used for implementing the proposed inference procedure. In Section

4.4, we establish asymptotic properties of the proposed estimators. We evaluate the

numerical performance of the proposed method through both simulation studies in

Section 4.5 and an application to the Atherosclerosis Risk in Communities (ARIC)

data in Section 4.6. Finally, concluding remarks are given in Section 4.7 and proofs

of asymptotic properties are provided in Section 4.8.

4.2 Joint Models

Let Y (t) be the longitudinal measurement at time t, T be the time to the survival

event, and Z = {Z(t); t > 0} be the covariate process, where Z(t) is the vector
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of external covariates at time t, possibly time-varying. We introduce latent random

effects to account for the correlation between longitudinal and survival components

on the same subject. Particularly, let b denote the subject-specific random effects

following a multivariate normal distribution with mean zeros and covariance matrix

Σb. We further assume that Y (t) and T are independent, conditional on Z and b.

Then, the proposed joint models for the longitudinal data Y (·) and the population

survival function of T with a cure fraction are given by

Y (t | Z, b) = αTZ1(t) + bT Z̃1(t) + ε(t),

S(t | Z, b) = exp

{
−H

(∫ t

0

eβ
TZ2(u)+(ψ◦b)T Z̃2(u) dF (u)

)}
, (4.1)

where α and β are vectors of unknown regression parameters in the longitudinal and

survival components, respectively, Zk(t) and Z̃k(t) (k = 1, 2) are subsets of Z(t) plus

the unit component, and F (t) is an unspecified distribution function of the event

times. In addition, ε(t) is a white noise process with mean zero and variance σ2
e , ψ is

a set of unknown constants with the same number of elements as b, and ψ ◦ b denotes

the component-wise product of ψ and b. Note in (4.1) that the correlation among the

longitudinal outcomes is formulated through the latent random effects b, and that

the association between longitudinal outcomes and the event time is characterized by

ψ with the shared latent variables b. Thus, for a fixed covariate Z, ψ > 0 implies

the larger longitudinal measures are, the higher hazard rate of the event is. On the

other hand, ψ = 0 implies that the association can be fully explained by the common

covariates in both longitudinal and survival components.

In the model (4.1), H(·) represents a transformation function of the conditional

cumulative hazard function, which is required to be pre-specified in the analysis. The

transformation functions are assumed to be continuously differentiable and strictly
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increasing. For example, H(x) can take a form of the logarithmic transformation,

H(x) =

 log(1 + ηx)/η, η > 0

x, η = 0.

The choices of η = 0 and η = 1 lead to the proportional hazards structure and the

proportional odds structure, respectively.

We notice that the survival model for the entire population in (4.1) includes the

cure rate model by letting t =∞. That is, the cure rate model can be expressed as

lim
t→∞

S(t | Z, b) = exp

{
−H

(∫ ∞
0

eβ
TZ2(u)+(ψ◦b)T Z̃2(u) dF (u)

)}
.

Thus, our joint cure-survival model (4.1) allows us to explore a link between the

longitudinal measures and the probability of being cured through the shared random

effects as well as covariates. Especially, when Z2(t) and Z̃2(t) are time-independent

covariates, z2 and z̃2, respectively, the cure rate can be simplified to

exp[−H(exp{βT z2 + (ψ ◦ b)T z̃2})].

In fact, it is always true that the conditional cure rate is limt→∞ S(t | Z, b) > 0

(improper survival function), because H is assumed to be finite.

Let C be the non-informative censoring time which is independent of (Y (·), T , b)

given Z, and let X = min(T,C) denote the observed event time. The observed data

for the ith subject with mi repeated measurements are defined as Oi= {Yi(tik), Xi,

∆i, Z(t); tik 6 Xi, t 6 Xi, i = 1, . . . , n, k = 1, . . . ,mi}, where ∆i = I(Ti 6 Ci) with

I(·) being the indicator function. Under the model (4.1), the log-likelihood function
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for the observed data is given by

n∑
i=1

log

∫
b

mi∏
k=1

[
1√

2πσ2
e

exp

{
−(Yi(tik)− αTZ1i(tik)− bT Z̃1i(tik))

2

2σ2
e

}]

×
[
f(Xi) e

βTZ2i(Xi)+(ψ◦b)T Z̃2i(Xi) H ′(

∫ Xi

0

eβ
TZ2i(u)+(ψ◦b)T Z̃2i(u) dF (u))

]∆i

× exp

{
−H(

∫ Xi

0

eβ
TZ2i(u)+(ψ◦b)T Z̃2i(u) dF (u))

}
× f(b; Σb) db, (4.2)

where f(b; Σb) is the density function of b with the parameters Σb, and f(t) =

dF (t)/dt and H ′(x) = dH(x)/dx are the first derivatives of F (t) and H(x), respec-

tively.

4.3 Inference Procedure

4.3.1 NPMLEs for Transformation Models

We propose to use the nonparametric maximum likelihood estimation (NPMLE) for

estimating parameters θ = (α, β, ψ, σ2
e , Vec(Σb)) and infinite-dimensional parameter

F (t), where Vec(Σb) denotes the vector consisting of the upper triangular elements

of Σb. To obtain the NPMLEs, in the log-likelihood function (4.2), we treat F as a

step function with jumps only at the observed failure times and replace f(t) by the

jump size of F at t, which is denoted by F{t}.

For commonly used transformation functions such as a logarithmic transformation,

exp{−H(x)} can be expressed as the Laplace transformation of some function φ(t),

t > 0, such that

exp{−H(x)} =

∫ ∞
0

exp(−xt)φ(t) dt.

For example, if we choose φ(t) = t1/η−1 exp(−t/η)/{Γ(1/η) η1/η}, then it is true that

H(x) = log(1 + ηx)/η. Applying the Laplace transformation with a subject-specific
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frailty ζi and using the fact that

H ′(x) exp{−H(x)} =

∫ ∞
0

ζ exp(−xζ)φ(ζ) dζ,

the observed log-likelihood function (4.2) can be rewritten as

ln(θ, F{·})

=
n∑
i=1

log

∫
b

mi∏
k=1

[
1√

2πσ2
e

exp

{
−(Yi(tik)− αTZ1i(tik)− bT Z̃1i(tik))

2

2σ2
e

}]

×
∫
ζi

[
ζi F{Xi} eβ

TZ2i(Xi)+(ψ◦b)T Z̃2i(Xi)
]∆i

× exp

{
−
∫ Xi

0

ζi e
βTZ2i(u)+(ψ◦b)T Z̃2i(u) dF (u)

}
φ(ζi) dζi

× f(b; Σb) db, (4.3)

where we assume that ζi and b are independent. The most attractive feature about

taking transformation in this way is that the modified log-likelihood (4.3) can be seen

as the proportional hazards frailty model with the conditional hazard function

λ(t|Z(t), ζi, bi) = ζi f(t) exp{βTZ2i(t) + (ψ ◦ b)T Z̃2i(t)}.

This makes the algorithm more stable and computationally efficient.

Now, the computation of the NPMLEs is identical to maximizing the modified log-

likelihood function with respect to θ and all jump sizes of F at the observed failure

times. This maximization can be carried out through the following EM algorithm.

4.3.2 EM Algorithm

We describe the EM algorithm, treating ζi and b as missing data to compute the

NPMLEs of (θ, F{·}). In the E-step, we calculate the conditional expectation of
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the log-likelihood function for the complete data, given the observed data Oi and

the current parameter estimates. Particularly, we need to evaluate the integration

of certain functions of (ζi, b), say Ê[ζi gi(b) |Oi]. Hereafter, we drop the conditional

part on the observed data and the current parameter estimates, and abbreviate such

expectation Ê[ζi gi(b) |Oi] as Ê[ζi gi(b)]. Computation of this expectation can become

doable by first obtaining the nested conditional expectation of ζi, given b and the

observed data. That is, Ê[ζi gi(b)] can be calculated as Êb[ Êζi [ζi | b] gi(b)]. With the

fact that the conditional distribution of ζi given b is proportional to

h(ζi, b) = ζ∆i
i exp

{
−
∫ Xi

0

ζi e
βTZ2i(u)+(ψ◦b)T Z̃2i(u) dF (u)

}
,

and the useful relationships by the Laplace transformation, the conditional expecta-

tion of ζi given b has the form of

Êζi [ζi | b] =

∫
ζi

h(ζi, b)φ(ζi)∫
h(ζi, b)φ(ζi) dζi

dζi = H ′(x̃i(b))−
[
H ′′(x̃i(b))

H ′(x̃i(b))

]∆i

,

where x̃i(b) =
∫ Xi

0
eβ

TZ2i(u)+(ψ◦b)T Z̃2i(u) dF (u). Once Êζi [ζi | b] is calculated, which is a

function of b, the conditional expectation Ê[ζi gi(b)] can be computed using numer-

ical approximation methods such as the Gaussian quadrature with Hermite orthog-

onal polynomial. Since the conditional distribution of b given Oi is proportional to

Γ(Oi| b)f(b; Σb), the conditional expectation is calculated by

Ê[ζi gi(b)] =

∫
b

Êζi [ζi | b] gi(b)
Γ(Oi| b)f(b; Σb)∫

b
Γ(Oi| b)f(b; Σb) db

db,
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where

Γ(Oi| b) = exp

{
−

mi∑
k=1

[
(bT Z̃1i(tik))

2 − 2(Yi(tik)− αT1 Z1i(tik)) b
T Z̃1i(tik)

]
/ (2σ2

e)

}

× exp

{
∆i

[
(ψ ◦ b)T Z̃2i(Xi) + logH ′

(∫ Xi

0

eβ
TZ2i(u)+(ψ◦b)T Z̃2i(u) dF (u)

)]}
× exp

{
−H

(∫ Xi

0

eβ
TZ2i(u)+(ψ◦b)T Z̃2i(u) dF (u)

)}
.

In the M-step, we maximize the following objective function of the expected log-

likelihood for the complete data:

n∑
i=1

mi∑
k=1

{
− log σ2

e/2− Ê
[
(Yi(tik)− αTZ1i(tik)− bT Z̃1i(tik))

2/(2σ2
e)
]}

+
n∑
i=1

∆i

{
log ζi + logF{Xi}+ βTZ2i(Xi) + Ê[ψ ◦ b]T Z̃2i(Xi)

}
+

n∑
i=1

{
−Ê

[∫ Xi

0

ζi e
βTZ2i(u)+(ψ◦b)T Z̃2i(u) dF (u)

]
+ Ê [log φ(ζi) + log f(b; Σb)]

}
,

under the restriction of
∑n

i=1 ∆iF{Xi} = 1. Maximizing the above objective function

over (α, σ2
e , Σb) is simple; whereas the rest of parameters (β, ψ, F{.}) do not yield

the closed-form of maximizers, and hence it is required to involve a reliable numerical

approach. By introducing the Lagrange multiplier µ, we solve the following equation

for β:

n∑
i=1

∆i

{
Z2i(Xi)−

∑n
j=1 Rj(Xi)Z2j(Xi)Ê

[
ζj e

q2j(Xi)
]∑n

j=1Rj(Xi)Ê
[
ζj eq2j(Xi)

]
+ µ

}
= 0, (4.4)

the following equation for ψ:

n∑
i=1

∆i

Ê [b ◦ Z̃2i(Xi)
]
−

∑n
j=1Rj(Xi)Ê

[
ζj e

q2j(Xi)(b ◦ Z̃2j(Xi))
]

∑n
j=1Rj(Xi)Ê

[
ζj eq2j(Xi)

]
+ µ

 = 0, (4.5)
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and the following equation for µ:

n∑
i=1

∆iF{Xi} = 1, (4.6)

where Rj(t) = I(Xj > t) and q2j(t) = βTZ2j(t) + (ψ ◦ b)T Z̃2j(t). In addition, F is

estimated as a step function with the following jump size at Xi :

F{Xi} =
∆i∑n

j=1Rj(Xi)Ê
[
ζj eq2j(Xi)

]
+ µ

. (4.7)

To solve these equations at each M-step, we consider a two-step optimization. In the

first step, we estimate µ using the bisection method based on the equation (4.6) and

the fact F{Xi} > 0 (i = 1, . . . , n). Since the left side of (4.6) is a monotone decreasing

function of µ by considering F{Xi} as a function of µ in (4.7), the solution always

exists. In the second step, to update β and ψ, we plug the estimates µ̂ into equations

(4.4) and (4.5), treat them as the functions of µ̂, and solve the equations using one-

step Newton-Raphson algorithm. Updating the jump sizes of F can be easily done

by the equation (4.7) with µ̂.

To obtain the NPMLEs, we iterate the E-step and M-step until the parameter es-

timates converge. The variances of the NPMLEs can be estimated from the inverse of

the observed information matrix for all parameters of (θ, F{·}), under the restriction

of
∑n

i=1 ∆iF{Xi} = 1. The observation information matrix can be computed from

the complete data log-likelihood function denoted by `ci for the ith subject using the

following Louis formula (Louis, 1982) of

−
n∑
i=1

Ê[∇2`ci(b) |Oi]−
n∑
i=1

{
Ê[∇`ci(b)⊗2 |Oi]− Ê[∇`ci(b) |Oi]

⊗2
}
,

where u⊗2 = uuT , ∇ and ∇2 denote the first and the second derivatives with respect
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to parameters, and Ê denotes the conditional expectation of a function of b given the

observed data and is evaluated at the NPMLEs.

4.4 Asymptotic Properties

Let (θ̂, F̂ ) denote the NPMLEs and (θ0, F0) denote the true parameter values of (θ,

F ). Under the regularity conditions, we will establish the asymptotic properties of

the NPMLEs under the following conditions:

(A1) The true parameter value θ0 belongs to the interior of a compact set Θ within

the domain of θ.

(A2) With probability 1, Z(t) is left-continuous with uniformly bounded left and right

derivatives in [0,∞].

(A3) For some constant δ0, P (C =∞|Z) > δ0 > 0 with probability 1.

(A4) For some positive constant M0, M−1
0 < σ2

0e < M0 and M−1
0 < cTΣ0b c < M0 for

any constant vector ‖c‖ = 1.

(A5) The transformation functions H(·) are four-times differentiable with H(0) = 0

and H ′(0) > 0. In addition, there exist positive constants µ0 and κ0 such that

(1 + x)H ′(x) exp{−H(x)} 6 µ0(1 + x)−κ0 .

Furthermore, there exists a constant ρ0 > 0 such that

sup
x

{
|H ′′(x)|+ |H(3)(x)|+ |H(4)(x)|

H ′(x) (1 + x)ρ0

}
<∞,

where H(3) and H(4) are the third and fourth derivatives.

(A6) For some t ∈ [0,∞], if there exist a deterministic function c(t) and v such that
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c(t) + vTZ(t) = 0 with probability 1, then c(t) = 0 and v = 0.

(A7) With some positive probability, Z̃
T

1 Z̃1 has full rank, where Z̃1 denotes a matrix

with each row equal to the observed covariate Z̃1(t)T at the time of each measure-

ment.

(A8) Let K be the number of repeated measures and let db be the dimension of b.

With probability one, P (K > db| Z, X) > 0.

Conditions (A1) - (A3) are the standard assumptions in survival analysis. Condi-

tion (A4) is necessary to prove the existence of the NPMLEs. It can be easily verified

that Condition (A5) holds for all transformations commonly used, including the log-

arithmic transformations described in Section 4.2. Conditions (A6) - (A7) entail the

linear independence of design matrices of covariates for the fixed and random effects.

Condition (A8) prescribes that some subjects have at least db repeated measures.

Under the above conditions, the following theorem shows the consistency of the

NPMLEs (θ̂, F̂ ).

Theorem 4.1. Under Conditions (A1) - (A8),

|θ̂ − θ0| → 0, sup
t∈[0,∞]

|F̂ (t)− F0(t)| → 0, a.s.

Theorem 4.1 then leads to the following results on the asymptotic normality of

(θ̂, F̂ ) and the asymptotic efficiency of θ̂.

Theorem 4.2. Under Conditions (A1) - (A8),
√
n (θ̂− θ0, F̂ (t)−F0(t)) weakly con-

verges to a zero-mean Gaussian process in Rdθ×BV [0,∞], where dθ is the dimension

of θ and BV [0,∞] denotes the space of all functions with bounded variations in [0,∞].

Furthermore, the asymptotic covariance matrix of
√
n (θ̂− θ0) achieves the semipara-

metric efficiency bound for θ0.
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Furthermore, in Section 4.8, we show that the inverse of the observed information

matrix is a consistent estimator of the asymptotic covariance matrix of the NPMLEs.

This result allows us to make inference for any functional of (θ, F (t)). To prove

Theorems 4.1 - 4.2, we apply the general asymptotic theory of Zeng and Lin (2007).

The desired asymptotic properties of the NPMLEs are established followed by the

arguments in Appendix B of Zeng and Lin (2007) if we can verify that their regularity

conditions hold for our joint cure-survival model setting. Checking the regularity

conditions, however, is challenging in our cases. The detailed proofs are provided in

Section 4.8.

4.5 Simulation Studies

In this section, we demonstrate the small-sample performance of the proposed method

through extensive simulation studies. The longitudinal data are generated from

Y (t | z1, z2, b) = 0.7 + z1 − 0.5z2 + b+ ε(t),

and the survival data with a cure proportion are generated from transformation mod-

els

S(t | z1, z2, b) = exp
{
−H

(
e0.5z1−z2+ψb F (t)

)}
,

where z1 is a dichotomous covariate taking the value of 0 or 1 with the equal prob-

ability of 0.5, z2 is a continuous covariate generated from a uniform distribution on

[-1, 1], and ε(t) ∼ N(0, σ2
e) is assumed with σ2

e = 1. The true failure distribution

function in the uncured subpopulation is set to be F (t) = 1− exp(−t).

For each subject, the correlation within repeated measures is reflected by the

subject-specific random intercept b ∼ N(0, σ2
b ) with σ2

b = 0.5, and the negative, no,
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and positive dependences between the longitudinal measures and the cure-survival

rate are simulated through different ψ values of -0.3, 0, and 0.3, respectively. For the

cure-survival model, we consider three types of transformations H(·) representing the

proportional hazards structure (η = 0), the proportional odds structure (η = 1), and

a transformation in the middle of them with η = 0.5.

The non-informative censoring time Ci is generated from a uniform distribution

with varying rates, depending on the chosen transformation, to design a 30∼45%

chance of being right-censored and a 20% chance of being cured. We set longitudinal

measures to be observed every 0.2 unit of time so that each individual can have about

3 repeated measures, on average.

The results based on 1000 replications are presented in Tables 4.1 - 4.3 for n=200

and n=400. Tables 4.1 - 4.3 include the average of the differences between the true

parameter and the estimates (Bias), the sample standard deviation of the parameter

estimators (SE), and the average of the standard error estimators (SEE), and the

coverage probability of 95% confidence intervals (CP). The confidence intervals for

σ2
e and σ2

b are constructed based on the the Satterthwaite approximation.

Table 4.1 shows that the NPMLEs under the proportional hazards structure

H(x) = x are noticeably unbiased, the standard error estimators calculated via the

Louis formula well reflect the true variations of the proposed estimators, and the cov-

erage probabilities are in a reasonable range, even with a moderate sample size of 200.

As the sample size increases to 400, the biases slightly increase for some estimates;

however, they are still very small comparing to the sizes of true parameter values and

the variations of the parameter estimators become smaller, and hence the coverage

probabilities still lie in a reasonable range. The simulation results shown in Tables

4.2 - 4.3 are similar to those for Table 4.1, indicating that the proposed method seems

to work well for H(x) = 2 log(1 + x/2) and H(x) = log(1 + x).
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4.6 Data Application

The proposed method is applied to the data from the Atherosclerosis Risk in Com-

munities (ARIC) study. The main interest of this analysis is to jointly model the

longitudinal pattern of systolic blood pressure (SBP) with the incidence of hospital-

ized myocardial infarction (MI) or fatal coronary heart diseases (CHD) in patients

aged 44-66 years. Our research focuses on a total of 870 white patients living in

Forsyth County, who were diagnosed with hypertension at the first examination in

1987-89. This is because the effect of race, known to be a critical factor for the

incidence, is nested within the center effect in the ARIC study.

For each subject, SBP was measured four times at approximately three-year inter-

vals, in 1987-89, 1990-92, 1993-95 and 1996-98. On the other hand, the event time of

interest, defined as the first time to have either MI or fatal CHD by hospital discharge

records, was followed up from 1987 to 2005 with a median follow-up of 16.6 years.

During 19 years of the study period, we observe that 158 patients had experienced

MI or fatal CHD.

Based on the Kaplan-Meier survival curve in Figure 4.1 (a), we find that the

estimated survival rate at the end of study is very high (79%) even after a sufficient

follow-up period (19 years). We presume that the high tail probability of the survival

curve is due to the patients who are immune to cardiovascular disease, and to adjust

this high censoring rate at the end of study, we believe that a cure rate model is a

suitable approach for the ARIC data. In fitting the cure rate model, we treat patients

as being “cured” or “immune” if they were censored beyond 17.5 years (the largest

observed failure time), and 198 patients were considered immune (Xi = ∞) in the

ARIC data. We note that some of patients who were right-censored before 17.5 years

might indeed have been immune to cardiovascular disease, but it is inconclusive due

to the right-censoring.
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We fit the proposed joint model for the longitudinal SBP trend and MI or fatal

CHD event with the patient’s baseline information; age at entry, gender, low density

lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and indi-

cators for hypertension lowering medication use, diabetes (with fasting glucose >126

mg/dL) and ever smoker were included as covariates. Among them, LDL- and HDL-

cholesterols are standardized at mean 0 and standard deviation 1, and age variable is

centered at the mean age of 54 and divided by 10 to represent a decade. In addition,

a subject-specific random intercept is included in both longitudinal and survival mod-

els to account for the correlation between these two outcomes. We notice that the

shared random intercept can also quantify the association between the longitudinal

SBPs and the event, given covariates.

We apply transformation models H(x) = log(1 + η)/η to cure-survival data by

varying values of η in [0, 1]. This class of transformation allows us to explore the

possibility of the proportional hazards and the proportional odds structures in cure-

survival data. We use the Akaike information criterion (AIC) to determine the best

form of transformation (i.e. η). Using the proposed method in Section 4.3, the NPM-

LEs for the regression coefficients are computed under each transformation model.

The observed log-likelihood function increasing over [0, 1] indicates that the propor-

tional odds cure model is the best fit to the data.

Under the selected best transformation model, Table 4.4 summarizes the estima-

tion results and Figure 4.1 (b) displays the estimated survival distribution for the

uncured patients (Xi < ∞), i.e., Ŝ(t) = 1 − F̂ (t), along with their pointwise 95%

confidence bands. We note that the tail probability in the estimated survival curve

reaches zero in Figure 4.1 (b). The results in Table 4.4 show that age and the use

of hypertension lowering medication are significant factors to explain the pattern of

longitudinal SBP, while age, LDL-cholesterol, and diabetes status are significant fac-
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tors for MI or fatal CHD events. In more detail, older patients who do not take

hypertension medications tend to have higher SBP levels. In terms of MI or fatal

CHD events, the risk grows with age and LDL-cholesterol level. Male patients who

have diabetes are exposed to higher risk of MI or fatal CHD events. For the random

effect b, through the significant variance component σ̂b
2, we note that heterogeneity

between patients exists in repeated measures. We also notice that the highly signifi-

cant ψ̂ suggests that there is a strong association between the longitudinal SBP levels

and MI or fatal CHD - patients with increased SBP levels are likely to have the higher

risk of MI or fatal CHD event.

As an example of quantitative interpretation of the results, the marginal survival

rates (617.5 years) and immune fractions (>17.5 years) for the whole population

are given in Figure 4.2. By comparing each curve to reference (age of 54, female,

HDL-cholesterol 42 mg/dL, LDL-cholesterol 136 mg/dL, no hypertension medication

use, never smoking, no diabetes), we can see that the immunity ratios of (age of 74,

male, LDL-cholesterol 170 mg/dL, diabetes) relative to reference are (0.76, 0.82, 0.88,

0.74), respectively.

Lastly, we compare the results from our proposed joint model (in Table 4.4) with

the one from two separate marginal models (i.e., a linear mixed effects model and a

proportional hazards cure model). We find that ignoring the cure fraction and the

correlation between the longitudinal and survival components (ψ) and fitting separate

marginal models shows substantial variations in the model estimates.

4.7 Concluding Remarks

We have proposed the joint transformation model for longitudinal and survival data

with a cure fraction. Ignoring a heavy tail probability in the survival function, caused

75



by a true cure proportion in the study population, will produce biased estimates for

both regression coefficients and survival prediction. The unique features of the pro-

posed model, compared to the existing joint models, are that it takes the possibility

of patients being cured or immune to disease into account and it allows us to ex-

plore a feasible proportional hazards or proportional odds structure in the cure rate

model through varied forms of transformations. We have used the NPMLEs to make

inferences on the model parameters, and the NPMLEs have been shown to be asymp-

totically efficient. The new EM algorithm has offered a simpler and more stable way

to compute the NPMLEs. In addition, the proposed method has been well evaluated

through simulation studies and illustrated using the ARIC data.

The proposed approach has the advantage of handling time-varying covariates in

the cure-survival model. Lu and Ying (2004) generalized transformation cure models

based on a type of mixture cure model. However, their approach is limited to only

time-independent covariates due to the form of transformations. Furthermore, the

extra constraint on the tail of the estimated transformation function is necessary to

resolve the identifiability issue of cure parameters with a finite sample size, likewise

in the usual mixture cure models (Taylor, 1995; Sy and Taylor, 2000; Peng and Dear,

2000).

In this paper, we assumed that the number of observations of repeated measures

are independent of survival data. Our joint cure model can be extended in a way

to account for the informative observation process. The AIC was used to determine

the best transformation, but there exist other criteria for model selection such as the

Bayes information criterion and cross-validation (‘leave-one-subject-out’). Further

method development for model checking would be useful for the practical application

of the joint models.
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4.8 Proof of Asymptotic Properties

This section proves Theorems 4.1 - 4.2 stated in Section 4.4 by applying the general

asymptotic theory of Zeng and Lin (2007). Specifically, it is easy to see that our

conditions (A1) - (A8) imply (C1) - (C4), (C6), (C8) of Zeng and Lin (2007b), and

it remains to prove the two identifiability conditions (C5) and (C7) of Zeng and

Lin (2007b). The first identifiability is the key step to prove the consistency of the

NPMLEs, and the second is to entail the invertibility of the observed information

matrix at the true parameters for the proof of the asymptotic normality.

Proof of the First Identifiability

Proof. First, we verify the first identifiability condition (C5) in Appendix B of Zeng

and Lin (2007b). Suppose that the likelihood function for (α, β, ψ, σ2
e , Vec(Σb)) is

the same as that for the true parameter values (α0, β0, ψ0, σ2
0e, Vec(Σ0b)). That is,

for arbitrary K > 0,

∫
b

(2πσ2
e)
−K

2 exp

{
−(Y −Z1α− Z̃1b)

T (Y −Z1α− Z̃1b)

2σ2
e

}
×
[
f(x) eβ

TZ2(x)+(b◦ψ)T Z̃2(x) H
′
(q(x))

]∆

exp{−H(q(x))} f(b; Σb) db

=

∫
b

(2πσ2
0e)
−K

2 exp

{
−(Y −Z1α0 − Z̃1b)

T (Y −Z1α0 − Z̃1b)

2σ2
0e

}
×
[
f0(x) eβ

T
0 Z2(x)+(b◦ψ0)T Z̃2(x) H

′
(q0(x))

]∆

exp{−H(q0(x))} f(b; Σ0b) db,(4.8)

where bold Y denotes the vector of the observed longitudinal measures at time

s1, . . . , sK , and Z1 and Z̃1 in bold type denote matrices with each row equal to the

observed covariate Z1(sk)
T and Z̃1(sk)

T at k = 1, . . . , K, respectively. In addition,
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q(t) =
∫ t

0
eβ

TZ2(u)+(b◦ψ)T Z̃2(u) dF (u), and q0(t) is q(t) evaluated at the true parameter

values, and f(b; Σb) is the density function of the (multivariate) normal distribution

with mean zeros and covariance matrix Σb. From now, we take the following actions

on both sides of (4.8).

Step 1. For the proof of the identifiability of the longitudinal component, we con-

sider a case ∆ = 0 and X ≈ 0.

Using the fact that
∫
b f(b; Σb) db =

∫
b f(b; Σ0b) db = 0 and considering E[Y (sk)]

conditional on b, we have αTZ1(sk) = αT0 Z1(sk), for k = 1, . . . , K. By Condition

(A6), we prove α = α0. Similarly, we consider E[Y (sk)Y (sk′)] and Var(Y (sk)), given

b, and obtain for k 6= k′

∫
b

{
αT0 Z1(sk) + bT Z̃1(sk)

}{
αT0 Z1(sk′) + bT Z̃1(sk′)

}
f(b; Σb) db

=

∫
b

{
αT0 Z1(sk) + bT Z̃1(sk)

}{
αT0 Z1(sk′) + bT Z̃1(sk′)

}
f(b; Σ0b) db,

followed by the proof of Σb = Σ0b from (A6), and

∫
b

{
σ2
e + bT Z̃1(sk)Z̃1(sk)

T b
}
f(b; Σb) db

=

∫
b

{
σ2

0e + bT Z̃1(sk)Z̃1(sk)
T b
}
f(b; Σ0b) db,

for k = 1, . . . , K. Accordingly, we have that σ2
e = σ2

0e.

Step 2. For the survival component, suppose ∆ = 0 and X = t. Then, (4.8) implies

Eb [ exp {−H(q(t))}] = Eb [ exp {−H(q0(t))}] ,
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where b follows a normal distribution with mean µb = VbZ̃
T

1 (Y − Z1α0)/σ2
0e and

covariance matrix Vb = [Σ−1
0b + Z̃

T

1 Z̃1/σ
2
0e]
−1. For fixed Y , Z1, and Z̃1, since b is the

complete statistic for µb, we can have that

exp

{
−H(

∫ t

0

eβ
TZ2(u)+(b◦ψ)T Z̃2(u) dF (u))

}
= exp

{
−H(

∫ t

0

eβ
T
0 Z2(u)+(b◦ψ0)T Z̃2(u) dF0(u))

}
.

Furthermore, it is followed from the one-to-one mapping of H and exponential func-

tion that

log(f(t)) + βTZ2(t) + bT (ψ ◦ Z̃2(t)) = log(f0(t)) + βT0 Z2(t) + bT (ψ0 ◦ Z̃2(t)),

with probability 1. By taking the expectation with respect to b for fixed Y , Z1, and

Z̃1, we conclude that β = β0, f(t) = f0(t) and ψ = ψ0 from the Condition (A6).

Proof of the Second Identifiability

Proof. Next, we verify the second identifiability condition (C7) in Appendix B of Zeng

and Lin (2007b). It starts from the score equation along with the path (α0 + ξν1,

β0 + ξν2, ψ0 + ξν3, σ2
0e + ξν4, Vec(Σ0b) + ξνb, F0 + ξ

∫
h dF0). We define Db as the

symmetric matrix such that Vec(Db) = νb.

Step 1. To make the score equation simple for the proofs of ν1 = 0, ν4 = 0 and

Db = 0, we consider the same case ∆ = 0 and X ≈ 0 as used in Step 1 of the first

identifiability proof. We define

V −1
b = Σ−1

0b + Z̃
T

1 Z̃1/σ
2
0e, and µb = Vb Z̃

T

1 (Y −Z1α0)/σ2
0e,
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then, the score equation is given by

0 = −1

2
Tr(Σ−1

0b Db) +
1

2
µTb Σ−1

0b Db Σ−1
0b µb +

1

2
Tr(Σ−1

0b Db Σ−1
0b Vb) +

ν4

2σ4
0e

Tr(Z̃
T

1 Z̃1Vb)

−ν4K

2σ2
0e

+
νT1 Z

T
1 (Y −Z1α0 − Z̃1µb)

σ2
0e

+
ν4

2σ4
0e

{
(Y −Z1α0)T (Y −Z1α0)− 2(Y −Z1α0)Z̃1µb + µTb Z̃

T

1 Z̃1µb

}
. (4.9)

By comparing coefficients for the constant, linear and quadratic terms of (Y −Z1α0),

we have that

0 =
ν4

2σ2
0e

[K − Tr(Z̃
T

1 Z̃1Vb)

σ2
0e

] +
1

2
Tr(Σ−1

0b Db)−
1

2
Tr(Σ−1

0b Db Σ−1
0b Vb), (4.10)

0 =
νT1 Z

T
1

σ2
0e

[I − Z̃1VbZ̃
T

1

σ2
0e

], (4.11)

0 =
ν4

2σ4
0e

[I − 2Z̃1VbZ̃
T

1

σ2
0e

+
Z̃1VbZ̃

T

1 Z̃1VbZ̃
T

1

σ4
0e

] +
Z̃1VbΣ

−1
0b Db Σ−1

0b VbZ̃
T

1

2σ4
0e

. (4.12)

Since [I − Z̃1VbZ̃
T

1 /σ
2
0e] is positive definite, we can see that ν1 = 0 in (4.11). To

simplify (4.12), we multiply Z̃
T

1 from the left, Z̃1 from the right, and then [Z̃
T

1 Z̃1]−1

from the right on both sides of (4.12). Using the fact that Σ−1
0b Db = I− Z̃T

1 Z̃1Vb/σ
2
0e,

the equation (4.12) becomes

ν4

2σ2
0e

[
I − Z̃

T

1 Z̃1Vb
σ2

0e

]
+
Z̃
T

1 Z̃1Vb Σ−1
0b Db

2σ2
0e

= 0, (4.13)

and the equation (4.10) becomes

ν4

2σ2
0e

[
K − Tr(Z̃

T

1 Z̃1Vb)

σ2
0e

]
+

1

2σ2
0e

Tr(Z̃
T

1 Z̃1Vb Σ−1
0b Db) = 0. (4.14)
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After taking the trace of (4.13) and subtracting from the equation (4.14), we obtain

that

ν4

2σ2
0e

(K − db) = 0,

where db stands for the dimension of b. Based on Condition (A8), we conclude that

ν4 = 0, and hence Db = 0 in (4.13) by Condition (A7).

Step 2. For the second identifiability of the survival component, we set ∆ = 0 and

X = t. Then, the score equation can be written as

Eb [exp{−H(q0(t))}H(q0(t)) q̇0(t)] = 0, (4.15)

where q̇0(t) =
∫ t

0
{h(u) + νT2 Z2(u) + (ν3 ◦ b)T Z̃2(u)} eβT0 Z2(u)+(b◦ψ0)T Z̃2(u) dF0(u), and b

is normally distributed with mean µb and covariance matrix Vb. By the completeness

of the exponential family of b, we can have

exp{−H(q0(t))}H(q0(t)) q̇0(t) = 0,

for any fixed Y , Z1 and Z̃1 with probability 1. Since H(q0(t)) > 0 for ∀t > 0 from

(A5), we can obtain q̇0(t) = 0, and hence

h(t) + νT2 Z2(t) + (ν3 ◦ b)T Z̃2(t) = 0.

Clearly, we attain ν2 = 0, ν3 = 0 and h = 0 by (A6).

Finally, we complete the proofs of Theorems 4.1 - 4.2 by Theorems 1 - 2 in Zeng and

Lin (2007b). Let In denote the negative Hessian matrix of the observed log-likelihood

function with respect to (θ, F{·}). As a remark, by following Theorem 3 in Zeng and

Lin (2007b), we can show that In is invertible for large n, and (νT , UT )nI−1
n (νT , UT )T
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is the consistent estimator of the asymptotic variance of

√
n

{
νT (θ̂ − θ0) +

∫
u(t) d(F̂ − F0)

}
,

where U is the vector of u(·) at the observed failure times.
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Table 4.1: Simulation results for H(x) = x. tp represents the pth percentile.

N = 200 N = 400

Parameter True Bias SE SEE CP Bias SE SEE CP

ψ = −0.3
α 0.7 -0.009 0.101 0.099 0.944 -0.012 0.073 0.074 0.952

1.0 0.002 0.143 0.142 0.952 -0.004 0.104 0.103 0.947
-0.5 0.002 0.125 0.129 0.954 -0.000 0.093 0.096 0.951

σ2
e 1.0 -0.001 0.064 0.064 0.956 -0.000 0.042 0.041 0.946
β 0.5 0.009 0.133 0.136 0.951 0.009 0.096 0.094 0.946

-1.0 -0.020 0.165 0.168 0.946 -0.016 0.120 0.118 0.945
ψ -0.3 -0.010 0.192 0.204 0.968 -0.026 0.148 0.144 0.952
F (t25) 0.25 -0.005 0.033 0.035 0.949 -0.003 0.025 0.025 0.946
F (t50) 0.50 -0.004 0.048 0.051 0.954 -0.005 0.035 0.035 0.951
F (t75) 0.75 -0.003 0.053 0.054 0.942 -0.002 0.036 0.036 0.952
σ2
b 0.5 -0.008 0.088 0.090 0.963 0.006 0.066 0.064 0.942

ψ = 0.0
α 0.7 -0.008 0.102 0.098 0.936 -0.010 0.070 0.070 0.941

1.0 -0.002 0.147 0.141 0.943 -0.001 0.099 0.099 0.959
-0.5 0.002 0.129 0.127 0.942 0.008 0.089 0.090 0.953

σ2
e 1.0 0.001 0.062 0.064 0.963 -0.002 0.046 0.045 0.947
β 0.5 0.007 0.130 0.129 0.955 0.004 0.089 0.090 0.956

-1.0 -0.013 0.166 0.160 0.941 -0.009 0.116 0.112 0.935
ψ 0.0 -0.017 0.186 0.190 0.967 -0.018 0.128 0.130 0.952
F (t25) 0.25 -0.003 0.034 0.034 0.941 -0.002 0.023 0.024 0.945
F (t50) 0.50 -0.004 0.050 0.049 0.936 -0.002 0.035 0.034 0.944
F (t75) 0.75 -0.002 0.054 0.052 0.937 -0.001 0.037 0.037 0.948
σ2
b 0.5 -0.009 0.084 0.088 0.965 -0.003 0.062 0.062 0.961

ψ = 0.3
α 0.7 -0.011 0.098 0.099 0.955 -0.011 0.071 0.070 0.943

1.0 0.002 0.141 0.141 0.944 -0.001 0.100 0.099 0.944
-0.5 0.001 0.122 0.129 0.959 0.006 0.094 0.090 0.944

σ2
e 1.0 0.001 0.062 0.065 0.960 -0.001 0.046 0.046 0.946
β 0.5 -0.003 0.133 0.135 0.948 -0.003 0.093 0.093 0.953

-1.0 -0.015 0.166 0.168 0.954 -0.002 0.112 0.115 0.958
ψ 0.3 -0.003 0.200 0.202 0.953 -0.023 0.137 0.136 0.955
F (t25) 0.25 -0.002 0.033 0.035 0.961 -0.000 0.023 0.025 0.953
F (t50) 0.50 -0.001 0.050 0.051 0.950 -0.000 0.034 0.035 0.955
F (t75) 0.75 -0.000 0.053 0.053 0.937 0.000 0.037 0.037 0.950
σ2
b 0.5 -0.011 0.085 0.089 0.966 -0.007 0.060 0.062 0.958
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Table 4.2: Simulation results for H(x) = 2 log(1 + x/2). tp represents the pth per-
centile.

N = 200 N = 400

Parameter True Bias SE SEE CP Bias SE SEE CP

ψ = −0.3
α 0.7 -0.001 0.096 0.099 0.953 -0.008 0.070 0.070 0.944

1.0 -0.004 0.137 0.138 0.954 -0.002 0.097 0.098 0.942
-0.5 0.003 0.126 0.125 0.952 0.002 0.087 0.088 0.956

σ2
e 1.0 0.004 0.063 0.063 0.943 -0.000 0.045 0.044 0.938
β 0.5 0.009 0.174 0.174 0.944 0.010 0.121 0.121 0.955

-1.0 -0.021 0.209 0.209 0.950 -0.014 0.149 0.146 0.945
ψ -0.3 -0.034 0.286 0.278 0.955 -0.034 0.199 0.192 0.944
F (t25) 0.25 -0.005 0.036 0.038 0.949 -0.003 0.027 0.026 0.944
F (t50) 0.50 -0.005 0.054 0.054 0.948 -0.004 0.038 0.038 0.950
F (t75) 0.75 -0.004 0.059 0.057 0.932 -0.002 0.040 0.040 0.948
σ2
b 0.5 -0.008 0.091 0.087 0.949 -0.002 0.064 0.061 0.950

ψ = 0.0
α 0.7 -0.008 0.104 0.099 0.930 -0.005 0.070 0.070 0.952

1.0 -0.005 0.144 0.138 0.950 -0.002 0.099 0.098 0.943
-0.5 0.011 0.121 0.124 0.954 0.006 0.084 0.088 0.954

σ2
e 1.0 -0.001 0.064 0.062 0.945 -0.001 0.044 0.044 0.946
β 0.5 0.005 0.171 0.170 0.945 0.003 0.120 0.118 0.949

-1.0 -0.012 0.211 0.204 0.951 -0.007 0.152 0.143 0.939
ψ 0.0 -0.031 0.286 0.270 0.936 -0.027 0.191 0.188 0.943
F (t25) 0.25 -0.005 0.035 0.037 0.945 -0.003 0.027 0.026 0.942
F (t50) 0.50 -0.007 0.051 0.053 0.953 -0.003 0.038 0.038 0.952
F (t75) 0.75 -0.004 0.056 0.056 0.939 -0.001 0.040 0.040 0.948
σ2
b 0.5 -0.009 0.082 0.085 0.966 -0.007 0.059 0.060 0.958

ψ = 0.3
α 0.7 -0.005 0.102 0.098 0.943 -0.006 0.067 0.070 0.961

1.0 -0.005 0.141 0.138 0.936 -0.004 0.095 0.098 0.951
-0.5 0.006 0.123 0.124 0.951 0.003 0.086 0.088 0.961

σ2
e 1.0 -0.002 0.062 0.062 0.952 0.000 0.043 0.044 0.952
β 0.5 0.000 0.169 0.173 0.954 -0.007 0.121 0.120 0.947

-1.0 -0.018 0.212 0.208 0.949 0.001 0.144 0.145 0.958
ψ 0.3 -0.011 0.287 0.275 0.950 -0.028 0.191 0.190 0.946
F (t25) 0.25 -0.004 0.035 0.037 0.949 0.000 0.027 0.026 0.939
F (t50) 0.50 -0.002 0.053 0.054 0.950 0.000 0.038 0.038 0.953
F (t75) 0.75 -0.001 0.057 0.057 0.949 0.001 0.041 0.040 0.951
σ2
b 0.5 -0.010 0.083 0.086 0.964 -0.004 0.061 0.061 0.957
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Table 4.3: Simulation results for H(x) = log(1 + x). tp represents the pth percentile.

N = 200 N = 400

Parameter True Bias SE SEE CP Bias SE SEE CP

ψ = −0.3
α 0.7 -0.002 0.099 0.098 0.945 -0.002 0.071 0.070 0.942

1.0 -0.008 0.137 0.136 0.949 -0.005 0.095 0.096 0.958
-0.5 0.007 0.125 0.122 0.944 0.000 0.088 0.086 0.947

σ2
e 1.0 -0.003 0.062 0.061 0.952 -0.001 0.043 0.043 0.953
β 0.5 0.009 0.213 0.207 0.948 0.003 0.139 0.144 0.960

-1.0 -0.030 0.255 0.245 0.938 -0.008 0.175 0.170 0.950
ψ -0.3 -0.048 0.359 0.348 0.943 -0.028 0.254 0.243 0.944
F (t25) 0.25 -0.006 0.040 0.040 0.939 -0.003 0.028 0.028 0.951
F (t50) 0.50 -0.006 0.059 0.058 0.941 -0.000 0.041 0.041 0.950
F (t75) 0.75 -0.003 0.063 0.061 0.940 -0.000 0.044 0.043 0.942
σ2
b 0.5 -0.008 0.083 0.085 0.965 -0.004 0.063 0.060 0.940

ψ = 0.0
α 0.7 -0.008 0.102 0.099 0.933 -0.004 0.072 0.070 0.952

1.0 0.000 0.142 0.136 0.947 0.000 0.097 0.097 0.956
-0.5 0.004 0.122 0.122 0.957 -0.001 0.087 0.086 0.944

σ2
e 1.0 0.003 0.060 0.061 0.955 -0.001 0.043 0.043 0.946
β 0.5 0.005 0.205 0.203 0.954 -0.001 0.144 0.142 0.953

-1.0 -0.016 0.239 0.241 0.948 -0.009 0.166 0.168 0.947
ψ 0.0 -0.031 0.359 0.349 0.942 -0.025 0.244 0.240 0.945
F (t25) 0.25 -0.005 0.041 0.040 0.940 -0.002 0.027 0.028 0.953
F (t50) 0.50 -0.003 0.057 0.058 0.944 -0.000 0.041 0.041 0.952
F (t75) 0.75 -0.001 0.061 0.060 0.934 -0.000 0.043 0.043 0.933
σ2
b 0.5 -0.015 0.085 0.083 0.957 -0.003 0.061 0.060 0.949

ψ = 0.3
α 0.7 -0.001 0.097 0.099 0.947 -0.008 0.069 0.070 0.949

1.0 -0.008 0.138 0.136 0.939 0.005 0.096 0.096 0.951
-0.5 -0.001 0.121 0.122 0.958 0.007 0.085 0.086 0.949

σ2
e 1.0 0.002 0.062 0.061 0.946 -0.001 0.042 0.043 0.959
β 0.5 -0.007 0.205 0.205 0.956 -0.004 0.146 0.143 0.943

-1.0 -0.019 0.253 0.243 0.941 0.002 0.173 0.170 0.942
ψ 0.3 -0.035 0.352 0.350 0.956 -0.031 0.246 0.243 0.951
F (t25) 0.25 -0.004 0.039 0.040 0.943 -0.000 0.029 0.028 0.936
F (t50) 0.50 -0.004 0.058 0.058 0.951 0.000 0.042 0.041 0.949
F (t75) 0.75 -0.003 0.062 0.061 0.931 -0.000 0.043 0.043 0.942
σ2
b 0.5 -0.012 0.083 0.084 0.960 -0.007 0.059 0.060 0.950
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Table 4.4: Analysis results for the ARIC study. The 50:50 mixture of χ2 distributions
is used for testing variances.

Effect Estimate Std.Error p-value

Longitudinal measures of SBP
Intercept 1.057 0.064 < .0001
Age 0.334 0.045 < .0001
Male -0.015 0.057 0.7910
LDL-cholesterol (mg/dL) 0.011 0.023 0.6409
HDL-cholesterol (mg/dL) 0.025 0.021 0.2260
Hypertension medication (yes vs. no) -0.561 0.055 < .0001
Ever smoker (yes vs. no) -0.052 0.053 0.3306
Diabetes 0.100 0.077 0.1975
σ2
e 0.500 0.016 < .0001
σ2
b 0.337 0.025 < .0001

MI/fatal CHD event
Intercept -2.231 0.271 < .0001
Age 0.526 0.174 0.0025
Male 0.700 0.224 0.0018
LDL-cholesterol (mg/dL) 0.248 0.085 0.0034
HDL-cholesterol (mg/dL) -0.130 0.091 0.1502
Hypertension medication (yes vs. no) -0.030 0.207 0.8853
Ever smoker (yes vs. no) 0.308 0.207 0.1368
Diabetes (> 126 vs. <126 mg/dL) 1.152 0.231 < .0001
ψ 0.487 0.206 0.0182
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Figure 4.1: In the ARIC data (a) Kaplan-Meier survival curve of the entire study
population; (b) Estimated survival curve of the non-immune subpopulation under
the joint cure-survival model with the proportional odds structure. The solid curves
are point estimates, and the dotted curves are 95% confidence bands.
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 Cure threshold (17.5 years) 

Reference (CR=0.90)
Age: 74 years old (CR=0.76)
Male: yes (CR=0.82)
LDL: 170 mg/dL (CR=0.88)
Diabetes: >=  126 mg/dL (CR=0.74)  

Figure 4.2: Predicted marginal survival rates of the entire population using the results
in Table 4.4. The rates beyond the cure threshold are interpreted as the immune
fractions or the cure rates (CR). Reference is taken for age of 54, female, HDL-
cholesterol 42 mg/dL, LDL-cholesterol 136 mg/dL, no hypertension medication use,
never smoking, and no diabetes.
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Chapter 5

Partially Linear Model for

Longitudinal Data with

Informative Censoring

5.1 Introduction

Joint analysis of longitudinal and survival data, where the longitudinal data are re-

peatedly measured at irregular times, but are subject to informative right-censoring,

has received considerable attention in recent literature. Methods and theory for the

joint analysis with the fully parameterized mean structure of longitudinal responses

have been well developed (Zeng and Cai, 2005a,b), while some work has considered

relaxing distributional assumptions on random effects (Tsiatis and Davidian, 2001;

Song et al., 2002; Brown and Ibrahim, 2003a). However, in some longitudinal data,

the full parametric specification between longitudinal responses and covariates may

be insufficient to reflect the complicated patterns. Examples include longitudinal tra-

jectories of CD4 cell counts (Zeger and Diggle, 1994; Lin and Ying, 2001; Huang et al.,

2002; Brown et al., 2005) and time-varying treatment effects (Hogan et al., 2004) in



HIV/AIDS research; time-varying effects of gender and HIV status on the growth of

infants born from HIV infected mothers (Hoover et al., 1998); age effects on child-

hood respiratory disease (Diggle et al., 2002); and treatment effects on the number of

bladder tumors over time (Sun et al., 2005; Liang et al., 2009). In other applications,

it was shown that these longitudinal measures were affected by informative drop-out

of patients, for instance, due to death or side effects of treatments (Vonesh et al.,

2006; Liu et al., 2007). Motivated by these practical examples, we focus on modeling

trajectories of longitudinal responses with an unspecified smooth function and linear

covariate effects, while taking informative right-censoring into account. We treat the

informative censorship as an event that terminates subsequent observations such as

death and withdrawal. Advantages of the semiparametric approach are that it allows

for an easier interpretation of the covariate effects, compared to standard nonpara-

metric regression models, and is a natural way to assess the effect of covariates on

the censoring process.

In the absence of informative censoring, partially linear models for repeated mea-

surements were developed by Zeger and Diggle (1994), Moyeed and Diggle (1994),

Zhang et al. (1998), Rice and Wu (2001), and Lin and Carroll (2001), among oth-

ers. For estimation, they adapted different nonparametric regression techniques such

as kernal smoothing, smoothing splines, and regression splines. For a more detailed

literature review, we refer readers to Section 2.1.2.

In the presence of informative censoring, Hogan et al. (2004) developed a varying-

coefficient mixture model of longitudinal data, conditional on a discrete or continuous

censoring time. In the conditional model, covariate effects were allowed to depend on

informative censoring time through an unspecified coefficient function of the censoring

time, and step functions or cubic smoothing splines (depending on the continuity

of the underlying censoring time) were used for estimation of coefficient functions.
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Due to the conditional structure, use of their model is restricted to investigators

who need to assess how the covariates affect differently longitudinal data and the

censoring process. In contrast, a joint model was proposed by Brown et al. (2005),

where patterns of longitudinal markers using a partially linear model and an event

time using a proportional hazards model were simultaneously modeled. They used

cubic B-splines to estimate the nonparametric function in the longitudinal component,

while using piecewise constants to estimate the baseline hazard function. Estimation

procedures were implemented through a Bayesian approach.

In this paper, we propose a partially linear model for longitudinal data while al-

lowing simultaneously the underlying censoring times to be possibly dependent on

covariates through general transformation models, including the proportional haz-

ards and the proportional odds models as special cases. We use B-splines to estimate

the baseline function of repeated measurements. A key advantage of B-splines is its

computational simplicity in the use of a small number of knots and implementation

of a parametric regression using a fixed number of base functions. Use of the B-

spline method counterbalances the model complexity in the joint modeling approach.

Through the flexible but readily interpretable modeling approach, we can detect sig-

nificant changes in the level or direction of the trajectory, which may not be found in

linear mixed effects models due to the underlying parametric model constraints, and

we can also correct biases caused by informative censoring.

The rest of the chapter is organized as follows. We introduce the partially linear

model of longitudinal data with informative censoring in Section 5.2, and we describe

efficient inference procedures based on maximum likelihood estimation (MLE) via a

simple EM algorithm in Section 5.3. In Section 5.4, we establish asymptotic proper-

ties of the proposed MLEs. We assess the validity of the proposed method through

simulated datasets in Section 5.5 and an example of medical costs data in Section
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5.6. Finally, we conclude with some remarks in Section 5.7 and provide proofs of the

asymptotic properties in Section 5.8.

5.2 Joint Models

Let Y (t) be the longitudinal response at time t, and let T be the informative censoring

time. We define X = {X(t); t > 0} and Z = {Z(t); t > 0} as the covariate processes

of fixed and random effects, respectively, where X(t) and Z(t) are the vectors of

external covariates at time t, possibly time-varying. We introduce a common latent

variable b to account for the correlation between Y (t) and T , assuming b follows a

(multivariate) normal distribution with mean zeros and covariance matrix Σb. We

further assume that Y (t) and T are independent, conditional on X , Z and b. We

then propose to jointly model Y (t) through a partially linear model

Y (t | X ,Z, b) = α(t) + βTX1(t) + bTZ1(t) + ε(t), (5.1)

and T through the transformed Cox model with the cumulative hazard function

Λ(t | X ,Z, b) = H

(∫ t

0

exp{γTX2(u) + (φ ◦ b)TZ2(u)} dΛ(u)

)
, (5.2)

where α(t) is the underlying nonparametric trajectory, β and γ are the vectors of

unknown regression coefficients, and Λ(·) is an unspecified increasing function. In the

models, Xi(t) and Zi(t) (i = 1, 2) are subsets of X(t) and Z(t), respectively, and ε(t)

is a white noise process with variance σ2
e . In the model (5.2), φ is a set of unknown

constants with the same number of elements as b, and φ ◦ b denotes the component-

wise product of φ and b. We note that informative censorship in longitudinal data is

adjusted by φ in (5.2) with the shared frailty b and the common covariates between
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the longitudinal and censoring models.

In the model (5.2), H(·) represents a transformation function of the cumulative

hazard function of the censoring time, which is required to be specified in the analysis.

The transformation function is assumed to be continuously differentiable and strictly

increasing. For example, H(x) can take a form of the logarithmic transformation,

H(x) =

 log(1 + ηx)/η, η > 0

x, η = 0.

The choices of η = 0 and η = 1 lead to the proportional hazards model and the

proportional odds model, respectively.

Let C be the non-informative censoring time assumed to be independent of (Y (·),

T , b) given X and Z, and let V = min(T,C) denote the observed censoring time.

The observed data for the ith subject with ni repeated measurements are denoted by

Oi= {Yi(tij), Vi, ∆i, X(t), Z(t); tij 6 Vi, t 6 Vi, i = 1, . . . , n, j = 1, . . . , ni}, where

∆i = I(Ti 6 Ci) with I(·) being the indicator function. The log-likelihood function

for the observed data is given by

n∑
i=1

log

∫
b

ni∏
j=1

[
1√

2πσ2
e

exp

{
−(Yi(tij)− α(tij)− βTX1i(tij)− bTZ1i(tij))

2

2σ2
e

}]

×
[
λ(Vi) e

γTX2i(Vi)+(φ◦b)TZ2i(Vi) H ′(

∫ Vi

0

eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u))

]∆i

× exp

{
−H(

∫ Vi

0

eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u))

}
× f(b; Σb) db, (5.3)

where f(b; Σb) is the density function of b with the parameters Σb, and λ(t) = dΛ(t)/dt

and H ′(x) = dH(x)/dx are the first derivatives of Λ(t) and H(x), respectively.
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5.3 Inference Procedure

We propose to use sieve maximum likelihood estimation (Shen, 1997) for infinite-

dimensional parameter α(t), and nonparametric maximum likelihood estimation for

parameters θ = (β, γ, φ, σ2
e , Vec(Σb)) and infinite-dimensional parameter F (t), where

Vec(Σb) denotes the vector consisting of the upper triangular elements of Σb.

5.3.1 Sieve Approximation

Suppose that the subjects are followed up for a fixed time τ . We approximate α(t)

in (5.1) through a finite number of basis functions in a sieve space of t in T = [0, τ ],

as follows:

α(t) '
m+p+1∑
k=1

ζkB
p
k(t),

where {Bp
k(·)} is a basis function of t with the degree p, ζk is the regression coefficient

with a fixed knot sequence, and m is the number of control (interior) points in the

sieve space. Specifically, the sieve space for α(t) is defined as

Sn(p,m,Mn) =

{
α(t) : α(t) =

m+p+1∑
k=1

ζkB
p
k(t),

m+p+1∑
k=1

|ζk| 6 Mn

}
,

on a finite partition of T

{
0 = s1 = · · · = sp+1 < sp+2 < · · · < sm+p+1 < sm+p+2 = · · · = sm+2(p+1) = τ

}
.

The second condition in Sn(p,m,Mn) guarantees the sieve space is a bounded set in

a finite dimensional space. Unlike parametric regression, the number of knots and

the basis function at each knot k need to be estimated from the data. In particular,
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we use cubic B-spline functions (p = 3),

Bp
k(t) =

t− sk
sk+p − sk

Bp−1
k (t) +

sk+p+1 − t
sk+p+1 − sk+1

Bp−1
k+1(t), for t ∈ [0, τ ]

and B0
k(t) = I(sk 6 t < sk+1) for k = 1, . . . , (m + p + 1). Figure 5.1 displays one

example of the cubic B-spline curves {Bp
k(t)}9

k=1 for t ∈ [0, 1] with 5 control points

{0.1, 0.15, 0.2, 0.4, 0.7}. We notice in Figure 5.1 that, for a given t value, only at

most 4 basis functions among {Bp
k(t)} are nonzero, therefore, α(t) is approximated

by a linear combination of {Bp
k(t)} on (p + 1) nearest knot points at any point t.

We let the data choose the control point {sk} by using percentiles of the observed

longitudinal measurement times. It can prevent an optimization problem in {ζk}

estimation, caused by the sparse data from informative right-censoring in the later

study period. Conditional on m, we can use the methodology that has been developed

for the parametric longitudinal data analysis in this nonparametric context.

5.3.2 NPMLEs for Transformation Models

To obtain the NPMLEs, in the log-likelihood function (5.3), we treat Λ as a step

function with jumps only at the observed failure times and replace λ(t) by the jump

size of Λ at t, which is denoted by Λ{t}.

For commonly used transformation functions such as a logarithmic transformation,

exp{−H(x)} can be expressed as a Laplace transformation of some function δ(ξ)

for ξ > 0. For example, if we choose a gamma frailty ξ with the density function

δ(ξ) = ξ1/η−1 exp(−ξ/η)/{Γ(1/η) η1/η}, we can show that the transformation H in

Section 5.2 can be expressed by

∫ ∞
0

exp(−xξ) δ(ξ) dξ = (1 + ηx)−1/η = exp{−H(x)}.
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Applying the Laplace transformation on H(·) and the sieve approximation for α(t)

and using the fact that

H ′(x) exp{−H(x)} =

∫ ∞
0

ξ exp(−xξ) δ(ξ) dξ,

the observed log-likelihood function (5.3) can be rewritten as

ln(ζ, θ, Λ{·})

=
n∑
i=1

log

∫
b

(2πσ2
e)
−ni

2 exp

[
−

ni∑
j=1

{
Yi(tij)− ζTBp(tij)− βTX1i(tij)− bTZ1i(tij)

}2

2σ2
e

]

×
∫
ξ

[
ξ Λ{Vi} exp{γTX2i(Vi) + (φ ◦ b)TZ2i(Vi)}

]∆i

× exp

{
−
∫ Vi

0

ξ eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

}
δ(ξ) dξ × f(b; Σb) db, (5.4)

where ζ = (ζ1, . . . , ζm)T , Bp(t) = (Bp
1(t), . . . , Bp

m(t))T , and ξ is assumed to be inde-

pendent of b. The most attractive feature about using the Laplace transformation is

that the modified log-likelihood (5.4) can be seen as the proportional hazards frailty

model with the conditional hazard function

λ(t | X ,Z, ξ, b) = ξ λ(t) exp{γTX2i(t) + (φ ◦ b)TZ2i(t)}.

This makes the algorithm more stable and computationally efficient. Now, the com-

putation of the MLEs is identical to maximizing the modified log-likelihood function

over Sn(p,m,Mn), θ and all jump sizes of Λ at the observed failure times. This

maximization can be carried out through the following EM algorithm.
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5.3.3 EM Algorithm

We describe the EM algorithm, treating ξ and b as missing data to compute the

MLEs of (ζ, θ, Λ{·}). In the E-step, we calculate the conditional expectation of the

log-likelihood function for the complete data, given the observed data Oi and the

current parameter estimates. In other words, we need to evaluate the integration

of certain functions of (ξ, b), say Ê[ξ gi(b) |Oi]. Hereafter, we drop the conditional

part of the observed data and the current parameter estimates, and abbreviate such

expectation Ê[ξ gi(b) |Oi] as Ê[ξ gi(b)]. Computation of this expectation can become

doable by first obtaining the nested conditional expectation of ξ, given b and the

observed data. That is, Ê[ξ gi(b)] can be calculated as Êb[ Êξ[ξ | b] gi(b)]. With the

fact that the conditional distribution of ξ given b is proportional to

h(ξ, b) = ξ∆i exp

{
−
∫ Vi

0

ξ eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

}
,

and by application of the Laplace transformation, the conditional expectation of ξ

given b has the form of

Êξ [ξ | b] =

∫
ξ

h(ξ, b) δ(ξ)∫
h(ξ, b) δ(ξ) dξ

dξ = H ′(x̃i(b))−
[
H ′′(x̃i(b))

H ′(x̃i(b))

]∆i

,

where x̃i(b) =
∫ Vi

0
eγ

TX2i(u)+(φ◦b)TZ2i(u) dΛ(u). Once Êξ [ξ | b] is calculated, which is a

function of b, the conditional expectation Ê[ξ gi(b)] can be computed using numer-

ical approximation methods such as the Gaussian quadrature with Hermite orthog-

onal polynomial. Since the conditional distribution of b given Oi is proportional to

Γ(Oi| b)f(b; Σb), the conditional expectation is calculated by

Ê[ξ gi(b)] =

∫
b

Êξ[ξ | b] gi(b)
Γ(Oi| b)f(b; Σb)∫

b
Γ(Oi| b)f(b; Σb) db

db,
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where

Γ(Oi| b) = exp

{
−

ni∑
j=1

{bTZ1i(tij)}2 − 2bTZ1i(tij)[Yi(tij)− ζTBp(tij)− βTX1i(tij)]

2σ2
e

}

× exp

{
∆i

[
(φ ◦ b)TZ2i(Vi) + logH ′

(∫ Vi

0

eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

)]}
× exp

{
−H

(∫ Vi

0

eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

)}
.

In the M-step, we maximize the following objective function of the expected log-

likelihood for the complete data:

n∑
i=1

ni∑
j=1

{
− log σ2

e/2− Ê
[
{Yi(tij)− ζTBp(tij)− βTX1i(tij)− bTZ1i(tij)}2/(2σ2

e)
]}

+
n∑
i=1

∆i

{
log ξ + log Λ{Vi}+ γTX2i(Vi) + Ê[φ ◦ b]TZ2i(Vi)

}
+

n∑
i=1

{
−Ê

[∫ Vi

0

ξ eγ
TX2i(u)+(φ◦b)TZ2i(u) dΛ(u)

]
+ Ê [log δ(ξ) + log f(b; Σb)]

}
.

Maximizing the above objective function over (ζ, β, σ2
e , Σb) is simple as a classic

linear regression; whereas the rest of parameters (γ, φ, Λ{.}) do not yield the closed-

form of maximizers. Involving a reliable numerical approach, we solve the following

equation for γ:

n∑
i=1

∆i

{
X2i(Vi)−

∑n
j=1Rj(Vi)X2j(Vi) Ê

[
ξ eq2j(Vi)

]∑n
j=1Rj(Vi) Ê

[
ξ eq2j(Vi)

] }
= 0, (5.5)

and the following equation for φ:

n∑
i=1

∆i

{
Ê [b ◦ Z2i(Vi)]−

∑n
j=1 Rj(Vi) Ê

[
ξ eq2j(Vi)(b ◦ Z2j(Vi))

]∑n
j=1Rj(Vi) Ê

[
ξ eq2j(Vi)

] }
= 0, (5.6)

where Rj(t) = I(Vj > t) and q2j(t) = γTX2j(t) + (φ ◦ b)TZ2j(t). In addition, Λ is
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estimated as a step function with the following jump size at Vi:

Λ{Vi} =
∆i∑n

j=1Rj(Vi) Ê
[
ξ eq2j(Vi)

] . (5.7)

At each M-step, we update γ and φ by solving the equations (5.5) and (5.6) through

one-step Newton-Raphson algorithm. Updating the jump sizes of Λ can be easily

done by the equation (5.7).

To obtain the MLEs, we iterate the E-step and M-step until the parameter esti-

mates converge. The variances of the NPMLEs can be estimated from the inverse of

the observed information matrix for all parameters of (ζ, θ, Λ{·}). The observation

information matrix can be computed from the complete data log-likelihood function

denoted by `ci for the ith subject using the following Louis formula (Louis, 1982) of

−
n∑
i=1

Ê[∇2`ci(b) |Oi]−
n∑
i=1

{
Ê[∇`ci(b)⊗2 |Oi]− Ê[∇`ci(b) |Oi]

⊗2
}
,

where u⊗2 = uuT , ∇ and ∇2 denote the first and the second derivatives with respect

to parameters, and Ê denotes the conditional expectation of a function of b given the

observed data.

5.4 Asymptotic Properties

Let (α̂, θ̂, Λ̂) denote the MLEs and (α0, θ0, Λ0) denote the true parameter values of

(α, θ, Λ). Suppose the study duration is T = [0, τ ]. Under the regularity conditions,

we will establish the asymptotic properties of the MLEs under the following condi-

tions:

(A1) The true parameter value θ0 belongs to the interior of a compact set Θ within

99



the domain of θ.

(A2) With probability 1, X(t) and Z(t) is left-continuous with uniformly bounded

left and right derivatives in [0, τ ].

(A3) For some constant δ0, P (C > τ | X ,Z) > δ0 > 0 with probability 1.

(A4) For some positive constant M0, M−1
0 < σ2

0e < M0 and M−1
0 < cTΣ0b c < M0 for

any ‖c‖ = 1.

(A5) The transformation functions H(.) are four-times differentiable with H(0) = 0

and H ′(0) > 0. In addition, there exist positive constants µ0 and κ0 such that

(1 + x)H ′(x) exp{−H(x)} 6 µ0(1 + x)−κ0 .

Furthermore, there exists a constant ρ0 > 0 such that

sup
x

{
|H ′′(x)|+ |H(3)(x)|+ |H(4)(x)|

H ′(x) (1 + x)ρ0

}
<∞,

where H(3) and H(4) are the third and fourth derivatives.

(A6) For some t ∈ [0, τ ], if there exist a deterministic function c(t) and v such that

c(t) + vTX(t) = 0 with probability 1, then c(t) = 0 and v = 0.

(A7) With some positive probability, ZT
1Z1 has full rank, where Z1 denotes a matrix

with each row equal to the observed covariate Z1(t)T at the time of each measurement.

(A8) The potential observation process of Y (t) has a continuous intensity over [0, τ ].

(A9) For some fixed integer r > 4, α0(t) lies in W r,∞(R), where W r,∞(R) is a Sobolev

space consisting of the functions with bounded rth derivatives.

(A10) For fixed constant r0 such that 1/(4r) < r0 < 1/7, there exist m and Mn

satisfying

m = O(nr0), and Mn = O(log log n).
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Conditions (A1) - (A3) are the standard assumptions in survival analysis. Condition

(A4) is necessary to prove the existence of the NPMLEs. It can be easily verified that

Condition (A5) holds for all transformations commonly used, including the logarith-

mic transformations described in Section 5.2. Conditions (A6) - (A7) entail the linear

independence of design matrices of covariates for the fixed and random effects. Con-

dition (A8) prescribes that some subjects have sufficient repeated measures. Finally,

Condition (A9) grants sufficient smoothness of α0, and the size of the sieve space Sn

is determined by Condition (A10).

Under the above conditions, the following theorem shows the consistency of the

MLEs (θ̂, α̂, Λ̂).

Theorem 5.1. Under Conditions (A1) - (A10),

|θ̂ − θ0| → 0, ‖α̂(t)− α0(t)‖W 1,∞(T) → 0, ‖Λ̂(t)− Λ0(t)‖L∞(T) → 0, a.s.,

where ‖ · ‖W 1,∞(T) is the Sobolev norm on T and ‖ · ‖L∞(T) is the supremum norm

on T.

Now, we need to obtain a tighter bound for the convergence rate of the estimates,

which is stated in Theorem 5.2.

Theorem 5.2. Under Conditions (A1) - (A10),

‖α̂(t)− α0(t)‖2
L2(P ) + ‖Λ̂(t)− Λ0(t)‖2

L2(P ) 6 Op(m
−2r) + op(n

−1/2),

where ‖ · ‖L2(P ) is the L2-norm.

Theorems 5.1 - 5.2 then lead to the following results on the asymptotic normality

and semiparametric efficiency of θ̂.
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Theorem 5.3. Under Conditions (A1) - (A10),
√
n (θ̂ − θ0) weakly converges to a

zero-mean Gaussian process in Rdθ , where dθ is the dimension of θ. Furthermore, the

asymptotic covariance matrix of
√
n (θ̂ − θ0) achieves the semiparametric efficiency

bound.

Furthermore, in Section 5.8, we show that the inverse of the observed information

matrix is a consistent estimator of the asymptotic covariance matrix of
√
n θ̂. This

result allows us to make inference for any functional of θ. The detailed proofs are

provided in Section 5.8.

5.5 Simulation Studies

In this section, we conduct extensive simulation studies with small sample sizes to

assess the validity of the proposed method. The longitudinal data are generated from

Y (t |x1, x2, b) = α(t) + x1 − 0.5x2 + b+ ε(t),

and the informative censoring times are generated from the following transformed

survival model

Λ(t |x1, x2, b) = H(exp{x1 − 0.5x2 + φb}Λ(t)),

where x1 is a dichotomous covariate taking the value of 0 or 1 with the equal proba-

bility of 0.5, x2 is a continuous covariate generated from a uniform distribution on [-1,

1], and ε(t) ∼ N(0, σ2
e) is assumed with σ2

e = 1. The true cumulative hazard function

is set to be Λ(t) = t. Two types of baseline function α(t) are considered to represent

non-linear trends in Y (t): α(t) = sin(πt) e
t
2/(1 + e

t
2 ) and α(t) = (t− 0.8)2.

For each subject, the correlation within repeated measures is reflected by the
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subject-specific random intercept b ∼ N(0, σ2
b ) with σ2

b = 0.5, and the negative,

no, and positive dependences between the longitudinal measures and the informative

censoring rate are simulated through different φ values of -0.3, 0, and 0.3, respectively.

Also, we consider the transformations for H(·) representing the proportional hazards

model H(x) = x (when η = 0) and the proportional odds model H(x) = log(1 + x)

(when η = 1) in the survival data.

We generate the non-informative censoring time Ci from a uniform distribution

[0.5, 2.5] and set longitudinal responses to be repeatedly measured about 6 times,

on average, at any times before censoring to design a 60∼75% of subjects who are

informatively censored, depending on the chosen transformation.

We also investigate the effect of the number of knots on α(t) estimation by compar-

ing estimates from three different sets of the control points used for the B-spline ap-

proximation. The considered sequences of the control points are three sets of the pth

percentiles of observation times {qp}, specifically, {q25, q50, q75}, {q15, q30, . . . , q90},

and {q10, q20, . . . , q90}, which are denoted by m = 3, m = 6, and m = 9, respectively,

in Tables 5.1 - 5.4.

The simulation results based on 1000 replications are presented in Tables 5.1 -

5.4 for n=200 and n=400 when α(t) = sin(πt) e
t
2/(1 + e

t
2 ). Table 5.1 and Table 5.3

include the average of the differences between the true parameter and the estimates

(Bias), the sample standard deviation of the parameter estimators (SE), and the

average of the standard error estimators (SEE), and the coverage probability of 95%

confidence intervals (CP). The confidence intervals for σ2
e and σ2

b are constructed

based on the the Satterthwaite approximation. To summarize the performance of the

proposed α̂(t), Bias, SE, the mean square error (MSE), and the ratio of the MSE for

α(t) estimates in the joint model to the counterpart in the marginal model (MSER)

are provided in Table 5.2 and Table 5.4.
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Table 5.1 shows that the NPMLEs under H(x) = x are noticeably unbiased, the

standard error estimators calculated via the Louis formula well reflect the true vari-

ations of the proposed estimators, and the coverage probabilities are in a reasonable

range, even with a small sample size of 200. As the sample size increases to 400, we

may see that the biases slightly increase for some estimates; however, they are still

very small comparing to the sizes of true parameter values and the variations of the

parameter estimators become smaller, and hence the coverage probabilities still lie in

a reasonable range.

Table 5.2 shows that the variations among the estimates and the MSE in estimat-

ing α(t) become smaller as the sample size increases, whereas they become larger as

the number of knots increases. These results appear rather general since the biases

are negligible. However, in the comparison of the biasedness, there exist no general

rules by the sample size or the number of knots; use of 6 control points yields the

smallest bias with n=200, in contrast to 9 control points with n=400. When we

compare the estimates from the joint model to the marginal model, the use of the

joint model clearly produces the more accurate and efficient estimation in that the

approach using the joint model reduces the Bias and MSE with the smaller variations

in the estimates.

The simulation results shown in Tables 5.1 - 5.2 are similar to those for Tables 5.3 -

5.4, indicating that the proposed method seems to work well for the other transforma-

tion models H(x) = log(1+x). Figure 1 also compares the performance of the number

of knots and transformations visually, and it supports that the proposed estimators

of α(t) behave well in both transformation models when α(t) = sin(πt) e
t
2/(1 + e

t
2 ) as

well as α(t) = (t−0.8)2. We have also studied the performance with α(t) = (t−0.8)2,

and the results are similar to those for α(t) = sin(πt) e
t
2/(1 + e

t
2 ) and hence omitted

here.
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5.6 Data Application

We illustrate the application of the proposed method through medical cost data for

chronic heart failure patients, which are obtained from the clinical data repository

database in the University of Virginia (UVa) Health System. The data were collected

from a total of 1475 patients who were at least 60 years old and first diagnosed and

treated with heart failure in 2004 until their death or last hospital admission (up to

July 31, 2006). The cohort consists of 55% males and 73% whites with an average

age of 72.

A main focus of the study is on adjusting the underlying trend of the medical

cost which is defined by the actual monetary expense of the hospital at each visit.

Preliminary studies, however, showed that the medical costs were subject to the

time of the patient’s death, and hence we believe that censoring by death can be a

crucial factor in describing the trend of medical costs. Thus, we propose to model

the medical cost data jointly with the informative censorship (death). In this study,

medical costs of each patient were measured about 11 times on average, up to 45

times, with a median follow-up time of 21 months. Among the cohort members, 297

patients (about 20%) were informatively censored by death.

We model the log-transformed costs and the censoring time with gender, race,

and age (up to a quadratic term) as covariates. The age variable is centered at mean

0 and rescaled to represent every 10-year unit change. Visiting time (in years), as a

nonparametric function α(t), is also included into the longitudinal model component.

To construct B-spline curves for α(t), as discussed in Section 5.3, we use m percentile

points of visiting times as the sequence of control points. In addition, a subject-

specific random intercept is included in both longitudinal and survival models to

account for the dependence of medical costs on informative censoring. We notice

that the coefficient of shared random intercept can also quantify their dependence,
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conditional on covariates.

For the survival component, we apply transformation models H(x) = log(1+η)/η

by varying values of η in [0, 1]. This class of transformation allows us to explore the

possibility of the proportional hazards and the proportional odds structures in survival

data. Under each set of (m, η), the MLEs for the regression coefficients are computed

using the proposed method in Section 5.3, using the least square estimates as initial

values in the EM algorithm. To select the number of control points m, we can adopt

model selection approaches such as the Akaike information criterion (AIC), Bayesian

information criterion (BIC), and ‘leave-one-subject-out’ cross-validation, although we

let the BIC choose the best set of the number of control points and transformation.

In Figure 5.3, the smallest BIC value corresponding to (m, η) = (5, 0.5) indicates that

use of 5 control points and the transformation in the middle of proportional hazards

and odds models, (i.e. H(x) = 2 log(1 + 0.5x)) produces the best fit to the data.

Under the selected best model, Table 5.5 summarizes the estimation results. The

results show that nonwhite male patients tend to bear a higher cost incurred by

chronic heart failure at each hospital visit. The squared age is also a significant

factor to explain the trend of medical costs. In more detail, patients 69 years old

meet the highest medical cost, and the younger or older patients than 69 years of age

spend less money at each hospital visit. In the survival model, nonwhite male patients

have a higher risk of death, and the risk grows with aging. For the random effect b,

through the significant variance component σ̂b
2, we note that heterogeneity between

patients exists in repeated measures. We also notice that the highly significant φ̂

suggests that patients at the higher risk of death are likely to meet a higher medical

cost by chronic heart failure. This result is consistent what is shown in Figure 5.4.

By comparing the estimated underlying trajectory of cost in the joint model fit to

the marginal model fit along with residual means of {Y (t)− β̂TX1(t)} in Figure 5.4,
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we can see that the marginal model appears to overestimate the underlying medical

costs in the first half of the curve, where most of patients are informatively censored

by death, and appears to underestimate in the second half of the curve, where most

of patients are randomly censored. We can thus conclude that the joint model adjusts

well the bias caused by dying patients’ high medical costs.

5.7 Concluding Remarks

We have proposed the partially linear model for longitudinal data with informative

censoring by modeling the longitudinal data simultaneously with the transformed

survival model to adjust the dependence on informative censoring. For estimation,

we have used the MLEs through B-spline approximation of the baseline function in

the longitudinal data and through step functions of the baseline cumulative hazard

in the censoring mechanism. In addition, the EM algorithm has been presented

for implementation, which is shown to be computationally efficient. The resulting

MLEs are theoretically justified, and the proposed joint approach has clearly shown

the potential to correct biases induced by ignoring informative censoring using the

simulated data and a real example.

In this paper, we assumed that the underlying counting process of measurement

times are independent of the pattern of longitudinal data. Our partially linear model

can be extended in a way to account for the informative observation process. The BIC

was used to determine both the best transformation and the selection of the number

of knots, but we can explore and compare the validity of other model selection criteria

such as the AIC and cross-validation in the future. Methods on model checking would

be useful for the practical application of the joint models.
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5.8 Proof of Asymptotic Properties

This section proves Theorems 5.1 - 5.3 stated in Section 5.4 by using techniques from

the empirical process theory.

Proof of Theorem 5.1

Proof. The whole proof can be divided into three steps: first, we construct some

functions in the sieve space, which approximate the true parameters; then by using

empirical process theory, we obtain one key inequality; finally, this inequality is used

to obtain the consistency.

Step 1. We construct some functions in Sn(p,m,Mn) to approximate the true pa-

rameters. From the properties of B-spline functions, we can define a linear operator

Q mapping W r,∞(T),

Q[g] =

m+p+1∑
k=1

Ψk[g]Bp
k(t),

where Ψk are linear functionals in L∞(T) and (T) = [0, τ ]. Moreover,

m+p+1∑
k=1

|Ψk[g]| 6 (2(p+ 1) + 1)9p‖g‖L∞(T),

and according to Theorem 12.7 of Schumaker (2007),

‖Q[g]− g‖L∞(T) 6
C(p+ 1)

mr
‖g‖L∞(T).

Thus, we define αn(t) = Q[α0]. As a result of the fact that
∑m+p+1

k=1 Bp
k(t) = 1, α0(t)

lies in the sieve space Sn(p,m,Mn) and moreover, the following boundness hold

‖αn − α0‖L∞(T) 6 O(m−r).
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Step 2. We obtain a key inequality based on empirical process theory. Let Pn be

the empirical measure determined by n iid subjects, let P be its expectation, and

let Gn be the empirical process given by
√
n(Pn − P ). For simplicity of notation,

we denote G(α, θ,Λ) as the likelihood function from one single observation. Since

(α̂, θ̂, Λ̂) maximizes Pn[logG(α, θ,Λ)] over the sieve space, it follows that

Pn[logG(α̂, θ̂, Λ̂)] > Pn[logG(αn, θ0, Λ̃)],

where Λ̃ is a step function with jumps only at the observed failure times and it

uniformly converges to Λ0 with convergence rate n−1/2. Equivalently,

n−1/2 Gn

[
log

G(α̂, θ̂, Λ̂)

G(αn, θ0, Λ̃)

]
> P

[
log

G(αn, θ0, Λ̃)

G(α0, θ0,Λ0)

]
+ P

[
log

G(α0, θ0,Λ0)

G(α̂, θ̂, Λ̂)

]
. (5.8)

First, we can show that the left-hand side of (5.8) is bounded, using empirical

process theory. Consider a class of functions Ln defined by

Ln =

{
log

G(α̃n, θ0, Λ̃)

G(αn, θ0, Λ̃)
; α̃n ∈ Sn(p,m,Mn)

}
.

Since ‖Bp
k(·)‖L∞ = 1, any function of α̃n given in Ln is bounded by O(e2Mn). By

assumptions (A1)-(A6), G(αn, θ0, Λ̃) is bounded away from 0, and hence the class Ln

has an upper bound Op(Mn). After tedious calulation, we can show that the function

in Ln is Lipschitz continuous with respect to α, and the Lipschitz constant is bounded

by Op(e
c1Mn), for a fixed constant c1. By computing the bracket number of Ln and

applying Theorem 19.35, van der Vaart (1998), in probability we have

√
nE∗p‖Pn − P ‖Ln 6 Op(1)

∫ O(Mn)

0

√
log

(
Mnec1Mn(m+ p+ 1)

ε

)(m+p+1)

dε

6 Op(1)m1/2(logMn)M2
n,
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so, the left-hand side of (5.8) is bounded by Op(M
2
nm

1/2(logMn)/
√
n) from above.

Second, since the functional G(·) is Lipschitz continuous with α and Λ̃ uniformly

converges to Λ0, we can show that the first term of the right side of (5.8) is

P

[
log

G(αn, θ0, Λ̃)

G(α0, θ0,Λ0)

]
> −Op(1)

{
‖αn − α0‖L∞ + ‖Λ̃− Λ0‖L∞

}
> −Op(1)

{
1

mr
+Op(n

−1/2)

}
.

Third, since the second term of the right side of (5.8) is the Kullback-Leibler infor-

mation, and by linearizing, we obtain

P

[
log

G(α0, θ0,Λ0)

G(αn, θ0, Λ̃)

]
> O(ec1Mn/2)‖G(α0, θ0,Λ0)−G(α̂, θ̂, Λ̂)‖2

L2(P ).

Thus, combining the above results, we can show that

‖G(α0, θ0,Λ0)−G(α̂, θ̂, Λ̂)‖2
L2(P ) 6 Op

(
ec1Mn/2

mr
+
ec1Mn/2M2

nm
1/2 logMn√
n

)
(5.9)

Step 3. We obtain the L2-convergence of the estimators. Suppose we select m and

Mn satisfying Assumption (A10), then we can obtain from (5.9)

‖G(α0, θ0,Λ0)−G(α̂, θ̂, Λ̂)‖2
L2(P ) 6 Op(1)Dn(m,Mn),

where Dn(m,Mn) = ec1Mn/2m−r+ec1Mnm1/2 log(Mn)/
√
n. From the above inequality

and identifiability conditions of the parameters, we can obtain that ‖α̂ − α0‖2
L2(T) is

bouned by Op(1)Dn(m,Mn) from above. Moreover, Dn(m,Mn)1/2 is the convergence

rate of α̂.

To obtain the convergence of α̂ in W 1,∞-space, we notice from Theorem 4.22 of

Schumaker (1981) that the W r,∞-norm of α̂ is bounded by O(ec2Mnmr) from above for
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some constant c2. Hence, according to the Sobolev interpolation inequality (Adams

and Fournier, 1975), we obtain

‖α̂(t)− α0(t)‖W 1,∞(T) 6 O(1) ec2τ1Mnmτ1rDn(m,Mn)(1−τ1)/2, (5.10)

where τ1 = 3/(2r). By Assumption (A10), the right side of (5.10) converges to zero.

Thus, Theorem 5.1 holds.

Proof of Theorem 5.2

Proof. We use the results of Theorem 5.1. Since α̂ is within a W 1,∞-neighborhood of

α0, now Ln has a bound covering function and the integration of the entropy for the

class Ln is finite. Moreover, the function in the left side of (5.8) uniformly converges

to zero. Thus, we can apply Theorem 2.11.23 of van der Vaart and Wellner (1996),

to obtain that the left side of (5.8) is bounded by op(1/
√
n). By Taylor expansion of

the right side of (5.8) at the true parameters and Theorem 5.1, the right side of (5.8)

is bounded from below by

−Op(1)
{
‖αn − α0‖2

L2(T) + ‖Λ̃− Λ0‖2
L∞(T)

}
+ Op(1)‖G(α0, θ0,Λ0)−G(α̂, θ̂, Λ̂)‖2

L2(P ).

Providing Theorem 5.1, we obtain that

‖G(α0, θ0,Λ0)−G(α̂, θ̂, Λ̂)‖2
L2(P ) 6

op(1)√
n

+
Op(1)

m2r
.

From the parameter identifiability condition, the left-hand side can be further bounded

from below by the L2(P )-norm of |Λ̂−Λ0| and |α̂−α0|. Thus, we conclude Theorem

5.2.
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Proof of Theorem 5.3

Proof. We will prove Theorem 5.3 by writing
√
n (θ̂ − θ0) as a linear functional of

the empirical process Gn. Let `(α, Λ, θ) be the log-likelihood function from a single

subject, and let `0 = `(α0,Λ0, θ0).

Step 1. We define a least favorable direction for θ0. We treat ψ = (α, Λ) as the

vector of nuisance parameters with ψ0 = (α0, Λ0), and then the tangent space for

ψ is given by H = {h(t) = (h1(t), h2(t)); h(t) ∈ L2(T2)}. Let `ψ(ψ0, θ0)[h] be the

derivative of `0 with respect to ψ along with the direction h1 for α and the direction

h2 for Λ, and let `θ(ψ0, θ0) be the derivative of `0 with respect to θ. Then, a least

favorable direction for θ0 is defined as a tangent function h(t) ∈ H for ψ that satisfies

`∗ψ(ψ0, θ0)`ψ(ψ0, θ0)[h] = `∗ψ(ψ0, θ0)`θ(ψ0, θ0) a.s.,

where `∗ψ(ψ0, θ0) is the adjoint operator of `ψ(ψ0, θ0) in the Hilbert space L2(P ).

Step 2. We prove the existence and smoothness of the least favorable direction.

The existence can be shown by proving the operator `∗ψ(ψ0, θ0)`ψ(ψ0, θ0) is invertible

based on the Lax-Milgram theorem. The details of proofs are the same as in Zeng

(2005).

Step 3. We construct the projection of h1(t) on the tangent space of the sieve

space. The tangent function for ψ at ψ̂ = (α̂, Λ̂) in the sieve space can be chosen by

hn = (h1n(t), h2dΛ̂) in L2(T2) such that

‖h1n − h1‖2
L2(P ) 6 O(m−2r) + op(n

−1/2).
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Step 4. We derive the empirical process for
√
n (θ̂ − θ0). Since (ψ̂, θ̂) maximizes

the log-likelihood over the sieve space, the score along the path (ψ̂ + νhn, θ̂ + ν) is

zero when ν = 0. Thus, it holds that

Gn{`ψ(ψ̂, θ̂)[hn] + `θ(ψ̂, θ̂)} = −
√
nP {`ψ(ψ̂, θ̂)[hn] + `θ(ψ̂, θ̂)}. (5.11)

Since the function in the left side of (5.11), indexed by both (ψ̂, hn) ∈ W1,∞ and

θ̂ ∈ Θ, belongs to P-Donsker class, we apply Theorem 2.11.23 of van der Vaart and

Wellner (1996). By linearizing the right side of (5.11) at the true parameters and

approximating hn to h, we obtain that

− P {`ψθ(ψ0, θ0)[h] + `θθ(ψ0, θ0)}
√
n (θ̂ − θ0)

= Gn{`ψ(ψ0, θ0)[h] + `θ(ψ0, θ0)}

+
√
nOp(‖ψ̂ − ψ0‖2

L2(P ) + ‖hn − h‖2
L2(P ) + |θ̂ − θ0|2).

Since the second term in the right side of the above equation is op(1) by Theorem

5.2 and (A10) and −P {`ψθ(ψ0, θ0)[h] + `θθ(ψ0, θ0)} > 0, the asymptotic normality of

√
n (θ̂ − θ0) holds. Moreover, the influence function of θ̂ is given by

[−P {`ψθ(ψ0, θ0)[h] + `θθ(ψ0, θ0)}]−1{`ψ(ψ0, θ0)[h] + `θ(ψ0, θ0)}.

Clearly, the above influence function is contained in the tangent space, therefore, we

conclude that θ̂ is semiparametrically efficient.

113



Table 5.1: Simulation results for H(x) = x and α(t) = sin(πt) exp(t/2)/{1+exp(t/2)}
based on m=6 control points of B-spline curves. τp represents p% of τ (study dura-
tion).

n = 200 n = 400

φ True Bias SE SEE CP Bias SE SEE CP

-0.3 β1 1.0 0.004 0.125 0.129 0.956 0.001 0.088 0.090 0.953
β2 -0.5 -0.000 0.107 0.108 0.945 0.001 0.075 0.076 0.953
σ2
e 1.0 -0.007 0.039 0.041 0.963 -0.003 0.028 0.029 0.953
σ2
b 0.5 -0.006 0.073 0.073 0.947 -0.006 0.049 0.051 0.956
γ1 1.0 -0.008 0.180 0.202 0.968 -0.013 0.126 0.135 0.968
γ2 -0.5 0.003 0.151 0.152 0.957 -0.005 0.107 0.106 0.946
φ -0.3 0.005 0.154 0.160 0.972 0.006 0.105 0.109 0.956
Λ(τ20) 0.3 0.003 0.048 0.052 0.963 0.004 0.033 0.036 0.968
Λ(τ40) 0.6 0.008 0.085 0.092 0.962 0.008 0.060 0.063 0.952
Λ(τ60) 0.8 0.012 0.127 0.132 0.954 0.014 0.089 0.090 0.947
Λ(τ80) 1.1 0.024 0.182 0.179 0.962 0.019 0.123 0.122 0.948

0 β1 1.0 -0.007 0.128 0.125 0.940 -0.002 0.088 0.088 0.952
β2 -0.5 -0.002 0.108 0.107 0.951 0.002 0.075 0.075 0.953
σ2
e 1.0 -0.008 0.043 0.041 0.935 -0.004 0.029 0.029 0.946
σ2
b 0.5 -0.010 0.075 0.072 0.936 -0.008 0.052 0.051 0.951
γ1 1.0 -0.002 0.174 0.178 0.949 -0.016 0.122 0.123 0.949
γ2 -0.5 -0.005 0.147 0.148 0.954 0.001 0.103 0.103 0.955
φ 0.0 0.002 0.148 0.151 0.955 0.001 0.104 0.105 0.953
Λ(τ20) 0.3 0.003 0.046 0.048 0.962 0.005 0.034 0.033 0.946
Λ(τ40) 0.6 0.006 0.081 0.084 0.961 0.011 0.058 0.059 0.948
Λ(τ60) 0.8 0.012 0.120 0.122 0.961 0.013 0.084 0.085 0.949
Λ(τ80) 1.1 0.021 0.168 0.169 0.964 0.024 0.116 0.118 0.959

0.3 β1 1.0 -0.004 0.121 0.129 0.961 -0.006 0.085 0.090 0.962
β2 -0.5 -0.003 0.107 0.107 0.947 -0.001 0.076 0.076 0.947
σ2
e 1.0 -0.006 0.042 0.041 0.943 -0.005 0.030 0.029 0.940
σ2
b 0.5 -0.009 0.072 0.072 0.954 -0.004 0.053 0.051 0.951
γ1 1.0 -0.010 0.184 0.201 0.962 -0.024 0.131 0.136 0.958
γ2 -0.5 0.000 0.153 0.152 0.941 0.000 0.102 0.106 0.951
φ 0.3 -0.006 0.154 0.160 0.966 0.003 0.104 0.109 0.969
Λ(τ20) 0.3 0.003 0.048 0.052 0.956 0.004 0.034 0.036 0.955
Λ(τ40) 0.6 0.006 0.085 0.091 0.957 0.010 0.060 0.063 0.954
Λ(τ60) 0.8 0.014 0.126 0.131 0.957 0.017 0.088 0.091 0.947
Λ(τ80) 1.1 0.022 0.175 0.178 0.956 0.025 0.121 0.123 0.948
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Table 5.2: Simulation results for H(x) = x and α(t) = sin(πt) exp(t/2)/{1+exp(t/2)}
based on m control points of B-spline curves. τp represents p% of τ (study duration).

Joint Model Marginal Model

m True Bias SE MSE Bias SE MSE MSER

n = 200
3 α(τ20) 0.52 0.009 0.099 0.010 -0.029 0.104 0.012 0.835

α(τ40) 0.35 -0.020 0.106 0.012 -0.116 0.122 0.028 0.411
α(τ60) -0.38 0.027 0.117 0.014 -0.115 0.143 0.033 0.430
α(τ80) -0.66 -0.033 0.146 0.022 -0.213 0.203 0.086 0.260

6 α(τ20) 0.52 -0.001 0.116 0.013 -0.040 0.126 0.017 0.770
α(τ40) 0.35 -0.001 0.115 0.013 -0.099 0.133 0.028 0.476
α(τ60) -0.38 -0.004 0.133 0.018 -0.142 0.161 0.046 0.383
α(τ80) -0.66 0.007 0.171 0.029 -0.176 0.233 0.085 0.343

9 α(τ20) 0.52 -0.004 0.122 0.015 -0.041 0.134 0.020 0.759
α(τ40) 0.35 -0.006 0.124 0.015 -0.104 0.145 0.032 0.484
α(τ60) -0.38 -0.005 0.135 0.018 -0.143 0.163 0.047 0.387
α(τ80) -0.66 0.009 0.172 0.029 -0.175 0.234 0.085 0.347

n = 400
3 α(τ20) 0.52 0.013 0.068 0.005 -0.029 0.072 0.006 0.781

α(τ40) 0.35 -0.014 0.073 0.006 -0.115 0.083 0.020 0.276
α(τ60) -0.38 0.026 0.078 0.007 -0.121 0.099 0.024 0.278
α(τ80) -0.66 -0.038 0.100 0.011 -0.220 0.145 0.069 0.164

6 α(τ20) 0.52 0.004 0.079 0.006 -0.038 0.087 0.009 0.700
α(τ40) 0.35 0.005 0.080 0.006 -0.096 0.091 0.017 0.374
α(τ60) -0.38 -0.004 0.089 0.008 -0.152 0.112 0.036 0.221
α(τ80) -0.66 -0.000 0.116 0.014 -0.181 0.163 0.059 0.228

9 α(τ20) 0.52 0.003 0.083 0.007 -0.039 0.091 0.010 0.704
α(τ40) 0.35 0.002 0.088 0.008 -0.100 0.099 0.020 0.392
α(τ60) -0.38 -0.006 0.090 0.008 -0.153 0.114 0.036 0.224
α(τ80) -0.66 0.001 0.117 0.014 -0.179 0.164 0.059 0.231
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Table 5.3: Simulation results for H(x) = log(1 +x) and α(t) = sin(πt) exp(t/2)/{1 +
exp(t/2)} based on m=6 control points of B-spline curves. τp represents p% of τ
(study duration).

n = 200 n = 400

φ True Bias SE SEE CP Bias SE SEE CP

-0.3 β1 1.0 0.005 0.124 0.121 0.947 0.001 0.082 0.085 0.956
β2 -0.5 0.002 0.106 0.104 0.950 0.001 0.074 0.074 0.944
σ2
e 1.0 -0.005 0.036 0.037 0.944 -0.003 0.026 0.026 0.951
σ2
b 0.5 -0.006 0.071 0.069 0.949 -0.005 0.049 0.049 0.945
γ1 1.0 -0.054 0.264 0.278 0.956 -0.056 0.193 0.193 0.938
γ2 -0.5 -0.005 0.228 0.232 0.954 0.006 0.159 0.162 0.954
φ -0.3 0.002 0.264 0.258 0.950 0.005 0.185 0.180 0.945
Λ(τ20) 0.3 0.011 0.063 0.065 0.953 0.010 0.045 0.045 0.956
Λ(τ40) 0.6 0.026 0.121 0.122 0.945 0.020 0.083 0.084 0.949
Λ(τ60) 0.8 0.041 0.185 0.185 0.943 0.035 0.128 0.128 0.952
Λ(τ80) 1.1 0.055 0.258 0.258 0.956 0.048 0.183 0.179 0.951

0 β1 1.0 -0.003 0.118 0.121 0.960 0.001 0.087 0.085 0.945
β2 -0.5 0.002 0.107 0.104 0.943 0.001 0.074 0.074 0.947
σ2
e 1.0 -0.005 0.038 0.037 0.935 -0.004 0.025 0.026 0.958
σ2
b 0.5 -0.009 0.069 0.068 0.953 -0.005 0.049 0.049 0.953
γ1 1.0 -0.047 0.262 0.271 0.945 -0.058 0.187 0.189 0.937
γ2 -0.5 -0.006 0.227 0.229 0.946 0.006 0.156 0.161 0.962
φ 0.0 0.000 0.248 0.256 0.959 0.002 0.180 0.178 0.952
Λ(τ20) 0.3 0.008 0.062 0.063 0.956 0.013 0.046 0.045 0.945
Λ(τ40) 0.6 0.022 0.119 0.119 0.952 0.025 0.085 0.084 0.944
Λ(τ60) 0.8 0.036 0.188 0.181 0.946 0.037 0.129 0.127 0.942
Λ(τ80) 1.1 0.054 0.264 0.255 0.945 0.052 0.183 0.178 0.940

0.3 β1 1.0 -0.005 0.122 0.121 0.943 -0.005 0.085 0.085 0.951
β2 -0.5 0.003 0.107 0.104 0.944 -0.005 0.074 0.074 0.935
σ2
e 1.0 -0.005 0.039 0.037 0.937 -0.003 0.027 0.026 0.952
σ2
b 0.5 -0.011 0.071 0.068 0.950 -0.005 0.051 0.049 0.943
γ1 1.0 -0.052 0.278 0.278 0.941 -0.044 0.187 0.193 0.952
γ2 -0.5 0.003 0.230 0.232 0.957 0.002 0.162 0.162 0.948
φ 0.3 0.007 0.257 0.259 0.955 -0.007 0.176 0.180 0.954
Λ(τ20) 0.3 0.009 0.063 0.064 0.962 0.008 0.047 0.045 0.936
Λ(τ40) 0.6 0.022 0.115 0.121 0.966 0.017 0.086 0.084 0.935
Λ(τ60) 0.8 0.037 0.178 0.183 0.956 0.029 0.128 0.127 0.949
Λ(τ80) 1.1 0.057 0.267 0.258 0.955 0.037 0.181 0.178 0.942
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Table 5.4: Simulation results for H(x) = log(1 +x) and α(t) = sin(πt) exp(t/2)/{1 +
exp(t/2)} based on m control points of B-spline curves. τp represents p% of τ (study
duration).

Joint Model Marginal Model

m True Bias SE MSE Bias SE MSE MSER

n = 200
3 α(τ20) 0.52 0.003 0.095 0.009 -0.035 0.100 0.011 0.806

α(τ40) 0.35 -0.012 0.099 0.010 -0.069 0.107 0.016 0.612
α(τ60) -0.38 0.024 0.107 0.012 -0.049 0.128 0.019 0.642
α(τ80) -0.66 -0.014 0.126 0.016 -0.097 0.168 0.038 0.426

6 α(τ20) 0.52 0.000 0.100 0.010 -0.037 0.106 0.013 0.784
α(τ40) 0.35 0.003 0.108 0.012 -0.054 0.117 0.017 0.701
α(τ60) -0.38 0.005 0.112 0.013 -0.068 0.136 0.023 0.547
α(τ80) -0.66 0.009 0.133 0.018 -0.073 0.174 0.036 0.499

9 α(τ20) 0.52 0.000 0.115 0.013 -0.037 0.122 0.016 0.804
α(τ40) 0.35 0.006 0.115 0.013 -0.050 0.127 0.018 0.714
α(τ60) -0.38 0.004 0.122 0.015 -0.069 0.146 0.026 0.567
α(τ80) -0.66 0.009 0.135 0.018 -0.073 0.176 0.036 0.504

n = 400
3 α(τ20) 0.52 0.005 0.065 0.004 -0.030 0.071 0.006 0.729

α(τ40) 0.35 -0.013 0.065 0.004 -0.072 0.076 0.011 0.405
α(τ60) -0.38 0.021 0.071 0.005 -0.052 0.088 0.010 0.526
α(τ80) -0.66 -0.018 0.082 0.007 -0.100 0.110 0.022 0.319

6 α(τ20) 0.52 0.002 0.069 0.005 -0.033 0.075 0.007 0.709
α(τ40) 0.35 0.003 0.072 0.005 -0.056 0.083 0.010 0.511
α(τ60) -0.38 0.001 0.074 0.006 -0.071 0.093 0.014 0.404
α(τ80) -0.66 0.006 0.087 0.008 -0.076 0.117 0.019 0.390

9 α(τ20) 0.52 0.000 0.082 0.007 -0.033 0.090 0.009 0.720
α(τ40) 0.35 0.004 0.075 0.006 -0.053 0.087 0.010 0.532
α(τ60) -0.38 -0.001 0.080 0.006 -0.074 0.100 0.015 0.416
α(τ80) -0.66 0.007 0.087 0.008 -0.075 0.117 0.019 0.396
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Table 5.5: Joint analysis results of the medical costs data. The 50:50 mixture of χ2

distributions is used for testing variances.

Effect Estimate Std.Error p-value

Longitudinal medical cost
Age -0.116 0.042 0.0054
Age2 -0.184 0.048 0.0001
Male (vs. Female) 0.112 0.061 0.0691
White (vs. Nonwhite) -0.248 0.069 0.0003
σ2
e 2.336 0.027 < .0001
σ2
b 1.034 0.051 < .0001

Death (informative censoring)
Age 0.524 0.088 < .0001
Male (vs. Female) 0.246 0.127 0.0535
White (vs. Nonwhite) -0.272 0.127 0.0319
φ 0.867 0.078 < .0001
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Figure 5.1: Example of basis functions (cubic B-spline) for time t in [0, 1] under 5
control points {0.1, 0.15, 0.2, 0.4, 0.7}.
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Figure 5.2: Simulation results for the baseline coefficient function by (a) H(x) = x
and α(t) = sin(πt) e

t
2/(1 + e

t
2 ); (b) H(x) = log(1 +x) and α(t) = sin(πt) e

t
2/(1 + e

t
2 );

(c) H(x) = x and α(t) = (t− 0.8)2; and (d) H(x) = log(1 + x) and α(t) = (t− 0.8)2.
The solid curves are true values, the dashed curves are estimates under m=3, the
dash-dotted curves are estimates under m=6, and the dotted curves are estimates
under m=9.
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Figure 5.3: Bayesian information criterion (BIC) for the transformation H(x) =
log(1 + ηx)/η and the number of control knots (m). From top to bottom, the dot-
long-dashed curve is for m=8, the long-dashed curve is for m=7, the short-dashed
curve is for m=4, the dot-short-dashed curve is for m=6, the dotted curve is for m=3,
and the solid curve is for m=5.
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Figure 5.4: Baseline coefficient function of hospital visit time in the medical cost data
under the best fit of transformation H(x) = 2 log(1 + 0.5x) and 5 control points. The
solid curves are estimates from the joint model, the dashed curves are estimates from
the marginal model, and the dots are residual means of {Y (t)− β̂TX1(t)}.
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Chapter 6

Summary and Future Research

In this dissertation, we have studied semiparametric models for joint analysis of lon-

gitudinal data and counting processes, where the models of each component were

connected through the shared random effects. Particularly, in Chapter 3, we devel-

oped joint models of longitudinal data via the linear mixed effects model and recurrent

and terminal events via transformation models. The proposed joint models captured

latent relationships among the longitudinal responses and two events. In Chapter

4, we studied the joint analysis of longitudinal data and cure-survival data, using

the linear mixed effects model and the transformed promotion time cure model. We

found that the proposed joint models corrected biases in the regression coefficient

estimates, induced by ignoring the true cure proportion in survival data and the

correlation between longitudinal and cure-survival data. In Chapter 5, we modeled

nonlinear trajectories of longitudinal data with informative censoring. We relaxed

usual parametric model specification of the longitudinal data by using the partially

linear model, and we adopted transformed survival models to account for informative

censoring. We showed that the proposed joint modeling approach can reduce biases

in the estimation of the parametric and nonparametric coefficients.

In all of the methods, the maximum likelihood approach was used under proper



conditions on infinite-dimensional parameters. We assumed the baseline cumulative

intensity or hazards functions to be step functions, and the underlying trajectory of

longitudinal responses were assumed to be smooth enough for B-spline approximation.

By treating the shared random effects as missing data, simple EM algorithms were

provided to compute the MLEs.

The asymptotic properties of the MLEs were studied and were shown to provide

desirable properties, consistency, normality and semiparametric efficiency. Most of

the proofs relied on modern empirical process theory. We also investigated the finite

sample properties of the proposed methods via extensive simulation studies. Simula-

tion results based on various scenarios confirmed that the proposed methods worked

properly under reasonably finite sample sizes. The proposed methods were also ap-

plied to real data examples for illustration; specifically, the ARIC data was used to

analyze the longitudinal SBP, recurrent CHD events, and death in Chapter 3 and to

analyze the longitudinal SBP with MI or fatal CHD event in Chapter 4. In Chapter

5, we analyzed the medical costs of chronic heart failure patients, while accounting

for death as the informative censoring event.

The proposed methods in this dissertation research can be extended in several di-

rections. In Chapters 4 - 5, measurement times of longitudinal data were assumed to

be non-informative. In practice, they may contain important information if observed,

for example, at emergency admissions. A natural way of adjusting the informative

observation times is to combine another counting process with the proposed models.

The proposed work in Chapter 5 can be continued to the context of time-varying co-

efficients models that accommodate more than one nonparametric functions of time.

New methods for time-varying coefficients models with informatively censored data

would be useful for analyzing clinical trial data where the effects of treatments may

vary over time. We can also extend the joint modeling approach to develop methodol-
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ogy for interval-censored data with longitudinal covariates. Lastly, further research on

the model selection techniques to check the adequacy of the model assumptions and

to select the best transformation would be worthwhile to continue for the practical

applications of the research.

125



126



Bibliography

Adams, R. and Fournier, J. (1975). Sobolev spaces. New York: Academic Press.

Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statis-
tics in Medicine, 2:273–277.

Berkson, J. and Gage, R. (1952). Survival curve for cancer patients following treat-
ment. Journal of the American Statistical Association, 47:501–515.

Brown, E. and Ibrahim, J. (2003a). A Bayesian semiparametric joint hierarchical
model for longitudinal and survival data. Biometrics, 59:221–228.

Brown, E. and Ibrahim, J. (2003b). Bayesian approaches to joint cure-rate and
longitudinal models with applications to cancer vaccine trials. Biometrics, 59:686–
693.

Brown, E., Ibrahim, J., and DeGruttola, V. (2005). A flexible B-spline model for
multiple longitudinal biomarkers and survival. Biometrics, 61:64–73.

Chambless, L., Folsom, A., Sharrett, A., Sorlie, P., Couper, D., Szklo, M., and Nieto,
F. (2003). Coronary heart disease risk prediction in the Atherosclerosis Risk in
Communities (ARIC) study. Journal of clinical epidemiology, 56:880–890.

Chen, M., Ibrahim, J., and Sinha, D. (1999). A new Bayesian model for survival
data with a surviving fraction. Journal of the American Statistical Association,
94:909–919.

Chen, M., Ibrahim, J., and Sinha, D. (2004). A new joint model for longitudinal and
survival data with a cure fraction. Journal of Multivariate Analysis, 91:18–34.

Cheng, S., Wei, L., and Ying, Z. (1995). Analysis of transformation models with
censored data. Biometrika, 82:835–845.

Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical
Society. Series B, 34:187–220.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–
38.

Diggle, P., Heagerty, P., Liang, K., and Zeger, S. (2002). Analysis of longitudinal
data. Oxford University Press, USA.

Farewell, V. (1982). The use of mixture models for the analysis of survival data with
long-term survivors. Biometrics, 38:1041–1046.

127



Farewell, V. (1986). Mixture models in survival analysis: Are they worth the risk?
The Canadian Journal of Statistics, 14:257–262.

Green, P. and Silverman, B. (1994). Nonparametric regression and generalized linear
models: a roughness penalty approach. Chapman & Hall/CRC.

Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal
measurements and recurrent events. Biostatistics, 1:465–480.

Hogan, J., Lin, X., and Herman, B. (2004). Mixtures of varying coefficient models for
longitudinal data with discrete or continuous nonignorable dropout. Biometrics,
60:854–864.

Hoover, D., Rice, J., Wu, C., and Yang, L. (1998). Nonparametric smoothing es-
timates of time-varying coefficient models with longitudinal data. Biometrika,
85:809–822.

Hsieh, F., Tseng, Y., and Wang, J. (2006). Joint modeling of survival and longitudinal
data: Likelihood approach revisited. Biometrics, 62:1037–1043.

Huang, C. and Wang, M. (2004). Joint modeling and estimation for recurrent event
processes and failure time data. Journal of the American Statistical Association,
99:1153–1165.

Huang, J., Wu, C., and Zhou, L. (2002). Varying-coefficient models and basis function
approximations for the analysis of repeated measurements. Biometrika, 89:111–128.

Huang, X. and Liu, L. (2007). A joint frailty model for survival and gap times between
recurrent events. Biometrics, 63:389–397.

Ibrahim, J., Chen, M., and Sinha, D. (2001). Bayesian survival analysis. New York:
Springer-Verlag.

Kaplan, E. and Meier, P. (1958). Nonparametric estimation from incomplete obser-
vations. Journal of the American statistical association, 53:457–481.

Kuk, A. and Chen, C. (1992). A mixture model combining logistic regression with
proportional hazards regression. Biometrika, 79:531–541.

Lancaster, T. and Intrator, O. (1998). Panel data with survival: Hospitalization of
HIV-positive patients. Journal of the American Statistical Association, 93:46–53.

Laska, E. and Meisner, M. (1992). Nonparametric estimation and testing in a cure
model. Biometrics, 48:1223–1234.

Law, N., Taylor, J., and Sandler, H. (2002). The joint modeling of a longitudinal
disease progression marker and the failure time process in the presence of cure.
Biostatistics, 3:547–563.

128



Liang, Y., Lu, W., and Ying, Z. (2009). Joint modeling and analysis of longitudinal
data with informative observation times. Biometrics, 65:377–384.

Lin, D. and Ying, Z. (2001). Semiparametric and nonparametric regression analysis
of longitudinal data. Journal of the American Statistical Association, 96:103–126.

Lin, H., Scharfstein, D., and Rosenheck, R. (2004). Analysis of longitudinal data with
irregular, outcome-dependent follow-up. Journal of the Royal Statistical Society,
Series B, 66:791–813.

Lin, X. and Carroll, R. (2001). Semiparametric regression for clustered data using
generalized estimating equations. Journal of the American Statistical Association,
96:1045–1056.

Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and
recurrent events processes in the presence of death, with application to a study
on acquired immune deficiency syndrome. Journal of the Royal Statistical Society,
Series C, 58:65–81.

Liu, L., Huang, X., and O’Quigley, J. (2008). Analysis of longitudinal data in the
presence of informative observational times and a dependent terminal event, with
application to medical cost data. Biometrics, 64:950–958.

Liu, L., Wolfe, R., and Huang, X. (2004). Shared frailty models for recurrent events
and a terminal event. Biometrics, 60:747–756.

Liu, L., Wolfe, R., and Kalbfleisch, J. (2007). A shared random effects model for
censored medical costs and mortality. Statistics in medicine, 26:139–155.

Louis, T. (1982). Finding the observed information matrix when using the EM algo-
rithm. Journal of the Royal Statistical Society, Series B, 44:226–233.

Lu, W. and Ying, Z. (2004). On semiparametric transformation cure models.
Biometrika, 91:331–343.

Moyeed, R. and Diggle, P. (1994). Rates of convergence in semi-parametric modelling
of longitudinal data. Australian & New Zealand Journal of Statistics, 36:75–93.

Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood. Journal of the
American Statistical Association, 95:449–485.

Peng, Y. and Dear, K. (2000). A nonparametric mixture model for cure rate estima-
tion. Biometrics, 56:237–243.

Prentice, R. (1982). Covariate measurement errors and parameter estimation in a
failure time regression model. Biometrika, 69:331–342.

129



Ratcliffe, S., Guo, W., and Ten Have, T. (2004). Joint modeling of longitudinal and
survival data via a common frailty. Biometrics, 60:892–899.

Rice, J. and Wu, C. (2001). Nonparametric mixed effects models for unequally sam-
pled noisy curves. Biometrics, 57:253–259.

Rondeau, V., Mathoulin-Pelissier, S., Jacqmin-Gadda, H., Brouste, V., and
Soubeyran, P. (2007). Joint frailty models for recurring events and death using
maximum penalized likelihood estimation: application on cancer events. Biostatis-
tics, 8:708–721.

Schumaker, L. (2007). Spline functions: basic theory. Cambridge Univ. Press.

Shen, X. (1997). On methods of sieves and penalization. The Annals of Statistics,
25:2555–2591.

Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach
to joint modeling of longitudinal and time-to-event data. Biometrics, 58:742–753.

Song, X. and Wang, C. (2008). Semiparametric approaches for joint modeling of
longitudinal and survival data with time-varying coefficients. Biometrics, 64:557–
566.

Sun, J., Park, D., Sun, L., and Zhao, X. (2005). Semiparametric regression analysis
of longitudinal data with informative observation times. Journal of the American
Statistical Association, 100:882–889.

Sy, J. and Taylor, J. (2000). Estimation in a Cox proportional hazards cure model.
Biometrics, 56:227–236.

Taylor, J. (1995). Semi-parametric estimation in failure time mixture models. Bio-
metrics, 51:899–907.

Tsiatis, A. and Davidian, M. (2001). A semiparametric estimator for the propor-
tional hazards model with longitudinal covariates measured with error. Biometrika,
88:447–458.

Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event
data: an overview. Statistica Sinica, 14:809–834.

Tsiatis, A., DeGruttola, V., and Wulfsohn, M. (1995). Modeling the relationship
of survival to longitudinal data measured with error. Applications to survival and
CD4 counts in patients with AIDS. Journal of the American Statistical Association,
90:27–37.

Tsodikov, A. (1998). A proportional hazards model taking account of long-term
survivors. Biometrics, 54:1508–1516.

130



van der Vaart, A. (1998). Asymptotic statistics. Cambridge Univ. Press.

van der Vaart, A. and Wellner, J. (1996). Weak convergence and empirical processes.
New York: Springer-Verlag.

Vonesh, E., Greene, T., and Schluchter, M. (2006). Shared parameter models for
the joint analysis of longitudinal data and event times. Statistics in Medicine,
25:143–163.

Wang, M., Qin, J., and Chiang, C. (2001). Analyzing recurrent event data with
informative censoring. Journal of the American Statistical Association, 96:1057–
1065.

Wattanakit, K., Folsom, A., Chambless, L., and Nieto, F. (2005). Risk factors for
cardiovascular event recurrence in the Atherosclerosis Risk in Communities (ARIC)
study. American Heart Journal, 149:606–612.

Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data
measured with error. Biometrics, 53:330–339.

Xu, J. and Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated
measures and times to events. Applied Statistics, 50:375–387.

Yakovlev, A., Tsodikov, A., and Asselain, B. (1996). Stochastic models of tumor
latency and their biostatistical applications. New Jersey: World Scientific.

Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression
model of surviving fraction: An application to the analysis of “Permanent Employ-
ment” in Japan. Journal of the American Statistical Association, 87:284–292.

Ye, Y., Kalbfleisch, J., and Schaubel, D. (2007). Semiparametric analysis of correlated
recurrent and terminal events. Biometrics, 63:78–87.

Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure
models and their application to prostate cancer. Statistica Sinica, 14:835–862.

Yu, M., Taylor, J., and Sandler, H. (2008). Individual prediction in prostate cancer
studies using a joint longitudinal survival-cure model. Journal of the American
Statistical Association, 103:178–187.

Zeger, S. and Diggle, P. (1994). Semiparametric models for longitudinal data with
application to CD4 cell numbers in HIV seroconverters. Biometrics, 50:689–699.

Zeng, D. (2005). Likelihood approach for marginal proportional hazards regression
in the presence of dependent censoring. Annals of statistics, 33:501–521.

Zeng, D. and Cai, J. (2005a). Asymptotic results for maximum likelihood estima-
tors in joint analysis of repeated measurements and survival time. The Annals of
Statistics, 33:2132–2163.

131



Zeng, D. and Cai, J. (2005b). Simultaneous modelling of survival and longitudi-
nal data with an application to repeated quality of life measures. Lifetime Data
Analysis, 11:151–174.

Zeng, D. and Lin, D. (2006). Efficient estimation of semiparametric transformation
models for counting processes. Biometrika, 93:627–640.

Zeng, D. and Lin, D. (2007a). Semiparametric transformation models with ran-
dom effects for recurrent events. Journal of the American Statistical Association,
102:167–180.

Zeng, D. and Lin, D. Y. (2007b). Maximum likelihood estimation in semiparametric
regression models with censored data. Journal of the Royal Statistical Society,
Series B, 69:507–564.

Zeng, D. and Lin, D. Y. (2009). Semiparametric transformation models with random
effects for joint analysis of recurrent and terminal events. Biometrics, 65:746–752.

Zeng, D., Yin, G., and Ibrahim, J. (2006). Semiparametric transformation models for
survival data with a cure fraction. Journal of the American Statistical Association,
101:670–684.

Zhang, D., Lin, X., Raz, J., and Sowers, M. (1998). Semiparametric stochastic
mixed models for longitudinal data. Journal of the American Statistical Associ-
ation, 93:710–719.

132


