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ABSTRACT 

 
ERIC JAY EARLEY: The Genetics of Adaptation in Drosophila sechellia 

(Under the direction of Dr. Corbin D. Jones) 
 
 

 Drosophila sechellia, an ecological specialist on the ripe fruit of Morinda 

citrifolia (Morinda), displays a suite of adaptations which allow it to both prefer and 

tolerate Morinda and its toxic compounds. Other Drosophilids, like D. melanogaster, find 

Morinda repellent and toxic. Despite years of effort to dissect the genetic basis of this 

behavioral and physiological divergence, we still do not understand what genes allow D. 

sechellia to prefer and tolerate Morinda and what genes drive aversion in other species. 

In this dissertation I dissect the genetic basis of preference and tolerance using both 

traditional genetic and molecular tools along with new whole genome sequencing 

methods.  I find that preference is genetically complex (Chapter Two), requiring up to 27 

different genetic loci (Chapter Three). At the same time, however, a gene expressed in 

the fly’s  peripheral nervous system, gustatory receptor 22c, Gr22c, is responsible for 

nearly 50% of the transition between aversion and preference (Chapter Four). 

Surprisingly, extant D. sechellia Gr22c is likely a pseudogene, suggesting that preference 

evolution proceeded in two steps: loss of aversion then gain of preference. Finally, I, 

along with collaborators, introgress D. sechellia Morinda tolerance factors into a D. 

simulans genome and identify 17 candidate genes, among then three Odorant binding 

proteins (Chapter Five). We find that tolerance alone is not enough to confer altered 

behavior, conflicting with evolutionary models that predict preference and tolerance loci 
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would evolve to be genetically linked. In sum, this dissertation shows that the genetic 

basis of D. sechellia specialism on Morinda is complex and suggests that the evolution of 

preference and tolerance occurred in multiple steps: loss of aversion, gain of tolerance, 

and finally gain of preference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

 
Dedicated to my wife, Alice Drozdiak, for her unceasing love and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

 
ACKNOWLEDGEMENTS 

 

This work would not have been possible without the extraordinary help of so many 

people. First, thanks to my adviser Corbin Jones for his time, energy, and passion. Thank 

you for the journal clubs, lab meetings, and cheap beer. For the hundreds of hours of 

practice talks, manuscript edits, meetings, working groups, and – most importantly – the 

flies. 

Thanks to all my lab mates (and recent pod mates) who have listened to me bitch, given 

edits on writing, listened to practice talks, consulted on projects, and generally enhanced 

my work, in particular Anais Monroy, Alicia Brandt, and Sophia Shih. Thanks especially 

to Josie Reinhardt, Cass Jabara, and Artur Romanchuk who have helped me in so many 

tangible and intangible ways. 

Thanks to my amazing undergraduate assistants, Brooke Wolford and Betty Wanjiru, for 

their tireless help, and thanks to my collaborator Eric Hungate for letting work on his 

great project. 

 

This work would not have been possible without funding from the National Science 

Foundation (Pre-Doctoral Fellowship and NSF#MCB0920196) and NIDDK grant 

(P30DK056350) to the UNC Nutrition Obesity Research Center. 

 

 



 vii 

 
TABLE OF CONTENTS!

 
LIST OF TABLES ........................................................................................................... ix!

LIST OF FIGURES .......................................................................................................... x!

LIST OF ABBREVIATIONS AND SYMBOLS .......................................................... xii!

 
I. INTRODUCTION ......................................................................................................... 1 

II. NEXT-GENERATION MAPPING OF COMPLEX TRAITS WITH 
PHENOTYPE-BASED SELECTION AND INTROGRESSION .............................. 22!

ABSTRACT ...............................................................................................................................22!

INTRODUCTION......................................................................................................................23!

MATERIALS AND METHODS ...............................................................................................24!

RESULTS...................................................................................................................................29!

DISCUSSION ............................................................................................................................34!

REFERENCES...........................................................................................................................37!

III. HIGH RESOLUTION GENETIC ANALYSIS OF THE  
DIFFERENCE IN HOST PREFERENCE BEHAVIOR BETWEEN  
DROSOPHILA SIMULANS AND D. SECHELLIA ..................................................... 44!

ABSTRACT ...............................................................................................................................44!

INTRODUCTION......................................................................................................................45!

MATERIALS AND METHODS ...............................................................................................47!

RESULTS...................................................................................................................................51!

DISCUSSION ............................................................................................................................56!



 viii 

REFERENCES...........................................................................................................................63!

IV. FIRST STEP TO SPECIALISM: PSEUDOGENIZATION  
OF A GUSTATORY RECEPTOR WAS KEY INNOVATION DURING 
EVOLUTION OF SUPERSPECIALISM IN DROSOPHILA SECHELLIA ............. 72!

ABSTRACT ...............................................................................................................................72!

RESULTS/DISCUSSION ..........................................................................................................73!

MATERIALS AND METHODS ...............................................................................................86!

REFERENCES...........................................................................................................................89!

V. LOCUS IN DROSOPHILA SECHELLIA CONTRIBUTING  
TO TOLRANCE OF A HOST PLANT TOXIN DOES NOT  
AFFECT HOST PREFERENCE .................................................................................. 98!

ABSTRACT ...............................................................................................................................98!

INTRODUCTION......................................................................................................................99!

MATERIALS AND METHODS .............................................................................................103!

RESLUTS.................................................................................................................................108!

DISCUSSION ..........................................................................................................................115!

REFERENCES.........................................................................................................................125!

VI. CONCLUSIONS..................................................................................................... 138!

REFERENCES.........................................................................................................................145!

APPENDIX A: SUPPLEMENTARY MATERIAL FOR CHAPTER TWO .......... 147!

APPENDIX B: SUPPLEMENTARY MATERIAL FOR CHAPTER FOUR ........ 148!

APPENDIX C: SUPPLEMENTARY MATERIAL FOR CHAPTER FIVE .......... 153!

 



 ix 

LIST OF TABLES 

 

3.1 Count of loci across studies, biological and technical replications ............................ 69!

3.2 Regions with significantly high D. simulans SNP content in the current study ......... 70!

3.3 Chemosensory disruption results in D. melanogaster ................................................ 71!

5.1 Welch's t-test P-values for comparisons of KD50 between lines and sexes ............ 138!

5.2 Wilcox rank-sum tests............................................................................................... 138!

C.1   KD50 values for D. sim, High 10, and Low 10 for both sexes .............................. 162!

C.2 Mean KD50 for males for 36 recombinant lines of unknown tolerance.................. 163!

C.3 Gene ontology of genes in tolerance region............................................................. 165!

C.4 Number of non-synonymous and syntenic sites for genes....................................... 166!

C.5 Ka/Ks calculation for genes in tolerance region for D. simulans and D. sechellia . 167!

C.6 Catalog of D. simulans and D. mauritiana allelic differences at tolerance locus.... 168!

 

 



 x 

LIST OF FIGURES 

 

2.1 Fifteen generations of introgression show D. simulans enrichment for six regions 
across autosomes....................................................................................................... 40!

2.2 Mean size of candidate chromosomal region.............................................................. 41!

2.3 Ability to detect D. simulans enrichment with dynamic binning ............................... 42!

2.4 Dynamic binning on 2R.............................................................................................. 43!

3.1 Creating hybrid introgressions and informatic pipeline.............................................. 66!

3.2 Genome map of introgression break points ................................................................ 67!

3.3 Independent backcross testing specific D. simulans regions ...................................... 68!

4.1 Wild-type behavior of Drosophila towards Morinda and its compounds .................. 94!

4.2 Tarsal taste necessary for OA:HA aversion................................................................ 95!

4.3 Gr22c necessary for OA:HA aversion........................................................................ 96!

4.4 Gr22c locus confers oviposition avoidance in D. melanogaster and hybrids ............ 97!

5.1 Description of OIL genotypes and the cross to construct additional recombinants . 131!

5.2 Map of CAPS markers .............................................................................................. 132!

5.3 Diagram of OA tolerance test setup.......................................................................... 133!

5.4 OA tolerance for gold standard and 36 unknown lines............................................. 134!

5.5 M. citrifolia tolerance assay...................................................................................... 135!

5.6 Tolerance alleles in the 18-gene region do not affect behavior in heterozygotes..... 136!

5.7 D. sechellia recessive alleles have no effect on behavior......................................... 137!

B.1 Confirmations of Orco disruptions .......................................................................... 148!

B.2 RAL437 behaves similarly to other RAL lines on alternate chemicals..................... 149!

B.3 RNAi on Gr22c using a Gr22c-GAL4 driver ........................................................... 150!

B.4 Obp57d/e knockouts maintain aversion to OA:HA in our assay ............................. 151!



 xi 

B.5 Gr22c loss does not affect Morinda tolerance ......................................................... 152!

C.1 Plot of cumulative distribution of OA tolerance of all replicates ............................ 158!

C.2 Comparison of flow rate on tolerance...................................................................... 158!

C.3 Plot of cumulative distribution of OA tolerance...................................................... 159!

C.4 Cumulative distributions of percent knockdown over time for males ..................... 160!

C.5 Maximum likelihood phylogenies of Odorant Binding Proteins ............................. 161!

 

 



 xii 

LIST OF ABBREVIATIONS AND SYMBOLS 

 

Morinda: Morinda citrifolia fruit 

OA: Octanoic Acid 

HA: Hexanoic Acid 

MeHex: Methyl hexanoate 

bp: base pair 

GFP: Green fluorescent protein 

SNP: Single nucleotride polymorphism 

Indel: Insertion/deletion 

Or: Olfactory receptor 

Gr: Gustatory receptor 

Obp: Odorant binding protein 

Ir: Ionotropic receptor 

Orco: Odorant co-receptor 

poxn: pox-neuro 

PSIseq: Phenotype-based Selection and Introgression with Whole genome sequencing 

ORN: Olfactory receptor neuron 

GRN: Gustatory receptor neuron 

 

 



 

 
I. INTRODUCTION 

 

Animals live in a world of chemicals. To find mates, food, and avoid life 

threatening situations, animals must process information from chemical signals into 

action. At the simplest level, toxic chemicals should be avoided, and beneficial chemicals 

should be preferred. Innate behaviors, those controlled primarily by genetic factors, 

ensure that organisms respond appropriately to novel chemicals with minimal risk. This 

is especially relevant for organisms that must chose regularly between beneficial and 

toxic food resources.   

 While we are beginning to understand how animals sense their chemical world 

and how chemical information is translated into electrical information within the brain 

(MONTELL 2009; SU et al. 2009; TOUHARA and VOSSHALL 2009), we do not yet 

understand how this information ultimately transforms into a behavior. More broadly, we 

do not know why some organisms prefer specific chemicals while others avoid them. 

What suite of genetic changes must occur for an individual to avoid or prefer? Is this 

transition genetically easy, or does it require many genetic modifications? An ideal 

system to study this question would be a group of related species with members 

expressing clear preference and clear avoidance of a specific chemical(s), and is 

amenable to genetic dissection. 

The behavioral divergence between Drosophila sechellia and D. simulans is such 

a system (JONES 2005; RAMDYA and BENTON 2010; TSACAS and BACHLI 1981). These 
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two species are closely related (~0.5 MYA since most recent common ancestor (KLIMAN 

et al. 2000) and exhibit clearly divergent behavior toward the ripe fruit of Morinda 

citrifolia (Morinda, (AMLOU et al. 1998a; LEGAL et al. 1992; R'KHA et al. 1991). D. 

sechellia prefers Morinda and has evolved a suite of behavioral and physiological 

adaptations that enable it to consume and oviposit upon it (JONES 2005). D. simulans, on 

the other hand, avoids Morinda and finds it highly toxic (AMLOU et al. 1998a; AMLOU et 

al. 1998b; JONES 1998; R'KHA et al. 1991). This divergence appears to be driven in part 

by toxic fatty acids, Octanoic acid (OA) and Hexanoic acid (HA), abundant in Morinda 

(AMLOU et al. 1998a; FARINE et al. 1996; HIGA and FUYAMA 1993; PINO et al. 2010). 

Both fly species are also close relatives of D. melanogaster, which behaves like D. 

simulans, and provides access to an array of genetic, molecular, and cellular tools. 

Finally, all three species possess fully sequenced and annotated genomes (CLARK et al. 

2007). 

In the 30 years since its discovery (TSACAS and BACHLI 1981) studies of D. 

sechellia have shed some light on the genetic basis of its specialism on Morinda, yet there 

are gaping holes in our knowledge (RAMDYA and BENTON 2010; WHITEMAN and PIERCE 

2008). We do not yet know, for example, what specific genetic modifications allowed the 

transition from Morinda aversion to Morinda to preference. Given Morinda’s toxic 

potential for non-sechellia species, we do not know if behavior toward Morinda is 

genetically linked to or a pleiotropic consequence of tolerance of Morinda. Finally, we 

would like to identify general patterns in this genetic transition, if any exist. That is, 

should we expect to see certain types of mutations driving the evolution of preference 
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(deletions, duplications, etc.) and should we expect certain classes of genes to evolve 

more than others (e.g., genes functioning in the peripheral or central nervous system)? 

Combining all that we know about D. sechellia preference and tolerance for 

Morinda, we can begin to test hypotheses on how the transition toward specialism took 

place. In the current work, I propose three. First, behavioral specialism in D. sechellia 

involves multiple genes but not many genes of infinitesimally small effect size. 

Additionally, tolerance and preference are genetically correlated and likely require 

separate loci. Second, the evolution of D. sechellia specialism likely took place in a step-

wise manner. Preference and tolerance appears to have evolved separately, and 

preference itself likely evolved in multiple steps—i.e. ancestral and aversive D. sechellia 

evolved indifference for Morinda followed by subsequent gain of preference. Third, D. 

sechellia possesses an unusually large number of pseudogenes (MCBRIDE 2007; 

MCBRIDE et al. 2007), and that some of these loss of function mutations contributed to 

specialized preference and are not simply a consequence of specialism itself. 

 

Natural history 

 Drosophila sechellia is an island endemic species of the Seychelles archipelago, a 

granitic island chain off the coast of east Africa. D. sechellia is found throughout the 

archipelago, including Mahe ́, Frigate, Praslin, and Cousin islands, consuming and 

ovipositing upon ripe fruit of Morinda citrifolia (Morinda, (TSACAS and BACHLI 1981). 

While humans may have visited the islands much earlier, permanent settlement did not 

occur until roughly 400 years ago, and with them arrived many alien species of animals 

and plants. DNA evidence suggests, however, that D. sechellia colonized—and speciated 
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from its close relative D. simulans—on the islands long before humans arrived (KLIMAN 

et al. 2000).  

D. sechellia’s host plant, Morinda, is found throughout the archipelago as well as 

across the entire southeastern Pacific and Indian Ocean (BAKER 1970; ROBERTSON 1989; 

SAUER 1967). Its seeds can survive on salt water for more than a year, so Morinda may 

have floated from other locales. However, some controversy exists over its colonization 

on the Seychelles. Lachaise and Silvain (LACHAISE and SILVAIN 2004) argue that 

Morinda was most likely introduced recently by humans and that D. sechellia could have 

evolved its specialist lifestyle on chemically related plants (e.g., species within the 

Pandanus genus or coconuts) and shifted to Morinda after its introduction. If Morinda 

was not the original host for D. sechellia’s evolved specialism, we can at least be sure 

that D. sechellia evolved preference and tolerance for the specific chemicals that are 

abundant in Morinda.. 

 D. sechellia specialization of Morinda and/or its chemicals could have been 

driven by a number of genetic and ecological factors. Given the high rate of gene loss in 

its genome (CLARK et al. 2007; MCBRIDE 2007), and the paucity of genetic variation 

across its range (LEGRAND et al. 2009), ancestral D. sechellia, like other island endemic 

species, probably experienced a severe genetic bottleneck during colonization. Today D. 

sechellia’s range includes a number of sympatric non-specialist Drosophila, including D. 

simulans and D. malerkotliana  (LOUIS and DAVID 1986; R'KHA et al. 1997).  These 

species are strong competitors. One model of adaptive radiation on islands is that founder 

populations diverge allopatrically from mainland populations, evolving intrinsic 

reproductive isolating barriers, and subsequent re-introduction of mainland individuals 
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onto the island facilitates adaptive character displacement between these two groups 

since gene flow is reduced or absent (LOSOS and RICKLEFS 2009). Thus, competition with 

other species could have contributed to character displacement in nascent D. sechellia 

and pushed it to consume non-optimal food sources. If this food was only weakly toxic – 

or toxic for a short time – then its caloric benefit could have outweighed the risk of lethal 

exposure. Other ecological drivers of specialism could have also included escape from 

predators, such as the parasitoid wasp Leptopilina boulardini (LOUIS and DAVID 1986). 

By ovipositing on toxic Morinda, female D. sechellia could have ensured an “enemy-

free” environment. 

 

D. sechellia is resistant to Morinda and its toxins 

 Morinda fruit have a distinctive smell and are avoided by other Drosophilids 

(DEKKER et al. 2006; JONES 2005; R'KHA et al. 1991). Gas chromatography of Morinda 

headspace at various ripening stages identified 96 volatile compounds emanating from 

the fruit, including organic acids, alcohols, esters, ketones, and lactones (FARINE et al. 

1996; PINO et al. 2010). However, the most abundant of Morinda volatiles are Octanoic 

and Hexanoic Acids (OA, 58-70% and HA, 8-19%) and their ester derivatives, and these 

components give Morinda its characteristic “rancid cheese” smell. Ripe M. citrifolia fruit 

has the highest concentration of these acids and is highly toxic to Drosophilids except D. 

sechellia (JONES 2005; R'KHA et al. 1991). OA and HA are the main causes of the 

toxicity (AMLOU et al. 1998a).  However, this toxic effect appears limited to just a few 

days after dropping from its tree. Pre-ripe (green) and rotten fruits (dark brown) are not 

toxic (LEGAL et al. 1992).   
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D. sechellia is tolerant of Morinda and its predominant toxic compounds, OA and 

HA (AMLOU et al. 1998a; AMLOU et al. 1997; JONES 1998; JONES 2005; LEGAL et al. 

1994; LEGAL et al. 1992; LEGAL et al. 1999; R'KHA et al. 1991). Other Drosophilids, 

among them D. melanogaster, D. simulans, and D. mauritiana, are sensitive to Morinda 

and OA in particular. Both sensitivity and tolerance are consistent throughout all life 

history stages. 

 

Adult Tolerance 

Sensitivity studies of flies exposed either directly to Morinda, indirectly via its 

vapor, or pure OA have shown non-sechellia flies are knocked down (a prelude to death) 

within 30 minutes, whereas D. sechellia remains unaffected for the duration of tests 

(JONES 1998). The physiological effects of Morinda and its compounds are currently 

unknown. Flies exposed to Morinda or OA exhibit stereotypical symptoms – hyper-

grooming, loss of equilibrium, and finally irreversible coma – which resemble the effects 

of neurotoxins (LEGAL et al. 1992). 

 Interestingly, while D. sechellia is highly tolerant of OA, HA, and Morinda, it is 

less tolerant of common rotten fruit volatiles, including ethanol (MERCOT et al. 1994). 

This is surprising, given that Drosophilids in general have evolved a saprophagous diet 

and often prefer volatiles associated with rotten fruit. D. sechellia is thus unusual in that 

it appears to have evolved preference and tolerance for a ripe fruit, that is only available 

during a narrow time frame. This may explain why D. sechellia preference is so sensitive 

(see discussion of preference below). 
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 Early genetic studies of D. sechellia tolerance to Morinda and its compounds 

discovered that tolerance is dominant in interspecific hybrids (AMLOU et al. 1997) and 

biometric analysis estimated at least three genetic factors were involved (R'KHA et al. 

1991). More recent studies have relied upon marker assisted backcross experiments with 

visibly marked D. simulans. Jones (1998) first reported that D. sechellia OA tolerance 

was oligogenic and factors were present across all major chromosomes. At least two 

factors were present on the X, one on the 2nd, and the two strongest factors near the 

centromere of the 3rd, with epistatic interactions present between all chromosomes. 

 

Larval Tolerance 

 D. sechellia larvae tolerate Morinda toxins, while eggs and larvae of other 

Drosophilids are highly sensitive (JONES 2005; R'KHA et al. 1991). Initial work by 

AMLOU, MORETEAU, and DAVID (AMLOU et al. 1998b) investigating the genetic basis of 

OA and HA tolerance discovered that D. simulans, D. melanogaster, and D. mauritiana 

all exhibited delayed larval development at low doses of OA and HA, whereas D. 

sechellia development was only affected at higher concentrations. The authors also found 

evidence that D. sechellia tolerance was recessive; however, previous work by others had 

shown that tolerance was dominant (R'KHA et al. 1991). One explanation for this 

discrepancy is that AMLOU, MORETEAU, and DAVID (AMLOU ET AL. 1998B) only used D. 

simulans mothers in their crosses, allowing for the possibility that maternal effects were 

blocking dominant zygotic tolerance. JONES (2001) accounted for this effect by repeating 

the analysis with reciprocal F1 hybrids, reciprocal backcrosses, and compound-X 
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chromosomes. In this case, D. sechellia tolerance was semi-dominant and did involve a 

maternal effect. 

 JONES (2001) also dissected the genetic basis of larval tolerance in finer detail. 

Using 11 genetic markers and reciprocal hybridization with D. simulans, the author found 

tolerance to be oligogenic with no effect of the fourth or X chromosomes. The third 

chromosome harbored at least one intermediately dominant factor, and the second 

chromosome harbored at least two mostly dominant factors. These factors are likely a 

subset of those important for adult resistance. 

 

Chemotaxis and Oviposition Behavior 

 In addition to its tolerance to Morinda, D. sechellia has also evolved high 

sensitivity and preference for Morinda (R'KHA et al. 1991) and its compounds (AMLOU et 

al. 1998a; DWORKIN and JONES 2009; EARLEY and JONES 2011; MATSUO et al. 2007). 

Other Drosophilids actively avoid ripe Morinda and several of its constitutive compounds 

(AMLOU et al. 1998a; EARLEY and JONES 2011; LEGAL et al. 1992; MATSUO et al. 2007; 

R'KHA et al. 1991). The common ancestor between D. simulans, D. mauritiana, and D. 

sechellia was probably aversive to Morinda. How ancestral aversion evolved to 

preference, and what genetic mechanisms drove this transition, remains an unanswered 

question.  

 Work in the last 20 years has begun to uncover potential genetic drivers of the 

transition between aversion and preference. Early studies showed that D. sechellia 

preference for Morinda was recessive within interspecific hybrids with D. simulans 

(R'KHA et al. 1991, AMLOU et al. 1998a). Genetic mapping via interspecific backcross 
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with D. simulans posessing visible markers uncovered one locus on the second 

chromosome controlling behavior to HA (HIGA and FUYAMA 1993). A similar study of 

OA on egg laying behavior also using a backcross with D. simulans, but this time with 

more markers, discovered a locus on the left arm of chromsome two and the right of 

chromosome three (JONES 2005). No study found any effect of the X chromosome. 

 

Role of Chemosensory System in the Behavior of D. sechellia. 

The genetic basis of how D. sechellia finds and chooses Morinda or how D. 

melanogaster avoids this fruit remains unknown. A fly’s chemosensory system, however, 

is a promising starting point for finding genes influencing D. sechellia’s behavior 

(RAMDYA and BENTON 2010; WHITEMAN and PIERCE 2008). The past two decades have 

provided new insight into the molecular and genetic mechanisms of Drosophila olfactory 

and gustatory response (BENTON et al. 2009; MONTELL 2009; VOSSHALL and STOCKER 

2007). Fly chemosensation is first processed by sensory neurons for taste (gustatory 

receptor neurons, GRNs) or smell (olfactory receptor neurons, ORNs) which are housed 

within sensory hairs (“sensilla”), scattered across the fly’s antennae, proboscis, maxillary 

palps, legs, wings, and ovipositor. These neurons express seven-pass transmembrane 

receptor proteins which bind chemicals. These molecular receptors are coded for by three 

families of genes: Olfactory receptors (Ors), Ionotropic receptors (Irs, another set of 

olfaction genes), and Gustatory receptors (Grs). A fourth class of proteins, Odorant 

binding proteins (coded by Obps), appear to aid in the transport of organic chemicals 

through the aqueous lymph surrounding the sensory receptor neurons and enhance the 

sensitivity of receptors to specific chemicals. Once receptors bind a suitable chemical, 
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neural signals are transmitted to the brain via the antennal lobe (olfaction) or the 

suboesophageal ganglion (SOG, gustation). ORNs expressing the same receptor type 

transmit signal to the same glomerulus within the antennal lobe. GRNs, however, 

transmit signal to a variety of locations scattered across the SOG. From these regions, 

taste and smell signals are transmitted into higher order brain neurons and processed 

ultimately into behavior in ways not fully understood. 

 Recent work by a number of groups have mapped Morinda behavior genome 

wide, queried specific genes, and have identified specific olfactory and gustatory 

responses elicited by Morinda in D. sechellia. STENSMYR et al. (2003) and DEKKER et al. 

(2006) identified specific antennal sensilla which respond neurophysiologically to 

Morinda vapor. D. sechellia is 10 times more sensitive to the Morinda volatile methyl 

hexanoate relative to D. melanogaster. The ab3A type sensilla, located on the antennae, 

respond to methyl hexanoate (MeHex), and D. sechellia has an unusually large number of 

these sensilla relative to D. melanogaster. Supporting this model, experiments genetically 

perturbing the numbers and types of sensilla using alleles of lozenge (lz) affect how D. 

melanogaster responds to OA (JONES 2007). Similarly, the glomerulus receiving signal 

from these neurons is also enlarged in D. sechellia (IBBA et al. 2010). It appears that D. 

sechellia is hypersensitive to methyl hexanoate, and hence Morinda, because of this 

morphological transition.  

However, several complications of this model prevent it from completely 

explaining D. sechellia preference for Morinda. D. simulans, which is strongly aversive 

to Morinda, also harbors ab3A sensilla which are highly sensitive to methyl hexanoate 

(STENSMYR et al. 2003). Or22a and Or85b are the only known ab3A expressed receptors 
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to respond to methyl hexanoate in D. melanogaster (HALLEM and CARLSON 2006), but 

their differential expression across species cannot fully explain Morinda behavior. Or22a 

is upregulated in both D. simulans and D. sechellia relative to D. melanogaster (which 

itself has highly variable expression uncorrelated with ab3A density), and the combined 

high expression of Or22a and Or85b in D. sechellia should promote heightened 

sensitivity to ethyl-hexanoate rather than methyl-hexanoate (KOPP et al. 2008), but this is 

the opposite of what is observed (STENSMYR et al. 2003). Direct genetic tests, for 

example by knockouts of Or22a and Or85b within D. sechellia itself, are needed to know 

for sure whether these genes actually mediate preference. 

 MATSUO and colleagues (MATSUO et al. 2007) through direct genetic tests 

discovered that a coexpressed pair of odorant binding proteins, Obp57d/e, mediated 

oviposition behavior to OA and HA in D. melanogaster. D. sechellia’s ortholog 

(Dsech/Obp57d/e) harbors a 4bp insertion just upstream of the shared Obp57d and 

Obp57e transcription start site relative to other members of the D. melanogaster species 

complex, and this insertion appeared to disrupt expression of Dsech/Obp57d/e, but only 

in the tarsi. D. melanogaster females with knocked-in Dsech/Obp57d/e preferred 

ovipositing on high concentrations of HA and OA, a similar preference in D. sechellia. 

Given its presumed role as a chemical chaperone (GALINDO and SMITH 2001), OBP57d/e 

could act as a facilitator to nearby chemosensory receptors and enhance sensitivity to 

Morinda compounds. 

 In parallel with the anotomaical and gene-specific search above, multiple studies 

have correlated patterns of molecular evolution with D. sechellia preference. MCBRIDE 

(2007) discovered a surprisingly high rate of pseudogene accumulation in D. sechellia 
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chemosensory genes – almost 10 times faster than D. simulans. Given its small 

population size, D. sechellia could have many pseudogenes because of genetic drift, but 

the rate of chemosensory pseudogene fixation in D. sechellia is significantly higher than 

its non-chemosensory genomic background. Chemosensory genes in D. sechellia also 

show signatures of positive natural selection relative to the genome average. Grs in 

particular appear to be evolving faster than Ors in D. sechellia. Compared to D. simulans, 

D. sechellia has more Gr pseudogenes than Or pseudogenes (17.8% vs. 9.5%) and mean 

Ka/Ks ratios, a test for positive selection, increased by 94% in Grs compared to only 67% 

increase in Ors. Thus, evidence points to positive selection acting on both Ors and Grs 

within D. sechellia, although recent relaxation of selection could also explain these 

patterns. In a separate study MCBRIDE and ARGUELLO (2007) expanded their focus to 

more species, including another specialist D. erecta, which specializes seasonally on 

members of the Pandanus family (LACHAISE and TSACAS 1974). D. erecta also 

experienced an increased rate of Gr family contraction, and both D. sechellia and D. 

erecta show strong signatures of positive selection (LINZ et al. 2013). Ka/Ks in larval 

expressed Ors are higher than expected, and Ka/Ks is particularly high within specialist 

lineages in Grs responding to sweet compounds compared to Grs responding to bitter 

compounds. 

DWORKIN and JONES (2009) measured whole genome expression differences 

between D. simulans and D. sechellia both before and after being exposed to Morinda 

compounds (OA/HA mixture). A variety of chemosensory genes were strongly up- and 

down-regulated in D. sechellia relative to D. simulans including Or22a (up in D. 

sechellia), Or85b (up in D. sechellia), Obp83ef (up in D. sechellia), Obp83cd (down in 
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D. sechellia). These results match the over representation of ab3A sensilla in D. 

sechellia, as both Or22a and Or85b are expressed within these sensilla in D. 

melanogaster. Obp56e was particularly interesting for a few reasons. It was down 

regulated in D. sechellia relative to D. simulans, but after exposure to Morinda 

compounds its expression increased significantly in D. sechellia. This pattern is 

surprising given that Obp56e in D. sechellia is likely a pseudogene as it harbors a stop 

codon roughly 50% through its open reading frame relative to D. simulans. When 

Obp56e was knocked down in D. melanogaster, flies lost some aversion to Morinda 

compounds. How a putative pseudogene could influence D. sechellia preference is not 

clear. One possibility is that the shared ancestor of D. melanogaster and D. sechellia used 

up-regulation of Obp56e to avoid Morinda-like plants emiting OA or HA and a deletion 

leading to a premature stop codon in the D. sechellia lineage shut this aversive process 

down, and remnant up-regulation of Obp56e in D. sechellia remains despite the protein’s 

putative loss of function.  

 Combining all findings to date, we are beginning to piece together the 

evolutionary history of D. sechellia and its behavioral adaptation toward Morinda fruit. 

The trait involves at least a handful of genes, two of which are are known—Obp57d/e 

and Obp56e.  Loss of the activity of these genes in D. sechellia’s progenitor likely 

contributed to the reduction of ancestral aversion of Morinda.  However, neither of these 

genes alone, or presumably in combination, appears sufficient to remove aversion in D. 

melanogaster or reconstitute D. sechellia like preference. Similarly, while the 

morphological evolution of ab3A sensilla in D. sechellia could contribute to D. 

sechellia’s preference, we do not yet have any direct genetic tests of this model.  
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 It must also be noted that specializing on Morinda must have required a suite of 

traits, including behavioral preference and physiological tolerance. Any behavioral 

adaptation toward Morinda in adults must have required eggs and larvae to survive on the 

fruit. One of two conditions could have allowed this: pre-existing tolerance for octanoic 

acid in eggs and larvae or behavioral indifference in adults manifested only toward over-

ripe Morinda which was not toxic to eggs and larvae.   

 

Evolution to Preference: One step or two? 

 How many mutations were initially needed to transition from aversion to 

preference? The simplest model predicts one mutation. While unlikely, this model is not 

outside the realm of possibility. At least two separate transgenic experiments in mice 

(MUELLER et al. 2005) and C. elegans (TROEMEL et al. 1997) show how changes in 

chemosensory regulation, and where expression occurs in space, can instantly toggle 

behavior between preference and aversion for the same compound. A slightly more 

complicated model, involving two separate mutations, is more likely. 

 In the two step model (first articulated by (MATSUO et al. 2007), aversion is first 

lost in D. sechellia’s ancestor, leading to behavioral indifference. If this food is not toxic 

(or only mildly toxic), then indifferent flies could benefit from its consumption. Resource 

competion or heavy predation load could enhance this benefit. Subsequent mutations 

solifidy this benefit through gain of preference alleles (and perhaps tolerance alleles), 

which then allow the fly to actively seek the unused food. 

 This two step model is possible in D. sechellia. Multiple Drosophila species have 

been found on over ripe/rotten (non-toxic) Morinda (LOUIS and DAVID 1986; R'KHA et 
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al. 1991; R'KHA et al. 1997), showing that Morinda is a rich resource and accessible to 

flies expressing aversion. Flies that could accommodate Morinda at earlier ripening 

stages (more toxic) would gain . Similarly, flies that were able to oviposit on the ripe 

fruits could ensure a safe and abundant resource for their offspring and only larvae would 

have to be strongly resistant. The main difference between the one and two step models 

of preference evolution is that in the two step model, tolerance could evolve within an 

organism that is regularly exposed to Morinda toxin hence providing immediate benefit. 

In the one step model, flies would have to either possess a pre-adapted tolerance or 

evolve tolerance and preference in synchrony. 

 

The current work 

 My goal is to reveal the genetic basis of host specialization in D. sechellia and 

uncover whether this process required multiple genetic steps. We know that specializing 

on Morinda required at least two traits - preference and tolerance – but we do not know if 

these traits are controlled by the same gene, nor if they arose in multiple steps. Genetic 

complexity in this system would contradict a number of studies showing that new host 

specializations can evolve “easily” from changes at relatiely few loci. I show that these 

two traits, preference and tolerance, are required to consume Morinda, and these traits 

evolved from separate genetic factors. Preference alone likely evolved gradually in at 

least two steps – loss of ancestral aversion and gain of preference. I support this model by 

identifying genetic factors affecting behavior and tolerance and ruling out alternative 

scenarios that predict few genetic changes. 
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In Chapter Two, I present a method of mapping genome-wide the genetic basis of 

additive traits. This method links classical genetic techniques – artificial selection and 

backcrossing – with modern whole-genome sequencing to track in high resolution the 

introgression of chromosomal elements from one background into another a known 

gemomic background. I test this method by introgression D. simulans genes contributing 

to Morinda aversion into a D. sechellia background and sequencing the genomes of the  

the resulting flies at low coverage to map introgression break points. Results show at 

least six factors contribute to aversion behavior. 

 In Chapter Three, I repeat this process with more biological and technical 

replication and with higher sequencing coverage. I find that some regions introgress 

repeatedly, while other regions introgress with more difficulty. I verify certain 

introgressions by functionally testing specific genes located within introgression 

breakpoints and by creating independent backcrosses of D. simulans and D. sechellia and 

track the influence of D. simulans chromosomal regions on hybrid Morinda behavior.  I 

compliment this mapping screen with a candidate gene approach.  Surprisingly, there was 

little overlap between these two approaches. These results suggest that Morinda behavior 

is genetically complex, likely requiring at least nine and up to 27 separate factors.  

 In Chapter Four, I show that D. melanogaster lacking Gustatory receptor Gr22c, 

Gr22c, lose aversion. This factor explains roughly 40-50% of the behavioral transition 

between aversion and preference, and a pseudogene of Gr22c is segrating in extant 

populations of D. melanogaster. D. sechellia itself harbors a loss of function allele for 

this gene, which suggests that loss of Gr22c could have been an intermediate step 

between ancestral Morinda aversion and derived preference. Thus, not only is the 
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transition to specializing on Morinda genetically complex, as seen in Chapters Two and 

Three, but evolving from aversion to preference alone likely required multiple steps. 

 In Chapter Five I, along with my collaborators, fine-map the genetic basis of OA 

tolerance within interspecific hybrids of D. simulans and D. sechellia and test whether 

tolerance alone is enough to alter behavior. We identify a small candidate region of 18 

genes, three of which are Obps. We show that innate tolerance to OA and Morinda does 

not modify innate preference for the same chemical. This again confirms that multiple 

genetic steps were necessary for D. sechellia to specialize on Morinda.  

 Finally, in Chapter 6, I lay out my conclusions from this series of studies and 

propose a series of follow-up experiments.   
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ABSTRACT 

Finding the genes underlying complex traits is difficult. We show that new 

sequencing technology combined with traditional genetic techniques can efficiently 

identify genetic regions underlying a complex and quantitative behavioral trait. As a 

proof of concept we used phenotype-based introgression to backcross loci that control 

innate food preference in Drosophila simulans into the genomic background of D. 

sechellia, which expresses the opposite preference. We successfully mapped D. simulans 

introgression regions in a small mapping population (30 flies) with whole-genome 

resequencing using light coverage (~1x). We found six loci contributing to D. simulans 

food preference, one of which overlaps a previously discovered allele. This approach is 

applicable to many systems, does not rely on laborious marker development or 

genotyping, does not require existing high quality reference genomes, and needs only 

small mapping populations. Because introgression is used, researchers can scale mapping 

population size, replication, and number of backcross generations to their needs. Finally, 
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in contrast to more widely used mapping techniques like F2 bulk-segregant analysis, our 

method produces near isogenic lines that can be kept and re-used indefinitely.  

 

INTRODUCTION 

Complex traits are inherently difficult to dissect genetically. Quantitative Trait 

Loci (QTL) studies, Genome-Wide Association Studies (GWAS), forward- and reverse-

genetics are all powerful tools; however, each technique has inherent weaknesses that 

limit ability to find causal loci (MACKAY et al. 2009; MANOLIO et al. 2009). New 

methods using next-generation sequencing (NGS) technology have successfully captured 

single loci underlying Mendelian traits generated from mutagenesis screens 

(BLUMENSTIEL et al. 2009; FLIBOTTE et al. 2010; LAITINEN et al. 2010; SARIN et al. 2010; 

SARIN et al. 2008; XIA et al. 2010; ZURYN et al. 2010); recombinant inbred lines, RILs 

(HUANG et al. 2009; SCHNEEBERGER et al. 2009); and backcross populations using 

dominant markers (ANDOLFATTO et al. 2011). However, we lack a time- and cost-

effective method that maps multiple loci simultaneously without a priori knowledge of 

their location, number or effect size. 

Mapping complex traits is more challenging than mapping Mendelian traits. QTL 

studies in the past decades have uncovered a plethora of loci underlying complex traits, 

but QTL methods lack the power to resolve candidate regions to individual genes 

(MACKAY et al. 2009). New NGS approaches have the potential to capture multiple 

causative loci; however, these methods may also lack sufficient power. HUANG et al. 

(2009) proposed “whole-genome resequencing” (WGR), and Baird et al. (2009) proposed 

“restriction site associated DNA” (RAD) genotyping, which both use NGS-based 
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mapping on bulk segregant populations (MICHELMORE et al. 1991). These methods 

require large mapping populations to detect multiple loci of weak effect 

(e.g.,EHRENREICH et al. 2010). ANDOLFATTO et al. (2011) developed a “multiplex 

shotgun genotyping” (MSG) method, yet MSG also relies on large backcross populations, 

and it is not clear if their approach can track quantitative or additive loci of relatively 

weak effect or if closely linked loci can be isolated. 

We have developed a new approach that efficiently maps multiple loci 

contributing to a complex trait. Our method uses phenotype-based selection and 

introgression followed by whole-genome resequencing (PSIseq). Our method can be 

easily scaled from rough mapping of a single small population to fine-scale mapping of 

large and replicated populations. With minimal replication, low cost, and few genomic 

resources, we can map any complex trait divergent between any two inter-fertile 

populations. This approach takes advantage of the statistical power of window-based 

mapping algorithms on NGS data (HUANG et al. 2009) and the ease of using relatively 

small mapping populations. Because introgression is used instead of F2 bulk segregant 

analysis, mapping populations can be treated as near isogenic lines and be re-used 

indefinitely. 

 

MATERIALS AND METHODS 
Overview  

Populations with a divergent complex trait are hybridized and then selected for a 

specific phenotype across multiple generations of backcrosses. Our proof of concept uses 

a species-level phenotype, but this method can work on any two inter-fertile populations. 
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The trait of interest is selected for each generation, and offspring are mated to the other 

parental line expressing the unselected phenotype (introgression and backcrossing). Over 

multiple generations of selection and backcrossing this hybrid population becomes 

homozygous for the majority of the unselected parent’s genome while loci from the 

selected parent, which contribute to the selected trait, remain.  Using high throughput 

sequencing, we map the breakpoints of these introgressions and, therefore, map the 

regions harboring genes influencing the trait.  This scheme is analogous to introgression 

based mapping approaches that use marked transposable elements or molecular markers 

(DESJARDINS et al. 2010; LAURIE et al. 1997; TRUE et al. 1996). A recessive trait may 

also be introgressed, although this would require an extra inbreeding step following each 

backcross. 

 
Phenotype-based Selection and Introgression  

 We tested our method on a putative complex behavioral trait divergent between 

two Drosophila sister species: D. simulans (c167.4) and D. sechellia (SynA). D. sechellia 

is an island endemic and phytophagous specialist that prefers the smell and taste of 

Morinda citrifolia (Morinda) fruit (JONES 2005; MATSUO et al. 2007; R'KHA et al. 1991). 

D. simulans, avoids the fruit and dies when in proximity to it and its constituent organic 

acids (JONES 1998; R'KHA et al. 1991). As a proof of concept, we introgressed D. 

simulans Morinda aversion behavior into the D. sechellia genome over 15 generations of 

backcrossing and selection. For systems with longer generation times where 10+ 

generations of backcrossing is not a viable option, one can easily reduce the number of 

backcross generations (e.g., 1-5) while increasing introgression replication (see Results 
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and Figure 2.2 for a discussion of how to balance replication size versus backcross 

generation number). 

Virgin D. simulans females were mated to D. sechellia males to create a large 

population of fertile F1 females. These hybrids express D. simulans behavior and were 

backcrossed to D. sechellia males. Roughly 30 F2 females were subjected to our 

behavioral assay, and individuals displaying D. simulans behavior were collected and 

backcrossed to D. sechellia males. The assay is identical to that described in DWORKIN & 

JONES (2009). Briefly, octanoic (45ul) and hexanoic (15ul) acids were added to instant 

Drosophila media (4.1g + 22mL diH20; Carolina Biological Supply), or not, to create test 

and control food, respectively. Flies had 48 hrs to chose a medium. Flies settled on 

control media were considered D. simulans phenotype. This cycle – an assay of ~30 

females then backcrossing – continued for 15 generations. The final generation was 

inbred for 2-3 generations to ensure that introgressed loci were mostly in a homozygous 

state. Thirty females were pooled for Illumina library preparation. 

 
Introgression Mapping  

To map introgression breakpoints, we used reference genomes of these species to 

identify single-nucleotide species differences (analogous to SNPs) that identify genomic 

regions as particular to a parental genome. While our proof of concept used the relative 

high quality Drosophila genomic assemblies, non-model systems without a finished 

assembly can still be used. In principle, a sequenced transcriptome or an rough de novo 

assembly, for example, can be used to capture introgression blocks (or transcripts), as 

well. 
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We found on average one SNP per 100bp (1% divergence, compared to the 

reported 2% from KLIMAN et al. 2000). Because these SNPs represented genetic changes 

between these species, markers may have also contributed to phenotypic divergence. To 

create our species-specific SNP map, we aligned the D. simulans and D. sechellia 

reference genome sequences (r1.3) reciprocally using BWA (LI and DURBIN 2009). Small 

insertion-deletion (indels) and microsatellites could also be used, though we did not use 

them in this study.  We also showed that the genome of D. melanogaster can be used as a 

proxy for a reference genome and showed that SNPs distinguishing D. simulans and D. 

sechellia could be identified by aligning short sequencing reads from these species to the 

D. melanogaster reference using a high mismatch tolerance in the alignment (data not 

shown). In non-model systems this could be particularly beneficial. If neither parental 

line possessed an assembled genome or transcriptome, a closely related model-system 

assembly could be used.  

Individual flies from this 15th generation introgression (BC15) lineage were 

pooled and sequenced en masse using one lane of Illumina Genome Analyzer 1.0. 

Sequences were deposited in the NCBI Short Read Archive (SRA) database 

(SRA039418.2). High quality reads were aligned via BWA to both D. sechellia and D. 

simulans reference genomes (84% and 72% mapped, respectively). A mismatch call 

required at least two confirming reads. Hybrid-parent mismatches were correlated to our 

parent-parent SNP database. All hybrid-parent mismatches also present in the parent-

parent SNP database were considered true hybrid-parent SNPs. Despite quality filtering 

hybrid-parent SNPs through these two processes (multiple confirming reads and 

existence of parent-parent SNP), we could not be sure if a given SNP call was accurate 
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due to sequencing and mapping errors. To overcome this, we mapped introgression 

breakpoints using a window approach (as described in HUANG et al. 2009). Any 

individual mis-called SNP had minimal effect on our search for large-scale SNP 

enrichment. Every 1,000 parent-parent SNPs were considered a “bin,” and we counted 

the number of hybrid-parent SNPs within this bin. Our null expectation was that hybrid-

parent SNPs were binomially distributed within each bin. Any bin that harbored a 

significant enrichment of D. simulans SNPs over the chromosomal mean D. simulans 

SNP content was considered an introgression block member (Student’s t-test). This 

window approach required multiple independent significance tests, which we corrected 

for via a false discovery rate (FDR) calculation. 

 
Confirmation of X Chromosome Effect 

D. sechellia males with recessive genetic markers evenly spaced along the X 

chromosome -- zn (1-25) and f (1-56) -- were mated to D. simulans females.  The 

resulting F1 females were backcrossed to males from the D. sechellia parent. Thus, we 

can distinguish D. sechellia X chromosomes from D. simulans X chromosomes. We 

compared the influence these two classes of chromosomes have on adult food preference 

using a single fly two-choice oviposition assay (MATSUO et al. 2007). Prior work has 

shown that bulk population assays produce similar results to individual fly assays 

(AMLOU et al. 1998; MATSUO et al. 2007). The single fly assay was simpler for 

genotyping and it was different than the selection assay, yet assayed a similar phenotype.  

Each female was allowed to oviposit for two days in a chamber containing control or test 
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media (above). Preference was determined by which medium received the most eggs.  All 

assays were conducted at 20°C with relative humidity 50-70%. 

 

RESULTS 

In our proof of concept study where D. simulans preference loci were introgressed 

into the D. sechellia genome over 15 generations within one lineage, we found that our 

hybrids chose non-Morinda medium 71% of the time, comparable to D. simulans 

behavior (94%), and in contrast to D. sechellia (18%). We found six bins showing 

significant D. simulans identity (Figure 2.1; P < 0.0002). Two of these bins were 

relatively large (1-1.5 Mb), whereas four others were smaller (20-200 Kb). Three 

independent introgression loci on chromosome arm 2L were found within a 7 Mb region, 

illustrating the power of our method in resolving closely linked loci. We pinpointed a 

small region on 2R that contains a gene for Odorant Binding Protein 56e previously 

shown to weakly affect preference (DWORKIN & JONES 2009). Combined, these six loci 

account for 75% of D. simulans aversive behavior. Our bins harbored genes underlying 

diverse traits: fatty-acid metabolism (bubblegum), cuticle tanning (rickets), vision-

directed behavior (black), insecticide response (nAcRα-30D), temperature-directed 

behavior (pickpocket), antennal development (elbow B), and olfaction-directed behavior 

(Smi35a). 

To confirm that our method was accurately enriching for regions affecting our 

complex trait, we used three approaches. First, we used an introgression model to give us 

expected sizes of introgression blocks given recombination rate, number of backcross 

generations, and the level of replication (Figure 2.2). Second, we created a backcross 
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simulation to estimate the size and frequency of non-backcross parental blocks remaining 

after 15 generations of backcrossing without selection – that is, how often would we 

expect to see introgression blocks by chance alone. Finally, to ensure that D. simulans 

enrichment was not simply an artifact of bin size, we re-binned chromosomes at fewer 

(500) and greater (10,000) SNPs per bin (Figures 2.3 & 2.4). 

 
Introgression Modeling 

 To confirm that our method mapped regions of an appropriate size, we created a 

forward simulation to estimate the mean and variance of donor introgression block sizes 

(Figure 2.2). Our model uses recombination rates from Drosophila (TRUE et al. 1996) 

within the recombination model of FOSS et al. (1993), which incorporates crossover 

interference. We assumed a D. simulans genetic map of 460 cM and relatively simple 

interference (a non-crossover event must occur between adjacent crossovers, m = 1 from 

FOSS et al. 1993). Over multiple backcross generations, an introgressed block size 

decreases asymptotically to zero cM. With multiple independent introgressed replicates, 

the variance in block size also decreases asymptotically to 0. In our case, one replicate 

over 15 generations is expected to have a block size of ~5±5cM. Our experimentally 

observed blocks were roughly 0.5cM to 1cM, falling well within the expected block size. 

In Drosophila, 1cM is roughly equivalent to 0.5 Mb, depending on chromosomal 

position.  

 

Backcross simulation 
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 D. simulans enriched regions could also remain due to drift alone. To reveal the 

variation of introgression size by chance (that is, without selection), we performed a 

simulation of introgression with backcrossing. We populated a virtual pool of 

chromosomes made up of two parental genotypes, A and B. Each generation an A 

chromosome was recombined with a B chromosome, experiencing one crossover event at 

a random position. Each event created two daughter chromosomes that received 

reciprocal products. To maintain a stable population size, one daughter from each 

crossover was picked at random to propagate the next generation. This daughter was then 

“backcrossed” to a B chromosome. This cycle – recombination to B (the “backcross”) 

followed by randomly choosing daughter recombinants (“drift”) – was repeated 15 times 

with two levels of replication (2,000 and 20,000; see below). We tracked the size of A 

chromosome blocks maintained at each generation and calculated the population-wide A 

allele content after 15 generations.  

In infinitely large populations, theory predicts that, on average, half of the A 

alleles will remain after each cycle of recombination and drift. In non-infinite 

populations, however, drift will likely remove more than half of A alleles. This is because 

once an A allele is lost, it is lost forever, and the probability of A alleles being lost due to 

drift is additive across generations. To get a sense of allele loss due to drift, consider an 

infinite population experiencing recombination and drift over 15 generations. This should 

produce a frequency of A alleles equal to (½)15, or 3.05 x 10-5 % of the population allele 

frequency. In our simulation of 2,000 independent backcross lineages we found only one 

surviving A block within one chromosome for a population frequency of 3.8 x 10-9 % 

(152bp in one 20Mb chromosome). 
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Disregarding the low probability (1 in 2,000) of introgression by chance alone, we 

measured the variation in A frequency under a selection-free scenario. Simulations were 

repeated until 14 independent A blocks were found (20,600 replicates). Conditioning on 

an A block persisting (N = 14), sizes ranged from 0.7% to 27% of one chromosome (avg 

= 6.1±7.4%). At a population level (N = 20,600), sizes ranged from 3.4 x 10-7 % to 1.3 x 

10-5 %. In our pilot experiment, we introgressed one lineage with selection and found at 

least 6 blocks ranging in size from 20Kb to 1.5Mb (0.1-7.5% of a 20Mb chromosome). 

 

Binning Effect 

 In our effort to find regions of the 15th generation hybrid genome enriched for D. 

simulans, we binned chromosomes into overlapping 1,000 SNP (~100kb) sections. This 

size was chosen primarily with consideration of Drosophila genic density. However, 

choice of bin size influences one’s ability to detect significant SNP enrichment. For 

example, picking a large bin size will mask enriched regions by including adjacent non-

enriched regions. A bin size that is too small will force many comparisons and the 

corrected α threshold will be too low. Ultimately, bin size determines one’s ability to 

detect enrichment. 

 To illustrate the influence of binning on our analysis, we re-binned generation 15 

chromosome arms 2L and 2R at different sizes. Starting with a bin size of 500 SNPs 

(~50kb) we tracked clustering of D. simulans SNPs, calculated P- values then repeated 

this process, increasing bin size to a maximum size of 10,000 SNPs/bin. All bins overlap 

by 10% of their bin size. Because bin size scales inversely with the number of bins 



 33 

(hence the number of significance tests), the threshold of significance according to a 

False Discovery Rate (FDR) changes. 

 Figures 2.3 & 2.4 show data from chromosome arms 2L and 2R, respectively, 

produced by four sample bin sizes. The two large regions on 2L showing significant D. 

simulans SNP enrichment maintained this significance under all bin sizes. As expected, 

regions are not identified as significant for all bin sizes. As arm 2R (Figure 2.4) shows, 

while regions harboring sharp peaks in D. simulans enrichment stand out, large regions 

with relatively shallow enrichment can still approach significance (e.g. centromeric 

region of 2R). One’s ability to detect significance at a given bin size is influenced by the 

physical size of the introgression block and the magnitude of SNP enrichment, thus it is 

difficult to predict what is the “right” bin size. When choosing a bin size it is more 

important to consider the biological and experimental conditions: recombination rate, 

generation number, gene density, influence of recombination hotspots, etc.  

 

Independent Confirmation of the Effect of the X chromosomes. 

The X chromosome appeared not to harbor any genes affecting aversion behavior.  

An alternate explanation for this pattern is that our single introgression did not capture all 

regions affecting aversion. (As noted above, we only captured about ¾ of the D. simulans 

phenotype with this single introgression line.) This will most likely occur within 

chromosomes where local recombination landscape can affect the efficacy of selection. 

We did not expect this problem within an independent linkage group.   

Backcrossed D. simulans/D. sechellia flies with X-linked markers were subjected 

to an oviposition assay. When controlling for the influence of the X chromosome, we 
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confirmed the absence of its effect. Of the 169 flies with D. sechellia X, 77% avoided the 

Morinda medium. Of the 202 flies with D. simulans X, 73% avoided the Morinda 

medium.  This pattern goes in the opposite direction predicted and is not statistically 

significant (P = 0.4229). 

 

DISCUSSION 

We have shown that PSIseq can efficiently map the genetic basis of a complex 

trait. This method can find multiple loci with small mapping populations that remain 

usable beyond mapping experiments. Other NGS methods rely on transient F2 mapping 

populations which are irrevocably lost once nucleic acids are extracted. On the other 

hand, introgression stocks can be tested in future assays to further resolve candidate 

regions. Only low sequencing coverage is needed for rough mapping, and replicate 

populations can be created over time. We found at least six loci contributing to D. 

simulans aversion of Morinda compounds, and we confirmed the influence on behavior 

of an odorant binding protein locus discovered previously (Obp56e; DWORKIN and JONES 

2009).  

NGS mapping is typically composed of three main steps: 1) create a mapping 

population, 2) extract DNA and prepare libraries, 3) assemble short reads and genotype. 

PSIseq improves the first and third steps. First, PSIseq uses introgression lines 

propagated for more generations instead of an F2 backcross line because this allows 

mapping of smaller candidate regions. Closely linked loci can be decoupled and mapped 

separately, especially if multiple replicate introgressions are made. For example, 

ANDOLFATTO et al. (2011),  BAIRD et al. (2008), BLUMENSTIEL et al. (2009), HUANG et 
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al. (2009), SARIN et al. (2008), SCHNEEBERGER et al. 2009, and ZURYN et al. (2010) all 

used F2 backcross populations and successfully mapped single loci from mutagenesis 

screens or dominant marker mapping. PSIseq was able to isolate at least six distinct loci 

in our pilot study, three of which occurred within a 7 Mb region (See Figure 2.1).  

PSIseq also improves the third step in NGS mapping: genotyping. Instead of 

using only common SNPs (a la GWAS), PSIseq uses all possible SNPs and avoids 

potential bias in mapping to particular regions. A major issue with current short read 

technology is the high per base sequencing and mapping error rates. PSIseq overcomes 

this by using a window-based mapping approach, as described by Huang et al. (2009). A 

group of SNPs are collected into bins (“windows”), and statistical tests are performed on 

these bins. Thus, while a small percentage of SNPs may be inaccurate, these false SNPs 

are engulfed by surrounding populations of true SNPs. This method works particularly 

well when mapped regions are fixed for one parent and contain few polymorphisms (eg. 

RILs), and for rough mapping of hybrid genomes sequenced lightly. As an alternative to 

the window approach, Andolfatto et al. (2011) developed a customized Hidden-Markov 

Model (HMM) to assign the probability of a SNP’s ancestry. The power of this method 

lies in its ability to map with high resolution the boundaries surrounding the 

recombination breakpoint itself. We take a more simplistic approach in identifying 

ancestry by measuring SNP enrichment under a binomial expectation. 

PSIseq has additional advantages. First, the experimental replication needed to 

increase mapping resolution can be spaced out over time, and populations sizes within a 

replicate need only be large enough to maintain the introgression line - as small as one 

lineage per replicate. This approach allows us to increase introgression replicate sizes and 
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the quality and number of phenotypic measurements. Second, like sequenced RILS 

(HUANG et al. 2009), these selected introgression lines are potentially shelf stable and can 

be used in future experiments. Third, complex traits can be mapped in organisms lacking 

a high quality genome assembly.  For example, with transcriptome sequence from 

parental and introgression lines one could identify gene transcripts enriched for alleles 

from the selected parent. Finally, in addition to being flexible and extensible, our 

approach only needs low sequence coverage (~1X) for rough mapping, given enough 

SNPs (e.g. ~100kb resolution). To increase resolution of candidate regions one could 

replicate introgression crosses (see Figure 2.2) or take advantage of new targeted 

enrichment sequencing (ALBERT et al. 2007; ANTSON et al. 2000) to increase coverage 

for only interesting regions. This strategy would be particularly useful for regions with 

repetitive elements, duplications, pseudogenes, and other elements difficult to align at 

lower coverage. 

Our study measured a divergent trait between two species, but our approach can 

be applied to two genetically diverged individuals. The parental line would be sequenced, 

unique SNPs identified, and then introgression and selection.  Typically, these strains 

would have a lower SNP density. We provide a simple model for estimating the expected 

mapping resolution for a trait given sequence divergence rate and bin size (Appendix A). 

For example, populations with relatively low sequence divergence (0.1%) and bins of 

1000 SNPs each could be mapped to 2Mb regions within one replicate introgression 

lineage, depending on recombination rates, strength of phenotypic selection during 

introgression, and mapping quality.  
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Figure 2.1 Fifteen generations of introgression show D. simulans enrichment for six 
regions across autosomes. Proportion D. simulans per bin was calculated via comparing 
hybrid SNPs to all possible species-level SNPs within a bin (1000 SNPs, overlapping, 
sliding). If all hybrid SNPs correspond to all possible D. simulans SNPs, the proportion is 
1. If the opposite is true, all hybrid SNPs correspond to D. sechellia SNPs, the proportion 
is 0. Regions showing significant enrichment for D. simulans SNPs are marked (*, P < 
0.0002 or within-arm-FDR-correction). We estimate that these factors explain 
approximately 75% of D. simulans aversion behavior. Three loci were found clustered 
within a 7-Mb region on 2L (1, 0.5, and 0.3 Mb, in size, respectively, moving left to 
right). 
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Figure 2.2 Mean size of candidate chromosomal region. Shown are results from a 
forward model estimating the size of introgressed blocks in a backcross with selection 
scenario. The block, x, is the chromosomal region uniquely overlapped by all 
introgression lines, L. The size of x will depend on the number of generations of 
introgression and the number of independent lines (Replicates). We simulated this 
process for 2–10 replicate lines and 5–20 generations. The average x is blue; green and 
red dots represent 1 SD above and below the average, respectively. 
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Figure 2.3 Ability to detect D. simulans enrichment with dynamic binning. Shown are 
sections from a heat plot of P-values on chromosome arm 2L from generation 15 hybrids, 
the same region shown in Figure 2.1. Four bin sizes were chosen to illustrate the binning 
effect described above: 500, 1000, 5000, and 10,000 SNPs/bin moving from middle to 
top. Heat plot colors correspond to corrected P-values (normal approximation of 
binomial; significance set by FDR); dark red regions have met the FDR threshold and are 
considered significantly enriched for D. simulans. The color gradient from light red to 
dark blue corresponds to scaled P-values, which are not significant. Bottom shows 
reproduction of Figure 2.1 for reference. Horizontal positions in the heat plots correspond 
to physical location on bottom. 
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Figure 2.4 Dynamic binning on 2R Identical to Figure 2.3, but for chromosome arm 2R. 
The single peak on this chromosome encompasses Obp56e, which is known to affect 
aversion behavior 
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ABSTRACT 

Studies over the past 20 years suggest that relatively few genetic loci contribute to 

differences in host seeking behavior between closely related species of phytophagous 

insects. With so few loci involved and ample genetic variation, evolution of new 

behaviors could proceed rapidly. The methods and sample sizes used to find these genetic 

loci, however, were inherently biased towards mapping few loci of large effect size. A 

key question is whether different experimental approaches would yield fundamentally 

different numbers of loci. We took two complementary approaches to identifying genetic 

differences between Drosophila simulans and D. sechellia that contribute to differences 

in behavior towards the fruit and volatiles of Morinda citrifolia (Morinda), the preferred 

host of D. sechellia. Using whole genome sequencing and a recently introduced mapping 

method that tracks loci of variable effect size, we identified up to 27 loci contributing to 

Morinda host seeking behavior – far more loci than seen in previous genetic studies of 

host preference. In a parallel screen, we tested the function of specific candidate genes 

expressed in the peripheral nervous system – a likely target of host preference evolution – 

and found that genetic disruption of two receptors, Ionotropic receptor 92a and 75a, 
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affected behavior towards Morinda or its volatiles. Our high resolution study suggests 

that the genetic basis of host preference is likely more genetically complex than 

previously thought and that evolution of preference may not evolve as easily as 

previously suggested. 

 

INTRODUCTION 
 

At its simplest, host seeking behavior is a dichotomy between generalists and 

specialists (FORISTER et al. 2012; FUTUYMA and MORENO 1988). Generalists can find 

nutrients from a diversity of sources, whereas specialists must focus on one or a few 

sources. Both groups often need particular morphological or physiological traits to 

consume nutrients, and evolution of these adaptations is critical to the evolution of a new 

specialism or the emergence of generalism. Ultimately, the evolutionary rate of any 

additive trait is determined by its standing genetic variation, which in turn is shaped by 

the allelic diversity and the number of contributing genes (TURELLI and BARTON 1994). If 

multiple genetic changes drive adaptation, then each new allele must incrementally 

increase fitness towards a new adaptive optimum. However, in many other scenarios, the 

complexity of an adaptation can be limiting (ORR 2000). For example, if evolving toward 

a new adaptive optimum requires traversing a fitness valley, then allelic combinations 

must be assembled in relative synchrony while minimizing deleterious pleiotropic effects. 

Thus, the number of genes necessary for adaptation has been suggested to affect the ease 

with which a new adaptation spreads through a population (GAVRILETS and VOSE 2005; 

ORR 1998).  
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A simple genetic path may be particularly important for ecological specialism, 

especially in phytophagous insects, which often need to evolve multiple traits to 

accommodate new plant hosts (MATSUBAYASHI et al. 2010). More than a dozen studies 

have mapped the genetic basis of host preference across a variety of these species and 

have discovered only 1-5 loci of moderate to strong effect in every case. This suggests 

that host preference can evolve rapidly and revert to an ancestral state easily. However, 

almost all of these studies used QTL mapping or a backcross with sparse genetic markers 

and relatively small sample sizes, biasing against discovery of minor effect loci. Adaptive 

traits in other systems also show surprisingly few contributing loci (NADEAU and JIGGINS 

2010), yet in almost every case experimental procedure biased toward finding few loci of 

strong effect. Because of this, some have argued we may be misapprehending the true 

polygenic nature of adaptive genetics (ROCKMAN 2012).  

To overcome the biases of QTL and linkage mapping, we investigated the 

genetics of a naturally occurring, adaptively divergent trait using two complimentary 

approaches to identify loci important for host preference: a high resolution mapping 

approach based on phenotype selection and introgression coupled with whole-genome 

resequencing (PSIseq; EARLEY and JONES 2011) and a targeted disruption of specific 

candidate genes. Both of these approaches can identify individual genes, including those 

with relatively weak effects.  

We focused on the difference in host preference between Drosophila  sechellia 

and its sister species, D. simulans and D. melanogaster. D. sechellia is a host specialist 

on the plant Morinda citrifolia (Morinda), whereas its sister species avoid this host 

(JONES 2005; TSACAS and BACHLI 1981). As host seeking behavior in phytophagous 
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insects is often mediated by chemotaxis (BERNAYS and CHAPMAN 1994; RAMDYA and 

BENTON 2010), genes expressed specifically in the peripheral nervous system – in 

particular chemoreceptors – likely contribute greatly to adaptive host preference. 

Changes in these genes could be critical to evolving preference toward new hosts, and 

mutations within a single chemosensory gene have been shown to change insect host 

seeking behavior significantly (MATSUO et al. 2007).  Prior work, however, largely 

ignored Ionotropic receptors (Irs; BENTON et al. 2009) and therefore we focused our 

efforts on these genes. 

We found up to 27 loci contributing to host preference and resolved one interval 

to a single gene. Another region harbors a known contributing gene, Odorant binding 

protein 57d/e (MATSUO et al. 2007). We also verified three loci from an earlier mapping 

experiment (EARLEY and JONES 2011). To confirm the effects found in our genomic 

survey, we conducted an independent backcross experiment examining the effect of 

specific loci on chemotaxis. While some regions were confirmed, we also discovered that 

our genomic map has likely missed a region of strong effect at chromosome arm 2L. Our 

candidate gene screen found no strong overlap between chemoreceptor genes and our 

PSIseq map, nor were many of the tested chemosensory genes important to avoidance 

behavior. However, we did find that two chemoreceptors, Ir93a and Ir75a increased 

Morinda aversion when knocked out.  

 

MATERIALS AND METHODS 

Introgression and backcrossing 



 48 

 Replicate populations of D. simulans (c167.4) females and D. sechellia (SynA) 

males were crossed and progeny female were backcrossed to D. sechellia. Backcrossed 

flies were subjected to a behavior assay that uses the chief volatiles of Morinda citrifolia, 

octanoic and hexanoic acid (FARINE et al. 1996; PINO et al. 2010), as previously 

published (DWORKIN and JONES 2009; EARLEY and JONES 2011). Our prior work shows 

that this assay captures on average ~68% of the parental difference in phenotype. Briefly, 

flies were introduced without anesthesia to a behavior arena (2L glass beaker, Fisher 

Scientific, Pittsburgh, PA) overnight (25°C, 50-60% humidity) containing two glass milk 

bottles, one with control food (22mL diH2O, 4.1g instant fly media, Carolina Biological 

Supply Co.) or test food (control media with 0.2% Octanoic Acid and 0.06% Hexanoic 

Acid, v/v). Flies on control food – hence expressing dominant D. simulans aversion – 

were selected and backcrossed to D. sechellia. This cycle, phenotypic selection for D. 

simulans-like aversion and backcross to D. sechellia, was repeated for 15 generations 

(Figure 3.1). Aversion was tracked in this study for two reasons. Since aversion is 

dominant over preference in hybrids, we avoided the need to homozygose flies each 

generation to expose recessive alleles. We also assume that since these species are 

recently diverged, tracking aversion alleles will provide insight for preference, as well. 

 

Illumina Sequencing and Assembly 

Pooled females from two replicate lines were split into two groups per line 

producing two technical replicates for each biological replicates. DNA libraries were 

prepared and barcoded by standard Illumina protocols, producing an average 60,156,803 

sequences (2x100) from a HiSeq 2000. 
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Bioinformatic methods are after (EARLEY and JONES 2011). Briefly, D. sechellia 

reference genome (r1.3) was fragmented in silico to an average 20x coverage, and these 

fake reads were aligned against the D. simulans reference genome (r1.4) to generate 

species-specific SNPs. We also performed a reciprocal alignment for select genomic 

regions to test the influence of mapping reference bias and found that using D. simulans 

as reference provided significantly higher quality SNP calls (measured with SAMtools 

mapping scores), which was not surprising since the D. sechellia genome is still in 

scaffold phase. Experimental hybrid sequences were aligned to the same genome. SNPs 

shared between the hybrid read assembly and the D. sechellia assembly were collected. 

For every 1,000 possible species SNPs, hybrid SNPs were counted along a sliding 

window with adjacent windows overlapping by 90% . Windows exhibiting SNP content 

significantly different from its chromosome arm mean were identified via repeated t-tests, 

with corrected alpha threshold via FDR=0.05. Alignments were performed with BWA (LI 

and DURBIN 2009), processed by SAMtools (LI et al. 2009),  SNPs were called, 

correlated, and binned using custom Perl scripts, and statistics were performed in R (R 

DEVELOPMENT CORE TEAM 2012). All reported interval sizes were calculated from 

narrowed overlapping replicate coordinates, technical or biological, unless none were 

available. 

 

Candidate Gene Knockdowns 

 All flies were reared at 22-25°C on agar-yeast-cornmeal medium. Gene 

knockdown tests were performed with D. melanogaster stocks from Bloomington stock 

center at 25°C with controlled humidity (50-60% humidity). Ir knockdowns were created 
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from P-element insertions within coding regions. Or knockdowns were created by 

expressing Tetanus toxin (TeTxLC), an inhibitor of synaptic vesicle function, driven by 

Or promoter elements via the GAL4/UAS system. Behavior was measured using the 

same behavior assay described above. Flies in test or control food were counted, and a 

response index was calculated: RI = logit[ #flies test / (#flies test + # flies control)]. 

 

Verification of Candidate Loci Effects Using a Backcross and Oviposition Assay 

We used a standard backcross and an alternative assay to test the completeness of 

our PSIseq screen and to confirm candidate regions.  Genetically marked D. simulans 

females (Cy, Ubx, and Serr) were crossed to D. sechellia males to make D. simulans/D. 

sechellia F1 hybrids. Females were backcrossed to D. sechellia males, and F2 progeny 

were assayed for oviposition preference. Visible markers in the backcross generation 

denote chromosome regions and not entire chromosomes because of recombination 

occurring in the F1 hybrid females. Flies exhibiting Cy (genetic position 2L: 6.1), Ubx 

(physical position 3R: 0.02 Mb - 8.9 Mb; COYNE and SNIEGOWSKI 1994), or Serr 

(physical position 3R: 22.8Mb) were heterozygous for D. simulans loci in those regions, 

whereas flies without these markers were homozygous D. sechellia on those regions. 

Gravid females were given a choice of oviposition substrates: one with octanoic acid 

(OA, 0.07%, a non-lethal dose, Sigma) and one without. Substrates were made with 

diH2O and instant Drosophila medium (Carolina Biological Supply Co.). Females were 

allowed to oviposit for two days (25°C, 50-70% humidity), after which eggs were 

counted on each substrate and the female was tested again on fresh substrate. One 

replicate was one female tested over four total days. Combined totals on both test and 
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control media were calculated into a response index: RI=logit[ (#eggs test) / (#eggs test 

+ #eggs control) ] 

 

Molecular Evolutionary Analysis 

 dN/dS calculation for GD13873 (CG4597). was performed on D. simulans and D. 

sechellia coding sequences from flybase (GELBART et al. 1999) using MEGA5 (TAMURA 

et al. 2011). 

 

RESULTS 

Assembly and SNPs 

 We identified 1,778,101 SNPs in an alignment between D. sechellia and D. 

simulans (18.4x average coverage), which is an average of 1.7% divergence across 

100Mb. Assembled introgression hybrid genomes had an average coverage of 13.7x 

(compared to 1x coverage in our previous study; EARLEY and JONES 2011) across two 

biological replicate lines with two technical replications each, and were predominantly D. 

sechellia (out of 1.7 million potential SNPs 1.6 million were D. sechellia). 

 

Morinda seeking behavior is not genetically simple  

We identified up to 27 PSIseq intervals contributing to host preference difference 

between D. simulans and D. sechellia (Figure 3.2, Table 3.1, Table 3.2). Roughly half of 

these loci (13) were confirmed by biological replication. We were able to map one region 

down to a single candidate gene, GD13873 (CG4597). All autosomes possessed multiple 
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loci, except for 4. The X chromosome had no effect as previously shown (EARLEY and 

JONES 2011).  

 Three regions, two on chromosome 2L and one on 3L (Figure 3.1, Table 3.2),  

overlapped our previous lower resolution study and across both biological replicates 

(EARLEY and JONES 2011). The sizes of these intervals ranged from 1Mb to as small as 

72.5Kb. The magnitude of D. simulans SNP enrichment and similarity of overlap of 

intervals on 2L was particularly striking, potentially representing multiple linked loci of 

strong effect.  In contrast, the small shared region on 3L contains a single annotated gene, 

GD13873. Within these three regions were a total of 162 annotated genes.  

Focusing on the overlap of the two bio-replicates within the current study 

produced 12 additional candidate intervals in addition to the three previous regions. All 

autosomes possessed at least one locus, and the region sizes ranged from 771.7Kb to 

65.4Kb. Within these regions were 813 annotated genes with an average of 68 per region. 

Three more loci were mapped with at least technical replication but no biological 

replication. Sizes for these regions were consistent – 530Kb to 555Kb – and possessed a 

total of 71 genes. Without regard to overlap across either techno- or bio-replicates, we 

found nine additional candidate regions. In total, regardless of replication, up to 27 

intervals contributed to the difference in host preference. 

In our earlier study, we detected Odorant Binding protein 56e (Obp56e), which 

was previously identified as affecting behavior, but did not detect another locus, 

Obp57d/e, known to affect preference (MATSUO et al. 2007).  In contrast, our new map 

identified Obp57d/e, but not Obp56e. In both cases, the signal was not strong (Figure 3.2 

– see region surrounding position 15Mb on 2R. The black bar, an interval from previous 
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work, captured Obo56e, whereas the current study captured Obp57d/e, within the small 

adjacent peak). 

 The two most striking PSIseq intervals were on 2L.  These were consistent across 

all experiments and technical replicates. Given their relatively large size we might expect 

multiple genes within these regions to be contributing to Morinda behavior. Surprisingly, 

out of 159 genes there are few annotated chemosensory or behavioral genes in either of 

these intervals. Some genes stand out due to their functional annotation within D. 

melanogaster orthologs: bubblegum (fatty acid metabolism—the Morinda toxins are 

medium chain fatty acids), pickpocket (post-mating behavior), smell impaired 35A 

(chemosensory behavior). Gene Ontology cluster analysis (HUANG et al. 2009a; HUANG 

et al. 2009b) for this region identified a number of enriched categories, including EGF-

like (12 genes, IPR006210: arrow, nine members of the nimrod gene cluster, and one 

gene without an annotated D. melanogaster ortholog, GD25758, all of which have EGF-

like protein domains), hormone and juvenile hormone binding (four genes, IPR013053: 

CG33306, CG7916, CG7953, CG7968), DNA metabolic process (seven genes, 

GO:0006259), and vesicle-mediated transport (eight genes, GO:0016192). None of these 

stand out as contributors to host seeking behavior, although enrichment of EGF-like 

domains suggests that nervous system development factors could be playing a role in this 

behavior. 

 

Morinda aversion increased when Ir92a and Ir75a are disrupted 

 In addition to our genome-wide screen for loci contributing to behavior between 

D. sechellia and D. simulans, we also enacted a candidate gene screen within the more 
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genetically tractable species D. melanogaster, a close relative to D. simulans and D. 

sechellia (Table 3.2). Behaviorally, D. melanogaster and D. simulans were not 

significantly different (P = 0.3509), whereas the difference between D. melanogaster and 

D. sechellia was (P = 0.0072).  

We initially targeted the Irs because at least one, Ir64a , had been shown to affect 

response to some acids (AI et al. 2010) and the role of this family of chemoreceptors in 

D. sechellia’s preference had not been investigated.  We then broadened our screen to 

include some Ors due to their hypothesized effects  (Or22a; DEKKER et al. 2006), species 

specific expression patterns (Or9a, Or65c; DWORKIN and JONES 2009), or because a weak 

PSIseq peak was near a candidate (Or69a). In all cases we were limited by the available 

genetic reagents at the time of the screen.  

We disrupted chemoreceptor function using a variety of genetic methods in D. 

melanogaster and measured change in aversion to Morinda medium. None of the 

chemoreceptors tested reduced aversion to Morinda medium, but two appeared to 

increase aversion when knocked-out (Ir75a: P = 0.0546; and Ir92a: P = 0.00792). 

Neither of these Irs were present in a PSIseq interval, although Ir92a (Figure 3.2, at 

position 3R: 5.3Mb) is close to a cluster of peaks on 3R. Ir75a (position 3L: 17.1Mb) 

results were particularly surprising as it exists in one of the few regions completely 

devoid of peaks. Two other receptors, although not significant, also showed a trend for 

increased aversion when knocked-out (Ir31a: P = 0.0997 ;Ir93a: P = 0.0959). Ir93a was 

the only Ir present in any of our intervals (Table 3.2, position 3R: 4.7Mb). Ir31a (position 

2L: 10.2Mb), like Ir75a was also in a region with few peaks. None of these Irs exhibit 

expression divergence between D. simulans and D. sechellia (DWORKIN and JONES 
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2009). Ir64a, an acid sensing chemoreceptor, also had no effect (P = 0.1214). 

Intriguingly, none of the Ors affected behavior in our assay. This was surprising given 

that both Or9a and Or65c show significant expression divergence between D. simulans 

and D. sechellia (DWORKIN and JONES 2009) and Or22a has been implicated as important 

to preference and detection of hexanoic acid from neuro-physiological studies (DEKKER 

et al. 2006; HALLEM and CARLSON 2006). 

 

Independent backcross confirms some intervals, but also reveals missed loci  

Our data showed that some candidate regions had consistent effects across 

replicates and experiments.  Other loci, including known factors, were more variable (e.g. 

Obp56e and Obp57d/e).  This pattern could be a product of either the mapping approach, 

or the phenotypic assay (as noted previously, our assay conditions only capture about 

68% of the parental phenotype). Earlier work using an oviposition-site preference assay 

confirmed the absence of an effect of the X (EARLEY and JONES 2011), suggesting that 

large regions without preference factors were correctly identified by PSIseq.  Here we 

targeted three more subtle classes of intervals: (i) a region that appears to have peaks, but 

they are not significant (left end of 2L), (ii) a region with a single peak in one experiment 

(right end of 3R), and (iii) a large multi-peak region with effects shared between 

experiments (left end of 3R).   

We conducted an independent single generation backcross between D. simulans 

and D. sechellia using genetic markers (Cy at genetic position 2L: 6.1, Serr at physical 

position 3R: 22.79Mb, and Ubx , which is associated with an inversion spanning physical 

position 3R: 0.1Mb to 9Mb) to track D. simulans chromosomal regions within a D. 



 56 

sechellia genomic background. Chemo-tactic behavior, assayed with the same apparatus 

used to generate introgression flies above, was significantly altered when Cy was present 

in hybrid flies (Figure 3.3a, P = 0.0067). Surprisingly, this region of chromosome 2L was 

not introgressed in our genome mapping population (Figure 3.2), although a cluster of 

peaks was proximate. We also measured oviposition behavior toward Morinda 

compounds and found D. simulans chromosomal regions on left 2L (Cy, P = 0.001) and 

left 3R (Ubx, P < 0.0001) significantly reduced preference for ovipositing on Morinda 

medium compared to siblings homozygous for D. sechellia in this region (Figure 3.3b). 

Ubx and its associated inversion confirmed the four peaks in this region. The middle right 

region of 3R, however, did not significantly alter hybrid behavior (Serr, P = 0.23), 

although this appears to be driven more by the relative indifference of siblings with D. 

sechellia alleles in this region (Figure 3.3b). 

 

DISCUSSION 
 

 Several studies have found relatively few genetic loci contributing to differences 

in host preference behavior among closely related phytophagous insects species 

(MATSUBAYASHI et al. 2010), suggesting that evolving new host preference could be 

relatively easy. While these early studies have provided an invaluable initial view of the 

genetics of these traits, building generalized models from them may be problematic. QTL 

of moderate or small effect are difficult to detect (MACKAY et al. 2009), especially if only 

a few markers are used and samples sizes are small. Studies of QTLs underlying standing 

genetic variation suggest that strong effect QTL themselves are often not single effect 

loci but are instead a complex cluster of multiple interacting loci (MACKAY et al. 2009). 
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Given these limitations, some have argued that our current understanding of adaptive 

genetics is fundamentally shaped more by our techniques than by actual evolutionary 

processes. That is, many loci of relatively small effect – or infinitesimally small – create 

adaptations (ROCKMAN 2012).  

 To potentially overcome these shortfalls, we combined two complementary 

approaches to identify genes important for differences host preference between D. 

sechellia and D. simulans. We used PSIseq to map genes important for D. sechellia’s 

aversion of the fatty acids in Morinda. Along with loci of major effect, this method can 

also potentially track loci of relatively small to moderate effect. In parallel, we 

genetically ablated or altered the expression of specific candidate genes of the 

chemosensory system. We discovered up to 27 loci contributing to host preference 

behavior and found that knockdown of Ir92a and Ir75a significantly influenced response 

to OA and HA. 

 Previously, a number of genes and genetic loci have been implicated in D. 

sechellia preference for Morinda and its compounds (DEKKER et al. 2006; DWORKIN and 

JONES 2009; EARLEY and JONES 2011; HIGA and FUYAMA 1993; MATSUO et al. 2007), 

but only two genes were tested directly: Obp57d/e (MATSUO et al. 2007) and Obp56e 

(DWORKIN and JONES 2009). At first glance, these earlier results appear to be consistent 

with the simple genetic model for host preference. However, our recent data (EARLEY and 

JONES 2011) and the present study suggest that many other factors are potentially 

contributing to this behavior. We estimate there are at minimum nine and as many as 27 

loci contributing to this behavior (Figure 3.2, Table 3.1, Table 3.2). We also note that our 

introgression did not track any recessive aversion loci. Additionally, although we focused 



 58 

predominantly on behavior, our introgression assay allowed free movement of flies 

between alternate foods, and thus we could have captured loci governing performance on 

these foods.  

Compared with our earlier work, the additional biological and technical 

replication and increased the sequence coverage (13x more) in the present study allowed 

far higher power to map regions in high resolution and make highly accurate SNP calls.  

We confirmed three major loci from the earlier work and uncovered many previously 

unidentified loci.  However, these data are not complete as our independent backcross 

data suggest we have missed another locus near the tip of 2L. In agreement with previous 

work, the X and dot 4 chromosomes harbored no factors (EARLEY and JONES 2011; JONES 

2005). 

 The varying levels of technical and biological replication among these 27 loci 

could be caused by a number of reasons. Although our theoretical coverage is high 

(~50x), our realized mapping coverage is lower (~13x) so false positive SNP calls may 

skew our ability to identity species of origin for a given bin. This is unlikely for two 

reasons: first, we cross referenced SNP calls in our introgression hybrid read alignment 

with a separate D. simulans/D. sechellia alignment and only species-specific SNPs shared 

between these alignments were considered; second, we calculated the average percent 

identity of a bin across 1,000 possible SNPs so any given false positive from both 

alignments would be obscured by its neighborhood of accurate SNPs. More importantly, 

all of these technical issues were more likely to lead to missing true SNPs (false 

negatives) than miscalling false SNPs (false positive) and would thus conservatively bias 

our map and reduce the number of significant loci. 
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Two pieces of evidence suggested that a strong factor for Morinda behavior  

exists on the left part of 2L. D. sechellia has an overabundance of a particular type of 

sensory hair (ab3) that is sensitive to Morinda, and Or22a, located in this region, is 

expressed within these hairs (DEKKER et al. 2006). However, our gene knockout 

experiments showed that Or22a had no effect on aversion in D. melanogaster. 

Oviposition preference for Morinda compounds also appears to be controlled by one or 

more factors in this region (JONES 2005). We were surprised that no significant peaks 

were present in our map for this region (Figure 3.2), but results from our independent 

backcross showed that at least one factor does exist here (Figure 3.3). One possibility 

explaining why no introgressions occurred here across three separate experiments is that 

hybrid fitness effects in this region could be killing flies. Early generation hybrids will 

likely suffer from intrinsic reproductive incompatibilities like sterility or reduced fertility 

(COYNE and ORR 1998), and middle to late generation flies could experience reduced 

fitness relative to flies which lose introgressions due to competitive exclusion (FANG et 

al. 2012). These processes are unlikely to maintain non-causal introgressions over 15 

generations, but they are likely to remove introgressions that contribute weakly to 

behavior or that are genetically linked to hybrid fitness effects. 

Chemoreceptor genes have been suggested to be important for the evolution of 

host preference (RAMDYA and BENTON 2010). Indeed D. sechellia has an elevated rate of 

chemosensory gene evolution (MCBRIDE 2007; MCBRIDE et al. 2007). Some of these 

genes are known to influence chemo taxis and/or ovipositional behavior towards Morinda 

and its compounds: Obp56e (DWORKIN and JONES 2009; EARLEY and JONES 2011) and 

Obp57de (MATSUO et al. 2007). Thus, we expected to see an enrichment of 
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chemoreceptors and other peripheral nervous system genes in our map.  Surprisingly, this 

was not the case. We found 12 chemoreceptors out of 1,143 genes (~1%) across all 

intervals with at least technical replication, which roughly corresponds to the genome-

wide ratio of chemoreceptors to all genes. We did find Obp57d/e within one region, 

which is known to affect D. melanogaster ovipositional behavior (MATSUO et al. 2007). 

Ir93a, also found within one of our regions appeared to increase D. melanogaster 

aversion to OA/HA when disrupted, but this was not significant. 

Given the potential importance of chemosensory genes, we knocked down or 

disrupted 16 individual genes within the IR and OR chemoreceptor super families (Table 

3.3). None of our tested genes reduced D. melanogaster aversion, however, two genes 

appeared to increase aversion: Ir92a and Ir75a. These genes were not in PSIseq intervals 

nor are they reported to have species-specific expression patterns. Or22a, a candidate 

olfactory receptor for D. sechellia preference for Morinda (DEKKER et al. 2006), did not 

alter Morinda behavior when knocked down in D. melanogaster. While the possibility 

remains that D. sechellia uses Or22a to prefer Morinda via its attraction for methyl 

hexanoate, it does not appear to be needed for aversion of OA and HA. Disrupting Ir64a, 

an acid sensing chemoreceptor (AI et al. 2010), also had no effect on aversion. In sum, 

our targeted gene approach was not particularly effective at identifying genes 

contributing to the behavioral difference among these species.  

In contrast, our introgression identified a single gene, GD13873 (CG4597, Figure 

3.2, Table 3.2). This region was among the most consistently introgressed, occurring in 

three separate experiments. Unfortunately, little is known about this gene and there are 

minimal genetic reagents available for testing its effect. No Gene Ontology annotation is 
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present, and no expression difference is observed between D. sechellia and D. simulans 

(DWORKIN and JONES 2009). In a D. melanogaster screen for transcripts in the mushroom 

body, the first olfactory processing center within the fly’s brain, KOBAYASHI et al. (2006) 

found that chemical ablation of the mushroom body in larvae qualitatively reduced 

expression of this gene in adults, but this reduction was not significant and occurred in 

only one out of three experiments. If this gene contributed to D. sechellia’s specialization 

on Morinda, then it may have experienced either purifying or positive natural selection. 

We tested for signatures of natural selection between D. sechellia and D. simulans coding 

regions using dN/dS, a ratio of non-synonymous (protein coding) nucleotide differences 

versus synonymous (silent) differences. This test ignores insertions/deletions and only 

measures coding differences between homologous codons. No evidence of positive 

selection (dN/dS > 1, P ~ 1.0), nor strong purifying selection (dN/dS < 1, P = 0.123) was 

present, suggesting that the molecular differences between these species are 

evolutionarily neutral.  

 Overall, biological and technical replication improved our power to identify loci 

contributing to Morinda compound behavior divergence between D. sechellia and D. 

simulans.. Using high resolution markers and high depth sequence coverage, we 

discovered many loci participating in host seeking behavior. Our data suggests that 

experimental methods can bias our view of genetic complexity, and that the evolution of 

host preference is more genetically complex than we thought. Candidate gene tests did 

not correlate well to our genomic map, although this could have reflected our a priori 

decision to test the Ir family. On the other hand, Ir64a results showed that just because a 

gene can respond to a chemical cue within a species (AI et al. 2010) does not mean it will 
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play a role between species.  However, extant genetic factors may not represent those that 

were required for evolution in the first place.  

Our study provides a deeper understanding of how novel host specialization and 

related complex behaviors evolve and should act as a springboard for future studies. In 

light of recent controversy over whether the genetics of adaptations is generally simple or 

complex (ROCKMAN 2012), our work confirms that studies tracking few causal loci of 

strong effect are indeed methodologically biased. Yet, our results also show that while 

the genetics of adaptation is complex, it is not caused by many loci of infinitesimal effect 

size, and that with a suitable design key genetic players can be identified. 
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Figure 3.1 Creating hybrid introgressions and informatic pipeline. Left, species were 
hybridized and backcrossed to D. sechellia, and F2 offspring were assayed for D. 
simulans-like aversion to Morinda compounds. Aversive flies were again backcrossed to 
D. sechellia. This process, selection for aversion and backcross, was repeated for 15 
generations, after which introgression flies were selfed for ~5 generations. Right, females 
from two replicate lines were pooled into two technical replicate pools for each 
introgression line (15 each for four total pools). Introgression hybrid sequences were 
assembled and compared to D. simulans/D. sechellia SNPs in a separate assembly. These 
confirmed SNP counts were binned into windows of 1,000 possible species SNPs, and 
each window’s SNP content was tested against its chromosome arm’s average SNP 
content. 
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Figure 3.2 Genome map of introgression break points. Sliding windows of D. simulans 
SNP content over 1,000 possible species SNPs for each chromosome arm. Y-axis tracks 
the percent D. simulans SNPs out of 1,000 possible. X-axis tracks physical position along 
chromosome arm (Mb). Red (light and dark) and blue (light and dark) lines are results 
from each biological replicate, with darker and lighter shades denoting its technical 
replicate. Displayed results were averaged over six bins to remove extraneous noise. Stars 
beneath x-axis denote bins significantly enriched for D. simulans SNPs for that replicate 
(unpaired Student’s t test, P < FDR for that chromosome arm). Black bars track bins from 
a previous study (EARLEY and JONES 2011). 
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Figure 3.3 Independent backcross testing specific D. simulans regions. (A) Using the 
same phenotypic assay from the PSIseq map (Figure 3.2), one generation backcross flies 
showed significantly less preference for Morinda compounds when harboring D. 
simulans Cy and surrounding loci compared to siblings with homozygous D. sechellia 
alleles in this region. (B) Using an oviposition assay, backcross flies harboring D. 
simulans regions around Cy and Ubx also show significant oviposition aversion to 
Morinda compounds compared to siblings harboring homozygous D. sechellia alleles in 
the same regions (unpaired Student’s t test comparing marked flies – Cy, Ubx, Serr – 
versus siblings without markers, *P < 0.01). 
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Table 3.1 Count of loci across studies, biological and technical replications 
 Number of Loci 
Previous Studya 6 
  
Current Study  
Biological Rep. 1 Totalb 20 

Technical Rep. A 18 
Technical Rep. B 14 

Biological Rep. 2 Totalb 19 
Technical Rep. A 14 
Technical Rep. B 16 

 
Overall Totalb 27 

a (EARLEY and JONES 2011) 
b Cumulative number of loci with overlap between technical replicates and/or studies; 
not a sum. 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3.2 Regions with significantly high D. simulans SNP content in the current study. 
Chromosome 

arm Begina Enda Number of Replicatesb Number of 
Genes 

Interesting Candidates 
within Region 

2L 13426524 14429664 2c 107  
2L 15762616 16360555 2c 51  
2L 19933433 19998886 2 7  
2R 356346 886722 1 (w/ technical replicate) 69 Or42 
2R 1063857 1608601 2 63  
2R 2056061 2621232 2 107 Gr43b, Or43b 
2R 7570243 8110418 2 66  
2R 8521954 9047859 1 (w/ technical replicate) 41 Obp50 
2R 14896491 15381909 2 61 Obp57, Gr57a 
2R 18199938 18730174 2 113  
3L 4568152 4640704 2c 1 GD13873 
3L 8882610 9359951 2 76 Or67, Ir67a 
3L 21267565 22039230 2 64  
3R 1382007 1910653 2 89  
3R 4689542 5280768 2 83 Or92a, Ir93a 
3R 8243750 8449654 2 14  
3R 14446950 15002666 1 (w/ technical replicate) 61  
3R 21435650 21938376 2 70   

a Coordinates in D. simulans reference genome (r1.4). 
b Biological replication, unless otherwise noted. 
c Including both biological replication and matching previous study (EARLEY and JONES 2011)

 7
0 
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Table 3.3 Chemosensory disruption results in D. melanogaster 

Genotypea 
Response different 

from D. 
melanogaster? 

D. sechellia 0.007187 
D. simulans N.S. 

Ir8ab N.S. 
Ir21ab N.S. 
Ir31ab 0.0997 
Ir64ab N.S. 
Ir75ab 0.05456 
Ir75db N.S. 
Ir76ab N.S. 
Ir76bb N.S. 
Ir84ab N.S. 
Ir92ab 0.00792 
Ir93ab 0.0959 
Or9ac N.S. 
Or9ad N.S. 

Or22ad N.S. 
Or65cc N.S. 
Or69ac N.S. 

a All genotypes are D. melanogaster, unless noted. 
b Disrupted coding region with transposon insertion (BELLEN et al. 2004) 
c Knock out with cell apoptotic driver, reaper. 
d Knock down with tetanus toxin light chain (TNTE), preventing synaptic transmission 
between neurons. 
 

 

 

 

 

 



 

 
IV. FIRST STEP TO SPECIALISM: PSEUDOGENIZATION OF A GUSTATORY 

RECEPTOR WAS KEY INNOVATION DURING EVOLUTION OF 
SUPERSPECIALISM IN DROSOPHILA SECHELLIA 

 

Authors: Eric J. Earley and Corbin D. Jones 

 

ABSTRACT 

To find food and mates, and to avoid threats, animals must process information 

from chemical signals into action. While models like Drosophila melanogaster are 

elucidating the genetic and molecular basis of chemically induced behavior, we still do 

not yet understand how evolution shaped these behaviors in the first place. We present a 

case study that supports a multi-step evolutionary model (MATSUO et al. 2007) of 

chemically induced behavioral preference toward the plant, Morinda citrifolia (Morinda), 

in the hyperspecialist, Drosophila sechellia. Other Drosophilids, like D. melanogaster, 

find Morinda repellent and toxic, and this aversion is likely ancestral. We systematically 

ablated function of major odorant and gustatory systems in D. melanogaster to identify 

the necessary genetic components of Morinda aversion with the goal of identifying 

factors potentially driving preference in D. sechellia. We found that antennae and tarsi 

were necessary for aversion, but Odorant receptors were not. One specific Gustatory 

receptor, Gr22c, was necessary, and D. sechellia itself harbors a Gr22c pseudogene 

(MCBRIDE 2007). Naturally occurring pseudogenized Gr22c alleles are segregating in 

wild D. melanogaster populations, suggesting this allele is neutral or weakly deleterious 
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and also showing the possibility that similar alleles could have been segregating in the 

standing genetic variation of D. sechellia’s ancestor (LANGLEY et al. 2012; MACKAY et 

al. 2012). Together, these data suggest that ancestral flies initially lost aversion to 

Morinda and subsequently gained preference in at least two genetic events. 

 

RESULTS/DISCUSSION 

D. sechellia prefers, D. melanogaster avoids, specific Morinda compounds 

Drosophila sechellia, a genetic model of host specialism, prefers the ripe fruit of 

Morinda citrifolia (Morinda; JONES 2005; R'KHA et al. 1991) and its constituent 

chemicals, including octanoic acid (OA; AMLOU et al. 1998; DWORKIN and JONES 2009; 

EARLEY and JONES 2011; MATSUO et al. 2007), hexanoic acid (HA; AMLOU et al. 1998; 

DEKKER et al. 2006; DWORKIN and JONES 2009; EARLEY and JONES 2011; HIGA and 

FUYAMA 1993), and methyl hexanoate (DEKKER et al. 2006). All other Drosophilids, 

including D. melanogaster, avoid Morinda and several of its constitutive chemicals, 

suggesting this aversion is ancestral (Figure 4.1a) (AMLOU et al. 1998; EARLEY and 

JONES 2011; LEGAL et al. 1992; MATSUO et al. 2007; R'KHA et al. 1991). The most 

abundant volatile organic compound in Morinda, OA (50-70%; FARINE et al. 1996; PINO 

et al. 2010), is unique in that it is both highly toxic and aversive to most Drosophilids 

(AMLOU et al. 1997) yet tolerated and strongly preferred by D. sechellia. HA, the second 

most abundant Morinda volatile (8-19%), is also toxic and aversive at high 

concentrations to non-sechellia species (AMLOU et al. 1997). We hypothesized that a 

mixture of OA and HA are two of the main chemical cues driving preference and 
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avoidance of Morinda, and we sought to identify the genes responsible for the transition 

between aversion and preference toward OA and HA.  

To more accurately mimic Morinda fruit, we tested OA and HA as a mixture with 

relative concentrations (3:1, OA:HA) similar to that of Morinda. Our behavioral assay 

allowed free movement of flies between OA:HA and control foods and likely captured a 

more complex mix of phenotypes, including settling behavior, oviposition preference, 

and seeking behavior (Figure 4.1b). Compared to ripe Morinda, pure OA:HA induced 

similar behaviors in wild type D. melanogaster and D. sechellia at low acid 

concentrations (OA = 0.2%, HA = 0.06%, v/v). D. melanogaster is slightly less aversive 

to OA:HA than Morinda (Figure 4.1c), suggesting that the repellent nature of OA:HA is 

stronger in the context of other chemicals.  

 

Tarsi and antennae necessary for OA:HA aversion. 

Preference toward Morinda appears to be driven in part by olfaction in D. 

sechellia (R'KHA et al. 1991).Whether aversion in other species is driven primarily by 

gustation or olfaction is not fully understood. Like many insects, Drosophila use 

olfactory hairs (or “sensilla”, located along antennae and maxillary palps) to smell and 

gustatory sensilla (on the proboscis, tarsi, wings, and ovipositor) to taste. Previous work 

suggested that D. melanogaster aversion is mediated in part by olfaction, as well 

(DEKKER et al. 2006; HIGA and FUYAMA 1993; MATSUO et al. 2007). We tested the 

influence of 3rd segment antennae, a major olfactory organ in Drosophila, on both 

aversion and preference (Figure 4.2a). When both antennae are removed, D. 

melanogaster lost aversion and D. sechellia lost preference compared to intact 
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individuals. With only one antenna removed D. sechellia showed a qualitative step-wise 

loss of preference compared to intact D. sechellia (Figure 4.2a). D. melanogaster, 

however, had greatly reduced aversion with only one antenna. Our results confirm that 

antennae are important for D. sechellia to seek out Morinda and that one antennae is 

sufficient for this behavior, supporting reports that D. sechellia is hypersensitive to 

Morinda compounds (DEKKER et al. 2006; R'KHA et al. 1991). In contrast, D. 

melanogaster requires at both antennae to avoid OA:HA. 

To test the influence of contact chemosensation via gustation on OA:HA aversion 

and preference, we physically removed foreleg tarsi from both species (Figure 4.2a). 

Gustatory sensilla on the tarsi allow the fly to sample tastants without actually ingesting 

them. Without tarsi, D. melanogaster lost aversion compared to intact D. melanogaster, 

and D. sechellia without tarsi trended towards a loss of preference compared to intact D. 

sechellia, but not significantly. These data suggest that gustatory receptor neurons on the 

tarsi could be important for OA:HA aversion and potentially preference, suggesting that 

D. melanogaster requires both antennae and tarsi to avoid OA:HA. 

 

Gustatory Receptors, But Not Olfactory Receptors, Are Necessary 

 Housed within olfactory and gustatory sensilla are sensory neurons that express 

transmembrane receptors (chemoreceptors) that translate chemical information into 

electrical signals (BENTON et al. 2009; MONTELL 2009; VOSSHALL and STOCKER 2007). 

Three main families of chemoreceptors, olfactory receptors (Or), ionotropic receptors 

(Ir), and gustatory receptors (Gr). The first two detect odorants (Or, Ir); the latter detect  

tastants (Gr). Along with other organs, tarsi sensilla house neurons expressing Grs, while 
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antennae predominantly house neurons expressing Ors and Irs. From results above, we 

know that both antennae and tarsi are needed for D. melanogaster OA:HA aversion, 

suggesting that some combination of Ors, Irs, and Grs are necessary. To identify which 

of these gene families were necessary for D. melanogaster aversion, we disrupted critical 

genetic regulators of receptor function.  

Knock-outs of Odorant-coreceptor (Orco) disrupt normal localization of ORs, 

destroying all Or function but not Irs or Grs (BENTON et al. 2006; LARSSON et al. 2004). 

Orco mutants showed no loss of OA:HA aversion (Figure 4.2b). We verified the lack of 

Orco effect on OA:HA aversion in two ways. First, to ensure that we successfully 

disrupted Orco, we also knocked down Orco expression by inducing programmed cell 

death in neurons expressing Orco using reaper, a positive regulator of apoptosis (WHITE 

et al. 1996). Second, to make sure that Orco mutants behaved appropriately against other 

known Or-mediated chemicals, we showed that Orco disruption exhibited reduced 

aversion to benzaldehyde (Figure B.1)(HALLEM et al. 2004).  

D. melanogaster lacking functional Ors maintain aversion to OA:HA, but flies 

lacking antennae, the main olfactory organ, lose aversion to OA:HA. Thus, there must be 

some non-OR olfactory factor, such as an Ir, on the antennae that detects OA:HA. One Ir 

in particular, Ir64a, mediates detection of acidic food (AI et al. 2010). Disruptions in 

Ir64a, however, do not alter D. melanogaster aversion to OA:HA (EARLEY AND JONES 

submitted)(Chapter Three).  Alternatively, antennae also express Odorant binding 

proteins (Obps), which can influence the detection of odors (GALINDO and SMITH 2001). 

OBPs are thought to shuttle non-aqueous chemicals through aqueous sensory organ 

lymph to the appropriate chemoreceptor (GALINDO and SMITH 2001).  Earlier work 
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showed that knockdown of antennally expressed Obp56e, caused a weak loss of aversion 

in D. melanogaster (DWORKIN and JONES 2009). The difference between the Orco 

knockouts and antennalectomy results could therefore be due to Obps, and perhaps Irs, 

expressed in the antennae. 

To look at the role of taste (Grs), we disrupted pox-neuro (poxn) expression, 

causing all gustatory receptor neurons to revert to mechanosensory neurons (AWASAKI 

and KIMURA 1997; BOLL and NOLL 2002). Flies with no Gr function lost aversion 

(Figure 4.2b). We then partially rescued poxn with a transgene (full-1) that restores all 

gustatory bristles except for those on the labellum. These flies cannot taste using their 

primary gustatory organ, but other taste bristles are functional. Flies lacking labellular 

Grs avoided OA:HA. Thus, it appears D. melanogaster specifically needs non-labellular 

GRs to detect Morinda compounds. This result must be treated with caution, however, as 

poxn also affects the central nervous system and may influence olfactory signal 

processing.   

 

Gr22c is necessary for aversion  

 Obp57d/e, which is strongly expressed in the tarsi, is a known mediator of 

OA:HA behavior (MATSUO et al. 2007). This locus has two genes that share a common 

regulatory region. D. sechellia’s ortholog (Dsech/Obp57d/e) harbors a 4bp insertion just 

upstream of the Obp57d/e transcription start site relative to other members of the D. 

melanogaster species complex, and this insertion appears to disrupt expression of 

Dsech/Obp57d/e. Knockouts of Obp57d/e in D. melanogaster females reduces aversion 

to HA, and replacement of Dsech/Obp57d/e in these flies also decreases aversion for 



 78 

oviposition on HA.  Given Obp57d/e’s role in aversion, one might expect the OBP57d/e 

protein to be shuttling non-aqueous HA, OA, or both to a relevant chemosensory receptor 

such as a Gr. An obvious candidate Gr would have a clear genetic disruption in D. 

sechellia but appear to maintain function in D. melanogaster. McBride (MCBRIDE 2007), 

in a survey of pseudogenized chemosensory genes within the melanogaster species 

complex, found an unusually large number of Gr pseudogenes in D. sechellia. Included 

in this set was Dsech/Gr22c, whose ortholog in D. melanogaster is expressed in tarsi near 

the cells that express OBP57d/e (DUNIPACE et al. 2001; SCOTT et al. 2001).  

If OBP57d/e shuttles OA and HA to GR22c, then knocking out Gr22c should halt 

OA:HA aversion at least as strongly as Obp57de knockouts. To this end, we screened the 

population genomics panel of D. melanogaster ("Raleigh lines" LANGLEY et al. 2012; 

MACKAY et al. 2012) for lines possessing a premature termination codon in Gr22c. Line 

RAL-437 harbors a stop codon at roughly 5% into Gr22c open reading frame relative to 

the D. melanogaster genomic reference (assembly r5.9; GELBART et al. 1999). In 

comparison, D.sech/Gr22c has a stop codon roughly 50% into the open reading frame 

(Figure 4.3a)(assembly r1.3; GELBART et al. 1999). Compared to Raleigh lines with full 

length Gr22c, RAL-437 lost aversion to OA:HA (Figure 4.3c). To account for some of the 

genetic background of RAL-437 potentially driving this loss independently of Gr22c we 

crossed the RAL-437 Gr22c (437/Gr22c) locus into our wild type D. melanogaster lab 

strain. These flies also lost aversion (Figure 4.3c) and were no different from uncrossed 

RAL-437. To ensure that RAL-437 loss of aversion is specific to OA:HA, we tested its 

behavior on a panel of alternate chemicals. RAL437 responded as other RAL lines for all 

alternate chemicals (Figure B.2). As a further test of Gr22c, we knocked down Gr22c 
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expression via RNAi with a Gr22c-specific promoter (SCOTT et al. 2001) and observed 

reduced OA:HA aversion, although in this case loss appeared to be disproportionately 

driven by male behavior (Figure B.3). 

Gr22c is required for D. melanogaster aversion, but is it the receptor for 

Obp57de? To confirm that Gr22c was expressed in tarsi near cells expressing Obp57de, 

we used a Gr22c promoter (SCOTT et al. 2001) to drive GFP expression in D. 

melanogaster and detected signal in distal most tarsi, as expected (Figure 4.3b)(no signal 

detected in labellar sensilla, conflicting with reported weak signal in SCOTT et al. 2001; 

WEISS et al. 2011). If OPB57de is shuttling OA, HA, or both to GR22c, then disruption 

in Gr22c but not Obp57de should cause loss of aversion to these compounds. On the 

other hand, functional Gr22c with a disrupted Obp57de might have a step-wise loss of 

aversion. We found that Gr22c disruption alone is enough to cause loss of OA:HA 

aversion, but Obp57d/e disruption is not (Figure B.4). 

 

Gr22c affects oviposition behavior in D. melanogaster and D. simulans 

 Two issues complicate interpretation of the effect of Gr22c on aversion.  First, 

our assay (Figure 4.1b) likely captures at least two separate behavioral phenotypes: 

settling behavior and ovipositional preference. In each test, flies were given the 

opportunity to sample each food source, but most flies settled on one food or the other 

within 90-120 minutes and remained near that food through the duration of the test (data 

not shown). However, where a fly spends its time may not be where it oviposits 

(HARADA et al. 2008; JOSEPH et al. 2009; MATSUO et al. 2007). Using an oviposition 

assay, we measured D. melanogaster OA oviposition behavior after MATSUO (2012) and 
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found flies lacking Gr22c exhibited reduced oviposition aversion to OA medium at low 

concentrations relative to intact controls (Figure 4.4a). Flies maintained aversion at 

higher concentrations, and this may have been caused by other factors (eg, antennal 

expressed Irs or Obps). 

The second issue is that behavioral effects observed in D. melanogaster mutants 

may not capture what occurred in the ancestor of D. sechellia. D. simulans is one of D. 

sechellia’s closest relatives and thought to be most similar to D. sechellia’s ancestor 

(R’KHA et al. 1991). Thus, D. simulans is less genetically divergent from D. sechellia 

than D. melanogaster, and D. simulans is more likely to share genetic mechanisms 

governing Morinda behavior with D. sechellia. We used a standard backcross between 

these two species to test the effect of the Gr22c region on aversion (Figure 4.4b). 

Backcross progeny were scored for oviposition behavior toward OA media, and hybrids 

with the functional D. simulans Gr22c alleles were significantly more aversive to OA 

than siblings with the pseudogenized D. sechellia Gr22c allele (Figure 4.4c). While we 

cannot exclude another linked locus in this experiment, the consistency of these results 

with the D. melanogaster data strongly suggest that the Gr22c pseudogene in D. sechellia 

is important for its host preference behavior. 

 

Gr22c does not affect tolerance of Morinda  

 In addition to affecting behavior, OA and HA are also the primary toxins in 

Morinda. One prediction of host specialization evolution on a toxic host is that genetic 

loci controlling preference for the host and performance on the host should be linked, 

either physically or epistatically to facilitate rapid evolution (JAENIKE 1990). Complete 
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linkage, where one locus controls both preference and performance, would ensure that 

adults did not oviposit upon food that was toxic to their offspring (either as larvae or as 

adults). To test whether Gr22c influenced tolerance of Morinda, we assayed time to adult 

knock-down (a prelude to death) in Gr22c knockout and control lines. D. melanogaster 

lacking Gr22c performed just as poorly as D. melanogaster with intact Gr22c, whereas 

D. sechellia remained unaffected throughout the test (Figure B.5). Thus, altering 

preference for Morinda compounds is not sufficient to alter tolerance (see Chapter Five). 

 

Pseudogenization of Gr22c likely a key innovation during evolution of 
superspecialism in D. sechellia 
 

Avoidance of the Morinda toxins, OA and HA, is mediated in part by the 

gustatory receptor Gr22c, which is located on the foreleg tarsi.  Loss of a functional copy 

of this allele in the ancestor of D. sechellia was likely a key evolutionary innovation 

during D. sechellia’s shift to using Morinda as its host.  However, it was not the only 

innovation. Neuro-physiology studies show Or85b and Or22a, expressed in ORNs within 

ab3 type sensilla, respond to OA and HA, respectively (HALLEM and CARLSON 2006). D. 

sechellia have an over abundance of ab3 sensilla relative to D. melanogaster, correlated 

with hypersensitivity to certain Morinda compounds (DEKKER et al. 2006; STENSMYR et 

al. 2003). D. sechellia preference, however, cannot be explained solely by ab3 sensilla. 

For instance, D. simulans, which is strongly aversive to Morinda compounds, also has an 

over abundance of some ab3 sensilla (KOPP et al. 2008; STENSMYR et al. 2003). 

Moreover, our Orco knockout, which disrupted both Or85b and Or22a function, did not 

reduce D. melanogaster aversion.   
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While ORs may yet be critical for elements of D. sechellia preference (such as 

attraction to methyl hexanoate; DEKKER et al. 2006), D. melanogaster does not need 

them to avoid OA:HA. Also expressed in the antennae are a subset of Obps, among them 

Obp56e (GALINDO and SMITH 2001), and knockdown of Obp56e causes loss of aversion 

in D. melanogaster (DWORKIN and JONES 2009); however, the effect of this loss is weak 

and explains only ~15% of D. melanogaster aversion. Thus, while Obp56e may 

participate in aversion, there must be some other factor that explains the necessity of 

antennae. Irs remain the best candidates. 

 D. melanogaster need tarsi to avoid OA:HA. Modification of Obp57d/e, which is 

expressed in the tarsi, alters female positional behavior to HA and oviposition behavior to 

both HA and OA (MATSUO et al. 2007). Obp57d/e expression appears to be proximal to 

that of Gr22c (DUNIPACE et al. 2001; SCOTT et al. 2001), allowing for the possibility that 

Obp57d/e acts as a chaperone for Gr22c. In contrast, D. sechellia did not need tarsi to 

prefer OA:HA, matching the down-regulation of Dsech/Obp57de in tarsi (MATSUO et al. 

2007).  

 Marker assisted mapping studies on the genetic basis of HA aversion also match 

our results from Gr22c. A strong factor driving D. simulans behavior to HA was found 

on chromosome 2 (HIGA and FUYAMA 1993) and specifically on the arm 2L (JONES 

2005), where Gr22c resides. Recent genome-wide surveys of D. simulans aversion to 

OA:HA uncovered multiple loci spread across all autosome arms, however, none of these 

contained Gr22c (EARLEY and JONES 2011)(Chapter Two, Chapter Three). A couple 

factors explain the apparent conflict between this map and the current study. First, the 

earlier studies only recovered ~68% of the parental phenotype. Aversion is known to be 
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additive in D. simulans, thus the method of mapping – hybrid introgression with 

backcrossing – could have easily missed even loci of major effect. Second, if Gr22c is 

near a hybrid incompatibility locus, Gr22c would not have introgressed. Supporting this 

last possibility, FANG et al. (2012) found large chromosomal regions that appear to drive 

competitive exclusion, a mechanism of ecological speciation, between D. simulans and 

D. sechellia, one of which encompasses Gr22c. Our oviposition results with D. 

simulans/D. sechellia F2 hybrids (Figure 4.4c) control for such interspecific 

incompatibilities since only one generation of backcrossing precludes competitive 

exclusion from driving one species’ loci to fixation. A similar result was seen in Chapter 

Three.  

 

First step to Specialism: support for the two-step model of specialized behavior 

 Preference for Morinda could have evolved in one step – simultaneous loss of 

aversion and gain of preference. This could occur, for example, via misexpression of 

chemoreceptors in alternate sensory neurons which transmit signals to glomeruli that 

process these signals into novel preference instead of aversion. Precedence exists for this 

model in lab studies, both in mice (MUELLER et al. 2005) and nematodes (TROEMEL et al. 

1997).  

A two-step model of the evolution of preference towards a plant host posits that 

before specialist preference evolves, ancestral aversion is first lost, and this intermediate 

stage confers higher fitness than aversion (MATSUO et al. 2007; R' KHA et al. 1997). 

Potential hosts that are otherwise viable food sources are often aversive due to the 

production of toxic secondary plant metabolites created as a defense against insect 
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predators (BERNAYS and CHAPMAN 1994). If the potential host is only toxic for a short 

time, as is the case with Morinda (LEGAL et al. 1994), then opportunities exist for non-

aversive consumers to benefit from a rich resource without exposing themselves to a 

toxin. This benefit can be enhanced if non-aversion also promotes escape from resource 

competitors and predators. Both of these conditions apply to extant D. sechellia and its 

ecological neighbors: generalist species like D. simulans and D. mauritiana are often 

found on over-ripe Morinda (LOUIS and DAVID 1986; R' KHA et al. 1997; R'KHA et al. 

1991) and one of Drosophila’s main parasitoid wasp predators, Leptopilina boulardi, 

avoids OA (T. Schlenke, pers. comm.). It is possible that escape from competitors and 

predators facilitated the original transition from aversion to indifference in D. sechellia’s 

ancestor. 

 One prediction of the two-step model is that specialist preference and generalist 

aversion should work via separate genetic mechanisms. For example, if aversion is 

governed by gustation, as appears to be the case in D. melanogaster and D. simulans, 

then preference should be governed by either a separate gustation factor or by olfaction. 

That is, breaking an avoidance detection system makes it harder to use the same system 

for attraction. Early experiments in the D. simulans species complex do suggest that 

preference and aversion work through different modes of action (AMLOU et al. 1998), and 

D. sechellia indeed appears to primarily use olfaction to prefer Morinda (DEKKER et al. 

2006; DWORKIN and JONES 2009; IBBA et al. 2010; R'KHA et al. 1991; STENSMYR et al. 

2003). 

 

Pseudogenes are a route towards specialism 
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We believe that a pseudogenization of Gr22c in the ancestor of D. sechellia 

caused loss of aversion to OA:HA. D. sechellia harbors an unusually large number of 

pseudogenized chemoreceptors (ORs: 10%, GRs: 17%) compared to D. simulans (ORs: 

0%, GRs: 3%) and D. melanogaster (ORs: 2%, GRs: 8%), even when controlling for D. 

sechellia’s genome-wide pseudogene frequency (MCBRIDE 2007). It may not be 

surprising that specialists often have many pseudogenes (BURKE and MORAN 2011; 

MCBRIDE 2007; VAN DE GUCHTE et al. 2006). Ecological specialism equates to genetic 

specialism. This could occur through an adaptive process, or superspecialism can 

promote “genetic decay” – that is, disused genes accumulate neutral disruptive mutations. 

Specialists often have small population sizes and thus genetic drift will drive these 

mutations to fixation faster (GARDINER et al. 2008).    

While genetic drift promotes gene loss after specialism, it may also be possible 

that gene loss itself promotes specialization in the first place. Olson (1999) proposed the 

“less is more” hypothesis of adaptive genetic evolution, which predicts that adaptive gene 

loss should occur more frequently than adaptive gain. Mutations that break a gene are 

much more likely to occur than mutations that shift a gene to some new function—as 

evinced by the segregating Gr22c pseudogene in D. melanogaster. Adaptation relies on 

mutations as a resource. Given their overwhelming presence in the pool of mutational 

events, if even a small percent of pseudogenes are adaptive, they would outnumber 

genetic gain of function events, which although highly beneficial, occur rarely. Some 

evidence for this hypothesis exists in humans (STEDMAN et al. 2004; VARKI 2001; WANG 

et al. 2006), although see (PERRY et al. 2005), and bacteria (MORRIS et al. 2012). In the 

case of Gr22c in Drosophila, a nonsense mutation leading to a premature stop codon 
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could have been beneficial to ancestral D. sechellia, removing unnecessary aversion 

behavior and promoting use of a novel resource. In theory, then, the preponderance of 

pseudogenes in D. sechellia could have been created via a combination of genetic drift 

and adaptive evolution, and not simply as a consequence of specialization itself. That is, 

some pseudogenes were a cause and not a consequence of specialization. If true, this 

would provide even stronger barriers against evolutionary reversions to generalism, 

promoting the “dead end” model of specialism, since reversions in pseudogenes that 

rescue function would themselves be maladaptive. 

 

MATERIALS AND METHODS 

Fly stocks 

 All flies were reared in laboratory conditions at 25C, 50% humidity, ~12hr:12hr 

day/night cycle. Control lines were w1118 (D. mel), SynA (D. sech), and c167.4 (D. sim). 

poxn stocks, Gr22c-GAL4, and Obp57de stocks were generous gifts from R. Joseph, K. 

Scott, and T. Matsuo, respectively. All other lines were from Bloomington stock center, 

Drosophila species stock center (San Diego), or custom made. 

 

Behavior test 

 Milk bottle assay. Tests conducted as in (EARLEY and JONES 2011). Briefly, 

between 30-60 flies, aged 2-10d post-eclosion, were introduced into a behavior arena 

without anesthesia. Within the arena (2L glass beaker, Fisher, Pittsburgh, Pa.) were two 

milk bottles containing media - 22mL diH2O, 4.1g instant fly media (Carolina Biological) 

– with or without acid inoculate (45ul OA, 15ul HA, Sigma-Aldrich). Before mixing with 
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solid food, organic acids were ejected into the water with force to create an even 

dispersion of acid droplets atop the surface of the media. Flies were allowed to chose 

between bottles for 20-24hrs, after which bottles were stopped, and flies within each were 

counted. A response index was calculated: RI= logit[(#flies test)/(#flies test + #flies 

control)]. One replicate test was a population of 30-60 flies. At least three replicates were 

obtained for each line.  

A similar set up was used for comparing response between fruits. ~3g of wet, ripe 

fruit (test = Morinda, control = banana) was placed at the bottom of separate milk bottles. 

However, in this case, it is impossible to distinguish between strong preference for the 

control fruit or strong aversion for Morinda. 

 

Oviposition behavior and Morinda tolerance 

 D. simulans/D. sechellia hybrid oviposition was assayed as in Jones (2005). 

D. melanogaster oviposition behavior was assayed as found in Matsuo (MATSUO 2012). 

Tolerance was assayed on ripe Morinda after Jones (1998). Roughly a pea sized mass of 

ripe, wet fruit (no seeds) was placed in the center of a 60mm pyrex petri dish (Corning), 

and individual flies were then placed inside without anesthesia. Tests were conducted at 

25C, 60% humidity, and knockdown was scored starting at 30 min. then every 10 min. 

until 60 min.. Unaffected flies were scored as 70 min. 

 

Cloning and transgenics 

 Transgenic D. melanogaster were made via phiC31-mediated integration (GROTH 

et al. 2004). Coding regions of Gr22c from D. melanogaster, D. simulans, and D. 
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sechellia were synthesized with flanking AgeI and NheI sites and cloned separately into 

the pUASg.attB vector, and insertion was confirmed with restriction digest banding 

pattern (performed by Genewiz, South Plainfield, NJ). Midi-prepped purified plasmid 

was injected into an attP-containing fly line and balanced with TM3 (performed by 

BestGene, Chino Hills, CA). Transgenic flies were the crossed into a Gr22c- background 

and subsequently crossed to a GAL4 driver line. GAL4/UAS flies were confirmed to be in 

Gr22c- homozygous background via AFLP and RFLP. DNA was collected using squish 

buffer on individual flies (GLOOR et al. 1993). 
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Figure 4.1 Wild-type behavior of Drosophila towards Morinda and its compounds. (A) 
Preference for ripe Morinda and its compounds occurred along the D. sechellia lineage 
(red), and all other Drosophilids avoid it (black). (B) Wild-type response index 
(avoidance or preference) measured on ripe fruit (Banana vs. Morinda) or pure chemicals 
(chemical free media vs. OA:HA media). Bars represent mean ± SEM. Bars with 
different lower case letters were significantly different from each other (P < 0.05, 
unpaired Student’s t-test). 
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Figure 4.2 Tarsal taste necessary for OA:HA aversion. (A) Response Index (RI) of 
antennae- and tarsal- ectomies on wild-type D. melanogaster (D.mel, black) and D. 
sechellia (D.sec, red). (B) Tests of genetic disruptions on smell and taste receptors in D. 
melanogaster. Orco = Odorant coreceptor, poxn = pox-neuro. Bars with different letters 
were significantly different from each other (P < 0.05, unpaired Student’s t test). 
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Figure 4.3 Gr22c necessary for OA:HA aversion. (A) RAL-437 and D. sechellia/Gr22c 
harbor premature stop codons ~5% and ~50%, respectively, into Gr22c open reading 
frame relative to control D. melanogaster. Red codons denote stop codons (B) Left, GFP 
expression pattern of Gr22c (Gr22c-GAL4/40x-UAS-GFP) is near that of Obp57d/e 
expression (not shown, MATSUO et al. 2007). Right, sibling controls without Gr22c-
GAL4 do not express GFP (40x-UAS-GFP/CyO). (C) Raleigh lines strongly avoid 
OA:HA, except RAL437, which is significantly less aversive, and this correlates with 
Gr22c pseudogene state (gene models on right). After crossing to D. melanogaster 
control line from previous experiments, this loss is maintained. Note different horizontal 
scale from previous figures. (P < 0.05, unpaired Student’s t test). 
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Figure 4.4 Gr22c locus confers oviposition avoidance in D. melanogaster and hybrids. 
(A) RAL437 avoids ovipositing on low concentration OA media (1mM) relative to 
RAL732, which has intact Gr22c. Because this assay is significantly different from other 
assays, we calculated a preference index, PI = (#eggs OA)/(#eggs OA + #eggs Ctrl) (P < 
0.05, Kruskal-Wallis rank sum test). (B) We crossed visibly marked D. simulans (Cy, 
dominant, black vertical bars) and D. sechellia (bw, recessive, white vertical bars), then 
backcrossed the progeny to D. sechellia. Cy in D. simulans is close to Gr22c (~3.5cM), 
and bw in D. sechellia is close to Obp57d/e (~8cM). Inverse triangles denote gene 
positions for Gr22c (left of centromere) and Obp57d/e (right of centromere). All four 
combinations of alleles were observed in the F2 generation. (C) F2 progeny were scored 
for oviposition behavior toward OA media, and hybrids with D. simulans Gr22c were 
significantly more aversive to OA than siblings with D. sechellia Gr22c (P < 0.05, 
unpaired Student’s t test).
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ABSTRACT 

Many insects feed on only one or a few types of host. These host specialists often 

evolve a preference for chemical cues emanating from their host and develop 
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mechanisms for circumventing their host’s defenses. Adaptations like these are central to 

evolutionary biology, yet our understanding of their genetics remains incomplete. 

Drosophila sechellia, an emerging model for the genetics of host specialization, is an 

island endemic that has adapted to chemical toxins present in the fruit of its host plant, 

Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species 

do not tolerate these toxins and avoid the fruit. Earlier work showed that a region with a 

strong effect on tolerance to the major toxin, octanoic acid, was on chromosome arm 3R. 

Using a novel assay we narrowed this region to a small span near the centromere 

containing 18 genes, including three odorant binding proteins. It has been hypothesized 

that the evolution of host specialization is facilitated by genetic linkage between alleles 

contributing to host preference and alleles contributing to host usage, such as tolerance to 

secondary compounds. We tested this hypothesis by measuring the effect of this tolerance 

locus on host preference behavior. Our data were inconsistent with the linkage hypothesis 

as flies bearing this tolerance region showed no increase in preference for media 

containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some 

models for host preference, preference and tolerance are not tightly linked at this locus 

and increased tolerance per se is not sufficient to change preference. Our data are 

consistent with the previously proposed model that the evolution of D. sechellia as a M. 

citrifolia specialist occurred through a step-wise loss of aversion and gain of tolerance to 

M. citrifolia’s toxins. 

INTRODUCTION 

Half of all insects interact with plants (GRIMALDI and ENGEL 2005). However, 

most phytophagous insects use only a few plant genera for food, mating, and oviposition 
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(BERNAYS and CHAPMAN 1994). Changes in host use are thought to result in both new 

species and new adaptations (EHRLICH and RAVEN 1964; JANZ 2011). For example, the 

evolution of a new host specialization may have contributed to the formation of new 

species in pea aphids (Acyrthosiphon) among others (VIA 2001; MATSUBAYASHI et al. 

2010). Adapting to the new host can drive genetic and phenotypic change that is critical 

for isolating the nascent species. In some cases specialization has a price: increased 

performance on the new host correlates with reduced performance on other hosts 

(FUTUYMA and MORENO 1988; JAENIKE 1990; FRY et al. 1996; SCHEIRS et al. 2005; VIA 

and HAWTHORNE 2005).  This scenario poses a new challenge for the nascent specialist, 

as it must keep alleles for finding and selecting the appropriate host (“preference”) along 

with those for utilizing that host (“performance”; e.g. physiologically adapting to that 

host’s secondary compounds or nutritional content; JAENIKE 1990; JANZ 2011). Theory 

suggests that a genetic correlation between the preference and performance alleles, such 

as caused by pleiotropy or genetic linkage, can overcome this problem and facilitate the 

switch to a new host (LANDE 1979; JAENIKE 1990; FRY et al. 1996; JANZ 2011). 

Until recently, evidence for this “genetic linkage” hypothesis in phytophagous 

insects has been mixed. Early genetic data in Drosophila by JAENIKE suggested that 

oviposition preference and “settling” behavior are unlinked in D. tripunctata (1986; 

JAENIKE 1987; JAENIKE 1989), while TAYLOR AND CHONDRA (1983) found linkage 

between preference and performance in D. pseudoobscura. No linkage was found in other 

herbivorous species, such as Callosobruchus maculatus (southern cowpea weevil; 

WASSERMAN AND FUTUYMA 1981), Colias philodice (butterfly; TABASHNIK 1986), 

Papilionidae (swallowtail butterflies; THOMPSON 1988; THOMPSON et al. 1990), 
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Chrysomelidae (leaf-feeding beetles; KEESE 1996), Nilaparvata lugens (brown 

planthopper; SEZER and BUTLIN 1998a; SEZER and BUTLIN 1998b), and Oreina elongata 

(leaf beetle; BALLABENI AND RAHIER 2000). However, more recent QTL mapping data 

for aphids (HAWTHORNE and VIA 2001; CAILLAUD and VIA 2012; SAUGE et al. 2012), 

and other genetic association studies in Euphydryas editha (Edith’s checkerspot butterfly; 

NG 1988; SINGER et al. 1988a), Liriomyza sativae (leafminer fly; VIA 1986), Phyllotreta 

nemorum (flea beetle; NIELSEN 1996), and Papilio glaucus (eastern tiger swallowtail 

butterfly; BOSSART 2003), suggest that some preference and performance alleles can be 

genetically linked.  

A major concern with most genetic studies to date is their low resolution. QTL 

and marker-association studies produce candidate regions with large confidence intervals, 

increasing the chance that preference and performance alleles will overlap. Other studies 

simply infer genetic linkage due to the apparent heritability of host preference to well-

performing offspring (e.g. SINGER et al. 1988b). Most finer resolution genetic studies of 

adaptive host specialization have focused on host preference or avoidance. Few studies 

have focused on the genetics of tolerance of a specific compound in the host plant 

because few species with obvious host adaptations have the requisite genetic tool kit 

needed to study these traits (except studies relating to domesticated plants where 

selection pressures are often much different than in natural populations).  

Drosophila sechellia’s specialization on Morinda citrifolia is a model system 

wherein the adaptation is obvious and a genetic tool kit is available. D. sechellia is 

endemic to the islands of the Seychelles (TSACAS and BACHLI 1981), specializes on the 

fruit produced by M. citrifolia (LOUIS and DAVID 1986), and is closely related to D. 
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simulans, a well-studied human commensal and habitat generalist. M. citrifolia contains 

octanoic acid (OA; LEGAL et al. 1994), which is a fatty acid that is toxic to D. simulans 

and other insects but tolerated by D. sechellia (RKHA et al. 1991). OA typically 

comprises 58% of the volatile chemicals in a ripe M. citrifolia (FARINE et al. 1996; PINO 

et al. 2010), which makes it the main toxic component of the fruit. D. sechellia also 

prefers M. citrifolia over other fruit for consumption and oviposition (RKHA et al. 1991; 

LEGAL et al. 1992; MATSUO et al. 2007). As a result of this adaptation, D. sechellia has 

limited competition for access to M. citrifolia and may be protected from predation 

(JONES 2005). 

Prior work coarsely mapped several tolerance factors and identified some loci 

underlying the preference behavior (JONES 1998; JONES 2001; COLSON 2004; JONES 

2004; MATSUO et al. 2007; EARLEY and JONES 2011). As with other genetic studies of 

host preference, the earlier work lacked the resolution needed to confidently test the 

genetic linkage hypothesis or did not assay tolerance (e.g. MATSUO et al. 2007; EARLEY 

and JONES 2011). Moreover, because a specific gene involved in OA tolerance was not 

identified, the specific mechanism of OA tolerance in D. sechellia remains undetermined. 

 In this study, we ulta-fine map OA tolerance by genotyping independently derived 

recombinants using visible markers and a panel of molecular markers, along with a new 

phenotypic assay that provides reliable doses of OA vapor to flies without allowing them 

to directly contact the toxic chemical. We then measured the preference behavior of these 

recombinants in a test of the genetic linkage hypothesis. As preference and tolerance are 

not tightly linked, we reject the linkage hypothesis for this region. We hypothesize that 
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the evolution of D. sechellia into M. citrifolia specialist occurred through a step-wise, 

gradual gain of tolerance and loss of behavioral aversion to M. citrifolia’s toxins. 

 

MATERIALS AND METHODS 
 

D. simulans/D. sechellia introgression lines 

Jones (1998) identified a region harboring resistance alleles on chromosome arm 

3R between two visible markers. As this interval had the greatest effect on resistance, we 

dissected it further by generating a set of D. sechellia/D. simulans introgression lines. We 

used these fifteen original introgression lines (OILs; Figure 5.1) to recombine elements of 

D. sechellia into the D. simulans background, using the Dsim\jv st e osp p mutant line 

(14021-0251.173, Drosophila species stock center) and D. sechellia S9 (M. Ashburner 

stock collection, Cambridge, UK). The presence or absence of a D. sechellia 

introgression was monitored with these recessive visible markers. Introgressed regions 

were present if the dominant wild-type phenotype was seen (from D. sechellia) rather 

than the recessive visible mutation (from D. simulans).  

The OILs were made by crossing D. sechellia females with the males of the 

mutated D. simulans line. F1 hybrid females were then backcrossed to the same mutant D. 

simulans males. The recessive mutations in the D. simulans background were then visible 

in some of the F2 recombinants. Individual females with the desired visible marker 

combinations were backcrossed to mutant D. simulans males for over 20 generations to 

reduce the size of the D. sechellia introgression on chromosome 3 and eliminate D. 

sechellia contamination from the rest of the genome. The fifteen OILs represent every 

combination of the four visible markers, with the presence of the D. sechellia 
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introgression in each OIL represented by the presence of a black line in Figure 5.1a. Each 

OIL was derived from a pool of many F2 females sharing the same marker phenotype, so 

each OIL “line” is actually a population. While male F1 D. simulans/D. sechellia hybrids 

are sterile, 20th generation introgression males are fertile. To stably maintain the D. 

sechellia introgressions of each OIL, we then backcrossed 20th generation OIL males to 

D. simulans females. The D. sechellia introgressions were maintained as heterozygotes. 

 

Generation of two “gold standard” lines and large panel of recominant lines 

The OILs were tested for OA tolerance (data not shown) and it was determined 

that OIL 10 flies could be used to generate high and low gold standard lines (called “High 

10” and “Low 10”, respectively). High 10 and Low 10 contain a D. sechellia 

introgression spanning the e locus, but exhibited very different responses to OA 

exposure. We assayed a large number of OIL 10 males and used three high and three low 

tolerance flies, respectively, to create High 10 and Low 10 at the beginning of the study. 

They were used to calibrate further tolerance assays.  

Preliminary data indicated the OA tolerance locus was near e. We used OIL 8 to 

generate a huge population of individual recombinants in this region with unknown 

tolerance (Figure 5.1b). OIL 8 contains a large introgression spanning st, e, and osp loci. 

Three highly tolerant OIL 8 males were backcrossed to D. simulans females to create the 

line “High 8.” To generate individual recombinant flies (Figure 5.2), we crossed High 8 

females to D. simulans males and collected male offspring with introgressions at st and 

osp but not e (similar to OIL 6), only at e (similar to OIL 10), at e and osp (similar to OIL 

9), and only at st (similar to OIL 5). All of these recombinants had a breakpoint between 
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e and a neighboring marker (either st or osp). We gave each line an arbitrary number 

followed by a dash and the number of the OIL to which it was phenotypically identical 

(e.g. 197-6 is an OIL 6 line). Initially, we generated 36 new recombinant lines to validate 

the OA tolerance assay (called the 36 “unknown” lines; see Appendix C). Once it was 

clear that the assay was viable, we created another 700 recombinant lines and 

genotyped/phenotyped them as described below to finely map the OA tolerance locus. 

 

Genotyping - CAPS 

We genotyped recombinant lines using Cleaved Amplified Polymorphic Sequence 

(KONIECZNY and AUSUBEL 1993). Primers were designed to amplify both D. simulans 

and D. sechellia sequences that contained polymorphic restriction cut sites. PCR 

amplicons from D. sechellia sequence possessed an intact restriction site, whereas D. 

simulans amplicons did not. Recombinant flies possessing an introgression between 

flanking CAPS sites were propagated, and recombinant offspring were subjected to 

further CAPS genotyping with increasingly fine-mapped CAPS marker sites (Figure 5.2). 

Overall, 700 unique recominant males were genotyped, using Acc65I, EcoRI, HindIII, 

HpyCH4IV, and SpeI.   

 Genomic DNA was extracted from males at each generation using a single fly 

purification method. Briefly, a single male fly was frozen at -80°C then homogenized 

with a pipette tip in a “squishing buffer” (10 mM Tris-HCL pH 8.2, 1 mM EDTA, 25 

mM NaCl). To this mixture, 1ul 0.2 mg/ml of Proteinase K was added and incubated at 

37°C for 20 min., then inactivated at 95°C for 2 min. The resulting DNA was PCR-ready. 
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Genomic positions listed herein are the D. melanogaster positions from D. 

melanogaster Gene Models/Evidence Release 5 (FLYBASE 1999) identified using a 

syntenic alignment with D. simulans and D. sechellia. 

 

Octanoic Acid Tolerance Assay 

 Tolerance to OA in D. sechellia, D. simulans, and hybrid recombinants was 

assayed using a vapor delivery system (Figure 5.3). A fish tank pump, regulated by a 

flow meter, pushed air through plastic tubing submerged in a tube of liquid OA at ~2.2 

liters/minute, followed by a second tube of OA, and finally into a third tube with flies 

(additional details are provided in the Supplemental methods). To ensure full OA 

saturation, air was pumped for at least an hour before fly testing. The entire apparatus 

was in a fume hood with full light and ambient temperature (20-25°C). 

 Flies were collected 4-7 days post-eclosion with light CO2 anesthesia no fewer 

than 4 days pre-test. Between 10-60 flies were dumped in the test chamber and every two 

minutes the number of “knocked-down” (KD) flies were counted. Every two minutes KD 

flies were counted, up to a total of 30 minutes. Typically, OA exposure induces neuro-

toxin-like symptoms in flies: frantic whole-body movement, leg and wing twitching, and 

finally KD, where flies either invert their body or collapse while upright. When needed, 

we tapped the test chamber to distinguish tolerant flies at rest versus KD flies.  

 

Data Analysis 

 Cumulative KD counts within a line were calculated as a proportion (#flies 

KD/#flies total) then logit transformed, and a linear model compared these values against 
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log-transformed time of OA exposure (0-30 min. at 2 min. intervals). “Knock Down 

50%” (KD50) was calculated as the time at which 50% of the flies in a given assay were 

knocked down (R library MASS; R DEVELOPMENT CORE TEAM 2012). To determine the 

influence of genotype, mutant phenotype, fly test chamber density, air flow rate, and sex 

on KD50 values, we constructed a linear model and performed an ANOVA. Significant 

differences in KD50 between lines and sexes were calculated using Welch’s t-test.  

 

Morinda tolerance assay 

 Five recombinant lines were tested for tolerance to ripe Morinda (High 8, High 

10, Low 10, 335-6, and 197-6) and pure D. sechellia and D. simulans. Naturally fallen 

fruit from M. citrifolia trees in a climate-controlled greenhouse were stored in plastic 

bags and used within three days. A pea-sized fruit pulp (no seeds) was spread across the 

top of a 60mm pyrex petri dish. Individual flies were aspirated into this petri dish then 

placed in a growth chamber (25°C, 60% humidity). After 30 minutes, flies were observed 

for KD every 10 min. up to a maximum of 60 minutes (most flies survive to 30 min.). 

“Survivorship” was measured as the first block of time during which knockdown was 

noticed. If no KD was observed at 60 minutes, that fly was scored as 70 and the test 

ended. Wilcoxon rank sum test compared differences between D. simulans and 

recombinant lines (Holm corrected P-value).  

 

Behavior Experiments 

F1 back-crossed flies aged 2-10 days post-eclosion were subjected to a behavioral 

assay as in DWORKIN & JONES (2009; EARLEY and JONES 2011). Briefly, flies of mixed 
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sex were introduced without anesthesia into the assay chamber (2L glass beaker, Fisher). 

Within the chamber were two glass milk bottles, open on the top, containing either 

control or test food (22mL diH20, 4.1g instant fly media 4-24, Carolina Biological 

Supply), where test food was identical to control food save for acid inoculate (0.2% OA 

and 0.06% hexanoic acid, HA, v/v). The two food types were otherwise similar in color, 

texture, and water content. Cheese cloth was rubber-banded over the entire chamber to 

prevent escape, and the chamber was placed in a growth chamber (25°C, 60% humidity) 

overnight. The next day, flies located within each milk bottle were counted and sexed. A 

response index was calculated: RI = (# flies in test bottle - # control bottle) / (# test bottle 

+ # control bottle). This index was logit transformed to perform parametric tests. Data 

were analyzed using all-by-all t-tests with an FDR of 0.05 (R DEVELOPMENT CORE TEAM 

2012), and a GLM (Normal , model: RI = Line + Sex + Line X Sex + err ; SAS Institute, 

Cary, NC). This assay captures fly “settling” behavior, which likely includes both 

positional preference and ovipositional preference–prior work suggests that they give 

qualitatively similar results (EARLEY and JONES 2011).  Flies that chose a medium 

generally do not switch to the alternate medium (data not shown).   

The recessive effect of introgressed loci was tested by selfing F1 flies to create F2 

that segregated introgressed regions in both heterozygous (D. simulans/D. sechellia and 

homozygous (D. sechellia/D. sechellia) state. Any F2 flies expressing the recessive D. 

simulans markers (hence no introgression) were removed. F2 flies were then pooled and 

tested in the same way as F1. 

RESLUTS 

New high-throughput assay for volatile fatty acid tolerance. 
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We developed and validated a new apparatus for measuring tolerance to OA and 

other volatile fatty acids. In contrast to past studies, we focused on adult, rather than 

larval host performance. Adult foraging is important in host preference for some 

phytophagous insect species, such as the grass miner Chromatomyia nigra (SCHEIRS et al. 

2005), the chrysomelid Altica carduorum (SCHEIRS et al. 2005), and Liriomyza trifolii 

(SCHEIRS et al. 2005).  These species prefer to oviposit and feed on host plants best suited 

for adult performance.  Also, SCHEIRS et al. (2005) points out that several studies only 

considering larval performance also suggest that adult performance may have been 

affected by host quality (e.g. KAROWE 1990; HERR AND JOHNSON 1992; LU AND LOGAN 

1994). As D. sechellia exclusively feed on M. citrifolia (TSACAS AND BACHLI 1981) and 

fresh M. citrifolia can be toxic even to D. sechellia larvae (RKHA et al. 1991), we believe 

that adult performance, rather than larval, may be a key component of this adaptation.  

The High 10 and Low 10 gold standard lines were used to initially validate our 

new “vapor” assay. We found a significant, and repeatable, difference in tolerance when 

High 10 males and females were compared to their respective sexes for Low 10 and D. 

simulans, but not between the latter two lines for each sex (P-values in Table 5.1; KD50s 

plotted in Figure 5.4a; Figure C.1). D. simulans was used as the low tolerance control, 

while D. sechellia was not knocked down after three consecutive hours of exposure. We 

used Welch’s t-test instead of ANOVA because the variances for the High and Low 10 

male and the High and Low 10 female comparisons were not equal (Bartlett Test P-

values = 0.0079 and 0.0034, respectively). 

Our data show that knockdown is highly reproducible at a given flow rate, with 

higher flow rates resulting in more rapid knockdown (Figure C.2). Fly density had no 
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effect (see Appendix C). The assay could reliably and repeatedly classify 36 “unknown” 

lines for resistance (Figure 5.4b/c; Appendix C). These lines were also used to test if the 

visible genetic markers affected tolerance. While the visible marker ebony affected 

tolerance, this effect was generally weak and background specific (e.g. the same marker 

did not always have the same effect across lines; Appendix C) and did not correlate with 

the number of markers in the genetic background.  

 

High 10/Low 10 “gold standard” lines show differential tolerance by sex 

In all lines tested for male/female differences (High 10, Low 10, and D. simulans; 

Table 5.1), the females were more tolerant to OA exposure than males. The percent of 

cumulative knock down over time of all individual replicates for High 10, Low 10, and 

D. simulans are plotted by sex in Figure C.3 (mean values in Table C.1).  

The difference in tolerance by sex could be due to a different mechanism for 

tolerance in females than in males. JONES (1998) found the effects to be of different 

magnitudes between the sexes for every region he studied, along with an epistatic 

interaction between all three major chromosomes and one between markers y and f on the 

X chromosome in females, but not males. However, he did find effects for females in 

every region in which he found effects for males and explained the epistasis involving the 

X chromosome as possibly due to the X being hemizygous. Our results showed a 

significantly higher tolerance in females than males, but both sexes in highly tolerant 

lines exhibited significantly higher tolerances than their respective low tolerance 

counterparts. As the difference between the low and high tolerance lines was much larger 

than that between the sexes, it seems for this particular locus that the mechanism 
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involved in OA tolerance is the same for both sexes. It is likely that females were more 

tolerant due to their larger size, although we cannot specifically rule out that females 

have a different overall tolerance mechanism than males. 

 

Fine mapping of tolerance using recombinant line screening with CAPS markers 

Once we validated the tolerance assay with the High/Low 10 and 36 “unknown” 

lines, we focused on narrowing the region of interest. Using a marker panel consisting of 

47 CAPS markers, we screened 700 independent D. simulans/D. sechellia recombinants.  

24 of these new recombinants helped narrow the region of interest by several hundred 

kilobases. Ultimately, seven of the recombinants had a breakpoint that helped define the 

final 18-gene region (i.e. had a boundary marker adjacent to it). We preserved the 

haplotypes of these seven “boundary lines” for further testing. The boundary lines 

clustered into clear low and high tolerance groups, similar to the 36 unknown lines, with 

a significant difference between the KD50s of the lines from each group (Welch’s P-

value = 4.385e-04; Figure C.4). The final boundary markers of the region containing the 

tolerance locus are on 3R at positions 1,913,252, defined by 335-6 (low tolerance), 697-6 

(low), 505-10 (high), 525-10 (high), and 553-10 (high), and 2,082,441, defined by 197-6 

(high) and 725-6 (high) (Figure 5.2). 

Formally, these effects could be a by-product of the particular lines used in this 

introgression, the species chosen, or the hybrid background produced by this 

introgression.  However, earlier work used a variety of different D. simulans and D. 

sechellia backgrounds and all were qualitatively similar (AMLOU et al. 1998b; JONES 

1998; JONES 2001). Alternatively, D. simulans could be the outlier instead of D. 
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sechellia. Analysis of D. mauritiana, a susceptible sister species of D. sechellia and D. 

simulans, shows that in this region D. mauritiana alleles tend to be more D. simulans-like 

than D. sechellia-like or none of the three species appears to be a strong outlier (Table 

C.6 and Figure C.4), suggesting that D. simulans alleles in this region were likely not 

influencing tolerance any more than D. mauritiana alleles would have been. 

 

Tolerance locus confirmed using fresh M. citrifolia fruit 

Consistent with our vapor-based tolerance assay, the M. citrifolia tolerance assay 

showed clear differences between the D. simulans background line (Dsim\jv st e osp p) 

and several of the recombinant lines. D. simulans had a mean (± S.E.) knockdown of 

31.67 ± 3.89 minutes in males and 32.50 ± 5 minutes in females, which is close to the 

minimum knockdown time allowed in the experiment (i.e. knockdown was first noted at 

30 minutes of exposure to the fruit). A D. sechellia line (synA) remained upright for the 

entire 70 ± 0 minutes (maximum time allowed) in both males and females.  

Lines that were tolerant to pure OA were generally also tolerant to Morinda fruit. 

In a mixed sex analysis comparing individual lines to their D. simulans background 

(Wilcoxon rank sum test), lines High 8, High 10, and 197-6 were all significantly more 

tolerant than D. simulans, whereas Low 10 and 335-6 were not (Table 5.2). However, this 

difference appears to be driven by higher tolerance in females compared to males across 

all lines (P < 0.001, Wilcoxon, Figure 5.5, Table 5.2). This was particularly pronounced 

in the high tolerance lines. High 8 males were knocked down at 30 ± 0 minutes, while the 

females had a mean of 50 ± 4.71 minutes. 197-6 males were down by 34 ± 1.89 minutes, 

while the females went down at 45.71 ± 3.42 minutes. High 10 males were down by 37.5 
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± 2.7 minutes and females by 54.5 ± 5.1. This pattern was also seen in one of the low 

tolerance lines, Low 10, where males averaged 30.53 ± 0.53 and females averaged 36 ± 

4.00 minutes. 335-6 was the exception, with the males going down at 30.83 ± 0.58 and 

the females similarly at 30.69 ± 0.48 minutes. Of the highly tolerant recombinant lines, 

only 197-6 and High 10 had males stay upright beyond the initial 30-minute check. Thus, 

the mixed sex results were mostly driven by the female tolerance.  

 

Final tolerance region includes 18 genes, including Obp and Osiris families 

A list of the 18 genes found in the ~170Kb tolerance region on 3R is in Table C.3. 

Of the 18 genes, only three remain unnamed. Two families of genes are represented. A 

cluster of three odorant-binding proteins (Obp) is present, along with nine Osiris genes. 

The three other named genes are Gasp, Vha14-2, and NPFR1. 

 The Ka/Ks ratios (LI 1993) from both the D. simulans and D. sechellia lineages, 

as well as non-synonymous sites and other sequence information, for the 18 genes are 

summarized in Tables S4 and S5 (also see Appendix C). There is not a strong signature 

of positive selection at any of these loci. Only 7 of the 17 genes in D. simulans had any 

non-synonymous changes (41%), while 13 had such changes in D. sechellia (76%).  

Earlier work contrasted levels of transcription of these genes across species, 

tissues, and treatments (KOPP et al. 2008; DWORKIN and JONES 2009). None of the Osiris 

family genes showed differential expression. Between species’ bodies, only CG31562 (a 

CHK kinase-like protein of unknown function) was significantly different between D. 

simulans and D. sechellia (D. sechellia expresses ~1/3 as much as D. simulans). In heads, 

Obp83cd, was also significantly down in D. sechellia compared to D. simulans (~1/2). 



 114 

Obp83cd was not differentially expressed in the antennae. Obp83ef was differentially 

expressed in the antennae, but the difference between D. simulans and D. sechellia was 

substantially less than the difference between D. simulans and D. melanogaster 

suggesting that expression of this gene is evolutionarily labile and that this expression 

change is not associated with the shift to M. citrifolia. In an experiment looking at 

differential changes in gene expression associated with exposure to OA and HA, the gene 

CG1077 was weakly induced (~1.5X).  

 

Tolerance alleles do not affect host preference behavior 

 D. sechellia exhibits strong preference for M. citrifolia’s fruit and its constituent 

fatty acids, OA and HA. These compounds, in contrast, are highly aversive to D. 

simulans. To test if the tolerance conferred by the 18-gene region or the genes within this 

region affected behavior, we measured the preference of seven recombinant lines 

(High/Low 10, High 8, and D. simulans background stock) using our established 

preference assay (EARLEY and JONES 2011).  Most lines did not differ from the D. 

simulans background control (Figure 5.6a; pairwise t-test and GLM, P > 0.05). The 

exceptions, High 8 (both males and females; P = 0.017) and Low 10 (males only, P = 

0.011), behaved in the opposite of expectation—lower tolerance resulted in less aversion. 

Similarly, the trend was for flies with higher tolerance to avoid the OA medium (Figure 

5.6b), although this trend was not significant (P = 0.3506). To improve power, we pooled 

high tolerance lines and low tolerance lines and compared preference behavior between 

these two groups (replicates: 55 high, 26 low; 4993 flies). There was no effect for either 

sex and the trend was in the opposite of expectation (mean RIHigh = -1.49; mean RIlow = - 
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1.21; main effect, P = 0.148, sex P = 0.157; interaction P = 0.207). Similarly, there was 

no difference between the pooled high or low lines and the D. simulans background 

control (High: P = 0.408; Low P = 0.121). We confirmed for a subset of lines that this 

pattern was consistent for tolerance to M. citrifolia fruit (Figure 5.6c). These data suggest 

that the increased tolerance conferred by the introgressed D. sechellia region is not 

sufficient to change behavior and excludes the possibility of an additive or dominant 

acting preference locus in this interval. 

 We assayed a subset of lines for a recessive preference factor linked to the 

tolerance factors. From the lines showing highest (high10, 197-6) and lowest OA 

tolerance (low10, 335-6), we sib-mated F1 flies to create F2 progeny segregating 

introgressions in homozygous (D. sechellia/D. sechellia) and heterozygous (D. 

simulans/D. sechellia) states, removing F2s that had no introgression (D. simulans/D. 

simulans). If a recessive D. sechellia preference factor existed within an introgression 

line, then homozygous flies for that factor should have manifested higher OA preference 

and shifted F2 behavior relative to a population of fully heterozygous introgressions. We 

pooled homozygote and heterozygote F2s heterozygotes and found no significant 

difference in their behavior compared to fully heterozygous F1 flies (Figure 5.7). 

 

DISCUSSION 

Many insects feed on only one or a few types of host. Genetic linkage between 

alleles contributing to host preference and alleles contributing to host usage, such as 

tolerance of secondary compounds, has been suggested to facilitate the evolution of new 

host specializations. We used a forward genetic approach and a novel assay to see if this 
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type of genetic correlation contributed to the evolution of the host specialization in D. 

sechellia.  We isolated a ~170Kb region on 3R harboring 18 genes that contains at least 

one locus affecting OA tolerance, a critical element of D. sechellia’s adaptation to the 

toxic fruit of its host plant, M. citrifolia. While the D. sechellia introgression conferred 

OA tolerance in a D. simulans background, it had little to no effect on host-seeking 

behavior. 

 

M. citrifolia assay validates OA apparatus and methodology 

To screen the thousands of flies needed for introgression mapping of tolerance 

loci, we developed a new assay for volatile fatty acid resistance. This assay uses OA to 

mimic the toxic effects of the fruit. Our analysis revealed that exposure to M. citrifolia 

fruit is quantitatively similar to the OA assay results, in terms of consistency in the lines 

that exhibited highly and lowly tolerant behavior. However, the mixed sex results for 

lines exhibiting high tolerance to M. citrifolia were driven by tolerance of the females 

(i.e. the males showed lower tolerance levels).  Unfortunately, we do not know the 

concentration of OA in either the actual vapor of the OA assay or in the fruit itself (there 

is considerable variation among fruits and across ripening stages; (LEGAL et al. 1992; 

PINO et al. 2010). Also, it is likely the fruit has a higher concentration of OA than the 

maximum our pump can produce. The consistently high tolerance of the females in both 

experimental setups suggests that the same tolerance mechanism is being assayed in both. 

Some of the variability among the sexes likely reflected the larger size of the females. 

Experimentally, the high variability among lines in the M. citrifolia assay suggests that 
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using the OA vapor methodology may provide sensitivity to detect moderate to weak 

effect loci unattainable using fruit.  

The test apparatus proved to be an effective way to expose the flies to OA without 

killing them. Contact with OA in high doses is often fatal even to D. sechellia (COLSON 

2004). Thus, distributing the acid as a vapor eliminated the error caused by flies coming 

into contact with the acid and going down before they otherwise would have. This likely 

explains the strong repeatability of replicates within and between lines exhibiting the 

same type of tolerance. The sensitivity of the assay was evident in the fact that male 

versus female tolerance differences could be consistently detected, as well as differences 

between the OIL phenotypes. 

 

Tolerance region harbors a handful of candidate loci 

Of the 18 genes in this region, two gene families represented two-thirds of the 

total and only three remain unnamed. A cluster of nine Osiris genes was present, along 

with three Obps. None of these 18 genes, however, showed a strong signature of positive 

selection that may be expected for a gene contributing to D. sechellia adaptation to its 

host. Likewise, gene expression data did not strongly implicate any one locus (but see 

Obp83cd below). 

 

Osiris genes 

According to DORER et al. (2003), the Osiris gene family is clustered at the 

Triplo-lethal locus in D. melanogaster. All have endoplasmic reticulum signal peptides, 

may be integral to the plasma membrane, may have important housekeeping functions 
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and are highly dosage-sensitive. In addition, their linkage and sequences are unusually 

highly conserved, as seen in Anopheles gambiae (DORER et al. 2003). While none of 

these genes can be ruled out, it seems unlikely that their functionality can be appreciably 

altered without dire consequences to the individual.  

 

Odorant-binding proteins 

Three genes stand out in the 18-gene region based on their gene family: Obp83cd, 

Obp83ef, and Obp83g. Obps are a family of proteins involved in olfactory perception, but 

their function is not fully understood (VIEIRA et al. 2007). They are water-soluble and 

exist in the aqueous lymph surrounding odorant receptors in the chemosensory sensilla of 

insects. They enhance the solubility of hydrophobic odorants by binding to them and 

transporting them through the extracellular lymph to the dendritic membrane of neurons 

(WHITEMAN and PIERCE 2008). Obps are typically found in olfactory tissues, but 

expression analysis shows that they are not limited to them (PELOSI et al. 2006). Besides 

transporting odorants, it has been suggested that Obps may also act as scavengers, 

removing toxic odorant molecules to prevent damage to cells (STEINBRECHT 1998; 

BLOMQUIST and VOGT 2003). The possible involvement of Obps in OA tolerance 

discovered in this study may provide evidence for this previously hypothesized link 

between Obp chemical detection and detoxification. 

Obp83cd (GALINDO and SMITH 2001) and Obp83ef (GALINDO and SMITH 2001; 

KOPP et al. 2008) are significantly down-regulated in the head and up-regulated in the 

antennae in D. melanogaster. Obp83cd is expressed in the labellum (GALINDO and SMITH 

2001), while Obp83ef is expressed in the antennae and other nonspecific tissues 
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(GALINDO and SMITH 2001; KOPP et al. 2008). Obp83ef is up-regulated in D. sechellia, 

and D. simulans has intermediate expression between D. melanogaster and D. sechellia 

(KOPP et al. 2008). Intriguingly, Obp83cd shows a species-specific pattern of expression: 

Obp83cd has reduced expression in D. sechellia relative to D. simulans (DWORKIN and 

JONES 2009).  

As with most genes, the regulatory regions of these Obps are not well 

characterized. The Regulatory Element Database for Drosophila v3.0 (GALLO et al. 

2011) indicated that the regulatory regions for both Obp83cd and Obp83ef are 3 kb 

upstream of the start codons. We aligned these upstream regions, using D. melanogaster 

as the outgroup. For Obp83cd, there were 34 changes in D. sechellia, along with a 43 bp 

deletion. Obp83ef had 28 changes in D. sechellia. REDfly did not specify transcription 

factor binding sites, but any one of these upstream changes could alter the regulation of 

these genes in D. sechellia. No regulatory information was available for Obp83g. 

Obp83cd and Obp83g have a D. sechellia Ka/Ks higher than the mean for the 

region, while Obp83ef has a Ka/Ks that is much lower than the mean. D. simulans alleles 

for Obp83cd and Obp83g have no non-synonymous changes, while D. sechellia alleles 

have five and two, respectively. Of the genes that do not end pre-maturely or contain 

frameshifts, Obp83cd has the largest Ka (0.0076) of the D. sechellia alleles. Obp83ef has 

one non-synonymous change in both species, but a much higher Ka/Ks in D. simulans 

(0.6249 versus 0.1073). Coding changes may not be involved in OA tolerance, but if they 

are, these genes qualify as candidates with at least one amino acid change. 

Obps have previously been associated with OA avoidance behavior (DWORKIN 

and JONES 2009), M. citrifolia preference (MATSUO et al. 2007), and host plant 
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preference in Drosophila (KOPP et al. 2008), but not to tolerance of the normally toxic 

effects of OA experienced by most Drosophila species. While we have been unable to 

eliminate the other 15 genes, these three Obps are our strongest candidates for future 

analysis. 

 

No evidence for genetic linkage between preference and tolerance loci in this region 

A positive genetic correlation between the preference and performance alleles due 

to pleiotropy or genetic linkage can facilitate the evolution of a new host specialization. 

This 18-gene region spans only ~170,000 bp and has an estimated recombination rate of 

0.28 cM. These genes are therefore tightly linked. However, we find no evidence that 

harboring the D. sechellia tolerance alleles in this region causes the flies to behave in a 

more D. sechellia-like manner. Indeed the “High 8” line, which spans a much larger 

interval (up to 23.3 cM on chromosome 3, although the actual boundaries have not been 

mapped), does not appear to be significantly different from the controls and is marginally 

more aversive than some low tolerance lines. Previous work noted that D. sechellia 

preference for OA was recessive to D. simulans aversion (HIGA and FUYAMA 1993; 

AMLOU et al. 1998a). We tested for recessive effect loci on high and low tolerance lines 

by selfing F1 hybrids to segregate F2 progeny with pooled homozygous and heterozygous 

D. sechellia introgressions (removing any F2 with recessive homozygous D. simulans 

markers – hence, no introgression). If recessive OA preference loci exist within these 

introgressions, then F2 flies should exhibit increased preference relative to F1 flies. We 

did not see this (Figure 5.7).  
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To our knowledge, our data represent the highest resolution analysis of the 

genetic relationship between preference and performance. The genetic resolution of many 

earlier studies suggesting linkage between these traits biased towards overlap between 

QTLs for preference and performance, or even more disparate visible markers. Our data 

suggest that if these studies had resolution comparable to ours the apparent linkage 

between preference and performance would be reduced. However, in the current study we 

have a different concern. We are only looking at a single locus and the critical early 

association between behavior and tolerance could have occurred elsewhere in the 

genome.  Recent work, however, has identified strong preference factors on chromosome 

2, which has the weakest effect on tolerance (JONES 1998; MATSUO et al. 2007; 

DWORKIN AND JONES 2009). Similarly, the X chromosome, which has at least two 

tolerance factors, has no effect on preference behavior (JONES 1998; JONES 2001; JONES 

2004; EARLEY AND JONES 2011). Furthermore, the tolerance region on 3R was previously 

shown to be one of the two largest contributors to resistance (the other locus is flanking; 

(JONES 1998). Preferring the toxic host without tolerance alleles in this region would be 

deleterious.  Together these data suggest that linkage between preference and tolerance 

factors did not play a major role in the evolution of D. sechellia’s specialization. 

There are several examples of genetically unlinked development of host 

preference and performance. Similar to our data, earlier work by JAENIKE (1989) also 

ruled out tight linkage between preference and performance in D. tripunctata.  The same 

was found in other herbivorous species’ (see Introduction). Theoretically, the quickest 

way to achieve speciation through host specialization is if host preference and 

performance each have a simple genetic architecture and are tightly linked to each other 



 122 

(FRY 2003). JAENIKE (1987) posited that it is unlikely for linkage disequilibrium to 

establish a genetic correlation between preference and performance in a system with 

more than a few interacting alleles. More likely, pleiotropy would explain such a linkage.  

(In the case of D. sechellia, we also eliminate this possibility.) Assortative mating on the 

new host plant may allow unlinked evolution of preference and performance during 

sympatric divergence (DIEHL and BUSH 1989). This scenario would likely require a few 

new alleles of large effect, which are seen in D. sechellia’s adaptation to Morinda fruit, 

but also may have resulted in a fitness gap between the old and new hosts. In this case, 

the deleterious effects of the new host on the performance of the unadapted fly may have 

been overcome by reduced competition on the new host (WALLACE 1968; BERLOCHER 

and FEDER 2002), since OA is toxic to D. sechellia’s sibling species. Alternatively, since 

five or more loci may be involved in OA tolerance (i.e. a polygenic architecture), it is 

possible that part or most of the speciation process occurred gradually in allopatry 

(TEMPLETON 1981). 

 

Evolution of D. sechellia’s host specialization likely occurred in a step-wise manner 

D. sechellia’s loss of OA avoidance and its development of preference for M. 

citrifolia seemed to derive in part from the elimination of related Obps. DWORKIN AND 

JONES (2009) found that Obp56e had a premature stop codon in D. sechellia and that D. 

melanogaster showed reduced avoidance of M. citrifolia when Obp56e was knocked 

down. MATSUO et al. (2007) found a 4-bp insertion upstream of Obp57e in the D. 

sechellia allele affecting preference, which prevented expression when heterozygous 

within a D. melanogaster Obp57e deficiency line. If loss of functional Obps occurred 
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first in the evolution of D. sechellia’s specialization on M. citrifolia, it would certainly 

have produced large selection pressure toward the development of tolerance on the flies 

that were coming into contact with the fruit.  

Loss-of-function mutations are usually recessive, as they often result in the 

elimination or reduction of protein expression or of non-functional protein structures. 

However, JONES (1998) concluded that at least five loci involved in D. sechellia tolerance 

were dominant. Similarly, pesticide resistance factors are usually dominant or 

codominant (OTTEA and PLAPP 1984; ROUSH and MCKENZIE 1987; HOUPT et al. 1988; 

FFRENCHCONSTANT et al. 1993; ROUSH 1993).  This asymmetry in dominance may reflect 

the different genetic mechanisms through which these two traits evolved. Loss of 

avoidance can be achieved by the loss or reduction of a sensory response, such as through 

pseudogenization of Obps. In fact, MCBRIDE (2007) discovered that D. sechellia harbors 

an unusually large number of pseudogenized chemosensory genes relative to D. simulans 

or D. melanogaster, even when controlling for D. sechellia’s small population size. Toxin 

resistance, in contrast, often requires increased expression of existing detoxification 

genes or gain of a new physiological mechanism. Both cases may result in additive to 

completely dominant phenotypes.  This pattern may imply that during the early genetic 

steps of the evolution of a new specialization—or any adaptation—that “loss” of an 

ancestral trait may readily evolve from common recessive nulls segregating in the 

standing genetic variation.  In contrast, dominant phenotypes associated with new traits 

and gain-of-function alleles may involve more new mutations and other relatively rare 

alleles as these dominant alleles are expected to be at a lower frequency in the ancestral 

population (ORR and BETANCOURT 2001). 
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Figure 5.1 Description of OIL genotypes and the cross to construct additional 
recombinants. (A) Diagram of original introgression lines (OILS).  Solid black lines 
represent D. sechellia chromosome in D. simulans background.  Dashed lines indicate the 
possible extent of the D. sechellia introgressions between visible markers.  Four visible 
markers on chromosome 3 were used to categorize the OILs (scarlet, st; ebony, e; 
outspread, osp; pink, p).  Introgression lines used for OA tolerance testing are denoted 
with green arrows (i.e. have a breakpoint between either st/e, e/osp, or both). (B) 
Diagram of fly cross to generate new introgression lines for OA tolerance assay.  G0 
females are from OIL 8 and males are pure D. simulans.  The recombinants of interest 
(G1 males) were backcrossed to D. simulans females.  The six recombinant genotypes 
(second line of cross) correspond to OILs numbered in green.  Visible mutant phenotype 
was continually selected in males to preserve the haplotype without recombination.  D. 
simulans background indicated by recessive mutations (st, e, osp, p).  Presence of D. 
sechellia introgression denoted by symbol for wild type (+).  Recomb., the recombinant 
chromosome inherited from the G0 female. 
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Figure 5.2 Map of CAPS markers used to narrow OA tolerance region on chromosome 
arm 3R. The dashed and solid blue lines indicate zooming in (note the new scale on each 
level).  The light blue boxes on the top level are markers using EcoRI spanning the region 
on 3R between the centromere (Cent.) and ebony (e).  Between the first and second 
levels, the focus becomes the region between markers 1A and 1B on the second level.  
The marker names ending in ‘H’ are for HindIII, ‘SpeI’ for SpeI, ‘Hyp#’ for HypCH4V, 
and ‘Acc1’ for Acc65I.  The markers shaded with light blue are outside of the region of 
interest.  The third level represents the ~170 kb region between markers 1A.Hpy1 and 
1A.3H.  These markers are color-coded for easy identification between second and third 
levels.  The bottom panel shows the names and positions of the 18 candidate genes 
(Flybase).  Scale for chromosome position: 1000x. 
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Figure 5.3 Diagram of OA tolerance test setup.  OA vapor flows in the direction of the 
black arrows through plastic tubing (thick blue lines) and is bubbled through air stones 
twice to ensure saturation before reaching the flies.  The OA/air stones and flies are 
housed in glass vials sealed with black stoppers.  The stoppers have holes for glass tubing 
to pass through (brown lines), which are attached to the plastic tubing.  The chamber 
containing flies is vented. 
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Figure 5.4 OA tolerance for gold standard and 36 unknown lines. (A) KD50 of all 
replicates for females (labeled ‘F’) and males (‘M’), separately, of D. simulans (‘sim’; 
black), Low 10 (‘L10’; red), and High 10 (‘H10’; blue). Plot of the (B) cumulative 
distribution of knockdown and (C) KD50 for all replicates of the 36 lines of unknown 
tolerance.  The lines/dots clustered into two distinct groups.  The blue lines/dots have 
been classified as high tolerance and the red as low tolerance.  None of the lines/dots 
classified as high tolerance had replicates that clustered with the low tolerance lines and 
vice versa. Line numbers (1-36) in (C) correspond to the ‘Line #’ column in Table C.2. 
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Figure 5.5 M. citrifolia tolerance assay. Introgression flies from high and low tolerant 
lines were assayed for tolerance of ripe M. citrifolia fruit. Individual flies were exposed, 
and knock-down was observed between 30-60 minutes every 10 minutes. Flies used: D. 
simulans (susceptible background of introgression lines); D. sechellia (SynA tolerant 
line); High 8, Low 10, 335-6, 197-6, High 10 (recombinant lines and high and low 
tolerant lines). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  D.simulans       335-6         Low10          High8         197-6         High10     D.sechellia!



 136 

 
Figure 5.6 Tolerance alleles in the 18-gene region do not affect behavior in 
heterozygotes.  (A) We the measured the settling behavior of several introgression lines, 
as well as High/Low 10 and D. simulans (also called “sim-marked”).  The Response 
Index (RI) describes the degree of aversion (negative values) or preference (positive 
values).  Most lines were not significantly different from controls, except for High 8 
males and females, and Low 10 males.  Neither (B) OA tolerance nor (C) M. citrifolia 
fruit tolerance were positively correlated with OA preference. 
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Figure 5.7 D. sechellia recessive alleles have no effect on behavior, as shown by the plot 
of the Response Index (RI). To test the effect of recessive alleles from D. sechellia on 
preference behavior, we selfed F1 low (Low10 and 335-6) and high (High10 and 197-6) 
tolerant introgression lines to make F2 progeny. Flies possessing both homozygous and 
heterozygous D. sechellia introgressions were pooled. Their behavior was not different 
from purely heterozygous F1.  Females (‘F’) and males (‘M’) were assayed for all four 
lines. 
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Table 5.1 Welch's t-test P-values for comparisons of KD50 between lines and sexes 
    Female      Male   

Line   D.sim High 10 Low 10   D.sim High 10 Low 10 

Female         

  D.sim   ---- <0.0001  0.3324  0.0068  ----  ---- 

  High 10   ----  ---- <0.0001   ---- 0.0072  ---- 

  Low 10   ----  ----  ----   ----  ---- 0.0229 

         

Male         

  D.sim   ----  ----  ----   ---- <0.0001 0.0635 

  High 10   ----  ----  ----   ----  ---- <0.0001 

  Low 10    ----  ----  ----    ----  ----  ---- 

Significant p-value < 0.05 (in bold)      

D.sim, D. simulans  

KD50, time that 50% of flies are knocked down  

$
 
Table 5.2 Wilcox rank-sum tests (unpaired) P-values* comparing differences in Morinda 
tolerance between lines and D. simulans background 

Line Females Males Mixed 
High10 0.035 0.076 <<0.001 
High8 0.25 0.063 0.03 
197-6 0.10 0.76 0.0019 
Low10 0.86 0.32 0.96 
335-6 0.27 0.48 0.16 

* p-values are estimates because of rank ties between lines and D. simulans background. 



 

 
VI. CONCLUSIONS 

 

Studies have shown that evolving new adaptive traits, like novel host preference 

in phytophagous insects, is relatively easy when their genetic basis is relatively simple 

and genetic variation is abundant (1-5 loci; GAVRILETS and VOSE 2005; MATSUBAYASHI 

et al. 2010).  This may be particularly crucial for adaptations that arise in sympatry with 

their ancestral morph or an incompletely isolated sister species experiencing gene flow. If 

only a few genes are needed, then adaptive traits could sweep a population quickly before 

gene flow breaks up adaptive allele combinations. Insects often must evolve multiple 

traits to accommodate novel plant hosts, including tolerance to plant defensive 

compounds and preference for these, or other, compounds (FUTUYMA and MORENO 

1998). While it is formally possible that many of these traits arose from a single locus, it 

is much more likely that multiple loci govern each trait. Current work, however, suggests 

that new host preferences and similar adaptations often have a relatively simple genetic 

bases (GAVRILETS and VOSE 2005; MATSUBAYASHI et al. 2010). It is unclear 

whether this pattern reflects biology or methodological bias as the tools used to map these 

genetic factors bias towards finding few loci of large effect (MACKAY et al. 2009; 

MATSUBAYASHI et al. 2010; ROCKMAN 2012) 

 In my work, I have shown the genetic basis of Morinda citrifolia (Morinda) host 

use is genetically complex in Drosophila sechellia. At least nine, and possibly as many as 

27, factors underlie the behavioral divergence between D. sechellia and D. simulans 
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toward Morinda compounds (Chapters Two and Three). Surprisingly, and in contrast to 

our expectations, most of these factors do not include genes known to play a role in the 

chemosensory system (RAMDYA and BENTON 2010). However, I did find that at least one 

chemosensory gene, Gustatory receptor 22c, Gr22c, is responsible for D. melanogaster 

aversion to Morinda compounds (Chapter Four). These data suggests a multistep model 

of host preference evolution: initial loss of aversion followed by gain of preference. 

Finally, a separate locus on 3R is important for tolerance of Morinda toxins but is not 

enough to alter behavior of Drosophila (Chapter Five), conflicting with an evolutionary 

model that host preference and tolerance factors are genetically linked to facilitate more 

rapid host use evolution (HAWTHORNE and VIA 2001; JAENIKE 1990; JANZ 2011). 

While these results confirm that evolving use of a new host is genetically 

complex, we still haven’t yet dissected the full genetic complement of D. sechellia’s 

adaptation to Morinda. I see future work in this system taking two routs: direct genetic 

tests within D. sechellia and further dissection within D. melanogaster.  

In the short term, we should continue to dissect the genetics of aversion in D. 

melanogaster with the proximal goal of creating a fly that prefers Morinda. First, we need 

to confirm genetically that Gr22c is indeed driving aversion in D. melanogaster by 

creating transgenic rescues of Gr22c in a Gr22c- background (see Chapter four). Towards 

this end, I have already created three transgenic D. melanogaster lines with inducible 

wild type Gr22c (UAS-Gr22c) using coding regions from D. simulans (intact coding 

region), D. sechellia (premature stop codon at ~50% through the ORF), and D. 

melanogaster itself. I have crossed these three lines separately into a Gr22c mutant 

background (that is, Gr22c- from RAL437) to produce the genotype Gr22c-; UAS-Gr22c. 
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Importantly, the Gr22c transgene is silent in these flies, so they will serve as behavior 

controls; they should exhibit indifference to Morinda compounds. Finally, I crossed these 

lines to two different GAL4 driver lines (hairy-GAL4, expressing GAL4 in all neurons; 

tubulin-GAL4, expressing ubiquitously) and maintained the Gr22c- background. These 

flies now have the genotype: Gr22c-; UAS-Gr22c/driver-GAL4, where “driver” refers to 

hairy or tubulin promoters. These flies have been created and their genotype confirmed. I 

anticipate phenotyping all flies, controls and tests. I predict that flies with activated D. 

melanogaster/Gr22c and D. simulans/Gr22c will avoid Morinda compounds, whereas 

activated D. sechellia/Gr22c and lines with inactive forms for all insertions will not avoid 

Morinda compounds.   

Ultimately a more precise experiment is to drive the UAS-Gr22c with a Gr22c-

GAL4, which we obtained from Kristin Scott.  I have begun the initial crosses to move 

the Gr22c-GAL4 into the Gr22c-  background.  This cross is more complicated because 

the Gr22c-GAL4 is inserted at an unknown location on chromosome 2, which is where 

Gr22c itself resides.  Once Gr22c-GAL4 is in the right background, I will cross it to the 

UAS-Gr22c and assay behavior as before.  Again, I predict that the D. sechellia allele will 

fail to rescue the loss of aversion, but the D. melanogaster and D. simulans alleles will 

rescue aversion. 

Beyond confirming Gr22c, we also need to identify the antennal factors that 

contribute to Morinda aversion. In Chapter four, I show that antennal ablations remove 

aversion, and JONES (2007) showed that genetic disruption of basiconic sensilla reduced 

aversion, as well. While Obp56e contributes to aversion (DWORKIN and JONES 2009), this 

effect is weak, and I suspect that Ionotropic receptors will play a role, and Ir64a is still a 
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viable candidate, despite its lack of effect in my hands (see Chapter Three). Ir64a appears 

to form a receptor complex with Ir8a (AI et al. 2013), which calls for a double knockout 

experiment for both Ir64a and Ir8a. DEKKER et al. (DEKKER et al. 2006) predict that 

over-representation of ab3A type sensilla makes D. sechellia hypersensitive to the 

Morinda volatile methyl hexanoate. To see if the ab3A expressed chemoreceptors Or22a, 

Or22b, or Or85b are used in D. melanogaster to respond behaviorally to methyl 

hexanoate, we should knockout each gene in D. melanogaster and measure behavior at 

varying concentrations of this compound. Ideally, in parallel we would also overexpress 

these chemoreceptors, but the genetic reagents to perform such an experiment are not 

available at this time. If over-representation of one or more of these receptors is 

responsible for D. sechellia hypersensitivity to methyl hexanoate, then overexpression in 

D. melanogaster should promote the same hypersensitivity, whether it be for preference 

or aversion. 

In the long term, we need to perform genetic tests within D. sechellia itself, 

instead of leveraging D. melanogaster genetics and building models of inference. This 

will be difficult given the challenge of transforming D. sechellia. Gravid females tend to 

hold eggs beyond the syncytial blastoderm stage, a hallmark of Drosophila development 

that allows higher incorporation frequency of transgenic material. While we have 

attempted to instigate egg laying with octanoic acid and Morinda fruit itself prior to 

vector injections, we have not successfully captured insertions in D. sechellia. The first 

step should be to incorporate a higher efficiency transformation mechanism, like a 

phiC31 landing site. In the mean time, we can also hybridize D. sechellia with transgenic 

D. melanogaster to, for example, conduct gene-reporter assays with GFP to map D. 
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sechellia chemoreceptors. Aversion is dominant in hybrids, and we could also cross D. 

sechellia to D. melanogaster chromosomal deficiency lines which have deletions 

spanning particular candidate genes to see if we can uncover recessive behavioral effects 

in hybrids. 

In my dissertation, I have shown that D. sechellia’s  host specialism is genetically 

complex. Using both traditional genetic tests and new methods, I have shown repeatedly 

that the suite of adaptive traits that extant D. sechellia need to prefer and accommodate 

M. citrifolia required multiple genetic loci. However, it remains unclear if there is a 

subset of these loci that are sufficient to shift a fly from not using Morinda to using it.  

Consistent with this idea, a loss of function mutation in Gr22c in D. sechellia has a large 

effect on preference and a single locus on 3R can quadruple tolerance of OA.  It is quite 

possible that a handful of other loci would be able to move flies to even greater 

preference and tolerance. 

More broadly, my work shows that evolutionary geneticists need to reflect on 

what the last decade of genetic research has taught us. Some now take it for granted that 

we have gathered enough direct molecular evidence to build general models of genetic 

evolution (CARROLL 2008; HOEKSTRA and COYNE 2007; STERN and ORGOGOZO 2008), 

yet all of the studies supporting one model (coding-region centric) or another (regulatory-

region centric) take it for granted that simple genetic changes are the rule and not the 

exception. Clearly, in the case of D. sechellia’s adaptation to Morinda, this is not the 

case, and it is likely not the case for many other systems (ROCKMAN 2012). Instead, we 

need to fit new techniques into the largely successful evolutionary theoretical models 
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built over a century of hard work (ORR 2005). Only then will we begin to construct a new 

and better theory of genetic adaptation. 
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APPENDIX A: SUPPLEMENTARY MATERIAL FOR CHAPTER TWO 

 

Predicting Physical Resolution of Mapping 

 How much resolution can one expect from PSIseq? The following parameters 

influence choice of bin size: recombination rate, gene frequency, genome-wide sequence 

divergence, quality of reference assemblies (or transcriptomes), and level of replication. 

For example, D. simulans and D. sechellia are roughly 2% divergent, and given the 

quality of each reference genome assembly we captured half this divergence in our SNP 

map (1%). At 1,000 SNPs/bin this provides 100kb resolution. We chose 1,000 SNPs/bin 

given Drosophila gene frequency (~1 gene per 12kb or ~8 genes per 100kb; calculation 

based on annotation from FlyBase D. melanogaster r5.37). 

€ 

S =
B

(x /2)
  

 Where, B is bin size, or #SNPs/bin; x is average sequence divergence, and S is 

expected physical size resolution. Thus, for populations 1% divergent with SNP markers 

capturing half this divergence, bin sizes of 1,000 SNPs/bin will provide 500kb resolution. 

With an average of one crossover per chromosome per generation, fifteen generations of 

introgression will isolate 0-2% of the mappable genome. A resolution of 500kb in 

Drosophila easily captures 2% of the genome (~3.6mb). 
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APPENDIX B: SUPPLEMENTARY MATERIAL FOR CHAPTER FOUR 

 

 

 

Figure B.1 Confirmations of Orco disruptions. (A) Orco mutant loses aversion to 
Benzaldehyde, a chemical avoided through the action of certain Ors (eg, Or43a). (B) 
Orco was also disrupted using a positive regulator of apoptosis, driven by an Orco-GAL4 
promoter element. UAS-rpr is a parental control; UAS-rpr/Orco-GAL4 experience 
apoptosis in all Orco-expressing cells (unpaired Student’s t test). 
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Figure B.2 RAL437 behaves similarly to other RAL lines on alternate chemicals. Unlike 
RAL437, RAL732 harbors an intact Gr22c (see Figure 4.3c). Both lines behave similarly 
on other chemicals: Acetic Acid (1% v/v), Methy hexanoate (0.1%), and Benzaldehyde 
(1%) (unpaired Student’s t test between lines on the same chemical). 
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Figure B.3 RNAi on Gr22c using a Gr22c-GAL4 driver. Putative Gr22c promoter 
elements (spanning 8.5kb upstream of Gr22c start codon) driving GAL4 expression, 
leading to inducible hpRNA expression that initiates RNAi of Gr22c mRNA, in only 
cells expressing endogenous Gr22c. Surprisingly, only males exhibited significant loss of 
aversion to OA:HA, although pooled sexes do show significant loss, as well. Gr22c-
GAL4/CyO is a sibling control lacking RNAi activity (“a” and “b” denote groups of 
comparisons not significantly different from each other, unpaired Student’s t test).  
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Figure B.4 Obp57d/e knockouts maintain aversion to OA:HA in our assay. Flies lacking 
Obp57d/e coding region express no OBP57d/e, but these flies maintain aversion to 
OA:HA. w1118 and w1118; RAL437 are data from previous figures (4.2a, 4.3c, respectively) 
(unpaired Student’s t test). 
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Figure B.5 Gr22c loss does not affect Morinda tolerance. Flies lacking Gr22c (RAL437) 
were still susceptible to Morinda toxic effect. All D. melanogaster lines exhibited similar 
knockdown times (prelude to death) upon exposure to ripe Morinda. Only D. sechellia 
(SynA) was unaffected (“70 min.” was the end of observation, and no D. sechellia were 
knocked down).  
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APPENDIX C: SUPPLEMENTARY MATERIAL FOR CHAPTER FIVE 

 

Supplemental Materials and Methods 

Reproducibility of knock-down:  To demonstrate the reproducibility of the 

results from the OA vapor apparatus, we extensively tested the control lines called Low 

10 and High 10, along with D. simulans and D. sechellia. We set the flow rate so most of 

the recombinant flies were knocked down within 30 minutes, but still allowed adequate 

resolution to see significant differences between tolerant and non-tolerant recombinant 

lines. Under these conditions, D. simulans flies could only tolerate the acid vapor for a 

few minutes, while D. sechellia flies from three replicate tests were not knocked-down 

after six consecutive hours of exposure. The “tolerant” recombinant flies had an 

intermediate tolerance, which was typically less than 30 minutes, but significantly more 

than that of D. simulans. 

Effect of density on tolerance:  We used linear regression analysis to determine 

if the density of flies in the test vial had any impact on OA tolerance. There was no 

significant effect detected for either gender in any of the three lines based on the slope of 

the linear regression not differing from zero when the number of flies in the vial was 

between 10 and 60 (High 10 male p-value = 0.2175, female p-value = 0.6740; Low 10 

male p-value = 0.6756, female p-value = 0.2000; and D. simulans male p-value = 0.5881, 

female p-value = 0.8801). 

Flow rate:  Tolerance at two extreme flow rates (0.8 and 2.8 liters/minute) was 

assayed for High 10 and Low 10 males and females, with D. simulans males as the 

control. The cumulative distribution curves are plotted in Figure C.2. Since only one 
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replicate was used for each genotype at each flow rate, the KD50s are plotted without 

error bars. However, the KD50 for each line decreased when the flow rate increased. This 

effect was especially large in High 10, where the KD50 in females dropped from 23.18 to 

14.00 minutes and from 10.96 to 8.60 minutes in males. The effect was fairly large in D. 

simulans males, as well, where the KD50 dropped from 5.46 to 1.82 minutes. The 

smallest effect was seen in Low 10, where the KD50 in females dropped from 6.19 to 

4.21 minutes and from 3.49 to 2.96 minutes in males. Despite the small sample size, the 

consistency of the results across lines indicated that flow rate, which is a proxy for 

concentration, had a substantial impact on tolerance. The significance of this conclusion 

will be explained during the discussion of the M. citrofolia assay results. 

36 unknown lines and the effect of markers on tolerance:  The cumulative 

knockdown curves of each replicate for all 36 unknown recombinant lines are plotted in 

Figure 5.4b. The graph revealed obvious clustering of two distinct groups. In fact, none 

of the lines had replicates split between the high tolerance and low tolerance groups. In 

other words, a given line was distinctly highly tolerant or lowly tolerant across its 

replicates. 12 of the 36 lines exhibited low tolerance, while the other 24 were highly 

tolerant. The mean KD50s for each line are listed in Table C.2 and are plotted in Figure 

5.4c. Since most of the lines were assayed with only two replicates, we plotted every 

replicate for each line instead of using error bars. The highest low tolerance replicate had 

a KD50 of 5.58, while the lowest high tolerance replicate was 9.98. We did not run an 

ANOVA to statistically classify each line as low or high tolerance because of the small 

number of replicates per line, as well as the obvious clustering pattern in the data. 
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Since the unknown lines had the same phenotypes as OILs 5, 6, 8, 9, and 10, we 

was able to group them by phenotype to determine if their visible mutations had any 

effect on tolerance. We separately analyzed the high and low tolerance clusters. It was 

necessary to confirm that the different phenotypic groups had equal variances, since the 

samples sizes varied largely. Each pair of phenotype groups was analyzed with the 

Bartlett Test, which showed no significant differences between the variances within any 

of the pairs (all p-values > 0.05; data not shown). The ANOVA for the low tolerance 

cluster indicated that phenotype (i.e. visible mutations used as markers) did have a 

significant impact on tolerance (p-value = 0.0016). A Tukey HSD Test showed that pairs 

exhibiting the significant differences were OIL phenotypes 6 and 10 (p-value = 0.0014) 

and 5 and 10 (p-value = 0.0386). The ANOVA for the high tolerance cluster indicated 

that phenotype did not play a significant role on tolerance (p-value = 0.0775). However, 

since the p-value was very close to 0.05, we completed the Tukey analysis anyway and 

found that OIL phenotype pairs 6/8 (p-value = 0.0754) and 6/10 (p-value = 0.0801) were 

nearly significant.  

The data from the 36 unknown lines showed that lowly tolerant recombinant lines 

expressing ebony (i.e. lines not containing the D. sechellia introgression at ebony) were 

significantly less tolerant (phenotype from OILs 5 and 6) than those without ebony 

expression (OILs 9 and 10). The pattern held, but with non-significant p-values, for the 

highly tolerant lines. COYNE (1984) showed that the Dsim\jv st e osp p markers do not 

affect backcross hybrid size, so there should not have been any inherent difference in size 

between the OILs 5, 6, 9, and 10. However, ebony is known to reduce viability to about 

80% of the wild type (LINDSLEY and ZIMM, 1992). The reduced viability probably had an 



 156 

impact on OA tolerance since the flies were being exposed to a toxic chemical and ebony 

has been shown to be pleiotropically involved in neural function (HOVEMANN et al., 

1998). 

Ka/Ks:  We calculated Ka/Ks for genes within the final candidate region (Bergen 

Center for Computational Science’s Ka/Ks Calculation tool), where Ka is the number of 

non-synonymous changes in a codon divided by the number of non-synonymous sites, 

and Ks is the same as Ka, but for synonymous sites. We compared D. simulans and D. 

sechellia coding sequences with D. melanogaster as the outgroup.  

The Ka/Ks ratios (LI 1993) from both the D. simulans and D. sechellia lineages, 

as well as non-synonymous sites and other sequence information, for the 18 genes are 

summarized in Tables C.4 and C.5. Osi4 was not included in the following results, due to 

having an undefined Ka/Ks for D. simulans. Using MCBRIDE’s (2007) control group 

means for Ka, Ks, and Ka/Ks in both lineages, there were 4 genes in D. simulans with Ka 

values higher than the control value of 0.002, while there were 7 genes in D. sechellia 

higher than the control of 0.004. There was only one gene with a Ks above the control 

value of 0.023 in D. simulans, whereas there were two genes above the control of 0.030 

in D. sechellia. 6 genes in D. simulans had a Ka/Ks higher than the control value of 

0.117, while 10 genes (not including Osi4) in D. sechellia had a Ka/Ks > 0.145. Thus, 

59% of the genes in the region in D. sechellia had an enrichment of non-synonymous 

changes relative to synonymous changes when compared to the control group, while only 

35% of the genes in D. simulans showed the same. Moreover, only 7 of the 17 genes in 

D. simulans had any non-synonymous changes (41%), while 13 had such changes in D. 
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sechellia (76%). In sum, there is not a strong signature of positive selection at any of 

these loci.  

!!
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Figure C.1 Plot of cumulative distribution of OA tolerance of all replicates for the 
comparison between D. simulans (black), Low 10 (red), and High 10 (blue), (A) females 
and (B) males. 
 
 
 
 
 
 
 
 

 
Figure C.2 Comparison of impact on tolerance using a low flow rate (0.8 L/min) and a 
high flow rate (2.8 L/min) with three different genotypes (High 10, blue; Low 10, red; 
and D. simulans, black) and by sex.  The dashed lines represent low flow and the solid 
lines are high flow.  (A) Comparison of males between the three genotypes at the two 
flow rates and (B) comparison of High 10 and Low 10 females at the two flow rates. 
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!

 
!

Figure C.3 Plot of cumulative distribution of OA tolerance of all replicates for the 
comparison between (A) High 10 males (light blue) and females (dark blue), (B) Low 10 
males (orange) and females (red), and (C) D. simulans males (gray) and females (black).  
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Figure C.4 Cumulative distributions of percent knockdown over time for males of the 
seven boundary lines.  Each of these lines has a boundary marker immediately flanking 
the 18-gene region (i.e. the OA tolerance locus).  The introgressions for 335-6 and 697-6 
stop short of including the OA tolerance locus, while the other five lines contain it.  (A) 
Plot of the cumulative distributions of all replicates of the seven boundary lines (two 
replicates per line).  (B)  Plot of the KD50 (in minutes) for all replicates of the boundary 
lines.  Blue represents line called as high tolerance, while red is for low tolerance.  These 
lines were used for the M. citrifolia tests described in the Materials and Methods. 
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!

!
!

!
!

Figure C.5 Maximum likelihood phylogenies of Odorant Binding Proteins within the 
tolerance region. Although two of three trees are unresolved, the Obp83ef trees shows 
that D. sechellia tends to have the unusual allele.  Phylogenies were made using 
http://www.phylogeny.fr/.  Bootstrap values are in red. 
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Table C.1 KD50 values for D. sim, High 10, and Low 10 for both sexes 

! !! !!!!!!!!!Females! !! ! !! !!!!!!!!!!Males! !!

Line! replicates! #!flies! mean!KD50*! S.E.! !! replicates! #!flies! mean!KD50*! S.E.!

D.sim! 6! 190! 4.64! 0.37! ! 6! 216! 3.10! 0.23!

High!10! 9! 337! 17.14! 1.64! ! 8! 305! 11.17! 0.83!

Low!10! 6! 230! 5.23! 0.44! !! 6! 270! 3.81! 0.25!

D.sim,!D.!simulans!
KD50,!time!that!50%!of!flies!are!knocked!down!!
*KD50!units:!!minutes!
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Table C.2 Mean KD50 for males for 36 recombinant lines of unknown tolerance 

Line!name! Line!#! Mean!KD50! S.D.! S.E.! #!replicates!

1LH6! 1! 3.37! 0.64! 0.37! 3!

10LL10! 2! 4.40! 1.67! 1.18! 2!

14LL5! 3! 2.71! 0.20! 0.12! 3!

3LL10! 4! 3.48! 0.99! 0.57! 2!

3LL5! 5! 3.45! 0.23! 0.13! 3!

4LL6! 6! 3.31! 0.33! 0.23! 2!

5LL5! 7! 3.69! 0.57! 0.40! 2!

5LL6! 8! 2.73! 0.30! 0.15! 4!

6LL6! 9! 2.76! 0.44! 0.22! 4!

7LL10! 10! 3.84! 0.18! 0.10! 3!

8LL10! 11! 4.54! 0.45! 0.32! 2!

9LL10! 12! 3.67! 0.68! 0.48! 2!

1LH10! 13! 15.90! 0.17! 0.12! 2!

1LH9! 14! 14.43! 1.51! 1.07! 2!

1LL6! 15! 15.27! 3.99! 2.82! 2!

1LL9! 16! 15.32! 3.63! 2.57! 2!

2LH10! 17! 14.91! 2.66! 1.53! 3!

2LH9! 18! 19.84! 2.69! 1.90! 2!

2LL6! 19! 15.25! 2.08! 1.47! 2!

2LL9! 20! 14.34! 2.27! 1.14! 4!

3LH9! 21! 14.38! 0.59! 0.34! 3!

4LH10! 22! 16.08! 2.68! 1.20! 5!

4LH9! 23! 16.54! 0.74! 0.52! 2!

4LL10! 24! 15.06! 1.16! 0.67! 3!

5LH9! 25! 16.35! 2.24! 1.58! 2!

5LL9! 26! 16.23! 0.28! 0.20! 2!

6LH10! 27! 17.65! 1.16! 0.82! 2!

6LL8! 28! 15.96! 2.90! 1.45! 4!

6LL9! 29! 15.67! 2.17! 1.25! 3!

7LH10! 30! 17.22! 0.79! 0.56! 2!

7LH9! 31! 14.18! 2.18! 1.26! 3!

7LL8! 32! 17.33! 0.50! 0.35! 2!

7LL9! 33! 16.80! 1.86! 1.32! 2!

8LH10! 34! 15.17! 2.43! 1.21! 4!
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8LL9! 35! 11.88! 0.02! 0.01! 2!

9LL9! 36! 14.80! 1.04! 0.74! 2!

S.D.,!standard!deviation!
S.E.,!standard!error!
KD50,!time!that!50%!of!flies!are!knocked!down!!
*KD50!units:!!minutes!
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Table C.3 Gene ontology of genes in tolerance region 

CG! Symbol! Gene!Ontology!Terms! !! !! !!

CG10287! Gasp! Chitin!binding!and!metabolic!process;!structural!component!of!peritrophiv!membrane!

CG15582! Obp83cd! Odorant!binding;!sensory!perception!of!chemical!stimulus! !

CG31557! Obp83ef! Odorant!binding;!sensory!perception!of!chemical!stimulus! !

CG31558! Obp83g! Odorant!binding;!sensory!perception!of!chemical!stimulus! !

CG1076! Vha14F2! HydrogenLexporting!ATPase!activity,!phosphorylative!mechanism! !

CG31559! CG31559! Electron!carrier!activity;!protein!disulfide!oxidoreductase!activity! !

CG1077! CG1077! Protease!inhibitor!

CG15585! Osi1! Unknown!function;!protein!features!similar!to!DUF1676;!integral!to!plasma!membrane!

CG31562! CG31562! Unknown!function;!protein!features!similar!to!DUF227,!CHK!kinaseLlike!

CG1147! NPFR1! Neuropeptide!F,!Y,!and!tachykinin!receptor!activity;!GPCR!signaling!pathway!

CG15589! Osi24! Unknown!function! ! ! !

CG1148! Osi2! Unknown!function;!protein!features!similar!to!DUF1676;!integral!to!plasma!membrane!

CG1150! Osi3! Unknown!function;!protein!features!similar!to!DUF1676;!integral!to!plasma!membrane!

CG10303! Osi4! Unknown!function;!integral!to!plasma!membrane! ! !

CG15590! Osi5! Unknown!function;!integral!to!plasma!membrane! ! !

CG1151! Osi6! Unknown!function;!protein!features!similar!to!DUF1676! !

CG1153! Osi7! Unknown!function;!protein!features!similar!to!DUF1676;!integral!to!plasma!membrane!

CG15591! Osi8! Unknown!function;!integral!to!plasma!membrane! !! !!

!
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Table C.4 Number of non-synonymous and syntenic sites for genes in tolerance region 

! ! Non3synonymous!sites! ! !!!!!!!!!!!!!!!Syntenic!sites!included!in:!

CG! Symbol! D.#sim# D.#sech# ## Ka/Ks! Alignment! Missing!seq!

CG10287! Gasp! 1! 1! ! 708! 708! 0!

CG15582! Obp83cd! 0! 5! ! 729! 729! 0!

CG31557! Obp83ef! 1! 1! ! 738! 738! 0!

CG31558! Obp83g! 0! 2! ! 441! 441! 0!

CG1076! CG1076! 0! 1! ! 111a! 390! 0!

CG31559! CG31559! 2! 2b! ! 1365! 1365! 0!

CG1077! CG1077! 11c! 6! ! 2193! 2193! 0!

CG15585! Osi1! 1! 2d! ! 513! 513! 414!

CG31562! CG31562! 2! 5! ! 765e! 792! 27!

CG1147! NPFR1! 0! 1! ! 1458! 1458! 0!

CG15589! CG15589! 2! 5! ! 1447f! 1602! 0!

CG1148! Osi2! 0! 0! ! 1173! 1173! 0!

CG1150! Osi3! 0! 0! ! 867! 867! 0!

CG10303! Osi4! 3! 1! ! 717g! 1182! 0!

CG15590! Osi5! 0! 1! ! 609! 609! 0!

CG1151! Osi6! 0! 0! ! 939! 939! 0!

CG1153! Osi7! 0! 0! ! 115! 115! 752!

CG15591! Osi8! 6! 1i! !! 309h! 825! 0!

a!Frameshift!deletion!at!112!in!both!D.!simulans!(10!bp)!and!D.!sechellia!(8!bp)!
b!InLframe!deletion!at!646!in!D.!sechellia!(9!bp)!
c!InLframe!deletion!at!436!in!D.!simulans!(6!bp)!
d!InLframe!deletion!at!154!in!D.!sechellia!(3!bp)!
e!PreLmature!stop!codon!ending!at!765!in!D.!sechellia!!
f!PreLmature!stop!codon!ending!at!1447!in!D.!sechellia!!
g!Frameshift!deletion!at!718!in!D.!simulans!(1!bp)!
h!PreLmature!stop!codon!ending!at!309!in!D.!simulans!!
i!One!additional!nonLsyn!site!in!D.!sechellia!from!D.!melanogaster!after!preLmature!stop!in!D.!simulans!
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Table C.5 Ka/Ks calculation for genes in tolerance region for D. simulans and D. 
sechellia 
! ! ####################D.#simulans!# ! ####################D.#sechellia#

CG! Symbol! Ka/Ks! Ka! Ks! ## Ka/Ks! Ka! Ks!

CG10287! Gasp! 0.2652! 0.0022! 0.0083! ! 0.0696! 0.0022! 0.0316!

CG15582! Obp83cd! 0! 0! 0.0039! ! 0.2321! 0.0076! 0.0325!

CG31557! Obp83ef! 0.6249! 0.0016! 0.0026! ! 0.1073! 0.0022! 0.0207!

CG31558! Obp83g! 0! 0! 0! ! 0.4153! 0.0054! 0.0131!

CG1076! CG1076! 0! 0! 0! ! 0.6269! 0.0164! 0.0262!

CG31559! CG31559! 0.1304! 0.0020! 0.0156! ! 0.1880! 0.0023! 0.0124!

CG1077! CG1077! 0.6445! 0.0067! 0.0104! ! 0.3237! 0.0042! 0.0130!

CG15585! Osi1! 0! 0! 0! ! 0.1791! 0.0049! 0.0271!

CG31562! CG31562! 0.7708! 0.0045! 0.0058! ! 0.6480! 0.0075! 0.0116!

CG1147! NPFR1! 0! 0! 0.0114! ! 0.0495! 0.0008! 0.0171!

CG15589! CG15589! 0.5857! 0.0019! 0.0033! ! 0.3146! 0.0036! 0.0115!

CG1148! Osi2! 0! 0! 0.0024! ! 0! 0! 0.0099!

CG1150! Osi3! 0! 0! 0.0100! ! 0! 0! 0.0131!

CG10303! Osi4! 2.7557! 0.0028! 0.0000! ! 1.1981! 0.0046! 0.0038!

CG15590! Osi5! 0! 0! 0.0045! ! 0.1989! 0.0026! 0.0132!

CG1151! Osi6! 0! 0! 0.0080! ! 0! 0! 0.0142!

CG1153! Osi7! 0! 0! 0! ! 0! 0! 0!

CG15591! Osi8! 0.3306! 0.0274! 0.0830! !! 0.2063! 0.0050! 0.0241!

! Mean! 0.1972! 0.0027! 0.0100! ! 0.2094! 0.0038! 0.0171!

!
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Table C.6 Catalog of D. simulans and D. mauritiana allelic differences at the tolerance 
locus a 
D.simulans!
locus!

D.#melanogaster#
homolog!

Location!
in!Gene!
(bp)!

Location!on!
Chromosome!
(bp)!

D.simulans!allele! D.#mauritiana!allele!

Dsim\GD19
843!

mel:NPFR1! 447! 3R:2030917! sim:AGGG! mau:AGG!

Dsim\GD19
843!

mel:NPFR1! 550! 3R:2031020! sim:AAGCTCAGC! mau:AAGC!

Dsim\GD19
843!

mel:NPFR1! 1175! 3R:2031645! sim:GGTG! mau:GG!

Dsim\GD19
843!

mel:NPFR1! 1405! 3R:2031875! sim:GCCCGATACCC
GATACCCGAT!

mau:GCCCGATACCC
GAT!

Dsim\GD19
843!

mel:NPFR1! 1759! 3R:2032229! sim:CT! mau:C!

Dsim\GD19
843!

mel:NPFR1! 2184! 3R:2032654! sim:T! mau:C!

Dsim\GD19
843!

mel:NPFR1! 2309! 3R:2032779! sim:CA! mau:CAA!

Dsim\GD19
843!

mel:NPFR1! 2329! 3R:2032799! sim:C! mau:A!

Dsim\GD19
843!

mel:NPFR1! 2519! 3R:2032989! sim:A! mau:G!

Dsim\GD19
843!

mel:NPFR1! 2601! 3R:2033071! sim:T! mau:C!

Dsim\GD19
843!

mel:NPFR1! 2850! 3R:2033320! sim:T! mau:C!

Dsim\GD19
843!

mel:NPFR1! 3018! 3R:2033488! sim:T! mau:C!

Dsim\GD19
843!

mel:NPFR1! 3522! 3R:2033992! sim:CTTTTTT! mau:CTTTTT!

Dsim\GD19
843!

mel:NPFR1! 3998! 3R:2034468! sim:GAAAA! mau:GAAAAA!

Dsim\GD19
843!

mel:NPFR1! 4077! 3R:2034547! sim:TA! mau:T!

Dsim\GD19
843!

mel:NPFR1! 4112! 3R:2034582! sim:A! mau:AATAGGATTCC
AAG!

Dsim\GD19
843!

mel:NPFR1! 4292! 3R:2034762! sim:A! mau:G!

Dsim\GD19
843!

mel:NPFR1! 4334! 3R:2034804! sim:G! mau:A!

Dsim\GD19
843!

mel:NPFR1! 4463! 3R:2034933! sim:C! mau:T,G!

Dsim\GD19
843!

mel:NPFR1! 4475! 3R:2034945! sim:T! mau:A!

Dsim\GD19
843!

mel:NPFR1! 4562! 3R:2035032! sim:T! mau:C!

Dsim\GD19
843!

mel:NPFR1! 4883! 3R:2035353! sim:T! mau:C!

Dsim\GD19
849!

mel:Osi8! 89! 3R:2094767! sim:ACCCC! mau:ACCC!

Dsim\GD19
849!

mel:Osi8! 275! 3R:2094953! sim:GT! mau:G!

Dsim\GD19
849!

mel:Osi8! 513! 3R:2095191! sim:A! mau:AGG!

Dsim\GD19
849!

mel:Osi8! 743! 3R:2095421! sim:CTTTTTTTTT! mau:CTTTTTTTT!
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Dsim\GD19
849!

mel:Osi8! 868! 3R:2095546! sim:T! mau:C!

Dsim\Obp8
3ef!

mel:Obp83ef! 141! 3R:1963207! sim:T! mau:A!

Dsim\Obp8
3ef!

mel:Obp83ef! 760! 3R:1963826! sim:TTATATTTTTTAT
ATA!

mau:TTATA!

Dsim\Obp8
3ef!

mel:Obp83ef! 821! 3R:1963887! sim:TGG! mau:TGGGG!

Dsim\Obp8
3ef!

mel:Obp83ef! 910! 3R:1963976! sim:G! mau:C!

Dsim\GD19
841!

mel:Osi1! 401! 3R:2022030! sim:C! mau:T!

Dsim\GD19
841!

mel:Osi1! 521! 3R:2022150! sim:G! mau:A!

Dsim\GD19
841!

mel:Osi1! 581! 3R:2022210! sim:A! mau:C!

Dsim\GD19
841!

mel:Osi1! 691! 3R:2022320! sim:T! mau:C!

Dsim\GD19
846!

mel:Osi3! 106! 3R:2057905! sim:A! mau:G!

Dsim\GD19
846!

mel:Osi3! 190! 3R:2057989! sim:C! mau:T!

Dsim\GD19
846!

mel:Osi3! 205! 3R:2058004! sim:CTTTTTTTTT! mau:CTTTTTTTT,CTT
TTTTT!

Dsim\GD19
846!

mel:Osi3! 322! 3R:2058121! sim:A! mau:T!

Dsim\GD19
846!

mel:Osi3! 405! 3R:2058204! sim:GTATTTAT! mau:GTATTTATTTAT!

Dsim\GD19
846!

mel:Osi3! 1121! 3R:2058920! sim:CAAAA! mau:CAAAAA!

Dsim\GD19
846!

mel:Osi3! 1244! 3R:2059043! sim:G! mau:A!

Dsim\GD19
846!

mel:Osi3! 1380! 3R:2059179! sim:A! mau:G!

Dsim\GD19
846!

mel:Osi3! 1439! 3R:2059238! sim:C! mau:T!

Dsim\GD19
846!

mel:Osi3! 1490! 3R:2059289! sim:A! mau:G!

Dsim\GD19
846!

mel:Osi3! 1589! 3R:2059388! sim:C! mau:T!

Dsim\GD19
848!

mel:Osi6! 177! 3R:2077595! sim:T! mau:C!

Dsim\GD19
848!

mel:Osi6! 441! 3R:2077859! sim:C! mau:T!

Dsim\GD19
848!

mel:Osi6! 561! 3R:2077979! sim:G! mau:A!

Dsim\GD19
848!

mel:Osi6! 812! 3R:2078230! sim:T! mau:C!

Dsim\GD19
848!

mel:Osi6! 903! 3R:2078321! sim:C! mau:T,G!

Dsim\GD19
848!

mel:Osi6! 1353! 3R:2078771! sim:C! mau:T!

Dsim\GD19
557!

mel:CG31559! 172! 3R:2006506! sim:C! mau:G!

Dsim\GD19
557!

mel:CG31559! 628! 3R:2006962! sim:G! mau:A!

Dsim\GD19 mel:CG31559! 1007! 3R:2007341! sim:G! mau:A!
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557!
Dsim\GD19
557!

mel:CG31559! 2077! 3R:2008411! sim:TC! mau:TCATTGC!

Dsim\GD19
557!

mel:CG31559! 2183! 3R:2008517! sim:A! mau:T!

Dsim\GD19
557!

mel:CG31559! 2299! 3R:2008633! sim:CAAAAAA! mau:CAAAAA!

Dsim\GD19
557!

mel:CG31559! 2759! 3R:2009093! sim:GAGCAACAGCA
GCAGCAACAGCAGC
AGCA!

mau:GAGCAACAGC
AGCAGCA!

Dsim\GD19
557!

mel:CG31559! 2952! 3R:2009286! sim:T! mau:C!

Dsim\GD19
557!

mel:CG31559! 4240! 3R:2010574! sim:GC! mau:G!

Dsim\GD19
557!

mel:CG31559! 4440! 3R:2010774! sim:AT! mau:A!

Dsim\GD19
557!

mel:CG31559! 4995! 3R:2011329! sim:A! mau:C!

Dsim\GD19
557!

mel:CG31559! 5053! 3R:2011387! sim:ATAT! mau:ATATTAT!

Dsim\GD19
557!

mel:CG31559! 5344! 3R:2011678! sim:T! mau:A!

Dsim\GD19
557!

mel:CG31559! 5486! 3R:2011820! sim:AATTTATAT! mau:AAT!

Dsim\GD19
557!

mel:CG31559! 5754! 3R:2012088! sim:A! mau:G,C!

Dsim\GD19
557!

mel:CG31559! 5812! 3R:2012146! sim:T! mau:C!

Dsim\GD19
557!

mel:CG31559! 6063! 3R:2012397! sim:C! mau:G!

Dsim\GD19
557!

mel:CG31559! 6112! 3R:2012446! sim:T! mau:C!

Dsim\GD19
557!

mel:CG31559! 6214! 3R:2012548! sim:CGGG! mau:CGG!

Dsim\GD19
557!

mel:CG31559! 6276! 3R:2012610! sim:C! mau:T!

Dsim\GD19
557!

mel:CG31559! 6474! 3R:2012808! sim:T! mau:G!

Dsim\GD19
561!

mel:Gasp! 252! 3R:1946656! sim:T! mau:A!

Dsim\GD19
561!

mel:Gasp! 440! 3R:1946844! sim:C! mau:T!

Dsim\GD19
561!

mel:Gasp! 706! 3R:1947110! sim:G! mau:A!

Dsim\GD19
561!

mel:Gasp! 1086! 3R:1947490! sim:C! mau:G!

Dsim\GD19
561!

mel:Gasp! 1149! 3R:1947553! sim:TA! mau:TAA,TGGTGCA
TCCCTAA!

Dsim\GD19
561!

mel:Gasp! 1316! 3R:1947720! sim:A! mau:G!

Dsim\GD19
561!

mel:Gasp! 1493! 3R:1947897! sim:T! mau:C!

Dsim\GD19
561!

mel:Gasp! 1519! 3R:1947923! sim:AGGTGTAGGGA
ATGGG!

mau:AGG!

Dsim\GD19
561!

mel:Gasp! 1943! 3R:1948347! sim:T! mau:A!

Dsim\GD19 mel:Gasp! 2223! 3R:1948627! sim:ATGTGTGTGTG mau:ATGTGTGTGTG
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561! TGTGTG! TGTGTGTG!
Dsim\GD19
561!

mel:Gasp! 2766! 3R:1949170! sim:A! mau:G!

Dsim\GD19
561!

mel:Gasp! 3083! 3R:1949487! sim:A! mau:T!

Dsim\GD19
561!

mel:Gasp! 3307! 3R:1949711! sim:A! mau:G!

Dsim\GD19
561!

mel:Gasp! 3494! 3R:1949898! sim:CAA! mau:CAAA!

Dsim\GD19
561!

mel:Gasp! 3595! 3R:1949999! sim:GCC! mau:GC!

Dsim\GD19
561!

mel:Gasp! 3998! 3R:1950402! sim:A! mau:G!

Dsim\GD19
561!

mel:Gasp! 4514! 3R:1950918! sim:GC! mau:GCC!

Dsim\GD19
561!

mel:Gasp! 4667! 3R:1951071! sim:AGCTCCTGCTCC
TGCTCCTGCT!

mau:AGCTCCTGCTC
CTGCT!

Dsim\GD19
561!

mel:Gasp! 4986! 3R:1951390! sim:T! mau:A!

Dsim\GD19
561!

mel:Gasp! 5312! 3R:1951716! sim:C! mau:A!

Dsim\GD19
561!

mel:Gasp! 5885! 3R:1952289! sim:T! mau:C,G!

Dsim\GD19
561!

mel:Gasp! 5905! 3R:1952309! sim:TAAAAAAAA! mau:TAAAAAAAAA!

Dsim\GD19
561!

mel:Gasp! 6071! 3R:1952475! sim:GCCCCCCCC! mau:GCCCCCCC!

Dsim\GD19
561!

mel:Gasp! 6652! 3R:1953056! sim:C! mau:T!

Dsim\GD19
561!

mel:Gasp! 6715! 3R:1953119! sim:T! mau:C!

Dsim\GD19
561!

mel:Gasp! 6793! 3R:1953197! sim:G! mau:T!

Dsim\GD19
561!

mel:Gasp! 7329! 3R:1953733! sim:TTTTCGTTTCGT
TTC!

mau:TTTTCGTTTCGT
TTCGTTTC!

Dsim\Obp8
3cd!

mel:Obp83cd! 65! 3R:1961592! sim:C! mau:A!

Dsim\Obp8
3cd!

mel:Obp83cd! 389! 3R:1961916! sim:T! mau:C!

Dsim\Obp8
3cd!

mel:Obp83cd! 792! 3R:1962319! sim:A! mau:T!

Dsim\Obp8
3cd!

mel:Obp83cd! 867! 3R:1962394! sim:AA! mau:AAAATGA!

Dsim\GD19
844!

mel:Osi24! 210! 3R:2046272! sim:G! mau:A!

Dsim\GD19
844!

mel:Osi24! 264! 3R:2046326! sim:T! mau:C!

Dsim\GD19
844!

mel:Osi24! 849! 3R:2046911! sim:AATGTTTAT! mau:AAT!

Dsim\GD19
844!

mel:Osi24! 2001! 3R:2048063! sim:G! mau:C!

Dsim\GD19
844!

mel:Osi24! 2317! 3R:2048379! sim:G! mau:A!

Dsim\GD19
844!

mel:Osi24! 2399! 3R:2048461! sim:C! mau:T!

Dsim\GD19
838!

mel:L! 432! 3R:1989928! sim:CTTTTTTTTTTT! mau:CTTTTTTTTT,CT
TTTTTTTTTTTT!
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Dsim\GD19
838!

mel:L! 641! 3R:1990137! sim:T! mau:TAAC!

Dsim\GD19
838!

mel:L! 2101! 3R:1991597! sim:A! mau:G!

Dsim\GD19
838!

mel:L! 2127! 3R:1991623! sim:TCCCC! mau:TCCC!

Dsim\GD19
838!

mel:L! 2340! 3R:1991836! sim:G! mau:T!

Dsim\GD19
838!

mel:L! 2393! 3R:1991889! sim:C! mau:A!

Dsim\GD19
838!

mel:L! 2767! 3R:1992263! sim:A! mau:T!

Dsim\GD19
838!

mel:L! 2774! 3R:1992270! sim:A! mau:G!

Dsim\GD19
838!

mel:L! 2839! 3R:1992335! sim:C! mau:A!

Dsim\GD19
554!

mel:Osi4! 77! 3R:2060376! sim:C! mau:T!

Dsim\GD19
554!

mel:Osi4! 316! 3R:2060615! sim:TTCTTCACTTAT
AAAATATC!

mau:T!

Dsim\GD19
554!

mel:Osi4! 645! 3R:2060944! sim:A! mau:G!

Dsim\GD19
554!

mel:Osi4! 765! 3R:2061064! sim:CTT! mau:CT!

Dsim\GD19
554!

mel:Osi4! 954! 3R:2061253! sim:TCCCCCC! mau:TCCCCC!

Dsim\GD19
554!

mel:Osi4! 1072! 3R:2061371! sim:A! mau:C!

Dsim\GD19
554!

mel:Osi4! 1173! 3R:2061472! sim:A! mau:G!

Dsim\GD19
554!

mel:Osi4! 1297! 3R:2061596! sim:C! mau:T!

Dsim\GD19
554!

mel:Osi4! 1399! 3R:2061698! sim:C! mau:G!

Dsim\GD19
554!

mel:Osi4! 1585! 3R:2061884! sim:A! mau:AAAC!

Dsim\GD19
554!

mel:Osi4! 1687! 3R:2061986! sim:G! mau:GT!

Dsim\GD19
554!

mel:Osi4! 2069! 3R:2062368! sim:GC! mau:GCGCTGCTGCC!

Dsim\GD19
554!

mel:Osi4! 2368! 3R:2062667! sim:C! mau:T!

Dsim\GD19
554!

mel:Osi4! 2840! 3R:2063139! sim:A! mau:T!

Dsim\GD19
554!

mel:Osi4! 2855! 3R:2063154! sim:A! mau:G!

Dsim\GD19
554!

mel:Osi4! 2895! 3R:2063194! sim:C! mau:T!

Dsim\GD19
842!

mel:CG33301,CG
16898!

333! 3R:2025889! sim:C! mau:T!

Dsim\GD19
842!

mel:CG33301,CG
16898!

861! 3R:2026417! sim:G! mau:A!

Dsim\GD19
842!

mel:CG33301,CG
16898!

876! 3R:2026432! sim:C! mau:T!

Dsim\GD19
842!

mel:CG33301,CG
16898!

906! 3R:2026462! sim:GGAATTGGAG! mau:GG!

Dsim\GD19 mel:CG33301,CG 1180! 3R:2026736! sim:G! mau:A!
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842! 16898!
Dsim\GD19
842!

mel:CG33301,CG
16898!

1232! 3R:2026788! sim:C! mau:G!

Dsim\GD19
558!

mel:L! 56! 3R:1969285! sim:TGTCCT! mau:TGTCCTTGCCG
TCCT!

Dsim\GD19
558!

mel:L! 96! 3R:1969325! sim:T! mau:A!

Dsim\GD19
558!

mel:L! 107! 3R:1969336! sim:A! mau:G!

Dsim\GD19
558!

mel:L! 420! 3R:1969649! sim:TAAAA! mau:TAAA!

Dsim\GD19
558!

mel:L! 436! 3R:1969665! sim:ACTGCTAGT! mau:ACTGCTAGTTC
TGCTAGT!

Dsim\GD19
555!

mel:L! 74! 3R:2042841! sim:GTGT! mau:GTGTTTGT!

Dsim\GD19
556!

mel:L! 64! 3R:2020986! sim:C! mau:T!

Dsim\GD19
847!

mel:Osi5! 40! 3R:2069929! sim:A! mau:G!

Dsim\GD19
847!

mel:Osi5! 387! 3R:2070276! sim:G! mau:A!

Dsim\GD19
847!

mel:Osi5! 609! 3R:2070498! sim:C! mau:T!

Dsim\GD19
847!

mel:Osi5! 661! 3R:2070550! sim:TGACATCGACA
TC!

mau:TGACATC!

Dsim\GD19
847!

mel:Osi5! 979! 3R:2070868! sim:C! mau:T!

Dsim\Obp8
3g!

mel:Obp83g! 103! 3R:1965138! sim:G! mau:T!

Dsim\Obp8
3g!

mel:Obp83g! 410! 3R:1965445! sim:A! mau:G!

Dsim\GD19
837!

mel:Vha14L2! 402! 3R:1976141! sim:G! mau:A!

Dsim\GD19
840!

mel:CG1077! 207! 3R:2015194! sim:C! mau:T!

Dsim\GD19
840!

mel:CG1077! 246! 3R:2015233! sim:T! mau:G!

Dsim\GD19
840!

mel:CG1077! 508! 3R:2015495! sim:C! mau:G!

Dsim\GD19
840!

mel:CG1077! 565! 3R:2015552! sim:T! mau:C!

Dsim\GD19
840!

mel:CG1077! 602! 3R:2015589! sim:C! mau:A!

Dsim\GD19
840!

mel:CG1077! 610! 3R:2015597! sim:G! mau:A!

Dsim\GD19
840!

mel:CG1077! 1098! 3R:2016085! sim:T! mau:G!

Dsim\GD19
840!

mel:CG1077! 1239! 3R:2016226! sim:C! mau:T!

Dsim\GD19
840!

mel:CG1077! 1347! 3R:2016334! sim:T! mau:C!

Dsim\GD19
840!

mel:CG1077! 1706! 3R:2016693! sim:A! mau:T!

Dsim\GD19
840!

mel:CG1077! 2368! 3R:2017355! sim:A! mau:G!

Dsim\GD19
840!

mel:CG1077! 2495! 3R:2017482! sim:T! mau:C!
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Dsim\GD19
840!

mel:CG1077! 2506! 3R:2017493! sim:G! mau:A!

Dsim\GD19
840!

mel:CG1077! 2716! 3R:2017703! sim:G! mau:C!

Dsim\GD19
840!

mel:CG1077! 2832! 3R:2017819! sim:A! mau:G!

Dsim\GD19
839!

mel:L! 74! 3R:2009286! sim:T! mau:C!

Dsim\GD19
845!

mel:Osi2! 267! 3R:2053474! sim:C! mau:T!

Dsim\GD19
845!

mel:Osi2! 483! 3R:2053690! sim:C! mau:G!

Dsim\GD19
845!

mel:Osi2! 1091! 3R:2054298! sim:G! mau:C!

Dsim\GD19
845!

mel:Osi2! 1581! 3R:2054788! sim:C! mau:A!

a!Because!a!published!reference!of!D.!mauritiana!is!not!available,!we!produced!these!variant!calls!using!public!and!
other!(unpublished)!short!read!sequencing.!
!
!
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