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ABSTRACT 
 

MARY KATHERINE KELM: Investigating the Mechanism of Ethanol-enhanced 
GABA Release 

(Under the direction of George Breese) 
 
 

Historically, while research on the actions of ethanol at the GABAergic 

synapse has focused on postsynaptic mechanisms, recent data have 

demonstrated that ethanol also increases both evoked and spontaneous GABA 

release in many brain regions.  However, the mechanism through which ethanol 

acts to enhance GABA release is unknown.  The purpose of this dissertation 

project was to study the mechanism responsible for ethanol-enhanced GABA 

release at the interneuron-Purkinje cell synapse.  First, the ability of ethanol to 

increase GABA release was characterized with whole-cell voltage clamp 

recordings.  Ethanol increased miniature inhibitory postsynaptic current 

frequency and decreased the paired-pulse ratio, which suggests that ethanol 

increases spontaneous and evoked GABA release, respectively.   

I found that calcium release from inositol-1,4,5-trisphosphate receptors 

(IP3Rs) and ryanodine receptors, adenylate cyclase, protein kinase A, 

phospholipase C and protein kinase C all play a role in the ability of ethanol to 

increase spontaneous GABA release, while influx of extracellular calcium into the 

neuron was not involved in this mechanism.  Because of the questionable 

selectively of the IP3R antagonist, electron microscopy was used
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to show that IP3Rs are located in the presynaptic terminals at this synapse.   

Activation of cannabinoid receptors or GABAB receptors inhibited ethanol-

enhanced spontaneous GABA release, but this ethanol mechanism was 

unaffected by tonic activation of these receptors.  It was also determined that 

both protein kinase A and protein kinase C contribute to the generation of 

spontaneous GABA release and cross-talk is not occurring between these two 

intracellular messengers.    

Overall, the large majority of the intracellular messengers investigated 

were involved in ethanol-enhanced GABA release.  This result is not surprising 

considering the promiscuous nature of ethanol and the fact that these 

intracellular messengers can contribute to the generation of spontaneous GABA 

release.  The ability of ethanol to increase GABA release contributes to the 

GABAergic profile of ethanol, and modulation of the GABAergic system 

contributes to alcohol intoxication.  A person who is less sensitive to the 

intoxicating effects of alcohol is prone to developing alcoholism; therefore, 

understanding the molecular mechanisms contributing to alcohol intoxication will  

further our understanding of this disease.                     
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Chapter I: General Introduction 

 

Alcoholism: the disease 

 Alcoholism is a chronic, progressive disease that drives someone to drink 

regardless of the negative consequences.  The entire body is involved in the 

development of the physical dependence and tolerance associated with chronic 

alcohol use, while the actual development of alcoholism is due to a number of 

neuroadaptations that guide a person towards a relapsing drinking cycle that 

incapacitates their ability to stop drinking.  Obviously a person can drink 

throughout a lifetime and not develop alcoholism.  The difference between this 

group of people and alcoholics is a complex interaction between genetic and 

environmental factors that makes a person more susceptible to developing 

alcoholism (Schuckit, 2009).   

Interestingly, alcohol is the only drug of abuse to have a separate section 

at the National Institutes of Health, the National Institute on Alcohol Abuse and 

Alcoholism.  This is probably due to the fact that the effects of alcoholism on the 

population are widespread: it is estimated that approximately 10% of Americans 

will suffer from alcoholism at some point in their lives, with men more affected 

than women (Grant, 1994).  Excessive alcohol consumption is responsible for 

76,000 deaths annually and is the third leading preventable cause of death 

(Midanik, 2004).  Considering the number of people affected, it is not surprising 
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that the estimated cost placed on society due to alcohol misuse is 185 billion 

dollars yearly (Harwood, 2000).  Most alarming, though, is that alcoholism is 

often left untreated with only roughly 30% of alcoholics receiving treatment 

(Cohen et al., 2007), suggesting that more people are suffering from alcoholism 

than these statistics reflect.  Even when an individual undergoes treatment to 

become abstinent, 45-75% of people relapse at least once in their lifetime 

(Boothby and Doering, 2005).  Therefore, development of more effective 

treatment options is essential if there is going to be an improvement in these 

bleak statistics.   

 

Neuropharmacology of alcoholism and addiction theory 

About 10% of alcoholics receiving treatment use pharmacotherapy to treat their 

disease (Mark et al., 2003).  Because only 30% of alcoholics receive treatment 

(Cohen et al., 2007), approximately 3% of alcoholics are taking advantage of 

available medication.  There are drugs to block craving or reduce alcohol intake, 

induce aversion to alcohol, treat alcohol withdrawal, induce sobriety in intoxicated 

individuals, and, if necessary, treat concomitant psychiatric disorders and/or 

associated drug abuse (Gatch and Lal, 1998).  Unfortunately, there is no “magic 

bullet” to cure alcoholism, which is one of the factors contributing to the low 

prescribing rate (Mark et al., 2003).  Currently there are three medications 

approved by the U.S. Food and Drug Administration for alcoholism: disulfiram 

(Antabuse), acamprosate (Campral), and naltrexone (ReVia, Vivitrol).   
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Disulfiram induces aversion to alcohol by blocking alcohol metabolism.  

Specifically, disulfiram inhibits the aldehyde dehydrogenase enzyme, which 

prevents acetaldehyde from converting to acetate.  Increased acetaldehyde 

levels following alcohol consumption causes adverse physiological effects (ex: 

flushing, chest pain, vomiting, etc.) that deter someone from further alcohol 

drinking (Swift, 1999).  Disulfiram has demonstrated questionable efficacy in 

multiple clinical trials but is more effective in treatment programs that involve 

monitoring medicine consumption (Garbutt, 2009).  Naltrexone and acamprosate 

are different from disulfiram in that they target the neurobiological processes 

thought to be involved in the development of alcoholism.  Naltrexone, an opioid 

receptor antagonist, reduces alcohol intake and craving by blocking the 

rewarding effects of alcohol (Volpicelli et al., 1995).  Acamprosate normalizes 

glutamatergic neurotransmission, which is one of the many neurotransmitter 

systems that is dysregulated during chronic alcohol use, but the exact 

mechanism is unknown (Heilig and Egli, 2006).  One study suggests that 

acamprosate acts as a glutamate stabilizer specifically during alcohol withdrawal, 

(Mann et al., 2008), thereby preventing withdrawal from becoming a motivating 

factor to drink again.  

 Even these drugs are limited- in a clinical trial testing the effectiveness of 

treatment options for alcoholics, a combination of naltrexone and acamprosate 

had a comparable effect to intense behavioral therapy (Anton et al., 2006).  While 

the most successful treatment of alcoholism might require both pharmacological 

and psychological treatment, there is obviously still room for improvement 
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regarding the pharmacotherapy options.  Advances in this field will require a 

better understanding of the cellular and molecular effects of alcohol, which have 

been quite difficult to study due to the promiscuous effects of alcohol on multiple 

neurobiological pathways and the multiple stages involved in the development of 

alcoholism. 

There are three stages to addiction: preoccupation/anticipation (i.e. 

craving), binge intoxication, and withdrawal.   These stages are interconnected 

and feed off of each other, contributing to a cycle that gets more intense over 

time, which can eventually lead to addiction (Koob and Le Moal, 1997).  The 

desire to drink comes from both positive and negative reinforcing effects (Koob 

and Le Moal, 1997).  Positive reinforcing effects involve feeling aroused/tense 

before taking a drink and euphoric during the act of drinking.  Negative 

reinforcing effects involve feeling anxious/stressed before taking a drink and 

relieved during the act of drinking.   During the addiction cycle, the positive 

reinforcing effects become less motivating and the negative reinforcing effects 

predominate.  Because addiction is a complex disease, there are a number of 

neuropeptide and neurotransmitter systems that are affected either directly or 

indirectly by alcohol. 

 

The role of stress-related peptides in the development of alcoholism   

Neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) are 

neuropeptides that play opposite roles in regulating anxiety: NPY is anxiolytic 

while CRF is anxiogenic (Valdez and Koob, 2004; Heilig and Egli, 2006).  NPY 
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null mice consume more alcohol and are less sensitive to the sedative/hypnotic 

effects of alcohol compared to wild-type controls (Thiele et al., 1998).  In 

accordance with these data, transgenic mice that overexpress NPY consume 

less alcohol and are more sensitive to the sedative/hypnotic effects of alcohol 

(Thiele et al., 1998).  A number of studies have confirmed these results (for 

review see Heilig and Egli, 2006).  These data suggest that NPY contributes to 

the rewarding/intoxicating effects of alcohol.  

In contrast to NPY, CRF contributes to the anxiety experienced during 

alcohol withdrawal, which is a negative reinforcing effect for future alcohol 

consumption.  Because a CRF type 1 (CRF1) receptor antagonist blocks the 

anxiety/stress response, the CRF1 receptor is thought to mediate the CRF 

effects linked to stress and anxiety (Britton et al., 1986).  Administration of a 

CRF1 receptor antagonist decreases alcohol withdrawal-induced anxiety 

(Rassnick et al., 1993b; Breese et al., 2004; Knapp et al., 2004; Overstreet et al., 

2004), and alcohol withdrawal increases levels of CRF in the amygdala (Merlo 

Pich et al., 1995).  A CRF1 receptor antagonist reduces alcohol intake in alcohol-

dependent animals, but has no effect in nondependent animals (Sabino et al., 

2006).  It is hypothesized that during alcohol intoxication CRF levels decrease 

and NPY levels increase and return to baseline levels afterwards.  After a period 

of chronic alcohol abuse, CRF and NPY do not return to baseline levels.   This 

“altered baseline” is one of the neuroadaptations that can contribute to a person’s 

inability to stop drinking as they attempt to “fix” this imbalance with more alcohol 

consumption (Valdez and Koob, 2004).   
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The reward pathway and the development of alcoholism 

The mesolimbic pathway, or “reward pathway” involves dopamine neurons 

originating in the ventral tegmental area (VTA) releasing dopamine into the 

nucleus accumbens in response to rewarding experiences (Wise, 1998).  Alcohol 

increases dopamine release in the nucleus accumbens (Imperato and Di Chiara, 

1986), and certain acute behavioral effects of alcohol are attenuated in the 

presence of a dopamine receptor antagonist (Liljequist et al., 1981; Risinger et 

al., 1992).  There is a direct relationship between the amount of dopamine 

signaling in the mesolimbic pathway and the amount of alcohol consumption 

(Hodge et al., 1997; Cohen et al., 1998; Gonzales et al., 2004; Rodd et al., 

2008).  During alcohol withdrawal, the functionality of this dopaminergic system is 

reduced, which could contribute to relapse because the alcoholic is trying to 

“overcome” the low dopamine state (Diana et al., 1993; Weiss et al., 1996; Shen 

et al., 2007; Volkow et al., 2007).   

Desensitization of the mesolimbic dopamine system and its related 

behaviors is thought to be a critical component of the development of drug 

addiction (Robinson and Berridge, 1993).  However, while behavioral 

sensitization to psychostimulants and opiates involves sensitization of drug-

evoked dopamine levels, this is not the case for development of alcohol 

behavioral sensitization (Zapata et al., 2006).  Therefore, while dopamine has a 

role in the development of alcoholism, caution must be taken when attempting to 

group alcoholism into drug addiction in general.   
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Opioids are widely known as the neuropeptides that lead to a “feel good” 

response once they bind to three potential opioid receptors; moreover, opioid 

receptor agonists are used in pain management, such as morphine (McQuay, 

1989).  In addition to pain management, the opioid system plays a role in reward 

and reinforcement through activation of mu- and delta- opioid receptors that 

increase dopamine release in the mesolimbic pathway (Spanagel et al., 1990).  

Naltrexone, one of the three drugs approved for the treatment of alcoholism, is a 

nonspecific competitive opioid receptor antagonist that inhibits the reward felt 

from drinking alcohol, thereby reducing the amount of alcohol consumed 

(Volpicelli et al., 1995).  Naltrexone can reverse the alcohol-induced increase in 

dopamine signaling in the mesolimbic pathway, suggesting that opioids are a 

mediator in the alcohol-dopamine interaction (Benjamin et al., 1993).  Alcohol 

increases opioid neurotransmission (Gianoulakis, 2001), which could in turn 

increase dopamine neurotransmission, leading to the rewarding properties of 

alcohol consumption.  Data suggest that opioids do not affect the VTA dopamine 

neurons directly, but instead hyperpolarize the GABAergic interneurons (i.e. 

disinhibition) that provide inhibitory signals to the dopamine VTA neurons 

(Johnson and North, 1992).  Overall, these data suggest that the opioid and 

dopamine systems play an important role in the rewarding effects (i.e. positive 

reinforcing effects) associated with alcohol consumption. 

 

Glutamate neurotransmission and the development of alcoholism   

Glutamate, the major excitatory neurotransmitter in the brain, can activate 
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both metabotropic glutamate receptors (mGluRs) and ionotropic glutamate 

receptors (Ozawa et al., 1998).  There are three ionotropic glutamate receptors: 

N-methyl-D-aspartic acid (NMDA) receptors, alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors and kainate receptors, which are all 

affected by alcohol.  At physiologically relevant concentrations, ethanol inhibits 

kainate receptor-mediated excitatory neurotransmission (Weiner et al., 1999; 

Carta et al., 2003; Lack et al., 2008).  Because activation of kainate receptors 

causes an anxiety response, the anxiolytic properties of acute alcohol exposure 

could be mediated through inhibition of kainate receptors (Lack et al., 2008).  

Ethanol also inhibits AMPA receptors (Martin et al., 1995; Wang et al., 1999; 

Frye and Fincher, 2000; Wirkner et al., 2000; Jones et al., 2008).  At the 

behavioral level, increasing AMPA receptor-mediated neurotransmission can 

reverse some of the acute alcohol effects in the rat (Jones et al., 2008).  

Additionally, AMPA receptor-mediated neurotransmission contributes to alcohol-

seeking behavior and relapse (Sanchis-Segura et al., 2006). 

The interaction between alcohol and NMDA receptors has been more 

extensively studied.  Like the other ionotropic receptors, acute ethanol inhibits 

NMDA receptors, and different NMDA receptor subunit combinations have 

different sensitivities to ethanol (for review see Allgaier, 2002).  Behaviorally, 

NMDA receptors have been implicated in alcohol withdrawal, craving, relapse, 

tolerance and dependence (Khanna et al., 1993; Riaz and Faingold, 1994; Ripley 

and Little, 1995; Holter et al., 2000; Ron, 2004).  Chronic alcohol exposure 

results in an upregulation of NMDA receptors, which is consistent with alcohol 
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withdrawal-induced hyperactivation of the glutamate system (Spanagel and 

Zieglgansberger, 1997).  Despite this role for ionotropic glutamate receptors in 

alcohol related behaviors, developing pharmacotherapies specifically targeting 

these sites is problematic due to the essential role these receptors play in brain 

functioning and their ubiquitous expression throughout the brain (Heilig and Egli, 

2006). 

The mGluRs offer a unique advantage over the ionotropic glutamate 

receptors because of differences in presynaptic versus postsynaptic localization 

of the different mGluR subtypes (Heilig and Egli, 2006).  There are eight different 

mGluR subtypes, which are divided into three groups: group 1 (mGluR1, 

mGluR5), group 2 (mGluR2, mGluR3), and group 3 (mGluR4, mGluR6, mGluR7 

and mGluR8).  The group 1 mGluRs are primarily located postsynaptically, while 

group 2 and 3 mGluRs are primarily located presynaptically (Raiteri, 2008).  A 

mGluR5 antagonist reduces alcohol drinking and craving in animal studies 

(Backstrom et al., 2004; Cowen et al., 2005; Schroeder et al., 2005; Hodge et al., 

2006), possibly through a reduction in the subjective effects of alcohol (Besheer 

and Hodge, 2005).  On the molecular level, a mGluR5 antagonist reduces 

glutamatergic signaling through NMDA receptors by preventing PKC 

phosphorylation of the NMDA receptor (Hermans and Challiss, 2001; Kotecha et 

al., 2003); moreover, this could be the mechanism responsible for the 

effectiveness of the mGluR5 antagonist on reducing alcohol consumption (Heilig 

and Egli, 2006).  While the majority of studies have investigated the mGluR5s, an 

agonist at the group 2 mGluRs reduces excessive alcohol drinking and craving in 
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alcohol preferring rats (McKinzie et al., 2005).  This agonist reduces anxiety and 

stress in preclinical and clinical studies, which offers one potential mechanism for 

the reduced alcohol drinking (Marek, 2004).  Overall, the mGluRs are a 

promising target for the development of new pharmacotherapies to treat 

alcoholism. 

 

GABA neurotransmission and the development of alcoholism 

Gamma-aminobutyric Acid (GABA) is the most abundant inhibitory 

neurotransmitter in the brain and can bind to two ionotropic GABA receptors 

(GABAA and GABAC) and one metabotropic GABA receptor (GABAB).  GABAB 

receptors are G protein-coupled receptors (GPCRs) that are located at both 

presynaptic and postsynaptic sites (Raiteri, 2008).  The presynaptic GABAB 

receptors are negative autoreceptors that decrease GABA release from the 

presynaptic terminal upon GABA binding to the GABAB receptor (Raiteri, 2008).  

Baclofen, a GABAB receptor agonist, suppresses alcohol drinking in alcohol 

naïve rats and alcohol dependent rats (Daoust et al., 1987; Colombo et al., 2000; 

Colombo et al., 2002; Anstrom et al., 2003; Colombo et al., 2003a; Janak and 

Michael Gill, 2003).  It also suppresses the motivational properties of alcohol 

(Colombo et al., 2003b; Maccioni et al., 2005), the development of tolerance to 

behavioral effects (Cott et al., 1976; Zaleski et al., 2001), and alcohol withdrawal 

symptoms (Colombo et al., 2000; Knapp et al., 2007).  In clinical trials baclofen 

promotes alcohol abstinence, prevents alcohol relapse and reduces alcohol 

withdrawal in alcoholics (Addolorato et al., 2006).  It is also effective in alcoholics 
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with cirrhosis of the liver, which is caused by extensive alcohol use (Addolorato 

et al., 2007).  The current drugs used to treat alcoholism undergo extensive liver 

metabolism, rendering them useless in severe alcoholics with cirrhosis of the 

liver.  Therefore, baclofen could potentially offer an untreated population of 

alcoholics a pharmacotherapy option.     

At the GABAergic synapse, GABA is released from the presynaptic 

GABAergic neuron and binds to GABA binding sites on the postsynaptic 

ionotropic GABA receptors.  The GABAA and GABAC receptors have a 

pentameric structure, with the five subunits coming together to form a chloride 

channel that allows chloride to flow into the neuron after GABA binding, which 

results in hyperpolarization of the neuron (Baumann et al., 2001).    There are 

many types of subunits that can contribute to the formation of the ionotropic 

GABA receptors: α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3.  While the number of 

possible GABA subunit combinations is enormous, only a small number of 

combinations have been found in brain (McKernan and Whiting, 1996).  The 

GABAC receptors contain one or more ρ subunits and are only found in retina, 

thalamus, hippocampus, pituitary and gut (Chebib, 2004). The interaction 

between GABAC receptors and alcohol has not been thoroughly studied, but 

there is one study suggesting that ethanol potentiates the response of GABAC 

receptors (Yeh and Kolb, 1997).  The most common GABA receptor in the brain 

is the GABAA receptor, with the majority of GABAA receptors consisting of two α 

subunits, two β subunits and one γ subunit (Farrar et al., 1999).  In addition to 

GABA, there are binding sites on the GABAA receptor for benzodiazepines, 
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barbiturates and neurosteroids (Mohler and Okada, 1977; Briley and Langer, 

1978; Majewska et al., 1986).   

There are a number of behavioral studies suggesting there is an 

interaction between alcohol and the GABAA receptor.  Specifically, the effects of 

alcohol on motor function (Frye et al., 1980; Frye and Breese, 1982; Liljequist 

and Engel, 1982), sleep time (Liljequist and Engel, 1982; Givens and Breese, 

1990), temperature (Liljequist and Engel, 1982), convulsions (Liljequist and 

Engel, 1982), anxiety (Frye et al., 1980) and learning and memory (White et al., 

1997) were similar to those seen with drugs that act directly on the GABAA 

receptor, the benzodiazepines and barbiturates (Mohler and Okada, 1977; Briley 

and Langer, 1978).  Additionally, benzodiazepines and barbiturates enhance the 

alcohol effect on motor impairment (Martz et al., 1983).  Consistent with these 

data, GABAA receptor antagonists and a benzodiazepine inverse agonist block 

the behavioral effects of alcohol (Liljequist and Engel, 1984; Koob et al., 1986; 

Suzdak et al., 1986a; Koob et al., 1988; Ticku and Kulkarni, 1988; McCown and 

Breese, 1989) and reduce alcohol consumption (Rassnick et al., 1993a; Petry, 

1995).  Benzodiazepines and barbiturates substitute for alcohol in drug 

discrimination studies, suggesting that the drugs have similar subjective effects 

(Grant et al., 2000; Shannon et al., 2004).  Additionally, GABA agonists, 

benzodiazepines and barbiturates can attenuate some of the negative effects 

associated with alcohol withdrawal (Cooper et al., 1979; Frye et al., 1983; 

McCown et al., 1986; Criswell and Breese, 1989).  
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Overall, these data provide evidence from pre-clinical and clinical studies 

that alcohol affects GABAergic neurotransmission at multiple sites to manifest 

certain behaviors. To complement the behavioral data, there is evidence that 

ethanol affects GABAergic neuronal activity, which occurs in a brain region-

specific manner (Nestoros, 1980; Mereu and Gessa, 1985; Bloom and Siggins, 

1987; Givens and Breese, 1990; Simson et al., 1991; Criswell et al., 1993; 

Criswell et al., 1995).  The ability of ethanol to alter GABAergic 

neurotransmission in a brain region-specific manner is consistent with alcohol-

induced behaviors that are linked to certain brain regions (McCown et al. 1986).  

Therefore, the GABAergic synapse has the potential to be a useful target when 

developing new treatment options.  The effects of ethanol at the GABAergic 

synapse on the cellular and molecular level will be discussed in more detail 

below. 

  

Ethanol and postsynaptic GABAA receptor interactions 

As described above, ethanol has similar behavioral effects to the 

benzodiazepines and barbiturates, which bind to postsynaptic GABAA receptors.  

Therefore, the initial hypothesis was that ethanol binds directly to GABAA 

receptors.  This idea was supported by a number of studies that found ethanol 

enhances GABA-induced Cl- currents (Ticku et al., 1983; Suzdak et al., 1986b; 

Aguayo, 1990; Allan et al., 1991; Reynolds et al., 1992; Sigel et al., 1993; Harris 

et al., 1995; Mori et al., 2000); however, these results were not always 

reproducible (Siggins et al., 1987; Palmer and Hoffer, 1990; White et al., 1990; 
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Frye et al., 1994; Marszalec et al., 1998; Peoples and Weight, 1999; Ming et al., 

2001).  One possible explanation for these inconsistent results is differences in 

the various preparations used, which includes cell lines, oocytes, and primary 

neuronal cultures (Siggins et al., 2005; Lovinger and Homanics, 2007).   

Another explanation is that ethanol interacts with select GABAA receptor 

subunits.  This hypothesis is supported by data showing that ethanol affects 

GABA-mediated neuronal activity and alcohol-related behaviors in a brain region-

specific manner (see above).  Additionally, experiments investigating the effect of 

ethanol on GABAA receptor-mediated synaptic currents in the slice have seen a 

brain region-specific effect (Carlen et al., 1982; Siggins et al., 1987; Proctor et 

al., 1992; Weiner et al., 1994; Wan et al., 1996; Ariwodola and Weiner, 2004; Nie 

et al., 2004).  Therefore, it was proposed that GABAA receptor subunit 

composition dictates the effectiveness of ethanol at a GABAA receptor and 

contributes to the brain region-specific ethanol effects.  The most abundant 

GABAA receptor in the brain is the 2α12β2γ2 GABAA receptor, and zolpidem is a 

selective agonist at α1-containing GABAA receptors (McKernan and Whiting, 

1996).  Early work supported that the effect of zolpidem on a GABAA receptor 

could predict the effect of ethanol on that GABAA receptor, implying that ethanol 

selectively acts at α1-containing GABAA receptors (Criswell et al., 1993; Criswell 

et al., 1995); however, later work disproved this hypothesis (Criswell et al., 2003).  

Despite this setback, focus still remained on ethanol interacting with specific 

GABAA receptor subunits, but the focus shifted to extrasynaptic GABAA 

receptors. 
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Ethanol and extrasynaptic GABAA receptor interactions 

Extrasynaptic GABAA receptors are located outside of the GABAergic 

synapse and exhibit different properties than synaptic GABAA receptors.  

Extrasynaptic GABAA receptors can be activated from the reversal of GABA 

transporters, GABA release from astrocytes, and GABA spillover from 

presynaptic GABA release (for review see Glykys and Mody, 2007).  Synaptic 

GABAA receptors respond to high concentrations of GABA (in the mM range) and 

are activated for only a few milliseconds.  This “phasic conductance” of synaptic 

GABAA receptors is in contrast to the “tonic conductance” of extrasynaptic 

GABAA receptors, which are sensitive to lower concentrations of GABA and 

remain activated for a longer period of time (Saxena and Macdonald, 1994; 

Mody, 2001).  Consequently, since GABA is almost always present in the 

extracellular space, most extrasynaptic GABAA receptors are continuously 

activated (Glykys and Mody, 2007; Lovinger and Homanics, 2007).  This tonic 

conductance is seen in the cerebellum, cortex, hippocampus, thalamus and 

spinal cord, which are areas that are also sensitive to ethanol (Glykys and Mody, 

2007).   

Extrasynaptic GABAA receptors are more sensitive to the effects of 

ethanol compared to the synaptic GABAA receptors. Studies in oocytes found 

that ethanol acts at GABAA receptors containing δ and β3 subunits associated 

with α4 or α6 subunits at concentrations as low as 1 mM (Sundstrom-Poromaa et 

al., 2002; Wallner et al., 2003), which was confirmed in the slice (Wei et al., 

2004; Hanchar et al., 2005; Glykys et al., 2007).  However, studies in another 
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laboratory attempting to replicate the oocyte studies have been unsuccessful 

(Borghese et al., 2006).  Interestingly, ethanol-induced GABA release onto 

cerebellar granule neurons is proposed to activate a tonic current mediated by 

α6βxδ GABAA receptors via GABA spillover, which suggests that at least in one 

brain region ethanol can affect extrasynaptic GABAA receptors indirectly (Carta et 

al., 2004).  Site-directed mutagenesis studies using this same subunit 

combination concluded that ethanol directly affects the α6βxδ GABAA receptors 

(Hanchar et al., 2005), but this result could not be reproduced (Botta et al., 

2007).  Therefore, while the majority of evidence supports there being an 

ethanol-extrasynaptic GABAA receptor interaction, more studies are necessary to 

determine the mechanism.  Overall, while ethanol most likely interacts with 

GABAA receptors in a subunit-specific manner, the GABAergic profile of ethanol 

is more convoluted than previously thought (Weiner and Valenzuela, 2006).  

 

The tipsy terminal: ethanol actions at the GABA terminal 

In the presynaptic terminal, GABA is synthesized from glutamate by 

glutamate decarboxylase and loaded into the synaptic vesicles through a 

vesicular GABA transporter (Martin, 1993; McIntire et al., 1997; Sagne et al., 

1997). The vesicles dock at the plasma membrane and are primed for vesicle 

fusion.  Once the vesicles fuse with the membrane, GABA is released from the 

presynaptic terminal into the synaptic cleft and binds to the postsynaptic GABAA 

receptors (Sudhof, 1995).  GABA transporters located on the presynaptic 

GABAergic neurons as well as surrounding astrocytes remove GABA from the 
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synaptic cleft and extracellular space.  At this point GABA is inactivated by 

GABA-transaminase or is recycled as a neurotransmitter (Madsen et al., 2008). 

GABA was not recognized as a neurotransmitter until the late sixties 

(Otsuka et al., 1966; Roberts and Kuriyama, 1968), and around this same time 

data surfaced showing that ethanol changes the concentration of GABA in the 

brain (Gordon, 1967).  However, because researchers within the alcohol field 

were focused on the direct effects of ethanol on the GABAA receptor, there were 

no studies investigating the potential presynaptic effects of ethanol.  Many years 

later, intracellular recordings were used to study the GABAergic effect of ethanol.  

Carlen et al. (1982) found that ethanol enhances evoked inhibitory postsynaptic 

currents (eIPSCs) in the hippocampus, and while analysis of eIPSCs cannot 

indicate whether a presynaptic or postsynaptic GABAergic effect was responsible 

for the change, the authors postulated that the eIPSC enhancement was 

mediated by a presynaptic effect of ethanol. 

However, a few years later a study found that ethanol inhibits eIPSCs at 

this same synapse (Siggins et al., 1987).  Additionally, Siggins and colleagues 

had data suggesting that the change in eIPSC amplitude was primarily due to a 

presynaptic mechanism.  However, they concluded that ethanol was decreasing 

GABA release, which was consistent with biochemical studies showing that 

ethanol decreases GABA release in cortical regions (Carmichael and Israel, 

1975; Howerton and Collins, 1984; Strong and Wood, 1984).  Similar studies 

investigating the effect of ethanol on eIPSCs in the hippocampus continued to 

report inconsistencies (Proctor et al., 1992; Weiner et al., 1994), which led to the 
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Siggins group repeating this study (Wan et al., 1996).  The new study used 

glutamate antagonists because of a potential source of glutamate 

neurotransmission in their preparation (Davies and Collingridge, 1989), and this 

time they found no ethanol effect on eIPSC amplitude.  However, in the presence 

of a GABAB receptor antagonist, ethanol consistently increased eIPSC amplitude 

(Wan et al., 1996).  The Siggins group postulated again that the change in eIPSC 

amplitude was due a presynaptic effect, but they discounted this possibility 

because their new data was consistent with ethanol increasing GABA release, 

which was not in agreement with the biochemical data (Carmichael and Israel, 

1975; Howerton and Collins, 1984; Strong and Wood, 1984).  However, studies 

in the nucleus accumbens slice provided additional evidence for ethanol having 

presynaptic GABAergic effects, and as a result, the Siggins group came back to 

the hypothesis that ethanol acts presynaptically to increase GABA release (see 

Siggins et al., 2005).   

In response to these findings, Dr. Dennis Twombly organized a National 

Institute on Alcohol Abuse and Alcoholism workshop in 2002 to discuss the 

deficiency in studies exploring the presynaptic effects of ethanol (Roberto et al., 

2006).  Shortly thereafter, a number of studies came out supporting the idea that 

ethanol increases GABA release.  An injection of ethanol into mice one day 

before electrophysiology recordings caused an increase in GABA release in the 

VTA (Melis et al., 2002).  The Siggins group published a study showing that 

ethanol increases both spontaneous and evoked GABA release in the central 

nucleus of the amygdala (Roberto et al., 2003).  Two studies came out 
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simultaneously showing that ethanol increases GABA release in motor neurons, 

with one of the papers showing that ethanol actually inhibited postsynaptic 

GABAA receptors (Sebe et al., 2003; Ziskind-Conhaim et al., 2003).   

Currently, ethanol has been shown to increase GABA release in the 

following brain regions: central nucleus of the amygdala (Roberto et al., 2003; 

Nie et al., 2004), basolateral amygdala (Zhu and Lovinger, 2006), hippocampus 

(Ariwodola and Weiner, 2004; Sanna et al., 2004; Li et al., 2006), VTA (Melis et 

al. 2002, Theile et al. 2008), cerebellum (Carta et al., 2004; Ming et al., 2006; 

Criswell et al., 2008) and brainstem/spinal cord (Sebe et al., 2003; Ziskind-

Conhaim et al., 2003).  Ethanol has no effect on GABA release in the cortex, 

thalamus, and lateral septum, which is consistent with the brain region-specific 

effects of ethanol on GABA neurotransmission in vivo (Criswell et al., 2008; Jia et 

al., 2008; Mameli et al., 2008).  Due to the novelty of the concept that ethanol 

acts presynaptically, the mechanism through which ethanol acts to increase 

GABA release has yet to be elucidated.  The focus of this dissertation is to 

determine the mechanism responsible for ethanol-enhanced GABA release.      

 

Description of model system: interneuron-Purkinje cell synapse 

Multiple studies have shown that ethanol exposure impairs the 

development of the cerebellum and causes volume loss in a developed 

cerebellum (Bauer-Moffett and Altman, 1977; Servais et al., 2007).  The 

cerebellum plays a role in controlling coordination, sensory perception, motor 

control, motor learning and reflex adaptation (Robinson, 1976; McCormick and 
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Thompson, 1984; Baillieux et al., 2008); these cerebellar functions are consistent 

with the acute effects of alcohol involving alterations in balance, speech, and 

motor coordination.  Ethanol depresses GABAA receptor-mediated Purkinje cell 

firing (Siggins and French, 1979; Sorensen et al., 1980; George and Chu, 1984), 

which is consistent with ethanol increasing the amount of GABA released from 

the interneurons (i.e. stellate/basket cells) onto the Purkinje cells (Ming et al., 

2006; Criswell et al., 2008; Mameli et al., 2008).   

The cerebellum has four main types of neurons: Purkinje cells, granule 

cells, stellate/basket cells, and Golgi cells (Voogd and Glickstein, 1998; see Fig. 

1.1).  The Purkinje cells are large, GABAergic neurons that project solely to the 

deep cerebellar nuclei.  Purkinje cells are oriented in a single row, which serves 

as the border between the molecular cell layer and the granule cell layer.  In 

addition to the Purkinje cell dendritic trees, the molecular layer houses the 

stellate and basket cells, both of which are GABAergic and provide inhibitory 

input to the Purkinje cells.  The basket cells synapse around the Purkinje cell 

soma and main dendrites, while the stellate cells synapse with more distal 

dendrites (Vincent et al., 1992). 

  The other inhibitory interneurons in the cerebellum are the Golgi cells, 

which synapse onto the granule cells.  Granule cells are small glutamatergic 

neurons that are abundantly expressed throughout the granule cell layer.  The 

granule cell axons (i.e. parallel fibers) ascend to the molecular cell layer and 

synapse onto Purkinje cell spines.  The Golgi cells receive input from the parallel 

fibers and provide inhibitory feedback to the granule cells.  The granule cells 
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receive excitatory input from the mossy fibers, and the Golgi cells act as a filter at 

this synapse.  Climbing fibers, which originate from the inferior olive, are 

excitatory and synapse onto the Purkinje cells. 

For these experiments no distinction was made between the basket cells 

and stellate cells.  One difference between the two cell types is expression of 

parvalbumin, which is absent in stellate cells up to postnatal day 12 but present 

in basket cells throughout development (Collin et al., 2005a).  Because 

parvalbumin plays a role in presynaptic calcium signaling, these experiments do 

not use rats under postnatal day 12.  Otherwise, the basket and stellate cells 

have very similar characteristics (Sultan and Bower, 1998). 

 

Ethanol-enhanced spontaneous GABA release and intracellular 

messengers 

Previous studies investigating ethanol-enhanced GABA release have 

focused on GPCRs, specifically the GABAB receptor, δ opioid receptor, 

nociceptin/orphanin FQ peptide receptor, and the CRF1 receptor (Wan et al., 

1996; Ariwodola and Weiner, 2004; Nie et al., 2004; Roberto and Siggins, 2006; 

Kang-Park et al., 2007).  The following work will focus on the signal transduction 

mechanisms that are downstream of the GPCRs.  When GPCRs are activated by 

an external stimulus, there is a conformational change in the receptor that 

causes an allosteric change in the nearby G protein.   The Gα subunit substitutes 

guanosine 5'-diphosphate for guanosine-5'-triphosphate and dissociates from the 
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βγ subunit, freeing both the Gα subunit and the βγ subunit to interact with their 

respective downstream messengers (for review see Hepler and Gilman, 1992).   

These experiments will place focus on the signal transduction pathways 

affected by 3 G protein subunits: Gαi, Gαs, and Gαq.  The Gαi- and Gαs-linked 

pathways affect (in opposite directions) levels of adenylate cyclase and protein 

kinase A (Hanoune and Defer, 2001), while the Gαq–linked pathway activates 

phospholipase C and leads to calcium release from the internal stores and 

activation of protein kinase C (Rhee, 2001).  The purpose of the following studies 

was to determine if these intracellular messengers are playing a role in the ability 

of ethanol to increase spontaneous GABA release at the interneuron-Purkinje 

cell synapse.   
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Figure 1.1.  Cerebellum circuitry.  This diagram includes the circuitry discussed in 
the text and does not depict all synapses in the cerebellum.  Excitatory 
neurotransmission is represented by red, inhibitory neurotransmission is 
represented by blue, and a mixture of both is represented by purple.  MF: mossy 
fiber; DCN: deep cerebellar nuclei; IO: inferior olive; CF: climbing fiber; GC: 
granule cell; PF: parallel fiber; PC: Purkinje cell; GgC: Golgi cell; SC: stellate cell; 
BC: basket cell. Adapted from: http://en.wikipedia.org/wiki/Cerebellum.  
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Chapter II: General Methods 

 

Slice preparation for electrophysiology.  Sprague-Dawley rats, 13-20 days 

old, were anesthetized with an intraperitoneal injection of 75% urethane (Sigma, 

St. Louis, MO) and decapitated after disappearance of the plantar reflex.  The 

brain was rapidly removed and placed in a 4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES) buffered solution of the following composition (in 

mM): 145 NaCl, 5 KCl, 10 HEPES, 2 CaCl2, 1 MgCl2, 10 glucose and 5 sucrose 

(pH to 7.4 with NaOH).  The cerebella were isolated and parasagittal slices, 350 

µm thick, were cut with a vibrating microtome (Leica VT1000S, Vashaw 

Scientific, Norcross, GA) in a low sodium solution of the following composition (in 

mM): 112.5 sucrose, 63 NaCl, 3 KCl, 1.25 NaH2PO4, 24 NaHCO3, 6 MgSO4, 0.5 

CaCl2, 10 glucose, and gassed with 95% O2/5% CO2.  The slices were placed in 

a chamber containing oxygenated artificial cerebrospinal fluid (ACSF) of the 

following composition (in mM): 124 NaCl, 3.25 KCl, 1.25 KH2PO4, 10 glucose, 2 

MgSO4, 20 NaHCO3, 2 CaCl2, and gassed with 95% O2/5% CO2.  The slices 

were equilibrated at least one hour at room temperature before starting 

experiments.   

 

Whole-cell voltage clamp recordings.  A slice was placed at the bottom of a 

chamber that was attached to the stage of a microscope (BX5OWI, Olympus, 
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Japan) and was perfused with oxygenated ACSF (21-24°C)  at a flow rate of 0.5 

ml/min.  The cells were visualized using infrared illumination under differential 

interference contrast optics with a 40X LUMPlanFl water-immersion objective 

(Olympus) and displayed on a monitor via a video camera (C2400, Hamamatsu, 

Japan).  Recording electrodes were pulled from borosilicate glass (Drummond 

Scientific Company, Broomall, PA) and had a resistance of 2.5-3 MΩ when filled 

with internal solution.  The composition of the internal solution was the following 

(in mM):150 KCl, 3.1 MgCl2, 15 HEPES, 5 K-ATP, 5 EGTA, 15 phosphocreatine.  

The internal solution pH was adjusted to 7.4 with KOH and the osmolarity was 

approximately 310 mOsms.   For the 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-

tetraacetic acid (BAPTA) experiments, the composition of the internal solution 

was the following (in mM):105 KCl, 3.1 MgCl2, 15 HEPES, 5 K-ATP, 30 BAPTA 

tetrapotassium salt, 15 phosphocreatine (pH to 7.4 with KOH).   For the paired-

pulse studies, 5 mM N-(2,6-Dimethylphenylcarbamoylmethyl) triethylammonium 

bromide (QX-314) was added to the internal solution to block the generation of 

action potentials. 

  Data were displayed on an oscilloscope (V-212, Hitachi, Japan), digitized 

at 5 kHz, and stored on a personal computer.  The membrane potential was held 

at -70 mV using a patch-clamp amplifier (Axopatch 200B, Axon Instruments, 

Union City, CA), and data were collected with Clampex 8.1 software (Axon 

Instruments).  The capacitance and access resistance were monitored 

continuously throughout the recordings and a change of 10% or more was 
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sufficient to exclude the recording from analysis.  Only one protocol/recording 

was conducted per slice to avoid contamination.   

 

Drug preparation and drug delivery system.  Each drug was made up as a 

concentrated stock solution, which was diluted in aCSF and inserted into sealed 

syringes on the day of use.  CNQX (10 µM) and AP5 (50 µM) were added to all 

solutions inserted into the sealed syringes.  Table 2.1 includes a description of 

each drug, the supplier, the stock solution concentration and the storage 

conditions.  The final concentration of dimethyl sulfoxide (DMSO) used in the 

experiments was less that 0.1%, which does not alter the miniature inhibitory 

postsynaptic current (mIPSC) properties (n = 4, data not shown).  When BAPTA-

AM, SQ 22,536, DDA, edelfosine, bafilomycin A1 and H-89 were used in an 

experiment, there was a 30 minute to 2 hour drug pre-incubation period with the 

slice before starting the experiment.  Each sealed syringe was attached to Teflon 

tubing that was connected to a multi-barrel perfusion pencil (Automate Scientific, 

Inc.; Sarasota, FL; 250 µm tip diameter), which was positioned 150-250 µm from 

the cell being tested.   

 

Protocol and analysis for paired-pulse experiments.  Platinum-iridium 

stimulating electrodes were lowered into the molecular layer approximately 150 

µm from the experimental Purkinje cell. The membrane of the cell was ruptured, 

and the control solution was delivered through the multi-barrel perfusion pencil.  

After allowing the cell to stabilize, two stimuli were delivered (0.2 ms duration and 
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50 ms inter-stimulus interval) at 0.1 Hz, which generated a paired-pulse (PP) 

record of two closely spaced evoked inhibitory postsynaptic currents (eIPSCs).  A 

maximum stimulation was applied to determine the maximum current response.  

The stimulus strength was reduced to a level that generated half the maximum 

current response, and this stimulus strength was used for the experiment.  

Following a minimum of 6 PP records obtained at 10 sec intervals for the pre-

control value, the ethanol solution was delivered through the multi-barrel 

perfusion pencil and 5 minutes later a second series of PP records was collected.  

Ethanol was washed out for at least 5 minutes and a final series of PP records 

was collected.  The miniAnalysis software (version 5.6.4; Synaptosoft, Decatur, 

GA) was used to generate averaged PP traces from the PP records collected for 

each cell. The averaged PP trace was used to calculate the paired-pulse ratio 

(PPR), which is the ratio of the second eIPSC amplitude to the first 

(eIPSC2/eIPSC1). The PPR value for each cell in a given group (pre-control, 

ethanol, washout) were averaged together and represented as the mean ± 

standard error of the mean (SEM).  The “averaged control” values were 

calculated from the pre-control and washout ((pre-control + washout)/2).        

 

Mechanically dissociated neuron preparation.  A slice was transferred to a 

recording chamber containing the HEPES-buffered solution.  A 0.3 mm probe 

touched the surface of the cell layer of the submerged slice and was vibrated 

(~0.2 mm amplitude at 10 Hz) for 3 minutes.  When the resulting mechanical 

forces break a neuron free from the matrix, most of the dendritic tree is sheared 
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off as well as the distal parts of axon; however, the presynaptic terminals remain 

attached to the soma (Akaike and Moorhouse, 2003).  After the mechanical 

dissociation the slice was removed from the chamber and the mechanically 

dissociated neurons were allowed to settle to the bottom.  The same protocol 

described for the whole-cell voltage clamp recordings in the slice was used with 

the mechanically dissociated neurons.  The nominally calcium free solution used 

in the mechanically dissociated neuron experiments consisted of the following 

composition: 145 mM NaCl, 5 mM KCl, 10 mM HEPES, 2 mM MgCl2 and 10 mM 

glucose (pH to 7.4 with NaOH).   

 

Protocol and analysis for mIPSC experiments.  After the membrane of the cell 

was ruptured, the control solution, which included 1 µM TTX in addition to the 

CNQX and AP5, was delivered through the multi-barrel perfusion pencil.  Once a 

steady state mIPSC frequency was obtained (determined from the average of at 

least two repetitive recordings), a pre-control recording was collected for at least 

60 seconds.  For the ethanol experiments, in addition to the pre-control 

recording, an ethanol recording and washout recording were collected.  The 

ethanol recoding in the slice was collected five minutes after the start of the 

ethanol perfusion while the ethanol recording in the mechanically dissociated 

neuron preparation was collected 30 seconds after the start of the ethanol 

perfusion.  The percent (%) change in mIPSC frequency, decay time and 

amplitude was calculated as follows: 100 x (“ethanol response”/((“pre-

control”+“washout”)/2))-100.  The “control” ethanol data points in the data 
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chapters went through the same protocol (pre-control, ethanol, washout) but 

were never exposed to ethanol.   

For the experiments that do not involve ethanol, there was a control 

recording and a drug recording with no washout.  The % change in mIPSC 

frequency, decay time and amplitude for these experiments was calculated as 

follows: 100 x ( |“drug response” – “control”| ) /”control”).  When different 

antagonists were tested against a drug effect on mIPSC frequency, a stable 

baseline mIPSC rate was established in the presence of the antagonist before 

exposure to the drug to avoid a summation of effects.  Therefore, for these 

experiments the baseline mIPSC frequency value in the presence of the 

antagonist served as the pre-control or control value.    

For the ethanol experiments that were conducted in the presence of a 

drug, all experiments initially used 100 mM ethanol, and if a drug treatment was 

sufficient to inhibit the ethanol effect on mIPSC frequency, this was the only 

ethanol concentration tested.  However, if 100 mM ethanol still had an effect in 

the presence of a drug treatment, additional experiments were carried out with 50 

mM ethanol, which was the lowest ethanol concentration that significantly 

increased mIPSC frequency, to determine if the antagonist was having an effect 

on lower ethanol concentrations. 

All data were expressed as the mean ± SEM.  If the control and pre-

control baseline mIPSC frequency were lower than 0.5 Hz (except for 

experiments with the pre-control value including exposure to WIN or baclofen), 

the experiment was excluded from analysis.  Addition of 50 µM bicuculline 
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methochloride, a GABAA antagonist, abolished the mIPSCs (n = 4, data not 

shown), which confirmed that the mIPSCs were GABAergic.    Data were 

analyzed with miniAnalysis software.  The mIPSC decay time was determined 

from a bi-exponential fit using miniAnalysis software.  Fast decay time (τ-fast) and 

slow decay time (τ-slow) were analyzed separately.   

 

Tissue preparation for electron microscopy.  Male Sprague-Dawley rats were 

anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneal).  After 

inducing deep anesthesia, rats were intracardially perfused with heparinized 

saline followed by 500 ml of fixative.  The fixative was a mixture of 2% 

paraformaldehyde and 2% glutaraldeyhde in phosphate buffer (0.1 M, pH 7.4).  

The brains were removed and postfixed with the same fixative for 2 hours at 4ºC.  

Brains were sectioned with a vibratome (40-60 µM) and collected in cold 

phosphate buffer.   

 

Tissue staining for electron microscopy.  Cerebellar areas of interest were 

excised, cryoprotected in 30% glycerol, quick frozen, freeze-substituted in a 

Leica Electron Microscopy Automatic Freeze Substitution System, and 

embedded in Lowicryl HM-20. Sections were cut at ~90 nm with an 

ultramicrotome and collected on nickel grids.  The sections were incubated with 

normal rabbit serum for 20 minutes to suppress nonspecific binding and then 

incubated overnight on a shaker at room temperature with the IP3R primary 

antibody (goat, 1 : 30K), which has been characterized previously (Sharp et al., 
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1993a).  Following overnight incubation, the sections were rinsed and incubated 

for 20 minutes in normal rabbit serum.  The sections were incubated with rabbit 

anti-goat Immunoglobulin G conjugated to 10 nm gold (Ted Pella, 1:15) for two 

hours at room temperature.  After rinsing, the sections were counterstained with 

1% uranyl acetate followed by Sato’s lead and examined with a Philips Tecnai 

electron microscope (Hillsboro, OR) at 80 kV.  Images were collected with a 

Gatan 12-bit 1024 x 1024 CCD camera (Pleasanton, CA). 

 

Quantitative analysis for electron microscopy.  Attention was restricted to 

Purkinje cell and molecular layers of the cerebellum.  Once a suitable area was 

found, pictures of the field were taken at x6500 magnification and saved for later 

analysis.  For analysis, profiles representing GABAergic presynaptic terminals, 

glutamatergic presynaptic terminals, parallel fibers, and Purkinje cell dendrites 

were identified and gold particles coding for IP3R were counted for the identified 

profiles.  Using Image J software, the area of the profile was determined.  The 

number of particles per square µM was determined and data were expressed as 

the mean ± SEM.  IP3R staining associated with mitochondria or the plasma 

membrane was excluded from analysis because of potential nonspecific staining.  

Parallel fibers were analyzed as bundles, as opposed to individual fibers, and 

underwent additional analysis to account for the plasma membrane around each 

fiber.  Specifically, after the area of the parallel fiber bundle was calculated, the 

number of individual fibers within the group was counted and multiplied by the 
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calculated average area of the membrane surrounding the individual fiber.  This 

value was subtracted from the area of the parallel fiber bundle. 

In experiments that did not include a GABA antibody, visual assessments 

were made to differentiate between GABAergic terminals and glutamatergic 

terminals.  The glutamatergic synapse has an asymmetric synapse due to a thick 

postsynaptic density (Palay and Chan-Palay, 1974).  GABAergic synapses have 

a symmetric synapse that is less pronounced compared to the glutamatergic 

synapse.  GABA terminals contain a mixture of flattened, smaller vesicles and 

spherical vesicles compared to the glutamate terminals that contain only 

spherical vesicles (Palay and Chan-Palay, 1974).  I found that the GABAergic 

terminals were generally larger than the glutamatergic terminals.  In the region 

examined, GABA presynaptic terminals are believed to originate from either 

basket cells or stellate cells.  Golgi cells are also GABAergic, but are only found 

in the granule cell layer.  The glutamatergic synapses were either parallel fibers 

or climbing fibers.     

  

Statistics.  Paired Student’s t-test, Student’s t-test, one-way analysis of variance 

(ANOVA) and Dunnett’s post hoc test were performed as indicated.  A two-tailed 

p value less than 0.05 was accepted as statistically significant.   
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Drug Name Mechanism Supplier Solvent [Stock]  Storage 
1,2-Bis(2-

aminophenoxy)ethane-
N,N,N′,N′-tetraacetic acid 

tetrapotassium salt 
(BAPTA) 

membrane 
impermeable 

calcium 
chelator 

Anapec internal 
solution 

 -20°C  

1,2-Bis(2-aminophenoxy) 
ethane-N,N, N′,N’-

tetraacetic acid tetrakis 
(acetoxymethyl ester) 

(BAPTA-AM) 

membrane 
permeable 

calcium 
chelator 

Sigma DMSO 1000x -20°C 

2′,3′-Dideoxyadenosine 
(DDA) 

adenylate 
cyclase 

antagonist 

Sigma DMSO 1000x -20°C 

2-Aminoethoxy 
diphenylborane  

(2-APB) 

IP3R antagonist Tocris DMSO 1000x -20°C 

9-(Tetrahydro-2-furanyl)-
9H-purin-6-amine 

(SQ 22536) 

adenylate 
cyclase 

antagonist 

Sigma dd H20 500x -20°C 

AM-251 cannabinoid 1 
receptor 

antagonist 

Tocris DMSO 5000x -20°C 

Baclofen GABAB receptor 
agonist 

Tocris dd H20 1000x -20°C 

Bafilomycin A1 proton pump 
inhibitor 

Alexis DMSO 1000x -20°C 

Bicuculline methochloride GABAA receptor 
antagonist 

Tocris dd H20 1000x -20°C 

Cadmium chloride 
(CdCl2) 

voltage-
dependent Ca2+ 

channel 
inhibitor 

Sigma dd H20 1000x RT 

CGP 52432 GABAB receptor 
antagonist 

Tocris dd H20 1000x -20°C 

Chelerythrine chloride PKC antagonist Tocris dd H20 1000x -20°C 
Cyano-7-nitroquinoxaline-

2,3-dione 
(CNQX) 

ionotropic 
glutamate 
receptor 

antagonist 

Sigma dd H20 1000x -20°C 

D-2-amino-5-
phosphonopentanoate 

(AP5) 

NMDA receptor 
antagonist 

Sigma dd H20 1000x -20°C 

Dibutyryl-cAMP sodium 
salt 

(dBcAMP) 

PKA agonist Tocris dd H20 1000x -20°C 

Edelfosine PLC antagonist Tocris dd H20 1000x -20°C 
Epsilon-V1-2 PKCε 

antagonist 
Anaspec dd H20 1000x -20°C 

H-89 PKA antagonist Sigma dd H20 1000x -20°C 
JNJ 16259685 mGluR1 

antagonist 
Tocris DMSO 1000X -20°C 



34 
 

Drug Name Mechanism Supplier Solvent [Stock]  Storage 
N-(2,6-Dimethylphenyl 

carbamoylmethyl)triethyl 
ammonium bromide 

(QX-314) 

voltage 
dependent 

sodium channel 
inhibitor 

Sigma internal  
solution 

 -20°C 

Noradrenaline (+)-bitartrate 
salt 

(Norepinephrine) 

adrenergic 
receptor 
agonist 

Sigma dd H20 1000x Day of 
use 

Phorbol 12-myristate 13-
acetate 
(PMA) 

PKC agonist Tocris DMSO 1000x -20°C 

Protein kinase C inhibitor 
Peptide [19-36] 
(PKC(19-36)) 

membrane 
impermeable 

PKC antagonist 

Calbio-
chem 

dd H20 1000x -20°C 

Protein kinase inhibitor-(6-
22)-amide 

(PKI) 

membrane 
impermeable 

PKA antagonist 

Tocris dd H20 1000x -20°C 

Rp-Adenosine 3′,5′-cyclic 
monophosphorothioate 
triethylammonium salt 

hydrate 
(Rp-cAMP) 

PKA antagonist Sigma dd H20 1000x -20°C 

Ryanodine RyR antagonist Calbio- 
chem 

aCSF 10x -20°C 

SC9 PKC agonist Tocris DMSO 1000x -20°C 
Tetrodotoxin 

(TTX) 
voltage-

dependent Na+ 
channel 

antagonist 

Sigma dd H20 1000x 4°C 

Thapsigargin SERCA pump 
inhibitor 

Tocris DMSO 1000x -20°C 

WIN 55,212-2 mesylate 
(WIN) 

cannabinoid 1 
receptor 
agonist 

Tocris DMSO 5000x -20°C 

 
Table 2.1.  Information for each drug used in the experiments.   
 

 

 
 
 
 
 
 
 
 
 



 
 

Chapter III: The Effect of Ethanol on GABA Release 

 

INTRODUCTION 

The effect of ethanol on spontaneous and evoked neurotransmitter 

release can be measured in an in vitro slice preparation.  Spontaneous and 

evoked neurotransmitter release differ in their dependence on action potentials: 

spontaneous neurotransmitter release occurs in the absence of action potentials, 

while action potentials are necessary for evoked neurotransmitter release.  To 

study the mechanism of ethanol-enhanced GABA release, I determined if ethanol 

could increase GABA release in the chosen model system, the interneuron-

Purkinje cell synapse.  When GABA is released from the interneuron presynaptic 

terminals, it binds to and opens the GABAA receptors on the cerebellar Purkinje 

neuron.  The whole-cell voltage clamp technique measures the flow of chloride 

through the GABAA receptor in response to GABA binding and records this 

GABAA receptor-mediated chloride flux.  When TTX is applied to block action 

potentials, this GABAA receptor-mediated chloride flux response is known as a 

miniature inhibitory postsynaptic current (mIPSC).  An increase in the frequency 

of the mIPSC events is interpreted as an increase in spontaneous GABA release. 

When measuring evoked GABA release, a stimulator artificially creates an 

action potential to stimulate GABA release and this recorded chloride flux 

response is known as an evoked inhibitory postsynaptic current (eIPSC).  
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However, unlike spontaneous release, there is no direct readout for changes in 

presynaptic activity with analysis of eIPSCs.  Therefore, a paired pulse ratio 

(PPR) is used to make this assessment, which determines if there is a change in 

the ratio of the amplitude of two closely-spaced eIPSCs (eIPSC2/eIPSC1) that are 

the result of two stimuli applied to the brain slice 20-200 milliseconds apart (for 

review see Zucker, 1989).  If there is a change in the amplitude of the first 

eIPSC, it reflects a change in neurotransmitter release probability.  If there is a 

change in the amplitude of the second eIPSC, it could reflect a change in 

residual calcium, postsynaptic receptor desensitization or a change in action 

potential duration.  The drug effect on the PPR is inversely related to the drug 

effect on evoked neurotransmitter release (Siggins et al., 2005).   Hence, if 

ethanol increases evoked GABA release, there would be a decrease in the PPR.  

At the interneuron-Purkinje cell synapse, I determined the effect of ethanol on 

mIPSC frequency and the PPR to measure ethanol-induced changes in 

spontaneous and evoked GABA release, respectively. 
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RESULTS 

Ethanol selectively increases mIPSC frequency in the slice.  Compared to 

control (-0.6 ± 2.8%, n = 8), the mIPSC frequency of cerebellar Purkinje neurons 

was significantly increased by 50 mM (10.9 ± 2.0%, n = 9), 75 mM (18.6 ± 3.5%, 

n = 9) and 100 mM (22.9 ± 3.8%, n = 12) ethanol, but not by 25 mM (2.2 ± 3.1%, 

n = 12) ethanol, as illustrated in Figure 3.1A.  There was a significant linear trend 

across concentrations for the ethanol effect on mIPSC frequency (r = .69, p<.05), 

which shows that ethanol dose-dependently increased mIPSC frequency.  In 

contrast, none of the ethanol concentrations changed the mIPSC decay time and 

amplitude (data not shown, see Ming et al., 2006).  A trace and a cumulative 

probability curve from a representative neuron are shown in Figure 3.1B and 

3.1C, respectively.  In Figure 3.1C, ethanol shifts the distribution of the interevent 

interval curve to the left, which is interpreted as ethanol increasing mIPSC 

frequency.  The lack of ethanol effect on mIPSC decay time and amplitude from 

the same representative neuron is shown in Figure 3.1D.  These results suggest 

that ethanol is increasing spontaneous GABA release in the slice preparation. 

 

Ethanol selectively increases mIPSC frequency in the mechanically 

dissociated neuron preparation.  Mechanically dissociated neurons were also 

used to determine if ethanol increases spontaneous GABA release.  The 

mechanically dissociated neuron preparation consists of the Purkinje cell soma 

and the attached presynaptic terminals (Akaike and Moorhouse, 2003).    

Compared to mIPSCs that were recorded in the slice, baseline mIPSC decay 
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time, rise time, and amplitude were all different in the mechanically dissociated 

neuron preparation (see Table 3.1).  Similar to data collected in the slice, 50 mM 

(36.4 ± 9.1%, n = 9) and 100 mM (22.0 ± 11.4%, n = 10) ethanol significantly 

increased the mIPSC frequency of mechanically dissociated cerebellar Purkinje 

neurons compared to control (-10.8 ± 6.2%, n = 9, Fig. 3.2A), while having no 

effect on mIPSC decay time and amplitude (data not shown).  A representative 

neuron showing that 100 mM ethanol increases mIPSC frequency in a 

mechanically dissociated neuron preparation is shown in Figure 3.2B.  It should 

be noted that 50 mM ethanol significantly increased mIPSC frequency to a 

greater extent in the mechanically dissociated neuron preparation compared to 

the slice (p<.05, Student’s t-test).  Overall, these results suggest that ethanol 

increases spontaneous GABA release in the mechanically dissociated neuron 

preparation.  

 

Ethanol does not increase mIPSC frequency in the presence of bafilomycin 

A1.  To confirm that the ethanol-induced increase in mIPSC frequency is the 

result of an increase in vesicular GABA release, a vacuolar-type proton pump 

inhibitor, bafilomycin A1, was used (Bowman et al., 1988).  Inhibition of the proton 

pump eliminates the pH and electrical gradients that are necessary for GABA 

transporters to fill the vesicles with GABA (Maycox et al., 1990; Drose and 

Altendorf, 1997).  Following at least a two hour incubation of the slice with 2 µM 

bafilomycin A1, 100 mM ethanol did not increase mIPSC frequency (0.022 ± 0.01 

Hz, n = 5) compared to control (0.022 ± 0.008 Hz, Fig. 3.2C).  These results 
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suggest that the ethanol-induced increase in mIPSC frequency is due to the 

release of GABA-filled vesicles. 

 

Ethanol decreases the PPR.  The PPR was significantly decreased by 50 mM 

ethanol (16.2 ± 6.3%, n = 10), 75 mM ethanol (19.8 ± 3.5%, n = 9), and 100 mM 

ethanol (22.5 ± 7%, n = 9), but not by 25 mM ethanol (4.2 ± 4.3%, n = 10) and 0 

mM ethanol (3.9 ± 2.7%, n = 10), as illustrated in Figure 3.3A.  There was a 

significant linear trend across concentrations for the ethanol effect on the PPR (r 

= -.45, p<.05), which shows that ethanol dose-dependently decreased the PPR.  

In Figure 3.3B, averaged PP traces from a representative neuron show that 100 

mM ethanol decreases the ratio of the amplitude of the second eIPSCs to the 

first compared to the pre-control and washout.  These results suggest that 

ethanol increases evoked GABA release at the interneuron-Purkinje cell 

synapse.   
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DISCUSSION 

I found that ethanol increased mIPSC frequency at the interneuron-

Purkinje cell synapse while having no effect on mIPSC decay time or amplitude 

in both the slice and mechanically dissociated neuron preparation.  These 

findings are consistent with many studies that have shown ethanol increases 

mIPSC frequency while having no effect on mIPSC decay time (Sebe et al., 

2003; Li et al., 2006; Ming et al., 2006; Zhu and Lovinger, 2006).  The lack of 

ethanol effect on mIPSC decay time indicates that ethanol did not alter 

postsynaptic GABAA receptor function in these recording conditions.  In addition, 

ethanol did not alter mIPSC amplitude, which is another indication that ethanol 

does not affect postsynaptic GABAA receptors.  While there was no postsynaptic 

ethanol effect in the current study, the possibility cannot be ruled out that ethanol 

is having a postsynaptic effect under physiological conditions.  The intracellular 

milieu of the postsynaptic neuron is altered during whole-cell voltage clamp 

recordings (for review see Sarantopoulos et al., 2004); moreover, the presence 

of high intracellular chloride, as was used in the present study, reduces the 

ethanol effect on GABAA receptors in the hippocampus (Silberman et al., 2005).   

In addition to the slice, I utilized a mechanically dissociated neuron 

preparation in this study.  This preparation consists of a soma and the attached 

presynaptic terminals (Akaike and Moorhouse, 2003); therefore, communication 

from nearby glia and neurons is eliminated.  Because ethanol increased 

spontaneous GABA release in the mechanically dissociated neuron preparation, 

the GABAergic presynaptic terminals are the likely source of the GABA released 
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onto the Purkinje neurons.  Additionally, in the presence of bafilomycin A1, a drug 

that blocks vesicles from filling with GABA, ethanol had no effect on mIPSC 

frequency. These results provide further evidence that ethanol is acting at the 

interneuron presynaptic terminal to increase GABA release.  Overall, this work 

and the work of others suggest that ethanol increases spontaneous GABA 

release in multiple brain regions through a presynaptic mechanism.  

There were some differences between the slice and mechanically 

dissociated neuron preparation.  Specifically, I found differences in baseline 

mIPSC decay time, rise time, and amplitude, and it is thought that the 

mechanical dissociation procedure alters presynaptic terminal excitability (Akaike 

and Moorhouse, 2003).  However, ethanol increased mIPSC frequency in both 

preparations.  It is important to note that 50 mM ethanol increased mIPSC 

frequency to a higher degree in the mechanically dissociated neuron preparation.  

Previously, ethanol was shown to increase GABA release using this same 

preparation with basolateral amygdala neurons (Zhu and Lovinger, 2006).  These 

investigators also saw a larger effect of ethanol on GABA release in the 

mechanically dissociated neuron preparation compared to the slice.  Because the 

mechanically dissociated neuron preparation allows for instantaneous access of 

ethanol to the neuron, the effect of ethanol can be seen on a seconds timescale 

compared to the minutes required in the slice.  Therefore, Zhu and Lovinger 

(2006) hypothesized that the additional time it takes to see an ethanol effect in 

the slice allows for tolerance to develop, resulting in an overall smaller ethanol 

effect in the slice compared to the mechanically dissociated neuron preparation. 
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In addition to increasing mIPSC frequency, ethanol decreased the PPR, 

which is interpreted as ethanol increasing evoked GABA release.  Ethanol 

decreases the PPR in central nucleus of the amygdala neurons (Roberto et al., 

2003), hippocampal CA1 pyramidal neurons (Weiner et al., 1997; Ariwodola and 

Weiner, 2004), VTA neurons (Theile et al., 2008) and cerebellar Purkinje neurons 

(Criswell et al., 2008).  Additionally, if there is no ethanol effect on mIPSC 

frequency, there is also no effect on the PPR (Criswell et al., 2008; Jia et al., 

2008). 

Interestingly, Mameli and colleagues (2008) found that at the interneuron-

Purkinje cell synapse ethanol increases spontaneous GABA release but 

increases evoked GABA release in a location-dependent manner.  When the 

stimulator is in the outer third of the molecular layer (i.e. distal stimulation), which 

is the location of the interneuron stellate cells, ethanol decreases the PPR.  

However, if the stimulator is moved to the inner third of the molecular layer (i.e. 

proximal stimulation), which is the location of the interneuron basket cells, 

ethanol has no effect on the PPR.  A similar phenomenon is observed in the 

basolateral amygdala and hippocampus, except that the proximal stimulation 

elicits an ethanol effect while the distal stimulation is without effect (Wu et al., 

2005; Silberman et al., 2008).  In the present protocol, the stimulator was placed 

in the middle of the molecular layer, which most likely resulted in stimulation of 

both the stellate and the basket cells. 

Overall, I found that ethanol increases mIPSC frequency and decreases 

the PPR at the interneuron-Purkinje cell synapse, which suggests that ethanol 
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increases both spontaneous and evoked GABA release, respectively.  The 

mechanically dissociated neuron study and the bafilomycin A1 study provided 

evidence that the ethanol effect on mIPSC frequency involves an increase in the 

vesicular release of GABA.  I will primarily utilize the mIPSC technique to 

investigate the mechanism of ethanol-enhanced GABA release because analysis 

of mIPSCs provides a direct way to assess changes in neurotransmitter release, 

and I have more thoroughly characterized the source of the GABA release in this 

technique.   
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 Frequency 

(Hz) 

τ-fast  

(ms) 

τ-slow  

(ms) 

Rise Time 

(ms) 

Amplitude 

(pA) 

Slice 2.2 ± 0.4 11.9 ± 0.6 11.9 ± 0.6 2.6 ± 0.1 15.9  ± 1.6 

MDN 1.4 ± 0.4 5.6 ± 0.5* 16.9 ± 2.0* 1.0 ± 0.1* 29. 4 ± 3.9* 

 

Table 3.1.  A comparison of mIPSC properties between the mechanically 
dissociated neuron (MDN) preparation and the slice at the interneuron-
Purkinje cell synapse.  There was no significant effect on mIPSC frequency 
between the two groups.  There was a significant decrease in the mIPSC fast 
decay time (τ-fast) and rise time and an increase in the mIPSC slow decay time (τ-
slow) and amplitude in the MDN preparation compared to the slice  (*, p<.05, 
Student’s t test).   
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Figure 3.1. In the slice ethanol increased mIPSC frequency and had no 
effect on mIPSC amplitude and decay time. A, there was an increase in 
mIPSC frequency at 50, 75, and 100 mM ethanol (*, p<.05, one-way ANOVA, 
Dunnett’s post hoc test). B, a trace from a representative neuron showing the 
effect of 100 mM ethanol on mIPSC frequency. C, a cumulative frequency 
histogram  from the same representative neuron demonstrating the effect of 100 
mM ethanol on the interevent interval curve. D, a trace from the same 
representative neuron showing the effect of 100 mM ethanol on mIPSC decay 
time and amplitude.  
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Figure 3.2. Ethanol increased mIPSC frequency in the mechanically 
dissociated neuron preparation and had no effect in the presence of 
bafilomycin A1. A, there was an increase in mIPSC frequency at 50 and 100 mM 
ethanol (EtOH) in the mechanically dissociated neuron preparation (*, p<.05, 
one-way ANOVA, Dunnett’s post hoc test). B, a trace from a representative 
neuron demonstrating the effect of 100 mM ethanol on mIPSC frequency in the 
mechanically dissociated neuron preparation. C, incubating the slice with 
bafilomycin A1 (Baf A1) prevented 100 mM ethanol from increasing mIPSC 
frequency.   
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Figure 3.3.  Ethanol decreased the paired-pulse ratio. A, the paired-pulse 
ratio (PPR) was decreased at 50, 75 and 100 mM ethanol (*, p<.05, paired 
Student’s t test). B, traces from a representative neuron demonstrating the effect 
of 100 mM ethanol on the ratio of the amplitude of the second evoked inhibitory 
postsynaptic current (eIPSC) to the amplitude of the first eIPSC. 
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Chapter IV: Calcium Signaling and Ethanol-enhanced GABA release 

 

INTRODUCTION 

I provided evidence that ethanol increases GABA release at the 

interneuron-Purkinje cell synapse, but the intracellular messengers mediating this 

effect are unknown.  One possibility is calcium because of the imperative role it 

plays in a number of neuronal processes, including all neurotransmitter release.  

It is generally accepted that physiologically relevant ethanol concentrations 

increase levels of intracellular calcium (Daniell and Harris, 1989; Mironov and 

Hermann, 1996; Xiao et al., 2005).  Moreover, changes in presynaptic 

intracellular calcium levels can alter spontaneous and evoked GABA release 

(Bardo et al., 2002; Bardo et al., 2006; Yamasaki et al., 2006; Glitsch, 2008).  

Therefore, it seems plausible that ethanol increases spontaneous GABA release 

through a mechanism that involves an increase in intracellular calcium.   

This increase in intracellular calcium can occur through an increase in 

calcium influx via voltage-dependent calcium channels, receptor-operated 

channels, and store-operated channels (SOCs) or through an increase in calcium 

release from the inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine 

receptors (RyRs) located on the internal stores (i.e. endoplasmic reticulum).  The 

endoplasmic reticulum is a single, continuous intracellular organelle that extends 

throughout the neuron- from the dendrites to the presynaptic terminals (for review 
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see Verkhratsky, 2005).  I tested the hypothesis that ethanol enhances GABA 

release at the interneuron-Purkinje cell synapse through a presynaptic calcium-

dependent mechanism.  I then determined the origin of the calcium that regulated 

the increase in GABA release. 
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RESULTS 

The ability of ethanol to increase mIPSC frequency is occurring through a 

presynaptic, calcium-dependent mechanism.  The slices were incubated with 

100 µM BAPTA-AM, a membrane permeable calcium-chelator, and it was 

determined if ethanol could increase mIPSC frequency in these conditions.  The 

ability of ethanol to increase mIPSC frequency was blocked in the presence of 

BAPTA-AM compared to control (7.4 ± 2.7%, n = 8, Fig. 4.1A).  These results 

suggest that ethanol is increasing spontaneous GABA release through a calcium-

dependent mechanism.   

Because BAPTA-AM was applied to the bath, it could be acting at the 

postsynaptic neuron instead of the presynaptic neuron.  This could alter the 

release of a calcium-dependent retrograde messenger, which could be 

responsible for the presynaptic effect of ethanol in lieu of ethanol acting directly 

on the presynaptic site.  Therefore, BAPTA tetrapotassium salt (30 mM), which is 

membrane impermeable, was included in the internal solution to limit BAPTA 

exposure to the postsynaptic neuron.  Compared to control (2.4 ± 2.8%, n = 7, 

Fig. 4.1B), 50 mM (20.0 ± 5.6%, n = 8) and 100 mM (23.9 ± 4.3%, n = 6) ethanol 

were still able to significantly increase mIPSC frequency with 30 mM BAPTA in 

the internal solution.  In addition, inclusion of BAPTA in the internal solution 

significantly increased baseline mIPSC decay time (control: 11.8 ± 0.3 ms vs. 

BAPTA: 14.1 ± 1.1 ms, Fig. 4.1C) and significantly decreased baseline mIPSC 

amplitude (control: 15.4 ± 0.7 pA vs. BAPTA: 12.2 ± 1.1 pA, Fig. 4.1C) and 

frequency (control: 2.5 ± 0.3 Hz vs. BAPTA: 1.8 ± 0.3 Hz, Fig. 4.1C).  These data 
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suggest that BAPTA was reaching the postsynaptic site but did not inhibit 

ethanol-enhanced spontaneous GABA release.  Therefore, the ability of BAPTA-

AM to inhibit ethanol-enhanced spontaneous GABA release is occurring through 

a presynaptic mechanism.      

 

Influx of extracellular calcium is not required for ethanol to increase mIPSC 

frequency.  A nominally calcium free extracellular (0 mM Ca2+
ext) solution was 

used to eliminate all sources of extracellular calcium that could contribute to the 

ethanol-induced increase in mIPSC frequency.  When conducting this experiment 

in a slice, extended exposure to the 0 mM Ca2+
ext solution is necessary to ensure 

that the solution is reaching the neuron; however, extended exposure to the 0 

mM Ca2+
ext solution can also reduce intracellular calcium levels, which is not 

desirable because the contribution of extracellular calcium needs to be 

investigated independently.  Therefore, the mechanically dissociated neuron 

preparation was used because it allows for almost instantaneous access of the 

solution to the neuron and dramatically reduces the possibility of the 0 mM 

Ca2+
ext solution affecting levels of intracellular calcium.  In the presence of the 0 

mM Ca2+
ext solution, 50 mM (68.7 ± 11.7%, n = 9) and 100 mM (65.8 ± 13.7%, n 

= 8) ethanol significantly increased mIPSC frequency compared to control (-6.2 ± 

3.8%, n = 7, Fig. 4.2A).  Interestingly, the effect of ethanol on mIPSC frequency 

was significantly enhanced in the presence of the 0 mM Ca2+
ext solution 

compared to the effect of ethanol on mIPSC frequency in control conditions (see 

Fig. 3.2A, p<.05, Student’s t test).  Compared to neurons exposed to control 
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conditions (1.7 ± 0.4 Hz, n = 11), the 0 mM Ca2+
ext solution did not significantly 

decrease baseline mIPSC frequency (0.9 ± 0.2 Hz, n = 7), although there was a 

trend towards a decrease.  To confirm that the solution around the neuron was 

free of calcium, the ability of the 0 mM Ca2+
ext solution to block calcium-

dependent GABA release was tested.  Compared to control (0.5 ± 0.2 Hz, n = 4), 

addition of a high potassium (K+, 15 mM) HEPES buffered solution in the 

absence of TTX increased the frequency of spontaneous IPSCs (5.2 ± 1.3 Hz, n 

= 4) by depolarizing the presynaptic terminal and activating voltage-dependent 

calcium channels, while a 0 mM Ca2+
ext solution with the same high K+ 

concentration returned the spontaneous IPSC frequency to baseline values (0.3 

± 0.03 Hz, n = 4).   

Similar experiments were conducted with cadmium chloride (CdCl2), a 

nonspecific voltage-dependent calcium channel inhibitor, to confirm the lack of 

involvement of extracellular calcium influx in the mechanism of ethanol-enhanced 

GABA release.  As expected, 50 mM (40.6 ± 11.6%, n = 10) and 100 mM (50.3 ± 

10.3%, n = 9) ethanol still significantly increased mIPSC frequency in the 

presence of 50 µM CdCl2 compared to control (-4.8 ± 8.5%, n = 11, Fig. 4.2A).  

Interestingly, in the presence of 50 µM CdCl2 the effect of ethanol did not always 

wash out, as demonstrated with a representative neuron in Figure 4.2B and C.  

Because a lack of washout could affect the calculated percent change in mIPSC 

frequency (see general methods), all of the CdCl2 mechanically dissociated 

neuron data were reanalyzed without the washout included (data not shown).  

This additional analysis resulted in the same conclusion made from the data with 
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the washout included.  Compared to neurons exposed to control conditions (1.4 ± 

0.4 Hz, n = 9), 50 µM CdCl2 did not significantly decrease baseline mIPSC 

frequency (0.9 ± 0.2 Hz, n = 11), although there was a trend towards a decrease.  

The same control with the high K+ HEPES buffered solution was conducted in the 

presence of 50 µM CdCl2.  Compared to control (1.0 ± 0.6 Hz, n = 3), addition of 

a high K+ HEPES buffered solution increased spontaneous IPSC frequency (14.1 

± 2.8 Hz, n = 3, p<.05, paired Student’s t test), while addition of 50 µM CdCl2 to 

the high K+ HEPES buffered solution returned the frequency to baseline values 

(1.5 ± 0.7 Hz, n = 3).  These data collectively suggest that influx of extracellular 

calcium is not required for ethanol-enhanced spontaneous GABA release.   

 

Inhibition of calcium release from internal stores prevents the ethanol-

induced increase in mIPSC frequency.  To determine the involvement of 

internal calcium stores in ethanol-enhanced spontaneous GABA release, a 

sarco/endoplasmic-reticulum calcium ATPase (SERCA) pump inhibitor, 

thapsigargin, was used to prevent calcium reuptake into internal stores.  

Preventing calcium reuptake will eventually lead to depletion of the internal 

stores because the IP3Rs and RyRs are continually releasing calcium from the 

internal stores; however, this process can take an extended period of time 

because of slow calcium release from the IP3Rs and RyRs (Simkus and Stricker, 

2002).  Therefore, to diminish internal calcium stores at a faster rate I used a 

high potassium extracellular (K+
ext) solution (15 mM) to depolarize the 

presynaptic terminals, which increases the rate of calcium release from the IP3Rs 



54 
 

and RyRs (Simkus and Stricker, 2002).  Any effect of the high K+
ext solution on 

the mIPSCs disappeared within 2 minutes (n = 4, data not shown), and exposing 

the slice to the high K+
ext solution had no effect on the ability of ethanol to 

increase mIPSC frequency after the high K+
ext solution had been washed out 

(27.8 ± 5.0%, n = 3).  After completing the high K+
ext solution protocol in the 

presence of thapsigargin, ethanol was not able to increase mIPSC frequency (5.2 

± 4.7, n = 11, Fig. 4.3A).  A representative neuron demonstrating the lack of 

ethanol effect on mIPSC frequency in the presence of thapsigargin is shown in 

Figure 4.3B.  Compared to neurons exposed to control conditions (2.2 ± 0.4 Hz, 

n = 9), depleting internal stores did not have an effect on baseline mIPSC 

frequency (2.1 ± 0.4 Hz, n = 11).       

Because depleting internal calcium stores prevented ethanol from 

increasing spontaneous GABA release, I next determined whether inhibition of 

the IP3Rs and RyRs would prevent ethanol from increasing spontaneous GABA 

release.  The IP3R antagonist, 2-APB (14 µM), significantly blocked the ability of 

100 mM ethanol to increase mIPSC frequency (5.1 ± 2.7%, n = 10, Fig. 4.3A).  2-

APB (14 µM) did not have a significant effect on baseline mIPSC frequency (1.8 

± 0.3 Hz, n = 10) compared to control (2.2 ± 0.4 Hz, n = 9).  Subsequently, the 

effect of ethanol on mIPSC frequency in the presence of a RyR antagonist was 

determined.  At a concentration of 100 µM, ryanodine is an open-channel blocker 

of the RyR; however, it can take up to two hours to block the RyRs because of 

slow channel opening (Simkus and Stricker, 2002).  To avoid this difficulty that is 

sometimes overlooked (Llano et al., 2000; Bardo et al., 2002), cells were 
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exposed to the high K+
ext solution (Simkus and Stricker, 2002) to open the 

presynaptic RyRs and allow access of ryanodine to the channel.  Inhibition of the 

RyRs was sufficient to block the effect of ethanol on mIPSC frequency (8.7 ± 

4.6%, n = 13, Fig. 4.3A).  Compared to neurons exposed to control conditions 

(2.2 ± 0.4 Hz, n=9), 100 µM ryanodine did not have an effect on baseline mIPSC 

frequency (2.2 ± 0.2 Hz, n = 13).  These results suggest that calcium release 

from internal stores plays an important role in ethanol-enhanced spontaneous 

GABA release. 

 

The cerebellar interneuron presynaptic terminals are immunopositive for 

IP3R.  To add further support to the conclusion that calcium release from internal 

stores is necessary for ethanol to increase spontaneous GABA release from the 

cerebellar interneurons, I used double-label immunogold electron microscopy to 

determine if IP3Rs are expressed in the GABAergic interneuron presynaptic 

terminals.  IP3R and GABA immunogold labeling was colocalized in 18 out of the 

30 (60%) presynaptic GABAergic terminals.  In the absence of the IP3R antibody, 

IP3R and GABA immunogold labeling was colocalized in 4 out of the 30 (13%) 

presynaptic GABAergic terminals.  This semi-quantitative analysis demonstrates 

that at least 45% of the presynaptic GABAergic terminals in the molecular layer 

are immunopositive for IP3R and that there is minimal nonspecific binding with 

the IP3R primary antibody. 

In sections stained with just the IP3R antibody, the amount of IP3R staining 

in the GABA terminals, glutamate terminals, parallel fibers and Purkinje cell 
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dendrites was quantified.  The densest staining was found in Purkinje cell 

dendrites (49.5 ± 6.4 particles/µm2, n = 47, Figure 4.4A).  GABA terminals (10.9 ± 

2 particles/µm2, n = 34), glutamate terminals (9.8 ± 1.8 particles/µm2, n = 39), 

and parallel fibers (4.5 ± 1 particles/µm2, n = 29, Fig. 4.4A) also contained IP3R.    

Compared to the parallel fibers, taken as a control for background staining, IP3R 

expression was significantly greater in the Purkinje cell dendrites, GABA 

terminals and glutamate terminals.  Micrographs of a glutamatergic presynaptic 

terminal and a GABAergic presynaptic terminal immunopositive for IP3R are 

shown in Figure 4.4B and 4.4C, respectively.  Results from an experiment 

conducted with serial sections were also consistent with IP3R staining being 

present in the GABAergic presynaptic terminals (data not shown).  Additionally, 

every section for a profile was not immunopositive for IP3R.  Overall, these 

results suggest that there is IP3R expression in the presynaptic terminals of the 

cerebellar interneurons.     

       

 

 

 

 

 

 

 

 



57 
 

DISCUSSION 

The purpose of this study was to determine the role of calcium signaling in 

ethanol-enhanced spontaneous GABA release.  Because incubating the slices 

with BAPTA-AM prevented ethanol from increasing spontaneous GABA release, 

the mechanism of ethanol-enhanced GABA release is dependent on calcium 

signaling.  Ethanol was still able to increase spontaneous GABA release with 

BAPTA in the internal solution, which suggests that neither postsynaptic calcium 

nor calcium-dependent retrograde messengers are responsible for the effect of 

ethanol on spontaneous GABA release.  This finding is consistent with previous 

results (Zhu and Lovinger, 2006).  Therefore, ethanol is acting through a 

presynaptic, calcium-dependent mechanism to increase spontaneous GABA 

release. 

Voltage-dependent calcium channels, receptor-operated channels and 

SOCs increase intracellular calcium levels by allowing extracellular calcium to 

flow into the neuron.  A 0 mM Ca2+
ext solution was used to eliminate the 

functionality of these channels to determine their involvement in the mechanism 

of ethanol-enhanced spontaneous GABA release.  The mechanically dissociated 

neuron preparation was used for this experiment because it allows for 

instantaneous access of the 0 mM Ca2+
ext solution to the neuron, which 

dramatically reduces the possibility of concomitantly reducing levels of 

intracellular calcium.  Ethanol continued to increase spontaneous GABA release 

in the presence of the 0 mM Ca2+
ext solution, which suggests that extracellular 

calcium influx does not play a role in this ethanol mechanism.  Surprisingly, the 
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effect of ethanol on spontaneous GABA release in the presence of the 0 mM 

Ca2+
ext solution was actually enhanced compared to control conditions.  In the 

presence of the 0 mM Ca2+
ext solution, only “extracellular-calcium insensitive” 

GABA release is left, which I predict is the specific type of GABA release that 

ethanol affects.  Therefore, when the extracellular calcium sensitive mIPSCs 

were eliminated in the presence of the 0 mM Ca2+
ext solution, ethanol had a 

larger effect on the % change in mIPSC frequency.   

Because influx of extracellular calcium was not required for ethanol to 

increase spontaneous GABA release, the focus shifted to calcium release from 

internal stores.  When internal stores were depleted of calcium with the 

thapsigargin protocol, ethanol was not able to increase spontaneous GABA 

release.  Additionally, there was no significant change in spontaneous GABA 

release after using the thapsigargin protocol compared to a group of control 

neurons.  In the absence of the high K+
ext solution protocol, there is an increase 

in baseline mIPSC frequency in the presence of thapsigargin (Bardo et al., 2002; 

Li et al., 2004), which is consistent with calcium still being released from internal 

stores while thapsigargin is blocking calcium reuptake through the SERCA pump 

and/or activation of SOCs.  There is evidence that the effect of thapsigargin on 

mIPSC frequency subsides after a period of time when even more calcium is 

depleted from the internal stores (Li et al., 2004).  Therefore, because we used 

the high K+
ext solution to deplete the stores at a faster rate, it is likely that any 

increase in mIPSC frequency due to incomplete emptying of the internal stores 

and/or activation of the SOCs occurred during exposure to the high K+
ext solution.   
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After determining that calcium release from internal stores plays an 

imperative role in ethanol-enhanced spontaneous GABA release, I wanted to 

investigate whether the IP3Rs and RyRs were involved in this ethanol 

mechanism.  The IP3R antagonist, 2-APB, significantly blocked the ethanol-

induced increase in mIPSC frequency.  Even though 2-APB is the most widely 

used membrane permeable IP3R antagonist, there are questions regarding its 

selectivity with respect to intracellular calcium signaling that need to be 

discussed.  When 2-APB concentrations higher than 90 µM are used, there is a 

nonspecific calcium leak from internal stores and slight inhibition of the SERCA 

pump (Missiaen et al., 2001).  This nonspecific effect of 2-APB offers an 

explanation for the large increase in miniature excitatory postsynaptic current 

frequency (Simkus and Stricker, 2002) and mIPSC frequency (data not shown) 

seen with 2-APB concentrations higher than 80 µM.  To circumvent these 

nonspecific effects of 2-APB, a low 2-APB concentration (14 µM) was used that 

did not increase baseline mIPSC frequency, which is consistent with the work of 

others (Simkus and Stricker, 2002; Glitsch, 2006).   

There are additional 2-APB nonspecific effects that could occur at any 

concentration, including inhibition of SOCs as well as transient receptor potential 

(TRP) channels (Lievremont et al., 2005).  Calcium entry through SOCs is 

activated when internal stores are depleted of calcium (Parekh and Penner, 

1997); therefore, because inhibition of IP3Rs prevents the depletion of internal 

calcium stores, the normal functioning of the SOCs is reduced.  In addition, TRP 

channels are involved in this store-operated calcium entry mechanism (Zhu et al., 



60 
 

1996).  Therefore, because IP3Rs, SOCs, and TRP channels are mechanistically 

linked, defining the selectivity of 2-APB has been controversial (Boulay et al., 

1999; Lievremont et al., 2005).  However, 2-APB was not acting through SOCs 

and TRP channels to inhibit ethanol-enhanced spontaneous GABA release 

because removal of extracellular calcium did not prevent ethanol from increasing 

spontaneous GABA release.  Therefore, these data suggest that calcium release 

from the IP3Rs is playing a role in ethanol-enhanced spontaneous GABA release.   

Inhibition of RyRs also prevented ethanol from increasing spontaneous 

GABA release.  The fact that both an IP3R antagonist and a RyR antagonist can 

inhibit ethanol-enhanced spontaneous GABA release suggests that either both 

the IP3R and RyR are necessary for this ethanol mechanism or that inhibition of 

calcium release from the IP3R affects calcium release from the RyR, and vice 

versa.  For the latter to be true, the IP3R and RyR would have to exist on one 

internal store, but there is controversy surrounding whether separate IP3R and 

RyR stores exist.  Studies suggesting that separate stores exist were primarily 

conducted in cell lines and embryonic cultures, while studies supporting one 

internal store were conducted in primary cultures and brain slices (for review see 

Verkhratsky, 2005), which is similar to the slice preparation used in the present 

experiments.  At this time I cannot distinguish between the relative importance of 

the IP3Rs and RyRs in this ethanol mechanism; however, it is overwhelmingly 

evident that internal calcium stores play an imperative role in ethanol-enhanced 

spontaneous GABA release. 
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Because I was not able to definitively determine the involvement of the 

IP3Rs and RyRs in ethanol-enhanced spontaneous GABA release, I wanted to 

determine if IP3Rs and RyRs are expressed in the presynaptic terminals of the 

cerebellar interneurons.  An elegant study by Llano and colleagues (2000) 

provided evidence from electrophysiology, calcium imaging and 

immunohistochemistry studies that RyRs play a functional role in the generation 

of spontaneous GABA release at the interneuron-Purkinje cell synapse.  Since 

this report, there have been a number of studies confirming the role of RyRs in 

spontaneous neurotransmitter release as well as defining a role for RyRs in 

evoked transmitter release and long-term synaptic plasticity (for review see Collin 

et al., 2005b).  For these reasons, I considered electron microscopy studies 

examining RyR expression at this synapse to be unnecessary. 

Unlike the RyRs, few studies have examined whether IP3Rs are 

expressed in presynaptic terminals.  In rat barrel cortex, inhibition of IP3Rs 

reduces spontaneous glutamate release, suggesting that IP3Rs are present in 

the presynaptic terminals (Simkus and Stricker, 2002).  However, like the current 

study, this study is limited due to the potential nonspecific effects seen with the 

IP3R inhibitors (Boulay et al., 1999; Missiaen et al., 2001; Lievremont et al., 

2005).  In retinal amacrine cells, which release transmitter from dendrites, 

immunohistochemistry, electrophysiology and calcium imaging studies found that 

only the IP3Rs contribute to the release of transmitter, despite the presence of 

both the IP3R and RyR in the amacrine cell dendrites (Peng et al., 1991; Warrier 

et al., 2005).  Electron microscopy studies in the bed nucleus of the stria 
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terminalis, deep cerebellar nuclei and substantia nigra show some IP3R staining 

in synaptic terminals, but no quantification was done to further characterize this 

observation (Sharp et al., 1993b; Sharp et al., 1999).  Light microscopy studies 

found IP3R staining in the molecular layer of the cerebellum, which is described 

as “fine granular staining” suggestive of neuropil distribution (Sharp et al., 1999).  

Because of the lack of data on the presynaptic localization of IP3Rs, I conducted 

extensive experiments to determine if IP3Rs are located in the presynaptic 

terminals of cerebellar interneurons.     

IP3R staining was found in the presynaptic terminals of cerebellar 

interneurons using electron microscopy.  The IP3R antibody had been 

characterized previously (Sharp et al., 1993a), and I have shown that removal of 

the primary antibody resulted in minimal nonspecific staining.  The cerebellar 

Purkinje cells had a much higher level of IP3R staining compared to the 

presynaptic terminals and parallel fibers, which is consistent with IP3R expression 

in Purkinje cells being the highest in the brain (Worley et al., 1989).  

Unfortunately, because there was IP3R staining in all three layers (molecular, 

granule cell, and Purkinje) of the cerebellum (Sharp et al., 1999), there was not a 

straightforward negative control.  However, IP3R expression was significantly 

higher in the Purkinje cell dendrites, GABA terminals and glutamate terminals 

compared to the parallel fibers.  If one assumes that the parallel fiber staining 

represented the maximum possible level of nonspecific staining, these results 

suggest there was significant IP3R expression in the presynaptic GABAergic 

terminals.  Therefore, the large preponderance of evidence argues in favor of the 



63 
 

IP3R staining in the GABAergic presynaptic terminals reflecting actual IP3R 

expression.  While not every GABAergic terminal was immunopositive for IP3R, it 

is not known if this variability is due something biological or experimental since 

there is an inherit randomness in the labeling process. 
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Figure 4.1.  A presynaptic, calcium-dependent mechanism was responsible 
for the ethanol-induced increase in mIPSC frequency. A, incubation of the 
slice with BAPTA-AM (100 µM) prevented 100 mM ethanol (EtOH) from 
increasing mIPSC frequency (*, p<.05, Student’s t test). B, ethanol (50 and 100 
mM) still increased mIPSC frequency with 30 mM BAPTA in the internal solution 
(BAPTAint; *, p<.05, one-way ANOVA, Dunnett’s post hoc test).  C, in the 
presence of 30 mM BAPTAint, there was an increase in baseline mIPSC slow 
decay time (τ-Slow) and a decrease in baseline mIPSC amplitude and frequency 
(*, p<.05, Student’s t test).   
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Figure 4.2.  A presynaptic, calcium-dependent mechanism was responsible 
for the ethanol-induced increase in mIPSC frequency. A, incubation of the 
slice with BAPTA-AM (100 µM) prevented 100 mM ethanol (EtOH) from 
increasing mIPSC frequency (*, p<.05, Student’s t test). B, ethanol (50 and 100 
mM) still increased mIPSC frequency with 30 mM BAPTA in the internal solution 
(BAPTAint; *, p<.05, one-way ANOVA, Dunnett’s post hoc test).  C, in the 
presence of 30 mM BAPTAint, there was an increase in baseline mIPSC slow 
decay time (τ-Slow) and a decrease in baseline mIPSC amplitude and frequency 
(*, p<.05, Student’s t test).   
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Figure 4.3.  Inhibition of calcium release from internal stores prevented 
ethanol from increasing mIPSC frequency. A, the ability of 100 mM ethanol 
(EtOH) to increase mIPSC frequency was prevented by 1 µM thapsigargin 
(thaps), 100 µM ryanodine (Ry), and 14 µM 2-APB (*, p<.05, one-way ANOVA, 
Dunnett’s post hoc test). B, a trace from a representative neuron showing the 
effect of 100 mM ethanol on mIPSC frequency in the presence of 1 µM 
thapsigargin. 
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Figure 4.4. GABAergic presynaptic terminals were immunopositive for IP3R. 
A, presynaptic terminals likely (because of their morphology) to be GABAergic (*, 
p<.05, Student’s t test), probable glutamatergic presynaptic terminals (*, p<.05, 
Student’s t test) and Purkinje cell spines (*, p<.05, Student’s t test) had 
significantly more IP3R staining compared to parallel fibers. B, a micrograph of a 
glutamatergic presynaptic terminal that is immunopositive for IP3R (top). An 
immunonegative glutamatergic terminal is visible below it. C, a micrograph of an 
immunopositive GABAergic terminal that synapses onto a Purkinje cell dendrite. 
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Chapter V: The Role of the Adenylate Cyclase/PKA pathway in 
Ethanol-enhanced GABA Release 

 

INTRODUCTION 

I provided evidence that calcium release from internal stores plays an 

essential role in ethanol-enhanced spontaneous GABA release at the cerebellar 

interneuron-Purkinje cell synapse; moreover, this ethanol action is not dependent 

on the influx of extracellular calcium.  However, the manner in which ethanol 

interacts with internal calcium stores is uncertain.  While internal stores release 

calcium through activation of the IP3Rs and RyRs, there is no current evidence 

suggesting that ethanol interacts directly with these receptors.  The amount of 

calcium released from the IP3Rs and RyRs is regulated by a number of factors, 

including calcium itself, nucleotides and protein kinases (Patterson et al., 2004; 

Bardo et al., 2006).  Therefore, one hypothesis is that ethanol indirectly 

modulates calcium release from internal stores to influence GABA release. 

In addition to internal calcium stores, ethanol-enhanced GABA release is 

altered by activation of GPCRs that are linked to Gαi and Gαs G proteins.  

Nociceptin, which is the endogenous ligand of a Gαi-coupled GPCR 

(nociceptin/orphanin FQ peptide receptor), blocks ethanol from enhancing GABA 

release in the central nucleus of the amygdala (Roberto and Siggins, 2006).  

Antagonists for the δ-opioid receptor and the GABAB receptor, both of which are 

Gαi-linked GPCRs, augment the ability of ethanol to increase GABA release in 
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the amygdala and hippocampus (Ariwodola and Weiner, 2004; Zhu and Lovinger, 

2006; Kang-Park et al., 2007).  Consistent with these results, activation of the 

CRF1 receptor, a GPCR coupled to Gαs, enhances the effect of ethanol on 

GABA release in the central nucleus of the amygdala (Nie et al., 2004).  These 

results suggest that a variety of Gαi/s-coupled GPCRs can regulate ethanol-

enhanced spontaneous GABA release.   

Both the Gαi and Gαs subunits modulate adenylate cyclase with Gαs 

activating adenylate cyclase and Gαi inhibiting it.  When adenylate cyclase is 

activated, it converts adenosine-5'-triphosphate (ATP) into 3'-5'-cyclic adenosine 

monophosphate (cAMP), which can bind to protein kinase A (PKA) regulatory 

subunits (Hanoune and Defer, 2001).  The binding of cAMP to PKA frees the 

PKA catalytic subunits from the regulatory subunits, allowing the catalytic 

subunits to phosphorylate nearby targets.  There are PKA phosphorylation sites 

on both the IP3R (Mignery et al., 1990; Patterson et al., 2004) and RyR (Sobie et 

al., 2006), and phosphorylation of these receptors leads to increased calcium 

release (Bugrim, 1999; Bardo et al., 2006).  In addition, PKA acts at the 

neurotransmitter release machinery to regulate synaptic transmission (Trudeau 

et al., 1996; Chheda et al., 2001; Seino and Shibasaki, 2005).  Therefore, 

activation of adenylate cyclase and PKA could be playing a role in the ethanol-

mediated increase in GABA release.  The present study will investigate the role 

of the adenylate cyclase/PKA pathway in ethanol-enhanced spontaneous GABA 

release as well as the role of PKA in GABAergic neurotransmission. 
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RESULTS 

Activation of Gαi-coupled GPCRs prevents ethanol from increasing mIPSC 

frequency.  Because of previous research that demonstrated a link between 

Gαi/s-coupled GPCRs and ethanol-enhanced GABA release in other brain 

regions (Ariwodola and Weiner, 2004; Nie et al., 2004; Roberto and Siggins, 

2006; Zhu and Lovinger, 2006; Kang-Park et al., 2007), it was determined 

whether this observation was also true at the interneuron-Purkinje cell synapse.  

Both GABAB receptors and cannabinoid 1 receptors are Gαi-coupled GPCRs 

located in the molecular layer of the cerebellum, and activation of either receptor 

inhibits baseline mIPSC frequency at this synapse (Takahashi and Linden, 2000; 

Harvey and Stephens, 2004; Yamasaki et al., 2006).  Similar to these results, 

application of a GABAB receptor agonist, baclofen (5 µM), or a cannabinoid 

receptor agonist, WIN 55,212-2 (WIN, 5 µM), caused a significant reduction in 

baseline mIPSC frequency (control: 2.3 ± 0.6 Hz, baclofen: 0.6 ± 0.2 Hz, n = 4; 

control: 2.9 ± 0.8 Hz, WIN: 1.1 ± 0.3 Hz, n = 13; Fig. 5.1A) with no significant 

effect on decay time or amplitude (data not shown).  A cumulative probability 

curve from a representative neuron demonstrating that 5 µM WIN shifts the 

interevent interval curve to the right, which is interpreted as WIN decreasing 

mIPSC frequency, is shown in Figure 5.1B.   In the presence of baclofen or WIN, 

the ability of ethanol to increase mIPSC frequency was significantly blocked 

(baclofen: 3.9 ± 7.1%, n = 5; WIN: -1.2 ± 3.4%, n = 8; Fig. 5.1C) compared to 

control (28.7 ± 3.4%, n = 12).  Shown in Figure 5.1D is a cumulative probability 

curve from a representative neuron showing that 5 µM WIN blocks 100 mM 
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ethanol from shifting the curve to the left.  Collectively, these data demonstrate 

that activation of the Gαi-coupled GPCR pathway reduces baseline spontaneous 

GABA release and prevents ethanol-enhanced spontaneous GABA release at 

the interneuron-Purkinje cell synapse. 

 

Tonic activation of GABAB receptors does not alter the ability of ethanol to 

increase mIPSC frequency and decrease the PPR.  Because activation of 

GABAB receptors with baclofen inhibited ethanol-enhanced spontaneous GABA 

release from the interneurons, I wanted to determine if tonic activation of GABAB 

receptors was masking the extent of the ethanol effect on both spontaneous and 

evoked GABA release.  First, it was determined if ethanol still increased mIPSC 

frequency to a similar extent in the presence of a GABAB receptor antagonist, 

CGP 52432 (10 µM).  Compared to control (-1.8 ± 0.8%, n = 6, Fig. 5.2A), 50 mM 

(7.1 ± 1.9%, n = 6) and 100 mM (22.7 ± 2.1%, n = 6) ethanol significantly 

increased mIPSC frequency in the presence of CGP 52432 to a similar extent to 

that seen in the absence of CGP 52432.  

To see if an effective concentration of CGP 52432 was used, the ability of 

CGP 52432 to antagonize the effect of baclofen on mIPSC frequency was 

determined.  The baclofen (5 µM) effect on mIPSC frequency (control: 2.5 ± 0.6 

Hz; baclofen: 1.2 ± 0.4 Hz, n = 6) was reversed in the presence of the GABAB 

receptor antagonist (CGP 52432 + baclofen: 2.4 ± 0.6 Hz, n = 6, Fig. 5.2B).  A 

trace from a representative neuron showing the effect of baclofen on mIPSC 

frequency and the ability of CGP 52432 to reverse this effect is shown in Figure 
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5.2C.  CGP 52432 (10 µM) significantly increased baseline mIPSC frequency 

(control: 1.6 ± 0.2 Hz; CGP 52432: 1.8 ± 0.3 Hz, n = 14, Fig. 5.2D), suggesting 

that there is tonic activation of GABAB receptors that affects spontaneous GABA 

release.  In the presence of CGP 52432, 100 mM ethanol significantly decreased 

the PPR (20.7 ± 3.1%, n = 10, Fig. 5.2E) to a similar extent to that seen in the 

absence of CGP 52432.  Overall, these results suggest that, despite tonic 

activation of GABAB receptors, antagonism of GABAB receptors does not alter 

the ability of ethanol to increase evoked and spontaneous GABA release. 

 

A cannabinoid receptor antagonist has opposite effects on the ethanol-

induced increase in mIPSC frequency and decrease in PPR.  Activation of 

cannabinoid receptors with WIN inhibited ethanol-enhanced spontaneous GABA 

release (Fig. 5.1C); therefore, I wanted to determine if tonic activation of 

cannabinoid receptors was masking the extent of the ethanol effect on both 

spontaneous and evoked GABA release.  First, it was determined if ethanol still 

increased mIPSC frequency to a similar extent in the presence of a cannabinoid 

receptor antagonist, AM-251 (5 µM).  In the presence of AM-251, 50 mM (15.3 ± 

3.4%, n = 7) and 100 mM (29.4 ± 7.1%, n = 7) ethanol significantly increased 

mIPSC frequency compared to control (0.9 ± 3.6%, n = 7, Fig. 5.3A) to a similar 

extent to that seen in the absence of AM-251.   

To document that this was an effective concentration of AM-251 (5 µM), 

the ability of AM-251 to block the cannabinoid agonist-induced decrease in 

mIPSC frequency was tested.  WIN (5 µM), significantly reduced (0.9 ± 0.2 Hz, n 
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= 6) mIPSC frequency compared to control (1.7 ± 0.2 Hz, n = 6), and 5 µM AM-

251 reversed this WIN effect (1.6 ± 0.3 Hz, n = 6, Fig. 5.3B).  AM-251 had no 

effect on baseline mIPSC frequency (control: 1.8 ± 0.2 Hz; AM-251: 2.0 ± 0.2 Hz, 

n = 13, Fig. 5.3C), suggesting that there is not tonic activation of cannabinoid 

receptors that affects spontaneous GABA release.  These results suggest that a 

cannabinoid receptor antagonist has no effect on spontaneous GABA release or 

on ethanol-enhanced spontaneous GABA release.  Interestingly, in the presence 

of AM-251, the ability of 100 mM ethanol to decrease the PPR was blocked (1.1 

± 4.3%, n = 8, Fig. 5.3E) and AM-251 significantly decreased the baseline PPR 

(44.4 ± 12.9%, n = 6, Fig. 5.3D).  These results demonstrate that there is tonic 

activation of cannabinoid receptors that affects evoked GABA release and that 

inhibition of cannabinoid receptors blocks ethanol-enhanced evoked GABA 

release. 

 

Inhibition of adenylate cyclase or PKA blocks ethanol from increasing 

mIPSC frequency.  Next it was determined if inhibiting adenylate cyclase and 

PKA, the intracellular messengers downstream of the Gαi-coupled GPCRs, could 

prevent ethanol from increasing spontaneous GABA release.   To assess the role 

of adenylate cyclase in this ethanol mechanism, two different purine site 

inhibitors (SQ 22,536 and DDA) were used that inhibit all isoforms of adenylate 

cyclase (Dessauer et al., 1999).  As shown in Figure 5.4A, the ability of ethanol 

to increase mIPSC frequency was significantly reduced in the presence of 300 

µM SQ 22,536 (15.0 ± 3.6%, n = 10) and 10 µM DDA (12.4 ± 2.3%, n = 9) 
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compared to control.  SQ 22,536 inhibits the norepinephrine-induced increase in 

mIPSC frequency at the interneuron-Purkinje cell synapse (Harvey and 

Stephens, 2004), which is an effect mediated by activation of Gαs-coupled 

GPCRs.  Similar to these results, 10 µM norepinephrine caused a 103 ± 11.8% 

(n = 5) increase in mIPSC frequency, while in the presence of 300 µM SQ 22,536 

the norepinephrine effect was significantly reduced to 15.0 ± 5.8% (n = 3, p<05, 

Student’s t-test).  Therefore, an effective concentration of SQ 22,536 was used in 

these experiments.  These results suggest that adenylate cyclase is involved in 

ethanol-enhanced spontaneous GABA release. 

To determine the role of PKA in ethanol-enhanced GABA release, two 

PKA antagonists, H-89 and Rp-cAMP, were used that have different mechanisms 

of action.  H-89 acts at the PKA ATP-binding site, while Rp-cAMP binds to the 

cAMP binding sites to prevent the regulatory subunits from dissociating from the 

catalytic subunits (Lochner and Moolman, 2006).  Both 10 µM H-89 and 10 µM 

Rp-cAMP significantly reduced the ability of ethanol to increase mIPSC 

frequency (8.2 ± 2.1%, n = 7 and 1.4 ± 2.5%, n = 10, respectively, Fig. 5.4A) 

compared to control.  A trace from a representative neuron showing the effect of 

ethanol on mIPSC frequency in the presence of 10 µM Rp-cAMP is shown in 

Figure 5.4B.  A lower Rp-cAMP concentration (1 µM) did not prevent ethanol 

from increasing mIPSC frequency (22.5 ± 8.2%, n = 3).  A higher concentration of 

H-89 was not tested because of known nonspecific effects that can start to occur 

at even 10 µM (Lochner and Moolman, 2006).  Overall, these results suggest that 

PKA plays an important role in ethanol-enhanced spontaneous GABA release. 
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To determine if the PKA antagonists were acting at the presynaptic 

terminal and not the postsynaptic neuron, the membrane impermeable PKA 

antagonist, PKI, was included in the pipette internal solution, which limits the 

PKA antagonist to the postsynaptic neuron.  With 5 µM PKI in the pipette internal 

solution, both 50 (14.6 ± 2.8%, n = 8) and 100 mM (27.1 ± 9.2%, n = 6) ethanol 

significantly increased mIPSC frequency compared to control (-1.3 ± 1.6%, n = 8, 

Fig. 5.4C).  A cumulative probability curve from a representative neuron shows 

that 100 mM ethanol still shifts the distribution of the interevent interval curve to 

the left with 5 µM PKI in the pipette internal solution (Fig. 5.4D).  Because there 

was no PKI effect, there was concern that PKI was not reaching the postsynaptic 

neuron; however, PKI blocked the effect of a PKA agonist in a separate 

experiment (see Fig. 5.6A).  These results suggest that the PKA antagonist is 

acting presynaptically to inhibit ethanol-enhanced spontaneous GABA release. 

 

Cannabinoids and ethanol act through similar downstream messengers to 

alter mIPSC frequency.  A CB1 receptor agonist decreases spontaneous GABA 

release at the interneuron-Purkinje cell synapse (Fig. 5.1A), and this effect 

involves calcium release from RyRs (Yamasaki et al., 2006).  Therefore, it was 

determined if the downstream messengers shown to play a role in the ethanol-

induced increase in spontaneous GABA release also play a role in the 

cannabinoid-induced decrease in spontaneous GABA release.  To confirm the 

involvement of internal calcium stores, the thapsigargin protocol described in 

Chapter 4 was used.  Compared to control (58.4 ± 3.0%, n = 13), 1 µM 
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thapsigargin significantly prevented WIN from decreasing mIPSC frequency (21.7 

± 7.7%, n = 7, Fig. 5.5A).  The high potassium (15 mM) extracellular solution in 

the absence of thapsigargin had no effect on the ability of WIN to decrease 

mIPSC frequency (55.8 ± 5.5%, n = 5, Fig. 5A).  The IP3R antagonist, 2-APB (14 

µM), significantly reduced the ability of WIN to decrease mIPSC frequency (31.5 

± 6.3%, n = 8, Fig. 5.5A).  As mentioned above, a similar effect has been shown 

with a RyR antagonist (Yamasaki et al., 2006).  The voltage dependent calcium 

channel inhibitor, CdCl2 (50 µM), did not significantly prevent WIN from 

decreasing mIPSC frequency (43.3 ± 6.9%, n = 8, Fig. 5.5A).  In addition, 

inclusion of 30 mM BAPTA in the pipette internal solution, which limits BAPTA to 

the postsynaptic neuron, was ineffective at blocking WIN (46.4 ± 3.8%, n = 8, Fig. 

5A).  Overall, these results suggest that the mechanism of the cannabinoid 

agonist-mediated decrease in mIPSC frequency is a presynaptic, calcium-

dependent process that most likely involves calcium release from internal stores 

with minimal involvement (if any at all) from the voltage dependent calcium 

channels.   

Next the role of PKA in the cannabinoid-induced decrease in mIPSC 

frequency was determined.  The ability of WIN to decrease mIPSC frequency 

was significantly reduced in the presence of the PKA agonist dBcAMP (100 µM: 

37.1 ± 4.4%, n = 7; 300 µM: 31 ± 9.3%, n = 7; Fig. 5.5B) compared to control, but 

there was no effect at 30 µM dBcAMP (48.3 ± 8.0%, n = 6).  There was a 

significant linear trend across concentrations for the effect of the PKA agonist on 

the WIN-induced decrease in mIPSC frequency (n = 7, r = -0.53, p<.05), which 
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suggests that dBcAMP inhibits WIN from decreasing spontaneous GABA release 

in a dose-dependent manner.   

 

Activation of PKA affects baseline mIPSC properties.  At 30 and 100 µM 

dBcAMP, there was a significant decrease in baseline mIPSC amplitude (30 µM: 

21.6 ± 4.5%, n = 7; 100 µM: 18.0 ± 7.4%, n = 7) with no change in baseline 

mIPSC τ-slow (Fig. 5.6A).   At 300 µM dBcAMP, there was a significant decrease 

in baseline mIPSC amplitude (32 ± 2.9%, n = 6. Fig. 5.6A) and increase in 

baseline mIPSC slow decay time (33.7 ± 9.4%, n = 6).  A trace from 

representative neuron showing that 300 µM dBcAMP increases mIPSC slow 

decay time and decreases mIPSC amplitude is shown in Figure 5.6Ba.  There 

was no effect on baseline mIPSC frequency or on baseline mIPSC fast decay 

time at any dBcAMP concentration (data not shown).   

The change in mIPSC slow decay time and amplitude appears to be due 

to a postsynaptic PKA mechanism because inclusion of 5 µM PKI in the internal 

solution blocked 300 µM dBcAMP from increasing mIPSC slow decay time (-1.0 

± 4.4%, n = 7) and decreasing mIPSC amplitude (2.3 ± 4.9%, n = 7, Fig. 5.6A).  

A trace from a representative neuron showing this PKI effect is in Figure 5.6Bb.  

These results suggest that the PKA agonist is having a PKA-dependent, 

postsynaptic effect that is manifested through a change in mIPSC slow decay 

time and amplitude. 

Based on the above results, it appeared as if a PKA agonist did not 

increase spontaneous GABA release.  While I was initially hesitant to try higher 
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concentrations of the PKA agonist, dBcAMP, there are reports that higher 

concentrations of the PKA agonist could increase mIPSC frequency (Kano and 

Konnerth, 1992; Kondo and Marty, 1997); therefore, a higher concentration of 

dBcAMP was tested.  At 1 mM dBcAMP, there was a significant increase in 

mIPSC frequency (control: 1.3 ± 0.1 Hz, dBcAMP: 2.0 ± 0.2 Hz, n = 8, Fig. 5.6C).  

Consistent with the results seen at lower dBcAMP concentrations, there was also 

an increase in mIPSC slow decay time (control: 13.2 ± 0.8 ms, dBcAMP: 24.1 ± 

4.8 ms, Fig. 5.6C) and a decrease in mIPSC amplitude (control: 24 ± 1.2 pA, 

dBcAMP: 19.8 ± 1.3 pA, Fig. 5.6C).  These results suggest that a PKA agonist 

has both presynaptic and postsynaptic effects at the GABAergic synapse. 

 

Buffering presynaptic calcium prevents a PKA antagonist from decreasing 

baseline mIPSC frequency.  Because of the established role of PKA in 

neurotransmitter release (Trudeau et al., 1996; Chheda et al., 2001; Seino and 

Shibasaki, 2005), the effect of a PKA antagonist on baseline mIPSC frequency 

was tested.  Both 10 µM and 25 µM Rp-cAMP significantly decreased mIPSC 

frequency (by 23.3 ± 6.8%, n = 7 and 31.2 ± 3.6%, n = 11, respectively), while 1 

µM Rp-cAMP was without effect (0.6 ± 4.8%, n = 4, Fig. 5.7A).  At these 

concentrations of Rp-cAMP, no changes in mIPSC decay time or amplitude were 

observed (data not shown).  In Figure 5.7B a cumulative probability curve from a 

representative neuron demonstrates that 25 µM Rp-cAMP shifts the distribution 

of the interevent interval curve to the right, which is interpreted as Rp-cAMP 

decreasing mIPSC frequency.  At 100 µM Rp-cAMP there was a significant 
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decrease in mIPSC frequency (78.9 ± 8.3%, n = 3), but there was also a 

significant decrease in mIPSC amplitude (29.3 ± 3.9%), making it difficult to 

conclude whether a presynaptic and/or postsynaptic mechanism was responsible 

for this change.  These results suggest that presynaptic activation of PKA plays a 

role in the generation of spontaneous GABA release.    

Because of the role of calcium and PKA in the ethanol and cannabinoid-

induced change in spontaneous GABA release, I determined whether there is a 

link between PKA, calcium, and spontaneous GABA release.  In the presence of 

BAPTA-AM, a membrane permeable calcium chelator, the ability of 25 µM Rp-

cAMP to decrease mIPSC frequency was significantly reduced (5.9 ± 2.5%, n = 

8, Fig. 5.7C) compared to control.  A cumulative probability curve from a 

representative neuron shows that 100 µM BAPTA-AM prevents 25 µM Rp-cAMP 

from shifting the curve (Fig. 5.7D).  Addition of 30 mM BAPTA to the pipette 

internal solution did not prevent Rp-cAMP from decreasing mIPSC frequency 

(31.8 ± 3.8%, n = 7, Fig. 5.7C).  These results suggest that changes in 

presynaptic calcium are required for a PKA antagonist to decrease mIPSC 

frequency.  Thapsigargin was also able to significantly block 25 µM Rp-cAMP 

from decreasing mIPSC frequency (10.7 ± 5.6%, n = 6), suggesting that this Rp-

cAMP mechanism involves calcium release from internal stores.  However, the 

high potassium solution protocol also blocked the PKA antagonist effect (-2.1 ± 

2.6%, n = 3).  Therefore, the role of internal calcium stores in the PKA 

antagonist-mediated suppression of spontaneous GABA release is inconclusive. 
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DISCUSSION 

The Gαi-coupled GPCR agonists, WIN and baclofen, blocked ethanol from 

increasing spontaneous GABA release at the interneuron-Purkinje cell synapse.  

Consistent with these results, it has been presented recently that WIN inhibits 

ethanol-enhanced GABA release in the basolateral and central nucleus of the 

amygdala (Roberto et al., 2008; Talani and Lovinger, 2008).  Similarly, baclofen 

prevents ethanol from increasing action potential-dependent GABA release in the 

hippocampus (Ariwodola and Weiner, 2004). However, in the VTA baclofen does 

not inhibit ethanol from increasing action potential-dependent GABA release, 

despite the fact that baclofen affects action potential-dependent GABA release 

(Theile et al., 2008).   

Because activation of Gαi-linked GPCRs blocked ethanol from increasing 

spontaneous GABA release onto cerebellar Purkinje cells, I tested if tonic 

activation of Gαi-coupled GPCRs was preventing ethanol from fully eliciting 

GABA release at the interneuron-Purkinje cell synapse.   Despite tonic activation 

of the GABAB receptors, a GABAB receptor antagonist did not enhance the ability 

of ethanol to increase mIPSC frequency or decrease the PPR at the interneuron-

Purkinje cell synapse.  Similar results are seen in the VTA (Theile et al., 2008); 

however, a GABAB receptor antagonist enhances the ability of ethanol to 

increase GABA release onto basolateral amygdala neurons and CA1 

hippocampal neurons (Ariwodola and Weiner, 2004; Zhu and Lovinger, 2006).  

Overall, these variable results suggest that the ability of the GABAB receptor 
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agonist and antagonist to affect ethanol-enhanced spontaneous GABA release is 

brain region-specific.   

There was not tonic activation of the cannabinoid receptors that affected 

spontaneous GABA release, and consistent with this, a cannabinoid receptor 

antagonist had no effect on the ethanol-induced increase in spontaneous GABA 

release.  There was tonic activation of cannabinoid receptors that decreased 

evoked GABA release, and a cannabinoid receptor antagonist actually blocked 

the ability of ethanol to increase evoked GABA release.  This result was 

unexpected considering that a cannabinoid receptor agonist blocks ethanol-

enhanced spontaneous GABA release.  Because mGluR1 activation on Purkinje 

cells can induce endocannabinoid release from the Purkinje cell (for review see 

Hashimotodani et al., 2007), I hypothesized that the lack of ethanol effect in the 

presence of the CB receptor antagonist was due to a mGluR1-mediated effect.  

However, in the presence of a mGluR1 antagonist (JNJ 16259685, 20 µM) and a 

cannabinoid receptor antagonist, ethanol still did not increase evoked GABA 

release (n = 3, data not shown).  Another hypothesis is the cannabinoid receptor 

antagonist increases the amount of evoked glutamate release (in addition to 

GABA release), which could activate presynaptic group II mGluRs that are not 

normally activated in the absence of the cannabinoid receptor antagonist.  Like 

the GABAB receptors and cannabinoid receptors, the mGluRs are Gαi-linked 

GPCRs that inhibit GABA release at the interneuron-Purkinje cell synapse 

(Raiteri, 2008).  Therefore, I predict that activation of group II mGluRs due to the 

presence of the cannabinoid receptor antagonist inhibits ethanol-enhanced 
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evoked GABA release.  This possibility will be tested in the future by combining a 

group II mGluR antagonist with the cannabinoid receptor antagonist and 

determining if ethanol can increase evoked GABA release in these conditions.     

Adenylate cyclase and PKA, which are downstream messengers of the 

Gαi/s–coupled GPCRs, contribute an essential part to ethanol-enhanced 

spontaneous GABA release.  Because a membrane impermeable PKA 

antagonist in the pipette internal solution did not prevent ethanol from increasing 

spontaneous GABA release, this PKA effect is occurring presynaptically.  There 

is considerable evidence connecting the adenylate cyclase/PKA pathway to the 

effects of ethanol (Pandey, 1998; Newton and Messing, 2006).  Adenylate 

cyclase isoforms 1,7 and 8 have all been linked to ethanol with biochemical, 

electrophysiological and behavioral studies in transgenic mice (Hanoune and 

Defer, 2001; Maas et al., 2005).  Through a PKA dependent mechanism, an in 

vivo ethanol exposure induces a long-lasting potentiation of GABAergic synapses 

in the VTA (Melis et al., 2002).  The adenosine A2 receptor, which leads to 

increased activation of the adenylate cyclase/PKA pathway, mediates important 

ethanol effects (Mailliard and Diamond, 2004).  At the behavioral level, a 

reduction in PKA signaling affects alcohol consumption and the sensitivity to the 

sedative effects of alcohol (Thiele et al., 2000; Wand et al., 2001; Fee et al., 

2006; Misra and Pandey, 2006; Lai et al., 2007).  Therefore, the adenylate 

cyclase/PKA pathway plays an important role in multiple alcohol actions 

extending from molecular to behavioral.  
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To learn more about the mechanism behind the ethanol-induced increase 

in GABA release, I studied the mechanism responsible for the WIN-induced 

decrease in GABA release.  Previously it was shown that calcium release from 

RyRs plays a role in this cannabinoid mechanism (Yamasaki et al., 2006).  The 

present work confirmed the involvement of internal calcium stores in the 

cannabinoid-induced decrease in GABA release and illustrated that calcium 

release from IP3Rs is involved.  Voltage dependent calcium channels did not play 

a significant role in the cannabinoid-mediated suppression of spontaneous GABA 

release at this synapse; a similar conclusion was made previously based on data 

showing that CdCl2 has no significant effect on baseline mIPSC frequency 

(Takahashi and Linden, 2000).  Additionally, including BAPTA in the internal 

solution did not significantly block the cannabinoid-induced decrease in 

spontaneous GABA release, which supports the idea that the calcium-dependent 

portion of this cannabinoid mechanism is occurring presynaptically.   

A PKA agonist was used to determine the role of PKA in the cannabinoid-

mediated suppression of spontaneous GABA release.  The PKA agonist, 

dBcAMP, dose-dependently reduced the ability of WIN to decrease mIPSC 

frequency, which suggests that the ability of the cannabinoid agonist to decrease 

spontaneous GABA release involves inhibition of PKA.  This result is consistent 

with activation of Gαi-coupled GPCRs leading to reduced activation of PKA, and 

data showing that a PKA antagonist decreases spontaneous GABA release (Fig. 

5.7A; Jeong et al., 2003; Lee et al., 2008).  Overall, these results suggest that 

internal calcium stores and PKA are playing an important role in the CB-mediated 
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decrease in spontaneous GABA release, as has been shown for the mechanism 

of ethanol-enhanced spontaneous GABA release.     

I determined if a PKA agonist had an effect on GABAergic 

neurotransmission.  Interestingly, during the application of 300 µM dBcAMP 

baseline mIPSC slow decay time and amplitude were increased and decreased, 

respectively.  Both deceases and increases in mIPSC amplitude have been 

reported after application of PKA and PKA agonists (Kano and Konnerth, 1992; 

Nusser et al., 1999; Poisbeau et al., 1999).  A possible reason for this 

discrepancy is differences in GABAA receptor subunit composition and in GABAA 

receptor associated proteins (Nusser et al., 1999).  Regardless, this effect 

appears to be a postsynaptic, PKA specific action because the dBcAMP effect 

was blocked when a membrane impermeable PKA antagonist was included in 

the pipette internal solution.  At a higher concentration of the PKA agonist (1 

mM), there was the same increase and decrease in mIPSC slow decay time and 

amplitude, respectively.  However, there also was an increase in mIPSC 

frequency, which is consistent with other studies using this high concentration 

(Kano and Konnerth, 1992; Kondo Marty, 1997).  Possible explanations for the 

necessity of a high dBcAMP concentration to increase spontaneous GABA 

release include low cell permeability of dBcAMP at the presynaptic terminal 

and/or degradation of dBcAMP by phosphodiesterases.   

The PKA antagonist, Rp-cAMP (10 µM and 25 µM), inhibited baseline 

spontaneous GABA release, which is consistent with similar studies conducted in 

the hippocampus and hypothalamus (Jeong et al., 2003; Lee et al., 2008).  There 
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was no PKA antagonist effect in the tuberomammillary nucleus, but this could be 

due to the low PKA antagonist concentration used in this study (Yum et al., 

2008).  At 1 µM Rp-cAMP, there was no effect on baseline spontaneous GABA 

release or on ethanol-enhanced spontaneous GABA release.  These results 

suggest that the concentration of the PKA antagonist must be high enough to 

decrease baseline spontaneous GABA release if the antagonist is going to be 

effective at reducing ethanol-enhanced spontaneous GABA release.  

Incubating slices with BAPTA-AM blocked Rp-cAMP from decreasing 

mIPSC frequency, suggesting that the ability of a PKA antagonist to decrease 

spontaneous GABA release involves a calcium-dependent mechanism.  When 

BAPTA was limited to the postsynaptic neuron, Rp-cAMP still decreased GABA 

release.  These results suggest that a presynaptic, calcium-dependent 

mechanism is responsible for the PKA antagonist-mediated decrease in 

spontaneous GABA release.  Two possible calcium-dependent mechanisms 

related to PKA involve PKA phosphorylating the IP3R and RyR to increase 

calcium release from internal stores (Mignery et al., 1990; Bugrim, 1999; 

Patterson et al., 2004; Bardo et al., 2006; Sobie et al., 2006) and/or PKA 

phosphorylating a protein in the neurotransmitter release machinery that is 

involved in calcium dependent exocytosis (Trudeau et al., 1996; Chheda et al., 

2001).   

I attempted to determine if internal calcium stores are involved in the Rp-

cAMP-mediated suppression of spontaneous GABA release.  Even though the 

thapsigargin protocol was successful at blocking the PKA antagonist effect, the 
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results are not interpretable because the high potassium solution protocol had 

the same effect.  One possible explanation is that the presynaptic depolarization 

induced by the high potassium solution altered the phosphorylation state of 

proteins that are normally affected by the PKA antagonist.  Therefore, the role of 

internal calcium stores in the PKA antagonist-induced decrease in spontaneous 

GABA release is unknown.  However, cAMP-dependent GABA release occurs in 

the absence of extracellular calcium (Kondo and Marty, 1997), which suggests 

the possibility that PKA-mediated changes in spontaneous GABA release are not 

dependent on the influx of extracellular calcium.   
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Figure 5.1.  WIN 55,212-2 and baclofen decreased baseline mIPSC 
frequency and prevented ethanol from increasing mIPSC frequency. A, WIN 
55,212-2 (WIN, 5 µM) and baclofen (5 µM) reduced baseline mIPSC frequency 
(*, p<.05, paired Student’s t test). B, a cumulative frequency histogram showing 
the effect of 5 µM WIN on the interevent interval curve. C, WIN and baclofen 
prevented 100 mM ethanol (EtOH) from increasing mIPSC frequency (*, p<.05, 
one-way ANOVA, Dunnett’s post hoc test). D, a cumulative frequency histogram 
from a representative neuron demonstrating the effect of 100 mM ethanol on the 
interevent interval curve in the presence of WIN.    
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Figure 5.2.  A GABAB receptor antagonist did not affect the ethanol-induced 
increase in mIPSC frequency or decrease in PPR. A, CGP 52432 (CGP, 10 
µM) did not alter the ability of 50 and 100 mM ethanol to increase mIPSC 
frequency (*, p<.05, one-way ANOVA, Dunnett’s post hoc test). B, the reduction 
in mIPSC frequency by baclofen (5 µM) was reversed by CGP (*, p<.05, paired 
Student’s t test). C, a trace from a representative neuron showing the effect of 
baclofen on mIPSC frequency and the ability of CGP to reverse it. D, CGP 
increased baseline mIPSC frequency (*, p<.05, paired Student’s t test). E, CGP 
did not affect the ability of 100 mM ethanol to decrease the PPR (*, p<.05, paired 
Student’s t test).    
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Figure 5.3.  A cannabinoid receptor antagonist had no effect on the 
ethanol-induced increase in mIPSC frequency but blocked the ethanol-
induced decrease in PPR. A, AM-251 (5 µM) did not alter the ability of 50 and 
100 mM ethanol (EtOH) to increase mIPSC frequency (*, p<.05, one-way 
ANOVA, Dunnett’s post hoc test). B, the reduction in mIPSC frequency by WIN 
(5 µM) was reversed by AM-251 (*, p<.05, paired Student’s t test). C, AM-251 
had no effect on baseline mIPSC frequency. D, AM-251 significantly decreased 
the PPR (*, p<.05, paired Student’s t test). E, AM-251 blocked the ability of 100 
mM ethanol to decrease the PPR (*, p<.05, paired Student’s t test).    
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Figure 5.4.  Adenylate cyclase and protein kinase A (PKA) antagonists 
prevented ethanol from increasing mIPSC frequency. A, SQ 22,536 (SQ, 300 
µM), DDA (10 µM), H-89 (10 µM) and Rp-cAMP (Rp, 10 µM) prevented 100 mM 
ethanol (EtOH) from increasing mIPSC frequency (*, p<.05, one-way ANOVA, 
Dunnett’s post hoc test). B, a trace from a representative neuron demonstrating 
the effect of 100 mM ethanol on mIPSC frequency in the presence of Rp-cAMP. 
C, ethanol (50 and 100 mM) increased mIPSC frequency when 5 µM PKI was in 
the pipette internal solution (*, p<.05, one-way ANOVA, Dunnett’s post hoc test). 
D, a cumulative frequency histogram from a representative neuron demonstrating 
the effect of ethanol on the interevent interval curve with PKI in the pipette 
internal solution.  
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Figure 5.5.  Inhibition of calcium release from internal stores and activation 
of PKA prevented WIN 55,212-2 from decreasing mIPSC frequency. A, 
thapsigargin (Thaps, 1 µM) and 2-APB (14 µM) inhibited WIN 55,212-2 (WIN, 5 
µM) from decreasing mIPSC frequency, while the high potassium extracellular 
solution control (K+ soln, 15 mM), cadmium chloride (CdCl2, 50 µM), and BAPTA 
in the pipette internal solution (BAPTAint, 30 mM) were without effect (*, p<.05, 
one-way ANOVA, Dunnett’s post hoc test). B, the ability of WIN to decrease 
mIPSC frequency was significantly reduced in the presence of 100 µM and 300 
µM dBcAMP, while there was not a significant effect at 30 µM (*, p<.05, one-way 
ANOVA, Dunnett’s post hoc test).   
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Figure 5.6.  Activation of PKA affected baseline mIPSC properties. A, 
baseline mIPSC slow decay time (τ-slow) was increased in the presence of 300 
µM dBcAMP, and 30, 100 and 300 µM dBcAMP decreased baseline mIPSC 
amplitude (*, p<.05, paired Student’s t test). The effect of 300 µM dBcAMP on 
mIPSC τ-slow and amplitude was blocked when 5 µM PKI was included in the 
pipette internal solution. B, a trace from a representative neuron showing the 
effect of 300 µM dBcAMP on mIPSC τ-slow and amplitude (a) and the ability of 5 
µM PKI in the pipette internal solution to block this effect (b). C, 1 mM dBcAMP 
increased baseline mIPSC frequency, increased baseline mIPSC τ-slow and 
decreased baseline mIPSC amplitude (*, p<.05, paired Student’s t test).  
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Figure 5.7.  BAPTA-AM prevented Rp-cAMP from decreasing mIPSC 
frequency. A, Rp-cAMP (10 and 25 µM) significantly reduced baseline mIPSC 
frequency, while 1 µM Rp-cAMP was without effect (*, p<.05, paired Student’s t 
test). B, a cumulative frequency histogram from a representative neuron 
demonstrating the effect of 25 µM Rp-cAMP on the interevent interval curve. C, 
pre-incubation of the slice with BAPTA-AM (BAP-AM, 100 µM) decreased the 
effect of 25 µM Rp-cAMP on mIPSC frequency, while BAPTA in the internal 
solution (BAPTAint, 30 mM) did not have an effect (*, p<.05, one-way ANOVA, 
Dunnett’s post hoc test). D, a cumulative frequency histogram from a 
representative neuron demonstrating the effect of 25 µM Rp-cAMP on the 
interevent interval curve in the presence of 100 µM BAPTA-AM. 
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Chapter VI: The Role of the PLC/PKC Pathway in  
Ethanol-enhanced GABA Release 

 

INTRODUCTION 

I have provided evidence that calcium release from internal stores and the 

adenylate cyclase/PKA pathway play an essential role in ethanol-enhanced 

spontaneous GABA release at the cerebellar interneuron-Purkinje cell synapse.  

Calcium is released from internal stores through activation of the IP3Rs and 

RyRs.  The RyR is activated by calcium alone, while the IP3R also requires IP3 

(Berridge, 1998; Berridge et al., 2003).  This IP3 can come from activation of 

phospholipase C (PLC), which catalyzes the conversion of phosphoinositol 4,5-

bisphosphate into diacylglycerol (DAG) and IP3 (Kiselyov et al., 2003).   

The released calcium from activation of the IP3R and DAG contribute to 

the activation of typical PKC isoforms.  When PKC is in the inactive state, a 

pseudosubstrate within the regulatory domain is bound to the catalytic domain 

(House and Kemp, 1987).    When DAG binds to the PKC C1 domain and two 

cofactors, calcium and phosphatidylserine, bind to the C2 domain, there is a 

conformational change that frees the pseudosubstrate domain from the catalytic 

domain (Kishimoto et al., 1980; Boni and Rando, 1985; Ono et al., 1989; Bell and 

Burns, 1991).  In addition to the dissociation of the regulatory domain from the 

catalytic domain, phosphorylation and translocation to the appropriate subcellular 

location are necessary for PKC activation (Dutil et al., 1998; Le Good et al., 
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1998; Mochly-Rosen and Gordon, 1998).  Once PKC is activated, it can 

phosphorylate a number of substrates, including the IP3R (Patterson et al. 2004).  

Phosphorylation of the IP3R increases the amount of calcium released from the 

internal stores (Mignery et al. 1990; Bugrim 1999; Bardo et al. 2006), forming a 

calcium-mediated feedback loop between activation of the IP3R and PKC.  

There is no evidence supporting that ethanol binds directly to the IP3Rs 

and RyRs, with the more likely alternative being that ethanol indirectly modulates 

calcium release from internal stores.  Therefore, activation of PLC and PKC 

could be playing a role in the ethanol-mediated increase in GABA release.  The 

present study investigates the role of PLC and PKC in ethanol-enhanced 

spontaneous GABA release and determines the role of PKC in GABAergic 

neurotransmission. 
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RESULTS 

Inhibition of PLC or PKC prevents ethanol from increasing mIPSC 

frequency.  In the presence of the phosphoinositol (PI)-specific PLC antagonist, 

edelfosine (10 µM), the ability of ethanol to increase mIPSC frequency was 

significantly blocked (8.4 ± 4.1%, n = 9, Fig. 6.1A) compared to control (28.7 ± 

3.4%, n = 12, Fig. 6.1A).  A trace from a representative neuron showing that 10 

µM edelfosine blocks ethanol from increasing mIPSC frequency is shown in Fig. 

6.1B.  In addition, a PKC general antagonist, chelerythrine (1 µM) or a PKCε-

specific antagonist, εV1-2 (0.5 µM), prevented ethanol from increasing mIPSC 

frequency (chelerythrine: 7.2 ± 4.8%, n = 8; εV1-2: 9.1 ± 2.9%, n = 8, Fig. 6.1A).  

These results suggest that both PLC and PKC play a role in ethanol-enhanced 

spontaneous GABA release. 

To determine if the PKC antagonists were acting at the presynaptic 

terminal and not the postsynaptic neuron, the membrane impermeable PKC 

antagonist, PKC(19-36), was included in the pipette internal solution, which limits 

exposure to the PKC antagonist to the postsynaptic neuron.  With 20 µM 

PKC(19-36) in the pipette internal solution, both 50 (18.9 ± 4.4%, n = 6) and 100 

mM (26.3 ± 3.4%, n = 6) ethanol significantly increased mIPSC frequency 

compared to control (0.7 ± 2.0%, n = 6, Fig. 6.1C).  A trace from a representative 

neuron showing the effect of ethanol on mIPSC frequency with 20 µM PKC(19-

36) in the pipette internal solution is shown in Fig. 6.1D.  These results suggest 

that the PKC antagonist is acting presynaptically to block ethanol-enhanced 

spontaneous GABA release. 
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PKC antagonists affect baseline mIPSC properties.  The general PKC 

antagonist, chelerythrine (1 µM and 10 µM) did not have an effect on baseline 

mIPSC frequency, fast decay time and amplitude (Fig. 6.2A, B, and D).  There 

was an effect of 10 µM chelerythrine on mIPSC slow decay time (control: 12.8 ± 

0.7 Hz, chelerythrine: 14.0 ± 0.7 Hz, n = 5, Fig. 6.2B).  While a lower 

concentration of εV1-2 (0.5 µM) had no effect on mIPSC frequency, a higher 

concentration of εV1-2 (5 µM) increased mIPSC frequency (control: 2.5 ± 0.6 Hz, 

εV1-2: 3.1 ± 0.5 Hz, n = 5, Fig. 6.2A).  Interestingly, 0.5 µM εV1-2 significantly 

increased mIPSC fast decay time (control: 9.2 ± 0.3 Hz, εV1-2: 10.6 ± 0.5 Hz, n = 

14, Fig. 6.2B) and decreased mIPSC amplitude (control: 28.1 ± 2.0 Hz, εV1-2: 

19.1 ± 1.4 Hz, n = 5, Fig. 6.2D), while there was no effect on these mIPSC 

parameters at 5 µM εV1-2.  Overall, these results suggest that the general PKC 

antagonist and PKCε specific antagonist have differing effects on GABAergic 

neurotransmission.   

 

PKC agonists affect baseline mIPSC properties.  To further investigate the 

role of PKC in generating spontaneous GABA release, the effect of two PKC 

agonists, PMA and SC9, on GABAergic neurotransmission was determined.  

These two PKC agonists have different mechanisms of action: PMA activates 

PKC by binding to the C1 domain, while SC9 binds to the C2 domain (Ito et al., 

1986; Ono et al., 1989).  Both 3 µM PMA (control: 2.7 ± 0.5 Hz, PMA: 4.2 ± 0.7 

Hz, n = 7) and 10 µM PMA (control: 2.7 ± 0.7 Hz, PMA: 4.4 ± 0.9 Hz, n = 7) 
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significantly increased mIPSC frequency (Fig. 6.3A).  Likewise, both 25 µM SC9 

(control: 1.8 ± 0.3 Hz, SC9: 2.1 ± 0.4 Hz, n = 8) and 100 µM SC9 (control: 2.1 ± 

0.5 Hz, SC9: 2.6 ± 0.5 Hz, n = 9) significantly increased mIPSC frequency (Fig. 

6.3A).  There was no effect of any PKC agonist concentration on mIPSC slow 

decay time, but 25 µM SC9 (control: 9.4 ± 0.5 Hz, SC9: 10.1 ± 0.4 Hz, n = 8, Fig. 

6.3B) significantly increased mIPSC fast decay time.  There was also a reduction 

in mIPSC amplitude at 10 µM PMA (control: 25.1 ± 3.5 pA, PMA: 19.4 ± 2.3 pA, n 

= 7, Fig. 6.3D).  Overall, these results suggest that PKC agonists affect 

GABAergic neurotransmission, including spontaneous GABA release.   

 

Activation of PKA and PKC is necessary for ethanol to increase mIPSC 

frequency and cross-talk is not occurring between PKA and PKC.  To 

determine if there is cross-talk occurring between PKA and PKC in the 

mechanism of ethanol-enhanced spontaneous GABA release, I determined if a 

PKC agonist could reverse the effect of a PKA antagonist on ethanol-enhanced 

spontaneous GABA release, and vice versa.  As a control, the effect of a PKC 

agonist and a PKA agonist on ethanol-enhanced spontaneous GABA release 

was investigated.  Interestingly, both the PKA agonist and PKC agonist 

significantly blocked ethanol from increasing spontaneous GABA release 

compared to control (100 µM dBcAMP: 12.9 ± 2.3%, n = 5; 300 µM dBcAMP: 5.9 

± 2.5%, n = 9; 25 µM SC9: 0.8 ± 3.8%, n = 7; Fig. 6.4A).  A representative 

neuron demonstrating that 300 µM dBcAMP blocks ethanol from increasing 

mIPSC frequency is shown in Figure 6.4B.  Because PKA and PKC agonists and 
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antagonists blocked the ethanol effect, I was not able to conduct the cross-talk 

experiments. 

 As an alternative, I determined if the PKC and PKA agonist-induced 

increase in mIPSC frequency could be blocked with a PKA and PKC antagonist, 

respectively.  The effect of the PKC agonist, SC9 (25 µM), on mIPSC frequency 

(17.7 ± 5.5%, n = 8, Fig. 6.4C) was not reversed in the presence of the PKA 

antagonist, Rp-cAMP (25 µM, 17.6 ± 3.2%, n = 6).  Similarly, the effect of the 

PKA agonist, dBcAMP (1mM), on mIPSC frequency (50.2 ± 12.1%, n = 8, Fig. 

6.4C) was not reduced in the presence of the PKC antagonist, chelerythrine (1 

µM, 44.9 ± 7.3%, n = 6).  A cumulative probability curve from a representative 

neuron shows that 1 mM dBcAMP still shifts the curve to the left in the presence 

of 1 µM chelerythrine (Fig. 6.4D).  These results suggest that the PKC agonist-

induced increase in spontaneous GABA release is not dependent on activation of 

PKA, and the PKA agonist-induced increase in spontaneous GABA release is not 

dependent on activation of PKC. 
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DISCUSSION 

The PI-PLC antagonist, edelfosine, blocked ethanol from increasing 

spontaneous GABA release, which suggests that PLC contributes to ethanol-

enhanced spontaneous GABA release.  Edelfosine has varying effects on 

intracellular calcium levels based on the cell type, proliferation state, and the 

edelfosine concentration used (Lohmeyer and Workman, 1993; Bergmann et al., 

1994; Alonso et al., 1997; Jan et al., 1999).  A between cell comparison found no 

effect of edelfosine on spontaneous GABA release compared to neurons 

exposed to control conditions.  If there was a large increase in intracellular 

calcium after exposure to edelfosine, one would expect to see a large increase in 

spontaneous GABA release.  Additional experiments were attempted with the 

general PLC antagonist, U73122, but there was an overall increase in GABA 

release (data not shown), suggesting that there were effects occurring through a 

PLC-independent pathway.  Consistent with these data, PLC-independent effects 

have been reported for U73122 (Pulcinelli et al., 1998; Lockhart and McNicol, 

1999).  Based on this evidence, I conclude that PLCβ is necessary for ethanol-

enhanced spontaneous GABA release.  This conclusion is consistent with the 

IP3R data and internal calcium store data presented in Chapter 4. 

A general PKC antagonist and a PKCε specific antagonist inhibited 

ethanol-enhanced GABA release, which is similar to what is seen in the central 

nucleus of the amygdala (Bajo et al., 2008).  This interaction between ethanol 

and PKCε at the molecular level is consistent with what is seen behaviorally in 

PKCε null mice that are exposed to alcohol.  Specifically, these mice consume 
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less alcohol and are supersensitive to the behavioral effects of alcohol compared 

to wild-type controls (Hodge et al., 1999).  While the current results suggest that 

PKCε is necessary for ethanol-enhanced spontaneous GABA release, it does not 

suggest that PKCε is the only PKC isoform involved in this ethanol mechanism.  

PKCε is an atypical PKC isoform, which differ from typical PKC isoforms by not 

requiring calcium for activation (for review see Steinberg, 2008).  Typical PKC 

isoforms, which are the isoforms most likely to be activated by the PLCβ 

pathway, are also involved in generating the behavioral response to ethanol.  In 

contrast to the PKCε null mice, PKCγ null mice are less sensitive to the 

intoxicating effects of alcohol and consume more alcohol than wild-type mice 

(Harris et al., 1995; Bowers and Wehner, 2001).  PKCδ null mice are also less 

sensitive to the intoxicating effects of alcohol (Choi et al. 2008).  Therefore, 

multiple PKC isoforms contribute to the behavioral effects of alcohol and the 

isoforms can have opposite effects on alcohol-related behaviors.  Moreover, it is 

possible that multiple PKC isoforms play a role in ethanol-enhanced spontaneous 

GABA release.  

The PKC general antagonist had no effect on baseline spontaneous 

GABA release, while the PKCε specific antagonist increased spontaneous GABA 

release.  These results are consistent with a study conducted in the amygdala 

that used the same PKCε specific antagonist in addition to PKCε null mice (Bajo 

et al., 2008).   These results suggest that PKCε regulates the amount of GABA 

released from the presynaptic terminal.  Furthermore, because the PKC general 

antagonist had no effect on spontaneous GABA release, it is likely that another 
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PKC isoform increases the amount of GABA released to cancel out the inhibitory 

effect of PKCε.  These results are consistent with the opposing effects of the 

PKC isoforms on alcohol-related behaviors (see above). 

At the lower εV1-2 concentration, there was an increase and a decrease in 

mIPSC fast decay time and mIPSC amplitude, respectively.  The change in both 

mIPSC fast decay time and amplitude mostly likely reflects a change in the 

functioning of the postsynaptic GABAA receptors.  Consistent with this, there is 

evidence of PKCε regulating GABAA receptor sensitivity to ethanol through 

phosphorylation of the GABAA receptor γ2 subunit (Qi et al., 2007).  Interestingly, 

both of these effects on mIPSC properties are not present at a higher εV1-2 

concentration.  One explanation is that a nonspecific effect is occurring at the 

higher concentration, such as inhibition of another PKC isoform, that counteracts 

the PKCε effect on postsynaptic GABAA receptors.  It should be noted that the 

ethanol studies with εV1-2 were conducted at the lower concentration.  Overall, it 

appears that the PKC isoforms have different effects on GABAergic 

neurotransmission.   

Two PKC activators, PMA and SC9, both increased spontaneous GABA 

release, with PMA increasing spontaneous GABA release to a much higher 

extent.  PMA is a phorbol ester that binds to the C1 domain of PKC, while SC9 

binds to the C2 domain (Ito et al., 1986; Ono et al., 1989).  The C1 domain 

sequence is conserved in other proteins, which raises the possibility that PKC 

agonists acting at the C1 domain, such as PMA, are having nonspecific effects.  

For instance, the C1 domain is conserved in the Munc-13 protein, which has 
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effects on the neurotransmitter release machinery (Betz et al., 1998; Brose and 

Rosenmund, 2002; Kazanietz, 2002); moreover, phorbol esters modulate 

neurotransmitter release through both Munc-13 and PKC (Lou et al., 2008).  

Therefore, it is possible that PMA does not selectively activate PKC to affect 

spontaneous GABA release.  Because SC9 acts at the C2 domain, which is 

another domain conserved in a number of proteins (including one that plays a 

role in neurotransmitter release), additional studies will be needed to determine if 

this effect on spontaneous GABA release is PKC specific (Rizo and Sudhof, 

1998).  For example, one could determine if the PKC agonist effect on 

spontaneous GABA release can be inhibited by a general PKC antagonist.  

Interestingly, the effect of the PKCε antagonist on mIPSC frequency, fast decay 

time and amplitude goes in the same direction as the effect of the general PKC 

agonist on mIPSC frequency, fast decay time and amplitude.  Overall, the results 

from the PKC agonist and antagonist experiments suggest that PKC plays a role 

in the generation of spontaneous GABA release. 

Next I wanted to determine if there is overlap in the pathways involved in 

ethanol-enhanced spontaneous GABA release.  Cross-talk occurs between PKA 

and PKC at the GABAergic nucleus basalis of Meynert synapses (Kubota et al., 

2003); furthermore, there are ethanol effects that involve cross-talk between 

these protein kinases.  One mechanism involves ethanol increasing adenylate 

cyclase isoform 7 activity through a PKCδ-mediated mechanism, which leads to 

activation of PKA (Tabakoff et al., 2001).  Another example involves ethanol 

inducing PKCε translocation to the cytosol through a PKA-dependent mechanism 
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(Yao et al., 2008). Specifically, this translocation of PKCε is thought to involve 

PKA activation of PLCβ.  Therefore, it is tempting to speculate that the 

mechanism of ethanol-enhanced GABA release depends on cross-talk occurring 

between PKA and PKC.   

Experiments were designed to determine if cross-talk is occurring between 

PKA and PKC in this ethanol mechanism.  A required control for these 

experiments was to determine whether ethanol increases spontaneous GABA 

release in the presence of a PKC agonist or a PKA agonist.  Both agonists 

blocked the ability of ethanol to increase spontaneous GABA release; therefore, 

the cross-talk experiments were not conducted because the agonists were 

supposed to “rescue” the block induced by the antagonist.  However, these 

results imply that ethanol must induce a change in the activation state of the 

protein kinases to increase spontaneous GABA release and cannot simply 

interact with a downstream pathway that was activated by the protein kinase. 

As an alternative to the experiment described above, I tested if a PKC 

antagonist could block the effect of a PKA agonist (and vice versa) on 

spontaneous GABA release.  Neither antagonist was effective at blocking the 

effect of the opposite agonist, which suggests that cross-talk is not occurring 

between PKA and PKC to modulate GABA release at the interneuron-Purkinje 

cell synapse.   
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Figure 6.1.  Phospholipase C and protein kinase C antagonists prevented 
ethanol from increasing mIPSC frequency. A, edelfosine (10 µM), 
chelerythrine (1 µM), and εV1-2 (0.5 µM) prevented 100 mM ethanol from 
increasing mIPSC frequency compared to control (*, p<.05, one-way ANOVA, 
Dunnett’s post hoc test). B, a trace from a representative neuron demonstrating 
the effect of 100 mM ethanol on mIPSC frequency in the presence of edelfosine 
(10 µM). C, ethanol (50 and 100 mM) increased mIPSC frequency when 20 µM 
PKC(19-36) was in the pipette internal solution (PKC(19-36)int ; *, p<.05, one-way 
ANOVA, Dunnett’s post hoc test). D, a trace from a representative neuron 
showing the effect of 100 mM ethanol on mIPSC frequency when PKC(19-36) 
was included in the pipette internal solution. 
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Figure 6.2.  Inhibition of PKC affected baseline mIPSC properties. A, the 
higher concentration of εV1-2 (5 µM) increased mIPSC frequency (*, p<.05, 
paired Student’s t test). B, there was a significant increase in mIPSC fast decay 
time (τ-fast) at 0.5 µM εV1-2 (*, p<.05, paired Student’s t test). C, there was an 
increase in mIPSC slow decay time (τ-slow) at 10 µM chelerythrine (chel; *, 
p<.05, paired Student’s t test). D, εV1-2 (0.5 µM) decreased mIPSC amplitude (*, 
p<.05, paired Student’s t test).  
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Figure 6.3.  Activation of PKC affected baseline mIPSC properties. A, all 
concentrations of the PKC agonists that were tested increased mIPSC frequency 
(*, p<.05, paired Student’s t test). B, there was a significant increase in mIPSC 
fast decay time (τ-fast) at 25 µM SC9 (*, p<.05, paired Student’s t test). C, no 
effect was seen on mIPSC slow decay time (τ-slow) with either of the PKC 
agonists. D, PMA (10 µM) decreased mIPSC amplitude (*, p<.05, paired 
Student’s t test).  
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Figure 6.4.  Activation of PKA and PKC was necessary for ethanol to 
increase mIPSC frequency and PKA and PKC were not dependent on each 
other to increase mIPSC frequency. A, dBcAMP (dB, 100 µM and 300 µM) and 
SC9 (25 µM) prevented 100 mM ethanol from increasing mIPSC frequency (*, 
p<.05, one-way ANOVA, Dunnett’s post hoc test). B, a trace from a 
representative neuron showing the effect of 100 mM ethanol on mIPSC 
frequency in the presence of dBcAMP. C, Rp-cAMP (25 µM) did not prevent SC9 
(25 µM) from increasing mIPSC frequency (*, p<.05, Student’s t test).  Likewise, 
chelerythrine (chel, 1 µM) did not prevent dBcAMP (1mM) from increasing 
mIPSC frequency (*, p<.05, Student’s t test). D, a cumulative frequency 
histogram from a representative neuron demonstrating the effect of dBcAMP on 
the interevent interval curve in the presence of chelerythrine. 
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Chapter VII: General Discussion 

 

The intoxicating effects of alcohol are partially mediated through 

modulation of the GABAergic system.  A person who is less sensitive to the 

intoxicating effects of alcohol is prone to developing alcoholism (Schuckit, 2009), 

so understanding the molecular mechanisms contributing to alcohol intoxication 

will further our understanding of this disease.  Within the past few years it was 

discovered that the GABAergic profile of ethanol consists of more than a direct 

ethanol interaction with the postsynaptic GABAA receptors and can involve 

activation of extrasynaptic GABAA receptors as well as an increase in GABA 

release from presynaptic terminals.  The current studies provided information 

regarding the mechanism responsible for the ethanol-induced increase in GABA 

release.      

With the use of whole-cell voltage clamp recordings, it was established 

that ethanol increases spontaneous and evoked GABA release at the 

interneuron-Purkinje cell synapse.  Activation of cannabinoid 1 receptors or 

GABAB receptors, both of which are Gαi-linked GPCRs, inhibits ethanol-

enhanced spontaneous GABA release. There was no tonic activation of the 

cannabinoid receptors, and while there was tonic activation of the GABAB 

receptors, inhibiting the GABAB receptors did not affect ethanol-enhanced 

spontaneous GABA release.  The ability of ethanol to increase spontaneous 
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GABA release is dependent on calcium release from internal stores, adenylate 

cyclase, PKA, PLC and PKC; moreover, these intracellular messengers act at the 

presynaptic terminal.  Influx of extracellular calcium into the neuron is not 

involved in this ethanol mechanism.  Because there are potential nonspecific 

effects that can occur with use of the IP3R antagonist, electron microcopy was 

used to show that IP3Rs are located in the presynaptic terminals at this synapse.  

It was also determined that both PKA and PKC contribute to the generation of 

spontaneous GABA release and cross-talk is not occurring between these two 

intracellular messengers.   

 

Is there a connection between the pathways?  

 The current results suggest that the mechanism of ethanol-enhanced 

spontaneous GABA release at the interneuron-Purkinje cell synapse involves 

activation of the Gαq-linked pathway, the Gαs-linked pathway and calcium release 

from internal stores.  The contribution of each is required for ethanol to increase 

spontaneous GABA release but no one pathway is necessarily sufficient.  In 

Chapter 6 I attempted to perform PKA/PKC cross-talk experiments, but this was 

unsuccessful because both the agonists and antagonists inhibit ethanol-

enhanced spontaneous GABA release.  However, the experiments provided 

useful information: the mechanism of ethanol-enhanced spontaneous release 

involves an increase in activated PKA and PKC.  Therefore, either ethanol is 

acting upstream to activate PKA and PKC or is activating PKA and PKC directly.  

If ethanol is acting upstream to activate PKA and PKC, two likely candidates are 
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adenylate cyclase and PLC, respectively, because data support the involvement 

of both in this ethanol mechanism.  I found that a PKA antagonist did not block 

the PKC agonist from increasing spontaneous GABA release, and vice versa, 

which suggests that the two protein kinases are not dependent on each other to 

increase spontaneous GABA release.  Therefore, while cross-talk could still 

occur in the mechanism of ethanol-enhanced spontaneous GABA release, it is 

not a necessity because both kinases are capable of independently increasing 

spontaneous GABA release.   

How does calcium release from internal stores fit into this mechanism?  I 

hypothesize that ethanol does not bind directly to the IP3R and RyR to increase 

spontaneous GABA release.  As mentioned previously, PKC has a binding site 

on the IP3R and PKA has binding sites on the IP3R and the RyR (Mignery et al., 

1990; Patterson et al., 2004; Sobie et al., 2006).  When either binds to its 

respective site, there is an increase in the amount of calcium released from the 

internal stores (Mignery et al., 1990; Bugrim, 1999; Bardo et al., 2006).  The link 

between calcium and PKC is well-established, and I provided evidence that the 

PKA effect on spontaneous GABA release is dependent on calcium (Chapter 5).  

Therefore, I propose that ethanol activates PKA and PKC and these two kinases 

phosphorylate the IP3Rs and RyRs to increase the amount of calcium released 

from the internal stores, which increases the amount of spontaneous GABA 

release.  This proposed mechanism does not limit the actions of PKA and PKC to 

the internal calcium stores and it is likely that both have other means of 

regulating spontaneous GABA release.  For instance, PKA and PKC have known 
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effects on the neurotransmitter release machinery (Trudeau et al., 1996; Chheda 

et al., 2001; Seino and Shibasaki, 2005; Lou et al., 2008).   

All the current ethanol experiments were conducted with the general 

protocol of inhibiting an intracellular messenger with the appropriate antagonist 

and determining if ethanol could increase spontaneous GABA release under 

these conditions.  For example, I demonstrated that BAPTA-AM and antagonists 

that inhibit calcium release from the internal stores block ethanol-enhanced 

spontaneous GABA release.  As a result of these data, I inferred that ethanol 

was increasing intracellular calcium to increase spontaneous GABA release.  

These experiments could be taken a step further by determining if ethanol 

directly increases calcium release in the presynaptic terminal with two-photon 

calcium imaging.  If I found that ethanol does increase calcium release from 

internal stores using this technique, it would be interesting to see if a PKA and 

PKC antagonist could block this ethanol effect.   This experiment would directly 

test the hypothesis that PKA and PKC are mediating the ethanol-induced 

increase in calcium release from internal stores.   

 

Yin and Yang: the ethanol effect on GABA and glutamate 

 During alcohol intoxication, ethanol increases GABA neurotransmission 

and decreases glutamate neurotransmission (see Chapter 1).   The present work 

and the work of others have provided evidence that ethanol can increase GABA 

release from the presynaptic terminal.  Moreover, ethanol can decrease 

glutamate release from the presynaptic terminal, although this effect is not as 
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well characterized.  In spinal motorneurons, ethanol inhibits both NMDA receptor-

mediated and non-NMDA receptor mediated spontaneous glutamate release, 

and within the same neuron increases spontaneous GABA release (Ziskind-

Conhaim et al., 2003).  Ethanol reduces glutamate neurotransmission at the 

crayfish neuromuscular junction by decreasing the release of glutamate-filled 

vesicles (Strawn and Cooper, 2002).  Ethanol inhibits NMDA receptor-mediated 

spontaneous and evoked glutamate release in the hippocampus but has no 

effect on non-NMDA receptor mediated spontaneous glutamate release 

(Hendricson et al., 2003; Hendricson et al., 2004).  There was no effect of 

ethanol on glutamate release onto the central nucleus of the amygdala neurons 

unless the animals had undergone chronic ethanol treatment (Roberto et al., 

2004).  There was no effect of ethanol on glutamate release onto cerebellar 

Purkinje cells (Carta et al., 2006; Belmeguenai et al., 2008).  Ethanol also had no 

effect on action potential-independent glutamate release in the VTA, but there 

was an increase in action potential-dependent glutamate release (Xiao et al., 

2009).  Therefore, current evidence supports that ethanol decreases glutamate 

release, but like the effect of ethanol on GABA release, it happens in a brain 

region-specific fashion.   

 

What mechanism is responsible for the different ethanol effect on GABA 

and glutamate release? 

That ethanol affects GABA and glutamate release in opposite directions 

poses a conundrum because internal calcium stores, the Gαq-linked pathway and 



114 
 

the Gαi/s-linked pathway modulate baseline GABA and glutamate release in the 

same manner (Malenka et al., 1986; Hopkins and Johnston, 1988; Weisskopf et 

al., 1994; Bouron, 1999; Hori et al., 1999; Emptage et al., 2001; Simkus and 

Stricker, 2002; Lee et al., 2008).  Therefore, ethanol cannot be activating the 

same intracellular messengers to increase and decrease GABA and glutamate 

release, respectively.   

It is possible that ethanol is acting through different intracellular 

messengers.  This seems unlikely since I found that a number of intracellular 

messengers are involved in ethanol-enhanced GABA release.  However, one 

possibility is extracellular calcium because influx of extracellular calcium does not 

play a role in ethanol-enhanced spontaneous GABA release (Chapter 4).  

Therefore, it is possible that influx of extracellular calcium into the neuron is 

necessary to generate spontaneous glutamate release and ethanol is preventing 

this influx to cause a decrease in glutamate release.  This is something that can 

be tested in the future in brain regions that show an ethanol-induced decrease in 

glutamate release.  

The other possibility is that ethanol is acting through the same intracellular 

messengers but is having an opposite effect on them.  Ethanol could be acting 

upstream of a particular messenger or activating the intracellular messenger 

directly.   There is evidence of an “ethanol-responsive domain” within adenylate 

cyclase (Yoshimura et al., 2006), but so far this is the only support for such a 

domain existing on an intracellular messenger.  If ethanol binds directly to the 

intracellular messengers to regulate GABA and glutamate release, ethanol would 
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need to differentiate between the intracellular messengers in the GABAergic and 

glutamatergic terminals as well as have an opposite effect on these messengers.  

To differentiate between terminals, ethanol would need some type of “sensor” to 

recognize if a certain terminal is GABAergic or glutamatergic, but there is no 

support for an “ethanol sensor” existing.  Another possibility is that the 

intracellular messenger isoforms are divided between the GABA and glutamate 

terminals.  While isoform expression can vary by brain region, there is no current 

evidence suggesting that the isoforms are divided between terminals.   

Even if the isoforms were divided between the terminals, ethanol would 

need to have an opposite effect on the isoforms to regulate spontaneous GABA 

release.  The most likely candidate is PKC because PKCε and PKCγ have 

opposing effects on alcohol-induced behaviors (Harris et al., 1995; Hodge et al., 

1999; Bowers and Wehner, 2001), and I provided data that suggest there are 

PKC-isoform specific effects on spontaneous GABA release (Chapter 6).  

Ethanol does have different effects on the adenylate cyclase isoforms, but the 

isoforms are either insensitive or activated by ethanol- there is no opposite effect 

on activation (Yoshimura and Tabakoff, 1995).  Therefore, because there is no 

current evidence suggesting that ethanol can differentiate between the two 

terminal types and because there is minimal evidence suggesting that 

intracellular messenger isoforms could account for this effect, it is unlikely that 

ethanol is activating the intracellular messengers directly to mediate the increase 

and decrease in GABA and glutamate release, respectively.  There is more 
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evidence supporting that ethanol acts upstream of the intracellular messengers, 

which is discussed in more detail below. 

 

The role of GPCRs in the ethanol effect on neurotransmitter release 

One hypothesis to explain the opposing role of ethanol on GABA and 

glutamate release is that activation of different presynaptic GPCRs mediates the 

ethanol effect at each terminal.  Activation of the Gαi and Gαs–linked GPCRs has 

opposing effects on the adenylate cyclase/PKA pathway, and activation of these 

GPCRs is necessary for ethanol to affect GABA and glutamate release in some 

brain regions.  For instance, activation of the CRF1 receptor, which is a Gαs-

linked GPCR, is necessary for ethanol to increase GABA release in the 

amygdala.  Interestingly, endocannabinoid release from the postsynaptic neuron, 

which activates the presynaptic Gαi-linked cannabinoid 1 receptors, is necessary 

for ethanol to decrease glutamate release in the hippocampus (Basavarajappa et 

al., 2008).  In the nucleus accumbens, activation of presynaptic GABAB receptors 

is necessary for ethanol to inhibit NMDA receptor-mediated glutamate 

neurotransmission (Steffensen et al., 2000).  These results provide examples of 

activation of a presynaptic Gαs-coupled GPCR being necessary for ethanol to 

increase GABA release and activation of a presynaptic Gαi-coupled GPCR being 

necessary for ethanol to decrease glutamate release.  Additionally, antagonists 

for the δ-opioid receptor and the GABAB receptor, both of which are Gαi-linked 

GPCRs, augment the ability of ethanol to increase GABA release in the 

amygdala and hippocampus (Ariwodola and Weiner, 2004; Zhu and Lovinger, 
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2006; Kang-Park et al., 2007).  Therefore, activation of Gαi-coupled GPCRs can 

attenuate the ethanol-induced increase in GABA release.    

Interestingly, Xiao and Ye (2008) found that ethanol decreases GABA 

release in the VTA, but in the presence of a µ-opioid receptor agonist, which 

activates a Gαi-coupled GPCR, ethanol increases GABA release.  The authors 

suggest that the µ-opioid receptor agonist “silences” a population of GABAergic 

neurons that decrease GABA release in the presence of ethanol, which allows for 

a different population of GABAergic neurons- one that increases GABA release 

in the presence of ethanol- to dominate.  This study is in contrast to other studies 

in the VTA that found that ethanol increases GABA release in the absence of a µ-

opioid receptor agonist (Melis et al., 2002; Thiele et al., 2008).  Xiao and 

colleagues also found that ethanol increases glutamate release in the VTA, and 

this mechanism is dependent on activation of the dopamine 1 receptors, which 

are Gαs-linked GPCRs (Xiao et al., 2009).  Overall, these results suggest that 

activation of Gαi-linked GPCRs does not always selectively decrease glutamate 

release and activation of Gαs-linked GPCRs does not always selectively increase 

GABA release, at least in the VTA.  The data of Xiao and colleagues are the only 

evidence of ethanol decreasing and increasing GABA and glutamate release, 

respectively, in the brain.  While it is entirely possible that this effect is seen in 

other brain regions, more evidence will be needed to support that this effect is 

extended to other regions of the brain. Regardless, these data provide further 

support for the important role that GPCRs play in the effect of ethanol on 

neurotransmitter release.   
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So how are these GPCRs activated by ethanol?  Ethanol does not 

nonspecifically increase activation of every GPCR throughout the brain.  For 

example, both µ-opioid receptor null mice and a µ-opioid receptor antagonist 

increase baseline GABA release but have no effect on ethanol-enhanced GABA 

release in the central nucleus of the amygdala (Kang-Park et al., 2009).  

Additionally, there is tonic activation of GABAB receptors in the cerebellum and 

VTA, but inhibiting these GABAB receptors has no effect on ethanol-enhanced 

spontaneous GABA release (Chapter 5; Thiele et al., 2008).  Because ethanol 

does not always activate a given presynaptic GPCR, even when activation of the 

GPCR affects GABA release, I find it unlikely that ethanol is binding to an 

“ethanol binding site” on the GPCRs.  This concept was suggested previously for 

the GABAB receptors because of differences in the activation of presynaptic and 

postsynaptic GABAB receptors by ethanol (Ariwodola and Weiner, 2004). 

 Another possibility is that ethanol increases the concentration of the 

endogenous agonist that activates the GPCR.  This would explain why there is 

tonic activation of a GPCR at a presynaptic terminal, which provides evidence 

that the particular GPCR is there and can affect neurotransmitter release, while 

there is no contribution of this same GPCR to the effect of ethanol on 

neurotransmitter release: ethanol does not change the amount of endogenous 

agonist that reaches the presynaptic GPCR.  Therefore, despite the fact that a 

presynaptic GPCR is present, it is not necessarily involved in this ethanol 

mechanism.  However, this hypothesis fails to explain how ethanol increases 

spontaneous GABA release in the mechanically dissociated neuron preparation 



119 
 

(Zhu and Lovinger, 2006; Fig. 3.2).  Potential explanations include ethanol 

increasing release of a retrograde messenger or activating non-GABAergic 

presynaptic terminals that are still attached to the Purkinje cell in the 

mechanically dissociated neuron preparation.  Both of these explanations seem 

unlikely and therefore weaken the hypothesis that ethanol is increasing the 

concentration of an endogenous agonist to activate the GPCRs.    More work will 

be necessary to determine the interaction between ethanol and the GPCRs that 

would be consistent with what is known about the ethanol effect on 

neurotransmitter release. 

 

The role of calcium in the ethanol effect on neurotransmitter release  

In addition to the GPCRs, calcium signaling could also play an important 

role in determining if ethanol is going to affect neurotransmitter release at a 

particular synapse.  In normal external calcium concentrations, a cannabinoid 

agonist decreases spontaneous GABA release at the interneuron-Purkinje cell 

synapse and has no effect on spontaneous glutamate release at the parallel 

fiber-Purkinje cell synapse (Yamasaki et al., 2006).  However, if the calcium 

concentration in the extracellular solution is increased, the cannabinoid agonist 

decreases glutamate release at the parallel fiber-Purkinje cell synapse.  The 

authors conclude that cannabinoids selectively interact with “calcium-enhanced” 

neurotransmitter release, and at normal external calcium concentrations there is 

calcium-enhanced spontaneous GABA release but not calcium-enhanced 
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spontaneous glutamate release onto Purkinje cells (Carter et al., 2002; Yamasaki 

et al., 2006).   

Yamasaki and colleagues found that this effect is not limited to 

cannabinoid receptors- activation of GABAB receptors and group 3 mGluRs have 

no effect on spontaneous glutamate release onto Purkinje cells in normal 

external calcium concentrations, but when the calcium concentration in the 

extracellular solution is increased, activation of GABAB receptors and group 3 

mGluRs decreases glutamate release.  All of these receptors are Gαi-linked 

GPCRs, which provides an additional link between this pathway and calcium.  

Consistent with these data, I provided evidence for PKA being involved in the 

cannabinoid-mediated decrease in spontaneous GABA release, and the PKA 

antagonist-induced decrease in spontaneous GABA release occurred through a 

calcium-dependent mechanism (Chapter 5).   

A likely source for these calcium-enhanced events is calcium release from 

internal stores because inhibition of calcium release from internal stores 

suppresses the cannabinoid effect on spontaneous GABA release at the 

interneuron-Purkinje cell synapse (Yamasaki et al., 2006; Chapter 5).  I provided 

evidence that the ability of ethanol to increase spontaneous GABA release at the 

interneuron-Purkinje cell synapse is dependent on calcium release from internal 

stores (Chapter 4).  Calcium release from internal stores does not affect 

glutamate release at the parallel fiber-Purkinje cell synapse (Carter et al., 2002), 

and at the parallel fiber-Purkinje cell synapse ethanol has no effect on glutamate 

release (Belmeguenai et al., 2008).  Therefore, similar to the cannabinoids, 
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ethanol could selectively alter “calcium-enhanced” neurotransmitter release that 

is due to calcium release from the internal stores.   

This concept of “calcium-enhanced” neurotransmitter release works to 

explain how ethanol modulates neurotransmitter release onto Purkinje cells, and 

more studies will be needed before this theory can be applied to the whole brain.  

An interesting future experiment would be to see if the presence of a high 

calcium extracellular solution could reverse the lack of ethanol effect on mIPSC 

frequency in the cortex, thalamus and lateral septum (Criswell et al., 2008; Jia et 

al., 2008).  Additionally, one could investigate if the presence of a high calcium 

extracellular solution could reverse the reported lack of ethanol effect on 

glutamate release in the amygdala and cerebellum (Roberto et al., 2004; Carta et 

al., 2006; Belmeguenai et al., 2008).  If the experiments are successful, one 

could determine if blocking calcium release from the internal stores in the 

presence of the high calcium extracellular solution could revert ethanol back to 

having no effect on release. 

 

The big picture: the interneuron-Purkinje cell synapse and beyond 

While I have focused on the effect of ethanol at the presynaptic terminal, 

one should keep in mind that this change in neurotransmitter release affects the 

activation of postsynaptic ionotropic and metabotropic receptors.  A change in 

the amount of neurotransmitter binding to the ionotropic receptors can depolarize 

or hyperpolarize the postsynaptic neuron, which affects the excitability of the cell.  

A change in the amount of neurotransmitter binding to the metabotropic 
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receptors can have a number of effects on the neuron, which are generally 

longer lasting than the effects induced by the ionotropic receptors.  When ethanol 

increases the amount of GABA released from the basket and stellate cells, there 

is an increase in activation of the Purkinje cell GABAA receptors.  The increase in 

chloride flux would hyperpolarize the Purkinje cell, and this is consistent with the 

ethanol-induced decrease in Purkinje cell firing (Siggins and French, 1979; 

Sorensen et al., 1980; George and Chu, 1984).  Decreased Purkinje cell firing 

leads to motor incoordination, which also occurs during alcohol intoxication 

(Servais et al., 2005; Levin et al., 2006).   

Because the goal of the current work was to determine the intracellular 

messengers involved in ethanol-enhanced GABA release, analysis of action 

potential-independent release was ideal since there is a direct readout for 

changes at the presynaptic terminal.  However, neurotransmission involves 

action potential-dependent release, so conducting evoked neurotransmitter 

release studies will be necessary when trying to figure out the effect of ethanol 

throughout the brain.  Additionally, experiments should be done to explore the 

contribution of presynaptic GPCRs to the ethanol effect on neurotransmitter 

release in different brain regions.  To start, studies should be undertaken to 

determine what GPCR(s) is/are activated at the interneuron-Purkinje cell 

synapse to allow ethanol to increase GABA release.  It will likely involve 

activation of a Gαs- or Gαq-linked GPCR because activation of either receptor is 

consistent with an increase in neurotransmitter release.  
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Most importantly, it should be determined if chronic alcohol treatment 

affects the ethanol-induced increase in GABA release.  For example, if rats were 

made alcohol-dependent before the electrophysiology experiments, would 

ethanol increase GABA release to the same extent?  If so, is it occurring through 

the same mechanism?  One could also determine if there is an effect on baseline 

GABA release after chronic ethanol treatment.  Comparing these results to the 

results from alcohol naïve rats will give us an idea of the neuroadaptations that 

are occurring during chronic alcohol use, which would contribute to our 

understanding of the development of alcoholism.  
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