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ABSTRACT
MYONG YONG CHOI: Infrared Laser Spectroscopy of Isolated

Biomolecules in Super�uid Helium Nanodroplets.
(Under the direction of Roger E. Miller)

The focus of this thesis is the identi�cation and structural characterization of iso-

lated biomolecules in super�uid helium nanodroplets. We have recently developed

structural tools for studying isolated biomolecules, including nucleic acid bases (NABs)

(cytosine, guanine, uracil, thymine, and adenine), their mono-hydrated complexes and

other biologically important molecules, using high resolution infrared laser spectroscopy.

The structural tool called vibrational transition moment angle (VTMA) has been de-

veloped for measuring the angle between the permanent dipole moment and transition

dipole directions in these species and provides unambiguous structural determinations

for many systems. This is a very powerful technique, especially for larger systems, be-

cause relatively low level ab initio calculations are able to predict the correct VTMA,

when the calculated and experimental vibrational frequencies do not agree. Another

powerful tool for structural determination is used to determine the dipole moments of

various isomers by measuring the intensity of a particular band as a function of direct

current electric �eld. We have applied these new techniques to the study of the isolated

biomolecules, such as tautomerism of NABs, their nonplanarities, energetics, and the

intermolecular interactions in the hydrated NABs. These results provide benchmarks

for the evaluation of ab initio calculations being carried out on these systems.
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Chapter 1

Introduction

The two helium isotopes, 4He and 3He, have some remarkable chemical properties,

which are essential for the work described in this thesis. They remain a liquid without

solidifying under their saturated vapor pressure, and even at the lowest temperature,

approaching absolute zero Kelvin. In addition, they are super�uids below 2.17 K and

2.6 mK, respectively [1]. Speci�cally, the reluctance to solidify is a direct result of both

the extremely weak He�He interaction and the small mass of the helium atoms, which

leads to a high zero-point energy. As a result, the solidi�cation of the helium is only

possible at external pressures in excess of 25 Bar. The weak He�He interaction also

causes helium to have the lowest boiling point of all elements, namely 4.21 K and 3.19

K for 4He and 3He, respectively [2].

This weak He�He interaction is useful in the study of the solutes immersed into the

bulk helium because helium binds more strongly to the foreign species than to itself,

which makes it a good solvent. However, the solvation power is su¢ ciently weak that

in bulk helium, the solutes tend to bind more strongly to the container walls than to

the helium solvent [3]. This problem can be overcome through the use of the �nite

size helium clusters, called liquid helium droplets in this thesis, which act as a wall-less

solvent. The helium droplet experiments are based on the molecular beam techniques

and some of essentials of this technique are explained in Chapter 2. Because almost



any atoms or molecules can be easily trapped inside or on the surface of the helium

droplets, we can study isolated biomolecules, such as nucleic acid bases (NABs), their

hydrated complexes and other biologically important molecules. This thesis describes

the results of several such investigations.

1.1 Helium Nanodroplet Spectroscopy

The high resolution associated with gas-phase spectroscopy results from the fact that a

vacuum is a uniform and non-dissipative medium. In contrast, liquids and solids tend

to be rather inhomogeneous on the microscopic scale and provide ways in which the

molecules can relax, resulting in signi�cant spectral broadening. As a result, much of the

information contained in a frequency domain spectrum is lost in the broad bands that

are typical in condensed phases. The homogeneity of liquid helium, combined with its

super�uidity (non-dissipative), make an ideal spectroscopic medium [4]. Nevertheless,

the isolation of the molecules in bulk liquid helium has proven di¢ cult [5�8], owing to

rapid di¤usion of the solute to the container walls. However, nanoscale helium droplets,

�rst produced by Becker et al., [7] can provide the needed isolation and the species of

interest can easily be introduced by pick-up [8] from the gas-phase. It is important to

point out here that the helium nanodroplet method requires very little vapor pressure

in order to �ll the droplets with the molecules of interest. In a typical pick-up cell the

pressure need only be 10�6 �10�5 Torr to optimize for the capture of a single molecule

by the droplets. This is an important feature when studying biomolecules of moderate

size, where the thermal stability becomes a real issue, a point emphasized in Chapter

4.

A brief summary of the experimental investigations of helium droplets is given to

show the range of the ongoing research in both the physical and chemical helium droplet

community. The �rst liquid�cation of helium dates back to 1908 by H. K. Onnes [9,10].
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Subsequent research revealed the properties of super�uidity of helium in 1938 by Allen,

Misener, and Kapitza [11,12]. Almost two decades later, in 1961, Becker and co-workers

succeeded in producing the �rst 4He beam [7]. However, no convincing evidence of

super�uidity of 4He droplets was discovered from the study. Later in 1980, Gspann

and co-workers studied the electron-impact excitation of larger clusters of helium and

discovered that both helium isotopes were electronically metastable [13]. The �rst

demonstration of helium droplet pick-up was reported in 1990 by Scheideman et al., [14,

15] while the �rst infrared spectra of helium solvated molecules were reported by Goyal

et al. [16] for SF6 in 1992. In those studies, a depletion spectroscopy, the attenuation of

the droplet beam on laser induced absorption, was employed using mass-spectrometric

or bolometric detectors. A few years later, the Toennies group used a continuously

tunable diode laser to obtain a high resolution spectrum of SF6 in pure 4He and mixed

4He/3He droplets [17�19]. In pure 4He droplets, a rotational structure of the solvated

molecule was observed. In the mixed 4He/3He droplets, 4He clusters form inside of

the 3He droplets, due to its lower zero point energy. The SF6 was found to be in the

interior of the helium droplet, in agreement with theoretical calculations [20,21]. Most

remarkably, the direct measurement of the droplet temperature, 0.37 K for 4He and 0.15

K for 3He droplets, was obtained from these studies, which is in excellent agreement

with the calculations of Brink and Stringari [22]. In 1996, the �rst direct experimental

evidence of super�uidity in 4He droplets was revealed by Hartmann et al. [23]. A

few years later, the free rotation of OCS molecule in 4He droplets was demonstrated,

showing its sharp rotationally resolved structure, by the same group [24]. They also

demonstrated the reappearance of the sharp rotational structure of OCS by gradually

adding an average of 60 4He atoms to the 3He droplets [24]. Similar to the study of

SF6, the rotational constants extracted from the this study were about a factor of three

smaller than that in the gas-phase [24,25]. In 2000, Even et al. produced up to 20 4He

3



atoms in a pulsed jet expansion [26,27], which can bridge the gap to the studies of larger

4He droplets. Interestingly, the study showed that even the �rst solvation shell helium

density is decoupled from the rotational motion of the molecule. There is now a rapidly

growing literature on the spectroscopy of both atoms [5,28�32] and molecules [24,33�41]

in helium droplets, along with studies of the cross sections for total scattering [42],

capture and coagulation [43]. Positively [44�48] and negatively [49�51] charged droplets

have also been studied in helium, providing information on such processes as resonant

charge hopping and electron solvation, respectively.

1.2 Motivation: Studying Isolated Biomolecules

Although an important goal in biochemistry is the understanding of molecular function

under physiological conditions, much of our fundamental knowledge of biomolecules

comes form experiments carried out far from these conditions. This is perhaps best

illustrated by the importance that crystal di¤raction and mass spectrometry techniques

have played in biochemistry. The premise upon which all of this work is built is that

the things we learn about biomolecules under these non-physiological conditions can be

transferred to functional systems. Recently, nucleic acid bases (NABs) (Figure 1.1) have

been the subject of numerous experimental and theoretical studies. The conformational

variability of NABs plays a very important role in transferring the information through

biomolecular recognition processes and hydrogen-bondings in base pairs and hydrated

molecules. Although the understanding of these mechanisms in local interactions of the

biologically important molecules is in great demand, the experimental approach for such

mechanisms in the condensed phase can not be applied because of their interactions

with the local environment. However, this problem can be avoided by using the gas-

phase experiments, in which the determination and characterization of the structure

and properties of clusters is done without the interaction of a solvent, i.e. an �isolated�
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Figure 1.1: Structures of isolated nucleic acid bases (NABs).

system. This is a considerable advantage for the study of local interactions in the NABs

and their complexes. As a result, there has been an increasing e¤ort devoted to the

spectroscopic study of biomolecules in the gas-phase [38,52�76], motivated by the fact

that these can be compared directly with results of high level ab initio calculations

on isolated systems, thus providing us with benchmarks that can be used to test the

accuracy of such calculations. In addition, important structural information is provided

by these gas-phase studies, often at a level that would be impossible under physiological

conditions.

Previous studies showed that the tautomeric equilibrium strongly depends on the

chemical environment so that the NAB structures may depend on the environment

(crystalline, aqueous or other solution and gas-phase) [59,77,78]. Di¤erent tautomers of

NABs are formed by the formal migration of a hydrogen atom accompanied by a switch
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of adjacent conjugated double bonds, a chemical reaction called tautomerization. The

amino groups of NABs can form several isomers as shown in Figure 1.2. The enol forms

are structural isomers of keto forms and both forms have cis and trans stereoisomers.
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Figure 1.2: Schematic example of structural isomers (keto�enol) and stereoisomers
(cis�trans) of guanine.

High resolution spectroscopy is now routinely used to identify di¤erent tautomers

of these biomolecules [79�82], providing insights into how these systems undergo struc-

tural rearrangements of importance in understanding processes as diverse as mutation,

solvent interactions, and protein folding. For example, mutation can result from the

fact that these tautomers form nonstandard base pairs [83], such as the imino tautomer

of adenine (A) pairing with cytosine (C). The fact that C is now corporated into the

DNA strand, where thymine (T) was expected, means that cytosine (C) will pair with

guanine (G) in the next generation, the net results being the formation of a G�C pair

in place of an A�T pair, as shown in Figure 1.3.
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7



The fact that nature searches for the lowest energy design and arrangement to relax

into the potential energy surfaces is of great consequences in science. In particular,

the minor tautomers have a higher energy relative to those of the canonical (major)

form observed in the building block, so that they are rarely observed in most biological

processes. This could be partially explained on the basis of the energetic and structural

properties of the NAB system. For example, the energy gap between the canonical form

and the next lowest energy tautomers of uracil and thymine is very large, but for the

other NABs (cytosine and guanine) they have several energetically similar tautomers

which can be detectable in the gas-phase study. However, the N7H tautomers of guanine

and adenine can not be employed in the building blocks of life due to the fact that sugar

is attached to the position of N9, as shown in Figure 1.3. The same is true for the

tautomers of cytosine, uracil, and thymine where the hydrogen in the N1 position must

be substituted by a sugar moiety. Although the canonical forms make the dominant

contribution for the building blocks, knowledge of the energetics, and structures of the

rare tautomers can provide useful information about the intrinsic stability of various

tautomers of NABs and give an insight into mutations.

One of the challenges in this �eld is related to the increasing di¢ culty of volatilizing

these species as the molecular size increases. Helium nanodroplet methods have an

advantage here, given that relatively low pressures (10�6 �10�5 Torr) are needed to dope

the droplets. The correspondingly lower temperatures therefore reduce the likelihood

that the molecules will thermally decompose [70, 72, 80, 84]. In addition, solvation

in helium ensures that the molecules are cooled to the ground vibrational state, a

condition that is not always met using free jet expansions [85]. In fact, the cooling rate

experienced by a molecule captured by a droplet is so fast (as high as 1016 K/sec. [15])

that the isomer distribution characteristic of the oven temperature is likely quenched

into the droplets. Thus it is possible to observe multiple isomers and tautomers of
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biomolecules, even when they have signi�cantly di¤erent energies [79, 86�89]. Once

again, the high resolution of the method provides us with the means for characterizing

these systems.

1.3 Outline

In Chapter 2, a brief review of the experimental setup is introduced. Particularly,

a thorough explanation of the vibrational transition moment angle (VTMA), which

is a key technique in this thesis, is provided. The main focus of this thesis is on

the identi�cation and structural determination of the various tautomers of nucleic acid

bases (NABs), namely, cytosine (C), guanine (G), uracil (U), thymine (T), and adenine

(A), and their mono�hydrated complexes formed in helium nanodroplets. In Chapter

3, six di¤erent tautomers of cytosine were assigned using the measured VTMAs. The

data presented therein clears up some puzzles arising from the previously published

experimental results in both the gas-phase and in matrices. Speci�cally, a �missing�

tautomer of cytosine in the gas-phase has been in dispute since the �rst gas-phase study

of cytosine with microwave spectroscopy almost two decades ago. The work described in

this chapter has �nally solved this puzzle. In Chapter 4, the �rst successful infrared laser

spectroscopic study of guanine by thermal evaporation is presented. Along with the

measurement of VTMAs, an electric �eld dependent approach for the vibrational bands

for each tautomer conclusively assign the four lowest energy tautomers. As a result, a

tautomer that was missing in the gas-phase was observed and also the discrepancies in

the assignment of the guanine tautomers between the previous gas-phase studies were

reviewed and discussed.

Chapter 5 provides the structural information on the uracil and thymine monomer,

which reveals that only the global minimum structure of uracil and thymine was ob-

served in this work. Chapter 6 discusses a nonplanarity of adenine, which is supported
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by using the VTMA analysis. This work shows the �rst direct experimental evidence

for the nonplanarity of the NABs, which was proposed theoretically many years ago.

In Chapter 7, four theoretically predicted uracil�water binary complexes were observed

and characterized and the importance of �nding a distribution of conformations in

the helium droplets is highlighted in this work. In the case of the HCN study, the

dipole-oriented structure was the only form in the helium droplets, however, in this

study a water molecule simply falls into the potential energy well that is closest to the

point where it encounters the uracil molecule. Furthermore, relative intensities of these

bands are related to the relative widths of the potential energy entrance channels that

funnel into a given minimum. Chapter 8 focuses on the intermolecular interactions of

hydrated imidazole complexes, which is very relevant to the study of the mechanism of

the ammonia channel, whose neutral condition in the channel shed light on the study

of isolated biomolecules in the gas-phase. Finally, a brief summary and outlook of the

research direction is provided in Chapter 9.
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Chapter 2

Experimental Method

Since the discovery of the formation of liquid helium droplets, many theoretical and

experimental investigation of the droplets have been conducted in order to understand

their physical and chemical properties. Now, the understanding of the helium droplet

properties permits us to choose the appropriate experimental conditions that permit our

spectroscopic investigation. The important concepts and techniques of helium droplets

experiments are discussed in this chapter. This includes the formation of the helium

droplets, the doping the molecules of interest, the pick-up cell, multipass and Stark cells,

detectors and �nally the laser system. Discussed also is the measurement technique, in

particular the vibrational transition moment angles (VTMAs) and the dipole moment

curvature, whose techniques are all based on pendular-state spectroscopy.

2.1 Formation of Helium Droplets

Helium droplet beams are produced by supersonic expansion and generated with es-

sentially any size, 102 �106 atom range [90�93], depending on the following critical

parameters, nozzle ori�ce size, nozzle temperature, stagnation pressure of helium gas

and the pumping speed of the source chamber pump. In this experimental set up a

constant pressure of 50 �60 bar was applied behind a 5 �m nozzle at 20 �21 K to



produce helium beams with average size droplets of 3000 helium atoms.

The droplets are formed in the early and high pressure portion of the expansion.

As the pressure falls below the equilibrium vapor pressure of the droplets, they cool

by evaporation. This evaporative cooling of the helium droplets reduces the total

energy of the droplets. In the case of 4He the evaporation rate becomes negligible at

0.37 K [22], on the time scale of the �ight time through the apparatus. The weaker

interaction, characteristic of 3He, makes the corresponding droplets evaporatively cool

to 0.15 K [22,94]. The cooling rate of these systems, �rst reported by Brink et al. [22],

showed almost no change with the droplet size after 10�7 s. During the �ight time

of the droplets throughout the apparatus helium droplets remain almost at a constant

internal temperature of 0.37 K.

Due to the lack of a technique for measuring the droplet size directly, a scaling

law for measuring the droplet size was introduced by the Toennies group [43,93] using

a mass-spectrometric analysis of the scattered droplets. The size distributions of the

droplets are given by a log-normal distribution function, PN(N) [43]

PN(N) =
1

N�
p
2�
exp

�
�(lnN � �)

2

2�2

�
. (2.1)

where � and � are the mean and standard deviation of the distribution of the size.

The log-normal distribution function can be normalized, i.e.
R1
0
PN(N) dN = 1:

The distribution has one maximum at:

Nmax = exp(�� �2) , (2.2)

with

PN(Nmax) =
1

�
p
2�
exp

�
�2

2
� �

�
. (2.3)
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The qth log-normal distribution can be calculated analytically:

N q =

Z 1

0

N qPN(N) dN = exp

�
q�+

q2�2

2

�
. (2.4)

The mean droplet size, N , and the standard deviation, S, of the log-normal distri-

bution function PN(N) are given by:

N =

Z 1

0

NPN(N) dN = exp

�
�+

�2

2

�
, (2.5)

and

S =

�Z 1

0

�
N �N

�2
PN(N) dN

� 1
2

= N
p
exp(�2)� 1 . (2.6)

The qth log-normal distribution function can be obtained from equations 2.3 and

2.4:

N q = N q � exp
�
q(q � 1)
2

�2
�
. (2.7)

� and � are easily obtained as a function of N and S by inverting equation 2.5 and

2.6 to yield:

� = ln

0@ N
2q

N
2
+ S2

1A , (2.8)

and

�2 = ln

�
S2

N
2
+ 1

�
. (2.9)

The full width at half maximum,�N1=2, of the log-normal distribution is determined

for a range of nozzle conditions:
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�N1=2 = exp
�
�� �2 + �

p
2 ln 2

�
� exp

�
�� �2 � �

p
2 ln 2

�
(2.10)

= 2 exp(�� �2) sinh
�
�
p
ln 4
�
, (2.11)

and the relative width can be expressed as:

�N1=2

N
= 2

�
S2

N
2 + 1

�� 3
2

sinh

"s
ln 4 � ln

�
S2

N
2 + 1

�#
. (2.12)

The empirical scaling law for the mean droplet size, N , as a function of the scaling

parameter, �; was developed by Knuth et al. [93]:

ln(N) = 2:44 + 2:55 ln(�) , (2.13)

where the scaling parameter � was empirically established as

� = K0:6
1 K

0:4
2 , (2.14)

K1 = n0v
d

a0

r
2


�m

�
Tref
T0

� 3
4

, (2.15)

K2 =
p0
A

�
Tref
T0

� 5
2

, (2.16)

where, v; 
; A; and Tref are the atomic volume of helium (27.34 cm3/mol), the surface

tension (0.35 dyne/cm), a vapor pressure constant (7.8 bar) and Tref is given as 3.23

K [93]. The scaling parameters � in equation 2.14 are the stagnation temperature,

T0; pressure, p0: The nozzle size, d; is 5 �m in this experimental setup; the density,

n0; speed of sound, a0; at stagnation conditions are provided by McCarthy [95]. The

standard deviation, S; and the mean droplet size, N; are found to be approximately

14



linearly related to each other [96]:

S � 0:65N , (2.17)

which translates equation 2.6 to:

� � 0:55 . (2.18)

Therefore, the full width at half maximum (FWHM) is also derived from equation

2.12, which is also linearly related to the mean droplet size, N :

�1=2 � 0:87N . (2.19)

If the density of the helium droplets is known and the droplets are assumed to have

a spherical shape, the droplet radius can be calculated from the mean droplet size of

the droplets, N .

R = r0 �N
1
3 , (2.20)

where, the unit radius, r0, equals 2.22 Å for 4He and 2.44 Å for 3He [97] if the bulk

helium density, 0.0218 Å�3; is used (V = 4
3
�R3 = N

0:0218
). For example, the radius of a

3000 helium atom droplet is estimated to be �32 Å.

The mean droplet size, N , is calculated from equation 2.13 for the most common

source conditions, stagnation pressure (50 �60 bar) and nozzle temperature (16 �28

K), and tabulated in Table 2.1. The droplet size distribution, PN(N), can be calculated

using the standard deviation, S, and the predicted mean droplet sizes, N . Figure 2.1

shows the log-normal distributions for a �xed stagnation pressure of 60 bar and several

nozzle temperatures. As shown in Figure 2.1, the droplet size distribution is rather
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Table 2.1: Mean droplet sizes produced for a stagnation pressure of 50 and 60 bar with
5 micron nozzle and various nozzle temperatures, 16 �28 K.

T N T N
(K) 50 bar 60 bar (K) 50 bar 60 bar
16 9700 11600 22 2400 3000
17 7500 9100 23 1900 2500
18 5900 7200 24 1600 2100
19 4600 5700 25 1300 1700
20 3700 4600 26 1100 1400
21 2900 3700 28 750 1000

broad, so that a wide range of sizes are present in the beam for a given mean droplet

size. The ability to vary the droplet size is extremely important for studying larger

solutes, given that the droplet must have a su¢ cient heat capacity to accommodate

the thermal energy of these species, without the loss of all the helium atoms by evapo-

ration. For spectroscopic studies it is generally best to work with the smallest possible

droplets, since by simple conservation of helium, there are fewer droplets when the mean

size is large. Fewer droplets means fewer dopant molecules, which translates into low

spectroscopic signals, assuming the sensitivity is linearly dependent upon the number

of absorbers. Depending upon the nozzle temperature, the droplet velocities [43, 98]

typically fall in the range 200 �400 m/sec (although droplets as slow as 50 m/s have

been produced [91]), meaning that in a typical apparatus, with a beam path length of

1 meter, the �ight time of the droplets is approximately 2 �5 msec.

2.2 Doping the Droplets

Although doping foreign atoms and molecules into the helium droplets has already

been reviewed in a number of previous papers on helium nanodroplet spectroscopy

[5, 32, 99�101], further review is conducted in order to put this thesis in the context
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Figure 2.1: Predicted log-normal droplet size distributions for various nozzle tempera-
tures (18, 19, 21, and 23 K) and at a 60 bar stagnation pressure. The corresponding
mean droplet sizes are given in Table 2.1.

17



of focusing on doping biomolecules in the helium droplets. Basically, any molecules

can be easily doped into the helium droplets by collisions while they �y through the

apparatus because the solubility of the droplets is better than that of vacuum. Since

the droplets pick up virtually all gas-phase molecules in their beam path, it is essential

to maintain a vacuum of 10�7 Torr or less, where the pick-up region is located, to

avoid unwanted pick-up of any residual background gases. A detailed explanation of

the pick-up methods that has been used for biomolecules and water molecules can

be found in Subsection 2.3.1. Upon picking up the foreign molecules, the droplets

undergo evaporation of surface helium atoms due to thermal energy transfer from the

vibrationally and rotationally hot dopant molecules to the droplets. The number of

evaporated helium atoms can be estimated from the binding energy (Ebind ' 5 cm�1 =

7:2 K) of a helium atom to the droplet [22]. If the vapor pressure of molecules in the

pick-up region is su¢ ciently high, multiple collisions occur and eventually the successive

doping of several foreign molecules can arise, which leads to the formation of van der

Waals complexes within 10�10 to 10�8 s [42].

The cross section of a spherical droplet, �, is obtained from the classical droplet

radius, R, and the bulk unit radius, r0, given in equation 2.20. We �nd

� = �R2 = �r20N
2=3 = 15:5N2=3 . (2.21)

The probability of N number of helium atom droplet that dopes k molecules at

given density, �, is obeyed by the Poisson distribution:

PN;k(p) =
�kN
k!
exp(��N) , (2.22)

where, �N = ��L = 15:5�LN
2=3 from equation 2.21, and L is the length of the pick-up

cell. The evaporative loss of helium atoms due to the pick-up process is generally is on
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the order of a few hundred helium atoms.

2.3 The Experimental Apparatus

The apparatus used in the present study of biomolecule systems has been discussed

in detail elsewhere [102] and is shown in Figure 2.2. A closed cycle helium refriger-

ator (CTI�Cryogenics, Coldhead model 22 and Compressor 8200) is used to cool a

5 �m diameter nozzle, sealed to the end of a copper tube, to approximately 20 K,

measured from a LakeShore Si diode thermal sensor (LakeShore model 321 autotuning

temperature controller). The nozzle temperature is controlled with a PID setting of the

temperature controller using a Kaptan heater. The nozzle is a platinum disc crimped to

a 2" � 1/4" diameter copper tube (Lenox Laser). By expanding ultra-pure helium gas

from 50 �60 bar, droplets with a mean size of several thousand helium atoms, a radius

of 3 �4 nm, are generated [43, 93]. Once formed, the helium droplets pass through

a 0.4 mm diameter skimmer into the second pumping station, maintained below 1 �

10�6 Torr. This main chamber contains pick-up cells, shown in the Figure 2.2, used to

introduce target molecules into the droplets. By maintaining this region at a pressure

of 10�6 to 10�5 Torr of the species of interest, the droplets can be loaded with one or

more molecules.

2.3.1 Pick-up Cell and Oven

As shown in Figure 2.2, right after the skimmer, the droplets pass through an oven

and a pick-up cell, which is pumped independently from the main chamber by a turbo-

molecular pump (Varian, Turbo-V 250). The turbo pump helps unwanted background

gas molecules in the pick-up region. In addition to the �xed pick-up cell, a load-lock

was implemented to allow for the possibility of inserting an oven without venting the
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Figure 2.2: A schematic diagram of the helium nanodroplet apparatus [102]. The
enlarged view of the nozzle assembly used in the helium droplet experiment is shown
in inset. The nozzle is connected to a closed cycle helium refrigerator by copper braids,
so that it can be coolded to approximately 20 K.
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apparatus for changing samples. Two types of oven, shown in Figure 2.3, have been

used for speci�c experiments in this thesis. In order to maximize the probability of

picking up target molecules, the scattering-box oven, shown in Figure 2.3(a), is used

most of this work, from Chapter 3 to Chapter 7. However, for molecules which have

high vapor pressures, the scattering-box oven resulted in the pick-up of too many mole-

cules, therefore, an e¤usive oven, shown in Figure 2.3(b), was used in Chapter 8. Both

ovens consist of a 3/4" stainless steel tube and the parts shown in Figure 2.3 are all

made of copper for a good thermal conductivity with the cartridge heater. The tip of

the scattering-box oven is blanked and two holes (2 mm) are clear for the droplet beam

to pass through. For the e¤usive oven, the tip of the e¤usive oven, 1 mm diameter

hole, faces along the droplet beam axis and the end of the oven is positioned just down

the helium nanodroplet beams so that the droplets pass by and pick up the target

molecules at the exit of the e¤usive oven.

A second pick-up cell is positioned downstream of the oven in order to add water

to the droplets. Because of the high mobility of molecules in the helium droplets, all

molecules added to the droplets end up in a complex, located close to the middle of the

droplet.

2.3.2 Multipass and Stark Cell

After doping the target molecules, the droplets pass through the laser interaction region,

where two highly re�ective gold-coated mirrors and two Stark electrodes are positioned.

The multipass cell enhances excitation e¢ ciency by multiple interactions (20 �50 times)

of the IR laser beam with the doped helium droplets. In this work, a two meter telescope

was used to improve the focusing of the spreading laser beam which helped the signal-

to-noise signi�cantly.

As shown in Figure 2.2, the laser interaction region is positioned between two Stark
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Figure 2.3: Two di¤erent types of oven, (a) scattering-box oven and (b) e¤usive oven,
used in conjunction with a load-lock.
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electrodes, used to apply a large electric �eld. Applying a high electric �eld to the two

steel electrodes produces a homogeneous direct current (DC) electric �eld perpendicu-

lar to the droplet beam axis. The distance between the two electrodes can be adjusted

from outside of the chamber to align the machine while maximizing the signal. At

the high electric �elds (80 �100 kV/cm) and a low temperature typical of our experi-

ments (0.37 K), the interaction energy with the electric �eld for polar molecules is much

larger than kT , such that the molecules between the electrodes become highly oriented.

The combination of multipass and Stark cell is essential in the measurement of vibra-

tional transition moment directions [79, 86�89] and dipole moment of several di¤erent

tautomers [89], in Chapter 4, which contain considerable structural information and

provide unambiguous assignments of vibrational spectra.

2.3.3 Detector: Bolometer

A Si/diamond composite bolometer (Infrared Laboratories) is used to detect the total

energy in the helium beam. The bolometer element is a semiconductor so that it has a

large resistance at cryogenic temperatures due to the removal of thermal energy from

the material and the corresponding depletion of electrons in the conduction band. When

used as a variable resistor in a simple DC current, changes in the bolometer temperature

will be seen as changes in current. These changes in the current are the basis for the use

of the bolometer as a detector for optothermal spectroscopy. Detection of the infrared

spectrum of a molecule is based upon the fact that the vibrationally excited molecule

quickly relaxes back to the ground state as energy �ows into the helium. The result is

the evaporation of approximately 600 helium atoms, depleting the �ux of helium in the

droplet beam. This laser induced attenuation of the beam is detected by the bolometer

detector.

A small mechanical pump evacuates the helium reservoir in the cryostat, shown in
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Figure 2.4, which cools the liquid helium by evaporation to a temperature below the

lamda point (2.17 K). The operating temperature of the bolometer (1.6 K) is achieved

by further cooling of the super�uid helium.

LHe

LN2 Shielding

Bolometer

LHe

LN2

To mechanical pump

Figure 2.4: Schematic diagram of the bolometer. The enlarged view of the bottom part
where the bolometer is attached onto the surface of 1.6 K helium temperature is shown
in inset.

A schematic of the bolometer circuit is given in Figure 2.5. The electric circuit

is a voltage divider biased with a stable 15 V mercury battery, and a 20 M
 load

resistor. The microphonic and excess input capacitance are greatly reduced by placing

the preampli�er (LN-6C JFET), a low-noise voltage ampli�er, near the bolometer so

that the Johnson noise is minimized. The JFET and bolometer speci�cations are listed

in Table 2.2.
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Table 2.2: Speci�cations of the bolometer and JFET, a preampli�er.

Bolometer
Type Si/diamond composite
Operating temperature 1.6 K
Collector 2 � 5 mm diamond
Thermal Conductivity 11.02 �W/K
Resistance (1.6K) 62.6 M

Load resistor 20 M

Sensitivity 7.60 � 105 V/W
NEP 3.96 � 10�14 W/

p
Hz

Noise 42.6 nV/
p
Hz at 20 Hz

29.8 nV/
p
Hz at 200 Hz

LN-6C JFET
First Stage Remote at cold surface
Voltage Gain 200 and 1000 � 5 %
Input Impedance > 1 � 1013 

Output Impedance < 500 

Frequency Response 0.75 Hz to 30 KHz
Maximum Output � 7V
Power Requirements � 9V
Shorted Input Noise 5 nV/

p
Hz

Size 6.5" � 3" � 4" wide
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Figure 2.5: Schematic of bolometer electric circuit.

2.3.4 Laser System

The laser system used in this thesis is a periodically poled lithium niobate (PPLN)

optical parametric oscillator (OPO) from Linos Photonics (OS 4000). The OPO gen-

erates three laser beams, one signal and two idler beams. The signal has a power of up

to 40 mW and is tunable in the wavelength range of 1.45 �2.0 �m. Each idler beam

provides tunable infrared light form 2.3 to 4.0 �m and has a power up to 60 �80 mW

and can be used to vibrationally excite a wide range of molecules containing C�H, N�H

and O�H stretches.

The OPO (Linos Photonics �OS 4000) is shown in Figure 2.6. An OPO consists

of a nonlinear crystal, PPLN, inside an optical linear cavity pumped longitudinally by

a diode-pumped continuous wave (cw) Nd:YAG laser. The PPLN crystal splits the

pump beam into a signal and idler beams so that the optical cavity has to be resonant
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for one or both of the OPO beams. The sum of the frequencies of the signal and

the idler frequencies is equal to the pump frequency due to the energy conservation

law: !p = !s + !i. The OPO frequencies are obtained from the phase matching

condition inside the PPLN crystal by changing the temperature of the crystal. The

overall tunability range of wavelengths of 2.3 to 4.0 �m for the OPO beams can be

obtained from several di¤erent ways, as detailed below.

Pump
Isolator

Oven

Piezo Etalon

PPLN
Crystal

Servo

Idler

SignalIdler

OS 4000

Exp.

Diagnostics

Burleigh
WA­20IR

Exp.

Ref. Diode

Web.
Cam.

150 MHz Etalon

7.5 GHz Etalon

Figure 2.6: Schematic of Linos PPLN�OPO and diagnostic etalons and wavemeter used
for spectral calibration purposes. The idler laser beam is used for experiment with the
apparatus in Figure 2.2. The web camera is for reading out the numbers from the
wavemeter.

A rough tuning is performed by changing the poling period of the PPLN crystal,

which has 33 di¤erent poling periods. The frequency range of each poling period, about

100 cm�1, covers about 20 % of those of the neighboring poling periods. The frequency

ranges of the every poling periods are listed in Table 2.3.

Fine tuning is obtained by varying the PPLN crystal temperature and/or tilting the
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Table 2.3: The frequency range for each poling period of a PPLN temperature range
from 155 to 180 Celsius

Signal frequency Idler frequency
Poling (cm�1) (cm�1)
Period T = 155 �C T=180 �C T = 155 �C T=180 �C
1 5455.54 5146.68 3941.66 4251.70
2 5580.36 5361.93 3816.79 4035.51
3 5659.31 5485.46 3738.32 3912.36
4 5753.74 5605.38 3646.97 3792.19
5 5824.11 5698.01 3573.98 3699.59
6 5892.75 5770.34 3505.08 3628.45
7 5955.93 5844.54 3442.34 3553.66
8 6013.23 5913.66 3384.09 3484.32
9 6066.12 5973.72 3331.67 3424.07
10 6112.47 6029.54 3285.15 3368.14
11 6163.33 6082.73 3234.15 3315.10
12 6203.47 6131.21 3194.38 3266.37
13 6250.00 6176.65 3147.62 3222.17
14 6284.96 6222.78 3112.65 3174.91
15 6327.91 6266.06 3069.74 3131.56
16 6360.11 6301.20 3037.48 3096.45
17 6395.09 6341.56 3002.55 3056.05
18 6430.45 6376.33 2967.18 3021.33
19 6459.95 6409.02 2937.63 2988.55
20 6492.24 6443.71 2905.37 2953.86
21 6521.88 6476.26 2875.79 2921.33
22 6548.79 6505.76 2848.84 2891.84
23 6575.49 6535.52 2822.15 2862.54
24 6602.40 6562.54 2795.40 2853.03
25 6626.91 6589.35 2770.70 2808.28
26 6653.80 6616.38 2743.86 2781.25
27 6678.24 6643.19 2719.39 2754.44
28 6702.41 6667.56 2695.20 2730.08
29 6724.05 6691.65 2673.58 2705.92
30 6745.36 6713.21 2652.24 2684.42
31 6769.56 6737.64 2628.05 2659.93
32 6791.17 6759.04 2606.47 2638.59
33 6810.13 6780.58 2587.46 2617.05
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Table 2.4: Free spectral range (FSR) of the etalons

Etalon Free spectral range
thickness (FSR)
(mm) (cm�1)
0.5 5.46
0.4a 6.83
0.3 9.10
0.21 13.00
0.19b 14.37

a used in this work.
b used in free O�H stretch region

(3700 �3750 cm�1).

intracavity etalon. Each poling period of the PPLN crystal has a speci�c temperature

tuning range, 155 � 180 �C, so that during the temperature scan the ampli�cation

pro�le of the optical parametric process shifts slowly in frequency. Decreasing the

temperature results in an increasing signal frequency and a decreasing idler frequency.

During the temperature scan the idler frequency mode hops to the mode distance of

the OPO cavity (0.5 �0.6 GHz) or to the free spectral range (FSR) of the intracavity

etalons, which is listed in Table 2.4. In this thesis, most of scans were done using a

0.40 mm etalon, except for the free O�H region where a 0.19 mm etalon was used. The

etalon is used because the ampli�cation bandwidth of the parametric process is very

broad so that a lot of OPO cavity modes have almost the same ampli�cation. It is

possible to select a speci�c mode of the OPO cavity with the etalon, so that a mode

hop scan is accomplished by tilting simultaneously the etalon while changing the PPLN

crystal temperature.

A continuous tuning is also possible by varying the temperature (frequency) of the

pump laser. The continuous tuning range of the pump laser without mode hops is

about 8 �10 GHz at maximum. The continuous scan is not necessary for the work
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described in this thesis because of the broad band characteristics of the biomolecules,

for which the mode hop scan (� 500 MHz) gives su¢ cient spectral resolutions.

A series of diagnostic etalons and wavemeter was used to calibrate the spectra. A

7.5 GHz free spectral range confocal etalon is used to monitor the mode structure of

the laser and to aid in high resolution scanning. Laser frequencies are measured by a

wavemeter (Burleigh WA-20IR), a device that measures transmission fringes from the

OPO and a He�Ne laser standard and uses the standard to calibrate the frequency of

the infrared laser. The frequency resolution of the wavemeter is 0.01 cm�1, su¢ cient

for the modes of the biomolecules studied in this thesis.

2.4 Pendular-state Spectroscopy

The high resolution and low temperatures characteristic of helium nanodroplet spec-

troscopy makes it ideal for the application of pendular-state spectroscopy [103�106].

This term comes from the fact that polar molecules behave as the quantum equiva-

lent of a pendulum when placed in a DC electric �eld, given that the dipole tends

to become oriented with the �eld. The higher the electric �eld and lower the rota-

tional temperature, the better oriented the molecules become. In the gas-phase, this

approach has been used to orient molecules in the laboratory frame for both pho-

todissociation [107�109] and cross molecular beam experiments [110�119]. At high

temperatures, the �elds required to achieve signi�cant orientation are often imprac-

tically high. However, at the low temperatures associated with helium nanodroplets,

strong orientation can be achieved with even modest electric �elds (< 50 kV/cm). In-

deed, for most polar molecules in helium, the interaction between the dipole moment

and the DC electric �eld (�E) is much larger than the rotational energy. A detailed

examination of the corresponding states and selection rules [103, 120] reveals that, for

a parallel band (transition moment parallel to the permanent electric dipole moment)
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the entire ro-vibrational spectrum collapses into a single transition when the laser po-

larization direction is aligned parallel to the DC electric �eld. The corresponding signal

enhancement is even more dramatic if one considers that in this polarization geometry

the transition dipole moment is also better aligned (on average) with the laser electric

�eld, in comparison with the isotropic, zero-�eld case. This �eld induced pendular

transition appears near the vibrational origin of a given vibrational band and so is

often referred to as a �eld induced Q branch. Figure 2.7 shows the corresponding con-

�guration, namely with the two Stark electrodes straddling the laser excitation region,

along with a series of spectra for cyanoacetylene (a linear polar molecule) [121]. The

spectrum starts out at zero-�eld as a relatively weak band, showing P and R branches.

The �eld induced Q branch quickly dominates the spectrum as the �eld is increased.

As discussed in detail elsewhere [120] the pendular Q branch transition is actually com-

posed of a number of transitions that, in the pendular limit, have approximately the

same frequency (assuming that the vibrational dependence of the dipole moment and

the rotational constant are small [120, 122]). In this case, the entire population can

be pumped with a single frequency, accounting in part for the high intensity of this

transition.

At more moderate �elds, Stark spectra can also be recorded for helium solvated

molecules and complexes, from which the magnitude of the permanent dipole moment

can be determined [37]. As discussed in detail elsewhere [123], the dipole moment

determined from such studies is slightly di¤erent from that of the gas-phase molecule,

owing to the fact that the solvent cage is in general not exactly spherical. As a result,

the polarization of the solvent surrounding the molecule results in a net dipole moment

that can either enhance (oblate symmetric top) or diminish (prolate symmetric top)

the dipole from that of the isolated molecule [123]. However, given that this e¤ect is

generally quite weak (< 10% of the molecular dipole), a simple correction factor can
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Figure 2.7: A schematic diagram showing the geometry used for pendular-state spec-
troscopy. The laser electric �eld is aligned parallel to the DC electric �eld, the latter
being used to orient the electric dipole moment of the helium solvated molecules in the
laboratory frame. The lower set of spectra shows the evolution of the IR spectrum of
cyanoacetylene from the �eld free (P and R branches) to the pendular (Q branch only)
regimes.
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be applied to quite accurately determine the dipole moment of the isolated system.

This correction is applied for many of the systems we have studied in helium [124�127],

given that the analogous gas-phase species have not been previously observed, so that

comparisons can be made with ab initio theory.

2.5 Vibrational Transition Moment Angle (VTMA)

The orientation of polar molecules in the laboratory �xed frame has a number of im-

portant advantages, discussed in Section 2.4. In addition, however, we have found that

this approach can be used as a structural tool for molecules. In particular, we are

interested in the application of this method to the study of isolated or water solvated

biomolecules [79, 86, 87, 89]. The approach is based upon the fact that the vibrational

transition moment associated with a given vibrational mode is a vector quantity that

points in a well-de�ned direction in the molecule �xed frame. Likewise, the permanent

dipole moment has a well-de�ned direction, de�ning a unique angle between the two,

for each molecular vibration. In the case of high frequency H�X stretches, where the

modes are quite local in character, the transition moments are often (approximately)

along the associated bonds. This is illustrated along the top of Figure 2.8 for N�H

stretching vibrations for three of the tautomers of guanine, for example, having transi-

tion moments (dashed arrows) that are approximately parallel to the N�H bonds (red

double arrows). As a result, the measurement of a set of such angles for a number of

di¤erent vibrational modes of a molecule can provide detailed structural information

that can be compared directly with ab initio calculations of the same quantities. Since

these vibrational transition moment angles (VTMAs) are de�ned in the molecule �xed

frame, their experimental measurement requires orientation of the molecule in the lab-

oratory frame. In the limit of pendular behavior, the polarization dependence of the

vibrational band intensities can be used to measure these VTMAs [79,86,87,89].
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Figure 2.8: The polarization ratio, �(�), obtained from equation 2.27 (see text) for
the G9Ea tautomer of guanine (top right). The ab initio constants, �p = 3:11 debye,
A = 0:063668, B = 0:037634, and C = 0:023668 cm�1, were used to determine the
dipole distribution function, P (cos �) (equation 2.23), resulting in the solid curve for
�(�). In comparison, the dotted, dashed and dot-dashed lines were obtained by reducing
the rotational constants by factor of 1.5, 3.0, and 6.0, respectively. The experimental
VTMAs are determined for the heavy rotors by comparison to �(�) with A; B; and C
as the ab initio values divided by a factor of three, accounting for the solvent induced
increase in the rotor�s e¤ective moment of inertia. Even if the rotational constant
correction factor is changed by a factor of two (reduced by factor of six), only a small
change in the VTMA, �, is observed, with the error increasing for more parallel bands.
Also shown are the permanent dipole moment (solid arrows), and transition dipole
moment (dashed double arrows) directions for three of the guanine tautomers. The
transition dipole moment vectors shown are all approximately parallel to the N�H
bonds involved in the vibrations (red solid arrows).

34



The directions of the permanent dipole, �p, and the transition dipole, �t, are shown

in Figure 2.9. The direction of the permanent dipole is set to be the z axis in the

molecular frame and their transition dipole moment is set to be within the x and z

plane so that the the angle, VTMA (�), is formed with the permanent dipole moment.

The ' and � are azimuthal angles in the laboratory and the molecular frame. The

transition dipole can be represented by the vector that spins on the corn formation

with z axis, which is on the other hand spinning on the corn with � angle in the

laboratory frame, shown in Figure 2.9 [128].

Figure 2.9: Coordinate system of a molecule with a permanent dipole and transition
dipole moment in the laboratory frame and the moleuclar frame. In the molecular
frame, the permanent dipole is set to be the z axis, and the azimuthal angle of the
transition dipole is set to 0 �. In the laboratory frame, the orientation electric �eld is
chosen to be the Z axis, and the two laser polarizations are de�ned on the XZ plane.
This �gure is taken from ref. [128].

The quantitative analysis of the experimental data requires that the degree of dipole
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orientation in the electric �eld be accurately determined. At �nite electric �elds, this

distribution of orientations can be calculated using the approach discussed by Kong

et al. [128�131] and is dependent upon the rotational states that are populated in the

droplets, which is determined by the rotational constants and the droplet temperature.

However, since the present experimental spectra are broadened beyond the rotational

contour, the sensitivity of the orientation distribution to the rotational constants is

rather muted. As a result, we �nd that the ab initio rotational constants, divided by

a factor of three to account for the e¤ects of the helium [99], can be used to determine

accurate VTMAs. This is largely the result of the fact that the rotational temperature

is well determined in these experiments (namely, the droplet temperature of 0.37 K

[18,22]). In detail, the normalized orientation distribution is then given by:

P (cos �) =

Z 2�

0

P (cos (�; ')) d' =
1

2

 
1 +

1X
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!
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and

0B@ J2 J1 n

M �M 0

1CA is a 3-J symbol, NM is the degeneracy for each M value, and Nk

is the nuclear statistical weighting factor.

The absorption e¢ ciency for a linearly polarized laser depends upon the angle �

between the permanent dipole and the transition moment (a molecular �xed property),
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referred to here as vibrational transition moment angles (VTMAs), as well as the angle

between the laser electric �eld and the DC electric �eld.

The parallel and perpendicular intensities, as a function of �, can be calculated

using:

Ak(�) =

Z 2�

0

d'

Z 2�

0

d�

Z �

0

P (cos �) [sin � cos� sin�� cos � cos�]2 sin �d� , (2.25)

A?(�) =

Z 2�

0

d'

Z 2�

0

d�

Z �

0

P (cos �)[cos' cos � cos� sin�� sin' sin� sin�

� cos' sin � cos�]2 sin �d� . (2.26)

The polarization ratios are therefore given by:
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or in the limit of in�nite electric �eld

�(�) = 2

�
1

sin2 �
� 1
�
;where P (cos �) = 2��(cos � � 1) . (2.28)

The experimental VTMAs (�) are determined from equation 2.27 by measuring the

ratio of the integrated band intensities for parallel and perpendicular polarization, nor-

malized using the corresponding �eld free spectra. The polarization ratio as a function

of the VTMA (equation 2.27) is shown in Figure 2.8 for the G9Ea tautomer of gua-

nine along with the experimentally measured VTMA for the N9H vibration (32 � 4 �).
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These angles can also be extracted from ab initio calculations for direct comparison

with the experimental values [79]. Given that a non-linear molecule has 3N�6 vibra-

tional modes, the corresponding VTMAs can provide a great deal of information on

both the molecular structure and the assignment of the spectrum. [79,86,87,89].

It is interesting to note that for teracene [132] there was some degree of zero-�eld

alignment in the laboratory frame, resulting in a 10 �20 % increase in the band in-

tensity with the laser polarization aligned parallel to the droplet beam direction as

compared to the perpendicular alignment. It was proposed, and later con�rmed [133],

that this spontaneous alignment was a result of a fraction of the droplet angular mo-

mentum (deposited to the droplet upon pick-up of the droplet) being transferred to

the embedded rotor. Clearly this e¤ect would bias the measurement of the experimen-

tal VTMAs, since the comparison of the experimental polarization ratio to �(�) (see

Figure 2.8) relies on the assumption that the zero-�eld intensity is isotropic without

the �eld. Assuming the solvated molecule was oriented in the laboratory frame to the

same degree as was measured for teracene [132], a 10 �20 % error in the measured �(�)

would occur, which, depending on the associated constants of the solvated molecule,

would lead to an error of about � 5 �. However, for all the systems reported thus

far [79,86,87,89], the zero-�eld intensities were the same within the experimental error

for both polarization alignments, and the error due to any zero-�eld laboratory frame

alignment is likely within the error associated with the measurement of the polarization

ratios.

The polarization ratios, �(�), are obtained from the �gen_f�program in Professor

Wei Kong�s Lab at Oregon State University. The program needs some variables for

the calculation, such as rotational constants and dipole moment components which are

obtained from ab inito calculations and the temperature of the molecule of interest,

0.37 K in our experimental condition. The rotational constants and the dipole moment
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components of all molecules studied in this thesis are listed in Table 2.5. As mentioned

above, the rotational constants used in this thesis were reduced by a factor of three

upon solvation in helium [99]. The variational calculations were converged for all the

molecules studied in this thesis by including states up to J = 15. The values in Table

2.5 were obtained from ab inito methods (MP2/6-311++G(d,p)) except for uracil and

thymine, where MP2/aug-cc-pVDZ calculations were used.

The ab initio VTMAs are directly obtained using �Law of Cosines�, since the two

points (in x, y and z coordinates), permanent dipole moment and transition dipole

components, are easily obtained from the ab inito calculations. The ab initio VTMAs

(shown on top of Figure 2.8 for guanine) for all the molecules in this thesis are shown

in each chapter and compared with the experimental VTMAs obtained using the inte-

grated area ratios (Apara:/Aperp:) for the various vibrational bands from three di¤erent

polarization scans of parallel and perpendicular polarizations to the DC electric �eld.

The zero-�eld spectrum of each polarization is needed to correct for power di¤erences

(normalization) of each laser direction.

2.6 Measurement of Dipole Moment: Field Depen-

dence Experiment

We recently developed a technique that takes advantage of the fact that the dipole

moment for the various tautomers of NABs are di¤erent. As a result, the dependence

of the band intensities on the magnitude of the electric �eld should be quite di¤erent for

the various tautomers. In particular, a molecule with a small dipole moment will require

a large electric �eld for complete orientation between the two Stark electrodes, while

much lower �elds are needed to reach this saturation condition if the dipole moment

is large. Figure 2.10 shows the theoretical changes in the band intensity ratios with
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Table 2.5: A summary of information for the VTMA analysis of the molecules in this
thesis. The rotational constants and dipole moment components were performed at the
MP2 level with a 6-311++G(d,p) basis set.

Rotational Constant (cm�1)a Dipole Moment
A B C x y z

Cytosineb

C1 0.0428779876 0.0223736090 0.0147141173 -3.8012 5.0603 0.7813
C31 0.0437509384 0.0222283139 0.0147531110 -2.7948 1.7081 0.8730
C32 0.0431043101 0.0224020821 0.0147548089 4.4077 -0.7946 0.8751
C21 0.0424747669 0.0224487534 0.0147213535 0.6259 4.7416 -0.2289
C22 0.0427415052 0.0222348895 0.0146597063 0.8430 2.1936 -0.1221
C4 0.0431353427 0.0220419113 0.0146090823 -7.6318 -0.5041 0.8871

Guaninec

G9K 0.0212340434 0.0123810420 0.0078298776 -2.7025 -5.5839 0.8187
G7K 0.0212253151 0.0124434708 0.0078565227 -0.8683 1.3360 1.0007
G9Ea 0.0212225329 0.0125446732 0.0078892543 -0.5658 -2.9033 0.9478
G9Eb 0.0212987549 0.0125861975 0.0079162353 -2.1167 -3.3365 0.9392
G7Ea 0.0210897355 0.0125742960 0.0078838962 1.0455 4.0925 0.8202
G7Eb 0.0209412304 0.0125793117 0.0078701967 -3.6544 3.4087 0.8709
Uracild;e

UK 0.0426907111 0.0221086887 0.0145655021 -1.1975 4.2113 -0.0010
UE12 0.0428393831 0.0221269069 0.0145906907 -4.7060 4.4277 0.0014
UE14 0.0427926307 0.0222565545 0.0146414825 1.7834 4.4960 0.0000
UE32 0.0432227500 0.0220057751 0.0145818123 2.8950 0.8710 -0.0003

Thymined;e

TK 0.0351630453 0.0153944991 0.0107718807 -1.0488 -4.2134 0.0000
TE12 0.0355987474 0.0154069711 0.0108183096 2.4845 -5.5578 0.0003
TE14 0.0350356214 0.0155784866 0.0108497191 4.0214 -3.4037 0.0000
TE32 0.0353237400 0.0154053722 0.0107921959 -1.8714 -1.7152 0.0000

(Continued)
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(Continued) Rotational Constant (cm�1)a Dipole Moment
A B C x y z

Adeninef

A9 0.0262076606 0.0174539581 0.0104823255 -2.5886 -0.7880 0.8034
A7 0.0263881347 0.0171565630 0.0104119134 0.1300 -6.6097 0.7201
A3 0.0260977289 0.0175517781 0.0104991728 -3.3891 2.1905 0.6796
A1 0.0256203301 0.0177476183 0.0104984934 -8.2989 -1.9473 0.9452
A9Ia 0.0262085613 0.0172838146 0.0104194719 1.8955 -3.3549 -0.0676
A9Ib 0.0260183816 0.0173106198 0.0104017964 0.5749 4.5400 -0.0667
A7Ia 0.0263563515 0.0171411212 0.0103940243 -0.1814 3.3651 0.1995
A7Ib 0.0259924881 0.0174612209 0.0104505268 -2.9796 2.3679 0.0497
Uracil-
Waterg

UW1 0.0405463455 0.0108418137 0.0085830409 -2.9263 2.4600 -0.9537
UW2 0.0242616069 0.0150643146 0.0093143202 -1.8373 -4.1384 0.7757
UW3 0.0246288093 0.0149213488 0.0093118462 -3.0592 -2.2147 0.7899
UW4 0.0242616069 0.0150643146 0.0093143202 -0.8286 2.6111 0.7523

Imidazoleh

IM 0.0541409777 0.0517371333 0.0264558900 1.8963 3.4862 0.0041
IMD 0.0537505426 0.0050346941 0.0050220853 9.4266 -0.5059 1.7333
IMD1 0.0531957346 0.0051969232 0.0047388434 0.0064 -0.0004 -0.0661
IMD2 0.0523693516 0.0053636021 0.0048774183 2.2806 -2.1487 -0.3051
IMD3 0.0520097901 0.0055150226 0.0049965654 0.0016 0.0001 -0.0198
IMW1 0.1053157834 0.0187299328 0.0160073684 -6.6330 0.7183 0.0001
IMW2 0.1029859547 0.0195745484 0.0166504321 -5.5203 -0.8795 1.1937

a The rotational constants are reduced by factor of three (see context).
b For a naming scheme, see Chapter 3.
c For a naming scheme, see Chapter 4.
d For a naming scheme, see Chapter 5.
e The values of uracil and thymine are obtained from the MP2/aug-cc-pVDZ calculations.
f For a naming scheme, see Chapter 6.
g For a naming scheme, see Chapter 7.
h For a naming scheme, see Chapter 8.
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di¤erent electric �elds between the two Stark electrodes for 19 di¤erent bands obtained

from the �gen_f�program for the G9K (red) and G7K (black) tautomers of guanine.

In this calculations, however, the polarization ratios of parallel polarization to zero-�eld

(Apara:=Azero) are used instead of parallel to perpendicular polarization (Apara:=Aperp:)

used in the VTMA analysis. Since most of vibrational bands of biomolecules studied in

this thesis are broad and their�� is very small, we can park the laser on top of the broad

bands and start measuring the intensities with di¤erent electric �elds. However, for the

rotationally resolved molecules, the application of this technique would be di¢ cult

unless the calculations account for all of rotational states. Furthermore, experimental

di¢ culties accompanied with the rotational bands would be obstructive.

In Figure 2.10, the calculated curvature of the polarization ratios of the two tau-

tomers are quite di¤erent, due to their quite di¤erent dipole moments, G9K (6.26 D)

and G7K (1.88 D). The comparisons with experimental results will be given in Chapter

4. The combination of these dipole curve measurements and the VTMA assignments

is very useful in characterizing and assigning structures of various tautomers and very

complex bands associated with large biomolecules.
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Figure 2.10: Calculated polarization ratios, A(para:)=A(zero), of the G9K (red) and G7K
(black) tautomers of guanine with increasing the electric �eld between the two Stark
electrodes (shown on top center) for 19 di¤erent (0 �90 � with a 5 � gap) bands obtained
from the �gen_f�program. The ab initio constants for each tautomer, dipole moments
and rotational constants, listed in Table 2.5, were used to in the calculations. The
graphs clearly show that the curvature of the polarization ratio, A(para:)=A(zero), with
di¤erent dipole moments are very di¤erent, which will be tested with experimetnal
results for the various guanine tautomers in Chapter 4.
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Chapter 3

Multiple Tautomers of Cytosine

Identi�ed and Characterized by

Infrared Laser Spectroscopy in

Helium Nanodroplets: Probing

Structure and Energetics Using

Vibrational Transition Moment

Angles

Infrared laser spectroscopy in helium nanodroplets is used to identify and characterize

several distinct tautomers of cytosine. The experimentally observed species correspond

to the lowest energy structures obtained from ab initio calculations, also reported here.

The assignment of the infrared vibrational bands in the spectra is aided by the mea-

surement of the corresponding vibrational transition moment angles (VTMAs), which



are also calculated using ab initio methods. In the present study we con�rm the ex-

istence of three primary tautomers, as well as provide tentative assignments for even

higher energy forms of cytosine in helium nanodroplets.

3.1 Introduction

Isolated nucleic acid bases (NABs) continue to be the subjects of intensive experimental

[59,61,76,134�136] and theoretical [74,137�143] study. In part this is the result of the

role that the rare tautomers play in causing alterations in the normal base pairing

(mutation), as �rst noted in the landmark paper by Watson and Crick [144]. It was

hypothesized that mutagenesis is correlated with the frequency of occurrence of these

rare tautomers. A detailed understanding of the structures, relative stabilities and

rate constants associated with the equilibrium between the various tautomers is clearly

important for understanding the mechanisms for mutation [74].

Theoretical studies of the tautomers of the NABs far outnumber the corresponding

experimental studies. Indeed, in recent years the ab initio studies of these systems

have converged and there is general agreement concerning the energy ordering of the

various tautomers [145, 146]. Interest in benchmarking these calculations against ex-

periment has driven the study of these systems in �isolation�, namely in the absence

of a solvent. True isolation requires experiments done in the gas-phase, under collision

free conditions. Considerable progress has been made in this direction using molecular

beam techniques, often based upon laser spectroscopic approaches [59,61,80,147]. For

thermally stable species a simple oven can be used to vaporize the molecules of interest,

while for less stable species laser vaporization methods can be used in conjunction with

a free jet expansion [80], the latter being used to cool the molecules so that the resulting

spectra are su¢ ciently well resolved to permit detailed analysis. Microwave [59], in-

frared [80,147], and visible/UV [61,148] spectroscopies have been used to study NABs
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in the gas-phase, providing a wealth of data on these systems. Nevertheless, for systems

which show signi�cant population of more than one tautomeric form, there is still a

lack of agreement on which are being observed experimentally.

Low temperature matrix isolation spectroscopy has been used in the study of these

systems [149�153]. This approach has he advantage that high concentrations can be

built up by long, slow depositions. Although the interactions with the matrix can

be quite weak, particularly when using argon or even neon to provide the isolation,

there is some evidence that the associated intermolecular interactions are su¢ cient to

change the tautomer distribution [134] from that observed in the gas-phase. Such e¤ects

are even stronger for NABs in the crystalline solid [77, 134], or in aqueous solutions

[136]. The other di¢ culty with traditional matrix isolation spectroscopy is that the

resolution is often limited, preventing the observation of closely spaced bands, making

the assignment of some of the bands questionable.

In recent years there have been considerable advances in the use of helium nan-

odroplets as an ideal matrix for infrared spectroscopy [4, 18, 36, 154, 155]. The weak

interactions between the helium and the molecule of interest result in small vibrational

frequency shifts and high spectral resolution. Indeed, the infrared spectra obtained in

helium are essentially unperturbed from that of the gas-phase molecule, the solvent

shifts typically being fractions of a wavenumber [18, 36, 156�158]. The fact that these

shifts are small compared to the accuracy of ab initio vibrational frequency calculations,

helium nanodroplets spectroscopy is an ideal isolation method [4]. The temperature of

the droplets is also very low (0.37 K [18,22]), thus providing the necessary cooling for

such spectroscopic studies.

In a recent paper [79] we reported helium nanodroplets studies of a number of NABs,

using infrared laser spectroscopy. The high resolution obtained in the associated spectra

enabled us to identify three distinct tautomers of cytosine. This preliminary study also
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discussed a method for measuring vibrational transition moment angles (VTMAs) (the

angles between the vibrational transition moment vectors and the permanent dipole

moment of the molecule), which provide unambiguous assignments of the vibrational

bands to speci�c tautomers. We also showed that these VTMAs are highly sensitive

to the molecular structure, providing the �rst conclusive experimental evidence for the

non-planarity of adenine [79]. In this chapter we report a more complete study of

the tautomers of cytosine using the helium nanodroplet approach. The assignment of

the observed spectra is based upon both the vibrational frequencies of the N�H, O�

H, and NH2 stretches and their associated VTMAs [79]. Improved signal levels have

been realized using a periodically poled lithium niobate optical parametric oscillator

(PPLN�OPO) [159,160], which allows us to detect even higher energy tautomers.

As noted above, the recent theoretical work on cytosine provides us with detailed

information on the ordering of the various tautomers. Figure 3.1 shows the lowest en-

ergy tautomers, calculated herein at the MP2/6-311++G** level of theory (see below).

There are only a few of the fourteen that have been identi�ed by ab initio calcula-

tions [138, 139, 161]. As noted above, the previous experimental studies are not in

complete agreement, some indicating the existence of two tautomers [61,134,162,163],

while others have observed three [59, 79]. It is not entirely clear whether these di¤er-

ences arise from the methods used to prepare the samples or if the e¤ects of the local

environment (vacuum, matrix, solid, solution etc.) signi�cantly change the tautomer

distributions. Even in the gas-phase studies, the e¤ects of the free jet expansion are

not fully understood.

Microwave studies of gas-phase cytosine have revealed three di¤erent tautomers of

cytosine, yielding three sets of rotational constants [59]. This study did not include

results for multiple isotopomers, so that an independent determination of the molec-

ular structures could not be obtained. As a result, the structures were obtained by
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C31 (0.0) C32 (3.0)

C1 (7.8) C4 (37.4)

C21 (16.0) C22 (22.7)

(a)
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Figure 3.1: The ab initio structures and relative (to the C31 tautomer) energies in
kJ/mol. The numbers in parentheses are for the six lowest-energy tautomers of iso-
lated cytosine. The ab initio calculations were performed at the MP2/6-311++G**
level. The solid arrows show the calculated directions of the permanent electric dipole
moments. (a) Amino-oxo; (b) amino-hydroxy; (c) imino-oxo.
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comparing the experimental rotational constants with those obtained from quite low

level ab initio calculations (based upon today�s standards). These comparisons lead

the authors to conclude that they had observed the amino-oxo (C1), amino�hydroxy

(C31), and imino-oxo (C21) forms [59] (see Figure 3.1). Two amino-oxo tautomers (C1

and C4) have been observed in aqueous solution [136], while the amino-oxo (C1) and

amino�hydroxy (C31) forms have been identi�ed in conventional solid matrices [134].

In this case, the overlap of the vibrational bands from the di¤erent tautomers makes

the assignment of the spectra somewhat inconclusive, requiring that comparisons be

made with the spectra of simpler pyrimidines, as well as with ab initio calculations.

This assignment was further supported by experiments on the UV processing of the

matrix, which helps to separate the contributions to the spectrum from the two tau-

tomers [134, 162]. As shown below, the helium nanodroplet studies provide de�nitive

structural assignments that help to unify the results from these other experiments.

3.2 Experimental

Infrared spectra of cytosine, isolated in helium nanodroplets, have been obtained using

the apparatus described in detail previously [102]. Helium nanodroplets represent a

nearly ideal spectroscopic matrix [4], providing high-resolution spectra that are com-

pletely devoid of hot bands. In addition, the vibrational frequencies are essentially

unshifted from those in the gas-phase. Nanodroplets with a mean size of 3,000 helium

atoms were formed by expanding ultrahigh pure helium (99.9999%) from a 5 �m di-

ameter ori�ce, operated at 50 atm pressure and a temperature of 20.5 K. Cytosine

molecules were added to the droplets by pick-up [164] in an oven, the temperature

of which was optimized for the capture of a single molecule (�210 �C). Upon being

captured by the droplets, the cytosine molecules are quickly cooled to the temperature

of the droplets, namely 0.37 K [18,22].
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The infrared laser used in the present study is a commercially available Periodically

Poled Lithium Niobate Optical Parametric Oscillator (PPLN�OPO) from Linos Pho-

tonics. The laser is directed into a multipass cell [102], used to improve the excitation

e¢ ciency by having many laser-droplet beam crossings. Vibrational excitation of the

solvated molecules results in the evaporation of several hundred helium atoms. The

resulting laser induced decrease in the energy of the droplet beam is detected by a

bolometer detector [165], positioned downstream of the laser interaction region. The

laser beam is amplitude modulated and phase sensitive detection of the bolometer sig-

nal is used to make the spectra essentially background free. However, the high power

(60 mW) associated with the PPLN�OPO resulted in some scattered infrared light

being detected by the bolometer, which is at the same modulation frequency as the

droplet beam depletion signal. Several steps were taken to minimize the e¤ects of the

scattered light. First, the diamond collector on the bolometer was partially covered

by a gold coating, used to re�ect the infrared radiation away from the active element

of the bolometer, resulting in a reduction in the scattered light signal by a factor of

approximately �ve. The remainder was removed using a modulation scheme mentioned

in a paper by Lehmann and co-workers [166]. In particular, we take advantage of the

fact that the velocity of the droplet beam is rather low, such that there is a signi�cant

di¤erence between the arrival times at the detector for the light and the droplets, orig-

inating from the laser interaction region. At a modulation frequency of 350 Hz (for

our experimental con�guration) the scattered infrared signal is 90 � out-of-phase with

the droplet depletion signal, so that optimizing the phase for the latter permits the

rejections of the scattered infrared signal.

In a number of previous helium nanodroplet experiments [37,108,155,167] we have

shown that the dipole moment of a solvated polar molecule can be strongly oriented

by a large DC electric �eld. For this purpose, we positioned electrodes on either side
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of the laser interaction region. The laser electric �eld direction was then aligned either

parallel or perpendicular to the DC electric �eld. When the applied �eld orients the

dipole moment of a molecule, the excitation e¢ ciency depends upon the direction

and magnitude of both the vibrational transition moment and the laser electric �eld.

As a result, the angle between the vibrational transition moment and the permanent

electric dipole moment could be obtained by measuring the polarization angle that

maximizes the band intensity. Alternatively, the signal levels can be measured with

the laser polarized parallel and perpendicular to the electric �eld, compared with that

in the absence of the �eld. A quantitative analysis of this data requires an accurate

characterization of the orientation distribution of the permanent dipole moment at

the relevant electric �eld strength, which can be done using the methods discussed

in detailed by Kong and co-workers [128�130]. Given that the spectra presented here

are not rotationally resolved [79], a thermal population of the pendular states of the

molecule [128], corresponding to the rotational temperature of the droplets (0.37 K [18])

was used to calculate the normalized permanent dipole moment orientation distribution

P (cos�), in equation 2.23 on page 36.

The absorption e¢ ciency for a linearly polarized laser depends upon the angle �

between the permanent dipole and the transition moment (a molecular �xed prop-

erty), referred to here as Vibrational Transition Moment Angles (VTMAs), as well as

the angle between the laser electric �eld and the DC �eld. This is illustrated in Fig-

ure 3.2(a), where the e¤ects of the applied electric �eld are shown for a vibrational

band that has a VTMA near zero degrees. For the laser electric �eld polarized paral-

lel/perpendicular to the DC �eld, the integrated intensity of the associated vibrational

mode is increased/decreased upon application of the �eld. In contrast, Figure 3.2(b)

shows the case where the VTMA is near 90 �, where the behavior is reversed. At inter-

mediate angles the e¤ects of the electric �eld are more muted and at the magic angle,
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namely 54.7 �, the band intensity is independent of the �eld [168].

The parallel and perpendicular intensities, as a function of �; can be calculated

using equation 2.24 and 2.25. The polarization ratios are therefore given by equation

2.27.

ELaserDC Field

µp µt

α

µp

µt
α

α < 54.7 º

Vibrational Band

α > 54.7 º

(a)

(b)

Figure 3.2: A schematic showing the e¤ect of a DC electric �eld on the vibrational
band intensity, for di¤erent VTMAs (�) and as a function of the laser polarization
direction (parallel or perpendicular), relative to the DC electric �eld. The DC �eld
orients the permanent dipole moment (�p), modifying the interaction between the laser
�eld and the vibrational transition moment (�t). The spectra represented by the solid
lines represent those obtained at zero �eld. In all cases, the bands are represented by
Lorentzian line shapes.

The experimental polarization ratio can be obtained by integrating the area under

the corresponding vibrational bands, for both parallel and perpendicular con�gura-

tions, normalized using the corresponding �eld free spectra. The experimental VTMAs

reported here were determined by comparing these ratios with those obtained from

equation 2.27. Given that a non-linear molecule has 3N-6 vibrational modes, the cor-
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responding VTMAs can provide a great deal of information on both the molecular

structure and the assignment of the spectrum [79].

3.2.1 Ab initio Calculations

Although a number of previous ab initio calculations have been reported for cytosine,

VTMAs were not quoted in any of them. As a result, we carried out extensive calcu-

lations to determine the VTMAs using ab initio methods, based upon full geometry

optimizations and harmonic vibrational analysis using Gaussian 03 [169]. Unless oth-

erwise speci�ed, the calculations reported here were carried out at the MP2 level using

the 6-311++G(d,p) basis set. The six lowest-energy tautomers obtained at this level

of theory are shown in Figure 3.1, in order of increasing energy. The solid arrows

drawn on each of these structures represent the calculated directions of the permanent

electric dipole moments. The magnitudes and directions of these dipole moments are

important, as they are used in the determination of the orientation distribution at a

given applied electric �eld, as discussed above. The calculated VTMAs for the various

vibrational bands of interest here (N�H stretches, NH2 symmetric stretches (SS), asym-

metric stretches (AS) and O�H stretches) are summarized in Table 3.1, along with the

magnitudes of the permanent electric dipole moments and scaled harmonic frequencies

(see table caption).

3.3 Results

As noted above, there are at least 14 tautomers of cytosine that have been identi�ed by

ab initio calculations [138,139], most of which have not been experimentally observed.

These tautomers are grouped into three main types, namely the keto (A), enol (B),

and imine (C) forms. The goal of the present study is to expand on the experimental

53



Table 3.1: A summary of the experimental and calculated vibrational frequencies and
VTMAs for the various isomers of cytosine.

ab
Harm.a Scaleda Exp. IR initio Exp.
freq. freq. freq. intensity VTMA VTMA �
(cm�1) (cm�1) (cm�1) (km/mol) Assignment ( �) ( �) (Debye)

C1 6.38
3737.1 3568.9 3572.7 43.2 NH2 (AS) 6 12
3644.2 3480.2 3471.7 93.0 N1H 78 71
3604.8 3442.5 3451.7 70.5 NH2 (SS) 88 74

C31 3.39
3832.1 3659.6 3609.7 107.6 OH (COH) 47 43
3732.2 3564.3 3572.3 41.1 NH2 (AS) 26 22
3605.0 3442.8 3455.9 59.5 NH2 (SS) 70 66

C32 4.56
3838.5 3665.8 3617.9 96.1 OH (COH) 88 81
3730.8 3562.9 3570.9 38.9 NH2 (AS) 64 61
3605.8 3443.5 3457.2 53.8 NH2 (SS) 29 29

C21 4.79
3670.4 3505.2 3550.0 117.0 N1H 68 61b

3617.8 3455.0 - 64.0 N3H 12 -
3542.3 3382.9 - 12.8 N8H 72 -

C22 2.35
3670.7 3505.5 3550.0 113.0 N1H 38 61b

3619.7 3456.8 - 41.9 N3H 25 -
3496.1 3338.8 - 9.3 N8H 64 -

C4 7.70
3709.5 3542.6 - 35.8 NH2 (AS) 59 -
3608.5 3446.1 - 56.7 N3H 84 -
3596.2 3434.4 - 51.8 NH2 (SS) 23 -

aThe ab initio calculations were performed at the MP2/6-311++G** level and the scaled

frequencies are obtained from the harmonic frequencies, by multiplying them by

a factor of 0.955, to qualitatively account for the e¤ects of anharmonicity.
bThe N1H bands that are tentatively assigned to the experimental peak at 3550 cm�1 are not

resolved,so that the experimental VTMA is likely a weighted average of the two values
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database, in hopes of reconciling the existing experimental studies with those of ab

initio theory and to provide new insights into these systems.

In our preliminary study of cytosine [79], the focus was on the NH2symmetric

stretching vibration, where we observed three bands that were assigned to the C31,

C32 and C1 tautomers (see Figure 3.1). The assignment was based upon the mea-

surement of the VTMAs for these three bands, which were in excellent agreement with

the results of ab initio calculations [79]. Figure 3.3a shows a new scan of this spectral

region, obtained using the PPLN�OPO, at a su¢ ciently low oven temperature (196

�C) to ensure that the contribution from cytosine complexes is negligible. For com-

parison, the spectrum of cytosine in an argon matrix (b) is also shown [134,162]. The

three bands on the low frequency side of the spectrum are those previously assigned to

the NH2 symmetric stretching vibrations of the C31, C32 and C1 tautomers, while the

highest frequency band is assigned to the N�H stretch in the C1 tautomer. It is im-

mediately apparent that the resolution in the helium droplet spectrum is signi�cantly

better than that of the argon matrix and that the argon matrix shift is signi�cant for

the symmetric NH2 stretch and negligible for the N�H stretch. This di¤erential matrix

shift can obviously be problematic in congested spectra, making it di¢ cult to com-

pare the results with ab initio calculations. Although there may be (in retrospect) a

shoulder in the matrix spectrum indicative of the third band in the helium nanodroplet

spectrum, no such assignment was made based upon the matrix data alone.

Figure 3.4 shows three spectra of the NH2 symmetric stretch and N�H stretch

regions, recorded with (a) an applied DC electric �eld directed perpendicular to the

laser polarization direction, (b) no applied �eld, and (c) an applied DC electric �eld

directed parallel to the laser polarization direction. These spectra were recorded at

a somewhat higher oven temperature (�210 �C) than the one shown in Figure 3.3.

The two peaks marked with an * only appear at high oven temperatures, which favors
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(a)

(b)
N­H

NH2 SS

Figure 3.3: A comparison between (a) the helium nanodroplet spectrum and (b) the
argon matrix isolation spectrum [134, 162] of the NH2 symmetric stretch and N�H
stretch of cytosine. The three bands in the helium nanodroplet spectrum in the NH2
(SS) region correspond to the three lowest energy tautomers.
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their assignment to the cytosine dimer. Namely, higher oven temperatures result in

higher cytosine pressures in the pick-up cell and thus a greater probability for picking

up more than one molecule. However, as discussed below, higher energy tautomers are

also favored at higher temperatures, so that a de�nitive assignment of these bands will

have to await a more detailed investigation in which the vapor pressure of the sample

in the pick-up cell can be varied independently of the temperature, which is beyond

the scope of the present study study. The four bands indicated by the arrows all have

a temperature dependence that is consistent with the pick-up of a single molecule by

the droplets.

The NH2 symmetric stretching region clearly provides conclusive evidence for the

existence of three tautomers, given that each one has only a single band in this region.

Nevertheless, we must consider the possibility that a single tautomer could give rise to

more than one band in this region due to strong vibrational coupling (such as a Fermi

resonance). Fortunately, the experimental and calculated VTMAs discussed below

provide additional support for the assignment of these three vibrational modes to three

separate tautomers. This is important given that a conclusive assignment cannot be

obtained from comparing the experimental and ab initio frequencies, owing to the fact

that the bands are much closer together than the typical accuracy of the calculations.

It is apparent from Figure 3.4 that the VTMAs for the three NH2 symmetric stretch-

ing vibrations are quite di¤erent. Indeed, by carrying out the analysis presented above

for these bands, we obtained the experimental VTMAs listed in Table 3.1, namely 78 �,

66 �, and 29 �, in order of increasing frequency. For comparison, the ab initio VTMAs

for the C1, C31, and C32 tautomers are 88 �, 70 �, and 29 �, respectively. As noted in

our preliminary study [79], the ab initio VTMAs for these high frequency H�X stretches

are rather insensitive to basis set, given that they are mainly determined by the struc-

ture of the molecule. For example, an N�H stretch has its transition moment directed

57



(a)

(b)

(c) *
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C1 C1
C31

C32

Figure 3.4: Cytosine spectra recorded with an applied DC electric �eld oriented (a)
parallel or (c) perpendicular to the laser polarization direction. Spectrum (b) was
obtained in the absence of an electric �eld. The �eld and polarization dependences
for the various bands in the spectra are clearly have quite di¤erent and are used to
determine the corresponding VTMAs, which aid in the assignment of the bands to
speci�c tautomers. The bands marked with an * are due to clusters (dimers) of cytosine
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approximately along the corresponding bond axis. Actually, Figure 3.5 shows a sum-

mary of the ab initio transition moment vectors (dashed double ended arrows) and

permanent electric dipole moments (solid arrows) for the three tautomers in question.

Although there are some deviations from a simple bond axis model for the transition

moment directions, the correlations are clearly evident.

N1H
NH2 (SS)

NH2 (AS)

NH2 (SS)

NH2 (AS)

OH

OH

NH2 (SS)

NH2 (AS)µ µ

C1 C31 C32

µ

Figure 3.5: The three lowest energy tautomers of cytosine, showing the directions of
the permanent electric dipole moments (solid, single headed arrows) and the transition
moments (dashed, double headed arrows) for the various vibrational modes of each.

Of the three tautomers presently under consideration, only the C1 structure has

an N�H stretching vibration. We can therefore tentatively assign the band at 3472

cm�1 to this tautomer. Analysis of the �eld and polarization dependence of the band

intensities in Figure 4 yields an experimental VTMA of 71 �, compared with an ab initio

value of 78 �, providing further support for this assignment.

We now turn our attention to the region of the spectrum corresponding to the O�H
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stretching vibrations. In agreement with our expectations we �nd two bands in this

region, as indicated by the vertical arrows in Figure 3.6. The other two bands, labeled

� and � in the �gure, are assigned from their oven temperature dependence (see Figure

3.7) to cytosine complexes and tend to disappear at lower oven temperatures. Here

again, we �nd that the �eld and polarization dependence of the two bands assigned to

the cytosine monomer are quite di¤erent, one being somewhat parallel and the other

being nearly perpendicular. A detailed analysis of these two bands yields the VTMAs

listed in Table 3.1, namely 43 � and 81 � for the low and high frequency bands, respec-

tively. For comparison, the ab initio VTMAs for the O�H stretches of the C31 and C32

tautomers are 47 � and 88 �, respectively. The agreement is again very good, providing

us with a convincing assignment of these two bands. The VTMAs are particularly

important here given that the ab initio vibrational frequencies for these two bands are

quite poor (see Table 3.1), even when scaled to account for anharmonicity. Indeed, the

experimental frequencies for the C31 and C32 tautomers are 3609.7 cm�1 and 3617.9

cm�1, respectively, while the corresponding scaled ab initio values are 3659.6 cm�1 and

3665.8 cm�1. Clearly the anharmonic e¤ects for the O�H stretches are quite di¤erent

from those of the N�H and NH2 stretches, as noted previously in the literature [170,171].

The �nal band to be considered is the asymmetric NH2 stretch, shown in Figure

3.8 as a function of electric �eld and laser polarization direction. Once again, the band

marked with an * is assigned by the oven temperature dependence to be associated with

the cytosine dimer, the discussion of which is beyond the scope of the present study. The

three tautomers all have an asymmetric NH2 vibrational mode, so we expect to see three

other bands in this region. These three bands are most clearly discerned in the spectrum

recorded under parallel polarization conditions (a), with two of the bands being only

partially resolved. The vertical solid line shows that the higher frequency band almost

completely disappears with perpendicular polarization, suggesting that it is the more
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(a)

(b)

(c)

C31 C32

α

β

Figure 3.6: Spectra of the O�H stretches of cytosine, assigned to the C31 and C32
tautomers. Spectra (a), (b), and (c) were recorded with parallel polarization, zero-
�eld, and perpendicular polarization conditions, respectively. The two bands marked
with a � and � are due to the cytosine dimer.
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Figure 3.7: The oven temperature dependence of the intensities of the four bands shown
in Figure 3.6. The two bands assigned to the C31 and C32 tautomers clearly optimize
at lower temperatures, consistent with the fact that lower vapor pressures are required
for the pick-up of a single molecule. The other two bands are assigned to the dimer
and require higher vapor pressures for optimum signals.
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parallel of the two vibrational modes (although both are clearly on the parallel side of

the magic angle (54.7 �)). In contrast, the lower frequency band, which is well separated

from the other two, is clearly on the perpendicular side of the magic angle. Analysis

of these band, based upon �tting to three Lorentzian line shapes, yielded VTMAs for

these three bands of 61 �, 22 �, and 12 �, in order of increasing frequency. The ab initio

VTMAs for the three tautomers are 64 �, 26 �, and 6 � for C32, C31, and C1, respectively.

The assignment based upon the VTMAs is again unambiguous. It is interesting to note

that the assignment based upon the vibrational frequencies is even less obvious in this

case. In fact, the ab initio calculations suggest that the C31 and C32 tautomers lie very

close together and that it is the C1 tautomer that is more separated (actually to the high

frequency side of the other two). Here again, the VTMAs are essential for obtaining

an unambiguous assignment of the experimental spectrum through comparisons with

the ab initio calculations. Figure 3.9 shows an overall comparison between experiment

and theory for all of the vibrational modes of the three tautomers considered here,

along with estimates of the experimental errors. In all cases the agreement is within

the experimental uncertainties, giving unambiguous con�rmation of these assignments.

Figure 3.10 shows a survey scan of the entire spectral region of interest here, recorded

under conditions where the contribution from clusters is quite small, with labels given

for the four regions discussed above. It is important to note that we have accounted

for all of the high frequency bands of the three tautomers discussed above, which leads

us to consider the origin of the weaker bands in the spectrum, emphasized by the oval

in Figure 3.10. The two likely assignments for these bands are to either higher or-

der clusters or tautomers with even higher free energies (thus lower abundances). In

accordance with the results presented above, it seems straightforward to di¤erentiate

between these two possibilities by simply recording the oven temperature dependence

of the band intensities and comparing them with the results for the three tautomers
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C31 C1

Figure 3.8: Spectra of the NH2 asymmetric stretches of cytosine, showing the corre-
sponding bands assigned to the C31, C32, and C1 tautomers. Spectra (a), (b), and
(c) were recorded with parallel polarization, zero-�eld, and perpendicular polarization
conditions, respectively. The band marked with an * is due to the cytosine dimer. The
vertical line is provided as an aid to show that the left component of the closely spaced
doublet is the one that disappears more slowly in perpendicular polarization, indicating
that the corresponding VTMA is somewhat larger than that for the other component.
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C1

C31

C32

Figure 3.9: A summary of the experimental (open squares and error bars) and ab
initio (vertical lines) VTMAs for the three tautomers of cytosine, showing the excellent
agreement.
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discussed above. Unfortunately, since the pressure of cytosine also changes with tem-

peratures, these two variables are not independent in our current oven design. A two

stage oven is currently under construction and should help in making the di¤erentiation

between higher energy tautomers and clusters. Nevertheless, we can make use of the

VTMAs for some of these smaller bands to make some tentative assignments.

NH2 (SS)

NH2 (AS)

OH

NH

Figure 3.10: An overview of the cytosine spectrum in helium nanodroplets. The oval
emphasizes the bands associated with the higher energy tautomers (C21 and C22).

Figure 3.11(b) shows an expanded view of these bands, along with ab initio cal-

culations for the next two lowest energy tautomers (Figure 3.11(a)), namely C21 and

C22. The ab initio frequencies have been scaled by a factor of 0.955 (the same scale

factor as used for the other tautomers). The ab initio calculations for the C21 and C22

tautomers place the corresponding N1H and N3H vibrations at approximately the same

frequency, while the N8H stretches of the two tautomers are well separated. Unfortu-

nately, the latter bands are an order of magnitude weaker than the other two, making
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them below our present detection sensitivity. In addition, the N3H bands are predicted

to lie very close to the intense bands from the other tautomers. Although there are

some weak bands in this region (see expanded spectrum in Figure 3.11(c)), a de�nitive

assignment is currently not possible. The most promising bands for observation in the

experimental spectrum are associated with the N1H vibrations of the C21 and C22

tautomers, which have calculated VTMAs of 68 � and 38 �, respectively. Since the C22

tautomer lies higher in energy than C21, we would expect an overlapped band to be

dominated by the latter. Indeed, we �nd that the band near 3500 cm�1, which is the

closest to the ab initio calculated frequencies for N1H, has an experimental VTMA

of 61 �. This is consistent with the band being composed of mainly the C21 isomer,

with a smaller contribution from C22. More convincing evidence for the existence of

the C22 and C21 tautomers will require the observation of the two lower frequency

N8H bands. We now have new PPLN lasers that have much higher powers that should

provide the sensitivity needed to observe these bands. A more thorough study of these

higher energy tautomers, including measurements of the corresponding VTMAs and

more careful oven temperature dependent studies, is underway and will be discussed in

a future paper.

3.4 Discussion

We begin this discussion by pointing out that the previous gas-phase study (microwave

spectroscopy) of cytosine characterized three tautomers that survived the free jet ex-

pansion [59]. Given the weak interactions involved in the helium nanodroplet experi-

ments, it seems reasonable to expect that the most abundant tautomers would be the

same in the two experiments. Although the rotational constants reported in this study

are certainly determined to very high accuracy, their assignment to speci�c tautomers

structures is problematic, given that isotopic variants were not studied. As mentioned
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(a)
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Figure 3.11: A vertically expanded experimental spectrum (b) emphasizing the weaker
bands in the spectrum shown in Figure 3.10. The ab initio frequencies in (a) have been
scaled by a factor of 0.955 (the same scale factor as used for the other tautomers).
The �lled and open squares correspond to the C21 and C22 tautomer, respectively.
The bands marked with an * are as of yet unassigned, but are likely due to either
the cytosine dimer or to higher energy tautomers. The spectrum in (c) is a further
expansion of the N1H and N3H stretch regions of the experimental spectrum.
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above, the authors were forced to determine the corresponding structures through com-

parisons with the ab initio rotational constants, calculated using modest basis sets. The

authors of this study assigned the three sets of rotational constants, labeled �, �, and


 to the C1, C31, and C21 tautomers (using the present naming scheme). In light of

the present study, which was also based upon the thermal evaporation of cytosine, this

assignment is surprising, given that we observe the most abundant tautomers to be C1,

C31, and C32, with only minor abundances of C21 and C22.

One possibility is that the cooling experienced by a molecule in liquid helium is

su¢ ciently di¤erent from that in a free jet expansion to give rise to quite di¤erent

tautomers population distributions. However, since the cooling rates are fast in both

cases, the most likely outcome is that the tautomers distribution present at high tem-

peratures is simply frozen in by both the helium nanodroplet and free jet expansion

cooling. Thus it would take a considerably non-thermal process to give rise to di¤erent

tautomers distributions in the two cases. More likely is that the assignment of the

tautomers based upon the ab initio rotational constants obtained in the previous study

is not secure. Indeed, the earlier ab initio calculations were only carried out at the

3-21G SCF level, with scaling factors for the rotational constants obtained from the

study of other systems [59]. Much higher level calculations are now available, making

it interesting to revisit these assignments. We have carried out an extensive study of

the dependence of the root mean square (RMS) deviations, between the experimental

rotational constants and the ab initio values, on the basis set size, at the MP2 level.

As shown in Figure 3.12, for basis sets which include polarization functions, the C32,

C31, and C1 tautomers have the lowest RMS deviations for the �, �, and 
 sets of

experimental rotational constants, respectively, which is in agreement with the present

study. Thus we ascribe the di¤erences between the previous microwave study and the

present one to the quality of the ab initio calculations in the early work. It is interesting
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to note the signi�cant decrease in RMS error as soon as the polarization functions are

added to the basis sets. We �nd that these polarization functions are needed in order

to obtain the non-planar geometries for the cytosine tautomers.
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Figure 3.12: A plot of the RMS deviation between the three sets of experimental
rotational constants (�, �; and 
) obtained in a previous microwave study [59] and
those obtained ab initio using various basis sets. From this we conclude that the�, �;
and 
 data sets are best assigned to the C32, C31, and C1 tautomers, respectively.

The RMS deviations were also calculated using the scaled ab initio data given in the

earlier study by Brown et al. [59] (the scaling of the ab initio rotational constants was

based upon comparisons with experiment for other molecules, where the assignment

was more de�nitive). Even though they originally assigned the �, �, and 
 data sets

to the C1, C31 and C21 tautomers, respectively, we found that this unbiased criterion

actually gave the best agreement for the C1, C31 and C32 tautomers, in agreement

with the present study. In particular, the RMS deviation for the C32 tautomer is

slightly less than that of C21. It is also interesting to consider the other ab initio
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calculations of the rotational constants that have been reported in the literature, using

a Dunning correlation-consistent basis set (MP2/cc-pVTZ(-f)) [146] and a Karslruhe

basis set (RIMP2/TZVPP) [145]. It is important to note that Hobza and co-workers

[145] have also carried out ab initio calculations on cytosine using even larger bases

sets, extrapolating to the complete basis set limit, but did not report the corresponding

rotational constants. We �nd that the lowest RMS deviation from the �, �, and 
 data

sets for the MP2/cc-pVTZ(-f) and RIMP2/TZVPP calculates correspond to the C21,

C31, and C21 tautomers, respectively. The fact that two di¤erent experimental sets

of rotational constants correspond best to the same tautomers is clear evidence that

these calculations are less reliable. It is interesting to note that Abrams et al. [172] also

found that for full con�guration interaction calculations that the 6-31G** basis set gives

better rotational constants for simple diatomic molecules than does the cc-pVDZ basis

set. It is our conclusion that the tautomers observed in the microwave study are the

same three major tautomers observed in the present helium nanodroplets experiment,

namely C32, C31 and C1.

In our �rst report on the measurement of VTMAs [79] we showed for the case of

adenine that these angles are quite sensitive to the detailed geometry of the molecule,

in particular to the non-planarity corresponding to the out-of-plane tilting of the NH2

group, the latter having been predicted previously by theory [173]. We now consider the

sensitivity of these VTMAs to the non-planarity of the cytosine tautomers. Figure 3.13

shows the dependence of the ab initio VTMAs on the dihedral angles of H13N8C4N3 for

tautomers C1 (a), C31 (b), and C32 (c), calculated at the MP2 6-311G(d,p) level. The

squares, dots, and triangles represent the NH2 (AS), O�H/N�H, and NH2 (SS) stretches,

respectively. The open symbols are the results from full geometry optimizations and

the solid symbols are the results for the various non-planar constraint angles. It is

apparent that the VTMAs are again able to distinguish between the planar and non-
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planar geometries and that the best overall agreement between theory and experiment

occurs very near the optimized geometry, which is to say that the agreement becomes

worse for both larger and smaller dihedral angles than that of the optimized structure.

It is interesting to note that for all three tautomers, the out-of-plane angles are slightly

smaller than that obtained previously for adenine [79], in agreement with the theoretical

predictions from Hobza and coworker [173].

C1

C32

C31

(a)

(b)

(c)

Figure 3.13: Ab initio calculations (solid data points) of the VTMAs as a function of
the out-of-plane angle of the NH2 group. The open data points represent the results
from full geometry optimizations. The vertical lines emphasize these geometries. The
horizontal arrows indicate the experimental values for the corresponding VTMAs.

3.5 Summary

In this study we report high-resolution infrared laser spectra of cytosine monomers

isolated in helium nanodroplets. By making use of a DC electric �eld to orient the
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molecules in the laboratory frame of reference, the VTMAs were measured for many

of the observed vibrational bands. This has lead to the de�nitive assignment of three

tautomers, namely the C32, C31, and C1 structures shown in Figure 3.1. Preliminary

results are also reported for two minor tautomers of cytosine, namely the C21 and

C22 structures. A de�nitive assignment for the latter two will require more careful

studies of the temperature dependence of the observed intensities and the detection

of two weak bands that were not observed in the present study. In addition, future

studies will include the experimental measurement of the permanent electric dipole

moments of the various tautomers. The ab initio dipole moments summarized in Table

3.1 indicate just how di¤erent these values can be for the various tautomers. Re-

analysis of the microwave experiments, using better ab initio calculations, con�rms

that the three primary tautomers observed in these earlier experiments are the same

three observed here in highest abundance. In future studies we also plan to carry out

studies at even higher oven temperatures with the goal of observing more tautomers at

even higher energies. Now that we have a method for unambiguously identifying the

various tautomers of a given system, the challenge for the future is the development

of experimental methods that are compatible with the helium nanodroplet experiment

and will enable us to measure their relative energies.
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Chapter 4

Four Tautomers of Isolated Guanine

from Infrared Laser Spectroscopy in

Helium Nanodroplets

Infrared laser spectroscopy is used to study the four lowest energy tautomers of guanine,

isolated in helium nanodroplets. The large number of vibrational bands observed in

the infrared spectrum are assigned by comparing the corresponding experimental vibra-

tional transition moment angles with those obtained from ab initio theory. The result

is the conclusive assignment of the spectrum to the N9H�Keto, N7H�Keto, N9Ha�

Enol(trans), and N9Hb�Enol(cis) tautomers. The dipole moments of these tautomers

are also experimentally determined and compared with ab initio theory.

4.1 Introduction

Nucleic acid bases (NABs) are of fundamental importance in biology, forming the build-

ing blocks for the genetic code for life [174]. Their various tautomers have been shown

to play a central role in mutation [74]. In recent years there has been growing interest in

characterizing the isolated systems so that detailed comparisons can be made between



theory and experiment. To date, however, the theoretical studies of these systems have

far outpaced the experiments. Nevertheless, there are a growing number of experimen-

tal methods that provide at least some information on these important systems, in

particular using microwave [59,175�178] and IR�UV laser [80,179] spectroscopic meth-

ods. An interesting aspect of many NABs, including guanine, is the existence of various

conformers, and a number of gas-phase studies have been directed at identifying these

structures and determining their relative energies [69,179�181].

Studies of this type require that the molecule be vaporized, so that gas-phase spec-

troscopy can be used. Although many of these systems are thermally stable, making

vaporization by simple thermal evaporation possible, guanine has proven to be some-

what more challenging. Indeed, Nir et al. [182] have recently stated that �Especially

guanine cannot be vaporized intactly by simple thermal heating.�For this reason, con-

siderable e¤ort has been expended by several groups to make use of laser desorption

methods [70,182,183], which su¤er less from thermal decomposition [84,184,185].

Because of its thermal instability, guanine is the only NAB for which microwave

spectra have not been reported [71]. As a result, the experimental identi�cation

of the tautomers of guanine has been attempted exclusively by infrared laser spec-

troscopy [70,80,182,186�188]. It is interesting to note that even microwave spectroscopy,

often considered the most de�nitive gas-phase structural probe, can have di¢ culties in

distinguishing between the various tautomers for NABs, as we previously demonstrated

for cytosine [86]. The gas-phase infrared studies from a number of di¤erent laboratories

have also produced con�icting structural assignments. Speci�cally, Mons et al. [70] and

Nir et al. [80,182] have both used IR�UV depletion spectroscopy to study the tautomers

of guanine, with con�icting results. Figure 4.1 shows the various tautomers of guanine,

which di¤er in the location of the hydrogen atom attached to the nitrogen atom in

position 7 or 9, in their keto and enol forms. In addition, the enol forms have two
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rotational orientations of the OH group, which are designated as a and b. Because the

naming schemes are not the same, we have introduced a third nomenclature, which is

somewhat more systematic than the other two. Nir et al. [80, 182] observed spectral

features, which they assigned to the G9K, G7K, and G9Ea tautomers, whose structures

are shown in Figure 4.1. In contrast, Mons et al. [70] reported the observation of four

isomers, corresponding to structures of G9K, G7K, G9E(a or b), and G7Ea in Figure

4.1. The disagreement with regard to the assignments of the observed tautomers has

not been resolved to date.

G9K (2.2/3.0)

N9H N7H

Keto

Enol

trans

cis

G7K (0.0)

G9Ea (3.4/4.4)

G9Eb (4.6/5.4)

G7Ea (14.7/16.1)

G7Eb (43.5/46.9)

1
234

5678 9

N C

O

Figure 4.1: Ab initio structures and relative energies (MP2/aug-cc-pVDZ level) of the
various tautomers of guanine. Amino-oxo (keto) and amino-hydroxy (enol) are classi�ed
by certain functional groups in the positions 2 and 6 of the purine base, namely NH2
(amino-), C=O (-oxo) and O�H (-hydroxy). In addition, the enol forms have two
rotational orientation of the O�H group: trans (a�form) and cis (b�form) to the �ve-
membered ring. The values in parentheses give the energies relative to G7K in kJ/mol
with/without a harmonic zero point energy correction. Only the four lowest energy
tautomers are experimentally observed in the present study.
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The primary reason for the discrepancy between the various assignments is that

the vibrational frequencies of the various tautomers are rather similar, making it dif-

�cult to unambiguously assign the structures simply by comparison between the ex-

perimental and ab initio vibrational frequencies. We have recently introduced a new

approach for assigning such vibrational spectra, based upon comparisons between the

vibrational transition moment angles (VTMAs) [79] determined from theory and ex-

periment. These VTMAs are de�ned as the angle between the transition moment for a

particular vibrational mode and the permanent electric dipole moment. The experimen-

tal measurement of these angles requires that the molecule be oriented in the laboratory

frame of reference, which is done using a large direct current (DC) electric �eld. This

pendular state spectroscopy has been discussed in detail in the literature [103�106].

We have found that, for high-frequency H�X stretching vibrational modes, the VT-

MAs are quantitatively determined by modest ab initio calculations [79]. Unlike the

vibrational frequency calculations, no scaling factor is required for the comparison be-

tween experiment and theory. In this chapter we apply this method to the study of

the various tautomers of guanine. We obtain conclusive assignment of the infrared

spectra (3400 �3650 cm�1 region) of the guanine tautomers as a result of comparisons

of the experimental vibrational frequencies, VTMAs, and dipole moments with those

obtained from high level ab initio calculations.

4.2 Experimental Method

The infrared spectra of isolated guanine were obtained using a helium nanodroplet

apparatus that has been described in detail previously [102]. Helium nanodroplets

were formed by expanding ultrahigh purity helium (99.9999%) in vacuum through a 5

�m diameter ori�ce. The spectra were recorded using a source pressure of 55 atm, the

nozzle being maintained at 21 K by use of a closed-cycle helium refrigerator. Under
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these conditions droplets are produced with a mean size of approximately 3000 helium

atoms. The droplets were doped with guanine from the gas-phase, using a heated oven.

Although there have been a number of failed attempts at evaporating guanine [70,80,

182], due to thermal decomposition of the sample, we observed no such e¤ects at the

oven temperature of 350 �C used here. The present success is most likely the result of

the fact that helium nanodroplet experiments require much lower vapor pressures than

those typically used in free jet experiments [38]. For all of the experiments discussed

here the oven temperature was adjusted so that the only signi�cant features in the

corresponding spectra are attributable to the guanine monomer.

The seeded droplets pass between the two parallel gold coated mirrors [102], where

they are irradiated by multiple passes of a continuous-wave tunable infrared laser (a

PPLN�OPO laser [159, 160]). Upon vibrational excitation of the solvated molecules,

vibrational relaxation to the helium results in the evaporation of several hundred helium

atoms from each droplet. Detection is then based on the depletion of the helium beam

�ux in the forward direction, using a bolometer detector [165]. In practice, the laser was

amplitude modulated, and the signals were recorded using phase-sensitive detection.

A large DC electric �eld was applied to the laser interaction region using two elec-

trodes positioned at right angles to the multipass cell. The laser electric �eld was

aligned either parallel or perpendicular to the DC electric �eld. The signal levels asso-

ciated with a given vibrational band could then be recorded as a function of the electric

�eld strength and polarization direction. This was necessary in order to measure the

associated VTMAs. At the low temperatures characteristic of both free jet expan-

sions [104, 120, 189�191] and helium nanodroplets [37, 108, 155, 167] a polar molecule

can be strongly oriented along the DC electric �eld direction. For such an oriented

molecule, the infrared transition intensity depends on the direction (relative to the per-

manent dipole direction) and magnitude of both the vibrational transition moment and
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the laser electric �eld. In the present study the vibrational bands were recorded at zero

electric �eld and at high �elds (80 kV/cm) corresponding to parallel and perpendicular

laser polarization directions (relative to the DC electric �eld). The approach is quite

analogous to that of linear dichroism in bulk phases [192].

4.2.1 Vibrational Transition Moment Angles (VTMAs)

The permanent dipole orientation distribution for a polar molecule in a DC electric �eld

can be calculated accurately using the methods discussed most thoroughly by Kong and

co-workers [128�130]. Given that the present vibrational spectra are not rotationally

resolved, the dipole orientation distributions, P (cos�), represent a thermal average over

the Stark levels at the rotational temperature of the molecules in the droplets (0.37

K [18]). This distribution is given by equation 2.23.

It is important to note that the Stark energies in this equation depend on both

the dipole moment of the molecule and its rotational constants. However, the thermal

average is only weakly dependent upon these quantities, so that we can use the ab initio

values (the rotational constants being reduced by a factor of three to account for the

e¤ects of the helium [99]) in this analysis.

With the molecule oriented in the laboratory frame of reference, the vibrational

band intensity depends on the angle �, de�ned as the angle between the permanent

electric dipole and the transition moment (the VTMA). For a vibrational mode with its

transition moment parallel to the permanent moment, and therefore also the DC electric

�eld, the intensity of the associated band is enhanced by the application of a DC electric

�eld when the laser electric �eld is aligned parallel to the DC electric �eld. Rotation of

the laser polarization by 90 � will result in a �eld induced decrease in the corresponding

band intensity, because in this case the laser is polarized perpendicular to the transition

moment. At the magic angle (54.7 �), the intensity of the band will not depend on the
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electric �eld [168]. Throughout this chapter, parallel and perpendicular polarization

con�gurations correspond to the laser being polarized parallel and perpendicular to

the DC electric �eld, respectively. The parallel and perpendicular band intensities can

now be written in terms of both � and the permanent dipole distribution as equation

2.25 and 2.26. As a result, the ratio of the intensities corresponding to parallel and

perpendicular polarization is given by equation 2.27.

The experimental intensity ratios are obtained by integrating the area under the

vibrational bands (with parallel and perpendicular polarization con�gurations), using

the corresponding �eld free spectra to normalize. The latter is necessary given that

a di¤erent laser alignment was needed for the two measurements and one could not

rely on the optimizations alone to ensure that the overall pumping e¢ ciency was the

same for both. The VTMAs for the various vibrational modes of the molecule were

then determined by comparing the calculated intensity ratios with those obtained from

equation 2.27.

4.2.2 Ab initio Calculations

The ab initio VTMAs, obtained by full geometry optimization and harmonic vibra-

tional analysis using Gaussian 03 [169], were carried out using Møller-Plesset pertur-

bation theory at the second-order level (MP2) with a 6-311++G(d,p) basis set and

an aug-cc-pVDZ basis set. Figure 4.1 shows the lowest six tautomers of guanine with

relative energies listed in kJ/mol with and without zero point energy corrections. In

both cases, the amino-oxo G7K tautomer has the lowest energy. In general, the free

energy is more useful for comparison with experiment, particularly given that guanine

is produced at a temperature of 350 �C in the oven. Rapid quenching of the guanine

upon capture by a helium droplet is likely to freeze in the corresponding tautomer pop-

ulation distribution [69,70,80,147,193], making the free energy at the oven temperature
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the most relevant quantity. Figure 4.2 shows a plot of the calculated free energies for

the lowest four tautomers of guanine. The vertical dashed line corresponds to the ex-

perimental conditions used here. According to this measure, the G7K tautomer is the

most stable tautomer, which agrees generally with the energy ordering of the various

tautomers [194]. Nevertheless, all four of these have su¢ ciently low free energies in

comparison to the temperature of the oven that we would expect to see them all. In

contrast, the next lowest form lies approximately 15 kJ/mol higher in free energy and

therefore is unlikely to be present in our samples. The relative intensities of these four

tautomers will be discussed below.
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Figure 4.2: Ab initio free energies for the four lowest energy tautomers of guanine as
a function of temperature. The vertical dashed line corresponds to the experimental
conditions used here at 620 K.

Figure 4.3 shows the four lowest energy tautomers of guanine, onto which are super-

imposed vectors representing the directions of the permanent electric dipole moments
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(solid arrows) and the vibrational transition moments (dashed arrows). The magni-

tudes of the various moments are given in Table 4.1. It is clear from the �gure that

the patterns of VTMAs for the various tautomers are quite di¤erent, making them a

useful tool for assigning the associated vibrational spectra.

It is interesting to note that the permanent electric dipole moments are quite dif-

ferent for the four tautomers shown in Figure 4.3, namely 6.26 D, 1.88 D, 3.11 D, and

4.06 D for tautomers G9K, G7K, G9Ea, and G9Eb, respectively. Given that the exper-

imentally measured dipole moments for molecules solvated in helium are only slightly

di¤erent from the corresponding gas-phase values [123], these can also be used to help

in the spectral assignments, as discussed below.

N1H
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N9H
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NH2(SS) N1H
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NH2(SS)
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N9H

NH2(SS)

9K

9Ea

7K
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G

Figure 4.3: The four lowest energy tautomers of guanine, showing the corresponding
directions of the permanent electric dipole moments (the length of the solid arrows is
proportional to the dipole magnitudes) and the vibrational transition moments (dashed
arrows) for the various vibrational modes. The magnitudes of these moments are given
in Table 4.1.
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Table 4.1: The experimental and ab initio vibrational data for the guanine tautomers.

abb

Harm.a Scaleda Exp. IR initio Exp.
freq. freq. freq. intensity VTMA VTMA �
(cm�1) (cm�1) (cm�1) (km/mol) Assignment ( �) ( �) (debye)

G9K 6.26
3701.3 3542.2 3544.5 38.7 NH2 (AS) 44 50
3664.8 3507.2 3506.9 100.4 N9H 42 44
3606.6 3451.5 3437.9 58.8 N1H 80[77] 68
3587.7 3433.4 3444.5 44.7 NH2 (SS) 31 40

G7K 1.88
3687.1 3528.6 3526.6 36.7 NH2 (AS) 29 29
3660.6 3503.2 3504.8 120.2 N7H 73 73
3607.4 3452.3 3441.1 64.3 N1H 47[41] 20
3576.2 3422.4 3430.5 38.1 NH2 (SS) 83 80

G9Ea 3.11
3801.1 3637.6 3584.4 109.6 OH (F) 57 65
3737.9 3577.2 3580.9 41.5 NH2 (AS) 37 38
3669.6 3511.8 3511.3 104.0 N9H 34 33
3610.6 3455.3 3465.2 58.1 NH2 (SS) 60 55

G9Eb 4.06
3807.9 3644.2 3590.6 100.3 OH (F) 83 85
3741.7 3580.8 3583.2 45.3 NH2 (AS) 20 22
3667.4 3509.7 3509.6 105.1 N9H 21 19
3612.3 3457.0 3466.1 66.2 NH2 (SS) 73 73

a The ab initio calculations were performed at the MP2/6-311++G(d,p) level, and the scaled

frequencies were obtained by multiplying the harmonic frequencies by a factor of 0.957.
b The ab initio VTMAs for the N1H bands presented in square brackets were obtained at the

MP2 theory with an aug-cc-pVDZ basis set.
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4.3 Results

The upper panel in Figure 4.4 shows an experimental spectrum of guanine in helium

that spans the regions corresponding to the N�H, NH2, and O�H stretching vibrations.

The other four panels show the ab initio spectra (all scaled by a factor of 0.957 with

a 6-311++G(d,p) basis set) for the four lowest energy tautomers of guanine. Unlike

the IR-REMPI method used by a large number of groups [69, 70, 80, 147, 193], the

present method does not separate out the contributions to the spectrum associated

with the di¤erent tautomers. Rather, this linear spectroscopy shows all of the bands in

a single spectrum. The apparent di¢ culty with this is that there are many bands that

are closely spaced, making an assignment based purely on the vibrational frequencies

impossible. This problem is compounded by the fact that the accuracy of scaled ab initio

calculations is less than the spacing between the various bands. Note, for example, that

there is a large discrepancy between the experimental and scaled ab initio frequencies

for the two free O�H stretching bands of the G9Ea and G9Eb isomers. As we will see

below, the group of bands in the experimental spectrum, near 3575 cm�1 includes these

O�H stretches. Even if a pump-probe method were used to separate out the spectra

for the di¤erent tautomers, a unique assignment could not be made, given that some of

the vibrational frequencies do not depend very strongly on the tautomer geometry. We

believe that this is in part the reason for the assignment di¤erences in the assignments

for the various experimental studies.

In an e¤ort to overcome the problem discussed above, we now turn to the mea-

surement of the VTMAs for the various bands in the experimental spectrum. Figure

4.5 shows an expanded view of the highest frequency cluster of bands near 3585 cm�1

measured with (a) parallel polarization, (b) zero electric �eld, and (c) perpendicular

polarization (the corresponding electric �eld being 80 kV/cm). Given that these bands

do not correspond at all to the scaled ab initio calculations, an assignment based upon

84



G9K

G7K

G9Ea

G9Eb

3400 3450 3500 3550 3600 3650
0

50
100

wavenumber (cm­1)

0
50

100
0

50
100

ab
 in

tio
In

te
ns

ity
 (k

m
/m

ol
)

0
50

100
NH2(SS) NH2(AS)

NH2(AS)

NH2(AS)

NH2(AS)

NH2(SS)

NH2(SS)

NH2(SS)

N9H

N9H

N9H

N7H

OH(F)

N1H

N1H

OH(F)

Figure 4.4: Survey spectrum of guanine isolated in helium droplets. The corresponding
ab initio vibrational spectra for the four lowest energy tautomers of guanine are shown
in separate panels below the experimental spectrum.
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frequencies would be pure guesswork. However, qualitatively it seems reasonable that

these four bands correspond to the O�H and NH2 asymmetric stretches of the G9Ea

and G9Eb tautomers, which are the only ones that are anywhere close to this region.

This would imply that the O�H stretches are much lower in frequency than predicted by

the scaled ab initio results, a fact that has been noted in previous studies [86,87], while

the asymmetric NH2 stretches are higher than those from theory. Stated di¤erently,

the empirical scaling factors for the various vibrational modes are di¤erent, making the

ab initio frequencies of limited use.

It is clear from Figure 4.5 that two of the bands are enhanced in intensity by appli-

cation of an electric �eld with parallel polarization, while the other two are enhanced

with perpendicular polarization, one more strongly (iii) than the other (iv). Quanti-

tative analysis of the data reveals that these two bands have experimental VTMAs of

(iii) 85 � and (iv) 65 �. This is to be compared with the ab initio VTMAs for the O�H

stretches of the G9Ea and G9Eb tautomers of 83 � and 57 �, respectively. Bands (i)

and (ii) were similarly analyzed to give experimental VTMAs of 38 � and 22 �, respec-

tively. Here again the agreement with ab initio theory is excellent, the corresponding

values for the G9Ea and G9Eb tautomers being 37 � and 20 � for the asymmetric NH2

bands. The ability to uniquely assign the spectra of these rotamers has a great deal

of potential for obtaining a more quantitative understanding of the intramolecular in-

teractions between various functional groups in such systems. Indeed, it is interesting

to note that the experimental O�H stretch (3584.4 cm�1) for the G9Ea tautomer is

lower in frequency than the corresponding vibration for the G9Eb tautomer (3590.6

cm�1). This ordering and frequency di¤erence (6.2 cm�1) is in excellent agreement

with the ab initio calculations (6.6 cm�1), even though the absolute scaled frequencies

are not as well reproduced. Such di¤erences are most likely re�ective of the di¤erence

in the intramolecular interactions in the cis and trans con�gurations. The same is true
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for the asymmetric NH2 stretches, where again the ordering and frequency di¤erences

for the cis and trans tautomers are consistent between theory and experiment. It is

worth pointing out here that the ability to resolve the spectra associated with these

cis and trans amino-hydroxy tautomers (G9Ea and G9Eb) is a¤orded by the extremely

low temperature and homogeneous environment provided by the helium nanodroplets.

Indeed, the line widths typically observed in conventional matrices (argon, for exam-

ple [134,162,186,187]) would be too broad for these four bands to be resolved.

G9Ea G9Eb

G9Ea

G9Eb

(a)

(b)

(c)

(i)

(iv)

(ii)

(iii)

Figure 4.5: Expanded view of the high frequency section (O�H and NH2 (AS)) of the
guanine spectrum. Spectra (a), (b), and (c) correspond to parallel polarization, zero-
�eld, and perpendicular polarization, respectively. The assignments shown in the �gure
are based upon comparisons between the experimental and ab initio VTMAs and are
consistent with the dipole curves presented in Figure 4.12 and 4.13.

We now shift our attention to the region corresponding to the NH2 asymmetric

stretches of the G9K and G7K isomers, which according to the scaled ab initio cal-

culations are at 3542.2 cm�1 and 3528.6 cm�1, respectively. Careful inspection of the
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spectrum shown in Figure 4.4 reveals that there are two bands that are in good corre-

spondence with these ab initio frequencies. Indeed, the expanded view of this region

shown in Figure 4.6 shows the level of agreement between the ab initio calculations

(vertical arrows) and the experimental spectra. Although, the calculations for both the

G9K and G7K tautomers do not match quantitatively well with the NH2 asymmetric

stretches, the di¤erences, which are within 2 cm�1, are certainly less than the uncer-

tainty associated with the calculations. Once again the three spectra correspond to

(a) parallel polarization, (b) �eld free, and (c) perpendicular polarization conditions.

The results for the higher frequency band suggest that the associated VTMA is near

the magic angle, since the band intensity does not depend upon the �eld, while for the

lower frequency band the VTMA is clearly somewhat parallel. Quantitative analysis

of this data gives experimental VTMAs of 50 � and 29 � for the high and low frequency

band, respectively. As expected, the higher frequency band has a VTMA which is very

close to the magic angle. The ab initio VTMAs for these two modes of the G9K and

G7K tautomers are 44 � and 29 �, respectively, in good agreement with the experimental

results. From this, the assignment of the two bands in Figure 4.6 is obvious, as shown.

It is interesting to note that these weak bands have not been observed in previous

experimental studies of guanine [70,80,182].

Figure 4.7 shows another expanded section of the guanine spectrum, in this case

corresponding to the most intense bands in the spectrum near 3505 cm�1. Once again

the three spectra correspond to (a) parallel polarization, (b) zero-�eld, and (c) per-

pendicular polarization conditions. It is encouraging that both theory and experiment

show four bands in this spectral region. Consider �rst the lowest frequency band (i),

for which the experiments show strongly perpendicular behavior. According to the ab

initio calculations, the lowest frequency band should be the N7H stretch of the G7K

tautomer, as indicated by the vertical arrow at 3503.2 cm�1. As can be seen in Table
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Figure 4.6: A set of expanded spectra corresponding to (a) parallel polarization, (b)
zero-�eld, and (c) perpendicular polarization. The vertical arrows show the corre-
sponding ab initio frequencies (NH2 (AS)) and the assignments are based upon the
VTMAs. In this case the scaled ab initio frequencies are in reasonable agreement with
experiment.
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4.1, the ab initio VTMA for this vibrational mode is 73 �, in perfect agreement with the

experimental value for the lowest frequency band in Figure 4.6, namely 73 �. Although

the experimental and calculated frequencies do not match as well as for the other three

bands, the assignment is clear.

(a)

(b)

(c)

G9K G9Ea

G7K

G9Eb

(i)

(ii)
(iii) (iv)

G9KG7K G9EaG9Eb

Figure 4.7: Assignments of the most intense bands in the guanine spectrum, based upon
the VTMAs. The three spectra correspond to (a) parallel polarization, (b) zero-�eld,
and (c) perpendicular polarization. The three higher frequency bands correspond to
the N9H vibrational modes of the tautomers shown, while the lowest frequency band
is associated with the N7H vibrational mode of the G7K tautomer.

Band (ii) in Figure 4.7 clearly has parallel character. The scaled ab initio frequency

for the G9K tautomer is in excellent agreement with experiment, and the ab initio

VTMA (42 �) for this N9H vibration is also in excellent agreement with the experimen-

tal value of 44 �. It is evident that band (iii) is more strongly parallel in character,

given that the band is strongly reduced in perpendicular polarization. The ab initio

vibrational frequency suggests that this is the N9H vibration of the G9Eb tautomer.
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Indeed, the ab initio VTMA for this vibrational mode is 21 �, in excellent agreement

with the experimental value of 18 �. Finally, band (iv) appears to have an intermediate

VTMA between those of bands (ii) and (iii), based upon the polarization dependence of

the band intensities. Assigning this band to the N9H vibration of the G9Ea tautomer,

as shown in the �gure, is straightforward based on both the experimental and ab initio

vibrational frequencies and the VTMAs. This is con�rmed by the ab initio VTMA for

this vibrational mode of 37 �, in excellent agreement with the experimental value of

38 �. This spectral region appears to be ideal for probing all four of the tautomers of

guanine, with excellent signal-to-noise ratio.

The electric �eld and polarization dependence of the next two vibrational bands

near 3465 cm�1 are shown in Figure 4.8. Once again, the VTMAs for these two bands

are clearly quite di¤erent, which aids in their assignment. This is particularly impor-

tant in these cases given that the ab initio vibrational frequencies for the candidate

vibrational modes are in rather poor agreement with the experimental values. The

higher frequency band has strong perpendicular character, suggesting its assignment

to the NH2 (SS) vibration of the G9Eb tautomer, which has an ab initio VTMA of

73 �. A quantitative analysis of the experimental results yields a VTMA for this band

of 73 �. The polarization dependence of the lower frequency band is much weaker, sug-

gesting a VTMA near the magic angle. Quantitative analysis yields an experimental

VTMA of 55 �, compared to the ab initio value for the NH2 (SS) of the G9Ea tautomer

of 60 �. Once again, the assignment is clear. It is interesting to note that while the

scaled vibrational frequencies for these two modes are o¤ by approximately 10 cm�1,

the ordering of the two bands is correct. The experimental and ab initio di¤erences

between the two vibrational bands are 0.9 cm�1 and 1.7 cm�1, respectively. Here again,

these di¤erences are likely due to the di¤erent intramolecular interactions associated

with the two rotamers.
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G9Ea G9Eb

(a)

(b)

(c)

Figure 4.8: Expanded view of a doublet appearing near 3465 cm�1, where (a), (b),
and (c) correspond to parallel polarization, zero-�eld, and perpendicular polarization,
respectively. These two bands are assigned to the NH2 (SS) vibrations of the G9Ea
and G9Eb tautomers of guanine, as shown.
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The �nal expanded spectra are shown in Figure 4.9, where we observe four vibra-

tional bands. A quick tally of the modes already assigned (12) suggests that we still

have four vibrational modes to identify, given that there are a total of 16, namely four

vibrational modes for each of the four tautomers. Based purely on the frequency or-

dering of the four bands, comparisons with the ab initio frequencies would suggest that

from low to high frequency these bands should be assigned as NH2 (SS) of G7K, NH2

(SS) of G9K, N1H of G9K, and N1H of the G7K tautomer. However, anticipating the

assignment based on the VTMAs and dipole moment experiments (to be discussed be-

low), we note that this assignment is good only for the NH2 (SS) of the G7K tautomer.

The observed N1H bands of the G9K and G7K tautomers are shifted further to the red

(compared to the others), so they lie between the NH2 (SS) bands of G9K and G7K.

G9KG7K

G7KG9K

(a)

(b)

(c)

(i) (ii)

(iii)

(iv)

Figure 4.9: A low frequency section of the experimental spectrum, recorded under (a)
parallel polarization, (b) zero-�eld, and (c) perpendicular polarization conditions. The
assignments of the various vibrational bands are based upon comparisons between the
experimental and calculated VTMAs.
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Band (i) is clearly perpendicular in character (experimental VTMA of 80 �), consis-

tent with the ab initio VTMA for the NH2 (SS) of the G7K tautomer of 830. For band

(ii) the experimental VTMA is 68 �, compared with the ab initio VTMA for the N1H

vibration of the G9K tautomer of 80 �. The di¤erence here is a bit larger than what we

have seen for the other bands, but this band is also quite weak, making the associated

experimental error larger (normal experimental error being within � 5 � � 7 �) [86,87].

Bands (iii) and (iv) are both clearly parallel in character with experimental VTMAs

of 20 � and 40 �, respectively. While the N1H stretches of the G7K and NH2 (SS) of

the G9K tautomers are both parallel bands, a comparison of the VTMAs alone does

not allow us to distinguish which band belongs to which tautomer. Therefore, at this

point, we will only tentatively assign bands (iii) and (iv) to G9K/NH2 (SS) (ab initio

VTMA, 31 �), and G7K/N1H (ab initio VTMA, 47 �), respectively. As shown below,

the dipole moment measurements for these bands will con�rm this assignment.

In view of the fact that some of the comparisons between the experimental and ab

initio VTMAs are outside the typical di¤erences we have come to expect from the other

bands of this system, as well as from previous studies [86, 87], we were interested in

developing another approach that could give an independent test of the above assign-

ments. We discuss here an approach that takes advantage of the fact that the dipole

moments for the four tautomers of guanine (see Table 4.1) are all quite di¤erent. As

a result, the dependence of the band intensities on the magnitude of the electric �eld

should be quite di¤erent for these tautomers. In particular, a molecule with a small

dipole moment will require a large electric �eld for complete orientation, while much

lower �elds are needed to reach this saturation condition if the dipole moment is large.

Figure 4.10 shows a plot of the ratio of the integrated areas (Apara:polarization/Azerofield)

for the various vibrational bands assigned to the G9K tautomer. As indicated in Table

4.1, this is the tautomer with the largest ab initio dipole moment. The solid lines
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represent the experimental data, while the various symbols show the results calculated

using the methods discussed above, using the ab initio dipole moment. The agreement

for all four vibrational bands is clearly excellent. To contrast this data, we present in

Figure 4.11 the corresponding results from the G7K tautomer, namely the one with the

smallest dipole moment. In this case the curves are much slower to reach the saturation

levels, in agreement with our expectation. Here again, the agreement between theory

and experiment is quantitative for all four vibrational modes. Now, the ambiguity in

the assignments of bands (iii) and (iv) in Figure 4.9 based on ab initio frequencies and

the VTMAs is obviously resolved. Notice that, in order to get the best agreement be-

tween experiment and theory the bands (iii) and (iv) in Figure 4.9 must be attributed

to the N1H G7K and NH2 (SS) G9K, respectively, con�rming our previous assignments,

as indicated at the two of Figure 4.9. Figure 4.12 and 4.13 show the corresponding data

for the G9Ea and G9Eb tautomers, respectively, which are clearly intermediate cases,

consistent with the corresponding ab initio dipoles moments. The combination of the

VTMAs and these dipole curves gives us a redundancy in the assignment that is not

often available. The NH2 symmetric and N1H stretching region clearly show that a

conclusive assignment based purely on the vibrational frequency ordering cannot be

obtained, given that the two bands are much closer together than the typical accu-

racy of ab initio calculations. Here, we show that the dipole moment curves provide

unambiguous assignment of these four vibrational modes to two separate tautomers.

As a result, we feel that the vibrational assignments presented here are �rm. This is

important given that we now have a complete set of data that can be used to make

detailed comparisons with more sophisticated theories, including those which include

the e¤ects of anharmonicity [183,195,196].
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420 [N9H]

800 [N1H]

310 [NH2(SS)]G9K

440 [NH2(AS)]

Figure 4.10: A plot of the electric �eld dependence of the ratio of the vibrational
band intensities for the four vibrational modes of the G9K tautomer, with and without
the electric �eld and with parallel polarization. The solid lines show the experimental
results, while the symbols correspond to the calculations based upon the ab initio dipole
moment of 6.26 D.
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290 [NH2(AS)]

730 [N7H]

470 [N1H]

830 [NH2(SS)]

G7K

Figure 4.11: A plot of the electric �eld dependence of the ratio of the vibrational
band intensities for the four vibrational modes of the G7K tautomer, with and without
the electric �eld and with parallel polarization. The solid lines show the experimental
results, while the symbols correspond to the calculations based upon the ab initio dipole
moment of 1.88 D.
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G9Ea

570 [OH(F)]

340 [N9H]
370 [NH2(AS)]

600 [NH2(SS)]

Figure 4.12: A plot of the electric �eld dependence of the ratio of the vibrational band
intensities for the four vibrational modes of the G9Ea tautomer, with and without
the electric �eld and with parallel polarization. The solid lines show the experimental
results, while the symbols correspond to the calculations based upon the ab initio dipole
moment of 3.11 D.
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G9Eb

830 [OH(F)]

210 [N9H]
200 [NH2(AS)]

730 [NH2(SS)]

Figure 4.13: A plot of the electric �eld dependence of the ratio of the vibrational band
intensities for the four vibrational modes of the G9Eb tautomer, with and without
the electric �eld and with parallel polarization. The solid lines show the experimental
results, while the symbols correspond to the calculations based upon the ab initio dipole
moment of 4.06 D.
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4.4 Discussion

We begin this discussion by considering the discrepancy in the assignment of the N1H

bands with ab initio calculations and the VTMAs. Although the separation between

NH2 (AS) and NH2 (SS) vibrational bands of the G9K and G7K tautomers is well

predicted by ab initio calculations, the calculations fail to correctly predict the ordering

of the N1H and NH2 (SS) bands of the G9K tautomer (see Table 4.1). This discrepancy

may have several di¤erent sources, and the understanding of these could provide further

insight into this system. For example, the large red shift in frequency of the N1H band

of the amino-oxo tautomers (G9K and G7K) is due to a strong intramolecular hydrogen

bond. Since this interaction is sensitive to the relative orientations of the C=O, N1H,

NH2 groups and the ring, the discrepancy with ab initio calculations may be a measure

of the quality of the local geometry of these functional groups. Indeed, for this band we

also observe an unusual sensitivity of the VTMAs on the basis set re�ecting changes in

the geometry, however, for the other bands the theoretical VTMAs show no dependence

on the basis set (the typical dependence of the VTMAs on di¤erent basis sets is only �

1 � � 2 �) [79]. This supports the above assumption that the VTMA discrepancy in the

N1H assignment results from the failure of the 6-311++G(d,p) basis set to accurately

describe the dihedral angles of the N1H groups for the G9K and G7K tautomers. In

contrast, the dihedral angles of the adjacent and more remote H atoms of the NH2

group show no change with the basis sets and are in good agreement with experiment.

The dihedral angles of the N1H group in the G9K and G7K tautomers, obtained with

an aug-cc-pVDZ / 6-311++G(d,p) basis set, are 5 � / 9 � and 6 �/ 10 � from the plane of

the ring system, respectively. Better agreement for the N1H VTMA assignments with

the aug-cc-pVDZ basis set is observed when compared to the calculations using the

6-311++G(d,p) basis set (see values in brackets in Table 4.1). This is likely due to the

fact that the intramolecular interactions of the N1H group between the C=O and NH2
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groups are better described by the aug-cc-pVDZ basis set than by the 6-311++G(d,p)

basis set. However, more theoretical work to account for the e¤ect of anharmonicity

would de�nitely be needed in this system. It would also be interesting to compare the

ab initio vibrational frequencies, including the e¤ects of anharmonicity, to see if the

agreement with experiment is improved.

We now consider the relative integrated intensities of the various vibrational bands

in the spectrum, with the goal of determining the relative populations for the four

tautomers of guanine. It is helpful that we have four bands for each tautomer, giving

us some redundancy in this determination. This is important given that we have

to depend upon the ab initio vibrational transition moment amplitudes (see the IR

intensities in Table 4.1) to normalize the bands relative to one another.

Considerable theoretical e¤ort has already been devoted to the study of tautomers of

neutral guanine [186,194,197�200]. It has been generally known that the G7K tautomer

is most stable. Recently, Hobza and co-workers predicted that the G7K tautomer is

the global minimum in both energy and Gibbs free energy, while the canonical form

(G9K) is the next lowest local minimum using the RI-MP2 method, MP2 and CCSD(T)

theory with the aug-cc-pVDZ basis set [194]. They found the ordering of the relative

Gibbs free energies for the four tautomers to be G7K < G9K < G9Ea < G9Eb, -1.8,

0.0, 0.5, and 1.8 kJ/mol, respectively. Although, the calculations were done at 298 K,

the ordering is consistent with our experimental observation at approximately 620 K.

On the basis of the ab initio infrared intensities and the experimental integrated

intensities for all of the vibrational modes, we estimate that the experimental relative

abundances of the four tautomers are 1 : 0.8 : 0.4 : 0.3 for G7K, G9K, G9Ea, and G9Eb

tautomers, respectively. Table 4.2 gives a summary of the integrated experimental

intensities and ab initio intensities for the four vibrational bands, normalized to the

most stable G7K tautomer (except for the free OH bands, which were normalized to
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Table 4.2: Integrated experimental areas and ab initio relative populations of the gua-
nine tautomers

Experimental vibrational band area Average ab initiob

OHa NH2 NH2 of N9/7H & relative
Tautomer (F) (AS) N9/7H N1H (SS) NH2(SS) populations
G9K � 0.95 0.7 0.62 0.83 0.76 0.72
G7K � 1 1c 1 1 1 1
G9Ea 1 0.77 0.34 � 0.36 0.35 0.44
G9Eb 0.86 0.65 0.25 � 0.31 0.28 0.36

aThe free OH bands are normalized to the G9Ea tautomer.
bExp(-�G/kT). MP2/aug-cc-pVDZ basis set was used for the free energy calculation at 620K.
cThe intensity was compared with that of the N9H bands of the other tautomers.

the G9Ea tautomer). For the N7H band of the G7K tautomer, indicated by an asterisk,

the intensity was compared with N9H bands of the other tautomers. Since the NH2

(AS) bands for G9Ea and G9Eb are slightly overlapped, we averaged only the N9/7H

and NH2 (SS) bands to have a more reliable value for the relative abundances. The

experimental relative abundances of the four tautomers in helium nanodroplets are in

excellent agreement with those of relative free energy calculations conducted at the

same temperature as used in the capture of a single molecule (ca. 620 K), as shown

in Figure 4.2. Taking all of the data presented above together, there is no doubt

that the lowest four tautomers, G7K, G9K, G9Ea, and G9Eb, are observed in helium

nanodroplets.

The close correspondence between the vibrational frequencies of molecules obtained

in helium droplets and those isolated in the gas-phase molecule is well known [18,

36, 156�158] and is attributed to the very weak forces between solute and solvent.

However, we observe large discrepancies in the vibrational frequencies, which results in

the di¤erent assignments for the guanine tautomers in our helium droplet environment

relative to those obtained by de Vries and Mons using their IR�UV double resonance

approach [70, 80]. A detailed comparison of the data reported by the groups of de
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Vries and Mons and in our work is shown in Figure 4.14. The vertical dotted lines are

meant as a guide to compare the bands observed in the IR�UV experiments reported

by (a) de Vries and (b) Mons to the IR spectrum (c) obtained from this study. A

close examination shows that most of the observed bands in the IR�UV experiments

do not overlap with those in this study. Figure 4.14 clearly shows the disagreement

in the assignments of the N9H and NH2 (AS) bands of the G9K and G7K tautomers

between the two groups, (a) and (b), mentioned in the previous papers [70,182]. Note

that a direct comparison of the G7E tautomer observed in (b) cannot be made because

of the absence of G7E in (a) and (c). However, the frequency patterns of G9Ea from

(a) and G7E from (b) are very similar, which clearly suggests that these belong to the

same molecular structure but are assigned di¤erently. It is also interesting to note that

the observation of the higher energy tautomer, G7E (see Figure 4.1), is questionable,

because the higher energy tautomer was observed with the highest signal-to-noise ratio

in the Mons experiment, but it was not observed at all in the de Vries experiments,

even though the both groups used similar techniques.

The discrepancies in the assignments of speci�c bands for each tautomers among

three groups are discussed below. First, the frequencies of the NH2 (AS) stretch for

the G9K / G7K tautomer are separated by about 50 cm�1 / 25 cm�1 between the

IR�UV (a and b) and this study (c). Similarly, the frequencies of the N9/7H stretch

for the G9K/G7K tautomer, which was not observed by Mons due to the lack of the

IR laser power in this region, are also red shifted by about 20 cm�1 / 10 cm�1 between

the IR�UV (c and d) and this study. Even if we reassigned the de Vries G9K/G7K

tautomer spectra, where the NH2 (AS) bands are assigned to the N9/7H bands, the

origin of the bands at around 3490 cm�1 cannot be explained. Furthermore, not all

the expected bands were observed in IR�UV experiments and the speci�c assignments

for G9K, G7K and G9E were determined by the three (or two) observed bands out
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Figure 4.14: Direct comparisons of the guanine spectra from the three groups: (a) de
Vries [182], (b) Mons [70], and (c) this work. The naming of each tautomer of the two
di¤erent groups followed the present naming scheme. Each vibrational band is classi�ed
in di¤erent colors. The gray box in (b) is the frequency region (3470 �3500 cm�1) where
no spectrum was taken due to the lack of IR laser power [70]. The frequencies of G7E
(b) are not compared to those of (c) due to the absence of the G7E in (c)
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of four expected bands. Speci�cally, the NH2 (SS) band for G9K and G7K in both

of the IR�UV experiments is missing, even though it is observed for the G9Ea tau-

tomer with high intensity in G9Ea (a) and moderate intensity in G7E (b). Further

comparisons related to this issue can be found in Figure 4.15. As shown in Figure 4.14,

it is clear that the discrepancy in the assignment of the infrared spectra for guanine

occurs not only between the IR�UV experiments and this work, but even between the

two IR�UV experiments, in which the experimental conditions are very similar. This

disagreement is perhaps surprising because there has been good agreement between the

gas-phase experiments and our work for the other NABs, such as adenine [54,79,182],

cytosine [79, 86, 182, 201], uracil [54, 202], and thymine [54, 202]. The major di¤erence

between the two approaches is the method of sample preparation. While thermal evap-

oration methods have been used successfully for other NABs, guanine was observed to

undergo decomposition before su¢ cient pressure was obtained [70,182]. To generate the

needed vapor pressure, laser desorption methods were used in the IR�UV experiments.

However, as mentioned previously, much lower vapor pressures are needed in the he-

lium droplet experiments. Based on the de�nitive assignments presented in this work,

thermal decomposition is apparently negligible at our oven temperatures. Since we are

not performing a double resonance (selective excitation), we might also see a spectral

signature of the decomposition products, which are clearly absent. It is thus possible

that the discrepancy between the experiments is the result of decomposition or the

presence of species other than the three and/or four lowest energy guanine tautomers

in the laser desorption experiments.

4.5 Conclusions

This work represents the �rst successful IR spectroscopic study of guanine by thermal

evaporation, a task made di¢ cult by guanine�s low vapor pressure. Helium nanodroplet
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Figure 4.15: Assignments of all vibrational bands of the four (or three) di¤erent tau-
tomers from (a) ab initio frequency calculations and the observed frequencies of the
three groups, (b) this work, (c) de Vries, (d) and (e) Mons. The MP2/6-311++G(d,p)
basis set was used for the frequency calculations. Note that the observed frequencies
of the G9E and G7E tautomer, to which the Mons group assigned, were repeatedly
plotted in the G9Ea and G9Eb panel, since their spectral resolution prohibited a �rm
assignment of the Ea and Eb tautomer. The gray boxes represent the no laser power
frequency region (3470 �3500 cm�1) where no spectrum has been obtained. The best
agreement in the frequency comparison would be the G9Eb and G9E of this study and
Mons, respectively, however, the NH2 (SS) band of the G9E is not observed in (d).
The enol tautomer, G9E, of the IR�UV experiments has a relatively similar frequency
pattern with this work, not like the keto tautomers, however, a close examination shows
that the frequencies for the N9H and NH2 (SS) bands are still not in good agreement
with those observed in this study (see Figure 4.14 for clarity). However, a direct com-
parison of the G7E tautomer observed in (b) cannot be accomplished because of the
absence of the G7E in this work. The similar frequency pattern of not only the G9Ea
and G7E tautomer, but also the G9K and G7K tautomers, from de Vries and Mons,
respectively, leaves more questions in the tautomer assignments.
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experiments have the advantage of requiring much lower vapor pressures (10�6 Torr or

less) than those typically used in free-jet experiments. This is important because the

lower temperatures reduce the likelihood that guanine will thermally decompose. In

fact no evidence of thermal decomposition of guanine is observed at the operating

temperature of our pick-up cell.

In this chapter we have presented a comprehensive study of guanine tautomers

isolated in helium nanodroplets. When these data are combined with results from ab

initio calculations, we obtain de�nitive assignments of all 16 observed vibrational bands

for the guanine tautomers in the 3400 �3650 cm�1 region of the spectrum. By orienting

the molecules in the laboratory frame of reference, the vibrational transition moment

angles (VTMAs) are measured for many of the observed vibrational bands to aid in the

assignment of the speci�c tautomer vibrational bands. Further conclusive assignment is

supported by an electric �eld dependent approach for each tautomer, taking advantage

of the fact that the dipole moments for the four tautomers of guanine are all quite

di¤erent. The �rm assignment leads us to determine the relative populations for the

four structures of guanine as 1 : 0.8 : 0.4 : 0.3 for the G7K, G9K, G9Ea, and G9Eb

tautomers, respectively, which are in excellent agreement with those obtained from ab

initio relative free energy calculations. These provide conclusive evidence that all four

of the lowest energy tautomers, G7K, G9K, G9Ea, and G9Eb, are present in the helium

droplets.

In this study, we have observed and identi�ed the G9Eb tautomer that was missing

in the gas-phase experiments discussed above [70, 182]. The di¢ culty in determining

the structure in several experiments could be due to its almost identical relative energy

di¤erence and the similar vibrational frequencies between the two N9H enol rotamers,

G9Ea and G9Eb. We also have discussed the discrepancies in the assignments of the

guanine tautomers with the previous studies.
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The ab initio frequency calculations, the electric �eld dependence experiments (for

dipole moments), and the VTMAs were used throughout this study to con�rm the

assignments of the various modes for the four tautomers of guanine. However, more

theoretical work is needed to understand the nonplanarity of the N1H groups of the keto

forms (G9K and G7K), where the VTMAs of experiment and theory show unusually

large di¤erences depending on the basis set. Nevertheless, the present study clearly

shows the power of using VTMAs and dipole moments in assigning vibrational spectra

and determining molecular structure, particularly when more than one isomer is present

in the sample.
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Chapter 5

Infrared Laser Spectroscopy of

Uracil and Thymine in Helium

Nanodroplets

Vibrational spectra are reported in the N�H stretching region for uracil and thymine

monomers in helium nanodroplets. Each monomer shows only a single isomer, the

global minimum, in agreement with previous experimental and theoretical studies. The

assignment of the infrared vibrational bands in the spectra is aided by the measurement

of the corresponding vibrational transition moment angles (VTMAs) and ab initio

frequency calculations.

5.1 Introduction

Uracil and its methylated molecule, thymine (5-methyluracil), are the simplest of the

naturally occurring nucleic acid bases (NABs) of RNA and DNA, respectively, and as

such represent benchmark systems for both experimental and theoretical studies. In the

present study we focus our attention on isolated molecules, such that direct comparisons

can be made between theory and experiment. The theoretical literature on uracil and



thymine monomers is in agreement that the lowest energy tautomer of each are the

diketo forms shown in Figure 5.1, and that they are well separated from the higher

energy structures [203�207]. The next lowest energy enol tautomer, U(T)E32, lies

approximately 40 kJ/mol above the global minimum on the potential energy surface.

As a result, experiments carried out at the moderate temperatures needed to evaporate

uracil and thymine are expected to show only the diketo tautomers, UK and TK,

respectively. This is con�rmed by rotationally resolved microwave [175, 176, 208] and

infrared laser [209] studies of jet cooled uracil and/or thymine, which show only the

diketo form.

Nucleic acid bases (NABs) are known to be di¢ cult to investigate by electronic

spectroscopy owing to the rapid non-radiative deactivation of the S1 state, which makes

the associated spectra broad with low quantum yields for �uorescence [210�215]. In the

present study we make use of infrared laser spectroscopy to obtain vibrational spectra

of the diketo tautomers of uracil and thymine, in the N�H stretching region of the

spectrum. The molecules are solvated in helium nanodroplets, which provide the cooling

necessary to obtain high-resolution spectra. Pendular-state spectroscopy [103�106] is

used to orient the molecules in a strong electric �eld, allowing for the measurement of

vibrational transition moment angles (VTMAs), explained in detail below.

5.2 Experimental Methods

The apparatus used in the present study has been described in detail elsewhere [102].

Helium nanodroplets are formed by expanding helium gas (99.9999%) through a 5 �m

diameter nozzle cooled to approximately 20 K by a closed cycle helium refrigerator.

Uracil and thymine are added to the droplets as they pass through an oven maintained

at approximately 160 �C and 175 �C, respectively, corresponding to vapor pressures

between 10�6 and 10�5 Torr (Aldrich, 98% purity). The pick-up process is governed
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Figure 5.1: The ab initio structures and relative energies (MP2/aug-cc-pVDZ level) of
the various tautomers of uracil (U) and thymine (T). Keto and enol forms are classi�ed
by certain functional groups, namely C=O (keto) and O�H (enol), in the pyrimidine
base. In addition, the naming scheme is followed by U or T for uracil or thymine and
the K or E for keto or enol forms. Next, the following numbers identify the nitrogen
position (1 or 3) to which hydrogen is attached, and very similarly the certain carbon
position (2 or 4) to which the O�H is attached. The values in the brackets give the
energies relative to U(T)K in kJ/mol with a harmonic zero point energy correction.
Uracil and thymine is classi�ed by the substituent, R = H and CH3, respectively.
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by Poisson statistics, allowing us to control the average number of molecules captured

by the droplets [42]. In order to remove water from the solid uracil/thymine samples,

they were held in the oven overnight at 110 �C.

The N�H stretching vibrations of uracil/thymine were excited using a Periodically

Poled Lithium Niobate Optical Parametric Oscillator (PPLN�OPO) (LINOS Photon-

ics). Several external etalons and a wavemeter were used to calibrate the spectra. A

multi-pass cell [102] was used to re�ect the laser across the droplet beam approximately

20 times in order to increase the excitation e¢ ciency [88, 101]. Two electrodes were

positioned on either side of the laser interaction region so that an 80 kV/cm DC electric

�eld could be applied. The IR excited molecules undergo rapid vibrational relaxation to

the helium, resulting in the evaporation of several hundred helium atoms. A bolometer

detector [165] was used to monitor the resulting depletion of the droplet beam. The

spectra reported here were recorded by amplitude modulating the laser and using phase

sensitive detection methods.

Previous studies [37,108,120,155,167] have shown that the electric dipole moment

of a polar molecule can be oriented in a large DC electric �eld. In the present study we

make use of this method to measure vibrational transition moment angles (VTMAs)

[79,86�89] for both uracil and thymine. VTMAs are de�ned as the angles between the

permanent dipole moment and the transition moment vectors for the various vibrational

modes of the molecule. The VTMAs are experimentally determined by measuring the

band intensities for the various vibrational modes, as a function of the laser polarization

direction relative to the DC electric �eld. For a vibrational mode with its transition

moment parallel to the permanent dipole moment, parallel polarization of the laser

will result in a signi�cant increase in the band intensity compared to the zero-�eld

case, and perpendicular laser polarization will result in a decrease in intensity. A

quantitative description of this e¤ect requires that the orientation distribution for the
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permanent dipole moment be known. This distribution depends upon the magnitude of

the dipole moment, the applied electric �eld, the rotational constants and temperature

of the molecule in question. The methods for calculating these distribution have been

discussed in detail previously by Kong et al. [128�131]. For the systems discussed herein,

the experimental spectra are broadened to a Lorentzian line shape. Although this means

that the rotational constants cannot be directly determined from the experimental

spectra, it also means that the overall orientation distribution is less sensitive to the

rotational constants. In this case we use the ab initio rotational constants, divided

by a factor of three to account for the e¤ects of the helium [88, 99], to determine the

orientation distribution needed to calculate the VTMAs. This approach works rather

well given that the rotational temperature of the droplets, and hence the rotational

temperature of the molecules, are well known, namely 0.37 K [18, 22]. A detailed

discussion of how the experimental VTMAs are extracted from the integrated areas

of the zero-�eld, parallel and perpendicular polarization spectra is given elsewhere

[79,86,87,89,216].

5.2.1 Ab initio Calculations

Although both the uracil and thymine have been the subjects of numerous previous ab

initio calculations, none of these have reported permanent dipole or transition dipole

directions needed for comparison with the experimental VTMAs. For this reason, we

carried out extensive ab initio calculations for the various tautomers of uracil and

thymine, using Gaussian 03 [169]. Unless otherwise speci�ed, the calculations were

performed using second order Møller-Plesset perturbation theory (MP2) with an aug-

cc-pVDZ basis set. Figure 5.1 shows the four lowest tautomers of uracil and thymine,

whose relative energies are listed in kJ/mol for the equilibrium geometries, with a

harmonic zero point energy correction.

113



Figure 5.2 shows the lowest energy diketo form of uracil and thymine monomer, onto

which are superimposed vectors representing the directions of the permanent electric

dipole moments (solid arrow) and the vibrational transition moments (empty double

ended arrows).

N1H

µ

N3H

UK

N1H N3H

µ

TK

Figure 5.2: The lowest energy tautomer of uracil (UK) and thymine (TK), showing
the corresponding directions of the permanent electric dipole moments (solid arrow)
and the vibrational transition moments (empty double ended arrows) for the various
vibrational modes. The magnitudes of these moments are given in Table 5.1.

5.3 Results

We begin this discussion by considering the spectra, Figure 5.3, of the uracil monomer

in the region of the N�H stretching vibrations. In light of the published experimental

[175,176,208,209] and theoretical [203�207] work on this system, we expect to see only a

single tautomer, namely the diketo form. As shown in Figure 5.1, the diketo tautomers
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of uracil/thymine possess two N�H vibrational modes, referred to hereafter as N1H and

N3H. The upper panel in Figure 5.3 shows an experimental spectrum of uracil monomer

in helium droplets that spans both the N1H and N3H stretching vibration region. The

other four panels show the ab initio spectra (all scaled by a factor of 0.958458 with

an aug-cc-pVDZ basis set) for the four lowest energy tautomers of uracil. Figure 5.4

shows the corresponding data for the thymine tautomers, which are clearly similar to

the spectrum of uracil, both experimentally and theoretically. The two main peaks in

the both spectra, Figure 5.3 and 5.4, are easily assigned by comparison with the scaled

ab initio calculations to be the N1H and N3H vibrations of the monomer. The vertical

bars in Figure 5.4 are the calculated intensities of these two vibrational modes of each

thymine tautomer, scaled by a factor of 0.95877 to obtain the best overall agreement

between theory and experiment, particularly for the free N1H stretch. The weaker

bands in the spectrum are assigned to the uracil dimer, given that they grow in at

higher oven temperatures, indicating that they require the pick-up of more than one

uracil/thymine molecule. A detailed discussion of these peaks is given below.

Figure 5.5 shows the three di¤erent laser polarization spectra of uracil in the N1H

region corresponding to (a) a pendular spectrum with parallel polarization, (b) a zero-

�eld spectrum, and (c) a pendular spectrum with perpendicular polarization (electric

�eld strength being 80 kV/cm), all plotted on the same absolute intensity scale. Using

the methods discussed elsewhere [79,86�89], we made use of the integrated areas under

the peaks to determine experimental VTMAs for the monomer, yielding 43 � and 17 �

for the N1H and N3Hmodes, respectively. These results are in excellent agreement with

the result of ab initio calculations (MP2/aug-cc-pVDZ) for the diketo tautomer, which

gave 43 � and 15 �, respectively (see Table 5.1). Although there are no real surprises

here since the calculated frequency of N1H of the diketo form is also in very good

agreement with the experimental value, these results do provide another example in
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Figure 5.3: A survey spectrum of uracil isolated in helium droplets. The ab initio
vibrational spectra for the four lowest energy tautomers of uracil are shown in sepa-
rate panels below the experimental spectrum. The vertical bars in the bottom panels
summarize the ab initio frequencies and intensities for the N1H and N3H modes of
the various tautomers. The harmonic ab initio calculations were all scaled by a fac-
tor of 0.958458 to obtain the best overall agreement between theory and experiment,
particularly for the free N1H stretch of the UK tautomer.
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Figure 5.4: A survey spectrum of thymine isolated in helium droplets. The ab initio
vibrational spectra for the four lowest energy tautomers of thymine are shown in sep-
arate panels below the experimental spectrum. The vertical bars in the bottom panels
summarize the ab initio frequencies and intensities for the N1H and N3H modes of
the various tautomers. The harmonic ab initio calculations were all scaled by a fac-
tor of 0.95877 to obtain the best overall agreement between theory and experiment,
particularly for the free N1H stretch of the TK tautomer.
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which the experimental and ab initio VTMAs are in quantitative agreement, generating

more con�dence that this is a general method that can be used as an aid in assigning

the spectra of unknown species, which we have already shown with the uracil�water

complexes [87] (see Chapter 7).

3485 3490 3495 3500
wavenumber (cm­1)
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(b)

(c)

Figure 5.5: An expanded view of the N1H stretching region of the uracil (UK) spectrum.
Spectra (a), (b), and (c) correspond to parallel polarization, zero-�eld, and perpendic-
ular polarization, respectively. The two bands marked with an �*�and a �#�are due
to the uracil dimer and trimer, respectively.

The oven temperature dependence of the intensities of the three bands in Figure 5.5

is shown in Figure 5.6. The band assigned to the N1H stretch mode clearly optimizes

at lower temperatures, consistent with the fact that lower vapor pressures are required

for the pick-up of a single molecule. The other two bands are assigned to the higher

order self associated complexes of uracil and require higher vapor pressures for optimum

signals. The other two bands, labeled with an �*�and a �#�, are assigned to dimer and

trimer, respectively. The vapor pressure in the pick up region of the oven (scattering
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box, see Figure 2.3) can be varied to pick up the desired number of uracil molecules,

according to the associated Poisson statistics [42]. The disappearance of both bands

at lower oven temperatures indicates that the bands are associated with higher order

uracil complexes. Indeed, the oven temperature dependence of the N�H stretching

spectrum of uracil revealed the presence of the band marked with an �*�clearly arises

from the dimer. A shoulder on the peak marked with a �#� optimizes at an even

higher temperatures, which we presume is associated with the uracil trimer. The small

frequency shifts associated with these two bands suggest that these N1H modes are

associated with non�hydrogen bonded vibrations, which is also very similar to the case

of the N3H stretching modes (see Figure 5.7).
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Figure 5.6: The oven temperature dependence of the intensities of the three bands
shown in Figure 5.5. The N1H band clearly optimizes at lower temperatures, consistent
with the fact that lower vapor pressures are required for the pick-up of a single molecule.
The other two bands, �*�and �#�, are assigned to the dimer and trimer, respectively,
which require higher vapor pressures for optimum signals.
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Figure 5.7: An expanded view of the N3H stretching region of the uracil (UK) spec-
trum. Spectra (a), (b), and (c) correspond to parallel polarization, zero-�eld, and
perpendicular polarization, respectively. The band marked with an �*� is due to the
uracil dimer.
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Figure 5.8 shows the three di¤erent laser polarization spectra of thymine in the

N1H region recorded with (a) an applied 80 kV/cm DC electric �eld directed parallel

to the laser polarization direction, (b) zero electric �eld, and (c) an applied 80 kV/cm

DC electric �eld directed perpendicular to the laser polarization direction. The peak

marked with an �*�only appears at high oven temperatures, which indicates that the

peak should be assigned to be the thymine dimer, as shown in the case of uracil (see

Figure 5.5 and 5.6). We also made use of the integrated areas under the peaks to

determine experimental VTMAs for the monomer, yielding 52 � and 8 � for the N1H

(Figure 5.8) and N3H (Figure 5.9) modes, respectively. These results are in excellent

agreement with the result of ab initio calculations (MP2/aug-cc-pVDZ) for the diketo

tautomer, which gave 52 � and 13 �, respectively (see Table 5.1).
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Figure 5.8: An expanded view of the N1H stretching region of the thymine (TK)
spectrum. Spectra (a), (b), and (c) correspond to parallel polarization, zero-�eld, and
perpendicular polarization, respectively. The two bands marked with an �*�and a �#�
are due to the thymine dimer and trimer, respectively.

121



3438 3440 3442 3444 3446 3448 3450
wavenumber (cm­1)

N3H

*
*

*

(a)
(b)
(c)

Figure 5.9: An expanded view of the N3H stretching region of the thymine (TK)
spectrum. Spectra (a), (b), and (c) correspond to parallel polarization, zero-�eld, and
perpendicular polarization, respectively. The bands marked with an �*�are due to the
thymine dimers.

5.4 Summary

In this study we report high-resolution infrared laser spectra of isolated uracil and

thymine monomers in helium nanodroplets. By orienting the target molecules in the

laboratory frame of reference with a strong DC electric �eld, we measured the VTMAs

of the uracil and thymine monomers. The calculated frequencies are very well matched

with the observed frequencies, and the VTMA assignments provide additional and un-

ambiguous assignment for the uracil and thymine molecules. The survey scans shown

in Figure 5.3 and 5.4 of both uracil and thymine show that only the global minimum

tautomer (diketo form) of the uracil and thymine is present in the helium nanodroplets.

122



Table 5.1: A summary of the experimental and calculated vibrational frequencies and
VTMAs for the various isomers of uracil and thymine

ab
Scaleda Exp. IR initio Exp. Relative
freq. freq. intensity VTMA VTMAs � energy
(cm�1) (cm�1) (km/mol) Assignment ( �) ( �) (D) (kJ/mol)

UK 4.38 0
3493.9 3493.9 116.5 N1H 43 43
3443.8 3443.9 72.2 N3H 15 17

UE32 3.02 40.8
3599.0 � 131.9 OH 3 �
3435.4 � 80.0 N3H 79 �

UE14 4.84 44.8
3565.8 � 98.1 OH 41 �
3465.3 � 94.2 N1H 85 �

UE12 6.46 72.2
3593.3 � 121.0 OH 66 �
3496.8 � 130.3 N1H 11 �

TK b 4.34 0
3494.3 3494.2 112.3 N1H 51 52
3444.5 3444.5 70.9 N3H 8 13

TE32 2.54 38.9
3603.3 � 132.8 OH 10 �
3436.3 � 78.1 N3H 74 �

TE14 5.27 48.1
3563.7 � 97.8 OH 45 �
3464.9 � 90.3 N1H 90 �

TE12 6.09 69.3
3595.4 � 123.6 OH 63 �
3495.2 � 126.4 N1H 14 �

a The ab initio calculations were performed at the MP2/aug-cc-pVDZ level and the scaled

frequencies were obtained by multiplying the harmonic frequencies by a factor of 0.958458.
b The ab initio calculations were performed at the MP2/aug-cc-pVDZ level and the scaled

frequencies were obtained by multiplying the harmonic frequencies by a factor of 0.95877.
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Now that we have well characterized spectra of uracil and thymine monomer, the chal-

lenge for the future is the study of the dimers of the given systems, which would be

more biologically important systems. The formation of hydrogen bonds between pairs

of NABs is fundamental to the structure and dynamics of DNA and RNA and is the

subject of continued intensive study. Although the Watson-Crick base pairs are jus-

ti�ably often the center of such attention, NAB dimers can also provide important

information concerning such hydrogen-bonding. For example, N�H � � � O�C hydrogen

bonds are of fundamental importance and are amenable to study in the simplest of

these systems, namely the uracil and thymine dimers.
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Chapter 6

Nonplanarity of Adenine from

Infrared Laser Spectroscopy in

Helium Nanodroplets

Infrared laser spectroscopy of adenine in helium nanodroplets is described in this chap-

ter. We show that there is only one tautomer of adenine, the global minimum structure,

observed and characterized by using ab initio calculations and the measurement of vi-

brational transition moment angles (VTMAs) for the various vibrational modes of the

adenine monomer. In this work, we also studied the nonplanarity of adenine with the

aid of the VTMA analysis on the amide group of adenine. The experimental VTMAs

of NH2 asymmetric stretch (AS) match with ab initio calculated values under Møller-

Plesset perturbation theory at the 2nd order level (MP2) with a non-planar structure,

but mismatch with those calculated under the density functional theory at Becke�s three

parameters hybrid functional method (B3LYP), which predicts adenine a perfectly pla-

nar structure. Nonplanarity has been further con�rmed by studying the evolution of

VTMAs with the dihedral angle N1C6N10H14, and by the comparisons between MP2

and B3LYP calculations under planar and non-planar constraints.



6.1 Introduction

Although nucleic acid bases (NABs) are well known as the building blocks of life [144,

174], the detailed structure of isolated NABs still remains to be solved. NABs were

believed to be perfectly planar for many years, until the predictions of nonplanarity

of the amino group on the NABs in the early 1990�s [135, 137, 138, 152, 173, 217�221].

Hobza and co-workers [137,138,173] conducted a series of ab initio studies on the non-

rigidity of NABs, and showed that the non-planar structure was indeed more stable

than the planar structure. Although a large inertial defect of adenine was observed in a

microwave study [177], its cause was not directly related to the nonplanarity of adenine.

Other evidence also supports nonplanarity [135,221�224] which is caused by the partial

sp3 hybridization of the aminogroup nitrogen atom [137, 217]. Unfortunately, due to

the experimental di¢ culties associated with the isolation of single molecules as well as

in su¢ cient experimental spectral resolutions, no direct experimental evidence for the

nonplanarity of isolated NABs has been provided. The existence of the nonplanarity of

amino groups has only been proved by the spectroscopic studies on similar compounds,

such as the inversion-torsion frequencies of aniline and 2-aminopyrimidine [225,226].

We have recently discussed a method for determining vibrational transition moment

angles (VTMAs) for isolated molecules [79, 86�89] and showed that these VTMAs are

highly dependent on the molecular structure and are rather insensitive to the basis sets

used in the ab initio calculations. Furthermore, no scaling factor is needed to account of

the anharmonicity [79,86�89]. In this work, improved signal levels have been obtained

by using a periodically poled lithium niobate optical parametric oscillator (PPLN�

OPO) which provides he �rst direct experimental evidence of the nonplanarity of the

amino group in isolated adenine.

Although the recent systematic theoretical studies [227�230] on the tautomers of

adenine provide a detailed information on the energetic ordering of the various tau-
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tomers, the information about the permanent dipole and transition dipole directions

needed for the comparison with the experimental VTMAs has never been reported.

Therefore, we conducted extensive ab initio calculations for the 8 amino and imino

tautomers of adenine, using Gaussian 03 [169]. Figure 6.1 shows these tautomers of

adenine with their relative equilibrium energies listed in brackets (kJ/mol), with har-

monic zero point energy corrections at the MP2/6-311G++(d,p) basis set. Detailed

information about the ab initio VTMAs, obtained from MP2/6-311++G(d,p) basis set

of the tautomers in Figure 6.1 is listed in Table 6.1.

6.2 Experimental and Computations

The infrared spectrum of isolated adenine was carried out by solvating adenine in the

liquid helium nanodroplets. The experimental apparatus has been described elsewhere

in detail [102]. Super�uid helium droplets have been shown to be an ideal spectroscopic

matrix [4], resulting in high-resolution spectra completely devoid of hot bands and vi-

brational frequencies unperturbed from those in the gas-phase. Nanodroplets with a

mean size of 3,000 helium atoms were formed by expanding ultrahigh purity helium

(99.9999%) from a 5 �m diameter ori�ce, operated at 50 atm pressure and a tempera-

ture of 20.5 K. Adenine was doped to the droplets by pick-up [164] in a scattering-box

oven (Figure 2.3), the temperature of which was optimized for the capture of a single

molecule (�175 �C). Upon being captured by the droplets, adenine is quickly cooled

to the 0.37 K temperature of the droplets [18,22].

A periodically poled lithium niobate (PPLN) cw�OPO [159, 160] IR laser with a

70 mW power from Linos Photonics was used for the most of the measurements. The

signal is enhanced by the use of a multipass cell [102]. Vibrational excitation of the

solvated molecules results in the evaporation of several hundred helium atoms. The

resulting laser induced decrease in the energy of the droplet beam is detected by a
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Figure 6.1: The ab initio structures and relative energies (MP2/6-311++G(d,p)) of
the various tautomers of adenine (A). Amino and imino tautomers are classi�ed by
the functional groups attached to the carbon at position 6 of the purine base, namely
NH2 (Amino) and N�H (Imino). In addition, the naming scheme is followed by �A�
for adenine and the particular nitrogen position (9, 7, 3, or 1) to which a hydrogen
is attached. Next, �I� stands for imino form. The imino forms have two rotational
orientation of the NH group, which are cis (a form) and trans (b from) to the �ve-
membered ring. The values in the brackets give the energies relative to A9 in kJ/mol
with a harmonic zero point energy correction at the MP2/6-311++G(d,p) level of
theory. The atom numbering for A9 is shown at the right lower corner as an example.
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Table 6.1: A summary of ab initio vibrational data for the adenine tautomers. All
calculations were performed at the MP2/6-311++G(d,p) level of theory.

Harmonic IR ab initio Dipole
frequency intensity VTMA moment
(cm�1) (km/mol) Assignment ( �) �; (Debye)

A9 2.8
3733.7 52.7 NH2 (AS) 21
3666.4 112.8 N9H 59
3602.3 73.7 NH2 (SS) 76

A7 6.7
3686.5 32.5 NH2 (AS) 61
3667.7 85.3 N7H 15
3570.9 37.0 NH2 (SS) 54

A3 4.1
3740.9 67.3 NH2 (AS) 10
3608.3 45.3 N3H 79
3603.0 178.5 NH2 (SS) 88

A1 8.6
3686.6 45.5 NH2 (AS) 39
3619.6 84.3 N1H 21
3569.0 66.6 NH2 (SS) 62

A9Ia 3.9
3660.6 108.9 N9H 14
3611.7 76.0 N1H 57
3533.7 25.1 N10H 19

A9Ib 4.6
3664.0 108.3 N9H 52
3619.4 46.0 N1H 78
3493.2 7.9 N10H 7

A7Ia 3.4
3662.1 84.0 N7H 12
3612.7 74.4 N1H 88
3545.8 13.6 N10H 41

A7Ib 3.8
3653.8 110.0 N7H 57
3623.3 49.0 N1H 48
3512.1 10.4 N10H 36
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bolometer [165], which is positioned downstream of the laser interaction region (see

Figure 2.2). The laser beam is amplitude modulated and a phase sensitive detection of

the bolometer signal is used to make the spectra essentially background free. A series of

external etalons and a wavemeter were used to calibrate the resulting infrared spectra.

The pendular-state spectroscopic method has been applied previously to both gas-

phase [104,120,190,191,231] and helium nanodroplet [37,108,120,155,167] studies. A

large DC electric �eld applied between the Stark electrodes results in the orientation

of the permanent dipole moment of the molecule parallel to the electric �eld, in the

limit where �E is large compared to the rotational temperature of 0.37 K [18,22]. For

a linearly polarized laser the result will be a change in the excitation e¢ ciency, given

that the molecular transition moments will also be oriented in the laboratory frame

of reference. If the laser electric �eld is aligned parallel (perpendicular) to the DC

electric �eld (referred to here as parallel and perpendicular polarization alignments)

the corresponding change in the vibrational band intensity will depend upon the angle

between the permanent dipole axis and the corresponding transition moment direction.

This angle is referred to here as the vibrational transition moment angle or VTMA.

For a vibrational mode which has its angle between the transition moment and the

permanent dipole moment is less than the magic angle (54.7 �), a parallel polarization

scan will result in an increase in the band intensity, and vice versa for the perpendic-

ular polarization scan, compared to the corresponding band in the zero-�eld scan. A

quantitative description of this e¤ect requires that the orientation distribution for the

permanent dipole moment be known. This distribution depends upon the magnitude of

the dipole moment, the applied electric �eld, the rotational constants, and temperature

of the molecule in question. The methods for calculating these distribution have been

discussed in detail previously [128�131] (also refer to Section 2.5).

The ab initio VTMAs were obtained by a harmonic vibrational analysis of the
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molecules with fully optimized geometries using Gaussian 03 [169]. As noted in our

preliminary studies [79, 86�89], the ab initio VTMAs for these high frequency X�H

stretches are rather insensitive to basis set, given that they are mainly determined by

the structure of the molecule. For example, an N�H stretch has its transition moment

directed approximately along the corresponding bond axis. Figure 6.2 shows that the ab

initio transition moment vectors (empty double ended arrows) and permanent electric

dipole moments (solid arrows) for the two tautomers (A9 and A7) are superimposed

on the molecules. The density functional theory calculations (DFT) at Becke�s three

parameters hybrid functional method (B3LYP) has also been applied for the comparison

which will be discussed below.

µ

µ

NH2
(SS)

NH2
(SS)

NH2
(AS)

NH2
(AS)

N7H

N9H

A9 A7

Figure 6.2: The two lowest energy tautomers of adenine (A9 and A7), showing the cor-
responding directions of the permanent electric dipole moments (solid arrows) and the
vibrational transition moments (empty double ended arrows) for the various vibrational
modes. The magnitudes of these moments are listed in Table 6.1.
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6.3 Results and Discussions

The upper panel in Figure 6.3 shows an experimental spectrum of adenine in helium

nanodroplets that spans the regions corresponding to the NH2 (AS), N�H, and NH2 (SS)

modes. The middle panel shows the ab initio predicted spectrum and the bottom panel

shows the predicted spectrum of the next lowest energy tautomer, A7. The frequencies

for the scaled spectra were scaled by a factor of 0.95713 with a 6-311++G(d,p) basis set

determined by scaling the calculated harmonic frequency for the N�H stretch of ade-

nine to the corresponding experimental frequency to account for anharmonicity. The

assignment of this spectrum is quite straightforward, given that the vibrational bands

are widely separated. Indeed, ab initio frequencies calculated at MP2/6-311++G(d,p)

with Gaussian 03 [169], give a convincing assignment, as guided by the dotted lines in

Figure 6.3. However, even here, some frequency di¤erences between the experimental

and scaled calculations still exist, illustrating the di¢ culties that can arise in assigning

vibrational spectra of more complicated molecules, where the spacing between vibra-

tional levels can be smaller than the typical accuracy of the calculations [86, 87, 89].

Given that the assignments of the vibrational bands in adenine are well established,

it serves as an excellent test case for illustrating the use of the present method for

measuring VTMAs [79].

Figure 6.4 shows three spectra of the NH2 asymmetric stretch (AS) region, recorded

with (a) an applied DC electric �eld directed parallel, (b) no applied �eld, and (c) an

applied DC electric �eld directed perpendicular to the laser polarization direction for the

NH2 (AS) band at 3568.2 cm�1. Quantitative analysis of this band gives experimental

VTMAs of 24 � which is in excellent agreement with the ab initio value, 21 �.

Figure 6.5 shows another expanded region of the adenine spectrum, in this case

corresponding to the most intense band, N9H, at 3509.2 cm�1. Once again the three

spectra correspond to (a) parallel polarization, (b) zero-�eld, and (c) perpendicular
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Figure 6.3: A survey spectrum of isolated adenine in helium droplets. The correspond-
ing ab initio vibrational spectra for A9 and A7 (both scaled by a factor of 0.95713 with
6-311++G(d,p) basis set) are shown below the experimental spectrum. It clearly shows
that the tautomer in the helium droplets is the A9 tautomer.
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Figure 6.4: Expanded spectra of the NH2 (AS) stretch mode of the A9 tautomer. Spec-
tra (a), (b), and (c) were recorded parallel polarization, zero-�eld, and perpendicular
polarization conditions, respectively.
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polarization conditions. As listed in Table 6.2, the ab initio VTMA for this vibrational

mode is 59 �, in good agreement with the experimental value, namely 63 �. The bands

in the region of 3504 �3508 cm�1 are assigned to the adenine dimers or high energy

tautomers. Because, higher oven temperatures result in higher adenine pressures in

the scattering-box oven and thus a greater probability for picking up more than one

molecule. However, as discussed in Chapter 3, higher energy tautomers are also favored

at higher temperatures, so that a de�nitive assignment of these bands will have to await

a more detailed investigation in which the vapor pressure of the sample in the pick-up

cell can be varied independently of the temperature, which will be discussed in Section

9.2.1. The band at 3509.2 cm�1 has a temperature dependence that is consistent with

the pick-up of a single molecule by the droplets, shown in Figure 6.6.

3504 3506 3508 3510 3512

wavenumber (cm­1)

Dimers or
high energy
tautomers

N9H

(a)

(b)

(c)

Figure 6.5: An expanded view of the N9H stretching region of the adenine (A9) spec-
trum. Spectra (a), (b), and (c) correspond to parallel polarization, zero-�eld, and
perpendicular polarization, respectively. The bands in the region of 3504 �3508 cm�1

are due to the adenine dimer or higher energy tautomers.
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Figure 6.6: The oven temperature dependence of the intensities of the N9H band region
shown in Figure 6.5. The N9H band (square) clearly optimizes at lower temperatures,
consistent with the fact that lower vapor pressures are required for the pick-up of
a single molecule. The other �ve bands are assigned to the dimer or higher energy
tautomers and require higher vapor pressures for optimum signals.

We now turn our attention to the region of the spectrum corresponding to the

NH2 (SS) vibration. Figure 6.7 shows the three di¤erent laser polarization spectra of

adenine in 3450 cm�1 region corresponding to (a) a pendular spectrum with parallel

polarization, (b) a zero-�eld spectrum, and (c) a pendular spectrum with perpendicular

polarization (electric �eld being 80 kV/cm). The other two bands, labeled � and � in

Figure 6.7, which disappear at lower oven temperature, are assigned (see Figure 6.8)

to adenine dimer or to high energy tautomers. Using the methods discussed elsewhere

[79, 86�89], we made use of the integrated areas under the corresponding peaks to

determine experimental VTMAs for the monomer, namely 77 �, which is in excellent

agreement with the result of ab initio value of 76 �.
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Table 6.2: A summary of the experimental and calculated vibrational frequencies and
VTMAs for the lowest energy tautomer of adenine

ab Dipole
Harm.a Scaleda Exp. IR initio Exp. moment
freq. freq. freq. Intensity VTMA VTMA �
(cm�1) (cm�1) (cm�1) (km/mol) Assignment ( �) ( �) (D)

A9 2.8
3733.7 3573.6 3568.2 52.7 NH2 (AS) 21 24
3666.4 3509.2 3509.2 112.8 N9H 59 63
3602.3 3447.9 3451.6 73.7 NH2 (SS) 76 77

a The ab initio calculations were performed at the MP2/6-311++G(d,p) level and the scaled

frequencies were obtained by multiplying the harmonic frequencies by a factor of 0.95713.

The oven temperature dependence of the intensities of the three bands in Figure

6.7 is shown in Figure 6.8. The band assigned to the NH2 (SS) mode clearly optimize

at lower temperatures. The other two bands, labeled � and �, which require higher

vapor pressures for optimum signals, are assigned to the higher order self associated

complexes or higher energy tautomers of adenine.

Up to now, we have shown that the combination of the ab initio frequencies and the

VTMA assignment of each vibrational band of the global minimum structure of adenine

(A9) gives a conclusive assignment of the adenine monomer. Now we begin discussing

the issue of adenine nonplanarity. The dependency of the calculated vibrational fre-

quencies and VTMAs of three vibrational modes [NH2 (AS), N9H, and NH2 (SS)] on

the basis sets is shown in Figure 6.9. It is interesting to note that the smallest basis

set (STO�3G) in Figure 6.9 shows an unreasonable prediction of both the VTMAs and

the frequencies of the three modes, but were included here simply to show how stable

the VTMAs are to basis set size. As shown in Figure 6.9(b), the calculated frequencies

of the three bands �uctuate considerably at lower basis sets, but stabilize at higher

basis sets, showing basis set dependence on frequency. Furthermore, the calculated
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Figure 6.7: An expanded view of the NH2 (SS) stretching region of the adenine spec-
trum. Spectra (a), (b), and (c) correspond to parallel polarization, zero-�eld, and
perpendicular polarization, respectively. The bands marked with an � and � are due
to the adenine dimer or higher energy tautomers.
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Figure 6.8: The oven temperature dependence of the intensities of the NH2 (SS) stretch
band region shown in Figure 6.7. The NH2 (SS) (square) band clearly optimizes at lower
temperatures, consistent with the fact that lower vapor pressures are required for the
pick-up of a single molecule. The bands marked with an � and � are assigned to
the dimer or higher energy tautomers and require higher vapor pressures for optimum
signals.
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harmonic frequencies have to be scaled to correct for the anharmonicity. In contrast,

the calculated VTMAs are essentially independent of a basis set size, suggesting that

quantitative comparisons can be made with experiment even using very modest ab

initio calculations. This is important when applying these techniques to much larger

systems, where large basis sets may be prohibitively expensive. The reason for the

insensitivity of the VTMAs to basis set size can be appreciated by noting that, for

the localized vibrations considered here, the transition moment directions are primar-

ily determined by bond directionality, rather than by the detailed force �elds between

the atoms. Therefore, as long as the calculated structure is good, the directions of the

permanent and transition moments will be rather well determined. Note that no scale

factors are required in making the comparison between the experimental (horizontal

colored lines in the �gure) and calculated values.

It is very interesting to note that the ab initio VTMAs, listed in Table 6.3, show

a large dependence on the type of theory used, namely MP2 and B3LYP method.

The adenine tautomer, A9, showed a planar structure at the B3LYP level of theory,

however, a non-planar structure was obtained with a full optimization at the MP2

level of theory. This is, while the MP2 and DFT calculations may disagree about

the planarity of adenine, they both agree about the values of the VTMAs at their

non-planar geometry of adenine. As shown in Table 6.3, the experimental VTMAs

match much better with the non-planar structure as proposed by many theoretical

studies [135,137,138,152,173,217�221].

The nonplanarity of the A9 tautomer is re�ected in the dihedral angles of N1C6N10H14,

N1C6N10H15 and C2N1C6N10 (see Figure 6.1). The dihedral angles of N1C6N10H14

is 0 � and 20 � with a B3LYP and MP2 level of theory, respectively. Figure 6.10(a)

and (b) show the evolution of the other two dihedral angles, namely N1C6N10H15 and

C2N1C6N10, and the VTMAs for the corresponding vibrational bands, respectively, as
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Table 6.3: VTMA comparisons of the A9 tautomer structures obtained from MP2 and
B3LYP level of theory with 6-311G++(d,p) and 6-311G(d,p) basis sets

VTMA
NH2 NH2
(AS) N9H (SS)
( �) ( �) ( �)

Exp.a 24 63 77
Theory Basis set

Full B3LYP 6-311G++(d,p) 3 69 82
Optimization 6-311G(d,p) 7 71 85

MP2 6-311G++(d,p) 21 59 76
6-311G(d,p) 21 60 78

Non-planar B3LYPb 6-311G++(d,p) 20 62 79
Constraint 6-311G(d,p) 20 64 81
Planar MP2c 6-311G(d,p) 3 69 83

Constraint 6-31G(d,p) 2 69 84

a Experimental VTMAs from this work.
b Fixed the dihedral angle N1C6N10H14 of adenine to 20 �
c Fixed the dihedral angle N1C6N10H14 of adenine to 0 �
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function of the dihedral angle of the N1C6N10H14 from 0 � to 30 �. It is worth pointing

out that the adenine tautomer, A9, is constrained to be purely planar when the dihe-

dral angle of the N1C6N10H14 is �xed to 0 � with an MP2 level of theory, which is very

similar to the result with a B3LYP method. At this geometry of the molecule (planar),

the VTMAs of the all three vibrational bands, namely NH2 (AS), N9H and NH2 (SS)

(with an MP2 method) result in the VTMAs that are very similar to those when cal-

culated with the B3LYP method (see Table 6.3 and �gure 6.10(b)). The calculations

were conducted by freezing the dihedral angle, N1C6N10H14, while all the others were

fully relaxed. As shown in Figure 6.10(a), the dihedral angles of the N1C6N10H15 and

C2N1C6N10 indicate that the NH2 group is out of the planar purine ring. Interestingly,

the VTMAs of the three vibrational modes with a full optimization with MP2 level

can also be reproduced by constraining the dihedral angle N1C6N10H14 of the planar

adenine to 20 � with a B3LYP method, shown in Table 6.3. Therefore, taking all of the

experimental and theoretical data presented above together, we have incontrovertible

experimental evidence of the nonplanarity of adenine.

6.4 Summary

In this study we have presented the infrared laser spectroscopic investigation of isolated

adenine in helium nanodroplets. We have observed only the global minimum structure

of adenine, A9, determined by using ab initio frequency calculations and the measure-

ment of vibrational transition moment angles (VTMAs) for each vibrational stretching

mode. Most interestingly, the experimental VTMAs of NH2 (AS) only matches with

the ab initio value that is obtained from a non-planar structure geometry, which shows

the �rst direct experimental evidence for the nonplanarity of the nucleic acid base

(NAB) [79]. The nonplanarity of adenine has been further con�rmed by studying the

evolution of the VTMAs of the NH2 (AS) mode as the dihedral angle, N1C6N10H14 is
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Chapter 7

Multiple Isomers of Uracil�Water

Complexes: Infrared Spectroscopy

in Helium Nanodroplets

Infrared laser spectroscopy is used to show that four structural isomers of the uracil�

water binary complex are formed in helium nanodroplets. The assignment of the in-

frared spectra is aided by measurements of vibrational transition moment angles (VT-

MAs) for various vibrational modes of these complexes. The experimental results are

in excellent agreement with ab initio calculations, which had previously predicated the

existence of the same four isomers. The results suggest that the relative abundances of

the various isomers formed in helium droplets has more to do with the widths of the

valleys in the potential surface that funnel into a particular local minimum than on the

associated energetics.

7.1 Introduction

Although the importance of hydration in the structure and dynamics of DNA is well

established, its speci�c role in various processes is still only qualitatively understood



[232�241]. Although some of these e¤ects can be explained by treating water as a

continuum dielectric, others are sensitive to the location and orientation of individual

water molecules [232,240,242�244], illustrating the importance of treating such systems

on the molecular level. For example, water assisted proton transfer in guanine [245�

247] and cytosine [248�250] is thought to involve a single water molecule that forms

a double hydrogen bond that bridges the proton donor and proton acceptor sites on

the molecules. In such cases, where an individual water molecule plays such a pivotal

role in such processes, there is considerable motivation for studying the isolated binary

complexes. The present study represents our �rst attempt at applying this approach

to the study a nucleic acid base (NAB) / water binary complex.

Considerable theoretical [242, 243, 251�257] and experimental [258�261] e¤ort has

already been devoted to the study of NAB�water complexes. In general, the theoret-

ical studies vastly outnumber the experiments, owing to the fact that these systems

are rather spectroscopically complex, particularly given that they often have multi-

ple isomers. Nevertheless, considerable progress is being made in the development of

experimental methods for studying such systems [79�82], particularly for those where

theory and experiment can be applied together to gain deeper insights. In particular,

infrared spectroscopy (sometimes used in double resonance with UV spectroscopy [193])

is playing an important role in these studies, given that the vibrational spectra of these

complexes are highly sensitive to structure.

Although considerable progress is being made by comparing the experimental re-

sults with harmonic vibrational frequencies (scaled to approximately account for anhar-

monicity), such comparisons are qualitative at best. Unfortunately, more quantitative

comparisons between experimental and ab initio vibrational frequencies are hampered

by the fact that the vibrational motion of molecules occurs on a multidimensional

surface (3N�6 for a non-linear molecule), making the exact solution of the nuclear dy-
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namics formidable for even moderate size systems [243], and intractable for larger ones.

At present, NAB�water complexes fall in the �large�category from this point of view.

Take cytosine�water for example, where the vibrational dynamics is occurring on a

42 dimensional potential energy surface. The problem becomes critical when closely

spaced vibrational bands are encountered in an experimental spectrum, making the

assignment unclear. Even when spectra can be assigned, the problem remains that it

is di¢ cult to use the experimental spectra to make systematic and quantitative re�ne-

ments to the molecular structure. Thus challenges remain for both experiment and

theory in making these approaches more useful in re�ning structure.

In a recent paper we showed that the problem of assigning closely spaced vibra-

tional bands in an experimental spectrum could be largely overcome by experimentally

measuring the angles between the vibrational transition moments and the permanent

dipole moment of the molecule for the associated vibrational modes [86]. These vibra-

tional transition moment angles (VTMAs) also provide detailed structural information

on the species of interest. The determination of these quantities is accomplished by

orienting the molecule in a large DC electric �eld [37,108,167,262] and measuring the

integrated intensities of the vibrational bands as a function of the laser polarization

direction. For the case of well isolated, high frequency X�H stretches, we �nd that

these angles could be reliably calculated using conventional ab initio methods, based

upon harmonic frequency calculations. Indeed, these angles are much less sensitive to

the detailed multidimensional potential surface, but rather depend primarily on the

structure of the molecule, particularly for these high frequency modes of the molecule.

The sensitivity of the method to the molecular structure was �rst demonstrated for

adenine, where the experimental VTMAs for the N�H and NH2 stretches were highly

dependent upon the out-of-plane NH2 tilt angle [79]. In the present study we apply

these methods to the study of the isomers of the uracil�water binary complex.
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Complexes between water and uracil have become benchmark systems for the study

of solvent interactions involving NABs, owing to the relative simplicity of uracil. Even

here, however, ab initio calculations have repeatedly shown that there are at least four

low energy isomers [239, 242, 243, 252, 253, 255�257, 263]. As expected for a hydrogen

bonded complex, and recently revealed by Monte Carlo calculations [242, 243, 257],

these complexes are not particularly rigid. Nevertheless, they are separated by rather

high barriers, suggesting that they should be experimentally observable under the right

conditions.

Infrared spectroscopy has been used to study the uracil�water complex in argon

matrices [261] and in aqueous media having a range of dielectric constants [260]. Unfor-

tunately, these studies did not provide conclusive structures for the associated carriers

of the infrared bands. The dipole-bound anion of uracil�water has also been experi-

mentally observed [232,258], and mass spectra have been reported for (uracil)m-(H2O)n

(m=1�3 and n=1�16) [264]. Most recently, Casaes et al. [265] used infrared cavity ring-

down spectroscopy in a jet to observe bands associated with gas-phase uracil-(water)n

complexes, which they assigned up to n=5. Once again, however, the assignment of

these bands to speci�c isomers of these complexes was not possible. Thus, despite

the obvious theoretical interest in these systems, the existing experiments have not

provided the type of detailed structural information needed for making comparisons.

Figure 7.1 shows the four isomers of uracil�water, determined from ab initio calcula-

tions. In all cases, the water molecule forms a double hydrogen bond, bridging a proton

donor and proton acceptor site on the uracil. The goal here is to use infrared laser spec-

troscopy of uracil�water complexes formed in helium nanodroplets [4, 18, 36, 154, 155]

to identify and characterize these species. It has been amply demonstrated in previ-

ous studies [18, 36, 156�158] that the vibrational spectra of helium solvated molecules

are only weakly perturbed from that in vacuum. In particular, the matrix shift is
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much smaller than that typically encountered in conventional matrix isolation spec-

troscopy [149�153]. The low temperature of these nanodroplets (0.37 K [18, 22]) also

helps to simplify the infrared spectrum. Although the complexes of interest here do

not show rotationally resolved spectra, the low temperature of the helium nanodroplets

facilitates the orientation of the complexes by a modest DC electric �eld. The latter is

used to great advantage in the present study to determine VTMAs for the vibrational

modes associated with the di¤erent isomers of the uracil�water binary complex.
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Figure 7.1: The four most stable uracil�water binary complexes, calculated at the
MP2/6-311++G(d,p) level of theory. The values in the brackets give the energies
relative to isomer 1, including a harmonic zero point energy correction.
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7.2 Experimental Methods

The helium nanodroplet apparatus used in the present study has been discussed previ-

ously in some detail [102]. The nanodroplets are formed by expanding ultra-high purity

helium gas (99.9999%) from a 5 �m diameter nozzle that is cooled by a closed cycle

helium refrigerator (CTI cryogenics). The mean size of the nanodroplets is determined

by the source pressure and temperature and is estimated using a published empirical

formula [93]. Once formed, the nanodroplets pass through an oven containing a low

vapor pressure (between 10�6 and 10�5 Torr) of uracil (Aldrich, 98% purity). Poisson

statistics apply to the pick-up process, so that the number of uracil molecules cap-

tured by the nanodroplets can be controlled by varying the oven temperature (uracil

pressure) [42]. For the purposes of the present study, the conditions were optimized

for the pick-up of a single uracil molecule. In practice, the uracil sample was baked

at 110 �C overnight in the vacuum to remove water from the sample and then heated

to 180 �C to optimize for the pick-up of a single molecule. A second pick-up cell was

positioned downstream of the oven and used to add water to the droplets. The doped

nanodroplets then pass through a multi-pass/Stark cell [102] that is used to produce

multiple crossings of the infrared laser with the helium nanodroplet beam and to apply

a large DC electric �eld to the interaction region, respectively. Preliminary experiments

were carried out using an F�center laser [266], the output power of which is approxi-

mately 5 mW in the region of interest. However, a recently acquired periodically poled

lithium niobate (PPLN) cw�OPO [159,160] from Linos Photonics was used for most of

the measurements, given that it has considerably higher power (70 mW). A series of

external etalons and a wavemeter were used to calibrate the resulting infrared spectra.

Laser induced vibrational excitation of a helium solvated molecule or complex is

followed by vibrational relaxation to the liquid helium, resulting in the evaporation of

several hundred helium atoms. This causes a depletion of the helium �ux to a bolometer
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detector located on the droplet beam axis [165]. The spectra are made background free

by amplitude modulating the laser and using phase sensitive detection methods.

The vibrational bands observed here are not rotationally resolved, presumably due

to rapid vibrational relaxation. Indeed, the observed band pro�les are all well rep-

resented by a Lorentzian function. This is in contrast to smaller systems, where the

relaxation is slower and the molecules often rotate rather freely in the liquid helium.

In these cases the spectra are often rotationally resolved and well represented by the

corresponding gas-phase energy level expression, with modi�ed rotational constants

that account for the e¤ects of the helium. As noted below, the VTMAs associated

with a given vibrational band are obtained by measuring the integrated areas of the

corresponding band, as a function of electric �eld polarization, so that this broadening

is not really a problem in the present study.

7.2.1 Measurement of VTMAs

Brute force orientation has been used extensively in both gas-phase molecular beam

[104,120,190,191,231] and helium nanodroplet [37,108,120,155,167] experiments. The

method is based upon the application of a large DC electric �eld (E) to a polar molecule,

such that �E is large in comparison to the rotational temperature. Under these con-

ditions the molecule undergoes pendular-like motion and the dipole becomes strongly

oriented along the �eld direction. In the present experiments the (linearly polarized)

laser electric �eld is then aligned either parallel or perpendicular to the DC electric �eld.

Hereafter, these are referred to as parallel and perpendicular polarization alignments,

respectively.

Consider a vibrational mode that has its transition moment approximately parallel

to the permanent dipole moment. In parallel polarization, the orientation of the per-

manent dipole with the DC �eld will also align the transition moment with the laser
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electric �eld. As a result, the application of the electric �eld will result in an increase in

the associated band intensity, owing to the improved alignment between the laser elec-

tric �eld and the transition moment of the molecules. Rotation of the laser polarization

by 90 � (perpendicular polarization) will result in a decrease in the band intensity upon

application of the DC electric �eld. For a 0 � VTMA and complete orientation of the

molecules in the �eld, the band intensity will go to zero in perpendicular polarization.

Alternatively, if the transition moment is perpendicular (VTMA = 90 �) to the perma-

nent dipole moment, the band intensity will be enhanced when the laser is polarized

perpendicular to the DC �eld. At �nite electric �elds, the permanent dipole orienta-

tion distribution can be calculated using the methods discussed most comprehensively

by Kong et al. [128�131]. This distribution is dependent upon the detailed rotational

structure in the band, which is in turn dependent upon the rotational temperature.

However, since the present experimental spectra are broadened beyond the rotational

contour, the sensitivity of the orientation distribution to the rotational constants is

rather muted. As a result, we �nd that the ab initio rotational constants, divided by a

factor of three to approximately account for the e¤ects of the helium [99], can be used

to determine accurate VTMAs. This is largely the result of the fact that the rotational

temperature is well determined in these experiments (namely, the droplet temperature

of 0.37K [18, 22]). The normalized orientation distribution is then given by P (cos�),

Equation 2.23.

The absorption intensity for a linearly polarized laser depends upon the angle �

(VTMA) between the permanent dipole and the transition dipole direction, as well

as the laser polarization direction, namely; equation 2.25 and 2.26. As a result, the

polarization ratio as a function of � is obtained from Equation 2.27.

Experimental VTMAs can then be determined by measuring this ratio, from the

integrated band intensities for parallel and perpendicular polarization, and then using
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Table 7.1: A summary of the ab initio rotational constants and dipole moments obtained
for isomers 1 � 4, at the MP2/6-311++G(d,p) level. The orientation distributions
needed for the VTMA measurements were determined using the droplet temperature
and the ab initio rotational constants, divided by a factor of three to account for the
e¤ects of the helium.

A B C �
GHz GHz GHz Debye

UW1 1.216 0.325 0.257 3.94
UW2 0.727 0.452 0.279 4.59
UW3 0.738 0.447 0.279 3.86
UW4 0.727 0.452 0.279 2.84

equation 2.27 to determine �.

The ab initio VTMAs are obtained directly from a Gaussian03 calculation, which

gives both the direction of the permanent dipole and all of the transition dipole moments

for the various normal modes [169]. Figure 7.2 shows the four isomers of uracil�water,

onto which are superimposed the various transition moment directions (dotted vectors)

and the permanent dipole moment direction (solid vectors). Unless speci�ed otherwise,

the ab initio calculations reported here were carried out using Møller-Plesset perturba-

tion theory at the 2nd order level (MP2) with a 6-311++G(d,p) basis set. Once again,

the calculated dipole moment and rotational constants (see Table 7.1) (reduced by a

factor of 3 to account for the e¤ects of helium [99]) were used in the calculation of the

orientation distribution.

7.3 Results

We begin the discussion of the uracil�water results by considering the spectrum in the

free O�H stretching region, where uracil itself has no vibrational bands. Figure 7.3

shows a number of spectra corresponding to (a) pure water clusters and (b), (c), and

(d) to conditions optimized for the pick up of a single molecule of uracil and water,
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Figure 7.2: Vector diagrams showing the directions of the permanent electric dipole
moments (solid single headed arrows) and the vibrational transition dipole moments
(dashed double headed arrows) for the relative vibrational modes of the four uracil�
water binary complexes considered here.
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with perpendicular polarization, zero-�eld, and parallel polarization, respectively. The

peaks observed in spectrum (a) are all assigned to water monomer and dimer in helium.

Upon addition of uracil to the droplets, four new peaks appear in this spectral region,

indicative of the formation of uracil�water complexes. The vertical arrows appearing

at the bottom of Figure 7.3 indicate the harmonic ab initio frequencies for the free

O�H vibrational modes (scaled by a factor of 0.94) for the four isomers of uracil�

water. Although the overall spread of the vibrational bands in the experimental and

calculated spectra are comparable, the bands are too closely spaced to make a de�nitive

assignment based purely on the vibrational frequencies. Indeed, the four bands span a

frequency range of less than 10 cm�1, which is much smaller than the extent to which

we can trust the ab initio calculations.

We begin the discussion of the assignment of these four peaks by noting that the

corresponding intensities have precisely the same dependence on the uracil oven tem-

perature, which is also the same as that for the uracil monomer bands. In addition,

the water pick-up cell pressure dependence for all of these bands is the same as that

of the water monomer. From this we can conclude that all four of these bands are

associated with the uracil�water binary complex. Since all four of the ab initio isomers

of uracil�water have only a single free O�H stretch each, the most obvious assignment

of these bands is to four isomers.

Although the scaled ab initio vibrational frequencies are insu¢ cient for a conclusive

assignment of these bands, we can now turn to the corresponding VTMAs, determined

from the polarization dependence of the spectral band intensities, recorded in the pres-

ence of a large electric �eld. It is evident from Figure 7.3(b) that only one of the four

bands survives in perpendicular polarization. Thus only one isomer of the uracil�water

binary complex has a free O�H vibrational mode with a VTMA larger than the magic

angle (54.7 �). This is in excellent agreement with the ab initio VTMAs, as indicated
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Figure 7.3: Infrared spectra of (a) pure water clusters and (b), (c), and (d) uracil�
water complexes, recorded either (c) without an applied �eld or with a DC electric
�eld oriented (b) perpendicular or (d) parallel to the laser polarization direction. The
vertical arrows show the ab initio results for the free O�H vibrational modes of the
di¤erent isomers. The height of each arrow re�ects the calculated intensities of the
di¤erent bands. The band marked with an * is due to uracil complexes containing
more than one water molecule.
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in Figure 7.2. Indeed, only isomer 4 has its OH(F) transition moment approximately

perpendicular to the permanent dipole moment vector, while for the other three iso-

mers the VTMAs all less than the magic angle. The quantitative experimental and ab

initio VTMAs for the free O�H stretches of the four isomers are summarized in Table

7.2. Although the agreement between theory and experiment for isomer 4 is not as

quantitative as we have seen for some other systems [86], the assignment of the band

to isomer 4 is clear. The discrepancy between the experimental and ab initio values

for this isomer has several interesting possible sources and the understanding of these

could provide further insights into this system. For example, since isomer 4 is the most

weakly bound of the isomers, it might have particularly wide amplitude vibrational

motions that average to give an experimental VTMA that is rather di¤erent from that

of the equilibrium geometry. We will come back to this point in the discussion.

The agreement between the experimental and ab initio VTMAs for the other three

(more stable) isomers is clearly much better, the typical di¤erences being only a few

degrees. The problem here, however, is that the experimental and ab initio VTMAs for

the isomers 1 and 3 are rather similar for this free O�H mode, making the assignment

still somewhat unclear. The assignment listed in Table 7.2 was chosen because it gives

the best overall agreement with the data. Fortunately, there are other vibrational

modes that can be used to obtain more de�nitive assignments, as discussed below. The

assignment give in Table 1 is also the one that gives the best relative intensity agreement

with the other vibrational bands, which are more de�nitively assigned. For example, the

intensities of the two bands assigned to isomers 1 and 3 are quite di¤erent, allowing us to

transfer assignments made in one spectral region to another. It is certainly reasonable

that the band associated with isomer 1, the global minimum on the potential energy

surface, is the most intense in the spectrum. Fortunately, the VTMA for isomer 2 is

quite di¤erent from the other three, making the associated assignment rather de�nitive.
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Table 7.2: A summary of the experimental and calculated vibrational frequencies and
VTMAs for isomers 1 �4.

ab
Harm. Scaleda Exp. IR initio Exp
Freq. Freq. Freq. Intensity VTMA VTMA
(cm�1) (cm�1) (cm�1) (km/mol) Assignment ( �) ( �)

UW1
3959.7 3773.6 3727.1 119 OH (F) 23 31
3741.5 3565.7 3467.5 232 OH (B) 19 14
3617.7 3447.6 [3442.7]b 72 N3H (F) 38 �
3489.1 3325.1 3317.3 504 N1H (B) 35 35

UW2
3967.2 3780.7 3727.8 113 OH (F) 43 44
3773.1 3595.8 3500.7 155 OH (B) 21 36
3666.4 3494.1 [3491.6]b 116 N1H (F) 26 �
3460.3 3297.7 3265 346 N3H (B) 48 55

UW3
3962.1 3775.9 3722.3 112 OH (F) 29 29
3744.2 3568.2 3467.5 216 OH (B) 11 14
3664.2 3492.0 [3491.6]b 119 N1H (F) 63 �
3451.3 3289.1 3271 347 N3H (B) 19 18

UW4
3962.5 3776.3 3723.1 116 OH (F) 80 61
3743.2 3567.2 3508.4 338 OH (B) 87 90
3662.4 3490.3 3491.6 124 N1H (F) 38 33
3615.9 3445.9 3442.7 75 N3H (B) 30 29

a The ab initio calculations were performed at the MP2/6-311++G(d,p) level and the scaled

frequencies were obtained by multiplying the harmonic frequencies by a factor of 0.953.
b The experimental frequencies in square brackets (for some of the free N�H stretching bands)

are only estimates, assuming that these bands overlap with the monomer, given that they

were not observed in the spectrum. The corresponding VTMAs were clearly not determined
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These bands provide important information concerning the relative populations of the

four isomers, given that the corresponding free O�H stretches all have approximately

the same infrared intensity (see Table 7.2). We will return to this issue in the discussion.

Having assigned the four bands in the free O�H stretching region to the four isomers

obtained from ab initio theory, it is interesting to compare the ab initio frequencies with

those from experiment. In both cases, the highest frequency band is due to isomer 2

and isomers 3 and 4 are grouped together at lower frequency. However, in the ab

initio calculations the free O�H stretch of isomer 1 is shifted even further to the red

(compared to the others), in contrast with the experimental results. As a result, an

assignment based purely on the vibrational frequency ordering would be incorrect.

The results presented here already show that all four of the theoretically predicted

isomers are formed by cluster growth in liquid helium. Apparently the water molecule

simply falls into the potential well that is closest to the point where it encounters the

uracil molecule. In light of this, we presume that the relative intensities of these bands

have more to do with the relative widths of the potential energy basins that funnel into

a given minimum than they do on the relative energies.

We now turn our attention to some of the other vibrational modes of the uracil�water

system, which can help in making the case for the formation of all four isomers stronger

still. Figure 7.4 shows an extended scan of the region of the spectrum corresponding

to the OH (F), OH (B), NH (F), and NH (B) vibrations. Uracil has both an N3H

and N1H vibration, providing even further experimental information. The ab initio

calculations for the four isomers are also summarized in Figure 7.4, based on a single

scaling factor (0.953) for all of the vibrational modes (namely that needed to give good

agreement between theory and experiment for the free N�H stretches). Note that this

scaling factor gives rather poor agreement for the case of the free and bonded O�H

stretches.
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Figure 7.4: An overview spectrum of uracil�water formed in helium nanodroplets. The
vertical arrows in the bottom panels summarize the ab initio frequencies and intensities
for the OH (F), OH (B), NH (F), and NH (B) modes of isomers 1 �4. The harmonic
ab initio calculations were all scaled by a factor of 0.953 to obtain the best overall
agreement between theory and experiment, particularly for the free N�H stretches.
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According to the ab initio calculations shown in Figure 7.4, the OH(B) vibrational

modes are quite well separated from the free N�H stretches, the former being approxi-

mately 100 cm�1 to the blue of the latter. However, in the expanded spectra shown in

Figure 7.5, we can see that the bonded O�H stretches are actually in the same region of

the spectrum as the N�H stretches of the monomer, the latter being the intense peaks

labeled with an *. To help sort out which of the bands in this region are due to the

bonded O�H stretching vibrations we also recorded a spectrum of the uracil-D2O com-

plex. As discussed below, the rather sharp bands, assigned below as free N�H stretches

of the complex, are still present in the uracil-D2O spectrum, while the broader bands

(marked with vertical arrows in the upper spectrum) are completely absent. This is

expected since the vibrational frequencies of the free N�H stretches are not a¤ected

by deuterium substitution, since by de�nition the water binds at sites remote from the

free N�H stretch. In contrast, the bonded O�H stretches are clearly strongly shifted by

deuterium substitution, making the assignment of the bands indicated by the arrows

clear. It is important to point out that we see no evidence for isotopic scrambling

in these experiments. Indeed, since the D2O and uracil are brought together under

the low temperatures conditions characteristic of the helium droplets, the energies are

simply too low to facilitate isotopic exchange. Thus the deuterium atoms stay where

they are initially labeled, a clear advantage given that otherwise many di¤erent iso-

topomers would be formed, further complicating the spectra. In fact, this is often a

problem is free jet experiments, where the two molecules are brought together in the

high temperature region [267�269].

Figure 7.6 shows an expanded view of spectra now tentatively assigned to the bonded

O�H stretches, along with their dependence on the electric �eld and polarization direc-

tion. The dependence of the intensities of these bands on water pick-up cell pressure

and the uracil oven temperature indicate that the peak marked with an asterisk is due
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Figure 7.5: Spectra of the bonded O�H stretching region, which is overlapped with the
N�H stretches. The bands marked with an * are assigned to the free N�H stretches
of uracil monomer, while the bands labeled with vertical arrows in the uracil�H2O
spectrum (a) (which are missing in the uracil�D2O spectrum b) are assigned to bonded
O�H stretches of isomers 1 �4.
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to a complex consisting of a uracil molecule bound to two water molecules, while the

other three bands in the spectra are associated with binary uracil�water complexes.

Here again, as is evident from Figure 7.6, only one of the bands has an experimental

VTMA (90 �) that is larger than the magic angle, namely the one appearing at the

highest frequency. Only isomer 4 has a perpendicular ab initio VTMA (87 �). The

vertical arrows in Figure 4 show the ab initio vibrational frequencies for the four iso-

mers, now having been rescaled (0.927) so that the group of bands falls underneath

the broad band in the experimental spectrum. This scaling clearly does not account

for the position of the band for isomer 4, but as we will see below, it does give the

best overall agreement for the four bands. In the end we conclude that the ab ini-

tio calculations are particularly bad in predicting the vibrational frequencies for these

bonded O�H stretches. Fortunately, the VTMAs give a de�nitive assignment for the

band associated with isomer 4.

In considering the assignment of the other peaks in the spectrum, we note that the

weakest peak in the spectrum has a VTMA that best matches the ab initio value for

isomer 2. The weakness of this band once again suggests that isomer 2 has the lowest

population in helium droplets. In fact, the quantitative integrated intensities for the

various bands in the bonded and free O�H regions of the spectrum (see Table 7.3) make

sense when compared to the corresponding data for the free O�H stretch.

We are now left with the broad band, at 3467 cm�1 in the experimental spectra,

which clearly has parallel character. We assume here that the breadth of this peak

is due to the overlap of the two bands associated with isomers 1 and 3. Indeed, as

shown in Table 7.2, the ab initio VTMAs for these isomers are both parallel (19 � and

11 �, respectively). For comparison, the experimental VTMA determined for the broad

band in Figure 7.6 is 14 �, consistent with the average of the two values. Once again,

the relative integrated intensity of this band (see Table 7.3) is consistent with those
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Figure 7.6: Expanded spectra of the bonded O�H stretching region. Spectra (a), (b),
and (c) were recorded with parallel polarization, zero-�eld, and perpendicular polariza-
tion conditions, respectively. The band marked with an * is assigned to uracil complexes
containing more than one water molecule. The vertical arrows summarize the scaled
ab initio results for the bonded O�H stretches of isomers 1 �4.
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Table 7.3: A summary of the integrated experimental and ab initio intensities for the
various vibrational bands, normalized to isomer 1.

Free OH Bonded OH Bonded NH
Exp. ab initio Exp. ab initio Exp. ab initio
area intensity area intensity area intensity

UW1 1 1 1.00 * 0.69 1 1
UW2 0.09 0.95 0.07 0.46 0.18 0.69
UW3 0.27 0.94 1.00 * 0.64 0.59 0.69
UW4 0.51 0.97 0.78 0.64 � �

* Since the bonded O�H stretching bands for isomers 1 and 3 are

overlapped, the intensities quoted in the table (marked with an *)

correspond to an equal sharing of the observed intensity between

the two.

obtained from the free O�H stretching region, assuming that it corresponds to the sum

of the two bands associated with isomers 1 and 3.

We now turn out attention to the region of the free N�H stretches of the uracil�

water complexes. This region is complicated by the fact that the uracil monomer also

absorbs here. In addition, we have observed several bands that are assigned to the uracil

dimer. A full discussion of the monomer and dimer spectra will be published in a future

article. In Figure 7.7 the uracil and uracil dimer bands are indicated by an �*�and

�#�, respectively, and are not directly relevant to the present discussion. As expected,

the monomer vibrational band intensities (N1H stretch at 3494.9 cm�1 and N3H stretch

at 3443.7 cm�1) decreased monotonically with increasing water pick-up cell pressures.

The peaks appearing between the monomer (*) and dimer (#), indicated by the vertical

arrows in Figure 7.7, optimized at a water pick-up cell pressure of approximately 2.5

� 10�6 Torr. At even higher pressures (5 � 10�6 Torr) other peaks appeared in the

spectrum that are tentatively assigned to uracil-(water)2, although the discussion of

these is beyond the scope of the present study.

The small frequency shifts for the new (water related) bands in the N�H stretch
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Figure 7.7: Expanded spectra of the free N�H stretch region. Spectra (a), (b), and
(c) were recorded with parallel polarization, zero-�eld, and perpendicular polarization
conditions, respectively. The bands marked with an * and # sign correspond to the
free N�H stretches of the uracil monomer and dimer, respectively. The bands marked
with the downward point arrows are assigned to the free N1H and N3H modes of isomer
4. The ab initio results for the free N�H stretches of isomers 1 �4 are indicated by the
upward pointing arrows.
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spectrum shown in Figure 7.7 are consistent with uracil�water isomers that have the

water bound at a site remote from the corresponding N3H or N1H stretches. This

is con�rmed by the ab initio calculations for these two vibrational modes, shown in

Figure 7.7 as the vertical arrows. Examination of Figure 7.1 reveals that only isomers

1 and 4 have free N3H vibrations, while isomers 2, 3, and 4 all have free N1H stretches.

Unfortunately, of the 5 bands we would expect to see in this spectral region, only two

are clearly resolved from the monomer. Since isomer 2 is a minor species in the helium

droplets, we can assume that the associated band is weak and perhaps overlapped with

the monomer bands. We therefore focus on trying to di¤erentiate between isomers 1

and 4 in the N3H region of the spectrum and isomers 3 and 4 near the N1H band.

For the N3H vibrational mode, the experimental VTMA (33 �) for the water related

band agrees best with the ab initio value for isomer 4 (38 �). For the free N1H the

experimental VTMA is 29 �, compared with the ab initio values for isomers 3 or 4 of

63 � and 38 �, respectively. The former is well outside our the typical experimental

uncertainty, suggesting that the peak at 3491.6 cm�1 is the N1H of isomer 4, which

coincidently is the isomer that has the larger ab initio frequency shift (relative to the

uracil monomer) and thus is expected to be better resolved. The assignment is also

consistent with the fact that the intensity of the free O�H band associated with isomer

3 is weaker than that for isomer 4. In future it should be possible to use IR�IR double

resonance schemes to separate out the bands that are overlapped by the monomer and

dimer vibrations, however this is beyond the scope of the present study. Without this

type of data, the free N�H stretch region thus only gives information on isomer 4.

The �nal region of the spectrum that needs to be discussed is that of the bonded

N�H stretching vibrations. The structures in Figure 7.1 show that isomers 1, 2 and 3

all have either an N1H or N3H vibration involved in hydrogen-bonding to water. As

a result, we expect to observe a total of three bands in the region of the bonded N�H
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stretches. An expanded view of this region of the spectrum is shown in Figure 7.8.

The bands in this region are obviously weak, mainly due to the fact that they are also

extremely broad. This is typical of hydrogen bonded vibrations, as is well documented

in the literature [270]. The ab initio calculations for these three vibrational modes are

more useful in this case, owing to the fact that the frequency shifts from the monomer

vibrations are much larger and the bands span approximately 40 cm�1. In the upper

panel, corresponding to parallel polarization, there are two very obvious bands, both of

which are enhanced by the electric �eld and therefore must be associated with complexes

with nearly parallel VTMAs. The ab initio vibrational frequencies for isomers 1 and

3 (based upon the shifts from the monomer) are in good agreement with experiment

in this case. The experimental (theoretical) VTMAs for isomers 1 and 3 are 35 � (35 �)

and 18 � (19 �), respectively. The agreement is excellent for both bands, providing a

convincing con�rmation of the assignment based upon the vibrational frequencies.

The band associated with isomer 2 is less obvious in the spectrum, which is not

surprising given that isomer 2 is a minor species in the droplets. Nevertheless, many

scans were taken in order to convince ourselves that there is actually a weak band in

this region of the spectrum, su¢ cient to estimate a corresponding experimental VTMA

of 55 �. This is to be compared with the ab initio value given in Table 7.2, namely 48 �.

Taking all of the data presented above together, there is no doubt that all four of the

theoretically predicted isomer of uracil�water are formed in helium nanodroplets.

In the above discussion, we made use of the relative intensities of the various bands

in the di¤erent spectral regions to aid in the assignment. Table 7.3 gives a summary of

the (integrated) experimental and ab initio intensities for the various bands, normalized

to the most stable isomer, namely isomer 1. For overlapped bands, indicated by an

asterisk, the intensity was simply shared equally between the two.
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Figure 7.8: Expanded spectra of the bonded N�H stretches. Spectra (a), (b), and
(c) were recorded with parallel polarization, zero-�eld, and perpendicular polarization
conditions, respectively. The ab initio frequencies and intensities for the bonded N�H
stretches of isomers 1 �3 are indicated by the vertical arrows.
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7.4 Discussion

The data presented above gives convincing evidence that, upon sequential pick-up of

one uracil molecule and one water molecule by helium nanodroplets, four di¤erent

isomers of the uracil�water binary complex are formed. This broad conclusion may at

�rst seem puzzling, given our previous work on (HCN)n clusters [155] , which showed

that the associated dipole-dipole forces dominate in complex formation, such that only

the linear structures are observed, namely those for which the dipoles of all of the HCN

molecules are oriented parallel to one another. Since both water and uracil are highly

polar, one might have expected to see the same behavior, given rise to only that isomer

which has this head-to-tail dipole con�guration. In fact, the ab initio results in Table

7.1 show that isomer 2 is the most polar, and yet it is the least populated isomer.

In fact, based upon the ab initio infrared intensities and the experimental integrated

intensities for all of the vibrational modes, we estimate that the relative abundances of

the four isomers are 11 : 1 : 3 : 6 for isomers 1, 2, 3, and 4, respectively. So why is it

that the dipole oriented structure is not exclusively formed, as was the case of (HCN)n?

The explanation for this apparent discrepancy comes from considering the relative

magnitudes of the rotational constants of HCN and water. In fact, the rotational

constants associated with the water monomer are roughly 20 times larger than that

of HCN, making the former much more di¢ cult to orient when encountering another

polar molecule. While an HCN molecule is strongly oriented at long range by its in-

teraction with an (HCN)n cluster, and is therefore guided into the linear form of the n

+ 1 complex, water continues to rotate at relatively small intermolecular separations.

As a result, it appears more like an approaching atom than a polar molecule. Indeed,

rotational averaging of the water dipole weakens the associated dipole-dipole interac-

tions, making this steering mechanism much less important. Thus by the time the

anisotropic forces become large enough to begin to orient the water molecule, it has

170



already entered a valley (funnel) in the potential energy surface from which it cannot

escape, given the low temperature of the helium nanodroplet environment. Based on

this picture for cluster growth in helium, we postulate that the populations for the

various isomers are likely determined primarily by the widths of the entrance valleys

leading to the di¤erent isomers, rather than by energetic considerations.

Quantitative theoretical determinations of relative �widths�of these entrance val-

leys should be possible (from the full ab initio intermolecular potential surface), al-

though this is beyond the scope of the present study. Nevertheless, it is interesting to

speculate concerning why the population of isomer 2 is particularly low. One possibility

comes from considering the fact that the local minimum corresponding to isomer 2 lies

between those of isomers 1 and 3, both of which are lower in energy. This is likely to

make the entrance valley for isomer 2 rather narrow, given the tendency of the system

to enter the deeper valleys associated with isomers 1 and 3. In contrast, even though

isomer 4 is the least stable isomer, according to ab initio theory, it is likely to have a

comparatively broader valley, given that the binding sites on the C�H side of uracil are

extremely weak. Thus water molecules landing in this region of the potential will likely

end up in the minima corresponding to isomers 1 and 4. There is clearly much that can

still be learned about the nature of these entrance valleys by comparing detailed poten-

tial energy surfaces with the present experimental populations. Further experiments

on other systems will also be needed to test these ideas and look for general trends.

As evident in Figure 7.1, the structures of all four isomers of the uracil�water sys-

tem are non-planar, with the free O�H bond pointing somewhat out of the plane of

the uracil. Actually, the ab initio calculations indicate that uracil is itself slightly non-

planar in these complexes. Although the e¤ects of this non-planarity is far too weak to

be observed here, the ab initio calculations suggest that the minima corresponding to

the free O�H pointing �up�or �down�are slightly di¤erent. To a very good approx-
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imation, however, these systems can be thought of as having a double well potential,

corresponding to tunneling through the planar geometry. In recent di¤usion Monte

Carlo calculations, van Mourik et al. [257] showed that the free hydrogen is actually

delocalized above and below the plane of the molecule. Indeed, the ground state wave-

function for isomer 1 shows the free hydrogen completely delocalized above and below

the plane. This issue is relevant to the present study, given that all of our comparisons

between the experimental and ab initio VTMAs have not included the e¤ects of vibra-

tional averaging in the latter. Such wide amplitude motion clearly has the potential to

modify the VTMAs from their equilibrium values. To a �rst approximation, however,

the complex can be thought of as spending equal time in the �up�and �down�con�g-

urations. The ab initio calculations show that the VTMAs are essentially identical for

these two geometries, so that to a very good approximation the e¤ects of this motion

should be small.

Although the VTMAs for the various vibrational bands of the uracil�water binary

complexes have been critical in the assignment process, there were a few for which

the agreement between theory and experiment is outside the experimental uncertainty.

Vibrational averaging could still be important in these cases, given that there may be

other wide amplitude motions for which the averaging has a larger e¤ect on the VTMAs.

Another possibility that needs to be kept in mind is that, for isolated cases, the observed

vibrational bands could be anharmonically coupled to other �dark�vibrational states

of the complex, giving rise to bands that have mixed character. In such cases, the

VTMAs would re�ect a weighted average for the two states.

There is another important possibility to consider, namely that the ab initio struc-

tures for one or more of these isomers are not quantitative, such that the di¤erences be-

tween the experimental and ab initio VTMAs is indicative of structural issues. Indeed,

we found previously that the VTMAs for adenine [79] could be used to di¤erentiate
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between a planar and non-planar geometry. Fortunately, it may be possible in time

to use a set of VTMAs to carry out a structural optimization, given that the values

for the high frequency modes of molecules are mainly determined by structure, rather

than depending in a complex way on the potential energy surface of the system in all

3N-6 degrees of freedom. However, we are still in the early days of using VTMAs for

structure determination so more work will be needed before a general strategy can be

established.

7.5 Conclusions

In this combined experimental/theoretical study of the uracil�water binary complex,

we have shown that all four of the theoretically predicted isomers are formed by growth

in helium nanodroplets. The relative abundances of the isomers, referred to here as

1, 2, 3, and 4, are found to be 11 : 1 : 3 : 6. We argue that these populations are

related to the dynamics associated with the formation of the clusters in the helium.

In particular, the low temperatures associated with helium nanodroplets ensures that

once a water molecule enters a given valley (funnel) in the long range potential surface,

it will be unable to cross over into the next. As a result, the populations given above

provide detailed information about the relative �widths�of the entrance valleys in the

uracil�water potential. Future theoretical work on this system could provide direct

comparisons with these values. Further insights into the nature of these energy land-

scapes might be forthcoming from experiments designed to use infrared laser pumping

of the molecules from one local minimum to another, as reported elsewhere for other

systems [125,271].

Vibrational transition moment angles were used throughout this study, to con�rm

the assignments of the various vibrational modes of these uracil�water complexes. Here

again, more theoretical work is needed to include the e¤ects of anharmonicity and
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wide amplitude motion in the calculation of these angles. Nevertheless, the present

study clearly shows the power of using VTMAs in assigning vibrational spectra and

determining molecular structure, particularly when more than one isomer is present in

the sample. It still remains to be seen if a more complete set of VTMAs could be used

to systematically re�ne molecular structures obtained from ab initio calculations.

174



Chapter 8

Infrared Laser Spectroscopy of

Imidazole Complexes in Helium

Nanodroplets: Monomer, Dimer,

and Binary Water Complexes

Infrared laser spectroscopy has been used to characterize imidazole (IM), imidazole

dimer (IMD), and imidazole�water (IMW) binary systems formed in helium nan-

odroplets. The experimental results are compared with ab initio calculations reported

here. Vibrational transition moment angles provide conclusive assignments for the var-

ious complexes studied here, including IM, one isomer of IMD, and two isomers of the

IMW binary complexes.

8.1 Introduction

Recently, the �rst structure of a neutral ammonia channel from a bacterial membrane

was determined, providing considerable insight into the process of neutral gas transport

in membranes [272,273]. The structure shows that the hydrogen-bonding network be-



tween the imidazole (IM) moiety of the histidine and ammonia molecules in the channel

plays an important role in neutral ammonia gas transport through the membrane. Not

only is the intermolecular interaction between IM and ammonia important, but the

self-associating interaction of IM, i.e., the IM dimer (IMD), also plays an important

role in the hydrogen-bonding networks of the ammonia channel. Due to the unique

IM structure, which contains a proton donor N�H and a proton acceptor N atom,

IMD has been extensively studied as a model system both theoretically [274�278] and

experimentally [279�282].

Understanding the intermolecular interaction of IM�water complexes is also relevant

owing to their importance in hydrated biological systems such as histidine residue [283]

and hydrated nucleic acid base (NAB) complexes [87, 258�261]. Indeed, the location

and orientation of individual water molecules in the binary complexes play a pivotal

role in some other biological processes. For example, water-assisted proton transfer in

guanine [245�247] and cytosine [248�250] involve a single water molecule that forms a

double hydrogen bond which bridges the proton donor and proton acceptor sites in the

molecule.

Many theoretical [284�287] and experimental [282,288,289] investigations have been

devoted to the structures and relative energies of IM�water (IMW) complexes, due

to the occurrence of the IM �ve-membered ring in adenine and guanine. ab initio

calculations have consistently shown that the two isomers, >NH � � � OH2 (IMW1)

and >N: � � � H�O�H (IMW2) (see Figure 8.1), have almost the same energy. Infrared

spectroscopy was used to study the hydrogen bond interaction of the two isomers of

the IM�water complex by matrix-isolation FTIR spectroscopy [288]. However, to our

knowledge, no gas-phase vibrational study of IM�water complexes has been previously

reported. Recently, the IM derivatives, 4/5-phenyl IM, complexes with a single water

were studied by the IR ion dip spectroscopy [283,290] which suggested the presence of
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only one isomer, >N: � � � H�O�H, out of the three predicted ones.
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Figure 8.1: (a) Imidazole monomer (IM), (b) the global minimum of imidazole dimer
(IMD), and (c) two isomers of imidazole water binary complexes (IMW1 and IMW2).

Our approach in this study involves the use of helium nanodroplets which has been

shown to be an ideal matrix for infrared spectroscopy [4,18,36,154,155]. The weak in-

teractions between the helium and the molecules of interest give rise to small vibrational

frequency shifts (within a few wavenumbers) and high spectral resolution due to ultra

cold helium nanodroplets (0.37K) [18,22]. In a recent paper [87], we reported on a com-

bined experimental/theoretical study of all four of the theoretically predicted isomers of

uracil�water, using infrared laser spectroscopy in helium nanodroplets, which revealed

the conformational energy landscapes of those hydrated complexes. We assigned closely

spaced vibrational bands by experimentally measuring the angles between the vibra-

tional transition moments and the permanent dipole moment of the molecule for the

associated vibrational modes [86, 87, 89]. These vibrational transition moment angles
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(VTMAs) also provide detailed structural information on the species of interest. De-

termination of these quantities is accomplished by orienting the molecule in a large DC

electric �eld [37,108,167,262] and measuring the integrated intensities of the vibrational

bands as a function of the laser polarization direction. For the case of well-isolated,

high-frequency X�H stretches, we �nd that these angles can be reliably calculated us-

ing conventional ab initio methods, based upon harmonic frequency calculations [79].

Indeed, these angles are much less sensitive to the detailed multidimensional potential

surface, but rather depend primarily on the structure of the molecule, particularly for

its high frequency modes. The sensitivity of the method to the molecular structure

was �rst demonstrated for adenine, where the experimental VTMAs for the N�H and

NH2 stretches were highly dependent upon the out-of-plane NH2 tilt angle [79]. In the

present study we apply this method to report on the isomers of the IM�water binary

complexes (IMW) and the IM dimer (IMD) (see Figure 8.1), in helium nanodroplets.

8.2 Experimental Section

The helium droplet apparatus has been previously described [102] and is illustrated in

Figure 8.2. In the present study the nanodroplets pass within 2 mm of the exit of the

oven producing a low vapor pressure (between 10�6 and 10�5 Torr) of IM (Aldrich, 99 %

purity). Collisions between the gas phase molecules and the droplets result in solvation

of the former by the latter. The vapor pressure at the exit of the oven can be varied

to pick up the desired number of IM molecules, according to the associated Poisson

statistics [93]. In practice, useful operating temperatures for IM were from 25 to 35

�C with our e¤usive pick-up cell oven. To maximize the pick up of molecules into the

helium nanodroplets at a minimum heating temperature, we developed a pick-up oven

through which the helium droplets entered and exited via 2 mm holes [101, 291, 292].

However, because of the high IM vapor pressure, this oven resulted in the pick up of
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too many molecules. We thus constructed a new e¤usive oven, shown in Figure 8.2,

which was less e¢ cient, and thus solved this problem. In detail, the tip of the e¤usive

oven, a 1 mm diameter hole, faces along the droplet beam axis. The end of the oven

is positioned just below the helium nanodroplet beams, and the droplets pass by and

pick up the target molecules at the exit of the e¤usive oven. A second pick-up cell

was positioned downstream of the oven in order to add water to the droplets. Because

of the high mobility of molecules in the helium droplets, all molecules added to the

droplets end up in a complex, located close to the middle of the droplet. This is based

on the fact that most molecules are solvated by liquid helium rather than by �vacuum�.

Notable exceptions are the alkali atoms which reside on the surface of the droplets due

to their weaker interactions with helium atoms than the He�He interactions [293�296].

X­YTranslationSource
Liquid Nitrogen
Dewar and Shield

Pick­up Cells

Skimmer
Multi­pass/ Stark Cells

Bolometer

+V

­V
Cryostat

Laser

Effusive Oven

H2O
Cell

Figure 8.2: A schematic diagram of the experimental apparatus used in the present
study. An e¤usive oven was used. A bolometer was used to monitor laser induced
depletion helium droplet beam intensity.
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Once the species of interest are formed, the doped nanodroplets pass between the

plates of a multipass/Stark cell [102], which is used to generate many crossings between

the infrared laser and the helium nanodroplet beam. The result is e¢ cient vibrational

excitation of the solvated molecules. A large DC electric �eld can also be applied to the

interaction region, for the purposes of orienting the molecules in the laboratory frame

of reference. This was done in order to measure the vibrational transition moment

angles of the various species, as discussed below. All of the spectra reported here were

obtained using a periodically poled lithium niobate (PPLN) cw�OPO [159, 160] from

Linos Photonics (70 mW output power in the region of interest). Several external

etalons and a wavemeter were used to calibrate the spectra reported here.

The pendular state method used to orient the molecules of interest has been applied

previously to both gas-phase [104,120,190,191,231] and helium nanodroplet [37,108,120,

155, 167] studies. A large DC electric �eld results in the orientation of the permanent

dipole moment of the target molecules (e.g., IM, IMD, and IMW complexes) parallel to

the electric �eld, in the limit where �E is large compared to the rotational temperature

(in this case 0.37 K [18,22]). For a linearly polarized laser the result will be a change

in the excitation e¢ ciency, given that the molecular transition moments will also be

oriented in the laboratory frame of reference. If the laser electric �eld is aligned parallel

(perpendicular) to the DC electric �eld (referred to here as parallel and perpendicular

polarization alignments) the corresponding change in the vibrational band intensity

will depend on the angle between the permanent dipole axis and the corresponding

transition moment direction. This angle is referred to here as the vibrational transition

moment angle or VTMA. For a vibrational mode with its transition moment parallel

to the permanent dipole moment, parallel (perpendicular) polarization will result in a

signi�cant increase (decrease) in the band intensity, compared to the zero-�eld case.

A quantitative description of this e¤ect requires that the orientation distribution for
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the permanent dipole moment be known. This distribution depends on the magnitude of

the dipole moment, the applied electric �eld, the rotational constants and temperature

of the molecule in question. The methods for calculating these distribution have been

discussed in detail previously [128�131]. For the IM monomer the partially resolved

rotational structure is observed in the zero-�eld. For the other systems discussed herein,

the experimental spectra are broadened to a Lorentzian line shape. Although this means

that the rotational constants cannot be directly determined from the experimental

spectra, it also means that the overall orientation distribution is less sensitive to the

rotational constants. In this case we used the ab initio rotational constants, divided

by a factor of three to account for the e¤ects of the helium [99], to determine the

orientation distribution needed to calculate the VTMAs. This approach works rather

well given that the rotational temperature of the droplets, and hence the rotational

temperature of the molecules, is well known, namely, 0.37 K. A detailed discussion of

how the experimental VTMAs are extracted from the integrated areas of the zero-�eld

and parallel and perpendicular polarization spectra is given elsewhere [79,86,87,89,216].

The experimental VTMAs can be compared directly with those obtained from ab initio

calculations, carried out using Gaussian 03 [169]. The calculations reported here were

all carried out at the MP2 level, with a 6-311++G(d,p) basis set except for IMD where

a 6-311+G(d) basis set is used.

8.3 Results and Discussion

8.3.1 Imidazole Monomer and Dimer

We begin this discussion by considering the case where the water vapor pick-up cell is

left empty, so that only the IM monomer or the associated complexes are formed in the

droplets. The upper panel in Figure 8.3 shows an experimental spectrum of IM and
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an isomer of IMD in helium nanodroplets that spans the regions corresponding to the

free N�H and bonded N�H stretching vibrations. The survey spectrum was recorded

at rather low oven temperatures, so that the monomer and the self-associated dimer

are the only species formed. The middle panel shows the ab initio spectra (frequencies

scaled by a factor of 0.9556 with a 6-311++G(d,p) basis set) for the IM monomer and

the bottom panel shows those of the global minimum structure of IMD scaled by a factor

of 0.957 with a 6-311+G(d) basis set. (The energetics and ab initio calculations for the

isomers of IMD will be discussed as below.) The largest peak in the spectrum is easily

assigned to the N�H stretching vibration of the IM monomer, at 3517.8 cm�1. Two

additional bands observed in the spectrum and indicated in the �gure are assigned

to the IMD. Figure 8.4 shows an expanded view of the region corresponding to the

free N�H stretches of the monomer and dimer, also showing the e¤ect of applying a

DC electric �eld with di¤erent polarization directions: (a) parallel polarization, (b)

zero electric �eld, and (c) perpendicular polarization (the corresponding electric �eld

being 80 kV/cm). The zero-�eld spectrum of the IM monomer shows partially resolved

rotational �ne structure, in the form of a PQR contour. The observed vibrational origin

and the corresponding ab initio values are listed in Table 8.1.

It is immediately obvious from the polarization dependence of the N�H stretch of

the IM monomer in Figure 8.4 that this band is approximately parallel (VTMA close

to 0 �). This is consistent with the ab initio calculation of the VTMA for this mode,

namely, 18 �, (see Table 8.1) The experimental determination of this quantity requires

the inclusion of all of the rotational states, given that the band is partially rotationally

resolved. The origin of the peak marked with an asterisk in parallel polarization is not

known at this moment.

The weaker band near 3515.8 cm�1 is tentatively assigned to the IMD, based upon

the pick-up oven temperature dependence of the associated signals. Here again, we �nd
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Figure 8.3: A survey spectrum of imidazole monomer (IM) and dimer (IMD) isolated
in helium droplets. The corresponding ab initio vibrational spectra for IM (scaled by
a factor of 0.9556 with 6-311++G(d,p) basis set) and the IMD (scaled by a factor of
0.957 with 6-311+G(d) basis set) are shown below the experimental spectrum.
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Figure 8.4: An expanded view of the N�H stretch of the imidazole monomer and dimer.
Spectra (a), (b), and (c) correspond to parallel polarization, zero-�eld, and perpendic-
ular polarization (the corresponding electric �eld being 80 kV/cm), respectively. The
assignments shown in the �gure are based upon comparisons in VTMAs and frequencies
between the experimental and ab initio values. The origin of the band marked with an
asterisk is not clearly known at this time.
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Table 8.1: A summary of the experimental and ab initio data for the imidazole monomer
(IM), the imidazole dimer (IMD) and the two lowest energy isomers of imidazole-water
binary complex (IMW1 and IMW2).

ab
Harm.a Scaledb Exp. IR initio Exp.
freq. freq. freq. Intensity VTMA VTMA �
(cm�1) (cm�1) (cm�1) (km/mol) Assignment ( �) ( �) (D)

IM 3681.3 3517.9 3517.9 77.7 NH (F) 18 para. 3.97
IMD 9.62

3673.8 3515.8 3515.8 81.6 NH (F) 30 33
3388.0 3242.3 3200.1 1225.3 NH (B) 10 20

IMW1 6.67
3988.5 3811.4 3747.7 99.6 OH (AS) 90 90
3870.5 3698.7 � 22.6 OH (SS) 26 �
3560.2 3402.1 3411.8 568.1 NH (B) 6 22 (10)d

IMW2e 5.72
3959.6 3783.8 3719.7 84.0 OH (F) 33 33
3678.8 3515.5 3517.8 46.9 NH (F) 76 perp.
3668.5 3505.6 3447.9 763.3 OH (B) 12 27 (�)

a The ab initio calculations were performed at the MP2/6-311++G(d,p) level

(for IMD a 6-311+G(d) basis set was used).
b The scaled frequencies were obtained by multiplying the harmonic frequencies by a factor of

0.9556 to account for the e¤ects of anharmonicity (for IMD a factor of 0.957 was used).
c The energy was obtained with zero point energy correction.
d The experimental VTMA for the bonded NH band for IMW1 in a parenthesis was obtained

from deuterium substitution.
e Relative energies of IMW2 to IMW1 is 0.5 kJ/mol with a zero point energy correction.
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that the band is enhanced by application of a DC electric �eld in parallel polarization.

A detailed analysis of the associated integrated intensities yields a VTMA for this

band of 33 �. The ab initio VTMA for the free N�H mode of the IMD is 30 �, in

good agreement with the experimental result. The small frequency shift associated

with this band (from the IM monomer) indicates that this is a �free�N�H vibrational

mode in the dimer. We have carried out extensive ab initio calculations on the four

lowest energy dimers shown in Figure 8.5 using the MP2 level with a 6-311+G(d) basis

set. The corresponding ab initio values are listed in Table 8.2. The relative energies

are 17, 22, and 27 kJ/mol (with zero-point energy corrections) higher than the global

minimum. The global minimum is the �twisted�hydrogen-bonded complex, shown in

Figure 8.1, which has strong intermolecular N � � � H�N hydrogen bonds while the three

higher energy isomers have weaker N � � � H�C hydrogen bonds. It is worth mentioning

here that the structure of this twisted hydrogen-bonded complex (IMD) is very similar

to the structure of the hydrogen-bond IM complex (at the histidine residue) in the

ammonia channel [272,273] mentioned above.

A summary of the ab initio results for all four isomers is given in Table 8.2. Although

all of these isomers have �free�N�H vibrational bonds, it is interesting to note that

only the global minimum structure gives a VTMA for the �free�N�H stretch that is

in agreement with experiment. As shown in Table 8.2, the VTMAs of the �free�N�H

stretches for the three higher energy dimers vary from 50 � to 90 � which is very di¤erent

from that of the global minimum dimer (IMD), 33 �. It is also interesting to note that

this is the most polar structure, which is also consistent with the fact that the observed

spectrum is strongly dependent upon the application of a DC electric �eld.

The �twisted�hydrogen-bonded dimer complex is the only one that shows a strongly

shifted N�H vibrational mode. As a result, further evidence for the formation of this

isomer can be obtained through probing the corresponding spectrum. Figure 8.6 shows
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187



Table 8.2: A summary of the experimental and ab initio data for the four lowest energy
imidazole dimers.

ab
Harm.a Scaledb IR. initio Exp. Relativec

freq. freq. Intensity Assignment VTMA VTMA � Energy
(cm�1) (cm�1) (km/mol) ( �) ( �) (D) (kJ/mol)

IMD 9.62 0
3673.8 3515.8 81.6 NH (F) 30 33
3388 3242.3 1225.3 NH (B) 10 20

IMD1 0.02 17.1
3677.8 3519.6 6.9 NH (F) 90 -
3677.7 3519.6 126.4 NH (F) 90 -

IMD2 3.15 22.1
3678.5 3520.3 60 NH (F) 50 -
3677.9 3519.7 72.9 NH (F) 52 -

IMD3 0.01 26.8
3677.6 3519.5 1.6 NH (F) 85 -
3677.5 3519.3 132 NH (F) 88 -

a The ab initio calculations were performed at the MP2/6-311+G(d) level.
b The scaled frequencies were obtained by multiplying the harmonic frequencies by

a factor of 0.957 to account for the e¤ects of anharmonicity.
c The relative energies were obtained with zero point energy corrections.
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a scan of a spectrum which has the same oven temperature dependence as the dimer

band observed in the �free�N�H stretching region. We assign this band to the bonded

NH stretching mode. Detailed analysis of the polarization dependence of this band

reveals an experimental VTMA of 20 �, which is less parallel than the ab initio value

of 10 �. The di¤erence, which is a bit larger than what we have seen for other bands,

probably results from the increased error in determining experimental VTMAs when

the angle is small, e.g., below 15 � [88]. Assignment of this band to the bonded N�H

stretch of IMD is further supported below. Note that the line width of this band is

in excess of 10 cm�1 and the experimental frequency shift from the free N�H stretch

is almost 316 cm�1, which is slightly larger than the ab initio calculation value of 274

cm�1. It is evident that the band is associated with a strong hydrogen bond, based

on the magnitude of the frequency red-shift and the peak broadening. Such a broad

band associated with a hydrogen bond was previously observed in the indole�water

system by Zwier and co-workers [297] and could come from the dipole-induced dipole

interactions [298,299]. A recent paper by Sibert et al. [300] provides a theoretical model

for the band broadening. It is interesting to note that the total integrated area under

the zero-�eld spectrum is about 16 times larger than that of the corresponding �free�

N�H stretch. This is also in good agreement with the ratio of the corresponding ab initio

intensities, namely 15 times (see Table 8.1). In conclusion, it is quite clear that the

only isomer of the IMD that is formed in helium nanodroplets is the one corresponding

to the global minimum on the potential energy surface. This is also the structure that

corresponds to the dipole-oriented structure that we have come to expect to form from

highly polar, moderately heavy molecules in helium nanodroplets [101].

Formation of linear chains of polar molecules in helium is well established from

previous studies carried out in our laboratory [121,155]. The reason for this is the se-

quential addition of monomer units to existing chains, beginning with the dimer, whose
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Figure 8.6: An expanded view of the bonded N�H stretch of the imidazole dimer.
Spectra (a), (b), and (c) were recorded with parallel polarization, zero-�eld, and per-
pendicular polarization conditions, respectively.
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structure is trapped in its potential well in the low-temperature helium environment. It

is therefore interesting to consider the series of spectra shown in Figure 8.7, obtained as

a function of the nozzle temperature and hence the mean droplet size. Large droplets

have large cross sections and su¢ ciently high heat capacities to capture and cool many

IM molecules. The rather smooth evolution of the spectra corresponding to the �free�

N�H stretches suggest the formation of chains. We have, however, not analyzed these

peaks in any detail. Nevertheless, the formation of such linear chains is interesting in

its own right given that the IMD molecule has an inherent 30 � bend in the monomer

unit.
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Figure 8.7: An evolution of the spectra for di¤erent nozzle temperatures (top to bottom:
15 K, 17.5 K, 18.5 K, 19.5 K, 20.5 K, 21.5 K, 23 K, 25 K). The band marked with an
asterisk is the free N�H stretch of imidazole dimer.
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8.3.2 Imidazole�Water Complexes

We now turn our attention to the binary complexes of IM with water (IMW). Two

hydrogen-bonded isomers of the IMW binary complex (>NH � � � OH2 and >N: � � �

H�O�H, see Figure 8.1) are presented here. The two isomers were formed by sequential

pick-up of one IM and one water molecule by helium droplets. Figure 8.8 shows the two

lowest energy ab initio structures for the IMW binary system, onto which are super-

imposed vectors representing the directions of the permanent electric dipole moments

(solid arrows) and the vibrational transition moments (dashed arrows). The magni-

tudes of the various moments are given in Table 8.1. It is clear from the �gure that the

pattern of VTMAs for the two isomers is quite di¤erent, making them a useful tool for

distinguishing these two isomers and assigning the associated vibrational spectra.

The lowest energy form (IMW1) corresponds to the water acting as a proton ac-

ceptor, while the slightly higher energy form (IMW2) has the water donating a proton

to the nitrogen atom in the IM ring. The spectrum (a) upper panel, shown in Figure

8.9, in which the water source was closed, shows that only IM monomer and dimer

are present in the helium droplets. The rich spectrum (b) is obtained by optimizing

the pick-up conditions for the capture of a single IM molecule and one water molecule;

therefore, the additional peaks in (b) must involve H2O. The dotted lines are meant as

guides to associate the bands with their calculated frequencies. The ab initio frequency

calculations for the two isomers are summarized in the bottom panels of Figure 8.9, in

which we used a single scaling factor of 0.9556 for all of the vibrational modes. This

gives good agreement between theory and experiment for the free N�H stretches. Al-

though this single scaling factor gives rather poor agreement for the case of the free and

bonded O�H stretches, [86, 87, 89] the experimental frequency di¤erence (278.3 cm�1)

between the free and bonded O�H stretches is in good agreement with the ab initio

calculations (271.8 cm�1). Once again, the relative integrated intensities (corrected
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with ab initio intensities) of bonded N�H and O�H bands (see Table 8.1) are almost 1

: 1, thereby suggesting that the relative abundance of the two isomers is similar.

The other bands in Figure 8.9 may be associated with higher order clusters. Al-

though the water pressure is optimized for binary complexes, the pick-up of more than

one water molecule by the droplets is still signi�cant under these conditions, and some

of the peaks in the spectrum are due to complexes containing three molecules (IMD

plus water or IM plus two waters). However, the discussion of the latter species is

beyond the scope of the present study.

IMW1 IMW2

µ

OH(SS)
NH(B)

OH(B) NH(F)

OH(F)

µ
OH(AS)*

Figure 8.8: The two lowest energy isomers of imidazole�water binary complexes (IMW1
and IMW2), showing the corresponding directions of the permanent electric dipole
moments (solid arrows) and the vibrational transition moments (dashed arrows) for
the various vibrational modes. Note that the vibrational transition dipole moment of
OH (AS) marked with an asterisk is out-of-plane, so that the VTMA of this being 90 �.
The magnitudes of these moments are given in Table 8.1

We now proceed to consider the assignment of the high frequency portion of the spec-
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Figure 8.9: A survey spectrum of imidazole (a) without and (b) with water isolated
in helium droplets. The ab initio frequency calculations for the corresponding isomers,
IMW1 and IMW2, (scaled by a factor of 0.9556 with 6-311++G(d,p) basis set) are
shown below the experimental spectra.
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trum appearing in the region near 3730 cm�1, corresponding to the free O�H stretches

of the water molecule. Figure 8.10 shows this region measured with (a) parallel po-

larization, (b) zero electric �eld, and (c) perpendicular polarization (the corresponding

electric �eld being 80 kV/cm). The peaks labeled as �w�are due to water monomer

and high-order water clusters ((H2O)1�2). Examination of the oven temperature de-

pendence and water pick-up pressure dependence of the various peaks in this region

of the spectrum reveals that only bands (i) and (ii) are due to the IM�water binary

system, namely asymmetric stretch mode (OH (AS)) of IMW1 and free O�H stretch

mode (OH (F)) of IMW2. The symmetric O�H stretch of IMW1 was not observed in

the region below 3700 �3600 cm�1, which is not surprising given that the expected

band intensity is much weaker (see Table 8.1). Nevertheless, a number of scans were

taken in order to convince us that there is no band in this region of the spectrum. It is

also not observed in the study of H2O in helium droplets [301]. The remaining peaks in

the spectrum are all uniquely assigned to other species and will be discussed in detail

elsewhere [302].

It is evident from the polarization dependence of the two IM�water bands that the

one appearing at lower frequency is nearly parallel, while the higher frequency mode

completely disappears with the parallel polarization. Analysis of these bands, based

upon �tting to Lorentzian line shapes, yielded VTMAs for these two bands of 33 � (ii)

and 90 � (i). For comparison the ab initio VTMAs for the two isomers are 33 � and

90 � for the �free�O�H stretch (ii) of IMW2 and the asymmetric stretch (i) of IMW1,

respectively. The agreement between experiment and theory is clearly excellent. It is

interesting to note that the frequency di¤erence (28.0 cm�1) is in excellent agreement

with the ab initio calculations (27.6 cm�1), even though the absolute scaled frequencies

are not as well reproduced especially for free O�H stretches [86, 87, 89]. The relative

integrated intensity ratio of (i) and (ii) bands (see Table 8.1) is 1 : 1 ratio, which is
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Figure 8.10: An expanded view of the high frequency section (OH (AS) and OH (F))
of the imidazole-water complex spectrum. Infrared spectra (a), (b), and (c) correspond
to parallel polarization, zero-�eld, and perpendicular polarization, respectively. The
higher frequency band (i) corresponds to the OH (AS) stretch mode of IMW1, while
the lower frequency band (ii) is associated with the OH (F) stretch mode of IMW2. The
bands marked with an asterisk are due to imidazole monomer with two water molecules
determined by water pressure dependence experiments. The band marked with a �#�
and �^� is due to IMD with one water molecule determined by IM temperature de-
pendence experiments and water-nitrogen complexes, respectively. The bands marked
with a �w�are related to pure water and water�nitrogen complexes.
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consistent with the expected ratio populations of these two nearly equal energy isomers.

We now turn our attention to the bonded vibrations of the IM�water binary system,

which appear in the region from 3400 �3500 cm�1. Given the structures shown in

Figure 8.8, we expect to see a bonded N�H vibrational mode for IMW1 and a bonded

O�H stretch for IMW2. Figure 8.11 shows a comparison of spectra obtained using

both H2O and D2O. The disappearance of the peak at 3450 cm�1 upon deuteration

identi�es it as a bonded O�H stretch. Its complete disappearance also con�rms a

previous result [87] that there is no isotopic scrambling in these helium nanodroplet

experiments. We conclude that the vibrational band (i) is associated with the bonded

O�H stretch of IMW2. From the oven temperature and water pressure dependence of

the peaks in this spectrum we can also conclude that the only peaks that correspond

to the binary complex are the bands (i) and (ii). As a result, we assign the bands (i)

and (ii) to the bonded O�H stretch of IMW2 and the bonded N�H stretch of IMW1,

respectively. The remainder of the peaks in the spectrum are due either to the IM

monomer and dimer (discussed above) or higher order complexes that will be discussed

in detail elsewhere [302].

Figure 8.12 shows the electric �eld dependence of the two bands discussed above,

from which the VTMAs are determined for the bonded N�H stretch of IMW1 (22 �)

and the bonded O�H stretch of IMW2 (27 �). In these cases, the agreement with the

ab initio VTMAs of 6 � and 12 � is poor. These two bands are very close to being

pure parallel bands (below 150) [88] for which the experimental VTMAs give larger

errors as mentioned above. Nevertheless, this error is well outside the experimental

uncertainty that we have come to expect, leading us to consider other explanations for

the di¤erences. Since we are con�dent in the assignment of these two bands, we are

forced to consider other mechanisms that might a¤ect this comparison. One possibility

is that there are other bands that overlap with these bands, which would a¤ect the
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Figure 8.11: A comparison of spectra of the bonded O�H and N�H stretching region
obtained using both (a) H2O and (b) D2O. The higher frequency band (i) corresponds
to the bonded O�H stretch mode of IMW2, while the lower frequency band (ii) is asso-
ciated with the bonded N�H stretch mode of IMW1. The bands marked with an �*�are
due to imidazole monomer with two water molecules determined by water pressure de-
pendence experiments. The bands marked with a �#�are due to imidazole dimer with
one water molecules determined by imidazole temperature dependence experiments.
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corresponding experimental results. Another is that these complexes are rather �oppy,

so that the ab initio results for the equilibrium geometry are not su¢ cient.

To test these ideas we also obtained VTMAs for the bonded NH vibrational bands

in the IM�D2O complex. The data for this band are shown in Figure 8.13. In this

case, the experimental VTMA is determined to be 10 �, in much better agreement

with the ab initio value of 6 �. Unfortunately, we are not able to conclusively decide

which of the above e¤ects is responsible for the large di¤erence between the water

and deuterium results. Indeed, there could be an O�H band from some other species

present in the droplet that overlaps with the bonded N�H vibration when water is used,

which disappears when using D2O, or alternatively the heavier mass of the deuterium

could reduce the wide amplitude motion and thus given better agreement with the ab

initio results. The fact that the agreement in the free O�H region is so good, leads

us to believe that the problem is the former, rather than the latter. This is somewhat

supported by the fact that the spectrum is much smoother in the IM�D2O spectrum, in

comparison to that of IM�H2O, which might indicate that there are overlapping bands

in the H2O case. Theoretical studies of the wide amplitude motions in these binary

complexes will be needed to clarify this issue.

Finally, we consider the free N�H stretch of IMW2, which should also be visible in

the spectral region of interest here. Unfortunately, this vibrational band is expected

to be only slightly shifted from the very intense vibration band of the IM monomer

and weaker as well, making it di¢ cult to observe. However, as indicated in Table 8.1,

the free N�H band of IMW2 is predicted by theory to be a nearly perpendicular band

(VTMA = 76 �), while the monomer band is nearly parallel. To con�rm that this band

exists in the spectrum, we took advantage of this di¤erence and used a perpendicular

polarization geometry to eliminate the monomer from the spectrum, while at the same

time enhancing the contribution from the IM�water complex. Figure 8.14 shows the
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Figure 8.12: Expanded spectra of the bonded O�H and N�H stretching region. Spec-
tra (a), (b), and (c) were recorded parallel polarization, zero-�eld, and perpendicular
polarization conditions, respectively. The band marked with an asterisk is assigned to
imidazole complexes containing more than one water molecule.
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Figure 8.13: Expanded spectra of the bonded N�H stretch mode of the imidazole�D2O
complex. Spectra (a), (b), and (c) were recorded parallel polarization, zero-�eld and
perpendicular polarization conditions, respectively.
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Figure 8.14: A comparison between the free N�H stretch region without (upper) and
with (below) water added to the droplets. Spectra (a) and (b) were recorded zero-�eld
and perpendicular polarization conditions, respectively. The vapor pressure of water
was 9 � 10�7 Torr at the pick-up cell.
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spectra in the free N�H stretch region, recorded with (a) no applied �eld and (b) an

applied DC electric �eld directed perpendicular to the laser polarization direction and

a comparison between the experimental results, with and without water added to the

droplets. The water pressure at the pick-up cell was up to 9 � 10�7 Torr, which is very

low compared to that of the optimum condition for one water (2.4 � 10�6 Torr), to

make sure that the band comes from only the IM with one water complex. The vertical

dashed line shows that there is a perpendicular band underneath the monomer band at

about 3517.8 cm�1 that is evident only when the water is present. Although this enables

us to identify this band, we are unable to report a VTMA for this band because the

corresponding zero-�eld and parallel polarization spectra could not be obtained. The

data are nevertheless su¢ cient to con�rm that this band is nearly perpendicular, as

reported in Table 8.1.

It is clear from the above results that both IMW1 and IMW2 are formed in helium

nanodroplets, consistent with the idea that the water approaches from a random di-

rection and then gets trapped in the nearest minimum on the potential energy surface

that is separated from the other by a su¢ ciently high barrier to prevent rearrangement.

8.4 Conclusions and Future Work

In this combined experimental/theoretical study we report high-resolution infrared laser

spectra of imidazole (IM), imidazole dimer (IMD) and two isomers of imidazole water

complexes (IMWs) isolated in helium nanodroplets. For IM monomer and dimer, the

calculated frequencies are very well matched with the observed frequencies. By orienting

the molecules with a strong DC electric �eld, we achieved a de�nitive assignment for

the IMD using the vibrational transition moment angles (VTMAs). For the case of

the IM�water binary complexes, as shown in Figure 8.9, the calculated frequencies of

the bonded O�H and asymmetric stretches are in poor agreement with the observed
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frequencies. However, an unambiguous assignment of the above bands is achieved with

the aid of the VTMAs and deuterium substitution for the binary complexes.

The relative abundances of the two isomers, IMW1 and IMW2, are found to be

almost 1 : 1, which could be the result of both energetic and dynamical e¤ects associated

with the formation of the clusters in the helium. In particular, the formation of the two

IMW complexes in almost equal population could be ascribed to their almost identical

relative energies and to the equal widths of the entrance valley (funnel) where a water

molecule can be trapped by the long-range potential energy surface.

The studies of IMW complexes are of help in the characterization of the experimental

spectra of adenine�and guanine�water complexes, which we plan to study. We are

currently carrying out studies of higher order IM�water complexes, such as IM + two

waters (IM2W) and IMD + one water (IMDW) complexes [302] which would provide

further fundamental understanding of hydrogen-bonding e¤ects associated with IMD

in the ammonia channel. Nevertheless, in future studies we also plan to investigate the

IM�ammonia complex, which is directly related to the mechanism of the ammonia gas

transport in physiological conditions.
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Chapter 9

Summary and Outlook

9.1 Summary

We have shown that the application of helium nanodroplet spectroscopy on isolated

biomolecules has great potential in characterizing and determining structures of various

biomolecule systems, such as nucleic acid bases (NABs) and their water complexes. The

unique properties of helium, super�uidity at ultra low temperature and weak solute�

solvent interactions, provide a gas-phase environment, which permits spectra to be

analyzed. The cold helium environment signi�cantly reduces the spectral complexity

which is partially important in large systems. The vapor pressure needed for pick

up by the helium droplets is partially advantageous for biomolecules that are often

thermally unstable. The use of a multipass cell and a high power laser also contributes

signi�cantly to the success of this project because it increases the signal-to-noise, which

is an important issue in larger systems.

Binary and higher order complexes in the helium droplets are formed by sequential

pick up of the molecules in the beam path. The cluster growth in the liquid helium is

fundamentally di¤erent from that in the gas-phase expansions. In the latter, the most

stable complexes are often formed by overcoming small barriers via collisions. On the

other hand in the helium droplets the freezing rate is so fast that higher free energy



complexes, once formed, are trapped in the free energy potential surface minimum,

which is not necessarily the global minimum. We have mostly focused on the NAB

binary complexes with a water molecule in this thesis, because water plays an important

role in biological processes.

In this thesis, we have applied the measurement of vibrational transition moment

angles (VTMAs) and dipole moment curves to the isolated NAB systems by using the

pendular-state spectroscopic technique. One of the advantages is that the results can

be directly compared with high con�dence to moderate-level ab initio calculations. The

important results from this thesis are summarized below.

The fact that nature seeks out the lowest energy con�guration is used to great

advantage in science. In particular, theoretical methods rely on the variational prin-

ciple to �nd minimum energy structures and paths that correspond to those observed

experimentally. Indeed, the entire �eld of molecular modeling depends upon the fact

that the true molecular structure is the one that minimizes the energy on the corre-

sponding potential energy surface. It is therefore somewhat surprising the experimental

determination of these molecular energies, for example, for the di¤erent tautomers of

a nucleic acid base or a polypeptide, is still problematic. In many cases, we have good

methods for determining their structure, but the small energy di¤erences between these

tautomeric forms for biomolecules (in the few kcal/mol range) is often di¢ cult to de-

termine experimentally. Similarly, despite their overwhelming importance in biology,

hydrogen-bonding energies are generally poorly determined from experiment. Indeed,

much of our understanding of molecular biology comes from structure, rather than the

study of subtle energetic di¤erences between the various molecular structures.

The question why nature has chosen certain building blocks for the structure of life

still remains mystery. However, signi�cant progress in research made in small steps will

eventually provide answers for this puzzle.
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9.1.1 Tautomerism of NABs

The relative stability of tautomers of NABs is of great importance to the functioning

of base pairs. The occurrence of rare tautomers in biosynthesis has been postulated as

the mechanism for spontaneous mutation because of their altered base-pairing proper-

ties [83]. The structural details and the relative stability of the various tautomers of

NABs are more di¢ cult to study if these systems are not isolated both experimentally

and theoretically [145]. In this thesis, we have studied the structural information and

the relative energetics of various tautomers of NABs, such as cytosine, guanine, adenine,

uracil and thymine. All of their lowest energy forms were detected and characterized.

Furthermore, several higher energy tautomers of cytosine and guanine were also ob-

served and studied in this thesis. Studying even higher energy tautomers at moderate

temperature would be possible and give more information about the tautomerism of

NABs.

9.1.2 Structural Assignments: Correcting Previous Assign-

ments

Cytosine

Our study of the cytosine tautomers has ended a dispute that had lasted almost two

decades. The dispute began from the �rst experimental observation and assignment

of the three lowest energy cytosine tautomers present in the gas-phase (C1, C21 and

C31, see Figure 3.1) with low level ab initio calculations. There have been numerous

theoretical studies since then on the relative energies of the cytosine tautomers showing

that indeed, C31, C32 and C1 are the three lowest energy tautomers, which is di¤erent

from the previous experimental result. Because the microwave spectroscopy on the

cytosine tautomers was the only available experimental data, the theoretical studies
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reached di¤erent explanations based on the experimental result [74, 137, 146, 162, 303�

310]. However, our study has fully con�rmed the microwave result in that the three

tautomers (C1, C21 and C31) have turned out to be the same tautomers observed in

this work, C32, C31 and C1, respectively.

Guanine

Studying isolated guanine with a thermal evaporation technique has been a challenging

task for a long time due to its thermal decomposition at the necessary temperature

for the vapor pressure needed in the gas-phase study. Even microwave spectroscopy on

guanine has not yet been conducted for the same reason and it is the only NAB that has

no microwave spectroscopic data. As a result, infrared spectroscopy has been the sole

tool for the guanine system, having been investigated by two groups. However these

studies disagreed in several respects, in part because ab initio vibrational frequencies

could not be reconciled with the experimental spectra, and also perhaps because of

thermal decomposition. Because helium droplet spectroscopy requires a much lower

vapor pressure and because of the high reliability of the VTMAs in assigning structures,

helium droplet spectroscopy is an ideal tool for the study of the guanine tautomers.

The results presented in Chapter 4 shows an unambiguous assignment of the four lowest

energy tautomers with measurements of VTMAs and dipole moment curves for the

bands of the various tautomers. However, this result turned out to be con�icted with

the previous IR�UV double resonance spectroscopic studies [70, 182, 183]. It is worth

noting that there has been good agreement between the gas-phase and helium droplet

studies for NABs (cytosine, adenine, uracil and thymine) (within a few wavenumber),

except for the guanine system. Therefore, we presented a third point of view in the

guanine system which would help clarify the puzzles associated with the previous studies

on the guanine system using laser desorption techniques in IR�UV experiments.
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9.1.3 Nonplanarity

Isolated NABs were believed to be perfectly planar for decades. Recently, isolated

NABs have been proposed to be nonplanar due to the pyramidalization of the amino

groups. To demonstrate the nonplanarity of NABs, adenine was used to show the �rst

experimental evidence of the nonplanarity. Adenine was chosen for this study because

its structure has only a single global minimum, and because it gives higher signal-to-

noise compared to other systems used in this thesis. This work has been made possible

by the fact that the VTMAs associated with the high frequency X�H vibrations are

dependent mainly on the structure or the orientation of the corresponding groups within

the molecule. We have shown that adenine is indeed nonplanar, with the NH2 group

tilted approximately 20 � out of plane, as the ab initio calculations predicted. This

approach will be applied to the other NABs (cytosine and guanine) whose structures

show nonplanarity at least from ab initio calculations.

9.1.4 Hydrated Biomolecules

We have conducted vibrational spectroscopic studies of the mono-hydrated uracil con-

formational landscapes. Hydrated uracil is one of the most studied NAB-H2O systems

due to its simplicity and the fact that the energy gap between the global minimum of

uracil and the next lowest energy tautomer is relatively higher than other NABs such

that the possibilities of forming complexes of higher energy hydrated uracil tautomer

complexes are reduced. We observed four weakly bound uracil�water conformers in

the helium nanodroplets, structures that were predicted as the four lowest energy com-

plexes by di¤usion Monte Carlo simulations of uracil-(water)n (n=1-3) by van Mourik

and co-workers [242, 243, 257]. The vibrational band assignments of the uracil�water

binary complexes were conducted with the aid of VTMAs and comparison of the uracil

monomer spectrum. The existence of four uracil�water conformers (UW1 �4) can be
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seen by scanning the free O�H stretching region of the uracil�water system as shown

in Figure 7.3. In this study each uracil�water binary complex is formed in helium

droplets by sequential pick-up of the two molecules. The formation of complexes in the

helium droplets is governed by long range intermolecular interactions. However, the

water molecule, which has large rotational constants, rotates at the time it enters the

attractive potential valley of the uracil molecule, so it can not escape and thus forms

complexes at the local minimum. We postulated that the population distribution of

the uracil�water binary complexes is strongly determined by the widths of the entrance

valley for each complex. This is supported by the relative abundances from the exper-

imental results which is more relevant to the hypothesis of the entrance valley widths

than the energetic consideration of the binary complexes.

Imidazole�water binary complexes were also studied as a stepping stone for the

study of imidazole-ammonia complexes, which would be a very interesting system in

the gas-phase studies because of the recent structural analysis of a channel in a bacte-

rial membrane, the neutral condition of the channel. The hydrogen-bonding network

between the imidazole moiety of the histidine and ammonia molecules in the channel

has a very close relevance to the study of the imidazole water binary complexes. Not

only because of this, but also because of its importance in the biological systems, the

studies of the imidazole�water complexes have been conducted and shown that there

were two binary complexes formed in the helium droplets which have not been studied

in the gas-phase. Although the experimental frequencies are in poor agreement with

ab initio frequency calculations, the VTMA analysis and deuterium substitution study

show a conclusive assignments in this system.
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9.2 Outlook

The application of helium droplet spectroscopy with VTMA analysis to biologically

important systems is wide open. The results presented here, which deal with only small

group of molecules, suggest intriguing research directions in the future. The studies

of more complicated isolated NAB systems, self-associated complexes, base pair and

their hydrated complexes should be possible. For example, as shown throughout this

thesis, several bands observed in the monomer or binary complex spectral region are due

to the higher energy tautomers or higher order complexes, self associated complexes.

Because we use single resonance, linear spectroscopic technique, the observation of

these bands is readily possible especially when using with high power IR lasers and

higher oven temperatures to increase the monomer�s signal-to-noise ratio. This actually

will give a possibility to study the hydrogen-bonding of the pairs of NABs which is a

fundamental to the structure and dynamics of DNA and RNA and the subject of

intensive study. Although the Watson-Crick base pairs are justi�ably often the center

of such attention, NAB dimers can also provide important information concerning such

hydrogen-bonding. For example, N�H � � � O�C hydrogen bonds are of fundamental

importance and are amenable to study in the simplest of these systems, namely the

uracil dimer. Nevertheless, the studies of NAB dimers easily lead us to the study of

the base pairs, which can be done experimentally using sequential double ovens. This

study will provide insight into the understanding the mechanisms of how the structural

rearrangements are expressed, such as in the process of DNA replications, DNA �drug

interaction and protein foldings and so on.
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9.2.1 Thermochemistry of Biomolecules: Experimental Mea-

surement

The relative energies of the various tautomers of nucleic acid bases have not been

experimentally determined, despite the fact that rare tautomers of NABs were �rst

implicated in DNA mutation by Watson and Crick in their landmark paper [144].

Indeed, the thermochemistry is largely missing for systems that exist as an equilibrium

mixture of several di¤erent tautomers, isomers or conformers, which lie within a few

kcal/mol of one another. A detailed characterization of the associated thermochemistry

would clearly provide us with a better understanding of a wide range of biologically

important processes, including mutation, protein folding (secondary structure) and the

in�uence of solvent interactions, including hydrogen-bonding.

In the work described in this thesis, we have shown that high resolution infrared

laser spectroscopy in helium droplets can determine NAB structures [79, 86, 87, 89].

Although the associated conditions are far from physiological, they allow for direct

comparisons with theory, both at the ab initio and molecular modeling levels. Indeed,

the tremendous growth in the study of gas-phase biomolecules is the result of the po-

tential of this approach for improving our fundamental understanding of the associated

interactions.

The experimental method proposed here is based upon the fact that the molecules

are cooled extremely quickly upon capture by a helium nanodroplet, as a result the high

temperature tautomer populations can be trapped with little change in their high tem-

perature equilibrium concentration. The high resolution of the current spectroscopic

methods then should enable us to determine the relative populations of the various

tautomers as a function of the pick-up cell temperatures, providing direct information

on the associated �H�s.

In future studies we plan to carry out studies at even higher oven temperatures with
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the goal of observing more tautomers of NABs at even higher energies, as mentioned

above. Adenine, uracil and thymine which have relatively large energy gaps between

the major and minor tautomers are the challenge for next experiment. Guanine, which

has several energetically acceptable tautomers, will be challenging because it is rather

thermally unstable [89], so that the range of temperatures over which we can perform

these experiments will be more limited. Furthermore, it will be a test of ab initio

calculations of guanine which shows that the energy of the global minimum is very

dependent on zero point energy corrections and basis sets. Since cytosine is a good

system to study �rst because it is more thermally stable than guanine, and we have

observed six low energy tautomers with tentative assignments of three higher energy

tautomers, C21, C22 and C4 (see Figure 3.1) at higher oven temperatures.

Now that we have a method for unambiguously identifying the various tautomers

of a given system, the challenge for the future is the development of experimental

methods that are compatible with the helium nanodroplet experiment and will enable

us to measure their relative energies.

Once cooled to 0.4 K, the molecules can be characterized by high resolution laser

spectroscopy by varying the temperature of the pick-up cell and measuring the corre-

sponding changes in the isomer population upon super rapid cooling in helium nan-

odroplets. Therefore, the sudden cooling that a molecule experiences when it is cap-

tured by a helium droplet prevents the system from accommodating to the new tem-

perature, so far as its isomer population distribution is concerned. There are a number

of factors that support this hypothesis. First, a wide range of experiments suggest

that the cooling rate for a captured molecule is very large. For example, Scheidemann

et al. [15] estimated the cooling rate associated with charge transfer in helium to be

approximately 1016 K/s, much faster than those typical of free jet expansions, namely

108 K/s [311]. Our estimate is that vibrational cooling for most small molecules oc-
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curs on the sub-nanosecond time scale. Nevertheless, we know that for many systems

the relaxation rate is not much faster than this, given the high resolution of the cor-

responding spectra. On the other hand, for larger molecules we often observe even

broader linewidths [79, 86, 87, 89], which is thought to result from faster vibrational

relaxation, due to high state densities.

Further evidence suggesting that helium droplets will freeze the high temperature

conformer distributions comes from extensive matrix isolation work [312, 313], which

shows that, in systems that are co-deposited onto a cold substrate with rare gases

to form the matrix, the heavy rare gases tend to disrupt the tautomer population

distributions, relative to those in the gas-phase, while the lighter ones do not. Liquid

helium has not been studied, but extrapolation of the results from solid matrices of the

heavier rare gases suggests that it should be the best in this regard. As noted above,

Potts and Baer [311, 314] found that even the cooling in an argon free jet expansion

can be fast enough to quench the isomer populations distributions for some systems.

The fact that we see multiple tautomers in the previous experiments [86, 89] con�rms

that the helium is indeed a good quencher, not allowing the various energy tautomers

to re-equilibrate at the helium temperature.

Oven Design

In the ovens we have been using for the biomolecule studies in this thesis, the solid

samples are placed directly in the section of the oven that is exposed to the helium

beam (shown in Figure 2.3). As a result, the operating temperature of the oven is

restricted to the sample vapor pressure that corresponds to the optimum pick-up of

a single molecule. Since the goal of the present work is to measure the temperature

dependence of the signals associated with di¤erent isomers, we will have to construct

an oven with two separately heated sections, one that controls the vapor pressure and
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the other through which the helium droplet beam passes, so that the temperature of

the latter can be controlled independently (see Figure 9.1). Long channels will be used

for entry and exit of the helium droplet beam (to reduce temperature gradients) and

a thin wall stainless steel tube or a vacuum (ideally) will separate the two sections

of the oven, so that they can be maintained at di¤erent temperatures. Note that

since the experimental measurements to be performed here constitute the ratio of the

band intensities for the various tautomers, the density changes associated with the

temperature of the second stage will not a¤ect the results. In any case, an essentially

quantitative correction for these density e¤ects will be straightforward. To ensure that

changes in the second stage temperature do not signi�cantly change the temperature

of the �rst stage, which would cause signi�cant changes in the vapor pressure, both

stages will need to be actively temperature controlled.

Experimental Measurements

As noted above, the primary measurements in this experiment will be the pick-up cell

temperature dependence of the intensities of various vibrational bands in the infrared

spectra. As the temperature of the oven is increased, higher energy isomers will become

more favorably populated, changing the ratios of the peak intensities. Consider for the

moment the simple case of a system with only two isomers. As shown previously by

Potts and Baer [311, 314, 315] the spectroscopic band intensities, as a function of the

temperature, can be related to �H through the van�t Ho¤ equation:

d ln(K)

d(1=T )
=
��H �

R
(9.1)

where K is the temperature dependent equilibrium constant. This can be done by

noting that K is the ratio of the tautomer populations, which are in turn related to

the spectral band intensity (integrated area = A) by:

215



First stage heating Second stage heatingThermal
Break

Sample Droplet
Beam

Cartridge
Heaters

Figure 9.1: A schematic diagram of two-stage oven that can be load-locked into the
helium droplet appartus shown in Figure 2.2. The �rst stage is for controlling the
vapor pressures of the sample and the second stage controls the temperature at which
the pick-up occurs. The temperatures between the �rst and second stage must be
independent by using a thermal break (e.g., stainless steel or vacuum).
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Ai = Pi � ti (9.2)

where i is 1 or 2, representing the two isomers, ti are the corresponding transition

moments and Pi are the populations. We can now write:

d

d(1=T )
(lnK) =

d

d (1=T )

�
ln
t1A1
t2A2

�
(9.3)

=
d

d (1=T )

�
lnF + ln

A1
A2

�
(9.4)

where F is the ratio of the transition moments. Since F does not depend upon temper-

ature, we can write:

d ln(A1=A2)

d(1=T )
=
��H �

R
(9.5)

Thus, even in the absence of accurate transition moment magnitudes, we are able

to obtain �H directly from a measurement of the temperature dependence of the band

intensities (areas). In many of the systems of interest, there are more than two isomers,

and the generalized version of the above theory will be used, providing �H�s for all the

isomers. For example, in the case of cytosine and guanine, we have identi�ed at least 3

(possibly 6) and 5 tautomers in helium nanodroplets, respectively, and plane to measure

their relative enthalpies using the above methods.

All of the above analysis assumes that we have a �rm assignment of the vibrational

spectrum, meaning that the various vibrational bands are properly assigned to the

appropriate vibrational modes of the correct tautomers. As noted above, the vibrational

transition moment angles are ideally suited for this and will be used to determine

assignments.
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In the above analysis the ratio of the tautomer populations is used in order to

remove the vibrational transition moment magnitude from the equation. However,

these values are actually calculated quite accurately by ab initio calculations, so to a

�rst approximate we can turn the above ratios into absolute population ratios, which

means that the van�t Ho¤ plot can be extrapolated to in�nite temperature (1/T !

0) in order to obtain an estimate of �S. The latter results could be extremely useful

in providing qualitative information on the relative �sti¤ness�of the di¤erent isomers.

Finally, if a wide enough temperature range can be explored to reveal some curvature

in the data displayed in the van�t Ho¤ plot, it might be possible to extract some

information on the temperature dependence of these thermodynamics quantities.

The fact that we typically have multiple vibrational modes (C�H, N�H and O�H

stretches) from which to obtain independent estimates of the populations ratios, it

should be possible to obtain quite good estimates of the absolute population ratios.

The �rst phase of this study will be to accumulate a large data base for many di¤er-

ent molecules and vibrational states to assess the accuracy of the approach. In the

studies of Potts and Baer [311, 314, 315] the �H�s were determined to an accuracy of

approximately � 0.1 kcal/mol. Given that the vibrational spectroscopy used in the

proposed studies is a linear spectroscopy, while REMPI was used in the Potts and

Baer [311,314,315] studies, we expect that our error bars will be somewhat better than

this. It is interesting to compare these errors with the expected energy di¤erences (from

ab initio calculations) for a typical system. In the case of the three cytosine and four

guanine lowest energy tautomers, the relative energies of the tautomers span a range

of approximately 1.9 and 1.2 kcal/mol, respectively.
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Ab initio Calculations

There are numerous number of ab initio data already available in the literature, which

will provide us with many opportunities to make comparisons. Nevertheless, we plan

to carry out our own theoretical investigations, in part because very few people quote

vibrational transition moments in their papers. We will need these both for aiding

in the assignment of the experimental spectra (the theoretical vibrational transition

moment angles are needed for comparison with experiment) and for comparison with

the measured �H�s.

Molecules to be Studied

As noted above, the thermochemistry of isolated biomolecule tautomers is poorly char-

acterized experimentally. This includes the nucleic acid bases, for which we have already

obtained infrared spectra in helium nanodroplets. The previous work [79, 86, 87, 89]

clearly demonstrates that the methods presented here will be straightforward to ap-

ply to these systems. As a result, a systematic study of all of these systems will be

necessary. It is clear that we must perform full studies on purines alkylated in the

N9 position and we must do the same with the pyrimidines alkylated in the N1 po-

sition which is more physiologically relevant. Likewise, it will be essential to include

5-bromouracil which is known to lead to mutations via the mechanism involving an

enhanced tautomeric form [316,317]. Guanine will be the most challenging, given that

it is rather thermally unstable, so that the range of temperatures over which we can

perform these experiments will be more limited than for some of the other systems.

Then it will be essential to systematically add water molecules to the tautomers to

assess the role of solvation. Amino acids and peptides are also of great interest and can

be studied. The application of these methods to other systems, including sugars and

steroids, can also be explored.
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