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ABSTRACT  
Swaroop S. Singh: Effectiveness of a Handheld Remote ECG Monitor  

(Under the direction of Prof. Henry S. Hsiao)  
 

This present study deals with designing a real-time remote handheld ECG 

monitoring system and evaluating its potential usefulness in early detection of heart 

conduction problems. The raw ECG recordings were sent by the handheld monitor (client) 

to a remote server, which performed an on-line ECG analysis and sent the results back to 

the client. Real-time feedback provided to the client included display of ECG, results of 

ECG analysis and alarms (if required).  

The objective of this work was to determine its effectiveness in real-time 

identification of particular pattern preceding ventricular fibrillation. The remote server 

identified the occurrence of QRS complex and premature ventricular contractions and 

monitored ECG for ventricular tachycardia and variations in heart rate variability indices. 

The sensitivity and specificity of the QRS detection to ECG recordings from MIT-

Arrhythmia database were 99.34% and 99.31%, respectively. Similarly these parameters 

of the premature ventricular contraction detection were 87.5% and 91.67%, respectively. 

The time between alarm and the onset of ventricular fibrillation was measured on ECG 

recordings where premature ventricular contractions were found to lead to ventricular 

fibrillation. The remote monitor was able to successfully identify the onset on ventricular 

fibrillation. Early detection could contribute to better response to an emergency 

intervention.
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HRV indices sensitive to the differences between normal and subjects with 

congestive heart failure were monitored in real-time. They were heart rate, statistical 

index RMSSD, total spectral power, high frequency power and the ratio of low frequency 

to high frequency power (LFP:HFP). The effectiveness of HRV indices was tested on an 

ECG recording of a sleep study subject, who experienced cardiac arrhythmia. Cyclic 

changes observed in total spectral power prior to onset of cardiac arrhythmia could be 

attributed to REM sleep cycles. No other conclusive change in HRV indices was 

observed. 

The monitor’s usefulness in predicting long-term prognosis of post-MI subjects 

was tested on ECG recordings from two subjects made immediately after conclusion of 

cardiac arrhythmia and during a follow-up visit. Both showed higher RMSSD, total 

spectral power and LFP:HFP ratio. Personalizing the monitor for each patient further 

improves its accuracy in measurement of various parameters.  
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CHAPTER 1 

Introduction 

 

A large number of people need immediate attention when they experience life-

threatening ventricular arrhythmia or angina. Most of the sudden deaths are caused by 

cardiac arrest, usually resulting from ventricular arrhythmia that occurs as a result of 

myocardial ischemia. Moreover, many studies attest that rapid response times in pre-

hospital period is key in reducing mortality and dramatically improved patient outcomes 

[1-3].  

Electrocardiogram (ECG) is the most important noninvasive diagnostic tool used for 

assessing the probability of cardiac event, for stratifying its degree (stable, unstable 

angina, risk of out-hospital or in-hospital death) and for guiding therapy. Early detection 

of potentially dangerous cardiac arrhythmia could lead to timely intervention. Significant 

changes have been reported in the analysis of beat-to-beat intervals of heart rate (heart 

rate variability) in the period immediately preceding ventricular tachyarrhythmia [4-5]. 

Such patients may benefit from anti-arrhythmic therapy or intervention. Short-term heart 

rate variability measures are used for initial screening of all survivors after an acute 

myocardial infarction [6], prediction of outcomes after myocardial infarction [7] and 

monitoring of patients after medication and exercise.  



For monitoring purposes, the Holter based equipment requires clinical supervision 

and provides no real-time feedback for the patient. Wireless devices provide additional 

mobility but do not provide adequate real-time monitoring. Handheld devices like 

Personal Digital Assistants (PDAs) are compact and have increasingly powerful 

computing capability for complex calculations required for this work. The newer models 

with features like built-in networking and their integration into the cellular phone has 

provided the remote monitor access to hospital services. When integrated with a remote 

processing server, the PDA provides an effective and inexpensive method to monitor real 

time display of cardiac signals for (i) Normal sinus rhythm (ii) Premature ventricular 

contractions (PVC) (iii) Ventricular tachycardia and (iv) Changes in heart rate variability 

indices in normal and in patients affected by cardiac conditions.  

 

1.1 Statement of Problem 

In early myocardial ischemia, ventricular fibrillation is often preceded by 

ventricular tachycardia, which eventually gives way to the ventricular fibrillation [8]. 

Since the onset of ventricular fibrillation is extremely difficult to pinpoint in many cases 

[9], it would be useful to design a monitor that accurately detects the onset of ventricular 

tachycardia. Reducing the time from the detection of “warning” signs of ventricular 

tachycardia to emergency intervention may prove helpful in preventing the onset of 

ventricular fibrillation and allow for more rapid delivery of lifesaving interventions. 

Thus, any clinically useful detector should respond to the runs of tachycardia preceding 

fibrillation. In other words, the system should exhibit a ‘negative time to alarm’ 

compared to the onset of ventricular tachycardia and fibrillation.  
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The primary objective of this dissertation is to design and measure the 

effectiveness of the handheld remote ECG monitor, which includes a QRS and PVC 

detection algorithms. The QRS and PVC detection algorithms were validated against a 

standard annotated database. The effectiveness of the monitor for detecting the onset of 

life threatening arrhythmia (ventricular fibrillation) was quantified by measuring the 

‘negative time to onset’ of ventricular fibrillation.  

The secondary objective is to determine the usefulness of adding HRV measures 

to real-time remote ECG monitoring. A number of HRV indices were assessed including 

heart rate, SDNN, RMSSD, Total spectral power, Low-frequency power, High-frequency 

power and High frequency power to low frequency power ratio. The sensitivity of these 

indices to differentiate ECG recordings from normal and subjects with congestive heart 

failure (CHF) was evaluated. The indices identified to be sensitive in differentiating 

normal from subjects with CHF were used to determine if they predict the onset of chest 

pain (arrhythmia) in recording of an older subject during sleep 

The tertiary goal is to determine the usefulness of the remote monitor in providing 

long-term prognosis based on HRV changes. HRV indices calculated from ECG 

recordings of two subjects made after conclusion of cardiac arrhythmia and a follow-up 

study done a year later were compared. Changes in HRV indices would provide better 

assessment of cardiac risk.  
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CHAPTER 2 

Background 

 

The heart is a muscular organ responsible for pumping blood through rhythmic 

contractions. It receives deoxygenated blood from the venous system and after 

oxygenation in the lungs the blood is sent back into arterial system. These contractions 

are associated with electrical activity of the heart and can be detected by surface 

electrodes.  

 

2.1 Electrical activity of the heart 

Electrical stimulation of the heart originates at the sino-atrial (SA) node in the 

upper section of right atrium. Since the atria are insulated from the ventricles, electrical 

excitation passes only through the atrioventricular (AV) node. Special tissues conduct 

electrical excitation from the AV node to the ventricles in sequence from Bundle of His 

to Bundle branches and finally to Purkinje fibers. The various parts of the electrical 

conduction system of the heart are shown in figure 2.1.   



 

Figure 2.1. Electrical conduction system of the heart. 

Cardiac excitation from the body surface, as electrocardiogram (ECG), by 

attaching the electrodes to the body surface is monitored. The most common 

configuration for recording is with electrodes connected to both arms and the left leg 

(Leads I, II, III). A typical ECG record contains P, QRS and T waves. The P wave is 

caused by depolarization of the atria, the QRS-complex is produced by depolarization 

(excitation) of the ventricles and the T wave represents the repolarization of the 

ventricles. Figure 2.2 shows the typical lead II recording of the ECG, which has the same 

direction as the axis of the normal heart.  
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Figure 2.2. Normal sinus rhythm recorded on Lead II  

2.2 Premature Ventricular Contraction  
 

          In addition to SA node, there are other latent pacemakers, which exist throughout 

the heart. Regular conduction of electrical impulses from SA node and refractory period 

of cells reject other electrical impulses except those arriving from SA node. In certain 

cases, the additional pacemakers interpose additional electrical impulses that generate 

ectopic beats, which due to their different locations lead to varying behavior. Premature 

ventricular contraction (PVC) is due to an ectopic cardiac pacemaker located in the 

ventricle. These are characterized by the premature occurrence of bizarre-shaped QRS-

complex (typical QRS width > 120 ms). These complexes are not preceded by a P-wave, 

and the T-wave is usually large and opposite in direction to the major deflection of the 

QRS (Figure 2.3). The PVCs may appear in a pattern of bigeminy, trigeminy, or 

quadrigeminy, which describe their pattern, which occurs every other, every third, or 

every fourth beat, respectively. These patterns with identical morphologies on a tracing 

are called monomorphic or unifocal.  
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Figure 2.3. ECG record with premature ventricular contraction  

The PVCs reflect the unwanted spontaneous activity of ventricular pacemaker 

cells. The suggested mechanisms for these are reentry, triggered activity, and enhanced 

automaticity [1]. Reentry occurs when an area of one-way block in the Purkinje fibers 

and a second area of slow conduction are present. During ventricular activation, the area 

of slow conduction activates the blocked part of the system resulting in an extra beat or 

leading to paroxysmal tachycardia. These beats are considered to be due to after-

depolarizations triggered by the preceding action potential. Enhanced automaticity 

suggests that an ectopic foci of pacemaker cells exists within the ventricle that has a sub-

threshold potential for excitation. The basic rhythm of heart raises these cells to 

threshold, leading to an ectopic beat. 

PVC is one of the most common arrhythmias which can occur in patients with or 

without heart disease. More than 60% of healthy middle-aged men show PVCs on routine 

Holter monitoring and is increased to more than 80% in patients with prior myocardial 

infarction (MI). This is attributed to inadequate stroke volume or to decreased cardiac 

output caused by effectively halving the heart rate. Prolonged occurrence of these may 

lead to hypotension. Physical exercise can increase or decrease the PVC rate [2] In young 
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healthy patients without underlying structural heart disease these are not associated with 

any increased rate of mortality. The early occurrence of PVC in the cardiac cycle (R-on-T 

phenomenon) of frequency more than 10/hour, with multiple ventricular morphologies, 

are associated with arrhythmic events and increased mortality rates [1].  

2.3. QRS Detection 

In an arrhythmic monitoring system, a reliable detection algorithm is of prime 

importance. Missing a life threatening arrhythmia or false-positive detection may lead to 

improper therapeutic intervention. In addition to reliability, the speed of detection is an 

important criterion that depends on the amount of data used to detect arrhythmias [3].  

The QRS waveform due to its characteristic shape serves as the basis for the automated 

determination of the heart rate for classification schemes of the cardiac cycle [4]. In QRS 

detection algorithms, the detection of this complex and the time taken to achieve this are 

very important. But detection of QRS-complex – specifically the peak of QRS-complex 

or R wave due to the time-varying morphology, is a difficult problem. In addition, other 

sources of noise in a clinical environment such as power line interference, muscle 

contraction noise, poor electrode contact, patient movement and baseline wandering due 

to respiration may further degrade the ECG signal [5].  

Algorithms for QRS detectors are generally divided into three categories: (1) 

syntactic, (2) non-syntactic and (3) hybrid. The algorithms based on the syntactic 

approach are time consuming, due to the need for grammar inference for each class of 

patterns [6]. Non-syntactic QRS detectors  share an algorithmic structure (Figure 2.4) that 

can be divided into preprocessing or feature extraction stage including linear and non-
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linear filtering and a decision stage regarding peak detection and decision logic [7-9]. The 

algorithms differ with respect to the preprocessing stages, as most of the decision stages 

are dependent on their results [4]. The detectors generally filter the ECG with a bandpass 

filter (or matched filter) to suppress P- and T- waves and noise. Thereafter the signal is 

passed through a nonlinear transformation to enhance the QRS-complex. Finally based on 

decision rules the presence of QRS-complex in the signal is detected.  

In contrast non-linear filtering that takes considerably less time and easily 

implemented, is a common approach to detect QRS-complex. But the main drawback of 

these algorithms is that the frequency variation in QRS-complex may overlap with the 

frequency band of noise, resulting finally in false positive and false negative. 

Decision Stage Preprocessing Stage 

Linear 
Filtering 

Nonlinear 
Filtering 

Peak Detection 
Logic 

Decision  
QRS ECG

Figure 2.4. Common structure for non-syntactic QRS detectors. 

  Neural network based algorithms have been superior to classical linear 

approaches but require a large training dataset [10]. An algorithm based on Hidden 

Markov methods identifies P- and T-waves in addition to QRS-complex, but are 

computationally complex even with efficient algorithms [11]. 

Since the frequency characteristics of the ECG constituents are different, 

frequency domain parameters have been proposed as an alternative to time domain 
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analysis.  Loss of clinically important features, such as duration, amplitude and relative 

position of the three different waves and the transformation of the waveform into the 

frequency domain, makes it less attractive for acceptance by clinicians. Another 

shortcoming is the non-stationary signal. Mutually exclusive time and frequency domain 

representations of these waveforms fail to reveal the non-stationarity behavior accurately. 

Hence, there is a need for representation of ECG signals in two dimensions with time and 

frequency as coordinates. Wavelet transform (WT) is a promising technique for time-

frequency analysis. By decomposing signals into elementary building blocks that are well 

localized both in time and frequency, the WT can characterize the regularity of signals, 

and can further be used to distinguish ECG waves with serious noise, artifacts and 

baseline drift.  

Wavelet analysis of a signal involves breaking up a signal into shifted and scaled 

versions of a reference (mother) wavelet. In determining the wavelet decomposition 

coefficients of a signal, the correlation of the mother wavelet at different shifts and scales 

with the signal is computed. Hence, the wavelet coefficients represent measures of 

similarity of the local shape of the signal to the mother wavelet under different shifts and 

scales. Wavelet transform of time signal at any scale is the convolution of the signal with 

time scaled daughter wavelet. Scaling and translating the mother wavelet is the 

mechanism by which the transform adapts the spectral and temporal changes in the signal 

being analyzed.  

Biorthogonal wavelets offer temporal symmetry preventing non-linear phase shift 

of the transformed signal. In the current problem, the shape of the signal in the time 

domain is important while reconstruction of the signal is not required and this makes the 
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choice of biorthogonal wavelets easier [12]. The singularities (peaks) in the ECG 

correspond to pairs of modulo maxima across several scales in wavelet transform. The 

QRS points are detected by comparing the coefficients of the discrete wavelet transform 

on several scales against fixed thresholds [13]. Figure 2.5 illustrates the QRS detection 

and the dots on the top are identified by the QRS detector. 

 

 

Figure 2.5. QRS detection using Wavelet Transform. 
 
 
 

2.4. Heart Rate Variability  

The heart rate variability (HRV) is a marker of the significant relationship 

between the autonomic nervous system and cardiovascular mortality [14]. The 

parasympathetic influence on the heart rate is mediated via release of acetylcholine by the 

vagus nerve. When parasympathetic nerve is activated, slow diastolic depolarization is 

initiated. The sympathetic influence on the heart rate is mediated by the release of 

epinephrine and norepinephrine. The end result is an acceleration of the slow diastolic 

depolarization. Under resting conditions, the vagal tone prevails and variations in the 
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heart rate are largely dependent on vagal modulation [15]. Association of lethal 

arrhythmias and signs of either increased or decreased vagal activity contribute in the 

development of quantitative markers of autonomic activity. The clinical importance of 

HRV became apparent when this was confirmed as a strong and independent predictor of 

mortality following an acute myocardial infarction.  

The HRV time and frequency measures are derived from normal-to-normal 

intervals (all intervals from adjacent QRS-complex resulting from sinus depolarization). 

Lowered HRV was found to precede episodes of atrial fibrillation in patients after 

coronary artery bypass graft operation and with no structural heart disease [16]. Time-

variant algorithms when applied to RR interval data a low frequency (LF) component of 

HRV power spectra, 1.5-2 minutes before the onset of an ischemic episode was found 

[17]. Correlation dimensional analysis on RR interval predicted the exact time of 

occurrence of ventricular fibrillation in a retrospective study [18]. 

The decreased HRV is a powerful risk stratifier for overall mortality, induced and 

spontaneous ventricular tachycardia and sudden death following acute myocardial 

infarction (AMI) [19]. Risk of arrhythmic death was found to be associated with lowered 

HRV and the presence of ventricular arrhythmia [20]. Low frequency HRV measurement 

predicted in-hospital complications when measured within 2 days after the AMI [21]. 

Short-term HRV measures are used in prediction of mortality of patients with chronic 

heart failure [22]. Frequency domain HRV from short-term recordings (2 to 15 minutes) 

predicted post-infarction mortality and are used for initial screening of all survivors after 

an acute MI [19]. Such patients may benefit from anti-arrhythmic therapy or intervention.  
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The identification of the QRS peak is critical for HRV measurements. Since the 

modulatory signals from the brain to the heart are embedded as variations in the beat-to-

beat intervals of the sinus rhythm, a locally generated ectopic beat may temporarily 

disrupt neuro-cardiac modulation. Preferentially the short-term recordings, free of ectopy, 

missing data and noise, should be used as these comply better with the theoretical 

prerequisite of data stationarity.  

  

 2.5. Remote Monitoring  

The various studies have shown that remote monitoring from pre-hospital setting 

results in reduced response time and improved patient outcome [23-25]. Remote 

monitoring of ECG is used to assess the probability of cardiac event, stratify risk and to 

guide therapy. The primary attributes of remote monitoring systems are [26]: (a) 

Recording of key information at the point of care, eliminating errors and duplication of 

effort, and providing completeness of data, (b) Automation of processes and information 

sharing, (c) Provision for clinical decision support, (d) Ensuring of secure acquisition and 

storage of patient data, (e) Provide reliable performance, and (f) Assist patients in 

management of their own health. 

There are different approaches which have been used in application of 

telemedicine. These include: (1) Single condition disease management, e.g. Cardiac 

emergency response system implemented by SHL Telemedicine in Israel [27] and (2) 

Focus on local problems (e.g. Remote consultation/monitoring initiatives in sparsely 

populated areas of Sweden) [28]. The CSIRO project “Hospital without Walls” in 

Australia, designed to provide remote monitoring of patient heart rate and activity 
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information [29]. Remote ECG monitoring, performed from a commercial aircraft [30] or 

an ambulance [31], has also shown promising results.  

  The ECG signal recording in a non-hospital setting can be classified as short-term 

or long-term recording. Short-term measurements (5-15 min) are usually carried out at 

physician’s office or at small clinics. Long term measurements (24-96 hours) are usually 

made at the patient’s home by ambulatory monitors (Holter). The disadvantages of the 

short-term and long-term recordings are the difficulties in the complete diagnosis and in 

immediate intervention, respectively. These deficiencies sometime may lead to serious 

conditions. Holters with DSP chips for ECG analysis can detect cardiac events in real-

time and send cardiac report to a monitoring station using standard telephone lines [32]. 

However such monitoring systems are expensive and do not provide any feedback to the 

patient about his/her medical condition.  

The ECG data are usually transmitted by incorporating Transmission Control 

Protocol/Internet Protocol (TCP/IP). The TCP is chosen due to its permanent connection 

channels, data packet checking to ensure that all data are transmitted and error checking 

is within packets for integrity of data [33]. The TCP/IP encapsulated ECG data are sent 

over public switched telephone network (PSTN) [34], Cellular technologies incorporating 

global system for mobile communication (GSM) [35] and time division multiple access 

(TDMA) [36] standards and broadband networks (DSL/Cable) from the remote patient 

location to the hospital. The PSTN is the most commonly used medium for ECG 

transmission due to its ubiquitous presence. Monitoring of infants for sudden infant death 

syndrome (SIDS) was also implemented using TCP encapsulated data packets over the 
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PSTN [37]. However data sent over the PSTN has a high error rate causing frequent 

delays. Real-time ECG monitoring systems incorporating the GSM data networks [35] 

have an advantage of being wireless, but its limited bandwidth leads to significant data 

loss. Remote web servers are also used to store and display real-time ECG data. Java 

embedded systems (e.g. Dallas Semiconductor Tiny Internet Interface) are cost effective 

and provide real-time web-based monitoring [38]. However, these systems do not provide 

any mechanism to analyze ECG data or provide feedback to the patients.  

The handheld devices, like personal digital assistants (PDAs), are small, light, and 

easy to use with powerful computing capabilities. New generation models have features 

like built-in networking using Wireless LAN, and its integration into the cellular phone 

and by these the remote monitor could access to hospital services. The PDAs have been 

used in the medical community to access online medical databases [39], record patient 

and clinical training data [40] and send ECG data from the ambulance directly to the 

hospital [41]. The PDA has also been used to monitor the infants’ respiratory in real-time 

[42] However, at present time, these devices do not possess computing capability or the 

battery life required to perform real-time ECG analysis. Computer based analysis of ECG 

for detection of cardiac arrhythmias has been used with considerable success. Innovative 

signal-processing and analysis techniques in small sized hospitals have also been 

implemented [43]. The various techniques developed for this purpose may need even 

faster and more powerful PDA’s or implementation purposes. 

Considering the present needs, the PDA-based remote monitor is designed to 

record and monitor ECG and provide real-time feedback for effective monitoring of 
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medication and exercise. Further analysis of ECG recordings can be performed in real-

time by a remote processing server.  

 17



2.6 References 

 
1. Alpert MA, Mukerji V, Bikkina M, Concannon MD, Hashimi MW. Pathogenesis, 

recognition, and management of common cardiac arrhythmias. Part I: Ventricular 
premature beats and tachyarrhythmias. Southern Medical Journal 1995;88:1:1-21. 

 
2. Partington S, Myers J, Cho S, Froelicher V and Chun S. Prevalence and prognostic 

value of exercise-induced ventricular arrhythmias, American Heart Journal 
2003;145:1:139-146. 

 
3. Jung, Y and Tompkins WJ. Detecting and Classifying life-threatening ECG 

ventricular arrhythmias using wavelet decomposition. Proceedings of 25th Annual 
IEEE Engineering in Medicine and Biology Conference. Cancun, Mexico. Sept 17-
21. 2003. 

 
4. Kohler B, Henning C and Orglmeister R. The principles of software QRS detection. 

IEEE Engineering in Medicine and Biology Society 2002:42-57. 
 
5. Friesen GA, Jannett TC, Jadallah MA, Yates SL, Quint SR and Nagle HT. A 

comparison of the noise sensitivity of nine QRS detection algorithms. IEEE 
Transactions in Biomedical Engineering 1990;37:85-98. 

 
6. Pietka, E. Expert systems in parameter extraction of the ECG signal. Proceedings of 

10th Annual IEEE Engineering in Medicine and Biology Conference, 1998;1:165-166 
 
7. Ahlstrom ML and Tompkins WJ. Automated high-speed analysis of Holter tapes with 

microcomputers. IEEE Transactions in Biomedical Engineering 1982;30: 651-657. 
 
8. Pan J and Tompkins WJ. A real-time QRS detection algorithm. IEEE Transactions in 

Biomedical Engineering 1985;32: 230-236. 
 
9. Chen HC and Chen SW. A moving average based filtering with its application to real-

time QRS detection. Computers in Cardiology 2003;3: 585-588. 
 
10. Xue A, Hu YH and Tompkins WJ. Neural-Network-based adaptive matched filtering 

for QRS detection. IEEE Transactions in Biomedical Engineering 1992;39:4: 317-
329. 

 
11. Coast DA, Stern RM, Cano GG and Briller SA. An approach to cardiac arrhythmia 

analysis using hidden markov models. IEEE Transactions in Biomedical Engineering 
1990;37:9:826-836. 

 
12. Sivanarayana N and Reddy DC. Biorthogonal wavelet transforms for ECG 

parameters estimation. Medical Engineering and Physics 1999;21:167-174. 
 

 18



13. Li C, Zheng C and Tai C. Detection of ECG characteristic points using wavelet 
transforms. IEEE Transactions in Biomedical Engineering 1995:42:1:21-28. 

 
14. Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology. ‘Heart rate variability – Standards of measurement, 
physiological interpretation and clinical use’. European Heart Journal 1996;17:354-
381.  

 
15. Levy MN, Martin PJ. Neural control of the heart. In: Berne RM (ed). Handbook of 

Physiology. 1979; 2:2:581-620. 
 
16. Suda Y, Otsuka K, Ban T, et al. Heart Rate Variability after coronary artery bypass 

grafting. Computers in Cardiology 1999;26:607-610. 
 
17. Bianchi AM, Mainardi L, Petrucci E, et al. Time-Variant Power Spectrum Analysis 

for the Detection of Transient Episodes in HRV signal. IEEE Transactions in 
Biomedical Engineering 1993;40:2:136-144. 

 
18. Skinner JE, Pratt CM and Vybiral T. A reduction in the correlation dimension of 

heartbeat intervals precedes imminent ventricular fibrillation in human subjects. 
American Heart Journal 1993;125:3:731-43. 

 
19. Odemuyiwa O, Malik M, Farrell T, et. al.  Comparison of the predictive 

characteristics of heart rate variability index and left ventricular ejection fraction for 
all-cause mortality, arrhythmic events and sudden death after acute myocardial 
infarction. American Journal of Cardiology 1991;68: 5: 434-439. 

 
20. Hartikainen JEK, Malik M, Staunton A, et al. Distinction between arrhythmic and 

nonarrhythmic death after acute myocardial infarction based on heart rate variability, 
signal-averaged electrocardiogram, ventricular arrhythmias and left ventricular 
ejection fraction. Journal of American College of Cardiology 1996;28:2:296-304. 

 
21. Carpeggiani C, L’Abbate A, Michelassi C, et al. Early assessment of heart rate 

variability is predictive of in-hospital death and major complications after acute 
myocardial infarction. International Journal of Cardiology. 2004;93:3:361-368. 

 
22. Saul JP, Arai Y, Berger RD. Assessment of autonomic regulation in chronic 

congestive heart failure by heart rate spectral analysis. American Journal of 
Cardiology 1988; 61: 1292-1299. 

 
23. Guidelines of early management of patient with myocardial infarction. British 

Medical Journal 1994; 308:767-771. 
 
24. Canto JG, Rogers WJ, Bowlby LJ, et al. The pre-hospital electrocardiogram in acute 

myocardial infarction: Is its full potential being realized? Journal of American 
College of Cardiology 1997;29:498-505. 

 19



 
25. Rubel P, Gouaux F, Fayn J, et al. Towards Intelligent and Mobile Systems for Early 

Detection and Interpretation of Cardiological Syndromes. Computers in Cardiology 
2001;28: 193-196. 

 
26. Horsch A and Balbach T. Telemedical Information Systems. IEEE Transactions on 

Information Technology in Biomedicine 1999;3:3:166-175. 
 
27.  Roth A, Korb H, Gadot R et. al. Telecardiology for patients with acute or chronic 

cardiac complaints: The 'SHL' experience in Israel and Germany. International 
Journal of Medical Information 2006 (In Print) 

 
28. Sjogren LH, Sandberg C and Tornqvist H. Telemedicine in Sweden--a diffusion 

study. Journal of Telemedicine and Telecare 1999;5 Suppl 1:S63-5. 
 
29. Wilson LS, Gill RW, Sharp IF, et al. Building the Hospital Without Walls – a CSIRO 

Home Telecare Initiative. Telemedicine Journal 2000 6:2:275-281. 
 
30. Press Release. ‘Remote monitoring hits new high’. Health Data Management. April 

2003.  
 
31. Pavlopoulos A, Kyriacou E, Berler A, et al. A novel emergency telemedicine system 

based on wireless communication technology – AMBULANCE. IEEE Transactions 
on Information Technology in Biomedicine 1998;2;4;261-267. 

 
32. Jovanov E, Gelabert P, Adhami R, et al. Real time Holter monitoring of biomedical 

signals. DSP Technology and Education Conference, August 4-6, 1999, Houston, 
Texas. 

 
33. Reske D and Moussavi Z. Design of web-based remote heart-monitoring system. 

Proceedings of 2nd Joint EMBS/BMES Conference, Houston. Oct 2002. 
 
34. Hernandez AI, Mora F, Villegas G, Passariello G and Carrault G. Real-time ECG 

transmission via Internet for nonclinical applications. IEEE Transactions in 
Information Technology in Biomedicine 2001;5:3: 253-257. 

 
35. Daja N, Reljin I and Rejlin B. Telemonitoring in Cardiology – ECG Transmission by 

Mobile Phone. Annals of Academy of Studentica 2001;4:63-66. 
 
36. de Azevedo DFG,  de Moura EP, DeCastro MCF, et al. Telemedicine: Remote 

Monitoring of Cardiac Patients. Proceedings of 25th Annual IEEE Engineering in 
Medicine and Biology Conference, Cancun, Mexico. Sept 17-21. 2003. 

 
37. Singh SS and Hsiao HS. Internet based infant monitoring system. Proceedings of 1st 

Joint BMES/EMBS conference, Atlanta, Georgia.1999:674. 
 

 20



38. Lamberti F and Demartini C. Low-cost home monitoring using java-based embedded 
computer. Proceedings of 4th Annual IEEE Conference on Information Technology 
Applications in Biomedicine, Scotland, UK. 2003:342-345.  

 
39. Fontelo P, Ackerman M, Kim G, et al. The PDA as a portal to knowledge sources in 

wireless setting. Telemedicine Journal and E-Health. 2003;9:2:141-147. 
 
40. Bois GD and McCright JS. Doctors on the move. Eweek. Sept 2000. 

 
41. Schuerenberg BK. PDAs send EKG Data Stat. Health Data Management. 2004. 

 
42. Singh SS and Hsiao HS. Infant telemonitoring system. Proceedings of 25th Annual 

IEEE Engineering in Medicine and Biology Conference, Cancun, Mexico. Sept 17-
21. 2003. 

 
43. Garcia J, Martinez I, Sornmo L, et al. Remote Processing Server for ECG-Based 

Clinical Diagnosis Support. IEEE Transactions on Information Technology in 
Biomedicine 2003;6:4:227-284.  

 21



CHAPTER 3 

Effectiveness of a Handheld Real Time Remote ECG Monitor 

 

3.1. Abstract 

A large number of people need immediate attention when they experience life-

threatening ventricular arrhythmias or angina. Rapid response time in pre-hospital setting 

has been shown to dramatically improve patient outcomes. In early myocardial ischemia 

ventricular fibrillation is preceded by runs of ventricular tachycardia. A handheld real-

time remote ECG monitor to detect QRS and PVCs and monitor ECG for ventricular 

tachycardia was designed. The raw ECG recordings were sent by the handheld monitor 

(client) to a remote server, which performed an on-line ECG analysis and sent the results 

back to the client. Real-time feedback provided to the client included display of ECG, 

results of ECG analysis and alarms (if required). The sensitivity and specificity of the 

QRS detection to ECG recordings from subjects from MIT-Arrhythmia database were 

99.34% and 99.31%, respectively. Similarly these parameters of the premature 

ventricular contraction detection were 87.5% and 91.67%, respectively. The effectiveness 

of the handheld remote ECG monitor in detection of ventricular fibrillation was 

quantified by measuring the negative time to onset of ventricular fibrillation. Early 

detection could contribute to better response to an emergency intervention. 

 

 



3.2. Introduction  

Cardiovascular diseases have become an increasing risk to the health of people 

worldwide who need immediate attention for complications that arise from their coronary 

heart diseases such as angina, ventricular arrhythmias as well as sudden death. Most of 

the sudden deaths are caused by cardiac arrest, usually resulting from ventricular 

tachycardia or fibrillation. Moreover, studies have shown that rapid response time in pre-

hospital setting results in reducing mortality and dramatically improved patient outcomes 

following cardiac arrest [1-3].  

Normal electrical stimulation of the heart originates at the sinoatrial (SA) node in 

the upper section of right atrium and passes only through the atrioventricular (AV) node 

and other special conducting tissues (Bundle of His) in sequence and finally to Purkinje 

fibers in the ventricles. This excitation, monitored at the body surface by electrodes is an 

electrocardiogram (ECG).  

Normal cardiac conduction, resulting from normal sinus rhythm, is due to regular 

conduction of electrical impulses from SA node and rejection of electrical impulses from 

other latent pacemakers. The normal electrical stimulation of the heart originates at the 

sinoatrial (SA) node in the upper section of right atrium and passes only through the 

atrioventricular (AV) node and other special conducting tissues (Bundle of His) in 

sequence and finally to Purkinje fibers in the ventricles. This excitation, monitored at the 

body surface by electrodes is measured with an electrocardiogram (ECG).  

In certain cases, additional pacemakers interpose additional electrical impulses 

that generate ectopic beats, which due to their different locations lead to varying 
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behavior. A premature ventricular contraction (PVC) is due to an ectopic cardiac 

pacemaker located in the ventricle, characterized by the premature occurrence of bizarre-

shaped QRS-complex (typical QRS width > 120 ms). These widened QRS complexes are 

not preceded by a P-wave, and the T-wave is usually large and opposite in direction to 

the major deflection of the QRS (Figure 3.1). The PVCs may appear in patterns of 

bigeminy, trigeminy, or quadrigeminy, which describe their pattern, which occur every 

other, every third, or every fourth beat, respectively. Patterns of PVC can also occur in 

runs of two or more. Runs of two are called a PVC couplet and run of three or more with 

an elevated heart rate is called ventricular tachycardia. 

 

Figure 3.1 ECG record with premature ventricular contraction  

PVC is one of the most common arrhythmias, which can occur in patients with or 

without heart disease. This is attributed to inadequate cardiac stroke volume or to 

decreased cardiac output caused by effectively halving the heart rate. Prolonged 

occurrence of these may lead to hypotension. Physical exercise can increase or decrease 

the PVC rate [4]. In young healthy patients with underlying structural heart disease, these 

can lead to angina, ventricular tachycardia or even sudden death. The early occurrence of 

PVC in the cardiac cycle (R-on-T phenomenon) of frequency more than 10/hour, with 
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multiple ventricular morphologies, are associated with arrhythmic events and increased 

mortality rates [5].  

Remote monitoring of ECG is used to assess the probability of cardiac event, 

stratify risk and to guide therapy. The ECG signal recording in a non-hospital setting can 

be classified as short-term or long-term recording. Short-term measurements (5-15 min) 

are usually carried out at physician’s office or at small clinics. Long-term measurements 

(24-96 hours) are usually made at the patient’s home by ambulatory monitors.  

The ECG data are usually transmitted by incorporating Transmission Control 

Protocol/Internet Protocol (TCP/IP). The TCP/IP encapsulated ECG data are sent over 

public switched telephone network (PSTN) [15,16], Cellular technologies incorporating 

global system for mobile communication (GSM) [17] and time division multiple access 

(TDMA) [18] standards and broadband networks (DSL/Cable) from the remote patient 

location to the hospital. The PSTN is the most commonly used medium for ECG 

transmission due to its ubiquitous presence. However, data sent over the PSTN has a high 

error rate causing frequent delays. Real-time ECG monitoring systems incorporating the 

GSM data networks [17] have an advantage of being wireless, but its limited bandwidth 

leads to significant data loss. Remote web servers are also used to store and display real-

time ECG data. Java embedded systems [19]. Holters with DSP chips for ECG analysis 

[20] are used as remote servers but are expensive and do not provide any feedback to the 

patient about his/her medical condition.  

Handheld devices, like personal digital assistants (PDAs), are small, light, and 

easy to use with powerful computing capabilities. and are  used in the medical 
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community to access online medical databases [21-22], record patient and clinical 

training data [23] and send ECG data from the ambulance directly to the a hospital [24]. 

The PDA has also been used to monitor the infants’ respiratory in real-time [25] and 

stress in adults [26]. Goh et al [27] proposed a PDA based home monitor with on-board 

hardware based QRS detection. Despite the versatility, this is not suited for detecting 

variations in the QRS morphologies in different patients due to lack of computing 

capability or the battery life required to perform real-time ECG analysis.  

For a reliable cardiac arrhythmia monitoring system, a remote monitor must not 

miss a life threatening arrhythmia, causing the patient a lost chance of treatment and must 

minimize false-positive detection, which may lead to improper therapeutic intervention. 

In addition to reliability, speed of transmission is critical to early detection of arrhythmia.  

Wavelet transforms (WT) based QRS detection is a promising technique for time-

frequency analysis of ECG signals [8,9]. Wavelet analysis of a signal involves breaking 

up a signal into shifted and scaled versions of a reference (mother) wavelet. In 

determining the wavelet decomposition coefficients of a signal, the correlation of the 

mother wavelet at different shifts and scales with the signal is computed. Hence, the 

wavelet coefficients represent measures of similarity of the local shape of the signal to 

the mother wavelet under different shifts and scales. The QRS points are detected by 

comparing the coefficients of the discrete wavelet transform on several scales against 

fixed thresholds [10].  

In this study, we evaluate the usefulness of our arrhythmia detection algorithms 

on ECG recordings transmitted using handheld monitor. Considering the needs of the 

patient, many of which will be outside the clinical setting, the handheld remote monitor is 
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designed to record and monitor ECG, and to provide real-time feedback for effective 

monitoring of medication and exercise. To show the effectiveness of the remote monitor 

for real-time applications the time interval between the detection of cardiac arrhythmia 

and the onset of ventricular fibrillation (negative time to onset) on ECG recordings from 

Creighton University Ventricular Tachyarrhythmia Database (Cu-DB) is measured. 

 

3.3. Methods 

3.3.1 Local Client 

The software design for local client-remote server is shown in Figure 3.2. The 

ECG data acquired from local clients (computers/handheld devices) was transmitted to a 

remote server for analysis and storage, which can be used by healthcare provider to 

assess condition of the patient and for cardiac arrhythmias. The results of analysis are 

sent back to the client to provide feedback in real-time. An early warning alarm was 

sounded at local and remote locations in case of ventricular tachycardia. The analyzed 

results were also available to other remote clients (physicians) to aid in diagnosis.  

 

Figure 3.2 Local client – Remote server model. 

The ECG recording was transmitted via a Sony Clie TH-55 running Palm 5.0 with 

built-in WLAN support. The remote server was a Compaq Presario R3000Z laptop, 

which was used to analyze and transmit the results to the client. Additional support 

(booster) files were provided by Mobile VB for running the program on the PDA device. 

Local Client 
(Computer/PDA) 

Central 
Computing 
Server 

Remote Consultation 
(Computer/PDA) 

ECG Data

Results
Results 
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Windows sockets incorporating TCP/IP protocols were used to establish a connection 

between the remote client and central server. The local client and remote server were part 

of the campus-wide LAN. The connecting speed of the LAN was 1.54MB/s (T1 line). 

The client PDA connected to LAN through a wireless adapter. The IP address and port 

information of the remote server was required for the TCP connection. The server was 

designed to handle multiple local/remote clients at the same time. Microsoft Visual Basic 

6.0 (Microsoft Corp, Redmond, WA) and Mobile Visual Basic (Appforge Inc, Atlanta, 

GA) software was used to develop the graphical user interface (GUI) and communication 

(TCP/IP) modules for the client.  

3.3.2 Remote Computing Server 

Availability of built-in digital signal processing and statistical algorithms has 

made Matlab the software of choice for developing of the software. The Matlab server 

was run in a shared mode (multiple client applications) on the server (Figure 3.3).  

Receive/Display ECG 
from local clients 

PVC Detection 
using Wavelets 

QRS detection 
using Wavelets 

Display/Send results to 
local/remote clients Check for abnormalities, Compile results. 

 
Visual Basic client application MATLAB automation server application 

 

Figure 3.3. Software model at the remote computation server 

 28



The QRS/PVC detection and HRV calculation algorithms were implemented in 

the Matlab workspace. The results of the analysis were transferred to Visual Basic for 

display and transmission to client.  

3.3.3 QRS Detection 

3.3.3.1 Wavelet Transforms 

The continuous wavelet transform (CWT) of signal x(t) is defines as  

( )∫ −=
∞

∞−
dt a

bt*x(t)g
a

1a)(b,CWTx    (1) 

where g(t) is the wavelet function and b and a (b, a ε ℜ, a≠0) are the translation and 

dilation parameters respectively. The duration of the mother wavelet g(t) is either 

compressed or expanded depending on the choice of a. Hence, the CWT can extract both 

local and global variations of a signal x(t). If x(t) has discontinuities, then the modulus of 

CWT of x(t), | |, exhibits local maxima around the time of occurrence of the 

discontinuities 

a)(b,CWTx

The CWT is defined as a dyadic wavelet transform (DWT), if only a is discretized 

along the dyadic sequence 2i where i = 1, 2, … The DWT of a signal is then defined as  

∫
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= dt i2
bt*x(t)g

i2

1)i(b,2xDWT   (2) 

To cover the entire frequency domain, the DWT should satisfy the relation 

1
i

2
ω)iG(2 =∑

∞

−∞=
     (3) 

where G(ω) is the Fourier transform of g(t).  
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The DWT can reduce the redundancy of each filtered signal so that we can 

effectively apply the processing algorithm to a small subset of the original signal. Figure 

3.4 shows the filter bank for implementing the dyadic discrete wavelet transform 

decomposition [6]. The notations h1 are FIR high-pass filters that have coefficients 

relating to the wavelet coefficients, and h0 are the FIR low pass filters that have 

coefficients relating to scaling function coefficients. Each filtered signal is down-sampled 

thereby reducing the length of the signal by a factor of 2 (Figure 3.4). The signal is 

reconstructed from d1, which contains the highest frequency using IDWT (Inverse DWT). 

This reconstructed signal, called detail, contains the detail of the high frequencies in the 

original signal.  

    h0
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c1

d2 

d1

2 

2 

2 
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Level 1 

Level 2 
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Figure 3.4 Multilevel dyadic wavelet analysis filter bank. 

Biorthogonal wavelets (‘bior2.6’) were used as the mother wavelet in

implementation of remote monitor. The scaling and wavelet function of the mo

wavelet are shown in Figure 3.5. Biorthogonal wavelets were chosen because they o

temporal symmetry, preventing non-linear phase shift of the transformed signal [28

the implementation of remote monitor, an ECG data block of size 512 was reduced
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32-size data block after wavelet decomposition prior to QRS detection, thus reducing the 

detection time.  

 

Figure 3.5 Scaling and wavelet functions (‘bior2.6’) 

 

3.3.3.2 QRS Detection/Classification algorithm 

The QRS complex appears as a modulus maxima with opposite signs of the 

wavelet transform. Figure 3.6 shows the absolute reconstructed signal from wavelet 

levels 1-7.  
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Figure 3.6 ECG data and reconstructed data from wavelet levels 1-7. 

 

The frequency spectrum of the signal containing the primary energy of the QRS 

complex is located in the range of 0.1-30 Hz, which is best represented by analysis of 

reconstructed signal from level 3 (D3) and level 4 (D4) wavelet decomposition [6]. From 

figure 3.6, it can be seen that QRS complex can also be identified from D3 and D4. D4 

was chosen as the number of data points to analyze in D4 (32) was found to be half of 

data present in D3 (64). The position of the QRS complex was estimated by squaring 

each data point and applying a moving window integrator [29]. The resulting data was 

compared to a fixed threshold to locate the local maxima, which were classified as QRS 
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complex (Figure 3.7). In cases no maxima were found, a search back was initiated with a 

lowered threshold in the last 70ms of data to locate the missing QRS complex [10].   

The ECG data segments were analyzed in blocks of 512. The QRS complex were 

identified in each segment and care was taken not to count beats occurring at the end of 

one data and beginning of another segment twice.  

 

Read ECG data 
segment (512) 

Compute DWT  

                      

Figure 3.7 Flow chart of the QRS detection algorithm. (a) – ECG signal, (b) – Wavelet 
decomposition at level 4, (c) – Squared and integrated level 4 signal. 

 

Due to the varying morphology of PVCs, designing a general PVC detection 

algorithm to identify different types of PVCs was found to be very difficult. This 

inconsistency in performance of PVC detection led to creation of adaptable parameter set 

(Detection parameters). The parameters were created from a 2 minute annotated ECG 

Level 4 

 > Threshold 

Square and moving 
window integration

Yes 

   QRS Peak 

Lower threshold 
and go back 70ms No

(a) 

(b) 

(c) 
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data of the patient and were customized for each patient-ECG data. The addition of 

parameters was found to achieve significant improvement in performance in PVC 

detection [26]. From figure 3.6, it is seen that D5, D6 and D7 can be used to identify PVC 

location. Data from level 7 was sparingly used as it was also found to contain noise due 

to drift.  

A global threshold was applied next in order to remove the contribution due to 

normal QRS complex. The presence of reconstructed wavelet data greater than global 

threshold indicated the presence of PVC beat. When present, the location is identified by 

comparing the global maxima in reconstructed levels 5 and 6 (Figure 3.8). 
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Read ECG data segment 

Compute DWT Level 
5 and 6 

 

Figure 3.8 Flow chart of PVC detection algorithm. (a) – ECG signal with PVC, (b) – 
Wavelet decomposition at level 5, (c) – Wavelet decomposition at level 6. 

 
A compromise is often involved in selection of threshold because setting a low 

threshold minimizes false positives and a high threshold minimizes false negatives. The 

sensitivity and specificity of the QRS or PVC detection schemes are given by: 

DetectedBeats
Negative False - Detected Beats x 100 y Sensitivit =

                (3) 

 DetectedBeats
Positive False - Detected Beats x 100 y Specificit =                  (4) 

Locate all local maxima ≥ 
Threshold * global maxima 

Ignore misaligned 
peaks 

    PVCs 

Yes 

No 

Detection 
Parameters 

 # Peaks 
match? 

No PVC 
present 

(a) 

(b) 
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where, Beats Detected refers to QRS or PVC beats detected, False Negative refers to 

beats the detector failed to identify and False Positive refers to detecting non-existent 

beats. 

We use modified Lown's grading system [30] to rate arrhythmia severity (Table 

1).  Cardiac arrhythmias are classified as potentially dangerous or not based on the heart 

rate and the number and pattern of PVCs present. The monitoring was done for blocks of 

512 data points and when arrhythmias were found to be grade 4, an alarm was sounded 

and sent to the handheld client.  

Grade 0 Normal - No PVCs present 

Grade 1 Occasional PVCs ( < 30/h) 

Grade 2 Frequent PVCs ( > 30/h) 

Grade 3 Repetitive PVCs ( A -Couplets, B -Salvos) 

Grade 4  ≥ 3 PVCs in a row & heart rate > 120bps 
 

Table 3.1. Arrhythmia classification table. 

It is very difficult to pinpoint the onset of ventricular fibrillation. Since sustained 

ventricular tachycardia often leads to ventricular fibrillation, the alarm was sounded on 

detection of ventricular tachycardia. Negative time to onset [31] was defined as the time 

between the alarm and the onset of ventricular fibrillation. Negative time to onset was 

used to determine the effectiveness of a real-time monitor.  

 

3.3.4 Data 

Ten ECG records were selected randomly from the MIT Normal Sinus Rhythm 

Database (NSR-DB), five ECG records with unifocal PVCs were chosen from the MIT-
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BIH Arrhythmia Database (MIT-DB) and four records containing runs of PVCs 

(ventricular tachycardia) leading to ventricular tachycardia were chosen from the 

Creighton University Ventricular Tachyarrhythmia Database (CU-DB). Data from NSR-

DB had no significant arrhythmia, were of one minute duration, sampled at 100Hz. Data 

from MIT-DB were of 10 minute duration, and were sampled at 360Hz. ECG recordings 

from normal and arrhythmic subjects were used to evaluate the QRS and PVC detection 

algorithms. Data from CU-DB were of 10 minute duration and were sampled at 250Hz. 

ECG recordings from Cu-DB was used to measure the effectiveness of remote cardiac 

monitor. All the data chosen was of modified limb II (ML II) and was annotated.  

 

3.4 Results  

The remote monitor was designed and implemented successfully. Figure 3.9(a)-

(b) shows the implementation of the RCAM and remote server. Figure 3.9(a) shows the 

ECG data displayed on the handheld device in real-time, while remote server performed 

analysis. The black dots on the remote server application represent the locations of the 

identified QRS complex. 
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              (a)                   (b) 

Figure 3.9 (a) Photograph of handheld device (b) Screenshot of the remote server. 

QRS detection algorithm was tested on ECG data from NSR-DB. The number of 

false positive and false negatives was recorded and the specificity and sensitivity of the 

QRS evaluated (Table 3.2).  

Filename QRS Detected False Positive
False 

Negative Sensitivity Specificity
1052 65 0 0 100.00 100.00
1177 103 1 0 100.00 99.03
1184 81 2 0 100.00 97.53
1265 89 0 0 100.00 100.00
1272 58 0 0 100.00 100.00
1273 88 0 0 100.00 100.00
1453 77 0 0 100.00 100.00
1483 91 0 0 100.00 100.00
1773 69 0 0 100.00 100.00
1795 61 0 0 100.00 100.00

 
Table 3.2. QRS sensitivity and specificity measurements on  

ECG records from NSR-DB data. 
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QRS and PVC detection algorithms were tested on ECG records with unifocal 

PVCs from MIT-BIH. Table 3.3 shows the specificity and sensitivity measurements for 

the QRS and PVC detection algorithms. 

 

Detected Sensitivity Specificity Detected Sensitivity Specificity
105 839 99.64 98.93 14 50.00 64.29
114 570 99.82 97.72 39 97.44 89.74
116 795 99.75 100.00 28 64.29 100.00
119 662 99.55 98.64 142 98.59 97.18
208 971 96.81 99.59 397 87.91 92.19
221 824 100.00 100.00 163 88.34 88.96

QRS PVC
Filename

 
Table 3.3. Sensitivity and specificity measurements by QRS & PVC  

detectors on ECG records from MITDB. 
 

Negative time to onset was calculated on data from four ECG records of PVC 

runs leading to ventricular fibrillation. Figure 3.10 illustrates the time available (shaded 

area) for treatment due to early arrhythmic detection.  
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Cu05

Cu07
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Alarm Time (s)
Onset of Arrhythmia (s)

 

Figure 3.10 Negative time measurements 
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Figure 3.11. A screen-shot of the server application on successful early detection. 
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3.5 Discussion 

  The handheld monitor has been designed and tested. Critical patients can be 

monitored remotely and experiences staff at the remote location can monitor and advise 

for unexpected condition. The effectiveness of the monitor was demonstrated in its ability 

to detect PVC and ventricular tachycardia, which commonly heralds the onset of angina, 

acute myocardial infarction, ventricular fibrillation and sudden death. By detecting PVC 

runs when they occur may provide additional time to prove to be invaluable for 

emergency intervention for persons with cardiac disease.  

Handheld device with WLAN capability provides mobility required during 

transport and exercise. This portability is the key to successful monitoring of mobile 

patients. Real-time telemonitoring was achieved by wireless technology. Constant use of 

WLAN adapter on the client greatly increases the power consumption of the device 

limiting it for short duration real-time ECG measurements. However, in cases of patient 

transport, which is often completed in 20 minutes, this mobile unit is very useful.  

Today, the handheld devices are moderately priced and are becoming increasingly 

powerful. With minimal additional hardware to acquire and filter the ECG data, the 

monitor can provide a cost-effective solution for a remote home monitor. The handheld 

monitor is very user-friendly and required minimal user training. Software updates can 

easily be made to ECG detection and analysis algorithms without affecting the client unit. 

The presence of a graphical user interface unit on the client providing a real-time display 

is very useful feature when the user feels uncomfortable and requires a quick diagnosis. 

Most of the systems available today are very bulky and without wireless communication 

capability and thus, not efficient for continuous monitoring of a mobile patient. In an 
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earlier study [24] we had designed and implemented a handheld remote infant respiratory 

monitor. The handheld remote ECG monitor, designed on infant monitor framework 

incorporates modules for a more comprehensive ECG analysis and a more detailed 

feedback to the client.  

GSM-based systems are often limited by cost effectiveness of expensive data link, 

limited data transfer rate and possible electromagnetic interference with mobile phones. 

Taking that into account, we have used WLAN technology, which offers a practical and 

flexible means of transmitting data. WLANs emit low intensity radio waves, which has 

been found acceptable for hospital use and has been implemented in ICU and radiology 

examination rooms [32]. WLAN also incorporates encryption and authentication 

mechanisms for client access to remote server, making it hard to hack to intercept data 

from network. In our study, we have used a single ECG channel for monitoring and 

analysis. At present, the WLAN standard (802.11b) can support data transfer rates of 

10MB/s and can easily handle additional ECG data channels. Addition of additional data 

channels can improve the performance of QRS and PVC detectors.  The new 802.11g 

WLAN standard promises to further increase the data transfer rate to 54MB/s, paving the 

way for addition of more parameter for real-time remote monitoring.  

The ideal location for the server is in a medical center, where ECG and results (if 

abnormal) can be verified as soon as possible. To further facilitate remote monitoring, we 

have developed remote client application for medical staff’s handheld devices. This 

provides remote access to the patient’s ECG and aids in assessment of patient’s status. In 

some cases, deteriorating trends can be identified and emergency procedures can be 

implemented efficiently.  
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Real-time monitoring studies done earlier [26,32] have acquired and analyzed 

ECG data for arrhythmia at client location. The disadvantage of this design is that 

dedicated hardware based detection needs to be implemented for individual clients or no 

feedback is provided to the client. Another approach has been to send the data for 

analysis, but no feedback was provided to the client. A software based detection scheme 

is more adaptable and easier to implement and modify for varying client ECG 

morphology. Feedback is important for a symptomatic patient when no medical staff is 

available nearby. 

The good performance of QRS detector makes it reliable for monitoring normal 

heart rate after exercise or follow up monitoring after medication or rest. The 

performance of the QRS detector is slightly lower in presence of PVCs and is comparable 

to algorithms used for off-line analysis [29]. Additional parameters have been used in 

detection of PVCs [26]. Detection parameters have been found to improve the 

performance or PVC detector. At the present time, the creation of parameters is not 

automated. The stored data can be used for a more a more comprehensive off-line 

analysis at a later time.   

 

3.6 Conclusions  

In this paper, we have illustrated the implantation of a handheld remote monitor. 

The handheld remote monitor satisfies all requirements expected of a remote monitor [7]. 

In addition to being cost-effective, it provides an instantaneous feedback to the user 

regarding his current cardiac condition. The remote monitor is ideally suited for 

monitoring normal daily activities like heart rate after exercise or medication. The 
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detection parameters help customizes the PVC detector to reduce the number of false 

positives. The effectiveness of the monitor was successfully demonstrated on four ECG 

datasets having PVC runs leading to ventricular fibrillation. This increase in response 

time in combination with a portable ECG monitor can eventually lead to increased patient 

survival.  

At the present time, the display resolution and battery life of the handheld device 

are limited. The maximum display allowed is 320x160 pixels. This limits the details of 

the ECG being displayed. The short battery life limits its use to short duration ECG 

measurements. In the future, on a new generation mobile computer, a better display and 

faster computing power to perform analysis on the client may be possible. At the server 

computation level, the PVC detector was tested only on unifocal premature ventricular 

contractions. Additional detection schemes may be designed for multiform premature 

ventricular contractions and other arrhythmias.   

In the future, ultra-portable laptops with full-fledged communication, display and 

longer battery life will eliminate the limitations imposed by a handheld device. 
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CHAPTER 4 

Evaluation of Heart Rate Variability Indices to Predict Cardiac Event  

Using a Real Time Handheld Remote ECG Monitor 

 

4.1 Abstract 

A retrospective study on ECG recordings of patients during cardiac arrest has 

showed significant changes in Heart rate variability indices prior to the onset of cardiac 

arrhythmia. Early detection of the changes in HRV indices would increase response time 

for timely medical intervention. The handheld remote ECG monitor detects the 

occurrence of QRS complex and calculates short-term HRV indices from ECG 

recordings. The sensitivity and specificity of the QRS detection to ECG recordings from 

subjects from MIT-Arrhythmia database were 99.34% and 99.31%, respectively. 

Differences in HRV indices were assessed on ECG recordings from normal and subjects 

with congestive heart failure. Time domain indices heart rate, SDNN and RMSSD and 

frequency domain indices total spectral power, low frequency power, high frequency 

power, and low frequency to high frequency power ratio were found to be sensitive to 

differentiate between the two groups. These HRV indices were monitored for changes on 

an ECG recording of a sleep study subject who experienced acute chest pain. The total 

power spectrum exhibited a cyclic pattern, which could be attributed to REM sleep 

cycles. No other significant change in HRV indices was observed. 

 



4.2. Introduction 

HRV is a marker of the significant relationship between the autonomic nervous 

system and cardiovascular mortality [1]. The parasympathetic influence on the heart rate 

is mediated via release of acetylcholine by the vagus nerve. When parasympathetic nerve 

is activated, slow diastolic depolarization is initiated. This slowing of cardiac contraction 

allows the coronary vessels to dilate and in blood flow to the working cardiac cells. The 

sympathetic influence on the heart rate is mediated by the release of epinephrine and 

norepinephrine. The end result is an acceleration of the slow diastolic depolarization, 

which lessens the time for the coronary vessels to fill and possibly leading to decrease in 

blood flow to the working cells.   

Under resting conditions, the vagal tone prevails and variations in the heart rate 

are largely dependent on vagal modulation [2]. Sympathetic mediators appear to exert 

their influence over longer time periods and are reflected in the low frequency power 

(LFP) of the HRV spectrum. In contrast, vagal mediators exert their influence more 

quickly on the heart, and principally affect the high frequency power (HFP) of the HRV 

spectrum. Thus, at any point in time, the LFP:HFP ratio can serve as proxy for the 

sympatho-vagal balance.  

The clinical importance of HRV became apparent when it was confirmed as a 

strong and independent predictor of mortality following an acute myocardial infarction. 

Lowered HRV was found to precede episodes of atrial fibrillation in patients after 

coronary artery bypass graft operation and with no structural heart disease [3]. Time-

variant algorithms when applied to RR interval data a low frequency (LF) component of 

HRV power spectra, 1.5-2 minutes before the onset of an ischemic episode was found 
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[4]. Correlation dimensional analysis on RR interval predicted the exact time of 

occurrence of ventricular fibrillation in a retrospective study [5]. Low frequency HRV 

measurement predicted in-hospital complications when measured within 2 days after the 

AMI [6]. Short-term HRV measures are used in prediction of mortality of patients with 

chronic heart failure [7].  

Ventricular tachyarrhythmias (VTAs) have a circadian rhythm with increasing 

frequency during early morning and early evening [8]. Diurnal variation is also found in 

HRV. Higher LFP occurs in daytime and higher HFP during night [9,10].  An inverse 

circadian rhythm is seen in patients with a morning VTA peak. Some studies have 

reported significant changes in HRV in the period immediately preceding a VTA [11,12]. 

Huikuri et. al. [13] found significant reduction in heart rate (HR), very low frequency 

power (VLFP), LFP and HFP in post-MI patients who developed cardiac arrest one hour 

prior to onset of VTA. Shusterman et. al. [14] noted an increase in heart rate, fall in LFP 

and LFP:HFP ratio prior to onset of VT . Pruvot et. al [15] found an increase in HR and 

significant reduction in HRV prior to onset of VTA in post-MI patients. Other studies 

have shown a rise in VLFP and decline in HFP [16] and a rise in LFP:HFP ratio [11,17]. 

These results strongly suggest an alteration in the interaction between the sympathetic 

and parasympathetic nervous system prior to onset of VTAs. The effect on HRV 

variables is likely to be heterogeneous and affected by individual patient characteristics.  

In episodes of cardiac failure, ventricular fibrillation is almost always preceded by 

a run of ventricular tachycardia, which eventually gives way to the ventricular 

fibrillation. The onset of ventricular fibrillation is extremely difficult to pinpoint in many 

cases. The addition of HRV to remote monitoring of patients with cardiomyopathy and 
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vascular heart disease will aid in early detection of potentially dangerous cardiac 

arrhythmias.  

In a previous study [18], we presented a handheld remote monitor to record and 

monitor ECG. The sensitivity and specificity of the QRS detection to ECG recordings 

from MIT-Arrhythmia database were 99.34% and 99.31%, respectively. Similarly, these 

parameters of the premature ventricular contraction detection were 87.5% and 91.67%, 

respectively. The time between alarm and the onset of ventricular fibrillation was 

measured on ECG recordings where premature ventricular contractions were found to 

lead to ventricular fibrillation. The remote monitor was able to successfully identify the 

onset on ventricular fibrillation. In this study, we apply HRV techniques on data from 

available databases to determine which HRV indices discriminate ECG recording from 

normal subjects form ECG recordings of subjects with congestive heart failure. These 

indices would be monitored in real-time to predict the onset of cardiac arrhythmia on 

ECG recordings of a sleep study subject. The subject had prior history of cardiac 

arrhythmias and had complained of chest pain during the study. 

 

4.3. Methods 

4.3.1 Remote Client 

The ECG data acquired from local clients (computers/handheld device) was 

transmitted to a remote server for analysis and storage. ECG data was monitored to assess 

condition of the patient and for cardiac arrhythmias. The results of analysis were sent 

back to the client to provide feedback in real-time. An early warning alarm was sounded 

at local and remote locations in case of potentially dangerous cardiac arrhythmia.   
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4.3.2 Remote Computing Server 

At the remote server, communication modules in Visual Basic 6.0 (Microsoft 

Corp, Redmond, WA) receive ECG data from the client. QRS complex were detected and 

HRV indices computed using Matlab (The Mathworks Inc., Natik, MA). The results were 

sent back to the client (Figure 4.1). Detailed information on the design and 

implementation of client and remote server can be found in Chapter 3 [18].  

Receive/Display ECG 
from local clients 

Statistical/Frequency 
domain HRV 
analysis 

QRS detection 
using Wavelets 

Display/Send results to 
local/remote ‘clients’ Check for abnormalities, Compile results. 

 
Visual Basic client application MATLAB automation server application 

 

Figure 4.1. Software model at the central computation server 

4.3.3 QRS Detection 

The automated detection of QRS complexes is important to cardiac disease 

diagnosis. A good performance of an automatic ECG analyzing system depends heavily 

upon the accurate and reliable detection of QRS complexes. 

Wavelet transforms (WT) are currently being used in various signal processing 

fields as well as for a diversity of biomedical signal processing applications. By 

decomposing signals into elementary building blocks that are well localized in time and 

frequency, the WT can characterize the local regularity of signals. The feature can be 

used to distinguish ECG waves from serious noise, artifacts and baseline drift.  
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A QRS detector based on biorthogonal wavelet was implemented. Biorthogonal 

wavelets enable detection of QRS complex as an extrema, simplifying the QRS detection 

algorithm. The QRS detector also detected premature ventricular contraction beats. 

Detailed information on the design and implementation of QRS and PVC detection 

algorithms can be found in [18].  

 

4.3.4 Heart Rate Variability 

Short term HRV (5 minute) duration was chosen for time and frequency domain 

HRV measurements.  

4.3.4.1 Time Domain Measurements 

(i) SDNN - Standard deviation of the NN interval (SDNN) [19],  
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where δ is the average NN signal from N beats, 
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The scaling factor is N-2 because there are N-1 intervals in the record and one degree of 

freedom is used to estimate the mean NN interval.  SDNN reflects all the cyclic 

components responsible for the variability in the period of recording.  

(ii) RMSSD – Square root of the mean squared differences of successive NN intervals. 
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4.3.4.2 Frequency Domain Measurements 
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Power spectral density analysis was used to provide basic information of how power 

(i.e. variance) distributes as a function of frequency. The frequency indices calculated 

from short-term recordings are: 

(i) Total spectral power (TP) – Power in 0.001-1.5 Hz range. 

(ii) Very Low Frequency (VLFP) – Power in 0.001-0.04 Hz range 

(iii) Low Frequency (LFP) - Power in 0.04-0.15 Hz range 

(iv) High Frequency (HFP) - Power in 0.15-0.4 Hz range 

(v) Normalized low frequency: 
VLFTP

LF x 100LFnorm −
=           (4) 

(vi) Normalized high frequency: 
VLFTP

HF x 100HFnorm −
=           (5) 

(vii) LFP:HFP – Low to high frequency power ratio averaged every 5 minutes 

Measurements of VLFP, LFP and HFP were made in absolute units (ms2), but LFP 

and HFP may also be measured in normalized units (norm.) which represents the relative 

value of each component in proportion to the total power minus the VLFP component.  

The NN data sequence was obtained after removal of ectopic and missing beats. The 

presence of ectopics or missed beats can corrupt the frequency domain measurements 

because of the broad-band frequency content of the impulse-like artifact [20]. In the 

continuous ECG record, QRS complexes (RR intervals) were detected using wavelet-

based QRS detector [21]. ECG data segments containing more than 10% PVCs were 

discarded. Missing and ectopic beats varying by more than 12.5% were removed. The 

resulting gaps were filled with an average value computed in the local neighborhood of 

the missing beat. With this filtering technique, temporary changes in the RR interval 

sequence, representing missing or ectopic beats were removed and more stationary data 
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were obtained. A linear detrend was applied to the resulting NN interval data. To make 

NN interval dataset regularly sampled at 2Hz by a moving window curve-fitting 

algorithm. The mean value of the data is subtracted from individual NN data. Power 

spectral density (PSD) estimation was done using 512-sample FFT by Welsh’s 

periodogram method. Each data segment was divided into 8 sub-segments that 

overlapped on each other for 50% of their lengths. For each sub-segment, the data were 

weighted with a Hanning window and the periodogram estimated using fast Fourier 

transform algorithm. The PSD was obtained by averaging the periodograms and then 

rescaling to take into account the power loss due to windowing. The spectral power 

present in VLF, LF and HF bands was estimated. Figure 4.2 illustrates the process to 

estimate the HRV temporal and spectral estimates. 
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RR interval data 
(5 min) 

 

Figure 4.2. Flow chart summarizing individual steps in HRV analysis 

 

4.3.5 Data 

Five ECG records were selected from the normal sinus rhythm database (NSR-

DB), five records were selected from the BIDMC congestive heart failure database 

(CHF-DB) and a three hour ECG recording from a subject with prior history of cardiac 

arrhythmias at the School of Nursing, University of North Carolina at Chapel Hill were 

used. The records from NSR-DB were of 30 minutes duration each and were sampled at 

100 Hz. The records from CHF-DB were of 30 minutes duration each and were sampled 

at 250 Hz. This database contained long-term ECG recordings from subjects with severe 
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congestive heart failure. The subject was an 84-year-old white female. The subject 

reported chest pain during this study, which was relieved with rest. The three-hour 

recording was 45 minutes prior to the onset of cardiac arrhythmia. The standard lead II 

ECG data was sampled at 250 Hz. 

 

 4.4 Results 

The sensitivity and specificity of the QRS detector on normal ECG recordings and 

ECG recordings with PVCs present is shown in Table 4.1. Detailed information can be 

obtained from Chapter 3 [18].  

Sensitivity Specificity Sensitivity Specificity
100.00 99.03 99.64 98.93
100.00 97.53 99.82 97.72
100.00 100.00 99.75 100
100.00 100.00 99.55 98.64
100.00 100.00 96.81 99.59
100.00 100.00 100 100

Normal ECG ECG with PVCs

 

Table 4.1. Sensitivity and Specificity measurements of QRS detection on  
normal and arrhythmic ECG recordings. 

 

The heart rate variability indices were computed in 5 minute intervals. A 

comparison of the averaged time-domain measurements shows an increase in HR and a 

decrease in RMSSD (Figure 4.3) in ECG recordings from normal and subjects with 

congestive heart failure. 
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Figure 4.3. Comparison of HR and RMSSD. 

The power spectrum of data from normal ECG recordings and that from ECG 

recordings from subjects with congestive heart failure is shown in Figures 4.4(a)-(b). 

Data from a normal ECG recording has higher concentration of spectral power in HF 

range, while a CHF ECG recording have higher concentration of power in VLF and LF 

range. 

 

Figure 4.4(a). Power spectrum of a normal ECG recording. 
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Figure 4.4(b). Power spectrum of a CHF ECG recording. 

A breakdown of spectral power into TP, VLFP, LFP and HFP is shown in figure 

4.5(a). The total spectral power in CHF ECG recordings was much lower than that of 

normal ECG. An increase in VLFP(norm), LFP(norm) and LFP:HFP ratio and a decrease 

in HFP was observed in CHF ECG recordings.  

 59



2500

5000

7500

10000

12500

Normal CHF

To
ta

l P
ow

er
 (m

s*
m

s)

0.0

0.2

0.4

0.6

0.8

1.0

VLF LF HF

V
LF

-L
F-

H
F 

Po
w

er
 (n

or
m

)

Normal 

CHF

 

Figure 4.5(a). Comparison of total spectral power and normalized spectral components. 
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Figure 4.5(b). Comparison of LFP:HFP ratio. 
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A comparison of time and frequency domain HRV indices is shown in Table 4.2. 

Student’s t test (95% CI) was used to compare the differences between ECG recordings 

from CHF and normal subjects. Among time indices, HR and RMSSD showed significant 

differences and among frequency domain indices, Total power, HFP and LFP:HFP 

showed significant differences.  

 

Index CHF Normal P Value
Heart Rate 88.09 72.96 <.001
SDNN 145.39 164.99 0.245
RMSSD 181.41 239.74 0.003
LFP 2269.28 2653.86 0.606
HFP 2225.36 6401.52 <.001
TP 6048.34 10499.32 0.023
LFP:HFP 0.74 0.46 0.002  

Table 4.2: Summary of differences between various HRV indices 

 

A 180-minute ECG segment recorded 45 minutes prior to onset of chest pain was 

analyzed. The heart rate variability indices were monitored in five-minute intervals. HR 

showed no significant change over the three-hour period (Figure 4.6). Dashed (reference) 

line represents the mean value of HR measured during a follow-up a year later. 
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Figure 4.6. Variation in HR over 36 5 minute time points. 

RMSSD decreased from an increase 195 minutes prior to onset of chest pain 

(Figure 4.7). No significant variation was observed 180 minutes prior to arrhythmia.  
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 Figure 4.7. Variation in RMSSD 45 minutes prior to chest pain. 

The total spectral power oscillated in a cyclic pattern, repeating every 70 minutes (Figure 

4.8) in the three-hour period.  
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Figure 4.8. Total spectral power at various time-points prior to chest pain. 

No significant trend was observed in the variation of HFP(norm) and in LFP:HFP 

ration (Figures 4.9, 4.10) 
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Figure 4.9. HFP(norm) at various time-points prior to chest pain 
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Figure 4.10. Variation of LFP:HFP ratio prior to chest pain. 

 

4.5 Discussion 

The handheld monitor using HRV indices to detect onset of cardiac arrhythmias 

in real-time was designed and tested. Trends in HRV indices of patients with pre-existing 

cardiac conditions can be remotely monitored. Early detection of changes in time and 

frequency domain indices could prove invaluable in early intervention. 

Among HRV indices to monitor, RMSSD was strongly recommended by a 

consensus committee because it determines heart rate variability from differences 

between successive beats and is indicative of high frequency power [1]. The differences 

in HRV indices among ECG from normal and CHF subjects was in agreement with an 

earlier study [31]. Among the frequency indices, TP, HFP and LFP:HFP ratio were found 

to separate the ECG recordings from normal and CHF subjects. The TP reflects the 

change in the variance of the heart rate, while the LFP:HFP ratio reflects the sympatho-

vagal balance. Higher values of LFP:HFP ratio, accompanied by higher heart rate could 
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indicate higher sympathetic activation in subjects with congestive heart failure. Very low 

frequency power accounts for long-term regulation mechanisms (probably 

thermoregulation, to the rennin-angiotensin system and other factors). These mechanisms 

cannot be satisfactorily resolved by short-term analysis.  

It was not surprising that the subjects with congestive heart failure differed from 

the sleep study subject. The subject under study patient at the School of Nursing had no 

recent history of cardiac problems and chest pain resolved with no intervention. No 

significant trend in HRV indices was observed prior to onset on cardiac arrhythmia. The 

decrease in RMSSD (high-frequency component) could indicate a decrease in 

parasympathetic activation. The variation in LFP was found to be identical to that of the 

total spectral power (Figure 4.11). Studies have shown sympathetic domination during 

sleep [22] and TP and LFP were found to be significantly higher during REM cycle [23]. 

Villa et. al. [24] showed age to be factor in variation of HRV indices during sleep. The 

variations observed in TP and LFP could be attributed to the sleep state of the subject at 

the time of ECG recording.  
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Figure 4.11. Variation in low frequency and total spectral power measured 45 minutes 

prior to chest pain. 

The maximum error in identification of R wave in Wavelet based QRS detector 

was 20ms when raw ECG data is sampled at 250Hz, 13.8ms when sampled at 360 Hz and 

10ms when sampled at 500Hz. The effect of RR error was minimized by choosing an 

effective resampling algorithm. The variation in spectral components of the subject was 

found to be very subjective and depends on patient age and prior cardiac history [25].  

 

4.6. Conclusions 

Reed et. al.  [25] suggested that merely a change in heart rate variability indices, 

rather that the magnitude or nature of change, facilitates the development of ventricular 

tachyarrhythmias. Detection of the change in heart rate variability measures would 

provide an effective method for early detection of arrhythmias. 
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A number of factors (like age, posture, sleep, exercise, etc) might be responsible 

for the change in heart rate variability indices. Our data were obtained during the course 

of a sleep study. Possibly, the changes detected are influenced by other activities. The 

relationship between changes in monitoring indices during sleep needs to be investigated 

further.  

It was observed that knowledge of resting value of indices improves interpretation 

of changes in HRV measures. Availability of prior cardiac history is also helpful in 

determining of the risk posed by arrhythmia. Further examination of more cases is needed 

to be done. 
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CHAPTER 5 

Development of a Handheld Remote ECG Monitor to Assess Cardiac Risk  

Based on Changes in Heart Rate Variability 

 

5.1 Abstract 

Heart rate variability has been shown to be a powerful risk stratifier for overall 

mortality, induced and spontaneous tachycardia and sudden death in patients following 

acute myocardial infarction. Short-term ECG recordings made from home or clinics using 

remote monitor will provide good assessment of cardiac risk as indicated by changes in 

HRV indices. The usefulness of monitoring changes in HRV to assess cardiac risk using 

a handheld remote ECG monitor was evaluated. The handheld remote ECG monitor 

detected the occurrence of QRS complex and calculated short-term HRV indices from 

ECG recordings. The sensitivity and specificity of the QRS detection to ECG recordings 

from subjects from MIT-Arrhythmia database were 99.34% and 99.31%, respectively. 

Changes in HRV indices of ECG recordings of two subjects after a cardiac event and 

during follow-up recording made a year later were compared. A significant increase in 

RMSSD, total spectral power and the ratio of low frequency power to high frequency 

power was observed.  

 

 

 



5.2. Introduction 

Post MI patients with recurring chest pain and arrhythmia may require periodic 

monitoring of heart rate variability (HRV) indices to determine cardiac risk. HRV indices 

calculated from short-term ECG recording can also be used in initial screening of 

subjects for arrhythmic risk, or as a possible candidate for cardioverter fibrillators. Short-

term HRV indices are also used to monitor changes in the sympatho-vagal balance after 

medication and exercise.  

The electrocardiogram (ECG) is the most important noninvasive diagnostic tool 

used for assessing the probability of cardiac event, for stratifying its degree (stable, 

unstable angina, risk of out-hospital or in-hospital death) and for guiding therapy. The 

duration between adjacent R waves in a normal ECG (sinus rhythm) is termed as normal-

to-normal (NN) interval. Heart rate variability (HRV) is the measurement of the 

variability of NN intervals.  

Decreased HRV is a powerful risk stratifier for overall mortality, induced and 

spontaneous ventricular tachycardia and sudden death following acute myocardial 

infarction (AMI) [1]. Risk of arrhythmic death was found to be associated with lowered 

HRV and the presence of ventricular arrhythmia [2]. Low frequency HRV measurement 

predicted in-hospital complications when measured within 2 days after the AMI [3]. 

Short-term HRV measures are used in prediction of mortality of patients with chronic 

heart failure [4]. Frequency domain HRV from short-term recordings (2 to 15 minutes) 

predicted post-infarction mortality and are used for initial screening of all survivors after 

an acute MI [1]. HRV based estimators were also used analyze and estimate surgical 

procedures [5]. Such patients may benefit from anti-arrhythmic therapy or intervention.  
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Earlier studies [6-8] have shown that remote monitoring from pre-hospital setting 

results in reduced response time and improved patient outcome. Remote monitoring of 

ECG is used to assess the probability of cardiac event, stratify risk and to guide therapy. 

Remote ECG monitoring, performed from a commercial aircraft [9] or an ambulance 

[10], has also shown promising results. Short-term ECG recordings are sent over public 

switched telephone network (PSTN) [11], Cellular technologies incorporating global 

system for mobile communication (GSM) [12] and time division multiple access 

(TDMA) [13] standards and broadband networks (DSL/Cable) from the remote patient 

location to the hospital. These devices send ECG data for quick assessment and storage. 

No analysis is performed on the data nor is feedback provided to the user.  

 The handheld devices, like personal digital assistants (PDAs), are compact and 

easy to use with powerful computing capabilities. The PDAs have been used in the 

medical community to access online medical databases [14], record patient and clinical 

training data [15] and send ECG data from the ambulance directly to the hospital [16]. 

However, at present time, these devices do not possess computing capability or the 

battery life required to perform real-time ECG analysis. Innovative remote signal-

processing and analysis techniques in small sized hospitals have also been implemented 

[17].  

Short-term ECG recordings (15-30 min) can be made at home, physician’s office 

or at small clinics. HRV measures derived from these measurements can be used to 

identify patients at risk or assess changes after medication or rest. Incorporating 

monitoring of HRV indices in handheld remote monitor would aid in better assessment of 

the cardiac condition. 
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5.3. Methods 

5.3.1 Remote Client 

The ECG data acquired from local clients (computers/handheld device) was 

transmitted to a remote server for analysis and storage. ECG data was monitored to assess 

condition of the patient and for cardiac arrhythmias. The results of analysis were sent 

back to the client to provide feedback in real-time. An early warning alarm was sounded 

at local and remote locations in case of potentially dangerous cardiac arrhythmia.   

 

5.3.2 Remote Computing Server 

At the remote server, communication modules in Visual Basic 6.0 (Microsoft 

Corp, Redmond, WA) receive ECG data from the client. QRS complex were detected and 

HRV indices computed using Matlab (The Mathworks Inc., Natik, MA). The results were 

sent back to the client (Figure 5.1). Detailed information on the design and 

implementation of client and remote server can be found in [20].  

Receive/Display ECG 
from local/remote 
‘clients’ 

Statistical/Frequency 
domain HRV 
analysis 

QRS detection 
using Wavelets 

Display/Send results to 
local/remote ‘clients’ Check for abnormalities, Compile results. 

 
Visual Basic client application MATLAB automation server application 

 

Figure 5.1. Software model at the remote computation server 
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The QRS/PVC detection and HRV calculation algorithms are implemented in the 

Matlab workspace. The results of the analysis are transferred to Visual Basic for display 

and transmission to remote client.  

 

5.3.3 QRS Detection 

The automated detection of QRS complexes is important to cardiac disease 

diagnosis. A good performance of an automatic ECG analyzing system depends heavily 

upon the accurate and reliable detection of QRS complexes. A QRS detector based on 

biorthogonal wavelet was implemented. Premature ventricular contraction beats were 

also identified and their locations stored. QRS information along with heart rate was sent 

back to the remote monitor. Detailed information on the design and implementation of 

QRS and PVC detection algorithms can be found in Chapter 3 [18]. 

 

5.3.4 Heart Rate Variability  

Short-term HRV (5-minute) duration was chosen for time and frequency domain 

HRV measurements.  

5.3.4.1 Time Domain Measurements 

(i) SDNN - Standard deviation of the NN interval (SDNN) [19],  

 ∑ −
−

=
=

N

2n

2
)(n)(

2N
1SDNN δδ      (1) 

where δ is the average NN signal from N beats, 

∑
−

=
=

N
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1N
1 δδ        (2) 

 74



The scaling factor is N-2 because there are N-1 intervals in the record and one 

degree of freedom is used to estimate the mean NN interval.  SDNN reflects all the cyclic 

components responsible for the variability in the period of recording.  

(ii) RMSSD – Square root of the mean squared differences of successive NN intervals. 

∑ −−
−

=
=

N

3n

2)]1n((n)[
2N

1RMSSD δδ     (3) 

5.3.4.2 Frequency Domain Measurements 

Power spectral density analysis was used to provide basic information of how power 

(i.e. variance) distributes as a function of frequency. The frequency indices calculated 

from short-term recordings are: 

(i) Total spectral power (TP) – Power in 0.001-1.5 Hz range. 

(ii) Very Low Frequency (VLFP) – Power in 0.001-0.04 Hz range 

(iii) Low Frequency (LFP) - Power in 0.04-0.15 Hz range 

(iv) High Frequency (HFP) - Power in 0.15-0.4 Hz range 

(v) Normalized low frequency: 
VLFTP

LF x 100LFnorm −
=           (4) 

(vi) Normalized high frequency: 
VLFTP

HF x 100HFnorm −
=           (5) 

(vii) LFP:HFP – Low to high frequency power ratio averaged every 5 minutes 

 

Measurements of VLFP, LFP and HFP were made in absolute units (ms2), but LFP 

and HFP may also be measured in normalized units (norm.) which represents the relative 

value of each component in proportion to the total power minus the VLFP component.  
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The NN data sequence was obtained after removal of ectopic and missing beats. The 

resulting gaps were filled with an average value computed in the local neighborhood of 

the missing beat. A linear detrend and applied and resulting data was sampled at 2Hz a 

moving window curve-fitting algorithm. Power spectral density (PSD) estimation was 

done using 512-sample FFT by Welsh’s periodogram method. The spectral power present 

in VLF, LF and HF bands was estimated. The details of the implementation of HRV are 

given in Chapter 4 [20]. 

 

5.3.5 Data 

The ECG recordings from two subjects (subjects A and B) with their one-year 

follow-up ECG recording were selected. The ECG recordings were made during a sleep 

study at School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, 

NC. ECG data segment from ‘Subject A’ taken after cardiac arrhythmia was 10 minutes 

long and second segment of the ECG recording taken a year later was of 30 minute 

duration. The first segment of the ECG recording taken from ‘Subject B’ was 30 minute 

long and was taken after the conclusion of cardiac arrhythmia. The second segment of the 

ECG recording used was of 30-minute duration and was taken a year later. Both subjects 

no longer had chest-pain or arrhythmias in their follow-up recordings. ECG data 

collected was the standard lead II sampled at 250 Hz. 
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5.4 Results  

The sensitivity and specificity of the QRS detector on normal ECG recordings and 

ECG recordings with PVCs present is shown in Table 5.1. Detailed information can be 

obtained from Chapter 3 [18].  

Sensitivity Specificity Sensitivity Specificity
100.00 99.03 99.64 98.93
100.00 97.53 99.82 97.72
100.00 100.00 99.75 100
100.00 100.00 99.55 98.64
100.00 100.00 96.81 99.59
100.00 100.00 100 100

Normal ECG ECG with PVCs

 

Table 5.1. Sensitivity and Specificity measurements of QRS detection  
on normal and arrhythmic ECG recordings. 

 

Subject A: Five-minute HRV measurements were calculated on the two data segments. 

The mean HR was lower in the follow-up (64 vs. 59) and RMSSD (Figure 5.2) showed 

an increase in the follow-up recording.  

200

250

300

350

400

After Event Follow-up

R
M

SS
D

 

Figure 5.2. RMSSD after arrhythmia and during follow-up. 
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Among the frequency domain measurements, the total spectral power (Figure 5.3) 

and the LFP:HFP ratio was found to be higher in the follow-up visit.  
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Figure 5.3. Total spectral power and LFP:HFP ratio after 
Arrhythmia and during follow-up in Subject A. 

 
An increase in normalized low frequency power was observed in a follow-up visit 

(0.50 vs. 0.56) and an identical decrease was observed in the normalized high frequency 

(0.50 vs. 0.44).  

 

Subject B: Five-minute HRV measurements were calculated on the two data segments. 

The mean heart rate was found to be slightly lower during the follow-up (65 vs. 56) and 

RMSSD (Figure 5.4) showed an increase in the follow-up recording.  
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Figure 5.4. RMSSD after arrhythmia and during follow-up. 

Among the frequency domain measurements, the total spectral power (Figure 5.5) 

and LFP:HFP ratio was found to be higher during the follow-up visit. 
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Figure 5.5. Total spectral power and LFP:HFP ratio after  
arrhythmia and during follow-up in Subject B. 

 
An increase in normalized LF power was observed in follow-up visit (0.56 vs. 

0.49) and a similar decrease was observed in the normalized high frequency (0.51 vs. 

0.44). The changes in both subjects are summarized in Table 5.2. The highlighted indices 
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show a statistically significant increase when compared to recordings made after cardiac 

arrhythmia.  

Subject A Subject B
Heart Rate ↓ (14%) ↓ (7%)
RMSSD ↑ (21%) ↑ (24%)
VLF (norm) ↑ (39%) ↓ (33%)
LF (norm) ↑ (14%) ↑ (12%)
HF (norm) ↓ (13%) ↓ (12%)
Total Power ↑ (31%) ↑ (22%)
LF/HF ↑ (30%) ↑ (23%)  

Table 5.2. Summary of changes during follow-up visit. 

 

5.5 Discussion 

Low HRV as early as 24 hour after acute MI has been shown to be useful 

predictor of cardiac mortality and aids in early risk stratification and therapeutic 

management of patients [21]. HRV indices have also been used to assess changes in 

sympatho-vagal influence after administration of nitroglycerine [22] and aprindine [23]. 

Tsuji et. al. [24] showed the estimation of ambulatory HRV indices from a community 

based population significantly associated with risk of cardiac event. Short-term HRV 

indices could also help in identifying congestive heart failure patients, who might benefit 

from implantable cardioverter fibrillators as a bridge to heart transplant.   

Both subjects showed an increase in sympathetic and parasympathetic activation 

as reflected an increase in the LFP:HFP ratio and RMSSD. The increase in total spectral 

power in both subjects is usually indicative of improved prognosis as shown in an earlier 

study [20]. The prognosis was found to be highly subject-dependent and general trends 

cannot be used to make prognosis.  
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5.6 Conclusions 

The predictive value of heart rate variability from short-term recordings is ideally 

suited for identification of patients with cardiac risk and as a follow-up monitor after 

medication and exercise. Short-term ECG recordings made from local handheld client at 

home or small clinics will provide additional impetus for regular cardiac assessment. An 

individualized criterion for HRV indices was found to provide a better prognosis. For 

each particular subject we have found only indicative evidence for this and further 

research needs to be done to substantiate this aim.  
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CHAPTER 6 

Conclusions 

 

A handheld remote ECG monitor was designed and successfully tested. The 

handheld remote ECG monitor satisfies all requirements [1] expected of a remote monitor 

and in addition provided real-time display of ECG and analyzed results. The monitor 

provides an instantaneous feedback to the user regarding his current cardiac condition. 

The effectiveness of the monitor was demonstrated on four ECG recordings from the Cu-

Tachyarrhythmia database, which have PVC runs leading to ventricular fibrillation. The 

remote monitor was successfully able to predict the onset of ventricular fibrillation. This 

increase in response time can lead to timely intervention. 

Earlier studies [2-4] suggest that a change in HRV indices, rather that the 

magnitude or nature of change, facilitates the development of ventricular 

tachyarrhythmias. Short-term HRV indices were incorporated into the cardiac monitor 

with the goal of detecting changes in HRV indices, which might enhance early detection 

capability of the remote ECG monitor. Time domain measures, Heart rate and RMSSD 

and frequency domain measures TP, HFP and the ratio of LFP:HFP ratio were found to 

differentiate between the groups. The usefulness of HRV indices to identify early onset of 

arrhythmia was tested on an ECG recording made of subject during a sleep study. The 

subject had experienced acute chest pain, which resolved after rest. HRV indices 



monitored did not show any significant changes to indicate the onset of arrhythmia. 

Changes in TP may be attributed to increased sympathetic activity during REM sleep. 

Further examination of more cases is needed to be done to measure the usefulness of 

HRV indices in real-time monitoring. 

HRV indices have been used in predicting mortality and arrhythmic complications 

[5]. Short-term HRV indices can be used in initial screening of subject for arrhythmic 

risk, possible candidate for cardioverter fibrillators and monitor changes in the sympatho-

vagal balance after exercise and medication. Short-term recordings made from remote 

home or clinics using remote monitor will provide additional impetus for regular 

monitoring of HRV indices. Remote monitor would make regular HRV monitoring easy 

and changes in HRV indices after activity or medication can be effectively monitored in 

patients with pre-existing heart conditions. Changes in HRV indices of ECG recordings 

of two subjects after a cardiac event and during follow-up recording made a year later 

were compared. Both subjects showed an increase in RMSSD and total spectral power 

indicating improved prognosis. This further strengthens the case for personalizing the 

criteria for individual heart rate variability measures for every subject to provide a more 

accurate prognosis. For each particular subject we have found only indicative evidence 

for this and further research needs to be done to substantiate this aim.  

The remote monitor has showed good potential for clinical applications. However, 

HRV indices, though monitored for non-clinical applications, have not been validated for 

real-time clinical applications. We had shown short-term HRV indices monitored by 

remote monitor has the potential for real-time applications and can also be used to assess 
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cardiac risk. Display of ECG recording and analyzed results on the client in real-time 

reduces the stress on the subject and in some cases provides an early alarm.  
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