
Simulation Methods for Spatiotemporal Models of Biochemical
Signaling Networks

Wanda Strychalski

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Mathematics.

Chapel Hill
2009

Approved by

Advisor: David Adalsteinsson
Advisor: Timothy C. Elston
Reader: M. Gregory Forest
Reader: Kenneth Jacobson
Reader: Laura A. Miller

c©2009
Wanda Strychalski

ALL RIGHTS RESERVED

ii

ABSTRACT

WANDA STRYCHALSKI: Simulation Methods for Spatiotemporal Models of

Biochemical Signaling Networks

(Under the direction of David Adalsteinsson and Timothy C. Elston)

Cells use signaling networks consisting of multiple interacting proteins to respond to

changes in their environment. In many situations, such as chemotaxis, spatial and tempo-

ral information must be transmitted through a signaling network. Recent computational

studies have emphasized the importance of cellular geometry in signal transduction, but

have been limited in their ability to accurately represent complex cell morphologies. We

present a finite volume method that addresses this problem. Our method uses Cartesian

cut cells in a differential algebraic formulation to handle the complex boundary dynam-

ics encountered in biological systems. The method is second order in space and time.

Several models of signaling systems are simulated in realistic cell morphologies obtained

from live cell images. We then examine the effects of geometry on signal transduction.

External signals can trigger cells to polarize and move in a specific direction. During

migration, spatially localized activity of proteins is maintained. To investigate the effects

of morphological changes on intracellular signaling, we present a numerical scheme con-

sisting of a cut cell finite volume spatial discretization coupled with level set methods to

simulate the resulting advection-reaction-diffusion equation. We then show that shape

iii

deformations drive a Turing-type system into an unstable regime. The method is also

applied to a model of a signaling network in a migrating fibroblast.

Determining the signaling mechanisms used by membrane proteins that interact with

the cytoskeleton is important for understanding phenomena such as T-cell activation

and viral infection. To investigate these interactions, recent experiments have tracked

the movements of single lipids and glycosyl-phosphatidylinositol (GPI) anchored protein

clusters tagged with 40 nm gold particles. These experiments reveal regions of transient

confinement and transient anchorage of the particles. The distribution of transient an-

chorage release times exhibits a long tail. We developed a stochastic model of the system

to explain the transient anchorage release times and the underlying biochemical reaction

system.

iv

ACKNOWLEDGMENTS

I sincerely thank David Adalsteinsson and Timothy Elston for their time, support,

and enthusiasm in training me. I am often humbled by the challenges that inevitably

arise in difficult problems, and Tim and David always have interesting and insightful

ideas. I thank my committee members for their service. Greg Forest has been a father

figure to me during my tenure at UNC. I appreciate his availability and advice whenever

I needed guidance. I thank and recognize Ken Jacobson, Yun Chen, and John Fricks for

their efforts in the transient anchorage project. I would like to acknowledge Meng Jin

for help with modeling and for providing the substrate depletion model in Chapter 3.

My office and lab mates have been great colleagues and friends to me. Specifically,

I would like to thank Jeanette Olli, Elizabeth Sell, Abby Todd, Andrea Richmond,

Christina Hamlet, Marcelo Behar, Meng Jin, and Richard Allen. Other friends that

have been very supportive are Amber Jackson, Kiran Khan, and Shilvi Shah. I thank

my family for constantly supporting and encouraging me to achieve my goals.

Finally, I acknowledge my funding sources: NIH grants R01-GM079271 and R01-

GM078994. I was also funded by the UNC Dissertation Completion Fellowship for the

2008-2009 academic year.

v

CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . xii

Chapter

1. Introduction . 1

1.1. Temporal signaling dynamics . 2

1.2. Spatiotemporal signaling dynamics . 3

1.2.1. Computational methods for spatial systems . 3

1.3. Thesis overview . 6

2. A Cut Cell Method for Simulating Spatial Models of Biochemical Reaction
Networks in Arbitrary Geometries . 8

2.1. Mathematical formulation . 8

2.2. Numerical methods . 9

2.2.1. Computational domain . 9

2.2.2. Discretization of the spatial operator . 10

2.2.3. Time discretization . 16

2.3. Software implementation . 19

2.4. Convergence tests . 21

2.5. A two compartment model . 29

2.6. Rho family GTPase model . 33

2.7. Conclusions . 37

3. Simulating Models of Biochemical Signaling Networks in Complex Moving
Geometries . 39

vi

3.1. Mathematical formulation . 39

3.2. Numerical methods . 40

3.2.1. Computational domain and level set methods 40

3.2.2. Finite volume method . 41

3.2.3. Overview of complete temporal update . 43

3.2.4. Interior advection scheme . 43

3.2.5. Convergence tests for the advection operator . 46

3.2.6. Boundary advection scheme . 48

3.2.7. Convergence tests for the boundary advection scheme 49

3.3. Software implementation . 50

3.4. Convergence tests for the hybrid algorithm . 52

3.5. Substrate depletion model . 59

3.6. Rho family GTPase model . 64

3.7. Conclusions . 66

4. Modeling Transient Anchorage of Membrane Proteins . 71

4.1. Experimental data . 72

4.2. Mathematical framework . 72

4.2.1. Filtering . 76

4.2.2. Parameter estimation . 77

4.3. Algorithm for simulating transient anchorage . 78

4.4. Results . 79

4.5. Conclusions . 82

5. Future Work . 84

Appendix A. Level Set Methods . 86

A.1. Operator discretization . 87

vii

A.2. Initialization . 90

A.3. Boundary conditions . 92

A.4. Convergence test . 92

Appendix B. The Kalman Filter . 94

Appendix C. Exact Stochastic Simulation Algorithm . 96

C.1. Background . 96

C.2. The Algorithm . 97

BIBLIOGRAPHY . 98

viii

LIST OF FIGURES

Figure 1.1. Boundary approximation used in the Virtual Cell. 5

Figure 2.1. Grayscale image of a mouse fibroblast. 10

Figure 2.2. Computational boundary and an assumed higher order representation
of the cell boundary. 12

Figure 2.3. Diagram of fluxes for cut cells. 13

Figure 2.4. Gradient interpolation diagram for a partially cut face. 15

Figure 2.5. Gradient interpolation diagram to obtain the flux through a boundary. 16

Figure 2.6. Schematic of class interactions. 21

Figure 2.7. Computed solution to the diffusion equation at two time values. . . . 23

Figure 2.8. Time series of the truncation error for the diffusion equation. 24

Figure 2.9. Truncation error for the diffusion equation. 24

Figure 2.10. Concentration of the active species Ca. 26

Figure 2.11. Computing error on two different grids. 28

Figure 2.12. Time series of the truncation error for species Ci. 29

Figure 2.13. Truncation error for Ci at the time value of 0.5. 30

Figure 2.14. Two compartment model . 32

Figure 2.15. Exponential convergence to the assumed steady state value. 33

Figure 2.16. Schematic of interactions for the Rho GTPase model. 34

Figure 2.17. Steady state distribution of protein concentration amounts in a
fibroblast. 36

Figure 3.1. Stencil points for the finite volume method. 42

Figure 3.2. Strang splitting scheme. 44

Figure 3.3. Interpolation diagram. 44

Figure 3.4. Example of an interior extension. 45

Figure 3.5. Example of an under-resolved geometry. 46

ix

Figure 3.6. Time series of the truncation error for an advecting scalar function
defined on a mesh with a cut cell discretization. 47

Figure 3.7. The growth of an instability. 48

Figure 3.8. Time series of the truncation error over time for a scalar function
defined on a boundary expanding in a normal direction. 50

Figure 3.9. Time series for the truncation error for scalar function on a boundary
advecting with constant velocity. 51

Figure 3.10. Time values from the computed solution of an advection-diffusion
equation solved in a circle with a Gaussian initial condition. 53

Figure 3.11. Truncation error for the advection-diffusion equation 54

Figure 3.12. Time values from the computed solution of an advection-reaction-
diffusion equation solved in a moving boundary. 55

Figure 3.13. Truncation error for the advection-reaction-diffusion equation. 56

Figure 3.14. Numerical integral of the total concentration subtracted from the
initial value. 57

Figure 3.15. Time values from the computed solution of an advection-reaction-
diffusion equation solved on a moving boundary advecting with non-constant
velocity. 59

Figure 3.16. Concentration of R from the substrate-depletion model. 62

Figure 3.17. Time values from a slice through the active R mesh. 63

Figure 3.18. Time values from active R in the substrate depletion model with two
initial perturbations and no advection. 64

Figure 3.19. Time values from active R in the substrate depletion model with two
initial perturbations. 65

Figure 3.20. Initial condition for the advection-reaction-diffusion equation. 67

Figure 3.21. A comparison of the Cdc42 concentration values. 68

Figure 3.22. A comparison of the Rac concentration values. 69

Figure 3.23. A comparison of the Rho concentration values. 70

Figure 4.1. Maximal cross-linking scheme that produces transient anchorage. . . 73

x

Figure 4.2. The histogram of release times from transient anchorage events taken
from experimental data. 74

Figure 4.3. The histogram of transient anchorage events and exponential function
fits. 74

Figure 4.4. Simulated path trajectory for κ = 10. 80

Figure 4.5. Simulated path trajectory for κ = 70. 81

Figure 4.6. Simulation of transient anchorage. 82

Figure A.1. An example of a signed distance function for a circle. 86

Figure A.2. The truncation error for a circle propagating with constant velocity. 93

xi

LIST OF TABLES

Table 2.1. The norms and convergence rates for the diffusion equation. 22

Table 2.2. Constants used in the simulation of the two species model. 25

Table 2.3. Execution times for the two species model. 27

Table 2.4. The norms and convergence rates for the two species model. 28

Table 2.5. Reaction constants used in the simulation of the Rho GTPase model. 35

Table 3.1. Extension errors for extrapolating a cosine function. 46

Table 3.2. The norms and convergence rates for the advection-diffusion equation. 53

Table 3.3. The norms and convergence rates for the two species model advecting
with constant velocity. 56

Table 3.4. Power fit of the truncation error from the two species model. 57

Table 3.5. The norms and convergence rates for the two species model advecting
with non-constant velocity. 58

Table 3.6. Values of constants in the first substrate-depletion model simulation. 61

Table 3.7. Values of constants in the second substrate-depletion model simulation. 63

Table 3.8. Reaction constants used in the simulation of the Rho GTPase model. 66

Table 4.1. Percentage of correct guesses for the filter as a function of κ. 80

xii

CHAPTER 1

Introduction

The cell is the fundamental unit of living matter. Even though the human body con-

tains approximately 1013 different cell types [4], each cell contains the genetic information

that encodes the structure of the entire organism. Each cell must perform basic tasks,

such as growth, proliferation, procurement of nutrients, and response to environmen-

tal stimuli. These tasks are accomplished by protein molecules that undergo chemical

reactions inside of the cell.

Changes in cellular behavior are triggered by environmental stimuli. For example,

in animal cells, extracellular growth factors called mitogens are necessary for cell pro-

liferation. Mitogens are an example of an extracellular signal. Conversion of a cellular

signal into a response is called signal transduction. A signal transduction pathway is the

cascade of biochemical reactions that leads to a cellular response. Defects in these path-

ways can result in diseases, such as cancer, diabetes, heart disease, and autoimmunity

[38, 39, 42]. Therefore, understanding how intracellular signaling pathways function

is not only a fundamental problem in cell biology, but also important for developing

therapeutic strategies for treating disease.

The concentrations of proteins in these pathways change in response to transient sig-

nals as well as spatial localization. For example, an important messenger protein, cyclic

adenosine monophosphate (cAMP), is found in many cell types and is involved in cellular

processes such as regulation of the cell cycle, ion fluxes, and neurotransmission [4, 78].

The spatial distribution of cAMP is limited by phosphodiesterases [78]. Microscopy

imaging clearly shows spatial localization of cAMP [4]. In this thesis, we present mathe-

matical models for signaling networks with an emphasis on simulation methods for models

of systems that vary in space and time.

1.1. Temporal signaling dynamics

When formulating a model of a signaling network, information about the biologi-

cal system must be known. Wiring diagrams illustrating signaling networks typically

contain many nodes and high connectivity. To further complicate matters, a cell uses re-

dundant pathways to obtain tight regulation of intracellular systems. Information about

the specific biological system being modeled is used to identify important network com-

ponents and interactions. For example, in the 1980s key proteins that control events in

the cell-cycle were identified through the study of temperature sensitive mutants of the

yeast Saccharomyces cerevisiae [4]. Temporal oscillations in the concentration of cyclin

and cyclin-dependent kinases (Cdks) regulate major events in the cycle. The dynamic

behavior of these proteins can be captured by mathematical models (for example, [17])

that led to model predictions about specific control mechanisms. For the frog Xenopus,

several cell-cycle model predictions from [58] were verified experimentally in [73].

Typically, biochemical species in a mathematical model are represented by concen-

tration if there is a large number of molecules, and the role of noise in the system is

negligible. Wiring diagrams are then translated into differential equations that describe

the dynamics of chemical species over time. Many cellular processes are catalyzed by

enzymes. Under certain assumptions, elementary reactions in these processes can be

simplified into one equation described by nonlinear rate laws such as Michaelis-Menten

[39]. The dynamical system describing a biological process is typically nonlinear and

exhibits complex behaviors such as saturation, irreversible switches, toggle switches, os-

cillators, and adaptivity [81]. The system of differential equations can be integrated and

analyzed with software packages such as MATLAB R© or SUNDIALS [28]. Simulations results

2

lead to model predictions and suggest experiments to further investigate the underlying

biological process.

1.2. Spatiotemporal signaling dynamics

In many pathways, proper signal transduction requires that both the spatial and tem-

poral dynamics of the system are tightly regulated [34, 35, 57]. For example, recent

experiments have revealed spatial gradients of Rho family guanosine triphosphate (GT-

Pase) protein activation in migrating cells [36, 55, 62]. Spatial localization of cAMP

and calcium ions (Ca+) have also been visualized [5, 13]. Mathematical modeling is a

tool to elucidate the control mechanisms in the regulation of spatiotemporal dynamics of

signaling pathways. In [25] a spatiotemporal model was used to provide insight into the

polarization profile of a protein involved in budding yeast cells. Several spatial models

of protein networks involved in cell motility have been proposed [18, 47]. Polarization is

important in determining the direction of migration and for gradient sensing. A simple

model in [52] provides a mechanism for sustained polarity after a transient spatial sig-

nal. The model consists of a protein with an inactive and active form. Different diffusion

rates and nonlinear positive feedback lead to signal amplification and the formation of a

stable polarized concentration profile. The role of cell morphology and size on signaling

proteins was investigated in [50, 70].

1.2.1. Computational methods for spatial systems. A complicating factor in sim-

ulating spatiotemporal models of cells is the addition of spatial terms, such as diffusion

and advection. Typically, mathematical models that consider spatial effects are repre-

sented using partial differential equations (PDEs). However, recent work on incorporat-

ing diffusion with stochastic simulation methods should be noted [19, 29]. A numerical

method for PDE models must be able to handle nonlinear reaction terms and nonlinear

flux-based boundary conditions. Several spatial models of cell polarity make the simpli-

fying assumption the cell is one-dimensional [18, 52, 60]. These studies provide useful

3

information about generating and maintaining a polarized concentration profile, but ig-

nore geometric effects. Other recent computational studies emphasize the importance

of cellular geometry in signaling networks [50, 57, 70]. For computational simplicity,

many of these investigations assume idealized two or three dimensional cell geometries

[25, 41, 50], whereas others approximate irregularly shaped cells using a “staircase”

representation of the cell membrane [69].

Cartesian grid-based methods have been used to obtain numerical solutions to PDEs

with irregular domains and interfaces. The immersed boundary method was developed to

solve fluid-structure interaction problems in biological fluids [63]. Discrete delta functions

are used to describe the distribution of forces onto nearby grid points. One drawback

to this approach is that the accuracy of the method is linked to the choice of approxi-

mate delta function. Typically, explicit time updates with severe time step restrictions

are implemented to integrate immersed boundary discretizations, though recent work

has been proposed to overcome this challenge [53]. In the immersed interface method,

jump conditions across interfaces given in a local coordinate system are used to handle

boundary conditions on irregular geometries [43]. This method has been successful in

solving many interface problems such as Hele-Shaw flow, the Stefan problem, and the

Navier-Stokes equations. Open problems for this method include conservative finite dif-

ference schemes for elliptic and parabolic problems. Another challenge arises when the

jump conditions are nonlinear. Additionally, implementing a three dimensional immersed

interface method for a moving boundary problem is difficult. Embedded boundary meth-

ods [15, 16, 32, 45, 48, 71] have been used to solve Poisson’s equation [32] and the

heat equation [48, 71] with homogeneous Dirichlet and Neumann boundary conditions

as well as hyperbolic conservation laws [16]. The temporal update for the heat equation

in [48] is an implicit Runge-Kutta method [80]. Modifications in the method are needed

to handle nonlinear terms.

Both finite element and finite volume methods have been used to simulate spatial

models of biochemical reaction networks [50, 69, 70, 83]. The most common finite

4

volume algorithm to simulate models of reaction networks in two and three dimensions is

the Virtual Cell algorithm [69]. Cellular geometries are represented by staircase curves

(Fig. 1.1). The authors note that the approximation of fluxes across membranes leads to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.1. Boundary approximation taken from a Virtual Cell simula-
tion. The dashed line indicates the geometry specified in the Virtual Cell
program. The color ramp is the intensity of the grayscale component from
a simulation.

a decrease in the spatial accuracy of the numerical method to first order. The temporal

accuracy of algorithm in [69] is also limited to first order. For finite element methods,

which typically require a triangulation of the computational domain, grid generation can

be a challenge. This is particularly problematic if the boundaries of the computational

domain are moving.

Few simulation methods exist for moving boundary problems coupled with intracel-

lular dynamics. When solving moving boundary problems with finite element methods,

mesh generation is a challenging problem. In [66] a physical model of a motile cell was

simulated with finite element methods by triangulating every time step. The algorithm

includes a step of interpolation to ensure boundary points are equally spaced. The simu-

lations presented in [66] are feasible because a course grid with several hundred elements

was used. The Cellular Potts Model (CPM) [24], which is a type of cellular automata,

5

has been used to simulate a motile cell [47]. The dynamics in the CPM are based on min-

imizing a Hamiltonian with the Metropolis algorithm [49]. The CPM includes a system

temperature that represents fluctuations in the system. Though this type of model can

produce qualitatively realistic data, it is unclear what quantitative data can be obtained

from simulations. Another way to simulate a motile cell is by a one-dimensional model

in [18]. New methods are needed to simulate signaling networks and biophysical models

of cellular systems in moving geometries.

1.3. Thesis overview

A finite volume method to simulate models of spatiotemporal reaction networks on

arbitrary stationary geometries is presented in Chapter 2. The method accurately repre-

sents complex boundaries and utilizes a Cartesian grid. Our numerical scheme is based

on a cut cell method that represents the cell boundary using a piecewise-linear approxi-

mation. The method presented here extends the results on embedded boundary methods

[15, 16, 32, 45, 48, 71] to systems of nonlinear reaction diffusion equations with arbi-

trary boundary conditions. In contrast to previous embedded boundary methods, we also

offer an alternative formulation to handle the temporal update. In our formulation, the

boundary conditions form a system of nonlinear algebraic equations that can be solved

with existing differential algebraic equation solvers. We provide a novel use of DASPK

(Differential Algebraic Solver Pack) [10] as a time integrator for the finite volume method.

The embedded boundary spatial discretization combined with the differential algebraic

formulation allows us to achieve second order accuracy in space and time. Our method

also provides an appropriate framework for addressing moving boundary problems using

level set methods [59, 72].

The numerical method in Chapter 3 extends the finite volume method to moving

boundaries. We propose a novel method for simulating models of biochemical reaction

networks in moving cell morphologies. The method solves systems of advection-reaction-

diffusion equations on an underlying Cartesian grid. The cell geometry is embedded

6

with a signed distance function and updated with level set methods [59, 72]. The

operators are separated into an advection term and a combined reaction-diffusion term.

Reaction-diffusion terms are updated with an implicit differential-algebraic formulation

from Chapter 2. Advection terms are treated with the same spatial discretization used

in level set methods.

In Chapter 4, we present a mathematical model to describe the behavior of a type of

protein diffusing on the cell membrane. The proteins, called glycosyl-phosphatidylinositol-

anchored proteins, were cross-linked to a gold particle for tracking purposes. These

particles exhibited periods of no visible displacement, called transient anchorage. In-

terestingly, the distribution of release times from an anchored state exhibited a longer

tail than could be explained with a single exponential distribution [14]. To explain this

behavior, we developed a stochastic model and compared our results to the proposed

chemical linkage scheme to the cytoskeleton. An algorithm to simulate diffusion with

transient anchorage was also developed.

Chapter 5 summarizes the work presented here. Future research directions are dis-

cussed.

7

CHAPTER 2

A Cut Cell Method for Simulating Spatial Models of

Biochemical Reaction Networks in Arbitrary Geometries

In this chapter we present a method to simulate models of signaling networks in

complex geometries. Our method includes a finite volume discretization based on a

Cartesian grid in two dimensions. A differential algebraic formulation is used to handle

the complex boundary dynamics and nonlinearities encountered in biological systems.

The method is second order in space and time. Several models of signaling systems are

simulated in realistic cell morphologies obtained from live cell images to demonstrate the

method.

The models presented in this chapter and in Chapter 3 lack specific biologically rel-

evant parameter values due to the difficulty in obtaining data for reaction rates and

diffusion coefficients. Diffusion coefficients depend on cell type and location. Because of

the large variation in parameter estimates, the models are simulated on a unit box with

parameters chosen to highlight the influence of spatial terms on concentration profiles.

2.1. Mathematical formulation

Spatial models of biochemical reaction networks are typically represented using par-

tial differential equations consisting of reaction and diffusion terms. Active transport,

driven by molecular motors, also occurs within cells. This effect can be included in our

numerical scheme by the use of advection terms and will be addressed in the next chap-

ter. For simplicity we restrict ourselves to two spatial dimensions x and y. For a given

chemical species, the reaction terms encompass processes such as activation, degradation,

protein modifications and the formation of molecular complexes. These reactions typi-

cally include nonlinear terms, such as those arising from Michaelis-Menten kinetics. In a

system consisting of n chemical species, the concentration of the ith species ci evolves in

space and time according to the following equation:

(2.1)
∂ci
∂t

= −∇ · J + fi(c),

where J = −Di∇ci is the flux density, Di is the diffusion coefficient, and the function

fi(c) models the reactions within the cell that affect ci. The elements of the vector c

are the concentrations of the n chemical species. Reactions also may occur on the cell

membrane yielding nonlinear conditions on the boundary ∂Ω,

(2.2) −D~n · ∇ci|∂Ω + g(c)|∂Ω = 0.

Eqs. (2.1) and (2.2) are solved subject to appropriate initial conditions ci(x, y, 0) for each

species in the system.

2.2. Numerical methods

Our goal is to develop a simulation tool that can accurately and efficiently solve spatial

models of signaling and regulatory pathways in realistic cellular geometries. We obtain

the computational domain from live-cell images. The model equations are solved on a

Cartesian grid by discretizing the Laplacian operator, which models molecular diffusion,

using a finite volume method.

2.2.1. Computational domain. Fig. 2.1 shows a grayscale image of a mouse fibrob-

last [62]. Because the original image is noisy, the image was smoothed by convolving it

twice with the standard five point Gaussian smoothing filter. After smoothing, a suitable

thresholding value was picked, and the front was computed by an iso-contour finder. A

9

signed distance function is constructed with the smoothened boundary using fast march-

ing methods [46]. The zero level set of the signed distance function yields piecewise linear

segments used to define cut cells (Fig. 2.2).

Figure 2.1. Grayscale image of a mouse fibroblast taken from supple-
mental data in [62] (left) and the smoothened boundary (right). Reprinted
with permission from Macmillan Publishers Ltd: Nature [62], copyright
c©2006.

2.2.2. Discretization of the spatial operator. We utilize a Cartesian grid-based,

finite volume algorithm originally presented in [32] to discretize the diffusion operator

arising from Eq. (2.1). Finite volume methods store the average value of the concentra-

tion over a computational grid cell at the location (i, j). That is,

(2.3) c̄i,j =
1

Vi,j

∫∫
Vi,j

c(x, y)dV,

where Vi,j is the volume of the (i, j) grid cell. Inserting Eq. (2.3) into Eq. (2.1) produces

(2.4)
∂c̄i,j
∂t
− f(c)i,j = − 1

Vi,j

∫∫
Vi,j

∇ · JdV.

The divergence theorem allows us to convert the above volume integral into a surface

integral,

(2.5)
∂c̄i,j
∂t
− f(c)i,j = − 1

Vi,j

∫
∂Vi,j

(J · ~n) dS.

10

For interior grid cells, we have

∂c̄i,j
∂t
− f(c)i,j = − 1

Vi,j

[∫ yj+1/2

yj−1/2

(
Jx(xi+1/2, y)− Jx(xi−1/2, y)

)
dy(2.6)

+

∫ xi+1/2

xi−1/2

(
Jy(x, yj+1/2)− Jy(x, yj−1/2)

)
dx

]
,

where Jx = −D ∂c
∂x

and Jy = −D ∂c
∂y

. Approximation of the integrals in Eq. (2.6) with

the midpoint rule yields

∂ci,j
∂t
− f(ci,j) ≈ − 1

Vi,j

[
∆y
(
Jx(xi+1/2, yj)− Jx(xi−1/2, yj)

)
(2.7)

+ ∆x
(
Jy(xi, yj+1/2)− Jy(xi, yj−1/2)

)]
.

By approximating the gradient terms with centered differences, we arrive at the standard

five point Laplacian. Therefore in computational grid cells with volume Vi,j = 1, the finite

volume stencil is the same as the the five point Laplacian approximation.

The cut cell method generalizes as follows. The boundary of the computational

domain is approximated as a piecewise linear segments (Fig. 2.2, dashed line), and grid

cells that the boundary passes through are referred to as cut cells. To calculate the volume

of a cut cell, we apply the divergence theorem with the vector field F = (x/2, y/2) (note

that ∇ · F = 1),

(2.8) Vi,j =

∫∫
Vi,j

(∇ · F) dV =

∫
∂Vi,j

F · ~n dS,

where ~n is the unit normal vector to the surface. A cut cell can have up to five line

segments where the above surface integral must be computed. The volume of a cut cell

is computed by recasting the volume integral as a boundary integral,

(2.9) Vi,j =

∫∫
Vi,j

dV =

∫∫
Vi,j

∇ ·
(x

2
,
y

2

)
dV =

∫
∂Vi,j

((x
2
,
y

2

)
· ~n
)
dS,

11

Figure 2.2. Computational boundary (dashed line) with an assumed
higher order representation of the cell boundary drawn as a solid line.

where the integral on the right can be computed exactly for the polygon. Each segment

is evaluated, then summed. The center of mass can also be computed using a boundary

integral. For example,

(2.10)

∫∫
Vij

xdV =

∫∫
Vij

∇ ·
(
x2

2
, 0

)
dV =

∫
∂Vi,j

((
x2

2
, 0

)
· ~n
)
dS.

The parameterization for a linear path that begins at (x0, y0) and ends at (x1, y1) is

r(t) = (x0 + t(x1 − x0), y0 + t(y1 − y0)) for t ∈ [0, 1]. The surface integral over one face

is

(2.11)

∫ 1

0

F(r(t)) · ~n|r′(t)|dt.

A cut cell contains either a right triangle or a rectangle. In the case where a cut cell

contains a triangle, the cell contains normal sides a and b. The outward normal to the

hypotenuse is 1√
a2+b2

(±a,±b). The sign on each component of the normal vector depends

on the cut cell’s configuration. For example, in Fig. 2.3 the x-component of the normal is

positive, and the y-component is negative. In the case that a cut cell is rectangular, the

12

normal is simply (±1, 0) or (0,±1). To approximate the average of the function c(x, y)

over a cut cell, c(x, y) is evaluated at the cell’s center of mass. The function value at the

centroid is used to initialize at cut cell grid points as in [32, 48]. The x-component of

the centroid is computed by evaluating the integral

(2.12)

∫∫
Vi,j

xdV,

which is calculated as a surface integral using the divergence theorem with the vector

field F = (x2/4, xy/2). The y-component of the centroid is computed in a similar fashion.

Ffi,j

Fi-1/2,j
Fi,j+1/2

ci,j
ci-1,j

ci-1,j+1 ci,j+1 ci+1,j+1

Outside

Figure 2.3. Diagram of fluxes for cut cells where shaded boxes indicate
cells that are inside the boundary.

Next, we construct the integral on the right side of Eq. (2.5) for a cut cell. In

general, there are up to five surface integrals to approximate. Let al,m ∈ [0, 1] represent

the fraction of each of the four cell edges covered by the cut cell and af be the length of

13

the line segment representing the boundary. Then Eq. (2.7) becomes

∂ci,j
∂t
− f(ci,j) ≈ − 1

Vi,j

[
∆y
(
ai+1/2,jJx(xci+1/2

, yj)− ai−1/2,jJx(xci−1/2
, yj)

)
(2.13)

+ ∆x
(
ai,j+1/2Jy(xi, ycj+1/2

)− ai,j−1/2Jy(xi, ycj−1/2
)
)

+ afJf
]
.

The points (xci±1/2
, yj) and (xi, ycj±1/2

) are the coordinates corresponding to the midpoint

of a cut face. Let Fi±1/2,j = −ai±1/2,j∆yJx(xci±1/2
, yj) and Fi,j±1/2 = −ai,j±1/2∆xJy(xi, ycj±1/2

).

With this notation, we rewrite the previous equation as

(2.14)
∂ci,j
∂t
− f(ci,j) ≈ 1

Vi,j

(
Fi+1/2,j − Fi−1/2,j + Fi,j+1/2 − Fi,j−1/2 − F f

i,j

)
.

We refer to the F ’s as the surface fluxes (Fig. 2.3). On a full edge with al,m = 1 the

surface flux is calculated with centered differences. For example, in Fig. 2.3, we have

(2.15) Fi−1/2,j+1 = D∆y
ci,j+1 − ci−1,j+1

∆x
.

The flux gradient across a cut edge, e.g. (xi−1/2, yj), is approximated by a linear interpola-

tion of two gradients, which are computed by centered differences. A linear interpolation

formula between two points y1 and y2 as a function of a parameter µ ∈ [0, 1] is

(2.16) yI = (1− µ)y1 + µy2.

In the case of a cut cell edge, µ = (1 + al,m) /2. For example, to construct Fi−1/2,j in Fig.

2.4, the gradient at (xi−1/2, yj) and (xi−1/2, yj+1) is used,

Fi−1/2,j =Dai−1/2,j∆y

[
(1 + ai−1/2,j)

2

(ci,j − ci−1,j)

∆x
+(2.17)

(1− ai−1/2,j)

2

(ci,j+1 − ci−1,j+1)

∆x

]
.

To calculate the flux through a boundary, e.g. F f
i,j, we compute the gradient along

14

Fi-1/2,j
ci,j

ci-1,j

ci-1,j+1 ci,j+1 ci+1,j+1

Outside

Figure 2.4. Gradient interpolation diagram for a partially cut face. The
cross indicates points used to interpolate the gradient at the point labeled
with a red circle.

a line normal to the boundary, centered at the boundary midpoint. To find function

values on the normal line, we interpolate using three equally spaced cell centered points

(Fig. 2.5). If the normal line is oriented with an angle of π/4 < |θ| < 3π/4 relative to

the horizontal grid lines, horizontal grid points are used to compute the values on the

line. Otherwise vertical points are used. The two points computed along the normal

line and the value on the boundary are then used to construct a quadratic polynomial.

The concentration gradient is calculated by differentiating the quadratic polynomial and

evaluating the result at the boundary point cf ,

(2.18) Gf =
1

d2 − d1

[
d2

d1

(cf − cI1)− d1

d2

(cf − cI2)

]
,

where cI1 and cI2 are the interpolated values along the normal line and d1 and d2, respec-

tively, are the distances of these two points from the boundary. The flux F f
ij in Eq. (2.14)

is calculated by multiplying Gf by the area of the cut cell edge af and the diffusion coef-

ficient D. The discretization of the boundary condition Eq. (2.2) becomes the algebraic

15

cf

cI1

cI2

Outside

Figure 2.5. Gradient interpolation diagram to obtain the flux through
a boundary. Circles indicate interpolated values that depend on the grid-
based values.

equation

(2.19) DGf + g(cf) = 0.

Because all gradients are constructed with second order methods, the overall discretiza-

tion scheme is second order in space. Further discussion on the accuracy of the spatial

discretization scheme can be found in [32].

2.2.3. Time discretization. Spatial discretizations of Eqs. (2.1) and (2.2) are treated

as a differential-algebraic system of nonlinear equations (DAE). The general form for a

differential-algebraic system is

(2.20) F (t,C,C ′) = 0,

where C is an (Ng + Nb)× 1 vector. The first Ng entries are associated with Cartesian

grid based values in the differential-algebraic system from the discretization of Eq. (2.1)

for the chemical species concentrations. These entries have an explicit time derivative

16

term. The Nb remaining entries arise from discretizing the boundary conditions given

in Eq. (2.2) that form algebraic constraints. As noted in [6], reformulating algebraic

constraints in a nonlinear model as a system of ordinary differential equations may be

time consuming or impossible. DAEs formed by reaction-diffusion equations described

in section 2 are semi-explicit, index-1 systems of the form

(2.21)
C
′

1 = F1(C1,C2 , t)

0 = F2(C1 ,C2 , t).

C1 represents the first Ng variables and C2 represents the remaining Nb variables. Eq.

(2.21) is an index-1 system if and only if ∂F2/∂C2 is nonsingular [6]. Ordinary differential

equations are index-0.

We use the DASPK solver described in [10] as a time integrator for our differential

algebraic system. In DAPSK, backward differentiation formulas (BDF) discretize the

time derivative in Eq. (2.20). A basic implicit method with a backward Euler time

discretization of Eq. (2.20) is given by,

(2.22) F

(
tn+1,C n+1,

C n+1 −C n

∆t

)
= 0,

where n is defined such that tn = n∆t. Newton’s method can be used to solve the

resulting nonlinear equations for C n+1,

(2.23) C n+1
m+1 = C n+1

m −
(
∂F

∂C
+

1

∆t

∂F

∂C ′

) ∣∣∣−1

C n+1
m

F

(
tn+1,C n+1

m ,
C n+1

m −C n

∆t

)
,

where m is the index of the Newton iteration. In order to achieve higher order tempo-

ral accuracy, a higher order interpolating polynomial is used to approximate the time

derivative.

In a k-step BDF, the time derivative is replaced by the derivative of an interpolating

polynomial at k + 1 times tn+1, tn . . . , tn+1−k evaluated at tn+1. If we approximate the

derivative using a kth order stencil using k known values and the implicit value Cn+1 we

17

get

(2.24) C
′n+1 ≈ 1

∆t

(
α0C

n+1 +
k∑
i=1

αiC
n+1−i

)
.

The coefficients of the BDF are given by αi’s. In DAPSK, these values are coefficients

of the Newton divided difference interpolating polynomial [6]. The default order of the

BDF method in DASPK is five. The new implicit equation to be solved at each time

step is

(2.25) F

(
tn+1,C n+1,

1

∆t

(
α0C

n+1 +
k∑
i=1

αiC
n+1−i

))
= 0.

Eq. (2.25) can be written as

(2.26) F (tn+1,C n+1,
α0

∆t
C n+1 + v) = 0,

where v is a vector that depends on previously computed time values. Details of choosing

stepsize, starting selection and variable order strategies are found in [6]. The nonlinear

system is solved with a modified Newton’s method, given by

(2.27) C n+1
m+1 = C n

m − ζ
(
∂F

∂C
+
α0

∆t

∂F

∂C ′

) ∣∣∣−1

C n+1
m

F (tn+1,C n+1
m ,

α0

∆t
C n+1

m + v),

where ζ is a constant chosen to speed up convergence and m is the iteration index. Each

step of the Newton iteration requires inverting the matrix

(2.28) A =
∂F

∂C
+
α0

∆t

∂F

∂C ′ .

We store this matrix in sparse triple format, and use routines from SPARSKIT [67] to

solve the linear system iteratively. The Generalized Minimal Residual (GMRES) method

[68] with an incomplete LU (ILU) preconditioner is used to solve the linear system.

18

2.3. Software implementation

The software is implemented in the C, C++ and Fortran programming languages.

Triangle files from [74] were written in C, and a C++ wrapper class was developed to

create a triangular grid object. DASPK source code consisted of a Fortran file, which

we compiled into a library. The functions needed to use DASPK were declared gobally

and compiled using a Fortran to C library. The rest of the software is written in C++

with Xcode R© developing software. Data structures from DTSource [1] are used for data

storage and access. DataTank is the software harness that manages communication be-

tween user input and output as well as data visualization. The input of the program

includes a 2D boundary (DTPath2D), edge-centered grid (DTMesh2DGrid), diffusion co-

efficients (DTDoubleArray), reaction coefficients (DTDoubleArray), initial conditions for

each species (DTFunction2D or DTMesh2D), time step, end time for the simulation, and

the frequency of saving the output from the program.

The class CutCellCompartment manages spatial information associated with a com-

partment. The constructor is initialized with a boundary (DTPath2D), edge-centered

grid (DTMesh2DGrid), and signed distance function (DTMutableDoubleMesh2D). The class

stores the spatial location of the row-stacked unknowns. A boundary list stores the un-

knowns that are cut cells. Back pointer arrays are stored in the class to link the boundary

unknowns to (i, j) grid locations. This information is necessary to build the Jacobian

matrix for the solver. The class stores boundary points, the zero level set that defines

cut cells, and centroids. The finite volume stencil requires the volume of each compu-

tational grid cell, the area of each cut face, interpolation points, and the centroid of

the piecewise linear approximation of the boundary. This data are also stored in the

CutCellCompartment class. A triangulated grid is a member of this class.

The class CombinedSolver builds sparse matrices for DASPK. The class contains a

list of CutCellCompartment objects and an integer array with the number of unknowns

in each compartment. Two sparse matrices are stored in this class. The first is the

Jacobian that includes diffusion coefficients, reaction coefficients, a scaling coefficient

19

from DASPK, and and a stacked array with the current state of the system. The second

matrix computes the algebraic portion of the system. Sparse-matrix multiplication is

used to apply this part of the operator to the system in the residual function in DASPK.

The State class manages and organizes the raw data. DASPK uses pointers to ar-

rays for input and output. A State object stores the state of the system in an array

at the current simulation time. If a mesh version of the data is requested for output,

the State returns the object. This class interfaces with DASPK to update the system.

State is initialized with a list of CutCellCompartments, number of species in each com-

partment, diffusion coefficients, and reaction coefficients. The State contains a global

CombinedSolver object that is initialized in the constructor. Parameters for DASPK are

class members and initialized in the constructor.

DASPK requires the user to implement three functions: the residual, Jacobian,

and an implementation of the preconditioner. Because these functions are defined in

ddaspk.f from DASPK, they are not a part of a class. We include their implemen-

tation in State. The most computationally expensive part of the code is the residual

function. We implemented a fast Laplacian operator by using offsets created and stored

in CutCellCompartment. The boundary operator is applied by a sparse matrix multi-

ply computed in CombinedSolver. In the preconditioner function, the incomplete LU

factorization is performed with SPARSEKIT routines [67]. A sparse matrix structure,

SPTriple was created to take a sparse coordinate format of the Jacobian matrix, convert

it to compressed sparse row format, and create the ILU factorization. The SPTriple

instance in State must be a global variable because the Jacobian function and the pre-

conditioner need access to the factorization.

A summary of class interactions in shown in Fig. 2.6. In the main routine, a list

of CutCellCompartments is created. The number of species in each compartment is

specified. A State object is created with this information and other user input from

DataTank. In the main routine, a loop over time contains a function call to the State

object to update itself, and output is saved.

20

CutCellCompartment CombinedSolver

State

Global Variables:

SPTriple

(ILU factorization)

CombinedSolver

SPTriple

Figure 2.6. Schematic of class interactions. A rounded box indicates a
class. An ellipse indicates a structure. An arrow pointing from one class or
structure to another means the class with the arrow pointing to it contains
an object or structure of the other one’s type.

2.4. Convergence tests

In order to demonstrate the accuracy of our method, convergence is tested by com-

paring against an exact solution on a circular domain containing all types of cut cells.

The exact solution to the diffusion equation with a zero Dirichlet boundary condition can

be found in terms of Bessel functions. Let λ denote the first root of the Bessel function

J0(x), and r be the radius of the circle. Then the expression:

(2.29) f(x, y, t) = exp

(
−D

(
λ

r

)2

t

)
J0

λ
√

(x− 0.5)2 + (y − 0.5)2

r


is an exact solution to the diffusion equation. Fig. 2.7(a) shows the initial condition and

Fig. 2.7(b) shows the computed solution at t = 0.2 using the constants D = 0.05 and

21

r = 0.3. For visualization purposes, the computational domain and boundary points are

triangulated with Triangle [74]. For this example, the error is computed as the difference

between computed solution values on a triangular grid subtracted from the exact solution.

The grids for both two dimensional triangular meshes were the same. For purposes of

generating the following convergence data, the spatial steps ∆x and ∆y are equal and set

to 1/N , where N is the grid size. The time step ∆t is set to ∆x/4 (i.e. it is refined with

the spatial step size). Because DASPK uses variable time steps, the output at the time

step requested may be interpolated as described in [6]. A time series of the truncation

error in the infinity norm over time is shown in Fig. 2.8. Table 2.1 lists the truncation

error at the simulation time t = 0.4. The convergence rate r is calculated as

(2.30) r = log

(
e1

e2

)
/ log

(
∆x1

∆x2

)
,

where e1 and e2 are errors computed in norms with grid spacing ∆x1 and ∆x2. A log-log

plot of truncation error as a function of the spatial step is shown in Figure 2.9. The

error was calculated with the computed and exact solutions at the time value of t = 0.4.

The results of this analysis demonstrate global second order accuracy of the numerical

method.

Grid size Time step L2 norm r L1 norm r L∞ norm r
50 × 50 5.00e-03 2.95e-04 − 2.61e-04 − 5.46e-04 −

100 × 100 2.50e-03 4.94e-05 2.58 4.32e-05 2.59 9.28e-05 2.56
200 × 200 1.25e-03 1.05e-05 2.24 9.20e-06 2.23 2.09e-05 2.15
400 × 400 6.25e-04 2.42e-06 2.11 2.13e-06 2.11 5.42e-06 1.95

Table 2.1. The norms and convergence rates for the diffusion equation
at the time value of 0.4

Next we tested a nonlinear system with the method. The model system consists of

a protein C with two distinct chemical states: active and inactive. The reactions that

convert the protein between the two states are assumed to follow Michaelis-Menten kinet-

ics, which describes the kinetics of many enzymatic reactions including phosphorylation

and dephosphorylation events [35]. The protein C is deactivated in the interior of the

22

x y

z

(1,0,0) (0,1,0)

(0,0,1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Initial condition for the diffusion equation.

x y

z(0,0,1)

(0,1,0)(1,0,0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) The computed solution to the diffusion equation at t = 0.2.

Figure 2.7. Computed solution to the diffusion equation at two time
values. The x, y, and z axes are bounded by the unit cube.

computational domain according to the following equations:

(2.31)

∂Ci
∂t

= D∆Ci +
k2Ca

Km2 + Ca

∂Ca
∂t

= D∆Ca − k2Ca
km2 + Ca

,

23

1.75 ×10-4

3.97 ×10-5

1.03 ×10-5

L
∞

 N
or

m
 o

f T
ru

nc
at

io
n

Er
ro

r

10-5

0

5

10

15

20

25

30

Time
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 2.8. Truncation error computed in the infinity norm for the dif-
fusion equation. The grid size N is 100 (top), 200 (middle), and 400
(bottom). The time step at each refinement was set to 1/(4N), where N
is the grid size.

Second order reference
L∞ norm
L1 norm
L2 norm
First order reference

Tr
un

ca
tio

n
Er

ro
r

10-5

0.1

1

10

100

Grid size
50 100 200 400

Figure 2.9. Truncation error for the diffusion equation at the time value
of 0.4. The convergence data are the same as given in Table 2.1.

24

where Ci and Ca are the concentrations of inactive and active protein, respectively, k2 is

the maximum deactivation rate, and Km2 is the Michaelis constant. Activation occurs

on the boundary, ∂Ω, according to the following boundary conditions:

(2.32)

−D~n · ∇Ci|∂Ω =
k1SCi

Km1 + Ci

∣∣∣
∂Ω

−D~n · ∇Ca|∂Ω = − k1SCi
Km1 + Ci

∣∣∣
∂Ω
,

where k1 is the maximum activation rate and Km1 is the Michaelis constant. The equa-

tions are solved in the domain

(2.33) Ω(r, θ) = r ≤ 0.3− 0.09 sin(4θ).

In our simulation, Ω is shifted to the center of the unit box. The initial concentration

of inactive protein is assumed to be constant and equal to 1. There is initially no active

protein. Fig. 2.10(a) shows a plot of the active concentration at t = 0.25. A cross

section of the two dimensional geometry at several time values is shown in Fig. 2.10(b).

Table 2.2 lists the constants used in the simulation. The constants were arbitrarily

chosen to generate a gradient. In [9] the reaction rate for a first order phosphatase

(dephosphorylation) reaction is between 0.1 and 100 s−1. Michaelis-Menten constants

were estimated from 0.1 to 20 µm. Times for execution on a Mac Pro desktop computer

with dual-core 2.66 GHz Intel Xeon processors for different grid sized are listed in Table

2.3.

Constant Value Constant Value
D 0.1 k2 1.0
S 1.0 Km1 0.2
k1 1.0 km2 0.2

Table 2.2. Constants used in the simulation of the two species model.

We compute the error as the difference between successive grid refinements as follows.

The truncation error function E(x, y, t) is defined on interior values of the course grid.

25

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) Concentration of the active species at t=0.25.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Active species concentration at evenly spaced time values for t ∈ [0, 0.25].

Figure 2.10. Concentration of the active species Ca. The mesh is sliced
along the dashed line in the top figure.

26

Grid size Time step Execution Time (seconds)
50 × 50 5.000e-03 1.76

100 × 100 2.500e-03 5.81
200 × 200 1.250e-03 32.15
400 × 400 6.250e-04 203.95
800 × 800 3.125e-04 1202.18

Table 2.3. Execution times for the two species model. The end time of
the simulation was t = 0.5.

Computed solution values located in course grid cut cells are excluded from the domain.

This includes some values located in interior points for the more refined grid (Fig. 2.11).

The truncation error function is defined as

(2.34) E(x, y, t) = c∆x(x, y, t)− c∆x/2(x, y, t).

The course grid values are located in the center of a box defined by four refined grid

values. Four refined grid values are averaged and subtracted from one course value.

Because the time integration is handled implicitly, a different convergence rate of the

truncation error in cut cells and boundary values would affect the convergence rate of

the truncation error for interior cells. Therefore by computing the error with interior

cells, we are still able to draw conclusions about the order of the method.

Table 2.4 lists convergence data for the two species system given by Eqs. (2.31) and

(2.32). The data used for calculating the error was taken from computed solutions at

the simulation time value of t = 0.5. Note that the norms of truncation errors for both

Ci and Ca are the same. The system is mass conservative, and the computed solution is

also conservative to machine precision. Therefore we only show convergence figures for

species Ci. The truncation error for species Ci in the infinity norm as a function of time

is listed in Fig. 2.12. A log-log plot of the truncation error as a function of the grid size

is listed in Fig. 2.13. From this analysis, we conclude second order accuracy.

27

Figure 2.11. Interior grid cells on the course grid (dashed lines) are
shaded. Square and diamond filled points indicate locations of cell centered
values on the course grid. Values associated with diamond grid points rep-
resent cut cells for the courser grid. Course and refined values in these cut
cells are not used in the averaging scheme. The refined grid is indicated
by solid lines. Circles mark the cell centers of the refined grid cells. Four
refined point values are averaged and compared to the the square point on
the course grid.

Species Ci
Grid size Time step L2 norm r L1 norm r L∞ norm r
50 × 50 5.000e-03 − − − − − −

100 × 100 2.500e-03 7.59e-04 − 1.67e-04 − 1.49e-03 −
200 × 200 1.250e-03 1.92e-04 1.98 4.44e-05 1.91 5.01e-04 1.57
400 × 400 6.250e-04 4.57e-05 2.07 1.08e-05 2.04 1.25e-04 2.00
800 × 800 3.125e-04 1.09e-05 2.07 2.61e-06 2.05 3.12e-05 2.00

Species Ca
Grid size Time step L2 norm r L1 norm r L∞ norm r
50 × 50 5.00e-03 − − − − − −

100 × 100 2.500e-03 7.59e-04 − 1.67e-04 − 1.49e-03 −
200 × 200 1.250e-03 1.92e-04 1.98 4.44e-05 1.91 5.01e-04 1.57
400 × 400 6.250e-04 4.57e-05 2.07 1.08e-05 2.04 12.5e-04 2.00
800 × 800 3.125e-04 1.09e-05 2.07 2.61e-06 2.05 3.12e-05 2.00

Table 2.4. The norms and convergence rates for the two species model
at the time value of 0.5.

28

6.55 ×10-4

1.68 ×10-4

4.22 ×10-5

L
∞

 N
or

m
 o

f T
ru

nc
at

io
n

Er
ro

r

10-4

0

2

4

6

8

10

12

14

16

18

Time
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Figure 2.12. Truncation error for species Ci as computed in the infinity
norm for the reaction-diffusion equation. The error for the top plot was
computed by subtracting the solution at N = 200 from N = 100 as de-
scribed in the text. The middle plot was calculated with grid sizes N = 200
and N = 400. The bottom was calculated with grid sizes N = 400 and
N = 800.

2.5. A two compartment model

In this model, we have two compartments: the cytoplasm and nucleus. The cellular

geometry was taken from a yeast cell undergoing chemotrophic growth in the direction

of a pheromone gradient [56]. Proteins involved in the pheromone response pathway are

known to localize on the plasma membrane, the nucleus, and in the cytosol [20]. The

nucleus is modeled as a circle located toward the front of the cell. Because yeast cells are

three dimensional, we model the top view of the cell as in [18], where membrane-bound

species are located in the interior of the computational domain but are assumed to diffuse

slower than cytosolic forms.

The model consists of two species, A and C, with inactive and active forms. Protein C

is allowed to enter and exit the nucleus, whereas protein A is restricted to the cytoplasm

(Fig. 2.14(a)). Initially both A and C are in their inactive forms. At the beginning of

29

Second order reference
L∞ norm
L1 norm
L2 norm
First order reference

Tr
un

ca
tio

n
Er

ro
r

10-6

10-5

0.0001

0.001

0.01

Grid Size
50 100 200 400

Figure 2.13. Truncation error for Ci at the time value of 0.5. The con-
vergence data are the same as given in Table 2.4.

the simulation, the reaction rate for the activation of A, k0, is instantaneously increased

from 0 to 1. This is meant to model the cell receiving an external signal. Once A is

activated it is assumed to interact with the cell membrane, causing a reduction in the

protein’s diffusion coefficient [82]. The active form of A can then activate protein C.

The active form of C is only deactivated within the nucleus. This simple model captures

some of the signaling events that occur during the pheromone response of yeast [75]. If

we denote the concentration of a chemical species with brackets, the equations for the

cytoplasmic species are:

(2.35)

∂[Ac]

∂t
= D1∆[Ac] − k0[Ac]

∂[A∗c]

∂t
= D2∆[A∗c] + k0[Ac]

∂[Cc]

∂t
= D1∆[Cc] − k1[A∗c][Cc]

∂[C∗c]

∂t
= D1∆[C∗c] + k1[A∗c][Cc],

30

where the asterisks denote the active form of the protein, D1 is the diffusion coefficient

in the cytoplasm, D2 is diffusion coefficient in the membrane, and the k’s represent

the reaction rates. Subscripts indicate cytosolic and nuclear species. The boundary

conditions at the cell membrane ∂Ω1 are no flux for all chemical species. The nuclear

boundary conditions for species A are also no flux, whereas species C are allowed to move

through the nuclear membrane ∂Ω2 and satisfy the conditions

−D1(~n · ∇[Cc])|∂Ω2 = −k2([Cn]− [Cc])|∂Ω2

−D1(~n · ∇[C∗c])|∂Ω2 = −k2([C∗n]− [C∗c])|∂Ω2

−D1(~n · ∇[Cn])|∂Ω2 = k2([Cn]− [Cc])|∂Ω2

−D1(~n · ∇[C∗n]|∂Ω2 = k2([C∗n]− [C∗c])|∂Ω2 .

Nuclear C∗ is deactivated according to the equations

(2.36)

∂[Cn]

∂t
= D1∆[Cn] + k3[C∗n]

∂[C∗n]

∂t
= D1∆[C∗n] − k3[C∗n].

The steady state spatial distribution of active C is illustrated in Fig. 2.14(b). All reaction

constants were arbitrarily chosen to be one, D1 = 0.1, D2 = 0.01, and ∆x = 1/200. In

our simulation, the cell is bounded by the unit box. However, budding yeast have a

diameter of about 10 µm [4]. Diffusion coefficients range from 0.0025 to 0.1 µm2/s [82].

The initial values were zero except for [Ac](x, y, 0) = [Cc](x, y, 0) = 1. The execution

time of the simulation to run from t = 0 until t = 20 was 150 seconds on a Mac Pro

desktop computer with dual-core 2.66 GHz Intel Xeon processors. To verify that the

system is close a steady state solution at t = 20, we subtracted the solution of active C

in the cytoplasm [C∗c] for all times from the assumed steady state solution at the time

value of t = 20. If the system exponentially converges to the computed solution at t = 20,

we assume this time value is close to steady state. Fig. 2.15 shows the infinity norm

of the difference between the computed solution and the assumed steady-state solution

sampled over time. Based on this data, the system is close to steady state.

31

A→ A∗

C
A∗
→ C∗

C∗ → C

(a) Reactions and species in the two compartment model.

0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

(b) Steady state concentration values for active C species in the cytoplasm and nucleus.

Figure 2.14. Two compartment model

32

Difference from Steady State
Exponential Fit

L∞
 N

or
m

 o
f D

iff
er

en
ce

10-10

10-9

10-8

10-7

10-6

10-5

0.0001

0.001

0.01

0.1

1

10

Time
0 2 4 6 8 10 12 14 16 18 20

Figure 2.15. The solid line indicated the norm of difference of the com-
puted solution at the assumed steady state value at t = 20 from computed
solution over time. The dashed line is the exponential fit. The scale for
the y axis is logarithmic.

The model simulation suggests a spatial activation gradient can be generated by

the position of the nucleus. The inactivation of C in the nucleus leads to a higher

concentration of active protein in the rear of the cell in spite of a uniform spatial signal

from active A.

2.6. Rho family GTPase model

The Rho family of GTPases regulates many cellular functions, including polarization

and motility. We created a model with three key members of this family, Cdc42, Rac, and

Rho (Fig. 2.6). The interactions are based on [12]. A more complicated model involving

these proteins in one dimension can be found in [18]. As in the previous example, we

assume a top view of a three dimensional cell with membrane bound active forms and

cytosolic inactive forms of the three proteins. The model has a total of six species. The

33

mouse embryonic fibroblast (MEF) cell boundary ∂Ω is taken from supplemental material

from [62].

Signal Cdc42 Rac Rho

Figure 2.16. Schematic of interactions for the Rho GTPase model.

In our model, a uniform extracellular signal triggers the activation of Cdc42 protein

on the cell edge,

(2.37)

−D~n · ∇ [Cdc42i]
∣∣
∂Ω

=
k1S [Cdc42i]

Km1 + [Cdc42i]

∣∣∣
∂Ω

−D~n · ∇ [Cdc42a]
∣∣
∂Ω

= − k1S [Cdc42i]

km2 + [Cdc42i]

∣∣∣
∂Ω
.

In the cell interior, active Cdc42 is inactivated. A positive feedback loop increases the

activation of Cdc42,

(2.38)

∂ [Cdc42i]

∂t
= D∆ [Cdc42i] +

k2 [Cdc42a]

Km3 + [Cdc42a]
− k3 [Cdc42a] [Cdc42i]

Km4 + [Cdc42i]

∂ [Cdc42a]

∂t
= D∆ [Cdc42a] − k2 [Cdc42a]

km5 + [Cdc42a]
+

k3 [Cdc42a] [Cdc42i]

km6 + [Cdc42i]
.

Rac is activated by Cdc42, and a positive feedback loop increases the concentration of

active Rac. Active Rho increases the deactivation of Rac in the cytosol,

(2.39)

∂ [Raci]

∂t
= D∆ [Raci] +

(k4 [Rhoa] + k5) [Raca]

Km7 + [Raca]

− (k6 [Cdc42a] + k7 [Raca]) [Raci]

Km8 + [Raci]

∂ [Raca]

∂t
= D∆ [Raca] − (k4 [Rhoa] + k5) [Raca]

km9 + [Raca]

+
(k6 [Cdc42a] + k7 [Raca]) [Raci]

km10 + [Raci]
.

34

Rho is activated by the active form of Rac and deactivated in the interior,

(2.40)

∂ [Rhoi]

∂t
= D∆[Rhoi] +

k8 [Rhoa]

Km11 + [Rhoa]
− k9 [Raca] [Rhoi]

Km12 + [Rhoi]

∂ [Rhoa]

∂t
= D∆ [Rhoa] − k8 [Rhoa]

km13 + [Rhoa]
+

k9 [Raca] [Rhoi]

km14 + [Rhoi]
.

The boundary conditions for Rac and Rho species are no flux. The steady state distri-

bution is displayed in Fig. 2.6. To achieve these results, a step size ∆x = 1/200 and

a diffusion coefficient D = 0.1 were used. Again, our simulation is on a unit box. An

estimate of the MEF cell length is 80 µm [62]. Estimates for diffusion coefficients in [9]

are 1 to 10 µm2/s for general eukaryotic circular cells with radius 10 µm. Our diffusion

coefficient was chosen to highlight the gradient. The reaction constants from the sim-

ulation were arbitrarily chosen and are listed in Table 2.5. The initial concentration of

inactive chemical species was set to one and zero for active species. The execution time

was 217 seconds for 1600 time steps on a Mac Pro desktop computer with dual-core 2.66

GHz Intel Xeon processors.

In this model, a gradient is formed by protein activation on the cell edge. The gradient

is propagated to the downstream signaling components Rac and Rho. Fig. 2.6 shows

that filopodia and thin protrusions have higher activation levels due the increased ratio

of cell membrane to cell volume in these regions [50].

Parameter Value Parameter Value Parameter Value
S 1.0 k8 3.0 Km3 0.2
k1 5.0 k9 5.0 Km4 0.2
k2 3.0 Km1 0.2 km5 0.2
k3 1.0 km2 0.2 km6 0.2
k4 3.0 Km7 0.2 Km11 0.2
k5 1.0 Km8 0.2 Km12 0.2
k6 5.0 km9 0.2 km13 0.2
k7 1.0 km10 0.2 k14 0.2

Table 2.5. Reaction constants used in the simulation of the Rho GTPase model.

35

Inactive Active

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35Cdc42i

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1Cdc42a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Raci

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Raca

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Rhoi

0.27

0.275

0.28

0.285

0.29

0.295

0.3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Rhoa

0.7

0.705

0.71

0.715

0.72

0.725

0.73

Figure 2.17. Steady state distribution of protein concentration amounts
in a fibroblast. The boundary was taken from a live cell image [62].

36

2.7. Conclusions

We have developed an accurate and efficient cut cell method for simulating spa-

tial models of signaling pathways in realistic cellular geometries. We demonstrated our

method using models that consist of multiple species interacting in multiple compart-

ments. The examples were chosen to illustrate the numerical methods and therefore lack

many details found in real biological signaling systems. In particular, feedback and feed

forward control mechanisms that regulate pathway activity were not considered in de-

tail. Our numerical methods provide important tools for investigating such regulatory

mechanisms in realistic cell geometries and, therefore, should provide important insights

into the ways signaling networks process and transmit information.

Our algorithm extends previous work on embedded boundary methods [16, 32, 48,

71]. These methods have been implemented in two and three dimension for Poisson’s

equation, the heat equation, and hyperbolic conservation laws. Our formulation extends

these methods to systems of reaction-diffusion equations with nonlinear reactions in the

interior as well as nonlinear reactions affecting boundary values. The boundary conditions

treated in previous work [32, 48, 71] have been homogenous Dirichlet and Neumann,

which is not sufficient for many models of signaling pathways [50]. In [48] a second order

implicit method was used to update the heat equation in time [80]. In our method, we

use an implicit nonlinear solver to handle nonlinear reactions occurring in the interior.

An advantage of the differential-algebraic formulation is the ability to treat the boundary

conditions as algebraic constraints. This allows us to handle reactions that take place on

the physical boundary of the reaction-diffusion equation.

One limitation of the finite volume discretization arises from the interpolation method

to obtain the normal derivative to the surface as shown in Fig. 2.5. Cut cells must not

have a zero volume cell within two rows or columns. For biological cells with long, thin,

or irregularly-shaped components such as neurons, mesh adaptive refinement may be

needed to resolve the cellular geometry.

37

The underlying Cartesian-grid based finite volume discretization allows us to use

advection schemes originally developed for hyperbolic conservation laws to simulate active

transport or motility. In the next chapter, we show how level set methods [59, 72]

can be combined with biochemical reaction networks to investigate the effect of moving

boundaries on cell signaling.

38

CHAPTER 3

Simulating Models of Biochemical Signaling Networks in

Complex Moving Geometries

The algorithm presented in the previous chapter is based on an underlying Carte-

sian grid. Hence, modifications can be made to extend the fixed boundary algorithm to

a moving boundary framework. Applications of this algorithm include simulating bio-

chemical reaction networks in motile and growing cells. Chemotrophic growth of yeast

is associated with spatial gradients of proteins [56]. A model of chemotrophic growth of

yeast has been proposed in [31]. The authors solve reaction-diffusion equations to steady

state every time the boundary changes. This assumption would not hold in fast migrat-

ing cells, such as keratocytes [37]. Spatiotemporal dynamics in moving and deforming

cells have been shown in [36, 55, 62]. Simulations of these systems can reveal the role

of cell morphology on spatial distribution of signaling proteins as cells move and deform.

3.1. Mathematical formulation

We follow the same formulation as Chapter 2, where spatial models of biochemical

reaction networks are represented using partial differential equations. In this chapter, we

consider an advection term in addition to reaction and diffusion terms. For simplicity we

restrict ourselves to two spatial dimensions x and y. For a given chemical species, the

advection term represents active transport. In a system consisting of n chemical species,

the concentration of the ith species ci evolves in space and time according to the following

equation:

(3.1)
∂ci
∂t

+ ~U · ∇ci = −∇ · J + fi(c).

The flux density is given by J = −Di∇ci, where Di is the diffusion coefficient. The

function fi(c) models reactions within the cell that affect ci . The cell and biochemical

species inside it propagate according to the velocity field ~U . The elements of the vector

c are the concentrations of the n chemical species. Reactions also may occur on the cell

membrane yielding nonlinear conditions on the time-dependent boundary ∂Ω(t),

(3.2) −D~n · ∇ci |∂Ω(t) + g(c)|∂Ω(t) = 0.

Eqs. (2.1) and (2.2) are solved subject to appropriate initial conditions ci(x, y, 0) for each

species in the system.

3.2. Numerical methods

In this section, we detail the methods used to simulate models of signaling and regu-

latory pathways in realistic cellular geometries that are moving. This involves obtaining

the domain from live-cell images and embedding the boundary in a signed distance func-

tion. We describe level set methods and the finite volume method used in the complete

time update, which involves operator splitting.

3.2.1. Computational domain and level set methods. The computational domain

can be specified explicitly or obtained from live cell images. In Chapter 2 cell images

are smoothed with a Gaussian filter, and the boundary is obtained by thresholding the

smoothened image. In either case, a signed distance function is constructed such that

the zero level set is the boundary of the cell. The signed distance function denoted

by φ(x, y, 0) is the initial value for equation of motion in level set methods. Note that

φ(x, y, t) is defined on the Cartesian grid (x0 + i∆x, y0 + j∆y) for 0 ≤ i ≤ N and

0 ≤ j ≤M . The stepsizes are defined as ∆x = 1/N and ∆y = 1/M .

Level set methods are algorithms for tracking the time evolution of boundaries and

interfaces. The evolution of the signed distance φ is given by the level set equation

40

originally presented in [59],

(3.3) φt + F |∇φ|+ ~U · ∇φ = 0,

where F is the speed in the normal direction to the boundary and ~U is the advection

velocity. In order to numerically solve the partial differential equation in Eq. (3.3), spatial

and temporal operators must be discretized. The boundary that we wish to capture

may not be differentiable (e.g. sharp corners). Schemes developed to numerically solve

hyperbolic conservation laws can be applied to Eq. (3.3). We implemented a second

order upwinding scheme to discretize the advection operators in (3.3). Specifically, we

used an essentially non-oscillatory (ENO) scheme to approximate spatial derivatives [26].

Finite difference schemes can also be found in [72].

A second order Runge Kutta method is used to update Eq. (3.3) in time. Following

[3] Eq. (3.3) is written as

φt = L(~U, F, φ).

Then the time update is

(3.4)

T1 = L(~U(tn), F (tn), φ)∆t

φ = φ+ T1

T2 = L(~U(tn+1), F (tn+1), φ)∆t

φ = φ+ (T2 − T1) /2.

The time step tn is defined as t0 + n∆t. In section 3.2.3, we describe the role of the level

set update in the complete update for state of the advection-reaction-diffusion system.

A more detailed discussion of level set methods is provided in Appendix A.

3.2.2. Finite volume method. The finite volume method in Chapter 2 is used to

discretize reaction and diffusion terms in Eq. (3.1) with boundary equations Eq. (3.2).

41

Recall the concentration over a control volume Vij is stored at cij,

(3.5) c̄i,j =
1

Vi,j

∫∫
Vi,j

c(x, y)dV.

The grid where concentration values are located is different from the grid where signed

distance values are stored. In the finite volume method, the grid points are the cell

centered values (x0 + (i + 1/2)∆x, y0 + (j + 1/2)∆y) for 0 ≤ i ≤ N and 0 ≤ j ≤ M .

In the description of the method in Chapter 2, we referred to (i, j) grid points as cell-

centered. The signed distance function is defined on edge-centered grid points because

the zero level set defines control volumes. Fig. 3.1 illustrates the computational points in

the finite volume method. Boundary values are located at the midpoint of the piecewise

linear boundary approximation.

ci,j
ci-1,j

ci-1,j+1 ci,j+1 ci+1,j+1

Outside

cfi,j

cfi-1,j

cfi,j+1

cfi+1,j+1

Figure 3.1. Stencil points for the finite volume method. The solid line
indicates a piecewise linear approximation to the zero level set of the signed
distance function. The black points labeled ci,j indicate values that lie on

a Cartesian grid. White points labeled cfi,j indicate values associated with
the boundary.

Inserting the Eq. (3.5) into reaction and diffusion terms in Eq. (3.1) produces

(3.6)
∂c̄i,j
∂t
− f(c)i,j = − 1

Vi,j

∫∫
Vi,j

∇ · JdV = − 1

Vi,j

∫
∂Vi,j

(J · ~n) dS,

42

by the divergence theorem. Approximations of the surface integrals give a discretization

for the reaction-diffusion equation. An approximation to the normal component of the

diffusive flux is used to discretize the boundary conditions in Eq. (3.2), forming algebraic

constraints. The discretizations of Eqs. (3.1) and (3.2) are treated as a differential-

algebraic system of nonlinear equations of the form (2.21). DASPK [10] is used to solve

the Newton iteration (2.27).

3.2.3. Overview of complete temporal update. The complete numerical scheme

involves splitting the advection operator from combined reaction-diffusion operator. We

implemented the second order Strang operator splitting method. Fig. 3.2 illustrates the

separation of the operators as the system is updated in one time step from tn to tn+1.

The reaction-diffusion operator with the appropriate boundary conditions is solved using

the cut cell method (Chapter 2) on the boundary Ω(tn) for a half time step tn to tn+1/2.

Chemical species and the boundary are advected for a full time step tn to tn+1. The

reaction-diffusion solver is reinitialized. The reaction-diffusion equation is then solved

on the domain Ω(tn+1) from tn+1/2 until tn. This concludes the update. In the cut cell

method, there are three types of points: interior, cut cells and boundary points (Fig.

3.1). In the remainder of this section, we proceed to discuss the details involved in the

process of updating and reinitializing these values during a time step.

3.2.4. Interior advection scheme. To approximate the gradient operator with second

order upwinding, ghost cells are needed. Minimally two cells in the north, south, east,

and west direction are required to create a valid advection update for interior cells. The

values in cut cells are recomputed because they do not correspond to values at grid

points. The extension values are calculated with bicubic interpolation that is exact for

cubic polynomials in p(x), q(y) and p(x) · q(y). The values for the interpolation are

located along grid lines. If more than one choice is available, interpolation is performed

along each line and the resulting value is the average of these interpolations (Fig. 3.3.)

The scheme shown in Fig. 3.3 requires the grid cell containing the interpolation value

to lie horizontally or vertically (not diagonally) of an interior grid cell. The cell directly

43

t
n

t
n+1/2

t
n+1

React-Diffuse

Advect

React-Diffuse

Figure 3.2. Strang splitting scheme.

Figure 3.3. Interpolation diagram. Interior values are colored green. Cut
cell values are colored blue. Circles mark the interior points used to inter-
polate at the point marked with a cross.

44

left of the red grid cell does not satisfy this requirement. This type of cell is marked for

the second round of interpolation. Later rounds of interpolation use values from earlier

rounds. The interpolation continues in bands until sufficient coverage for a second order

ENO update. Fig. 3.4 shows an extension computed by interpolation the function,

f(x, y) = cos ((2π(x− 0.5)) cos (2π(y − 0.5))

from interior points with a grid size of ∆x = 1/30. The extension is larger than two

bands in certain places to ensure a valid extension when the front moves. Table 3.1 lists

!"#$

!"#%

!"#&

"

"#&

"#%

"#$

"#'

"#(

"#)

"#*

"#+

"#,

&

" "#% "#' "#) "#+ &

"

"#&

"#%

"#$

"#'

"#(

"#)

"#*

"#+

"#,

&

Figure 3.4. Example of an interior extension.

the error at different grid sizes for the same function. The extrapolation scheme requires

four interior points in the ~n = (±1, 0) or (0,±1) directions. Fig. 3.5 shows a case where

the extension fails.

After a time step, the cut cells must be reinitialized for the reaction-diffusion solver. In

the stationary boundary solver, we initialized the cut cells with the value of the chemical

45

Figure 3.5. Example of an under-resolved geometry at the black grid value.

concentration function at the centroid. In the moving boundary case, we use the same

bicubic interpolation scheme to interpolate the value at the centroid point.

3.2.5. Convergence tests for the advection operator. We test the discretized ad-

vection scheme at values associated with grid based points. A scalar function is evalu-

ated at cell center values on the interior, and centroid values at cut cells. The signed

distance is located at cell edge values. Therefore, if quantities such as normals and cur-

vature are needed at cell-centered values, the value at cell centers is interpolated from

edge values. The exact solution is a function f(x, y, t) evaluated at cell center points

((x0 + (i+ 1/2)∆x, y0 + (j + 1/2)∆y). Our first test is to advect a quadratic polyno-

mial in x and y with constant velocity ~U = (u, v). The exact solution is given by

Grid size L2 norm r L1 norm r L∞ norm r
25 × 25 4.27621e-02 − 8.35089e-03 − 1.28952e-01 −
50 × 50 1.48071e-03 4.85 1.53104e-04 5.77 4.68203e-03 4.78

100 × 100 5.97053e-05 4.63 3.61225e-06 5.41 2.67768e-04 4.13
200 × 200 2.61912e-06 4.51 1.05039e-07 5.10 1.71317e-05 3.97

Table 3.1. Extension errors for extrapolating the function f(x, y) =
cos ((2π(x− 0.5)) cos (2π(y − 0.5)). The convergence rate r is computed
by Eq. (2.30).

46

p(x, y, t) = p(x− ut, y− vt). The computed solution is exact up to machine precision, as

expected. Next we consider initialize with a Gaussian function,

f(x, y) = exp
(
−20

(
(x− 0.5)2 + (y − 0.5)

)2
)
.

Again, we consider scalar advection with constant velocity ~U = (0.1, 0.1). Figure 3.6

shows error over time computed in the L1 norm. The scaling of the error appears to be

L1 n
or

m
 o

f e
rro

r

10-6

0

10

20

30

40

50

60

70

80

Time
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Figure 3.6. Time series of the truncation error for an advecting scalar
function defined on a mesh with a cut cell discretization. The square grid
sizes were 100 (top), 200 (middle), and 400 (bottom). The time step was
set to one-fourth of the spatial step.

consistent with second order convergence. The error in the infinity and L2 norm indicates

an instability occurs in a finite amount of time (data not shown). To isolate the error,

we advect the scalar function,

S(x, y) = sin (50y)

with constant velocity ~U = (0.5, 0). The domain used was a circle with radius 0.2 centered

at (0.5, 0.5). The instability is apparent in Fig. 3.7. This problem will be addressed in

future work. For our purposes, diffusion will damp high frequency modes that cause the

instability.

47

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.7. The growth of an instability at the simulation time value of
t = 0.3. The grid size used was 150 with a time step equal to one-fourth of
the spatial step. The scalar extension from the advection update is shown.
The shaded plane is z = 0.

3.2.6. Boundary advection scheme. The advection scheme requires concentration

values to be located on a Cartesian grid. Information from values on the boundary is

lost after the advective step of the operator splitting method. One possible solution is

to employ the same bicubic interpolation scheme to extrapolate boundary values from

interior values. The new boundary values can be input into the reaction-diffusion solver.

Rather than bootstrap these values, we advect the boundary values separately for the

purpose of reinitializing the reaction-diffusion solver.

We accomplish this by implementing a method for advecting a scalar on a propagating

front originally presented in [3]. We summarize as follows. A scalar function S(x, y, t) on

a boundary that advects with a specified velocity field ~U and speed function F satisfies

the equation,

(3.7)

∂S

∂t
= −~U · ∇S − (n2

yux − nxny (uy + ux) + n2
xvy
)
S

−F (~n · ∇S + κS) ,

48

where ~n = (nx, ny) is the normal to the surface at the point (x, y) and κ is the curvature

operator. The notation ux denotes the partial derivative with respect to x of the first

component of the velocity vector. The extra second term on the right hand side and cur-

vature terms come from simplifying the conservative advection equation. The derivation

can be found in [3]. The scalar S is extended off the interface so that finite differences

can be used to discretize the various operators. The extension is based on methods for

constructing extension velocities presented in [2]. A temporary signed distance function

φtemp is constructed near the zero level set. This function satisfies the equation

(3.8) ∇φtemp · ∇Sext = 0.

The above construction ensures that the level set function φ remains the signed distance

function when the function propagates with an extension velocity over time. As φtemp is

constructed, Eq. (3.8) is solved. The numerical solution is computed similar to solving

the Eikonal equation Eq. (A.22) with fast marching methods.

3.2.7. Convergence tests for the boundary advection scheme. To test our bound-

ary advection scheme, we numerically solve Eq. (3.7) with a F = 0.1, zero velocity field

and an initial condition S(x, y, 0) = 1. S(x, y, t) is defined on a circular boundary cen-

tered at (0.5, 0.5) with radius r = 0.2. We initialize φ with the exact signed distance

function described in Appendix A. The exact solution to this equation is the scalar given

by

(3.9) S(x, y, t) =
r

r + 0.1t
.

The curvature operator is approximated by centered finite differences as follows,

(3.10) κ =
(D0yφ)

2
(D+x−xφ)− 2 (D0xφ) (D0yφ) (D0yD0xφ) + (D0xφ)

2
(D+y−yφ)(

(D0xφ)2 + (D0yφ)2)3/2
.

Finite difference operators are defined in Appendix A. The error over time is shown in

Figure 3.8 and is consistent with second order convergence.

49

L∞
 n

or
m

 o
f e

rro
r

10-5

0

2

4

6

8

10

12

14

16

18

20

22

24

Time
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 3.8. Time series of the truncation error for a scalar function de-
fined on a circle expanding in the normal direction with a speed function
F = 0.1. The square grid sizes were 50 (top),100 (middle), and 200 (bot-
tom). The time step was set to one-fourth of the spatial step.

Next we numerically solve Eq. (3.7) with a constant velocity field ~U = (0.1, 0.1),

zero speed function and an initial condition S(x, y, 0) = x. Again, the boundary that

S(x, y, t) is defined on is a circle centered at (0.5, 0.5) with radius r = 0.2. The exact

solution to this equation is the scalar given by

(3.11) S(x, y, t) = x− 0.1t.

Figure 3.9 shows the error in the L2 norm averaged over time. The convergence is

consistent with a first order scheme. The extension method is based on fast marching

methods, which are first order accurate. We are currently exploring higher-order efficient

boundary extensions methods.

3.3. Software implementation

The software organization and data input/output is the same as in Chapter 2. The

State class is modified to include routines for advection. The State class here also

50

L2 n
or

m
 o

f e
rro

r

10-5

0

5

10

15

20

25

30

35

40

Time
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 3.9. Time series for the truncation error for scalar function on a
boundary advecting with constant velocity. The square grid sizes were 100
(top), 200 (middle), and 400 (bottom). The time step was set to one-fourth
of the spatial step.

contains variables for velocity and a speed function. The signed distance function is a

variable in the State. The advect routine updates the signed distance function with

the time update in Eq. (3.4) and upwinding scheme [26]. Quantities computed with

the signed distance that are used for advecting concentration variables, such a normals

and curvature, are computed and stored. Compartment information from the previous

and current time is passed into another function that advects one species. In this func-

tion, a mesh representation of the data is obtained from the array that stores all of

the chemical species information. The interior and boundary extension are constructed.

The level set update is applied. Centroid values at cut cells are interpolated. Routines

from DTExtensions, software to interface level set methods with DTSource, calculate the

boundary extension and second order spatial stencils. Additional routines were written

for interpolation, extension, gradient, and curvature calculations. The new data are put

into an array that stores the updated state of the system. After every chemical species

is updated, the CombinedSolver class member of State is updated. The DASPK solver

51

is reset for the next reaction-diffusion step. DASPK must compute consistent initial

conditions for the DAE system every time the solver is reset after a step of advection.

3.4. Convergence tests for the hybrid algorithm

To test the numerical method, the computed solution to the advection-reaction-

diffusion equation is compared to the fixed boundary solution computed by the cut cell

algorithm in Chapter 2. Given a specified constant velocity field ~U = (u, v) and initial

condition f(x, y, 0), the advection-reaction-diffusion equation is numerically solved until

tend. To compare to the fixed boundary solution, the reaction-diffusion solver is initialized

with the value f(x − utend, y − vtend) and the exact boundary Γ(tend). The solution on

a fixed domain is solved from t = 0 until tend for comparison to the advection-reaction-

diffusion solution. In the following tests, the ratio ∆x/∆t = 4 is fixed. During a grid

refinement, the time step is also reduced by the same factor as the spatial step.

First we test our method by solving an advection-diffusion equation propagating with

constant velocity. In our first example, the initial condition is a Gaussian function

f(x, y) = exp
(−100

(
(x− 0.5)2 + (y − 0.5)2)) .

The boundary condition is no flux on the boundary Γ(t), which is given by the zero level

set of the signed distance function φ. A time series from the computed solution to the

advection-diffusion equation is shown in Figure 3.10. The truncation error in several

norms and convergence rates are listed in Table 3.2. The norms are defined as in [32],

(3.12) ||e||p =

 ∑
(i,j)∈Ω

|ei,j|pVi,j
/ ∑

(i,j)∈Ω

Vi,j

1/p

,

and the infinity norm is defined as the maximum value over the domain. The convergence

rate r is given by Eq. (2.30). The data presented in a log-log graph in Fig. 3.11 suggest

the method is second order accurate.

52

Time = 0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time = 0.05

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time = 0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time = 0.4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.10. Time values from the computed solution of an advection-
diffusion equation solved on a circle with a Gaussian initial condition. The
diffusion coefficient for this simulation was 0.05. The grid size is 200 ×
200. The initial boundary is the circle indicated by a solid black line.

Grid size Time step L2 norm r L1 norm r L∞ norm r
50 × 50 5.00e-03 1.98e-03 − 1.62e-03 − 2.97e-03 −

100 × 100 2.50e-03 2.42e-04 3.03 2.36e-04 2.78 3.27-e04 3.18
200 × 200 1.25e-03 4.83e-05 2.33 4.70e-05 2.33 6.76e-05 2.28
400 × 400 6.25e-04 1.05e-05 2.20 1.02e-05 2.20 1.50e-05 2.17

Table 3.2. The norms and convergence rates for the advection-diffusion
equation at the time value of 0.3.

53

Second order reference
L∞ norm
L1 norm
L2 norm
First order reference

Tr
un

ca
tio

n
Er

ro
r

10-5

0.0001

0.001

0.01

Grid Size
50 100 200 400

Figure 3.11. Truncation error for the advection-diffusion equation at the
time value of 0.3. The convergence data are the same as given in Table
3.2.

For our next example, we consider a two species system of advection-reaction-diffusion

equations. The reaction-diffusion terms in the system are given in Eqs. (2.31) and (2.32).

The equations model phosphorylation-dephosphorylation of a protein with Michaelis-

Menten kinetics. The initial domain is

(3.13) Γ(r, θ, 0) = r ≤ 0.2964 (1− 0.3 sin (4θ)) .

The values for constants used in the simulation are listed in Table 2.2. Figure 3.12

shows a time series from the model simulation. Chemical species are advected with

the constant velocity field ~U = (0.1, 0.1). The convergence data was generated as in

the previous example. The moving boundary solution was subtracted from the fixed

boundary solution to the reaction-diffusion equation. The convergence data are listed in

Table 3.3. A log-log plot of the truncation error is given in Fig. 3.13. Power function

fits to the convergence data in various norms are listed in Table 3.4. The data suggest

54

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Time = 0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Time = 0.15

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Time = 0.3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Time = 0.4

Figure 3.12. Time values from the computed solution of an advection-
reaction-diffusion equation solved on a moving boundary. The grid size is
200 × 200. The initial boundary is indicated by a solid black line.

the order of the method is reduced to first order. There are several sources of error

to consider that were not encountered with the previous example. First, the boundary

extension in the method uses first order interpolation. In [3] second order accuracy is

shown. However, the boundary extension in our method is recalculated after every time

step, which is not the case in [3]. Also, values on the boundary lie on a piecewise linear

approximation to the true boundary. Boundary values in [3] lie on the boundary given by

the zero level set. Another source of error is the centroid approximation. In our method,

bicubic interpolation gives the values to initialize cut cells for the reaction-diffusion solver.

55

Species Ci
Grid size Time step L2 norm r L1 norm r L∞ norm r
50 × 50 5.000e-03 7.54e-03 − 6.95e-03 − 1.10e-02 −

100 × 100 2.500e-03 2.68e-03 1.49 2.50e-03 1.48 3.96e-03 1.47
200 × 200 1.250e-03 1.12e-03 1.25 1.05e-03 1.25 1.69e-03 1.23
400 × 400 6.250e-04 4.98e-04 1.17 4.67e-04 1.17 7.55e-04 1.16

Species Ca
Grid size Time step L2 norm r L1 norm r L∞ norm r
50 × 50 5.000e-03 7.56e-03 − 6.95e-03 − 1.10e-02 −

100 × 100 2.500e-03 2.74e-03 1.47 2.50e-03 1.48 3.96e-03 1.47
200 × 200 1.250e-03 1.12e-03 1.28 1.05e-03 1.25 1.69e-03 1.23
400 × 400 6.250e-04 5.04e-04 1.16 4.67e3-04 1.17 7.55e-04 1.16

Table 3.3. The norms and convergence rates for the two species model
advecting with constant velocity at the time value of 0.4.

Second order reference
L∞ norm
L1 norm
L2 norm
First order reference

Tr
un

ca
tio

n
Er

ro
r

0.001

0.01

0.1

Grid Size
50 100 200 400

Figure 3.13. Truncation error for the advection-reaction-diffusion equa-
tion at the time value of 0.4. The convergence data are the same as given
in Table 3.3. Power fits for the truncation errors are given in Table 3.4.

Initialization with centroid values is an approximation to the integral of the function over

the control volume. Higher order embedded boundary methods are suggested in [45].

Higher order flux construction and cut cell initialization may be needed to increase the

convergence rate.

56

Species Ci Truncation Error
Norm Power Fit
L2 y = 1.15x−1.30

L1 y = 1.04x−1.29

L∞ y = 1.56x−1.28

Table 3.4. Power fit of the truncation error from the two species model
at the time value of 0.4.

Next we consider the integral of both chemical species over time. In Chapter 2, the

integral is conserved to machine precision for the system. This is not the case for the

moving boundary problem. Fig. 3.14 shows the integral sampled over time subtracted

from the integral of the initial condition. The change in area converges to the initial

value with second order accuracy.

Ch
an

ge
 in

 c
om

bi
ne

d
in

te
gr

al

10-6

0

10

20

30

40

50

60

70

80

90

Time
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 3.14. Numerical integral of total concentration subtracted from
the initial value. The top plot is for a grid size of 100 × 100 followed by
200× 200 and 400× 400 on the bottom.

To demonstrate the method on a boundary propagating with non-constant velocity,

we simulated the two species model (Eqs. (2.31) and (2.32)) propagating with the velocity

57

field

(3.14) ~U = 0.4

 x− 0.5

0.5− y

 .

Fig. 3.15 shows the computed solution at several time values. For this example, the

error is defined as the difference between successive grid refinements as in Chapter 2.

The truncation error function E(x, y, t) is defined on interior values on the course grid.

Computed solution values located in course grid cut cells are excluded from the domain.

This includes some values located in interior points for the more refined grid. The

truncation error function is defined as

(3.15) E(x, y, t) = c∆x(x, y, t)− c∆x/2(x, y, t).

The course grid values are located in the center of a box defined by four refined grid

values. Four refined grid values are averaged and subtracted from one course value.

Table 3.5 lists convergence data for this system, which is similar to the constant velocity

convergence data for the same system. We conclude that complicated boundary dynamics

lower the convergence rate of the method to first order.

Species Ci
Grid size Time step L2 norm r L1 norm r L∞ norm r
50 × 50 5.000e-03 − − − − − −

100 × 100 2.500e-03 2.79e-03 − 3.05e-04 − 3.51e-03 −
200 × 200 1.250e-03 9.53e-04 1.55 1.10e-04 1.47 1.28e-03 1.45
400 × 400 6.250e-04 4.21e-04 1.18 5.00e-05 1.14 5.65e-04 1.18

Species Ca
Grid size Time step L2 norm r L1 norm r L∞ norm r
50 × 50 5.000e-03 − − − − − −

100 × 100 2.500e-03 2.79e-03 − 3.05e-04 − 3.51e-03 −
200 × 200 1.250e-03 9.53e-04 1.55 1.10e-04 1.47 1.28e-03 1.45
400 × 400 6.250e-04 4.21e-04 1.18 5.00e-05 1.14 5.65e-04 1.18

Table 3.5. The norms and convergence rates for the two species model
advecting with non-constant velocity at the time value of 0.4.

58

Time = 0.2

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time = 0.4

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.15. Time values from the computed solution of an advection-
reaction-diffusion equation solved on a moving boundary advecting with
non-constant velocity. The initial boundary is a circle indicated by a solid
black line. The grid size is 200 × 200.

3.5. Substrate depletion model

Generating robust spatial patterns is important for many problems in developmen-

tal biology, and occurs in many biological systems. Pattern formation can be estab-

lished through local activation and global inhibition of reacting chemical species. Turing

originally proposed the idea that symmetry breaking can occur via a diffusion driven

instability, leading to spatial patterns of interacting chemical species [79]. Turing in-

stabilities have been proposed as a mechanism to explain pattern formation in many

systems including morphogenesis in Drosophila [11], animal coat markings [54], and the

rapid polarization of proteins involved in the yeast mating response pathway [25]. It is

well known that domain size is a bifurcation parameter in Turing systems [7]. Geometry

also contributes to pattern formation [11, 54]. In this section we explore the effects of a

deforming geometry on pattern formation for a model system.

In the model system [31], a Turing instability is caused by a slow diffusing protein

locally activated through positive feedback. This protein depletes the fast diffusing sub-

strate [22]. We model a signaling protein that exists in two forms: a membrane bound

59

active guanosine triphosphate (GTP)-bound form and a cytosolic, inactive GDP-bound

form. Let [Ri] and [Ra] denote the inactive and active concentrations. The active form

for this type of protein is known to diffusion slower than the cytosolic inactive form [82].

We assume a top down view of a three dimensional cell as in [18, 50] where membrane

bound GTP-forms are modeled with smaller diffusion coefficient.

The substrate depletion model is given by the following equations,

∂ [Ri]

∂t
+ ~U · ∇ [Ri] = D1∆ [Ri] + γ

(
− d0 [Ri]−

(
k2 + k2p [Ra]

2) [Ri]

km1 + [Ri]
(3.16)

+ k2r [Ra] + k0

)
∂ [Ra]

∂t
+ ~U · ∇ [Ra] = D2∆ [Ra] + γ

(
− d0 [Ra] +

(
k2 + k2p [Ra]

2) [Ri]

km1 + [Ri]
(3.17)

− k2r [Ra]
)
.

The boundary conditions are no flux for both chemical species.

First, we allow the system to reach steady state on an initial geometry, then advect

the boundary and chemical species with a nonzero velocity field. For the first 200 time

units, the simulation is run with the velocity ~U = 0. The initial domain is a circle

centered at the point (0.5, 0.5) with radius r = 0.2. The initial conditions are

(3.18)
[Ri] (x, y, 0) = 2 + 0.2

(
exp

(−50
(
(x− 0.7)2 + (y − 0.5)2))

[Ra] (x, y, 0) = 0.

The Gaussian terms in the initial concentration of [Ri] represent small perturbations to

the spatially homogenous initial condition. Table 3.6 lists the values of constants used

in the model simulation. The steady state solution to the substrate depletion model on

a circlular domain is spatially homogeneous in spite of the initial perturbation, and is

60

Constant Value Constant Value
D1 5.00 k2p 7.00
D2 0.05 k2r 4.00
d0 0.03 km1 1.65
k0 0.10 γ 1.2
k2 3.00

Table 3.6. Values of constants in the first substrate depletion model simulation.

given by

(3.19)
[Ri] (x, y, 200) = 0.376138

[Ra] (x, y, 200) = 2.950538.

The steady state solution is robust to large spatial perturbations. We conclude that

no diffusion driven Turing instability forms for the circular geometry with the specified

parameters. To investigate the effects of geometry on the stability of Eqs. (3.16) and

(3.17), we simulated the equations with the velocity field

(3.20) ~U = 0.01 (x− 0.5, 0.5− y) ,

with initial concentrations and cellular geometry from the steady state solution Eq.

(3.19). As the boundary deforms, an instability forms in an area of high curvature

(Figs. 3.16(a) and 3.16(b)). Fig. 3.17 shows the active concentration through the center

of the horizontal domain at time values near the formation of the instability. The area

of the domain is remains unchanged, but the arc length increases. The geometric change

drives the system into forming a regime where the spatially homogeneous steady state is

unstable.

Next, we consider the case with two initial perturbations,

(3.21)

[Ri] (x, y, 0) = 2 + 0.2
(

exp
(−500

(
(x− 0.35)2 + (y − 0.5)2))

+ exp
(−500

(
(x− 0.65))2 + (y − 0.5)2)))

[Ra] (x, y, 0) = 0.

61

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

(a) Concentration of inactive R.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

(b) Concentration of active R.

Figure 3.16. Concentration of R at t = 35. The initial geometry is
indicated by a dashed line. The grid size used was 100× 100.

62

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

1

2

3

4

5

6

7

8

x - axis

[R
a]

Figure 3.17. A slice through the mesh of active R at line y = 0.5 for t ∈ [25, 35].

When the system is simulated with parameter values in Table 3.7, a transient perturba-

tion forms on the right side of the domain before the instability forms on the left side

(Fig. 3.18). We enforce a boundary deformation for t ∈ [13.5, 14] given by the velocity

Constant Value Constant Value
D1 5.00 k2p 7.00
D2 0.05 k2r 4.00
d0 0.02 km1 1.88
k0 0.10 γ 17
k2 3.00

Table 3.7. Values of constants in the second substrate depletion model simulation.

field,

(3.22) ~U = 0.7 (x− 0.5, 0.5− y) .

After t = 14, the simulation runs to a steady state profile. Fig. 3.19 shows the perturba-

tion on the right is enforced by the boundary deformation. The results are independent

of deformation speed.

63

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

Time = 10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

Time = 13.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

Time = 17

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

Time = 50

Figure 3.18. Time values from [Ra] in the substrate depletion model with

two initial perturbations and ~U = 0. The grid size used was 150× 150.

3.6. Rho family GTPase model

In this section, we model a crawling fibroblast to investigate the role of cell morphol-

ogy and speed of migration on signaling proteins. We use the same model from Chapter

2 with six species: inactive and active forms of Cdc42, Rac, and Rho. Cdc42 is the

master regulator of cell polarity that triggers downstream effectors leading to the polar-

ization of Rac and Rho. The active form of these proteins leads to actin polymerization

and cytoskeletal reorganization. Rac generates protrusive forces, while Cdc42 generates

64

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

Time = 13.8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

14

Time = 50

Figure 3.19. Time values from [Ra] in the substrate depletion model
with two initial perturbations. The boundary deforms from t = 13.5 to 14.
Earlier time values are the same as in Fig. 3.18. The initial geometry is
indicated with a solid line. The grid size used was 150× 150.

filopodia. Rho activity is associated with the formation of stress fibers, focal adhesions,

and myosin-based contractility [4, 12].

For simplicity, we concentrate on the basic hypothesized biochemical interactions

proposed in [12]. The model equations are given by Eqs. (2.37) - (2.40). The schematic

of interactions is illustrated in Fig. 2.6. In the model, an extracellular signal such as

platelet-derived growth factor (PDGF) leads to activation of Cdc42 on the cell edge

[30]. The active form of Cdc42 activates Rac. In turn, Rac activates Rho. Active Rho

deactivates Rac. The active forms of Rac, Rho, and Cdc42 are deactivated in in the cell

interior. We impose a velocity field that models active transport by molecular motors

inside the cell. The cell migrates with a velocity field the stretches the cell in the y

direction, and compresses and translates the cell in the positive x direction,

(3.23) ~U = c
(

0.7 (0.5− x) + 0.5, 0.7 (y − 0.5)
)
,

where c is a scaling constant. The velocity field is consistent with the movies of migrating

fibroblasts from [62]. In the simulation, the initial conditions are 0 for the active species

Cdc42a, Raca, and Rhoa. The initial condition for the inactive species Cdc42i, Raci, and

65

Rhoi is 1. We simulate polarization in response to an extracellular signal before migration

by simulating the reaction-diffusion equation until a stable gradient forms (Fig. 3.20).

Then we simulate migration by including an advective term with the velocity field from

Eq. (3.23). The constants used in the simulation are listed in Table 3.8. The diffusion

coefficient used for inactive species was 0.1. The diffusion coefficient for the active species

was 0.05. The initial geometry is based on live cell images of a migrating fibroblast from

[62]. Figures 3.21 - 3.23 show the concentration profiles after advecting for 150 time steps.

The reaction-diffusion equation was solved from simulation time t = 0 until t = 3.25.

The advection term was added with the constant c equal to 2. The advection-reaction-

diffusion equation was simulated from t = 3.25 until t = 3.5. In general, the gradient in

the concentration profiles obtained by solving the advection-reaction-diffusion equation

is steeper than the steady state concentration profiles. The maximum values of the active

forms of Rac and Rho are located where the initial protrusion was located whereas the

maximum is located at the bottom of the cell in the steady state concentration profiles

(Figs. 3.22 and 3.23). This suggests that migration speed can play a role in enhancing a

transient signal from a thin protrusion with high phosphorylation levels.

Parameter Value Parameter Value Parameter Value
S 1.0 k8 3.0 Km3 0.2
k1 5.0 k9 5.0 Km4 0.2
k2 3.0 Km1 0.2 km5 0.2
k3 1.0 km2 0.2 km6 0.2
k4 3.0 Km7 0.2 Km11 0.2
k5 3.0 Km8 0.2 Km12 0.2
k6 5.0 km9 0.2 km13 0.2
k7 1.0 km10 0.2 k14 0.2

Table 3.8. Reaction constants used in the simulation of the Rho GTPase model.

3.7. Conclusions

We have presented a novel numerical method to simulate systems of advection-

reaction-diffusion equations in complex time-dependent geometries. The examples pre-

sented in this chapter have used divergence-free velocity fields, but the method is not

66

Cdc42i Cdc42a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

1.1

Raci Raca

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.45

0.5

0.55

0.6

0.65

0.7

Rhoi Rhoa

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Figure 3.20. Initial condition for the advection-reaction-diffusion equa-
tion. The grid size used was 150. The time step was set to one-fourth of
the spatial step size.

67

 Steady State Solution Solution with Advection

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Cdc42i

Cdc42a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

1.1

Figure 3.21. A comparison of the steady state Cdc42 concentration val-
ues with the computed solution to the advection-reaction-diffusion equa-
tion. The solid line indicates the initial cell geometry.

limited to a specific type of velocity field. Although the method is only approximately

numerically conservative, it matches the conservation properties of level set methods

which scale with second order accuracy. Because the methods presented here are based

on a Cartesian grid, they can be extended to three-dimensions. The numerical accuracy

of the method is overall first order. For some problems, such as the advection-diffusion

equation in section 3.4, second order accuracy can be achieved. We discuss ideas for

improving the accuracy in Chapter 5.

In the examples presented here, our main goal was to observe morphological effects

on biochemical protein concentrations. Cell motility is a complex biophysical process. A

68

 Steady State Solution Solution with Advection

Raci

Raca

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Figure 3.22. A comparison of the steady state Rac concentration values
with the computed solution to the advection-reaction-diffusion equation.
The solid line indicates the initial cell geometry.

realistic mathematical model must take into account the mechanochemical events leading

to cell protrusion, extension, and retraction. In the future, the methods presented here

will be coupled with a mechanical model driving the boundary deformation.

69

 Steady State Solution Solution with Advection

Rhoi

Rhoa

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Figure 3.23. A comparison of the steady state Rho concentration values
with the computed solution to the advection-reaction-diffusion equation.
The solid line indicates the initial cell geometry.

70

CHAPTER 4

Modeling Transient Anchorage of Membrane Proteins

Elucidation of signal transduction from membrane proteins into the cell interior is an

important question in cell biology. Signaling molecules bind to receptors on the target

cell’s surface and initiate a signaling cascade. Glycosyl-phosphatidylinositol (GPI) an-

chored proteins (GPIAPs) are membrane proteins located in many different cell types

and tissues. These proteins are important because they have diverse functions in eukary-

otic cells, such as signal transduction, prion disease pathogenesis, and immune response

[61]. In a study of the disease paroxysmal nocturnal hemoglobinuria, deleting the GPI

anchor on the gene PIG-A was lethal in mice [33].

GPI anchored proteins are hypothesized to associate with lipid raft domains (cholesterol-

dependent nanodomains) [64]. These domains accommodate certain membrane proteins

better than other areas of the plasma membrane [4]. The domains are thought to provide

locations for signaling molecules to organize and activate other proteins in a signaling

network. For example, a hypothesis from [14] is that clusters of GPIAPs induce the

formation of cholesterol-dependent nanodomains. Activated Src family kinases (SFKs)

lead to linkage of a transmembrane protein to the cytoskeleton.

In [14] experiments were performed on GPI anchored proteins to determine how

these proteins associate with the cytoskeleton. In these experiments, single particle

tracking was used to study the movements of single lipids and GPI anchored protein

clusters tagged with 40 nm gold particles (Fig. 1(a)). Regions of transient confinement

and transient anchorage of the particles were revealed (Fig. 1(b)). The distribution of

transient anchorage release times was discovered to have a long tail. We developed a

stochastic model of the system to explain the transient anchorage release times and the

underlying biochemical reaction system.

4.1. Experimental data

Coordinate data were obtained from tracking the gold particles cross-linked with

GPI anchored proteins. Single particles diffused on the cell membrane and transient

anchorage events where particles exhibited no detectable displacement were observed.

Experimental error in [14] was determined to be a distance of 25 nm. The criteria for a

transient anchorage event was particle displacement was less than 25 nm for more than

132 ms. Figure 4.2 shows a histogram of release times from an anchored state.

4.2. Mathematical framework

In [14] the shape of the distribution of transient anchorage release times was used to

show different cross-linking schemes generated similar results. Our goal is to formulate a

model for the distribution consistent with observed data and to analyze the implications.

To model the longer tail of the release time distribution, we assume the probability

density function of release times has the form

(4.1) p(t) = aec1t + bec2t

A histogram of the experimental data with a nonlinear least squares fit of the data is

shown in Fig. 4.3. Single exponential and biexponential functions were used to fit the

data. The single exponential function for the fit was

(4.2) f(t) = log
(
aec1t

)
,

with parameter values a = 4.641 and c1 = −0.417. The biexponential function of the

form

(4.3) f(t) = log
(
aec1t + bec2t

)
72

(a) After incubating cells with biotinylated mouse primary antibodies recognizing specific GPI-
APs (top), antibiotin gold particles are added on the cell membrane to form bonds with the
primary antibodies (middle). Finally, tertiary polyclonal antibodies that bind to mouse IgG
(immunoglobulin G) antibodies are added to further cross-link the GPIAPs (bottom)

(b) During single particle tracking, short periods with zero displacement were observed (arrows
indicate representative transient anchorage events)

Figure 4.1. Maximal cross-linking scheme that produces transient an-
chorage. Reprinted with permission from the authors: Y. Chen, W. R.
Thelin, B. Yang, S. L. Milgram, and K. Jacobson, and published by Rock-
efeller University Press (RUP).

73

Fr
eq
ue
nc
y

0

10

20

30

40

50

Time
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Figure 4.2. The histogram of release times from transient anchorage
events taken from experimental data [14].

yielded the parameter values a = 2.340, b = 295.795, c1 = −0.194, and c2 = −9.009. The

biexponential function provides a better fit of the experimental data.

Experimental data
Biexponential fit
Exponential fit

Fr
eq

ue
nc

y

-1.0

-0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Duration of transient anchorage events (seconds)
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Figure 4.3. The histogram of transient anchorage events exhibits a long
tail. A biexponential function provides a better fit for the data than a
single exponential. The scale for the y axis is logarithmic.

74

A stochastic model for release times consistent with the proposed exponential form

in Eq. (4.1) is given by

(4.4)
A

kon

b1

B

B
f1

b2

C,

where A is a state of free diffusion of the cross-linked GPIAP cluster on the cell membrane.

B and C are states of transient anchorage. The extra state C allows for a time delay

before exiting transient anchorage.

The parameters kon and b1 can be estimated from single particle trajectory data

using a hidden Markov model [21] (HMM). An HMM is a stochastic dynamical system

model with partially observed states. Unlike state B, state C cannot be observed from

time series. Therefore, we are unable estimate the transition probabilities f1 and b2,

and consider a basic stochastic model of transient anchorage consisting of two states.

The first state is free diffusion, and the second is diffusion constrained by a tether. A

continuous model of diffusion can be described by the Wiener process,

(4.5) dY (1)(t) = σdB(t),

where B(t) is standard Brownian motion with variance σ. A continuous model of tran-

sient anchorage is modeled with diffusion constrained by a tether is given by,

(4.6) dY (2)(t) = −κ (Y (2)(t)− Y (τ)
)
dt+ σdB(t),

where τ is the time of the last anchorage. The discrete version of this process is Gaussian,

independent random variables with variance σ2

2κ
(1 − e−2κ∆t). An approximate discrete

version of the two state model is given by,

(4.7) Yn = I{Zn=1}Yn−1 + I{Zn=2}Yτ + σ(Zn)Xn,

75

where τ is the index where a switch occurs, and IZn=i is one if Zn = 1 is true and zero

otherwise. The random variable Xn is a sequence of zero mean, unit variance normal

random variable. The variance σ(Zn) depends on the state of binding Zn. To remove the

dependence on Yτ , the time series is differenced,

(4.8) Yn = σ(Zn)
(
Xn − I{Zn=2}Xn−1

)
.

The switching state space model can be written as

(4.9) Yn = AZnXn

and

(4.10)

 Xn

Xn−1

 =

 0 0

1 0

 Xn−1

Xn−2

+

 Wn

0

 ,

or in matrix notation,

(4.11) ~Xn = Φ ~Xn−1 + εn.

Zn is a discrete space Markov chain with probability transition matrix K. Wn are in-

dependent, identically distributed random variables with mean zero. The vectors Ai are

given by

(4.12) A1 = (σ(1), 0) A2 = (σ(2),−σ(2)) .

4.2.1. Filtering. We use filtering to find the probability of being in a certain state.

Given an observable state Vn, a filter will allow us to estimate the probability density

function of the unobserved state Un, given previous observations. Because Xn is a Markov

process, we know the density f(un|un−1). We also know the distribution f(vn|un). In our

model (4.9), the conditional probability f(~xn|~xn−1) is normal with mean (0, xn−1) and

76

zero covariance matrix,

(4.13) Σ =

 1 0

0 0

 .

The probability f(~yn| ~xn) = AZnXn.

For a general hidden Markov model, the goal of the filter is to find f(un|v1, . . . , vn),

denoted f(un|v1:n). The mean of this density gives an estimate for the state the particle

is in at tn. The filter involves a prediction step and an update. The prediction step is

(4.14) f(un|v1:n−1) =

∫
f(un|un−1)f(un−1|v1:n−1)dun−1.

The first term in the integral is known from the Markov property. The second term is

the filter from the previous time step. The update step is Bayes’ rule,

(4.15) f(un|v1:n) =
f(vn|un)f(un|v1:n−1)∫
f(vn|un)f(un|v1:n−1)dun

.

The integrals in the prediction and update steps may not have closed forms. For the case

where Un and Vn are normal random variables with linear dependencies, the integrals have

closed forms and the filter is called a Kalman filter. The Kalman filter can be described

by a mean vector and covariance matrix. A brief summary is provided in Appendix

B. For our switching model, a Kalman filter must be modified to accommodate the

dependence of the switching state space model on the Markov chain Zn. The filter is

a mixture of Gaussian distributions and depends on the entire path up to the current

time. Modifications currently being developed to address this problem are discussed in

Chapter 5.

4.2.2. Parameter estimation. We would like to infer parameters from the distribu-

tions of the hidden processes Zn and Xn, given the observed random variables Yn. Specif-

ically, we want estimates for the transition matrix K and values for σ. Maximum likeli-

hood can be used to obtain estimates for parameters of the HMM, denoted by Θ. The

77

likelihood function is computed from the joint probability density of observed trajectories

and has the form,

L(Θ) = f(Y1, . . . , Yn; Θ) =
n∏
i=1

f(Yi|Y1, . . . , Yi−1)

=
n∏
i=1

∫
f(Yi|xi)f(xi|Y1:i−1)dxi.(4.16)

This expression is calculated in the second step of the filter (Eq. (4.15)). By calculating

the filter for different values of Θ, the likelihood function can be numerically maximized.

This form of the likelihood is called the error prediction decomposition approach. Dis-

cussion on the use of the Kalman filter in maximum likelihood calculations is found in

[8, 27].

4.3. Algorithm for simulating transient anchorage

We formulated an algorithm to simulate transient anchorage for testing the time series

analysis. Simulated time series data can be compared to likelihood estimates to determine

confidence intervals for parameters. Diffusion in two dimensions with diffusion coefficients

D = (D1, D2) can be modeled by the system of stochastic differential equations (SDEs),

(4.17) Xt = (2D)1/2 dWt,

where Wt is a Wiener process. A Wiener process can be thought of as the limiting

process of a random walk as the step size tends to zero. Each entry in the vector dWt

is an independent, identically distributed normal random variable with zero mean and

variance ∆t. Transient anchorage is simulated as diffusion with a tight spring, modeled

by an Ornstein-Uhlenbeck process

(4.18) Xt = κ∆t (X0 −Xt) + (2D)1/2 dWt,

78

where κ is a spring constant. The transition probability into a state of transient anchorage

occurs with probability kon∆t. In experiments, a transiently anchored particle undergoes

no visible displacement. To model this effect, the spring constant κ is very large and

the stochastic differential equations in Eq. (4.18) are stiff. Therefore, an implicit Euler

scheme is used to update the system. The release times are generated by simulating

the reaction system in Eq. (4.4) with a stochastic simulation algorithm [23] (details are

located in Appendix C). Parameters b1, f1, and b2 are chosen such that the distribution

of release times (i.e. entering state A) has the same shape and tail as the experimental

data.

Reasonable estimates for diffusion coefficients are obtained by analyzing time series

data. The sample variance of step sizes in the x and y direction are calculated. The

diffusion coefficient is estimated by the variance divided by 2 times the step size ∆t.

4.4. Results

We begin with the two state model given by free diffusion and an diffusion constrained

by a tether (Eqns. (4.5) and (4.6)) in one spatial dimension. Given specified parameters

D, ∆t, kon, and b1, we investigate the accuracy of the filter predictions as the spring

constant κ varies. If the filter probability p(Xn|Yn) > 0.5, we assume the particle is

bound. Estimates for diffusion coefficients from experimental data range from 30, 000 to

80,000 nm2/s. We use D = 50, 000. kon is set to 0.02 and b1 is 0.04. The time step

∆t = 0.034 was taken from the experimental data [14]. Figs. 4.4 and 4.5 show time

series for two different values of the spring constant κ and the estimate for the switch

based on the filter. Table 4.4 lists the percentage of correct guesses for the filter as a

function of κ. The analysis indicates a large spring constant is necessary for accurate

filter predictions as well as qualitatively matching experimental obersevations from [14].

Next, we illustrate the transient anchorage simulation method from section 4.3. A

stochastic simulation algorithm to simulate Eqs. (4.4) was used to pre-compute the

79

κ Percentage
10 36.6
20 48.7
30 74.9
40 84.3
60 90.7
80 91.3
100 93.0

Table 4.1. Percentage of correct guesses for the filter as a function of κ.

Time

P
os

iti
on

 (
nm

)

0 500 1000 1500 2000

−
50

0
0

50
0

Figure 4.4. Simulated path trajectory for κ = 10 (black) and switch
based on the filter (red).

release times. The initial conditions were A = 0, B = 1, and C = 0. When the particle

entered state A, the time was saved, and the simulation re-initialized. The constants

80

Time

P
os

iti
on

 (
nm

)

0 500 1000 1500 2000

−
40

0
−

20
0

0
20

0
40

0

Figure 4.5. Simulated path trajectory for κ = 70 (black) and switch
based on the filter (red).

f1 = 15, f2 = 1, and b1 = 1.2 were chosen to capture the biexponential form and long

tail of the experimental data from [14]. The constant kon was arbitrarily chosen to be

0.01. The spring constant κ was set to 2200. The time step ∆t was set to 0.001 to obtain

numerical accuracy of the Euler method. However, trajectories can be sampled to match

experimental ones. The diffusion coefficient D matched experimental data scaled for the

smaller time step, and was set to 45 nm2/s. A simulation of 1920 time steps with these

values is shown in Figure 4.6.

81

-5000 0 5000 10000 15000 20000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Figure 4.6. Simulation of transient anchorage. The black circles indicate
locations of transient anchorage events. Plus marks indicate start and end
locations. The x and y axis units are nm.

4.5. Conclusions

The cause of transient anchorage was hypothesized to be cross-linking of GPIAPs

leading to the formation of cholesterol-dependent nanodomains on the inner and outer

leaflets of the cell membrane [14]. The nanodomains include transmembrane proteins

that facilitate signal transduction. An activated Src family kinase (SFK) can enter the

domain, phosphorylate a transmembrane protein, leading to attachment to the actin

cytoskeleton though adaptor proteins. Our model for the release times suggests that one

linkage step is not enough to generate the long transient anchorage release time events.

At least one other linker protein is needed to account for the long duration of some events.

Multi-state models have been used to explain other biological phenomena. Pauses

in mechanical stepping of molecular motors are called dwell events. Multi-state models

for the kinetic scheme of molecular motors have been shown to reproduce dwell-time

82

distributions [44]. After the parameter estimation code is benchmarked (see Chapter 5),

the method could be applied to other multi-state stochastic processes.

83

CHAPTER 5

Future Work

The algorithms for models of spatiotemporal signaling networks in Chapters 2 and

3 are limited to two dimensions. Three dimensional effects are important in many cell

types, such as yeast cells. A three dimensional version of the algorithm in Chapter

2 would need a more computationally efficient method to invert the Jacobian matrix

in Eq. (2.28). A multigrid method or preconditioner for the GMRES iteration are

some options. Recent work suggests that higher order methods can be developed for

embedded boundary methods through implicit function representation [45]. Taylor series

approximations of boundary fluxes can be computed from moments. These ideas could

be incorporated to increase the accuracy of the method in Chapter 2. Another possible

improvement is to couple membrane diffusion to reactions on the boundary and interior

using the scheme from [3].

There are several improvements for the moving boundary algorithm in Chapter 3.

The first problem is the instability in the advection code. In [16, 51], a Godunov

method is presented for embedded boundary methods that is between first and second

order accurate. A redistribution scheme developed for shock tracking is needed to handle

cells with arbitrarily small volumes, and an error term is added to make the solution

conservative. The ideas from this method could be used to improve the accuracy of the

advection-reaction-diffusion solver. Moment calculations described previously could also

be used to increase the accuracy of the method.

A limitation of the method in Chapter 3 comes from the bicubic interpolation stencil.

Adaptive mesh refinement on sections of the domain with thin protrusions would decrease

computational resources necessary for model simulations.

The mathematical models presented in Chapters 2 and 3 lack realistic biological

details due to the difficulty in obtaining data for parameter values, such as reaction

rates and diffusion coefficients. The models in Chapters 2 and 3 were simulated with

parameters that highlighted the influence of spatial terms on concentration profiles. In

the future, the numerical methods presented here can be used in realistic spatial models

to elucidate control mechanisms of cellular processes.

A stochastic model for the transient anchorage of membrane proteins was presented

in Chapter 4. Software is currently being developed to detect the transitional probabil-

ities, diffusion coefficients, and probability densities for Markov chain Zn using sample

trajectories obtained from the stochastic model. A challenge is computing conditional

densities needed for the filter. Some calculations involve averaging over all possible paths

of the hidden Markov chain. Given two states in the Markov chain, the number of paths

to sum for each data point would be 2n, where n is the number of points. The method

currently being explored to simplify the calculation involves a normal approximation to

the density of the hidden system given past observations. [76]. After the algorithm has

been benchmarked, we will acquire parameter estimates from experimental trajectories.

85

APPENDIX A

Level Set Methods

Level set methods are algorithms for tracking the evolution of boundaries and inter-

faces over time. A boundary is represented as the zero level set of a higher dimensional

signed distance function φ(x, y, t). This function gives the distance from grid point to the

boundary, with a negative sign if it is enclosed by the boundary. Otherwise, the distance

is assigned a positive sign (Fig. A.1). If a particle on the boundary is represented by the

x y

z

Figure A.1. An example of a signed distance function for a circle. The
plane z = 0 is indicated in purple.

point (x(t), y(t)), then φ(x(t), y(t), t) = 0. The chain rule gives us

(A.1) φt +∇φ(x(t), y(t), t) · (x′(t), y′(t)) = 0.

Speed in the normal direction is given by

(A.2) F (x, y, t) = ~n · (x′(t), y′(t)) ,

where ~n = ∇φ|∇φ|. Then the evolution of φ is given by the level set equation originally

presented in [59],

(A.3) φt + F |∇φ| = 0,

subject to the initial condition φ(x, y, 0). Suppose we have a velocity field ~U that is a

function of only position and time and passively advects the front. Then φ satisfies

(A.4) φt + F |∇φ|+ ~U · ∇φ = 0.

A.1. Operator discretization

In order to numerically solve the partial differential equation in Eq. (A.4), spatial and

temporal operators must be discretized. The boundary that we wish to capture may not

be differentiable and have sharp corners. Schemes developed for hyperbolic conservation

laws to capture the evolution of the slope over time are used to obtain the weak solution

to Eq. (A.4). The following schemes also converge to the unique viscosity solution.

Details and further discussion of the methods presented here can be found in [72].

Let us consider a scheme first order in space and time with one spatial dimension. If

the speed function F = 1, then the update for φ at the ith spatial point and n+ 1th time

step is

(A.5) φn+1
i = φni −∆t

(
max(D−xi , 0)2 + min(D+x

i , 02)
)1/2

.

The operators D±xi are discretizations of the ∂φ/∂x given by

D+xφ(x, t) ≡ φ(x+ ∆x, t)− φ(x, t)

∆x
(A.6)

D−xφ(x, t) ≡ φ(x, t)− φ(x−∆x, t)

∆x
.(A.7)

The gradient approximations in the above equations is an example of upwinding. Con-

sider the one dimensional advection equation with constant positive speed c. The domain

87

of dependence of the point (x, t) is (x− ct) [40]. Therefore, we must use computational

points behind the ith point to calculate the gradient. If c is negative, we use points in a

direction ahead of the ith point. In two-dimensions with a non-constant speed function

F , an upwinding update is

(A.8) φn+1
ij = φnij −∆t

(
max(Fij, 0)∇+ + min(Fij, 0)∇−) ,

where

(A.9)
∇+ =

(
max(D−xij , 0)2 + min(D+x

ij , 0)2 + max(D−yij , 0)2 + min(D+y
ij , 0)2

)1/2

∇− =
(
max(D+x

ij , 0)2 + min(D−xij , 0)2 + max(D+y
ij , 0)2 + min(D−yij , 0)2

)1/2
.

The stencil for Eq. (A.4) is given by

(A.10) φn+1
ij = φnij −∆t


max(Fij, 0)∇+ + min(Fij, 0)∇− +

max(unij, 0)D−xij + min(unij, 0)D+x
ij +

max(vnij, 0)D−yij + min(vnij, 0)D+y
ij

 .

To obtain a second order spatial update, we use a higher order approximation of the

derivative given by an ENO scheme from [26]. Then we have the following updates for

∇+ and ∇−:

∇+ =
(
max(A, 0)2 + min(B, 0)2 + max(C, 0)2 + min(D, 0)2

)1/2
(A.11)

∇− =
(
max(B, 0)2 + min(A, 0)2 + max(D, 0)2 + min(C, 0)2

)1/2
,(A.12)

where

(A.13)

A = D−xij + ∆x
2
m(D−x−xij , D+x−x

ij)

B = D+x
ij − ∆x

2
m(D+x+x

ij , D+x−x
ij)

C = D−yij + ∆y
2
m(D−y−yij , D+y−y

ij)

D = D+y
ij − ∆y

2
m(D+y+y

ij , D+y−y
ij),

88

and m is the switch function

(A.14) m =


x if |x| ≤ |y| and xy ≥ 0

y if |x| > |y| and xy ≥ 0

0 xy < 0.

D+x+xφ(x, t), D+x−xφ(x, t), and D−x−xφ(x, t) are discretizations for ∂2φ/∂2x given by

D+x+xφ(x, t) ≡ φ(x+ 2∆x, t)− 2φ(x+ ∆x, t) + φ(x, t)

∆x2
(A.15)

D−x−xφ(x, t) ≡ φ(x− 2∆x, t)− 2φ(x−∆x, t) + φ(x, t)

∆x2
(A.16)

D+x−xφ(x, t) ≡ φ(x+ ∆x, t)− 2φ(x, t) + φ(x−∆x, t)

∆x2
.(A.17)

To make (A.10) second order in space, we replace D−xij with A, D+x
ij with B, etc.

To make the temporal update second order, we use a second order Runge-Kutta

method (Heun’s method). For an ordinary differential equation y′ = f(t, y(t)) with

initial condition y(t0) = y0, the update is given by

(A.18)
y∗(n+1) = yn + ∆tf(tn, yn)

yn+1 = yn +
∆t

2

(
f(tn, yn) + f(tn+1, y∗(n+1))

)
,

where n represented the y(t) at time tn (or n∆t) and y∗(n+1) is an intermediate time

value. In our level set equation (A.4), the first step of the update is given by

(A.19) φ
(n+1)∗
ij = φnij −∆t


max(F n

ij, 0)∇n+ + min(F n
ij, 0)∇n− +

max(unij, 0)An + min(unij, 0)Bn +

max(vnij, 0)Cn + min(vnij, 0)Dn

 ,

89

to obtain the intermediate time value. Then the second order temporal update is

(A.20) φn+1
ij = φnij −∆t/2



max(F n
ij, 0)∇n+ + min(F n

ij, 0)∇n− +

max(unij, 0)An + min(unij, 0)Bn +

max(vnij, 0)Cn + min(vnij, 0)Dn +

max(F n∗
ij , 0)∇n∗+ + min(F n∗

ij , 0)∇n∗− +

max(un∗ij , 0)An∗ + min(un∗ij , 0)Bn∗ +

max(vn∗ij , 0)Cn∗ + min(vn∗ij , 0)Dn∗


,

where the n∗ superscript indicates the quantities Fij, ∇+, ∇−, A, B, C, and D are

updated using the intermediate time value φ(n+1)∗.

To ensure numerical stability of these methods, we require that the boundary cross

no more than one grid cell during each time step. i.e.

(A.21) max
Ω

(F, u, v) ∆t ≤ ∆x.

A.2. Initialization

The partial differential equation Eq. (A.4) is an initial value problem. For certain

domains, initialization of the signed distance function can be easily calculated. For

example, the signed distance function φ(x, y, 0) from a circle of radius r centered at

(x0, y0) is computed as follows. The distance in absolute coordinates from the point (i, j)

to the radius (x0/∆x, y0/∆y) is subtracted from the scaled radius r/
√

∆x2 + ∆y2. The

values inside of the circle are assigned a negative value.

For a general domain, fast marching methods can be used to initialize φ(x, y, t) [46].

These are methods to numerically solve the Eikonal equation

(A.22) |∇T |F = 1,

90

where T is the arrival time of a boundary as it propagates with speed F . If a front moves

with speed F = 1, then the arrival time gives us the signed distance to initialize the

initial boundary problem. We provide a brief summary of the method. For details, see

[72].

The first step in a fast marching method is to identify the points that are closest to

the front (i.e. the shortest arrival time), compute the distance, then march outwards from

smallest to largest value in a downwind direction. Values located at computational grid

points are put into three categories: Accepted, Close, and Far. In our implementation,

the initial distance values are found by iterating around the boundary points and finding

the closest distance from each nearest grid point to the point that lies on the linear

segment connecting two boundary points (x1, y1) and (x2, y2),

(A.23) r(t) = (1− t)
 x1

y1

+ t

 x2

y2

 .

These initial values are moved into the Accepted category. Marching outwards, the next

set of points updated are those that lie one grid cell away, and are marked as Close.

Other points are marked as Far. The Close values are found by solving the discretized

equation Eq. (A.22)

(A.24)

 max(D−xi,j T,−D+x
i,j T, 0)2 +

max(D−yi,j T,−D+y
i,j T, 0)2

1/2

= 1,

which is a quadratic equation. The discretization in the above equation is an upwinding

discretization from [65]. The value labeled Trial is the smallest of these values. The

neighbors of this point are put into the Close category. The Trial value is then accepted

and the algorithm marches onward. By using a heap sort with backpointers, the method

is O(N logN).

91

A.3. Boundary conditions

The boundaries of computational grid should be far enough away from the boundary

given by the zero level set of φ(x, y, t). We use mirroring boundary conditions. Periodic

boundary conditions can also be used.

A.4. Convergence test

The initial front is a circle of radius 0.2 centered at the point (0.5, 0.5). The com-

putational grid is a box with a lower point at the origin and an upper point (1, 1). In

our first example, the front is advected with the constant velocity field ~U = (0.1, 0.1).

The exact solution is a circle with radius 0.2 centered at the point (0.5 + 0.1t, 0.5 + 0.1t).

The advection update is the second order method given in Eqs. (A.19) and (A.20). For

this example, the speed function F is zero. The signed distance function is initialized

by finding the minimum distance from a piecewise linear representation of the boundary

to each grid point. The error is computed as the norm of the distance from the zero

level set of φ(x, y, t) to the exact solution. Figure A.2 shows second order convergence in

averaged L2 norm. The error in other norms appears similar, and has the same scaling.

92

L2 N
or

m
 o

f T
ru

nc
at

io
n

Er
ro

r

10-6

0

5

10

15

20

25

30

35

40

45

50

55

Time
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure A.2. The truncation error for a circle propagating with constant
velocity. The top plot is a grid size of 100 × 100. The middle plot is
200× 200, and the bottom is a 400× 400 grid. The time step ∆t was set
to 1/4N , where N is the grid size.

93

APPENDIX B

The Kalman Filter

The Kalman filter estimates of the current state of a stochastic dynamical system

Xn given a set of noisy observations Yn. The stochastic model is assumed to be a linear

system model. The observations are assumed to depend linearly on the state of the

system. The system equation is given by

(B.1) Xn = ΦXn−1 + εn,

where εn ∼ N (0, Q). The observation equation is

(B.2) Yn = AnXn−1 + ξn,

where ξn ∼ N (0, R). In our model, we assume no observation error and set R = 0.

Calculations in the filter rely on theory from multivariate statistical analysis. A

theorem gives the distribution of a portion of a Gaussian random vector conditioned on

the other portion. Specifically, given a normal random vector A,

(B.3) A =

 A1

A2

 ∼ N
 µ1

µ2

 ,

 Σ11 Σ12

Σ21 Σ22

 ,

the distribution of A1 given A2 = a is

(B.4) N (µ1 + σ12Σ−1
22 (a− µ2),Σ11 − Σ12Σ−1

22 Σ21

)
.

The notation N (µ,Σ) indicates a multivariate normal distribution with mean vector µ

and covariance matrix Σ.

The goal of the Kalman filter is to find the distribution of Xn|Y1, . . . , Yn, denoted

Xn|n, given a new observation Yn and the distribution Xn−1|n−1. The conditional mean

and covariance of Xn−1|n−1 are denoted by X̂n−1 and P n−1
n−1 . From Eq. (B.1), we have

(B.5) Xn|n−1 = N
(

ΦX̂n−1,ΦP
n−1
n−1 Φt +Q

)
.

For simplicity, we write the covariance matrix P n−1
n = ΦP n−1

n−1 Φt +Q. From the theorem

and conditioning on the first n− 1 observations Y1, . . . , Yn−1, we have

(B.6)

 Yn|n−1

Xn|n−1

 ∼ N
 AnΦX̂n−1

ΦX̂n−1

 ,

 R + AnP
n−1
n Atn AnP

n−1
n

P n−1
n Atn P n−1

n

 .

The theorem also gives us the mean of Xn|n,

(B.7) X̂n = ΦX̂n−1 + P n−1
n Atn

(
R + AnP

n−1
n Atn

)−1
(Yn − AnΦX̂n−1)

and covariance

(B.8) Pn = P n−1
n − P n−1

n Atn
(
R + AnP

n−1
n Atn

)−1
AnP

n−1
n .

Given a new observation at time n and the filter at n−1, we have the necessary recursion

to obtain the value of the filter at time n. The conditional probability Yn|Y1,...,n−1 is used

in the error-prediction decomposition approach to calculating the maximum likelihood

function. The distribution is given by the first entry of the vector in Eq. (B.6),

(B.9) Yn|n−1 ∼ N
(
AnΦX̂n−1, R + AnP

n−1
n Atn

)
.

Further discussion on the Kalman filter can be found in [27, 77].

95

APPENDIX C

Exact Stochastic Simulation Algorithm

For some cellular reaction systems, stochastic effects are important. For example,

in gene transcription, there are usually two copies of each gene and small amounts of

messenger RNA. In this appendix, we summarize Gillespie’s method from [23] to simulate

the chemical master equation. The master equation gives the probability that at a given

time there will be certain number of molecules for a chemical species. The method is exact

in the sense that trajectories generated by the methods that are statistically equivalent

to those that result from solving the master equation.

C.1. Background

The reaction probability density function P (τ, µ) is defined to be the probability that

given the current state of a system with n reactants Xi at time t, the next reaction

will occur in the time interval (t+ τ, t+ τ + dτ), and will be the reaction Rµ, given M

reactions. Reaction rates are given by aµ’s. The probability that the µth reaction will

occur in a time interval dτ given the current state of the system is aµdτ . P (τ, µ) is defined

to be the probability that no reaction will occur in the interval (t, t+ τ), denoted P0(τ),

times the probability that the reaction Rµ will occur in the time interval (t+τ, t+τ+dτ),

(C.1) P (τ, µ)dτ = P0(τ)aµdτ.

The probability that no reaction will occur in time dτ is 1−∑M
i=1 aidτ. Then we have

(C.2) P0(τ + dτ) = P0(τ)

(
1−

M∑
i=1

aidτ

)
,

or

(C.3) P0(τ) = exp

(
−

M∑
i=1

aiτ

)
.

The reaction probability density function is given by

(C.4) P (τ, µ) =

 aµ exp (−a0τ) for 0 ≤ τ <∞ and µ = 1, . . . ,M

0 otherwise,

where a0 =
∑M

i=0 ai.

C.2. The Algorithm

(1) Initialize the system.

(2) Loop over time until t = tend

(a) Calculate the propensity functions, ai.

(b) Generate two random numbers r1 and r2.

(c) Set τ = 1/a0 log (1/r1).

(d) Set µ to be the integer that satisfies
∑µ−1

i=1 ai < r2a0 ≤
∑µ

i=1 ai.

(e) Set t = t+ τ and the state ~X = ~X + ∆µ, where ∆µ is the µth N × 1 column

vector from the stoichiometric matrix ∆.

(f) Return to step (a).

97

BIBLIOGRAPHY

1. D. Adalsteinsson, DTSource, http://www.visualdatatools.com/DTSource.html.

2. D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in
level set methods, J. Comput. Phys. 148 (1999), no. 1, 2–22.

3. D. Adalsteinsson and J. A. Sethian, Transport and diffusion of material quantities
on propagating interfaces via level set methods, J. Comput. Phys. 185 (2003), no. 1,
271–288.

4. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular
biology of the cell, 4th ed., Garland Science, New York, 2002.

5. B. J. Bacskai, B. Hochner, M. Mahaut-Smith, S. R. Adams, B. K. Kaang, E. R.
Kandel, and R. Y. Tsien, Spatially resolved dynamics of cAMP and protein kinase A
subunits in Aplysia sensory neurons, Science 260 (1993), no. 5105, 222–226.

6. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-
value problems in differential-algebraic equations, vol. 14, Society for Industrial and
Applied Mathematics, Philadelphia, 1996.

7. N. F Britton, Essential mathematical biology, Springer, London, 2003.

8. P. J. Brockwell and R. A. Davis, Time series: theory and methods, 2nd ed., Springer-
Verlag, New York, 1991.

9. G. C. Brown and B. N. Kholodenko, Spatial gradients of cellular phospho-proteins,
FEBS Lett. 457 (1999), no. 3, 452–454.

10. P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Using Krylov methods in the
solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput. 15 (1994),
no. 6, 1467–1488.

11. B. Bunow, J. P. Kernevez, G. Joly, and D. Thomas, Pattern formation by reaction-
diffusion instabilities: application to morphogenesis in Drosophila, J. Theor. Biol. 84
(1980), no. 4, 629–649.

12. K. Burridge and K. Wennerberg, Rho and Rac take center stage, Cell 116 (2004),
no. 2, 167–179.

13. J. M. Cancela, F. Van Coppenolle, A. Galione, A. V. Tepikin, and O. H. Petersen,
Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial
roles of multiple Ca2+ releasing messengers, EMBO J. 21 (2002), no. 5, 909–919.

98

14. Y. Chen, W. R. Thelin, B. Yang, S. L. Milgram, and K. Jacobson, Transient anchor-
age of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on choles-
terol, Src family kinases, caveolin, and phosphoinositides, J. Cell Biol. 175 (2006),
no. 1, 169–178.

15. P. Colella, D. Graves, T. Ligocki, D. Trebotich, and B. V. Straalen, Embedded bound-
ary algorithms and software for partial differential equations, J. Phys. Conf. Ser. 125
(2008), 012084 (8pp).

16. P. Colella, D. T. Graves, B. J. Keen, and D. Modiano, A Cartesian grid embedded
boundary method for hyperbolic conservation laws, J. Comput. Phys. 211 (2006),
no. 1, 347–366.

17. A. Csikász-Nagy, D. Battogtokh, K. C. Chen, B. Novák, and J. J. Tyson, Analysis
of a generic model of eukaryotic cell-cycle regulation, Biophys. J. 90 (2006), no. 12,
4361–4379.

18. A. T. Dawes and L. Edelstein-Keshet, Phosphoinositides and Rho proteins spatially
regulate actin polymerization to initiate and maintain directed movement in a one-
dimensional model of a motile cell, Biophys. J. 92 (2007), no. 3, 744–768.

19. M. Dobrzynski, J. V. Rodriguez, J. A. Kaandorp, and J. G. Blom, Computational
methods for diffusion-influenced biochemical reactions, Bioinformatics 23 (2007),
no. 15, 1969–1977.

20. H. G. Dohlman, G proteins and pheromone signaling, Annu. Rev. Physiol. 64 (2002),
129–152.

21. R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden Markov models: estimation and
control, vol. 29, Springer-Verlag, New York, 1995.

22. A Gierer and H. Meinhardt, Theory of biological pattern formation, Kybernetik 12
(1972), no. 1, 30–39.

23. D.T. Gillespie, Exact stochastic simulation of coupled chemical-reactions, J. Phys.
Chem. 81 (1977), no. 25, 2340–2361.

24. J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrange-
ment of biological cells, Phys. Rev. E. 47 (1993), no. 3, 2128–2154.

25. A. B. Goryachev and A. V. Pokhilko, Dynamics of Cdc42 network embodies a Turing-
type mechanism of yeast cell polarity, FEBS Lett. 582 (2008), no. 10, 1437–1443.

26. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high order
accurate essentially non-oscillatory schemes, 111, J. Comput. Phys. 71 (1987), no. 2,
231–303.

99

27. A. C. Harvey, Forecasting, structural time series models, and the Kalman filter, Cam-
bridge University Press, Cambridge, 1990.

28. A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and
C.S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers, ACM T. Math. Software 31 (2005), no. 3, 363–396.

29. S.A. Isaacson and C.S. Peskin, Incorporating diffusion in complex geometries into
stochastic chemical kinetics simulations, SIAM J. Sci. Comput. 28 (2006), no. 1,
47–74.

30. C. Jimenez, R. A. Portela, M. Mellado, J. M. Rodriguez-Frade, J. Collard, A. Serrano,
C. Martinez-A, J. Avila, and A. C. Carrera, Role of the PI3K regulatory subunit in
the control of actin organization and cell migration, J. Cell Biol. 151 (2000), no. 2,
249–262.

31. M. Jin, M. Behar, S. Nayak, W. Mather, J. Hasty, B. Errede, H.G. Dohlman, and
T.C. Elston, Computational modeling and experimental analysis reveal Bar1’s role in
yeast chemotrophic growth, Preprint (2009).

32. H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Pois-
son’s equation on irregular domains, J. Comput. Phys. 147 (1998), no. 1, 60–85.

33. K. Kawagoe, D. Kitamura, M. Okabe, I. Taniuchi, M. Ikawa, T. Watanabe, T. Ki-
noshita, and J. Takeda, Glycosylphosphatidylinositol-anchor-deficient mice: implica-
tions for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria,
Blood 87 (1996), no. 9, 3600–3606.

34. B. N. Kholodenko, Cell-signalling dynamics in time and space, Nat. Rev. Mol. Cell
Biol. 7 (2006), no. 3, 165–176.

35. B. N. Kholodenko, G. C. Brown, and J. B. Hoek, Diffusion control of protein phos-
phorylation in signal transduction pathways, Biochem. J. 350 Pt 3 (2000), 901–907.

36. V. S. Kraynov, C. Chamberlain, G. M. Bokoch, M. A. Schwartz, S. Slabaugh, and
K. M. Hahn, Localized Rac activation dynamics visualized in living cells, Science 290
(2000), no. 5490, 333–337.

37. V. M Laurent, S. Kasas, A. Yersin, T. E. Schäffer, S. Catsicas, G. Dietler, A. B.
Verkhovsky, and J. Meister, Gradient of rigidity in the lamellipodia of migrating cells
revealed by atomic force microscopy, Biophys. J. 89 (2005), no. 1, 667–675.

38. C. Lawson and S. Wolf, ICAM-1 signaling in endothelial cells, Pharmacol. Rep. 61
(2009), no. 1, 22–32.

100

39. A. L. Lehninger, D. L. Nelson, and M. M. Cox, Lehninger principles of biochemistry,
4th ed., W.H. Freeman, New York, 2005.

40. R. J. LeVeque, Finite difference methods for ordinary and partial differential equa-
tions: steady-state and time-dependent problems, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2007.

41. H. Levine, D. A. Kessler, and W. Rappel, Directional sensing in eukaryotic chemo-
taxis: a balanced inactivation model, P. Natl. Acad. Sci. USA 103 (2006), no. 26,
9761–9766.

42. M. Li, Y. Zhou, G. Feng, and S. B. Su, The critical role of toll-like receptor signaling
pathways in the induction and progression of autoimmune diseases, Curr. Mol. Med.
9 (2009), no. 3, 365–374.

43. Z. Li and K. Ito, The immersed interface method: numerical solutions of PDEs
involving interfaces and irregular domains, Society for Industrial and Applied Math-
ematics, Philadelphia, 2006.

44. J. Liao, J. A. Spudich, D. Parker, and S. L. Delp, Extending the absorbing bound-
ary method to fit dwell-time distributions of molecular motors with complex kinetic
pathways, P. Natl. Acad. Sci. USA 104 (2007), no. 9, 3171–3176.

45. T. J. Ligocki, P. O. Schwartz, J. Percelay, and P. Colella, Embedded boundary grid
generation using the divergence theorem, implicit functions, and constructive solid
geometry, J. Phys. Conf. Ser. 125 (2008), 012080 (5pp).

46. R. Malladi, J. A. Sethian, and B. C. Vemuri, A fast level set based algorithm for
topology independent shape modeling, J. Math. Imaging Vis. 6 (1996), 269–290.

47. A. F. M. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-Keshet,
Polarization and movement of keratocytes: a multiscale modelling approach., Bull.
Math. Biol. 68 (2006), no. 5, 1169–1211.

48. P. McCorquodale, P. Colella, and H. Johansen, A Cartesian grid embedded boundary
method for the heat equation on irregular domains, J. Comput. Phys. 173 (2001),
no. 2, 620–635.

49. N. Metropolis, A.E. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Equa-
tion of state calculations by fast computing machines, J. Chem. Phys. 21 (1953),
1087–1092.

50. J. Meyers, J. Craig, and D. J. Odde, Potential for control of signaling pathways via
cell size and shape., Curr. Biol. 16 (2006), no. 17, 1685–1693.

101

51. D. Modiano and P. Colella, A higher-order embedded boundary method for time-
dependent simulation of hyperbolic conservation law, ASME 2000 Fluids Engineering
Division Summer Meeting (2000), 1–17.

52. Y. Mori, A. Jilkine, and L. Edelstein-Keshet, Wave-pinning and cell polarity from a
bistable reaction-diffusion system., Biophys. J. 94 (2008), no. 9, 3684–3697.

53. Y. Mori and C. S. Peskin, Implicit second-order immersed boundary methods with
boundary mass, 2008, Comput. Method. Appl. M., pp. 2049–2067.

54. J. D. Murray, Mathematical biology II: Spatial models and biochemical applications,
3rd ed., vol. 2, Springer, New York, 2003.

55. P. Nalbant, L. Hodgson, V. Kraynov, A. Toutchkine, and K. M. Hahn, Activation of
endogenous Cdc42 visualized in living cells, Science 305 (2004), no. 5690, 1615–1619.

56. Sujata Nayak, Bem1 in yeast, http://biodynamics.ucsd.edu/sujata/wmather.

57. S. R. Neves, P. Tsokas, A. Sarkar, E. A. Grace, P. Rangamani, S. M. Taubenfeld,
C. M. Alberini, J. C. Schaff, R. D. Blitzer, I. I. Moraru, and R. Iyengar, Cell shape
and negative links in regulatory motifs together control spatial information flow in
signaling networks, Cell 133 (2008), no. 4, 666–680.

58. B. Novák and J. J. Tyson, Numerical analysis of a comprehensive model of M-phase
control in Xenopus oocyte extracts and intact embryos, J. Cell Sci. 106 (Pt 4) (1993),
1153–68.

59. S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: al-
gorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1,
12–49.

60. M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki, and S. Kuroda, A mass
conserved reaction-diffusion system captures properties of cell polarity, PLoS Comput.
Biol. 3 (2007), no. 6, e108.

61. M. G. Paulick and C. R. Bertozzi, The glycosylphosphatidylinositol anchor: a complex
membrane-anchoring structure for proteins, Biochemistry 47 (2008), no. 27, 6991–
7000.

62. O. Pertz, L. Hodgson, R. L. Klemke, and K. M. Hahn, Spatiotemporal dynamics of
RhoA activity in migrating cells, Nature 440 (2006), no. 7087, 1069–1072.

63. C. S. Peskin, The immersed boundary method, Acta Numer. 11 (2002), 1–39.

64. L. Rajendran and K. Simons, Lipid rafts and membrane dynamics, J. Cell Sci. 118
(2005), no. Pt 6, 1099–102.

102

65. E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM
J. Numer. Anal. 29 (1992), no. 3, 867–884.

66. B. Rubinstein, K. Jacobson, and A. Mogilner, Multiscale two-dimensional modeling
of a motile simple-shaped cell, Multiscale Model. Simul. 3 (2005), no. 2, 413–439.

67. Y. Saad, SPARSKIT: A basic tool-kit for sparse matrix computations (version 2),
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html.

68. Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), no. 3,
856–869.

69. J. C. Schaff, B. M. Slepchenko, Y. S. Choi, J. Wagner, D. Resasco, and L. M. Loew,
Analysis of nonlinear dynamics on arbitrary geometries with the Virtual Cell, Chaos
11 (2001), no. 1, 115–131.

70. I. C. Schneider, E. M. Parrish, and J. M. Haugh, Spatial analysis of 3’ phosphoinosi-
tide signaling in living fibroblasts, III: influence of cell morphology and morphological
polarity, Biophys. J. 89 (2005), no. 2, 1420–1430.

71. P. Schwartz, M. Barad, P. Colella, and T. Ligocki, A Cartesian grid embedded bound-
ary method for the heat equation and Poisson’s equation in three dimensions, J. Com-
put. Phys. 211 (2006), no. 2, 531–550.

72. J. A. Sethian, Level set methods and fast marching methods: Evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science,
2nd ed., Cambridge University Press, June 1999.

73. J. Sha, W.and Moore, K. Chen, A. D. Lassaletta, C. Yi, J. J. Tyson, and J. C. Sible,
Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts, P. Natl. Acad.
Sci. USA 100 (2003), no. 3, 975–980.

74. J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator, Applied Computational Geometry: Towards Geometric Engineering
(M. C. Lin and D. Manocha, eds.), Lect. Notes. Comput. Sc., vol. 1148, Springer-
Verlag, May 1996, From the First ACM Workshop on Applied Computational Ge-
ometry, pp. 203–222.

75. Y. Shimada, M. P. Gulli, and M. Peter, Nuclear sequestration of the exchange factor
Cdc24 by Far1 regulates cell polarity during yeast mating, Nat. Cell Biol. 2 (2000),
no. 2, 117–124.

76. R. H. Shumway and D. S. Stoffer, Time series analysis and its applications, Springer,
New York, 2000.

103

77. R.L. Smith, Time series, course notes, Department of Statistics, University of North
Carolina, Chapel Hill, NC (1999).

78. K. Taskén and E. M. Aandahl, Localized effects of cAMP mediated by distinct routes
of protein kinase A, Physiol. Rev. 84 (2004), no. 1, 137–167.

79. A. Turing, The chemical basis of morphogenesis, Philos. T. R. Soc. 237 (1952), 37–72.

80. E. H. Twizell, A. B. Gumel, and M. A. Arigu, Second-order, L0-stable methods for
the heat equation with time-dependent boundary conditions, Adv. Comput. Math. 6
(1996), no. 1, 333–352.

81. J. J. Tyson, K. C. Chen, and B. Novak, Sniffers, buzzers, toggles and blinkers: dy-
namics of regulatory and signaling pathways in the cell, Curr. Opin. Cell Biol. 15
(2003), no. 2, 221–231.

82. J. Valdez-Taubas and H. R. B. Pelham, Slow diffusion of proteins in the yeast
plasma membrane allows polarity to be maintained by endocytic cycling, Curr. Biol.
13 (2003), no. 18, 1636–1640.

83. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The finite element method: its basis
and fundamentals, 6th ed., Elsevier/Butterworth-Heinemann, Oxford, 2005.

104

