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ABSTRACT
JOHN SIDERIS: A Likelihood-Based Approach to Detecting Aberrant Iindividuals in 

Confirmatory Factor Analytic Models 
(Under the direction of A. T. Panter.)

The study presented here was intended to develop and provide a relatively simple method 

for detecting aberrant observations in confirmatory factor analysis (CFA). This method 

exploited a by-product of Full Information Maximum Likelihood (FIML) estimation of 

these models, the log-likelihood produced for each individual observation. This score, after 

adjusting for missing data, indexed the degree to which a model fits for a specific 

individual. A simulation study was run to test this index, labelled adj_lli. Data were 

simulated under varying levels of covariance structure, proportion of aberrant data, and 

proportion of missing data. Each cell had 200 samples with n = 200. Additionally, adj_lli 

was compared to three existing methods: Reise and Widaman’s (1999) INDCHI, Yung’s 

(1997) method for detecting outliers in mixture models, and Bollen’s A, a general 

multivariate method (1987). Results indicated that adj_lli was effective in detecting outliers 

and offered some advantages over three other methods.
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CHAPTER I.

INTRODUCTION

“Whoever knows the ways of nature will more easily notice her 
deviations; and, on the other hand, whoever knows her deviations 
will more accurately describe her ways.” (Francis Bacon, 
1620/1994).

Scientists have long been interested in uncovering and studying unusual 

observations. Attention to unique data points both may provide insights about attributes of

data being analyzed and may suggest new theoretical possibilities (e.g., Behrens, 1997; 

Billor, Hadi, & Velleman, 2000; Hays, 1994). The detection of aberrant observations 

remains of great interest in many disciplines. Examples both of analytic techniques and of 

their application are found in a broad range of fields such as geology (Velasco, Verma, & 

Guevara, 1999), business (Conklin, 2003), law (Basmann, 2003) and computer science 

(Hodge & Austin, 2004). In psychology and education, identifying and studying aberrance 

is often of paramount importance. Clinical psychology, for example, is often concerned 

with diagnosing and classifying relatively rare individuals with a specific complex of 

behaviors. Assessment scales often provide cut-off scores, beyond which the individual is 

considered extreme enough to warrant a special classification (e.g., Lyons & Scotti, 1994; 

Matthey & Petrovski, 2002; Sheeran & Zimmerman, 2002).

A variety of labels have been applied both to the aberrant data themselves and the 

methods used to assess them. The text by Barnett and Lewis (1994) is dedicated to 

assessing, understanding and managing aberrant data and is perhaps the most widely-cited 
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reference. They prefer the term “outlier,” which they defined as “an observation (or subset 

of observations) which appears to be inconsistent with the remainder of that set of data” (p. 

20). This statement serves very well as a general definition of aberrant data. The 

operational definition of what is meant by “inconsistent” will depend on the context in 

which it is applied. While there are guidelines for classifying an observation as an outlier, 

ultimately, the decision is left to the individual researcher (Barnet & Lewis, 1994; 

Chatfield, 2002), based on the specific attributes of the data and the research question.

In addition to theoretical need to identify distinctive observations, there has been 

considerable research describing the statistical consequences of outliers. This research has 

largely been concerned with identifying “influential” observations (e.g., Bollen & Jackman, 

1985; Fox, 1991). The term “influential” implies more than just the inconsistency indicated

by “outlier.” Influential data points have a disproportionate effect on the data distribution. 

In the univariate case, they may simply be extreme cases that skew the data. Their impact 

on multivariate data may be subtler. Gnanadesikan and Kettenring (1972, p. 83) s tate the 

difficulty colorfully: “a single univariate outlier may be typically thought of as ‘the one that 

sticks out at the end’, but no such simple idea suffices in higher dimensions.” Numerous 

techniques have been developed to assess multivariate outliers (for an overview and 

history, see Barnett & Lewis, 1994; Hawkins, 1980). The consequences of aberrant 

observations depend too on the analytic context. For example, in regression models, small 

numbers of cases or even individual cases that are highly discrepant may exert undo 

influence on parameter estimates (e.g., Belsley, Kuh & Welch, 1980; Bollen, 1989; Bollen 

& Jackman, 1985; Fox, 1991). 
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One area of research in which there has been notably little research on aberrant 

observations is covariance structure analysis (CSA). The lack of attention may stem, in 

part, from the fact that models are typically based on the covariance or correlation matrix, 

not on the individual observations. As Bollen (1989, p. 1) points out, this emphasis on 

covariances requires a “reorientation” for researchers who are accustomed to thinking 

about individual observations. In a regression equation, for example, the parameters are 

used to estimate an expected value of some outcome variable given some set of predictor 

variables. For any individual observation, a predicted value for the outcome variable can be 

generated. The model itself is evaluated based on the discrepancies or residuals between the 

expected values and the measured values of the outcome variable over all of the individual 

observations. A model that minimizes residuals is considered to fit well.

In CSA, however, residuals do not refer to discrepancies at the level of the 

individual observation. Instead, models are evaluated on the difference between the 

covariance structure implied by the model and the sample covariances. The difference 

between the covariance matrix suggested by the model and the observed covariance matrix 

is the basis of most model fit analyses in CSA (e.g., Amemiya & Anderson, 1990; Browne, 

1984; for reviews and discussion see Gerbing & Anderson, 1993; Yuan, 2005). 

CSA models assume homogeneity in the population from which the data are 

sampled (Ansari, Jedidi, & Jagpal, 2000; Bollen, 1989; Yuan, Chan, & Bentler, 2000). In 

the context of confirmatory factor analysis (CFA) and structural equation models (SEM), if 

distinct sub-samples are present in a data set or hypothesized in advance, multiple group 

analyses (e.g., Jöreskog & Sörbom, 1996) manage mixtures well. Models can be developed 



4

and tested to compare the groups on any aspect of the model (e.g., differences between the 

covariance matrix, the factor loadings, latent means, and so on). However, when the 

number and composition of distinct samples are unknown model fitting is difficult. The 

potential for the presence of unexpected and distinctive observations in a study sample has 

spawned two classes of research. The first, which includes the method proposed in the 

current paper, focuses on identifying small numbers of aberrant observations (e.g., Riese & 

Widaman, 1999; Yung, 1997). The second class of research, mixture models, grew out of a 

need to understand and manage nonnormal data (e.g., Blåfield, 1980). The literature on 

mixture models has focused on determining whether or not different subsamples exist in a 

dataset and on estimating the distinct covariance structure of each subset (e.g., Day, 1969; 

Muthén, 1989; Titterington, Smith & Makov, 1985).

Mixture Models

As the number of aberrant responses increases, the term ‘outlier’ becomes less apt. 

Mixture models have been developed to handle the presence of distinct subsets of 

observations in a sample. When the groups in a data set are unknown, the apparent shape of 

the distribution is affected (Blåfield, 1980). For example, a sample constituted of two, 

normally distributed samples whose means are sufficiently separated will appear bimodal. 

Fitting a model to these data, even if one takes the non-normality into account, will lead 

one to incorrect theoretical conclusions.

Generally speaking, mixture models have been applied in two contexts. In both 

cases, researchers are faced with nonnormal data. The first, sometimes referred to as “direct 

modeling” (Dolan & Van der Maas, 1999) is applied when there is reason to believe that 
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there are several distinct populations represented in a given sample (e.g., Muthén & 

Shedden, 1999; Day, 1969). Data mixing from these populations results in the nonnormal 

shape of the sample distribution. Direct models attempt to uncover the number and 

members of the separate underlying distributions. 

Indirect models (Dolan & van der Maas, 1998) use finite mixture models as a tool 

to estimate models for data with intractable distributions (e.g., Bauer & Curran, 2003; 

McLachlan & Peel, 2000). In these cases, the sample represents a single, non-normal

population. Fitting a single model to non-normal distributions can be difficult. Instead, 

separate models are fit to subsets of the data, just as in a direct model. These distinct 

models are then aggregated into a model of the whole distribution. 

There is a large literature exploring methods to determine whether or not different 

samples exist (e.g., Arminger, Stein & Wittenberg, 1999; Biernacki, Celeux, & Govaert, 

1999; Blåfield, 1980; Lo, Mendell, & Rubin, 2001; McLachlan, 1987). Unfortunately, 

because nonnormal data may look like a mixture of normal distributions, the distinction 

between indirect and direct models is theoretical, rather than statistical (Bauer & Curran, 

2003). Therefore, even if the results of fitting a mixture model suggest multiple groups 

within the data, the possibility that the data are simply nonnormal remains.

If identified latent classes do indeed exist, their presence can cause a number of 

statistical problems if they are not identified and modeled. Muthén (1989) provides a 

variety of cautionary examples where the failure to recognize the presence of heterogeneity 

will lead to undesirable consequences. 
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Impact of Outliers on Model Estimation in CSA

The degree to which small numbers of aberrant observations affect model 

estimation is an open question, and there has been some research that has begun to address 

this issue. The effects of outliers on correlation coefficients and covariances are well 

documented (e.g., Anscome, 1973; Fox, 1991). Bollen (1987) points out the presence of 

outliers in SEM can lead to “improper solutions,” models where parameter estimates are 

outside of the possible range in the population.

Yuan and Bentler (2001) argue convincingly that aberrant responses can have 

negative consequences in CFA. They demonstrate analytically and empirically that even a 

relatively small number of outliers can bias parameter estimates and their associated test 

statistics. Specifically, the presence of outliers can inflate the noncentrality parameter 

leading to an exaggeration in the power to reject a model. This inferential decision, of 

course, can result in the discarding of valid models. The authors provide evidence that these 

distortions can occur under both maximum likelihood and Browne’s (1982, 1984) 

asymptotically distribution-free procedure.

Detecting Aberrant Observations in CSA 

Existing multivariate outlier techniques can be broadly classified into model-free 

and model-based methods. Model-free methods do not rely on model specification to detect 

outliers. While such techniques may account for the interdependence among the measured 

variables in their screening, they do not relate the distinctiveness of a given observation to 

theoretical model being tested. Model-free methods are typically applied to screen for 

unusual cases prior to analysis (e.g., Bollen, 1989) and are broadly applicable to virtually 
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any multivariate data. 

In contrast, model-based methods begin with some hypothetical model for the data. 

Assuming that the model is a good approximation to the process underlying the majority of 

the data, aberrant observations are those with a distinctive underlying process. Regression 

diagnostics fit into this class of outlier assessment (for examples, see Belsley et al., 1980; 

Barnett & Lewis, 1994; Fox, 1991).

The history of both model-free and model-based methods of uncovering aberrant 

observations in SEM is relatively short. Bollen and Arminger (1991) argue that this short 

history may be an unfortunate consequence of the nature of the methods themselves. 

Because the focus is generally on latent variables and the covariances, computing an 

individual residual is not as straightforward as it is in regression. Once the covariances are 

computed, “analysts tend to forget about the specific observations that led to them” (Bollen 

& Arminger, 1991, p. 236). 

Model-Free Methods

Bollen (1987) provides a simple, effective model-free method to identify an 

outlying observation that a significant impact on a factor analytic model. The procedure 

uses an N (sample size) × q (number of variables) matrix Z where each scalar is a deviation 

score from the mean for that variable. Z is then used to compute matrix A:

A = Z(Z′Z)-1Z′ (1) 

The diagonal of A, aii, contains a measure, ranging from 0 to 1, expressing the 

distance of each observation from the multivariate mean of the other observations in the 
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dataset. Further, qa
N

i
ii =∑

=1

, so the mean of the vector aii can be computed as N
q . The 

relative size of each can also be assessed through examination of the univariate distribution 

of aii. 

The Mahalanobis Distance (MD) is frequently used to identify  aberrant observations 

(e.g., Bacon, 1995; Comrey, 1985; Gnanadesikan & Kettenring, 1972; Hardin & Rocke, 

2002). MD measures the multivariate distance of each point from the centroid and is 

computed as: 

)()( xSx 1 −′−= −
iii xxD (2)

where S-1 is the inverse of the sample covariance matrix and x  is the sample mean vector.

Typically, the squared distance (MD2) is used in assessing the degree to which a 

given observation can be considered an outlier. The size of the distance with regard to an 

individual observation can be evaluated either statistically (e.g., Penny, 1996; Rao, 1973, p. 

570; Rasmussen, 1988) or graphically (e.g., De Maesschalck, Jouan-Rimbaud & Massart, 

2000; Kim, 2000).  In the two-variable case, these plots are bivariate plots of the MDs for 

each individual. As one moves to designs with more variables, the construction of graphs 

obviously becomes increasingly complex and impractical. 

Model-Based Methods

Model assessment in CFA and SEM typically has focused on overall model fit and a 

variety of diagnostic indices have been proposed for this purpose. However, the existing

literature on mixture models provides some methods that may be extended to the special 

case of outlier detection. For example, Blåfield (1980) provided a maximum likelihood 
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method for simultaneously fitting a CFA model and clustering observations when faced 

with a mixture of multivariate normal distributions. Yung (1997) offered extensions to this 

method and suggested that his procedure could be applied to outlier detection in addition to 

fitting mixture models. 

In Yung’s (1997) method, model fitting proceeds under the assumption that sample 

data are drawn from a mixture of populations. For example, a high-performer group and a 

low-performer group. Distinct CFA models can be fit, even though the population 

membership of the individual observations is unknown. Fitting the model provides the 

parameter values for each distinct CFA model as well as the mixing proportions for those 

models. Yung’s method enables the computation of the posterior probability that a given 

observation belongs to each component sample (e.g., the high-performer group).

Yung (1997) provided examples of his method applied to three different CFA 

mixture-models: 1) a two-mixture (“high” and “low” groups) unstructured mixed model, 2) 

a two-mixture mean-shift with different factor matrices, and 3) a two-mixture mean-shift 

with common factor matrices. All three models were fit under maximum likelihood (ML) 

estimation. The results of the unstructured model were used to provide starting values for 

the latter two models. These models were estimated with both expectation-maximization 

(EM) and approximate scoring (AS) approaches to ML in order to compare these methods. 

The data analyzed were those used by Sörbom (1974) to illustrate multiple-group factor 

analysis. The measurement variables were the scores of 145 seventh and eighth grade 

students on nine achievement tests (Holzinger & Swinford, 1939). 

All three models provided similar results. Further, the estimates produced by the 
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EM and AS methods did not differ appreciably. The mixing proportion for the high group 

ranged from .08 to .11. Examination of the posterior probabilities classified about 12% of 

the sample into this group. Unfortunately, because these are empirical, not simulated, data, 

the true mixing proportions are unknown. This research does provide evidence that model-

based clustering is more effective than techniques that cluster in the absence of a model. 

Further, Yung (1997) notes that the effectiveness of this method increased as the size of the 

aberrant sample decreased. As such, he argues that this could be applied to outlier 

detection, but points out that mixture approaches are not widely explored. 

The assessment of latent variable models at the individual level has been called 

“person-fit” in item response theory (IRT) research (e.g., Levine & Drasgow, 1982, Levine 

& Rubin, 1979, Meier, 2003; Meier & Sijtsma, 2001). In the context of a well-fitting IRT 

model, the goal of person-fit analysis is to identify those individuals with highly 

improbable response patterns. This same notion may be appropriate in CFA contexts as 

well. Aberrant individuals are not simply those who are distinctive; the person who scores 

highest on a test is distinctive, but not necessarily aberrant. Rather, person-fit refers to the 

appropriateness of the model for a specific individual.

Reise and Widaman (1999) proposed a method specifically designed to detect 

aberrant observations. They suggested that individual contributions to the overall model 

misfit could be assessed. Aberrant observations are those individuals with notably higher 

contributions than others. In CFA fit under maximum-likelihood estimation, chi-square and 

other tests of model fit are based on the maximum-likelihood fit-function:  

pStrSFML −Σ+−Σ= −1*)(||ln|*|ln (3)
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where S is the observed covariance matrix, Σ* is the covariance matrix as it is reproduced 

from the parameter estimates, and p is the number of measured variables in the model. 

Parameter estimates are found that will produce the smallest possible value for FML (e.g., 

Bentler & Bonnett, 1980, Bollen, 1989).

The log-likelihood of this function is:

2

])[( MLFN
LL −= , (4)

where N is sample size. A model is considered “saturated” when it reproduces S perfectly. 

Model fit can be evaluated by taking –2 times the difference between the LL for a saturated 

model and the LL for theoretical model being tested. The statistic proposed by Reise and 

Widaman (1999) is an attempt to make the same comparison at the level of the individual 

respondent, rather than at the level of the model as a whole. To build their measure, they 

begin with a measure of the log-likelihood computed at the individual level (Arbuckle, 

1996; Muthén, Kaplan & Hollis, 1987):

)](*)(|*|ln)2ln([
2

1 1 xxxxpP iiLL −Σ−+Σ+−= −π (5)

Taking the sum of the individual PLL values over the entire sample gives the LL for 

the overall model. The model LL is routinely computed in software making use of Full-

Information Maximum Likelihood (FIML) estimation such as LISREL (Jöreskog & 

Sörbom, 2004) and Mplus (Muthén & Muthén, 2001). One SEM package (Mx; Neale, 

Boker, Xie & Maes, 2003) provides the individual PLL values. Reise and Widaman (1999) 

argue that the scaling of this statistic is not readily interpretable. They suggest using their 

person-fit index, which they call INDCHI, Their index takes –2 times the difference in the 
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PLL for the saturated and hypothesized model for each individual:

INDCHI = -2(PLL(saturated) – PLL(hypothesized)) (6)

INDCHI values can be negative or positive. The upper and lower boundaries vary

with the scale of the measurement variables. However, individuals with relatively large 

negative scores are considered misfitting. The authors compare their new statistic with an 

IRT person-fit measure, Zl (Drasgow & Levine, 1986, discussed in greater detail in the 

following section). They apply both Zl and INDCHI to the same data and flag respondents 

indicated as misfitting by each statistic. 

In their study, Reise and Widaman (1999) used data from 3,245 respondents to 

three subscales of Tellegen’s (1982) Multidimensional Personality Questionnaire (MPQ). 

All of the response variables were dichotomous. They used multidimensional scaling to 

sort items within each scale into “content homogeneous facets.” Each facet was treated as 

an item parcel. The items falling into each parcel were summed together. There were 9, 10, 

and 10 parcels for the Well-Being, Stress-Reaction, and Traditionalism subscales, 

respectively. These parcels, in turn, were treated as Likert-type items, each with three- or 

four-response categories. 

Samejima’s (1969) graded response model (GRM), an IRT model designed for 

modeling items with ordered-response categories, was fit to each of the three MPQ 

subscales. They computed two IRT-based measures of person-fit for each respondent on all 

three subscales. The first, which they refer to as LLIRT, was simply the log-likelihood for 

each response pattern (see equation 7). The other was Zl, the previously mentioned IRT 

person-fit measure. 
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∑
=

×−+×= J

j
iijijijij

QuPuLL
1

))}ˆ(ln()1())ˆ(ln([)ˆ( θθθ (7)

Three separate CFA models were fit for each of the three MPQ scales. The authors 

used Mx (Neale, et al., 2003) to obtain the individual log-likelihood values from each of 

these models. The first model was a saturated model of the factor structure for the subscale. 

Second, they fit a one-factor “substantive model” where all factor loadings are estimated. 

In this model the variance of the latent variable (Φ) was fixed at 1.0. Finally, they fit a null 

model by setting all factor loadings to zero. Each of these models produced individual LL

values: LLSAT for the saturated model, LL1FAC for the one factor model, and LLNULL for the 

null model. Using this notation, equation 6 can be rewritten as:

INDCHI = –2(LLSAT – LL1FAC)     (8)

The first evaluative step the authors took was to correlate the raw log-likelihoods 

produced in their computations with each other and with the raw log-likelihood from the 

IRT analyses (LLIRT, LLSAT, LL1FAC, and LLNULL). All four displayed moderate to high 

correlations with each other and with θ  (see Table 1). The correlations with θ were taken 

as evidence for the need for adjusting LL1FAC, claiming that as underlying latent variable 

increases so does the log-likelihood. They speculate that extreme LL1FAC values could be

reflective of high scores on the measure, not of aberrance. However, the authors may be 

premature in drawing this conclusion. First, one should note that the pattern of correlations 

with the latent trait varies across the three scales. All of the LL1FAC -trait correlations for the 

Stress-Reaction Scale were only moderate and all were negative. Next, even if all the 

correlations between LL1FAC values and trait scores were strong and positive, this does not 
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necessarily imply that the most extreme LL1FAC scores are simply the most extreme trait 

scores. Correlations are indicators of a general linear trend across the data set as a whole 

and do not address the location of specific data points. A simple comparison of the 

observations with the most extreme LL1FAC scores and those with the most extreme latent 

trait scores could have more adequately addressed this concern.

Assuming that the LL1FAC needs to be transformed, however, the more crucial 

comparisons, is between the actual person-fit indices. The standardized IRT fit-statistic, Zl,

and INDCHI had low correlations with each other and with θ. The low correlations with the 

latent variable are encouraging. The lack of dependence between the person-fit measures is 

troubling. If both were supposed to flag observations whose response patterns do not fit 

with the model, a strong correspondence between the two would support their use.

Looking at the correlations between Zl and INDCHI (see Table 1) across the three 

subscales reveals that they were negative and low, -.17, -.18, and -.20 for Well-Being, 

Stress-Reduction and Traditionalism, respectively. Because high negative values for Zl

indicate poor fit, while high positive INDCHI scores indicate poor fit, the negative 

relationship is expected. However, the low magnitude of the correlations implies a lack of 

correspondence between the measures. Further, as seen in Figure 1 (Reise & Widaman, 

1999, Figure 9), the variance of INDCHI is dependent on the value of Zl. Notably, the 

variance of INDCHI increases as Zl becomes more negative. As such, among those 

observations identified as aberrant by Zl, are both observations as most and least aberrant 

by INDCHI. 

This lack of correspondence is further demonstrated by comparing the rank orders 
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of the 3,245 examinees on both Zl and INDCHI on the Stress Reaction subscale of the MPQ.  

The authors then compared the 25 respondents identified by each statistic as the poorest 

fitting. The worst fitting respondents as indicated by Zl did tend to have positive values of 

INDCHI. However, only a small proportion of those 25 identified as aberrant by Zl had a 

chance at being classified as aberrant by INDCHI (mean = .282, SD = 1.178); only 16 fell 

more than a standard deviation above the mean of INDCHI and 9 were more than two 

standard deviations above the mean. Conversely, all but one of the 25 observations 

classified as aberrant by INDCHI fell more than a standard deviation below the mean of Zl

(mean = .365, SD = .776), and 14 were two standard deviations below. Finally, the lists 

have only 7 respondents in common. 

The authors conclude that the two methods produce “similar, but certainly not 

identical judgments regarding fit at the extremes of either index” (Reise & Widaman, 1999, 

p 18). They go on to note a key difference in the computation of these two statistics that 

likely accounts for this difference. Zl is conditional on the examinee’s latent trait score, 

while INDCHI is not. As such, the former, because it is conditional on the latent trait, 

identifies those whose response patterns are inconsistent with their latent trait scores. The 

latter identifies respondents whose response patterns deviate from the item means. Given 

this difference, the lack of correspondence may be more due to a difference in how each 

defines aberrance rather than an indication than either is misclassifying observations. 
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A Likelihood-Based Method for Detecting Aberrant Observations in IRT

There is a large IRT literature regarding person-fit (see Meijer & Sijtsma, 2001 for 

a review). The statistic used as the comparison by Reise and Widaman (1999) above, Zl
1

(Drasgow, 1982; Drasgow, Levine & Williams, 1985), is particularly relevant here. Person-

fit measures in IRT typically identify response score patterns that violate the Guttman 

(1950) model. If the items on a test or scale are ordered with regard to difficulty, once a 

person reaches an item that he or she is unable to answer, the remaining items should be 

beyond his or her

 ability2. That is, the respondent is expected to fail items that fall above his or her ability 

and is expected to pass items that fall below it.

There were respondents who violated this expectation. IRT scoring is based on 

composite probabilities, not sums of individual responses, so minor deviations from the 

expected response pattern (e.g., a low-ability testee responding correctly to a very difficult 

item) are not causes for concern. Levine and Rubin (1979) argued that some respondents to 

a test might be so distinct from other examinees that their score is an inappropriate measure 

of their ability. They suggested that “appropriateness” could be measured at the individual 

level. They go on to describe three general classes of appropriateness measures: (1) 

marginal probability of the response pattern given θ ; (2) the ratio of the likelihood of the 

examinees response pattern with θ held constant over all items or where θ is allowed to 

1 Note that this statistic is sometimes referred to lz in the literature.

2 IRT is often applied to educational tests. In this context the meaning of “difficulty” is relatively clear. In 
other psychological contexts (e.g., self-esteem research) this term may be less appropriate. However, one can 
assume that in these contexts difficulty reflects a higher level of the trait under examination. Thus, an item of 
high difficulty on a self-esteem measure is one whose endorsement indicates high self-esteem.
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vary over items; and (3) estimated ability variation over the range of items. Most person-fit 

statistics fall into the first of these categories (Meijer, 2003). The conditional probability of 

a given response pattern is:

( ) ( ) ( )[ ]( )jj u

jj

u

jj
k
j ppL

−
= −Π= 1

1
ˆ1ˆˆ θθθ , (9)

where ( )θ̂L  is the likelihood of the response vector uj (that is, the observed responses of 

individual i to the 1 through kth items), ( )jjp θ̂  is the probability of individual i endorsing 

item j and ( )jjp θ̂1−  is the probability of individual i not endorsing item j. Because the log 

of the likelihood was computationally simpler, the foundational literature suggested its use 

(Levine & Rubin, 1979; Levine & Drasgow, 1982). The log-likelihood, l, is computed:
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Drasgow (1982) noted that respondents in the extremes of the distribution of θ have 

response patterns that are unexpected, not because they violate the model, but simply 

because they are rare. As such, l is confounded with trait level, making it less desirable as a 

measure of person-fit. To correct for this, he and his colleagues (Drasgow et al., 1985; 

Drasgow & Levine, 1986) proposed a transformation of l that is standardized conditionally 

on θ:
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where the expectation of l is:
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and the variance is:
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Large negative values indicate poor person-fit. However, more recent research 

(Nering, 1995; Reise, 1995) has demonstrated via simulation, that when θ is estimated (as it 

must be in any practical situation), the distribution is not normal. Specifically, the 

probabilities in the tails are higher, resulting in greater misclassification of observations as 

poorly fitting. Snijders (2001) provides methods for deriving an asymptotic sampling 

distribution for lz and similar person-fit statistics.

Full-Information Maximum-Likelihood

Full-Information Maximum-Likelihood (FIML) estimation has become increasingly 

popular in SEM research, due primarily to its capacity to handle missing data (Enders & 

Bandalos, 2001). FIML provides, as part of its computation, information that could be 

exploited to make assessment of model-fit at the level of the individual observation. The 

discrepancy function in FIML is computed simply as the sum of the log-likelihoods from 

each observation. Thus, an individual with a high value has a disproportionate impact on 

the discrepancy function

The discrepancy function for FIML is calculated as (Arbuckle, 1996; Finkbeiner, 

1979):
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where µ is a vector of item means and Σ is the estimated variance/covariance matrix. Log Li

is calculated:
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where pi is the number of non-missing responses for observation i, xi is a vector of non-

missing data for observation i, and Σι is a the estimated variance-covariance matrix for 

respondents with the same missing data pattern as observation i. The first half of equation 

15 is a constant for all respondents with the same missing data pattern. The variance of the 

individual log-likelihoods within each pattern arises out of the second half of the equation, 

which contains deviations between the observed variables and their means. Aberrant 

response patterns should have higher deviations from the item means. Large negative 

values imply that the specific response pattern is unlikely, given the model. The presence of 

these unlikely patterns results in a more extreme model discrepancy function (or log-

likelihood function for the restricted model). As this function becomes more negative, the 

difference between it and the function for unrestricted models becomes greater.

Previous research that used the log Li as a basis for person-fit computed a measure 

that was the difference between log Li for theoretical model and for the saturated model 

(Reise & Widaman, 1999). However, this step seems unnecessary. The sum produced by 

Equation 15 grows larger as model fit decreases. Observations who particularly contribute 

to this sum (i.e., the most extreme observation), should be those who do not conform to the 
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model. Singling out observations with noticeably high log Li values should be a useful 

method for aberrant observation. 

The presence of missing data, however, provides a computational confound to using 

log Li to identify aberrant data. Looking again at equation 15, note log Li is weighted by the 

number of non-missing items (pi). As such, increases in the amount of missing data should 

decrease the value of log Li. To adjust for this weighting, each individual’s score was 

adjusted by dividing it by pi. This adjusted statistic is referred to as adj_lli.

As outlined above, methods have been suggested for outlier detection in CFA and 

related CSA models. However, these techniques have failed to be widely implemented 

outside of the quantitative and statistical literature. There remains a need for a reliable, easy 

to implement method for assessing person fit with reference to a specific model. 

The Current Research

The primary hypothesis under examination is that, in the context of a CFA fit under 

FIML, highly aberrant respondents will have correspondingly high log-likelihood values 

(after adjusting for missing data) that can be used to detect them. This possibility has been 

suggested by others (MacCallum, 2003; Neale et al. 2003), but has not been fully explored. 

The efficacy of this statistic, adj_lli, was tested via a Monte Carlo simulation. Simulation 

provides a distinct advantage over research using empirical data. Because the aberrant 

cases are known, the effectiveness of adj_lli in finding those cases can be assessed. 

Study conditions involved three experimental factors: different sources of 

aberrance, different levels of missing data, and different proportions of aberrant 

respondents. Table 2 presents the levels of these conditions. 
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Experimental Conditions

Missingness

The robustness of adj_lli as an aberrant observation detection technique was

assessed at three levels of missing data: no missing data, 2% missing, and 10% missing. To 

meet the assumption that data are Missing Completely at Random (MCAR), data points 

were randomly deleted from each simulated sample.

Proportion of Aberrant Respondents

The analysis datasets were each composed of a large primary sample and a small 

aberrant sample. These datasets were fit to the same model used to generate the primary 

dataset. As such, samples with relatively small numbers of aberrant respondents should still 

fit the hypothesized model well. As this number increases, however, the discrepancy 

between the hypothesized model and the total sample should increase. As it does, it may 

become correspondingly difficult to fit the model and to find the aberrant respondents. 

Three levels of the proportion of outliers were used in the simulation: no aberrant 

observations, 2%, and 10% of the total sample. 

Source of Aberrance

In his analysis of finite mixtures, Yung (1997) made use of the multiple groups data 

presented in Holzinger and Swineford (1939). The parameter estimates (using the 

expectation-maximization algorithm) from this research were used as the basis for the data 

simulation in the current research. Yung (1997) provided estimates for primary and 

aberrant observations in two sets of mixture data. These estimates were used in the 

generating models for the data simulated in this study. 



22

Four sources of aberrant data were explored. The generating models for all 

conditions are presented in Table 2. The first resulted in aberrant data sets whose 

covariance structure was the same, but where there is a mean shift in the intercepts of the 

measurement variables. The second source generated data where the aberrant data had the 

same means in the measurement variables, but with a difference covariance structure in the 

latent variables. The third was a combination of the first two, where the aberrant sample is 

both mean and covariance shifted. 

The fourth condition was a variation on a contaminated normal distribution, referred 

to here as a “halo distribution.” The aberrant data was drawn from a population with the 

same covariance structure and means as the primary dataset. However, the distribution has 

greater standard deviations on the measurement variables (they were increased by a factor 

of two) and observations are drawn from the tails ( ±  two standard deviations) of the 

multivariate distribution. Thus, all of the aberrant observations are certain to be 

significantly distant from the centroid.



CHAPTER II.

METHOD

Procedure

Simulation

Data were simulated for each of the cells described above. There were 200 samples of 

n = 200 within each cell. For each of these samples the primary and aberrant data was

generated separately based on the appropriate population parameters and then merged into 

one set for analysis. Simulation began by specifying the population parameters (see Appendix 

A). The population covariance matrix (Σ) and mean vector (µ)  were computed from these 

parameters. Observations in each sample were first generated  values drawn from a random 

normal population. The data matrix is then multiplied by Σ (more precisely, the Cholesky 

decomposition of Σ) and µ is added (see code labeled “Generate Raw Data” on pages 64 and 

67 of Appendix B and pages 72 and 74 of Appendix C). Two sets of sample code are 

provided. Appendix B presents the code for both the simulation and analysis of a mean shift 

condition, while Appendix C presents a covariance shift condition. 

The Halo conditions required additional steps for the aberrant data. First, a large 

sample (n = 100,000) was generated. Second, observations who were more than two standard 

deviations from the centroid, based on Mahalanobis’s distance were selected. Finally, random 

observations from this extreme distribution were selected for inclusion as aberrant 

observations.
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Code for data simulation was written in Gauss version 3.2 (Aptech, 1997). Cai (2005a) 

has developed analysis software in Gauss that was used to test the models. Although this 

analysis software is not commercially available, it has been shown to produce results identical 

to what one would obtain by running the same models in LISREL 8.51 (Jöreskog & Sörbom, 

2003) with the same data (Cai, 2005b). Making use of this software allowed the data to be 

simulated and analyzed in one program, greatly simplifying and speeding up the process. 

After data are simulated and analyzed, the individual log-likelihood (lli) values are output. For 

each observation, the number of non-missing items is counted. lli is divided by this count to 

produce adj_lli. 

Computation of Other Aberrance Statistics

Both adj_lli and INDCHI (Reise & Widaman, 1999) could easily be computed within

the simulation process. The individual log-likelihoods based both on the fitted model (lli) and 

on the saturated model (llsat) can be requested from the software. INDCHI is computed for each 

observation by taking the difference between these two values. 

Bollen’s A required the matrix arithmetic described in Equation 1. Unfortunately, 

because these operations will not allow for missing data, all observations with missing data 

were dropped. A was computed for the subset of the observations with complete data.

Yung (2006) provided computer code for implementing his method via SAS “proc 

IML” (SAS Institute, 2004). This code requires the user to input starting values for model 

parameters for both mixture components expected in the data. In these data, the two

components are the primary and aberrant samples. Further, the expected mixing proportions 
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are input into the code. The generating values for the simulation were used as starting values 

for the parameter estimates. Because the proportion of aberrant and primary respondents were 

known, these proportions were entered as the mixing proportions. 



CHAPTER III

RESULTS

Results indicated that adj_lli was able to identify aberrant observations and that its 

effectiveness may have been affected by the presence of missing data and by the number of 

aberrant observations. As shown in Table 3, the average adj_lli for the aberrant sample was

higher than the average for the primary sample across all but the covariance shift only

conditions. In general, these differences were at least a standard deviation. The pattern was 

reversed in three of the four covariance shift only conditions, with the exception of the 2%

missing, 10% aberrance cell. Notably, the size of the difference for this cell was comparable 

to the differences produced by the other sources of aberrance. The three cells where the 

primary group had higher scores showed primary vs. aberrance differences that were very 

small.

A regression model was fit that included the four way interaction of group, 

missingness, proportion of aberrance, and source of aberrance, as well as all lower order 

interactions. Given the sample size (N = 640,000), it wasn’t surprising that all main and 

interaction effects were statistically significant. However, the model provided a parameter 

estimate for the group (aberrant vs. primary) effect, controlling for the impact of the 

experimental conditions. The main effect for group was clear; the aberrant observations had 

an average adj_lli that was .94 points higher than the primary observations. 
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The interaction effects in the model were all significant. Again, given the large sample 

size, this does not necessarily imply practically significant results. Figure 2 provides a 

graphical description of these effects. 

The source of aberrance that led to the greatest differences between aberrant and 

primary groups was the contaminated normal, followed by the combined mean and covariance 

shift. The smallest differences were seen in the covariance shift only condition.  

The effect of missingness on the difference score was trivial across all levels of the 

other experimental factors. While there did appear to be a general trend for the proportion of 

aberrance, the effect was tempered by the source of aberrance. Interestingly, the size of the 

interaction mirrored the main effect for the source of aberrance. The impact of the proportion 

of aberrance was greatest for the contaminated normal condition. The difference between the 

primary and aberrant groups was dramatically smaller when 10% of the observations were 

aberrant than when 2% were. The direction of this effect was the same for the combined mean 

and covariance shift condition, but size of the effect was notably smaller. The effect is further 

reduced in the mean shift only condition. Finally, in the covariance shift only condition, the 

impact of the proportion of aberrance is negligible.

Accuracy of classification

While the specific value of adj_lli is of interest, of greater importance is its ability to 

correctly classify observations as either aberrant or not. Because true group (aberrant or 

primary) membership is known, it is possible to determine the proportion of observations 

accurately classified as aberrant (true positive fraction, TPF) and the proportion of primary 

observations misclassified as aberrant (false positive fraction, FPF). Classification of a given 
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observation would require the specification of a “cut point;” a value for adj_lli beyond which 

all observations are classified as aberrant. Setting a low value for the cut point will have the 

desirable effect of  increasing the number of observations correctly classified as aberrant 

(TPF), but also increases the number of primary observations misclassified as aberrant (FPF). 

Conversely, decreasing the FPF will also decrease the TPF. A Receiver Operating 

Characteristic (ROC) curve plots TPFs as a function of FPFs and so is an efficient method of 

displaying the cost (i.e., increase in FPF) of higher TPF rates. If group membership (primary 

vs. aberrant) had no relationship with adj_lli, classification would be arbitrary. In this case, 

the ROC curve would be a diagonal line bisecting the graph. As the strength of the 

relationship between adj_lli and true group membership increases, so does the area of the 

graph captured by the ROC curve. The area under the curve (AUC) provides a numerical 

assessment of the efficacy of the classification of observations. Its value ranges from .5 

(indicating that observations are essentially classified at random) to 1.0 (indicating perfect 

classification).

These TPF and FPF values can be easily computed by fitting a logistic regression 

model with group membership as the dependent variable and one of the above aberrance 

statistics as the predictor variable. The SAS (SAS Institute, 2004) system procedure “proc 

logistic” provides both the TPF, the FPF and the AUC. Graphs of the ROC curves from all 

samples in each cell are presented in Figures 3, 5, 7, and 9 for adj_lli, INDCHI, A, and Yung’s 

mixture method respectively. Note that the flat, diagonal line on each graph is provided for 

reference and is not one of the sample curves. 

Given the variability of the curves displayed within some of these cells, the 
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computation of a single curve for each was desirable. To generate this curve all of the samples 

in a given cell were combined and a logistic model was fit. These ROC graphs are presented 

in Figures 4, 6, 8 and 10, again for adj_lli, INDCHI, A, and Yung’s mixture method, 

respectively. Means of the AUC values by study condition and aberrance statistic are 

presented in Figures 11 through 13.

Efficacy of adj_lli

Focusing first on the efficacy of adj_lli, Figures 3 and 4 imply that under some 

conditions this technique is extremely effective, while under others its utility is questionable. 

The AUC indexes how well adj_lli classifies aberrant and primary observations where .5 

indicates the poorest possible performance and 1.0 indicates perfect performance. A 

regression model was fit predicting the AUC from all three study conditions. Note that the 

level of observation is “sample” rather than the individual observations modeled earlier. The 

model is effective in predicting the AUC, F (14, 3184) = 529.12, p < .05; R2 = .70. Tests of 

the individual effects in the model are presented in Table 4. All main effects and interactions

were significant predictors of the AUC. Close examination of Figure 3 reveals the pattern of 

results. Generally speaking, increases in the proportion of aberrant responses decrease the 

difference between the scores between the primary and aberrant conditions. There were two 

exceptions to this pattern. At 2% missing, both the covariance shift and mean-plus-covariance 

shift conditions show increases in the difference score as the percentage of aberrant 

observations increases. Finally, the percentage of aberrant observations had essentially no 

impact on the difference score when 15% of the data were missing from the covariance shift

condition.



30

Proportion of aberrant observations, source of aberrance, and their interaction, 

however, are all significant predictors of the effectiveness of adj_lli as measured by the AUC. 

Figure 11 presents the mean of the AUC for each condition. Above and beyond the interaction

between source and proportion of aberrant observation, there is evidence to support the

inference of an independent effect for the source of aberrance. This pattern is reminiscent of 

the pattern seen earlier in model of adj_lli (see Figure 2). The predictive power of adj_lli was 

strongest in the contaminated normal conditions. The two means shift conditions followed, 

with the combined mean and covariance shift condition outperforming the mean shift only 

condition. The performance of adj_lli was poorest in the covariance shift only condition. 

It can not be argued that there is an effect for the proportion of aberrance on the AUC

that is independent of the effect of source of aberrance. In the contaminated normal condition, 

there is no effect for the proportion of aberrant respondents. However, increasing the 

proportion of aberrant responses significantly decreased the AUC in both mean shift 

conditions. This decrease was the same for both of these conditions. The effect is similar in 

the covariance shift only condition, although it is less pronounced.

Close examination of the graphs presented in Figure 3 confirms the findings for the 

statistical tests of the AUC. Recall that each of these graphs contains 200 lines, one for each 

simulated sample. Across all four of the contaminated normal conditions, there is a strong 

tendency for the curves toward the outside of the graph. The technique was very effective on 

almost all samples simulated as contaminated normal distributions.

The graphs for the mean and covariance conditions are also very encouraging with 

regard to the efficacy of adj_lli. The densest portions of the graphs, however, are lower than 



31

in the contaminated normal conditions indicating somewhat decreased efficacy. One 

unanticipated effect that begins to be apparent here is the increased variance of areas under 

the curves in the 2% aberrant conditions. 

The densest portion of the graph is again lower in the mean shift only condition. Even 

so, the bulk of the lines are well above the portion of the graph indicating arbitrary 

classification. The increased variance for the 2% aberrant conditions noted in previous 

conditions is somewhat more apparent here. 

Finally, the graphs confirm the finding that adj_lli performs the worst in the 

covariance only conditions. Not only is the densest portion of the graph the lowest of all 

conditions, but a sizable number of the lines actually fall below the diagonal reference line. In 

these cases, the true positive rate (TPF) did not consistently increase with the (FPF). As such, 

lowering the cut point increased the number of primary observations classified as aberrant, 

but there was no corresponding benefit of increased accurate classification of aberrant 

observations. 

As for the previous two sources of aberrance, there is clear evidence of increased 

variance in the curves for the 2% aberrance conditions compared to the 10% aberrant

conditions.

Comparison of adj_lli With Other Indices

Scores on the three additional indices described earlier were estimated for the 

simulated data used to evaluate adj_lli. ROC curves were drawn and areas under the curve 

(AUC) were estimated using “proc logistic” in the same way as for adj_lli. 

Yung’s mixture method presented problems for analysis. First, about five percent of 
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the logistic models used to draw the ROC curves could not be fit. As such, any statistical 

analyses intended to compare these four indices would have non-randomly missing data. 

Further, examination of the ROC graphs that could be drawn (Figures 9 and 10) make it clear 

that this method performed poorly under all conditions. For these reasons, a decision was 

made to exclude this method from formal statistical comparison. 

A mixed model regression was used to compare the three indices on the AUC. Within 

each experimental condition, the same simulated samples were used to compute the AUC for 

each index. The repeated use of the same samples created non-independence between 

observations in the model. Mixed models are effective in managing this non-independence 

while estimating the effects of interest. In addition to the comparison of the three indices, the 

four way interaction of index, missingness, proportion of aberrance, and source of aberrance

is tested along with all lower order interactions. The tests of the experimental conditions are 

presented in Table 5. The model provides evidence that these three indices do perform 

differently. The analysis supported the conclusion of a main effect for index. Estimation of 

the least-squared means of the AUC for each index yielded values of .84, .83, and .70 for 

adj_lli, INDCHI, and Bollen’s A respectively. 

Exploration of the interaction effects is done by examination of the AUC graphs 

(Figures 12, 13, and 14) and the ROC graphs (Figures 3 through 8). Looking first at Figures 

12 and 14, the similarities between adj_lli and A are remarkable. For both statistics, there is 

little, if any, effect for missingness. The most notable effect for missingness is for the 

covariance shift conditions with regard to the change from 2% to 10% aberrant. There is very 

little difference between the 2% and 10% samples for the 15% missing condition, while there 
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is a small but evident effect for the change in the 2% missing condition. Other than this, 

though, the graphs are quite similar. 

The graph for INDCHI, however, is very different. The highest AUCs were found for 

the contaminated normal samples and the lowest for the covariance shifted data, just as was 

seen for the other indices. The order of the mean shifted samples is reversed for INDCHI, 

however. The interaction of source with proportion of aberrant observations is very different 

from adj_lli and A. Rather than remaining flat in the contaminated normal sample, the AUC 

decreases as the proportion increased. 

Perhaps the most notable difference is in the mean shift only condition. Unlike any 

other condition, the AUC increased as the proportion of aberrant responses increased. 

Close examination of the graphs of the ROC curves (Figures 3 through 8) sheds 

further light on the differences and similarities between the three indices. Again, the patterns 

for adj_lli and for Bollen’s A are strikingly similar. In each experimental cell, the densest 

portion of the graph for A is the same as what was seen for adj_lli. The increased variance in 

2% aberrant cells is just as apparent for this index as it was for adj_lli.

The graphs for INDCHI are quite distinctive. The first feature that reveals itself is the 

relatively large number of lines that drop below the .5 reference line. This seems to be 

particularly problematic at low false positive fractions. Thus, in order to correctly classify 

large proportions of the aberrant observations, a relatively large number of non-aberrant 

observations will be misclassified as aberrant. 
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While all of the indices had their poorest performance in the covariance shift only 

conditions, INDCHI demonstrated essentially chance level performance in those conditions. 

INDCHI underperforms the other two indices in every experimental condition. 



CHAPTER IV

DISCUSSION

A method to identify aberrant or outlying observations in CFA models was 

presented. This method, labeled adj_lli, was evaluated under a variety of conditions 

(different sources of aberrance, different levels of missing data, and different proportions 

of aberrant respondents) via a Monte Carlo simulation. It was also compared to three other 

methods for identifying these distinctive observations: Reise and Widaman’s (1999) 

INDCHI, Bollen’s A (1987), and Yung’s (1997) method for evaluating mixtures. The 

primary hypothesis under examination was that, in the context of a CFA fit under FIML, 

highly aberrant respondents will have correspondingly high adj_lli and that these values 

could be used to detect those aberrant respondents.

Receiver Operating Characteristic (ROC) curves and the areas under those curves 

(AUC) provided the method for assessing the efficacy of adj_lli. The curves themselves 

provide a graphical description of the balance between correctly classifying aberrant 

observations and misclassifying primary observations as aberrant. The AUC quantifies the 

ROC and thus was used as the dependent variable in statistical assessment of adj_lli and of 

the factors that may influence it.

The proposed technique was effective in identifying aberrant observations. Its 

effectiveness, however, changed as a function of study condition. Increasing the proportion 

of aberrant observations from two to 10% tended to flatten the ROC curves for three of the 

four sources of aberrance (mean shift only, covariance shift only, and the combination of 
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these two), implying that adj_lli became less effective with that increase. The contaminated 

normal was unexpectedly resilient to increases in the proportion of aberrant observations. 

The ROC curves showed more variability in the 2% aberrant conditions than in the 

10% conditions. The cause of this increased variability is unclear, although it may be 

related to the distinctiveness of the aberrant sample. There was the greatest amount of 

variance in the ROC curves in the covariance only conditions and the least amount in the 

contaminated normal. Not coincidently, these were also the sources of aberrance where 

adj_lli performed the poorest and the best, respectively.  

In addition to manipulating the amount of aberrant data, the amount of missing data 

was varied so that half the samples had 2% missingness and the other half had 15%

missingness. This manipulation had very little impact on the results in any condition. 

Adj_lli was about as effective in identifying aberrant observations regardless of the amount 

of missing data. 

Perhaps the most important study factor was the source of aberrance. Adj_lli

performed best in contaminated mixture condition. Three explanations for the size of this 

effect are apparent. First, the simulated observations were drawn from particularly extreme 

portions of the populations. As such, the effectiveness of adj_lli in these conditions may be 

an artifact of the simulation method. Second, because the aberrant observations do not 

cluster, they do not pull the overall model in a consistent direction. In all of the other 

source conditions, the aberrant observations are made to cluster together and have a 

common impact on the centroid of the dataset, moving it closer to the aberrant 

observations. This may also explain why increasing the number of aberrant observations 
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from two to 10% had the smallest impact on adj_lli in the contaminated normal conditions. 

Finally, again because the aberrant observations in this condition do not cluster together, 

they are not only distinct from the primary population, but are also more likely to be 

distinct from each other.

Adj_lli performed poorly in the covariance shift only condition. This poor 

performance is highlighted by the fact that the primary group had slightly higher adj_lli in 

three of the four cells under this source of aberrance.  This is a particularly disappointing 

result. It was hoped that this method would be sensitive to theoretically distinct outliers. 

While mean shifts can be theoretically important, the covariance shift gets to the heart of 

factor analysis. The weak showing of this technique in the covariance shift calls into 

question its effectiveness as a model based method. 

The mean shift only condition provided results that were notably superior to what 

was seen in the covariance shift only condition. The combined covariance and mean shift 

condition showed even stronger effects. Much of the variance in the individual log-

likelihoods comes from the difference between the means of the measurement variables 

and the means estimated by the model. As such, the effectiveness in the mean only 

condition is not surprising. Combining this with the effect of the change in the factor 

structure increased the effect even more. 

Adj_lli compared favorably to the other methods under examination. The mixture 

method suggested by Yung (1997) performed particularly poorly. This should have been 

anticipated. While Yung (1997) suggested that his method might be adaptable for outlier 

detection, he also noted theory for doing so had not yet been developed (1997, 2006). His 
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method is effective for dealing with mixture models, but performs best when the specifics 

of the distinct models and approximate mixing proportions are known. While these may be 

reasonable assumptions when fitting mixture models, having this information when 

searching for smaller numbers of aberrant observations is unlikely. 

Adj_lli outperformed Reise and Widaman’s (1999) INDCHI across all conditions. 

Both techniques performed best on the contaminated normal samples. However, INDCHI

was not distinguishable from chance in the covariance shift only conditions. Similar to 

adj_lli, INDCHI did better on the mean shifted samples, with higher performance for the 

combined mean and covariance shift conditions. Note, though, that these are relative 

statements; even when INDCHI was performing at its best, it was not performing 

particularly well.

Finally, Bollen’s A had nearly identical performance to adj_lli. Not only were both 

techniques affected in similar ways by the experimental factors in the study, but the 

proportion of observations that were correctly classified were essentially the same. Given 

complete data, I would expect these techniques to identify the same observations as 

aberrant. The effectiveness of Bollen’s A is tempered by the fact that it can only be applied 

on complete data. Despite the apparent effectiveness of A, its inability to manage missing 

data severely limits its widespread use. Adj_lli does not share this limitation.

As it was originally conceived, one of the strength’s of adj_lli is that it is model 

based. As such, it is not just that aberrant observations are distinctive, but that a 

hypothetical model is a particularly poor fit for those observations. While no model is a 

perfect fit for any specific observation, adj_lli was intended to identify those for whom the 
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model is particularly poor relative to the other observations in the sample. The similarity of 

the results for adj_lli and Bollen’s A makes the assertion that this method is model based 

questionable. However, the models tested here were specified to fit the primary data as 

they were simulated. Future research on adj_lli will need to include experimental factors 

that manipulate model misspecification. 

Another component of this method’s strength is that the information required to 

implement it should be readily available. The usefulness of any technique is limited by its 

accessibility and ease of use. The method proposed here exploits information computed as 

a matter of course in models using FIML estimation. In fact, the individual log-likelihood 

values can already be requested in two widely available software packages, Mx (Neale et 

al., 2003) and Mplus (Muthen, 2005). Even when using software that does not produce the 

individual log-likelihoods, computation of the statistic would be relatively simple from the 

estimated covariance matrix and population means. It should be noted, however, that 

computing the adj_lli will require extra effort beyond what is produced by most software. 

This necessity will limit the widespread implementation of this method. 

The results of the analyses reveal not only some of the strengths and weaknesses of 

adj_lli, but also expose some limitations of the research itself and point to some future 

directions. Addressing these issues in future research will aid in the understanding of 

utility of this approach.

First, the research was limited to one type of model, a confirmatory factor analysis. 

While this is a common analytic framework (a Social Sciences Citation Index (SSCI, 

Thompson Corporation, 2006) search found over 350 publications using or studying CFA 
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in the year 2005) it is a constrained example of possible CSA models. Beyond this, the 

model studied here is a relatively simple CFA. More complex models, both factor analytic 

and models with structural components, should shed light on the conditions under which 

adj_lli performs well. 

The specification of the models provides another source of criticism. Because the 

hypothesized model was also the generating model for the primary subsample, it was 

perfectly specified for that subsample. This is a particularly artificial situation; in real-

world research situations models are at least slightly misspecified. This decision was made 

to simplify the research situation and provide a clearer assessment of the efficacy of adj_lli. 

However, in the future consideration should be given to more realistic research conditions. 

Beyond the conditions where adj_lli can be applied, concern about the utility of the 

method may still exist. Because the data here were simulated, assessment and comparison 

of true and false positives was possible. In real research situations, though, more guidance 

will be needed in making use of adj_lli to identify aberrant observations. This guidance 

may take the form of finding cut-points for dividing the sample into aberrant or not-

aberrant observations. More research into the distribution of the statistic will be required to 

make general statements about determining the cut-point in a given sample. 

Perhaps the greatest flaw in planning of this research involves the definition of 

aberrance. It was hoped that this technique would be a general approach for detecting 

poorly fitting observations without reference to the cause of that aberrance. In retrospect, 

however, this is likely a critical consideration. Adj_lli was best able to identify those 

observations whose scores were distant from the multivariate center of the observation. 
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Attention to the situations which might lead to such outlying observations will be needed 

before this technique becomes useful in applied research. Future research on this topic 

should begin with reflection on why aberrant data might exist. From this an inference 

about how that aberrance will express itself in the data can be made. Finally, based on that 

inference a technique can be developed to target those data. This is a strategy that has been 

followed in the IRT literature successfully (see Meijer, 1996, for a review). The results of 

this research strongly imply that adj_lli is an effective method for identifying multivariate 

outliers. It was, for example, very effective in the halo conditions. Future research on this 

technique should begin by suggesting research situations which would lead to small 

numbers of cases with extreme values on the measurement variables. The simulations 

could then be designed to mimic these situations. This approach would not only shed light 

on the circumstances where adj_lli is likely to be most effective, but could set the stage for 

a series of CSA person-fit statistics, each tailored to the research situations where one is 

likely to find specific forms of person-misfit.
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Appendix A
Parameters of Generating Models

Factor Loadings
Primary and Aberrant

K1 K2 K3
x1 3.97 -- --
x2 1.93 -- --
x3 1.24 -- --
x4 -- 8.75 --
x5 -- 3.57 --
x6 -- 3.73 --
x7 -- -- 3.77
x8 -- -- 0.96
x9 -- -- 2.17

Inter-Factor Covariances
Primary

K1 K2 K3
K1 1 .68 .91
K2 .68 1 .41
K3 .91 .41 1

Inter-Factor Covariances
Aberrant

K1 K2 K3
K1 4.96 .95 3.17
K2 .95 1.47 .23
K3 3.17 .23 2.14

Theta-Delta (diagonal elements)
Both Primary and Aberrant
26, 15, 6, 51, 7, 12, 26, 11, 12,

Means of the Measurement Variables:
Primary: 29, 25, 14, 44, 19, 28, 103, 6, 9
Aberrant: 31, 24, 16, 51, 22, 33, 110, 17, 15
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Appendix B
Gauss Code for Simulating and Analyzing Data

Mean Shift Only, 2% Missing, 2% Aberrant

Note: The “include#” statements call the analysis software developed by Cai (2005a)

#include "C:\Gauss3\SEM\LISREL1.txt";
#include "C:\Gauss3\MI\MI.txt";

totn = 200;
for r (1,totn,1);
print "RUN" r;
/* Cell 2, Mean Shift, 2% Missing, 2% Aberrant*/
/* Setup a cfa model for the primary group*/
_LA = {
    . 0 0,
    . 0 0,
    . 0 0,
    0 . 0,
    0 . 0,
    0 . 0,
    0 0 .,
    0 0 .,
    0 0 .};

_BE = {
    0 0 0,
    0 0 0,
    0 0 0};

_PS = {
    1 . .,
    . 1 .,
    . . 1};

_PH = {
    .,
    .,
    .,
    .,
    .,
    .,
    .,
    .,

  .};
_PH = dg(_PH);

_AL = {0,
    0,
    0};
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_KA = {., 
           .,
           .,
           .,
           .,
           .,
           .,
           .,
           .}; 

LA = {
    1 0 0,
    2 0 0,
    3 0 0,
    0 4 0,
    0 5 0,
    0 6 0,
    0 0 7,
    0 0 8,
    0 0 9};

BE = {
    0 0 0,
    0 0 0,
    0 0 0};

PS = {
    1 10 11,
    10 1 12,
    11 12 1};

PH = {
    13,
    14,
    15,
    16,
    17,
    18,
    19,
    20,
    21};
PH = dg(PH);

AL = {
    0,
    0,
    0};

 KA = {22,
     23,

          24,
          25, 
          26,
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          27,
          28,
          29,
          30}; 

theta = {3.97,
             1.93,
             1.24,
             8.75,
             3.57,
             3.73,
             3.77,
             0.96,
             2.17,
             0.68,
             0.91,
             0.41,
             26, 15, 6, 51, 7, 12, 26, 11, 12,
           29, 
           25,
           14,
           44,
           19,
           28,
         103,
             6,

   9} ;                     

{Lambda, Beta, Psi, Phi, Alpha, Kappa} = 
SetModel(theta,LA,BE,PS,PH,AL,KA,_LA,_BE,_PS,_PH,_AL,_KA);

p = rows(Lambda);
q = cols(Lambda);
A = inv(eye(q)-Beta);
mu1 = Lambda*A*Alpha+Kappa;
Sigma1 = Lambda*A*Psi*A'*Lambda'+Phi;

/* Generate Raw Data */
n1 = 196;
Y1 = rndn(n1,p)*chol(Sigma1)+mu1';
print "PSI Ab" psi;

/*   Y1;*/

/* Setup a cfa model for the aberrant group*/
_LA = {
    . 0 0,
    . 0 0,
    . 0 0,
    0 . 0,
    0 . 0,
    0 . 0,
    0 0 .,
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    0 0 .,
 0 0 .};

_BE = {
    0 0 0,
    0 0 0,
    0 0 0};

_PS = {
    1 . .,
    . 1 .,
    . . 1};

_PH = {
    .,
    .,
    .,
    .,
    .,
    .,
    .,
    .,
    .};
_PH = dg(_PH);

_AL = {0,
    0,
    0};

_KA = {., 
           .,
           .,

    .,
           .,
           .,
           .,
           .,
           .}; 

LA = {
    1 0 0,
    2 0 0,
    3 0 0,
    0 4 0,
    0 5 0,
    0 6 0,
    0 0 7,
    0 0 8,
    0 0 9};

BE = {
    0 0 0,
    0 0 0,
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    0 0 0};

PS = {
    1 10 11,
    10 1 12,
    11 12 1};

PH = {
    13,
    14,
    15,
    16,
    17,
    18,
    19,
    20,
    21};
PH = dg(PH);

AL = {
    0,
    0,
    0};

 KA = {22,
          23,
          24,
          25, 
          26,
          27,
          28,
          29,
          30}; 

theta = {3.97,
             1.93,
             1.24,
             8.75,
             3.57,
             3.73,
             3.77,
             0.96,
             2.17,
             0.68,
             0.91,
             0.41,
             26, 15, 6, 51, 7, 12, 26, 11, 12,
           31, 
           24,
           16,
           51,
           22,
           33,
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          110,
           17,
           15} ;         

{Lambda, Beta, Psi, Phi, Alpha, Kappa} = 
SetModel(theta,LA,BE,PS,PH,AL,KA,_LA,_BE,_PS,_PH,_AL,_KA);

p = rows(Lambda);
q = cols(Lambda);
A = inv(eye(q)-Beta);
mu1 = Lambda*A*Alpha+Kappa;
Sigma1 = Lambda*A*Psi*A'*Lambda'+Phi;

/*Generate Raw Data*/
n2 = 4;
Y2 = rndn(n2,p)*chol(Sigma1)+mu1';
print "PSI Ab" psi;

/*Combine Primary and Aberrant Data*/
n = n1+n2;
Y = Y1|Y2;

S = vcx(Y);
m = meanc(Y);

{start,F0,ets}=SEMfit(S,m,theta);
/* generate missing */
for i (1,196,1);
  isMis =  rndu(1,1) le .02;
  j = trunc(rndu(1,1)*p)+1;
  if isMis;
    Y[i,j] = nill;
  endif;
endfor;
for i (197,199,1);
  isMis =  rndu(1,1) le .02;
  j = trunc(rndu(1,1)*p)+1;
  if isMis;
    Y[i,j] = nill;
  endif;
endfor;
for i (200,200,1);
j=trunc(rndu(1,1)*p)+1;
endfor;
/* EM to start */
{startmu,startSigma} = GenStartVals(Y);
{muHat,SigmaHat,Yc,EC,parmMatrix} = EMmvn(Y,startmu,startSigma,1e4,1e-10);

{thetahat,LLfit,LLsat,chisq,ets,ret}= FIMLfit(Y,start,&dFIMLlogLKHD,muHat,SigmaHat);

indLLfit = -FIMLlogLKHDi(thetahat,Y);
indLLsat = -FIMLlogLKHDsati(muHat|vech(SigmaHat),Y);
indchi =   indLLfit-indLLsat;
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subj = zeros(n, 1);
            for b (1, rows(subj), 1);
                for c (1, cols(subj), 1);
                    subj[b,c] = b*c;
                endfor;
            endfor;

logs1=  (subj|indllfit|indllsat|indchi);
logs1a = (reshape(logs1,4,n))';

logs1=  (subj|indllfit|indllsat|indchi);
yt=y';
ylong=(reshape(yt,n*p,1));
ylogs1=(logs1|ylong);
logs1b = (reshape(ylogs1,13,n))';

output file="C:\Gauss3\Project3\Cell2A.txt" on;
print logs1b;
output off;

endfor;
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Appendix C
Gauss Code for Simulating and Analyzing Data

Covariance shift Only, 2% Missing, 2% Aberrant

#include "C:\Gauss3\SEM\LISREL1.txt";
#include "C:\Gauss3\MI\MI.txt";

totn = 200;
for r (1,totn,1);
print "RUN" r;
/* Cell 8, Covariance shift, 2% Missing, 2% Aberrant*/
/* Setup a cfa model for the primary group*/
_LA = {
    . 0 0,
    . 0 0,
    . 0 0,
    0 . 0,
    0 . 0,
    0 . 0,
    0 0 .,
    0 0 .,
    0 0 .};

_BE = {
    0 0 0,
    0 0 0,
    0 0 0};

_PS = {
    1 . .,
    . 1 .,
    . . 1};

_PH = {
    .,
    .,
    .,
    .,
    .,
    .,
    .,
    .,
    .};
_PH = dg(_PH);

_AL = {0,
    0,
    0};

_KA = {., 
           .,
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           .,
           .,
           .,
           .,
           .,
           .,
           .}; 

LA = {
    1 0 0,
    2 0 0,
    3 0 0,
    0 4 0,
    0 5 0,
    0 6 0,
    0 0 7,
    0 0 8,
    0 0 9};

BE = {
    0 0 0,
    0 0 0,
    0 0 0};

PS = {
    1 10 11,
    10 1 12,
    11 12 1};

PH = {
    13,
    14,
    15,
    16,
    17,
    18,
    19,
    20,
    21};
PH = dg(PH);

AL = {
  0,

    0,
    0};

 KA = {22,
          23,
          24,
          25, 
          26,
          27,
          28,
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          29,
          30}; 

theta = {3.97,
             1.93,
             1.24,
             8.75,
             3.57,
             3.73,
             3.77,
             0.96,
             2.17,
             0.68,
             0.91,
             0.41,
             26, 15, 6, 51, 7, 12, 26, 11, 12,
           29, 
           25,
           14,
           44,
           19,
           28,

       103,
             6,
            9} ;                     

{Lambda, Beta, Psi, Phi, Alpha, Kappa} = 
SetModel(theta,LA,BE,PS,PH,AL,KA,_LA,_BE,_PS,_PH,_AL,_KA);

p = rows(Lambda);
q = cols(Lambda);
A = inv(eye(q)-Beta);
mu1 = Lambda*A*Alpha+Kappa;
Sigma1 = Lambda*A*Psi*A'*Lambda'+Phi;

/*Generate Raw Data*/
n1 = 196;
Y1 = rndn(n1,p)*chol(Sigma1)+mu1';
print "PSI Ab" psi;

/*   Y1;*/

/* Setup a cfa model for the aberrant group*/
_LA = {
    . 0 0,
    . 0 0,
    . 0 0,
    0 . 0,
    0 . 0,
   0 . 0,

    0 0 .,
    0 0 .,
    0 0 .};
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_BE = {
    0 0 0,
    0 0 0,
    0 0 0};

_PS = {
    . . .,
    . . .,
    . . .};

_PH = {
    .,
    .,
    .,
    .,
    .,
    .,
    .,
    .,
    .};
_PH = dg(_PH);

_AL = {0,
    0,
    0};

_KA = {., 
           .,
           .,
           .,
           .,
           .,
           .,
           .,
           .}; 

LA = {
    1 0 0,
    2 0 0,
    3 0 0,
    0 4 0,
    0 5 0,
    0 6 0,
    0 0 7,
    0 0 8,
    0 0 9};

BE = {
    0 0 0,
    0 0 0,

0 0 0};
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PS = {
    10 11 12,
    11 13 14,
    12 14 15};

PH = {
    16,
    17,
    18,
    19,
    20,
    21,
    22,
    23,
    24};
PH = dg(PH);

AL = {
    0,
    0,
    0};

 KA = {25, 
          26,
          27,
          28,
          29,

      30,
          31,
          32,
          33}; 

theta = {3.97,
             1.93,
             1.24,
             8.75,
             3.57,
             3.73,
             3.77,
             0.96,
             2.17,
             4.96,
             0.95,
             3.17,
             1.47,
             0.23,
             2.14,
             26, 15, 6, 51, 7, 12, 26, 11, 12,
           29, 
           25,
           14,
           44,
           19,
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           28,
         103,
             6,

    9} ;                     

{Lambda, Beta, Psi, Phi, Alpha, Kappa} = 
SetModel(theta,LA,BE,PS,PH,AL,KA,_LA,_BE,_PS,_PH,_AL,_KA);

p = rows(Lambda);
q = cols(Lambda);
A = inv(eye(q)-Beta);
mu1 = Lambda*A*Alpha+Kappa;
Sigma1 = Lambda*A*Psi*A'*Lambda'+Phi;

/* Generate Raw Data*/
n2 = 4;
Y2 = rndn(n2,p)*chol(Sigma1)+mu1';
print "PSI Ab" psi;

/*Combine Primary and Aberrant Data*/
n = n1+n2;
Y = Y1|Y2;

S = vcx(Y);
m = meanc(Y);

{start,F0,ets}=SEMfit(S,m,theta);
/* generate missing */
for i (1,196,1);
  isMis =  rndu(1,1) le .02;
  j = trunc(rndu(1,1)*p)+1;
  if isMis;
    Y[i,j] = nill;
  endif;
endfor;
for i (197,199,1);
  isMis =  rndu(1,1) le .02;
  j = trunc(rndu(1,1)*p)+1;
  if isMis;
    Y[i,j] = nill;
  endif;
endfor;
for i (200,200,1);
j=trunc(rndu(1,1)*p)+1;
endfor;
/* EM to start */
{startmu,startSigma} = GenStartVals(Y);
{muHat,SigmaHat,Yc,EC,parmMatrix} = EMmvn(Y,startmu,startSigma,1e4,1e-10);

{thetahat,LLfit,LLsat,chisq,ets,ret}= FIMLfit(Y,start,&dFIMLlogLKHD,muHat,SigmaHat);

indLLfit = -FIMLlogLKHDi(thetahat,Y);
indLLsat = -FIMLlogLKHDsati(muHat|vech(SigmaHat),Y);
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indchi =   indLLfit-indLLsat;

subj = zeros(n, 1);
            for b (1, rows(subj), 1);
                for c (1, cols(subj), 1);
                    subj[b,c] = b*c;

            endfor;
            endfor;

logs1=  (subj|indllfit|indllsat|indchi);
logs1a = (reshape(logs1,4,n))';

logs1=  (subj|indllfit|indllsat|indchi);
yt=y';
ylong=(reshape(yt,n*p,1));
ylogs1=(logs1|ylong);
logs1b = (reshape(ylogs1,13,n))';

output file="C:\Gauss3\Project3\Cell8A.txt" on;
print logs1b;
output off;

endfor;
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Table 1:

Correlations Among Person-Fit Indices (Reise & Widaman, 1999)

1 2 3 4 5 6 7
Well-Being Scale

1. θ̂ --
2. Zl .17 --
3. LLIRT .74 .66 --
4. LLSAT .75 .70 .86 --
5. LLBAS .77 .24 .41 .69 --
6. LL1FAC .75 .72 .87 .98 .70 --
7. INDCHI -.07 -.17 -.11 .00 .11 -.18 --

Stress Reaction Scale
1. θ̂ --
2. Zl -.04 --
3. LLIRT -.36 .64 --
4. LLSAT -.35 .81 .78 --
5. LLBAS -.45 .22 -.27 .19 --
6. LL1FAC -.35 .84 .79 .96 .21 --
7. INDCHI .00 -.18 -.11 .07 -.06 -.19 --

Traditionalism Scale
1. θ̂ --
2. Zl .16 --
3. LLIRT .67 .72 --
4. LLSAT .58 .80 .81 --
5. LLBAS .67 .42 .40 .71 --
6. LL1FAC .58 .83 .83 .97 .73 --
7. INDCHI -.05 -.20 .83 .04 -.21 -.19 --
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Table 2:

Study Design: Covariance Structures, Proportions of Aberrant Observations and Missing 
Data

Percentage of Observations with Missing Data

2% 15%
Percentage Aberrant

Observations
Percentage Aberrant

 Observations

0% 2% 10% 0% 2% 10%

Mean Shift 

Cov. Shift 

Mean + Cov.

Halo
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Table 3:

Means and Standard Deviations of adj_lli by Condition and Sample (Primary vs. Aberrant)

Percentage of Observations with Missing Data
2% 15%

Percentage Aberrant
Observations

Percentage Aberrant
 Observations

0% 2% 10% 0% 2% 10%
PMean 

Shift A
6.20 (.48) 6.19 (.48)

7.08 (.75)
6.27 (.48)
6.74 (.58)

6.23 (.51) 6.21 (.47)
7.07 (.71)

6.23 (.45)
6.74 (.57)

PCov.
Shift A

--
6.20 (.47)
6.08 (.45)

6.22 (.45)
6.73 (.58)

--
6.21 (.47)
6.10 (.44)

6.21 (.47)
6.09 (.44)

PMean
Cov. A

--
6.20 (.46)
6.97 (.66)

6.02 (.52)
6.95 (.81) --

6.21 (.47) 
6.94 (.66)

6.23 (.46)
6.20 (.55)

PHalo
A

-- 6.22 (.44)
10.20 (2.63)

6.55 (.96)
8.99 (1.67)

-- 6.22 (.44)
10.77 (2.58)

6.33 (.39)
8.99 (1.72)
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Table 4:

Tests of Model Effects, AUC for adj_lli

Source DF Type III 
SS

Mean Square F Value p

Missingness 1, 3184 .06 .06 9.39 <.05
Aberrance 1, 3184 1.87 1.87 278.55 <.05
Missingness*Aberrance 1, 3184 .24 .23 35.61 <.05
Source 3, 3184 40.21 13.40 2000.49 <.05
Missingness*Source 3, 3184 1.69 .56 83.93 <.05
Aberrance*Source 3, 3184 4.10 1.37 203.76 <.05
Missingness*Aberrance*Source 3, 3184 1.61 .80 119.96 <.05
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Table 5:

Tests of Model Effects, AUC

Effect Num DF Den DF F Value Pr > F
Index 2 6616 1301.65 <.05
Missingness 1 3172 12.67 <.05
Index*Missingness 2 6616 1.15 .32
Aberrance 1 2980 299.79 <.05
Index*Aberrance 2 6616 62.41 <.05
Missingness*Aberrance 1 3175 54.12 <.05
Index*Missingness*Aberrance 2 6616 .01 .99
Source 3 2982 2627.91 <.05
Index*Source 6 6615 55.83 <.05
Missingness*Source 3 3175 96.62 <.05
Index*Missingness*Source 6 6616 2.31 .03
Aberrance*Source 3 2957 138.25 <.05
Index*Aberrance*Source 6 6616 70.82 <.05
Missingness*Aberrance*Source 3 3175 105.65 <.05
Index*Missingness*Aberrance*Source 6 6616 11.48 <.05
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Figure 1:

Plot of Most Aberrant Observations
Reise & Widaman, 1999
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Figure 2:

Difference (Aberrant – Primary) adj_lli Scores by Experimental Condition
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Figure 3:

ROC Curves for adj_lli
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Figure 4:

Collapsed ROC Curves for adj_lli
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Figure 5:

ROC Curves for INDCHI
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Figure 6:

Collapsed ROC Curves for INDCHI
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Figure 7:

ROC Curves for Bollen’s A
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Figure 8:

ROC Curves for Bollen’s A
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Figure 9:

ROC Curves for Yung’s Mixture Method

Percentage of Observations with Missing Data
2% 15%

Percentage Aberrant
Observations

Percentage Aberrant
 Observations

2% 10% 2% 10%

Mean 
Shift 
Only 

Cov
Shift 
Only

Mean 
+ 

Cov
Shift

So
ur

ce
 o

f 
A

be
rr

an
ce

Halo



70

Figure 10:

Collapsed ROC Curves for Yung’s Mixture Method
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Figure 11:

Area Under the ROC Curve Based on adj_lli
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Figure 12:

Area Under the ROC Curve Based on INDCHI
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Figure 13:

Area Under the ROC Curve Based on Bollen’s A
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