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ABSTRACT 
 

VENITA GRESHAM WATSON:  
A Familial Genetic Strategy for Determining Mechanism of Action 

(Under the direction of Howard McLeod, Pharm.D.) 

 

One of the greatest challenges in anticancer drug development is the discovery of 

molecular targets and biochemical interactions required for drug action. Lapses in drug 

efficacy and unanticipated toxicity, the two biggest causes of drug failure in clinical 

trials, are often attributed to our limited understanding of drug mechanism and cost the 

pharmaceutical industry millions. Genomics is rapidly emerging as tool for mechanism 

elucidation.  

Our approach is one of the latest to link drugs to the genes which influence their 

activity. This ex vivo familial genetics strategy uses a collection of extensively 

genotyped, normal, healthy, human cell lines from multigenerational families. Cell lines 

are phenotyped for cytotoxic response to anticancer agents, heritability analysis gives a 

measure of the degree to which genetics influence response, and linkage analysis 

suggests regions of the genome which are associated with the observed variation in 

response.  

To evaluate this strategy as method for mechanism elucidation, we first asked 

whether the system could produce pharmacological and genomic profiles related to a 

shared mechanism for a class of structurally related compounds. The in vitro sensitivity 

of CEPH cell lines to the camptothecins, a class of Topoisomerase 1 inhibitors (Top1), 
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was studied. Heritability analysis estimates that genetics accounts for as much 20% of the 

observed variation in cytotoxic response to these drugs. Linkage analysis revealed a 

pattern of seven quantitative trait loci (QTLs) that were shared by all of the 

camptothecins and independently replicated with a second set of camptothecin analogues. 

The pattern of QTLs observed with the camptothecins was compared to those of the 

indenisoquinolines, a structurally distinct class of Top1 inhibitors. The objective was to 

identify which if any QTLs are related to the general mechanism of Top1 inhibition or 

should be considered class-specific. Finally, the model was assessed for its ability to 

stratify compounds by mechanism based on their biological and genomic profiles. Cell 

lines were phenotyped for response to approximately 30 drugs belonging to 8 mechanistic 

classes. Intraclass biological and genomic profiles were more similar to each other than to 

compounds belonging to distinct mechanistic classes. 

This work could have a significant impact on drug discovery and development as 

it provides a strategy for not only making predictions about mechanism of action for 

novel therapies, but for identifying genes involved in variable response to 

chemotherapeutic agents as well. 
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Abstract 

The inability to predict the pharmacology and toxicology of drug candidates in preclinical studies 

has led to the decline in the number of new drugs which make it to market and the rise in cost 

associated with drug development. Identifying molecular interactions associated with therapeutic 

and toxic drug effects early in development is a top priority. Traditional mechanism elucidation 

strategies are narrow, often focusing on the identification solely of the molecular target. Methods 

which can offer additional insight into wide-ranging molecular interactions required for drug 

effect and the biochemical consequences of these interactions are in demand. Genomic strategies 

have made impressive advances in defining a more global view of drug action and are expected to 

increasingly be used as a complimentary tool in drug discovery and development. 

1. Predicting Drug Variability Requires Knowledge of Mechanism 

There is significant interpatient variability in response to anticancer agents; different patients may 

experience therapeutic benefit, no effect, or even life-threatening side effects from identical doses 

of the same drug. Very few methods are available to prospectively distinguish those who will 

benefit from those who may be harmed. Consequently, the number of adverse events associated 

with cancer therapy remains high. While clinical and environmental variables (e.g., age, gender, 

diet, organ function, concurrent medications) have been associated with variation in drug 

response, genetics has been estimated to account for as much as 20-95% of the variability in a 

broad range of drugs [1] . A drug’s activity is the result of interactions with molecular targets and 

proteins involved in uptake, metabolism, and elimination. Genetic variations in any one of these 

proteins can have a significant affect on drug response. 

The field of pharmacogenomics examines the inherited variations in genes that dictate drug 

response. It seeks to identify those variations associated with differential responses between 
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patients. In the past, pharmacogenomic studies used the candidate gene approach to identify 

factors responsible for variable response. These studies required some a priori knowledge about a 

drug’s mechanism of action and the proteins it interacts with to elicit a pharmacological or toxic 

effect. For example, many cancers overexpress the epidermal growth factor receptor (EGFR) 

which, when ligand bound, triggers cell proliferation. Gefitinib was developed specifically to 

inhibit EGFR and suppress tumor growth. Early clinical trials revealed that most patients who 

received gefitinib saw no therapeutic effect [2] . However, 10% of the patients had a dramatic 

positive response to therapy [3].  It was subsequently discovered that the tumors of patients 

experiencing therapeutic benefit had specific activating mutations in the EGFR gene that made 

them susceptible to the chemotherapeutic agent. Understandably, it was concluded that 

administering this drug to patients whose tumors did not possess the EGFR mutations was neither 

medically or financially practical. Knowledge of the mechanism of action and protein interactions 

required for a drug’s pharmacological effect can aid in the identification of patients likely to 

receive therapeutic benefit or suffer from adverse events. 

Unfortunately, many drugs currently in use were developed without knowledge of their 

underlying molecular mechanisms. Predicting the mechanism of action has proven very difficult 

for both old and new drugs for several reasons. In many cases the target is unknown; as a result, 

the biochemical consequences of the drug-target interaction remain elusive. Even when the target 

is known, the cellular consequences of drug-target interactions remain vague. Moreover, drugs 

are often capable of binding to more than one target (considered off-target proteins), many of 

which have not been characterized. The end product is concurrent changes in many different 

known and unknown biochemical pathways. Our limited understanding is further confounded by 

unpredictable drug absorption, distribution, and metabolism. Drug action is a very complex 

process and clearly difficult to untangle. Our inability to elucidate a drug’s mechanism is a 

significant cause for the high failure rates and high costs associated with drug development. 
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Methods that can provide information on direct targets, indirect targets, affected cellular 

pathways, and proteins involved in the uptake, metabolism, and elimination of a drug would be 

powerful tools in drug discovery and development.  

A wide variety of technologies have been developed for unraveling drug mechanism (Table 1-1). 

Traditional approaches fall broadly into two categories: proteomic methods, which involve the 

identification of a target on the basis of direct binding, and biological strategies, which use 

bioactivity data to compare the profiles of compounds with known targets or mechanisms to those 

of the compound of interest. This review will summarize the strategies currently being employed 

and will use recent case studies to highlight the advantages and limitations of the different 

approaches. Based on this discussion, genomics will be presented as a new tool for circumventing 

some of the technical challenges associated with traditional mechanism elucidation strategies. 

2. Limitations of Current Methods of Mechanism Elucidation 

While drug action is the result of complex biochemical cascades following interactions with a 

drug’s interaction with metabolizing enzymes, transporters, and intracellular targets, traditional 

mechanism elucidation approaches tend to strictly focus on establishing a single molecular target 

responsible for a drug’s therapeutic activity. Proteomic methods such as affinity chromatography, 

phage display, and protein microarray involve the direct identification of the target by binding to 

the compound of interest. In silico target prediction is an indirect method of protein target 

identification which suggests likely biological targets of small molecules via data mining in 

target-annotated chemical databases. Biological methods, such as cellular phenotyping, which 

compares the pharmacological profiles of compounds with known targets to those of the 

compound of interest, are also indirect methods of target identification.  
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2. 1. Proteomic Methods 

2. 1. 1. Affinity purification of targets 

Affinity chromatography is a powerful and classic method used to identify target proteins for 

small molecules [4-6]. While a number of successes have been reported, results are often 

variable. In this approach, a protein extract is passed over a packed column consisting of drug 

immobilized to a solid support (Figure 1-1). Following repeated washing to remove unbound 

proteins, the bound protein is eluted using denaturing conditions or elution with mobile ligand. In 

principle, this method is applicable only to small molecules that can be derivatized without 

disrupting their biological activity; biological activity and molecular targets have been shown to 

change with chemical modification for immobilization on solid supports [7]. For detection, this 

method requires high affinity ligands and a high abundance of the target protein in the cell 

extract. Compounds isolated following high throughput screens are typically not very potent, and 

low abundance target proteins are difficult to detect over background non-specific binders. 

Detection of weaker biologically relevant interactions is hampered by a number of factors. For 

example, many bioactive molecules are somewhat hydrophobic which predisposes them to non-

specific binding when coupled at high density to a solid support. Consequently, highly stringent 

wash conditions are required to reduce the likelihood of detecting weak interactions. 

The yeast three-hybrid system [8], phage display [9-11] and mRNA display [12-13] are three 

relatively new protein based methods for small molecule target discovery. They all utilize affinity 

chromatography but were developed to counter problems with low affinity ligands and the low 

abundance of the target protein in extracts. These methods involve the in vitro synthesis of a 

library or a pool of proteins which are then submitted to a selection process that entails repeated 

amplification and enrichment to isolate proteins of interest. The probability of finding a binding 

protein with high affinity increases as the library size increases in these systems. In addition, that 
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probability is also influenced by both the ability to diversify the library, and then isolate and 

characterize selected proteins from the library. A library lacking diversity or possessing 

underrepresented binding proteins may inadvertently be missing the target. The isolation and 

characterization of binding proteins in phage display or mRNA display can be difficult. Binding 

proteins must be expressed in E. coli, where they may fold improperly and form insoluble 

inactive aggregates or inclusion bodies, which can not be easily purified. The steps needed to 

solubilize and refold the protein can be highly variable and may not always result in high yields 

of active protein. The yeast three-hybrid system is limited to the study of proteins which can be 

expressed in yeast. 

2. 1. 2. Protein microarray 

Another method of identifying the molecular targets of small molecules is the protein microarray. 

Protein microarrays are prepared by spotting purified proteins on chemically derivatized glass 

slides. The binding profile for a small molecule across an entire proteome can be achieved by 

incubating the array with a fluorescent or radiolabelled form of the small molecule [14-15]. After 

rigorous washing, labeled proteins are identified. In a study to identify the cellular targets of 

SMIRs, small molecule inhibitors of rapamycin, which suppress rapamycin’s inhibitory effects on 

cell growth, Huang et al. prepared a microarray of nearly the entire yeast proteome [16]. SMIRs 

were biotinylated and binding to protein targets was detected using fluorescently labeled 

strepavidin. Thirty binding proteins were identified, among them Ybr077cp, a protein of 

previously unknown function. Yeast strains with a Ybr077cp deletion (Ybr077cpΔ) were 

hypersensitive to rapamycin. Ybr077cp-induced hypersensitivity was reversed when the 

Ybr077cpΔ cells were transfected with TOR1-1, a functional variant of the target of rapamycin 

protein which cannot bind rapamycin. The authors concluded Ybr077cp is likely a component of 

the TOR signaling network. Unfortunately, targets identified using the yeast proteome may not be 

relevant to human biology; for example there is no known human homolog for Ybr077cp.  
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The natural transition would be the use of arrays prepared from the human proteome. A number 

of technological advances are still needed before the whole human proteome can be applied to 

protein microarrays for drug discovery endeavors. To date only small scale human protein arrays 

have been used for study [15]. Moreover, while protein microarrays have advantages over affinity 

chromatography, there are limitations which can hinder target identification. For example, the 

discovery of potential targets by affinity chromatography is hampered by low levels of natively 

expressed proteins, while protein microarrays expose all proteins equally. However, placement on 

the array may result in steric hindrance which would prevent small molecule binding. In addition, 

small molecule target proteins might not be identified since the protein incorporated on arrays 

will lack post-translational modifications, or involvement in complex formation with other 

proteins which would contribute to their affinity for a ligand.  

2. 1. 3. In silico target prediction 

Since it is currently unfeasible to screen all proteins expressed by the human genome, 

chemoinformatics has sought to develop computational methods which can predict the proteins to 

which a drug is likely to bind. One of the latest techniques towards this goal was reported by 

Keiser et al. [17]. They computationally screened the chemical structures of approximately 3,600 

FDA approved and investigational drugs against the thousands of known ligands for 1,400 protein 

targets. Chemical similarities between drugs and ligands suggested thousands of known and novel 

drug-target associations. A subset of these drug-target associations were further examined (n = 

184) and nearly 150 were predicted which had no literature precedent. The authors used in vitro 

binding assays to validate 30 of these new drug-target predictions. Twenty-three of these drugs 

(77%) bound with affinity less than 15 uM and 5 of these had sub-100 nM affinities for the 

previously unknown targets. Some of these novel targets were suspected to contribute to drug 

action. For example, the sigma receptor (σ1) receptor was previously implicated as the target 

responsible for the hallucinogenic properties associated with N,N-dimethyltryptamine (DMT). 
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However, other non-hallucinogens bind the σ1 receptor with higher affinity than DMT and prior 

research indicates the hallucinogenic characteristics associated with DMT more closely resemble 

an interaction with serotonergic (5-HT) receptors. The study by Keiser et al. predicted multiple 5-

HT interactions and binding studies confirmed DMT binds nine serotonin receptors with affinities 

ranging from 39 nM to 2.1 uM. Unfortunately, there is no rapid and simple method of identifying 

and validating which, if any, of the nearly 4000 new predicted drug-target interactions are 

biologically relevant and associated with a drug’s primary activity or side effects. 

2. 2. Biological Methods 

2. 2. 1. Cellular Phenotyping 

A considerable number of drugs in use today were discovered by screening phenotypic changes 

induced by candidate drugs in cells, tissues, or model organisms. One of the most noteworthy 

examples of drug discovery and indirect target prediction was developed at the National Cancer 

Institute (NCI). Compounds are evaluated for their ability to inhibit cell growth in a panel of 60 

human cancer cell lines. The COMPARE algorithm then matches a test compound’s cell growth 

inhibition pattern across all 60 cell lines (referred to as the fingerprint) with one or more of the 

thousands of other compounds in the NCI database [18]. A high degree of correlation between 

two fingerprints suggests that the compounds share a molecular target. This model identified the 

novel drug kenpaullone as a cyclin dependent kinase (CDK) inhibitor when its fingerprint 

matched with other CDK inhibitors that had been through the screen previously [19]. The model 

is unsuccessful in assigning a mechanistic classification when the fingerprint for a drug candidate 

is too distinct from the patterns of other compounds with known mechanisms in the database, a 

scenario suggesting a novel molecular target. 

2. 2. 2. High Content Screening 
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Advances in automated microscopy and fluorescence have enabled the simultaneous screening of 

multiple cellular phenotypes in a method referred to as high content screening (HCS). Several 

phenotypic markers obtained from a single cell or cellular subpopulation can be combined to 

generate a multidimensional biological fingerprint. This fingerprint provides a more cohesive 

profile of the action of a drug and enables compounds of similar activity to be grouped together. 

Young and colleagues recently describe a methodology for the integration of HCS data with 

chemical structure information to make mechanisms of action inferences [20]. The authors 

screened a library of > 6,000 compounds using a cellular-proliferation assay which also measured 

30 cytological phenotypes. Factor analysis was used to reduce these cytological features to six 

categories: nuclear size, DNA replication, mitosis, nuclear morphology, nuclear ellipticity, and 

EdU texture. A mean response score was calculated for each compound. Compounds with 

response factors in the upper 5% were considered biologically active. Hierarchal clustering of 

biologically active compounds by factor scores revealed seven broad clusters termed phenotypes. 

Since similar structures tend to possess similar mechanisms, phenotypic clusters were 

investigated for structurally related compounds. Approximately 96% of compounds with similar 

structures showed similar phenotypic readouts. Conversely, 4% of compounds with slight 

changes in structure showed large changes in phenotypic readouts and suggested a change in 

mechanism. Compounds from distinct structural classes which were known to share common 

molecular targets via the same or different binding sites, or perturbed different components of 

common pathways also produced similar phenotypic readouts. Further analysis using a subset of 

compounds with known shared targets revealed that phenotypes correlated better with predicted 

compound targets than with the compound structures themselves. Finally, the authors investigated 

whether the methodology could make predictions about molecular targets. A chemogenomic 

database with known-ligand target associations based on molecular substructure was used to 

generate a model which could predict the targets of the 211 active compounds. The authors 

focused on the predicted targets for four groups of phenotypically similar yet structurally distinct 
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compounds. The group consisted of colchicine derivatives, novel kinase inhibitors, a quinoline 

derivative and a pseudolarix acid B derivative. Colchicine is a well known microtubule inhibitor 

and the majority of the compounds were predicted to share the common target, tubulin. Follow-up 

in vitro assays confirmed all compounds caused microtubule depolymerization. 

These phenotypic screening based approaches were designed to identify any compound which 

ameliorates a disease phenotype in an animal or cell-based model. Consequently, a vast number 

of compounds could be discovered to act on a substantial number of known and presently 

undiscovered targets and pathways associated with a disease. However, a fundamental limitation 

of these methods is that clustering or correlation on its own does not reveal the mechanism of 

action of compounds of interest. To infer mechanism, compounds with known mechanisms must 

be used to serve as markers for comparison. However, the number of compounds with clearly 

defined mechanisms of action is limited. Consequently, as a mechanism elucidation strategy, 

phenotypic screening is restricted to existing target knowledge. Moreover, many drugs have many 

targets and consequently a complicated resulting biochemical cascade. Finally, marketed drugs 

are only using a small portion of the potential protein targets of pharmacological interest [21]. A 

method built strictly on making predictions using compounds with known molecular targets is 

inherently limited. 

3. Genomics Broadens Understanding of Drug Action 

To meet the challenging problem of identifying the MOA for drug candidates, novel methods are 

constantly being developed and old methods increasingly improved upon. Some impressive 

successes have been attributed to the use of genetics as a tool in the identification of mechanisms 

of action for drugs. The innovative genetic models that follow have several advantages over the 

target identification assays described above. Compounds with known molecular targets are not 

required as landmarks for mechanism elucidation. Moreover, they require no a priori knowledge 
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about the compound mechanism of action [22]. This allows the activities of novel drugs to be 

determined in a systematic and unbiased method. These processes allow the discovery of 

biological pathways involved in drug action (including proteins associated with metabolism, 

distribution, and off target effects) in addition to the precise mechanism of action to be 

determined. Traditional methods of elucidating mechanism are restricted by a static view of drug 

action: they oversimplify and focus the search on a single molecular target. By allowing the 

biology to reveal the genes influencing activity, genomic tools offer a more dynamic and global 

perspective of a drug’s mechanism. 

3. 1. Applications 

3. 1. 1. Yeast genomics 

Enhanced knowledge of yeast genomics has enabled the use of the budding yeast Saccharomyces 

cerevisiae as a powerful tool for mechanistic discovery. There are different types of yeast mutant 

libraries which have been employed in mechanistic studies: heterozygous deletions, homozygous 

deletions, and overexpression libraries. An example of these libraries is the collection of genome-

wide heterozygous deletion strains developed with molecular barcodes. When these libraries are 

grown in the presence of drug, the deletions that sensitize cells to a particular drug will cause a 

decrease in cell growth relative to control [23]. The barcode associated with each strain is used to 

quantitate growth and identify genes involved in the drug’s mechanism. This method has been 

used to explore the cellular pathways and processes for a collection of compounds with known 

and unknown modes of action [23-24]. Hierarchal clustering of compounds with similar genomic 

profiles suggests common molecular targets and pathways [24]. For example, the genomic 

profiles of amiodarone, an antiarrythmic drug, and the chemotherapeutic agent tamoxifen which 

targets the estrogen receptor, were quite similar. Amiodarone acts through perturbation of 

calcium homeostasis. In three independent validation assays, tamoxifen was also shown to disrupt 
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calcium homeostasis confirming published evidence that the drug increases calcium 

concentrations in a variety of mammalian cells [24]. Moreover, the system could be used to 

identify unknown targets for novel agents. The target of the antifungal, papuamide B (PapB), was 

identified by assessing both drug resistant and sensitive mutants. Sensitive mutants affected by 

exposure to PapB had gene deletions related to cell wall organization. A single gene, the enzyme 

required for synthesis of phosphatidylserine (PS) in yeast cell membranes, was associated with 

the growth of resistant wild type cells in the presence of PapB. Investigators proposed that papB 

binds PS and acts on membrane integrity and permeability. A comparison of the genomic profile 

of PapB with known membrane permeabilizers and agents which bind other phospholipids 

revealed a match. Yeast genomic profiling is exceptional because it can be used to identify 

primary and secondary targets via sensitivity as well as loss-of-function mutations that result in 

drug-resistance [25].  

3. 1. 2. Human cancer cell lines 

Some of the earlier limitations of cell-based phenotypic screening have been circumvented with 

the incorporation of a genomics component. Scherf et al. were the first to use genomics to make 

predictions regarding targets critical to drug action in the cancer cell lines (Figure 1-2) [26]. They 

recognized that patterns in cellular sensitivity in the NCI60 could be linked to differences in gene 

expression between the cell lines, and might provide information about a compound’s mechanism 

of action. The group measured gene expression levels in the untreated NCI60 cell lines. Patterns 

of gene expression across the NCI60 panel were then correlated to the biological activity of 1,400 

compounds across the same cell line panel. Cells expressing higher levels of a gene were less 

sensitive to a compound and visa versa. For example, the expression of dihydropyrimidine 

dehydrogenase (DPYD) was negatively correlated (r = -0.53) to the potency of 5-fluouracil (5-

FU) across the NCI60 panel; cell lines which expressed low levels of DPYD, the enzyme which 

inactivates 5-FU, were more sensitive to the drug. Finally, since drug design and discovery is 
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often concerned with identifying which structural features might yield a particular mechanism, 

Blower et al. expanded on the work reported by Scherf [27]. The structural characteristics of 

compounds were linked to their biological fingerprints and the gene expression profiles of the 

NCI60. This model now serves as a valuable resource for identifying compounds which have 

anticancer activity and providing testable hypotheses about genes (and gene products) associated 

with that drug’s mechanism of action. 

 

3. 1. 3. Rodent models 

Another noteworthy example involves the use of mouse haplotype computational genetic analysis 

to identify genes that affect drug metabolism or response. This method was recently used to 

identify genes and the resulting proteins affecting the overall metabolism of warfarin in mice 

(Figure 1-3) [28]. Warfarin, a commonly prescribed anticoagulant, is metabolized by many 

different pathways and by a variety of enzymes into different metabolites. 14C-labeled R-warfarin 

was administered to 13 inbred mouse strains and both parent compound and metabolites 

quantified in plasma for up to 24 h following dosing. Strain specific differences were observed in 

the production of warfarin metabolites. Of all the metabolites studied, inbred strains had the 

largest difference in the rate of formation of 7-hydroxylated warfarin. Computational genetic 

analysis was used to look for patterns of genetic variation that correlated with the observed 

differences in rate of formation of 7-hydroxywarafin across mouse strains. The two strains of 

mice with the lowest rates of warfarin metabolism differed from the other strains in a region on 

chromosome 19 that encodes for the metabolizing enzyme cytochrome P450 2C (Cyp2c). To 

confirm the role of Cyp2c in murine warfarin metabolism, the formation of the major metabolite 

7-hydroxywarfarin was inhibited in murine liver microsomes following the administration of a 

Cyp2c specific inhibitor [28]. Moreover, the expression of Cyp2c29 in liver extracts were 2-7.4 
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fold lower in the two strains with the low rate of metabolite generation. Although there are a 

number of genetic variables that contribute to the interstrain differences in R-warfarin 

metabolism, Cyp2c9 was identified because it was a rate-limiting enzyme in a major elimination 

pathway for warfarin. 

The impact of this tool extends beyond evaluating drug metabolism. For example, this approach 

has also been used to link the beta-2-adrenergic receptor to increased pain sensitization, a side 

effect associated with the administration and subsequent withdrawal of opioids [29]. In this 

model, the pain response threshold was measured at baseline and following four days of exposure 

to morphine in 15 inbred mouse strains. There was a significant difference in the extent of pain 

sensitization observed between the mouse strains following morphine treatment and withdrawal. 

Computational genetics was used to identify genes which might be responsible for the observed 

differences. A haplotype block on chromosome 18, specifically within a region of the β2-

adrenergic receptor gene, was the most strongly correlated with the observed phenotypic 

difference. Administration of a β2 receptor antagonist caused a dose-dependent reversal of pain 

sensitization. Contrary to wild type mice, knockout mice for β2 receptor had no pain sensitization 

following morphine withdrawal. The authors concluded that the β2 adrenergic receptor was the 

likely receptor subtype responsible for the pain sensitization following morphine withdrawal. 

Studies like this which attempt to identify novel genetic factors affecting dependence on 

opioids are essential to the discovery of methods for the prevention or treatment of 

increased pain sensitivity and other symptom of opioid addiction. 

4. 1. Conclusions 

Drug activity is clearly a tangled and complex process. Gaining a clear understanding of drug 

action specifically a drug’s interaction with direct and indirect targets and proteins involved in 

transport and metabolism remains a formidable task in drug discovery and development. The 
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analysis of the various proteomic and biological mechanism elucidation methods clearly 

demonstrates that each approach has its specific strengths and limitations. Genomics is an under 

utilized tool that can strengthen current efforts in identifying mechanisms of action. It has the 

potential to directly link drugs which produce a desired phenotype in a validated model to a more 

global view of their mechanism early on in the development process. However, the limitations 

associated with the above genomic strategies for mechanism elucidation are worth mentioning.  

The most critical flaw is the fact that the extent to which these results can be translated to humans 

remains unclear. Yeast are primitive organisms whose intracellular conditions such as protein 

folding and post-translational modifications can differ significantly from mammalian cells. 

Likewise, some mammalian targets are absent in yeast and visa versa. Inconsistencies in the data 

between humans and yeast may even suggest compounds might affect an entirely different 

process in yeast [30]. Moreover, compounds can have a lower permeability in yeast cells as 

compared to mammalian cells. As a result, only a subset of compounds of interest may be 

evaluated in yeast. Similarly, genes and the resulting proteins identified as contributors to drug 

action in murine models may not always reflect events in humans. For example, drug metabolism 

in rodents can differ from humans due to major differences in P450 isoforms, expression, and 

catalytic activity. 

Cancer cell lines are not always representative of primary tumors. Auman and McLeod compared 

genome wide expression data of human colorectal cancer cell lines to clinical colorectal tumors 

[31]. Hierarchal clustering on gene expression revealed that cancer cell lines formed a single 

cluster separate from clinical tumor samples. The group concluded that the cell lines did not 

accurately represent the genetic heterogeneity present in clinical tumor samples [31]. In another 

example, human prostate cancer cell lines do not exhibit features commonly seen in human 

prostate cancer. Prostate-specific antigen (PSA) is synthesized almost exclusively in the human 

prostate and is androgen regulated. High levels of PSA are indicative of prostate cancer. The two 
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prostate cancer cell lines used in the NCI60 panel, PC3 and DU145, do not express PSA and are 

not androgen sensitive [32]. Genomic studies based on gene expression patterns in cancer cell 

lines may suggest molecular mechanisms critical to drug action which are distinct from those in 

the clinical setting. 

Moreover, in vitro cell line work using gene expression analysis is often inadequate. Microarray 

studies of gene expression will reveal some of the genes associated with drug effect but it may 

miss many other relationships. For example, not all of the changes will be under transcriptional 

control. Some will be controlled using post-translational modifications such as phosphorylation 

and glycosolation; gene expression techniques such as DNA microarray will be unable to detect 

these endpoints.  

Considering these drawbacks, an ideal model for a genomic mechanism elucidation strategy 

would satisfy the following conditions:  

1. performed in a human model 
2. quantitative and reproducible 
3. high throughput screening capability 
4. amenable to database generation 
5. can cover broad range of biology (targets, pathways, physiology, and diseases) 
6. can provide links between chemistry and biology 
7. mechanistically open such that changes MOA can be recognized with changes in 

structure 
8. can give clinical indications about efficacy and toxicity 
9. can give information about secondary or off-target activity and effects 
10. can screen more than 1 concentration of a drug 
11. can link differences in response to genetic heterogeneity 

A new strategy for identifying genes critical to drug action has the potential to satisfy many of the 

aforementioned criteria. This tactic employs an ex vivo human familial genetic model to identify 

inherent mutations in genes involved in drug action which are associated with differences in 

response . The genes influencing the cytotoxicity of chemotherapeutic agents have been studied 

using immortalized lymphoblastoid cell lines (LCLs) derived from Centre d’Etude du 
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Polymorphisme Humain (CEPH) populations. The CEPH cell lines are a collection of 

multigenerational families that have been extensively genotyped. Cells from these families are 

phenotyped for response to a given anticancer agent then linkage analysis is used to correlate 

variation in response to variation in regions of the genome referred to as quantitative trait loci or 

QTLs (Figure 1-4). Watters et al. phenotyped sensitivity to increasing concentrations of 5-

fluorouracil in 427 CEPH cell lines across 38 families [34]. Significant variation was noted across 

individual cell lines at each dose. Heritability, the degree to which a trait can be explained by 

genetic factors, ranged from 26% at the lowest concentration of 5-fluorouracil to 65% at the 

highest concentration. Dose-dependent QTLs associated with 5-fluorouracil cytotoxicity were 

observed on chromosomes 5 and 9. Further studies are expected to narrow these broad QTLs 

down to the genes which are involved in drug action. This model has also been applied to the 

study of the anticancer agents, cisplatin [35], etoposide [36], docetaxel [34], and daunorubicin 

[37]; cytotoxic response to each of these agents was a heritable trait in human families with 

genomic regions associated with observed differences in response. To date, this model has only 

been used as a pharmacogenomic tool to evaluate which genes and variations in the genome are 

responsible for the disparity in response to a single drug. Future studies are needed to evaluate the 

predictive genomic capacity of this model, specifically to use the pharmacological and genomic 

response profiles of numerous drugs, rather than those of one small molecule at a time, to provide 

incisive information about their mechanisms of action.  

4. 2. Introduction to Dissertation 

Tools for identifying genes and gene products critical to drug action early in development are in 

great demand. The primary objective of this dissertation project was to investigate the potential 

use of our ex vivo familial genetics model in CEPH cell lines as a tool for mechanism elucidation. 

The following chapters describe an initial investigation into using the CEPH cell lines to relate 

genes or regions of the genome identified as influencing the cytotoxicity of a compound across 
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compound classes to inherited response and mechanisms of action. The purpose of Chapter 2 was 

to investigate the model’s ability to establish specific patterns of QTLs related to a shared 

mechanism for a class of structurally related compounds, the camptothecins, which are 

Topoisomerase 1 (Top1) inhibitors. In Chapter 3, the genomic profiles of structurally unrelated 

Top1 inhibitors were compared to those established for the camptothecins, to assess which 

regions might be associated with compound class versus the general mechanism of Top1 

inhibition. The goal of Chapter 4 was to demonstrate that biological and genomic data generated 

from phenotyping the CEPH cell lines can be used to stratify compounds by mechanism of action. 

We predicted that intraclass pharmacological and genomic profiles would be more similar to each 

other than to compounds belonging to distinct mechanistic classes.  
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Figure 1-1. Affinity chromatography based methods for target identification. Affinity 
chromatography makes use of the highly specific binding sites usually present in biological 
macromolecules, separating molecules on their ability to bind a particular ligand. Covalent bonds 
attach the drug (ligand) to an insoluble, porous support in a manner that presents the ligand to the 
protein sample. The protein mixture is passed over the medium, and the target protein binds to the 
drug tethered to the solid support. A buffer is used to wash or remove impurities and unbound 
material. Finally, denaturing conditions are used elute the bound proteins from the column. 
 

1. Drug immobilized 
to solid support 

2. Application of 
cell lysate 

3. Unbound 
proteins eluted 

4. Target protein 
isolated 
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Figure 1-2. Schematic overview of mechanism prediction model using NCI60 human cancer cell 
lines. The target database is composed of relative gene expression measurements on the 60 
human cancer cell lines. Each row of the activity database represents the pattern (sensitivity or 
resistant) of biological activity of a particular compound across the 60 cancer cell lines. The 
structure database contains the 2D or 3D chemical characteristics of the compounds investigated 
using the NCI60 cell line panel. Coupling of genomic, biological, and chemical information 
might allow genes that are selectively expressed in a tumor to be correlated not only with the 
compounds themselves but also with the subclasses and substructures of these compounds. The 
target, activity, and structure databases can then be used to make predictions about potential 
targets or activity patterns of a compound given its molecular substructure. 
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Figure 1-3. Murine haplotype computational pharmacogenetic analysis. This computational 
method allows for the rapid identification of genes involved in drug metabolism. Upper panel. A 
single IP dose of 10 mg/kg 14C-R-warfarin was administered to thirteen mouse strains and parent 
compound and metabolites analyzed in pooled blood samples. Strain specific differences were 
observed in the formation of the major warfarin metabolites 7-hydroxywarfarin (7-OH) and its 
glucoronidated metabolite (M8). The correlation between the measure phenotype variation and 
genomic variation between strains was evaluated using haplotype blocks. It was noted that the 
two strains with the lower rates of warfarin metabolism also shared a haplotype block on 
chromosome 19 distinct from the other strains of mice studied. Haplotype blocks were then 
analyzed to identify a list of genes potentially influencing warfarin metabolism. The list was then 
reduced to genes expressed in the liver. Strain groupings for Cyp2c which is expressed in the 
liver best correlated to the observed phenotypes for warfarin metabolism. Lower panel. To 
confirm Cyp2c involvement, the effect of a Cyp2c specific inhibitor on the rate of formation of 7-
OH and M8 was examined. The genomic region associated with the Cyp2c haplotype block 
suggested that genetic variation in the CYP450 enzymes Cyp2c55, Cyp2c39, or Cyp2c29 may be 
responsible for the observed phenotypic variation. Gene expression levels of the Cyp enzymes 
were evaluated in the livers of the 13 mouse strains. Cyp2c55 and Cyp2c39 were not expressed in 
the livers, and Cyp2c29 gene expression varied greatly among strains. Finally, differences in 
protein expression for Cyp2c29 were shown to correlate to the differences in warfarin 
metabolism. 
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Figure 1-4. Discovery of genetic loci involved in the cytotoxic effect of chemotherapeutic agents. An 
ex vivo familial study was used to identify genes associated with docetaxel cytotoxicity. A) 
Variability at increasing concentrations of docetaxel was assessed in a collection of lymphoblastoid 
cell lines derived from CEPH pedigrees. Each pedigree consists of 5-10 offspring per family. B) A 
dose-response curve shows significant variation in cell viability at all concentrations across the entire 
CEPH population. Data points are mean cell viability and bars are standard deviations across the 
entire population. The degree to which observed variation in cell viability can be explained by genetic 
factors (heritability) is represented by numbers. C) Linkage analysis correlated a region on 
chromosome 9 with the observed variability in cytotoxic response. Furthermore, as drug dose 
increased the LOD score (probability the observed phenotype is related to the variation in a specific 
region) also increased.  
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ABSTRACT 
 

Differences in biological activity and ADME profiles are often observed for compounds within a 

mechanistic class bearing slight modifications on a structural theme. We propose that these 

changes can be detected by examining the changes in genes which influence the cytotoxicity of 

these compounds using HTS in collections of genotyped human familial (CEPH) cell lines. 

Moreover, this genomic strategy can be used to establish a specific pattern of genes related to the 

shared mechanism for a class of structurally related compounds. The camptothecins were chosen 

as model drugs since extensive studies reveal differences in antitumor activity, metabolism, and 

transport with changes in structure. A simultaneous screen of six camptothecin analogues resulted 

in cytotoxicity profiles and orders of potency which were in agreement with the literature. We 

estimated the heritability for cytotoxic response to the camptothecins to be approximately 0.23. 

Nonparametric linkage analysis was used to identify a relationship between genetic markers and 

the response to camptothecins. An initial screen of the six camptothecin analogues revealed ten 

shared quantitative trait loci (QTL) on chromosomes 1, 3, 5, 6, 11, 12, 16 and 20. In a separate 

validation experiment with 3 additional camptothecins, nine of the ten QTLs were replicated. 

Subtle distinctions in significant and suggestive QTLs were also observed between drugs. These 

results provide a step towards streamlining the anticancer drug development process by 

simultaneously enabling phenotypic screening and identifying genes critical to drug action which 

impact patient sensitivity or toxicity. 
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INTRODUCTION 

Prior to the 1990s, the phenotypic based drug discovery approach dominated the pharmaceutical 

industry. In this approach, small molecules were screened against cells, tissues, or even whole 

organisms for their ability to enhance or suppress a specific phenotype desired in humans. The 

apparent advantages of this method over the existing target-based drug discovery paradigm have 

resulted in a renewed interest in phenotypic screening. One of the greatest advantages of this 

approach is that it enables the discovery of novel therapeutic targets for a disease. Compounds are 

screened for a biological effect rather than perturbation of a single molecular target, linking 

chemistry with biology and driving the serendipitous discovery of numerous structures with novel 

mechanisms of action (MOA).  

Despite the recent revival in phenotypic screening, there are noteworthy limitations which can 

create a considerable bottleneck in the drug discovery process. Mechanism elucidation following 

the identification of biologically active compounds remains the most important weakness. A 

number of methods are being developed and optimized for mechanism elucidation; however, they 

are fraught with limitations which have been reviewed extensively elsewhere [1]. Since the 

typical phenotypic screening methods are unable to suggest key information about the mechanism 

of biologically active compounds, there is no way to distinguish between them other than by 

potency. Without a clear understanding of MOA, problems arise in lead optimization, drug safety, 

and efficacy. Structure activity relationship (SAR) studies for lead optimization become quite 

complicated with phenotypic screens. Binding to an unknown target can be influenced by cell 

absorption and transport, additional protein binding, secondary target interactions, drug 

metabolism, etc. These sites of compound loss can vary significantly within a series of 

structurally related compounds. Most current methods of mechanism elucidation are also unable 

to account for or convey changes in mechanism (ie primary and secondary targets) with changes 
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in structure. As a result SAR patterns become difficult to interpret and use during lead 

optimization. Finally, when mechanism is unclear, our ability to assess the risks of mechanism-

based toxicity, side effects associated with secondary targets, or lapses in efficacy are also quite 

limited. 

Genetic and genomic methods which screen all possible targets of compounds of interest are 

being developed to surmount issues associated with target identification following phenotypic 

screens. These methods which simultaneously screen compounds for a desired biological effect 

and provide information about molecular targets and SAR patterns are rising as powerful tools in 

drug discovery and development. Some of the most prominent examples of this approach use the 

budding yeast Saccharomyces cerevisiae [2, 3] or human cancer cell lines [4, 5] as in vitro model 

systems. In both cases, inconsistencies in data between humans and the model are a significant 

drawback. An ideal genomic strategy would investigate drug activity in a normal healthy human 

model. Recently, an ex vivo familial genetic strategy involving lymphoblastoid cells lines (LCLs) 

derived from Centre d'Etude du Polymorphisme Humain (CEPH) reference pedigrees was 

employed to quantify the impact of genetics on drug response and to identify quantitative trait 

loci (QTLs) harboring genes critical to drug action [6, 7]. Here we asked whether this ex vivo 

familial genetics model could be used to establish specific patterns of QTLs related to a shared 

mechanism for a class of structurally related compounds. 

The camptothecins were chosen as a model class of compounds to investigate for a number of 

reasons (Figure 2-1).  Intensive efforts in medicinal chemistry have led to the generation of a 

large number of camptothecin derivatives. Two of these, topotecan and irinotecan, are being used 

in the clinic as antitumor agents, and many are in preclinical and clinical development. In spite of 

the identification of a number of analogs with improved therapeutic activity, (intrinsic and 

acquired) resistance and toxicity remain major limitations to camptothecin therapy. While 

extensively studied, the mechanisms of resistance and toxicity remain unclear [8]. In addition, 

32



 

though it is firmly established that the key molecular target of all of the camptothecins is 

Topoisomerase 1 (Top1), the post target interaction events responsible for antitumor activity are 

vague [9]. It is reasonable to suggest that a clearer understanding of the biochemical cascade 

associated with camptothecin cytotoxicity might lend answers to the questions surrounding 

mechanisms of activity, toxicity, and resistance. To this end, the CEPH model system was used to 

a) assess variation in response to the camptothecins across normal healthy human LCLs, b) 

evaluate the genetic contribution to variation in response and c) establish a pattern of multiple 

QTLs common to a class of compounds suggesting a shared mechanism of action. 

MATERIALS AND METHODS 

Cell lines. One hundred twenty-five Epstein-Barr virus-immortalized lymphoblastoid cells 

derived from 14 CEPH reference pedigrees (35, 45, 1334, 1340, 1341, 1350, 1362, 1408, 1420, 

1447, 1451, 1454, 1459) were purchased from Coriell Cell Repositories (Camden, New Jersey). 

Cells were maintained in RPMI medium 1640 (Invitrogen, Rockville, MD) supplemented with 

15% fetal bovine serum, incubated in a 5% CO2 atmosphere at 37◦C, and passaged 2-3 times per 

week. Exponentially growing lymphoblastoid cell lines with greater than 85% viability, at 

passages 3-7 were used for experimentation.  

Drugs. The following panel of camptothecins was purchased from LKT Labs (St Paul, MN): 

camptothecin (CPT), irinotecan (CPT11), 7-ethyl-10-hydroxycamptothecin (SN38), topotecan 

(TPT), 9-aminocamptothecin (9AC) and 9-nitrocamptothecin (9NC). Dr. Daniel Comins (North 

Carolina State University, Raleigh, NC) kindly provided 10-methoxycamptothecin (mCPT), 10-

hydroxycamptothecin (hCPT), and 7-chlorocamptothecin (ClCPT). All camptothecins were 

prepared in 10 mM working solutions of DMSO (Sigma-Aldrich, St Louis, MO). Since 

camptothecins have a labile lactone form that exists in a pH dependent equilibrium with the 
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inactive carboxy form (present at basic pH), drugs were serially diluted in citrate-phosphate 

buffer at pH 3. Final concentrations of DMSO were 0.1% in all experiments. 

Cytotoxicity Profiling. The conditions for drug preparation and phenotyping were optimized 

prior to this investigation (Appendix 1). The cytotoxic effect of the panel of camptothecins was 

determined by using the nontoxic colorimetric-based assay, alamar blue [6]. Plates (384 

well,Corning, Corning, NY) were preloaded with vehicle (citrate-PBS, 0.1% DMSO), 10% 

DMSO, and increasing concentrations of each drug (n = 9 doses per drug). Each plate contained 6 

replicates for each drug-dose combination. Cells were then plated at a density of 4000 cells in 45 

ul per well. Following 72 h incubation, 5 ul alamar blue was added. Fluorescence was read at Ex 

535nm and Em 595nm using a DTX880 plate reader (Beckman Coulter) at 96 h drug exposure. 

Raw fluorescence values for each set of replicates of a drug-dose combination were considered 

outliers if there was more than a ten-fold increase or decrease in the fluorescence signal of a 

single replicate. Cell viability (survival) relative to untreated controls was determined according 

to the manufacturer’s protocol. The final percent survival at each concentration was averaged 

from six replicates of two independently plated experiments (n = 12). Additionally, growth rate in 

vehicle was calculated as previously described [10]. The IC50 (the dose needed to inhibit cell 

viability by 50%), was calculated based on a sigmoidal dose-response curve using the nls package 

in R (www.r-project.org) [11]. 

Hierarchical Clustering. LogIC50s for each cell line-drug combination were z-score 

transformed prior to clustering. The data was loaded into Cluster 3.0 (http://bonsai.ims.u-

tokyo.ac.jp/~mdehoon/software/cluster/) and clustered using uncentered correlation and complete 

linkage. To stabilize clusters, a self organizing map (SOM) was calculated using 100,000 

iterations for cell lines and 20,000 iterations for drugs. Clusters were visualized using Java 

TreeView. 
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Heritability Analysis. Heritability estimates of the proportion of variation in cytotoxic response 

due to inherited factors were calculated using variance components analysis using MERLIN 1.1.2 

[12] (http://www.sph.umich.edu/csg/abecasis/Merlin/index.html). The degree of heritability 

associated with growth rate in vehicle was also calculated, and the heritability calculation for 

each drug-dose combination was adjusted using growth rate as a covariate in the variance 

components analysis [12]. 

Genotype Data and Error Checking. Genotype data for each cell line were downloaded from 

V10 of the CEPH database (ftp://ftp.cephb.fr/ceph_genotype_db/ceph_db/Ver_10/mkr/) [13] 

using error checked markers. Genetic map information was downloaded from the Marshfield 

database (http://research.marshfieldclinic.org/genetics) [14]. Error checking for Mendelian 

incompatibility, misspecified relationships and unlikely recombinations was performed, as 

previously described [14]. A combined total of 8269 single nucleotide polymorphisms (SNPs) 

and microsatellite markers were used for linkage analysis. 

Linkage Analysis. Drug-dose combinations were considered the phenotypes of interest for 

linkage analysis (n = 54). For each phenotype, non-parametric linkage analysis was performed 

using MERLIN which constructs a likelihood ratio test for linkage based on inheritance vectors.  

For quantitative traits, scores used to calculate the likelihood ratio test are defined as follows: 

S(ν) = Σ founder alleles Sallele(ν)2, 

Sallele(ν) = Σ all carriers of allele (yi - μ), 

where S(ν) is the score for each inheritance vector, Sallele(ν) is the score for each founder allele, 

yi is the phenotype for each individual, μ is the mean phenotype for the population, and ν is the 

list of individuals who carry a specific founder allele such that the score for each inheritance 

vector is the summation of the squared score for each founder allele, and the score for each found 
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allele is the sum of square deviation from all individuals that carry that allele. For each phenotype 

of interest, QTL maps were generated by displaying the logarithm of odds scores from the 

likelihood ratio tests across each chromosome. 

Peak Identification, Prioritization, and Replication. Guidelines for interpreting LOD scores 

have suggested viewing LOD scores of 2.2 as suggestive and 3.6 as significant [15]. However, 

since such a categorization is inexact, the data in this study was used to dictate at which threshold 

results would no longer be considered due to chance and most likely occur as a result of linkage. 

To estimate the probability of obtaining false-positive evidence of linkage for each drug-dose 

combination under the null hypothesis of no linkage to observed phenotypes, gene-dropping 

permuations were conducted using Merlin [12]. Marker data were simulated under the null 

hypothesis of no linkage or association to the observed phenotypes while retaining the same 

pedigree structures, maps, marker allele frequencies, and missing data patterns. Ten thousand 

replicates were simulated for each of the 54 phenotypes, resulting in a total of 54,000 simulated 

datasets. Nonparametric linkage analysis was conducted as described above for each replicate set. 

Based on these simulations, permutation distributions were generated across the chromosomes for 

each phenotype and then used to determine genome-wide LOD score cut-offs for statistical 

significance corresponding to p-values less than or equal to .05 for each phenotype. Additionally, 

cutoffs for suggestive linkage were determined for each drug-dose combination for an alpha of 

0.05 for each chromosome. The start and end of a peak was defined as the region with LOD 

scores that were above the suggestive threshold or LOD minus one, whichever was greater. QTLs 

observed for a drug-dose phenotype were considered significant if the highest LOD score in that 

region surpassed the LOD score threshold for significance for that drug-dose phenotype. QTLs 

observed for a drug-dose phenotype were considered suggestive if the highest LOD score in that 

region surpassed the suggestive LOD score threshold for that drug-dose phenotype on that 

chromosome. For all statistically significant QTLs, the total number of replications was 
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calculated. Across drug-dose phenotypes, the number of replications was calculated as the total 

number of drug-dose phenotypes that demonstrate evidence of linkage at any point of the peak 

regions at either the significant or suggestive level. Table A2-1 contains a list of QTLs identified 

as significant for camptothecin drug-dose phenotypes. 

RESULTS 

Variation in Camptothecin-Induced Cytotoxicity. Sensitivity to the camptothecins was 

assessed in 125 lymphoblastoid cell lines derived from 14 CEPH pedigrees. Cells were exposed 

to increasing concentrations (9 doses) of each camptothecin for 96 h and cell viability relative to 

vehicle control was determined. Variation in cytotoxic response to each camptothecin within and 

between the CEPH pedigrees was observed (Figure 2-2). For example, 9AC, which had the 

widest range of IC50s, had a population mean IC50 of 93 nM and the IC50 ranged from 7 nM to 

4 uM. Both the order of potency and IC50s in the CEPH cell lines are consistent with literature 

values in cancer cell lines such as the NCI60 cell line panel (NCI Developmental Therapeutics 

Human Tumor Cell Line Screening data, 

.jsp [16]. 

This data was also used to identify individuals and/or families which were hypersensitive or 

resistant to the camptothecins. Further genetic and genomic studies with these individuals might 

lend insight into mechanisms of activity and resistance. A hierarchical clustering analysis of z-

score transformed logIC50 values (where IC50 is the concentration required to inhibit viability by 

50%) was performed keeping family structure intact (Figure 2-3). The clusters matched the 

overall potency (SN38>CPT>9NC>TPT>9AC>CPT11) in the cell lines studied. CPT11 is most 

divergent from the other camptothecins studied. Since CPT11 is the prodrug of SN38 and 

requires submicromolar concentrations for effective cell kill, IC50s across the panel of CEPH cell 

lines are considerably higher for CPT11 than other camptothecins investigated. Of note, there are 

http://dtp.nci.nih.gov/dtpstandard/InvivoSummary/index

37



 

individuals who are sensitive to some but not all camptothecins and whole families which are 

resistant or sensitive to all camptothecins. For example, pedigree 1408 appears resistant to all 

camptothecins with the exception of 9AC. All but two members of pedigree 1362 are sensitive to 

all camptothecins; two offspring (11982 and 11983) are resistant to all camptothecins.  

Heritability Analysis. Heritability was estimated to quantify the impact of genetic factors on the 

cytotoxic response to each of the camptothecins at each dose. There is a known correlation 

between cellular sensitivity to many chemotherapeutic agents and growth rate [10, 17]. As a 

control, heritability was calculated for growth rate in the presence of vehicle. The heritability 

estimate for growth rate was low (1.60%) which suggests that environmental factors play a much 

larger role than genetics in growth rate [17]. For each drug, the growth-rate adjusted heritability 

estimates at each dose are featured in Figure 2-2. Heritability estimates at the asymptotes of the 

sigmoidal dose-response curve are low as there is little to no variability in cytotoxic response at 

these points. For all camptothecins studied heritability estimates averaged 23.1 ± 2.6 % for doses 

within the linear phase of the sigmoid curve. Since heritability estimates were approximately 20% 

for all camptothecins this reinforces the idea that inherited genetic variation is an important 

determinant of the cytotoxic response to camptothecins. The heritability associated with the 

cytotoxicity of these compounds is analogous to heritabilities reported for other common human 

phenotypes such as systolic and diastolic blood pressures [18], and for the cytotoxic response to 

daunorubicin in CEPH cell lines [19].  

Genome-wide Linkage Analysis. Nonparametric linkage analysis was performed using mean 

cell viability at each dose for each drug, which is referred to as the drug-dose phenotype. For each 

drug-dose phenotype statistically significant LOD score thresholds corresponding to a genome-

wide p-values less than or equal to 0.05 were determined using gene-dropping permutations under 

the null hypothesis that no linkage exists. Regions of the genome referred to as quantitative trait 

loci (QTLs) were considered significant if the highest LOD score in the region was greater than 
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or equal to the predetermined LOD score cut-offs for each drug-dose combination on a given 

chromosome. The mean LOD score cut-off across all phenotypes and chromosomes indicating 

significant linkage was 1.37 (range: 0.83-1.72). Additionally, cutoffs for suggestive linkage were 

determined for each drug-dose combination for an alpha of 0.05 for each chromosome. A region 

identified as significant to one drug-dose phenotype was considered replicated in another drug-

dose phenotype if the maximum LOD score in that region surpassed the suggestive LOD score 

threshold. The mean LOD score cut-off across all phenotypes and chromosomes indicating 

suggestive linkage was 0.59 (range: 0.41-0.72).  

To establish a pattern of QTLs significant to a class of compounds, regions of the genome which 

were overrepresented across the camptothecins were examined. Figure 2-4 illustrates significant 

and suggestive QTLs identified in one camptothecin which were replicated in other 

camptothecins. The results of a sign test (p<0.5) indicated there was a significant 

overrepresentation of overlapping QTLs compared to the null hypothesis that QTLs were 

randomly distributed across the genome amongst all drugs. Ten linkage peaks were identified as 

significant in a given drug-dose combination and replicated in all of the camptothecins at a 

number of concentrations (Table 2-1). This implies that the same linkage regions influence the 

cytotoxic response to all camptothecins over a broad range of concentrations. The highest LOD 

score with genomic significance (2.13) was observed with the 8.0 nM SN38 phenotype and was 

located on chromosome 20 between 42 and 101 cM (20p12.1-20q13.32), and presumably 

associated with Top1 (20q12-q13.1) the primary target of the camptothecins. All camptothecin 

analogues studied (at multiple dosages for each drug) had a peak at chromosome 20 centered 

around 49 cM (Table 2-1, Figure 2-5). Unlike the other significant linkage peaks, the QTL on 

chromosome 6 from 0 to 29 cM is only associated with high concentrations of the camptothecins, 

resulting in greater than 80% growth inhibition. 
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Moreover, notable distinctions between significant QTLs associated with camptothecin analogues 

have been observed and are summarized in Figure 2-4. For example, TPT is the only 

camptothecin with a linkage peak extending from 0 to 19.6 cM on chromosome 13 (LOD = 

1.365). Interestingly, 9NC is considered to be the prodrug of 9AC and there is one linkage peak 

which was identified exclusively in these drugs on chromosome 5 [20]. Chromosome 1 has two 

QTLs centered at 70 and 129 cM respectively which are shared exclusively by camptothecins 

possessing a nitrogen bearing substituent on carbon 9: 9AC, 9NC, and TPT. No peaks were 

identified which were unique solely to SN38 and its prodrug CPT11. However, a QTL on 

chromosome 4 is only present in CPT11 and 9AC. Regions suggested to influence the cytotoxic 

response to CPT11 were not always replicated in SN38 or vice versa. This was also observed for 

9AC and 9NC. This is unsurprising since for example, the prodrug CPT11 must undergo 

activation by carboxylesterases (CESs) to the active SN38 and SN38 is not subsequently 

metabolized by CES. Only suggestive QTLs for CPT11 where located on chromosome 16 from 

1-69 cM; CES1 and CES2 are centered around 73 cM on chromosome 16. Finally, to compare the 

overall QTL patterns a similarity matrix was constructed using a binary assessment of peaks 

present at either the significant or suggestive level for each camptothecin. R squared correlations 

are bound by 0 and 1 and the greater the value the more related the patterns are to each other 

(Table 2). The majority of the correlations are above 0.5, indicating a strong association between 

overall QTL patterns and similar mechanisms of action. The highest correlations (highest degree 

of similarity) are between the 9AC and 9NC, CPT11 and CPT, and CPT11 and SN38. While the 

biological profile of CPT11 appears different from the remaining camptothecins, the genomic 

profile of TPT appears most distinct. 

Independent Validation of Shared QTLs. We next asked whether QTLs identified as shared 

among all camptothecins could be replicated independently. In a separate phenotyping 

experiment, the same 14 CEPH pedigrees were exposed to a dosing spectrum of a second set of 
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camptothecins: mCPT, hCPT, and ClCPT. Variation in sensitivity to this set of camptothecins 

was then used to calculate heritability estimates at each drug-dose phenotype. Heritability 

estimates were highest in the linear phase of the sigmoid curve. Growth rate adjusted heritability 

estimates for doses within the sigmoid curve for mCPT, hCPT, and ClCPT were comparable to 

estimates for the first set of camptothecin analogues. The highest heritability estimates for mCPT, 

hCPT, and ClCPT were 20.2%, 18.7%, and 20.7% respectively. Linkage analysis, peak 

prioritization, and peak replication assessment were repeated with this second set of 

camptothecins. Nine of the ten QTLs identified as characteristic of camptothecin activity were 

subsequently validated in multiple doses of mCPT, hCPT, and ClCPT (Figure 2-4). While no 

concentrations of mCPT or hCPT possessed the shared QTL on chromosome 6 from 0-29 cM, 

seven of the nine doses of ClCPT possessed this shared QTL. Variation in response across the 

broad dosing spectrum for mCPT, hCPT, and ClCPT was not linked to the QTL on chromosome 

12 from 0-6 cM.  

Comparison to Topoisomerase 2 Inhibitors. To illustrate class specific patterns could be 

established, the same cell lines were phenotyped for sensitivity to the Topoisomerase 2 (Top2) 

inhibitors, etoposide and teniposide. Genetics plays a greater role in cytotoxic response to the 

Top2 inhibitors compared to Top1 inhibitors. The maximum heritability estimates for a Top1 

inhibitor (TPT) was 25.9% compared to 42.4 and 32.9% for etoposide and teniposide 

respectively. When comparing cytotoxic response to the camptothecins across the entire 

population of CEPH cell lines IC50s were used to visualize patterns of sensitivity and resistance. 

We chose another mode of comparison between the Top1 and Top2 inhibitors since IC50s could 

not be obtained for more than 80% of the cell lines treated with teniposide. Hierarchal clustering 

using the dose which yields a population mean viability closest to 50%, ( )50GI , for each drug 

reveals that overall patterns of sensitivity and resistance between the Top1 and Top2 inhibitors 

are indeed distinct and form two clusters corresponding to differences in mechanism (Figure 2-6). 
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The same is true for the dose which yields a population mean viability of 40 and 60% (data not 

shown). Nonparametric linkage analysis was performed using cell viability at each drug-dose 

combination of the Top2 inhibitors. Four QTLs present on chromosomes 6 (32-113 cM), 12 (9-30 

cM), 13 (0-25 cM), and 18 (58-76 cM) were identified as significant and replicated (considered 

replicated if LOD > suggestive threshold) in both Top2 inhibitors at multiple dosages. This 

pattern of QTLs for the Top2 inhibitors was quite distinct from those established for the 

camptothecins (Table 2-1). 

DISCUSSION 

Early models for chemogenomic studies have used cancer cell lines [4, 5], mutant yeast strains [2, 

3], and rodents [21, 22]. The biggest limitation with these systems is that data does not always 

correlate to humans. For example, some mammalian targets are absent in yeast and vice versa. 

Targets which produce a desired phenotype in rodents may not exhibit the same phenotype in 

man [23]. In addition, cancer cell lines can differ morphologically and genetically from primary 

tissues [24]. 

This is one of the first genomic studies to use a healthy human cell line model to identify class 

specific pharmacological and genomic profiles. While cancer cell line panels such as the NCI60 

are prepared from 4-5 cell lines of a given tissue origin, this study uses a large collection of cell 

lines of the same type. Moreover, just as genetic heterogeneity across the cancer cell lines has 

been used to stratify compounds by mechanistic class, natural genetic variation in the CEPH cell 

lines can be used to identify a class-specific profile for the camptothecins [4, 25]. In fact, 

heritability analysis demonstrates that 23.1 ± 2.6 % of human variation in sensitivity to the 

camptothecins is due to a genetic component. Not only were heritability estimates replicated 

across multiple doses, but they were replicated across multiple camptothecin analogues and 

experiments. 
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Using this system to investigate compounds within a structural class and sharing the same 

mechanism one would expect a pattern of QTLs related to the cytotoxic activity of all compounds 

within that class. Indeed, ten QTLs across eight chromosomes were replicated in the first six 

camptothecin analogues studied suggesting a pattern of QTLs associated with a general and 

shared mechanism of action. We consider the fact that these QTLs were replicated across 

multiple analogues and doses within the first screen a form of internal validation. In a separate 

phenotyping experiment using three additional camptothecins, nine of those ten QTLs were again 

independently replicated. The remaining QTL on chromosome 12 shared by all camptothecins in 

the initial screen was only present in ClCPT, but present in seven of the nine doses. Replication 

of QTLs both across multiple drug-dose combinations within the first screen and multiple drug-

dose combinations within a second screen of different camptothecins is very exciting. Finally, 

both the biological and genomic profiles generated in CEPH for the camptothecins and the 

Topoisomerase 2 inhibitors, etoposide and teniposide were very distinct. Hierarchal clustering on 

biological data generated two clusters in agreement with the two distinct mechanisms of action. 

Moreover, the overall pattern of shared QTLs differed significantly between the two groups; no 

QTLs were present in the same regions for the two classes. 

Figure 2-4 highlights regions which might contain genes that contribute to the cytotoxic activity 

of all of the camptothecins. There are more than 4000 candidate genes for follow-up under the 

nine QTLs shared by all nine camptothecin analogues alone. Indentifying which of these genes 

are critical to camptothecin-induced cytotoxicity can be a challenging and time-consuming 

process. To maximize success, a tiered approach is recommended when choosing QTLs for 

further investigation. QTLs shared by all nine camptothecins are considered the most promising 

(Table 2-1). QTLs shared by the first set of six camptothecins should be investigated next, 

followed by the QTLs identified as significant and shared by all three camptothecins in the 

validation set. Those significant QTLs which have been identified as unique to 1 or more drugs 
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but are not replicated even at the suggestive level in all camptothecins should be considered next. 

Examples of this class include the QTL on chromosome 1 at 145-168 cM which is present at the 

significance level in multiple concentrations of 9AC, and at the suggestive level in 1-2 doses of 

9NC and TPT and the linkage peak on chromosome 13 (0-19 cM) that is observed solely with the 

10 nM TPT phenotype. Finally, since the average LOD score threshold for a suggestive QTL is 

0.59, suggestive QTLs present in all 9 camptothecins at multiple doses should be pursued last. 

Using these prioritization criteria, the QTL on chromosome 20 which is common to all 

camptothecins is considered the most important for follow-up investigations. There are 453 

protein coding genes within this region of the genome. The functional annotation clustering tool 

from the web-accessible program Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) was applied to identify over-represented gene ontology terms (GO) and 

KEGG pathways within this gene list (Table 2-3) [26, 27]. Out of the over-represented biological 

processes in this gene list, five of the top eight biological processes may be related to 

camptothecin activity: response to stimulus, bioregulation, protein binding, cell differentiation, 

and regulation of cell growth. Table A2-2 lists the genes related to these GO terms that are 

present under the QTL on chromosome 20. Association studies could be used to fine map QTLs 

and pinpoint genes associated with drug response; however, limited statistical power prevents us 

from doing so here. The presence of Top1, the sole molecular target of all camptothecins, in this 

region is encouraging. Top1 expression levels have previously been correlated with cellular 

sensitivity to the camptothecins; low levels of Top1 confer resistance to cancer cell lines such as 

lymphomas [9]. Smirnov et al. performed microarray experiments to measure human gene 

expression levels in CEPH [28] (data accessible at NCBI GEO database [29], accession 

GSE12626). Baseline measures of Top1 gene expression varied as much as 2 fold in this dataset. 

(Limited overlap between cell lines used in the studies prevented direction association analysis in 

the current study.) Admittedly, since linkage analysis produced a broad QTL spanning hundreds 
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of genes, it cannot be assumed that a single gene under this QTL is influencing the activity of 

these compounds. Bcl-xl, is another promising gene within this region. Down-regulation of Bcl-

xl, which inhibits apoptosis, has been shown to enhance cytotoxic response to the camptothecins 

[30, 31].  

Unlike the other QTLs which are shared between the camptothecins, the peak on chr12 (0-6 cM) 

is relatively small and consists of only 24 protein coding genes. The most intriguing genes in this 

region are FBXL14 and RAD52. FBXL14 is a member of the F-box protein family. Proteasomal 

degradation of Top1 has been implicated as a major pathway in the repair of Top1 mediated DNA 

damage. Resistance to camptothecin can occur following overexpression of a component of the 

SCF complex (SCF components: Skp, Cullin, F-box) leading to increased ubiquitination and 

proteasomal degradation of Top I [32, 33]. RAD52 is involved in DNA double-strand break 

repair and homologous recombination and hypersensitizes cells to camptothecins [34]. 

Observing significant or suggestive LOD scores for a given drug across a number of doses has 

been previously reported as replication and suggestive of a shared genetic component 

contributing to the cytotoxic effect at all concentrations [6, 19]. The same regions of interest were 

not identified as significant or suggestive for all drug-dose combinations of the camptothecins. In 

fact, some QTLs were apparent only in the higher concentrations of the camptothecins. One 

plausible explanation for changes in patterns of observed QTLs with differences in dose might be 

different mechanisms of action predominating at different concentrations. The cytotoxic effect of 

camptothecins in cancer cells and yeast are typically related to replication-mediated DNA lesions. 

However, protection by aphidicolin, a DNA polymerases inhibitor associated with replication, is 

only apparent at the lowest concentrations of camptothecin (submicromolar) in cancer cell lines 

[35]. When DNA replication is blocked, cell death at higher concentrations of camptothecin is 

suggested to occur by transcription-mediated DNA lesions. It has been reported that the 

anticancer activity of the camptothecins can switch from replication-dependent to transcription-
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dependent solely at higher concentrations in normal lymphoblasts and other highly proliferative 

cell lines [9]. Also different DNA repair, cell cycle checkpoint, and cell-death signaling pathways 

have been implicated following DNA damage at different doses (Figure 2-7). These dose 

dependent effects have been associated with differences in gene expression profiles [36] and cell 

cycle responses [37]. For example, low doses of camptothecin result in reversible G2 delay while 

high doses cause S-phase delay and G2 arrest [37]. Without a doubt, there a number of complex 

mechanisms associated with the cytotoxic activity of the camptothecins that can occur 

simultaneously or selectively given certain intracellular conditions [38]. Work is ongoing to 

identify the conditions that dictate which pathways are preferred and why.  

Future studies with this dataset should begin to ascertain which genes under shared QTLs are 

influencing the cytotoxic activity of the camptothecins. Recently, RNA interference (RNAi) 

screens in model organisms and human cells have successfully identified genes that modulate cell 

growth, apoptosis, chemoresistance, and chemosensitivity [39-43]. Large scale RNAi in the form 

of high throughput screens using small interfering RNAs (siRNA) can be used to systematically 

screen all genes under a QTL of interest. Known and novel genes whose loss of function confers 

decreased or increased sensitivity to the camptothecins can be identified. 

We have demonstrated that specific patterns of biological response and QTLs could be 

established for a class of structurally related compounds sharing a mechanism of action. Most 

importantly, we have identified a set of QTLs associated with the sensitivity to the camptothecins, 

validated those QTLs internally, and with a second replication set. Future studies should compare 

the genomic profiles of the camptothecins with other structurally unrelated Top1 inhibitors and 

ascertain which if any shared QTLs are the result of the general mechanism of Top1 inhibition. 

Moreover, as the ultimate goal of this research is correlate biological response to genes involved 

in drug action, work is needed to pinpoint the genes under these QTLs which are influencing 

response. Thousands of genes are present in the six QTLs shared by all of the camptothecins. 
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RNAi mediated inhibition of gene expression can be used to prove the contribution of a gene to 

these QTLs. Taken together, these results lay the groundwork for using the ex vivo familial 

genetic strategy in CEPH cell lines for drug discovery efforts. 
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Figure 2-1. Camptothecin analogues. 
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Figure 2-3. Hierarchal clustering of 
CEPH cell lines by camptothecin 
logIC50s. LogIC50s were z-score 
transformed. Clustering based on 
drugs holding family structure 
intact (black and white bar indicates 
each of 14 families). Yellow 
indicates positive Z-scores 
(resistance), blue indicates negative 
Z-scores (sensitive), black indicates 
Z-score = 0 (median resistance 
value). The brighter the color the 
greater the value from 0, with max 
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Figure 2-4. Genome wide pattern of QTLs for camptothecin analogues. Each chromosome was 
partitioned into 25cM regions. Each drug-dose combination that resulted in a significant QTL (LOD 
>significance threshold) is indicated in blue. Intensity of the shading indicates the number of doses 
replicating that QTL at either the suggestive or significant level. Regions which also had a suggestive 
QTL (LOD > suggestive threshold) are indicated in green with color intensity referring to the number 
of doses replicating this peak. 
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Figure 2-5. QTL shared across all camptothecins on chromosome 20. The QTL on chromosome 20 
contains the gene for Top1, the sole molecular target of all camptothecins. Each drug is represented 
by a different color. Multiple doses for each drug were identified as significant and suggestive at this 
location. The drug-dose combinations with the highest LOD score are represented here. 
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Figure 2-6. Hierarchical 
clustering of Top1 and Top2 
inhibitors based on cell 
viability at the GI50, the dose 
which yields a population 
mean closest to 50%. 
Clustering was done on both 
drugs and cell lines. 
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Figure 2-7. Molecular pathways involved in cytotoxic response to camptothecins. Green lines refer to 
activation, red lines to inhibition and black lines to conversion. Molecular processes are indicated in 
yellow boxes. Proteins implicated in cytotoxic response to the camptothecins are in blue boxes. 
Camptothecins are actively pumped out of cells by the ATP-binding cassette transporters Pgp and 
MRP. Several camptothecin analogues are actively metabolized by CYP3A. Only irinotecan is 
metabolized to the active SN38 by UGT1A1. Reversible Top1 cleavage complexes are induced by 
camptothecins and DNA damage. These cleavage complexes are converted to irreversible TOP1 
covalent complexes by replication and transcription. DNA damage resulting from irreversible TOP1 
covalent complexes can be repaired, induce cell-cycle arrest, or apoptosis. DNA repair involves five 
pathways: base excision repair (BER), homologous recombination (HR), non-homologous end 
joining (NHEJ), non-homologus recombination (NHR), and nucleotide excision repair (NER). Cell-
cycle arrest involves checkpoint kinases such as ataxia telangiectasia mutated (ATM), ataxia 
telangiectasia and RAD3 (ATR), and DNA-dependent protein kinase (DNA-PK). Regulators of the 
checkpoint kinase pathway include histone H2AX, RPA2, MRE11–RAD50–NBS1 (MRN complex) 
and BRCA1. The Bloom syndrome helicases (BLM)–TOP3α pathway suppresses homologous 
recombination when activated by the checkpoint kinase pathway. Cell-cycle arrest facilitates DNA 
repair. p53 activates apoptosis both directly and by transactivating pro-apoptotic genes. TOP1 
inhibitors tend to suppress apoptosis by activating nuclear factor κB (NFκB) which increases the 
expression of anti-apoptotic genes such as XIAP (chromosome X-linked inhibitor of apoptosis) and 
BCL-X. Blocking of the PI3K/Akt pathway enhances apoptosis induced by camptothecins. 
Camptothecins also increase de novo synthesis of FAS/FAS ligand and ceramide which leads to 
apoptosis. Modified from[9] 
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Table 2-1. QTLs shared by camptothecins. 

Chromosome Peak Start (cM) Peak End (cM) LOD* 
1† 229 252 1.855 
3† 36 82 1.682 
3† 137 180 1.638 
5† 104 194 1.709 
6† 0 29 1.528 
6† 42 65 1.652 

11† 115 131 1.352 
12 0 6 1.705 
16† 0 75 1.345 
20† 42 101 2.134 

*Maximum LOD score observed in region.  
†QTLs which were also present in the second set of camptothecins 
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Table 2-2. Similarity matrix of overall QTL patterns for each camptothecin.  

  9AC 9NC CPT CPT11 SN38 TPT 
9AC 1.000 0.724 0.517 0.483 0.552 0.483 
9NC   1.000 0.517 0.483 0.621 0.483 
CPT     1.000 0.759 0.690 0.448 

CPT11       1.000 0.655 0.517 
SN38         1.000 0.586 
TPT           1.000 

Constructed from binary evaluation of presence of significant and suggestive QTLs. 
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Table 2-3. Top overrepresented GO terms for the QTL on chromosome 20 (42-101 cM). 

Over-represented biological processes ES 
Enzyme inhibitor activity 8.24 
Response to stimulus 
Response to chemical stimulus 
Response to drug 
Response to DNA damage 

3.61 

Embryonic development 2.33 
Biological regulation 
Nucleic acid binding 
DNA binding 
Transcription 
Gene expression 

2.11 

Protein binding 1.93 
Reproduction 1.53 
Cell differentiation 
Apoptosis 
Programmed cell death 
Cell cycle 

1.24 

Regulation of cell growth 0.74 
ES: Enrichment Score. Underlined terms are parent terms of related GO terms beneath. 
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ABSTRACT 

We have attempted to use an ex vivo familial genetics strategy to study mechanisms of 

Topoisomerase 1 (Top1) inhibition. Investigations have steadily been chipping away at the 

pathways involved in cellular response following Top1 inhibition for more than 20 years. Our 

system-wide approach, which phenotypes a collection of genotyped human cell lines for 

sensitivity to drugs, interrogates all possible targets and cellular pathways simultaneously. 

Previously, we characterized the in vitro sensitivity of several families of CEPH cell lines to nine 

camptothecin analogues, including the FDA approved drugs topotecan and irinotecan. Linkage 

analysis revealed a pattern of nine quantitative trait loci (QTLs), regions of DNA which were 

associated with the observed variation in cytotoxic response, and these loci were shared by all of 

the camptothecins. In this study, we repeated phenotyping using seven of the original 

camptothecin analogues, to determine whether these QTLs could be independently validated. 

Seven of the nine QTLs on chromosomes 1, 5, 6, 11, 16, and 20 were replicated. Finally, to 

identify which, if any, QTLs are related to the general mechanism of Top1 inhibition or should be 

considered camptothecin-specific, we characterized the in vitro sensitivity of the CEPH cell lines 

to the indenisoquinolones, a structurally distinct class of Top 1 inhibitors. Four QTLs on 

chromosomes 1, 5, 11, and 16 were shared by both the camptothecins and the 

indenoisoquinolines and are considered associated with the general mechanism of Top1 

inhibition. The remaining three QTLs (chromosomes 6 and 20) are considered specific to 

camptothecin-induced cytotoxicity. Finally, eight QTLs were identified which were unique to the 

indenoisoquinolines.  
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INTRODUCTION 

Much of the cost of drug development can be attributed to a poor understanding of a drug’s 

mechanism of action. The practice of target-based drug discovery has produced many promising 

drug candidates. Unfortunately, most ultimately fail in the clinic due to lapses in efficacy and 

unanticipated side-effects. As a result, screening based on phenotypic changes induced by 

candidate drugs in cells or model organisms, is experiencing a resurgence. The greatest limitation 

of phenotypic screening is determining the mechanism for biologically active compounds. 

Genomic tools that interrogate all targets and cellular pathways simultaneously are being included 

with the phenotypic screen to provide insight into a drug’s mechanism.  

Our own ex vivo familial genetics strategy is one of the latest examples of these phenotypic 

screens. In this model, genes influencing drug action are studied using the Centre d’Etude 

Polymorphisme Humain (CEPH) cell lines, a collection of extensively genotyped, immortalized 

human cell lines from multigenerational families. These lymphoblastoid cell lines (LCLs) are first 

phenotyped for sensitivity to a drug. Linkage analysis is then used to identify regions of the 

genome referred to as quantitative trait loci (QTLs) where genetic variation correlates with the 

observed variation in response. 

Most recently, we have used this model to establish a specific pattern of QTLs related to a shared 

mechanism for a class of structurally related compounds, the camptothecins (Chapter 2). Nine 

QTLs were shared by six camptothecin analogues and then independently validated in a second 

set of three additional camptothecins (Chapter 2). The camptothecins are excellent model for 

study. More than 25 years after the discovery that the primary molecular target for the 

camptothecins is Topoisomerase 1 (Top1), investigations are still underway to define the 

pathways involved in cellular response [1-4]. Two of these analogues are FDA approved for use 
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in cancer chemotherapy. A clearer understanding of mechanism of action can be used to find 

genetic markers of drug susceptibility and resistance in patient populations. 

The objective of this study was to determine which QTLs are specific to camptothecin-induced 

cytotoxicity and which are related to the general mechanism of Top1 inhibition. Drug-to-drug 

comparative studies between structurally distinct compounds sharing a molecular target have 

been used to identify genes and pathways which are involved in a shared general mechanism and 

those which are class-specific and suggest subtle differences in mechanism [5]. We chose to 

phenotype the CEPH LCLs for sensitivity to the indenoisoquinolines, a new class of non-

camptothecin Top1 inhibitors, and compare the resulting genomic profile with the camptothecins 

(Figure 3-1). While sharing the same molecular target, there are notable pharmacological 

distinctions between the two classes [6]. The indenoisoquinolines are chemically stable. They trap 

Top1cc at different genomic sites which suggests potentially different gene targeting [7-9]. 

Cleavage complexes stabilized by indenoisoquinolines are more persistent than those induced by 

the camptothecins [7, 10]. Additionally, they are not substrates for ABC transporters which may 

be useful in the treatment of camptothecin resistant malignancies [11]. By comparing the 

biological and genomic profiles of the indenoisoquinolines with the camptothecins we can 

demonstrate that this model can establish a pattern of QTLs (a) related to the general mechanism 

of Top1 inhibition, (b) specific to camptothecin-induced cytotoxicity, and (c) associated with 

indenoisoquinoline activity.  

MATERIALS AND METHODS 

Chemicals. The indenoisoquinolines, NS 706744 (Ind1), NSC 725776 (Ind2) and NSC 724998 

(Ind3), were generously supplied by Drs. Stephen Frye and Jian Jin of the Center for Integrative 

Chemical Biology and Drug Discovery (University of North Carolina, Chapel Hill, NC). All 

drugs were dissolved in DMSO. Final concentrations for working solutions were 1% DMSO. For 

65



validation purposes, cellular phenotyping using the following camptothecins was repeated in this 

study (referred to as Camptothecin set 1+2):  

Camptothecin set 1: 9-aminocamptothecin (9AC), 9-nitrocamptothecin (9NC), topotecan 

(TPT), camptothecin (CPT), and 7-ethyl-10-hyrdroxycamptothecin (SN38) 

Camptothecin set 2: 10-methoxycamptothecin (mCPT) and 10-hyrdoxycamptothecin 

(hCPT)  

The camptothecins were diluted to the same concentrations outlined in Chapter 2. 

Cell lines. CEPH cell lines (Corriell Repositories) from the following pedigrees were used for 

this study: 35, 45, 1334, 1340, 1341, 1345, 1350, 1362, 1408, 1420, 1447, 1451, 1454, 1459, 

1463. The cells were cultured in RPMI 1640 supplemented with 10% fetal bovine serum at 37°C 

in humidified air containing 5% CO2.  

Measurements of Cell Growth Inhibition and Data Analysis. Experimental plates were 

prepared containing a panel of both the indenoisoquinolines and the camptothecins. Drugs were 

serially diluted and plated in 384 well plates and frozen at -20 C prior to experimentation. Each 

plate contained four replicates of each drug-dose combination. On the day of experimentation, 

cells were plated at a density of 4000 cells/well in RMPI 1640 with 10% FBS. Alamar blue was 

added at 72 h and fluorescence read after 24 h alamar blue exposure (96 h exposure to drug, Ex 

535 nm, Em 595 nm). Raw fluorescence values for each set of replicates were considered outliers 

if there was a ten-fold change in signal (in either directions) for a single replicate. Cell viability 

relative to untreated controls was determined using the manufacturer’s protocol. Final percent 

survival at each drug-dose combination was averaged from 4 replicates of 2 independently plated 

experiments (n =8 replicates). Pearson correlation coefficients were used to determine the degree 

of similarity between biological activity profiles of the Top1 inhibitors. 
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Genomic Profiling. Phenotypes were defined as cytotoxic response at each drug-dose 

combination. Heritability estimates, which quantify the genetic contribution to observed variation 

in cytotoxic response at each drug-dose combination, were calculated using MERLIN as 

described in Chapter 2 [12]. The degree of heritability associated with growth rate was calculated 

and all heritability estimates for all drug-dose phenotypes were adjusted for growth rate. The 

genotype data for each cell line were downloaded from V10 of the CEPH database using error 

checked markers. The genetic map information was downloaded from the Marshfield database. 

Error checking and nonparametric linkage analysis was performed as previously described 

(Chapter 2). Quantitative trait loci (QTLs), regions of the genome linked to each phenotype, were 

identified using the same criteria as previously reported (Chapter 2). Gene-dropping permutation 

testing was used to identify LOD score thresholds for significant and suggestive QTLs for each 

drug-dose combination on each chromosome. QTLs observed for a drug-dose phenotype were 

considered significant if the highest LOD score in that region surpassed the significance LOD 

score threshold for that drug-dose phenotype. The start and end of a significant QTL region was 

defined as regions with LOD scores that were above either the suggestive LOD score threshold or 

peak LOD score minus one, whichever was greater. QTLs observed for a drug-dose phenotype 

were considered suggestive if the highest LOD score in that region surpassed the suggestive LOD 

score threshold for that drug-dose phenotype on that chromosome. QTLs which were identified as 

significant in one drug-dose phenotype were considered replicated in the remaining drug-dose 

phenotypes if they surpassed the LOD score suggestive threshold. A complete list of QTLs which 

were significant in the indenoisoquinolines can be found in Tables A3-1. 

The goal of this study was to establish a pattern of QTLs (a) related to the general mechanism of 

Top1 inhibition, (b) specific to camptothecin-induced cytotoxicity, and (c) associated with 

indenoisoquinoline activity. To achieve this, the following analysis plan was undertaken. In 

Chapter 2, ten QTLs were indentified as shared among all of the camptothecins in the first panel 
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(Camptothecins set 1: 9AC, 9NC, TPT, CPT, CPT11, SN38). These QTLs were then queried for 

replication in a second set of 3 additional camptothecins (Camptothecins set 2: mCPT, hCPT, Cl-

CPT). QTLs which weren’t replicated in the Camptothecins 2 data set were excluded from further 

analysis. In this study, drugs from both Camptothecin set 1 and Camptothecin set 2 were 

reevaluated for sensitivity in the CEPH cell lines; the aim was to determine if any of the 

remaining QTLs could be replicated independently. QTLs which weren’t replicated across both 

data sets (Camptothecin set 1 + Camptothecin set 2) were excluded from further analysis in this 

study. To identify QTLs associated with the general mechanism of Top1 inhibition, the remaining 

QTLs were filtered for replication in the indenoisoquinolines, a structurally unique class of Top1 

inhibitors. Finally, QTLs which had been removed from this last stage of replication were 

considered specific to camptothecin-induced cytotoxicity. Figure 3-2 provides a detailed 

summary of this analysis plan. Rules for replication were as follows: 

Within a data set: A QTL identified as significant for one drug-dose phenotype must be replicated 

at the significant or suggestive level in all drugs within that data set 

Between data sets: A QTL identified as significant and replicated in all drugs of one data 

set must be replicated at the significant or suggestive level in all drugs within a second 

data set. When there are drugs which are shared between data sets, a QTL which was 

identified as significant for a given drug-dose phenotype does not need to be detected at 

the significance level for that same drug-dose phenotype within the second data set. To 

be considered replicated in the second data set, the QTL must be present at the significant 

or suggestive level in all drugs belonging to that data set. 
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RESULTS 

Variation in Biological Response Between Top1 Inhibitors. Some have argued that molecular 

& pharmacological distinctions between the camptothecins and the indenoisoquinolines could 

result in clinical differences [6]. In this study, we used EBV-transformed LCLs derived from 15 

CEPH pedigrees to evaluate differences in cytotoxic activity between the indenoisoquinolines and 

the camptothecins. Sensitivity to the indenoisoquinolines, Ind1 (NSC70644), Ind2 (NCS725776), 

and Ind3 (NSC724998), were evaluated in CEPH LCLs (n = 142) using the alamar blue assay. 

Ind1, Ind2, and Ind3 all showed dose-dependent cytotoxicity (Figure 3-3). We also observed 

considerable interindividual variation in sensitivity to the indenoisoquinolines (Figure 3-3).  

Concentrations were insufficient to reach below the IC50, the concentration which inhibits 

viability by 50%, for 30% of the cell lines exposed to each of the idenoisoquinolines. As a result, 

a new parameter was chosen to compare variability in cytotoxic response between the 

camptothecins and the indenoisoquinolines. The cell viability at the dose which yielded a 

population mean viability closest to 50% was compared for all cell lines across each drug 

(referred to as the ( )50GI . Boxplots of cell viability at the ( )50GI  for each drug are depicted in 

Figure 3-4. Cell lines which had a mean viability greater than the 90th percentile of viabilities at 

the ( )50GI  were considered resistant. Cell lines which had a mean viability less than the 10th 

percentile of viabilities at the ( )50GI  were considered sensitive. Viability data for the six 

camptothecin analogues were handled in the same manner. Using there parameters, we were able 

to observe changes in sensitivity patterns between the two classes of Top1 inhibitors for some 

CEPH pedigrees (Figure 3-5). In pedigree 1451, six out of ten individuals were resistant to all 

three indenoisoquinolines. Five of these same individuals were sensitive to four or more 

camptothecins. Likewise, pedigree 1463 possessed six out of sixteen individuals who were 

sensitive to all three indenoisoquinolines; those cell lines were also resistant to 5 or more 
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camptothecin analogues. A single individual within this pedigree (GM12885) was resistant to all 

three indenoisoquinolines and sensitive to all six camptothecin analogues. This same pattern was 

observed for GM10846. Members of pedigree 1340 appeared sensitive to all six camptothecin 

analogues and all three indenoisoquinolines. While both the indenoisoquinolines and 

camptothecins act by a similar mechanism, i.e. Top1 inhibition, a correlation matrix on cell 

viability at the ( )50GI  for each drug suggests distinctions between the two classes. The three 

indenoisoquinolines are highly correlated with each other (PCC > 0.8) and distinct from the 

camptothecins (PCC < 0) (Table 3-1).  

Heritability analysis. There exists a significant relationship between growth rate and sensitivity 

to chemotherapeutic agents; cell lines which grow more rapidly are more sensitive to these 

cytotoxic agents [13]. As a control, we estimated the genetic contribution to growth rate in the 

presence of vehicle alone. Growth rate was found to be heritable (h2 = 8.65%). The growth rate 

adjusted heritability estimates for each drug-dose phenotype are indicated in Table 3-2. Overall, 

21 of the drug-dose phenotypes had a maximum heritability at or below that observed for growth 

rate. Sensitivity to Ind1 (100 nM) and Ind3 (5 uM) were found to be heritable traits with estimates 

of 15.7 and 14.1% respectively. A number of doses were found not to be heritable in this sample 

(h2 = 0). Taken together, these heritability estimates were lower than those reported for the 

camptothecin analogues which averaged 23.1%± 2.6% at doses within the linear phase of the 

sigmoid curve (Chapter 2). While the heritability estimates for the indenoisoquinolines varied 

considerably by dose (Table 3-2), heritability estimates for multiple doses and a number of 

camptothecin analogues were consistently approximately 20% for doses within the linear phase of 

the sigmoid curve.  

Independent Replication of QTLs from Camptothecin data sets 1 and 2.  Ten QTLs were 

identified as replicated within all six camptothecin analogues of Camptothecin set 1 (Chapter 2). 
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In a separate validation experiment using 3 additional camptothecin analogues, Camptothecin set 

2, nine of those QTLs were replicated (Chapter 2). In this study, we sought to further refine this 

list by performing a third independent validation study with nine drugs from Camptothecin sets 1 

and 2 (Camptothecin set 1+2). Any QTLs which could not be replicated at the significant or 

suggestive level for all drugs within this independent validation study were excluded from further 

analysis. Seven of the nine QTLs were replicated in Camptothecin set 1+2. The peak on 

chromosome 16 was identified as significant in multiple doses of CPT just as previously reported 

(Chapter 2). In fact, this QTL was replicated at the significance level in all camptothecins (for n ≥ 

1 doses) from Camptothecin set 1+2. The QTL on chromosome 11 was only present in two doses 

of CPT11 when studying Camptothecin set 1. In this study, it was present in all camptothecins at 

the significance level. Multiple doses of both SN38 and CPT11 (Camptothecin set 1) had QTLs 

on chromosome 20 which surpassed the significance LOD score thresholds in our earlier work. 

The QTL on chromosome 20 was replicated at the significance level in multiple doses of SN38 

and at the suggestive level of all other camptothecin analogues in the Camptothecin set 1+2. In 

our earlier work, a QTL on chromosome 5 was significant in multiple doses of 9NC, CPT, mCPT, 

and hCPT. In this study, that same region was replicated at the significance level for multiple 

doses of hCPT, SN38, CPT, 9AC, and 9NC. Figure A3-1 is a genome-wide map detailing these 

findings. Table 3-3 lists the QTLs shared by all camptothecin analogues which were replicated in 

this study.  

QTLs associated with Top1 inhibition. The next objective was to identify which peaks might be 

class-specific and which might be associated with the general mechanism of Top1 inhibition. 

Seven QTLs were replicated across all drugs in Camptothecin set 1, Camptothecin set 2, and 

Camptothecin set 1+2 (Table 3-3). We compared this pattern of QTLs to the QTLs associated 

with indenoisoquinoline sensitivity. A peak was considered replicated if it was found in all three 

indenoisoquinolines at the significant or suggestive level. Four of the seven predefined QTLs 
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were shared by all of the camptothecins and all of the indenoisoquinolines. These QTLs are 

summarized in Table 3-3. Peaks on chromosomes 11 and 16 were present at the significance level 

in multiple doses of all three indenoisoquinolines. The QTL on chromosomes 5 was significant at 

multiple doses of Ind2 and met the suggestive threshold for multiple doses of all three 

indenoisoquinolines. Finally, the QTL on chromosome 1 was shared by multiples doses of all 

three indenoisoquinolines at the suggestive level only. Most notably, the peak on chromosome 20, 

which contains Top1 and is shared by all of the camptothecins, was not present at the significant 

level in any indenoisoquinoline. However, it was present at the suggestive level in at least one 

dose of Ind1 and Ind3. These results are illustrated in Figure 3-6, a genome wide map of QTLs at 

the significant and suggestive level for both the camptothecins and indenoisoquinolines. We 

consider the remaining QTLs on chromosomes 6 and 20, which were not replicated in the 

indenoisoquinoline, camptothecin-specific (Table 3-3). 

QTLs associated with indenoisoquinoline-induced cytotoxicity. There are also QTLs which 

appear specific to the indenoisoquinolines alone. These QTLs are not replicated in the 

camptothecins and are summarized in Table 3-4. Of note, the QTLs on chromosomes 6 and 16 

were identified in multiple doses of all three indenoisoquinolines with LOD scores that exceeded 

the significance thresholds (maximum LOD score 2.286 for Ind3 at 7uM and 2.139 for 3 uM 

Ind2). Similarly, the QTL on chromosome 13 was also present in multiple doses of all three 

indenoisoquinolines (maximum LOD score 1.44 for 10 uM Ind3). At least two 

indenoisoquinolines had significant peaks on chromosomes 4 and 10 at multiple doses which 

were replicated at the suggestive level in n ≥ 1 doses of the third indenoisoquinoline. There are 

also subtle distinctions between the indenoisoquinolines. Multiple doses of Ind1 and Ind3 had a 

QTL with significant LOD scores on chromosome 14 (98-134 cM); this QTL was not present in 

drug-dose combinations of Ind2. A QTL on chromosome 19 (52-77 cM) surpasses the 

significance threshold for multiple doses of Ind1 but is not shared by the other members of that 
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class. Regions with significant peak LOD scores for growth in vehicle did not overlap peaks with 

any of the significant QTLs associated with sensitivity to the indenoisoquinolines (Figure 3-6) 

with the exception of a peak on chromosome 7 that is present in all three indenoisoquinolines. 

This suggests that the remaining QTLs are associated with cytotoxicity rather than the genetic 

effects from growth rate. 

DISCUSSION 

Drugs with common molecular targets can have very different therapeutic activities. For example, 

while the vinca alkaloids and colchicines are structurally distinct classes of tubulin destabilizing 

drugs, they are used in the treatment of cancer and gout respectively. The vinca alkaloids and 

taxanes target microtubules, but have distinct antitumor profiles, post-target interaction events, 

and mechanisms of resistance [14]. Differences in the expression of the molecular direct and 

indirect targets, metabolizing enzymes, and transporters between tumor types have been also been 

attributed to these observed differences in activity [14]. The similarities and differences in 

mechanisms between classes of compounds sharing the same molecular target have been 

characterized using genomic profiling [5]. In the present study, we used pharmacologic and 

genomic profiling in the CEPH cell lines to investigate two classes of Top1 inhibitors, the 

camptothecins and the indenoisoquinolines. Reports indicate that while sharing the same 

molecular target, the indenoisoquinolines exhibit unique properties which may set them apart 

clinically from the camptothecins. We previously used our ex vivo familial genetics model to 

study mechanisms of camptothecin-induced cytotoxicity (Chapter 2). The goal of this study was 

identify regions of the genome which were correlated to class-specific cytotoxicity and shared 

mechanisms of action. 

For profiling, we evaluated the biological activity of each class of drugs using a growth inhibitory 

assay. We compared the sensitivity of the CEPH cell lines to the indenoisoquinolines and the 
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camptothecins. Cell viability at the dose which produced 50% population mean viability ( )50GI  

for each drug was used as an endpoint. Interindividual variation in response to the 

indenoisoquinolines was found to be positively correlated (Table 3-1). An inverse correlation was 

noted when viability at ( )50GI  for each cell line was compared between the two structural 

classes. A number of cell lines which were resistant to all camptothecins were sensitive to all 

indenoisoquinolines and vice versa (Figure 3-5). These differences in cytotoxic activity suggest 

that while they share the same molecular target, there may be subtle distinctions in the 

biochemical cascade required for drug action (e.g. uptake mechanisms, metabolism, and 

secondary molecular interactions). Pommier suggests that (a) the differential genomic targeting of 

Top1 cleavage complexes by the camptothecins and indenoisoquinolines, (b) the differences in 

chemical structure and chemical stability of the indenoisoquinolines compared with 

camptothecins, and (c) the low cross-resistance to camptothecins based on drug efflux and Top1 

point mutations, make it likely that indenoisoquinolines will exhibit unique clinical and molecular 

properties which distinguish them from the camptothecins [6]. Even with a shared mechanism of 

action, mutations may render a cell sensitive or resistant to these distinct structural classes. For 

example, Antony et al. reported that human leukemic cells which were resistant to the 

camptothecins as a result of a Top1 point mutation were sensitive to Ind1 [9]. Not only can 

mutations in genes shared between these two classes change sensitivity, but this data suggest that 

there might be subtle distinctions in genes critical for action between the two classes (Table 3-4). 

While heritability analysis was not essential to the objective of this study, the results merit 

discussion. Sensitivity to individual concentrations of the indenoisoquinolines seems to be under 

some genetic control with a maximum heritability estimates of 0.15 (Table 3-2). Heritability 

estimates for drug-induced cytotoxicity by dose in CEPH cell lines have ranged from 0.06-0.70 

[15-17]. A number of the indenoisoquinoline drug-dose combinations have heritability estimates 

that are low (0 ≤ h2 ≤10) which had significant linkage peaks. The overall heritability of a trait is 
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typically considered evidence of a genetic contribution to phenotypic variation and implies that 

regions of the genome might be mapped which are responsible for this variation. In turn, this 

suggests that traits with low or no heritability values will not possess significant linkage. This 

was not the case in this study. Heritability has been described as an inconsistent predictor of 

significant linkage in the CEPH LCL model before [18-20]. In a study to identify regions of the 

genome influencing the expression profiles of CEPH cell lines, Huang et al uncovered 422 

expression traits with significant linkage. Of these 89 (21%) traits had low estimates (h2 ≤10), 23 

of which had h2 = 0. QTLs for gene expression traits with h2 = 0 were not false positive at the 0.5 

significance level. 

Nonparametric linkage analysis was used to identify regions of the genome which are specific to 

the general mechanism of Top1 inhibition, and distinct regions associated with the drug-induced 

cytotoxicity of camptothecins and indenoisoquinolines. We used permutation testing to determine 

empirical LOD score thresholds for significant and suggestive linkage for each drug-dose 

combination on each chromosome. Four QTLs were shared by all camptothecin analogues and 

replicated at the significant and/or suggestive level in all indenoisoquinolines (chr 1, 5, 11, 16; 

Table 3-3). We consider these QTLs specific to the general mechanism of Top1 inhibition, while 

QTLs in Table 3-4 are considered specific to the indenoisoquinolines. Different DNA cleavage 

patterns, biological activity within the CEPH, and unique QTLs patterns suggest some genes 

may be more selectively targeted by one compound class than the other [7, 10]. While 

Ind1, Ind2, and Ind3 depend on Top1 for cytotoxic effect, siRNA knockdown of Top1 (at 80-90% 

efficiency) does not completely reverse growth inhibition which suggests additional targets [9, 

10]. Moreover, Ind2 and Ind3 have weak activity against Top2 [10]. It’s too early to begin 

making hypotheses about what genes under those class-specific QTLs might be critical to the 

activity of the indenoisoquinolines. Since the discovery that this class of compounds acts on Top1 
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in 1998, our search of Pubmed reveals only 34 articles about the class. These articles 

predominately involve studies to optimize Top1 binding and potency. 

This study does open the doorway for the investigation of molecular pathways associated with 

cytotoxicity which are shared by the two structural classes. We used the functional categorization 

tool from the web-accessible program Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) to stratify the protein-coding genes under each shared QTL from Table 3-3 

according to gene ontology (GO) terms. Table 3-5 lists genes under each QTL associated with 

GO terms related to camptothecin activity. The bolded gene names have been previously 

associated with camptothecin activity in yeast and/or mammalian cell lines. For example, the 

QTL on chromosome 1 contains PARP1 (poly(ADP-ribose) polymerase 1), an abundant nuclear 

protein that is activated by DNA strand breaks to modify proteins with poly(ADP-ribose) (PAR). 

PARP1 recruits DNA repair and checkpoint proteins to sites of DNA damage. Knockdown of 

PARP1 using siRNA sensitizes cells to camptothecin-induced cytotoxicity [21]. The SCF (Skp, 

Cullin, F-box) ubiquitin ligase complex degrades Top1 following Top1 mediated DNA damage. 

Overexpression of components of the SCF complex, such as Cul3 (on chromosome 1) and Skp2 

(on chromosome 5) have been associated with resistance [22, 23]. Inhibition of Chk1 

(chromosome 11), a serine/threonine kinase that is activated following DNA strand breakage 

from Top1 inhibitors, sensitizes cells to camptothecin analogues [24-26]. Rad50 (chromosome 5) 

belongs to the DNA repair complex MRE11-RAD50-NBS1 (MRN) complex which is activated 

in the presence of camptothecin-induced DNA double strand breaks [27, 28]. The overexpression 

of NDRG1 (chromosome 16) suppresses camptothecin-induced apoptosis, while inhibition of 

expression potentiated apoptosis in camptothecin treated cells [29]. An shRNA gene knockdown 

experiment using this gene list would make an excellent follow-up study for clarifying the 

molecular consequences of Top1 inhibition.  
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The identification of QTLs on chromosomes 6 and 20, which are specific to the camptothecins, is 

also intriguing. The fact that the QTLs were shared by all camptothecins but not present at the 

significant or suggestive level in any of the indenoisoquinolines also suggests distinctions in 

mechanism. The QTLs on chromosomes 20 and 6 have been validated in three independent 

studies. In Chapter 2, we used the functional annotation clustering tool from DAVID to identify 

Gene ontology (GO) terms which were enriched for genes within the QTL on chromosome 20 

(Table 2-3, Table A2-2) [30, 31]. The top over-represented GO terms were: response to stimulus, 

DNA binding, transcription, protein binding, cell differentiation, and regulation of cell growth. 

Some of the genes associated with these GO terms may be relevant to the camptothecin 

mechanism (Table 2-3, Table A2-2). A literature search reveals that many have yet to be 

evaluated for their effect on camptothecin-induced cytotoxicity. In Chapter 2, we indicated that 

Bcl-xl, an anti-apoptotic protein which promotes cell survival, and Top1 were two genes with 

known involvement in camptothecin cytotoxicity that were present in the QTL on chromosome 

20. It is possible that neither gene is responsible for this QTL. This QTL was not shared by the 

indenoisoquinolines, which also target Top1. Downregulation of Bcl-xl using siRNA prior to 

treatment increases sensitivity to SN38 and other camptothecin analogues, while overexpression 

of Bcl-xl results in resistance to camptothecins analogues [32] [33]. There are also contradictory 

reports regarding changes in Bcl-xl expression following treatment with the camptothecins. While 

Bcl-xl expression was induced in MCF-7 cells treated with increasing concentrations of 

camptothecin, expression was down-regulated in HepG2 cells with increasing concentrations of 

TPT [34, 35]. The most overrepresented GO terms for genes under the QTL on chromosome 6 at 

0-29 cM were cell differentiation (subcategory GO terms: apoptosis and cell death), protease 

inhibition, cell proliferation, and regulation of biological processes (subcategory GO terms: 

transcription, gene expression, DNA binding). Of the genes associated with these GO terms, there 

have been reports for the involvement of both WRN and FOXQ1 in camptothecin-induced 

cytotoxicity [36, 37]. The QTL on chromosome 6 from 42-65 cM is enriched with genes 
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associated with chromatin assembly, response to chemical stimulus, and NF-kappa binding. NF-

kappa B interferes with the effect of most anti-cancer drugs through induction of anti-apoptotic 

genes. Blocking NF-kappa B activation sensitizes cells to camptothecin analogues [38]. NF-

kappa B tumor expression seems to be negatively correlated with response to irinotecan [39]. A 

number of genes involved in the NF-kappa B signaling pathway are present in this QTL. This 

QTL also contains 22 members of the histone H1 family. The histones are proteins which 

package and order DNA into nucleosomes. Phosphorylation of histone H2AX is an extremely 

sensitive marker for double strand breaks induced by DNA damaging agents, such as the 

camptothecins and indenoisoquinolines [10, 40]. It has been suggested that other histones are 

involved in DNA repair and cell proliferation [41]. Studies indicate that histones are ADP-

ribosylated in vivo in response to DNA damage [42]. All core histones, including H1, can be 

mono-ADP ribosylated [41]. 

We have characterized a method for clarifying the mechanism of action for Top1 inhibition 

associated with the camptothecins and indenoisoquinolines. More than 25 years of research have 

been devoted to identifying the molecular pathways associated with camptothecin-induced 

cytotoxicity. Regions of the genome which contain known and potentially novel genes critical to 

their action have identified and validated. The QTLs shared by both the indenoisoquinolines and 

camptothecins (Table 3-3) are considered the most important for followup, followed by the 

camptothecin-specific QTLs, and finally the QTLs unique to the indenoisoquinolines. QTLs 

related to the general mechanism of Top1 inhibition may not only lead to predictions about 

camptothecin sensitivity and resistance in patient populations but could provide valuable insight 

into proposed functions of mammalian Top1 [43]. Whole genome association studies using LCLs 

should be used next to narrow down these broad QTLs. Most importantly, we’ve described a 

system-wide genomic method for delving into drug action which could surmount some of the 

limitations of existing mechanism elucidation strategies. 
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Figure 3-1. Chemical structures of camptothecin (A) and the indenoisoquinolines (B). The lead 
compound NSC 706744 (Ind1) led to two derivatives, NSC 725776 (Ind2) and 725998 (Ind3), 
which are being pursued for clinical development. 
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Figure 3-2. Genomic profiling of Topoisomerase 1 inhibitors. A) The CEPH cell lines were 
phenotyped for sensitivity to a panel of six camptothecin analogues (Camptothecin set 1). 
Nonparametric linkage analysis was used to identify 10 QTLs which were shared by all six 
camptothecin analogues. B) A phenotyping study with three distinct camptothecin analogues 
(Camptothecin set 2) was performed. QTLs which were shared in Camptothecin set 1 were 
queried for replication in Camptothecin set 2. QTLs which were not shared by all drugs in 
Camptothecin set 2 were excluded. C) For additional validation, a third independent phenotyping 
experiment was performed using seven of the nine camptothecin (Camptothecin set 1+2). Seven 
QTLs were independently validated in this study. QTLs which were not shared by all drugs in 
Camptothecin set 1+2 were excluded. D) To stratify QTLs as specific to camptothecin-induced 
cytotoxicity or the general mechanism of Top1 inhibition, CEPH cell lines were phenotyped for 
sensitivity to the jndenoisoquinolines, noncamptothecin Top1 inhibitors. E) Four of the seven 
QTLs were shared by both the camptothecins and indenoisoquinolines and considered to be 
associated with the general mechanism of Top1 inhibition. F) Three QTLs which were shared by 
all camptothecins were not replicated in the indenoisoquinolines.  
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Figure 3-3. Dose–response curve for (A) Ind1, (B) Ind2, and (C) Ind3. Data points represent the 
overall population mean (n=142) for viability relative to untreated controls at each dose. Vertical 
bars represent the standard deviation for cell viability across the population. 
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Figure 3-4. Boxplot of mean viabilities for CEPH cell lines at ( )50GI , the dose closest to a 
population mean viability of 50%. Line represents mean viability across cell population, box 
represents the 90th and 10th percentiles, and whiskers are the maximum and minimum values. 
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Figure 3-5. Sensitivity patterns for camptothecins and indenoisoquinolines in select CEPH 
pedigrees. Red indicates resistance ie. mean viability > 90th percentile of viabilities at the 
( 50GI ), green indicates sensitivity ie. mean viability < 10th percentile of viabilities at the 
( 50GI ), and black indicates mean viability between 10-90th percentile at the ( 50GI ). 

Pedigree Cell ID In
d1

In
d2

In
d3

9A
C

9N
C

TP
T

C
P

T
SN

38
C

P
T1

1

12772 2 0 0 0 0 0
12767 2 0 0 0 0 0
12771 0 0 2 2 2 0
12773 1 1 1 0 2 0 2 2 2
12769 1 1 1 0 2 0 2 2 2
12766 1 1 1 0 2 2 2 2 2
12770 1 1 1 0 2 2 2 0 2
12768 1 1 1 2 2 2 2 2 2
12774 0 1 1 0 0 0 0 0 0
12848 1 1 1 1 1 1 0 0 0
12877 0 0 0 0 0 0 0 0 0
12879 0 0 0 0 0 0 0 0 0
12880 0 0 0 0 0 0 0 0 0
12882 0 0 0 0 0 0 0 0 0
12883 0 0 0 0 0 0 0 0 0
12885 1 1 1 2 2 2 2 2 2
12886 0 0 0 0 1 1 1 1 1
12887 0 0 0 1 0 1 1 1 1
12888 2 2 2 1 1 1 1 1 1
12889 0 2 2 1 1 1 1 1 1
12890 0 2 2 1 1 1 1 1 1
12892 2 2 2 1 1 1 1 1 1
12884 2 2 2 1 1 1 1 1 1
12893 2 2 2 1 1 1 1 1 1
11821 2 2 2 2 2 2 2 2 2
7008 2 2 2 0 2 2 2 2 2
7053 2 2 2 2 2 2 2 2 2
7062 0 2 2 0 2 2 2 2 2
7342 0 2 2 2 2 2 2 2 2
7027
7029
7019

1451

1463

1340

2
2
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Figure 3-6. Genome wide pattern of QTLs for the camptothecins and indenoisoquinolines. Each 
chromosome was partitioned into 10 cM regions. For each drug, any significant QTL regions 
(LOD>permutation threshold for significance) is indicated in blue. The intensity of the shading 
indicates the total number of additional doses that were replicated at either the suggestive or 
significant level. Regions which also had at least a suggestive QTL are shown in green. Color 
intensity of the color represents the number of dose replications. Drugs are grouped according to 
their structural class, where the groups are labeled as follows: Group A: Camptothecin set 1and 
Group B: indenoisoquinolines.  
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Table 3-1. Results of correlation analysis for cell viability at GI50 for camptothecins and 
indenoisoquinolines 
 

PCC Ind1 Ind2 Ind3 9AC 9NC CPT CPT11 SN38 TPT 
Ind1 1 0.88 0.84 -0.14 -0.14 -0.12 -0.15 -0.17 -0.14
Ind2  1 0.82 -0.11 -0.09 -0.10 -0.13 -0.14 -0.10
Ind3   1 -0.09 -0.05 -0.06 -0.11 -0.15 -0.10
9AC   1 0.65 0.65 0.65 0.65 0.65
9NC   1 0.77 0.76 0.73 0.78
CPT   0.94 0.88 0.86
CPT11   1 0.91 0.86
SN38    1 0.85
TPT     1

Pearson Correlation Coefficient, (PCC) 
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Table 3-2. Heritability estimates for the indenoisoquinolines 

Drug 
Concentration 

(M) 
Growth rate adjusted 
heritability estimate 

Ind1 

3.00E-06 2.21 
5.00E-07 0.00 
3.00E-07 11.75 
2.00E-07 3.18 
1.00E-07 15.68 
5.00E-08 0.45 
3.00E-08 0.00 
1.00E-09 0.00 

Ind2 

3.00E-05 0.00 
1.00E-05 4.42 
3.00E-06 6.72 
1.00E-06 2.24 
5.00E-07 0.00 
2.30E-07 0.00 
1.60E-07 0.00 
1.00E-08 0.00 

Ind3 

5.00E-05 6.84 
3.00E-05 6.85 
1.00E-05 6.86 
7.00E-06 0.00 
5.00E-06 14.10 
3.00E-06 4.13 
1.00E-06 0.00 
1.00E-08 0.00 
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Table 3-3. QTLs found in Camptothecin set 1+2 and indenoisoquinolines 

Chromosome Peak Start (cM) Peak End (cM) LODb LODc 
1a 229 252 1.855 0.870 
5a 125 194 1.709 1.551 
6 0 29 1.528 - 
6 42 65 1.652 - 

11a 115 131 1.352 2.421 
16a 0 75 1.345 2.139 
20 42 101 2.134 - 

a QTLs which were also shared by the indenoisoquinolines  
b Maximum LOD score observed in this region associated with the camptothecins  
c Maximum LOD score observed in this region associated with the indenoisoquinolines 
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Table 3-4. QTLs shared by all Indenoisoquinolines 

Chromosome Peak Start (cM) Peak End (cM) LOD* 
2 1 34 2.024 
4 192 211 1.483 
6 100 192 2.286 

10 118 155 1.775 
13 67 114 1.44 
16 27 108 2.139 
18 0 31 1.574 
18 90 96 1.554 

* Maximum LOD score observed in this region 
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Table 3-5: Genes under QTLs shared by camptothecins and indenoisoquinolines* 

chr GO terms GENES 

1 

GO:0016055 Wnt receptor signaling 
pathway WNT3A, WNT10A, WNT6, WNT9A,  

GO:0006974 response to DNA 
damage stimulus 

TNP1, NHEJ1, C1orf124, PARP1, BARD1, 
DTL, XRCC5,  

GO:0003677 DNA binding 

MIXL1, BATF3, PROX1, TAF1A, SP110, 
ZNF142, ESRRG, HIST3H3, IKZF2, 
SMARCAL1, HIST3H2BB, ZNF678, TSNAX, 
TAF5L, LBR, HIST3H2A, FEV, RCOR3, 
TIGD1, PAX3, HLX, SP100, ATF3, SP140, 
NCL,  

GO:0006350 transcription KCNH1, RCOR3, PTMA, HLX, EGLN1, IHH, 
STK36 

GO:0006915 apoptosis 
COL4A3, CUL3, SCG2, IL8RB, AGT, INHA, 
INPP5D, SPATA3, TP53BP2, PECR, PSEN2, 
TGFB2, TRAF5,  

GO:0030154 cell differentiation 
USH2A, ERBB4, MREG, NGEF, EFHD1, 
ITPKB, ACTA1, SERPINE2, OBSCN, SCG2, 
COL4A4, DNER, SPEG, LEFTY2, 

5 
GO:0030154 cell differentiation 

NRG2, NME5, ISL1, NAIP, HSPA9, DND1, 
MAP3K1, CYFIP2, ZNF346, AGGF1, UNC5A, 
TSSK1B, CTNNA1, NPM1, DRD1, SLIT3, 
PDLIM7, FST, POU4F3, PURA, F2R, AP3B1, 
PIK3R1, PRKAA1, NKX2-5, GPR98, CD74, 
PRDM6, NEUROG1, PPP2CB, NR2F1, JMY, 
MEF2C, CSF2, GZMA, MAP1B, ADRB2, 
FGF10, VDAC1, UBE2B, IL12B, CARD6, 
CARTPT, ATG12, IL3, MRPS30, SEMA6A, 
SMAD5, EFNA5, HDAC3, SMN2, PROP1, 
AFF4, ERAP1, C9, GDNF, SPINK5, EGR1, 
PPP2R2B, DDX41, PRLR, FGF1, HAND1, 
SFXN1, HNRPAB, HSD17B4, RASA1, IL4, 
ACSL6, FGF18, CD14, DBN1, GFRA3,  

GO:0006915 apoptosis PROP1, PPP2CB, ADRB2,  

GO:0008283 cell proliferation 

FABP6, SKP2, APC, CNOT8, TGFBI, 
B4GALT7, DAB2, IL9, HTR1A, L6ST, 
ADRA1B, SPOCK1, PPAP2A, LIFR, FGF1, 
CSF1R, HBEGF,  

GO:0006512 ubiquitin cycle 

FBXL17, FBXO4, RNF14, TRIM23, SKP1, 
ENC1, CDC23, RNF145, TSPAN17, ERCC8, 
FBXO38, MARCH3, KLHL3, FBXW11, 
UBE2D2, FBXL21,  

GO:0000079 

regulation of cyclin-
dependent protein 
kinase activity CDC25C, CDK7, CCNG1, CCNH,  

GO:0006974 
response to DNA 
damage stimulus 

CCNO, POLK, RAD17, PTTG1, XRCC4, 
RAD50, GTF2H2, MSH3,  
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chr GO terms GENES 

5 

GO:0043122 
regulation of NF-
kappaB cascade F2R, PLK2, CXXC5, NDFIP1, TICAM2,  

GO:0007049 cell cycle 

PAM, MCC, IRF1, CETN3, NIPBL, DUSP1, 
CCNB1, PFDN1, ERBB2IP, SEPT8, CDC20B, 
RASA1 

GO:0003682 chromatin binding NSD1, H2AFY, CHD1,  

11 
GO:0050896 response to stimulus 

TIRAP,CHEK1,OR10G4,MFRP,BSX,C1QTNF5
,OR10G7,OR10G9,PVRL1, POU2F3, 
R8A1,ROBO3,HSPA8,CRTAM,OR10S1,OR8G5
OR6T1,OR4D5, OR6M1,EI24,OR8B8, 
OR8B12,OR8B2,OR8B3,OR8D1,OR8B4,OR8D
2,OR8D4, PATE4,OR6X1 

GO:0030154 cell differentiation 
PVRL1,POU2F3,DDX25,CDON,ROBO4,TIRAP
ROBO3,THY1,FEZ1 

GO:0022402 cell cycle process HEPACAM,HEPN1,TBRG1,CHK1 

GO:0048522 
positive regulation of 
cellular process 

BSX,EI24,CRTAM,POU2F3,CBL,ARHGEF12,T
HY1 

GO:0003677 DNA binding 
PKNOX2,BSX,POU2F3,TRIM29,CBL,TBRG1,
ZNF202 

16 

GO:0005524 ATP binding 

ERN2, PDPK1, PLK1, ATP2A1, NOD2, 
ATP6V0C, CREBBP, DNAH3, TAOK2, NME3, 
PRKCB1, NUBP2, KIFC3, WDR51B, NUBP1, 
PHKG2, RAB26, CIITA, EEF2K, MYH11, 
EARS2, PKMYT1, SEPHS2, TRAP1, BCKDK, 
CHTF18, NLRC5, ACSM1,  

GO:0007049 cell cycle 

AXIN1, CORO1A, CYLD, CP110, SEPT1, 
CSNK2A2, DNAJA2, RBL2, TSC2, PAPD5, 
PRM2, KATNB1, PRM1, SIAH1, CCNF,  
GSPT1, MAPK3,  

GO:0051092 

activation of NF-
kappaB  
transcription factor 

PYCARD, NLRC3 
 

GO:0006974 
response to DNA 
damage stimulus 

C16ORF35, NTHL1, SMG1, ERCC4, KCTD13, 
KIF22, MPG, GIYD2,  

GO:0042493 response to drug ABCA3, ABCC6, ABCC1, MVP,  

GO:0030154 cell differentiation 

SOX8, TRAF7, NTN2L, CACNA1H, TBX6, 
SALL1, IRX5, GNAO1, NUPR1, BBS2, 
METRN, TNP2,  MT3, MKL2, MYST1, IL27, 
NDRG4,  

GO:0008219 cell death 

CLN3, TNFRSF12A, CIAPIN1,  DNAJA3, 
LITAF, PDIA2, EMP2, BFAR, 
DNASE1, SPN,  

GO:0006512 ubiquitin cycle 

RAB40C, TCEB2, SOCS1, AMFR, FBXL16, 
STUB1, RNF40, USP7, FBXL19, AKTIP,  

chr GO terms GENES 
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16 GO:0003677 DNA binding 

ZNF646, GTF3C1, ZNF213, HN1L, ORC6L, 
ZNF174, CARHSP1, MAZ, UBN1, 
IRX3, ALG1,  IRX6, ZNF597, ZNF75A, 
ZNF434, FUS, SRCAP, TFAP4, CHD9, ZNF263, 
POLR2C, DNASE1L2, ZNF500, ZNF267, 
POLR2K, MRPL28, ZNF319, ZNF205, E4F1,  

GO:0006350 transcription 

RPUSD1, NUDT21, TUFM, RPL3L, EIF3C,  
TRAF7,  RSL1D1, RNPS1, RPS2, 
TBL3, POLR3E, ZNF720,  C16ORF33, RPS15A, 
SRRM2,    

GO:0010467 gene expression ZNF200,  RRN3,  
*Gene names in bold indicate genes which have previously been associated with camptothecin-
induced cytotoxicity. 

91



REFERENCES 

1. Bjornsti, M.A., et al., Expression of human DNA Topoisomerase-1 in yeast cells 
lacking yeast DNA Topoisomerase-1: Restoration of sensitivity of the cells to the 
antitumor drug camptothecin. Cancer Research, 1989. 49(22): p. 6318-6323. 

2. Eng, W.K., et al., Evidence that DNA topoisomerase I is necessary for the 
cytotoxic effects of camptothecin. Molecular Pharmacology, 1988. 34(6): p. 755-
760. 

3. Hsiang, Y.H., et al., Camptothecin induces protein-linked DNA breaks via 
mammalian DNA Topoisomerase-1. Journal of Biological Chemistry, 1985. 
260(27): p. 4873-4878. 

4. Zhang, P., et al., MEPE/OF45 as a new target for sensitizing human tumour cells 
to DNA damage inducers. Br J Cancer. 102(5): p. 862-6. 

5. Shimoyama, T., et al., Reference profiling of the genomic response induced by an 
antimicrotubule agent, TZT-1027 (Soblidotin), in vitro. Pharmacogenomics J, 
2006. 6(6): p. 388-96. 

6. Pommier, Y. and M. Cushman, The indenoisoquinoline noncamptothecin 
topoisomerase I inhibitors: update and perspectives. Mol Cancer Ther, 2009. 

7. Antony, S., et al., Differential Induction of Topoisomerase I-DNA Cleavage 
Complexes by the Indenoisoquinoline MJ-III-65 (NSC 706744) and 
Camptothecin: Base Sequence Analysis and Activity against Camptothecin- 
Resistant Topoisomerases I. Cancer Res, 2003. 63(21): p. 7428-7435. 

8. Strumberg, D., et al., Synthesis of cytotoxic indenoisoquinoline topoisomerase I 
poisons. J Med Chem, 1999. 42(3): p. 446-57. 

9. Antony, S., et al., Cellular topoisomerase I inhibition and antiproliferative 
activity by MJ-III-65 (NSC 706744), an indenoisoquinoline topoisomerase I 
poison. Mol Pharmacol, 2005. 67(2): p. 523-30. 

10. Antony, S., et al., Novel indenoisoquinolines NSC 725776 and NSC 724998 
produce persistent topoisomerase I cleavage complexes and overcome multidrug 
resistance. Cancer Res, 2007. 67(21): p. 10397-405. 

11. Pommier, Y., DNA topoisomerase I inhibitors: chemistry, biology, and interfacial 
inhibition. Chem Rev, 2009. 109(7): p. 2894-902. 

12. Abecasis, G.R., et al., Merlin--rapid analysis of dense genetic maps using sparse 
gene flow trees. Nat Genet, 2002. 30(1): p. 97-101. 

92



13. Stark, A.L., et al., Heritable and non-genetic factors as variables of 
pharmacologic phenotypes in lymphoblastoid cell lines. Pharmacogenomics J, 
2010. 

14. Jordan, M.A. and L. Wilson, Microtubules as a target for anticancer drugs. Nat 
Rev Cancer, 2004. 4(4): p. 253-265. 

15. Duan, S., et al., Mapping genes that contribute to daunorubicin-induced 
cytotoxicity. Cancer Res, 2007. 67(11): p. 5425-33. 

16. Dolan, M.E., et al., Heritability and linkage analysis of sensitivity to cisplatin-
induced cytotoxicity. Cancer Res, 2004. 64(12): p. 4353-6. 

17. Watters, J.W., et al., Genome-wide discovery of loci influencing chemotherapy 
cytotoxicity. Proc Natl Acad Sci U S A, 2004. 101(32): p. 11809-14. 

18. Huang, S., D. Ballard, and H. Zhao, The role of heritability in mapping expression 
quantitative trait loci. BMC Proc, 2007. 1 Suppl 1: p. S86. 

19. Wijsman, E.M., et al., Summary of Genetic Analysis Workshop 15: Group 9 
linkage analysis of the CEPH expression data. Genet Epidemiol, 2007. 31 Suppl 
1: p. S75-85. 

20. Kan, D., R. Cooper, and X. Zhu, A genome-wide linkage study of GAW15 gene 
expression data. BMC Proc, 2007. 1 Suppl 1: p. S87. 

21. Loseva, O., et al., PARP-3 Is a Mono-ADP-ribosylase That Activates PARP-1 in 
the Absence of DNA. Journal of Biological Chemistry. 285(11): p. 8054-8060. 

22. Zhang, H.F., et al., Cullin 3 promotes proteasomal degradation of the 
topoisomerase I-DNA covalent complex. Cancer Res, 2004. 64(3): p. 1114-21. 

23. Ishii, T., et al., The Effects of S-Phase Kinaseâ€“Associated Protein 2 (SKP2) on 
Cell Cycle Status, Viability, and Chemoresistance in A549 Lung Adenocarcinoma 
Cells, in Experimental Lung Research. 2004, Taylor & Francis Ltd. p. 687-703. 

24. Zhang, Y.W., et al., Implication of checkpoint kinase-dependent up-regulation of 
ribonucleotide reductase R2 in DNA damage response. J Biol Chem, 2009. 
284(27): p. 18085-95. 

25. Huang, M., et al., Chk1 and Chk2 are differentially involved in homologous 
recombination repair and cell cycle arrest in response to DNA double-strand 
breaks induced by camptothecins. Mol Cancer Ther, 2008. 7(6): p. 1440-9. 

26. Tse, A.N., et al., CHIR-124, a novel potent inhibitor of Chk1, potentiates the 
cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clin Cancer Res, 
2007. 13(2 Pt 1): p. 591-602. 

93



27. Furuta, T., et al., Phosphorylation of histone H2AX and activation of Mre11, 
Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks 
induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem, 
2003. 278(22): p. 20303-12. 

28. Wu, J., et al., Induction of biphasic DNA double strand breaks and activation of 
multiple repair protein complexes by DNA topoisomerase I drug 7-ethyl-10-
hydroxy-camptothecin. Mol Pharmacol, 2002. 61(4): p. 742-8. 

29. Zheng, Y., et al., NDRG1 is down-regulated in the early apoptotic event induced 
by camptothecin analogs: the potential role in proteolytic activation of PKC delta 
and apoptosis. Proteomics, 2009. 9(8): p. 2064-75. 

30. Dennis, G., Jr., et al., DAVID: Database for Annotation, Visualization, and 
Integrated Discovery. Genome Biol, 2003. 4(5): p. P3. 

31. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 
2009. 4(1): p. 44-57. 

32. Guichard, S.M., et al., Short hairpin RNAs targeting Bcl-xL modulate senescence 
and apoptosis following SN-38 and irinotecan exposure in a colon cancer model. 
Cancer Chemother Pharmacol, 2007. 60(5): p. 651-60. 

33. Schulze-Bergkamen, H., et al., Bcl-x(L) and Myeloid cell leukaemia-1 contribute 
to apoptosis resistance of colorectal cancer cells. World J Gastroenterol, 2008. 
14(24): p. 3829-40. 

34. Hayward, R.L., et al., Antisense Bcl-xl down-regulation switches the response to 
topoisomerase I inhibition from senescence to apoptosis in colorectal cancer 
cells, enhancing global cytotoxicity. Clin Cancer Res, 2003. 9(7): p. 2856-65. 

35. Zhang, J., et al., The expression of Bcl-XL, Bcl-XS and p27Kip1 in topotecan-
induced apoptosis in hepatoblastoma HepG2 cell line. Cancer Invest, 2008. 26(5): 
p. 456-63. 

36. Poot, M., K.A. Gollahon, and P.S. Rabinovitch, Werner syndrome lymphoblastoid 
cells are sensitive to camptothecin-induced apoptosis in S-phase. Hum Genet, 
1999. 104(1): p. 10-4. 

37. Kaneda, H., et al., FOXQ1 is overexpressed in colorectal cancer and enhances 
tumorigenicity and tumor growth. Cancer Res. 70(5): p. 2053-63. 

38. Lagadec, P., et al., Pharmacological targeting of NF-kappaB potentiates the effect 
of the topoisomerase inhibitor CPT-11 on colon cancer cells. Br J Cancer, 2008. 
98(2): p. 335-44. 

94



39. Scartozzi, M., et al., Nuclear factor-kB tumor expression predicts response and 
survival in irinotecan-refractory metastatic colorectal cancer treated with 
cetuximab-irinotecan therapy. J Clin Oncol, 2007. 25(25): p. 3930-5. 

40. Huang, X., F. Traganos, and Z. Darzynkiewicz, DNA damage induced by DNA 
topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX 
phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle, 
2003. 2(6): p. 614-9. 

41. Misri, S., et al., Telomeres, histone code, and DNA damage response. Cytogenet 
Genome Res, 2008. 122(3-4): p. 297-307. 

42. Hassa, P.O., et al., Nuclear ADP-ribosylation reactions in mammalian cells: 
where are we today and where are we going? Microbiol Mol Biol Rev, 2006. 
70(3): p. 789-829. 

43. Miao, Z.H., et al., Nonclassic functions of human topoisomerase I: genome-wide 
and pharmacologic analyses. Cancer Res, 2007. 67(18): p. 8752-61. 

 

 

95



  

ABSTRACT 

The objective of this work was to demonstrate pharmacological and genomic profiling in CEPH 

cell lines can be used to stratify chemicals according to mechanism of action. A panel of 22 

anticancer agents belonging to 8 major mechanistic classes was evaluated for cell growth 

inhibition in the CEPH cell lines. We propose that intraclass biological and genomic profiles will 

be more similar to each other than to compounds belonging to distinct mechanistic classes. 

Considerable phenotypic variation was observed across and within families. For each compound, 

cell viability at the dose closest to a population mean viability of 50%, ( 50GI ) was analyzed by 

hierarchal clustering and resulted in clusters in agreement with the distinct modes of action. 

Pearson correlation coefficients (PCC) were calculated for all compounds based on cell viability 

at the 50GI ; while compounds within a class were highly correlated (PCC>0.65), PCC ranged 

from 0.00-0.55 between compound classes. The cytotoxic response to each agent was shown to 

be a heritable trait with genetics estimated to account for 5-60% of the observed variation in 

response. Genome-wide linkage analysis was then used to identify QTLs influencing the effect of 

each of the anticancer agents. QTLs with moderate peak LOD scores (maximum LOD scores = 

1.5- 2.3) were identified which were unique to each of the mechanistic classes. Results suggest 

that compounds belonging to distinct mechanistic classes can be distinguished on the basis of 

pharmacological and genomic profiling in CEPH cell lines.  



  

INTRODUCTION 

Predicting the sensitivity and toxicity of individual patients is important in improving the safety 

and efficacy of cancer chemotherapy. An approach to this end is to understand the genes that 

determine sensitivity. Many genes which have been indicated to influence the response to 

chemotherapeutic agents include drug transporters [1, 2], metabolizing enzymes [3-5], and 

molecular targets [6]. An analysis of genes which are already known to be involved drug action is 

not sufficient to explain all of the observed variation in patient response. Our understanding of the 

global action of an anticancer agent, all of its direct targets, indirect targets, affected cellular 

pathways, and proteins involved in ADME, is severely lacking. Increasing our knowledge of the 

global mechanism can lead to the identification of additional genes which can predict sensitivity 

and toxicity to chemotherapeutic agents. 

Recent attempts to predict chemosensitivity and identify genes critical to drug action have 

involved high throughput phenotypic screening and genome-wide expression profiling in cancer 

cell lines. The most prominent approach enables mechanism oriented evaluation of anticancer 

agents in the National Cancer Institute’s panel of human cancer cell lines (NCI60). Cell lines are 

screened for sensitivity or resistance to a compound whose mechanism is unknown. The GI50 

(molar concentration inhibiting 50% cell growth) is reported for each of the cell lines and used to 

generate an activity profile, referred to as the compound’s fingerprint. The COMPARE algorithm 

then enables mode of action predictions by comparing the fingerprint of a compound of interest to 

others of known mechanisms [7, 8]. A high degree of correlation suggests that the two agents 

share a similar antiproliferative mechanism [9]. Since its beginning, thousands of compounds 

have been evaluated for cytotoxicity in these cell lines. Compounds have been successfully 

classified by their mechanisms of action by hierarchal clustering using their activity profiles [1]. 

Recognizing that variation in genes critical to drug action might be responsible for the variation 
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in susceptibility to anticancer agents, the genome-wide expression profiles of all 60 cell lines 

were generated [2]. The gene expression database was combined with the activity database and 

Pearson correlation analysis was used to identify genes with expression patterns that showed 

significant correlation to patterns of sensitivity. Indeed, variations in the transcript levels of 

particular genes correlated well to cell line sensitivity or resistance. Subsequently, patterns of 

gene expression and compound activity have been used to provide incisive information about the 

mechanism of action of compounds of interest, and guide our understanding of which genes 

influence response.  

While extremely powerful, the limitations of the NCI60 genomic model necessitate the 

exploration of additional supportive strategies for mechanism elucidation. It has been fairly 

controversial whether tumor cell activities can predict human patient chemotherapeutic responses 

[10]. Furthermore, all important tumor types were not included in the NCI-60. For example, there 

are no lymphomas, sarcomas, head and neck tumors, or small cell lung cancers. Even if these 

types could be added to the panel now, all compounds screened over the past 20 years would have 

to be tested again in the updated panel to gain the full predictive power of the database. 

Moreover, RNA levels are not always correlated with the expression data for the protein it 

encodes [11]. It is widely appreciated that protein levels can vary significantly among genes that 

have similar mRNA-expression profiles, and, that there can be a significant variation in the 

mRNA levels of proteins that are expressed with comparable abundance [11, 12]. Finally, post-

translational modifications, such as phosphorylation and acetylation, which may be required for 

drug-target interaction would not be detected. Taken together, this suggests that the linking of 

expression profiles and compound activity in cancer cell lines may miss meaningful information 

for mechanism elucidation and for predicting the susceptibility of a cell or an organism to a 

compound. 
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Additional methods for indentifying genes influencing drug action are needed to support existing 

mechanism elucidation strategies such as the NCI60 cell line model. An ex vivo familial genetics 

model using lymphoblastoid cell lines (LCLs) derived from multigenerational human families has 

been used as a model for the discovery of genes involved in the cytotoxic action of anticancer 

agents [13, 14]. We have illustrated that a pattern of quantitative trait loci (QTLs) associated with 

the activity of a mechanistic class of drugs, the camptothecins, a group of Topoisomerase 1 

inhibitors, could be established (Chapter 2). Moreover, both the biological and genomic profiles 

of the camptothecins could be used to distinguish these compounds from Topoisomerase 2 

inhibitors, a mechanistically distinct class of compounds (Chapter 2). The objective of this study 

was to evaluate whether this model is generally effective for stratifying anticancer agents 

according to mechanism of action using biological and genomic profiling. 

MATERIALS & METHODS 

Cell lines and Culture Conditions. One hundred twenty-five Epstein-Barr virus-immortalized 

LCLs derived from 14 CEPH pedigrees (35, 45, 1334, 1340, 1341, 1350, 1362, 1408, 1420, 1447, 

1451, 1454, 1459 were purchased from Coriell Cell Repositories (Camden, New Jersey). Cells 

were incubated in a 5% COR2R atmosphere at 37 P

◦
PC in RPMI medium 1640 (Invitrogen, Rockville, 

MD) supplemented with 15% fetal bovine serum. Cells were passaged 2-3 times per week and 

used for experimentation at passages 3-7.  

Drugs. For the in vitro drug sensitivity test 22 drugs in 8 mechanistic classes were used 

(summarized in Table 4-1). All the drugs were dissolved in dimethyl sulfoxide (DMSO) or water 

and printed on 96 well plates using a Biomek 3000 fluid dispenser robot (Beckman). The same 

robot was then used to generate 384 well experimental plates (Corning, Corning, NY) containing 

vehicles (water and 0.1% DMSO), 10% DMSO, and increasing concentrations of each drug in 

quadruplicate. For each drug, four different concentrations were chosen to yield the slope of the 
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dose-response curve (approximately 20, 40, 60, and 80% viability) and are reported in Table A4-

1. Final concentrations of DMSO for all drug solutions in experimental plates were no more than 

0.1%.  

Cytotoxicity Profiling. Growth inhibition experiments were performed as previously described. 

Briefly, cells were plated at a density of 4000 cells in 45 ul media per well in 384 well 

experimental plates preloaded with drug. Following 72 h incubation, the non-toxic colorimetric 

dye, alamar blue, was added and fluorescence read at 96 h. The cell count at each replicate was 

screened for outliers, where an outlier was defined as more than a ten-fold increase or decrease in 

cell count of a single replicate. Cell viability (survival) relative to untreated controls was 

determined according to the manufacturer’s protocol. The final percent survival at each 

concentration was averaged from four replicates of two independently plated experiments (n = 8). 

Additionally, growth rate in vehicle was calculated as previously described (Chapter 2). 

Hierarchical Clustering on Biological Activity. Viability for each cell line was assessed at the 

dose closest to the population mean of 50%, referred to as the ( )50GI . Raw viability scores were 

z-score transformed and loaded into Cluster 3.0 (HTUhttp://bonsai.ims.u-

tokyo.ac.jp/~mdehoon/software/cluster/UTH) [15, 16]. A self organizing map (SOM) was calculated 

using 100,000 iterations for cell lines and 20,000 iterations for drugs to stabilize clusters and then 

the data clustered using uncentered correlation and complete linkage clusters. Clusters were 

visualized using Java TreeView. 

Genomic profiling. Genomic profiling, which consisted of heritability estimates, linkage 

analysis, peak identification and peak replication analysis, was performed as described in 

(Chapters 2 and 3). Briefly, heritability estimates (h P

2
P), the degree of variation in cytotoxic 

response which can be explained by genetics, were calculated for each drug-dose phenotype using 

MERLIN [17]. Heritability estimates were calculated using cellular growth rate as a covariate. 
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The genotype data were downloaded from CEPH [18] and Marshfield [19] databases and used for 

nonparametric linkage analysis in MERLIN [17]. Permutation testing was used to identify LOD 

score thresholds for significant and suggestive QTLs for each drug-dose combination at each 

chromosome (Chapters 2 and 3). A QTL was defined as significant if the maximum LOD score 

within that region surpassed the LOD score significance threshold for that drug-dose combination 

on that chromosome. Regions identified as significant peaks for a given drug-dose combination 

were evaluated for replication at the suggestive or significant level for all dosages of that drug. A 

region was considered replicated in another dose if any LOD score in that region surpassed the 

suggestive LOD score threshold. Finally, to establish a pattern of QTLs specific to a mechanistic 

class, QTLs which were identified as significant in one drug were queried for replication at the 

suggestive level in all drug-dose combinations belonging to that mechanistic class. 

RESULTS 

Biological activity profiling. CEPH cell lines (n = 125) belonging to 14 pedigrees were tested 

for sensitivity to 22 anticancer agents belonging to 8 mechanistic classes. With the exception of 

the camptothecins, four doses were chosen for each drug to capture the anticipated most variable 

region within the linear portion of the sigmoid curve. Boxplots illustrating variation across 

individual cell lines at each drug-dose phenotype can be found in Figure A4-1. The 

antimicrotubule drugs vincristine, docetaxel, and vinrolebine were only active at the highest 

concentrations investigated. The anthracyclines, TYMS inhibitors, Top1 and Top2 inhibitors 

were highly effective across all concentrations. The observed sensitivity patterns are consistent 

with those reported previously in lymphoblastoid cell lines with a few exceptions [13, 20, 21]. 

Bleomycin, vinblastine, and topotecan were reported as inactive in healthy normal lymphoblast; 

however, the concentrations used were 10-1000 fold lower than those used in this study [20]. 

101



  

Typical studies stratifying drugs based on their biological activity in a cell panel use the GI50 

[22-28]. However, a GI50 could not be determined for 61% of the drugs in at least 93 (75%) of 

the CEPH cell lines. Hierarchical clustering analysis was performed using the dose which yielded 

a population mean viability closest to 50% for each drug, which will be referred to as 50GI  

(Table A4-1). The mean viability for each cell line was compared at the 50GI  of each drug. A 

boxplot of cell viability at the 50GI  for the anticancer agents shows that the data appears to be 

evenly distributed (Figure 4-1). The 90P

th
P and 10P

th
P percentile viability thresholds were calculated 

for each drug. Cell lines which had a mean viability greater than the 90P

th
P percentile for a drug at 

50GI  were identified as resistant. Similarly, cell lines with a mean viability less than the 10P

th
P 

percentile were considered sensitive. Some families and individuals were consistently sensitive or 

resistant to the test compounds (Table A4-2). Pedigree 1408 has six out of 10 members who were 

sensitive to more than 50% of the drugs and they were consistently sensitive to the same drugs. 

Five out of 10 members of pedigree 35 are also sensitive to approximately 50% of the anticancer 

drugs studied and resistant to another 45%. The individual CEPH cell lines 12766 and 12767 

(pedigree 1451) was resistant to 16 (72%) of the drugs. 

An analysis of z-score transformed viabilities at 50GI  by hierarchal clustering on drugs and cell 

lines was performed (Figure 4-2). Most anticancer agents tested clustered by their mechanistic 

class. The camptothecin analogues all clustered together and share the same molecular target, 

Topoisomerase 1 (Top1). A cluster was generated which contained the anthracyclines 

(daunorubicin, doxorubicin, idarubicin, and epirubicin) and the podophyllotoxins (etopiside and 

teniposide). The podophyllotoxins are Top2 inhibitors and the anthracyclines are DNA 

intercalators which are also reported to inhibit Top2 [29]. Agents which act on microtubules, 

specifically docetaxel, paclitaxel, vinorelbine and vincristine, all belong to the same cluster. 

Interestingly, vinblastine, a microtubule destabilizing agent, sorts distinctly from the other 
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antimicrotubule drugs. This is in accordance with the boxplot shown in Figure 4-1. Bleomycin 

which is mechanistically distinct from the other agents is in a cluster of its own. Floxuridine 

exceptionally belonged to the cluster bearing the antimicrotubule agents, not the cluster with 

5FU, although both are considered thymidylate synthase (TYMS) inhibitors. Pearson correlation 

coefficients (PCC) were calculated for all compounds based on cell viability at 50GI ; while 

compounds within a class were highly correlated (PCC>0.65), PCC ranged from 0.00-0.55 

between compound classes (Figure 4-3). 

Genomic profiling. The family data demonstrates a genetic component in the explanation of 

inter-individual differences for sensitivity to chemotherapeutic agents. Growth-rate adjusted 

heritability estimates were calculated for each drug-dose phenotype and ranged from 0-64% 

(Table 4-2, Table A4-3). The heritability estimates for cellular growth rate did not exceed 14%. 

Estimates for 5-fluoruracil, docetaxel, and daunorubicin are comparable to previously reported 

values (Table 4-2). Heritability estimates for compounds within a mechanistic class were also 

similar. For example, heritability estimates for doses within the linear portion of the sigmoid 

curve averaged 23.1 ± 2.6 % for the Top1 inhibitors. 

Nonparametric linkage analysis was used to identify QTLs for each drug-dose phenotype. 

Permutation testing was used to identify statistically significant LOD score thresholds for each 

drug-dose phenotype on each chromosome. Thresholds indicating suggestive linkage across each 

chromosome for each drug-dose combination were also calculated using permutation testing. The 

average significant and suggestive LOD score thresholds for drug-dose phenotypes across all 

chromosomes were 1.43 (range: 0.94-1.74) and 0.59 (range: 0.46-0.64) respectively. Peaks 

identified as significant at one drug-dose phenotype were queried for replication at the suggestive 

level in other doses of that drug. A peak was considered replicated if the maximum LOD score in 

that region surpassed the suggestive threshold for that drug-dose phenotype on that chromosome. 
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To establish a pattern of QTLs related to a mechanistic class, peaks identified as significant for 

one member of a class were queried at the suggestive level for all other drug-dose phenotypes 

within that mechanistic class. 

Testing for overrepresentation of QTLs within mechanistic classes suggests that compounds 

which share similar chemical structures shared similar genomic profiles (Figure 4-4). A list of all 

significant QTLs can be found in Table A4-4. Genome-wide patterns of QTLs were distinct for 

each mechanistic class. For example, QTLs in a similar location on chromosome 3, 5, 14, and 19 

were shared by the platinum analogs, carboplatin and oxaliplatin (Figure 4-5 and Figure 4-6). 

This pattern was distinct from the shared QTLs on chromosomes 1 and 11 for the tubulin 

stabilizing agents, paclitaxel and docetaxel. (Figure 4-4) depicts the overall patterns of significant 

and suggestive QTLs for each drug by mechanistic class. Significant QTLs identified for cellular 

growth in each vehicle did not overlap with any significant drug QTLs. In addition, with the 

exception of the camptothecins all drug classes shared a broad QTL on chromosome 7. Chemical-

specific QTLs were also identified as significant to one drug within a mechanistic class. For 

example, 2 out of 4 doses of oxaliplatin possessed a significant QTL on chromosome 12 which is 

not shared by carboplatin. Similarly, carboplatin has a significant QTL on chromosome 6 which 

was replicated in all four doses but not present in oxaliplatin. 

DISCUSSION 

A system for determining key molecular targets and genes related to the activity of chemicals 

using a panel of cancer cell lines was first developed in the National Cancer Institute [7, 9, 22, 

30]. It was later suggested that a good correlation between a drug’s mechanism of action and its 

fingerprint, biological and/or genomic profile(s), could be observed in any panel of cell lines with 

diverse chemosensitivities [28]. We explored the potential of natural genetic variation within the 

CEPH cell lines to stratify anticancer agents according to mechanism of action using biological 

104



  

and genomic profiling. We examined the antiproliferative activity of 22 anticancer agents against 

125 CEPH LCLs derived from 14 pedigrees and observed differential activity across the whole 

cell panel. Linkage analysis revealed genomic regions related to the observed inter-individual 

differences in sensitivity to each drug. Hierarchical clustering on the biological activity profiles in 

CEPH classified drugs with a similar mode of action (such as a tubulin binders or Top1 

inhibitors) into the same cluster (Figure 4-2), which were the same as the clusters established for 

NCI60 [9, 22]. Moreover, patterns of QTLs shared among compounds belonging to the same 

mechanistic class were distinct from compounds belonging to other mechanistic classes. 

While we have identified class-specific QTLs, we note that for most mechanistic classes 

significant linkage peaks were not observed in the genomic region bearing the primary targets. 

This is not alarming. Peters et al. commented on the failure of an earlier linkage analysis study of 

5-fluoruracil toxicity to identify a significant linkage peak on chromosome 18 around thymidylate 

synthetase (TYMS), the presumed primary target of 5FU [13, 31]. Genetic variants in TYMS 

were subsequently correlated to cytotoxic response in a subset of the HAPMAP LCLs [13, 31]. 

The region containing TYMS may not have been identified because of the density of genotype 

data used in linkage analysis  and low to moderate effect sizes of genetic variants TYMS. The 

genotype density improved when going from the microsatellite markers used in the preliminary 

linkage analysis study of 5FU to the SNP data available for HAPMAP cell lines; the HAPMAP 

data enabled the detection of an association between 5-FU cytotoxicity and TYMS.  

QTLs common to multiple classes as well as chemical-specific QTLs were also observed. QTLs 

common to multiple classes such as the one present on chromosome 7 are likely to possess genes 

which are not drug specific but are important in cell proliferation, survival and death. It is also 

plausible that distinct but closely linked genes are contributing to the cytotoxic response to these 

drugs. We have also observed QTLs which are unique to compounds within a mechanistic class, 

ie. chemical-specific QTLs. It is generally accepted that subtle changes in structure within a 
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mechanistic class do result in changes in the metabolism, antitumor profiles, mechanisms of 

resistance, and even molecular targets [32, 33]. While highly correlated, oxaliplatin clustered 

away from carboplatin according to biological activity in the CEPH (PCC = 0.69). Moreover, 

there were subtle distinctions in QTLs which were identified as significant to cytotoxic response 

(Figure 4-4). Oxaliplatin and carboplatin clustered separately according to biological activity 

profiles in two different cancer line panels [28, 34]. Subtle distinctions between the biological 

activity and genomic profiles of oxaliplatin, carboplatin, and cisplatin have been attributed to 

differences in mechanisms of activity and resistance [28, 34-36].  

Peters et al. chose to only examine QTLs which were associated with the highest heritable doses 

[37]. More highly heritable traits have a greater proportion of phenotypic variation explained by 

genetic effect and tend to have significant linkage scores. However, drug-dose phenotypes with 

lower heritability estimates did have significant linkage peaks associated with response. For 

example, the 10 uM 9NC drug-dose phenotype (hP

2
P = 0) had a significant QTL on chromosome 6 

from 0-29 cM. In these cases, often the pedigrees contribute to overall significance and can 

explain why LOD scores can be high for lower heritability traits. Three pedigrees contribute 

considerably to the overall score with LODs of 0.77, 0.44, and 0.59 while the LOD scores from 

the other pedigrees range from -0.07 to 0.12. In many cases, these QTLs have been replicated in 

additional drugs within a mechanistic class. For example, the QTL on chromosome 6 for 9AC is 

replicated at the suggestive level in multiple doses of 5 out of six of the camptothecins. Earlier 

reports involving the identification of genomic regions influencing the response to anticancer 

agents in CEPH, have observed differences in QTL patterns for a single drug at different doses 

[13, 21]. It is certainly plausible, given different mechanisms may predominate at different doses. 

For example, genes related to cell survival mechanisms may be critical at lower doses while at 

higher doses genes related to cell death and apoptosis might be more important. Filtering on the 
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highest heritable dose may result in a loss of important information regarding drug mechanism. 

All significant QTLs identified for all drug-dose phenotypes were used in this study. 

Peak position (start and end cM) varied as much as 5-20 cM for QTLs which were considered 

significant and replicated across numerous drug-dose combinations within a class. For example, 

significant QTLs on chromosome 20 were detected in at least four of the six camptothecins and 

also replicated in all six camptothecins at the suggestive level. Peak start and end positions for 

these peaks varied, but shared considerably overlap (Table 4-3). Consequently, the whole region 

from 40-101 cM is considered shared and replicated by the camptothecins as a class. With such 

variation in the position the question becomes: (a) Can these findings result from the same gene 

or different genetic factors and (b) can we truly consider linkage at these QTLs “replicated” 

multiple times? This issue is not limited to our study. Many independent studies of complex traits 

report evidence for linkage in nearby regions on the same chromosome: chromosome 6p for 

schizophrenia [38-40] and chromosome 12p for Alzheimer disease [41-43]. 

Substantial variation in the location of a linkage signal has been shown in simulations for 

complex phenotypes even when linkage was the result of a single gene [44]. The authors studied 

frequency distributions and the variation in peak location when increasing family size in a study. 

As the number of families increased, the distribution becomes taller and more narrow (ie. 

variation in peak location decreases and the frequency of observations increases in the central part 

of the distribution). In fact, variation in position covered as much as 10s of cM with family sizes 

of 200 and 400. Our own linkage study was performed with considerably less than 200 families 

(n = 14); the number of families picked for this study was powered to detect heritability not 

linkage. The degree of variation observed is considered consistent with linkage studies where the 

effect size is weak. Moreover, every genetic mapping study is specific to the environment in 

which the experiment was conducted. Despite our best efforts to control environmental 

variability, there are environmental factors which can result in differences in cytotoxic response 
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[45, 46]. This emphasizes the need for complimentary studies to narrow down these chromosomal 

regions of interest indentified in our linkage studies. On the other hand, it seems at least plausible 

that QTLs identified across all compounds within a mechanistic class may in fact be the result of 

the same gene despite variation in location. 

Taken together these results are encouraging. Preliminary evidence suggests that the biological 

and genomic profiles established in the CEPH cell lines may stratify compounds by mechanism. 

The ultimate goal of this project is to use the biological and genomic profiles of compounds as a 

predictive model for drug discovery. An expansion of the database, validation of QTLs and 

biological profiles identified as class specific, and progress in data-mining methodology are 

necessary to reach this end. Additional compounds with known mechanisms can be seeded into 

the chemical library. For example, this process could be repeated with the NCI Developmental 

Therapeutics Approved Oncology Plated drug set which includes 88 compounds (some of which 

were covered in this study) 

(http://dtp.nci.nih.gov/branches/dscb/oncology_drugset_explanation.html). Additionally, while 

compounds could be stratified by mean viability at the 50GI  future studies should include a full-

dose response curve to ascertain GI50s for individual cell lines. An informatics model which 

could rapidly assess and compare patterns of QTLs associated with a drug to others previously 

evaluated in this system is highly desirable. Moreover, integration of the in vitro sensitivity data 

such as the GI50 or AUC associated with each cell line and each drug could further serve to 

stratify compounds by mechanism. These advancements would further support investigations to 

identify genes involved in drug mechanism which influence cytotoxic response and make 

predictions about the activity and action of novel compounds as they become available.  
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Figure 4-1. Distribution of mean viabilities for CEPH cell lines at 50GI . Line represents median 
viability across population, box represents 90 and 10th percentiles, and whiskers represent 
maximum and minimum viabilities. 
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Figure 4-2. Hierarchical clustering of 22 
anticancer drugs based on cell viability at 

50GI . Cell viability for each cell line was 
z-score transformed prior to cluster analysis 
using the complete linkage method using the 
Pearson correlation as distance. On the color 
scale, red represents resistance (positive z-
score), green represents sensitivity (negative 
z-score), and black color indicates Z-score = 
0 (median resistance value). The brighter the 
color the greater the value from 0, with max 
brightness set at 2.5. 
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Figure 4-4. Genome wide pattern of QTLs for mechanistic set. Drugs are divided into mechanistic 
classes A-H as described in Table 4-1. Each chromosome was partitioned into 10 cM regions. Each 
drug-dose combination that resulted in a significant QTL (LOD >significance threshold) is indicated 
in blue. Intensity of the shading indicates the number of doses replicating that QTL at either the 
suggestive or significant level. Regions which also had a suggestive QTL (LOD > suggestive 
threshold) are indicated in green with color intensity referring to the number of doses replicating this 
peak. 
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Figure 4-5. Genome-wide QTL map for oxaliplatin and carboplatin. These platinum analogs are two 
structurally and functionally related drugs. Each chromosome is represented by a different color. 
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Figure 4-6. Shared QTL on chromosome 3 for oxaliplatin and carboplatin.  
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Table 4-1. Chemotherapeutic agents used in this study. 
 

Drug Name Abbreviation Mechanism of action 
5-Fluorouracil 5FU Thymidylate synthase inhibitor 
Floxuridine Flox Thymidylate synthase inhibitor 
Epirubicin Epi DNA intercalators and topoisomerase 2 inhibitors 
Doxorubicin Dox DNA intercalators and topoisomerase 2 inhibitors 
Daunorubicin Daun DNA intercalators and topoisomerase 2 inhibitors 
Idarubicin Ida DNA intercalators and topoisomerase 2 inhibitors 
Vincristine Vinc Microtubule destabilizers 
Vinorelbine Vino Microtubule destabilizers 
Vinblastine Vinb Microtubule destabilizers 
Docetaxel Doc Microtubule stabilizers 
Paclitaxel Pac Microtubule stabilizers 
Oxaliplatin Oxal DNA crosslinkers 
Carboplatin Carbo DNA crosslinkers 
Etoposide Etop Topoisomerase 2 inhibitors 
Teniposide Teni Topoisomerase 2 inhibitors 
Topotecan TPT Topoisomerase 1 inhibitors 
Camptothecin CPT Topoisomerase 1 inhibitors 
Irinotecan CPT-11 Topoisomerase 1 inhibitors 
7-ethyl-10-hydroxy-
camptothecin 

SN38 Topoisomerase 1 inhibitors 

9-aminocamptothecins 9AC Topoisomerase 1 inhibitors 
9-nitrocamptothecin 9NC Topoisomerase 1 inhibitors 
Bleomycin Bleo Other 
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TTable 4-2.T Heritability estimates and shared QTLs for mechanistic sets. 
 

Drug 
Identified in this study Previously reported 

Ref. 
h P

2 
P(%) 

shared QTLs 
(Chr) h P

2 
P(%) 

shared QTLs 
(Chr) 

Bleo 0.00-15.09 2,7,8,16    
5FU 0.00-30.85 3,7,9,13,19 

26-65 9,16 [13] 
Flox 11.41-25.54    
Epi 2.30-62.40 

1-6, 8, 11, 13,16 

   
Daun 13.40-37.12 18-63 4,16 [21] 
Dox 0.01-34.12    
Ida 3.93-48.95    
Carbo 13.51-40.57 2,3,5,7,11,20 

38-47** 1,12** [14] 
Oxal 13.03-49.74    
Pac 7.77-53.24     
Doc 13.45-31.17 1,7,11 21-70 5,6,9 [13] 
Etop 23.76-42.42 6,7,12,13,18 

   
Teni 19.94-37.72    
Vinb 0.01-35.86 

1,7 
   

Vino 0.00-36.75    
Vinc 9.00-24.40    
9AC 0.00-22.72 

1,5,6,11,16,20 

   
9NC 0.00-24.72    
CPT 0.00-23.49    
CPT11 0.00-23.79    
SN38 0.00-18.24    

TPT 0.00-25.92    
 
Growth-rate adjusted heritability estimates were calculated for each drug-dose phenotype and a listed 
as a range. Drugs are arranged by mechanistic class. 
*In some cases, heritability estimates were previously reported following evaluation in CEPH cell 
lines. 
**Heritability estimates for increasing concentrations of cisplatin.  
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Table 4-3. Variation in peak location for significant QTLs on chromosome 20 shared by 
camptothecins. 
 

Drug Dose (M) Peak start 
cM 

Peak end 
cM LOD 

SN38 8.00E-06 42.28 86.98 2.134
SN38 5.00E-06 42.28 77.75 1.731
SN38 8.00E-05 40.55 72.27 1.673
CPT11 0.002 46.71 78.29 1.704
CPT11 0.006 42.28 72.27 1.577
CPT11 0.01 42.28 72.27 1.705
TPT 1.00E-08 42.28 46.71 1.033
TPT 1.00E-08 72.91 101.22 1.749
CPT 8.00E-05 47.52 54.09 1.106
CPT 8.00E-05 55.74 61.77 1.273
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1. SUMMARY 

The pharmaceutical industry is suffering from a severe productivity crisis. The number of new 

drugs entering clinical development, being submitted to regulatory agencies, and being made 

available to patients appears to be declining at the same time that the cost to bring therapeutics to 

market is escalating. Bringing a new molecular entity (NME) to market is associated with 

considerable expense; an estimated $800 million is spent on drug discovery, evaluation and 

clinical trials for every NME which enters the market. This represents an estimated a 54% 

increase in the cost from 1995-2002 [1]. Unfortunately, the number of drugs reaching market is 

not proportionate to the exponential rise in pharmaceutical research and development costs. In 

fact, the last decade has seen a decline in the number of new drugs. In 2006, only 18 drug 

approvals for new molecular entities were granted by the FDA, an 84% drop from a peak of 110 

new drugs in 1996 [2]. Finally, the drug discovery process has generally been rather slow. It has 

typically taken 10-15 years, and often very much longer, to progress from the start of the 

discovery phase to the launch of a successful new drug product. Drug development is becoming 

increasingly challenging, inefficient, and costly.  

Many argue that the decline in productivity coincides with the industry’s switch from the 

phenotypic to the target based drug discovery approach. The limitations of this approach are 

significant [2-5]. The greatest weakness is our inability to predict safety and efficacy in man, the 

most frequent cause of drug failure [6]. If productivity is to improve, the FDA suggests new and 

innovative drug discovery tools are needed: 

“Not enough applied scientific work has been done to create new tools to get 

fundamentally better answers about how the safety and effectiveness of new 

products can be demonstrated in faster time frames, with more certainty, and 

lower costs. In many cases, developers are using the tools and concepts of last 
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century to assess this century’s candidates. As a result, the vast majority of 

investigational products fail that enter clinical trials [7].” 

The FDA tasks the industry with developing highly effective drugs with minimum or predictable 

side effects and toxicity, cheaper and faster. Consequently, tools which give us greater insight 

into a drug’s mechanism of action, toxicity, and resistance are in high demand. 

The use of genomics as a tool to identify pharmacokinetic and pharmacodynamic genes which are 

associated with lapses in drug safety and/or efficacy is on the rise [8-13]. However, many genes 

and their gene products are investigated based on a priori knowledge of their involvement in drug 

action. Our limited knowledge of drug action is insufficient and will be unable to explain all of 

the observed differences in toxicity and efficacy between patients. Research is ongoing to identify 

genomic tools which might be able to offer incisive information about a drug’s global mechanism 

of action, proteins involved in its ADME, primary and secondary targets associated with efficacy, 

and all affected molecular pathways. The most prominent example of this effort is the 

chemogenomic database developed with the NCI. More than 100,000 compounds have been 

screened for biological activity in the NCI60, a panel of human cancer cell lines. Compounds 

have been broken down into their molecular scaffolds and their biological activity linked to the 

gene expression profiles of the NCI60. This enables researchers to make predictions about which 

key structural features will be biologically active, the genes which might be critical to their 

activity, and the cancers which are sensitive or resistant to active compounds. 

Our lab is in the preliminary stages of developing a drug discovery tool that uses natural genetic 

variation in normal healthy human cell lines to make inferences about drug mechanism. The 

objective of Chapter 2 was to demonstrate that pharmacological and genomic profiles in the 

CEPH cell lines can be established for compounds sharing a mechanism of action. To this end, 

cell growth inhibition in 125 CEPH cell lines (14 families) was evaluated following treatment 
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with a panel of camptothecin analogues. Considerable phenotypic variation was observed across 

and within families. The cytotoxic response to each agent was shown to be a heritable trait. We 

estimated genetics accounts for 23.1 ± 2.6% of the variation in response to the camptothecins. 

Linkage analysis was used to identify a relationship between genetic markers and the response to 

camptothecins. The camptothecins shared ten quantitative trait loci (QTL) on chromosomes 1, 3, 

5, 6, 11, 12, 16 and 20. Nine of these QTLs were independently validated in a second set of 

camptothecin analogues. Moreover, the genomic profiles of the camptothecins were quite distinct 

from those of the podophyllotoxins, Top2 inhibitors. 

In Chapter 3, we sought to independently validate these QTLs and identify which might be 

associated with the general mechanism of Top1 inhibition versus camptothecin-specific induced 

cytotoxicity. We repeated the phenotyping study for seven of the original camptothecins from 

Chapter 2. Seven of the nine QTLs were reproduced. CEPH were then phenotyped for sensitivity 

to the indenoisoquinolines, Top1 inhibitors, and nonparametric linkage analysis was used to 

identify QTLs associated with response. Four QTLs were shared between all of the camptothecins 

and the indenoisoquinolines; the remaing three were specific to the camptothecins. Eight were 

linked to the indenoisoquinolines alone. 

In Chapter 4, we tested whether specific patterns of biological and genomic profiles could be 

defined for mechanistic classes of compounds. The goal was to evaluate whether pharmacological 

and genomic profiles in CEPH cell lines could be used to stratify drugs by their mechanism. 

Twenty-two anticancer agents belonging to eight mechanistic classes were evaluated for cellular 

sensitivity in a panel of CEPH cell lines. Heritability estimates ranged from 5-64%. Then, linkage 

analysis was used to correlate variation in response to variation in regions of the genome for each 

drug investigated. We were able to show using cluster analysis, correlation coefficients, pattern 

recognition, and principle components analysis that these biological and genomic profiles in 

CEPH are unique to each mechanistic class. 
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Taken together, we have shown illustrative studies in which this model can be used to (i) 

establish a pharmacological and genomic profile for compounds sharing a mechanism, (ii) refine 

regions of the genome influencing drug activity to those which are associated with the general 

mechanism and those which are class-specific and (iii) stratify compounds by mechanism using 

biological and genomic profiling. Our results may have a positive impact on the drug discovery 

process which has been tasked with developing safer and more effective drugs by cheaper and 

faster means. The conventional phenotypic based screening approach to drug discovery is 

hindered tremendously by target identification which can take as much as 10 years or more [14]. 

Likewise, the ability to predict off target effects for small molecules discovered through the 

target-based approach is limited [2]. Without a clear understanding of mechanism, drugs derived 

from these routes have an increased risk of failure due to unanticipated toxicity. The nature of our 

assay permits mechanism elucidation by simultaneously screening of all possible genes and 

pathways in a single experiment, consequently streamlining the drug discovery process. 

Moreover, the genomics component of this strategy makes it possible for us to make predictions 

about which patients would benefit or be harmed by a given therapy prior to its use in costly 

clinical trials. 

2. FUTURE DIRECTIONS 

Regardless of the method used to identify potential genes and proteins involved in drug activity, 

the most important step is to confirm their involvement in mechanism. In Chapters 2 and 3, QTLs 

likely to contain the genes important for the observed differences in response to all Top1 

inhibitors, were identified using genome-wide linkage analysis. This method has narrowed the 

search for the causative genes from the entire genome to a significantly smaller and more 

manageable subset. Specifically, the effects of camptothecins and indenoisoquinolines were 

mapped to chromosomes 1, 5, 11, and 16. By narrowing these regions of interest further to genes 

126



  

which are expressed in the CEPH cell lines, an unbiased candidate gene list can be formed (Table 

3-5). The whole genome linkage studies, such as those described in this dissertation, require 

family based samples, are typically powerful for genes with large effect sizes and indentify large 

regions of the genome linked to the phenotype of interest. Alternatively, association studies use a 

large collection of unrelated individuals are powerful for detecting genes with small effect sizes 

and will pinpoint small intervals of the genome associated with a phenotype. Cytotoxic response 

to chemotherapeutic agents is a dependent on multiple genes, each with have a small independent 

effect. Follow-up genome wide association studies (GWAS) in an independent sample could not 

only be used to independently replicate regions of the genome identified through linkage analysis, 

but to minimize false discovery, and narrow these broad QTLs down to smaller intervals. Both 

the Children’s Hospital of Oakland Research Institute (CHORI) 

(http://www.chori.org/Principal_Investigators/Krauss_Ronald/krauss_research.html) and the 

National Heart, Lung, and Blood Institute’s Farmingham Heart Study 

(http://www.framinghamheartstudy.org/participants/index.html) have collected and genotyped 

large collections of lymphoblastoid cell lines from unrelated Caucasian individuals which could 

be used for drug response profiling and genome wide association studies. 

Any candidate genes identified through GWAS or from linkage analysis which are attributed to 

the general mechanism of Top1 inhibition and camptothecin-specific induced cytotoxicity (Table 

3-5) can also be pursued using RNA interference (RNAi). Functional validation of candidate 

genes from CEPH studies have previously been reported using gene knockdown by RNAi. For 

example, in a study to identify genes influencing sensitivity to carboplatin knockdown of CD44 

expression through small interfering RNA (siRNA) resulted in increased cellular sensitivity in 

CEPH cell lines [15]. Also in the CEPH model, down regulation of NT5C3 and FKBP5 by 

siRNA was associated with altered sensitivity to gemcitabine and cytosine arabinoside (AraC) 

respectively [16]. Our lab is working to develop a high throughput method to study all potential 
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genes under QTLs of interest using gene expression knockdown with short hairpin RNAs 

(shRNA). Additionally, individual CEPH LCLs used in this study which were highly sensitive 

and resistant to the camptothecins (upper and lower 10% of IC50s) have been identified (Table 

A2-3). Candidate genes identified from gene knockdown experiments can be sequenced in this 

subpanel to ascertain whether genetic variants correlate to the observed variation in response. We 

should also examine whether gene expression correlates to genotype using real-time quantitative 

RT-PCR. This same process can be applied to the QTLs unique to the other mechanistic classes 

in this study. 

The ultimate goal of this project is to use the biological and genomic profiles of compounds as a 

model for getting at the mechanism of action for drugs. In Chapter 4, the preliminary ground 

work was laid for this objective. An expansion of the database (ie. more drugs), validation of 

QTLs and biological profiles identified as class specific, and progress in data-mining 

methodology are necessary to reach this end. Currently, investigations of genomic relationships 

with cellular sensitivity are often completed by analyzing a summary measure of the dose-

response curve such as the GI50. A considerable number of significant QTLs were identified 

across multiple doses of each drug investigated, more than were identified by linkage analysis for 

variation in GI50 for each drug. An informatics model which could rapidly assess and compare 

patterns of significant QTLs associated with all doses of a drug to the others previously evaluated 

would be helpful. Moreover, a number of systems have been described which summarize the 

biological performance of a compound in a cell line panel by a single parameter such as the GI50. 

Investigating other parameters such as slope or area under the curve (AUC) might lend more 

insight into drug action. Not only might they prove ideal biological parameters for classifying 

drugs according to mechanism, but linkage analysis on slope or AUC may identify genomic 

regions directly related to the differences in therapeutic indexes (ratio of amount of drug required 

to produce a therapeutic effect to amount which causes a toxic effect) among individuals. Both 
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slope and AUC would also be rapidly amenable to database generation for biological profiling of 

compound libraries. 

In addition to validating the reported genomic regions and genes influencing the activity of the 

drugs in this investigation, some technical limitations of this study need to be addressed. The 

technique used to immortalize LCLs has the potential to confuse results. LCLs used in this study 

are derived from normal B-lymphocytes which have been immortalized using the Epstein Barr 

virus (EBV), a member of the herpesviruses family. EBV is not unusual as it infects over 90% of 

the human population and persists in the latent phase for the lifetime of the host 

(http://www.cdc.gov/ncidod/diseases/ebv.htm). EBV genes critical for the immortalization of B 

cells have been identified and extensively studied. Some of these gene products can induce 

differential expression in host cells [17]. To date, it is unclear whether EBV transformation has 

affected gene expression and drug sensitivity in CEPH LCLs. Welsh points out natural variation 

in gene expression in CEPH LCLs clusters by family which suggests that gene expression is 

directed by genetic factors rather than EBV transformation [18, 19]. The EBV genome contains 

the capacity to express at least 80 gene products, only 11 of which are expressed in LCLs [20, 

21]. Treatment with sodium butyrate or phorbol esters can induce the lytic cycle and expression 

of the EBV genome in EBV-immortalized B cells [22]. Drugs used in this study could also 

activate the viral lytic phase, resulting in genetic changes which may confound cellular sensitivity 

results [23]. The expression of EBV viral proteins has also been linked to the inactivation of cell 

cycle checkpoints and DNA repair machinery induced by drug exposure in B-cell lymphomas 

[24-26]. The apoptotic response to some but not all anticancer drugs has been altered in EBV-

positive lymphomas [19, 27, 28]. More research is required to ascertain whether this also occurs 

in normal immortalized B-lymphocytes. Moreover, differences in sensitivity to several anticancer 

agents were noted pre- and post-immortalization of LCLs [29]. Clearly, this could pose a problem 

in the identification of genes responsible for the therapeutic activity of many anticancer agents. 
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A thorough investigation of the effect of EBV transformation on gene expression and drug 

sensitivity in the CEPH cell lines is essential. The presence of the viral proteins BZLF1 and 

BRLF1 indicate activation of the viral lytic phase. To rule out the contribution of EBV to cellular 

sensitivity, the expression levels of these genes can be quantified by real-time RT-PCR before 

and after treatment with increasing concentrations of each drug used in this study [30]. Treatment 

with sodium butyrate or tetradecanoyl phorbol acetate (TPA) activate the viral lytic phase in 

Daudi, Akata or Raji cell lines (EBV-positive B cell lymphomas) and could be used as positive 

controls. EBV-negative B lymphocytes such as, DG75 [31], BJAB, or Ramos could be used as 

negative controls. Epstein-Barr virus (EBV) genome-chips have also been employed to examine 

EBV gene expression patterns in tumor biopsies [32]. Finally, the UNC Lineberger 

Comprehensive Cancer Center Tissue Culture Facility uses a protocol for EBV-immortalization 

of B-lymphocytes which is similar to the methods outlined in publications for the collection of 

CEPH LCLs (http://www.unclineberger.org/tcf/protocols_GPI.asp) [33]. It may be possible to 

perform a genome wide analysis of cellular genes differentially expressed pre and post-EBV 

immortalization of primary human B-lymphocytes [34].  

Another potential confounder is the variation in LCL growth rate observed over time and between 

individuals. One study reported that EBV copy number, ATP levels, and growth rate were 

confounders in cellular sensitivity to a number of drugs including the anticancer agents: 5-

fluouracil, methotrexate, and 6-mecapoturine [35]. While the Dolan laboratory found no 

correlation between EBV copy number or ATP levels and sensitivity to chemotherapeutic agents, 

cellular growth rate did appear to have a direct relationship with cellular sensitivity (Dolan, ME, 

communication IPIT visiting scholar seminar series). This was not unexpected. Many antitumor 

agents are preferentially toxic to rapidly proliferating cells, therefore the rate of cellular 

proliferation is related to cellular sensitivity  [36]. Dolan et al., also reported a strong correlation 

between cell proliferation rate and cytotoxic response to the anticancer agents, carboplatin and 
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cytarabine arabinoside (ara-C) [37, 38]. Heritability estimates of cellular growth rate in CEPH 

LCLs across vehicles in these studies ranged from 1-14%. To account for the effect of growth 

rate on response to chemotherapeutic drugs, dose-response curves can be adjusted for growth rate 

[35]. 

CONCLUDING REMARKS 

High throughput screening in the CEPH cell lines has the potential to be an awesome predictive 

tool for drug discovery. Biologic and genomic profiles could be established for compounds 

belonging to the same mechanistic class. Results suggest that intraclass pharmacological and 

genomic profiles in the CEPH are more similar to each other than to compounds belonging to 

distinct mechanistic classes. Structurally unrelated compound belonging to the same mechanistic 

class produced similar but distinct profiles. These results suggest that with further work, profiling 

might not only suggest mechanisms of action for novel compounds (based on biological and 

genomic profiles), but point to the genes which are critical to drug action, and enable 

investigators to predict which patients will be sensitive or resistant to that drug.  
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INTRODUCTION 

Current therapies for the majority of cancers consist of radiation chemotherapy, and small 

molecule therapies including DNA alkylating agents, antimitotic agents, DNA antimetabolites, 

and Topoisomerase inhibitors. Unfortunately, the response to these agents varies widely. 

Commonly used chemotherapeutic drugs provide a cure for some, confer no therapeutic benefit or 

even trigger severe side effects in others. The pharmacological effect of a drug, its mechanism of 

action, is determined by its interplay with numerous proteins involved in pathways of drug 

absorption, distribution, metabolism, and effect; variants in any one of these processes may affect 

drug response. In addition, most proteins involved in these processes function in complex 

networks with several mechanisms of regulation. Being able to predict the therapeutic response 

and potentially life threatening toxic effects associated with a particular chemotherapeutic agent 

requires extensive knowledge of the direct target effects and cellular consequences associated 

with a drug’s activity. 

A multigenerational collection of lymphoblastoid cell lines derived from the Centre d’Etudie 

Polymorphisme Humain (CEPH) have been used in a global approach to identifying genes and 

gene products responsible for a drug’s cytotoxic effect. Waters et al. (2004) and Dolan et al. 

(2004) have used CEPH families to identify genes influencing the cytotoxicity activity of 5-

fluorouracil and cisplatin respectively. In each case, CEPH pedigrees were phenotyped for 

sensitivity to an anticancer agent. Phenotyping allowed researchers to establish heritability, the 

proportion of variation in response resulting from a genetic component, and then regions of the 

genome responsible for cytotoxicity.  

In this work we will use familial genetics to identify genes linked to the cytotoxicity of 

structurally similar pharmacologically active agents and use those genes to further elucidate 

mechanisms of action. We will establish a correlation between chemical substructure, mechanism 
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of action, and inherited response. The following is a detailed method to design, and optimize an 

in vitro CEPH cytotoxicity phenotyping assay. This assay will be used to conduct high 

throughput screens to establish mechanisms of action for large compound libraries. 

MATERIALS AND METHODS 

Cell lines. Epstein-Barr virus-immortalized lymphoblastoid cells derived from 14 CEPH 

reference pedigrees (35, 45, 1334, 1340, 1341, 1350, 1362, 1408, 1420, 1447, 1451, 1454, 1459) 

were purchased from Coriell Cell Repositories (Camden, New Jersey). Cells were maintained in 

RPMI medium 1640 (Invitrogen, Rockville, MD) supplemented with 15% fetal bovine serum, 

incubated in a 5% CO2 atmosphere at 37◦C, and passaged 2 times per week. Exponentially 

growing lymphoblastoid cell lines with greater than 85% viability, at passages 3-7 were used for 

experimentation.  

Length of Alamar Blue Exposure and Optimal Cell Count. Black-clear bottomed 384 well 

plates obtained from Corning (Corning, NY) were used for these and all other experiments. Cells 

were counted in the log phase of growth using a Z1 Coulter Particle Counter (Beckman, 

Fullerton, CA) and plated at densities ranging from 500-40,000 cells per well (45 ul/ well). 

Control wells of medium alone were used to provide the background signal for fluorescence 

readings. Alamar Blue (5 ul, Invitrogen) was then added to each well and plates incubated in 5% 

CO2 at 37◦C for 4, 6, 12, or 24 h before reading the plate using a Beckman DTX 880 fluorescence 

microplate reader (Ex = 535 nm and Em = 590 nm). 

To evaluate the quality of the assay for high-throughput screens (HTS), the coefficient of 

variance (CV), signal-to-background ratio (S:B) and the Z’-factor were determined using the 

following formulas [1] (Zhang et al., 1999): 
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(1)   CV = σn/ μn 

(2)   S:B = μs/μb  

(3)   Z’ = 1 – [(3σs+3σb)/(μs-μb)] 

where the subscript n refers to the replicate viability measures, s refers to the maximum assay 

signal and subscript b is the minimum signal, σ is the standard deviation, and μ is the mean signal 

in each condition. An assay is considered robust enough for HTS when conditions result in CVs 

for replicates < 10%, Z’ > 0.5 and S:B > 5. 

Plate Uniformity and Signal Variability Assessment. Uniformity tests were conducted on three 

types of signals varied systematically so that over all plates on a given day each signal is 

observed in every well. The maximum signal, cells treated with vehicle (0.1% DMSO), was 

considered 100% cell viability. Minimum signal or background was achieved by treating cells 

with 10% DMSO. Camptothecin (16 nM) was selected to give values between the maximum and 

minimum signals. Cells (4000 cells/well) were exposed to treatment for 72 h, alamar blue added, 

and the plate read at 96 h. The plate uniformity assay was performed twice over 2 consecutive 

days. Cell viability was assessed using the following equation:  

(4)   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

backveh

backdrug

RFURFU
RFURFU

Viability 100(%)  

where RFUdrug is the average relative fluorescence units (RFU) of cells in the presence of test 

compounds (i.e., camptothecin), RFUback is the average RFU in the presence of 10% DMSO, 

RFUveh is the average RFU of cells treated with PBS (0.1% DMSO). 

Automated Pipetting Accuracy. Several programs designed for the delivery of 5 ul (the volume 

used for both drug and alamar blue dispensing) to each well on 384 well plate using the Biomek 
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3000 were compared for accuracy. For each program, fluorescein (1mM, 5 ul/well) was dispensed 

into all wells of two replicates plates and fluorescence read using a DTX 880 fluorescence 

microplate reader (Ex = 535 nm and Em = 590 nm) to determine dispensing CVs for each plate. 

Between-run, Intra- and Inter-day Variability. To examine between-run variation, two 

separate 10 mM stock solutions of camptothecin in DMSO were prepared, serially diluted (0.01 

nM–100 uM camptothecin, final concentration 0.1% DMSO), and added to two separate 96 well 

master plates. Drug solutions (5ul) from master plates were transferred in quadruplicate to 384 

well plates using the Biomek 3000. Cells (4000 cells/well) were exposed to drug for 72 h, alamar 

blue added, and the plates read at 96 h. Percent viabilities and IC50s were compared between the 

different drug preparations. For intraday (or plate-to-plate) and interday (or day-to-day) 

variability, a single set of drug serial dilutions was prepared in a 96 well master plate and 

transferred to four 384 well plates. Half of the 384 well plates were used for experimentation that 

day. The remaining half of the 384 well plates were stored at -20 C and used the following day 

for interday variability assessment of the cytotoxicity assay. These experiments were performed 

using all camptothecins and evaluated in 3 different CEPH cell lines. 

pH and Long Term Stability. Stock solutions were made by dissolving the pure drugs in DMSO 

to 10 mM. Working solutions were made by diluting the stock solutions in PBS at pH 7 or citrate-

phosphate buffer at pH 3.0. Five 384 well plates were prepared which contained working 

solutions of camptothecin, 9-aminocamptothecin, and SN38 in both pH 7 and pH 3 buffer. Three 

of these plates were frozen and used for interday, week-to-week, and month-to-month stability 

studies. Cells (4000 cells/well) were added to two -384 well plates containing increasing 

concentrations of drug and incubated for 72 h. Alamar blue was added, fluorescence read after 24 

h exposure, and intraday variability assessed. This experiment was evaluated using three different 

cell lines. 

139



RESULTS AND DISCUSSION 

Cell-based assay optimization begins with optimizing the number of cells per well and 

maximizing the difference between maximum and minimum raw fluorescence signals. 

Optimization of specific assay conditions (drug concentrations, pH, DMSO compatibility, etc) 

follows. Once the assay is developed, it is assessed for HTS compatibility by testing fluorescent 

signal stability, drug stability, and assay variability. These are critical factors for determining 

throughput and capacity of the assay and the ability to reliably identify distinctions between 

compound sensitivity. Finally, the fully developed and optimized high-throughput assay can be 

used for the screening of compound libraries in CEPH cell lines.  

Cell Number and Length of Alamar Blue Exposure. There are many commercially available 

vital dyes used for cell viability and cytotoxicity assays. The generic alamar blue wasvchosen 

because it is non-toxic, readily detectable by fluorescence and absorbance, and has increased 

sensitivity in cytotoxicity assays when compared to other vital dyes such as MTT [2]. Moreover, 

the lack of cell washing, media removal, and multiple pipetting steps makes the assay ideal for 

HTS cell viability and cytotoxicity measurements. An assay is considered robust enough for high 

throughput screening if z’ is greater than 0.5 and S:B is greater than 5. Plating 4000 cells/well 

with 24 h alamar blue exposure reproducibly met these conditions. 

Cells were seeded into 384 well plates at densities ranging from 500-40,000 cells per well (45 

ul/well) and fluorescence was measured following 4, 6, 12, or 24 h exposure to alamar blue. At 

each time point, relative fluorescence increased with increase in cell number. Higher cell 

densities and longer Alamar blue exposure resulted in a departure from linearity (Figure A1-1a). 

The data in Figures 1 and 2 were used to calculate S:B and Z’-factor values as an indicator of 

stability of the assay for HTS. Z’-factor and S:B improve for longer incubation at lower cell 

numbers leading to an increase in assay sensitivity (Figure A1-1). Growth rate for cell lines does 
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vary (Figure A1-1b), results in a difference in relative fluorescent intensities and has an impact on 

the assay Z’-factor (Figure A1-1c). The average Z’-factor for 24 h incubation with alamar blue at 

5000 cells/well was 0.67 and 0.83 for the slow growing CEPH cell line 12771 and the fast 

growing cell line 12141 respectively. For 12771, S:B and Z’-factor improve significantly with 

increase in cell number at 24 h Alamar Blue exposure (Figure A1-1c).  

Plate Uniformity and Signal Variability. Percent viability should be tight at each signal 

(maximum, midpoint, or minimum) across all well locations on a plate. A scatter plot of viability 

for each signal type against well number (Figure A1-2) can indicate sources of systematic 

variability such as drift or edge effects within an assay. Values are sufficiently tight across plates 

for mid and min signals with no apparent drift. However, signals in the outer perimeter of the 

plate are consistently greater than those from interior wells (Figure A1-2). These edge effects are 

often the result of evaporation or plate stacking. When designing drug plate formats, this 

information was taken into account. Negative control (10% DMSO) and the highest drug 

concentrations were applied to the plate perimeter and concentrations likely to yield the most 

variation for our study were placed in the interior. 

Automated Pipetting Accuracy and Drug Plate Preparation. This assay depends on accurate 

and reproducible delivery of drug and alamar blue with a liquid handler. Because the 

concentrations of drugs are volume dependent, inaccurate volume transfers will directly impact 

assay results. We used the fluorescent dye, fluorescein, to assess dispensing reproducibility J 

Biomol Screen 2004; 9; 726. Two different programs were designed to prepare 384 well plates 

with 4 replicate dispenses of 5 ul. For each program, fluorescein to all wells of two replicates 

plates. Program 1, which aspirated 25 ul of dye and dispensed 5 ul four times to four wells, had 

an average CV of 18.6% for each plate. Program 2, which was a single 5 ul aspirate followed by a 

single 5 ul dispense over four replicate wells, resulted in average CVs of 5.3%. Programs using a 
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single aspirate and dispense for delivering drug or alamar blue to assay plates were subsequently 

used for all experiments. 

Cytotoxicity Assay and Concentration Profiling. To identify the appropriate drug exposure 

time for CEPH cell lines, cytotoxicity was evaluated using the camptothecins over a wide 

concentration range (0.1 nM-10 uM). Cell viability was monitored after 48, 72, and 96 h exposure 

to drug (Figure A1-3). The 96 h drug incubation was considered appropriate for our purposes 

since 100% viability was observed at the lowest concentrations and the curve went below 20% at 

the highest concentrations for all drugs studied. For all drug studies, cells were plated and treated 

with drug for 72 h, alamar blue added, and the plates read at the 96 h time point. 

Assessment of Between-run, Intra- and Inter-day Variability. If the concentration of buffer 

components or drug serial dilutions prepared in stock plates differs between runs then assay 

results could be affected. This difference will only show up when comparing one run to another 

run and is defined as between-run variation. To examine between-run variation, two separate 10 

mM stock solutions of camptothecin in DMSO were serially diluted to the same concentrations 

and percent viability assessed. There was no observed difference between the two runs (Figure 

A1-4a). Similarly, plates prepared and drug cytotoxicity assessed on Day 1 were compared to 

plates thawed and used two days later (Figure A1-4b). No significant difference was observed 

between days. 

Effect of pH on Viability and Assay Stability. Camptothecins have a labile lactone form that 

exists in a pH dependent equilibrium with the inactive carboxy form. At basic pH, the carboxy 

form predominates. Changing the pH of working solutions buffers from pH 7 to pH 3 was 

expected to increase the concentration of active camptothecin. Greater cell kill is observed at 

lower concentrations when pH 3 buffer is used and the dose-response curve shifts to the left when 

compared to pH 7 (Figure A1-5a). There appears to be little intraday variability for both working 
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solutions at pH 3 and pH 7 within the slope and right tail of the curves (Figure A1-5b and A2-5c). 

To examine long term stability of these pH 3 and pH 7 working solutions cytotoxicity was 

examined 2 days (Figure A1-6), 1 week (Figure A1-7), and 1 month (Figure A1-8) after -20 C 

storage. Both preparations appear quite stable over all several freeze thaws and time frames 

studied. For HTS, working solutions prepared using citrate-phosphate buffer at pH 3 will be used. 
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Figure A1-1. Optimizing CEPH Phenotyping assay. (A) RFU as a function of cells plated per 
well following 4, 6, 12, or 24 h exposure to alamar blue. (B) Fluorescence signal following 24 h 
exposure to alamar blue for fast (12141) and slow growing (12771) cell lines. (C) Z’-factor and 
S:B values as a function of cell number. 
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Figure A1-2. Optimizing CEPH Phenotyping assay. Plate Uniformity and Signal Variability. Cell 
viability (%) following 96 h exposure to vehicle, drug, or 10% DMSO. All treatments were 
applied such that signal for every treatment was observed in every well on a 384 well plate (n=3 
plates). 
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Figure A1-3. Optimizing CEPH Phenotyping assay. Identifying duration of Drug exposure. Cell 
viability (%) following 48, 72, or 96 h exposure to increasing concentrations of camptothecin. 
The same cell line was used in each case. 
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Figure A1-4. (A) Between-run variability in response to camptothecin (r = 0.95). (B) Comparison 
of intra- and interday variability in cytotoxic response to increasing concentrations of 
camptothecin. (intraday r = 0.98; interday r = 0.96). 
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Figure A1-5. Representative examples of the effect of camptothecin stock solution pH on cell 
viability and assay stability. The same cell line was exposed to increasing concentrations of 
camptothecin in each case. (A) Camptothecin was diluted in PBS at pH 7 or citrate-PBS at pH 3. 
(B) Intraday variability in cytotoxic response at pH 3. (C) Intraday variability in cytotoxic 
response at pH 7. 
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Figure A1-6. Representative examples of the effect of camptothecin stock solution pH on assay 
stability. The same cell line was exposed to increasing concentrations of camptothecin in each 
case. (A) Camptothecin was diluted in citrate-PBS at pH 3 and interday variability between plates 
compared. (B) Camptothecin was diluted in PBS at pH 7 and interday variability between plates 
compared. 
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Figure A1-7. Representative examples of the effect of camptothecin stock solution pH on assay 
stability. The same cell line was exposed to increasing concentrations of camptothecin in each 
case. (A) Camptothecin was diluted in citrate-PBS at pH 3 and week to week differences in cell 
viability assessed. (B) Camptothecin was diluted in PBS at pH 7 and week to week differences in 
cell viability assessed. 
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Figure A1-8. Representative examples of the effect of camptothecin stock solution pH on assay 
stability. The same cell line was exposed to increasing concentrations of camptothecin in each 
case. (A) Camptothecin was diluted in citrate-PBS at pH 3 and month to month differences in cell 
viability assessed. (B) Camptothecin was diluted in PBS at pH 7 and month to month differences 
in cell viability assessed. 
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Table A2-1. List of significant QTLs for the camptothecins 
 

Chr Drug Dose (mM) 

Peak 
Start 
(cM) 

Peak 
End 
(cM) 

Max 
Peak 
LOD 

1 9NC 1.00E-02 67.22 70.41 1.115 
1 9NC 1.00E-02 71.13 73.21 1.185 
1 SN38 2.00E-03 116.72 142.24 1.363 
1 hCPT 1.00E-03 125.51 136.34 1.495 
1 9NC 1.00E-02 145.45 147.6 1.073 
1 9NC 1.00E-02 149.2 150.27 1.184 
1 9NC 1.00E-02 162.57 168.52 1.269 
1 SN38 2.00E-03 229.13 252.12 1.389 
1 TPT 8.00E-05 232.81 252.12 1.855 
1 SN38 8.00E-05 233.38 252.12 1.501 
1 CPT11 6.00E-03 237.73 247.23 1.411 
1 CPT11 1.00E-02 237.73 247.23 1.295 
1 CPT11 5.00E-02 240.19 252.12 1.457 
2 IC50_hCPT 1.00E+00 215.78 216.31 1.031 
3 CPT 8.00E-05 5.54 8.31 1.216 
3 hCPT 2.00E-03 22.33 50.25 2.042 
3 SN38 3.01E-06 44.81 47.44 1.072 
3 SN38 3.01E-06 48.09 49.18 1.032 
3 SN38 3.01E-06 50.94 61.52 1.115 
3 SN38 3.01E-06 62.05 78.64 1.682 
3 CPT11 1.50E-03 65.26 75.41 1.675 
3 IC50_mCPT 1.00E+00 84.11 97.75 1.315 
3 IC50_mCPT 1.00E+00 99.38 101.55 1.103 
3 9NC 1.00E-02 151.49 173.34 1.638 
3 TPT 1.00E-02 151.49 158.38 1.375 
3 9NC 1.00E-02 173.76 174.94 1.088 
3 hCPT 5.00E-03 198.68 207.73 1.686 
3 9NC 1.00E-02 209.41 213.64 1.193 
4 CPT11 1.60E-05 161.04 166.85 1.112 
4 CPT11 1.60E-05 199.93 211.65 1.251 
5 CICPT 4.00E-01 0 6.67 1.961 
5 CICPT 2.00E+00 0 6.67 2.272 
5 CICPT 3.00E+00 0 6.67 1.864 
5 CICPT 4.00E+00 0 5.43 1.626 
5 mCPT 2.50E-02 49.54 51.99 1.174 
5 9NC 1.50E-05 54.79 74.07 1.853 
5 9NC 8.00E-06 63.6 68.63 1.242 
5 9NC 1.50E-05 92.38 93.59 1.045 
5 9NC 1.50E-05 102.62 123.45 1.54 
5 9NC 8.00E-06 111.97 140.72 1.709 
5 9NC 1.50E-05 124.47 136.33 1.394 
5 CPT 2.00E-06 137.39 161.4 1.685 
5 9NC 8.00E-06 141.82 155.92 1.19 
5 hCPT 8.00E-02 146.73 152.62 1.101 
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Chr Drug Dose (mM) 

Peak 
Start 
(cM) 

Peak 
End 
(cM) 

Max 
Peak 
LOD 

5 mCPT 8.00E-02 148.63 149.48 1.022 
5 hCPT 8.00E-02 162.16 174.8 1.384 
5 mCPT 8.00E-02 167.69 174.8 1.408 
5 mCPT 2.50E-02 171.06 177.92 1.746 
5 hCPT 8.00E-02 177.06 184.66 1.246 
5 mCPT 8.00E-02 177.06 187.81 1.305 
5 9NC 8.00E-06 182.35 189.23 1.356 
6 9AC 2.00E-03 0 29.93 1.528 
6 9AC 1.00E-02 9.18 11.89 1.304 
6 IC50_hCPT 1.00E+00 32.62 33.43 1.202 
6 IC50_hCPT 1.00E+00 42.27 42.98 1.008 
6 TPT 1.50E-05 42.27 53.81 1.652 
6 TPT 1.50E-05 57.96 65.14 1.106 
6 SN38 8.00E-06 68.65 80.99 1.376 
6 9AC 2.00E-03 76.62 78.85 1.112 
6 9AC 8.00E-06 87.29 89.23 1.125 
6 SN38 8.00E-06 87.29 89.23 1.195 
6 SN38 8.00E-06 91.34 117.29 1.613 
6 9AC 8.00E-06 92.25 107.25 1.659 
6 9AC 8.00E-06 112.2 124.64 1.252 
7 mCPT 1.00E-03 30.9 38.48 1.281 
7 CICPT 2.00E+00 58.86 62.87 1.085 
7 IC50_CPT11 1.00E+00 59.39 62.07 1.073 
7 CICPT 7.00E-01 61 125.15 2.604 
7 CICPT 5.00E-01 62.87 120.61 1.662 
7 IC50_CPT11 1.00E+00 62.87 72.78 1.611 
7 CICPT 1.00E+00 67.43 78.65 1.211 
7 CICPT 4.00E-01 70.64 73.84 1.198 
7 IC50_CPT11 1.00E+00 73.84 74.38 1.108 
7 CICPT 2.00E+00 77.91 78.65 1.087 
7 CICPT 1.00E+00 80.42 122.48 1.657 
7 CICPT 2.00E+00 80.42 125.15 2.351 
7 CICPT 3.00E+00 93.1 123.01 2.023 
7 CICPT 4.00E-01 97.38 120.61 1.62 
7 CICPT 4.00E+00 97.89 123.01 1.702 
9 9AC 1.60E-05 0 12.78 1.588 
9 9NC 1.00E-08 0 18.06 1.211 
9 CICPT 4.00E-01 83.41 104.48 1.772 

10 CPT 1.00E-07 2.13 13.49 1.475 
10 CPT 1.00E-07 32.8 37.9 1.111 
10 IC50_CPT11 1.00E+00 46.23 49.43 1.213 
10 IC50_CPT11 1.00E+00 56.89 69.7 1.626 
11 CPT11 1.00E-02 2.11 4.84 1.049 
11 IC50_9AC 1.00E+00 54.75 58.4 1.299 
11 IC50_9AC 1.00E+00 61.78 93.12 1.842 
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Chr Drug Dose (mM) 

Peak 
Start 
(cM) 

Peak 
End 
(cM) 

Max 
Peak 
LOD 

11 hCPT 8.00E-03 104.03 105.74 1.082 
11 IC50_hCPT 1.00E+00 104.03 105.74 1.051 
11 hCPT 8.00E-03 110.73 123 1.896 
11 CPT11 1.00E-02 126.21 129.02 1.352 
12 9AC 1.20E-05 0 6.42 1.705 
12 CPT11 4.00E-06 19.68 38.5 1.277 
12 CICPT 7.00E-01 95.56 104.65 1.627 
12 CICPT 1.00E+00 95.56 101.98 1.442 
12 CICPT 2.00E+00 95.56 104.12 1.646 
12 CICPT 3.00E+00 95.56 106.52 1.714 
12 mCPT 2.00E+00 95.56 119.55 2.052 
13 TPT 1.00E-08 0 19.36 1.365 
14 hCPT 5.00E-03 0 21.51 1.747 
14 TPT 8.00E-06 0 13.89 1.286 
14 hCPT 3.00E-03 8.28 34.43 1.673 
14 IC50_9AC 1.00E+00 8.28 9.36 1.029 
14 IC50_9AC 1.00E+00 12.46 13.89 1.014 
14 mCPT 2.00E-03 21.51 36.76 1.973 
14 hCPT 5.00E-03 26.59 27.01 1.026 
14 hCPT 3.00E-03 92.69 95.89 1.094 
14 hCPT 3.00E-03 98.96 111.27 1.15 
14 TPT 8.00E-06 98.96 111.27 1.677 
14 IC50_9AC 1.00E+00 105 134.3 2.354 
14 hCPT 3.00E-03 113.17 114.81 1.043 
14 hCPT 3.00E-03 115.2 125.88 1.242 
14 hCPT 3.00E-03 134.3 138.18 1.177 
15 mCPT 2.00E+00 20.24 39.72 1.81 
16 CPT 3.01E-06 1.08 10.36 1.345 
16 CPT 3.01E-06 29.97 34.22 1.019 
16 mCPT 3.00E-03 38.51 59.68 1.537 
16 mCPT 1.00E-03 40.65 66.1 1.318 
16 hCPT 1.00E-03 44.45 69.05 1.769 
16 mCPT 5.00E-03 57.79 65.77 2.287 
17 CICPT 3.00E+00 93.98 126.46 2.198 
17 CICPT 2.00E+00 95.99 126.46 1.985 
17 CICPT 7.00E-01 97.56 126.46 1.583 
17 hCPT 1.00E-04 98.14 114.41 1.557 
17 CICPT 5.00E-01 99.21 126.46 1.599 
17 CICPT 4.00E+00 99.21 126.46 1.684 
18 IC50_mCPT 1.00E+00 95.46 99.04 1.2 
20 SN38 8.00E-05 40.55 72.27 1.673 
20 CPT11 6.00E-03 42.28 72.27 1.577 
20 CPT11 1.00E-02 42.28 72.27 1.705 
20 SN38 5.00E-06 42.28 77.75 1.731 
20 SN38 8.00E-06 42.28 86.98 2.134 
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Chr Drug Dose (mM) 

Peak 
Start 
(cM) 

Peak 
End 
(cM) 

Max 
Peak 
LOD 

20 TPT 1.00E-08 42.28 46.71 1.033 
20 CPT11 2.00E-03 46.71 78.29 1.704 
20 hCPT 1.00E+01 46.71 48.85 1.144 
20 CPT 8.00E-05 47.52 54.09 1.106 
20 hCPT 1.00E+01 49.71 79.91 1.508 
20 CPT 8.00E-05 55.74 61.77 1.273 
20 TPT 1.00E-08 79.91 101.22 1.749 
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Table A2-2. Genes of interest and associated GO terms under chromosome 20 
 
GO terms Genes 

GO:0003677: DNA binding 

MYBL2, TAF4, HBF4A, CTCFL, SALL4, SYCP2, VSX1, PHF0, 
CHD5, 
TOP1, CST1, TFAP23, ZNF341, SPO11, ZHX3, ZNF337, TCEA2, 
SOX18, INSM1, TGIF2, TCFL5, CST2, FOXA2, ZNF334, ZBP1, 
GZF1, MYT1, ZNFX1, FKHL18, SNA1, NKX2-2, MAFB, 
L3MBTL, SCNAD1, TSHZ2, GMEB2, E2F1, PRIC285, ADNP, 
GATA5, PAX1, RTEL1, ZFP64, RBPJL, ZNF217, PLAGL2, 
RP11-227D2.4, CBFA2T2, WISP2, ZNF335, DNMT3B, HMG1L1, 
CEPB 

GO:0030154: cell differentiation 

NKX2-2, SPATA2, MAFB, BCL2L1, SCAND1, MYBL2, NCO86, 
DIDO1, PARD6B, CD40, E2F1, ELMO2, RPS21, NEURL2, 
PTGIS, TOP1, TFPA2C, EEF1A2, PAX1, LAMA5, EYA2, TGM2, 
CDH4, TNFRS6B, PLAGL2, SERINC3, SNTA1, SOX18, 
CDK5RAP1, NDRG3, CTNNBL1, INSM1, STK4, TCFL5, 
FOXA2, GDF5, CEBPB, ZNF313, BMP7, MYT1, TMEM189-
UBE2V1, BIRC7, MMP9 

GO:0008219: cell death 

TGMS, BCL2L1, TNFRSF6B, SCAND1, MYBL2, PLAGL2, 
SERINC3, 
CTNNBL1, DIDO1, CD40, STK4, E2F1, ELMO2, GDF5, PTGIS, 
CEBPB, TOP1, EEF1A2, BIRC7, MMP9 

GO:0007049: cell cycle 
DSN1, CEP250, RBL1, CTCFL, TPX2, MAPRE1, UBE2C, 
CABLES2, AURKA 

GO:0006350: transcription 

RBM39, C20ORF20, TAF4, POFUT1, NCOA3, ZNF341, TH1L, 
TCEA2, ADRM1, RP5-890O15.2, ZNFX1, FKHL18, L3MBTL, 
XRN2, TSHZ2, GMEB2, ASLX1, PRIC285, ZMYND8, ADNP, 
GATA5, ZFP64, ZBTB46, ZNNF217, ID1, NFATC2, HMG1L1, 
SLA2 

GO:0040007: regulation of growth OGFR, C20ORF10, GINS1, GHRH, ITCH 

GO:0050896: response to stimulus 

ASIP, ADA, PLUNC, SGK2, PROCR, VAPB, DEFB123, 
WFDC12, DEFB124, GNAS, TOP1, CHRNA4, TGM2, DEFB118, 
CD93, NTSR1, DEFB115, BPI, GSS, DEFB116, DEFB121, 
C20ORF185, CST7, LBP, THBD, DYNLRB1, SAMHD1, 
DEFB119, CST11, LIME1 
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Table A2-3. List of cell lines sensitive or resistant to the camptothecins 
 
    # Drugs cell lines are   
Family cell line resistant* sensitive** sum 

35 12615 1 0 1 
35 12616 0 2 2 
35 12617 1 3 4 
35 12618 1 4 5 
35 12619 1 3 4 
35 12620 0 3 3 
35 12621 0 4 4 
35 12622 1 4 5 
35 12623 0 3 3 
35 12624 1 3 4 
45 12698 0 1 1 
45 12699 1 2 3 
45 12700 0 1 1 
45 12701 0 3 3 
45 12702 1 3 4 
45 12703 1 2 3 
45 12704 2 0 2 
45 12705 1 2 3 
45 12706 1 3 4 
45 12849 1 0 1 

1334 10846 3 1 4 
1334 10847 0 5 5 
1334 12138 2 0 2 
1334 12139 1 2 3 
1334 12141 2 3 5 
1334 12142 1 1 2 
1334 12238 3 0 3 
1340 7008 0 3 3 
1340 7019 1 0 1 
1340 7027 0 1 1 
1340 7029 1 0 1 
1340 7040 0 3 3 
1340 7053 1 3 4 
1340 7062 2 0 2 
1340 7342 1 0 1 
1340 11821 1 3 4 
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Family cell line resistant* sensitive** sum 
1341 6991 3 1 4 
1341 7006 1 1 2 
1341 7010 0 1 1 
1341 7012 0 4 4 
1341 7020 1 0 1 
1341 7021 2 3 5 
1341 7044 0 3 3 
1341 7048 1 3 4 
1341 7343 0 3 3 
1341 7344 1 1 2 
1345 7345 0 2 2 
1345 7348 3 1 4 
1345 7357 1 1 2 
1350 10855 0 5 5 
1350 10856 1 1 2 
1350 11822 1 4 5 
1350 11824 2 2 4 
1350 11825 1 3 4 
1350 11826 1 0 1 
1350 11827 1 4 5 
1350 11828 2 3 5 
1362 10860 1 0 1 
1362 10861 2 0 2 
1362 11982 1 2 3 
1362 11983 1 3 4 
1362 11984 0 3 3 
1362 11985 0 3 3 
1362 11986 1 3 4 
1362 11987 0 4 4 
1362 11988 0 2 2 
1362 11989 1 3 4 
1408 10830 1 2 3 
1408 10831 1 0 1 
1408 12147 1 0 1 
1408 12148 2 1 3 
1408 12149 0 3 3 
1408 12150 0 4 4 
1408 12151 1 0 1 
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Family cell line resistant* sensitive** sum 
1408 12152 0 1 1 
1408 12153 2 0 2 
1408 12157 1 0 1 
1420 10838 1 0 1 
1420 10839 1 0 1 
1420 11997 1 3 4 
1420 11998 3 0 3 
1420 11999 2 1 3 
1420 12000 4 1 5 
1420 12001 4 0 4 
1420 12002 1 0 1 
1420 12007 1 1 2 
1447 12752 1 3 4 
1447 12753 1 0 1 
1447 12754 0 1 1 
1447 12755 0 3 3 
1447 12756 0 5 5 
1447 12757 1 3 4 
1447 12758 0 3 3 
1447 12759 0 2 2 
1447 12764 0 3 3 
1447 12765 1 2 3 
1451 12766 1 3 4 
1451 12767 0 5 5 
1451 12768 1 1 2 
1451 12769 0 4 4 
1451 12770 2 1 3 
1451 12771 2 0 2 
1451 12772 0 4 4 
1451 12773 1 0 1 
1451 12774 1 1 2 
1451 12848 1 0 1 
1454 12801 0 3 3 
1454 12802 1 0 1 
1454 12803 1 3 4 
1454 12804 1 2 3 
1454 12805 0 3 3 
1454 12806 0 4 4 
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Family cell line resistant* sensitive** sum 
1454 12807 1 3 4 
1454 12808 1 0 1 
1454 12809 0 3 3 
1454 12810 1 0 1 
1459 12864 0 2 2 
1459 12865 0 4 4 
1459 12866 0 4 4 
1459 12867 1 1 2 
1459 12868 0 5 5 
1459 12869 0 3 3 
1459 12870 0 4 4 
1459 12871 0 3 3 
1459 12876 1 3 4 

          
# cell lines resistant to >=3 drugs   7     
# cell lines sensitive to > 4 drugs     19   
# cell lines sens or resist to at least 4 
camptos       47 
     
*Resistance defined as IC50 > 90th percentile of all IC50s 
**Sensitivity defined as IC50 < 10th percentile of all IC50s 
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Figure A3-1. Genomewide map of QTLs for camptothecins set 1 (A), camptothecin set 1+2 (B) and 
indenoisoquinolines (B). Each chromosome was partitioned into 10 cM regions. Each drug-dose 
combination that resulted in a significant QTL (LOD >significance threshold) is indicated in blue. 
Intensity of the shading indicates the number of doses replicating that QTL at either the suggestive or 
significant level. Regions which also had a suggestive QTL (LOD > suggestive threshold) are 
indicated in green with color intensity referring to the number of doses replicating this peak 
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Table A3-1. List of significant QTLs for indenoisoquinolines 
 

Chr Drug Dose 

Peak 
Start 
cm 

Peak 
End 
cm LOD 

# 
replicate* 

doses 
2 Ind1 0.2 26.52 31.05 1.129 2 
6 Ind1 0.3 124.11 153.04 1.964 3 
6 Ind1 0.1 130 153.04 1.734 3 
6 Ind1 0.2 136.97 149.8 1.28 3 
7 Ind1 0.001 74.38 86.12 1.348 0 
9 Ind1 0.03 27.32 58.26 1.558 1 
9 Ind1 0.001 159.61 163.84 1.331 1 

10 Ind1 0.05 131.8 153.78 1.775 0 
11 Ind1 0.1 35.21 110.73 1.797 4 
11 Ind1 0.3 53.87 93.12 1.714 4 
11 Ind1 3 72.82 89.69 1.591 3 
13 Ind1 0.1 84.87 90.27 1.21 0 
14 Ind1 3 105.53 121.95 1.447 0 
16 Ind1 0.1 70.69 84.75 1.474 4 
18 Ind1 0.03 91.62 96.48 1.554 0 
19 Ind1 0.1 58.69 67.37 1.574 1 

1 Ind2 0.01 72.59 82.41 1.345 0 
4 Ind2 1 195.06 203.77 1.365 0 
5 Ind2 0.23 24.48 37.32 1.114 1 
5 Ind2 0.16 119.5 123.45 1.551 2 
6 Ind2 10 124.64 153.04 1.694 3 
6 Ind2 30 173.31 177.88 1.273 1 
7 Ind2 0.16 17.17 27.66 1.143 0 
7 Ind2 1 72.78 75.44 1.517 1 
8 Ind2 1 106.9 121.9 1.683 0 

11 Ind2 1 71.6 88.49 1.593 3 
16 Ind2 3 48.53 93.78 2.139 2 

2 Ind3 50 14.1 33.31 2.024 2 
3 Ind3 3 131.83 146.6 1.148 0 
3 Ind3 1 180.8 181.87 1.212 1 
3 Ind3 3 180.8 187.49 1.362 2 
3 Ind3 5 205.56 222.83 1.877 1 
3 Ind3 3 207.73 214.45 1.121 1 
4 Ind3 3 192.12 206.98 1.483 1 
6 Ind3 7 124.64 159.98 2.286 4 
6 Ind3 10 124.64 159.98 2.195 4 
6 Ind3 5 133.18 159.44 1.805 4 
6 Ind3 30 142.86 146.06 1.012 4 
6 Ind3 10 161.59 164.78 1.509 4 
6 Ind3 10 173.31 177.88 1.352 4 

10 Ind3 1 121.98 128.73 1.43 1 
11 Ind3 10 87.89 101.75 1.592 5 
11 Ind3 50 104.03 138.56 2.421 5 
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Chr Drug Dose 

Peak 
Start 
cm 

Peak 
End 
cm LOD 

# 
replicate 

doses 
12 Ind3 1 130.94 144.83 1.472 0 
13 Ind3 10 84.87 90.27 1.44 2 
14 Ind3 5 98.96 125.88 2.022 2 
16 Ind3 10 75.34 84.75 1.228 2 
16 Ind3 10 87.06 99.44 1.227 3 

 
* number of doses for this drug which replicated this QTL 
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Table A4-1 Drug concentrations and 50GI  for mechanistic set 
 

Drug Name Abbreviation 
Dose 1 
(mM) 

Dose 2 
(mM) 

Dose 3 
(mM) 

Dose 4 
(mM) 

5-
Fluorouracil 5FU 1.10E-03 4.94E-03 2.22E-02 1.00E-01 
Floxuridine Flox 2.33E-03 8.16E-03 2.86E-02 1.00E-01 
Epirubicin Epi 6.30E-06 2.50E-05 1.00E-04 4.00E-04 
Doxorubicin Dox 6.00E-06 1.30E-05 2.50E-05 5.00E-05 
Daunorubicin Daun 1.25E-05 2.50E-05 5.00E-05 1.00E-04 
Idarubicin Ida 5.00E-06 1.23E-05 2.78E-05 6.25E-05 
Vincristine Vinc 1.25E-05 2.50E-05 5.00E-05 1.00E-04 
Vinorelbine Vino 5.93E-05 8.89E-05 1.33E-04 2.00E-04 
Vinblastine Vinb 5.00E-06 1.00E-05 2.00E-05 4.00E-05 
Docetaxel Doc 1.28E-05 3.20E-05 8.00E-05 2.00E-04 
Paclitaxel Pac 1.85E-05 5.56E-05 1.67E-04 5.00E-04 
Oxaliplatin Oxal 3.70E-03 1.11E-02 3.33E-02 1.00E-01 
Carboplatin Carbo 1.28E-03 3.20E-03 8.00E-03 2.00E-02 
Etoposide Etop 1.17E-04 4.08E-04 1.43E-03 5.00E-03 
Teniposide Teni 2.56E-04 6.40E-04 1.60E-03 4.00E-03 
Bleomycin Bleo 8.00E-05 4.00E-04 2.00E-03 1.00E-02 
      

  50GI      
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Table A4-2. Cell lines sensitive and resistant to the mechanistic set, by family 
 

Family cell line
Drugs 

# Resistant* # Sensitive** 
35 12615 7 0 
35 12616 0 11 
35 12617 1 11 
35 12618 1 0 
35 12619 1 1 
35 12620 9 9 
35 12621 9 15 
35 12622 6 13 
35 12623 6 0 
35 12624 1 0 
45 12698 1 7 
45 12699 1 2 
45 12700 0 0 
45 12701 1 0 
45 12702 0 0 
45 12703 8 0 
45 12704 0 0 
45 12705 12 9 
45 12706 0 1 
45 12849 7 2 

1334 10846 6 3 
1334 10847 0 0 
1334 12138 1 0 
1334 12139 1 1 
1334 12141 0 2 
1334 12142 0 0 
1334 12238 0 0 
1340 7008 0 2 
1340 7019 1 1 
1340 7027 8 0 
1340 7029 10 0 
1340 7040 7 3 
1340 7053 0 0 
1340 7062 1 1 
1340 7342 1 0 
1340 11821 7 0 
1341 6991 0 0 
1341 7006 1 10 
1341 7010 0 1 
1341 7012 0 0 
1341 7020 0 0 
1341 7021 6 0 
1341 7044 1 0 
1341 7048 3 0 
1341 7343 0 7 
1341 7344 0 0 
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Family cell line Drugs 
# Resistant # Sensitive 

1345 7345 0 0 
1345 7348 2 0 
1345 7357 3 2 
1350 10855 8 0 
1350 10856 11 0 
1350 11822 10 0 
1350 11824 3 0 
1350 11825 4 0 
1350 11826 0 0 
1350 11827 0 9 
1350 11828 1 0 
1362 10860 0 0 
1362 10861 3 0 
1362 11982 0 0 
1362 11983 1 0 
1362 11984 9 0 
1362 11985 0 0 
1362 11986 11 0 
1362 11987 1 0 
1362 11988 2 3 
1362 11989 2 0 
1408 10830 0 15 
1408 10831 0 3 
1408 12147 1 0 
1408 12148 0 0 
1408 12149 0 0 
1408 12150 0 0 
1408 12151 0 0 
1408 12152 0 1 
1408 12153 1 0 
1408 12157 0 1 
1420 10838 1 0 
1420 10839 4 12 
1420 11997 0 5 
1420 11998 0 0 
1420 11999 1 0 
1420 12000 1 1 
1420 12001 0 0 
1420 12002 0 0 
1420 12007 2 0 
1447 12752 6 2 
1447 12753 3 0 
1447 12754 0 0 
1447 12755 0 1 
1447 12756 1 0 
1447 12757 0 0 
1447 12758 0 0 
1447 12759 1 0 
1447 12764 0 0 
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Family cell line Drugs 
# Resistant # Sensitive 

1447 12765 1 0 
1451 12766 0 0 
1451 12767 0 16 
1451 12768 0 0 
1451 12769 0 1 
1451 12770 7 0 
1451 12771 0 0 
1451 12772 0 2 
1451 12773 3 1 
1451 12774 0 0 
1451 12848 0 0 
1454 12801 0 4 
1454 12802 0 10 
1454 12803 0 0 
1454 12804 0 0 
1454 12805 0 0 
1454 12806 1 0 
1454 12807 2 0 
1454 12808 0 1 
1454 12809 0 0 
1454 12810 0 0 
1459 12864 0 4 
1459 12865 1 0 
1459 12866 0 4 
1459 12867 0 0 
1459 12868 0 3 
1459 12869 0 1 
1459 12870 1 0 
1459 12871 0 7 
1459 12876 0 0 

 
*Resistance defined as mean viability> 90th percentile of mean viability at 50GI  
**Sensitivity defined as mean viability < 10th percentile of mean viability at 50GI  
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Table A4-3. Heritability estimates for all drug-dose phenotypes of mechanistic set 
 

Growth-rate 
adjusted h2 

Dose 1 Dose 2 Dose 3 Dose 4 

Bleo 15.09 9.49 5.74 0.00 
5FU 23.84 30.85 22.91 0.00 
Flox 25.03 25.54 16.03 11.41 
Carbo 37.17 40.57 16.74 13.51 
Oxal 49.74 30.92 13.03 20.61 
Epi 62.40 53.68 43.70 2.30 
Daun 37.12 22.98 13.40 17.51 
Dox 34.12 28.71 0.01 0.01 
Ida 48.95 27.85 6.00 3.93 
Doc 23.04 24.26 31.17 13.45 
Pac 53.24 34.23 7.77 27.57 
Etop 42.42 38.10 33.26 23.76 
Teni 32.95 29.13 37.72 19.94 
Topo 45.78 26.14 0.00 0.71 
Vinb 0.07 0.01 13.76 35.86 
Vino 36.75 2.83 8.19 0.00 
Vinc 24.40 9.00 23.39 10.93 

* refer to Table A4-1 for doses 
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Table A4-4. List of significant QTLs for mechanistic set 
 

Chr Drug Dose (mM) Peak Start
cm 

Peak End 
cm 

LOD 

1 Doc 8.00E-05 8.85 16.22 1.231
1 Doc 0.0002 33.75 52.7 1.341
1 Doc 8.00E-05 168.52 190.98 1.623
1 Oxal 0.1 20.61 23.35 1.12
1 Oxal 0.1 24.68 56.19 2.091
1 Pac 0.0001667 23.35 60.01 1.921
1 Pac 0.0005 33.75 54.3 1.685
1 Vinb 1.00E-05 191.52 201.58 1.208
1 Vinb 1.00E-05 214.08 237.73 1.596
2 Bleo 0.01 218.45 229.14 1.503
2 Carbo 0.0032 94.05 103.16 1.354
2 Carbo 0.0032 106.84 119.22 1.164
2 Carbo 0.0032 120.29 137.93 1.701
2 Carbo 0.0032 185.13 195.65 1.246
2 Carbo 0.0032 196.85 204.53 1.375
2 Oxal 0.0037037 215.78 227 1.511
2 Vinb 2.00E-05 1.95 14.1 1.59
2 Vinb 2.00E-05 137.93 147.4 1.257
2 Vinb 2.00E-05 149.89 161.26 1.196
3 5FU 0.004938 190.43 207.73 1.648
3 5FU 0.004938 212.61 214.45 1.124
3 Flox 0.0023324 187.49 198.68 1.941
3 Flox 0.0285714 187.49 206.43 2.094
3 Flox 0.0081633 189 201.14 1.801
3 Flox 0.1 190.43 203.28 1.571
3 Oxal 0.0333333 187.49 228.14 2.179
3 Oxal 0.1 190.43 214.45 1.712
4 Dox 2.50E-05 180.01 199.93 1.47
5 Carbo 0.00128 0 1.72 1.126
5 Carbo 0.008 0 5.43 1.48
5 Carbo 0.008 140.72 144.06 1.073
5 Carbo 0.00128 152.62 155.92 1.058
5 GR_1_DM

SO 
1 142.92 155.92 1.5

5 GR_1_DM
SO 

1 159.77 162.47 1.061

5 GR_10_D
MSO 

1 134.72 156.47 2.13

5 GR_10_D
MSO 

1 157.02 167.69 1.25

5 GR_H20 1 144.06 153.17 1.502
5 GR_H20 1 160.87 162.16 1.027
6 Etop 0.000408 37.79 74.28 1.493
6 Etop 0.000408 76.62 87.29 1.217
6 Etop 0.000408 100.91 103.45 1.045
7 5FU 0.1 97.89 98.44 1.103
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Chr Drug Dose (mM) Peak Start
cm 

Peak End 
cm 

LOD 

7 5FU 0.1 103.63 113.92 1.173
7 5FU 0.1 137.83 155.1 1.971
7 5FU 0.022222 140.63 155.1 1.41
7 5FU 0.022222 159.53 168.98 1.195
7 Bleo 0.0004 23.29 47.08 1.929
7 Bleo 0.0004 48.69 52.7 1.064
7 Bleo 0.0004 155.1 181.97 1.635
7 Carbo 0.02 57.79 78.65 1.854
7 Carbo 0.008 58.86 73.84 1.385
7 Carbo 0.0032 61 76.71 1.647
7 Carbo 0.008 74.38 78.65 1.471
7 Carbo 0.02 79.24 90.42 1.363
7 Carbo 0.0032 83.99 86.12 1.038
7 Carbo 0.008 84.52 86.12 1.019
7 Carbo 0.02 91.67 104.86 1.48
7 Carbo 0.008 94.87 100.05 1.061
7 Carbo 0.008 140.63 149.9 1.313
7 Carbo 0.02 141.29 148.11 1.047
7 Daun 0.0001 143.33 149.9 1.257
7 Daun 0.0001 160.09 161.21 1.007
7 Doc 8.00E-05 128.41 181.97 1.652
7 Doc 3.20E-05 168.98 181.97 1.595
7 Epi 0.0001 112.32 113.92 1.026
7 Epi 0.0001 140.63 155.1 1.443
7 Flox 0.0285714 146.28 155.1 1.227
7 Flox 0.0081633 156.33 170.94 2.013
7 Flox 0.0285714 159.53 170.94 1.521
7 Flox 0.0285714 178.41 181.97 1.032
7 Ida 2.78E-05 104.86 105.39 1.045
7 Ida 2.78E-05 106.46 123.01 1.286
7 Ida 6.25E-05 112.32 113.92 1.033
7 Ida 2.78E-05 134.55 165.18 2.285
7 Ida 6.25E-05 138.42 162.33 1.839
7 Oxal 0.0333333 54.11 67.43 1.374
7 Oxal 0.0333333 75.98 77.91 1.038
7 Oxal 0.0333333 103.63 126.75 1.857
7 Teni 0.004 140.63 161.21 1.97
7 Teni 0.000256 162.33 181.97 1.887
7 Vinb 5.00E-06 163.03 181.97 2.061
8 Bleo 0.0004 103.69 111.68 1.55
8 Carbo 0.00128 87.52 102.62 1.325
9 5FU 0.004938 81.92 96.46 1.5
9 5FU 0.004938 150.92 159.61 1.075
9 Ida 1.23E-05 88.16 88.92 1.023
9 Ida 1.23E-05 90.4 105.82 1.643
9 Ida 1.23E-05 110.91 116.67 1.33

11 Doc 0.0002 11.05 33.02 1.485
11 Doc 0.0002 35.21 50.88 1.185
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Chr Drug Dose (mM) Peak Start
cm 

Peak End 
cm 

LOD 

11 Doc 3.20E-05 45.94 54.75 2
11 Doc 3.20E-05 91.47 98.45 1.439
11 Etop 0.000117 110.73 112.87 1.067
11 Etop 0.000117 116.07 127.33 1.186
11 GR_1_DM

SO 
1 90.89 100.05 2.088

11 GR_1_DM
SO 

1 100.62 101.75 1.043

11 GR_10_D
MSO 

1 91.47 100.05 1.852

11 GR_Blank 1 89.69 101.75 1.751
11 GR_H20 1 90.29 100.05 2.067
11 GR_H20 1 100.62 101.75 1.053
11 Oxal 0.0037037 51.42 53.02 1.067
11 Oxal 0.0037037 83.83 89.69 1.229
11 Oxal 0.0111111 88.49 96.85 1.334
11 Vinc 0.0001 14.52 50.88 1.343
11 Vino 0.0002 12.92 51.95 1.541
12 Teni 0.0016 17.72 29.73 1.499
12 Teni 0.0016 90.77 94.49 1.151
12 Teni 0.0016 139.61 144.83 1.121
12 Vino 8.89E-05 9.52 19.68 1.581
12 Vino 8.89E-05 125.31 153.33 1.685
13 Daun 5.00E-05 0 17.21 1.362
13 Teni 0.00064 0 16.2 1.622
14 5FU 0.004938 0 13.89 1.728
14 Carbo 0.02 0 13.89 1.643
14 Carbo 0.02 21.51 31.13 1.345
14 Etop 0.001429 21.51 25.87 1.124
14 Etop 0.001429 26.59 36.76 1.454
14 GR_1_DM

SO 
1 93.76 118.68 1.42

14 GR_10_D
MSO 

1 53.19 63.25 1.209

14 GR_10_D
MSO 

1 78.2 84.16 1.066

14 GR_10_D
MSO 

1 92.69 125.88 1.801

14 GR_H20 1 57.43 57.98 1.012
14 GR_H20 1 93.76 118.68 1.414
14 GR_Media

_FCS 
1 93.76 117.3 1.469

15 Dox 5.00E-05 6.11 19.12 1.108
15 Vinc 5.00E-05 82.84 102.21 1.524
16 Bleo 0.0004 73.2 85.94 1.471
16 Epi 6.30E-06 73.2 87.06 1.536
18 Epi 6.30E-06 0 35.46 1.907
18 Epi 6.30E-06 66.66 68.3 1.253
18 Etop 0.001429 64.48 66.66 1.05
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Chr Drug Dose (mM) Peak Start
cm 

Peak End 
cm 

LOD 

18 Etop 0.001429 67.21 74.93 1.356
18 Vino 8.89E-05 9.26 16.54 1.194
18 Vino 8.89E-05 35.46 49.55 1.065
18 Vino 8.89E-05 66.66 76.15 1.588
19 5FU 0.1 100.01 105.02 1.713
19 Carbo 0.008 100.01 105.02 1.568
19 Carbo 0.02 100.01 105.02 1.761
19 Dox 5.00E-05 100.01 105.02 1.338
19 Ida 2.78E-05 89.73 105.02 1.965
19 Ida 6.25E-05 100.01 105.02 1.404
20 Oxal 0.0111111 36.58 48.85 1.559
20 Oxal 0.0111111 58.48 61.77 1.327
20 Vinb 2.00E-05 6.25 8.97 1.325
20 Vinb 2.00E-05 9.53 17.19 1.504
20 Vinb 2.00E-05 37.65 47.52 1.357
20 Vinb 2.00E-05 55.74 74.47 2.08
20 Vinc 5.00E-05 42.28 77.75 1.858
21 Pac 0.0005 9.72 40.43 1.685
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Figure A4-1. Boxplots for variability in response for the mechanistic drug set. The CEPH cell lines  
(n =125) were treated with increasing concentrations of each drug (4 doses) and mean viability 
measured relative to control. The line within each box represents the median (50%) viability for the 
population (n = 125) at the specified dose, the upper edge of the box indicates the 75th percentile 
of the data set, and the lower edge indicates the 25th percentile. The range of the middle two 
quartiles is the inter-quartile range (IQR). The whiskers are 1.5 times the IQR. Circles 
outside the whiskers are considered outliers. 
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