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ABSTRACT

XIAOXI LIU: Variable Selection and Statistical Learning for Censored
Data

(Under the direction of Donglin Zeng)

This dissertation focuses on (1) developing an efficient variable selection method

for a class of general transformation models; (2) developing a support vector based

method for predicting failure times allowing the coarsening at random assumption for

the censoring distribution; (3) developing a statistical learning method for predicting

recurrent events.

In the first topic, we propose a computationally simple method for variable se-

lection in a general class of transformation models with right-censored survival data.

The proposed algorithm reduces to maximizing a weighted partial likelihood function

within an adaptive lasso framework. We establish the asymptotic properties for the

proposed method, including selection consistency and semiparametric efficiency of pa-

rameter estimators. We conduct simulation studies to investigate the small-sample

performance. We apply the method to data sets from a primary biliary cirrhosis study

and the Atherosclerosis Risk in Communities (ARIC) Study, and demonstrate its su-

perior prediction performance as compared to existing risk scores.

In the second topic, we develop a novel support vector hazard regression approach for

predicting survival outcomes. Our method adapts support vector machines to predict

dichotomous outcomes of the counting processes among subjects at risk, and allows

censoring times to depend on covariates without modeling the censoring distribution.

The formulation can be solved conveniently using any convex quadratic programming
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package. Theoretically, we show that the decision rule is equivalent to maximizing

the discrimination power based on hazard functions, and establish the consistency and

learning rate of the predicted risk. Numerical experiments demonstrate a superior

performance of the proposed method to existing learning methods. Real data examples

from a study of Huntington’s disease and the ARIC Study are used to illustrate the

proposed method.

In the third topic, we adapt support vector machines in the context of the counting

process to handle time-varying covariates and predict recurrent events. We conduct

extensive simulation studies to compare performances of the proposed method to the

Andersen and Gill proportional intensity model for the prediction of multiple recur-

rences. The extension of theoretical properties is described. We illustrate the proposed

method by analyzing the data set from a bladder cancer study.
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CHAPTER1: INTRODUCTION

Statistical model building is a challenging task for censored data when there are a

large number of concomitant covariates. Existing methods tend to make strong assump-

tions on the covariate effects or the censoring mechanism, making them unsuitable for

the task of predicting future outcomes accurately. For example, the Cox proportional

hazards model assumes that the hazard functions between two subjects are propor-

tional over time. Although the model allows for time-varying covariates, it is apparent

that the model excludes many complex covariate patterns. In this dissertation, we will

develop statistical methods that are less dependent on the restrictive assumptions than

the existing methods. Specifically, we generalize the efficient variable selection method

to a class of transformation models; we adapt the popular support vector machines

technique for statistical learning to the censored data that are represented by counting

processes; also, we generalize this approach to recurrent event data.

1.1 Variable Selection in Semiparametric Transformation Models

In the first topic, we study variable selection in general transformation models

for right-censored data. The models studied can incorporate external time-varying

covariates, and they include the proportional hazards model and the proportional odds

model as special cases. We propose an estimation method that involves minimizing a

weighted negative partial loglikelihood function plus an adaptive lasso penalty, with

the initial values obtained from nonparametric maximum likelihood estimation. The

objective function is parametric and convex, so the minimization is easy to implement
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and guaranteed to converge numerically. Under the regularity conditions in Zeng and

Lin (2006), we show that our selection has oracle properties and that the estimator

is semiparametrically efficient. We demonstrate the small-sample performance of the

proposed method via simulations, and we use the method to analyze data from the

Atherosclerosis Risk in Communities Study and Primary Biliary Cirrhosis Study.

1.2 Support Vector Hazard Regression for Predicting Survival Outcomes

In the second topic, we develop a novel support vector hazards regression (SVHR)

approach to predict time-to-event outcomes using right-censored data. Our method is

based on predicting the counting process via a series of support vector machines that

maximally separate the event and non-event subjects among all subjects at risk. In-

troducing counting processes to represent the time-to-event data leads to an intuitive

connection of the proposed method with both support vector machines in standard

supervised learning and hazard regression models in standard survival analysis. The

resulting optimization is a convex quadratic programming problem that can easily

incorporate non-linearity using kernel machines. We demonstrate an interesting con-

nection of the profiled empirical risk function with the Cox partial likelihood which

sheds lights on the optimality of SVHR. We formally show that the SVHR is optimal

in discriminating the covariate-specific hazard function from the population average

hazard function, and establish the consistency and learning rate of the predicted risk.

Simulation studies demonstrate much improved prediction accuracy of the event times

using SVHR compared to existing machine learning methods. Finally, we apply our

method to analyze data from the Huntington’s Disease Study and the Atherosclerosis

Risk in Communities Study to demonstrate superiority of SVHR in practical settings.
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1.3 Support Vector Machines for Predicting Recurrent Events

In the third topic, we describe a generalization of support vector machines to predict

recurrent event times. The prediction of recurrence using censored data has not been

discussed in other statistical learning works, as all of them adapt the standard learning

techniques to censored data based on survival times and are not able to handle multiple

records for a subject. Similar to the support vector hazard regression, we integrate the

support vector machines in the framework of counting process. As a result, there is a

straightforward application to handle both recurrent events and time-varying covari-

ates. The resulting formulation is a convex optimization problem that has a unique

global solution. We present extensive simulation results comparing the performance of

our method with the Anderson and Gill (1982) proportional intensity model under dif-

ferent scenarios, including adding dependence among recurrences and adding baseline

noise variables. The data from a bladder cancer study is used to illustrate the proposed

method.
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CHAPTER2: LITERATURE REVIEW

In this chapter, we review literature on statistical methods for semiparametric sur-

vival models in Section 2.1, for traditional and penalized variable selection in Section

2.2, and for statistical supervised learning and outcome prediction in Section 2.3.

2.1 Semiparametric Models for Censored Data

In many medical trials, outcome of interest is survival time and is subject to censor-

ing, where the exact survival time may be longer than the duration of the trial period

and is therefore unknown. Typical examples include time to death from the start of a

diagnosis, response time to a particular medical treatment, and time to recurrence of

cancer tumor. It is often of interest to study whether certain clinical characteristics are

related to occurrence of certain events and then examine the predictive values of sur-

vival in terms of these covariates. Since the distributional assumption on the survival

times is not valid in many situations, semiparametric methods are widely used.

The most popular semiparametric model for data fitting is the Cox (1972) propor-

tional hazards model. Given the vector of covariates Z, this model is specified by a

hazard function

λ(t∣Z) = λ0(t) exp(βTZ) (2.1)

where β is a vector of unknown regression coefficients and λ0(t) is an unknown baseline

hazard function. The covariate effects act multiplicatively on the hazard function, and

the exponential of the coefficient β gives the constant hazard rate ratio for an increase of

4



one unit for the covariate in question. To efficiently estimate the regression coefficients,

Cox (1972, 1975) introduced the partial likelihood principle to eliminate the infinite-

dimensional baseline hazard function, and the resulting estimator was a function of

the survival times only through their ranks. In the discussion of Cox’s paper (1972),

Breslow (1972) proposed a nonparametric maximum likelihood estimator (NPMLE) for

the arbitrary baseline hazard in (2.1) using the joint full likelihood and this estimator

reduces to the Kaplan-Meier product limit estimator when there is no covariate effect.

In a seminal paper, Andersen and Gill (1982) extended the Cox proportional hazard

model to general counting processes to allow for recurrent event and established the

asymptotic properties of the maximum partial likelihood estimator and the associated

Breslow (1972) estimator of the cumulative baseline hazard function via the elegant

counting-process martingale theory.

The commonly used graphical and numerical ways to check the proportional hazard

assumption include the plot of logarithm of cumulative hazard functions (Andersen,

1982), the plot of Schoenfeld residuals (Schoenfeld, 1982), and the introduction of

interaction between time and covariates (Lee and Go, 1997). When the proportional

hazards assumption is violated, one remedy is to stratify the data into subgroups and

apply the model for each stratum (Lee and Go, 1997). A drawback of this approach

is that the effect of the stratifying variable cannot be estimated. Another strategy is

to consider the time-varying covariates. In this case, the covariates in model (2.1) are

indexed by time and the setup of the partial likelihood functions is still applicable.

However, Fisher and Lin (1999) argued that time-varying covariates must be used with

caution since they involve constructing a function of time that is usually not self-

evident and may be suggested by biological hypotheses. They gave several examples

to illustrate the complexity of choosing the functional form and the misleading results

when the function form is misspecified.
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A concise alternative to capture the non-proportionality is the proportional odds

model (Bennett, 1983a; 1983b). Under this model, the hazard ratio between two sets

of covariate values converges to unity rather than staying constant as time increases.

The survival function SZ , given the vector of covariates Z, is parameterized by

− log{
SZ(t)

1 − SZ(t)
} = G(t) + βTZ (2.2)

whereG is an arbitrary baseline log-odds and β is a vector of regression coefficients. The

nonparametric maximum likelihood estimation (NPMLE) for this model was proposed

by Bennett (1983b). Bennett’s estimator of β is the maximum profile likelihood estima-

tor of β, with the baseline log-odds function being profiled out. Murphy et al. (1997)

showed that this maximum profile likelihood estimator was consistent, asymptotically

normal, and semiparametrically efficient. Further Murphy et al. (1997) demonstrated

that the profile likelihood could be treated as a parametric likelihood and provided the

asymptotic distribution for the profile likelihood ratio statistic. Another method to es-

timate β is maximizing the marginal likelihood of the ranks (Pettitt, 1983; 1984). Since

this marginal likelihood cannot be calculated explicitly for all β, Pettitt (1983, 1984)

used an approximation based on a Taylor expansion on the logarithm of the marginal

likelihood at β = 0, however, the resulting estimator is biased and inconsistent. Lam and

Leung (2001) employed the technique of importance sampling to express the marginal

likelihood as an expectation with respect to some distribution. Their method is com-

putationally intensive since the importance sampling is a Markov chain Monte Carlo

(MCMC) algorithm. In addition, the theoretical properties of the maximum marginal

likelihood estimator were not investigated.

Both the proportional hazards and proportional odds models belong to the class of

linear transformation models, which relates an unknown transformation of the survival

time linearly to covariates. Let T be the survival time and Z a corresponding vector of
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covariates. This model can be written as

H(T ) = −βTZ + ε (2.3)

where H is an unknown monotone transformation function, ε is a random variable with

a known distribution and is independent of Z, and β is a vector of unknown regression

coefficients. If ε follows the extreme value distribution, model (2.3) becomes to the

proportional hazards model, while if ε follows the standard logistic distribution, model

(2.3) becomes to the proportional odds model. Several papers proposed general estima-

tors for the regression coefficients. Dabrowska and Doksum (1988) provided estimators

in the two sample problem based on the marginal likelihood of ranks and the MCMC

method. Their estimators suffer from severe bias under heavy censoring and the bias

cannot be reduced by increasing the size of Monte Carlo simulation (Lam and Leung,

1997). Cheng et al. (1995) derived inference procedures from a class of generalized

estimating equations based on dichotomous variables of pairwise ranks. They adjusted

censoring by the inverse weight of the Kaplan-Meier estimator for the survival function

of the censoring variable, so the validity of their procedures relies on the assumption

that the censoring variable is independent of covariates. Chen et al. (2002) mentioned

that such an assumption was often too restrictive, even for randomized clinical trials.

Chen et al. (2002) proposed an estimator using martingale-based estimating equations

and the estimating equations precisely become to the Cox partial likelihood score equa-

tion for the proportional hazards model. Although all these methods established the

consistency and asymptotic normality for their estimators, none of them is semipara-

metrically efficient. In addition, the class of linear transformation models is confined

to traditional survival (i.e., single-event) data and time-invariant covariates.

To accommodate recurrent events and time-varying covariates, Zeng and Lin (2006,

2007a) proposed a class of general transformation models using the counting-process
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notation. Let N∗(t) be the counting process recording the number of events that have

occurred by time t and Z(t) be a vector of possibly time-varying covariates. The

cumulative intensity function for N∗(t) conditional on Z(t) takes the form

ΛZ(t) = G{

ˆ t

0

Y ∗(t)eβ
TZ(s)dΛ(s)} (2.4)

where G is a thrice continuously differentiable and strictly increasing function with

G(0) = 0, G′(0) > 0 and G(∞) = ∞, Y ∗(.) is a predictable process and Λ(.) is an un-

specified increasing function, and β is a vector of unknown regression coefficients. For

survival data, Y ∗(t) = I(T ≥ t), where T is the survival time and I(.) is the indicator

function; for recurrent event, Y ∗(.) = 1. When N∗(.) has a single jump at survival time

T and covariates Z is time-invariant, model (2.4) reduces to the linear transformation

model (2.3). Specifying the function G while leaving the function Λ unspecified is

equivalent to specifying the distribution of ε while leaving the function H unspecified.

Zeng and Lin (2006) developed nonparametric maximum likelihood estimators for the

regression coefficients and cumulative intensity functions of these models. The estima-

tors were shown to be consistent and asymptotically normal. The limiting variances

for the estimators of the regression coefficients achieved the semiparametric efficient

bounds. Later Zeng and Lin (2007a) proposed a technique to implement the inference

procedures by the simple and stable expectation-maximization (EM) algorithm. The

trick is to use the Laplace transformation to convert the general transformation model

into the proportional hazards model with a random effect, in which random effects

pertain to missing data. The EM algorithm asserts the increase in the likelihood of

successive iterations and the convergence can be guaranteed (Dempster et al., 1977).

On convergence the Louis (1982) formula is used to calculate the observed information

matrix.
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Another important alternative to the Cox proportional hazard model is the accel-

erated failure time model. This model provides a natural formulation of the effects of

covariates on potentially censored response variable. Let T be the survival time and Z

a corresponding vector of covariates. The model can be written as

logT = −βTZ + ε (2.5)

where ε is a measurement error independent of Z and β is a vector of unknown regres-

sion coefficients. Note that model (2.5) does not belong to the linear transformation

model, which has unknown H and known distribution of ε. Buckley and James (1979)

proposed the least square estimator, where they used the least square normal equation

and replaced a censored observation by its conditional mean based on the residuals

and product limit estimator. Jin and Lin (2003) studied a broad class of rank-based

monotone estimating functions, including the Gehan-type weight function and weighted

log-rank estimating equation. Later Zeng and Lin (2007b) proposed an extension of

model (2.5) to incorporate time-varying covariates, and the extended model no longer

took the log-linear form. They used kernel smoothing to construct a smooth approxi-

mation to the profile likelihood for the regression coefficients, and established that the

resulting estimators were consistent, asymptotically normal, and semiparametrically

efficient. They also provided an explicit estimator for the error distribution.

Independent sample is assumed for all the models reviewed above; however, this

assumption may be violated in medical research. For example, siblings or parents and

offspring are likely to be correlated, and the times between the recurrent tumor oc-

currences thus not independent. Zeng and Lin (2007a) further extended the general

transformation model (2.5) to characterize the dependence of recurrent events, multi-

ple types of events and clusters through random effects or frailty. They also studied
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joint models of repeated measures and survival time in longitudinal studies. The non-

parametric maximum likelihood estimators of all the proposed models were shown to

be consistent, asymptotically normal and semiparametrically efficient via the modern

empirical process theory. In their paper, Zeng and Lin (2007a) emphasized the flexible

modeling capability and accurate prediction of semiparametric transformation models,

and suggested using them in the practice of survival analysis.

2.2 Variable Selection for Censored Data

With the improvement of modern technologies in epidemiologic and genetic stud-

ies, researchers are able to collecting many variables, such as patients’ characteristics,

biomarkers and genotypes, to predict clinical outcomes. When a large number of vari-

ables is included in prediction models it often causes over-fitting and results in low

prediction power. On the other hand, it is commonly believed that only a few im-

portant variables exhibit strong effects. Hence, it is desirable to identify those few

important variables in the model building process. Prior knowledge from the scientific

literature is formally seen as the most important rationale for including or excluding

variables from a statistical analysis, which is not always available for all research ques-

tions, and too often involves only the iterative imposition of exact (typically exclusion)

restrictions on individual variables (Smith and Campbell, 1980; Walter and Tiemeier,

2009). Comparatively, data-driven variable selection is more flexible and as a result a

commonly used method in practice.

2.2.1 Variable Selection Methods

Among the data-driven variable selection approaches, stepwise selection remains a

commonly used technique in epidemiologic research (Walter and Tiemeier, 2009), which

is carried out either by trying out one independent variable at a time and including it
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if statistically significant, or by eliminating those that are not statistically significant,

simultaneously adjusting for the other variables in the regression model. Despite the

ease of implementation, disadvantages of stepwise selection are known from separate

studies (Derksen and Keselman, 1992; Harrell et al., 1996; Steyerberg et al., 1999),

including that arbitrary definitions of thresholds may lead to bias and overfitting; binary

decisions about the inclusion of variables cause information to be lost; true predictors

may be excluded in small data sets because of a lack of power; noise variables may be

selected because of multiple comparisons problems; and that the solution may be only

locally optimal. An alternative approach leading to the global optimal solution is the

best-subset selection, which chooses a small subset of the predictor variables that yields

the most accurate model when the regression is restricted to that subset. However, the

best-subset selection is computationally infeasible when the number of predictors is

large and extremely unstable since it is a discrete process where variables are either

retained or dropped from the model (Breiman, 1996). Moreover, many variable selection

approaches in use, such as stepwise selection and best-subset selection, make inferences

as if a model is known to be true when it has, in fact, been selected from the same

data to be used for estimation purposes. Ignoring the model uncertainty causes non-

trivial biases in coefficient estimates and underestimation of the variability of estimated

coefficients in the resulting model (Chatfield, 1995; Harrell et al., 1996; Steyerberg et

al., 1999).

In recent years, regularized/penalized variable selection methods have been exten-

sively studied. These methods select variables and estimate coefficients simultaneously,

which enable us to construct confidence intervals for the estimated coefficients (Fan and

Li, 2001). For linear regression with continuous outcome, the corresponding coefficients

11



β = (β0, . . . , βd)T minimize a penalized residual sum of squares,

N

∑
i=1

(yi − β0 −
d

∑
j=1

xijβj)
2 + λ

d

∑
j=1

p(∣βj ∣), (2.6)

where (xi1, . . . , xid), i = 1, . . . ,N are predictor variables, yi, i = 1, . . . ,N are responses,

p(∣.∣) is the penalty function, and λ ≥ 0 is regularization/tuning parameters. Larger

value of λ leads to greater amount of shrinkage. The intercept has been left out of

the penalty functions, since penalization of the intercept would make the procedure

dependent on the origin chosen for response (Hastie et al., 2009, page 63-64). Many

penalty functions have been proposed. Ridge regression was introduced as a method

for stabilizing regression estimates in the presence of extreme collinearity in predic-

tors. The ridge penalty takes the form p(∣βj ∣) = β2
j , j = 1, . . . , d and stochastically

shrink the estimates towards zero. However, it does not give an easily interpretable

model and is not scale invariant (Smith and Campbell, 1980; Frank and Friedman,

1980). In addition, it cannot give accurate predictions when there is a mix of large

and small coefficients (Breiman, 1996). A scale invariant alternative to ridge regression

is the nonnegative garrote, which has p(∣βj ∣) = ∣βj ∣/∣β0
j ∣, j = 1, . . . , d, with additional

sign constraints βjβ0
j ≥ 0 ∀j, where β0

j is the ordinary least square (OLS) estimate

(Breiman, 1995; Zou, 2006). The garrote eliminates some variables, shrinks others, and

is relatively stable. A drawback of the garrote is that its solution depends on both

the sign and the magnitude of the OLS estimates (Tibshirani, 1996). To avoid the

explicit use of the OLS estimates, Tibshirani (1996) proposed the popular technique of

least absolute shrinkage (lasso) for simultaneous estimation and variable selection. The

lasso penalty is p(∣βj ∣) = ∣βj ∣, j = 1, . . . , d. Like the ridge regression, lasso is not scale-

invariant and requires initial standardization of the regressors. To solve for the lasso

estimator, Tibshirani (1996) used a combined quadratic programming algorithm and

Fu (1998) developed the simple shooting algorithm based on theoretical results of the
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structure of the bridge estimators. In these algorithms, the tuning parameter λ needs

to be searched over a grid of values using some criteria, such as cross-validation, gener-

alized cross-validation (Craven and Wahba, 1979), Akaike information criterion (AIC)

(Akaike, 1974), and Bayesian information criterion (BIC) (Schwarz, 1978). Later, Efron

et al. (2004) proposed an extremely efficient algorithm Least Angle Regression (LARS)

for computing the entire lasso path, which was proved to be a one-dimensional path of

prediction vectors growing piecewise linearly from the origin to the full least-squares

solution.

Frank and Friedman (1993), and Fu (1998) considered a more general class of re-

gression estimators that minimized function (2.6) with bridge penalty p(∣βj ∣) = ∣βj ∣q for

0 < q ≤∞, j = 1, . . . , d. The value q → 0 corresponds to the best-subset selection, as the

penalty simply counts the number of nonzero coefficients and expresses no preference

for particular variables; q = 1 corresponds to the lasso, while q = 2 to the ridge regres-

sion. As illustrated in Figure 2.1, the estimators for q ≤ 1 have the potentially attractive

feature of being exactly 0 thus combining coefficient estimation and model selection,

while the bridge penalty for q ≥ 1 has a convex structure that will make the compu-

tation simple (Tibshirani, 1996). When the regression matrix of predictor variables

is assumed to be orthonormal, the minimization problem is equivalent to minimizing

componentwise, with explicit forms of special cases given in Table 2.1. It is indicated

that ridge regression gives a proportional shrinkage, and lasso translate each coefficient

by a constant factor λ, truncating at zero. Figure 2.2(a)-(e) depict and compare the

values of the bridge estimator with the OLS estimator, whose value is plotted on the

diagonal. It is shown that the bridge regression of large value of q (q ≥ 2) tends to retain

small coefficients while the small value of q (q < 2) tends to shrink small coefficients to

0. Therefore, it can be implied that if the true model includes many small but nonzero

regression coefficients, the lasso will perform poorly but the bridge of large q value will
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Figure 2.1: (a) Estimation picture in two dimensions for the lasso (left) and ridge
regression (right). Shown are contours of the objective and constraint functions. The
solid areas are the constraint regions, while the ellipses are the contours of the least
square objective function. (b) Contours of constant value of the constraint regions
∑

2
j=1 ∣βj ∣

q for given values of q.

perform well.

Table 2.1: Estimator of βj in the case of orthornormal regression matrix. M and λ are
constants chosen by the corresponding technique; sign denotes the sign of its arguments
(±) and x+ denotes ”positive part” of x.

Estimator Formula
Best-subset (size M) β̂0

j I(∣β̂
0
j ∣ ≥ ∣β̂0

(M)
∣)

Ridge β̂0
j /(1 + λ)

Lasso sign(β̂0
j )(∣β̂

0
j ∣ − λ)+

From the theoretical perspective, Fan and Li (2001, 2002) argued that a good

penalty function should result in an estimator with the following three properties:

unbiasedness for a large true coefficient to avoid excessive estimation bias, sparsity (es-

timating a small coefficient as zero) to reduce model complexity, and continuity to avoid

unnecessary variation in model prediction. They demonstrated that bridge penalties

did not satisfy all three properties. In particular, when q > 1, it does not produce sparse

solution; when q < 1, the solution is not continuous; the only sparse and continuous
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solution in this family is lasso (q = 1), but this comes at the price of shifting the re-

sulting estimator by a constant λ. Furthermore, Fan and Li (2001, 2002) introduced

the concept of oracle properties, that is, with appropriate choice of the regularization

parameter, the true regression coefficients that are zero are automatically estimated as

zero, and the remaining coefficients are estimated as well as if the correct submodel

were known in advance. Knight and Fu (2000) showed that the bridge estimator with

0 < q < 1 possessed the oracle properties. Zou (2006) proved that the lasso (q = 1)

could not be an oracle procedure, except in some simple settings such as orthonormal

regression matrix or only two predictor variables, otherwise, a nontrivial condition was

required for the underlying model to make the lasso selection consistent.

To overcome the limitations of bridge penalties, Fan and Li (2001) proposed the

smoothly clipped absolute deviation penalty (SCAD), defined by its first derivative,

p′λ(βj) = λ{I(βj ≤ λ) +
(aλ − βj)+
(a − 1)λ

I(βj > λ)}

for some a > 2 and βj > 0, with pλ(0) = 0, where pλ(.) is the λp(∣.∣) in (1), j = 1, . . . , d.

From the Bayesian statistical point of view, they suggested using a=3.7. The SCAD

improves the lasso via penalizing large coefficients equally (e.g., see Figure 2.2(f)), and

as a result, it has all the precedingly discussed theoretical properties. However, the

nonconvex form of SCAD penalty makes its optimization challenging in practice, and

the solutions may suffer from numerical instability (Zhang and Lu, 2007). Later, Zou

(2006) proposed a new version of the lasso, called the adaptive lasso, where adaptive

weights are used for penalizing different coefficients in the lasso penalty, that is, p(∣βj ∣) =

wj ∣βj ∣, j = 1, . . . , d. The weights are data-dependent and in the form of wj = 1/∣β̂j ∣γ with

γ > 0, where any consistent estimator of βj can be used, j = 1, . . . , d. As the sample

size grows, the weights for zero coefficient predictors get inflated (to infinity), whereas

the weights for nonzero coefficient predictors converge to finite constant, which in some
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            Figure 2.2: Plot of shrinkage functions with λ = 2 for (a) the best-subset; (b) the bridge,
q = 0.5; (c) the lasso; (d) the bridge, q = 1.5; (e) the ridge; (f) the SCAD, a=3.7; (g)
the adaptive lasso, γ = 0.5; (h) the adaptive lasso, γ = 2. The shrinkage functions are
estimated under orthonormal regression matrix by minimizing 1

2(β
0
j − βj)

2 + pλ(∣βj ∣),
where β0

j is the OLS estimate plotted on the diagonal.

sense is the same rationale behind the SCAD (e.g., see Figure 2.2(g)-(h)), and as a

result, the adaptive lasso is also an oracle procedure with continuity. Computationally,

the adaptive lasso is a convex penalty, so the optimization problem does not suffer from

the multiple local minima issue. Moreover, it is essentially a lasso penalization method

so that all the current efficient algorithms for solving the lasso can be used to compute

the adaptive lasso estimates.

Because of the attractive properties, the lasso penalty has been generalized to im-

prove its performance in some special problems. Zou and Hastie (2005) proposed the

elastic net, where the penalty included both lasso-type thresholding and ridge-type

shrinkage. The elastic net enjoys a sparsity of representation, and also encourages a

grouping effect, where strongly correlated predictors tend to be or out of the model

together. Meanwhile, Tibshirani et. al (2005) proposed the fused lasso, designed for

problems with features that could be ordered in some meaningful way. The fused lasso
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penalizes the L1 norm of both the coefficients and their successive differences, and the

sparsity property applies to the number of sequences of identical nonzero coefficients.

Later, Meinshausen (2006) proposed the relaxed lasso, which used the lasso to select

the set of nonzero predictors, and then applied the lasso again, but using only the

selected predictors from the first step. For data where there are a very large number

of noise variables, the relaxed lasso has sparser estimates and much more accurate pre-

dictions than lasso. Recently, Radchenko and James (2011) proposed a method that

could adaptively adjust the level of shrinkage, not just on the final model coefficients,

as used in the relaxed lasso, but also during the selection of potential candidate models.

They call this method forward-lasso adaptive shrinkage, which incorporates both for-

ward selection and lasso as special cases, and can work well in situations where neither

forward selection nor lasso succeeds.

2.2.2 Application of Variable Selection Methods to Censored Data

Extending penalized variable selection to survival analysis presents a number of

challenges because of the complicated data structure, and therefore receives much at-

tention in the recent literature. For Cox proportional hazards model, the objective

function is parametric partial likelihood, denoted by li(yi; δi; zTi β), where the collected

data (yi, δi, zi) are independent samples, yi is the minimum of the failure time and

censoring time, and δi is the censoring indicator. A general form of penalized partial

likelihood is
n

∑
i=1

li(yi; δi; z
T
i β) − n

d

∑
j=1

pλ(∣βj ∣).

Different penalties have been applied such as lasso (Tibshirani, 1997), SCAD (Fan and

Li, 2002), and adaptive lasso (Zhang and Lu, 2007). With an appropriate choice of

the regularization parameter λ, the corresponding SCAD and adaptive lasso estimators

were shown to be root-n consistent and have the oracle properties.
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For accelerated failure time model, Johnson (2008) explored the penalized weighted

rank-based statistics and the penalized Buckley-James statistics. Both are challenging

because of the discontinuity and non-monotone in the regression coefficients. Motivated

by these, Johnson et al. (2008) established the general theory for a board class of penal-

ized estimating functions. Suppose that U(β) ≡ (U1(β), . . . , Ud(β))T is an estimating

function for β based on a random sample of size n. They mainly studied the situations

where U(β) was not a score function or the derivative of any objective function. A

penalized estimating function is defined as

UP (β) = U(β) − nqλ(∣β∣)sign(β),

where qλ(∣β∣) are coefficient-dependent continuous functions, and the second term is the

component-wise product of qλ and sign(β). With the commonly used SCAD or adaptive

lasso penalty, the resulting estimators were shown to be root-n consistent and enjoy

the oracle properties. Johnson (2009) further improved the approximate zero-crossing

of penalized Buckley-James estimating function by using a one-step imputation and

a principled initial value. The one-step estimator is an exact zero-crossing, and with

lasso penalty, it reduces to Tibshirani’s lasso as the proportion of censored observations

approaches zero.

Comparatively, there are very few literatures on variable selection in transforma-

tion models, mainly due to the computational difficulties from non-concave likelihood

functions and the presence of infinite-dimensional nuisance parameters. Particularly,

Lu and Zhang (2007) studied the proportional odds model by maximizing the marginal

likelihood of ranks subject to a shrinkage penalty. Based on the notation of model
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(2.3), the marginal likelihood is represented as

Ln,M(β) =

ˆ
V
(1)<...<V(K)

ˆ
n

∏
i=1

{λ(V(ki) + β
TZi)}

δie−Λ(V
(ki)

+βTZi)
K

∏
k=1

dV(k),

where V(k) = H(T(k)), T(1) < . . . < T(K) are ordered uncensored failure times in the

sample, δi is the censoring indicator, Λ(x) is the cumulative hazard function of ε,

and λ(x) = dΛ(x)/dx. Since the marginal likelihood does not have a closed form,

they approximated the high dimensional integrals and implemented the procedure by

the computationally intensive MCMC algorithm, and did not give corresponding large

sample properties.

Later, Zhang et al. (2010) proposed a penalized estimating equation estimator for

linear transformation models (2.3). The estimator was constructed based on the mar-

tingale difference equation for the unknown transformation function and the martingale

integral equation for regression coefficients as in Chen et al. (2002). To tackle the diffi-

culties of infinite dimensional parameter H, Zhang et al. (2010) introduced the notion

of the ’profiled’ score, which was computed by plugging in the solution H̃ using the

current estimate of β. Let Ni(t) and Yi(t) respectively denote the counting and at-risk

process, and the ‘profile’ score is

Un(β) =
n

∑
i=1

ˆ τ

0

Zi[dNi(t) − Yi(t)dΛ{βTZi + H̃(t;β)}].

Then they used Un and its variance estimate to construct a loss function as

Dn(β) = U
′
n(β)Ṽ

−1
n Un(β),

where the inverse variance Ṽ −1
n of the profiled score Un(β) is the weight matrix. To
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achieve the sparse estimation, they finally proposed minimizing

Qn(β) =Dn(β) + n
d

∑
j=1

pλ(∣βj ∣).

By adopting the adaptive lasso penalty, they proved the root-n consistency and oracle

properties for the resulting estimator. However, their method has the following limita-

tions: (i) the implementation needs to solve the nuisance parameters by iteration; (ii)

the resulting adaptive lasso estimator is not asymptotically efficient.

Recently, Li and Gu (2012) extended the approach of penalized marginal likelihood

of ranks (Lu and Zhang, 2007) to a class of general transformation models with the

form of

SZ(t) = Φ(S0(t), Z, β),

where SZ(t) is the conditional survival function of failure time T given covariate vec-

tor Z; S0(t) is a completely unspecified baseline survival function; Φ(u, v,w) is a

known monotonically increasing function with respect to u satisfying Φ(0, v,w) = 0

and Φ(0, v,w) = 1 for any v and w. Denote kn as the total number of uncensored

failure times, R∗
n as the partial ranking among the kn uncensored failure times and

the specified observations between each pair of uncensored observations, and Lir as the

set of labels corresponding to those observations censored in interval [Tir , Tir+1). The

rank-based marginal likelihood function is defined by

Ln(β) = Pr(Tn ∈ Cn∣R∗
n, Z) =

ˆ
t∈Cn

(−1)n
n

∏
i=1

φ(S0(ti), Zi, β)
n

∏
i=1

dS0(ti),

where Cn = {(t1, . . . , tn) ∶ ti1 < . . . < tikn , tj ≥ tir , for j ∈ Lir and 0 ≤ r ≤ kn} and

φ(u, v,w) = ∂Φ(u, v,w)/∂u. Under certain regularity conditions, Li and Gu (2012) re-

solved the theoretical limitation of Lu and Zhang’s procedure by giving large sample

properties. Specifically, using the adaptive lasso penalty, the corresponding estimator
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was shown to be root-n consistent and satisfy oracle properties. However, their imple-

mentation is still based on the MCMC algorithm, which is computationally intensive.

In addition, it is not clear whether time-varying covariates can be included. Therefore,

the current methods for variable selection in transformation models still leave a lot to

be desired.

2.3 Statistical Learning for Censored Data

The science of learning plays a key role in the fields of statistics, data mining and

artificial intelligence. In a typical scenario, we have a training set of data in which

we observe the outcome and feature measurement for a set of objects. The goal is

to build a prediction model, or learner, which will enable us to predict the outcome

for new unseen objects. This is called supervised learning because of the presence

of the outcome variable to guide the learning process and a good learner is one that

accurately predicts such an outcome. A review of some popular supervised learning

methods (Hastie et al., 2009) and their applications to censored data is given below.

2.3.1 Supervised Learning Methods

In supervised learning we seek a function f(X) for predicting Y given values of

the input X. We also need a loss function L(Y, f(X)) for penalizing errors in pre-

diction. For particular data sets, our goal is to find a useful approximation f̂(x) to

the function f(x) that underlies the predictive relationship between the inputs and

outputs, however, minimizing the empirical loss functions may lead to infinitely many

solutions. Hence, we must restrict the eligible solutions of f(x) to a smaller set of

functions. These restrictions are sometimes encoded via the parametric representation

of f or may be built into the learning method itself, either implicitly or explicitly. In

general the constraints imposed by most learning methods can be described as some

21



kind of regular behavior in small neighborhoods of the input space. The larger the size

of the neighborhood, the stronger the constraint, and the more sensitive the solution is

to the particular choice of constraint.

The linear model f(x) = xTβ makes stringent assumptions about the structure and

yields stable but possibly inaccurate predictions. It relies heavily on the assumption

that a linear decision boundary is appropriate. Comparatively, the method of k-nearest

neighbors is essentially model-free and assumes f(x) is well approximated by a locally

constant function. The resulting prediction is often accurate but can be unstable. These

two simple procedures are the basis for a large subset of popular techniques, such as

kernel smoothing, basis expansions, generalized additive model, projection pursuit re-

gression (PPR) model, neural network and so forth. Neural network is a two-stage

regression or classification model, typically represented by a network diagram. Inter-

pretation of the fitted model is usually difficult, because each input enters into the

model in a complex and multifaceted way. As a result, it is most useful for prediction,

but not very useful for producing an understandable model for data.

Unlike the neural network, tree-based methods often yield classification and predic-

tion rules that are relatively easy to interpret for a wide variety of applications and

became popular due in great part to the development of the CART (tree-based regres-

sion and classification) paradigm (Bou-Hamad et al., 2011). The basic idea of a tree

is to partition the covariate space recursively to form groups (nodes in the tree) of

subjects which are similar according to the outcome of interest. The typical algorithm

starts at the root node with all observations; perform an exhaustive search through all

potential binary splits with the covariates; and selects the one by minimizing a measure

of node impurity. In the CART approach, the process is repeated recursively on the

children nodes until a stopping criterion is met (often until a minimum node size is

attained). This tends to produce a large tree that usually overfits the data. Then this
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large tree is pruned using cost complexity pruning.

One major problem with trees is their high variability, that is, often a small change in

the data can result in a very different series of splits. Bagging is a technique for reducing

the variance by fitting the same tree many times to bootstrap-sampled versions of the

training data. Another popular ensemble method is random forest, which improves the

variance reduction of bagging by reducing the correlation between the trees. This is

achieved in the tree-growing process through random selection of the input variables

as candidates for splitting. As in bagging, the bias of a random forest is the same as

the bias of any of the individual sampled trees. Hence, the improvement in prediction

obtained by bagging or random forests is solely a result of variance reduction.

Another popular learning machine is support vector machines (SVMs) that produce

decision boundaries for classification. This method has been applied in many areas,

such as financial time series forecasting, determination of the layered structure of the

earth, identification of human genes, content based image retrieval, intrusion detection

of computer networks and so forth (Tay and Cao, 2001; Hidalgo et al., 2003; Fernandez

and Miranda-Saavedra, 2012; Rao et al., 2010; Ganapathy et al., 2012). SVMs differ

radically from comparable approaches such as neural networks, since their training

always finds a global minimum and their simple geometric interpretation provides fertile

ground for further investigation (Burges, 1998). Suppose that the training data consist

of N pairs (xi, yi), i = 1, . . . ,N , with yi ∈ {−1,1}, and define a hyperplane by {x ∶ f(x) =

xTβ + β0 = 0}, then a classification rule induced by f(x) is sign[xTβ + β0]. The goal is

to find the hyperplane that explicitly tries to separate the data into different classes 1

and −1 as well as possible, else finds the hyperplane that minimizes some measure of
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overlap in the training data (Figure 2.3(a)). This concept is captured by

min
β,β0

1

2
∥β∥

2
+C

N

∑
i=1

ζi

subject to ζi ≥ 0, yi(x
T
i β + β0) ≥ 1 − ζi,∀i

where the value ζi is the proportional amount by which the prediction f(xi) is on

the wrong side of its margin and misclassifications occur when ζi > 1; the parameter

C is ’cost’ parameter and the separable case corresponds to C = ∞. This is a convex

quadratic programming problem, since the objective function is itself convex, and those

points which satisfy the constraints also form a convex set. This problem can be

converted to its dual form by differentiating the corresponding Lagrangian function

with respect to β, β0 and ζi, solving the results, and substituting the expressions back,

and the dual objective function is

LD =
N

∑
i=1

αi −
1

2

N

∑
i=1

N

∑
i′=1

αiαi′yiyi′x
T
i xi′ ,

where αis are non-negative parameters. In this formulation, the training data will

only appear in the form of inner products between vectors, so xTi xi can be replaced

by a kernel function K(xi, xi′) = ⟨h(xi), h(xi′)⟩ to map data into a richer feature space

including non-linear features and allows SVMs to form nonlinear boundaries. The

transformation h needs not be specified at all and only knowledge of the kernel function

is required. In the solution of this problem, those points for which αi > 0 are called

support vectors, which lie closest to the decision hyperplance, are most difficult to

classify, and would change the position of the decision hyperplane if removed.

On the other hand, with f(x) = h(x)Tβ + β0, the optimization problem can be
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Figure 2.3: (a) Nonseparable support vector machine for classification. (b) ε-insensitive
error function used by the support vector regression.

written as a penalization method,

min
β,β0

N

∑
i=1

[1 − yif(xi)]+
λ

2
∥β∥

2
,

where the subscript ’+’ indicates the positive part of the function, and λ = 1/C. The

loss function L(y, f) = [1 − yf]+ is called ’hinge’ loss and is reasonable for two-class

classification when compared to other more traditional loss functions. The SVMs can

also be adapted for regression with a quantitative response by using the ε-insensitive loss

L(y, f) = [∣f − y∣ − ε]+, ε > 0 (Figure 2.3(b)). A smaller ε leads to more support vectors

and an increased complexity. The ε-insensitive loss is zero as long as the absolute

difference between the actual and predicted values is less than ε, and grows linearly

when this absolute difference exceeds ε. Perhaps the biggest limitation of support vector

approaches lies in the choice of the kernel (Burges, 1998; Scholkopf et al., 1998). This

choice, and hence of the feature space to work in, is of both theoretical and practical

interest. In addition, there is still missing an application where support vector methods

significantly outperform any other available algorithm or solve a problem that has so

far been impossible to tackle (Scholkopf et al., 1998).
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2.3.2 Application of Supervised Learning Methods to Censored Data

Many problems of medical prediction involve the use of right censored survival data,

and censoring in the data is the main reason why standard supervised machine learning

techniques are hard to use for modeling survival. Ripley and Ripley (2001) and Ripley

et al. (2004) discussed and described models for survival analysis which is based on

neural network. These models allow non-linear predictors to be fitted implicitly and

the effect of the covariates to vary over time.

• In a discrete survival time context, most neural network survival methods are

based on dividing up the survival time into discrete intervals, and estimating the

probability of an event in each interval. With two intervals, survival is considered

binary and this is an extension of logistic regression, where each censored patient

is included twice, once as an event and once as a non-event. With more than two

intervals, one way is to divide the survival time into one of a set of non-overlapping

intervals, and view the outputs of the network as the absolute probability of an

event in a particular interval. Another alternative is to model the conditional

probability of an event given no events in the previous interval. Biganzoli et al.

(1998) considered the feed forward neural networks with one input node assigned

to each explanatory variable and an additional input for the time interval. This

approach used entropy error function and could be easily implemented using

software packages based on back-propagation.

• In a continuous survival time context, the models are based on the observed like-

lihood function. One approach is to use the parametric survival distributions

with logarithm of the hazard replaced by the output of a neural network. Alter-

natively, Faraggi and Simon (1995) suggested a non-linear proportional hazards
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model based on the input-output relationship associated with a simple feed for-

ward network. They replaced the linear function βx in the partial likelihood by

the output of the network and obtained the maximum likelihood estimates of the

parameters of the neural network using the Newton-Raphson method.

Survival trees are popular nonparametric alternatives to (semi) parametric models.

They offer great flexibility and can automatically detect certain types of interactions

without the need to specify them beforehand (Bou-Hamad et al. 2011). In recent years

considerable research effort has been dedicated toward extending classical trees to the

case of censored data. These researches focused on utilizing different splitting and prun-

ing criteria to involve survival time and censoring information. Segal (1988) replaced

the conventional splitting rules with rules based on the Tarone-Ware or Harrington-

Fleming classes of two-sample statistics, which measured the between-node separation

instead of the within-node homogeneity. Leblanc and Crowley (1993) further general-

ized Segal’s method by introducing a new algorithm that automatically chose the size

of a tree and gave optimally pruned subtrees. They defined a measure of tree per-

formance analogous to the cost complexity of CART for recursive partitions based on

two-sample statistics and called it split complexity. Alternatively, Leblanc and Crow-

ley (1992) proposed a tree-structured method that adopted the proportional hazards

model and gave the relative risk estimates for censored survival data. In particular, the

splitting criterion was based on a node deviance measure between a saturated model

log-likelihood and a maximized log-likelihood, which was a measure of within-node er-

ror. The advantage of this method is that it can be implemented easily in any recursive

partitioning software for Poisson trees (Bou-Hamad et al. 2011).

Survival trees are ideal candidates for combination by means of an ensemble method

and can thus be transformed into very powerful predictive tools (Bou-Hamad et al.
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2011). Hothorn et al. (2004) improved predicted survival probability functions of cen-

sored event free survival by bagging survival trees. They computed a set a of survival

trees based on bootstrap samples using the Leblanc and Crowley (1992) method, and

then defined the aggregated Kaplan-Meier curve of a new observation by the Kaplan-

Meier curve of all observations identified by the leaves containing the new observation.

Later, Ishwaran et al. (2008) introduced the random survival forests for right censored

data. Specifically, using independent bootstrap samples, each tree was grown by ran-

domly selecting a subset of variables at each node and then splitting the node using a

survival criterion involving the survival time and the censoring status information, and

a tree was considered fully grown when each terminal node had no fewer than certain

amount of unique deaths. Besides the several papers discussed here, extensive research

on tree-based methods for the analysis of survival data with censoring was published

over the last 25 years, reviewed by Bou-Hamad et al. (2011). The authors also covered

more complex models, more specialized methods, and more specific problems such as

multivariate data, the use of time-varying covariates, and discrete-scale survival data.

The appeal of support vector approaches derives from the fact that they are easy to

compute and they enable estimation under weak or no assumptions on the distribution.

Different methods have been suggested to adapt the support vector learning to censored

data. Shivaswamy et al. (2007) proposed a support vector technique for regression on

censored targets by generalizing the ε-insensitive loss function (Figure 2.4(a)). They

considered the data set including censored targets that have covariates xi and are within

open-end intervals (li, ui) with li < ui, i = 1, . . . , n, and penalized only if the predicted

value f(xi) was more than ui or if it is less than li. Thus, they gave the loss function

for this case by

c(f(xi), li, ui) = max(li − f(xi), f(xi) − ui).
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When li = −∞ (left censored) or ui = +∞ (right censored), this loss function became

one sided. Suppose that f is linear, f(xi) = wTxi + b; the formulation proposed for the

censored dataset is:

min
w,b,ζ,ζ∗

1

2
∥w∥

2
+C (∑

i∈U

ζi +∑
i∈L

ζ∗i )

subject to wTi xi + b − ui ≤ ζi, ∀i ∈ U

li −w
T
i xi − b ≤ ζ

∗
i , ∀i ∈ L

ζi ≥ 0 ∀i ∈ U ; ζ∗i ≥ 0 ∀i ∈ L,

where L contains the indices of those samples whose targets have a finite lower bound

while U contains the indices of those having a finite upper bound. This formulation

was also shown to be equivalent to the support vector machine and the support vector

regression by setting li and ui appropriately. For non-censored targets, the support

vector regression was used in their method. However, this method penalized incorrect

predictions for left (right) censored data only if the prediction is higher (lower) than

the observed censoring time, and penalized incorrect predictions the same whether

the prediction was higher or lower than the observed event time (Van Belle et al.

2011b). Later, Khan and Zubek (2008) proposed an asymmetric modification to the

ε-insensitive loss function which allowed censored data to be processed and accounted

for the differences between censored and event instances (Figure 2.4(b)). Their method

provided different losses for events and censored data and for predictions higher and

lower than the observed time, and correspondingly in the formulation used different

costs C and slack variables ζ for different situations. As a result, the major drawback

was the large number of parameters to be estimated.

Alternatively, Van Belle et al. (2009) proposed the use of a least-squares support

vector machine for right censored survival data. For event data, the same constraints
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Figure 2.4: (a) Loss functions as defined by Shivaswamy et al. (2007). (b) Loss
functions as defined by Khan and Zubek (2008).

accounted as in the standard support vector regression method. To handle censored

data, they adopted the concept of concordance index and added the ranking constraints

for all comparable data pairs. A data pair is said to be comparable whenever the order

of their observed times is known, such as two events, an event and a right censored

instances for which the censoring time of the latter is later than the event time of the

former, and so forth. They considered the data points (xi, yi, δi), i = 1. . . . , n, where

xis are covariates, yis are observed times and δis are censoring indicators, and assumed

that the observed times were ordered (yi < yj for i < j), then the ranking constraints

for predicted values were defined by

f(xj) − f(xi) ≥ 1 − ζij, ∀i < j,

where slack variables ζij ≥ 0 were allowed for misranking and the sum of ζij over all

comparable pairs were minimized in the formulation. Later, Van Belle at al. (2011a)

proposed a computationally simplified approach by modifying the ranking constraints

30



to be

f(xi) − f(xj̃(i)) ≥ 1 − ζi, ∀i,

where j̃(i) was the data point comparable with data point i and with the largest yj

smaller than yi. Also, their formulation included only the ranking constraints and was

for the problems whose primary interests were in defining risk groups instead of pre-

diction of survival times. To evaluate the performance of support vector approaches

for survival data, Van Belle et al. (2011b) compared several models based on ranking

constraints, based on regression constraints and based on both ranking and regression

constraints, and their results indicated a significant better performance for models in-

cluding regression constraints than models only based on ranking constraints. However,

the prediction rules to obtain the event times in these methods are not clear, and none of

the above intuitive methods has theoretical justification. For example, the rank-based

methods may not fully use observed event information, and it is unclear whether Van

Belle et al. (2011b) is valid if the censoring time depends on the subject’s covariates.

From another perspective, Park and Jeong (2011) proposed a technique called re-

cursive support vector censored regression to make a direct prediction of survival time.

Their approach replaced the censored observations by the corresponding Buckley-James

estimates and conducted the estimation through a recursive procedure. It is compu-

tationally intensive and the theoretical properties were not studied. Later, Goldberg

and Kosorok (2012b) developed a unified support vector approach for right censored

survival data, and the general methodology to estimation was applied for the truncated

mean, median, quartiles, and for classification problems. The core idea was to use the

inverse-probability-of-censoring weighting to correct the bias induced by censoring, that

is,

L(z, Y (u), s) ×
δ

Ĝn(u∣z)
,
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where L(.) was the original loss function, δ was the censoring indictor and Ĝn was a

generalized Kaplan-Meier estimator for the survival function G. As a result, in their

method, a different loss function was defined for each data set and minimizing the

empirical loss no longer consisted of minimizing a sum of independent and identically

distributed observations. They also showed that the proposed method was well defined

and measurable, and derived finite sample bounds on the deviation from the optimal

risk. However, their method may suffer from severe bias when the censoring distribution

is misspecified. Additionally, the weights used in inverse weighting can become large

in some situations. As a result, the computation of this method becomes numerically

unstable and even infeasible.

By applying a similar idea, Goldberg and Kosorok (2012a) proposed a Q-learning

algorithm for right censored data. Q-learning is a reinforcement learning algorithm that

assigns values to action-state pairs, and learns, based on state at each decision point,

how best to choose an action to maximize the expected sum of incremental rewards.

This algorithm has a so-called Q function which calculates the quality of a state-action

combination. Goldberg and Kosorok (2012a) adjusted the Q function by the inverse-

probability-of-censoring weighting to take into account the censored observations. For a

theoretical justification, they provided finite sample bounds on the average difference in

expected survival time between the optimal dynamic treatment regime and the dynamic

treatment regime obtained by the proposed Q-learning algorithm.
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CHAPTER3: VARIABLE SELECTION IN SEMIPARAMETRIC
TRANSFORMATION MODELS

3.1 Methodology

3.1.1 Transformation Models

We let Z(⋅) = {Z1(⋅), . . . , Zd(⋅)}T denote a vector of d-dimensional possibly time-

varying covariates used for predicting survival outcome T . A general transformation

model assumes that the cumulative hazard function of T given Z(⋅) is

Λ{t ∣ Z(⋅)} = G{

ˆ t

0

eβ
TZ(s)dΛ(s)} , (3.1)

where Λ(⋅) is a completely unspecified cumulative hazard function, and β = (β1, . . . , βd)T

is an unknown vector of regression coefficients. If all covariates are time-invariant, the

above model is equivalent to log Λ(T ) = −βTZ+logG−1(− log ε0), where ε0 has a uniform

distribution.

The transformation G is assumed to have the form G(x) = − log
´∞

0
e−xζφ(ζ)dζ,

where φ(ζ) is a known density function on [0,∞). A commonly used choice of φ(ζ) is

the gamma density with unit mean and variance r. Then G(x) arises from a class of

logarithmic transformations (Chen et al., 2002):

G(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

log(1 + rx)/r, r > 0,

x, r = 0.

If r = 0, the transformation model is exactly the Cox proportional hazards model; if r =
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1, G(x) = log(1+x) results in the proportional odds model. This class of transformations

is commonly used, although any transformation induced by some density φ(⋅) with

support in [0,∞) is applicable.

Suppose a random sample of n subjects is chosen. Let Ti denote the failure time

and Ci denote the censoring time of the ith subject, respectively. Define the ob-

served time Yi = min(Ti,Ci) and the censoring indicator ∆i = I(Ti ≤ Ci). Let Zi(⋅) =

{Zi1(⋅), . . . , Zid(⋅)}T be the corresponding vector of time-varying covariates for the ith

subject. Thus, the observed data consist of {Yi,∆i, Zi(⋅)}, for i = 1, . . . , n. Here we

consider only external time-varying covariates, that is, the whole trajectory of Zi(⋅)

is observable. Assume that Ti and Ci are conditionally independent given Zi(⋅), and

the censoring mechanism is noninformative. Under the transformation model (3.1), the

likelihood function for the observed data is

n

∏
i=1

[Λ′(Yi)e
βTZi(Yi)G′ {

ˆ Yi

0

eβ
TZi(s)dΛ(s)}]

∆i

× exp [−G{

ˆ Yi

0

eβ
TZi(s)dΛ(s)}], (3.2)

where Λ′(Yi) is the derivative of Λ at Yi. Expression (3.2) involves both β and the

infinite dimensional parameter Λ, and may not be concave in these parameters. Also,

there is no partial likelihood function available due to the transformation G. Thus,

directly applying the penalized methods in Fan and Li (2002) or Zhang and Lu (2007)

for variable selection is no longer feasible.

To resolve this difficulty, we adopt the method proposed by Zeng and Lin (2007).

The idea is to treat ζ as a latent variable, in which case model (3.1) is equivalent to

the survival time T with cumulative hazard function

Λ{t ∣ Z(⋅), ζ} = ζ

ˆ t

0

eβ
TZ(s)dΛ(s), (3.3)
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because

pr{T > t ∣ Z(⋅)} = E[pr{T > t ∣ Z(⋅), ζ} ∣ Z(⋅)]

= E [exp{−ζ

ˆ t

0

eβ
TZ(s)dΛ(s)} ∣ Z(⋅)]

=

ˆ ∞

0

exp{−ζ

ˆ t

0

eβ
TZ(s)dΛ(s)}φ(ζ)dζ

= exp [−G{

ˆ t

0

eβ
TZ(s)dΛ(s)}] .

That is, conditional on the covariates Z(⋅) and the latent variable ζ, the survival time

T follows a Cox proportional hazards model with ζ missing. Thus, instead of working

on the observed data for variable selection, we work on the complete data so that the

method for variable selection in the Cox proportional hazards model may be used.

The expectation-maximization algorithm is used to fit model (3.3) based on com-

plete data, {Yi,∆i, Zi(⋅), ζi} (i = 1, . . . , n). In this setting, the likelihood function (3.2)

becomes

n

∏
i=1

{ζiδΛ(Yi)e
βTZi(Yi)}

∆i

× exp{−ζi

ˆ Yi

0

eβ
TZi(s)dΛ(s)} × φ(ζi),

where Λ′(Yi) is replaced by δΛ(Yi), the jump size of Λ at Yi, in the nonparametric

maximum likelihood estimation.

The expectation-maximization algorithm consists of an expectation step and a max-

imization step: see the appendix of Zeng and Lin (2007). The first step computes the

expected log-likelihood based on the current estimates of all the parameters, conditional

on the observed data. Specifically, it computes the posterior expectation of latent vari-

ables, such as E{ζi ∣ Y,∆, Z(⋅), β̃k, δΛ̃k(Y )} (i = 1, . . . , n), at the kth iteration, based

on the posterior density of ζ. The second step computes the estimates maximizing the
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expected log-likelihood obtained in the expectation step, which is

n

∑

i=1

⎡
⎢
⎢
⎢
⎢
⎣

∆i {log δΛ(Yi) + β
TZi(Yi)} −E{ζi ∣ Y,∆, Z, β̃k, δΛ̃k(Y )} ∑

Yj≤Yi

eβ
TZi(Yj)δΛ(Yj)

⎤
⎥
⎥
⎥
⎥
⎦

. (3.4)

After convergence, we obtain the maximum likelihood estimates β̃ and δΛ̃(Yi) (i =

1, . . . , n). The algorithm is guaranteed to converge, since the objective function (3.4)

in the maximization step is increased in each iteration, and is only unchanged at con-

vergence.

3.1.2 Variable Selection

The objective function (3.4) takes a very similar form to the Cox log-likelihood

function. Based on the maximum likelihood estimates, we compute the posterior ex-

pectation E{ζi ∣ Y,∆, Z(⋅), β̃, δΛ̃(Y )}, denoted as the weight c̃i (i = 1, . . . , n). These

weights are data-dependent. As given in the appendix of Zeng and Lin (2007),

c̃i =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

G′ {∑
n
j=1 I(Yj ≤ Yi)e

βTZi(Yj)δΛ(Yj)} , ∆i = 0,

−
G′′{∑

n
j=1 I(Yj≤Yi)e

βT Zi(Yj)δΛ(Yj)}

G′{∑
n
j=1 I(Yj≤Yi)e

βT Zi(Yj)δΛ(Yj)}
+G′ {∑

n
j=1 I(Yj ≤ Yi)e

βTZi(Yj)δΛ(Yj)} , ∆i = 1.

Given c̃i, we differentiate function (3.4) with respect to δΛ(Yi) and set it to be zero,

giving

δΛ(Yi) =
∆i

∑
n
j=1 I(Yj ≥ Yi)c̃je

βTZj(Yi)
.

Substituting δΛ(Yi) back into function (3.4), we obtain a weighted version of the partial

log-likelihood function,

ln(β) =
n

∑
i=1

∆i [β
TZi(Yi) − log{

n

∑
j=1

I(Yj ≥ Yi)c̃je
βTZj(Yi)}]. (3.5)

We use function (3.5) to accommodate penalties for variable selection. This function
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is the objective function in the maximization step of the expectation-maximization

algorithm, which results in the efficient maximum likelihood estimator β̃ if maximized

without penalties (Zeng and Lin, 2006, 2007). An important advantage of function

(3.5) is its strict concavity, as shown in the appendix. For the Cox proportional hazards

model, (3.5) reduces to the partial likelihood function. These properties enable us to

adopt similar procedures for the implementation to those for the Cox model, and to

derive nice theoretical results for the estimator after variable selection.

Although many penalties can be applied with function (3.5), here we use the convex

adaptive lasso penalty for computational simplicity. This penalty adapts each coeffi-

cient with a weight to reflect the importance of the corresponding covariate, which is

equivalent to using different tuning parameters for different coefficients. The coeffi-

cients of unimportant covariates are assigned larger weights so that they can be shrunk

to zero more easily, leading to the oracle property (Zou, 2006). The reciprocal of any

consistent estimator β can be used as the adapting weights; here we take the maximum

likelihood estimator β̃. Writing β = (β1, . . . , βd), the corresponding penalized objective

function is

−ln(β) + λ
d

∑
j=1

∣βj ∣/∣β̃j ∣
γ, (3.6)

where γ is a given positive constant.

To obtain the adaptive lasso estimates β̂, we need to minimize function (3.6). As-

sume that the covariates Zij(⋅) are standardized so that∑ni=1Zij(⋅)/n = 0 and

∑
n
i=1Z

2
ij(⋅)/n = 1. We modify the computational algorithm of Zhang and Lu (2007) for

the proportional hazards model. The strategy is to approximate the weighted partial

likelihood function as an iterative least squares step using a Newton–Raphson up-

date. Define the gradient vector ∇l(β) = −∂ln(β)/∂β and the Hessian matrix ∇2l(β) =

−∂2ln(β)/∂β∂βT . Consider the Cholesky decomposition of ∇2l(β), i.e., ∇2l(β) =XTX,

and set the pseudo response vectorW = (XT )−1{∇2l(β)β−∇l(β)}. Then a second-order
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Taylor expansion for −ln(β) has the form

1

2
(W −Xβ)T (W −Xβ). (3.7)

Hence to minimize the original problem (3.6) for any fixed λ, we use the following

procedure:

Step 1. Use the expectation-maximization algorithm to compute β̃ and δΛ̃(Yi), and

then compute the weights c̃i (i = 1, . . . , n).

Step 2. Initialize by setting β̂ = β̃.

Step 3. Compute ∇l, ∇2l, X and W based on the current values of β̂.

Step 4. Use the modified shooting algorithm (Zhang and Lu, 2007) to minimize the

function (3.7) plus the penalty λ∑dj=1 ∣βj ∣/∣β̃j ∣
γ.

Step 5. Repeat Steps 3 and 4 until the convergence criterion is met.

The initialization in Step 2 reduces the number of iterations compared with setting

β̂ = 0, since β̃ is already consistent. In addition, with β̂ = β̃ in Step 2, the estimates from

the one-step iteration are fairly close to those from iteration until convergence. The

minimization in Step 3 is based on a quadratic least squares function, so the path-based

algorithms in the least squares setting for solving the adaptive lasso can be applied to

compute the whole solution path for the one-step estimates.

In the proposed algorithm, there is a data-dependent tuning parameter λ. Like

Zhang and Lu (2007), we use generalized cross validation (Craven and Wahba, 1979) to

select λ. We consider λ for a set of grid points, and for each, we approximate the number

of effective parameters in the adaptive lasso estimator by p(λ) = tr{(G̃ + λA)−1G̃}, so

the generalized cross validation criterion is −ln(β̂)/[n{1− p(λ)/n}2], where G̃ = ∇2l(β̂)

and A = diag(∣β̂1∣
−1∣β̃1∣

−γ, . . . , ∣β̂d∣−1∣β̃d∣−γ). The best choice of the tuning parameter λ is

that yielding the smallest value of this criterion. A more stable method to select λ is

V-fold cross validation, usually with V = 5 or 10. However, for this method, we must
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partition the data into V subsets with equal sizes. For a given λ, we must compute

the coefficients using V − 1 subsets and function (3.7) plus the adaptive lasso penalty

using the V th subset V times, which is computationally much more complicated to

implement than generalized cross validation. The simulation studies in Section 3.3

show that generalized cross validation works well for our models.

After variable selection, we suggest refitting model (3.3) to obtain the maximum

likelihood estimates for the coefficients of selected covariates. As shown in the previous

literature, although the adaptive lasso estimator is consistent, its finite sample bias can

be non-negligible.

3.1.3 Standard Errors

Our method treats the transformation as missing latent variables, so the Louis

formula (Louis, 1982) is used to obtain the standard errors for the maximum like-

lihood estimates. The Louis formula computes the observed information within the

expectation-maximization framework. To apply it, we need to consider both the de-

sired parameter β and the nuisance parameter Λ, where Λ is evaluated at each observed

time point. Denote all the parameters as θ = {β1, . . . , βd, δΛ(Y1), . . . , δΛ(Yn)}T and the

log-likelihood using complete data as fi (i = 1, . . . , n). Then the covariance matrix of θ

is

(−
n

∑
i=1

E {
∂2fi(θ)

∂θ2
∣ Y,∆, Z(⋅)} −

n

∑
i=1

E [{
∂fi(θ)

∂θ
}

⊗2

∣ Y,∆, Z(⋅)] (3.8)

+
n

∑
i=1

[E {
∂fi(θ)

∂θ
∣ Y,∆, Z(⋅)}]

⊗2

)

−1

.

We also apply formula (3.8) to approximate the standard errors for the adaptive

lasso estimates. Instead of plugging in β̃ and Λ̃, we plug in the adaptive lasso estimates

β̂ and the updated estimates of the nuisance parameter δΛ̂(Y ) using β̂. After obtaining
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the standard errors, we set those for zero estimates to be zero, assuming that the cor-

responding covariates are unimportant. Compared with the sandwich formula used in

Zhang and Lu (2007), formula (3.8) does not have the tuning parameter λ. Intuitively,

the information of λ is carried by the adaptive lasso estimates, and λ is small in most

cases. This method can work well since the adaptive lasso estimator is asymptotically

efficient, and reaches the same efficiency bound as the maximum likelihood estimator.

Correspondingly, this efficiency bound can be consistently estimated by the covariance

matrix of the adaptive lasso estimates.

3.2 Theoretical Properties

In this section we provide asymptotic properties for our estimators. We consider the

penalized objective function based on n samples: Qn(β) = ln(β) − nλn∑
d
j=1 ∣βj ∣/∣β̃j ∣

γ.

Denote the true values of β and Λ by β0 and Λ0. We write β0 as (βT10, β
T
20)

T , where β10

consists of all q non-zero components and β20 consists of the remaining zero compo-

nents. Correspondingly, we have the adaptive lasso estimator β̂n = (β̂T1n, β̂
T
2n)

T and the

maximum likelihood estimator after variable selection β̌n = (β̌T1n,0)
T . Also, we write the

time-varying covariates Z(⋅) as {Z1(⋅)
T , Z2(⋅)

T}T , where Z1(⋅) denotes the important

covariates and Z2(⋅) denotes the unimportant covariates.

We require the following regularity conditions.

Condition 1. The function Λ0(t) is strictly increasing and continuously differen-

tiable, and β0 lies in the interior of a compact set.

Condition 2. With probability one, Z(⋅) has bounded total variation in [0, τ].

In addition, if there exists a vector α and a deterministic function α0(t) such that

α0(t) + αTZ(t) = 0 with probability one, then α = 0 and α0(t) = 0.

Condition 3. With probability one, there exists a positive constant a0 such that

pr(C ≥ τ ∣ Z) > a0 and pr(T ≥ τ ∣ Z) > a0.
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Condition 4. lim supx→∞{G(m0x)}−1 log{x supy≤xG
′(y)} = 0 for any positive con-

stant m0.

The same conditions are used in Zeng and Lin (2006). No additional conditions are

needed for the adaptive lasso estimator. Conditions 1 and 3 are standard in survival

models. Condition 2 is equivalent to saying that the design matrix {1, Z(t)} is full

rank with some positive probability for all t ∈ [0, τ], and is used to show the strict

concavity of the objective function ln(β). Condition 4 specifies the tail behavior of the

transformation function G(x). It is easy to check that the logarithmic transformation

satisfies this condition.

Under Conditions 1–4, we claim the asymptotic results for our estimators.

Theorem 3.2.1. If n1/2λn = Op(1), then the adaptive lasso estimator satisfies ∥β̂n −

β0∥ = Op(n−1/2), where ∥ ⋅ ∥ denotes the Euclidean norm.

Theorem 3.2.2. If n1/2λn → 0 and n(γ+1)/2λn → ∞, then under Theorem 3.2.1, the

adaptive lasso estimator β̂n satisfies the following:

(i) β̂2n = 0 with probability tending to 1;

(ii) n1/2(β̂1n − β10) = n1/2(Pn − P )Sβ1{Y,∆, Z1(⋅), β10,Λ0} + op(1), where Pn is the

empirical measure, with P being the expectation, Sβ1 is the efficient influence function

for β1 as given implicitly in Zeng and Lin (2006), and op(1) denotes the random el-

ement converging to zero in probability in the metric space Rq. Consequently, β̂1n is

semiparametrically efficient.

Theorem 3.2.3. The maximum likelihood estimator after variable selection β̌1n satis-

fies n1/2(β̌1n − β10) = n1/2(Pn − P )Sβ1{Y,∆, Z1(⋅), β10,Λ0} + op(1).

Theorem 3.2.1 indicates that the adaptive lasso estimator is consistent for the true

value at the rate n1/2. Theorem 3.2.2 indicates that the adaptive lasso estimator has

the oracle property, so it behaves as if the unimportant variables were known. In addi-

tion, it is asymptotically normal and efficient for important variables. The efficiency is
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due to the fact that the weighted partial likelihood function (3.5) is the objective func-

tion in the last maximization step of the expectation-maximization algorithm, so its

maximizer without penalization is exactly the original maximum likelihood estimator.

The additional penalization is not dominating, so it should not affect the asymptotic

efficiency except by producing sparse estimation. Theorem 3.2.3 gives the theoretical

properties for the maximum likelihood estimator of selected important variables after

refitting the model without the adaptive lasso penalty after variable selection. Theo-

rem 3.2.3 is from Zeng and Lin (2006). Proofs of Theorems 3.2.1 and 3.2.2 are given

in the Appendix.

3.3 Simulation Studies

3.3.1 Simulation Setup

Consider the logarithmic transformation for G. We consider three transformation

models with r = 0, r = 0.5 and r = 1, where r = 0 yields the proportional hazards

model and r = 1 yields the proportional odds model. We take ten covariates in the

regression model, with true β = (0.3,0.5,0.7,0,0,0,0,0,0,0)T , so only the first three

covariates have non-zero effects. The associated ten covariates Z = (Z1, . . . , Z10) are

marginally standard normal with pairwise correlation corr(Zj, Zk) = ρ∣j−k∣, where ρ =

0.5. The failure times T are generated from the transformation model (3.1). The

Weibull distribution is assumed for the baseline cumulative hazard function, with Λ(t) =

atb (a, b > 0). To generate T , we first generate a random variable U from the uniform

distribution (0, 1), and then let T = [{(1/U)r − 1} exp(βTZ)/(ar)]{1/b}. The censoring

times are generated from a uniform distribution (0, u0), where u0 is chosen to obtain

the desired censoring ratios, and we consider censoring ratios 20% and 40%. For γ in

the adaptive lasso penalty, we use γ = 1 for all the simulation studies.
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For each simulated data set, we apply our method for estimation and variable selec-

tion. We first apply the expectation-maximization algorithm in Section 3.1.1 to obtain

initial estimates then implement the adaptive lasso procedure in Section 3.1.2 for select-

ing the non-zero coefficients. To compare the performance, we also use the lasso penalty

in the proposed procedure. We consider a grid 0.5,1,5,10,15,20,20+ (n−20)/10, . . . , n

for the tuning parameter λ, where n is the sample size, and report the results that

generate the smallest value of the generalized cross validation criterion. After variable

selection, the expectation-maximization algorithm is reapplied to the models with only

selected covariates. We repeat the simulation 1000 times and consider sample sizes,

n = 100, 400.

3.3.2 Simulation Results

Table 3.1 gives the average numbers of correct and incorrect zero coefficients, and

the median of mean squared errors (β̂ − β)TΣ(β̂ − β), where Σ is the population co-

variance matrix. The adaptive lasso method performs well for all three models. It

outperforms the method with lasso penalty with respect to variable selection, and gives

more accurate prediction when the censoring ratio is 20%. Table 3.2 summarizes the

proportions of variable selection for the adaptive lasso method, where the columns of

signal-noise ratios are true β divided by the sample standard errors of the initial values.

Larger ratios lead to the higher probabilities of selecting important covariates. Slightly

better results are observed for 20% censoring than for 40% censoring. In particular, the

important covariates almost stay in the models when the sample size is 400, and the

capability of shrinking zero coefficients to zero is improved as the sample size increases

from 100 to 400, which agree with the oracle property of Section 3.2.

Tables 3.3 and 3.4 test the accuracy of non-zero coefficient estimates and the pro-

posed standard error formula for the 20% and 40% censoring cases. The results of the
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two cases have similar trends. The adaptive lasso estimates are slightly biased and

the bias can be considerably reduced by refitting the selected models with maximum

likelihood estimation when the sample size is 400. The resulting maximum likelihood

estimators also have smaller standard errors compared with those before variable se-

lection. Inference based on the adaptive lasso estimator is not very accurate for small

coefficients, and it becomes more reasonable as the coefficients get larger. When the

sample size is 400, the maximum likelihood estimation has small biases and the esti-

mated standard errors are close to the sample standard errors. The 95% confidence

intervals for the maximum likelihood method based on the estimated coefficients and

standard errors have accurate coverage for the true parameters. Interestingly, the

maximum likelihood estimators after variable selection perform noticeably better nu-

merically than the adaptive lasso estimators, even if both are theoretically efficient

according to Theorems 3.2 and 3.3. One possible reason for this is that, in a small

sample, estimation after variable selection estimates fewer parameters, so it gains more

degrees of freedom in fitting data.

3.3.3 Simulation under Misspecified Transformation

Our method assumes that the transformation function is known, so we study its

performance when the transformation is misspecified. We conduct simulation using

the same parameter settings as in Section 3.3.1. The true data are generated from the

proportional odds model, r = 1, but we fit the proportional hazards model, r = 0. The

signal-noise ratios of important variables are similar to those with r = 0 in Table 3.2.

Table 3.5 summarizes the variable selection results and the median of mean squared

errors using the adaptive lasso. Even if the proportional odds model is misspecified by

the proportional hazards model, the proposed method is still able to select the correct

set of important variables most of the time when the sample size is 400. However,
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Table 3.1: Average numbers of correct and incorrect zero coefficients and median mean
square errors from 1000 simulated data sets

Adaptive lasso method Lasso method
Censoring r n Corr. a Incorr. b MMSE c Corr. Incorr. MMSE

20% 0 100 6.71 0.40 0.08 4.33 0.11 0.09
400 6.95 0.01 0.03 6.09 0.00 0.11

0.5 100 6.09 0.49 0.10 3.62 0.16 0.15
400 6.57 0.02 0.03 6.26 0.01 0.11

1 100 5.41 0.56 0.15 2.89 0.17 0.22
400 6.05 0.03 0.04 5.66 0.01 0.09

40% 0 100 6.26 0.41 0.09 4.19 0.06 0.10
400 6.84 0.01 0.03 4.01 0.00 0.02

0.5 100 5.61 0.51 0.14 3.47 0.12 0.16
400 6.39 0.04 0.04 3.21 0.00 0.04

1 100 4.93 0.58 0.21 3.10 0.21 0.22
400 5.82 0.08 0.05 2.81 0.01 0.06

aCorr., average number of correct zeros;

bIncorr., average number of incorrect zeros;

cMMSE, median of mean squared errors.
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Table 3.2: Proportions of each covariate being selected and signal-noise ratios for im-
portant covariates based on 1000 simulated data sets for the adaptive lasso method

Proportions of variable selection Signal-noise ratios
Censoring r n Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 t1 t2 t3

20% 0 100 68 92 100 5 4 4 4 4 4 4 2.00 2.50 3.33
400 99 100 100 1 0 1 1 1 1 1 5.00 6.25 8.75

0.5 100 65 89 97 14 13 11 12 14 15 12 1.58 2.00 2.69
400 98 100 100 6 7 6 6 7 7 5 3.75 4.54 6.36

1 100 65 84 96 23 23 23 23 23 23 23 1.43 1.67 2.41
400 98 100 100 13 14 14 14 13 16 12 3.33 4.17 5.83

40% 0 100 70 90 99 11 10 11 10 11 11 11 1.58 2.08 2.80
400 99 100 100 2 3 3 2 2 3 2 4.29 5.00 7.00

0.5 100 68 84 96 19 20 21 18 21 21 19 1.43 1.72 2.41
400 96 100 100 8 9 9 9 9 10 8 3.33 4.55 5.83

1 100 68 81 93 28 30 32 30 29 28 30 1.15 1.52 2.06
400 93 99 100 16 17 17 17 17 17 17 2.73 3.33 4.67
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Table 3.3: Estimates of coefficients, their standard errors, and coverage probabilities
for nominal 95% confidence intervals from 1000 simulated data sets for censoring ratio
20%

MLEa without Adaptive lasso MLE after
variable selection estimator variable selection

r n β Bias SEb SEEc CPd Bias SE SEE CP Bias SE SEE CP
0 100 β1 0.03 0.15 0.14 92 −0.08 0.13 0.13 93 0.08 0.11 0.12 93

β2 0.06 0.20 0.18 92 −0.05 0.20 0.17 88 0.09 0.18 0.16 89
β3 0.08 0.21 0.19 92 −0.10 0.20 0.18 87 0.04 0.18 0.16 92

400 β1 0.01 0.06 0.06 95 −0.08 0.07 0.06 69 0.01 0.06 0.06 96
β2 0.02 0.08 0.08 95 −0.03 0.10 0.08 86 0.01 0.08 0.08 95
β3 0.02 0.08 0.08 95 −0.05 0.08 0.08 91 0.01 0.07 0.07 96

0.5 100 β1 0.01 0.19 0.17 94 −0.04 0.15 0.17 98 0.11 0.13 0.16 93
β2 0.06 0.25 0.23 93 −0.02 0.25 0.22 93 0.12 0.22 0.21 90
β3 0.05 0.26 0.23 93 −0.10 0.24 0.22 90 0.03 0.23 0.20 93

400 β1 0.01 0.08 0.08 95 −0.06 0.09 0.08 80 0.01 0.08 0.08 96
β2 0.01 0.11 0.11 95 −0.03 0.13 0.10 87 0.01 0.11 0.10 93
β3 0.01 0.11 0.11 94 −0.04 0.11 0.11 93 0.01 0.10 0.10 94

1 100 β1 0.01 0.21 0.21 95 −0.01 0.18 0.20 98 0.12 0.16 0.19 92
β2 0.04 0.30 0.27 92 0.03 0.28 0.26 95 0.14 0.25 0.25 90
β3 0.04 0.29 0.27 94 −0.06 0.27 0.27 94 0.05 0.26 0.24 94

400 β1 0.01 0.09 0.10 96 −0.05 0.11 0.10 87 0.01 0.09 0.10 97
β2 0.01 0.12 0.13 95 −0.02 0.15 0.12 89 0.01 0.12 0.12 95
β3 0.01 0.12 0.13 95 −0.03 0.13 0.13 94 0.00 0.12 0.12 94

aMLE, maximum likelihood estimator;

bSE, standard error;

cSEE, mean of standard error estimator;

dCP, coverage probability for nominal 95% confidence interval.
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Table 3.4: Estimates of coefficients, their standard errors, and coverage probabilities
for nominal 95% confidence intervals from 1000 simulated data sets for censoring ratio
40%

MLEa without Adaptive lasso MLE after
variable selection estimator variable selection

r n β Bias SEb SEEc CPd Bias SE SEE CP Bias SE SEE CP
0 100 β1 0.05 0.19 0.16 91 −0.04 0.15 0.16 98 0.11 0.13 0.15 90

β2 0.07 0.24 0.21 92 −0.03 0.23 0.20 93 0.11 0.20 0.19 90
β3 0.10 0.25 0.22 91 −0.07 0.23 0.21 91 0.06 0.21 0.18 91

400 β1 0.01 0.07 0.07 95 −0.08 0.08 0.07 75 0.01 0.06 0.07 96
β2 0.03 0.10 0.09 93 −0.03 0.12 0.09 87 0.02 0.09 0.09 93
β3 0.03 0.10 0.10 94 −0.04 0.09 0.09 93 0.02 0.09 0.09 95

0.5 100 β1 0.04 0.21 0.20 94 −0.01 0.17 0.19 99 0.13 0.16 0.18 92
β2 0.05 0.29 0.26 93 −0.01 0.26 0.25 97 0.13 0.23 0.24 92
β3 0.06 0.29 0.26 93 −0.07 0.27 0.26 93 0.05 0.26 0.23 92

400 β1 0.01 0.09 0.09 94 −0.06 0.10 0.09 84 0.01 0.08 0.09 96
β2 0.01 0.11 0.12 96 −0.03 0.14 0.12 89 0.01 0.12 0.12 95
β3 0.02 0.12 0.12 95 −0.04 0.12 0.12 93 0.01 0.11 0.11 94

1 100 β1 0.03 0.26 0.23 92 0.04 0.21 0.23 97 0.15 0.20 0.22 90
β2 0.03 0.33 0.30 93 0.02 0.29 0.29 97 0.13 0.26 0.28 93
β3 0.06 0.34 0.31 92 −0.03 0.30 0.30 95 0.08 0.30 0.27 93

400 β1 0.01 0.11 0.11 94 −0.04 0.12 0.11 90 0.03 0.10 0.11 97
β2 0.01 0.15 0.14 94 −0.02 0.17 0.14 88 0.02 0.14 0.14 93
β3 0.02 0.15 0.14 95 −0.03 0.15 0.14 93 0.01 0.14 0.13 94

aMLE, maximum likelihood estimator;

bSE, standard error;

cSEE, mean of standard error estimator;

dCP, coverage probability for nominal 95% confidence interval.
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Table 3.5: Variable selection proportions, average numbers of correct and incorrect
zero coefficients, and median mean squared errors from 1000 simulated data sets for
the misspecified models using the adaptive lasso method

Censoring n Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Corr. a Incorr. b MMSE c

20% 100 41 65 84 9 9 7 7 6 6 6 6.50 1.10 0.21
400 65 92 100 3 2 3 3 3 1 1 6.85 0.43 0.38

40% 100 49 66 85 13 14 13 13 13 11 11 6.12 1.01 0.18
400 71 90 100 3 4 5 5 4 4 3 6.72 0.39 0.31

aCorr., average number of correct zeros;

bIncorr., average number of incorrect zeros;

cMMSE, median of mean squared errors.

the robust performance of the misspecified model in variable selection is at the cost of

prediction accuracy, as measured by the median mean squared errors, which are much

larger than those from the models with correct transformation.

3.4 Application

3.4.1 Atherosclerosis Risk in Communities Study Data

We consider data from the Atherosclerosis Risk in Communities Study, a prospective

investigation of the etiology of atherosclerosis and its clinical sequelae and variation in

cardiovascular risk factors, medical care and disease by race, gender, location, and

date (The ARIC Investigators, 1989). The study includes five examinations. The

baseline examination of the cohort was conducted from 1987 to 1989, and enrolled

15792 participants with ages 45–64 years from four U.S. communities. In this example

we apply our method to part of the baseline data, where participants are African

American males living in Jackson, Mississippi or Forsyth County, North Carolina. We

study the traditional cardiovascular risk factors for incident heart failure until 2005.
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Our analysis consists of 1332 participants after excluding those with missing covari-

ates. Incident heart failure occurred in 196 men through 2005, with a median follow-up

time of 16.5 years. The proportional hazards assumption is not satisfied for these data,

so the Cox model is not appropriate. We analyze the data using transformation models.

To determine the best transformation for fitting the data, we consider logarithmic trans-

formations with r = 0,0.1, . . . ,6. We apply the expectation-maximization algorithm to

estimate the parameters for each r and profile the log-likelihood values in Figure 3.1:

r=3 yields the largest log-likelihood. Under this model, we apply our variable selection

procedure. The tuning parameter λ is chosen to be 6 via generalized cross validation.

After variable selection, we refit the transformation model with selected covariates. The

results are given in Table 3.6. Incident heart failure is associated with age, diabetes,

hypertension, systolic blood pressure, serum albumin, heart rate, left ventricular hyper-

trophy, bundle branch block, prevalent coronary heart disease, valvular heart disease,

high-density lipoprotein, pack years of smoking and current smoking status.

We assess the prediction capability of the selected risk set via the area under the

receiver operating characteristic curve. This statistic is often used for model comparison

and extended to accommodate the time-dependence and censoring for the survival

outcomes (Chambless and Diao, 2006). Under the logarithmic transformation with

r=3, the 10-year area under the curve for selected covariates is 0.85, the same as for

all 18 covariates, which indicates that the selected model performs as well as the full

model. For further comparison, we consider an external risk score from the Health,

Aging, and Body Composition Study (Butler et al., 2008), which was obtained in an

elderly population using the Cox model and backward elimination. When directly

applying it to these data, the 10-year area under the curve is 0.77, smaller than for our

selected model.

To compare the performance of our method under different transformations, we
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Figure 3.1: Fitted observed log-likelihood values for logarithmic transformation param-
eter r in the Atherosclerosis Risk in Communities data.

consider another criterion to select the best transformation. For each r, instead of

using the log-likelihood with maximum likelihood estimates before variable selection, we

conduct variable selection to obtain the adaptive lasso estimates, update the cumulative

hazards with these estimates, and compute the log-likelihood minus the adaptive lasso

penalty. The maximum of these penalized log-likelihood values corresponds to the

transformation r=2.6. Under this model, we select the same set of covariates as in

Table 3.6, with slightly different estimates and standard errors; as a result, the 10-year

area under the curve for these covariates is also 0.85.

3.4.2 Primary Biliary Cirrhosis Data

As a second example, we apply our method to the primary biliary cirrhosis data,

which were collected in the Mayo Clinic trial of primary biliary liver cirrhosis, conducted

between 1974 and 1984. For each patient in the trial, clinical, biochemical, serological,
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Table 3.6: Estimated coefficients and standard errors for Atherosclerosis Risk in Com-
munities data

Covariate a MLEb without Adaptive lasso MLE after
variable selection estimator variable selection

Age (in years) 0.076 (0.019) 0.070 (0.015) 0.078 (0.019)
Diabetes 1.001 (0.345) 1.102 (0.335) 1.176 (0.244)
Hypertension 0.625 (0.261) 0.566 (0.250) 0.627 (0.257)
BMI (kg/m2) 0.009 (0.021) 0 (–) 0 (–)
SBP (mm of Hg) 0.014 (0.006) 0.013 (0.006) 0.015 (0.006)
Fasting glucose (mg/dL) 0.002 (0.003) 0 (–) 0 (–)
Serum albumin (g/dL) −1.563 (0.397) −1.470 (0.266) −1.528 (0.385)
Serum creatinine (mg/dl) 0.198 (0.497) 0 (–) 0 (–)
Heart rate (beats/minute) 0.037 (0.010) 0.034 (0.009) 0.037 (0.010)
Left ventricular hypertrophy 0.997 (0.389) 0.850 (0.383) 0.975 (0.385)
Bundle branch block 1.186 (0.406) 1.054 (0.399) 1.202 (0.399)
Prevalent CHD 2.171 (0.444) 2.103 (0.438) 2.185 (0.442)
Valvular heart disease 1.476 (0.585) 1.270 (0.580) 1.502 (0.582)
HDL (mg/dl) −0.026 (0.008) −0.023 (0.008) −0.028 (0.008)
LDL (mg/dl) 0.002 (0.003) 0 (–) 0 (–)
Pack years of smoking 0.013 (0.005) 0.012 (0.005) 0.014 (0.005)
Current smoking status 0.646 (0.320) 0.385 (0.304) 0.492 (0.237)
Former smoking status 0.142 (0.301) 0 (–) 0 (–)

aBMI, body mass index; SBP, systolic blood pressure; CHD, coronary heart disease; HDL, high-
density lipoprotein; LDL, low-density lipoprotein.

bMLE, maximum likelihood estimator;
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and histological parameters are collected. A description of the clinical background is

provided in Fleming and Harrington (2005, p. 2), and a more extended discussion

can be found in Dickson et al. (1989). In this example, we consider 312 out of 424

patients who agreed to participate in the randomized trial. We have 276 patients for

analysis after excluding the data with missing covariates, and 111 of them died before

the end of trial. The median follow-up time is 4.9 years. We study the dependence

of the survival time on all seventeen covariates: trt (0/1 for placebo/D-penicillamine),

age (in years), sex (0/1 for male/female), ascites (presence of ascites), hepato (presence

of hepatomegaly or enlarged liver), spiders (presence of blood vessel malformations),

edema (0/0.5/1 for no edema/untreated or successfully treated/edema despite diuretic

therapy), bili (serum bilirubin in mg/dl), chol (serum cholesterol in mg/dl), albumin

(serum albumin in g/dl), copper (urine copper in ug/day), alkphos (alkaline phospho-

tase in U/liter), ast (aspartate aminotransferase in U/ml), trig (triglycerides in mg/dl),

platelet (platelet count), protime (standardized blood clotting time), and stage (histo-

logic stage of disease).

We analyze the data following the same procedure as in Section 3.4.1. First, we

select the transformation using the observed log-likelihood function with maximum like-

lihood estimates before variable selection. As illustrated in Figure 3.2, the logarithmic

transformation with r=1 maximizes the profile, and it corresponds to the proportional

odds model. The results for variable selection and coefficient estimation are given in

Table 3.7, with the tuning parameter determined as 7 via generalized cross validation.

The covariates selected into the predictive model are: age, sex, ascites, spiders, edema,

bili, albumin, copper, ast, protime, and stage. In Table 3.7, we also provide the adap-

tive lasso estimates using the same tuning parameter based on the penalized marginal

likelihood of ranks for the proportional odds model (Lu and Zhang, 2007). Their

method tends to give more shrinkage of the coefficients toward zero, and consequently,
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the adaptive lasso estimates are smaller than those from our method and have more

zeros, including some with large initial effects, such as sex and ascites. Table 3.8 sum-

marizes the results under the transformation model selected from the maximal value

of penalized log-likelihood with adaptive lasso estimates. The selected transformation

r=0.6 is similar to the proportional odds model using the previous criterion, leading to

similar results of variable selection and coefficient estimation. Using the Least Angle

Regression algorithm, we give the whole solution paths for the one-step adaptive lasso

estimates under transformation r=1 and r=0.6 in Figure 3.3.

In addition, we fit these data using the Cox proportional hazards model (r = 0) to

compare our method with others. Under this model, the covariates sex, ascites, and

spiders have initial estimates much closer to zero and are shrunk to zero by the penalty.

We select the same set of covariates as the adaptive lasso using the partial likelihood

function (Zhang and Lu, 2007) and the martingale estimating equations (Zhang et al.,

2010).

3.5 Remarks

Although we focus on the adaptive lasso penalty, it is rather straightforward to

extend our method to other commonly used penalties and show that the asymptotic

properties still hold. In practice, the transformation function is unknown and needs

to be selected. We used the log-likelihood and penalized log-likelihood for the real

example here. Other criteria may also work, and as a result, several transformations

may be appropriate for a certain dataset. Interesting future work would be to study

the performance of the proposed method when the transformation is misspecified. In

one of our simulation studies, we find that the variable selection is still robust, even

though we misspecify the proportional odds model. However, in the primary biliary

cirrhosis example given in the supplementary material, the variable selection under
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Figure 3.3: Solution path for primary biliary cirrhosis data under selected transforma-
tion models
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Table 3.7: Estimated coefficients and standard errors for primary biliary cirrhosis data
under the proportional odds model

Covariate MLEa without Adaptive lasso MLE after Lu and Zhang’s
variable selection estimator variable selection adaptive lasso

estimator
trt 0.028 (0.295) 0 (–) 0 (–) 0 (–)
age 0.050 (0.016) 0.039 (0.014) 0.046 (0.015) 0.031 (0.013)
sex −0.732 (0.419) −0.265 (0.387) −0.773 (0.408) 0 (–)
ascites 0.929 (0.684) 0.560 (0.666) 0.849 (0.659) 0 (–)
hepato 0.140 (0.338) 0 (–) 0 (–) 0 (–)
spiders 0.489 (0.342) 0.179 (0.328) 0.524 (0.330) 0 (–)
edema 0.890 (0.661) 0.726 (0.635) 0.831 (0.614) 0.724 (0.536)
bili 0.088 (0.037) 0.095 (0.036) 0.097 (0.031) 0.088 (0.029)
chol 0.001 (0.001) 0 (–) 0 (–) 0 (–)
albumin −0.924 (0.404) −0.860 (0.302) −1.008 (0.392) −0.580 (0.346)
copper 0.005 (0.002) 0.005(0.002) 0.004 (0.002) 0.004 (0.001)
alkphos 0.000 (0.000) 0 (–) 0 (–) 0 (–)
ast 0.006 (0.003) 0.004 (0.002) 0.006 (0.003) 0.002 (0.002)
trig −0.001 (0.002) 0 (–) 0 (–) 0 (–)
platelet −0.000 (0.002) 0 (–) 0 (–) 0 (–)
protime 0.276 (0.149) 0.208 (0.123) 0.279 (0.146) 0.185 (0.137)
stage 0.505 (0.222) 0.484 (0.204) 0.530 (0.195) 0.398 (0.172)

aMLE, maximum likelihood estimator.
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Table 3.8: Estimated coefficients and standard errors for primary biliary cirrhosis data
under the transformation model with r = 0.6

Covariate MLEa without Adaptive lasso MLE after
variable selection estimator variable selection

trt −0.060 (0.266) 0 (–) 0 (–)
age 0.044 (0.014) 0.036 (0.012) 0.040 (0.014)
sex −0.619 (0.378) −0.087 (0.354) −0.546 (0.357)
ascites 0.678 (0.580) 0.151 (0.568) 0.446 (0.542)
hepato 0.103 (0.308) 0 (–) 0 (–)
spiders 0.358 (0.308) 0 (–) 0 (–)
edema 0.867 (0.562) 0.744 (0.543) 0.975 (0.498)
bili 0.087 (0.033) 0.095 (0.031) 0.095 (0.027)
chol 0.001 (0.001) 0 (–) 0 (–)
albumin −0.858 (0.359) −0.813 (0.269) −0.941 (0.349)
copper 0.004 (0.002) 0.004 (0.001) 0.004 (0.001)
alkphos 0.000 (0.000) 0 (–) 0 (–)
ast 0.005 (0.002) 0.003 (0.002) 0.005 (0.002)
trig −0.001 (0.002) 0 (–) 0 (–)
platelet −0.000 (0.001) 0 (–) 0 (–)
protime 0.259 (0.133) 0.190 (0.110) 0.280 (0.129)
stage 0.474 (0.204) 0.459 (0.187) 0.538 (0.174)

aMLE, maximum likelihood estimator.

these two models differs. This phenomenon and its formal justification need to be

further investigated.

3.6 Appendix: Proof of Theorems

We define the counting process Ni(s) = ∆iI(Yi ≤ s), where s ∈ [0, τ] and τ is the

follow-up time. Then ln(β) can be written as

ln(β) =
n

∑
i=1

ˆ τ

0

βTZi(s)dNi(s) −

ˆ τ

0

log{
n

∑
j=1

I(Yj ≥ s)c̃je
βTZj(s)}d{

n

∑
i=1

Ni(s)} ,
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where the weights c̃ = (c̃1, . . . , c̃n) based on the maximum likelihood estimators β̃ and

δΛ̃(Y ) are

c̃j = G′ {

ˆ τ

0

I(s ≤ Yj)e
β̃TZj(s)dΛ̃(s)} −

ˆ τ

0

G′′ {
´ s

0
eβ̃

TZj(t)dΛ̃(t)}

G′ {
´ s

0
eβ̃TZj(t)dΛ̃(t)}

dNj(s)

≡ cj {Yj, Zj(⋅),∆j, β̃, Λ̃} .

To facilitate the proof of the theorems, we first claim the following lemmas under

Conditions 1–4.

Lemma 3.6.1. Denote the first-order derivative of ln(β) with respect to β as Un(β),

then n−1/2Un(β0) = Op(1), where Op(1) is bounded in probability.

Lemma 3.6.2. Denote the second-order derivative of −ln(β) with respect to β as Vn(β),

then Vn(β)/n converges uniformly to a positive definite matrix V (β), which does not

depend on the data, and as a result, ln(β) is a strictly concave function when n is large.

Proof of Lemma 3.6.1. Denote the true weight c0j in the vector c0 = (c01, . . . , c0n) as

c0j = cj {Yj, Zj(⋅),∆j, β0,Λ0}, where β0 is the true value of β and Λ0 is the true value of

Λ. Let Pn be the empirical measure, with P being the expectation. Then the derivative
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Un(β) at β = β0 can be further written as

n−1/2Un(β0)

= n−1/2
n

∑

i=1

ˆ τ

0

⎧
⎪⎪
⎨
⎪⎪
⎩

Zi(s) −
∑
n
j=1 I(Yj ≥ s)Zj(s)c̃je

βT0 Zj(s)

∑
n
j=1 I(Yj ≥ s)c̃je

βT0 Zj(s)

⎫
⎪⎪
⎬
⎪⎪
⎭

dNi(s)

= n1/2
(Pn − P )

ˆ τ

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Z(s) −
E {I(Y ≥ s)Z(s)c0e

βT0 Z(s)
}

E {I(Y ≥ s)c0e
βT0 Z(s)

}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

dN(s) (3.9)

+ n1/2E

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

ˆ τ

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Z(s) −
E {I(Y ≥ s)Z(s)c0e

βT0 Z(s)
}

E {I(Y ≥ s)c0e
βT0 Z(s)

}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

dN(s)

⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

(3.10)

− n1/2

ˆ τ

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

E {I(Y ≥ s)Z(s)c̃eβ
T
0 Z(s)

}

E {I(Y ≥ s)c̃eβ
T
0 Z(s)

}

−

E {I(Y ≥ s)Z(s)c0e
βT0 Z(s)

}

E {I(Y ≥ s)c0e
βT0 Z(s)

}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

PndN(s) (3.11)

− n1/2

ˆ τ

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Pn {I(Y ≥ s)Z(s)c̃eβ
T
0 Z(s)

}

Pn {I(Y ≥ s)c̃eβ
T
0 Z(s)

}

−

E {I(Y ≥ s)Z(s)c̃eβ
T
0 Z(s)

}

E {I(Y ≥ s)c̃eβ
T
0 Z(s)

}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

PndN(s) (3.12)

For (3.10), since the intensity forNj(s) is I(Yj ≥ s)eβ
T
0 Zj(s)Λ′

0(s)G
′ {
´ s

0
eβ

T
0 Zj(t)dΛ0(t)},

(3.10) is equal to

n1/2E

⎡
⎢
⎢
⎢
⎢
⎣

ˆ τ

0

⎧⎪⎪
⎨
⎪⎪⎩

Z(s) −
E [I(Y ≥ s)Z(s)eβ

T
0 Z(s)G′ {

´ s
0
eβ

T
0 Z(t)dΛ0(t)}]

E [I(Y ≥ s)eβ
T
0 Z(s)G′ {

´ s
0
eβ

T
0 Z(t)dΛ0(t)}]

⎫⎪⎪
⎬
⎪⎪⎭

dN(s)

⎤
⎥
⎥
⎥
⎥
⎦

= 0.

For (3.11), by the mean-value theorem, the integrand of (3.11) is equal to

−n1/2

⎡
⎢
⎢
⎢
⎢
⎣

∇β

E {I(Y ≥ s)Z(s)c0eβ
T
0 Z(s)}

E {I(Y ≥ s)c0eβ
T
0 Z(s)}

(β̃ − β0)

+∇Λ

E {I(Y ≥ s)Z(s)c0eβ
T
0 Z(s)}

E {I(Y ≥ s)c0eβ
T
0 Z(s)}

(Λ̃ −Λ0) + op(n
−1/2)

⎤
⎥
⎥
⎥
⎥
⎦

= −n1/2I(s)(β̃ − β0, Λ̃ −Λ0) + op(1),

so (3.11) is equal to −n1/2(Pn − P )
´ τ

0
I(s)(Sβ, SΛ)PdN(s) + op(1), where ∇β denotes

the derivative with respect to β and ∇Λ denotes the Hadamard derivative with respect
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to Λ; I is the linear operator; op(1) converges to zero in probability uniformly in s,

s ∈ [0, τ]; Sβ and SΛ are efficient influence functions for β0 and Λ0.

For (3.12), using the asymptotic results for β̃ and Λ̃ from Zeng and Lin (2006), by

the mean-value theorem we have

sup
j=1,...,n

∣c̃j − cj0∣ ≤ sup
j=1,...,n

∣∇βcj {Yj, Zj(⋅),∆j, β
∗,Λ∗} ∣∥β̃ − β0∥

+ sup
j=1,...,n

∣∇Λcj {Yj, Zj(⋅),∆j, β
∗,Λ∗} ∣ ∥Λ̃ −Λ0∥l∞[0,τ]

→ 0

almost surely, where ∥⋅∥l∞[0,τ] denotes the supremum norm in [0, τ]; β∗ is between β̃

and β0, and Λ∗ is between Λ̃ and Λ0 uniformly in t. Based on Theorem 2.10.3 and

Theorem 2.10.6 of van der Vaart and Wellner (1996), the weight c{Y,Z(⋅),∆, β,Λ} is

a bounded Donsker class. Then by the Glivenko–Cantelli theorem, the integrand of

(3.12) is equal to

−n1/2
⎛

⎝

(Pn − P ) {I(Y ≥ s)Z(s)c0eβ
T
0 Z(s)}

E {I(Y ≥ s)c0eβ
T
0 Z(s)}

−
E {I(Y ≥ s)Z(s)c0eβ

T
0 Z(s)}

[E {I(Y ≥ s)c0eβ
T
0 Z(s)}]

2 (Pn − P ) {I(Y ≥ s)c0e
βT0 Z(s)}

⎞

⎠
+ op(1),

so (3.12) is equal to −n1/2(Pn − P )
´ τ

0
S1PdN(s) + op(1), where S1 is the influence

function and op(1) converges to zero in probability uniformly in s, s ∈ [0, τ].

Therefore, the normalized derivative n−1/2Un(β0) can be written as

n1/2(Pn − P )
⎛

⎝

ˆ τ

0

⎡
⎢
⎢
⎢
⎢
⎣

Z(s) −
E {I(Y ≥ s)Z(s)c0eβ

T
0 Z(s)}

E {I(Y ≥ s)c0eβ
T
0 Z(s)}

dN(s)

⎤
⎥
⎥
⎥
⎥
⎦

−

ˆ τ

0

I(s)(Sβ, SΛ)PdN(s) −

ˆ τ

0

S1PdN(s)) + op(1).

By the Donsker theorem, n−1/2Un(β0) = Op(1).

60



Proof of Lemma 3.6.2. We have

n−1Vn(β) =

ˆ τ

0

⎛

⎝

Pn {I(Y ≥ s)c̃Z(s)⊗2eβ
TZ(s)}

Pn {I(Y ≥ s)c̃eβTZ(s)}

−

⎡
⎢
⎢
⎢
⎢
⎣

Pn {I(Y ≥ s)c̃Z(s)eβ
TZ(s)}

Pn {I(Y ≥ s)c̃eβTZ(s)}

⎤
⎥
⎥
⎥
⎥
⎦

⊗2
⎞
⎟
⎠
PndN(s).

By the Glivenko–Cantelli theorem, the integrand converges uniformly to its asymptotic

limit
E {I(Y ≥ s)c0Z(s)⊗2eβ

TZ(s)}

E {I(Y ≥ s)c0eβ
TZ(s)}

−

⎡
⎢
⎢
⎢
⎢
⎣

E {I(Y ≥ s)c0Z(s)eβ
TZ(s)}

E {I(Y ≥ s)c0eβ
TZ(s)}

⎤
⎥
⎥
⎥
⎥
⎦

⊗2

.

Define

V (β) =

ˆ τ

0

⎛

⎝

E {I(Y ≥ s)c0Z(s)⊗2eβ
TZ(s)}

E {I(Y ≥ s)c0eβ
TZ(s)}

−

⎡
⎢
⎢
⎢
⎢
⎣

E {I(Y ≥ s)c0Z(s)eβ
TZ(s)}

E {I(Y ≥ s)c0eβ
TZ(s)}

⎤
⎥
⎥
⎥
⎥
⎦

⊗2
⎞
⎟
⎠
PdN(s),

Then supβ ∣n
−1Vn(β) − V (β)∣→ 0 almost surely.

To show that V (β) is positive definite, we insert the intensity for N(s), and then

V (β) can be written as

ˆ τ

0

E

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
Z(s) −

E [I(Y ≥ s)Z(s)eβ
TZ(s)G′ {

´ s
0
eβ

T
0 Z(t)dΛ0(t)}]

E [I(Y ≥ s)eβTZ(s)G′ {
´ s

0
eβ

T
0 Z(t)dΛ0(t)}]

⎞

⎠

⊗2

×I(Y ≥ s)eβ
TZ(s)G′ {

ˆ s

0

eβ
T
0 Z(t)dΛ0(t)}]

×
E [I(Y ≥ s)eβ

T
0 Z(s)G′ {

´ s
0
eβ

T
0 Z(t)dΛ0(t)}]

E [I(Y ≥ s)eβTZ(s)G′ {
´ s

0
eβ

T
0 Z(t)dΛ0(t)}]

dΛ0(s).

Thus, V (β) is semi-positive definite. If V (β) is not positive definite, there will exist a

61



vector α, which satisfies α ≠ 0 and αTV (β)α = 0. This indicates that for all s ∈ [0, τ],

0 = αTZ(s) − αT
E [I(Y ≥ s)Z(s)eβ

TZ(s)G′ {
´ s

0
eβ

T
0 Z(t)dΛ0(t)}]

E [I(Y ≥ s)eβTZ(s)G′ {
´ s

0
eβ

T
0 Z(t)dΛ0(t)}]

= α0(s) + α
TZ(s),

which is a contradiction with Condition 2. Therefore, V (β) is positive definite, so ln(β)

is strictly concave when n is large.

Proof of Theorem 3.2.1. Consider the penalized objective function

Qn(β) = ln(β) − nλn
d

∑
j=1

∣βj ∣/∣β̃j ∣
γ.

Since the penalty term is strictly convex, it follows from Lemma 3.6.2 that Qn(β) is

strictly concave when n is large. Thus, there exists a unique maximiser β̂n of Qn(β)

for large n. It is sufficient to show that for any given ε > 0, there exists a large constant

C so that

P { sup
∥u∥=C

Qn(β0 + n
−1/2u) < Qn(β0)} ≥ 1 − ε. (3.13)

This implies that, with probability at least 1 − ε, there exists a local maximum in the

ball {β0 + n−1/2 ∶ ∥u∥ ≤ C}, C > 0.

Furthermore, we have

D(u) ≡ n−1 {Qn(β0 + n
−1/2u) −Qn(β0)}

≤ n−1 {ln(β0 + n
−1/2u) − ln(β0)} − λn

q

∑
j=1

(
∣βj0 + n−1/2uj ∣

∣β̃j ∣γ
−

∣βj0∣

∣β̃j ∣γ
)

≤ n−1 {ln(β0 + n
−1/2u) − ln(β0)} − n

−1/2λn
q

∑
j=1

∣uj ∣

∣β̃j ∣γ
. (3.14)

For the first term in (3.14), since for any β∗ between β̃ and β0, ∥β∗ − β0∥ ≤

∥β̃ − β0∥ → 0 almost surely, it follows from Lemma 3.6.2 that ∣n−1Vn(β∗) − V (β0)∣ ≤
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∣n−1Vn(β∗) − V (β∗)∣+ ∣V (β∗) − V (β0)∣→ 0 almost surely. That is, n−1Vn(β∗) = V (β0)+

op(1). Then by the Taylor expansion and Lemma 3.6.1, the first term is equal to

n−1uT{n−1/2Un(β0)} − (2n)−1uT{n−1Vn(β
∗)}u

= n−1Op(1)
d

∑
j=1

∣uj ∣ − (2n)−1uT{V (β0) + op(1)}u,

where β∗ is between β0 and β0 + n−1/2u.

For the second term in (3.14), since n1/2∥β̃ −β0∥ = Op(1) from Zeng and Lin (2006),

by the Taylor expansion, the second term is equal to

n−1/2λn
q

∑
j=1

∣uj ∣ {
1

∣βj0∣γ
−
γsign(βj0)
∣βj0∣γ+1

(β̃j − βj0) + op(∣β̃j − βj0∣)}

= n−1/2λn
q

∑
j=1

{
1

∣βj0∣γ
+
Op(1)
√
n

} ∣uj ∣

=
1

n
(n1/2λn)Op(1)

q

∑
j=1

∣uj ∣.

Since n1/2λn = Op(1), we have

D(u) ≤ −(2n)−1uT{V (β0) + op(1)}u + n
−1Op(1)

d

∑
j=1

∣uj ∣ − n
−1Op(1)

q

∑
j=1

∣uj ∣.

By choosing a sufficiently large C, the first term is of the order C2/n, and the second

and third terms are of the order C/n, so the second and third terms are dominated by

the first term. Therefore, the inequality (3.13) holds, and it completes the proof.

Proof of Theorem 3.2.2. (i) For βj, j = q + 1, . . . , d, we have,

0 = ∇βjQn(β)∣β=β̂ = n
1/2 {

∇βj ln(β)∣β=β̂
n1/2

− nλn
sign(β̂j)
n1/2∣β̃j ∣γ

} (3.15)
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By the Taylor expansion, Lemma 3.6.1, and Lemma 3.6.2, (3.15) becomes to

0 = n1/2 {n−1/2Ujn(β0) + n
−1Vjjn(β

∗)n1/2(β̂j − βj0) − n
(γ+1)/2λn

sign(β̂j)
(n1/2∣β̃j ∣)γ

}

= n1/2 {Op(1) + Vjj(β0)n
1/2(β̂j − βj0) − n

(γ+1)/2λn
sign(β̂j)
(n1/2∣β̃j ∣)γ

}

where Ujn(β0) is the jth element of Un(β0), Vjjn(β∗) is the (j, j)th element of Vn(β∗),

and Vjj(β0) is the (j, j)th element of V (β0). Since n1/2(β̃j − 0) = Op(1) and n1/2(β̂j −

βj0) = Op(1), we have

n1/2 {Op(1) − n
(γ+1)/2λnsign(β̂j)} = 0.

Then n(γ+1)/2λn →∞ implies that β̂j = 0 with probability tending to 1.

(ii) Let β1 denote the β index for β10. According to (i), pr(β̂2n = 0) → 1; thus, we

only need to derive the asymptotic expansion of β̂1n in the probability set {β̂2n = 0}.

For any probability sample in the latter set, ∇β1Qn(β)∣β={β̂T1n,0T }T
= 0. Let U1n(β) be

the first q elements of Un(β) and V11n(β) be the first q × q submatrix of Vn(β). Then

0 = ∇β1Qn(β)∣β={β̂T1n,0T }T
= ∇β1ln(β)∣β={β̂T1n,0T }T

− nλn {
sign(β̂1)

∣β̃1∣
γ

, . . . ,
sign(β̂q)

∣β̃q ∣γ
}

T

= U1n(β0) − V11n(β
∗)(β̂1n − β10) − nλn {

sign(β̂1)

∣β̃1∣
γ

, . . . ,
sign(β̂q)

∣β̃q ∣γ
}

T

,

where β∗ is between β̂n and β0, and the last equation is implied by the Taylor expansion.

Following the proof of Lemma 3.2, we can show that V11n(β∗)/n → V11(β0), where

V11(β0) is the first q×q submatrix of V (β0). Since n1/2λn→0, ∣β̃−β0∣
as
→ 0, and sign(β̂j) =
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sign(βj0) for large n, j = 1, . . . , q, we have

n1/2(β̂1n − β10)

= {n−1V11n(β
∗)}−1

⎡
⎢
⎢
⎢
⎢
⎣

n−1/2U1n(β0) − n
1/2λn {

sign(β̂1)

∣β̃1∣
γ

, . . . ,
sign(β̂q)

∣β̃q ∣γ
}

T⎤
⎥
⎥
⎥
⎥
⎦

= {V11(β0)}
−1{n−1/2U1n(β0)} + op(1).

On the other hand, from Lemma 3.1, we know that the influence function of n−1/2U1n(β0)

can be expressed as the n1/2(Pn − P )E{∇β1lc ∣ Y,Z(⋅),∆} plus a linear functional

of (β̃ − β0) and (Λ̃ − Λ0), where ∇β1lc is the score for β1 using the complete log-

likelihood, where ζ is missing data, and (β̃, Λ̃) are the initial nonparametric maxi-

mum likelihood estimators. According to Zeng and Lin (2006), the influence functions

of (β̃ − β0) and (Λ̃ − Λ0) lie on the tangent space spanned by the scores. Moreover,

E{∇β1lc(β) ∣ Y,Z(⋅),∆} is clearly on the same tangent space. Therefore, the influence

function of β̂1n is also on this space, so it must be the efficient influence function which

is unique. In other words, n1/2(β̂1n−β10) = n1/2(Pn−P )Sβ1{Y,∆, Z1(⋅), β10,Λ0}+op(1),

where Sβ1 is the efficient influence function for the maximum likelihood estimator β̂

corresponding to β1 as given in Zeng and Lin (2006). Particularly, var(Sβ1) attains the

semiparametric efficiency bound. It completes the proof.
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CHAPTER4: SUPPORT VECTOR HAZARD REGRESSION FOR
PREDICTING SURVIVAL OUTCOMES

4.1 Support Vector Hazard Regression

4.1.1 General Methodology

Let T denote the failure time and X denote a vector of baseline covariates of d-

dimension. Due to patient’s drop-out or termination of the study, T is subject to

right-censoring. Therefore, from a random sample of n subjects, the observed data

consist of {Ti ∧ Ci,∆i = I(Ti ≤ Ci),Xi} for i = 1, . . . , n. Furthermore, we define the

observed counting process as Ni(t) = I(Ti ∧Ci ≤ t) and the observed at-risk process as

Yi(t) = I(Ti ∧Ci ≥ t).

Since predicting T is equivalent to predicting its associated counting process, which

can be treated as a sequence of binary outcomes (failure vs. no failure, or event vs. no

event) over time, this motivates us to reformulate predicting the failure time as predict-

ing the jumps of the counting process over a sequence of time points among the subjects

still at risk at those time points. In other words, we will develop a classification rule

to predict whether a subject will experience an event in the next immediate time point

given that the subject has not yet experienced an event; equivalently, we wish to learn

the hazard rate functions for the counting process of T . Similar to classical hazard

regression models in survival analysis, the main advantages of learning through hazard

rate functions are: first, we can use all the available information from both failure cases

and censored cases; second, we allow censoring time C to depend on X but do not

require modeling the distribution of C given X.
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To formalize idea, we consider a general decision function f(t, x) at time t for a

subject with X = x. In other words, if this subject is still at risk at time t, we predict

the subject to fail at the next immediate time if f(t, x) > 0 or not fail otherwise.

Empirically, suppose that there are m distinct ordered failure times, t1 < t2 < . . . ,< tm.

We let

δNi(tj) ≡ 2(Ni(tj) −Ni(tj−)) − 1

so δNi(tj) takes values 1 or -1 depending on whether the ith subject experiences an

event at tj or not. Learning f(t, x) becomes a sequence of classification problems over

tj’s. Ideally, the best decision function should minimize the total classification errors,

the sum of I(δNi(tj)f(tj,Xi) < 0) over all subjects i and time tj when subject i is still

at risk at tj, i.e., Yi(tj) = 1. However, in practice, we most likely observe that only

one subject experiences failure at tj while the rest of subjects who are still at risk do

not. To account for this imbalance between the failures and non-failures at each time

tj, we need to give more weights to the failure cases while less for the non-failure cases.

Specially, at each tj and for subject i at risk at tj, we apply the following weight related

to the size of risk set

wi(tj) = I {δNi(tj) = 1}{1 −
1

∑
n
i=1 Yi(tj)

} + I {δNi(tj) = −1}{
1

∑
n
i=1 Yi(tj)

} .

In other words, if subject i has a failure event at tj, we assign a weight close to 1;

otherwise, we assign a weight equal to the reciprocal of the risk set size. By doing this,

an optimal decision function thus minimizes the following weighted total classification

error:

R0n(f) = n
−1

n

∑
i=1

m

∑
j=1

wi(tj)Yi(tj)I(δNi(tj)f(tj,Xi) < 0), (4.1)

where the use of Yi(tj) terms reflects that only subjects still at risk contribute towards

prediction.
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Minimizing (4.1) is infeasible due to the non-smoothness of the 0-1 loss in the

expression I(δNi(tj)f(tj,Xi) > 0). Furthermore, no restriction on the complexity of f

leads to potential overfitting. To handle these issues, we adopt the same idea in support

vector machines for supervised learning where we replace the 0-1 loss in (4.1) by the

hinge loss and place regularization to estimate f . Specifically, we propose to minimize

the following regularized hinge loss:

Rn(f) + λn∥f∥
2,

where Rn(f) ≡ n
−1

n

∑
i=1

m

∑
j=1

wi(tj)[1 − f(tj,Xi)δNi(tj)]+, (4.2)

where [1−x]+ = max(1−x,0) is the hinge loss, ∥f∥ is a suitable norm or semi-norm for

f to be discussed in the following sections, and λn is the regularization parameter. This

minimization is equivalent to maximizing the margin between subjects in the failure

and non-failure classes subject to an upper bound on the misclassification rate. Since

this learning method is a weighted version of the standard support vector machines and

learning f(t, x) is essentially learning the hazard rate function, we refer our proposed

method as “support vector hazard regression” (SVHR).

4.1.2 Additive Learning Rules

The functional form of f(t, x) in (4.2) is fully nonparametric to ensure flexibility.

However, prediction rules based on this general time-varying rule may not be practically

useful. Instead, a desirable prediction rule would be based on a single risk score from

subject’s baseline covariates, X, without appealing to a complex and time-varying

function f(t, x). Particularly, such a decision function, f(t, x), can take the following

additive form

f(t, x) = α(t) + g(x), (4.3)
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where both α(⋅) and g(⋅) are assumed to be unknown. One major advantage of this

additive structure is that only a single score g(x) is required to perform prediction for

subjects with X = x. For example, if g(x) = xTβ, then a prediction score is simply a

linear combination of baseline covariates, and the coefficients, β, can be used to rank

the importance of each covariate. Thus, in the following development, we focus on the

decision function with the additive structure as in (4.3).

Next, we describe the computational algorithm to solve the minimization in (4.2).

We do not impose any restriction on α(t), and assume g(x) lies in a reproducing kernel

Hilbert spaceHn with a kernel functionK(x,x′). Commonly used kernels include linear

kernel, where K(x,x′) = xTx′; radial basis kernel, where K(x,x′) = exp(−∥x − x′∥2/σ);

and lth-degree polynomial kernel, where K(x,x′) = (1 + ⟨x,x′⟩)l. Furthermore, we let

∥f∥ = ∥g∥Hn , which is the norm in the reproducing kernel Hilbert space Hn. Thus, the

minimization in (4.2),

minn−1
n

∑
i=1

m

∑
j=1

wi(tj)Yi(tj)[1 − (α(tj) + g(Xi))δNi(tj)]+ + λn∥g∥Hn , (4.4)

is equivalent to

min
α,g

∥g∥
2
+Cn

N

∑
i=1

m

∑
j=1

wi(tj)Yi(tj)ζi(tj)

subject to Yi(tj)ζi(tj) ≥ 0, Yi(tj)δNi(tj){α(tj) + g(Xi)} ≥ Yi(tj){1 − ζi(tj)},

where the value ζi(tj) is the proportional amount by which the prediction is on the

wrong side of its margin at time tj, and Cn is the cost parameter.

From the KKT conditions, we can easily derive the dual objective function for (4.4)
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as

LD =
n

∑
i=1

m

∑
j=1

γijYi(tj) −
1

2

n

∑
i=1

n

∑
i′=1

m

∑
j=1

m

∑
j′=1

γijγi′j′Yi(tj)Yi′(tj′)δNi(tj)δNi′(tj′)K(Xi,Xi′).

(4.5)

We maximize LD subject to 0 ≤ γij ≤ wi(tj)Cn and ∑ni=1 γijYi(tj)δNi(tj) = 0 for

i = 1, . . . , n and j = 1, . . . ,m. This optimization can be solved using the quadratic

programming packages available in many software. The tuning parameter Cn is chosen

using the cross-validation searching over a grid of values. Comparing the proposed algo-

rithm (4.5) with existing standard support vector machine algorithms, we see that the

objective function sums across all at-risk subjects and across time points for which they

are at risk. Constraints are placed on those subjects and the time points. Therefore,

SVHR acts as a time-varying support vector machine.

After computing γ̂ij, from (4.5), we obtain the predicted score for a feature subject

with baseline covariate x as

ĝ(x) =
n

∑
i=1

m

∑
j=1

γ̂ijδNi(tj)K(x,Xi).

To obtain the predicted event time, we use a two-step approach. We first adopt the

nearest-neighbor prediction: for a future subject with X = x, we find the non-censored

subject in the training data whose predictive score is closest to ĝ(x), denoted as ĝ(xj).

Next, to maintain the monotone relationship between the event times and predictive

scores, we sort the derived scores of non-censored subjects in the training data in

descending order and find the rank of ĝ(xj). Then we sort the event times of these

derived scores in the training data in ascending order and find the event time with the

same rank as the rank of ĝ(xj), denoted as Tj′ . We predict the future subject’s event

time to be Tj′ .
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4.1.3 Profile Empirical Risk

The function α(t) in (4.3) is analogous to the baseline hazard rate function in the

proportional hazards model, which is treated as a nuisance parameter, and thus often

profiled out for inference. Therefore, it will be similarly interesting to profile out α(t)

in the minimization problem (4.4).

To this end, for a fixed g(x), from the derivation similar to Hastie et al. (2009,

p.421) and Abe (2010, p.77), we can show that at each tj, if there are some support

vectors lying on the edge of the margin which are characterized by 0 < γij < wi(tj)Cn,

these margin points can be used to solve for α(tj). This yields

α̂(tj) = 1 − g(Xi), δNi(tj) = 1.

Otherwise, α̂(tj) can be any value satisfying

min
γ̂ij=Cnwi(tj),
δNi(tj)=1

{1 − g(Xi)} ≥ α(tj) ≥ max
γ̂ij=Cnwi(tj),
δNi(tj)=−1

{−1 − g(Xi)}.

For the latter case, taking α̂(tj) = 1 − g(Xi) where δNi(tj) = 1 satisfying these con-

straints. After substituting α̂(tj) in this form into (4.4), we obtain the following profile

empirical risk for g(⋅):

PRn(g) =
1

n

n

∑
i=1

ˆ
∑
n
k=1 Yk(t)[2 − g(Xi) + g(Xk)]+

∑
n
k=1 Yk(t)

dNi(t) −
2

n

n

∑
i=1

ˆ
dNi(t)

∑
n
k=1 Yk(t)

=
1

n

n

∑
i=1

∆i
∑
n
k=1 I(Yk ≥ Yi)[2 − g(Xi) + g(Xk)]+

∑
n
k=1 I(Yk ≥ Yi)

−
2

n

n

∑
i=1

∆i

∑
n
k=1 I(Yk ≥ Yi)

= Pn (∆
P̃n{I(Ỹ ≥ Y )[2 + g(X̃) − g(X)]+}

P̃n[I(Ỹ ≥ Y )]
) −

2

n
Pn {

∆

P̃n[I(Ỹ ≥ Y )]
} ,

where Pn denotes the empirical measure from n observations and P̃n is the empirical

measure applied to (Ỹ , X̃, ∆̃). Thus, ĝ(x) minimizes PRn(g) + λn∥g∥2
Hn

. If we let
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f̂(x, t) = α̂(t)+ĝ(x) be the function minimizing (4.4) over g ∈Hn, then Rn(f̂) = PRn(ĝ).

It is worthy to point out one interesting observation: PRn(g) takes a similar form as

the partial likelihood function in survival analysis under a different loss function. This

connection sheds lights on the optimality of SVHR which we prove in the next section.

4.2 Theoretical Properties

4.2.1 Risk Function and Optimal Decision Rule

In this section, we will derive the population risk function for the proposed SVHR.

We will then drive the optimal decision rule for this risk function and show that this

decision rule also optimizes the 0-1 loss corresponding to (4.1).

To this end, we first examine the population version of Rn(f). By the definition,

we can rewrite Rn(f) as

Rn(f) =
1

n

n

∑
i=1

ˆ
[1 − f(t,Xi)]+dNi(t) +

1

n

ˆ
∑
n
i=1 Yi(t)[1 + f(t,Xi)]+

∑
n
i=1 Yi(t)

d{
n

∑
i=1

Ni(t)}

−
1

n

n

∑
i=1

ˆ
1

∑
n
i=1 Yi(t)

([1 − f(t,Xi)]+ + [1 + f(t,Xi)]+)dNi(t).

Therefore, as n goes to infinity, note that the last term in Rn(f) vanishes, so we obtain

the asymptotic limit of Rn(f), denoted as R(f), to be

R(f) = E (

ˆ
[1 − f(t,X)]+dN(t)) +

ˆ
E (Y (t)[1 + f(t,X)]+)

E{Y (t)}
E{dN(t)}.

Similarly, when n goes to infinity, the empirical risk based on the prediction error in

(4.1) converges to

R0(f) = E (

ˆ
I [f(t,X) ≤ 0]dN(t)) +

ˆ
E (Y (t)I [f(t,X) ≥ 0])

E{Y (t)}
E{dN(t)}.
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Let f∗(t, x) be the optimal function minimizing R(f), the limit of the risk function

in the SVHR method. The following theorem gives the property of f∗(t, x).

Theorem 4.2.1. Let h(t, x) denote the conditional hazard rate function of T = t given

X = x and let h̄(t) = E[dN(t)/dt]/E[Y (t)] = E[h(t,X)∣Y (t) = 1] be the average hazard

rate at time t. Then f∗(t, x) = sign(h(t, x) − h̄(t)) minimizes R(f). Furthermore,

f∗(t, x) also minimizes R0(f) and

R0(f
∗) = P (T ≤ C) −

1

2
E [

ˆ
E{Y (t)∣X = x}∣h(t, x) − h̄(t)∣dt] .

In addition, for any f(t, x) ∈ [−1,1],

R0(f) −R0(f
∗) ≤ R(f) −R(f∗)

for some constant c.

The proof of Theorem 4.1 is in the appendix. From Theorem 4.1, we see the best rule

is essentially to predict whether an at-risk subject will have an event still by comparing

the subject-specific hazard rate to the population-average hazard rate obtained from all

the at-risk subjects. Since the minimizer of R(f) also minimizes R0(f), this justifies the

use of the hinge-loss in the SVHR method in order to minimize the weighted prediction

error in R0(f). The last inequality in Theorem 1 proves that a decision function with

a small excess hinge-loss based risk will lead to a small excess 0-1 loss based risk.

4.2.2 Asymptotic Properties of the Additive Learning Rules

In this section, we will study the asymptotic properties of the SVHR when the

decision function takes the additive form in (4.3). We denote Hn as a reproducing

kernel Hilbert space from a Gaussian kernel k(x,x′) = exp{−∥x − x′∥2/σn}.
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Instead of considering the risk for R(f), we consider the profile risk for R(f) defined

as

PR(g) = min
α(t)

R(α(t) + g(x)).

Then since for f(t, x) = α(t) + g(x),

R(f) = E (

ˆ
[1 − f(t,X)]+dN(t)) +

ˆ
E (Y (t)[1 + f(t,X)]+)

E{Y (t)}
E{dN(t)}

=

ˆ
E[Y (t)h(t,X)] [

E[Y (t)h(t,X)] −E[Y (t)g(X)h(t,X)]

E[Y (t)h(t,X)]
− α(t)]

+

dt

+

ˆ
h̄(t)E[Y (t)] [

E[Y (t)] +E[Y (t)g(X)]

E[Y (t)]
+ α(t)]

+

dt,

it is easy to see that

α(t) = −
E[Y (t)] +E[Y (t)g(X)]

E[Y (t)]

minimizes R(f). Therefore,

PR(g) = E [∆
P̃ I(Ỹ ≥ Y )[2 − g(X̃) + g(X)]+

P̃ I(Ỹ ≥ Y )
] .

Clearly, PR(g) is the asymptotic limit of PRn(g). Then the following theorem holds

for the risk PR(ĝ).

Theorem 4.2.2. Assume that X’s support is compact and E[Y (τ)∣X] is bounded from

zero where τ is the study duration. Furthermore, assume λn and σn satisfies λn, σn → 0,

and nλnσ
(2/p−1/2)d
n →∞ for some p ∈ (0,2). Then it holds

λn∥ĝ∥
2
Hn + PR(ĝ) ≤ inf

g
PR(g) +Op

⎧⎪⎪
⎨
⎪⎪⎩

λn + σ
d/2
n +

λ
−1/2
n σ

−(1/p−1/4)d
n
√
n

⎫⎪⎪
⎬
⎪⎪⎭

.

The proof of Theorem 4.2 (see appendix) follows the machinery for support vector

machines. It mainly uses empirical process theories to control the stochastic error of
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the empirical risk functions and the approximation properties of the reproducing kernel

Hilbert space based on the Gaussian kernel function. We state two useful observations

as remarks below.

Remark 4.1. From Theorem 4.2, if we choose σn = (nλn)−1/[2d(1/p+1/4)], it gives

PR(ĝ) − PR(g∗) = Op {λn + (nλn)
−q} ,

where q = 1/(4/p + 1) and g∗ is the function minimizing PR(g).

Remark 4.2. If we choose λn = n−q/(q+1), then the optimal rate from Theorem 4.2

becomes

PR(ĝ) − PR(g∗) = O(n−q/(q+1)).

4.3 Simulation Studies

4.3.1 Simulation Setup

In this section, we illustrate the finite sample performance of the proposed method

in various settings. In all scenarios, we generated both failure times and censoring times

to be dependent on the covariates. First we simulated five covariates X = (X1, . . . ,X5)

which are marginally normal N(0,0.52) with pairwise correlation corr(Xj,Xk) = ρ∣j−k∣,

and ρ = 0.5. The failure times were generated from the Cox model with true beta =

(2,−1.6,1.2,−0.8,0.4)T and the exponential distribution 0.25t was assumed for the base-

line cumulative hazard function Λ(t). We simulated two types of censoring distribu-

tions. In the first type, the censoring times were generated from an accelerated failure

time model following the log-normal distribution, i.e., lnN(XTβc + a,0.52), with true

βc = (1,1,1,1,1)T . In the second type, the distribution of the censoring times follows

the Cox model with true βc = (1,1,1,−2,−2)T and the baseline cumulative hazard func-

tion Λc(t) = bt (b > 0). The parameters a and b were chosen to obtain the desired
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censoring ratio. We considered the censoring ratios 40% and 60%. Any failure times

or censored times greater than u0 were truncated at u0, where u0 is the 90th percentile

of the failure times. Moreover, we explored some generalizations of the above scenarios

to include more covariates in the regression models and include additional noise vari-

ables. Besides these training data sets, we use a randomly generated testing data set

of size 10000 in each scenario including only the failure times to evaluate prediction

performance. We experiment two sample sizes, 100 and 200.

For all scenarios, we compared the proposed SVHR with the modified support vector

regression for right censored data based on the ranking constraints (modified SVR)

(Van Belle et al., 2011) and the inverse-probability-of-censoring weighting (IPCW)

(Goldberg and Kosorok, 2013). We used linear kernel K(x,x′) = xTx′ in all three

methods, and used 5-fold cross-validation to choose the tuning parameters from the grid

of {2−16,2−15, . . . ,215,216}. As model comparison criterion, we adapted mean squared

error for censored data, which only sums up the mean squared differences between the

fitted event times and observed event times if uncensored, and between fitted times

and censoring times if censored and the predicted values are smaller than the observed

values. The mean squared differences are assumed to be zero if censored and the

predicted values are greater than the observed values. We divided the total sum of

squares by the total number of observations. We repeated the simulation 500 times.

4.3.2 Simulation Results

Table 4.1 and 4.2 give the average Pearson correlations and root mean square er-

rors {∑(T̂ − T )2}1/2 based on the fitted failure times and observed failure times T in

the testing data set. Larger correlation and smaller root mean square error indicate

better performance. SVHR outperforms the other two methods for all the simulation

cases and sample sizes. The advantages are not affected by including 5 noise variables,
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and the improvements become more evident when the censoring ratio is 60% or the

censoring distribution follows the accelerated failure time model. The columns of the

average correlations show that the modified SVR has the similar capability to capture

the rank information as SVHR. However, it gives less accurate prediction of the exact

failure times measured by the higher RMSEs. The IPCW methods have the worst

performances among all the methods, no matter using the Kaplan-Meier estimator or

fitting a Cox model to estimate the censoring distribution, even when the censoring dis-

tribution follows the Cox model. The performances of all the methods are improved as

the sample size increases from 100 to 200, and our method has the largest improvement

with respect to the ratios of the average root mean squared errors. We also explored

training the data with a Gaussian kernel for the sample size 100 and the computation

is more intensive. The resulting average correlations and root mean square errors are

similar to those in Table 4.1 and 4.2, and therefore not shown.

4.4 Application

4.4.1 Huntington’s Disease Study Data

We apply our method to the data collected from a neurological disease (Huntington’s

disease, HD) study (Paulsen et al., 2008). HD is a severe dominant genetic disorder for

which at risk subjects can be identified through a genetic testing of C-A-G expansion

status at the ITI5 gene (Huntington’s Study Investigators 1993). The availability of

genetic testing and virtually complete penetrance of gene provides opportunity for early

intervention. In the data we analyze here, pre-manifest HD subjects in the absence of

experimental treatment were recruited (Paulsen et al., 2008). The goal of the study

is to identify and combine salient clinical markers and biological markers sensitive

enough to detect early indicators of gradual changes of patient disease progression

before evident clinical signs of HD emerge. In this example, we have 705 subjects for
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Table 4.1: Comparison of three support vector learning methods for right censored data
using a linear kernel, with censoring times following the accelerated failure time model.

# of n = 100 n = 200

Censoring Noises Method Corr. a RMSE b Ratio c Corr. RMSE Ratio
40% 0 Modified SVR 0.59 5.59 (0.60) 1.19 0.62 5.58 (0.58) 1.24

IPCW-KM d 0.40 5.60 (0.52) 1.20 0.45 5.45 (0.41) 1.21
IPCW-Cox 0.43 5.80 (0.64) 1.24 0.50 5.62 (0.57) 1.25

SVHR 0.61 4.68 (0.27) 1.00 0.64 4.49 (0.17) 1.00

5 Modified SVR 0.55 5.64 (0.60) 1.15 0.61 5.63 (0.57) 1.22
IPCW-KM 0.32 5.93 (0.47) 1.21 0.42 5.63 (0.44) 1.22
IPCW-Cox 0.33 6.17 (0.54) 1.26 0.44 5.87 (0.57) 1.27

SVHR 0.58 4.90 (0.35) 1.00 0.63 4.62 (0.20) 1.00

95e Modified SVR 0.21 6.65 (0.89) 1.10 0.30 6.32 (0.52) 1.10
IPCW-KM 0.06 6.33 (0.21) 1.05 0.10 6.28 (0.14) 1.09
IPCW-Cox 0.08 6.59 (0.23) 1.09 0.11 6.61 (0.39) 1.15

SVHR 0.22 6.04 (0.32) 1.00 0.32 5.76 (0.25) 1.00

60% 0 Modified SVR 0.55 6.00 (0.54) 1.16 0.60 6.07 (0.42) 1.24
IPCW-KM 0.15 6.45 (0.41) 1.25 0.18 6.42 (0.37) 1.32
IPCW-Cox 0.21 6.56 (0.47) 1.27 0.26 6.47 (0.48) 1.33

SVHR 0.57 5.18 (0.43) 1.00 0.61 4.88 (0.33) 1.00

5 Modified SVR 0.50 6.06 (0.53) 1.12 0.57 6.07 (0.50) 1.21
IPCW-KM 0.11 6.61 (0.34) 1.22 0.15 6.56 (0.32) 1.31
IPCW-Cox 0.15 6.77 (0.39) 1.25 0.21 6.66 (0.39) 1.33

SVHR 0.51 5.40 (0.48) 1.00 0.58 5.02 (0.33) 1.00

95 Modified SVR 0.17 6.90 (1.08) 1.11 0.25 7.12 (1.42) 1.20
IPCW-KM 0.01 6.53 (0.26) 1.05 0.03 6.54 (0.20) 1.10
IPCW-Cox 0.02 6.87 (0.20) 1.10 0.04 6.86 (0.21) 1.15

SVHR 0.17 6.22 (0.24) 1.00 0.26 5.94 (0.25) 1.00

aCorr., average number of correlations.

bRMSE, average number of root mean square errors.

cRatio, ratio of average root mean square errors between the method used and our method.

dIPCW-KM, IPCW using the Kaplan-Meier estimator for the censoring distribution; IPCW-Cox,
IPCW using the Cox model for the censoring distribution.

eFor the cases of 95 noises, the calculation of inverse weights in the IPCW-Cox method uses only
five signal variables to fit the Cox model for the censoring times.
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Table 4.2: Comparison of three support vector learning methods for right censored
data using a linear kernel, with censoring times following the Cox proportional hazards
model

# of n = 100 n = 200

Censoring Noises Method Corr. a RMSE b Ratio c Corr. RMSE Ratio
40% 0 Modified SVR 0.59 5.15 (0.59) 1.11 0.62 5.09 (0.54) 1.12

IPCW-KM d 0.53 5.16 (0.42) 1.11 0.55 5.08 (0.31) 1.12
IPCW-Cox 0.52 5.31 (0.57) 1.14 0.56 5.09 (0.46) 1.12

SVHR 0.61 4.66 (0.25) 1.00 0.63 4.53 (0.16) 1.00

5 Modified SVR 0.56 5.28 (0.51) 1.08 0.61 5.09 (0.50) 1.12
IPCW-KM 0.46 5.58 (0.42) 1.14 0.52 5.27 (0.34) 1.13
IPCW-Cox 0.44 5.73 (0.52) 1.17 0.51 5.41 (0.51) 1.16

SVHR 0.58 4.89 (0.29) 1.00 0.62 4.65 (0.18) 1.00

95e Modified SVR 0.21 6.43 (0.92) 1.04 0.33 6.06 (0.59) 1.05
IPCW-KM 0.17 6.16 (0.21) 1.00 0.24 6.06 (0.18) 1.05
IPCW-Cox 0.16 6.32 (0.23) 1.02 0.22 6.21 (0.22) 1.07

SVHR 0.23 6.18 (0.40) 1.00 0.34 5.78 (0.24) 1.00

60% 0 Modified SVR 0.56 5.43 (0.56) 1.08 0.59 5.43 (0.47) 1.12
IPCW-KM 0.44 5.68 (0.43) 1.13 0.46 5.62 (0.33) 1.16
IPCW-Cox 0.42 5.83 (0.56) 1.16 0.47 5.67 (0.48) 1.17

SVHR 0.57 5.01 (0.37) 1.00 0.60 4.85 (0.25) 1.00

5 Modified SVR 0.50 5.61 (0.48) 1.07 0.57 5.40 (0.46) 1.09
IPCW-KM 0.36 6.02 (0.38) 1.15 0.43 5.79 (0.35) 1.17
IPCW-Cox 0.34 6.25 (0.44) 1.20 0.41 5.96 (0.47) 1.20

SVHR 0.53 5.23 (0.37) 1.00 0.59 4.96 (0.27) 1.00

95 Modified SVR 0.18 6.47 (0.87) 1.05 0.26 6.36 (0.90) 1.06
IPCW-KM 0.12 6.22 (0.29) 1.01 0.18 6.19 (0.21) 1.03
IPCW-Cox 0.12 6.54 (0.26) 1.07 0.16 6.50 (0.23) 1.08

SVHR 0.20 6.14 (0.38) 1.00 0.28 6.00 (0.35) 1.00

aCorr., average number of correlations.

bRMSE, average number of root mean square errors.

cRatio, ratio of average root mean square errors between the method used and our method.

dIPCW-KM, IPCW using the Kaplan-Meier estimator for the censoring distribution; IPCW-Cox,
IPCW using the Cox model for the censoring distribution.

eFor the cases of 95 noises, the calculation of inverse weights in the IPCW-Cox method uses only
five signal variables to fit the Cox model for the censoring times.
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analysis after excluding the data with missing covariates, and 126 of them developed

HD during the 10-year course of study. For each subject, a wide range of measures on

motor, psychiatric and cognitive signs are collected. The covariates cover important

clinical and functional domains of HD including CAP score (a combination of age and

C-A-G repeats length, Zhang et al, (2011)), symbol digital modality test, STROOP

color, word and interference tests, total functional capacity scores, UHDRS total motor

scores, various SCL-90 psychiatric scores and demographic variables such as gender and

education in years.

We study the prediction capability of the above fifteen baseline markers predicting

the age-at-onset of HD during the study period. We also evaluate the usefulness of

the combined score in performing risk stratification. We apply the proposed SVHR,

modified SVR, and IPCW to analyze the data and compare their performances. The

covariates are normalized to the same scale for numeric stability. The predicted values

of onset ages are obtained via three-fold cross validation, and the cost tuning parameter

is chosen from the grid 2−16,2−15, . . . ,216. We consider both linear kernel and Gaussian

kernel. For the Gaussian kernel written as K(x,x′) = exp(−γ∥x − x′∥2), the parameter

γ is fixed to be 0.005. To compare the prediction capability, we computed several

quantities using the predicted values of onset ages and the original values of onset ages

at the disease diagnosis or at the censoring. Specifically, we report the concordance

index defined as the percentage of correctly ordered pairs among all feasible pairs (C-

index). In addition, to evaluate the ability of the fitted scores on performing risk

stratification, we separated the data into two groups using various percentiles of the

combined predictive scores as cut points. We report the Chi-square statistics from the

logrank test and the hazard ratios comparing the hazard of developing HD between

two groups from fitting a univariate Cox model based on percentile splitting.

The results are given in Table 4.3. The proposed SVHR significantly improves the
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other methods with respect to all the quantities for both linear kernel and Gaussian

kernel, and the performances are similar using different kernels. The logrank Chi-

square statistics and hazard ratio of SVHR is much larger than all competing methods

in all quantiles. In addition, the logrank statistics and concordance index indicate that

the predictions of IPCW cannot capture the trend of the original onset ages. Figure

4.1 complements the results in the table by plotting the hazard ratios comparing two

groups separated using a series of percentiles of the predicted values as cut points,

and SVHR consistently has the largest hazard ratio across all percentiles among all

methods. The improvement of SVHR increases at the higher percentiles indicating it is

particularly effective in discriminating high risk subjects. This result is consistent with

our theoretical results which reveal that SVHR is optimal in separating the individual

covariate-specific hazard function, h(t, x) given x, from the population average hazard

function, h̄n(t).

We show the fitted coefficients from SVHR of the markers in Table 4.4 and compare

with fits from a Cox proportional hazards model. The top ranking markers with largest

standardized effects from both model include baseline total motor score and CAP score,

which is consistent with the clinical literature on the importance of these markers on the

diagnosis of HD (Paulsen et al., 2008). SVHR suggests that the baseline total motor

score appears to be slightly more predictive than CAP score in terms of predicting

future HD diagnosis during the trial. The neuropsychological markers (Stroop color,

Stroop word, SDMT) are predictive but not Stroop interference. The coefficients from

Cox model however, suggest that SDMT is not important, which may not be consistent

with the clinical literature (Paulsen, 2011). Lastly, SVHR gives psychiatric markers

(SCL 90 depression, GSI, PST and PSDI) low weights, which is consistent with clinical

observations that the psychiatric markers are considered as less informative for HD

diagnosis due to reasons such as subjects may seek treatment. In contrast, Cox model
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Table 4.3: Comparison of prediction capability for different methods using Huntington’s
disease data

25th percentile 50th percentile 75th percentile
Kernel Method C-index Logrank χ2 a HR b Logrank χ2 HR Logrank χ2 HR
Linear Modified SVR 0.71 42.50 3.08 27.53 2.98 13.41 3.82

IPCW-KM 0.44 0.06 1.06 0.23 1.09 1.39 1.26
IPCW-Cox 0.54 5.47 1.57 5.66 1.53 0.90 1.22

SVHR 0.75 81.79 4.68 35.12 4.74 16.53 7.76

Gaussian Modified SVR 0.72 46.53 3.27 30.24 3.34 14.33 3.67
IPCW-KM 0.44 0.32 1.16 0.86 1.19 1.50 1.27
IPCW-Cox 0.53 5.42 1.57 3.89 1.42 1.97 1.34

SVHR 0.75 78.66 4.63 36.78 4.68 17.46 8.11

aLogrank χ2, Chi-square statistics from Logrank tests for two groups separated using the 25th
percentile, 50th percentile, and 75th percentile of predicted values.

bHR, Hazard Ratios comparing two groups separated using the 25th percentile, 50th percentile,
and 75th percentile of predicted values.

yields high weights for these markers.

4.4.2 Atherosclerosis Risk in Communities Study Data

As a second example, we consider data from the Atherosclerosis Risk in Communi-

ties Study, a prospective investigation of the aetiology of atherosclerosis and its clinical

sequelae, as well as the variation in cardiovascular risk factors, medical care and disease

by race, gender, location and date (The ARIC Investigators, 1989). The study includes

four examinations. The baseline examination of the cohort was conducted from 1987

to 1989, and enrolled 15792 participants of ages 45–64 from four U.S. communities. In

this example, we apply our method to part of the baseline data, where participants are

African-American males with hypertension living in Jackson, Mississippi. We assess

the prediction capability of some common cardiovascular risk factors for incident heart

failure until 2005. Specifically, these risk factors include age, diabetes status, body

mass index, systolic blood pressure, fasting glucose, serum albumin, serum creatinine,
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Figure 4.1: Hazard Ratios comparing two groups separated using percentiles of pre-
dicted values as cut points for Huntington’s disease data. Dotted curve: Modified
SVR; Dashed curve: IPCW-KM; Dashed-dotted curve: IPCW-Cox; Black solid curve:
SVHR.
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Table 4.4: Normalized coefficient estimates using linear kernel for Huntington’s disease
data

Marker Normalized β Cox model a

Total Motor Score 0.680 0.354 *
CAP 0.440 0.334 *
Stroop Color -0.235 -0.247
Stroop Word -0.208 -0.107
SDMT -0.151 -0.076
Stroop Interference 0.034 0.271
FRSBE Total 0.246 0.242
UHDRS Psychiatric 0.197 0.270
SCL90 Depression -0.062 -0.306
SCL90 GSI -0.004 0.114
SCL90 PST -0.081 -0.217
SCL90 PSDI 0.096 0.061
TFC -0.054 -0.047
Education -0.025 -0.092
Male Gender -0.315 -0.392 *

aThe estimates from Cox model with significant p-value (p-value < 0.05) are marked with *.

heart rate, left ventricular hypertrophy, bundle branch block, prevalent coronary heart

disease, valvular heart disease, high-density lipoprotein, pack-years of smoking, and

current and former smoking status.

The analysis consists of 624 participants, after excluding those with missing risk

factors. Incident heart failure occurred in 133 men through 2005, with a median follow-

up time 16.2 years. Among those participants who did not develop heart failure, 324

were administratively censored on December 31st, 2005. We analyze the data following

the same procedure as in Section 4.4.1. The results for prediction capability of different

methods are given in Table 4.5. SVHR provides more accurate prediction than other

methods using the linear kernel. It also has higher Logrank test statistic and hazard

ratio comparing high risk versus low risk group using various percentiles of the predictive

scores as cut off points in most cases. In Table 4.6, we can see that all the risk factors

have positive effects on the incident heart failure except HDL, serum albumin and
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Table 4.5: Comparison of prediction capability for different methods using Atheroscle-
rosis Risk in Communities data

25th percentile 50th percentile 75th percentile
Kernel Method C-index Logrank χ2 a HRb Logrank χ2 HR Logrank χ2 HR
Linear SURSVMR 0.74 90.52 4.63 59.11 4.16 31.85 5.01

IPCW-KM 0.69 54.90 3.48 29.53 2.64 22.92 3.45
IPCW-Cox 0.71 48.34 3.24 39.70 3.12 27.63 4.32
Our method 0.76 95.09 4.78 67.06 4.63 34.93 5.36

Gaussian SURSVMR 0.76 105.10 5.12 70.41 4.87 37.66 6.39
IPCW-KM 0.70 58.15 3.61 33.49 2.81 19.61 3.00
IPCW-Cox 0.72 52.77 3.39 47.10 3.50 27.99 4.37
Our method 0.77 111.10 5.31 64.79 4.53 35.60 5.76

aLogrank χ2, Chi-square statistics from Logrank tests for two groups separated using the 25th
percentile, 50th percentile, and 75th percentile of predicted values.

bHR, Hazard Ratios comparing two groups separated using the 25th percentile, 50th percentile,
and 75th percentile of predicted values.

former smoking status. We also present estimated coefficients from a Cox proportional

hazards model as comparison in Table 4.6. Most coefficients are comparable in terms of

size. However, note that higher fasting glucose level appears to be protective of heart

failure using Cox model, which is the opposite of the expected direction. Contrary,

fasting glucose has a positive sign using SVHR, which is consistent with the clinical

literature.

4.5 Remarks

In this chapter, we propose a novel framework for predicting the event times using

right-censored data by support vector hazards regression. Asymptotically, we justify

the associated universal consistency and learning rate through the structural risk min-

imization and show a natural link between the fitted decision function and the true

hazard function: the fitted decision rule asymptotically minimizes the integrated dif-

ference between the covariate-specific hazard function and population average hazard
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Figure 4.2: Hazard Ratios comparing two groups separated using percentiles of pre-
dicted values as cut points for Atherosclerosis Risk in Communities data. Dotted
curve: Modified SVR; Dashed curve: IPCW-KM; Dashed-dotted curve: IPCW-Cox;
Black solid curve: SVHR.
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Table 4.6: Normalized coefficient estimates using linear kernel for Atherosclerosis Risk
in Communities data

Covariate a Normalized β Cox model b

Age (in years) 0.363 0.328 *
Diabetes 0.288 0.221 *
BMI (kg/m2) 0.150 0.136
SBP (mm of Hg) 0.172 0.178
Fasting glucose (mg/dL) 0.173 -0.093
Serum albumin (g/dL) -0.363 -0.273 *
Serum creatinine (mg/dl) 0.007 0.029
Heart rate (beats/minute) 0.124 0.125
Left ventricular hypertrophy 0.250 0.158 *
Bundle branch block 0.341 0.242 *
Prevalent CHD 0.330 0.216 *
Valvular heart disease 0.200 0.169 *
HDL (mg/dl) -0.287 -0.436 *
LDL (mg/dl) 0.016 0.051
Pack years of smoking 0.289 0.230 *
Current smoking status 0.210 0.022
Former smoking status -0.133 -0.232 *

aBMI, body mass index; SBP, systolic blood pressure; CHD, coronary heart disease; HDL, high-
density lipoprotein; LDL, low-density lipoprotein.

bThe estimates from Cox model with significant p-value (p-value < 0.05) are marked with *.
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function. The simulation studies and real data applications demonstrate satisfactory

results in finite samples with much improved overall accuracy and stable prediction in

the presence of noise variables compared to other methods, especially when the cen-

soring rate is high and the distribution of censoring times is unknown. The success

of our method is due to introducing counting processes to represent the time-to-event

data, which leads to an intuitive connection of the method with both support vector

machines in standard supervised learning and hazard regression models in standard

survival analysis.

In practice, one potential challenge is the large number of parameters to be op-

timized and the fast growing dimensions of the quadratic programming optimization

as the sample size increases. The latter part is a typical problem encountered by the

standard support vector machines and the sequential minimal optimization algorithm

(Platt, 1999) was developed to tackle the issue. However, this algorithm cannot be

easily adapted to our method due to the time-specific intercepts α(t). To improve

computational efficiency, one possible solution is to round the event times into some

small number of distinct values. When predicting the event times, the only assump-

tion we depend on is their monotone relationship with the fitted one-dimensional risk

scores obtained from the learning algorithm. Although the nearest-neighbor method is

adopted here and provides promising results, other methods based on this assumption

such as linear regression or monotone kernel regression may also be reasonable choices.

Interpolation may be needed when there are only few distinct survival times in the

training data.

In the current framework, the time-specific prediction rules f(t,X) being considered

include only a class of additive rules. From the perspective of survival analysis, it may

be generalized to be fully nonparametric. As a result, one would be able to predict

the whole counting process instead of only the survival times, and the time-varying
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covariates can be handled in an automatic way. However, this generalization may

lose the similarity of formulation to the standard support vector machines and cause

numerical instability in the optimization algorithm. These challenging issues will be

further investigated in future work.

4.6 Appendix: Proof of Theorems

Here we sketch the proofs of Theorem 4.1 and 4.2.

Proof of Theorem 4.1. Since f∗(t, x) minimizes R(f), conditional X = x, f∗(t, x) also

minimizes

E (

ˆ
[1 − f(t,X)]+dN(t)∣X = x) +

ˆ
E (Y (t)[1 + f(t,X)]+∣X = x)

E{Y (t)}
E{dN(t)}. (4.6)

Clearly, the value f∗(t, x) should belong to the interval [−1,1], because otherwise trun-

cation of f at −1 or 1 gives a lower value. Assuming −1 ≤ f(t, x) ≤ 1, (4.6) becomes

ˆ
E{Y (t)∣X = x}{h(t, x) + h̄(t)}dt −

ˆ
f(t, x)E{Y (t)∣X = x}{h(t, x) − h̄(t)}dt,

where h(t, x) denotes the conditional hazard rate of T = t given X = x and h̄(t) is the

population average hazard at time t,

h̄(t) =
E[dN(t)]/dt

E[Y (t)]
= E[h(t,X)∣Y (t) = 1].

Therefore, one optimal decision function minimizing RL(f) is

f∗(t, x) = sign{h(t, x) − h̄(t)}.
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On other hand, we note

R0(f) =

ˆ
I[f(t, x) ≤ 0]E (Y (t)∣X = x)h(t, x)dt

+

ˆ
I[f(t, x) ≥ 0]E (Y (t)∣X = x) h̄(t)dt.

Thus, any decision function has the same sign as (h(t, x) − h̄(t)) minimizes R0(f) so

f∗(t, x) minimizes R0(f). Finally, under the optimal rule f∗(t, x), the minimal value

of the weighted 0-1 risk is given as

R0(f
∗) = E [

ˆ
E{Y (t)∣X = x}min{h(t, x), h̄(t)}dt]

=
1

2
E [

ˆ
E{Y (t)∣X = x}{h(t, x) + h̄(t) − ∣h(t, x) − h̄(t)∣}dt]

= P (T ≤ C) −
1

2
E [

ˆ
E{Y (t)∣X = x}∣h(t, x) − h̄(t)∣dt] .

To show the last inequality in Theorem 4.1, we note hat for −1 ≤ f(t, x) ≤ 1,

R(f) = E [

ˆ
E{Y (t)∣X = x}{h(t, x) + h̄(t)}dt

−

ˆ
f(t, x)E{Y (t)∣X = x}{h(t, x) − h̄(t)}dt]

= 2P (T ≤ C) −E [

ˆ
f(t, x)E{Y (t)∣X = x}{h(t, x) − h̄(t)}dt] ,

and

R(f∗) = 2P (T ≤ C)

− E [

ˆ
sign{h(t, x) − h̄n(t)}E{Y (t)∣X = x}{h(t, x) − h̄(t)}dt] .
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Thus,

R(f) −R(f∗)

= E [

ˆ
E{Y (t)∣X = x}{sign{h(t, x) − h̄(t)} − f(t, x)} × {h(t, x) − h̄(t)}dt]

= E [

ˆ
E{Y (t)∣X = x} ∣f(t, x) − sign{h(t, x) − h̄(t)}∣ × ∣h(t, x) − h̄(t)∣dt]

On the other hand, for the risk function based on the 0-1 loss, we have

R0(f) −R0(f
∗)

= E [

ˆ
E{Y (t)∣X = x} (I[f(t, x) ≤ 0]h(t, x))dt]

+ E [

ˆ
E{Y (t)∣X = x} (I[f(t, x) ≥ 0]h̄(t) −min{h(t, x), h̄(t)})dt]

= E [

ˆ
E{Y (t)∣X = x} ∣h(t, x) − h̄(t)∣ × I ({h(t, x) − h̄(t)}sign{f(t, x)} < 0)dt] .

Note that

I ({h(t, x) − h̄(t)}sign{f(t, x)} < 0) ≤ ∣f(t, x) − sign{h(t, x) − h̄(t)}∣ .

We then obtain R0(f) −R0(f∗) ≤ R(f) −R(f∗).

Proof of Theorem 4.2. The proof Theorem 4.2 follows a similar procedure to the stan-

dard support vector machine theory. However, the main difference is that the proof

handles PRn(f) instead of the simple empirical mean of the hinge-loss in the standard

theory. Let gλn be the function in Hn which minimizes λn∥g∥2
Hn

+ PR(g). The proof

consists of the following steps.

First, we derive a preliminary bound for some norms of ĝ. Clearly,

λn∥gλn∥
2
Hn + PR(gλn) ≤ PR(0).
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This gives ∥gλn∥Hn ≤
√
c/λ for some constant λn so by Lemma 4.23 (Steinwart and

Christmann, 2008, p124), we obtain ∥gλn∥∞ ≤
√
c/λn. Furthermore, using the fact

λn∥ĝ∥
2
Hn + PRn(ĝ) ≤ λn∥gλn∥

2
Hn + PRn(gλn),

we conclude ∥ĝ∥Hn ≤
√
c/λn so ∥ĝ∥∞ ≤

√
c/λn, where cmay be another different constant

(without confusion, we always use c to denote some constant). Therefore, we can restrict

g in the minimization of (4.2) to be in
√
c/λnBHn , where BHn be the unit ball in Hn.

Second, we obtain a key inequality for comparing the risks of ĝ and gλn . By the

definition of ĝ, the following fact holds:

λn∥ĝ∥
2
H + PR(ĝ) − (λn∥gλn∥ + PR(gλn))

≤ λn∥ĝ∥
2
H + PR(ĝ) − (λn∥gλn∥ + PR(gλn))

− [λn∥ĝ∥
2
H + PRn(ĝ) − (λn∥gλn∥ + PRn(gλn))]

= PR(ĝ) − PRn(ĝ) − {PR(gλn) − PRn(gλn)} .

From Step 1, we conclude

λn∥ĝ∥
2
H + PR(ĝ) − (λn∥gλn∥ + PR(gλn)) ≤ 2 sup

∥g∥Hn≤
√
c/λn

∣PRn(g) − PR(g)∣. (4.7)

We derive a bound for the right-hand side of (4.7). First,

PRn(g) − PR(g) = (Pn − P )fg(Y,X,∆) −
2

n
Pn {

∆

P̃n[I(Ỹ ≥ Y )]
} ,
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where

fg(Y,X,∆) = ∆
P̃n{I(Ỹ ≥ Y )[2 + g(X̃) − g(X)]+}

P̃n[I(Ỹ ≥ Y )]

+ P̃ (∆̃
I(Y ≥ Ỹ )[2 + g(X) − g(X̃)]+

P̃n[I(Ỹ ≥ Y )]
)

− P̃ (∆̃
I(Y ≥ Ỹ )P ∗{I(Y ∗ ≥ Ỹ )[2 + g(X∗) − g(X̃)]+}

P ∗
n [I(Y

∗ ≥ Ỹ )]P ∗[I(Y ∗ ≥ Ỹ )]
) .

Therefore,

sup
∥g∥Hn≤

√
c/λn

∣PRn(g) − PR(g)∣ ≤ sup
∥g∥Hn≤

√
c/λn

∣(Pn − P )fg ∣ + c/n.

On the other hand, from Theorem 3.1 in Steinwart and Scovel (2007), we have

logN(ε,
√
c/λnBHn , l∞) ≤ cp,dσ

(p/4−1)d
n

⎛

⎝

ε
√
c/λn

⎞

⎠

−p

≤ cp,dσ
(p/4−1)d
n λ

−p/2
n ε−p,

where N(ε,F, l∞) is the ε-covering number of F under l∞-norm, d is the dimension of

X, p is any number in (0,2) and cp,d is a constant only depending on (p, d). Moreover,

we note that by the property of the hinge-loss, fg is the Lipschitz continuous in g and

satisfies

∣fg1 − fg2 ∣ ≤ c∣g1 − g2∣.

This implies

logN(ε,{fg/an ∶ g ∈
√
c/λnBHn}, l∞) ≤ cp,dσ

(p/4−1)d
n ε−p,

where an =
√
c/λnσ

−(1−p/4)d/p
n . Therefore, according to Theorem 2.14.10 in van der Vaart
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and Wellner (1996), we obtain

P
⎛

⎝

√
n sup

∥g∥Hn≤
√
c/λn

∣(Pn − P )(fg/an)∣ > x
⎞

⎠
≤ e−cx

2

for some constant c only depending on (p, d). Consequently, (4.7) gives

P (λn∥ĝ∥
2
H + PR(ĝ) − (λn∥gλn∥ + PR(gλn)) > cn

−1 + ann
−1/2x) ≤ e−cx

2

.

Hence, we have proved

λn∥ĝ∥
2
Hn + PR(ĝ) ≤ inf

g∈Hn
{λn∥g∥Hn + PR(g)} +Op

⎛

⎝

λ
−1/2
n σ

−(1/p−1/4)d
n
√
n

⎞

⎠
.

Let g∗ = argminPR(g). From the expression of PR(g), we note

∣PR(g) − PR(g∗)∣ ≤ c∥g − g∗∥L1(P ).

Thus, if we define

g̃(x) =
2σ

−d/2
n

πd/4

ˆ
e−∥x−y∥

2/(2σ2
n)g∗(y)dy,

then g̃ ∈Hn and

∥g − g∗∥Hn ≤ ∥g − g∗∥L2(P ) ≤ cσ
d/2
n .

Therefore,

inf
g∈Hn

{λn∥g∥Hn + PR(g)} ≤ {λn∥g̃∥Hn + PR(g̃)} ≤ PR(g∗) + cσ
d/2
n + cλn.

The result in Theorem 4.2 holds.
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CHAPTER5: SUPPORT VECTOR MACHINES FOR PREDICTING
RECURRENT EVENTS

5.1 Methodology

5.1.1 Generalization of Support Vector Machines

For a random sample of n subjects, let Tik be the kth event time and Ci the censoring

time for the ith subject. Let Xi denote the corresponding vector of baseline covariates

and Zi(⋅) the corresponding vector of time-varying covariates. Here we only consider

Zi(⋅) that depends on the prior recurrence history of the ith subject and changes at

event times Tik. Thus the observed data at kth recurrence consist of {Tik ∧Ci, I(Tik ≤

Ci),Xi, Zi(Tik ∧ Ci)} for i = 1, . . . , n. We first focus on using a linear score of X

and Z(⋅) to predict the recurrent events. Define the observed counting process as

Ni(t) = ∑k I(Tik ∧ Ci ≤ t) and define the observed at-risk process as Yi(t) = I(Ci ≥ t).

Assume there are d distinct ordered event times over all the observed recurrences,

t1 < t2 < . . . ,< td with d = ∑k∑
n
i=1 I(Tik ≤ Ci). At each time point tj (j = 1, . . . , d) and

for all the subjects still at risk, we identify a linear risk score

f(tj,Xi, Zi(⋅)) = α(tj) +X
T
i β +Z

T
i (tj)γ

to classify the time-varying binary outcome δNi(tj) ≡ Ni(tj) −Ni(tj−) with maximal

separation between the subjects who experience the event and those who do not. The

time-varying intercept α(tj) allows the classification boundary to vary with time, and

is also used to identify multiple records of the same subjects at different event times.
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Redefine δNi(tj) ≡ 2[Ni(tj) −Ni(tj−)] − 1 to be consistent with standard support

vector machine. We maximize the margin M between subjects in the event and no-

event classes subject to the constraints on the misclassification rate. This is, we solve

the optimization problem

max
α(tj),β,γ,∥β,γ∥=1

M,

subject to Yi(tj)δNi(tj){α(tj) +X
T
i β +Z

T
i (tj)γ} ≥ Yi(tj){1 − ζi(tj)},

Yi(tj)ζi(tj) ≥ 0,
n

∑
i=1

d

∑
j=1

wi(tj)Yi(tj)ζi(tj) ≤ τn, i = 1, . . . , n, j = 1, . . . , d,

where the value ζi(tj) is the proportional amount by which the prediction f(tj,Xi, Zi(⋅))

is on the wrong side of its margin, τn is a pre-specified constant, and

wi(tj) = I {δNi(tj) = 1}{1 −
1

∑
n
i=1 Yi(tj)

} + I {δNi(tj) = −1}{
1

∑
n
i=1 Yi(tj)

} .

This is a nice convex optimization problem, and the prediction rules can be easily

calculated by the quadratic programming algorithms. The weights wi(tj)s give large

weights to events and small weights to non-events to adjust for the one vs. many

problem at each event time.

To derive the dual form of the above maximization problem, note that it is equivalent

to

min
α(tj),β,γ

1

2
∥β∥

2
+

1

2
∥γ∥

2
+Cn

N

∑
i=1

d

∑
j=1

wi(tj)Yi(tj)ζi(tj)

subject to Yi(tj)ζi(tj) ≥ 0,

Yi(tj)δNi(tj){α(tj) +X
T
i β +Zi(tj)

Tγ} ≥ Yi(tj){1 − ζi(tj)},

where Cn is the cost parameter. We can further convert the above problem to its dual
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form by using the corresponding Lagrangian function

Lp =
1

2
∥β∥

2
+

1

2
∥γ∥

2
+Cn

n

∑
i=1

d

∑
j=1

wi(tj)Yi(tj)ζi(tj) −
n

∑
i=1

d

∑
j=1

µijYi(tj)ζi(tj)

−
n

∑
i=1

d

∑
j=1

ηij[Yi(tj)δNi(tj){α(tj) +X
T
i β +Zi(tj)

Tγ} − Yi(tj){1 − ζi(tj)}].

We minimize LP with respect to β, γ, α(tj), and ζi(tj). Setting the respective deriva-

tives to zero, we obtain

β =
n

∑
i=1

d

∑
j=1

ηijYi(tj)δNi(tj)X
T
i , (5.1)

γ =
n

∑
i=1

d

∑
j=1

ηijYi(tj)δNi(tj)Zi(tj)
T , (5.2)

n

∑
i=1

ηijYi(tj)δNi(tj) = 0, (5.3)

Cnwi(tj)Yi(tj) − µijYi(tj) = ηijYi(tj), i = 1, . . . , n, j = 1, . . . , d, (5.4)

as well as the positivity constraints ηij, µij, ζi(tj) ≥ 0 ∀i, j. By substituting these back

to Lp, the dual objective function is

LD =
n

∑
i=1

d

∑
j=1

ηijYi(tj)

−
1

2

n

∑
i=1

n

∑
i′=1

d

∑
j=1

d

∑
j′=1

ηijηi′j′Yi(tj)Yi′(tj′)δNi(tj)δNi′(tj′)[X
T
i Xi′ +Zi(tj)

TZi′(tj′)].

We maximize LD subject to 0 ≤ ηij ≤ wi(tj)Cn and ∑ni=1 ηijYi(tj)δNi(tj) = 0 for i =

1, . . . , n and j = 1, . . . , d. The tuning parameter Cn is chosen using the cross-validation

searching over a grid of values. The Karush-Kuhn-Tucker (KKT) condition includes

the constraints

ηij[Yi(tj)δNi(tj){α(tj) +X
T
i β +Zi(tj)

Tγ} − Yi(tj){1 − ζi(tj)}] = 0, (5.5)
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µijζi(tj) = 0, (5.6)

Yi(tj)δNi(tj){α(tj) +X
T
i β +Zi(tj)

Tγ} − Yi(tj){1 − ζi(tj)} ≥ 0. (5.7)

In the solution of the problem, those points for which η̂ij > 0 are support vectors,

which determine β̂ and γ̂ using (5.1) and (5.2). At each tj, α̂(tj) can be solved by

using the constraints (5.3)-(5.6). Specifically, if there are some support vectors lying

on the edge of the margin which are characterized by 0 < η̂ij < wi(tj)Cn, α̂(tj) =

1/δNi(tj) − XT
i β̂ − Zi(tj)

T γ̂ for these points, and we average of all the solutions for

numerical stability. Otherwise, if all the support vectors at tj are η̂ij = Cnwi(tj), α̂(tj)

is not unique and falls into a range

min
η̂ij=Cnwi(tj),
δNi(tj)=1

{1 −XT
i β̂ −Zi(tj)

T γ̂} ≥ α̂(tj) ≥ max
η̂ij=Cnwi(tj),
δNi(tj)=−1

{−1 −XT
i β̂ −Zi(tj)

T γ̂}.

5.1.2 Prediction of Recurrent Events

In this section we use the learned information to predict the times of recurrent

events for new subjects. We make use of the similarity between our proposed method

and standard multicategory support vector machines from the prospective of supervised

learning. In other words, the classification based on counting process results in d ordered

categories with labels tj (j = 1, . . . , d), i.e. t1 < . . . < td, and all the categories share

the same linear risk score XTβ + Z(⋅)Tγ. Thus, we are able to adapt the Max Wins

algorithm for multicategory prediction in Friedman (1996).

Denote the kth event time of a new subject as T̃k, and given T̃k, we want to predict

the time to the next recurrence T̃k,k+1 using the subject’s baseline covariates X̃ and

time-varying covariates Z̃(T̃k). A two-step method is used. In the first step, we find

out the set of α̂(t)s that are available to be used for the prediction conditional on T̃k.

In the training data set, we use only the subjects who have event times greater than
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T̃k, and use their smallest event times greater than T̃k and the corresponding α̂(t)s.

For example, if we want to predict the first recurrence of a new subject, we use the

first event times of all the subjects in the training data set; and if we want to predict

the second recurrence of a new subject given his/her observed first recurrence T̃1, we

use only the event times greater than T̃1 in the training data set, and we may have a

smaller set of α̂(t)s to be used compared to the prediction of the first recurrence.

In the second step, we adapt the Max Wins algorithm based on the selected set of

α̂(t)s. Suppose that we have d′ ordered elements in the set, i.e., α̂(t1), α̂(t2), . . . , α̂(td′)

with t1 < t2 < . . . < td′ . We assign a score to each t using the signs of f̂(t, X̃, Z̃(T̃k)) =

α̂(t)+ X̃β̂ + Z̃(T̃k)γ̂. Specifically, if f̂(tj, X̃, Z̃(T̃k)) > 0, the scores of event times in the

selected set less than or equal to tj add 1; otherwise, the scores of event times in the

selected set larger than tj add 1. At the end, we find the event time tm in the selected

set with the largest score, and predict the new subject’s (k + 1)th event time from kth

recurrence Tk,k+1 to be tm − T̃k.

The method described so far adopts only the linear score f(t,X,Z(⋅)). As an

advantage of support vector based methods, we can make the procedure more flexible

by considering a non-linear relationship g1(X) and g2(Z(⋅)) instead ofXTβ and ZT (⋅)γ.

This is a straightforward extension because of the expression of the training data in the

form of inner products in the dual objective function LD. The inner products XT
i Xi′

and Zi(tj)TZi′(tj′) can be replaced by kernel functions K(Xi,Xi′) = ⟨g1(Xi)
T , g1(Xi′)⟩

and K(Zi(tj), Zi′(tj′)) = ⟨g2(Zi(tj))T , g2(Zi′(tj′)⟩ to map data into a richer feature

space. The transformation g1 and g2 do not need to be specified explicitly, and only

the knowledge of the kernel function is required. Commonly used kernels are: linear

kernel, K(a, a′) = aTa′; radial basis kernel, K(a, a′) = exp(−∥a − a′∥2/σ2); and dth-

degree polynomial kernel, K(a, a′) = (1 + ⟨a, a′⟩)d. In the non-linear situation, the

99



decision function f(t, X̃, Z̃(⋅)) becomes to

α̂(t) +
n

∑
i=1

d

∑
j=1

η̂ijδNi(tj)K(X̃,Xi) +
n

∑
i=1

d

∑
j=1

η̂ijδNi(tj)K(Z̃(⋅), Zi(tj)),

where X̃ and Z̃(⋅) are baseline and time-varying covariates of the new subject. Then

we can use f(t, X̃, Z̃(⋅)) and follow the same steps to predict the times of recurrence

events.

5.2 Theoretical Properties

In this section we derive the optimal decision rule and Bayesian risk for the proposed

method. By simple algebraic calculations, the optimization problem in Section 5.1 can

be written as a regularization method,

minλn(∥g1∥
2
H1n

+ ∥g2∥
2
H2n

) +
n

∑
i=1

d

∑
j=1

Yi(tj)wi(tj)[1 − f(tj,Xi, Zi(⋅))δNi(tj)]+,

where the subsript ’+’ indicates the positive part of a function, and λn = 1/2Cn. In this

formulation, the empirical risk is

Rn(f) =
1

n

n

∑

i=1

d

∑

j=1

Yi(tj)wi(tj)[1 − f(tj ,Xi, Zi(⋅))δNi(tj)]+

=
1

n

n

∑

i=1

ˆ
[1 − f(t,Xi, Zi(⋅))]+dNi(t) +

1

n

ˆ
∑
n
i=1 Yi(t)[1 + f(t,Xi, Zi(⋅))]+

∑
n
i=1 Yi(t)

d{
n

∑

i=1

Ni(t)}

−
1

n

n

∑

i=1

ˆ
1

∑
n
i=1 Yi(t)

([1 − f(t,Xi, Zi(⋅))]+ + [1 + f(t,Xi, Zi(⋅))]+)dNi(t).

We refer the loss function of Rn(f) as the integrated hinge loss. As n goes to infinity,

the last term in the above equation vanishes, and we obtain the asymptotic limit of
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Rn(f), denoted as R(f),

R(f) = E (

ˆ
[1 − f(t,X,Z(⋅))]+dN(t)) +

ˆ
E (Y (t)[1 + f(t,X,Z(⋅))]+)

E{Y (t)}
E{dN(t)}.

On the other hand, based on the similar rationale of standard support vector machines,

we consider the integrated hinge loss as a convex surrogate loss function for the non-

convex integrated 0-1 loss to make the optimization problem computationally feasible.

As in Chapter 4, we define the empirical risk of the integrated 0-1 loss as

Rn,0(f) =
1

n

n

∑
i=1

d

∑
j=1

Yi(tj)wi(tj)I [f(tj,Xi, Zi(⋅))δNi(tj) ≤ 0] ,

with the asymptotic limit

R0(f) = E (

ˆ
I [f(t,X,Z(⋅)) ≤ 0]dN(t)) +

ˆ
E (Y (t)I [f(t,X,Z(⋅)) ≥ 0])

E{Y (t)}
E{dN(t)}.

To derive the optimal decision rule, we need to find f∗(t, x, z(.)) that minimizes the

asymptotic limit R(f). By plugging f∗(t, x, z(.)) into R0(f), we can obtain the

Bayesian risk of the proposed method. The derivation takes the similar steps as in

Chapter 4, and the following theorem gives the results.

Theorem 5.2.1. Let λ(t, x, z(⋅)) denote the conditional intensity function of T = t

given X = x and Z(⋅) = z(⋅). Let λ̄(t) = E[dN(t)/dt]/E[Y (t)] = E[λ(t,X,Z(⋅))∣Y (t) =

1] be the average intensity rate at time t. Then f∗(t, x, z(⋅)) = sign(λ(t, x, z(⋅)) − λ̄(t))

minimizes R(f). Furthermore, f∗(t, x, z(⋅)) also minimizes R0(f) and

R0(f
∗) = P (T ≤ C) −

1

2
E [

ˆ
E{Y (t)∣X = x,Z(⋅) = z(⋅)}∣λ(t, x, z(⋅)) − λ̄(t)∣dt] .
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Theorem 5.1 indicates that the prediction rule is optimal in comparing the subject-

specific intensity to the average intensity rate for all the subjects still at risk when

predicting the recurrence for a certain subject. In addition, it reveals the nature of

our method from the perspective of survival analysis, which is relying on the intensity

function instead of the cumulative intensity function as in traditional semiparametric

survival models. As a result, this phenomenon has intuitively explained the reason why

we use only one event time greater than T̃k per subject instead of all event times greater

than T̃k in the training data set to predict Tk,k+1 in Section 5.1.2.

5.3 Simulation Studies

5.3.1 Simulation Setup

Simulations are conducted to illustrate the finite sample performance of the pro-

posed method. For each subject we consider three recurrences, k = 1,2,3. We take five

baseline covariates X = (X1, . . . ,X5) which are marginally normal with a mean of 0,

variance 0.25 and pairwise correlation corr(Zj, Zk) = 0.5∣j−k∣. We use one time-varying

covariate Z(⋅) indicating the time of prior recurrence, i.e., Z(⋅) = log(Tk−1) for the kth

recurrence and Z(⋅) = 0 for the first recurrence. The data are generated using a linear

risk score g(X,Z(.), v) =XTβ0+Z(⋅)Tγ0+υ, where β0 = (2,−1.6,1.2,−0.8,0.4)T , γ0 = 1,

and v is a subject-specific frailty that is normally distributed with a mean of 0 and

variance σ2. We examine three different values of σ2, 0, 1, and 2. We generate the gap

times to three recurrences T1, T12, and T23 from three Cox models Λ01(t) exp(g(X,0, v)),

Λ02(t) exp(g(X, log(T1), v)), and Λ03(t) exp(g(X, log(T1 + T12), v)), where the baseline

cumulative hazards Λ01(t), Λ02(t), and Λ03(t) follow three Weibull distributions. Thus,

the gap times to the second (third) recurrence depend on the times of the first (second)

recurrence. Then the total times of the three recurrences are T1, T2 = T1+T12, and T3 =

T2 + T23. The censoring times are also generated from a Cox model Λ0c(t) exp(XTβc),
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where βc = (1,1,1,1,1)T and the baseline cumulative hazard Λ0c(t) = act (ac is a con-

stant determining the percentages of events for each recurrence). For each subject there

are three event times and one censoring time, and the observed times are the minimum

of event times and the censoring time. We consider four cases:

(i) baseline cumulative hazards for three gap times are the same where Λ01(t) =

Λ02(t) = Λ03(t) = 0.25t, and censoring constant ac = 0.1 which leads to about 60%, 46%,

and 42% subjects with at least one, two and three recurrences;

(ii) baseline cumulative hazards for three gap times are the same where Λ01(t) =

Λ02(t) = Λ03(t) = 0.25t, and censoring constant ac = 0.5 which leads to about 40%, 21%,

and 18% subjects with at least one, two and three recurrences;

(iii) baseline cumulative hazards for three gap times are different, where Λ01(t) =

0.25t, Λ02(t) = 0.5t, and Λ03(t) = 0.75t0.75, and censoring constant ac = 0.1 which leads

to about 60%, 49%, and 47% subjects with at least one, two and three recurrences;

(iv) baseline cumulative hazards for three gap times are different, where Λ01(t) =

0.25t, Λ02(t) = 0.5t, and Λ03(t) = 0.75t0.75, and censoring constant ac = 0.5 which leads

to about 40%, 24%, and 22% subjects with at least one, two and three recurrences.

We truncate any observed time greater than 20 to be 20, which is above the 90th

percentile of the first and second recurrence times, and above the 85th percentile of

the third recurrence times. In addition, we explore and compare the performances of

our method when adding some baseline noise variables. Besides the training data, we

use a randomly generated testing data set of size 10000 without censoring to evaluate

prediction performance.

We consider two sample sizes, 100 and 200. We use a linear kernelK(x,x′) = xTx′ in

the simulation. For each simulated data set, we apply our method using the linear deci-

sion function f(t,X,Z(⋅)) = α(t)+XTβ+ZT (t)γ, where ZT (t) = log(Tk−1). The tuning

parameter Cn is chosen via 5-fold cross-validation among the set {2−16,2−15, . . . ,215,216}
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using the predicted and observed times of the first recurrence. As a model selection

criterion, we use a mean squared error adapted for censoring, which sums up the mean

squared difference between fitted times and observed event times if uncensored, and

between fitted times and censoring times if censored and the predicted values are less

than the observed values. We divide the total sum of squares by the total number of

observations. We repeated the simulation 500 times.

5.3.2 Simulation Results

We compare the prediction of our method with the Andersen and Gill propor-

tional intensity model (AG model) for recurrent events. This model assumes λ(t) =

λ0(t) exp(XTβ + Z(⋅)Tγ), where the hazard function λ0(t) is the same for all the re-

currences. Thus the AG model is not the correct model for the simulated data ex-

cept when σ2 = 0 in case 1, and we want to look at its performance for misspecifi-

cation. For the AG model, after obtaining the estimates of β, γ, and λ0(t), we use

the survival curve to obtain the predicted times of three recurrences. For a new sub-

ject with covariates X̃ and Z̃(⋅), given the kth event time T̃k, the survival curve is

Ŝ(t) = exp[Λ̂0(t) exp{X̃T β̂ + log(T̃k)γ̂}], where Λ̂0(t) = ∑t′<t λ̂0(t′). Then we left trun-

cate the survival curve at T̃k, and predict the time to the (k +1)th event to be the first

event time on the curve whose corresponding survival probability is less than 0.5Ŝ(T̃k).

If there is no such event, we predict the time to the (k + 1)th event to be last event

time on the curve whose corresponding survival probability is greater than 0.5Ŝ(T̃k).

Table 5.1-5.4 summarize the results from simulation. These results are obtained

using the gap times of three recurrences in the testing data, e.g. the time to the

first recurrence, the time from the first recurrence to the second recurrence, and the

time from the second recurrence to the third recurrence. We only use the subjects

in the testing data whose all three recurrences can be predicted. For example, if a
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subject’s first recurrence time is larger than all the observed events in the training

data, the time to the second recurrences cannot be predicted. The root mean square

error (RMSE) is calculated as
√

∑(Tk−1,k − T̂k−1,k)
2/n, k = 1,2,3, and smaller RMSE

indicates better predictive accuracy. We summarize the average of RMSEs over 500

replicates in the tables, with the corresponding sample standard deviation of RMSEs

given in the parentheses.

In Table 5.1 and 5.2, Andersen and Gill proportional intensity model is the under-

lying true model when the variance of frailty is zero, and the corresponding predictions

from AG model for all three recurrent event times tend to have smaller RMSE than our

method, except when the sample size is 100 and there are 40 noise variables in Table

5.1 and 20 noise variables in Table 5.2. The sample standard deviations of RMSEs from

our method are smaller than the ones from AG model in most of the cases, and one

possible reason is that we use less number of distinct event times in the training data

for the prediction of each recurrence. For example, when predicting the first recurrent

time in the testing data, AG model uses all the distinct event times in the training

data, while our method uses only all the subjects’ first distinct event times. When the

variance of frailty is not zero, AG model is no longer the underlying model, and the

advantages of our method become more obvious as the variance of frailty increases.

When the variance of frailty is two, our method gives more accurate prediction for the

second and third recurrences for both sample sizes 100 and 200 and even without any

noise variables. In addition, Table 5.1 and 5.2 show that our method is most appealing

in the high-dimensional situations, i.e. the low signal-noise ratios and small sample

sizes. Particularly, our method avoids the problems of non-convergence and indicates

a significant improvement in the prediction accuracy compared with AG model when

there are 20 and 40 noise variables for both sample 100 and 200.

Table 5.3 and 5.4 give the results for the cases that three recurrences have different
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cumulative baseline hazards. In these cases, AG model is not the underlying model,

and the trends of results are similar to Table 5.1 and 5.2. Our method always leads to

smaller RMSEs for the prediction of the second and third recurrences when the frailty

of variance is one or two. This phenomenon may be because the time-varying covariates

are constantly zero for the first recurrence and the inclusion of time-varying covariates

depending on event history affects more on the prediction of later recurrences. Another

interesting point is the significant increase in the number of non-convergent replicates

for AG model when the sample size is 100 and there are 40 noise variables in Table

5.3 compared with the corresponding part in Table 5.1. Hence, the noise variables

and small sample size may cause more non-concavity of the partial likelihood when the

underlying model is more complicated and more different from the AG model itself.

5.4 Application

We apply our method to analyze data from a bladder cancer study conducted by

the Veterans Administration Cooperative Urological Research Group. In this study, all

patients had bladder tumors when they entered the trial. These tumors were removed

and patients may have multiple tumor recurrences during the study period. A descrip-

tion of the clinical background is provided in Byar (1980). In this example, we consider

85 out of 118 subjects who had nonzero follow-up and were assigned to either thiotepa

treatment or placebo. The maximum number of recurrences is 4, and specifically there

are 47 subjects with at least one recurrence, 29 subjects with at least two recurrences,

22 subjects with at least three recurrences, and 14 subjects with four recurrences. We

study the prediction capability of treatment, the initial number of tumors, and the

initial size of tumors for predicting the tumor recurrences. The logarithm of previous

recurrence time is added as time-varying covariate, and as a result, we can only con-

sider the subjects with first (second, third) recurrences for the prediction of the second
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Table 5.1: Root mean square errors (RMSE) of comparing our method (GSVM) and
Andersen and Gill proportional intensity model (AG) for the prediction of recurrent
events (Case 1)

Variance n = 100 n = 200
of frailty Noises Method 1st Recur 2nd Recur 3rd Recur 1st Recur 2nd Recur 3rd Recur

0 0 AG 3.94(0.37) 3.02(0.27) 1.35(0.07) 3.93(0.22) 3.03(0.19) 1.29(0.02)
GSVM 4.46(0.41) 3.36(0.29) 1.65(0.06) 4.58(0.28) 3.47(0.19) 1.65(0.03)

10 AG 4.31(0.46) 3.14(0.34) 1.48(0.11) 4.12(0.24) 2.99(0.18) 1.38(0.03)
GSVM 4.63(0.44) 3.37(0.29) 1.73(0.07) 4.59(0.26) 3.37(0.16) 1.72(0.03)

20 AG 4.80(0.60) 3.37(0.42) 1.59(0.21) 4.26(0.31) 3.05(0.22) 1.37(0.04)
GSVM 4.76(0.43) 3.46(0.32) 1.71(0.09) 4.64(0.27) 3.39(0.18) 1.69(0.03)

40 AGa 5.91(0.87) 4.29(0.70) 2.31(0.56) 4.57(0.35) 3.31(0.25) 1.38(0.06)
GSVM 4.89(0.48) 3.66(0.39) 1.71(0.16) 4.73(0.27) 3.54(0.19) 1.61(0.04)

1 0 AG 4.37(0.43) 4.31(0.63) 1.79(0.17) 4.42(0.25) 4.38(0.46) 1.68(0.08)
GSVM 5.03(0.49) 4.06(0.54) 1.82(0.09) 5.19(0.31) 4.19(0.42) 1.80(0.04)

10 AG 4.86(0.62) 4.84(0.75) 2.16(0.33) 4.50(0.26) 4.66(0.45) 1.82(0.11)
GSVM 5.09(0.52) 4.33(0.60) 1.96(0.15) 5.15(0.33) 4.40(0.42) 1.88(0.06)

20 AG 5.67(0.80) 5.13(0.76) 2.64(0.52) 4.92(0.42) 4.78(0.57) 2.02(0.22)
GSVM 5.28(0.59) 4.39(0.74) 2.12(0.55) 5.27(0.36) 4.31(0.42) 1.93(0.08)

40 AG b 7.35(1.01) 6.25(0.89) 4.04(0.85) 5.58(0.51) 5.19(0.50) 2.36(0.28)
GSVM 5.45(0.60) 4.61(0.64) 2.23(0.41) 5.40(0.37) 4.52(0.43) 1.98(0.13)

2 0 AG 4.49(0.46) 5.28(0.89) 2.19(0.31) 4.56(0.23) 5.43(0.70) 2.03(0.18)
GSVM 5.21(0.57) 4.75(0.77) 2.01(0.19) 5.42(0.36) 4.96(0.61) 1.97(0.12)

10 AG 5.05(0.70) 5.81(0.90) 2.73(0.50) 4.63(0.34) 5.66(0.65) 2.25(0.25)
GSVM 5.33(0.63) 5.03(0.81) 2.26(0.30) 5.39(0.41) 5.14(0.61) 2.10(0.16)

20 AG 6.04(0.96) 6.18(0.95) 3.42(0.73) 5.11(0.45) 5.83(0.67) 2.54(0.34)
GSVM 5.54(0.72) 5.04(0.81) 2.47(0.49) 5.55(0.41) 5.08(0.60) 2.18(0.19)

40 AGc 7.91(1.21) 7.24(1.04) 5.00(1.02) 5.87(0.58) 6.22(0.58) 3.13(0.44)
GSVM 5.61(0.76) 5.23(0.80) 2.60(0.56) 5.59(0.45) 5.27(0.56) 2.29(0.27)

a5 out of 500 replicates do not converge for n = 100.

b9 out of 500 replicates do not converge for n = 100.

c7 out of 500 replicates do not converge for n = 100.
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Table 5.2: Root mean square errors (RMSE) of comparing our method (GSVM) and
Andersen and Gill proportional intensity model (AG) for the prediction of recurrent
events (Case 2)

Variance n = 100 n = 200
of frailty Noises Method 1st Recur 2nd Recur 3rd Recur 1st Recur 2nd Recur 3rd Recur

0 0 AG 3.78(0.70) 3.00(0.57) 1.56(0.29) 3.85(0.46) 2.99(0.37) 1.39(0.15)
GSVM 4.21(0.72) 3.17(0.52) 1.74(0.23) 4.43(0.48) 3.33(0.33) 1.68(0.11)

10 AG 4.56(0.99) 3.44(0.77) 1.90(0.50) 4.12(0.55) 3.04(0.42) 1.51(0.13)
GSVM 4.48(0.82) 3.35(0.62) 1.90(0.35) 4.51(0.52) 3.29(0.33) 1.76(0.09)

20 AG a 5.53(1.33) 4.09(1.05) 2.42(0.79) 4.53(0.61) 3.25(0.45) 1.56(0.19)
GSVM 4.60(0.82) 3.43(0.61) 1.91(0.31) 4.60(0.47) 3.36(0.31) 1.73(0.09)

1 0 AG 4.12(0.88) 4.07(1.01) 2.12(0.50) 4.26(0.50) 4.14(0.72) 1.85(0.23)
GSVM 4.49(0.87) 3.62(0.84) 1.96(0.32) 4.85(0.54) 3.81(0.56) 1.83(0.15)

10 AG 5.03(1.28) 4.80(1.28) 2.71(0.83) 4.58(0.63) 4.53(0.78) 2.10(0.36)
GSVM 4.64(0.91) 3.96(0.94) 2.20(0.64) 4.85(0.56) 4.03(0.62) 1.94(0.20)

20 AG 6.05(1.44) 5.27(1.26) 3.39(0.99) 5.14(0.78) 4.74(0.82) 2.39(0.45)
GSVM 4.79(0.96) 3.99(0.88) 2.29(0.60) 4.98(0.60) 4.03(0.63) 2.00(0.20)

2 0 AG 4.13(1.00) 4.68(1.29) 2.55(0.72) 4.30(0.55) 4.82(0.94) 2.22(0.41)
GSVM 4.52(0.96) 4.08(1.21) 2.21(0.91) 4.93(0.62) 4.26(0.77) 1.97(0.23)

10 AG 5.16(1.39) 5.44(1.47) 3.28(1.01) 4.67(0.69) 5.23(0.97) 2.56(0.52)
GSVM 4.68(0.99) 4.38(1.21) 2.49(0.91) 4.99(0.65) 4.51(0.83) 2.13(0.29)

20 AG 6.30(1.51) 5.96(1.39) 4.05(1.13) 5.30(0.84) 5.55(0.96) 2.98(0.62)
GSVM 4.89(1.07) 4.45(1.14) 2.64(0.79) 5.13(0.67) 4.58(0.82) 2.22(0.31)

a3 out of 500 replicates do not converge for n = 100.
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Table 5.3: Root mean square errors (RMSE) of comparing our method (GSVM) and
Andersen and Gill proportional intensity model (AG) for the prediction of recurrent
events (Case 3)

Variance n = 100 n = 200
of frailty Noises Method 1st Recur 2nd Recur 3rd Recur 1st Recur 2nd Recur 3rd Recur

0 0 AG 3.98(0.43) 3.07(0.51) 1.08(0.20) 4.04(0.27) 3.17(0.36) 0.94(0.06)
GSVM 4.37(0.48) 2.80(0.47) 1.13(0.19) 4.56(0.34) 2.92(0.32) 1.04(0.06)

10 AG 4.30(0.48) 3.20(0.53) 1.23(0.23) 4.19(0.31) 3.15(0.36) 1.04(0.07)
GSVM 4.55(0.50) 2.89(0.49) 1.23(0.20) 4.54(0.31) 2.79(0.29) 1.11(0.06)

20 AG a 4.76(0.65) 3.38(0.61) 1.41(0.29) 4.35(0.32) 3.12(0.39) 1.05(0.11)
GSVM 4.71(0.50) 2.96(0.49) 1.26(0.19) 4.63(0.32) 2.79(0.32) 1.09(0.07)

40 AGb 5.72(0.91) 4.24(0.82) 2.30(0.69) 4.62(0.34) 3.43(0.35) 1.11(0.12)
GSVM 4.82(0.58) 3.26(0.57) 1.36(0.35) 4.71(0.31) 3.03(0.32) 1.05(0.10)

1 0 AG 4.40(0.52) 4.68(0.92) 1.74(0.30) 4.55(0.28) 4.95(0.69) 1.57(0.18)
GSVM 4.98(0.57) 3.90(0.75) 1.51(0.24) 5.19(0.38) 4.05(0.60) 1.39(0.12)

10 AG 4.82(0.61) 5.11(0.91) 2.15(0.42) 4.58(0.31) 5.22(0.60) 1.76(0.18)
GSVM 5.06(0.58) 4.15(0.78) 1.73(0.31) 5.13(0.39) 4.20(0.57) 1.51(0.15)

20 AG 5.52(0.83) 5.29(0.90) 2.69(0.61) 4.95(0.42) 5.24(0.66) 1.97(0.30)
GSVM 5.25(0.70) 4.20(0.80) 1.92(0.46) 5.27(0.40) 4.14(0.57) 1.58(0.20)

40 AG c 7.06(1.13) 6.22(1.05) 4.20(0.98) 5.47(0.53) 5.41(0.64) 2.37(0.33)
GSVM 5.38(0.70) 4.40(0.80) 2.14(0.56) 5.39(0.43) 4.31(0.53) 1.74(0.27)

2 0 AG 4.46(0.54) 5.45(1.14) 2.25(0.46) 4.66(0.29) 5.83(0.94) 2.10(0.32)
GSVM 5.17(0.66) 4.66(1.00) 1.93(0.43) 5.42(0.41) 4.85(0.75) 1.78(0.26)

10 AG 4.91(0.69) 5.90(1.08) 2.83(0.61) 4.68(0.30) 6.07(0.81) 2.34(0.35)
GSVM 5.31(0.69) 4.91(0.99) 2.28(0.53) 5.40(0.44) 4.98(0.76) 1.95(0.30)

20 AG 5.79(0.98) 6.21(1.11) 3.56(0.79) 5.07(0.47) 6.14(0.78) 2.66(0.43)
GSVM 5.50(0.82) 4.97(1.00) 2.51(0.64) 5.58(0.47) 5.00(0.76) 2.10(0.38)

40 AGd 7.53(1.31) 7.12(1.21) 5.21(1.14) 5.66(0.56) 6.31(0.71) 3.20(0.47)
GSVM 5.55(0.84) 5.11(1.01) 2.68(0.72) 5.60(0.50) 5.12(0.67) 2.26(0.45)

a1 out of 500 replicates does not converge for n = 100.

b52 out of 500 replicates do not converge for n = 100.

c29 out of 500 replicates do not converge for n = 100.

d19 out of 500 replicates do not converge for n = 100.
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Table 5.4: Root mean square errors (RMSE) of comparing our method (GSVM) and
Andersen and Gill proportional intensity model (AG) for the prediction of recurrent
events (Case 4)

Variance n = 100 n = 200
of frailty Noises Method 1st Recur 2nd Recur 3rd Recur 1st Recur 2nd Recur 3rd Recur

0 0 AG 3.61(0.78) 2.90(0.83) 1.39(0.48) 3.80(0.50) 3.00(0.60) 1.13(0.27)
GSVM 4.02(0.81) 2.65(0.70) 1.38(0.45) 4.30(0.56) 2.70(0.47) 1.18(0.25)

10 AG 4.32(0.96) 3.34(0.93) 1.78(0.64) 4.02(0.56) 3.04(0.63) 1.24(0.28)
GSVM 4.32(0.84) 2.89(0.77) 1.59(0.53) 4.37(0.58) 2.67(0.45) 1.26(0.26)

20 AG a 5.12(1.30) 3.87(1.15) 2.34(0.90) 4.39(0.60) 3.17(0.60) 1.34(0.31)
GSVM 4.45(0.90) 3.00(0.79) 1.68(0.58) 4.49(0.52) 2.74(0.46) 1.26(0.24)

1 0 AG 3.96(0.95) 4.00(1.21) 2.10(0.72) 4.20(0.57) 4.25(0.99) 1.74(0.35)
GSVM 4.38(0.98) 3.34(1.05) 1.77(0.61) 4.76(0.62) 3.46(0.76) 1.49(0.28)

10 AG 4.67(1.25) 4.58(1.41) 2.67(0.93) 4.43(0.66) 4.55(0.98) 2.00(0.45)
GSVM 4.51(1.01) 3.63(1.05) 2.03(0.66) 4.76(0.65) 3.64(0.77) 1.63(0.34)

20 AG b 5.56(1.44) 5.04(1.39) 3.41(1.15) 4.89(0.80) 4.71(0.98) 2.31(0.54)
GSVM 4.66(1.04) 3.75(1.10) 2.24(0.87) 4.88(0.68) 3.71(0.82) 1.72(0.39)

2 0 AG 3.90(1.04) 4.25(1.40) 2.52(0.90) 4.20(0.64) 4.55(1.15) 2.17(0.56)
GSVM 4.43(1.08) 3.77(1.27) 2.11(0.86) 4.84(0.73) 3.88(0.91) 1.79(0.41)

10 AG 4.72(1.32) 5.05(1.57) 3.27(1.11) 4.46(0.71) 4.98(1.16) 2.53(0.61)
GSVM 4.58(1.08) 4.09(1.31) 2.45(0.98) 4.90(0.78) 4.14(1.01) 2.00(0.53)

20 AG 5.74(1.56) 5.59(1.57) 4.08(1.30) 4.99(0.86) 5.28(1.15) 2.95(0.70)
GSVM 4.80(1.19) 4.24(1.34) 2.71(1.03) 5.08(0.76) 4.29(0.98) 2.13(0.55)

a9 out of 500 replicates do not converge for n = 100.

b2 out of 500 replicates do not converge for n = 100.
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(third, forth) recurrences.

We compare the performances of our method and AG model. Due to the small

sample size and discrete values of covariates, we use only linear kernel here to avoid

the potential overfitting problem. The predicted times of tumor recurrences are ob-

tained via three-fold cross validation, and the tuning parameter is chosen from the grid

2−16,2−15, . . . ,216. To compare the prediction capability, we separate the data into two

groups based on the 25th and 50th percentiles of the predicted times, and report a

pseudo Chi-square statistics from the Logrank test and a pseudo hazard ratio from fit-

ting a univariate Cox model. The results are given in Table 5.5. The pseudo Chi-square

statistics indicate that the prediction of our method has better performance regarding

to the risk stratification than the AG model for both the first and second recurrences,

and the superiority of our method is more obvious for the first recurrence by the large

values of both pseudo Chi-square statistics and pseudo hazard ratios. Table 5.6 gives

the coefficient estimates that complement the results in Table 5.5. The estimates from

both methods have the same signs, but the relative covariate effects differ. Particularly,

our method leads to relatively large effect of the initial number of tumors and the prior

recurrence time, while AG model gives the thiotepa treatment the largest estimate.

5.5 Remark

In this chapter, we propose a conceptually straightforward method to the prediction

of recurrent event time data. This method adapts support vector machines to learn

the counting process, and then use the learned information to make predictions. The

newly developed prediction rule indicates the similarity between the proposed method

and standard multicategory support vector machines. The time-specific intercepts α(t)

are utilized in the prediction rule, and they may not be uniquely determined in certain

cases. Different values of α(t) may lead to slightly different prediction results, however,
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Table 5.5: Comparison of prediction capability for our method and Andersen and Gill
proportional intensity model using bladder cancer data

25th percentile 50th percentile
Recurrence Method Pseudo Pseudo Pseudo Pseudo HR

Logrank χ2 a HR b Logrank χ2 HR
1st AG model 5.07 2.00 1.27 1.39

Our method 9.68 2.49 6.29 2.11

2nd AG model 1.54 1.83 0.46 1.30
Our method 2.19 1.63 1.77 1.55

aPseudo Logrank χ2, pseudo Chi-square statistics from Logrank tests for two groups separated
using the 25th and 50th percentiles of predicted values.

bPseudo HR, pseudo hazard ratios comparing two groups separated using the 25th and 50th per-
centiles of predicted values.

Table 5.6: Coefficient estimates for bladder cancer data

Covariate Normalized β of β of
our method AG model

Treatment -0.215 -0.378
Initial tumor number 0.447 0.159
Initial tumor size -0.100 -0.040
Prior recurrence 0.863 0.340
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major differences of predictive accuracy are not expected. Another attraction of this

method is the comparability with the intensity-based survival models. These models

are essentially based on the cumulative intensity functions. Comparatively, the optimal

rule of our method focuses on the intensity functions, which can be thought as a local

view in parallel with the global view of the survival models. Simulation results reveal

the superiority of our method to the Andersen and Gill proportional intensity model

when this model is not the underlying model. In addition, our method is a convex

quadratic programming algorithm, so it is particularly appealing to be applied in the

high-dimensional situations for which the partial likelihood function often breaks down

due to the occurrence of non-concavity.

The time-varying covariates are included and discussed in our method to make the

prediction of the next event time based on not only baseline attributes but the event

history. In practice, we may need to determine the type of time-varying covariates using

the background information of the study, and we may want to explore multiple choices

for comparison and conduct sensitivity analysis. The framework of counting process

implicitly assumes that all time-varying covariates are predictable at the present point.

For the case of general stochastic processes, the application of the proposed method

cannot be fully justified unless they are treated as predictable time-varying covariates.

As a result, we may be able to establish the asymptotic learning rate in a similar way to

the one in Chapter 4 that includes only survival data and time-independent covariates.

The formal derivation will be further investigated. The ARIC investigators (1989) Tay

and Cao (2001) Tibshirani (1996) Tibshirani (1997) Tibshirani et al. (2005) Van Belle

et al. (2010) Van Belle et al. (2011a) Van Belle et al. (2011b) Walter and Tiemeier

(2009) Zhang and Lu (2007) Zhang et al. (2010) Zhang et al. (2011) Zeng and Lin

(2006b) Zeng and Lin (2007b) Zeng and Lin (2007a) Zeng and Lin (2006a) Zou and

Hastie (2005)
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CHAPTER6: SUMMARY AND FUTURE RESEARCH

In this dissertation, we have studied the semiparametric and nonparametric sta-

tistical methods for variable selection and survival outcome prediction using censored

data, which relax the assumptions on the underlying model and censoring mechanism of

many existing approaches. Particularly, in Chapter 3, we proposed a penalized variable

selection procedure in general transformation models. The Laplace transformation and

expectation-maximization algorithm were used to obtain an objective function that re-

moves the nonparametric estimation of baseline cumulative hazards and includes only

the parameter of interest to incorporate penalties for variable selection. In Chapter 4,

we developed a support vector hazards regression to predict the time to event. The

failure times were presented in the notations of counting process so that the statuses of

all the subjects still at risk at each event time become binary outcomes, and the sup-

port vector machines were adapted with restrictions on the covariate effects to learn

the counting process. We found that the resulting optimal decision rule discriminates

the covariate-specific hazard function from the population average hazard function. In

Chapter 5, we generalized the support vector machines in the framework of the count-

ing process to handle time-varying covariates and predict recurrent event times based

on the event history. The proposed method allows the censoring mechanism to depend

on covariates without specifying the censoring distribution.

Theoretically, we established the asymptotic selection consistency using the adaptive

lasso penalty for the penalized variable selection procedure, and derived the asymptotic

learning rate using the Gaussian kernel for the support vector hazards regression. The
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proofs heavily rely on the modern empirical process theory. We also conducted extensive

simulation studies to explore the small-sample performances of all the proposed meth-

ods, and demonstrated the comparability and superiority of our methods to existing

approaches. Several real data examples were used to illustrate the proposed methods.

Specifically, in Chapter 3, we used part of the baseline cohort data in the Atheroscle-

rosis Risk in Communities study, including traditional cardiovascular risk factors for

incident heart failure, and of the primary biliary cirrhosis data from Mayo Clinic trial

of primary biliary liver cirrhosis. In Chapter 4, we used the Atherosclerosis Risk in

Communities data again, and we also apply our method to the data collected from a

neurological disease study. We analyzed data from a bladder cancer study conducted

by the Veterans Administration Cooperative Urological Research Group in Chapter 5.

The proposed methods in this dissertation can be extended in several directions for

future research. In Chapter 3, we used the adaptive lasso penalty due to computational

advantages. In practice, other penalties may be more appropriate to be considered for

handling some specific problems, for example, fused lasso (Tibshirani et. al, 2005) for

problems with ordered features and elastic-net (Zou and Hastie, 2005) for problems

with grouping effects. These penalties can be easily applied with the proposed objec-

tive function, however, the current computation algorithm may not work, and another

algorithm may need to be developed before numerical application. In Chapters 4 and

5 we adapted support vector machines in the framework of the counting process to

predict survival outcomes and recurrent events, and we considered the scenario of hav-

ing right censoring. There are other complications with censored data, including left

truncation and competing risk, that are commonly presented using counting process

to make statistical inference. Our methods may also be extended to these data, for

example, predicting a certain outcome in the setting of competing risk. In addition,
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as described in the previous chapter, another formulation of our methods is as an em-

pirical risk plus a regularization term, and we used the L2 regularization by following

the standard support vector machines. For specific future work, we may want to use

or additionally include the L1 regularization to conduct variable selection and make

prediction simultaneously. However, this modification of our methods will no longer

be a convex quadratic programming algorithm, and the issues of implementation need

to be further studied. Akaike (1974) Andersen (1982) Andersen and D. (1982) Ben-

nett (1983b) Bennett (1983a) Biganzoli et al. (1998) Breiman (1995) Breiman (1996)

Bou-Hamad et al. (2011) Buckley and James (1979) Burges (1998) Butler et al. (2008)

Breslow (1972) Chambless and Diao (2006) Chatfield (1995) Chen et al. (2002) Cheng

et al. (1995) Cox (1972) Cox (1975) Craven and Wahba (1979) Dabrowska and Doksum

(1988) Dempster et al. (1977) Derksen and Keselman (1992) Dickson et al. (1989) Efron

et al. (2004) Fan and Li (2001) Fan and Li (2002) Faraggi and Simon (1995) Fernandez

and Miranda-Saavedra (2012) Fisher and Lin (1999) Frank and Friedman (1993) Fried-

man (1996) Fu (1998) Ganapathy et al. (2012) Goldberg and Kosorok (2012) Goldberg

and Kosorok (2013) Harrell et al. (1996) Hastie et al. (2009) van der Vaart and Wellner

(1996) Hidalgo et al. (2003) Hothorn et al. (2004) Ishwaran et al. (2008) Jin et al.

(2003) Johnson (2008) Johnson (2009) Johnson et al. (2008) Khan and Zubek (2008)

Knight and Fu (2000) Lam and Leung (2001) Leblanc and Crowley (1992) Leblanc

and Crowley (1993) Lee and Go (1997) Li and Gu (2012) Louis (1982) Lu and Zhang

(2007) Meinshausen (2007) Murphy et al. (1997) Park and Jeong (2011) Paulsen et al.
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