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Abstract 
Insil Kim: Mitochondrial degradation by autophagy (mitophagy) in hepatocytes (under the 

direction of John J. Lemasters, M.D., Ph. D) 
 

Mitochondria are the essential site of aerobic energy production in eukaryotic cells.  Reactive 

oxygen species (ROS) are an inevitable by-product of mitochondria metabolism and can 

cause mitochondrial DNA mutations and dysfunction. Mitochondrial damage can also be the 

consequence of disease processes. Therefore, maintaining a healthy population of 

mitochondria is essential to the well-being of cells. Autophagic delivery to lysosomes is the 

major degradative pathway in mitochondrial turnover. I use the term mitophagy to refer to 

mitochondrial degradation by autophagy. Although long assumed to be a random process, 

increasing evidence indicates that mitophagy is a selective process. This study provides a 

description of a description of the process of mitophagy, the possible role of the 

mitochondrial permeability transition in mitophagy and the importance of mitophagy in 

turnover of dysfunctional mitochondria.  
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Chapter 1. General introduction 

1.1. Introduction 

Autophagy is an adaptive process that maintains cellular homeostasis under various 

adverse conditions such as starvation (Mitchener et al., 1976; DE, 1963). During autophagy, 

cytoplasmic components are sequestered into vesicles called autophagosomes.  After 

formation, autophagosomes fuse with lysosomes, which leads to lysosomal degradation of 

the autophagosomal content (Punnonen et al., 1992). Autophagic dysfunction is relevant in 

the pathogenesis of neurodegenerative diseases, aging, infectious diseases, and cancer (Yuan 

et al., 2003; Bergamini et al., 2003; Dorn et al., 2002; Nakagawa et al., 2004; Yue et al., 

2003).  Although autophagy has long been assumed to be a non-selective process, recent 

evidence indicates autophagy selectively removes damaged and dysfunctional mitochondria 

that might otherwise induce cell death signaling pathways (Elmore et al., 2001; Rodriguez-

Enriquez et al., 2006; Kim et al., 2007).  While yeast genetic screens have increased our 

understanding of the molecular mechanisms of autophagy, the mechanism for mitochondrial 

autophagy (mitophagy) remains poorly understood.  This chapter is written to give an in 

depth understanding of mitophagy and possible mechanisms involved in mitophagy.  

 

1.2. General features of autophagy 

The balance between anabolism and catabolism is a fundamental element of life.  There 

are two major degradation systems -- proteasomal proteolysis and autophagy.  Proteasomal 

degradation is involved in selectively removing short-lived proteins as well as abnormal 

proteins; whereas autophagy is responsible for degrading long-lived proteins and organelles 

(Goldberg, 2003; Cuervo, 2004; Gronostajski et al., 1985). Three types of autophagy have 
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been described: chaperone-mediated autophagy, microautophagy, and macroautophagy 

(Cuervo, 2004). Chaperone-mediated autophagy involves direct translocation of proteins 

with specific protein motifs across lysosomal membranes through recognition by chaperone 

proteins that interact with lysosomal membrane proteins to facilitate translocation. 

Microautophagy is the direct intake of cytoplasm by invagination of lysosomal membranes. 

Macroautophagy, often referred to simply as autophagy, involves formation of double 

membrane vesicles around organelles and other cytoplasmic components that then fuse with 

lysosomes (Levine and Klionsky, 2004).  

Autophagy is ongoing in nucleated cells and is typically activated by fasting and 

nutrient deprivation. In the liver particularly, glucagon promotes autophagy, whereas insulin 

negatively regulates autophagy (Arstila and Trump, 1968; Schworer and Mortimore, 1979). 

During fasting, autophagy is important for generating amino acids, fueling the tricarboxylic 

cycle and maintaining ATP energy production. Autophagy also removes toxic protein 

aggregates and unneeded organelles. Both insufficient and excess autophagy seem capable of 

promoting cell injury (Levine and Yuan, 2005). Appropriate regulation of autophagy is thus 

essential for cellular well-being. 

During autophagy, an isolation membrane forms a cup-shaped membranous structure 

called a phagophore that eventually envelopes the autophagic target (Figure 1.1) (Seglen et 

al., 1996; Suzuki et al., 2001; Reggiori et al., 2005). The origin of isolation membranes is 

controversial.  One proposed source is ribosome-free regions of the rough endoplasmic 

reticulum (ER), but others suggest that isolation membranes are novel structures devoid of 

Golgi and ER markers (Suzuki et al., 2001). As isolation membranes envelop and seal around 

their targets, double–membrane vesicles called autophagosomes form. These 
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autophagosomes then fuse with lysosomes to form autolysosomes. Their sequestered 

contents are degraded by lysosomal hydrolases and recycled.  

As first characterized in yeast, a machinery of genetically conserved autophagy-

related proteins regulates and participates in autophagy (Ohsumi and Mizushima, 2004). 

These Atg proteins are grouped into different categories depending on their function, 

including 1) a serine-threonine kinase complex, such as Atg1, involved in autophagic 

induction, 2) a Class III phosphatidyl inositol-3-kinase (PI3K) complex which functions in 

vesicle nucleation, 3) Atg9 which functions in membrane protein recycling, and 4) a pair of 

novel ubiquitin-like protein conjugating systems, the Atg12 and Atg8 systems, which 

produce vesicle extension and completion (Yorimitsu and Klionsky, 2005) 

During sequestration and formation of autophagosomes, an Atg12-Atg5 complex 

binds to Atg16, which translocates to the isolation membrane and functions as a linker 

involved in formation and elongation of the isolation membrane (Figure 1.1). An E1-like 

enzyme, Atg7, activates Atg12, which is transferred to Atg10, an E2-like enzyme. Atg12 

then becomes conjugated to Atg5 to form an autophagosomal precursor in complex with 

Atg16 (Ohsumi and Mizushima, 2004; Matsushita et al., 2007) 

LC3 is a mammalian autophagosomal ortholog of yeast Atg8. In mammalian cells, 

newly synthesized proLC3 is cleaved to its cytosolic form, LC3-I, by Atg4B exposing its C-

terminal glycine 120. Then LC3-I is activated by Atg7p, a E1-like enzyme, and conjugated to 

phosphatidylethanolamine (PE) by Atg3p, an E2-like enzyme (Kabeya et al., 2000; Tanida et 

al., 2004). LC3-II (16kDa) has slightly higher mobility than LC3-I (18kDa) when run in 

SDS-PAGE gels. LC3-II selectively incorporates into forming and newly formed 

autophagosomes making LC3-II a useful autophagosomal marker. Some LC3-II becomes 
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entrapped on the inner surface of double membrane autophagosomes. After fusion with 

lysosomes, this LC3-II is degraded. Surface LC3-II also disappears due to its deconjugation 

from PE by Atg4B (Figure 1.1). Recently, a transgenic mouse strain was created that 

expresses a green fluorescent protein (GFP)-LC3-II fusion protein. In cells and tissues of this 

mouse, GFP fluorescence selectively identifies the membranes of forming autophagosomes 

and newly formed autophagosomes (Mizushima et al., 2004). 

 

1.3. Molecular Control of Autophagy. 

Phosphoinositide 3-kinases (PI3Ks) phosphorylate phosphotidylinositol at position 3 

of the inositol ring and play an important role in the regulation of autophagy (Meijer and 

Codogno, 2006). PI3K inhibitors, such as 3-methyladenine, wortmannin, and LY294002, 

potently block autophagy.  However, different classes of PI3K exert opposing effects on 

autophagy: Class III PI3K promotes sequestration of autophagic vacuoles, whereas class I 

PI3K inhibits autophagy. Class III PI3K/p150 associates with Beclin1, a mammalian 

homologue of Atg6 discovered by yeast two hybrid screening for its interaction with Bcl-2.  

Recruitment of PI3K-Beclin1 complexes together with Atg12-Atg5 is an initial step in 

autophagosome formation (Tassa et al., 2003). Mammalian target of rapamycin (mTor) is a 

kinase downstream of Class I PI3K whose activation suppresses autophagy. Rapamycin, 

which inhibits mTOR, induces autophagy apparently by activating protein phosphatase 2A 

(PP2A) (Noda and Ohsumi, 1998). PP2A also dephosphorylates proapoptotic BH3 only Bcl-

2 family proteins, such as Bad and Bcl-2, that associate with mitochondrial membranes 

(Simizu et al., 2004). Moreover, overexpression of Bcl-2 inhibits starvation-induced 
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autophagy (Pattingre et al., 2005). Thus, a functional relationship between autophagic 

proteins and mitochondrial proteins may exist.   

The mammalian Bcl-2 family consists of more than 20 different proteins that are 

divided into anti- and proapoptotic members in accordance with the presence of different 

Bcl-2 homology domains (BH1, BH2, BH3, and BH4) (Lutz, 2000). Anti-apoptotic members 

contain all four of these domains include Bcl-2, Bcl-xl, and Mcl-1. These proteins are located 

on the mitochondrial outer membrane and some other endomembranes, such as endoplasmic 

reticulum.  Proapoptotic Bcl-2 family proteins, often thought to contain only BH3 regions or 

BH1, BH2, and BH3 regions, reside primarily in the cytoplasm and translocate to the outer 

membrane of mitochondria during apoptotic signaling. Bim is one of these proapoptotic 

BH3-only proteins, which forms a heterodimer with other members of anti-apoptotic proteins, 

such as Bcl-2, Bcl-xl, and Mcl-2, and other pro-apoptotic proteins, such as Bax. In this way, 

Bim may elicit either survival or death responses.  Three main isoforms of Bim, Bim EL 

(extra long), Bim L (long), and Bim S (short), are detected in a various tissues and cell types 

(O'Reilly et al., 2000). These isoforms contain a BH3 domain and a hydrophobic tail which is 

required their interaction with mitochondria, but they differ at their N-terminus regions. 

Under normal conditions, BimEL is associated with cytoplasmic dynein light chain (LC8) 

which is tightly sequestered into microtubule-associated dynein motor complexes.  This 

interaction is disrupted by apoptotic stimuli, which leads to BimEL translocation to 

mitochondria where it activates Bax or binds to Bcl-2 protein (Puthalakath et al., 1999; Liu et 

al., 2003). BimEL is phosphorylated by Erk1/2 at different sites, which have not been 

identified and which promote proteasomal degradation and prevent the interaction of BimEL 

with Bax (Harada et al., 2004; Luciano et al., 2003). BimEL expression increases during 
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proapoptotic withdrawal of growth factors and starvation (Austin and Cook, 2005; Quadros 

et al., 2006).  

JNK (c-Jun NH2-terminal kinase) is a stress-induced kinase that may be involved in 

autophagy (Rodriguez-Enriquez et al., 2006; Aubel et al., 2001; Leicht et al., 2003). JNK is a 

mitogen-activated protein kinase (MAPK), a class of kinases that responds to cellular stresses 

such as pH changes, cytokines, UV exposure, hypoxia, heat shock, and ethanol. When 

phosphorylated, JNK activates nuclear substrates such as c-Jun and ATF2 and cytosolic 

substrates such as Bcl-2 family proteins leading to cellular proliferation, transformation, and 

programmed cell death (Minden et al., 1994a; Minden et al., 1994b; Maundrell et al., 1997). 

JNK consists of JNK1, JNK2 and JNK3.  JNK1 and JNK2 are expressed ubiquitously; 

whereas, JNK3 is mainly expressed in the brain (Gupta et al., 1996). Although JNK isoforms 

are similar in structure, they have distinct functions.  For example, JNK1 deficiency enhances 

tumor growth, whereas JNK2 deficiency suppress tumor growth (Chen et al., 2001; She et al., 

2002). JNK1 mediates insulin resistance by phosphorylating IRS-1 (insulin receptor 

substrate-1) in animal models, whereas JNK2 is recruited by apoptotic signaling pathways 

causing mitochondrial dysfunction (Coffey et al., 2002; Hirosumi et al., 2002; Eminel et al., 

2004). In TNF-dependent hepatotoxicity, caspase-8 activation and Bid cleavage are elicited 

by JNK2 (Wang et al., 2006).  JNK2 is also proposed to translocate to mitochondria 

mediating cytochrome c release in 6-hydroxydopamine-induced neuronal cell death (Eminel 

et al., 2004). Translocation of active JNK to mitochondria also occurs in HeLa cells after 

treatment with paclitaxel.  In this model, JNK associates with PP1 (protein phosphatase 1) 

and Bcl-2 on the mitochondria (Brichese et al., 2004). Such activation of JNK is required for 

zVAD-induced autophagic cell death (Yu et al., 2004). 
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Heterotrimeric guanine nucleotide-binding proteins are also involved in autophagy. 

Nonhydrolyzable GTP analogs, such as GTPγS, inhibit autophagy (Kadowaki et al., 1996). 

The Gα-interacting protein (GAIP) elicits autophagic sequestration by accelerating GTP 

hydrolysis and activating Gαi3.  In addition, Rab24, Rab22, and Rab7, small GTP binding 

proteins that regulate vesicular transport, participate in processing of late autophagosomes 

(Jager et al., 2004; Petiot et al., 2002). 

 

1.4. Characteristics and Possible Structure of Mitochondrial Permeability Transition 

Pores 

Recent evidence suggests a possible involvement of the MPT in autophagy (Elmore et 

al., 2001; Rodriguez-Enriquez et al., 2006). In the MPT, opening of PT pores causes 

mitochondria to become permeable to all solutes up to a molecular mass of about 1500 Da, 

an event leading to mitochondrial depolarization and activation of the mitochondrial ATPase 

(ATP synthase operating in reverse) (Hunter et al., 1976; Gunter and Pfeiffer, 1990; Zoratti 

and Szabo, 1995; Forte and Bernardi, 2005). After the MPT, mitochondria undergo large 

amplitude swelling driven by colloid osmotic forces, which culminates in rupture of the outer 

membrane and release of proapoptotic mitochondrial intermembrane proteins into the cytosol, 

including cytochrome c, apoptosis inducing factor, Smac/Diablo and others. The 

immunosuppressant compound, cyclosporin A (CsA), and various of its analogs inhibit the 

MPT through interaction with cyclophilin D (CypD) (Waldmeier et al., 2003; Halestrap and 

Davidson, 1990). 

In one model, PT pores are composed of the voltage dependent anion channel 

(VDAC) in the outer membrane, the adenine nucleotide translocator (ANT) in the inner 
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membrane and CypD in the matrix space (Figure 1.2A) (Halestrap and Davidson, 1990; 

Crompton et al., 1998; Beutner et al., 1996; Marzo et al., 1998). Other proteins, such as 

creatine kinase (intermembrane space), hexokinase (outer membrane) and Bax (outer 

membrane), are also proposed to contribute to the composition of PT pores. However, the 

MPT still occurs in cells types like hepatocytes that lack creatine kinase and hexokinase and 

in ANT-deficient mitochondria isolated from conditional double ANT knockout mice 

(Kokoszka et al., 2004). Most recently, CypD knockout mice have been developed, and 

mitochondria from these mitochondria still display an MPT, but the MPT observed is 

insensitive to cyclosporine A (CsA) and requires higher concentrations of calcium for 

induction (Basso et al., 2005). 

An alternative model of the MPT has been proposed that accounts for these 

observations (Figure 1.2B) (He and Lemasters, 2002). This model postulates that PT pores 

form as a consequence of misfolding of integral membrane proteins caused by ROS, reactive 

chemicals and other stresses. Because misfolding exposes hydrophilic surfaces to the 

hydrophobic membrane bilayer, the proteins aggregate at these hydrophilic surfaces to 

enclose channels that conduct all aqueous solutes smaller in size than the channel diameter. 

Since such permeabilizatoin would be catastrophic to mitochondrial function, chaperones 

have evolved, including cyclophilin D, that block conductance through these nascent 

channels. Other chaperones remain to be identified, although indirect evidence suggests that 

the small heat shock protein, Hsp25/27, and the Rieske iron sulfur protein may be involved 

(He and Lemasters, 2005; He and Lemasters, 2003). When matrix calcium rises to high 

levels, PT pores open to induce the MPT, an effect mediated by CypD and blocked by CsA. 

When formation of nascent PT pores from misfolded protein aggregates exceeds the number 
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of chaperones that can regulate and close these pores, an unregulated MPT occurs that is 

CsA-insensitive and calcium-independent. This change from a regulated to an unregulated 

PT pore occurs as the time and strength of MPT induction increases.  

On a molar basis, ANT is the most abundant inner membrane protein and thus is often 

a target of stresses causing protein misfolding. However, other proteins can also misfold, 

which explains MPT onset in ANT knockout mice. Since CypD participates in calcium 

sensing, the model also explains the greater requirement for calcium for the MPT in CypD 

deficient mitochondria. Lastly, the model explains why completely exogenous pore-forming 

peptides like mastoparan and alamethicin induce a CsA-sensitive and calcium-dependent 

MPT at low concentrations, but CsA-insensitive and calcium-independent mitochondrial 

swelling at higher concentrations (Pfeiffer et al., 1995; He and Lemasters, 2002). At low 

concentration, chaperones recognize the pore-forming peptides as misfolded protein 

aggregates and block their conductance, but as the chaperone supply becomes exhausted 

conductance can no longer be blocked, and mitochondrial swelling, depolarization and 

uncoupling ensue. 

Autophagic stimulation of rat hepatocytes by serum deprivation and glucagon (a 

hormone released to the liver during fasting) increases the rate of spontaneous depolarization 

of mitochondria by 5-fold to about 1% of mitochondria per hour (Elmore et al., 2001). These 

depolarized mitochondria move into acidic vacuoles, which also increase in number after 

nutrient deprivation. The acidic structures containing mitochondrial remnants are 

autophagosomes and autolysosomes, and serial imaging reveals an average mitochondrial 

digestion time of about 7 min after autophagic sequestration (Rodriguez-Enriquez et al., 

2006). CsA, the MPT blocker, suppresses both mitochondrial depolarization during nutrient 
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deprivation and the proliferation of autophagosomes and autolysosomes. Tacrolimus, an 

immunosuppressant that does not block the MPT, does not block autophagosomal 

proliferation, whereas NIM811, a CsA analog and MPT inhibitor that is not 

immunosuppressive, does block  MPT (Elmore et al., 2001; Rodriguez-Enriquez et al., 2006).  

 

1.4. Selective Autophagy and Mitophagy 

Whether autophagy is selective or non-selective has been controversial.  

Autophagosomes observed by EM often contain a variety of different cytoplasmic elements, 

including cytosolic proteins and organelles such as ER, peroxisomes and mitochondria 

(Kopitz et al., 1990). Moreover, the degradation of cytoplasmic proteins was demonstrated to 

be nonselective (Kopitz et al., 1990). Such findings led to the assumption that autophagy is a 

non-selective form of lysosomal digestion. However, more recent findings indicate that 

autophagy can be a selective process. In yeast grown on methanol as a carbon source, 

peroxisomes proliferate. Changing the nutrient broth to glucose- or ethanol-containing 

medium results in specific degradation of peroxisomes by autophagy, a selective process 

termed pexophagy (Kim and Klionsky, 2000). Moreover, withdrawal of treatment of 

hepatocytes with indi-(2-ethylhexyl)phthalate (DEHP), a peroxisome proliferator, in the 

presence of protease inhibitors leads to accumulation of peroxisomes in autophagosomes 

indicating selective removal of peroxisomes in mammalian cells (Yokota, 2003). Peroxin 14 

is required for recognition of peroxisomes for the pexophagy process in yeast (Bellu et al., 

2001) 

Some pathogens selectively regulate autophagy in mammalian cells for their survival.  

Shigella flexneri  produces the protein, IscB, which inhibits the binding of bacterial VirG to 
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Atg5 in cytoplasm, which would otherwise induce autophagy (Ogawa et al., 2005). In this 

way, shigella escapes recognition for autophagic sequestration and elimination.  In addition 

during the postnatal period, glycogen is selectively sequestered into autophagosomes to 

enhance glycolytic substrate generation after interruption of transplacental nutrition (Kuma et 

al., 2004).  Autophagosomes formed postnatally contain large amounts of glycogen and 

rarely contain mitochondria or other organelles (Kotoulas et al., 2006).  

Increasing evidence indicates that autophagy of mitochondria also occurs selectively, 

and the term mitophagy has been suggested for this selective mitochondrial autophagy 

(Lemasters, 2005). For example, in Uth1p deficident yeast, nutrient dprivation stimulates 

normal autophagy of various organelles but not mitochondria (Kissova et al., 2004). 

However, a corresponding mammalian protein is yet to be identified. Additionally, mutation 

in Aup1, which is a mitochondrial phosphatase homologue localized to mitochondrial 

intermembrane space,  leads to reduction of mitophagy in yeast during stationary phase (Tal 

et al., 2007).  

 

1.6. Mitophagy and Cell Death 

Controversy exists as to whether autophagy promotes or prevents cell death (Gozuacik 

and Kimchi, 2004; Debnath et al., 2005; Levine and Yuan, 2005). If autophagy removes 

damaged mitochondria that would otherwise activate caspases and apoptosis, then autophagy 

should be protective. In agreement, disruption of autophagic processing and/or lysosomal 

function promotes caspase-dependent cell death (Debnath et al., 2005; Boya et al., 2005). 

However, excessive and dysregulated autophagy may promote cell death, since enzymes 

leaking from lysosomes/autolysosomes, such as cathepsins and other hydrolases, can initiate 
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mitochondrial permeabilization, caspase activation and apoptosis (Bursch, 2001; Turk et al., 

2002). In some models, deletion of autophagy genes decreases apoptosis (Boya et al., 2005). 

Indeed, autophagy is often a prominent feature of programmed cell death to the extent that 

autophagic cell death has been proposed as a distinct mode of cell death (Debnath et al., 

2005; Tsujimoto and Shimizu, 2005).  

The MPT may provide a common pathway leading to mitophagy, apoptosis and 

necrosis (Figure 1.3). With low intensity stresses, limited MPT onset increases mitophagy to 

rid cells of damaged mitochondria as a repair mechanism. With more stress, mitophagy may 

no longer contain proapoptotic factors being released from mitochondria undergoing the 

MPT, in which case apoptosis begins to occur. Additionally, an overburdened autophagic 

apparatus may release lysosomal enzymes and possibly other factors to promote cell death 

signaling. Lastly when extreme stress causes MPT onset in virtually all cellular mitochondria, 

ATP levels plummet. Because of bioenergetic failure, neither autophagy nor apoptosis can 

progress, and only necrotic cell death ensues. The progression from mitophagic repairs to 

apoptosis and then to necrosis after increasing MPT onset has been termed necrapoptosis 

(Figure 1.3). Interventions that modulate the extent of MPT onset after stresses, therefore, 

affect the relative amount of autophagy, apoptosis, and necrosis that follows (Lemasters et al., 

1998; Malhi et al., 2006). 

 

1.7. Mitophagy in Aging 

Aging seems to affect mitochondria particularly.  Because of mitochondrial ROS 

generation, protein damage occurs in mitochondria, and mutations of mtDNA accumulate. 

mtDNA is more susceptible to oxidative damage than nuclear DNA since histones are not 



 14

present in mitochondria to protect mtDNA and because DNA repair mechanisms in 

mitochondria are less robust than in the nucleus (Yakes and Van, 1997; Bohr, 2002).  

Moreover, virtually all mtDNA is transcriptionally active compared to 2 or 3% of nuclear 

DNA, which also makes mtDNA relatively more vulnerable to damage. mtDNA mutations 

lead to synthesis of abnormal mitochondrial proteins or block synthesis altogether, which 

further exacerbates mitochondrial dysfunction. Thus, in postmitotic cells of aged organisms, 

morphological abnormalities of mitochondria are often observed, including swelling, loss of 

cristae, and destruction of inner membranes (Ermini, 1976; Beregi et al., 1988; Terman, 

1995). Moreover, ATP production and respiration in mitochondria from aged animals are 

lower than in mitochondria from young animals.   

Mitochondria of non-proliferating tissues like heart, brain, liver, and kidney constantly 

turnover with a half-life of 10 to 25 days. Mitochondrial biogenesis occurs by fission of pre-

existing mitochondria analogously to bacterial division, but loss of mitochondria during 

turnover is primarily due to mitophagy (Menzies and Gold, 1971; Attardi and Schatz, 1988). 

Such mitophagy may be important to the elimination of dysfunctional mitochondria and 

mutated mtDNA. Certain mtDNA mutations may decrease recognition signals for mitophagy 

and, therefore, accumulate with age (de Grey, 1997; Lemasters, 2005). For example, a 

mtDNA mutation causing respiratory defects leading to decreased ROS generation might 

make a mitochondrion less likely to be targeted for mitophagy, which would promote 

retention and amplification of the mutation.  

Many studies show that mtDNA mutations accumulate with age at an accelerating rate, 

a phenomenon that may represent an age-related diminishment of autophagic activity 

(Bergamini, 2006). Indeed, formation and processing of autophagosomes diminish with 
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aging (Terman, 1995). Another link between mitophagy and aging is Uth1p. Deletion of 

Uth1p leads to a selective defect in mitophagy and decreased longevity in yeast during 

nutrient deprivation (Camougrand et al., 2004; Kissova et al., 2004; Kennedy and Guarente, 

1996). Uth1p also confers resistance to superoxide- and H2O2-induced injuries (Kissova et al., 

2004). Caloric restriction is well known to increase longevity in rodents and other animals 

(Bergamini et al., 2003; Bergamini, 2006). Such caloric restriction is an inducer of autophagy, 

and increased longevity might thus be due, at least in part, to enhanced removal of 

oxidatively damaged mitochondria and their mutated mtDNA. These hypotheses and 

speculations relating mitophagy and aging need further investigation. 
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Chapter 2. Mitophagy and mitochondrial permeability transition 
in GFP-LC3 transgenic hepatocytes during nutrient deprivation-
induced autophagy. 
 

2.1. Abstract 

Fasting in vivo and nutrient deprivation in vitro enhance sequestration of mitochondria 

and other organelles for autophagy and recycling of essential nutrients. Here our goal was to 

use a transgenic mouse strain expressing GFP fused to rat microtubule-associated protein 1 

light chain 3 (LC3), a marker protein for autophagy, to characterize the dynamics of 

mitochondrial turnover by autophagy (mitophagy) in hepatocytes during nutrient deprivation. 

In complete growth medium, GFP-LC3 fluorescence was distributed diffusely in the cytosol 

and in small (0.2 - 0.5 μm) patches in proximity to mitochondria. After nutrient deprivation 

plus 1 μM glucagon to simulate fasting, the number of GFP-LC3 patches decreased as 

individual GFP-LC3 patches developed into green crescents (isolation membrane or 

phagophores) and eventually into ring structures (autophagosomes) that mostly surrounded 

individual mitochondria labeled with tetramethylrhodamine methylester (TMRM), a 

potential-indicating fluorophore. Sequestration of mitochondria took place in 6.5 ± 0.4 min. 

Mitochondrial fission often occurred coordinately with sequestration such that only portions 

of individual mitochondria were sequestered. Partial mitochondrial sequestration occurred 

both at the ends (43%) and middle parts (9%) of mitochondria with sequestration of whole 

mitochondria occurring in the remainder. 3-Methyladenine (3MA), a specific inhibitor of 

autophagy, blocked GFP-LC3 ring formation, and decreased GFP-LC3 patches during 

nutrient deprivation.  After ring formation, mitochondria depolarized in 11.8 ± 1.4 min, as 

indicated by loss of TMRM fluorescence.  After ring formation, labeling with LysoTracker 
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Red (LTR), a marker of acidification, occurred gradually. Acidification was maximal after 

9.9 ± 1.9 min and was sometimes associated with fusion with pre-formed acidic vesicles. 

After acidification, GFP-LC3 fluorescence dispersed, leaving behind LTR-labeled 

autolysosomes. PicoGreen labeling of mitochondrial DNA (mtDNA) showed that mtDNA 

was also sequestered and degraded in autophagosomes. CsA and NIM811, MPT blockers, 

did not inhibit the formation of GFP-LC3 crescent structures nor rings around TMRM-

labeled mitochondria. Bim, a pro-apoptotic Bcl-2 family protein, was dephosphorylated 

during nutrient deprivation plus glucagon. The results are consistent with the conclusions that 

GFP-LC3 protein patches (pre-autophagosomal structures, PAS) serve as nucleation sites for 

mitophagy and that the initial steps of sequestration precede rather than follow mitochondrial 

depolarization.  
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2.2 Introduction 

Autophagy refers to ‘self-eating’ where cells degrade their cellular constituents to 

maintain cellular homeostasis during normal physiological conditions, starvation, aging, and 

pathological conditions, such as cancer, muscular disorders, neurodegenerative diseases, and 

pathogen infections (DE, 1963; Mitchener et al., 1976; Gozuacik and Kimchi, 2004). In liver, 

glucagon released from the pancreas during fasting promotes autophagy. In contrast, insulin 

released after feeding suppresses autophagy (Yu and Marzella, 1988).  Autophagy acts to 

salvage amino acids, fatty acids and other molecular building blocks essential for cell 

survival during nutrient deprivation. Autophagy also removes protein aggregates and 

unwanted and dysfunctional organelles, such as mitochondria (Meijer and Codogno, 2004). 

In particular, prompt elimination of aged, damaged, and dysfunctional mitochondria may be 

important to protect cells against release of pro-apoptotic mitochondrial proteins, 

mitochondrial formation of toxic reactive oxygen species and futile hydrolysis of ATP after 

uncoupling.  

The term mitophagy has been introduced to refer specifically to the autophagic 

degradation of mitochondria (Lemasters, 2005). In non-proliferating tissues like heart, brain, 

liver, and kidney, mitochondria turn over with a half-life of 10 to 25 days (Menzies and Gold, 

1971; Pfeifer, 1978).  Mitochondrial degradation associated with this turnover is 

predominantly by mitophagy.  Although some studies support the conclusion that autophagy 

of mitochondria and other organelles occurs randomly (Seglen et al., 1990), other evidence 

supports the concept that autophagy of mitochondria and other organelles occurs selectively. 

For example, in cells where apoptosis is inhibited by caspase inhibitors, mitochondria are 

eliminated in specific and regulated manner (Xue et al., 1999). The mitochondria undergoing 
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mitochondrial permeability transition are involved in mitophagy (Rodriguez-Enriquez et al., 

2006; Elmore et al., 2001) 

During autophagy, phagophores form that sequester and enclose components of the 

cytoplasm yielding double membrane vesicles known as autophagosomes (Seglen and 

Bohley, 1992). Subsequently, autophagosomes undergoes fusion with lysosomes and/or late 

endosomes to mature into autophagolysosomes where degradation by lysosomal hydrolases 

occurs. The process of autophagy requires several evolutionally conserved Atg (autophagy-

related) proteins (Tsukada and Ohsumi, 1993; Thumm et al., 1994; Harding et al., 1996). For 

example, Atg5, Atg12, and Atg8 are required for autophagosome formation in yeast. LC3 is a 

mammalian homologue of yeast Atg8. LC3 (LC3 I) is proteolytically cleaved to LC3 II by 

Atg4B, conjugated with phosphotidylethanolamine (PE) and recruited to isolation 

membranes, which form into autophagosomes (Kuma et al., 2002; Kabeya et al., 2000). LC3 

remains on autophagosomes until after autophagosomal fusion with lysosomes. Afterwards, 

LC3 entrapped inside autophagosomes is degraded, whereas LC3 on the surface is released 

and presumably recycled (Mizushima et al., 2004).                                           .  

Although mitochondria are constantly renewed in non-dividing cells, mitochondrial 

degradation by autophagy has not been studied in depth in mammalian cells. Here, using 

hepatocytes isolated from GFP-LC3 transgenic mice, we show that pre-autophagosomal 

structures-like structures (PAS-like structures) containing LC3 appear to serve as nucleation 

sites for formation of isolation membranes that sequester all or parts of single polarized 

mitochondria. At or after sequestration, mitochondria lose their membrane potential. 

Subsequent processing leads to vesicular acidification and degradation of mitochondrial 

contents, such as mitochondrial DNA (mtDNA). 
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The mitochondrial permeability transition (MPT) is caused by opening of pores in the 

mitochondrial inner membrane that takes up solutes up to 1.5 kDa in size (Hunter et al., 

1976; Gunter and Pfeiffer, 1990; Zoratti and Szabo, 1995). As a consequence, mitochondria 

undergo large amplitude swelling driven by colloid osmotic forces that leads to rupture of the 

outer membrane.  MPT is regulated by many factors. Ca2+, reactive oxygen species (ROS), 

various oxidants, and inorganic phosphate induce PT pore opening, whereas acidic pH, 

ubiquinone analogues, and cyclosporin A (CsA) inhibit onset of the MPT.  PT pores are 

suggested to be composed of voltage-dependent anion channels (VDAC) in the outer 

membrane, the adenine nucleotide translocator (ANT) in the inner membrane, cyclophilin D 

(CypD) in the matrix space and possible other ancillary proteins (Halestrap and Davidson, 

1990). CsA inhibits PT pores through an interaction with CypD (Hsu and Armitage, 1992). 

In addition, creatine kinase and Bcl-2 family proteins have been proposed to contribute to PT 

pore formation.  Bcl-2 family proteins such as Bim may bind to VDAC and thus serve as gate 

keepers for PT pores (Tsujimoto and Shimizu, 2000).   

In this study, I investigated the dynamics of mitophagy and the role of the MPT and 

Bcl-2 family proteins during nutrient deprivation-induced autophagy. To investigate 

mitophagy, we used hepatocytes from GFP-LC3 transgenic mice loaded with mitochondrial 

and lysosomal probes during nutrient deprivation-induced autophagy.  Our results show that 

LC3 initially forms complexes (PAS-like structure) that serve as nucleation sites on 

mitochondria. After nutrient deprivation, PAS grow to form cup-shaped isolation membranes 

that sequester single mitochondria or part mitochondria into autophagosomes 

(mitophagosomes). With sequestration, or shortly after, mitochondria depolarize and the 

mitophagosomes mature into autolysosomes.  CsA and NIM811, MPT inhibitors, did not 
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block mitophagosome formation nutrient deprivation-induced mitophagy. Dephosphorylation 

of Bim also occurred, but this event did not appear to be necessary for nutrient deprivation-

induced mitophagy.  These data illustrates dynamics of mitophagy during nutrient-

deprivation induced autophagy. 

 

2.3. Material and methods 

2.3.1 Materials.  

Collagenase A was obtained from Roche (Penzberg, Germany); 3-methyladenine, 

protease cocktail, and phosphatase inhibitor cocktail from Sigma Chemical (St. Louis, MO); 

Lysotracker Red (LTR), tetramethylrhodamine methylester (TMRM), and PicoGreen from 

Molecular Probes (Carlsbad, CA); bicinchoninic acid (BCA) reagents from Pierce (Rockford, 

IL); 4%-12% Bis-Tris gels from Invitrogen (Carlsbad, CA); nitrocellulose membranes from 

Whatman (Dassel, Germany); rabbit anti-Bim antibody and rabbit anti-LC3 antibody from 

MBL International (Wobrun, MA); goat anti-rabbit antibody from Chemicon (Billerica, 

MA); and chemiluminescence reagents from GE Sciences (Buckinghamshire, UK). Lamda 

phosphatase phurchased from cell signaling (Danvers, MA) 

2.3.2. Hepatocyte isolation and culture.  

Primary hepatocytes from Sprague-Dawley rat and wildtype, GFP-LC3 transgenic, or 

Bim knockout C57BL/6 mice were isolated by two-step collagenase perfusion, as described 

(Qian et al., 1997). Hepatocytes were cultured overnight in 5% CO2/95% air at 37°C on Type 

1 collagen-coated, 35-mm glass-bottom dishes (300,000 cells per dish) in Waymouth’s MB-

752/1 growth medium supplemented with 27 mM NaHCO3, 10% fetal bovine serum, 100 nM 

insulin, and 100 nM dexamethasone. 
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2.3.3. Loading of fluorophores and induction of autophagy. 

Hepatocytes were incubated with 300 nM tetramethylrhodamine methylester (TMRM), 

a potential-indicating fluorophore, or 500 nM LysoTracker Red (LTR), a probe of acidic 

organelles, for 30 min at 37°C in complete growth medium supplemented with 25 mM Na-

HEPES buffer, pH 7.4. After loading, one-third of the initial concentration of TMRM or LTR 

was added to subsequent incubation media to maintain steady-state loading. Hepatocytes 

from wildtype and Bim knockout were loaded with 500 nM LTR, 300 nM Mitofluoro Far 

Red (MFFR) and 300 nM MitoTracker Green (MTG), as indicated above. In all experiments, 

one-third of the initial concentration of TMRM, LTR and/or MFFR was added after washes 

in subsequent incubation media to maintain equilibrium distribution of the fluorophores. In 

other experiments, wildtype hepatocytes were labeled with 3 µl/ml PicoGreen to label 

mtDNA (Ashley et al., 2005). To induce autophagy by nutrient deprivation, hepatocytes were 

placed in Krebs-Ringer-HEPES buffer (KRH, containing in mM: 115 NaCl, 5 KCl, 1 CaCl2, 

1 KH2PO4, 1.2 MgSO4, and 25 HEPES buffer) plus 1 μM glucagon (KRH/G).   

2.3.4. Laser scanning confocal microscopy.  

Hepatocytes isolated from GFP-LC3 transgenic mice were loaded with red-fluorescing 

tetramethylrhodamine methylester (TMRM, 200 nM) or MitoFluor Far Red (MFFR, 200 nM) 

for 30 min in the absence or presence of 10 mM 3MA or 100 nM wortmannin at 37°C in 

Waymouth’s MB-751/1 growth medium supplemented with 25 mM Na-HEPES buffer, pH 

7.4. TMRM and MFFR are membrane-permeable monovalent cations that accumulate 

electrogenically into mitochondria (Zahrebelski et al., 1995). In other experiments, acidic 

compartments were labeled with LysoTracker Red (LTR, 500 nM) under identical conditions.  
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After TMRM, MFFR and LTR loading, one-third of the initial loading concentration was 

maintained in the medium to maintain steady-state.   

2.3.5. LTR multiwell assay. 

LTR uptake, a measure of cellular content of acidic organelles, was assessed by a 

multiwell fluorescence reader assay, as described previously (Rodriguez-Enriquez et al., 

2006). Briefly after 70 min incubation of hepatocytes in WM or KRH plus 1 μM glucagon 

(KRH/G), 50 nM LTR was added. After 20 min at 37ºC, the hepatocytes were fixed with 2% 

paraformaldehyde for 10 min at 4ºC.  The red fluorescence of LTR was measured using a 

544-nm (15-nm band pass) excitation filter and a 590-nm long pass emission filter with 

Novostar multi-well fluorescence plate reader (BMG LabTechnologies, Offenburg, 

Germany). LTR fluorescence after experimental treatment was expressed as the percentage 

of LTR fluorescence of hepatocytes incubated in WM.  

2.3.6. Quantitative analysis of autophagic structures.  

The number of GFP-labeled LC3 dots, cup-shaped structures, rings with TMRM (red), 

and rings only were counted in three independent confocal experiments from three different 

hepatocytes isolations.  The results were expressed as the mean ± SD.   

2.3.7. Western blot analysis.  

Hepatocytes were harvested by scrapping in RIPA buffer (20 mM Tris-HCl buffer, pH 

7.5, 150 mM NaCl, 1% sodium dodecyl sulfate, and 0.1% NP-40 containing protease 

inhibitor cocktail, as recommended by the manufacturer) and sonicated using an ultrasonic 

cell disruptor (Misonex, Farmingdale, NY) on ice.  Lysates were centrifuged at 13,000g for 

10 min at 4ºC.  Protein concentration was measured using a BCA procedure, as 

recommended by the manufacturer. The cell lysates were resolved on 4 to 15% 
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polyacrylamide gels or 20% polyacrylamide gels and electrotransferred onto the 

nitrocellulose membranes. After blocking with 5% non-fat milk in TBST (10 mM Tris-HCl 

buffer, pH. 7.6, 150 mM NaCl, and 0.1% Tween-20) for 1 h, membranes were 

immunoblotted with anti-LC3 antibody diluted 1:1000 in TBST, or anti-Bim antibody diluted 

1:1000. Primary antibody was detected with a horseradish peroxidase-conjugated anti-rabbit 

secondary antibody using a chemiluminescence kit according to the manufacturer’s 

instructions.  

  For phosphatase treatment, the cell lysates from hepatocytes starved were harvested 

with or without sodium orthovanadate (Na3VO4), a phosphatase inhibitor, in WM or KRH/G 

for 90 min.  A portion of cell lysate harvested without sodium orthovanadate was under 

dialysis overnight to eliminate detergents and treated with lamda phosphatase as 

recommended by the manufacturer. Samples were subjected for immunoblotting for anti-Bim 

antibody. 

 

2.4. Results 

2.4.1. Nutrient deprivation stimulates autophagosome formation and mitophagy in 

cultured GFP-LC3 hepatocytes.  

To evaluate the dynamics of mitochondrial autophagy (mitophagy), we examined 

hepatocytes isolated from GFP-LC3 transgenic mice. When GFP-LC3 hepatocyes were 

incubated in Waymouth’s growth medium (WM), GFP-LC3 was distributed relatively 

diffusely throughout the cytosol. GFP-LC3 fluorescence also extended into and was slightly 

concentrated into the nucleus. Some GFP-LC3 fluorescence was present in small patches of 

about 0.2 to 0.5 μm in diameter and occasional rings (Figure 2.1A, left panel), which likely 
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correspond to pre-autophagosomal structures (PAS) (Kuma et al., 2002). After 90 min of 

placing GFP-LC3 hepatocytes in nutrient-free KRH plus 1 µM glucagon (KRH/G), GFP-

LC3 patches (arrowhead) decreased in number by 69% as GFP-labeled cup-shaped structures 

(isolation membrane or phagophores, arrow), GFP-labeled rings (autophagosomes, double 

arrow), and solid GFP-labeled disks (autophagosomes, double arrowhead) increased in the 

confocal images (Figure 2.1A). The majority of autophagosomes were GFP-labeled rings 

(empty green vesicles), which represented optical sections through the middle of the 

structures. A few autophagosomes were observed as GFP-labeled disks (filled green vesicles), 

which likely represented optical sections including the edges of autophagosomes extending 

from one lateral margin to the other.  These results illustrate induction of autophagy in 

cultured GFP-LC3 transgenic hepatocytes by nutrient deprivation. 

During autophagy, LC3-I is cleaved, processed, and recruited to the sites of forming 

autophagosomes (Kabeya et al., 2000). Consequently, cleaved LC3 (LC3-II) increases during 

autophagy. To confirm stimulation of autophagy, wildtype hepatocytes from the same 

breeding colony as the GFP-LC3 transgenic mice were incubated in Waymouth’s complete 

medium (WM) or KRH/G with and without 3-methyladenine (3MA) for 0 to 90 min. LC3-I 

(18 kDa) and –II (16 kDa) protein expression were then determined by Western analysis. 

During incubation in WM, the intensity of LC3-I bands were relatively unchanged after 5, 20, 

50 and 90 min, and the intensity of LC3-II bands was very faint (Figure 2.1B, top gel). By 

contrast, during incubation in KRH/G, the intensity of LC3-II bands progressively increased 

for at least 50 min; whereas the intensity of LC3-I bands remained relatively unchanged 

(Figure 2.1B, bottom gel).  3-Methyladenine (3MA), an inhibitor of autophagy, prevented 

increases of LC3-II stimulated by KRH/G (data not shown). Taken together, these results 
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showed that incubation of hepatocytes in KRH/G induces robust autophagy with LC3 

processing and recruitment of GFP-LC3 from PAS patches into isolation membranes and 

autophagosomes. 

2.4.2. GFP-LC3-labeled isolation membranes sequester polarized mitochondria during 

nutrient deprivation.  

To investigate mitophagy during nutrient deprivation, hepatocytes from GFP-LC3 mice 

were co-labeled with TMRM, a red-fluorescing cationic fluorophore that accumulates 

electrophoretically into mitochondria and which labels individual mitochondria with bright 

red fluorescence (Figure 2.2A).  Images of the hepatocytes were taken after 90 min in WM, 

KRH/G or KRH/G in the presence of 3MA.  In WM, a few green rings were present, but 

GFP-LC3 was predominately observed as small green patches (Figure 2.2A, left panel).  In 

KRH/G, GFP-LC3 patches decreased in number, as GFP-labeled cup-shaped structures, -

rings, and -disks increased in confocal images (Figure 2.2A, middle panel). Frequently, 

TMRM-labeled polarized mitochondria occupied the interior of GFP-labeled rings, discs, and 

cup-shaped structures, and time lapse imaging revealed that GFP-labeled cup-shaped 

structures formed around TMRM-labeled mitochondria (Figure 2.2A, middle panel). 3MA 

completely suppressed internalization of polarized mitochondria into GFP-LC3-labeled 

structures after incubation in KRH/G. Rather in the presence of 3MA, GFP-LC3 remained as 

diffuse fluorescence and small patches (Figure 2.2A, right panel).   

A statistical analysis was performed to quantify the distribution of GFP-LC3 into 

various structures from images of random fields from three independent experiments.  Figure 

2.2C illustrates the GFP-LC3-labeled autophagic structures that were scored: PAS patches 

(autophagic dots, arrowhead), cups (phagophores or isolation membrane, arrow) and rings 
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and disks containing TMRM (early mitophagosomes, double arrow) and not containing 

TMRM (late mitophagosomes, double arrowhead). Based on TMRM-labeling, rings and 

disks were categorized as TMRM positive (early) and TMRM negative (late) 

mitophagosomes. After 90 min in WM, GFP-LC3 was predominantly diffuse or incorporated 

into PAS patches dispersed throughout the cytosol.  In KRH/G, PAS patches decreased 69% 

compared to WM. In addition, PAS-like patches were frequently located near polarized 

mitochondria in KRH/G (Figure 2.2C, arrowhead). At the same time, phagophores, and early 

and late mitophagosomes increased 1.55, 11.1, and 8.1-fold. Overall, about 40% of total 

autophagosomes contained TMRM-labeled mitochondria (Figure 2.2B). 3MA virtually 

completely inhibited formation of phagophores and mitophagosomes after 90 min KRH/G 

with retention of PAS patches.  

Newly formed autophagosomes fuse with lysosomes to mature into acidic 

autolysosomes (Arstila and Trump, 1968). To characterize intravesicular acidification after 

autophagic induction by nutrient deprivation, GFP-LC3 hepatocytes were loaded with LTR, a 

red-fluorescing weak base that accumulates into acidic compartments. In WM, a relatively 

small number of red-fluorescing LTR-labeled structures were present that presumably 

corresponded to lysosomes and late endosomes. These LTR-labeled vesicles did not 

colocalize with GFP-LC3-labeled PAS (Figure 2.2D, left panel).  After 90 min incubation in 

KRH/G, LTR-labeled red-fluorescing structures increased dramatically. About 12.4% of 

LTR-labeled vesicles were surrounded by GFP-LC3 rings, whereas 59.8% of GFP-LC3 rings 

contained an LTR-labeled interior (Figure 2,2D, middle panel). About 27.8% of GFP-LC3 

rings did not contain LTR. Green cup-shaped structures (phagophores) increased after 

nutrient deprivation but did not colocalize with LTR.  After 90 min in KRH/G plus 3MA, 
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these changes were prevented, and the images were virtually indistinguishable from those 

obtained for hepatocytes incubated in WM (Figure 2.2D, right panel).  

 

2.4.3. After autophagic sequestration, mitochondria depolarize and the mitophagosomes 

acidify.  

To investigate the dynamics of mitophagosome formation and processing, time lapse 

images were collected of GFP-LC3 hepatocytes loaded with TMRM.  As illustrated in Figure 

2.3A (arrow), mitophagy began with growth of PAS (GFP-LC3 patches) into phagophores 

(GFP-LC3-labeled cup-shaped structure).  Phagophores then enveloped and sequestered 

individual TMRM-labeled mitochondria, resulting in the formation of mitophagosomes 

(GFP-labeled ring) (Figure 2.3A, bottom left and middle panels). The time from PAS-like to 

fully formed phagophore averaged 3.3 ± 0.3 min (n=28), whereas the time from phagophore 

to closed ring was 3.5 ± 0.4 min (n=28). In favorable sections viewing phagophore formation 

laterally, depolarization of mitochondria (loss of TMRM fluorescence) appeared to occur 

coordinately with ring closure (Figure 2.3A, bottom right panel). More often, 

mitophagosomal formation was observed obliquely or end on, and TMRM was frequently 

retained inside GFP-LC3 rings (Figure 2.3A). However, whether such rings represented truly 

closed vesicles could not be determined. Overall, TMRM fluorescence was lost 11.8 ± 1.4 

min (n=11, Figure 2.4) after apparent ring formation, suggesting that mitochondrial 

depolarization was indeed following completion of sequestration.  

In some instances, GFP-LC3 formed isolation membranes that did not sequester 

polarized mitochondria (data not shown). Such events were the minority (14.7%) with the 

remainder of sequestrations involving polarized mitochondria. Consistently, the mitophagic 
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process during nutrient deprivation began from a single PAS in association with a target 

mitochondrion. Moreover, as autophagy progressed, the number of PAS in the cytoplasm 

decreased (Figure 2.2A). Taken together, these data are consistent with the conclusion that 

PAS serve as nucleation and initiation sites for mitophagy.   

In other experiments, time lapse images of GFP-LC3 hepatocytes loaded with LTR 

were collected during incubation in KRH/G.  Again, PAS grew into cup-shaped isolation 

membranes and then into rings with a time course similar to that observed for TMRM-

labeled hepatocytes (Figure 2.3B, top right panel). LTR consistently did not localize to PAS 

and isolation membranes. Rather, LTR uptake occurred only after ring formation. The time 

after apparent ring closure of onset of LTR accumulation was difficult to assess because 

uptake was gradual (Figure 2.3B, top right and bottom left and middle panels). However, 

maximal LTR accumulation indicating acidification was observed after an average of 9.9 ± 

1.9 min (n=28) after apparent GFP-LC3 ring closure (Figure 2.3B and diagrammed in Figure 

2.4). After maximal LTR labeling, GFP-LC3 fluorescence was frequently lost altogether.   

2.4.4. Mitochondrial fission occurs coordinately with mitophagy.  

Frequently, phagophores sequestered pieces of individual mitochondria rather than 

whole mitochondria into mitophagosomes (Figure 2.5). This mitochondrial fission occurred 

in close coordination with the formation of LC3-labeled rings as if isolation membranes were 

pinching off portions of mitochondria. Fission events during mitophagy occurred from both 

the middles (Figure 2.5A) and ends of individual mitochondria (Figure 2.5B).  Fission during 

mitophagy from middles and ends occurred 9.1% and 43.1% of the time, respectively, with 

sequestration of whole mitochondria occurring in the remainder. The intensity of TMRM 

fluorescence did not appear to differ between sequestered and non-sequestered portions of 
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mitochondria being targeted for mitophagy. Only after fission and sequestration were 

complete did TMRM release occur. Overall, these findings indicated that mitochondrial 

fission occurred in close coordination with autophagosome formation. 

2.4.5. Mitophagy degrades mitochondrial DNA (mtDNA).  

Mitochondria are a major source of reactive oxygen species (ROS), which can lead to 

mutations in mitochondrial DNA (mtDNA). mtDNA lacks of histones and has limited DNA 

repair capacity compared to nuclear DNA, which makes mtDNA more vulnerable to 

oxidative damage (Yakes and Van, 1997). To investigate a role of mitophagy in mtDNA 

degradation and turnover, hepatocytes from wildtype mice were co-labeled with PicoGreen 

and TMRM or LTR. PicoGreen is a green DNA-intercalating fluorophore that penetrates 

mitochondrial membranes labeling mtDNA.  PicoGreen (green)- and TMRM (red)-loaded 

hepatocytes were incubated in WM or KRH/G for 90 min and imaged.  Virtually every 

TMRM-labeled mitochondria contained PicoGreen-labeled mtDNA nucleoids in WM 

(Figure 2.6A). In WM, virtually no PicoGreen-labeled DNA was found in the cytoplasm 

outside polarized mitochondria (data not shown) 

In hepatocytes co-loaded with PicoGreen and LTR and incubated in KRH/G, LTR-

labeled autolysosomes proliferated. Many of these autolysosome contained PicoGreen-

labeled DNA (Figure 2.6B).  DNA in these autolysosomes was mtDNA, since in time-lapse 

confocal imaging individual clusters of mtDNA nucleoids became surrounded by LTR 

fluorescence (Figure 2.6C). Subsequently, the intensity of PicoGreen decreased, indicating 

degradation of mtDNA after acidification. Overall, these results show that each individual 

polarized mitochondrion in hepatocytes contains several copies of mtDNA. During 

mitophagy, mitochondria and their mtDNA are sequestered into mitophagosomes that 
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become acidic autolysosomes in which the mtDNA is degraded. Thus, mitophagy is an 

important mechanism for mtDNA degradation and turnover.  

2.4.6. Cyclosporin A and NIM811 do not inhibit Mitophagy  

In previous studies, cyclosporin A (CsA) and NIM811 (NIM), MPT pore inhibitors, 

suppressed mitochondrial depolarization and proliferation of acidic 

autophagosomes/autolysosomes after nutrient deprivation plus glucagon treatment to rat 

hepatocytes (Elmore et al., 2001; Rodriguez-Enriquez et al., 2006).  To evaluate the role of 

the MPT in GFP-LC3 hepatocytes, we treated TMRM or LTR-loaded GFP-LC3 hepatocytes 

with CsA or NIM811. In WM, GFP-LC3 was incorporated into green PAS patches (Figure 

2.7A). In KRH/G, GFP-LC3-labeled phagophores and autophagosomes formed TMRM-

labeled mitochondria proliferated. CsA and NIM treatment, however, did not appear to 

inhibit the formation of phagophores and autophagosomes (Figure 2.7A).   

The distribution of GFP-LC3-decorated PAS-like patches, phagophores, TMRM-

loaded rings, and empty rings was quantified in images of random fields from three 

independent experiments with and without CsA or NIM811 treatment (Figure 2.7B). After 90 

min in KRH/G, the number of PAS patches decreased by 69%, whereas phagophores, 

polarized mitophagosomes, and depolarized autophagosomes increased by 1.5, 11.1, and 8.1-

folds.  The magnitude of these changes was not blocked by CsA or NIM811 (Figure 2.7B). 

Taken together, these data support the conclusion that MPT does not precede initiation of 

mitophagic sequestration.  

In LTR-loaded GFP-LC3 hepatocytes, LTR-labeled autolysosomes proliferated after 

90 min incubation in KRH/G.  Some of these LTR-labeled autolysosomes were surrounded 

by GFP-LC3-labeled rings; whereas others were not (Figure 2.8).  CsA and NIM811 did not 
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block the formation of LTR-labeled autophagosomes or autolysosomes in GFP-LC3 

hepatocytes incubated in KRH/G.  

2.4.7. Pro-apoptotic Bcl-2 familt protein, Bim EL is dephosphorylated during  

mitophagy 

Bcl-2 family proteins play a role in autophagy.  For example, in different studies Bcl-

2 inhibits starvation-induced autophagy as well as the MPT (Adams and Cory, 2001; 

Tsujimoto, 2003; Pattingre et al., 2005). We tested whether Bcl-2 family proteins were 

involved in nutrient deprivation-induced autophagy.  Bcl-2 itself is not expressed in normal 

hepatocytes (Charlotte et al., 1994), which I confirmed by Western blotting in rat hepatocytes 

incubated in the complete growth medium and KRH/G (data not shown). Additionally, 

protein expression assessed by Western blotting of Bcl-xl, Bax, Bid, and Bnip did not change 

in during incubation of hepatocytes WM or KRH/G with and without 3MA (Figure 2.9A).  

By contrast, incubation in KRH/G altered BimEL expression from a wide 2-3 kDa width 

bands to a narrow 1 kDa width (Figure 2.9B). After 0 to 20 min of incubation in KRH/G, 

BimEL was weakly detected as broad bands, whereas after incubation of 50 min or more in 

KRH/G, BimEL migrated as a narrower and more intense band on 4 to 15% polyacylamide 

gels (Figure 2.9B). When cell lysates of hepatocytes incubated in complete WM were 

resolved in 20% polyacylamide gel, Bim EL was detected as two bands (23 kDa and 27 kDa) 

that were equal in intensity (Fig. 2.9C).  By contrast, cell lysates after KRH/G incubation 

only showed a fainter 23kDa band and a stronger 27 kDa band.  This result leaded us a 

speculation that Bim may be undergoing post-transmodification either cleavage or 

phosphorylation during nutrient deprivation-induced autophagy.  
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To investigate whether the difference between two bands were due to 

phosphorylation, cell lysates of WM and KRH/G were treated with lamda phosphatase.  The 

two bands (23 kDa and 27 kDa) observed in WM extracts were converted to a single band at 

27 kDa after phosphatase treatment; whereas, the 27 kDa band found in KRH/G extracts 

remained unchanged (Figure 2.9D). These findings were consistent with the conclusion that 

the 27 kDa band of BimEL represented a phosphorylated form, whereas the 23 kDa band 

represented unphosphorylated BimEL.  

To investigate further a possible role of Bim in mitophagy, we assessed autophagy 

and mitophagy in hepatocytes isolated from Bim knockout (Bim -/-) mice. After 90 min in 

KRH/G, lysosomal proliferation assessed by LTR uptake increased to a similar extent in 

wildtype and Bim -/- hepatocytes in LTR plate assay data (Figure 2.10A), and this increased 

LTR uptake was inhibited by 3MA in both wildtype and Bim -/-, confirming that autophagy 

was being assessed.  Wildtype and Bim -/- hepatocytes were also loaded with LTR, 

MitoFluor Far Red (MFFR), and MitoTracker Green (MTG). MFFR is a far red-fluorescing 

cationic fluorophore that accumulates electrophoretically into polarized mitochondria and is 

released upon mitochondrial depolarization (Sakanoue et al., 1997). MTG is a green-

fluorescing cationic fluorophore that accumulate electrophoretically into mitochondria. 

However unlike TMRM and MFFR, MTG covalently binds with mitochondrial proteins after 

accumulation is not released after mitochondrial depolarization (Elmore et al., 2001). After 

90 min in KRH/G, LTR-labeled vesicles (acidified autophagosomes and autolysosomes) 

increased in hepatocytes from both wildtype and Bim -/- mice. Some LTR-labeled vesicles 

contained MTG and MFFR-labeled mitochondria (mitophagosomes) in both wildtype and 
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Bim -/- mice hepatocytes (Figure 2.10). Overall, these results indicate that Bim may not be 

required to activate nutrient deprivation-induced autophagy and mitophagy. 

 

2.5. Discussion 

Mitophagy is suggested to be a major degradative mechanism by which mitochondria 

turn over.  In hepatocytes, 20% of mitochondria are degraded 12 h after nutrient deprivation 

indicating removal of mitochondria by autophagy (Kawai et al., 2006). However, the 

dynamic and signaling pathways of mitophagy have not been clarified.  In this study, we 

characterized mitophagy in GFP-LC3 expressing hepatocytes.  In GFP-LC3 expressing 

hepatocytes incubated in complete growth medium, GFP-labeled LC3 was diffuse in the 

cytosolic space or incorporated into small patches of 0.2 to 0.5 µm in diameter, or 

occasionally into green rings characteristic of autophagosomes (WM, Figure 2.1).  The small 

patches likely represent pre-autophagic structures (PAS), as described in yeast (Kim et al., 

2002). PAS contain complexes of Atg proteins forming a perivacuolar structure in yeast 

(Kim et al., 2002; Suzuki et al., 2001). PAS elongate into cup-shaped structures called 

isolation membranes (phagophores) and then into autophagosomes. However, it is not clear 

whether PAS simply relocates or reorganized to the mitochondria that are targeted for 

mitophagy.  

The origin of isolation membranes has been controversial.  In some studies, ribosome-

free regions of the rough endoplamic reticulum (ER) or Golgi complex have been proposed 

as the source of these membranes (Dunn, Jr., 1990; Furuno et al., 1990; Yamamoto et al., 

1990). However, the lipid and protein composition of autophagosomal membranes differ 

from membranes of ER and Golgi complex (Kim et al., 2002). Other studies suggest that 
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isolation membranes originate from a novel membranous structure that is neither ER nor 

Golgi (Fengsrud et al., 1995). One other speculation is membranous structure of isolation 

membrane is donated from a specific part of an organelle such as mitochondria where the 

marker proteins, Atg9, are rapidly recycled back to the donor organelle, mitochondria 

(Reggiori et al., 2005). A recent study shows that Atg9 cycles between PAS and 

mitochondria, suggesting that mitochondria may supply the lipids and proteins for forming 

autophagosomes in yeast (Reggiori et al., 2005). In the present study, GFP-labeled patches 

that corresponded to PAS decreased 69% during nutrient deprivation plus glucagon 

compared to the hepatocytes in the complete medium. Loss of PAS was accompanied by a 

corresponding increase in the number of isolation membranes (green cup-shaped structures) 

and autophagosomes (GFP-LC3 rings and disks, Figure 2.1A). LC3-II formation also 

increased during nutrient deprivation plus glucagon (Figure 2.1B), which is also consistent 

with autophagosome formation (Kabeya et al., 2000).   

Of all GFP-LC3-labeled autophagosomes, about 40% contained TMRM-labeled 

polarized mitochondria (mitochondria containing autophagosomes) (Figure 2.2). This is an 

underestimate of the true percentage of autophagosomes containing mitochondria or 

mitochondrial remnants since mitochondria depolarize after autophagic sequestration. As 

expected the autophagy inhibitor, 3MA, suppressed the formation of GFP-LC3-labeled 

phagophores and mitophagosomes (Figure 2.2A and B). After autophagic sequestration of 

mitochondria, mitophagosomes acidified as assessed by LTR uptake (Figure 2.2D). In these 

experiments, mitochondrial depolarization occurs at or after the completion of autophagic 

sequestration. Thus, mitochondrial depolarization itself was not the signal initiating 

autophagic sequestration.  



 

 38

Previously in rat hepatocytes, we observed that nutrient deprivation plus glucagon 

induced a 5-fold increase of mitochondrial depolarization and a corresponding proliferation 

of acidic lysosomes and autolysosomes. Moreover, the depolarized mitochondria became 

localized to the acidic organelles (Elmore et al., 2001). Cyclosporin A (CsA), an inhibitor of 

mitochondria permeability transition (MPT), inhibited both mitochondrial depolarization and 

proliferation of lysosomes (Rodriguez-Enriquez et al., 2006). Moreover, NIM811, a non-

immunosuppressive CsA analog that is not a calcineurin inhibitor, inhibited autophagy, 

whereas immunosuppressive tacrolimus, a calcineurin inhibitor that does not block the MPT, 

does not block autophagy (Elmore et al., 2001; Rodriguez-Enriquez et al., 2006). However, 

in my experiments using hepatocytes from GFP-LC3 transgenic mice, CsA and NIM811 did 

not appear to inhibit the proliferation of autophagosomes and their acidification (Fig. 2.7 and 

Fig. 2.8).  The reason for the difference in my results in mice from the previous work in rats 

is unclear. One reason may be species differences. For example, in rat hepatocytes 

cyclosporin blocks the MPT occurring during TNFα-induced apoptosis, whereas in mouse 

hepatocytes CsA plus trifluoperazine is required to block the MPT (Bradham et al., 1998; 

Hatano et al., 2000). Moreover with time, the regulated MPT that is block by CsA can 

transform to an unregulated MPT that is not subject to inhibition by CsA (He and Lemasters, 

2002; Kon et al., 2004). Thus, CsA may suppress autophagy at earlier time points but not at 

the later times (>90 min) assessed in the present work. Lastly, CsA may be acting subsequent 

to mitophagic sequestration by suppressing MPT dependent processing of mitophagosomes. 

Further studies are needed to be clarified this issue. However, from the present work we can 

conclude that mitochondrial depolarization and hence any MPT during nutrient deprivation is 

occurring at or following the completion of mitochondrial sequestration. If the MPT is 
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playing a role in mitophagy, then this role must be at or beyond this first step in autophagic 

processing.   

In time-lapse images, some GFP-LC3 patches became closely associated with TMRM-

labeled mitochondria prior to formation of phagophore (Figure 2.2C and 2.3A). Patches 

elongated into typical cup-shaped phagophore and enveloped the mitochondria in 3.3 ± 0.3 

min and then into ring structures in another 3.4 ± 0.4 min (Figure 2.3A). However, not all 

rings represented completely formed autophagosomes. In favorable sections through long 

axis of the phagophores, cup shaped isolation membranes formed surrounding polarized 

mitochondria which if viewed from another angle would appear to be entirely enclosed by a 

ring of GFP-LC3 despite remaining open at one end. In such favorable sections, 

depolarization appeared to occur at or very shortly following completion of sequestration. 

Overall, depolarization occurred 11.8 ± 1.4 min after the first appearance of rings, but the 

time of depolarization after complete closure of the forming autophagosomes is likely 

substantially less (Figure 2.3A). After ring formation, maximal acidification as assessed by 

LTR uptake occurred after 9.9 ± 1.9 min (Figure 2.3B and Figure 2.4).  In a previous study, 

the lifetime of LTR-labeled autolysosome was measured to be about 9 min (Rodriguez-

Enriquez et al., 2006). However, the end point of autolysosomes is difficult to measure since 

degradation of autolysosomes cannot be easily distinguished from movement of 

autolysosomes out of the confocal plane.  However, the morphometric analysis in EM images 

indicate that the lifetime of autophagosome is about 9 min in liver, which is consistent with 

results in hepatocytes by confocal microscopy (Pfeifer, 1978).  

During nutrient deprivation-induced mitophagy, sometimes only a part of an individual 

mitochondria was sequestered for autophagic degradation. Ends (43.1% of events), middle 
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part (9.1%) or whole mitochondria (47.8%) were engulfed. As judged by the intensity of 

TMRM fluorescence, the membrane potential of the sequestering and non-sequestering parts 

was not different (Figure 2.5).  These findings show that mitochondrial fission often occurs 

coordinately with mitophagosome formation. How partial autophagic engulfment of 

mitochondria occurs remains to be determined. One possibility is that an Atg proteins may be 

directly involved in mitochondrial fission.  For example, Atg5-Atg12/Atg16 protein 

complexes, which function in forming sequestering membranes, may also assist in dividing 

mitochondria. Atg9 is suggested to supply lipid for autophagosomal membranes and may act 

to insert lipids into mitochondria membrane to assist in fission (Suzuki et al., 2001; Reggiori 

et al., 2005). Another possibility is that LC3 and other Atg proteins collaborate with 

mitochondrial fusion and fission proteins, such as mitofusin 1 (Mfn1) and dynamin-related 

protein 1 (Drp1). In primary neurons, nitric oxide (NO)-induced mitochondrial fission was 

accompanied by mitophagy and was inhibited by Mfn1 and dominant negative Drp1 

expression (Barsoum et al., 2006). Further analysis is required for in depth understanding of 

the mechanism by which mitochondrial fission occurs during mitophagy. 

On average, mitochondria of hepatocytes contain four to five copies of mtDNA (Chen 

and Butow, 2005). In complete growth medium, PicoGreen labeling confirmed that each 

polarized mitochondrion of hepatocytes contained several copies of mtDNA (Figure 2.6A).  

After autophagic induction, PicoGreen-labeled mtDNA moved into autolysosomes as 

mitophagy occurred (Figure 2.6B and C). mtDNA has 10 to 20 fold higher mutation rate than 

nuclear DNA due to the proximity of mtDNA to the reactive oxygen species-generating 

respiratory chain, the limited DNA repair capacity of mitochondria, and lack of protective 

histones in mtDNA (Yakes and Van, 1997). Mutation of mtDNA will lead to mitochondrial 
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dysfunction due to absent or abnormal synthesis of one of more of the 13 key protein 

subunits of oxidative phosphorylation that are encoded by mtDNA. Defective mtDNA in 

mice leads to a shortened life span and to signs of aging, such as hair loss, osteoporosis, and 

reduced fertility (Trifunovic et al., 2004). Deletion in mtDNA is observed in some diseases, 

including Pearson’s syndrome and sideroblastic anemia (Fontenay et al., 2006). Our study 

shows mtDNA is degraded as mitochondria undergo autophagy, which suggests that 

mitophagy may play an important role in the elimination of mutated mtDNA from cells.   

Bcl-2 is implicated as a regulatory protein in autophagy, but hepatocytes do not 

normally express Bcl-2. Of several Bcl-2 family members examined, Bcl-xl, Bid, and Bnip3 

did not change during nutrient deprivation-induced mitophagy (Figure 2.9A).  However, Bim 

became dephosphorylated about 50 min after nutrient deprivation.  Nonetheless, this event 

was not required for mitophagy, since formation of mitochondria-containing autophagosomes 

and autolysosomes was not inhibited in hepatocytes from Bim knockout mice (Figure 2.10). 

ERK1/2 phosphorylates Bim EL at Ser69, Ser59, and Ser104 and possibility additional sites. 

As a consequence, Bim EL becomes targeted for the proteasomal degradation (Weston et al., 

2003; Seward et al., 2003). After interleukin-2 (IL-2) withdrawal in Bal17 cells, at least two 

sites on Bim EL becomes de-phophorylated (Seward et al., 2003). JNK also weakly 

phosphorylates Bim EL at Ser69 after neuronal growth factor withdrawal, the effect which 

facilitates apoptosis (Putcha et al., 2003). My data shows that Bim dephosphorylation occurs 

after nutrient deprivation. However, Bim was not necessary for autophagy to occur, and Bim 

dephosphorylation during autophagy was not associated with induction of apoptosis.   

In summary, mitophagy was induced during nutrient deprivation. PAS in association 

with polarized mitochondria appeared to serve as nucleation sites for autophagosome 
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formation and grew in just a few minutes into cup-shaped phagophore and then fully formed 

autophagic vesicles. Mitophagy often occurred coordinately with mitochondria fission. 

Sequestration was followed by relatively abrupt mitochondrial depolarization and then 

gradual vesicular acidification and conversion of mitophagosomes to autolysosomes in which 

mitochondrial components, including mtDNA, were degraded.  These findings will provide a 

framework for analyzing mitophagy in disease. 
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Chapter 3. JNK (c-Jun NH2-terminal kinase) as a positive 
regulator of mitophagy 
 

3.1. Abstract 

Diverse stimuli, including TNF-α, IL-1, UV radiation, and oxidative stress, activate a 

stress-activated protein kinase, c-Jun N-terminal kinases (JNK). Recent evidence indicates 

that JNK also participates in autophagic cell death.  In this study, we examined the role of 

JNK in mitochondrial autophagy.  Autophagic induction of GFP-LC3 transgenic mice and 

wildtype mice hepatocytes by nutrient deprivation plus glucagon caused an increase of LTR 

fluorescence uptake.  In wildtype hepatocytes, SP600125, a JNK-specific small molecule 

inhibitor, decreased LTR uptake in a dose-dependent manner with maximal inhibition at 100 

μM.  SP600125 treatment of GFP-LC3 hepatocytes during nutrient deprivation also inhibited 

proliferation of isolation membranes, autophagosomes, and autolysosomes.  In addition, 

SP600125 decreased formation of mitophagosomes (mitochondria-containing 

autophagosomes).  After autophagic stimulation, JNK was phosphorylated transiently 

between 5 and 20 min, whereas total JNK was unchanged.  However, JIP (JNK peptide 

inhibitor) and DN-JNK (dominant-negative) expression did not inhibit LTR fluorescence 

uptake or inhibit proliferation of autophagosomes or mitophagosomes. Moreover, 

autophagosome and mitophagosome formation was not blocked in JNK1 and JNK2 knockout 

hepatocytes.  Here, we conclude that JNKs may not play a direct role in nutrient deprivation-

induced autophagy. The effect of SP600125 may be via inhibition of another unidentified 

kinase.  

3.2. Introduction 
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Autophagy is a cellular process by which portions of the cytosol and individual 

organelles become sequestered into double membrane vesicles called autophagosomes. 

Autophagosomes subsequently fuse with lysosomes forming autophagolysosomes whose 

contents undergo hydrolytic lysosomal degradation. Autophagy is an important catabolic 

mechanism activated by nutrient deprivation and growth factor withdrawal. Autophagy also 

can be important as a defense against intracellular microbial infections and may have a role in 

the pathogenesis of many diseases, including cancer (Yue et al., 2003; Dorn et al., 2002). At 

least 27 autophagy proteins (Atg) have been discovered that participate in autophagy 

(Ohsumi and Mizushima, 2004).  LC3, a mammalian homologue of yeast Atg8, is among the 

best characterized of these and used as a tool to study autophagy in the mammalian cells 

(Kabeya et al., 2000). 

c-Jun NH2-terminal kinases (JNK) belongs to a family of mitogen-activated protein 

kinase (MAPK) that are activated by various stresses and mitogenic stimuli, including 

hypoxia, UV radiation, cytokines, osmotic shock, toxic compounds, and pathogen-derived 

antigens (Rosette and Karin, 1996). Phosphorylated JNK phosphorylates transcription factors 

such as c-Jun, p53, and Elk-1, and non-transcriptional factors such as Bcl-2 family proteins 

(Tsuruta et al., 2004; Hibi et al., 1993; Davis, 2000).  Three genes (JNK1, 2, and 3) encode 

JNK family proteins. At least 10 splicing variants are expressed from these genes. JNK3 is 

expressed mostly in brain, whereas JNK1 and JNK2 is expressed ubiquitously (Gupta et al., 

1996).  Mice lacking both JNK1 and JNK2 die around embryonic day 11 (E11). These 

double knockout mice exhibit open neural tube with reduced apoptosis in the hindbrain at 

E9.25 and increased apoptosis in the hindbrain and forebrain at E10.5 (Sabapathy et al., 

1999). However, the mice lacking either JNK1 or JNK2 survived suggesting their redundant 
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overlapping activities. Other findings indicate that JNK1 and JNK2 also have distinctive 

functions (Kuan et al., 1999).  JNK1 seems to serve as a mediator of obesity-induced insulin 

resistance, whereas JNK2 is more closely associated with apoptotic signaling pathways .  

JNK3 expressed in brain is also a mediator of neuronal apoptosis (Coffey et al., 2002; Brecht 

et al., 2005).   

Several lines of evidence suggest that the JNK cascade participates in mitochondrial 

signaling pathways. JNK activates the intrinsic pathway by phosphorylation of Bcl-2 family 

proteins such as Bcl-2, Bax, and Bim (Yamamoto et al., 1999; Maundrell et al., 1997; Lei 

and Davis, 2003). JNK-medicated phosphorylation suppresses the anti-apoptotic function of 

Bcl-2, whereas JNK activates the pro-apoptotic function of Bax and Bim. After paclitaxel-

induced mitotic arrest in Hela cells, phosphorylated JNK translocates to mitochondria and 

forms a complex with Bcl-2 and protein phosphatase 1 (PP1) (Brichese et al., 2004).  

JNK is suggested to play a positive role in autophagy.  A JNK inhibitor, SP600125, 

reduced a proteasomal inhibitor, bortezomib-induced autophagy (Ding et al., 2007). A 

caspase inhibitor, zVAD-induced autophagy was partially inhibited by a JNK peptide 

inhibitor and c-Jun knockdown (Yu et al., 2004). Previously, we reported that the JNK 

inhibitor, SP600125, partially blocked the proliferation of autophagosomes after nutrient 

deprivation (Rodriguez-Enriquez et al., 2006). In this study, we used GFP-LC3 transgenic 

hepatocytes to monitor autophagy and mitophagy directly in relation JNK signaling after 

nutrient deprivation. Although we confirmed that SP600125 inhibits autophagy and that JNK 

becomes transiently activated after nutrient deprivation, autophagy and mitophagy were not 

affected by a JNK specific peptide inhibitor and dominant negative JNK. Moreover, 

autophagy was unchanged in hepatocytes deficient of a specific JNK isoform, JNK1 or JNK2. 
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Thus, JNK activation occurs as a stress response to nutrient depletion in hepatocytes, but 

appears not to promote induction of autophagy.   

  

3.3. Materials and methods 

3.3.1. Materials 

Collagenase A was obtained from Roche (Penzberg, Germany), 3-methyladenine, 

protease cocktail, propidium iodide, phosphatase inhibitor cocktail, and ITS+3, a media 

supplement for serum-free cell culture, from Sigma Chemical (St. Louis, MO), SP600125 

from A.G. Scientific (San diego, CA), and JNK peptide inhibitor 1 (JIP) from EMD 

chemicals (San Diego, CA). Ad5LacZ was purchased from Genetherapy center (University 

of North Carolina at Chapel Hill, NC). Ad5TAM (dominant negative c-Jun) and Ad5DN-

JNK (dominant negative JNK) were kindly provided from Dr. Richard Rippe (University of 

North Carolina, Chapel Hill, NC) and Dr. David Pimentel (Boston Univeristy, Boston, MA). 

Lysotracker Red (LTR), tetramethylrhodamine methylester (TMRM), and Mitotracker Green 

(MTG) were from Molecular Probes (Carlsbad, CA), BCA (bicinchoninic acid) reagents 

from Pierce (Rockford, IL), 4%-12% Bis-Tris gels from Invitrogen (Carlsbad, CA), 

nitrocellulous membrane from Whatman (Dassel, Germany), rabbit anti-LC3 antibody from 

MBL International (Wobrun, MA), goat anti-rabbit antibody from Chemicon (Billerica, MA), 

rabbit anti-P-JNK from Cell Signal (Danvers, MA), anti-total JNK from Santa Cruz (Santa 

Cruz, CA), mouse anti-actin from Sigma Chemical (St. Louis, MO), and chemiluminescence 

reagents from GE Sciences (Buckinghamshire, UK). 

3.3.2. Hepatocytes isolation, culture, and adenovirus infection 
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Primary hepatocytes from Sprangue-Dawley rats and wildtype, GFP-LC3 transgenic, 

and JNK1 and JNK2 knockout mice on a C57BL/6 background were isolated by 2-step 

collagenase reperfusion, as described (Qian et al., 1997). Hepatocytes were incubated in 

Waymouth’s growth medium supplemented with 10% fetal bovine serum, 100 nM insulin, 

and 100 nM dexamethasone (WM) on 40-mm collagen-coated glass bottomed dishes, or 48 

well-plates or 6 well-plates for overnight in 5% CO2/95% air at 37ºC.  

For adenovirus infection, hepatocytes at 4 hours after seeding were incubated in 

hormonally defined medium, which is composed of Roswell Park Memorial Institute 1630 

(RPMI-1630) medium supplied with ITS + 3 [1.0 mg/ml insulin, 0.55 mg/ml human 

transferrin, 0.5 μg/ml sodium selenite, 470 μg/ml linoleic acid, 470 μg/ml oleic acid and 50 

mg/ml bovine serum albumin, 2 moles each of linoleic acid and oleic acid per mole of 

albumin], containing recombinant adenoviruses (Ad5LacZ, Ad5DN-JNK, or Ad5TAM) at 30 

plaque-forming units/cell for 2 h at 37°C.  Afterwards, the cells were washed and incubated 

in WM overnight in 5% CO2/95% air at 37ºC. 

3.3.3. Imaging and confocal microscopy 

Cultured hepatocytes were loaded with 500 nM LysoTracker Red (LTR) with or 

without 100 nM MitoTracker Green or 100 nM tetramethylrhodamine methylester (TMRM) 

in WM for 30 min. To maintain equilibrium distribution of probes, cells were then incubated 

with 166 nM LTR and 33 nM TMRM in WM or KRH. Images were collected using a Zeiss 

LSM 510 NLO laser scanning confocal microscope (Carl Zeiss, Thornwood, NY) with a 63X 

N.A. 1.4 oil immersion planapochromat objective lens. Temperature of the microscope stage 

was maintained at 37°C using an environmental chamber.  LTR and TMRM were excited at 

543-nm by an argon laser attenuated to less than 2% full power and emission was collected 
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through a 560-nm long pass filter. GFP-LC3 fluorescence was excited at 488-nm by helium-

neon laser less then 2% and collected through a 500-550-nm band pass filter.  

3.3.4. LTR multiwell assay 

LTR uptake, a measure of cellular content of acidic organelles, was assessed by a 

multiwell fluorescence reader assay, as described previously (Rodriguez-Enriquez et al., 

2006). Briefly after 70 min incubation of hepatocytes in WM or KRH plus 1 μM glucagon 

(KRH/G), 50 nM LTR was added. After 20 min at 37ºC, the hepatocytes were fixed with 2% 

paraformaldehyde for 10 min at 4ºC.  The red fluorescence of LTR was measured using a 

544-nm (15-nm band pass) excitation filter and a 590-nm long pass emission filter with 

Novostar multi-well fluorescence plate reader (BMG LabTechnologies, Offenburg, 

Germany). LTR fluorescence after experimental treatment was expressed as the percentage 

of LTR fluorescence of hepatocytes incubated in WM.  

3.3.5. Cell viability assay 

Viability of hepatocytes cultured in 24-well plates was determined by propidium 

iodide (PI) fluorometry, as described previously . Briefly, fluorescence of PI (30 µM) from 

each well was measured using excitation and emission wavelengths of 544-nm (15-nm band 

pass) and 590 nm long pass emission, respectively. For each experiment, an initial 

fluorescence measurement (A) was made 30 min after adding PI to hepatocytes incubated in 

WM.  Maintaining PI in the medium, the cells were exposed to various treatments and 

fluorescence (X) was measured again after 90 min.  Individual experiments were then 

terminated by addition of 375 μM digitonin to permeabilize all cells, and a final fluorescence 

measurement (B) was obtained 20 min later. The percentage of viable cells (V) was 

calculated as V = 100(B -X)/ (B - A). 
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3.3.6. Western blot analysis 

Hepatocytes were harvested by scraping into RIPA buffer (20 mM Tris-HCl buffer, 

pH 7.5, 150 mM NaCl, 1% sodium dodecyl sulfate, and 0.1% NP-40 containing protease and 

phosphatase inhibitor cocktails as recommended by the manufacturer). Cell lysates were 

sonicated on ice using an ultrasonic cell disruptor (Misonex, Farmingdale, NY) and 

centrifuged at 13,000 x g for 10 min at 4ºC.  Protein concentration was measured using a 

bicinchoninic acid (BCA) procedure, as recommended by the manufacturer. Aliquots (30 μg 

protein) were resolved on 4 to 15% Bis-Tris gels and electrotransferred onto nitrocellulose 

membranes. After blocking with 5% non-fat milk in TBST (10 mM Tris-HCl buffer, pH. 7.6, 

150 mM NaCl, and 0.1% Tween-20) for 1 h, membranes were immunoblotted with anti-P-

JNK, anti-JNK, anti-actin, and anti-LC3 antibody diluted 1:1000 in TBST. Primary antibody 

was detected using horseradish peroxidase-conjugated secondary antibody against rabbit 

using a chemiluminescence kit according to the manufacturer’s instructions. 

 

3.4. Results 

3.4.1. JNK inhibitor, SP600125 inhibited nutrient deprivation-induced autophagy. 

To investigate a possible role for JNK in autophagy, we used SP600125, a JNK-

specific small molecule inhibitor that prevents the activation of JNK effector molecules. The 

effect of SP600125 on autolysosome proliferation after nutrient deprivation was determined 

from by LysoTracker Red (LTR) uptake. When autophagosomes form, they fuse with 

lysosomes to mature into acidic autolysosomes that accumulate LTR (Rodriguez-Enriquez et 

al., 2006).  Cultured rat hepatocytes were incubated in WM or KRH/G in the absence and 

presence of 3MA or SP600125. Compared to WM, LTR uptake increased 4.4 fold in KRH/G 
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(Figure 3.1A). 3MA, the classical autophagy inhibitor, blocked autophagy completely.  At 1 

µM, SP600125 did not change LTR uptake in KRH/G, but at higher concentrations, 

SP600125 caused dose-dependent inhibition. At 100 µM, SP600125 inhibited LTR uptake by 

hepatocytes incubated in KRH/G by 41%. SP600125 did not decrease cell viability at any 

concentration used (Figure 3.1B). This data indicated that SP600125 inhibited nutrient 

deprivation-stimulated autophagy in a dose-dependent fashion.  

The effect of SP600125 on nutrient deprivation-induced autophagy was also 

visualized by confocal microscopy of GFP-LC3 hepatocytes. GFP-LC3 identifies forming 

and newly formed autophagosomes. GFP-labeled rings (autophagosomes) and LTR-loaded 

vesicles (autolysosomes) increased after nutrient deprivation, which was completely blocked 

by 3MA (Figure 3.1C). SP600125 (25 μM) partially inhibited GFP-labeled ring and LTR-

loaded vesicle formation.  

To confirm the inhibitory effect of SP600125 on autophagy, LC3-II was detected 

with SP600125 treatment in nutrient deprivation.  During autophagic induction, LC3-I (18 

kDa) is cleaved to LC3-II (16 kDa), which associates with forming autophagosomes (Kabeya 

et al., 2000).  The amount of LC3-II, therefore, is proportional to the number of forming and 

newly formed autophagosomes. After nutrient deprivation, LC3-II increased, as assessed by 

immunoblotting (Figure 3.2A).  With SP6000125 treatment, the increase of LC3-II was 

partially blocked. Taken together, the results indicated that SP600125 inhibited the 

proliferation of autophagosomes, and suggested that JNK may play a role during autophagy. 

3.4.2. JNK is phosphorylated during nutrient deprivation-induced autophagy 

JNK becomes phosphorylated when activated (Hibi et al., 1993). To examine JNK 

activation after nutrient deprivation, wildtype mouse hepatocytes from same breeding colony 
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as the GFP-LC3 transgenic mice were incubated in KRH/G for 0 to 90 min, and 

phosphorylated-JNK (P-JNK) and total-JNK (T-JNK) was determined by Western analysis.  

For hepatocytes cultured in WM, P-JNK expression was low (time 0), but after nutrient 

deprivation in KRH/G, P-JNK increased prominently at 5 to 20 min. P-JNK then declined 

after 50 and 90 min in KRH/G (Figure 3.2 B). T-JNK expression level was unchanged over 0 

to 90 min in KRH/G. These results indicated that nutrient deprivation caused a transient early 

activation of JNK. 

3.4.3. SP600125 inhibits mitophagy during nutrient deprivation 

Next, we determined the effect of SP600125 on mitophagy in GFP-LC3 hepatocytes.  

GFP-LC3 hepatocytes were loaded with red-fluorescing TMRM, which accumulated into 

mitochondria electrophoretically. When autophagy was induced by nutrient deprivation 

(KRH/G), the number of GFP-labeled dots (pre-autophagic structure  [PAS]-like structures) 

decreased, whereas the number of GFP-labeled cup-shaped structures (phagophores) and 

GFP-labeled rings with and without TMRM increased as seen in previous chapter (Figure 

2.2C). 3MA blocked these changes nearly completely. Polarized mitochondria were initially 

sequestered into autophagosomes (early mitophagosomes), but shortly afterwards 

mitochondria lost their polarization inside the autophagosomes (late mitophagosomes). 

However, in presence of SP600125, the number of GFP-labeled rings with and without 

TMRM decreased (Figure 3.2C). The number of autophagic structures - PAS, isolation 

membranes, polarized mitophagosomes, and depolarized mitophagosomes – was counted 

from the confocal images.  In the presence of SP600125, the number of PAS partially 

increased compared to KRH/G, whereas the number of isolation membranes and polarized 
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and depolarized mitophagosomes decreased relative to KRH/G. Taken together, confocal 

microscopy confirmed that SP600125 partially inhibits mitophagy after nutrient deprivation. 

3.4.4. Autophagy and mitophagy is not blocked by other form of JNK inhibitors 

SP600125 also has inhibitor effects on other protein kinases, including serum and 

glucocorticoid-inducible kinase (SGK), p70 ribosomal protein S6 kinase (S6K1), AMP-

activated protein kinase (AMPK), and pyruvate dehydrogenase kinase (PDK1) . To 

determine if the inhibitory effect of SP600125 on autophagy was due to JNK inhibition, we 

examined JNK inhibition with a JNK inhibitory peptide inhibitor (JIP) and with dominant 

negative JNKs (DN-JNK).  LTR uptake was measured with different JIP concentrations from 

0.2 to 10 µM.   As shown in Fig. 3.3A, JIP did not inhibited LTR uptake at any concentration. 

Moreover, in confocal images, the number of GFP-labeled rings and LTR-labeled vesicles 

after nutrient deprivation was unchanged after JIP (2 μM) (Figure 3.3B).  In addition, the 

number of GFP-labeled rings containing TMRM (mitophagosomes) remained same with and 

without JIP treatment (Figure 3.3C).  Thus, JIP failed to inhibit nutrient deprivation-induced 

autophagy and mitophagy in cultured hepatocytes. 

To further determine whether JNK modulates autophagy, we evaluated the effect of 

DN-JNK1 in nutrient deprivation.  DN-JNK1 is JNK1 in which threonine 183 is replaced by 

alanine and tyrosine 185 by phenylalanine. Consequently DN-JNK1 cannot be 

phosphorylated at these sites, does not become activated and thus exerts a dominant-negative 

effect on native JNK. Hepatocytes were tranduced with either AdDN-JNK or AdLacZ as a 

control.  DN-JNK expression did not inhibit LTR uptake after nutrient deprivation compared 

to AdLacZ-treated hepatocytes (Figure 3.4A).  Moreover, the proliferation of GFP-labeled 

rings and LTR-labeled vesicles was the same in both LacZ expressing and DN-JNK 
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expressing GFP-LC3 hepatocytes (Figure 3.4B).  Similarly, GFP-labeled rings containing 

TMRM increased in both LacZ and DN-JNK expressing hepatocytes during nutrient 

deprivation-induced autophagy (Figure 3.4C).   

We also examined DN-c-Jun (TAM-67) in nutrient deprivation. C-Jun is an important 

substrate for JNK, and TAM-67 is a c-Jun mutant that has a 104 amino acid deletion from the 

trans-activation domain of c-Jun. The overexpression of TAM-67 inhibits downstream JNK 

signaling (Alani et al., 1991). The DN-c-jun expression also did not block autophagosome 

and mitophagosome formation (data not shown).  These findings support the conclusion that 

JNK does not play a role in nutrient deprivation-induced autophagy and mitophagy. Thus, the 

inhibitory effect of SP600125 may be due to an effect on other kinases. 

3.4.5. JNK1 and JNK2 are not required for autophagy and mitophagy 

Another possibility is that SP600125 may be acting on a specific isoform of JNK.  In 

liver, JNK1 and JNK2 are expressed. JIP and DN-JNK predominately inhibit JNK1, although 

JNK2 also becomes inhibited at the high concentrations used here. To clarify possible roles 

of specific JNK isoforms on autophagy, we assessed autophagy and mitophagy in 

hepatocytes from JNK1 and JNK2 knockout mice (JNK1-/- and JNK2-/-). In JNK1-/- 

hepatocytes, LTR fluorescence uptake after nutrient deprivation was not inhibited compared 

to wildtype hepatocytes (Figure 3.5A).  Moreover, formation of LTR-labeled vesicles 

(autolysosomes) and MitoTracker Green (MTG)-labeled LTR vesicles (mitophagosomes) 

remained the same in JNK1-/- hepatocytes compared to the wildtype hepatocytes (Figure 

3.5B and C).  These findings indicate that JNK1 does not play an essential role in nutrient 

deprivation-induced autophagy and mitophagy.   
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Similar results were obtained in JNK2-/- hepatocytes. LTR uptake after nutrient 

deprivation (KRH/G) increased to a similar extent in both JNK2-/- and wildtype hepatocytes 

(Figure 3.6A). Similarly, confocal microscopy showed similar proliferation of autolysosomes 

(LTR-labeled vesicles) in KRH/G in JNK2 -/- vs. wildtype hepatocytes (Figure 3.6B and C). 

The number of MTG-containing LTR-labeled vesicles (mitophagosomes) was also similar in 

JNK2-/- and wildtype hepatocytes.  These results indicate that JNK2 is not required to 

activate nutrient deprivation-induced autophagy and mitophagy. However, JNK1 or 2 may 

compliment one another’s function in autophagy when either JNK1 or JNK2 is deleted 

during autophagy.  

 

3.5. Discussion 

Previously, we investigated the effects of different mitogen-activated protein kinases 

(MAPKs) inhibitors on nutrient-deprivation induced autophagy (Rodriguez-Enriquez et al., 

2006). The JNK inhibitors, SCP25041 and SP600125, blocked LTR uptake, whereas ERK1 

inhibitors, PD98059, and a p38 inhibitor, SB203580, did not inhibit LTR uptake (Rodriguez-

Enriquez et al., 2006). This pharmacological data therefore suggested a role for JNK in 

stimulating nutrient deprivation-induced autophagy. Other studies also implicate a role of 

JNK in promoting ER stress-induced autophagy (Ding et al., 2007; Ogata et al., 2006).  JNK 

also promotes growth factor withdrawal-induced autophagic cell death in T cells (Li et al., 

2006).  In addition, JNK plays a key role in proapoptotic mitochondrial signaling pathways.  

JNK1 and JNK2 double-knock out cells are resistant to UV-induced apoptosis and 

cytochrome c release from mitochondria (Tournier et al., 2000).  
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The overall goal of the present study was to demonstrate directly a role of JNK 

signaling in nutrient deprivation-induced mitophagy in hepatocytes.  We confirmed and 

extended our previous finding of the inhibitory effect of the small molecule JNK inhibitor, 

SP600125, on nutrient deprivation-induced autophagy. SP600125 inhibits LTR uptake in a 

dose dependent manner, whereas 3MA completely inhibited LTR uptake (Figure 3.1A).  

Under nutrient deprivation plus glucagon, cell killing did not occur at 1 to 100 µM 

concentration of SP600125 (Figure 3.1B). In GFP-LC3 hepatocytes, SP600125 partially 

blocked the proliferation of GFP-labeled rings (autophagosomes) and LTR-labeled disc 

structures (autolysosomes) during nutrient deprivation plus glucagon suggesting a role of 

JNK in autophagy (Figure 3.1C). LC3 II processing, which is a standard method to measure 

autophagic stimulation, was partially inhibited by SP600125 (Figure 3.2A).  Furthermore, 

JNK became transiently phosphorylated at 5 to 20 min after nutrient deprivation, which 

supported the hypothesis that JNK mediates nutrient deprivation-induced autophagy (Figure 

3.2B).  Then, we investigated the effect of SP600125 on mitophagy in GFP-LC3 hepatocytes 

during nutrient deprivation. Here, we showed that SP600125 inhibited the proliferation of 

phagophores and mitochondrial autophagosomes (mitophagosomes) (Figure 3.2C). Based on 

the effects of SP600125, we proposed that JNK may act in the induction of autophagy and 

mitophagy. 

To extend these findings, we assessed other types of JNK inhibitors, including a cell 

permeable JNK peptide inhibitor (JIP) and an adenoviral dominant negative JNK. JIP is 

derived from JNK-interacting-protein 1 whose JNK-binding domain (JBD) directly interacts 

with JNK and specifically inhibits JNK without affecting other MAPK family proteins such 

as ERK or p38 (Barr et al., 2004b; Barr et al., 2004a; Barr et al., 2002; Bogoyevitch et al., 
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2004). DN-JNK is a dominant negative JNK1 which is unable to be phosphorylated and, 

therefore, is inactive. Surprisingly, JIP did not inhibit LTR uptake after autophagic induction 

(Figure 3.3A). In GFP-LC3 hepatocytes, the proliferation of GFP-LC3 labeled 

autophagosomes and LTR-labeled autolysosomes was not inhibited by JIP (Figure 3.3B).  

The sequestration of mitochondria and proliferation of mitochondria-containing 

autophagosomes (mitophagosomes) also were not blocked by JIP (Figure 3.3C). Similar 

results were found in DN-JNK expressing hepatocytes. The LTR uptake was not decreased in 

DN-JNK expressing hepatocytes (Figure 3.4A). The number of LTR-labeled autolysosomes 

was not inhibited in DN-JNK compare to LacZ (used for vector control) -expressing GFP-

LC3 hepatocytes (Figure 3.4B). The number of mitophagosomes not inhibited in DN-JNK 

expressing hepatocytes (Figure 3.4C). These data imply that JNK is not directly involved in 

mitophagy. The inhibitory effect of SP600125 on autophagy occurs not by interupting JNK 

function, but rather by inhibiting other kinases such as serum and glucocorticoid-inducible 

kinase (SGK), p70 ribosomal protein S6 kinase (S6K1), AMP-activated protein kinase 

(AMPK), and pyruvate dehydrogenase kinase (PDK1) (Bennett et al., 2001; Bain et al., 2003; 

Bain et al., 2007). Although we observed transient JNK activation in hepatocytes incubated 

in KRH/G, this may be a nonspecific response to the stress induced by nutrient deprivation.  

Previous studies shows that JNK is activated by extracellular stresses including serum and 

amino acid depletion (Leicht et al., 2003; Aubel et al., 2001).   

Different JNK isoforms might be responsible for the inhibitory effect observed with 

SP600125. For instance, JNK1 and JNK2 have distinct functions despite their biochemical 

and structural similarities.  For example, JNK1 promotes bile acid injury, but JNK2 

attenuates such effect.  By contrast, JNK2 promotes acetaminophen hepatotoxicity and 
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proapoptotic mitochondrial signaling cascades. JNK1 also mediates insulin resistance by 

phosphorylating IRS-1 (insulin receptor substrate-1) (Hirosumi et al., 2002). In TNF-

dependent hepatotoxicity, caspase-8 activation and Bid cleavage are elicited by JNK2.  JNK2 

is also proposed to translocate to mitochondria to mediate cytochrome c release upon 6-

hydroxydopamine-induced neuronal cell death (Eminel et al., 2004).  In our study, loss of 

one of JNK isoforms did not prevent autophagy or mitophagy in hepatocytes. In hepatocytes 

from JNK1 knockout mice, LTR uptake was not decreased compare to hepatocytes from 

wildtype mice (Figure 3.5A).  The number of solid LTR-loaded autolysosome and 

mitochondria-containing autolysosomes increased in both wildtype and JNK1 knockout 

hepatocytes (Figure 3.5B and C). JNK2 knockout (JNK2 -/-) hepatocytes showed similar 

effects. LTR uptake was increased in both hepatocytes from wildtype and JNK2-/- mice 

(Figure 3.6A). The LTR-loaded autolysosomes and mitochondria-containing autolysosomes 

were not inhibited in JNK2 knockout hepatocytes compare to the wildtype (Figure 3.6B and 

C).  These results suggest that JNK1 or JNK2 is not necessary for autophagy and mitophagy 

in nutrient deprivation. However, the ability of JNK1 to substitue for the function of JNK2 or 

vice versa during autophagy needs to be clarified. These data indicate that JNK is not directly 

involved in autophagy. However,  recently presented data from Levine’s group indicated that 

JNK was phosphorylated and activated during nutrient deprivation leading to 

phosphorylation of Bcl-2. As a consequence, phosphorylated Bcl-2 was unable to bind and 

inhibit Beclin which promoted autophagy (Golstein and Kroemer, 2007). It is not clear why 

our data support a different conclusion.  Technical issues such as differences in cell lines 

verses hepatocytes may play a role.   
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In summary, these results demonstrate that the inhibitory effect of SP600125 is not 

likely through JNK pathway during nutrient deprivation-induced mitophagy; rather the effect 

is secondary to other kinase pathways by which SP600125 inhibits. However, we were 

unable to determine the targets of SP600125 against autophagy in the timeframe of this study. 

JNK1 or JNK2 may not be necessary in nutrient deprivation-induced mitophagy. However, 

JNK1 or JNK2 may substitute for each other when one is absent.  Additional experiments 

should be addressed to resolve this issue. 
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Chapter 4. Damaged mitochondria are selectively removed by 
mitophagy 
 
4.1. Abstract 

Damaged and dysfunctional mitochondria are proposed to be removed by autophagy. 

However, selective degradation of damaged mitochondria by autophagy (mitophagy) has yet 

to be verified experimentally. In this study, we investigated the cellular fate of mitochondria 

damaged by photoirradiation in cultured hepatocytes isolated from transgenic mice 

expressing GFP fused to microtubule-associated protein 1 light chain 3 (GFP-LC3), a marker 

of forming and newly formed autophagosomes. Photoirradiation with 488-nm light from an 

argon laser induced mitochondrial depolarization (release of tetramethylrhodamine 

methylester [TMRM]) in a dose-dependent fashion. At lower light doses (photoirradiation 

below 160 µs per pixel at 100% transmission of 488-nm laser), mitochondria depolarized 

transiently with repolarization within 3 min. After more light photoirradiation (above 320 µs 

per pixel at 100% transmission of 488-nm laser), mitochondrial depolarization became 

irreversible. Irreversible, but not reversible, photodamage induced autophagosome formation 

after 32 ± 5 min, as revealed by GFP-LC3 labeling. Photodamage-induced mitophagy was 

independent of TMRM, since photodamage also induced mitophagy in the absence of 

TMRM. Photoirradiation with 543-nm light did not induce mitophagy. As revealed by uptake 

of LysoTracker Red (LTR), mitochondria weakly acidified after photodamage before a much 

stronger acidification following autophagosome formation. Photodamage-induced mitophagy 

was not blocked by PI-3-kinase inhibition with 3-methyladenine (10 mM) or wortmannin 

(100 nM).  In conclusion, damaged mitochondria are selectively degraded by mitophagy, but 

photodamage-induced mitophagic sequestration occurs independently of PI-3-kinase 
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signaling pathway, the classical upstream signaling pathway of nutrient deprivation-induced 

autophagy. 

 

4.2. Introduction 

Autophagy refers to the process by which cellular constituents are sequestered into 

vesicles called autophagosomes and delivered to lysosomes for digestion. Insulin and other 

growth factors inhibit autophagy, whereas nutrient deprivation and glucagon promote 

autophagy (Arstila and Trump, 1968; Schworer and Mortimore, 1979).  During the normal 

life of cells, autophagy may remove damaged and superfluous organelles, including 

dysfunctional mitochondria that could be detrimental to cells.  Several studies show that both 

inadequate and excess autophagy lead to cell injury and death (Levine and Klionsky, 2004). 

Therefore, proper regulation of autophagy is fundamental to cellular well being. 

During autophagy, a novel membranous structure called a phagophore elongates and 

encloses cellular components to form a double membrane vesicle known as an 

autophagosome (Seglen et al., 1996). Lysosomes then fuse with autophagosomes to form 

autophagolysosomes in which lysosomal hydrolases degrade the sequestered contents. 

Autophagosomes can contain virtually any cytoplasmic element, including cytosolic proteins 

and various membranous organelles, such as endoplasmic reticulum, peroxisomes and 

mitochondria (Arstila et al., 1972; Kopitz et al., 1990).  

In yeast, genetic screens identified a series of evolutionally conserved autophagy 

(ATG) genes that are required for autophagy. Beclin1, a mammalian homologue of yeast 

Atg6, interacts with PI3K to form a complex, which is an initial step in autophagosome 

formation (Furuya et al., 2005).  Microtubule-associated protein 1 light chain 3 (LC3) was 



 

 63

then identified as a mammalian ortholog of yeast Atg8 that is important for autophagy in 

higher vertebrates (Kabeya et al., 2000). In mammalian cells, newly synthesized ProLC3 is 

processed to its cytosolic form, LC3-I. LC3-I is activated by Atg7 and transferred to Atg3. 

During this process, LC3-I is conjugated with phosphatidylethanolamine, called as LC3-II 

(Tanida et al., 2004). LC3-II localizes selectively to forming and newly formed 

autophagosomes even after other Atg proteins dissociate. Thus, LC3-II is a marker of 

ongoing autophagy. After sequestration, some LC3-II becomes entrapped on the inner 

surfaces of the double membrane autophagosomes. After fusion with lysosomes, this LC3-II 

is degraded. The outer surface LC3-II also disappears, most likely by breakdown of the 

phospholipid conjugate and reutilized. Recently, a transgenic mouse strain was created that 

expresses a green fluorescent protein (GFP)-LC3 fusion protein. In cells and tissues of GFP-

LC3 transgenic mice, GFP fluorescence selectively identifies the membranes of forming and 

newly formed autophagosomes (Mizushima et al., 2004). 

Whether or not autophagy selectively targets specific organelles has been controversial. 

After withdrawal of peroxisome proliferators in the presence of protease inhibitors, 

peroxisomes are selectively accumulate in autophagosomes (Yokota, 2003). The removal of 

peroxisomes by autophagy is referred as pexophagy which is often found in yeast where 

methanol containing medium is switched to glucose or ethanol containing medium (Kiel et 

al., 2003; Tuttle et al., 1993). Similarly, selective autophagic degradation of hepatic glycogen, 

but not mitochondria and other organelles, occurs in early postnatal period (Kotoulas et al., 

2006). Mitochondria of non-proliferating tissues like heart, brain, liver, and kidney 

constantly turn over with a half-life of 10 to 25 days (Stromhaug et al., 1998), and recent 

evidence supports selective autophagic removal of mitochondria, a process of mitophagy (Tal 
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et al., 2007). In cells where apoptosis is inhibited by caspase inhibitors, mitochondria are 

eliminated by mitophagy in specific and regulated manner (Xue et al., 2001).In yeast, the 

mitochondrial outer membrane protein Uth1p, is required for efficient mitophagy in nutrient-

poor medium, but a corresponding mammalian protein has yet to be identified (Kissova et al., 

2004).  Also, a yeast protein phosphatase homologue, Aup1 in the mitochondrial 

intermembrane space is required for mitophagy (Tal et al., 2007). Although these data 

support mitophagy as a distinctive pathway from other autophagy of other cytoplasmic 

components, selectivity of mitophagy for damaged mitochondria has not been directly shown. 

The visible light of 400 to 500 nm wavelength excite and damage flavin-containing proteins 

in mitochondria leading to mitochondrial damage (Aggarwal et al., 1978; Alexandratou et al., 

2002).  In this study, we used 488 nm light to photoirradiate mitochondria of primary 

hepatocytes from GFP-LC3 transgenic mice to show that photodamage of mitochondria leads 

to selective mitophagy.  

 

4.3. Materials and Methods 

4.3.1. Materials.  

3-Methyladenine and wortmannin were purchased from Sigma Chemical Co. (St. Louis, 

MO). Calcein, Lysotracker Red (LTR), MitofluorFar Red (MFFR), and 

tetramethylrhodamine methylester (TMRM) were obtained from Molecular Probes (Carlsbad, 

CA). Collagenase A was obtained from Roche (Penzberg, Germany). 

4.3.2. Hepatocyte isolation and culture 

Hepatocytes from GFP-LC3 transgenic C57BL/6 mice or C57/BL6 wildtype mice were 

isolated by collagenase perfusion and cultured overnight in 5% CO2/95% air at 37°C on type 
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1 collagen-coated 35-mm glass bottom dishes at a density of 300,000 cells per plate in 

Waymouth’s MB-752/1 growth medium supplemented with 27 mM NaHCO3, 10% fetal 

bovine serum, 100 nM insulin, and 100 nM dexamethasone (Gores et al., 1988).  

4.3.3. Loading fluorophores 

Hepatocytes isolated from GFP-LC3 transgenic mice were loaded with red-fluorescing 

tetramethylrhodamine methylester (TMRM, 200 nM) or MitoFluor Far Red (MFFR, 200 nM) 

for 30 min in the absence or presence of 10 mM 3MA or 100 nM wortmannin at 37°C in 

Waymouth’s MB-751/1 growth medium supplemented with 25 mM Na-HEPES buffer, pH 

7.4. TMRM and MFFR are membrane-permeable monovalent cations that accumulate 

electrogenically into mitochondria (Zahrebelski et al., 1995). In other experiments, acidic 

compartments were labeled with LysoTracker Red (LTR, 500 nM) under identical conditions.  

After TMRM, MFFR and LTR loading, one-third of the initial loading concentration was 

maintained in the medium to maintain steady-state.  Hepatocytes isolated from wildtype mice 

were loaded with LTR as described above. Subsequently, the cells were photoirradiated and 

loaded with 1 µM calcein acetoxymethyl (AM) for 10 min at 37°C to assess mitochondrial 

inner membrane permeabilization. After LTR and calcein loading, one-third of the initial 

LTR loading concentration was maintained in the medium. 

4.3.4. Photodamage and confocal microscopy 

Laser-induced photodamage and confocal microscopy were performed with a Zeiss 

LSM 510 NLO laser scanning confocal microscope (Carl Zeiss, Thornwood, NY) using a 63 

X N.A. 1.4 oil-immersion planapochromat objective lens.  To induced photodamage, selected 

areas of individual cells containing 5 to 10 mitochondria were exposed to 488-nm argon laser 

light at 100% power for times of 80, 160, 320, 640 and 1280 µs per pixel.  Green (GFP-LC3), 
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red (TMRM and LTR) and far red (MFFR) fluorescence was excited by the 488-nm, 543-nm 

and 633-nm laser lines of argon and helium-neon lasers in the multitracking mode.  To image 

green and red fluorescence simultaneously, emitted light was separated by a 545-nm dichroic 

mirror and directed to different photomultipliers through 500 to 530-nm (green) band pass 

and 560-nm (red) long pass filters. To image green, red and far red fluorescence 

simultaneously, emitted light was separated by a 635-nm dichroic mirror and directed to 

different photomultipliers through 500 to 530-nm (green) band pass, 565 to 615-nm (red) 

band pass and 650 to 710-nm (far red) band pass filters. For serial imaging at up to one frame 

a minute, laser illumination was attenuated to less than 0.1% transmission power for pixel 

dwell times of 3.2 µs. Temperature on the microscope stage was maintained at 37°C. 

 

4.4. Results 

4.4.1. Photodamaged mitochondria are selectively removed by mitophagy 

To investigate possible mitophagy after photodamage to mitochondria, cultured 

hepatocytes from GFP-LC3 transgenic mice were first loaded with TMRM, a red-fluorescing 

fluorophore that labels polarized mitochondria and is released upon mitochondrial 

depolarization.  Selected areas of hepatocytes containing 5 to 10 TMRM-loaded 

mitochondria were exposed to 488-nm argon laser light at 100% transmission for 80, 160, 

320, 640 and 1280 µs. This illumination corresponded to 2.5 x104, 5 x 104, 1 x 105, 2 x 105, 

and 4 x 105 times greater than the pixel power used for imaging. These pixel powers are 

designated in ascending order as 1x, 2x, 4x, 8x, and 16x. After selected area photoirradiation, 

confocal images of red TMRM and green GFP-LC3 fluorescence were collected every 

minute for 120 min. After lower laser photoirradiation (below 2x), mitochondria released 
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TMRM, indicating depolarization, but subsequently recovered TMRM fluorescence (Figure 

4.1, double arrow). This transient depolarization signified reversible photodamage. At higher 

laser power (above 2x), mitochondria became irreversibly depolarized, indicating permanent 

mitochondrial damage (Figure 4.1). At 16x laser power, adjacent mitochondria surrounding 

the illuminated mitochondria also became depolarized (Figure 4.1, arrow). Presumably, this 

bystander injury was due to free radical generation by regions of the hepatocytes actually 

exposed to light (Aggarwal et al., 1978). Overall, these data showed that photoirradiation 

with 488-nm laser caused sustained mitochondrial depolarization in a dose-dependent fashion. 

Nonetheless, the photoirradiated hepatocytes remained viable and healthy with no 

morphological evidence of injury, necrosis or apoptosis (e.g., cell surface blebbing, 

chromatin condensation, nuclear lobulation) over the time course of the experiments. 

At 32 ± 5 min after photoirradiation (4x and up), GFP-LC3 fluorescence began to 

associate with depolarized mitochondria as small granular structures that eventually 

coalesced into ring structures (autophagosomes) (Figure 4.2, bottom right panel).  However, 

GFP-LC3 did not localize to mitochondria that transiently depolarized after a lower light 

exposure. Unlike nutrient deprivation-induced mitophagy (Kim et al., 2007), GFP-LC3-

labeled cup-shaped phagophores did not grow around and sequester individual 

photodamaged mitochondria; rather GFP-LC3 started to decorate around the damaged 

mitochondria (Figure 4.2).  

4.4.2. Photodamage-induced mitophagy is independent of TMRM loading 

To determine whether light-induced mitophagy is dependent on the presence of TMRM 

as a photosensitizer, small regions of GFP-LC3 hepatocytes were exposed to 488-nm 

illumination at 16x laser power in the absence of TMRM.  Similar to observations in the 
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presence of TMRM, the region exposed to 16x laser power became decorated by GFP-LC3 

after about 27 min (Figure 4.3, middle panel). The GFP-LC3 fluorescence subsequently 

coalesced into green rings indistinguishable from the GFP-LC3 rings that formed after 

photodamage in the presence of TMRM.  Thus, mitophagy after photoirradiation with 488-

nm light occurred independently of TMRM, which is consistent with weak absorbance of 

488-nm light by TMRM (Figure 4.3, right panel).  In another experiment, hepatocytes were 

loaded with TMRM and subjected to photodamage with different doses of 543-nm laser light, 

a wavelength that is absorbed by TMRM. Green excitation light at 543-nm caused 

photobleaching of TMRM (Figure 4.4, top right panel). However, GFP-LC3 did not localize 

to the mitochondria that were exposed to 543-nm light (Figure 4.4, bottom panels). Taken 

together, these observations indicate that 488-nm induces mitochondrial photodamage that 

leads to mitophagy. The presence of TMRM did not sensitize the process. 

4.4.3. Mitochondrial permeability transition is induced by photodamage  

Photoirradiation generates ROS that can induce the mitochondrial permeability 

transition (MPT) in mitochondria (Jou et al., 2002).  During the MPT, mitochondria become 

permeable to molecules up to 1.5 kDa, which causes mitochondrial depolarization. To 

investigate a role for the MPT in initiating photodamage-induced mitophagy, hepatocytes 

from wild type mice were loaded TMRM, exposed to 488-nm light and then loaded with 

calcein acetoxymethyl ester (AM).  Calcein AM enters the cytosol (and nucleus) where 

esterases release green-fluorescing calcein free acid, which outlines mitochondria as round 

dark voids. When mitochondria undergo the MPT, calcein fluorescence fills the voids 

(Lemasters et al., 1998; Qian et al., 1997; Qian et al., 1999).  After exposure to 488-nm light, 

mitochondria released TMRM transiently at lower doses and permanently at higher light 
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levels (Figure 4.5, top right panel). Subsequently, after loading with calcein AM, still 

polarized mitochondria excluded the green-fluorescing probe. By contrast, depolarized 

mitochondria that had been exposed to high power light (16x) filled with calcein AM (Figure 

4.5, top right panel), but mitochondria exposed to lower power (8x) released TMRM but 

initially (within 10 min after the photodamage) did not take in calcein AM (data not shown). 

Over time, however, the TMRM-released mitochondria were the filled with calcein 

fluorescence.  At still lower power (1x), mitochondria regained TMRM after depolarizing 

initially. These mitochondria did not take up calcein (Figure 4.5, bottom panel). Thus, 

photoirradiation with higher doses of 488-nm light led to inner membrane permeabilization 

which is the characteristic of the MPT. 

4.4.4. Photodamage-induced mitophagosomes undergo acidification 

In general after autophagic sequestration, autophagosomes fuse with lysosomes and 

acidify. To investigate acidification of mitophagosomes (autophagosomes containing 

mitochondria), GFP-LC3 transgenic hepatocytes were loaded with MFFR, a far red-

fluorescing fluorophore that accumulates electrophoretically into polarized mitochondria 

(Sakanoue et al., 1997). MFFR-labeled mitochondria were photodamaged with 488-nm light 

at 16x power, and then red-fluorescing LTR, a weak basic fluorophore that accumulates into 

acidic compartments, was loaded.  After photodamage, mitochondria released their MFFR 

fluorescence signifying depolarization (Figure 4.6, top panels).  After 20 min, LTR started to 

accumulate weakly into the photodamaged mitochondria (Figure 4.6, middle left panel) and 

GFP-LC3 (green) particles began to decorate the photodamaged mitochondria (Figure 4.6, 

middle right panel). Red LTR fluorescence progressively intensified afterwards (Figure 4.6, 

bottom panel). Thus, after photodamage, mitochondria became weakly acidic as they began 
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to associate with GFP-LC3. Subsequently after envelopment by GFP-LC3, the structures 

strongly acidified.  

4.4.5. Photodamage-induced mitophagy activates downstream of PI3Kinase 

signaling 

3MA, the classical inhibitor of autophagy, and wortmannin block autophagy after 

nutrient deprivation by inhibition of Class III PI3-kinase (Seglen and Gordon, 1982; 

Blommaart et al., 1997). To determine the role of PI3-kinase on mitophagy after 

photodamage, GFP-LC3 hepatocytes were loaded with TMRM and treated with 10 mM 3MA 

prior to photoirradiation of a small group of mitochondria with 488-nm laser light at 16x 

laser power.  Photodamaged mitochondria again irreversibly lost TMRM fluorescence, 

indicating loss of membrane potential (Figure 4.7A and 4.7B, top panels).  In the presence of 

3MA, green ring structures again started to form around photodamaged mitochondria after 

about 30 min (Figure 4.7A). To confirm further that photodamage–induced mitophagy 

occurred after inhibition of PI3K, GFP-LC3 hepatocytes were treated with 100 nM 

wortmannin prior to photoirradiation.  Wortmannin did not inhibit photodamage-induced 

mitophagy (Figure 4.7B). In the presence of either 3MA or wortmannin, the number of GFP-

LC3 rings and the strength of labeling were greater than in their absence (Figure 4.7).  

 

4.5. Discussion 

Our results provide direct evidence that mitophagy selectively removes and degrades 

damaged mitochondria.  In hepatocytes incubated in nutritionally replete growth medium, 

only photoirradiated mitochondria that depolarized were sequestered into autophagosomes. 

When mitochondria were photoirradiated at lower laser power, mitochondria initially 
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depolarized, but then recovered polarization as indicated by reuptake of TMRM. Such 

mitochondria did not undergo mitophagy. Thus, photodamage leading to sustained 

mitochondrial depolarization was required to initiate sequestration into autophagosomes. 

Mitochondrial depolarization occurred in dose-dependent manner after photoirradiation 

with 488-light (Figure 4.1). The lowest light exposure, namely that used to image 

hepatocytes, did not cause mitochondrial depolarization or induce mitophagy. Beginning at a 

light exposure about 2.5 x103 times greater than that used for imaging, mitochondria 

depolarized, but then recovered their membrane potential within about 3 min. At greater 

photoirradiation, mitochondria depolarized in a sustained fashion. At highest illumination, a 

bystander effect occurred in which depolarization not only occurred in mitochondria under 

the light beam but also in adjacent mitochondria outside the illuminated region (Figure 4.2). 

Bystander photodamage suggests that a toxic agent formed in illuminated regions diffused 

into immediately adjacent areas. This toxic agent is most likely ROS, such as singlet oxygen, 

which is produced during exposure to strong light.  

Photoxicity-dependent mitophagy occurred in the absence of TMRM or other added 

fluorophore and thus did not require photosensitization of an exogenous absorber (Figure 

4.3). In addition, mitophagy did not occur with 543-nm light (Figure 4.4). Previous work 

shows that photoirradiation of 400 to 500-nm light causes oxygen-dependent inactivation of 

flavoproteins and succinate dehydrogenases that is mediated by production of ROS 

(Aggarwal et al., 1978). Thus, photodamage to mitochondria in our experiments is likely via 

photoexcitation of succinate dehydrogenase and other mitochondrial flavoproteins. 

ROS induce the MPT in mitochondria, leading to depolarization, uncoupling and more 

ROS formation (Nieminen et al., 1997). After photodamage, sustained mitochondrial 
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depolarization appeared to be a prerequisite for subsequent mitophagy. Mitochondria that 

depolarized transiently after light exposure did not undergo subsequent mitophagy, whereas 

photodamaged mitochondria that underwent sustained depolarization were reproducibly 

sequestered into autophagosomes (Figure 4.2). Moreover, this latter group of mitochondria 

became permeable to calcein, indicative of the inner membrane permeabilization of the MPT 

(Figure 4.5). Thus, sustained mitochondrial depolarization and associated inner membrane 

permeabilization seemed to be required for autophagy signaling. These results are consistent 

with involvement of the MPT in photodamage-induced mitophagy, as proposed previously 

for autophagy stimulated by nutritional deprivation (Elmore et al., 2001). 

However, photodamage-induced mitophagy differed from nutrient deprivation-induced 

mitophagy in several ways. In nutrient deprivation-induced mitophagy, small (0.2-0.3 μm) 

pre-autophagosomal structures associate with polarized mitochondria and grow into crescent-

shaped phagophores that envelope and enclose individual mitochondria into mitophagosomes 

(Kim et al., 2007). Mitochondrial depolarization only occurs at or after formation of 

mitophagosomes. Subsequently, as the mitophagosomal vesicles acidify and fuse with 

lysosomes, GFP-LC3 is released and/or degraded (Kim et al., 2004).  

By contrast, in photodamage-induced mitophagy, only depolarized mitochondria were 

targeted for autophagic degradation. Moreover, instead of being enveloped by a crescent-

shaped phagophore, the periphery of photodamaged mitochondria became decorated with 

small granular aggregates of GFP-LC3 that later coalesced into rings enveloping the entire 

mitochondrion (Figure 4.2 and Figure 4.6).  Additionally, mild acidification of 

photodamaged mitochondria occurred before assembly of continuous GFP-LC3-decorated 

rings. Future studies will be needed to determine whether depolarized mitochondria 



 

 73

themselves undergo mild acidification or whether a sequestration membrane encloses 

photodamaged mitochondria before recruitment of GFP-LC3 (Figure 4.6). Subsequently, 

after completion of the GFP-LC3 ring, the mitophagosomal vesicle became more intensely 

acidic. 

A particularly noteworthy difference between nutrient deprivation-induced mitophagy 

and photodamage-induced mitophagy is that the latter was not blocked by PI3 kinase 

inhibition with 3-methyladenine (10 mM) or wortmannin (100 nM) (Kim et al., 2006). Class 

III PI3 kinase/p150 interacts with Beclin1, a mammalian homologue of Atg6 which is 

required for early stage of autophagosome formation during nutrient deprivation (Tassa et al., 

2003). Rather, PI3K inhibition appeared to augment GFP-LC3 association with 

photodamaged mitochondria (Figure 4.7). These findings indicate that activation of 

mitophagy after photodamage occurs independently of PI3K signaling. Indeed, 

photodamage-induced GFP-LC3 ring formation was more robust after PI3K inhibition, 

which suggests that subsequent processing of mitophagosomes may require PI3K, as shown 

recently for the processing of mitophagosomes in nutrient deprivation-induced autophagy 

(Kim et al., 2007; Mousavi et al., 2003; Tassa et al., 2003)  

Mitochondria of non-proliferating tissues such as heart, brain, liver, and kidney 

turnover the half-life of  10 to 25 days (Pfeifer, 1978; Menzies and Gold, 1971). In this 

normal turnover, old and presumably dysfunctional mitochondria are removed by mitophagy 

and replaced by biogenesis of new mitochondria. Such mitophagy serves the physiological 

function of segregating and degrading dysfunctional mitochondria that might otherwise 

release ROS, pro-apoptotic proteins and other toxic mediators. Because mitochondria are a 

primary site of ROS generation, mitochondrial DNA (mtDNA) is prone to oxidative damage. 
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Due to limited mtDNA repair mechanisms, damaged mtDNA likely accumulates with time. 

Since mtDNA is nearly 100% active in transcription (compared to 2 or 3% for nuclear DNA), 

damage to mtDNA will lead quickly to mitochondrial dysfunction. Decreased mitophagy 

may promote accumulation of mtDNA mutations in aging (Bergamini, 2006; Terman, 1995), 

whereas caloric restriction, an inducer of autophagy, increases longevity in rodents 

(Bergamini et al., 2003).  

In conclusion, photoirradiation by 488-nm light caused mitochondrial depolarization, 

inner membrane permeabilization and subsequent selective mitophagy, consistent with 

previous reports of photodynamic induction of the MPT and involvement of the MPT in 

mitophagy (Lam et al., 2001; Zorov et al., 2006; Elmore et al., 2001). However, upstream 

signaling for photodamage-induced mitophagy bypassed the classical PI3K signaling 

pathway of nutrient deprivation-induced autophagy, although PI3 kinase may still be needed 

for downstream processing of newly formed mitophagosomes. Thus, mitophagy is an 

important mechanism to sequester and degrade damaged mitochondria in otherwise viable 

and healthy cells. 
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Chapter 5. Summary 

5.1. Mitophagy induced by nutrient deprivation and its possible signaling pathways  

5.1.1. Process of mitophagy 

Autophagy is responsible for degradation and turnover of damaged and superfluous 

mitochondria during normal physiology, fasting, and pathological conditions. During 

nutrient deprivation, mitophagy maintains ATP energy production and generates amino 

acids to fuel the tricarboxylic acid cycle. In this dissertation, time-lapse confocal imaging 

of hepatocytes isolated from transgenic mice expressing GFP fused with LC3 allowed 

direct visualization of the progression of nutrient deprivation-induced mitophagy. In 

nutritionally replete culture medium, GFP-LC3 fluorescence was diffuse except for small 

(0.2-0.3 μm) dotted structures, which likely represent pre-autophagosomal structures 

(PAS) distributed randomly throughout the cytoplasm (Figure 2.1). After imposition of 

nutrient deprivation, PAS-like structures came in close association with mitochondria and 

grew into crescent-shaped structures, or phagophores, surrounding individual 

mitochondria (Figure 2.2). These phagophores went on to sequester completely 

individual mitochondria (Figure 2.2 and Figure 2.3). Sequestration occurred in about 6 

min from the first appearance of a PAS next to a mitochondrion (Figure 2.4). In some 

instances, only a portion of an individual mitochondrion became sequestered, which 

indicated that mitochondrial fission occurred coordinately with autophagosome formation. 

Partial mitochondrial sequestration occurred from both the ends and middle parts of 

mitochondria (Figure 2.5).  

After ring closure, mitochondria depolarized in about 11.8 min, as revealed by the 

release of TMRM (Figure 2.3). As mitochondria inside autophagosomes depolarized, 
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acidification began as revealed by uptake of LysoTracker Red (LTR) (Figure 2.3). After 

vesicle acidification, GFP-LC3 fluorescence was released or degraded. Acidification and 

loss of GFP-LC3 fluorescence mostly likely reflected fusion with lysosomal precursors at 

about this time, leading to formation of autolysosomes. In addition, mitochondria 

contained one to several copies of PicoGreen-labeled mtDNA, which was degraded by 

mitophagy (Figure 2.6). 

5.1.2. MPT in mitophagy 

A role for the MPT in mitophagy was implicated in cultured hepatocytes during 

nutrient deprivation. CsA, the MPT blocker, suppressed the proliferation of 

autolysosomes (Rodriguez-Enriquez et al., 2006). NIM811, a CsA analog and MPT 

inhibitor that is not immunosuppressive, also blocked autophagy (Elmore et al., 2001). 

However, CsA and NIM811 did not block formation of GFP-LC3-labeled structures 

containing mitochondria during nutrient deprivation-induced mitophagy (Figure 2.7). 

Rather, CsA may block acidification occurring after sequestration or possibly the 

completion of the sequestration process itself (Figure 2.8).  Taken together, my results 

showed that LC3-containing membranes sequestered polarized mitochondria during 

nutrient deprivation-induced mitophagy.  

5.1.3. Mitophagy and Bcl-2 family protein 

Recent studies show involvement of Bcl-2 family proteins in autophagy (Pattingre 

et al., 2005; Tracy et al., 2007).  I examined protein expression of the Bcl-2 family 

proteins, Bcl-2, Bcl-xl, Bax, Bid, Bnip3, and Bim, in cultured hepatocytes during 

induction of autophagy by nutrient deprivation plus glucagon. Bcl-2 expression was 

undetectable before and after autophagic stimulation (data not shown). Bcl-xl was 
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detected but its protein expression did not change after autophagic stimulation. Of other 

pro-apoptotic Bcl-2 family proteins examined, Bax, Bid, Bnip3, BimL and BimS were 

not affected by autophagic stimulation (Figure 2.9).  BimEL, however, changed its 

pattern of expression after autophagic stimulation (Figure 2.9). In complete medium, 

BimEL was detected as two bands, an apparent phosphorylated form and a non-

phosphorylated form. By contrast, after stimulation of autophagy only a single band of 

non-phosphorylated BimEL was observed (Figure 2.9). In hepatocytes from Bim 

knockout mice, the proliferation of mitophagosomes and autolysosomes were not 

inhibited after nutrient deprivation plus glucagon (Figure 2.10). These data indicate that 

Bim is dephosphorylated, but Bim dephosphorylation is not required for the formation of 

autophagosomes or mitophagosomes during nutrient deprivation. 

5.1.4. Role of JNK in mitophagy 

JNK has been suggested to promote autophagy (Ding et al., 2007; Ogata et al., 

2006; Li et al., 2006). In my studies, the small molecular JNK inhibitor, SP600125, 

inhibited autophagy in a dose-dependent manner, as assessed by LTR uptake (Figure 3.1). 

Concentrations of SP600125 inhibiting autophagy did not cause cell killing (Figure 3.1). 

Moreover, LC3 II processing that occurred during autophagic stimulation was partially 

inhibited by SP600125 (Figure 3.2). JNK, which is phosphorylated when activated, was 

transiently phosphorylated between 5 and 20 min of onset of nutrient deprivation (Figure 

3.2). Confocal microscopy of GFP-LC3 transgenic hepatocytes also revealed an 

inhibitory effect of SP600125 on autophagosome and mitophagosome formation (Figure 

3.1C and 3.2C).  
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SP600125 inhibits JNK by competing with the ATP-binding site. However, 

SP600125 also inhibits upstream MAP kinases, such as MKK4, MKK7, MKK3, MKK6, 

and others to lesser extent (Bennett et al., 2001; Bain et al., 2003). Therefore, inhibition 

of autophagy by SP600125 may not be via a JNK signaling pathway. The cell permeable 

JNK peptide inhibitor (JPI) and dominant negative JNK (DN-JNK) have higher 

specificity for JNK signaling than SP600125. JPI is derived from the JNK-binding 

domain (JBD) of JNK-interacting-protein 1 (JIP1), which is a putative JNK scaffolding 

protein (Dickens et al., 1997).  JIP1 directly interacts with JNK and specifically inhibits 

JNK without affecting other MAPK family proteins, such as ERK or p38 (Barr et al., 

2004b; Barr et al., 2004a; Bogoyevitch et al., 2004).  DN-JNK is a dominant negative 

mutant JNK1 that is unable to be phosphorylated and, therefore, is constitutively inactive. 

Unlike SP600125, neither JPI nor DN-JNK inhibited nutrient-deprivation-induced 

autophagy and mitophagy (Figure 3.3 and Figure 3.4).  However, whether JPI is equally 

effective in blocking JNK binding to substrates other than c-Jun has not been established . 

DN-JNK is derived from JNK1 and may not inhibit JNK2. However, hepatocytes from 

JNK2 knockout mice (JNK2-/-) did block nutrient deprivation-induced autophagy as 

assessed by LTR uptake (Figure 3.6).  Confocal microscopy of GFP-LC3 transgenic mice 

also indicated that mitophagy was not inhibited in JNK2-/- hepatocytes. Similarly, 

autophagy and mitophagy were not blocked in hepatocytes from JNK1-/- (Figure 3.5).  

Taken together, JNK signaling did not appear to regulate nutrient-deprivation-induced 

autophagy, and inhibition of autophagy by SP600125 may be due to an effect on another 

kinase signaling pathway.  
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5.2. Mitophagy after photodamage 

5.2.1. 488-nm light induces damage in mitochondria leading to mitophagy 

Autophagic processes have long been proposed to remove damaged and 

dysfunctional mitochondria. Damaged mitochondria generate reactive oxygen species 

(ROS) and release pro-apoptotic factors such as cytochrome c to the cytosol.  Moreover, 

accumulation of damaged mitochondria leads to a decrease in the efficiency of ATP 

generation, and uncoupled mitochondria can futilely hydrolyze ATP. Direct experimental 

confirmation of a role of autophagy in removing damaged mitochondria came in 

experiments in which selected mitochondria inside living hepatocytes were subjected to 

laser-induced photodamage (Kim et al., 2006). When portions of GFP-LC3-expressing 

hepatocyes cells containing 5 to 10 mitochondria were exposed to a pulse of 488-nm light 

from an argon laser, mitochondrial depolarization occurred in a light dose-dependent 

fashion, as documented by release of TMRM (Figure 4.1). At lower doses of light, 

mitochondria depolarized transiently, but subsequently recovered TMRM fluorescence 

within a few minutes. After greater exposure, mitochondrial depolarization became 

irreversible. After irreversible, but not reversible photodamage, green GFP-LC3 

fluorescence began to envelop and completely encircle depolarized mitochondria after 

about 30 min (Figure 4.1 and Figure 4.2). This photodamage-induced mitophagy was not 

dependent on TMRM as a photosensitizer, since photodamage also induced mitophagy in 

the absence of TMRM (Figure 4.3). After formation of these autophagosomes, or more 

specifically mitophagosomes, acidification occurred, as shown by uptake of LTR (Figure 

4.6).  

5.2.2. MPT and photodamage-induced mitophagy 
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Photoirradiation with 488-nm light leads to production of ROS (Aggarwal et al., 

1978). ROS, in turn, induces the MPT in mitochondria which leads to depolarization of 

mitochondria and more ROS formation (Nieminen et al., 1997). When mitochondria were 

photodamaged with 488-nm light for longer than 320 µs at 100% transmission, only the 

mitochondria exposed to light depolarized permanently, whereas, photoirradiation for 

1280 µs per pixel led to depolarization of the mitochondria around photodamaged 

mitochondria. However, ROS production may not be sufficient for mitophagy induction. 

Mitochondria that depolarized transiently after light exposure did not undergo subsequent 

mitophagy, whereas photodamaged mitochondria that underwent sustained depolarization 

were reproducibly sequestered into autophagosomes (Figure 4.1 and Figure 4.2). These 

latter groups of mitochondria became permeable to calcein which is consistant with the 

inner membrane permeabilization of the MPT (Figure 4.5). Thus, sustained mitochondrial 

depolarization and associated inner membrane permeabilization are likely required for 

mitophagy supporting the involvement of the MPT in damage-induced mitophagy.  

5.2.3. PI3K and photodamage-induced mitophagy 

Unlike autophagy induced by nutrient deprivation, photodamage-induced 

mitophagy was not blocked by PI3K inhibition with 3-methyladenine or wortmannin 

(Figure 4.7). Rather, PI3K inhibition appeared to augment accumulation of GFP-LC3-

labeled autophagosomes containing photodamaged mitochondria. These findings 

suggested that light activates mitophagy downstream of PI3K signaling. However, 

photodamage-induced mitophagy appeared to bypass the classical upstream PI3K 

signaling pathways involved in nutrient deprivation-induced autophagy. 
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5.3. Final remarks 

In normal physiology, cells utilize autophagy to rid themselves of damaged, 

dysfunctional and superfluous cytoplasmic components to maintain cellular homeostasis 

and adjust to changing physiological demands. In this respect, mitochondrial degradation 

by mitophagy may play an essential role in maintaining mitochondrial functional and 

genetic integrity. However, there is a need for a better understanding of the regulatory 

pathways that control mitophagy and the specific signals and markers that target 

individual mitochondria for autophagic degradation. Such information will likely lead to 

new insights into the aging phenomena and the pathogenesis of different diseases. 
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Figure 1.1. Scheme of Mitophagy. Atg12-Atg5-Atg16 and LC3 complexes localize to 
isolation membranes. In nutrient deprivation (starvation), isolation membranes target 
individual mitochondria by unknown signals in a process inhibited by the PI3K inhibitors, 
3-methyladenine (3MA) and wortmannin. Isolation membranes completely envelop 
individual mitochondria to form double membrane vesicles (autophagosomes). After this 
sequestration, mitochondria depolarize in a CsA and NIM811 sensitive fashion, and 
Atg12-Atg5/Atg16 complexes are released from the autophagosomal surface. 
Autophagosomes then acidify and fuse with lysosomal vesicles to form autolysosomes. 
Lysosomal hydrolases digest the inner autophagosomal membrane and degrade LC3 
trapped inside autophagosomes. Remaining LC3 on the surface of autophagosomes is 
released. After mitochondrial damage, mitochondria first depolarize and then are 
recognized and sequestered by isolation membranes recognizing unknown markers on the 
damaged mitochondria. 3MA and wortmannin do not inhibit this process but actually 
seem to augment it. In both pathways, sequestered mitochondria are completely digested 
and their molecular components recycled to the cytoplasm. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2. Models of the permeability transition pore. In A, the PT pore is composed 
of ANT from the inner membrane (IM) and VDAC from the outer membrane (OM) and 
other proteins, including CypD, hexokinase (HK), creatine kinase (CK) and Bax, a 
proapoptotic Bcl-2 family proteins. In B of an alternative model, misfolded mitochondrial 
membrane proteins organize forming the PT pores by exposing their hydrophilic surfaces 
facing the hydrophobic membrane bilayer. CypD and other chaperones bind to PT pores 
and block channel opening. However, high Ca2+   concentration leads opening of these 
regulated channels through CypD that can be blocked by CsA. When misfolded proteins 
exceed the number of chaperones, the channels can not on longer be regulated, therefore, 
become constitvtively opened where CsA has inhibitory effect. 
 
 
 
 

 



 

 85

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3. Mitophagy, apoptosis and necrosis. Ros, Ca2+, TNF, Atg5, Bcl-2 fmaily 
proteins and mutations of mtDNA (mtDNAX) leads to mitophagy, apoptosis, and necrosis.  
MPT may serve as central role in cellular responses progress from mitophagy, apoptosis 
and to necrosis due to ATP depletion which inhibit mitophagy and apoptosis. 
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Figure 2.1. Induction of autophagosomes during nutrient deprivation plus glucagon 
in GFP-LC3 hepatocytes. In A, hepatocytes from GFP-LC3 mice were incubated either 
in Waymouth’s growth medium/HEPES (WM) or nutrient-free Krebs-Ringer/HEPES 
buffer plus 1 µM glucagon (KRH/G). Images were taken after 90 min by confocal 
microscopy. Note that the number of green rings and disks (autophagosomes) increased 
in KRH/G compare to WM.  In left panel (WM), arrows and double arrow identify PAS 
patches and a phagophore, respectively. In the left panel, arrow and double arrow identify 
a phagophore and autophagosomes, respectively. Insert is the magnified images of 
autophagic structures. In B, hepatocytes from wild type mice were incubated in WM or 
KRH/G for 0 to 90 min at which time LC3 I and LC3 II protein expression was assessed 
in cell extracts by Western blotting, as described in Materials and Methods.  
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Figure 2.2. Confocal microscopy of mitophagy during nutrient deprivation plus 
glucagon in GFP-LC3 hepatocytes. GFP-LC3 hepatocytes were loaded with TMRM (A, 
B, and C) or LTR(D) for 30 min in complete growth medium (WM), as described in 
Materials and Methods.  In A, TMRM-loaded GFP-LC3 hepatocytes were incubated 90 
min in WM (left), KRH/G (middle) or KRH/G plus10 mM 3MA (right), and confocal 
images were collected. in KRH/G was taken after 90 min. Panel B illustrates the numbers 
of GFP-LC3 patches (PAS), phagophores, polarized mitophagosomes (GFP-LC3 rings or 
disks containing TMRM fluorescence) and depolarized autophagosomes (GFP-LC3 rings 
or disks not containing TMRM) as quantified from confocal images of GFP-LC3 
hepatocytes incubated as described in A (xx-yy images from 3 different Hepatocyte 
isolations for each treatment group). Panel C shows typical structure of GFP-LC3 patches 
(arrowhead), phagophores (arrow), polarized mitophagosomes (double arrow) and 
depolarized autophagosomes (double arrowhead). Panel D shows proliferation of acidic 
LTR-labeled autophagosomes (LTR vesicles labeled with GFP-LC3) and autolysosomes 
(LTR vesicles without GFP-LC3) after 90 min incubation in KRH/G compared to WM. 
3MA prevented autophagosomal and autolysosomal proliferation. 
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Figure 2.3. Autophagic sequestration of mitochondria and acidification of 
autophagosomes. In A, GFP-LC3 (green) hepatocytes were loaded with TMRM (red) for 
30 min and incubated in KRH/G. Confocal image were taken every minute for 120 min.  
Arrow and double arrow illustrate the progression of formation of mitophagosomes 
(mitochondria-containing autophagosomes). In favorable sections along the axis of 
phagophores, note progression of mitophagy of TMRM-labeled polarized mitochondria 
from GFP-LC3 PAS patch to cup-shaped phagophore to fully sequestered 
autophagosomes (mitophagosomes). In B, GFP-LC3 hepatocytes were incubated in 
KRH/G containing LTR and confocal images were collected every mi. Note formation of 
an autophagosome (GFP-LC3 ring, arrow) after 29 min followed by LTR uptake 
(acidification) that became maximal after 42 min.  
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Figure 2.4. Scheme of mitophasosome formation process.  
In nutrient deprivation (starvation), LC3 complex of other Atg proteins appears in close 
association with a mitochondrion forming isolation membrane in 3.3 min. The isolation 
membrane completely sequestrated the mitochondrion forming a ring in 6.8 min from the 
first appearance of dots. After ring closure, as mitochondria inside autophagosomes 
depolarize in 11.8 min, acidification occurs in 9.9 min. Typically, fusion with lysosomal 
precursors occurs at about this time, leading to formation of autolysosomes where 
mitochondrial contents are degraded. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. Mitochondria fission during nutrient deprivation induced mitophagy.  
GFP-LC3 hepatocytes were loaded with TMRM in WM and incubated in KRH/G as 
confocal images were collected every minute. In A, note fission of mitochondrion near its 
end as mitophagy proceeds (arrow). In B, fission near the middle of the mitochondrion 
occurred.  
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Figure 2.6. Mitochondrial DNA (mtDNA) degradation by mitophagy. Panel A 
shows a confocal image of a portion of a wildtype Hepatocyte co-loaded with PicoGreen 
(green) and TMRM (red) and incubated in WM. Yellow in the overlap represents 
PicoGreen-labeled mtDNA. In panel B, a PicoGreen and LTR co-labeled Hepatocyte was 
incubated in KRH/G for 120 min. In panel C, a PicoGreen and LTR co-labeled 
hepatocytes was incubated in KRH/G. Note sequestration of PicoGreen-labeled mtDNA 
into an LTR-labeled autolysosome and subsequent degradation of mtDNA. 
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Figure 2.7. Lack of CsA and NIM811 on autophagic sequestration of 
mitochondria after nutrient deprivation. In A, GFP-LC3 hepatocytes were loaded with 
TMRM and incubated for 90 min in WM (upper left), KRH/G (upper right) or KRH/G 
with 5 μM CsA (lower left) or 5 μM NIM811 (lower right). Note proliferation of GFP-
LC3-decorated phagophores and autophagosomes in KRH/G that was not blocked by 
CsA or NIM811. Panel B plots the distribution of GFP-LC3 patches, phagophores, 
polarized mitophagosomes and depolarized autophagosomes for the 4 conditions of panel 
A from xx-yy images per groups of hepatocytes from three different isolations.  
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Figure 2.8. Lack of effect of CsA and NIM autophagosomal proliferation after 
nutrient deprivation in GFP-LC3 hepatocytes. GFP-LC3 hepatocytes were loaded 
with LTR and incubated for 90 min in WM (upper left), KRH/G (upper right) or KRH/G 
containing 5 μM CsA (lower left) or 5 μM NIM811 (lower right). Note proliferation of 
LTR-labeled acidic vesicles in KRH/G that was not blocked by CsA or NIM811. 
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Figure 2.9. Bim dephosphorylation during nutrient deprivation-induced 
autophagy. In A, the lysates were obtained from rat hepatocytes incubated for 90 min in 
WM, KRH/G or KRH/G plus 10 mM 3MA and subjected to immunoblotting with 
antibodies against Bax, Bcl-xl, Bid, and Bnip3. In B, lysates of hepatocytes incubated in 
KRH/G for 0 to 200 min in KRH/G were immunoblotted with anti-Bim antibody. Note in 
A and B, 4-15% polyacrylamide gels were used. In C, lysates of hepatocytes incubated 
for 90 min in WM or KRH/G, were run on 20% polyacrylamide gels and immunoblotted 
with anti-Bim antibody.  In D, cell lysates prepared for immunoblotting for Bim as above 
were harvested with and without sodium orthovanadate (Na3VO4), a phosphatase 
inhibitor.  A portion of cell lysate not treated with sodium orthovanadate was exposed to 
lamda phosphatase and subjected to Western using 20% polyacrylamide gels. 
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Figure 2.10. Nutrient deprivation-induced autophagy in Bim deficient hepatocytes. 
In A, hepatocytes isolated from wildtype and Bim knockout (Bim -/-) mice were 
incubated in WM, KRH/G and KRH/G plus 10 mM 3MA, and LTR uptake was after 90 
min was measured by LTR multiwell assay. In B, wildtype and Bim -/- hepatocytes were 
co-loaded with LTR (red), MFFR (blue), and MTG (green) and incubated in WM or 
KRH/G for 90 min. Note similar proliferation of LTR-labeled autolysosomes in KRH/G 
in both wildtype and Bim -/- hepatocytes. 
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Figure 3.1. Inhibition by SP600125 of nutrient deprivation-induced autophagy.  
In A, primary hepatocytes were treated 90 min with 10 mM 3MA, 1, 10, 25, and 100 μM 
SP600125 or no addition in KRH/G in comparison to incubation in WM.  The LTR 
fluorescence was measured using a multiwell plate reader. In B, the cell viability of 10 
mM 3MA, 1, 10, 25, and 100 μM SP600125 in KRH/G was measured after 90 min 
incubation using PI fluorometry. In C, LTR (red) -loaded GFP-LC3 (green) hepatocytes 
were incubated 90 min in KRH/G with and without 25 μM SP600125. The  green rings 
and solid red disc indicate autophagosomes and autolysosomes.  



 

 99

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.2. JNK inhibits LC3-II and mitophagy after nutrient deprivation.  
The lysates of hepatocytes incubated in KRH/G for 0, 5, 20, 50, and 90 min were 
measured using (A) anti-LC3 antibody and (B) anti-phospho-JNK, anti-total JNK, and 
anti-actin.  In A, the top bands indicates LC3 I, whereas the bottom bands indicates PE 
conjugated LC3, LC3 II.  In B, both top and bottom bands indicates JNK1 and JNK2. 
Actin was used as loading control.  In C, TMRM-loaded GFP-LC3 hepatocytes were for 
90 min in WM or KRH/G alone or with 3MA. Autophagy-related structures - small GFP-
LC3 dots (PAS-like structures),  GFP-LC3 cup-shaped structures (phagophore), GFP-
LC3 rings (late autophagosomes), and GFP-LC3 rings containing TMRM (early 
mitophagosomes).   
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Figure 3.3. JIP does not block nutrient deprivation-induced autophagy and 
mitophagy.  In A, hepatocytes were incubated in KRH/G alone or in KRH/G with 10 
mM 3MA, 0.2, 2, 5, 10 μM JIP for 70 min and loaded with 50 nM LTR for 20 min The 
LTR uptake was measured in comparison to incubation in WM using a multiwell plate 
reader. In B, LTR-labeled GFP-LC3 hepatocytes were incubated in KRH/G with and 
without 2 μM JIP for 90 min. Green rings and solid red vesicle indicates autophagosomes 
and autolysosomes. In C, TMRM-loaded hepatocytes were treated with or without 3MA 
and JIP after 90 min in KRH/G.   Again, GFP-LC3 rings containing TMRM and GFP-
LC3 rings indicates polarized mitophagosomes or depolarized mitophagosomes. 
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Figure 3.4. DN-JNK does not affect nutrient deprivation-induced autophagy and 
mitophagy.  In A, hepatocytes infected with AdLacZ or AdDN-JNK were incubated in 
WM or KRH/G with or without 10 mM 3MA for 70 min and loaded with 50 nM LTR for 
20 min. The LTR uptake was measured using a multiwell plate reader. In B, AdLacZ and 
AdDN-JNK infected GFP-LC3 hepatocytes were loaded with LTR and incubated in WM 
or KRH/G for 90 min. DN-JNK do not suppressed formation of autophagosomes (green 
rings) and autolysosomes (red vesicles). In C, AdLacZ and AdDN-JNK expression GFP-
LC3 hepatocytes were loaded with TMRM and incubated in WM or KRH with or without 
3MA for 90 min.    
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Figure 3.5. JNK1 does not play a role in nutrient deprivation-induced autophagy 
and mitophagy.  In A, hepatocytes isolated from wildtype and JNK1 knockout (JNK1-/-) 
mice were incubated in WM or KRH/G with or without 10 mM 3MA for 70 min and 
loaded with 50 nM LTR for 20 min. The LTR uptake was measured using a multiwell 
plate reader. In B and C, wildtype and JNK1-/- hepatocytes were loaded with 500 nM 
LTR (red) or 300 nM MTG (green) and incubated in WM or KRH/G for 90 min. MTG-
containing LTR vesicles and solid LTR vesicles indicated mitophagosomes. In B, the 
number of mitophagosomes of three independent confocal images (C) were counted. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6. JNK2 does not play a role in nutrient deprivation-induced autophagy 
and mitophagy.  In A, hepatocytes isolated from wildtype and JNK2 knockout (JNK2-/-) 
mice were incubated in WM or KRH/G with or without 10 mM 3MA for 70 min and 
loaded with 50 nM LTR for 20 min. The LTR fluorescence were measured afterward. In 
B and C, wildtype and JNK1-/- hepatocytes were loaded with LTR (red) or MTG (green) 
and incubated in WM or KRH/G for 90 min. MTG-containing LTR vesicles and solid 
LTR vesicles indicated mitophagosomes. In B, the number of mitophagosomes of three 
independent confocal images of C were counted. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. 488-nm light induced mitochondrial damage occurs in a dose dependent 
manner. The hepatocytes isolated from GFP-LC3 transgenic mice were loaded with 200 
nM TMRM for 30 min. TMRM (red)-loaded GFP-LC3 hepatocytes of five mitochondria 
were exposed to different amount of 488 nm light at 100% power - 2.7 x104, 5.5 x104, 1.1 
x105, 2.2 x105, and 4.4 x105  times per pixel higher than the pixel power used for imaging. 
These pixel powers were labeled in ascending order as 1x, 2x, 4x, 8x, and 16x. The solid 
and dotted circles represent photodamaged mitochondria. Images of red TMRM and 
green GFP-LC3 were collected every minute before (baseline) and after photodamage.  
The lost TMRM fluorescence indicates the complete depolarization of the mitochondria.  
The double arrow indicates transient TMRM loss after photodamage. The arrow indicates 
permanently TMRM loss of the mitochondria adjacent to photodamaged mitochondria.   
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Photodamaged mitochondria are degraded by mitophagy. The higher 
magnification of the photodamaged mitochondria exposed to 16x light before and after 1, 
29, and 59 min of Figure 4.1. The circled area indicates photodamaged mitochondria. 
Arrow indicates localization of GFP-LC3. Double arrow indicates GFP-LC3 ring 
formation.  
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Figure 4.3. Photodamage-induced mitophagy is TMRM independent. Photodamaged 
area of GFP-LC3 hepatocytes before and every min for 120 min before and after exposed 
to 488-nm light at 16x light. The solid and dotted circles indicate photodamaged area. 
Images of green GFP-LC3 fluorescence were collected every min before (baseline) and 
after photodamage for 120 min.   
 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4.4. 543-nm light does not induce mitophagy. TMRM (red)-loaded GFP-LC3 
hepatocytes of five mitochondria were exposed to different amount of 543-nm light at 
100% power - 5.5 x104, 1.1 x105, 2.2 x105, and 4.4 x105  times per pixel higher than the 
pixel power used for imaging. These pixel powers were labeled in ascending order as 2x, 
4x, 8x, and 16x. The solid and dotted circles represent photodamaged mitochondria. 
Images of red TMRM and green GFP-LC3 were collected every minute before (baseline) 
and after photodamage for 120 min.  
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Figure 4.5. Inner membrane permeabilization occurs after photodamage. 
Hepatocytes from wildtype mouse were loaded with TMRM (red) and exposed to 488-nm 
laser light 1x, 2x, 4x, 8x, and 16x as descried in Figure1. Images were collected before 
(baseline) and after photodamage.  The hepatocytes were then loaded with 1 µM calcein 
AM (green) for 10 min, and images of red TMRM and green calcein fluorescence were 
collected. The solid and dotted circles indicate photodamaged mitochondria. 
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Figure 4.6. Photodamage-induced mitophagosomes acidify.  GFP-LC3 (green) 
hepatocytes were loaded with 300 nM MFFR (blue) and 500 nM LTR for 30 min.  Then 
five to ten mitochondria were photodamage by 488-nm light at the intensity of 16x (solid 
circle). The dotted circle indicates localization of LTR fluorescence at photodamaged 
mitochondria. Arrow indicates localization of GFP-LC3 to damaged mitochondria.  
Double arrow indicates GFP-LC3 rings (autophagosomes) around LTR-labeled 
photodamaged mitochondria.  
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Figure 4.7. 3-methyladenine and Wortmanin induce mitophagy after photodamage. 
GFP-LC3 transgenic hepatocytes were loaded with TMRM and pre-treated with 10 mM 
3-methyladenine (3MA) (A) or 100 nM wortmannin (B) for 30 min. Then, five to ten 
mitochondria were photodamage by 488-nm laser at the intensity of 16x (circles) in the 
presence of 3MA and wortmannin.  The images were taken every one minute for 120 min. 
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