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Abstract 

 

 

Suneel Potiny 

An improved phylogenetic tree comparison method 

(Under the direction of Dr. Shawn Gomez) 

  

The comparison of phylogenetic trees is an evolving area of study.  The need to analyze the similarities 

among trees found in phylogenetic databases is growing, and while several tree comparison methods 

exist, further work in this area can be beneficial.  This research presents a novel, distance-based tree 

comparison method (MDS-Procrustes). Our approach begins with two trees and represents the patristic 

distances between nodes within each tree in separate distance matrices. Then we use classical multi-

dimensional scaling to represent these distances as Euclidean structures in a high-dimensional space while 

maintaining the original distance information.  Finally, Procrustes analysis is used to superimpose one 

Euclidean structure onto the other to generate a similarity score between the two trees.  In this work, we 

compare the effectiveness of the proposed method to existing approaches found in the literature in terms 

of both similarity score distribution and computational performance.    

  



iii 
 

 

 

Table of Contents 

     

List of Tables .................................................................................................................................... v 

List of Figures .................................................................................................................................. vi 

Introduction ..................................................................................................................................... 1 

1.1  Phylogenetic Trees ................................................................................................................ 1 

1.2 Types of Phylogenetic Trees .................................................................................................. 2 

1.3 Construction of Phylogenetic Trees ....................................................................................... 6 

1.4 An Example of Character Based Phylogeny Reconstruction .................................................. 8 

1.4 Comparison of Phylogenetic Trees ...................................................................................... 12 

1.5 Existing Comparison Methods ............................................................................................. 14 

1.6 Nearest Neighbor Interchange Metric ................................................................................. 15 

1.7 Partition Metric .................................................................................................................... 16 

1.8 Maximum Agreement Subtree(MAST) metric ..................................................................... 18 

1.9 Quartet Metric ..................................................................................................................... 19 

1.10 Updown Distance Metric ................................................................................................... 21 

1.11 Possible Areas for Improvement on Existing Methods ...................................................... 24 

Methods and Results ..................................................................................................................... 26 

2.1 Introduction to MDS-Procrustes .......................................................................................... 26 

2.2 Classical Multidimensional Scaling....................................................................................... 27 

2.3 Procrustes Superimposition of Two Euclidean Structures ................................................... 29 

2.4 Implementation and Initial Testing ...................................................................................... 30 

2.5 Data Sets .............................................................................................................................. 36 

2.6 Method Metric Distributions for Initial Data Set ................................................................. 37 

2.7 Method Metric Distributions for Second Data Set .............................................................. 43 

2.8 Method Computation Performance with Varying Tree Size ................................................ 47 

Conclusion and Future Work ......................................................................................................... 51 

3.1 Comparison Method Conclusion ......................................................................................... 51 



iv 
 

3.2 Future Work ......................................................................................................................... 53 

References ..................................................................................................................................... 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

List of Tables 

  

Table 1 – Species Character Chart ................................................................................................... 8 

    



vi 
 

List of Figures 

 

Figure 1 – Rooted and Unrooted Trees ......................................................................................................... 3 

Figure 2 – Proposed Phylogenetic Tree ........................................................................................................ 9 

Figure 3 - Reconstruction of character 1 on proposed tree. ........................................................................ 10 

Figure 4 - Reconstruction of character 2 on proposed tree ......................................................................... 10 

Figure 5 - Reconstruction of character 3 on proposed tree. ........................................................................ 11 

Figure 6 - Reconstruction of character 4 on proposed tree. ........................................................................ 11 

Figure 7 – NNI diagram .............................................................................................................................. 16 

Figure 8 – Partition Diagram ...................................................................................................................... 17 

Figure 9 – MAST Diagram ......................................................................................................................... 19 

Figure 10 – Quartet Diagram ...................................................................................................................... 20 

Figure 11 – Updown Diagram .................................................................................................................... 22 

Figure 12 - Generating Distance Matrices .................................................................................................. 28 

Figure 13 - Procrustes with Euclidean Structures ....................................................................................... 30 

Figure 14 - MDS-Procrustes distribution for validation dataset ................................................................. 32 

Figure 15 – Random Search Query ............................................................................................................. 34 

Figure 16 – Random Search Top Ranker .................................................................................................... 34 

Figure 17 – Random Search Top Rank Subtree .......................................................................................... 35 

Figure 18 – Random Search Second Ranker .............................................................................................. 35 

Figure 19 – Random Search Second Ranker Subtree ................................................................................. 36 

Figure 20 – PAR distribution for initial dataset .......................................................................................... 38 

Figure 21 – MAST distribution for initial dataset ....................................................................................... 39 

Figure 22 – NNI Distribution for initial dataset .......................................................................................... 39 



vii 
 

Figure 23 – Quartet distribution for initial dataset ...................................................................................... 40 

Figure 24 – Usim distribution for initial dataset ......................................................................................... 40 

Figure 25 – MDS-Procrustes distribution for initial dataset. ...................................................................... 41 

Figure 26 – Exact Match Tree 1.................................................................................................................. 42 

Figure 27 – Exact Match Tree 2.................................................................................................................. 43 

Figure 28 – Par Distribution for second dataset .......................................................................................... 44 

Figure 29 – MAST distribution for second dataset ..................................................................................... 44 

Figure 30 – NNI distribution for second dataset ......................................................................................... 45 

Figure 31 – Quartet distribution for second dataset .................................................................................... 45 

Figure 32 – Updown Distribution for second dataset ................................................................................. 46 

Figure 33 – MDS-Procrustes distribution for second dataset ..................................................................... 46 

Figure 34 – Runtime Comparison ............................................................................................................... 50 

Figure 35 – Log Run Time Comparison ..................................................................................................... 50 

  



 

 

Chapter 1 

 

Introduction 

 

 

 

1.1  Phylogenetic Trees 

 Understanding the evolutionary history of genes and species is central to the field of 

evolutionary biology.   Evolutionary (Phylogenetic) trees are the basic structures that contain data 

fundamental to visualizing and statistically analyzing this historical information (Felenstein 

2003).  These trees are designed to reveal evolutionary relationships among DNA or protein 

sequences across species. Comparing these structures can be an effective way of predicting 

evolutionary events and may even assist in detecting random evolutionary occurrences such as 

horizontal gene transfer (Choi and Gomez 2009).  The advent of sequencing technologies have 

increased the production of phylogenetic trees and further popularized a branch of science known 

as molecular phylogeny.   Several different methods currently exist to provide useful metrics for 

comparing one or more phylogenetic trees (Brown and Day 1984, Bryant et al. 2000, Keselman 

and Amir 1994, Robinson and Foulds 1980, Wang et al. 2005), however due to the increasing 

number of phylogenetic trees being created and made publicly available, the need to develop an 

effective means of quickly searching and comparing trees for similarity is considerable.  Since it 
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can be theorized that two species with similar phylogenetic tree structures would contain genes or 

proteins that co-evolve with one another, these comparisons can be a useful method for predicting 

such phenomena and continued work in this area can be informative.  

 

1.2 Types of Phylogenetic Trees 

 In a phylogenetic tree, each internal node with descendant nodes represents the most 

recent common ancestor of the descendants.  Each node in the tree is called a taxanomic unit and 

internal nodes are commonly known as Hypothetical Taxonomic Units(HTUs) since they often 

cannot be directly observed.  Phylogenetic trees can either be rooted or unrooted.  A rooted tree 

refers to a tree in which all leaves in a tree share a common ancestry to a “root” sequence or node.  

An unrooted tree is a tree that makes no inferences about the ancestry of the leaves contained 

therein and can be useful to visualize related sequences contained in a particular organism(despite 

the ancestry being unknown).   Figure 1 shows both a rooted and an unrooted tree. 

Any rooted tree can be made unrooted by simply removing the root (as seen in Figure 1), 

however, an unrooted tree cannot be made into a rooted tree without making an inference as to 

the ancestry.  This is an important distinction to make, as it is often difficult to detect a common 

ancestry between species, and so it is often necessary for evolutionary biologists to analyze both 

rooted and unrooted trees.    

 



3 
 

 

Figure 1 – Rooted and Unrooted Trees 

Tree 1 shows an unrooted tree.  Tree 2 shows the same tree as in Tree 1, except it becomes 

rooted with a common ancestor (G).  It can be seen from this figure that a rooted tree can 

become unrooted by removing the root node (ie removing Node G from Tree 2 to transform 

it into Tree 1), however the converse is not true.   

 

Additionally, both rooted and unrooted trees can be either bi-furcating or multi-furcating.   

A bifurcating tree is a tree in which each internal node has exactly two immediate decendants.  A 

multi-furcating tree can have nodes with more than two descendants.  Trees can also be either 

labeled or unlabeled.  A labeled tree has values assigned to its nodes, while unlabeled trees only 

define a topology of relationships between sequences/events without containing information 

about the nodes themselves.    

 Also, some phylogenetic trees can assign values to the branch lengths between nodes.  

These are known as weighted trees.    This branch length can often be considered a measure of 

evolutionary (genetic) distance between two nodes.  Usually, this measure will represent a genetic 
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divergence between two sequences or species.  Often times it is useful to think of this as a 

measure of time in which the node was changed from its ancestor.  The ability to obtain this 

information can be difficult and while there are existing hypotheses (such as the molecular clock 

that uses fossil constraints and rates of molecular change to compute this time), they often contain 

a great deal of error and cannot always be used with much confidence in a scientific study.  

However, if this information exists, it can obviously be extremely useful in deducing similarities 

among taxa between species, as it gives more definition to the topology of a particular tree. 

One commonly used technique for obtaining these distance measures is by looking at the 

similarity between two or more biological sequences across species (generally DNA, RNA, or 

protein sequence data obtained for a particular set of species).   In order for this measure to 

generate a biologically relevant tree, the sequences being analyzed should be homologs (known to 

derive from a common ancestor).   There are many models available to analyze the similarity 

between two homologous sequences and determine an evolutionary distance between the 

sequences.  One such model is the Kimura substitution model. This DNA substitution model 

assumes that changes between the two base types (pyrimidines and purines) occur at different 

rates than changes within the base types (thus changes from A->G and T->C occur at one rate and 

changes across base types occur at a different rate).   To illustrate this process, we will look at the 

following two homologous, aligned input DNA sequences from two different species (1 and 2): 

1 - AGAATAGTTAG 

  2  - CGATGA –T – AG 

We then define a similarity matrix (Sij) according to the described Kimura model as follows: 
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A G T C 

A 0 1 0.5 0.5 

G 1 0 0.5 0.5 

                T           0.5        0.5  0 1 

C 0.5       0.5 1 0 

 

 We will  also assign a gap penalty of 2 in this example (to correspond to a deletion event in a 

sequence).  Thus, based on the above given information, for this particular example we get the 

following output: 

S(A,C) + S(G,G) + S(A,A) + S(A,T) + S(T,G) + S(A,A) + (gap penalty) + S(T,T) + (gap penalty) 

+ S(A,A) + S(G,G) = (0.5) + (0) +  (0) + (0.5) + (0.5) + (0) + (2) + (0) + (2) + (0) + (0) = 4.5 

So, the calculated evolutionary distance between the sample sequences would be 4.5.  In this form 

of analysis, the greater the evolutionary distance, the longer the time it would take for one 

sequence to evolve into the other.    

 The above example was a simple pairwise distance measurement, but of greater 

significance to studies on phylogenetic trees are alignments of multiple sequences (MSAs).  

There are several methods available find the optimal alignments (alignments that minimize the 

distance measure) between multiple sequences, including ClustalW and T-coffee.  These 

programs essentially break down the multiple sequences into a series of pairwise alignments and 

use that in conjunction with a guide tree to generate a distance value.  Once an evolutionary 

distance measure between sequences is obtained, this value can be used in a distance-matrix tree 

construction model that will be detailed further in the proceeding section. 
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1.3 Construction of Phylogenetic Trees 

 As previously stated, the development of sequencing technology has benefited the study 

of evolutionary relationships among organisms.  The data from a sequence alignment (along with 

other types of data) is often used in phylogenetic tree reconstruction.  Construction of 

phylogenetic trees is generally based on cladistics (the systematic classification of organisms on 

the basis of shared characteristics deriving from a common ancestor).  The different construction 

methods can loosely be categorized into three different types: Distance-based methods, character 

based methods, and probabilistic methods.   

Distance-matrix methods (such as Neighbor-Joining, Fitch-Margoliash, or Unweighted 

Pair Group Method (UPGMA)) generally require a multiple sequence alignment (MSA) as input.  

The example in the previous section briefly illustrated how this distance can be calculated and 

provided this distance value, evolutionary origin can be inferred.  Distance-matrix methods 

generally function by clustering the nodes together based on the input distance information 

resulting from a sequence alignment.  Due to the complexities of the input into these methods, the 

algorithms to produce this are computationally complex and consequently heuristic approaches 

are often used to help simplify the problem.    

 Character based methods treat differences between the input sequences as discrete 

characters with each character considered to be in a particular state (e.g. present vs not present).    

The most common character based method is maximum parsimony.   In this approach, a 

phylogenetic tree is generated and deemed optimal based on the fewest number of changes 

between the states of the informative characters in a particular data sequence.   Probabilistic 

approaches are generally similar to character based approaches (and use a similar generalization 

of discretized characters representing particular traits).   An example of a probabilistic approach 

is the maximum-likelihood method.  This uses a substitution model (the assigning of particular 

traits/characteristics to a character) to define the probability of a particular mutation and then uses 
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standard statistical analysis to infer a probability distribution from this data and generate a 

particular phylogenetic tree.  

However, the problem of finding a suitable phylogenetic tree given even a relatively 

small set of nodes is computationally intensive.  This occurs because the number of possible tree 

structures that can be created from a set of species or sequences greatly increases with the 

inclusion of each additional unit.   Given a set of species,  , the following equation defines the 

number of possible formations of a rooted, bifurcating and unweighted trees: 

                                                  
(    ) 

    (   ) 
                                                          (1) 

This equation can easily be computed to show that the number of possible trees grows greatly 

with additional nodes (at   =1 there is 1 possible tree, at   =5 there are 105 possible trees and at 

    =10 there are 34,459,425 possible trees).  Since any unrooted tree can be made a rooted tree 

simply by omitting the root, it is clear that the number of unrooted trees possible is less than the 

number of rooted trees.  When adding a node to a tree in all possible positions, you would simply 

add it to each existing branch in the tree.  And combining this with the fact that a rooted tree is 

made unrooted by removal of the root node, we see that the number of possible rooted, 

bifurcating trees with   nodes would be the number of possible unrooted (  -1) trees.   Due to the 

high number of possible trees, optimizations techniques are needed for any of the algorithms to 

efficiently compute the most desired phylogenetic tree as the computational cost of going through 

all possible trees can be very time consuming (and even unrealistic) for trees of larger size.  
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1.4 An Example of Character Based Phylogeny Reconstruction  

To further illustrate the process by which a tree is constructed, we will look at a simple 

character based example and use a maximum parsimony approach to partially evaluate the 

proposed phylogenetic tree’s accuracy (Felsenstein 2003).  Table 1 below shows a list of five 

species and each species’ character state for 4 chosen characters (for simplicity, we will assume 

that the characters each have two states, 0 and 1). 

                                      Characters 

                                        Species              1    2              3               4 

A 1 0 0 1 

B 1 0 1 1 

C 0 1 0 1 

D 1 0 1 0 

E 0 1 0 0 

Table 1 – Species Character Chart 

Table shows species and the corresponding state for each of 4 different characters. 

  

From here, we will generate a random, rooted phylogenetic tree structure with 5 nodes 

representing each of the species.  The tree that we will evaluate here is shown in figure 2. 

To evaluate the proposed tree’s accuracy according to the maximum parsimony criteria, 

we will count the number of state changes that occur along the defined edges in each of the 

character definitions from the table.  Figures 3-6 show the phylogenetic tree from Figure 2 

evaluated for each character from Table 1 (Regular lines represent a state of 1 and bold lines 

represent state of 0, the period where the line changes indicates a change of state along that 

branch). 
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In figure 3, from the chart we see that species A and B have the same state for character 

1, so there is no change of state at the node connecting those two species.  The next node is 

connecting this subtree to species C, which has a state different than that of species’ A and B, so 

for this tree to be accurate according to the chart, there must be a change of state along the branch 

connecting the A-B subtree to C (depicted by the bold line, signaling a change in state from 1 to 

0).   This same convention is used throughout the figures, so the number of changes in state can 

easily be counted by looking at the number of times the lines go from normal to bold.   In these 

figures, we assume the state of the root is the same as the left side of the tree at the point which it 

attaches to the root.  Thus, if there is a change of state from the left side to the right side of the 

tree, we show that change of state occurring on the right side of the tree along the branch leading 

from the root to the D-E subtree.   

 

 

              

Figure 2 – Proposed Phylogenetic Tree 

Proposed phylogenetic tree for evaluation with character states in Table 1. 
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Figure 3 - Reconstruction of character 1 on proposed tree. 

Character state changes from 1 to 0 along the branch extending from A-B subtree to species 

C and also from the Root to species E. Two total changes of state. 

 

 

Figure 4 - Reconstruction of character 2 on proposed tree 

Changes of state occur on the branch from the A-B subtree connecting to C and then from 

the Root to species E(exact opposite of the state changes from Figure 3).  Two total changes 

of state. 
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Figure 5 - Reconstruction of character 3 on proposed tree. 

Changes of state from 0 to 1 occur along the branch leading to species B and the branch 

leading to species D.  2 total changes of state.  

 

 

Figure 6 - Reconstruction of character 4 on proposed tree. 

Change of state from 1 to 0 occurs along path leading from root to the D-E subtree.  1 

change of state in tree.  
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 We then compute the total number of state changes across each of the characters 

(2+2+2+1) to get a total of 7 changes for this particular tree.  In a maximum parsimonious 

approach, this number of changes would be compared to all other possible tree constructions to 

determine the most desirable tree for the informative characters defined in Table 1.  

 

1.4 Comparison of Phylogenetic Trees 

 The comparison of these phylogenetic tree structures can be very informative.  As stated 

previously, since the data contained in these trees represents genetic or other biological 

similarities across species, much can be explained from analyzing evolutionary trees.   With 

several databases, such as TreeBASE(Sanderson 1994), publicly available for scientists to upload 

and analyze their own constructed trees with other existing trees, the need for finding a suitable 

method for comparing these trees is increasing.  While many current methods exist, the distance-

based method presented in this paper is shown to be useful and in many ways superior to other 

existing methods analyzed in previous studies.    

 One specific biologically significant use of comparing trees is in the detection of non-

standard genetic events, such as horizontal gene transfer (MacLeod 2005).  Horizontal gene 

transfer (HGT) is the process by which an organism incorporates genetic material from another 

organism without being an offspring of that organism.  This is in contrast to vertical gene transfer, 

through which an organism obtains genetic material directly from a parent (or species from which 

it evolved).  This phenomena is thought to play a significant role in drug resistance (which refers 

to the reduction in effectiveness of a drug in curing a disease), as a bacteria can pass on these 

mutated and resistant genes from one cell to another.  Providing an effective means of detecting 

these events can potentially be beneficial to studies in that area.  
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 Also, these comparisons can be useful as a means of analyzing co-evolution between 

various species or molecules.  This is commonly seen in host-parasite relationships.  An example 

of this would be the relationship between the attine ant, the fungi that it cultivates, and the 

Escovopsis parasite (Currie 2003).  It is often assumed that genes and proteins in these types of 

symbiotic relationships will change together, so that a change in one will correspond to a change 

in the other as a means of adaptation.  Comparing trees for similarity can greatly aid in predicting 

these events. 

 Furthermore, outside of the aforementioned biological uses of these methods, comparing 

trees can be useful in other disciplines as well.  Any system that attempts to predict events based 

on a previous history of input (such as search algorithms which attempt to suggest things to buy 

or view based on your previous purchases or search criteria) can often times be categorized in tree 

structures and so comparing them can aid in the predictive abilities of such tools.  The goal of this 

paper is to evaluate a new method and compare it to the already existing methods in hopes that it 

can be a potentially useful tool for scientists and researchers/developers in these areas of interest.   

 In the method (referred to as MDS-Procrustes) presented here, we use classical multi-

dimensional scaling to represent the distances between nodes within a tree as structures in a high 

dimensional space and then attempt to fit each tree’s structure together through a Procrustean-

related approach to determine the similarity of the two trees.  To understand the approach and 

how it improves in solving the problem of comparing trees from databases, it is important to fully 

discuss the advantages/disadvantages of existing methods (which will be explained in the 

proceeding sections) and the ways in which our method differs from them to attain an improved 

searching function. 
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1.5 Existing Comparison Methods  

 Existing methods for comparing phylogenetic trees can generally be classified into two 

categories, methods that compare trees based on topological features and distance-based methods.   

In Choi and Gomez (2009), a similar approach to MDS-Procrustes was compared the tol-

mirrortree approach presented by Pazos and Valencia (2001) in the prediction of protein-protein 

interaction networks.  It was shown there that this technique offered an improvement to some 

distance based methods and here we will extend that work to show how it also outperforms many 

of the topological methods in the specific problem of comparing phylogenetic tree structures for 

similarity.   Topological methods generally ignore the distances between tree nodes and instead 

rely on comparing trees for similarity based on related topological features and relatedness 

between taxa (Quartet, Partition, Maximum Agreement Subtree, Updown) or on transforming one 

tree into another (Nearest Neighbor Interchange).   While these methods can be useful in certain 

limited comparisons or in generating groupings among trees, we find that they either do not scale 

well to comparisons on large data sets of many trees with many different nodes or do not offer the  

distribution of similarity scores necessary to effectively rank trees by similarity score values.   

To fully evaluate the quality of the proposed method, we compared MDS-Procrustes to 

several existing methods found in the literature by looking at computational time and similarity 

score distribution.   The metrics we compared our method to here are Nearest Neighbor 

Interchage (NNI), Partition (PAR), Maximum-agreement subtree (MAST), Quartet, and Updown 

(USim).  These metrics are among the more popular methods found in the literature and have 

proven to be very useful methods in previous studies (Steel and Penny 1993, Wang 2005).   All of 

these methods are topologically based (as opposed to our distance-based metric) and thus rely on 

direct relationships among nodes to determine similarity.    In the proceeding sections, we discuss 

and illustrate each of these methods before offering a full analysis of our proposed MDS-

Procrustes approach. 



15 
 

 1.6 Nearest Neighbor Interchange Metric 

 The NNI metric refers to the number of near neighbor interchange operations necessary 

to transform the query tree into the data tree (we use the term query tree to refer to the tree for 

which we are searching through a data set of data trees to find a nearest match).  It essentially 

involves the swapping of nodes around a common edge of the query tree until the data tree is 

fully realized.   In a labeled binary tree, the end points of each interior edge will be adjacent to 

two distinct subtrees.  A nearest neighbor interchange simply involves the interchanging of these 

two subtrees, one adjacent to each endpoint.  Figure 7 illustrates this process and shows a tree and 

the two possible nni operations along a particular interior edge.  In the figure, the internal edge e 

induces two separate subtrees, A-B and D-C.  The two possible nearest neighbor interchanges on 

that edge that would induce different subtrees from that edge involve swapping B and D (to 

induce subtrees A-D and B-C) or swapping C and B (to induce subtrees A-C and D-B).    

A binary subtree with   nodes will have   -3 interior edges.  Conversely it can be 

transformed by at most 2  -6 nni operations (Day 1983).   Per the metric, the fewer the number of 

nni operations necessary to transform the query tree into the data tree, the more similar the trees.  

This has been a well-studied algorithm, and while its simplicity and topological sensitivity is an 

advantage, the problem of computing this distance has proven to be an NP-complete problem 

with regards to the size of the tree (DasGupta et al. 2000).  Also, while it has a natural extension 

to the comparison of weighted trees (Hon and Lam 2000), NNI does require that the trees have 

the same labels in order to produce an accurate comparison of two trees (Wang et al. 2005a).   
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Figure 7 – NNI diagram 

Shows the two possible Nearest Neighbor operations along internal edge(e).  The 

highlighted nodes in the two trees below the original tree shows how the tree transformed in 

each case by using 1 NNI operation along edge e. 

 

1.7 Partition Metric 

The PAR metric (also known as symmetric difference or Robinson-Foulds) is one of the 

older methods found in the literature.  PAR was originally presented by Bourque (Felsenstein 

2003) in 1978 and has been cited in several studies since (Wang 2005a, Steel and Penny 1993).  

In this method, a partition refers to the two sets of structures created upon the deletion of an edge 

of a tree.  In order to divide the tree, every branch or edge splits the tree into two new trees.  

Thus, each edge indicates the presence of two separate partitions of the original tree.   The 

symmetric difference between two trees consists of the sum of the different edges between two 

trees, and so for two trees that are identical, they would have a symmetric difference of zero since 



17 
 

they would have no different partitions.  Figure 8 shows two trees and details the different 

Robinson-Foulds partitions that exist between them.  In the figure, it is easily seen that the only 

difference between the trees is that the positions of nodes E and C are transposed.  When 

computing the symmetric difference, we look at the partitions created upon the removal of each 

internal edge of the tree.  When doing that in this example, it is seen that the only times that 

separate partitions are created occur when the highlighted edges are removed.  In tree 1, when we 

remove the highlighted edge, the partitions created are {(A,B,E),(D,C)}, while in tree 2, removal 

of the highlighted edge generates the partitions {(A,B,C),(D,E)}.  Removal of the other internal 

edges in either trees leads to the same partitions and thus for these two trees, the symmetric 

difference is equal to 2.   

 

Figure 8 – Partition Diagram 

Shows two trees and the partition distance between them.  The highlighted edges show the 

different edges between the two trees and the partitions that result from a deletion of that 

edge.  The partition distance between these two trees is 2.   

 

 In terms of computational time, this method scales well with respect to the number of 

nodes in each tree and so the symmetric difference can be computed quickly even when dealing 

with large trees.  However, it can be very sensitive to the location of certain nodes.  For example, 
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moving the root of the tree to a different spot (and leaving all other nodes the same) can lead 

many different partitions between the two trees, thus indicating that the trees are extremely 

different, even though they only differ in the placement of one node.  Also, the distribution scores 

that it can provide are limited to the number of branches in a tree and thus it is not able to provide 

a good enough distribution to be able to effectively rank trees according to similarity. 

 

1.8 Maximum Agreement Subtree(MAST) metric 

The maximum agreement subtree (MAST) method is another relatively straight-forward 

topological metric used for comparing two trees.  In this method, introduced by Gordon (1979), 

the objective is to choose a subtree from the query tree for which there is an equivalent match in 

the data tree.  A subtree of a tree T is a tree consisting of a node in T and all of its descendants in 

T.  The maximum agreement subtree is the subtree with the highest number of nodes from the 

original tree.  The metric used in this paper is equal to the number of leaves removed from the 

data tree to obtain this maximum agreement subtree.  Figure 9 shows two trees and the maximum 

agreement subtree between them.   

This method is convenient for visualizing the similarity between two trees and for 

searching for a ”consensus” tree within a large group of trees that is close to all given trees 

(Keselman 1994).   This “consensus” tree may contain valuable information regarding common 

ancestry among the species/taxa and so it can be extremely useful for a researcher, but like the 

partition metric, its distribution scores are limited to the number of nodes in the tree and so it 

cannot be used to rank trees according to similarity from a large data set. 
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Figure 9 – MAST Diagram 

Shows two trees and their Maximum Agreement Subtree(MAST).  The highlighted 

branches show the branches that exist in both trees to form the MAST structure. 

 

1.9 Quartet Metric 

  The quartet metric compares two trees based on the configurations of quartets of nodes in 

each tree.   Any unrooted tree will induce a quartet topology on any four nodes within the tree.  

An unrooted tree with   nodes containts Q =  (   ) (   )(   )    quartets.   The set of 

all of these quartet topologies is theoretically unique to each tree (Eastbrook 1985).  The metric 

used here refers to the number of quartet topology differences between the query tree and data 

tree (the less quartets that are different, the more similar the trees).   In Figure 10 and the 

adjoining table, we show the different topologies induced in two trees by evaluating the quartets.  

In the table, we list all of the possible quartet topologies (   , so there are 15 possible quartets) 

and describe how each is resolved in tree 1 and tree 2.  We mark the differences with arrows, and 



20 
 

since four of the quartets are resolved differently in the two trees, we say the quartet distance is 

equal to 4.  

Since this method observes four node topologies, it is very stable for trees of very large 

sizes (when the number of possible quartets is large) and can be an excellent means for obtaining 

an effective similarity ranking among a number of trees in those cases.   Studies have also been 

done to show how to improve the run-time for finding the quartet distance (Stissing et al. 2005), 

as finding all of the possible topologies is computationally inefficient (albeit not NP-complete).   

 

 

Figure 10 – Quartet Diagram 

Shows two trees and the quartets induced by each of them.  The chart shows all possible 

quartet configurations and how they are resolved in each tree.  The arrows represent the 

quartets that are resolved and different in each tree.  Thus, these two trees would have a 

quartet distance of 4 (Page 2001).  
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1.10 Updown Distance Metric 

 A potential improvement to these existing methods was proposed by Wang et al. (2005a). 

Their method is referred to as the Updown method (or USim) and is a topological approach based 

on the number of up and down operations between nodes in a tree.  Up and down operations 

between two nodes refer to the direction that you move along a tree to get from one node to the 

other (a down operation refers to going from a parent node to its child (or descendant) node and 

an up operation refers to moving in the opposite direction).  In this method, this convention is 

used to compute an Up matrix and Down matrix for each tree in a comparison.   Figure 11 

illustrates the process of generating both the Up and Down matrices from a given phylogenetic 

tree.  Looking at the Up matrix first, we can see that since A is the root of the tree, it has no “up” 

operations to get to any of the other nodes.  However, looking at node “C”, we can see that it 

takes one “up” operation for it to get to node A or node B (since when traversing the tree to get 

from C-B, we have to go to A and then to B).  Conversely, there are no “up” operations required 

to go from C to D or E since those nodes are descendants of C.  Looking at C again in 

construction of its row in the “down” matrix, we see that there is one down operation to go from 

C to D and from C to E since those are child nodes of C and there is also 1 down operation 

required to go from C to B (since the path is from C->A->B and B is a child node of A).  Since C 

is a descendant of A, there are no down operations required to go from C to A.   It can be seen 

that the up matrix can be generated from the down matrix and vice-versa with the down matrix 

being equal to the transpose of the up matrix.  

 Provided these matrices for both trees in a comparison, the Updown distance between the 

two trees can be calculated.  Since we have seen from above that the Up matrix and Down matrix 

are related to each other with one being the transpose of the other, only the up matrix (U) is used 

in the equations for computing the Updown distance. To compute this distance, for the 

comparison of a query tree Q to a data tree D, a few definitions are needed.  First, let VQ be the  
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Figure 11 – Updown Diagram 

Shows a phylogenetic tree and its corresponding Up and Down matrices.  The updown 

distance(USIM value) between two trees is computed using these updown distance matrices 

from each tree in a comparison (Wang et al. 2005a). 

 

set of labeled nodes in Q and Vd the set of labeled nodes in D.  In calculating the Updown 

distance from Q to D, the only nodes of interest from D are those that match nodes from Q, so the 

set I will denote the intersection of  matching nodes between Q and D and then J = VQ – VD(the 

nodes in Q that are not in D).    Given these definitions, the equation for the updown distance 

from Q to D can be written as follows: 
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Updown distance(Q,D) = ∑ ∑          [   ]     [   ]   ∑ ∑   [   ]                     (2) 

 

Then, in order to compute the similarity score between Q and D, denoted USim (the metric 

actually used in this paper in future sections), the following equation is given: 

          USim(Q,D) = (    
               (   )

∑ ∑   [   ]        
 )  x 100%                                  (3) 

Thus, if two trees are identical (or if the data tree is an exact substructure of the query 

tree) then USim = 100%.  Since this distance considers nodes found only in the query tree in the 

computation, it is not symmetrical (thus the updown distance of Q->D is not necessarily the same 

as the updown distance from D->Q).  This method was shown to be a significant improvement in 

terms of score distribution resolution and also through the use of a tree-reduction technique, 

proved to be more time-efficient than most of the previously described methods.   The reduction 

technique works by finding the intersection of the common nodes between two trees.  Then, the 

matching nodes are “marked” along with the least common ancestor node.  The “marked” nodes 

then form a reduced data tree which is compared to the query tree to generate a similarity score.  

This reduction technique allowed for the removal of extraneous nodes from the computation of 

the updown matrices which resulted in the aforementioned improvement in computation time for 

the method.   To further test the effectiveness of their algorithm, a function was implemented in a 

web-based search of the TreeBase (Sanderson 1994) database of trees, and proved to be quite 

effective for searching for similar structures within that database. 
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1.11 Possible Areas for Improvement on Existing Methods 

 While these methods have been extensively studied and are effective in certain cases, 

they can also be somewhat limited, especially in regard to the specific problem of searching large 

databases to find an effective ranking of phylogenies presented therein.    PAR, while 

computationally efficient with respect to tree size, does not offer a good distribution of similarity 

scores and is highly sensitive to the topology of the tree.  Thus, while two trees might differ with 

only respect to a small number of nodes, the partitions created by these nodes can be very 

different and thus the two trees could be considered very distant (Bryant et al. 2000).  MAST 

offers a simple means of visualizing the comparison of two trees, but it is not time efficient and 

does not offer the resolution necessary to implement as a search with a large database of trees.   

Quartet and NNI offer a relatively high resolution of similarity measures when comparing large 

trees, however both can be computationally intensive and in the case of NNI, it has proven to be 

an NP-hard problem (DasGupta 2000), and while studies have been done to try to improve and 

optimize an algorithm for accurately approximating this distance (Hon and Lam 2000), it is still 

computationally difficult and may not be effective for searching large databases for similar tree 

structures.    The Updown distance metric is an improvement on these methods, but from the 

analysis that we will show, the implementation of the method does not scale well with regards to 

the size of the tree. 

The MDS-Procrustes method presented here not only provides a high resolution similar 

to or better than the existing metrics, but also is able scale well with time when comparing 

reasonably sized trees, which is a necessity when searching large databases.  Furthermore, MDS-

Procrustes has the ability to compare trees of different size or with different nodes and also is able 

to handle weighted trees without effecting the computational time.  Also, many of the topological 

techniques contain no natural extension to deal with weighted trees.  Since weighted trees account 
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for the edge lengths (evolutionary distance) between nodes, omitting trees containing this key 

evolutionary information can limit the effective use of any comparison method.  

In Chapter 2, we will discuss our method in detail and then compare it to existing 

methods through the use of electronically available implementations of the above described 

approaches.  

 

 

 

 

 

 

 

 



 

Chapter 2 

Methods and Results 

 

2.1 Introduction to MDS-Procrustes 

Our MDS-Procrustes approach begins by generating a distance matrix directly from a 

given phylogenetic tree’s alignment information.    We then generate a high-dimensional 

Euclidean structure that represents the nodes as points in a high-dimensional space while still 

closely approximating their distance relationships via classical multi-dimensional scaling (MDS).   

For a comparison between two phylogenetic trees, this Euclidean structure will be generated for 

both trees and then we will superimpose one structure onto the other with a Procrustean approach.  

The degree of similarity between two trees is represented by a least-squares sum of deviations 

between corresponding point pairs.   This distance approach should be an improvement to the 

topological approaches since it will not be as sensitive to the existence of particular branches in a 

tree when determining similarities.  

 In the proceeding sections, we will describe the steps involved with the method and use it 

on synthetically generated data to validate its effectiveness when the nearest tree within a set is 

known.  We will then compare the distribution of similarity values and its time-efficiency to other 

available methods to show how it can be seen as an improvement to those existing approaches.   
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2.2 Classical Multidimensional Scaling 

 Consider two trees T1 and T2.   T1 contains a set of nodes N = {n1,n2,…..,nn} and T2 

contains a set of nodes M = {m1,m2,….,mm}.   We generate distance matrices D1(nxn) and 

D2(mxm) such that dij for all i,j      represents the patristic distance between node ni -> nj and 

mi -> mj respectively.   This distance is computed following the paths of the branches connecting 

the nodes, and thus for weighted trees, this distance will include any weights assigned to an edge 

length.   In order to be able to compare trees of different sizes and labels, at this point, we need to 

reduce and align the distance matrices D1 and D2 so that only the distances between nodes 

common to both trees are preserved.  Figure 12 shows two trees and their corresponding distance 

matrices that result after removing nodes not common to both trees (These reduced matrices are 

referred to as R1 and R2).  

After generating the distances between the nodes in each tree, we take these reduced 

distance matrices and represent them in a Euclidean space via classical MDS.  To do this for each 

tree, we take the reduced distance matrix R and find the contrast matrix B such that                      

B =  
 

 
      where J is the centering matrix          (  is the number of nodes and 1 is a row 

vector of ones) and   is equal to the reduced distance matrix R.  We then perform 

eigendecomposition of B =      to get the coordinate matrix (Borg and Groenen 2005).  The 

solution is given by: 

                                                        X =     
                                                                             (4)             
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Figure 12 - Generating Distance Matrices 

Generate distance values between each pair of nodes within a tree by following along the 

paths on tree.  The matrices R1 and R2 are found by looking at only the nodes common to 

both trees in a comparison. 

 

where      contains all positive eigenvalues p in   and    contains the first p columns of  .   

The negative eigenvalues can be removed since   is a Euclidean distance matrix and we can 

ignore the negative values as error.  X is then a coordinate matrix that represents the distances 

between nodes in p dimensional space.   
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2.3 Procrustes Superimposition of Two Euclidean Structures 

After obtaining the coordinate matrices X1 and X2 for each of the trees in a comparison, 

we perform a Procrustean superimposition on the matrices to determine their degree of similarity.  

This superimposition can be performed on two sets of points of the same size (prior to this, if X1 

and X2 are not of the same dimensionality, we add columns of 0s to the appropriate matrix to 

align them) Y1 and Y2.   Procrustes will compute the optimal linear transformation by minimizing 

   ‖      ‖ where   is the transformation matrix.   Here, Y1 is superimposed onto Y2 by 

means of applying C (translation), R (rotation and reflection) and B (scaling) to Y2.  This will be 

minimized when the following conditions are true: 

                                             ,   
  (   

      )

  (  
    )

  ,    
 (        )

   
                                     (5) 

Where    and   are orthogonal matrices derived from the singular value decomposition of 

      and   is the diagonal matrix of singular values.  Under these conditions,   represents 

the similarity score between trees T1 and T2 (Gower and Dijksterhuis 2004).  Figure 13 shows a 

generic illustration of the process of taking a distance matrix from a phylogenetic tree and 

representing it in Euclidean space and then “fitting” these structures together via Procrustes 

superimposition.  
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Figure 13 - Procrustes with Euclidean Structures 

Take distance matrices from each tree and represent the nodes as points on a high-

dimensional Euclidean structure which maintains the distance relationships provided in 

matrix.  Then, use Procrustes super-imposition to align the two structures to one another to 

find a similarity score.   

 

 

2.4 Implementation and Initial Testing 

 A program was written in Matlab to implement the above described MDS-Procrustes 

method.  This program takes in a query and data file of phylogenetic trees in Newick format and 

outputs the MDS-Procrustes similarity scores from each query tree in the query tree file to each 

data tree in the data tree file.   In order to test the effectiveness of our method, we initially 

compared a set of data trees with a set of query trees whose nearest matches to the data set are 

known.   
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 To accomplish this, we generated a set of 40 unweighted, unrooted data trees D = 

{d1,…..,d40} with Ndata = {n1,…..,n20} nodes.   The trees were generated using the rtree function 

from the Ape package in R.  We then selected a random Nquery={nm,…,nm+4} with m ≤ 16 for each 

d in D to comprise our set of query trees Q = {q1,…..,q40}.   Thus, each query tree would always 

be a random 5 node subtree of a data tree.  We then compared each qεQ to each dεD to test the 

ability of our method to correctly detect similarity between a tree and its subtree as a query 

structure. 

In this scenario, MDS-Procrustes was able to correctly identify the most similar data tree 

as the structure from which the query tree was derived each time (with a distance equal to 0 on 

each instance).  This is expected since we reduce the input distance matrices to include only 

distances between common nodes prior to MDS and Procrustes analysis, but it is important to 

show that the method will work for the trivial case and that the fitting will not yield any 

unforeseen results.  We show the distribution of results of this random test in Fig 14.  As seen in 

the figure, there were 40 queries that resulted in a distance of approximately 0 from the query tree 

to the data tree (each of these scores occurred in a comparison between the data tree and its 

subtree).  The rest of the similarity score distribution was fairly evenly distributed and allowed for 

an effective ranking in this particular test scenario. 

 



32 
 

 

Figure 14 - MDS-Procrustes distribution for validation dataset 

Similarity score distribution for random data set of 40 weighted trees with 20 nodes.   

Query tree used was a random 5 node subtree of each given data tree in the comparison.  

The 40 100% similarity matches represent the situation when the query tree was compared 

to the data tree from which it originated. 

 

 We further analyze the method by looking at a specific iteration of the program.  Figures 

15-19 show the results of a particular query in this test.  Figure 15 shows the original five node 

query tree that was compared to all of the trees in the data set.  Next, we show the top two ranked 

trees in terms of similarity from the data set to this query tree.  Figure 16 shows the full tree of the 

top ranker and then figure 17 shows the subtree of common leaf nodes that was used as a basis for 

comparison between this tree and the query tree.  As previously noted, the top ranked tree was the 

original tree that the five node subtree originated from and it can be observed visually from 

looking at the subtrees in Figures15 and 17 that these trees matched identically in this particular 
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query.  Figures 18 and 19 show the second ranked full tree and its subtree used in the comparison 

with the query tree from figure 15.  The similarity score for this comparison was 0.1796, a 

relatively high degree of similarity.  As illustrated in the figures, while not identical in structure, 

these two trees are actually highly related in terms of the distances between their common nodes.  

This is an important distinction to make with regards to a fundamental difference between 

topological searches and distance-based searches, as topological searches may not be able to 

resolve the fact that these two trees are similar since the nodes were in different positions in the 

two trees.  However, here, we measure similarity as a function of the distance between the nodes, 

so the position of the node in the original tree is not of specific consequence, only its position 

relative to the other nodes is relevant.  Being overly sensitive to the original location of particular 

taxa in a given phylogenetic tree can cause many trees of similarity to be considered dissimilar 

and is a somewhat limiting aspect to many topologically based tree comparison methods.       

 In the following sections, we further our analysis by showing how MDS-Procrustes 

compares to the other existing, topological tree comparison methods.  To do this, we will use two 

separate synthetically created data sets and run the different methods on this data to compare the 

similarity score distributions. 
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Figure 15 – Random Search Query 

Query Tree used in random tree search and compared to 40 different randomly generated 

trees. 

 

 

Figure 16 – Random Search Top Ranker 

Most similar data tree to query tree from Fig. 15 using MDS-Procrustes in comparison to 40 

different trees. 
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Figure 17 – Random Search Top Rank Subtree 

Subtree used in MDS-Procrustes comparison between trees from Fig 15 and Fig 16.  It can 

be easily seen that this subtree matches up exactly with Fig 15, thus the 100% similarity. 

 

Figure 18 – Random Search Second Ranker 

Second most similar data tree to query tree from Fig 1 using MDS-Procrustes in 

comparison to 40 different random trees. 
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Figure 19 – Random Search Second Ranker Subtree 

Subtree used in MDS-Procrustes between trees from Fig 1 and Fig 5.  The MDS-Procrustes 

distance between these trees was found to be 0.176 and this similarity can be observed from 

the pictures by looking at the similarity in the distances between the sets of nodes. 

 

 

2.5 Data Sets 

In our analysis, we will take a similar approach to the work performed by Wang et 

al.(2005a) and show how MDS-Procrustes compares to the previously described methods.  

Initially, we will use synthetically created data to compare the distribution of similarity scores 

between the methods and then also look at the efficiency with respect to tree size for each method 

to compute the similarity scores for a given set of data trees.  Here, we use the Component tool 

(Page 2001) to implement the NNI, PAR, MAST and Quartet metrics.  The USim (UpDown) 

metric was implemented using a Java program from Wang et al. (2005b) and was slightly 

modified to be able to completely analyze the same data set that we use as a basis for comparison 
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of the different methods.   As indicated in the previous section, we use Matlab code to perform all 

comparisons with MDS-Procrustes.  

 Our method-comparison experiment used two separate sets of data trees to comprise 

sample databases of trees.  In the initial set, the database consists of 300 unrooted, labeled trees 

with 8 nodes.  We compared the distances/similarities among all of the trees in the given set and 

output the results into histograms to view the similarity score distribution of each method.  A 

wide distribution of scores is needed to be able to effectively rank trees, otherwise several tree 

comparisons can generate the same score(s) and a method will not be able to distinguish between 

them in terms of similarity.  The second database of trees consisted of 300 unrooted, labeled trees 

with 20 nodes.  As previously noted, several methods can offer good score distribution when 

comparing trees with a large number of nodes, and thus we compared the similarity score outputs 

on trees of differing sizes to analyze this further (as searching large databases of trees effectively 

would optimally require resolution for both large trees and small trees).  

 

2.6 Method Metric Distributions for Initial Data Set 

 Figures 20-25 show the distribution of similarity scores (metrics) for each of the 

described methods for the initial set of data.  As theorized previously, PAR and MAST offer very 

low resolutions in this situation, each method only able to bin all of the comparisons into six 

separate bins.  This would make it ineffective to use these metrics as a basis for ranking trees in 

terms of their similarity to a given query tree since a large number of trees would contain the 

same degree of similarity.    NNI and Quartet offer a better distribution of scores in this case, but 

both distributions are not as good as those provided by the Updown and MDS-Procrustes 

methods shown.  This is an important piece, because while we expect all methods to generate a 

wider distribution of scores with datasets containing larger trees (since more node/distance 
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information is known), it shows that even with small trees, MDS-Procrustes is at least as effective 

as any of the tested metrics (and in many cases, it offers significantly improved score 

distribution). 

 

 

Figure 20 – PAR distribution for initial dataset 

Distribution of Partition metric values for comparison of tree distances among 300 8 node 

trees. 
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Figure 21 – MAST distribution for initial dataset 

Distribution of MAST metric values for comparison of tree distances among 300 8 node 

trees.  

 

 

Figure 22 – NNI Distribution for initial dataset 

Distribution of NNI metric values for comparison of tree distances among 300 8 node trees. 
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Figure 23 – Quartet distribution for initial dataset 

Distribution of Quartet metric values for comparison of tree distances among 300 8 node 

trees. 

 

Figure 24 – Usim distribution for initial dataset 

Distribution of Updown Method metric values for comparison of tree distances among 300 8 

node trees. 
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Figure 25 – MDS-Procrustes distribution for initial dataset. 

Distribution of MDS-Procrustes metric values for comparison of tree distances among 300 8 

node trees. 

 

Another aspect to consider in measuring the effectiveness of each method is how often 

the methods find an exact match in similarity to the data tree.  Since our dataset had 300 different 

randomly generated trees, we would expect to see only 300 exact matches (only when the query 

tree was compared to itself out of the dataset).  However, this was not the case in NNI, Quartet, or 

PAR.   Each of those methods found 302 exact matches, indicating that there were two sets of 

trees that were found to be 100% similar even though they were not exactly the same tree. 

 To further illustrate this error, we show two trees (Trees 72 and 177 shown in Figures 26 

and 27 on next page) that were found to be exactly similar according to the NNI, Quartet, and 

PAR metrics.   MDS-Procrustes viewed the trees as different with a similarity score of 0.2521.  

For Tree 72, this represented the 7
th
 most similar tree out of the entire dataset of 300 trees and for 

Tree 177, this represented the 9
th
 most similar tree.    Thus, while MDS-Procrustes does detect a 
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relatively high degree of similarity between the trees (as would be expected), it does not detect 

them as 100% similar.  Updown and MAST also detect the trees as different, with varying 

degrees of similarity. 

In this particular example, the figures show that the trees actually have the same sets of 

nodes directly connected to one another, however the relation of these sets to one another is 

different and thus the trees are not the exact same.  NNI, Quartet and PAR are unable to resolve 

these differences since each of those methods essentially look only at relationships at interior 

edges and do not look at the relation of each node individually to the entire tree.  So, while the 

presence of this type of error decreases as the trees get larger, it is clear that there are some minor 

resolution issues with comparing trees of relatively small size with those methods.  This also 

further demonstrates the effectiveness of MDS-Procrustes in terms of ranking trees according to 

similarity as it is able to resolve minor differences between trees as good or better than any of the 

existing topological methods. 

 

Figure 26 – Exact Match Tree 1. 

Tree diagram for Tree that is exact match to Figure 21according to NNI, Quartet, and PAR 

metrics but not according to MDS-Procrustes. 
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Figure 27 – Exact Match Tree 2. 

Tree diagram for Tree that is exact match to Figure 20 according to NNI, Quartet, and PAR 

metrics but not according to MDS-Procrustes. 

 

 

2.7 Method Metric Distributions for Second Data Set 

Figures 28-33 show the distribution of scores for the second set of data.   The MAST and 

PAR metrics showed no significant improvement in score distribution with the increase in size, 

while both NNI and Quartet showed a considerable improvement in this regard.  This is expected 

in both cases as the number of possible interchanges/subsets greatly increases with the addition of 

nodes and thus there are many more possible comparisons between the trees.  In this test case, 

Quartet, Updown, and MDS-Procrustes each generate a good enough score distribution to be able 

to rank trees by degree of similarity from this data set.    
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Figure 28 – Par Distribution for second dataset 

Distribution of Partition metric values for comparison of tree distances among 300 20 node 

trees. 

 

 

Figure 29 – MAST distribution for second dataset 

Distribution of MAST metric values for comparison of tree distances among 300 20 node 

trees. 
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Figure 30 – NNI distribution for second dataset 

Distribution of NNI metric values for comparison of tree distances among 300 20 node trees. 

 

 

Figure 31 – Quartet distribution for second dataset 

Distribution of Quartet metric values for comparison of tree distances among 300 20 node 

trees. 
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Figure 32 – Updown Distribution for second dataset 

Distribution of Updown method metric (USim) scores for comparison of tree distances 

among 300 20 node trees. 

 

 

Figure 33 – MDS-Procrustes distribution for second dataset 

Distribution of MDS-Procrustes metric values for comparison of tree distances among 300 

20 node trees. 
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Furthermore, it can be seen that with a greater number of nodes in the trees, the 

occurrence of a tree finding another tree with 100% similarity to itself is eliminated in all 

methods, as the only comparisons resulting in trees being 100% similar occur when the tree is 

compared to itself .    In combining the results here with the results from the initial data set, it is 

clear that only MDS-Procrustes, USim, and Quartet offer good enough resolution to effectively 

rank similar trees in both the small and larger tree scenarios. 

 

2.8 Method Computation Performance with Varying Tree Size 

 Since tree databases can often contain trees very large in size, time scaling with respect to 

the size of the tree is an important aspect of any comparison method.  With many topological 

searches,  the increase in time with respect to the size of the tree is large, as the presence of 

additional nodes/branches presents many more possible solutions and thus requires a great deal of 

computational time to process (which can offset the  resolution improvement provided by the 

inclusion of more nodes).  We will initially provide the reported time complexity for each of the 

methods used and then perform runtime tests with trees of varying sizes to see which method(s) 

perform best with regards to time when varying the tree size.   

 The partition metric is computationally fast and as implemented here, the time 

complexity is O(n) (Critchlow 1996).  This is to be expected since the method simply lists all 

partitions found in both trees and then compares them together to determine the degree of 

similarity between trees.  However, this comes at a cost as the resolution of distribution scores for 

this metric was particularly poor.  Another method that had a poor distribution of similarity 

values was the MAST method.   However, unlike the par metric, the MAST approximation used 

here does not scale linearly with regards to tree size.  The time complexity of the method used 

here was O(n
log2

 
n
), which is considerably higher than that of the partition metric (Kubicka 1995).  
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   The Quartet method used here can compute the quartet distance in O(n
3
) time, which is 

the same computational complexity of the proposed MDS-Procrustes algorithm.  Also, as 

previously stated, the NNI distance between two trees cannot be computed in polynomial time, 

however the approximation used here computes this distance by rooting each tree at each node 

and transforming one tree into the other beginning at each of these points and then determining 

the minimum nni distance by taking the minimum of these values.  This approximation requires 

O(n log10 n) time to compute for rooted trees and O(n
2
 log10 n) for unrooted trees (Brown and Day 

1984).  The computational complexity for the Updown distance metric is O(n
2
+ m) where n is the 

number of nodes in the query tree and m is the number of nodes in the data tree (thus, in all 

comparisons in this paper since we used trees with the same nodes, the complexity would be n
2
 + 

n).   

 Beyond looking at the computational complexity of each algorithm, we now want further 

analyze each method’s runtime as a function of tree size here.  In this test, we looked at 100 

unrooted and unweighted trees, ranging in size from five nodes to fifty nodes.  For each run, we 

compared each tree to every other tree in the set and calculated the run-time in seconds of the 

total search of 4950 comparisons.   All programs were run on a Windows Lenovo ThinkCentre 

workstation with an Intel Core 2 2.13 GHz CPU. 

  Figures 34 and 35 show the results of these tests.   Figure 34 shows the raw time in 

seconds with respect to the tree size of each method, while figure 35 shows a log-log scaled plot 

of the same data.  It is easily seen from figure 34 that only two of the methods scaled well with 

regards to the tree sizes tested here (PAR and MDS-Procrustes) and we observed an immediate 

and near exponential increase in the Quartet, MAST, and NNI methods.  This is to be expected 

since the number of operations needed to calculate these distances increases greatly with the size 

of the tree.  Updown performed slightly better than MAST, Quartet and NNI, but not as well as 

MDS-Procrustes.  The PAR method saw no significant change in computational time when 
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comparing varying sizes of trees, but its limitations with respect to distribution scores make it 

highly limited in its effectiveness in a comparison among large sets of trees.  MDS-Procrustes 

performed well in both providing a highly-resolved distribution of similarity scores while also 

maintaining a relatively fast runtime with respect to the tree size, a highly desirable quality when 

searching through tree databases with large number of trees of varying nodes/sizes.   It should be 

noted, that we would expect the MDS-Procrustes method time complexity to grow similar to the 

other topological methods at some point in time (when the size reaches a certain point), since 

their computational complexities are of the same or similar order.  However, due to initial bias in 

the implementations of the methods, MDS-Procrustes did not begin displaying that time increase 

at the size that we reached here and while tests can be run on trees of greater size it is important 

to see how this method performed on moderately sized trees relative to the other methods.  

Figure 35 further illustrates the time scaling of the different methods tested. The slope of 

a log-based plot should show the degree of polynomial increase and so we would expect that the 

method with the greater slope in this graph would have the higher scaling factor in time.  From 

looking at the figure, we can see that the slopes of the lines do mostly correspond with what we 

would expect from the given time-scaling factors reported in the literature with the exception of 

MDS-Procrustes (and again, we expect that once we get to large enough trees, the slope of the 

log-based line would closely approximate that of the Quartet method).  
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Figure 34 – Runtime Comparison 

Run times for each described method in comparison of similarity among 100 unweighted 

and unrooted trees.  The tree size varied from 5-50 nodes.   

 

Figure 35 – Log Run Time Comparison 

 Log based scale of Figure 34. 



 

Chapter 3 

Conclusion and Future Work 

 

3.1 Comparison Method Conclusion 

In this work, we have introduced a novel method for comparing phylogenetic trees by 

viewing them as Euclidean structures in a high dimensional space and fitting them with a 

Procrustean approach.  We have shown through the use of several sets of synthetic data that the 

application of this method produces a wide similarity score distribution making it effective in 

resolving tree similarities among different trees in a database.   While other methods exist to 

achieve this same goal, we have seen that MDS-Procrustes offers a good distribution of similarity 

scores and time performance that is unmatched by several existing methods found in the 

literature.     

 In addition to the high resolution and good computational performance of our MDS-

Procrustes implementation, another consideration is its ability to compare trees of different sizes.  

In our method, we are able to compare trees with different nodes and of different sizes effectively 

provided they have at least a certain number of nodes in common (if less than four common 

nodes exist, the comparison is not effective and the trees are considered not similar).  This is an 

improvement over many of the existing methods described here as several of them (PAR, NNI, 

Quartet) are unable compare trees if they do not have the same labeled nodes (Wang 2005a).   

The Updown and MAST methods are able to effectively compare trees which contain different 
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nodes.   This is a desirable feature to have in a phylogenetic tree comparison algorithm as tree 

databases will have thousands of trees with different species/nodes and being limited to searching 

only those that contain the same sets of leaves would result in a limited application of any 

proposed method.   

 Also, here we offer a method that contains an inherent extension for the comparison of 

weighted trees, an area in which many existing methods fail to address. Two of the methods 

discussed, NNI and Updown, contain extensions for including weighted trees.  For NNI, an 

operation is charged a cost equal to the weight of the branch associated with it and while this has 

been proven effective, it adds to the computational time of a particular comparison (Hon and Lam 

1999).  Wang et al. presented an extension for supporting weighted trees in their Updown 

approach; however this was not made available in their Java implementation for further study and 

evaluation here.  PAR, MAST, and Quartet do not have natural extensions towards the support of 

weighted trees and thus cannot utilize any evolutionary distance information to refine their 

comparisons.  Since we provide a method that generates a distance matrix directly from the node 

information provided, MDS-Procrustes inherently computes weights with no added 

computational time to process the comparison (and we’ve already shown that our implementation 

is time efficient to other methods even in the unweighted case).   Given the number of different 

algorithms available to generate these types of phylogenetic trees, this added functionality is 

another feature that allows for the proposed method to be useful in the comparison of many 

varied trees.    

It is also important to note that there are general advantages to using some of the other 

tree comparison metrics over MDS-Procrustes.  For example, finding the consensus tree (MAST) 

between sets of trees can be very informative and so while MAST might not be useful in the case 

of comparing against a large set of trees for similarity, in a strict one to one comparison, this 

comparison generates a very specific meaning for its similarity measure (as the presence of a 
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common subtree can have biological significance).  MDS-Procrustes generates a similarity score 

based on the distances between nodes and how similarly those distances are resolved in both 

trees, but that distance does not contain a specific meaning, so in a one-to-one comparison, the 

MDS-Procrustes distance is not particularly useful other than to give a general indication of 

similarity.  So, while MDS-Procrustes has been shown here to be effective in determining 

similarity when comparing a tree to a large set of trees and ranking the trees from that set by 

degree of similarity, some of the other topological methods (specifically MAST, Quartet and 

Partition) might be more useful when comparing one tree to another to determine exactly how the 

trees are similar and derive meaning from that similarity. 

 

3.2 Future Work 

 The work here has shown MDS-Procrustes to potentially be very useful for the purposes 

of comparing a phylogenetic tree to a database of phylogenetic trees and being able to rank the 

results by degree of similarity.  Here we used various forms of synthetically created data to create 

artificial databases and determine the effectiveness of the method(s), and since MDS-Procrustes 

performed well in comparison to other methods in this case, the next step would be to actually 

implement the method on one of the many phylogenetic tree databases in existence today (such as 

TreeBase).    

 The likely approach would be to build a website that allows for a user to input a 

phylogenetic tree for which a similar tree is desired.  The site would then connect to a database 

and use the method outlined here to rank trees by degree of similarity to the input tree.  There 

would have to be some thought put into exactly how to visualize the results, but implementing the 

method in this manner could potentially provide a useful resource to be used by other researchers 

in their studies. 
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 Also, as detailed previously, while we studied only phylogenetic trees in this paper, this 

methodology could prove to be useful in more generic forms of database searching.  Any method 

that is able to quickly and effectively rank results with a high degree of resolution given even a 

relatively small number of nodes (comparison data points), can prove to be very useful in many 

types of database search and predict algorithms.  Many forms of data (Chemical elements, 

favorite movies of a particular user, etc.) can be represented in the same form as phylogenetic 

trees are here (high dimensional Euclidean structures) and thus this method might prove to be 

useful in searching databases containing that information and ranking results by degree of 

similarity.  So, while this research focused on the area of phylogenetic tree comparison, it is clear 

that MDS-Procrustes can potentially benefit not only researchers in that area, but in many others 

as well.  
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