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Abstract 
 

Scott Robert Hutton 
Identification and Characterization of Neural Progenitor Cells in the Central Nervous 

System Using the Transcription Factor SOX2 
(Under the direction of Larysa Pevny, Ph.D.) 

 
The embryonic and adult central nervous systems (CNS) harbor heterogeneous 

populations of proliferating neural progenitor cells which are capable of generating both 

neurons and glia in vivo and in vitro.  These populations serve to generate all neural cell 

types throughout development as well as maintain neural cell populations during periods 

of cellular turnover or injury.  However, the cellular and molecular mechanisms which 

regulate the cell-fate decisions of these distinct progenitor populations are unclear.  

Moreover, the ability to identify neural progenitor populations in vivo is hindered by a 

lack of defined molecular markers which are capable of specifically recognizing these 

cells.  Thus additional tools are necessary for the continued analysis of neural 

progenitors in vivo. 

The HMG-BOX transcription factor SOX2 is expressed in a majority of spatially 

and temporally distinct neural progenitor populations within the developing and adult 

CNS.  SOX2 has been demonstrated to maintain the proliferative and differentiation 

capacity of neural progenitor cells in the spinal cord and retina and is important for 

proper neuronal differentiation and cortical development in mice.  However, SOX2 has 

not been fully characterized in molecularly distinct neural progenitor populations in the 

CNS nor has its function been addressed in neural progenitor cells that appear during 

later stages of neural development.   
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In this dissertation I generate and characterize the SOX2EGFP mouse line which 

allows for the prospective identification of SOX2-positive neural progenitor cells in the 

developing and adult CNS in vivo.  I next demonstrate that distinct populations of neural 

progenitor cells can be prospectively isolated from the CNS based upon their 

intracellular concentrations of SOX2.   Lastly, I demonstrate that SOX2 function is 

necessary for the proper maintenance of radial glial cells in the dorsal telencephalon as 

loss of SOX2 results in a decrease in the number of proliferating radial glia and 

intermediate progenitors, as well as a reduction in their self-renewal capacity.  

Collectively these results demonstrate that SOX2 (via the SOX2EGFP mouse line) can 

efficiently identify neural progenitor populations within the CNS and, more importantly, 

that SOX2 function is critical for the proper maintenance of neural progenitor populations 

in the developing CNS. 
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Introduction 
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The elaborate architecture of the vertebrate central nervous system (CNS), 

including the neocortex and its underlying cellular networks, is established through the 

precise temporal and spatial integration of multiple neuronal and glial (collectively 

termed “neural”) cell subtypes.  These neural cell types are distinct in regard to their 

molecular and cellular properties, and each performs highly specialized functions within 

the CNS  (Guillemot 2007).  Remarkably, all of these diverse cell populations are 

ultimately derived from a single, homogeneous population of progenitor cells that 

becomes neurally-specified (i.e. produces only neural cell types) during early 

neurogenesis  (Gotz and Barde 2005; Hevner 2006; Malatesta et al. 2008).  As 

development proceeds, these early “neural progenitor cells” continuously divide, 

establishing a cellular hierarchy in which successive generations of distinct neural 

progenitor cells become increasingly more specialized; a process culminating in the 

production of multiple neural progenitor populations, each capable of generating unique 

neuronal or glial cell subtypes (Fig 1.1) (Temple 2001; Farkas and Huttner 2008).  This 

process drives the rapid cellular expansion of the developing CNS, however it also 

requires tight regulation as any delay or premature onset in neural cell production can 

result in the improper integration of cell subtypes into the developing neural network 

(Golestaneh et al. 2006; Chakrabarti et al. 2007).  Similarly, either an abundance or 

deficiency in an individual neural cell population can change the dynamics of neural 

processing.  Therefore, additional insight into the molecular and cellular characteristics 

that govern these neural progenitor fate decisions is necessary to better understand the 

function of neural progenitor populations in CNS development. 

One of the molecular characteristics shared by a majority of neural progenitor 

cells in the developing and adult CNS is the expression of the HMG-Box transcription 

factor SOX2.  SOX2 function has been shown to properly maintain neural progenitor 

populations in regions throughout the CNS including the neural tube and developing 
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retina (Pevny and Placzek 2005; Wegner and Stolt 2005; Guth and Wegner 2008; Chew 

and Gallo 2009).  However, neither SOX2 expression nor function has been thoroughly 

characterized in distinct neural progenitor populations within the developing neocortex, 

leaving several questions unanswered.  For instance, in which neural progenitor 

populations of the developing and adult neocortex is SOX2 expressed?  Is this 

expression consistent between all neural progenitor cell types? Is SOX2 function 

necessary in these cells and, if so, does it serve a similar role to that observed in other 

CNS neural progenitor populations?  The focus of this dissertation is to therefore 

address these questions by analyzing the expression and function of SOX2 in neural 

progenitor populations in the developing neocortex using mouse genetic models. 

This introduction will first address the defining cellular characteristics of neural 

progenitor cells that are currently used to distinguish these cells from other cell types 

found in the nervous system.  The second section will then present the current 

understanding regarding SOX2 expression and function in neural progenitor cells within 

the embryonic and adult CNS.  Lastly, the third section will introduce the various neural 

progenitor cell populations that have been identified during the development of the 

mammalian neocortex. 
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1.1   Defining Neural Progenitor Cells 

 

In order to understand the mechanisms regulating neural progenitor cells, it is 

first necessary to define these heterogeneous populations of cells.  The phrase 

“progenitor cell” and the highly related term “stem cell” are commonly used throughout 

the scientific literature; however, their usage is often inconsistent (Temple 2001).  It is 

therefore critical to distinguish between these two cell classifications and clarify their 

usage throughout this dissertation.  To this effect, two hallmarks of stem and progenitor 

cells, differentiation and self-renewal, must be precisely defined. 

 

Differentiation 
 

In all somatic tissues, including the nervous system, stem and progenitor cells 

are considered undifferentiated in that they remain mitotic and have not yet committed to 

becoming a mature, post-mitotic cell type.  The process of differentiation, therefore, is 

the process by which an undifferentiated cell generates one or many mature, post-

mitotic (“differentiated”) cell types (Smith 2006).  The range of differentiated cell types an 

individual stem or progenitor cell can produce is referred to as potency and it can vary 

greatly among different progenitor populations.  Potency can be divided into multiple 

categories including: totipotent (the ability to generate all of the cell types of an 

organism), pluripotent (the ability to generate all of the cell types of a given tissue), 

multipotent (the ability to generate many, but not all, cell types of a given tissue), 

oligopotent (the ability to generate only a few cell types of a given tissue type), or 

unipotent (the ability to generate only one cell type) (Temple 2001; Smith 2006).  For use 

throughout this dissertation, the term “stem cell” will describe a totipotent cell that is 

capable of generating an entire organism, such as a cell from the blastocyst inner cell 
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mass (ICM) or an embryonic stem (ES) cell (See section 1.2) (Evans and Kaufman 

1981; Martin 1981).  Therefore, a “neural stem cell” will define an undifferentiated cell 

that has become neurally-specified in vivo but retains the capacity to generate all 

somatic cell-types of an organism in vivo or in vitro.  It is important to note, however, that 

based upon this definition, such a cell has yet to be identified in vivo.  In contrast, a 

“progenitor cell” has a more restricted potency, ranging from pluripotent (giving rise to an 

entire tissue type) to unipotent (one cell type).  Thus, in the context of this dissertation, 

the term “neural progenitor cell” will broadly incorporate all undifferentiated cells that 

exclusively generate neural cell types in vivo and in vitro (Temple 2001). 

 

Self-Renewal 
 

The second hallmark of stem and progenitor cells is self-renewal.  Self-renewal is 

the ability of an undifferentiated cell to generate, through multiple rounds of cell division, 

undifferentiated daughter cells with equivalent differentiation potential as the original cell 

(Smith 2006).  This process requires that cells maintain both their proliferative capacity 

as well as their progenitor “competence” (i.e. the ability to respond to intra- and extra- 

cellular cues of a given tissue) (Smith 2006). “Stem cells” are defined as having 

unlimited self-renewal and therefore can be maintained indefinitely.  “Progenitor cells” on 

the other hand, have limited self-renewal capacity. 

The ability to track the self-renewal potential of a cell in vivo throughout 

development is difficult.  Therefore, the self-renewal capacity of stem and progenitor 

cells is often characterized in vitro where the process can be more easily observed.  In 

the nervous system, the self-renewal of neural stem and progenitor cells is often 

conducted using the “neurosphere assay” in which undifferentiated cells are cultured in 

the presence of growth factors (Fibroblast Growth Factor (FGF) and Epidermal Growth 
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Factor (EGF)) at extremely low density in non-adherent plates.  These cells are then 

allowed to proliferate, forming free-floating clonal aggregates called “neurospheres” (Fig 

1.2) (Reynolds et al. 1992; Reynolds and Weiss 1992; Tropepe et al. 1999; Coles-

Takabe et al. 2008; Hutton and Pevny 2008).  The low density conditions of the assay 

are designed to produce one neurosphere per undifferentiated cell (termed clonal).  

Single cells from an individual primary neurosphere can then be isolated and cultured to 

test for the formation of new, secondary neurospheres (Fig 1.2).  The successive 

passaging of neurospheres is then used to demonstrate self-renewal, with unlimited self-

renewal defined as the ability to passage neurospheres indefinitely.  In addition, 

neurospheres can also be induced to differentiate, testing the potency of cells to 

generate neurons and glia in vitro (Fig 1.2). 

 

Summary- The Usage of “Neural Stem” and “Neural Progenitor” 
 

In the context of this dissertation, both neural stem cells and neural progenitor 

cells are considered to be neural-specified, undifferentiated cells.  In addition, neural 

stem cells will be defined as having the capacity for unlimited self-renewal as well as the 

ability to produce all of the other somatic cell types of the developing embryo (totipotent), 

either in vitro or following ectopic transplantation.  In contrast, neural progenitor cells will 

be defined as having a restricted self-renewal potential and the capacity to generate 

neural cell types exclusively.  To date, it is unclear whether a neural-specified totipotent 

cell, capable of being maintained throughout ontogeny (i.e. neural stem cell), exists in 

vivo.  Therefore,  the term “neural progenitor cell” will be used exclusively to describe all 

undifferentiated cells from the nervous system that are capable of generating neural cell 

types, regardless of self-renewal potential. 
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1.2   SOX2 Structure, Expression and Function in Neural Progenitor Cells of the 

CNS 

 

Characterizing the cellular and molecular mechanisms that regulate neural 

progenitor cell-fate decisions is important for understanding CNS development.  

However, these analyses have been hindered by an inability to conclusively identify 

neural progenitor cells in vivo.  This is due, in part, to a limited number of identified 

molecular markers which can universally label neural progenitor cells.  Therefore, the 

identification and characterization of additional neural progenitor-specific markers is 

important for the continued analysis of neural progenitor cell regulation. 

The identification of SOX2, an HMG-Box transcription factor, as a universal 

neural progenitor marker in the CNS has provided valuable insight into the mechanisms 

which regulate neural progenitor cells.  SOX2 is expressed in all neurogenic regions in 

the developing and adult CNS and multiple studies have demonstrated that its function is 

essential for maintaining neural progenitor identity (Pevny and Placzek 2005; Wegner 

and Stolt 2005; Guth and Wegner 2008).  For instance, in the chick neural tube and 

mouse retina, SOX2 function is essential for maintaining the proliferative and neural 

differentiation capacities of neural progenitor cells (Bylund et al. 2003; Graham et al. 

2003; Taranova et al. 2006).  In addition, hypomorphic mutations in SOX2 result in 

cerebral cortex defects in both adult mice and humans (Ferri et al. 2004; Taranova et al. 

2006; Cavallaro et al. 2008).  Furthermore, SOX2 expression and function are 

evolutionarily conserved.  Similar to mice and humans, loss of the SoxB1 genes 

SoxNeuro and Dichaete in Drosophila result in neural hypoplasia, while hypomorphic 

mutations in Dichaete also lead to midline glial defects (Russell et al. 1996; Soriano and 

Russell 1998; Sanchez-Soriano and Russell 2000).  Thus, SOX2 function is required in 

multiple neural progenitor populations throughout the CNS of different species.  



8 

However, the expression of SOX2 in molecularly and cellularly distinct neural progenitor 

populations within the developing mammalian brain has yet to be thoroughly 

investigated.  Moreover, it is unclear whether SOX2 functions in the same capacity in 

cortical progenitor cells as it does in other neural progenitor populations within the CNS.  

Therefore, the characterization of SOX2 expression and function in cortical neural 

progenitor cell populations is a necessary step in discerning the global mechanisms 

which regulate cell-fate decisions of neural progenitor cells in the developing and adult 

CNS. 

 

The HMG-Box Superfamily of Transcription Factors 
 

SOX2 is a member of the SOX subfamily of HMG-Box transcription factors.  The 

HMG-Box is a 79-amino acid DNA-binding motif consisting of two units, termed A and B, 

which together encode a structure containing three alpha helices that bind to the minor 

groove of DNA (Einck and Bustin 1985; Bustin et al. 1990; Weir et al. 1993; Love et al. 

1995).  The HMG-Box was originally identified in a subset of High Mobility Group (HMG) 

proteins, appropriately named for their small size and fast migration in polyacrylamide 

gels (Dailey and Basilico 2001).  The HMG-Box family is divided into two subclasses.  

The first, called the HMGb/UBF family or “classical” HMG-box family, contains three 

groups (HMG1, HMG2, and UBF) which have similar sequence homology and DNA-

binding characteristics (Einck and Bustin 1985; Jantzen et al. 1999).  In animals, the 

HMGb/UBF family is ubiquitously expressed throughout embryogenesis (Calogero et al. 

1999) and family members have also been identified in other kingdoms including plants, 

protists, and fungi, suggesting that this superfamily is derived from a common ancestor 

(Laudet et al. 1993).  Structurally, HMGb/UBF proteins have been shown to each contain 

multiple HMG-box motifs and bind DNA in a sequence-independent manner as well as 
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recognize abnormal DNA structures such as four-way junctions (Grosschedl et al. 1994).  

Furthermore, their ability to bind to the minor groove of DNA results in a sharp bend in 

helical structure (Murphy et al. 1999).  This, in conjunction with the observations that 

they do not possess any transcriptional trans-activation/repression activity, suggests that 

HMGb/UBF proteins serve architectural roles in regulating transcription such as assisting 

in cofactor binding or chromatin remodeling (Bustin et al. 1990; Grosschedl et al. 1994; 

Jantzen et al. 1999). 

The second HMG-Box family, the SOX/TCF/MATA family, includes the lymphoid 

T-cell transcription factors TCF and Lef1 (Travis et al. 1991; Waterman et al. 1991), the 

fungal mating type protein (Mat1-2) (Kjaerulff et al. 1997), and the SRY-box (SOX) family 

of transcription factors (Soullier et al. 1999).  Unlike HMGb/UBF family members, 

SOX/TCF/Mata family proteins contain only one HMG-box and bind DNA in a sequence-

specific manner (see below) (Soullier et al. 1999).  Furthermore, in contrast to 

HMGb/UBF family members which are ubiquitously expressed throughout the embryo, 

SOX/TCF/MATA family members are restricted in their temporal and spatial tissue 

expression (Waterman et al. 1991; Dailey and Basilico 2001; Pevny and Placzek 2005; 

Wegner and Stolt 2005; Guth and Wegner 2008).  The SOX family in particular shows 

high tissue specificity suggesting its members perform distinct functions throughout 

development (Wegner and Stolt 2005; Kamachi et al. 2009) 

 

The SOX Family of HMG-Box Transcription Factors 
 

SOX family members were first identified based upon their sequence similarity to 

the HMG-Box binding domain of the mammalian testis-determining factor SRY (Sex-

determining Region on the Y chromosome) and all members share at least 50% 

sequence homology to the SRY HMG-box (Gubbay et al. 1990).  In addition, the SOX 
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HMG-Box is sequence-specific, binding the consensus DNA sequence 

(A/T)(A/T)CAA(A/T) in the minor groove of DNA (Waterman et al. 1991; Dailey and 

Basilico 2001; Pevny and Placzek 2005; Wegner and Stolt 2005; Guth and Wegner 

2008).  SOX proteins are further divided into subfamilies based upon their degree of 

sequence similarity, with greater than 90% sequence homology observed within the 

HMG-Box of subfamily members (Bowles et al. 2000).  Currently in vertebrates, there 

are over 20 individual SOX proteins divided into 8 subfamilies (A-H) with some sub-

families further subdivided based upon similarities outside of the HMG domain 

(Waterman et al. 1991; Dong et al. 2004; Wegner and Stolt 2005; Guth and Wegner 

2008).  In contrast to other HMG-Box members, such as the HMGb/UBF family and 

MATA family, SOX proteins have only been identified in metazoans and its members are 

highly tissue and stage specific, with a number of SOX members identified to be 

expressed in the developing and adult nervous systems (Table 1.1) (Dailey and Basilico 

2001; Schepers et al. 2002; Guth and Wegner 2008). 

In the mouse, SOX proteins are subdivided into eight groups, SoxA to SoxH, with 

SRY as the lone SoxA member.  SOX2 is a member of the SOXB1 subgroup (along with 

SOX1 and SOX3), which in addition to the SOXB2 subgroup (SOX14 and SOX21), 

comprise the SOXB group (Fig 1.4).  SOXB genes are found across multiple Metazoan 

species including: Drosophila, sea urchins, urochordates, amphioxus, zebrafish and 

Xenopus, chick, and primates, including humans (Dong et al. 2004; Pevny and Placzek 

2005; Guth and Wegner 2008; Chew and Gallo 2009).  In addition, many functions of 

individual SOXB genes are conserved across these species (Wegner and Stolt 2005; 

Guth and Wegner 2008; Kamachi et al. 2009). 
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Mechanisms of SOX2 Function 

SOX factors regulate their downstream targets through multiple mechanisms; 

including chromatin modification, post-translational modification, and protein-protein 

interactions (Dong et al. 2004; Pevny and Placzek 2005; Guth and Wegner 2008; Chew 

and Gallo 2009; Kamachi et al. 2009).  In addition, SOX proteins have also been shown 

to act as classical transcription factors, with their carboxyl-termini capable of acting as 

either activator or repressor  (Uchikawa et al. 1999; Dong et al. 2004; Pevny and 

Placzek 2005; Chew and Gallo 2009; Kamachi et al. 2009).  The diverse functions of 

SOX proteins, as well as their broad and overlapping temporal and spatial expression 

patterns, suggest that SOX factors work in conjunction with tissue-specific co-factors to 

regulate the expression of their target genes (reviewed by (Guth and Wegner 2008).  For 

example, SOX2 is expressed in multiple cell lineages and in each tissue type interacts 

with unique factors to regulate the expression of downstream targets.  In ES cells, SOX2 

has been shown to directly interact with the POU transcription factor OCT3/4 to regulate 

Fibroblast Growth Factor (Fgf4) expression and thus maintain cell pluripotency  (Yuan et 

al. 1995). Furthermore, SOX2 and OCT3/4 regulate genes that are expressed in and 

involved in maintaining ES cell potency including Nanog, Lefty1, Fbx15, and Utf1  

(Nishimoto et al. 1999; Kuroda et al. 2005; Nakatake et al. 2006).  In contrast, in the 

developing lens, SOX2 directly interacts with PAX6 to bind and activate the expression 

of δ1-Crystallin (Kamachi et al. 2001; Kamachi et al. 2009) and in the vertebrate nervous 

system, SOX2 interacts with BRN2, a POU factor, to regulate Nestin gene expression in 

neuroepithelial (NEP) cells  (Tanaka et al. 2004; Kamachi et al. 2009).  However, much 

is still unknown concerning the mechanisms of SOX2 function, especially in the context 

of its ability to maintain neural progenitor identity in the CNS. 
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Role of SOXB1 Factors in Defining Neural Competence 
 

One function of SOX2 and its SOXB1 family members in neural development is 

in the process of specifying the neural competence (i.e. the ability to respond to neural 

inducing cues) of a progenitor cell.  The entire mammalian embryo, including the 

nervous system, can trace its origins to a small population of undifferentiated totipotent 

cells in the ICM of the early blastocyst.  These cells, and their in vitro derivatives ES 

cells, are totipotent; both are capable of generating all three germ layers in vitro as well 

as in teratocarcinomas that form when injected into immune-compromised mice  (Evans 

and Kaufman 1981; Martin 1981).  Moreover, when both ICM and ES cells are injected 

into E3.5 blastocysts, they contribute to both somatic and germ line cells in chimera mice 

(Gardner and Rossant 1979; Bradley et al. 1984; Gardner et al. 1985), a characteristic 

which has become instrumental in the ability to generate genetically engineered mouse 

lines.  SOX2, in addition to SOX3, is expressed in both ICM and ES cells and is required 

to maintain the pluripotency of these cells through an interaction with OCT3/4 to regulate 

the expression of other factors such as NANOG and FGF4  (Collignon et al. 1996; 

Ambrosetti et al. 1997; Wood and Episkopou 1999; Avilion et al. 2003; Orkin 2005; 

Rodda et al. 2005; Masui et al. 2007).  The importance of SOX2 in the ICM is 

demonstrated by the peri-implantation lethality of SOX2 deficient embryos; a phenotype 

resulting from the inability of ICM cells to transition into epiblast cells  (Avilion et al. 2003; 

Masui et al. 2007).  During normal developmental conditions, however, epiblast cells will 

continue to maintain SOX2 and SOX3 expression.  During gastrulation, the epiblast cells 

will then give rise to the three embryonic germ layers: endoderm, mesoderm, and 

ectoderm (Collignon et al. 1996; Wood and Episkopou 1999; Tam and Loebel 2007; 

Rossant and Tam 2009).  It is from a subpopulation of ectodermal cells that the CNS is 

ultimately derived (Beddington 1981; Beddington 1982; Beddington 1983; Tam 1989). 
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During the specification of germ layers, both SOX2 and SOX3 become confined 

to cells of the ectoderm, including those that will constitute the prospective 

neuroectoderm (Collignon et al. 1996; Wood and Episkopou 1999).  In the developing 

mouse embryo, this restriction coincides with the onset of SOX1 expression in these 

cells (Pevny et al. 1998).  As evidence for an evolutionarily conserved role of the SoxB1 

factor, the Drosophila orthologs of Sox2 and SoxB1, Dichaete (or Fish-hook) and 

SoxNeuro respectively, show similar confined expression patterns in the developing fly 

(Nambu and Nambu 1996; Russell et al. 1996; Cremazy et al. 2000).  Ultimately, all 

three SOXB1 factors are then expressed in all subsequent CNS neural progenitor 

populations throughout ontogeny (Sasai 2001; Sasai 2001). 

Functional studies suggest that SOXB1 proteins are essential for the 

establishment of the neural lineage.  For instance, in Xenopus embryos, the inhibition of 

SOXB1 function results in a lack of neural tissue formation and differentiation through 

the attenuation of bone morphogenic protein (BMP) signaling (Mizuseki et al. 1998).  

Conversely, overexpression of SOXB1 factors, in conjunction with FGF signaling in 

naïve ectodermal cells in Xenopus, initiates neural differentiation (Mizuseki et al. 1998). 

Similarly, in ES cells, the constitutive expression of SOX2 induces cells towards a neural 

fate when released from self-renewal conditions (Zhao et al. 2004). Moreover, the 

precise temporal and spatial restriction of the SoxB1 genes to the neural ectoderm 

suggests that they are regulated by neural inducing signals (Pevny and Placzek 2005). 

For instance, overexpression of the neural inducer CHORDIN upregulates SOX2 while 

overexpression of the antagonistic target of CHORDIN, Bone Morphogenic Protein 

(BMP), suppresses SOX2 expression in the Xenopus embryo (Mizuseki et al. 1998).  

Similarly, Dpp and Sog, the fly counterparts of BMP4 and CHORDIN, regulate the 

expression of SoxNeuro (Cremazy et al. 2000; Buescher et al. 2002).  Lastly, direct 

evidence for the regulation of SOX2 expression by factors that regulate neural induction 
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stems from a series of elegant studies in the chick embryo showing that FGFs and 

WNTs can regulate a Sox2 enhancer element and activate its expression to initiate 

neural plate development (Takemoto et al. 2006).  These results suggest that SOXB1 

factors, including SOX2, are necessary in specifying the identity of early neural 

progenitor cells in the CNS.  However, it is unclear how SOX2 functions, and with what 

cofactors, to maintain the neural identity of these cells once they become specified.  

Therefore, it is necessary to determine whether SOX2 functions in maintaining the 

neural identity of neural progenitor populations after neural induction. 

Role of SOXB1 Factors in Maintaining the Identity and Differentiation Capacity of Neural 
Progenitor Cells of the CNS 
 

Individual members of the SOX transcription factor family play essential roles not 

only in the acquisition of neural fate but in the maintenance and differentiation of neural 

progenitor cells of the CNS (Pevny and Placzek 2005; Wegner and Stolt 2005; Guth and 

Wegner 2008; Chew and Gallo 2009).  The SOXB1 proteins mark a common 

transcriptional state shared by diverse populations of neural progenitors throughout the 

CNS during development and in the adult. The expression of SoxB1 genes directly 

correlates first with the commitment of cells to a neural fate (Pevny and Placzek 2005).  

Next, after neural induction, all three genes are co-expressed in proliferating neural 

progenitor cells along the entire antero-posterior axis of the developing vertebrate CNS 

and are maintained in neurogenic regions of the postnatal and adult CNS.  Furthermore, 

SOXB1 factors mark proliferating neural progenitors in derivatives of the CNS including 

the neural retina, the olfactory epithelium and the inner ear (Kiernan et al. 2005; Donner 

et al. 2006; Okubo et al. 2006; Taranova et al. 2006).  The importance of SOXB1 factors 

in the nervous system has been highlighted by both results from mis-expression and 

dominant interfering studies as well as genetic analyses (Pevny and Placzek 2005).  
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Gain of function and dominant interference experiments in Xenopus and chick embryos 

as well as mouse cell lines have shown that SOXB1 signaling plays an essential role in 

the maintenance of neural progenitor identity  (Mizuseki et al. 1998; Pevny et al. 1998; 

Bylund et al. 2003; Graham et al. 2003; Taranova et al. 2006).  These data provide 

evidence that inhibition of SOXB1 signaling in neural progenitor cells results in their 

premature delamination from the ventricular zone, their exit from the cell cycle and the 

onset of their neuronal differentiation.  Conversely, constitutive expression of SOX2 

results in the maintenance of progenitor characteristics (Bylund et al. 2003; Graham et 

al. 2003).  These experiments also provide evidence that SOXB1 factors function by 

antagonizing the actions of proneural genes (Buescher et al. 2002; Overton et al. 2002; 

Bylund et al. 2003).  Specifically, studies in the chick embryo have shown that the ability 

of proneural genes to promote neuronal differentiation inversely correlates with the level 

of SOXB1 expression (Wegner and Stolt 2005).  However, pleiotropic effects from the 

dominant-negative interference of SOX2 function in these studies cannot be ruled out. 

The requirement of SOXB1 factors for the maintenance of neural progenitor 

identity has also been confirmed by genetic studies in a number of species.  Analyses of 

conditional and hypomorphic mutations of SoxB1 genes in Drosophila, zebrafish, mouse 

and humans have not only verified the absolute requirement of SOXB1 factors but have 

revealed a dosage-dependent role for them in the maintenance of neural progenitor 

identity (Fantes et al. 2003; Ferri et al. 2004; Taranova et al. 2006; Cavallaro et al. 2008; 

Miyagi et al. 2008).  The identification of hypomorphic mutations and the generation of 

compound mutations in the Drosophila Dichaete and SoxNeuro genes, as well as the 

generation of conditional, hypomorphic and compound mutations in mouse SoxB1 

genes, permit the assessment of the function of SOXB1 factors in the CNS.  In the fly, 

SoxNeuro/Dichaete double mutant embryos show severe neural hypoplasia throughout 

the CNS, as well as dramatic loss of Achaete expressing proneural clusters (Overton et 
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al. 2002).  These data suggest that members of the Drosophila SoxB1 subfamily act 

upstream and in parallel to genes of the Achaete-Scute complex.  Furthermore, analysis 

of a Sox2 hypomorphic allele (Dr11) and directed transgene expression has 

demonstrated that Dichaete function is necessary for the correct development of midline 

glia of the CNS (Sanchez-Soriano and Russell 2000).  In the mouse, analysis of the 

tissue specific conditional ablation of SOX2 in neural progenitor cells, dependent on the 

Cre-loxP system, has provided the first genetic evidence for the requirement for SOX2 in 

the maintenance of neural progenitor cell identity (Taranova et al. 2006).  Specifically, in 

retinal progenitor cells, where SOX2 is the only SOXB1 member to be expressed, 

conditional ablation of Sox2 results in a loss of competence to both proliferate and 

terminally differentiate.  In contrast, in Sox2 hypomorphic/null mice, a reduction of SOX2 

expression causes variable microphthalmia as a result of aberrant neural progenitor 

differentiation in the retina.  In Sox2 hypomorphic mutant retinas the decrease in levels 

of SOX2 expression directly correlates with a decrease in the levels of NOTCH1 and its 

direct downstream effector, HES-5, expression.  Moreover, and consistent with the 

observations made in the fly embryo, in mouse neural retinal progenitor cells that 

express decreased levels of SOX2 due to germline Sox2 hypomorphic mutations, the 

expression of proneural genes such as MATH5 and NEUROD1 are prematurely 

upregulated (Taranova et al. 2006). In the cortex, where all three SOXB1 members are 

expressed, recent evidence has demonstrated that the consequences of both SOX2 

deletion and hypomorphic SOX2 expression are much more subtle.  Loss or reduction of 

SOX2 at early neural tube stages results in decreased neuron production, enlarged 

ventricles, as well as behavioral defects, but the overall organization and development of 

the CNS is intact (Sanchez-Soriano and Russell 2000; Ferri et al. 2004; Cavallaro et al. 

2008; Miyagi et al. 2008). 
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In addition to demonstrating the necessity of SOX2 function in the regulation of 

neural progenitor cells in the CNS, the hypomorphic mutations in SOX2 also 

demonstrate that SOX2 function in these cells is dosage-sensitive.  Indeed, reductions in 

the intracellular concentration of SOX2 to below 50% of endogenous levels are sufficient 

to generate the neural defects observed in the brain and retina  (Ferri et al. 2004; 

Taranova et al. 2006; Cavallaro et al. 2008).  However, it remains to be determined 

whether intracellular concentrations of SOX2 regulate neural progenitor populations 

under normal physiological conditions. 

These studies collectively demonstrate that SOX2 is expressed in neural 

progenitor populations throughout CNS development.  Furthermore, SOX2 functions not 

only to specify these cells to adopt a neural fate, but also to maintain their capacity to 

proliferate and properly differentiate.  However, SOX2 expression has yet to be 

thoroughly characterized in distinct populations of neural progenitor cells within the 

developing and adult CNS.  Furthermore, the ablation of SOX2 early in neural 

development has precluded any analysis of SOX2 function in these late-stage, lineage-

restricted neural progenitor populations.  Therefore, this dissertation will characterize 

SOX2 expression in distinct populations of neural progenitor cells in the developing and 

adult CNS, as well as investigate the function of SOX2 in these cells, utilizing newly 

developed genetic tools.  Furthermore, the studies herein will focus upon the neural 

progenitor cells of the mouse forebrain, specifically in the neocortex and its embryonic 

precursor, the developing dorsal telencephalon. 
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1.3  Neural Progenitor Cells in the Development of the Murine Neocortex 

 

Throughout neural development, populations of neural progenitor cells become 

spatially and temporally specified to produce distinct neuronal and glial subtypes.  These 

neural progenitor cell populations are derived from a small population of epiblast cells 

which become specified to generate the neuroepithelial (NEP) cells of the neural plate 

and neural tube (Fig 1.4A).  These NEP cells then give rise to populations of radial glial 

(RG) cells, including a distinct RG subtype in the developing dorsal telencephalon.  

Dorsal telencephalic RG cells produce a majority of the projection neurons in the 

neocortex, either directly or through a secondary neural progenitor called an 

intermediate progenitor cell (Fig 1.4B).  Ultimately, most RG cells will then become 

postmitotic glial cells in the adult neocortex.  However, a subpopulation of RG cells is 

maintained in the adult subventricular zone (SVZ) where they continue to generate 

interneurons destined for the olfactory bulb (OB) (Fig 1.4C).  Collectively, these different 

neural progenitor populations display distinct capacities for self-renewal and 

multipotential differentiation in vivo and in vitro, as well as unique molecular expression 

patterns.  However, one of the unifying features of these cells is the expression of the 

HMG-Box transcription factor SOX2.  In this section I will introduce the various neural 

progenitor populations that are involved in the development of the neocortex as well as 

address what is currently known about SOX2 in each population. 
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Neural Progenitor Cells of the Early Embryonic Nervous System 
 

Neuroepithelial (NEP) Cells 
 

During the process of gastrulation (between E6.5 and E7.5 in the mouse), 

beginning at the posterior portion of the embryo called the primitive streak, epiblast cells 

will segregate into three distinct germ layers: ectoderm, mesoderm, and endoderm.  The 

endoderm gives rise to cells of the gut, liver, and pancreas while the mesoderm 

generates most of the circulatory system, reproductive system, muscle and bone.  Cells 

of the ectoderm, however, will generate the nervous system and epidermis (skin) (Arnold 

and Robertson 2009). 

The specification of neural identity in the ectoderm occurs in a process called 

neural induction (age E7.5), in which a subset of ectodermal cells receives extracellular 

signals from the node at the anterior portion of the primitive streak to adopt a neural fate 

(Beddington 1994).  Simultaneously, signals such as Cerberus 1 (CER1) and Lefty1/2 

emanating from the anterior visceral endoderm (AVE) specify the anterior region of the 

ectoderm to form neural ectoderm (neurectoderm) by inhibiting secreted Transforming 

Growth Factor β (TGFβ) family members NODAL and BMP (Thomas and Beddington 

1996; Kimura et al. 2001; Arnold and Robertson 2009).  Fate mapping studies 

demonstrate that cells isolated from the anterior regions of the epiblast primarily 

generate the neurectoderm, however they are also capable of generating mesodermal 

derivatives when ectopically grafted, suggesting they maintain pluripotency (Beddington 

1981; Beddington 1982; Beddington 1983; Tam 1989; Lawson et al. 1991; Quinlan et al. 

1995).  Upon neural induction, these ectodermal cells thicken into a columnar epithelium 

called the neural plate which then invaginates and closes, forming the neural tube.  The 

most anterior regions of the neural tube continue to expand to form the brain while the 
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more posterior regions of the neural tube will generate the spinal cord (Wilson and 

Houart 2004; Rossant and Tam 2009). 

The single layer of cells which makes up the neural plate (and later the neural 

tube) is referred to as a pseudo-stratified epithelium (or neuroepithelium) and is 

comprised of NEP cells (Fig 1.4A).  Morphologically, NEP cells have a columnar 

appearance and extend the length of the neuroepithelium, contacting both the apical 

surface (in contact with the ventricular lumen) as well as the pial surface, which gives 

them a “radial” appearance (Boulder-Committee 1970).  The epithelial characteristics of 

NEP cells include a highly polarized apical-basal axis in which transmembrane proteins, 

as well as tight and adherens junctions, are concentrated at the apical end of the cell  

(Aaku-Saraste et al. 1996; Corbeil et al. 1999).  During the cell-cycle, the nuclei of NEP 

cells migrate along the entire apical-basal axis in a process called interkinetic nuclear 

migration.  During S-phase, nuclei reside in the basal portion of the cell but migrate to 

the apical side during G2 phase where they undergo mitosis before returning to the 

basal region during G1 phase  (Takahashi et al. 1993). This nuclear migration gives the 

neuroepithelium a pseudo-stratified appearance. 

As NEP cells are the first neural specified descendents of epiblast cells, they are 

generally assumed to have the capacity to generate all neural tissue types and are 

therefore referred to as pluripotent neural progenitor cells.  In vivo, NEP cells have been 

observed to initially undergo successive rounds of symmetric division in which one NEP 

cell produces two equal daughter cells  (Noctor et al. 2001; Haubensak et al. 2004; 

Miyata et al. 2004), serving to expand the neural progenitor pool in the neural 

plate/neural tube.  This initial wave of expansion is followed by the onset of 

neurogenesis, in which NEP cells begin to directly generate neurons, this time by 

asymmetrically dividing to form an additional NEP cell as well as a nascent neuron, 

which then migrates towards the preplate (Haubensak et al. 2004; Miyata et al. 2004; 
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Noctor et al. 2004).  In addition, in vitro isolation studies have demonstrated that NEP 

cells isolated from the E8.5 anterior neural plate and either cultured at low density or 

retrovirally labeled, are capable of differentiating into all three neural cell types as well as 

maintaining limited self-renewal capacity (Williams and Price 1995; Qian et al. 2000; 

Tropepe et al. 2001).  However, at E9.5 isolated cells were shown to already be 

restricted to either neuronal or glial fates, suggesting that NEP cells are functionally 

heterogeneous (McCarthy et al. 2001). 

Molecularly, NEP cells can be distinguished from epiblast cells by the expression 

of the intermediate filament protein Nestin, a widely used neural progenitor marker, in 

addition to its posttranslational modifications labeled with the antibodies RC1 and RC2 

(Frederiksen and McKay 1988; Misson et al. 1988; Edwards et al. 1990; Malatesta et al. 

2008).  Furthermore, mRNA transcripts of brain lipid binding protein (BLBP) have also 

been observed in NEP cells, although antigenic labeling of BLBP protein is not detected 

until later stages (Anthony et al. 2004).  NEP cells have also been observed to become 

dependent upon Notch signaling as loss of Notch targets such as Hes1, 3, and 5 results 

in the inability of NEP cells to differentiate into radial glial cells  (Hatakeyama et al. 

2004). 

As in epiblast cells, SOX2 and SOX3 continue to be expressed in NEP cells. 

However, coincident with neural induction, the last SOXB1 member, SOX1 also 

becomes expressed  (Pevny et al. 1998; Wood and Episkopou 1999).  At this stage, 

SOX2 continues to be functionally important.  For instance, hypomorphic mice 

containing one SOX2-null allele (in which the SOX2 coding sequence was replaced with 

a β-geo reporter cassette) and one hypomorphic SOX2 allele (generated from the 

deletion of a neural cell-specific enhancer of SOX2) display a reduction in SOX2 

expression in the telencephalon and several associated neural defects  (Zappone et al. 

2000; Ferri et al. 2004).  These defects included circling behavior, epileptic spike 
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recordings, neurodegeneration, reduction in cortical size, ventricular enlargement, and 

impaired neural progenitor proliferation and differentiation (Ferri et al. 2004).  In another 

series of experiments, the conditional ablation of SOX2 in NEP cells using a Nestin-Cre 

driven excision also resulted in enlarged ventricles as well as a reduction in the 

neurosphere forming potential of cortical progenitors and embryonic lethality  (Miyagi et 

al. 2008).  These results suggest that SOX2 has a unique role in the maintenance of 

NEP cells and in their ability to generate mature neurons.  Furthermore, it suggests that 

these functions cannot be completely compensated for by its highly related SOXB1 

family members SOX1 and SOX3.  However, it should be noted that these studies ablate 

or reduce SOX2 expression in neural plate/tube stages of embryogenesis (at the onset 

of NEP formation), but only analyze the effects later in development into adulthood.  

Thus, the effects observed may not address the function of SOX2 in maintaining NEP 

cells, but rather its function in specifying neural competence of these cells.  Therefore, in 

order to address whether SOX2 functions in the maintenance of neural progenitor 

populations, it is important to utilize genetic tools to direct SOX2 ablation at precise 

temporal stages to specific neural progenitor cell types (as described in Chapter 4). 

 

Neural Progenitor Populations in the Dorsal Telencephalon 
 

During anteroposterior patterning of the developing neural tube, the most anterior 

portion becomes specified to generate the two hemispheres of the telencephalon, or 

cerebrum.  In turn, the telencephalon is further divided into the dorsal and ventral 

telencephalic regions.  The dorsal telencephalon, or pallium, will then generate the 

cerebral cortex of the adult brain (also called the neocortex) while the ventral 

telencephalon, or subpallium, will generate the basal ganglia  (Koop et al. 1986; Puelles 

2001; Wilson and Houart 2004).  Phylogenetically, the neocortex is the most recently 
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developed region of the brain and in mammals is involved in many higher order 

processes such as memory, language, perception, and consciousness (Campbell 2003; 

Wilson and Houart 2004).  These complex processes require neocortical neurons to 

establish intricate networks of connections between themselves as well as project 

connections to neurons of other cortical regions.  Therefore, a vast majority of neurons 

that populate the neocortex are projection neurons  (Hevner 2006). 

Projection neurons (or pyramidal neurons) found in the dorsal telencephalon are 

generated from neural progenitor cells located within the dorsal telencephalon 

(Anderson et al. 1997; Tan et al. 1998).  The two predominant classes of neural 

progenitor populations that have been characterized in the developing dorsal 

telencephalon appear at approximately E10.5 in the mouse  (Boulder-Committee 1970; 

Hartfuss et al. 2001; Hevner 2006; Guillemot 2007).  The first, radial glial (RG) cells, are 

direct descendents of NEP cells and exhibit multipotent and self-renewal capabilities 

(Hartfuss et al. 2001; Haubensak et al. 2004; Malatesta et al. 2008).  The second neural 

progenitor population, intermediate progenitor (IP) cells, is directly generated by RG 

cells but has limited self-renewal capacity, if any, and is strictly neurogenic (Gotz and 

Barde 2005; Pontious et al. 2008; Kowalczyk et al. 2009).  However, both progenitor 

populations can generate projection neurons. 

 

Radial Glial Cells  
 

At the onset of neurogenesis (E10-E11 in the mouse), NEP cells begin to 

undergo a glial transition to form RG cells (Fig. 1.4B)  (Feng et al. 1994; Malatesta et al. 

2000; Alvarez-Buylla et al. 2001; Hartfuss et al. 2001; Anthony et al. 2004; Haubensak et 

al. 2004; Gotz and Barde 2005; Basak and Taylor 2007; Farkas and Huttner 2008; 

Malatesta et al. 2008).  During this period, epithelial characteristics, such as tight 
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junctions, are lost, as is the apical-basal polarity of some plasma membrane proteins 

such as hemagglutinin and the viral envelope G protein  (Aaku-Saraste et al. 1996; 

Aaku-Saraste et al. 1997).  However, RG cells continue to maintain contact with both the 

apical and basal surfaces of the neuroepithelium.  Furthermore, RG cells also maintain 

interkinetic nuclear migration, although the presence of newly generated neurons in the 

basal neuroepithelium limits their nuclei migration to the apical neuroepithelium, a region 

referred to as the ventricular zone (VZ)  (Boulder-Committee 1970).  It is in the VZ that 

most mitotic events are subsequently observed. 

In addition to the loss of epithelial characteristics, RG cells adopt glial features 

starting between E10-E11.  These features include the expression of genes 

characteristic of astrocytes including brain-lipid-binding-protein (BLBP), glutamate 

astrocyte specific transporter (GLAST), vimentin, Tenascin-C, S100β, and in primates, 

glial fibrillary acidic protein (GFAP); although in mice the human GFAP (hGFAP) 

promoter is active in RG cells  (Brenner et al. 1994; Feng et al. 1994; Shibata et al. 

1997; Mori et al. 2005; Casper and McCarthy 2006).  Interestingly, while BLBP protein is 

observed at approximately E11, its mRNA is found to be expressed at E10 in NEP cells, 

suggesting that it is an early indicator of the NEP to RG transition  (Hartfuss et al. 2001; 

Anthony et al. 2004; Gotz and Barde 2005).  In addition to molecular changes, RG cells 

can also be characterized by the presence of glycogen granules, which are a glial 

characteristics (Fig 1.6) (Choi 1981). 

The glial properties of RG cells originally led researchers to conclude that they 

serve as scaffolding on which newly generated neurons can migrate towards the pial 

surface (Boulder-Committee 1970; Rakic 1971).  However, analysis of isolated radial 

glial cells using mice expressing green fluorescent protein (GFP) under the hGFAP 

promoter was the first direct demonstration that these cells were capable of generating 

neurons (Malatesta et al. 2000).  Subsequent lineage tracing studies using BLBP- and 
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GLAST-promoter driven Cre as well as retroviral labeling confirmed that RG cells are 

capable of generating neurons as well as astrocytes (Malatesta et al. 2000; Hartfuss et 

al. 2001; Noctor et al. 2001; Malatesta et al. 2003; Anthony et al. 2004). 

Although many RG molecular and cellular characteristics are ubiquitous within 

the CNS, including the expression of BLBP and GLAST, regional differences in RG cells 

are observed in the developing telencephalon.  In particular, RG cells in the dorsal 

telencephalon of E13.5 mice have been shown to express the hGFAP promoter whereas 

RG cells in the ventral telencephalon do not  (Malatesta et al. 2000; Malatesta et al. 

2003).  In addition, dorsal telencephalic RG cells express the transcription factor PAX6 

and can directly generate neurons, which rarely occurs in ventral telencephalic RG cells  

(Malatesta et al. 2000; Heins et al. 2002; Malatesta et al. 2003; Anthony et al. 2004). 

Recent studies in the mouse have suggested that subpopulations of RG cells 

exist in the developing dorsal telencephalon (E10-E17).  It has been demonstrated that 

all RG cells are mitotic, incorporating the S-phase marker bromo-deoxyuridine (BrDU) 

after 12 hours of exposure  (Hartfuss et al. 2001; Magavi and Macklis 2008).  However, 

labeling studies using retrovirally labeled cells observed neurogenic, gliogenic, and 

multipotential clusters after multiple days in culture  (Walsh and Cepko 1988; Grove et 

al. 1993; Reid et al. 1995; Noctor et al. 2001).  In addition, studies using genetic labeling 

demonstrated that many RG cells are lineage restricted, generating only neuronal or glial 

progeny, although multipotential RG cells were also observed (Luskin et al. 1988; Walsh 

and Cepko 1988; Malatesta et al. 2000; Hartfuss et al. 2001; Malatesta et al. 2003; 

Anthony et al. 2004; Miyata et al. 2004; Noctor et al. 2004).  Interestingly, in vivo lineage 

studies have suggested that this restriction may occur at the onset of neurogenesis as 

neural progenitors in the mouse neural tube that were retrovirally labeled at E9.5 were 

able to give rise to neuronal and glial restricted clones in the adult  (McCarthy et al. 

2001).  It has also been demonstrated in time-lapse cultures of cortical cells isolated 
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from embryonic and postnatal mice that as neurogenesis proceeds, radial glial cells 

transition from neurogenic to gliogenic, producing primarily astrocytes and 

oligodendrocytes at early postnatal stages  (Qian et al. 2000).  These results suggest 

that a majority of RG cells are not multipotent in vivo and therefore heterogeneous 

populations of RG cells exist in the dorsal telencephalon. 

To understand the cellular diversity of RG cells within the dorsal telencephalon, 

molecular characterizations of RG cells have been conducted.  RG cells share common 

expression of molecular markers with NEP cells including Nestin, RC1, RC2, as well as 

the expression of all three SOXB1 members  (Frederiksen and McKay 1988; Misson et 

al. 1988; Edwards et al. 1990; Wood and Episkopou 1999; Avilion et al. 2003).  In 

addition, RG cells, similar to NEP cells, are dependent upon Notch-signaling.  Gain of 

functions studies have shown that RG cells transfected with the constitutively active form 

of Notch1 were induced to form molecularly and cellularly distinct RG cells and inhibit 

neuronal differentiation (Gaiano et al. 2000; Hitoshi et al. 2002; Yoon et al. 2004).  

Furthermore, RG cells can be isolated based upon high levels of enhanced green 

fluorescent protein (EGFP) when its expression is driven by Hes5 , a downstream 

transcription factor of Notch1 signaling, as well as high levels of CBF1-driven EGFP, a 

downstream Notch1 effector  (Basak and Taylor 2007; Mizutani et al. 2007).  However, 

Notch signaling in RG cells is also heterogeneous, as RG cells negative for Hes5- and 

CBF1-EGFP are also found, although only the former were demonstrated to be able to 

generate neurospheres (Basak and Taylor 2007; Mizutani et al. 2007).  As mentioned 

previously, PAX6 is also expressed in dorsal telencephalic RG cells and is important in 

their maintenance.  Loss of PAX6 results in a reduction in RG cells and postmitotic 

neurons in the dorsal telencephalon as well as premature differentiation of RG cells to IP 

cells (Gotz et al. 1998; Heins et al. 2002; Haubst et al. 2004).  Furthermore, the level at 

which PAX6 is expressed in RG cells is also important.  Although PAX6 is necessary to 
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maintain RG cells, high levels of PAX6 are able to induce RG cells to adopt an IP fate 

(Sansom et al. 2009).  These studies demonstrate that multiple molecular factors and 

signaling pathways are involved in the regulation of cell-fate decisions in RG cells. 

As mentioned above, the expression of SOX2, as well as SOX1 and SOX3, 

continues to be maintained in RG cells (Cavallaro et al. 2008).  However, it has yet to be 

determined whether the function of SOX2 in these cells is similar to its role in NEP cells 

since the in vivo functional studies to date have ablated SOX2 early in NEP cells  (Ferri 

et al. 2004; Cavallaro et al. 2008; Miyagi et al. 2008).  Radial glial cells are maintained in 

the dorsal telencephalon through much of neural development which, in conjunction with 

previous observations demonstrating the importance of SOX2 in maintaining other 

neural progenitor populations, suggests that SOX2 may play an important role in 

maintaining the neural progenitor identity of radial glial cells. 

 

 
Intermediate Progenitor Cells 
 

In addition to RG cells, a second population of neural progenitor cells has been 

identified in the dorsal telencephalon, called intermediate progenitor (IP) cells.  IP cells 

appear at the onset of neurogenesis and were originally identified as a mitotic progenitor 

population distinct from RG cells based upon their rounded shape and lack of interkinetic 

nuclear migration (Fig. 1.5B) (Boulder-Committee 1970; Smart 1973; Haubensak et al. 

2004; Miyata et al. 2004; Noctor et al. 2004).  In addition, IP cells are located at the 

basal edge of the apical VZ and are, therefore, also referred to as “basal progenitors”.  

IP cells reside in the SVZ, which can be distinguished from the VZ at approximately E13 

in the mouse.  Live-imaging and lineage tracing studies have demonstrated that IP cells 

are the product of asymmetrically dividing RG cells which typically produce one self-
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renewing RG daughter cell and one IP daughter cell.  This IP cell then migrates from the 

VZ into the SVZ where it divides symmetrically to produce two differentiated neurons 

that migrate into the cortical plate where they ultimately develop into projection neurons  

(Haubensak et al. 2004; Miyata et al. 2004; Noctor et al. 2004).  Thus, IP cells are 

generally regarded as unipotential progenitors with no self-renewal capacity.  However, 

instances of symmetrically dividing IP cells resulting in two IP cells, and ultimately 4 

neurons, have been observed suggesting some IP cells may maintain limited self-

renewal potential  (Noctor et al. 2004; Kowalczyk et al. 2009).  Furthermore, IP cells with 

unipolar and multipolar processes have been distinguished suggesting that IP 

populations may also be heterogeneous  (Kawaguchi et al. 2008; Kowalczyk et al. 

2009).  Collectively, these observations demonstrate that IP cells rapidly expand the 

neuronal population of the dorsal telencephalon through symmetric division during the 

peak stages of neurogenesis (E12-E18).  Furthermore, IP cells have been shown to 

generate a majority of projection neurons in the neocortex  (Haubensak et al. 2004; 

Miyata et al. 2004). 

Molecularly, IP cells have been well characterized.  During RG transition into IP 

cells, IP cells upregulate the proneural basic helix-loop-helix gene Neurogenin2 (Ngn2) 

in direct response to high levels of PAX6  (Scardigli et al. 2003; Holm et al. 2007; 

Sansom et al. 2009), which is subsequently downregulated in IP cells  (Englund et al. 

2005).  Ngn2 has been shown to regulate the migration of newly generated IP cells into 

the SVZ as Ngn2-deficient mice show an accumulation of bromo-deoxyuridine (BrDU)-

positive dividing cells in the SVZ  (Britz et al. 2006).  Ngn2, in turn, directly upregulates 

the T-domain transcription factor TBR2 which exclusively identifies IP cells  (Bulfone et 

al. 1999; Kimura et al. 1999; Englund et al. 2005; Ochiai et al. 2009). TBR2 is necessary 

in the maintenance of IP cells as mice with conditionally ablated TBR2 display 

decreased cortical thickness, a reduction in the number of SVZ IP cells, and a reduction 
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in the number of cortical neurons  (Arnold et al. 2008; Sessa et al. 2008).  Conversely, 

TBR2 misexpression is sufficient to induce IP cell specification in RG cells  (Sessa et al. 

2008).  In addition, IP cells express CUX2, which serves to limit the proliferation of IP 

cells in the SVZ  (Zimmer et al. 2004; Cubelos et al. 2008).  The molecular regulation of 

CUX2 in IP cells, however, remains unclear.  Lastly, as IP cells differentiate into 

postmitotic neurons, they downregulate TBR2 and CUX2 concomitant with the 

upregulation of TBR1 and CUX1, which specify upper-layer cortical neuron populations  

(Hevner et al. 2001; Nieto et al. 2004). 

These data demonstrate that IP cells have a restricted capacity for self-renewal 

and are highly limited in their differentiation potential in vivo.  In contrast, few studies to 

date have examined the behavior of IP cells in vitro.  Despite the existence of a TBR2-

EGFP transgenic mouse line  (Kwon and Hadjantonakis 2007), it has yet to be 

demonstrated that isolated TBR2-positive IP cells are capable of forming neurospheres 

in culture or are able to differentiate into neuronal and/or glial populations. Therefore, it 

remains to be determined whether IP cells maintain the capacity for multipotential 

differentiation and self-renewal in vitro. 

SOX2 has been shown to be expressed in the SVZ of the dorsal telencephalon  

(D'Amour and Gage 2003; Ellis et al. 2004; Ferri et al. 2004; Bani-Yaghoub et al. 2006) 

but its relative expression compared to IP cell markers is unclear.  Furthermore, it 

remains to be determined the extent to which SOX2 functionally regulates the limited 

proliferative and self-renewal potential of IP cells or whether SOX2 downregulation in IP 

cells is necessary for their ability to differentiate.  Therefore, further characterization of 

SOX2 expression and function specifically in IP cells is necessary. 
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Neural Progenitor Cells in the Adult Neocortex 
 

At the end of neurogenesis, RG cells begin to lose their bipolar morphology and 

migrate toward the cortical plate where they differentiate into astrocytes (Voigt 1989; 

Mission et al. 1991; Noctor et al. 2008).  However, a small population of RG cells are 

maintained into adulthood in multiple regions including the SVZ of the neocortex, the 

subgranular zone (SGZ) of the hippocampus, and the spinal cord (Gil-Perotin et al. 

2009; Suh et al. 2009).  Retroviral labeling of postnatal (P0) RG cells shows that these 

cells are capable of generating olfactory bulb interneurons, cortical oligodendrocytes, 

and parenchymal astrocytes (Merkle et al. 2004).  In the neocortical SVZ, RG cells also 

generate the four potential neural progenitor populations that have been currently 

identified including the ependymal cells lining the lateral ventricles as well as three 

molecularly characterized populations called Type A, Type B, and Type C cells (Doetsch 

et al. 1999; Johansson et al. 1999).  The characterization of adult neural progenitor 

populations is still in its infancy; therefore, the true identity and function of these cells is 

not fully understood.  Furthermore, it remains unclear whether the mechanisms that 

regulate these neural progenitor populations are similar to the mechanisms utilized by 

embryonic neural progenitor populations.  However, SOX2 has been demonstrated to be 

expressed in the neurogenic regions of the adult CNS and may therefore provide a 

means with which to identify and characterize these neural progenitor populations 

(D'Amour and Gage 2003; Ellis et al. 2004; Ferri et al. 2004) . 

 

Subventricular Zone (SVZ) Progenitor Cells 
 

By early postnatal stages in the rodent dorsal telenecephalon, neurogenesis has 

declined and a majority of RG cells have begun to differentiate into mature glial cells  

(Schmechel and Rakic 1979).  However, a small population of mitotically active RG cells 
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continues to be maintained in the SVZ of the postnatal and adult neocortex (Reynolds 

and Weiss 1992; Richards et al. 1992; Merkle et al. 2004; Ventura and Goldman 2007).  

In contrast to embryonic RG cells, these adult neural progenitor cells do not generate 

cortical cells, but are responsible for the production of olfactory bulb granule and 

periglomerular interneurons which migrate anteriorly along the rostral migratory stream 

(RMS) to the OB where they incorporate into the granule and glomerular layers  (De 

Marchis et al. 2007).  Four classes of cells have been characterized in the adult SVZ: 

Types A, B, and C, and ependymal cells.  Type B cells have been suggested to serve as 

the self-renewing neural progenitor population in the SVZ (Doetsch et al. 1999).  Type B 

cells are slowly dividing and, similar to RG cells, express GFAP, GLAST, VIMENTIN, 

NESTIN, and contain glycogen granules (Doetsch and Alvarez-Buylla 1996; Jankovski 

and Sotelo 1996; Doetsch et al. 1997; Peretto et al. 1997; Bolteus and Bordey 2004).  In 

addition, although most Type B cells reside in the SVZ, some cells have also been 

observed to come into contact with the ventricular surface where they extend a single 

cilium into the ventricular lumen (Doetsch et al. 1997). 

Next, Type B cells give rise to a population of rapidly dividing cells called Type C 

cells.  Clusters of Type C cells are found intermittently within the SVZ and are thus also 

known as transit-amplifying progenitor cells.  Molecularly, Type C cells can be identified 

by the expression of transcription factors Mash1 and Dlx2, but in contrast to Type B 

cells, they downregulate GFAP expression  (Doetsch et al. 1997; Parras et al. 2004). 

Type B cells will ultimately generate a third cell type, Type A cells, which serve as 

committed neuroblasts that migrate through glial tubes along the RMS and differentiate 

into OB interneurons, although mitotic Type A cells have also been observed  (Doetsch 

et al. 1997).  Similar to Type C cells, Type A cells also express Dlx2, but in addition 

express DCX and polysialated neural cell adhesion molecule (PSA-NCAM)  (Doetsch et 

al. 1997; Parras et al. 2004).  The last cell type found in the SVZ is the ependymal cell.  
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Ependymal cells are specialized, multiciliated epithelial cells which line the luminal 

surface of the ventricles and have been shown to be mitotic  (Boulder-Committee 1970; 

Doetsch et al. 1997; Parras et al. 2004).  Interestingly, ependymal cells are also derived 

from RG cells and continue to express the neural progenitor marker Nestin, suggesting 

they may also have neural progenitor capacity (Alonso 1999; Johansson et al. 1999). 

The capacity of either Type B cells or ependymal cells to act as a neural 

progenitor population in the adult SVZ remains controversial.  Several lines of evidence 

suggest that the Type B cells are the progenitor population in the SVZ as they directly 

give rise to both Type A and Type C cells.  For example, after acute pharmaceutical 

ablation of all mitotic Type A and C cells in the SVZ with Ara-C, regeneration of both 

populations is observed after several days, likely by a slowly dividing Type B cells which 

were not affected by the drug  (Doetsch et al. 1999).  In addition, Type B cells 

transfected with an EGFP plasmid driven by the hGFAP promoter were shown to 

generate Type C cells  (Doetsch et al. 1999).  In contrast, other studies have also 

suggested that ependymal cells have the capacity to act as neural progenitor cells  

(Johansson et al. 1999; Gleason et al. 2008; Carlen et al. 2009; Moreno-Manzano et al. 

2009).  Recently, it was demonstrated that under normal physiological conditions, 

ependymal cells do not serve as neural progenitor cells.  However, during periods of 

stroke, ependymal cells can self-renew and are able to generate both neuroblasts and 

astrocytes (Gleason et al. 2008; Carlen et al. 2009; Moreno-Manzano et al. 2009).  

Furthermore, ependymal cells maintain their self-renewal and multipotent differentiation 

capacity through Notch1 signaling (Carlen et al. 2009).  These results suggest that both 

ependymal cells and Type B cells serve as neural progenitor populations in the adult 

SVZ in vivo. 

Interestingly, all four cell types in the SVZ have been shown to express SOX2 

which, given the role of SOX2 in maintaining neural progenitor populations throughout 
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the CNS, suggests that they may each retain limited progenitor characteristics (D'Amour 

and Gage 2003; Ellis et al. 2004).  However, it remains to be determined what relation, if 

any, these different progenitor populations have to each other and whether SOX2 

functions in the same capacity within each.  Therefore, further studies utilizing SOX2 as 

a marker to analyze these cells may provide insight into their capacity to serve as neural 

progenitor cells. 

 

1.4  Hypothesis 

 

SOX2 has been demonstrated to be important in maintaining neural progenitor 

identity in defined regions of the CNS, specifically in the developing retina and spinal 

cord.  However, its expression has not been clearly established nor its function analyzed 

in the cellular and molecularly distinct neural progenitor populations residing in the 

developing dorsal telencephalon.  Therefore, my hypothesis is that through the 

analyses of SOX2 expression and function, distinct neural progenitor populations 

can be identified in the developing dorsal telencephalon and furthermore, that 

SOX2 functions to maintain the proliferative, self-renewal, and differentiation 

capacities of these cells in vivo and in vitro.  To test this hypothesis, I have examined 

three main questions: 

 

1) Can SOX2 expression be used to identify embryonic and adult neural 

progenitor populations in vivo?  In this chapter I describe and characterize the 

SOX2EGFP mouse line in which the expression of enhanced green fluorescent 

protein (EGFP) recapitulates endogenous SOX2 expression in neural 

progenitor populations throughout ontogeny. 
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2) Can the SOX2EGFP mouse line be used to prospectively identify and isolate 

distinct populations of neural progenitor cells?  In this chapter, I demonstrate 

that radial glial cells, intermediate progenitor cells, and differentiated neurons 

can be prospectively isolated based upon their differential levels of EGFP and 

SOX2 expression using Fluorescence Automated Cell Sorting (FACS). 

 

3) Is SOX2 necessary in the proper development of dorsal telencephalic neural 

progenitor populations?  In this chapter I ablate SOX2 expression specifically 

in radial glial cells of the dorsal telencephalon using the hGFAPCre mouse line 

and find that loss of SOX2 in these cells results in a decrease in the number 

of radial glial cells and intermediate progenitor cells, as well as a thinning of 

the dorsal telencephalon and increased embryonic lethality. 

 

Overall, my results are the first demonstrate that SOX2 is differentially expressed 

in distinct populations of the developing dorsal telencephalon and this expression can be 

used to prospectively isolate and identify these cells.  Furthermore, I show that SOX2 is 

necessary to properly maintain populations of proliferating radial glia and intermediate 

progenitor cells in the developing dorsal telencephalon.  These data support previous 

reports that SOX2 is necessary for the proper development of neural progenitor 

populations in other CNS regions and that SOX2 function cannot be completely 

compensated for by other SOXB1 transcription factors. 
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Figures 

Table 1.1 

 

Family Member Function 

B 

1 

1 

Maintains neural progenitor characteristics in mouse ES and P19 cells. 

Regulates migration of mouse telencephalic neurons. 

Required for differentiation of neurons in mouse ventral striatum. 

2 

Maintenance of SOX2 expression biases Xenopus animal cap cells and mouse ES cells 

towards neural fate. 

Maintains neural progenitor characteristics in ES cells, chick. spinal cord, mouse retinal and 

rat oligodendrocyte progenitor cells. 

Required for neuronal differentiation in anterior thalamus, dorsal striatum and septum. 

Required for maintenance of chick neural crest progenitor identity. 

3 

Maintains neural progenitor characteristics in chick spinal cord. 

Required in a subset of mouse hypothalamic neurons that regulate the hormonal output of 

the anterior pituitary. 

2 

14 Promotes neuronal differentiation, cell cycle exit, delamination of chick neural progenitors. 

21 Promotes neuronal differentiation, cell cycle exit, delamination of chick neural progenitors. 

C 

4 Promotes activation of differentiated neuronal markers in chick embryonic spinal cord. 

11 
Promote activation of differentiated neuronal markers in chick embryonic spinal cord. 

Regulates of neuronal survival and neurite outgrowth of chick neurons. 

D 

5 
Represses specification and terminal differentiation and influences mouse oligodendrocyte 

migration patterns. 

6 
Represses specification and terminal differentiation and influences mouse oligodendrocyte 

migration patterns. 

E 

8 Regulates Xenopus and chick neural crest cell migration. 

9 
Required for neural crest induction in Xenopus, chick and mouse embryos. 

Promotes chick oligodendrocyte differentiation. 

10 

Maintenance and survival of neural crest progenitors in Xenopus and mouse embryos. 

Induction and survival of glial lineages in Xenopus and mouse embryos. 

Promotes oligodendrocyte differentiation. 
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Table 1.1. SOX Factor Functions in Nervous System Development. Table of SOX 

members grouped by family and subgroup.   Also listed are the identified function(s) of 

each Sox gene within the central and peripheral nervous systems. 
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Figure 1.1 

 

  



38 

Figure 1.1  Stem/Progenitor Cell Hierarchy.  Illustration demonstrating that as a 

totipotent progenitor cell divides throughout development, its potency becomes more 

restricted in its subsequent progeny after each successive division.  Differentiation 

potential is indicated by the darkness of the circle. Abbreviation: Oligo, oligodendrocyte    
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Figure 1.2 

 

 

 

 

 

  



40 

Figure 1.2  The Neurosphere Assay.  To generate neurospheres, a region of interest is 

dissected from the tissue and enzymatically dissociated into a single cell suspension.  

These cells are then plated at low density in non-adherent dishes in the presence of 

growth factors and allowed to proliferate, forming neurospheres.  Neurospheres can then 

either be dissociated and re-plated to generate secondary neurospheres, or induced to 

differentiate by the withdrawal of growth factors.  
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Figure 1.3 
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Figure 1.3.  Structure of SOXB Factors.  All SoxB members contain an N-terminus 

domain (yellow) and HMG-BOX DNA-binding domain (blue).  However, the C-terminus 

domain is different between SOXB1 and SOXB2 member.  The C-terminus of SOXB1 

members serves as a trans-activating domain (green) whereas the C-terminus of 

SOXB2 members functions as a trans-repressor domain (red). 
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Figure 1.4 



44 

Figure 1.4  Cortical Architecture During CNS Development. (A): At early stages of 

neural development (~E9.5), the developing CNS consists of a pseudo-stratified sheet of 

neuroepithelial (NEP) cells which extend the entire width of the neuroepithelium.  (B): At 

later stages of neural development, NEP cells have been replaced by Radial Glial (RG) 

cells which also extend the entire width of the developing dorsal telencephalon, although 

their soma are restricted to the ventricular zone (VZ).  In addition, RG cells also produce 

Intermediate Progenitor (IP) cells which reside basally in the subventricular zone (SVZ).  

Both RG and IP cells are capable of generating nascent neurons which migrate along 

the RG processes to the cortical plate (CP).  (C): In the adult SVZ, ependymal cells 

lining the lateral ventricles are capable of proliferating and undergoing neurogenesis.  In 

addition, glial-like Type B cells can also proliferate and generate neurons, usually 

through an intermediate progenitor-type cell (Type C cell) which then forms a migrating 

neuroblast (Type A cell).  Abbreviations: VZ, ventricular zone; SVZ, subventricular zone; 

CP, cortical plate; MZ, mantle zone; NEP, neuroepithelial; RG, radial glia; IP, 

intermediate progenitor. 

  



 
 

Chapter Two 
 

 

The Generation and Characterization of a SOX2-EGFP 
Mouse Line for the Analysis of Neural Progenitor  

Populations In Vivo 
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Summary of Chapter 

The developing and adult mammalian central nervous system (CNS) contains 

multiple populations of proliferating neural progenitor cells that are capable of generating 

neurons and glia in vivo and in vitro (Gage and Verma 2003; Gil-Perotin et al. 2009).  

These progenitor populations serve diverse functions throughout ontogeny including: 

regulating the production of distinct neural cell types in developing CNS tissues, 

maintaining specific neural populations in regions of high cellular turnover, and 

upregulating neuronal or glial cell production in response to injury (Farkas and Huttner 

2008).  However, the ability to identify defined populations of neural progenitor cells in 

vivo has been difficult due to a limited number of molecular markers which recognize 

these cells.  Moreover, many of the markers that have currently been identified, including 

NESTIN, MUSASHI, NOTCH and Neuronal Cell Adhesion Molecule (NCAM), are not 

specific for neural progenitor cells (Hockfield and McKay 1985; Lendahl et al. 1990; 

Weinmaster et al. 1991; Sakakibara et al. 1996; Sakakibara and Okano 1997).  This, in 

turn, has hindered attempts to elucidate the cellular and molecular mechanisms which 

regulate the cell-fate decisions of neural progenitor cells.  This problem is further 

compounded by the current dependence upon retrospective in vitro assays, such as the 

neurosphere assay, to accurately determine whether a cell exhibits progenitor capacity.  

Therefore, the development of tools and protocols to prospectively identify, isolate, and 

characterize distinct neural progenitor cell populations from the CNS is essential to 

advance the understanding of both the cellular and molecular mechanisms that regulate 

neural progenitor cell identity and differentiation potential. 

The HMG-Box transcription factor SOX2 has also been identified as a neural 

progenitor cell marker.  SOX2 is expressed in a majority of embryonic and adult neural 

progenitor cells throughout the CNS (Collignon et al. 1996; Wood and Episkopou 1999; 
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Avilion et al. 2003; D'Amour and Gage 2003; Ellis et al. 2004) and functions to retain the 

progenitor identity of these cells, serving to maintain both their proliferative and neural 

differentiation capacities before its expression is downregulated upon neural 

differentiation (Bylund et al. 2003; Graham et al. 2003; Ferri et al. 2004; Brazel et al. 

2005; Miyagi et al. 2006; Taranova et al. 2006; Cavallaro et al. 2008).  These properties 

therefore suggest that SOX2 expression can serve as a valuable marker with which to 

identify neural progenitor populations in vivo.  However, as a transcription factor, SOX2 

is localized to the nucleus, and therefore its use for immunocytochemistry requires 

chemical fixation and cell permeablization; process which then preclude the use of 

labeled cells for in vitro culture (O'Leary et al. 2009).  Thus, less evasive labeling 

techniques are required to utilize SOX2 expression in the prospective isolation of viable 

neural progenitor cells.   

In this chapter I detail the tools and techniques that were generated in the lab to 

address the limitations in prospectively isolating neural progenitor populations.  The first 

section describes the generation and characterization of the SOX2EGFP mouse line.  

While much of this work was a collaborative effort and published as such, I was 

responsible for the characterization of SOX2-EGFP expression in the developing and 

adult CNS of SOX2EGFP mice.  The second section of this chapter consists of the 

modified protocol which I developed in order to increase the efficiency of neural 

progenitor cell isolation from SOX2EGFP mice that was necessary for the experiments 

discussed in Chapter 3. 

 

Generation and Characterization of the SOX2EGFP Mouse Line 
 

To overcome the limitations in identifying and isolating neural progenitor cells 

from the CNS, our laboratory generated a transgenic mouse line (SOX2EGFP) in which 
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the endogenous Sox2 regulatory regions drive the expression of Enhanced Green 

Fluorescent Protein (SOX2-EGFP).  Fluorescent protein expression has been 

extensively used as a cellular marker for a wide range of applications including 

fluorescent microscopy, laser dissection, flow cytometery, and fluorescence automated 

cell sorting (FACS) (Galbraith et al. 1999; Nowotschin et al. 2009).  Furthermore, the 

EGFP variant is stable in that it does not degrade quickly and importantly, unlike other 

fluorescent protein variants, is non-toxic to cells in vivo (Chalfie et al. 1994; Galbraith et 

al. 1999).  This is essential for in vivo models in which labeled cells need to be identified 

and tracked for extensive periods of time as well as in vitro models in which cells must 

be maintained for multiple passages. 

To generate the SOX2EGFP mouse line we utilized a genetic “knock-in” approach.  

This technique ensures that the expression of an inserted transgene faithfully 

recapitulates the endogenous SOX2 expression due to the maintenance of undisturbed 

regulatory elements within the SOX2 locus (Nagy et al. 2003).  In methods detailed in 

Section One of this chapter, a targeting vector was generated containing an EGFP-loxP-

neomycin-loxP cassette flanked by a 12 kb genomic region 5’ to the Sox2 coding region 

and a 2.5 kb genomic region 3’ to the Sox2 coding region.  The SOX2-EGFP targeting 

construct was then knocked-in to the endogenous Sox2 locus by homologous 

combination into mouse ES cells.  Homologously-recombined, EGFP-positive ES clones 

were identified and injected into E3.5 blastocysts and transplanted into pseudo-pregnant 

female mice to generate germline chimeras.  One mouse line, named the SOX2EGFP line, 

expresses EGFP in all neurogenic of the CNS throughout ontogeny.  In addition, a 

second mouse line was generated (SOX2Random) in which only a subset of neural 

progenitor populations in the CNS expresses EGFP  (Ellis et al. 2004).  Here we 

demonstrate that the SOX2EGFP line not only provides a novel tool for identifying and 

isolating neural progenitor populations from the embryonic and adult central nervous 
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system in vivo, but also for characterizing SOX2 expression profiles in these cells as 

well.  

Several key findings resulted from these analyses.  First, this work demonstrates 

that SOX2-EGFP expression faithfully recapitulates endogenous SOX2 expression in the 

embryonic and adult CNS in vivo.  This finding is important as it demonstrates that the 

SOX2-EGFP targeting construct is precisely regulated throughout the CNS similar to the 

endogenous Sox2 gene.  Second, I show that SOX2-EGFP expression is co-localized 

with markers of distinct neural progenitor populations within the CNS, including Nestin 

(all progenitors), CD24 (Ependyma), GFAP (Type C,), and PSA-NCAM (Type A) in the 

adult SVZ.  Lastly, I demonstrate that all self-renewing, multipotential neurospheres 

generated from distinct CNS regions, during different stages of development, express 

SOX2-EGFP, thus establishing the SOX2EGFP mouse line as a valuable tool in the 

analysis of neural progenitor cell populations.  Subsequently, the SOX2EGFP mouse line 

has been utilized in the characterization of progenitor cell populations outside of the 

CNS including the tongue, inner ear, and lung  (Okubo et al. 2006; Que et al. 2007; 

Dabdoub et al. 2008) 

The ability to analyze viable neural progenitor cell populations in vitro requires a 

method in which to identify and prospectively isolate these cells from CNS tissue.  The 

process of fluorescence-automated cell Sorting (FACS) is ideal for this analysis as it 

allows for the precise selection of individual cells based upon fluorescent labeling of 

molecular markers (Galbraith et al. 1999; Maric and Barker 2004).  However, current 

technical limitations only allow for the fluorescent labeling of cell-surface antigens on 

living cells as the labeling of nuclear-localized proteins, such as transcription factors, 

requires the chemical fixation of proteins and degradation of the cell membrane; a 

process resulting in cell lethality (Ibrahim and van den Engh 2007).  Few cell-surface 

antigens have been identified in neural progenitor cells from the CNS, in contrast to the 
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hematopoietic system in which many have been identified  (Maric and Barker 2004; 

Challen et al. 2009).  Furthermore, the two most prominent neural progenitor cell-surface 

antigens, CD133 and CD34, have been shown to be expressed in a cell-cycle 

dependent manner and are thus not constitutively expressed in neural progenitor 

populations (Sun et al. 2009).  Therefore, the SOX2EGFP mouse line, in which SOX2-

EGFP is endogenously expressed in living cells, overcomes the dependency on cell-

surface antigens for FACS and as well as provides a perpetual marker for identifying 

neural progenitor cell populations in vivo. 

The generation and analysis of the SOX2EGFP mouse line demonstrates the 

importance of this valuable tool for the characterization of neural progenitor populations 

within the CNS  (Ellis et al. 2004).  Our work shows that SOX2-EGFP expression is 

expressed in multiple progenitor populations, including ES, ICM, epiblast, and neural 

progenitor cells, and that this expression faithfully recapitulates endogenous SOX2 

expression in these cells.  In addition, we demonstrate that SOX2-EGFP is expressed in 

spatially and temporally distinct neural progenitor populations within the CNS.  Lastly, we 

demonstrate that SOX2-EGFP cells can be cultured in vitro to generate neurospheres, 

and that all neurospheres generated from the SOX2EGFP mouse line, regardless of age or 

tissue of origin, express SOX2-EGFP.  Thus, the SOX2EGFP mouse line identifies a 

majority of the neural progenitor populations within the CNS and provides a tool in which 

we can prospectively identify and isolate living neural progenitor populations for analysis. 

 

Development of Methods to Efficiently Isolate and Culture Neural Progenitor Cells 
 

Section Two of this chapter describes a neurosphere assay protocol which was 

developed to more efficiently analyze the gene expression profiles and in vitro 

characteristics of neural progenitor cell populations from the CNS (Hutton and Pevny 
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2008).  To date, the most efficient method to identify a neural progenitor cell has been 

through retrospective analysis using in vitro culturing assays.  Methods such as the 

neurosphere assay have led to a better understanding of the unique mechanisms which 

regulate neural progenitor cells from the CNS, however they do not allow for the analysis 

of neural progenitors in their in vivo environment (Reynolds et al. 1992; Reynolds and 

Weiss 1992).  Furthermore, the ability to analyze the molecular and cellular properties of 

isolated neural progenitor populations, as well as their self-renewal and differentiation 

capacities in vitro, requires a highly efficient method to retrieve large numbers of viable 

cells from a given tissue.  This is especially important in regions where neural progenitor 

populations are sparse, such as in the rodent adult CNS (<0.1% of cells) (Reynolds and 

Weiss 1992).  The generation of neurospheres requires the dissociation of tissue into 

single cells and although traditional methods using mechanical or Trypsin-mediated 

dissociation are effective in this process, they also result in high cell mortality rates in our 

hands.  This, in turn, precludes the ability to accurately analyze certain neurosphere 

characteristics such as the percentage of neurosphere-forming cells within a cell 

population.  Therefore, to properly isolate and characterize neural progenitor populations 

isolated from the SOX2EGFP mouse line, it was necessary to develop protocols that 

efficiently dissociate tissue but also minimize stress to the cells so that they are able to 

survive during subsequent time-intensive processes such as FACS.  A previously 

published protocol for the ex vivo culture of brain slices has utilized the enzyme Papain 

in place of Trypsin for tissue dissociation (Polleux and Ghosh 2002).  The modification of 

current neurosphere and FACS protocols to utilize this technique has resulted in a 

method which increases the survival rate of neural progenitor cells after dissociation 

compared to other neurosphere protocols (Hutton and Pevny 2008).  In turn, this allows 

for a more accurate and thorough characterization of neural progenitor cells in vitro. 
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Conclusion 
 

Collectively, the results presented within this chapter are the first to demonstrate 

that SOX2 is expressed in distinct classes of neural progenitor cells in the embryonic 

and adult CNS, including the putative neural progenitor populations identified in the adult 

SVZ, hippocampus, and spinal cord.  Furthermore, we show that SOX2-EGFP 

expression in the SOX2EGFP mouse line is able to faithfully recapitulate endogenous 

SOX2 expression in all regions of the CNS.  Importantly, this characteristic then allows 

for the prospective identification, isolation and analysis of distinct populations of living 

neural progenitor cells from the CNS (Discussed in Chapter 3).  In addition, to 

compliment the use of the SOX2EGFP mouse line in neural progenitor analysis, the 

development of protocols for the efficient isolation and culture of these cells is important 

in order to perform the in vitro analyses necessary to characterize the self-renewal and 

differentiation capacities of these cells.  Here I have developed modified protocols which 

increase the number of viable cells that can be recovered after undergoing the 

processes of tissue dissociation, FACS analysis, and neurosphere culture.  Ultimately, 

both of these tools were necessary for the characterization of SOX2 expression within 

distinct neural progenitor cells types, as will be discussed in Chapter 3. 
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Abstract 
 

Multipotent neural stem cells (NSCs) are present throughout the development of 

the central nervous system, persist into adulthood in defined locations, and can be 

derived from more primitive embryonic stem cells. We show that SOX2, an HMG box 

transcription factor, is expressed in multipotent neural stem cells at all stages of mouse 

ontogeny. We have generated transgenic mice expressing green fluorescent protein 

(EGFP) under the control of the endogenous locus regulatory regions of the Sox2 gene 

to prospectively identify neural stem/progenitor cells in vivo and in vitro. Fluorescent 

cells co-express SOX2 protein, and EGFP fluorescence is detected in proliferating 

neural progenitor cells of the entire anterior-posterior axis of the CNS from neural plate 

stages to adulthood. SOX2-EGFP cells can form neurospheres that can be passaged 

repeatedly and can differentiate into neurons, astrocytes and oligodendrocytes. 

Moreover, prospective clonal analysis of SOX2-EGFP positive cells shows that all 

neurospheres whether isolated from the embryonic CNS or the adult CNS, express 

SOX2-EGFP. In contrast, the pattern of SOX2-EGFP expression using randomly 

integrated Sox2 promoter/reporter construct differs and neurospheres are 

heterogeneous for EGFP expression. These studies demonstrate that SOX2 may meet 

the requirements of a universal neural stem cell marker and provides a means to identify 

cells which fulfill the basic criteria of a stem cell: self-renewal and multipotent 

differentiation. 
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Introduction 
 

Neural stem cells are self-renewing multipotent progenitors that give rise to 

neurons, astrocytes, and oligodendrocytes in the central nervous system (CNS). Recent 

studies demonstrate that multipotent neural stem cells, with the capacity for at least 

limited self-renewal, are present throughout development of the nervous system. Initially 

they can be found in the cells of the neural plate, and then later along the entire antero-

posterior axis of the ventricular zone (VZ) of embryonic CNS.  In certain locations they 

persist into adulthood (reviewed in  (Barres 1999; Momma et al. 2000). Neural stem cells 

can also be derived from more primitive embryonic stem cells  (Gage 1998), however, 

the relationship between “stem cell” populations at different stages of ontogeny and 

different rostro-caudal and dorso-ventral locations remains unclear. 

Neural stem cells isolated from embryonic and adult CNS are defined by 

common properties. First, cells isolated from the embryonic VZ and subventricular zone 

(SVZ), cells surrounding the adult lateral ventricle (LV) and subgranular zone (SGZ) of 

the dentate gyrus in the hippocampus, along with cells from the central canal of the adult 

spinal cord all share the ability to form neurospheres, the ability to self-renew, and the 

ability to differentiate into neurons, astrocytes and oligodendrocytes in vitro  (Gritti et al. 

1996; Johe et al. 1996; Shihabuddin et al. 1997). Second, both embryonic and adult 

neural stem cells of the CNS can differentiate appropriately after transplantation into a 

new host  (Brustle and McKay 1995; Campbell et al. 1995; Fishell 1995; Vicario-Abejon 

et al. 1995). For example, adult hippocampal stem cells can give rise to specific and 

region appropriate cell types not only in the hippocampus but also in the olfactory bulb 

(OB), cerebellum and retina  (Gage et al. 1995; Suhonen et al. 1996; Takahashi et al. 

1998). Stem cells derived from the human embryonic nervous system and expanded in 

vitro by oncogenic immortalization exhibit a similarly broad developmental potential 
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when transplanted in vivo  (Flax et al. 1998).  Stem cells isolated at different 

developmental stages do share expression of some universal molecular markers, these 

include among others, Nestin, Musashi, Notch, B-FABP and NCAM. The expression of 

the majority of these markers is activated during the initial phases of neural induction  

(Hockfield and McKay 1985; Frederiksen and McKay 1988; Lendahl et al. 1990; 

Weinmaster et al. 1991; Sakakibara et al. 1996; Sakakibara and Okano 1997; 

Johansson et al. 1999; Johansson et al. 1999) and is then maintained in stem cell 

populations throughout ontogeny. However, these stem cells are also regionally 

specified, express unique molecular markers and respond differently to growth factors. 

Consistent with this regional restriction of cell fate in vivo, a number of studies have 

demonstrated the importance of cell autonomous mechanisms in maintaining identity of 

neuroepithelial cells in vitro. It has now been clearly shown that positional markers, 

which define the rostrocaudal and dorso-ventral identity of stem cells, persist over 

multiple generations in vitro (Nakagawa et al. 1996; Zappone et al. 2000; Hitoshi et al. 

2002). For example, neural stem cell colonies derived from embryonic (E) 14.5 cortex 

and spinal cord differentially express regional marker genes along the anteroposterior 

axis  (Zappone et al. 2000) expression that persists for at least forty generations. In 

addition, uncultured neural progenitor cells from the cortical VZ of middle-staged ferret 

embryos can generate neurons in stage-appropriate layers when transplanted to older 

but not younger hosts, suggesting that they are more restricted in the subtypes of cells 

they generate (Desai and McConnell 2000).  Also, when SVZ progenitors that normally 

only generate interneurons in the OB are transplanted to the embryonic nervous system 

they do not give rise to the long projection neurons which are normally generated from 

endogenous progenitor cells  (Lim et al. 1997). 

Thus, to date it remains unclear whether there exists a generic neural stem cell, 

as found in the hematopoietic system. It appears that the CNS consists of heterogenic 
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stem cells which, although restricted in their potency, all retain the ability to self-renew, 

to differentiate into neurons and glia, and to express a set of universal markers. 

To understand exactly what characteristics define a neural stem cell it is first 

necessary to elucidate the lineage relationship between the various types of stem cells 

and how they contribute to the formation and maintenance of the central nervous 

system.  To achieve this certain methodologies need to be developed for the prospective 

isolation of neural stem cells from defined regions of the CNS during defined 

developmental stages. 

SOX2, an HMG-box transcription factor, is expressed throughout mouse 

embryogenesis in neural progenitors of the CNS (Collignon et al. 1996; Wood and 

Episkopou 1999; Zappone et al. 2000).  We have been able to isolate neural progenitor 

cells from embryonic stem cells based on SOX2 expression (SOX selection)  (Li et al. 

1998). To determine in detail which progenitor populations of the CNS express SOX2, in 

both the embryo and in the adult, we generated transgenic mice by replacing the SOX2 

open reading frame (ORF) with that of enhanced green fluorescent protein (EGFP) at 

the Sox2 locus by homologous recombination (SOX2-EGFP) as well as random 

integration of the targeting construct (SOX2-RANDOM). In the SOX2-EGFP mouse line, 

EGFP fluorescence recapitulates endogenous SOX2 expression and is restricted to 

proliferating neural progenitor cells in the CNS from neural plate stages and throughout 

embryogenesis.  Expression of SOX2-EGFP is detected in neurogenic and non-

neurogenic regions in the post-natal and adult CNS, including the dentate gyrus of the 

hippocampus, the SVZ, the ependymal layer surrounding the LV, and the ependyma of 

the central canal. Moreover, through prospective clonal analysis of SOX2-EGFP positive 

cells, we demonstrate that multipotential stem cells isolated from embryonic stem cells, 

the embryonic CNS, and the adult CNS all express SOX2-EGFP. These data provide 

evidence that SOX2 serves as a universal stem cell marker and can be used to isolate, 
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characterize, and manipulate neural stem cells by prospective analysis. In contrast, 

EGFP expression in transgenic mice generated by the random integration of the SOX2-

EGFP targeting vector is displayed in only a subset of endogenous SOX2 expression, 

specifically, it is restricted to the dorsal telencephalon. In the adult SOX2-RANDOM line, 

EGFP is found in neurogenic regions of the SVZ and hippocampus, but is excluded from 

the ependymal zone. Moreover, only subsets of neurospheres isolated from the adult LV 

of these mice are EGFP positive, thus allowing the direct comparison of distinct adult 

neural stem cell populations. 
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Results 
 

Generation of the SOX2-EGFP Targeted Mice and SOX2-specific EGFP expression in 
embryonic stem cell-derived neural progenitor cells. 

 

We have previously shown that SOX2 is restricted to neural progenitors during in 

vitro differentiation of embryonic stem cells and is excluded from postmitotic neurons  

(Rex et al. 1997; Li et al. 1998; Graham et al. 2003). A SOX2 targeting vector, illustrated 

in Figure 2.1A, was constructed in which the entire ORF and 1 KB of 3’ untranslated 

region were replaced with an EGFP loxP neomycin loxP cassette. The targeting vector 

was introduced into ES cells and two independently and homologously targeted ES cell 

clones were used to generate mouse strains that carried the mutant SOX2-EGFP allele. 

SOX2-EGFP +/- animals were both viable and fertile (Figure 2.1B). 

To examine whether SOX2-EGFP fluorescence recapitulates the SOX2 

expression profile we differentiated SOX2-EGFP targeted embryonic stem cells into 

neuroepithelial derivatives. Following selection for neural progenitors under defined 

culture conditions  (Okabe et al. 1996) EGFP fluorescence, like endogenous SOX2, was 

observed in clusters of cells with neuroepithelial morphology (Figure 2.1 C-K), these 

cells were immunoreactive for neural progenitor markers such as SOX1 (Figure 2.1 F-H) 

and Nestin (Figure 2.1 I-K). Subsequent replating on poly-lysine/laminin coated dishes 

and incubation in B-27 supplemented Neurobasal medium resulted in differentiation of 

progenitor cells into β-tubulin-type III + neurons, GFAP+ astrocytes and O4+ 

oligodendrocytes (Figure 2.1 L-N). 
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SOX2-EGFP expression is restricted to proliferating neural progenitors during the 
development of the embryonic CNS. 

 

During early stages of the formation of the nervous system EGFP is detected 

throughout the neuroepithelial cells of the neural plate and early neural tube in 

SOX2EGFP/+ embryos. At early gastrulation EGFP is expressed throughout the 

anterodistal ectoderm of SOX2EGFP/+ embryos, which at this stage corresponds to the 

neural plate (Figure 2.2 A and 2 B). EGFP is then expressed along the entire 

anteroposterior axis of the developing nervous system (10.0 dpc mouse embryo, Figure 

2.2 C and D). After neural tube closure, neuroepithelial cells begin to differentiate into 

defined classes of neurons at specific dorsoventral positions within the spinal cord  

(Altman and Bayer 1984). In the early neural tube, proliferating progenitors are 

organized into a pseudostratified epithelium into which the processes of these cells 

extend from the inner to outer surface. At later stages the neural tube becomes 

progressively thicker and can be divided into different zones of proliferation. The 

proliferating CNS progenitors are largely restricted to the inner ventricular zone (VZ), 

migrating toward the outer layer after completing their final mitosis. The expression 

ofSOX2-EGFP is downregulated in a stereotypic ventral to dorsal progression coincident 

with the restriction of cell proliferation within the developing spinal cord. At early stages 

(9.5 dpc) EGFP is expressed throughout the cells of the neural tube (Figure 2.2 E). 

Expression is then precisely downregulated in a ventral to dorsal progression in the 

regions of neural tube differentiation. For example, EGFP expression is first 

downregulated in the ventral horns, the region where the first neurons differentiate (10.5 

dpc; Figure 2.2 F). Eventually the expression of EGFP (14.5 dpc; Figure 2.2 G) is 

restricted to the thin VZ surrounding the lumen of the embryonic spinal cord. Overall, the 

expression of EGFP directly mirrors expression of SOX2 (Figure 2.2 H-K). 
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EGFP-SOX2 expression marks zones of proliferative neuroepithelial cells 

throughout the embryonic axis, including the ventricular (Figure 2.3 A-C) and 

subventricular zone (SVZ) of the cortex and the ventricular cells of the midbrain (Figure 

2.3 D-F), hindbrain and spinal cord (Figure 2.3 G-I) as well as proliferative progenitors of 

the neural retina (Figure 2.3 J-L) and olfactory epithelium (data not shown).  The 

regulation of EGFP expression reflects the post-mitotic downregulation of SOX2 

expression, as is evident by the generally mutually exclusive expression of EGFP and β-

tubulin-type III (Figure 2.3 C, F, I, L). These data indicate that SOX2-EGFP fluorescence 

directly correlates with SOX2 expression and both are mutually exclusive of terminal 

differentiation markers at these stages of development. 

 

SOX2-EGFP expression defines ongoing neurogenesis in post-natal and adult CNS. 
  

 Although the vast majority of cells in the mammalian nervous system appear 

during the embryonic and early postnatal period, new neurons are continuously added in 

certain regions of the adult brain (Altman and Bayer 1984). The SVZ of the LV  (Garcia-

Verdugo et al. 1998) and the dentate gyrus of the hippocampus  (Gage 1998) are two 

brain regions with active adult neurogenesis. These neurons are thought to derive from a 

population of neural stem cells. In the postnatal and adult brain, as illustrated on 

schematic diagram in figure 2.4 A (taken from  (Johansson et al. 1999), the cells of the 

SVZ, located in association with the LVs of the brain, give rise to immature proliferating 

neurons that migrate along the rostral migratory stream (RMS) to the olfactory bulb (OB). 

Once these neurons reach the OB they differentiate and integrate as interneurons. 

 To date the expression of SOX2 has not been determined in the post-natal or 

adult CNS. Thus, to characterize the expression of SOX2-EGFP in the neonate and 

adult EGFP expression was assessed in the SVZ, RMS and OB. The migration of neural 
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progenitor cells from the LV to the OB is marked by EGFP fluorescence in SOX2-

EGFP/+ neonates (Figure 2.4 B). In the adult SOX2-EGFP was expressed in a thin layer 

surrounding the LV (Figure 2.4 C) that included the SVZ, this EGFP signal extends along 

the RMS to the OB. 

 SVZ cell types can be distinguished by their morphological and 

immunocytochemical characteristics  (Doetsch et al. 1999). Interestingly, all ependymal 

and SVZ cell types express Nestin  (Lendahl et al. 1990). Adjacent to the SVZ is the 

layer of multiciliated ependymal cells that express markers such as CD24 and S100. The 

migratory neuroblasts (type A cells) of the RMS express a polysialated form of neuronal 

cell adhesion molecule (PSA-NCAM). Type B cells, the slowly dividing SVZ astrocytes, 

contain intermediate filament bundles with Glial Fibrillary Acidic Protein (GFAP) - a 

marker of mature astrocytes as well as the cell surface antigen SSEA-1  (Capela and 

Temple 2002). Type C cells have recently been shown to express Epidermal Growth 

Factor Receptor (EGFR) and Dlx2  (Doetsch et al. 2002). To determine in more detail 

whether SVZ and RMS cells express SOX2 we used a combination of GFP fluorescence 

and immunohistochemistry (See Table 2.1). In the adult brain SOX2-EGFP is expressed 

in proliferating cells of the SVZ as marked by Ki67 expression (Figure 2.4 D-G), 

ependymal cells surrounding the LV co-express markers such as CD24 (Figure 2.4 H-K) 

and S100 (data not shown) as well as scattered cells in the SVZ which co-express 

GFAP (Figure 2.4 L-O), SSEA-1 (data not shown) and EGFR (Figure 2.4 P-S). 

 In addition to the germinal zone of the SVZ, continued neurogenesis is known to 

occur in the adult hippocampus: cell proliferation leading to neurogenesis has been 

described in the dentate gyrus granular layer  (Altman and Das 1965; Kuhn et al. 1996). 

Progenitor cells are found along a thin strip of cells, referred to as the subgranular zone 

(SGZ), located between the hilar region and the granule cell layer  (Gage 1998). 

Furthermore, progenitor cells can be identified by co-expression of EGFP-SOX2 with 
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PSA-NCAM, partial co-expression with GFAP, and mutually exclusive expression with 

NeuN. Consistent with EGFP-SOX2 marking neurogenesis in the adult brain, EGFP 

fluorescence is mostly confined to the SGZ of the adult hippocampus (Figure 2.5A-I) and 

co-localizes with PSA-NCAM and GFAP but is mutually exclusive of NeuN expression. 

 It has also been reported that multipotential cells can be isolated from non-

neurogenic regions of the adult mammalian CNS such as the spinal cord  (Weiss et al. 

1996; Shihabuddin et al. 1997; Johansson et al. 1999; Johansson et al. 1999; 

Shihabuddin et al. 2000). Recent studies have suggested that the ependymal cells lining 

the central canal of the postnatal spinal cord possess certain properties of neural stem 

cells  (Johansson et al. 1999). These cells are reported to surround the central canal of 

the adult spinal cord. Consistent with this we have found SOX2-EGFP positive cells 

surrounding the ventricle of the adult spinal cord. SOX2-EGFP expression is detected in 

the ependymal layer of the central canal of the spinal cord where it is coexpressed with 

PSA-NCAM (Figure 2.5 M-O) but is mutually exclusive of GFAP (Figure 2.5 J-L) and β-

tubulin-type III (Figure 2.5 P-R). Taken together these expression data illustrate that 

SOX2-EGFP fluorescence is localized to regions of the embryonic and adult CNS that 

have been directly correlated with neurogenic regions of the CNS. 

 The SOX2-EGFP mouse line analyzed in this study was generated by replacing 

the open reading frame of Sox2 with an EGFP expression cassette by homologous 

recombination, thus all of the endogenous regulatory domains of the Sox2 gene remain 

intact. This is in contrast to previous mouse lines generated by random integration of 

SOX2 promoter regions  (Zappone et al. 2000) where the marker expression recapitulates 

only part of the endogenous SOX2 expression pattern even within restricted regional 

domains. To directly compare and develop a potential tool to distinguish between CNS 

stem cell populations we generated mouse lines by random integration of Sox2 targeting 

vector (see Materials and Methods) in which only a subset of endogenous SOX2 
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expression is recapitulated (Figure 2.6 A and B). In the adult brain, EGFP expression is 

detected in the SVZ, RMS and SGZ of the hippocampus. However, whereas SOX2-EGFP 

is expressed both in ependymal and SVZ cells (Figure 2.4 and Figure 2.6 C-E, and Figure 

2.6 I-K) in mouse line (transgenic-C11) EGFP expression is detected in the RMS and a 

subset of the SVZ, but is excluded from ependymal cells (see Figure 2.6 F-H, and Figure 

2.6 L-N). 

 

Multipotential stem cells isolated from both embryonic and adult CNS are derived from 

SOX2-EGFP positive cells. 

 

The previous in vivo expression analysis demonstrates that SOX2-EGFP is 

expressed in proliferating neural progenitors throughout the entire axis of the CNS and 

throughout ontogeny. We therefore used this mouse strain to determine whether SOX2-

EGFP can be considered a universal neural stem cell marker, specifically whether all or 

only a subset of self-renewing and multipotential (i.e. gives rise to neurons, 

oligodendrocytes and astrocytes) neural stem cell populations of the developing and 

mature CNS express SOX2-EGFP. To date the most widely accepted method of defining 

a neural stem cell is by cloning cells in vitro and showing that a single cell can self renew 

and give rise to multiple phenotypes  (Gage 1998). In the presence of mitogens such as 

epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), dissociated 

neural cells proliferate and form floating multicellular structures termed neurospheres  

(Reynolds and Weiss 1996; Nakamura et al. 2000). A proportion of the cells  (Morshead 

et al. 1998) in a neurosphere are clonally derived from a single CNS stem cell/progenitor 

and are thought to possess the characteristics of CNS stem cells i.e., they have self-

renewing activity and are multipotent  (Reynolds and Weiss 1996; Nakamura et al. 

2000). Using the neurosphere assay we examined whether the EGFP-SOX2 positive cell 
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population contained neural stem cells that were multipotent and had the capacity to 

self-renew.  Disaggregated cells from the embryonic (cortex and spinal cord (E10.5 and 

E14.5)) (Figure 2.7 A and B) and the adult nervous system (SVZ) (Figure 2.7 H) were 

cultured in serum-free medium supplemented with bFGF and EGF. At E10.5 most of the 

spheres formed from E10.5 neuroepithelial cells coexpressed SOX2-EGFP (Figure 2.7 

C) and Nestin (Figure 2.7 D). By 7 days, highly fluorescent spheres had formed (Figure 

2.7 E-F and I-J). We next examined the lineage potential of the sphere-initiating cells. 

For this purpose we transferred spheres formed in theses cultures to poly-lysine/laminin 

coated dishes and cultured as monolayers for 14d, after which the cell sheets were 

stained with antibodies against neuronal (β-tubulin-type III) and the general glial marker 

(GFAP) (Figure 2.7 G and K). After examination, all colonies that were mulitpotential 

were derived from SOX2-EGFP positive cells (Table 2.2). Finally, to examine the self-

renewal capacity of the SOX2-EGFP individual primary spheres were transferred to 

separate wells and then dissociated into single cells. These single-sphere derived cells 

were then cultured and assessed for secondary sphere formation. After 7 days, spheres 

showing EGFP fluorescence similar to the primary spheres were generated. These 

results further indicate that the sphere initiating cells were both self-renewing and 

multipotent. The above in vivo expression and in vitro clonogenic analysis demonstrates 

that SOX2-EGFP serves as a universal stem cell marker and provides a means by which 

we can prospectively identify CNS progenitors in vivo and select live CNS progenitor 

cells. 

 

SOX2-RANDOM distinguishes two stem cell populations of the adult brain. 
 

As described above, in transgenic mice generated by random integration of the 

SOX2-EGFP targeting vector, EGFP fluorescence recapitulates only a subset of 
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endogenous SOX2 expression. Specifically, in the adult SVZ it is excluded from the 

ependymal cell layer but found in the adjacent SVZ and RMS (Figure 2.6). The subset of 

endogenous SOX2 expression reflected by EGFP in SOX2-RANDOM mouse line led us 

to address what percentage of neurospheres isolated from the SOX2-RANDOM mouse 

line would be EGFP positive and how this correlates with the in vivo identity of stem cells 

of the SVZ. Using identical conditions to those described above, dissociated SVZ cells 

from adult SOX-RANDOM mice were cultured in serum-free medium supplemented with 

FGF and EGF. In contrast to SOX2-EGFP mice, where all multipotent neurospheres 

generated were EGFP positive (Figure 2.7 I-J), neurospheres from the SOX2RANDOM 

mouse line were both EGFP positive and negative (Figure 2.7 L-M). The majority of 

EGFP+ neurospheres expressed GFAP, indicating that they may be derived from type B 

cells in the subventricular cells (Figure 2.7 P-R). What is more, both EGFP positive and 

negative spheres from the SOX2-RANDOM mouse line were multipotent, differentiating 

into neurons and glia. Moreover, both EGFP+ and EGFP- cells (Figure 2.7 N-O) formed 

multipotent secondary spheres (data not shown). These results indicate that in addition 

to the type B astrocytic cell located in the SVZ of the LV, there are distinct populations of 

cells that display stem cell characteristics and retain the capacity to give rise to 

multipotent neurospheres. 
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Discussion 
 

To develop an in vivo system for analyzing neurogenesis, we generated 

transgenic mice expressing green fluorescent protein (EGFP) under the control of the 

regulatory regions of the Sox2 gene. We show here that SOX2-EGFP remains 

expressed in proliferating neural progenitor cells throughout vertebrate embryogenesis 

along the entire rostrocaudal axis including proliferating cells in the mouse adult CNS, 

specifically in neurogenic regions such as the SVZ of the LV, the SGZ of the 

hippocampus, and the ependyma of the adult central canal. Moreover, prospective 

analysis of SOX2-EGFP+ CNS cells indicates that all multipotent neurospheres isolated 

from the SOX2-EGFP mouse line originate from a SOX2 expressing cell. These results 

contrast with our and previously published reports utilizing Sox2/βgal reporter mice 

where Sox2 driven GFP/βgal expression appeared to label a subset of stem cells  

(Zappone et al. 2000). Of the three lines utilizing the Sox2 promoter driving βgal or GFP 

that were integrated randomly in the genome none of the expression patterns matched 

that of the endogenous gene (see results and  (Zappone et al. 2000). The present 

results provide strong evidence that SOX2, a SOXB1-HMG protein, acts as a universal 

neural stem cell marker and provides a means to identify cells which fulfill the basic 

criteria of a neural precursor cell: self-renewal and multipotential differentiation. 

The present results show that SOX2 is expressed in proliferating progenitor cells 

throughout embryogenesis and, to our knowledge, provides the first line of evidence that 

SOX2 is expressed in neurogenic regions of the adult CNS (Figure 2.3, 2.4, 2.5). Taken 

together these expression data confirm previous results that have suggested that SOX2 

represents a conserved pan-neural molecular marker  (Uwanogho et al. 1995; Penzel et 

al. 1997; Rex et al. 1997; Streit et al. 1997; Mizuseki et al. 1998; Wood and Episkopou 

1999; Cremazy et al. 2000; Hardcastle and Papalopulu 2000). SOX2 expression is 
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present in the neural plate as soon as it can be demarcated from the ectoderm and 

expression is seen in all proliferating cells. Expression is maintained in culture and clonal 

analysis confirms that individual SOX2-expressing cells are multipotent self-renewing 

cells. At later stages of development expression is limited to the proliferating VZ and 

labeled cells do not express markers of differentiation. Thus, the SOX2-expressing 

population includes all stem cells present in the brain at all stages of development along 

the entire rostrocaudal axis.  This expression is maintained in culture over multiple 

passages allowing the use of SOX2-EGFP expression to prospectively identify and 

follow neural stem cells.  We cannot at this stage say that all SOX2-expressing cells in 

the adult are stem cells due to technical limitations of the neurosphere assay, though we 

have not observed any restricted clones in any of our experiments. 

The inability to prospectively sort and localize stem cells at different stages has 

been a major issue in neural stem cell biology. Several techniques of negative and 

positive selection have been reported (reviewed in  (Pevny and Rao 2003)) but no single 

method has been proven to both localize stem cell populations in vivo and follow stem 

cells in vitro. For example, negative selection cannot serve to localize cells in vivo and 

some of the candidate negative selection markers may be expressed by subsets of stem 

cells. CD24 selection for example cannot be used as a negative marker in tissue as it 

labels a subset of SOX2-expressing ependymal cells.  The two positive selection 

strategies reported are of limited utility in localizing stem cell populations. AC133 

expression is seen on astrocytes in human tissue  (Majka et al. 2000; Uchida et al. 2000; 

D'Arena et al. 2002) and the antibody does not cross react with the rodent epitope. RT-

PCR indicates that Prominin (AC133 homologue) is expressed by differentiated cells as 

well  (Cai et al. 2002). SSEA1 labels only a subset of stem cells (unpublished results) 

and also labels differentiated cells in sections  (Capela and Temple 2002). Non specific 

labeling strategies such as Hoechst and Rhodhamine dye uptake  (Quesenberry et al. 
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1999; Hulspas and Quesenberry 2000) cannot be used to localize stem cells in vivo or in 

slice cultures (unpublished results) making it difficult to identify the cell of origin for the 

neurosphere forming cell, to purify stem cells in large numbers, or prospectively follow 

them in vivo. The transgenic mice that we have developed provide an opportunity to 

bridge the gap between in vitro and in vivo results. The persistence of SOX2-EGFP 

expressing cells in zones of ongoing neurogenesis and the generation of multipotent 

neurospheres in vitro suggest that SOX2 expression can be used to localize stem cells 

in vivo and directly select purified stem cell populations for assessment. 

While our data clearly indicate that SOX2 is expressed by all multipotent stem 

cells at all stages of development it is clear that the population of SOX2 expressing cells, 

although similar overall in its multipotency and ability to self-renew, is a heterogeneous 

population. The in vivo double labeling studies and the localization of SOX2 expressing 

cells clearly indicate that in the adult SOX2-EGFP expressing cells are present in distinct 

locales, express different markers, and likely have varying differentiation capability 

(Figure 2.4 and 2.5).  The present results are consistent with previous reports of such 

heterogeneity and confirm that this heterogeneity is maintained in vitro (see above and  

(Zappone et al. 2000; Hitoshi et al. 2002)) (reviewed by  (Pevny and Rao 2003)).  Our 

experiments comparing multipotent neurospheres derived from the adult LV of SOX2-

RANDOM mouse line, in which EGFP reflects only a subset of SOX2 expression, clearly 

show the heterogeneity of the neurosphere population, and predict that neurospheres 

isolated from neonatal tissue and later stages of development, are likely to be a 

heterogeneous population whose properties may differ depending on the region from 

which the cells are isolated. 

The ability to distinguish between neurosphere forming populations using 

different transgenic strains offers a simple and reliable way to quantitate the degree of 

heterogeneity, determine the cell of origin and resolve the controversy on the localization 
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of stem cells in the adult. For example one hypothesis suggests that adult neural stem 

cells are located in the ependymal layer of the LV of the adult forebrain  (Johansson et 

al. 1999), however, different groups have proposed other possibilities. In the adult, 

neurosphere forming stem cells may be localized to the type B GFAP+ astrocytic cells in 

the SVZ or the type C GFAP–cell in the SVZ (reviewed in  (Garcia-Verdugo et al. 1998; 

Alvarez-Buylla et al. 2002) or may represent a distinct population that has not been 

clearly defined (discussed in  (Capela and Temple 2002)). 

Our data also provide an explanation for some of these differing results. SOX2 

expression is seen in both populations of cells and comparison of neurosphere formation 

from different transgenic lines confirms that the adult CNS cells that can generate 

multipotent neurospheres derive from distinct populations in vivo. Specifically, only a 

subset of multipotent neurospheres derived from SOX2-RANDOM transgenic mice are 

EGFP positive, these neurospheres appear to arise from a GFAP positive population in 

the SVZ. This mouse line provides a tool by which to distinguish between molecularly 

distinct stem cell populations. 

The ability to identify the stem cell pool in vivo and follow it in vitro with standard 

double labeling experiments may provide clues to positional and functional heterogeneity 

of other proposed stem cell populations. Indeed, preliminary results have suggested 

such heterogeneity than can be distinguished based on the coexpression of SOX2-

EGFP with selected cell surface markers. For example SOX2 is expressed by 

ependymal cells, as well as cells in the RMS. Double labeling with polysialated NCAM - 

variously described as being specific to a neuronal progenitor  (Mayer-Proschel et al. 

1997), expressed by glial progenitors or by stem cells  (Keirstead et al. 1999) shows that 

polysialated NCAM  (Marmur et al. 1998) and Sox2 are co-expressed and in cells in the 

RMS and in the subventricular region in the forebrain and spinal cord. 
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SOX genes comprise a large family of different members and play important 

conserved roles in cell fate specification (reviewed by  (Pevny and Lovell-Badge 1997)  

(Wegner 1999)). There is now increasing evidence that SOX factors may play a global 

role in maintaining progenitor/stem cell fates in a variety of tissues including the nervous 

system. Members of the SOX gene family are expressed in a variety of embryonic and 

adult tissues where their expression, and in some cases function, is associated with the 

specification and/or maintenance of progenitor identity  (Pevny and Lovell-Badge 1997; 

Wegner 1999; Bowles et al. 2000). The expression of SOX2 in all neural stem cell 

populations supports the likelihood of common generic molecular mechanisms shared 

by neural stem cells throughout ontogeny. Recent data has provided compelling 

evidence that members of the SOXB1 family are both sufficient and essential to maintain 

characteristics that define neural progenitor identity, specifically their proliferative 

capacity and inhibition of neuronal differentiation  (Graham et al. 2003). Specifically, 

inhibition of SOX2 signaling results in delamination from the VZ, a general loss of pan-

neural and regional progenitor markers, and the onset of expression of early neuronal 

differentiation markers suggesting that constitutive expression of SOX2 inhibits 

differentiation and promotes precursor cell characteristics. In ES cells SOX2, POU 

homeodomain proteins (Oct3/4), FGFs (FGF4) and REX-1 interact to maintain the 

undifferentiated state of ES cells  (Dailey et al. 1994). It is intriguing to note that NSC 

specific POU homeodomain factors, FGF and FGFR, have been described. While 

speculative, it is possible that a functionally conserved group of gene families evolved to 

participate in basic stem cell functions, including stem cell self-renewal and maintenance 

of multipotency and that this overlapping set of gene products may represent a 

molecular signature of stem cells. Perturbing SOX2 expression or monitoring alteration 

in EGFP expression when candidate genes are modulated will allow us to dissect out the 

molecular interaction between interacting regulators of the stem cell state. 
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Overall our results indicate that SOX2 promoter EGFP transgenic mice can be 

utilized to visualize regions of neurogenesis throughout ontogeny and provides a means 

by which to prospectively identify, isolate, and characterize neural progenitor cells at 

defined developmental stages in vivo and in vitro. Furthermore, these data indicate that 

SOX2 signaling defines a transcriptional mechanism shared amongst stage and 

regionally heterogeneous neural stem cell populations, and that these mice can be used 

to dissect out the stem cell signature of NSCs. Our future experiments are directed at 

determining how many classes of adult stem cells are present and determining the 

functional consequence of the loss of SOX2 expression at different stages of 

development. 
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Materials and methods 
 

Generation of SOX2-EGF targeted and SOX2-RANDOM mice. 

 Mouse Sox2 genomic clones were isolated from a 129/Sv BAC genomic library. A 

fragment of floxed PGKneo cassette (Zhang et al. 2001) was obtained by ClaI digestion, 

followed by fill-in reaction and then BamHI digestion.  This fragment was subcloned into 

pBluescriptKSII that was digested with XbaI, followed by fill-in reaction and then BamHI 

digestion to give pKSfneo.  A 2.5 kb SalI fragment of Sox2 genomic DNA 3’ to the coding 

region was cloned into pKSfneo to obtain pKSfneo2.5Sal.  A Not-PmeI fragment 

containing EGFP (Clontech), ß-actin intron, and rabbit ß-globin polyA sequence (Niwa 

et. al. 1991) was ligated with NotI-PmeI fragment of pKSfneo2.5Sal pKSIGfneo2.5Sal.  A 

12.5kb NotI fragment of Sox2 genomic sequence 5’ to the coding region was subcloned 

into NotI site of pKSIGfneo2.5Sal to obtain the targeting vector.  The orientation of the 

NotI fragment was confirmed with restriction mapping. Two independent homologously 

recombined clones were injected into C57Bl/6J blastocysts to generate chimeric mice 

that transmitted the mutant allele through the germline.  To generate SOX2-RANDOM 

mouse lines, five random integrant clones were injected into C57Bl/6J blastocysts and 

three clones generated chimeric mice that transmitted the mutant allele through the 

germline. 

 

Immunohistochemistry. 

Embryos were fixed at room temperature for 1 hour in MEMFA  (Li et al. 1998) 

cryoprotected with 30% sucrose in PBS, and cryosectioned. Frozen sections were 

incubated overnight at 4°C with primary antibodies. Adult mice were perfused with 4% 

paraformaldehyde (PFA) and the brains were post-fixed for 2 hours. 15um sections were 

cut on a Cryostat, blocked in 1% goat serum in PBX/0.1% Triton-X 100 and incubated at 
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4oC overnight with anti-nestin (mouse IgG, 1:500: Developmental Studies Hybridoma 

Bank), anti-GFP (mouse IgG, 1:500; Chemicon), anti-β-tubulin III (mouse IgG, 1:1000; 

Covance), anti-PSA-NCAM (mouse IgM, 1:1000; G Rougon, Univ. of Marseilles), anti-

GFAP (mouse, 1:500; Boehringer Mannheim), anti-S100 (mouse IgG, 1:500 DAKO), 

mEGF-R (1:50; Upstate Biotechnology), mCD24 (heat stable antigen) (mouse IgG, 

1:1000), O4 (mouse IgM, 1:2000; Chemicon) Secondary antibodies Cy3-anti-mouse, 

Cy3-anti-rabbit, FITC-anti-mouse (Sigma) were used to visualize immuno-staining. 

Primary antibody was omitted resulted in no immunostaining for all antibodies except 

SOX2 where some staining was observed in the parenchyma of the adult spinal cord. 

 

Neurosphere Preparation, Differentiation and Immunostaining. 

For neurosphere cultures disaggregated cells were treated as described 

previously  (Reynolds and Weiss 1996; Kawaguchi et al. 2001; Shimazaki et al. 2001). 

Secondary sphere formation: the number of spheres was counted approximately 14 

days later. After mechanical dissociation of each sphere into single cells, each pool of 

cells derived from single spheres was cultured again for secondary sphere formation. 

For differentiation assays, spheres at 10-14 days were in vitro plated onto poly-D-

lysine/laminin coated chamber slides and cultured for another 5-7 days in DMEM/F12 

containing 1% fetal bovine serum (FBS). Cells were observed under an inverted 

fluorescent microscope (LEICA) equipped with a digital camera (SPOT2). Neurospheres 

were prepared from the SVZ of the lateral wall of the LV of adult mice, passaged, 

differentiated, and immunostained as described  (Doetsch et al. 1999). 
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Figures 
Table 2.1 

 

Marker LV 
(Ependyma) 

LV (SVZ) 
A     B    C 

RMS Hippocampus 
(SGZ) 

Spinal Cord 
(Ependyma) 

EGFP 
(targeted) 

+ + + + + + + 

EGFP 
(random) 

- + + nd + + - 

SOX2 + + + + + + + 
Nestin + + + + + + + 

GFAP(mono) - - - + + + - 
PSA-NCAM + + - - + + + 
CD24 (HSA) + + - - - - + 

S100 + - - - +/- - + 
EGFR - nd + + + - - 

SSEA1 - nd + + nd nd nd 

 
 
 

Table 2.1. Comparison of EGFP expression with markers of distinct adult neural 
cell populations 
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Table 2.2 

 
Mouse Strain 

 

 
Age and Region 

 

Number of Positive 
Multipotent Primary 

Spheres 

SOX2-EGFP homologous recombinant 10.5 dpc neural tube 58/58 

SOX2-EGFP          “                   “ 14.0 dpc cortex 64/64 

SOX2-EGFP          “                   “ 14.0 spinal cord 40/40 

SOX2-EGFP          “                   “ Adult SVZ 39/39 

SOX2-RANDOM  “                   “ Adult SVZ 7/20 
 
 

 
Table 2.2. Number of multipotent primary neurospheres derived from the 
embryonic and adult CNS of SOX2-EGFP transgenic mice. 

  



77 

Figure 2.1 
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Figure 2.1. Strategy applied to generate SOX2-EGFP targeted mice. A. The genomic 

structure of the wild-type Sox2 locus (top) and the structure of the targeting vector 

(bottom). The targeting vector contains 12kb of genomic sequence 5’ and 2.5kb 3’ to the 

Sox2 coding region. The entire ORF and 1 kb of 3’ untranslated region were replaced 

with an EGFP loxP neomycin loxP cassette. The neomycin (neo) was used for positive 

selection in ES cells. The probe used for Southern hybridization is shown (P), as are the 

sizes of the predicted DNA fragments obtained after EcoRI digestion of wildtype and 

mutant alleles. B. Southern blot analysis of EcoRI-digested genomic DNA from wildtype 

and SOX2-EGFP+/- animals. C-K. EGFP fluorescence (C) and SOX2 antibody (D) and 

GFP antibody (E, F, I) immunostaining images of rosettes of neural progenitors, which 

express SOX1 (G and H) and Nestin (J and K), derived from SOX2-EGFP embryonic 

stem cells plated in N2B27+bFGF. L-N. β-tubulin-type III (L), GFAP (M) and O4 (N) 

immunostaining of neurons, astrocytes and oligodendrocytes, respectively, generated 

10-14d after replating monolayer progenitors in N2B27 (plus 1% serum for 

oligodendrocytes). Scale Bars: C-N = 100 µm. 
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Figure 2.2  
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Figure 2.2. SOX2-EGFP expression is restricted to proliferating neural progenitors 

during the development of the embryonic CNS.  (A-B). Bright Field (BF) image and 

EGFP expression in an embryonic day 8.5 (E8.5) mouse embryo. EGFP is expressed 

throughout the anterior/distal ectoderm that at this stage corresponds to the neural plate. 

(C-D). EGFP expression in an embryonic day 10.0 mouse embryo. EGFP is expressed 

throughout the neuroepithelium along the entire anteroposterior axis. (E-G). Localization 

of EGFP in transverse thoracic sections through the spinal cord (SC) of mouse embryos 

(9.5 dpc – 14.5dpc). (E). At 9.5 dpc EGFP is expressed throughout the majority of cells 

in the neural tube. (F). At 10.5 dpc EGFP fluorescence is restricted to the medial VZ and 

excluded from ventro-lateral regions of the neural tube. (G).  By 14.5 dpc EGFP 

fluorescence is restricted to a small population of cells around the lumen of the neural 

tube. (H-K) EGFP expression recapitulates endogenous SOX2 expression during the 

development of the mouse spinal cord. Scale bars: A & B = 75 µm, C-K = 100 µm. 
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Figure 2.3 
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Figure 2.3. EGFP expression is mutually exclusive of post-mitotic markers.  (A-I).  

Localization of EGFP expression in transverse sections through the telencephalon, 

mesencephalon and spinal cord of E 13.5 SOX2EGFP embryos. EGFP (green) 

expression is mutually exclusive of marker of differentiated post-mitotic neurons marked 

by β-tubulin-type III (red). (J-L). EGFP expression is detected in the proliferating neural 

retinal progenitors but excluded from β-tubulin-type III positive neurons. Scale bars: A-L 

= 100 µm. 
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Figure 2.4 
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Figure 2.4. Overview of EGFP expression in neonatal and adult brain and 

immunohistochemical characterization of EGFP-expressing cells in the lateral 

ventricle. (A). Schematic diagram of neurogenic regions of adult mammalian brain. (B). 

P7 brain. Strong EGFP fluorescence is observed in the SVZ, RMS and OB. (C). Adult 

brain (6 months after birth). EGFP fluorescence is observed in the SVZ and RMS. (D-S) 

Superimposition of EGFP signal and immunoreactivity for marker proteins (red) (D-G) 

SOX2-EGFP is expressed by dividing cells expressing Ki67. (H-K) SOX2-EGFP is 

expressed in CD24 positive ependymal cells (L-O) SOX2-EGFP is expressed in a subset 

of GFAP positive cells of the SVZ. (P-S) SOX2-EGFP is expressed by EGF-R positive 

cells in the SVZ. Scale bars: B & C = 200 µm, D-F, H-J, L-N, P-R = 100 µm, G, K, O & S 

= 50 µm. 
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Figure 2.5 
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Figure 2.5. SOX2-EGFP marks neurogenic regions of the adult hippocampus and 

spinal cord.  Localization of EGFP in transverse sections through the adult (> 6 weeks) 

SOX2-EGFP mice. EGFP expression is restricted to the SGZ of the dentate gyrus where 

(A) EGFP is coexpressed with GFAP (B-C) and PSA-NCAM (D-F) but is mutually 

exclusive of markers of terminally differentiated neurons, NeuN (G-I). EGFP expression 

is restricted to the ependymal layer of the central canal (J, M, P). Immunostaining of the 

periventricular region with anti GFAP (J-L), anti-PSA-NCAM (M-O) and anti-β-tubulin-

type III (P-R). Scale bars: A-R = 100 µm. 
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Figure 2.6 
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Figure 2.6. In SOX2-RANDOM mouse line EGFP expression marks a subset of 

SOX2 expressing cells. Localization of EGFP fluorescence in coronal section of the 

SVZ in SOX2-EGFP and SOX2-RANDOM adult mice (>6 weeks) immunostained for 

Nestin (red) and GFAP (red). (A) Schematic diagram of DNA construct injected to 

generate SOX2-RANDOM mouse lines. (B) Summary of mouse strains generated with 

Sox2 targeting vector. (C-E) In SOX2EGFP adult mice EGFP fluorescence colocalizes 

with Nestin expression both in the ependymal and SVZ zone. (F-H) In SOX2RANDOM 

adult mice EGFP fluorescence is excluded from the Nestin (red) positive ependymal 

zone but is co-localized with Nestin in the SVZ region surrounding the LV. (I-N) EGFP 

fluorescence in both SOX2-EGFP and SOX2-RANDOM is co-expressed with GFAP in 

the SVZ region. Scale bars: C-N = 100 µm. 
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Figure 2.7 
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Figure 2.7. SOX2-EGFP universally marks multipotential neurosphere forming 

cells in the embryonic and adult nervous system. (A-B) Isolated neuroepithelium 

from 10.5 dpc SOX2-EGFP mouse embryos (A) Bright field (B) EGFP fluorescence. The 

majority of EGFP positive neurospheres from E10.5 EGFP+ neuroepithelial cells (C) are 

NESTIN positive (D). All neurospheres isolated from 10.5 dpc neuroepithelium are 

EGFP positive (E-bright field, F-EGFP) and are multipotent (G - neurons (β-tubulin-type 

III - red) and glial cells (GFAP-green)) Neurospheres derived from adult anterior LV SVZ 

of SOX2-EGFP mouse (H) are EGFP positive ((I, J), (I) bright field – (J) EGFP 

fluorescence). K. EGFP positive neurosphere are multipotent and give rise to neurons 

(β-tubulin-type III - red) and glial cells (GFAP-green). SOX2-RANDOM distinguishes two-

neurosphere-forming populations of the adult SVZ. (L) Bright field photograph of 

neurospheres derived from SOX2-RANDOM SVZ cells. (M) Fluorescent image of the 

same field in (L) showing that some of the neurospheres generated are EGFP positive 

and some negative (arrow). The majority of EGFP-positive neurospheres from SOX2-

RANDOM express GFAP (N-P). Both GFP positive and GFP negative SVZ cells 

generate neurospheres that can be passaged to make secondary neurospheres and are 

multipotent generating neurons (red) and glial (green) cells (Q, R). Scale bars: A, B, G, 

H, K = 100 µm, E, F, I, J, L, M = 200 µm, N & O = 50 mm, P-R = 1000 µm. 
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Introduction 
 

The ability to prospectively identify and characterize neural progenitor cells in 

vivo has been difficult due to a lack of cell-surface markers specific for these cell types.  

A widely used in vitro culture method, known as the Neurosphere Assay (NSA), has 

provided a means to retrospectively identify neural progenitor cells as well as to 

determine both their self-renewal capacity and their ability to generate the three primary 

cell types of the nervous system; neurons, astrocytes and oligodendrocytes.  Today, 

coupled with the establishment of multiple transgenic mouse strains expressing 

fluorescent markers and advances in cell isolation techniques such as Fluorescent-

Activated Cell Sorting (FACS), the NSA provides a powerful system to prospectively 

elucidate neural progenitor characteristics and functions.  Here we describe methods for 

the isolation, culture, and differentiation of neural progenitors from the developing mouse 

and adult cortex. 

 

RELATED INFORMATION 

Protocol is adapted from Polleux and Ghosh (2002). 

 

Materials 
 

Reagents 

Bovine Serum Albumin (BSA) (Sigma A3294), 1% in sterile 1X Dulbecco’s Phosphate 

Buffered Saline (PBS) 

Sterile filter and dilute to 0.1% BSA with 1X PBS. 

<recXXXX>Dissociation medium (DM) 
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Epidermal Growth Factor (EGF) and basic Fibroblast Growth Factor (bFGF) (Gibco 

13247051 and 13256029) 

Add 1 ml of 0.1% BSA solution to 10 µg bFGF or 100 µg EGF to prepare solutions of 10 

ng/µl and 100 ng/µl respectively.  Freeze at -20°C in 50-µl aliquots. 

Mice-Embryonic or Adult 

<recXXXX>Enzyme solution (ES) 

Prepare immediately before use. 

<recXXXX>Heavy inhibitory solution (HI) 

Prepare immediately before use. 

Laminin (Sigma L2020), stock solution of 1 mg/ml in 0.1-ml aliquots. Store at -20°C. 

Just before use, dilute 0.1 ml of laminin stock solution in 5 ml of sterile 1X PBS 

supplemented with Ca++ and Mg++ (Sigma D8662; a 1:50 dilution); see Step 13. 

<recXXXX>Light inhibitory solution (LI) 

Prepare immediately before use. 

<recXXXX>Neurobasal medium 

<recXXXX>NEP basal medium 

NEP basal medium containing 2% heat-inactivated horse serum (Invitrogen 16050130, 

30 minute inactivation at 60°C) is also required; see Step 16. 

In addition, prepare NEP complete medium by adding 10 µl of EGF (100 ng/µl) and 10 µl 

of bFGF (10 ng/µl) to 10 ml of NEP basal medium; see Step 10. 

Dulbecco’s Phosphate Buffered Saline (PBS), 1X sterile (Sigma D8537) 

Paraformaldehyde (PFA-Sigma P6148), 4% in 1X PBS 

Poly-D-lysine (Sigma P7280), reconstitute in sterile ddH20 for a stock solution of 1 

mg/ml in 1.0-ml aliquots 

Just before use, dilute the stock solution 1:50 in sterile ddH2O; see Step 12. 

Trypsin-EDTA (Sigma T3924) (optional; see Step 18) 
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Equipment 

Polystyrene Dishes, 6- or 10-cm, non-treated (Falcon 351007 and 351029) 

Polystyrene 96-well plates, Low Cell Binding, Flat Bottom (Corning 3474) 

Forceps, #5 pointed, sterilized (Fine Science Tools 11252-30) 

Microsurgical knife (5mm) (MSP Surgical 7516) (optional, see Step 1.i) 

Micro-spring scissors (8.5cm), sterilized (Fine Science Tools 15009-08) 

Razor blade, sterile 

Slides, 8-well chamber (Nunc 177402) 

Transfer pipettes, disposable (Fisher 13-711-9D) 

Tubes, 15- and 50-ml conical, sterile 

Tubes, 1.5ml microcentrifuge tubes, sterile 

Water bath set to 37°C 

Hemacytometer 

 

Methods 
Dissection 

1.  Carefully remove the brain from the skull of an embryonic or adult mouse and place 

in a clean dish containing ice-cold 1X PBS.  To dissect early embryo tissue (<E16), 

follow Step 1.i.  To collect tissue from a late-stage embryo (>E16) or adult, follow Step 

1.ii. 

i. Separate the two hemispheres of the brain.  Carefully separate the region of interest 

(e.g. dorsal telencephalon) using a microsurgical knife (Fig 2.8).  Next, using fine-tipped 

forceps and a microsurgical knife, carefully remove the meninges from the tissue. 
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Meninges must be removed from the tissue, since they will not digest efficiently in 

Enzyme solution. 

ii. Using a razor blade, cut a coronal slice of the brain containing the region of interest 

(Lateral Ventricle, Hippocampus, etc.) (Fig. 2.9a).  Carefully remove the tissue of interest 

using the forceps and microsurgical knife (Fig. 2.9b). 

2.  Using a sterile transfer pipette, carefully transfer the tissue to a non-treated 

polystyrene dish containing cold 1X PBS.  To speed up enzymatic digestion, cut the 

tissue into smaller pieces using the micro-spring scissors. 

3.  Using a sterile transfer pipette, transfer the tissue to a 15-ml conical tube containing 

10 ml of Enzyme solution.  Minimize the amount of PBS transferred with the sample.  

Incubate at 37°C for 20 minutes, carefully mixing approximately every 5 minutes. Do not 

vortex. 

4.  Add another 10 ml of Enzyme solution.  Incubate for 20 minutes at 37°C, mixing 

occasionally. 

Incubation times may vary.  The tissue is ready when it achieves a thick, viscous 

consistency. 

5.   In a sterile hood, carefully remove the Enzyme solution using a pipettor, leaving the 

tissue at the bottom of the tube. 

6.  Add 4.5 ml of LI solution to the tube.  Carefully flick the tube, remove the solution, 

and repeat with another 4.5 ml of LI solution. 

Caution-The tissue will go into solution easily and should not be mixed with a pipette. 

7.  Remove the LI solution, leaving the tissue at the bottom of the tube, and add 6 ml of 

HI solution.  Incubate for 2 minutes at 37°C.  Gently remove the HI solution. 

8.  Add 5 ml of NEP basal medium, flick the tube, and remove the medium. 

9.  Add 0.5ml -1.0 ml of NEP Complete medium and triturate 10 to 20 times, until the 

tissue pieces are dissociated. 
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More medium may be required, depending upon the amount of tissue used. 

 

10.  Count the cells using a hemacytometer and add the appropriate number to a non-

treated polystyrene dish containing NEP complete medium (with FGF and EGF). 

Cell density should be 1x106 cells per 6-cm plate, or 2x106 cells per 10-cm plate. 

However, the plating density will vary between different age points and different brain 

regions. See Discussion. 

11. Incubate cells in a humidified 37°C incubator (+5% CO2).  Monitor the dishes daily 

for neurosphere formation (Fig 2.10a). 

Adult lateral ventricle neurospheres take approximately 1 week to form, while embryonic 

neurospheres are observed after a few days.  Once spheres have formed, replace 

medium every three days by transferring spheres to a 15-ml conical tube and letting 

them settle to the bottom by gravity at 37°C.  Centrifugation is not recommended.  After 

the spheres have settled, remove the medium and replace with fresh NEP complete 

medium.  Transfer spheres to a fresh dish. 

 

Slide Coating 

 

12. Add 0.2 ml of diluted Poly-D-lysine to each well of an 8-well chamber slide. Incubate 

for 1 hour at room temperature. 

13. Wash wells three times with sterile ddH2O. Add 0.2 ml of diluted laminin to each well 

and incubate overnight at 4°C. 

Slides should be stored at 4°C until use and wrapped in parafilm to minimize 

evaporation. 

14. Before use, remove laminin and wash wells once with Neurobasal medium. 

Do not remove the laminin from the wells until immediately before use. 
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Differentiation 

15. Add 100 µl of NEP complete medium to each well of a poly-D-lysine/laminin coated 

8-well chamber slide (prepared as described in Steps 12-14).  Transfer one sphere using 

a P200 pipettor to each well and incubate overnight at 37°C. 

16. After 24 hours, ensure spheres have attached to the slide (Fig. 2.10B), then carefully 

remove medium.  Add 200 µl of NEP basal medium containing 2% heat-inactivated 

horse serum. 

17. Culture for 2-3 days, changing medium daily.  For fixation, remove medium, rinse 

once with 1x PBS, and fix with 4% PFA in 1X PBS for 1 hour at 4°C for 

immunohistochemical analysis Fig. 2.10C). 

Secondary Neurospheres 

18. Using a P20 or P200 pipettor, mechanically dissociate a single neurosphere in a 1.5-

ml microcentrifuge tube. 

If this is difficult, incubate spheres in trypsin for five minutes and mechanically 

dissociate. 

19. Centrifuge the cells at 3000 rpm for 5 minutes and resuspend in NEP complete 

medium.  Cells can be plated individually in 96-well, low cell binding plates or multiple 

spheres can be bulk passaged as described in Step 10. 

 

Discussion 
 

The development of a cell culture system designed to isolate and propagate 

putative stem cells from neural tissue  (Reynolds et al. 1992; Reynolds and Weiss 1992) 
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has greatly advanced our understanding of these cell populations.  This technique has 

not only provided a means to monitor the physical characteristics of these cells but has 

also enhanced our ability to manipulate the genetic and epigenetic factors that regulate 

both their capacity to self-renew as well as differentiate into the three defined cell types 

of the nervous system; neurons, astrocytes, and oligodendrocytes.  In the presence of 

EGF and/or bFGF, these cell populations can be reliably expanded and maintained in 

the form of neurospheres and, upon removal of these growth factors, can efficiently 

generate the three major CNS cell types. 

Today, advances in mouse genetic manipulation as well as the development of 

more powerful analytical technologies (e.g. Fluorescent-automated Cell Sorting) has 

resulted in multiple modified protocols of the neurosphere assay.  For instance, the 

utilization of mouse lines containing multiple targeted mutations typically generates only 

a small fraction of animals carrying the desired genotype.  Given that the total 

percentage of neural stem cells can be quite small (<0.1% in adults  (Reynolds and 

Weiss 1992)), it is therefore often important to maximize the yield of neural stem cells 

from these animals.  We have found that the often used trypsin-based enzymatic 

dissociation can be deleterious to cells, resulting in a high percentage of cell death after 

isolation.  Here we provide an alternative protocol utilizing the enzyme papain which, in 

our hands, is more efficient and less destructive in dissociating neural tissue and 

therefore provides a greater yield of viable stem cells.  It should be noted however that 

we have found that culture conditions, including enzymatic incubation times and plating 

densities, vary between different age points as well as between different neural stem cell 

populations and therefore may need to be determined on an individual basis. 

Although historically utilized as a means to retrospectively identify neural 

progenitors, today the Neurosphere Assay can be used in the prospective isolation and 

propagation of neural progenitors.  The generation of mouse strains expressing 
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fluorescent proteins under the control of neural progenitor specific markers (Nestin-

EGFP  (Kawaguchi et al. 2001); Sox2-EGFP  (Ellis et al. 2004); hGFAP-EGFP  (Zhuo et 

al. 1997)) coupled with the ability to efficiently isolate these cell types using FACS has 

led to the ability to culture highly enriched populations of neural progenitor cells, and 

using the NSA, examine the proliferative, self-renewal, and multipotential capacities of 

these cells in vitro. 

Recipes 
Dissociation medium 

Reagent Amount to 
add 

Final 
concentration 

1 M Na2SO4 20.44 ml 98 mM 
0.5 M K2SO4 15 ml 30 mM 
1 M MgCl2 1.45 ml 5.8 mM 
100 mM CaCl2 0.63 ml 0.25 mM 
1M HEPES (pH 
7.4) 

250 µl 1 mM 

1M Glucose 5 ml 20 mM 
Phenol Red (0.5%) 0.5 ml 0.001% 
0.1 N NaOH ~0.1 ml 0.03 mN 
Add above volumes to a sterile, dedicated 250-ml 
tissue culture bottle.  Adjust volume to 250 ml with 
sterile ddH20.  Sterile filter using a 0.2-µm bottle filter.  
Store solutions at 4°C (Na2SO4 and K2SO4 solutions 
should be stored at room temperature to avoid 
formation of precipitate). Use Dissociation medium 
within 2 weeks. pH should be approximately 7.4. 

 

Enzyme solution 

Reagent Amount to 
add 

<recXXXX>Dissociation medium 20 ml 
Cysteine (Sigma C1276) 6.4 mg 
Papain (Roche 108014) 200 µl 
Combine above reagents and incubate for 15 minutes 
in a 37°C water bath to dissolve.  Mix and adjust to 
pH ~7.4 with 0.1 N NaOH (this usually requires about 
3 drops of 0.1 N NaOH).  The pH can be monitored by 
the color of the solution: pink is too basic and yellow 
is too acidic.  Filter through a 0.2-µm syringe filter.  
Warm the solution in a water bath at 37°C before use. 
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Heavy inhibitory solution 

Reagent Amount to 
add 

<recXXXX>Dissociation medium 6 ml 
BSA (Sigma A3294) 60 mg 
Trypsin inhibitor (Sigma T6522) 60 mg 
Warm Dissociation medium to 37°C, add BSA and 
trypsin inhibitor and mix.  Incubate at 37°C for 
approximately 1 hour to completely dissolve.  Adjust 
to pH ~7.4 with 0.1 N NaOH to about 7.4 (this usually 
requires about 3 drops of 0.1 N NaOH).  The pH can 
be monitored by the color of the solution: pink is too 
basic and yellow is too acidic.  Filter through a 0.2-µm 
syringe filter.  Warm the solution in a water bath at 
37°C before use. 

 

Light inhibitory solution 

Reagent Amount to 
add 

<recXXXX>Dissociation medium 9 ml 
<recXXXX>Heavy inhibitory solution 1 ml 
Warm Dissociation medium to 37°C and add the 
Heavy inhibitory solution.  Filter through a 0.2-µm 
syringe filter.  Warm the solution in a water bath at 
37°C before use. 

 

Neurobasal medium 

To a 500-ml bottle of Neurobasal medium (Invitrogen 21103049), add one 5-ml aliquot of 

100X Penicillin-Streptomycin (Gibco 15160122) and one 5-ml aliquot of 100X L-

glutamine (Gibco 250300810).  Mix well. 

 

NEP basal medium 

In a 50-ml conical tube, combine 48.5 ml of Neurobasal medium with a 1-ml aliquot of 

B27 supplement (Gibco 17504044) and a 0.5-ml aliquot of N2 supplement (Gibco 

17502048).  Mix well. 
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Figures 
Figure 2.8 

 

 

Fig 2.8. Location of the Dorsal Telencephalon 

A sagital view of a single cerebral hemisphere from an E12.5 mouse embryo 

demonstrating the location of the dorsal telencephalon. 
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Figure 2.9 

 

 

Fig 2.9. Schematic of Adult Brain 

A). Dorsal view of the adult mouse brain.  The red bar indicates the location of the cut to 

isolate periventricular tissue.  B) The resulting cross-section of tissue with lateral 

ventricles exposed.  Periventricular tissue should be dissected where indicated by the 

red box. 
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Figure 2.10 

 

 

Fig 2.10 Differentiation of Neurospheres. 

A). Neurospheres derived from E12.5 mouse dorsal telencephalon after 6 days in 

culture. B). Neurosphere attachment to a poly-D-lysine/laminin coated slide; 1 day after 

plating. C). β-tubulinIII (red) and Glial Fibrillary Acidic Protein (GFAP; green) labeling of 

neurosphere derived neurons and astrocytes, respectively. 

 

  



 
 

Chapter Three 
 

 

SOX2 Levels Define Distinct Cortical Progenitor Cell 
Populations
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Abstract 

The in vivo identification and direct isolation of neural progenitor populations from 

the developing CNS has been difficult due to a limited repertoire of cell-surface markers.  

Previous studies have demonstrated that the HMG-Box transcription factor SOX2 is 

commonly expressed in all neural progenitor cell populations throughout the developing 

and adult central nervous system (CNS).   Furthermore, SOX2 has been shown to 

function in a dosage-dependent manner in the maintenance of neural progenitor identity.  

Here, using cellular and molecular analyses, we demonstrate that isolated dorsal 

ventricular cells expressing high, intermediate and low levels of SOX2-EGFP distinguish 

between radial glia, intermediate progenitors, and differentiated neurons respectively.  

Collectively, we show that distinct neural progenitor populations from the developing 

dorsal telencephalon can be prospectively isolated based upon their differential levels of 

SOX2 expression. 

  



106 

Introduction 

In regions throughout the developing mammalian central nervous system (CNS) 

heterogeneous populations of neural progenitor cells, each with distinct molecular and 

cellular characteristics, have been identified.  In the dorsal telencephalon, two such 

progenitor populations have been characterized.  The first population, located primarily 

in the ventricular zone (VZ), consists of self-renewing, multipotent radial glial (RG) cells 

that have the capacity to generate both neurons and glia in vivo (Malatesta et al. 2000; 

Noctor et al. 2001; Malatesta et al. 2003; Anthony et al. 2004).  RG cells, in turn, 

generate a second neural progenitor cell population, intermediate progenitor (IP) cells 

(or basal progenitor cells) which, in contrast to RG cells, reside in the subventricular 

zone (SVZ), are exclusively neurogenic, and have limited self-renewal capacity 

(Haubensak et al. 2004; Miyata et al. 2004; Noctor et al. 2004).  Interestingly, subtypes 

of both RG and IP populations have also been observed in the dorsal telencephalon, 

including unipotential RG cells, which are exclusively neurogenic or gliogenic, as well as 

IP subpopulations with distinct morphological characteristics (Kawaguchi et al. 2008; 

Kowalczyk et al. 2009).  Thus, the developing dorsal telencephalon harbors a diverse 

mixture of distinct cellularly-defined neural progenitor cell populations. 

A number of transcription factor networks have been identified which regulate 

progenitor cell diversity (Guillemot 2007).  In the dorsal telencephalon, the interplay of 

several key transcription factors defines and regulates the “radial glial-intermediate 

progenitor-neuron” transition (Englund et al. 2005).  One transcription factor, the paired-

domain protein PAX6, is highly expressed in RG cells and functions to maintain their 

progenitor identity as evidenced by a decrease in the number of both RG cells and 

postmitotic neurons in PAX6 deficient mice, a phenotype most likely due to the 

premature differentiation of RG cells into IP cells (Gotz et al. 1998; Heins et al. 2002; 

Haubst et al. 2004).  During their normal transition into IP cells, RG cells downregulate 
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PAX6 concomitant with the upregulation of, among other genes, the proneural basic 

helix-loop-helix transcription factor Neurogenin 2 (NGN2) and the T-Box transcription 

factor 2 (TBR2), which are necessary for neuronal and IP fate specification, respectively 

(Bulfone et al. 1999; Kimura et al. 1999; Miyata et al. 2004; Englund et al. 2005; Arnold 

et al. 2008; Sessa et al. 2008).  These genes, in turn, are downregulated upon neuronal 

differentiation coincident with the upregulation of neuronal subtype-specific genes such 

as T-Box transcription factor 1 (TBR1) (Hevner et al. 2001; Englund et al. 2005).  Thus, 

the temporal and spatial expression of these key transcription factors is important in 

regulating neural progenitor cell fate in the dorsal telencephalon. 

Recent evidence suggests that the specification of distinct progenitor cell identity 

depends not only upon the expression or absence of certain transcription factors, but 

also upon the levels at which these transcription factors are expressed.  For example, in 

the dorsal telencephalon the expression of PAX6 has been shown to be important in 

maintaining the progenitor identity of RG cells as well as promoting their neuronal 

differentiation (Bishop et al. 2000; Stoykova et al. 2000; Toresson et al. 2000; Yun et al. 

2001; Estivill-Torrus et al. 2002; Heins et al. 2002; Quinn et al. 2007).  This paradox was 

recently attributed to a dosage-sensitive function of PAX6 where increased 

concentrations of PAX6 are important in driving RG cells to an IP cell fate, through the 

activation of NGN2, whereas lower concentrations of PAX6 serve to maintain the 

progenitor identity of RG cells (Scardigli et al. 2003; Sansom et al. 2009).  In addition, 

RG and IP cells express high and low levels of the transcription factor HES5, 

respectively, and can also be distinguished based upon high and low NOTCH1 signaling 

activity (Basak and Taylor 2007; Mizutani et al. 2007).  Furthermore, examples of a 

dosage-dependent function of transcription factors are also observed in progenitor 

populations from other tissue systems.  For instance, in the hematopoietic system, 

varying levels of transcription factors such as E2A, RUNX1 (AML1) and GATA-1 have 
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been shown to be important in both the maintenance and fate determination of 

hematopoietic stem and progenitor cells and, moreover, these variations can be used to 

prospectively isolate distinct populations of hematopoietic progenitors (Suzuki et al. 

2003; Lorsbach et al. 2004; Sun and Downing 2004).  Therefore, the concentration, as 

well as the spatial-temporal expression, of key transcription factors in the developing 

nervous system may similarly be important in progenitor maintenance and fate 

determination.  In addition, due to a current lack of suitable cell-surface markers that can 

be used to identify and isolate neural progenitor populations, these variations in 

transcription factor levels may also provide a valuable method to selectively isolate 

distinct progenitor populations from the nervous system. 

Here we show that one such dosage-dependent transcription factor is SOX2, a 

SOXB1 HMG-box transcription factor that is expressed in all neural progenitors 

throughout the developing and adult CNS (Uwanogho et al. 1995; Collignon et al. 1996; 

Uchikawa et al. 1999; Wood and Episkopou 1999; Zappone et al. 2000; D'Amour and 

Gage 2003; Ellis et al. 2004; Bani-Yaghoub et al. 2006).  SOX2 is initially expressed in 

cells of the inner cell mass (ICM) (Collignon et al. 1996; Wood and Episkopou 1999) and 

its ablation at this stage results in the loss of proliferating epiblast cells and subsequent 

peri-implantation lethality of the embryo (Avilion et al. 2003).  In order to circumvent the 

early lethality of SOX2-deficient mice and investigate the role of SOX2 in neural 

progenitor populations, misexpression and dominant-negative studies were originally 

conducted in the embryonic chick neural tube.  These studies demonstrated that the 

overexpression of SOX2 was sufficient to maintain cells in a neural progenitor state 

while dominant-negative SOX2 induced cell cycle exit and precocious neuronal 

differentiation (Bylund et al. 2003; Graham et al. 2003).  However, in vivo hypomorphic 

SOX2 mutations in mice have suggested that the intracellular concentrations of SOX2 in 

these cells also play an important role.  In the cortex, hypomorphic levels of SOX2 result 
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in decreases in both progenitor proliferation and neuronal production (Ferri et al. 2004; 

Cavallaro et al. 2008), while in the retina, aberrant neuronal differentiation is observed 

(Taranova et al. 2006).  In addition, several hereditary eye and hippocampal defects 

have also been attributed to hypomorphic SOX2 mutations in humans (Fantes et al. 

2003; Hagstrom et al. 2005; Ragge et al. 2005; Sisodiya et al. 2006; Bakrania et al. 

2007).   Further evidence supporting a dose-dependent role of SOX2 in the dorsal 

telencephalon comes from immunocytochemical studies demonstrating a gradient of 

SOX2 expression in the cortex (Bani-Yaghoub et al. 2006) as well as in vitro studies in 

which cells that express high levels of SOX2 demonstrate greater neurosphere-forming 

potential as well as increased expression of “stem cell” genes such as Notch1 and 

Nestin (D'Amour and Gage 2003; Ellis et al. 2004).  Collectively, these studies suggest 

that intracellular concentrations of SOX2 are important for proper neural development.  

However, it remains to be determined whether endogenous variations in SOX2 

expression occur between distinct neural progenitor cell populations such as RG and IP 

cells.  To address this, adequate tools are needed to prospectively isolate distinct 

progenitor populations based upon different levels of SOX2 expression. 

Here we characterize SOX2 expression in RG and IP cells and demonstrate that 

not only is SOX2 differentially expressed between these two populations, it also uniquely 

marks a select population of neural progenitor cells in the VZ undergoing direct neuronal 

differentiation.  Furthermore, we prospectively isolate RG cells, IP cells, and 

differentiated neurons from the developing dorsal telencephalon based upon the levels 

of SOX2 expression using a “knock-in” SOX2EGFP mouse line (Ellis et al. 2004).  These 

results suggest that utilizing SOX2 expression levels, in conjunction with the expression 

of other dorsal telencephalic progenitor markers such as PAX6 and TBR2, is an efficient 

method to identify and isolate distinct populations of neural progenitor cells from the 

dorsal telencephalon.  
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Results 

Detailed Analysis of SOX2 Expression in Neural Progenitor Populations of the Dorsal 
Telencephalon 

Here we address whether SOX2 levels vary between distinct neural progenitor 

populations.  We first compared SOX2 expression in relation to neural progenitor 

markers in the E17.5 dorsal telencephalon using immunocytochemistry.  SOX2 is highly 

expressed in the VZ and at lower levels in the SVZ (Fig 3.1A).  In comparison, the RG 

marker PAX6 is similarly expressed in the VZ and SVZ (Fig 3.1B) and double-labeling 

revealed that PAX6 and SOX2 are largely coexpressed in the VZ (Fig 3.1C), 

demonstrating that RG cells express high levels of SOX2.  Interestingly, populations of 

PAX6-negative cells expressing high levels of SOX2 were also observed in the SVZ (Fig 

3.1C arrows), suggesting the existence of multiple neural progenitor populations within 

the dorsal telencephalon.  Next, we compared SOX2 and PAX6 expression with that of 

the IP cell marker TBR2.  TBR2-positive IP cells predominantly reside in the SVZ (Fig 

3.1E) and express little or no SOX2 (Fig 3.1F), although a subset of TBR2-positive cells 

expressing high levels of SOX2 are found scattered throughout the VZ/SVZ boundary 

(Fig 3.1F, arrowhead) and, based on their location, are presumed to be newly generated 

IP cells migrating out of the VZ.  Consistent with previously published reports, we also 

observed scattered TBR2-positive cells expressing high levels of PAX6 in the VZ (Fig 

3.1G-I) (Englund et al. 2005).  In addition, a majority of TBR2-positive cells maintain a 

low level of PAX6 expression (Fig 3.1I), demonstrating that PAX6 continues to be 

expressed in IP cells, albeit at low levels.  These data suggest that SOX2 and PAX6 are 

maintained in RG cells at high levels, but SOX2 is downregulated in IP cells coincident 

with the upregulation of TBR2, whereas PAX6 continues to be maintained at lower levels 

in TBR2-positive IP cells.  Furthermore, the identification of a SOX2-positive, PAX6-
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negative population suggests that a molecularly distinct neural progenitor cell population 

is maintained in the SVZ in addition to IP cells. 

Lastly, we examined SOX2 in relation to the immature neuronal marker β-Tubulin 

III.  SOX2-positive cells were mutually exclusive of β-Tubulin III-positive cells in 

superficial layers of the dorsal telencephalon (Zappone et al. 2000; Ellis et al. 2004), 

however both SOX2 and β-Tubulin III were found to be coexpressed in sporadic, newly 

generated neurons in the VZ (Fig 3.1J, asterisks).  In contrast, we did not observe any 

PAX6-positive or TBR2-positive cells co expressing β-Tubulin III (Fig. 3.1K-L), nor did 

these β-Tubulin III-positive cells coexpressed the GABAergic marker Calbindin, 

demonstrating that they are not interneurons migrating from the ventral telencephalon 

(data not shown).  These data suggest that a population of SOX2-positive neural 

progenitor cells in the E17.5 dorsal telencephalon is capable of generating β-Tubulin III-

positive neurons independent of the PAX6-TBR2 lineage. 

Distinct Neural Progenitor Populations can be Prospectively Isolated Based Upon SOX2 
Expression Levels 

Our immunocytochemistry results suggest that SOX2 is differentially expressed 

between RG and IP populations.  To more accurately ascertain whether the level of 

SOX2 expression can be used to identify distinct neural progenitors, we isolated 

populations of neocortical progenitor cells based upon their level of SOX2 expression 

and analyzed the gene expression profile as well as the self-renewal and differentiation 

capacity of each sorted population.  To this end, we utilized the SOX2EGFP mouse line in 

which an enhanced green fluorescent protein (EGFP) expression cassette is inserted 

into the SOX2 locus using homologous recombination, faithfully recapitulating 

endogenous SOX2 expression in the CNS (Ellis et al. 2004).  In the SOX2EGFP/+ dorsal 

telencephalon, SOX2 is expressed in the VZ and SVZ of the lateral ventricles (Fig. 

3.2A,C-D).  EGFP is similarly expressed in the VZ and SVZ, but is also observed in the 
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more superficial layers, a difference we attribute to the increased stability of the EGFP 

protein (Fig. 3.2B,C-D) (Cubitt et al. 1995).  However, all cells which express 

endogenous SOX2 protein also express EGFP (Fig. 3.2B-D), thus allowing for the 

prospective isolation of cells based upon SOX2-EGFP expression levels. 

We first compared EGFP-intensity profiles of SOX2EGFP/+ dorsal telencephalic 

cells isolated from early (E12.5) and late (E17.5) periods of neurogenesis using flow 

cytometry.  At E12.5, the dorsal telencephalon consists primarily of RG cells located 

within the proliferative VZ (Malatesta et al. 2000; Hartfuss et al. 2001; Malatesta et al. 

2003).  However, by E17.5, a majority of the dorsal telencephalon is comprised of post-

mitotic neurons, although populations of RG cells and IP cells continue to be maintained 

in the VZ and SVZ (Malatesta et al. 2000; Hartfuss et al. 2001; Malatesta et al. 2003).  In 

both E12.5 and E17.5 SOX2EGFP/+ mice, EGFP-positive cells can be distinguished from 

SOX2+/+:EGFP-negative littermate controls using flow cytometry (Fig 3.2E).  At E12.5, 

dorsal telencephalic progenitor cells express high levels of EGFP (871.3±31.44 

fluorescent units) and display a normal distribution curve (Fig 3.2E, green).  In contrast, 

the E17.5 cells, on average, express lower levels of EGFP compared with E12.5 cells 

(306.8±26.24 fluorescent units)(Fig 3.1E,red).  However the E17.5 intensity profile is 

skewed, suggesting that, even though most E17.5 cells express low levels of EGFP, a 

small population of cells is maintained that expresses EGFP levels equivalent to those 

levels observed in E12.5 embryos (Fig 3.2E, red).  These results suggest that cells 

expressing high levels of SOX2 (as indicated by EGFP expression) are found in the 

dorsal telencephalon during both early (~E12.5) and late (~E17.5) stages of 

neurogenesis whereas cells expressing low levels of SOX2 are only observed at later 

stages.  Based on these data, we hypothesized that the E17.5 dorsal telencephalon 

contains multiple progenitor populations (including RG and IP cells) which express 
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distinct levels of SOX2, and moreover, these populations can be prospectively separated 

based upon their levels of SOX2-EGFP expression. 

Neurosphere Size, Self-Renewal, and Multipotency Correlate with High Levels of SOX2 
Expression 

To isolate distinct neural progenitor cell populations, we focused our analyses on 

the E17.5 dorsal telencephalon.  Fluorescence Automated Cell Sorting (FACS) was 

utilized to isolate and separate the E17.5 EGFP-positive cells into three subpopulations 

based upon their EGFP-intensity levels: EGFPHigh, EGFPInt, and EGFPLow.  Post-sort 

analyses confirmed that each subpopulation was distinct in regard to its intensity of 

EGFP fluorescence (Fig 3.3A) and analyses of Sox2 and Egfp transcript levels utilizing 

quantitative reverse transcription polymerase chain reaction (qRT-PCR) demonstrate 

that both Sox2 and Egfp transcript levels correspond to their respective EGFP 

fluorescent intensity levels (Fig 3.3B). 

The stem cell capacity of each subpopulation was then analyzed using the in 

vitro neurosphere assay.  Neurospheres generated from EGFPHigh, EGFPInt, and 

EGFPLow cells were tested for their proliferative and self-renewal capabilities, as well as 

the ability to undergo multipotent differentiation. 

First, to test the capacity of EGFPHigh, EGFPInt, and EGFPLow populations to 

generate neurospheres, freshly sorted cells from each subpopulation were plated at 

clonal density (282.9 cells/cm2) and cultured for six days (Coles-Takabe et al. 2008).  All 

three subpopulations generated EGFP-positive neurospheres (Fig 3.3C), however 

EGFPLow cells produced statistically fewer neurospheres compared to EGFPHigh and 

EGFPInt subpopulations (Fig 3.3D).  In contrast, EGFP-negative cells were unable to 

produce neurospheres (data not shown).  Moreover, EGFPHigh cells produced larger 

neurospheres compared to EGFPInt and EGFPLow populations, suggesting a difference in 

neurosphere growth rate (Fig 3.3C,E). To directly examine neurosphere growth, 
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neurospheres were isolated from bulk cultures at 6 days in vitro (DIV) and individually 

maintained in 96-well plates to prevent aggregation.  The diameter of each individual 

neurosphere was then measured every two days.  At 6 DIV, EGFPHigh cells produced 

significantly larger neurospheres than both EGFPInt and EGFPLow cells and these 

differences were maintained throughout the culture period up to 10 DIV (Fig 3.3E).  To 

better gauge the neurosphere size variation within each subpopulation, neurospheres 

were classified into one of three categories based upon their diameter at 6 DIV.  The 

proportion of small-diameter neurospheres (<100µm) was significantly greater in 

EGFPLow cultures compared to both EGFPHigh and EGFPInt subpopulations (Fig 3.3F). In 

contrast, intermediate sized neurospheres (100-200µm) were more prevalent in the 

EGFPHigh and EGFPInt subpopulations (Fig 3.3F).  Moreover, the EGFPHigh cultures also 

contained a significant percentage of large-diameter spheres (>200µm) compared to 

both EGFPInt and EGFPLow populations (Fig 3.3F).  These data suggest that cells with 

high levels of SOX2-EGFP have an increased neurosphere forming potential and growth 

rate. 

Next, to analyze self-renewal potential, individual primary neurospheres from 

EGFPHigh, EGFPInt, and EGFPLow cultures were dissociated and allowed to form 

secondary, followed by tertiary, neurospheres (Coles-Takabe et al. 2008).  EGFPHigh 

primary neurospheres generated significantly more secondary and tertiary neurospheres 

then both EGFPInt and EGFPLow primary neurospheres (Fig 3.4A).  Moreover, EGFPLow 

primary neurospheres produced very few secondary neurospheres and were unable to 

generate any tertiary neurospheres (Fig 3.4A), suggesting they have a more restricted 

capacity for self-renewal.  These data indicate that high levels of SOX2-EGFP 

expression are directly correlated with an increased capacity for self-renewal. 

Lastly, to test the multipotent differentiation capacity of the EGFPHigh, EGFPInt, 

and EGFPLow subpopulations, primary neurospheres from each subpopulation were 
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induced to differentiate after 10 DIV.  Multipotential neurospheres, capable of generating 

both β-Tubulin III-positive neurons and GFAP-positive astrocytes, were observed in each 

subpopulation (Fig. 3.4B).  However, EGFPHigh cells produced more multipotential 

neurospheres than EGFPInt or EGFPLow cells (Fig 3.4D).  In addition, unipotent 

neurospheres, generating only β-Tubulin III-positive neurons, were identified in all three 

populations (Fig 3.4C).  However, EGFPLow cells generated more unipotent 

neurospheres compared to both EGFPInt and EGFPHigh cells (Fig 3.4D).  Interestingly, we 

found that the multipotent capacity of a neurosphere was directly correlated with its size, 

regardless of sorting population (Fig 3.4D).  At 10 DIV, neurospheres with small 

diameters (<150µm) only generated neurons, while larger neurospheres (>150µm) 

generated both neurons and glia.  We did not observe any glial-specific neurospheres 

using these culture conditions. 

Gene Expression Profiles of EGFPHigh, EGFPInt, and EGFPLow sorted populations 
 

The results from our in vitro studies demonstrate that the EGFPHigh, EGFPInt, and 

EGFPLow sorted populations each have distinct proliferative, self-renewal, and 

multipotent differentiation properties.  The low neurosphere forming potential of the 

EGFPLow cells shows that this population consists primarily of post-mitotic neurons while 

the significant differences in neurosphere size and self-renewal capacity between the 

EGFPHigh and EGFPInt subpopulations indicate that these two subpopulations of cells 

contain distinct neural progenitor populations as well. 

We next addressed whether EGFPHigh, EGFPInt, and EGFPLow cells could be 

molecularly distinguished by utilizing qRT-PCR to determine transcript levels of 

ubiquitously expressed and neural cell-type specific genes.  As mentioned previously, 

EGFP fluorescent intensity is a faithful indicator of Sox2 and Egfp transcript levels (Fig 

3.3B).  Sox3, a SOXB1 homologue which is coexpressed with Sox2 in neocortical 
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progenitor cells, showed a similarly dynamic regulation as Sox3 levels directly correlate 

with Sox2 levels (Fig 3.5A).  Moreover, Notch1, a known effector of SOX2 which is 

highly expressed in neural progenitor cells, was high in both EGFPHigh and EGFPInt 

populations, but low in EGFPLow cells (Fig 3.5A).  These data suggest that both the 

EGFPHigh and EGFPInt subpopulations are enriched for neural progenitor cells compared 

to EGFPLow cells. 

Our data demonstrate that the EGFPHigh subpopulation generates more self-

renewing, multipotential, large-diameter neurospheres than EGFPInt and EGFPLow cells, 

suggesting that the EGFPHigh population consists primarily of stem-cell like radial glial 

cells (Mizutani et al. 2007).  We confirmed this by Blbp expression and find that EGFPHigh 

cells express higher levels of Blbp transcript than both EGFPInt and EGFPLow populations 

(Fig 3.5B) (Hartfuss et al. 2001).  In contrast, Pax6 transcript levels are also high in 

EGFPHigh cells; however its levels are significantly higher in EGFPInt cells (Fig 3.5B).  

Given that Pax6 is widely used as a RG marker, this result was unexpected.   However, 

these results are supported by recent findings that lower levels of Pax6 maintain the 

progenitor identity of RG cells while higher Pax6 levels promote IP formation (Sansom et 

al. 2009).  Thus, our data demonstrate that EGFPHigh populations are enriched for RG 

progenitor cell markers and suggest that the EGFPInt populations may contain IP cells. 

EGFPInt cells generate smaller neurospheres with limited self-renewal capacity, 

similar to IP cells (Mizutani et al. 2007).  To address whether EGFPInt cells are enriched 

for IP cell molecular markers, transcript levels for IP genes Ngn2 and Tbr2 (Miyata et al. 

2004; Englund et al. 2005), as well as the neuronal-fate marker Tis-21 (Iacopetti et al. 

1999) were analyzed.  Tbr2 and Ngn2 levels were significantly higher in the EGFPInt 

subpopulation compared to EGFPHigh cells (Fig 3.5B) while EGFPLow cells, in contrast, 

expressed low levels of both transcripts.  Similarly, in EGFPInt cells, Tis-21 was more 

than 2-fold higher than EGFPHigh cells (Fig 3.5B).   However, consistent with Tis-21 
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expression in cells undergoing a neuronal transition, higher levels of Tis-21 are also 

observed in EGFPLow cells compared to EGFPHigh cells (Iacopetti et al. 1999).  Thus, 

these results show that cells expressing intermediate levels of SOX2-EGFP are enriched 

for IP cell markers. 

Lastly, the low neurosphere forming potential of EGFPLow cells suggests that 

these cells have lost the capacity to proliferate and may consist largely of postmitotic 

neurons.  We therefore examined the expression of two neuronal genes, β-Tubulin III, 

which labels immature cells, and Tbr1, which marks mature neuronal populations (Fig 

3.5C).  Indeed, both β-Tubulin III and Tbr1 transcript levels were higher in EGFPLow cells 

compared to EGFPHigh and EGFPInt populations and were slightly higher in EGFPInt cells 

compared to EGFPHigh cells, suggesting that some cells from the EGFPInt sort have 

undergone neuronal differentiation.  Interestingly, detectable levels of β-Tubulin III 

transcript are observed in EGFPHigh cells, whereas Tbr1 transcript is not, suggesting that 

a small population of EGFPHigh cells may also be generating immature neurons.  Overall, 

these results support our hypothesis that cells expressing low levels of SOX2 and EGFP 

are enriched for post-mitotic neurons. 

Discussion 

In comparison to other mammalian progenitor populations, neural progenitor cells 

remain largely uncharacterized.  This is due, in part, to a lack of cell-surface markers 

available to identify and isolate distinct neural progenitor populations from the nervous 

system.  One marker, the surface antigen CD133 (Prominin1), has been used 

extensively in the isolation and analysis of neural progenitor cells from human (Uchida et 

al. 2000) and mouse nervous system tissue (Lee et al. 2005; Corti et al. 2007).  In 

addition, another cell-surface marker, CD15 (SSEA-1, LeX) has also been used to 

isolate neural progenitor cells from the mouse (Capela and Temple 2002) and has been 
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shown to be expressed by a subset of radial glial cells (Mai et al. 1998).  However, 

neither CD133 nor CD15 expression is restricted to the nervous system as both are 

expressed in progenitor cells from other tissues as well (Solter and Knowles 1978; Fox 

et al. 1981; Gomperts et al. 1994; Jiang et al. 2002; Mizrak et al. 2008).  Moreover, it 

was recently reported that clonogenic, tripotent cells lacking CD133 and CD15 can be 

isolated from neural stem cell cultures (Sun et al. 2009).  Thus, the isolation of neural 

progenitor cells based upon the expression of CD133 and CD15 is not sufficient and 

additional methods of identifying and isolating neural progenitor cells are necessary. 

To date, SOX2 is found to be expressed in all stem/progenitor populations 

throughout the central nervous system, as well as other non-neural populations such as 

the stomach, lung, and tongue (Ishii et al. 1998; Pevny and Placzek 2005; Okubo et al. 

2006; Que et al. 2007).  In the CNS, all neurosphere forming cells express SOX2 (Ellis 

et al. 2004) suggesting that, unlike CD133 and CD15, SOX2 is constitutively expressed 

in neural progenitor cells.  The recent generation of mouse lines expressing the EGFP 

reporter protein under the control of the Sox2 promoter has therefore provided a 

valuable tool in the characterization of neural progenitor cells (D'Amour and Gage 2003; 

Ellis et al. 2004).  Previously, D’Amour and Gage (D'Amour and Gage 2003) isolated 

distinct populations of cells based upon SOX2 expression levels utilizing a transgenic 

mouse line in which a SOX2-EGFP transgene was used to drive EGFP expression in a 

subset of SOX2-expressing cells in the developing telencephalon.  Similar to the results 

we report here, the authors observed differential levels of SOX2 expression in the 

telencephalon and found that SOX2-EGFP-positive isolated cells had a greater 

propensity to generate neurospheres.   However, the restriction of SOX2-EGFP 

expression to the telencephalon and the observation of SOX2-EGFP-negative 

neurospheres derived from this region suggests that not all neural progenitor populations 

are marked by SOX2-EGFP in this mouse line.  In contrast, in this study we utilize a 
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SOX2EGFP mouse line in which the SOX2 open reading frame has been directly replaced, 

using homologous recombination at the Sox2 locus, with an EGFP expression cassette 

and demonstrate that all neurosphere generating cells from the developing dorsal 

telencephalon express SOX2.  Furthermore, we demonstrate the power of this tool in the 

characterization of neural progenitor populations by isolating and enriching for subtypes 

of neocortical cells based upon their level of SOX2 expression. 

Our results demonstrate that radial glial cells express high intracellular levels of 

SOX2.  Isolated cells expressing high levels of SOX2 and EGFP (EGFPHigh) produced a 

greater number of large-diameter, multipotential neurospheres compared with EGFPInt 

and EGFPLow cells.  Furthermore, these cells were enriched for radial glial markers such 

as BLBP and neural progenitor markers such as SOX3 and Notch1.  In situ, SOX2 was 

also found to be highly expressed in radial glial cell bodies in the VZ and was largely 

coexpressed with PAX6 in these cells.  Interestingly, in the SVZ, SOX2-positive;PAX6-

negative cells were also observed.  It is possible that these cells are radial glia cells 

downregulating PAX6 expression as they transition into intermediate progenitor cells.  

However, this scenario seems unlikely as we also noted that a majority of TBR2-positive 

intermediate progenitor cells maintain low levels of PAX6 expression.  Moreover, SOX2 

was not detectable in most TBR2-positive cells.  Another possibility that we propose is 

that these SOX2-positive;PAX6-negative cells are in fact a subset of radial glial cells that 

do not proceed through the radial glial-intermediate progenitor lineage but undergo direct 

neurogenesis.  This is supported by two of our results.  First, we identified a number of 

SOX2-positive;β-Tubulin III-positive cells located in the SVZ but no β-Tubulin III-positive 

cells coexpressing either PAX6 or TBR2, the later in line with previous reports (Englund 

et al. 2005).  Second, our quantitative RT-PCR analysis of EGFPHigh cells revealed 

detectable levels of β-Tubulin III transcript but not of the more specific neuronal marker 

Tbr1, which is expressed by mature projection neurons.  Our results therefore support 
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the later, a direct-neurogenesis scenario in which SOX2-positive;PAX6-negative radial 

glial cells undergo neurogenesis to produce β-Tubulin III-positive neurons.  It remains to 

be determined, however, whether these neural progenitor cells initially express PAX6 

only to downregulate its expression prior to neuronal differentiation or are in fact a small 

population of radial glial cells that do not express PAX6, which has been previously 

reported (Gotz et al. 1998). 

In addition to prospectively isolating radial glial populations, we are also able to 

utilize SOX2 expression levels to distinguish between intermediate progenitor cells and 

differentiated neurons.   EGFPInt cells express intermediate levels of EGFP and SOX2 

and are highly enriched for the bHLH proneural gene Ngn2, the intermediate progenitor 

marker Tbr2, and the neuronal-fate marker Tis-21.  However, although these cells can 

generate neurospheres, they are smaller and less likely to be multipotent compared to 

EGFPHigh neurospheres.  These observations are inline with data reported in previous 

analyses of isolated radial glial/intermediate progenitor populations (Mizutani et al. 2007) 

and correspond to our in situ data in which most TBR2-positive intermediate progenitors 

express very low levels of SOX2 protein.  In contrast, EGFPLow cells rarely generate 

neurospheres and are enriched for neuronal markers β-Tubulin III and TBR1, 

demonstrating that these cells are differentiated neurons. 

Conclusion 

The identification and characterization of neural progenitor populations in vivo 

has been hindered due to a limited number of available cell-specific markers.  Our 

results demonstrate that one such marker, the transcription factor SOX2, is differentially 

expressed between radial glia, intermediate progenitors, and differentiated neurons 

within the dorsal telencephalon.  Furthermore, utilizing the SOX2EGFP mouse line (Ellis et 

al. 2004), we are able to prospectively isolate and enrich for these populations based 
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upon SOX2-EGFP intensity levels, thus providing a powerful tool for the isolation of 

distinct, viable neural progenitor populations from the CNS.  
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Materials and Methods 

Animal Breeding 

All animals were used and maintained in accordance with protocols approved by 

the Institutional Animal Care and Use Committee at the University of North Carolina-

Chapel Hill.  The generation of the SOX2EGFP mouse line has been described previously 

(Ellis et al. 2004).   SOX2EGFP/+ litters were generated by crossing SOX2EGFP/+ male 

mice with C57Bl6 females (Jackson Laboratory).  Pregnant females were then 

euthanized and the embryos harvested at E12.5 and E17.5 (plug date was recorded as 

E0.5). 

Tissue Dissociation, Fluorescence-Activated Cell Sorting (FACS), and Neurosphere 

Assay 

Tissue dissociation and neurosphere generation were conducted using published 

protocols (Hutton and Pevny 2008).  In short, the dorsal telencephalon was dissected 

from E17.5 SOX2EGFP/+ and SOX2+/+ embryos and incubated in Papain (Roche) followed 

by treatments with Trypsin Inhibitor (Sigma) and a final wash with Neurobasal Medium 

(Gibco).  The tissue was then mechanically dissociated into a single-cell suspension in 

Neurobasal Medium containing B27 and N2 supplements (Gibco) and 10ng/ml bFGF 

and EGF (Invitrogen). 

Fluorescent analysis and cell sorting were conducted at the University of North 

Carolina Flow Cytometry Facility (http://flowcytometry.med.unc.edu) using a MoFlo flow 

cytometer (Beckman-Coulter) and Summit v4.3 software (Dako).  Freshly dissociated 

cells were maintained in supplemented Neurobasal medium and kept on ice. EGFP-

positive cells were sorted into three subpopulations based upon the level of their 

fluorescent intensity. Immediately after sorting, cell density was calculated using a 

hemacytometer. 
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To generate neurospheres, freshly isolated cells were seeded at a clonal density 

of 2000 cells/6cm dish (283 cells/cm2) (Coles-Takabe et al. 2008; Hutton and Pevny 

2008).  After six days in culture, the number of neurospheres per dish was counted.  

Individual neurospheres were then isolated in single wells of 96-well plates and their 

diameter measured every two days using Image Pro Express Software. To generate 

secondary and tertiary neurospheres, individual neurospheres were mechanically 

dissociated into single cell suspensions and then plated again at clonal density.  For 

differentiation analysis, individual neurospheres were plated in 8-well chamber slides 

(Nunc) coated with Poly-D-Lysine and Laminin and allowed to attach for 24 hours, after 

which the medium was replaced with Neurobasal medium (+2% horse serum) lacking 

basic Fibroblast Growth Factor (bFGF) and Epidermal Growth Factor (EGF).  

Neurospheres were then cultured for 1 week under these conditions at which time they 

were fixed with 4% Paraformaldehyde (PFA) for 30 min at room temperature and stained 

using the immunocytochemistry procedures below. 

 

Quantitative RT-PCR 

The remaining isolated cells not used for the Neurosphere Assay were utilized for 

gene transcript analysis.  Total RNA was isolated from cell pellets using Trizol Reagent 

(Invitrogen) and quantitated using an ND1000 spectrophotometer (Nanodrop). cDNA 

was then generated from 50µg of total RNA using a Superscript First Strand Synthesis 

Kit (Invitrogen).  Quantitative real-time PCR reactions were run on an ABI 7500 Fast 

Real-Time PCR System (Applied Biosystems) using a SYBR Green labeling kit (Applied 

Biosystems).  All samples were run in triplicate and normalized to GAPDH expression.  

The following primer sequences were used: β-Tubulin III-F: 5’-tcacgcagcagatgttcgat-3’, 

β-Tubulin III-R: 5’-gtggcgcgggtcaca-3’; BLBP-F: 5’-cgcaacctggaagctgaca-3’, BLBP-R: 

5’-gcccagagctttcatgtactca-3’; EGFP-F: 5’-gccacaagttcagcgtgtcc-3’, EGFP-R: 5’-
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gcttctcgttggggtctttgc-3’; Ngn2-F: 5’-cggcgtcatcctccaact-3’, Ngn2-R: 

5’ggctagcgggcgataaagt-3’; Notch1-F: 5’-ggatcacatggaccgattgc-3’, Notch1-R: 5’-

atccaaaagccgcacgatat-3’; PAX6-F: 5’-caggccctggttggtatcc-3’, PAX6-R: 5’-

ggtgttctctccccctcctt-3’; SOX2-F: 5’-cgcggcggaaaacca-3’, SOX2-R: 5’-

cctccgggaagcgtgtact-3’; SOX3-F: 5’-tgcggtgcacatgaagga-3’, SOX3-R: 5’-

tgagcagcgtcttggtcttg-3’; Tis21-F: 5’-cattacaaacaccactggtttccag-3’, Tis21-R: 5’-

gctggctgagtccaatctggctg-3’; TBR1-F: 5’-ctcgctctttcacttgaccc-3’, TBR1-R: 5’-

actcgactcgcctaggaaca-3’; TBR2-F: 5’-tgaatgaaccttccaagactcaga-3’, TBR2-R: 5’-

ggcttgaggcaaagtgttgaca-3’; GAPDH-F: 5’-tgtgtccgtcgtggatctga-3’, GAPDH-R: 5’-

cctgcttcaccaccttcttga-3’. 

 

Immunocytochemistry 

Mouse embryos were fixed in 4% paraformaldehyde (PFA) in phosphate buffered 

saline (PBS) overnight at 4°C.  After fixation, the tissue was then sequentially treated to 

a 10%, 20%, and 30% sucrose gradient and finally embedded in OCT medium (Tissue-

Tek).  12µm coronal sections were made using a cryostat and collected on Superfrost 

Plus coated glass slides (VWR). Slides were blocked for 1 hour at room temperature 

with 10% goat serum/1% Trition X-100 in PBS.  All primary and secondary antibodies 

were diluted in 5% goat serum/0.1% Triton X-100 in PBS.  Primary antibodies used are: 

SOX2 (1:500 Millipore; 1:100 R&D Systems), PAX6 (1:100 Developmental Studies 

Hybridoma Bank), TBR2 (1:500 AbCam), and β-Tubulin III (TUJ1, 1:1000 Covance).  

Goat secondary antibodies used for the detection of primary antibodies were: anti-rabbit 

Alexa 488 or 546 (1:1000 Invitrogen), anti-mouse (IgG1 and IgG2A) Alexa 488 or 546 

(1:1000 Invitrogen).  Fluorescent images were obtained using a Leica Microsystems 

(Wetzlar, Germany) DM-IRB inverted fluorescent microscope and a QImaging (Surrey, 
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BC, Canada) Retiga-SRV camera using Image Pro Express software (Media 

Cybernetics). 

 

Statistical Analysis 

All data were statistically analyzed using Prism 3.0 software (GraphPad).  

Samples were analyzed using One-Way ANOVA and post-hoc analysis was conducted 

using Tukey’s range test.  
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Figures 
Figure 3.1 
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Figure 3.1.   Immunocytochemical characterization of SOX2-positive cells in the 

dorsal telencephalon.   E17.5 coronal sections of wildtype mice were analyzed for 

coexpression of dorsal telencephalon cell-type markers.  (A-C): SOX2 (A) and PAX6 (B) 

are expressed heterogeneously in the VZ and SVZ .  SOX2 is coexpressed in all PAX6-

positive radial glial cells in the VZ (C) but scattered SOX2-positive; PAX6-negative cells 

are also observed in the SVZ (C,arrows).  (D-F):  SOX2 is weakly expressed in the SVZ 

(D) where the intermediate progenitor marker TBR2 is highly expressed (E).  Faint levels 

of SOX2 can be observed coexpressing with TBR2 in the SVZ (F) while intermittent cells 

coexpressing high levels of SOX2 and TBR2 are observed in the VZ/SVZ boundary 

(F,arrowheads).   (G-I): PAX6 (G) and TBR2 (H) show weak coexpression in the SVZ 

(I).  (J): SOX2 expression is largely exclusive of β-Tubulin III except for scattered cells in 

the VZ/SVZ boundary coexpressing both markers (J, asterisks). Both PAX6 (K) and 

TBR2 (L) cells do not coexpress β-Tubulin III.  Scale Bar=50µm.  Abbreviations: VZ, 

ventricular zone; SVZ, subventricular zone. 
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Figure 3.2 
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Figure 3.2.  SOX2 expression in the developing dorsal telencephalon.  Coronal 

sections of E17.5 SOX2EGFP/+ mice labeled with an anti-SOX2 antibody (A) and 

expressing EGFP driven by the endogenous SOX2 promoter (B).  Cells coexpressing 

SOX2 and EGFP are located within the VZ and SVZ of the dorsal telencephalon (C-D).  

Dissociated cells from E12.5 and E17.5 SOX2EGFP/+ dorsal telencephalon were analyzed 

for EGFP-intensity using flow cytometry (E).  E12.5 cells express higher mean levels of 

EGFP (E; green) compared to E17.5 cells (E; red) and can be distinguished from 

SOX2+/+, EGFP-negative cells (E; grey).  However, some E17.5 cells continue to 

express high EGFP-levels equal to E12.5 cells as indicated by the overlap in the two 

profiles.   Abbreviations: EGFP, enhanced green fluorescent protein; VZ, ventricular 

zone; SVZ, subventricular zone.  Scale Bars: (A-C)=250µm; (D)=20µm. 
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Figure 3.3 
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Figure 3.3.  In vitro analyses of cells isolated based upon SOX2-EGFP intensity 

levels.  Cells from E17.5 dorsal telencephalon were separated into three subpopulations 

based upon their level of SOX2-EGFP expression: EGFPHigh, EGFPInt, and EGFPLow 

(n=4 for each sort)(A).  SOX2 and EGFP mRNA transcript levels from EGFPHigh, EGFPInt 

and EGFPLow sorted cells (n=3) (B).  While each subpopulation was able to generate 

free-floating, EGFP-positive neurospheres, EGFPHigh neurospheres were larger than 

EGFPInt and EGFPLow neurospheres  (C).  At 6 days in vitro (DIV), EGFPLow cells 

produced fewer neurospheres than EGFPHigh and EGFPInt cells (D).  Furthermore, the 

mean neurosphere diameter was larger for EGFPHigh cells, followed by EGFPInt and 

EGFPLow (Cand E).  Neurospheres were then cultured individually for four additional 

days and their diameters measured every 2 days.  At 8 and 10 DIV, these size 

differences were maintained (E).  To compare the size of neurospheres within the 

subpopulations, neurospheres were categorized based upon size: small (100µm), 

medium (100-200µm) and large (>200µm) (F).  EGFPLow cells produced predominantly 

small neurospheres while EGFPHigh and EGFPInt cells generated predominantly medium 

sized neurospheres.  However, EGFPHigh cells also produced a significant number of 

large neurospheres as well.  Scale bars= 75µm.  P Values: p<0.05 (*), p<0.01(**), 

p<0.001(***). 
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Figure 3.4 
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Figure 3.4. Analyses of self-renewal and multipotency.  (A): To test for self-renewal 

capacity, dissociated EGFPHigh, EGFPInt  and EGFPLow primary neurospheres (n=16 

neurospheres/condition) were cultured to form secondary and tertiary neurospheres.  

Secondary neurospheres were generated from all three subpopulations, but a 

significantly greater percentage of EGFPHigh primary neurospheres were capable of 

generating secondary neurospheres, followed by EGFPInt and EGFPLow primary 

neurospheres.  Similarly, a significantly greater percentage of EGFPHigh secondary 

neurospheres were capable of generating tertiary neurospheres.  EGFPLow secondary 

neurospheres, however, were unable to produce tertiary neurospheres, suggesting they 

were unable to self-renew.  (B-C): Primary neurospheres from EGFPHigh, EGFPInt, and 

EGFPLow subpopulations were plated on coated slides at 12 DIV and cultured in the 

presence of 2% horse serum for one week to induce differentiation.  Both multipotential 

neurospheres, labeled with both β-Tubulin III and GFAP (B) and neuronal-specific (β-

Tubulin III only) (C) neurospheres were identified in all three subpopulations.   (D): 

EGFPHigh and EGFPInt neurospheres were predominantly multipotential, whereas 

EGFPLow neurospheres had an increased percentage of unipotent, neuronal-specific 

neurospheres.  Multipotential capacity of neurospheres is directly correlated with 

neurosphere size, with neurospheres less than 150µm exclusively identified as 

unipotential.  Thus, the percentage of large neurospheres (>150µm) produced from each 

subpopulation was similar to the percentage of multipotential neurospheres identified 

from each subpopulation.  Abbreviations: EGFP, Enhance Green Fluorescent Protein; 

GFAP, Glial Fibrillary Acidic Protein. P Values: p<0.05 (*), p<0.01(**), p<0.001(***). 

  



134 

Figure 3.5 

 

  



135 

Figure 3.5.  Quantitative RT-PCR analyses of EGFPHigh, EGFPInt, and EGFPLow cells.  

After isolation using FACS, gene expression was analyzed from each subpopulation 

using qRT-PCR.  (A): EGFPHigh cells express high levels of neural progenitor markers 

SOX3 and NOTCH1 and radial glial markers BLBP and PAX6.  EGFPInt cells also 

express high levels of NOTCH1 and PAX6 however both SOX3 and BLBP are reduced. 

EGFPLow cells express low levels of SOX3, NOTCH1, BLBP, and PAX6.  (B) TBR2 and 

NGN2, markers for intermediate progenitor cells, were highly expressed in EGFPInt cells 

compared to EGFPHigh and EGFPLow populations.  TIS-21, a marker for neuronal-fated 

cells, is also highly expressed in EGFPInt cells but also in EGFPLow cells. (C) Neuronal 

markers β-Tubulin III and TBR1 are highly expressed in EGFPLow cells, suggesting they 

are post-mitotic neurons.  Abbreviation: EGFP, Enhanced Green Fluorescent Protein; 

BLBP, Brain Lipid Binding Protein; NG2, Neurogenin 2; FACS, Fluorescent-automated 

cell sorting.  N=4 litters. 
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SOX2 Function is Necessary for the Proper Maintenance of 
Radial Glial Cells in the Dorsal Telencephalon
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Introduction 

SOX2, a member of the SOXB1 family of transcription factors, has been shown 

to play a fundamental role in the maintenance of a variety of stem/progenitor cell 

populations throughout embryonic development into adulthood  (Guth and Wegner 2008; 

Chew and Gallo 2009).  In mammals, SOX2 is expressed in early embryonic epiblast 

cells and its expression is maintained in a majority of neural progenitor cells of the 

central nervous system (CNS) including neuroepithelial (NEP) cells, radial glia, and 

intermediate progenitor cells (as shown in Chapter 3) (Collignon et al. 1996; Wood and 

Episkopou 1999; Avilion et al. 2003).  However, the functional role of SOX2 in specific 

subsets of neural progenitor cell populations remains unclear.  Studies in the developing 

chick spinal cord have demonstrated that inhibiting SOX2 function in neural progenitors 

results in cell cycle exit and restricted precocious neuronal differentiation, whereas 

constitutive expression of SOX2 inhibits differentiation and maintains progenitor 

characteristics (Bylund et al. 2003; Graham et al. 2003).  However, these studies were 

performed using dominant-interfering constructs in which an Engrailed repressor domain 

was fused to the Sox2 or SOX3 DNA-binding domain and, therefore, have the potential 

to bind and disrupt downstream targets of other SOX factors expressed in the CNS.  

This is further supported by the observation that SOX14, a SOXB2 family member, can 

mimic the effects of SOX2-Engrailed and that either SOX1 or SOX3 can rescue these 

effects.  Recently, genetic approaches have been used to address SOX2 function while 

minimizing the pleiotropic effects of misexpression and dominant-interference studies.   

The genetic assessment of SOX2 function in the nervous system has proven 

difficult, due in part to the peri-implantation lethality of Sox2 homozygous knockout mice 

(Avilion et al. 2003).  In addition, in many regions of the CNS SOX2 is coexpressed with 

its highly related SOXB1 homologues SOX1 and SOX3, which have been suggested to 
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partially compensate for the loss of SOX2 function in the nervous system (Collignon et 

al. 1996; Wood and Episkopou 1999).  To circumvent this, investigations have focused 

on the developing retina, a region where SOX2 is exclusively expressed (Collignon et al. 

1996; Wood and Episkopou 1999).  Mice with hypomorphic mutations in SOX2 show 

aberrant neuronal differentiation in the retina while conditional ablation of SOX2 in retinal 

progenitor cells results in a loss of proliferating cells, suggesting that SOX2 is important 

in maintaining the proliferative capacity of neural progenitors in the eye (Taranova et al. 

2006).  Investigations into the function of SOX2 in the cortex are less clear.  SOX2 

hypomorphic mice display a decrease in neurogenesis and progenitor proliferation in the 

adult cortex, however the overall architecture of the cortex remains intact (Ferri et al. 

2004; Cavallaro et al. 2008).  Recently, SOX2 expression was conditionally ablated in 

neural progenitors using a conditional Sox2-knockout mouse line crossed to a Nestin-

Cre mouse line (Miyagi et al. 2008).  The resulting NestinCre; SOX2 conditional-null 

homozygous mice display ventricular enlargement, reduced neurosphere forming 

potential, and embryonic lethality (Miyagi et al. 2008).  These studies further show that 

SOX2 loss had no effect on the ability of neural progenitor cells to generate neurons and 

glia or in their ability to self renew in vitro (Miyagi et al. 2008).  It is important to note, 

however, that both the conditional ablation and hypomorphic mutation of SOX2 in these 

studies occur at early neural tube stages, and therefore the effects of SOX2 loss on the 

specification of early neural progenitor cells cannot be disregarded.  In addition, these 

investigations do not address the temporal dependence of SOX2 in distinct neural 

progenitor populations generated after neural induction, such as those in the developing 

cortex or the adult.  Therefore, it remains to be determined whether SOX2 functions to 

maintain neural progenitor capacity throughout development, and if so, whether this 

function is essential or can be functionally compensated for by other SOXB1 factors. 



139 

Multiple populations of neural progenitor cells have been identified in regions 

throughout the developing and adult CNS.  In the developing dorsal telencephalon, the 

precursor to the adult neocortex, two classes of neural progenitor cells have been 

identified: radial glial cells and intermediate (basal) progenitor cells.  Together, these two 

cell types produce a majority of the glutamatergic projection neurons (also called 

pyramidal or excitatory neurons), as well as astrocytes and oligodendrocytes, found in 

the adult neocortex (Hartfuss et al. 2001; Malatesta et al. 2003; Haubensak et al. 2004; 

Casper and McCarthy 2006; Hevner 2006; Pontious et al. 2008).  Radial glial cells are 

originally derived from the NEP cells of the neural plate and neural tube and were 

traditionally believed to act as glial scaffolding for newly generated migrating neurons 

(Rakic 1971).  However, recent findings demonstrate that radial glial cells act as the 

predominant neural progenitor population in the dorsal telencephalon since they 

generate both neuronal and glial populations in vivo  (Malatesta et al. 2000; Hartfuss et 

al. 2001; Haubensak et al. 2004).  Furthermore, radial glial cells also give rise to the 

second neural progenitor population found in the dorsal telencephalon, the intermediate 

progenitor cells, which, in contrast to their multipotential precursors, exclusively 

differentiate into pyramidal neurons (Haubensak et al. 2004; Pontious et al. 2008; 

Kowalczyk et al. 2009). 

Radial glial cells and intermediate progenitor cells can be distinguished by their 

cellular and molecular characteristics (Gotz and Huttner 2005).  Cellularly, radial glial 

cells project long processes that extend the entire apical-basal axis of the dorsal 

telencephalon neuroepithelium (Hevner 2006; Malatesta et al. 2008).  Furthermore, 

radial glia soma are confined to the apical, or ventricular, lumen region of the 

neuroepithelium called the ventricular zone (VZ) (Boulder-Committee 1970).  In contrast, 

intermediate progenitor cells are spherical in shape, extend relatively short processes, 

and reside in a region basal to the VZ called the subventricular zone (SVZ) (Boulder-
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Committee 1970).  Molecularly, radial glial cells have been shown to express neural 

progenitor and astroglial markers including NESTIN, glutamate astrocyte specific 

transporter (GLAST), brain lipid binding protein (BLBP), PAX6, and in rodents activate 

the human promoter of the glial fibrillary acidic protein (hGFAP) (Casper and McCarthy 

2006; Hevner 2006; Malatesta et al. 2008).  Intermediate progenitor cells, on the other 

hand, express the proneural basic helix-loop-helix transcription factor Neurogenin2 

(NGN2), as well as the T-Box transcription factor TBR2 and the Cut homeodomain 

transcription factor CUX2 (Bulfone et al. 1999; Kimura et al. 1999; Cai et al. 2000; Nieto 

et al. 2004; Zimmer et al. 2004; Ochiai et al. 2009).  Both radial glial cells and 

intermediate progenitor cells, however, express SOX2; although it is unclear if SOX2 is 

necessary to maintain the proliferative and differentiation capacity of these cell 

populations as it does in other neural progenitor populations in the CNS. 

In this chapter we conditionally ablate SOX2 expression in radial glial cells of the 

mouse developing dorsal telencephalon using a conditional SOX2-knockout line 

(SOX2Cond/+).  To target radial glial cells, we utilized a mouse line in which the expression 

of Cre-recombinase is driven by the hGFAP promoter.  The hGFAP promoter has been 

demonstrated to be active in radial glial populations of the telencephalon at E13.5 and 

lineage tracing studies using both GFP and LacZ reporter mouse lines show that hGFAP 

driven CRE recombination occurs in pyramidal neurons and glia in the developing dorsal 

telencephalon; however its expression in ventral telencephalic neurons remains 

inconclusive  (Brenner et al. 1994; Malatesta et al. 2000; Malatesta et al. 2003; Casper 

and McCarthy 2006).  The resulting hGFAPCre;SOX2Cond/Cond mice demonstrate a loss of 

SOX2 in dorsal telencephalic neural progenitor cells and, as a result, a decrease in the 

number of proliferating radial glial cells and intermediate progenitor cells.  Interestingly, 

we find that SOX2-deficient cells from the dorsal telencephalon are capable of 

generating neurospheres in numbers comparable to SOX2-positive littermate controls; 
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however these neurospheres are significantly smaller in size.  Although the SOX2-

mutant neurospheres maintain their ability to generate neurons and glia, they show a 

significantly diminished self-renewal potential.  These analyses demonstrate that radial 

glial cells are dependent upon SOX2 to maintain their proliferative and self-renewal 

capacity in vivo and that this function is not fully compensated for by other SOXB1 

members. 
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Results 

Efficient Expression and Recombination of hGFAPCre in Radial Glia of the Dorsal 
Telencephalon 

 

A 2.2kb fragment of the human promoter of Glial Fibrillary Acidic Protein 

(hGFAP) has been shown to drive expression of heterologous proteins such as LacZ or 

GFP in radial glial populations in the developing dorsal telencephalon (Brenner et al. 

1994; Malatesta et al. 2000; Ellis et al. 2004).  Lineage studies utilizing hGFAP-driven 

EGFP and LacZ expression have demonstrated that hGFAP-positive radial glia cells 

located within the developing dorsal telencephalon serve as precursors to a majority of 

the pyramidal projection neurons that are ultimately generated in this region, as well as 

to parenchymal astrocytes and oligodendrocytes that appear later in development  

(Brenner et al. 1994; Casper and McCarthy 2006).  Therefore, to directly target radial 

glial populations for SOX2 ablation, we utilized a transgenic mouse line in which the 

expression of Cre-Recombinase (Cre) is driven by the hGFAP promoter (hGFAPCre) 

(Casper and McCarthy 2006). 

In the mouse, radial glia populations emerge in the neuroepithelium at 

approximately E9.5 (Pinto and Gotz 2007).  However, the onset of expression for the 

hGFAP promoter has been shown to occur at E13.5 (Brenner et al. 1994).  To determine 

the spatial and temporal expression of hGFAP-driven Cre, we first analyzed coronal 

brain sections of E12.5 hGFAPCre-positive mice.  At E12.5, CRE protein cannot be 

detected in the developing cortex using anti-CRE antibodies (Data not shown).  

However, by E15.5, CRE protein can be readily detected in the ventricular zone (VZ) of 

the developing dorsal telencephalon (Fig 4.1A-C).  In addition, to test the recombination 

efficiency of the CRE enzyme, hGFAPCre mice were crossed to the Rosa26-LacZ 

reporter mouse strain (Rosa26LacZ-Rep) in which a cassette containing the β-galactosidase 
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gene (LacZ), preceded by a stop sequence flanked by two loxP sites, is inserted into the 

ubiquitously expressed Rosa26 locus (Friedrich and Soriano 1993; Mao et al. 1999).  In 

the presence of CRE, the loxP sites undergo recombination, excising the stop sequence 

and allowing for the expression of β-galactosidase (β-gal) which can then be detected 

using the substrate X-gal (Nagy 2000).  In E15.5 hGFAPCre;Rosa26LacZ-Rep embryos, β-

gal is expressed throughout the VZ of the dorsal telencephalon, corresponding to the 

observed Cre expression (Fig 4.1D).  In addition, β-gal is also observed distally in the 

cortical plate which supports previous observations that nascent neurons derived from 

radial glial cells in the dorsal telencephalon migrate toward the cortical plate (Fig 4.1D) 

(Malatesta et al. 2000; Hartfuss et al. 2001; Malatesta et al. 2003; Haubensak et al. 

2004; Casper and McCarthy 2006).  These results demonstrate that hGFAPCre 

expression and Cre-mediated recombination efficiently occur in dorsal telencephalic 

radial glial cells. 

 

SOX2 Loss in the Dorsal Telencephalon Results in Reduced Cortical Thickness and 
Increased Embryonic Lethality 

 

To temporally and spatially ablate SOX2 expression in radial glial cells, hGFAPCre 

mice were crossed to a mouse line carrying a conditional Sox2 allele in which the SOX2 

open reading frame (ORF) is flanked by two loxP sequences (Sox2Cond/+) (Taranova et 

al. 2006).  At E12.5, before the onset of hGFAP-Cre expression, SOX2 is expressed in 

the dorsal telencephalon in both hGFAPCre;Sox2Cond/Cond homozygous mice (Fig 4.2A) 

and hGFAPCre;Sox2Cond/+ heterozygous littermates (Fig 4.2B).  However, at E14.5 there 

is a reduction in the number of cells expressing SOX2 in the VZ of 

hGFAPCre;Sox2Cond/Cond mice (Fig 4.2C) compared to hGFAPCre;Sox2Cond/+ controls (Fig 

4.2D).  By E15.5, SOX2 expression is completely ablated in the dorsal telencephalon of 
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hGFAPCre;Sox2Cond/Cond embryos (Fig 4.2E) but continues to be maintained throughout 

the VZ in hGFAPCre;Sox2Cond/+ mice (Fig 4.2F).  Similarly, at E17.5 SOX2 expression 

cannot be detected in the hGFAPCre;Sox2Cond/Cond dorsal telencephalon (Fig 4.2G) but is 

maintained in hGFAPCre;Sox2Cond/+ controls (Fig 4.2H).  Throughout these embryonic 

stages, SOX2 expression is maintained in the ventral telencephalon of both 

hGFAPCre;Sox2Cond/Cond (Fig 4.2A,C,E,G) and hGFAPCre;Sox2Cond/+ mice (Fig 4.2B,D,F,H), 

consistent with the lack of Cre expression in this region (Fig 4.1A-D).  Moreover, no 

overt differences were observed in neuronal production using the pan-neuronal marker 

β-Tubulin III, which was expressed abundantly in the dorsal telencephalon of both 

hGFAPCre;Sox2Cond/Cond and hGFAPCre;Sox2Cond/+ embryos (Fig 4.2 I-P).  Furthermore, 

SOX2 expression was mutually exclusive of β-Tubulin III expression in all embryos 

analyzed (Fig 4.2Q-X).    

Coincident with loss of SOX2 expression, we also observe a decrease in the 

number of hGFAPCre;Sox2Cond/Cond embryos obtained after E12.5 (approximately 50% of 

the expected Mendelian level)(Fig 4.3, green).  In contrast, the number of 

hGFAPCre;Sox2Cond/+ control embryos that are obtained are near expected Mendelian 

levels, demonstrating that this observation is genotype specific (Fig 4.3, red).  

Furthermore, although rare, we were able to obtain viable hGFAPCre;Sox2Cond/Cond 

postnatal pups (Fig 4.3).  Many of these animals exhibited unilateral, stressed-induced 

circling behavior suggesting they harbor neurological defects (Data not shown) and most 

die within 60 days of birth (Fig 4.3). 

In addition to increased embryonic lethality of hGFAPCre;Sox2Cond/Cond animals, we 

also observe a reduction in the cortical thickness in hGFAPCre;Sox2Cond/Cond embryos .  

Quantitative analysis of E15.5 embryos (n=4) demonstrates that there is a statistically 

significant reduction in the thickness of the dorsal telencephalon in 

hGFAPCre;Sox2Cond/Cond embryos (Fig 4.4A) in contrast to hGFAPCre;Sox2Cond/+ littermate 
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controls (Fig 4.4 B,C p<0.05), with no difference observed in the thickness of the 

ventricular zone between these groups (Fig 4.4C).  However, the inability to detect any 

differences in β-Tubulin III expression between wildtype and mutant embryos suggests 

that further analysis is necessary to determine if differences in other neuronal markers 

are observed.    

The Loss of SOX2 in the Dorsal Telencephalon Results in a Decrease in the Number of 
Proliferating Radial Glial Cells and Intermediate Progenitor Cells 

 

The reduced cortical thickness in hGFAPCre;Sox2Cond/Cond mice suggests that loss 

of SOX2 expression in the dorsal telencephalon may impair proper cortical development.  

Therefore, we assessed the progenitor characteristic of SOX2 mutant cells by examining 

the expression of radial glial and intermediate progenitor cell markers as well as their 

proliferative capacity using BrDU.  SOX1, a SOXB1 homologue of SOX2, is coexpressed 

with SOX2 in neural progenitor cells including radial glia throughout the nervous system 

and its high sequence similarity to SOX2 suggests that it may be able to compensate for 

SOX2 loss (Collignon et al. 1996; Wood and Episkopou 1999; Avilion et al. 2003).   At 

E15.5, SOX1 expression is maintained in radial glial cells throughout the VZ and SVZ of 

the dorsal telencephalon in hGFAPCre;Sox2Cond/Cond and hGFAPCre;Sox2Cond/+ embryos 

(Fig 4.5A-B), suggesting that the loss of SOX2 expression does not directly affect SOX1 

expression.   

Next, we addressed whether radial glial populations are affected by the loss of 

SOX2 using the radial glial marker PAX6 (Gotz et al. 1998).  PAX6 is expressed in both 

hGFAPCre;Sox2Cond/+ (Fig 4.5C) and hGFAPCre;Sox2Cond/Cond embryos at E15.5 (Fig 4.5D).  

However, the number of PAX6-positive cells was significantly reduced in 

hGFAPCre;Sox2Cond/Cond embryos, suggesting that there was a decrease in the number of 

radial glial cells in the dorsal telencephalon of these embryos (Fig 4.5I, p<0.01).  Since 
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radial glial cells give rise to the intermediate progenitor population which resides in the 

SVZ,  we hypothesized that the reduction in radial glial cells in hGFAPCre;Sox2Cond/Cond 

animals would also decrease the number of intermediate progenitor cells as well.  We 

observed a significant reduction in the number of TBR2 positive cells in the SVZ of 

hGFAPCre;Sox2Cond/Cond embryos compared to hGFAPCre;Sox2Cond/+ controls  (Fig 4.5E-

F,J, p<0.01).  Together, these data suggest that the loss of SOX2 in radial glial cells may 

affect their ability to proliferate, resulting in fewer radial glial cells, and as a 

consequence, fewer intermediate progenitor cells.  Therefore, to determine whether 

there is a reduction in proliferating cells in the hGFAPCre;Sox2Cond/Cond dorsal 

telencephalon, we labeled cells with the S-phase marker bromo-deoxyuridine (BrDU).  

The hGFAPCre;Sox2Cond/Cond embryos show a significant reduction in the number of 

BrDU-positive cells in the dorsal telencephalon compared to hGFAPCre;Sox2Cond/+ 

controls (Fig 4.5G-H, K, p<0.05).  These results collectively demonstrate that the loss of 

SOX2 results in a reduction in proliferating radial glial and intermediate progenitor cell 

populations in the dorsal telencephalon which subsequently leads to a thinning of the 

cortex.  It remains to be determined if this phenotype is the result of a decrease in 

neuronal production or defects in neuron maturation or morphology. 

 

SOX2-deficient Neural Progenitor Cells Have a Reduced Proliferative and Self-renewal 
Capacity and are able to Generate Multipotential Neurospheres. 

 

To test the self-renewal capacity and differentiation potency of SOX2-deficient 

cells, the dorsal telencephalons of E15.5 hGFAPCre;Sox2Cond/Cond and 

hGFAPCre;Sox2Cond/+ embryos were dissociated and cultured at clonal density in vitro to 

form free-floating colonies called neurospheres (Coles-Takabe et al. 2008; Hutton and 

Pevny 2008).  Interestingly, both hGFAPCre;Sox2Cond/Cond  and hGFAPCre;Sox2Cond/+ cells 
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were able to generate equal numbers of neurospheres in culture (Fig 4.6A-B,C).  

However, the neurospheres generated from hGFAPCre;Sox2Cond/Cond embryos were 

significantly smaller than those generated from hGFAPCre;Sox2Cond/+ embryos (Fig 4.6A-

B, D; p<0.001).  To verify that the neurospheres generated from hGFAPCre;Sox2Cond/Cond 

mice were derived from SOX2-negative cells, neurospheres from both 

hGFAPCre;Sox2Cond/Cond  and hGFAPCre;Sox2Cond/+ embryos were allowed to attach to 

adherent slides and stained with SOX2 antibody.  The hGFAPCre;Sox2Cond/Cond 

neurospheres were negative for SOX2 expression (Fig 4.7A-C) while 

hGFAPCre;Sox2Cond/+ neurospheres continue to express SOX2 (Fig 4.7D-F).  These 

results suggest that SOX2-deficient dorsal telencephalic neural progenitor cells are 

capable of generating neurospheres in vitro, albeit at a reduced size compared to control 

littermates. 

To test the self-renewal capacity of SOX2-deficient neural progenitor cells, 

individual primary neurospheres were dissociated into single cells and re-cultured at 

clonal density to form secondary neurospheres.  Both hGFAPCre;Sox2Cond/Cond (Fig 4.8A) 

and hGFAPCre;Sox2Cond/+ (Fig 4.8B) primary neurospheres were able to generate 

secondary neurospheres, however significantly fewer hGFAPCre;Sox2Cond/Cond secondary 

neurospheres were generated compared to hGFAPCre;Sox2Cond/+ cells (Fig 4.8C; 

p<0.001), demonstrating that SOX2-deficient primary neurospheres have a reduced 

ability to self-renew.  Furthermore, similar to the results obtained from the primary 

neurosphere cultures, hGFAPCre;Sox2Cond/Cond secondary neurospheres were significantly 

smaller than hGFAPCre;Sox2Cond/+ neurospheres (Fig 4.8D; p<0.001). These data 

suggest that SOX2-deficient neural progenitor cells have a decreased capacity for self-

renewal in vitro compared to littermate controls. 

Lastly, to test the ability of SOX2-deficient neurospheres to generate neurons 

and glia (multipotency), primary neurospheres from hGFAPCre;Sox2Cond/Cond and 
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hGFAPCre;Sox2Cond/+ embryos were transferred to laminin coated slides and induced to 

differentiate.  Both hGFAPCre;Sox2Cond/+ (Fig 4.8E-G) and hGFAPCre;Sox2Cond/Cond (Fig 

4.8H-J) neurospheres were capable of differentiating into both β-Tubulin III-positive 

neurons and GFAP-positive astrocytes in vitro.  These results suggest that Sox2-

deficient neurospheres are capable of multipotential differentiation. 

Collectively, we demonstrate that the loss of SOX2 in radial glial cells 

significantly reduces the number of proliferating radial glial cells and intermediate 

progenitor cells in the developing dorsal telencephalon.  This reduction in the number of 

neural progenitors results in a thinning of the developing cortex.  In addition, SOX2-

deficient cells are still capable of generating multipotential neurospheres in vitro; 

however they are smaller and have a decreased ability to self-renew. 

 

Discussion 

 

In vivo investigations into the role of SOX2 in neural progenitor cells in the 

mammalian cortex have been difficult due to early embryonic lethality of SOX2-null mice  

(Avilion et al. 2003).  To circumvent this obstacle, we have utilized a mouse line in which 

SOX2 can be conditionally ablated in a temporally defined and spatially restricted 

manner (Sox2Cond) (Taranova et al. 2006).  By crossing the Sox2Cond mouse line with the 

hGFAPCre mouse line, we specifically addressed the role of SOX2 in radial glial cells of 

the dorsal telencephalon.  The ablation of SOX2 in embryonic radial glial cells results in 

a decrease in the number of proliferating radial glial cells and in their direct descendents, 

intermediate progenitor cells.  Furthermore, the loss of SOX2 also results in a reduction 

in cortical thickness and, in conjunction with the in vitro analyses (neurosphere assay), 

suggest that SOX2-deficient cells have decreased proliferative and self-renewal 
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capacities.  These results are in concert with previous findings that demonstrate that loss 

of SOX2 in early mouse retinal progenitor cells leads to a hypocellular eye phenotype 

(Taranova et al. 2006),  as well as to a decrease in proliferating cortical cells when 

SOX2 is ablated at neural plate stages (Miyagi et al. 2008).  Moreover, interfering with 

SOX2 function, using dominant-negative constructs in chick neural tube, also results in 

neural progenitor cells prematurely exiting the cell cycle  (Bylund et al. 2003; Graham et 

al. 2003).  These data suggest that SOX2 is important in maintaining the proliferative 

and differentiation capacity of neural progenitor cells throughout the developing the 

CNS. 

The results of the in vitro examination of hGFAPCre;SOX2-deficient radial glial 

cells are in contrast with observations made using the Nestin-Cre mouse line to ablate 

SOX2 (Miyagi et al. 2008).  Primarily, we demonstrate that SOX2-deficient cells are 

equally as capable at generating primary neurospheres as SOX2-positive cells but are 

severely inhibited in generating secondary neurospheres.  Miyagi et al. (2008) showed a 

decrease in primary neurospheres generated by SOX2-deficient cells but no reduction in 

secondary neurosphere formation. There are several possibilities to explain these 

discrepancies.  First, the two SOX2 conditional knockout mouse lines used in these 

studies were independently generated.  Therefore, it is unclear whether the efficiency of 

SOX2 excision is equal between the two.  Second, we utilize the hGFAPCre mouse strain 

to drive CRE which is expressed at approximately E13.5, a stage after many neural 

progenitor populations, including radial glial cells, have already become specified  

(Malatesta et al. 2000; Casper and McCarthy 2006).  Thus, we are ablating SOX2 

function in established radial glial populations and their derivatives.  In contrast, Miyagi 

et al. (2008) utilize a Nestin-driven Cre-recombinase mouse line to direct SOX2 ablation.  

The onset of Nestin expression occurs at about E7.5  (Dahlstrand et al. 1995; 

Kawaguchi et al. 2001) and it is expressed in all NEP cells of the neural plate 
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(approximately E9.5), which will collectively go on to generate the entire CNS  

(Frederiksen and McKay 1988).  Therefore, in these mice, SOX2 expression is lost in all 

NEP cells at the very onset of neural development which, in turn, may adversely affect 

the specification and development of all subsequent neural progenitor populations 

(which may also account for their inability to obtain viable postnatal mice). Therefore, the 

in vitro differences observed between the two studies may be an effect of molecular 

changes occurring in neural progenitor cells during early or late stages of development 

that influence their fate specification and commitment.  Lastly, the discrepancies 

observed between the two in vitro studies may not be due to cell intrinsic mechanisms, 

but rather to differences in the culture conditions that were used, which in turn may 

overtly affect the behavior of neural progenitor cells in vitro  (Deleyrolle and Reynolds 

2009).  Further studies are necessary using different Cre mouse strains to help clarify 

these observations. 

Our results are the first to demonstrate that SOX2 expression is necessary for 

the proper maintenance of specified neural progenitor populations at mid to late stages 

of neural development.  The loss of SOX2 in dorsal radial glial cells reduces the number 

of neural progenitor cells within the VZ and SVZ and adversely effects the proper 

development of the dorsal telencephalon, resulting in a thinning of the neocortex.  In 

addition, these results show that SOX1 and SOX3 cannot completely functionally 

compensate for SOX2 in these cells, confirming the importance of SOX2 in neural 

progenitor populations of the CNS.   
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Materials and Methods 

Animal Breeding and Husbandry 

All animals were used and maintained in accordance with protocols approved by 

the Institutional Animal Care and Use Committee (IACUC) at the University of North 

Carolina-Chapel Hill.  The generation of the Sox2Cond mouse line has been published 

previously (Taranova et al. 2006).  The hGFAPCre mouse line was generously provided 

by Ken McCarthy (Univ. of North Carolina-Chapel Hill) and has been described 

previously  (Casper and McCarthy 2006).  The hGFAPCre;Sox2Cond mouse line was 

produced by mating hGFAPCre mice with SOX2Cond/+ mice; subsequent generations were 

maintained on a Sox2 heterozygous background (hGFAPCre;Sox2Cond/+).  To produce 

hGFAPCre;Sox2Cond/Cond mutants, hGFAPCre;Sox2Cond/+ males and females were crossed.  

For proliferating analysis, pregnant females were injected intraperitoneally with BrDU 

(100mg/kg body mass) 2 hours before being euthanized for embryo harvest.  The 

morning of the plug date was recorded as E0.5. 

 

Tissue Dissociation and Neurosphere Assay 

The generation of neurospheres was conducted using previously published 

protocols (Hutton and Pevny 2008).  The dorsal telencephalon was dissected from 

hGFAPCre;Sox2Cond/Cond and hGFAPCre;Sox2Cond/+ embryonic brains (n=4 for each 

genotype) and incubated in Papain (Roche) followed by successive treatments with 

Trypsin Inhibitor (Sigma) and a final wash in Neurobasal medium (Gibco).  The tissue 

was then mechanically dissociated using a pipettor into a single-cell suspension in 

Neurobasal medium containing B27 and N2 supplements (Gibco) and 10ng/ml basic 

Fibroblast Growth Factor (bFGF) and Epidermal Growth Factor (EGF) (Invitrogen).  

Dissociated cells were then seeded at clonal density of 2000 cells/6cm dish (283 

cells/cm2) (Coles-Takabe et al. 2008) in non-adherent plates (Nunc).  After five days in 
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culture, the number of neurospheres was counted per plate and the diameter of 

individual neurospheres measured using ImagePro Express Software 

(MediaCybernetics).  To generate secondary neurospheres, individual primary 

neurospheres were mechanically dissociated into a single cell suspension and the cells 

plated again at clonal density.  For differentiation analysis, individual neurospheres were 

plated in 8-well chambers slides (Nunc) coated with Poly-D-Lysine and Laminin in 

Neurobasal medium containing bFGF and EGF.  After 24 hours, the media was removed 

and replaced with Neurobasal medium (+ 2% heat-inactivated horse serum).  Cells were 

cultured for one week under these conditions after which they were fixed with 4% 

paraformaldehyde (PFA) for 30 minutes at room temperature and stained using the 

immunocytochemistry procedures below. 

 

Immunocytochemistry 

Dissected mouse embryos were fixed in 4% PFA overnight at 4°C.  After fixation, 

tissue was subjected to a sucrose gradient (10%, 20%, 30%) and frozen in OCT medium 

(Tissue-Tek).  Frozen 12µm coronal sections were taken using a cryostat on Superfrost 

Plus slides (VWR).  For staining, slides were blocked for one hour at room temperature 

with 10% Goat Serum/1% Triton-100 in Phosphate Buffered Saline (PBS).  Primary and 

secondary antibodies were diluted in 5% goat serum/0.1% Triton-100 in PBS.  Slides 

were treated with primary antibodies overnight at 4°C and secondary antibodies for 1 

hour at room temperature.  Primary antibodies used are: SOX2 (1:3000 Millipore; 1:100 

R&D Systems), PAX6 (1:100 Developmental Studies Hybridoma Bank), TBR2 (1:500 

AbCam), β-Tubulin III (TUJ1, 1:1000 Covance), Bromo-Deoxyuridine (BrDU, 1:500, BD 

Biosciences), Glial Fibrillary Acidic Protein (GFAP, 1:500, Dako), Cre-recombinase 

(1:2000 Novagen), and SOX1 (1:1000  (Pevny et al. 1998)).  Secondary antibodies used 
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were: anti-rabbit Alexa 488 or 546 (1:1000 Invitrogen) and anti-mouse (IgG1 and IgG2A) 

Alexa 488 and 546 (1:1000 Invitrogen).  All slides were counterstained with Hoechst 

33258 (Invitrogen).  Fluorescent images were taken on a Leica Microsystems DM-IRB 

inverted fluorescent microscope (Wetzlar, Germany) and a QImaging Retiga-SRV 

camera (Surrey, BC, Canada) using ImagePro Express software (MediaCybernetics). 

 

Hematoxylin-Eosin Staining 

 Frozen coronal sections were incubated in PBS for 30 minutes at room 

temperature to remove excess OCT.  Slides were then incubated in Harris’ Hematoxylin 

Solution (Sigma) for 5 minutes and then washed with dH20.   Next, slides were dipped 

twice in acid alcohol (1% HCl in 70% EtOH) rinsed with copious amounts of tap water, 

followed by dH20.  Slides were then dehydrated using 95% ethanol, placed in alcoholic 

Eosin Y Solution (Sigma) for 30 seconds, then rinsed with two steps of 95% and then 

100% ethanol. 

 

Measuring Cortical Thickness and Cell Density 

 To measure cortical thickness, 12µm coronal slices were measured from the 

ventricular surface to the pial surface using the measurement tool in the ImagePro 

Express Software at 20x magnification.  The mean of three measurements was recorded 

per 12µm  slice with three to four consecutive slices measured from each embryo 

(n=4/genotype). 

 For cell count comparisons, 12µm coronal sections were stained for cell-specific 

antibodies and counterstained with Hoechst 33258 to label nuclei.  Pictures were taken 

at 20x magnification and a 300µm x 300 µm box was drawn over the dorsal 

telencephalon using Photoshop software.  Cells double-labeled for Hoechst and 
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antibody were then counted.  Four consecutive slices were measured for each embryo 

(n=3/genotype).    

 

Statistical Analysis 

All data were analyzed using Prism 3.0 software (GraphPad).  Samples were 

analyzed using a two-tailed T-test. 
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Figures 
Figure 4.1 
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Figure 4.1. hGFAP driven Cre-recombinase expression in the E15.5 dorsal 

telencephalon.  E15.5 coronal sections of hGFAPCre embryos labeled with anti-Cre 

antibody (A,C) and counterstained with Hoechst 33258 to label nuclei (B,C). 

hGFAPCre;Rosa26LacZ-Rep embryo treated with X-Gal to identify cells in which Cre-

mediated recombination occurs (D).  Cre is expressed in the DT but not VT (A,C-D). 

Abbreviations: hGFAP, human Glial Fibrillary Acidic Protein; DT, dorsal telencephalon; 

VT, ventral telencephalon.  Scale Bars=200µm. 
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Figure 4.2 
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Figure 4.2.  Developmental time course of SOX2 expression in 

hGFAPCre;SOX2Cond/+ and hGFAPCre;SOX2Cond/Cond mice.  5X images of SOX2 (A-H, Q-

X) and β-Tubulin III (I-P, Q-X) antibody staining in hGFAPCre;SOX2Cond/+ and 

hGFAPCre;Sox2Cond/Cond embryos at E12.5, E14.5, E15.5 and E17.5.  SOX2 is expressed 

in both hGFAPCre;SOX2Cond/+ and hGFAPCre;Sox2Cond/Cond embryos (A and B) at E12.5.  

In hGFAPCre;Sox2Cond/Cond embryos, a reduction in the number of SOX2-positive cells 

found in the DT occurs at E14.5 (D) while a complete loss of SOX2-positive cells is seen 

by E15.5 (F) into E17.5 (H).  In contrast, SOX2 is maintained in the DT of 

hGFAPCre;SOX2Cond/+ embryos throughout development (A,C,E,G).  β-Tubulin III is 

expressed in both hGFAPCre;SOX2Cond/+ and hGFAPCre;Sox2Cond/Cond embryos (I-P, Q-X) 

and is mutually exclusive of SOX2 expression (Q-X). Abbreviations: DT, Dorsal 

Telencephalon. 
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Figure 4.3 
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Figure 4.3 Distribution of hGFAPCre;SOX2Cond/+ and hGFAPCre;Sox2Cond/Cond 

genotypes obtained throughout development.  The percentage of 

hGFAPCre;SOX2Cond/+ embryos (Red solid line) was near the expected Mendelian 

distribution (Red dotted line).  In contrast, hGFAPCre;Sox2Cond/Cond embryos (Green 

solid line) were obtained at a much lower percentage than is predicted by the 

Mendelian distribution (Green dotted line) suggesting embryonic lethality occurs after 

E12.5. 

  



161 

Figure 4.4 
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Figure 4.4.  Reduction in Cortical Thickness in hGFAPCre;Sox2Cond/Cond embryos.  

Hematoxylin-Eosin stained sections of E15.5 dorsal telencephalon of 

hGFAPCre;Sox2Cond/Cond (A) and hGFAPCre;SOX2Cond/+ (B) embryos.  There is a 

statistically significant reduction in the cortical thickness of hGFAPCre;Sox2Cond/Cond 

embryos compared to hGFAPCre;SOX2Cond/+ controls (C) but no difference was seen in 

the thickness of the VZ (A-C). Scale Bars=50µm.  (*) =p<0.05. 
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Figure 4.5 
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Figure 4.5 Expression of Dorsal Telencephalic Cell-specific Markers in E15.5 

hGFAPCre;SOX2Cond/+ and hGFAPCre;Sox2Cond/Cond embryos.  The neural progenitor 

marker SOX1 is expressed in the DT of both hGFAPCre;SOX2Cond/+ (A) and 

hGFAPCre;Sox2Cond/Cond (B) embryos.  The radial glial marker PAX6 is expressed in the 

DT of hGFAPCre;SOX2Cond/+ mice (C) but reduced in hGFAPCre;Sox2Cond/Cond embryos (D, 

I).  The intermediate progenitor marker TBR2 is also maintained in the DT of 

hGFAPCre;SOX2Cond/+ embryos (E) and reduced in hGFAPCre;Sox2Cond/Cond embryos (F, 

J).  Proliferating cells labeled by BrDU incorporation in the DT of hGFAPCre;SOX2Cond/+ 

(G) and hGFAPCre;Sox2Cond/Cond (H) animals.  There is a reduced number of BrDU-

positive cells in hGFAPCre;Sox2Cond/Cond embryos (K).  Abbreviations: DT, Dorsal 

Telencephalon.  P values: (*)=p<0.05; (**)=p<0.01. 
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Figure 4.6 
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Figure 4.6 Primary Neurosphere Formation.  Cells isolated from the DT of 

hGFAPCre;Sox2Cond/Cond mice are able to generate primary neurospheres (A,C) at the 

same frequency as hGFAPCre;SOX2Cond/+ isolated cells (B,C).  However, 

hGFAPCre;Sox2Cond/Cond primary neurospheres have a smaller diameter (A,D) than the 

hGFAPCre;SOX2Cond/+ controls (B,D) suggesting there are proliferative differences 

between the two genotypes. Abbreviation: DT, dorsal telencephalon.  (*)=p<0.001. Scale 

Bar= 250µm 
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Figure 4.7 
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Figure 4.7. Primary neurospheres generated from hGFAPCre;Sox2Cond/Cond DT cells 

do not express SOX2.  Primary neurospheres generated from cells isolated from the 

DT of hGFAPCre;SOX2Cond/+ embryos express SOX2 (A,C) and counterstained with 

Hoechst 33258 to label nuclei (B,C).  Primary neurospheres generated from the DT of 

hGFAPCre;Sox2Cond/Cond embryos do not express SOX2 (D,F) but are labeled with 

Hoechst 33258 (E-F), demonstrating that they are generated from SOX2-deficient cells.  

Abbreviations: DT, Dorsal Telencephalon. 
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Figure 4.8 

 

 

 

  



170 

Figure 4.8  Self-renewal and multipotency of primary neurospheres.  Upon primary 

neurosphere dissociation, both hGFAPCre;Sox2Cond/Cond (A) and hGFAPCre;SOX2Cond/+ (B)  

embryos are able to generate secondary neurospheres.  However, 

hGFAPCre;Sox2Cond/Cond embryos generate fewer secondary neurospheres than 

hGFAPCre;SOX2Cond/+ controls (C) and are smaller in diameter than hGFAPCre;SOX2Cond/+ 

secondary neurospheres (D).  Primary neurospheres were allowed to differentiate to 

generate neurons and glia.  The hGFAPCre;SOX2Cond/+ neurospheres were able to 

generate β-Tubulin III-positive neurons (A, C) and GFAP-positive astrocytes (B,C).  The 

hGFAPCre;Sox2Cond/Cond neurospheres could also generate β-Tubulin III-positive neurons 

(H,J) and GFAP-positive astrocytes (I,J), however the two markers were often 

coexpressed in single cells (J).  Abbreviations: GFAP, Glial Fibrillary Acidic Protein.  

Scale markers=20µm.  (***)=p<0.001. 
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Summary of Findings 

Chapter Two 

• SOX2-EGFP expression faithfully recapitulates endogenous SOX2 expression in 

the SOX2EGFP mouse line. 

• SOX2 (and SOX2-EGFP) labels ES cells, embryonic neural progenitor cells and 

distinct populations of adult neural progenitor cells in the CNS. 

• SOX2Random mice express SOX2-EGFP in a subset of neural progenitor cells in 

the CNS, suggesting the existence of heterogeneous populations of neural 

progenitor cells which differentially regulate SOX2 expression. 

• All neurospheres generated from SOX2EGFP mice, regardless of tissue region or 

developmental stage, express SOX2-EGFP. 

• Modified protocols for the dissociation, isolation, and culture of neural progenitor 

cells from the CNS result in an increase in cell viability for subsequent analyses. 

 

Chapter Three 

• SOX2 is expressed in PAX6-positive radial glial cells and in a subset of TBR2-

positive intermediate progenitor cells in the developing dorsal telencephalon. 

• Levels of SOX2-EGFP expression can be distinguished in SOX2EGFP mice using 

flow cytometry. 

• Utilizing the SOX2EGFP mouse line, radial glia, intermediate progenitors, and 

differentiated neurons can be prospectively isolated using FACS from the 

developing dorsal telencephalon based upon high, intermediate, or low 

intracellular levels of SOX2 expression, respectively. 

• SOX2 is co-expressed with a small population of β-Tubulin III-positive cells in the 

VZ of the dorsal telencephalon, independent of PAX6 or TBR2 expression, 
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suggesting that a small population of neural progenitor cells undergo direct 

neuronal differentiation 

 

Chapter Four 

• hGFAPCre mice express Cre-Recombinase in the dorsal telencephalon beginning 

at E13.5. 

• SOX2 expression is lost in the dorsal telencephalon of hGFAPCre;SOX2Cond/Cond 

mice beginning at E13.5 and is completely ablated by E15.5. 

• hGFAPCre;SOX2Cond/Cond embryos have a reduction in the number of PAX6-

positive radial glial cells and TBR2-positive intermediate progenitor cells in the 

dorsal telencephalon at E15.5. 

• hGFAPCre;SOX2Cond/Cond embryos have a reduction in the number of BrDU labeled 

cells in the dorsal telencephalon at E15.5. 

• The dorsal telencephalon is thinner in hGFAPCre;SOX2Cond/Cond compared to 

hGFAPCre;SOX2Cond/+ controls. 

• SOX2-deficient cells are able to generate multipotential neurospheres, however 

these neurospheres are smaller and have limited self-renewal capacity compared 

to controls. 

• hGFAPCre;SOX2Cond/Cond embryos display increased embryonic lethality.  

Postnatal animals exhibit stress-induced, unilateral circling and die within 60 

days.   
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Brief Overview of Findings 

The results presented in this dissertation are the first to collectively demonstrate: 

that SOX2 is expressed in distinct neural progenitor populations throughout the 

developing and adult CNS, that distinct progenitor populations in the dorsal 

telencephalon can be prospectively identified and isolated based upon their intracellular 

concentrations of SOX2, and that SOX2 function is necessary to maintain the 

proliferative and self-renewal capacity of established radial glial populations in the 

developing dorsal telencephalon. 

This dissertation was designed to address the hypothesis that through the 

analyses of SOX2 expression and function, distinct neural progenitor populations 

can be prospectively identified in the developing dorsal telencephalon and 

furthermore, that SOX2 functions to maintain the proliferative, self-renewal, and 

differentiation capacities of these cells in vivo and in vitro..  The rationale 

supporting this hypothesis is that SOX2 has been shown to maintain progenitor cell 

identity and function in neural progenitor populations in the chick spinal cord and mouse 

developing retina (Bylund et al. 2003; Graham et al. 2003; Taranova et al. 2006).  

Moreover, SOX2 is also expressed in the developing and adult mammalian brain, 

although it is unclear in what cell types it is expressed and what function it serves in 

these cells (D'Amour and Gage 2003; Ellis et al. 2004; Ferri et al. 2004; Bani-Yaghoub et 

al. 2006).  Hypomorphic expression and conditional ablation of SOX2 at neural tube 

stages in the mouse result in neural defects including enlarged ventricles, aberrant 

neuronal differentiation, and decreases in neuronal production (Ferri et al. 2004; 

Cavallaro et al. 2008; Miyagi et al. 2008).  However, the temporal and spatial 

dependence upon SOX2 function at later stages of neural development is not known.  In 

this dissertation, I have tested this hypothesis by first generating and characterizing the 

expression of SOX2 in a SOX2EGFP mouse line to identify in which neural progenitor 
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populations in the developing and adult CNS express SOX2 (Ellis et al. 2004).  After 

establishing that SOX2-EGFP is expressed in distinct neural progenitor cells throughout 

the CNS, I next demonstrate that differential levels of SOX2 expression can be used to 

prospectively identify and isolate distinct progenitor classes from the dorsal 

telencephalon.  Lastly I address the function SOX2 in neural progenitors during mid to 

late stages of neural development (>E13.5), specifically by genetically ablating SOX2 in 

radial glial progenitor cells in the developing dorsal telencephalon.  Here I find that loss 

of SOX2 results in a reduction in the number of progenitor populations (radial glia and 

intermediate progenitors) within the dorsal telencephalon due to decreases in the 

proliferative and self-renewal capacity of these cells. 

In Chapter Two I address whether SOX2 expression can be used to identify 

neural progenitor populations in both the embryonic and adult CNS.  By characterizing 

the expression pattern of the SOX2EGFP mouse line generated in the lab, I demonstrate 

that SOX2-EGFP expression faithfully recapitulates endogenous SOX2 expression (Ellis 

et al. 2004).  Furthermore, I show that SOX2-EGFP is found in molecularly distinct 

neural progenitor populations in embryonic and adult neurogenic regions.  These results 

further demonstrate that all neurospheres generated from SOX2EGFP mice express 

SOX2-EGFP, confirming the use of SOX2 as a general neural progenitor marker with 

which neural progenitor cells can be prospectively identified.  In addition, I present 

protocols that more efficiently isolate SOX2-EGFP positive neural progenitor populations 

from tissue for use in in vitro analyses. 

In Chapter Three I show that using the SOX2EGFP mouse line, populations of 

radial glial cells, intermediate progenitor cells, or differentiated neurons can be isolated 

and enriched based upon their expression of high, intermediate or low levels of SOX2-

EGFP, respectively.  These results are the first to demonstrate that SOX2 is differentially 

expressed between distinct neural progenitor populations in the dorsal telencephalon.  In 
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addition, immunocytochemical analyses identify unique populations of SOX2 positive 

cells undergoing direct neuronal differentiation that do not coexpressed either PAX6 or 

TBR2, suggesting that these cells do not follow the canonical radial glial-intermediate 

progenitor cell differentiation pathway. 

Lastly, in Chapter Four I genetically dissect the role of SOX2 in radial glial cells of 

the developing dorsal telencephalon by conditionally ablating SOX2 in 

hGFAPCre;Sox2COND/COND embryos.  As a consequence of SOX2 ablation, the number of 

proliferating radial glia and their progeny, intermediate progenitor cells, is decreased, 

resulting in a thinning of the developing cortex.  SOX2-deficient cells also demonstrate 

decreased proliferative and self-renewal capacity in vitro.  Collectively these results 

demonstrate that SOX2 function is necessary to maintain populations of radial glial cell 

in the dorsal telencephalon.    

Discussion of Major Findings and Future Directions 

SOX2-EGFP Identifies Distinct Populations of Neural Progenitor Cells in the Embryonic 
and Adult Central Nervous System. 
 
 In chapter two I demonstrate that an EGFP reporter “knocked-in” to the SOX2 

locus can faithfully and efficiently recapitulate the expression of SOX2 protein in cells 

throughout the CNS.  Moreover, these results are the first to demonstrate that SOX2 is 

expressed in distinct populations of neural progenitor cells, such as those identified in 

the adult SVZ, hippocampus, and spinal cord.  However, one of the most important 

results from this chapter is the finding that all neurospheres generated from SOX2EGFP 

mice, regardless of region or developmental stage, express EGFP.  This establishes that 

SOX2 is expressed in all neurosphere-forming neural progenitor cells and also 

demonstrates that EGFP faithfully reports SOX2 expression.   In turn, this supports the 
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use of SOX2 expression as a tool for prospectively identifying neural progenitor cells in 

vivo.   

 The establishment of the SOX2EGFP mouse line as a tool to identify neural 

progenitor cells suggests that additional, more advanced genetic tools can be generated 

utilizing SOX2 expression.  For instance, one disadvantage of the SOX2EGFP line is that 

EGFP is ubiquitously expressed in all SOX2-positive cells throughout ontogeny.  While 

this is useful in identifying progenitor cells, it is not conducive for lineage analyses of 

distinct populations.  Therefore, the generation of SOX2 inducible reporter mouse lines, 

in which the expression of a fluorescent protein can be conditionally activated by a tissue 

specific Cre line, can allow for the temporal and spatial labeling of distinct neural 

progenitor cells (Nagy 2000).  Similarly, the development of an inducible SOX2-Cre 

mouse line, in which Cre expression can be temporally and spatially activated in the 

presence of the estrogen receptor ligand Tamoxifen, can be useful in targeting other 

genes of interest for Cre-mediated recombination in distinct neural progenitor 

populations in the CNS  (Bockamp et al. 2002).   

One specific question that can be addressed using additional SOX2 genetic tools 

is the identity and lineage contribution of neural progenitor populations in the adult SVZ.  

The results in Chapter 2 demonstrate that SOX2 is expressed in putative neural 

progenitor populations in the adult subventricular zone (SVZ) and hippocampal 

subgranular zone (SGZ) (Ellis et al. 2004).  In the SVZ, however, the precise identities of 

the multipotent neural progenitor populations remain unclear.  Multiple studies have 

indicated that the GFAP-positive Type B astrocytes residing in the SVZ serve as the 

multipotential neural progenitor population; ultimately generating the other progenitor 

classes (Type A and Type C cells) as well as the post-mitotic interneurons of the 

olfactory bulb  (Doetsch et al. 1997; Doetsch et al. 1999; Doetsch et al. 1999; Capela 

and Temple 2002).  However, conflicting studies have suggested that the ependymal 
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cells lining the ventricular lumen are the true neural progenitor cell population  

(Johansson et al. 1999; Carlen et al. 2009; Moreno-Manzano et al. 2009).  Both 

arguments are supported by strong data, but I believe that our observation that SOX2 is 

expressed in both populations suggests that each may have neural progenitor capacity.  

Thus, SOX2 expression in these cells can be used as a tool to identify the neural 

progenitor population in the SVZ in vivo. 

To definitively identify which of these populations serve as neural progenitor 

cells, an in vivo loss of function approach is required.  To accomplish this, a mouse line 

will be generated in which the expression of a potent cellular toxin gene (Diphtheria 

Toxin (DT)) is conditionally driven by the SOX2 promoter exclusively in the presence of 

Cre-Recombinase (SOX2DTA).   SOX2DTA mice will then be crossed to either inducible 

hGFAPCreERT2 or CFTRCreERT2 mice to target either Type B cells or ependymal cells for 

ablation, respectively, when administered the drug Tamoxifen.  Mice will then be 

analyzed for reductions in neurogenesis.  If neurogenesis is affected by the ablation of 

one population but not the other, it will suggest that the ablated cell population functions 

as the neural progenitor population in the SVZ.   

SOX2 is Differentially Expressed between Distinct Neural Progenitor Populations 
 

In chapter three I demonstrate that distinct populations of radial glia, intermediate 

progenitors, and postmitotic neurons can be isolated from SOX2EGFP/+ mice based upon 

their expression of high, intermediate, or low levels of SOX2, respectively.  Previous 

studies have shown that intracellular concentrations of SOX2 are important as mice with 

hypomorphic mutations in SOX2 expression (below 50% of endogenous levels) present 

with multiple neurological defects.  In neural progenitor cells of the developing retina, a 

reduction in SOX2 expression results in aberrant neuronal differentiation and 

hypocellularity  (Taranova et al. 2006).  Similarly, in Yellow Submarine (ysb) mice, 
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disruptions in specific regulatory elements which direct SOX2 expression in the 

developing inner ear result in decreased levels of SOX2 and a reduction in the number 

of sensory inner ear hair cells  (Kiernan et al. 2005).   In the developing brain, deletion of 

a neural cell-specific enhancer of SOX2 (in conjunction with a SOX2-null allele) results in 

reduced levels of SOX2 expression in the telencephalon and subsequent cellular defects 

including neuron degeneration, increased ventricular size, cortical thinning and impaired 

neurogenesis in adults  (Zappone et al. 2000; Ferri et al. 2004; Cavallaro et al. 2008).   

Hypomorphic SOX2 mutations in humans have also been observed with patients 

diagnosed with anophthalmia and mental retardation  (Gardner and Rossant 1979; 

Fantes et al. 2003).  Thus, the intracellular concentration of SOX2 is important for the 

proper maintenance and differentiation of neural progenitor cells in the developing and 

adult nervous systems. However, it remained unclear whether SOX2 is differentially 

expressed between distinct neural progenitor populations under normal physiological 

conditions.  The results I present in Chapter Three are the first direct evidence that 

distinct neural progenitor populations, specifically radial glia and intermediate 

progenitors, differentially express SOX2 in vivo. 

Despite the finding that SOX2 is differentially expressed in distinct neural 

progenitor populations, it is still unclear how SOX2 concentrations may affect cell-fate 

decisions.  Therefore, it is important to identify genes that are differentially expressed in 

cell populations with distinct levels of SOX2 as well as identify the mechanisms by which 

SOX2 regulates these genes.  First, potential targets of SOX2 modification can be 

identified utilizing techniques such as DNA microarray to screen for the differential 

regulation of thousands of genes.  Given that the SOX2 loss of function studies 

presented in chapter four demonstrate a reduction in proliferating cells, it will be 

important to look at genes involved in cell cycle regulation as well as genes involved in 

the conversion of radial glia to intermediate progenitor cells such as Ngn2, Tbr2, and 



180 

Cux2.  After the identification of candidate genes, I believe it is necessary to determine 

the mechanisms by which SOX2 levels function to regulate these genes.  One potential 

mechanism is through the modification of chromatin structure.  The high sequence-

specificity of the SOX2 DNA-binding domain, as well as the observation that SOX2 binds 

the minor groove of DNA resulting in a sharp bend in the helix, suggests that SOX2 

functions in chromatin modification (Soullier et al. 1999; Dailey and Basilico 2001).  To 

analyze this is, bisulfite sequencing can be used to determine the extent of DNA 

methylation of candidate genes identified in the microarray screens (Fraga and Esteller 

2002).  A second method in which SOX2 may regulate progenitor cell fate decisions is 

through direct protein-protein interactions.  For instance, in the nervous system, SOX2 

directly interacts with the transcription factor BRN2 to regulate the expression of NESTIN 

in neural progenitor cells (Tanaka et al. 2004).  Potential shifts in the levels of SOX2 

expression can result in less SOX2 protein available to form transcriptional complexes, 

which in turn may allow other proteins to out-compete SOX2 and either activate or 

repress gene transcription. Thus, in conjunction with the microarray analysis, potential 

targets of SOX2 protein-protein interactions can be identified using Chromatin 

Immunoprecipitation (ChIP) from cell populations differentially expressing SOX2.  

Collectively, these studies will help to elucidate the mechanisms in which SOX2 

regulates and maintains neural progenitor cells in the developing CNS. 

The ability to identify neural progenitor populations that express distinct levels of 

SOX2 can also be applied to cell populations outside of the CNS.  Recent studies have 

demonstrated that a cocktail for four transcription factors (SOX2, OCT4, KLF4, and C-

MYC) can be transfected into differentiated fibroblast cells and induce molecular and 

epigenetic changes that result in the reprogramming of these cells into stem cell-like 

cells called induced pluripotent stem cells (iPS cells) (Takahashi and Yamanaka 2006; 

Takahashi et al. 2007; Takahashi et al. 2007; Wernig et al. 2007).  In an effort to reduce 
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the number of reprogramming factors used in this process, further investigations have 

eliminated the necessity for SOX2 transfection by utilizing cell populations in which high 

levels of SOX2 are endogenously expressed, such as adult neural progenitor cells  

(Eminli et al. 2008; Kim et al. 2008).  However, reprogramming neural progenitor cells, 

especially in humans, for therapeutic uses is impractical given the difficulties in acquiring 

these cells from living patients.  Therefore, alternative sources of SOX2-expressing cells 

are needed.  One potential cell population that expresses SOX2 is the dermal papilla 

cells located in the hair follicle of the epidermis  (Driskell et al. 2009). These cells 

express SOX2-EGFP in SOX2EGFP mice and can therefore also be isolated using FACS 

(Ellis et al. 2004).  Skin cells also provide a more practical cell population from which to 

generate iPS cells since harvesting skin cells is less intrusive than harvesting neural 

progenitor cells. However, it remains to be determined whether dermal papilla cells 

express SOX2 levels comparable to neural progenitor cell populations.  Therefore, using 

the SOX2EGFP mouse line, dissociation protocols, and FACS procedures described in 

Chapters 2 and 3, it will be important to determine if dermal papilla cells express high 

levels of SOX2, and if so, whether they are able to generate iPS cells in the same 

capacity as neural progenitor populations.  Given the therapeutic potential of iPS cells  

(Rolletschek and Wobus 2009; Webb 2009), these experiments may provide insight for 

future advances in the iPS field. 

 

SOX2 is Necessary to Maintain Radial Glial Populations in the Dorsal Telencephalon 
 

The results presented in Chapter Four are the first to demonstrate that SOX2 

plays an important role in maintaining the number of radial glial progenitor cells in the 

developing dorsal telencephalon.  Previous investigations into the function of SOX2 in 

neural progenitor populations have manipulated SOX2 expression during the onset of 
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neural development (E9.5) and analyzed the effects at later developmental and adult 

stages  (Ferri et al. 2004; Cavallaro et al. 2008; Miyagi et al. 2008).  While these 

methods demonstrate that loss of or reduction in SOX2 expression in early stages of 

neural development has phenotypic consequences in the overall development of the 

nervous system, they do not address the role of SOX2 in neural progenitor populations.  

Furthermore, it cannot be ruled out that the manipulation of SOX2 at such an early stage 

does not affect the fate-specification of these early progenitor cells which may, in turn, 

affect the specification of their progeny.  This has been demonstrated in Xenopus 

studies in which reduced SOX2 signaling in ectodermal cells results in the inability of 

these cells to adopt either a neural or epidermal fate, suggesting that SOX2 signaling is 

essential in development of early neural ectoderm (Kishi et al. 2000).    Therefore, the 

studies I present in chapter four utilize the hGFAPCre mouse line to ablate SOX2 in 

established radial glial populations at E13.5, after they have adopted a radial glial and 

neural identity  (Casper and McCarthy 2006).  The loss of SOX2 at this embryonic stage 

results in a decrease in the number of proliferating radial glial cells, as well as 

intermediate progenitor cells, and a decrease in cortical thickness.  Furthermore, In vitro 

studies demonstrate that SOX2-deficient (hGFAPCre; SOX2Cond/Cond) cells proliferate and 

maintain their multipotency, however their self-renewal capacity is significantly 

decreased and they proliferate at a slower rate than controls, resulting in smaller 

neurospheres.   

Whether SOX2 functions in regulating cell-cycle remains unclear.  Previous 

studies have demonstrated that dominant-negative inhibition of SOX2 leads to cell-cycle 

arrest in neural progenitor cells in the chick neural tube  (Graham et al. 2003). 

Furthermore, misexpression of Xsox3 in conjunction with the transcription factor XBF-1 

dose-dependently inhibits the cell-cycle inhibitor p27XIC1, which leads to increased 

proliferation of neuroectoderm  (Hardcastle and Papalopulu 2000).  Moreover, recently it 
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was discovered that in ES cells, SOX2 (along with OCT4) regulates the translation of 

miR-302, a microRNA which represses the transcription of cyclin-D1  (Card et al. 2008).  

Cyclin D1 is important in the regulation of the G1 phase of the cell cycle and its 

repression leads to a decrease in the number of cells in G1 and an increase in cells in S-

phase, in essence decreasing cell cycle length. This lends credence to the hypothesis 

that loss of SOX2 in radial glial progenitor cells results in a loss of miR-302, or other 

similar factor, which in turn increases the length of time a cell spends in the G1 phase of 

the cell-cycle.  Indeed, approximately 70% of all miRNAs identified to date are 

expressed in the mammalian brain with many implicated in the control of neuronal 

differentiation  (Cao et al. 2006).  However, to date their relationship with SOX2 has yet 

to be investigated   

Based upon the above observations and studies, I hypothesize that SOX2 is 

directly involved in cell-cycle regulation.  This can be addressed by analyzing cell-cycle 

regulation in SOX2-deficient cells.  First, to determine whether SOX2-deficient and 

SOX2-expressing cells differ in the length of their cell-cycle, cells can be exposed to 

bromodeoxyuridine (BrDU) for an extended time period to label all proliferating cells, 

followed by a short-term pulse of iododeoxyuridine (IDU) to acutely label only those cells 

currently in S-phase.  The cell-cycle rate can then be calculated based upon the ratio of 

IDU to BRDU labeled cells  (Burns and Kuan 2005).  Next, cell-cycle regulators such as 

Cyclin genes and microRNAs can also be analyzed for differential express between 

SOX2-postive and SOX2-deficient cells, with SOX2-deficient cells expected to show 

increased levels of cell-cycle inhibitors.  Collectively, these experiments will help to 

elucidate whether SOX2 acts upon cell-cycle regulators in neural progenitor cells of the 

CNS. 
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Functional Redundancy of SOXB1 Transcription Factors in the Developing Dorsal 
Telencephalon 

 

The three members of the SOXB1 family (Sox1, 2, and 3) share high sequence 

similarity and are co-expressed in many neural progenitor populations in the developing 

telencephalon (Collignon et al. 1996; Wood and Episkopou 1999).  Moreover, the three 

SOXB1 members have the capacity to activate the same target genes.  For instance, in 

lens tissue, all three members are able to activate the δ1-crystalin D5 enhancer in vitro 

through interactions with Pax6, whereas other SOX family members cannot  (Kamachi et 

al. 1995; Kamachi et al. 1998; Kamachi et al. 2001).  In addition, in Drosophila mutants 

lacking the SoxNeuro gene, severe neural defects are observed in regions where 

SoxNeuro is not co-expressed with the other Drosophila SOXB1 factor, Dichaete; 

whereas in regions of SoxNeuro and Dichaete coexpression, the phenotypic defects are 

mild  (Overton et al. 2002).  Furthermore, in the mouse, homozygous knockouts for 

either Sox1 or Sox3 show only mild phenotypes, primarily in regions where each is 

uniquely expressed (the developing lens and pituitary respectively), suggesting that the 

loss of either SOX1 or SOX3 can be functionally compensated for.   However, other 

studies have demonstrated that these three factors may not be completely functionally 

redundant.  For example, SOX2-null mice die at peri-implantation stages despite the 

coexpression of SOX3  (Avilion et al. 2003).  In addition, conditional ablation and 

hypomorphic expression of SOX2 at neural tube stages results in neural defects even 

when SOX1 and SOX3 are both expressed in the effected neural progenitor populations  

(Ferri et al. 2004; Cavallaro et al. 2008; Miyagi et al. 2008).  Moreover, the results 

presented in Chapter 4 also demonstrate that the loss of SOX2 in radial glial cells 

produces phenotypic defects despite the maintenance of SOX1 and SOX3 expression.  

Given the overall importance of SOX2 in maintaining neural progenitor capacity in ES 

cells and neural progenitor cells, it can be suggested that the otherwise normal 
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development of these various SOX2 mutant lines demonstrates at least partial functional 

redundancy by SOX1 and SOX3.  However, this phenomenon has yet to be genetically 

analyzed. 

The question of whether SOXB1 factors are functionally redundant can be 

addressed in two ways.  The first method is to genetically ablate either two or all three 

SOXB1 factors in neural progenitor populations.  Two-factor ablation can be 

accomplished by generating SOX2Cond/Cond mice on either a SOX1- or SOX3-null 

background.  SOX1-/-, SOX3-/-, and  SOX2Cond/Cond mice are all viable, although it remains 

unclear whether double homozygotes are viable as well.  If double homozygotes are 

viable, ablation of SOX2 at later stages via a tissue-specific Cre would thus leave only 

SOX1 (or SOX3) to compensate for the loss of the other two factors.  Any additional 

phenotypic defects observed beyond what is seen in Cre;SOX2Cond/Cond mutants would 

suggest that functional redundancy between the three SOXB1 factors is limited.  In 

contrast, the generation of a triple mutant (Cre;SOX1-/-, SOX3-/-,SOX2Cond/Cond) would be 

technically difficult but would conclusively address the function of SOXB1 genes in 

neural development. 

A second approach to genetically address functional redundancy is to engineer 

alleles in which one SOXB1 member can be expressed by the promoter of another, as 

has been previously demonstrated to investigate SOX1 function in postmitotic cells  

(Ekonomou et al. 2005).  To test functional redundancy, an allele can be generated in 

which the endogenous SOX2 open reading frame (ORF) is replaced with the SOX1 

ORF.  This would result in a mouse carrying one SOX2-null allele in which SOX1 is 

expressed by the endogenous SOX2 promoter (Sox2SOX1/+).  This mouse can then be 

crossed to a Sox2Cond/+ line to generate Sox2SOX1/Cond embryos.  Functional redundancy 

can then be tested in a region where SOX2 is exclusively expressed, such as in the 

developing retina.  We have previously shown that SOX2EGFP/Cond mice, in which the 



186 

EGFP acts as a null allele, are hypomorphic, generating small eye phenotypes  

(Taranova et al. 2006).  Therefore, if ectopic SOX1 expression is capable of 

compensating for SOX2 loss, than Sox2SOX1/Cond mice would be expected to present with 

a milder eye phenotype than SOX2EGFP/COND mice.  Moreover, the extent of this 

compensation can be further tested by crossing Sox2SOX1/Cond mice with an eye specific 

Cre-mouse line to test whether ectopic SOX1 can compensate for complete SOX2 loss 

in the eye.  Similar experiments can be conducted with SOX3 as well. 

 

Conclusion 

 

In this dissertation I have provided the first evidence that intracellular 

concentrations of SOX2 vary between distinct neural progenitor populations within the 

developing CNS.  I have also demonstrated, utilizing the SOX2EGFP mouse line, that 

these neural progenitor populations can be prospectively identified and isolated based 

upon their levels of SOX2 expression.  Moreover, I have demonstrated that SOX2 

function is necessary for maintaining populations of proliferating radial glial and 

intermediate progenitor cells in the developing dorsal telencephalon.   Ultimately, these 

findings have elucidated the role of SOX2 in neural progenitor populations within the 

embryonic CNS and have also established tools for future analyses of SOX2 function in 

progenitor populations throughout development. 

  



187 

References 
Aaku-Saraste, E., A. Hellwig and W. B. Huttner (1996). "Loss of occludin and functional 

tight junctions, but not ZO-1, during neural tube closure--remodeling of the 
neuroepithelium prior to neurogenesis." Dev Biol 180(2): 664-79. 

Aaku-Saraste, E., B. Oback, A. Hellwig and W. B. Huttner (1997). "Neuroepithelial cells 
downregulate their plasma membrane polarity prior to neural tube closure and 
neurogenesis." Mech Dev 69(1-2): 71-81. 

Alonso, G. (1999). "Neuronal progenitor-like cells expressing polysialylated neural cell 
adhesion molecule are present on the ventricular surface of the adult rat brain 
and spinal cord." J Comp Neurol 414(2): 149-66. 

Altman, J. and S. A. Bayer (1984). "The development of the rat spinal cord." Adv Anat 
Embryol Cell Biol 85: 1-164. 

Altman, J. and G. D. Das (1965). "Autoradiographic and histological evidence of 
postnatal hippocampal neurogenesis in rats." J Comp Neurol 124(3): 319-35. 

Alvarez-Buylla, A., J. M. Garcia-Verdugo and A. D. Tramontin (2001). "A unified 
hypothesis on the lineage of neural stem cells." Nat Rev Neurosci 2(4): 287-93. 

Alvarez-Buylla, A., B. Seri and F. Doetsch (2002). "Identification of neural stem cells in 
the adult vertebrate brain." Brain Res Bull 57(6): 751-8. 

Ambrosetti, D. C., C. Basilico and L. Dailey (1997). "Synergistic activation of the 
fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-
protein interactions facilitated by a specific spatial arrangement of factor binding 
sites." Mol Cell Biol 17(11): 6321-9. 

Anderson, S. A., D. D. Eisenstat, L. Shi and J. L. Rubenstein (1997). "Interneuron 
migration from basal forebrain to neocortex: dependence on Dlx genes." Science 
278(5337): 474-6. 

Anthony, T. E., C. Klein, G. Fishell and N. Heintz (2004). "Radial glia serve as neuronal 
progenitors in all regions of the central nervous system." Neuron 41(6): 881-90. 

Arnold, S. J., G. J. Huang, A. F. Cheung, T. Era, S. Nishikawa, E. K. Bikoff, Z. Molnar, E. 
J. Robertson and M. Groszer (2008). "The T-box transcription factor Eomes/Tbr2 
regulates neurogenesis in the cortical subventricular zone." Genes Dev 22(18): 
2479-84. 



188 

Arnold, S. J. and E. J. Robertson (2009). "Making a commitment: cell lineage allocation 
and axis patterning in the early mouse embryo." Nat Rev Mol Cell Biol 10(2): 91-
103. 

Avilion, A. A., S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian and R. Lovell-Badge (2003). 
"Multipotent cell lineages in early mouse development depend on SOX2 
function." Genes Dev 17(1): 126-40. 

Bakrania, P., D. O. Robinson, D. J. Bunyan, A. Salt, A. Martin, J. A. Crolla, A. Wyatt, A. 
Fielder, J. Ainsworth, A. Moore, S. Read, J. Uddin, D. Laws, D. Pascuel-Salcedo, 
C. Ayuso, L. Allen, J. R. Collin and N. K. Ragge (2007). "SOX2 anophthalmia 
syndrome: 12 new cases demonstrating broader phenotype and high frequency 
of large gene deletions." Br J Ophthalmol 91(11): 1471-6. 

Bani-Yaghoub, M., R. G. Tremblay, J. X. Lei, D. Zhang, B. Zurakowski, J. K. Sandhu, B. 
Smith, M. Ribecco-Lutkiewicz, J. Kennedy, P. R. Walker and M. Sikorska (2006). 
"Role of Sox2 in the development of the mouse neocortex." Dev Biol 295(1): 52-
66. 

Barres, B. A. (1999). "A new role for glia: generation of neurons!" Cell 97(6): 667-70. 

Basak, O. and V. Taylor (2007). "Identification of self-replicating multipotent progenitors 
in the embryonic nervous system by high Notch activity and Hes5 expression." 
Eur J Neurosci 25(4): 1006-22. 

Beddington, R. S. (1982). "An autoradiographic analysis of tissue potency in different 
regions of the embryonic ectoderm during gastrulation in the mouse." J Embryol 
Exp Morphol 69: 265-85. 

Beddington, R. S. (1983). "Histogenetic and neoplastic potential of different regions of 
the mouse embryonic egg cylinder." J Embryol Exp Morphol 75: 189-204. 

Beddington, R. S. (1994). "Induction of a second neural axis by the mouse node." 
Development 120(3): 613-20. 

Beddington, S. P. (1981). "An autoradiographic analysis of the potency of embryonic 
ectoderm in the 8th day postimplantation mouse embryo." J Embryol Exp 
Morphol 64: 87-104. 

Bishop, K. M., G. Goudreau and D. D. O'Leary (2000). "Regulation of area identity in the 
mammalian neocortex by Emx2 and Pax6." Science 288(5464): 344-9. 



189 

Bockamp, E., M. Maringer, C. Spangenberg, S. Fees, S. Fraser, L. Eshkind, F. Oesch 
and B. Zabel (2002). "Of mice and models: improved animal models for 
biomedical research." Physiol Genomics 11(3): 115-32. 

Bolteus, A. J. and A. Bordey (2004). "GABA release and uptake regulate neuronal 
precursor migration in the postnatal subventricular zone." J Neurosci 24(35): 
7623-31. 

Boulder-Committee (1970). "Embryonic vertebrate central nervous system: revised 
terminology. The Boulder Committee." Anat Rec 166(2): 257-61. 

Bowles, J., G. Schepers and P. Koopman (2000). "Phylogeny of the SOX family of 
developmental transcription factors based on sequence and structural 
indicators." Dev Biol 227(2): 239-55. 

Bradley, A., M. Evans, M. H. Kaufman and E. Robertson (1984). "Formation of germ-line 
chimaeras from embryo-derived teratocarcinoma cell lines." Nature 309(5965): 
255-6. 

Brazel, C. Y., T. L. Limke, J. K. Osborne, T. Miura, J. Cai, L. Pevny and M. S. Rao 
(2005). "Sox2 expression defines a heterogeneous population of neurosphere-
forming cells in the adult murine brain." Aging Cell 4(4): 197-207. 

Brenner, M., W. C. Kisseberth, Y. Su, F. Besnard and A. Messing (1994). "GFAP 
promoter directs astrocyte-specific expression in transgenic mice." J Neurosci 
14(3 Pt 1): 1030-7. 

Britz, O., P. Mattar, L. Nguyen, L. M. Langevin, C. Zimmer, S. Alam, F. Guillemot and C. 
Schuurmans (2006). "A role for proneural genes in the maturation of cortical 
progenitor cells." Cereb Cortex 16 Suppl 1: i138-51. 

Brustle, O. and R. D. McKay (1995). "The neuroepithelial stem cell concept: implications 
for neuro-oncology." J Neurooncol 24(1): 57-9. 

Buescher, M., F. S. Hing and W. Chia (2002). "Formation of neuroblasts in the 
embryonic central nervous system of Drosophila melanogaster is controlled by 
SoxNeuro." Development 129(18): 4193-203. 

Bulfone, A., S. Martinez, V. Marigo, M. Campanella, A. Basile, N. Quaderi, C. Gattuso, J. 
L. Rubenstein and A. Ballabio (1999). "Expression pattern of the Tbr2 
(Eomesodermin) gene during mouse and chick brain development." Mech Dev 
84(1-2): 133-8. 



190 

Burns, K. A. and C. Y. Kuan (2005). "Low doses of bromo- and iododeoxyuridine 
produce near-saturation labeling of adult proliferative populations in the dentate 
gyrus." Eur J Neurosci 21(3): 803-7. 

Bustin, M., D. A. Lehn and D. Landsman (1990). "Structural features of the HMG 
chromosomal proteins and their genes." Biochim Biophys Acta 1049(3): 231-43. 

Bylund, M., E. Andersson, B. G. Novitch and J. Muhr (2003). "Vertebrate neurogenesis 
is counteracted by Sox1-3 activity." Nat Neurosci 6(11): 1162-8. 

Cai, J., Y. Wu, T. Mirua, J. L. Pierce, M. T. Lucero, K. H. Albertine, G. J. Spangrude and 
M. S. Rao (2002). "Properties of a fetal multipotent neural stem cell (NEP cell)." 
Dev Biol 251(2): 221-40. 

Cai, L., E. M. Morrow and C. L. Cepko (2000). "Misexpression of basic helix-loop-helix 
genes in the murine cerebral cortex affects cell fate choices and neuronal 
survival." Development 127(14): 3021-30. 

Calogero, S., F. Grassi, A. Aguzzi, T. Voigtlander, P. Ferrier, S. Ferrari and M. E. 
Bianchi (1999). "The lack of chromosomal protein Hmg1 does not disrupt cell 
growth but causes lethal hypoglycaemia in newborn mice." Nat Genet 22(3): 276-
80. 

Campbell, K. (2003). "Dorsal-ventral patterning in the mammalian telencephalon." Curr 
Opin Neurobiol 13(1): 50-6. 

Campbell, K., M. Olsson and A. Bjorklund (1995). "Regional incorporation and site-
specific differentiation of striatal precursors transplanted to the embryonic 
forebrain ventricle." Neuron 15(6): 1259-73. 

Cao, X., G. Yeo, A. R. Muotri, T. Kuwabara and F. H. Gage (2006). "Noncoding RNAs in 
the mammalian central nervous system." Annu Rev Neurosci 29: 77-103. 

Capela, A. and S. Temple (2002). "LeX/ssea-1 is expressed by adult mouse CNS stem 
cells, identifying them as nonependymal." Neuron 35(5): 865-75. 

Card, D. A., P. B. Hebbar, L. Li, K. W. Trotter, Y. Komatsu, Y. Mishina and T. K. Archer 
(2008). "Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic 
stem cells." Mol Cell Biol 28(20): 6426-38. 



191 

Carlen, M., K. Meletis, C. Goritz, V. Darsalia, E. Evergren, K. Tanigaki, M. Amendola, F. 
Barnabe-Heider, M. S. Yeung, L. Naldini, T. Honjo, Z. Kokaia, O. Shupliakov, R. 
M. Cassidy, O. Lindvall and J. Frisen (2009). "Forebrain ependymal cells are 
Notch-dependent and generate neuroblasts and astrocytes after stroke." Nat 
Neurosci 12(3): 259-67. 

Casper, K. B. and K. D. McCarthy (2006). "GFAP-positive progenitor cells produce 
neurons and oligodendrocytes throughout the CNS." Mol Cell Neurosci 31(4): 
676-84. 

Cavallaro, M., J. Mariani, C. Lancini, E. Latorre, R. Caccia, F. Gullo, M. Valotta, S. 
DeBiasi, L. Spinardi, A. Ronchi, E. Wanke, S. Brunelli, R. Favaro, S. Ottolenghi 
and S. K. Nicolis (2008). "Impaired generation of mature neurons by neural stem 
cells from hypomorphic Sox2 mutants." Development 135(3): 541-57. 

Chakrabarti, L., Z. Galdzicki and T. F. Haydar (2007). "Defects in embryonic 
neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse 
model of Down syndrome." J Neurosci 27(43): 11483-95. 

Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward and D. C. Prasher (1994). "Green 
fluorescent protein as a marker for gene expression." Science 263(5148): 802-5. 

Challen, G. A., N. Boles, K. K. Lin and M. A. Goodell (2009). "Mouse hematopoietic stem 
cell identification and analysis." Cytometry A 75(1): 14-24. 

Chew, L. J. and V. Gallo (2009). "The Yin and Yang of Sox proteins: Activation and 
repression in development and disease." J Neurosci Res. 

Choi, B. H. (1981). "Radial glia of developing human fetal spinal cord: Golgi, 
immunohistochemical and electron microscopic study." Brain Res 227(2): 249-
67. 

Coles-Takabe, B. L., I. Brain, K. A. Purpura, P. Karpowicz, P. W. Zandstra, C. M. 
Morshead and D. van der Kooy (2008). "Don't look: growing clonal versus 
nonclonal neural stem cell colonies." Stem Cells 26(11): 2938-44. 

Collignon, J., S. Sockanathan, A. Hacker, M. Cohen-Tannoudji, D. Norris, S. Rastan, M. 
Stevanovic, P. N. Goodfellow and R. Lovell-Badge (1996). "A comparison of the 
properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2." 
Development 122(2): 509-20. 



192 

Corbeil, D., K. Roper, M. J. Hannah, A. Hellwig and W. B. Huttner (1999). "Selective 
localization of the polytopic membrane protein prominin in microvilli of epithelial 
cells - a combination of apical sorting and retention in plasma membrane 
protrusions." J Cell Sci 112 ( Pt 7): 1023-33. 

Corti, S., M. Nizzardo, M. Nardini, C. Donadoni, F. Locatelli, D. Papadimitriou, S. Salani, 
R. Del Bo, S. Ghezzi, S. Strazzer, N. Bresolin and G. P. Comi (2007). "Isolation 
and characterization of murine neural stem/progenitor cells based on Prominin-1 
expression." Exp Neurol 205(2): 547-62. 

Cremazy, F., P. Berta and F. Girard (2000). "Sox neuro, a new Drosophila Sox gene 
expressed in the developing central nervous system." Mech Dev 93(1-2): 215-9. 

Cubelos, B., A. Sebastian-Serrano, S. Kim, C. Moreno-Ortiz, J. M. Redondo, C. A. 
Walsh and M. Nieto (2008). "Cux-2 controls the proliferation of neuronal 
intermediate precursors of the cortical subventricular zone." Cereb Cortex 18(8): 
1758-70. 

Cubitt, A. B., R. Heim, S. R. Adams, A. E. Boyd, L. A. Gross and R. Y. Tsien (1995). 
"Understanding, improving and using green fluorescent proteins." Trends 
Biochem Sci 20(11): 448-55. 

D'Amour, K. A. and F. H. Gage (2003). "Genetic and functional differences between 
multipotent neural and pluripotent embryonic stem cells." Proc Natl Acad Sci U S 
A 100 Suppl 1: 11866-72. 

D'Arena, G., L. Savino, G. Nunziata, N. Cascavilla, R. Matera, G. Pistolese and A. M. 
Carella (2002). "Immunophenotypic profile of AC133-positive cells in bone 
marrow, mobilized peripheral blood and umbilical cord blood." Leuk Lymphoma 
43(4): 869-73. 

Dabdoub, A., C. Puligilla, J. M. Jones, B. Fritzsch, K. S. Cheah, L. H. Pevny and M. W. 
Kelley (2008). "Sox2 signaling in prosensory domain specification and 
subsequent hair cell differentiation in the developing cochlea." Proc Natl Acad Sci 
U S A 105(47): 18396-401. 

Dahlstrand, J., M. Lardelli and U. Lendahl (1995). "Nestin mRNA expression correlates 
with the central nervous system progenitor cell state in many, but not all, regions 
of developing central nervous system." Brain Res Dev Brain Res 84(1): 109-29. 

Dailey, L. and C. Basilico (2001). "Coevolution of HMG domains and homeodomains and 
the generation of transcriptional regulation by Sox/POU complexes." J Cell 
Physiol 186(3): 315-28. 



193 

Dailey, L. and C. Basilico (2001). "Coevolution of HMG domains and homeodomains and 
the generation of transcriptional regulation of Sox/POU complexes." J.Cell 
Physiol 186: 405-411. 

Dailey, L., H. Yuan and C. Basilico (1994). "Interaction between a novel F9-specific 
factor and octamer-binding proteins is required for cell-type-restricted activity of 
the fibroblast growth factor 4 enhancer." Mol Cell Biol 14(12): 7758-69. 

De Marchis, S., S. Bovetti, B. Carletti, Y. C. Hsieh, D. Garzotto, P. Peretto, A. Fasolo, A. 
C. Puche and F. Rossi (2007). "Generation of distinct types of periglomerular 
olfactory bulb interneurons during development and in adult mice: implication for 
intrinsic properties of the subventricular zone progenitor population." J Neurosci 
27(3): 657-64. 

Deleyrolle, L. P. and B. A. Reynolds (2009). "Isolation, expansion, and differentiation of 
adult Mammalian neural stem and progenitor cells using the neurosphere assay." 
Methods Mol Biol 549: 91-101. 

Desai, A. R. and S. K. McConnell (2000). "Progressive restriction in fate potential by 
neural progenitors during cerebral cortical development." Development 127(13): 
2863-72. 

Doetsch, F. and A. Alvarez-Buylla (1996). "Network of tangential pathways for neuronal 
migration in adult mammalian brain." Proc Natl Acad Sci U S A 93(25): 14895-
900. 

Doetsch, F., I. Caille, D. A. Lim, J. M. Garcia-Verdugo and A. Alvarez-Buylla (1999). 
"Subventricular zone astrocytes are neural stem cells in the adult mammalian 
brain." Cell 97(6): 703-16. 

Doetsch, F., J. M. Garcia-Verdugo and A. Alvarez-Buylla (1997). "Cellular composition 
and three-dimensional organization of the subventricular germinal zone in the 
adult mammalian brain." J Neurosci 17(13): 5046-61. 

Doetsch, F., J. M. Garcia-Verdugo and A. Alvarez-Buylla (1999). "Regeneration of a 
germinal layer in the adult mammalian brain." Proc Natl Acad Sci U S A 96(20): 
11619-24. 

Doetsch, F., L. Petreanu, I. Caille, J. M. Garcia-Verdugo and A. Alvarez-Buylla (2002). 
"EGF converts transit-amplifying neurogenic precursors in the adult brain into 
multipotent stem cells." Neuron 36(6): 1021-34. 



194 

Dong, C., D. Wilhelm and P. Koopman (2004). "Sox genes and cancer." Cytogenet 
Genome Res 105(2-4): 442-7. 

Donner, A. L., V. Episkopou and R. L. Maas (2006). "Sox2 and Pou2f1 interact to control 
lens and olfactory placode development." Dev Biol. 

Driskell, R. R., A. Giangreco, K. B. Jensen, K. W. Mulder and F. M. Watt (2009). "Sox2-
positive dermal papilla cells specify hair follicle type in mammalian epidermis." 
Development 136(16): 2815-23. 

Edwards, M. A., M. Yamamoto and V. S. Caviness, Jr. (1990). "Organization of radial 
glia and related cells in the developing murine CNS. An analysis based upon a 
new monoclonal antibody marker." Neuroscience 36(1): 121-44. 

Einck, L. and M. Bustin (1985). "The intracellular distribution and function of the high 
mobility group chromosomal proteins." Exp Cell Res 156(2): 295-310. 

Ekonomou, A., I. Kazanis, S. Malas, H. Wood, P. Alifragis, M. Denaxa, D. Karagogeos, 
A. Constanti, R. Lovell-Badge and V. Episkopou (2005). "Neuronal migration and 
ventral subtype identity in the telencephalon depend on SOX1." PLoS Biol 3(6): 
e186. 

Ellis, P., B. M. Fagan, S. T. Magness, S. Hutton, O. Taranova, S. Hayashi, A. McMahon, 
M. Rao and L. Pevny (2004). "SOX2, a persistent marker for multipotential neural 
stem cells derived from embryonic stem cells, the embryo or the adult." Dev 
Neurosci 26(2-4): 148-65. 

Eminli, S., J. Utikal, K. Arnold, R. Jaenisch and K. Hochedlinger (2008). 
"Reprogramming of neural progenitor cells into induced pluripotent stem cells in 
the absence of exogenous Sox2 expression." Stem Cells 26(10): 2467-74. 

Englund, C., A. Fink, C. Lau, D. Pham, R. A. Daza, A. Bulfone, T. Kowalczyk and R. F. 
Hevner (2005). "Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, 
intermediate progenitor cells, and postmitotic neurons in developing neocortex." J 
Neurosci 25(1): 247-51. 

Estivill-Torrus, G., H. Pearson, V. van Heyningen, D. J. Price and P. Rashbass (2002). 
"Pax6 is required to regulate the cell cycle and the rate of progression from 
symmetrical to asymmetrical division in mammalian cortical progenitors." 
Development 129(2): 455-66. 



195 

Evans, M. J. and M. H. Kaufman (1981). "Establishment in culture of pluripotential cells 
from mouse embryos." Nature 292(5819): 154-6. 

Fantes, J., N. K. Ragge, S. A. Lynch, N. I. McGill, J. R. Collin, P. N. Howard-Peebles, C. 
Hayward, A. J. Vivian, K. Williamson, V. van Heyningen and D. R. FitzPatrick 
(2003). "Mutations in SOX2 cause anophthalmia." Nat Genet 33(4): 461-3. 

Farkas, L. M. and W. B. Huttner (2008). "The cell biology of neural stem and progenitor 
cells and its significance for their proliferation versus differentiation during 
mammalian brain development." Curr Opin Cell Biol 20(6): 707-15. 

Feng, L., M. E. Hatten and N. Heintz (1994). "Brain lipid-binding protein (BLBP): a novel 
signaling system in the developing mammalian CNS." Neuron 12(4): 895-908. 

Ferri, A. L., M. Cavallaro, D. Braida, A. Di Cristofano, A. Canta, A. Vezzani, S. 
Ottolenghi, P. P. Pandolfi, M. Sala, S. DeBiasi and S. K. Nicolis (2004). "Sox2 
deficiency causes neurodegeneration and impaired neurogenesis in the adult 
mouse brain." Development 131(15): 3805-19. 

Fishell, G. (1995). "Striatal precursors adopt cortical identities in response to local cues." 
Development 121(3): 803-12. 

Flax, J. D., S. Aurora, C. Yang, C. Simonin, A. M. Wills, L. L. Billinghurst, M. Jendoubi, 
R. L. Sidman, J. H. Wolfe, S. U. Kim and E. Y. Snyder (1998). "Engraftable 
human neural stem cells respond to developmental cues, replace neurons, and 
express foreign genes." Nat Biotechnol 16(11): 1033-9. 

Fox, N., I. Damjanov, A. Martinez-Hernandez, B. B. Knowles and D. Solter (1981). 
"Immunohistochemical localization of the early embryonic antigen (SSEA-1) in 
postimplantation mouse embryos and fetal and adult tissues." Dev Biol 83(2): 
391-8. 

Fraga, M. F. and M. Esteller (2002). "DNA methylation: a profile of methods and 
applications." Biotechniques 33(3): 632, 634, 636-49. 

Frederiksen, K. and R. D. McKay (1988). "Proliferation and differentiation of rat 
neuroepithelial precursor cells in vivo." J Neurosci 8(4): 1144-51. 

Friedrich, G. and P. Soriano (1993). "Insertional mutagenesis by retroviruses and 
promoter traps in embryonic stem cells." Methods Enzymol 225: 681-701. 



196 

Gage, F. H. (1998). "Stem cells of the central nervous system." Curr Opin Neurobiol 
8(5): 671-6. 

Gage, F. H., J. Ray and L. J. Fisher (1995). "Isolation, characterization, and use of stem 
cells from the CNS." Annu Rev Neurosci 18: 159-92. 

Gage, F. H. and I. M. Verma (2003). "Stem cells at the dawn of the 21st century." Proc 
Natl Acad Sci U S A 100 Suppl 1: 11817-8. 

Gaiano, N., J. S. Nye and G. Fishell (2000). "Radial glial identity is promoted by Notch1 
signaling in the murine forebrain." Neuron 26(2): 395-404. 

Galbraith, D. W., M. T. Anderson and L. A. Herzenberg (1999). "Flow cytometric analysis 
and FACS sorting of cells based on GFP accumulation." Methods Cell Biol 58: 
315-41. 

Garcia-Verdugo, J. M., F. Doetsch, H. Wichterle, D. A. Lim and A. Alvarez-Buylla (1998). 
"Architecture and cell types of the adult subventricular zone: in search of the 
stem cells." J Neurobiol 36(2): 234-48. 

Gardner, R. L., M. F. Lyon, E. P. Evans and M. D. Burtenshaw (1985). "Clonal analysis 
of X-chromosome inactivation and the origin of the germ line in the mouse 
embryo." J Embryol Exp Morphol 88: 349-63. 

Gardner, R. L. and J. Rossant (1979). "Investigation of the fate of 4-5 day post-coitum 
mouse inner cell mass cells by blastocyst injection." J Embryol Exp Morphol 52: 
141-52. 

Gil-Perotin, S., A. Alvarez-Buylla and J. M. Garcia-Verdugo (2009). "Identification and 
characterization of neural progenitor cells in the adult mammalian brain." Adv 
Anat Embryol Cell Biol 203: 1-101, ix. 

Gleason, D., J. H. Fallon, M. Guerra, J. C. Liu and P. J. Bryant (2008). "Ependymal stem 
cells divide asymmetrically and transfer progeny into the subventricular zone 
when activated by injury." Neuroscience 156(1): 81-8. 

Golestaneh, N., Y. Tang, V. Katuri, W. Jogunoori, L. Mishra and B. Mishra (2006). "Cell 
cycle deregulation and loss of stem cell phenotype in the subventricular zone of 
TGF-beta adaptor elf-/- mouse brain." Brain Res 1108(1): 45-53. 



197 

Gomperts, M., M. Garcia-Castro, C. Wylie and J. Heasman (1994). "Interactions 
between primordial germ cells play a role in their migration in mouse embryos." 
Development 120(1): 135-41. 

Gotz, M. and Y. A. Barde (2005). "Radial glial cells defined and major intermediates 
between embryonic stem cells and CNS neurons." Neuron 46(3): 369-72. 

Gotz, M. and W. B. Huttner (2005). "The cell biology of neurogenesis." Nat Rev Mol Cell 
Biol 6(10): 777-88. 

Gotz, M., A. Stoykova and P. Gruss (1998). "Pax6 controls radial glia differentiation in 
the cerebral cortex." Neuron 21(5): 1031-44. 

Graham, V., J. Khudyakov, P. Ellis and L. Pevny (2003). "SOX2 functions to maintain 
neural progenitor identity." Neuron 39(5): 749-65. 

Gritti, A., E. A. Parati, L. Cova, P. Frolichsthal, R. Galli, E. Wanke, L. Faravelli, D. J. 
Morassutti, F. Roisen, D. D. Nickel and A. L. Vescovi (1996). "Multipotential stem 
cells from the adult mouse brain proliferate and self-renew in response to basic 
fibroblast growth factor." J Neurosci 16(3): 1091-100. 

Grosschedl, R., K. Giese and J. Pagel (1994). "HMG domain proteins: architectural 
elements in the assembly of nucleoprotein structures." Trends Genet 10(3): 94-
100. 

Grove, E. A., B. P. Williams, D. Q. Li, M. Hajihosseini, A. Friedrich and J. Price (1993). 
"Multiple restricted lineages in the embryonic rat cerebral cortex." Development 
117(2): 553-61. 

Gubbay, J., J. Collignon, P. Koopman, B. Capel, A. Economou, A. Munsterberg, N. 
Vivian, P. Goodfellow and R. Lovell-Badge (1990). "A gene mapping to the sex-
determining region of the mouse Y chromosome is a member of a novel family of 
embryonically expressed genes." Nature 346(6281): 245-50. 

Guillemot, F. (2007). "Cell fate specification in the mammalian telencephalon." Prog 
Neurobiol 83(1): 37-52. 

Guth, S. I. and M. Wegner (2008). "Having it both ways: Sox protein function between 
conservation and innovation." Cell Mol Life Sci 65(19): 3000-18. 



198 

Hagstrom, S. A., G. J. Pauer, J. Reid, E. Simpson, S. Crowe, I. H. Maumenee and E. I. 
Traboulsi (2005). "SOX2 mutation causes anophthalmia, hearing loss, and brain 
anomalies." Am J Med Genet A 138A(2): 95-8. 

Hardcastle, Z. and N. Papalopulu (2000). "Distinct effects of XBF-1 in regulating the cell 
cycle inhibitor p27XIC1 and imparting a neural fate." Development 127: 1303-1314. 

Hartfuss, E., R. Galli, N. Heins and M. Gotz (2001). "Characterization of CNS precursor 
subtypes and radial glia." Dev Biol 229(1): 15-30. 

Hatakeyama, J., Y. Bessho, K. Katoh, S. Ookawara, M. Fujioka, F. Guillemot and R. 
Kageyama (2004). "Hes genes regulate size, shape and histogenesis of the 
nervous system by control of the timing of neural stem cell differentiation." 
Development 131(22): 5539-50. 

Haubensak, W., A. Attardo, W. Denk and W. B. Huttner (2004). "Neurons arise in the 
basal neuroepithelium of the early mammalian telencephalon: a major site of 
neurogenesis." Proc Natl Acad Sci U S A 101(9): 3196-201. 

Haubst, N., J. Berger, V. Radjendirane, J. Graw, J. Favor, G. F. Saunders, A. Stoykova 
and M. Gotz (2004). "Molecular dissection of Pax6 function: the specific roles of 
the paired domain and homeodomain in brain development." Development 
131(24): 6131-40. 

Heins, N., P. Malatesta, F. Cecconi, M. Nakafuku, K. L. Tucker, M. A. Hack, P. 
Chapouton, Y. A. Barde and M. Gotz (2002). "Glial cells generate neurons: the 
role of the transcription factor Pax6." Nat Neurosci 5(4): 308-15. 

Hevner, R. F. (2006). "From radial glia to pyramidal-projection neuron: transcription 
factor cascades in cerebral cortex development." Mol Neurobiol 33(1): 33-50. 

Hevner, R. F., L. Shi, N. Justice, Y. Hsueh, M. Sheng, S. Smiga, A. Bulfone, A. M. 
Goffinet, A. T. Campagnoni and J. L. Rubenstein (2001). "Tbr1 regulates 
differentiation of the preplate and layer 6." Neuron 29(2): 353-66. 

Hitoshi, S., V. Tropepe, M. Ekker and D. van der Kooy (2002). "Neural stem cell lineages 
are regionally specified, but not committed, within distinct compartments of the 
developing brain." Development 129(1): 233-44. 

Hockfield, S. and R. D. McKay (1985). "Identification of major cell classes in the 
developing mammalian nervous system." J Neurosci 5(12): 3310-28. 



199 

Holm, P. C., M. T. Mader, N. Haubst, A. Wizenmann, M. Sigvardsson and M. Gotz 
(2007). "Loss- and gain-of-function analyses reveal targets of Pax6 in the 
developing mouse telencephalon." Mol Cell Neurosci 34(1): 99-119. 

Hulspas, R. and P. J. Quesenberry (2000). "Characterization of neurosphere cell 
phenotypes by flow cytometry." Cytometry 40(3): 245-50. 

Hutton, S. and L. Pevny (2008). "Isolation, Culture, and Differentiation of Progenitor 
Cells from the Central Nervous System." Cold Spring Harbor Protocols 3(11): 
1029-1033. 

Iacopetti, P., M. Michelini, I. Stuckmann, B. Oback, E. Aaku-Saraste and W. B. Huttner 
(1999). "Expression of the antiproliferative gene TIS21 at the onset of 
neurogenesis identifies single neuroepithelial cells that switch from proliferative 
to neuron-generating division." Proc Natl Acad Sci U S A 96(8): 4639-44. 

Ibrahim, S. F. and G. van den Engh (2007). "Flow cytometry and cell sorting." Adv 
Biochem Eng Biotechnol 106: 19-39. 

Ishii, Y., M. Rex, P. J. Scotting and S. Yasugi (1998). "Region-specific expression of 
chicken Sox2 in the developing gut and lung epithelium: regulation by epithelial-
mesenchymal interactions." Dev Dyn 213(4): 464-75. 

Jankovski, A. and C. Sotelo (1996). "Subventricular zone-olfactory bulb migratory 
pathway in the adult mouse: cellular composition and specificity as determined 
by heterochronic and heterotopic transplantation." J Comp Neurol 371(3): 376-
96. 

Jantzen, H. M., L. Gousset, V. Bhaskar, D. Vincent, A. Tai, E. E. Reynolds and P. B. 
Conley (1999). "Evidence for two distinct G-protein-coupled ADP receptors 
mediating platelet activation." Thromb Haemost 81(1): 111-7. 

Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-
Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. 
Lisberg, W. C. Low, D. A. Largaespada and C. M. Verfaillie (2002). "Pluripotency 
of mesenchymal stem cells derived from adult marrow." Nature 418(6893): 41-9. 

Johansson, C. B., S. Momma, D. L. Clarke, M. Risling, U. Lendahl and J. Frisen (1999). 
"Identification of a neural stem cell in the adult mammalian central nervous 
system." Cell 96(1): 25-34. 



200 

Johansson, C. B., M. Svensson, L. Wallstedt, A. M. Janson and J. Frisen (1999). "Neural 
stem cells in the adult human brain." Exp Cell Res 253(2): 733-6. 

Johe, K. K., T. G. Hazel, T. Muller, M. M. Dugich-Djordjevic and R. D. McKay (1996). 
"Single factors direct the differentiation of stem cells from the fetal and adult 
central nervous system." Genes Dev 10(24): 3129-40. 

Kamachi, Y., M. Iwafuchi, Y. Okuda, T. Takemoto, M. Uchikawa and H. Kondoh (2009). 
"Evolution of non-coding regulatory sequences involved in the developmental 
process: reflection of differential employment of paralogous genes as highlighted 
by Sox2 and group B1 Sox genes." Proc Jpn Acad Ser B Phys Biol Sci 85(2): 55-
68. 

Kamachi, Y., S. Sockanathan, Q. Liu, M. Breitman, R. Lovell-Badge and H. Kondoh 
(1995). "Involvement of SOX proteins in lens-specific activation of crystallin 
genes." Embo J 14(14): 3510-9. 

Kamachi, Y., M. Uchikawa, J. Collignon, R. Lovell-Badge and H. Kondoh (1998). 
"Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of 
lens induction." Development 125(13): 2521-32. 

Kamachi, Y., M. Uchikawa, A. Tanouchi, R. Sekido and H. Kondoh (2001). "Pax6 and 
SOX2 form a co-DNA-binding partner complex that regulates initiation of lens 
development." Genes Dev 15(10): 1272-86. 

Kawaguchi, A., T. Ikawa, T. Kasukawa, H. R. Ueda, K. Kurimoto, M. Saitou and F. 
Matsuzaki (2008). "Single-cell gene profiling defines differential progenitor 
subclasses in mammalian neurogenesis." Development 135(18): 3113-24. 

Kawaguchi, A., T. Miyata, K. Sawamoto, N. Takashita, A. Murayama, W. Akamatsu, M. 
Ogawa, M. Okabe, Y. Tano, S. A. Goldman and H. Okano (2001). "Nestin-EGFP 
transgenic mice: visualization of the self-renewal and multipotency of CNS stem 
cells." Mol Cell Neurosci 17(2): 259-73. 

Keirstead, H. S., T. Ben-Hur, B. Rogister, M. T. O'Leary, M. Dubois-Dalcq and W. F. 
Blakemore (1999). "Polysialylated neural cell adhesion molecule-positive CNS 
precursors generate both oligodendrocytes and Schwann cells to remyelinate the 
CNS after transplantation." J Neurosci 19(17): 7529-36. 

Kiernan, A. E., A. L. Pelling, K. K. Leung, A. S. Tang, D. M. Bell, C. Tease, R. Lovell-
Badge, K. P. Steel and K. S. Cheah (2005). "Sox2 is required for sensory organ 
development in the mammalian inner ear." Nature 434(7036): 1031-5. 



201 

Kim, J. B., H. Zaehres, G. Wu, L. Gentile, K. Ko, V. Sebastiano, M. J. Arauzo-Bravo, D. 
Ruau, D. W. Han, M. Zenke and H. R. Scholer (2008). "Pluripotent stem cells 
induced from adult neural stem cells by reprogramming with two factors." Nature 
454(7204): 646-50. 

Kimura, C., M. M. Shen, N. Takeda, S. Aizawa and I. Matsuo (2001). "Complementary 
functions of Otx2 and Cripto in initial patterning of mouse epiblast." Dev Biol 
235(1): 12-32. 

Kimura, N., K. Nakashima, M. Ueno, H. Kiyama and T. Taga (1999). "A novel 
mammalian T-box-containing gene, Tbr2, expressed in mouse developing brain." 
Brain Res Dev Brain Res 115(2): 183-93. 

Kishi, M., K. Mizuseki, N. Sasai, H. Yamazaki, K. Shiota, S. Nakanishi and Y. Sasai 
(2000). "Requirement of Sox2-mediated signaling for differentiation of early 
Xenopus neuroectoderm." Development 127(4): 791-800. 

Kjaerulff, S., D. Dooijes, H. Clevers and O. Nielsen (1997). "Cell differentiation by 
interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in 
S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding 
sites." Embo J 16(13): 4021-33. 

Koop, M., G. Rilling, A. Herrmann and H. J. Kretschmann (1986). "Volumetric 
development of the fetal telencephalon, cerebral cortex, diencephalon, and 
rhombencephalon including the cerebellum in man." Bibl Anat(28): 53-78. 

Kowalczyk, T., A. Pontious, C. Englund, R. A. Daza, F. Bedogni, R. Hodge, A. Attardo, 
C. Bell, W. B. Huttner and R. F. Hevner (2009). "Intermediate Neuronal 
Progenitors (Basal Progenitors) Produce Pyramidal-Projection Neurons for All 
Layers of Cerebral Cortex." Cereb Cortex. 

Kuhn, H. G., H. Dickinson-Anson and F. H. Gage (1996). "Neurogenesis in the dentate 
gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation." 
J Neurosci 16(6): 2027-33. 

Kuroda, T., M. Tada, H. Kubota, H. Kimura, S. Y. Hatano, H. Suemori, N. Nakatsuji and 
T. Tada (2005). "Octamer and Sox elements are required for transcriptional cis 
regulation of Nanog gene expression." Mol Cell Biol 25(6): 2475-85. 

Kwon, G. S. and A. K. Hadjantonakis (2007). "Eomes::GFP-a tool for live imaging cells 
of the trophoblast, primitive streak, and telencephalon in the mouse embryo." 
Genesis 45(4): 208-17. 



202 

Laudet, V., D. Stehelin and H. Clevers (1993). "Ancestry and diversity of the HMG box 
superfamily." Nucleic Acids Res 21(10): 2493-501. 

Lawson, K. A., J. J. Meneses and R. A. Pedersen (1991). "Clonal analysis of epiblast 
fate during germ layer formation in the mouse embryo." Development 113(3): 
891-911. 

Lee, A., J. D. Kessler, T. A. Read, C. Kaiser, D. Corbeil, W. B. Huttner, J. E. Johnson 
and R. J. Wechsler-Reya (2005). "Isolation of neural stem cells from the 
postnatal cerebellum." Nat Neurosci 8(6): 723-9. 

Lendahl, U., L. B. Zimmerman and R. McKay (1990). "CNS stem cells express a new 
class of intermediate filament protein." Cell 60: 585-595. 

Li, M., L. Pevny, R. Lovell-Badge and A. Smith (1998). "Generation of purified neural 
precursors from embryonic stem cells by lineage selection." Curr Biol 8(17): 971-
4. 

Lim, D. A., G. J. Fishell and A. Alvarez-Buylla (1997). "Postnatal mouse subventricular 
zone neuronal precursors can migrate and differentiate within multiple levels of 
the developing neuraxis." Proc Natl Acad Sci U S A 94(26): 14832-6. 

Lorsbach, R. B., J. Moore, S. O. Ang, W. Sun, N. Lenny and J. R. Downing (2004). "Role 
of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice 
reveals differential lineage expression." Blood 103(7): 2522-9. 

Love, J. J., X. Li, D. A. Case, K. Giese, R. Grosschedl and P. E. Wright (1995). 
"Structural basis for DNA bending by the architectural transcription factor LEF-1." 
Nature 376(6543): 791-5. 

Luskin, M. B., A. L. Pearlman and J. R. Sanes (1988). "Cell lineage in the cerebral cortex 
of the mouse studied in vivo and in vitro with a recombinant retrovirus." Neuron 
1(8): 635-47. 

Magavi, S. S. and J. D. Macklis (2008). "Identification of newborn cells by BrdU labeling 
and immunocytochemistry in vivo." Methods Mol Biol 438: 335-43. 

Mai, J. K., C. Andressen and K. W. Ashwell (1998). "Demarcation of prosencephalic 
regions by CD15-positive radial glia." Eur J Neurosci 10(2): 746-51. 



203 

Majka, M., J. Ratajczak, B. Machalinski, A. Carter, D. Pizzini, M. A. Wasik, A. M. Gewirtz 
and M. Z. Ratajczak (2000). "Expression, regulation and function of AC133, a 
putative cell surface marker of primitive human haematopoietic cells." Folia 
Histochem Cytobiol 38(2): 53-63. 

Malatesta, P., I. Appolloni and F. Calzolari (2008). "Radial glia and neural stem cells." 
Cell Tissue Res 331(1): 165-78. 

Malatesta, P., M. A. Hack, E. Hartfuss, H. Kettenmann, W. Klinkert, F. Kirchhoff and M. 
Gotz (2003). "Neuronal or glial progeny: regional differences in radial glia fate." 
Neuron 37(5): 751-64. 

Malatesta, P., E. Hartfuss and M. Gotz (2000). "Isolation of radial glial cells by 
fluorescent-activated cell sorting reveals a neuronal lineage." Development 
127(24): 5253-63. 

Mao, X., Y. Fujiwara and S. H. Orkin (1999). "Improved reporter strain for monitoring Cre 
recombinase-mediated DNA excisions in mice." Proc Natl Acad Sci U S A 96(9): 
5037-42. 

Maric, D. and J. L. Barker (2004). "Neural stem cells redefined: a FACS perspective." 
Mol Neurobiol 30(1): 49-76. 

Marmur, R., P. C. Mabie, S. Gokhan, Q. Song, J. A. Kessler and M. F. Mehler (1998). 
"Isolation and developmental characterization of cerebral cortical multipotent 
progenitors." Dev Biol 204(2): 577-91. 

Martin, G. R. (1981). "Isolation of a pluripotent cell line from early mouse embryos 
cultured in medium conditioned by teratocarcinoma stem cells." Proc Natl Acad 
Sci U S A 78(12): 7634-8. 

Masui, S., Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi, K. Takahashi, H. Okochi, A. 
Okuda, R. Matoba, A. A. Sharov, M. S. Ko and H. Niwa (2007). "Pluripotency 
governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem 
cells." Nat Cell Biol 9(6): 625-35. 

Mayer-Proschel, M., A. J. Kalyani, T. Mujtaba and M. S. Rao (1997). "Isolation of 
lineage-restricted neuronal precursors from multipotent neuroepithelial stem 
cells." Neuron 19(4): 773-85. 



204 

McCarthy, M., D. H. Turnbull, C. A. Walsh and G. Fishell (2001). "Telencephalic neural 
progenitors appear to be restricted to regional and glial fates before the onset of 
neurogenesis." J Neurosci 21(17): 6772-81. 

Merkle, F. T., A. D. Tramontin, J. M. Garcia-Verdugo and A. Alvarez-Buylla (2004). 
"Radial glia give rise to adult neural stem cells in the subventricular zone." Proc 
Natl Acad Sci U S A 101(50): 17528-32. 

Mission, J. P., T. Takahashi and V. S. Caviness, Jr. (1991). "Ontogeny of radial and 
other astroglial cells in murine cerebral cortex." Glia 4(2): 138-48. 

Misson, J. P., M. A. Edwards, M. Yamamoto and V. S. Caviness, Jr. (1988). 
"Identification of radial glial cells within the developing murine central nervous 
system: studies based upon a new immunohistochemical marker." Brain Res Dev 
Brain Res 44(1): 95-108. 

Miyagi, S., S. Masui, H. Niwa, T. Saito, T. Shimazaki, H. Okano, M. Nishimoto, M. 
Muramatsu, A. Iwama and A. Okuda (2008). "Consequence of the loss of Sox2 in 
the developing brain of the mouse." FEBS Lett 582(18): 2811-5. 

Miyagi, S., M. Nishimoto, T. Saito, M. Ninomiya, K. Sawamoto, H. Okano, M. 
Muramatsu, H. Oguro, A. Iwama and A. Okuda (2006). "The Sox2 regulatory 
region 2 functions as a neural stem cell-specific enhancer in the telencephalon." 
J Biol Chem 281(19): 13374-81. 

Miyata, T., A. Kawaguchi, K. Saito, M. Kawano, T. Muto and M. Ogawa (2004). 
"Asymmetric production of surface-dividing and non-surface-dividing cortical 
progenitor cells." Development 131(13): 3133-45. 

Mizrak, D., M. Brittan and M. R. Alison (2008). "CD133: molecule of the moment." J 
Pathol 214(1): 3-9. 

Mizuseki, K., M. Kishi, M. Matsui, S. Nakanishi and Y. Sasai (1998). "Xenopus Zic-
related-1 and Sox-2, two factors induced by chordin, have distinct activities in the 
initiation of neural induction." Development 125(4): 579-87. 

Mizuseki, K., M. Kishi, K. Shiota, S. Nakanishi and Y. Sasai (1998). "SoxD: an essential 
mediator of induction of anterior neural tissues in Xenopus embryos." Neuron 
21(1): 77-85. 



205 

Mizutani, K., K. Yoon, L. Dang, A. Tokunaga and N. Gaiano (2007). "Differential Notch 
signalling distinguishes neural stem cells from intermediate progenitors." Nature 
449(7160): 351-5. 

Momma, S., C. B. Johansson and J. Frisen (2000). "Get to know your stem cells." Curr 
Opin Neurobiol 10(1): 45-9. 

Moreno-Manzano, V., F. J. Rodriguez-Jimenez, M. Garcia-Rosello, S. Lainez, S. Erceg, 
M. T. Calvo, M. Ronaghi, M. Lloret, R. Planells-Cases, J. M. Sanchez-Puelles 
and M. Stojkovic (2009). "Activated spinal cord ependymal stem cells rescue 
neurological function." Stem Cells 27(3): 733-43. 

Mori, T., A. Buffo and M. Gotz (2005). "The novel roles of glial cells revisited: the 
contribution of radial glia and astrocytes to neurogenesis." Curr Top Dev Biol 69: 
67-99. 

Morshead, C. M., C. G. Craig and D. van der Kooy (1998). "In vivo clonal analyses 
reveal the properties of endogenous neural stem cell proliferation in the adult 
mammalian forebrain." Development 125(12): 2251-61. 

Murphy, F. V. t., R. M. Sweet and M. E. Churchill (1999). "The structure of a 
chromosomal high mobility group protein-DNA complex reveals sequence-neutral 
mechanisms important for non-sequence-specific DNA recognition." Embo J 
18(23): 6610-8. 

Nagy, A. (2000). "Cre recombinase: the universal reagent for genome tailoring." Genesis 
26(2): 99-109. 

Nagy, A., N. Perrimon, S. Sandmeyer and R. Plasterk (2003). "Tailoring the genome: the 
power of genetic approaches." Nat Genet 33 Suppl: 276-84. 

Nakagawa, Y., T. Kaneko, T. Ogura, T. Suzuki, M. Torii, K. Kaibuchi, K. Arai, S. 
Nakamura and M. Nakafuku (1996). "Roles of cell-autonomous mechanisms for 
differential expression of region-specific transcription factors in neuroepithelial 
cells." Development 122(8): 2449-64. 

Nakamura, K., T. Mitamura, T. Takahashi, T. Kobayashi and E. Mekada (2000). 
"Importance of the major extracellular domain of CD9 and the epidermal growth 
factor (EGF)-like domain of heparin-binding EGF-like growth factor for up-
regulation of binding and activity." J Biol Chem 275(24): 18284-90. 



206 

Nakatake, Y., N. Fukui, Y. Iwamatsu, S. Masui, K. Takahashi, R. Yagi, K. Yagi, J. 
Miyazaki, R. Matoba, M. S. Ko and H. Niwa (2006). "Klf4 cooperates with Oct3/4 
and Sox2 to activate the Lefty1 core promoter in embryonic stem cells." Mol Cell 
Biol 26(20): 7772-82. 

Nambu, P. A. and J. R. Nambu (1996). "The Drosophila fish-hook gene encodes a HMG 
domain protein essential for segmentation and CNS development." Development 
122(11): 3467-75. 

Nieto, M., E. S. Monuki, H. Tang, J. Imitola, N. Haubst, S. J. Khoury, J. Cunningham, M. 
Gotz and C. A. Walsh (2004). "Expression of Cux-1 and Cux-2 in the 
subventricular zone and upper layers II-IV of the cerebral cortex." J Comp Neurol 
479(2): 168-80. 

Nishimoto, M., A. Fukushima, A. Okuda and M. Muramatsu (1999). "The gene for the 
embryonic stem cell coactivator UTF1 carries a regulatory element which 
selectively interacts with a complex composed of Oct-3/4 and Sox-2." Mol Cell 
Biol 19(8): 5453-65. 

Noctor, S. C., A. C. Flint, T. A. Weissman, R. S. Dammerman and A. R. Kriegstein 
(2001). "Neurons derived from radial glial cells establish radial units in 
neocortex." Nature 409(6821): 714-20. 

Noctor, S. C., V. Martinez-Cerdeno, L. Ivic and A. R. Kriegstein (2004). "Cortical neurons 
arise in symmetric and asymmetric division zones and migrate through specific 
phases." Nat Neurosci 7(2): 136-44. 

Noctor, S. C., V. Martinez-Cerdeno and A. R. Kriegstein (2008). "Distinct behaviors of 
neural stem and progenitor cells underlie cortical neurogenesis." J Comp Neurol 
508(1): 28-44. 

Nowotschin, S., G. S. Eakin and A. K. Hadjantonakis (2009). "Live-imaging fluorescent 
proteins in mouse embryos: multi-dimensional, multi-spectral perspectives." 
Trends Biotechnol 27(5): 266-76. 

O'Leary, T., C. Fowler, D. Evers and J. Mason (2009). "Protein fixation and antigen 
retrieval: chemical studies." Biotech Histochem: 1-5. 

Ochiai, W., S. Nakatani, T. Takahara, M. Kainuma, M. Masaoka, S. Minobe, M. 
Namihira, K. Nakashima, A. Sakakibara, M. Ogawa and T. Miyata (2009). 
"Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in 
pair-generated neocortical daughter cells." Mol Cell Neurosci 40(2): 225-33. 



207 

Okabe, S., K. Forsberg-Nilsson, A. C. Spiro, M. Segal and R. D. McKay (1996). 
"Development of neuronal precursor cells and functional postmitotic neurons 
from embryonic stem cells in vitro." Mech Dev 59(1): 89-102. 

Okubo, T., L. H. Pevny and B. L. Hogan (2006). "Sox2 is required for development of 
taste bud sensory cells." Genes Dev 20(19): 2654-9. 

Orkin, S. H. (2005). "Chipping away at the Embryonic Stem Cell Network." Cell 122(6): 
828-830. 

Overton, P. M., L. A. Meadows, J. Urban and S. Russell (2002). "Evidence for differential 
and redundant function of the Sox genes Dichaete and SoxN during CNS 
development in Drosophila." Development 129(18): 4219-28. 

Parras, C. M., R. Galli, O. Britz, S. Soares, C. Galichet, J. Battiste, J. E. Johnson, M. 
Nakafuku, A. Vescovi and F. Guillemot (2004). "Mash1 specifies neurons and 
oligodendrocytes in the postnatal brain." Embo J 23(22): 4495-505. 

Penzel, R., R. Oschwald, Y. Chen, L. Tacke and H. Grunz (1997). "Characterization and 
early embryonic expression of a neural specific transcription factor xSOX3 in 
Xenopus laevis." Int J Dev Biol 41(5): 667-77. 

Peretto, P., A. Merighi, A. Fasolo and L. Bonfanti (1997). "Glial tubes in the rostral 
migratory stream of the adult rat." Brain Res Bull 42(1): 9-21. 

Pevny, L. and M. Placzek (2005). "SOX genes and neural progenitor identity." Curr Opin 
Neurobiol 15(1): 7-13. 

Pevny, L. and M. S. Rao (2003). "The stem-cell menagerie." Trends Neurosci 26(7): 
351-9. 

Pevny, L. H. and R. Lovell-Badge (1997). "Sox genes find their feet." Curr Opin Genet 
Dev 7(3): 338-44. 

Pevny, L. H., S. Sockanathan, M. Placzek and R. Lovell-Badge (1998). "A role for SOX1 
in neural determination." Development 125(10): 1967-78. 

Pinto, L. and M. Gotz (2007). "Radial glial cell heterogeneity--the source of diverse 
progeny in the CNS." Prog Neurobiol 83(1): 2-23. 



208 

Polleux, F. and A. Ghosh (2002). "The slice overlay assay: a versatile tool to study the 
influence of extracellular signals on neuronal development." Sci STKE 
2002(136): PL9. 

Pontious, A., T. Kowalczyk, C. Englund and R. F. Hevner (2008). "Role of intermediate 
progenitor cells in cerebral cortex development." Dev Neurosci 30(1-3): 24-32. 

Puelles, L. (2001). "Thoughts on the development, structure and evolution of the 
mammalian and avian telencephalic pallium." Philos Trans R Soc Lond B Biol Sci 
356(1414): 1583-98. 

Qian, X., Q. Shen, S. K. Goderie, W. He, A. Capela, A. A. Davis and S. Temple (2000). 
"Timing of CNS cell generation: a programmed sequence of neuron and glial cell 
production from isolated murine cortical stem cells." Neuron 28(1): 69-80. 

Que, J., T. Okubo, J. R. Goldenring, K. T. Nam, R. Kurotani, E. E. Morrisey, O. 
Taranova, L. H. Pevny and B. L. Hogan (2007). "Multiple dose-dependent roles 
for Sox2 in the patterning and differentiation of anterior foregut endoderm." 
Development 134(13): 2521-31. 

Quesenberry, P. J., R. Hulspas, M. Joly, B. Benoit, C. Engstrom, J. Rielly, T. Savarese, 
L. Pang, L. Recht, A. Ross, G. Stein and M. Stewart (1999). "Correlates between 
hematopoiesis and neuropoiesis: neural stem cells." J Neurotrauma 16(8): 661-6. 

Quinlan, G. A., E. A. Williams, S. S. Tan and P. P. Tam (1995). "Neuroectodermal fate of 
epiblast cells in the distal region of the mouse egg cylinder: implication for body 
plan organization during early embryogenesis." Development 121(1): 87-98. 

Quinn, J. C., M. Molinek, B. S. Martynoga, P. A. Zaki, A. Faedo, A. Bulfone, R. F. 
Hevner, J. D. West and D. J. Price (2007). "Pax6 controls cerebral cortical cell 
number by regulating exit from the cell cycle and specifies cortical cell identity by 
a cell autonomous mechanism." Dev Biol 302(1): 50-65. 

Ragge, N. K., B. Lorenz, A. Schneider, K. Bushby, L. de Sanctis, U. de Sanctis, A. Salt, 
J. R. Collin, A. J. Vivian, S. L. Free, P. Thompson, K. A. Williamson, S. M. 
Sisodiya, V. van Heyningen and D. R. Fitzpatrick (2005). "SOX2 anophthalmia 
syndrome." Am J Med Genet A 135(1): 1-7; discussion 8. 

Rakic, P. (1971). "Guidance of neurons migrating to the fetal monkey neocortex." Brain 
Res 33(2): 471-6. 



209 

Reid, C. B., I. Liang and C. Walsh (1995). "Systematic widespread clonal organization in 
cerebral cortex." Neuron 15(2): 299-310. 

Rex, M., A. Orme, D. Uwanogho, K. Tointon, P. M. Wigmore, P. T. Sharpe and P. J. 
Scotting (1997). "Dynamic expression of chicken Sox2 and Sox3 genes in 
ectoderm induced to form neural tissue." Dev Dyn 209(3): 323-32. 

Reynolds, B. A., W. Tetzlaff and S. Weiss (1992). "A multipotent EGF-responsive striatal 
embryonic progenitor cell produces neurons and astrocytes." J Neurosci 12(11): 
4565-74. 

Reynolds, B. A. and S. Weiss (1992). "Generation of neurons and astrocytes from 
isolated cells of the adult mammalian central nervous system." Science 
255(5052): 1707-10. 

Reynolds, B. A. and S. Weiss (1996). "Clonal and population analyses demonstrate that 
an EGF-responsive mammalian embryonic CNS precursor is a stem cell." Dev 
Biol 175(1): 1-13. 

Richards, L. J., T. J. Kilpatrick and P. F. Bartlett (1992). "De novo generation of neuronal 
cells from the adult mouse brain." Proc Natl Acad Sci U S A 89(18): 8591-5. 

Rodda, D. J., J. L. Chew, L. H. Lim, Y. H. Loh, B. Wang, H. H. Ng and P. Robson (2005). 
"Transcriptional regulation of nanog by OCT4 and SOX2." J Biol Chem 280(26): 
24731-7. 

Rolletschek, A. and A. M. Wobus (2009). "Induced human pluripotent stem cells: 
promises and open questions." Biol Chem. 

Rossant, J. and P. P. Tam (2009). "Blastocyst lineage formation, early embryonic 
asymmetries and axis patterning in the mouse." Development 136(5): 701-13. 

Russell, S. R., N. Sanchez-Soriano, C. R. Wright and M. Ashburner (1996). "The 
Dichaete gene of Drosophila melanogaster encodes a SOX-domain protein 
required for embryonic segmentation." Development 122(11): 3669-76. 

Sakakibara, S., T. Imai, K. Hamaguchi, M. Okabe, J. Aruga, K. Nakajima, D. Yasutomi, 
T. Nagata, Y. Kurihara, S. Uesugi, T. Miyata, M. Ogawa, K. Mikoshiba and H. 
Okano (1996). "Mouse-Musashi-1, a neural RNA-binding protein highly enriched 
in the mammalian CNS stem cell." Dev Biol 176(2): 230-42. 



210 

Sakakibara, S. and H. Okano (1997). "Expression of neural RNA-binding proteins in the 
postnatal CNS: implications of their roles in neuronal and glial cell development." 
J Neurosci 17(21): 8300-12. 

Sanchez-Soriano, N. and S. Russell (2000). "Regulatory mutations of the Drosophila 
Sox gene Dichaete reveal new functions in embryonic brain and hindgut 
development." Dev Biol 220(2): 307-21. 

Sansom, S. N., D. S. Griffiths, A. Faedo, D. J. Kleinjan, Y. Ruan, J. Smith, V. van 
Heyningen, J. L. Rubenstein and F. J. Livesey (2009). "The level of the 
transcription factor Pax6 is essential for controlling the balance between neural 
stem cell self-renewal and neurogenesis." PLoS Genet 5(6): e1000511. 

Sasai, Y. (2001). "Regulation of neural determination by evolutionarily conserved 
signals: anti-BMP factors and what next?" Curr Opin Neurobiol 11(1): 22-6. 

Sasai, Y. (2001). "Roles of Sox factors in neural determination: conserved signaling in 
evolution?" Int J Dev Biol 45(1): 321-6. 

Scardigli, R., N. Baumer, P. Gruss, F. Guillemot and I. Le Roux (2003). "Direct and 
concentration-dependent regulation of the proneural gene Neurogenin2 by 
Pax6." Development 130(14): 3269-81. 

Schepers, G. E., R. D. Teasdale and P. Koopman (2002). "Twenty pairs of sox: extent, 
homology, and nomenclature of the mouse and human sox transcription factor 
gene families." Dev Cell 3(2): 167-70. 

Schmechel, D. E. and P. Rakic (1979). "A Golgi study of radial glial cells in developing 
monkey telencephalon: morphogenesis and transformation into astrocytes." Anat 
Embryol (Berl) 156(2): 115-52. 

Sessa, A., C. A. Mao, A. K. Hadjantonakis, W. H. Klein and V. Broccoli (2008). "Tbr2 
directs conversion of radial glia into basal precursors and guides neuronal 
amplification by indirect neurogenesis in the developing neocortex." Neuron 
60(1): 56-69. 

Shibata, T., K. Yamada, M. Watanabe, K. Ikenaka, K. Wada, K. Tanaka and Y. Inoue 
(1997). "Glutamate transporter GLAST is expressed in the radial glia-astrocyte 
lineage of developing mouse spinal cord." J Neurosci 17(23): 9212-9. 



211 

Shihabuddin, L. S., P. J. Horner, J. Ray and F. H. Gage (2000). "Adult spinal cord stem 
cells generate neurons after transplantation in the adult dentate gyrus." J 
Neurosci 20(23): 8727-35. 

Shihabuddin, L. S., J. Ray and F. H. Gage (1997). "FGF-2 is sufficient to isolate 
progenitors found in the adult mammalian spinal cord." Exp Neurol 148(2): 577-
86. 

Shimazaki, T., T. Shingo and S. Weiss (2001). "The ciliary neurotrophic factor/leukemia 
inhibitory factor/gp130 receptor complex operates in the maintenance of 
mammalian forebrain neural stem cells." J Neurosci 21(19): 7642-53. 

Sisodiya, S. M., N. K. Ragge, G. L. Cavalleri, A. Hever, B. Lorenz, A. Schneider, K. A. 
Williamson, J. M. Stevens, S. L. Free, P. J. Thompson, V. van Heyningen and D. 
R. Fitzpatrick (2006). "Role of SOX2 mutations in human hippocampal 
malformations and epilepsy." Epilepsia 47(3): 534-42. 

Smart, I. H. (1973). "Proliferative characteristics of the ependymal layer during the early 
development of the mouse neocortex: a pilot study based on recording the 
number, location and plane of cleavage of mitotic figures." J Anat 116(Pt 1): 67-
91. 

Smith, A. (2006). "A glossary for stem-cell biology." Nature 441(7097): 1. 

Solter, D. and B. B. Knowles (1978). "Monoclonal antibody defining a stage-specific 
mouse embryonic antigen (SSEA-1)." Proc Natl Acad Sci U S A 75(11): 5565-9. 

Soriano, N. S. and S. Russell (1998). "The Drosophila SOX-domain protein Dichaete is 
required for the development of the central nervous system midline." 
Development 125(20): 3989-96. 

Soullier, S., P. Jay, F. Poulat, J. M. Vanacker, P. Berta and V. Laudet (1999). 
"Diversification pattern of the HMG and SOX family members during evolution." J 
Mol Evol 48(5): 517-27. 

Stoykova, A., D. Treichel, M. Hallonet and P. Gruss (2000). "Pax6 modulates the 
dorsoventral patterning of the mammalian telencephalon." J Neurosci 20(21): 
8042-50. 

Streit, A., S. Sockanathan, L. Perez, M. Rex, P. J. Scotting, P. T. Sharpe, R. Lovell-
Badge and C. D. Stern (1997). "Preventing the loss of competence for neural 
induction: HGF/SF, L5 and Sox-2." Development 124(6): 1191-202. 



212 

Suh, H., W. Deng and F. H. Gage (2009). "Signaling in Adult Neurogenesis." Annu Rev 
Cell Dev Biol. 

Suhonen, J. O., D. A. Peterson, J. Ray and F. H. Gage (1996). "Differentiation of adult 
hippocampus-derived progenitors into olfactory neurons in vivo." Nature 
383(6601): 624-7. 

Sun, W. and J. R. Downing (2004). "Haploinsufficiency of AML1 results in a decrease in 
the number of LTR-HSCs while simultaneously inducing an increase in more 
mature progenitors." Blood 104(12): 3565-72. 

Sun, Y., W. Kong, A. Falk, J. Hu, L. Zhou, S. Pollard and A. Smith (2009). "CD133 
(Prominin) negative human neural stem cells are clonogenic and tripotent." PLoS 
One 4(5): e5498. 

Suzuki, N., N. Suwabe, O. Ohneda, N. Obara, S. Imagawa, X. Pan, H. Motohashi and M. 
Yamamoto (2003). "Identification and characterization of 2 types of erythroid 
progenitors that express GATA-1 at distinct levels." Blood 102(10): 3575-83. 

Takahashi, K., K. Okita, M. Nakagawa and S. Yamanaka (2007). "Induction of 
pluripotent stem cells from fibroblast cultures." Nat Protoc 2(12): 3081-9. 

Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda and S. 
Yamanaka (2007). "Induction of pluripotent stem cells from adult human 
fibroblasts by defined factors." Cell 131(5): 861-72. 

Takahashi, K. and S. Yamanaka (2006). "Induction of pluripotent stem cells from mouse 
embryonic and adult fibroblast cultures by defined factors." Cell 126(4): 663-76. 

Takahashi, M., T. D. Palmer, J. Takahashi and F. H. Gage (1998). "Widespread 
integration and survival of adult-derived neural progenitor cells in the developing 
optic retina." Mol Cell Neurosci 12(6): 340-8. 

Takahashi, T., R. S. Nowakowski and V. S. Caviness, Jr. (1993). "Cell cycle parameters 
and patterns of nuclear movement in the neocortical proliferative zone of the fetal 
mouse." J Neurosci 13(2): 820-33. 

Takemoto, T., M. Uchikawa, Y. Kamachi and H. Kondoh (2006). "Convergence of Wnt 
and FGF signals in the genesis of posterior neural plate through activation of the 
Sox2 enhancer N-1 

10.1242/dev.02196." Development 133(2): 297-306. 



213 

Tam, P. P. (1989). "Regionalisation of the mouse embryonic ectoderm: allocation of 
prospective ectodermal tissues during gastrulation." Development 107(1): 55-67. 

Tam, P. P. and D. A. Loebel (2007). "Gene function in mouse embryogenesis: get set for 
gastrulation." Nat Rev Genet 8(5): 368-81. 

Tan, S. S., M. Kalloniatis, K. Sturm, P. P. Tam, B. E. Reese and B. Faulkner-Jones 
(1998). "Separate progenitors for radial and tangential cell dispersion during 
development of the cerebral neocortex." Neuron 21(2): 295-304. 

Tanaka, S., Y. Kamachi, A. Tanouchi, H. Hamada, N. Jing and H. Kondoh (2004). 
"Interplay of SOX and POU factors in regulation of the Nestin gene in neural 
primordial cells." Mol Cell Biol 24(20): 8834-46. 

Taranova, O. V., S. T. Magness, B. M. Fagan, Y. Wu, N. Surzenko, S. R. Hutton and L. 
H. Pevny (2006). "SOX2 is a dose-dependent regulator of retinal neural 
progenitor competence." Genes Dev 20(9): 1187-202. 

Temple, S. (2001). "The development of neural stem cells." Nature 414(6859): 112-7. 

Thomas, P. and R. Beddington (1996). "Anterior primitive endoderm may be responsible 
for patterning the anterior neural plate in the mouse embryo." Curr Biol 6(11): 
1487-96. 

Toresson, H., S. S. Potter and K. Campbell (2000). "Genetic control of dorsal-ventral 
identity in the telencephalon: opposing roles for Pax6 and Gsh2." Development 
127(20): 4361-71. 

Travis, A., A. Amsterdam, C. Belanger and R. Grosschedl (1991). "LEF-1, a gene 
encoding a lymphoid-specific protein with an HMG domain, regulates T-cell 
receptor alpha enhancer function [corrected]." Genes Dev 5(5): 880-94. 

Tropepe, V., S. Hitoshi, C. Sirard, T. W. Mak, J. Rossant and D. van der Kooy (2001). 
"Direct neural fate specification from embryonic stem cells: a primitive 
mammalian neural stem cell stage acquired through a default mechanism." 
Neuron 30(1): 65-78. 

Tropepe, V., M. Sibilia, B. G. Ciruna, J. Rossant, E. F. Wagner and D. van der Kooy 
(1999). "Distinct neural stem cells proliferate in response to EGF and FGF in the 
developing mouse telencephalon." Dev Biol 208(1): 166-88. 



214 

Uchida, N., D. W. Buck, D. He, M. J. Reitsma, M. Masek, T. V. Phan, A. S. Tsukamoto, 
F. H. Gage and I. L. Weissman (2000). "Direct isolation of human central nervous 
system stem cells." Proc Natl Acad Sci U S A 97(26): 14720-5. 

Uchikawa, M., Y. Kamachi and H. Kondoh (1999). "Two distinct subgroups of Group B 
Sox genes for transcriptional activators and repressors: their expression during 
embryonic organogenesis of the chicken." Mech Dev 84(1-2): 103-20. 

Uwanogho, D., M. Rex, E. J. Cartwright, G. Pearl, C. Healy, P. J. Scotting and P. T. 
Sharpe (1995). "Embryonic expression of the chicken Sox2, Sox3 and Sox11 
genes suggests an interactive role in neuronal development." Mech Dev 49(1-2): 
23-36. 

Ventura, R. E. and J. E. Goldman (2007). "Dorsal radial glia generate olfactory bulb 
interneurons in the postnatal murine brain." J Neurosci 27(16): 4297-302. 

Vicario-Abejon, C., M. G. Cunningham and R. D. McKay (1995). "Cerebellar precursors 
transplanted to the neonatal dentate gyrus express features characteristic of 
hippocampal neurons." J Neurosci 15(10): 6351-63. 

Voigt, T. (1989). "Development of glial cells in the cerebral wall of ferrets: direct tracing 
of their transformation from radial glia into astrocytes." J Comp Neurol 289(1): 
74-88. 

Walsh, C. and C. L. Cepko (1988). "Clonally related cortical cells show several migration 
patterns." Science 241(4871): 1342-5. 

Waterman, M. L., W. H. Fischer and K. A. Jones (1991). "A thymus-specific member of 
the HMG protein family regulates the human T cell receptor C alpha enhancer." 
Genes Dev 5(4): 656-69. 

Webb, S. (2009). "iPS cell technology gains momentum in drug discovery." Nat Rev 
Drug Discov 8(4): 263-4. 

Wegner, M. (1999). "From head to toes: The multiple facets of Sox proteins." Nucleic 
Acids Res. 27: 1409-1420. 

Wegner, M. and C. C. Stolt (2005). "From stem cells to neurons and glia: a Soxist's view 
of neural development." Trends in Neurosciences 28(11): 583-588. 



215 

Weinmaster, G., V. J. Roberts and G. Lemke (1991). "A homolog of Drosophila Notch 
expressed during mammalian development." Development 113(1): 199-205. 

Weir, H. M., P. J. Kraulis, C. S. Hill, A. R. Raine, E. D. Laue and J. O. Thomas (1993). 
"Structure of the HMG box motif in the B-domain of HMG1." Embo J 12(4): 1311-
9. 

Weiss, S., C. Dunne, J. Hewson, C. Wohl, M. Wheatley, A. C. Peterson and B. A. 
Reynolds (1996). "Multipotent CNS stem cells are present in the adult 
mammalian spinal cord and ventricular neuroaxis." J Neurosci 16(23): 7599-609. 

Wernig, M., A. Meissner, R. Foreman, T. Brambrink, M. Ku, K. Hochedlinger, B. E. 
Bernstein and R. Jaenisch (2007). "In vitro reprogramming of fibroblasts into a 
pluripotent ES-cell-like state." Nature 448(7151): 318-24. 

Williams, B. P. and J. Price (1995). "Evidence for multiple precursor cell types in the 
embryonic rat cerebral cortex." Neuron 14(6): 1181-8. 

Wilson, S. W. and C. Houart (2004). "Early steps in the development of the forebrain." 
Dev Cell 6(2): 167-81. 

Wood, H. B. and V. Episkopou (1999). "Comparative expression of the mouse Sox1, 
Sox2 and Sox3 genes from pre-gastrulation to early somite stages." Mech Dev 
86(1-2): 197-201. 

Yoon, K., S. Nery, M. L. Rutlin, F. Radtke, G. Fishell and N. Gaiano (2004). "Fibroblast 
growth factor receptor signaling promotes radial glial identity and interacts with 
Notch1 signaling in telencephalic progenitors." J Neurosci 24(43): 9497-506. 

Yuan, H., N. Corbi, C. Basilico and L. Dailey (1995). "Developmental-specific activity of 
the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3." Genes 
Dev 9(21): 2635-45. 

Yun, K., S. Potter and J. L. Rubenstein (2001). "Gsh2 and Pax6 play complementary 
roles in dorsoventral patterning of the mammalian telencephalon." Development 
128(2): 193-205. 

Zappone, M. V., R. Galli, R. Catena, N. Meani, S. De Biasi, E. Mattei, C. Tiveron, A. L. 
Vescovi, R. Lovell-Badge, S. Ottolenghi and S. K. Nicolis (2000). "Sox2 
regulatory sequences direct expression of a (beta)-geo transgene to 
telencephalic neural stem cells and precursors of the mouse embryo, revealing 



216 

regionalization of gene expression in CNS stem cells." Development 127(11): 
2367-82. 

Zhao, S., J. Nichols, A. G. Smith and M. Li (2004). "SoxB transcription factors specify 
neuroectodermal lineage choice in ES cells." Mol Cell Neurosci 27(3): 332-42. 

Zhuo, L., B. Sun, C. L. Zhang, A. Fine, S. Y. Chiu and A. Messing (1997). "Live 
astrocytes visualized by green fluorescent protein in transgenic mice." Dev Biol 
187(1): 36-42. 

Zimmer, C., M. C. Tiveron, R. Bodmer and H. Cremer (2004). "Dynamics of Cux2 
expression suggests that an early pool of SVZ precursors is fated to become 
upper cortical layer neurons." Cereb Cortex 14(12): 1408-20. 

 
 


	List of Tables
	List of Figures
	List of Abbreviations
	Chapter One
	1.1   Defining Neural Progenitor Cells
	Differentiation
	Self-Renewal
	Summary- The Usage of “Neural Stem” and “Neural Progenitor”

	1.2   SOX2 Structure, Expression and Function in Neural Progenitor Cells of the CNS
	The HMG-Box Superfamily of Transcription Factors
	The SOX Family of HMG-Box Transcription Factors
	Mechanisms of SOX2 Function
	Role of SOXB1 Factors in Defining Neural Competence
	Role of SOXB1 Factors in Maintaining the Identity and Differentiation Capacity of Neural Progenitor Cells of the CNS

	1.3  Neural Progenitor Cells in the Development of the Murine Neocortex
	Neural Progenitor Cells of the Early Embryonic Nervous System
	Neuroepithelial (NEP) Cells

	Neural Progenitor Populations in the Dorsal Telencephalon
	Radial Glial Cells
	Intermediate Progenitor Cells

	Neural Progenitor Cells in the Adult Neocortex
	Subventricular Zone (SVZ) Progenitor Cells


	1.4  Hypothesis
	Figures

	Chapter Two
	Summary of Chapter
	Generation and Characterization of the SOX2EGFP Mouse Line
	Development of Methods to Efficiently Isolate and Culture Neural Progenitor Cells
	Conclusion

	SOX2 a persistent marker for multipotential neural stem cells derived from ES cells, the embryo or the adult.
	Abstract
	Introduction
	Results
	Generation of the SOX2-EGFP Targeted Mice and SOX2-specific EGFP expression in embryonic stem cell-derived neural progenitor cells.
	SOX2-EGFP expression is restricted to proliferating neural progenitors during the development of the embryonic CNS.
	SOX2-EGFP expression defines ongoing neurogenesis in post-natal and adult CNS.
	SOX2-RANDOM distinguishes two stem cell populations of the adult brain.

	Discussion
	Materials and methods
	Figures

	The Isolation, Culture and Differentiation of Progenitor Cells from the Central Nervous System
	Introduction
	Materials
	Methods
	Discussion
	Recipes
	Figures


	Chapter Three
	Abstract
	Introduction
	Results
	Detailed Analysis of SOX2 Expression in Neural Progenitor Populations of the Dorsal Telencephalon
	Distinct Neural Progenitor Populations can be Prospectively Isolated Based Upon SOX2 Expression Levels
	Neurosphere Size, Self-Renewal, and Multipotency Correlate with High Levels of SOX2 Expression
	Gene Expression Profiles of EGFPHigh, EGFPInt, and EGFPLow sorted populations

	Discussion
	Materials and Methods
	Figures

	Chapter Four
	Introduction
	Results
	Efficient Expression and Recombination of hGFAPCre in Radial Glia of the Dorsal Telencephalon
	SOX2 Loss in the Dorsal Telencephalon Results in Reduced Cortical Thickness and Increased Embryonic Lethality
	The Loss of SOX2 in the Dorsal Telencephalon Results in a Decrease in the Number of Proliferating Radial Glial Cells and Intermediate Progenitor Cells
	SOX2-deficient Neural Progenitor Cells Have a Reduced Proliferative and Self-renewal Capacity and are able to Generate Multipotential Neurospheres.

	Discussion
	Materials and Methods
	Figures

	Chapter Five
	Summary of Findings
	Brief Overview of Findings
	Discussion of Major Findings and Future Directions
	SOX2-EGFP Identifies Distinct Populations of Neural Progenitor Cells in the Embryonic and Adult Central Nervous System.
	SOX2 is Differentially Expressed between Distinct Neural Progenitor Populations
	SOX2 is Necessary to Maintain Radial Glial Populations in the Dorsal Telencephalon
	Functional Redundancy of SOXB1 Transcription Factors in the Developing Dorsal Telencephalon

	Conclusion

	References

