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Abstract 

Benjamin W. Heumann: Remote sensing of mangrove composition and structure in the 

Galapagos Islands 

(Under the direction of Dr. Stephen J. Walsh) 

 

Mangroves are unique inter-tidal ecosystems that provide valuable ecosystem goods and 

services. This dissertation investigates new methods of characterizing mangrove forests using 

remote sensing with implications for mapping and modeling ecosystem goods and services. 

Specifically, species composition, leaf area, and canopy height are investigated for mangroves in 

the Galapagos Islands. The Galapagos Islands serve as an interesting case study where 

environmental conditions are highly variable over short distances producing a wide range of 

mangrove composition and structure to examine. This dissertation reviews previous mangrove 

remote sensing studies and seeks to address missing gaps. Specifically, this research seeks to 

examine pixel and object-based methods for mapping mangrove species, investigate the 

usefulness of spectral and spatial metrics to estimate leaf area, and compare existing global 

digital surface models with a digital surface model extracted from new very high resolution 

imagery. The major findings of this research include the following: 1) greater spectral 

separability between true mangrove and mangrove associate species using object-based image 

analysis compared to pixel-based analysis, but a lack of separability between individual 

mangrove species, 2) the demonstrated necessity for novel machine-learning classification 

techniques rather than traditional clustering classification algorithms, 3) significant but weak 

relationships between spectral vegetation indices and leaf area, 4) moderate to strong 

relationships between grey-level co-occurrence matrix image texture and leaf area at the 

individual species level, 5) similar accuracy between a very high resolution stereo optical digital 
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surface model a coarse resolution InSAR product to estimate canopy height with improved 

accuracy using a hybrid model of these two products. The results demonstrate advancements in 

remote sensing technology and technique, but further challenges remain before these methods 

can be applied to monitoring and modeling applications. Based on these results, future research 

should focus on emerging technologies such as hyperspectral, very high resolution InSAR, and 

LiDAR to characterize mangrove forest composition and structure.  
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Preface 

 

 The proposed title of this dissertation research was "Mapping suitable habitat of the 

critically endangered mangrove finch using remote sensing". The aim of this research was to 

generate the spatial data for a habitat model using remote sensing and use the output from the 

habitat model to help inform the Charles Darwin Research Station on where the best locations 

to establish new population of the mangrove finch would be. The creation of these spatial data 

were experimental, new types of imagery, and methods for mangroves were tested since existing 

methods had largely failed to accurately describe mangroves. The end result is a thorough 

assessment of the remote sensing of mangrove species composition, leaf area, and canopy. This 

research has contributed in a significant manner towards furthering remote sensing data and 

techniques. Unfortunately, the remote sensing data products did not provide sufficient accuracy 

that I felt them suitable for input into a habitat model that would be used to make conservation 

management decisions for a critically endangered bird. Thus, I have framed my research around 

finding a methodology for assessing ecosystem goods and services including, but not 

specifically, habitat.  
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Chapter 1:  Introduction 
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Mangroves are unique in that they are the foundational species of a woody intertidal 

ecosystem that links terrestrial and marine systems and support biodiversity across systems. 

Mangroves are an assemblage of woody halophytes (i.e. salt tolerant plants) that are the 

foundational species of dense inter-tidal forest ecosystems that occur along tropical and sub-

tropical coastlines, estuaries, lagoons, and rivers (Tomlinson, 1986; Smith 1992; Hogarth, 

2007). While mangrove forest composition is often characterized by a strong zonation in 

community composition based on primarily on soil salinity related to tidal inundation 

(Tomlinson, 1986), other geomorphic, edaphic, climatic, and biotic factors can create more 

complex patterns (Onuf, 1977; Ewel et al., 1998; Farnsworth, 1998; Lee et al., 1998; Duke et 

al., 1996; Ellison 2002). For example, crabs can alter community structure through seed 

predation and alteration of soil nutrients and aeration through bioturbulation (Lee et al., 

1998), mangrove trees themselves may alter local edaphic conditions contributing to spatial 

patterns (McKee, 1993), and that typical lateral zonation based on soil salinity can be absent in 

high precipitation regions (Ewel et al., 1998). The extent to which biotic and abiotic factors create 

patterns is debated. For instance, Ellison et al. (2002) found that although geomorphic and 

edaphic factors were significantly correlated with mangrove patterns, there was not any detectable 

zonation in species.  

 As Tomlinson (1986) describes, mangroves tend to have biological characteristics 

associated with pioneer terrestrial trees such as a large number of propagules, wide dispersal, fast 

growth rates, light as a limiting resource, uniform crown shape, and prolonged flowering period. 

Mangrove communities also have many pioneer characteristics such as low species richness, low 

stratification, and few climbers or epiphytes. However, mangroves trees and communities do have 

some mature characteristics as well such as long life span, low leaf palatability, medium leaf size, 

hard wood, and the absence of undergrowth. Ward et al. (2006) found that mangrove forests 

demonstrate a negative scaling relationship between mean stem diameter and stem density, 
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typical of self-thinning theory of mono-specific stands, as well as asymptotic standing biomass 

accumulation typical of upland tree communities. Furthermore, mangrove trees have strong 

allometric relationships between stem diameter, tree height, and above ground biomass (Fromard 

et al., 1998; Smith et al., 2006). Thus, mangrove forests tend to form distinguishable patterns of 

community composition and predictable canopy structure.  

Mangrove forests provide a variety of valuable ecosystem goods and services. 

Examples of mangrove ecosystem goods and services include as timber and fuel (Walters et 

al., 2010), carbon sequestration (Komiyama, 2008), nutrient cycling to marine systems 

(Duarte et al., 1996), habitat for rare terrestrial fauna (Dvorak et al., 2004), economically 

important fisheries (Laegdsgaard et al., 2001; Mumby et al., 2004; Nagelkerken et al., 

2000), filtration of pollution (Harbison, 1986), and a potential reduction in the impact of 

tsunami and storm surge (Granek and Ruttenberg, 2007; Danielsen et al., 2005). Costanza 

et al. (1997) estimated that these ecosystem goods and services are worth about US $10,000 

per hectare per year or about US $180 billion globally. 

According to the Millennium Ecosystem Assessment framework (Corvalán, 2005), 

ecosystem goods and services can be broadly divided among four categories - supporting, 

regulating, provisional, and cultural (see figure 1). Ecosystems provide valuable goods and 

services that support and regulate climate, biodiversity, and human well-being (Corvalán, 

2005). The creation of sustainability policy requires clear definition and assessment of 

ecosystem goods and services and a method of accounting (Lele, 1991). The Earth system 

sciences and physical geography are well placed to develop quantitative assessment methods 

and to link them to broader sustainability policy (Leemans et al., 2009). In particular, space-

based remote sensing provides the tools for wide-scale, repeatable methods to quantify and 

monitor ecosystem goods and services from local to national scales (Carpenter et al., 2009). 

As such, the advancement of remote sensing techniques that characterize composition and 

structure is crucial for future mapping, modeling, and monitoring of ecosystem goods and 
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services of mangroves. For example, consistent, accurate and repeatable measurements of 

canopy height can provide estimates of carbon storage as a component of climate regulation. 

 

 

Figure 1.1: Examples of Ecosystem Goods and Services (after Corvalán, 2005). 

 The Galapagos Islands are renowned for biodiversity, especially high levels of species 

endemism  such as Darwin's Finches. Located 1000-km off the coast of Ecuador, the Galapagos 

Islands, are an archipelago consisting of 13 large islands, 4 of which have human populations, and 

188 small islands and rocks. The Galapagos Islands were declared a national park in 1959 (the 

park consists of 97% of land area), a UNESCO World Heritage Site in 1978, and a UNESCO 

Biosphere Reserve in 1987. Despite its reputation, relatively little research has been conducted 
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at the landscape scale to describe patterns and processes of ecosystems. The mangroves are 

no exception.  

 The Galapagos Islands lie on the western edge of the Atlantic-East Pacific mangrove 

complex. Mangrove forests consist of three true species common in this region: Rhizophora 

mangle (red), Avicennia germinans (black), and Laguncularia racemosa (white), and as well as 

the associate species such as Conocarpus erectus (button or buttonwood mangrove) and 

Hippomane mancinella (manzanillo), or other halophytes growing on nearby sand flats or 

dunes (Van der Werff and Andsersen, 1993). In the Galapagos Islands, mangrove forest form 

dense, but small patches in protected coves and lagoons along an otherwise barren or arid coast. 

Mangroves grow on a range of substrates from aa lava to sand or silty-clay.  Mangrove forests in 

the study area can be described primarily as fringe mangroves forming along the coastline or basin 

mangroves along hyper-saline lagoons. While mangroves are generally observed to have clear 

zonation of species along the hydroperiod or salinity gradient, the pattern is most evident for large 

mangrove forests in riverine setting when the mixing of substantial freshwater and salt water 

occurs along a long, flat delta. In the Galapagos Islands, mangroves are situated along a 

geologically young coastline  with highly variable micro-topography, small freshwater inputs, and a 

relatively narrow inter-tidal zone. As such, the pattern of species zonation is less distinct as 

conditions of hydroperiod, salinity, and wave action are variable over short distances.  

 Very little information about mangroves in Galapagos is available in English. With the 

exception of a book chapter about dry coastal ecosystems in Galapagos (Van der Werff and 

Andsersen, 1993), mangroves are simply the setting rather than the subject of research. For 

example, there is a series of papers about the critically endangered mangrove finch (Grant 

and Grant, 1998; Dvorak et al., 2004; Fessl et al., 2010). As Dvorak et al. (2004) note in 

their analysis of mangrove finch habitat, there is little information about the extent, species 

composition, or structure of mangrove forests in the Galapagos Islands. To date, there have 

been two sets of maps that include mangroves as a land cover classification. However, these 



 
 

6 
 

maps were derived from coarse resolution air photos or satellite imagery and field scientists 

have found the accuracy of these products unsatisfactory. Thus, accurate maps of mangrove 

forest extent, structure, and canopy structure are the first steps to understanding the role of 

mangrove forests in the Galapagos Islands and establishing a baseline for future monitoring.  

Although the role and importance of mangrove ecosystem goods and services beyond habitat 

in the Galapagos Islands is likely minor due to their limited extent, the Galapagos Islands 

represent a highly variable and often marginal environment for mangroves. The Galapagos 

Islands host a wide range of mangrove forms within species and thus provide a good range of 

conditions from which to understand the relationships between remote sensing data and 

mangrove composition and structure.  

 The remote sensing of mangroves presents many challenges including mixed pixel 

effects with variable backgrounds, similar spectral signatures between mangrove species as 

well as landward vegetation, variable structure based on environmental conditions, and 

difficulty obtaining widespread field data. For mangroves growing in arid regions, these 

problems are complicated by often sparse vegetation (mixed pixel effects), and a truncation 

of the zonation between species along the topographic gradient. Traditional satellite remote 

sensing approaches (e.g. Landsat and SPOT) are largely limited to mapping the extent of 

large mangrove forest. The remote sensing of forest parameters related to ecosystem goods 

and services requires more advance data and techniques. These issues are discussed in 

further detail in Chapter 2.  

 

Research Objectives  

 The objective of this dissertation is to map mangrove forests and characterize 

composition and structure. The following three sets of characteristics have been selected:  1) 

forest extent and species composition as parameters important to basic mapping of 

mangrove forests in terms of distribution as well as habitat, 2) leaf area defined by either 
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fraction canopy cover or leaf area index as an important parameter for net primary 

productivity, evapotranspiration, and nutrient flux, and 3) canopy height as a proxy for 

standing biomass (carbon storage) and habitat quality. This research emphasizes the use of 

new sensors and a shift from pixel-based analysis to spatial based analysis through image 

texture or OBIA. The research seeks to address the following sets of questions: 

 

1) Can individual mangrove and associate species be accurately mapped using very high 

resolution satellite imagery? What improvement does the new Worldview-2 sensor 

provide over Quickbird? Does OBIA improve spectral separability between classes?  

2) Do spectral or spatial characteristics better predict leaf area? Is spatial resolution or the 

range of spectral bands more important? At what scales and resolutions does image 

texture capture leaf area? Are there species-specific relationships? 

3) Can a digital surface model derived from VHR stereo provide accurate estimates of 

canopy height? How does the accuracy of the VHR optical DSM compare to a coarse 

resolution InSAR DSM? Can these two products be merged to enhance canopy height 

estimates? 

 

Dissertation Outline 

 Chapter 2 is a review paper on the remote sensing of mangroves published in 

Progress in Physical Geography, February, 2011. This chapter provides an overview of 

traditional approaches to mangrove remote sensing, recent advances in remote sensing 

technology and methods as applied to mangroves, and future opportunities from new 

sensors or methods not yet examined for mangrove forests. This chapter provides the 

rationale for the methods and techniques used is subsequent chapters.  

 Chapter 3 explores new methods to map mangrove extent and species composition. 

An exploratory multispectral separability analysis demonstrates the spectral confusion 
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between mangrove species and mangrove associate species and tests the differences between  

Quickbird and the new Worldview-2 sensors. Based on the results of the exploratory 

analysis, a hybrid decision-tree / support vector machine classification is created using an 

OBIA framework.  

 Chapter 4 compares spectral and spatial techniques to estimate mangrove canopy 

leaf area. The spectral techniques include spectral vegetation indices using Quickbird and 

Advanced Land Imager data. Spatial techniques include an analysis of image texture using 

grey-level occurrence matrices (GLOM) and grey-level co-occurrence matrices (GLCM). Leaf 

area is examined based on individual species and groups as well as background substrate. 

The best predictors are used to create a parametric model. 

 Chapter 5 examines the potential for using optical stereo satellite imagery for 

mapping global mangrove canopy height including fringe mangroves by comparing a DSM 

extracted from ALOS PRISM imagery with the ASTER GDEM and the SRTM global DEM 

product. The ALOS PRIM DSM is examined at the pixel and object-level.  

 Chapter 6 reviews the findings from results chapters and reflects on the 

contributions made. The future opportunities outlined in Chapter 2 are revisited given the 

results. The dissertation concludes with an outlook on the future state of mangroves in the 

Galapagos Islands and future research directions.  

 

Contributions 

 This dissertation contributes to the broader interdisciplinary research on 

sustainability science by addressing methodological issues on the remote sensing of 

ecosystem goods and services. While there are many conceptualizations of sustainability, 

remote sensing plays in important role as the best available source of data to assess and 

monitor ecosystems at local, regional, and global scales in consistent and repeatable ways. 

Mangroves are but one of many valuable ecosystems that are being degraded or destroyed 
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through land conversion, pollution, and modification of hydrologic processes with 

potentially far reaching consequences. This research contributes towards improving the 

methods available to assess and monitor mangrove forests and providing repeatable spatial 

measures of ecosystem goods and services over larger and generally inaccessible settings. 

This research also addresses a broader call for more research that explicitly considers the use 

of new remote sensing technologies in physical geography (Mather, 2011).  This dissertation 

contributes to these areas in the following ways: 

 

1) Chapter 2 contributes a review of current literature on the remote sensing of mangrove 

forests. A review on this topic has not been published in the last decade and this 

review addresses many of the advances in remote sensing technology and techniques 

since the last reviews. Furthermore, it outlines future opportunities for research and 

applications and establishes a rational for the subsequent chapters.  

   

2) Two new sensors, ALOS PRISM and Worldview-2, are used. This is the first application of 

these sensors for mangrove research and demonstrates both the potential and 

limitations of these sensors to address the assessment of canopy height and species 

composition. Specifically, this research compares the utility of Worldview-2 to 

Quickbird and a VHR stereo DSM to a coarse resolution InSAR DSM. 

  

3) This research also contributes to the growing trend from pixel-based image analysis to 

spatial or object based image analysis. Each chapter demonstrates how a spatial or 

object-based approach exceeds a pixel based approach. This research presents the 

first application of GLCM image texture to mangrove leaf area and contributes to 

issues of parameterizing GLCM image texture to measure leaf area.  
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4) Fringe mangrove are often omitted from remote sensing analysis due to their small areal 

extent. This small extent poses challenges for remote sensing using coarser 

resolution imagery due to mixed pixels. The small extent also can marginalize the 

importance of fringe mangroves. This research explicitly considers fringe mangroves 

and seeks to find robust methods for their mapping and monitoring.  

  

5) Finally, this research contributes to the discussion of scale in remote sensing. Identified in 

this research is the need for very high resolution products that are suitable for the 

remote sensing of fringe mangrove forests, but that are globally available. These two 

needs are in opposition from a technological perspective as high spatial resolution 

generally means a smaller extent and longer global coverage and repeat image 

acquisition time. The tradeoffs between spatial resolution and sensor sensitivity are 

examined and discussed. 
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Abstract  

 Mangroves are salt tolerant woody plants that form highly productive intertidal 

ecosystems in tropical and subtropical regions. Despite the established importance of 

mangroves to the coastal environment, including fisheries, deforestation continues to be a 

major threat due to pressures for wood and forest products, land conversion to aquaculture, 

and coastal urban development. Over the past 15 years, remote sensing has played a crucial 

role in mapping and understanding changes in the areal extent and spatial pattern of 

mangrove forests related to natural disasters and anthropogenic forces. This paper reviews 

recent advancements in remote-sensed data and techniques and describes future 

opportunities for integration or fusion of these data and techniques for large-scale 

monitoring in mangroves as a consequence of anthropogenic and climatic forces. While 

traditional pixel-based classification of Landsat, SPOT, and ASTER imagery has been widely 

applied for mapping mangrove forest, more recent types of imagery such as very high 

resolution (VHR), Polarmetric Synthetic Aperture Radar (PolSAR), hyperspectral, and 

LiDAR systems and the development of techniques such as Object Based Image Analysis 

(OBIA), spatial image analysis (e.g. image texture), Synthetic Aperture Radar Interferometry 

(InSAR), and machine-learning algorithms have demonstrated the potential for reliable and 

detailed characterization of mangrove forests including species, leaf area, canopy height, and 

stand biomass. Future opportunities include the application of existing sensors such as the 

hyperspectral HYPERION, the application of existing methods from terrestrial forest remote 

sensing, investigation of new sensors such as ALOS PRISM and PALSAR, and overcoming 

challenges to the global monitoring of mangrove forests such as wide-scale data availability, 

robust and consistent methods, and capacity-building with scientists and organizations in 

developing countries. 
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Introduction 

 Mangrove forests and shrubland, or mangroves, form important intertidal 

ecosystems that link terrestrial and marine systems and provide valuable ecosystem goods 

and services (Alongi, 2002). For example, mangroves are a foundation assemblage of trees 

that provide habitat for numerous terrestrial and marine species including economically and 

ecologically important fisheries (Nagelkerken et al., 2008). Despite the economic and 

ecological value of mangroves to the coastal environment including fisheries, more than 25% 

of global mangrove area was cleared between 1980 and 2000 (Wilkie and Fortuna, 2003). 

Detailed and accurate characterizations of mangroves are important to support ecological 

understanding and management of mangroves. Remote sensing has had a crucial role in 

monitoring mangroves, but the vast majority of the applications have been used to map areal 

extent and patterns of change at local scales. Recent advances in data and techniques have 

not only demonstrated the potential for improved accuracy of land cover classification and 

change-detection, but the capacity to characterize stand characteristics such as leaf area, 

canopy closure, species composition, canopy height, and standing biomass. This paper 

describes the following: (1) the traditional approaches of mapping mangrove areal extent 

and change using remote sensing; (2) recent advancements in remotely sensed data and 

analysis techniques for characterizing mangroves in terms of leaf area, species composition, 

and standing biomass; and (3) future opportunities for integration of these recent 

advancements and wide-scale application to provide regional and global monitoring of 

mangroves and indicators of ecological goods and services in the context of continued and 

growing threats from deforestation, natural disasters, and global climate change, especially 

sea-level rise. 
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Mangrove vegetation and ecosystems  

 Mangroves are an assemblage of woody halophytes (i.e. salt tolerant plants) that are 

the foundational species of intertidal forest and shrubland ecosystems that occur along 

tropical and subtropical coastlines, estuaries, lagoons, and river deltas (Hogarth, 2007; 

Smith, 1992; Tomlinson, 1986). While mangrove composition is often characterized by a 

strong zonation in community composition, based primarily on soil salinity related to tidal 

inundation (Tomlinson, 1986), other geomorphic, edaphic, climatic, and biotic factors can 

create more complex patterns (Duke et al., 1998; Ellison, 2002; Ewel et al., 1998; 

Farnsworth, 1998; Lee, 1999; Onuf et al., 1977).  

 As Tomlinson (1986) describes, mangroves tend to have biological characteristics 

associated with pioneer terrestrial trees such as large numbers of propagules, wide dispersal, 

fast growth rates, light as a limiting resource, uniform crown shape, and a prolonged 

flowering period. Mangrove communities also have many pioneer characteristics such as low 

species richness, low stratification, and few climbers or epiphytes. However, mangrove trees 

and communities have some characteristics of mature forests as well, such as a long life 

span, low leaf palatability, medium leaf size, hard wood, and the absence of undergrowth. 

Mangroves demonstrate a negative scaling relationship between mean stem diameter and 

stem density, typical of the self-thinning theory of mono-specific stands as well as 

asymptotic standing biomass accumulation typical of upland tree communities (Ward et al., 

2006). Furthermore, mangrove trees have strong allometric relationships between stem 

diameter, tree height, and above-ground biomass (Fromard et al., 1998; Smith and Whelan, 

2006). Thus, mangrove forests tend to form distinguishable patterns of community 

composition and predictable canopy structure.  

 The ecosystem goods and services that mangroves provide include carbon 

sequestration, the support of biodiversity through structure, nutrients and primary 

productivity, filtration of pollutants, and the potential to reduce the impacts of hurricanes 
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and tsunamis (Alongi, 2002). Primary productivity of mangroves can rival terrestrial, 

tropical rainforests (Alongi, 2002). Even though most productivity in mangroves is 

attributed to mangrove trees or bacteria in the soils, roughly 9% and 30% of carbon is 

consumed through herbivory or exported to the near- shore, respectively (Duarte and 

Cebrian, 1996). Mangroves provide protection from predators and increased food 

availability for marine fauna (Laegdsgaard and Johnson, 2001) and they have been linked to 

increased fish biomass (Mumby et al., 2004) as well as overall fish populations (Nagelkerken 

et al., 2008). Furthermore, many other marine species rely directly or indirectly on litter fall 

for food. These ecosystem goods and services are estimated to be worth about US $10,000 

per hectare per year or about US $180 billion globally (Costanza et al., 1997). Major threats 

to mangroves include logging for fuel and timber, land conversion to aquaculture, primarily 

shrimp ponds, coastal development for shipping, and the direct and indirect effects of urban 

development including fresh water diversions (Gopal and Chauhan, 2006). The value of 

mangroves has been recognized by many governmental and non-governmental 

organizations (Wilkie and Fortuna, 2003). Efforts to manage mangroves require wide- scale 

monitoring to track changes in areal extent, health, and ecological functioning. Remote 

sensing plays a crucial role in the monitoring of mangroves to track deforestation (e.g. Giri et 

al., 2007; Lee and Yeh, 2009; Manson et al., 2001; Mantri and Mishra, 2006; Paling et al., 

2008; Thu and Populus, 2007), the impact of natural disasters such as hurricanes (Doyle et 

al., 2009; Erftemeijer, 2002) and tsunamis (Giri et al., 2008; Olwig et al., 2007; 

Sirikulchayanon et al., 2008), reforestation projects (Al Habshi et al., 2007; Beland et al., 

2006) and natural coastal dynamics (Fromard et al., 2004). 

 

Traditional approaches to mangrove remote sensing  

 Aerial photography (AP) and legacy high resolution systems such as Landsat and 

SPOT are by far the most common approaches to mangrove remote sensing (Newton et al., 
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2009). AP has been widely used in the mapping and assessment of mangroves (see table 1). 

AP can be more cost effective over small areas than satellite remote sensing (Mumby et al., 

1999) and can provide fine grain imagery unavailable from satellite remote sensing due to 

government restrictions. Furthermore, historical imagery allows for change-detection well 

before the availability of satellite remote sensing. AP is more accessible to developing 

nations in which the majority of the world's mangroves grow and AP can provide very rapid 

assessments for monitoring change (Dahdouh-Guebas et al., 2006) in times of crisis. Most 

studies have used visual interpretation of AP to map the extent of mangrove and detect 

change between images, although digital AP now allows for computational classification (see 

table 2). Dahdouh-Guebas et al. (2006) demonstrated that fine grain AP can be successfully 

used to detect and map individual species. Major limitations to AP are the limited areal 

extent and relatively high costs of data acquisition over large geographic areas as well as the 

possible inconsistencies inherent in AP data such as uneven brightness and parallax 

distortion. Satellite-based remote sensing is essential for cost effective and repeatable 

mapping and monitoring of mangroves across geographic scales.  

 The vast majority of mangrove remote sensing studies (see table 1) have employed 

high resolution satellite imagery (i.e. spatial resolution between 5 and 100 m) such as 

Landsat (MSS, TM, or ETM+), SPOT (HVR, HRVIR, or HRG), ASTER, or IRS (1C or 1D). 

Table 3 provides further details on these sensor systems. The techniques used to detect and 

delineate mangrove have primarily involved unsupervised classification techniques such as 

the ISODATA approach, supervised classification techniques such as the maximum 

likelihood classification (MLC), mahalanobis distance, or other techniques commonly 

available in commercial image processing software, or a hybrid unsupervised/supervised 

classification scheme (see table 2 for a list of studies). Other common approaches for the 

classification of mangroves using multispectral imagery include pre- processing steps such 

as spectral transformations such as principal components analysis (PCA) or Tassel-Cap 
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Transformation (Crist and Cicone, 1984), or spectral vegetation indices such as Normalized 

Difference Vegetation Index (NDVI) or Simple Ratio (SR). In a comparison of classification 

techniques and data types, Green et al. (1998) found that the classification of PCA data 

performed significantly better than classifications using raw satellite bands. Additionally, the 

authors reported that the difference in classification accuracy using either Landsat or high 

resolution airborne imagery was small.  

 Using traditional data and techniques, reported classification accuracies of 

mangroves classes ranged from 75% to 90% for producer's and user's accuracies, though 

many applied studies omit detailed accuracy assessments. The omission of accuracy 

assessments is likely due to disconnect between the remote sensing and other disciplines 

(e.g. Newton et al., 2009). Accuracies tend to be higher for classifications using 

contemporary imagery with ground data than classifications using spectral library for land 

cover types with historical imagery (Giri et al., 2007). Despite the wide application of these 

traditional remote sensing data and techniques, there remain several limitations and 

challenges to traditional approaches to mangrove remote sensing. Confusion between 

mangroves and other vegetation is a commonly reported source of classification error (Al 

Habshi et al., 2007; Benfield et al., 2005; Gao, 1998). Another source of classification error 

is the omission of fringe mangroves that are less than the pixel size, resulting in mixed pixels 

(Manson et al., 2001). While the discrimination of mangrove density is possible with high 

resolution multispectral imagery (e.g. Green et al., 1998; Al Habshi et al., 2007), detection of 

individual species or estimation of canopy structure remain a challenge. For example, 

Ramsey and Jensen (1996) found no significant relationship between the spectral responses 

of different mangrove species using spectral bands available from Landsat. While estimation 

of canopy structure may be possible with high resolution imagery (Li et al., 2007), there are 

a number of challenges including mixed pixels (Green et al., 1997) and spectral saturation 

effects at higher biomass levels (Li et al., 2007) that limit the potential accuracy of these 
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data. Furthermore, reliance on a single grain of analysis can skew detection, analysis, and 

interpretation of landscape patterns and change (Wang et al., 2009). 

 Table 2.1: Traditional remote sensing sensors and mangrove studies 

Sensor(s) Studies 

Aerial 

Photography 

Benfield et al. (2005); Chauvaud et al. (1998); Dahdouh-Guebas et al. 
(2006); Eslami-Andargoli et al. (2009); Everitt et al. (2007); Fromard et al. 
(2004); Hossain et al. (2009); Jones et al. (2004); Krause et al. (2004); 
Manson et al. (2001); Murray et al. (2003) 

Landsat MSS, 

TM, or ETM+ 

Beland et al. (2006); Cornejo et al. (2005); Green et al. (1998); Giri et al. 
(2008); James et al. (2007); Krause et al. (2004); Lee and Yeh (2009); Liu 
et al. (2008); Long and Skewes (1996); Manson et al. (2001); Mumby et 
al. (1999); Paling et al. (2008); Ruiz-Luna and Berlanga-Robles (2003); 
Vasconcelos et al. (2002) 

SPOT HVR, 

HRVIR, or HRG 

Chauvaud et al. (2001); Gao (1998); Gao (1999); Green et al. (1998); Lee 
and Yeh (2009); Mumby et al. (1999); Rasolofoharinoro et al. (1998); 
Saito et al. (2003) 

ASTER Al Habshi et al. (2007); Vaiphasa et al. (2006) 

IRS C or D 
Mantri and Mishra (2006); Pattanaik et al. (2008); Reddy and Pattanaik 
(2007); Ramachandran et al. (1998) 

Table 2.2: Traditional remote sensing techniques and mangrove studies 

Technique  Studies 

Visual Interpretation 
Benfield et al. (2005); Dahdouh-Guebas et al. (2006); Fromard 
et al. (2004); Murray et al. (2003) 

Classification of Digital AP 
Chauvaud et al. (1998); Everitt et al. (2007); Krause et al. 
(2004) 

Unsupervised Classification 
Bhatt et al. (2009); Green et al. (1998); James et al. (2007); 
Murray et al. (2003) 

Supervised Classification 

Al Habshi et al. (2007); Chauvaud et al. (2001); Cornejo et al. 
(2005); Gao (1999); Giri et al. (2007); Green et al. (1998);  Lee 
and Yeh (2009); Ruiz-Luna and Berlanga-Robles (2003); Saito 
et al. (2003); Thu and Populus (2007) 

Hybrid Classification Giri et al. (2008); Hossain et al. (2009); Paling et al. (2008) 

Spectral Transformation 
Green et al. (1998); Krause et al. (2004); Mantri and Mishra 
(2006); Paling et al. (2008); Manson et al. (2001) 

Spectral Vegetation Indices 
Krause et al. (2004); Lee and Yeh (2009); Mantri and Mishra 
(2006); Rasolofoharinoro et al. (1998); Thu and Populus (2007) 



 
 

Table 2.3: Passive optical satellite remote sensing systems (B =blue; G= green; R= red; NIR= near-infrared; SWIR= shortwave) 

Sensor/System Platform 
# of 

Band(s) Spectral Range MSS  Pan. 
High Resolution Sensors 

 MSS (Multi Spectral Sensor) Landsat 1, 2, 3 4 B,G,R,NIR ~80m   
TM (Thematic Mapper) Landsat 4, 5 6 B,G,R,NIR,SWIR 30m   

ETM+ (Enhanced Thematic Mapper Plus) Landsat 7 6 VNIR,SWIR 30m 15m 

HVR (High Resolution Visibility) SPOT (Satellite Pour 
l'Observation de la Terre) 1, 2, 3 

3 G,R,NIR 20m 10m 

 HRVIR (High Resolution Visible and Infrared) 
SPOT (Satellite Pour 

l'Observation de la Terre) 4 4 G,R,NIR,SWIR 20m 10m 

HRG (High Resolution Geometrical) SPOT (Satellite Pour 
l'Observation de la Terre) 5 4 G,R,NIR,SWIR 10m (VNIR); 20m 

(SWIR) 2.5 

ASTER*  Terra 10 G,R,NIR; 6-SWIR 15m (VNIR); 30m 
(SWIR)   

IRS (Indian Remote-Sensing Satellite) 1C, 1D   4 G,R,NIR,SWIR 23m 5.8m 

ALI (Advanced Land Imager) EO-1 (Earth Observing) 9 2-B,G,R,2-NIR,2-
SWIR 

30m 15m 

Very High Resolution Sensors 
Quickbird   4 VNIR; Pan 2.4m  0.6m 
IKONOS   4 VNIR; Pan 4m 1m 
PRISM**  ALOS (Advanced Land 

Observation System) 1 Pan N/A 2.5m 

WorldView-2   8 VNIR; Pan < 2m *** < 0.5m 
*** 

GeoEye-1   4 VNIR; Pan 1.65m 0.41m 
Other Optical Sensors 

GLAS (Geoscience Laser Altimeter System) IceSAT (Ice, cloud and land 
elevation Satellite) 

LiDAR, 2 Green (532 nm),      
NIR(1064 nm) 

70m footprint;            
170m spacing 

  

HYPERION EO-1 (Earth Observing) 
Hyper- 

spectral: 
220 

400 - 2500nm 30m   

*Advanced Spaceborne Thermal Emission and Reflectance Radiometer  *** maximum resolution limited by U.S. government  
**Panchromatic Remote-sensing Instrument for Stereo Mapping    

2
2
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Recent advances 

 Traditional remote sensing approaches can provide important information for 

monitoring the areal extent and change of mangroves. New satellite sensors and techniques 

can potentially improve the accuracy of mangrove classifications, detect individual species, 

and provide reliable estimates of structure such as leaf area, canopy height, and biomass. 

There has been very rapid development of new remote sensing sensors and systems in recent 

years (e.g. Gillespie et al., 2008; Wooster, 2007). The new types of satellite sensors include 

very high resolution (VHR) systems (e.g. Quickbird, IKONOS, GeoEye-1 Worldview-2, and 

ALOS PRISM), Synthetic Aperture Radar systems (e.g. ALOS PALSAR, ASAR ENVISAT, and 

the Radarsat satellites), and LiDAR systems such as IceSAT/GLAS (see Tables 3 and 4 for 

details). Airborne sensors have been used to demonstrate the potential for satellite-based 

sensors such as the hyperspectral Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS), TOPSAR and AIRSAR (Polarmetric SAR), and various commercial wave-form 

LiDAR systems. Several new analysis techniques have been developed such as Object-Based 

Image Analysis (OBIA), and image texture metrics, such as lacunarity, use spatial 

information to improve image classification that can be applied to newer and traditional 

remote sensing imagery. Techniques such as genetic algorithms, spectral angular mapping, 

or neural networks have been developed and adapted to deal with new types of data (e.g. 

hyperspectral data or fusion of multiple types of data). The following sections will describe 

recent advances of data and techniques by remote sensing objective. 
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Table 2.4: Synthetic Aperture Radar (SAR) remote sensing systems. Polarization indicated by transmit and receive polarizations, 
respectively (H = horizontal polarization; V=  vertical polarization) 

Sensor Platform Band(s) Polarization(s) 
Spatial 

Resolution 
Synthetic Aperture Radar (SAR) 

SIR-C (Space-borne Imaging Radar) Space Shuttle C, L, X HH,VH, VV 10 - 200m 

ERS-1 (European Remote-Sensing Satellite) European Remote-Sensing 
Satellite  

C VV 25m - 100m 

JERS-1 (Japanese Earth Resource Satellite) 
Japanese Earth Resource 

Satellite  
L HH 25m - 100m 

Radarsat-1   C HH 8 - 100m 

Radarsat-2   C HH,HV,VH, VV 3 - 100m 

ASAR (Advanced Synthetic Aperture Radar) ENVISAT C 
HH, VH, HV, 

VV 
25 - 150m 

PALSAR (Phased Array type L-band Synthetic 
Aperture Radar) 

ALOS (Advanced Land 
Observation System) 

L 
HH, HV, VH, 

VV 
10 - 100m 
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Mapping extent and change 

 Traditionally, multispectral remote sensing has been relatively effective at mapping 

the areal extent of mangroves but is limited in terms of spatial resolution or spectral 

resolution of sensors, or the inability of optical sensors to penetrate cloud cover. Newer types 

of imagery can address these limitations. For example, VHR imagery such as Quickbird or 

IKONOS can reduce the number of mixed pixels, hyperspectral imagery such as HYPERION 

can potentially detect fine differences in spectral signatures, and SAR imagery from sensors 

such as Radarsat or ASAR ENVISAT can penetrate cloud cover. While VHR imagery has 

been used to map mangrove extent, this type of imagery has been used almost exclusively for 

mapping individual species and characterizing canopy structure (see sections VI and VII). 

The few studies that have used VHR to map mangrove extent have relied upon visual 

interpretation over small geographic areas as a form of accuracy assessment of 

classifications derived from less expensive and coarser resolution imagery applied over a 

larger area (Giri et al., 2007; Howari et al., 2009). 

 Hyperspectral imagery provides detailed fine spectral resolution data that can be 

used to detect subtle differences in spectral reflectance. To date, the only satellite-based 

hyperspectral sensor, HYPERION on the EO-1 platform, has not been applied to mangrove 

studies. However, two studies have used airborne hyperspectral imagery to map the extent 

of mono-specific mangrove stands. While both D'Iorio et al. (2007) and Yang et al. (2009) 

demonstrate that hyper- spectral imagery can produce very high accuracy classifications, 

D'Iorio et al. (2007) found that the improvement in accuracy of supervised classifications to 

detect red mangrove (Rhizophora mangle) using NASA's AVIRIS sensor was insignificant 

compared to classifications of imagery from ASTER imagery or aerial photography. These 

limited results suggest that further studies are needed to determine the effectiveness of 

mapping multispecific mangroves using hyperspectral imagery compared to other types of 

imagery.   
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 A common problem inherent to passive optical remote sensing, particularly in humid 

tropical regions, is cloud cover. Synthetic Aperture Radar (SAR) is an active form of remote 

sensing in which a microwave signal is directed towards an object and the strength (i.e. 

amplitude) of the reflected signal is measured. Signal strength is altered through 

transmittance and reflectance of different media based on thickness and dielectric properties 

of the media as well as the wavelength and polarization of the microwave beam. For 

example, SAR can penetrate cloud cover, but reflects off solid surfaces like soil or stems. For 

more complex media such as forest canopy, the relative amount of signal transmittance 

through the canopy versus signal scattering is a function of the signal wavelength. In 

general, longer wavelengths have high transmittance. Hence, the architecture of mangrove 

trees, local geomorphic conditions and the specifications of the SAR system are critical 

elements to this type of remote sensing. For a more detailed background of SAR remote 

sensing, see Henderson and Lewis (1998). 

 SAR imagery from SIR-C, JERS-1, ERS-1, and Radarsat-1 has been successfully used 

to delineate mangrove extent (Fromard et al., 2004; Lucas et al., 2007; Pasqualini et al., 

1999; Simard et al., 2002). Pasqualini et al. (1999) examined the potential of C and L band 

Polarmetric SAR (PolSAR) using vertical (VV) and cross polarization (VH) from SIR-C and 

found that only the L-band with VH polarization could accurately discriminate between 

diffuse, dense, and recessive mangroves and other land cover types. Simard et al. (2002) 

used a decision tree classifier to map coastal land cover, including low and high mangroves, 

and compare the effectiveness of the JERS, ERS, and combined imagery. They found that 

the combined imagery improved overall accuracy by 18% to 84%, though the authors note 

considerable confusion between low mangrove and other flooded forest classes. Souza-Filho 

and Paradella (2003) were able to visually interpret mangrove extent and the relative stage 

of growth using Radarsat imagery. In a follow-up study, Souza-Filho and Paradella (2005) 
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were not able to statistically differentiate between land cover types including mangrove, 

based solely on Radarsat backscatter.  

 In recent years, new techniques have been developed or adapted to improve the 

accuracy of mapping the extent of mangrove and detecting change over time using either a 

data fusion approach to integrate different types of data or an Object-Based Image Analysis 

(OBIA) approach. Data fusion techniques can improve classification accuracy by drawing 

upon different data sources to maximize the dimensionality of available information. While 

a few studies have used visual interpretation of fused data (e.g. Souza-Filho and Paradella, 

2005), most studies use multiple data sources within a rule-based classification scheme. 

Rule-based classifications separate out individual or groups of classes based on user-defined 

rules rather than solely on the spectral distance relationships used in many unsupervised 

and supervised classification schemes. Rule-based classifications are often invoked using a 

decision-tree that refines the separation of classes with each level. For example, DEM data 

are used to distinguish mangrove vegetation from neighboring terrestrial vegetation 

(Fatoyinbo et al., 2008; Islam et al., 2008; Liu et al., 2008). Additionally, rule-based 

classifications can utilize spatial information such as distance surfaces to separate mangrove 

from terrestrial vegetation based on a distance from ocean rule (Gao et al., 2004; Liu et al., 

2008) The results of a rule-based classification can substantially improve classification 

accuracy over traditional methods. Gao et al. (2004) report substantial improvement in the 

classification accuracy of stunted mangroves (from 46.7% to 83.3%) and lush mangroves 

(from 68.3% to 96.7%). It is important to note that differences in the spatial resolution of 

multiple data sets can be a major challenge to data fusion techniques, especially when using 

archived data. For example, Manson et al. (2001) found that the use of an archived DEM did 

not accurately represent the topography of intertidal areas at an appropriate scale for 

mangrove mapping.  
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 OBIA is a classification technique that uses objects rather than just individual pixels 

for image analysis. Objects are contiguous pixels that are grouped based on image properties 

or GIS data through an image segmentation process. Objects can be created at different 

levels. For example, lower-level objects could represent individual tree crowns; mid-level 

objects could represent a group of tree crowns of the same species and age; and high-level 

objects could represent a mangrove forest patch (e.g. Krause et al., 2004). Few studies have 

used OBIA to map the areal extent and change of mangroves as this approach is more 

commonly applied to species mapping (see section VI).  

 In a study by Conchedda et al. (2008), an OBIA approach was examined for 

effectiveness of detecting mangrove extent as well as change- detection between two images. 

The OBIA classification yielded very high accuracy for classifying mangroves with a user's 

accuracy greater than 97%. However, the effectiveness of change-detection using an 

integrated OBIA approach, in which two images are segmented together then classified, was 

less than a traditional image-difference change-detection technique. The traditional 

approach had an overall accuracy of 79.2% compared to 66.0% for the integrated OBIA 

approach. Conchedda et al. (2008) note that the segmentation process balances the size and 

number of objects, and in the case of the multidate segmentation, the objects were not 

sufficiently small to separate varying degrees of change between images.  

 

Species composition 

 Species composition is an important characteristic of mangroves. Mangrove 

individuals often exhibit strong zonation patterns based on biotic and abiotic factors, and 

they can serve as a good indicator of geomorphic and environmental change (Souza-Filho 

and Paradella, 2005). Furthermore, habitat selection by animal can be a function of 

mangrove species, in additional to other factors (e.g. Dvorak et al., 2004). To detect 

individual species, spectral (e.g. leaf physiology) or spatial characteristics (e.g. crown shape 
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or canopy pattern) of individual species must be detectable via remote sensing. Traditional 

satellite-based remote sensing techniques and data have been unable to detect species with 

needed confidence, given spatial and/or spectral constraints. However, newer data and 

techniques have demonstrated a number of methods in which the mapping of mangrove 

species is possible including VHR and hyperspectral imagery. The Quickbird and IKONOS 

sensors are used almost exclusively where satellite-based VHR are used due to their long-

mission life and substantial archived imagery. Although the spectral information available 

from Quickbird and IKONOS is limited to the blue, green, red and near-infrared bands that 

are similar to those of Landsat TM or ETM+, the very high spatial resolution (see table 3) 

may reduce the number and effect of mixed pixels and provide sufficient detail for the 

analysis of image texture as a metric of canopy structure. In a comparison of Quickbird and 

IKONOS imagery, Wang et al. (2004b) found that the IKONOS panchromatic and 

multispectral data outperformed Quickbird data for texture analysis and MLC, respectively, 

although both sensors are useful for mapping species.  

 A variety of sophisticated classification techniques have been used with VHR imagery 

to detect and classify mangrove species, including fuzzy classifications (Neukermans et al., 

2008), Neural Networks (Wang et al., 2004a, 2008), support machine vectors (Huang et al., 

2009), post-classification data fusion (Vaiphasa et al., 2006) and OBIA (Krause et al., 2004; 

Myint et al., 2008; Wang et al., 2004a, 2004b). Results from the few studies above indicate 

that spectral-only information for classification of individual species is often insufficient. For 

example, Neukermans et al. (2008) report an overall accuracy of 72% based of the mapping 

of four mangrove species and the surrounding land cover using Quickbird multispectral 

imagery and a fuzzy classification scheme. Similarly, Wang et al. (2004b) report an overall 

classification accuracy of nearly 75% or less for three mangrove species using Quickbird or 

IKONOS imagery with a MLC technique. Moreover, the user's accuracy for some individual 
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species was as low as 55%, further demonstrating the limitations of distinguishing between 

mangrove species using just spectral data.  

 Classification accuracy of species is greatly improved when spatial information, such 

as image texture, is used. Image texture is often measured using first- and second-order 

metrics, computed from the grey-level co-occurrence matrix within a given window, lag 

distance, and direction (Barber and Ledrew, 1991; Haralick et al., 1973; Kayitakire et al., 

2006). Wang et al. (2004b) report that image texture enhances image classification in both 

Quickbird and IKONOS imagery. Similarly, Wang et al. (2004a) found in a comparison of 

MLC and OBIA nearest neighbor classification techniques that while the pixel-based 

classification had an overall accuracy higher than that of the OBIA method (i.e. 88.9% versus 

80.4%), due to classification confusion of white mangroves in the OBIA method, a hybrid 

approach provided the highest accuracy. The hybrid approach had an overall accuracy of 

74%, 92%, and 98% for red (Rhizophora mangle), black (Avicennia germinans), and white 

(Laguncularia racemosa) mangrove canopies, respectively. In a comparison of MLC and 

neural network classification techniques, Wang et al. (2008) also found that the inclusion of 

image texture information improved the accuracies for the MLC and neural network 

techniques. Using a different machine learning method (i.e. support machine vector), Huang 

et al. (2009) report classification accuracies greater than 90% for red, black, and white based 

on spectral and image texture data.  

 Another approach to measuring image texture is lacunarity. Lacunarity is a metric of 

the fractal dimensionality of the whole or subset of an image and can be used to describe the 

pattern of canopy crowns and gaps (Myint et al., 2008). Similar to other metrics of image 

texture, lacunarity can be calculated based on varying window sizes, lags, and directions. In 

as study by Myint et al. (2008) used lacunarity transformed images were used during for the 

image segmentation process of an OBIA classification of individual mangrove species. 

Results showed an overall accuracy greater than 90% compared to an overall accuracy of 
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62.8% using a traditional pixel-based spectral classification. To date, there has not been a 

study to investigate the use of lacunarity to classify mangrove species using pixel- or object-

based methods.  

 In a data fusion approach, Vaiphasa et al. (2006) used known relationships between 

mangroves species and soil pH to improve post- classification accuracy with a typical 

Bayesian probability model and pH map. Despite an overall classification accuracy 

improvement (i.e. from 76% to 88%), classification accuracy of some species remained low 

(<70%), likely due to the relatively coarse spatial resolution of the ASTER imagery.  

 Although there have not been any studies that have used satellite-based 

hyperspectral remote sensing to detect and map mangrove species, lab experiments indicate 

that discrimination between multiple species is possible. Vaiphasa et al. (2005) were able to 

discriminate between 14 different species common to Thailand using the Jeffries-Matusita 

distance technique, although there was reported confusion among Rhizophora species. 

Vaiphasa et al. (2007) used a genetic algorithm to find just six hyperspectral channels that 

were able to distinguish between 16 mangrove species. While the laboratory studies 

demonstrate the potential for hyperspectral remote sensing of species, a number of real 

world challenges remain, such as mixed pixels (e.g. canopy gaps and shadows, and tidal 

water), atmospheric distortion and contamination, and variance in leaf reflectance due to 

biotic and environment conditions. Similarly, Wang and Sousa (2009) found using linear 

discrimination analysis that six hyper- spectral channels could discriminate between three 

common species in the Americas with very high accuracy (i.e. kappa >0.9). However, the six 

channels reported by Wang and Sousa (2009) do not agree with those reported by Vaiphasa 

et al. (2007).  
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Leaf area and canopy closure 

 Leaf area and canopy closure are important biophysical parameters for assessing 

evapotranspiration, carbon cycling, habitat conditions, and forest health (e.g. Kercher and 

Chambers, 2001; Kovacs et al., 2008; Pasher et al., 2007). While the remote sensing of leaf 

area and canopy closure are major areas of research for terrestrial forests, relatively little 

research has been done on mangroves. In fact, all but one satellite-based mangrove leaf area 

remote sensing study has been conducted in the same estuary - the Agua Brava Lagoon in 

Mexico. In a series of studies, leaf area index (LAI) has been estimated using empirical 

relationships between ground-based measurements and VHR spectral vegetation indices or 

SAR backscatter. Using IKONOS, Kovacs et al. (2004) found strong significant relationships 

between LAI of red and white mangroves and the Simple Ratio (SR) and the Normalized 

Difference Vegetation Index (NDVI). Both indices produced similar results; NDVI explained 

71% of variance in LAI with a standard error of 0.63 while SR explained 73% of variance with 

a standard error of 0.65. In a follow-up study on black mangroves, Kovacs et al. (2005) 

found similar results - NDVI and SR explained 63% and 65% of LAI variance, respectively. 

The extent of saturation effects for the remote sensing of LAI in mangroves is unknown. 

While Green et al. (1997) reported LAI values from 0.8 to 7.0, other studies have not 

observed high LAI values associated with saturation effects (see Chapter 3; Kovacs et al., 

2004). While Kovacs et al. (2004) observed relatively high uncertainty for low LAI values, 

Kovacs et al. (2005) reported similar uncertainty for both healthy and degraded mangrove 

forests. Kovacs et al. (2009) used spectral vegetation indices from the Quickbird sensor and 

found very similar results to previous IKONOS studies. Kovacs et al. (2008) found a stronger 

relationship between cross-polarmetric C-Band SAR data and LAI (r2 = 0.82) than previous 

VHR spectral relationships. Despite the strength of these findings, the study site of these 

studies is relatively species poor and much of the study area is degraded, according to the 
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authors. These methods should therefore be replicated in other areas to test the consistency 

and variability of these empirical relationships across species and conditions.  

 

Height and biomass 

 Estimates of tree and forest biomass provide valuable insights into the carbon 

storage and cycling in forests (Litton et al., 2007). Canopy height and biomass have been 

shown in field studies to be strongly related for many mangrove species (Fromard et al., 

1998; Smith and Whelan, 2006). Biomass can be estimated directly using PolSAR or 

indirectly using VHR image texture to detect canopy structure or SAR Interferometry 

(InSAR), stereo imagery, or LiDAR to estimate canopy height.  

 Proisy et al. (2007) used Fourier-based textual ordination (i.e. principal components 

analysis of Fourier spectra) with IKONOS near-infrared and panchromatic imagery to 

estimate biomass based on detection of canopy structure. Results show a significant non-

linear relationship between the tree stage (e.g. pioneer, mature, dead) and the principal 

components of the Fourier spectra. The best model used the panchromatic imagery with a 

30 m window and explained over 90% of the total and trunk biomass with a relative error of 

16.9%. The authors note that they did not find any 'saturation effect' at high biomass levels, 

often observed in spectral response of dense terrestrial vegetation (Huete et al., 1997).  

 Most studies that estimate height or biomass from satellite remote sensing use SAR. 

Several studies have used airborne SAR sensors, such as AIRSAR, to demonstrate the 

potential of SAR to estimate canopy characteristics (Lucas et al., 2007; Mougin et al., 1999; 

Proisy et al., 2000, 2002). PolSAR methods use the values and differences of horizontal, 

vertical, and cross polarizations as the SAR signal scatters and reflects with different forest 

components. For example, reflection off trunks and soil may produce a single or double 

bounce interactions while the signal may scatter within the canopy, which is dependent on 

the signal wavelength (Proisy et al., 2000). The P-band PolSAR best estimates tree height 
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and above-ground biomass, although the HV polarization of L-band SAR also performs well, 

explaining 93%, 96%, and 94% of basal area, tree height, and above-ground biomass, 

respectively (Mougin et al., 1999). The relationships between PolSAR coefficients and 

biomass are, however, non-linear and change sign multiple times over the biomass range. In 

a follow-up study by Proisy et al. (2000), PolSAR signal modeling illustrated difficulties 

predicting the interaction of PolSAR with three-dimentional heterogeneous components, 

specifically interactions between soil surface, trunk, and canopy volume components. These 

findings were confirmed by Proisy et al. (2002). In pioneer and declining mangrove stands, a 

substantial fraction of scattering was due to the interaction of surface and canopy volume 

components. For example, between 30% and 90% of the scattering mechanism of L-band 

PolSAR was associated with the interactive component, depending upon the polarization 

and stand characteristics. Proisy et al. (2002) conclude based on model results that 

statistical relationships of PolSAR to biomass are limited to homogeneous closed canopies 

where interaction effects are less pronounced. In a separate study using AIRSAR to assess 

the potential of space-borne L-band PolSAR, Lucas et al. (2007) note that L-band HV data 

can delineate different mangrove zones based on species and biomass/stage, but that the 

separation of surface, volume, and interaction components from the PolSAR signal remains 

a significant challenge due to inconsistent empirical results. The implications of these results 

suggest that a given SAR signal results from different combinations of forest structure. 

Although Li et al. (2007) are able to separate surface and trunk components of Radarsat-1 

imagery (C-Band, HH) using a genetic algorithm, the SAR data only explained about 45% of 

biomass variance, although these results were better than NDVI as a predictor of biomass.  

 A different SAR technique is InSAR. InSAR can produce millimeter accurate digital 

surface models of bare terrain by analyzing the signal phase between two offset SAR images 

(e.g. tandem sensors or repeat-track image acquisition). For additional information on 

InSAR, see Hanssen (2001) or Rott (2009). While InSAR is widely used in geology for high 
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accuracy topographic mapping of volcanic and earthquake deformation, it can also be used 

to estimate canopy height. Under the assumption that the ground elevation is at mean sea 

level as all mangroves must grow in intertidal conditions, InSAR can be used to create a 

digital surface model of the canopy surface from which canopy height can be estimated 

(Fatoyinbo et al., 2008; Mitchell et al., 2007; Simard et al., 2006, 2008). InSAR processing 

for vegetation studies can be very complicated and difficult due to an often low coherence 

(i.e. agreement in signal phase) between images due to inconsistent scattering in the canopy 

volume. A globally available InSAR digital surface model, the Shuttle Topographic Radar 

Mission (SRTM) data set, has been demonstrated to provide reasonable estimates of 

mangrove canopy heights (Fatoyinbo et al., 2008; Simard et al., 2006, 2008). While the 

SRTM DSM can be calibrated using field measurements (Fatoyinbo et al., 2008; Simard et 

al., 2008), air borne LiDAR (Simard et al., 2006) or space-borne LiDAR from IceSAT/GLAS 

(Simard et al., 2008) can better characterize the vertical canopy structure.  

 The accuracy of this approach is best for tall mature mangroves where the relative 

error is less (Simard et al., 2006) as the reported root mean square error ranges from 1.5 to 

2.0 m, well within local topographic ranges within the inter- tidal zone. All three studies use 

a generalized allometric relationship to convert canopy height to standing biomass, because 

species information was unavailable. While the SRTM product has a spatial resolution of 30 

m over the United States, global coverage is reduced to 90 m, limiting its applicability to very 

large homogenous mangroves.  

 

Productivity  

 Mangroves can be as productive as terrestrial rainforests, yet productivity can vary 

greatly due to environmental conditions (Komiyama et al., 2008; Lovelock et al., 2004). 

While many field and greenhouse studies have investigated the rate and mechanisms of 

mangrove productivity, practically no research has been conducted to map mangrove 
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productivity. In a field study using a hand-held spectroradiometer, Nichol et al. (2006) 

found a significant relationship between Photochemical Reflectance Index (PRI) and 

effective quantum yield, a metric of photosynthetic activity, thus demonstrating the potential 

for hyperspectral remote sensing of mangrove photosynthesis and productivity. In a similar 

study, Song et al. (2011) found that there was a significant relationship between soil-water 

salinity and PRI, further suggesting the potential of remote sensing to detect productivity 

and stress in mangroves.  

 

Conclusions and future opportunities 

 Recent advances in the remote sensing of mangroves have demonstrated practical 

methods to improve classification accuracy, estimate leaf area, map individual species, and 

measure canopy height impossible with traditional remote sensing approaches. Newer types 

of imagery such as VHR and SAR provide new types of data which can be used separately or 

in conjunction with traditional remote sensing data. New techniques have been developed to 

exploit new types of data from VHR and SAR. Spatial patterns measured using image texture 

metrics or lacunarity can be related to canopy structure to detect individual species. InSAR 

has been used to directly measure canopy height and indirectly estimate standing biomass 

via allometric relationships. OBIA has been shown to outperform traditional pixel-based 

classifications in many cases and provides an environment in which other techniques such as 

data fusion and hierarchical rule-based classifications can be developed and applied. The 

science for remote sensing of mangroves has rapidly advanced in the last decade. Many of 

the challenges are not unique to mangroves and have been identified as challenges in other 

applications of terrestrial remote sensing (Wang et al., 2009). While recent advances have 

overcome many of the limitations of traditional remote sensing approaches, there remain 

many opportunities to further the science and application of mangrove remote sensing. The 

following is a list of suggested opportunities to improve and apply these advances. 
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Application of existing sensors 

 There are some existing sensors that have not been applied to mangrove remote 

sensing studies such as the Advanced Land Imager (ALI) and HYPERION on the EO-1 

platform (see table 3 for details). ALI is similar to the Landsat TM and ETM sensors with 

additional bands in the blue, NIR and SWIR. Although the spatial resolution of this sensor is 

relatively coarse, it can serve as a Landsat-compatible sensor for change-detection given the 

sensor malfunctions of Landsat ETM+ (e.g. scan line corrector) and ASTER (e.g. SWIR 

sensor). Of interest is the hyperspectral HYPERION sensor. HYPERION has 220 bands in 

the visible, NIR, and SWIR spectra. Given that HYPERION has been used to detect tree 

genera or species in tropical environments (e.g Christian and Krishnayya, 2009; Papes et al., 

2010; Walsh et al., 2008) and laboratory studies have been able to distinguish between 

mangrove studies using hyperspectral imaging (Vaiphasa et al., 2005, 2007), there is great 

potential for mapping individual species using hyperspectral imagery. Furthermore, 

hyperspectral remote sensing could be used to estimate photosynthetic productivity and 

forest health (e.g. Nichol et al., 2006) as has been done for other tropical environments (e.g. 

Asner et al., 2006). Due to the relatively coarse spatial resolution of the HYPERION sensor 

(i.e. 30 m), spectral unmixing techniques will be required to reduce the effects of mixed pixel 

components (Walsh et al., 2008) such as soil, water, shadow, and various mangrove species.  

 

Use of existing methods from terrestrial forests  

 There are a number of remote sensing methods that have been developed for 

terrestrial forests that have not been adapted or tested for mangroves. For example, image 

texture has been used to estimate canopy structure and leaf area in temperate terrestrial 

forests (e.g. Colombo et al., 2003; Song and Dickinson, 2008; Wulder et al., 1998). While 

image texture has been used to map mangrove species, it has not been tested for other forest 



 
 

38 
 

characteristics. Similarly, spectral unmixing techniques are often used in the remote sensing 

of terrestrial forests to separate the spectral end-members of mixed pixels. While studies 

have investigated the effect of background end-members (e.g. soil and water) on vegetation 

indices in mangrove forests (Diaz and Blackburn, 2003), to date there has not been a study 

that applies spectral unmixing to the remote sensing of mangrove forests. Finally, although 

considerable research has been conducted to develop process-based algorithms to model 

biophysical parameters such as LAI (Liang, 2007), these algorithms have not been applied to 

the remote sensing of mangroves.  

 

Investigation of new sensors 

 The launch of several new sensors (e.g. ALOS PALSAR and PRISM, Radarsat-2, 

Worldview- 2 and GeoEye-1) offer new opportunities (see Tables 3 and 4 for sensor details). 

ALOS PALSAR is an L-band PolSAR sensor with 10-30 m resolution, depending on 

polarization. L-band PolSAR has been demonstrated to be among the best SAR 

configurations to map mangrove structure. Furthermore, the ALOS PALSAR mission seeks 

repeat-track image acquisition, ideal for InSAR and relatively high resolution mapping of 

mangrove height compared to the 90 m global SRTM product. However, there remain 

challenges in obtaining high coherence between images within the canopy due to the 

relatively high transmittance of L-band SAR though the forest canopy (Rott, 2009).  

 Radarsat-2 is another new PolSAR sensor. Radarsat-2 is a C-band sensor with the 

option for very high spatial resolution imagery as fine as 1 m. Some of the previous 

challenges to SAR remote sensing are reduction in image 'speckling' from signal noise and 

mixed pixels. The very high resolution imagery from Radarsat-2 may reduce the effect of 

both of these effects. However, the potential for mangrove studies is limited as C-band 

PolSAR has been shown to be the least sensitive to mangrove canopy structure compared to 
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other SAR wavelengths (e.g. Mougin et al., 1999), although the potential for high resolution 

InSAR applications exceed that of ALOS PALSAR in term of spatial resolution.  

 Another potential sensor for mapping mangrove canopy height is ALOS PRISM. 

PRISM is a very high resolution panchromatic sensor (e.g. 2.5 m) that acquires triplet sets of 

images (e.g. front, nadir, backward) for stereo DEM extraction. While this method has a 

lower vertical accuracy than InSAR, stereo methods of DEM extraction are relatively simple 

and are available with many commercial remote sensing software packages.  

 A new generation of VHR sensors has recently been launched as a continuation of the 

legacy of IKONOS and Quickbird. The successor of IKONOS, GeoEye-1, has four 

multispectral bands with a multispectral spatial resolution of 1.65 m and a panchromatic 

resolution of 0.41 m. The improved spatial resolution (i.e. less than half the pixel size of 

IKONOS), provides new opportunities of further investigation of spatial information in 

mangrove remote sensing using image texture, lacunarity, and image segmentation in OBIA. 

The successor to Quickbird, Worldview-2, has similar spatial resolutions to GeoEye-1 (less 

than 2 m in the multispectral and less than 0.5 m in the panchromatic bands, but finer 

resolutions are restricted by the US government), but has eight multispectral channels 

including bands in the yellow and red edge spectral ranges designed for vegetation studies. 

However, since both new VHR sensors have only recently been launched, the amount of 

archive imagery is relatively small and the cost of tasking image acquisition is very high 

compared to other remote sensing imagery.  

 

Data fusion and integration 

 Data fusion is a promising methodology that aims to reduce data limitations by 

integrating multiple types of data. While data fusion has been used for mangrove studies to 

improve classification accuracy (Wang and Sousa-Filho, 2009), data fusion has yet to be 

incorporated into other areas of mangrove remote sensing such as mapping canopy height or 
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stand biomass. The current dominant technique for mapping canopy height is SRTM 

elevation data. This product can have a high vertical accuracy in flat terrain (Gorokhovich 

and Voustianiouk, 2006) but has a coarse resolution (e.g. 90 m) outside the United States 

where the vast majority of mangrove occurs. A less common approach outlined in the 

previous section uses stereo optical imagery to extract a DEM. While this approach is 

generally less accurate than InSAR techniques, the spatial resolution is potentially much 

higher, especially when VHR imagery is used. A global 30 m DEM product using the ASTER 

sensor was recently released by NASA. Fusion of DEM data from optical stereo imagery such 

as ASTER or ALOS PRISM with coarse resolution SRTM data could integrate the strengths 

of both data sets. High resolution canopy height maps can also help improve classification 

accuracy using a data fusion approach in OBIA (e.g. Ke et al., 2010) to distinguish between 

mangrove stages and species. Another opportunity is the fusion of species and canopy 

structure data. Mangrove trees have strong allometric relationships (e.g. canopy height 

versus biomass or leaf area), but these relationships vary by species (e.g. Smith and Whelan, 

2006). Previous studies have relied on generalized allometric relationships. For example, 

Simard et al. (2006) estimate above- ground biomass based on canopy height. The fusion of 

species maps and canopy height could improve this technique through the use of species-

specific allometric relationships.  

 

Monitoring: Local to global 

 Perhaps the greatest challenge, and yet the greatest opportunity, is global monitoring 

of mangroves. To date, most studies have focused on local monitoring, although a few 

studies have provided regional assessments of South Asia. These local and regional 

monitoring projects are very important to their locals, but their scope is limited. Recently, 

Giri et al. (2011) mapped mangroves globally for the first time exclusively using satellite 

remote sensing data. This work demonstrates substantial advancement toward global 
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monitoring efforts. Global monitoring will not only provide a comprehensive overview of the 

state and change of mangroves, but will also provide consistent data between regions to help 

track not only mangrove extent, but structure, function, and maybe even ecosystem services 

as well. In order to achieve global monitoring, the following steps are needed:  

 

1) Transition from experimentation to application. Traditional remote sensing data and 

techniques are now regularly applied through the world for mangrove studies. However, 

traditional remote sensing has many serious limitations. Recent advances also need to be 

incorporated into applied studies to provide improved monitoring.  

2) Collaboration among scientists. Collaboration is needed between remote sensing 

specialist for fusion and integration of different types of remote sensing such as PolSAR, 

InSAR and VHR spatial imagery into accessible and available products. Furthermore, to 

advance the links between remote sensing and ecology, increased collaboration is needed 

between field and remote sensing scientists (Newton et al., 2009) as field inventory is a 

critical component for the calibration, validation, and interpretation of remote sensing 

products.  

(3) Wide-scale data acquisition. Although global coverage is not necessary for monitoring 

purposes as a targeted sampling scheme could produce good assessment, data acquisition 

must be pan-tropical to cover different types of mangroves. Furthermore, repeated image 

acquisition is required to produce time series of imagery to understand the dynamics of 

change, rather than just snapshots of change (Gillanders et al., 2008).  

4)The digital divide. The vast majority of the world's mangroves exist in developing nations. 

While some developing nations like India and Brazil have produced their own satellite 

remote sensing programs, most nations rely on the developed nations for access to remote 

sensing technology, not to mention barriers due to the costs of infrastructure and training. 

While Dahdouh-Guebas et al. (2006) show that aerial photography can provide inexpensive 
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high quality data, satellite based remote sensing has greater potential for coverage, 

repeatability, and consistency. While free access to imagery for scientific has improved in 

recent years (e.g. the Landsat archive, or to certain developing nations the China-Brazil 

Earth Resources Satellite), more effort is needed to improve training in remote sensing 

techniques and provide accessibility to remote sensing imagery, products, and requisite 

technology such as software and computers to scientists in the developing world.  
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Abstract 

 Mangroves provide valuable ecosystem goods and services such as carbon 

sequestration, habitat for terrestrial and marine fauna, and coastal hazard mitigation. The 

use of satellite remote sensing to map mangroves has become widespread as it can provide 

accurate, efficient, and repeatable assessments. Traditional remote sensing approaches have 

failed to accurately map fringe mangroves and true mangrove species due to relatively coarse 

spatial resolution and/or spectral confusion with landward vegetation. This study 

demonstrates the use of the new Worldview-2 sensor, Object-based image analysis (OBIA), 

and support vector machine (SVM) classification to overcome both of these limitations. An 

exploratory spectral separability analysis revealed serious effects of mixed pixels for sparse 

vegetation that prevented spectral differentiation between vegetation classes. Furthermore, 

separability analysis showed that individual mangrove species could be not spectrally 

separated. An OBIA classification was used that combined a decision-tree classification with 

the machine-learning SVM classification. Results showed an overall accuracy greater than 

94% (kappa = 0.863) for classifying true mangroves species and other dense coastal 

vegetation at the object level. However, when considering individual field point data, there 

was considerable error between the true mangrove and mangrove associate classes for black 

mangroves (Avicennia germinans) and buttonwood (Conocarpus erectus). The results 

demonstrate the improved spectral capabilities of the Worldview-2 sensor over Quickbird, 

especially the capacity for new spectral band ratios. However, there remain serious 

challenges to accurately mapping fringe mangroves using remote sensing data due to 

spectral similarity of mangrove and associate species, lack of clear zonation between species, 

and mixed pixel effects, especially for sparse vegetation. 
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Introduction 

 Mangroves are an assemblage of tropical and sub-tropical halophytes (i.e. salt loving) 

woody plants. Mangrove forests are among the most productive forest ecosystems in the 

world and unique in linking terrestrial and marine systems through the inter-tidal zone 

(Hogarth, 2007). Despite the low tree species diversity and simple canopy structure, 

mangroves provide many valuable ecosystems goods and services such as carbon 

sequestration, habitat for terrestrial fauna as well as economically important fisheries, and 

coastal hazard mitigation (Alongi, 2002). Mangrove forests can range from vast swamps 

across large estuarine systems such as the Ganges River Delta to narrow strips of vegetation 

(i.e. fringe mangroves) along arid coastlines.  

 Globally, satellite remote sensing has played an important role in mapping and 

monitoring mangroves (Heumann, 2011; Giri et al., 2010). Mapping and monitoring 

mangrove forests is critically important for numerous scientific areas such as carbon stock 

estimates of tropical coastal nations, effectively managing commercial fisheries and their 

mangrove nurseries, and  understanding the dynamics of vegetation-coastal geomorphology 

and coastal hazard mitigation. Furthermore, mangroves can provide unique habitat for rare 

species such as the mangrove finch in the Galapagos Islands of Ecuador. 

 Previous studies have reported remote sensing classification accuracies between 

mangroves and other landcover ranging from 75% to 90%, though many studies have 

omitted accuracy assessments (see Heumann, 2011, for an in-depth review). There remains a 

number of challenges to accurately detect mangroves including spectral similarity between 

mangroves and nearby landward tropical vegetation including in arid or marginal 

environments (Al Habshi et al., 2007, Benfield et al., 2005, Gao, 1998, Simard et al., 2002) 

and the effect of mixed pixels for fringe mangroves (Manson et al., 2001). Detection of 

individual mangrove species presents an even greater challenge. Traditional remote sensing 

approaches generally have failed to detect individual species (e.g. Ramsey and Jensen, 
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1996). While Vaiphasa et al. (2005) and Wang and Sousa (2009) were able to discriminate 

between mangrove species in hyperspectral laboratory studies, real-world results have been 

mixed.  Almost all recent studies utilize very high resolution imagery, though a wide variety 

of different techniques have been tested including fuzzy classifications (Neukermans et al., 

2008), neural networks (Wang et al., 2004a; Wang et al., 2008), support machine vectors 

(Huang et al., 2009), post-classification data fusion (Vaiphasa et al., 2006) and OBIA (Wang 

et al., 2004a; Wang et al., 2004b; Myint et al., 2008; Krause et al., 2004). Studies using only 

multispectral data have generally reported moderate to poor results. For example, 

Neukermans et al. (2008) report an overall accuracy of 72 percent based on the mapping of 

four mangrove species and the surrounding land cover using Quickbird multispectral 

imagery and a fuzzy classification scheme. Similarly, Wang et al. (2004b) report an overall 

classification accuracy of  nearly 75 percent or less for each of three mangrove species using 

Quickbird or IKONOS imagery with a maximum likelihood classification (MLC) technique. 

 The incorporation of spatial information either in the form of OBIA or pixel-based 

image texture (e.g. grey-level co-ocuurence matrix or lacunarity) improved the classification 

accuracy (Huang et al., 2009; Myint et al., 2008;  Wang et al., 2004a; Wang et al., 2004b; 

Wang et al., 2008). Spatial information seeks to extract repeated patterns in canopy 

structure that can be indirectly related to species. This approach has merit as mangrove 

genera often differ greatly in form and structure (Tomlinson, 1986). Spatial metrics are very 

sensitive to edge effects and work best over continuous canopies. In the case of fringe or 

basin mangroves, mangrove species zonation is often not as distinct as in other 

environments, and high edge length to area ratio makes edge effects a serious challenge. 

Thus, to effectively map and monitor fringe mangrove forests, especially at local and 

regional scales, the challenges of spectral confusion and likely limited effectiveness of spatial 

metrics are constraining factors. Previous studies have reported a range of classification 

accuracies. Wang et al. (2004a) report that a hybrid OBIA-MLC classification outperforms 
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either individual approach, but accuracy for individual species still ranged from 74% to 98%. 

Both Huang et al. (2009) and Myint et al. (2008) report accuracies greater than 90% using  

spatial data as part of the classification, or as an input into the image object segmentation 

process.  

 

Study Objective 

  The objective of this study was to map fringe and basin mangrove forests at the 

species level. First, an analysis of spectral separability of vegetation using Jeffries-Matusita 

separability measure was conducted to distinguish between vegetation types or groups and 

toevaluate the differences between Quickbird and Woldview-2 for multispectral analysis. 

Based on these results, a hybrid OBIA-SVM approach was designed to enhance vegetation 

separability. An object-based decision tree classification was used to classify classes other 

than dense coastal vegetation that are not central to this study. A support vector machine 

classification was used to classify dense coastal vegetation between true mangroves and 

mangrove associates. The accuracy of the results was analyzed at the object level and field 

plot or point level for individual vegetation types.  

 

Background 

Object-Based Image Analysis 

 Pixel-based analysis is generally conceptually simple and methods are generic across 

sensors. However, pixels are often not the unit of interests, but rather the default unit of 

measurement. For example, individual crowns and canopy gaps consist of multiple pixels 

and produce spatial-autocorrection within objects that can be detected using high resolution 

imagery (Woodcock and Strahler, 1987).  OBIA seeks to create "meaningful" objects by 

segmenting an image into groups of pixels with similar characteristics based on spectral and 

spatial properties (Benz et al., 2004). In OBIA, segmented objects become the unit of 



 
 

 

analysis, from which spectral statistics, such as spectral band means and standard deviation, 

or spatial information, such as image text

image classification. User-defined scale, shape, and compactness parameters make OBIA 

particularly useful for creating objects with heterogeneous pixels where a pixel based 

analysis would fail to capture the 

vegetation or a dense canopy with small gaps can be classified as a land cover type rather 

than individual pixels with different classifications. 

between high and very high resolution pixel

object-based classification. The high resolution classification contains many pixel with 

multiple classes. The very high resolution pixel

classes better, but the resolution is actually finer than the objects of interest. The OBIA 

classification illustrates how a forest classification can include gaps and a non

object can include isolated sparse vegetation. 

remote sensing studies (Chubey et al., 2006; Desclee et al., 2006; Hay et 

et al., 2008) and has been successfully applied to mangrove studies (Conchedda et al., 2007; 

Myint et al., 2008, Wang et al., 2004a). However, OBI

fringe mangroves.  

Figure 3.1: A stylized example of a) a pixel
b) a pixel-based very high resolution 
classification with objects outlined in red. Blue = Water; Brown = Soil; Green = Vegetation; Other 
colors are mixed pixels. 
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analysis, from which spectral statistics, such as spectral band means and standard deviation, 

or spatial information, such as image texture, can be used for further analysis including 

defined scale, shape, and compactness parameters make OBIA 

particularly useful for creating objects with heterogeneous pixels where a pixel based 

analysis would fail to capture the relationship between pixels. For example, lava with sparse 

vegetation or a dense canopy with small gaps can be classified as a land cover type rather 

than individual pixels with different classifications. Figure 3.1 illustrates the difference 

and very high resolution pixel-based classification and a very high resolution 

based classification. The high resolution classification contains many pixel with 

multiple classes. The very high resolution pixel-based classification resolves individua

classes better, but the resolution is actually finer than the objects of interest. The OBIA 

classification illustrates how a forest classification can include gaps and a non

object can include isolated sparse vegetation. OBIA has been widely applied for forest 

remote sensing studies (Chubey et al., 2006; Desclee et al., 2006; Hay et al., 

et al., 2008) and has been successfully applied to mangrove studies (Conchedda et al., 2007; 

Myint et al., 2008, Wang et al., 2004a). However, OBIA has not been explicitly applied to 

: A stylized example of a) a pixel-based high resolution classification with mixed pixels, 
based very high resolution classification, and c) an object-based very high resolution 

with objects outlined in red. Blue = Water; Brown = Soil; Green = Vegetation; Other 
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Support Vector Machine  

 SVM is a machine-learning technique that is well adapted to solving non-linear, high 

dimensional space classifications (Pal and Mather, 2005). For remote sensing, SVM is a 

useful tool for multispectral and hyperspectral classifications in which spectral separability 

is less than perfect. The mathematical formulation of SVM are described in Vapnik (1995) 

and a detailed assessment of SVM for remote sensing is described by Huang et al. (2002).  

Though still a novel method for remote sensing, SVM has been applied in many other fields 

such as biology, biochemistry, and economics. SVM differs from traditional classification 

approaches by identifying the boundary between classes in n-dimensional spectral-space 

rather that assigning points to a class based on mean values. SVM creates a hyperplane 

through n-dimensional spectral-space that separates classes based on a user defined kernel 

function and parameters that are optimized using machine-learning to maximize the margin 

from the closest point to the hyperplane. Figure 3.2 illustrates the difference between a 

maximum likelihood classification and a SMV. By identifying the hyperplane that separates 

two classes (represented by the red and blue dots) rather than using the distance between 

class spectral means (the black dots), SVM can produce a more accurate classification. A 

penalty parameter allows the SVM to vary the degree of training data misclassified due to 

possible data error when optimizing the hyperplane. While there are many possible kernels, 

four common kernels found in remote sensing packages are linear, polynomial, radial basis 

function, and sigmoid. Finding the best kernel and parameters can be difficult, though Hsu 

et al. (2010) suggest starting with a radial basis function and testing a range of parameters to 

identify an effective model. In a recent study by Yang (2011), it is shown that for most land 

cover classes, the radial basis function is the best kernel with a penalty parameter of 100.  

 Several studies have demonstrated the great potential for SVM. Pal and Mather 

(2005) found that SVM outperforms maximum likelihood and artificial neural network 

classifiers using Landsat TM and is well suited for small training sets and high-dimensional 
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data. Foody and Mathur (2004) found SVM outperforms discriminate analysis and decision-

tree algorithms for airborne sensor data.  Li et al. (2010) applied SVM to an OBIA with 

better results than standard fuzzy logic classification. Only a single study has applied SVM 

for analysis of mangroves. Huang et al. (2009) applied SVM as part of a fusion methodology 

of spectral and image texture data to map mangroves although the effectiveness of SVM for 

multispectral classification of mangroves remains untested. 

 

Figure 1.2: A stylized example of a maximum likelihood classification (left) and a support vector 
machine likelihood (right) 

Methods 

Study Area 

The research was conducted on Isabela Island in the Galapagos Archipelago, 

Ecuador. The Galapagos Islands, located 1000-km off the coast of Ecuador, are an archipelago 

consisting of 13 large islands, 4 of which have human populations, and 188 small islands and rocks 

(Figure 3.3). The Galapagos Islands were declared a national park in 1959 (the park consists of 

97% of land area), a UNESCO World Heritage Site in 1978, and a UNESCO Biosphere Reserve in 

1987. The Galapagos Islands lie on the western edge of the Atlantic-East Pacific mangrove 

complex. Mangrove forests consist of three true species common in this region: Rhizophora 

mangle (red), Avicennia germinans (black), and Laguncularia racemosa (white), and as well as 

the associate species such as Conocarpus erectus (button or buttonwood mangrove) and 
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Hippomane mancinella (manzanillo), or other halophytes growing on nearby sand flats or 

dunes (Van der Werff and Andsersen, 1993). In the Galapagos Islands, mangrove forest form 

dense, but small patches in protected coves and lagoons along an otherwise barren or arid coast. 

Mangrove forests in the study site can be described primarily as fringe mangroves forming along 

the coastline or basin mangroves along hyper-saline lagoons. Mangroves grow on a range of 

substrates from aa lava to sand or silty-clay.  For a more detailed description of the arid coastal 

environment in the Galapagos Islands, see Van der Werff and Andersen (1993).  

 

Figure 1.3: Quickbird false color composites for the Puerto Villamil and Cartago study areas on 
Isabela Island. 

 

This study focuses on two study areas on Isabela Island - Puerto Villamil and Cartago 

(Figure 3.3). The Puerto Villamil study site is located on the southern end of Isabela Island 
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extending west from the town of Puerto Villamil. The study area contains some features unique to 

the Galapagos Islands including the largest lagoon complex in the Galapagos Islands, the longest 

sand beach, and complex geologic topography along the coastline. Figure 3.4 shows several 

examples of the mangroves in different settings from the study area. Salinity varies greatly across 

the study site as both fresh water springs and hyper-saline ponds occur in relatively close 

proximity. Field observations show that while mangrove species form patterns of zonation based 

on salinity and/or wave action, the mangrove and associate species co-occur in close proximity due 

to micro-topographical geological features (i.e. lava coastline). To the west of Puerto Villamil, the 

elevation increases quickly away from the shoreline towards the Sierra Negra or Cerro Azul 

volcanoes and the vegetation changes from barren/arid to semi-arid/semi-humid along this 

elevation transition.  It is important to note that unlike large riverine mangrove forests like those 

along the coast of mainland Ecuador, the pattern of zonation between mangrove and mangrove 

associate species is truncated and highly variable due to the small inter-tidal zone and the geologic 

rather the fluvial coastal geomorphology. The Cartago study area is located on the eastern edge of 

Isabela Island. This area has the largest mangrove forest patches in the Galapagos (unpublished 

field observation, Birgit Fessl, Charles Darwin Research Station). Unlike the Puerto Villamil study 

area, Cartago lacks lagoons or vegetation away from the coast as the study area lies on a relatively 

flat lava field to the east of Sierra Negra.  



 
 

 

Figure 1.4: Examples of vegetation near Puerto Villamil (from upper left, clockwise): A) tall black 
mangroves near a fresh water spring, B) red mangroves growing on lava shoreline, C) mixed arid 
vegetation and mangroves along a saline pond, D) tall red mangrov
mangroves on a saline pond.  

  

Field Data 

 Field data were collected during the summer of 2009 near the town of Puerto 

Villamil. Due to conservation policies within the Galapagos National Park, non

sampling was required. Mangroves form stands with dense aerial roots and branches, 

making many areas inaccessible. An opportunistic sampling scheme was conducted due to 

logistical constraints and efforts were made to sample a wide range of conditions for each 

species (Table 3.1). A wide range of conditions were sampled from lava to sand substrates, 
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fresh water springs to hypersaline ponds, and short shrubs to trees over 20 meters tall. 

Canopy height, substrate conditions, and mangrove species were recorded at nine points for 

48, 10-m diameter plot. Plot location was recorded using a Trimble GeoXT GPS unit and 

differentially corrected to a 95% horizontal positional accuracy of less than 1.5 meters. To 

extend the extent of the sampled area, an additional 481 species and height point 

measurements were collected Point locations were measured using a compass and laser 

range finder from a known GPS position. Due to the limited accuracy of the analog compass 

(+/- 1 deg), a maximum of 100 meters from the observer was set for all points collected. All 

field data points are considered representative for a 3-meter diameter circle. 

  

Table 1.1: Vegetation Field Data 

Species Plots* Points Total Percent

AC 8 27 35 3.472

MZ 43 7 50 4.960

OV 16 17 33 3.274

BW 56 55 111 11.012

RM 120 174 294 29.167

WM 146 243 389 38.591

BM 66 30 96 9.524

Total 455 553 1008

* points taken at field plots; 9 points per plot

BW = Buttonwood

Mangrove AssociatesTrue Mangroves

RM = Red Mangrove

WM = White Mangrove

BM = Black Mangrove

AC = Acacia

MZ = Manzanillo

OV = Other Vegetation

 

Remote Sensing Data 

 Details of the Quickbird and Worldview-2 imagery are shown in table 3.2. The 

Quickbird imagery was cloud-free over coastal areas, while the Worldview-2 imagery had a 

few clouds over the study area. Thus, the Quickbird imagery was used for the first level of 

analysis. All imagery was geometrically corrected using the ENVI Rational polynomial 
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coefficients (RPC) with ground control points (GCP) orthorectification correction algorithm. 

Since all mangroves grow within the inter-tidal zone, the elevation was assumed to be at 

mean sea-level across the image. The root mean square error (RMSE) was found to be less 

than 1.5m using 16 independent GCPs. All imagery was radiometically corrected using a 

Dark Object Subtraction.  Since consistent dark objects could not be identified between 

images, a 1% threshold value for each band was used. Solar angle was not found to be 

substantially different between images. All imagery was resampled to a resolution of 2 

meters using a cubic convolution interpolation. Several band ratios were computed to assist 

with classification. Band ratios were selected based on exploratory analysis using visual 

interpretation and the feature optimization tool in eCognition. The selected band ratios were 

NIR/Red (i.e. Simple Ratio) and NIR/Blue for the Quickbird imagery, and NIR2/Red, Red 

Edge/Green, and Yellow/Coastal Blue for the Worldview-2 imagery.
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Table 1.2: Sensor Specifications for Quickbird and Worldview-2 

  

Resolution (m) Channels (nm) 

Sensor 
Dynamic 

Range 
Pan MSS 

Coastal 

Blue 
Blue Green Yellow Red 

Red 

Edge 
NIR-1 NIR-2 

Quickbird 11 bits / pixel 
0.6 2.4 N/A 

450 - 

520 

520 - 

600 
N/A 

630 - 

690 
N/A 

760 - 

900 
N/A 

Worldview-2 11 bits / pixel 
0.46* 1.83* 400 - 450  

450 - 

510 

510 - 

585 

585 - 

625 

630 - 

690 

705 - 

745 

770 - 

895 

860 - 

1040  

* Distribution and use of imagery at better than .50 m GSD pan and 2.0 m GSD multispectral is subject to prior approval by the U.S. 

Government. 
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Spectral Separability 

 Spectral separability analysis compares the spectral signature of classes and 

determines the degree to which those classes can be distinguished.  Spectral separability 

analysis is a commonly used exploratory analysis approach for selecting classes and training 

data for classification. Spectral separability was calculated using Jeffries-Matusita (J-M) 

Distance that measures the divergence between spectral means (Schmidt and Skidmore, 

2003; Swain, 1986). The J-M distances in ENVI is squared so that the distance values range 

from 0 to 2, where values greater than 1.9 are highly separable, and value less than 1.0 

require class clumping or new training data for traditional mean-based classification 

methods.  

 

Object-Based Image Analysis  

 Image segmentation and decision-tree classification were conducted using 

eCognition Developer 8. eCognition groups pixels based on spectral and spatial properties 

(Benz et al., 2004). A two-level segmentation was used to first classify general land cover 

classes, and then refine the coastal vegetation classes. The first-level segmentation used 

shape = 0.5, compactness = 0.5, and scale = 25.  

 

Decision-Tree Classification 

 The decision tree classification is shown in figure 3.5. Class rules were identified 

using interactive visual interpretation of threshold values based on training data, existing 

map, and expert knowledge of the study area. Upland and coastal vegetation were separated 

using a distance rule of 250 meters from open water based on field observations. While there 

was little confusion between these general land cover classes, there was considerable 

confusion between lava and shallow water over lava (e.g. ponds, coastline). In these cases, 

objects were manually edited using expert image interpretation.   
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Figure 1.5: OBIA Decision Tree (rectangle = image; diamond = rule; oval = class) 
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 A second image level was segmented based on the Worldview-2 imagery using shape 

= 0.5, compactness = 0.9, and scale = 10 for only the dense coastal vegetation classification 

from level 1. Although overall cloud cover was less than 15%, clouds and cloud-shadow were 

classified  and removed from the vegetation analysis. The remaining dense coastal 

vegetation objects were exported to ArcGIS 9.3.1 with the mean values of each band and 

band ratio for each object. In ArcGIS, the shapefiles were converted to raster stacks for 

analysis in ENVI 4.8. It should be noted that during exploratory analysis, object-level 

standard deviation and texture (i.e. grey-level co-occurrence matrix) were also calculated, 

but they were not found to substantially improve classification results, while raising 

concerns of model over-fitting with higher data dimensionality. Additionally, the eCognition 

fuzzy nearest neighbor classification, using the feature optimization tool to select input data 

for the classification, did not produce acceptable results for the true mangrove classification. 

When using only mean spectral information, there was insufficient separabiltiy between 

classes. The addition of standard deviation or skewness of spectral data or image texture, 

separability increased, but classification results showed strong overfitting of the 

classification to training data.  

 

Support Vector Machine Classification 

 The SVM classification was conducted using ENVI. Calibration and validation objects 

were selected based on field data; homogenous objects were verified through visual 

assessment. The distribution of the objects is shown in table 3.3. The objects were 

systematically divided between calibration and validation datasets to ensure an even 

geographic distribution. An SVM radial basis function(RBF) kernel was applied using the 

default parameters (gamma = 0.091 and a penalty parameter of 100). The penalty parameter 

is particularly important for non-separable classes. Equation (1) shows the RBF kernel: 

K(xi,xj) = exp(-g||xi - xj||2), g > 0        (1) 
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 where g is the user-defined gamma 

ENVI conducts pair-wise iterations of SVM and assigns fuzzy class membership. Classes are 

assigned using the highest membership. Exploratory analysis did not show improved results 

with other gamma or penalty values.   

Table 1.3: Distribution of objects used to calibrate and validate the SVM classification 

 

True 

Mangroves Mangrove Associates Total 

Calibration 143 54 197 

Validation 73 24 101 

Total 216 78 298 

 

Accuracy Assessment 

 The accuracy of the SVM classification was assessed in several ways. First, accuracy is 

assessed at the object-level using an error confusion matrix. The overall, producer's, and 

user's accuracy was calculated, in addition to the kappa statistic. The area under the curve 

(AUC) of the receiver operating characteristic (ROC) (Metz, 1978) was also computed based 

on fuzzy membership. This statistic illustrates the accuracy of the classification relative to a 

perfect classification (AUC =1) and a random classification (AUC = 0.5) based on the rate of 

false positives. Second,  an error confusion matrix was created for the individual vegetation 

types at the field point level and all classes from both the decision tree and SVM 

classification. To further illustrate the relationship between the field data and SVM, a 

boxplot distribution of fuzzy membership to true mangroves was computed for each field 

vegetation class. 

 

Results and Discussion 

Spectral Separability Analysis 

 Class spectral separability at the pixel level for all vegetation field data points is 

shown in table 3.4 for the Quickbird (A) and Woldview-2 (B) imagery. The spectral 
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separability between vegetation classes for the Quickbird imagery was moderate to poor. Not 

a single value was found to be greater than the suggested threshold of 1.9, though many 

values were greater than 1.8. More importantly, there was not a consistently high 

separability for any individual species. This indicates that the ability to discriminate 

vegetation types with high accuracy using Quickbird imagery is very unlikely. Although the 

Worldview-2 imagery had better spectral separability than the Quickbird imagery (Table 

3C), likely due to the greater number of spectral bands, only manzanillo (MZ) was 

consistently separable from mangroves. Separability between mangrove species was 

particularly low, especially between red and white mangroves. This result is consistent with 

field measurements taken from a handheld spectroradiometer during the field campaign 

(unpublished data, Conghe Song, University of North Carolina at Chapel Hill). The spectral 

overlap and confusion between species was consistent with the accuracy assessment of 

previous studies using various classification techniques. Neukermans et al. (2008) reported 

an overall accuracy of 72% using a fuzzy classification and Wang et al. (2004b) reported an 

overall accuracy of 75% using a maximum likelihood technique, although the user's accuracy 

for some species was as low as 55%. During the exploratory analysis of this study, a MLC 

classification failed to detect two separate true mangrove and mangrove associate classes.  

 Table 3.4D shows spectral separability of true mangroves (TM) and mangrove 

associates (MA) for all vegetation field points and dense vegetation objects from OBIA 

segmentation and decision tree classification. In most cases, spectral separability increased 

with the inclusion of band ratios and spatial information through image segmentation into 

objects.  However, the maximum value of 1.665 demonstrates that there is considerable 

spectral overlap between the two classes and that non-traditional classification methods are 

likely required (i.e. SVM). The use of an object-based approach worked best for dense 

vegetation objects. Results for sparse vegetation objects (not shown) did not improve the 

separability results and were sometimes worse than the pixel-based analysis due to the 
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inclusion of background substrate reflectance. Moreover, the moderate to poor spectral 

separability indicates the in ability to discern between species using this imagery which 

includes noise from non-leaf surfaces such as braches and background substrate. Given, 

pure leaf reflectance from finer scale imagery or spectral unmixing, spectral separabiltiy may 

be higher.  

 

Classification 

 The classification is illustrated in figure 3.6. Table 3.5 shows the proportion of each 

land cover type. For both study areas, lava and ocean are the dominant cover types and 

coastal vegetation comprises about 5.5 sq. km or 12% and 8% of Puerto Villamil and Cartago 

images, respectively. The composition of coastal vegetation differs between the two study 

areas. The Puerto Villamil study area is mostly sparse vegetation with mangrove associates 

and true mangroves comprising a minority of coastal vegetation. The Cartago study area is 

mostly true mangroves with much less sparse vegetation and almost no mangrove associate 

species present. However, much of the dense coastal vegetation was obstructed by clouds or 

cloud shadow in the Worldview-2 image (24.8%). 

The satellite classification has shown that true mangroves are widespread and the 

dominant vegetation cover in the Cartago study area, while true mangroves are part of a 

wider range of vegetation in the Puerto Villamil study area. In both study areas, mangroves 

grow along the sheltered coastline and thrive where there is likely subsurface freshwater 

from the humid highlands emerging along the coast as springs. Several of these springs are 

found near the town of Puerto Villamil and these reflect the large dense mangrove patches 

observed. 

The differences in land cover reflect the differences in the climatic and geomorphic 

environment. The Puerto Villamil study area is along the southern edge of the Sierra Negra 

volcano and has considerably more cloud cover during the year than the Cartago study area 
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(unpublished MODIS data). Furthermore, elevation increases rapidly from the coast to the 

area west of Puerto Villamil, where mists and fog increase with elevation providing moisture 

to plants. In the Cartago study area, the elevation remains near sea-level with little available 

moisture, as observed from the barren lava beds, except along the coast where there are 

likely isolated fresh water springs fed by rain in the humid highlands on Sierra Negra.  
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Table 1.4: Spectral Separability (Jeffries-Matustia Distance) for individual species using 
Quickbird (A) or Worldview(B) pixels,  and true mangroves vs. mangrove associates using pixels 
and objects(D) 

        

 

A- Quickbird  

     

 

AC MZ OV BW RM WM BM 

AC   1.892 1.342 1.455 1.837 1.703 1.543 

MZ 1.892   1.734 1.690 1.593 1.814 1.355 

OV 1.342 1.734   0.994 1.725 1.673 1.233 

BW 1.455 1.690 0.994   1.256 1.185 0.702 

RM 1.837 1.593 1.725 1.256   0.508 1.129 

WM 1.703 1.814 1.673 1.185 0.508   1.258 

BM 1.543 1.355 1.233 0.702 1.129 1.258   

        

 

B- Worldview-2 
     

 

AC MZ OV BW RM WM BM 

AC   1.963 1.647 1.698 1.820 1.498 1.785 

MZ 1.963   1.861 1.925 1.900 1.943 1.647 

OV 1.647 1.861   1.532 1.622 1.584 1.381 

BW 1.698 1.925 1.532   1.617 1.336 1.634 

RM 1.820 1.900 1.622 1.617   0.866 1.226 

WM 1.498 1.943 1.584 1.336 0.866   1.540 

BM 1.785 1.647 1.381 1.634 1.226 1.540   

        

 

C- Difference 
     

 

AC MZ OV BW RM WM BM 

AC   0.071 0.304 0.243 -0.017 -0.205 0.242 

MZ 0.071   0.127 0.235 0.307 0.129 0.292 

OV 0.304 0.127   0.537 -0.103 -0.089 0.148 

BW 0.243 0.235 0.537   0.361 0.151 0.932 

RM -0.017 0.307 -0.103 0.361   0.358 0.097 

WM -0.205 0.129 -0.089 0.151 0.358   0.282 

BM 0.242 0.292 0.148 0.932 0.097 0.282   

        

 

D- Pixel vs. Object for TM and MA 

   

  

QB 
QB w/ 

BR 
WV 

WV w/ 

BR 
QB = Quickbird 

 

All Veg Points 0.664 1.141 0.734 1.084 WV = Worldview-2 

 

Dense Veg 

Objects 
0.839 1.118 1.321 1.665 

BR = Band Ratios 

        

 

Mangrove Associates - MA True Mangroves - TM 

 

 

AC = Acacia 

 

RM = Red Mangrove 

  

 

MZ = Manzanillo 

 

WM = White Mangrove 

 

 

OV = Other Vegetation BM = Black Mangrove 

 

 

BW = Buttonwood 
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Figure 1.6: Land Cover Classification for Puerto Villamil (top) and Cartago (bottom) 

 

Puerto  Villamil 
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Table 1.5: Land Cover Classification for all classes (A) and coastal vegetation (B) 

A Puerto Villamil Cartago 

 Cover Area Percent Area Percent 

 OC 17.9304 38.1463 29.2249 43.4184 

 PD 1.5400 3.2763 *   

 LV 14.1150 30.0291 32.4511 48.2114 

 SD 0.8032 1.7087 0.0397 0.0589 

 UV 6.8491 14.5712 0.2722 0.4043 

 QBC 0.0985 0.2096 0.0000 0.0000 

 SCV 2.8796 6.1262 1.2552 1.8648 

 DCVC 0.1785 0.3798 1.0119 1.5033 

 MA 1.5091 3.2106 0.0006 0.0009 

 TM 1.1010 2.3423 3.0544 4.5379 

 Total 47.004 12.0588 67.310 7.9069 

 

 
 

 
 

    Indicates coastal vegetation classes 

 

 
 

 
  

 B Puerto Villamil Cartago 

 Cover Area Pct CV Area Pct CV 

 SCV 2.8796 0.5080 1.2552 0.2358 

 DCVC 0.1785 0.0315 1.0119 0.1901 

 MA 1.5091 0.2662 0.0006 0.0001 

 TM 1.1010 0.1942 3.0544 0.5739 

 Total 5.668   5.322   

 

      OC = Ocean UV = Upland Vegetation 

 PD = Pond QBC = Quickbird Clouds 

 LV = Lava 

 

SCV = Sparse Coastal Veg 

 SD = Sand 

 

DCVC = Dense Coast Vegetation w/ Clouds 

TM = True Mangrove MA = Mangrove Associates 

   

 Another major difference between the two study areas is the presence of ponds and 

lagoons. The Puerto Villamil study area contains the largest lagoon system in the Galapagos 

Islands. The hydrologic connectivity of these lagoons is complex as some lagoons are hyper-

saline and others are nearly fresh water (unpublished data, Brian White, University of North 

Carolina at Chapel Hill). The range of hydrologic conditions near Puerto Villamil are likely 

the cause of the range of vegetation types (i.e.  true mangroves vs. mangrove associates) and 

vegetation conditions (i.e. LAI and canopy height) observed. As Song et al. (2011) observed 
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in this study area, salinity can have an observable impact on remote sensing-derived 

photosynthetic productivity. 

 The lagoon complex is the result of volcanic topographic features seemingly unique 

to that area. In contrast, the structure of the Cartago coastline reflects a more fluvial pattern 

of inter-tidal channels. The relatively simple topography and hydrology and more arid 

environment near Cartago has led to isolated but large, dense mangrove patches around 

protected coves and likely fresh water springs.  Future research is needed to investigate the 

link between hydrologic conditions including subsurface flow and coastal vegetation. 

 

Accuracy Assessment 

 The accuracy assessment was considered at two levels - 1) validation objects for a 

typical assessment of just the SVM classification, and 2) validation field points to 

understand the accuracy from the decision tree classification and the sub-object level.  

OBIA 

 The overall accuracy of the SVM classification between true mangroves and 

mangrove associates was 94.4% with a kappa statistic of 0.863. The greatest source of error 

was the misclassification of mangrove associates as true mangroves (Table 3.6). The 

producer's and user's error were consistent for each class and greater than 90% in all cases. 

The AUC-ROC was 0.991 for true mangroves and 0.987 for mangrove associates. The overall 

accuracy of the classification was very good and better than most previous mangrove studies 

(Heumann, 2011) and thus demonstrates the ability of this approach to accurately 

distinguish between true and associate mangroves in fringe and basin environments. 
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Table 1.6: Classification confusion matrix (A) and classification accuracy (B) of SVM 
classification 

 

A TM (Pix) TM (%) MA(Pix) MA(%) Total 

Unclassified 0 0 0 0 0 

TM 3152 96.04 128 9.69 3280 

MA 130 3.96 1193 90.31 1323 

Total 3282 100 1321 100 4603 

      

      B Prod. (Pix) Prod.(%) User (Pix) User (%) 

 TM 3152/3282 96.04 3152/3280 96.1 

 MA 1193/1321 90.31 1193/1323 90.17 

  

Table 1.7: Accuracy Assessment of Decision Tree and SVM Classification from Field Data by 
number of points (A) and percent of points (B) 

 

 A TM MA QBC SCV DCVC LV OC PD SD UV Total 

AC 2 0 0 18 0 11 0 0 0 0 31 

MZ 5 27 0 2 0 0 0 0 0 0 34 

OV 4 9 0 14 0 10 0 0 0 0 37 

BW 18 6 0 52 0 12 0 4 0 0 92 

RM 84 8 0 71 0 23 1 18 0 0 205 

WM 43 1 0 159 0 120 7 7 0 0 337 

BM 9 22 0 16 0 6 0 0 0 0 53 

Total 165 73 0 332 0 182 8 29 0 0 789 

    

 

       

 
            B TM MA QBC SCV DCVC LV OC PD SD UV Total 

AC 6.45 0.00 0.00 58.06 0.00 35.48 0.00 0.00 0.00 0.00 100 

MZ 14.71 79.41 0.00 5.88 0.00 0.00 0.00 0.00 0.00 0.00 100 

OV 10.81 24.32 0.00 37.84 0.00 27.03 0.00 0.00 0.00 0.00 100 

BW 19.57 6.52 0.00 56.52 0.00 13.04 0.00 4.35 0.00 0.00 100 

RM 40.98 3.90 0.00 34.63 0.00 11.22 0.49 8.78 0.00 0.00 100 

WM 12.76 0.30 0.00 47.18 0.00 35.61 2.08 2.08 0.00 0.00 100 

BM 16.98 41.51 0.00 30.19 0.00 11.32 0.00 0.00 0.00 0.00 100 

Total 0.209 0.093 0 0.421 0 0.231 0.010 0.037 0 0 1 
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Field Points 

 Table 3.7 shows the distribution of validation vegetation field data points (i.e. points 

that did not fall within objects used for the SVM classification). The majority of field points 

were classified either as sparse coastal vegetation or lava. This is indicative of the arid 

environment of the study area, particularly in an OBIA classification framework where the 

spectral signature of the object and not individual pixels are used for classification. 

Furthermore, given the sparse nature of the vegetation, the spectral signal strength of these 

vegetation points was relatively weak, preventing further classification with detailed spectral 

unmixing, requiring hypersepctral data. Of the true mangrove species, about 50% of red and 

black mangroves points were classified as sparse vegetation, while nearly all of the white 

mangrove points were classified as sparse. It should be noted that since the field sampling 

scheme was opportunistic due to Galapagos National Park regulations about cutting 

vegetation, sampling was likely biased towards less dense and more accessible vegetation, 

especially for the field plots.  

 Figure 3.7 shows the fuzzy SVM true mangrove classification distribution for each 

vegetation type. Manzanillo, other vegetation, red mangrove, and white mangrove had 

appropriate membership to true mangroves. However, black mangrove and buttonwood had 

low and high membership, respectively, indicating misclassification of these vegetation 

types.  

 There are many aspects to this error. First, there is a spatial scale mismatch between 

the field points and the objects in that many points may occur in a single object. For 

example, field plots dominated by black mangroves (~11 of 29 dense black mangrove points) 

were misclassified as mangrove associates due to the misclassification of a single object. 

Moreover, single points may not be representative of a whole object, especially near object 

edges where geometric uncertainty of both field and satellite data could be factors. Second, 



 
 

 

fuzzy classification or mixed classes were not explicitly considered. Only pure objects were 

used for calibrating the classification as the exact composition of mixed objects was 

unknown due to the lack of a tree

zonation, this is not always observed (

parts of the study area where edaphic and topographic conditions changed rapidly over small 

distance such that for a given field plot, multiple species were present.

Figure 1.7: Boxplot of TM Fuzzy Membership for Validation Field Points

 

 This second point demonstrates a gap in the current knowledge of methods in remote 

sensing. While there are several papers that assess methods of image segmentation and 

object classification (Blachke et 

sampling schemes with OBIA of natural landscapes where visual interpretation is not as 

straight forward as human landscapes (e.g. buildings, roads, impervious surfaces). Field 

sampling protocols for remote sensing have been largely designed for pixe

from a legacy of 25-meter pixels from Landsat and SPOT. The type of sampling for pixel 

based analysis does not lend itself to assessing whole objects created after field data 

collection, especially fuzzy membership of heterogeneous objects

schemes such as large-scale quadrat sampling or mapping boundaries of homogeneous 
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fuzzy classification or mixed classes were not explicitly considered. Only pure objects were 

used for calibrating the classification as the exact composition of mixed objects was 

unknown due to the lack of a tree census. While mangroves often have detectable patterns of 

zonation, this is not always observed (Ellison et al., 2002). This was certainly the case in some 

parts of the study area where edaphic and topographic conditions changed rapidly over small 

e such that for a given field plot, multiple species were present. 

: Boxplot of TM Fuzzy Membership for Validation Field Points 

This second point demonstrates a gap in the current knowledge of methods in remote 

sensing. While there are several papers that assess methods of image segmentation and 

object classification (Blachke et al., 2008), there is not a good assessment of linking

sampling schemes with OBIA of natural landscapes where visual interpretation is not as 

straight forward as human landscapes (e.g. buildings, roads, impervious surfaces). Field 

sampling protocols for remote sensing have been largely designed for pixel-based analysis 

meter pixels from Landsat and SPOT. The type of sampling for pixel 

based analysis does not lend itself to assessing whole objects created after field data 

collection, especially fuzzy membership of heterogeneous objects. Two alternative sampling 

scale quadrat sampling or mapping boundaries of homogeneous 

fuzzy classification or mixed classes were not explicitly considered. Only pure objects were 

used for calibrating the classification as the exact composition of mixed objects was 

detectable patterns of 

Ellison et al., 2002). This was certainly the case in some 

parts of the study area where edaphic and topographic conditions changed rapidly over small 

 

This second point demonstrates a gap in the current knowledge of methods in remote 

sensing. While there are several papers that assess methods of image segmentation and 

2008), there is not a good assessment of linking field 

sampling schemes with OBIA of natural landscapes where visual interpretation is not as 

straight forward as human landscapes (e.g. buildings, roads, impervious surfaces). Field 

based analysis 

meter pixels from Landsat and SPOT. The type of sampling for pixel 

based analysis does not lend itself to assessing whole objects created after field data 

. Two alternative sampling 

scale quadrat sampling or mapping boundaries of homogeneous 
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patches may be more appropriate of OBIA, but this type of field data collection is difficult 

and time-consuming in the best of conditions, let alone in dense mangrove swamps. 

Furthermore, this type of sampling would be prohibitively destructive in the Galapagos 

National Park. Future research is needed to assess effective and efficient field sampling 

schemes for use with OBIA.  

 

Conclusions 

 Effective monitoring and management of mangrove forests requires accurate and 

repeatable measures of forest extent and species composition. While previous studies have 

successfully mapped mangrove extent and species, these studies have largely ignored fringe 

mangroves. This study has addressed this issue. Spectral separability analysis revealed that 

the spectral signatures between mangrove species and even associate species were not only 

moderately separable using Quickbird or Worldview-2 imagery at both the pixel and object 

level. The best separability was found using dense vegetation objects, indicating that even for 

very high resolution imagery, the multispectral signature of non-vegetation components for 

sparse vegetation produce mixed pixel effects that seriously limit multispectral analysis. 

Using a hybrid decision-tree and SVM approach, true mangrove species and associate 

mangrove species were classified with an accuracy of 94% at the object level. However, when 

class accuracy was considered at the species level, black mangrove and buttonwood were 

often misclassified, indicating that certain species of true and associate mangroves are better 

classified than others. This research has demonstrated the need and application of non-

linear machine-learning classification schemes with OBIA and highlighted remaining 

challenges including the classification of sparse vegetation as well as image segmentation 

over natural landscapes as objects are less distinct than in human-managed landscapes. 

Given these challenges, future research should focus on hyperspectral image analysis to 
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improve spectral separability between species and LiDAR to enhance image segmentation 

based on canopy structure as well as spectral properties. 



 
 

83 
 

References 

Al Habshi, A., T. Youssef, M. Aizpuru & F. Blasco (2007) New mangrove ecosystem data 
along the UAE coast using remote sensing. Aquatic Ecosystem Health & 
Management, 10, 309-319. 

Alongi, D. M. (2002) Present state and future of the world's mangrove forests. 
Environmental Conservation, 29, 331. 

Benfield, S. L., H. M. Guzman & J. M. Mair (2005) Temporal mangrove dynamics in relation 
to coastal development in Pacific Panama. Journal of environmental management, 
76, 263. 

Benz, U. C., P. Hofmann, G. Willhauck, I. Lingenfelder & M. Heynen (2004) Multi-
resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready 
information. Isprs Journal of Photogrammetry and Remote Sensing, 58, 239-258. 

Blaschke, T., S. Lang & G. Hay. 2008. Object-based image analysis: spatial concepts for 
knowledge-driven remote sensing applications. Springer. 

Chubey, M. S., S. E. Franklin & M. A. Wulder (2006) Object-based analysis of Ikonos-2 
imagery for extraction of forest inventory parameters. Photogrammetric 
Engineering and Remote Sensing, 72, 383-394. 

Conchedda, G., L. Durieux, P. Mayaux & Ieee. 2007. Object-based monitoring of land cover 
changes in mangrove ecosystems of Senegal., In 4th International Workshop on the 
Analysis of Multi-Temporal Remote Sensing Images, 44-49. Louvain, BELGIUM. 

Desclee, B., P. Bogaert & P. Defourny (2006) Forest change detection by statistical object-
based method. Remote Sensing of Environment, 102, 1-11. 

Foody, G. M. & A. Mathur (2006) The use of small training sets containing mixed pixels for 
accurate hard image classification: Training on mixed spectral responses for 
classification by a SVM. Remote Sensing of Environment, 103, 179-189. 

Gao, J. (1998) A hybrid method toward accurate mapping of mangroves in a marginal 
habitat from SPOT multispectral data. International Journal of Remote Sensing, 19, 
1887-1899. 

Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek & N. Duke (2011) 
Status and distribution of mangrove forests of the world using earth observation 
satellite data. Global Ecology and Biogeography, 20, 154-159. 

Hay, G. J., G. Castilla, M. A. Wulder & J. R. Ruiz (2005) An automated object-based 
approach for the multiscale image segmentation of forest scenes. International 
Journal of Applied Earth Observation and Geoinformation, 7, 339-359. 

Hogarth, P. 2007. The Biology of Mangroves and Seagrasses. Oxford University Press. 



 
 

84 
 

Hsu, C., C. Cahng & C. Lin. 2010. A Practical Guide to Support Vector Classification. 
Department of Computer Science, National Taiwan Univeristy. 

Huang, C., L. S. Davis & J. R. G. Townshend (2002) An assessment of support vector 
machines for land cover classification. International Journal of Remote Sensing, 23, 
725-749. 

Huang, X., L. P. Zhang & L. Wang (2009) Evaluation of Morphological Texture Features for 
Mangrove Forest Mapping and Species Discrimination Using Multispectral IKONOS 
Imagery. Ieee Geoscience and Remote Sensing Letters, 6, 393-397. 

Krause, G., M. Bock, S. Weiers & G. Braun (2004) Mapping land-cover and mangrove 
structures with remote sensing techniques: A contribution to a synoptic GIS in 
support of coastal management in North Brazil. Environmental management, 34, 
429. 

Li, H. T., H. Y. Gu, Y. S. Han & J. H. Yang (2010) Object-oriented classification of high-
resolution remote sensing imagery based on an improved colour structure code and a 
support vector machine. International Journal of Remote Sensing, 31, 1453-1470. 

Manson, F. J., N. R. Loneragan, I. M. McLeod & R. A. Kenyon (2001) Assessing techniques 
for estimating the extent of mangroves: topographic maps, aerial photographs and 
Landsat TM images. Marine and Freshwater Research, 52, 787-792. 

Metz, C. E. (1978) BASIC PRINCIPLES OF ROC ANALYSIS. Seminars in Nuclear Medicine, 
8, 283-298. 

Myint, S. W., C. P. Giri, W. Le, Z. L. Zhu & S. C. Gillette (2008) Identifying mangrove species 
and their surrounding land use and land cover classes using an object-oriented 
approach with a lacunarity spatial measure. Giscience & Remote Sensing, 45, 188-
208. 

Neukermans, G., F. Dahdouh-Guebas, J. G. Kairo & N. Koedam (2008) Mangrove species 
and stand mapping in GAzi bay (Kenya) using Quickbird satellite imagery. Journal of 
Spatial Science, 53, 75-86. 

Ramsey, E. W. & J. R. Jensen (1996) Remote sensing of mangrove wetlands: Relating 
canopy spectra to site-specific data. Photogrammetric Engineering and Remote 
Sensing, 62, 939. 

Schmidt, K. S. & A. K. Skidmore (2003) Spectral discrimination of vegetation types in a 
coastal wetland. Remote Sensing of Environment, 85, 92-108. 

Simard, M., G. De Grandi, S. Saatchi & P. Mayaux (2002) Mapping tropical coastal 
vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier. 
International Journal of Remote Sensing, 23, 1461-1474. 

Song, C., White, B., Heumann, BW. (2011) Hyperspectral Remote Sensing of Salinity Stress 
on Red (Rhizophora mangle) and White (Laguncularia racemosa) Mangroves on 
Galapagos Islands. unpublished data. 



 
 

85 
 

Swain, P. (1986) Remote Sensing. In The handbook of pattern recognition and processing, 
eds. T. Young & K. Fu, 613 - 627. Orlando: Academic Press. 

Tomlinson, P. B. (1986) The botany of mangroves. Cambridge Cambridgeshire; New York: 
Cambridge University Press. 

Vaiphasa, C., S. Ongsomwang, T. Vaiphasa & A. K. Skidmore (2005) Tropical mangrove 
species discrimination using hyperspectral data: A laboratory study. Estuarine 
Coastal and Shelf Science, 65, 371-379. 

Vaiphasa, C., A. K. Skidmore & W. F. de Boer (2006) A post-classifier for mangrove mapping 
using ecological data. Isprs Journal of Photogrammetry and Remote Sensing, 61, 1. 

Van Der Werff, H. H. & H. Adsersen (1993) Dry coastal ecosystems of the Galapagos Islands. 
Ecosystems of the World; Dry coastal ecosystems: Africa, America, Asia and 
Oceania, 459-475. 

Vapnik, V. (1995) The Nature of Statistical Learning Theory. Springer. 

Wang, L., J. L. Silvan-Cardenas & W. P. Sousa (2008) Neural network classification of 
mangrove species from multi-seasonal ikonos imagery. Photogrammetric 
Engineering and Remote Sensing, 74, 921-927. 

Wang, L. & W. P. Sousa (2009) Distinguishing mangrove species with laboratory 
measurements of hyperspectral leaf reflectance. International Journal of Remote 
Sensing, 30, 1267-1281. 

Wang, L., W. P. Sousa & P. Gong (2004a) Integration of object-based and pixel-based 
classification for mapping mangroves with IKONOS imagery. International Journal 
of Remote Sensing, 25, 5655-5668. 

Wang, L., W. P. Sousa, P. Gong & G. S. Biging (2004b) Comparison of IKONOS and 
QuickBird images for mapping mangrove species on the Caribbean coast of Panama. 
Remote Sensing of Environment, 91, 432-440. 

Woodcock, C. E. & A. H. Strahler (1987) The factor of scale in remote sensing. Remote 
Sensing of Environment, 21, 311-332. 

Wulder, M. A., J. C. White, G. J. Hay & G. Castilla (2008) Towards automated segmentation 
of forest inventory polygons on high spatial resolution satellite imagery. Forestry 
Chronicle, 84, 221-230. 

Yang, X. (2011) Parameterizing Support Vector Machines for Land Cover Classification. 
Photogrammetric Engineering & Remote Sensing, 77, 27 - 38. 

 

 



 
 

Chapter 4 : Comparison of Spectral and Spatial Techniques to Map Mangrove Forest Leaf 

Area 



 
 

87 
 

Abstract 

 The aim of this chapter is to investigate and compare the ability of spectral and 

spatial remote sensing techniques to determine canopy cover and leaf area in fringe 

mangrove forests.  The motivation for this research is prompted by the need for spatial 

canopy structure data for ecosystem and habitat modeling in the Galapagos Islands, 

Ecuador. Fractional canopy cover, effective LAI (leaf area index) and true LAI were 

calculated using digital hemispherical under-canopy photographs at 48 sites composed of 

red (Rhizophora mangle), white (Laguncularia racemosa), black (Avicennia germinans), or 

mixed mangrove forest canopies with black lava, white sand, or leaf litter substrates. 

Spectral vegetation indices (SVI) were calculated using Quickbird and Advanced Land 

Imager multispectral imagery. Texture metrics from grey-level occurrence (GLOM) and co-

occurrence matrices (GLCM) were calculated using panchromatic Quickbird imagery to 

predict canopy structure. Results show the relationships between SVI and canopy structure 

are statistically significant but weak (r < 0.45). Moderate to strong relationships (r2 > 0.6) 

were found for GLCM-derived texture. However, the results indicate that spatial texture 

metrics are sensitive to the canopy structure of individual species, variation in the 

reflectance of the different background substrate, or possibly both. Empirical models of 

fractional canopy cover and true LAI based on GLCM texture relationships for substrate, and 

species, respectively, are presented. This paper demonstrates the that a priori knowledge of 

species composition or substrate is needed but represent a serious challenge to mapping 

mangrove forest LAI using the parametric models.  

 

Introduction 

 The amount of canopy cover or leaf area is an important biophysical parameter 

related to ecological processes such as habitat selection, evapotranspiration, and carbon 

cycling. Given that large-scale ground-based measurements of canopy cover or leaf area are 
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unfeasible, remote sensing methods are required to produce the spatial data essential for 

spatially-explicit habitat or ecological models. Relatively little research has investigated the 

use of satellite remote sensing to characterize mangrove forest beyond areal extent mapping 

and change detection (Heumann, 2011) despite the known ecological importance of 

mangrove forests in terms of ecological services, such as nurseries for economically 

important fisheries, biofiltration of pollution, and the potential for reduce the impacts of 

tsunami and hurricanes (Hogarth, 2007).  

Many studies have investigated the empirical relationships between spectral 

vegetation indices (SVI) and leaf area for terrestrial boreal, temperate, and tropical forests 

(e.g. Turner et al., 1999; Eklundh et al., 2003; Lu et al., 2004; Boyd and Danson, 2005) 

using high resolution (e.g. Landsat ETM+) or very high resolution imagery (e.g. IKONOS or 

Quickbird). Although the normalized difference vegetation index (NDVI) and simple ratio 

(SR) have been shown to have moderate to strong relationships with LAI for red, white, and 

black mangroves (Kovacs et al., 2004; Kovacs et al., 2009), the geographical extent of this 

research has been limited to a single study area. Despite evidence from terrestrial 

ecosystems that spectral information from short-wave infrared (SWIR) is significantly 

related to canopy cover and leaf area (e.g. Brown et al., 2000; Pu et al., 2005; Twele et al., 

2008), the use of SVI that incorporate SWIR wavelengths have not been investigated for 

mangrove forests.  

The rise of widely available very high resolution imagery has lead to a novel approach 

to characterize canopy cover and leaf area based on spatial information. This approach relies 

upon a relationship between the pattern of canopy tree crowns and gaps with canopy cover 

and leaf area (Woodcock and Strahler, 1987; Wulder et al., 1998; Bruniquel et al., 1998). 

Several studies have investigated the link between image spatial information and canopy 

cover or leaf area in boreal and temperate regions (e.g. Wulder et al., 1998; Bruniquel et al., 

1998; Moskal and Franklin, 2004; Kayitakire et al., 2006; Song and Dickison, 2008; Gray, 
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2009). Kraus et al. (2009) found in mature tropical forests (eLAI > 5.0) that in the absence 

of any significant relationship between SVI and LAI, texture metrics had a strong and 

significant relationship with LAI (r2 = 0.71). While image texture has been used to classify 

mangrove species, it has not been used to determine canopy structure to date. 

 

Objectives and Contents of the Study 

 The aim of this research is to investigate the use of spectral vegetation indices (SVI) 

and image texture to determine fractional canopy cover and leaf area index in fringe-type 

mangrove forests in the Galapagos Islands, Ecuador. The motivation of this study is the 

ability to map either leaf as an input for ecosystem modeling or habitat modeling for species 

such as the mangrove finch. This paper is organized in two parts. First, SVIs are examined 

using very high spatial resolution, Quickbird imagery and the enhanced spectral sensitivity 

and resolution of Advanced Land Imager (ALI) imagery to test differences in spatial 

resolution and spectral bands. In addition, spectral unmixing is conducted to examine if 

reducing mixed pixel effects in ALI imagery improves prediction of canopy structure. 

Second, image texture is examined using Quickbird panchromatic data. As a preliminary 

step, variance is calculated using the grey-level occurrence matrix (GLOM) is used to rapidly 

examine the effects of image resolution and window size, species composition, and substrate 

background conditions on the relationship between texture and canopy structure. Seven 

grey-level co-occurrence matrix (GLCM) image texture statistics are tested based on sub-

groups of species composition and background substrate. Results describe the exploratory 

analysis of SVI and texture metrics and conclude with a suggested parameterized model to 

predict canopy structure. The results are discussed in terms of previous research and real-

world challenges to mapping canopy structure from satellite remote sensing. The paper 

concludes by describing areas of future remote sensing research for the Galapagos Islands 

and mangrove forests in general.,   
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Background 

Definitions of Canopy Cover and Leaf Area Index 

 Fraction Canopy Cover (FCC) and Leaf Area Index (LAI) provide two measures of 

vegetation canopy structure. FCC is the planimetric faction of the canopy covered with leaves 

and is often used because it is simple to define and relatively easy to measure using indirect 

methods. LAI for broadleaf vegetation is the one-sided area of all leaves for a given areal unit 

(i.e. leaf area (m2) / ground area (m2) and provides a more accurate measurement of 

functioning green elements in the canopy.  Due to leaf clumping and overlap, indirect 

measurement of LAI is more challenging than FCC. Jonckheere et al. (2004) and Weiss et al. 

(2004) provide a detailed review of in-situ LAI theory and methods and conclude that digital 

hemispherical photography (DHP) offers many advantages to other sensors such as color, 

in-situ and post-processing lighting adjustments, spatially-explicit calculations and the 

option for automated, semi-automated or manual assessment. The various techniques used 

to estimate LAI result in different LAI definitions (Zheng and Moskal, 2010).  eLAI can be 

calculated using gap fraction measurements using a hemispherical light sensor (e.g. LiCOR 

LAI-2000 Plant Canopy Analyzer) or hemispherical photography based on an inversion 

model of light interception assuming a random distribution of leaf clumping (Baret, 2006). 

Without direct measurement such a leaf litter traps, tLAI can only be estimated. tLAI can be 

estimated from eLAI by accounting for the effect non-random of leaf clumping on canopy 

gaps. The modeling of leaf clumping can be difficult without spatially-explicit measurements 

of canopy-gap distribution (i.e. DHP). Given measurement constraints, eLAI is more 

commonly used for ecosystem modeling of evapotrainspiration and primary productivity 

rather than tLAI. For a more detailed review of LAI definitions and theory, see Zheng and 

Moskal (2009). 
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 While eLAI is commonly used for ecosystem modeling, it is unknown which 

description of leaf area, FCC, eLAI, or tLAI, is best suited to characterize mangrove finch 

habitat. Dvorak et al. (2004) found that fraction canopy cover was a significant characteristic 

of mangrove finch habitat. Since Dvorak et al. (2004) only used a visual assessment to 

estimate canopy cover, it is unclear if canopy cover, the amount of light interception (i.e. 

eLAI) or the amount of green leaf material (i.e. tLAI) best characterizes mangrove finch 

habitat.  

  

Broadband Spectral Vegetation Indices 

 Spectral Vegetation Indices (SVI) have a strong tradition in biophysical remote 

sensing (Boyd and Danson, 2005). The basic theory behind SVI is the existence of a 

characteristic response between two or more spectral bands that strongly relate to 

biophysical properties of vegetation (Jordan, 1969). Many commonly used SVI rely on the 

relationship between red and near-infrared (NIR) reflectance to indicate the relative amount 

of photosynthetic pigment. Photosynthetically active leaves characteristically absorb red 

light for photosynthesis and highly reflect NIR light (Tucker, 1979). Other common SVI, 

such as the normalized difference moisture index (NDMI), utilize shortwave infrared 

(SWIR) reflectance that is sensitive to other aspects of leaf physiological responses such as 

water stress (Ceccato et al., 2001) and can be less sensitive to background conditions (Brown 

et al., 2000).   

Despite widespread use, SVI present several challenges for determining LAI 

including mixed pixel effects, non-linear spectral relationships, and site- or species-specific 

empirical relationships. While it is possible for SVI to determine LAI in continuous land 

cover situations, multiple land cover types often occur within a single pixel for high or 

moderate resolution sensors (i.e. Landsat or MODIS). Thus, the SVI value of a given pixel 

does not represent a single vegetation component, but other land cover types not necessarily 
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capture by ground-based measurements. Methods to reduce the influence of mixed pixels 

include attempts to remove the effect of non-vegetation components through spectral 

unmixing or using SWIR spectral properties to estimate the fraction of vegetation cover (see 

section 1.3.4). The spectral relationship to leaf area is often non-linear over the full range of 

LAI, particularly saturation effects at high LAI values (e.g. Turner et al., 1999; Eklundh et al., 

2001). Thus non-linear approaches and multiple regression techniques are useful in 

predicting canopy structure from SVI (e.g. Fassnacht et al., 1997). Finally, the use of SVI to 

determine LAI largely relies on empirical relationships. The response of SVI to LAI can vary 

between biomes, vegetation types, and even individual species due to differences in leaf 

spectral properties and canopy structure (Turner et al., 1999; Boyd and Danson, 2005; 

Glenn et al., 2005).  

 

Spectral Unimixing 

 Spectral unmixing estimates the fractional proportion of endmembers within a pixel 

from the mixed spectral measurements based on each endmember’s unique spectral 

signature as in the following equation: 

      (Eq. 1)
 

where the reflectance value ( ) of a pixel for a given wavelength is the sum of the 

spectral reflectance of endmembers, 1 to n, weighted by the fraction cover ( ). Spectral 

unmixing can also be applied to SVI using the sub-pixel endmember fractions derived from a 

spectral unmixing model and replacing the reflectance value with SVI, assuming the non-

vegetation SVI are distinct (Brown, 2001). Linear modeling approaches can be used to solve 

this equation if the spectral signature of each endmember is known (GarciaHaro et al., 

1996). Non-linear model approaches can also be used, but are often difficult to solve due to 

their complex equations. Spectral signatures can be obtained from field collection or from 
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“pure” pixels in existing imagery using manual approaches such as visual interpretation 

from very high resolution imagery (e.g. satellite or aerial photography) or automated 

approaches such as Purity Pixel Index (Boardman et al., 1995).  

Since the SVI of the vegetation component of Eq.1 varies depending on vegetation 

parameters such as leaf area, the contribution of vegetation to the pixel SVI is unknown. Eq. 

1 can be solved algebraically to calculate the SVI of vegetation by subtracting the other SVI 

components from the pixel SVI, assuming all the SVI of the other components are known 

and consistent across the image (Brown, 2001). Previous studies have shown that this 

approach greatly improves the relationship between SVI and LAI in mixed pixels of 

discontinuous forest (Brown, 2001, Sonnentag et al., 2007). This approach has not been 

applied to mangrove forests. 

Image Texture 

 Image texture describes the spatial pattern and relationship among and between 

pixels and is controlled by the geometric relationship between objects and pixel resolution 

(Woodcock and Strahler, 1987). In high resolution imagery, individual tree crowns and 

canopy gaps consist of multiple pixels, producing spatial-autocorrelation within objects that 

can be detected using image texture (Woodcock and Strahler, 1987). The panchromatic 

pattern of bright tree crowns and dark canopy gaps and shadows across a canopy can be 

used to determine canopy structure attributes such as crown diameter and LAI (Song and 

Dickinson, 2008).  

 Image texture can be described using statistical metrics based on the GLOM or 

GLCM. GLOM measures image texture using all pixel grey-levels in a given window. GLCM 

measures image texture using all pairs of pixel grey-levels. While only a single parameter, 

window size, is used with GLOM, three parameters control the selection of GLCM pixel pairs 

- moving window size, lag distance, and direction. Haralick et al. (1973) describe several first 

and second order metrics to measure image texture using GLCM (see Table 4.1).  
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 While several studies have used GLCM texture to describe canopy structure and 

estimate LAI (Wulder et al., 1998, Colombo et al., 2003, Moskal and Franklin 2004, 

Kayitakire et al., 2006), only one study has been conducted on tropical forests. Kraus et al. 

(2009) use SVI and GLCM image texture to determine LAI in various stages of tropical 

forest. They found that only the GLCM image texture could determine LAI for mature forest 

stands.  

 The novelty of the image texture approach to determine leaf area is both a challenge 

and an opportunity. To date, there has not been a peer-reviewed study that has investigated 

the use of GLCM image texture for determining LAI in mangrove forests. Therefore, the type 

of statistical metric or the ideal set of parameters to apply is unknown. Specifically, the 

spatial scale of image texture, in terms of lag distance, image resolution, or window size, is 

largely untested and previous research provides little guidance. Furthermore, unlike many 

SVI which have been specifically designed to be insensitive to background conditions (e.g. 

SAVI, EVI), image texture of panchromatic imagery is likely to be sensitive to differences in 

background conditions because texture relates differences in intensity and spatial 

arrangement of canopy and gap pixel reflectance. 
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Table 4.1: Grey-level co-occurrence matrix statistics (after Haralick et al., 1973). P(i,j) is the 
proportional frequency of compared pixels with grey-levels i and j. 

 

Methods 

Study Area 

The research was conducted near the town of Puerta Villamil on Isabela Island in the 

Galapagos Archipelago, Ecuador. The Galapagos Islands, located 1000-km off the coast of 

Ecuador, are an archipelago consisting of 13 large islands, 4 of which have human populations, 

and 188 small islands and rocks (Figure 4.1). The Galapagos Islands were declared a national park 

in 1959 (the park consists of 97% of land area), a UNESCO World Heritage Site in 1978, and a 

UNESCO Biosphere Reserve in 1987. The Galapagos Islands lie on the western edge of the 
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Atlantic-East Pacific mangrove complex. Mangrove forests consist of three true species common in 

this region: Rhizophora mangle (red), Avicennia germinans (black), and Laguncularia racemosa 

(white), and as well as the associate species Conocarpus erectus (button or buttonwood mangrove) 

and Hippomane mancinella (manzanillo). In the Galapagos Islands, mangroves form dense, but 

small patches in protected coves and lagoons along an otherwise barren or arid coast. Mangrove 

forests in the study site can be described primarily as fringe mangroves, although some forest 

patches occur along inland brackish lagoons and ponds. Salinity varies greatly across the study site 

as both fresh water springs and hyper-saline ponds occur in relatively close proximity. Field 

observations show that while mangrove species form patterns of zonation based on salinity and/or 

wave action, the mangrove and associate species can co-occur in close proximity.  

 

Figure 4.1: Land cover classification of the study area near Puerto Villamil, Galapagos Islands, 
Ecuador (see Chapter 3) 
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Field Data and Processing 

 Field data was collected during summer 2009. Due to conservation policies within 

the Galapagos National Park, non-destructive sampling was required. Mangroves form 

stands with dense aerial roots and branches, making many areas inaccessible without 

destructive measures. An opportunistic sampling scheme was conducted due to logistical 

constraints. Efforts were made to sample a wide range of leaf area for each species. Digital 

Hemispherical Photographs (DHP) were taken at the center of 10-meter diameter field plots. 

A 5 megapixel, Nikon Coolpix 5000 camera and a FC-E8 fisheye lens with equidistant 

projection were used. Additionally, canopy height, substrate conditions, and mangrove 

species were recorded at nine points in each plot. Plot location was recorded using a Trimble 

GeoXT GPS unit and differentially corrected to a 95% horizontal positional accuracy of less 

than 1.5 meters.  

The DHP was used to calculate canopy cover, effective leaf area index (eLAI), and 

true LAI (tLAI) using the Can-EYE software. Previous studies indicate this software-

hardware configuration provides accurate estimates of FCC and LAI in tropical forests 

(Kraus et al., 2009). Images were subset and cropped to above 65° from the zenith to remove 

the effects of blurred and mixed pixels at higher zenith angles. Branches and direct sunlight 

were manually masked to improve the classification of leaf area and canopy gap. Can-EYE 

software calculates fraction canopy cover as the proportion of non-gap area in the nadir 

direction from 0° to 10°, the default setting in the Can-EYE software. eLAI was calculated 

based an inverse light diffusion model look-up-table based on a poisson distribution model 

of leaf distribution. eLAI was converted into rLAI based on an estimation of non-random 

leaf clumping from the DHP by the Can-EYE software.  The results from the Can-EYE 

software analysis were linked to the GPS plot locations to link field and remote sensing data. 
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Figure 4.2 illustrate the distribution of FCC and LAI among species. FCC and LAI 

were similar among species with the following exceptions: white mangroves had canopy 

cover well below 50% and red mangrove had a much lower effective LAI range than the other 

species (see figure 4.2). In terms of canopy height, white mangroves were distinct from the 

other species. All white mangroves were less than 10 meters in height, while the mean height 

of red and black mangroves was greater than 10 meters in height and some red mangrove 

trees exceeded 15 meters. These results illustrate that a wide range of canopy conditions 

were sampled, but do not suggest any statistically significant differentiation between species 

based on canopy cover, LAI or height. However, these results are not necessarily 

representative of the entire study area due to the opportunistic sampling scheme that sought 

to capture a range of canopy conditions rather than a representative sample. 
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4.2: Boxplot in-situ measured fraction Canopy Cover (A), effecctive LAI (B), true LAI (C), and 
height (D) by mangrove species 

Remote Sensing Data 

 Details of the remote sensing data are shown in Table 4.2. The Quickbird Standard 

Product imagery was geometrically corrected using ENVI RPC with GCP orthogeometric 

correction algorithm. The corrected imagery has a Root Mean Square Error (RMSE) of less 

than 2-meters based on 16 independent validation GCPs. The RMSE of the Quickbird 

imagery is similar to the uncertainty of the differentially corrected GPS points used as GCPs. 

A

B

C

D
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The ALI image was geometrically corrected with an RSME less than 15m (i.e. half a pixel) 

using a 3rd order polynomial based on tiepoints from the corrected Quickbird image. The 

digital numbers were converted to radiance and atmospherically corrected using a Dark 

Object Subtraction (DOS) model in ENVI.  

Table 4.2: Details of the ALI and Quickbird data 

Sensor Resolution Bands 
Wavelength 

(nm) 

Landsat ETM+ 

Equivalent 

Feb. 24th, 2008       

ALI 30 m Blue' 433 - 453 
 

  

Blue 450 - 515 x 

  
Green 525 - 605 x 

  
Red 630 - 690 x 

  
NIR 775 - 805 

x 

  
NIR' 845 - 890  

  
SWIR' 1200 - 1300  

 

  
SWIR 1550 - 1750 x 

  
MIR 2080 - 2350 x 

Aug. 27th, 2008       

Quickbird 2.4 m Blue 450 - 520 
 

  

Green 520 - 600 
 

  
Red 630 - 690 

 

  
NIR 760 - 900 

 

 
0.6 m Panchromatic 450 - 900  

 
 ' indidcates ALI specific-band     

 

Spectral Vegetation Indices 

 Table 4.3 lists the SVI used in this study. The Quickbird SVIs were calculated for 1x1, 

3x3, 5x5, and 7x7 pixel windows. The 10 SVI selected for the ALI imagery include the 

Quickbird SVIs as well as several that incorporate SWIR data or ALI-unique data. Since the 

ALI imagery has two channels in the NIR and SWIR wavelengths, the SVI were tested using 

ETM+ equivalent bands and using only the unique ALI bands.  
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Table 4.3:Spectral vegetation indices for Quickbird and Advanced Land Imager 

 

Spectral Unmixing 

 Linear mixture modeling was conducted in ENVI. Endmembers’ spectra were 

identified by selecting a minimum of four “pure” pixels in the ALI image using visual 

interpretation Quickbird multispectral and panchromatic data. Automated acquisition of 

endmember spectra using the Purity Pixel Index (Boardman et al., 1995) did not yield 

realistic endmembers as determined by visual assessment of the mapped endmembers. Pure 

vegetation pixels were selected based on homogeneous brightness of the false color 

composite (i.e. dense vegetation without visible gaps). All ten ALI bands were used to 

identify the endmember spectra.  Selected endmembers initially included lava, sand, 

vegetation, pond, and ocean. Preliminary results using all five endmembers showed 

Spectreal Vegetation Index Sensor Specific Equation Source

QB Simple Ratio Jordan, 1969

Normalized Difference 
Vegetation Index

Rouse et al. 1973

ALI
Simple Ratio (Landsat 

Equivalent)
Jordan, 1969

Simple Ratio' (ALI Unique)

Normalized Difference 
Vegetation Index (Landsat 

Equivalent)
Rouse et al. 1973

Normalized Difference 
Vegetation Index'  (ALI Unique)

Enhanced Vegetation Index  
(Landsat Equivalent)

Huete et al. 2002

Infrared Simple Ratio (Landsat 
Equivalent)

Fiorella and 
Ripple, 1993

Infrared Simple Ratio' (LAI-
Unique)

Normalized Difference Moisture 
Index (Landsat Equivalent)

Hardisky, 1983

Normalized Difference Moisture 
Index' (ALI-Unique)
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confusion between lava with ocean and sand with pond. In both cases, the water 

endmembers were found not to be pure due to the contribution of substrate endmembers 

(i.e. sand under the ponds, and lava under the ocean). The endmembers were reduced to 

vegetation, lava, and sand. Once the fractional component of each endmember was 

calculated, the ALI SVIs were calculated for each pure endmember. The “pure” SVI and 

fractional components were used to estimate the vegetation component of SVI using 

MATLAB. Mixed and unmixed SVI are compared to test the effect of spectral unmixing.  

 

GLOM Variance 

 The GLOM variance was used as a preliminary rapid assessment of the potential 

effects of image resolution, window size, species and background substrate on the 

relationship between image texture and FCC or LAI (after Song and Dickinson, 2008). Since 

variance is computed based on grey-level occurrence, i.e. a single statistic based on all pixels, 

the computational demand is far less than statistics based on GLCM,  a statistic based on the 

many pair-wise comparisons. The relationship of variance to canopy cover and LAI was 

tested using 19 different image resolution and window size parameter sets.  

 

GLCM Image Texture 

 Seven image texture metrics were calculated using Quickbird panchromatic imagery 

with PCI Geomatica v. 10.3 (see table 4.1). All GLCM texture statistics were calculated using 

16 grey levels and a window size of 11 x 11 pixels (~6.6m). The statistics were computed from 

GLCM in each direction (i.e. 0°, 45°, 90°, and 135°) and non-zero (i.e. error) values were 

averaged across directions to obtain omni-directional values. If zero-values were found in all 

four directions, then the data point was removed from further analysis.  Four lag distances, 

1, 3, 5, and 7 pixels, were tested, producing 28 possible metrics of GLCM texture.  
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Statistical Analysis 

 The statistical analysis was conducted using MATLAB. The non-parametric 

Spearman's ranked correction (rs) was used to identify significant relationships without the 

stringent assumptions of data normality, linear relationships, or outliers required of a 

Pearson’s correlation or Ordinary Least-Squares Regression. Due to the coarse spatial 

resolution of the ALI data, non-overlapping field plots that fell into the same pixel were 

averaged, reducing the sample size at the individual species level such that red and black 

mangroves could not be tested individually.  

 Subsets of the data based on individual species (e.g. red (R), white (W), black (B), 

groupings of species (e.g. all vegetation including associate species (AV), all mangroves 

including button(AM), true mangroves (TM)), and substrate background were separately 

tested (see table 4.4). The best models identified by the Spearman's ranked correlation were 

used to create parametric models using OLS. In the case of non-linear relationships, a least-

squares nonlinear curve fitting optimization tool in MATLAB was used to identify the 

equation parameters and the r2 and p-value statistics were calculated.  

 

Table 4.4: Field plots by species and substrate 

 

  

Lava Sand Leaf Litter Total

Red 3 6 1 10

White 7 6 1 14

Black 0 1 4 5

Mix* 3 1 2 6

Button 0 3 3 6

Other** 0 1 4 5

Total 13 18 15 46
* mix of 2 or more true mangroves
** other associate species
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Results  

Spectral Vegetation Indices 

 The Quickbird SVI results are shown in table 4.5. NDVI had the strongest 

relationship with FCC and eLAI. The strength of the relationship was weak (rs ~ 0.4 or less) 

and similar for all three aggregated species groupings (i.e. AV, AM, TM). The window size 

5x5 was consistently among the strongest, although in some cases 3x3 and 7x7 were also 

significant. For tLAI, SR with a 3x3 window had the strongest correlation, though the 

relationship was still weak (rs < 0.38). Overall, SVI were not significantly correlated with 

FCC, eLAI, or tLAI at the individual species level with the exception of white mangrove eLAI. 

For the white mangrove eLAI, SR with a 7x7 window had the highest correlation (rs = 0.634), 

much greater than any other Quickbird SVI result.   



 
 

 
 

10
5

 
 

 

Table 4.5: Quickbird SVI correlation results for all vegetation (AV), all mangroves including associates (AM), true mangroves (TM), and 
white mangroves. 

r p SVI Window r p SVI Window r p SVI Window

AV 0.407 0.0050 NDVI 5x5 AV 0.454 0.0017 NDVI 7x7 AV 0.355 0.0168 SR 3x3

n = 46 0.401 0.0058 NDVI 3x3 n = 46 0.448 0.0020 NDVI 5x5 n = 46 0.333 0.0256 SR 5x5

0.397 0.0063 SR 5x5 0.442 0.0024 SR 7x7 0.349 0.0188 SR 7x7

0.397 0.0064 SR 3x3 0.436 0.0028 NDVI 3x3 0.348 0.0191 NDVI 3x3

0.387 0.0079 NDVI 7x7 0.429 0.0033 SR 3x3 0.322 0.0307 NDVI 5x5

0.381 0.0089 SR 7x7 0.421 0.0039 SR 5x5 0.325 0.0295 NDVI 7x7

0.352 0.0163 SR 1x1 0.354 0.0170 SR 1x1

0.352 0.0163 NDVI 1x1 0.354 0.0170 NDVI 1x1 AM 0.379 0.0174 SR 3x3

n = 40 0.351 0.0285 SR 5x5

AM 0.363 0.0215 NDVI 5x5 AM 0.387 0.0148 NDVI 7x7 0.362 0.0233 SR 7x7

n = 40 0.352 0.0258 SR 5x5 n = 40 0.379 0.0173 NDVI 5x5 0.367 0.0215 NDVI 3x3

0.351 0.0264 NDVI 3x3 0.370 0.0203 SR 7x7 0.332 0.0388 NDVI 5x5

0.346 0.0286 SR 3x3 0.364 0.0228 NDVI 3x3 0.334 0.0374 NDVI 7x7

0.338 0.0331 NDVI 7x7 0.357 0.0255 SR 3x3

0.334 0.0354 SR 7x7 0.349 0.0296 SR 5x5 TM 0.350 0.0426 SR 3x3

n = 35 0.345 0.0454 SR 7x7

TM 0.364 0.0314 NDVI 5x5 TM 0.357 0.0380 NDVI 5x5

n = 35 0.361 0.0333 SR 5x5 n = 35 0.348 0.0436 NDVI 7x7

0.346 0.0420 SR 7x7 0.348 0.0437 SR 7x7

0.344 0.0433 NDVI 3x3

0.342 0.0445 SR 3x3 White 0.634 0.0201 SR 7x7

0.340 0.0460 NDVI 7x7 n = 13 0.614 0.0255 SR 5x5

0.606 0.0281 NDVI 5x5

0.579 0.0383 NDVI 3x3

0.576 0.0395 NDVI 7x7

Effective LAICanopy Cover True LAI
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 The results of the ALI spectral vegetation indices are shown in table 4.6a. The SWIR 

indices (i.e. NDWI and IRSR) had the strongest relationships for all three canopy structure 

parameters at an aggregate species grouping and these relationships were stronger than any of 

the Quickbird SVI results. Interestingly, when considering only white mangrove data, the SR 

and EVI were the best SVI. Again, the white mangrove relationships were much stronger than 

the aggregate species relationships. The ALI-unique SVI did not perform better than the 

Landsat equivalent SVI.   

The spectral unmixed SVI results are shown in table 4.6b. The spectral unmixing improved a 

few SVI relationships, but most changes were marginal., For FCC, not a single SVI had a 

significant relationship (p <0.05), despite two significant unmixed SVI. For white mangroves, all 

of the unmixed SVI had a significant relationship with eLAI and tLAI. However, this 

improvement was not observed for other species groups. For example, the “all vegetation” group 

and “true mangrove” group did not have a single significant SVI-eLAI relationship. For “true 

mangrove”, two signification SVI-tLAI relationships were found, but the SVI differ from the 

unmixed results and the strength of the relationship was weaker. 

Due to the coarse resolution of the ALI imagery, some field plots fell into the same pixel and 

were averaged. The effect of the pooling of plots was also tested with the Quickbird imagery to 

examine the ALI results were cause by data pooling. Data pooling did not have any substantial 

effect on the Quickbird data (data not shown). 
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Table 4.6: Advanced Land Imager SVI correlation results for spectrally mixed (A) and unmixed (B) 
data. ' indicates ALI-unique SVI (NS = not significant p < 0.05). 

SPP r p SVI SPP r p SVI

TM 0.551 0.006 NDWI

n = 23 0.551 0.006 IRSR

SPP r p SVI

SPP r p SVI White 0.829 0.008 SR

AV 0.436 0.014 NDWI n=9 0.829 0.008 SR'

n=31 0.373 0.039 NDWI' 0.829 0.008 NDVI

0.373 0.039 IRSR' 0.787 0.015 IRSR

0.436 0.014 IRSR' 0.778 0.017 NDVI'

TM 0.490 0.018 NDWI 0.778 0.017 EVI

n = 23 0.736 0.028 IRSR'

White 0.829 0.008 SR 0.736 0.028 NDWI

n=9 0.829 0.008 SR' 0.736 0.028 NDWI'

0.829 0.008 EVI

0.807 0.011 NDVI

0.807 0.011 NDVI' SPP p SVI

TM 0.453 0.045 SR'

n = 23 0.451 0.046 SR

SPP r p SVI White 0.833 0.008 SR

TM 0.456 0.029 NDWI n=9 0.833 0.008 SR'

n = 23 -0.456 0.029 IRSR 0.833 0.008 NDVI

White 0.833 0.008 SR 0.817 0.011 IRSR

n=9 0.833 0.008 SR' 0.767 0.021 NDVI'

0.833 0.008 EVI 0.767 0.021 EVI

0.803 0.012 NDVI 0.750 0.026 NDWI

0.803 0.012 NDVI' 0.733 0.031 IRSR'

0.733 0.031 NDWI'

Mixed Unmixed

Canopy Cover

Effective LAI

True LAI

Canopy Cover

Effective LAI

True LAI

NS
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Grey-Level Occurrence Matrix Variance  

 Overall, variance was not significantly related to fraction canopy cover, eLAI, and tLAI at 

any species grouping. Interestingly, when considering the relationship between variance and 

eLAI by substrate background, several significant models were found for the lava and leaf litter 

substrates, but not sand (see table 4.7). Results described here are for the “All Mangrove” 

species group as the “True Mangrove” group had an insufficient sample size for the leaf litter 

substrate group.  

The results show that canopy structure can be detected at multiple resolutions within a 

range of window sizes. For lava, there were significant models (p < 0.05) across image 

resolutions (i.e. 0.6m, 1.2m, and 2.4m) and window sizes (5.4m, 9.0m, 8.4m, and 7.2m). 

Similarly, the variance models for the leaf litter substrate group had significant models at 

different resolutions (e.g. 1.2m and 1.8m), but at similar window sizes (e.g. 6.0m and 5.4m). The 

results for tLAI were similar for the lava substrate group although more models were found to 

be significant and the relationships were stronger, but the leaf litter group did not have any 

significant relationships (data not shown). The results for FCC were found to be overall not 

significant (data not shown). 
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Table 4.7: Results for grey-level occurrence matrix variance for  "All Mangroves" eLAI by substrate. 

Model Res. (m) Win (pix) Win (m) All (r) Lava (r) Sand (r) Leaf Litter (r) 

1 0.6 3 1.8 0.026 -0.123 0.173 -0.056

2 0.6 5 3 -0.150 -0.363 0.106 -0.397

3 0.6 7 4.2 -0.230 -0.609 0.158 -0.471

4 0.6 9 5.4 -0.289 -0.702 0.061 -0.496

5 0.6 11 6.6 -0.207 -0.542 0.201 -0.569

6 0.6 13 7.8 -0.158 -0.603 0.252 -0.559

7 0.6 15 9 -0.155 -0.788 0.239 -0.496

8 1.2 3 3.6 -0.112 -0.258 0.106 -0.172

9 1.2 5 6 -0.254 -0.388 0.034 -0.671

10 1.2 7 8.4 -0.237 -0.634 0.108 -0.524

11 1.2 9 10.8 -0.142 -0.535 0.228 -0.489

12 1.8 3 5.4 -0.328 -0.154 -0.054 -0.591

13 1.8 5 9 -0.151 -0.591 0.211 -0.422

14 1.8 7 12.6 -0.039 -0.363 0.205 -0.151

15 2.4 3 7.2 -0.208 -0.677 0.157 -0.524

16 2.4 5 12 -0.074 -0.406 0.119 -0.105

17 3.0 3 9 -0.126 -0.591 0.192 -0.257

18 3.0 5 15 -0.074 -0.382 0.006 -0.246

19 3.6 3 10.8 -0.010 -0.209 0.173 -0.197

n 40 10 18 12

 p-value < 0.1,  p-value < 0.05,  p-value < 0.01
 

 

Grey-Level Co-Occurrence Matrix  

 At the aggregate species level, GLCM had weak and insignificant relationships with FCC 

and LAI, respectively (Table 4.8). However, there were strong significant relationships at the 

individual species level. While GLCM texture had significant relationships with FCC for red and 

white mangroves, the relationship with any GLCM texture metric was insignificant for black 

mangroves (Table 4.8a). However, significant relationships with tLAI were found for all three 

species (Table 4.8b). The correlation statistic with a lag of 7 pixels was significant for each of the 

three species, although the relationship was positive for red and white mangroves and negative 

for black mangroves. The only other significant GLCM statistic was dissimilarity, but only for 

red mangroves. 
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Table 4.8: Grey-level co-occurrence matrix results for fraction Canopy Cover by species (A), true LAI 
by species (B), and fraction Canopy Cover by substrate (C). 

A rs p statistic lag (pix) n

ALL 0.426 0.019 Inverse Difference 5 32

AM 0.318 0.046 Homogeneity 3 41

TM 0.584 0.007 Inverse Difference 5 21

0.39685 0.02222 Homogeneity 2 34

Red -0.843 0.013 Contrast 1 9

-0.735 0.047 Contrast 3 9

White -0.565 0.038 Mean 3 14

Black 5

B rs p statistic lag (px) n

Red -0.797 0.003 Dissimilarity 7 8

0.706 0.015 Correlation 7 8

White 0.704 0.005 Correlation 7 14

Black -1.000 0.017 Correlation 7 5

C rs p statistic lag (px) n

Lava 0.943 0.017 Inverse Difference 5 6

-0.671 0.024 Contrast 1 11

Sand 0.732 0.007 Correlation 7 13

-0.711 0.010 Mean 7 13

-0.599 0.040 Mean 1 13

Leaf Litter 0.803 0.005 Homogeneity 3 10

Not Significant

 

 FCC was the only canopy structure variable with significant models for all three substrate 

types. The p-value of the best relationships for each substrate was well below the 0.05 threshold 

(see table 4.8c), although each substrate had a different statistic and lag distance. The strength 

of the best relationships ranged from moderate for sand (rs = 0.732) to strong for lava (rs = 

0.943). 
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Parameterized Model 

 The goal of the previous analysis was to identify the best metrics and parameters from 

which to create a parameterized model to predict leaf area in mangrove forests. Since none of 

the spectral or texture methods had moderate or strong relationships at the aggregate species 

and substrate level, models based on the individual species or substrate relationships were 

developed. Only the GLCM texture had moderate to strong relationships for all individual 

species or substrates. Two composite models have been identified, assuming linear 

relationships, non-interacting components (e.g. mixed or overlapping species or substrates 

within the texture window). The first predicts tLAI based on mangrove species texture, the 

second predicts FCC based on individual substrate texture.  

The species model is shown below:  

���� � � � ����� 	 
 � ����� 	  � �����    (Eq. 4) 

 where R, W, and B indicate the species-specific tLAI relationships for red, white, and 

black mangroves, respectively (see figure 3 a-c). The composite model had an r2 of 0.6690 and 

p-value of 0.0342. The strength of the individual species models ranged from r2 = 0.46 to r2 = 

0.96.  
 

 The composite substrate model is as follows: 

��� � �� � ����� 	 �� � ����� 	 �� � ����� 
    

(Eq. 5) 

 where LV, SD, and LL, substrate-specific FCC relationships for lava, sand, and leaf litter, 

respectively (see figure 3 d-f). The composite model had an r2 of 0.5238 and p-value of 0.0053. 

The strength of the individual substrate models ranged from r2 = 0.45 to r2 = 0.78.  Both the 

sand and leaf litter substrates had exponential functions. Small changes at low levels of the 

texture statistic accounted for large changes in LAI, but relatively large changes of the texture 

statistic were required to predict change at higher LAI values.
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4.3:Scatterplots and OLS regression of true LAI for red (A), white (B), and black mangroves (C) and fraction Canopy Cover for lava (D), sand 
(E), and leaf litter (F) substrates. 
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Discussion 

Spectral Vegetation Indices  

 The results have shown that SVIs derived from the Quickbird or Advanced Land Imager 

sensors did not produce strong relationships with leaf area. These results, specifically the 

Quickbird results, contrast with findings by Kovacs et al. (2004, 2005, 2009). Although these 

previous studies have reported strong relationships between SVI using very high resolution 

imagery such as Quickbird for red, white and black mangroves, here, significant relationships 

were only found for white mangroves. Differences between this study and previous studies may 

be due to differences in field methods or inherent difference in mangrove structure due to 

environmental conditions. Kovacs et al. (2004) used the LAI-2000 instrument to estimate LAI 

across a degraded mangrove swamp. In this study, we used DHP to estimate LAI along in fringe 

mangroves that ranged from healthy to degraded. Mangroves can have very different forms and 

structure based on salinity, nutrients and other factors associated with the hydroperiod 

(Tomlinson, 1986). For example, Hardisky et al. (1983) found that salinity and growth form can 

affect remotely sensed radiance in vegetation. The range of environmental conditions in the 

Galapagos such as lava or sand substrate and freshwater, brackish, or hypersaline lagoons, may 

produce a greater than the range of conditions than the study site of Kovacs et al., This high 

variation in environmental conditions may have resulted in greater variation in mangrove 

structure and spectral properties for this study. Kovacs et al. (2005) found a difference between 

mangrove species based on LAI, but this study did not find any distinction in LAI between 

species. Although the field data collected for this study was not collected in a geo-statistically 

rigorous method due to constraints of working within a protected area, the very similar mean 

and range of LAI between species demonstrates that mapping of species using LAI would have 

considerable ambiguity between species in this study area.  

 The Advanced Land Imager had stronger relationships with canopy structure than 

Quickbird, despite the order of magnitude difference in spatial resolution. While the Quickbird 
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sensor has a higher spatial resolution and a relatively high signal to noise ratio (Rangaswamy, 

2003), the Advanced Land Imager has a greater spectral range (e.g. SWIR), spectral resolution 

with 2 blue, NIR and SWIR bands each, and a higher signal to noise ratio than Quickbird 

(Bicknell et al., 1999). Given the large ratio of root and stem material to green leaves for some 

mangrove species, it is not surprising that SVI, without SWIR, would perform poorly. As Asner 

(1998) found, woody stem material can play a significant role in canopy reflectance for canopies 

with LAI < 5.0 and moreover, the relationship between NIR and SWIR is very different between 

green and woody plant material., The contribution of the SWIR is clear for the results at the 

aggregate species level for canopy cover and true LAI, as ALI outperforms Quickbird (see Tables 

5 and 6). Other studies have also found that SWIR SVI improves LAI estimates (e.g. Lu et al., 

2004). In contrast to Liang et al. (2003), this study did not find an improvement with the ALI-

specific band SVI over the Landsat equivalent band SVI. In fact, the ALI-specific band SVI were 

either comparable or less significant.  

One of the disadvantages of the relatively large pixel size of the ALI imagery is mixed 

pixels, which is particularly problematic in fringe mangroves (Mason et al., 2001). Spectral 

unmixing is one method to resolve the effects of multiple landcover types by identifying and 

separating the individual endmember components. Overall, the results of spectral unmixing to 

improve estimation of FCC, eLAI, and tLAI demonstrated marginal, if any, improvement. The 

very limited improvement in SVI using spectral unmixing is consistent with the findings of 

Brown (2001). Non-linear spectral unmixing techniques, such as neural networks or support 

machine vectors, or incorporating endmember variability, however, may improve results 

(Bateson et al., 2000) and should be explored in a future study. 

 The SVI results from both the Quickbird and ALI sensors suggest that there may be a 

problem with scale in terms of spatial resolution and spectral resolution. Although the ALI SVI 

outperformed the Quickbird SVI, the spatial resolution of the ALI sensor is not ideal for the fine-

scale analysis required for mapping fringe mangroves. Furthermore, the rise of hyperspectral 
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remote sensing has demonstrated the limitations of broad-band SVI (Twele et al., 2008). Due to 

the very limited relationships between broadband SVI and mangrove canopy structure, future 

research should investigate the use of high resolution, hyperspectral imagery to determine 

canopy structure in mangrove forests. 

 

Image Texture  

 The results of grey-level occurrence matrix (GLOM) variance revealed two interesting 

patterns. First, the results indicate that a range of resolutions can be used to detect canopy 

structure as long as a certain window size is captured. These results are consistent with the 

findings of Song and Dickinson (2008). However, in this case, the finest resolution, 0.6m had 

the best results rather than at coarser resolutions as Song and Dickinson found. This suggests 

that the importance of fine scale pattern for mangroves canopies. Second, the reflectance of the 

background substrate can have a serious impact on the calculation of image texture. Dark 

backgrounds such as black lava and leaf litter produce high contrast to relatively bright canopy 

surface. Bright backgrounds such as white sand produce both an inverse relationship and lower 

variation between the canopy and gaps and thus reduce the ability to detect canopy structure 

using variance as a metric. Although the situation of black lava and white sand maybe limited to 

mangrove forests on volcanic islands, these results have serious implications for forest where 

background conditions may vary across the study area or over time. For example, inter-tidal 

conditions could greatly alter the reflectance depending on tidal level.  

 At the aggregate species level, the GLCM had similar strength relationships as the 

Advanced Land Imager SVI. However, the GLCM results provided the strongest relationships 

for individual species and substrates. This suggests that either the canopy structure of the 

individual species, the brightness of the background substrate, or both play an important role. 

The superior performance of the GLCM texture compared to SVI in this study agrees with the 
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findings of Moskal and Franklin (2004), who also found that GLCM texture outperformed SVI 

once vegetation-type was subset. 

 When accounting for variations between species or substrate, moderately strong and 

significant regression models were found. The species model was stronger than the substrate 

model (r2 = 0.669 vs. r2 = 0.5238), but less significant (p = 0.0342 vs. p = 0.0053) due to 

differences in sample size as only mixed species and mixed substrate plots were excluded from 

the species and substrate models, respectively. Thus, while the species model accounts for more 

variance, the substrate model is statistically more confident.  

The species-specific tLAI model is more desirable for several reasons. First, tLAI is a 

better representation of the canopy for ecosystem modeling. Second, although the tLAI model is 

species-specific, the GLCM parameters are more consistent between species with the same lag 

distance and the same or very similar statistic. Although the substrate model is significant, the 

variation in GLCM parameters between substrates is best interpreted as an indication that the 

substrate can affect GLCM – LAI relationships than as a predictive model.  

White and black mangrove tLAI had significant relationships with GLCM with a lag 

distance of 7 and the correlation statistic. Interestingly, the direction of this relationship was 

opposite between species. One potential explanation is the relationship between the scale of the 

analysis (lag distance 7) and scale of canopy gaps for each species. White mangroves in the study 

area were much smaller than white mangroves in terms of height and crown size. As LAI 

increase, the distance between canopy gaps increases, assuming a strong positive allometric 

relationship between LAI and crown diameter. Since the scale of analysis is fixed and the 

allometric relationship is species-specific, the image texture is capturing a different change in 

the scale of canopy gap patterns in the white and black mangroves. However, it should be noted 

that the black mangrove model is based on only 5 data points as this species is uncommon in the 

study area and further investigation is needed to confirm these results. 
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Both models have a serious obstacle for predictive mapping. First, they require spatially-

explicit a priori knowledge of either the mangrove species or substrate. Unlike SVI, the effects of 

mixing are less certain for image texture metrics since mixtures of species or substrates may 

alter the window size or type texture metric. Specifically, the opposite direction of the black and 

white mangrove tLAI models suggests that it would be highly unlikely that texture could be used 

over mixed canopies. Previous studies have applied Object-Based Image Analysis (OBIA) to map 

individual species (e.g.  Myint et al., 2008), but this approach has not been largely applied to 

fringe mangrove forests. However, recent research in this study has not been able to accurately 

distinguish between mangrove species in a fringe environment (Heumann, 2011). Similarly, 

Exploratory analysis for this paper using linear spectral modeling of Quickbird imagery revealed 

that lava and sand endmembers could be accurately mapped. Second, they do not account for a 

mixture or juxtaposition of species or substrates at any given location. This point is particularly 

concerning for the tLAI models for white and black mangroves. Specifically, both models use the 

same GLCM metric and lag distance, but the sign of the relationship is opposite. The 

implications of this for predictive mapping for juxtaposed or mixed species stands are a serious 

challenge.  

 Despite the overall good performance of GLCM texture in this study, this approach has 

several drawbacks or remaining challenges for future studies. First, texture metrics are very 

sensitive to edge effects including large gaps. In mangrove forests, there is high edge area and 

gaps due to geomorphic formations from inter-tidal fluvial processes and lava microtopography. 

This is especially true for fringe mangroves that grow in relatively thin strips along the shore. 

Second, the potential number of GLCM metrics is very large. There are approximately a dozen 

possible spatial statistics that can be computed for any window size, with any lag distance 

smaller than the window size, at a variety of pixel resolutions, in any or all directions. As 

Kayitakire et al. (2006) note, the selection of the texture metrics, window size, and lag distance 

are very important when applying GLCM texture to estimate forest biophysical parameters. 
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While it is possible to calculate hundreds or even thousands of different texture metrics, it is 

computational expensive to compute GLCM statistics.  

Furthermore testing large numbers of possible texture metrics presents a serious 

statistical problem, thereby reducing the confidence of non-random relationships when 

comparing multiple hypotheses. Common approaches to account for the multiple hypotheses 

problem adjust the p-value according to the number of hypotheses being compared (e.g. 

Bonferroni correction), thus requiring much larger sample sizes to obtain significant results. In 

this study, the number of statistics was reduced based on previous studies, and the window size 

and resolution were based on the GLOM results. Further research is needed to better 

understand how the different statistics, window size, lag distance, resolution, and background 

substrate affect measurements of image texture and how it relates to canopy structure in 

mangroves and other types of forests.  

 

Conclusions 

 This study investigated the use of spectral and spatial methods to map leaf area in 

mangrove forests with remotely sensed data. Results showed that when species or background 

substrates were not considered individually, both spectral and spatial methods generally had 

weak and often insignificant relationships with leaf area. For spectral vegetation indices, 

namely, SR, NDVI, and EVI, strong relationships were found for white mangrove LAI, but not 

other individual species. SVI derived from Advanced Land Imager that included SWIR 

outperformed those from Quickbird both for white mangroves and at the aggregate species level. 

Image texture produced the best models, but texture metrics were sensitive to either individual 

species or background substrate. Grey-level occurrence matrix (GLOM) variance of Quickbird 

panchromatic imagery revealed that a range of image resolutions and window sizes to detect 

canopy structure. Additionally, the differences in substrate background between black lava, 

white sand, and leaf litter had substantial effects on the measurement of texture. The strongest 
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relationships for canopy structure were found using grey-level co-occurrence matrix. A model 

based on GLCM with a lag distance of 7 for individual species explained 66% of true LAI 

variance. However, these models only accounted for pure species or substrates and the effect of 

mixed species and substrates on image texture is unknown. Based on this outcome, future 

research should focus on alternative remote sensing technologies such as hyperspectral and 

LiDAR. 
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Abstract 

 Canopy height is an important structural parameter for monitoring ecosystem goods and 

services such as timber, standing biomass, and habitat. This paper compares globally available 

space-based InSAR (SRTM) and stereo optical (ASTER GDEM) imagery to a digital surface 

model created from ALOS PRISM for estimating canopy height in mangrove forests. This paper 

emphasizes the challenges of mapping canopy height for mangroves with small extents such as 

fringe mangroves. The results show that SRTM, PRISM, and a hybrid SRTM-PRISM DSM has 

RMSE of 3.47m, 3.74m, and 2.92m, respectively. These results have greater error than previous 

mangrove studies using 90-meter SRTM data, but similar to IceSAT/GLAS estimates of canopy 

height of terrestrial forests. This approach demonstrates the potential for mangrove canopy 

height mapping and monitoring using ALOS PRISM but highlights the need for very high 

resolution InSAR DSM products 

 

Introduction 

 Mangroves are woody halophytes (i.e. salt tolerant plants) that grow in tropical and 

subtropical areas and form inter-tidal ecosystems that link terrestrial and marine systems. 

Mangroves provide valuable ecosystem goods and services such as timber and fuel, carbon 

sequestration, habitat for terrestrial and marine fauna including economically important 

fisheries, and a potential reduction in the impact of tsunami and storm surge (Alongi 2002, 

2008). Costanza et al. (1997) estimated that mangroves are worth about $10,000 per hectare 

per year in terms of ecosystem goods and services. Despite their demonstrated value, the extent 

of mangrove forests declined by 25% between 1980 and 2000 (Wilkie and Fortuna, 2003) and a 

recent remote sensing study found calculated global mangrove area to be 12.3% less than recent 

Food and Agriculture Organization estimates. While extent is an important aspect of monitoring 

mangroves, other parameters such as canopy height are also critical., Canopy height is an 

important parameter for characterizing forest structure (Shugart et al., 2010), estimating 
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standing biomass (Wulder et al., 2008), and describing habitat (Bradbury et al., 2005). Thus 

mapping and monitoring canopy height is of great importance to a wide range of science 

questions and applications from forest ecology, to biogeochemistry, to conservation.  

 At the landscape scale, measuring and predicting canopy height requires remote sensing. 

Mangrove canopy height has been primarily mapped using SRTM -  Shuttle Radar Topographic 

Mission (Simard et al., 2006, Simard et al., 2008; Fatoyinbo et al., 2008). However, the coarse 

90-meter spatial resolution of this product outside of the United States makes it generally 

unsuitable for all but large, continuous mangrove forests. In many parts of the world, especially 

in arid environments such as the Galapagos Islands, mangroves form small patches along the 

fringe of protected coves and lagoons. Despite their limited extent, these mangrove are 

important ecosystems that link terrestrial and marine systems.  The objective of this study is to 

examine the potential of finer resolution stereo optical elevation products with SRTM for 

mapping small extent fringe and basin mangroves.  

 

Background  

 There are a number of indirect and direct methods to estimate canopy height from 

remote sensing. Indirect methods rely on empirical relationships between canopy height, or 

highly correlated proxy structural parameters such as leaf area index (LAI) or above ground 

biomass, and optical  multispectral (Helmer et al., 2010) or hyperspectral (Lefsky et al., 2001; 

White et al., 2010), synthetic aperture radar (SAR) signal backscatter (e.g. Hyyppa et al., 2000, 

Woodhouse, 2006), or image texture (e.g. Bruniquel-Pinel et al., 1998). There are three basic 

types of direct methods - stereo imagery from passive or active sensors, SAR interferometry 

(InSAR), and LiDAR. Each of these approaches has advantages and disadvantages (Table 5.1). 

Each of these methods seeks to create a digital surface model (DSM) or digital elevation model 

(DEM). A DSM is a representation of the earth's surface including non-terrain features such as 
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vegetation and buildings, where a DEM is a representation primarily of the bare earth surface. 

This study is primarily concerned with DSMs.  

Table 0.1: Advantages and Disadvantages of Digital Surface Model Techniques 

Technique Advantages Disadvantages

High to Very High Resolution
Accuracy limited by base-height 

ratio and image resolution
Detailed orbital information Optical affected by cloud cover

Standardized Radiometric 
Correction

SAR backscatter can be sensitive 
to canopy volume, understory, and 

soil conditions over space and 
time

SAR not affected by cloud cover
High accuracy for vegetation 

requires good GCPs
Software for automated DSM 

extraction widely available
Moderate to Very High 

Resolution
Very complex processing

Sub-Centimeter Accuracy 
(Terrain)

Requires special training and 
software

For vegetation, requires multi base-
pair acquisitions

Accuracy for canopy height 
dependent on signal coherence

Global products limited to 
moderate resolution

Variable Footprint Size or 
Posting Distance

Limited extent (airborne and 
satellite)

Sub-Centimeter Accuracy 
(Terrain)

Affected by cloud cover

Stereo 
Optical/SAR 

InSAR

LiDAR

 

 The use of stereo imagery has a long tradition in remote sensing. For decades, stereo 

photogrammetry has been the primary method of mapping terrain and forest stands. Elevation 

is estimated through manual interpretation of the parallax displacement of terrain features from 

overlapping pairs of inline aerial photographs (Lillesand and Kiefer, 1987). Digital stereo air 

photos are still widely used method for estimating forest stand parameters such as canopy 

height (e.g. Lucas et al., 2002; Mitchell et al., 2007; Vega and St-Onge, 2008). The extracted 

elevation accuracy is determined by the base to height ratio of the stereo image pair and the 

resolution or grain size of the image, assuming perfect orthorectification. However, aerial 
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photography has many constraints including variable image brightness, considerable pre-

processing and processing to orthorectify and moasic photographs, and limited extent of 

airborne coverage.  Satellite remote sensing offers a means to obtain consistent and 

repeatable imagery over large areas. DSMs can be extracted from any satellite imagery where 

two images overlap and the sensor geometry is known. A wide range of satellite optical remote 

sensing systems have been used to create DSMs including AVHRR (Saraf et al., 2005), Landsat 

ETM+ (Toutin 2002b), IKONOS (Toutin 2004), ASTER (Toutin 2002a,2008), and ALOS 

PRISM (Takaku and Tadono, 2009). DSMs can also be generated from stereo pairs of SAR 

imagery (Toutin 2000; Peng et al., 2005; d'Ozouville et al., 2008).  

 SAR can also be used to calculate elevation using interferometry. InSAR is similar to 

stereo methods in that two overlapping images from different locations, called base pairs, are 

needed. However, instead of comparing difference in image geometry between images, InSAR 

compares the return signal phase between base pairs for the same target. For a detailed 

description of InSAR concepts, see Rott (2009). Since InSAR analyzes the phase of the SAR 

signal, InSAR can have sub-centimeter accuracy and it commonly used for geological 

deformation studies. However, the application of InSAR can be more difficult for vegetation 

applications since the SAR signal can scatter in the canopy resulting in low coherence. This 

challenge can be overcome by using multiple base pairs. For example, Simard et al. (2006) 

found the interferometric center from multiple base pairs could be used to estimate canopy 

height. Previous studies have found that the SRTM phase center lies between 1 and 6 meter 

below the top of the canopy surface (Kellndorfer et al., 2004; Simard et al., 2006). Currently, 

there are a number of satellite SAR missions suitable for InSAR including ALOS PALSAR, 

Enivsat ASAR, RADARSAT-2, and TerraSAR-X. The obvious challenge to InSAR is the very 

technical nature of InSAR processing that is beyond typical remote sensing training and 

software and is thus available at a very limited number of research institutions or commercial 

vendors. 
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 Another form of active remote sensing is LiDAR. LiDAR calculates the distance of an 

object from the sensor by measuring the time it takes for a light pulse to be sent from the sensor, 

reflect off the object, and return. Height is then calculated based on sensor elevation and pulse 

geometry. There are two forms of LiDAR - discrete return and waveform. Discrete return LiDAR 

measures the distance for each pulse, usually over a small footprint size. Small-footprint discrete 

LiDAR is most suitable for terrain modeling or to delineate urban features. Waveform LiDAR 

analyzes proportional timing of the light pulse over the entire pulse footprint and thus provides 

a more detailed distribution of heights over the footprint that is particularly useful for 

vegetation studies. For a more detailed examination of LiDAR for DEM or forestry applications, 

see Liu, (2008) or Wulder et al. (2008), respectively. 

 While airborne LiDAR is now commonly used, to date there is only one satellite LiDAR 

sensor - IceSAT/GLAS. IceSAT/GLAS was designed to track changes in glacier and icesheets but 

like SRTM, have been adapted for vegetation analysis. IceSAT/GLAS has been shown to 

accurately describe mangrove canopy height (Simard et al., 2008). However, the ability for 

global continuous LiDAR coverage is still unavailable.   

 One of the major challenges to mapping canopy height using direct methods, is 

subtracting the elevation of the canopy from the ground elevation. Both stereo and InSAR 

methods cannot detect the ground surface where there is vegetation cover. As Hyde et al. (2006) 

found, estimation of the ground surface using interpolated DEM products can introduce serious 

error. Thus, accurate mapping of canopy height for terrestrial forests requires LiDAR (St-Onge 

et al., 2008). However, mangroves grow by definition in the inter-tidal zone. As long at the tidal 

range is relatively small, the base elevation of mangroves can be assumed to be at mean sea level 

(Simard et al., 2006). Yet, despite this simplification for mapping mangrove canopy height, 

relatively few studies have addressed this topic (Heumann, 2011).  Lucas et al. (2002) and 

Mitchell et al. (2007) both used stereo aerial photography to estimate ground elevation and  

canopy height with relatively good reported success, although an overall accuracy statistic was 
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not reported. Though airborne remote sensing data are not suitable for global assessments due 

to limited areal extent, this approach demonstrates the potential for satellite-based stereo 

optical techniques. 

 The first space-borne approach estimated mangrove canopy height using the SRTM 

(Simard et al., 2006). The SRTM DSM was produced using C-band synthetic aperture radar 

interferometry (InSAR) to provide a global snapshot of surface elevation. The SRTM DSM was 

calibrated using airborne waveform LiDAR and field data. To calculate canopy height, it was 

assumed that the inter-tidal mangroves had a ground elevation of mean sea level. Simard et al. 

(2006) found that the SRTM could predict canopy height with a root mean square error (RSME) 

of 2.0m over the 30m pixel. Simard et al. (2008) applied a similar methodology using field data 

to calibrate SRTM canopy height. They found that despite the 90m pixel, canopy height could be 

estimated with a RMSE of 1.9m. Furthermore, they demonstrated that the IceSAT/GLAS 

waveform LiDAR could be used to calibrate SRTM, providing a global methodology for 

mangrove canopy height mapping. This approach was applied to mapping canopy height and 

biomass for all of Mozambique (Fatoyinbo et al., 2008).  

 While the SRTM approach provides the first globally available technique for mapping 

mangrove canopy height, there are some limitations. First, the 90m pixel is suitable only for 

large scale studies across continuous, dense canopy mangrove forests. In fact, Simard et al. 

(2006) found substantially lower correlations between SRTM and field data over short and 

sparse canopies. In locations with fringe mangroves where forest patches may be less than 100m 

wide, the 90-meter spatial resolution of the SRTM DSM is insufficient. Second, the SRTM was a 

single mission to create a global digital elevation model in the year 2000. This product is now a 

decade old, making it difficult to link to contemporary field data. Furthermore, this single 

mission was not design for repeat collection, hindering monitoring applications. While other 

SAR data suitable for vegetation InSAR are available (e.g. RADARSAT-2, ALOS PALSAR, 

TerraSAR-X), the processing requirements for InSAR are very complicated and requires 
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specialized training and software beyond typical remote sensing and image analysis capacity of 

most universities or geo-spatial companies. 

 This study compares the 90m SRTM DSM product with two stereo optical products – the 

30m Global ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) DSM 

and a 5m ALOS PRISM DSM. The objective is to identify a suitable space-based DSM product 

that can be used to map mangrove canopy height, particularly for fringe mangroves, at a finer 

resolution and accuracy than SRTM with the potential for global coverage. Additionally, several 

different techniques to generate ALOS (Advanced Land Observing Satellite) PRISM (The 

Panchromatic Remote-sensing Instrument for Stereo Mapping) DSM are tested as well as a 

hybrid SRTM-PRISM DSM. 

 

Methods 

Study Area  

The research was conducted on Isabela Island in the Galapagos Archipelago, Ecuador. 

The Galapagos Islands, located 1000-km off the coast of Ecuador, are an archipelago consisting of 13 

large islands, 4 of which have human populations, and 188 small islands and rocks (Figure 5.1). The 

Galapagos Islands were declared a national park in 1959 (the park consists of 97% of land area), a 

UNESCO World Heritage Site in 1978, and a UNESCO Biosphere Reserve in 1987. The Galapagos 

Islands lie on the western edge of the Atlantic-East Pacific mangrove complex. Mangrove forests 

consist of three true species common in this region: Rhizophora mangle (red), Avicennia germinans 

(black), and Laguncularia racemosa (white), and as well as the associate species such as Conocarpus 

erectus (button or buttonwood mangrove) and Hippomane mancinella (manzanillo), or other 

halophytes growing on nearby sand flats or dunes (Van der Werff and Andsersen, 1993). In the 

Galapagos Islands, mangrove forest form dense, but small patches in protected coves and lagoons 

along an otherwise barren or arid coast. Mangrove forests in the study site can be described primarily 

as fringe mangroves forming along the coastline or basin mangroves along hyper-saline lagoons. 
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Mangroves grow on a range of substrates from aa lava to sand or silty-clay.  Mangrove canopy height is 

primarily short except for a few small areas with fresh water springs were trees can reach over a 1m in 

diameter and 20 m in height. For a more detailed description of the arid coastal environment in the 

Galapagos Islands, see Van der Werff and Andersen (1993).  

 

Figure 0.1: Land cover classification of the study area near Puerto Villamil on Isabela Island (see 
Chapter 3). 

 

Field Data 

 Field data were collected during the summer of 2009 near the village of Puerta Villamil 

on Isabela Island. Non-destructive sampling was required in the Galapagos National Park, 

including the removal of vegetation to access the interior of mangroves. Due to these access 

restrictions imposed by the Park, only 35 field plots were sampled. Due to the difficulty and 
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limitations of establishing field plots within mangroves, an additional 461 point measurements 

of species and canopy height, representing 2-m diameter areas were taken. This paper uses this 

point dataset because of its larger sample size and areal coverage. Figure 5.2 shows the 

distribution of species and canopy heights of the field data. Canopy height was measured using 

an Optilogic ® laser range finder. Height locations were linked to a differentially corrected GPS 

location (95% confidence < 1.5m) using the laser range finder and a field compass. A maximum 

distance of 100m was established to reduce location error from the precision of the compass 

reading (1 degree). The height of the observer was referenced to mean sea-level for all 

measurements and thus all canopy height values are height above mean sea level.  

 

Figure 0.2: Boxplot of canopy height (m) by species (number of sample point in parenthesis). 

 

Base Digital Elevation Model 

 A base DEM was purchased from the Instituto Geografico Militar (IGM) of Ecuador. This 

1:24,000 DEM was generated using true color stereo air photos collected in 2007. The DEM has 

a contour interval of 10m. A continuous DEM with a 10m resolution was created by 
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interpolating the contour intervals in ArcGIS 9.3 using the Spatial Analyst  TopoToRaster tool. 

In addition to the DEM, urban and natural features were digitized from the orthophotos.  

 

Remote Sensing Data 

Land Cover Classification 

 Land cover was classified using a hybrid decision-tree / support vector machine in an 

object-based image analysis environment using Quickbird and Worldview-2 imagery. The 

classification included lava, sand, pond, ocean, upland vegetation, sparse coastal vegetation, 

true mangroves, and mangrove associates, as well as cloud affected pixels. The image was 

segmented using e-Cognition 8.1 with shape, compactness, and scale parameters of 0.5, 0.5, and 

25, respectively. Coastal vegetation objects were classified using the following rules: 1) simple 

ratio (NIR/Red) > 3.5 and 2) distance from water < 250m. The accuracy of this classification 

was greater than 85% for red, black, and buttonwood mangroves. However, 40% of white 

mangroves were classified as  non-vegetation, likely due to sparse vegetation conditions in many 

locations. Details of the land cover classification are described in Chapter 4. 

 

SRTM 

 The STRM DEM version 2 is a 90-meter InSAR product produced by the NASA Jet 

Propulsion Laboratory. The SRTM product was created using several sets of base pairs to 

estimate surface elevation. The overall accuracy of the SRTM product for terrain was found to be 

less than 10m (90% height error) for all continents (Rodriguez et al., 2005). Although the radar 

signal scatters in the vegetation canopy, the interferometric center from multiple base pairs can 

be used to estimate canopy height (Simard et al., 2006). Previous studies have found that the 

SRTM phase center lies between 1 and 6 meter below the top of the canopy surface (Kellndorfer 

et al., 2004; Simard et al., 2006). For a detailed description of InSAR concepts, see Richards 

(2007). 
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ASTER GDEM 

 The Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital 

Elevation (ASTER GDEM) is a 30-meter stereo optical product produced by the Ministry of 

Economy, Trade and Industry (METI) of Japan and the United States National Aeronautics and 

Space Administration (NASA). The GDEM was produced from 1.5 million stereo pairs collected 

by the ASTER sensor. The overall accuracy of the ASTER GDEM is 20m (95% confidence) 

although the accuracy may be worse in some areas (ASTER GDEM Validation Team, 2009). To 

date, the ASTER GDEM has not been applied to canopy height.  

  

 ALOS PRISM DSM Extraction 

 The Advanced Land Observation Satellite (ALOS) Panchromatic Remote-sensing 

Instrument for Stereo Mapping (PRISM) is a 2.5 meter panchromatic radiometer that produces 

triplet sets of forward, nadir, and backward images (+/- 1.5 degrees). Though PRISM data is 

widely available, to date, a global or regional DSM product from ALOS PRISM is not available. 

Five triplet sets of ALOS PRISM images was obtained from the Alaska Satellite Facility for 

January 17th, 2008, April 18th, 2008, and September 17th, 2007 to cover the entire study area. 

This paper focuses on a single triplet set that covers the study area and field data (see figure 5.1).  

 The DSMs were extracted using PCI Geomatica 10.2 Orthoengine using Toutin’s model 

(Toutin, 2006). Toutin's model is a 3-dimensional physical model used to process imagery for 

orthorectification or the creation of epipolar images for DSM extraction. Toutin (2006) reported 

that the Toutin's model was equivalent or better than IKONOS or Quickbird rational function 

models (RFM) for DSM extraction over forest, urban, and bare surfaces. Although a RFM is 

available for ALOS PRISM, the RFM is not available from the Alaska Satellite Facility, 

necessitating the use of the Toutin's model. The processing steps for DSM extraction include 

selection of ground control points (GCP) and tiepoints  between images, image 
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orthorectification, creation of epipolar image pairs, extraction of the DSM, and post-extraction 

processing (e.g. filtering, merging, error removal).  

 GCPs were gathered from differentially corrected GPS locations (90% confidence 

interval < 1.5m) collected during previous field campaigns (2007 - 2009) and surface features 

digitized from orthophotos by IGM obtained as part of the IGM DEM data.  Elevation values for 

GCPs not at the coast were extracted from the IGM DEM. The horizontal positional RMSE of 

control and check points was less than 0.7 pixels for all images. Processing must be computed 

for the entire raw scene and cannot be subset to a small study area (e.g. coastal areas) or edited 

(e.g. cloud removal). The triplet set of images allows for three DSM to be computed as well as a 

correlation score for each pixel. The final DSM is a composite of the three DSMs using the value 

with the highest correlation score for each pixel and averaged to a 5m horizontal resolution. 

Errors created during the automated DSM extraction process as well as unrealistic values caused 

by isolated clouds and cloud shadow were removed post-extraction. 

 Three PRISM DSM products were generated. The first product, PRISM-B, was created 

using 8 bare-ground GCPs. The second product, PRISM-CH, was created using 11 bare ground 

GCPs and 9 additional canopy height GCPs. The third product, PRISM-OBIA, was created by 

taking the average PRISM-CH value for each coastal vegetation object polygon, both dense and 

sparse, created from the OBIA land cover classification (see Chapter 3). The RMSE of the 

PRISM-CH compared to the IGM elevation data was 8.07 meters based on 927 elevation points.  

 

Hybrid DSM 

 A hybrid DSM was created using the SRTM and PRISM-CH datasets. The two DSMs 

were merged by minimizing the RMSE using the following equation: 

 PRISMxSRTMxH *)1(* −+=       (eq. 1) 
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The equation was solved iteratively using intervals of 0.01 for x = 0-1. A similar approach was 

used by d'Ozouville et al. (2008) to improve their stereo SAR DEM on Santa Cruz Island, 

Galapagos.  

 

DSM Calibration and Analysis 

 Calibration and analysis of data was conducted using MATLAB. DSM and field data were 

geographically linked and extracted using ArcGIS 9.3. Each DSM was compared and calibrated 

using the field data. Systematic errors were removed using a simple linear 1:1 model, finding the 

offset that minimized the RMSE. The offset added to the SRTM and the PRISM DSMs was 

+0.5m and +3.1m, respectively.  

 

Results and Discussion 

 Figure 5.3 illustrates the relationship between the observed and predicted canopy height.  

Figure 5.4 maps each of the DSM products. The RMSE of the SRTM was 3.47 meters. The coarse 

spatial resolution of the SRTM data manifests itself in two ways as observed in figure 5.3(A). 

First, there was considerable range of observed canopy height for any given SRTM value. 

Second, the upper range of canopy height (greater than 15m) appears to be omitted from the 

SRTM data. This demonstrates the loss of sub-pixel variability in canopy height, especially tall 

trees that are a minority the of overall canopy. While previous studies have used the SRTM DSM 

for mangrove canopy height, the scale of those analyses were much larger than this study (e.g. 

country-wide) and for largely estuarine mangroves and not specifically fringe mangroves 

(Fatoyinbo et al., 2008).  



 
 

 

Figure 0.3: Scatterplots of observed canopy height (y
SRTM (A), ASTER GDEM (B) , PRISM with only bare ground GCP (C), PRISM with canopy height GCP 
(D), PRISM using OBIA objects (E), and hybi

138 

: Scatterplots of observed canopy height (y-axis) and predicted canopy height (x
SRTM (A), ASTER GDEM (B) , PRISM with only bare ground GCP (C), PRISM with canopy height GCP 
(D), PRISM using OBIA objects (E), and hybird SRTM-PRISM DSM (F). 

 

axis) and predicted canopy height (x-axis) for 
SRTM (A), ASTER GDEM (B) , PRISM with only bare ground GCP (C), PRISM with canopy height GCP 
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Figure 0.4: Maps of VHR false colour composite(A), SRTM (B), ASTER GDEM(C), PRISM-CH (D), 
PRISM-OBIA(E), SRTM+PRISM(F). Note that PRISM-CH has not had a water mask applied. 
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 The ASTER GDEM had serious errors for the coastal areas of Galapagos. Almost all 

values were at sea-level or near sea-level and do not reflect the ground or vegetation surface (see 

figure 5.4C). The likely causes of this error is the global coastline definition around the 

Galapagos Islands or persistent cloud cover of the images in those areas. Although further 

information on this problem could not be found in any product documentation, this problem 

was reported on several online technical forums. Given the recent release of the ASTER GDEM 

product, these issue may be addressed in future product versions. Due to the nature of the 

errors, this product was not considered for further analysis. However, even if the ASTER GDEM 

was available for the study, the accuracy results of previous terrain studies suggest that it may be 

unacceptable for canopy height modeling. For example, Hirt et al. (2010) found that the vertical 

accuracy of the ASTER GDEM was 15m over Western Australia, more than twice that of SRTM. 

The authors conclude that despite the improved horizontal resolution, the vertical accuracy may 

impede research applications. 

 The three versions of the PRISM DSM showed improved accuracy with each level of 

processing. The PRISM DSM using only bare ground GCPs had considerable error, similar to 

that of the ASTER GDEM product. The GCPs were all located on or very near the coast with an 

elevation close to mean sea level, or in the highlands with an elevation above 500 meters. As 

such, there was not sufficient information to create accurate epipolar images of the forest 

canopy. The addition canopy height GCPs (PRISM-CH) reduced the RMSE by 2.29 meters. 

When the PRISM-OBIA DSM values were averaged over vegetation objects from the OBIA land 

cover classification, the RMSE was reduce to 3.74 meters producing a reasonable looking canopy 

height model (see figure 5.4E)).  

 The production of the PRISM-OBIA DSM  created some strange errors (Figure 5.3E). 

Although there is a dense point cloud toward the center of the image, there are a number of 

points illustrating gross under-prediction for tall observed points or gross over-prediction for 

medium heights. One possible reason for this is heterogeneous canopies within image objects. 
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Another possible reason is error produced during the averaging process where missing data 

values were excluded from the mean calculation. For some objects, the majority of pixels may 

have been classified as missing data (i.e. calculation errors or unrealistic values during DSM 

generation) leading to a mean object height due to a few pixels that might not be representative. 

 Theoretically, the best RMSE possible for ALOS PRISM is 1.25m for the front-back 

stereo pair and 2.5m for the nadir-back or nadir-front pairs (Maruya and Ohyama, 2007). The 

PRISM DSM created in this study was through a merging of the backward-nadir, and forward-

nadir DSMs as the forward-backward DSM had considerable errors during the DSM generation, 

likely due to matching errors. While a RMSE of 3.74m is about 50% greater than the theoretical 

value, the results here are better than the RMSE reported for terrain studies using ALOS 

PRISM. For example, Takaku (2009) reported RMSE values ranging from 4.72m to 20.78m over 

various terrain conditions. To date, there are not any canopy height studies using ALOS PRISM 

to compare the results with.  

 However, as Imai et al. (2008) outlined, actual results will deviate from theoretical 

results due to errors in geometric accuracy, triplet matching accuracy, and height calculation 

accuracy. Additionally, there were errors in the field measurements due to instrument error as 

well as the definition of canopy height by the observer. Although Simard et al. (2008) found that 

the random tree height error using a laser range finder was 10%, defining the point that 

represents canopy height from the ground, especially for sparse canopies, can be difficult and a 

major source of error. 

 Ultimately, these models are only useable if they provide a better estimate of canopy 

height than a null model (i.e. mean observed canopy height). The RMSE between the mean 

observed canopy height and observed canopy height is 3.41 meters, less than both the SRTM 

and PRISM-OBIA. Thus, neither of these products is suitable for predicting mangrove canopy 

height. 
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 To potentially reduce the effects spatial averaging of the SRTM and the error of the 

PRISM-CH model, a combination of SRTM and PRISM was tested. The hybrid digital surface 

model was a composite of 75% of the SRTM and 25% of the PRISM. The resulting 2.92m RMSE 

was lower than the SRTM or PRISM independently, better than the mean canopy height model. 

The final model is mapped in figure 5.4(F). While the RMSE is higher than those reported by 

Simard et al. (2006) and Simard et al. (2008), the overall RMSE is reasonable considering the 

range of RMSE values reported by previous studies measuring canopy height using LiDAR. 

While some studies reported RMSE less than 2-meters (Clark et al., 2004; Coops et al., 2007; 

Tesfamichael et al., 2010), Rosette et al., 2008 reported a RMSE of 2.86m using IceSAT/GLAS. 

Thus the results of the hybrid model here have similar error to a large footprint waveform 

LiDAR demonstrating that the hybrid DSM may provide a viable solution for a finer scale 

canopy height mapping.  

 

Conclusions 

 This research compared the capability of InSAR SRTM and optical stereo digital surface 

model products for estimating canopy height mangroves of fringe mangroves. The results 

demonstrate that the 90-meter SRTM and object-level ALOS PRISM DSMs have similar error 

for estimating canopy height for 10-meter diameter field plots. The ASTER GDEM product was 

unusable for the study area due to serious errors in the data possibly from either cloud cover or 

incorrect coastline editing. A hybrid model of SRTM and ALOS PRISM achieved the best results 

(RMSE = 2.92m), with similar error to previous studies using large footprint waveform LiDAR. 

These results suggest that a combination of SRTM and ALOS PRISM could be used to map 

canopy height of mangroves at finer scales. However, a stereo optical DSM requires cloud free 

images and high quality GCPs to create epipolar images that may present serious challenges for 

global mapping. Ultimately, there is a clear and demonstrated need for a global, high resolution 
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InSAR DSM product suitable for vegetation studies that can provide the accuracy demonstrated 

by SRTM but at a finer spatial resolution suitable to fringe mangroves or fine scale analysis. 
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 The aim of this research was to investigate new earth observation sensors and methods 

for characterizing mangrove forest composition and structure. Emphasis was placed on globally 

available very high resolution imagery suitable for mapping fringe mangroves like those found 

in the Galapagos Islands. Three characteristics were examined: 1) species composition, 2) leaf 

area, and 3) canopy height. These parameters are important factors for monitoring or modeling 

ecosystem goods and services such as habitat for biodiversity, standing biomass, and nutrient or 

water flux.  

 A review of previous literature in Chapter 2 found that there are a number of areas of 

remote sensing methods that have not been investigated for mangroves. Image classification has 

not explicitly considered fringe mangroves and the Woldview-2 sensor has not been applied to 

mangrove studies. Image texture and SWIR SVI have not been investigated to predict LAI. VHR 

stereo imagery has not been used to estimate and map mangrove canopy height.  

Image classification in Chapter 3 found that the spectral separability between mangrove 

and mangrove associate species was higher using Worldview-2 than Quickbird imagery. When 

comparing true mangroves with mangrove associates, spectral separability was higher at the 

object level than individual pixel-level. However, at both a pixel and object-level, most 

individual species could not be spectrally separated likely due to subtle spectral differences 

between species and the effects of noise from non-leaf surfaces. The inclusion of object spectral 

standard deviation or image texture (GLCM) did not substantially improve classification 

accuracy.  

An analysis of SVI and image texture to detect LAI in Chapter 4 found that image texture 

predicted LAI better than spectral vegetation indices. In contrast to previous studies, spectral 

vegetation indices poorly predicted leaf area. Spectral vegetation indices from ALI outperformed 

those from Quickbird demonstrating that spectral range and sensor sensitivity may be more 

important than spatial resolution, despite potential mixed pixel effects. Unmixing of spectral 

vegetation indices did not improve the results. Although image texture explained 66% of tLAI 
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variance, the nature of the species-specific relationships presents a serious challenge for 

predicting tLAI over mixed canopies using these results.  

A comparison of DSM to map canopy height in Chapter 5 found that the ALOS PRISM 

DSM better predicted canopy height at the object level than at the pixel level and that this 

object-level PRISM DSM has similar error compared to the 90-meter SRTM InSAR DSM 

product. A data fusion of these two DSM produced the least error, reducing error to less than 3-

meters, similar to level of error reported for space-based large footprint waveform LiDAR.  

There were several results that were surprising and unexpected. First the limited 

improvement of Worldview-2 over Quickbird for pixel-level spectral separability was found 

despite the addition of 4 new spectral channels, although the WV-2 band ratio of RE/G did 

highlight manzanillo tree very well compared to other vegetation. Second, there were two 

unexpected results in the SVI LAI analysis. 1) It was surprising that the spectral unmixing of the 

ALI imagery did not improve the results with LAI even for the SVI that are known to be sensitive 

to background conditions. 2) It was interesting to find that the Quickbird SVI results did not 

replicate those of Kovacs et al. for red and black mangroves, although the sample size of black 

mangroves was small. Third, the optimal resolution of image texture in relation to LAI was 

found to be 0.6 meters where previous studies indicated that a coarser resolution of 

approximately one half the crown diameter was best. Forth, results from both the classification 

and canopy height analysis demonstrated that the quality of the data was more important than 

spatial resolution. Specifically, the spectral range and sensitivity of ALI was superior to 

Quickbird and the SRTM DSM was superior to ALOS PRISM despite the order of magnitude 

difference in spatial resolution between the respective sensors.  

There were several avenues of research that were explored during this research that were 

not described in the research chapters as they were discarded during exploratory analysis 

including  lacunarity for LAI or species mapping, spectral variation or image texture within 

object for species classification, and spectral unmixing of background substrate using Quickbird. 
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Lacurarity, a measure of spatial pattern, was calculated using panchromatic and NIR Quickbird 

imagery. Despite testing a wide range of parameters (e.g., window size and direction), lacunarity 

was not found to be significantly related to LAI. Previous studies have also used lacunarity as an 

input to segment imagery into objects. In the highly fragmented vegetation in this study area, 

lacnarity was not found to produce useful or realistic objects.  

In the image classification at the object-level, only mean spectral reflectance was used in 

the reported classification. Image texture (GLCM), and spectral standard deviation were 

explored but they were not found to improve spectral separability using J-M distance. Similarly, 

tt was found using the feature optimization tool  in eCognition that spectral information alone 

could not distinguish between major land cover classes. The major problem was the confusion 

between water and the substrate below the water (e.g. sand or lava). However, it was found that 

a rule-based classification with some minor manual editing could accurate classify these areas. 

While the inclusion of image texture or object spectral variability did greatly improve 

separabiltiy between classes using the feature optimization tool, the nearest neighbour classifier 

in eCognition over fit the object characteristics producing very unrealistic and inaccurate 

classifications. Similarly, using other object statistics or shape properties also produced an 

overfit classification that did not capture non-training objects of the same land cover type.  

Spectral unmixing of background substrates was examined in hopes of mapping FCC 

using the substrate-specific models. While lava and sand could be easily detected, leaf litter 

could not. Furthermore, without either coastal blue or SWIR, shallow water over sand or lava 

could not be detected and thus this line of research was abandoned. The Worldview-2 imagery 

was acquired after the LAI analysis was completed and thus the use of this imagery, specifically 

for new SVI or spectral unmixing, was not explored. 

Much of the research use multi-step methods. In this context, it is important to consider 

the impact of error at each step to understand error propagation. For the mangrove 

classification, a decision tree was used prior to the SVM classification. The use of a decision tree 
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can be very useful as a step-wise method of classification. However, with each step, the errors of 

the previous step compound. For example, the accuracy of the true mangrove classification is 

dependent on the accuracy of the vegetation, coastal vegetation, and the dense coastal 

vegetation decision rules. To account for this error propagation, an accuracy assessment after 

each decision rule would be required. 

 For the LAI research, the multi-step analysis did not lead to a propagation of error. In 

this analysis, the exploratory analysis was used only to identify the best set of variable to be used 

on a parametric statistical model and thus served only to inform the variables in the model but 

did not contribute any data directly to the final model. That said, there were other sources of 

error such as the field measurements of LAI, but these errors were additive rather than 

multiplicative.  

 The canopy height analysis also included a multi-step component. In this analysis, the 

different DSMs were primarily considered independent of each other. However, the final hybrid 

model was a form of data fusion. Specifically, the PRISM DSM averaged of the dense vegetation 

objects and the SRTM DSM. However, since the model was explicitly the addition of the two 

datasets, it can be reasonable to assume the any error was random and thus does not compound 

between the two datasets.  

 This research sought to address many of the areas of missing gaps in the remote sensing 

of mangroves outlined in Chapter 2. This research has contributed to the remote sensing of 

mangroves to characterize mangrove forests that could eventually be used to parameterize 

models of ecosystem goods and services in several ways. First, issues of spatial resolution, scale 

and accuracy were addressed around the need to globally assess fringe mangroves using 

available remote sensing. This research also demonstrated improved results of OBIA over pixel-

based analysis further demonstrating the need to shift from pixel to object-based analysis. 

Second, the application of new sensors for mangrove forest mapping, namely ALOS-PRISM and 

Worldview-2, was investigated. ALOS-PRISM was not shown to produce reliable estimates of 



 
 

153 
 

canopy height, but Worldview-2 did show marked improvement over Quickbird for mangrove 

mapping. Third, the adaptation of methods, such as image texture, to mangrove forests was 

tested. Image texture for mapping leaf area has shown good results. This research has 

contributed to the on-going search for the best metrics and parameters of image texture for 

mapping canopy structure. This research has also demonstrated some of the limitations of 

image texture such as species-specific relationships.   

 Based on the findings of this research, the following research areas for the global 

mapping and monitoring of mangroves should be addressed: 1) Given the limitations of 

Worldview-2 to spectrally distinguish between mangrove species, hyperspectral remote sensing, 

especially at very high spatial resolutions, should be investigated for mapping mangrove species. 

2) Image texture has shown promise for mapping canopy structure, but it is sensitive for edge 

effects. Image texture should be examined at the object level to help alleviate these issues. 

Furthermore, more research is needed into the use of image texture with different spectral 

bands, possibly including background insensitive SVI, especially over areas with varying 

background conditions such as mangroves.  3) Although a hybrid ALOS PRISM - SRTM DSM 

had reasonable accuracy, neither sensor alone is sufficient for accuracy mapping of canopy 

height at finer resolutions required for fringe mangroves. Given that SRTM outperformed ALOS 

PRISM, despite an order of magnitude difference in spatial resolution, InSAR is clearly the 

better method for mapping canopy height. There is a great need for a global, high resolution 

InSAR DSM product suitable for vegetation studies from sensors like ALOS PALSAR or 

Radarsat-2. 4) Results from both the classification and canopy height analysis demonstrated 

that the quality of the data was more important than spatial resolution. Specifically, the spectral 

range and sensitivity of ALI was superior to Quickbird and the SRTM DSM was superior to 

ALOS PRISM despite the order of magnitude difference in spatial resolution. 

 For the Galapagos Islands, many of the remaining challenges could be solved using 

airborne LiDAR. LiDAR has been shown to accurately estimate a wide variety of forest structure 
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parameters including LAI, canopy height, and above ground biomass for terrestrial forests. 

OBIA can be enhanced using a fusion of LiDAR and VHR optical imagery as VHR imagery can 

be segmented into more meaningful natural objects using height. Additionally, LiDAR can 

obtain detailed ground elevation data that would enhance investigations into mangrove finch 

habitat by identifying higher locations with leaf litter as well as questions around spatial pattern 

and process of mangrove species and structure.  Given the well documented application of 

LiDAR to forestry studies and the relatively small extent of mangrove forests in the Galapagos, 

this approach would bring the greatest benefit in the near future to mapping and monitoring 

mangroves in the Galapagos Islands.  

 


