
MANAGING TARDINESS BOUNDS AND OVERLOAD IN SOFT REAL-TIME SYSTEMS

Jeremy P. Erickson

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science.

Chapel Hill
2014

Approved by:

James H. Anderson

Sanjoy K. Baruah

Kevin Jeffay

F. Donelson Smith

Michael Reiter

Giuseppe Lipari

©2014
Jeremy P. Erickson

ALL RIGHTS RESERVED

ii

ABSTRACT

Jeremy P. Erickson: Managing Tardiness Bounds and Overload in Soft Real-Time Systems
(Under the direction of James H. Anderson)

In some systems, such as future generations of unmanned aerial vehicles (UAVs), different software

running on the same machine will require different timing guarantees. For example, flight control software

has hard real-time (HRT) requirements—if a job (i.e., invocation of a program) completes late, then safety

may be compromised, so jobs must be guaranteed to complete within short deadlines. However, mission

control software is likely to have soft real-time (SRT) requirements—if a job completes slightly late, the

result is not likely to be catastrophic, but lateness should never be unbounded.

The global earliest-deadline-first (G-EDF) scheduler has been demonstrated to be useful for the multipro-

cessor scheduling of software with SRT requirements, and the multicore mixed-criticality (MC2) framework

using G-EDF for SRT scheduling has been proposed to safely mix HRT and SRT work on multicore UAV

platforms. This dissertation addresses limitations of this prior work.

G-EDF is attractive for SRT systems because it allows the system to be fully utilized with reasonable

overheads. Furthermore, previous analysis of G-EDF can provide “lateness bounds” on the amount of time

between a job’s deadline and its completion. However, smaller lateness bounds are preferable, and some

programs may be more sensitive to lateness than others. In this dissertation, we explore the broader category

of G-EDF-like (GEL) schedulers that have identical overhead characteristics to G-EDF. We show that by

choosing GEL schedulers other than G-EDF, better lateness can be achieved, and that certain modifications

can further improve lateness bounds while maintaining reasonable overheads. Specifically, successive jobs

from the same program can be permitted to run in parallel with each other, or jobs can be split into smaller

pieces by the operating system.

Previous analysis of MC2 has always used less pessimistic execution time assumptions when analyzing

SRT work than when analyzing HRT work. These assumptions can be violated, creating an overload that

causes SRT guarantees to be violated. Furthermore, even in the expected case that such violations are

iii

transient, the system is not guaranteed to return to its normal operation. In this dissertation, we also provide a

mechanism that can be used to provide such recovery.

iv

ACKNOWLEDGEMENTS

I am indebted to many people who helped me have a successful graduate school career. First and foremost

is my advisor, Jim Anderson. Jim has always believed in me and encouraged me to work hard. He has also

put in a great deal of work himself helping me write and revise, as well as running a research lab and bringing

in the grant money needed to publish at international conferences. He has even stayed up late with students to

help us finish our submissions before conference deadlines.

I also owe special thanks to Sanjoy Baruah, who advised me initially when I entered graduate school and

mentored me for my first few publications. I have benefited greatly from his mentorship, as well as his skills

doing and presenting theoretical research. I am also grateful to the remaining members of my committee:

Kevin Jeffay, Don Smith, Mike Reiter, and Giuseppe Lipari. In addition to learning from their feedback on

my research, I have also learned much in my classes with Kevin, Don, and Mike.

Before I started at UNC, I first learned research skills and solidified my decision to attend graduate

school with my REU supervisors, Chris Christensen at Northern Kentucky University and Jintai Ding at the

University of Cincinnati. They also coauthored my first publication. I am also indebted to the many people I

coauthored papers with while at UNC: Uma Devi, Mac Mollison, Nan Guan, Greg Coombe, Bryan Ward,

Glenn Elliott, Namhoon Kim, Cong Liu, and Ben Casses. Although I did not have the chance to coauthor

papers with them, I have also appreciated the friendship of other members of the real-time group: Björn

Brandenburg, Andrea Bastoni, Bipasa Chattopadhyay, Zhishan Guo, Jonathan Herman, Haohan Li, Chris

Kenna, Alex Mills, Guru Aphale, Tahsin Kabir, Rui Liu, and Kecheng Yang.

Many of the staff members at UNC have also provided support, most notably Janet Jones, Jodie Turnbull,

Dawn Andres, Tim Quigg, and Megan Erlacher. I am grateful to the Graduate School for providing support

during my final year through the Dissertation Completion Fellowship.

I am thankful to Northrop Grumman and Google for hosting my internships during graduate school, and

for helping with related research. I am particularly grateful to my hosts: Prakash Sarathy, Daniel Barcay,

Greg Coombe, and Philip Wells.

v

Christ Community Church and the graduate chapter of InterVarsity Christian Fellowship have played a

large role in my life in Chapel Hill. Although there are too many great people to name, I am particularly

grateful to the Senior family at CCC who has regularly hosted several of us for dinner and has always been

there to provide practical things like rides to the airport, and to Teresa Leonarz and the West and Ellison

families who have invested in me during my time here. Hank Tarlton has faithfully served the grad InterVarsity

chapter as a staff member, and Fred and Nancy Brooks have been particularly generous as chapter sponsors,

allowing us to use their home and their beach house on Oak Island countless times. I have enjoyed getting to

know all these people during my time here.

My life has been greatly enriched by the friendships I’ve developed with those I’ve lived with. Kevin

Ludwick and I went through most of graduate school together, and I’ve really appreciated his friendship and

willingness to put up with my quirks. In my last year, I’ve also enjoyed getting to know Josh Welch, Josh

Fuchs, and Alan Tubbs. It has been a pleasure.

My family has also been there to support me through the process of earning a Ph.D. It has been a pleasure

to be closer to my uncle Gordon, aunt Carolyn, their five sons, and my cousins Laura and Amy, all of whom

live in North Carolina. My uncle Gordon and aunt Carolyn in particular have been gracious in hosting me

many times, and their place has served as my home away from home during many holidays. My parents Ken

and Marianna and my brothers Matthew and Chris have also been a great support through thick and thin, and

I’ve appreciated remaining close with them.

Finally, I owe the most gratitude to God, who has gifted me with the abilities and opportunity to complete

this work.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiv

Chapter 1: Introduction . 1

1.1 Real-Time Systems . 1

1.1.1 Task Model and SRT Criterion . 2

1.1.2 Scheduling Algorithms . 4

1.2 Mixed Criticality and MC2 . 6

1.3 Past SRT Work . 8

1.4 Thesis Statement . 10

1.5 Contributions . 11

1.5.1 Analysis of GEL Schedulers . 12

1.5.2 Removing The Intra-Task Precedence Constraint . 13

1.5.3 Job Splitting . 13

1.5.4 Handling Overload in MC2 . 16

1.6 Organization . 18

Chapter 2: Background . 19

2.1 Prior Bounded Tardiness Work . 19

2.2 Overhead and Locking Analysis . 21

2.2.1 Overhead Analysis for GEL Schedulers Without Locking . 21

2.2.2 Mutex Queue Spinlock Protocol Accounting . 24

2.2.3 Mutex Queue Spinlock Protocol Overheads . 26

2.3 SRT Models . 27

vii

2.4 Overload Management Using Value Functions . 30

2.4.1 Locke’s Best-Effort Heuristic . 30

2.4.2 D∗ . 35

2.4.3 Dover . 36

2.4.4 MOCA . 37

2.4.5 Schedulers Accounting for Dependencies . 39

2.5 Rate-Based Earliest Deadline Scheduling . 41

2.6 Overload Management by Changing Execution Rates . 42

2.7 Overload Management within Mixed-Criticality Scheduling . 45

2.7.1 Techniques to Reduce Dropped Low-Criticality Jobs . 45

2.7.2 Scaling Separation Times of Low-Criticality Jobs Instead of Dropping Jobs 46

2.8 Summary . 47

Chapter 3: Fair Lateness Scheduling . 49

3.1 Task Model . 49

3.2 Basic Compliant-Vector Analysis . 51

3.3 Minimum Compliant Vector . 60

3.4 Global Fair Lateness Scheduling . 67

3.5 Alternate Optimization Criteria . 73

3.6 Experiments . 76

3.7 Conclusion . 82

Chapter 4: Removing Intra-Task Precence Constraints . 84

4.1 System Model . 84

4.2 Response Time Characterization . 86

4.3 The Minimum Compliant Vector . 90

4.4 Computation Algorithm . 96

4.5 Evaluation . 100

4.6 Conclusion . 103

viii

Chapter 5: Job Splitting . 105

5.1 Basic Technique . 105

5.2 Task Model . 106

5.3 Split G-EDF Scheduling Algorithm . 108

5.4 Overhead Analysis . 111

5.4.1 Splitting Overhead Example . 112

5.4.2 Analysis Including Interrupt Overheads . 117

5.4.3 Budget Accounting Mechanisms . 121

5.5 Handling Critical Sections . 126

5.6 G-FL Lateness Bounds . 128

5.7 Locking Overheads . 129

5.8 Experiments . 131

5.9 Conclusion . 137

Chapter 6: Dissipation Bounds . 139

6.1 System Model . 139

6.2 Response-Time Analysis . 145

6.2.1 Case D: ta = yi,k for some k and τi,k is f-dominant for L. 151

6.2.2 Case E: ta = yi,k for some k and τi,k is m-dominant for L . 155

6.3 Dissipation Bounds. 162

6.3.1 Choosing L . 166

6.3.2 Defining xs
i (sI) and ∆(t) . 169

6.3.3 Proving that xi (ta) = xs
i (sr)+∆(ta) is x-sufficient for ta ∈ [tr, tn) . 174

6.3.4 Determining tn . 230

6.3.5 Proving that xi (ta) = xs
i (1) is x-sufficient for ta ∈ [tn,∞) . 248

6.4 Implementation Description . 258

6.5 Experiments . 264

6.6 Conclusion . 270

ix

Chapter 7: Conclusion . 272

7.1 Summary of Results . 272

7.2 Other Related Work . 274

7.3 Future Work . 275

Appendix A: Notation used in Chapter 3 . 277

Appendix B: Proofs of Lemmas in Chapter 3 . 279

Appendix C: Notation Used in Chapter 6 . 290

Appendix D: Computing and Analyzing xs
i (sI) . 293

BIBLIOGRAPHY . 307

x

LIST OF FIGURES

1.1 Key for all figures in Chapter 1. 3

1.2 Example of a sporadic task. 3

1.3 Response time, lateness, and tardiness. 4

1.4 EDF schedule of τ1 = (2,4) and τ2 = (4,8). 5

1.5 Correct (both HRT and SRT) schedule of a system . 5

1.6 G-EDF schedule of the same system as Figure 1.5 . 6

1.7 Possible schedules for a uniprocessor mixed-criticality system. 8

1.8 Architecture of MC2. 9

1.9 Comparison of two GEL schedules of the same task system. 10

1.10 Schedules to illustrate job splitting. 15

1.11 Example MC2 task system, illustrating overload and recovery. 17

2.1 Depiction of the service functions used by Leontyev and Anderson (2010). 20

2.2 A subset of the schedule from Figure 1.10(a) with overheads included. 21

2.3 Illustration of overheads that occur in a spinlock protocol. 26

2.4 Example value functions from Locke (1986). 29

2.5 Value functions for an example task system. 32

2.6 Several possible schedules for the task system from Figure 2.5. 33

2.7 Grouping of CPUs used by MOCA. 37

2.8 Example job dependency DAG to illustrate the work of Garyali (2010). 39

2.9 EEVDF schedule of a task system. 43

3.1 Illustration of the worst-case arrival pattern for analyzing demand within an interval. 51

3.2 Illustration of the technique for bounding the demand for the task in Figure 3.1. 51

3.3 Example schedule depicting td , tb, and yi,k. 53

3.4 Proof details for Theorem 3.1 and supporting lemmas. 54

3.5 Illustration of the auxiliary variables used to sum the largest k elements. 63

xi

3.6 Average and maximum lateness bound with respect to system utilization for task
systems with uniform medium utilizations and uniform moderate periods 77

3.7 Average and maximum proportional lateness bound with respect to system uti-
lization for task systems with uniform medium utilizations and uniform moderate
periods. 78

3.8 Average and maximum lateness bound with respect to system utilization for task
systems with bimodal medium utilizations and uniform moderate periods. 79

3.9 Average and maximum proportional lateness bound with respect to system uti-
lization for task systems with bimodal medium utilizations and uniform moderate
periods. 80

4.1 Example high-frequency trading system scheduled with G-EDF. 86

4.2 Two-CPU task system example for Section 4.4. 97

4.3 g functions for the system in Figure 4.2. 97

4.4 Results of experiments varying WCET parameters. 102

4.5 Results of experiments varying utilization parameters. 104

5.1 G-EDF schedules showing the scheduling of a task system on two processors. 107

5.2 A subset of the schedule from Figure 5.1(c) with some overheads included. 112

5.3 Example task system with overheads. 114

5.4 Illustration of initial offset oi(t) for a job with si > 0. 122

5.5 G-EDF schedule of the same system as Figure 5.1 with critical sections . 127

5.6 Scenario that would not be considered in the analysis for τ1 in Section 2.2.2 but
that we must consider. 131

5.7 Architecture of machine used for overhead experiments. 132

5.8 Schedulability results with respect to WSS in the absence of locking. 136

5.9 Medium Bimodal Utilization, Long Uniform Periods, WSS = 128KB. This graph
is with respect to utilization cap instead of WSS. 137

5.10 Results with respect to WSS in systems with locking. 138

6.1 Example MC2 task system, without and with overload. 142

6.2 Cases for which values of xi (ta) are provided. 147

6.3 Example completion patterns for competing work in the absence of supply restriction. 148

xii

6.4 Example completion patterns for competing work in the presence of supply restriction. 150

6.5 Worst-case pattern of supply restriction for the first four processors. 153

6.6 Example depicting tb
i,k when m = 4. 155

6.7 Graph of ∆(t), marked with various terms used in its definition and analysis. 163

6.8 Cases considered when proving that xi (ta) = xs
i (sr)+∆(ta) is x-sufficient for ta ∈ [tr, tn) 175

6.9 Cases considered when proving that xi (ta) = xs
i (1) is x-sufficient for ta ∈ [tn,∞) 248

6.10 Examples illustrating virtual time computations in the kernel. 261

6.11 Illustration of “idle normal instant.” If all jobs pending at t meet their response-time
tolerances, then t is an idle normal instant. t2 is also referenced below. 262

6.12 Parameters used for experiments. 266

6.13 Dissipation time for SIMPLE . 268

6.14 Dissipation time for ADAPTIVE . 269

6.15 Minimum s(t) for ADAPTIVE . 270

6.16 Scheduling overhead measurements . 271

B.1 Possible competing work schedules after yi,k. 281

B.2 Cases considered in Lemma 3.5 . 282

xiii

LIST OF ABBREVIATIONS

C-EDF Clustered EDF

CVA Compliant Vector Analysis

DAG Directed Acyclic Graph

EDF Earliest-Deadline-First

EDF-VD EDF with Virtual Deadlines

EDZL Earliest-Deadline until Zero-Laxity

EEVDF Earliest Eligible Virtual Deadline First

E-MC Elastic Mixed-Criticality

ER-EDF Early-Release EDF

G-EDF Global EDF

GEL G-EDF-like

GEL-V GEL with Virtual Time

G-FL Global Fair Lateness

G-GUA Greedy Global Utility Accrual

GVD Global Value Density

HRT Hard Real-Time

LP Linear Program(ming)

MC Mixed-Criticality

MC2 Multi-Core Mixed-Criticality

MOCA Multiprocessor Online Competitive Algorithm

NG-GUA Non-Greedy Global Utility Accrual

OCBP Own-Criticality Based Priority

P-EDF Partitioned EDF

PP Priority Point

PWCET Provisioned WCET

RED Robust Earliest Deadline

RTB Robust Total Bandwidth

SRT Soft Real-Time

xiv

SVO Sporadic with Virtual time and Overload

UAV Unmanned Aerial Vehicle

WCET Worst-Case Execution Time

xv

CHAPTER 1: INTRODUCTION

The goal of this dissertation is to improve the state of the art for soft real-time (SRT) multiprocessor

scheduling by improving response times without significantly increasing runtime overheads, and by providing

the ability to recover from overload situations when more work arrives than is expected. This work is

motivated by next-generation unmanned aerial vehicles (UAVs), which will require SRT scheduling for

advanced functionality such as mission planning. While prior work can guarantee bounds on response times,

this dissertation provides methods to improve upon those bounds without incurring additional overheads,

and provides methods that give more fine-grained control of such bounds. Furthermore, in order to reduce

the size, weight, and power requirements for these UAVs, it will be necessary to run hard real-time (HRT)

safety-critical software on the same multicore system as SRT mission-critical software. When provisioning

the SRT portion of the system, assumptions about execution time could be made that are insufficiently

pessimistic. As a result, the system may become overloaded. This dissertation also provides a method to

manage such a situation.

We begin this chapter by providing a general introduction to real-time systems. We then provide a

description of the basic scheduling framework used by the UAVs we consider. We then state the thesis of this

dissertation, describe its contributions, and provide an outline for the remainder of the dissertation.

1.1 Real-Time Systems

Almost any computer system must produce valid outputs in order to be considered a “correct” system. In

a real-time system, the result must also be produced at the right time. The precise definition of “at the right

time” depends on the type of system.

A system is typically defined to be “HRT” if each job (i.e., invocation of a program, or “task”), has a

deadline by which it must complete in order for the system to be correct. This definition of correctness is

needed if drastic consequences could result from a missed deadline. For example, a task that adjusts flight

surfaces on an aircraft has such a requirement, as a missed deadline could result in a crash. In order to

guarantee the correctness of such a system, it is typically necessary to make highly pessimistic assumptions

1

about system behavior, in order to ensure that a deadline cannot be missed under any possible circumstance.

This usually requires over-provisioning the system.

A system is defined to be “SRT” if it has less stringent requirements. In such a system, each job typically

still has a deadline, but the system may be deemed correct even if some jobs miss their deadlines. For example,

one type of SRT constraint would be the requirement that some fraction of all deadlines in the system be met.

This type of correctness is often sufficient. For example, a video decoding system that operates at 50 frames

per second must decode each frame within a 20 ms period, or the video may visibly skip. Such a skip is not

catastrophic, and the reduced pessimism can allow a system to be more fully provisioned. After describing a

task model next, we will describe the particular SRT criterion that we use.

1.1.1 Task Model and SRT Criterion

In this dissertation, we consider scheduling under the sporadic task model. In order to describe this

model, we depict in Figure 1.2 an example task running by itself. (The key for all figures in this chapter

is given in Figure 1.1.) A task represents one process that is composed of a (potentially infinite) series of

discrete jobs. When a new job is available for execution, we say that job is released by the task. However,

because the task is a single process, if the job’s predecessor has not yet completed, then the new job must

wait to actually begin execution. (This requirement is relaxed in Chapter 4 of this dissertation.)

The system is composed of a set τ = {τ1,τ2, . . . ,τn} of n tasks.

The worst-case execution time (WCET) of each task τi, denoted Ci, is an upper bound on the execution

time for any of its jobs. In Figure 1.2, C1 = 2 ms, so no job runs for over 2 ms. However, some jobs run for

only 1 ms, as allowed by the model.

The minimum separation time of each task τi, denoted Ti, is the minimum amount of time between two

job releases. In Figure 1.2, T1 = 3 ms, so job releases occur at least three units apart. However, after the job

at time 9 is released, no new job is released until time 14, as allowed by the model.

The absolute deadline of a job is the point in time by which that job should finish. In Figure 1.2, the

absolute deadline of the first job is at time 2. As discussed above, the precise interpretation of “should finish”

depends on whether the system is HRT or SRT. The relative deadline of each task τi, denoted Di, is the time

between the release time and absolute deadline of each job of that task. In Figure 1.2, D1 = 2 ms, so for

example, the job released at time 9 has its absolute deadline at time 11.

2

Figure 1.1: Key for all figures in Chapter 1.

Figure 1.2: Example of a sporadic task.

For simplicity, within this chapter we will consider implicit-deadline task systems in which for each task

τi, Di = Ti. However, all original work in the remainder of this dissertation is also applicable to arbitrary-

deadline task sets that may violate this assumption. For the purpose of examples, we will often use the

notation τi = (Ci,Ti) for tasks within implicit-deadline task systems.

A final parameter of each task τi is its utilization, denoted Ui. A task’s utilization is simply the ratio of its

WCET to its minimum separation time: Ui =
Ci
Ti

. The utilization of a task is significant because it indicates

the long-term processor share needed by the task, in the worst case.

Suppose a job is released at time r, has an absolute deadline at time d, and completes at time t. Then,

its response time is t− r, its lateness is t−d, and its tardiness is max{0, t−d}, as depicted in Figure 1.3.

Observe that, if a job completes no earlier than its deadline, then its lateness and tardiness are identical and

nonnegative. Otherwise, its lateness is negative and its tardiness is zero.

With these definitions in place, we now specify the particular SRT criterion we use: bounded lateness. If

a task has an upper bound on the lateness of any of its jobs, then such a bound is called a lateness bound. If all

tasks have lateness bounds, then the system has bounded lateness. Bounded tardiness (with tardiness bounds)

and bounded response time (with response-time bounds) are equivalent to bounded lateness in the sense

that a system has bounded lateness if and only if it has bounded tardiness and if and only if it has bounded

response time. Much past work, e.g., (Devi and Anderson, 2008; Leontyev and Anderson, 2010), has used the

bounded tardiness criterion for SRT. All three of these criteria are useful because each guarantees that each

3

Figure 1.3: Response time, lateness, and tardiness. If t were before d, then lateness would be negative, while
tardiness would be zero.

task receives sufficient processor share in the long term. Furthermore, lateness bounds can indicate that jobs

must finish before their deadlines, whereas tardiness bounds cannot. For the remainder of this dissertation,

when “SRT” is used without qualification, the bounded lateness criterion is in use.

The practicality of the bounded lateness model does depend on having reasonably small lateness bounds,

and smaller lateness bounds generally provide a practical improvement. Therefore, one area of focus of this

dissertation will be choosing appropriate scheduling algorithms to minimize lateness bounds.

1.1.2 Scheduling Algorithms

We will now discuss several common classes of scheduling algorithms. We first define relevant terms. A

task system is feasible if some scheduling algorithm can schedule it correctly. When considering HRT, a

system is said to be scheduled “correctly” if no job misses its deadline. When considering SRT, a system is

said to be scheduled “correctly” if it has bounded lateness. A scheduler is said to be optimal if it correctly

schedules any feasible task system.

A common uniprocessor scheduling algorithm is the earliest-deadline-first (EDF) scheduling algorithm,

in which jobs are prioritized by absolute deadline, with ties broken arbitrarily but consistently. EDF is

an optimal uniprocessor algorithm for both HRT and SRT systems. In particular, EDF can schedule any

implicit-deadline task system with ∑τi∈τ Ui ≤ 1. An example EDF schedule is depicted in Figure 1.4.

When considering multiprocessor systems, we denote the number of processors as m. There are multiple

ways to extend EDF scheduling to a multiprocessor setting. One method is partitioned EDF (P-EDF). Under

P-EDF, each task is statically assigned to a processor, and each processor schedules its tasks using EDF.

For implicit-deadline task systems, assigning tasks to processors is equivalent to solving a bin-packing-like

4

Figure 1.4: EDF schedule of τ1 = (2,4) and τ2 = (4,8).

Figure 1.5: Correct (both HRT and SRT) schedule of a system with three tasks where each τi = (2,3).

problem. The items are the n tasks, with weights equal to utilizations, and the bins are the m processors, each

with capacity one.

The primary limitation of P-EDF is related to the bin-packing problem: there are task systems that are

feasible on m processors with techniques other than partitioning, but that cannot be partitioned onto the same

set of processors. As an example, consider the task system with three identical tasks (2,3). Each task has a

utilization of 2
3 , so no two tasks can be allocated on the same processor and three processors are required.

However, this task system is actually feasible using only two processors. As an example, Figure 1.5 depicts a

correct schedule for this task system on only two processors when all jobs are released as early as possible.

Notice that in this schedule, jobs of τ3 migrate between processors during execution.

An alternative to P-EDF is global EDF (G-EDF), in which all processors share a global run queue and

the m jobs with the soonest deadlines execute. A G-EDF schedule of our running example (as in Figure 1.5)

is depicted in Figure 1.6. Unfortunately, as can be seen in the figure, all jobs of τ3 miss their deadlines. This

demonstrates that G-EDF is not optimal in a HRT sense. However, notice that no job of τ3 misses its deadline

by more than 1 ms. In fact, Devi and Anderson (2008) demonstrated that G-EDF is in fact optimal in a SRT

sense.

5

Figure 1.6: G-EDF schedule of the same system as Figure 1.5. This schedule is SRT-correct, but not
HRT-correct.

Schedulers that are optimal in a HRT sense for implicit-deadline sporadic task systems do exist, e.g., (An-

derson and Srinivasan, 2004; Baruah et al., 1996; Megel et al., 2010; Regnier et al., 2011). However, all such

schedulers either are difficult to implement in practice or cause jobs to frequently be preempted by other

jobs or migrated between CPUs. Even the schedule in Figure 1.5, which is for a very simple task system,

requires each of τ3’s jobs to incur a migration. Furthermore, in order to achieve optimality, it is necessary to

change the relative priorities of jobs while those jobs are running. In Figure 1.5, each of τ3’s jobs initially has

a higher priority than the corresponding job of τ2, but only for 1 ms. This type of priority change, which can

cause problems for locking protocols Brandenburg (2011), does not occur under G-EDF. Therefore, G-EDF

remains a good choice for SRT systems, and we use G-EDF as the basis for the work in this dissertation.

On systems with a large number of processing cores, the overheads incurred by locking and maintaining

a global run queue may result in large overheads (Bastoni et al., 2010). Therefore, a compromise between

P-EDF and G-EDF called clustered EDF (C-EDF), where tasks are partitioned onto clusters of CPUs and

G-EDF is used within each cluster, is preferable in such cases. Because G-EDF is used within each cluster,

the work in this dissertation is directly applicable.

1.2 Mixed Criticality and MC2

Sometimes different applications that will be run on the same physical machine have different require-

ments for timing correctness. For example, as discussed in the beginning of Section 1.1, some applications

have HRT constraints (requiring all deadlines to be met), while others have SRT constraints (where bounded

lateness is acceptable). This sort of mixture of requirements will become increasingly relevant for future

generations of UAVs, as more tasks that have traditionally been performed by humans are instead performed

6

by software. For example, safety-critical software performing functions such as flight control continues to

have stringent HRT constraints, whereas mission-critical software performing planning functions has only

SRT constraints. Running both sets of software on the same machine could significantly reduce the size,

weight, and power required for the aircraft.

Furthermore, there may be further distinctions in requirements than simply the difference between HRT

and SRT constraints. For example, some tasks may be so critical that it is necessary to use WCET estimates

determined by a tool that provides a provable upper bound on execution time, in order to provide the strongest

possible guarantee that no WCET is exceeded. Such a level of certainty may be necessary in order for the

system to be acceptable to a relevant certification authority. However, for other tasks, it may be sufficient to

use less pessimistic WCET estimates, such as those determined by measuring the largest execution on a real

system and multiplying by a safety factor.

Under most real-time scheduling analysis, the system can only be deemed correct if it can be proven to

be correct even using the most pessimistic assumptions for all tasks. For example, in order to prove that the

flight-control software will behave correctly, it is necessary to use highly pessimistic WCET estimates for the

mission-control software as well. On a multicore system, this could be orders of magnitude more pessimistic

than actual behavior (Mollison et al., 2010), resulting in a system that is unnecessarily underutilized.

Mixed-criticality scheduling algorithms and analysis address this problem. Vestal (2007) proposed that a

single scheduling algorithm could be analyzed under multiple sets of assumptions about WCET estimates.

The system has a finite number of criticality levels, and each task is assigned a criticality level and, for

each criticality level in the system including its own, a provisioned worst-case execution time (PWCET).

For arbitrary level `, the system is considered to be correct at level-` if all tasks with a criticality level at

or above level ` are scheduled correctly, assuming that no job of any task exceeds its level-` PWCET. An

example is depicted in Figure 1.7 with two criticality levels, A (high) and B (low). Figure 1.7(a) depicts the

worst-case behavior assuming that no job of any task exceeds its level-B PWCET, and Figure 1.7(b) depicts

the worst-case behavior assuming that no job of any task exceeds its level-A PWCET. Observe that deadlines

are only missed in Figure 1.7(b), that only τ2 (which is a level-B task) has jobs that miss their deadlines,

and that this schedule involves jobs exceeding their level-B PWCET. The provided scheduling algorithm

correctly schedules this task system.

Motivated by the same UAV system considered in this dissertation, Herman et al. (2012) proposed a

specific scheduler, the multi-core mixed-criticality (MC2) scheduler, that supports four criticality levels,

7

(a) Level-B worst-case behavior.

(b) Level-A worst-case behavior.

Figure 1.7: Possible schedules for a uniprocessor mixed-criticality system with two criticality levels, A (high)
and B (low), both with HRT requirements. Level-A τ1 has a minimum separation time of 4 ms, a level-A
PWCET of 3 ms, and a level-B PWCET of 2 ms. Level-B τ2 has a minimum separation time of 8 ms, a
level-A PWCET of 4 ms, and a level-B PWCET of 3 ms. τ1 is statically prioritized over τ2.

A through D. (An earlier version of MC2 that supports five criticality levels was proposed by Mollison

et al. (2010).) The architecture of MC2 is depicted in Figure 1.8. Each criticality level is scheduled

independently, and higher criticality levels are statically prioritized over lower criticality levels. Level A has

HRT requirements. Tasks are partitioned onto CPUs and scheduled using a per-CPU table with a precomputed

schedule. Level B also has HRT requirements and requires tasks to be partitioned onto CPUs, but uses P-EDF

for scheduling. Level C has SRT requirements, and tasks are scheduled using G-EDF. Finally, level D is best

effort, which means that it has no real-time guarantees. Level D can be scheduled using the general-purpose

scheduler provided by the underlying operating system (OS).

In this dissertation, we focus on scheduling at level C.

1.3 Past SRT Work

We now briefly review the past work on SRT scheduling that is directly relevant to this dissertation.

Further review and other work on SRT scheduling is discussed in Chapter 2.

As mentioned above, past work on bounded lateness has actually been stated in the form of the equivalent

condition of bounded tardiness. The seminal work on bounded tardiness was that by Devi and Anderson

8

Figure 1.8: Architecture of MC2.

(2008), who considered G-EDF scheduling. Devi and Anderson showed that the tardiness of any job of τi is

at most x+Ci, where

x ,
Csum−Cmin

m−Usum
,

Csum is the sum of the m−1 largest values of Ci, Cmin is the smallest value of Ci, and Usum is the sum of the

m−2 largest values of Ui.

Leontyev and Anderson (2010) performed significant extensions to Devi and Anderson’s initial work.

Rather than limiting their analysis to G-EDF, they considered a broader class of window-constrained

schedulers. Window-constrained schedulers have a specific property that guarantees that each job will

eventually become and remain the highest priority job in the system. Leontyev and Anderson also considered

restricted supply, in which some processors are not fully available to the task system being scheduled. The

scheduling of level C in MC2 can be analyzed by using restricted supply to model execution at levels A and

B.

The tardiness bounds provided by Leontyev and Anderson (2010) are significantly more complex than

those provided by Devi and Anderson (2008), due to both of the generalizations provided. Therefore, we do

not provide the specific expressions here.

Leontyev et al. (2011) considered a task model that is more general than the sporadic task model, using

a framework called real-time calculus. They considered delay bounds, which correspond to response-time

bounds under the sporadic task model. As discussed above, bounded response time is equivalent to bounded

lateness and bounded tardiness. Leontyev et al. provided a method to determine whether a given set of

response-time bounds could be met.

Leontyev et al. also provided a method to determine lateness bounds for a family of G-EDF-like (GEL)

schedulers. Recall that, under G-EDF, jobs are prioritized based on their absolute deadlines, and the absolute

9

(a) G-EDF schedule, where Yi = Di for all i.

(b) G-FL schedule, with Y1 = Y2 = 3 and Y3 = 4.

Figure 1.9: Comparison of two GEL schedules of the same task system, with τ1 = τ2 = (2,4) and τ3 = (8,8).

deadline of each job of τi is Di units of time after its release. Under a GEL scheduler, jobs are prioritized

based on priority points (PPs) that may differ from absolute deadlines. In an analogous manner to G-EDF

and absolute deadlines, a job under a GEL scheduler has a higher priority than another if it has an earlier

PP. A per-task constant Yi (prioritY) takes the place of Di: the PP of each job is Yi units of time after its

release. The implementation of any GEL scheduler is identical to that of G-EDF, except that Yi is used for

prioritization in place of Di.

An example comparing two GEL schedulers is depicted in Figure 1.9. Figure 1.9(a) depicts G-EDF itself,

where Yi = Di for all i, and Figure 1.9(b) depicts a different GEL scheduler, the global fair lateness (G-FL)

proposed in Chapter 3 of this dissertation.

1.4 Thesis Statement

The original bounds provided by Devi and Anderson (2008) were tighter for G-EDF than those provided

by Leontyev and Anderson (2010), due to the increased generality considered by Leontyev and Anderson.

10

However, further improvements are possible, and the model considered by Devi and Anderson requires

implicit deadlines (each Di = Ti) and does not immediately generalize to other GEL schedulers.

While Leontyev et al. (2011) provided analysis for arbitrary GEL schedulers, they did not provide

substantial guidance on how to select values of Yi in order to obtain desired scheduler characteristics.

Furthermore, although they allowed delay bounds to be specified, they did not provide an efficient method to

obtain the tightest possible delay bounds using their analysis, and the bounds provided are not as tight as

possible for sporadic task systems given the more general task model considered.

As discussed in the last section, restricted supply analysis can be used to account for level-A and level-B

work when considering level-C behavior in MC2. In order to do so, accurate WCETs must be used in the

analysis. Mollison et al. (2010) used the level-C PWCET for each level-A or -B task, in order to maximize

the actual utilization of the system. However, because level-A and -B PWCETs for tasks at all levels are more

pessimistic than level-C PWCETs, it is possible that level-A or -B tasks may sometimes exceed their level-C

PWCETs, if the level-C PWCETs are insufficiently pessimistic. This overload compromises guarantees at

level C.

In order to address these limitations, we will support the following thesis:

G-EDF can be modified to support smaller lateness bounds than previous work allows, with more
flexibility to specify desired lateness criteria. Furthermore, such modifications do not violate the
assumptions required for multiprocessor locking protocols, and the modified scheduler is easier
to implement and/or has lower overheads than known HRT-optimal schedulers. In addition,
recovery from overloads caused by tasks in MC2 overrunning their level-C PWCETs can be
facilitated by modifying the scheduler to delay job releases dynamically.

1.5 Contributions

We now describe our contributions in support of this thesis.

Compared to Devi and Anderson (2008), we provide further improvements on the tightness of tardi-

ness/lateness bounds, and also provide a way to handle arbitrary deadlines (which may differ from minimum

separation times) and arbitrary GEL schedulers. Our method does not require the additional pessimism from

the more general models considered by Leontyev and Anderson (2010) and Leontyev et al. (2011). We also

provide methods to choose the best lateness bounds by optimizing criteria such as maximum or average

lateness.

11

Yet smaller lateness bounds are possible by further modifying the scheduler. In this dissertation, we

discuss two techniques to do so: allowing multiple jobs of the same task to run simultaneously, and splitting

jobs into smaller subjobs.

In the context of MC2, we generalize the restricted supply analysis from Leontyev and Anderson (2010)

by accounting for level-C PWCET overruns at levels A, B, and C. We also provide a method to recover at

runtime from such an overload.

We now discuss each contribution in more detail.

1.5.1 Analysis of GEL Schedulers

In Chapter 3, we discuss improved analysis of GEL schedulers and propose methods to choose GEL

schedulers to obtain the best lateness bounds. The basic strategy for our analysis of lateness bounds is

essentially that from (Devi and Anderson, 2008), but we make several improvements.

As discussed above, Devi and Anderson define the tardiness bound for τi as x+Ci, with a single value of

x for the entire task system. One fundamental change we make is to define a separate xi for each τi. We also

allow for relative PPs that differ from minimum separation times, which allows us to consider both arbitrary

deadlines and arbitrary GEL schedulers.

The tardiness bound x+Ci from Devi and Anderson is equivalent to the response-time bound Di +x+Ci.

In our analysis, Yi replaces Di, so we derive response-time bounds of the form Yi + xi +Ci. Stated as lateness

bounds, these are of the form Yi + xi +Ci−Di.

We define a term

Si(Yi),Ci ·max
{

0,1− Yi

Ti

}
.

that accounts for the difference between Yi and Ti, and we use it to provide the following bound on xi.

xi ≥
∑m−1 largest(x jU j +C j−S j(Yj))+∑τ j∈τ S j(Yj)−Ci

m
(1.1)

Notice that xi effectively appears on both sides of (1.1), so (1.1) cannot be used directly to compute xi.

However, we show how to define a linear program in order to determine the smallest values of xi that satisfy

(1.1) for all i. Furthermore, if each Yi is treated as a variable rather than as a constant, we can also use

12

linear programming to select Yi values in order to optimize any linear criterion of lateness bounds, such as

minimizing the maximum or average lateness bound.

We also propose G-FL, the same scheduler that was depicted in Figure 1.9(b). Under G-FL, for each τi,

Yi , Di−
m−1

m
·Ci.

As can be seen in Figure 1.9, G-FL can provide better lateness than G-EDF. We also show that it provably

provides the smallest possible maximum lateness bound, given our analysis.

1.5.2 Removing The Intra-Task Precedence Constraint

In Chapter 4, we propose a task system modification that can further reduce lateness. Recall that, because

a task is a single-threaded process, each job must wait to begin executing until its predecessor completes. We

refer to this as the intra-task precedence constraint. If jobs run in separate threads, however, this constraint

can be removed, and multiple jobs of the same task can execute at the same time on different processors.

Doing so can further reduce lateness bounds.

Some of the pessimism in previous lateness bounds results directly from the fact that work can be backed

up within a task, even when there are idle CPUs. It is possible that a task has several jobs that have sufficient

priority to run, but only one can make progress. Without the intra-task precedence constraint, however,

multiple pending jobs from the same task can make progress at the same time. This change allows us to

derive smaller bounds.

Furthermore, in the presence of the intra-task precedence constraint, the amount by which a task is

backed up can grow unboundedly even when there are idle CPUs. Therefore, we must require that Ui ≤ 1

holds for every task. However, without the intra-task precedence constraint, this requirement is no longer

necessary, and the simple system utilization requirement ∑τ j∈τ U j ≤ m is sufficient.

1.5.3 Job Splitting

In Chapter 5, we propose another modification to the scheduler to improve lateness bounds. The current

lateness bounds depend heavily on task execution times. A task’s execution time can be reduced by an

integral factor if each of its jobs is split. For example, a task that has a WCET of 2 ms and a period of 4 ms

could have its jobs split in half, resulting in a task with a WCET of 1 ms and a period of 2 ms. Notice that the

13

utilization of the task remains constant. Each consecutive pair of subjobs in the split task corresponds to a

real job in the original task.

An example of job splitting under G-EDF is depicted in Figure 1.10. Figure 1.10(a) depicts an example

schedule in the absence of splitting. Notice that τ3,0 completes 4 ms late. Figure 1.10(b) depicts the schedule

where jobs of τ3 are split into two subjobs. τi, j,k is used to denote subjob k of τi, j. Notice that τ3,0 now

completes only 3 ms late.

Job splitting becomes more complicated in the presence of critical sections, because many locking

protocols require that job priorities do not change during execution, but every time a subjob ends, the priority

of the underlying job changes. However, this problem can be overcome by not allowing a subjob to end while

holding or waiting for a lock, reducing the length of the subsequent subjob. This procedure is depicted in

Figure 1.10(c), where τ3,0,0 runs for 8 ms instead of 7 ms, and τ3,0,1 then runs for only 6 ms.

In the absence of overheads and critical sections, because task utilizations remain constant with splitting,

lateness bounds could be made arbitrarily close to zero. However, on a real system, more overheads are

incurred as a result of job splitting. Whenever a subjob ends, the OS must decide what job should subsequently

be scheduled, creating more scheduling decisions. Additionally, jobs may be preempted at subjob completion,

rather than only at job releases, causing a potential loss of cache affinity. These additional overheads

effectively increase a task’s utilization, so it is necessary to account for these overheads in order to determine

the actual benefits of job splitting.

Our lateness analysis remains correct if jobs are allowed to begin execution prior to their proper

release times, as long as job PPs are determined based on their proper release times. Therefore, when one

subjob completes, it is sufficient to simply lower the priority of the underlying job. It is not necessary to

unconditionally preempt the job. Furthermore, even if the job does need to be preempted, it can simply be

added to the ready queue immediately; it is not necessary to set a timer for a future release. This approach

significantly limits the additional overheads that splitting creates.

In order to determine the impacts of job splitting on lateness bounds, it is necessary to use realistic

measures of overhead. Therefore, we implemented G-FL with job splitting in LITMUSRT,1 a real-time

extension to the Linux kernel developed at UNC, and measured relevant overheads. We used these overheads

1http://www.litmus-rt.org/

14

http://www.litmus-rt.org/

(a) No splitting.

(b) Each job of τ3 split into two subjobs.

(c) Each job of τ3 split into two subjobs, in the presence of critical sections.

Figure 1.10: Schedules of a task system with τ1 = (4,6), τ2 = (9,12), and τ3 = (14,24), to illustrate job
splitting.

15

in lateness-bound computations and showed that significant reductions in lateness bounds are possible, even

accounting for overheads and even in the presence of critical sections.

1.5.4 Handling Overload in MC2

In Chapter 6, we consider the problem of overload within MC2. In order to address scheduling in

MC2, we add restricted supply to our analysis of GEL schedulers. Our basic strategy for handling restricted

supply is like that of Leontyev and Anderson (2010), but because we do not use the full generality of

window-constrained scheduling, our bounds are tighter. Furthermore, we improve analysis under the case

when most processors are not fully available, but have minimal supply restriction. This is the common case

under MC2, because most processors have both level-A and -B tasks, but the level-A and -B PWCETs for

those tasks are highly pessimistic, resulting in a great deal of slack for level C.

Because level-C PWCETs are not as pessimistic as level-A or -B PWCETs, it is possible that jobs at any

level may overrun their level-C PWCETs. (MC2 can optionally enforce job budgets to ensure that jobs do not

overrun their PWCETs at their own criticality levels, but even if this feature is enabled, level-A and -B jobs

can still overrun their level-C PWCETs.) The effects of overload are depicted in Figure 1.11, which depicts

an MC2 system that has only level -A and -C tasks. For this example, level-A tasks are depicted using the

notation (CC
i ,C

A
i ,Ti), where CC

i is its level-C PWCET and CA
i is its level-A PWCET, while level-C tasks are

depicted using the notation (CC
i ,Ti,Yi). Figure 1.11(a) depicts a schedule in the absence of overload, while

Figure 1.11(b) depicts the results of some level-A jobs running for their full level-A PWCETs. As a result of

the overload, all future job release times are impacted.

To analyze this situation, we generalize both the restricted supply model and the task model. We then

describe a technique that can be used to recover from such an overload situation. Our technique is depicted

in Figure 1.11(c). We use a notion of virtual time, as originally introduced by Zhang (1990) and used in

uniprocessor real-time scheduling by Stoica et al. (1996). Essentially, we maintain a secondary “virtual”

clock that, at actual time t, is operating at a speed of s(t) relative to the actual clock. In the absence of

overload, s(t) = 1, so that the two clocks operate at the same speed. However, after an overload occurs, the

OS can choose to use a slower speed, as occurs from actual time 19 to actual time 29 in Figure 1.11(c). Our

technique does not prescribe a particular choice of s(t), but we provide experimental results that provide

guidance.

16

(a) Example MC2 schedule in the absence of overload, illustrating bounded response times.

(b) The same schedule in the presence of overload caused by level-A jobs started at time 20 running for their full level-A
PWCETs. Notice that response times of level-C jobs settle into a pattern that is degraded compared to (a). For example,
consider τ2,6, which is released at actual time 36. In (a), it completes at actual time 43 for a response time of 7, but in
this schedule it does not complete until actual time 46, for a response time of 10.

(c) The same schedule in the presence of overload and our recovery techniques. Notice that response times of level-C
jobs settle into a pattern that is more like (a) than to (b).

Figure 1.11: Example MC2 task system, illustrating overload and recovery.

17

Job minimum separation times and relative PPs are defined in terms of the virtual clock, rather than the

actual clock. This has the effect of reducing the number of level-C job releases for an interval of time and

allows the system to recover from overload. The time required to do so is called a dissipation time. We derive

dissipation bounds, or upper bounds on the dissipation time.

1.6 Organization

In Chapter 2, we discuss relevant background work in SRT scheduling and overload management. Then,

in Chapter 3, we discuss our analysis of GEL schedulers, G-FL, and our linear programming techniques to

compute and optimize lateness bounds. In Chapter 4, we discuss the impact of removing intra-task precedence

constraints, and in Chapter 5 we discuss the impact of job splitting. Afterward, in Chapter 6, we discuss

analysis that includes restricted supply, overload recovery, and dissipation bounds. Finally, in Chapter 7, we

offer concluding thoughts and discuss future work.

18

CHAPTER 2: BACKGROUND

In this chapter, we discuss prior work on SRT scheduling and overload management. We first survey the

work on bounded tardiness that forms the basis for the work in this dissertation in Section 2.1 and related

overhead analysis in Section 2.2. We then briefly survey alternative models for SRT systems in Section 2.3.

Then, we survey past work on overload management using a notion of “value functions” in Section 2.4. In

Section 2.6 we briefly survey some techniques for overload management that work by modifying the rate at

which work is performed. Finally, in Section 2.7, we survey overload management within mixed-criticality

systems.

2.1 Prior Bounded Tardiness Work

As mentioned in Chapter 1, Devi and Anderson (2008) provided tardiness bounds for implicit-deadline

sporadic task systems scheduled under G-EDF. They compared G-EDF to an ideal scheduler that continuously

maintains for each task a processor share equal to its utilization. The difference in allocation between what a

task receives under G-EDF and under the ideal scheduler is called lag. Lag can be analyzed at various points

in the schedule in order to derive tardiness bounds. The most significant points in the analysis occur when all

CPUs become simultaneously busy. Because some processor was idle, there can be at most m−1 tasks that

have remaining work just before such a time. That insight allowed Devi and Anderson to define a value x

such that the tardiness of a task τi is at most x+Ci. The value of x they defined is as follows:

x ,
Csum−Cmin

m−Usum
,

where Csum is the sum of the m−1 largest values of Ci, Cmin is the smallest value of Ci, and Usum is the sum

of the m−2 largest values of Ui.

Bounded tardiness is established by mathematical induction over a set of jobs. We denote job k of task τi

with τi,k. When analyzing a job τi,k with a deadline at di,k, jobs with lower priority than di,k can be ignored.

Induction begins with the highest-priority job in the system, and the inductive assumption is that no job with

19

Figure 2.1: Depiction of the service functions used by Leontyev and Anderson (2010).

priority higher than τi,k has tardiness larger than stated in the proof. The lag is tracked inductively at key

points in the execution of the system, so that a bound on the lag of the system at di,k can be determined. From

that lag bound the tardiness bound for di,k is established.

Leontyev and Anderson (2010) provided tardiness bounds for a class of “window-constrained” schedulers.

Under such a scheduler, jobs are prioritized on the basis of a PP, and the system executes the eligible jobs

with the earliest PPs. Furthermore, there must exist constants φi and ψi such that, if a job of τi has a release at

time r, a deadline at time d, and a PP at time y (priority), then it must be the case that r−φi ≤ y≤ d+ψi. By

using the absolute deadline of each job as its PP, we see that G-EDF is a window-constrained scheduling

algorithm.

In order to model restricted supply, Leontyev and Anderson defined a service function (following from

Chakraborty et al. (2003)) βp(∆) for each CPU p, indicating that in any interval of length ∆, at least βp(∆)

units of time on CPU p are available to execute tasks. The form of the service functions used by Leontyev

and Anderson is depicted Figure 2.1. Each CPU p has an available utilization ûp and a blackout time σp, so

that

βp(∆), max{0, ûk · (∆−σp)}.

In Figure 2.1, we assume that the same pattern of supply restriction continues indefinitely; in this case, ûp =
1
2

and σp = 3. ûp indicates the long-term utilization of processor p, and in Figure 2.1, half of the CPU time is

occupied by supply restriction. σp is set to the x-intercept necessary in order for βp(∆) to lower-bound the

actual supply, when the slope of βp(∆) is ûp.

20

Figure 2.2: A subset of the schedule from Figure 1.10(a) with overheads included. The execution times have
been slightly reduced to make room for overheads.

The proof structure used by Leontyev and Anderson is similar to that used by Devi and Anderson, but

much additional complexity is added by the generalizations applied.

2.2 Overhead and Locking Analysis

In order to determine the schedulability of a task system in practice, it is necessary to determine relevant

system overheads and to account for them in the analysis. Brandenburg (2011) proposed methods to adjust

task system parameters to account for overheads under G-EDF. These methods can be applied to arbitrary

GEL schedulers. If a locking protocol is used, a similar process of adjusting parameters is generally necessary

to account for similar effects that result from the operation of the locking protocol. In this section, we review

these accounting methods. We will first consider overhead accounting under GEL schedulers in the absence

of locking.

2.2.1 Overhead Analysis for GEL Schedulers Without Locking

In this section, we discuss overhead analysis for GEL schedulers without locking. Consider Figure 2.2,

which depicts a subset of the schedule in Figure 1.10(a) with some additional overheads included.

1. From the time when an event triggering a release (e.g., a timer firing) occurs until the time that

the corresponding interrupt is received by the OS, there is event latency, denoted ev (at time 18) in

Figure 2.2.

2. When the interrupt is handled, the scheduler must perform release accounting and may assign the

released job to a CPU. This delay is referred to as release overhead, denoted rel (after time 18) in

Figure 2.2.

21

3. If the job is to be executed on a CPU other than the one that ran the scheduler, then an inter-processor

interrupt (IPI) must be sent. In this case, the job will be delayed by the IPI latency of the system,

denoted ipi (after time 18) in Figure 2.2.

4. The scheduler within the OS must run when the IPI arrives (before time 19), creating scheduling

overhead, denoted sch (before time 19) in Figure 2.2.

5. After the scheduling decision is made, a context switch must be performed, creating context switch

overhead, denoted cxs (at time 19) in Figure 2.2.

Observe from Figure 1.10(a) that τ3,0 had previously been preempted by τ2,1 at time 12. As a result of

this earlier preemption, it experiences three additional costs when it is scheduled again after time 16.

1. When τ3,0 is scheduled again (time 16), it incurs another scheduling overhead sch and context switch

overhead cxs.

2. Because τ3,0 was preempted, some of its cached data items and instructions may have been evicted

from caches by the time it is scheduled again. As a result, τ3,0 will require extra execution time in order

to repopulate caches. Although not depicted in Figure 2.2, observe from Figure 1.10(a) that τ3,0 has

also migrated from another processor, which may have caused even greater cache effects than if it had

resumed on the same CPU. The added time to repopulate caches is called cache-related preemption

and migration delay (CPMD) and is denoted cpd (before time 17) in Figure 2.2.

Another overhead that occurs is the presence of interrupts, both from the periodic timer tick and from job

releases. The maximum time for the timer tick interrupt service request routine is denoted tck in Figure 2.2

(time 15), and the maximum cache-related delay from an interrupt is denoted cid in Figure 2.2 (after time 15).

Having discussed the nature of the overheads, we now give the precise expressions used by Brandenburg

(2011) to perform overhead accounting. In these expressions, each overhead is represented as a superscript of

∆. For example, the event latency, denoted ev in Figure 2.2 as described above, is represented as ∆ev. Virtual

tasks are defined for interrupt sources. For the timer interrupts, we let

Ctck
0 , ∆

tck +∆
cid, (2.1)

22

and we let T tck
0 be the period of the timer tick. For each task τi, the corresponding release interrupts are

handled by denoting

Cirq
i , ∆

rel +∆
cid, (2.2)

T irq
i , Ti. (2.3)

We let U tck
0 ,Ctck

0 /T tck
0 and U irq

i ,Cirq
i /T irq

i and define a parameter representing how long a CPU can

be occupied by interrupts in the short term:

cpre ,
Ctck

0 +∆ev ·U tck
0 +∑1≤ j≤n

(
∆ev ·U irq

j +Cirq
j

)
1−U tck

0 −∑1≤ j≤nU irq
j

. (2.4)

Each τi (before overhead inflation) is replaced with τ ′i (after overhead inflation). Each τi in τ has its Ci

and Ti parameters redefined as follows, with the remaining parameters unchanged.

C′i ,
Ci +2 · (∆sch +∆cxs)+∆cpd

1−U tck
0 −∑1≤ j≤nU irq

j

+2 · cpre +∆
ipi, (2.5)

T ′i , Ti−∆
ev. (2.6)

We sometimes dedicate one processor, called a release master, to handling interrupts. If we use a release

master, then the only job that can be delayed by a release interrupt is that job itself. Therefore, the following

modifications are made.

cpre ,
Ctck

0 +∆ev ·U tck
0

1−U tck
0

, (2.7)

C′i ,
Ci +2 · (∆sch +∆cxs)+∆cpd

1−U tck
0

+2 · cpre +∆
ipi +∆

rel. (2.8)

After these modifications are made to the task system, analysis that assumes the absence of overheads

can then be applied. The soundness of this analysis is established in (Brandenburg, 2011), to which we refer

the reader for details.

In the presence of a locking protocol, additional modifications to the task system are necessary. We next

describe the modifications under the mutex queue spinlock protocol considered in Chapter 5.

23

2.2.2 Mutex Queue Spinlock Protocol Accounting

Under the mutex queue spinlock protocol, when a job requests a resource, it first spins non-preemptively

until it acquires the resource. Then, it enters a critical section during which it uses the resource. It continues

to execute non-preemptively until the critical section is over, at which time it releases the resource for other

jobs to use.

In the presence of a locking protocol, Brandenburg (2011) describes two forms of blocking that can

prevent a job from running, even if it has sufficiently high priority. When a task is spinning waiting for a

resource (because another job is in a critical section using that resource), it incurs s-blocking. When a job

cannot execute because it cannot preempt a lower-priority job that is running non-preemptively, it incurs

pi-blocking. Both types of blocking must be bounded. Here we provide only the results from (Brandenburg,

2011), referring the reader to that work for full justification.

Brandenburg considered clustered scheduling, in which tasks are partitioned onto clusters of CPUs, and

global scheduling is used within each cluster. The number of CPUs in cluster v is denoted cv, and the set of

tasks in cluster v is denoted θv.

Resource Model. We consider a set {ψ1,ψ2, . . . ,ψnr} of nr resources. Each job can request only one

resource at a time, but can request the same resource multiple times. We denote as Ni,q the maximum number

of requests for ψq that any τi,k can issue, and as Li,q the maximum length of such a request.

Definitions Used in Analysis. We let Ri denote a response-time bound for any job of τi. Job response times

can be affected by the amount of blocking a job experiences, even though Ri must be used while analyzing

blocking. As a result, blocking terms should be computed iteratively. Initially, each Ri can be computed

while ignoring blocking. The newly computed blocking can then be used to compute new values for Ri. This

process is repeated until each Ri no longer grows larger.

Brandenburg defines the request interference bound for a task τi, with respect to resource ψq and interval

length t, as a set of Ni,q ·
⌈

t+Ri
Ti

⌉
requests, each of length Li,q. The request interference bound is denoted

tif (τi,ψq, t). He also defines, for a request set S, top(l,S) as the l largest requests, and total(l,S) as the sum of

the lengths of all requests in top(l,S). In addition, the aggregate interference bound of a set of tasks θ , with

respect to resource ψq, interval length t, and interference limit l, is the set of all requests in top(l, tif (τi,ψq, t))

for any τi ∈ θ . The aggregate interference bound is denoted tifs(θ ,ψq, t, l).

24

S-Blocking Analysis. Brandenburg shows that the greatest s-blocking that an arbitrary τi,k can incur due to

requests for ψq issued by jobs of tasks assigned to cluster v is

spin(τi,v,ψq) =

total(Ni,q · cv, tifs(θv,ψq,Ri,Ni,q)) if cluster v is not τi’s cluster,

total(Ni,q · (cv−1), tifs(θv \{τi},ψq,Ri,Ni,q)) if cluster v is τi’s cluster.

The total s-blocking that arbitrary τi,k can incur is computed by summing spin(τi,v,ψq) over all clusters and

resources.

PI-Blocking Analysis. Recall that τi,k is “pi-blocked” if a lower-priority job is executing non-preemptively,

preventing τi,k from beginning execution.

Brandenburg defines lower(τi) as the set of tasks within the same cluster as τi that could cause some

τi,k to incur pi-blocking. For a fixed-priority scheduler, lower(τi) is simply the set of tasks that have lower

priority than τi. For a GEL scheduler, lower(τi) is the set of tasks τ j with Yj > Yi. This is because if τ j,`

blocks τi,k at ri,k, then r j,` < ri,k (as τ j,` is already running). Thus, if Yj ≤ Yi, then by the definition of Yi in

Section 1.3, y j,` ≤ yi,k, and τ j,` does not have lower priority.

A job executes non-preemptively only during an interval from the request of a resource until the

completion of the corresponding critical section. Therefore, bounding the length of such an interval for any

job of any task in lower(τi) is sufficient to bound the pi-blocking incurred by any job of τi.

Let τ j,` be an arbitrary job that causes τi,k to incur pi-blocking. Brandenburg demonstrates that the

maximum amount of time that τ j,` may be blocked waiting for resource ψq due to jobs in cluster v is at most

spin′i(τ j,v,ψq) =

total(cv, tifs(θv,ψq,R j,1)) if cluster v is not τ j’s cluster,

total(cv−1, tifs(θv \{τi,τ j},ψq,R j,1)) if cluster v is τ j’s cluster.
(2.9)

For a given resource, summing this expression over all clusters and adding L j,q yields the maximum time

that τ j,` can execute non-preemptively. Note that ` is arbitrary, so this bound can be considered a bound for

τ j, not just for τ j,`. Selecting the maximum such bound for all resources and tasks in lower(τi), ignoring

combinations of τ j and ψq such that τ j does not use ψq, yields the maximum pi-blocking that τi,k can incur.

25

Figure 2.3: Illustration of overheads that occur in a spinlock protocol.

Accounting Method. In order to account for blocking, each task’s WCET should be increased by the sum

of the maximum s-blocking it may incur and the maximum pi-blocking it can incur. Then, analysis methods

that assume the absence of a locking protocol can be used.

We next discuss how to account for overheads related to this locking protocol.

2.2.3 Mutex Queue Spinlock Protocol Overheads

We now consider the overheads resulting from the mutex queue spinlock protocol. Brandenburg’s

analysis assumes the presence of a release master.

When τi,k attempts to access ψq, execution proceeds as follows, and as depicted in Figure 2.3.

1. τi,k begins to execute non-preemptively by issuing a system call. The related overhead is denoted sci in

Figure 2.3.

2. τi,k uses the locking protocol and attempts to acquire ψq. If ψq is held by another job, then τi,k must

spin. The time spent spinning is accounted for using the techniques presented in Section 2.2.2, so we

do not consider that time in overhead accounting. However, the cumulative time spent running other

parts of the locking protocol is denoted in in Figure 2.3. Note that in appears both before and after the

spinning in Figure 2.3. The overhead term ∆in would refer to the sum of the two occurrences.

3. τi,k actually executes its critical section. Brandenburg’s analysis assumes that no overheads affect

critical sections, which is why a release master is assumed.

4. τi,k uses the locking protocol to release ψq. The related overhead is denoted out in Figure 2.3.

5. τi,k then begins to execute preemptively by issuing a system call, with the overhead denoted sco in

Figure 2.3.

26

Accounting for overheads within a spinlock protocol is a three-step process. The first step is to apply the

overheads due to the spinlock protocol, without accounting for other overheads. Note that the overheads in

and out may delay other jobs waiting to acquire ψq, causing them to spin for longer times. Therefore, we

must add ∆in +∆out to each request length Li,q, so that the blocking analysis from Section 2.2.2 correctly

bounds the spinning of other tasks. Additionally, during the first step we also account for the extra execution

that each τi,k experiences due to locking overheads. Each request produces (∆sci +∆sco +∆in +∆out) units of

overhead, and the total number of requests can be computed by summing Ni,q over all resources. We adjust

Ci accordingly.

During the second step, we apply the lock accounting from Section 2.2.2 to the modified task system,

inflating the worst-case execution times of all tasks that use resources.

During the final step, we apply the locking-agnostic overhead accounting from Section 2.2.1 to obtain

the final values of Ci and Ti for each task.

Recall that, as discussed in Section 2.2.2, the lock accounting requires a response-time bound Ri for

each τi, and that the accounting may need to be performed iteratively if it increases Ri for some τi. When

performing overhead-aware analysis, the second and final steps may need to be repeated iteratively if together

they cause some Ri to increase.

2.3 SRT Models

Although this dissertation primarily considers the “bounded lateness” definition of SRT, much past

research has been performed describing and using other definitions. Except where noted, these papers

consider uniprocessors and the implicit-deadline periodic task model, where tasks have exact rather than

minimum separation times.

Koren and Shasha (1995a) allowed each task to have a skip factor s: each time a job of that task misses

a deadline, the next s− 1 jobs must complete. The scheduler can simply skip any task that would miss a

deadline, so some task sets with total utilization larger than one can be scheduled. However, Koren and

Shasha showed that even on a uniprocessor, optimal scheduling with their model is NP-hard. Hamdaoui and

Ramanathan (1995) considered the more general (h,k) model.1 In that model, h jobs of a task must meet

their deadlines out of any consecutive k jobs of that task. Both of these types of constraints are generalized

1We have changed their notation slightly to avoid conflict with other terms.

27

as weakly hard constraints by Bernat et al. (2001). They defined a “weakly hard real-time system” as any

system with a precise bound on the distribution of met and missed deadlines. (Normal HRT systems are a

special case, where every deadline is met.) Bernat et al. described a few variants, which can be combined

with logical operators:

• A task can “meet any h in k deadlines,” which is identical to the (h,k) model discussed above.

• A task can “meet row h in k deadlines”, meaning that it must meet h deadlines in a row in every window

of k deadlines. If k = h+1, this scheme reduces to a skip factor of h.

• A task can “miss any h in k deadlines,” meaning that it cannot miss more than h deadlines in a window

of k.

• A task can “miss row h in k deadlines,” meaning that it cannot miss more than h deadlines in a row in a

window of k. (The window size k is not actually required to express this condition.)

A weaker form of the (h,k) model, the window-constrained task model, was described by West and

Poellabauer (2000). In that model, h jobs must meet their deadlines within periodic fixed windows of k

jobs of that task. (Any task system that is schedulable using the (h,k) model is also schedulable using the

window-constrained model.)

Lin and Natarajan (1988) proposed the imprecise computation model for tasks that compute numerical

results. Under that model, each job has a mandatory part that must complete before its deadline under any

circumstances, and an optional part that can be interrupted at any time. The mandatory part guarantees an

approximate solution, and the precision of the solution must be non-decreasing as the optional part executes.

The task must be defined to conform to these requirements. Ideally, every task would run its optional part

to completion, but part of that computation can be cancelled when that is not possible. This model is not

sufficient to provide a well-defined scheduling problem, because there must be some mechanism to determine

which optional parts to execute. Several potential strategies, such as minimizing the number of dropped

optional portions or minimizing the maximum error, were discussed by Liu et al. (1991). A more precise

metric and an optimal scheduling algorithm with regard to that metric were proposed by Aydin et al. (2001).

Locke (1986) assigned to each task a value function that specifies the value to a system of completing a

job at a particular time after its release. “Value” is a unit-less quantity that can be compared between jobs, to

28

V
a
lu

e

Time

Critical Time

(a) Value function with step at critical time.

V
a
lu

e

Time

Critical Time

(b) Value function with exponential drop-off after crit-
ical time.

V
a
lu

e

Time

Critical Time

(c) Value function with quadratic drop-off after critical
time.

V
a
lu

e

Time

Critical Time

(d) Value function with a specific target completion
time, and quadratic increase and drop-off before and
after that time, respectively.

Figure 2.4: Example value functions from Locke (1986).

determine which job to complete in the event of an overload. Ideally, the system should accrue as much total

value as possible.

Examples of value functions are depicted in Figure 2.4. In each example, the x axis represents the

completion time of a job after its release, while the y axis represents the value to the system from completing

that job. For example, suppose τi is the task considered in Figure 2.4(a). If some τi,k completes before the

time marked “Critical Time,” then the system achieves some constant value. However, if the job completes

after that time, the system receives no value whatsoever. Thus, the system should only execute τi,k if it is

possible for τi,k to complete before the critical time. Furthermore, suppose there are two tasks τi and τ j that

each have value functions of this form and that at time t there are ready jobs τi,k and τ j,`. If it is possible to

complete either τi,k or τ j,` before its respective critical time, but not to complete both before their respective

critical times, then τi,k should generally be selected if τi has a higher constant value than τ j, and τ j,` should

be selected if the reverse is true. (This is not strictly true because the choice of τi,k or τ j,` may affect the

ability to complete other jobs at appropriate times.)

Although not required by the definition of “value function,” for tractability Locke (1986) considered

value functions that are continuous and have continuous first and second derivatives, except for (possibly) a

single discontinuity at the critical time. This is why the time of the discontinuity in Figure 2.4(a) is labelled as

29

the “critical time.” Although the step function discussed above is the simplest value function, Locke proposed

others. Figure 2.4(b) depicts a value function that drops off exponentially after the critical time, indicating

that there is still some value to completing jobs late, but this value rapidly drops off as jobs complete later.

Figure 2.4(c) depicts a value function that drops off more slowly after the critical time, indicating that

completing jobs slightly late has a smaller impact than for the value function in Figure 2.4(b). Finally, as

depicted in Figure 2.4(d), it is also possible to use value functions to indicate that a job should not complete

too early. In this case, a job that finishes very quickly will achieve zero value, just as if the job finished very

late.

Because value functions are used primarily for overload management, scheduling with value functions is

discussed in the next section.

Buttazzo and Stankovic (1995) used a closely related notion of value. They divided tasks into “hard”

and “critical” categories. Tasks of both types are expected to meet their deadlines when the system is

not overloaded, and critical tasks are only allowed to miss deadlines when the system is overloaded even

considering only critical tasks. Furthermore, a task can be accepted or rejected. Once a critical task has

been accepted it is always guaranteed to complete by its deadline, even during severe overload. In addition,

each task can have a deadline tolerance, which is an allowable amount of tardiness. Any job that will not

complete within its task’s deadline tolerance should be rejected and not run at all. The scheduling algorithm

they proposed is discussed in Section 2.5.

2.4 Overload Management Using Value Functions

In this section, we discuss prior work on scheduling algorithms that use value functions to define correct

behavior during overload.

2.4.1 Locke’s Best-Effort Heuristic

Locke (1986) considered a system that resembles the sporadic task model, scheduled globally on a

multiprocessor. However, rather than having a per-task upper bound on job execution times, there is a

stochastic per-task distribution of execution times. Similarly, rather than having a per-task lower bound

on separation time between job releases, job releases follow a stochastic per-task distribution. Given these

modifications to the task system, it is possible for the system to experience overload if there is a burst of jobs

30

that either are released closer together than generally expected, or that run for longer times than generally

expected.

As discussed in Section 2.3, the system should try to achieve the maximum cumulative value even if

such an overload occurs. However, there are two difficulties that arise in attempting to do so: uncertainty

about system behavior and the intractability of the scheduling problem.

Locke assumed that the system does not know the timing of job releases until they occur and does not

know the actual run time of each job until it completes. We show by example that even the first assumption

is itself sufficient to prevent the system from always maximizing the cumulative value. Consider the task

system with value functions depicted in Figure 2.5, as scheduled on a uniprocessor. Suppose that τ1 releases

τ1,0 and τ2 releases τ2,0 at time 0 and that no other job is released before time 15. Further suppose that τ1,0

is known to require 14 ms of execution, while the job of τ2,0 is known to require 7 ms of execution. This

scenario is depicted in Figure 2.6(b)–(c). Because these two jobs together require 21 ms of execution, while

their last critical time is at time 15, the system cannot complete both jobs before their critical times. It is

therefore better for it to select τ1,0 as in Figure 2.6(b), in order to achieve a cumulative value of three, rather

than selecting τ2,0 as in Figure 2.6(c), which would only achieve a cumulative value of one.

Suppose, however, that τ3 actually releases τ3,0 at time 8, and that τ3,0 is known to require 6 ms of

execution. Because τ3,0 can complete with a value of 4, which is greater than the value that can be achieved

by either τ1,0 or τ2,0, the system should execute τ3,0 to maximize the cumulative value. If the system initially

chose to execute τ1,0, as depicted in Figure 2.6(d), then because τ1,0 does not actually complete, the cumulative

value achieved is only four. However, if the system initially chose to execute τ2,0, as depicted in Figure 2.6(e),

then because τ1,0 completes, the cumulative value achieved is five. Therefore, the optimal choice at time 0

depends on whether τ3,0 is released at time 8, so making an optimal choice is impossible under Locke’s

assumptions. A similar example could be constructed if the execution times were unknown.

Locke also noted that, even if optimal decision-making were possible, the problem is likely to be

NP-complete. However, the results of this decision-making process are most important precisely when the

system is already overloaded and cannot complete all jobs. Furthermore, running the scheduling algorithm

requires the same computing resource as the jobs themselves. Therefore, running an optimal scheduling

algorithm would cause more harm than it prevents. Thus, Locke could have chosen to develop either a

heuristic algorithm or an approximation algorithm with a corresponding provable bound on achieved value,

but he chose the former.

31

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18

V
a

lu
e

Time

(a) Value function for τ1.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18

V
a

lu
e

Time

(b) Value function for τ2.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18

V
a

lu
e

Time

(c) Value function for τ3.

Figure 2.5: Value functions for an example task system.

32

(a) Key for schedules in this figure.

(b) Schedule running only the job from τ1, with a
cumulative value of 3.

(c) Schedule running only the job from τ2, with a
cumulative value of 1.

(d) Schedule running jobs from τ1 (though not to com-
pletion) and τ3, with a cumulative value of 5.

(e) Schedule running jobs from τ1 and τ3, with a cu-
mulative value of 4.

Figure 2.6: Several possible schedules for the task system with value functions depicted in Figure 2.5. τ1,0 is
released at time 0 and is known to have an execution time of 14. τ2,0 is also released at time 0 and is known
to have an execution time of 7. In (d) and (e), τ3,0 is released at time 8 and is known to have an execution
time of 6.

33

Locke’s heuristic algorithm is based on the assumption that, under typical circumstances, it will be

possible for nearly every job to complete at a time that allows it to achieve nearly all of its possible value.

This assumption simply means that the system was properly provisioned for the common case. In order to

exploit this assumption, Locke assigned for each job a deadline that is the latest time it can complete while

continuing to achieve a user-configurable fraction of its maximum achievable value. In the case of a step

value function, as in Figure 2.4(a), a job’s deadline is simply its critical time. However, under any of the other

types of value functions depicted in Figure 2.4, a job’s deadline is usually after its critical time. His system

simply prioritizes all jobs by deadline until the probability of a deadline miss exceeds a user-configurable

threshold.

Once a deadline miss is likely, the system switches prioritization to a heuristic based on value density.

The value density for τi,k at time t is computed as follows. Let er
i,k(t) be the expected remaining execution

time for τi,k at time t, conditioned on how long it has already executed. The expected value V (t) of τi,k at time

t is defined to be the value that τi,k will accumulate if it completes at time t + er
i,k(t). The value density of τi,k

at time t is simply V (t)/er
i,k(t). For example, consider the schedule in Figure 2.6(d), At time t = 0, τ1,0 is

expected to have 14 units of execution remaining, completing at time 14, and has an expected value of three,

resulting in a value density of 3/14. At time t = 8, τ1,0 is expected to have 14−8 = 6 units of execution

remaining, still completing at time 14, and has an expected value of three. Its value density is now 3/6 = 1/2.

The heuristic that the system uses during overload, when it is likely that some job will miss its deadline,

is to prioritize jobs by decreasing value density. This heuristic is actually illustrated in Figure 2.6(d). As

discussed above, at time t = 0, the value density of τ1,0 is 3/14. Similarly, the value density of τ2,0 at t = 0 is

1/(7−0) = 1/7 < 3/14, so τ1,0 is selected for execution. At time t = 8, as discussed above, τ1,0 now has a

value density of 1/2. However, τ3,0 then has a value density of 4/(14−8) = 2/3 > 1/2, so τ3,0 is selected in

place of τ1,0.

Another detail in Locke’s heuristic relates to jobs with value functions of the form depicted in Fig-

ure 2.4(d), where completing a job too early can result in smaller achieved value. Because a job’s value is

based only on its completion time, it is possible to start running a job long before its critical time, as long

as its execution is discontinued when it approaches completion. However, because job execution times are

determined stochastically, there is a risk that the job will complete earlier than expected. Locke’s system

assumes that a job will not complete if it has executed for less than some user-specified number of standard

34

deviations below its expected execution time. After it has executed for this amount of time, an incomplete job

will be suspended until closer to its desired completion time.

Locke demonstrated the effectiveness of his heuristic through experiments that simulate global multipro-

cessor schedules where one CPU is dedicated to making scheduling decisions for the rest of the system. He

demonstrated that his scheme provides significantly higher achieved value than other considered schedulers in

the presence of overload, while also meeting most deadlines in the absence of overload. However, he did not

provide any theoretical guarantees comparing the achieved value to the maximum possible achieved value.

2.4.2 D∗

Unless otherwise noted, all papers discussed in the remainder of Section 2.4 consider only step value

functions, as depicted in Figure 2.4(a). In such cases, we say that the deadline of each job is simply its critical

time, and that its value is the value that it achieves if it completes before its critical time. Furthermore, the

job’s value density is simply its value divided by its total execution time. (This differs from the notion of

“value density” used by Locke (1986), who used remaining execution time.) We use the constant q to denote

the importance ratio, or the ratio of the largest value density in the system to the smallest value density in the

system.2

Baruah et al. (1991) considered scheduling on uniprocessors. They observed that Locke (1986) provided

only heuristics, but did not provide any guarantee about the value that could be achieved during an overload.

In order to provide such a guarantee, they developed a new scheduling algorithm, D∗. They assumed that

job release times are not known ahead of time, but that the exact execution time of each job is known upon

release.

D∗ is similar to the later-proposed earliest deadline until zero laxity (EDZL) scheduling algorithm (Baker

et al., 2008; Lee, 1994). A job’s laxity is the time until its deadline minus its remaining execution time. If it

reaches a zero-laxity state, then it must be scheduled immediately, or it will miss its deadline. Like EDZL, D∗

behaves identically to EDF until some τi,k reaches a zero-laxity state. If no other job is in a zero-laxity state

when this occurs, then τi,k runs immediately. To handle the case when some τ j,` is already in a zero-laxity

state, D∗ maintains the sum of the values of all jobs that have been preempted in a zero-laxity state since the

last successful job completion. Such preempted jobs have been abandoned, as it was impossible for them to

2Several of the papers cited herein use k for the importance ratio, but we use q (quotient) to avoid conflict with the job index k.

35

meet their deadlines. If τi,k has a value greater than this sum plus the value of τ j,`, then τi,k preempts τ j,`, τ j,`

is abandoned, and the sum is updated. Otherwise, τi,k is abandoned.

Baruah et al. (1991) proved that, if value densities are normalized such that the smallest is at least one,

the total value achieved during an overloaded interval using D∗ is at least 1/5 the length of that interval.

Although this value is small, they proved that no algorithm can guarantee more than 1/4 of the length of

such an interval without knowing job releases ahead of time. Baruah et al. also showed experimentally that

D∗ performs similarly to Locke’s best effort scheduler in the common case, but provides drastically better

behavior in certain pessimistic cases.

2.4.3 Dover

Koren and Shasha (1995b) provided a scheduler Dover that can guarantee an achieved value of 1/4 of the

length of an overloaded interval, closing the gap between D∗ and the theoretical limit. The design of Dover,

like the design of D∗, is based on EDF and is identical to EDF until an overload occurs.

Even during underload, Dover maintains two sets of ready jobs, not including the currently running job:

waiting jobs and privileged jobs. If a job is preempted by a normal job release, then it becomes a privileged

job. The system keeps track of the amount of time that a newly arriving job can execute without causing the

current job or any privileged job to miss its deadline. When a new job arrives, if its execution cost is less

than this time, it preempts the current job. Otherwise, because adding the new job could cause some existing

job to miss its deadline, an overload has occurred. Therefore, the new job is instead added to the queue of

waiting jobs. This strategy ensures that a privileged job can never reach a zero-laxity state.

Let Vj,` denote the value of τ j,`. When waiting τi,k reaches a zero-laxity state, its value is compared to

(1−√q) · (∑τi,k∈ΘVj,`), where Θ is the set containing all privileged jobs and the currently running job. If

its value is larger than this expression, then τi,k preempts the currently running job, and all privileged jobs

become waiting jobs. Otherwise, τi,k is discarded.

Koren and Shasha (1995b) also demonstrated that Dover achieves the optimal competitive ratio of 1
(1+
√

q)2 .

In other words, Dover is guaranteed to achieve at least 1
(1+
√

q)2 times as much value in an overloaded interval

as could be achieved by a clairvoyant algorithm. Baruah et al. (1991) demonstrated that no better competitive

ratio is possible.

36

Figure 2.7: Grouping of CPUs used by MOCA.

2.4.4 MOCA

While D∗ and Dover provide guarantees on a uniprocessor, Koren and Shasha (1994) proposed the

multiprocessor on-line competitive algorithm (MOCA) to provide such guarantees on a multiprocessor.

MOCA requires an even number of processors and works by dividing the system into m/2 bands of two

processors, as depicted in Figure 2.7. ψ of the bands are designated with specific value densities, and ω form

a central pool. It must be the case that ψ +ω = m/2, so that each CPU is assigned to exactly one band. Each

band contains a safe processor for executing jobs that can be guaranteed to meet their deadlines and a risky

processor for executing jobs for which such a guarantee cannot be made.

When a job is released, the system first tries to assign it to the band designated for its value density. If

it can be assigned to the safe processor without compromising the guarantees made to other jobs that are

already on that safe processor, the system assigns it there. Otherwise, the system tries to assign it to the safe

37

processor for a band designated for lower value density, considering such bands in decreasing value density

order. If even that fails, the system then tries to assign it to a safe processor in the central pool, considering

such processors in arbitrary order. If all else fails, the system adds it to a list of waiting jobs and does not

consider it until it reaches a zero-laxity state.

When a waiting job τi,k reaches a zero-laxity state, the system tries to schedule it on a risky processor.

It first looks for an idle risky processor, considering first that in the band designated for τi,k’s value density,

followed by those in bands designated for lower value densities in decreasing order, then by those in the

central pool. If it finds an idle risky processor, it begins executing τi,k there. Otherwise, it considers the

same set of risky processors as before and finds the one running the τ j,` with the earliest deadline. If τi,k

has a later deadline than τ j,`, then τ j,` is abandoned, and τi,k begins running in its place. Otherwise, τi,k is

abandoned. This heuristic is used to minimize the risk of unnecessary idleness on a risky processor, as a job

in a zero-laxity state will run continuously until its deadline.

Whenever some safe processor becomes idle, the safe and risky processors within that band switch roles.

This guarantees that the job running on the risky processor will complete (as it is now on a safe processor)

and ensures that an idle risky processor is now ready to schedule a waiting job that reaches a zero-laxity state.

Koren and Shasha (1994) also showed that no scheduler executing on m processors can achieve a

competitive ratio above
q−1

qm · (q 1
m −1)

,

and that MOCA achieves a competitive ratio of

1

1+2m ·

max1≤i≤ψ
q

i
ψ

ω+ q
i
ψ −1

q
1
ψ −1

.

ψ should be chosen to maximize this ratio. Observe that MOCA is not necessarily optimal in the sense

of achieving the best possible competitive ratio. However, unlike heuristic approaches, it does provide a

guarantee.

38

Figure 2.8: Example job dependency DAG to illustrate the work of Garyali (2010).

2.4.5 Schedulers Accounting for Dependencies

Some work has been performed on scheduling with value functions in the presence of dependencies such

as shared resources (Cho, 2006; Clark, 1990; Garyali, 2010; Li, 2004; Li et al., 2006). Such dependencies

are not considered in our work on overload management, so we do not review most of these works in detail.

However, Garyali (2010) proposed two multiprocessor heuristics that may be useful even without such

dependencies, so we discuss his work as a representative example.

Both of Garyali’s heuristics assume that each task has a parameter specifying the expected execution time

of each of its jobs and another parameter specifying the exact period between releases. In order to handle

dependencies and shared resources, both heuristics maintain a directed acyclic graph (DAG) representing

dependencies among jobs.

An example DAG is depicted in Figure 2.8. Resource i is identified as Ri. In this example, τ1,0 is currently

holding the lock for R1, and τ3,2, τ5,0, and τ6,1 are waiting to acquire that lock. τ2,3 is not holding any lock

that has been requested by any other job. τ4,1 holds the lock for R2. τ7,2 is waiting to acquire the lock for R2,

but holds the lock for R3. Finally, τ8,2 is waiting to acquire the lock for R3.

Whenever a job requests, acquires, or releases a resource, the DAG is updated. If a cycle is created,

causing the “acyclic” property of the graph to be violated, then a deadlock has occurred. Such a situation

implies that the jobs involved in the cycle cannot make progress. Both heuristics proposed by Garyali choose

to abort one of the involved jobs in order to resolve the deadlock.

39

If a job has no incoming edges in the DAG, then it already holds any resources it requires to run. Such a

job is called a zero-in-degree job.3 In Figure 2.8, τ1,0, τ2,3, and τ4,1 are zero-in-degree jobs. Both of Garyali’s

heuristics consider only zero-in-degree jobs for scheduling, as other jobs cannot perform useful work until

they acquire their requested locks.

Furthermore, both heuristics use a notion of global value density (GVD), similar to the notion of “value

density” used by Locke (1986). Recall that the “value density” of τi,k at time t is the value τi,k is expected to

accrue if it runs continuously until its expected remaining execution is exhausted, divided by its expected

remaining execution er
i,k(t). Garyali’s heuristics also take into account the value achieved by completing jobs

waiting on τi,k—the descendants of τi,k within the DAG. Let Vj,` be the value achieved if τ j,` completes before

its deadline, and Θ be the set containing τi,k and all of τi,k’s descendants. The GVD of τi,k at t is
∑τ j,`∈Θ Vj,`

∑τ j,`∈Θ er
j,`(t)

.

The first heuristic Garyali proposed is the non-greedy global utility accrual (NG-GUA) algorithm.4

NG-GUA attempts to create a G-EDF schedule. The deadline used for scheduling τi,k is actually the earliest

deadline of τi,k itself or any descendent in the DAG, thus implementing the priority inheritance protocol (PIP)

(Sha et al., 1990). Each time a scheduling decision must be made, NG-GUA simulates a G-EDF schedule of

all zero-in-degree jobs. If no deadline is missed in this schedule, then NG-GUA simply makes scheduling

decisions according to G-EDF. On the other hand, if some deadline is missed in that schedule, NG-GUA

removes jobs from consideration in order of increasing GVD until the simulated schedule no longer misses

deadlines. Jobs are prioritized from the resulting schedule.

The second heuristic Garyali proposed is the greedy global utility accrual (G-GUA) algorithm. G-GUA

is ”greedy” in the sense that it tries to optimize accrued value even in the absence of expected deadline

misses. G-GUA works by partitioning jobs (not tasks) onto CPUs and simulating an EDF schedule (with

the PIP) on each CPU. Jobs are considered in decreasing GVD order. If a job cannot be scheduled on any

CPU without causing an expected deadline miss, the partitioning heuristic continues to the next job. Jobs

are prioritized based on the resulting schedule. Every time a new scheduling decision must be made, the

partitioning heuristic is re-executed, so it is possible that a job will be migrated to a different CPU, thus

G-GUA is truly a global algorithm.

Garyali demonstrated the effectiveness of his heuristics using a real in-kernel implementation. He showed

that both heuristics significantly outperform traditional approaches like G-EDF when overloads are present,

3Garyali (2010) referred to jobs as “phases.”
4Garyali (2010) used the term “utility” for the same concept as “value” in (Locke, 1986).

40

and that G-GUA can often accrue more utility at the expense of unnecessary deadline misses in the underload

case.

2.5 Rate-Based Earliest Deadline Scheduling

Buttazzo and Stankovic (1995) proposed the robust earliest-deadline (RED) scheduler that uses a similar

model to value functions. Each task has an associated deadline, value, and deadline tolerance. If a job

completes within its deadline plus its deadline tolerance, then it achieves its value; otherwise, it achieves no

value. However, scheduling decisions are based only on deadline, without accounting for deadline tolerance.

Under RED, each task has a WCET that will not be exceeded, but the arrival pattern of jobs is not known.

In this respect, its assumptions are like those used by D∗, Dover, and MOCA.

When a job is released, it can be accepted or rejected. If it is rejected, it will not run unless slack is

created in the future by jobs that underrun their WCETs. In addition to considering value, RED also divides

tasks into two classes: hard and critical. If a hard job is accepted, then it must complete unless overload later

occurs. If a critical job is accepted, then it must complete under all circumstances.

At runtime, RED keeps a list of all unfinished accepted jobs, both hard and critical, ordered by deadline.

Whenever a new τi,k is released, RED uses the list to determine whether adding τi,k will cause a deadline

miss. If it will not, τi,k is immediately accepted. Otherwise, RED will attempt to find one or more hard jobs

that can be dropped. Buttazzo and Stankovic (1995) considered two different techniques to select such jobs,

one that identifies the single job of lowest value that can be dropped (if such a job exists), and one that may

drop multiple jobs if τi,k is critical. If either strategy succeeds in finding a set of hard jobs with total value

less than that of τi,k, and which if dropped will ensure no deadline misses for other accepted jobs, then all

jobs in that set are rejected. Otherwise, τi,k is rejected. When RED rejects a job, it adds that job to a list of

rejected jobs. If another job completes early, then RED will examine that list to determine whether it can then

schedule a job it previously rejected.

RED always executes the job at the beginning of its list of accepted jobs, thus running the job with the

earliest deadline. In the absence of overload, RED reduces simply to EDF. Buttazzo and Stankovic (1995)

provided experimental evidence that RED can achieve significantly higher value than other schedulers such

as EDF when an overload occurs.

41

Spuri et al. (1995) proposed the robust total bandwidth (RTB) scheduler, a similar scheduler to RED. RTB

also supports a class of hard periodic tasks that are not subject to being rejected. It does so by scheduling

the aperiodic tasks (i.e., the same types of tasks as the hard and critical tasks under RED) inside a server.

A server is a budgeted container for other tasks. The server can be scheduled with EDF, using a budget to

guarantee that it will not interfere with hard periodic tasks. When RTB chooses to schedule that server, it

actually executes one of the aperiodic jobs running inside that server. Tasks are accepted or rejected using a

similar strategy to RED.

2.6 Overload Management by Changing Execution Rates

Most of the overload management techniques surveyed thus far in this chapter have worked by dropping

certain jobs. An alternative technique is to adjust the minimum separation time of a task, slowing down the

rate at which it releases jobs.

Adaptive scheduling algorithms allow such a scaling of minimum separation times. Such algorithms

were surveyed in detail by Block (2008). However, most of these algorithms are intended for use in systems

where high variability in job execution times is expected, and minimum separation times must be decided

online for that reason. We are concerned primarily with systems that are provisioned for the common case,

but that need to recover from transient overloads.

The related problem of choosing new minimum separation times was addressed by Buttazzo et al. (2002),

who proposed the elastic model. Under the elastic model, tasks are assigned initial and maximum periods, as

well as elasticity factors that are used to determine the extent of “stretching” of each task. During a transient

overload, minimum separation times can be determined based on elasticity factors.

One adaptive scheduling algorithm, earliest eligible virtual deadline first (EEVDF) (Stoica et al., 1996),

uses a notion of virtual time similar to that used in Chapter 6 of this dissertation. Therefore, we provide a

description of EEVDF here.

EEVDF is a proportional share scheduling algorithm. Each task is assigned a weight, and each task

should receive a processor share that is commensurate with its weight. For example, consider the task system

in Figure 2.9. The actual progression of time is graphed on the bottom axis. From time 0 to time 2, only τ1 is

present in the system. Therefore, it receives all of the CPU time. At time 2, τ2 enters the system. Because τ1

has a weight of 4 and τ2 has a weight of 2, τ1 receives twice as much processor time as τ2. Until τ3 arrives at

42

Figure 2.9: EEVDF schedule of a task system. τ1 has a weight of 4 and always issues requests of size 2 ms.
τ2 has a weight of 2 and always issues requests of size 2 ms, although its second request issued at actual
time 8 completes early. τ3 has a weight of 2 and always issues requests of size 1 ms.

time 8, τ1 receives 2/3 of the processor time and τ2 receives 1/3. As long as some task is present, the CPU is

never idle.

In order to distribute processor time in accordance with the weights, EEVDF maintains the current virtual

time. The speed of virtual time relative to actual time depends on the total weight of all tasks in the system.

Specifically, if A(t) is the set of active tasks at time t and Wi is the weight of τi, then the speed of virtual time

at actual time t is 1
∑τi∈A(t)Wi

, and the virtual time v(t) corresponding to actual time t is

v(t) =
∫ t

0

1
∑τi∈A(t)Wi

dt.

For example, between time 0 and time 2 in Figure 2.9, only τ1 is present, with a weight of 4. Therefore,

the speed of virtual time in this interval is 1
4 , and v(2) =

∫ 2
0

1
4 dt = 0.5.

Each task repeatedly makes requests for CPU time, making a new request as soon as its previous request

has completed. When a task enters the system, it makes its first request. That request is said to have an

eligible time at that time. Each request also has an associated size s, indicating the amount of actual time

desired for computation. However, it is possible for the task to complete executing its request before it has

used a full s units of execution, as τ2 does in Figure 2.9 for the request issued at actual time 8.

43

Once a task completes executing its request, it usually initiates another request. If the just-finished

request had an eligible virtual time of r and an actual execution time of a, the new request has an eligible

time at virtual time r+ a
Wi

. Alternatively, the task may exit the system at the time its next request would

otherwise be eligible, as τ1 does in Figure 2.9 at actual time 16.5

For example, the first request of τ1 in Figure 2.9 has an eligible virtual time of 0 and executes for 2 ms.

Therefore, the eligible virtual time for the second request is 0+ 2
4 = 0.5. Similarly, the second request of τ1

has an eligible virtual time of 0.5, as just computed, and also executes for 2 ms. Thus, the eligible virtual

time for the third request is 0.5+ 2
4 = 1. Observe that the delay between eligible virtual times is 0.5 ms in

both cases, but the delay between eligible actual times is 2 ms between the first and second request, but 3 ms

between the second and third requests. This occurs because the virtual time clock runs more slowly once τ2

enters the system.

Each virtual request has a virtual deadline that is used to determine scheduling priority. If the request has

a virtual eligible time of r and a request size of s, then its virtual deadline is at time d = r+ s
Wi

. For example,

the first request of τ1 in Figure 2.9 has a virtual eligible time of 0 and a request size of 2 ms, so its virtual

deadline is 0+ 2
4 = 0.5. If a request runs for its full request size, then its virtual deadline is identical to the

virtual eligible time of the next request. However, if a request completes early, as happens to the second

request of τ2 that completes at actual time 12, the virtual eligible time of the next request may be earlier than

the virtual deadline of the just-finished request.

EEVDF prioritizes requests by earliest virtual deadline, considering only requests that have reached their

eligible times but have not completed. For example, at actual time 2 in Figure 2.9, τ1 has a request with a

virtual deadline of 1 and τ2 has a request with a virtual deadline of 1.5. Because τ1 has an earlier virtual

deadline, its request runs for the requested 2 ms. The next request of τ1 does not have an eligible time until

virtual time 1, or actual time 5, so τ2’s request runs from actual time 4 to actual time 5. In Figure 2.9, deadline

ties are broken by task index, so when τ1’s third request becomes eligible at actual time 5, it preempts the

executing request of τ2.

Observe in Figure 2.9 that τ3 and τ2 receive the same processor share, even though their request sizes

differ. The request size of τ2 is always 2 ms (even though the full size may not be used) and the request size

of τ3 is always 1. However, from actual time 8 onward (when τ3 enters the system), τ3 releases jobs twice

5Stoica et al. (1996) provide more complex rules that allow a task to leave at other times, but we do not consider those here.

44

as frequently as τ2, except for the shift in release time for τ2 caused by the early completion. This occurs

because both tasks have the same weight.

2.7 Overload Management within Mixed-Criticality Scheduling

Recall that, as discussed in Section 1.2, each task in a mixed-criticality system has multiple PWCETs,

and guarantees at level ` are conditioned on all jobs running for at most their respective level-` PWCETs.

However, it is possible that some task’s level-` PWCET was insufficiently pessimistic and is overrun by some

job. This is a form of overload.

As Santy et al. (2012) pointed out, many mixed-criticality scheduling algorithms respond to such a

PWCET overrun by simply dropping all jobs of level-` tasks from that point forward. However, this is usually

an unacceptable response. In Chapter 6 we discuss how to handle level-C PWCET overruns in MC2, and here

we discuss prior work addressing this problem within other mixed-criticality schedulers. In Section 2.7.1, we

consider methods that reduce the number of low-criticality jobs that are dropped, and in Section 2.7.2, we

discuss methods that scale minimum separation times as an alternative to dropping jobs.

2.7.1 Techniques to Reduce Dropped Low-Criticality Jobs

Baruah et al. (2010) introduced the own-criticality based priority (OCBP) technique for determining

static task priorities for mixed-criticality scheduling. Traditionally, when some job scheduled using this

technique overruns its level-` PWCET, all jobs at levels ` and below are dropped from that point forward.

However, Santy et al. (2012) proposed three improvements to this technique. For each, suppose that some job

τi,k of τi overruns its PWCET.

1. If some τ j has a lower criticality but a higher priority than τi, it is not necessary to drop jobs from τi.

This follows from a property of the analysis.

2. It is possible to set an allowance for each such τi and criticality level ` below that of τi, so that if

τi,k exceeds its PWCET by less than that allowance, it is not necessary to drop jobs at level `. This

technique is based on the work of Bougueroua et al. (2007), and is enforced by the Latest Completion

Time LCT mechanism that Santy et al. propose.

3. If no jobs at the level of τi are eligible for execution, then jobs no longer need to be dropped, and the

system can be returned to normal operation.

45

Santy et al. demonstrated that these techniques can significantly reduce the number of dropped jobs, primarily

due to the ability to only temporarily drop jobs from a task.

Santy et al. (2013) proposed two similar mechanisms to stop dropping jobs for low-criticality tasks, but

on multiprocessors.

The first mechanism Santy et al. (2013) proposed applies to fixed-priority systems. In order to restore the

system to level `, the system keeps track of a series of times fXi , ordered by decreasing task priority. fX0 is

the last completion time of a job that overran its level-` PWCET. For i > 0, fXi is the earliest time not earlier

than fXi−1 such that there is no active job of τi. Once fXn has been detected, where n is the number of tasks,

all tasks with criticalities at least ` can execute jobs. Furthermore, Santy et al. demonstrated that summing

bounds on the response time of all tasks provides a bound on the time it will take for such an fXn to occur

after an overload finishes.

The second mechanism Santy et al. (2013) proposed applies to any system where job priorities are fixed.

The mechanism to return the system to level ` works by tracking the actual schedule relative to a reference

schedule in which all jobs run for their level-` PWCETs. In order to do so, the system must simulate the

reference schedule and compare the remaining execution for each job between the actual schedule and the

reference schedule. Once all jobs have sufficiently short remaining execution to complete ahead of the

reference schedule, all tasks with criticalities at least ` can execute jobs.

These mechanisms prevent low-criticality tasks from being permanently impacted by an overload.

However, they do not allow these tasks to run at all for a period of time.

2.7.2 Scaling Separation Times of Low-Criticality Jobs Instead of Dropping Jobs

Su and Zhu (2013) proposed an alternative task model that allows for low-criticality tasks to have both a

desired period and a maximum period. For a properly provisioned system, it is possible to guarantee that

low-criticality tasks can execute with their maximum periods even when high-criticality tasks run for their

full PWCETs, while executing tasks at or close to their desired periods in the expected case. This task model

is called the elastic mixed-criticality (E-MC) task model. Unlike the similarly named model from Buttazzo

et al. (2002), E-MC does not use an elasticity factor to determine the extent of scaling of each task.

In order to schedule E-MC task systems, Su and Zhu (2013) also proposed a modified version of the

earliest deadline first with virtual deadlines (EDF-VD) scheduler (Baruah et al., 2012), called the early-

release EDF (ER-EDF) scheduler. ER-EDF maintains a set of wrapper-tasks (Zhu and Aydin, 2009) that

46

keep track of the slack that is created when high-criticality jobs finish ahead of their high-level PWCETs.

Each low-criticality job is guaranteed to release no later than its task’s maximum period after the release of

its predecessor. However, such a job also has a set of early release points. Each time such a point arrives, if

there is enough slack (as indicated by the wrapper-tasks) for the job to be released early, ER-EDF does so. In

the common case, high-criticality jobs usually run for less than their high-level PWCETs, so low-criticality

jobs run more frequently than their minimum guarantee. However, even during an overload, low-criticality

jobs continue to receive a minimum level of service.

Su et al. (2013) later extended this work to multicore systems. The extension is basically a partitioned

variant of ER-EDF. Su et al. considered partitioning the task system using several different partitioning

heuristics. For high-criticality tasks, they used utilizations based on high-criticality PWCETs, and for low-

criticality tasks, they used utilizations based on low-criticality PWCETs and maximum periods. A worst-fit

decreasing heuristic based on those utilizations, ignoring criticalities, tended to perform the best and to

significantly outperform the global EDF-VD algorithm (Li and Baruah, 2012).

Su et al. also considered two different techniques to reclaim slack. The simplest is to use the same

strategy as ER-EDF, allowing low-criticality tasks to reclaim slack from high-criticality tasks on the same

processor. They also considered a global slack reclamation technique. Under that technique, when there is

not enough slack to release a job early on the core to which its task has been assigned, if there is enough

slack on a remote processor, then that single job is migrated to the remote processor. Su et al. demonstrated

that this technique can significantly improve the performance of their algorithm.

Jan et al. (2013) provided a different mechanism to minimize the separation time of low-criticality

releases. They assumed that high-criticality jobs are statically prioritized over low-criticality jobs, and that the

system optimistically schedules low-criticality jobs with deadlines that match their desired separation times.

However, when a likely deadline miss is expected, the deadline is pushed back at that time. Furthermore, Jan

et al. provided a mechanism where the system can specify a prioritization for which tasks to scale back first.

2.8 Summary

In this chapter, we reviewed prior work on SRT scheduling and overload. We discussed both prior SRT

work using the bounded tardiness model that is closely related to the bounded lateness model used in this

dissertation, and prior SRT work using other models of SRT. We then focused in more detail on prior work

47

dealing with overload management, including that focusing on MC systems. In the following chapters, we

will discuss our approach to SRT scheduling and overload management within MC2, building on some of this

prior work.

48

CHAPTER 3: FAIR LATENESS SCHEDULING1

In this chapter, we extend the tardiness bounds from Devi and Anderson (2008) to provide lateness

bounds for arbitrary GEL schedulers. We also propose a specific scheduler—the global fair lateness (G-FL)

scheduler mentioned in Section 1.3—that minimizes maximum lateness bounds, as well as a general linear

programming technique to minimize other criteria related to lateness.

The remainder of this chapter is organized as follows. In Section 3.1, we describe the task model under

consideration and define basic terms. In Section 3.2, we present a novel technique called compliant-vector

analysis (CVA). In Section 3.3, we present the basic linear programming technique for working with CVA,

and we use it to prove several properties about CVA. In Section 3.4, we present G-FL and prove that it

minimizes the maximum lateness bound over all tasks. Afterwards, in Section 3.5, we describe the use of

linear programming to define GEL schedulers to optimize values of other functions of lateness. In Section 3.6,

we present experiments comparing lateness bounds for G-FL, G-EDF, and other LP-derived GEL schedulers.

These experiments show that G-FL and LP-derived GEL schedulers can provide significantly lower lateness

bounds than G-EDF.

3.1 Task Model

For the reader’s convenience, a table of notation used in this chapter is provided in Appendix A. We

consider the arbitrary-deadline sporadic task model discussed in Section 1.1.1. All quantities are real-valued.

1This work appeared in preliminary form in the following papers:

Erickson, J., Devi, U., and Baruah, S. (2010a). Improved tardiness bounds for global EDF. In Proceedings of the 22nd Euromicro
Conference on Real-Time Systems, pages 14–23.

Erickson, J., Guan, N., and Baruah, S. (2010). Tardiness bounds for global EDF with deadlines different from periods. In
Proceedings of the 14th International Conference on Principles of Distributed Systems, pages 286–301.

Erickson, J. and Anderson, J. (2012). Fair lateness scheduling: Reducing maximum lateness in G-EDF-like scheduling. In
Proceedings of the 24th Euromicro Conference on Real-Time Systems, pages 3–12.

Ward, B. C., Erickson, J. P., and Anderson, J. H. (2013). A linear model for setting priority points in soft real-time systems. In
Proceedings of Real-Time Systems: The Past, the Present, and the Future–A Conference Organized in Celebration of Alan Burns’
Sixtieth Birthday, pages 192–205.

Erickson, J. P., Anderson, J. H., and Ward, B. C. (2014). Fair lateness scheduling: reducing maximum lateness in G-EDF-like
scheduling. Real-Time Systems, 50(1):5–47.

49

In addition to the notation introduced in Section 1.1.1, we let Cmax denote the largest WCET in the

system, i.e.,

Cmax , max
τi∈τ
{Ci}, (3.1)

and we define

U+ ,

⌈
∑
τi∈τ

Ui

⌉
. (3.2)

We assume that n > m. If this is not the case, then each task can be assigned its own processor, and no job of

each τi will have a response time exceeding Ci.

Furthermore, we assume that for all i,

Ui ≤ 1, (3.3)

and that

∑
τi∈τ

Ui ≤ m, (3.4)

as both conditions were demonstrated by Leontyev and Anderson (2010) to be necessary conditions for

bounded tardiness. (This also implies that they are necessary conditions for bounded lateness.)

We define a job’s proportional lateness (tardiness) as its lateness (tardiness) divided by its relative

deadline. We consider per-task bounds on response time, lateness, and proportional lateness.

We use for each τi the notation Ri to refer to its response time bound, Li to refer to its lateness bound,

and Ii to refer to its proportional lateness bound. From the definition of lateness in Section 1.1.1,

Li , Ri−Di. (3.5)

From the definition of proportional lateness above,

Ii , Li/Di. (3.6)

We assume

∀i,Yi ≥ 0. (3.7)

For all variables subscripted with an i, we also use vector notation to refer to the set of all values for the

task system. For example, ~T = 〈T1,T2, . . .Tn〉.

50

Figure 3.1: Illustration of the worst-case arrival pattern for analyzing demand within an interval.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12

Yi
Ci

Ti

Si(Yi)

Figure 3.2: Illustration of the technique for bounding the demand for the task in Figure 3.1.

3.2 Basic Compliant-Vector Analysis

In this section, we present the CVA necessary to analyze arbitrary GEL schedulers, including G-FL. We

first describe the lateness bounds for an arbitrary GEL scheduler, providing a general condition that results in

correct lateness bounds, and then prove it correct.

We will first provide definitions needed to specify our lateness bounds, accompanied by some basic

intuition. We will then prove our bounds correct.

While analyzing a task system, we need to account for the total processor demand that each task can

require over certain intervals, accounting only for jobs that have both releases and PPs within that interval.

We will use a linear upper bound for this quantity. In the context of implicit-deadline systems (where Di = Ti),

we can simply multiply the length of such an interval by the utilization of the task being analyzed. When

Yi < Ti, this technique may underestimate the demand, as depicted in Figure 3.1, where 3Ci units of demand

51

are present in an interval shorter than 3Ti units. We will use the term

Si(Yi),Ci ·max
{

0,1− Yi

Ti

}
, (3.8)

illustrated in Figure 3.2, to account for this extra demand. We will also use the total of such demand across

the whole system,

S(~Y), ∑
τi∈τ

Si(Yi). (3.9)

We define our lateness bounds recursively, defining for each τi a real value xi such that each job of τi has

a response time of at most

Ri , Yi + xi +Ci (3.10)

and thus an lateness bound of

Li , Yi + xi +Ci−Di. (3.11)

As part of our lateness expression, we define the term

G(~x,~Y), ∑
(U+−1) largest

(xiUi +Ci−Si(Yi)), (3.12)

which accounts for demand from certain critical tasks that can contribute to the lateness in the system. G(~x)

accounts for demand over the same intervals as S(~Y), and like S(~Y), G(~x) actually accounts for demand in

excess of what would be predicted simply from using utilization multiplied by the interval length. Furthermore,

as shown in the analysis below, a task that contributes to G(~x) does not actually need to contribute to S(~Y). In

order to simplify the expression for the bounds, we therefore include the negative Si(Yi) term in (3.12) so that

S(~Y) remains a sum across all tasks.

We will show at the end of this section, as Theorem 3.1, that if~x is compliant (defined below) then (3.10)

is a correct response time bound for each τi. The analysis is most interesting for the common case when

U+ > 1, but our definition also accounts for the simpler degenerate case that U+ = 1.

Definition 3.1. ~x is near-compliant iff

∀i,xi ≥
G(~x,~Y)+S(~Y)−Ci

m
. (3.13)

52

Figure 3.3: Example schedule depicting td , tb, and yi,k. Different lines represent different processors, and
different hatchings or shadings represent different tasks.

A near-compliant vector is compliant iff ∀i,xi ≥ 0 or U+ = 1.

For the remainder of this section, we consider an arbitrary but fixed schedule. The eventual proof of

Theorem 3.1 will proceed by induction over the jobs of that schedule considered in priority order. We will

bound the response time of a job τi,k of task τi, based on the inductive assumption that jobs with higher

priority than τi,k have response times no greater than specified by (3.10).

We define H as the set of all jobs with priority at least that of τi,k. By the definition of priority, we do not

need to consider any work due to jobs not in H when analyzing the response time of τi,k. We define Wj(t) as

the total amount of work remaining at time t for jobs of τ j in H. We define W (t) as the total amount of work

remaining at time t for all jobs in H, i.e., W (t) = ∑τ j∈τ Wj(t).

Several important time instants are depicted in Figure 3.3. We denote as yi,k (priority) the PP of τi,k. We

denote as tb (busy) the earliest time instant such that during every time in [tb,yi,k), at least U+ processors are

executing jobs from H. We denote as td (idle) the earliest time instant such that during every time in [td , tb),

fewer than U+ processors are executing jobs from H.

Throughout our proofs, we will refer to the total demand that a task τi can produce within an interval

of length ∆, accounting for jobs that have both release times and PPs within the interval. This quantity is

denoted DBF(τi,Yi,∆).

The next two lemmas, both proved in Appendix B, provide slightly pessimistic bounds on DBF(τi,Yi,∆).

Lemma 3.1 provides a less pessimistic bound than Lemma 3.2 when Yi > Ti, but it only applies for intervals

of length greater than Yi.

Lemma 3.1. If ∆≥ Yi, then

DBF(τi,Yi,∆)≤Ui∆+Ci ·
(

1− Yi

Ti

)
.

Lemma 3.2. ∀∆≥ 0,DBF(τi,Yi,∆)≤Ui∆+Si(Yi).

53

(a) τ j not running for entire idle interval.

(b) τ j running for entire idle interval, τ j,` not past PP at td .

(c) τ j running for entire idle interval, τ j,` past PP at td .

Figure 3.4: Proof details for Theorem 3.1 and supporting lemmas. Different lines in each figure represent
different processors. In each figure, the jobs of the task under consideration are outlined in black, while any
other jobs are outlined in gray.

Because at least U+ processors are assumed to be busy in [tb,yi,k), we know that at least U+(yi,k− tb)

units of work will be completed during that interval. Therefore, in Lemma 3.3, we determine an upper bound

on the remaining work at tb. In order to do so, we will compute an upper bound on the remaining work at tb

for each task in the system. Lemma 3.3 is the core of the argument behind Theorem 3.1, so we prove it in full

here.

Lemma 3.3. If~x is compliant and all jobs of τ j with higher priority than τi,k complete with response time no

greater than Yj + x j +C j, then W (tb)≤ G(~x,~Y)+S(~Y)+U+(yi,k− tb).

Proof. We consider each task τ j individually. We account for the remaining work for τ j at time tb, considering

all possible cases, described next.

Case 1 (Figure 3.4(a)). It may be the case that τ j is executing immediately before tb, but either is not

executing at some time in [td , tb), or is not executing before tb because tb = 0. In this case, denote as ts (start)

54

the earliest time such that τ j executes continuously in [ts, tb). τ j must not have any unfinished work just

before ts, because at least one processor is available then. Therefore, any work that contributes to Wj(ts) must

consist only of jobs that are released at or after ts and that have PPs at or before yi,k. Therefore,

Wj(ts)≤ DBF(τ j,Yj,yi,k− ts)

≤ {By Lemma 3.2}

U j(yi,k− ts)+S j(Yj). (3.14)

Furthermore, because τ j executes continuously in [ts, tb),

Wj(tb) =Wj(ts)− (tb− ts)

≤ {By (3.14)}

U j(yi,k− ts)+S j(Yj)− (tb− ts)

≤ {Because U j ≤ 1)}

U j(yi,k− ts)+S j(Yj)−U j(tb− ts)

= {Rearranging}

U j(yi,k− tb)+S j(Yj). (3.15)

Case 2 (Figure 3.4(b)). It may be the case that τ j is executing continuously in [td , tb), and its job executing

at td has a PP at or after td . In this case, we call that job τ j,`. The release time of τ j,` must be no earlier than

td−Yj, or Case 3 below would instead apply. Thus, the work for τ j remaining at td must consist only of jobs

that have releases at or after td−Yj and PPs at or before yi,k. Therefore,

Wj(td)≤ DBF(τ j,Yj,yi,k− (td−Yj))

≤ {By Lemma 3.1; note that yi,k− (td−Yj) = Yj +(yi,k− td)≥ Yi}

U j(yi,k− (td−Yj))+C j

(
1− Yj

Tj

)
= {Rearranging and using U j =C j/Tj}

U j(yi,k− td)+
C jYj

Tj
+C j−

C jYj

Tj

55

= {Cancelling}

U j(y j,`− td)+C j. (3.16)

Because τ j runs continuously in [td , tb),

Wj(tb) =Wj(td)− (tb− td)

≤ {By (3.16)}

U j(yi,k− td)+C j− (tb− td)

≤ {Because U j ≤ 1)}

U j(yi,k− td)+C j−U j(tb− td)

= {Rearranging}

U j(yi,k− tb)+C j. (3.17)

Case 3 (Figure 3.4(c)). It may be the case that τ j is executing continuously in [td , tb), and its job executing at

td has a PP earlier than td . We call that job τ j,`. We refer to the PP of τ j,` as y j,`. Because y j,` < td ≤ tb ≤ yi,k,

τ j,` must have priority higher than τi,k, i.e., τ j,` is not τi,k. Therefore, by the precondition of the lemma, τ j,`’s

response time must be no greater than

Yj + x j +C j. (3.18)

We define δ such that the remaining execution of τ j,` at td is C j−δ . If τ j,` runs for its full WCET, then δ

is simply its execution before td , but δ may be larger if τ j,` completes early. τ j,` must finish no earlier than

td +C j−δ . By the definition of response time from Section 3.1 and (3.18), τ j must be released no earlier

than td +C j−δ − (Yj + x j +C j). Thus, the work for τ j remaining at td must consist only of jobs that have

releases at or after td +C j−δ − (Yj + x j +C j) and PPs at or before yi,k. Below we use Lemma 3.1 to bound

the work from these jobs, so we need to establish that the length of this interval is at least Yj. We first observe

that, resulting from the definition of tb and the fact that τ j is running just before tb, U+ > 1. Therefore, by the

precondition of the lemma and Definition 3.1,

x j ≥ 0. (3.19)

56

Thus,

yi,k− (td +C j−δ − (Yj + x j +C j)) = {Rearranging}

(yi,k− td)+ x j +δ +Yj

≥ {Because yi,k ≥ td , δ ≥ 0, and by (3.19)}

Yj. (3.20)

Recall that only C j−δ units of work remain for τ j,` at time td , but DBF(τ j,Yj,∆) assumes a demand of

C j for every job within the considered interval. Therefore,

Wj(td)≤ DBF(τ j,Yj,yi,k− (td +C j−δ − (Yj + x j +C j)))−δ

≤ {By Lemma 3.1, and by (3.20) }

U j(yi,k− (td +C j−δ − (Yj + x j +C j)))+C j

(
1− Yj

Tj

)
−δ

≤ {Rearranging, using U j =C j/Tj, and because U j ≤ 1)}

U j(yi,k− td)−U jC j +U jδ +
C jYj

Tj
+U jx j +U jC j +C j−

C jYj

Tj
−U jδ

= {Cancelling}

U j(yi,k− td)+U jx j +C j. (3.21)

Because τ j runs continuously in [td , tb),

Wj(tb) =Wj(td)− (tb− td)

≤ {By (3.21)}

U j(yi,k− td)+U jx j +C j− (tb− td)

≤ {Because U j ≤ 1)}

U j(yi,k− td)+U jx j +C j−U j(tb− td)

= {Rearranging}

U j(yi,k− tb)+U jx j +C j. (3.22)

57

Total Remaining Work at tb. We consider two possible cases, depending on the value of U+.

If U+ = 1, then by the definition of tb, all tasks must be in Case 1. In addition, by the definition of

G(~x,~Y) in (3.12),

G(~x,~Y) = 0. (3.23)

Therefore, the total work is at most

∑
τ j∈τ

(U j(yi,k− tb)+S j(Yj)) = {Rearranging}(
∑

τ j∈τ

U j

)
(yi,k− tb)+ ∑

τ j∈τ

S j(Yj)

≤ {By the definition of U+ in (3.2), the definition of S(~Y) in (3.9), and (3.23)}

G(~x,~Y)+S(~Y)+U+(yi,k− tb),

and the lemma holds.

On the other hand, if U+ > 1, then by Definition 3.1,

∀ j,x j ≥ 0. (3.24)

Because we assume that ∀i,Yi ≥ 0, and by the definition of Si(Yi) in (3.8),

∀ j,S j(Yj)≤C j. (3.25)

By (3.24) and (3.25), the worst case for each τ j is Case 3. Any task can be in Case 1, but due to

the definition of tb, at most U+− 1 tasks can be in Case 2 or 3 due to the definition of tb. Therefore, the

total demand due to all tasks can be upper bounded by selecting a set M of U+−1 tasks in τ such that M

maximizes

∑
τ j∈M

(U j(yi,k− tb)+U jx j +C j)+ ∑
τ j∈(τ\M)

(U j(yi,k− tb)+S j(Yj))

= {Rearranging}(
∑

τ j∈τ

U j

)
(yi,k− tb)+ ∑

τ j∈M
(x jU j +C j)+ ∑

τ j∈(τ\M)

S j(Yj)

58

= {Adding ∑τ j∈M S j(Yj)−∑τ j∈M S j(Yj) = 0}(
∑

τ j∈τ

U j

)
(yi,k− tb)+ ∑

τ j∈M
(x jU j +C j−S j(Yj))+ ∑

τ j∈τ

S j(Yj)

≤ {By the definition of U+ in (3.2), the definition of G(~x,~Y) in (3.12),

the definition of S(~Y) in (3.9), and the definition of M above}

U+(yi,k− tb)+G(~x,~Y)+S(~Y).

Therefore, the lemma holds.

The next lemma simply bounds W (yi,k), given the bound in Lemma 3.3.

Lemma 3.4. If~x is compliant and all jobs τ j,` with higher priority than τi,k complete with response time no

greater than Yj + x j +C j, then W (yi,k)≤ G(~x,~Y)+S(~Y).

Proof. By the definition of tb, at least U+ processors are completing work from jobs in H throughout the

interval [tb,yi,k). Therefore,

W (yi,k)≤W (tb)−U+(yi,k− tb)

≤ {By Lemma 3.3}

G(~x,~Y)+S(~Y).

Our final lemma, proved in Appendix B, bounds the response time of τi,k.

Lemma 3.5. If~x is compliant and each job τ j,` with higher priority than τi,k finishes with response time no

greater than Yj + x j +C j, then τi,k finishes with response time no greater than Yi + xi +Ci.

With these lemmas in place, we can now state and prove the primary result of this section.

Theorem 3.1. If~x is compliant, then no job of any task τi will have a response time exceeding Yi + xi +Ci.

Proof. This result follows immediately from Lemma 3.5 by induction over all jobs in the system, considered

in order of decreasing priority. As the base case, the precondition for Lemma 3.5 holds vacuously when

considering the first job.

59

3.3 Minimum Compliant Vector

In this section, we will demonstrate that there is a unique minimum compliant vector for a given selection

of PPs. We begin by narrowing our consideration of compliant vectors based on the idea that if we can reduce

the bound for one task without increasing any other bound in the system, we clearly do not have the “best”

compliant vector. Based on this insight, Definition 3.2 below defines a notion that will help us define the

“best” compliant vector. (We prove in Lemma 3.7 below that the minimum near-compliant vector is unique.)

Definition 3.2. A minimum near-compliant vector is a near-compliant vector such that, if any component xi

is reduced by any δ > 0, the vector ceases to be near-compliant.

We next precisely characterize any minimum near-compliant vector. Lemma 3.6 is proved in Appendix B.

Lemma 3.6. ~x is a minimum near-compliant vector if and only if

∀i,xi =
G(~x,~Y)+S(~Y)−Ci

m
. (3.26)

Lemma 3.6, when combined with the fact that a minimum near-compliant vector is in fact compliant

(proved as Corollary 3.2 below), allows us to constrain the form of the vectors considered. We state this

observation as Corollary 3.1 below, which follows immediately from Lemma 3.6.

Corollary 3.1. ~x is a minimum near-compliant vector if and only if there exists s such that

∀i,xi =
s−Ci

m
(3.27)

and

s = G(~x,~Y)+S(~Y). (3.28)

Observe that s is independent of the task index i.

The following lemma, proved in Appendix B, shows that we can unambiguously refer to the minimum

near-compliant vector for the system.

Lemma 3.7. If the minimum near-compliant vector for the task system exists, it is unique.

Later in this section, we prove that the minimum near-compliant vector does indeed exist. We do so by

formulating a feasible LP such that the optimal solution must contain the minimum near-compliant vector.

60

In addition to showing that the minimum near-compliant vector exists, this LP is also useful for actually

computing the minimum near-compliant vector.

In order to prove that the minimum near-compliant vector exists, we will show that the minimum

near-compliant vector is the optimal solution to a more general LP based on Lemma 3.8 below.

Lemma 3.8. ~x is a near-compliant vector if (3.27) holds and

s≥ G(~x,~Y)+S(~Y). (3.29)

Proof. Follows immediately from Definition 3.1.

Recall that a compliant vector is described by (3.8)–(3.9) and (3.12)–(3.13). We now show that Lemma 3.8

and the equations it depends on can be reformulated as constraints for the LP mentioned above. Throughout

this section, whenever we use a subscript i (e.g., Yi), there is one variable or constant for each task (e.g., a

Yi for each task). We assume that xi, Si, Ssum, G, and s are variables, and we also introduce the auxiliary

variables b and zi. All other values are constants (i.e., Yi, Ui, Ci, Ti, Di, U+, and m), but Yi will be used as a

variable later in Sections 3.4 and 3.5.

Constraint Set 3.1. The linear constraints corresponding to the definition of~x in (3.27) used in Lemma 3.8

are given by

∀i : xi =
s−Ci

m
.

Constraint Set 3.2. The linear constraints corresponding to the definition of Si(Yi) in (3.8) are given by

∀i : Si ≥ 0; Si ≥Ci(1−Yi/Ti).

The two constraints in Constraint Set 3.2 model the two terms of the max in the definition of Si(Yi) in

(3.8), ensuring that Si ≥ Si(Yi) holds for each i. Because Si is not bounded from above, Constraint Set 3.2

only ensures that

∀i,Si ≥ Si(Yi). (3.30)

However, we will show in Lemma 3.10 below that this will still result in a near-compliant vector.

61

The next equation to be linearized, the definition of G(~x,~Y) in (3.12), is less straightforward. We first

show how to minimize the sum of the largest k elements in a set A = {a1, . . . ,an} using only linear constraints,

by an approach similar to one proposed by Ogryczak and Tamir (2003). The intuition behind this approach is

shown in Figure 3.5. This figure corresponds to the following LP,

Minimize: G

Subject to: G = kb+
n

∑
i=1

zi,

∀i : zi ≥ 0,

∀i : zi ≥ ai−b,

in which G, b, and zi are variables and both k and ai are constants. In Figure 3.5, the term kb corresponds to

the gray-shaded area, and ∑
n
i=1 zi corresponds to the black-shaded area. When G is minimized, it is equal to

the sum of the largest k elements in A. This is achieved when zi = 0 for each element ai that is not one of the

k largest elements in A, and b is at most the kth largest element in A, as is shown in Figure 3.5(b).

Using this technique, we can formulate the definition of G(~x,~Y) in (3.12), as a set of linear constraints.

Constraint Set 3.3. The linear constraints corresponding to the definition of G(~x, ~Y) in (3.12) are given by

G = b · (U+−1)+ ∑
τi∈τ

zi,

∀i : zi ≥ 0,

∀i : zi ≥ xiUi +Ci−Si−b.

In some of the optimization objectives we consider in Section 3.5, G is not itself explicitly minimized,

as in the example LP above. Furthermore, this constraint uses Si in place of Si(Yi). As a result, this set of

constraints only ensures that

G≥ ∑
U+−1 largest

(xiUi +Ci−Si). (3.31)

As shown in Lemma 3.10 below, this is sufficient to ensure a near-compliant vector.

62

a1 a2 a3 a4 a5 a6 a7

k

{{b
z1 z2 z3 z4

z5

z6, z7 = 0

a5 overcounted

(a) b too small.

a1 a2 a3 a4 a5 a6 a7

k

{{b
z1 z2 z3

z4, . . . , z7 = 0

(b) b correct.

a1 a2 a3 a4 a5 a6 a7

k

{{b
z1

z2 z3, . . . , z7 = 0

a4 overcounted

(c) b too large.

Figure 3.5: Illustration of the auxiliary variables used to sum the largest k elements in the set A = {a1, . . . ,an}.
The total of the gray and black shaded areas is equal to G. The gray areas correspond to kb while the black
areas correspond to positive zi’s. When G is minimized, as in (b), G is equal to the sum of the largest k
elements in A. As is shown in (a) and (c), if b is too small or too large then G will be larger than the maximum
k elements in A. Note that elements of A are depicted in sorted order only for visual clarity.

63

Constraint Set 3.4. The linear constraint corresponding to the definition of S(~Y) in (3.9) is given by

Ssum = ∑
τi∈τ

Si.

Constraint Set 3.5. The linear constraint corresponding to (3.29) in Lemma 3.8 is given by

s≥ G+Ssum.

As noted above, Constraint Sets 3.2–3.3 ensure only that (3.30) and (3.31) are inequalities rather than

equalities. The next two lemmas, proved in Appendix B, demonstrate that Constraint Sets 3.1–3.5 are still

sufficient to ensure that~x is a near-compliant vector.

Lemma 3.9. For any assignment of variables satisfying Constraint Sets 3.1–3.4,

G+Ssum ≥ G(~x,~Y)+S(~Y).

Lemma 3.10. For any assignment of variables satisfying Constraint Sets 3.1–3.5, ~x is a near-compliant

vector.

We now show that there is a single best minimum near-compliant vector, which is in fact a compliant

vector, for the system by minimizing the objective function s under Constraint Sets 3.1–3.5. We show that

an optimal value of s exists, and that the corresponding ~x under Constraint Set 3.1 is both the minimum

near-compliant vector and in fact compliant.

We will first demonstrate that an optimal~x exists. Observe from Constraint Set 3.1 that~x is uniquely

determined by the assignment of s. The next two lemmas, proved in Appendix B, show that an optimal

value of s exists. Lemma 3.11 demonstrates that there is a lower bound on s for any feasible solution, and

Lemma 3.12 demonstrates that a feasible solution exists.

Lemma 3.11. If s < 0, then Constraint Sets 3.1–3.5 are infeasible.

Lemma 3.12. Constraint Sets 3.1–3.5 are feasible.

By Lemmas 3.11–3.12 and the fact that Constraint Sets 3.1–3.5 are linear, an optimal minimum value of

s must exist. The next lemma shows that the corresponding~x must be the minimum near-compliant vector.

64

Lemma 3.13. For any assignment of variables that satisfies Constraint Sets 3.1–3.5 such that s obtains its

minimum value,~x is the minimum near-compliant vector.

Proof. We use proof by contradiction. Assume an assignment of variables that satisfies Constraint Sets 3.1–

3.5 such that~x is not a minimum near-compliant vector and s obtains its minimum value.

We show an assignment of variables, denoted with a prime (e.g. s′ for the new assignment of s), that is

also feasible, but with s′ < s.

Let

s′ = G(~x,~Y)+S(~Y), (3.32)

∀i,x′i =
s′−Ci

m
, (3.33)

∀i,S′i = Si(Yi), (3.34)

G′ = G(~x′,~Y), (3.35)

b′ = (U+−1)th largest value of x′iUi +Ci−Si, (3.36)

∀i,z′i = max{0,x′iUi +Ci−Si−b′}, (3.37)

S′sum = S(~Y). (3.38)

We show

s > {By Definition 3.1, Constraint Set 3.1, and Lemma 3.10, because~x is not minimum}

G(~x,~Y)+S(~Y)

= {By (3.32)}

s′. (3.39)

We now show that the new assignment of variables satisfies Constraint Sets 3.1–3.5.

Constraint Set 3.1 holds by (3.33).

Constraint Set 3.2 holds by (3.34).

Constraint Set 3.3 holds by (3.35)–(3.37).

Constraint Set 3.4 holds by (3.34) and (3.38).

65

To see that Constraint Set 3.5 holds, note that

s′ = {By (3.32)}

G(~x,~Y)+S(~Y)

= {By the definition of G(~x,~Y) in (3.12)}

∑
U+−1 largest

(xiUi +Ci−Si(Yi))+S(~Y)

= {By Constraint Set 3.1}

∑
U+−1 largest

((
s−Ci

m

)
Ui +Ci−Si(Yi)

)
+S(~Y)

> {By (3.39)}

∑
U+−1 largest

((
s′−Ci

m

)
Ui +Ci−Si(Yi)

)
+S(~Y)

= {By (3.33)}

∑
U+−1 largest

(x′iUi +Ci−Si(Yi))+S(~Y)

= {By the definition of G(~x,~Y) in (3.12)}

G(~x′,~Y)+S(~Y)

= {By (3.35) and (3.38)}

G′+S′sum.

Because the new assignment satisfies Constraint Sets 3.1–3.5 with s′ < s (by (3.39)), the original

assignment did not achieve the minimum value of s.

The previous lemmas are sufficient to demonstrate that the minimum near-compliant vector for a system

must exist. Our remaining proof obligation is to show that the minimum near-compliant vector is in fact

compliant. Lemma 3.14, proved in Appendix B, demonstrates that for the optimal assignment of variables

when U+ > 1, s must be at least the maximum Ci in the system. We denote this maximum Ci as Cmax.

Lemma 3.14. If U+ > 1 and s <Cmax, then Constraint Sets 3.1–3.5 are infeasible.

66

Lemma 3.14 is used in Lemma 3.15 below, which demonstrates that for any assignment of variables

satisfying Constraint Sets 3.1–3.5,~x is compliant. By Lemma 3.15, the minimum near-compliant vector must

also be compliant.

Lemma 3.15. For any assignment of variables satisfying Constraint Sets 3.1–3.5,~x is compliant.

Proof. If U+ = 1, then the lemma follows trivially from Definition 3.1. We therefore assume U+ > 1.

Because the assignment of variables satisfies Constraint Sets 3.1–3.5, by Lemma 3.14,

s≥Cmax. (3.40)

For arbitrary i,

xi = {By Constraint Set 3.1}
s−Ci

m

≥ {By (3.40)}
Cmax−Ci

m

≥ {Because ∀i,Cmax ≥Ci}

0.

Therefore, by Definition 3.1,~x is compliant.

Corollary 3.2. The minimum near-compliant vector for any task system is compliant.

3.4 Global Fair Lateness Scheduling

Having shown that a minimum compliant vector exists for any combination of feasible task system and

scheduler, we now turn our attention to determining the scheduler that minimizes the maximum lateness

bound for a system. As described later in Section 3.5, the LP described by Constraint Sets 3.1–3.5 can be used

to select optimal relative PPs for an arbitrary linear lateness constraint. However, determining the relative PPs

requires the use of an LP solver. In this section, we present a particular scheduler that has a simple expression

67

for its relative PPs and that is optimal with respect to minimizing the maximum lateness bound for a task

system.

In order to provide the best analysis for a given scheduler, we observe that some GEL schedulers are

identical with respect to the scheduling decisions made at runtime, even though the CVA bounds may not be

identical. We formally define and motivate this notion below in Definition 3.3 and Lemma 3.16.

Definition 3.3. Two PP assignments~Y and ~Y ′ are equivalent if there exists a constant c such that Yi = Y ′i + c

for any i. Two GEL schedulers are equivalent if their respective PP assignments are equivalent.

Lemma 3.16. If two GEL schedulers are equivalent with PP assignments ~Y and ~Y ′, respectively, then the

response time bounds derived by using~Y will also apply to a system scheduled using ~Y ′, and vice versa.

Proof. Using either~Y or ~Y ′ will result in the same scheduler decisions, because each absolute PP has been

increased or decreased by the same constant.

We now define in Definition 3.4 a scheduler that, although it may not itself have the lowest maximum

CVA bound, is equivalent to a scheduler that does. The value of~Y in Definition 3.4 is in concise form, and is

provably equivalent to a GEL scheduler with the lowest possible maximum CVA bound. A system designer

can use the definition of ~Y in Definition 3.4 when setting scheduler parameters, and the lowest available

maximum CVA bound will apply to the resulting system.

Definition 3.4. The Global Fair Lateness (G-FL) scheduler is the GEL scheduler with relative PP assign-

ment

∀i,Yi = Di−
m−1

m
Ci.

We first show as Theorem 3.2 below that the PPs for an arbitrary GEL scheduler can be modified to ensure

that all lateness bounds are the same, without increasing the maximum lateness bound for the scheduler, and

the resulting scheduler is equivalent to G-FL. We then discuss how to obtain the best lateness bounds for any

scheduler equivalent to G-FL.

Theorem 3.2. Let V be an arbitrary assignment of variables satisfying Constraint Sets 3.1–3.5. There exists

an assignment V ′ (with each variable denoted with a prime) such that V ′ also satisfies Constraint Sets 3.1–3.5,

the scheduler using ~Y ′ is equivalent to G-FL, and the maximum lateness bound using~x′ in Theorem 3.1 is no

greater than using~x.

68

Proof. By Lemma 3.15,~x is compliant. Therefore, by Theorem 3.1, the maximum lateness bound for the

system is

max(Yj + x j +C j−D j)

= {By Constraint Set 3.1}

max
(

Yj +
s−C j

m
+C j−D j

)
= {Rearranging; observe that s does not depend on task index j}

s
m
+max

(
Yj +

m−1
m

C j−D j

)
(3.41)

We present the following assignment of variables for V ′:

Y ′i = max
(

Yj +
m−1

m
C j−D j

)
− m−1

m
Ci +Di (3.42)

s′ = s, (3.43)

∀i,x′i =
s′−Ci

m
, (3.44)

∀i,S′i = Si(Y ′i), (3.45)

G′ = G(~x′,~Y ′), (3.46)

b′ = (U+−1)th largest value of x′iUi +Ci−S′i, (3.47)

∀i,zi = max{0,x′iUi +Ci−S′i−b′}, (3.48)

Ssum = S(~Y ′). (3.49)

Consider an arbitrary task τi. By rearranging the following expression (which clearly holds),

Yi +
m−1

m
Ci−Di ≤max

τ j∈τ

(
Yj +

m−1
m

C j−D j

)
,

we have

Yi ≤max
τ j∈τ

(
Yj +

m−1
m

C j−D j

)
− m−1

m
Ci +Di,

69

so by (3.42),

Yi ≤ Y ′i . (3.50)

Therefore, by the definition of Si(Yi) in (3.8),

Si(Y ′i)≤ Si(Yi). (3.51)

Also, by (3.43)–(3.44),

xi = x′i. (3.52)

Constraint Set 3.1 holds for V ′ by (3.44).

Constraint Set 3.2 holds for V ′ by (3.45).

Constraint Set 3.3 holds for V ′ by (3.46)–(3.48).

Constraint Set 3.4 holds for V ′ by (3.45) and (3.49).

To see that Constraint Set 3.5 holds for V ′, note that

s′ = {By (3.43)}

s

≥ {By Constraint Set 3.5}

G+Ssum

≥ {By Lemma 3.9}

G(~x,~Y)+S(~Y)

= {By the definition of G(~x,~Y) in (3.12), and the definition of S(~Y) in (3.9)}

∑
U+−1 largest

(xiUi +Ci−Si(Yi))+ ∑
τi∈τ

Si(Yi)

≥ {By (3.51); observe that each Si(Yi) in the first summation also appears in the second}

∑
U+−1 largest

(
xiUi +Ci−Si(Y ′i)

)
+ ∑

τi∈τ

Si(Y ′i)

= {By the definition of S(~Y) in (3.9), the definition of G(~x,~Y) in (3.12), and (3.52)}

G(~x′,~Y ′)+S(~Y ′)

= {By (3.46) and (3.49)}

70

G′+S′sum.

For an arbitrary τi, the lateness bound under Theorem 3.1 corresponding to V ′ is

x′i +Y ′i +Ci−Di = {By (3.42) and (3.52)}

xi +max
τ j∈τ

(
Yj +

m−1
m

C j−D j

)
+

1
m

Ci.

= {By Constraint Set 3.1}
s−Ci

m
+max

τ j∈τ

(
Yj +

m−1
m

C j−D j

)
+

1
m

Ci

= {Cancelling}
s
m
+max

τ j∈τ

(
Yj +

m−1
m

C j−D j

)
. (3.53)

By (3.41) and (3.53), the maximum lateness bound under V is identical to the maximum lateness bound

under V ′.

Furthermore, by Definitions 3.3 and 3.4 and (3.42), the GEL scheduler using ~Y ′ is equivalent to G-FL.

Theorem 3.2 demonstrates that G-FL is equivalent to a GEL scheduler with a lateness bound under

Theorem 3.1 no greater than that of any other GEL scheduler. We would like to determine the “best”

equivalent scheduler to G-FL so that we can obtain the smallest bounds applicable to G-FL. Towards that

end, in the next lemma, we show that lateness bounds from equivalent schedulers can be compared in a

straightforward manner.

Lemma 3.17. Suppose two PP assignments~Y and ~Y ′ are equivalent and denote their corresponding lateness

bounds, when using minimum near-compliant vectors~x and ~x′, as~L and ~L′. There is a constant k such that,

for all i, Li = L′i + k. Each Li and L′i differ by a system-wide constant.

Proof.

Li−L′i = {By Theorem 3.1 and Corollary 3.2}

xi +Yi +Ci−Di− (x′i +Y ′i +Ci−Di)

71

= {By Corollary 3.1, for some s and s′}
s−Ci

m
+Yi +Ci−Di−

(
s′−Ci

m
+Y ′i

)
= {Cancelling}

s
m
+Yi−

(
s′

m
+Y ′i

)
= {Rearranging}

s− s′

m
+(Yi−Y ′i)

= {By Definition 3.3}
s− s′

m
+ c. (3.54)

Because s, s′, and c do not depend on task index i, we let k = s−s′
m + c, and the lemma follows.

We now describe additional constraint sets that can be used with Constraint Sets 3.1–3.5 in order to

determine the lateness bounds under the equivalent scheduler to GEL with the smallest lateness bounds.

Constraint Set 3.6. The constraints to ensure that~Y meets our assumption in (3.7) are

∀i,Yi ≥ 0.

In order to determine the best GEL scheduler equivalent to G-FL, we add an auxillary variable c and the

following constraint. Because c can be any arbitrary value, this constraint specifies that any~Y equivalent to

G-FL is acceptable.

Constraint Set 3.7. The constraints allowing any~Y equivalent to G-FL are

∀i,Yi = c+Di−
m−1

m
Ci.

By minimizing s under Constraint Sets 3.1–3.7, we can obtain the desired lateness bounds, and therefore

the best maximum lateness bound under any GEL scheduler.

72

3.5 Alternate Optimization Criteria

G-FL was proven in Section 3.4 to be optimal relative to the specific criterion of minimizing maximum

lateness bound under CVA. Under G-FL, the system implementer does not need to use an LP solver to define

PPs but instead can assign PPs using Definition 3.4. For G-FL, the LP solver is only necessary in order to

analyze the lateness bounds of the system. In this section, we show how to use linear programming in order to

achieve alternative lateness criteria. For example, we show how to minimize average lateness, or to minimize

maximum proportional lateness. In order to achieve these criteria, it is necessary to use a set of PPs that differ

from G-FL, and the system implementer must use the LP solver to determine the PPs.

Next we show how Constraint Sets 3.1–3.6 can be coupled with objective functions, and possibly

additional constraint sets, to find optimal priority point settings under CVA with respect to alternative criteria.

We define several different schedulers based on their lateness criteria. In all cases, our criterion is to minimize

some lateness metric, such as maximum lateness. We will denote each criterion with two letters indicating

the type of lateness to be minimized. The first is “A” for average or “M” for maximum, and the second is “L”

for lateness or “P” for proportional lateness. No definition is provided for ML (maximum lateness), because

G-FL optimizes the same criterion, as discussed above. Where two criteria are provided, the first is optimized,

then the second. For example, ML-AL below minimizes the average lateness subject to having the smallest

maximum lateness possible.

Minimizing Maximum Proportional Lateness: MP. As described in Section 3.4, G-FL has the smallest

maximum lateness bound for any GEL scheduler under CVA. However, for some applications, more tardiness

may be acceptable for tasks that have longer relative deadlines. Therefore, it may be desirable to minimize

the maximum proportional lateness, rather than the maximum lateness.

In order to minimize maximum proportional lateness, we define an auxiliary variable Imax that corresponds

to the maximum proportional lateness for the task system. We add a set of constraints to ensure the appropriate

value for Imax and then minimize it.

Minimize: Imax

Subject to: ∀i : (Yi + xi +Ci−Di)/Di ≤ Imax

Constraint Sets 3.1–3.6

73

Minimizing Average Lateness: AL. G-FL guarantees the smallest maximum lateness bound available

under CVA. However, depending on the nature of the application, it may be more desirable to obtain the

smallest average lateness bound, rather than the maximum.

The following LP may be solved to minimize average lateness under CVA.

Minimize: ∑
τi∈τ

Yi + xi

Subject to: Constraint Sets 3.1–3.6

Note that average lateness is given by ∑τi∈τ(Yi + xi +Ci−Di)/n, but Ci, Di, and n are all constants that are

not necessary to include in the optimization objective.

While AL is optimal with respect to average lateness, as is shown experimentally in Section 3.6, the

lateness of some tasks may be larger than the maximum lateness bound of G-FL, which we denote Lmax.

Next, we show how to optimize the average lateness of all tasks while maintaining a maximum lateness no

greater than Lmax.

Minimizing Average Lateness from G-FL: ML-AL. Although G-FL provides the smallest maximum

lateness bound available under CVA, it does so by giving all tasks the same lateness bound. It may be

possible to reduce the lateness bounds for some tasks without altering the maximum lateness bound for the

system. Therefore, if the requirement to run an offline LP solver to determine PPs is not problematic, further

optimizing the lateness bounds can be desirable. Here we show how to minimize the average lateness bound

for the system with respect to having the same maximum lateness bound as G-FL.

The following LP may be solved to minimize the average lateness under CVA while maintaining the

same maximum lateness bound as G-FL.

Minimize: ∑
τi∈τ

Yi + xi

Subject to: ∀i : Yi + xi +Ci−Di ≤ Lmax,
2

Constraint Sets 3.1–3.6

As before, the constants Ci, Di and n are omitted from the objective function.

2Application-specific per-task lateness tolerances could be used instead of Lmax.

74

Minimizing Average Proportional Lateness: AP. For applications where performance is more sensitive to

the average lateness rather than the maximum lateness, but where tasks with longer deadlines can permit

more tardiness, it may be desirable to minimize average proportional lateness.

The LP for minimizing average lateness can be modified in a straightforward manner to minimize average

proportional lateness.

Minimize: ∑
τi∈τ

(xi +Yi)/Di

Subject to: Constraint Sets 3.1–3.6

As was the case with average lateness, unnecessary constant terms have been omitted from the objective

function.

Minimizing Average Proportional Lateness from Smallest Maximum Proportional Lateness: MP-AP.

Just as it is desirable to reduce average lateness when it is possible to do so without increasing maximum

lateness, it is desirable to reduce average proportional lateness when it is possible to do so without increasing

maximum proportional lateness.

As we did with average lateness constrained by the maximum lateness from G-FL, we can also minimize

the average proportional lateness constrained by the maximum proportional lateness from MP.

Minimize: ∑
τi∈τ

(xi +Yi)/Di

Subject to: ∀i : (Yi + xi +Ci−Di)/Di ≤ Imax,
3

Constraint Sets 3.1–3.6

Once again, unnecessary constant terms have been omitted from the objective function.

We note that the LP formulation of CVA can be used and extended to other optimization objectives,

perhaps most notably, application-specific optimization objectives. For example, an LP solver can be used

to assign PPs to ensure application-specific lateness tolerances are satisfied (if possible under CVA), or to

maximize total system utility under some linear definitions of lateness-based utility.

3As before, application-specific per-task proportional lateness tolerances could be used instead of Imax.

75

3.6 Experiments

In this section, we present experiments that demonstrate how G-FL and the LP-based schedulers described

in Section 3.5 can improve lateness bounds over existing scheduling algorithms. In these experiments,

we evaluated the lateness bounds of randomly generated task systems. We generated random task sets

using a similar experimental design as in previous studies (e.g., (Bastoni et al., 2011)). We generated

implicit-deadline task sets in which per-task utilizations were distributed either uniformly or bimodally. For

task sets with uniformly distributed utilizations, per-task utilizations were chosen to be light, medium or

heavy, which correspond to utilizations uniformly distributed in the range [0.001,0.1], [0.1,0.4], or [0.5,0.9],

respectively. For task systems with bimodally distributed utilizations, per-task utilizations were chosen

from either [0.001,0.5], or [0.5,0.9] with respective probabilities of 8/9 and 1/9, 6/9 and 3/9, or 4/9 and

5/9. The periods of all tasks were generated using an integral uniform distribution between [3 ms,33 ms],

[10 ms,100 ms] and [50 ms,250 ms] for tasks with short, moderate, and long periods, respectively. We

considered a system with m= 8 processors, as clustered scheduling typically is preferable to global scheduling

for larger processor counts (Brandenburg, 2011). For each per-task utilization and period distribution

combination, 1,000 task sets were generated for each total system utilization value in {1.25,1.50, . . . ,8.0}.

We did not consider task systems with utilizations of one or less, as they are schedulable on one processor

with no tardiness.

For each generated task system, we evaluated the average and maximum per-task lateness bounds under

Devi and Anderson’s analysis of G-EDF (Devi and Anderson, 2008) (EDF-DA), CVA analysis of G-EDF

scheduling by selecting the best equivalent scheduler as for G-FL in Section 3.4 (EDF-CVA), CVA analysis

of G-EDF using an alternative optimization rule4 derived from Devi and Anderson (2008) (EDF-CVA2),

G-FL, and most of the LP-based schedulers discussed in Section 3.5 (ML-AL, AP, and MP-AP). We do not

evaluate MP because MP-AP is preferable. We present representative results in Figures 3.6–3.9. In those

figures, we show the mean average and maximum lateness bounds for each total system utilization value over

all generated task systems. Note that the lateness-bound results are analytical, and that in an actual schedule

observed latenesses may be smaller.

4When Yi = Ti for all i, Si(Yi) = 0, and rather than defining G(~x,~Y) as the largest sum of U+−1 values of xiUi +Ci, we can instead
define G(~x,~Y) as the largest sum of only U+−2 values of xiUi +Ci plus an additional Ci.

76

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 L

a
te

n
e

s
s
 (

m
s
)

System Utilization

Uniform Medium Utilizations, Uniform Moderate Periods

EDF-CVA
EDF-CVA2

G-FL
ML-AL

MP-AP
AL

AP

(a) Average Lateness

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

M
a

x
im

u
m

 L
a

te
n

e
s
s
 (

m
s
)

System Utilization

Uniform Medium Utilizations, Uniform Moderate Periods

(b) Maximum Lateness

Figure 3.6: (a) Average and (b) maximum lateness bound with respect to system utilization for task systems
with uniform medium utilizations and uniform moderate periods.

77

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
p

o
rt

io
n

a
l
L

a
te

n
e

s
s

System Utilization

Uniform Medium Utilizations, Uniform Moderate Periods

EDF-CVA
EDF-CVA2

G-FL
ML-AL

MP-AP
AL

AP

(a) Average Proportional Lateness

-1

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

M
a

x
im

u
m

 P
ro

p
o

rt
io

n
a

l
L

a
te

n
e

s
s

System Utilization

Uniform Medium Utilizations, Uniform Moderate Periods

(b) Maximum Proportional Lateness

Figure 3.7: (a) Average and (b) maximum proportional lateness bound with respect to system utilization for
task systems with uniform medium utilizations and uniform moderate periods.

78

-50

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 L

a
te

n
e

s
s
 (

m
s
)

System Utilization

Bimodal Medium Utilizations, Uniform Moderate Periods

EDF-CVA
EDF-CVA2

G-FL
ML-AL

MP-AP
AL

AP

(a) Average Lateness

-50

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8

M
a

x
im

u
m

 L
a

te
n

e
s
s
 (

m
s
)

System Utilization

Bimodal Medium Utilizations, Uniform Moderate Periods

(b) Maximum Lateness

Figure 3.8: (a) Average and (b) maximum lateness bound with respect to system utilization for task systems
with bimodal medium utilizations and uniform moderate periods.

79

-1

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
p

o
rt

io
n

a
l
L

a
te

n
e

s
s

System Utilization

Bimodal Medium Utilizations, Uniform Moderate Periods

EDF-CVA
EDF-CVA2

G-FL
ML-AL

MP-AP
AL

AP

(a) Average Proportional Lateness

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8

M
a

x
im

u
m

 P
ro

p
o

rt
io

n
a

l
L

a
te

n
e

s
s

System Utilization

Bimodal Medium Utilizations, Uniform Moderate Periods

(b) Maximum Proportional Lateness

Figure 3.9: (a) Average and (b) maximum proportional lateness bound with respect to system utilization for
task systems with bimodal medium utilizations and uniform moderate periods.

80

Observation 3.1. For task systems will small utilizations, the “equivalent scheduler” optimization in EDF-

CVA outperforms the optimization in EDF-CVA2; however, the converse is true for large utilizations.

This can be seen in Figures 3.6–3.9. Although the alternative optimization in EDF-CVA2 performs

very well for task systems with large utilizations, it is only applicable if Yi = Ti, for all i. Therefore, it is

likely to not be useful for systems with deadlines significantly different from minimum separation times.

The techniques proposed here are applicable to any GEL scheduler and are fully compatible with arbitrary

deadlines.

Observation 3.2. All of the GEL schedulers we considered with PPs different from G-EDF, had smaller

average lateness bounds than G-EDF.

The GEL schedulers we considered with PPs different from G-EDF typically had smaller average

proportional lateness bounds than G-FL.

All these scheduling algorithms optimize, with respect to CVA, either the average or maximum (propor-

tional) lateness of all tasks by moving PPs. Therefore, these algorithms should have smaller average lateness

bounds than G-EDF. This can be observed in in part (a) of Figures 3.6–3.9.

Observation 3.3. The maximum lateness bounds of ML-AL and G-FL are the same, but the average lateness

bound of ML-AL is at worst the average lateness bound of G-FL.

Based on the constraints and the optimization objective of ML-AL, the average and maximum lateness

bounds are provably no worse than G-FL. As is seen in Figures 3.6 and 3.8, the improvement in average

lateness in the task systems seen in our experiments was usually only a few ms.

Observation 3.4. Average lateness bounds were lower under AL than under G-FL and ML-AL. This

improvement in average lateness is made possible by allowing for increased maximum lateness.

Average proportional lateness bounds were lower under AP than under MP-AP. This improvement in

average proportional lateness is made possible by allowing for increased maximum proportional lateness.

As a result of the LP objective function, AL is optimal with respect to average lateness under CVA. In

Figures 3.6 and 3.8, we see that the average lateness bound of AL is always smaller than all other schedulers,

often by 10-20 ms or more. However, the maximum lateness bounds of AL are larger than G-FL and ML-AL.

In most observed cases, lateness bounds of AL were less than or commensurate with G-EDF lateness bounds

81

as determined by either CVA or Devi and Anderson’s analysis, though in some cases the maximum lateness

was greater than G-EDF by 10-20 ms. From these results, AL may be practical in many applications.

Similarly, due to its optimization criteria, AP is optimal with respect to average proportional lateness

under CVA, so its maximum is typically several deadlines shorter than other schedulers. In almost all cases,

AP had a lower average proportional lateness than all other schedulers5.

We note that the lateness bounds of AL in comparison to G-FL and ML-AL, and the bounds of AP in

comparison to MP-AP, demonstrate that the LP solver has considerable flexibility in choosing priority points

to optimize for certain lateness criteria. If some tasks have larger lateness tolerances than others, the PPs of

the more tolerant tasks can be increased to improve the lateness bounds of the less tolerant tasks. This gives

system designers much more flexibility to optimize the scheduler for application-specific needs.

Observation 3.5. Benefits to average or maximum proportional lateness come at a cost to average or

maximum lateness, and vice versa.

If two tasks have the same lateness bound but different relative deadlines, the task with the smaller

relative deadline will have larger proportional lateness. The reverse is true if the proportional lateness bounds

are the same. Therefore, improving lateness can worsen proportional lateness or vice versa. This effect is

particularly strong when deadlines of different tasks have a large variance. This can be seen in all figures.

3.7 Conclusion

We have demonstrated that G-FL provides maximum absolute lateness bounds no larger than those

currently available for G-EDF and have provided experimental evidence that G-FL is superior to G-EDF with

regards to maximum lateness bounds. Furthermore, G-FL provides equal lateness bounds for all tasks in

the system, and therefore provides a closer relationship between deadlines and response time bounds than

G-EDF currently does. The implementation of G-FL is identical to that of G-EDF with arbitrary deadlines,

and G-FL maintains the desirable JLSP property (enabling known locking techniques.) Therefore, G-FL is a

better choice than G-EDF for SRT systems.

5With uniform heavy utilizations and uniform long periods, EDF-CVA2 provided a very slightly smaller average proportional
latenesss bound when the system utilization was 8. Recall that the technique used by EDF-CVA2 only applies when relative PPs
equal minimum separation times.

82

We have also demonstrated that LP techniques can be used to optimize for other linear constraints

beyond minimizing maximum lateness bounds. These techniques can dominate G-FL at the cost of an offline

computation step.

83

CHAPTER 4: REMOVING INTRA-TASK PRECEDENCE
CONSTRAINTS1

In this chapter, we provide response-time bounds for a class of workloads in which jobs of the same

task are independent of each other and can be executed in parallel, such as servers handling independent

requests. In addition to providing analysis that applies to arbitrary GEL schedulers, we show that lateness

under G-EDF is greatly lessened if jobs of the same task are not constrained to execute in sequence. We show

this by deriving per-job response-time bounds, from which lateness bounds can be deduced. After deriving

such bounds, we compare them experimentally to prior bounds, which were derived assuming no intra-task

parallelism.

The remainder of this chapter is organized as follows. In Section 4.1, we formally present the task model

assumed in this chapter. Then, in Section 4.2, we describe compliant vectors for this task model, like those

described in Chapter 3. Afterward, in Section 4.3, we prove that each task system has a unique minimum

compliant vector, as was the case in Chapter 3. We then provide in Section 4.4 an algorithm to compute the

minimum compliant vector, and in Section 4.5, we provide experimental evidence that removing precedence

constraints can significantly reduce lateness bounds. We conclude in Section 4.6.

4.1 System Model

In the task model discussed in Section 1.1.1, successive jobs of each task were required to execute in

sequence. This constraint arises naturally when jobs correspond to separate invocations of the same code

segment, as discussed in Section 1.1.1. However, in some settings, jobs are released as separate threads in

response to interrupts, in which case, successive jobs of the same task may execute concurrently. In prior

hard real-time analysis of G-EDF by Baker and Baruah (2009), the impact of such concurrently executing

jobs has been considered, but to our knowledge, no such analysis exists for SRT systems for which bounded

lateness is acceptable.

1This work appeared in preliminary form in the following paper:

Erickson, J. P. and Anderson, J. H. (2011). Response time bounds for G-EDF without intra-task precedence constraints. In
Proceedings of the 15th International Conference on Principles of Distributed Systems, pages 128–142.

84

Our work assumes that jobs are independent. However, in the presence of a locking protocol, a technique

similar to that discussed in Section 2.2.2 could be used. In other words, job parameters could be inflated to

account for delays due to locking, and the system with inflated parameters could be used with the techniques

described in this chapter. New accounting similar to that in Section 2.2.2 might be necessary, but such

accounting is left as future work.

Compared to the task model described in Section 1.1.1, we make two modifications. First, as implied

by the discussion above, successive jobs of the same task are allowed to execute in parallel. Second, early

release behavior (Anderson and Srinivasan, 2000) is allowed: a job may have an actual release (a-release)

time that is earlier than its scheduler release (s-release) time. A job’s deadline and PP are defined based on its

s-release time, and consecutive s-releases of each task τi are still constrained to be no closer than Ti time units

apart. However, a job may begin execution as early as its a-release time. These changes to the traditional

sporadic model allow us to support general event models, as the following example illustrates.

Example. In high-frequency trading systems, short response times are critical to minimize risk (Durbin,

2010). Consider such a system that responds to data from the market about two stocks. One stock is highly

critical and should receive new information every 2 ms (but due to network uncertainty may not be timed

precisely). It may take up to 3 ms to process and should be processed as quickly as possible, so its deadline is

3 ms. Observe that this stock overutilizes a single processor and could not be supported using the traditional

sporadic task model, even on a multiprocessor. However, it can be supported using the methodology provided

in this chapter. A second stock is less critical, should receive new information every 4 ms, and can take up to

2 ms to process. One possible execution under G-EDF (Yi = Di) on two processors is depicted in Figure 4.1.

Observe that the a-release times sometimes do occur before the s-release times (because incoming packets

can arrive early or late) and that some jobs do miss deadlines.

In the task model considered here, no job may run concurrently with itself, but distinct jobs within the

same task may run concurrently. For convenience, we define the task system utilization U(τ), ∑τi∈τ Ui, and

U+ , dU(τ)e.

Under the task model described in Section 1.1.1 with implicit precedence constraints, providing bounded

response time required that no τi had Ui > 1 and that U(τ)≤ m, as in Chapter 3. However, under the task

model considered here, a job with Ui > 1 can have bounded response time if subsequent invocations run on

separate processors, as depicted for τ1 in Figure 4.1. U(τ)≤ m remains necessary so that the entire system

85

Figure 4.1: Example high-frequency trading system scheduled with G-EDF.

is not overutilized. In this work we demonstrate that U(τ) ≤ m is also a sufficient condition for bounded

response times and provide response-time bounds relative to the s-release time of each job.

4.2 Response Time Characterization

Over an interval of any given length ∆, the total amount of work from jobs of τi (with both s-release times

and PPs inside the interval) is bounded. The same demand-bound function DBF(τi,Yi,∆) used in Chapter 3

continues to apply to our broader task model, as long as we consider the release time of each job to be its

s-release. If a job actually has an a-release prior to the beginning of an interval but an s-release within an

interval, that can only reduce the demand within the interval compared to the situation in which the job’s

a-release time was equal to its s-release time.

We will use Lemma 3.2 to provide an upper bound on DBF(τi,Yi,∆). We state that lemma again here for

convenience. (Recall that, by (3.8), Si(Yi),Ci ·max{0,1−Yi/Ti}.)

Lemma 3.2. ∀∆≥ 0,DBF(τi,Yi,∆)≤Ui∆+Si(Yi).

For an n-task system τ , we wish to define a vector of non-negative real numbers 〈x1,x2, . . .xn〉 such that

the response time of each task τi, 1≤ i≤ n, is at most xi +Ci when τ is scheduled using a GEL scheduler on

m unit-speed processors. Each xi value depends upon the other xi values. Therefore, we initially define the

vectors using an implicit criterion, and as in Chapter 3 we define the notion of a “compliant vector” as one

that meets this criterion.

Definition 4.1. For each task τi, non-negative integer p <U+−1, and non-negative real number xi, let

g(τi,xi, p), min{Ci, max{0, xi +Ci− pTi}}. (4.1)

86

For any~x , 〈x1,x2, . . . ,xn〉, an ordered list of n non-negative real numbers, let

G(~x), ∑
U+−1 largest

g(τi,xi, p), (4.2)

S(~Y), ∑
τi∈τ

Si(Yi). (4.3)

We define~x as a compliant vector if and only if

G(~x)+S(~Y)+U(τ)Yi−Ci

m
≤ xi (4.4)

is satisfied for all i, 1≤ i≤ n.

Observe that, unlike G(~x,~Y) as defined in (3.12), G(~x) as defined in (4.2) does not depend on~Y . However,

the definition of S(~Y) in (4.3) is identical to that in (3.9). As compared to (3.13), in (4.4) we also add the term

U(τ)Yi in the numerator. This term is necessary because we are considering response-time bounds instead of

lateness bounds.

We now derive a response-time bound by considering a compliant vector ~x = 〈x1,x2, . . . ,xn〉 and an

arbitrary collection H ′ of jobs generated by τ . We order jobs by PP with ties broken arbitrarily (as per

standard GEL scheduling). We analyze the response time of an arbitrary job τi,k with s-release time ri,k and

PP yi,k, assuming that each τ j,` ordered prior to τi,k completes within (C j + x j) units of its s-release time. We

denote as H the set of all jobs ordered at or before τi,k, which (by the definition of GEL scheduling) contains

all jobs that affect the scheduling of τi,k. We also denote Hc , H \{τi,k} (i.e., the work competing with τi,k).

We denote as Wj(t) the remaining execution for jobs in H of task τ j at time t, and let W (t), ∑τ j∈τ Wj(t).

Furthermore, we define an interval as busy if at least U+ processors are executing work throughout the

interval, and nonbusy otherwise. We define tb (busy) as the earliest time such that [tb,ri,k) is continuously

busy. At the latest, tb = ri,k, in which case the interval is empty. Observe that, unlike in Chapter 3, the busy

interval ends at ri,k rather than yi,k.

In Lemma 4.1 below, we will bound W (tb). Then, in Lemma 4.2 below, we will use that result to bound

W (ri,k). Then, in Lemma 4.3 we will provide a response-time bound for τi,k, and in Theorem 4.1, we will

prove by induction that this bound is correct for all τi,k.

87

Lemma 4.1. If~x is a compliant vector and the response time of each τ j,` ∈ Hc is at most x j +C j, then

W (tb)≤U(τ)(yi,k− tb)+G(~x)+S(~Y).

Proof. We will say that a job τ j,` is “executing at time instant t−b ” if there is an ε greater than 0 such that τ j,`

is executing over the entire interval [tb− ε, tb). In Chapter 3, the presence of an idle CPU implied that at most

U+−1 tasks have work available for execution at time instant t−b , whereas here the same condition implies

that at most U+−1 jobs are available for execution. In Chapter 3 it was necessary to account for released

jobs that were not running due to a precedence constraint, despite the presence of an idle CPU. In order to do

so, assuming that Ui ≤ 1 for each τi was necessary. Here we do not need to account for such a case, but do

need to account for the fact that several jobs running in a non-busy interval could be from the same task. The

assumption that Ui ≤ 1 is no longer necessary.

We now consider two categories of jobs that may contribute to W (tb): jobs that have s-release times

before tb and are executing at time instant t−b (Category 1) and jobs that have s-release times at or after tb

(Category 2). Because there is an idle processor at time instant t−b , if a job has an s-release time before tb but

is not executing at time instant t−b , then it has already completed by tb and does not contribute to W (tb).

Category 1: Jobs With S-release Times Before tb Executing at t−b . By the definition of tb, there may be

at most U+− 1 jobs executing at time instant t−b . We consider the jobs of each task τ j that has jobs with

s-release times before tb executing at time instant t−b . We will use p (period) to index each executing job

relative to the job with the most recent non-future s-release within τ j: p = 0 indicates the job with the most

recent s-release, p = 1 the next most recent s-release, etc. By the assumption of the lemma, if p > 0 for some

τ j,`, then τ j,` must complete by x j +C j units after its s-release time, and must have an s-release time before

tb− pTj. Therefore, τ j,` must complete by time tb + x j +C j− pTj, and its contribution to Wj(tb) is at most

min{C j,max{0,x j +C j− pTj}} By (4.1)
= g(τ j,x j, p).

When p = 0 for some τ j,`, x j +C j− pTj ≥C j. Therefore g(τ j,x j, p) =C j by (4.1), so τ j,`’s contribution

to Wj(tb) is also at most g(τ j,x j, p).

Category 2: Jobs With S-release Times at or After tb. We now consider jobs with s-release time at or after

tb. By Lemma 3.2, each task τ j contributes at most U j(yi,k− tb)+S j units of work over [tb,yi,k). Cumulatively,

all tasks contribute at most U(τ)(yi,k− tb)+S(~Y) units of work over [tb,yi,k).

88

Total Remaining Work. W (tb) contains at most U+−1 jobs from Category 1, in addition to all jobs from

Category 2, so W (tb)≤U(τ)(yi,k− tb)+S(~Y)+G(~x).

We now provide a bound on W (ri,k).

Lemma 4.2. If~x is a compliant vector and the response time of each τ j,` ∈ Hc is at most x j +C j, then

W (ri,k)≤U(τ)Yi +G(~x)+S(~Y).

Proof. We have

W (ri,k) = {Because at least U+ CPUs are busy in [tb,ri,k)}

W (tb)−U+ · (ri,k− tb)

≤ {Because U+ ≥U(τ)}

W (tb)−U(τ) · (ri,k− tb)

≤ {By Lemma 4.1}

U(τ)(yi,k− tb)+G(~x)+S(~Y)−U(τ) · (ri,k− tb)

≤ {Rewriting}

U(τ)(yi,k− ri,k)+G(~x)+S(~Y)

= {By the definition of Yi}

U(τ)Yi +G(~x)+S(~Y).

We now use the previous lemma to bound the response time of a job under the same assumptions.

Lemma 4.3. If~x is a compliant vector and the response time of each τ j,` ∈ Hc is at most x j +C j, then the

response time of τi,k is at most xi +Ci.

Proof. After ri,k, τi,k is continuously running until it is finished, except when all other CPUs are occupied by

jobs from Hc. Recall that, by definition, W (ri,k) is the total remaining work after time ri,k for jobs in H. We

define Wc(ri,k) as the total amount of remaining work after time ri,k for jobs in Hc. Because the upper bound

in Lemma 4.2 assumes that all jobs (including τi,k) run for their full worst-case execution times, Lemma 4.2

89

implies that

Wc(ri,k)≤U(τ)Yi +S(~Y)+G(~x)−Ci. (4.5)

The total amount of time after ri,k during which m CPUs are busy with work from Hc can be at most

Wc(ri,k)

m
≤ {By (4.5)}

G(~x)+S(~Y)+U(τ)Yi−Ci

m

≤ {By (4.4)}

xi.

Thus, τi,k is prevented from executing after its s-release time for at most xi time units, so its response time is

at most xi +Ci.

This lemma leads directly to the main result of this section:

Theorem 4.1. If~x is a compliant vector, then each τi,k completes within xi +Ci units of its s-release time.

Proof. By inducting over the jobs of H ′ using Lemma 4.3.

4.3 The Minimum Compliant Vector

Theorem 4.1 uses compliant vectors to express response-time bounds. Our objective is to compute

response-time bounds that are as small as possible. We show that for any arbitrary-deadline sporadic task

system τ without implicit precedence constraints and corresponding assignment of~Y , there exists a unique

minimum compliant vector.

The analysis of the minimum compliant vector in Chapter 3 uses linear programming to compute and

analyze the minimum compliant vector. Unfortunately, the definition of g(τi,xi, p) in (4.1) includes both a

“min” and a “max”. This violates the convexity needed to use such LP techniques. Nonetheless, in Section 4.4,

we do present a polynomial-time algorithm that can be used to compute the minimum compliant vector.

We first characterize the behavior of G(~x). We consider two vectors~x and~z that differ by a constant for

some of their values, and are the same elsewhere. For example,~x = 〈1,2,3〉 and~z = 〈2,2,4〉 differ by exactly

1 in two places (the first and third) and are the same in the second; Lemma 4.4 would apply to~x and~z with

k = 2 and δ = 1.

90

Lemma 4.4. Suppose length-n vectors~x and~z differ at exactly k values, where k > 0, and for these values

zi = xi +δ , where δ is a positive constant. Denote w , min{k,U+−1}.

The following inequality holds:

G(~x)≤ G(~z)≤ G(~x)+δ ·w. (4.6)

Proof. We will define a candidate sum for~x as any sum of U+−1 distinct g(τi,xi, p) values as defined in

(4.1). By (4.2), G(~x) is the largest candidate sum for~x.

First, we prove G(~x)≤ G(~z). Consider the candidate sum N for~z computed by selecting the same i and

p values as in G(~x). Because for all i,xi ≤ zi, G(~x)≤ N. Because G(~z) must be the largest candidate sum for

~z, N ≤ G(~z). Therefore, G(~x)≤ G(~z).

Next, we prove G(~z) ≤ G(~x) + δ ·w by contradiction. Suppose G(~z) > G(~x) + δ ·w. Consider the

candidate sum T for ~x computed by selecting the same i and p values as in G(~z). Observe that at most w

terms contribute to the difference between G(~z) and T . When two such terms differ, we have xi = zi− δ

(xi = zi otherwise). Thus, T ≥ G(~z)−δ ·w, and hence, T > G(~x), which contradicts the fact that G(~x) is a

maximal candidate sum for~x.

We say that length-n~x is strictly smaller than length-n~z if for all i,xi ≤ zi and there exists a j such that

x j < z j. Clearly~z cannot be considered “minimum” if there exists such an ~x. We next use Lemma 4.4 to

characterize the minimum compliant vector.

Lemma 4.5. If~z is compliant and there is a j such that z j > (G(~z)+S(~Y)+U(τ)Yi−Ci)/m, then there exists

a strictly smaller vector~x that is also compliant.

Proof. Define~x such that xi = zi for i 6= j, and

x j =
G(~z)+S(~Y)+U(τ)Yj−C j

m
. (4.7)

In this case,~x and~z are of the form of Lemma 4.4 with k = 1 and δ = z j−(G(~z)+S(~Y)+U(τ)Yj−C j)/m.

Therefore, G(~x)≤ G(~z).

91

We now have for all i 6= j,

G(~x)+S(~Y)+U(τ)Yi−Ci

m

≤ {Since G(~x)≤ G(~z)}
G(~z)+S(~Y)+U(τ)Yi−Ci

m

≤ {Since~z is compliant, by (4.4)}

zi

= xi.

Also, by construction,

G(~x)+S(~Y)+U(τ)Yj−C j

m

≤ {Since G(~x)≤ G(~z)}
G(~z)+S(~Y)+U(τ)Yj−C j

m

= {By (4.7)}

x j.

Therefore,~x is compliant.

Lemma 4.5 demonstrates that each inequality in (4.4) should actually be an equality, or the vector cannot

be the minimum. A minimum compliant vector must therefore be of the form

xi =
G(~x)+S(~Y)+U(τ)Yi−Ci

m
∀i. (4.8)

Because G(~x) does not depend on i, there must exist a real number

s =
G(~x)

m
(4.9)

92

such that

xi = s+
S(~Y)+U(τ)Yi−Ci

m
∀i. (4.10)

We define some functions:

~v(s),~x such that (4.10) holds, (4.11)

G(s), G(~v(s)), (4.12)

M(s), G(s)−ms. (4.13)

By (4.8)–(4.11), any minimum compliant vector must be ~v(s) for some s. Furthermore, G(s) must equal

ms, by (4.9). Therefore, M(s) = 0 if and only if~v(s) is a compliant vector in the form of (4.8), and thus the

minimum compliant vector. We are now ready to prove this section’s main result:

Theorem 4.2. For any given task set τ , there exists a unique minimum compliant vector.

Proof. We wish to demonstrate that exactly one real s exists such that M(s) = 0. We will use the Intermediate

Value Theorem from calculus.

A necessary precondition for the Intermediate Value Theorem is that M(s) is a continuous function. The

following lemma leads to the desired result as a corollary.

Lemma 4.2.1. G(s) is continuous over the reals.

Proof. Let ε > 0 and δc , ε

U+−1 . Consider s0 such that |s− s0| < δc. If s = s0, then it is trivially the case

that |G(s)−G(s0)| ≤ ε . Otherwise, without loss of generality, assume s < s0 (otherwise we can swap them.)

Then~v(s) and~v(s0) are of the form of~x and~z, respectively, in Lemma 4.4, with k = n and δ = |s− s0|. Thus,

G(~v(s))≤ {By Lemma 4.4}

G(~v(s0))

≤ {By Lemma 4.4}

G(~v(s))+δc · (U+−1)

= {By the definition of δc}

G(~v(s))+ ε.

93

Therefore, |G(s)−G(s0)| ≤ ε , so G(s) is continuous over the reals.

Let Cmax denote the largest Ci value in τ . We now show that M(0)> 0 and M(Cmax)< 0, completing the

preconditions for the Intermediate Value Theorem.

Lemma 4.2.2. M(0)> 0

Proof. Let 1≤ i≤ N be arbitrary. Then:

M(0)

= {By (4.13) with s = 0}

G(0)

= {By (4.12) and (4.2)}

∑
U+−1 largest

g(τi,vi(0), p)

≥ {Since, by (4.1), g(τi,vi(0), p) cannot be negative}

g(τi,vi(0),0)

= {By the definition of g(τi,vi(0),0) in (4.1)}

min{Ci, max{0, vi(0)+Ci}}

= {By (4.10) and (4.11), with s = 0}

min

{
Ci, max

{
0,

S(~Y)+U(τ)Yi−Ci

m
+Ci

}}

= {Simplifying}

min

{
Ci, max

{
0,

S(~Y)+U(τ)Yi +(m−1)Ci

m

}}

> 0.

Lemma 4.2.3. M(Cmax)< 0.

Proof. By (4.1), g(τi,vi(Cmax), p)≤Ci for any i and p. Therefore, for any i and p,

g(τi,vi(Cmax), p)≤Cmax. (4.14)

94

Therefore,

M(Cmax)

= {By (4.13) with s =Cmax}

G(Cmax)−mCmax

= {By (4.12)}

G(~v(Cmax))−mCmax

= {By (4.2)}

∑
U+−1 largest

g(τi,vi(Cmax), p)−mCmax

≤ {By (4.14)}

(U+−1)Cmax−mCmax

≤ {Since U+ ≤ m}

−Cmax

< 0.

Lemma 4.2.4. There is an s ∈ (0,Cmax) such that M(s) = 0.

Proof. By Lemma 4.2.1, Lemma 4.2.2, Lemma 4.2.3, and the Intermediate Value Theorem.

We now verify that the s value of Lemma 4.2.4 is unique, using the following lemma.

Lemma 4.2.5. s1 6= s2 implies M(s1) 6= M(s2)

Proof. Without loss of generality, assume s2 > s1 (otherwise, swap them). ~v(s1) and~v(s2) are of the form of

~x and~z, respectively, with k = n and δ = s2− s1, in Lemma 4.4. Therefore,

G(s2)≤ G(s1)+(s2− s1)(U+−1). (4.15)

Thus,

M(s2)−M(s1)

95

= {By (4.13)}

G(s2)−ms2−G(s1)+ms1

≤ {By (4.15)}

G(s1)+(s2−s1)(U+−1)−ms2−G(s1)+ms1

= {Simplifying}

(s2− s1)(U+−1−m)

≤ {Since U+ ≤ m}

−1(s2− s1)

< 0.

Therefore, M(s1) 6= M(s2).

Lemma 4.2.5 demonstrates that s1 6= s2 and M(s1) = 0 imply M(s2) 6= 0, so the value of s characterized

in Lemma 4.2.4 is unique.

Lemma 4.2.4 also leads to Theorem 4.3, which provides a response-time bound that can be quickly

calculated.

Theorem 4.3. The response time of any job of any task τi cannot exceed Cmax +
S(~Y)+U(τ)Yi−Ci

m +Ci.

Proof. Follows from Lemma 4.2.4, (4.10), and Theorem 4.1.

4.4 Computation Algorithm

We now show how to compute the minimum compliant vector for a task system τ in time polynomial

with respect to the size of τ and the number of processors. G(s) as defined in (4.12) is a piecewise linear

function; our algorithm works by tracing G(s) until we find a fixed point G(s) = ms.

In order to assist the reader’s understanding of this algorithm, we provide an example task system in

Figure 4.2. Simple calculations reveal that, for this system, S(~Y) = 0 and U(τ) = 2. Furthermore, in a

two-CPU system, by Definition 4.1, we only need to consider p = 0. A graph of the relevant g(τi,vi(s),0)

functions with respect to s is provided in Figure 4.3.

96

Ci Ti Yi

τ1 6 10 10
τ2 12 10 10
τ3 4 20 20

Figure 4.2: Two-CPU task system example for Section 4.4. Deadlines are not included because they do not
influence our response-time based computation.

 0

 2

 4

 6

 8

 10

 12

 14

-25 -20 -15 -10 -5 0

g
(τ

i,
v

i(
s
),

 0
)

s

τ1
τ2
τ3

Figure 4.3: g functions for the system in Figure 4.2

We define the slope at point s of a piecewise linear function f (s) to be limε→0+
f (s+ε)− f (s)

ε
. This definition

differs from the common notion of derivative in that its limit is taken from the right; it is thus defined for

all real s. For example, g(τ1,v1(s),0) in Figure 4.3 has a slope of 1 at s =−22, but is not differentiable at

s =−22.

For each value of s we will define g(τi,vi(s), p) as being in one of three states, depending on the value of

vi(s)+Ci− pTi:

• If vi(s)+Ci− pTi < 0, then g(τi,vi(s), p) is in state 0, is equal to 0, and has a slope of 0. g(τ1,v1(s),0)

in Figure 4.3 is in state 0 in the interval (−∞,−22).

• If 0≤ vi(s)+Ci− pTi <Ci, then g(τi,vi(s), p) is in state 1, is equal to vi(s)+Ci− pTi, and has a slope

of 1. g(τ1,v1(s),0) in Figure 4.3 is in state 1 in the interval [−22,−18).

• If Ci ≤ vi(s)+Ci− pTi, then g(τi,vi(s), p) is in state 2, is equal to Ci, and has a slope of 0. g(τ1,v1(s),0)

in Figure 4.3 is in state 2 in the interval [−18,∞).

In order to analyze the piecewise linear function G(s), we will need to determine where the slope

changes. To do so, we need to determine which g(τi,vi(s), p) components contribute to G(s) for various

97

intervals. For some intervals, the choice is arbitrary. For example, the task system in Figure 4.3 has only one

g(τi,vi(s), p) component contributing to G(s), because m−1 = 2−1 = 1, but for s <−22, all g(τi,vi(s), p)

components equal zero. We provide a sufficient solution by arbitrarily tracking some valid set of g(τi,vi(s), p)

components.

We will create a set points of tuples, one for each possible change in the slope of G(s). (Each will

have an associated s value, but there could be multiple possible changes at the same s value.) Each tuple

will identify a point where some g(τi0 ,vi0(s), p0) in state h0 is replaced by some g(τi1 ,vi1(s), p1) in state h1.

Such a tuple will be of the form (s, i0, p0,h0, i1, p1,h1). In some cases, more than one old component may

be appropriate. To handle these cases efficiently, any of i0, p0, or h0 may be set to ∗, which is defined as

matching any value of the relevant parameter. For example, the tuple (s,∗,∗,0, i1, p1,1) indicates that any

arbitrary g(τi0 ,vi0(s), p0) in state 0 should be replaced by g(τi1 ,vi1(s), p1) in state 1.

The slope of G(s) may change in any of the following cases:

1. Some g(τi,vi(s), p) changes from state 0 to state 1. This occurs where vi(s)+Ci− pTi = 0. The

resulting tuple will be (s,∗,∗,0, i, p,1), as we can view g(τi,vi(s), pi) as replacing any g(τ j,v j(s), p j)

in state 0 in the system—they all have value 0. This change occurs exactly once per g(τi,vi(s), p) and

therefore U+−1 times per task (once per value of p), for a total of O(U+ ·n) times for the system. In

Figure 4.3, this state change occurs for g(τ1,v1(s),0) at s =−22, for g(τ2,v2(s),0) at s =−13, and

for g(τ3,v3(s),0) at s =−16.

2. Some g(τi,vi(s), p) changes from state 1 to state 2. This occurs where vi(s) +Ci− pTi = Ci (so

vi(s) = pTi). The resulting tuple will be (s, i, p,1, i, p,2). As above, this change occurs O(U+ ·n) times

for the system. In Figure 4.3, this state change occurs for g(τ1,v1(s),0) at s =−18, for g(τ2,v2(s),0)

at s =−7, and for g(τ3,v3(s),0) at s =−4.

3. Some g(τi,vi(s), pi) is in state 1 and crosses C j, and thus potentially crosses g(τ j,v j(s), p j) (for some

p j) where the latter is in state 2. This occurs when Ci >C j and vi(s)+Ci− piTi =C j. The resulting

tuple will be (s, j,∗,2, i, p,1). This point may exist at most n−1 times per g(τi,vi(s), p) (in the worst

case, g(τi,vi(s), p) crosses one g(τ j,v j(s), p j) for each other τ j), so occurs at most O(U+ ·n2) times

for the system. In Figure 4.3, this point does not occur for τ1 (as C1 is the smallest value in the system),

occurs for g(τ2,v2(s),0) with τ1 at s =−9, and occurs for g(τ3,v3(s),0) with τ1 at s =−12 and with τ2

98

slope := 0;
current := 0;
foreach (s1, i1, p1,h1, i2, p2,h2) ∈ points do

if (i1, p1,h1) matches some (i, p,h) in active then
Replace (i, p,h) in active with (i2, p2,h2);
if h2 = 1 then

// Changing to state 1 means slope increases.

slope := slope+1;
else

// Must be changing away from state 1 or (s1, i1, p1,h1, i2, p2,h2) wouldn’t

be in points
slope := slope−1;

s2 := next s value from points, or Cmax if there is no such value;
s := current−slope·s1

m−slope ;
if s ∈ [s1,s2) then

return s;
current := current+ slope · (s2− s1);

Algorithm 4.1: Computation of minimum compliant vector.

at s =−10. (Although g(τ3,v3(s),0) does not actually cross g(τ2,v2(s),0) at s =−10, our algorithm

nonetheless records the point where g(τ3,v3(s),0) crosses C2.)

In order to track G(s), we order the tuples in points by s value, breaking ties in favor of tuples indicating

a change in state for a particular g(τi,vi(s), p) component. We create a list active containing tuples (i, p,h),

each representing the corresponding g(τi,vi(s), p) in state h that contributes its value to G(s). For s smaller

than the smallest in points, we may arbitrarily make U+−1 choices of g(τi,vi(s), p) components, each in

state 0. Therefore, we initialize active to an arbitrary choice of U+−1 tuples of the form (i, p,0).

The appropriate s value is computed using Algorithm 4.1, which works by tracing the piecewise linear

function and checking for G(s) = ms (as per (4.8)–(4.13)) in each segment.

As an example, suppose active is initialized to {(3,0,0)}, which represents g(τ3,v3(s),0) in state 0. The

first tuple in points is (−22,∗,0,0,1,0,1), representing the leftmost slope change in Figure 4.3. This tuple

will match the single tuple in active, so active will become (1,0,1). slope is used to track the slope between

s1 and the next s value in points (which is called s2). current is used to represent the correct value of G(s1).

In this case, the immediate interval of interest is −22≤ s <−18. The new state h2 is 1, so the slope (which

was initially 0) will be incremented by 1, resulting in a new slope of 1. We now know the slope slope= 1 of

G(s) over [−22,−18) and its value G(s1) = current= 0 at s1 =−22. We therefore compute the point where

99

G(s) = ms would hold, assuming a linear function that is equal to the correct piecewise linear function over

the interval of interest. In this case, s is assigned the value 0−(−22)
2−1 = 22, which is not in [−22,−18), so the

desired value of s for the algorithm is not in the immediate interval of interest. We do not return, so we update

the value current to match the value of G(s2) at the end of the immediate interval of interest (and thus in the

next iteration the correct value of G(s1)). In this case, current will be assigned to 0+1 ·4 = 4.

The set points is of size O(U+ ·n2), and the set active is of size O(U+), so checking for matches will

require O(U+2n2) operations over the execution of the algorithm. Each match requires O(1) time to process,

so the complexity of Algorithm 4.1 is O(U+2n2). Computing points requires O(U+ ·n2) time, and sorting

requires O(U+ ·n2 log(U+ ·n)) time, so the complexity of computing s is O(U+ ·n2 log(U+ ·n)+U+2n2).

Once an s value has been computed using Algorithm 4.1, the correct minimum compliant vector is simply

~v(s), which can be computed in O(n) time.

4.5 Evaluation

As discussed in Section 4.3, we do not have an LP model for this type of system. Therefore, we do not

have an efficient means of calculating the “best” choice of~Y . Therefore, to provide a comparison between

systems with and without intra-task precedence constraints, we consider scheduling under G-EDF with

implicit deadlines.

Under implicit deadlines, each Yi = Ti. Therefore, for arbitrary τi,

Si(Yi) = {By the definition of Si(Yi) in (3.8)}

Ci ·max
{

0, 1− Yi

Ti

}
= {Because Yi = Ti}

0.

Thus, by the definition of S(~Y) in (4.3), S(~Y) = 0. Combining this result with Theorem 4.3 and the

necessary condition that U(τ)≤ m, the response time of any job of any task τi must be upper-bounded by

Cmax +Yi +
m−1

m Ci. Therefore, the lateness of any job of τi must be no greater than Cmax +
m−1

m Ci.

In order to evaluate the improvement to the bounds we obtain by eliminating implicit precedence

constraints, we compared our results to those available using the EDF-CVA2 technique in Chapter 3. As

100

shown in Chapter 3, this technique typically provides the best bounds for highly utilized systems scheduled

using implicit-deadline G-EDF. (As discussed in Chapter 3, EDF-CVA can also analyze the same systems,

but typically provides inferior bounds to EDF-CVA2 for highly utilized systems.)

Our experiments were intended to show how varying different task system parameters affected the

improvements available by removing intra-task precedence constraints. All experiments were done with

processor counts of 4, 8, and 16. We used uniform distributions for the task worst-case execution times and

utilizations, described below. We determined the effects of varying each of four parameters: mean worst-case

execution time (C̄), standard deviation of worst-case execution time (Cσ), mean utilization (Ū), and standard

deviation of utilization (Uσ). We performed one experiment for each parameter. For mean x and standard

deviation σ , values were chosen uniformly over (x−σ
√

3,x+σ
√

3).

In each experiment, the processor count m and three of the four parameters above were fixed, and the

remaining parameter was varied. For each value of the varied parameter, we generated 1,000 task sets. For

each individual task set, we generated tasks until a task was generated that would cause U(τ) to exceed m,

and that task was then discarded. For each task set we computed the mean lateness bound under EDF-CVA2,

δ , and using Theorem 4.1, δ ′. For each set of 1,000 task sets we computed δ̄ (the mean value of δ) and δ̄ ′

(the mean value of δ ′). The absolute improvement for each set of sets is defined as δ̄ − δ̄ ′, and the relative

improvement for each set of sets is defined as (δ̄ − δ̄ ′)/δ̄ .

Results of the two experiments varying WCET parameters are presented in Figure 4.4. In Figure 4.4(a),

we use Cσ = 5.8, Ū = 0.5, and Uσ = 0.29, and we depict the relative improvement with respect to C̄. For

larger C̄, the relative improvement increases, but the dependence on C̄ is small. This means that EDF-CVA2

is slightly more sensitive to C̄ than the techniques proposed in this chapter. In Figure 4.4(b), we use C̄ = 180,

Ū = 0.5, and Uσ = 0.29, and we depict the relative improvement with respect to Cσ . Here we see a decreasing

trend. When C̄ is held constant but Cσ is increased, the largest few WCET values tend to increase. We see

that the techniques proposed in this chapter are slightly more sensitive to this effect than EDF-CVA2.

Results of the two experiments varying utilization parameters are presented in Figure 4.5. In Figure 4.5(a),

we use C̄ = 10, Cσ = 2.9, and Uσ = 0.029, and we depict the relative improvement with respect to Ū . We

see here that the relative improvement increases dramatically as mean utilizations are increased, indicating

that EDF-CVA2 is significantly more sensitive to Ū . This effect is not surprising, because no Ui term appears

in Definition 4.1. In Figure 4.5(b), we use C̄ = 10, Cσ = 2.9, and Ū = 0.5, and we depict the relative

improvement with respect to Uσ . In an analogous fashion to the WCET experiments, increasing Uσ while

101

 25

 30

 35

 40

 45

 50

 55

 0 20 40 60 80 100 120 140 160

B
o
u
n
d
 I
m

p
ro

v
e
m

e
n
t
(%

)

Mean Execution Time

WCET Std. Dev. 5.8, Util Mean 0.5, Std. Dev. 0.29

m=4
m=8

m=16

(a) Varying WCET mean.

 25

 30

 35

 40

 45

 50

 55

 0 10 20 30 40 50 60 70 80 90 100

B
o
u
n
d
 I
m

p
ro

v
e
m

e
n
t
(%

)

Execution Standard Deviation

WCET Mean 180, Util Mean 0.5, Std. Dev. 0.29

m=4
m=8

m=16

(b) Varying WCET standard distribution.

Figure 4.4: Results of experiments varying WCET parameters.

102

holding Ū constant resulted in increasing the largest few utilizations. In this case, EDF-CVA2 is sensitive

to this effect, but the techniques proposed in this chapter do not depend on utilizations. Thus, the relative

improvement grows with increasing Uσ .

Overall, we see that the relative improvement is quite substantial, particularly with large execution times,

small variance in execution times, large utilizations, and large variance in utilizations. More significant

improvement occurs with larger processor counts because the EDF-CVA2 bounds increase significantly with

m, while our bounds are upper-bounded by Cmax +
m−1

m Ci. This improvement is possible even when per-task

utilization is restricted to be less than one to make our results comparable to prior work. We do not have

results comparing our work to previous results when per-task utilization may exceed one, because prior work

is not applicable in this case.

4.6 Conclusion

GEL scheduling has already proven useful for traditional SRT workloads in which jobs of the same task

have implicit precedence constraints. Here we have demonstrated that GEL scheduling may be even more

useful for SRT workloads in which jobs may be released as separate threads that can safely run concurrently.

We have shown that doing so not only improves response times compared to prior work, but enables new

workloads where a single task may overutilize a single processor.

103

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
o
u
n
d
 I
m

p
ro

v
e
m

e
n
t
(%

)

Mean Utilization

WCET Mean 10, Std. Dev. 2.9, Util Std. Dev. 0.029

m=4
m=8

m=16

(a) Varying utilization mean.

 15

 20

 25

 30

 35

 40

 45

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

B
o
u
n
d
 I
m

p
ro

v
e
m

e
n
t
(%

)

Utilization Standard Deviation

WCET Mean 10, Std. Dev. 2.9, Util Mean 0.5

m=4
m=8

m=16

(b) Varying utilization standard deviation.

Figure 4.5: Results of experiments varying utilization parameters.

104

CHAPTER 5: JOB SPLITTING1

In this chapter, we discuss the technique of job splitting to reduce lateness bounds. Recall that in

Chapter 3, lateness bounds are a function of job WCETs. If each job is split into a number of equally sized

subjobs, then the WCET of each subjob is smaller that that of the original job, and the lateness bounds become

smaller. However, job splitting increases the likelihood that the original job will be preempted/migrated

frequently and thus can increase overheads that negatively impact schedulability. Also, as explained later, job

splitting can cause problems for locking protocols. In this chapter, we examine the practical viability of job

splitting for reducing tardiness bounds under GEL schedulers in light of such complications. We initially

consider G-EDF, because it is the simplest GEL scheduler. However, all techniques are also applicable

to other GEL schedulers such as G-FL. For experimental results, we consider G-FL due to its properties

discussed in Chapter 3.

The remainder of this chapter is organized as follows. In Section 5.1, we illustrate our splitting technique

with a motivating example. In Section 5.2, we describe the particulars of our task model and notation. Then,

in Section 5.3, we describe the split G-EDF scheduling algorithm. We then discuss, in Section 5.4, the

necessary modifications to the overhead accounting from Section 2.2 in order to account for splitting. In

Section 5.5, we describe how to handle critical sections, and in Section 5.6, we discuss how the analysis

from Chapter 3 can be modified to efficiently account for the changes made due to critical sections. We

discuss overhead analysis in the presence of critical sections in Section 5.7. Then, in Section 5.8, we provide

experimental results using G-FL, showing that our splitting scheme is effective. In Section 5.9, we conclude.

5.1 Basic Technique

In this section, we introduce our job splitting technique with a motivating example.

1This work appeared in preliminary form in the following paper:

Erickson, J. and Anderson, J. (2013). Reducing tardiness under global scheduling by splitting jobs. In Proceedings of the 25th
Euromicro Conference on Real-Time Systems, pages 14–24.

105

Motivating Example. For motivational purposes, we will repeatedly consider example schedules of a

task system τ with three tasks, which we specify here using the notation (Ci, Ti): τ1 = (4 ms,6 ms),

τ2 = (9 ms,12 ms), and τ3 = (14 ms,24 ms). Each job of τ1, τ2, and τ3 has a deadline at the earliest possible

release time of its successor. An example G-EDF schedule for τ is given in Figure 5.1(b). Observe that τ3

misses a deadline at time 24. (This system meets the constraints for bounded tardiness in Chapter 3.)

A Continuum of Schedulers. In the implementation of job splitting we propose, all job splitting is done

through budget tracking in the OS. That is, job splitting does not require actually breaking the executable

code that defines a task into multiple pieces. We define the split factor of a task as the number of subjobs into

which each of its jobs is split. With any GEL scheduler, existing tardiness bounds can be driven arbitrarily

close to zero by arbitrarily increasing such split factors. In the “limit,” i.e., when each subjob becomes one

time unit (or quantum) in length, a GEL algorithm becomes similar in nature to algorithms within the Pfair

family of schedulers (Baruah et al., 1996), which are optimal for implicit-deadline sporadic systems. One

can thus view task split factors as tuning parameters that can be set to select a desired scheduler within a

continuum of schedulers to achieve desired tardiness bounds. If theoretical tardiness were the only issue, then

split factors would naturally be set arbitrarily high, but this raises practical concerns, as discussed earlier.

Returning to our example task system, Figure 5.1(c) depicts a schedule for τ under G-EDF in which

each job of τ3 is split into two subjobs. Note that splitting is done in a way that preserves the task’s original

utilization. In this example, the tardiness of τ3 is reduced by 1 ms, and no additional preemptions happen to

be necessary.

5.2 Task Model

As in Chapter 3, we assume Ui ≤ 1 for any i, ∑τi∈τ Ui ≤ m, and n > m. If n≤ m, then each task can be

assigned its own processor, and each job of each τi will complete within Ci time units of its release. We

assume that the OS enforces execution budgets, so that each job runs for at most Ci time units. In this chapter,

we also assume implicit deadlines: for each τi, Di = Ti.

To distinguish between a task before splitting (e.g., τ3 in Figure 5.1(b)) and the same task after splitting

(τ3 in Figure 5.1(c)), we define τbase
i as the base task before splitting and τ

split
i as the split task after splitting.

To disambiguate between base and split tasks, we also use superscripts on parameters: Cbase, Csplit, Ubase, etc.

A job of a base task is called a base job, while a split task is instead composed of subjobs of base jobs. We

106

(a) Key for schedules.

(b) Before job splitting.

(c) Each job of τ3 is split into two subjobs and jobs of the other tasks are not split.

Figure 5.1: G-EDF schedules showing the scheduling of τ1 = (4,6), τ2 = (9,12), and τ3 = (14,24) on two
processors.

107

define the split factor of τbase
i , denoted si, to be the number of subjobs per base job. In Figure 5.1(c), s3 = 2.

The subjobs of a base job τbase
i,k are denoted τi,k,0,τi,k,1, . . . ,τi,k,si−1. τi,k,0 is its initial subjob (e.g., the first

subjob τ3,0,0 of τbase
3,0 in Figure 5.1(c)) and τi,k,si−1 is its final subjob (e.g., the second subjob τ3,0,1 of τbase

3,0 in

Figure 5.1(c)). The longest time that any job of τbase
i waits for or holds a single outermost lock is denoted

Cext
i (so named because it will be used to extend execution budgets). Split tasks use a variant of the sporadic

task model that is described in Sections 5.5 and 5.6, but the usual sporadic task model is assumed prior to

Section 5.5.

The max-lateness bound for τ is the largest lateness bound for any τi ∈ τ . Similarly, the max-tardiness

bound for τ is the largest tardiness bound for any τi ∈ τ .

When a non-final subjob completes, the resulting change in deadline is a deadline move (DLM). In

Figure 5.1(c), a DLM occurs at time 14 for τ3.

5.3 Split G-EDF Scheduling Algorithm

In this section, we describe the OS mechanisms necessary to implement job splitting under G-EDF.

Although we will require the system designer to specify the split factor si for each job, we do not require the

jobs to be split a priori. Instead, the OS will use the budget tracking schemes described in this section to

perform DLMs at the appropriate times.

When certain events occur, the scheduler within the OS is called. We refer to this call as a reschedule.

For example, a reschedule occurs whenever a job completes, so that another job can be selected for execution.

In our implementation of splitting in LITMUSRT, part of the scheduling process involves checking whether

the currently executing job needs a DLM, and to perform the DLM if so.

In this section, we let Csplit
i = Cbase

i /si and T split
i = T base

i /si. For example, in Figure 5.1(c), Csplit
3 =

14/2 = 7 and T split
3 = 24/2 = 12.

Like the response-time analysis in Chapter 4, the lateness analysis in Chapter 3 continues to hold if jobs

become available for execution before their release times, as long as their deadlines are based on release times

that follow the minimum separation constraint of the sporadic task model. The technique of allowing jobs to

run before their release times is called early releasing (Anderson and Srinivasan, 2000). Allowing subjobs to

be released early may prevent tasks from suspending unnecessarily and allows us to alter the deadline of a

job τi,k only when it has executed for a multiple of Csplit
i . With early releasing, we do not have to consider the

108

wall clock time when determining a split job’s deadline, because we can instead consider only its cumulative

execution time. Additionally, as discussed in Section 5.4, early releasing prevents the same job from having

to incur certain overheads multiple times.

We will track the budget of each τi,k in order to simulate the execution of τi,k,0,τi,k,1, . . .τi,k,si with T split
i

time units between each pair of subjob releases and with each subjob executing for up to Csplit
i time units. In

order to do so, we define several functions below with respect to time. These functions are only defined for

time t such that τbase
i has a job that is ready for execution (it is released and its predecessor job has completed)

but has not completed. We let Ji(t) denote this job. For example, in Figure 5.1(c), J3(t) denotes τbase
3,0 for

any t ∈ [0,27), and τbase
3,1 after t = 27. Several of these functions are explicitly labelled as “ideal” functions

that ignore critical sections—deviation from “ideal” behavior due to critical sections will be described in

Section 5.5.

• The current execution ei(t) is the amount of execution that Ji(t) has already completed before time t.

In Figure 5.1(c), e3(4) = 0 and e3(5) = 1. Our definition of ei(t) allows us to keep track of how many

subjobs of Ji(t) have already completed.

• The current release ri(t) is the release time of Ji(t). Note that ri(t) is the release time of the current

base job, not the current subjob. In Figure 5.1(c), r3(4) = r3(17) = 0 and r3(29) = 24.

• The current offset oi(t) is a parameter that will be used to adjust execution budgets in order to to

properly handle overheads. In this section, we assume that oi(t) = 0 for all t.

• The naı̈ve ideal subjob λi(t) is the index of the subjob of Ji(t) that should be executing at time t,

ignoring the effect of critical sections and acting as though Ji(t) had executed for ei(t)+oi(t) time

units. In other words, it is the index of the subjob that should be executing based on the number of

multiples of Csplit
i that Ji(t) has completed by time t, after the completed execution time has been

adjusted by oi(t). It is defined as follows:

λi(t) =
⌊

si · (ei(t)+oi(t))
Cbase

i

⌋
. (5.1)

Because oi(t) = 0 for all t, in Figure 5.1(c), λ3(4) = 0, λ3(17) = 1, and λ3(29) = 0. (Recall that

subjobs are zero-indexed.) This quantity is “naı̈ve” because if oi(t) is decreased, then λi(t) may

109

decrease, indicating (incorrectly) that a previously completed subjob should be running. Our algorithm

should never actually simulate the execution of a completed subjob.

• The ideal subjob ji(t) is the index of the subjob of Ji(t) that should be executing at time t, ignoring the

effect of critical sections. It is simply the largest value of λi(t0) that has occurred at some time t0 ≤ t

such that Ji(t0) = Ji(t). In this section, because oi(t) = 0 for all t, by (5.1), λi(t) can decrease only at

base job boundaries. Therefore, ji(t) = λi(t) for all i and all t. (Later, when we allow oi(t) 6= 0, the

two may differ.)

• The ideal next DLM vi(t) is the time for the next DLM after time t, ignoring the effect of critical

sections and assuming that Ji(t) is scheduled continuously from time t until vi(t). In other words, vi(t)

is the time when the current ideal subjob should end assuming that it is not preempted. It is defined as

follows:

vi(t) = t +
(ji(t)+1)Cbase

i
si

− (ei(t)+oi(t)). (5.2)

In Figure 5.1(c), v3(4) = 11. Observe that, because τ3,0,0 is actually preempted at time 6, the DLM

actually does not occur until time 14.

• The ideal subjob release ρi(t) is the release time for the current ideal subjob. It is defined as follows:

ρi(t) = ri(t)+T split
i ji(t). (5.3)

(5.3) reflects that the subjobs are released every T split
i time units, and the first subjob is released at the

same time as the corresponding base job. In Figure 5.1(c), ρ3(4) = 0. Although it does not occur in

Figure 5.1(c), it is possible (due to early releasing) for the ideal subjob release to be after that subjob

actually commences execution.

• The ideal deadline di(t) is the deadline that should be active for Ji(t) at time t, ignoring the effect of

critical sections. In other words, it is the deadline of the ideal subjob ji(t). It is defined as follows:

di(t) = ρi(t)+T split
i . (5.4)

(5.4) follows from the definition of G-EDF scheduling. In Figure 5.1(c), d3(4) = 12.

110

• The current deadline δi(t) is the deadline that the scheduler actually uses for Ji(t) at time t. This value

is maintained by the budget tracking algorithm we describe in this section, rather than being merely a

definition like the functions above. Because there are no critical sections in Figure 5.1(c) (as we are

assuming in this section), δi(t) should be di(t) for all i and all t. Therefore, δ3(4) should be 12.

With these definitions in place, we define budget tracking rules in order to maintain the invariant

δi(t) = di(t).

• R1. If a job of τbase
i is released at time t, then δi(t) is assigned to di(t).

In Figure 5.1(c), applying this rule at time 0, we have δ3(0) = 12.

• R2. Whenever a non-final subjob of τbase
i is scheduled at time t to run on a CPU, a DLM timer is

assigned to force a reschedule on that CPU at time vi(t). Whenever τbase
i is preempted, the DLM timer

is cancelled.

In the schedule depicted in Figure 5.1(c), the DLM timer for τ3 is set at time 4 to fire at time v3(4) = 11.

However, the DLM timer is cancelled at time 6 when τ3 is preempted. When τ3 is selected for execution

again at time 9, the DLM is set to fire at time 14. It does fire at that time and forces a reschedule.

Because only the final subjob remains, the timer is not set at time 16.

• R3. If the scheduler is called at time t on a CPU that was running τbase
i , then δi(t) is assigned the value

di(t), potentially causing a DLM.

In Figure 5.1(c), the scheduler is called several times on a CPU that was running τbase
3 , including at

times 6 and 14. At time 6, d3(t) = δ3(t) already held, so a DLM does not occur. However, a DLM

occurs at time 14 because d3(t)> δ3(t) is established, causing δ3(t) to be updated.

5.4 Overhead Analysis

We now describe how to implement job splitting in an efficient manner and how the overheads from our

implementation differ from those in Section 2.2. Critical sections are not considered until Section 5.5. An

illustration of overheads due to job splitting is given in Figure 5.2.

Care must be taken when performing budget enforcement (in order to end each subjob at the appropriate

time) while accounting for overheads. In order to do so, we must distinguish between actual budgets used by

111

Figure 5.2: A subset of the schedule from Figure 5.1(c) with some overheads included.

the kernel and analytical budgets used in schedulability tests, because some overheads are charged to different

tasks than those their execution affects. For example, the cpd overhead in Figure 5.2 before time 17 is incurred

by τ3,0,1, but is charged to τ1,2. How to properly enforce budgets while accounting for overheads has not been

previously described, to our knowledge. Henceforth, when we refer to “budget” without qualification, we are

referring to the actual budget.

Our goal with budget enforcement is to simulate the execution of shorter subjobs in place of longer

base jobs. As can be seen in Figure 5.2, most of the overheads considered above—ev, rel, ipi, sch, cxs, and

tck—are not part of a job itself, so they should contribute only to the analytical job budget. However, the

cache-related delays cpd and cid do affect the runtime of jobs. For the purpose of the analytical budget, cpd

is charged to the job (like τ1,2) that relinquishes a processor to the preempted job, while cid is charged to the

interrupt handler. However, in a real system these overheads would actually be incurred by the job that is

preempted. Therefore, instead of assigning these overheads to the actual job budget ahead of time (as with

the analytical budget), we wait until runtime to add each overhead to the budget for the job of τbase
i resuming

after a preemption at time t.

To aid in discussing the details of overhead analysis, we present in Section 5.4.1 below an example that

illustrates most of the overheads that result from splitting and how we account for such overheads. Then, in

Section 5.4.2, we discuss how to account for interrupt-related overheads. Finally, in Section 5.4.3, we discuss

the specific mechanisms we use to manage subjob budgets.

5.4.1 Splitting Overhead Example

In Figure 5.3, we depict an example schedule of a system of three tasks on two processors, including

relevant overheads. For simplicity, we do not consider interrupt-related overheads until Section 5.4.2 below,

112

so we assume that a release master is used. Furthermore, for the purpose of illustration, we assume that each

relevant overhead is exactly 1 ms.

We first consider Figure 5.3(b), which displays an actual schedule with overheads present. Each overhead

is displayed with the task most directly affected. For example, each scheduling overhead is depicted with the

task actually scheduled. We also assume that each time the scheduler selects a subjob (except for the very

first time it selects each initial subjob), that subjob’s budget is increased by ∆cpd. For τ1 at times 20 and 27,

such a credit is not actually necessary, because τ1 is not actually preempted. However, we allow this credit

both to account for any loss of cache affinity that results from the execution of the scheduler, and to simplify

the algorithm used to increase subjob budgets (as discussed in Section 5.4.3).

We first discuss some properties that are used in our overhead accounting. The scheduling algorithm with

job splitting differs from normal GEL scheduling primarily due to the DLM timer, so we first consider the

two different conditions that can apply when the DLM timer fires. In the first case, a subjob from a different

task is selected.

Property 5.1. If a non-final subjob τi,k,v completes and τ j,`,w (j 6= i) is selected for execution as a result, then

from the perspective of the overheads incurred by τi, this situation can be accounted for like a preemption

upon receipt of an IPI.

To see why Property 5.1 holds, compare in Figure 5.3(b) the completion of the first subjob of τ2 at time 11

and the preemption of τ2 by τ3 at time 24. In both cases, τ2 is effectively preempted when the scheduler runs

and selects a different task. At time 11, the scheduler runs on CPU 2 due to the DLM timer and selects τ1 for

execution, whereas at time 24, the scheduler runs on CPU 1 and selects τ3 due to the IPI sent on behalf of τ3.

Furthermore, when the second subjob of τ1 commences execution at time 13, it incurs the same overheads as

when the preempted second subjob resumes execution at time 31.

We next consider the case that the next subjob from the same task is selected.

Property 5.2. If non-final τi,k,v completes and τi,k,v+1 is selected for execution, then the overhead is no

greater than if τi,k were preempted and immediately resumed.

To see why this property holds, consider in Figure 5.3(b) τ1 at both time 19 and time 26. In each case,

the scheduler is run due to the DLM timer, but τ1 is again selected. The only overhead actually incurred is

the execution of the scheduler itself, although (as discussed above) the scheduler credits τ1 with an extra ∆cpd

113

(a) Key.

(b) Actual schedule of system where overheads are depicted with the task most directly affected. For example, each
scheduling overhead is depicted with the task actually scheduled.

(c) Actual schedule of system with our charging scheme.

(d) Schedule of system with all charged overheads.

Figure 5.3: Example task system with overheads, running on two processors plus a release master. In (b) and
(c), an overhead is shown on top of an execution box if and only if it runs on that CPU. rel runs on the release
master and ev and ipi do not have an associated CPU. τ1 has a period of 45 ms and an actual budget of 1 ms
for its initial subjobs and 5 ms for all other subjobs. τ2 has a period of 43 ms and an actual budget of 5 ms for
its initial subjobs and 9 ms for the rest of its subjobs. τ3 has a period of 19 ms and an actual budget of 5 ms.

114

units of execution. By comparison, after τ1 is actually preempted at time 6, when it resumes at time 11, it

must incur sch, cxs, and cpd overheads.

Brandenburg (2011) accounts for the overheads incurred by a job τi,k resuming from a preemption (sch,

cxs, and cpd, as seen in Figure 5.3(b) for τ1 at time 11 and for τ2 at times 13 and 31) by charging those

overheads to the job whose completion allowed τi,k to run. We charge those overheads to the subjob whose

completion allowed τi,k to run. In Figure 5.3(c), we depict the same schedule as in Figure 5.3(b), but with

overheads charged using this scheme. The next two properties establish that this charging scheme is valid.

Property 5.3. If τi,k,v completes and τ j,`,w (j 6= i) is selected for execution as a result, then from the

perspective of the overheads incurred by τ j, treating this situation as a normal job completion suffices.

To see that Property 5.3 holds, compare in Figure 5.3(b) the resumption of τ1 at time 11, which occurs

due to the completion of the first subjob of τ2, and the resumption of τ2 at time 13, which occurs due to the

completion of the first job of τ3. In each case, the same overheads (sch, cxs, cpd) are incurred by the subjob

that resumes.

Property 5.4. If τi,k is preempted, then τi,k resumes upon completion of some τ j,`,w (j 6= i).

Property 5.4 holds because our algorithm is subjob-level static priority; the priority of a subjob does not

change during its execution. It can be seen in Figure 5.3(b) every time a job resumes, i.e., for τ1 at time 11

and for τ2 at times 13 and 31.

We now provide properties that specify how we charge different overheads to different subjob analytical

budgets, as depicted in Figure 5.3(c) (which displays the actual schedule with each overhead charged to the

correct job) and Figure 5.3(d) (which depicts a pessimistic schedule where each overhead that we charge to a

subjob is incurred by that subjob). We also discuss how our accounting compares to that of Brandenburg

(2011).

Our first overhead charging property follows from Properties 5.3 and 5.4 and the discussion above.

Property 5.5. In order to account for the cost incurred by resuming previously preempted jobs, each subjob’s

analytical budget should be charged sch, cxs, and cpd overheads.

These overheads are charged to all subjobs, both initial and non-initial. As can be seen in Figure 5.3(d),

when not accounting for interrupts, these are the only overheads charged to non-initial subjobs. We next

describe the overheads charged to initial subjobs.

115

Property 5.6. In order to account for delays when a job is first released, its task’s minimum separation time

must be reduced by subtracting ∆ev from it. This is done before splitting the job.

This transformation is identical to that performed in (Brandenburg, 2011). ev is accounted for by

subtracting from the period because, in a real system, ∆ev is merely an upper bound on event latency. If one

job experiences ∆ev units of event latency, but its successor experiences a much shorter event latency, then the

separation time of two jobs can be up to ∆ev units shorter than expected. Because this accounting is for the

delay due to initially starting a job, it does not apply to all subjobs. For example, in Figure 5.3(c), τ1 incurs

an ev overhead only at time 1.

In the absence of a release master, the interrupt-related overhead analysis in Section 5.4.2 accounts for

the rel charge, so it does not need to be explicitly accounted for with each job. Therefore, in the absence of a

release master, we define

crm , 0, (5.5)

and in the presence of a release master, we define

crm , ∆
rel. (5.6)

We use these definitions when accounting for release overheads.

Property 5.7. crm and ipi overheads should be charged to the analytical budgets of initial subjobs, but not

those of non-initial subjobs.

These overheads are only incurred once per base job, as in (Brandenburg, 2011). For example, in

Figure 5.3(c), τ1 incurs these overheads only between time 1 and 3. Furthermore, they are incurred before the

job begins execution, so are charged to the initial subjob.

Property 5.8. Each initial subjob’s analytical budget should be charged sch and cxs overheads for its own

scheduling, in addition to the charges referenced in Property 5.5.

For example, these charges can be seen in Figure 5.3(c) for τ1 at times 3–5.

Properties 5.5–5.8 are sufficient to account for all non-interrupt-related overheads. In the next subsection,

we discuss accounting for interrupts.

116

5.4.2 Analysis Including Interrupt Overheads

Our method for accounting to interrupt-related overheads is identical to that proposed by Brandenburg

(2011). We briefly review this accounting method here. We will then provide specific expressions for subjob

budgets. In this section, we do not consider IPI-related or DLM-related overheads as “interrupt-related,” but

instead refer only to those overheads caused by timer ticks or (in the absence of a release master) job release

interrupts.

We define a segment of a subjob as a contiguous interval of execution of a subjob, the overheads charged

to it, and interrupt-related overheads.2 However, we only include overheads that run on the same CPU as the

job. For example, in Figure 5.3(c), there are no interrupt-related overheads, so τ1 has segments of [3 ms,6 ms),

[14 ms,21 ms), [21 ms,28 ms), and [28 ms,31 ms), τ2 has segments of [4 ms,14 ms), [16 ms,24 ms), and

[34 ms,35 ms), and τ3 has segments of [6 ms,16 ms) and [24 ms,34 ms).

Brandenburg (2011) provided separate analysis for the presence and absence of a release master. In this

section, in order to avoid repetitive consideration of cases, we define new notation that will allow us to model

either system with the same analysis. Brandenburg demonstrated that, for a segment that actually executes the

subjob and non-interrupt-related overheads for Cseg
i time units, the segment itself (including interrupt-related

overheads) can be as long as Cseg
i /q+ cpre time units, where in the absence of a release master,

q , 1−U tck
0 − ∑

1≤ j≤n
U irq

j , (5.7)

and cpre is defined in (2.4), and in the presence of a release master,

q , 1−U tck
0 , (5.8)

and cpre is defined in (2.7).

This result leads immediately to the following additional properties for the accounting.

Property 5.9. In subjob analytical budgets, terms that reflect job execution, ∆sch, ∆cxs, and ∆cpd must be

divided by q wherever they appear.

2Brandenburg (2011) referred to this concept as a “subjob,” but that term has a different definition in this chapter.

117

These are the terms that are included in the segment execution term Cseg
i , because (as can be seen in

Figure 5.3(c)) these are the terms that are incurred on the CPU of the job.

Property 5.10. A charge of cpre must be included in the analytical budget of each subjob to account for a

resuming previously preempted job that runs afterward.

Property 5.10 is similar in nature to Property 5.5, but accounts for the increased exposure to interrupts

that the previously preempted job incurs.

Property 5.11. An additional charge of cpre (beyond that required by Property 5.10) must be included in the

analytical budget of each initial subjob.

Property 5.11 is similar in nature to Property 5.8 and accounts for the first segment of the initial subjob.

The lateness analysis we will use is based on the worst-case analytical budget of any subjob. However,

by Properties 5.7, 5.8, and 5.11, the analytical budgets of initial subjobs must include more overhead charges

than those of non-initial subjobs. Therefore, we will assign actual budgets to initial subjobs that are smaller

than for non-initial subjobs in order to compensate. As can be seen in Figure 5.3(d), it is then possible to

ensure that all subjobs have identical analytical budgets, spreading out the overhead charges as evenly as

possible. For simplicity, we first define the actual (analytical) budget for subjob τi,k,v as Csplit
i,v (Csplit′

i,v). We

initially provide expressions for analytical budgets in terms of the to-be-determined actual budgets. We then

provide expressions for actual budgets that effectively spread out the overheads that appear in our expressions.

Throughout this section, we denote the pre-inflation terms

Csplit
i ,

Cbase
i
si

, (5.9)

T split
i ,

T base
i
si

,

and we add a prime to any variable to indicate the post-inflation version. (Subjob analytical budgets can be

viewed as post-inflation actual budgets.)

By Property 5.6, we charge ∆ev to the base task period before splitting and define

T split′
i ,

T base
i −∆ev

si
. (5.10)

118

By Properties 5.5 and 5.7–5.11, for initial subjobs we define

Csplit′
i,0 ,

Csplit
i,0 +2 · (∆sch +∆cxs)+∆cpd

q
+2 · cpre +∆

ipi + crm. (5.11)

By Properties 5.5, 5.9, and 5.10, for v 6= 0, we define

Csplit′
i,v ,

Csplit
i,v +∆sch +∆cxs +∆cpd

q
+ cpre. (5.12)

We would like to define actual subjob budgets in such a way as to average (5.11) and (5.12), replacing

each coefficient of two in (5.11) with a coefficient of 1+ 1
si

and adding a coefficient of 1
si

to each of ∆ipi and

crm. We will show that the following allocation of actual budgets achieves this effect.

Csplit
i,v ,

Csplit

i − si−1
si
·
(
∆sch +∆cxs +q · (cpre +∆ipi + crm)

)
if v = 0,

Csplit
i + 1

si
·
(
∆sch +∆cxs +q · (cpre +∆ipi + crm)

)
if v > 0.

(5.13)

(If Csplit
i,0 < 0, then we consider the system unschedulable.)

We first show that the total budget allocated for each job is its WCET. We have

si−1

∑
v=0

Csplit
i,v = {By (5.13)}

Csplit
i − si−1

si
·
(
∆

sch +∆
cxs +q · (cpre +∆

ipi + crm)
)

+
si−1

∑
v=1

(
Csplit

i +
1
si
·
(
∆

sch +∆
cxs +q · (cpre +∆

ipi + crm)
))

= {Rewriting, because the summation has si−1 terms}

si ·Csplit
i

= {By the definition of Csplit
i in (5.9)}

Ci.

We next show that all subjobs have the same analytical budget. First,

Csplit′
i,0 = {By (5.11)}

119

Csplit
i,0 +2 · (∆sch +∆cxs)+∆cpd

q
+2 · cpre +∆

ipi + crm

= {By (5.13) with v = 0}

Csplit
i − si−1

si

(
∆sch +∆cxs +q · (cpre +∆ipi + crm)

)
+2 · (∆sch +∆cxs)+∆cpd

q
+2 · cpre +∆

ipi + crm

= {Rewriting}

Csplit
i +

(
1+ 1

si

)
· (∆sch +∆cxs)+∆cpd

q
+

(
1+

1
si

)
· cpre +

1
si
· (∆ipi + crm), (5.14)

and for v 6= 0,

Csplit′
i,v = {By (5.12)}

Csplit
i,v +∆sch +∆cxs +∆cpd

q
+ cpre

= {By (5.13)}

Csplit
i + 1

si
·
(
∆sch +∆cxs +q · (cpre +∆ipi + crm)

)
+∆sch +∆cxs +∆cpd

q
+ cpre

= {Rewriting}

Csplit
i +

(
1+ 1

si

)
·
(
∆sch +∆cxs

)
+∆cpd

q
+

(
1+

1
si

)
· cpre +

1
si
· (∆ipi + crm)

= {By (5.14)}

Csplit′
i,0 ,

as desired. We therefore define

Csplit′
i ,Csplit′

i,0

= {By (5.14)}

Csplit
i +

(
1+ 1

si

)
·
(
∆sch +∆cxs

)
+∆cpd

q
+

(
1+

1
si

)
· cpre +

1
si
· (∆ipi + crm). (5.15)

120

5.4.3 Budget Accounting Mechanisms

In the last subsection, we defined the actual subjob budgets required to ensure the best lateness bounds.

Additionally, at the beginning of Section 5.4, we discussed the requirement to add ∆cpd or ∆cid to the actual

budget of each subjob whenever it resumes from a preemption or after an interrupt, respectively. In this

subsection, we describe the actual mechanisms required to account for these budgets. These mechanisms are

based on the oi(t) term that was defined in Section 5.3.

Whenever a job resumes after a preemption or interrupt, we need to increase the budget of the current

subjob by ∆cpd or ∆cid units, respectively. We allocate the budget to the current subjob in order to mimic what

would happen if the subjob were a “real” job, in that its execution would increase. We define the following

budget accounting rules:

• B1. Every time τi is selected for execution, we subtract ∆cpd from oi(t).

• B2. Every time τi resumes execution after an interrupt, we subtract ∆cid from oi(t).

• B3. When τi is ready for execution after a change due to Rule B1 or Rule B2 (after any necessary

context switch), we update the DLM timer as in Rule R2 in Section 5.3.

When they take effect, these rules will cause the current subjob to be treated as though it has used less

execution time than it actually has, so it will be allowed to run for longer before the next split. For example,

in Figure 5.3(b), o1(t) will be reduced by 1 ms by the scheduler executing at each of times 11, 19, and 26.

(As discussed at the beginning of Section 5.4, this action is not actually necessary at times 19 and 26.)

Because the initial cache load from a base job is typically included in the job’s execution time, we will

initialize oi(t) on each job release to ensure that the job does not erroneously receive credit when it first

begins.

Additionally, we must account for the fact that, by (5.13), the actual budgets for initial and non-initial

subjobs differ. The basic idea for doing so (ignoring Rules B1–B3, which we account for later) is depicted in

Figure 5.4, which we now describe. By (5.1), each base job’s actual execution is divided into si identically

sized subjobs. In Figure 5.4, the base job is divided into three identically sized subjobs. Because there may

be multiple non-initial subjobs, if si > 1, then for the purposes of the algorithm in Section 5.3, we redefine

Cbase
i , si ·Csplit

i,1 .

121

Figure 5.4: Illustration of initial offset oi(t) for a job with si > 0. Observe that the axis is with respect to the
job’s execution time, rather than the wall-clock time.

This ensures that all subjobs except the initial subjob receive the correct actual budgets. In order to achieve

the correct budget for the initial subjob, we add Csplit
i,1 −Csplit

i,0 to the initial oi(t), which ensures that the initial

subjob receives Csplit
i,0 units of actual budget, as desired. It is as if the job had already executed up to the dotted

vertical line in Figure 5.4.

In order to apply this technique in the presence of Rules B1–B3, if a base job τi,k becomes eligible at

time t (either because it is released or because its predecessor has completed), we define

oi(t) =

∆cpd if si = 1,

∆cpd +Csplit
i,1 −Csplit

i,0 if si > 1.

To see how our mechanism works, consider the job of τ1 in Figure 5.3(b). Because we do not consider

interrupt-related overheads (U tck
0 = 0 and Ctck

0 = 0) but do consider a release master, q = 1 by (5.8), cpre = 0 by

(2.7), and crm = ∆rel by (5.6). Recall that Cbase
1 is the maximum execution of each job of τ1 before accounting

for overheads. For the base job of τ1 in Figure 5.3(b), it bounds the execution of the job that either does not

involve an overhead, or that involves an unnecessary cpd credit. Observe that this occurs for 16 ms in total,

so we use Cbase
1 = 16 ms. Therefore,

Csplit
1 = {By (5.9)}

Cbase
1
si

122

= {Substituting actual values}
16 ms

4

= {Simplifying}

4 ms. (5.16)

We have

Csplit
1,0 = {By (5.13)}

Csplit
1 − s1−1

s1
·
(
∆

sch +∆
cxs +q · (cpre +∆

ipi + crm)
)

= {Substituting s1 = 4, q = 1, cpre = 0, 1 ms overheads, and (5.16)}

4 ms− 3
4
· (2 ms+1 ·2 ms)

= {Simplifying}

1 ms, (5.17)

and for v 6= 0,

Csplit
1,v = {By (5.13)}

Csplit
1 − 1

s1
·
(
∆

sch +∆
cxs +q · (cpre +∆

ipi + crm)
)

= {Substituting s1 = 4, q = 1, cpre = 0, 1 ms overheads, and (5.16)}

4 ms+
1
4
· (2 ms+1 ·2 ms)

= {Simplifying}

5 ms. (5.18)

Therefore, for the purposes of the algorithm in Section 5.3, we use Cbase
1 = s1 ·Csplit

1,1 = 20 ms, and we

use o1(t) = ∆cpd +Csplit
1,1 −Csplit

1,0 = 5 ms initially. The scheduler that runs at time 3 in Figure 5.3(b) will then,

by Rule B1, subtract ∆cpd = 1 ms from oi(t), so that o1(t) = 4 ms for t ∈ [4 ms,12 ms) (until the end of the

next scheduler invocation that selects τ1). At time 5, by Rule B3, the DLM timer needs to be set properly

according to the definition of v1(5) in (5.2). Because the job has not yet actually begun execution at time 5,

123

e1(5) = 0. We thus have

λ1(5) = {By the definition of λ1(5) in (5.1)}⌊
s1 · (e1(5)+o1(5))

Cbase
i

⌋
= {Substituting s1 = 4, e1(5) = 0 ms, o1(5) = 4 ms, and Cbase

i = 20 ms}⌊
4 · (0 ms+4 ms)

20 ms

⌋
= {Simplifying}

0.

We have not yet observed a higher value of λ1(t) within the same job, so j1(5) = 0 as well. Therefore,

v1(5) = {By the definition of v1(5) in (5.2)}

5+
(j1(5)+1)Cbase

i
s1

− (e1(5)+o1(5))

= {Substituting j1(5) = 0, Cbase
i = 20 ms, s1 = 4, e1(5) = 0 ms, and o1(5) = 4 ms}

5+
(0+1) ·20 ms

4
− (0 ms+4 ms)

= {Simplifying}

6.

Thus, the DLM timer is scheduled to fire at time 6. At that time, because the job has executed for an additional

1 ms, ei(t) = 1 ms. Therefore,

λ1(6) = {By the definition of λ1(6) in (5.1)}⌊
s1 · (e1(6)+o1(6))

Cbase
i

⌋
= {Substituting s1 = 4, e1(6) = 1 ms, o1(6) = 4 ms, and Cbase

i = 20 ms.}⌊
4 · (1 ms+4 ms)

20 ms

⌋
= {Simplifying}

1. (5.19)

124

Therefore, the initial subjob has ended at time 6.

Then, when the scheduler runs again at time 11, due to Rule B1, it subtracts 1 ms from o1(t), so that

o1(t) = 3 ms for t ∈ [12 ms,20 ms). At time 13, by Rule B3, the DLM timer needs to be set properly according

to the definition of v1(6) in (5.2). Because the job has not executed since time 6, when e1(6) = 1 ms, we also

have e1(13) = 1 ms. We thus have

λ1(13) = {By the definition of λ1(13) in (5.1)}⌊
s1 · (e1(13)+o1(13))

Cbase
i

⌋
= {Substituting s1 = 4, e1(13) = 1 ms, o1(5) = 3 ms, and Cbase

i = 20 ms}⌊
4 · (1 ms+3 ms)

20 ms

⌋
= {Simplifying}

0.

In this case, λ1(13) is not the largest value of λ1(t) that has been observed while this job has been ready for

execution and incomplete. In particular, we demonstrated in (5.19) that λ1(6) = 1. Therefore, j1(13) = 1.

Thus,

v1(13) = {By the definition of v1(13) in (5.2)}

13+
(j1(13)+1)Cbase

i
s1

− (e1(13)+o1(13))

= {Substituting j1(13) = 1, Cbase
i = 20 ms, s1 = 4, e1(13) = 1 ms, and o1(13) = 3 ms}

13+
(1+1) ·20 ms

4
− (1 ms+3 ms)

= {Simplifying}

19.

Thus, the DLM timer is scheduled to fire at time 19. At that time, because the job has executed for an

additional 6 ms since time 6 (of which 1 ms was due to the cpd credit), ei(t) = 7 ms. Thus,

λ1(19) = {By the definition of λ1(19) in (5.1)}

125

⌊
s1 · (e1(19)+o1(19))

Cbase
i

⌋
= {Substituting s1 = 4, e1(19) = 7 ms, o1(19) = 3 ms, and Cbase

i = 20 ms.}⌊
4 · (7 ms+3 ms)

20 ms

⌋
= {Simplifying}

2.

Therefore, the second subjob has ended at time 19. Thus, its 5 ms budget has been correctly inflated to

account for the extra cpd charge, and it has run for 6 ms.

5.5 Handling Critical Sections

One of the advantages of GEL schedulers is that they are job-level static priority (JLSP) algorithms,

which is important for locking protocols (Brandenburg, 2011). However, when splitting is introduced, a GEL

algorithm is no longer truly JLSP. If a subjob ends while waiting for or holding a lock, then the priority of

the underlying job is changed, potentially violating the assumptions of locking protocols. Furthermore, if

a locking protocol operates nonpreemptively, then it is not possible to split a job while it is waiting for or

holding a critical section. Fortunately, we can solve both problems by simply extending subjob budgets for as

long as a resource request is active. A similar technique was proposed previously by Ghazalie and Baker

(1995) for aperiodic servers.

In order to support the necessary budget extensions, we use a more complicated set of rules than those

described in Section 5.3. To illustrate the behavior of our modified algorithm, we present in Figure 5.5 a

modification of the schedule from Figure 5.1(c) with the addition of critical sections. Our new rules allow

the budget for a subjob to be extended when its DLM is delayed. Furthermore, because this delay does not

change the expressions for ji(t), vi(t), ρi(t), or di(t), the next subjob implicitly has its budget shortened.

Essentially, we are only allowing each DLM to “lag” behind the ideal DLM by at most Cext
i units of the

corresponding base job’s execution. (Recall that Cext
i was defined in Section 5.2 to be the total amount of time

that a job could be waiting for or holding a critical section.) It is even possible for a subjob to be implicitly

skipped by this mechanism if Cext
i >Csplit

i .

• R1. If a job of τbase
i is released at time t, then δi(t) is assigned to di(t).

126

Figure 5.5: G-EDF schedule of the same system as Figure 5.1, with the same key, where τ3 is split into two
subjobs, the other tasks are not split, and critical sections are present.

This rule is identical to Rule R1 from Section 5.3.

• R2. Whenever a non-final subjob of τbase
i is scheduled at time t to run on a CPU, a DLM timer is

assigned to force a reschedule on that CPU at time vi(t). Whenever τbase
i is preempted, or τbase

i requests

a resource, the DLM timer is cancelled.

In the schedule in Figure 5.5, the DLM timer for τ3 is set at time 9 to fire at time 14, but is cancelled at

time 13 when τbase
3 requests a resource. Because only a final subjob remains after time 15, however,

the timer will not be set again.

• R3. Whenever a critical section ends, if di(t)> δi(t), then a reschedule is forced.

Observe that for t ∈ [14,15) in Figure 5.5, the current subjob of τ3,0 (τ3,0,0) is an earlier subjob than that

indexed by j3(t). Thus, when the critical section ends, a DLM should occur. Triggering a reschedule

will cause the needed DLM.

• R4. If the scheduler is called at time t on a CPU that was running τbase
i , and τbase

i is neither waiting for

nor holding a resource, then δi(t) is assigned the value di(t), potentially causing a DLM.

This rule is nearly identical to Rule R3 in Section 5.3 and functions the same way, except in the case

that the scheduler is invoked due to a job release from another task while τbase
i is waiting for or holding

a resource. However, if a DLM does occur, then the scheduler could have been invoked either due to

Rule R2 or Rule R3 as modified above. In Figure 5.5 it is invoked due to Rule R3 at time 15.

127

We let Csplit
i denote the ideal WCET of a subjob, ignoring critical sections. When we account for critical

sections, a single subjob of a job from τi can run for as long as Csplit
i +Cext

i . Nonetheless, τi’s processor share

over the long term is not affected, because the total execution of all subjobs of a base job must equal the

execution of that base job. The lateness analysis from Chapter 3 is described in the next section in a modified

form accounting for critical sections. The resulting lateness bounds are increased by approximately Cext
i with

no utilization loss.

5.6 G-FL Lateness Bounds

When we account for critical sections, a single subjob of τi,k can run for as long as Csplit
i +Cext

i time units.

Nonetheless, τi’s processor share over the long term is not affected, because the total execution of all subjobs

must be the execution of the base job. Intuitively, δi(t) can lag behind di(t) with respect to ei(t) (rather than

t) for the bounded amount of at most Cext
i units of execution of the base job.

Using Csplit
i +Cext

i in the sporadic task model would be overly pessimistic, because it would unnecessarily

increase the long-term utilization used in the analysis. Therefore, we extend the sporadic task model to reduce

this pessimism. We use the function DBF(τsplit
i ,Y split

i ,∆), defined as the maximum demand of jobs from τi

that have both release times and absolute PPs in any interval of length ∆.

We restate (3.8) for split tasks:

Ssplit
i (Y split

i),Csplit
i ·max

{
0,1− Y split

i

T split
i

}
. (5.20)

We now extend Lemmas 3.1 and 3.2 to our task model for split jobs where each split can be delayed at

most Cext
i time units. For G-FL, we use Y split

i = T split
i − m−1

m (Csplit
i +Cext

i). We still define U split
i =Csplit

i /T split
i

and Ssplit
i (Y split

i) using (5.20), but allow a job to run for as long as Csplit
i +Cext

i time units. We first provide an

extension of Lemma 3.1 to our slightly more general task model.

Lemma 5.1. If ∆≥ Yi, then

DBF(τsplit
i ,Y split

i ,∆)≤U split
i ∆+Ci ·

(
1− Yi

Ti

)
+Cext

i .

Proof. Let I be a worst-case interval of length ∆, i.e., such that jobs of τ
split
i with releases and absolute PPs in

I demand DBF(τsplit
i ,Y split

i ,∆) units of execution. If we assume Cext
i = 0, then by Lemma 3.1, there are at

128

most U split
i t +Ci ·

(
1− Yi

Ti

)
units of execution demanded in I. Allowing Cext

i > 0 essentially allows a subjob

to “steal” budget from its successor, which increases the demand in the interval if the stolen budget is from

outside the interval. For example, when analyzing τ
split
3 within I = [0,13) in Figure 5.5, only τ3,0,0 has both a

release and an absolute PP in I, but 1 ms of budget from τ3,0,1 is stolen, and thus contributes to the demand

from jobs of τ
split
3 in I. By our definition of worst-case demand, the most demand that can enter I would be

Cext
i units of demand added to the last subjob within I. The lemma follows.

We next provide an extension of Lemma 3.2 to our task model.

Lemma 5.2. DBF(τsplit
i ,Y split

i ,∆)≤U split
i ∆+Ssplit

i (Y split
i)+Cext

i .

Proof. Using identical reasoning to Lemma 5.1, but using Lemma 3.2 in place of Lemma 3.1.

The numerator in (3.13) measures the competing work remaining at the PP of a job under analysis. When

applied to τ
split
i , it is based on analyzing DBF(τsplit

i ,Y split
i ,∆) over a particular interval for each τ

split
i using

Lemmas 3.1 and 3.2. By comparing Lemmas 3.1 and 3.2 to Lemmas 5.1 and 5.2, we see that adding ∑τ j∈τ Cext
j

to the numerator in (3.13) accounts for the additional demand. In addition, because a job of τ
split
i can run for

Csplit
i +Cext

i time units, each Ci or C j should be replaced with Csplit
i +Cext

i or Csplit
j +Cext

j , respectively. We

now have:

G(~x,~Y split) = ∑
m−1 largest

(x jU
split
j +Csplit

j +Cext
j −Ssplit

j (Y split
j))

xi =
G(~x,~Y split)+S(~Y split)+∑τ j∈τ Cext

j − (Csplit
i +Cext

i)

m
(5.21)

and, for each task τ
split
i , a lateness bound of xi +Csplit

i +Cext
i −T split

i +Y split
i . Observe that while we needed

to inflate Csplit
i values, we did not need to inflate U split

i values. Because utilization values rather than

execution-time values are used to determine whether tardiness bounds exist, no capacity loss occurs.

5.7 Locking Overheads

In order to account for overheads from locking, we used the same strategy as Brandenburg (2011).

As Brandenburg did, we assumed that a release master is used. In this chapter, we consider only the

non-preemptive mutex queue spinlock locking protocol, as discussed in Sections 2.2.2 and 2.2.3. Because

determining which subjob will access a critical section may not be possible, we pessimistically assumed

129

that every subjob accesses every critical section. This behavior is not actually possible, but our assumption

provides a safe upper bound.

We used the same locking and overhead analysis procedure discussed in Section 2.2.3. The analysis

of lower(τi) discussed in that section assumes that jobs do not begin execution before their release times,

which is not true under our splitting mechanism, so we pessimistically assumed that every task in τi’s cluster,

other than τi itself, is in lower(τi). Furthermore, we defined G-FL priorities based on inflated values of Csplit′
i ,

which may change after the locking analysis, so the analysis of GEL schedulers provided in Section 2.2.3

also does not apply to unsplit task systems, and we used the same pessimistic choice of lower(τi).

During the locking analysis phase, we use the following formula to compute the maximum amount of

time that τ j spends waiting for a lock on resource ψq due to jobs in cluster v.

spin′′j (τ j,v,ψq) =

total(cv, tifs(θv,ψq,R j,1)) if cluster v is not τ j’s cluster,

total(cv−1, tifs(θv \{τ j},ψq,R j,1)) if cluster v is τ j’s cluster.
(5.22)

(5.22) is very similar to (2.9), which computes the same quantity assuming that some job of τi is pi-blocked

by τ j. Thus, (2.9) was derived assuming that τi is not currently running, so the second case within (2.9) does

not consider the possibility that τ j is waiting for a request of ψq from τi. For example, consider the situation

depicted in Figure 5.6, where τ2 begins spinning at time 6 for a lock held by τ1. This situation cannot cause

pi-blocking for τ1 within [5 ms,9 ms), because in it, τ1 is already running. A similar situation would occur if

τ1 were also spinning, contending for the same lock as τ2, but in that case, τ1 would be s-blocked rather than

pi-blocked. By contrast, we do not exclude from θv such a τi, as we want to know the absolute maximum

time that τ j can be blocked waiting for ψq, and the situation depicted in Figure 5.6 may be the case causing

such maximal blocking. To obtain the required bound for a given ψq, we simply sum spin′′(τ j,v,ψq) over all

clusters and add L j,q. To obtain Cext
j , we simply select the largest such bound for any resource.

During the phase analyzing non-locking-related overheads, we use (5.10) and (5.15) with (5.6) and (5.8)

to inflate parameters. In addition, a subjob of τi,k may use up to Cext
i units of extra actual budget while waiting

for or holding a lock. Because actual budgets are divided by q in (5.11) and (5.12), we use Cext′
i =Cext

i /q in

place of Cext
i for our final response-time bound computation.

130

Figure 5.6: Scenario that would not be considered in the analysis for τ1 in Section 2.2.2 but that we must
consider. Other than the additional symbol noted at the top, this figure has the same key as Figure 5.1.

5.8 Experiments

As stated at the beginning of this chapter, we discussed G-EDF in prior sections only for ease of

exposition. In this section, we instead consider G-FL (based on inflated values Csplit′
i), which has better

maximum lateness bounds. Brandenburg (2011) showed that, when the effects of overheads are considered,

the best scheduling strategy for bounded tardiness is clustered scheduling, where CPUs are grouped along

cache boundaries and a global scheduling algorithm is used within each cluster. We thus consider clustered

fair lateness (C-FL), where G-FL is used within each cluster.

Our experiments consisted of two phases. In the first phase, we measured overheads from an actual

implementation of C-FL. In the second phase, we used these measurements as part of an overhead-aware

schedulability study. This two-phase methodology has been used in several prior studies (e.g., see (Branden-

burg, 2011)).

First Phase: Overhead Measurement. We performed our overhead measurements on the system depicted

in Figure 5.7, which is a 24-core Xeon L7455 (2.13GHz) system with 64GB of RAM. On that system, pairs

of cores share an L2 cache and the cores on each six-core chip share an L3 cache. We considered four

variants of C-FL. Under C-FL-L2, CPUs are grouped at the level of L2 caches, and all processors both receive

interrupts and execute tasks. Under C-FL-L2-RM, CPUs are still grouped at the level of L2 caches, but one

CPU operates as a release master. C-FL-L3 and C-FL-L3-RM are analogous to C-FL-L2 and C-FL-L2-RM,

respectively, but group CPUs according to L3 caches rather than L2 caches.

For the first phase of our experiments, we implemented all four C-FL variants with splitting and measured

relevant overheads in a manner similar to the overhead measurements by Brandenburg (2011). Recall that

131

Figure 5.7: Architecture of machine used for overhead experiments.

the relevant overheads are described in Section 2.2, and our modifications to the accounting method are

described in Section 5.4. Because the techniques used for adjusting offsets require overhead numbers, our

implementation did not adjust offset parameters.

Second Phase: Schedulability Study. For the second phase of our experiments, we performed a schedula-

bility study considering the same 24-core platform considered in the first phase.

We assessed schedulability trends by generating implicit-deadline task sets based on the experimental

design from Brandenburg (2011). We generated task utilizations using either a uniform, a bimodal, or

an exponential distribution. For task sets with uniformly distributed utilizations, we used either a light

distribution with values randomly chosen from [0.001,0.1], a medium distribution with values randomly

chosen from [0.1,0.4], or a heavy distribution with values randomly chosen from [0.5,0.9]. For tasks sets

with bimodally distributed utilizations, values were chosen uniformly from either [0.001,0.5] or [0.5,0.9],

with respective probabilities of 8/9 and 1/9 for light distributions, 6/9 and 3/9 for medium distributions,

and 4/9 and 5/9 for heavy distributions. For task sets with exponentially distributed utilizations, we used

exponential distributions with a mean of 0.10 for light distributions, 0.25 for medium distributions, or 0.50 for

heavy distributions. Utilizations were drawn until one was generated between 0 and 1. We generated integral

task periods using a uniform distribution from [3ms,33ms] for short periods, [10ms,100ms] for moderate

periods, or [50ms,250ms] for long periods.

When assessing schedulability in the presence of locking, critical sections were chosen uniformly from

either [1µs,15µs] for short critical sections, [1µs,100µs] for medium critical sections, or [5µs,1280µs]

132

for long critical sections. We varied the lock contention via two parameters, nr, which is the number of

resources, and pacc, which is the probability that any task accesses a given resource. We performed tests with

nr = 6 and nr = 12, and with pacc = 0.1 and pacc = 0.25. For a task using a given resource, we generated

the number of accesses uniformly from the set {1,2,3,4,5}. These parameter choices are a subset of those

used by Brandenburg (2011) because, unlike Brandenburg, we opted to perform experiments on a larger

variety of working set sizes (see below) to facilitate better comparisons with experiments without locking.

A prior implementation study (Brandenburg and Anderson, 2007) demonstrated that for typical soft real-

time applications, the majority of critical sections are less than 10µs. Therefore, the short critical section

distribution is likely to be the most common in many settings.

For each tested set of distribution parameters, we generated 100 task sets for each utilization cap of

the form 24i
20 where i is an integer in [1,20], in order to get a reasonable spread of utilization caps. Tasks

were generated until one was created that would cause the system to exceed the given utilization cap.

That task was then discarded. We tested each task set for each choice of working set size (WSS) within

{22KB,23KB, . . . ,211KB}. The WSS for a base job is defined as its total memory footprint, and the WSS for

each subjob was assumed to be the same as that of its base job. For tests not involving locking, we considered

each combination of task set and WSS under each of the four C-FL variants. For tests involving locking,

we instead considered the two C-FL variants using a release master, and we assumed that the mutex queue

spinlock locking protocol described in Section 2.2.2 was used.

For each combination of task set and parameters, we first assigned the tasks to clusters using a worst-fit

decreasing heuristic: we ordered tasks by decreasing utilization, and we placed each task in order on the

CPU with the most remaining capacity. This heuristic was intended to maximize the available utilization

for overheads. We then evaluated tardiness without splitting by first inflating task parameters to account for

overheads and locking using the methods from Brandenburg (2011) (as reviewed in Section 2.2), and then

using the inflated task system in the lateness bound computation method in Chapter 3. We ignored task sets

that were either not schedulable under C-FL (without splitting) or resulted in zero tardiness, because our goal

was to show improvements upon previously available schedulers. The number of ignored task sets varied

greatly with respect to the utilization distribution, period distribution, and utilization cap. For example, very

large utilization caps usually led to unschedulable systems once overheads were accounted for, even without

splitting.

133

Input: Task system τ , cluster c, old maximum lateness old max late
Output: The new maximum lateness after splitting, or ⊥ if no improvement is possible

1 split candidates := get split candidates(τ,c)
2 for τi ∈ split candidates do
3 if not split saturatedi then
4 si := si +1
5 max late := comp max lateness(τ)
6 if max late=⊥ then
7 si := si−1
8 split saturatedi := true
9 else if max late< old max late then

10 return max late

11 else
12 si := si−1
13 return ⊥

Algorithm 5.1: Function try one split

For each considered task set, we applied task splitting using the heuristic described below. When

computing tardiness bounds after splitting, we first inflated the task parameters for overheads and locking as

before, but the method for inflating parameters was modified according to Sections 5.4, 5.5, and 5.7. We

compared the maximum tardiness bounds for the inflated task sets before and after splitting. (Because si = 1

is allowed by our algorithm, every considered task set is scheduable under C-FL with splitting by definition.)

Heuristic for Determining si. In order to use splitting to reduce tardiness bounds, it is necessary to determine

appropriate si values. To do so, we used a simple heuristic algorithm, described in Algorithms 5.1 and 5.2.

The function comp max lateness() accounts for overheads and returns the maximum lateness for the entire

task system if it is schedulable and ⊥ if it is not. It uses the methods described in Sections 5.4, 5.6, and (for

experiments involving locking) 5.5 and 5.7. The function get split candidates() returns a list of tasks in

a cluster ordered by contribution to the lateness bounds. Tasks that contribute to G(~x,~Y) (see Section 5.6) are

ordered by decreasing contribution to G(~x,~Y), and the remaining tasks are ordered by decreasing Ssplit
i (Y split

i).

The function try one split (Algorithm 5.1) attempts to reduce the lateness bound for the system by

increasing a single si by 1. It may make multiple attempts before finding a splitting that actually reduces

the maximum lateness bound for the system. For each task τi attempted, the algorithm first increases si in

Line 4. If this increase improves the maximum lateness bound, the function returns in Line 10, so no other

si values will be affected. Otherwise, if the increase either results in an unschedulable system or simply

no improvement to the maximum lateness bound, it is reverted (Lines 7 and 12). To improve efficiency,

134

Input: Task system τ

Output: The new maximum lateness after splitting
1 max late := comp max lateness(τ)
2 keep splitting := true
3 while keep splitting do
4 keep splitting := false
5 clust list := clusters sorted by decreasing maximum lateness
6 for c ∈ clust list do
7 new late := try one split(τ,c,max late)
8 if new late 6=⊥ then
9 max late := new late

10 keep splitting := true
11 return max late

Algorithm 5.2: Splitting heuristic

try one split uses the per-task variable split saturatedi, which is initially assumed to be false, but which

is set to true in Line 8, when increasing si by 1 would result in an unschedulable system. The value of

split saturatedi is assumed to persist between calls to try one split. The purpose of accounting for

split saturatedi is to avoid repeatedly trying to further split τi.

Algorithm 5.2 computes values for si for all τi. It consists of a loop (Lines 3–10) that is run repeatedly until

the maximum lateness bound has stopped improving. Within this loop, the algorithm calls try one split

on each cluster, ordered by the largest to the smallest maximum lateness bound. The purpose of calling

try one split on multiple clusters is that in a system with locking, reducing the lateness bound in one

cluster may reduce the lateness bounds for other clusters. Thus, even if there is no task to split in the cluster

with the largest maximum lateness bound, it may be possible to reduce the lateness bound for that cluster by

reducing the lateness bounds in a different cluster.

Results. Examples of results without locking are depicted in Figure 5.8, where each graph plots average

maximum tardiness bounds as a function of WSS.3 Observe that improvements over 25% are common,

and can be nearly 100% in some cases. Because task systems with higher WSSs are more likely to be

unschedulable even without splitting, higher WSSs often represent significantly smaller groups of task sets

and are skewed towards task sets with smaller utilizations. This can cause a nonincreasing trend in the

tardiness bounds with increased WSS for C-FL, but our purpose is to compare the effect of splitting when

bounded tardiness is already achievable by C-FL. An overall trend from our experiments is that splitting

3Additional results can be found at http://cs.unc.edu/~anderson. In total, our experiments resulted in several hundred graphs.

135

http://cs.unc.edu/~anderson

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000

A
v
e
ra

g
e
 T

a
rd

in
e
s
s
 B

o
u
n
d
 (

µ
s
)

WSS (KB)

Uniform Light Utilizations, Uniform Short Periods

C-FL-L2 unsplit
C-FL-L2 split

C-FL-L2-RM unsplit
C-FL-L2-RM split

C-FL-L3 unsplit
C-FL-L3 split

C-FL-L3-RM unsplit
C-FL-L3-RM split

(a) Light Uniform Utlization, Short Uniform Periods.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 500 1000 1500 2000

A
v
e
ra

g
e
 T

a
rd

in
e
s
s
 B

o
u
n
d
 (

µ
s
)

WSS (KB)

Bimodal Medium Utilizations, Uniform Long Periods

(b) Medium Bimodal Utilization, Long Uniform Periods.

Figure 5.8: Schedulability results with respect to WSS in the absence of locking.

provides more benefit when jobs are longer (larger utilizations and longer periods). This phenomenon occurs

because the additional overheads from splitting are proportional to the split factor rather than job length, so

the additional overheads are relatively smaller in comparison to longer jobs.

Figure 5.9 has the same key as Figure 5.8, but plots the average maximum tardiness bound as a function

of the system utilization cap rather than WSS. Observe that the bounds with splitting (dashed lines) tend to

grow more slowly than the bounds without splitting (solid lines) until they grow drastically before all tested

136

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 5 10 15 20

A
v
e
ra

g
e
 T

a
rd

in
e
s
s
 B

o
u
n
d
 (

µ
s
)

Utilization Cap

Bimodal Medium Utilizations, Uniform Long Periods

Figure 5.9: Medium Bimodal Utilization, Long Uniform Periods, WSS = 128KB. This graph is with respect
to utilization cap instead of WSS.

task sets are unschedulable. This phenomenon occurs because the overheads from splitting use some of the

system’s remaining utilization, and when very little utilization is available tasks cannot be split as finely.

Figure 5.10 has a distinct key from that of Figure 5.8 and depicts the behavior of the system in the

presence of locks. Observe that significant gains from splitting are available most of the time despite this

pessimism. In several cases, the improvement is on a similar order of magnitude to the gains without locking.

However, with long locks, the gains are much smaller. This phenomenon occurs because when the critical

sections are long, the extra blocking time from multiple subjobs can quickly overutilize the system. These

results demonstrate that when critical sections are not too long, job splitting is likely to be a useful technique

even in the presence of locks.

5.9 Conclusion

Lateness bounds established previously for GEL schedulers can be lowered in theory by splitting jobs.

However, such splitting can increase overheads and create problems for locking protocols. In this chapter, we

showed how to incorporate splitting-related costs into overhead analysis and how to address locking-related

concerns. We then applied these results in a schedulablity study in which real measured overheads were

considered. This study suggests that job splitting can viably lower lateness bounds in practice.

137

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000

A
v
e
ra

g
e
 T

a
rd

in
e
s
s
 B

o
u
n
d
 (

µ
s
)

WSS (KB)

Bimodal Medium Utilizations, Uniform Long Periods
Short Critical Sections, nres = 6, pacc = 0.25

C-FL-L2-RM unsplit
C-FL-L2-RM split

C-FL-L3-RM unsplit
C-FL-L3-RM split

(a) Medium Bimodal Utilization, Long Uniform Periods, Short Critical Sections, nr = 6, pacc = 0.25.

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000

A
v
e
ra

g
e
 T

a
rd

in
e
s
s
 B

o
u
n
d
 (

µ
s
)

WSS (KB)

Bimodal Medium Utilizations, Uniform Long Periods
Medium Critical Sections, nres = 6, pacc = 0.25

(b) Medium Bimodal Utilization, Long Uniform Periods, Medium Critical Sections, nr = 6, pacc = 0.25.

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 500 1000 1500 2000

A
v
e
ra

g
e
 T

a
rd

in
e
s
s
 B

o
u
n
d
 (

µ
s
)

WSS (KB)

Bimodal Medium Utilizations, Uniform Long Periods
Long Critical Sections, nres = 6, pacc = 0.25

(c) Medium Bimodal Utilization, Medium Uniform Periods, Long Critical Sections, nr = 6, pacc = 0.25.

Figure 5.10: Results with respect to WSS in systems with locking.

138

CHAPTER 6: DISSIPATION BOUNDS

In this chapter, we provide response-time bounds for tasks at level C in MC2, which was described in

Section 1.2. Recall that “restricted supply,” indicating that some processors are not fully available to tasks at

level C, can be handled using the work of Leontyev and Anderson (2010), as discussed in Section 2.1. MC2

statically prioritizes tasks at levels A and B above those at level C, so execution at levels A and B can be

considered as restricted supply when analyzing level C. We continue to use this general strategy, but reduce

pessimism. In addition, our analysis is sufficiently general to account for level-A, -B, and -C jobs that overrun

their level-C PWCETs.

When any job at or above level C overruns its level-C PWCET, the system at level C may be overloaded.

As noted above, this can compromise level-C guarantees. Using the normal MC2 framework, a task may have

its per-job response times permanently increased as a result of even a single overload event, and multiple

overload events could cause such increases to build up over time. For example, if a system is fully utilized,

then there is no “slack” with which to recover from overload. Therefore, we must alter scheduling decisions

to attempt to recover from transient overload conditions. We do so by scaling task inter-release times and

modifying scheduling priorities. We also provide dissipation bounds on the time required for response-time

bounds to settle back to normal.

The remainder of this chapter is organized as follows. In Section 6.1, we discuss the general task and

supply model used in this chapter. In Section 6.2, we provide our response-time bounds with full generality.

Then, in Section 6.3, we provide dissipation bounds. In Section 6.4, we discuss the implementation of a

system with recovery, and in Section 6.5 we provide experimental results examining dissipation times on an

actual implementation. Finally, in Section 6.6, we conclude.

6.1 System Model

In this chapter, we consider a generalized version of GEL scheduling, called GEL with virtual time

(GEL-v) scheduling, and a generalized version of the sporadic task model, called the sporadic with virtual

time and overload (SVO) model. We assume that time is continuous.

139

In our analysis, we consider only the system at level C. In other words, we model level-A and -B

tasks as supply that is unavailable to level C, rather than as explicit tasks. Thus, we consider a system

τ = {τ0,τ1, . . . ,τn−1} of n level-C tasks running on m > 1 processors P = {P0,P1, . . . ,Pm−1}. We assume that

minτi∈τ ri,0 = 0. Unlike in Chapters 3–5, we explicitly assume that jobs are not allowed to begin execution

before their release times. While this restriction could likely be lifted, doing so increases proof complexity

and is left as future work. The time when an arbitrary τi,k actually completes is denoted tc
i,k. We define the

following quantities that pertain to the execution time of τi,k.

Definition 6.1. ei,k is the actual execution time of τi,k.

Definition 6.2. ec
i,k(t) (completed) is the amount of execution that τi,k completes before time t.

Definition 6.3. er
i,k(t) (remaining) is the amount of execution that τi,k compeletes after time t.

These quantities are related by the following property, which follows immediately from Definitions 6.1–

6.3.

Property 6.1. For arbitrary τi,k and time t, ec
i,k(t)+ er

i,k(t) = ei,k.

We also define what it means for τi,k to be “pending”.

Definition 6.4. τi,k is defined to be pending at time t if ri,k ≤ t ≤ tc
i,k.

Both our scheduling scheme and our task model are modified compared to that discussed in Section 1.1.1.

Under GEL scheduling and the conventional sporadic task model discussed in Section 1.1.1, each task is

characterized by a per-job worst-case execution time (WCET) Ci > 0, a minimum separation Ti > 0 between

releases, and a relative PP Yi ≥ 0. Using the above notation, the system is subject to the following constraints

for every τi,k:

ei,k ≤Ci, (6.1)

ri,k+1 ≥ ri,k +Ti, (6.2)

yi,k = ri,k +Yi. (6.3)

Under the SVO model, we no longer assume a particular WCET (thus allowing overload from level-C

tasks).1 Therefore, (6.1) is no longer required to hold.

1MC2 optionally supports the use of execution budgets, which would prevent these particular overloads. However, our analysis is
general enough to apply even when execution budgets are not used.

140

Under GEL-v scheduling and the SVO model, we use a notion of virtual time (as in (Stoica et al., 1996)),

and we define the minimum separation time and relative PP of a task with respect to virtual time after one of

its job releases instead of actual time. The purpose of virtual time is depicted in Figure 6.1, which we now

describe.

In Figure 6.1, we depict a system that only has level-A and -C tasks, with one level-A task per CPU. For

level-A tasks, we use the notation (Ti,CC
i ,C

A
i), where Ti is task τi’s period, CC

i is its level-C PWCET, and CA
i

is its level-A PWCET. For level-C tasks, we use the notation (Ti,Yi,Ci), where all parameters are defined

below. Using the analysis provided in this chapter, response times for all jobs can be shown to be bounded in

the absence of overload. However, even in the absence of overload, as depicted in Figure 6.1(a), some jobs

complete shortly after their PPs or after successor jobs are released.

The particular example in Figure 6.1 fully utilizes all processors. In the situation depicted in Figure 6.1(b),

both level-A tasks released at time 12 run for their full level-A PWCETs. Therefore, from the perspective of

level C, an overload occurs.2 Because the system is fully utilized, there is no “slack” that allows for recovery

from overload, and response times are permanently increased. In a system with large utilization, response

times could take significant time to settle back to normal, even if they eventually will.

Once an overload occurs, the system can respond by altering virtual time for level C, as depicted in

Figure 6.1(c). Virtual time is based on a global speed function s(t). During normal operation of the system,

s(t) is always 1. This means that actual time and virtual time progress at the same rate. However, after an

overload occurs, the scheduler may choose to select 0 < s(t) < 1, at which point virtual time progresses

more slowly than actual time. In Figure 6.1(c), the system chooses to use s(t) = 0.5 for t ∈ [19,29). As a

result, virtual time progresses more slowly in this interval, and new releases of jobs are delayed. This allows

the system to recover from the overload, so at actual time 29, s(t) returns to 1. Observe that job response

times are significantly increased after actual time 12 when the overload occurs, but after actual time 29, they

are similar to before the overload. In fact, the depicted arrival pattern of level A happens to result in better

response times after recovery than before the overload, although this is not guaranteed under a sporadic

release pattern.

2 A similar overload could occur if a level-C task exceeds its level-C PWCET. However, as discussed in Footnote 1, MC2 optionally
supports the use of execution budgets in order to prevent such an occurrence. While the use of execution budgets would prevent
level-A and -B tasks from overrunning their level-A and -B PWCETs, respectively, they can still overrun their level-C PWCETs.
Thus, we have chosen examples that provide overload even when execution budgets are used.

141

(a) Example MC2 schedule in the absence of overload, illustrating bounded response times.

(b) The same schedule in the presence of overload caused by level-A tasks running for their full level-A PWCETs.
Notice that response times of level-C jobs settle into a pattern that is degraded compared to (a). For example, consider
τ2,6, which is released at actual time 36. In (a) it completes at actual time 43 for a response time of 7, but in this
schedule it does not complete until actual time 46, for a response time of 10.

(c) The same schedule in the presence of overload and the recovery techniques described in this section. Notice that
response times of level-C jobs settle into a pattern that is more like (a) than (b). For example, consider again τ2,6, which
now is not released until actual time 41 and completes at actual time 47 for a response time of 6 ms. This is more
similar to (a) than to (b).

Figure 6.1: Example MC2 task system, without and with overload.

142

An actual time t is converted to a virtual time using

v(t),
∫ t

0
s(t)dt. (6.4)

For example, in Figure 6.1(c), v(25) =
∫ 25

0 s(t)dt =
∫ 19

0 1dt +
∫ 25

19 0.5dt = 19+3 = 22. This definition leads

to the following property:

Property 6.2. For arbitrary time instants t0 and t1,

v(t1)− v(t0) =
∫ t1

t0
s(t)dt.

Unless otherwise noted, all instants (e.g., t, ri,k, etc.) are specified in actual time, and all variables except

Ti, Yi, and Uv
i (all defined below) refer to quantities of actual time.

Under the SVO model, (6.2) generalizes to

v(ri,k+1)≥ v(ri,k)+Ti, (6.5)

and under GEL-v scheduling, (6.3) generalizes to

v(yi,k) = v(ri,k)+Yi. (6.6)

For example, in Figure 6.1(c), τ1,0 is released at actual time 0, has its PP three units of (both actual and

virtual) time later at actual time 3, and τ1,1 can be released four units of (both actual and virtual) time later at

time 4. However, τ1,5 of the same task is released at actual time 21, shortly after the virtual clock slows down.

Therefore, its PP is at actual time 27, which is three units of virtual time after its release, and the release of

τ1,6 can be no sooner than actual time 29, which is four units of virtual time after the release of τ1,5. However,

the execution time of τ1,5 is not affected by the slower virtual clock.

In light of (6.5), we denote as bi,k (boundary) the earliest actual time that τi,k+1 could be released, based

on the release time of τi,k. bi,k is indexed using k because it depends on the actual release time of τi,k, not the

actual release time of τi,k+1.

Definition 6.5. bi,k is the actual time such that v(bi,k) = v(ri,k)+Ti.

143

Although it is possible to analyze systems where some Yi > Ti, doing so increases proof complexity

without providing any benefit to response-time or dissipation bounds. Therefore, we assume that for all i,

Yi ≤ Ti. (6.7)

In our analysis, we will frequently refer to the total work that a task produces from jobs that have both

releases and PPs in a certain interval. We therefore define a function for this quantity.

Definition 6.6.

De
i (t0, t1), ∑

τi,k∈ω

ei,k

(Demand), where ω is the set of jobs with t0 ≤ ri,k ≤ yi,k ≤ t1.

In order to model processor supply, we use a “service function” as in (Chakraborty et al., 2003; Leontyev

and Anderson, 2010), and as reviewed in Section 2.1.

Definition 6.7. βp(t0, t1) is the total number of units of time during which Pp is available to level C within

[t0, t1).

We further characterize processor supply in two parts. First, we assign to each processor Pp a nominal

utilization ûp, representing how much of its time we expect to be available to level C in the long term. Within

an arbitrary [t0, t1), we expect βp(t0, t1)≈ ûp(t1− t0). For example, in Figure 6.1(c), P0 is available whenever

τA1 is not running, and the utilization of τA1 at level C is 3
12 , so we choose û0 = 1− 3

12 = 3
4 . Similarly, P1 is

available whenever τA2 is not running, so we choose û1 = 1− 1
6 = 5

6 .

Over some intervals [t0, t1), a CPU is available for less time than indicated by nominal utilization

alone. For example, in Figure 6.1(c) over [0,3), P0 is not available at all to level C. Thus, for our second

characterization, we define a supply restriction overload function,

op(t0, t1), max{0, ûp · (t1− t0)−βp(t0, t1)}. (6.8)

This implies that

βp(t0, t1)≥ ûp · (t1− t0)−op(t0, t1). (6.9)

For example, consider [0,3) in Figure 6.1(c). By naı̈vely using nominal utilization, we would expect level C to

receive û0 · (t1− t0) = 3
4 · (3−0) = 9

4 units of service on P0, but it actually receives 0, so o0(t0, t1) = 9
4 . In the

144

absence of overload, there must be some constant σp such that, for all intervals [t0, t1), op(t0, t1)≤ ûpσp, and

our model reduces exactly to that used by Leontyev and Anderson (2010) under this assumption. However,

our more general model can be used to account for arbitrary overloads, by allowing op(t0, t1) > σp when

overload occurs within [t0, t1). We also define

utot , ∑
Pp∈P

ûp, (6.10)

which (when supply restriction overload is bounded) represents the total processing capacity available to the

system at level C.

We assume that the eventual supply available to the system is infinite. This assumption leads to the

following property.

Property 6.3. Any particular τi,k eventually completes.

If the eventual supply is finite, then no overload recovery is possible. Similarly, we assume that utot > 0,

for otherwise, the system cannot be guaranteed to schedule any system even in the absence of unexpected

overload.

6.2 Response-Time Analysis

In this section, we provide a general method for analyzing response times of a system at level C, under

GEL-v scheduling and with most of the generality of the SVO model. Because we make few assumptions

about overload, this method does not provide response-time bounds that apply to all jobs. In fact, it applies

even in situations where such bounds do not exist. However, we will use these results, with additional

assumptions, in Section 6.3 to provide dissipation bounds and long-term response-time bounds in the absence

of overload.

Under GEL scheduling applied to ordinary sporadic task systems, we proved in Chapter 3 that tc
i,k ≤

yi,k +xi +Ci, where xi is a per-task constant. That proof works by analyzing the behavior of each τi,k after yi,k,

because no job with higher priority can be released after yi,k. In the presence of overload a single per-task

xi may not exist. Furthermore, even in cases where such an xi does exist, it must pessimistically bound

all job releases, preventing any analysis of dissipation bounds. Therefore, we instead define a function of

time xi(t) ≥ 0 so that tc
i,k ≤ yi,k + xi (yi,k)+ ei,k. (We use ei,k in place of Ci because our analysis no longer

145

assumes that ei,k ≤Ci holds.) In our analysis, it is convenient to define xi(t) over all nonnegative real numbers.

Furthermore, it will be convenient to treat xi (t) as merely a safe upper bound. Therefore, we use the following

definition.

Definition 6.8. xi (t) is x-sufficient if xi (t)≥ 0, and for all τi,k with yi,k ≤ t,

tc
i,k ≤ t + xi (t)+ ei,k.

Throughout our analysis both here and in Section 6.3, we will frequently use the following property,

which follows immediately from Definition 6.8.

Property 6.4. If c1 ≥ c0 and xi (ta) = c0 is x-sufficient, then xi (ta) = c1 is x-sufficient.

In the remainder of this section, we will provide an x-sufficient value for xi (ta) for each τi and each time

ta (under analysis). We will exhaustively consider the cases depicted in Figure 6.2 for each ta, in approximate

order of increasing complexity. Note that Cases D and E reference terminology that will be defined later in

this section.

We first consider Case A, which provides the value of xi (ta) when ta < yi,0. This case is simple.

Theorem 6.1. If ta < yi,0, then xi (ta) = 0 is x-sufficient.

Proof. This theorem results from the definition of x-sufficient in Definition 6.8. If ta < yi,0, then the condition

in Definition 6.8 holds vacuously, because there are no jobs τi,k with yi,k ≤ ta.

We now consider Case B, in which ta = yi,k for some k and tc
i,k ≤ yi,k + ei,k. This case is similarly simple,

and we analyze it separately from the other cases with ta = yi,k in order to simplify later proofs.

Theorem 6.2. If ta = yi,k for some k and tc
i,k ≤ yi,k + ei,k, then xi (ta) = 0 is x-sufficient.

Proof. This theorem follows immediately from the definition of x-sufficient in Definition 6.8.

We next consider Case C, in which ta lies between two consecutive PPs. In this case, our bound depends

on having an x-sufficient value at the last PP before ta of a job in τi. This can be computed using Case B, D,

or E.

Theorem 6.3. If ta ∈ (yi,k,yi,k+1) and xi (yi,k) is x-sufficient, then xi (ta) = max{0,xi (yi,k)− (ta− yi,k)} is

x-sufficient.

146

A. ta < yi,0 (Theorem 6.1).

B. ta = yi,k for some k and tc
i,k ≤ yi,k + ei,k (Theorem 6.2).

C. ta ∈ (yi,k,yi,k+1) for some k (Theorem 6.3).

D. ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is f-dominant for L (Theorem 6.4).

E. ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is m-dominant for L (Theorem 6.5).

Figure 6.2: Cases for which values of xi (ta) are provided.

Proof. This theorem results from the definition of x-sufficient in Definition 6.8. If ta ∈ (yi,k,yi,k+1), then

there are no jobs of τi with PPs in (yi,k, ta), so tc
i,k is the latest completion of any job of τi with a PP before ta.

We have

tc
i,k ≤ {By the definition of x-sufficient in Definition 6.8}

yi,k + xi (yi,k)+ ei,k

= {Rearranging}

ta + xi (yi,k)− (ta− yi,k)+ ei,k.

Therefore, combined with the requirement from Definition 6.8 that xi (ta) ≥ 0, xi (ta) = max{0, xi (yi,k)−

(ta− yi,k)} is x-sufficient.

We will next consider Cases D and E. In both of these cases, ta = yi,k for some k. Before providing

proofs, we will first provide a basic explanation for why the presence of supply restriction adds complexity to

response-time analysis, and how we account for such complexity. This discussion motivates the structure of

our proofs, and also motivates the separate consideration of Case D and Case E.

After yi,k, τi,k can be delayed for two reasons: all processors can be occupied by either other work and/or

supply restriction, or some predecessor job of τi,k within τi can be incomplete. We define work from τ j,` as

competing with τi,k if y j,` ≤ yi,k and j 6= i, and supply restriction as competing if it occurs before tc
i,k. Note that,

in order to account for work or supply restriction that indirectly affects τi,k by pushing other work forward in

time, we do not require that work or supply restriction occur after ri,k in order to say that it is “competing”

with τi,k.

147

(a) Maximum parallelism (worst-case) completion pattern.

(b) Alternative completion pattern.

Figure 6.3: Example completion patterns for competing work in the absence of supply restriction.

We first review the basic structure of previous analysis from Chapter 3 in the absence of supply restriction.

Such analysis considers competing work remaining at yi,k. Some example patterns for the completion of

competing work are depicted in Figure 6.3. Figure 6.3(a) depicts the worst-case delay due to competing work

rather than a predecessor, when all processors are occupied until τi,k can begin execution. Figure 6.3(b)

depicts an alternative completion pattern for the same amount of work. Observe that before tc
i,k−1, there are

idle CPUs. Thus, this example depicts the situation where τi,k is delayed due to its predecessor.

If some processor is idle, then there must be fewer than m tasks with remaining work. Thus, in the

absence of supply restriction, τi will run continuously until τi,k completes. This is why the worst-case

completion pattern is the one with maximum parallelism, as depicted in Figure 6.3(a). For fixed tc
i,k−1, any

other completion pattern might allow τi,k to complete earlier (as happens in Figure 6.3(b)) or else does not

change the completion time of τi,k (if the delay due to an incomplete predecessor already dominated). To

148

summarize, in the absence of overload, either the delay due to an incomplete predecessor dominates, as in

Figure 6.3(b), or the delay due to competing work dominates, as in Figure 6.3(a).

We now consider the effects of introducing supply restriction. Figure 6.4 depicts similar completion

patterns as Figure 6.3. As before, τi,k can be delayed either because all processors are occupied by competing

work or supply restriction, or because some predecessor of τi,k within τi is incomplete. However, as can be

seen by comparing Figure 6.4(a) and Figure 6.4(b), having all competing work complete with maximum

parallelism is no longer the worst case. This phenomenon occurs because supply restriction can now prevent

the execution of τi even after some processor has become idle, by reducing the number of available processors

below the number of tasks with remaining work. This increases the complexity of determining the interaction

between delays caused by competing work and delays caused by an incomplete predecessor, as the simple

dominance that occurred in the absence of supply restriction may not occur.

To determine an upper bound on tc
i,k, we add to yi,k the sum of the lengths of three types of sub-intervals

within [yi,k, tc
i,k), as depicted in Figure 6.4(b).

1. Sub-intervals during which τi does not run because all m processors are occupied by competing work

or supply restriction.

2. Sub-intervals during which jobs of τi before τi,k execute.

3. Sub-intervals during which τi,k executes.

We will bound the total length of sub-intervals of Type 1 by bounding the total amount of competing

work and supply restriction. We will now define the total length of sub-intervals of Type 2 as ep
i,k; the total

length of sub-intervals of Type 3 is simply er
i,k(yi,k).

Definition 6.9. ep
i,k is the work remaining after yi,k due to jobs of τi prior to τi,k.

Let c denote a bound on the total amount of competing work after yi,k and competing supply restriction

after yi,k. The specific value of c will be derived in Lemma 6.6 below, but its exact expression is not relevant

for the purposes of this introductory discussion. The total length of Type 1 sub-intervals of [yi,k, tc
i,k), where

τi is not running, can be upper bounded by dividing c by m. However, this bound may be unnecessarily

pessimistic, because some of the competing work and supply restriction may actually run concurrently with

τi. For example, in Figure 6.4(b), some competing work and supply restriction runs within [104,120) even

though this interval is composed of a sub-interval of Type 2 and a sub-interval of Type 3.

149

(a) Maximum parallelism completion pattern.

(b) Alternative completion pattern.

Figure 6.4: Example completion patterns for competing work in the presence of supply restriction.

We now informally describe an optimization that allows us to reduce some of this pessimism. We will

simplify our informal analysis by assuming that k > 0 and tc
i,k−1 > yi,k. We will later discuss how to relax this

assumption. Let v be an arbitrary integer with 0≤ v < m. We consider two cases.

Few Tasks Case. If there is some time within [yi,k, tc
i,k−1) such that at most v processors are occupied by

work or supply restriction, then there are at most v tasks that have work remaining, or more CPUs would be

occupied. Thus, in this case there are at most v tasks with competing work remaining after tc
i,k−1, and τi,k can

execute after tc
i,k−1 whenever there are at least v processors available to level C. For example, in Figure 6.4(b),

if v = 2, then because only v processors are occupied at time 109 ∈ [yi,k, tc
i,k−1), there are only v tasks with

remaining work at this time, and τi,k can run after tc
i,k−1 whenever at least v = 2 processors are available to

150

level C. Therefore, rather than summing the lengths of the intervals of each type, we can compute an upper

bound on the time it takes for there to be ei,k time units with at least v processors available after tc
i,k−1.

Many Tasks Case. If there are at least v+1 tasks with work remaining throughout [yi,k, tc
i,k−1), then at least

v processors are occupied with competing work and/or supply restriction in all sub-intervals of Type 2 (in

which jobs of τi prior to τi,k are running). For example, in Figure 6.4(b), this case holds with v = 1, because

there is some other task executing on the first processor until tc
i,k−1. By the definition of ep

i,k in Definition 6.9,

the total length of Type 2 intervals is ep
i,k. Thus, at least v · ep

i,k units of competing work and supply restriction

actually run in intervals of Type 2, so we can subtract v · ep
i,k from the bound c to upper bound the amount of

work and supply restriction running in Type 1 intervals.

As mentioned above, this informal analysis assumes that τi,k−1 exists and that tc
i,k−1 > yi,k. If this is not

the case, then by the definition of ep
i,k in Definition 6.9, ep

i,k = 0. Thus, the analysis from the Many Tasks Case

will subtract v · ep
i,k = 0 units of competing work and supply restriction from the bound c for Type 1 intervals.

Therefore, it is safe to use the analysis from the Many Tasks Case when k = 0 or tc
i,k−1 ≤ yi,k. Observe that

for any v with 0≤ v < m, one of these two cases must hold. We therefore define a pair of properties, one for

each case.

Definition 6.10. Let L be an arbitrary integer with 0≤ L < m. If k > 0, tc
i,k−1 > yi,k, and there are at most

m−L−1 tasks that have work remaining at tc
i,k−1, then τi,k is f-dominant for L (f ew tasks case).

τi,k is f-dominant for L if the Few Tasks Case applies.

Definition 6.11. Let L be an arbitrary integer with 0 ≤ L < m. If τi,k is not f-dominant for L, then τi,k is

m-dominant for L (many tasks case).

τi,k is m-dominant for L if the Many Tasks Case applies.

In Section 6.2.1 below, we will consider Case D, in which τi,k is f-dominant for L. Then, in Section 6.2.2,

we will consider Case E, in which τi,k is m-dominant for L.

6.2.1 Case D: ta = yi,k for some k and τi,k is f-dominant for L.

In this case, we use the Few Tasks Case with v = m−L−1. Recall from the above discussion that in

this case, τi,k runs after tc
i,k−1 whenever there are at least v processors available to level C. Lemma 6.2 below

provides a bound on tc
i,k in this case. Lemma 6.1 is used to prove Lemma 6.2.

151

Lemma 6.1. For any integer 0≤ v≤ m, in any time interval [t0, t1) with t1 ≥ t0, there are at least

(t1− t0)− ∑
Pp∈ζ

((1− ûp) · (t1− t0)+op(t0, t1))

units of time during which at least v processors are available to level C, where ζ is the set of v processors that

minimizes the sum.

Proof. We prove this lemma by induction. Without loss of generality, we fix t0 and t1 and assume that P

is ordered by increasing (1− ûp)(t1− t0)+ op(t0, t1). We prove the stronger condition that within [t0, t1),

there are (t1− t0)−∑
v−1
p=0((1− ûp)(t1− t0)+op(t0, t1)) units of time during which the specific processors P0

through Pv−1 are available to level C.

As the base case, we consider v = 0. During any time interval, it is vacuously true that all processors in

the empty set are available to level C, so there are t1− t0 such units of time in [t0, t1) and the lemma holds.

For the inductive case, assume that there are

(t1− t0)−
v−1

∑
p=0

((1− ûp) · (t1− t0)+op(t0, t1)) (6.11)

units of time in [t0, t1) during which processors P0 through Pv−1 are available to level C.

By the definition of βv(t0, t1) in Definition 6.7, Pv is unavailable to level C in [t0, t1) for

(t1− t0)−βv(t0, t1)

≤ {By (6.9)}

(t1− t0)− (ûv · (t1− t0)−ov(t0, t1))

= {Rearranging}

(1− ûv) · (t1− t0)+ov(t0, t1) (6.12)

units of time.

In the worst case, as depicted in Figure 6.5, either all of Pv’s unavailable time occurs when processors P0

through Pv−1 are all available, or Pv is unavailable during all times when P0 through Pv−1 are available. In

either case, the lemma holds by subtracting (6.12) from (6.11).

152

Figure 6.5: Worst-case pattern of supply restriction for the first four processors, in order to minimize the
amount of time that all four processors are available. In this case, the four processors are never all available
at the same time within [t0, t1).

We now use Lemma 6.1 to prove the next lemma, which bounds tc
i,k in the Few Tasks Case. We let v be

an integer with 0≤ v < m, and we let

Ai,k(v),

ei,k+∑Pp∈Θ op(tc

i,k−1,t
c
i,k)

1−v+∑Pp∈Θ ûp
if 1− v+∑Pp∈Θ ûp > 0,

∞ otherwise,
(6.13)

where Θ is the set of v processors that minimizes Ai,k(v).

Lemma 6.2. Ai,k(v)> 0 holds. Moreover, if τi,k can run after tc
i,k−1 whenever there are at least v processors

available to level C, then tc
i,k ≤ tc

i,k−1 +Ai,k(v).

Proof. If Ai,k(v) is infinite, then the lemma must hold by Property 6.3. Thus, we assume that Ai,k(v) is finite.

To see that Ai,k(v)> 0, observe that because Ai,k(v) is finite, by (6.13), 1−v+∑Pp∈Θ ûp > 0. Furthermore,

by Definition 6.1, ei,k > 0, and by (6.8), op(tc
i,k−1, t

c
i,k)≥ 0. Therefore, by (6.13), Ai,k(v)> 0.

To prove the second part of the lemma, we use proof by contradiction. Suppose tc
i,k > tc

i,k−1 +Ai,k(v). By

Lemma 6.1, the number of time units in [tc
i,k−1, t

c
i,k) with v processors available to level C is at least

(tc
i,k− tc

i,k−1)− ∑
Pp∈ζ

((1− ûp)(tc
i,k− tc

i,k−1)+op(tc
i,k−1, t

c
i,k))

≥ {By the definition of ζ in Lemma 6.1, because Θ has v processors}

(tc
i,k− tc

i,k−1)− ∑
Pp∈Θ

((1− ûp)(tc
i,k− tc

i,k−1)+op(tc
i,k−1, t

c
i,k))

153

= {Rearranging, and because Θ has v processors}(
1− v+ ∑

Pp∈Θ

ûp

)
(tc

i,k− tc
i,k−1)− ∑

Pp∈Θ

op(tc
i,k−1, t

c
i,k)

> {Because tc
i,k > tc

i,k−1 +Ai,k(v) and 1− v+∑Pp∈Θ ûp > 0}(
1− v+ ∑

Pp∈Θ

ûp

)
Ai,k(v)− ∑

Pp∈Θ

op(tc
i,k−1, t

c
i,k)

= {By (6.13), because Ai,k(v) is finite}(
1− v+ ∑

Pp∈Θ

ûp

)
·

ei,k +∑Pp∈Θ op(tc
i,k−1, t

c
i,k)

1− v+∑Pp∈Θ ûp
− ∑

Pp∈Θ

op(tc
i,k−1, t

c
i,k)

= {Rearranging}

ei,k. (6.14)

However, because τi,k can run after tc
i,k−1 whenever there are at least v processors available to level C, τi,k

must have executed for longer than ei,k units. This is a contradiction.

We now use this result to provide a bound on xi (ta) to handle Case D.

Theorem 6.4. If ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is f-dominant for L, then xi (ta) = x f

i,k is

x-sufficient, where

x f
i,k , tc

i,k−1− yi,k +Ai,k(m−L−1)− ei,k (6.15)

(few tasks).

Proof. By the definition of f-dominant for L in Definition 6.10, because no new competing work is released

after yi,k, throughout [tc
i,k−1, t

c
i,k), there are at most m− L− 1 tasks that have remaining competing work.

Therefore, whenever at least m−L−1 processors are available to level C within [tc
i,k−1, t

c
i,k), τi,k is running.

Thus,

tc
i,k ≤ {By Lemma 6.2}

tc
i,k−1 +Ai,k(m−L−1)

= {Rewriting}

yi,k +(tc
i,k−1− yi,k +Ai,k(m−L−1)− ei,k)+ ei,k

154

Figure 6.6: Example depicting tb
i,k when m = 4.

= {By the definition of x f
i,k in (6.15)}

yi,k + x f
i,k + ei,k. (6.16)

Because tc
i,k > yi,k + ei,k by the statement of the lemma, by (6.16), x f

i,k > 0. Thus, by (6.16) and the definition

of x-sufficient in Definition 6.8, xi (yi,k) = x f
i,k is x-sufficient. Because ta = yi,k, the theorem follows.

6.2.2 Case E: ta = yi,k for some k and τi,k is m-dominant for L

The basic structure of our analysis of Case E is fundamentally similar to the analysis in Chapter 3. We

will analyze the lateness of an arbitrary job τi,k, ignoring all jobs that have PPs after yi,k. We define an interval

as busy if, for the entire interval, all processors are either unavailable or are executing tasks with PPs not after

yi,k. As depicted in Figure 6.6, we define a time tb
i,k.

Definition 6.12. tb
i,k the earliest time such that tb

i,k ≤ yi,k and [tb
i,k,yi,k) is busy.

Such a time must exist, because [yi,k,yi,k) (which is an empty interval) is vacuously busy. We separately

upper bound work (Lemma 6.4) and competing supply restriction (Lemma 6.5) after tb
i,k, and then use those

results to determine a full response-time bound.

We will first upper bound all remaining work at tb
i,k, including both competing work and work due to

τi. In order to do so, we first prove a lemma that bounds the amount of work after arbitrary time t0 ≤ yi,k

contributed by a task τ j with a pending job at t0. This will allow us to bound the work by tasks that have

pending jobs at tb
i,k. (We use t0 instead of tb

i,k because the same lemma will also be used in Section 6.3 with a

different choice of t0.)

155

Lemma 6.3. If there is a pending job of τ j at arbitrary time t0 ≤ yi,k, then denote as τ j,` the earliest job

of τ j pending at t0. The total remaining work at time t0 for jobs of τ j with PPs not later than yi,k is

er
j,`(t0)+De

j(b j,`,yi,k).

Proof. By the definition of b j,` in Definition 6.5 and the definition of Ti in (6.5), any job of τ j after τ j,` must

be released no sooner than b j,`. Therefore, by Definition 6.6, the total work from such jobs with PPs not later

than yi,k is De
j(b j,`,yi,k). Adding er

j,`(t0) for the remaining work due to τ j,` yields the lemma.

We now bound all remaining work at tb
i,k, including that due to τi.

Lemma 6.4. The remaining work at tb
i,k for jobs with PPs not later than yi,k is

Wi,k , ∑
τ j,`∈θi,k

(er
j,`(t

b
i,k)+De

j(b j,`,yi,k))+ ∑
τ j∈θi,k

De
j(t

b
i,k,yi,k). (6.17)

where θi,k is the set of jobs τ j,` such that τ j,` is the earliest pending job of τ j at tb
i,k, r j,` < tb

i,k, and y j,` ≤ yi,k,

and θi,k is the set of tasks that do not have jobs in θi,k.

Proof. As before, we ignore any jobs that have PPs after yi,k. We bound the work remaining for each task τ j

at tb
i,k, depending on whether it has a pending job at tb

i,k with a release before tb
i,k.

Case 1: τ j has no Pending Job at tb
i,k with a Release Before tb

i,k. In this case, all relevant work remaining

for τ j at tb
i,k comes from jobs τ j,` with tb

i,k ≤ r j,` ≤ y j,` ≤ yi,k. Thus, by the definition of De
j(t

b
i,k,yi,k) in

Definition 6.6, there are

De
j(t

b
i,k,yi,k) (6.18)

units of such work. Furthermore, such a task is in θi,k by the definition of θi,k in the statement of the lemma.

Case 2: τ j has a Pending Job at tb
i,k with a Release Before tb

i,k. Denote as τ j,` the earliest pending job of τ j

at tb
i,k. By Lemma 6.3 (with t0 = tb

i,k), the remaining work for τ j at tb
i,k is

er
j,`(t

b
i,k)+De

j(b j,`,yi,k). (6.19)

Furthermore, τ j,` is in θi,k by the definition of θi,k in the statement of the lemma.

Summing over all tasks, using (6.18) or (6.19) as appropriate, yields Wi,k by (6.17).

156

We next consider supply restriction, accounting for it as if it were competing work. There is one

significant difference between supply restriction and competing work. Under GEL-v scheduling, once a job

has reached its PP, no new competing work can arrive. However, new supply restriction can continue to be

encountered until the job completes. By Property 6.3 and the definition of x-sufficient in Definition 6.8, we

have that each τi,k completes by time yi,k + xi (yi,k)+ ei,k for some x-sufficient xi (yi,k). We reference such a

xi (yi,k) in the following lemma, and we instantiate it to a specific value in Theorem 6.5 below.

Lemma 6.5. For arbitrary job τi,k and x-sufficient xi (yi,k), at most

(m−utot)((yi,k− tb
i,k)+ xi (yi,k)+ ei,k)+Oi,k

units of competing supply restriction exist after tb
i,k, where

Oi,k , ∑
Pp∈P

op(tb
i,k, t

c
i,k). (6.20)

(Recall that we describe supply restriction as “competing” if it occurs before tc
i,k.)

Proof. By the definition of βp(tb
i,k, t

c
i,k) in Definition 6.7, the amount of time that Pp is not available to level C

over [tb
i,k, t

c
i,k) is

(tc
i,k− tb

i,k)−βp(tb
i,k, t

c
i,k)

≤ {By (6.9)}

(tc
i,k− tb

i,k)− ûp · (tc
i,k− tb

i,k)+op(tb
i,k, t

c
i,k).

= {Rearranging}

(1− ûp) · (tc
i,k− tb

i,k)+op(tb
i,k, t

c
i,k).

This quantity upper bounds the competing supply restriction on Pp after tb
i,k. Summing over all processors,

the total amount of competing supply restriction on all processors is at most

∑
Pp∈P

((1− ûp) · (tc
i,k− tb

i,k)+op(tb
i,k, t

c
i,k))

= {Rearranging}

157

(
∑

Pp∈P
1− ∑

Pp∈P
ûp

)
· (tc

i,k− tb
i,k)+ ∑

Pp∈P
op(tb

i,k, t
c
i,k)

= {Because there are m processors in P, by the definition of utot in (6.10), and by the definition

of Oi,k in (6.20)}

(m−utot) · (tc
i,k− tb

i,k)+Oi,k

≤ {By the definition of x-sufficient in Definition 6.8}

(m−utot) · (yi,k + xi (yi,k)+ ei,k− tb
i,k)+Oi,k

= {Rearranging}

(m−utot) · ((yi,k− tb
i,k)+ xi (yi,k)+ ei,k)+Oi,k.

We now compute a lateness bound that accounts for both work and competing supply restriction. As

discussed earlier, we will analyze the behavior of the system after yi,k, when new job arrivals cannot preempt

τi,k.

We will now consider how to bound the total length of sub-intervals of Type 1 as described earlier, during

which τi does not execute because all processors are occupied by competing work or supply restriction. We

will do so by bounding the total amount of competing work and supply restriction after yi,k. Recall that

in Lemmas 6.4–6.5, competing work and supply restriction were determined after tb
i,k rather than after yi,k.

The following property will allow us to transition to reasoning after yi,k. It holds by the definition of tb
i,k in

Definition 6.12.

Property 6.5. m · (yi,k− tb
i,k) units of work and/or supply restriction complete in [tb

i,k,yi,k).

We now bound the amount of competing work and supply restriction in [yi,k, tc
i,k).

Lemma 6.6. For arbitrary τi,k and x-sufficient xi (yi,k), at most

Wi,k−Ri,k +(m−utot)(xi (yi,k)+ ei,k)+Oi,k− er
i,k(yi,k)− ep

i,k

units of competing work and supply restriction remain at yi,k, where

Ri,k , utot(yi,k− tb
i,k). (6.21)

158

Proof. By Lemma 6.4, the total amount of remaining work at tb
i,k for jobs τ j,` with y j,` ≤ yi,k is Wi,k. Adding

this to the bound on competing supply restriction in Lemma 6.5, there are at most

Wi,k +(m−utot)((yi,k− tb
i,k)+ xi (yi,k)+ ei,k)+Oi,k

units of work and supply restriction remaining after tb
i,k. Of this work and supply restriction, by Property 6.5,

the amount remaining at yi,k is at most

Wi,k +(m−utot)((yi,k− tb
i,k)+ xi (yi,k)+ ei,k)+Oi,k−m · (yi,k− tb

i,k)

= {Rearranging}

Wi,k−utot · (yi,k− tb
i,k)+(m−utot) · (xi (yi,k)+ ei,k)+Oi,k

= {By the definition of Ri,k in (6.21)}

Wi,k−Ri,k +(m−utot) · (xi (yi,k)+ ei,k)+Oi,k. (6.22)

Of this remaining work and supply restriction, by the definition of ep
i,k in Definition 6.9, ep

i,k units are due to

jobs of τi prior to τi,k, and by the definition of er
i,k(yi,k) in Definition 6.3, er

i,k(yi,k) units are due to τi,k itself.

The lemma follows immediately.

Next, we prove a result that formalizes our initial discussion of the Many Tasks Case, allowing us to

provide a lower bound on competing work and supply restriction within Type 2 sub-intervals.

Lemma 6.7. If τi,k is m-dominant for L, then whenever jobs of τi prior to τi,k are running after yi,k, at least

m−L−1 processors are occupied by competing work or supply restriction.

Proof. If k = 0 or tc
i,k−1 ≤ yi,k, then the lemma is vacuously true, as no jobs of τi prior to τi,k execute after yi,k.

Therefore, we assume that tc
i,k−1 > yi,k.

By the definition of m-dominant for L in Definition 6.11, there are at least m−L tasks that have work

remaining at tc
i,k−1. Therefore, over [yi,k, tc

i,k−1), there are always at least m−L−1 tasks other than τi eligible

for execution. All of these tasks must be executing at all times over [yi,k, tc
i,k−1), except when all m processors

are occupied are occupied by work or supply restriction. Because L ≥ 0 by Definition 6.11, the lemma

follows.

159

We now bound the completion time of τi,k.

Lemma 6.8. If τi,k is m-dominant for L, tc
i,k > yi,k + ei,k, and xi (yi,k) is x-sufficient, then

tc
i,k ≤ yi,k +

Wi,k−Ri,k +(m−utot)(xi (yi,k)+ ei,k)+Oi,k− ei,k +Lep
i,k

m
+ ei,k.

Proof. By Lemma 6.7, during any instant within any sub-interval of Type 2 (as depicted in Figure 6.4(b)),

there are at least m−L−1 processors executing competing work or supply restriction. Recall that, by the

definition of “Type 2” and the definition of ep
i,k in Definition 6.9, the total length of such sub-intervals is ep

i,k.

By Lemma 6.6 there can be at most

c ,Wi,k−Ri,k +(m−utot)(xi (yi,k)+ ei,k)+Oi,k− er
i,k(yi,k)− ep

i,k− (m−L−1)ep
i,k

= {Rearranging}

Wi,k−Ri,k +(m−utot)(xi (yi,k)+ ei,k)+Oi,k− er
i,k(yi,k)+(L−m)ep

i,k (6.23)

units of computing work and supply restriction after yi,k that do not run concurrently with jobs of τi prior to

τi,k. This bound includes all work and/or supply restriction in sub-intervals of Type 1. All m processors are

occupied by work or supply restriction in such sub-intervals, so the total length of such sub-intervals is at

most c/m.

Recall that the total length of Type 3 sub-intervals (in which τi,k runs) is er
i,k(yi,k). Therefore,

tc
i,k ≤ {Adding the total length of each type of sub-interval to yi,k}

yi,k +
c
m
+ ep

i,k + er
i,k(yi,k)

= {By (6.23)}

yi,k +
Wi,k−Ri,k +(m−utot)(xi (yi,k)+ ei,k)+Oi,k− er

i,k(yi,k)+(L−m)ep
i,k

m
+ ep

i,k + er
i,k(yi,k)

= {Rearranging}

yi,k +
Wi,k−Ri,k +(m−utot)(xi (yi,k)+ ei,k)+Oi,k +Lep

i,k

m
+

m−1
m
· er

i,k(yi,k)

≤ {Because er
i,k(yi,k)≤ ei,k and m > 1}

yi,k +
Wi,k−Ri,k +(m−utot)(xi (yi,k)+ ei,k)+Oi,k +Lep

i,k

m
+

m−1
m
· ei,k

160

= {Rearranging}

yi,k +
Wi,k−Ri,k +(m−utot)(xi (yi,k)+ ei,k)+Oi,k− ei,k +Lep

i,k

m
+ ei,k.

The next theorem provides the actual bound on xi (ta).

Theorem 6.5. If ta = yi,k for some k, tc
i,k > yi,k + ei,k and τi,k is m-dominant for L, then xi (ta) = xm

i,k is

x-sufficient, where

xm
i,k ,

Wi,k−Ri,k +(m−utot−1)ei,k +Oi,k +Lep
i,k

utot
(6.24)

(many tasks).

Proof. We let

xt
i,k , tc

i,k− ei,k− yi,k (6.25)

(tight). Rearranging,

tc
i,k = yi,k + xt

i,k + ei,k. (6.26)

Because tc
i,k > yi,k + ei,k, by (6.25)–(6.26) and the definition of x-sufficient in Definition 6.8, xi (yi,k) = xt

i,k is

x-sufficient.

Therefore, by Lemma 6.8 with xi (yi,k) = xt
i,k and (6.26),

xt
i,k ≤

Wi,k−Ri,k +(m−utot) · (xt
i,k + ei,k)+Oi,k− ei,k +L · ep

i,k

m
.

We solve for xt
i,k. First, we will add utot−m

m · xt
i,k to both sides, which yields

utot

m
· xt

i,k ≤
Wi,k−Ri,k +(m−utot) · ei,k +Oi,k− ei,k +L · ep

i,k

m
.

We then multiply both sides by utot
m . Because utot > 0 and m > 0,

xt
i,k ≤

Wi,k−Ri,k +(m−utot) · ei,k +Oi,k− ei,k +L · ep
i,k

utot

= {Rearranging}
Wi,k−Ri,k +(m−utot−1) · ei,k +Oi,k +L · ep

i,k

utot

161

= {By the definition of xm
i,k in (6.24)}

xm
i,k.

Because xi (yi,k) = xt
i,k is x-sufficient, by Property 6.4 with c0 = xt

i,k and c1 = xm
i,k, xi (yi,k) = xm

i,k is x-sufficient.

Because ta = yi,k, the theorem follows.

6.3 Dissipation Bounds

The response-time analysis provided in Section 6.2 is very general, in order to provide an accurate

characterization of behavior in overload situations. In particular, it can even be used to analyze the behavior

of systems where no per-task bound on response times exists. In this section, we consider systems that have

per-task response time bounds in the absence of overload. In other words, each task has some constant xs
i (1)

such that, if s(t) = 1 for all t, then xi (t) = xs
i (1) is x-sufficient for all τi and time t. (The reason for the “1”

argument will be described later.) In this section, we analyze a system where an overload actually does occur,

but the overload is transient. This situation is similar to that depicted in Figure 6.1(c), where both τA1 and τA2

have jobs starting at actual time 12 that run for longer than their level-C PWCETs, but no later jobs that do so.

If we could determine choices of xs
i (1) that are as tight as possible, it is likely that xi (t) = xs

i (1) would

no longer be x-sufficient for t > 12. However, due to the pessimism of the analysis here, where xs
i (1) is not

tight, xi (t) = xs
i (1) may actually remain x-sufficient after this time. For illustration purposes, when discussing

Figure 6.1(c), we consider a system under ideal analysis, where xs
i (1) is as tight as possible. We would like to

return the system to a state where xi (t) = xs
i (1) is x-sufficient for all τi and all t greater than some tn (normal

operation). In this section, we demonstrate a method to provide such a guarantee, provided that we use the

(not tight) analytically-derived xs
i (1) described herein.

In Figure 6.7, we depict many details of our analysis of dissipation bounds. The first of these details

is depicted at the top of the figure: the three intervals into which we divide time. The first is the overload

interval, [0, tr), from the beginning of the schedule until after a transient overload has passed. If we had

ideal analysis, this interval would occur from actual time 0 to actual time 19 in Figure 6.1(c). We make very

few assumptions about the behavior of the system in [0, tr), primarily using the analysis from Section 6.2.

This allows us to account for any overload condition allowed by our general model. The second considered

interval is the recovery interval, [tr, tn), during which the virtual time clock operates at a slower rate in order

162

∆
(t

)

Time

Δe(t)

tr te tδ tnt
pre td tn

δ

ts th

λ

Figure 6.7: Graph of ∆(t), marked with various terms used in its definition and analysis.

to recover from the overload. Under ideal analysis, this would occur from actual time 19 to actual time 24 in

Figure 6.1(c). The final interval we consider is the normal interval, [tn,∞), when the system again operates

normally. The virtual time clock executes at full speed during the normal interval. Under ideal analysis, this

would occur from actual time 24 onwards in Figure 6.1(c).

In order to specify the boundaries between these intervals, we define several variables. ts is defined to be

the time at which the virtual clock actually slows. tn will be defined as the time when the virtual clock can be

returned to a normal speed. We note that the virtual clock can be returned to a normal speed at a later time

without compromising correctness. We assume that the virtual clock is slowed to a constant speed sr from ts

to tn, as specified in the following property.

Property 6.6. For all t ∈ [ts, tn), s(t) = sr < 1.

In Figure 6.1(c), sr = 0.5. Similarly, the following property describes the behavior of the virtual clock

after the system has returned to normal.

Property 6.7. If t ∈ [tn,∞), then s(t) = 1.

Because the speed of the virtual clock is determined by the OS, it is always possible to ensure that both

properties hold.

163

Although the virtual clock is actually slowed at time ts, for our analysis within [tr, tn), it will often be

convenient to assume that that the virtual clock has been operating at a constant rate for a period of time.

Furthermore, we will also need to assume that overload does not occur in the recovery interval in order to

make guarantees, even though unexpected overload could continue to occur even after ts.

We define th (overload halts) as the time after which a transient overload is no longer occurring. For our

analysis, we assume that no overload occurs at all after th at all, as specified in Properties 6.8 and 6.9 below.

If this is not the case, then the analysis remains correct until those properties are violated.

Property 6.8. Each task τi has a constant Ci ≤ Ti such that for any τi,k, if tc
i,k ≥ th, then ei,k ≤Ci.

Property 6.9. For each Pp, there is some constant σp such that if th ≤ t0 ≤ t1, then op(t0, t1)≤ ûpσp.

We do not specify any upper bound on t1 due to our assumption that no new overload occurs after th.

We now define the start of the recovery interval.

Definition 6.13. tr is the earliest time not before th or ts such that every job with yi,k < ts is complete.

There can only be a finite number of jobs with yi,k < ts, so by Property 6.3, such a time must exist as

long as ts exists.

For convenience, we state the following properties about tr. These properties follow from the definition

of tr in Definition 6.13 and Properties 6.8 and 6.9.

Property 6.10. If any τi,k is pending at tr, then yi,k ≥ ts.

Property 6.11. Each task τi has a constant Ci ≤ Ti such that for any τi,k, if tc
i,k ≥ tr, then ei,k ≤Ci.

Property 6.12. For each Pp, there is some constant σp such that if tr ≤ t0 ≤ t1, then op(t0, t1)≤ ûpσp.

Property 6.11 states that Ci is the worst-case execution time for any job of τi that influences our analysis

within [tr,∞). Property 6.12 eliminates some of the generality of our supply model from tr onward, so that

our supply model becomes identical to that used in Leontyev and Anderson (2010) from tr onward.

Property 6.10 will typically be used with the following lemma.

Lemma 6.9. If some τ j,` is pending at time t2 ≥ tr, then y j,` ≥ ts.

Proof. If τ j,` is pending at tr, then by Property 6.10, y j,` ≥ ts. Otherwise,

y j,` ≥ r j,`

164

≥ {Because τ j,` is not pending at tr but is pending at t2 ≥ tr}

tr

≥ {By the definition of tr in Definition 6.13}

ts.

In light of Property 6.11, we define a task’s base utilization (with respect to virtual time)

Uv
i =

Ci

Ti
(6.27)

and its recovery utilization (with respect to actual time in [tr, tn))

U r
i =Uv

i · sr. (6.28)

Observe that the utilization of τi with respect to actual time in [tn,∞) is simply Uv
i , because s(t) = 1 for all

t ∈ [tn,∞).

If we can guarantee that xi (t) = xs
i (1) is x-sufficient for t ∈ [tn,∞) under Properties 6.6–6.12, then we

define a dissipation bound as tn− th.

Whenever s(t) remains constant over an interval (as it does over [tr, tn) and [tn,∞)), it is possible to

correctly choose xi (t) such that it asymptotically approaches a constant value. We will below define this

(task-dependent) constant value as xs
i (sI), where sI is the constant value of s(t) (sr in [tr, tn) and 1 in [tn,∞)).

We will then define a task-independent function ∆(t) that guarantees that xi (t) = xs
i (sr)+∆(t) is x-sufficient

for every τi and time t ∈ [tr, tn), as graphed in Figure 6.7.

Recall that, in Section 6.2, L was arbitrary for each τi,k. Our analysis will require us to choose a particular

L for each task, so in Section 6.3.1 below, we discuss how to make this choice. In Section 6.3.2, we then

turn our attention to formally defining xs
i (sI) and ∆(t). Then, in Section 6.3.3, we formally prove that

xi (ta) = xs
i (sr)+∆(ta) is x-sufficient for ta ∈ [tr, tn). In Section 6.3.4 we then upper bound tn. Finally, in

Section 6.3.5, we formally prove that xi (t) = xs
i (1) is x-sufficient for t ∈ [tn,∞).

165

6.3.1 Choosing L

In Section 6.2, L was arbitrary for any τi,k. In this subsection, we will choose a specific per-task Li that

will take the place of L in several of our bounds. Because Li will appear in our definition of xs
i (sI), we first

describe its selection here. We will then define xs
i (sI) and ∆(t) in Section 6.3.2.

The choice of L appears in the definition of xm
i,k in (6.24), in the term Lep

i,k, and in the definition of x f
i,k in

(6.15), in the argument to Ai,k(m−L−1). In order to analyze x f
i,k, we first upper bound Ai,k(m−L−1) in the

case that will be relevant to our choice of xs
i (sI). Lemma 6.10 does so, using arbitrary v = m−L−1 to match

the notation used in Lemma 6.2. Let v be an integer with 0≤ v < m, and let

Arn
i (v),

Ci+∑Pp∈Θrn ûpσp

1−v+∑Pp∈Θrn ûp
If 1− v+∑Pp∈Θrn ûp > 0

∞ Otherwise,
(6.29)

(for recovery and normal intervals), where Θrn is the set of v processors that minimizes Arn
i (v).

Lemma 6.10. Arn
i (v)> 0 holds. Furthermore, if

k > 0 (6.30)

and

tc
i,k−1 > tr, (6.31)

then Ai,k(v)≤ Arn
i (v) and Ai,k(v)− ei,k ≤ Arn

i (v)−Ci.

Proof. If Arn
i (v) = ∞, then the lemma holds. Furthermore, if Ai,k(v) = ∞, then by the definition of Ai,k(v)

in (6.13), for any choice of v processors Θ, 1− v+∑Pp∈Θ ûp ≤ 0. Therefore, by the definition of Arn
i (v) in

(6.29), Arn
i (v) = ∞, and the lemma holds. Thus, we assume that Arn

i (v) is finite, implying by the definition of

Arn
i (v) in (6.29) that

1− v+ ∑
Pp∈Θrn

ûp > 0, (6.32)

and that Ai,k(v) is finite, implying by the definition of Ai,k(v) in (6.13) that

1− v+ ∑
Pp∈Θ

ûp > 0. (6.33)

166

We first show that Arn
i (v)> 0. To do so, we first show that, for arbitrary Pp,

ûpσp ≥ {By Property 6.12}

op(tr, tr)

≥ {By the definition of op(tr, tr) in (6.8)}

0. (6.34)

Thus, we have

Arn
i (v) =

Ci +∑Pp∈Θrn ûpσp

1− v+∑Pp∈Θrn ûp

> {Because Ci > 0, because the denominator is positive by (6.32), and by (6.34)}

0.

For the remainder of the proof, we assume that (6.30) and (6.31) hold. Thus, we also have

tc
i,k > {By our task model and (6.30)}

tc
i,k−1

> {By (6.31)}

tr. (6.35)

Therefore, we have

Arn
i (v) = {By the definition of Arn

i (v) in (6.29) and by (6.32)}
Ci +∑Pp∈Θrn ûpσp

1− v+∑Pp∈Θrn ûp

≥ {By Property 6.12 and (6.31), and because the denominator is positive by (6.32)}
Ci +∑Pp∈Θrn oi(tc

i,k−1, t
c
i,k)

1− v+∑Pp∈Θrn ûp

≥ {By Property 6.11 and (6.35), and because the denominator is positive by (6.32)}
ei,k +∑Pp∈Θrn oi(tc

i,k−1, t
c
i,k)

1− v+∑Pp∈Θrn ûp

167

≥ {Because Θ (as defined with (6.13)) is chosen to minimize Ai,k(v), and because

the denominator is positive by (6.32)}

Ai,k(v).

Additionally,

1− v+ ∑
Pp∈Θrn

ûp ≤ {Because each ûp ≤ 1}

1− v+ ∑
Pp∈Θrn

1

= {Because there are v processors in Θrn}

1. (6.36)

Therefore,

Arn
i (v)−Ci = {By the definition of Arn

i (v) in (6.29) and because the denominator is positive by (6.32)}
Ci +∑Pp∈Θrn ûpσp

1− v+∑Pp∈Θrn ûp
−Ci

≥ {By Property 6.12 and (6.31), and because the denominator is positive by (6.32)}
Ci +∑Pp∈Θrn oi(tc

i,k−1, t
c
i,k)

1− v+∑Pp∈Θrn ûp
−Ci

≥ {By Property 6.11 and (6.35), because the denominator is positive by (6.32), and by (6.36)}
ei,k +∑Pp∈Θrn oi(tc

i,k−1, t
c
i,k)

1− v+∑Pp∈Θrn ûp
− ei,k

≥ {Because Θ (as defined with (6.13)) is chosen to minimize Ai,k(v), and because the

denominator is positive by (6.32)}

Ai,k(v)− ei,k.

We now define our choice of Li.

Definition 6.14. For each τi, Li is the smallest integer such that 0≤ Li < m and Arn
i (m−Li−1)≤ Ti.

168

Such an integer must exist, because

Arn
i (m− (m−1)−1) = {Rearranging}

Arn
i (0)

= {By the definition of Arn
i (0) in (6.29)}

Ci

≤ {By Property 6.11}

Ti.

6.3.2 Defining xs
i (sI) and ∆(t)

In this subsection, we define xs
i (sI) and ∆(t). We will prove in Section 6.3.3 below that they can be used

to obtain x-sufficient bounds.

We first define xs
i (sI). Its definition is implicit—xs

i (sI) appears on both sides of (6.37) below.

Definition 6.15.

xs
i (sI), max

{
0,

∑m−1 largest(C j +Uv
j · sI · xs

j(sI)−S j)+∑τ j∈τ S j +(m−utot−1)Ci +Orn +Li ·Uv
i · sI · xs

i (sI)

utot

}
.

(6.37)

where

Si ,Ci

(
1− Yi

Ti

)
, (6.38)

and

Orn , ∑
Pp∈P

ûpσp (6.39)

(for recovery and normal intervals).

In Appendix D, we discuss how to use linear programming to determine the specific value of xs
i (sI), if it

exists. We show that xs
i (sI) exists if the provided linear program is feasible, and that the following condition

is sufficient for feasibility.

169

Property 6.13.

∑
m−1 largest

Uv
j +max

τi∈τ
(Li ·Uv

i)< utot.

If Property 6.13 is not satisfied, then the methods provided in this chapter cannot provide dissipation

bounds, but no response-time guarantees can be ensured in the absence of overload, either. Furthermore, our

analysis also assumes the following property, without which bounded response times cannot be guaranteed

even in the absence of overload.

Property 6.14.

∑
τ j∈τ

Uv
j ≤ utot.

In Appendix D, we also show that if xs
i (1) exists, then xs

i (sI) must exist for all sI ≤ 1. Until Section 6.3.5,

we will use sI = sr, because we are analyzing [tr, tn).

We next define ∆(t). The definition of ∆(t) uses several upper bounds of quantities from Section 6.2.

We will justify the correctness of these upper bounds in Section 6.3.3. We will describe each segment of

∆(t), as depicted in Figure 6.7, from left to right. We will provide necessary definitions as we proceed.

Observe in Figure 6.7 that for t ≤ tr, ∆(t) is constant. We will denote this constant value as λ , and we

will define λ below. First, we describe a function closely related to xi (t) that will be used in defining λ .

Observe in Definition 6.8 that the provided equation must hold for all τi,k with yi,k ≤ t. We define ẋi(t) by

changing this precondition to a strict inequality, in order to handle an edge case in our analysis.

Definition 6.16. ẋi(t) is ẋ-sufficient if ẋi(t)≥ 0 and for all τi,k with yi,k < t,

tc
i,k ≤ t + ẋi(t)+ ei,k.

With this definition in place, we now define λ .

Definition 6.17.

λ , max
{

max
τi∈τ

(ẋi(tr)− xs
i (sr)+Arn

i (m−Li−1)),

δ ,

max
τi,k∈ψ

(
W o

i,k−Ro
i,k +(m−utot−1)ei,k +Oo

i,k +Orn +Li ·U r
i · xs

i (sr)

utot−Li ·U r
i

)
,

170

max
τi,k∈κ

(xi (yi,k)− xs
i (sr)),

0
}
, (6.40)

where each ẋi(tr) is ẋ-sufficient (such values must exist by Property 6.3),

δ , min
τi∈τ

(xs
i (1)− xs

i (sr)), (6.41)

ψ is the set of jobs with yi,k ∈ [tr,∞) and tb
i,k ∈ [0, tr), κ is the set of jobs with yi,k ∈ [0, tr) and tc

i,k ∈ [tr,∞),

each xi (yi,k) is x-sufficient (such values must exist by Property 6.3),

W o
i,k ,Wi,k− ∑

τ j∈τ

De
j(tr,yi,k)+ ∑

τ j∈τ

S j (6.42)

(for jobs with tb
i,k in the overload interval), and

Ro
i,k , utot · (tr− tb

i,k) (6.43)

Oo
i,k , ∑

Pp∈P
op(tb

i,k, tr) (6.44)

(each for the overload interval).

Observe in Figure 6.7 that, from tr to te (switch to exponential), ∆(t) is linear. We define this segment as

its own function

∆
` (t), φ · (t− tr)+λ (6.45)

(linear), where

φ , max
{

max
τ j∈τ

(sr ·Arn
j (m−L j−1)

Ti
−1
)
,
∑τ j∈τ U r

j −utot

utot

}
. (6.46)

As can be seen in Figure 6.7, from te onward, ∆(t) decays exponentially. We will also define this segment

as its own function,

∆
e (t), ∆

` (te) ·q
t−te

ρ (6.47)

171

(exponential), where

te ,

tr If λ ≤ φ · ρ

lnq

tr +
ρ

lnq − λ

φ
Otherwise

(6.48)

(switch to exponential),

q ,
∑m−1 largestU r

j +maxτ j∈τ(L j ·Uv
j · sr)

utot
, (6.49)

and

ρ , max
τ j∈τ

(xs
j(sr)+λ +C j). (6.50)

We will show in Lemma 6.12 below that te ≥ tr. In order to do so, we first provide a result about the

value of φ that will be used repeatedly in other places.

Lemma 6.11. −1 < φ < 0.

Proof. By the definition of φ in (6.46), either φ =
sr·Arn

j (m−L j−1)
Tj

− 1 for some τ j, or φ =
∑τ j∈τ U r

j−utot

utot
. We

consider each of these cases.

Case 1: φ =
sr·Arn

j (m−L j−1)
Tj

− 1 for Some τ j. In this case, φ > −1 because sr > 0, Arn
j (m−L j− 1) > 0 by

Lemma 6.10, and Ti > 0.

We also have

φ =
sr ·Arn

j (m−L j−1)

Tj
−1

≤ {By the definition of L j in Definition 6.14}
sr ·Tj

Tj
−1

= {Cancelling}

sr−1

< {By Property 6.6}

0.

172

Case 2: φ =
∑τ j∈τ U r

j−utot

utot
. In this case, we have

φ =
∑τ j∈τ U r

j −utot

utot

= {Rewriting}
∑τ j∈τ U r

j

utot
−1

> {Because each U r
j > 0 and utot > 0}

−1.

We also have

φ =
∑τ j∈τ U r

j −utot

utot

= {By the definition of U r
j in (6.28)}

∑τ j∈τ(Uv
j · sr)−utot

utot

< {By Property 6.6}
∑τ j∈τ Uv

j −utot

utot

≤ {By Property 6.14}
utot−utot

utot

= {Simplifying}

0.

We now show that tr and te occur in the order they appear in Figure 6.7.

Lemma 6.12. te ≥ tr holds. Moreover, if λ > φ · ρ

lnq , then this inequality is strict.

Proof. If λ ≤ φ · ρ

lnq , then the lemma follows immediately from the definition of te in (6.48).

Otherwise, we have

te = {By the definition of te in (6.48)}

173

tr +
ρ

lnq
− λ

φ

> {Because φ < 0 by Lemma 6.11 and λ > φ · ρ

lnq}

tr +
ρ

lnq
− ρ

lnq

= {Cancelling}

tr.

Finally, we fully define ∆(t) for all t.

∆(t) =

λ If t ∈ (−∞, tr)

∆` (t) If t ∈ [tr, te)

∆e (t) If t ∈ [te,∞).

(6.51)

6.3.3 Proving that xi (ta) = xs
i (sr)+∆(ta) is x-sufficient for ta ∈ [tr, tn)

In this subsection, we provide a x-sufficient choice of xi (ta) for each τi and ta ∈ [tr, tn). For each

such combination of ta and τi, we will exhaustively consider the cases depicted in Figure 6.8 to show that

xi (ta) = xs
i (sr)+∆(ta) is x-sufficient. We will prove this result by induction on its correctness for smaller

choices of ta. Specifically, we will use the following precondition as needed

x j
(
y j,`
)
= xs

j(sr)+∆
(
y j,`
)

is x-sufficient for all τ j,` such that y j,` ∈ [tr, ta). (6.52)

The proofs for the different cases can then be used with induction over jobs in PP order to prove that a

particular x j (ta) = xs
j(sr)+∆(ta) is x-sufficient.

Furthermore, a necessary condition in Definition 6.8 for xi (t) to be x-sufficient is that xi (t) ≥ 0.

Lemma 6.17 below establishes that this is the case for xi (ta) = xs
i (sr) + ∆(ta) for arbitrary ta. By the

definition of xs
i (sr) in (6.37), xs

i (sr) is nonnegative. Therefore, showing that ∆(ta) is also nonnegative for

arbitrary ta will be sufficient to prove Lemma 6.17.

By the definition of ∆(ta) in (6.51), we will consider the three intervals (−∞, tr), [tr, te), and [te,∞)

separately. ∆(ta) is nonnegative for ta ∈ (−∞, tr), because by the definition of λ in (6.40), λ ≥ 0. We thus

consider ta ∈ [tr, te). By the definition of ∆` (t) in (6.45) and Lemma 6.11, ∆` (t) is decreasing over [tr, te).

174

A. ta < yi,0 (Lemma 6.18).

B. ta = yi,k for some k and tc
i,k ≤ yi,k + ei,k (Lemma 6.19).

C. ta ∈ (yi,k,yi,k+1) for some k (Lemma 6.25).

D. ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is f-dominant for Li (Lemma 6.31).

E. ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is m-dominant for Li (Lemma 6.57).

Figure 6.8: Cases considered when proving that xi (ta) = xs
i (sr)+∆(ta) is x-sufficient for ta ∈ [tr, tn)

We show, in Lemma 6.15 below, that ∆` (te) is nonnegative. The result that ∆` (te) is nonnegative will also be

used to prove that ∆(ta) is nonnegative for ta ∈ [te,∞).

We need to show that ∆` (te) is nonnegative. By the definition of te in (6.48), the value of te is dependent

on lnq. Thus, we first characterize the value of q.

Lemma 6.13. 0 < q < 1.

Proof. We first show that 0 < q. All variables that appear in the definition of q in (6.49) are nonnegative, and

U r
j for each τ j is strictly positive. Therefore, 0 < q.

We now show that q < 1. We have

q = {By the definition of q in (6.49)}
∑m−1 largestU r

j +maxτ j∈τ(L j ·Uv
j · sr)

utot

= {By the definition of U r
j in (6.28)}

∑m−1 largest(Uv
j · sr)+maxτ j∈τ(L j ·Uv

j · sr)

utot

< {By Property 6.6}
∑m−1 largestUv

j +maxτ j∈τ(L j ·Uv
j)

utot

< {By Property 6.13}
utot

utot

= {Simplifying}

1.

175

Also by the definition of te in (6.48), the value of te is also dependent on ρ . Thus, we also characterize

the value of ρ .

Lemma 6.14. ρ > 0.

Proof. We have

ρ = {By the definition of ρ in (6.50)}

max
τ j∈τ

(xs
j(sr)+λ +C j)

≥ {By the definition of xs
j(sr) in (6.37) and the definition of λ in (6.40)}

max
τ j∈τ

(C j)

> {Because each C j > 0}

0.

We finally show that ∆` (te) is nonnegative. Furthermore, the value of ∆` (te) and the identical values of

∆(te) and ∆e (te) are used in later proofs. For convenience, we consider all of these terms in a single lemma.

Lemma 6.15.

∆(te) = ∆
e (te) = ∆

` (te) = min
{

λ ,φ · ρ

lnq

}
≥ 0.

Proof. We will demonstrate the equalities in the order they appear in the statement of the lemma.

First, we have

∆(te) = {By the definition of ∆(te) in (6.51)}

∆
e (te)

= {By the definition of ∆e (te) in (6.47)}

∆
` (te) ·q

te−te
ρ

= {Simplifying}

∆
` (te) .

We now establish that ∆` (te) = min
{

λ ,φ · ρ

lnq

}
by considering two cases.

176

Case 1: λ ≤ φ · ρ

lnq . In this case,

∆
` (te) = {By the definition of te in (6.48)}

∆
` (tr)

= {By the definition of ∆` (tr) in (6.45)}

φ · (tr− tr)+λ

= {Simplifying}

λ

= {By the case we are considering}

min
{

λ ,φ · ρ

lnq

}
.

Case 2: λ > φ · ρ

lnq . In this case,

∆
` (te) = {By the definition of te in (6.48)}

∆
`

(
tr +

ρ

lnq
− λ

φ

)
= {By the definition of ∆`

(
tr +

ρ

lnq − λ

φ

)
in (6.45)}

φ ·
(

tr +
ρ

lnq
− λ

φ
− tr

)
+λ

= {Simplifying}

φ · ρ

lnq

= {By the case we are considering}

min
{

λ ,φ · ρ

lnq

}
.

Finally, we demonstrate that min
{

λ ,φ · ρ

lnq

}
≥ 0. By the definition of λ in (6.40), λ ≥ 0. Furthermore,

because φ < 0 by Lemma 6.11, 0 < q < 1 by Lemma 6.13, and ρ > 0 by Lemma 6.14, φ · ρ

lnq > 0. Therefore,

min
{

λ ,φ · ρ

lnq

}
≥ 0.

We are now ready to establish that xs
i (sr)+∆(ta)≥ 0. By Definition 6.8, this is a necessary condition to

achieve the goal discussed at the beginning of Section 6.3.3 for xi (ta) = xs
i (sr)+∆(ta) to be x-sufficient.

177

Later, we will need to use the fact that ∆(ta)≥ 0, so we first provide this fact as a separate lemma.

Lemma 6.16. For all ta, ∆(ta)≥ 0.

Proof. We consider three cases, depending on the value of ta.

Case 1: ta ∈ (−∞, tr). In this case,

∆(ta) = {By the definition of ∆(ta) in (6.51)}

λ

≥ {By the definition of λ in (6.40)}

0.

Case 2: ta ∈ [tr, te). In this case,

∆(ta) = {By the definition of ∆(ta) in (6.51)}

∆
` (ta)

= {By the definition of ∆` (ta) in (6.45)}

φ · (ta− tr)+λ

= {Rearranging}

φ · (te− tr)+λ +φ · (ta− te)

= {By the definition of ∆` (te) in (6.45)}

∆
` (te)+φ · (ta− te)

> {Because φ < 0 by Lemma 6.11 and ta < te by the case we are considering}

∆
` (te)

≥ {By Lemma 6.15}

0.

Case 3: ta ∈ [te,∞). In this case,

∆(ta) ={By the definition of ∆(ta) in (6.51)}

178

∆
e (ta)

= {By the definition of ∆e (ta) in (6.47)}

∆
` (te) ·q

ta−te
ρ

≥ {Because ∆` (te)≥ 0 by Lemma 6.15 and q > 0 by Lemma 6.13}

0.

We now provide the necessary bound on xs
i (sr)+∆(ta).

Lemma 6.17. For all ta, xs
i (sr)+∆(ta)≥ 0.

Proof. xs
i (sr) ≥ 0 by the definition of xs

i (sr) (i.e., using sI = sr) in (6.37). Thus, by Lemma 6.16, xs
i (sr)+

∆(ta)≥ 0.

We now show that xi (ta) = xs
i (sr)+∆(ta) is x-sufficient by considering all the cases depicted in Figure 6.8,

which match those in Figure 6.2 in Section 6.2.

We first consider Case A in Figure 6.8, in which ta < yi,0.

Lemma 6.18. If ta < yi,0, then xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

Proof. If ta < yi,0, then by Theorem 6.1, xi (ta) = 0 is x-sufficient. Furthermore, by Lemma 6.17, xs
i (sr)+

∆(ta) ≥ 0. Therefore, by Property 6.4 with c0 = 0 and c1 = xs
i (sr)+∆(ta), xi (ta) = xs

i (sr)+∆(ta) is x-

sufficient.

The analysis of Case B in Figure 6.8 is simple.

Lemma 6.19. If ta = yi,k for some k and tc
i,k ≤ yi,k + ei,k, then xi (ta) = xs

i (sr)+∆(ta) is x-sufficient.

Proof. The lemma follows immediately from Theorem 6.2, Lemma 6.17, and Property 6.4 with c0 = 0 and

c1 = xs
i (sr)+∆(ta).

We next consider Case C in Figure 6.8, in which ta ∈ (yi,k,yi,k+1) for some k. For this case, as well

as most subsequent cases, correctness is proved from the fact that the value of ∆(t) decreases sufficiently

slowly as t increases. Therefore, we will prove Lemma 6.24 below, which explicitly bounds the decrease

between two values of ∆(t). Our analysis will be based on the following form of the Fundamental Theorem

of Calculus (FTC).

179

Fundamental Theorem of Calculus (FTC). If f (t) is continuous over [t0, t1] and f ′(t) is the derivative of

f (t) at all but finitely many points within [t0, t1], then

f (t1) = f (t0)+
∫ t1

t0
f ′(t)dt.

In order to use the FTC, we will demonstrate in Lemma 6.21 below that ∆(t) is continuous over all real

numbers, and in Lemma 6.23 below we will provide a function ∆′ (t) that is equal to the derivative of ∆(t) at

all but finitely many points. Lemma 6.23 also provides bounds on ∆′ (t) that are used to prove Lemma 6.24.

In several parts of our analysis throughout this section, the value of ∆(tr) and/or ∆` (tr) will be used. For

convenience, we provide this value now in a separate lemma.

Lemma 6.20. ∆(tr) = ∆` (tr) = λ .

Proof. We first establish that ∆(tr) = ∆` (tr). By Lemma 6.12, either tr = te or tr < te. We consider each of

these two cases.

Case 1: te = tr. In this case,

∆(tr) = ∆(te)

= {By Lemma 6.15}

∆
` (te)

= {Because te = tr}

∆
` (tr) .

Case 2: tr < te. In this case, by the definition of ∆(tr) in (6.51), ∆(tr) = ∆` (tr).

To conclude the proof, note that

∆
` (tr) = {By the definition of ∆` (tr) in (6.45)}

φ · (tr− tr)+λ

= {Simplifying}

λ .

180

The following property is a standard result in real analysis. (If t2 ≤ t1, then it holds vacuously.)

Property 6.15. For arbitrary t0, t1, t2, and continuous functions f (t) and g(t), if t1 > t0, ∆(t) = f (t) for

t ∈ (t0, t1), ∆(t) = g(t) for t ∈ [t1, t2), and f (t1) = g(t1), then ∆(t) is continuous over [t1, t2).

We now use this property to prove that ∆(t) is continuous over the reals, so that we can use the FTC with

f (t) = ∆(t).

Lemma 6.21. ∆(t) is continuous over all real numbers.

Proof. We first observe that, by the definition of ∆(t) in (6.51), ∆(t) is constant (and therefore continuous)

over (−∞, tr).

To prove that ∆(t) is continuous over [tr,∞), we consider two cases, depending on the relationship

between λ and φ · ρ

lnq .

Case 1: λ ≤ φ · ρ

lnq . We will use Property 6.15 with t0 =−∞, t1 = tr, t2 = ∞, f (t) = λ , and g(t) = ∆e (t). It

is trivially the case that t1 > t0.

In this case, by the definition of te in (6.48),

tr = te. (6.53)

Therefore, by the definition of ∆(t) in (6.51), ∆(t) = λ = f (t) for t ∈ (t0, t1) = (−∞, tr), and ∆(t) = ∆e (t) =

g(t) for t ∈ [t1, t2) = [tr,∞), as desired.

f (t) is continuous because it is constant. g(t) is continuous by the definition of ∆e (t) in (6.47), because

exponential functions are continuous.

Finally, we show that

g(t1) = ∆
e (tr)

= {By (6.53)}

∆
e (te)

= {By Lemma 6.15 and the case we are considering}

λ

= f (t1). (6.54)

181

Therefore, all the preconditions for Property 6.15 are met, so ∆(t) is continuous over [tr,∞).

Case 2: λ > φ · ρ

lnq . We first prove that ∆(t) is continuous over [tr, te), using Property 6.15 with f (t) = λ ,

g(t) = ∆` (t), t0 = −∞, t1 = tr, and t2 = te. It is trivially the case that t1 > t0. By the definition of ∆(t) in

(6.51), ∆(t) = λ = f (t) for t ∈ (t0, t1) = (−∞, tr) and ∆(t) = ∆` (t) = g(t) for t ∈ [t1, t2) = [tr, te). f (t) is

continuous because it is constant. g(t) is continuous by the definition of ∆` (t) in (6.45), because linear

functions are continuous. Furthermore,

g(t1) = ∆
` (tr)

= {By Lemma 6.20}

λ

= f (t1).

Therefore, all the preconditions for Property 6.15 are met, so ∆(t) is continuous over [tr, te).

We next prove that ∆(t) is continuous over [te,∞) using Property 6.15 with f (t) = ∆` (t), g(t) = ∆e (t),

t0 = tr, t1 = te, and t2 = ∞. By Lemma 6.12 and the case we are considering (which implies te 6= tr), t1 > t0.

By the definition of ∆(t) in (6.51), ∆(t) = ∆` (t) = f (t) for t ∈ (t0, t1) ⊂ [tr, te) and ∆(t) = ∆e (t) = g(t)

for t ∈ [t1, t2) = [te,∞). f (t) is continuous by the definition of ∆` (t) in (6.45), because linear functions

are continuous. g(t) is continuous by the definition of ∆e (t) in (6.47), because exponential functions are

continuous. Furthermore,

g(t1) = ∆
e (te)

= {By Lemma 6.15}

∆
` (te)

= f (t1).

Therefore, all the preconditions for Property 6.15 are met, so ∆(t) is also continuous over [te,∞). We

reasoned above that ∆(t) is continuous over [tr, te), so ∆(t) is continuous over [tr,∞).

182

In order to use the FTC, we must also provide a function ∆′ (t) that is equal to the derivative of ∆(t) at

all but finitely many points. Both for the purposes of determining ∆′ (t), and for a later proof, we must reason

about the derivative of ∆e (t). The following lemma provides a necessary property of that derivative.

Lemma 6.22. Let ∆e′ (t) be the derivative of ∆e (t) with respect to t. If t ≥ te, then 0≥ ∆e′ (t)≥ φ .

Proof. If t ≥ te, then we have

∆
e′ (t) = {By the definition of ∆e (t) in (6.47) and differentiation}

lnq
ρ
·∆` (te) ·q

t−te
ρ (6.55)

≤ {By Lemma 6.15, because 0 < q < 1 by Lemma 6.13 so that lnq < 0}

0.

Also,

∆
e′ (t) = {By (6.55)}

lnq
ρ
·∆` (te) ·q

t−te
ρ

≥ {By Lemma 6.15, because 0 < q < 1 by Lemma 6.13 so that lnq < 0}
lnq
ρ
·φ · ρ

lnq
·q

t−te
ρ

= {Simplifying}

φ ·q
t−te

ρ . (6.56)

By (6.56), because φ < 0 by Lemma 6.11, 0 < q < 1 by Lemma 6.13, and t ≥ te, ∆e′ (t)≥ φ .

We finally provide the derivative of ∆(t), except at t = tr and t = te (finitely many points), and provide

bounds on the resulting ∆′ (t).

Lemma 6.23. Let

∆
′ (t),

0 If t ∈ (−∞, tr)

φ If t ∈ [tr, te)

∆e′ (t) If t ∈ [te,∞).

(6.57)

183

∆′ (t) is the derivative of ∆(t) everywhere except at t = tr and at t = te. Furthermore, for all t, φ ≤ ∆′ (t)≤ 0.

Proof. We prove the lemma for arbitrary t, considering each of the three intervals that occur in the definition

of ∆(t) in (6.51) and in the definition of ∆′ (t) in (6.57).

Case 1: t ∈ (−∞, tr). In this case, by the definition of ∆′ (t) in (6.57), ∆′ (t) = 0. Therefore, by Lemma 6.11,

φ < ∆′ (t) = 0. By the definition of ∆(t) in (6.51), for t ∈ (−∞, tr), ∆(t) = λ . Thus, the derivative of ∆(t) at

t is ∆′ (t) = 0.

Case 2: t ∈ [tr, te). In this case, by the definition of ∆′ (t) in (6.57), ∆′ (t) = φ . Therefore, by Lemma 6.11,

∆′ (t) = φ < 0. By the definition of ∆(t) in (6.51), for t ∈ [tr, te), ∆(t) = ∆` (t). Therefore, by the definition

of ∆` (t) in (6.45), if t 6= tr, then the derivative of ∆(t) at t is φ = ∆′ (t).

Case 3: t ∈ [te,∞). In this case, by the definition of ∆′ (t) in (6.57), ∆′ (t) = ∆e′ (t). By Lemma 6.22,

φ ≤ ∆e′ (t)≤ 0. Therefore, φ ≤ ∆′ (t)≤ 0. By the definition of ∆(t) in (6.51), for t ∈ [te,∞), ∆(t) = ∆e (t).

Therefore, by the definition of ∆e′ (t) as the derivative of ∆e (t), if t 6= te, then the derivative of ∆(t) at t is

∆e′ (t) = ∆′ (t).

We can now provide bounds on the value of ∆(t1) relative to ∆(t0) for arbitrary t0 ≤ t1, as required for

the proof of Lemma 6.25 and several later lemmas.

Lemma 6.24. For arbitrary t0 ≤ t1,

∆(t0)≥ ∆(t1)≥ ∆(t0)+φ · (t1− t0).

Proof. We have

∆(t1) = {By the FTC with f (t) = ∆(t), and by Lemmas 6.21 and 6.23}

∆(t0)+
∫ t1

t0
∆
′ (t) dt

≤ {By Lemma 6.23}

∆(t0)+
∫ t1

t0
0dt

= {Simplifying}

∆(t0) .

184

Also,

∆(t1) = {By the FTC with f (t) = ∆(t), and by Lemmas 6.21 and 6.23}

∆(t0)+
∫ t1

t0
∆
′ (t) dt

≥ {By Lemma 6.23}

∆(t0)+
∫ t1

t0
φ dt

= {Rearranging}

∆(t0)+φ · (t1− t0).

We now provide the lemma that addresses Case C in Figure 6.8.

Lemma 6.25. If ta ∈ [tr, tn), ta ∈ (yi,k,yi,k+1) for some k, and (6.52) holds, then xi (ta) = xs
i (sr)+∆(ta) is

x-sufficient.

Proof. Observe that τi,k is the last job of τi that has a PP prior to ta. We consider two cases, depending on the

location of yi,k.

Case 1: yi,k < tr. Let ẋi(tr) be the value used in the definition of λ in (6.40). We have

tc
i,k ≤ {By the definition of ẋ-sufficient in Definition 6.16}

tr + ẋi(tr)+ ei,k

≤ {Rearranging}

tr + xs
i (sr)+ ẋi(tr)− xs

i (sr)+ ei,k

≤ {Because Arn
i (m−Li−1)> 0 by Lemma 6.10}

tr + xs
i (sr)+ ẋi(tr)− xs

i (sr)+Arn
i (m−Li−1)+ ei,k

≤ {By the definition of λ in (6.40)}

tr + xs
i (sr)+λ + ei,k

= {By Lemma 6.20}

tr + xs
i (sr)+∆(tr)+ ei,k

= {Rearranging}

185

ta + xs
i (sr)+∆(tr)− (ta− tr)+ ei,k

< {By Lemma 6.11}

ta + xs
i (sr)+∆(tr)+φ · (ta− tr)+ ei,k

≤ {By Lemma 6.24 with t0 = tr and t1 = ta}

ta + xs
i (sr)+∆(ta)+ ei,k.

Therefore, by the definition of x-sufficient in Definition 6.8, xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

Case 2: yi,k ≥ tr. We have

xs
i (sr)+∆(ta)≥ {By Lemma 6.24 with t0 = yi,k and t1 = ta; recall that ta > yi,k by the statement of

the lemma}

xs
i (sr)+∆(yi,k)+φ · (ta− yi,k)

≥ {By Lemma 6.11}

xs
i (sr)+∆(yi,k)− (ta− yi,k). (6.58)

By (6.58) and Lemma 6.17,

xs
i (sr)+∆(ta)≥max{0, xs

i (sr)+∆(yi,k)− (ta− yi,k)}. (6.59)

By (6.52) with j = i and ` = k, xi (yi,k) = xs
i (sr)+∆(yi,k) is x-sufficient. Thus, by Theorem 6.3, xi (ta) =

max{0, xs
i (sr) + ∆(yi,k)− (ta − yi,k)} is x-sufficient. Therefore, by (6.59) and Property 6.4 with c0 =

max{0, xs
i (sr)+∆(yi,k)− (ta− yi,k)} and c1 = xs

i (sr)+∆(ta), xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

We now consider Case D in Figure 6.8, where ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is f-dominant

for Li. In this case, by the definition of f-dominant for Li in Definition 6.10, k > 0, and thus τi,k−1 exists.

Because we are considering yi,k = ta ∈ [tr, tn), yi,k−1 < yi,k < tn. Therefore, yi,k−1 ∈ [0, tn). In Lemma 6.27,

we consider the case that yi,k−1 ∈ [0, tr), and in Lemma 6.30, we consider the case that yi,k−1 ∈ [tr, tn). In

either case, we will use Lemma 6.10 within our proofs, which requires (6.30) and (6.31) as preconditions.

We first provide a short lemma that provides inequalities that match both preconditions. The same lemma is

also used when analyzing [tn,∞).

186

Lemma 6.26. If ta ∈ [tr,∞), ta = yi,k for some τi,k, tc
i,k > yi,k + ei,k, and τi,k is f-dominant for Li, then k > 0

and tc
i,k−1 > tr.

Proof. By the definition of f-dominant for L in Definition 6.10, k > 0. Furthermore, we also have

tc
i,k−1 > {By the definition of f-dominant for L in Definition 6.10}

yi,k

= {By the statement of the lemma}

ta

≥ {By the statement of the lemma}

tr.

Lemma 6.27. If ta ∈ [tr, tn), ta = yi,k for some τi,k, tc
i,k > yi,k +ei,k, τi,k is f-dominant for Li, and yi,k−1 ∈ [0, tr),

then xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

Proof. By Lemma 6.26, which has only preconditions implied by those of this lemma, the following facts

hold.

k > 0 (6.60)

tc
i,k−1 > tr (6.61)

Thus, we have

xs
i (sr)+∆(ta)

= {Because ta = yi,k}

xs
i (sr)+∆(yi,k)

≥ {By Lemma 6.24 with t0 = tr and t1 = yi,k}

xs
i (sr)+∆(tr)+φ · (yi,k− tr)

= {By Lemma 6.20}

xs
i (sr)+λ +φ · (yi,k− tr)

187

≥ {By the definition of λ in (6.40)}

xs
i (sr)+ ẋi(tr)− xs

i (sr)+Arn
i (m−Li−1)+φ · (yi,k− tr)

= {Rearranging}

tr + ẋi(tr)+ ei,k−1 +Arn
i (m−Li−1)− ei,k−1− tr +φ · (yi,k− tr)

≥ {By the definition of ẋ-sufficient in Definition 6.16, because yi,k−1 < tr}

tc
i,k−1 +Arn

i (m−Li−1)− ei,k−1− tr +φ · (yi,k− tr)

≥ {By the definition of φ in (6.46)}

tc
i,k−1 +Arn

i (m−Li−1)− ei,k−1− tr +
(

sr ·Arn
i (m−Li−1)

Ti
−1
)
· (yi,k− tr)

= {Rearranging}

tc
i,k−1− yi,k +Arn

i (m−Li−1)− ei,k−1 +
sr ·Arn

i (m−Li−1)
Ti

· (yi,k− tr)

≥ {Because sr ≥ 0, Arn
i (m−Li−1)> 0 by Lemma 6.10, Ti > 0, and yi,k ≥ tr}

tc
i,k−1− yi,k +Arn

i (m−Li−1)− ei,k−1

≥ {By (6.61) and Property 6.11}

tc
i,k−1− yi,k +Arn

i (m−Li−1)−Ci

≥ {By Lemma 6.10 with (6.60) and (6.61), which match (6.30) and (6.31)}

tc
i,k−1− yi,k +Ai,k(m−Li−1)− ei,k

= {By the definition of x f
i,k in (6.15)}

x f
i,k. (6.62)

The preconditions of the lemma establish the preconditions of Theorem 6.4: ta = yi,k for some k,

tc
i,k > yi,k +ei,k, and τi,k is f-dominant for Li. Therefore, by (6.62) and Theorem 6.4, xi (ta) = x f

i,k is x-sufficient.

Therefore, by (6.62) and Property 6.4 with c0 = x f
i,k and c1 = xs

i (sr)+∆(ta), the lemma holds.

We next consider, in Lemma 6.30, the case that yi,k−1 ∈ [tr, tn). We will explicitly consider the difference

between yi,k−1 and yi,k, based on the following lemma, which will also be used in Section 6.3.5.

Lemma 6.28. For k > 0, v(yi,k)≥ v(yi,k−1)+Ti.

188

Proof. We have

v(yi,k) = {By the definition of Yi in (6.6)}

v(ri,k)+Yi

≥ {By the definition of Ti in (6.5)}

v(ri,k−1)+Ti +Yi

= {By the definition of Yi in (6.6)}

v(yi,k−1)+Ti.

We now consider Case D when yi,k−1 ∈ [tr, tn). Here, as in several other places in this section, we will

need to translate between differences in virtual time and differences in actual time. When t0 ∈ [ts, tn] and

t1 ∈ [ts, tn], an exact result can be used.

Lemma 6.29. If t0 ∈ [ts, tn] and t1 ∈ [ts, tn], then v(t1)− v(t0) = sr · (t1− t0).

Proof. We have

v(t1)− v(t0) = {By Property 6.2}∫ t1

t0
s(t)dt

= {By Property 6.6}∫ t1

t0
sr dt

= {Simplifying}

sr · (t1− t0).

With that result, we can finish our analysis of Case D.

Lemma 6.30. If ta ∈ [tr, tn), ta = yi,k for some τi,k, tc
i,k > yi,k + ei,k, τi,k is f-dominant for Li, yi,k−1 ∈ [tr, tn),

and (6.52) holds, then xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

189

Proof. In Lemma 6.28 we considered the difference between yi,k and yi,k−1 in virtual time. We now consider

their difference in actual time.

(yi,k− yi,k−1) · sr = {By Lemma 6.29, because tr ≥ ts by the definition of tr in Definition 6.13}

v(yi,k)− v(yi,k−1)

≥ {By Lemma 6.28; k > 0 by the definition of f-dominant for Li in Definition 6.10}

v(yi,k−1)+Ti− v(yi,k−1)

= {Simplifying}

Ti.

Rearranging,

yi,k−1 ≤ yi,k−
Ti

sr
. (6.63)

We now demonstrate the following claim.

Claim 6.30.1. xi

(
yi,k− Ti

sr

)
= xs

i (sr)+∆

(
yi,k− Ti

sr

)
is x-sufficient.

We have that yi,k−1 ∈ [tr, tn) by the statement of the lemma. Also,

yi,k−1 < {By our task model}

yi,k

= {By the statement of the lemma}

ta.

Thus, by (6.52) with j = i and ` = k− 1, we have that xi (yi,k−1) = xs
i (sr)+∆(yi,k−1) is x-sufficient. If

yi,k−1 = yi,k− Ti
sr

, then Claim 6.30.1 follows immediately. Otherwise, by (6.63), yi,k− Ti
sr
∈ (yi,k−1,yi,k). Thus,

because yi,k−1 ∈ [tr, tn) and yi,k ∈ [tr, tn) by the statement of the lemma, yi,k− Ti
sr
∈ [tr, tn). Therefore, by

Lemma 6.25 with k shifted earlier by 1 and ta = yi,k− Ti
sr

, Claim 6.30.1 holds.

190

Continuing the proof of Lemma 6.30, by Lemma 6.26 (which has only preconditions that are implied by

those of this lemma), the following facts hold.

k > 0 (6.64)

tc
i,k−1 > tr (6.65)

Thus, we have

xs
i (sr)+∆(ta)

= {Because ta = yi,k}

xs
i (sr)+∆(yi,k)

≥ {By Lemma 6.24 with t0 = yi,k− Ti
sr

and t1 = yi,k}

xs
i (sr)+∆

(
yi,k−

Ti

sr

)
+φ · Ti

sr

= {Rewriting}

yi,k−
Ti

sr
+ xs

i (sr)+∆

(
yi,k−

Ti

sr

)
+ ei,k−1− yi,k +

Ti

sr
+φ · Ti

sr
− ei,k−1

≥ {By Claim 6.30.1 and the definition of x-sufficient in Definition 6.8 with t = yi,k− Ti
sr

, and by (6.63)}

tc
i,k−1− yi,k +

Ti

sr
+φ · Ti

sr
− ei,k−1

≥ {By the definition of φ in (6.46)}

tc
i,k−1− yi,k +

Ti

sr
+

(
sr ·Arn

i (m−Li−1)
Ti

−1
)
· Ti

sr
− ei,k−1

= {Simplifying}

tc
i,k−1− yi,k +Arn

i (m−Li−1)− ei,k−1

≥ {By (6.65) and Property 6.11}

tc
i,k−1− yi,k +Arn

i (m−Li−1)−Ci

≥ {By Lemma 6.10 with (6.64) and (6.65), which match (6.30) and (6.31)}

tc
i,k−1− yi,k +Ai,k(m−Li−1)− ei,k

= {By the definition of x f
i,k in (6.15)}

191

x f
i,k. (6.66)

The preconditions of the lemma establish the preconditions of Theorem 6.4: ta = yi,k for some k,

tc
i,k > yi,k + ei,k, and τi,k is f-dominant for Li. Thus, by Theorem 6.4, xi (ta) = x f

i,k is x-sufficient. Therefore, by

(6.66) and Property 6.4 with c0 = x f
i,k and c1 = xs

i (sr)+∆(ta), the lemma holds.

We now provide a combined lemma that addresses Case D.

Lemma 6.31. If ta ∈ [tr, tn), ta = yi,k for some τi,k, tc
i,k > yi,k + ei,k, τi,k is f-dominant for Li, and (6.52) holds,

then xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

Proof. If yi,k−1 ∈ [0, tr), then the lemma follows from Lemma 6.27. Otherwise, it follows from Lemma 6.30.

We now address Case E in Figure 6.8, where ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is m-dominant

for Li. In this case, by Theorem 6.5, xm
i,k is x-sufficient. Observe that ep

i,k, the total amount of work remaining

at yi,k from jobs of τi prior to τi,k, appears in the expression for xm
i,k in (6.24). Thus, we must bound ep

i,k. In

order to do so, we will use the result of Lemma 6.3 with t0 = yi,k.

Observe in Lemma 6.3 the presence of De
j(b j,`,yi,k), and in the definition of De

j(b j,`,yi,k) in Definition 6.6

the presence of ei,k. Although when accounting for overloads it was necessary to account for specific

parameters of specific jobs, we want to develop general dissipation bounds that do not require such parameters.

We will eliminate all such job references by deriving upper bounds using Properties 6.6–6.12 and inductively

establishing (6.52).

Similarly, observe that the definition of Wi,k in (6.17) involves De
j(b j,`,yi,k) and De

j(t
b
i,k,yi,k). Therefore,

many of the same lemmas used when analyzing ep
i,k will be additionally used when analyzing Wi,k.

We first provide a general upper bound to De
j(t0, t1) (defined in Definition 6.6) when Property 6.11

applies.

Definition 6.18.

DC
i (t0, t1) = ∑

τi,k∈ω

Ci,

where ω is the set of jobs with t0 ≤ ri,k ≤ yi,k ≤ t1.

192

Observe that the definition of DC
i (t0, t1) in Definition 6.18 differs from that of De

i (t0, t1) in Definition 6.6

only in that it uses Ci in place of ei,k. Lemma 6.32 below justifies this definition. However, in some cases, the

replacement of some ei,` with Ci creates excessive pessimism. Thus, Lemma 6.32 also provides a version of

the bound that eliminates this pessimism for one particular job.

Lemma 6.32. If

For all jobs τi,k with ri,k ≥ t0, tc
i,k ≥ tr, (6.67)

then

De
i (t0, t1)≤ DC

i (t0, t1).

If, furthermore, there is a τi,` such that t0 ≤ ri,` ≤ yi,` ≤ t1, then

De
i (t0, t1)≤ DC

i (t0, t1)+ ei,`−Ci.

Proof. The definitions of ω in Definition 6.6 and in Definition 6.18 are identical: ω is the set of jobs τi,k with

t0 ≤ ri,k ≤ yi,k ≤ t1. By (6.67), tc
i,k ≥ tr for each such τi,k. Thus, by Property 6.11, ei,k ≤Ci for all τi,k ∈ ω .

Therefore,

De
i (t0, t1) = {By the definition of De

i (t0, t1) in Definition 6.6}

∑
τi,k∈ω

ei,k

≤ {Because ei,k ≤Ci for all τi,k ∈ ω}

∑
τi,k∈ω

Ci

= {By the definition of DC
i (t0, t1) in Definition 6.18}

DC
i (t0, t1).

If, furthermore, there is a τi,` such that t0 ≤ ri,` ≤ yi,` ≤ t1, then τi,` ∈ ω by the definition of ω in

Definitions 6.6 and 6.18. Therefore,

De
i (t0, t1) = {By the definition of De

i (t0, t1) in Definition 6.6}

193

∑
τi,k∈ω

ei,k

= {Rearranging}

∑
τi,k∈ω

Ci + ∑
τi,k∈ω\{τi,`}

(ei,k−Ci) + (ei,`−Ci)

≤ {Because ei,k ≤Ci for τi,k ∈ ω}

∑
τi,k∈ω

Ci +(ei,`−Ci)

= {By the definition of DC
i (t0, t1) in Definition 6.18}

DC
i (t0, t1)+ ei,`−Ci.

Either of the next two lemmas can be used to establish that (6.67) holds for a given t0.

Lemma 6.33. If t0 = bi,` for some τi,` pending at some time t2 ≥ tr, then (6.67) holds.

Proof. By (6.5) and the definition of bi,` in Definition 6.5, for any τi,k with ri,k ≥ t0, k > `. Therefore,

tc
i,k > {By our task model}

tc
i,`

≥ {By the definition of “pending” in Definition 6.4}

t2

≥ {By the statement of the lemma}

tr.

Lemma 6.34. If t0 ≥ tr, then (6.67) holds.

Proof. For arbitrary τi,k with ri,k ≥ t0, we have

tc
i,k ≥ {Because jobs cannot commence execution before their release times}

ri,k

≥ {By the case we are considering}

t0

194

≥ {By the statement of the lemma}

tr.

We now provide a general upper bound on DC
i (t0, t1) that will be used in conjunction with Lemma 6.32.

This upper bound uses a result from Chapter 3.

Lemma 6.35. If t0 ≤ t1, then DC
j (t0, t1)≤Uv

j · (v(t1)− v(t0))+S j.

Proof. When considering virtual time instead of actual time for the purpose of job separation and PPs, and

given the use of Ci in Definition 6.18 in place of ei,k in Definition 6.6, GEL-v scheduling under the SVO

model reduces to traditional GEL scheduling under the ordinary sporadic task model. Thus, after translating

t0 and t1 from actual time to virtual time, the lemma is identical to Lemma 3.2.

In Lemma 6.3 and in the definition of Wi,k in (6.17), De
j(b j,`,yi,k) appears for some τ j,`. Using

Lemma 6.32, this term can be upper bounded using DC
j (b j,`,yi,k) and possibly an extra term to reduce

pessimism. We more specifically characterize DC
j (b j,`,yi,k) in the following lemma. Using (6.52) and the

definition of x-sufficient in Definition 6.8, we will be able to reason about y j,`. Therefore, on the right hand

side in Lemma 6.36 we use y j,` instead of b j,`. As we show in the lemma, the analysis required to do so

effectively cancels out the S j term that would appear using Lemma 6.35. To facilitate later use of Lemma 6.36,

we use t3 in place of yi,k.

Lemma 6.36.

DC
j (b j,`, t3)≤max{0,Uv

j · (v(t3)− v(y j,`))}.

Proof. We consider two cases, depending on the relative values of b j,` and t3.

Case 1: b j,` > t3. If b j,` > t3, then there are no jobs τ j,v such that b j,` ≤ r j,v ≤ y j,v ≤ t3. Therefore, by the

definition of DC
j (b j,`, t3) in Definition 6.18, DC

j (b j,`, t3) = 0≤max{0,Uv
j · (v(t3)− v(y j,`))}.

Case 2: b j,` ≤ t3. We first relate v(b j,`) to v(y j,`).

v(b j,`) = {By the definition of b j,` in Definition 6.5}

v(r j,`)+Tj

= {Rearranging}

195

v(r j,`)+Yj +Tj−Yj

= {By (6.6)}

v(y j,`)+Tj−Yj. (6.68)

We have

DC
j (b j,`, t3)≤ {By Lemma 6.35 with t0 = bi,` and t1 = t3; bi,` ≤ t3 holds by the case we are considering}

Uv
j · (v(t3)− v(bi,`))+S j

= {By (6.68)}

Uv
j · (v(t3)− v(y j,`)−Tj +Yj)+S j

= {Rearranging}

Uv
j · (v(t3)− v(y j,`))−Uv

j · (Tj−Yj)+S j

= {By the definition of Uv
j in (6.27) and the definition of S j in (6.38)}

Uv
j · (v(t3)− v(y j,`))−C j ·

(
1− Yj

Tj

)
+C j ·

(
1− Yj

Tj

)
= {Cancelling}

Uv
j · (v(t3)− v(y j,`))

≤ {By the definition of “max”}

max{0,Uv
j · (v(t3)− v(y j,`))}.

In several of our proofs, we will require a lower bound on y j,`. In a similar manner to how we defined a

notion of x-sufficient for a value of the function xi (t) for a particular i and t, we define a notion of xp-sufficient

for a function xp
i (t) (pending). We will show that xp

i (t) is closely related to xi (t), hence the similar notation.

Definition 6.19. xp
i (t) is xp-sufficient if xp

i (t)≥ 0 and, for all τi,k pending at t,

yi,k ≥ t− (xp
i (t)+ ec

i,k(t)).

In Lemma 6.38 below, we will provide a specific xp-sufficient choice of xp
i (t2) for an arbitrary τi and

t2 ∈ [tr, tn). (We use t2 in place of t0 to avoid later conflicts in notation.) That choice will be based on the

196

simple observation in the following lemma. Comparing this lemma to Definition 6.19 shows the reason for

the similar notation between xi (t) and xp
i (t). (A different choice of xp

i (t), also based on Lemma 6.37, will be

used in Section 6.3.5.)

Lemma 6.37. If τ j,` is pending at t2 and x j
(
y j,`
)

is x-sufficient, then y j,` ≥ t2− (x j
(
y j,`
)
+ ec

j,`(t2)).

Proof. We use proof by contradiction. Suppose that x j
(
y j,`
)

is x-sufficient, but

y j,` < t2− (x j
(
y j,`
)
+ ec

j,`(t2)). (6.69)

Then,

tc
j,` ≤ {By Definition 6.8}

y j,`+ x j
(
y j,`
)
+ e j,`

< {By (6.69)}

t2− (x j
(
y j,`
)
+ ec

j,`(t2))+ x j
(
y j,`
)
+ e j,`

= {Simplifying, and by Property 6.1}

t2 + er
j,`(t2). (6.70)

If er
j,`(t2) = 0, then (6.70) contradicts the assumption that τ j,` is pending at t2. Otherwise, (6.70) contradicts

the definition of er
j,`(t2) in Definition 6.3.

We now define an xp-sufficient choice of xp
i (t2) for t2 ∈ [tr, tn). Observe that, by (6.51), ∆(t) is defined

over all real numbers, so in particular is defined for negative numbers.

Lemma 6.38. If

t2 ∈ [tr, tn) (6.71)

and

For all τ j,` with y j,` ∈ [tr, t2), x j
(
y j,`
)
= xs

j(sr)+∆
(
y j,`
)

is x-sufficient. (6.72)

then xp
j (t2) = xpr

j (t2) is xp-sufficient, where

xpr
j (t2), xs

j(sr)+∆(t2−ρ) . (6.73)

197

Proof. By the definition of xpr
j (t2) in (6.73) and by Lemma 6.17 with ta = t2−ρ , xpr

j (t2)≥ 0. To show the

remaining condition for xp
j (t2) = xpr

j (t2) to be xp-sufficient, we consider an arbitrary job τ j,` pending at t2.

By showing that y j,` ≥ t2− (xpr
j (t2)+ ec

j,`(t2)) for such an arbitrary job, we show that xp
j (t2) = xpr

j (t2) is

xp-sufficient. We consider three cases, depending on the value of y j,`.

Case 1: y j,` ∈ (−∞, tr). We first bound the value of t2 for this case to apply. Let ẋ j(tr) be the value used in

the definition of of λ in (6.40).

t2 ≤ {By the definition of “pending” in Definition 6.4}

tc
j,`

≤ {By the definition of ẋ-sufficient in Definition 6.16}

tr + ẋ j(tr)+ e j,`

≤ {By Property 6.11, because τ j,` is pending at t2 ≥ tr}

tr + ẋ j(tr)+C j

< {Because Arn
j (m−L j−1)> 0 by Lemma 6.10}

tr + ẋ j(tr)+Arn
j (m−L j−1)+C j

= {Rearranging}

tr + xs
j(sr)+(ẋ j(tr)− xs

j(sr)+Arn
j (m−L j−1))+C j

≤ {By the definition of λ in (6.40)}

tr + xs
j(sr)+λ +C j

≤ {By the definition of ρ in (6.50)}

tr +ρ.

Therefore, t2−ρ < tr, so by the definition of ∆(t2−ρ) in (6.51),

∆(t2−ρ) = λ . (6.74)

198

By the case we are considering, y j,` < tr. Furthermore, because τ j,` is pending at t2 > tr, tc
j,` ∈ [tr,∞).

Therefore, by the definition of κ in Definition 6.17, τ j,` ∈ κ . Let c0 be the value of x j
(
y j,`
)

used in the

definition of λ in (6.40).

We have

xpr
j (t2) = {By the definition of xpr

j (t2) in (6.73)}

xs
j(sr)+∆(t2−ρ)

= {By (6.74)}

xs
j(sr)+λ

≥ {By the definition of λ in (6.40)}

xs
j(sr)+(c0− xs

j(sr))

= {Cancelling}

c0.

Therefore, by Property 6.4 with c1 = xpr
j (t2), x j

(
y j,`
)
= xpr

j (t2) is x-sufficient. Therefore, by Lemma 6.37,

y j,` ≥ t2− (xpr
j (t2)+ ec

j,`(t2)).

Case 2: y j,` ∈ [tr, t2). As in the previous case, we again bound the value of t2 in order for this case to apply.

t2 ≤ {By the definition of “pending” in Definition 6.4}

tc
j,`

≤ {By (6.72) and the definition of x-sufficient in Definition 6.8}

y j,`+ xs
j(sr)+∆

(
y j,`
)
+ e j,`

≤ {By Property 6.11, because τ j,` is pending at t2 ≥ tr}

y j,`+ xs
j(sr)+∆

(
y j,`
)
+C j

≤ {By Lemma 6.24 with t0 = tr and t1 = y j,`}

y j,`+ xs
j(sr)+∆(tr)+C j

= {By Lemma 6.20}

y j,`+ xs
j(sr)+λ +C j

199

≤ {By the definition of ρ in (6.50)}

y j,`+ρ.

Rearranging,

t2−ρ ≤ y j,`. (6.75)

Thus, we have

xpr
j (t2) = {By the definition of xpr

j (t2) in (6.73)}

xs
j(sr)+∆(t2−ρ)

≥ {By Lemma 6.24 with t0 = t2−ρ and t1 = y j,`, and by (6.75)}

xs
j(sr)+∆

(
y j,`
)
. (6.76)

Therefore, by (6.72), (6.76), and Property 6.4 with c0 = xs
j(sr)+∆

(
y j,`
)

and c1 = xpr
j (t2), x j

(
y j,`
)
= xpr

j (t2)

is x-sufficient. Therefore, by Lemma 6.37, y j,` ≥ t2− (xpr
j (t2)+ ec

j,`(t2)).

Case 3: t2 ≤ y j,`. In this case,

y j,` ≥ t2

≥ {By Lemma 6.17 with ta = t2−ρ , and because ec
j,`(t2)≥ 0}

t2− (xs
j(tr)+∆(t2−ρ)+ ec

j,`(t2))

= {By the definition of xpr
j (t2) in (6.73)}

t2− (xpr
j (t2)+ ec

j,`(t2)).

In Lemma 6.40 below, we will bound an expression that corresponds to one in Lemma 6.3 and in the

definition of Wi,k in (6.17), by combining the results of Lemmas 6.32 and 6.36. Observe in Lemma 6.36 that

virtual times are used, in the form of v(y j,`) and v(t3). However, in Lemma 6.32, actual times are used. In

order to combine the results of these two lemmas, we will need to characterize as Lemma 6.39 the behavior

of v(t), using Property 6.2. Unlike in Lemma 6.29, we consider arbitrary t1 ≥ t0.

200

If we were only concerned with the analysis when t0 ∈ [ts, tn] and t1 ∈ [ts, tn], then we could simply use

Lemma 6.29. However, Lemma 6.40 is general enough to be used in Section 6.3.5 in analysis that involves

[tn,∞), during which s(t) = 1. Therefore, we instead define as sub (upper bound) an upper bound on s(t) for

t ∈ [t0, t1). In this section, we will use sub = sr for the just-noted reason, and in Section 6.3.5 we will use

sub = 1, which is always valid by the definition of s(t).

Lemma 6.39. If t1 ≥ t0 and s(t)≤ sub for t ∈ [t0, t1), then v(t1)− v(t0)≤ sub · (t1− t0).

Proof. We have

v(t1)− v(t0) = {By Property 6.2}∫ t1

t0
s(t)dt

≤ {By the statement of the lemma}∫ t1

t0
sub dt

= {Rearranging}

sub · (t1− t0).

We now provide a result in Lemma 6.40 that allows us to upper bound expressions that appear in

Lemma 6.3 and in the definition of Wi,k in (6.17). We use the general xp
j (t2) in place of xpr

j (t2) so that we can

reuse this lemma in Section 6.3.5.

Lemma 6.40. If

t2 ∈ [tr, t3], (6.77)

τ j,` is pending at t2, (6.78)

sub ∈ (0,1], (6.79)

s(t)≤ sub for t ∈ [y j,`, t2), (6.80)

and

xp
j (t2) is xp-sufficient, (6.81)

201

then

er
j,`(t2)+De

j(b j,`, t3)≤C j +Uv
j · sub · xp

j (t2)+Uv
j · (v(t3)− v(t2)).

If furthermore t3 = yi,k with j = i and k ≥ `, then

er
i,`(t2)+De

i (bi,`, t3)≤ ei,k +Uv
i · sub · xp

i (t2)+Uv
i · (v(t3)− v(t2)).

Proof. We will use the following fact.

If y j,` < t2, then the remaining precondition of Lemma 6.39 with t0 = y j,` and t1 = t2 follows immediately

from (6.80). Thus, by Lemma 6.39, the following claim holds.

Claim 6.40.1. If y j,` < t2, then v(t2)− v(y j,`)≤ sub · (t2− y j,`).

Continuing the proof of Lemma 6.40, we first provide reasoning that will address both the cases present

in the statement of the lemma, which correspond to the two cases present in Lemma 6.32. We will then apply

specific reasoning for each case. We have

er
j,`(t2)+DC

j (b j,`, t3)

≤ {By Lemma 6.36}

er
j,`(t2)+max{0,Uv

j · (v(t3)− v(y j,`))}

= {Rearranging}

er
j,`(t2)+max{0,Uv

j · (v(t2)− v(y j,`))+Uv
j · (v(t3)− v(t2))}

≤ {By (6.77)}

er
j,`(t2)+max{0,Uv

j · (v(t2)− v(y j,`))}+Uv
j · (v(t3)− v(t2))

≤ {By Claim 6.40.1 if y j,` < t2, or by the 0 term in the “max” otherwise}

er
j,`(t2)+max{0,Uv

j · sub · (t2− y j,`)}+Uv
j · (v(t3)− v(t2))

≤ {By the definition of xp-sufficient in Definition 6.19 with t = t2}

er
j,`(t2)+max{0,Uv

j · sub · (xp
j (t2)+ ec

j,`(t2))}+Uv
j · (v(t3)− v(t2))

= {Because xp
j (t2)≥ 0 (by Definition 6.19) and ec

j,`(t2)≥ 0}

er
j,`(t2)+Uv

j · sub · (xp
j (t2)+ ec

j,`(t2))+Uv
j · (v(t3)− v(t2))

202

≤ {By Property 6.1 with i = j and k = `, and because Uv
j ≤ 1 and sub ≤ 1 by (6.79)}

e j,`+Uv
j · sub · xp

j (t2)+Uv
j · (v(t3)− v(t2)). (6.82)

Furthermore,

er
j,`(t2)+De

j(b j,`, t3)

≤ {By Lemmas 6.32 and 6.33 with t0 = b j,` and t1 = t3, because τ j,` is pending at t2 ≥ tr by

(6.77) and (6.78)}

er
j,`(t2)+DC

j (b j,`, t3)

≤ {By (6.82)}

e j,`+Uv
j · sub · xp

j (t2)+Uv
j · (v(t3)− v(t2)) (6.83)

≤ {By Property 6.11, because τ j,` is pending at t2 ≥ tr by (6.77) and (6.78)}

C j +Uv
j · sub · xp

j (t2)+Uv
j · (v(t3)− v(t2)).

We divide the more specific case, when t3 = yi,k with j = i and k ≥ `, into two subcases. If k = `, then

er
i,`(t2)+De

i (bi,`, t3)

≤ {By (6.83) with j = i and `= k}

ei,k +Uv
i · sub · xp

i (t2)+Uv
i · (v(t3)− v(t2)).

If k > `, then by (6.5) and the definition of bi,` in Definition 6.5, ri,k ≥ bi,`. Therefore,

er
i,`(t2)+De

i (bi,`, t3)

≤ {By Lemmas 6.32 and 6.33 with t0 = bi,` and t1 = t3, because τi,` is pending at t2 ≥ tr by

(6.77) and (6.78)}

er
i,`(t2)+DC

i (bi,`, t3)+ ei,k−Ci

≤ {By (6.82) with j = i}

ei,`+Uv
i · sub · xp

i (t2)+Uv
i · (v(t3)− v(t2))+ ei,k−Ci

203

≤ {By Property 6.11, because τi,` is pending at t2 ≥ tr by (6.77) and (6.78)}

Ci +Uv
i · sub · xp

i (t2)+Uv
i · (v(t3)− v(t2))+ ei,k−Ci

= {Simplifying}

ei,k +Uv
i · sub · xp

i (t2)+Uv
i · (v(t3)− v(t2)).

We first use Lemma 6.40 to bound ep
i,k in Lemma 6.41.

Lemma 6.41. If

yi,k ∈ [tr,∞), (6.84)

tc
i,k > yi,k + ei,k, (6.85)

sub ∈ (0,1], (6.86)

s(t)≤ sub for all t ∈ [yi,`,yi,k) where τi,` is the earliest pending job of τi at yi,k, (6.87)

and

xp
i (yi,k) is xp-sufficient, (6.88)

then ep
i,k ≤Uv

i · sub · xp
i (yi,k).

Proof. By (6.85), τi,k is pending at yi,k. We consider two cases.

Case 1: τi,k is the Earliest Pending Job of τi at yi,k. In this case,

ep
i,k = {By the case we are considering}

0

≤ {By (6.86) and (6.88), because xp
i (yi,k)≥ 0 by the definition of xp-sufficient in Definition 6.19}

Uv
i · sub · xp

i (yi,k) .

Case 2: τi,` with ` < k is the Earliest Pending Job of τi at yi,k. In this case, we will use the following fact.

We will use Lemma 6.40 with j = i, t2 = yi,k, and t3 = yi,k. We have

t2 = yi,k

204

≥ {By (6.84)}

tr.

Furthermore t2 = yi,k = t3. Therefore, t2 ∈ [tr, t3], which matches (6.77). By the case we are considering, τi,`

is pending at yi,k = t2, so (6.78) holds. (6.79) holds by (6.86). Because i = j, (6.80) follows from (6.87).

Finally, because t2 = yi,k, (6.81) follows from (6.88). Therefore, by Lemma 6.40,

er
i,`(yi,k)+De

i (bi,`,yi,k)≤ ei,k +Uv
i · sub · xp

i (yi,k)+Uv
i · (v(yi,k)− v(yi,k)). (6.89)

Continuing the analysis of Case 2, by Lemma 6.3 with t0 = yi,k, the total remaining work from τi at yi,k

is at most

er
i,`(yi,k)+De

i (bi,`,yi,k)

≤ {By (6.89)}

ei,k +Uv
i · sub · xp

i (yi,k)+Uv
i · (v(yi,k)− v(yi,k))

= {Simplifying}

ei,k +Uv
i · sub · xp

i (yi,k) . (6.90)

Of this work, ei,k units are from τi,k itself. Thus, subtracting ei,k yields the lemma.

We will now provide, in Lemma 6.42, a more constrained bound on ep
i,k for the case that yi,k ∈ [tr, tn).

Lemma 6.42. If ta ∈ [tr, tn), ta = yi,k, tc
i,k > yi,k + ei,k, and (6.52) holds, then

ep
i,k ≤U r

j · xpr
i (yi,k) . (6.91)

Proof. We will use the following facts.

We will make use of Lemma 6.38 with t2 = yi,k. Because we are using t2 = yi,k = ta and ta ∈ [tr, tn) by

the statement of the lemma, we have t2 ∈ [tr, tn), which matches (6.71). Similarly, also because we are using

t2 = yi,k = ta, (6.72) follows immediately from (6.52). Therefore, by Lemma 6.38, we have

xp
i (yi,k) = xpr

i (yi,k) is xp-sufficient. (6.92)

205

We will also use Lemma 6.41 with sub = sr and xp
i (yi,k) = xpr

i (yi,k). We have

yi,k = {By the statement of the lemma}

ta

≥ {By the statement of the lemma}

tr, (6.93)

which matches (6.84). Furthermore, (6.85) holds by the statement of the lemma. Because sub = sr, (6.86)

holds by Property 6.6. As in (6.87), we denote as τi,` the earliest pending job of τi at yi,k. By Lemma 6.9 with

j = i and t2 = yi,k, and by (6.93), yi,` ≥ ts. Furthermore, we have

yi,k = {By the statement of the lemma}

ta

≤ {By the statement of the lemma}

tn.

Thus, (6.87) holds by Property 6.6. (6.88) holds by (6.92). Thus, by Lemma 6.41, we have

ep
i,k ≤Uv

i · sr · xpr
i (yi,k) . (6.94)

Continuing the proof of Lemma 6.42, we have

ep
i,k ≤ {By (6.94)}

Uv
i · sr · xpr

i (yi,k)

= {By the definition of U r
i in (6.28)}

U r
i · xpr

i (yi,k) .

The result of Lemma 6.42 involves xpr
i (yi,k). The next lemma provides an upper bound on this quantity.

Lemma 6.43. If yi,k < tn, then xpr
i (yi,k)≤ xs

i (sr)+λ .

206

Proof. We consider two cases, depending on the value of yi,k.

Case 1: yi,k < tr +ρ . In this case, yi,k−ρ < tr. Therefore,

xs
i (sr)+λ = {By the definition of ∆(yi,k−ρ) in (6.51)}

xs
i (sr)+∆(yi,k−ρ)

= {By the definition of xpr
i (yi,k) in (6.73)}

xpr
i (yi,k) .

Case 2: yi,k ≥ tr +ρ . In this case, yi,k−ρ ≥ tr. Therefore,

xs
i (sr)+λ = {By Lemma 6.20}

xs
i (sr)+∆(tr)

≥ {By Lemma 6.24 with t0 = tr and t1 = yi,k−ρ}

xs
i (sr)+∆(yi,k−ρ)

= {By the definition of xpr
i (yi,k) in (6.73)}

xpr
i (yi,k) .

We will next consider the remaining terms that appear in the definition of xm
i,k in (6.24). We will first

consider in Lemmas 6.44–6.48 the case that tb
i,k ∈ [0, tr), and then in Lemmas 6.49–6.56 we will consider

the case that tb
i,k ∈ [tr, tn). In Lemma 6.57 we will prove that xi (ta) = xs

i (sr)+∆(ta) is x-sufficient for either

range of tb
i,k.

First, we upper bound Wi,k when tb
i,k ∈ [0, tr).

Lemma 6.44. If tb
i,k ∈ [0, tr) and yi,k ∈ [tr, tn), then

Wi,k ≤W o
i,k + ∑

τ j∈τ

U r
j · (yi,k− tr).

Proof. We have

W o
i,k + ∑

τ j∈τ

U r
j · (yi,k− tr)

207

= {By Lemma 6.29, because tr ≥ ts by the definition of tr in Definition 6.13, and by

the definition of U r
j in (6.28)}

W o
i,k + ∑

τ j∈τ

Uv
j · (v(yi,k)− v(tr))

= {By the definition of W o
i,k in (6.42)}

Wi,k− ∑
τ j∈τ

De
j(tr,yi,k)+ ∑

τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tr))

= {Rearranging}

Wi,k− ∑
τ j∈τ

De
j(tr,yi,k)+ ∑

τ j∈τ

(Uv
j · (v(yi,k)− v(tr))+S j)

≥ {By Lemmas 6.32 and 6.34 with t0 = tr and t1 = yi,k}

Wi,k− ∑
τ j∈τ

DC
j (tr,yi,k)+ ∑

τ j∈τ

(Uv
j · (v(yi,k)− v(tr))+S j)

≥ {By Lemma 6.35 with t0 = tr and t1 = yi,k}

Wi,k.

In a similar manner, we next consider the value of Ri,k when tb
i,k ∈ [0, tr).

Lemma 6.45. If tb
i,k ∈ [0, tr) and yi,k ∈ [tr, tn), then Ro

i,k +utot · (yi,k− tr) = Ri,k.

Proof. We have

Ro
i,k +utot · (yi,k− tr)

= {By the definition of Ro
i,k in (6.43)}

utot · (tr− tb
i,k)+utot · (yi,k− tr)

= {Simplifying}

utot · (yi,k− tb
i,k)

= {By the definition of Ri,k in (6.21)}

Ri,k.

We will provide an upper bound on Oi,k in Lemma 6.46.

208

Lemma 6.46. If tc
i,k > yi,k + ei,k, tb

i,k ∈ [0, tr), and yi,k ∈ [tr, tn), then Oo
i,k +Orn ≥ Oi,k.

Proof. We first observe that, by the definition of βp(t0, t1) in Definition 6.7,

βp(tb
i,k, t

c
i,k) = βp(tb

i,k, tr)+βp(tr, tc
i,k). (6.95)

We have

Oo
i,k +Orn = {By the definition of Oo

i,k in (6.44) and the definition of Orn in (6.39)}

∑
Pp∈P

op(tb
i,k, tr)+ ∑

Pp∈P
ûpσp

≥ {By Property 6.12}

∑
Pp∈P

op(tb
i,k, tr)+ ∑

Pp∈P
op(tr, tc

i,k)

= {Rearranging}

∑
Pp∈P

(op(tb
i,k, tr)+op(tr, tc

i,k))

= {By the definition of op(t0, t1) in (6.8)}

∑
Pp∈P

(max{0, ûp · (tr− tb
i,k)−βp(tb

i,k, tr)}+max{0, ûp · (tc
i,k− tr)−βp(tr, tc

i,k)})

≥ {By the definition of “max”}

∑
Pp∈P

(max{0, ûp · (tr− tb
i,k)−βp(tb

i,k, tr)+ ûp · (tc
i,k− tr)−βp(tr, tc

i,k)})

= {Rearranging, and by (6.95)}

∑
Pp∈P

(max{0, ûp · (tc
i,k− tb

i,k)−βp(tb
i,k, t

c
i,k)})

= {By the definition of op(tb
i,k, t

c
i,k) in (6.8)}

∑
Pp∈P

op(tb
i,k, t

c
i,k)

= {By the definition of Oi,k in (6.20)}

Oi,k.

209

When considering tb
i,k in [0, tr), we will consider the value of λ . We now provide a lower bound on λ that

closely resembles the bound we desire.

Lemma 6.47. For arbitrary τi,k such that tb
i,k ∈ [0, tr) and yi,k ∈ [tr,∞),

λ ≥
W o

i,k−Ro
i,k +(m−utot−1)ei,k +Oo

i,k +Orn +Li ·U r
i · (xs

i (sr)+λ)

utot
.

Proof. By the definition of λ in (6.40), we have

λ ≥
W o

i,k−Ro
i,k +(m−utot−1)ei,k +Oo

i,k +Orn +Li ·U r
i · xs

i (sr)

utot−Li ·U r
i

.

Adding λ · Li·U r
i

utot−Li·U r
i

to both sides yields

λ · utot

utot−Li ·U r
i
≥

W o
i,k−Ro

i,k +(m−utot−1)ei,k +Oo
i,k +Orn +Li ·U r

i · (xs
i (sr)+λ)

utot−Li ·U r
i

.

By Property 6.13, the definition of U r
i in (6.28), and the restriction that sr < 1 in Property 6.6, Li ·U r

i < utot.

Therefore, utot−Li·U r
i

utot
> 0. Thus, multiplying both sides by utot−Li·U r

i
utot

yields the lemma.

We now consider the tb
i,k ∈ [0, tr) subcase of Case E.

Lemma 6.48. If ta ∈ [tr, tn), ta = yi,k for some k, tc
i,k > yi,k + ei,k, τi,k is m-dominant for Li, tb

i,k ∈ [0, tr), and

(6.52) holds, then xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

Proof. We have

xs
i (sr)+∆(ta)

≥ {By Lemma 6.24 with t0 = tr and t1 = yi,k; yi,k ≥ tr holds by the statement of the lemma}

xs
i (sr)+∆(tr)+φ · (yi,k− tr)

= {By Lemma 6.20}

xs
i (sr)+λ +φ · (yi,k− tr)

≥ {By Lemma 6.47}

xs
i (sr)+

W o
i,k−Ro

i,k +(m−utot−1)ei,k +Oo
i,k +Orn +Li ·U r

i · (xs
i (sr)+λ)

utot
+φ · (yi,k− tr)

210

≥ {Because xs
i (sr)≥ 0 by its definition in (6.37)}

W o
i,k−Ro

i,k +(m−utot−1)ei,k +Oo
i,k +Orn +Li ·U r

i · (xs
i (sr)+λ)

utot
+φ · (yi,k− tr)

= {Rearranging}
W o

i,k +Ro
i,k +utot ·φ · (yi,k− tr)+(m−utot−1)ei,k +Oo

i,k +Orn +Li ·U r
i · (xs

i (sr)+λ)

utot

≥ {By Lemma 6.43}
W o

i,k +Ro
i,k +utot ·φ · (yi,k− tr)+(m−utot−1)ei,k +Oo

i,k +Orn +Li ·U r
i · xpr

i (yi,k)

utot

≥ {By Lemma 6.46, which only has preconditions implied by those of this lemma}
W o

i,k +Ro
i,k +utot ·φ · (yi,k− tr)+(m−utot−1)ei,k +Oi,k +Li ·U r

i · xpr
i (yi,k)

utot

≥ {By Lemma 6.42, which only has preconditions implied by those of this lemma}
W o

i,k +Ro
i,k +utot ·φ · (yi,k− tr)+(m−utot−1)ei,k +Oi,k +Li · ep

i,k

utot
. (6.96)

For simplicity, we now consider some of the terms separately.

W o
i,k−Ro

i,k +utot ·φ · (yi,k− tr)

≥ {By the definition of φ in (6.46)}

W o
i,k−Ro

i,k +

(
∑

τ j∈τ

U r
j −utot

)
· (yi,k− tr)

= {Rearranging}

W o
i,k + ∑

τ j∈τ

U r
j · (yi,k− tr)−Ro

i,k−utot · (yi,k− tr)

≥ {By Lemmas 6.44 and 6.45, which only have preconditions implied by those of this lemma}

Wi,k−Ri,k. (6.97)

Combining, we have

xs
i (sr)+∆(ta)≥ {By (6.96) and (6.97)}

Wi,k−Ri,k +(m−utot−1)ei,k +Oi,k +Li · ep
i,k

utot

211

= {By the definition of xm
i,k in (6.24)}

xm
i,k. (6.98)

By Theorem 6.5, which has only preconditions implied by those of this lemma, xi (ta) = xm
i,k is x-sufficient.

Therefore, by Property 6.4 with c0 = xm
i,k and c1 = xs

i (sr)+∆(ta) and by (6.98), xi (ta) = xs
i (sr)+∆(ta) is

x-sufficient.

In Lemmas 6.49–6.56, we now turn our attention to the case when tb
i,k ∈ [tr, tn). In order to facilitate

use in the next subsection, some of these lemmas also apply when tb
i,k ∈ [tn,∞). Observe in the definition

of xm
i,k in (6.24) the presence of the term (m− utot− 1)ei,k. This term was previously accounted for by its

explicit inclusion in the definition of λ in (6.40). However, we only use the value of λ while analyzing

τi,k with tb
i,k ∈ [tr, tn). In most lemmas in this section, terms with ei,k can be upper bounded by using Ci

instead. However, depending on the size of utot, m− utot− 1 can be as small as −1 or as big as m− 1. If

(m− utot− 1) ∈ [0,m− 1), then (m− utot− 1)Ci ≥ (m− utot− 1)ei,k. However, if (m− utot− 1) ∈ [−1,0),

then (m−utot−1)Ci could be smaller than (m−utot−1)ei,k by as much as Ci− ei,k.

As we will show, we can use the less general cases in Lemmas 6.32 and 6.40 while bounding Wi,k in

order to cancel out this discrepancy. Our reasoning will depend on whether τi has a job in θi,k or is in θi,k. To

handle these cases, in the next lemma we define an indicator variable Ωi,k(j) that will be used for all tasks in

either case, but that will be nonzero only when j = i. We first consider how to handle a task τ j with a job in

θi,k, based on the expression that appears in the sum for θi,k in the definition of Wi,k in (6.17).

Lemma 6.49. If

τ j,` ∈ θi,k, (6.99)

tb
i,k ∈ [tr,∞), (6.100)

sub ∈ (0,1], (6.101)

s(t)≤ sub for t ∈ [y j,`, tb
i,k), (6.102)

and

xp
j

(
tb
i,k

)
is xp-sufficient, (6.103)

212

then

er
j,`(t

b
i,k)+De

j(b j,`,yi,k)≤C j +Uv
j · sub · xp

j

(
tb
i,k

)
+Uv

j · (v(yi,k)− v(tb
i,k))+Ωi,k(j),

where

Ωi,k(j),

ei,k−Ci If j = i

0 If j 6= i.
(6.104)

Proof. We will use the following fact.

We will use Lemma 6.40 with t2 = tb
i,k and t3 = yi,k. Because t2 = tb

i,k, by (6.100), t2 ≥ tr, and by the

definition of tb
i,k in Definition 6.12, t2 ≤ yi,k = t3. Thus, (6.77) holds. By (6.99) and the definition of θi,k in

Lemma 6.4, (6.78) holds. (6.79) holds by (6.101). Furthermore, because t2 = tb
i,k, (6.80) follows from (6.102),

and (6.81) follows from (6.103). Thus, by Lemma 6.40, the following claim holds.

Claim 6.49.1.

er
j,`(t

b
i,k)+De

j(b j,`,yi,k)≤C j +Uv
j · sub · xp

j

(
tb
i,k

)
+Uv

j · (v(yi,k)− v(tb
i,k)).

If furthermore j = i and k ≥ `, then

er
i,`(t

b
i,k)+De

i (bi,`,yi,k)≤ ei,k +Uv
i · sub · xp

i

(
tb
i,k

)
+Uv

i · (v(yi,k)− v(tb
i,k)).

Continuing the proof of Lemma 6.49, we consider two cases, depending whether j = i.

Case 1: j = i. Because τ j,` ∈ θi,k by (6.99), by the definition of θi,k in Lemma 6.4, y j,` ≤ yi,k. Thus, because

j = i, yi,` ≤ yi,k. Therefore, k ≥ `. Thus,

er
j,`(t

b
i,k)+De

j(b j,`,yi,k)

≤ {By Claim 6.49.1, and by the case we are considering}

ei,k +Uv
i · sub · xp

i

(
tb
i,k

)
+Uv

i · (v(yi,k)− v(tb
i,k))

= {Rearranging}

Ci +Uv
i · sub · xp

i

(
tb
i,k

)
+Uv

i · (v(yi,k)− v(tb
i,k))+ ei,k−Ci

= {By the definition of Ωi,k(i) in (6.104)}

213

Ci +Uv
i · sub · xp

i

(
tb
i,k

)
+Uv

i · (v(yi,k)− v(tb
i,k))+Ωi,k(i)

= {By the case we are considering}

C j +Uv
j · sub · xp

j

(
tb
i,k

)
+Uv

j · (v(yi,k)− v(tb
i,k))+Ωi,k(j)

(6.105)

Case 2: j 6= i.

er
j,`(t

b
i,k)+De

j(b j,`,yi,k)

≤ {By Claim 6.49.1}

C j +Uv
j · sub · xp

j

(
tb
i,k

)
+Uv

j · (v(yi,k)− v(tb
i,k))

= {By the definition of Ωi,k(j) in (6.104)}

C j +Uv
j · sub · xp

j

(
tb
i,k

)
+Uv

j · (v(yi,k)− v(tb
i,k))+Ωi,k(j).

The next lemma is similar, but handles the expression that appears in the sum for θi,k in the definition of

Wi,k in (6.17).

Lemma 6.50. If τ j ∈ θi,k, tc
i,k > yi,k + ei,k, and tb

i,k ∈ [tr,∞), then

De
j(t

b
i,k,yi,k)≤Uv

j · (v(yi,k)− v(tb
i,k))+S j +Ωi,k(j).

Proof. We consider two cases, depending whether j = i.

Case 1: j = i. In this case, we have

tc
i,k > {By the statement of the lemma}

yi,k + ei,k

> {Because ei,k > 0}

yi,k

≥ {By the definition of tb
i,k in Definition 6.12}

tb
i,k.

214

Thus, τi,k must not be complete at tb
i,k.

Suppose ri,k < tb
i,k. In that case, by the definition of θi,k in Lemma 6.4, τi,k must be in θi,k, unless it has a

predecessor in θi,k (which would have an earlier release and PP). However, τi = τ j, so by the definition of θi,k

in Lemma 6.4, this contradicts the precondition that τ j ∈ θi,k. Therefore, ri,k ≥ tb
i,k. Thus, we have

De
j(t

b
i,k,yi,k)≤ {By Lemmas 6.32 and 6.34 with t0 = tb

i,k and t1 = yi,k}

DC
j (t

b
i,k,yi,k)+ ei,k−Ci

= {By the definition of Ωi,k(j) in (6.104) and the case we are considering}

DC
j (t

b
i,k,yi,k)+Ωi,k(j)

≤ {By Lemma 6.35 with t0 = tb
i,k and t1 = yi,k; tb

i,k ≤ yi,k holds by the definition of

tb
i,k in Definition 6.12}

Uv
j · (v(yi,k)− v(tb

i,k))+S j +Ωi,k(j).

Case 2: j 6= i. In this case, we have

De
j(t

b
i,k,yi,k)≤ {By Lemmas 6.32 and 6.34 with t0 = tb

i,k and t1 = yi,k}

DC
j (t

b
i,k,yi,k)

= {By the definition of Ωi,k(j) in (6.104) and the case we are considering}

DC
j (t

b
i,k,yi,k)+Ωi,k(j)

≤ {By Lemma 6.35 with t0 = tb
i,k and t1 = yi,k; tb

i,k ≤ yi,k holds by the definition of

tb
i,k in Definition 6.12}

Uv
j · (v(yi,k)− v(tb

i,k))+S j +Ωi,k(j).

We now combine these results, in Lemma 6.51 below, to provide a bound on Wi,k when yi,k ∈ [tr,∞). This

bound is valid both when tb
i,k ∈ [tr, tn) and when tb

i,k ∈ [tn,∞).

Lemma 6.51. If

tc
i,k > yi,k + ei,k, (6.106)

215

tb
i,k ∈ [tr,∞), (6.107)

sub ∈ (0,1] (6.108)

s(t)≤ sub for t ∈ [y j,`, tb
i,k) for each τ j,` ∈ θi,k, (6.109)

and

For each τ j, xp
j

(
tb
i,k

)
is xp-sufficient, (6.110)

then

Wi,k ≤ ∑
m−1 largest

(C j +Uv
j · sub · xp

j

(
tb
i,k

)
−S j)+ ∑

τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))+ ei,k−Ci.

Proof. We will use the following fact.

We will use Lemma 6.49 for each τ j,` ∈ θi,k. In each such case, (6.99) holds by assumption. Furthermore,

(6.100)–(6.103) are implied by (6.107)–(6.110). Therefore, the following claim holds by Lemma 6.49:

Claim 6.51.1. If τ j,` ∈ θi,k, then

er
j,`(t

b
i,k)+De

j(b j,`,yi,k)≤C j +Uv
j · sub · xp

j

(
tb
i,k

)
+Uv

j · (v(yi,k)− v(tb
i,k))+Ωi,k(j).

We now continue the proof of Lemma 6.51. First, observe that, by the definitions of θi,k and θi,k, and

because a given task can only have one earliest pending job at tb
i,k, the following claim holds.

Claim 6.51.2. Each τ j either has exactly one τ j,` in θi,k or is in θi,k. These possibilities are mutually

exclusive.

We have

Wi,k = {By the definition of Wi,k in (6.17)}

∑
τ j,`∈θi,k

(er
j,`(t

b
i,k)+De

j(b j,`,yi,k))+ ∑
τ j∈θi,k

De
j(t

b
i,k,yi,k)

≤ {By Claim 6.51.1 and Lemma 6.50, which only has preconditions implied by those of this lemma}

∑
τ j,`∈θi,k

(C j +Uv
j · sub · xp

j

(
tb
i,k

)
+Uv

j · (v(yi,k)− v(tb
i,k))+Ωi,k(j))

216

+ ∑
τ j∈θi,k

(Uv
j · (v(yi,k)− v(tb

i,k))+S j +Ωi, j(k))

= {Rearranging}

∑
τ j,`∈θi,k

(
C j +Uv

j · sub · xp
j

(
tb
i,k

))
+ ∑

τ j,`∈θi,k

(Uv
j · (v(yi,k)− v(tb

i,k)))+ ∑
τ j∈θi,k

(Uv
j · (v(yi,k)− v(tb

i,k))+S j)

+ ∑
τ j,`∈θi,k

Ωi,k(j)+ ∑
τ j∈θi,k

Ωi,k(j)

= {By Claim 6.51.2}

∑
τ j,`∈θi,k

(
C j +Uv

j · sub · xp
j

(
tb
i,k

)
−S j

)
+ ∑

τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))+ ∑
τ j∈τ

Ωi,k(j). (6.111)

By the definition of θi,k in Lemma 6.4, any τ j with a τ j,` ∈ θi,k must be executing immediately before tb
i,k,

because τ j,` was released before tb
i,k, τ j,` is still pending at tb

i,k, and there is an idle processor just before tb
i,k.

Therefore, there can be at most m−1 tasks with jobs in θi,k. Furthermore, it is more pessimistic to assume

that a task has a job in θi,k than that it is in θi,k, because

C j +Uv
j · sub · xp

j

(
tb
i,k

)
≥ {Because Uv

j > 0 and sub > 0, and because xp
j

(
tb
i,k

)
≥ 0 by the definition of xp-sufficient in

Definition 6.19}

C j

≥ {Because Yi ≥ 0 and Ti > 0}

C j ·
(

1− Yi

Ti

)
= {By the definition of S j in (6.38)}

Si.

Therefore,

Wi,k ≤ {By (6.111) and the above reasoning}

217

∑
m−1 largest

(C j +Uv
j · sub · xp

j

(
tb
i,k

)
−S j)+ ∑

τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))+ ∑
τ j∈τ

Ωi, j(k)

= {By the definition of Ωi,k(j) in (6.104)}

∑
m−1 largest

(C j +Uv
j · sub · xp

j

(
tb
i,k

)
−S j)+ ∑

τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))+ ei,k−Ci.

We now offer a bound that accounts for the −ei,k term that occurs as part of the (m−utot−1)ei,k term in

the definition of xm
i,k in (6.24). This lemma plays a similar role to Lemma 6.44 above, but for the case that

tb
i,k ∈ [tr, tn).

Lemma 6.52. If tc
i,k > yi,k + ei,k, tb

i,k ∈ [tr, tn), yi,k ∈ [tr, tn), and (6.72) holds with t2 = tb
i,k, then

W r
i,k + ∑

τ j∈τ

U r
j · (yi,k− tb

i,k)−Ci ≥Wi,k− ei,k,

where

W r
i,k , ∑

m−1 largest

(
C j +U r

j · xpr
j

(
tb
i,k

)
−S j

)
+ ∑

τ j∈τ

S j. (6.112)

Proof. We will use the following facts.

We will use Lemma 6.38 with t2 = tb
i,k and arbitrary τ j. Because tb

i,k ∈ [tr, tn) by the statement of the

lemma, (6.71) holds. Furthermore, (6.72) holds by the statement of the lemma. Therefore, by Lemma 6.38,

For each τ j, xp
j

(
tb
i,k

)
= xpr

j

(
tb
i,k

)
is xp-sufficient. (6.113)

We will use Lemma 6.51 with sub = sr and xp
j

(
tb
i,k

)
= xpr

j

(
tb
i,k

)
. (6.106) and (6.107) hold by the statement

of the lemma. Because sub = sr, (6.108) follows from Property 6.6. To establish (6.109), we consider arbitrary

τ j,` in θi,k. By the definition of θi,k in Lemma 6.4, such a τ j,` is pending at tb
i,k, and tb

i,k ≥ tr by the statement

of the lemma. Thus, by Lemma 6.9 with t2 = tb
i,k, we have y j,` ≥ ts. Therefore, by Property 6.6, for all

t ∈ [y j,`, tb
i,k), s(t) = sr. (This statement is vacuously true if y j,` ≥ tb

i,k.) (6.113) matches (6.110). Therefore,

by Lemma 6.51,

Wi,k ≤ ∑
m−1 largest

(C j +Uv
j · sub · xp

j

(
tb
i,k

)
−S j)+ ∑

τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))+ ei,k−Ci. (6.114)

218

Continuing the proof of Lemma 6.52, we have

W r
i,k + ∑

τ j∈τ

U r
j · (yi,k− tb

i,k)−Ci

= {By Lemma 6.29, because tr ≥ ts by the definition of tr in Definition 6.13, and by

the definition of U r
i in (6.28)}

W r
i,k + ∑

τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))−Ci

= {By the definition of W r
i,k in (6.112)}

∑
m−1 largest

(C j +U r
j · xpr

j

(
tb
i,k

)
−S j)+ ∑

τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))−Ci

= {Rewriting}

∑
m−1 largest

(C j +U r
j · xpr

j

(
tb
i,k

)
−S j)+ ∑

τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))+ ei,k−Ci− ei,k

≥ {By (6.114) and the definition of U r
j in (6.28)}

Wi,k− ei,k.

We next bound Oi,k. This lemma plays the same role as Lemma 6.46, but for the case that tb
i,k ∈ [tr,∞).

Lemma 6.53. If tc
i,k > yi,k + ei,k and tb

i,k ∈ [tr,∞), then Orn ≥ Oi,k.

Proof. We have

tc
i,k > {By the statement of the lemma}

yi,k + ei,k

> {Because ei,k > 0}

yi,k

≥ {By the definition of tb
i,k in Definition 6.12}

tb
i,k. (6.115)

219

Thus,

Orn = {By the definition of Orn in (6.39)}

∑
Pp∈P

ûpσp

≥ {By Property 6.12 and (6.115)}

∑
Pp∈P

op(tb
i,k, t

c
i,k)

= {By the definition of Oi,k in (6.20)}

Oi,k.

Many previous lemmas in this section were based on Lemma 6.24, which essentially states that ∆(t)

decreases sufficiently slowly in an additive sense. In Lemma 6.55 below, we will bound the value of

xs
i (sr) + ∆

(
tb
i,k

)
by using the fact that ∆(t) decreases sufficiently slowly in a multiplicative sense. In

Lemma 6.56, we will then use Lemma 6.55 to bound the value of xs
i (sr)+∆(yi,k).

The next lemma shows that ∆(t) decreases sufficiently slowly in this multiplicative sense, in a similar

manner to how Lemma 6.24 shows that ∆(t) decreases sufficiently slowly in an additive sense.

Lemma 6.54. For all t2, ∆(t2)≥ q ·∆(t2−ρ).

Proof. We will consider a function

g(t0, t1), ∆(t1) ·q
t0−t1

ρ . (6.116)

(Recall that, by Lemma 6.14, ρ > 0.) Observe that

∆(t2) = {Rewriting}

∆(t2) ·q
t2−ρ−t2

ρ ·q
−t2+ρ+t2

ρ

= {By the definition of g(t2−ρ, t2) in (6.116)}

g(t2−ρ, t2) ·q
−t2+ρ+t2

ρ

= {Simplifying}

q ·g(t2−ρ, t2). (6.117)

220

By (6.117), the following claim holds.

Claim 6.54.1. If g(t2−ρ, t2)≥ ∆(t2−ρ), the lemma holds.

Therefore, we prove the lemma by establishing that g(t2−ρ, t2)≥ ∆(t2−ρ). In order to facilitate re-use

of intermediate results, we will start by proving the more general claim that g(t0, t1)≥ ∆(t0) for t0 ≤ t1. First,

we observe that

g(t1, t1) = {By the definition of g(t1, t1) in (6.116)}

∆(t1) ·q
t1−t1

ρ

= {Simplifying}

∆(t1) . (6.118)

We consider the derivative of g(t, t1), with respect to t, denoted g′(t, t1), for t ∈ [t0, t1). For such t, we

have

g′(t, t1) = {By (6.116) and differentiation}
lnq
ρ
·∆(t1) ·q

t−t1
ρ

≤ {Because t < t1, ∆(t1)≥ 0 by Lemma 6.16 with ta = t1, 0 < q < 1 by Lemma 6.13, and ρ > 0

by Lemma 6.14}
lnq
ρ
·∆(t1) . (6.119)

By Lemma 6.23 and the FTC with f (t) = ∆(t),

∆(t1) = ∆(t0)+
∫ t1

t0
∆
′ (t) dt.

Rearranging,

∆(t0) = ∆(t1)−
∫ t1

t0
∆
′ (t) dt. (6.120)

221

By identical reasoning,

g(t0, t1) = g(t1, t1)−
∫ t1

t0
g′(t, t1)dt

= {By (6.118)}

∆(t1)−
∫ t1

t0
g′(t, t1)dt. (6.121)

We consider three cases, depending on the value of t1. We use intervals closed on the right in order to

reduce the number of edge cases we must consider.

Case 1: t1 ∈ (−∞, tr]. In this case,

∆(t1) = {By the definition of ∆(t) in (6.51), or by Lemma 6.20}

λ

≥ {By the definition of λ in (6.40)}

0.

(6.122)

Therefore, by (6.119), because 0 < q < 1 by Lemma 6.13, because ∆(t1)≥ 0 by Lemma 6.16, and because

ρ > 0 by Lemma 6.14,

g′(t, t1)≤ 0 (6.123)

for t ∈ [t0, t1). We have

g(t0, t1) = {By (6.121)}

∆(t1)−
∫ t1

t0
g′(t, t1)dt

≥ {By (6.123)}

∆(t1)−
∫ t1

t0
0dt

= {By the definition of ∆′ (t) in (6.57)}

∆(t1)−
∫ t1

t0
∆
′ (t) dt

222

= {By (6.120)}

∆(t0) .

We state this result as a claim.

Claim 6.54.2. If t0 ≤ t1 and t1 ∈ (−∞, tr], then g(t0, t1)≥ ∆(t0).

Case 2: t1 ∈ (tr, te]. (tr, te] cannot be empty, because it contains t1. Thus, tr < te. Therefore, by the definition

of te in (6.48), λ > φ · ρ

lnq . Thus,

∆(t1)≥ {By Lemma 6.24 with t0 = t1 and t1 = te}

∆(te)

= {By Lemma 6.15}

φ · ρ

lnq
. (6.124)

Therefore, for t ∈ [t0, t1), we have

g′(t, t1)≤ {By (6.119)}
lnq
ρ
·∆(t1)

≤ {By (6.124); lnq < 0 holds because 0 < q < 1 by Lemma 6.13,

and ρ > 0 by Lemma 6.14}

φ . (6.125)

Thus,

g(t0, t1) = {By (6.121)}

∆(t1)−
∫ t1

t0
g′(t, t1)dt

≥ {By (6.125)}

∆(t1)−
∫ t1

t0
φ dt

≥ {Because φ ≤ ∆′ (t) for all t by Lemma 6.23}

223

∆(t1)−
∫ t1

t0
∆
′ (t) dt

= {By (6.120)}

∆(t0) .

We state this result as a claim.

Claim 6.54.3. If t0 ≤ t1 and t1 ∈ (tr, te], then g(t0, t1)≥ ∆(t0).

Case 3: t1 ∈ (te,∞). In this case, for all t,

g(t, t1) = {By the definition of g(t, t1) in (6.116)}

∆(t1) ·q
t−t1

ρ

= {By the definition of ∆(t1) in (6.51)}

∆
e (t1) ·q

t−t1
ρ

= {By the definition of ∆e (t1) in (6.47)}

∆
` (te) ·q

t1−te
ρ ·q

t−t1
ρ

= {Simplifying}

∆
` (te) ·q

t−te
ρ . (6.126)

We will establish the following claim.

Claim 6.54.4. If t0 < t1 and t1 ∈ (te,∞), then g(t0, t1)≥ ∆(t0).

We consider two subcases, depending on the value of t0 ≤ t1 considered at the beginning of the lemma.

Case 3.1: t0 < te. In this case, we have

g(t0, t1) = {By (6.126) with t = t0}

∆
` (te) ·q

t0−te
ρ

= {By Lemma 6.15}

∆(te) ·q
t0−te

ρ

= {By the definition of g(t0, te) in (6.116)}

224

g(t0, te) (6.127)

By Lemma 6.12, te ≥ tr. We establish Claim 6.54.4 by considering two further subcases, depending on

whether te = tr or te > tr.

Case 3.1.1: te = tr. In this case, we have

g(t0, t1) = {By (6.127)}

g(t0, te)

≥ {By Claim 6.54.2 with t1 = te}

∆(t0) .

Thus Claim 6.54.4 holds.

Case 3.1.2: te > tr. In this case, we have

g(t0, t1) = {By (6.127)}

g(t0, te)

≥ {By Claim 6.54.3 with t1 = te}

∆(t0) .

Thus Claim 6.54.4 holds.

Case 3.2: t0 ≥ te. In this case, we have

g(t0, t1) = {By (6.126) with t = t0}

∆
` (te) ·q

t0−te
ρ

= {By the definition of ∆e (t0) in (6.47)}

∆
e (t0)

= {By the definition of ∆(t) in (6.51)}

∆(t0) .

225

Thus, Claim 6.54.4 holds.

Correctness of Lemma. The correctness of the lemma follows from Claims 6.54.1–6.54.4 with t0 = t2−ρ

and t1 = t2.

We now bound the value of xs
i (sr)+∆

(
tb
i,k

)
using Lemma 6.54 when tb

i,k ∈ [tr, tn). Applying this result

and Lemma 6.24 will allow us to prove Lemma 6.56, which is similar to Lemma 6.48 for the case that

tb
i,k ∈ [tr, tn).

Lemma 6.55. If tc
i,k > yi,k + ei,k and tb

i,k ∈ [tr, tn), then

xs
i (sr)+∆

(
tb
i,k

)
≥

W r
i,k +(m−utot−1)Ci +Oi,k +Li ·U r

i · xpr
i

(
tb
i,k

)
utot

.

Proof. We have

xs
i (sr)+∆

(
tb
i,k

)
≥ {By Lemma 6.54}

xs
i (sr)+∆

(
tb
i,k−ρ

)
·q

= {By the definition of q in (6.49)}

xs
i (sr)+∆

(
tb
i,k−ρ

)
· ∑m−1 largestU r

j +maxτ j∈τ(L j ·Uv
j · sr)

utot

≥ {By the definition of “max”}

xs
i (sr)+∆

(
tb
i,k−ρ

)
· ∑m−1 largestU r

j +Li ·Uv
i · sr

utot

≥ {By the definition of xs
i (sr) in (6.37)}

∑m−1 largest(C j +Uv
j · sr · xs

j(sr)−S j)+∑τ j∈τ S j +(m−utot−1)Ci +Orn +Li ·Uv
i · sr · xs

i (sr)

utot

+∆

(
tb
i,k−ρ

)
· ∑m−1 largestU r

j +Li ·U r
i · sr

utot

= {Rearranging}(
∑

m−1 largest
(C j +Uv

j · sr · xs
j(sr)−S j)+ ∑

m−1 largest
U r

j ·∆
(

tb
i,k−ρ

)
+ ∑

τ j∈τ

S j +(m−utot−1)Ci +Orn +Li ·Uv
i · sr ·

(
xs

i (sr)+∆

(
tb
i,k−ρ

)))
/utot. (6.128)

226

For simplicity, we now consider part of this expression separately.

∑
m−1 largest

(C j +Uv
j · sr · xs

j(sr)−S j)+ ∑
m−1 largest

U r
j ·∆

(
tb
i,k−ρ

)
+ ∑

τ j∈τ

S j

= {By the definition of U r
j in (6.28)}

∑
m−1 largest

(C j +U r
j · xs

j(sr)−S j)+ ∑
m−1 largest

U r
j ·∆

(
tb
i,k−ρ

)
+ ∑

τ j∈τ

S j

≥ {Rearranging; although the set of tasks in the new first sum may differ from either

corresponding sum in the previous expression, that can only produce a smaller result}

∑
m−1 largest

(
C j +U r

j ·
(

xs
j(sr)+∆

(
tb
i,k−ρ

))
−S j

)
+ ∑

τ j∈τ

S j

= {By the definition of xpr
j

(
tb
i,k

)
in (6.73)}

∑
m−1 largest

(
C j +U r

j · xpr
j

(
tb
i,k

)
−S j

)
+ ∑

τ j∈τ

S j

= {By the definition of W r
i,k in (6.112)}

W r
i,k. (6.129)

Thus,

xs
i (sr)+∆

(
tb
i,k

)
= {By (6.128) and (6.129)}

W r
i,k +(m−utot−1)Ci +Orn +Li ·Uv

i · sr ·
(

xs
i (sr)+∆

(
tb
i,k−ρ

))
utot

≥ {By the definition of U r
i in (6.28) and by Lemma 6.53, because tc

i,k > yi,k + ei,k by

the statement of the lemma, and tb
i,k ∈ [tr,∞) is implied by tb

i,k ∈ [tr, tn)}

W r
i,k +(m−utot−1)Ci +Oi,k +Li ·U r

i ·
(

xs
i (sr)+∆

(
tb
i,k−ρ

))
utot

= {By the definition of xpr
i

(
tb
i,k

)
in (6.73)}

Wi,k +(m−utot−1)Ci +Oi,k +Li ·U r
i · xpr

i

(
tb
i,k

)
utot

.

The next lemma is identical to Lemma 6.48, but for the case that tb
i,k ∈ [tr, tn).

227

Lemma 6.56. If ta ∈ [tr, tn), ta = yi,k for some k, tc
i,k > yi,k + ei,k, τi,k is m-dominant for Li, tb

i,k ∈ [tr, tn), and

(6.52) holds, then xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

Proof. We have

xs
i (sr)+∆(yi,k)

≥ {By Lemma 6.24 with t0 = tb
i,k and t1 = yi,k; tb

i,k ≤ yi,k by the definition of tb
i,k in Definition 6.12}

xs
i (sr)+∆

(
tb
i,k

)
+φ · (yi,k− tb

i,k)

≥ {By Lemma 6.55, which only has preconditions implied by those of this lemma}

W r
i,k +(m−utot−1)Ci +Oi,k +Li ·U r

i · xpr
i

(
tb
i,k

)
utot

+φ · (yi,k− tb
i,k)

= {Rearranging}

W r
i,k +utot ·φ · (yi,k− tb

i,k)+(m−utot−1)Ci +Oi,k +Li ·U r
i · xpr

i

(
tb
i,k

)
utot

. (6.130)

For simplicity, we now consider two parts of this expression separately. For the first, we note that by the

definition of tb
i,k in Definition 6.12, tb

i,k ≤ yi,k = ta. Therefore, (6.72) with t2 = tb
i,k follows from (6.52). Thus,

W r
i,k +utot ·φ · (yi,k− tb

i,k)−Ci

≥ {By the definition of φ in (6.46)}

W r
i,k +

(
∑

τ j∈τ

U r
j −utot

)
· (yi,k− tb

i,k)−Ci

= {Rearranging}

W r
i,k + ∑

τ j∈τ

U r
j · (yi,k− tb

i,k)−utot · (yi,k− tb
i,k)−Ci

≥ {By Lemma 6.52 using (6.72); the remaining preconditions are implied by those of this lemma, and by

the definition of Ri,k in (6.21)}

Wi,k−Ri,k− ei,k. (6.131)

228

And for the second,

xpr
i

(
tb
i,k

)
= {By the definition of xpr

i

(
tb
i,k

)
in (6.73)}

xs
i (sr)+∆

(
tb
i,k−ρ

)
≥ {By Lemma 6.24 with t0 = tb

i,k−ρ and t1 = yi,k−ρ; tb
i,k−ρ ≤ yi,k−ρ by

the definition of tb
i,k in Definition 6.12}

xs
i (sr)+∆(yi,k−ρ)

= {By the definition of xpr
i (yi,k) in (6.73)}

xpr
i (yi,k) . (6.132)

So that we can use Property 6.11, we establish that

tc
i,k > {By the statement of the lemma}

yi,k + ei,k

> {Because ei,k > 0}

yi,k

≥ {By the definition of tb
i,k in Definition 6.12}

tb
i,k

≥ {By the statement of the lemma}

tr. (6.133)

Putting it all together,

xs
i (sr)+∆(yi,k)

≥ {By (6.130)–(6.132)}
Wi,k−Ri,k +(m−utot)Ci− ei,k +Oi,k +Li ·U r

j · xpr
i (yi,k)

utot

≥ {By Property 6.11 and (6.133)}

229

Wi,k−Ri,k +(m−utot−1)ei,k +Oi,k +Li ·U r
j · xpr

i (yi,k)

utot

≥ {By Lemma 6.42, which only has preconditions that are implied by those of this lemma}
Wi,k−Ri,k +(m−utot−1)ei,k +Oi,k +Li · ep

i,k

utot

= {By the definition of xm
i,k in (6.24)}

xm
i,k.

By Theorem 6.5, which only has preconditions that are implied by those of this lemma, xi (ta) = xm
i,k is

x-sufficient. Therefore, by Property 6.4 with c0 = xm
i,k and c1 = xs

i (sr)+∆(ta), xi (ta) = xs
i (sr)+∆(ta) is

x-sufficient.

We now combine the results of Lemmas 6.48 and 6.56 into a single lemma that addresses Case E.

Lemma 6.57. If ta ∈ [tr, tn), ta = yi,k for some τi,k, and τi,k is m-dominant for Li, then xi (ta) = xs
i (sr)+∆(ta)

is x-sufficient.

Proof. If tb
i,k ∈ [0, tr), then the lemma follows from Lemma 6.48. Otherwise, it follows from Lemma 6.56.

We finally combine the lemmas previously proved in this section to show that xi (ta) = xs
i (sr)+∆(ta) is

x-sufficient for arbitrary ta ∈ [tr, tn).

Theorem 6.6. For arbitrary ta ∈ [tr, tn), xi (ta) = xs
i (sr)+∆(ta) is x-sufficient.

Proof. The lemmas referenced in Figure 6.8 exhaustively consider all possible cases for ta, in some cases

assuming (6.52). For any given ta, (6.52) can be established by inducting over all y j,` ∈ [tr, ta), using some

lemma referenced in Figure 6.8 to establish that x j
(
y j,`
)
= xs

j(sr)+∆
(
y j,`
)

is x-sufficient for each τ j,`. The

theorem then follows from the appropriate lemma referenced in Figure 6.8.

6.3.4 Determining tn

In this subsection, we provide a condition that the system can use to determine when to return the virtual

time clock to normal speed, as our definition of tn. We then provide a bound on when that condition must

occur. Then, in Section 6.3.5, we will prove that xi (t) = xs
i (1) is x-sufficient for ta ∈ [tn,∞).

230

Definition 6.20. td is the earliest time not before tr such that some CPU is idle and, for each τi,k pending and

incomplete at td , xi (yi,k) = xs
i (1) is x-sufficient.

We will later show that such a time must exist. The results in this section are actually correct for any

time that satisfies the stated condition. However, for the smallest dissipation bounds, the earliest should be

selected.

Definition 6.21. If there are no pending jobs at td , then tn = td . Otherwise, tn is the last completion time of

any job pending at td .

We will prove that, if the system continues to operate without new overload with s(t) = sr, then it will

eventually achieve a state where xi (yi,k) = xs
i (1) is x-sufficient for all new τi,k. We will then prove that, in

this state, a CPU will eventually become idle. Such a point in time satisfies the conditions in the definition of

td in Definition 6.20, unless an earlier time satisfying the same conditions exists. Therefore, by providing a

bound on that time, we provide a dissipation bound.

We first provide analysis of a key time, which we will denote tδ , such that xi (ta) = xs
i (1) is x-sufficient

for t ∈ [tδ ,∞). The following lemma considers the value of ∆(tδ).

Lemma 6.58. Let

tδ ,

tr + δ−λ

φ
If δ > φ · ρ

lnq

te +
ρ

lnq(ln(δ)− ln(∆` (te))) Otherwise.
(6.134)

tδ ≥ tr holds. Furthermore, ∆(tδ) = δ .

Proof. We first note that, by the definition of λ in (6.40),

λ ≥ δ . (6.135)

We consider two cases.

Case 1: δ > φ · ρ

lnq . We have

tδ = {By the definition of tδ in (6.134)}

tr +
δ −λ

φ

≥ {By (6.135), and because φ < 0 by Lemma 6.11}

231

tr. (6.136)

Additionally,

tδ = {By the definition of tδ in (6.134)}

tr +
δ −λ

φ

< {Because δ > φ · ρ

lnq by the case we are considering, and φ < 0 by Lemma 6.11}

tr +
φ · ρ

lnq −λ

φ

= {Simplifying}

tr +
ρ

lnq
− λ

φ

= {By the definition of te in (6.48) and by (6.135), and because δ > φ · ρ

lnq by the case we are

considering}

te. (6.137)

Thus,

∆(tδ) = {By the definition of ∆(tδ) in (6.51), (6.136), and (6.137)}

∆
` (tδ)

= {By the definition of ∆` (tδ) in (6.45)}

φ · (tδ − tr)+λ

= {By the definition of tδ in (6.134)}

φ ·
(

tr +
δ −λ

φ
− tr

)
+λ

= {Simplifying}

δ .

232

Case 2: δ ≤ φ · ρ

lnq . We use the following fact.

lnδ − ln(∆` (te))≤ {Because ∆` (te)≥ δ by Lemma 6.15 and the case we are considering}

0. (6.138)

Continuing the analysis of Case 2,

tδ = {By the definition of tδ in (6.134)}

te +
ρ

lnq
· (lnδ − ln(∆` (te)))

≥ {by (6.138), and because ρ > 0 by Lemma 6.14 and 0 < q < 1 by Lemma 6.13}

te. (6.139)

By (6.139) and Lemma 6.12, tδ ≥ tr. Furthermore,

∆(tδ) = {By (6.139) and the definition of ∆(tδ) in (6.51)}

∆
e (tδ)

= {By the definition of ∆e (tδ) in (6.47)}

∆
` (te) ·q

t
δ
−te
ρ

= {Rewriting}

∆
` (te) · e

lnq
ρ
(tδ−te)

= {By (6.134) and the case we are considering}

∆
` (te) · e

lnq
ρ
(te+

ρ

lnq (lnδ−ln(∆`(te)))−te)

= {Simplifying}

∆
` (te) · elnδ−ln(∆`(te))

= {Simplifying}

δ .

233

We next provide a sufficient condition to ensure that xi (yi,k) = xs
i (1) is x-sufficient for any job τi,k pending

at ta. We first define

t pre
n , tδ +ρ, (6.140)

and prove that t pre
n > tr.

Lemma 6.59. t pre
n > tr.

Proof. We have

t pre
n > {By the definition of t pre

n in (6.140), because ρ > 0 by Lemma 6.14}

tδ

≥ {By Lemma 6.58}

tr.

In some parts of our proofs, we will need to use (6.72) with arbitrary t2 ∈ ta. The following lemma shows

that this is correct.

Lemma 6.60. For arbitrary t2 ∈ [tr, tn), (6.72) holds.

Proof. Let τ j,` be an arbitrary job with y j,` ∈ [tr, t2). Because t2 < tn by the statement of the lemma,

y j,` ∈ [tr, tn). Therefore, by Theorem 6.6 with ta = y j,`, x j
(
y j,`
)
= xs

j(sr)+∆
(
y j,`
)

is x-sufficient.

The next lemma essentially proves that the system has returned to “normal behavior” for all jobs pending

at t pre
n .

Lemma 6.61. If ta ∈ [t pre
n , tn), τi,k is pending at ta, and tc

i,k ≤ tn, then xi (yi,k) = xs
i (1) is x-sufficient.

Proof. We will use the following facts.

We will use Lemma 6.38 with t2 = ta. We have

ta > {Because ρ > 0 by Lemma 6.14}

ta−ρ

≥ {By the statement of the lemma}

234

t pre
n −ρ

= {By the definition of t pre
n in (6.140)}

tδ

> {By Lemma 6.58}

tr. (6.141)

Thus, because ta < tn by the statement of the lemma, ta ∈ [tr, tn). Therefore, (6.71) holds, and by Lemma 6.60

with t2 = ta, (6.72) also holds. Therefore, by Lemma 6.38 with t2 = ta, the following claim holds.

Claim 6.61.1. xp
i (ta) = xpr

i (ta) is xp-sufficient.

Also, we will use Property 6.11, so we show

tc
i,k ≥ {Because τi,k is pending at ta}

ta

≥ {By the statement of the lemma}

t pre
n

> {By Lemma 6.59}

tr. (6.142)

Continuing the proof of Lemma 6.61,

yi,k ≥ {By Claim 6.61.1 and the definition of xp-sufficient in Definition 6.19}

ta− (xpr
i (ta)+ ec

i,k(ta))

= {By the definition of xpr
i (ta) in (6.73)}

ta− (xs
i (sr)+∆(ta−ρ)+ ec

i,k(ta))

≥ {By Lemma 6.24 with t0 = tr and t1 = ta−ρ , and by (6.141)}

ta− (xs
i (sr)+∆(tr)+ ec

i,k(ta))

= {By Lemma 6.20}

235

ta− (xs
i (sr)+λ + ec

i,k(ta))

≥ {By Property 6.11 with (6.142), and by the definition of ec
i,k(ta) in Definition 6.2}

ta− (xs
i (sr)+λ +Ci)

≥ {By the definition of ρ in (6.50)}

ta−ρ

≥ {By the definition of ta in the statement of the lemma}

t pre
n −ρ

= {By the definition of t pre
n in (6.140)}

tδ . (6.143)

Therefore,

xs
i (1) = {Rearranging}

xs
i (sr)+ xs

i (1)− xs
i (sr)

≥ {By the definition of “min”}

xs
i (sr)+min

τ j∈τ
(xs

j(1)− xs
j(sr))

= {By the definition of δ in (6.41)}

xs
i (sr)+δ

= {By Lemma 6.58}

xs
i (sr)+∆(tδ)

≥ {By Lemma 6.24 with t0 = tδ and t1 = yi,k, and by (6.143)}

xs
i (sr)+∆(yi,k) . (6.144)

We now establish the following claim.

Claim 6.61.2. xi (yi,k) = xs
i (sr)+∆(yi,k) is x-sufficient.

236

If tc
i,k ≤ yi,k, then by Theorem 6.2 with ta = yi,k, xi (yi,k) = 0 is x-sufficient. Furthermore, by Lemma 6.17

with ta = yi,k, xs
i (sr)+∆(yi,k) ≥ 0. Therefore, Claim 6.61.2 follows from Property 6.4 with c0 = 0 and

c1 = xs
i (sr)+∆(yi,k).

Alternatively, if tc
i,k > yi,k, then we have

yi,k < tc
i,k

≤ {By the statement of the lemma}

tn.

Furthermore, by (6.143) and Lemma 6.58, yi,k ≥ tr. Thus, yi,k ∈ [tr, tn). Therefore, Claim 6.61.2 holds by

Theorem 6.6 with ta = yi,k.

By Claim 6.61.2, (6.144), and Property 6.4 with c0 = xs
i (sr)+∆(yi,k) and c1 = xs

i (1), xi (yi,k) = xs
i (1) is

x-sufficient.

We will now show that an idle instant must occur after tδ . To do so, we will examine an interval over

which more time is available to level C than is used by level-C tasks. We first bound in Lemma 6.62 the time

available to level C in an interval starting at t pre
n , with the ending point being arbitrary. Then, in Lemma 6.63,

we bound the work executed at level C in an identically defined interval. In Lemma 6.64 we combine these

results to show that idleness must occur in a sufficiently long interval.

Lemma 6.62. If t1 ∈ [t pre
n , tn), then at least

utot · (t1− t pre
n)− ∑

Pp∈P
ûpσp

units of processor time are available to level C over [t pre
n , t1).

Proof. By the definition of βp(t
pre
n , t1) in Definition 6.7, the total amount of processor time available to level

C over [t pre
n , t1) is

∑
Pp∈P

βp(t pre
n , t1)

≥ {By (6.9)}

237

∑
Pp∈P

(ûp · (t1− t pre
n)−op(t pre

n , t1))

≥ {By Property 6.12, since t pre
n > tr by Lemma 6.59}

∑
Pp∈P

(ûp · (t1− t pre
n)− ûpσp)

= {Rearranging}

∑
Pp∈P

ûp · (t1− t pre
n)− ∑

Pp∈P
ûpσp

= {By the definition of utot in (6.10)}

utot · (t1− t pre
n)− ∑

Pp∈P
ûpσp.

We now upper bound the amount of work completed by arbitrary τi over an identically defined interval.

By summing over all tasks, the total amount of work completed at level C over this interval can be derived.

Lemma 6.63. If t1 ∈ [t pre
n , tn), then at most

2Ci−Si +U r
i · xs

i (1)+U r
i · (t1− t pre

n)

units of work execute from τi over [t pre
n , t1).

Proof. We will use the following facts.

We will use Lemma 6.38 with j = i and t2 = t pre
n . Because [t pre

n , tn) is not empty (as it contains t1),

t pre
n < tn. Therefore, by Lemma 6.59, t pre

n ∈ [tr, tn). Thus, (6.71) holds. Furthermore, by Lemma 6.60 with

t2 = t pre
n , (6.72) also holds. Therefore,

xp
i

(
t pre
n
)
= xpr

i

(
t pre
n
)

is xp-sufficient. (6.145)

If a job of τi executes in [t pre
n , t1), then it must have ri,k < t1. Thus, we have

v(yi,k) = {By the definition of Yi in (6.6)}

v(ri,k)+Yi

< {Because ri,k < t1}

238

v(t1)+Yi.

We therefore define ymax as the time such that

v(ymax), v(t1)+Yi, (6.146)

so that yi,k < ymax for all τi,k executing in [t pre
n , t1). Observe that

ymax ≥ {Because Yi ≥ 0}

t1

≥ {By the statement of the lemma}

t pre
n . (6.147)

Because t1 ∈ [t pre
n , tn), t pre

n > tr by Lemma 6.59, and tr ≥ ts by the definition of tr in Definition 6.13, the

following claim holds.

Claim 6.63.1. t1 ∈ [ts, tn] and t pre
n ∈ [ts, tn].

Continuing the proof of Lemma 6.63, we consider two cases.

Case 1: τi has no Pending Job at t pre
n . In this case, all jobs of τi that run in [t pre

n , t1) have t pre
n < ri,k ≤

yi,k < ymax. Therefore, by the definition of De
i (t

pre
n ,ymax) in Definition 6.6, the total work from τi that runs in

[t pre
n , t1) is at most

De
i (t

pre
n ,ymax)

≤ {By Lemmas 6.32 and 6.34 with t0 = t pre
n , and because t pre

n > tr by Lemma 6.59}

DC
i (t

pre
n ,ymax)

≤ {By Lemma 6.35 with t0 = t pre
n and t1 = ymax, by (6.147)}

Uv
i · (v(ymax)− v(t pre

n))+Si

= {By the definition of ymax in (6.146)}

Uv
i · (v(t1)+Yi− v(t pre

n))+Si

239

= {Rearranging}

Uv
i ·Yi +Si +Uv

i · (v(t1)− v(t pre
n))

= {By the definition of Uv
i in (6.27) and the definition of Si in (6.38)}

Ci ·
Yi

Ti
+Ci ·

(
1− Yi

Ti

)
+Uv

i · (v(t1)− v(t pre
n))

= {Simplifying}

Ci +Uv
i · (v(t1)− v(t pre

n))

= {By Lemma 6.29 and Claim 6.63.1, and by the definition of U r
i in (6.28)}

Ci +U r
i · (t1− t pre

n)

≤ {Because Si ≤Ci by the definition of Si in (6.38), and because U r
i > 0 and xs

i (1)≥ 0 by the

definition of xs
i (1) in (6.37)}

2Ci−Si +U r
i · xs

i (1)+U r
i · (t1− t pre

n).

Case 2: τi,` is the Earliest Pending Job of τi at t pre
n . In this case, we use the following facts.

We will use Lemma 6.40 with j = i, t2 = t pre
n , t3 = ymax, sub = sr, and xp

i

(
t pre
n
)
= xpr

i

(
t pre
n
)
. Unlike when

we used this lemma in Section 6.3.3, we are not trying to cancel out an ei,k term. Therefore, it suffices to use

the general case considered in the lemma, rather than the more specific case. We have

t2 = t pre
n

> {By Lemma 6.59}

tr. (6.148)

Furthermore, we have

t2 = t pre
n

≤ {By (6.147)}

ymax

= t3. (6.149)

240

(6.77) holds by (6.148) and (6.149). Because t2 = t pre
n and j = i, (6.78) holds by the case we are considering.

Because sub = sr, (6.79) holds by Property 6.6. We have that τi,` is pending at t pre
n by the case we are

considering and that t pre
n > tr holds by Lemma 6.59. Thus, by Lemma 6.9 with t2 = t pre

n , yi,` ≥ t pre
n . Thus,

because t pre
n < tn by the statement of the lemma (the interval [t pre

n , tn) contains t1), (6.80) holds by Property 6.6.

(6.81) holds by (6.145). Thus, by Lemma 6.40,

er
i,`(t

pre
n)+De

i (bi,`,ymax)≤Ci +Uv
i · sr · xpr

i (t pre
n)+Uv

i · (v(ymax)− v(t pre
n)). (6.150)

We also have

xpr
i (t pre

n) = {By the definition of xpr
i

(
t pre
n
)

in (6.73)}

xs
i (sr)+∆(t pre

n −ρ)

= {By the definition of t pre
n in (6.140)}

xs
i (sr)+∆(tδ)

= {By Lemma 6.58}

xs
i (sr)+δ

≤ {By the definition of δ in (6.41)}

xs
i (sr)+ xs

i (1)− xs
i (sr)

= {Simplifying}

xs
i (1). (6.151)

Continuing the analysis of Case 2, the work in [t pre
n , t1) is at most er

i,`(t
pre
n) plus the work contributed by

jobs τi,k with bi,` ≤ ri,k ≤ yi,k < ymax. By the definition of De
i (bi,k,ymax) in Definition 6.6, the total work from

τi that runs in [t pre
n , t1) is at most

er
i,`(t

pre
n)+De

i (bi,`,ymax)

≤ {By (6.150) and the definition of U r
i in (6.28)}

Ci +U r
i · xpr

i (t pre
n)+Uv

i · (v(ymax)− v(t pre
n))

= {By the definition of ymax in (6.146)}

241

Ci +U r
i · xpr

i (t pre
n)+Uv

i · (v(t1)+Yi− v(t pre
n))

= {Rearranging}

Ci +Uv
i ·Yi +U r

i · xpr
i (t pre

n)+Uv
i · (v(t1)− v(t pre

n))

= {By the definition of Uv
i in (6.27)}

Ci +Ci ·
Yi

Ti
+U r

i · xpr
i (t pre

n)+Uv
i · (v(t1)− v(t pre

n))

= {Rearranging}

2Ci−Ci ·
(

1− Yi

Ti

)
+U r

i · xpr
i (t pre

n)+Uv
i · (v(t1)− v(t pre

n))

= {By the definition of Si in (6.38)}

2Ci−Si +U r
i · xpr

i (t pre
n)+Uv

i · (v(t1)− v(t pre
n))

= {By Lemma 6.29 and Claim 6.63.1, and by the definition of U r
i in (6.28)}

2Ci−Si +U r
i · xpr

i (t pre
n)+U r

i · (t1− t pre
n)

= {By (6.151)}

2Ci−Si +U r
i · xs

i (1)+U r
i · (t1− t pre

n).

We now combine these results to show that idleness will happen in a sufficiently long interval starting at

t pre
n .

Lemma 6.64. Let

F ,
∑Pp∈P ûpσp +∑τi∈τ(2Ci−Si +U r

i · xs
i (1))

utot−∑τi∈τ U r
i

(6.152)

(oFfset). F is well-defined. Moreover, if t1 ∈ (t pre
n +F, tn), then some CPU is idle for a nonzero interval of

time in [t pre
n , t1).

Proof. We have

∑
τi∈τ

U r
i = {By the definition of U r

i in (6.28)}

∑
τi∈τ

(sr ·Uv
i)

= {Factoring out sr}

242

sr · ∑
τ j∈τ

Uv
i

≤ {By Property 6.14}

sr ·utot

< {By Property 6.6}

utot.

Therefore, utot−∑τi∈τ U r
i > 0, and F is well-defined.

We show that the difference between CPUs available to level C and level-C work that completes in

[t pre
n , t1) is positive. Using Lemmas 6.62 and 6.63, this difference is at least

utot · (t1− t pre
n)− ∑

Pp∈P
ûpσp− ∑

τi∈τ

(2Ci−Si +U r
i · xs

i (1)+U r
i · (t1− t pre

n))

= {Rearranging}(
utot− ∑

τi∈τ

U r
i

)
· (t1− t pre

n)−
(

∑
Pp∈P

ûpσp + ∑
τi∈τ

(2Ci−Si +U r
i · xs

i (1))
)

> {By the statement of the lemma}(
utot− ∑

τi∈τ

U r
i

)
· (t pre

n +F− t pre
n)−

(
∑

Pp∈P
ûpσp + ∑

τi∈τ

(2Ci−Si +U r
i · xs

i (1))
)

= {By the definition of F in (6.152)}

0.

In order to convert between virtual and actual time, will need to use the following lemma, which is like

Lemma 6.39, but uses a lower bound on s(t), namely sr, rather than an upper bound.

Lemma 6.65. If t1 ≥ t0, t0 ≥ ts, and t1 ≥ ts, then v(t1)− v(t0)≥ sr · (t1− t0).

Proof. We have

v(t1)− v(t0) = {By Property 6.2}∫ t1

t0
s(t)dt

≥ {By Properties 6.6 and 6.7}

243

∫ t1

t0
sr dt

= {Rearranging}

sr · (t1− t0).

We now use this result, combined with Lemma 6.61 above, to bound td .

Lemma 6.66. td ≤ t pre
n +F .

Proof. We use proof by contradiction. Suppose td > t pre
n +F . Let t1 be the midpoint between t pre

n +F and td .

Then,

t1 > t pre
n +F (6.153)

and

t1 < td (6.154)

≤ {By the definition of tn in Definition 6.21}

tn. (6.155)

Then, by Lemma 6.64, there is some time t0 ∈ [t pre
n , t1) such that at least one CPU is idle at t0.

Note that

t0 < t1

< {By (6.154)}

td (6.156)

and

t0 ≥ t pre
n

> {By Lemma 6.59}

tr. (6.157)

244

We consider two cases, depending on whether xi (yi,k) = xs
i (1) is x-sufficient for all jobs τi,k pending at t0.

Case 1: xi (yi,k) = xs
i (1) is x-sufficient for all τi,k Pending at t0. In this case, we have

td ≤ {By (6.157), the case we are considering, and the definition of td in Definition 6.20}

t0

< {By (6.156)}

td .

This is a contradiction.

Case 2: There is Some τi,k Pending at t0 for Which xi (yi,k) = xs
i (1) is not x-sufficient. By Lemma 6.61

with ta = t0, we have

tc
i,k > tn

≥ {By the definition of tn in Definition 6.21}

td . (6.158)

Furthermore, because τi,k is pending at t0, we have

ri,k ≤ t0

< {By (6.156)}

td . (6.159)

Thus, by (6.158) and (6.159), τi,k is pending at td . However, this contradicts the definition of td in

Definition 6.20 by the case we are considering.

Finally, we use the definition of td in Definition 6.20 and our bound on it in Lemma 6.66 in order to

bound tn.

Theorem 6.7. tn ≤ t pre
n +F +maxτi∈τ

(
Yi
sr
+ xs

i (1)+Ci

)
.

245

Proof. If there are no jobs pending at td , then

tn = {By the definition of tn in Definition 6.21}

td

≤ {By Lemma 6.66}

t pre
n +F

≤ {Because Yi ≥ 0, sr > 0, xs
i (1)≥ 0 by the definition of xs

i (1) in (6.37), and Ci > 0}

t pre
n +F +max

τi∈τ

(
Yi

sr
+ xs

i (1)+Ci

)
.

Otherwise, let τi,k be the pending job at td with the latest completion time, so that tn = tc
i,k by Defini-

tion 6.21. Because τi,k is pending at td , by the definition of td in Definition 6.20, the following claim holds.

Claim 6.7.1. xi (yi,k) = xs
i (1) is x-sufficient.

We will establish that

yi,k ≤ td +
Yi

sr
. (6.160)

If yi,k ≤ td , then (6.160) holds trivially. Thus, we assume yi,k > td .

We will use Lemma 6.65. By the definition of td in Definition 6.20, td ≥ tr. Furthermore, by the definition

of tr in Definition 6.13, tr ≥ ts. Thus,

td ≥ ts. (6.161)

We have that τi,k is pending at td (by our choice of τi,k) and that td ≥ tr holds (by the definition of td in

Definition 6.20). Therefore, by Lemma 6.9,

yi,k ≥ ts. (6.162)

Also, we have

v(yi,k)− v(td) = {By the definition of Yi in (6.6)}

v(ri,k)+Yi− v(td)

≤ {Because τi,k is pending at td}

246

v(td)+Yi− v(td)

= {Rearranging}

Yi. (6.163)

Recall that we are assuming that yi,k > td . Thus, by Lemma 6.65 with t0 = td , t1 = yi,k, and (6.161) and

(6.162),

v(yi,k)− v(td)≥ sr · (yi,k− td). (6.164)

By (6.163) and (6.164), sr · (yi,k− td)≤ Yi. Rearranging, (6.160) holds.

Because τi,k is pending at td , by the definition of td in Definition 6.20, xi (yi,k) = xs
i (1) is x-sufficient. We

will use Property 6.11, so we show that

tc
i,k ≥ {Because τi,k is pending at td}

td

≥ {By the definition of td in Definition 6.20}

tr. (6.165)

Thus, we have

tc
i,k ≤ {By Claim 6.7.1 and the definition of x-sufficient in Definition 6.8}

yi,k + xs
i (1)+ ei,k

≤ {By Property 6.11 and (6.165)}

yi,k + xs
i (1)+Ci

≤ {By (6.160)}

td +
Yi

sr
+ xs

i (1)+Ci

≤ {By Lemma 6.66}

t pre
n +F +

Yi

sr
+ xs

i (1)+Ci

≤ {By the definition of “max”}

247

A. ta < yi,0 (Lemma 6.67).

B. ta = yi,k for some k and tc
i,k ≤ yi,k + ei,k (Lemma 6.68).

C. ta ∈ (yi,k,yi,k+1) for some k (Lemma 6.70).

D. ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is f-dominant for Li (Lemma 6.71).

E. ta = yi,k for some k, tc
i,k > yi,k + ei,k, and τi,k is m-dominant for Li (Lemma 6.73).

Figure 6.9: Cases considered when proving that xi (ta) = xs
i (1) is x-sufficient for ta ∈ [tn,∞)

t pre
n +F +max

τi∈τ

(
Yi

sr
+ xs

i (1)+Ci

)
.

6.3.5 Proving that xi (ta) = xs
i (1) is x-sufficient for ta ∈ [tn,∞)

In this subsection, we demonstrate that xi (ta) = xs
i (1) is x-sufficient for ta ∈ [tn,∞). Observe that unlike

in Section 6.3.2, our choice of xi (ta) does not depend on the specific value of ta. We will consider the same

cases that have been considered in previous sections, as now depicted in Figure 6.9. To make the induction

easier, we actually reason about [td ,∞) rather than [tn,∞). However, because td ≤ tn by the definition of tn in

Definition 6.21, our results also apply to [tn,∞)

In an analogous fashion to (6.52), we provide the equivalent for the analysis of [td ,∞). We will use

(6.166) for induction, just as we used (6.52) previously.

For all τ j,` with y j,` ∈ [td , ta), xi
(
y j,`
)
= xs

j(1) is x-sufficient. (6.166)

We first consider Case A in Figure 6.9, in which ta < yi,0.

Lemma 6.67. If ta < yi,0, then xi (ta) = xs
i (1) is x-sufficient.

Proof. If ta < yi,0, then by Theorem 6.1, which has the same precondition as this lemma, xi (ta) = 0 is

x-sufficient. Furthermore, by the definition of xs
i (1) in (6.37), xs

i (1) ≥ 0. Therefore, by Property 6.4 with

c0 = 0 and c1 = xs
i (1), xi (ta) = xs

i (1) is x-sufficient.

The analysis of Case B in Figure 6.9 is simple, as was the case when analyzing the analogous case for

ta ∈ [tr, tn).

248

Lemma 6.68. If ta ∈ [td ,∞), ta = yi,k for some k, and tc
i,k ≤ yi,k + ei,k, then xi (ta) = xs

i (1) is x-sufficient.

Proof. By Theorem 6.2, which only has preconditions implied by those of this lemma, xi (ta) = 0 is x-

sufficient. Furthermore, by the definition of xs
i (1) in (6.37), xs

i (1)≥ 0. Therefore, by Property 6.4 with c0 = 0

and c1 = xs
i (1), xi (ta) = xs

i (1) is x-sufficient.

We will next consider Case C in Figure 6.9, in which ta ∈ (yi,k,yi,k+1) for some k. For many of the results

in this section, including our analysis of Case C, we will inductively use (6.166). It so happens, as we show

in Lemma 6.69, that a similar result can actually be extended to jobs with PPs earlier than td , if considering

only jobs pending at some t2 ∈ [td ,∞). We now demonstrate this fact.

Lemma 6.69. If

t2 ∈ [td ,∞) (6.167)

and

For all τ j,` with y j,` ∈ [td , t2), xi
(
y j,`
)
= xs

i (1) is x-sufficient, (6.168)

then x j
(
y j,`
)
= xs

j(1) is x-sufficient for all jobs τ j,` pending at t2 with y j,` ∈ (−∞, t2).

Proof. We consider an arbitrary τ j,` with y j,` ∈ (−∞, t2). We consider two cases, depending on the value of

r j,`.

Case 1: r j,` ∈ (−∞, td). In this case, because τ j,` is pending at t2 ≥ td , τ j,` is pending at td . Therefore, the

lemma follows from the definition of td in Definition 6.20.

Case 2: ri,` ∈ [td , t2). In this case, because y j,` ≥ r j,`, y j,` ∈ [td , t2). Thus, the lemma is true by (6.168).

We now address Case C directly.

Lemma 6.70. If ta ∈ [td ,∞), ta ∈ (yi,k,yi,k+1) for some k, and (6.166) holds, then xi (ta) = xs
i (1) is x-sufficient.

Proof. We consider two subcases, depending on whether τi,k is still pending at ta.

Case 1: τi,k is no Longer Pending at ta. In this case,

tc
i,k < ta

< {Because xs
i (1)≥ 0 by the definition of xs

i (1) in (6.37) and ei,k > 0}

249

ta + xs
i (1)+ ei,k.

By the definition of x-sufficient in Definition 6.8, xi (ta) = xs
i (1) is x-sufficient.

Case 2: τi,k is Pending at ta. We will use the following fact.

We use Lemma 6.69 with t2 = ta. Because t2 = ta, (6.167) follows from the statement of the lemma and

(6.168) follows from (6.166). Thus, by Lemma 6.69 with j = i and ` = k, xi (yi,k) = xs
i (1) is x-sufficient.

ta ∈ (yi,k,yi,k+1) holds by the statement of the lemma. Therefore, by Theorem 6.3, xi (ta) = max{0, xs
i (1)−

(ta− yi,k)} is x-sufficient. Additionally,

xs
i (1)≥ {Because xs

i (1)> 0 and ta > yi,k}

max{0, xs
i (1)− (ta− yi,k)}.

Therefore, by Property 6.4 with c0 = max{0,xs
i (1)− (ta−yi,k)}, and c1 = xs

i (1), xi (ta) = xs
i (1) is x-sufficient.

We now address Case D, in which ta = yi,k for some k and τi,k is f-dominant for Li.

Lemma 6.71. If ta ∈ [td ,∞), ta = yi,k for some τi,k, tc
i,k > yi,k + ei,k, τi,k is f-dominant for Li, and (6.166)

holds, then xi (ta) = xs
i (1) is x-sufficient.

Proof. We will use the following facts.

We will use Lemma 6.26. By the definition of td in Definition 6.20, td ≥ tr. Therefore, by the statement

of the lemma, ta ∈ [tr,∞). The remaining preconditions of Lemma 6.26 are directly implied by those of this

lemma. Thus, the following facts hold.

k > 0 (6.169)

tc
i,k−1 > tr (6.170)

Furthermore, by the definition of f-dominant for Li in Definition 6.10, tc
i,k−1 > yi,k. Also,

ri,k−1 < {By our task model}

ri,k

250

≤ {By our task model}

yi,k.

Therefore, the following claim holds.

Claim 6.71.1. τi,k−1 is pending at yi,k.

Lemma 6.28 describes the relationship between yi,k−1 and yi,k in virtual time. We now bound the

difference between the two in actual time.

(yi,k− yi,k−1)≥ {By Lemma 6.39 with sub = 1}

v(yi,k)− v(yi,k−1)

≥ {By Lemma 6.28}

v(yi,k−1)+Ti− v(yi,k−1)

= {Rearranging}

Ti.

Rearranging,

yi,k−1 ≤ yi,k−Ti. (6.171)

We will use Lemma 6.69 with t2 = yi,k, j = i, and `= k−1. We have

t2 = yi,k

= {By the statement of the lemma}

ta (6.172)

≥ {By the statement of the lemma}

td .

251

Therefore, (6.167) holds. (6.168) holds by (6.166) and (6.172). Thus, by Claim 6.71.1 and Lemma 6.69,

xi (yi,k−1) = xs
i (1) is x-sufficient. Thus, by the definition of x-sufficient in Definition 6.8,

tc
i,k−1 ≤ yi,k−1 + xs

i (1)+ ei,k−1. (6.173)

Continuing the proof of Lemma 6.71, we have

xs
i (1) = {Rewriting}

yi,k−1 + xs
i (1)+Ci− yi,k−1−Ci

≥ {By (6.170) and Property 6.11}

yi,k−1 + xs
i (1)+ ei,k−1− yi,k−1−Ci

≥ {By (6.173)}

tc
i,k−1− yi,k−1−Ci

≥ {By (6.171)}

tc
i,k−1− yi,k +Ti−Ci

≥ {By the choice of Li in Definition 6.14}

tc
i,k−1− yi,k +Arn

i (m−Li−1)−Ci

≥ {By Lemma 6.10 with (6.169) and (6.170), which match (6.30) and (6.31)}

tc
i,k−1− yi,k +Ai,k(m−Li−1)− ei,k

= {By the definition of x f
i,k in (6.15)}

x f
i,k.

Furthermore, by Theorem 6.4, which only has preconditions that are directly implied by those of this

lemma, xi (ta) = xi (yi,k) = x f
i,k is x-sufficient. Therefore, by Property 6.4 with c0 = x f

i,k and c1 = xs
i (1),

xi (ta) = xs
i (1) is x-sufficient.

We finally consider Case E in Figure 6.9, in which ta = yi,k for some k and τi,k is m-dominant for Li. We

will reuse many of the lemmas from our analysis of the same case with ta ∈ [tr, tn). However, we will show in

252

Lemma 6.72 below that we can use xp
i (t) = xs

i (1) in place of xp
i (t) = xpr

i (t). The proof of Lemma 6.72, like

the proof of Lemma 6.38, is based on Lemma 6.37, which considers xi (t) for certain values of t.

Lemma 6.72. Let τ j be arbitrary. If (6.167) and (6.168) hold, then xp
j (t2) = xs

j(1) is xp-sufficient.

Proof. We will prove the lemma directly from the definition of xp-sufficient in Definition 6.19. We consider an

arbitrary τ j,` pending at t2. Because τ j,` is arbitrary, we simply need to show that y j,` ≥ t2− (xs
j(1)+ec

j,`(t2)).

We consider two cases, depending on the value of y j,`.

Case 1: y j,` ∈ (−∞, t2). In this case, by Lemma 6.69 and our assumption that (6.167) and (6.168) hold,

x j
(
y j,`
)
= xs

j(1) is x-sufficient. Therefore, by Lemma 6.37, y j,` ≥ t2− (xs
j(1)+ ec

j,`(t2)).

Case 2: y j,` ∈ [t2,∞). In this case,

y j,` ≥ t2

≥ {Because xs
i (1)≥ 0 by the definition of xs

j(1) in (6.37), and because ec
j,`(t2)≥ 0}

t2− (xs
j(1)+ ec

j,`(t2))

Because τ j,` was arbitrary, the lemma holds by the definition of xp-sufficient in Definition 6.19.

We now provide the analysis for Case E in Figure 6.9.

Lemma 6.73. If ta = yi,k for some k, ta ∈ [td ,∞), tc
i,k > yi,k +ei,k, τi,k is m-dominant for Li, and (6.166) holds,

then xi (ta) = xs
i (1) is x-sufficient.

Proof. Because tc
i,k > yi,k + ei,k, τi,k is pending at yi,k. Therefore, if yi,k = td , the lemma follows from the

definition of td in Definition 6.20. Thus, because yi,k = ta ∈ [td ,∞), for the remainder of this proof we assume

that

yi,k > td . (6.174)

We will use the following facts.

We first prove by contradiction that tb
i,k ≥ td . Suppose (for the purpose of contradiction) that tb

i,k < td .

Then, by (6.174), td ∈ (tb
i,k,yi,k). However, by the definition of tb

i,k in Definition 6.12, [tb
i,k,yi,k) is busy, and by

253

the definition of td in Definition 6.20, some CPU is idle at td . This is a contradiction, so

tb
i,k ≥ td . (6.175)

We also have

tb
i,k ≤ {By the definition of tb

i,k in Definition 6.12}

yi,k

= {By the statement of the lemma}

ta, (6.176)

tb
i,k ≥ {By (6.175)}

td

≥ {By the definition of td in Definition 6.20}

tr, (6.177)

and

yi,k > {By (6.174)}

td

≥ {By the definition of td in Definition 6.20}

tr. (6.178)

We will use Lemma 6.72 with t2 = tb
i,k. (Although (6.167)–(6.168) are in Lemma 6.69, they are also

required by Lemma 6.72.) (6.167) holds by (6.175). (6.168) holds by (6.166) and (6.176). Therefore, by

Lemma 6.72,

For each τi, xp
j

(
tb
i,k

)
= xs

j(1) is xp-sufficient. (6.179)

254

We will also use Lemma 6.72 with t2 = yi,k and j = i. In this case, because yi,k = ta, (6.167) holds by the

statement of the lemma, and (6.168) holds by (6.166). Therefore, by Lemma 6.72,

xp
i (yi,k) = xs

i (1) is xp-sufficient. (6.180)

We will use Lemma 6.51 with sub = 1 and xp
j

(
tb
i,k

)
= xs

j(1). (6.106) holds by the statement of the lemma.

(6.107) holds by (6.177). Because sub = 1, (6.108) holds. By our definition of s(t) in Section 6.1, s(t)≤ 1

holds for all t. Therefore, (6.109) holds. (6.110) holds by (6.179). Thus, by Lemma 6.51,

Wi,k ≤ ∑
m−1 largest

(C j +Uv
j · xs

i (1)−S j)+ ∑
τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))+ ei,k−Ci. (6.181)

We will also use Lemma 6.41 with sub = 1 and xp
i (yi,k) = xs

i (1). (6.84) holds by (6.178). (6.85) holds by

the statement of the lemma. Because sub = 1, (6.86) holds. By our definition of s(t) in Section 6.1, s(t)≤ 1

holds for all t. Therefore, (6.87) holds. (6.88) holds by (6.180). Therefore, by Lemma 6.41,

ep
i,k ≤Uv

i · xs
i (1). (6.182)

We will use Property 6.11, so we show that

tc
i,k > {By the statement of the lemma}

yi,k + ei,k

> {Because ei,k > 0}

yi,k

> {By (6.178)}

tr. (6.183)

Continuing the proof of Lemma 6.73, we have

xs
i (1)≥ {By the definition of xs

i (1) in (6.37)}
∑m−1 largest(C j +Uv

j · xs
j(1)−S j)+∑τ j∈τ S j +(m−utot−1)Ci +Orn +Li ·Uv

i · xs
i (1)

utot
. (6.184)

255

For simplicity, we separately consider a subset of this expression.

∑
m−1 largest

(C j +Uv
j · xs

j(1)−S j)+ ∑
τ j∈τ

S j−Ci

= {Rewriting}

∑
m−1 largest

(C j +Uv
j · xs

j(1)−S j)+ ∑
τ j∈τ

S j + ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))

− ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))+ ei,k−Ci− ei,k

≥ {By (6.181)}

Wi,k− ∑
τ j∈τ

Uv
j · (v(yi,k)− v(tb

i,k))− ei,k

≥ {By Property 6.14}

Wi,k−utot · (v(yi,k)− v(tb
i,k))− ei,k

≥ {By Lemma 6.39 with t0 = tb
i,k, t1 = yi,k, and sub = 1; yi,k ≥ tb

i,k by the definition of tb
i,k in Definition 6.12}

Wi,k−utot · (yi,k− tb
i,k)− ei,k

= {By the definition of Ri,k in (6.21)}

Wi,k−Ri,k− ei,k. (6.185)

Putting it all together,

xs
i (1)≥ {By (6.184) and (6.185)}

Wi,k−Ri,k +(m−utot)Ci− ei,k +Orn +Li ·Uv
i · xs

i (1)
utot

≥ {By (6.182)}
Wi,k−Ri,k +(m−utot)Ci− ei,k +Orn +Li · ep

i,k

utot

≥ {By (6.183) and Property 6.11}
Wi,k−Ri,k +(m−utot−1)ei,k +Orn +Li · ep

i,k

utot

≥ {By Lemma 6.53 and (6.177); tc
i,k > yi,k + ei,k holds by the statement of the lemma}

Wi,k−Ri,k +(m−utot−1)ei,k +Oi,k +Li · ep
i,k

utot

256

= {By the definition of xm
i,k in (6.24)}

xm
i,k. (6.186)

Because τi,k is m-dominant for Li, by Theorem 6.5, which only has preconditions implied by those of

this lemma, xi (ta) = xm
i,k is x-sufficient. Thus, by (6.186) and Property 6.4 with c0 = xm

i,k and c1 = xs
i (1),

xi (ta) = xs
i (1) is x-sufficient.

We finally combine the lemmas previously proved in this subsection to show that xi (ta) = xs
i (1) is

x-sufficient for arbitrary ta ∈ [tn,∞).

Theorem 6.8. For arbitrary ta ∈ [td ,∞), xi (ta) = xs
i (1) is x-sufficient.

Proof. The lemmas referenced in Figure 6.9 exhaustively consider all possible cases for ta, in some cases

assuming (6.166). For any given ta, (6.166) can be established by inducting over all y j,` ∈ [tr, ta), using some

lemma referenced in Figure 6.8 to establish that x j
(
y j,`
)
= xs

j(sr)+∆
(
y j,`
)

is x-sufficient for each. The

theorem then follows from the appropriate lemma referenced in Figure 6.8.

We can also use Theorem 6.8 to determine response-time bounds in the absence of overload, as demon-

strated in the next theorem. Recall that th is a time after which no overload occurs, as defined more precisely

in Properties 6.8 and 6.9.

Theorem 6.9. If th = 0, then for arbitrary τi,k, tc
i,k ≤ yi,k + xs

i (1)+Ci.

Proof. We shift the schedule one time unit later. Because neither jobs nor supply restriction execute within

[0,1), Properties 6.8 and 6.9 continue to hold. Because the earliest job release is now at time 1, there are no

pending jobs at th. Therefore, by the definition of tr in Definition 6.13,

tr = 0, (6.187)

and by the definition of td in Definition 6.20,

td = 0. (6.188)

Each job cannot complete or have a PP before time 1 (where the original schedule started), so by (6.187),

tc
i,k > tr, (6.189)

257

and by (6.188)

yi,k > td . (6.190)

Thus,

tc
i,k ≤ {By Theorem 6.8, (6.190), and the definition of x-sufficient in Definition 6.8}

yi,k + xs
i (1)+ ei,k

≤ {By (6.189) and Property 6.11}

yi,k + xs
i (1)+Ci.

6.4 Implementation Description

We implemented our scheme by extending the existing MC2 implementation that was described by Her-

man et al. (2012). Like that used in the job splitting experiments discussed in Chapter 5, this implementation

is based on LITMUSRT. Our implementation consists of two components: the scheduler, which is part of the

kernel, and a monitor program, which runs in userspace. The kernel reports job releases and job completions

to the monitor program and provides a system call that the monitor program can use to change the speed of the

virtual clock. The speed of the virtual clock does not change between these calls. The kernel is responsible

for implementing virtual time, ensuring that the SVO model’s minimum-separation constraints are respected,

and making scheduling decisions according to GEL-v scheduling. The monitor program is responsible for

determining when virtual-clock speed changes should occur.

In a real system, level-C jobs will often run for less time than their respective level-C PWCETs. Therefore,

it may be unnecessarily pessimistic to initiate overload response whenever a job overruns its level-C PWCET.

For our implementation, we instead use the following definition.

Definition 6.22. τi has a nonnegative response-time tolerance, denoted ξi, relative to each job’s PP. A task

meets its response-time tolerance if tc
i,k ≤ yi,k +ξi, and misses it otherwise.

We slow down the virtual clock only after some job misses its response-time tolerance. Ideally, response-

time tolerances should be determined based on the analytical upper bounds of job response times presented

in Section 6.3, in order to guarantee that the virtual clock is never slowed down in the absence of overload.

Specifically, for each τi, we use ξi = xs
i (1)+Ci, by Theorem 6.9. However, smaller response-time tolerances

258

Function initialize()

1 last act := now();
2 last virt := 0;
3 speed := 1;

Function act to virt(act)
4 return last virt+(act− last act) · speed;

Function virt to act(virt)
5 return last act+(virt− last virt)/speed;

Function schedule pending release(τi,k, v(ri,k))
6 Set release timer to fire at virt to act(v(ri,k));

Function job release(τi,k)

7 ri,k := now();
8 v(yi,k) := act to virt(ri,k)+Yi;
9 yi,k :=⊥;

Function job complete(τi,k)

10 virt := act to virt(now());
11 if yi,k =⊥ and v(yi,k)< virt then
12 yi,k := virt to act(v(yi,k));
13 Report τi,k, ri,k, yi,k, now(), and whether the level-C ready queue is empty to the monitor program;

Function change speed(new speed)
14 act := now();
15 virt := act to virt(act);
16 foreach τi,k such that yi,k =⊥ and v(yi,k)< virt do
17 yi,k := virt to act(v(yi,k));
18 last act := act;
19 last virt := virt;
20 speed := new speed;
21 foreach τi,k such that a pending release has been scheduled for virtual time v(ri,k) do
22 Reset release timer to fire at virt to act(v(ri,k));

Algorithm 6.1: In-kernel functionality used to handle virtual time.

could be used, at the possible expense of returning the virtual-clock speed to normal prematurely and having

to slow it down again.

For illustration, Figure 6.1(c) from Section 6.1 actually depicts a system that uses a response-time

tolerance of three for each task. Thus, we do not slow down virtual time until some job’s completion time

is greater than three units of actual time after its PP. At time 18, τ3,4 completes exactly three units after its

PP, which is barely within its tolerance, so the virtual clock is not slowed down. However, at time 19, τ1,3

completes four units after its PP, which exceeds the response-time tolerance. Therefore, we slow down the

virtual clock at time 19. We define normal behavior for a system as the situation in which all jobs meet their

response-time tolerances.

259

Within the kernel, the primary change that we made compared to the prior MC2 implementation was

the use of virtual time at level C. No changes at levels A or B were required. Psuedocode for the changed

functionality is provided in Algorithm 6.1. now() is a function that always returns the current actual time.

Because the virtual-clock speed is constant between discrete changes, virtual time is a piecewise linear

function of actual time, as depicted in Figure 6.10(a), where ts (speed change) is the latest speed change

before arbitrary time t. (This is not necessarily the same ts as in Section 6.3.) The kernel keeps track of the

most recent such actual time as last act, the corresponding virtual time as last virt, and the current speed of

virtual time as speed. These values are initialized in initialize() and updated in change speed().

The convenience function act to virt() converts an actual time to a virtual time, assuming that

act > last act and that there is no virtual-clock speed change between last act and act. By (6.4), the

virtual-clock speed at t is the slope of the line graphed in Figure 6.10(a) with ts = last act, resulting in the

simple calculation performed in that function. Similarly, the convenience function virt to act() converts

a virtual time to an actual time, assuming that virt> last virt and that there is no virtual-clock speed change

between last act and virt to act(virt).

The kernel invokes schedule pending release() in order to set the release timer for a level-C job.

This function uses virt to act(v(ri,k)) to determine when the timer should fire. This time could be

incorrect if the virtual-clock speed is changed before the timer fires, but in that case change speed() will

update the timer to fire at the correct time.

When a job release actually occurs, job release() is called. This function determines the scheduling

priority of τi,k, which is simply the virtual time v(yi,k) because the actual time yi,k is not known until yi,k

occurs (because the virtual-clock speed may change). However, recall that the definition of “response-time

tolerance” in Definition 6.22 is based on the actual time yi,k. Therefore, it will generally be necessary for

the kernel to determine yi,k and return it to the monitor program. Initially, the kernel uses the placeholder ⊥,

to indicate that yi,k has not yet occurred. There are three cases for when yi,k could occur relative to tc
i,k, as

depicted in Figure 6.10(b)–(d).

If tc
i,k ≤ yi,k, as depicted in Figure 6.10(b), then τi,k meets its response-time tolerance (which was defined

in Definition 6.22 to be nonnegative) by definition. Therefore, it is sufficient to return ⊥ to the monitor

program in this situation.

260

(a) Example depicting how actual to vir-
tual time conversion is done.

(b) Example depicting yi,k when v(yi,k)>
v(tc

i,k).

(c) Example depicting yi,k when v(yi,k)<
v(tc

i,k) and at least one speed change oc-
cured between yi,k and tc

i,k.

(d) Example depicting yi,k when v(yi,k)<
v(tc

i,k) and no speed change occured be-
tween yi,k and tc

i,k.

Figure 6.10: Examples illustrating virtual time computations in the kernel.

If tc
i,k > yi,k and the speed of the virtual clock changes at least once between yi,k and tc

i,k, then this scenario

is depicted in Figure 6.10(c), where ts now refers to the first virtual-clock speed change after yi,k. In this case,

yi,k is computed when change speed() is called at time ts.

If tc
i,k > yi,k and the speed of the virtual clock does not change between yi,k and tc

i,k, then this scenario is

depicted in Figure 6.10(d). In this case, yi,k is computed when job complete(τi,k) is called.

When any τi,k completes, job complete() performs the just-mentioned check and notifies the monitor

program.

When the monitor program requests a virtual-clock speed change, change speed() is called. This

function performs the updates mentioned above and also updates last act, last virt, and speed so that

virt to act() and act to virt() remain correct.

The purpose of the userspace monitor program is both to detect when response-time tolerances are

missed, and to detect when the system has returned to normal behavior. By Theorem 6.8, once we have

261

Figure 6.11: Illustration of “idle normal instant.” If all jobs pending at t meet their response-time tolerances,
then t is an idle normal instant. t2 is also referenced below.

detected tn (see Definition 6.21, which occurs when the last job pending at td (see Definition 6.20) completes,

the system has returned to normal behavior, and the virtual clock can be returned to normal speed. Therefore,

we define an “idle normal instant ” such that td is the earliest idle normal instant when each ξi = xs
i (1)+Ci, if

each level-C job runs for its level-C PWCET. Definition 6.23 is illustrated in Figure 6.11.

Definition 6.23. Arbitrary time t is an idle normal instant if some processor is idle at t and all jobs pending

at t meet their (normal) response-time tolerances.

The general structure of a userspace monitor program is presented in Algorithm 6.2. A significant portion

of the code is intended to detect the earliest possible idle normal instant. We define the following definition,

which is closely related to the definition of “idle normal instant ” in Definition 6.23.

Definition 6.24. t is a candidate idle instant at time t2 ≥ t if some processor is idle at t and any job pending

at t either meets its response-time tolerance or is still pending at t2.

In Figure 6.11, t is a candidate idle instant at t2 even if τ1,3 misses its response-time tolerance, as long as

τ1,2 and τ2,5 meet their response-time tolerances.

The following theorem shows that we may consider only one candidate idle instant at any given time and

still find the earliest idle normal instant. In Figure 6.11, t2 was selected as a time when a processor becomes

idle, in order to illustrate this theorem.

Theorem 6.10. If t is a candidate idle instant at t2 and t2 is an idle normal instant, then t is an idle normal

instant.

Proof. Because t is a candidate idle instant, by Definition 6.24, every job pending at t that is no longer pending

at t2 meets its response-time tolerance. Furthermore, because t2 is an idle normal instant, by Definition 6.23,

every job that is still pending at t2 meets its response-time tolerance. Therefore, every job pending at t meets

262

its response-time tolerance. Furthermore, because t is a candidate idle instant, by Definition 6.24, some

processor is idle at t. Therefore, by Definition 6.23, t is an idle normal instant.

In order to detect an idle normal instant, we maintain as idle cand the earliest candidate idle instant and

as pend idle cand the set of incomplete jobs pending at idle cand. If there is no current candidate idle instant,

then the placeholder ⊥ is used instead. So that the monitor program can determine pend idle cand when a

candidate idle instant is detected, it always maintains as pend now the set of jobs currently pending. A job

is added to pend now whenever it is released, in on job release(). A job is removed from pend now as

soon as it has completed, in on job complete().

In the definition of job complete() in Algorithm 6.1, the kernel reports to the monitor program

whether the ready queue is empty. The purpose for this reporting is that if the ready queue is empty, the

processor that just completed τi,k has become idle. This fact is exploited in both init recovery() and

on job complete() in order to detect candidate idle instants.

The function init recovery() initializes recovery mode, the process of finding an idle normal instant.

Because recovery mode is always initiated as a result of a job missing its response-time tolerance, and such a

miss is detected when the job completes, there is a relevant job completion time comp time. As discussed

above, if the ready queue was empty at comp time, as indicated by queue empty, then a processor became

idle at comp time. Therefore, by the definition of “candidate idle instant ” in Definition 6.24, comp time is a

candidate idle instant. This case is handled in Lines 2–4. Otherwise, no candidate idle instant has yet been

detected, as handled in Lines 5–7.

As discussed above, the function on job release() simply updates the set pend now of currently

pending jobs.

The function on job complete() first, in Line 9, updates pend now as discussed above. Then, Lines 10–

11 consider a response-time tolerance miss, regardless of whether the monitor program is currently in recovery

mode. If such a miss occurs, then the function handle miss() is called. The particular implementation of

this function differs among the monitor programs we consider, and is discussed later. Lines 12–23 execute

only when the monitor program is in recovery mode. Lines 12–17 execute if there is already a candidate idle

instant under consideration. Lines 13–15 execute if τi,k has missed its response-time tolerance, in which case

any prior candidate idle instant is no longer a candidate idle instant. On the other hand, Lines 16–17 execute

when τi,k has met its response-time tolerance. In this case, we remove τi,k from the set pend idle cand of

263

still-pending jobs that were pending at idle cand. Lines 18–20 consider the case that comp time has become

the earliest candidate idle instant. This could happen either because a processor just became idle, or because

a previous candidate idle instant was just discarded in Lines 13–15 while a processor was idle. In either case,

we start considering comp time as a candidate idle instant. Finally, in Lines 21–23 we consider the case

that there is an existing candidate idle instant, but the set pend idle cand is empty. Whenever this situation

occurs, either because the last job in pend idle cand was removed in Line 17 or because the set of pending

jobs considered in Line 20 was empty, the system exits recovery mode.

Our first userspace monitor program, SIMPLE, is depicted in Algorithm 6.3. It is given the response-time

tolerances desired for the tasks and a virtual time speed s(t) used for overload recovery. When a response-time

tolerance miss is detected while the system is not in recovery mode, it simply slows down the virtual clock

and starts recovery mode.

Our second userspace monitor program, ADAPTIVE, is depicted in Algorithm 6.4. It allows a value of

s(t) to be determined at runtime, selecting a smaller value for a more significant response-time tolerance miss.

This minimizes the impact on the system when only a minor response-time tolerance miss has occured, but

provides a more drastic response when a larger miss has occured. The monitor accepts an aggressiveness

factor a in addition to the set of response-time tolerances, providing additional tuning. Once a response-time

tolerance violation is detected, the monitor maintains the invariant that s(t) = a ·min((Yi +ξi)/Ri,k), where

the min is over all jobs with tc
i,k after recovery mode last started. Thus, it chooses the speed based on the

largest observed response time since recovery mode started.

6.5 Experiments

When a designer provisions an MC system, he or she should select level-C PWCETs that will be

infrequently violated. Therefore, in the most common cases, overload conditions should be inherently

transient, and it should be possible to return the system to normal operation relatively quickly. Therefore, our

experiments consist of transient overloads rather than continuous overloads.

We ran experiments on a system with one quad-core 920-i7 CPU at 2.67 GHz, with 4GB of RAM.

We generated 20 task sets, using a methodology similar to that used by Herman et al. (2012), which used

task systems designed to mimic avionics. As in (Herman et al., 2012), we assumed that each task’s level-B

PWCET is ten times its level-C PWCET, and that its level-A PWCET is twenty times its level-C PWCET.

264

Function init recovery(comp time, queue empty)
1 recovery mode := true;
2 if queue empty then
3 idle cand := comp time;
4 pend idle cand := pend now;
5 else
6 idle cand :=⊥;
7 pend idle cand := {};

Function on job release(τi,k)

8 Add τi,k to pend now;

Function on job complete(τi,k, ri,k, yi,k, comp time, queue empty)
9 Remove τi,k from pend now;

10 if comp time− yi,k > ξi then
11 handle miss(τi,k, ri,k, yi,k, comp time, queue empty);
12 if recovery mode and idle cand 6=⊥ then
13 if comp time− yi,k > ξi then
14 idle cand :=⊥;
15 pend idle cand := {};
16 else
17 Remove τi,k from pend idle cand;
18 if recovery mode and idle cand=⊥ and queue empty then
19 idle cand := comp time;
20 pend idle cand := pend now;
21 if recovery mode and idle cand 6=⊥ and pend idle cand= {} then
22 change speed(1);
23 recovery mode := false;

Algorithm 6.2: Userspace monitor algorithms common to SIMPLE and ADAPTIVE.

Function handle miss(τi,k, ri,k, yi,k, comp time, queue empty)
1 if not recovery mode then
2 change speed(s(t));
3 init recovery(comp time, queue empty);

Algorithm 6.3: Specific userspace implementation for SIMPLE.

Function handle miss(τi,k, ri,k, yi,k, comp time, queue empty)
1 if not recovery mode then
2 current speed := 1;
3 init recovery(comp time, queue empty);
4 new speed := a · (Yi +ξi)/(comp time− ri,k);
5 if new speed< current speed then
6 change speed(new speed);
7 current speed := new speed;

Algorithm 6.4: Specific userspace implementation for ADAPTIVE.

265

Level A Level B Level C
Level A 100% 50% 5%
Level B 0% 50% 5%
Level C 0% 0% 65%

(a) Percentage of the system occupied by the
level specified in each row, when all jobs exe-
cute for the PWCET specified in the column.

Level A Level B Level C
Level A (0.1,0.4) (0.2,0.8) (2.0,8.0)
Level B (0.05,0.2) (0.1,0.4) (1.0,4.0)
Level C (0.005,0.02) (0.01,0.04) (0.1,0.4)

(b) Uniform utilization distribution for a task at the level
specified in each row, when measured using the PWCET
specified in the column.

Level A Randomly from {25 ms,50 ms,100 ms}.
Level B Random multiple of the largest level-A period on the same CPU, capped at 300 ms.
Level C Random multiple of 5 ms between 10 ms and 100 ms, inclusive.

(c) Selection of periods for tasks at each level, which is independent of the level of the PWCETs.

Figure 6.12: Parameters used for experiments.

The parameters we used are specified in Figure 6.12. We generated task systems where levels A and

B each occupy 5% of the system’s processor capacity and level C occupies 65% of the system’s capacity,

assuming that all jobs at all levels execute for their level-C PWCETs. As a property of the relative sizes of

the PWCETs at different levels, and as depicted in Figure 6.12(a), when all tasks execute for their level-B

PWCETs or above, there is not guaranteed to be any capacity left for level C.

At levels A and B, we generated tasks on one CPU at a time, using 5% of each CPU’s capacity for level A

(assuming level-C execution times) and 5% for level B (again assuming level-C execution times), as depicted

in Figure 6.12(a). For level-A tasks, we selected periods randomly from the set {25 ms,50 ms,100 ms}, and

for level-B tasks, we selected random multiples of the largest level-A period on the same CPU, capped at

300 ms, as depicted in Figure 6.12(c). We then selected, for each task, a utilization (at its own criticality level)

uniformly from (0.1,0.4). This is the “uniform medium” distribution from prior work, e.g., (Brandenburg,

2011). For utilization at level C, the resulting choice is scaled by 1/20 for level-A tasks and 1/10 for

level-B tasks, as depicted in Figure 6.12(b). When a task would not fit within the allocated capacity for its

criticality level, its utilization was scaled down to fit. Each task was then assigned a level-C PWCET based

on multiplying its level-C utilization by its period.

At level C, we selected periods that were multiples of 5 ms between 10 ms and 100 ms, inclusive, as

depicted in Figure 6.12(c). We used uniform medium utilizations, as at levels A and B, and as depicted

in Figure 6.12(b). As we did with levels A and B, we scaled down the utilization of the last task to fit. Yi

was selected for each level-C task using G-FL, which provides better response time bounds than G-EDF, as

266

discussed in Chapter 3. To determine response-time tolerances, we used the analytical bounds described in

Section 6.3, assigning to each task ξi = xs
i (1)+Ci.

We tested the following overload scenarios:

• (SHORT) - All jobs at levels A, B, and C execute for their level-B PWCETs for 500 ms, and then

execute for their level-C PWCETs afterward.

• (LONG) - All jobs at levels A, B, and C execute for their level-B PWCETs for one second, and then

execute for their level-C PWCETs afterward.

• (DOUBLE) - All jobs at levels A, B, and C execute for their level-B PWCETs for 500 ms, execute for

their level-C PWCETs for one second, execute for their level-B PWCETs for another 500 ms, and then

execute for their level-C PWCETs afterward.

As can be seen from Figure 6.12(a), these represent particularly pessimistic scenarios in which all CPUs

are occupied by level-A and -B work for almost all of the time during the overload.

For each overload scenario, we used SIMPLE with s(t) choices from 0.2 to 1 in increments of 0.2. The

choice of s(t) = 1 does not use our overload management techniques at all and provides a baseline for

comparison. We also used ADAPTIVE with a choices from 0.2 to 1.0 in increments of 0.2. We then recorded

the minimum virtual-time speed (to analyze the behavior of ADAPTIVE) and the amount of time from when

the last overload stopped until the virtual-time clock was returned to normal. We then averaged each result

over all generated task sets.

In Figure 6.13, we depict the average dissipation time using SIMPLE with respect to the choice of s(t)

during recovery. Additionally, we depict error bars for 95% confidence intervals. Under LONG, dissipation

times are approximately twice as long as under SHORT. This is to be expected, because overhead occurs

for twice as long. Under DOUBLE, dissipation times are bigger than under SHORT for s(t) = 1, but nearly

identical for smaller choices of s(t). This occurs because dissipation time is measured from the end of the

second (and final) interval during which overload occurs. For sufficiently small choices of s(t), the system

usually recovers completely before the second interval of overload starts, and that interval is the same length

as in SHORT. In any case, a reduction of at least 50% of the dissipation time can be achieved with a choice

of s(t) = 0.6, and with that choice, the dissipation time is less than twice the length of the interval during

which overload occurs. Smaller choices of s(t) have diminishing returns, with only a small improvement in

267

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.2 0.4 0.6 0.8 1

D
is

s
ip

a
ti
o

n
 t

im
e

 (
m

s
)

s(t) during recovery

Short Long Double

Figure 6.13: Dissipation time for SIMPLE

dissipation time. Such a small improvement is likely outweighed by the larger impact on job releases from

selecting a smaller s(t).

In Figure 6.14, we depict the average dissipation time using ADAPTIVE with respect to the aggressiveness

factor. As before, we depict error bars for 95% confidence intervals. There is significant variance in the

initial choice of s(t) by ADAPTIVE, depending on which level-C jobs complete first after the overload starts,

resulting in the larger confidence intervals. This effect is particularly pronounced in the case of DOUBLE. By

comparing Figures 6.13 and 6.14, we see that ADAPTIVE significantly reduces the dependency of dissipation

time on the length of the overload interval. Furthermore, dissipation times are often significantly smaller

under ADAPTIVE than under SIMPLE.

However, in order to fully evaluate ADAPTIVE, we must consider the minimum s(t) value it chooses.

Figure 6.15 depicts the average of this choice with respect to the aggressiveness value, in addition to 95%

confidence intervals. Here, we see that ADAPTIVE achieves smaller dissipation times than SIMPLE by

choosing significantly slower virtual-clock speeds. Thus, jobs are released at a drastically lower frequency

268

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.2 0.4 0.6 0.8 1

D
is

s
ip

a
ti
o

n
 t

im
e

 (
m

s
)

Aggressiveness factor

Figure 6.14: Dissipation time for ADAPTIVE

during the recovery period. Therefore, under the highly pessimistic scenarios we considered, SIMPLE is a

better choice than ADAPTIVE.

As discussed above, level-C tasks run very little during the overload, so jobs pending at the end of the

overload dominate other jobs in producing the largest response times. Because ADAPTIVE usually results in

complete recovery from overload before the second overload interval, this causes nearly identical minimum

choices of s(t) between SHORT and DOUBLE. Similarly, because the overload interval is twice as long under

LONG than under SHORT, the minimum choice of s(t) is about half under LONG compared to SHORT.

In summary, the best choice of monitor under the tested conditions was SIMPLE with s(t) = 0.6, although

s(t) = 0.8 could be a good choice if it is preferable to have a smaller impact on new releases with a longer

dissipation time.

We also measured the same overheads considered by Herman et al. (2012) both with and without our

virtual time mechanism present, and considering both average and maximum observed overheads. For most

overheads considered, there was no significant difference from the virtual time mechanism. However, there

was variance in the scheduling overheads, as depicted in Figure 6.16. For average-case overheads, the

269

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

M
in

im
u

m
 s

(t
)

Aggressiveness factor

Figure 6.15: Minimum s(t) for ADAPTIVE

introduction of virtual time increased the scheduling time by about 40%, while for worst-case overheads,

the introduction of virtual time approximately doubled the scheduling time. Because level C is SRT, the

average-case overheads are more relevant, and the cost of adding the virtual time mechanism is small.

Furthermore, the userspace monitor program had an effective CPU utilization of approximately 0.1, less than

a typical task.

6.6 Conclusion

In this chapter, we addressed the problem of scheduling under MC2 when a transient overload occurs. We

provided methods to analyze response times at level C within MC2 and proposed a virtual-time mechanism to

deal with overload conditions caused by jobs exceeding their level-C PWCETs.

We provided analytical dissipation bounds on the amount of time required to recover from such an

overload. We then presented an implementation of our mechanism and provided experiments to demonstrate

that it can effectively provide recovery from unexpected overload scenarios. In our experiments, dissipation

270

 0

 2

 4

 6

 8

 10

 12

 14

 16

Avg,8

Avg,12

Avg,16

Avg,20

M
ax,8

M
ax,12

M
ax,16

M
ax,20

O
v
e

rh
e

a
d

 (
µ

s
)

Metric, Task Count

Scheduler Variant
Without-VT

With-VT

Figure 6.16: Scheduling overhead measurements

times could be brought within twice the length of a pessimistic overload scenario by only moderately affecting

the time between job releases, and our scheme created little additional overhead.

271

CHAPTER 7: CONCLUSION

Prior work has established that G-EDF is a useful scheduler for multiprocessor real-time systems in

which bounded lateness is acceptable, and has described how to compute lateness bounds. In this dissertation,

we have demonstrated that the broader class of GEL schedulers can be used and modified in order to

provide improved performance in the form of smaller lateness bounds. Furthermore, prior work on the MC2

scheduling framework has not accounted for overload caused by jobs running for longer than their level-C

PWCETs. We have provided a mechanism to recover from such overloads, in addition to bounds on the time

required for the system to return to normal in the absence of continued overload.

7.1 Summary of Results

In this dissertation, we have supported the thesis that G-EDF can be modified to support smaller lateness

bounds than previous work allows, with more flexibility to specify desired lateness criteria. Furthermore,

such modifications do not violate the assumptions required for multiprocessor locking protocols, and the

modified scheduler is easier to implement and/or has lower overheads than known HRT-optimal schedulers.

In addition, recovery from overloads caused by tasks in MC2 overrunning their level-C PWCETs can be

facilitated by modifying the scheduler to delay job releases dynamically.

To support this thesis, we have provided improved analysis of GEL schedulers and proposed modifications

to G-EDF. We now describe these contributions.

Compliant-Vector Analysis. In Chapter 3, we have proposed CVA as an improved method to compute

tardiness bounds under GEL schedulers. Compared to the initial work of Devi and Anderson (2008), we have

provided more finely tuned bounds for different tasks within the same system and allow PPs that differ from

deadlines, resulting in response-time bounds of the form Yi + xi +Ci instead of Di + x+Ci. As a result of this

change, response-time bounds may be less than relative deadlines. Under such circumstances, tardiness is

simply zero, but lateness is negative. Therefore, we provide better bounds by considering lateness bounds

rather than tardiness bounds. Lateness bounds can be computed using an LP.

272

Global-Fair-Lateness Scheduling. Also in Chapter 3, we have proposed G-FL as a scheduler that provably

provides under CVA the best maximum lateness bound under a task system. This property is achieved

by ensuring that all tasks in the system have the same lateness bounds. G-FL is simply defined with

Yi = Di− m−1
m Ci, resulting in a simple implementation.

LP Techniques for Assigning PPs. Our final contribution in Chapter 3 has been to propose methods to use

an LP to select GEL schedulers to achieve lateness properties that differ from those provided by G-FL. The

same LP used to compute lateness bounds for a given CVA scheduler can be extended to include relative

PPs as variables and linear functions of lateness as the objective function to be minimized. With such a

technique we have shown, for example, that lateness bounds for some tasks can be further reduced from

G-FL (although the maximum lateness bound in the system cannot be reduced) and that we can minimize the

maximum lateness bound proportional to a task’s relative deadline.

Removing Intra-Task Precedence Constraints. In Chapter 4, we have shown that allowing multiple jobs of

the same task to run in parallel can provide several benefits. When only one job of each task can run at a time,

no task’s utilization can exceed one, or that task’s tardiness may grow without bound. However, by allowing

multiple jobs of each task to run in parallel, it is only necessary that the entire system not be overutilized.

Furthermore, even when allowing multiple jobs of the same task is not necessary for schedulability, doing so

can result in smaller lateness bounds. We have provided a method to compute such bounds.

Job Splitting. In Chapter 5, we have considered a technique to split jobs in order to further reduce lateness

bounds. With our technique, each job of a task is split into a per-task constant number of subjobs. It is not

necessary for the developer to explicitly split the job in source code; rather, the operating system performs the

splitting by enforcing subjob budgets. In the absence of overheads and critical sections, such splitting could

ensure lateness bounds arbitrarily close to zero. We have provided an experimental study, consisting of both

an implementation and a schedulability component, demonstrating the improvements that can be obtained

while considering overheads in a real system. We have also provided a method to handle critical sections

that is compatible with existing locking protocols, and we have considered the effects of critical sections on

achievable lateness bounds.

General Analysis of Level C of MC2. In Chapter 6, we have provided improved analysis for level C of

MC2. While Leontyev and Anderson (2010) provided restricted supply analysis that can be applied in such

a setting, we have provided three improvements. First, we have tightened the analysis in the case that all

273

processors are mostly, but not fully, available to level C. Such a situation is the common case for MC2.

Second, we have provided analysis that is general enough to apply even when some jobs exceed their level-C

PWCETs. Finally, our analysis explicitly accounts for the virtual time mechanism we describe in the next

paragraph.

Virtual Time at Level C of MC2. If an overload occurs in which jobs exceed their level-C PWCETs, it is

possible that the system may never recover or may recover slowly, even in the absence of continued overload.

In order to resolve this problem, we have also provided, in Chapter 6, a mechanism to recover from such

overloads. Instead of defining job PPs and task minimum separation times with respect to the actual time, we

define PPs and minimum separation times with respect to virtual time. In the absence of overload, virtual

time and actual time are identical, but the system can recover from overload by causing virtual time to elapse

more slowly than actual time. This reduces the effective amount of work at level C, assisting the system in

recovering from the overload.

Dissipation Time and Bounds at Level C of MC2. Additionally in Chapter 6, we have provided a condition

that ensures that the system has “returned to normal,” and that virtual time can safely proceed at the same

speed as actual time after this condition is satisfied. We have provided two forms of analysis of the dissipation

time, or the time required for the system to reach this condition once an overload has completed. First, we

have provided an experimental study of the dissipation time on a real system. Second, we have provided

theoretical dissipation bounds, or bounds on dissipation time.

7.2 Other Related Work

In this section, we briefly describe our other contributions to the field of real-time systems that have not

been included in this dissertation.

Original MC2 Proposal. In (Mollison et al., 2010), we proposed MC2 in its original form with five criticality

levels. In that form, an additional SRT level D is also present, is scheduled under G-EDF, and is prioritized

below level C. Otherwise, that form of MC2 is identical to that reviewed in Chapter 1. In this dissertation, we

have focused on the newer MC2 model and have considered only level C.

274

Scheduling in Google Earth. In (Erickson et al., 2012), we considered scheduling within the virtual globe

software Google Earth. We considered scheduling techniques to reduce the problem of stutter, where the

display cannot update to a new image at the correct time, preventing smooth animation.

This work involved predicting how long certain jobs within Google Earth would run. However, because

Google Earth runs on a wide variety of software and hardware platforms, it is not possible to determine

job execution times a priori. Thus, we proposed a system to estimate job execution times online. We also

implemented our system in Google Earth, and it has been included in the official Google Earth release since

version 6.2.

Scheduling Automotive-Inspired Dataflows. In (Elliott et al., 2014), we considered the multicore schedul-

ing of DAG-based systems with producer/consumer dependencies. In such systems, dependencies are

specified using a DAG, and each job must wait to start until all its corresponding jobs in its predecessor tasks

have finished. We extended prior work (Liu and Anderson, 2010, 2011) by adding additional constraints to

reduce pessimism, using C-FL (the clustered variant of G-FL) in place of C-EDF (the clustered variant of

G-EDF), using the job splitting technique proposed in Chapter 5, and intelligently assigning tasks to clusters

of processors to reduce cache-related overhead. We performed an implementation study to analyze response

times.

Optimal Soft Real-Time Semi-Partitioned Scheduling. In (Anderson et al., 2014), we proposed the EDF-

os algorithm for SRT scheduling. EDF-os is derived from EDF-fm (Anderson et al., 2008), which is a

semi-partitioned scheduler that does not allow most tasks to migrate between processors, but allows certain

tasks to migrate at job boundaries. EDF-fm required restrictions on per-task utilizations. In EDF-os, we

provided several modifications that eliminated the need for such restrictions. We also provided both lateness

bounds for EDF-os and an implementation study comparing EDF-os to several other algorithms. EDF-os

can often provide smaller lateness bounds than G-FL, at the expense of not allowing the task system to be

modified at runtime.

7.3 Future Work

We now discuss some future work that could improve the results presented in this dissertation.

Tighter Lateness Bounds. While the lateness bounds provided in Chapter 3 are tighter than those provided

in previous work, we still do not believe that they are tight. There are two pessimistic assumptions that may

275

be able to be lifted. For one, we assume that jobs do not begin execution before their PPs, in order to avoid

some complex edge cases in our analysis. Additionally, we assume that each task that carries work into the

beginning of a busy interval has as much lateness as possible. It may be possible to prove that this cannot be

the case.

Selection of GEL Schedulers in the Absence of Intra-Task Precedence Constraints. As discussed in

Chapter 4, the LP techniques used in Chapter 3 cannot immediately be applied in the absence of intra-

task precedence constraints. Therefore, although our analysis is general enough to apply to arbitrary GEL

schedulers, we do not specify either a scheduler like G-FL that provably has particular desired properties,

or a method to choose a GEL scheduler to minimize particular lateness criteria. The same insights used to

compute the response-time bounds in Chapter 4 may also be useful to achieve these goals using a method

other than an LP.

Splitting Jobs with Other Locking Analysis. In Chapter 5, we consider only one mutex queue spin-based

locking protocol, where a CPU waiting to acquire a lock consumes CPU until the lock is available. However,

the technique we use could also be applied to other forms of locking protocols. We leave such extensions as

future work.

More Flexible Mechanisms for Overload Management at Level C in MC2. The virtual time mechanism

proposed in Chapter 6 equally penalizes all level-C tasks when recovering from overload. This technique

makes sense in a mixed-criticality setting, because tasks of greater importance than others could be moved to

level A or level B. However, a finer-grained notion of importance may be preferable: some tasks may not

require the full rigor of level-A or level-B analysis, but may be more important in an overload than other

level-C tasks. Alternative mechanisms that allow different tasks to be treated differently would be useful in

such situations.

276

APPENDIX A: NOTATION USED IN CHAPTER 3

b LP auxilliary variable used while computing G(~x,~Y)

Ci Worst-case execution time for τi

Cmax Maximum Ci for τ

Di Deadline for τi

G LP variable corresponding to G(~x,~Y)

G(~x,~Y) Extra demand from certain analyzed tasks (see (3.12))

H Set of jobs with priority at least that of τi,k

Ii Proportional lateness bound for τi

Imax Maximum proportional lateness bound for τ

Li Lateness bound for τi

Lmax Maximum lateness bound of G-FL for τ

m Processor count

Ri Response time bound for τi

s LP variable corresponding to G(~x,~Y)+S(~Y)

Si(Yi) Extra demand term for τi due to Di < Ti (see (3.8))

Ssum LP variable corresponding to S(~Y)

S(~Y) Sum of Si(Yi) terms over task system (see (3.9))

tb End of last idle interval before yi,k

td Beginning of last idle interval before yi,k

Ti Minimum separation time for τi

Yi Relative PP for τi

Ui Utilization for τi

U+ Ceiling of utilization sum for τ

Wj(t) Total remaining work at time t for jobs of τ j in H

W (t) Total remaining work at time t for jobs in H

xi Component of response time bound Yi + xi +Ci for τi (see (3.26))

277

yi,k PP of τi,k

zi LP auxilliary variable used while computing G(~x,~Y)

δ Constant used to describe already completed work or early completion

τ Task system

τi Task i

τi,k Arbitrary job under analysis

τ j,` Other arbitrary job

278

APPENDIX B: PROOFS OF LEMMAS IN CHAPTER 3

Lemma 3.1. If ∆≥ Yi, then

DBF(τi,Yi,∆)≤Ui∆+Ci ·
(

1− Yi

Ti

)
.

Proof. As first demonstrated in Baruah et al. (1990), for arbitrary-deadline G-EDF,

DBF(τi,∆) =Ci×max
{

0,
⌊

∆−Di

Ti

⌋
+1
}
.

Therefore, for arbitrary GEL schedulers, we instead define

DBF(τi,Yi,∆) =Ci×max
{

0,
⌊

∆−Yi

Ti

⌋
+1
}
. (B.1)

If ∆≥ Yi, then

Ui∆+Ci

(
1− Yi

Ti

)
≥ {By the definition of the floor function}

Ui

(
Ti

⌊
∆−Yi

Ti

⌋
+Yi

)
+Ci

(
1− Yi

Ti

)
= {Rearranging, and because Ui =

Ci
Ti
}

Ci

⌊
∆−Yi

Ti

⌋
+

CiYi

Ti
+Ci−

CiYi

Ti

= {Cancelling and rearranging}

Ci

(⌊
∆−Yi

Ti

⌋
+1
)

= {By (B.1)}

DBF(τi,Yi,∆)

Lemma 3.2. ∀∆≥ 0,DBF(τi,Yi,∆)≤Ui∆+Si(Yi).

Proof. We consider two cases.

We first consider ∆ ∈ [0,Yi). In this case, ∆−Yi < 0, so
⌊

∆−Yi
Ti

⌋
+1≤ 0. Therefore, by the definition of

Si(Yi) in (3.8) and (B.1), DBF(τi,Yi,∆) = 0≤Ui∆+Si(Yi).

279

We then consider ∆≥ Yi. By the definition of Si(Yi) in (3.8),

Ui∆+Si(Yi)≥Ui∆+Ci

(
1− Yi

Ti

)
.

Therefore, by Lemma 3.1,

DBF(τi,Yi,∆)≤Ui∆+Si(Yi).

Lemma 3.5. If~x is compliant and each job τ j,` with higher priority than τi,k finishes with response time no

greater than Yj + x j +C j, then τi,k finishes with response time no greater than Yi + xi +Ci.

Proof. Let δ denote the sum of the amount of execution of τi,k before yi,k and the amount of time by

which it finishes early, so that Ci− δ units remain at time yi,k. By Lemma 3.4, the remaining work at

time yi,k for all jobs in H (including τi,k itself) is at most G(~x,~Y)+ S(~Y). Therefore, there can be at most

G(~x,~Y)+S(~Y)− (Ci−δ) units of competing work from other tasks. (This expression actually bounds all

competing work, but is sufficient as an upper bound for work from other tasks.) Because each Yi ≥ 0, no job

releases after yi,k affect the scheduling of τi,k. As depicted in Figure B.1, a CPU becomes available for τi at

the earliest time that any CPU completes its competing work. Therefore, in the worst case, all CPUs execute

competing work with maximum parallelism, and a CPU becomes available for τi at time

tc = yi,k +
G(~X ,~Y)+S(~Y)−Ci +δ

m
. (B.2)

We consider two cases, depicted in Figure B.2:

Case 1 (Figure B.2(a)). If some predecessor of τi,k is running at time tc, we note that the immediate

predecessor of τi,k is τi,k−1. Because all competing work from other tasks has completed, τi,k can begin

execution immediately upon completion of τi,k−1. Therefore, because τi,k−1 has a response time no greater

than the assumed response bound in (3.10), and τi,k must have been released at least Ti units after τi,k−1, τi,k−1

must complete no later than Yi + xi +Ci−Ti units after the release of τi,k. Because we assumed Ci ≤ Ti, τi,k

must complete within Yi + xi +Ci−Ti +Ci ≤ Yi + xi +Ci units of its release, and the lemma is proven.

280

t

Figure B.1: Possible competing work schedules after yi,k.

Case 2 (Figure B.2(b)). If no predecessor of τi,k is running at time tc, τi,k is eligible for execution at time tc

unless it has already completed. At most Ci−δ units of execution remain, so it completes by time

yi,k +
G(~x,~Y)+S(~Y)−Ci +δ

m
+Ci−δ ≤ {Because δ > δ

m}

yi,k +
G(~x,~Y)+S(~Y)−Ci

m
+Ci

≤ {By Definition 3.1}

yi,k + xi +Ci,

and the lemma is proven.

Lemma 3.6. ~x is a minimum near-compliant vector if and only if

∀i,xi =
G(~x,~Y)+S(~Y)−Ci

m
. (3.26)

Proof. We consider two cases, depending on whether (3.26) holds.

Case 1: (3.26) Holds. If (3.26) holds, then by Definition 3.1,~x is near-compliant. Let δ > 0 and ~x′ be such

that, for some j,

x′j = x j−δ , (B.3)

and for i 6= j, x′i = xi. Then, by the definition of G(~x,~Y) in (3.12),

G(~x′,~Y)≥ G(~x,~Y)−U jδ . (B.4)

281

(a) Case 1

(b) Case 2

Figure B.2: Cases considered in Lemma 3.5

Therefore,

G(~x′,~Y)+S(~Y)−C j

m
≥ {By (B.4)}

G(~x,~Y)−U jδ +S(~Y)−C j

m

= {Rearranging}
G(~x,~Y)+S(~Y)−C j

m
−U jδ

m

= {By (3.26) with i = j}

x j−
U jδ

m

> {Because U j > 0, m > 1, and δ > 0, and by (B.3)}

x′j

Therefore, by Definition 3.1, ~x′ is not near-compliant. Since j and δ were arbitrary, by Definition 3.2,~x is a

minimum near-compliant vector.

282

Case 2: (3.26) Does not Hold. Suppose (3.26) does not hold. If, for some j, x j <
G(~x,~Y)+S(~Y)−C j

m , then by

Definition 3.1,~x is not near-compliant. Thus, if~x is near-compliant, then for some j,

x j >
G(~x,~Y)+S(~Y)−C j

m
. (B.5)

If there is more than one such j, we choose one arbitrarily. We define ~x′ such that

x′j =
G(~x,~Y)+S(~Y)−C j

m
, (B.6)

and for i 6= j,

x′i = xi. (B.7)

By the definition of G(~x,~Y) in (3.12) and (B.5)–(B.7),

G(~x′,~Y)≤ G(~x,~Y). (B.8)

Therefore,

x′j = {By (B.6)}
G(~x,~Y)+S(~Y)−Ci

m

≥ {By (B.8)}
G(~x′,~Y)+S(~Y)−Ci

m
,

and, for i 6= j,

x′i = {By (B.7)}

xi

≥ {By Definition 3.1}
G(~x,~Y)+S(~Y)−Ci

m

≥ {By (B.8)}

283

G(~x′,~Y)+S(~Y)−Ci

m
.

Thus, ~x′ is near-compliant, so by Definition 3.2,~x is not a minimum near-compliant vector.

Lemma 3.7. If the minimum near-compliant vector for the task system exists, it is unique.

Proof. We use proof by contradiction. Assume that two distinct minimum near-compliant vectors exist for

the task system,~x with

∀i,xi =
s−Ci

m
, (B.9)

and~x′ with

∀i,x′i =
s′−Ci

m
. (B.10)

Without loss of generality, assume s′ < s.

We show

s = {By Corollary 3.1}

G(~x,~Y)+S(~Y)

= {By the definition of G(~x,~Y) in (3.12)}

∑
U+−1 largest

(xiUi +Ci−Si(Yi))+S(~Y)

= {By (B.9)}

∑
U+−1 largest

((
s−Ci

m

)
Ui +Ci−Si(Yi)

)
+S(~Y)

= {Rearranging}

∑
U+−1 largest

((
s′−Ci

m

)
Ui +

(
s− s′

m

)
Ui +Ci−Si(Yi)

)
+S(~Y)

< {Because U+ ≤ m and Ui ≤ 1 holds for each i}

s− s′+ ∑
U+−1 largest

((
s′−Ci

m

)
Ui +Ci−Si(Yi)

)
+S(~Y)

= {By (B.10)}

s− s′+ ∑
U+−1 largest

(x′iUi +Ci−Si(Yi))+S(~Y)

284

= {By the definition of G(~x,~Y) in (3.12))}

s− s′+G(~x′,~Y)+S(~Y)

= {By Corollary 3.1}

s− s′+ s′

= {Cancelling}

s. (B.11)

(B.11) is a contradiction, so the lemma is proven.

Lemma 3.9. For any assignment of variables satisfying Constraint Sets 3.1–3.4,

G+Ssum ≥ G(~x,~Y)+S(~Y).

Proof.

G+Ssum ≥ {By (3.31) and Constraint Set 3.4}

∑
U+−1 largest

(xiUi +Ci−Si)+ ∑
τi∈τ

Si

≥ {By (3.30); observe that each Si appearing in the first summation also appears in the second}

∑
U+−1 largest

(xiUi +Ci−Si(Yi))+ ∑
τi∈τ

Si(Yi)

= {By the definition of S(~Y) in (3.9), and the definition of G(~x,~Y) in (3.12)}

G(~x,~Y)+S(~Y).

Lemma 3.10. For any assignment of variables satisfying Constraint Sets 3.1–3.5, ~x is a near-compliant

vector.

Proof. Consider an arbitrary assignment of variables satisfying Constraint Sets 3.1–3.5. For arbitrary i,

xi = {By Constraint Set 3.1}
s−Ci

m

285

≥ {By Constraint Set 3.5}
G+Ssum−Ci

m

≥ {By Lemma 3.9}
G(~x,~Y)+S(~Y)−Ci

m
. (B.12)

By (B.12) and Definition 3.1,~x is a near-compliant vector.

Lemma 3.11. If s < 0, then Constraint Sets 3.1–3.5 are infeasible.

Proof. We use proof by contradiction. Assume Constraint Sets 3.1–3.5 are satisfied by some assignment of

variables with

s < 0. (B.13)

Denote as θ the set of U+−1 tasks that contribute to G(~x,~Y), so that by the definition of G(~x,~Y) in (3.12),

G(~x,~Y) = ∑
τi∈θ

(xiUi +Ci−Si(Yi)). (B.14)

We have

s≥ {By Constraint Set 3.5}

G+Ssum

≥ {By Lemma 3.9}

G(~x,~Y)+S(~Y)

= {By the definition of S(~Y) in (3.9) and (B.14)}

∑
τi∈θ

(xiUi +Ci−Si(Yi))+ ∑
τi∈τ

Si(Yi)

= {By Constraint Set 3.1}

∑
τi∈θ

((
s−Ci

m

)
Ui +Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

= {Rewriting}

∑
τi∈θ

(s
m
·Ui

)
+ ∑

τi∈θ

((−Ci

m

)
Ui +Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

286

> {By (B.13), because θ has U+−1 < m tasks, and 0 <Ui ≤ 1 holds for each Ui}

s+ ∑
τi∈θ

((−Ci

m

)
Ui +Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

= {Rearranging}

s+ ∑
τi∈θ

((
Ci(m−Ui)

m

)
−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

≥ {Because each Si(Yi)≥ 0 by the definition of Si(Yi) in (3.8); observe that each

Si(Yi) in the first summation also appears in the second}

s+ ∑
τi∈θ

Ci(m−Ui)

m

> {Because Ui ≤ 1 < m}

s.

This is a contradiction.

Lemma 3.12. Constraint Sets 3.1–3.5 are feasible.

Proof. We present an assignment of variables that satisfies Constraint Sets 3.1–3.5. Let Cmax denote the

largest value of Ci in the system. Let

s = m2Cmax +mS(~Y), (B.15)

∀i,xi =
s−Ci

m
, (B.16)

∀i,Si = Si(Yi), (B.17)

G = G(~x,~Y), (B.18)

b = (U+−1)th largest value of xiUi +Ci−Si, (B.19)

∀i,zi = max{0, xiUi +Ci−Si−b}, (B.20)

Ssum = S(~Y). (B.21)

Constraint Set 3.1 holds by (B.16).

Constraint Set 3.2 holds by (B.17).

Constraint Set 3.3 holds by (B.18)–(B.20).

287

Constraint Set 3.4 holds by (B.17) and (B.21).

To see that Constraint Set 3.5 holds, note that

G+Ssum = {By (B.18) and (B.21)}

G(~x,~Y)+S(~Y)

= {By the definition of G(~x,~Y) in (3.12)}

∑
U+−1 largest

(xiUi +Ci−Si(Yi))+S(~Y)

= {By (B.15)–(B.16)}

∑
U+−1 largest

((
m2Cmax +mS(~Y)−Ci

m

)
Ui +Ci−Si(Yi)

)
+S(~Y)

< {Because U+ ≤ m, ∀i,Ci ≤Cmax, and each Ui ≤ 1}

∑
m−1 largest

(mCmax +S(~Y)+Cmax)+S(~Y)

= {Rearranging}

(m2−1)Cmax +mS(~Y)

< {By (B.15), because Cmax > 0}

s.

Lemma 3.14. If U+ > 1 and s <Cmax, then Constraint Sets 3.1–3.5 are infeasible.

Proof. We use proof by contradiction. Assume U+ > 1 and Constraint Sets 3.1–3.5 are satisfied by some

assignment of variables with

s <Cmax. (B.22)

We denote as φ the set of U+−1 tasks with the largest values of Ci. Because φ has U+−1 tasks, by the

definition of G(~x,~Y) in (3.12),

G(~x,~Y)≥ ∑
τi∈φ

(xiUi +Ci−Si(Yi)). (B.23)

s≥ {By Constraint Set 3.5}

288

G+Ssum

≥ {By Lemma 3.9}

G(~x,~Y)+S(~Y)

≥ {By the definition of S(~Y) in (3.9) and (B.23)}

∑
τi∈φ

(xiUi +Ci−Si(Yi))+ ∑
τi∈τ

Si(Yi)

= {By Constraint Set 3.1}

∑
τi∈φ

((
s−Ci

m

)
Ui +Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

= {Rewriting}

∑
τi∈φ

((
s−Cmax +Cmax−Ci

m

)
Ui +Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

= {Rewriting}

∑
τi∈φ

(
s−Cmax

m
·Ui

)
+ ∑

τi∈φ

((
Cmax−Ci

m

)
Ui +Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

> {By (B.22), because φ has U+−1 < m tasks, and 0 <Ui ≤ 1 holds for each Ui}

s−Cmax + ∑
τi∈φ

((
Cmax−Ci

m

)
Ui +Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

≥ {Because Cmax ≥Ci for all i}

s−Cmax + ∑
τi∈φ

(Ci−Si(Yi))+ ∑
τi∈τ

Si(Yi)

≥ {Because each Si(Yi)≥ 0 by the definition of Si(Yi) in (3.8); observe that each

Si(Yi) in the first summation also appears in the second.}

s−Cmax + ∑
τi∈φ

Ci

≥ {By the definition of φ , which contains the U+−1 > 0 tasks with the largest values of Ci}

s.

This is a contradiction.

289

APPENDIX C: NOTATION USED IN CHAPTER 6

Ai,k(v) Function used to account for completion time in the Few Tasks Case (see (6.13))

Arn
i (v) Upper bound on Ai,k(v) for [tr,∞) (see (6.29))

bi,k Earliest time such that v(bi,k) = v(ri,k)+Ti (see Definition 6.5)

Ci Worst-case execution time of τi in the absence of overload (see Property 6.11)

DC
i (t0, t1) Upper bound on De

i (t0, t1) when t0 > tr (see Definition 6.18)

De
i (t0, t1) Total execution cost from jobs τi,k with t0 ≤ ri,k ≤ yi,k ≤ t1 (see Definition 6.6)

ei,k Actual execution of τi,k (see Definition 6.1)

ec
i,k(t) Work completed by τi,k before actual time t (see Definition 6.2)

ep
i,k Work after yi,k for jobs of τi prior to τi,k (see Definition 6.9)

er
i,k(t) Work remaining for τi,k after actual time t (see Definition 6.3)

F Constant that guarantees idleness in a certain interval (see (6.152))

L Arbitrary integer parameter with 0≤ L < m

Li Selection of L for τi in Section 6.3 (see Definition 6.14)

m Number of CPUs in the system

n Number of level-C tasks in the system

Oi,k Term to account for supply restriction overload (see (6.20))

Oo
i,k Term used to bound the contribution to Oi,k from [0, tr) (see (6.44))

Orn Term used to bound the contribution to Oi,k from [tr,∞) (see (6.39))

op(t0, t1) Supply restriction overload over [t0, t1) (see (6.8))

P Set of all processors

Pp Processor p

q Base of the exponential function in ∆e (t) (see (6.49))

ri,k Release time of τi,k

Ri,k Term to account for work completed in [tb
i,k,yi,k) (see (6.21))

Ro
i,k Term to account for the contribution of [0, tr) to Ri,k (see (6.43))

Si Term used to account for Yi < Ti (see (6.38))

290

s(t) Speed of virtual time at actual time t

sr Speed of virtual time during recovery interval (see Property 6.6)

Ti Minimum separation time between jobs of τi in virtual time (see (6.5))

ta Actual time under immediate analysis

tc
i,k Completion time of τi,k

td Time at which some processor is idle and x j
(
y j,`
)
= xs

j(1) is x-sufficient for all pending τ j,`

(see Definition 6.20)

te Time at which ∆(t) switches from linear to exponential (see (6.48))

tn Time at which the virtual clock can return to normal speed, because all jobs

pending at td are complete (see Definition 6.21)

t pre
n Time after which xi (yi,k) = xs

i (1) is x-sufficient for all pending jobs (see (6.140))

tr Time at start of recovery interval [tr, tn) (see Definition 6.13)

ts Time at which virtual clock actually slows to stable value

tδ Time at which ∆(tδ) = δ (see (6.134))

ûp Nominal utilization (of availability) of Pp

utot Sum of nominal utilizations over all processors (see (6.10))

U r
i Utilization of τi in [tr, tn) (see (6.28))

Uv
i Utilization of τi in virtual time (see (6.27))

v(t) Virtual time corresponding to actual time t (see (6.4))

Wi,k Term to account for work (see (6.17))

W o
i,k Term to account for the contribution of [0, tr) to Wi,k (see (6.42))

W r
i,k Term to account for part of Wi,k when tb

i,k ∈ [tr, tn) (see (6.112))

xi (t) Upper bound described in Definition 6.8

ẋi(t) Upper bound described in Definition 6.16

xp
i (t) Lower bound described in Definition 6.19

xpr
i (t) Particular choice of xp

i (t) defined in (6.73)

xs
i (sI) Asymptotic bound on xi (t) in the absence of overload when s(t) = sI (see (6.37))

x f
i,k x-sufficient choice of xi (yi,k) in the Few Tasks Case (see (6.15))

291

xm
i,k x-sufficient choice of xi (yi,k) in the Many Tasks Case (see (6.24))

yi,k PP of τi,k

Yi Relative PP of τi in virtual time (see (6.6))

βp(t0, t1) Total time in [t0, t1) when Pp is available to level C (see Definition 6.7)

δ minτi∈τ(xs
i (1)− xs

i (sr)) (defined in (6.41))

∆(t) Function such that xi (t) = xs
i (sr)+∆(t) is x-sufficient for t in [tr, tn) (see (6.51))

∆e (t) Exponential component of ∆(t) (see (6.47))

∆` (t) Linear component of ∆(t) (see (6.45))

θi,k A set of jobs pending at tb
i,k (see Lemma 6.4)

θi,k Set of tasks without jobs in θi,k (see Lemma 6.4)

κ Jobs with yi,k ∈ [0, tr) and tc
i,k ∈ [tr,∞) (see Definition 6.17)

λ Constant value of ∆(t) in (−∞, tr) (see (6.40))

ρ Upper bound on amount of time that a job is pending after tr or its PP in [tr, tn) (see (6.50))

σp Constant used to characterize supply restriction (see Property 6.12)

τ Set of all level-C tasks

τi Task i

τi,k Job k of τi

φ Slope of ∆` (t) (see (6.46))

ψ Jobs with tb
i,k ∈ [0, tr) and yi,k ∈ [tr,∞) (see Definition 6.17)

Ωi,k(j) Indicator variable to account for pessimism in Wi,k (see (6.104))

292

APPENDIX D: COMPUTING AND ANALYZING xs
I(sI)

Recall that xs
i (sI) is defined in (6.37). As promised in Section 6.3, we now describe how to use linear

programming to compute xs
i (sI) and prove several results mentioned in that section.

Our technique for computing xs
i (sI) involves formulating a linear program very similar to that described

in Chapter 3 in the absence of restricted supply.

The formulation of our LP is based on the following theorem, which is similar to Corollary 3.1. We use

w instead of s to avoid confusion with s(t) or sI .

Theorem D.1. If ∀i,utot−Li ·Uv
i · sI > 0 and

∀i,xc
i , max

{
0,

w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

}
, (D.1)

(choice), where

w , ∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j)+ ∑
τ j∈τ

S j, (D.2)

then xs
i (sI) = xc

i satisifies the definition of xs
i (sI) in (6.37).

Observe that w is independent of the task index i.

Proof. Let τi ∈ τ be arbitrary. We consider two cases, one for each term of the max in the definition of xc
i in

the statement of the theorem.

Case 1: xc
i = 0. In this case, by the definition of xc

i in the statement of the lemma and the condition that

utot−Li ·Uv
i · sI > 0,

w+(m−utot−1)Ci +Orn ≤ 0. (D.3)

Therefore,

∑m−1 largest(C j +Uv
j · sI · xc

j−S j)+∑τ j∈τ S j +(m−utot−1)Ci +Orn +Li ·Uv
j · sI · xc

i

utot

= {By the definition of w in (D.2)}
w+(m−utot−1)Ci +Orn +Li ·Uv

i · sI · xc
i

utot

= {By the case we are considering}
w+(m−utot−1)Ci +Orn

utot

293

≤ {By (D.3)}

0.

Thus, xs
i (sI) = xc

i satisfies the definition of xs
i (sI) in (6.37) for τi.

Case 2: xc
i > 0. In this case, by the definition of xc

i in the statement of the lemma we have

xc
i =

w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

.

We manipulate this expression to the form in the definition of xs
i (sI) in (6.37). Multiplying both sides by

utot−Li·Uv
i ·sI

utot
yields

utot−Li ·Uv
i · sI

utot
· xc

i =
w+(m−utot−1)Ci +Orn

utot
.

Adding Li·Uv
i ·sI

utot
· xc

i to both sides yields

xc
i =

w+(m−utot−1)Ci +Orn +Li ·Uv
i · sI · xc

i
utot

.

Finally, substituting the expression for w in (D.2),

xc
i =

∑m−1 largest(C j +Uv
j · sI · xc

j−S j)+∑τ j∈τ S j +(m−utot−1)Ci +Orn +Li ·Uv
i · sI · xc

i

utot
.

By the case we are considering, both sides of this expression must be greater than zero. Thus, xs
i (sI) = xc

i

satisfies the definition of xs
i (sI) in (6.37) for τi.

Our LP has, for each τi, a variable xc
i as in Theorem D.1, corresponding to xs

i (sI), and an auxilliary

variable zi. Our LP also has task-independent variables w (as in Theorem D.1), G (corresponding to the first

sum in the definition of w in (D.2)), Ssum (corresponding to the second sum in the definition of w in (D.2))

and auxilliary variable b. All other quantities that appear are constants.

We will present constraint sets for determining xc
i in the same order as the constraint sets in Section 3.3.

The first constraint set ensures that

xc
i ≥max

{
0,

w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

}
. (D.4)

294

It corresponds to Constraint Set 3.1 that defined xi, but provides only an inequality. Although Theorem D.1

requires equality, this discrepancy will be handled in Lemma D.3 below.

Constraint Set D.1.

∀i : xc
i ≥

w+(m−utot−1) ·Ci +Orn

utot−Li ·Uv
i · sI

,

∀i : xc
i ≥ 0.

Because we consider Si to be a constant, we do not require a constraint that corresponds with Constraint

Set 3.2.

The next constraint set is used to determine the value of the first sum in the definition of w in (D.2). This

sum corresponds with G(~x,~Y) defined in (3.12), so the constraint is almost identical to Constraint Set 3.3. As

discussed there, this constraint actually ensures that G provides an upper bound on that sum, rather than an

exact value. In other words, it actually guarantees that

G≥ ∑
m−1 largest

(Ci +Uv
i · sI · xc

i −Si). (D.5)

Although Theorem D.1 requires equality, this discrepancy will be handled in Lemmas D.1–D.2 below.

Constraint Set D.2.

G = b · (m−1)+ ∑
τi∈τ

zi,

∀i : zi ≥ 0,

zi ≥Ci +Uv
i · sI · xc

i −Si−b.

Rather than having a constraint that corresponds to Constraint Set 3.4 (where we viewed the Yj terms as

variables), we define a constant

Ssum = ∑
τ j∈τ

S j. (D.6)

The next constraint provides a bound on the value of w. This constraint differs from the definition of w

in (D.2) because it is an inequality. However, we will show in Lemma D.2 below that for an optimal solution

to the LP, it reduces to an equality. This constraint corresponds to Constraint Set 3.5.

295

Constraint Set D.3.

w≥ G+Ssum.

We must show that, for some appropriate optimization function, an optimal solution to Constraint

Sets D.1–D.3 can be used to compute the values of w and xc
i described in Theorem D.1. We will show below

that if we minimize w and an optimal solution is found, we can use the resulting w in the definition of xc
i in

(D.1), and (D.2) must be satisfied as well with that choice of xc
i .

To do so, we first characterize the value of w for any feasible solution, providing a lower bound in

Lemma D.1 and a characterization relating to an optimal value in Lemma D.2. Observe that the expression in

Lemma D.1 is identical to the definition of w in (D.2), except that it replaces the equality with an inequality.

Lemma D.1. For any feasible assignment of variables satisfying Constraint Sets D.1–D.3,

w≥ ∑
m−1 largest

(Ci +Uv
i · sI · xc

i −Si)+ ∑
τ j∈τ

Si.

Proof. We have

w≥ {By Constraint Set D.3}

G+Ssum

≥ {By (D.5)}

∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j)+Ssum

= {By the definition of Ssum in (D.6)}

∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j)+ ∑
τ j∈τ

S j.

The next lemma will be used to characterize the optimal value of w with an appropriate optimization

function.

Lemma D.2. If V is a feasible assignment of variables that satisfies Constraint Sets D.1–D.3 and

w > ∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j)+ ∑
τ j∈τ

S j,

296

then there is also a feasible assignment of variables V ′ (with variable assignments denoted with primes) such

that w′ < w. In other words, w has not taken its optimal value upon minimization.

Proof. We use the following assignment for V ′:

w′ = ∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j)+Ssum, (D.7)

∀i,xc′
i = xc

i , (D.8)

G′ = ∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j), (D.9)

b′ = (m−1)th largest value of C j +Uv
j · sI · xc

j−S j, (D.10)

∀i,z′i = max{0,C j +Uv
j · sI · xc

j−S j−b′}. (D.11)

By the statement of the lemma, the definition of Ssum in (D.6), and by (D.7),

w′ < w. (D.12)

We will first show that Constraint Set D.1 holds by considering arbitrary τi.

xc′
i = {By (D.8)}

xc
i

≥ {By (D.4)}

max
{

0,
w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

}
≥ {By (D.12)}

max
{

0,
w′+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

}
. (D.13)

Constraint Set D.2 holds by (D.8)–(D.11).

To show Constraint Set D.3 holds,

w′ = {By (D.7)}

∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j)+Ssum

297

= {By (D.9)}

G′+Ssum.

By Lemmas D.1–D.2, we can minimize w as our optimization objective, and the definition of w in

Theorem D.1 must be satisfied by the resulting solution. However, the definition of xc
i in (D.1) is not

guaranteed to hold, because Constraint Set D.1 also guaranteed only an inequality. Fortunately, we can use

the resulting value of w in (D.1) to compute correct values of xc
i , as shown in the following lemma.

Lemma D.3. If V is a feasible assignment of variables satisfying Constraint Sets D.1–D.3, then there

is also an assignment V ′ (with variables denoted with primes, as before) such that w′ = w and ∀i,xc′
i =

max
{

0, w+(m−utot−1)Ci+Orn

utot−Li·Uv
i ·sI

}
.

Proof. We use the following assignment for V ′:

w′ = w, (D.14)

∀i,xc′
i = max

{
0,

w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

}
, (D.15)

G′ = ∑
m−1 largest

(C j +Uv
j · sI · xc′

j −S j), (D.16)

b′ = (m−1)th largest value of C j +Uv
j · sI · xc′

j −S j, (D.17)

∀i,z′i = max{0,C j +Uv
j · sI · xc′

j −S j−b′}. (D.18)

Constraint Set D.1 holds by (D.15).

Constraint Set D.2 holds by (D.16)–(D.18).

To show that Constraint Set D.3 holds, we first show that for arbitrary j,

xc
j ≥ {By (D.4)}

max

{
0,

w+(m−utot−1)C j +Orn

utot−L j ·Uv
j · sI

}

= {By (D.15)}

xc′
j . (D.19)

298

Then, we have

w′ = {By (D.14)}

w

≥ {By Lemma D.1}

∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j)+ ∑
τ j∈τ

S j

≥ {By (D.19)}

∑
m−1 largest

(C j +Uv
j · sI · xc′

j −S j)+ ∑
τ j∈τ

S j

= {By (D.16)}

G′+ ∑
τ j∈τ

S j

= {By the definition of Ssum in (D.6)}

G′+Ssum.

We will next show that, if Property 6.13 holds, a minimum feasible w does in fact exist. While proving

this result, we will several times exploit the fact that S j is nonnegative, as shown now.

Lemma D.4. For all j, S j ≥ 0.

Proof. We have

S j = {By the definition of S j in (6.38)}

C j ·
(

1− Yi

Ti

)
≥ {Because Yi ≤ Ti}

C j ·
(

1− Tj

Tj

)
= {Cancelling}

0.

299

We now show that a lower bound on w exists for feasible assignments. We will later show that feasible

assignments do exist. Together, these results are sufficient to show that an optimal value of w exists.

Lemma D.5. For any feasible assignment of variables V satisfying Constraint Sets D.1–D.3,

w≥ ∑
m−1 largest

C j.

Proof. We have

w≥ {By Lemma D.1}

∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j)+ ∑
τ j∈τ

S j

≥ {By Lemma D.4; observe that each S j appearing in the first summation also appears in the second}

∑
m−1 largest

(C j +Uv
j · sI · xc

j)

≥ {By Constraint Set D.1, which implies each xc
j ≥ 0}

∑
m−1 largest

C j.

We now show that, given Property 6.13, the LP is feasible.

Lemma D.6. If Property 6.13 holds, then a feasible assignment of variables V for Constraint Sets D.1–D.3

exists.

Proof. Let Cmax be the largest Ci in the system. For notational convenience, let

Usum , ∑
m−1 largest

Uv
j , (D.20)

Lt
max , max

τ j∈τ
(L jUv

j) (D.21)

(term). We use the following assignment for V :

w = max
{

Cmax,
Usum · (mCmax +Orn)+(utot−Lt

max) · ((m−1)Cmax +Ssum)

utot−Lt
max−Usum

}
, (D.22)

∀i,xc
i =

w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

, (D.23)

300

G = ∑
m−1 largest

(C j +Uv
j · sI · xc

j−S j), (D.24)

b = (m−1)th largest value of C j +Uv
j · sI · xc

j−S j, (D.25)

∀i,zi = max{0,C j +Uv
j · sI · xc

j−S j−b}. (D.26)

To demonstrate that Constraint Set D.1 holds, we first bound the expression that appears in the denomi-

nator of the definition of xc
i in (D.23).

utot−Li ·Uv
i · sI ≥ {Because sI ≤ 1}

utot−Li ·Uv
i

≥ {By the definition of “max”}

utot−max
τi∈τ

(Li ·Uv
i)

> {By Property 6.13}

∑
m−1 largest

Uv
i

> {Because each Uv
i > 0}

0 (D.27)

The first constraint in Constraint Set D.1 holds by (D.23). We now show that the second constraint also holds.

xc
i = {By (D.23)}

w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

≥ {By (D.22) and (D.27)}
Cmax +(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

≥ {By the definition of Cmax and by (D.27)}
(m−utot)Ci +Orn

utot−Li ·Uv
i · sI

≥ {By (D.27), because Ci and Orn are nonnegative}

0 (D.28)

301

Constraint Set D.2 holds by (D.24)–(D.26).

By (D.22),

w≥ Usum · (mCmax +Orn)+(utot−Lt
max) · ((m−1)Cmax +Ssum)

utot−Lt
max−Usum

. (D.29)

To show that Constraint Set D.3 holds, we start by multiplying both sides of (D.29) by utot−Lt
max−Usum

utot−Lt
max

, resulting

in
utot−Lt

max−Usum

utot−Lt
max

·w≥ Usum · (mCmax +Orn)

utot−Lt
max

+(m−1)Cmax +Ssum.

Adding Usum
utot−Lt

max
·w to both sides yields

w≥ Usum · (w+mCmax +Orn)

utot−Lt
max

+(m−1)Cmax +Ssum. (D.30)

Thus, we have

w≥ {Rewriting (D.30), and using (D.20)}

∑
m−1 largest

(
Cmax +Uv

j ·
w+mCmax +Orn

utot−Lt
max

)
+Ssum

≥ {By the definition of Lt
max in (D.21), and because sI ≤ 1}

∑
m−1 largest

(
Cmax +Uv

j ·
w+mCmax +Orn

utot−L j ·Uv
j · sI

)
+Ssum

≥ {By (D.27) and the definition of Cmax}

∑
m−1 largest

(
C j +Uv

j ·
w+mC j +Orn

utot−L j ·Uv
j · sI

)
+Ssum

≥ {Because C j > 0, utot > 0, and by (D.27)}

∑
m−1 largest

(
C j +Uv

j ·
w+(m−utot−1)C j +Orn

utot−L j ·Uv
j · sI

)
+Ssum

= {By (D.23)}

∑
m−1 largest

(
C j +Uv

j · xc
i
)
+Ssum

≥ {Because 0 < sI ≤ 1 and by (D.28)}

∑
m−1 largest

(
C j +Uv

j · sI · xc
i
)
+Ssum

302

≥ {By Lemma D.4}

∑
m−1 largest

(
C j +Uv

j · sI · xc
i −S j

)
+Ssum

= {By (D.24)}

G+Ssum.

We combine the previous results into the main result of this appendix.

Theorem D.2. If ∀i,utot−Li ·Uv
i · sI > 0, then all xs

i (sI) values can be computed by minimizing w subject to

Constraint Sets D.1–D.3, followed by using the assignment of xc
i in (D.1).

Proof. By Lemma D.6, Constraint Sets D.1–D.3 are feasible. By Lemma D.5 and the linearity of Constraint

Sets D.1–D.3, a unique minimum value of w exists. Without loss of generality, let V be an assignment that

achieves such a value. Then, by Lemma D.3, there is an assignment V ′ such that w′ = w and

∀i,xc′
i = max

{
0,

w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i · sI

}
(D.31)

(D.31) is simply (D.1) with xc′
i in place of xc

i . Furthermore, applying Lemmas D.1 and D.2 and the fact that

w′ = w is the minimum possible value, we have

w = ∑
m−1 largest

(C j +Uv
j · sI · xc′

j −S j)+ ∑
τ j∈τ

S j.

Therefore, applying Theorem D.1 with xc
i = xc′

i , we have xs
i (sI) = xc′

i .

The one promised result that remains to be shown is that a feasible solution exists for any s′I ≤ 1 as long

as one exists for sI = 1. We show that result now.

Theorem D.3. If a feasible assignment of variables V satisfies Constraint Sets D.1–D.3 with sI = 1 and

utot−Li ·Uv
i > 0, then a feasible assignment of variables V ′ exists that satisfies Constraint Sets D.1–D.3 for

arbitary s′I ≤ 1.

Proof. We use the following assignment for V ′:

w′ = w, (D.32)

303

∀i,xc′
i = xc

i , (D.33)

G′ = ∑
m−1 largest

(C j +Uv
j · s′I · xc

j−S j), (D.34)

b′ = (m−1)th largest value of C j +Uv
j · s′I · xc

j−S j, (D.35)

∀i,z′i = max{0,C j +Uv
j · s′I · xc

j−S j−b′}. (D.36)

Because utot−Li ·Uv
i > 0 and 0 < sI ≤ 1,

utot−Li · sI ·Uv
i > 0. (D.37)

To show that Constraint Set D.1 holds, we consider two cases for each τi.

Case 1: w+(m−utot−1)Ci +Orn ≤ 0. In this case,

xc′
i = {By (D.33)}

xc
i

≥ {By Constraint Set D.1}

0

= {By (D.37) and the case we are considering}

max
{

0,
w+(m−utot−1)Ci +Orn

utot−Li · sI ·Uv
i

}
.

Case 2: w+(m−utot−1)Ci +Oi,k > 0. In this case,

xc′
i = {By (D.33)}

xc
i

≥ {By (D.4) with sI = 1}

max
{

0,
w+(m−utot−1)Ci +Orn

utot−Li ·Uv
i

}
= {By (D.32)}

max
{

0,
w′+(m−utot−1)Ci +Orn

utot−Li ·Uv
i

}

304

≥ {By (D.37) and the case we are considering, because 0 < sI < 1}

max
{

0,
w′+(m−utot−1)Ci +Orn

utot−Li · sI ·Uv
i

}
.

Constraint Set D.2 holds by (D.33)–(D.36).

To show Constraint Set D.3 holds,

w′ = {By (D.32)}

w

≥ {By Lemma D.1 with sI = 1}

∑
m−1 largest

(C j +Uv
j · xc

j−S j)+Ssum

≥ {Because 0 < s′I ≤ 1}

∑
m−1 largest

(C j +Uv
j · s′I · xc

j−S j)+Ssum

= {By (D.34)}

G′+Ssum.

Finally, we briefly discuss the use of linear programming to determine a choice of Yi. The value of Yi in

our analysis is assumed to remain constant when the virtual clock speed changes. Furthermore, during the

typical behavior of a system, sI = 1 should be used. Therefore, if using linear programming to determine the

best choice of Yi, it should be done using sI = 1.

Up to this point, Yi has been assumed to be a constant. Similarly, Si, which depends on Yi by the definition

of Si in (6.38), and Ssum, which depends on Si by the definition of Ssum in (D.6), have also been considered to

be constants. These can be changed to variables as long as the following constraint sets are added. The first

constrains the choice of Yi itself to match the assumptions used in our analysis.

Constraint Set D.4.

∀i,Yi ≥ 0,

∀i,Ti ≥ Yi.

305

The next constraint set simply specifies the value of Si according to the definition of Si in (6.38).

Constraint Set D.5.

∀i,Si =Ci ·
(

1− Yi

Ti

)
.

The final constraint set specifies the value of Ssum according to the definition of Ssum in (D.6).

Constraint Set D.6.

Ssum = ∑
τ j∈τ

S j.

Any optimization function can be used that ensures, under an optimal solution, the minimal value of

w with respect to the chosen values of Yi. If the optimization function has such a property, then all of the

reasoning in this appendix will continue to hold. Because each xc
i cannot increase as a result of a decrease

in w, such a property is easy to achieve for a reasonable optimization function that attempts to minimize xc
i

values. If w is not actually guaranteed to be minimized, the resulting Yi values can then be used with the

method described in Theorem D.2. This can only result in better response-time bounds.

306

BIBLIOGRAPHY

Anderson, J. and Srinivasan, A. (2000). Early-release fair scheduling. In Proceedings of the 12th Euromicro
Conference on Real-Time Systems, pages 35–43.

Anderson, J. H., Bud, V., and Devi, U. C. (2008). An EDF -based restricted-migration scheduling algorithm
for multiprocessor soft real-time systems. Real-Time Systems, 38(2):85–131.

Anderson, J. H., Erickson, J. P., Devi, U. C., and Casses, B. N. (2014). Optimal semi-partitioned scheduling
in soft real-time systems. In Proceedings of the 20th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications. To appear.

Anderson, J. H. and Srinivasan, A. (2004). Mixed pfair/erfair scheduling of asynchronous periodic tasks.
Journal of Computer and System Sciences, 68(1):157–204.

Aydin, H., Melhem, R., Mosse, D., and Mejia-Alvarez, P. (2001). Optimal reward-based scheduling for
periodic real-time tasks. IEEE Transactions on Computers, 50(2):111–130.

Baker, T. P. and Baruah, S. K. (2009). An analysis of global EDF schedulability for arbitrary-deadline
sporadic task systems. Real-Time Systems, 43(1):3–24.

Baker, T. P., Cirinei, M., and Bertogna, M. (2008). Edzl scheduling analysis. Real-Time Systems, 40(3):264–
289.

Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., Van der Ster, S., and Stougie, L.
(2012). The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task
systems. In Proceedings of the 24th Euromicro Conference on Real-Time Systems, pages 145–154.

Baruah, S., Cohen, N., Plaxton, C., and Varvel, D. (1996). Proportionate progress: A notion of fairness in
resource allocation. Algorithmica, 15(6):600–625.

Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., and Shasha, D. (1991). On-line scheduling in
the presence of overload. In Proceedings of the 32nd Annual Symposium On Foundations of Computer
Science, pages 100–110.

Baruah, S., Mok, A., and Rosier, L. (1990). Preemptively scheduling hard-real-time sporadic tasks on one
processor. In Proceedings of the 11th IEEE Real-Time Systems Symposium, pages 182–190.

Baruah, S. K., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., Megow, N., and Stougie,
L. (2010). Scheduling real-time mixed-criticality jobs. In Hlinĕený, P. and Kuc̆era, A., editors,
Mathematical Foundations of Computer Science 2010, volume 6281 of Lecture Notes in Computer
Science, pages 90–101. Springer Berlin Heidelberg.

Bastoni, A., Brandenburg, B., and Anderson, J. (2010). An empirical comparison of global, partitioned, and
clustered multiprocessor edf schedulers. In Proceedings of the 31st Real-Time Systems Symposium,
pages 14–24.

Bastoni, A., Brandenburg, B., and Anderson, J. (2011). Is semi-partitioned scheduling practical? In
Proceedings of the 23rd Euromicro Conference on Real-Time Systems, pages 125–135.

Bernat, G., Burns, A., and Llamosi, A. (2001). Weakly hard real-time systems. IEEE Transactions on
Computers, 50(4):308–321.

307

Block, A. (2008). Adaptive Multiprocessor Real-Time Systems. PhD thesis, The University of North Carolina
at Chapel Hill.

Bougueroua, L., George, L., and Midonnet, S. (2007). Dealing with execution-overruns to improve the
temporal robustness of real-time systems scheduled FP and EDF. In Proceedings of the 2nd International
Conference on Systems, pages 52–52.

Brandenburg, B. B. (2011). Scheduling and Locking in Multiprocessor Real-Time Operating Systems. PhD
thesis, The University of North Carolina at Chapel Hill.

Brandenburg, B. B. and Anderson, J. H. (2007). Feather-trace: A light-weight event tracing toolkit. In
Proceedings of the 3rd Workshop on Operating Systems Platforms for Embedded Real-Time Applications,
pages 61–70.

Buttazzo, G. C., Lipari, G., Caccamo, M., and Abeni, L. (2002). Elastic scheduling for flexible workload
management. IEEE Transactions on Computers, 51(3):289–302.

Buttazzo, G. C. and Stankovic, J. A. (1995). Adding robustness in dynamic preemptive scheduling. In Fussell,
D. S. and Malek, M., editors, Responsive Computer Systems: Steps Toward Fault-Tolerant Real-Time
Systems, volume 297 of The Springer International Series in Engineering and Computer Science, pages
67–88. Springer US.

Chakraborty, S., Kunzli, S., and Thiele, L. (2003). A general framework for analysing system properties in
platform-based embedded system designs. In Proceedings of the 2003 Design, Automation and Test in
Europe Conference and Exhibition, pages 190–195.

Cho, H. (2006). Utility Accrual Real-Time Scheduling and Synchronization on Single and Multiprocessors:
Models, Algorithms, and Tradeoffs. PhD thesis, Virginia Polytechnic Institute and State University.

Clark, R. K. (1990). Scheduling Dependent Real-Time Activities. PhD thesis, Carnegie Mellon University.

Devi, U. C. and Anderson, J. H. (2008). Tardiness bounds under global edf scheduling on a multiprocessor.
Real-Time Systems, 38(2):133–189.

Durbin, M. (2010). All About High-Frequency Trading. McGraw-Hill, 1 edition.

Elliott, G. A., Kim, N., Erickson, J. P., Liu, C., and Anderson, J. H. (2014). Minimizing response times
of automotive dataflows on multicore. In Proceedings of the 20th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications. To appear.

Erickson, J., Coombe, G., and Anderson, J. (2012). Soft real-time scheduling in google earth. In Proceedings
of the 18th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 141–150.

Garyali, P. (2010). On best-effort utility accrual real-time scheduling on multiprocessors. Master’s thesis,
The Virginia Polytechnic Institute and State University.

Ghazalie, T. M. and Baker, T. P. (1995). Aperiodic servers in a deadline scheduling environment. Real-Time
Systems, 9(1):31–67.

Hamdaoui, M. and Ramanathan, P. (1995). A dynamic priority assignment technique for streams with (m,
k)-firm deadlines. IEEE Transactions on Computers, 44(12):1443–1451.

308

Herman, J., Kenna, C., Mollison, M., Anderson, J., and Johnson, D. (2012). Rtos support for multicore
mixed-criticality systems. In Proceedings of the 18th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 197–208.

Jan, M., Zaourar, L., and Pitel, M. (2013). Maximizing the execution rate of low-criticality tasks in mixed
criticality systems. In Proceedings of the 1st Workshop on Mixed Criticality Systems, pages 43–48.

Koren, G. and Shasha, D. (1994). MOCA: a multiprocessor on-line competitive algorithm for real-time
system scheduling. Theoretical Computer Science, 128(1–2):75–97.

Koren, G. and Shasha, D. (1995a). Skip-over: algorithms and complexity for overloaded systems that allow
skips. In Proceedings of the 16th IEEE Real-Time Systems Symposium, pages 110–117.

Koren, G. and Shasha, D. (1995b). Dover: An optimal on-line scheduling algorithm for overloaded uniproces-
sor real-time systems. SIAM Journal on Computing, 24(2):318–339.

Lee, S. K. (1994). On-line multiprocessor scheduling algorithms for real-time tasks. In Proceedings of IEEE
Region 10’s Ninth Annual International Conference, pages 607–611 vol.2.

Leontyev, H. and Anderson, J. H. (2010). Generalized tardiness bounds for global multiprocessor scheduling.
Real-Time Systems, 44(1-3):26–71.

Leontyev, H., Chakraborty, S., and Anderson, J. H. (2011). Multiprocessor extensions to real-time calculus.
Real-Time Systems, 47(6):562–617.

Li, H. and Baruah, S. (2012). Global mixed-criticality scheduling on multiprocessors. In Proceedings of the
24th Euromicro Conference on Real-Time Systems, pages 166–175.

Li, P. (2004). Utility Accrual Real-Time Scheduling: Models and Algorithms. PhD thesis, Virginia Polytechnic
Institute and State University.

Li, P., Wu, H., Ravindran, B., and Jensen, E. (2006). A utility accrual scheduling algorithm for real-time
activities with mutual exclusion resource constraints. Computers, IEEE Transactions on, 55(4):454–469.

Lin, K. and Natarajan, S. (1988). Expressing and maintaining timing constraints in flex. In Proceedings of
the 9th IEEE Real-Time Systems Symposium, pages 96–105.

Liu, C. and Anderson, J. (2010). Supporting soft real-time dag-based systems on multiprocessors with no
utilization loss. In Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 3–13.

Liu, C. and Anderson, J. (2011). Supporting graph-based real-time applications in distributed systems. In
Proceedings of the 17th IEEE Embedded and Real-Time Computing Systems and Applications, pages
143–152.

Liu, J. W., Lin, K., Shih, W., Yu, A., Chung, J., and Zhao, W. (1991). Algorithms for scheduling imprecise
computations. Computer, 24(5):58–68.

Locke, C. (1986). Best-Effort Decision Making for Real-Time Scheduling. PhD thesis, Carnegie Mellon
University.

Megel, T., Sirdey, R., and David, V. (2010). Minimizing task preemptions and migrations in multiprocessor
optimal real-time schedules. In Proceedings of the 31st IEEE Real-Time Systems Symposium, pages
37–46.

309

Mollison, M. S., Erickson, J. P., Anderson, J. H., Baruah, S. K., and Scoredos, J. A. (2010). Mixed-criticality
real-time scheduling for multicore systems. In Proceedings of the IEEE International Conference on
Embedded Software and Systems, pages 1864–1871, Washington, DC, USA. IEEE Computer Society.

Ogryczak, W. and Tamir, A. (2003). Minimizing the sum of the k largest functions in linear time. Information
Processing Letters, 85(3):117–122.

Regnier, P., Lima, G., Massa, E., Levin, G., and Brandt, S. (2011). Run: Optimal multiprocessor real-
time scheduling via reduction to uniprocessor. In Proceedings of the 32nd IEEE Real-Time Systems
Symposium (RTSS), pages 104–115.

Santy, F., George, L., Thierry, P., and Goossens, J. (2012). Relaxing mixed-criticality scheduling strictness
for task sets scheduled with fp. In Proceedings of the 24th Euromicro Conference on Real-Time Systems,
pages 155–165.

Santy, F., Raravi, G., Nelissen, G., Nelis, V., Kumar, P., Goossens, J., and Tovar, E. (2013). Two protocols
to reduce the criticality level of multiprocessor mixed-criticality systems. In Proceedings of the 21st
International Conference on Real-Time Networks and Systems, pages 183–192, New York, NY, USA.
ACM.

Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers, 39(9):1175–1185.

Spuri, M., Buttazzo, G., and Sensini, F. (1995). Robust aperiodic scheduling under dynamic priority systems.
In Proceedings of the 16th IEEE Real-Time Systems Symposium, pages 210–219.

Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S., Gehrke, J., and Plaxton, C. (1996). A proportional share
resource allocation algorithm for real-time, time-shared systems. In Proceedings of the 17th IEEE
Real-Time Systems Symposium, pages 288–299.

Su, H. and Zhu, D. (2013). An elastic mixed-criticality task model and its scheduling algorithm. In
Proceedings of the 2013 Design, Automation Test in Europe Conference Exhibition, pages 147–152.

Su, H., Zhu, D., and Mosse, D. (2013). Scheduling algorithms for elastic mixed-criticality tasks in multicore
systems. In Proceedings of the 19th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 352–357.

Vestal, S. (2007). Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In Proceedings of the 28th IEEE Real-Time Systems Symposium, pages 239–243.

West, R. and Poellabauer, C. (2000). Analysis of a window-constrained scheduler for real-time and best-effort
packet streams. In Proceedings of the 21st IEEE Real-Time Systems Symposium, pages 239–248.

Zhang, L. (1990). Virtual clock: A new traffic control algorithm for packet switching networks. In Proceedings
of the 5th ACM Symposium on Communications Architectures & Protocols, pages 19–29, New York,
NY, USA. ACM.

Zhu, D. and Aydin, H. (2009). Reliability-aware energy management for periodic real-time tasks. IEEE
Transactions on Computers, 58(10):1382–1397.

310

	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Real-Time Systems
	Task Model and SRT Criterion
	Scheduling Algorithms

	Mixed Criticality and MC2
	Past SRT Work
	Thesis Statement
	Contributions
	Analysis of GEL Schedulers
	Removing The Intra-Task Precedence Constraint
	Job Splitting
	Handling Overload in MC2

	Organization

	Background
	Prior Bounded Tardiness Work
	Overhead and Locking Analysis
	Overhead Analysis for GEL Schedulers Without Locking
	Mutex Queue Spinlock Protocol Accounting
	Mutex Queue Spinlock Protocol Overheads

	SRT Models
	Overload Management Using Value Functions
	Locke's Best-Effort Heuristic
	D*
	Dover
	MOCA
	Schedulers Accounting for Dependencies

	Rate-Based Earliest Deadline Scheduling
	Overload Management by Changing Execution Rates
	Overload Management within Mixed-Criticality Scheduling
	Techniques to Reduce Dropped Low-Criticality Jobs
	Scaling Separation Times of Low-Criticality Jobs Instead of Dropping Jobs

	Summary

	Fair Lateness Scheduling
	Task Model
	Basic Compliant-Vector Analysis
	Minimum Compliant Vector
	Global Fair Lateness Scheduling
	Alternate Optimization Criteria
	Experiments
	Conclusion

	Removing Intra-Task Precence Constraints
	System Model
	Response Time Characterization
	The Minimum Compliant Vector
	Computation Algorithm
	Evaluation
	Conclusion

	Job Splitting
	Basic Technique
	Task Model
	Split G-EDF Scheduling Algorithm
	Overhead Analysis
	Splitting Overhead Example
	Analysis Including Interrupt Overheads
	Budget Accounting Mechanisms

	Handling Critical Sections
	G-FL Lateness Bounds
	Locking Overheads
	Experiments
	Conclusion

	Dissipation Bounds
	System Model
	Response-Time Analysis
	Case D: ta= yi,k for some k and i,k is f-dominant for L.
	Case E: ta= yi,k for some k and i,k is m-dominant for L

	Dissipation Bounds
	Choosing L
	Defining xis(sI) and (t)
	Proving that xi(ta) = xis(sr) + (ta) is x-sufficient for ta[tr, tn)
	Determining tn
	Proving that xi(ta) = xis(1) is x-sufficient for ta[tn,)

	Implementation Description
	Experiments
	Conclusion

	Conclusion
	Summary of Results
	Other Related Work
	Future Work

	Notation used in Chapter 3
	Proofs of Lemmas in Chapter 3
	Notation Used in Chapter 6
	Computing and Analyzing xis(sI)
	BIBLIOGRAPHY

