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ABSTRACT 
	  

Audrey Marie Wells: Intracellular Mechanisms of Cocaine-memory Reconsolidation 
 in the Basolateral Amygdala and Dorsal Hippocampus  

 (Under the direction of Rita A. Fuchs Lokensgard) 
 

 The ability of cocaine-associated environmental contexts to promote relapse in abstinent 

humans and reinstatement of cocaine-seeking behavior in laboratory animals depends on the 

formation and maintenance of maladaptive context-response-cocaine associative memories, the 

latter of which can be disrupted by manipulations that interfere with memory reconsolidation. 

Memory reconsolidation refers to a protein synthesis-dependent phenomenon whereby memory 

traces are reincorporated back into long-term memory storage following their retrieval and 

subsequent destabilization.  To elucidate the distinctive roles of the basolateral amygdala (BLA) 

and dorsal hippocampus (DH) in the reconsolidation of context-response-cocaine memories, 

Experiments 1-3 evaluated novel molecular mechanisms within each structure that control this 

phenomenon. Experiment 1 tested the hypothesis that activation of the extracellular signal-

regulated kinase (ERK) in the BLA and nucleus accumbens core (NACc – a substrate for 

Pavlovian cocaine-memory reconsolidation) would critically control instrumental cocaine-

memory reconsolidation. To determine this, rats were re-exposed to a context that had previously 

been used for cocaine self-administration (i.e., cocaine memory-reactivation) and immediately 

thereafter received bilateral intra-BLA or intra–NACc microinfusions of the ERK inhibitor 

U0126 or vehicle (VEH) and were subsequently tested for drug context-induced cocaine-seeking 

behavior (non-reinforced lever responding) ~72 h later. Re-exposure to the cocaine-paired 
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context at test fully reinstated cocaine-seeking behavior, relative to responding in an alternate, 

extinction context, and post-reactivation U0126 treatment in the BLA, but not the NACc, 

impaired cocaine-seeking behavior, relative to VEH. This effect was associated with a temporary 

increase in ERK2, but not ERK1, phosphorylation in the BLA and required explicit reactivation 

of the target memory trace (i.e., did not similarly manifest when U0126 was administered after 

exposure to an unpaired context), suggesting that ERK in the BLA plays a critical role in 

restabilizing contextual cocaine-related memories. Next, Experiment 2 evaluated the hypothesis 

that the transcription factor (TF) nuclear factor-κB (NF-κB) would also critically mediate 

instrumental cocaine-memory reconsolidation in the BLA. Remarkably, the NF-κB inhibitor, 

sulfasalazine (SSZ), administered bilaterally into the BLA following cocaine-memory 

reactivation, did not significantly alter subsequent cocaine-seeking behavior, relative to VEH, 

despite producing an observable trend for an enhancement in this behavior. Future studies will be 

needed to further examine this relationship, but the present findings may suggest that NF-κB TFs 

acts as negative regulators of cocaine-memory reconsolidation. Finally, Experiment 3 tested the 

hypothesis that members of the Src family of tyrosine kinases (SFKs) are obligatory for 

instrumental cocaine-memory reconsolidation. Consistent with our hypothesis, PP2, a 

nonspecific inhibitor of SFKs, administered bilaterally into the DH after cocaine-memory 

reactivation, attenuated subsequent drug-context induced motivation for cocaine, relative to 

VEH, in a memory reactivation-dependent manner. This effect was associated with a preferential 

disruption of SFK-mediated phosphorylation of the NR2a N-methyl-D-aspartate receptor 

(NMDAR) subunit. Together, these findings begin to illuminate how the BLA and DH may 

subserve the long-term stability of maladaptive cocaine-related memories that underlie 

contextual stimulus control over cocaine-seeking behavior.   
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 

Significance of the Problem 
 
 Drug addiction remains a serious and inadequately addressed public health concern in the 

United States, with 22.5 million current illicit drug abusers reported (Substance Abuse and 

Mental Health Service Administration 2011) and an associated annual cost of $193 billion 

dollars (National Drug Intelligence Center 2011)! Cocaine ranks third among the most abused 

illicit substances, with 821,000 individuals meeting criteria for cocaine abuse and/or dependence 

in 2011, a statistic surpassed only by marijuana and prescription pain-killers (Substance Abuse 

and Mental Health Service Administration 2011). However, emergency room visits related to 

cocaine use – an estimated 488,101 in 2010 - far exceeded those associated with other illicit 

substance use, including marijuana and heroin (Substance Abuse and Mental Health 

Administration 2011).  

Negative health consequences and economic costs related to cocaine use are sustained in 

part by unsuccessful rehabilitation agendas. This is reflected by the small percentage (10.6%) of 

drug abusers requiring treatment who have endorsed taking part in a treatment/rehabilitation 

strategy (Substance Abuse and Mental Health Service Administration 2011). Lamentably, in 

addition to the small proportion of treatment-seeking addicts, efforts to eradicate cocaine 

addiction are further complicated by a high occurrence of relapse even after extended drug-free 
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periods (Gawin and Kleber 1986). The prototypical behavioral pattern of cocaine addiction 

involves alternating bouts of abstinence and binge-like, often escalating use (Gawin and Kleber 

1986), which occurs in spite of diminished drug reinforcement (Gawin and Kleber 1986; Koob 

and Bloom 1988), negative consequences (Everitt et al, 2008), and even volition to discontinue 

drug use (Volkow and Fowler 2000).  

 Individuals who seek treatment outside of their typical drug-taking environment and in 

the absence of drug-associated stimuli (i.e., rehabilitation clinics) are particularly vulnerable to 

relapse following completion of treatment, in that exposure to discrete drug-related stimuli (e.g., 

paraphanelia) and/or environmental contexts (e.g., crackhouse, bar) are powerful promoters of 

craving and relapse in humans (O'Brien et al, 1992; Childress et al, 1988; Foltin and Haney 

2000; Franklin et al, 2009) and reinstatement of cocaine-seeking behavior in laboratory rats 

(Alleweireldt et al, 2001; Crombag et al, 2002, 2008; Fuchs et al, 2005; Fuchs et al, 2008b). 

Over the course of addiction, otherwise innocuous environmental stimuli become endowed with 

conditioned reinforcing and incentive motivational properties by virtue of having been 

repeatedly paired with the unconditioned motivational effects of the drug of abuse, and this 

“transfer” of reinforcement and incentive value requires associative learning processes (Milton 

and Everitt 2012). Environmentally-triggered relapse, per se, is thought to require the initial 

acquisition and stabilization (i.e., cellular consolidation; Goelet et al, 1986), but importantly, also 

the subsequent maintenance and availability of, a highly complex context-response-cocaine 

associative memory trace (Fuchs et al, 2005; Crombag et al, 2008). Research into the 

mechanisms of drug-memory acquisition and consolidation will likely advance addiction 

prevention initiatives, whereas investigation into the processes that maintain long-term drug-

related memories may be more beneficial in the development of addiction treatment. In support 
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of this, the average drug user seeks treatment 15.6 years following initial drug use and 

consolidation of drug memories (Substance Abuse and Mental Health Administration 2011). As 

such, the prototypical addict may benefit from treatments designed to weaken, or disrupt the 

maintenance of, maladaptive drug-related memories (Taylor et al 2009; Milton and Everitt 

2010). Hence, identification of the neurobiological processes required for memory maintenance, 

including the reconsolidation (see below) of retrieved memories, will be paramount from an 

addiction treatment perspective.  

 

Memory Reconsolidation: History and Therapeutic Application 

Recently, promising evidence supporting the memory reconsolidation hypothesis has 

suggested that drug-associated memory traces are not rigidly maintained and invulnerable to 

disruption.  Instead, associative memories can be destabilized following their retrieval (i.e., 

memory reactivation; Ben Mamou et al, 2006; Finnie and Nader 2012) and require an obligatory 

protein synthesis dependent memory reconsolidation process to be reincorporated back into long-

term memory stores (Nader et al, 2000b). Memory destabilization is thought to involve a reversal 

of synaptic plasticity (Finnie and Nader 2012) and requires protein degradation (Lee et al, 2008) 

and synaptic depotentiation (Clarke et al, 2010). Memory destabilization is both necessary and 

sufficient for subsequent memory reconsolidation (Ben Mamou et al, 2006; Maren 2011; Milton 

et al, 2013). The functional consequence of memory destabilization is the availability of an 

“active,” usable memory trace (Lewis 1979). Depotentiation is suggested to allow for the 

incorporation of new information (i.e., memory “updating,”; Rodriguez-Ortiz et al, 2005; Lee 

2010; Sevenster et al, 2012, 2013) into, or the strengthening or weakening of, the memory trace 

to accommodate modifications to the CS-US relationship (Forcato et al, 2011; Inda et al, 2011). 
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Following memory destabilization, the transient (i.e., 0-4 hours; Nader et al, 2000a) maintenance 

of the labile engram putatively depends on cellular events akin to those involved in the 

maintenance of recently acquired short-term memory, including neuronal firing and exocytosis 

of the readily releasable pool of neurotransmitter (Tarnow 2008) and post-translational 

modification of existing cytoplasmic proteins (Goelet et al, 1986). 

The conceptual and physiological inverse process to memory destabilization, memory 

reconsolidation, is associated with synaptic potentiation (Clarke et al, 2010) and the synthesis of 

new proteins (Nader et al, 2000a; Debiec et al, 2002; Fuchs et al, 2009). Memory 

reconsolidation is expected to begin immediately following the offset/termination of the 

retrieval-eliciting CS (Perez-Cuesta and Maldonado 2009) and is complete within 6 h (Nader et 

al, 2000b; Tronson and Taylor 2007). Although many of the physiological correlates of memory 

reconsolidation remain poorly understood, at a minimum, this phenomenon requires one or a 

combination of processes that are sensitive to anisomycin (ANI) - gene transcription, protein 

synthesis, and/or post-translational modification of existing proteins (Gold 2008).  

The memory reconsolidation hypothesis has challenged existing memory consolidation 

dogma. The traditional view postulated that, following initial cellular consolidation, memories 

are structurally integrated into hippocampally-dependent, and later rearranged into cortically-

dependent neuronal ensembles where associative information is rigidly guarded and maintained 

indefinitely (Davis and Squire 1984; Squire 1992; McClelland et al, 1995; McGaugh 2000; 

Frankland and Bontempi 2005; McKenzie and Eichenbaum 2011; but see review on multiple 

trace theory for alternate account, Nadel and Moscovitch 1997). Hence, amnesia, according to 

this view, reflects either interference at encoding (Fernandes and Moscovitch 2000) during 

consolidation (McGaugh 2000; Davis and Squire 1984; Goelet et al, 1986) or at the time of 
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retrieval. However, amnesia is not considered the manifestation of an altered memory trace once 

consolidation is complete, with the exception of following overt brain damage.  

The view that following cellular consolidation, memories are invulnerable to disruption 

(Frankland and Bontempi 2005) predominated memory research until it was challenged by a 

report in 1968 (Misanin et al, 1968). This study explored whether the amnesic effects of 

electroconvulsive shock therapy (ECS) were limited to recently consolidated memories (Misanin 

et al, 1968). To investigate this, rats were re-exposed to a footshock-predictive CS (i.e., fear-

memory reactivation), and suppression of licking behavior was measured as an index of 

conditioned fear. Following CS re-exposure, a subset of the rats received ECS therapy. All rats 

were tested in the presence of the fear-conditioned CS 24 h later. Post-reactivation ECS 

treatment significantly attenuated CS-elicited suppression of licking behavior during this final 

test session, relative to control conditions (Misanin et al, 1968). A novel finding for its time, this 

study provided the first evidence for a post-retrieval period of memory lability and consequent 

memory restabilization process (later coined “reconsolidation”; Nader et al, 2000a). This initial 

evidence for memory reconsolidation, while noteworthy, was not further explored until the year 

2000, when Nader and colleagues demonstrated that microinfusions of ANI into the basolateral 

amygdala (BLA) following re-exposure to an auditory fear-associated CS abolish CS-evoked 

conditioned freezing behavior 24 h later, relative to vehicle (VEH) (Nader et al, 2000a). 

Importantly, intra-BLA ANI was without effect if administered in the absence of CS re-

exposure, demonstrating that the effects of ANI depended on the explicit reactivation of the 

target memory trace and establishing a precedent for the use of this “no reactivation control” 

experiment in future reconsolidation studies (Nader et al, 2000a; Nader and Einarsson 2010).  
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Since publication of the aforementioned findings (Nader et al, 2000a), the existence of 

the memory reconsolidation phenomenon has been demonstrated for a variety of distinguishable 

forms of memory, including, but not limited to, fear memory in auditory (Nader et al, 2000a; 

Debiec and LeDoux 2004; Duvarci et al, 2005; Mac Callum et al, 2013) and contextual fear 

conditioning (Debiec et al, 2002; Lee et al, 2004; Einarsson and Nader 2012; Lee and Hynds 

2013), as well as in inhibitory (Amaral et al, 2007; Milekic et al, 2007; Nikzad et al, 2011; 

Arguello et al, 2013a) and passive avoidance (Litvin and Anokhin 2000; Gieros et al, 2012; Flint 

et al, 2013) paradigms, general declarative memory in the object recognition model (Kelly et al, 

2003; Silingardi et al, 2011; Clarke et al, 2010; Jobim et al, 2012), spatial memory in the Morris 

Water maze task  (Przybyslawski and Sara 2000; Rossato et al, 2006; Da Silva et al, 2013), and 

natural and drug-related reward memories in conditioned place preference (Miller and Marshall 

2005; Valjent et al, 2006; Bernardi et al, 2006; Robinson and Frankland 2007; Brown et al, 

2008; Wang et al, 2008; Li et al, 2010; Theberge et al, 2010; Crespo et al, 2012) and 

instrumental drug self-administration models (Lee et al, 2005, 2006; Milton et al, 2008a, b; 

Fuchs et al, 2009; Ramirez et al, 2009; Sanchez et al, 2010; Theberge et al, 2010; Wells et al, 

2011, 2013; Crespo et al, 2012). Additionally, the capacity for memory reconsolidation appears 

to be evolutionarily conserved and is reliably demonstrated in a number of species, including the 

crab Crasthamaus, the 1-day old chick, rodents, nonhuman primates, and – encouraging from a 

translational perspective – in humans (reviewed in Nader and Einarsson 2010). 

 

Disruption of Drug Memory Reconsolidation 

The implication of much of the existing research into the mechanisms that support 

memory reconsolidation is that targeting memories, specifically to impair or weaken maladaptive 
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ones, is feasible. Furthermore, this approach may be effective for the treatment of 

neuropsychiatric disorders characterized by pathological memories, such as post-traumatic stress 

disorder, phobias, and addiction (reviewed in Taylor et al, 2009). In particular, the growing body 

of literature investigating mechanisms of drug memory reconsolidation, per se, suggests that 

labile drug memories are an accessible and exploitable target for pharmacotherapies aimed at 

relapse prevention (Taylor et al, 2009; Sorg 2012; Milton and Everitt 2012).  

The majority of research aiming to better understand the neuroanatomical and cellular 

mechanisms of drug-memory maintenance, including retrieval-induced drug-memory 

reconsolidation, have utilized animal models of addiction (for a topical review on this subject, 

see Sorg 2012). In preclinical models, disruption of drug-memory reconsolidation manifests as 

enduring suppression of drug-conditioned behaviors that were previously elicited by the target 

memory trace (Miller and Marshall 2005; Lee et al 2005, 2006; Milekic et al 2006; Fuchs et al 

2009). This is paralleled in clinical studies, where in drug users, β-adrenergic receptor antagonist 

treatment at the putative time of memory reconsolidation preferentially disrupts target memories 

for heroin-related, but not neutral, words and phrases (Zhao et al 2011). Hence, disruption of 

memory reconsolidation may be a promising tool for disabling drug-associated memories 

(Diergaarde et al 2008; Taylor et al 2009; Milton and Everitt 2012; Sorg 2012), and it may be a 

viable method by which relapse propensity is therapeutically regulated.   

 

Selection of Animal Models: Consideration of Boundary Conditions 

 According to the memory reconsolidation hypothesis, following memory retrieval, a 

memory trace is permissive to modification and can be disrupted with a variety of amnesic 

agents (Tronson and Taylor 2007). However, the existence of boundary conditions (i.e., 
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circumstances that impinge on the ability of a memory trace to undergo reconsolidation; Besnard 

et al, 2012), including asymptotic learning (i.e., the need for memory updating; Rodriguez-Ortiz 

et al, 2005; Lee 2010; Sevenster et al, 2012, 2013), extinction interference (Pedreira and 

Moldonado 2003; Eisenberg et al, 2003; Suzuki et al, 2004; Duvarci et al, 2006; de la Fuentes et 

al, 2012; Auber et al, 2013), and memory age and strength (Milekic and Alberini 2002; Suzuki et 

al, 2004; Eisenberg and Dudai 2004; Finnie and Nader 2012), challenge this existing dogma 

(Besnard et al, 2012) and underscore the importance of using animal models with exceptional 

face, construct, and experimental validity. Memory strength and age are particularly relevant to 

the reconsolidation of drug-related memories. Addicts typically engage in extensive drug use 

followed by prolonged periods of abstinence (Gawin and Kleber 1986). Therefore, over the 

course of drug use, context-drug associations undergo explicit retrieval and reconsolidation 

repeatedly and this may likely lead to memory strengthening (Inda et al, 2011). Additionally, 

during abstinence, context-drug memories can undergo implicit reactivation and reconsolidation, 

which also reinforces the strength of the trace. A phenomenon that is consistent with this 

interpretation is the so-called incubation effect – a time-dependent increase in drug stimuli-

induced drug-seeking behaviors (Tran-Nguyen et al, 1998; Grimm et al, 2001; Wells et al, 2011) 

in preclinical models and a positive correlation between rumination and likelihood of relapse in 

human addicts (Nolen-Hoeksema et al, 2007). Therefore, the ideal animal model for studying the 

neuroanatomical and intracellular underpinnings of drug memory reconsolidation is one that uses 

at least a subchronic drug administration training regimen (Fuchs et al, 2008b) and consequently 

engenders remote yet strong contextual-drug associations, closely paralleling the human 

condition (Lu et al, 2006; Kalivas and O’Brien 2008; Finnie and Nader 2012).  
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Selection of Animal Models: Pavlovian versus Instrumental Models of Drug Relapse 

  The two most commonly used paradigms in cocaine-memory reconsolidation research are 

the conditioned place preference (CPP) and extinction-reinstatement paradigms (Fuchs et al, 

2008b; Sorg 2012; Milton and Everitt 2013). The former is used to measure the conditioned 

rewarding properties of drugs of abuse, like cocaine (Tzschentke 2007; Sorg 2012). To this end, 

animals receive passive, experimenter-administered, injections of cocaine and are subsequently 

confined in one of two distinctive contexts.  On alternating days, animals receive saline plus 

confinement in another, distinctly dissimilar context (Tzschentke 2007; Tronson and Taylor 

2007). Pavlovian conditioning, as an index of the conditioned rewarding properties of cocaine, is 

ascertained following a brief conditioning regimen (i.e., typically 8 alternating days of 

cocaine/saline conditioning) by measuring preference for the cocaine-associated environment in 

a drug-free state (i.e., post-conditioning test; Tzschentke 2007). Conversely, in the extinction-

reinstatement paradigm, animals are trained to perform an operant response for delivery of 

cocaine reinforcement that is either time-locked to the presentation of a discrete stimulus or is 

independent of CS exposure in the CS- and context-based models, respectively (Everitt et al, 

2008; Fuchs et al, 2008b). To determine the ability of cocaine-paired CSs or environmental 

contexts to promote cocaine-seeking behavior (i.e., non-reinforced operant responses), 

responding is first extinguished in the cocaine-paired or an alternate context and later reinstated, 

or restored, upon response-contingent presentation of the cocaine-associated CS or passive re-

exposure to the cocaine-paired context (Fuchs et al, 2008b), respectively.  

 Instrumental models of cocaine seeking, like the extinction-reinstatement paradigm, may 

be better suited for investigating the mechanisms of drug memory reconsolidation than the 

Pavlovian CPP model. The type of associative memories formed following passive drug 
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administration and undergo reconsolidation in the CPP paradigm (i.e., context-reward 

associations) may be less relevant to relapse that context-response-reward associations. 

Furthermore, the brief experimental timeline and small number of stimulus-drug pairings result 

in memories that significantly differ both in age and strength from cocaine memories 

characteristic of human addiction (Fuchs et al 2008b). As memory age and strength impact the 

ease at which long-term memories are destabilized and subsequently reconsolidated (Milekic and 

Alberini 2002; Suzuki et al 2004; Finnie and Nader 2012), all experiments in this dissertation 

have employed the instrumental extinction-reinstatement paradigm, in order to maximize the 

translational capacity of our findings to human addiction research. 

 

Selection of Animal Models: Cue- Versus Context-based Models  

Our understanding of stimulus-triggered relapse to cocaine seeking has been substantially 

furthered by the development of the discrete CS- and context-based extinction-reinstatement 

models.  These models possess remarkable predictive validity (Fuchs et al, 2008b). Drug 

stimulus-evoked relapse to cocaine seeking in humans typically involves passive, inadvertent 

exposure to cocaine-related stimuli (i.e., attending a party and unwittingly experiencing 

conditions associated with previous drug use) rather than response-contingent presentation of 

these cues.  Therefore, the contextual model has arguably better face validity for capturing the 

initiation of drug stimulus-elicited relapse to cocaine seeking, an index of incentive motivation 

(i.e., desire to take drug; Robinson and Berridge 1993; Koob and Volkow 2010). Conversely, the 

CS-based paradigm appears to assume that cue-induced motivation to seek drug precedes re-

exposure to drug-related stimuli. This likely provides a measure of conditioned reinforcement 

and of the maintenance of drug stimulus-evoked relapse to cocaine seeking, (Cardinal et al, 
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2002; Everitt et al, 2008). Importantly, the initiation, per se, of cocaine seeking requires the 

retrieval and utilization of cocaine-related memories (Sorg 2012) and is therefore a more 

appropriate behavioral output for memory reconsolidation studies.  Furthermore, the contextual 

variant offers increased experimental control over the CS-based model, as exposure to contextual 

stimuli during acquisition training is independent of responding and therefore invariable across 

animals (Fuchs et al, 2008b). Based on these considerations, the contextual 

extinction/reinstatement model is the preferred model for studying cocaine-memory 

reconsolidation and has been utilized in the dissertation experiments.  

 The classic contextual reinstatement model (described in detail in Fuchs et al, 2009; 

Wells et al, 2011, 2013 and in Methods, Chapters II) has been modified to permit investigation 

into cocaine-memory reconsolidation processes per se. Briefly, following self-administration 

training in one distinct operant context and extinction training in a different context, rats are re-

exposed to the cocaine-paired context (i.e., cocaine-related memory reactivation) for 15-min to 

destabilize, and promote the reconsolidation of, cocaine memories (Fuchs et al. 2009). Thus, site-

directed microinfusions delivered after this session are temporally suited to alter memory 

reconsolidation (Fuchs et al, 2009). The effects of these manipulations on the ability of the 

cocaine-paired context to reinstate extinguished cocaine-seeking behavior are tested after 

additional extinction training (i.e., 72 h later). In VEH-treated rats, placement into the cocaine-

paired context during testing reliably reinstates cocaine-seeking behavior, operationalized for 

subsequent analysis as non-reinforced lever responding (Fuchs et al, 2009). A memory 

reconsolidation deficit is expected to manifest as a reactivation-dependent alteration of this 

behavior. Specifically, it is indicated by a lack of an effect of the manipulation in rats that do not 

receive explicit cocaine-memory reactivation (Tronson and Taylor 2007). 
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 While the contextual extinction-reinstatement model of environmentally-triggered relapse 

is exceptional in many ways, its limitations are noted. First, similar to the CS-based model, the 

contextual extinction-reinstatement paradigm uses explicit extinction training to reduce cocaine-

seeking behavior prior to reinstatement. With the exception of drug seeking in the presence of 

pharmacological antagonism (e.g., heroin-seeking following naltrexone treatment), human 

addicts rarely receive explicit extinction training (Katz and Higgins, 2003). In animal models, 

extensive extinction learning produces pronounced neuroadaptations in relapse circuitry (Sutton 

et al, 2003; Self and Choi 2004; Fuchs et al, 2006; Ghasemzadeh et al, 2009). Thus, both face 

and construct validity of the extinction-reinstatement paradigm are somewhat compromised by 

the inclusion of explicit extinction. However, in our model, extinction training is required to 

produce low level of cocaine seeking behavior, compared to which statistically significant, drug 

context-elicited increases in cocaine-seeking behavior can be detected. Moreover, evaluating 

responding in the extinction context ~48 h after cocaine memory reactivation allows for the 

assessment of nonspecific amnesic effects of reconsolidation inhibitor manipulations – for 

instance the possible disruption of context discrimination (Winocur et al, 2007; Winocur et al, 

2013).  

 Second, in both the CS- and context-based extinction-reinstatement paradigms, rats are 

typically food-restricted prior to, and often during, self-administration (Lee et al, 2006; Fuchs et 

al, 2009). Food restriction increases the rewarding effects of psychostimulants (Carr et al, 2000), 

and thus facilitates the acquisition of cocaine-reinforced instrumental behavior, especially in the 

context-based model where the absence of a discrete, drug-associated CS increases attrition rates 

(Fuchs et al, 2008b).  While some drug-dependent humans experience reduced caloric intake due 

to poverty, the anorectic effects of psychostimulants, etc., this typically occurs as a consequence, 
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as opposed to an antecedent, of long-term drug use (Cooper and Vanderhoek 1993; Ersche et al, 

2010; Vanbuskirk and Potenza 2010) and is not required for a DSM V diagnosis of stimulant 

dependence (American Psychiatric Association 2013). Thus, forced food restriction reduces the 

face validity of the extinction-reinstatement paradigm and might engender a stronger, more 

resilient cocaine memory trace, owing to its ability to augment cocaine reinforcement during 

self-administration (Carr et al, 2000; Fuchs et al, 2008b). Importantly, however, the inhibition of 

protein kinase A (PKA), in particular, in the BLA disrupts the reconsolidation of cocaine 

memories and instrumental cocaine-seeking behavior following both food restriction or ad 

libitum food access (Arguello et al, 2013b and Sanchez et al, 2010, respectively).  

Finally, lever responding during the memory reactivation session is not reinforced, and 

this may represent a limitation. It has been argued that extinction learning, following the non-

reinforced presentations of drug-related stimuli, produces a new memory trace (Myers and Davis 

2002; Eisenberg et al, 2003; Fischer et al, 2004). Thus, it is difficult to rule out that the memory 

reconsolidation manipulation strengthens the extinction trace instead of inhibiting the target drug 

memory trace.  Consistent with this possibility, in some paradigms, reinforced reactivation 

sessions are required for full reactivation of the drug memory and subsequent disruption of 

conditioned behavior by memory reconsolidation inhibitors (Valjent et al, 2006; Milekic et al, 

2006; Brown et al, 2008). However, electrophysiological analysis of amygdala neurons during 

fear memory reconsolidation has suggested that various elements of an associative memory are 

inextricably bound such that reactivation of one element of a conditioned fear memory (i.e., 

either the CS or US) is sufficient to induce lability and subsequent reconsolidation of the full 

memory trace (Diaz-Mataix et al, 2011). An unrelated argument in support of the use of non-

reinforced memory reactivation sessions is that exclusive presentation of the CS, in the absence 
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of the US, necessitates memory updating, thus increasing the probability of memory 

destabilization and reconsolidation (Rodriguez-Ortiz et al, 2005; Lee 2010; Sevenster et al, 

2012, 2013). Perhaps most important, drugs of abuse acutely activate synaptic and intracellular 

processes involved in memory reconsolidation, thus having the drug on board during the memory 

reactivation session reduces the interpretability of findings.  Perhaps for this reason, non-

reinforced memory reactivation sessions are relatively conventional in this line of research (Sorg 

2012). Furthermore, in our hands, a 15-min non-reinforced memory reactivation session is 

optimal to elicit cocaine-memory destabilization/reconsolidation, while minimizing new 

extinction learning (Fuchs et al, 2009; Ramirez et al, 2009; Wells et al, 2011, 2013; Arguello et 

al, 2013b).  

 

Neuroanatomical Substrates of Cocaine-Memory Reconsolidation 
 

Converging lines of evidence suggest that the BLA is a critical site for memory 

reconsolidation (for review see Nader and Einarsson 2010), including the reconsolidation of 

drug-related associative memories in several models of stimulus-evoked drug-seeking behavior 

(Lee et al 2005, 2006; Milton and Everitt 2008a, 2008b; Fuchs et al 2009; Li et al 2010; Sanchez 

et al 2010; Wells et al 2011). Most relevant to this dissertation, our laboratory has shown that 

microinfusions of anisomycin, a protein synthesis and post-translational modification inhibitor 

(Gold 2008), into the BLA at the time of memory reconsolidation (i.e., following memory 

reactivation produced by re-exposure to a previously cocaine-paired context) abolishes the 

subsequent ability of the drug-paired context to trigger cocaine seeking (Fuchs et al 2009). 

Remarkably, this effect is dependent on memory reactivation, in that the same treatment is 

without effect when administered in the absence of explicit memory reactivation (i.e., following 
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exposure to a novel, unpaired context), highlighting that disruption of memory reconsolidation 

only affects the reactivated target memory as opposed to producing general amnesia or a 

protracted nonspecific deficit in the expression of cocaine seeking.  These studies verify the 

involvement of the BLA in cocaine-memory reconsolidation; however, little is known about the 

molecular mechanisms of this phenomenon.  

 Interestingly, while the DH is an unequivocal locus of memory consolidation and the 

storage of newly acquired memories (Frankland and Bontempi 2005; Squire 2009), its role in 

memory reconsolidation remains ambiguous. Reconsolidation inhibitors used in some learning 

and memory paradigms have been effective in disrupting memory reconsolidation in the DH 

(Debiec et al 2002; Rossato et al 2006; Jobim et al 2012); however, evidence also exists to the 

contrary (Cammarota et al 2004). One possible explanation for this is that DH-dependent 

memory reconsolidation seems to be highly sensitive to boundary conditions, like memory age 

and strength (Nader et al 2000b; Finnie and Nader 2012). Experimentally, the influence of 

boundary conditions on memory reconsolidation in the DH has manifested as an overall failure 

to destabilize a memory trace (Cammarota et al 2004), spontaneous recovery of conditioned 

behaviors (Amaral et al 2008), and/or parametric constraints on the effectiveness of 

reconsolidation inhibitors, including the requirement for memory updating or extended memory 

reactivation sessions (Rodriguez-Ortiz et al 2005).  

Interestingly, we have demonstrated that, unlike the BLA, the DH does not support ANI-

sensitive cocaine-memory reconsolidation (Ramirez et al 2009), and yet the functional integrity 

of the DH appears to be a requirement for successful reconsolidation within our experimental 

parameters (Ramirez et al 2009). Extending these findings, we proposed that functionally 

significant intrahemispheric connections exist between the DH and the BLA that critically 
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regulate the reconsolidation of instrumental cocaine memories (Wells et al 2011). Using a 

disconnection manipulation, we demonstrated that unilateral microinfusions of ANI into the 

BLA plus contralateral, but not ipsilateral, microinfusions of the GABAA/B agonist cocktail 

baclofen + muscimol (B+M) into the DH (i.e., functional disconnection of the BLA and DH) 

robustly attenuated subsequent drug-context induced cocaine-seeking behavior in a memory 

reactivation-dependent manner (Wells et al 2011). Overall, identification of intracellular 

mechanisms that contribute to cocaine-memory reconsolidation in the BLA and DH will 

contribute to a greater understanding of the molecular mechanisms involved in the DH that 

facilitate BLA-dependent cocaine-memory reconsolidation and have the potential to facilitate the 

optimization of reconsolidation inhibition as a viable therapeutic tool and the development of 

highly specific candidate compounds for this purpose.  

 
 
Cellular signaling during memory reconsolidation  
 

Investigation into intracellular correlates of drug-memory reconsolidation is a relatively 

new area of research. Most studies so far have focused on Pavlovian drug memories underlying 

the expression of drug CPP (Miller and Marshall 2005; Bernardi et al 2006; Valjent et al 2006; 

Wang et al 2008; Li et al 2010; Wu et al 2011). As noted above, in the CPP paradigm, drug-

memory reconsolidation is typically manipulated after a limited experimental time-line with 

relatively few stimulus-drug pairings (discussed in Fuchs et al, 2008b and above). In 

comparison, in instrumental models (i.e., the extinction-reinstatement paradigm), drug memory 

reconsolidation is targeted after a more extensive training regimen, consisting of ~weeks-months 

of active administration of cocaine and consequently, relatively unlimited stimulus-drug pairings 

(Fuchs et al, 2008b). Therefore, the memory trace to be manipulated in each of these models is 
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presumably fundamentally different due to differences in the extent of drug-induced 

metaplasticity in overlapping reward (Everitt et al, 2008) and memory circuitries (Finnie and 

Nader 2012). Importantly, memory reactivation durations capable of promoting the 

destabilization and reconsolidation of weakly trained or recently acquired conditioned fear 

memories are insufficient when these associations are over-trained or remote, respectively 

(Suzuki et al, 2004; Milekic and Alberini 2002). These, and other reports, lend credence to the 

idea that there are inextricable interactions between memory age, strength, and requirements for 

successful destabilization/reconsolidation (Finnie and Nader 2012). Thus, potential cellular 

mechanisms of drug-memory reconsolidation may differ across paradigms. Mechanisms assessed 

in CPP models must also be evaluated in instrumental models of cocaine seeking (e.g., the 

extinction-reinstatement paradigm; Fuchs et al 2008). Therefore, investigation of the cellular 

mechanisms of instrumental drug-memory reconsolidation is necessary in order to fill a critical 

gap in our understanding of memory reconsolidation as it pertains to addiction.   

 

Extracellular Signal-Regulated Kinase (ERK) Signaling in Cocaine-Memory 

Reconsolidation 

 
 Core elements of the ERK signaling pathway, including upstream activators and 

downstream substrates of ERK, appear to be critical for the restabilization of retrieved memories, 

in general. For instance, activation of the NMDAR or β-adrenergic receptor-mediated signaling 

pathways, both of which converge on ERK (Adams and Sweatt 2002), have been indicated in 

other forms of memory reconsolidation (Bozon et al 2003; Kelly et al 2003; Duvarci et al 2005; 

Miller and Marshall 2005; Lee et al 2005, 2006; Milton et al 2008a, 2008b; Tronson and Taylor 

2007; Valjent et al 2000, 2006).  Specifically, ERK itself and the immediate early gene 
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zincfinger268 (zif268), which is activated downstream from ERK activation (Bozon et al, 2003), 

in the nucleus accumbens (NAC) have been implicated in the reconsolidation of Pavlovian 

memories that support cocaine-CPP (Miller and Marshall 2005; Theberge et al 2010). However, 

NAC zif268 is not required for the reconsolidation of cocaine-memories that maintain 

instrumental cocaine seeking (Theberge et al 2010). NMDAR or β-adrenergic receptor 

stimulation, PKA activation, and zif268 expression in the BLA have been implicated in the 

reconsolidation of CS-drug memories that support explicit CS-induced instrumental cocaine 

seeking (Lee et al 2005; Milton et al 2008a, 2008b; Sanchez et al 2010).  However, no study to 

date has evaluated the role of ERK signaling or elements of the MEK/ERK signaling pathway in 

the reconsolidation of contextual memories that control instrumental cocaine-seeking behavior.  

 

Nuclear Factor-κB Signaling in Cocaine-Memory Reconsolidation 

 The nuclear factor κB (NF-κB) is a transcription factor whose role in synaptic plasticity 

and memory acquisition and consolidation has been well documented (Barger et al, 2005; 

Romano et al, 2006; Oikawa et al, 2012), while its role in memory reconsolidation is gaining 

appreciation (Boccia et al, 2007; de la Fuentes et al, 2011; Lee and Hynds 2012; Si et al, 2012). 

In the cytoplasm of neurons, release of NF-κB from IκB, the inhibitory protein to which it is 

constitutively bound, requires the phosphorylation of IκB by IκB kinase (IKK; Romano et al, 

2006a). Recently, a NMDAR-IKK-NF-κB signal transduction cascade was identified as being an 

important regulator of contextual fear memory reconsolidation, but not consolidation, in the DH 

(Lee and Hynds 2013). NMDAR stimulation is required for the reconsolidation of cocaine-

related memories in both CPP (Brown et al, 2008) and instrumental models (Milton et al, 

2008b). Therefore, NF-κB activation is at least in part, implicated in this phenomenon. 
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Consistent with this, transcriptional activity of NF-κB in the BLA is necessary for the 

reconsolidation of a morphine-associated memory underlying the expression of morphine CPP 

(Yang et al, 2011), but, to date, the role of NF-κB activation in BLA-mediated instrumental 

contextual cocaine-memory reconsolidation is unknown.  

 

Src Family of Tyrosine Kinases in Cocaine-Memory Reconsolidation 

The Src family of tyrosine kinases (SFKs), including Src and Fyn, are thought to play an 

important role in synaptic plasticity, likely related to their ability to regulate the activity of 

neurotransmitter receptors (Ohnishi et al 2011). Specifically, SFKs can enhance NMDAR-

mediated currents (Wang and Salter 1994; Yu et al 1997) and promote the induction of LTP in 

hippocampal slice preparations (Yu et al 1997). The SFK-mediated enhancement of NMDAR 

function is likely related to the ability of SFKs to phosphorylate the NR2b NMDA receptor 

subunit at tyrosine residue 1472 (Tyr-1472) or the NR2a NMDAR subunit at tyrosine residue 

1325 (Tyr-1325; Ohnishi et al, 2011). The former is necessary for the successful translocation of 

NMDARs to the synaptic membrane (Nakazawa et al 2001; Zhang et al 2008) and for interfering 

with adaptor protein 2 complex (AP2) binding to the same residue and thus the clatharin-

mediated endocytosis of NMDARs (Prybylowski et al 2005). As such, SFKs tightly regulate the 

surface expression of NR2b-containing NMDARs (Salter and Kalia 2004). With respect to NR2a 

function, SFK-mediated phosphorylation of Tyr-1325 enhances NMDAR-mediated currents in 

the striatum (Taniguchi et al, 2009) and in slices from the CA1 subregion of the DH (Yang et al, 

2012). Additionally, SFKs phosphorylate the GABAA receptor (Vithlani and Moss 2009) and the 

GluR2 subunit of the AMPA receptor (Hayashi et al 1999; Hayashi and Huganir 2004), although 

the functional relevance of these latter interactions is less understood (Ohnishi et al, 2011). 
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Despite ample data outlining SFK-dependent interactions in cell cultures and slice preparations, 

the functional role of SFKs in vivo has not been well characterized. Our laboratory has recently 

demonstrated that SFK activation in the DH is critical for the expression of drug context-induced 

cocaine-seeking behavior, via an NR2b-dependent mechanism (Xie et al, 2013). However, 

whether SFK activation in the DH similarly regulates the reconsolidation of contextual cocaine 

memories remains to be determined, and the downstream substrates of putative SFK involvement 

in cocaine-memory reconsolidation is unknown.  

 

Overview of the Experiments 

The overarching goal of this dissertation was to increase our understanding of the cellular 

and molecular mechanisms by which the BLA and DH contribute to the reconsolidation of 

contextual-cocaine memories that drive cocaine-seeking behavior in the contextual extinction-

reinstatement paradigm (Fuchs et al, 2008b). A secondary objective was to draw comparisons 

between our findings and existing literature that has explored the significance of these 

mechanisms in a Pavlovian model of cocaine-seeking, where possible. To accomplish these 

objectives, rats were allowed to self-administer cocaine in one context and then underwent 

extinction training in a different context. Rats were re-exposed to the cocaine-associated context 

for 15-min to allow for memory destabilization and subsequent reconsolidation. Manipulations 

were adminstered during the period of putative memory reconsolidation and subsequent drug 

context-induced motivation for cocaine was measured in the cocaine-paired context after 2 or 

more days of additional extinction training. Experiments in Chapter 2 evaluated whether 

activation of the MEK/ERK signaling cascade in the BLA would be necessary for successful 

memory reconsolidation and consequently, preserved drug context-induced cocaine-seeking 
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behavior. An additional exploration into the role of ERK signaling in the NACc in this 

phenomenon was also performed, to follow up on and provide comparison to an earlier study 

using the CPP paradigm (Miller and Marshall 2005). Experiments in Chapter 3 explored whether 

IκK-dependent activation of NF-κB would regulate cocaine-memory reconsolidation. Finally, 

experiments in Chapter 4 examined whether, similar to their role in regulating the expression of 

drug context-induced cocaine-seeking behavior (Xie et al, 2013), SFKs in the DH would 

critically control the reconsolidation of memories subserving this phenomenon.    
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CHAPTER 2 
 
 
 

CONTRIBUTION OF THE MEK/ERK SIGNALING CASCADE TO THE 
RECONSOLIDATION OF INSTRUMENTAL CONTEXTUAL COCAINE MEMORIES IN 

THE BASOLATERAL AMYGDALA 
 

 

INTRODUCTION 

 

 Extracellular signal regulated kinase (ERK) is one member of a larger mitogen-activated 

protein kinase (MAPK)-signaling cascade, whose role in synaptic plasticity underlying both 

associative learning/memory and addiction has been well characterized (for review, see Davis 

and Laroche 2006 and Lu et al, 2006, respectively).  Activation of the canonical MAPK/ERK 

pathway begins with receptor stimulation by growth factors at the cell surface and the successive 

activation of Ras, Raf, and MAPK kinase (MEK). In turn, MEK-induced dual phosphorylation of 

specific threonine and tyrosine residues in the activation loop of both ERK 1 (44 kDA) and ERK 

2 (42 kDA) isoforms triggers the full activation of kinase activity of these molecules (Davis and 

Laroche 2006). However, ERK activation can also be achieved via stimulation of certain non-

growth factor extracellular and upstream intracellular signals (Sweatt 200), including known 

regulators of drug-memory reconsolidation - β-adrenergic (Milton et al, 2008b; Fricks-Gleason 

and Marshall 2008) and N-methyl aspartate receptors (Brown et al, 2008; Milton et al, 2008a), as 

well as the activation of protein kinase A (Sanchez et al, 2010; Arguello et al, 2013b).  
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 Several lines of evidence suggest that ERK plays a fundamental role in memory 

reconsolidation. In turn, ERK phosphorylates several transcription factors (Goodman 1990; 

Impey et al, 1999; Sgambato et al, 1998) that have been implicated in drug-memory 

reconsolidation, including the cAMP response element binding protein (CREB) and E twenty-six 

(ETS)-like transcription factor 1 (Miller and Marshall 2005). Furthermore, MEK/ERK inhibition 

at the putative time of memory reconsolidation disrupts subsequent object recognition memories 

(Kelly et al, 2003; Silingardi et al, 2011), conditioned-fear associations (Duvarci et al, 2005), 

and importantly, Pavlovian cocaine-related memories that underlie the expression of cocaine 

conditioned place preference (CPP; Miller and Marshall 2005; Valjent et al, 2006).  

 As noted in the Introduction (Chapter 1), there are several fundamental differences 

between cocaine CPP and the instrumental extinction-reinstatement paradigm, and this 

necessitates further investigation into the role of the MAPK/ERK signal transduction cascade in 

instrumental drug-memory reconsolidation per se. For instance, relative to instrumental 

extinction-reinstatement paradigm, cocaine CPP has a shorter experimental timeline and fewer 

stimulus-drug pairings. Moreover, the use of passive versus active administration of drug in CPP 

and instrumental models, respectively, likely confers metaplasticity in some mutually exclusive, 

albeit partially overlapping, memory circuits (Everitt et al 2008).  This may impact the ease with 

which drug-related memories are destabilized and reconsolidated (Finnie and Nader 2012) and 

the neural mechanisms that are recruited for these phenomena. Hence, Experiment 1 utilized the 

extinction-reinstatement model of environmentally-triggered drug relapse in order to determine 

whether ERK signaling would be required for the reconsolidation of context-response-cocaine 

memories in the basolateral amygdala (BLA) and the nucleus accumbens core (NACc), two brain 

regions that critically regulate drug-memory reconsolidation in instrumental (Sanchez et al, 
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2010; Li et al, 2010; Fuchs et al, 2009) and Pavlovian models of cocaine seeking (Miller and 

Marshall, 2005; Théberge et al, 2010), respectively. 

 

 

METHODS 

Animals 

 Male Sprague-Dawley rats (N = 98; 275-300 g; Charles River Laboratories, Wilmington, 

MA) were individually housed in a temperature- and humidity-controlled vivarium on a reversed 

light-dark cycle. Rats were fed 20-25 g of rat chow per day with water available ad libitum. 

Protocols detailing the housing and treatment of rats were consistent with specifications in the 

Guide for the Care and Use of Laboratory Rats (Institute of Laboratory Animal Resources on 

Life Sciences, 1996) and were approved by the Institutional Animal Care and Use Committee of 

the University of North Carolina at Chapel Hill.   

 

Food training 

 To facilitate subsequent cocaine self-administration, rats were initially trained to lever 

press under a continuous schedule of food reinforcement (45 mg pellets; Noyes, Lancaster, NH, 

USA) in sound-attenuated operant conditioning chambers (26 x 27 x 27 cm high; Coulbourn 

Instruments, Allentown, PA, USA) during a 16-h overnight session. Responses on a designated 

active lever produced one food pellet, whereas responses on an alternate, inactive lever had no 

scheduled consequences.  None of the contextual stimuli that would be subsequently used for 

self-administration and extinction training were present during food training.  
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Surgery 

 Forty-eight h after food training, rats were fully anesthetized with a cocktail containing 

ketamine hydrochloride (75 mg/kg, i.p.) and xylazine (5 mg/kg i.p.). Rats were implanted with 

chronic indwelling jugular catheters that had been constructed in house, as described previously 

(Fuchs et al, 2009). Following jugular catheter insertion, rats were implanted with 26-gauge 

stainless steel guide cannulae (Plastics One, Roanoke, VA), aimed bilaterally at the BLA (-2.7 

mm AP, ± 5.1 mm ML, -6.7 mm DV, relative to bregma) or at the NACc (angled laterally by 

10°;+1.4 mm AP, ±3.1 ML, -4.8 mm DV, relative to bregma), based on Paxinos and Watson 

(1997), using standard stereotaxic procedures. Stainless steel screws and cranioplastic cement 

were used to secure the guide cannulae to the skull.  Stylets (Plastics One) were cut to size so 

they did not extend beyond the guide cannulae and were inserted into the guide cannulae to 

prevent occlusion. Tygon caps and crystalline applicators (Plastics One) were used to seal the 

catheter.   

 To extend catheter patency, catheters were flushed daily with an antibiotic solution of 

cefazolin (10.0 mg/ml; Schein Pharmaceuticals, Albuquerque, NM, USA) and heparinized saline 

(70 U/ml; Baxter Health Care Corp, Deerfield, IL, USA), as described previously (Fuchs et al, 

2009).  Rats received 5 days of post-operative recovery before the start of self-administration 

training.  Catheter patency was assessed several times during the experiment by administering 

propofol (1mg/0.1ml, i.v. Eli Abbott Lab, North Chicago, IL, USA) intravenously and 

confirming a rapid loss of muscle tone. 
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Cocaine self-administration training 

All behavioral training (self-administration, extinction, memory reactivation, 

reinstatement testing) took place in sound-attenuated operant conditioning chambers configured 

to one of two distinctly different contexts, as described previously (Table 1: Contexts A, B). 

Context A contained a continuous red house light (0.4 fc brightness) on the wall opposing the 

active lever, an intermittent pure tone (80 dB, 1 kHz, 2 sec on, 2 sec off), a pine-scented air 

freshener strip (4.5 x 2 cm, Car Freshener Corp, Watertown, NY, USA), and wire mesh flooring 

(26 X 27 cm).  Context B contained an intermittent white stimulus light located above the 

inactive lever (1.2 fc brightness, 2 sec on, 4 sec off), a continuous pure tone (75 dB, 2.5 kHz), a 

vanilla-scented air freshener strip (4.5 x 2 cm, Sopus Products, Moorpark, CA, USA), and a 

slanted ceramic tile that bisected the bar floor (19 cm X 27 cm) 

 Rats were randomly assigned to Context A or Context B for self-administration training. 

During daily, 2-h self-administration training sessions during the dark cycle, rats were allowed to 

press the active lever for infusions of cocaine (cocaine hydrochloride; 0.15 mg/0.05 mL per 

infusion, i.v.; NIDA, Research Triangle Park, NC, USA) under a fixed ratio-1 (FR-1_ schedule 

of cocaine reinforcement.  The rats’ catheters were connected to an infusion apparatus 

(Coulbourn Instruments) via polyethylene 20 tubing and liquid swivels (Instech). Specifically, 

one active lever press activated an infusion pump for 2 s, followed immediately by a 20-s time-

out period, during which active lever responses had no consequences. Throughout the sessions, 

responses on the other (inactive) lever were recorded but had no programmed consequences. 

Training continued until rats reached a criterion of ≥10 cocaine infusions per session on at least 

10 sessions (i.e., acquisition criterion). Data collection and reinforcer delivery were controlled 

using Graphic State Notation software version 2.102 (Coulbourn). 
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Table 1.  Contextual Stimuli 

CTX 
Stimulus Components 

Auditory Visual Tactile Olfactory 

A 
Intermittent pure 

tone (80 dB, 1 kHz; 
2s on, 2s off) 

Continuous red 
houselight 

Wire mesh 
floor (26 cm 

x 27 cm) 

Pine-scented 
air freshener 
strip (4.5 cm 

x 2 cm) 

B 
Continuous pure 
tone (75 dB, 2.5 

kHz) 

Intermittent 
white stimulus 
light (2s on, 4s 

off) 

Bar floor (19 
cm x 27 cm) 
and slanted 
ceramic tile 

Vanilla-
scented air 

freshener strip 
(4.5 cm x 2 

cm) 

No 
reactivation 

control 
context 

Continuous 
complex tone (80 

dB, alternating 
between 1, 1.5, and 

2.5 kHz at 1 s 
intervals) 

2 continuous 
white stimulus 

lights and 
continuous red 

houselight 

Ceramic tile 
flooring (26 
cm x 27 cm) 

Citrus-scented 
air freshener 
strip (4.5 cm 

x 2 cm) 

Table 1. Multi-modal stimuli that were used in operant conditioning chambers for all 
experiments. Context (CTX) A and context B were used for self-administration and extinction 
training. The no reactivation control context was used exclusively as a novel, unpaired 
environment in Experiments 1b and 1c, to model the absence of explicit cocaine-memory 
reactivation. 
 

Extinction Training 

 After meeting the acquisition criterion, rats received seven daily 2h extinction training 

sessions in the context that had not been used for cocaine self-administration training.  Active 

and inactive lever responses were recorded but had no programmed consequences.  Following 

the fourth extinction-training session, rats were adapted to the intracranial microinfusion 

procedure (i.e., sham infusions). To this end, 33-gauge injection cannulae (Plastics One) were 

inserted into the rats’ guide cannulae to a depth 2 mm below the tip of the guide cannulae and 

were left in place for 4 minutes.  No liquid was infused. For rats in experiment 1c, whose brains 

would be subsequently collected at the time of microinfusions for western blot analysis of 

ERK1/2 activation, the sham infusion procedure was repeated following the sixth and seventh 
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extinction training sessions, to maximize acclimation and to fully circumvent the possible effects 

of infusion stress on protein expression on the day of the infusion. However, the injection 

cannulae were only fully lowered once, to minimize cell loss/damage.  

 

Experiment 1a 

Experiment 1a evaluated whether intra-BLA administration of the MEK/ERK inhibitor, 

U0126, which prevents the phosphorylation-dependent activation of ERK (London and Clayton 

2008), would impair instrumental, context-response-cocaine memory reconsolidation. On the day 

after the last extinction training session, rats were re-exposed to the cocaine-paired context for 15 

min to initiate the destabilization and reconsolidation of cocaine memories (i.e., cocaine-memory 

reactivation; Fuchs et al, 2009; see Fig. 1.1A). The destabilization and subsequent 

reconsolidation of a memory trace is highly sensitive to interactions between memory 

reactivation duration and certain boundary conditions, such as the age and strength of the 

memory (Suzuki et al, 2004, Inda et al, 2011, Finnie and Nader 2012). As such, 15-min was 

selected in the present study based on an earlier parametric analysis, which demonstrated that 

under our experimental conditions; a 15-min re-exposure session produces optimal memory 

reconsolidation with minimal observable extinction learning (Fuchs et al, 2009). During the 15-

min cocaine-memory reactivation session, levers were extended but cocaine was not infused 

upon lever pressing given that cocaine itself stimulates ERK phosphorylation (Zhai et al. 2008). 

Immediately after the session, rats received bilateral microinfusions of 5% DMSO/6% TWEEN 

vehicle (VEH) or U0126 (1.0 µg/ 0.5 µl/hemisphere) into the BLA. The dose of U0126 was 

chosen based on a previous report, in which this concentration of U0126, when microinfused into 

the NACc, robustly impaired Pavlovian cocaine-memory reconsolidation (Miller and Marshall, 
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2005). Treatment assignment was counterbalanced based on previous cocaine intake. During the 

microinfusion procedure, injection cannulae were lowered to a depth of 2 mm below the tip of 

the guide cannulae and were connected to Hamilton syringes (Hamilton Co.) that were mounted 

on a microdrive pump (KD Scientific). The microinfusion was delivered over 2 min, and the 

injection cannulae were left in place for 1 min before and 1 min after the infusion, in order to 

minimize drug diffusion out of the BLA. 

 

Post-reactivation Extinction and Test of Drug Context-induced Cocaine Seeking 

 Beginning the day following cocaine-memory reactivation, rats received additional daily 

2-h extinction-training sessions (2.28±0.20 days) until they reached the extinction criterion (i.e., 

≤25 active lever responses per session on a minimum of 2 consecutive days). Twenty-four hours 

later, rats were returned to the cocaine-paired context for a 2-h test of drug context-induced 

cocaine-seeking behavior. Cocaine-seeking behavior was operationally defined as non-reinforced 

active lever presses and is considered to be a reliable index of context-elicited motivation for 

cocaine. During the test session, both active and inactive lever responses were recorded but had 

no programmed consequences. 

 

Experiment 1b 

A genuine memory reconsolidation impairment can only be inferred when a 

reconsolidation inhibitor manipulation impairs the target memory trace without impacting non-

specific memories or general motor performance (Nader et al, 2000b; Alberini 2006; Tronson 

and Taylor 2007; Sorg 2012). This can be confirmed experimentally by demonstrating that 

memory reconsolidation inhibitor treatments are only effective when administered in conjunction 
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with, but not in the absence of, explicit memory reactivation, conditions expected to destabilize 

versus preserve the stability of, the memory trace, respectively (Tronson and Taylor 2007). 

Hence, Experiment 1b was designed to evaluate whether the effects of U0126 in the BLA would 

require explicit memory reactivation. To this end, experimental protocols mirrored those in 

Experiment 1a (see Fig. 1.1A), except that no-reactivation control groups were placed into a 

novel, unpaired context (i.e., No-reactivation control context; Table 1) for 15 min.  The control 

context distinctly differed from Contexts A and B.  The no-reactivation control context contained 

continuous white stimulus lights, located above each lever, a continuous red house light on the 

wall opposing the active lever, a continuous complex tone (80 dB, alternating between 1, 1.5, 

and 2.5 kHz at 1 sec intervals), a citrus-scented air freshener strip (4.5 cm x 2 cm, Locasmarts 

LLC), and ceramic tile flooring (26 cm x 27 cm). Exposure to this alternate context was expected 

to circumvent explicit reactivation of the context-response-cocaine memory trace while 

producing similar behavioral history to that in Experiment 1a – for instance, transportation to the 

testing room; novelty akin to that experienced by the groups in Experiment 1a that were re-

exposed to the cocaine-paired context ~7 days after self-administration training, and access to 

levers. Immediately after the end of the session in the control context, rats received bilateral 

microinfusions of VEH or U0126 into the BLA.  

 

Experiment 1c 

The MEK/ERK signaling pathway contains several points of convergence for upstream 

extracellular and intracellular signals, in particular at the level of Ras/Raf activation and at the 

level of gene transcription (Davis and Laroche 2006). As such, ERK activation is a principal 

component in a variety of cellular processes underlying a diverse repertoire of behaviors and 
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processes. For instance, ERK is activated in the hippocampus during exposure to novel stimuli 

and is required for novelty-induced enhancement of memory consolidation (Izquierdo et al, 

2002). ERK is also hyperphosphorylated in the nucleus accumbens core and dorsal striatum 

during the expression of cocaine (Miller and Marshall 2005) and methamphetamine CPP 

(Mizoguchi et al, 2004), respectively, and this increased activation was demonstrated to be 

required for CPP expression in both studies (Miller and Marshall 2005 and Mizoguchi et al, 

2004).  

In the present study, re-exposure to the cocaine-paired context occurred ~7 days or more 

after self-administration and therefore was likely associated with some perceived novelty. 

Because both novelty and cocaine-seeking behavior during the memory reactivation session can 

impinge on ERK phosphorylation, Experiment 1c was designed to validate that the temporal 

parameters used in Experiment 1a are optimal for U0126-induced transient and selective 

suppression of ERK1/2 activation related to memory reconsolidation processing per se. 

Specifically, Experiment 1c assessed changes in phosphorylated ERK1/2 using western blotting. 

Experimental parameters were identical to those in Experiment 1a/b (see Fig. 1.1A, 1.3A) except 

that rats were exposed to the cocaine-paired or the novel, unpaired context for 15 min or they 

stayed in their home cages, prior to receiving bilateral microinfusions of VEH or U0126 into the 

BLA (see Fig. 1.3A).  

The rats were euthanized 30 min later based on the phosphorylation kinetics of ERK1/2 

(Valjent et al, 2000; Choe and McGinty, 2001; Zhang et al, 2004; Miller and Marshall, 2005) in 

order to capture maximal ERK phosphorylation related to the onset of memory reconsolidation 

(Pedreira and Maldonado 2003). These rats were compared to rats euthanized after the final test 

session (i.e., ~72 h after treatment) in Experiment 1a. Following euthanasia by rapid 
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decapitation, brains were removed, flash frozen in isopentane, and stored at -80°C. Punches were 

taken from the BLA or the dorsally adjacent posterior caudate putamen (pCPu; i.e., anatomical 

control) with 19Ga neuropunches (Fine Science Tools) from 40µm tissue sections, which were 

also collected to verify cannula placement. Punched tissue was stored at -80°C in lysis buffer 

containing 10 mM HEPES, 1% SDS, and 1x protease and phosphatase inhibitor cocktails (Sigma 

Aldrich, St. Louis, MO).The pCPu was chosen as an anatomical control region, as previous 

reports suggest that the likelihood of drug diffusion following intracranial manipulations is 

greatest in the dorsal direction, relative to the injection site (Baker et al, 1996; Neisewander et al, 

1998). 

 

Western Blotting  

Samples were thawed on ice, manually homogenized, and boiled for 10 min at 100 °C. 

Protein concentrations were determined using the Biorad DC protein assay. For each sample, 15 

µg of protein were electrophoresed on a 12% Tris-HCL polyacrylamide gel and transferred to a 

polyvinylidene difluoride membrane for 1 h at 100 V. Membranes were then blocked in 5% milk 

for 1 h and incubated in rabbit anti-phosphorylated ERK1/2 (pERK1/2; 44/42 kDA, respectively) 

(1:2000, Cell Signaling, Beverly, MA) overnight (16-20 h) at 4 °C. Membranes were then 

incubated in horseradish peroxidase-conjugated secondary antibody (1:10,000, GE Healthcare, 

Piscataway, NJ), for 1 h followed by development with an enhanced chemiluminescence (ECL) 

system (Pierce Biotech, Rockford, IL). Membranes were subsequently incubated with stripping 

buffer (62.5 mM Tris-HCL at pH 6.7, 2% SDS, 100 mM beta-mercaptoethanol) to permit re-

probing with antibodies to total (phosphorylated plus unphosphorylated) ERK1/2 (1:2000, Cell 

Signaling, Beverly, MA) and later actin (i.e., loading control; 1:50,000, Santa Cruz 
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Biotechnology, Santa Cruz, CA). Protein levels of pERK1/2, total ERK1/2, and actin were 

quantified by densitometry, using NIH Image J software. To evaluate changes in ERK activation, 

pERK1/2 was normalized to total ERK1/2 and actin. Subsequent discussion of ERK1/2 

activation refers to normalized levels. 

 

Experiment 1d 

The nucleus accumbens core (NACc) is an important substrate of ERK-dependent 

Pavlovian cocaine-memory reconsolidation required for the expression of cocaine CPP (Miller 

and Marshall 2005). ERK involvement requires activation of elements of the MEK/ERK 

signaling cascade including EKR1/2 phosphorylation (Miller and Marshall 2005), and it results 

in the expression of the immediate early gene zif268 (Theberge et al, 2010). Interestingly, a 

recent study indicated that zif268 expression in the NACc is not necessary for the reconsolidation 

of an instrumental cue-cocaine memory underlying conditioned reinforcement (Theberge et al, 

2010). Hence, Experiment 1d assessed whether intra-NACc administration of U0126 would 

impair instrumental contextual cocaine-memory reconsolidation and the subsequent expression 

of drug context-induced cocaine seeking. The experimental parameters used were identical to 

those in Experiment 1a, except that rats received bilateral microinfusions of VEH or U0126 into 

the NACc immediately after cocaine-memory reactivation (see Fig. 1.4A). 

 

Experiment 1e 

Experiment 1e investigated whether global neural inactivation of the NACc would 

impede cocaine-memory reconsolidation, in order to evaluate the possibility that the NAC 

contributes to memory reconsolidation by an ERK-independent mechanism. The procedures used 
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were identical to those in Experiment 1d, except that rats received bilateral intra-NACc 

microinfusions of phosphate buffered saline VEH or the GABAA/B agonist cocktail, 

baclofen+muscimol (B+M; 106.8/5.7 ng/0.5µl/hemisphere), immediately after cocaine memory 

reactivation (see Fig. 1.4A). B+M suppresses neuronal activity while sparing fibers of passage 

(Martin and Ghez, 1999). 

 

Histology 

In Experiments 1a, 1b, 1d, and 1e, rats were overdosed with ketamine hydrochloride and 

xylazine (66.6 and 1.3 mg/kg, i.v. or 199.8 and 3.9 mg/kg, i.p., respectively, depending on 

catheter patency) and transcardially perfused with a 1x phosphate buffered saline (Fischer 

Scientific) plus 10% formaldehyde solution (Sigma). Brains were dissected out and stored in 

10% formaldehyde solution until they were sectioned coronally using a vibratome. Cannula 

placements were verified on 75µm sections stained using cresyl violet (Kodak, Rochester, NY, 

USA). The most ventral portion of each cannula tract was mapped onto schematics from the rat 

brain atlas (Paxinos and Watson, 1997). 

 

Data Analysis 

Separate t-tests were used to test for possible pre-existing differences in cocaine intake, in 

active and inactive lever responding during self-administration training (mean of last 3 d), 

extinction training (days 1 and 7), and during the memory reactivation session, as well as in the 

number of days required to reach the post-reactivation extinction criterion for rats in 

Experiments 1a-1e that would subsequently receive either VEH or drug (U0126 or B+M) 

treatment following cocaine-memory reactivation or no memory reactivation. Separate mixed-
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factorial ANOVAs were conducted to examine the effects of post-reactivation manipulations on 

active and inactive lever responses on the test days in the cocaine-paired and extinction contexts 

(last extinction session before the test in the cocaine-paired context). In these analyses, treatment 

(VEH, U0126, B+M) was included as a between-subjects factor and testing context (EXT, COC-

paired) was included as a within-subjects factor. Significant main and interaction effects were 

further examined using post-hoc Tukey tests. In Experiment 1c, a one-way ANOVA was 

conducted to examine the effects of context (cocaine-paired, novel, home-cage) on pERK1/2 

activation (i.e., ratio of phosphorylated to total ERK1/2 protein) in the BLA in VEH-treated rats. 

Separate t-tests were used to examine the effects of U0126 treatment on pERK1/2 activation in 

the BLA or posterior caudate putamen (pCPu; anatomical control), relative to VEH. Alpha was 

set at 0.05. 

 

RESULTS 

Histology 

Schematics and photomicrographs illustrating cannula placements are included in 

Figures 1.1B 1.2, and 1.4B. The target brain regions were defined as the lateral and basolateral 

nuclei of the amygdala (BLA) and the nucleus accumbens core (NACc). High power microscopy 

did not reveal abnormal tissue damage (i.e., extensive cell loss or gliosis) at injection sites. Only 

data from rats with correct cannula placements were included in statistical analyses.  

 

Behavioral History 

There were no pre-existing differences between the groups in cocaine intake, active or 

inactive lever responding during cocaine self-administration training, active or inactive lever 
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responding on extinction training days 1 and 7, or the memory reactivation session; or in the 

number of days required to reach the extinction criterion (all Ts ≤ 2.07, Ps ≥ 0.06) . These 

descriptive statistics are provided in Table 2. 

 

Table 2. Behavioral History 
Exp./Group Cocaine 

Intake SA EXT 1 EXT 2 Reactivation Days to 
EXT 

1a 

VEH 
(N=7) 23.1 ± 2.6 75.9 ± 

15.6 77.0 ± 28.1 10.3 ± 4.9 26.9 ± 4.9 2.57 ± 0.30 

U0126 
(N=8) 30.0 ± 3.8 69.8 ± 

11.9 69.8 ± 14.1 12.8 ± 2.9 17.9 ± 7.6 2.13 ± 0.13 

1b 

VEH/NR 
(N=7) 26.2 ± 3.1 59.4 ± 

14.0 74.4 ± 24.0 3.6 ± 0.7 10.5 ± 4.2 2.00 ± 0.00 

U0126/NR 
(N=8) 21.2 ± 1.2 52.8 ± 

10.0 60.3 ± 16.2 2.9 ± 0.7 13.0 ± 5.3 2.25 ± 0.25 

1c 

VEH  
(N=6) 25.9 ± 2.6 68.1 ± 

12.5 88.3 ± 27.3 13.0 ± 6.2 37.6 ± 8.9 N/A 

U0126 
(N=8) 23.8 ± 2.1 62.9 ± 

8.7 64.2 ± 12.7 10.0 ± 2.4 30.3 ± 13.8 N/A 

VEH/Nov 
(N=8) 21.4 ± 4.2 59.2 ± 

7.9 44.6 ± 14.6 7.6 ± 3.0 9.1 ± 2.3 N/A 

U0126/Nov 
(N=6) 21.4 ± 2.8 59.5 ± 

8.6 39.7 ± 13.1 7.2 ± 3.0 11.5 ± 5.8 N/A 

VEH/HC 
(N=6) 26.1 ± 2.3 72.6 ± 

26.7 63.3 ± 22.8 9.0 ± 5.3 N/A N/A 

U0126/HC 
(N=5) 28.5 ± 10.4 74.9 ± 

36.1 67.2 ± 17.7 29.3 ± 
21.28 N/A N/A 

1d 

VEH 
(N=7) 26.2 ± 3.0 57.5 ± 

7.2 78.0 ± 22.6 5.3 ± 2.0 24.4 ± 3.5 2.43 ± 0.3 

U0126 
(N=7) 26.3 ± 1.9 62.8 ± 

10.3 39.6 ± 16.1 6.3 ± 1.9 13.1 ± 6.4 2.14 ± 0.14 

1e 

VEH 
(N=7) 27.1 ± 2.8 72.9 ± 

8.7 41.3 ± 10.8 6.7 ± 1.6 34.3 ± 8.7 2.40 ± 0.25 

B+M 
(N=6) 25.2 ± 4.6 61.5 ± 

11.5 41.6 ± 13.1 5.1 ± 2.2 29.4 ± 9.6 2.33 ± 0.21 

Table 2. Cocaine intake (mean ± SEM infusions/session for the last 3 training sessions) and 
active lever responses during self-administration (SA; mean ± SEM for the last 3 training 
sessions), as well as active lever responses (mean ± SEM) during the first (Extinction 1) and last 
(Extinction 7) extinction training sessions, and during the 15-min memory reactivation 
(Reactivation) session. The number of days required to meet the extinction criterion (Days to 
EXT) is also included. Means are provided for rats that received U0126 or 5% DMSO/6% 
TWEEN VEH into the BLA (Experiment 1a-c) or NACc (Experiment 1d) or B+M or PBS VEH 
into the NACc (Experiment 1e) after cocaine-memory reactivation, novel context exposure (Nov, 
no reactivation controls), or confinement to their home cages (HC, no reactivation controls). 
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Experiment 1a: Effects of U0126 microinfused into the BLA following cocaine-memory 

reactivation on subsequent drug context-induced cocaine seeking  

U0126 administration into the BLA following cocaine-memory reactivation altered 

subsequent cocaine seeking in a context-dependent fashion (Fig. 1.1C; ANOVA context x 

treatment interaction, F(1,13)=5.15, P=0.03; context main effect, F(1,13)=33.54, P<0.001; treatment 

main effect, F(1,13)=5.01, P=0.04). In the group that had received VEH into the BLA following 

cocaine-memory reactivation, active lever responding increased upon exposure to the cocaine-

paired context at test, relative to that in the extinction context (Tukey’s test, P<0.05). 

Conversely, the group that had received U0126 responded less on the active lever in the cocaine-

paired context, but not the extinction context, relative to the VEH-treated group (Tukey’s test, 

P<0.05). As a result, the U0126-treated group exhibited no difference in active lever responding 

in the extinction and cocaine-paired contexts.   

 

Experiment 1b: No reactivation control experiment 

U0126 administration into the BLA following exposure to a novel, unpaired context 

failed to alter subsequent drug context-induced cocaine seeking (Fig. 1.1D). Active lever 

responding increased upon exposure to the cocaine-paired context at test, relative to that in the 

extinction context (ANOVA context main effect only, F(1,13)=13.15, P=0.03). Furthermore, there 

was no difference between the VEH- and U0126-treated groups in active lever responding in 

either context (treatment main and interaction effects, F(1,13)=0.01-0.20, P=0.66-0.91). 
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Experiment 1c: Effects of U0126 in the BLA on ERK1/2 activation 

Quantitative Western blot analyses indicated that U0126 administration into the BLA 

significantly reduced ERK1 and ERK2 phosphorylation in the BLA in a transient and memory 

reactivation-dependent manner. Specifically, bilateral microinfusions of U0126 following 

explicit cocaine-memory reactivation significantly attenuated ERK1 (t(13)=3.095, P=0.009) and 

ERK2 (t(13)=3.062, P=0.009) activation in the BLA, relative to VEH (Fig. 1.3B) when assessed 

30 min post treatment. Conversely, when U0126 treatment was administered following exposure 

to the novel, unpaired context (Fig. 1.3C) or the home cage (Fig. 1.3D), it did not alter ERK1 

(t(12)=0.476, P=0.64; t(9)=0.505, P=0.63, respectively) or ERK2 (t(12)=0.165, P=0.87; 

t(9)=0.960, P=0.36, respectively) activation in the BLA, relative to VEH. Separate one-way 

ANOVAs indicated a marginal difference in ERK2 (F(2,17) = 3.25 P=0.06), but not in ERK1 

(F(2,17) = 1.29, P = 0.30), activation between the groups that received VEH after exposure to 

the cocaine-paired context, the novel context, or the home cage. Furthermore, planned pairwise 

comparisons revealed that there was an increase in ERK2, but not ERK1, activation in these 

groups following exposure to the cocaine-paired context (one-tail t(10) = 2.042, P = 0.03), but 

not the novel context (one-tail t(12) = 0.675, P = 0.26), relative to the home cage.  

 The effects of intra-BLA U0126 administration on ERK1/2 activation were anatomically 

selective and transient. Intra-BLA infusions of U0126 following cocaine-memory reactivation 

did not alter ERK1 (t(12)=0.673, P=0.51) or ERK2 (t(12)=0.196, P=0.84) activation in the 

pCPu, relative to VEH (Fig. 1.3E). Furthermore, U0126 administered following cocaine-

memory reactivation did not alter ERK1 (t(12)=0.073, P=0.94) or ERK2 (t(12)=0.160, P=0.88) 

activation in the BLA, relative to VEH when assessed ~72 h post treatment, immediately after 

the test of cocaine seeking (Fig. 1.3F). 
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Experiment 1d: Effects of U0126 microinfused into the NACc following cocaine-memory 

reactivation on subsequent drug context-induced cocaine seeking 

U0126 administration into the NACc after cocaine-memory reactivation did not alter 

subsequent drug context-induced cocaine seeking (Fig. 1.4C). Active lever responding increased 

upon exposure to the cocaine-paired context at test, relative to that in the extinction context 

(ANOVA context main effect only, F(1,12)=35.88, P<0.001). Furthermore, there was no 

difference between the previously VEH- and U0126-treated groups in active lever responding in 

either context (treatment main and interaction effects, F(1,12)=0.67-1.64, P=0.22-0.43). 

 

Experiment 1e: Effects of NACc neural inactivation following cocaine-memory reactivation 

on subsequent drug context-induced cocaine seeking 

B+M administration into the NACc following cocaine-memory reactivation failed to alter 

subsequent drug context-induced cocaine seeking (Fig. 1.4). Active lever responding increased 

upon exposure to the cocaine-paired context at test, relative to that in the extinction context 

(context main effect only, F(1,11)=20.43, P=0.001). Moreover, there was no difference between 

the previously VEH- and B+M-treated groups in active lever responding in either context 

(treatment main and interaction effects, F(1,11)=0.10-0.30, P=0.59-0.75). 

 

Inactive Lever Responding 

Inactive lever responding was low in all experiments and did not significantly differ as a 

function of treatment group or testing context (all Fs<3.017, Ps>0.108; Figs. 1.1 & 1.4 C’, D’). 
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DISCUSSION 

 

Results from Experiments 1a-1e suggest that the BLA, but not the NACc, critically 

regulates the reconsolidation of contextual memories that trigger instrumental cocaine-seeking 

behavior. Consistent with this, ERK inhibition in the BLA following brief re-exposure to the 

cocaine-paired context – a manipulation designed to reactivate context-response-cocaine 

associative memories and prompt their reconsolidation – disrupted subsequent drug context-

induced cocaine-seeking behavior, presumably by inhibiting memory reconsolidation (Fig. 

1.1C). Conversely, ERK inhibition in, or GABA agonist-induced neural inactivation of, the 

NACc was without effect under the same experimental conditions (Figs. 1.4C, D). 

 

ERK signaling in the BLA critically regulates the reconsolidation of contextual cocaine 

memories 

Administration of the MEK/ERK inhibitor, U0126, into the BLA following cocaine-

memory reactivation decreased ERK1/2 phosphorylation in the BLA during the putative time of 

memory re-stabilization (Fig. 1.3B) and attenuated drug context-induced cocaine seeking 

approximately 72 hours later (Fig. 1.1B), relative to VEH. As expected from a genuine memory 

reconsolidation deficit, these effects depended on explicit cocaine-memory reactivation in that 

U0126 administration in the absence of cocaine-paired context re-exposure (i.e., following novel 

context exposure) failed to alter subsequent drug context-induced cocaine-seeking behavior (Fig. 

1.1D).  
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There was an increase in ERK2, but not ERK1, phosphorylation in the BLA following 

exposure to the cocaine-paired context, relative to the home cage (Figs. 1.3B, D). This 

differential response in ERK1 and ERK 2 activation might reflect functional differences between 

these ERK isoforms in the effects of drugs of abuse (Mazzucchelli et al, 2002; Girault et al, 

2007). Conversely, there was no increase in ERK1/2 phosphorylation following exposure to the 

novel context, relative to the home cage (Figs. 1.3C, D), despite a previous report to the contrary 

in drug-naïve rats (Izquierdo et al, 2002). Because novelty was most robust at the start of novel 

context exposure and ERK1/2 phosphorylation typically peaks ~15-30 min following induction 

(Valjent et al, 2000), novelty-induced ERK activation possibly dissipated by the time of tissue 

collection. Remarkably, U0126 selectively attenuated ERK1/2 phosphorylation after exposure to 

the cocaine-paired context (Fig. 1.3B) without an overt effect on basal ERK1/2 phosphorylation 

(Fig. 1.3 D). While the latter may have been due to a floor effect or alteration in ERK1/2 

phosphorylation kinetics following cocaine experience (Berhow et al, 1996), these findings 

support the importance of ERK1/2 activation in the re-stabilization of contextual cocaine 

memories in an instrumental setting. 

 Importantly, U0126 administration did not exert a protracted inhibitory effect on 

instrumental motor performance or on ERK1/2 activation. Specifically, it did not alter active 

lever responding in the extinction context (Fig. 1.1C) or inactive lever responding in either 

context (Fig. 1.1C’) at test. Furthermore, it failed to alter ERK1/2 activation in the BLA ~72 h 

later at test (Fig. 1.3F), consistent with the short half-life of U0126 (~2h; London and Clayton, 

2008). These findings support that U0126 transiently interfered with ERK activation during 

memory reconsolidation. 
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 Finally, the effects of U0126 were anatomically selective to the BLA, given that intra-

BLA administration of U0126 failed to reduce ERK1/2 phosphorylation in the posterior caudate-

putamen (pCPu), a brain region that is dorsally adjacent to the BLA thus the most probable 

recipient of inadvertent drug diffusion (Figs. 1.3E). While we did not similarly examine the 

possible role of the central nucleus (CeA), a brain region dorsal-medially adjacent to the BLA, in 

the effects of U0126 in the present study, a role for the CeA in drug-memory reconsolidation has 

been examined repeatedly and was not supported (Wang et al, 2008; Li et al, 2010; Wu et al, 

2011).  

ERK1/2 activation in the CeA, but not the BLA, is necessary for the incubation 

phenomenon, a reliable enhancement in cue-induced drug seeking following an extended drug-

free period (Lu et al 2005; Li et al 2008). The development of incubation may be facilitated by 

the repeated retrieval and reconsolidation of drug-related associations during abstinence (Nolen-

Hoeksema et al 2007; Wells et al 2012). However, in light of the above incubation studies, the 

present findings suggest that ERK1/2 activation is differentially involved in drug-memory 

reconsolidation and in the retrieval/utilization of repeatedly reconsolidated drug memories. Thus, 

overall, the most parsimonious interpretation of the present findings is that U0126 in the BLA 

interfered with ERK phosphorylation related to context-response-cocaine memory 

reconsolidation per se, and thereby disrupted the subsequent influence of this associative 

memory on cocaine-seeking behavior. 

 The present findings significantly contribute to prior research, indicating that the BLA is 

a site for memory reconsolidation (Tronson and Taylor, 2007; Milton and Everitt, 2010; but see 

Cammarota et al, 2004) and expand upon previous findings from our laboratory, demonstrating 

that the BLA is a locus for the protein synthesis-dependent restabilization of instrumental, 
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context-response-cocaine memories (Fuchs et al, 2009). ERK signaling may be key to memory 

reconsolidation as a regulator of gene transcription and protein synthesis via the posttranslational 

modification of transcription factors, including Elk1 and/or CREB (Miller and Marshall, 2005). 

Because ERK is a fundamental component of several intracellular signaling cascades (Adams 

and Sweatt, 2002), future research will be necessary to characterize the molecular pathways 

through which it mediates cocaine-memory reconsolidation. 

 

The NACc and the reconsolidation of cocaine memories 

ERK inhibition in, or global neural inactivation of, the NACc following cocaine-memory 

reactivation failed to impair subsequent drug context-induced cocaine seeking (Fig. 1.4C, D). 

These findings were unanticipated because ERK signaling and zif268 immediate-early gene 

expression within the NACc play critical roles in the reconsolidation of Pavlovian context-

cocaine memories required for cocaine-CPP (Miller and Marshall, 2005 and Théberge et al, 

2010, respectively). The negative findings in the present study cannot be attributed to insufficient 

dosing, as the doses of U0126 and B+M used impair the reconsolidation of Pavlovian cocaine 

memories (Miller and Marshall, 2005) and the expression of drug context-induced cocaine 

seeking (Fuchs et al, 2008a), respectively. Instead, these null effects could reflect NACc-specific 

boundary conditions in memory reconsolidation. CPP studies typically involve a shorter timeline 

and fewer CS-US pairings than those in the present study (Miller and Marshall, 2005; Valjent et 

al, 2006; Théberge et al, 2010; Brown et al, 2008). Memory age and strength are inversely 

related to the ease of memory destabilization and/or disruption (Milekic and Alberini, 2002; 

Suzuki et al, 2004; Finnie and Nader, 2012), perhaps because remote, well-trained memories are 

incorporated into rigid or extensive neuronal networks (McClelland et al, 1995; Frankland and 
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Bontempi, 2005). Thus, our negative findings may suggest either a time-limited involvement of 

the NACc or the resilience of NACc-dependent context-response-cocaine memory traces to 

destabilization, perhaps due to cocaine-induced metaplasticity (Lu et al, 2006; Kalivas and 

O’Brien, 2008; Finnie and Nader, 2012). However, it is also possible that the NACc is not 

critical for reconsolidating complex, instrumental context-response-cocaine memories. 

Consistent with this, re-exposure to a food-paired context fails to increase ERK2 activation in the 

NACc concomitant with food-seeking behavior (Shiflett et al, 2008). PKM- and PKC-zeta 

inhibition in the NACc, following re-exposure to a remifentanil-associated runway apparatus, 

fails to alter the speed of approach to the drug-paired goal box, which is considered a quasi-

instrumental response (Crespo et al, 2012). However, it impairs the time spent in the goal box, 

suggesting intact Pavlovian conditioning. Similarly, zif268 knockdown in the NACc disrupts the 

reconsolidation of a Pavlovian cocaine-memory, but not an CS-cocaine memory required for the 

acquisition of a new instrumental response (Théberge et al, 2010). 

 

General Conclusion – Experiments 1a-e 

 These experiments and others (Théberge et al, 2010) suggest that the NACc and BLA 

mediate cocaine-memory reconsolidation under different experimental conditions. The NACc is 

critical in the restabilization of Pavlovian cocaine memories (Miller and Marshall, 2005; 

Théberge et al, 2010; Crespo et al., 2012), while the BLA plays a more global role in the 

reconsolidation of Pavlovian and instrumental cocaine memories (Théberge et al, 2010; Sanchez 

et al, 2010; Fuchs et al, 2009), in part through ERK-dependent processes. Future studies will be 

needed to parametrically vary the extent of cocaine exposure and instrumental conditioning, as 

well as the length of the training-to-reactivation interval, in order to gain further insight into the 
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relative contributions of the NACc and the BLA to the restabilization of maladaptive cocaine 

memories. Nevertheless, the present findings support the idea that the treatment of cocaine 

addiction will benefit from the development of highly selective memory reconsolidation inhibitor 

treatments designed to assuage the impact of environmental contexts on cocaine craving. 
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Fig 1.1 ERK inhibition in the BLA immediately after cocaine-memory reactivation impairs 
subsequent drug context-induced cocaine seeking, relative to VEH treatment. (A) Schematic 
depicting the timeline for Experiments 1a and 1b. Cocaine self-administration (SA) sessions took 
place in a distinct environmental context until rats reached the acquisition criterion (*10 
infusions/session for a minimum of 10 sessions). Extinction training occurred in a distinctly 
different context. After extinction training, rats were re-exposed to the cocaine-paired context 
(Cocaine-memory reactivation) for 15 min to destabilize cocaine memories and stimulate 
memory reconsolidation (Experiment 1a), or they were exposed to a novel, unpaired context (No 
memory reactivation), to provide similar experience without explicit cocaine-memory 
reactivation (Experiment 1b). Immediately after the session, rats received bilateral 
microinfusions of the MEK/ERK inhibitor, U0126 (1.0 µg/ 0.5 µl/hemisphere) or 5% DMSO/6% 
TWEEN vehicle (VEH; 0.5 µl/hemisphere) into the BLA. Next, groups underwent additional 
extinction training until they met the extinction criterion (# ≤ 25 non-reinforced active lever 
responses/ session for two consecutive sessions). Cocaine seeking (non-reinforced active lever 
responding) was then assessed in the cocaine-paired context (COC-paired). (B) Photomicrograph 
and schematics depicting cannula placement. The symbols denote the most ventral point of the 
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injector cannula tracts for rats in Experiment 1a that received bilateral vehicle (VEH; n = 7, 
white circles) or U0126 (n = 8, black circles) infusions into the BLA following cocaine memory 
reactivation and for rats in Experiment 1b that received bilateral VEH (n = 7, white triangles) or 
U0126 (n = 8, black triangles) infusions following exposure to a novel, unpaired context. 
Numbers indicate the distance from bregma in mm, according to the rat brain atlas of Paxinos 
and Watson (1997). (C) Mean (± SEM) active lever responses during SA (mean of last three 
training sessions), the cocaine-memory reactivation session (MEM REACT), and during the tests 
of cocaine seeking in the extinction (EXT; the last session before the test in the COC-paired 
context) and in the COC-paired context for rats in Experiment 1a. (C’) Mean (± SEM) inactive 
lever responses in Experiment 1a. (D) Mean (± SEM) active lever responses during SA, the 
novel-context no memory reactivation session (NO MEM REACT), and during the tests of 
cocaine seeking in the EXT and COC-paired contexts in Experiment 1b. (D’) Mean (± SEM) 
inactive lever responses in Experiment 1b. † denotes significant difference relative to responding 
in the extinction context (ANOVA context main and simple main effects, P<0.05). ‡ denotes 
significant difference relative to the respective VEH treatment (ANOVA treatment simple main 
effect, P<0.05). 
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∫Fig. 1.2   Schematics depicting cannula placement. The symbols denote the most ventral point 
of the injector cannula tracts for rats in Experiment 1c.  The rats received bilateral VEH (n = 6, 
open circles) or U0126 (n = 8, filled circles) infusions into the BLA following cocaine memory 
reactivation, for control rats that received bilateral VEH (n = 8, open triangles) or U0126 (n = 6, 
filled triangles) infusions following exposure to a novel context, and for control rats that received 
bilateral VEH (n = 6, open squares) or U0126 (n = 5, filled squares) infusions following 
exposure to the home cage. Numbers indicate the distance from bregma in mm, according to the 
rat brain atlas of Paxinos and Watson (1997). 
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Fig. 1.3   U0126 in the BLA reduces ERK1 and ERK2 phosphorylation in a transient and 
reactivation-dependent manner. (A) Schematic depicting the timeline for Experiment 1c. 
Experimental parameters were identical to those in Experiment 1a, except that rats received 
bilateral microinfusions of U0126 (1.0 µg/ 0.5 µl/hemisphere) or VEH into the BLA following 
exposure to the cocaine-paired context (Cocaine-memory reactivation), the novel, unpaired 
context (No memory reactivation), or the home cage (No memory reactivation), and were 
sacrificed 30 min later. **Rats from Experiment 1a were sacrificed immediately after the test of 
drug context-induced cocaine seeking. (B) Mean (± SEM) ERK1/2 activation (expressed as the 
ratio of pERK to total ERK protein levels normalized to actin) in rats sacrificed 30 min after 
cocaine-memory reactivation and intracranial manipulations. Representative bands of pERK1, 
pERK2, total ERK1, total ERK2, and actin (i.e., loading control) are also provided. (C) Mean (± 
SEM) ERK1/2 activation and representative bands for rats sacrificed 30 min after novel context 
exposure and intracranial manipulations. (D) Mean (± SEM) ERK1/2 activation and 
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representative bands for home cage controls sacrificed 30 min after intracranial manipulations. 
(E) Mean (± SEM) ERK1/2 activation in the posterior caudate putamen (pCPu; anatomical 
control region) and representative bands for rats sacrificed 30 min after cocaine-memory 
reactivation and intracranial manipulations. (F) Mean (± SEM) ERK1/2 activation and 
representative bands for rats sacrificed immediately after the test of cocaine seeking in 
Experiment 1a. (G) Photomicrograph depicting the location of BLA and pCPu tissue punches 
that were used for Western blotting. * denotes significant difference relative to the respective 
home cage controls (planned, one-tail t-test, P<0.05). ‡ denotes significant difference relative to 
VEH treatment (Student’s t-test, P<0.05). 
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Fig. 1.4   ERK inhibition in, or neuronal inactivation of, the NACc after cocaine-memory 
reactivation fails to disrupt subsequent drug context-induced cocaine seeking. (A) Schematic 
depicting the timeline for Experiments 1d and 1e. Experimental parameters were identical to 
those in Experiment 1a, except that all rats in Experiment 1d received bilateral U0126 (1.0 µg/ 
0.5 µl) or VEH infusions into the NACc following cocaine-memory reactivation, and rats in 
Experiment 1e received bilateral GABAA/B agonist cocktail baclofen+muscimol (B+M; 
106.8/5.7 ng/0.5 µl/hemisphere) or phosphate buffered saline vehicle (VEH) infusions into the 
NACc following cocaine-memory reactivation. (B) Photomicrographic and schematic depiction 
of cannula placements. The symbols denote the most ventral point of the injector cannula tracts 
for rats that received bilateral VEH (n = 7, open circles) or U0126 (n = 7, filled circles) 
infusions into the NACc in Experiment 1d and for rats that received bilateral phosphate buffered 
saline VEH (n = 7, open squares) or B+M (n = 6, filled squares) infusions in Experiment 1e. 
Numbers indicate the distance from bregma in mm, according to the rat brain atlas of Paxinos 
and Watson (1997). (C) Mean (± SEM) active lever responses during self-administration (SA; 
mean of last three training sessions), during the 15-min cocaine-memory reactivation session 
(MEM REACT), and during the tests of cocaine seeking in the extinction (EXT; the last session 
before the test in the COC-paired context) and cocaine-paired (COC-paired) contexts in 
Experiment 1d. (C’) Mean (± SEM) inactive lever responses in Experiment 1d. (D) Mean (± 
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SEM) active lever responses in Experiment 1e. (D’) Mean (± SEM) inactive lever responses in 
Experiment 1e. † denotes significant difference relative to responding in the extinction context 
(ANOVA context main effect, P<0.05). 
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CHAPTER 3 

 

INVOLVEMENT OF AMYGDALAR NUCLEAR FACTOR–κB IN THE 
RECONSOLIDATION OF INSTRUMENTAL CONTEXTUAL COCAINE MEMORIES  

 
 
 

INTRODUCTION 
 

 The role of gene transcription and protein synthesis in memory reconsolidation is hotly 

debated, and may reflect either the de novo synthesis of new proteins to effect structural changes 

that underlie plasticity during restabilization or the replacement of proteins that are modified or 

degraded during memory destabilization (Romano et al, 2006; Miller and Sweatt 2006). 

Regardless of their specific function, both gene transcription and protein synthesis are intrinsic to 

the reconsolidation of long-term memories, including associative memories that underlie 

environmentally triggered relapse (Tronson and Taylor 2007; Milton and Everitt 2010; Sorg 

2012).  Thus far, exploration into the molecular mechanisms of memory reconsolidation has not 

included rigorous examination of the transcription factors (TFs) involved. Instead, investigations 

focused primarily on post-translational modifications of existing cytoplasmic proteins whose 

activation leads up to, and is required for, subsequent gene transcription (for review, see Tronson 

and Taylor 2007; Sorg 2012). Identification of TFs that regulate gene expression critical for 

cocaine-memory reconsolidation will be paramount to the understanding of long-term contextual 
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stimulus control over relapse behavior and will likely inform the development of new 

pharmacotherapies designed to reduce relapse propensity.  

 Of the few TFs whose contributions to memory reconsolidation have been assessed, the 

nuclear factor-κB (NF-κB) family stands out as an important regulator of processes underlying 

the long-term stability of memory (Romano et al, 2006). TFs in the NF-κB family, including 

RelA/p65, Rel B, cRel/vRel, NF-κB1/p50, and NF-κB2, contain the Rel homology domain 

(RHD) (Romano et al, 2006). To be transcriptionally active, these proteins form obligatory 

hetero- or homodimers, the composition of which determines affinity for the κB DNA binding 

site as well as the specific genes targets (Marienfeld et al, 2003; Hoffman et al, 2006; Romano et 

al, 2006). Dimerization lends itself to an unprecedented amount of diversity in NF-κB-dependent 

transcriptional control (Romano et al, 2006). Consequently, NF-κB TFs can mediate the 

expression of over 500 genes in humans, many of which are related to inflammatory and immune 

responses (Baeuerle and Henkel 1994; Thanos and Maniatis 1995; Natoli et al, 2005; Hoffman et 

al, 2006) or oxidative stress (Schreck et al, 1992).   

Several NF-κB-regulated genes are integral to activity-dependent synaptic plasticity and 

long-term memory, including NMDA (Richter et al, 2002) and AMPA (Yu et al, 2002) receptor 

subunits. Accordingly, NF-κB activation is required for the initiation of long-term potentiation 

(LTP; Yeh et al, 2002) and the consolidation of spatial (Dash et al, 2005; Kaltschmidt et al, 

2006) and fear memories in various paradigms (Merlo et al, 2002; Yeh et al, 2002; Freudenthal 

et al, 2005; Anh et al, 2008, but see Levenson et al, 2004). More recently, NF-κB has been 

implicated in memory reconsolidation. Specifically, systemic or intra-hippocampal inhibition of 

NF-κB with sulfasalazine (SSZ), a potent and selective inhibitor of the IκB kinase [IKK], the 

upstream kinase required for NF-κB activation and subsequent nuclear translocation (Zandi et al, 
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1997; Jacobs and Harrison 1998), impairs the reconsolidation of contextual fear memories and 

correspondingly reduces context-elicited freezing behavior in rats and the crab Chasmagnathus 

in the fear conditioning paradigm (Lubin and Sweatt, 2007; Lee and Hynds 2013 and Merlo et al, 

2005, respectively) and latency to enter a footshock-associated context in the inhibitory 

avoidance paradigm (Boccia et al, 2007). Consistent with a critical role for NF-κB-mediated 

transcriptional activity, per se, intra-hippocampal administration of SN-50 or a κB decoy, both of 

which spare the activation but inhibit the transcriptional capacity of NF-κB, blocks contextual 

fear memory reconsolidation (Lubin and Sweatt 2007; de la Fuentes et al, 2011), similar to SSZ. 

Importantly, NF-κB is also critical for the reconsolidation of amygdala-dependent memories. 

Correspondingly, administration of either SSZ or SN-50 in the BLA prevents the reconsolidation 

of auditory fear memory (Si et al, 2012). Finally, intra-BLA SN-50 administration disrupts the 

reconsolidation of Pavlovian drug-related memories that underlie the expression of morphine 

CPP (Yang et al, 2011). However, the role of NF-κB in instrumental cocaine-related memory 

reconsolidation has not been similarly investigated. 

 Hence, the overarching objective for Experiment 2 was to elucidate the contribution of 

the NF-κB family of TFs in the BLA to the reconsolidation of contextual cocaine memories that 

drive drug context-elicited instrumental cocaine-seeking behavior in the extinction-reinstatement 

paradigm. Based on extensive literature in support of NF-κB-dependent memory reconsolidation, 

we postulated that NF-κB activation in the BLA would govern the successful reconsolidation of 

context-response-cocaine associative memories. To test this hypothesis, Experiment 2 evaluated 

the dose-dependent effects of SSZ-induced NF-κB inhibition in the BLA at the putative time of 

memory reconsolidation on subsequent drug context-induced cocaine-seeking behavior.  
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METHODS 

Animals 

Male Sprague-Dawley rats (N = 29; 275-300 g; Charles River Laboratories, Wilmington, 

MA) were individually housed in a temperature- and humidity-controlled vivarium on a reversed 

light-dark cycle. Rats were fed 20-25 g of rat chow per day, and water was available ad libitum. 

Protocols for the housing and treatment of rats followed the Guide for the Care and Use of 

Laboratory Rats (Institute of Laboratory Animal Resources on Life Sciences, 1996) and were 

approved by the Institutional Animal Care and Use Committee of the University of North 

Carolina at Chapel Hill.   

 

Food training 

To expedite cocaine self-administration, rats were trained to lever press under a 

continuous schedule of food reinforcement (45 mg pellets; Noyes, Lancaster, NH, USA) in 

sound-attenuated operant conditioning chambers (26 x 27 x 27 cm high; Coulbourn Instruments, 

Allentown, PA, USA) during a 16-h overnight session. Responses on the right (active) lever 

were reinforced by one food pellet, whereas responses on the left (inactive) lever had no 

scheduled consequences. Food training occurred in a different set of chambers than those used 

for contextual conditioning during subsequent drug self-administration and extinction training 

sessions, and none of the contextual stimuli used were present during food training.  
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Surgery 

Forty-eight h after food training, rats were fully anesthetized with ketamine 

hydrochloride (75 mg/kg, i.p.) and xylazine (5 mg/kg i.p.). Rats were implanted with chronic 

indwelling jugular catheters and with 26Ga stainless steel guide cannulae (Plastics One, 

Roanoke, VA), , as described previously (Fuchs et al, 2009).  The cannulae were aimed 

bilaterally at the BLA (-2.7 mm AP, ± 5.1 mm ML, -6.7 mm DV, from bregma), using standard 

stereotaxic procedures. Stainless steel screws and cranioplastic cement secured the guide 

cannulae to the skull.  When not in use, stylets (Plastics One) and tygon caps and obdurators 

(Plastics One) sealed the guide cannulae and catheter, respectively.  To extend catheter patency 

and prevent infection, catheters were flushed daily with cefazolin (10.0 mg/ml of heparinized 

saline; Schein Pharmaceuticals, Albuquerque, NM, USA) and heparinized saline (70 U/ml; 

Baxter Health Care Corp, Deerfield, IL, USA), as described previously (Fuchs et al, 2009).  Rats 

received 5 days of post-operative recovery before the start of self-administration training.  

Catheter patency was periodically assessed by administering propofol (1mg/0.1ml, i.v. Eli 

Abbott Lab, North Chicago, IL, USA) intravenously and confirming a rapid loss of muscle tone. 

 

Self-administration and Extinction Training 

All behavioral training and testing (i.e., self-administration and extinction training, as 

well as cocaine-memory reactivation and the test of drug context-induced cocaine seeking) were 

conducted in sound-attenuated operant conditioning chambers configured to one of two distinctly 

different contexts, as described previously (Fuchs et al, 2009; see Table 1, Chapter 2: Contexts 

A, B).  
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 Rats were randomly assigned to either Context A or B for self-administration training, 

which took place during daily, 2-h sessions, during the rats’ dark cycle. Active lever presses 

resulted in the delivery of cocaine infusions (cocaine hydrochloride; 0.15 mg/0.05 ml per 

infusion, i.v.; NIDA, Research Triangle Park, NC) under a FR-1/time-out-20s schedule, as 

described previously (Fuchs et al, 2009). Inactive lever presses were recorded but had no 

scheduled consequences. Training continued until rats reached the acquisition criterion (i.e., 

minimum 10 sessions with ≥10 cocaine infusions/session).  

 After the completion of cocaine self-administration training, rats received seven daily 2-h 

extinction-training sessions in the alternate context (A or B, different from the one used for self-

administration training). During extinction training, both active and inactive presses were 

recorded but had no programmed consequences. Following the fourth extinction-training session, 

the rats were adapted to the intracranial microinfusion procedure (i.e., sham infusions). To this 

end, 33Ga injection cannulae (Plastics One) were inserted into the rats’ guide cannulae to a depth 

of 2 mm below the tip of the guide cannulae and remained in place for 4 minutes.  No liquid was 

infused. 

 

Experiment 2 

Experiment 2 evaluated whether SSZ-induced NF-κB inhibition in the BLA would dose-

dependently impair instrumental context-cocaine memory reconsolidation.  To this end, on the 

day following the completion of extinction training, rats were re-exposed to the cocaine-paired 

context for 15 min (i.e., cocaine-memory reactivation; see Fig. 2A) to trigger cocaine-memory 

destabilization and reconsolidation. This session length was carefully selected based on a 

previous parametric analysis (Fuchs et al, 2009). During cocaine-memory reactivation, levers 



	  59	  

were extended to allow for similar tactile and motor experience as in self-administration training 

(Fuchs et al, 2009). However, lever presses were not reinforced with cocaine because cocaine 

acutely increases NF-κB transcriptional activity within 3 h post-treatment (i.e., within the 

memory reconsolidation time window; Nader et al, 2000a) in the pc-12 catecholaminergic cell 

line (Lepsch et al, 2009).  

Immediately after cocaine-memory reactivation, rats received bilateral microinfusions of 

20% DMSO/10 mM HEPES (pH 7.6) VEH or one of two doses of SSZ (2 or 

5µg/0.5µl/hemisphere) into the BLA. The 2µg dose of SSZ was selected based on a previous 

report demonstrating that it impairs contextual fear memory reconsolidation when administered 

into the hippocampus (Lee and Hynds 2013). Treatment assignment was counterbalanced based 

on previous cocaine intake. During intracranial microinfusions, injection cannulae were lowered 

to a depth of 2 mm below the tip of the guide cannulae and remained in place for 1 min before 

and after the microinfusion, which was delivered over 2 min.  

 

Post-reactivation extinction and test of drug context-induced cocaine seeking 

 Beginning on the day following cocaine-memory reactivation, rats received additional 

daily 2-h extinction-training sessions (2.1±0.1 days) until they met the extinction criterion (i.e., 

≤25 active lever responses per session on a minimum of 2 consecutive days). Twenty-four h 

later, rats were placed into the previously cocaine-paired context for a 2-h test session, during 

which non-reinforced active and inactive lever presses were recorded.  Non-reinforced active 

lever presses provided an index of motivation to obtain cocaine reinforcement. 
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Histology 

Rats were overdosed with ketamine hydrochloride and xylazine (66.6 and 1.3 mg/kg, i.v. 

or 199.8 and 3.9 mg/kg, i.p., respectively, depending on catheter patency) and transcardially 

perfused with a 1x phosphate buffered saline (Fischer Scientific) plus 10% formaldehyde 

solution (Sigma). Brains were dissected out and stored in 10% formaldehyde solution until they 

were sectioned coronally using a vibratome. Cannula placements were verified on 75µm sections 

stained using cresyl violet (Kodak, Rochester, NY, USA). The most ventral portion of each 

cannula tract was mapped onto schematics from the rat brain atlas (Paxinos and Watson, 1997). 

 

Data Analysis 

Separate one-way ANOVAs were used to evaluate possible pre-existing differences in 

cocaine intake, in active and inactive lever responding during self-administration (mean of last 3 

d), extinction (days 1 and 7), and during the memory reactivation session, as well as in the 

number of days required to reach the post-reactivation extinction criterion. Subsequent treatment 

(VEH, SSZ dose) was included as a between-subjects factor in the ANOVAs.   

 Separate mixed-factorial ANOVAs were conducted to examine the effects of intracranial 

microinfusions on active and inactive lever responses on the test days in the cocaine-paired and 

extinction contexts (the day preceding the test cocaine-paired context). In these analyses, 

treatment (VEH, SSZ dose) was included as the between-subjects factors, and testing context 

(EXT, COC-paired) was the within-subjects factor. Significant main and interaction effects were 

further examined using post-hoc Tukey tests. Alpha was set at 0.05. 
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RESULTS 

Histology 

Schematics and photomicrographs illustrating cannula placements are included in 2B. 

The target brain region was defined as the lateral and basolateral nuclei of the amygdala (BLA). 

High power microscopy did not reveal tissue damage at injection sites. Only data from rats with 

correct cannula placements were included in the statistical analyses.  

 

Behavioral History 

Separate one-way ANOVAs confirmed that there were no pre-existing differences 

between groups that subsequently received VEH or either dose of SSZ into the BLA in cocaine 

intake, active or inactive lever responses during cocaine self-administration training, extinction 

training days 1 and 7, or the memory reactivation session, or in the number of days required to 

reach the extinction criterion (all Fs(2,26) ≤ 1.97, Ps ≥ 0.16). Descriptive statistics are provided in 

Table 3 below. 

 

Exp./Group Cocaine 
Intake SA EXT 1 EXT 7 Reactivation 

Days 
to 

EXT 

2 

VEH 
(N=11) 

24.5 ± 
2.3 64.8 ± 10.1 84.2 ± 24.8 12.0 ± 3.7 25.6 ± 7.2 2.1 ± 

0.1 
2 µg SSZ 

(N=9) 
23.4 ± 

2.5 58.3 ± 9.0 115.2 ± 20.3 12.8 ± 3.6 21.9 ± 4.1 2.0 ± 
0.2 

5 µg SSZ 
(N=9) 

27.3 ± 
2.1 69.8 ± 9.1 55.3 ± 11.3 9.4 ± 2.2 31.0 ± 6.2 2.0 ± 

0.2 
Table 3: Behavioral History  Cocaine intake (mean ± SEM infusions/session for the last 3 training 
sessions) and active lever responses during self-administration (SA; mean ± SEM for the last 3 training 
sessions), as well as active lever responses (mean ± SEM) during the first (Extinction 1) and last 
(Extinction 7) extinction training sessions, and during the 15-min memory reactivation (Reactivation) 
session. The number of days required to meet the extinction criterion (Days to EXT) is also included. 
Means are provided for rats in groups in Experiment 2 that received VEH or SSZ into the BLA after 
cocaine-memory reactivation. 
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Experiment 2: Effects of SSZ administration in the BLA following cocaine-memory 

reactivation on subsequent drug context-induced cocaine seeking  

The IκK/NF-κB inhibitor, SSZ, administered into the BLA immediately after cocaine-

memory reactivation failed to significantly alter subsequent cocaine-seeking behavior despite 

producing a non-significant trend for an increase in cocaine seeking at the 5µg dose  (Fig. 2C; 

ANOVA context x treatment interaction, F(2,26)=4.48, P=0.02; context main effect, F(1,26)=63.08, 

P<0.001; NS treatment main effect, F(2,26)=2.70, P=0.09). There was also no difference between 

the groups in active lever responding in the extinction context. Re-exposure to the cocaine-paired 

context increased active lever responding in the groups that had received VEH or either dose of 

SSZ following cocaine-memory reactivation, relative to responding in the extinction context on 

the preceding day (Tukey’s test, P<0.05). Active lever responding did not differ between the 

groups that had received VEH or 2 µg of SSZ after cocaine-memory reactivation in the cocaine-

paired context. Furthermore, despite a significant context x treatment interaction, the group that 

had received the 5µg SSZ dose following cocaine-memory reactivation exhibited only a non-

significant trend for an increase in active lever responding in the cocaine-paired context during 

the test session, relative to group that had received VEH treatment (Tukey’s test, P>0.05).   

 

Inactive Lever Responding 

Re-exposure to the cocaine-paired context at test produced a modest increase in inactive 

lever responding independent of treatment (Fig. 2C’; ANOVA context main effect only, 

F(1,26)=5.66, P=0.03; all treatment main and interaction effects, F(1-2,26)=0.49-0.60, P=0.56-0.62).  
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DISCUSSION 
 

Experiment 2 assessed the involvement of the NF-κB family of TFs in context-response-

cocaine memory reconsolidation. NF-κB exists in the cytoplasm of neurons, bound to an 

inhibitory κB protein (IκB) that prevents its nuclear localization by occluding the requisite 

nuclear localization sequence (NLS; Jacobs and Harrison 1998). Phospohrylation of IκB by IκK 

primes it for imminent degradation (Brockman et al, 1995; Finco and Baldwin 1995; Chen et al, 

1996; DiDonato et al, 1996), allowing NF-κB to be translocated into the nucleus, where it can 

regulate gene transcription (Zandi et al, 1997). SSZ is a potent and highly specific inhibitor of 

IκK; therefore, it prevents the activation and successive translocation of NF-κB (Wahl et al, 

1998).  In the present study, contrary to our hypothesis, SSZ-induced inhibition of NF-κB in the 

BLA during cocaine-memory reconsolidation failed to inhibit subsequent drug context-induced 

cocaine-seeking behavior. Instead, at the highest dose, SSZ produced a non-significant, but 

observable, enhancement in drug context-induced cocaine seeking (Fig. 2C).  

Specifically, SSZ microinfusions into the BLA after a 15-min exposure to the cocaine-

associated context, which optimally engenders cocaine-memory destabilization and 

reconsolidation (Fuchs et al, 2009; Ramirez et al, 2009; Wells et al, 2011, 2013; Arguello et al, 

2013b), did not significantly alter subsequent drug context-induced cocaine seeking, relative to 

VEH treatment (Fig. 2C). Remarkably, post-cocaine memory reactivation administration of the 

2µg SSZ dose, which has a robust inhibitory effect on the reconsolidation of contextual fear 

memories in the hippocampus (Lee and Hynds 2013), failed to alter subsequent cocaine-seeking 

behavior relative to VEH. Conversely, the 5µg SSZ dose modestly potentiated subsequent 

cocaine-seeking behavior (Fig. 2C). This was indicated by a significant context x treatment 
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interaction effect, the source of which was likely a greater context-dependent increase in active 

lever responding exhibited by the group that received 5µg of SSZ following cocaine memory 

reactivation than the increase exhibited by the groups that received VEH or 2µg of SSZ. While 

nonsignificant, this trend is unlikely to reflect protracted hyperactivity or nonspecific increases in 

motivation, in that ongoing control experiments have demonstrated that intra-BLA 5µg SSZ fails 

to alter general motor activity in a novel context or cocaine-seeking behavior when administered 

in the absence of cocaine-memory reactivation (data not shown). Further, this modest effect 

depends on the BLA in that SSZ administration into the posterior caudate putamen (pCPu; 

expected negative anatomical control region; Fuchs et al, 2009) after cocaine memory 

reactivation does not alter cocaine-seeking behavior at test, relative to VEH (data not shown). 

It is unclear whether insufficient dosing contributed to the modest effect of SSZ or the 

non-significant difference between the groups in the magnitude of cocaine-seeking behavior in 

the cocaine-paired context. On one hand, the 5µg SSZ dose is considerably higher than the 

highest reported dose (i.e., 2µg in Lee and Hynds 2013) used in the literature to impair memory 

reconsolidation. However, the 5µg dose of SSZ in the BLA may have been insufficient to 

appreciably disrupt the extent of NF-κB activation putatively required during the reconsolidation 

of context-response-cocaine memories per se. This possibility might be related to well-

documented cocaine-related increases in basal levels of NF-κB and to a subsequent decrease in 

signal to noise ratio. In support of this, chronic cocaine administration increases delta fosB-

dependent expression of NF-κB in the nucleus accumbens core (Ang et al, 2001, but see Muriach 

et al, 2010), and these increases likely persist during drug-free periods, similar to delta fosB 

(Hope 1998). 
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Another possibility is that a ceiling effect may have precluded the observation of a 

genuine group difference, given that the VEH group exhibited full reinstatement of the behavior 

(Fig. 2C). Similarly, in a previous study, the memory reconsolidation–enhancing effects of the 

PKA activator 6 – BNZ-cAMP were undetectable unless BNZ-cAMP was administered 

following repeated memory reactivation sessions for 4 consecutive days (Tronson et al, 2006). 

Regrettably, in the present study, we did not similarly adjust our experimental parameters to 

account for a ceiling effect, because we had postulated that SSZ would impair, rather than 

enhance, cocaine-memory reconsolidation.  

 Future studies will be needed to determine the effects of SSZ under conditions in which 

behavioral enhancement is more easily detected. Positive findings will have important 

implicatons for our understanding of the role of NF-κB in memory. In the only other study that 

explored the contribution of NF-κB to drug-memory reconsolidation to date, NF-κB inhibition in 

the BLA following reactivation of a Pavlovian morphine-related memory prevented the 

expression of morphine CPP 24 h and up to 7 d later (Yang et al, 2011). The apparent 

discrepancy between this and the present study may reflect differences in cocaine- versus 

morphine-induced metaplasticity in NF-κB signaling that differentially impacted the ability of 

NF-κB inhibitors to suppress memory reconsolidation-related activity. Consistent with this 

possibility, unlike cocaine, both morphine administration (Hargrave et al, 2003; Borner et al, 

2012, but see Hou et al, 1996) and morphine withdrawal have a suppressive effect on NF-κB 

(Kelschenbach et al, 2013).  

 In addition to drug-based differences, the recruitment of NF-κB transcriptional regulation 

during the memory reconsolidation may differ as a function of memory type, age, and strength 

(Alberini et al, 2011; Besnard et al, 2012). Similar to its effects on the reconsolidation of 
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morphine CPP (Yang et al, 2011, described above), NF-κB inhibition in the DH or BLA after 

contextual and auditory fear memory reactivation, respectively, robustly inhibits subsequent 

conditioned freezing behavior (Lubin and Sweatt 2007; Si et al, 2012; Lee and Hynds 2013), 

which is suggested, in part, to depend on changes in histone acetylation after pharmacological 

manipulations to NF-κB signaling (Si et al, 2012). Unlike in fear conditioning and morphine 

CPP studies, cocaine-memory reactivation in the present study took place a minimum of 18 d 

following initial context-response-cocaine memory consolidation and after extensive context-

response-drug pairing over the course of self-administration training (see Fig. 2A for 

experimental timeline). Therefore, the target memory at the time of manipulation was likely 

more crystallized and cortically distributed (McClelland et al, 1995; Frankland and Bontempi, 

2005) and this, as well as extensive conditioning and drug exposure, perhaps have led to NF-κB-

dependent suppression of memory reconsolidation.    

 It is important to note that the regulation of gene transcription by NF-κB is extremely 

complex. NF-κB controls the expression of over 500 genes (Natoli et al, 2005; Hoffman et al, 

2006), but the specific genes regulated and the manner in which their expression is altered (i.e., 

activation or repression) following NF-κB activation is multiply determined by a number of 

intracellular factors, including dimeric composition of NF-κB TFs and the specific pathway 

leading to IKK/NF-κB activation (Romano et al, 2006). Thus, while the majority of studies 

investigating the role of NF-κB in memory reconsolidation have suggested NF-κB is a promoter 

of memory reconsolidation (Lubin and Sweatt 2007; Boccia et al, 2007; de la Fuentes et al, 

2011; Yang et al, 2011, Si et al, 2012; Lee and Hynds 2013), and notably, the reconsolidation of 

Pavlovian morphine-related memories that subserve morphine CPP (Yang et al, 2011), it is 

conceivable that under certain conditions, NF-κB, can act as an endogenous negative regulator of 
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the memory reconsolidation processes underlying the long-term motivational effects of cocaine-

related environmental stimuli, as the modest findings in Experiment 2 suggest. Future studies 

will be needed in order to identify (A) experimental parameters under which NF-κB involvement 

in context-response-cocaine memory reconsolidation is significant and (B) cellular factors that 

determine whether NF-κB has a facilitative or inhibitory effect on memory reconsolidation. In 

light of the discrepancies between the present results and the larger memory reconsolidation 

literature, it is clear that cross-model validation of experimental results will be imperative in 

order to extend preclinical findings toward development of useful pharmacotherapies that 

capitalize on memory reconsolidation inhibition as a viable treatment for drug addiction and 

other neuropsychiatric disorders characterized by pathogenic memories.  
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Fig 2 IκK/NF-κB inhibition in the BLA following cocaine-memory reactivation modestly, but 
non-significantly, alters subsequent drug context-induced cocaine seeking in a dose-dependent 
manner (A) Schematic depicting the timeline for Experiment 2. Cocaine self-administration (SA) 
sessions took place in a distinct environmental context until rats reached the acquisition criterion 
(*10 infusions/session for a minimum of 10 sessions). Extinction training occurred in a distinctly 
different context. After extinction training, rats were re-exposed to the cocaine-paired context 
(Cocaine-memory reactivation) for 15 min to trigger cocaine-memory destabilization and 
reconsolidation. Next, rats received bilateral microinfusions of the the IκK/NF-κB inhibitor, SSZ 
(2 or 5 µg/ 0.5 µl/hemisphere) or 20% DMSO/10 mM HEPES (pH 7.6) vehicle (VEH; 0.5 
µl/hemisphere) into the BLA. On the day after memory reactivation, rats received additional 
extinction training until they met the extinction criterion (# ≤ 25 non-reinforced active lever 
responses/ session for two consecutive sessions). Cocaine seeking (non-reinforced active lever 
responding) was assessed in the cocaine-paired context (COC-paired) on the following day. (B) 
Photomicrograph and schematics depicting cannula placement. The symbols denote the most 
ventral point of the injector cannula tracts for rats in Experiment 2a that received bilateral 
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microinfusions of vehicle (VEH; n = 11, white circles), 2µg, (n = 9, grey circles), or 5 µg SSZ (n 
= 9, black circles) into the BLA following cocaine memory reactivation. Numbers indicate the 
distance from bregma in mm, according to the rat brain atlas of Paxinos and Watson (1997). (C) 
Mean (± SEM) active lever responses during SA (mean of last three training sessions), the 
cocaine-memory reactivation session (MEM REACT), and during the tests of cocaine seeking in 
the extinction (EXT; the last session before the test in the COC-paired context) and in the COC-
paired context for rats in Experiment 2a. (C’) Mean (± SEM) inactive lever responses in 
Experiment 2. † denotes significant difference relative to responding in the extinction context 
(ANOVA context main effect, P<0.05).  
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CHAPTER 4 

 

CONTRIBUTION OF DORSAL HIPPOCAMPAL SRC-FAMILY TYROSINE KINASES TO 
THE RECONSOLIDATION OF INSTRUMENTAL CONTEXTUAL COCAINE MEMORIES  

 
 
 

INTRODUCTION 
 

 The dorsal hippocampus (DH) is an integral substrate for the cellular consolidation of 

new declarative memories (Eichnembaum 1999), and it is thought to be a repository for 

spatial/contextual information, in particular (Eichenbaum et al, 1999; Morris et al, 2003). 

Accordingly, the DH is recruited during the expression of context-elicited drug-seeking behavior 

per se, including the expression of cocaine CPP (Meyers et al, 2006, Haghparast et al, 2013; Otis 

et al, 2013) and reinstatement of instrumental cocaine-seeking behavior (Fuchs et al, 2005, 2007; 

Xie et al, 2013). Conversely, the involvement of the DH in the reconsolidation of cocaine 

memories, the maintenance and availability of which is required for the ability of a cocaine-

associated context to evoke cocaine-seeking behaviors (Tronson and Taylor 2007; Milton and 

Everitt 2013; Sorg 2012), is poorly understood (Ramirez et al, 2009; Otis et al, 2013). 

Illustrating this, both B-adrenergic receptor antagonism and global protein synthesis inhibition in 

the DH at the time of putative contextual cocaine-memory reconsolidation fail to impact the 

subsequent expression of cocaine CPP (Otis et al, 2013) and drug context-induced instrumental 

cocaine seeking (Ramirez et al, 2009), respectively. Remarkably, however, tetrodotoxin (TTX)-
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induced neuronal inactivation of the DH and functional disconnection of the DH from the 

basolateral amygdala (BLA), a cite of protein synthesis dependent memory restabilization, are 

both sufficient to impair contextual cocaine-memory reconsolidation and attenuate instrumental 

cocaine-seeking behavior (Ramirez et al, 2009 and Wells et al, 2011, respectively). These 

findings highlight the possibility that the DH critically contributes to cocaine-memory 

reconsolidation by permitting protein synthesis-dependent cocaine-memory restabilization in 

extra-hippocampal locations, like the BLA (Fuchs et al, 2009; Wells et al, 2011). Therefore, 

delineating the importance of specific memory reconsolidation-related signal transduction 

cascades within the DH will allow for a refined understanding of the role of the DH in cocaine-

memory reconsolidation. 

 To date, the role of Src family of tyrosine kinases (SFKs) in memory reconsolidation has 

been unexplored. Five distinct members of the Src tyrosine kinase family – Src, Fyn, Lyn, Yes, 

and Lck – are densely expressed in the hippocampus (Salter and Kalia 2004). Interestingly, both 

upstream signals from, and downstream substrates of, SFK activation are necessary for memory 

reconsolidation.  For instance, activation of hippocampal SFKs can be achieved following 

stimulation of mGluR1 (Heidinger et al, 2002) or dopamine D1 receptors (MacDonald et al, 

2007; Stramiello and Wagner 2008; Yang et al, 2012), or other G-protein coupled receptors that 

elicit the activation of cyclic AMP/Protein kinase A (PKA; MacDonald et al, 2007). Each of 

these signaling events has been implicated in memory reconsolidation (see Auber et al, 2013 for 

a current review), and PKA signaling, in particular, is necessary for successful reconsolidation of 

cocaine memories underlying both cue- and context-elicited cocaine-seeking behavior in the 

BLA (Sanchez et al, 2010 and Arguello et al, 2013b, respectively), albeit the involvement of 

PKA in drug-memory reconsolidation has not been similarly evaluated in DH.  
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Following activation, SFKs tightly regulate the activity of several neurotransmitter 

receptors by phosphorylating residues on their C-termini (Ohnishi et al, 2011). These receptors 

include NR2a- (Nakazawa et al 2001; Taniguchi et al, 2009) and NR2b-containing NMDARs 

(Nakazawa et al, 2001; Prybylowski et al, 2005; Zhang et al, 2008), as well as GluR2-containing 

AMPARs (Hayashi et al 1999, Hayashi and Huganir 2004). NMDARs, in particular, have been 

critically implicated in cocaine-memory reconsolidation in a variety of paradigms (Brown et al, 

2008; Milton et al, 2008; Milton et al, 2013), including in our context-based extinction-

reinstatement model (Healey, Wells, and Fuchs, unpublished). Importantly, SFKs are required 

for activity-dependent changes in synaptic efficacy, in particular long-term potentiation (LTP; Lu 

et al, 1998; Huang et al, 2001; Stramiello and Wagner 2008) and long-term depression (LTD; 

Hayashi and Huganir 2004; Fox et al, 2007; Yang et al, 2012), via their effects on NR2a and 

NR2b subunits, respectively (Yang et al, 2012). And, these SFK-mediated processes have been 

directly linked to learning and memory (for reviews, see Purcell and Carew 2003 and Ohinishi et 

al, 201). Particularly relevant to the present experiment, pharmacological inhibition of SFKs in 

the dorsomedial striatum or the DH attenuates the expression of drug-primed ethanol- and 

context-elicited cocaine-seeking behavior, respectively (Wang et al, 2010 and Xie et al, 2013, 

respectively).  

 Expanding upon these findings, Experiment 3a was designed to test the hypothesis that 

SFKs in the DH regulate the reconsolidation of contextual cocaine memories required for the 

sustained ability of a cocaine-associated environmental context to drive instrumental cocaine-

seeking behavior. To determine this, Experiment 3a explored the effects of SFK inhibition in the 

DH following explicit reactivation of a context-response-cocaine memory trace on the 

subsequent expression of cocaine-seeking behavior. Additionally, Experiment 3b determined 
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whether the effects of SFK inhibition were memory reactivation-dependent. Finally, Experiment 

3c utilized quantitative Western blotting to characterize changes in the phosphorylation-

dependent activation of three known SFK substrates – NR2a NMDA subunits (Taniguchi et al, 

2009),NR2b NMDAR (Nakazawa et al, 2001; Prybylowski et al, 2005; Zhang et al, 2008), and 

GluR2 AMPAR subunits (Hayashi et al 1999, Hayashi and Huganir 2004) – at the putative time 

of memory reconsolidation and following SFK inhibition (Clarke et al, 2010; Milton et al, 2013).  

 

 

 

METHODS 

Animals 

Male Sprague-Dawley rats (N =92; 275-300 g; Charles River Laboratories, Wilmington, 

MA) were individually housed in a temperature- and humidity-controlled vivarium on a reversed 

light-dark cycle. Rats were fed 20-25 g of rat chow per day, and water was available ad libitum. 

Protocols for the housing and treatment of rats followed the Guide for the Care and Use of 

Laboratory Rats (Institute of Laboratory Animal Resources on Life Sciences, 1996) and were 

approved by the Institutional Animal Care and Use Committee of the University of North 

Carolina at Chapel Hill.   

 

Food training 

To expedite cocaine self-administration, rats were trained to lever press under a 

continuous schedule of food reinforcement (45 mg pellets; Noyes, Lancaster, NH, USA) in 

sound-attenuated operant conditioning chambers (26 x 27 x 27 cm high; Coulbourn Instruments, 
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Allentown, PA, USA) during a 16-h overnight session. Active lever responses were reinforced 

by one food pellet, whereas inactive lever responses had no scheduled consequences.  None of 

the contextual stimuli used for self-administration and extinction training were present during 

food training.  

 

Surgery 

Forty-eight h after food training, rats were fully anesthetized with ketamine hydrochloride (75 

mg/kg, i.p.) and xylazine (5 mg/kg i.p.) Rats were implanted with chronic indwelling jugular 

catheters, as described previously (Fuchs et al, 2009) and next with 26-gauge stainless steel 

guide cannulae (Plastics One, Roanoke, VA), aimed bilaterally at the DH (angled laterally by 

15°; AP -3.4 mm, ML +/-3.1 mm, DV -2.15 mm), based on Paxinos and Watson (1997), using 

standard stereotaxic procedures. Stainless steel screws and cranioplastic cement were used to 

secure the guide cannulae to the skull.  Stylets (Plastics One) and Tygon caps and obdurators 

(Plastics One) were used to seal the catheter and guide cannulae, respectively.    

To extend catheter patency and prevent infection, catheters were flushed daily with 

cefazolin (10.0 mg/ml of heparinized saline; Schein Pharmaceuticals, Albuquerque, NM, USA) 

and heparinized saline (70 U/ml; Baxter Health Care Corp, Deerfield, IL, USA), as described 

previously (Fuchs et al, 2009).  Rats received 5 days of post-operative recovery before the start 

of self-administration training.  Catheter patency was periodically assessed by administering 

propofol (1mg/0.1ml, i.v. Eli Abbott Lab, North Chicago, IL, USA) intravenously and 

confirming a rapid loss of muscle tone. 
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Self-administration and Extinction Training 

Behavioral training and testing (i.e., self-administration, extinction, cocaine-memory 

reactivation, and reinstatement) were conducted in sound-attenuated operant conditioning 

chambers configured to one of two distinctly different contexts, as described previously (Fuchs 

et al, 2009; see Table 1, Chapter 2: Contexts A and B).  

 Rats were randomly assigned to either Context A or B for self-administration training. 

Training took place during daily, 2h sessions in the rats’ dark cycle. Active lever presses resulted 

in cocaine reinforcement (cocaine hydrochloride; 0.15 mg/0.05 ml per infusion, i.v.; NIDA, 

Research Triangle Park, NC) under a FR-1/time-out-20s schedule, as described previously 

(Fuchs et al, 2009). Responses on the other (inactive) lever were recorded but had no scheduled 

consequences. Training continued until rats reached the acquisition criterion (i.e., minimum 10 

sessions with ≥10 cocaine infusions/session).  

 After meeting the acquisition criterion, rats received seven daily 2-h extinction-training 

sessions in the alternate context (A or B; different from the one used for self-administration 

training).. During extinction training, both active and inactive presses were recorded but had no 

programmed consequences. Following the fourth extinction-training session, rats were adapted to 

the intracranial microinfusion procedure (i.e., sham infusions). To this end, 33Ga injection 

cannulae (Plastics One) were inserted into the rats’ guide cannulae to a depth of 1 mm below the 

tip of the guide cannulae and were left in place for 4 minutes. No liquid was infused. In 

Experiment 3c, rats, whose brains were collected for western blot analysis of protein levels 

following memory reactivation and intracranial manipulations, were extensively acclimated to 

the microinfusion procedure, in order to circumvent the effects of infusion stress on protein 

expression at the time of tissue collection. These rats received sham infusion following the sixth 
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and seventh extinction training sessions. However, the injection cannulae fully lowered only 

once, as for all other rats, in order to minimize cell loss/damage.  

 

Experiment 3a 

Experiment 3a was designed to determine whether administration of PP2, an ATP-

competitive inhibitor of SFKs (Hanke et al, 1996; Brandvoid et al, 2012), into the DH at the 

putative time of cocaine-memory reconsolidation would attenuate subsequent drug context-

induced cocaine-seeking behavior. On the day after the 7th extinction training session, rats were 

re-exposed to the cocaine-paired context for 15 min (i.e., cocaine-memory reactivation; see Fig. 

3.1A) to trigger the destabilization and reconsolidation of context-response-cocaine associative 

memories (Fuchs et al, 2009). During this session, the levers were extended to allow for similar 

behavioral experience as during self-administration training (Fuchs et al, 2009), but lever 

responses were not reinforced because cocaine produces an acute crease in phosphorylation of 

NR2a NMDAR subunits in the ventral tegmental area in a SFK-dependent manner (Schumann et 

al, 2009), although its actions on other SFK-dependent interactions remain unclear. Immediately 

after cocaine-memory reactivation, rats received bilateral microinfusions of 0.1% DMSO VEH 

or PP2 (62.5 ng/0.5 µl/hemisphere) into the DH. This dose of PP2 was selected because it 

significantly attenuates the expression of drug context-induced cocaine-seeking behavior when 

microinfused into the DH at test (Xie et al, 2013). During intracranial microinfusions, injection 

cannulae were lowered to a depth of 1 mm below the tip of the guide cannulae.  The injection 

cannulae remained in place for 1 min before and 1 min after the microinfusion, which was 

delivered over 2 min. Treatment assignment was counterbalanced based on previous cocaine 

intake.  
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Post-reactivation Extinction and Test of Drug Context-induced Cocaine Seeking 

Beginning on the day following cocaine-memory reactivation, rats received additional 

daily 2h extinction-training sessions (2.14±0.14 days) until they reached the extinction criterion 

(i.e., ≤25 active lever responses per session on a minimum of 2 consecutive days). Twenty-four h 

later, rats were placed into the cocaine-paired context for a 1-h test of drug context-induced 

cocaine seeking, during which, non-reinforced active lever presses were recorded and provided 

an index of motivation to obtain cocaine reinforcement. 

 

Experiment 3b  

Experiment 3b tested whether the effects of PP2 administration in Experiment 3a 

reflected a bona fide memory reconsolidation impairment and, therefore, would fail to manifest 

in the absence of explicit cocaine-memory reactivation (Nader et al, 2000b). The experimental 

design (see Fig. 3.2A) was identical to that in experiment 3a, except that the groups were 

exposed to the novel, unpaired context (i.e., No-reactivation control context) for 15 min prior to 

receiving bilateral microinfusions of VEH or PP2 into the DH. The unpaired context distinctly 

differed from Contexts A and B (Table 1). Exposure to the unpaired context provided a similar 

behavioral experience to that during the cocaine-memory reactivation session in Experiment 3a 

without explicit cocaine-memory reactivation. 

 

Experiment 3c 

SFKs tightly regulate the cell surface expression and functional state of several 

neurotransmitter receptors involved in synaptic plasticity, learning, and memory (for review see 
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Ohnishi et al, 2011). SFKs phosphorylate tyrosine residues on the c-terminus of the NR2a 

NMDAR (Taniguchi et al, 2009), NR2b NMDAR (Nakazawa et al, 2001, 2002, 2006; Lavezzari 

et al, 2003; Prybylowski et al, 2005; Zhang et al, 2008), as well as the GluR2 AMPAR, subunits 

(Hayashi et al 1999; Hayashi and Huganir 2004). Experiment 3c was designed to ascertain 

whether cocaine-memory reconsolidation is associated with activation of NR2a, NR2b, or GluR2 

subunits in the DH and whether PP2-induced SFK inhibition prevents this effect. Additionally, 

Experiment 3c evaluated whether potential changes in substrate activation in the DH would 

similarly manifest in the dorsally adjacent trunk region of the somatosensory cortex (SStr), as 

this region represents the most likely target of drug diffusion out of the DH. Experimental 

parameters were identical to those in Experiment 3a except that rats were exposed to the cocaine-

paired context or remained in their home cages, prior to receiving bilateral microinfusions of 

VEH or PP2 into the DH (see Fig. 3.3A). The home cage condition was expected to provide an 

index of basal levels of SFK substrate activation. Groups were euthanized either 15 min or 1 h 

following intracranial microinfusions in order to capture a range of possible activation kinetics of 

downstream SFK substrates (Hayashi and Huganir 2004; Schumann et al, 2008, 2009; Xie et al, 

2013) related to memory reconsolidation per se (Pedreira and Maldonado 2003). Immediately 

following rapid decapitation, brains were quickly removed and flash frozen in isopentane before 

being stored at -80°C.  

 

Western blotting.  

Tissue punches for Western blot analyses were taken from the DH or SStr (expected 

negative anatomical control based on Ramirez et al, 2009) using 19Ga neuropunches (Fine 

Science Tools) from 40µm tissue sections.  The tissue sections were also collected to verify 
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cannula placement. Punched tissue was stored at -80°C in lysis buffer containing 10 mM 

HEPES, 1% SDS, and 1x protease and phosphatase inhibitor cocktails (Sigma Aldrich, St. Louis, 

MO). Hippocampal samples were thawed, manually homogenized, and boiled for 10 min on a 

block heater at 100 °C. Protein concentrations were determined using the Biorad DC protein 

assay. For each sample, 30 µg of protein were electrophoresed on a 7.5% Tris-HCL 

polyacrylamide gel and transferred to a polyvinylidene difluoride (PVDF) membrane for 1 h at 

100 V. Membranes were blocked in 5% nonfat milk for 1 h and incubated in polyclonal 

antibodies developed in rabbit against phosphorylated NR2b (pTyr1472; 1:1000, Sigma Aldrich, 

St. Louis, MO), NR2a (pTyr1325; 1:1000, Rockland Inc., Gilbertsville, PA), or GluR2 (pTyr876; 

1:1000, Millipore Co., Billerica MA) overnight (16-20 h) at 4 °C. Membranes were then 

incubated in horseradish peroxidase-conjugated secondary antibody (1:10,000, GE Healthcare, 

Piscataway, NJ), for 1 h followed by development with an enhanced chemiluminescence (ECL) 

system (Pierce Biotech, Rockford, IL). Membranes were incubated with stripping buffer (62.5 

mM Tris-HCL at pH 6.7, 2% SDS, 100 mM beta-mercaptoethanol) to permit re-probing with 

antibodies developed in rabbit against total NR2b (1:1000, Millipore Co.) or NR2a (1:1000, 

Millipore Co.), or developed in mouse against total GluR2 (1:1000, Millipore Co.), and later, the 

loading control, actin (1:25,000, Santa Cruz Biotechnology, Santa Cruz, CA). Phosphorylated 

and total protein, as well as actin, levels were quantified by densitometry, using NIH Image J 

software. To evaluate changes in protein activation, phosphorylated protein was normalized to 

total protein and actin. Subsequent discussion of protein activation refers to normalized levels. 

Western blot analysis of activation of these substrates is currently being assessed in tissue 

punches from the SStr, to determine whether there was appreciable diffusion of PP2 out of the 

DH at the time of microinfusions in Experiment 3a. 
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Histology 

In Experiments 3a-c, rats were overdosed with ketamine hydrochloride and xylazine 

(66.6 and 1.3 mg/kg, i.v. or 199.8 and 3.9 mg/kg, i.p., respectively, depending on catheter 

patency) and transcardially perfused with a 1x phosphate buffered saline (Fischer Scientific) plus 

10% formaldehyde solution (Sigma). Brains were dissected out and stored in 10% formaldehyde 

solution until they were sectioned coronally using a vibratome. Cannula placements were 

verified on 75µm sections stained using cresyl violet (Kodak, Rochester, NY, USA). The most 

ventral portion of each cannula tract was mapped onto schematics from the rat brain atlas 

(Paxinos and Watson, 1997). 

 

Data Analysis 

Separate t-tests were used to evaluate possible pre-existing differences in cocaine intake, 

in active and inactive lever responding during self-administration (mean of last 3 d), extinction 

(days 1 and 7), and during the memory reactivation session, as well as in the number of days 

required to reach the post-reactivation extinction criterion for rats in Experiments 3a-c that 

would subsequently receive either VEH or PP2 treatment following cocaine-memory reactivation 

or the no memory reactivation condition.  

Separate mixed-factorial ANOVAs were conducted to examine the effects of intracranial 

microinfusions on active and inactive lever responses on the test days in the cocaine-paired and 

extinction contexts (the day preceding the test cocaine-paired context). In these analyses, 

treatment (VEH, PP2) was the between-subjects factor and testing context (EXT, COC-paired) 
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was the within-subjects factor. Significant main and interaction effects were further examined 

using Tukey post-hoc tests.  

In Experiment 3c, separate t-tests were used to examine the effects of context (cocaine-

paired, home cage) or treatment (VEH, PP2) on the activation (i.e., ratio of phosphorylated to 

total protein) of NR2b, NR2a, and GluR2 in the DH or in the SStr (data not shown; ongoing). An 

a priori, one-tail t-test was used to examine the effects of PP2 on NR2a activation following 

cocaine-memory reactivation. Alpha was set at 0.05. 

 

 

 

RESULTS 

Histology 

Schematics and photomicrographs illustrating cannula placements or anticipated 

placements are included in Figs 3.1-3.2B and in 3.4. The target brain region was defined as the 

dorsal hippocampus proper (DH). High power microscopy did not reveal tissue damage (i.e., 

extensive cell loss or gliosis) at injection sites. Only data from rats with correct cannula 

placements were included in statistical analyses.  

 

Behavioral History 

There were no pre-existing differences between subsequently VEH- and PP2-treated rats 

in cocaine intake or in active or inactive lever responses during cocaine self-administration 

training, extinction training days 1 and 7, or during the memory reactivation session. 

Additionally, there were no differences between treatment groups in the number of days required 
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to reach the extinction criterion (all Ts ≤ 1.76, Ps ≥ 0.10). Descriptive statistics are provided in 

Table 4 below.  

 

Table 4. Behavioral History 
Exp./Group Cocaine 

Intake SA EXT 1 EXT 7 Reactivation Days to 
EXT 

3a 

VEH 
(N=6) 23.9 ± 2.2 64.2 ± 

10.8 66.3 ± 18.9 4.0 ± 1.6 25.3 ± 13.8 2.0 ± 0.0 

PP2 
(N=8) 21.7 ± 2.8 65.8 ± 

15.0 60.4 ± 14.3 6.6 ± 2.0 17.1 ± 7.2 2.3 ± 0.3 

3b 

VEH/NR 
(N=7) 23.5 ± 1.7 54.0 ± 

13.2 27.3 ± 10.3 7.7 ± 3.4 6.0 ± 3.3 2.0 ± 0.0 

PP2/NR 
(N=7) 25.7 ± 3.7 66.9 ± 

21.6 50.1 ± 21.3 13.6 ± 
8.1 3.7 ± 1.1 2.0 ± 0.0 

3c 

 
(15 m) VEH 

(N=7) 

 
28.9 ± 4.1 

 
56.8 ± 

9.0 

 
51.6 ± 12.0 

 
7.0 ± 1.1 

 
21.5 ± 8.4 

 
N/A 

(15 m) PP2 
(N=7) 25.3 ± 2.4 49.0 ± 

5.0 58.1 ± 8.7 17.3 ± 
7.7 17.3 ± 5.5 N/A 

(15 m) VEH/HC 
(N=7) 23.9 ± 3.5 54.1 ± 

10.2 77.6 ± 29.2 18.7 ± 
4.8 N/A N/A 

(15 m) PP2/HC 
(N=5) 21.3 ± 2.2 44.1 ± 

4.7 66.0 ± 23.0 10.6 ± 
3.0 N/A N/A 

(1h) VEH 
(N=6) 22.7 ± 1.9 54.7 ± 

 7.7 74.1 ± 28.1 10.1 ±  
3.4 28.6 ± 12.3 N/A 

(1h) PP2 
(N=8) 26.4 ± 2.6 55.1 ± 

6.4 
137.1 ± 

40.3 
10.4 ± 

3.3 29.6 ± 7.0 N/A 

(1h)VEH/HC 
(N=7) 23.8 ± 2.7 51.0 ± 

7.4 
104.0 ± 

28.2 
5.7  ± 

1.1 N/A N/A 

(1h) PP2/HC 
(N=7) 

 

23.0 ± 2.2 
 
 
 

52.1 ± 
10.2 

 
 
 

77.8 ± 19.8 
 
 
 

11.4 ± 
3.9 

 
 
 

N/A 
 
 
 

N/A 
 
 
 

Table 4. Cocaine intake (mean ± SEM infusions/session for the last 3 training sessions) and active lever 
responses during self-administration (SA; mean ± SEM for the last 3 training sessions), as well as active 
lever responses (mean ± SEM) during the first (Extinction 1) and last (Extinction 7) extinction training 
sessions, and during the 15-min memory reactivation (Reactivation) session. The number of days required 
to meet the extinction criterion (Days to EXT) is also included. Means are provided for rats that received 
PP2 or 0.1% DMSO vehicle (VEH) into the DH after cocaine-memory reactivation, novel context 
exposure (Nov, no reactivation controls), or confinement to their home cages (HC, no reactivation 
controls) and were euthanized 15 minutes (15 m) or 1 hour (1 h) later in Experiment 3c.  
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Experiment 3a: Effects of PP2 microinfused into the DH following cocaine-memory 

reactivation on subsequent drug context-induced cocaine seeking  

Microinfusions of PP2 administered into the DH after cocaine-memory reactivation 

attenuated subsequent cocaine seeking in a context-dependent fashion (Fig. 3.1C; ANOVA 

context x treatment interaction, F(1,12)=5.87, P=0.03; context main effect, F(1,12)=25.13, P<0.001; 

treatment main effect, F(1,12) =4.88, P<0.05). Upon exposure to the cocaine-paired context during 

the test session, there was an increase in active lever responding in the group that had previously 

received VEH into the DH following cocaine-memory reactivation, relative to responding in the 

extinction context (Tukey’s test, P<0.05). In contrast, the group that had previously received 

PP2 into the DH after cocaine-memory reactivation exhibited less active lever responding the 

cocaine-paired context at test, but not in the extinction context, relative to VEH-treated group 

(Tukey’s test, P<0.05). Furthermore, active lever responding in this group did not differ between 

the extinction and cocaine-paired contexts. 

 

Experiment 3b: No reactivation control experiment 

Microinfusions of PP2 administered into the DH following exposure to a novel, unpaired 

context – i.e., in the absence of explicit cocaine-memory reactivation - did not alter subsequent 

cocaine-seeking behavior (Fig. 3.2C). Upon exposure to the cocaine-paired context at test, there 

was an increase in active lever responding, relative to responding in the extinction context 

(ANOVA context main effect only, F(1,12)=33.50, P<0.001). Furthermore, there was no 

difference in active lever responding between VEH- and PP2-treated groups in either context (all 

treatment main and interaction effects, F(1,12)=0.25-0.42, P=0.53-0.63). 
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Experiment 3c: Effects of PP2 microinfused into the DH on activation of NR2a, NR2b, and 

GluR2  

Quantitative Western blot analyses indicated that PP2 treatment in the DH preferentially 

interfered with the phosphorylation-dependent activation of NR2a NMDAR subunits.  

Importantly, this effect depended on time and explicit memory reactivation and was specific to 

the DH. Cocaine-memory reactivation failed to alter activation of NR2a, NR2b, or GluR2 in 

VEH-treated rats, relative to home cage exposure (data not shown; all Ts < 1.5, Ps > 0.16). 

Intra-DH administration of PP2 following cocaine-memory reactivation significantly suppressed 

the activation of NR2a (t(12)=1.91, P=0.04; planned one-tailed t-test), but not NR2b 

(t(11)=0.17, P=0.866) or GluR2 (t(11)=0.56, P=0.58), in the DH, relative to VEH (Fig. 3.3C) 

when assessed 15 min post treatment.  Consistent with minimal diffusion out of the DH, intra-

DH PP2 did not similarly alter NR2a activation in the dorsally adjacent SStr (Fig. 3.3C, inset, 

t(12)=0.10, P=0.92).  Further, unlike at the 15 min euthanasia time point, there was no 

difference between the PP2- and VEH-treated groups in the activation of any of these substrates 

at 1 h post treatment (Fig. 3.3D; all Ts < 0.96, Ps > 0.36).  Further, PP2 treatment following 

home cage exposure did not alter the activation of any of these substrates at either euthanasia 

time point, relative to VEH (Fig. 3.3C’, D’; all Ts < 1.58, Ps > 0.14). Current analyses will 

determine whether post-memory reactivation intra-DH infusions of PP2 will similarly or 

differently alter NR2a activation in the dorsally adjacent SStr, in order to evaluate the anatomical 

specificity of PP2 effects. 
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Inactive Lever Responding 

Inactive lever responding was minimal in all experiments and did not significantly differ 

as a function of treatment group or testing context (all Fs<3.017, Ps>0.108; Figs. 3.1-3.2 C’). 

 

 

 
DISCUSSION 

 
Results from the present experiments are the first to demonstrate that hippocampal SFKs 

are important regulators of the memory reconsolidation process. In particular, our findings reveal 

that SFK activation in the DH is necessary for the reconsolidation of cocaine-related memories 

that drive drug context-induced instrumental cocaine-seeking behavior in the extinction-

reinstatement animal model of drug relapse.   

 In Experiment 3a, administration of PP2, a nonselective inhibitor of SFKs (Hanke et al, 

1996; Brandvoid et al, 2012), into the DH following a 15-min re-exposure to the cocaine-

associated context, which reliably destabilizes and permits the reconsolidation of context-

response-cocaine associative memories (Fuchs et al, 2009; Ramirez et al, 2009; Wells et al, 

2011, 2013; Arguello et al, 2013b), significantly reduced subsequent drug context-elicited 

cocaine seeking, assessed ~72 h later, relative to VEH treatment (Fig. 3.1C). This finding is 

consistent with an authentic memory reconsolidation impairment, as PP2 did not produce 

general, context-independent amnesia or a nonspecific deficit in motivation. In support of this, 

PP2 administration following exposure to a novel, unpaired context - thus in the absence of 

explicit cocaine-memory reactivation – was not sufficient to disrupt the ability of the cocaine-

paired context to elicit cocaine-seeking behavior on the test day, relative to VEH (Fig. 3.2C) 

Moreover, post-memory reactivation intra-DH PP2 did not alter active lever responding in the 
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extinction context (Fig. 3.1C), or inactive lever responding in either context, relative to VEH 

(Fig. 3.1C’). Together, these findings suggest that PP2 exerted a targeted disruption of memory 

reconsolidation processes per se.  

 The effects of PP2 in Experiment 3a can most likely be attributed to an anatomically 

selective inhibition of SFKs in the DH. In support of this, we have previously demonstrated that 

TTX-induced neuronal inactivation of the SStr, a brain region that lies just dorsal relative to the 

DH and is consequently in the most likely path of unintended diffusion of PP2 along the injector 

cannula shaft (Baker et al, 1996; Neisewander et al, 1998), after cocaine-memory reactivation 

fails to alter cocaine-seeking behavior at test, suggesting that the integrity of this brain region is 

not required for the reconsolidation of cocaine-related contextual memories (Ramirez et al, 

2009). It is improbable that a more selective manipulation, like inhibition of SFKs within the 

DH, would have different effects than global inaction on the dorsally adjacent SStr. In support of 

this, administration of PP2 into the DH during cocaine-memory reconsolidation failed to alter 

activation of NR2a subunits in the SStr, relative to VEH (Fig. 3C, inset). This is consistent with 

negligible drug diffusion (Wells et al, 2013). Thus, the current findings most likely point to SFK 

signaling within the DH as an integral component of the cellular processes that subserve the 

long-term maintenance of cocaine-related memories.  

 The present study extends previous research demonstrating DH involvement in cocaine-

memory reconsolidation (Ramirez et al, 2009; Wells et al, 2012) by identifying an intracellular 

mechanism – SFK activation - through which the DH might regulate functional and structural 

changes at synapses that support protein-synthesis dependent cocaine-memory restabilization in 

other brain regions, like the BLA, (Fuchs et al, 2009; Wells et al, 2011). SFKs are well 

positioned near the cell membrane to tightly regulate the activity of NMDARs, AMPARs, and 
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other receptors, and thereby either depress or facilitate local synaptic strength (for review, see 

Ohinishi et al, 2011). Evidence from the present experiments supports SFK-dependent regulation 

of NR2a receptors as the critical mechanism underlying DH-dependent cocaine-memory 

reconsolidation (Fig. 3.3). Specifically, PP2 treatment attenuated NR2a, but not NR2b or GluR2, 

activation in the DH, when assessed following cocaine-memory reactivation and therefore, 

during the period of putative cocaine-memory reconsolidation (Fig. 3.3C). Importantly, the same 

manipulation, administered following home cage exposure, failed to alter basal activation of 

NR2a (Fig. 3.3C’). Furthermore, these changes were transient and observable at the 15 min, but 

not the 1 h, euthanasia time point (Fig. 3.3D) consistent with NR2a phosphorylation kinetics 

(Schumann et al, 2009). Remarkably, cocaine memory reactivation did not result in an increase 

in NR2a subunit activation in the DH in VEH-treated rats, relative to home cage exposure (data 

not shown). These data may reflect our inability to detect changes in the phosphorylation state of 

a small pool of NR2a subunits or rapid de- and re-phosphorylation following cocaine context 

exposure. In support of the latter, the activation and deactivation kinetics of NR2a are 

substantially faster than those of NR2b (Vincini et al, 1998). Alternatively, NR2a subunit 

activation in the DH may play a permissive role such that, instead of a rise in NR2a activation, a 

threshold level of NR2a activation is required in the DH in order for cocaine memory 

reconsolidation to occur. For instance, a minimum NMDA current through NR2a-containing 

receptors in the DH may be required for setting in motion robust ERK1/2 activation in the BLA 

that is required for cocaine memory reconsolidation (Wells et al, 2013; see Chapter 2). 

 Previous literature has identified the SFK, Src, as responsible for phosphorylating Tyr-

1325 of the NR2a NMDAR subunit (Yang and Leonard 2001; Taniguchi et al, 2009; Yang et al, 

2012). While additional Src phosphorylation sites on the C-terminus of NR2a have been 
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identified in HEK293 cells (Yang and Leonard 2001), we chose to focus on Tyr-1325, as it is the 

most abundantly phosphorylated residue in neuronal cultures and has been functionally linked to 

NMDAR trafficking and learning that underlies depressive-like behavior (Taniguchi et al, 2009). 

SFK-dependent phosphorylation of Tyr-1325 contributes to the potentiation of NMDAR currents 

in the striatum in vivo (Taniguchi et al, 2009) and LTP at CA1 synapses in vitro (Yang et al, 

2012). Moreover, activation of NR2a subunits per se is required for the reconsolidation of fear 

conditioned associative memories (Milton et al, 2013). The present findings significantly expand 

upon this previous research by identifying SFK-mediated NR2a activation as a possible 

mechanism for cocaine-memory restabilization. As PP2 nonselectively inhibits all 5 SFK 

isoforms (Hanke et al, 1996; Brandvoid et al, 2012), it will be imperative to follow up on the 

present findings by using transgenic models with either a selective deletion of Src or site directed 

mutagenesis of Tyr-1325 to establish a causal relationship between this specific SFK interaction 

and successful context-response-cocaine memory reconsolidation.  

 The non-significant effects of cocaine-context exposure and intra-DH PP2 treatment on 

NR2b in Experiment 3c were unexpected. NR2b phosphorylation by the SFK, Fyn (Nakazawa et 

al, 2001; Prybylowski et al, 2005; Zhang et al, 2008), reduces clatharin-mediated endocytosis of 

NMDARs (Yaka et al, 2002; Lavezzari et al, 2003; Prybylowski et al, 2005) and promotes the 

appropriate localization of these receptors to the cell membrane (Yaka et al, 2002). Such 

augmentation of NR2b subunit function is hypothesized to underlie SKF-mediated enhancements 

in NMDAR currents and long-term potentiation (LTP) in hippocampal cultured neurons and slice 

preparations (Wang and Salter 1994; Yu et al, 1994; Yu et al, 1997; Stramiello and Wagner 

2008). Additionally, we have previously demonstrated that SFKs in the DH control the 

expression of drug context-induced cocaine-seeking behavior in a NR2b activation-dependent 
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manner (Xie et al, 2013). Therefore, overall, the previous literature suggests that SFK-mediated 

phosphorylation of NR2b positively regulates synaptic efficacy and memory stability.  

In contrast, the present findings support the alternative hypothesis that SFKs may 

differentially recruit NR2a, NR2b, and GluR2 subunits for synaptic depotentiation and 

potentiation. For instance, Lyn-mediated phosphorylation of GluR2 AMPAR subunits and 

subsequent AMPAR internalization can facilitate long-term depression (LTD; Hayashi and 

Huganir 2004; Fox et al, 2007; Shinohara et al, 2008; Liu et al, 2009). Interestingly, SFK-

dependent facilitation of NR2b subunit surface expression (Yaka et al, 2002; Lavezzari et al, 

2003; Prybylowski et al, 2005) can also produce LTD (Liu et al, 2004; Kim et al, 2005; Yang et 

al, 2012), likely by promoting NR2b-mediated AMPAR internalization (Shi et al, 2001). 

Notably, a recent report points to a double dissociation of NR2b and NR2a-containing NMDARs 

in auditory fear memory destabilization and reconsolidation, respectively (Milton et al, 2013). 

Evidence suggests that LTD-like processes, including synaptic depotentiation and protein 

degredation, mediate memory destabilization (Lee et al, 2008; Mallert et al, 2010; Clarke et al, 

2010), whereas LTP-like processes, including synaptic potentiation and protein synthesis 

promote memory reconsolidation (Nader et al, 2000a; Alberini 2006; Finnie and Nader 2012). 

Hence, SKFs in the DH may promote the transition of a memory trace from a destabilized to a 

reconsolidated state by initially regulating NR2b-mediated memory destabilization and later 

supporting NR2a-dependent memory reconsolidation. The present findings are consistent with 

this hypothesis, as administration of PP2 following cocaine-memory reactivation interferes with 

memory restabilization per se. Future studies will be instrumental in pinpointing the exact role of 

SFKs in cocaine-memory destabilization.   
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General Conclusion – Experiments 3a-d 

SFKs in the DH are required for the expression of drug context-induced cocaine-seeking 

behavior (Xie et al, 2013), and the present experiments demonstrate that these kinases are also 

responsible for the restabilization of drug-related memories that contribute to cocaine-seeking 

behavior. Interestingly, hippocampal SFKs regulate these distinct phenomena via the activation 

of different NMDAR subunits, with SKF-mediated NR2b subunit activation controlling the 

behavioral expression of context-elicited motivation (Xie et al, 2013) whereas SKF-mediated 

NR2a subunit activation permitting cocaine memory restabilization (present study).  These 

phenomena may involve different SFKs, since it has recently been suggested that Src and Fyn 

selectively control activation of NR2a versus NR2b NMDAR subunits, respectively, via 

signaling pathways that are mutually exclusive, starting at the level of cell-surface receptor 

stimulation (Yang et al, 2012). Src-NR2a interactions follow upstream stimulation of GαQ-

coupled GPCRs, including M1 muscarinic acetylcholine (Lu et al, 1999) or group 1 mGluRs 

(Lan et al, 2001; Heidinger et al, 2002; Kotecha et al, 2003), whereas Fyn-NR2b interactions are 

downstream from the stimulation of GαS-coupled GPCRs, including the D1 dopamine receptors 

(MacDonald et al, 2007; Stramiello and Wagner 2008; Yang et al, 2012) or, alternatively, 

pituitary adenylate cyclase activating peptide 1 receptors (PAC1Rs; Yaka et al, 2003). While the 

present findings are consistent with the former pathway of activation, future studies will be 

required to delineate the precise pathway through which SFKs are activated to control cocaine-

memory reconsolidation. Overall, however, the present findings begin to explicate the complex 

mechanisms through which the DH controls cocaine-memory reconsolidation and will likely 

have important implications for the development of treatments intended to perturb the long-term 

maintenance of maladaptive drug-related memories. 
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Fig 3.1 Inhibition of SFKs in the DH following cocaine-memory reactivation attenuates 
subsequent drug context-induced cocaine seeking. (A) Schematic depicting the timeline for 
Experiment 3a. Cocaine self-administration (SA) sessions took place in a distinct environmental 
context until rats reached the acquisition criterion (*10 infusions/session for a minimum of 10 
sessions). Extinction training occurred in a distinctly different context. After extinction training, 
rats were re-exposed to the cocaine-paired context (Cocaine-memory reactivation) for 15 min to 
trigger the destabilization and subsequent reconsolidation of cocaine memories. Immediately 
after the session, rats received bilateral microinfusions of the nonselective SFK inhibitor, PP2 
(62.5 ng/ 0.5 µl/hemisphere) or 0.1% DMSO vehicle (VEH; 0.5 µl/hemisphere) into the DH. 
Next, groups underwent additional extinction training until they met the extinction criterion (# ≤ 
25 non-reinforced active lever responses/ session for two consecutive sessions). Cocaine seeking 
(non-reinforced active lever responding) was then assessed in the cocaine-paired context (COC-
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paired). (B) Photomicrograph and schematics depicting cannula placement. The symbols denote 
the most ventral point of the injector cannula tracts for rats in Experiment 3a that received 
bilateral vehicle (VEH; n = 6, white circles) or PP2 (n = 8, black circles) infusions into the DH 
following cocaine memory reactivation. Numbers indicate the distance from bregma in mm, 
according to the rat brain atlas of Paxinos and Watson (1997). (C) Mean (± SEM) active lever 
responses during SA (mean of last three training sessions), the cocaine-memory reactivation 
session (MEM REACT), and during the tests of cocaine seeking in the extinction (EXT; the last 
session before the test in the COC-paired context) and in the COC-paired context for rats in 
Experiment 3a. (C’) Mean (± SEM) inactive lever responses in Experiment 3a. † denotes 
significant difference relative to responding in the extinction context (ANOVA context main and 
simple main effects, P<0.05). ‡ denotes significant difference relative to the respective VEH 
treatment (ANOVA treatment simple main effect, P<0.05). 
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Fig. 3.2   Inhibition of SFKs in the DH in the absence of explicit cocaine-memory reactivation 
fails to alter subsequent drug context-induced cocaine seeking. (A) Schematic depicting the 
timeline for Experiment 3b. Experimental parameters were identical to those in Experiment 3a, 
except that rats in Experiment 3b were placed into a novel, unpaired context (No memory 
reactivation) for 15 min to provide similar behavior experience to rats in Experiment 3a without 
reactivating cocaine memories prior to receiving bilateral microinfusions of PP2 (62.5 ng/ 0.5 
µl/hemisphere) or VEH (0.5 µl/hemisphere) into the DH. (B) Schematics depicting cannula 
placement. The symbols denote the most ventral point of the injector cannula tracts for rats in 
Experiment 3b that received bilateral vehicle (VEH; n = 7, white circles) or PP2 (n = 7, black 
circles) infusions into the DH following novel context exposure. Numbers indicate the distance 
from bregma in mm, according to the rat brain atlas of Paxinos and Watson (1997). (C) Mean (± 
SEM) active lever responses during SA (mean of last three training sessions), novel, unpaired 
context exposure (NO MEM REACT), and during the tests of cocaine seeking in the extinction 
(EXT; the last session before the test in the COC-paired context) and in the COC-paired context 
for rats in Experiment 3b. (C’) Mean (± SEM) inactive lever responses in Experiment 3b. † 
denotes significant difference relative to responding in the extinction context (ANOVA context 
main and simple main effects, P<0.05).  
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Fig. 3.3   SFK inhibition in the DH preferentially suppresses phosphorylation-dependent 
activation of NR2a subunits in the DH, but not the SStr, a time- and memory reactivation-
dependent fashion. (A) Schematic depicting the timeline for Experiment 3c. Experimental 
parameters were the same as those used in Experiment 3a, except that rats received bilateral 
microinfusions of PP2 (62.5 ng/ 0.5 µl/hemisphere) or VEH into the DH after re-exposure to the 
cocaine-paired context (Cocaine-memory reactivation) or following retention in the home cage 
(No memory reactivation). These rats were euthanized either 15 min or 1 h post-infusion. (B) 
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Photomicrograph depicting the location of tissue punches taken from the DH and overlying SStr 
that were used for Western blotting. (C, C’) Mean (± SEM) NR2a, NR2b, and GluR2 activation 
(expressed as the ratio of phosphorylated to total protein levels normalized to actin) in rats 
euthanized 15 min after cocaine-memory reactivation (C) or home cage exposure (C’) and 
intracranial manipulations. Representative bands of phospho and total NR2a, NR2b, and GluR2 
are provided. (D, D’) Mean (± SEM) NR2a, NR2b, and GluR2 activation and representative 
protein bands in rats sacrificed 1 h after cocaine-memory reactivation (D) or home cage exposure 
(D’) and intracranial manipulations. ‡ denotes significant difference relative to VEH treatment 
(Planned, one-tailed t-test, P<0.05). 
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∫Fig. 3.4   Schematics depicting cannula placement. The symbols denote the most ventral point 
of the injector cannula tracts for rats in Experiment 3c. The left panel contains placements from 
rats that were euthanized 15 minutes after receiving cocaine-memory reactivation plus bilateral 
VEH (n = 7, open circles) or PP2 (n = 7, filled circles) infusions into the DH or following 
exposure to the home-cage plus bilateral VEH (n = 7, open squares) or PP2 (n = 5, filled 
squares) infusions. The right panel contains placements from rats that were euthanized 1 hour 
after cocaine-memory reactivation and bilateral VEH (n = 6 open circles) or PP2 (n = 8, filled 
circles) infusions into the DH or following exposure to the home-cage plus bilateral VEH (n = 7, 
open squares) or PP2 (n = 7, filled squares) infusions. Numbers indicate the distance from 
bregma in mm, according to the rat brain atlas of Paxinos and Watson (1997). 
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CHAPTER 5 

 

GENERAL DISCUSSION 

 

Summary of Experimental Findings 

Several lines of research have begun to elucidate the intracellular mechanisms of drug-

memory reconsolidation, but overall, this phenomenon is poorly understood. Thus, the 

overarching objective of this dissertation was to make a significant contribution to our 

understanding of the molecular mechanisms of context-response-cocaine memory 

reconsolidation within two critical neural substrates of this phenomeonon, the BLA and DH 

(Fuchs et al, 2009; Ramirez et al, 2009; Wells et al, 2011). The first in these series of 

experiments ascertained the specific involvement of the MEK/ERK signal transduction cascade 

within the BLA and NACc.  Previous research has critically implicated ERK signaling in the 

NACc in the reconsolidation of Pavlovian cocaine-related memories that underlie expression of 

cocaine CPP (Miller and Marshall 2005) and core elements of the MEK/ERK pathway, like 

expression of the immediate early gene zif268 in the BLA, in the reconsolidation of both 

Pavlovian cocaine memories and instrumental cocaine memories that maintain the expression of 

conditioned reinforcement, respectively (Theberge et al, 2010). Based on these studies, we 

postulated that phosphorylation-dependent activation of ERK in the BLA and NACc would be 

necessary for the restabilization of cocaine memories in our context-based extinction-
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reinstatement paradigm. To test this hypothesis, rats in Experiment 1a were briefly re-exposed to 

the cocaine-paired context in order to promote the reactivation and reconsolidation of cocaine-

related memories and next received bilateral microinfusions of U0126, a potent MEK/ERK 

inhibitor, or VEH into the BLA or the NACc. The effects of these manipulations on drug 

context-induced cocaine-seeking behavior were assessed after ~2 days of additional extinction 

training – approximately 72 h after intracranial manipulations. Interestingly, ERK inhibition in 

the BLA, but not the NACc, reduced subsequent drug context-induced cocaine-seeking behavior, 

relative to VEH.	  This effect in the BLA was accompanied by a transient inhibition of ERK1/2 

phosphorylation and depended on memory reactivation, given that the same manipulation 

administered in conjunction with novel context exposure – in the absence of explicit cocaine-

memory reactivation – did not similarly alter context-elicited cocaine seeking.  Remarkably, 

similar to U0126, B+M-induced neural inactivation of the NACc following cocaine-memory 

reactivation, failed to alter subsequent cocaine seeking. These findings demonstrate that ERK 

activation in the BLA, but not the NACc, is required for the reconsolidation of context-response-

cocaine associative memories. Together with prior research, these results suggest that contextual 

drug-memory reconsolidation in Pavlovian and instrumental paradigms involves distinct 

neuroanatomical substrates. 

  Both gene transcription and protein synthesis are integral to the structural changes 

accompanying memory restabilization (Miller and Sweatt 2006; Romano et al, 2006). 

Downstream from MEK/ERK, activation of the TF CREB has been theorized to play a critical 

role in this process (Miller and Marshall 2005; Kim et al, 2011; Tronson et al, 2012). In addition 

to CREB, NF-κB, a TF involved in immune and inflammatory responses (Natoli et al, 2005; 

Hoffman et al, 2006), has also emerged as an vital regulator of fear- (Romano et al, 2006; Boccia 



	  99	  

et al, 2007; Si et al, 2012), and notably, morphine-related memory reconsolidation required for 

the sustained expression of morphine CPP (Yang et al, 2011). However, whether NF-κB 

similarly regulates the reconsolidation of contextual cocaine-related memories that permit 

contextual stimulus control over instrumental cocaine-seeking behavior, was uncertain. Based on 

a wealth of evidence critically implicating NF-κB in a number of learning and memory processes 

across model organisms and experimental paradigms (for review, see Romano et al, 2006), we 

hypothesized that IκK-dependent activation of NF-κB in the BLA would be obligatory for 

instrumental contextual cocaine-memory reconsolidation. To evaluate this hypothesis, rats in 

Experiment 2 received bilateral microinfusions of one of two doses of SSZ, an inhibitor of 

IκK/NF-κB activation (Zandi et al, 1997; Jacobs and Harrison 1998) or VEH into the BLA after 

cocaine-memory reactivation and were tested for drug context-induced reinstatement of cocaine 

seeking ~72 h later. Interestingly, SSZ treatment failed to significantly alter subsequent drug 

context-induced cocaine-seeking behavior, relative to VEH, irrespective of dose. However, 

interestingly, the higher, 5µg dose of SSZ modestly potentiated cocaine-seeking behavior, 

compared to VEH. This finding, albeit nonsignificant, may point to a fundamentally dissimilar 

role for NF-κB transcriptional regulation in the reconsolidation of cocaine memories underlying 

context-elicited motivation for cocaine and in the reconsolidation of conditioned fear (Lubin and 

Sweatt 2007; Boccia et al, 2007; de la Fuentes et al, 2011; Si et al, 2012) or Pavlovian 

morphine-related memories (Yang et al, 2011).  

 A third aim of this dissertation was to begin to probe the molecular underpinnings of DH 

involvement in instrumental context-cocaine memory reconsolidation by assessing the 

contribution of SFKs in the DH to this phenomenon. Previous findings from our laboratory have 

suggested that the functional integrity of, but surprisingly, not protein synthesis within, the DH is 
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necessary for cocaine-memory reconsolidation (Ramirez et al, 2009). Moreover, we have 

demonstrated that intrahemispheric information processing by the BLA and DH critically 

governs cocaine-memory reconsolidation (Wells et al, 2011). Based on these findings, we have 

tenatively proposed that the contextual representation of cocaine memory traces is transiently 

maintained by the DH during the putative cellular restabilization of context-response-cocaine 

memories in the BLA (Fuchs et al, 2009), or alternatively, that the connection between these 

brain regions during cocaine-memory reconsolidation may be required for the establishment of 

retrieval links (Wells et al, 2011). However, direct assessment of such a hypothesis would be 

premature before first identifying potential molecular mechanisms of DH-mediated cocaine-

memory reconsolidation. Given that SFKs in the DH regulate the expression of drug context-

induced cocaine-seeking behavior in a NR2b-dependent fashion (Xie et al, 2013) and NMDA 

receptor stimulation in the DH appears to be involved in cocaine memory reconsolidation 

(Healey, Wells, and Fuchs unpublished), Experiment 3 evaluated the hypothesis that SFKs 

activation would be similarly required in the DH for the reconsolidation of context-response-

cocaine memories.  To this end, rats received bilateral microinfusions of the SFK inhibitor, PP2, 

or VEH into the DH after memory reactivation and were tested for reinstatement of cocaine 

seeking ~72 h later. Consistent with our hypothesis, post-cocaine memory reactivation intra-DH 

PP2 disrupted cocaine-memory reconsolidation, and in turn, attenuated subsequent drug context-

induced cocaine-seeking behavior, relative to VEH.  These effects depended on explicit cocaine-

memory reactivation and SFK inhibition in the DH per se, in that PP2 was without effect when 

administered after exposure to an unpaired context (i.e., without explicit cocaine-memory 

reactivation), and previous global inactivation of the dorsally adjacent SStr after cocaine-

memory reactivation was similarly ineffective in attenuating subsequent cocaine-seeking 
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behavior (Ramirez et al, 2009). Furthermore, SFK inhibition in the DH selectively interfered 

with the phosphorylation-dependent activation of NR2a, but not NR2b or GluR2 subunits (i.e., 

downstream effectors of SFKs; Ohnishi et al, 2011), even though memory reconsolidation was 

not associated with an increase in NR2a activation, relative to baseline.  These findings 

suggested that NR2a subunit-containing NMDAR might play a permissive role in cocaine 

memory reconsolidation.  

 

Molecular Mechanisms of Cocaine-Memory Reconsolidation in the BLA 

The present experiments, considered in concert with a larger body of literature, begin to 

delineate the specific molecular signaling cascades that lead to gene transcription and protein 

synthesis during drug-memory reconsolidation. Specifically, MEK/ERK, NF- κB, and SFKs 

potentially function within a larger, more complex, milieu of intracellular interactions that take 

place during cocaine-memory reconsolidation and are likely affected by cocaine-induced 

adaptations. 

 Findings in Experiment 1 suggest that ERK1/2 in the BLA is required for context-

response-cocaine memory reconsolidation (Wells et al, 2013), and contribute to a larger 

literature implicating MEK/ERK signaling in synaptic plasticity, long-term memory 

consolidation (English and Sweatt 1996, 1997; Schafe et al, 1999, 2000; Sweatt 2001) and 

reconsolidation (Kelly et al, 2003; Miller and Marshall 2005; Duvarci et al, 2005). Interestingly, 

the importance of ERK in maintaining maladaptive drug related memories after their retrieval 

(Miller and Marshall 2005; Wells et al, 2013) compared to non-drug memories (Kelly et al, 

2003; Duvarci et al, 2005) is likely augmented following repeated exposure to cocaine, in that 

cocaine produces dramatic adaptations in ERK signaling, especially that of the ERK2 isoform 



	  102	  

(Valjent et al, 2005), which subserves the conditioned effects of cocaine (Mazzucchelli et al, 

2002; Ferguson et al, 2006). Thus, ERK2 may represent a mechanism for the development of 

pathologically strong or intrusive cocaine-related memories. In support of this, cocaine CPP and 

cocaine-induced locomotor sensitization are enhanced in constitutive ERK1 knockouts, likely 

related to increased ERK2 phosphorylation by MEK (Mazzucchelli et al, 2002; Ferguson et al, 

2006). Moreover, there is a robust increase in ERK2, but not ERK1 phosphorylation in the 

NACc of rats during the reconsolidation of Pavlovian cocaine memories (Miller and Marshall 

2005) and in the BLA during the reconsolidation of instrumental context-cocaine memories in 

Experiment 2c (see Fig. 1.3). This likely reflects a cocaine-induced biasing of stimulus-elicited 

MEK phosphorylation toward ERK2 over ERK1, contributing to ERK2-dependent facilitation of 

pathological drug-related memories (Mazzucchelli et al, 2002; Ferguson et al, 2006; Girault et 

al, 2007).  

 ERK1/2 has been described as a coincidence detector (Girault et al 2007) because it 

integrates several converging inputs at the level of cytoplasmic activation (Adams and Sweatt 

2002; Davis and Laroche 2006). While the canonical MEK/ERK pathway requires upstream 

activation of growth factors and mitogens (Cooper and Hunter 1982; Davis and Laroche 2006), 

ERK activation can also be triggered by numerous cell-surface signals that have been implicated 

in other forms of memory reconsolidation, including β-adrenergic (Roberson et al, 1999), 

dopamine D1 (Lu et al, 2006), and NMDA receptor stimulation (English and Sweatt 1996; 

Impey et al, 1998). ERK activation following β-adrenergic or dopamine D1 receptor stimulation 

depends on PKA (Roberson et al, 1999), whereas ERK phosphorylation downstream from 

NMDAR stimulation requires rapid calcium transients (Bading and Greenberg 1991; Rosen et al, 

1994). Importantly, these distinct pathways of ERK activation differentially alter gene 
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transcription (Davis and Laroche 2006). In particular, calcium influx through NMDARs results 

in successive GTPase activation, transient ERK phosphorylation, and preferential stimulation of 

Elk-1 in the cell nucleus (Murphy et al, 2002). Conversely, PKA activation selectively activates 

the GTPase, Rap-1 (Vossier et al, 1997; York et al, 1998). Rap-1, in turn, induces a more 

sustained state of ERK phosphorylation and biases ERK-dependent activation of CREB, via the 

40S ribosomal protein S6 kinase (RSK; Murphy et al, 2002). The involvement of ERK in the 

reconsolidation of instrumental cocaine memories in the BLA in Experiment 1a likely reflects 

PKA-Rap-1-, but not NMDA-Ca2+-dependent activation (depicted as green and orange pathways, 

respectively in Illustration 1). In support of this, we have previously demonstrated that PKA, 

but not Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the BLA regulates contextual 

cocaine-memory reconsolidation (Arguello et al, 2013b). PKA activation likely follows β-

adrenergic receptor stimuliation, in that the BLA receives dense adrenergic projections from the 

locus coeruleus (Asan et al, 1998; Chen and Sara 2007; see Illustration 3) and β -adrenergic 

receptor stimuliation itself is necessary for the reconsolidation of instrumental cocaine memories 

(Milton et al, 2008a). Moreover, NMDAR-mediated ERK activation in the hippocampus is 

required for the consolidation, but not the reconsolidation, of a contextual fear memory (Lee and 

Hynds 2013). It is possible that distinct pools of ERK are activated during the initial 

consolidation and the subsequent reconsolidation of long-term memories, consistent with several 

non-overlapping mechanisms underpinning memory stabilization and restabilization (von 

Hertzen and Giese 2005; Tronel et al, 2005; Lee et al, 2004; Barnes et al, 2012).  
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Illustration 1.  Putative MEK/ERK signaling in cocaine-memory reconsolidation 

 

 Similar to ERK1/2, the role of NF-κB in cocaine-memory reconsolidation may reflect 

cocaine-induced adaptations in learning and memory processes. Specifically, findings from 

Experiment 2 revealed that SSZ-induced IκK/NF-κB inhibition in the BLA modestly enhances 

cocaine seeking at the highest dose (see Fig. 2C). This was particularly noteworthy, as NF-κB 

TFs critically promote synaptic plasticity, memory formation and consolidation (Barger et al, 

2005; Romano et al, 2006a, b; Oikawa et al, 2012), as well as memory reconsolidation (Merlo et 

al, 2005; Lubin and Sweatt, 2007; de la Fuentes et al, 2011; Si et al, 2012; Lee and Hynds 2013), 

including that of morphine-related CPP memories (Yang et al, 2012). However, the role of NF-

κB in memory stability may change after repeated cocaine exposure. Specifically, chronic 

cocaine administration elevates levels of basal NF-κB in a delta fosB-dependent manner (Ang et 

al, 2001, but see Muriach et al, 2010). Under normal physiological conditions, activation of the 

p65 (RelA)/p50 (NF-κB1) heterodimer, which is abundantly expressed in the mammalian 

nervous system and exclusively acts as a transcriptional activator (Romano et al, 2006), triggers 

the expression of the p50 homodimer, which can negatively regulate, via transcriptional 

repression, subsequent expression of p65 (Tong et al, 2004). As such, the p50 homodimer is an 

essential compenent within a negative feedback loop of NF- κB activation (Zhong et al, 2002). It 
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is possible that this compensatory feedback mechanism may become less effective with repeated, 

cocaine-induced increases in NF-κB, which would putatively result in the further build-up of 

intracellular NF-κB. Nevertheless, it is still somewhat unclear why this would have a deleterious 

effect on memory, as the present study suggests. However, given the many transcriptional targets 

of NF-κB, cocaine-induced changes in the activation of this TF may have profound effects on 

which transcriptional targets of NF-κB become regulated, which could conceivably transform its 

role in memory reconsolidation from a promoter to a repressor. 

 One possibility is that at higher intracellular concentrations, NF-κB preferentially 

activates certain gene transcripts that negatively regulate memory reconsolidation. In support of 

this, NF-κB is a transcriptional activator for several proinflammatory cytokines (Hiscott et al, 

1993) known to inhibit long-term potentiation (LTP) and memory consolidation, including IL-1β 

(O’Connor and Coogan 1999; Ikegaya et al, 2003; Ross et al, 2003; Moore et al, 2009, but see 

Goshen et al, 2007 and Barnes et al, 2012). Except for one report (Barnes et al, 2012), the role of 

interleukins, like IL-1β, in memory reconsolidation has not been investigated. Future studies will 

be needed to clarify how interplay between interleukins and NF-κB can influence drug-memory 

reconsolidation. Additionally, NF-κB activation has been demonstrated to counteract oxidative 

stress, via activation of certain genes, like inducible nitric oxide synthase (iNOS; Hatano et al, 

2001; Bayir et al, 2005). Notably, iNOS has been demonstrated to have amnesic effects on 

recently acquired fear memories (Udayabanu et al, 2008, but see Palumbo et al, 2007). Memory 

reconsolidation presumably requires some of the same cellular events that take place during 

oxidative stress – high levels of cellular excitation, NMDAR agonism, calcium influx, etc. (see 

Tronson and Taylor 2007 for review), and these processes may become even more exacerbated 

following withdrawal from chronic cocaine administration, which confers an upregulation of 
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some glutamate receptors (i.e, mGluR1s and NR2b NMDAR subunits; Schmidt and Pierce 

2010). Therefore, it is possible that during cocaine-memory reconsolidation in Experiment 2, 

there was an increase in NF-κB-dependent iNOS expression, which effectively hampered 

subsequent memory processing. However, the direct involvement of IL-1B and iNOS in drug 

memory reconsolidation has not been ascertained.  

 Notably, there is evidence to suggest that both PKA and MEK/ERK can modulate 

IKK/NF-κB (Romano et al, 2006). Specifically, PKA activation, which has been demonstrated to 

be required for contextual cocaine-memory reconsolidation (Arguello et al, 2013b) facilitates 

NF- κB – CREB binding protein (CBP) interactions at the level of the nucleus, which allows for 

subsequent activation of gene transcription (Gerritsen et al, 1997). Interestingly, ERK has the 

opposite effect on NF-κB-dependent gene transcription. ERK2, the ERK isoform most impacted 

by chronic exposure to drugs of abuse (Mazzucchelli et al, 2002; Ferguson et al, 2006; Girault et 

al, 2007) and preferentially activated during the reconsolidation of both Pavlovian and 

instrumental cocaine memories (Miller and Marshall 2005; Wells et al, 2013), can inhibit NF-κB 

activity. Specifically, ERK2 can disrupt gene transcription by inhibiting phosphorylation-

dependent activation of the TATA-binding protein (TBP; Carter and Hunninghake 2000). This 

prevents important interactions between NF-κB and TBP, which are speculated to control 

transcriptional activation (Kerr et al, 1993; Xu et al, 1993; Carter et al, 1999). In addition to 

tightly regulating NF-κB-dependent transcription, ERK1/2 activation can modulate the 

activation/translocation of this TF at the level of the cytoplasm. Although the exact mechanism 

underlying this relationship is unclear, increases in ERK1/2 phosphorylation is correlated with 

reduced IκB phosphorylation and the cytoplasmic retention of NF-κB (Lu et al, 2010). In 

summary, the non-significant and seemingly paradoxical effects of NF- κB in the BLA on 
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memory reconsolidation in Experiment 2 may reflect NF- κB at the front and center of cocaine-

related neuroadaptations and/or complex horizontal cross-talk between other pathways that 

control cocaine-memory reconsolidation.  

 

The Role of Hippocampal SFKs in BLA-dependent Cocaine-Memory Reconsolidation 

 We have previously demonstrated that intrahemispheric information processing by the 

BLA and DH is required for contextual cocaine-memory reconsolidation (Wells et al, 2011), 

likely via intermediate relays, given minimal direct connections between these two structures 

(Pikkarainen et al, 1999).  However, unlike the BLA (Fuchs et al, 2009), the DH is not a locus of 

protein synthesis-dependent cocaine-memory reconsolidation. The present findings highlight the 

critical involvement of SFKs in the DH (Experiment 3; Figs. 3.1-3.5) in cocaine-memory 

reconsolidation and enhance our understanding of the enigmatic role the DH assumes in this 

process. Specifically, in Experiment 3, we demonstrate that intra-DH PP2, administered at the 

time of cocaine-memory reconsolidation, has a robust inhibitory effect on cocaine-seeking 

behavior, measured ~72 h later (Fig. 3.1C). Further, we demonstrate that these effects are 

associated with Src-dependent phosphorylation of the NR2a NMDAR subunit (Fig. 3.3C). As 

SFKs are compartmentalized near the plasma membrane by scaffolding proteins (Yaka et al, 

2002), these kinases are ideally situated to control synaptic, but not genomic, activity (Ohinishi 

et al, 2011), providing insight into their potential involvement in protein synthesis-independent 

cocaine-memory restabilization in the DH (Ramirez et al, 2009). Considered together with 

previous literature (Narayanan et al, 2007a, b; Ramirez et al, 2009; Wells et al, 2011), the 

possibility remains that SFKs promote cocaine-memory reconsolidation by strengthening 

synapses containing polysynaptic afferents from the BLA (Fuchs et al, 2009; Wells et al, 2011) 
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or other loci of protein synthesis-dependent memory restabilization (i.e., neocortical regions; 

Einarsson and Nader 2011). This putatively requires glutamatergic neurotransmission, in that 

projection neurons from the entorhinal cortex (EC), which relay information from the neocortex 

and the BLA to the DH (Pikkarainen et al, 1999), are predominately glutamatergic pyramidal 

neurons (Peters et al, 1999). Interestingly, glutamatergic stimulation of group I metabotropic 

glutamate receptors (mGluR1s) activate Src via Pyk2 (Huang et al, 2001; MacDonald et al, 2007 

Lan et al, 2001; Heidinger et al, 2002; Kotecha et al, 2003; Illustration 2), resulting in Src-

mediated rapid phosphorylation of NR2a-containing NMDARs, and enhancement in NMDAR 

channel conductance (Kohr and Seeberg 1996; Zheng et al, 1998; Yang et al, 2012), consistent 

with synaptic reinforcement. In support of this, Src phosphorylation of Tyr-1325 on the NR2a 

NMDAR subunit is necessary for the induction of LTP (Yang et al, 2012). Whether SFKs act 

locally at regions innervated by polysynaptic afferents from the DH is unknown but would 

presumably also strengthen connections between the DH and other memory-processing loci.  

 

Illustration 2. Mechanisms of Src-mediated cocaine-memory reconsolidation 
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memory storage while conveying specific contextual information to restabilization sites, like the 

BLA (see Illustration 3).  In support of the development of DH-dependent retrieval links, 

anatomical studies have suggested that the DH is highly reciprocally connected to neocortical 

modules for memory storage (Frankland and Bontempi 2005), via the perirhinal cortex, 

parahippocampal cortex, and EC, as well as the subiculum (i.e., exclusively for outputs; Bird and 

Burgess 2008; Illustration 3). 

 

Illustration 3. Possible mechanisms of BLA/DH interactions during cocaine-memory 
reconsolidation 
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  As such, facilitation of protein synthesis-dependent memory restabilization by the DH 

may be achieved by indexing cortical locations during the maintenance of contextual 

representations, while the context-response, response-reward, and context-reward associations 

are restrengthened elsewhere in the brain, perhaps in the BLA (Fuchs et al, 2009).  In support of 

this, due to volumetric differences, the neocortex is better suited for the long-term storage of 

remote memories, consistent with systems consolidation theory (Nadel 2007). Consequently, it is 

expected that with the passage of time, the primary site of memory storage changes from 

hippocampal ensembles, to highly distributed cortical, networks (McClelland et al, 1995; 

Frankland and Bontempi 2005). The memory acquisition-to-memory reactivation interval in our 

studies is consistent with predominantly neocortically-maintained memory storage. Yet, the 

involvement of the DH in memory reconsolidation has been shown to be independent of time.  

For instance, even after 45 days, remote fear-related associations that are putatively stored in 

neocortical ensembles become once again dependent on the DH at memory reactivation (Debiec 

et al, 2002). Additionally, ample evidence exists to support the hippocampal index theory, which 

postulates that the hippocampus functions as a directory for sensory-rich memories, binding 

specific sensory information contained within the cortex and activating the appropriate cortical 

locations for a “replay” of sensory experience during retrieval (Teyler and Discenna 1986; 

Teyler and Rudy 2007). This depends on dense reciprocal projections with the EC (Burwell et al, 

2004; Chrobak et al, 2000). Interestingly, in our hands, manipulations to the EC fail to impact 

cocaine-memory reconsolidation and subsequent drug context-induced cocaine-seeking behavior 

(Arguello, Hodges, and Fuchs, unpublished), but it is likely that given the complexity of 

information flow into, and out of, the DH (Frankland and Bontempi 2005), achievement of an 
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observable disruption in cocaine-memory reconsolidation requires inhibiting information 

processing at multiple relays within DH/neocortex/BLA circuitry, including, perhaps, the 

subiculum (Szalay et al, 2011) or areas 35 and 36 of the perirhinal cortex (Pitkanen et al, 1997). 

Nevertheless, regardless of the direction of information processing and specific neural locations 

activated, the present findings are consistent with the long-term, retrieval-dependent involvement 

of the DH in cocaine-memory reconsolidation. 

 

Differences in Pavlovian and Instrumental Drug-Memory Reconsolidation  

 A secondary aim of this dissertation was to follow up on findings using the Pavlovian 

CPP in an instrumental model of cocaine seeking. Interestingly, while the activation of ERK and 

zif268 in the NACc are required for Pavlovian cocaine-memory restabilization (Miller and 

Marshall 2005 and Theberge et al. 2010, respectively), neither ERK signaling within nor 

functional activation of the NACC was necessary for instrumental cocaine-memory 

reconsolidation and drug context-induced operant responding in Experiment 1d. Moreover, NF- 

κB activation in the BLA mediates the reconsolidation of morphine associations subserving 

morphine CPP, whereas the results from Experiment 2 loosely suggest that NF-κB acts as an 

endogenous inhibitor of the processes serving long-term memory maintenance of instrumental 

cocaine-related memories. Boundary conditions may account for these incompatible findings, 

and are discussed below. However, these discrepancies may also reflect the differential 

recruitment of certain neural and intracellular substrates in Pavlovian versus instrumental drug-

memory reconsolidation, related to partially non-overlapping circuitry mediating each form of 

learning (Hatfield et al, 1996; Cardinal et al, 2002; Balleine et al, 2003). For instance, as the 

memory trace to be disrupted in our model involved context-reward, context-response, and 
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response-reward (i.e., action-outcome) relationships, it is likely that disruption of context-reward 

associations, critically mediated by the NACC (Cardinal et al, 2002), alone, is insufficient for 

behavioral suppression and rather, behavioral manifestation of a memory impairment is additive 

and requires suppression of more than one of these contingencies, which may require the BLA 

(Cardinal et al, 2002).  

 Alternatively, differences in the role of NF-κB in Experiment 2 versus morphine memory 

reconsolidation in the CPP model (Yang et al, 2011) may be independent of experimental 

paradigm, and rather, might reflect divergent neuroadaptations following cocaine versus 

morphine abuse. However, while the reconsolidation of different drug memories presumably 

involves at least a subset of non-overlapping molecular mechanisms, the larger literature has 

identified a set of common requirements for long-term memory reconsolidation across classes of 

drugs of abuse, including protein synthesis and NMDAR stimulation in the reconsolidation of 

alcohol (von de Goltz et al, 2009; Wouda et al, 2010), opiate- (Robinson and Franklin 2007; Wu 

et al, 2012a, b), and cocaine-related memories (Brown et al, 2008; Milton et al, 2008a, b; Fuchs 

et al, 2009; Ramirez et al, 2009). Thus, despite differences in the neural circuitry mediating 

acute and chronic drug effects for each of these (Koob and Volkow 2010), it is possible that the 

same core elements of the circuit (i.e. , the BLA) are recruited during memory processing per se. 

Nevertheless, inconsistent findings across models of relapse highlight the importance of careful 

selection of preclinical model and of cross-model validation when testing the efficacy of possible 

memory reconsolidation inhibitor treatments. 
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Disruption of Drug Memory Reconsolidation As a Treatment for Addiction 

  Since Nader and colleagues provided convincing evidence for a post-retrieval period of 

memory lability (Nader et al, 2000a) the mechanisms of memory reconsolidation have been 

meticulously studied in a variety of model organisms and across several different forms of 

memory (Nader and Einarsson 2010). The popularity of this line of research owes to the 

therapeutic promise of memory reconsolidation inhibitors. With the power to change the 

integrity of harmful memories, like traumatic or drug-related associations, memory 

reconsolidation inhibitors have the potential to be extremely effective in the treatment of 

disorders characterized by pathogenic memories, like PTSD and addiction (Taylor et al, 2009; 

Milton and Everitt 2010, 2012). Further, disruption of memory reconsolidation offers several 

advantages over behavioral/pharmacological enhancement of extinction consolidation (Taylor et 

al, 2009) - an alternative approach used in the treatment of disordered behavior triggered by 

pathological memories (Taylor et al, 2009). Typically, enhancement of extinction consolidation 

involves extensive non-reinforced exposure to a fear- or drug-conditioned CSs followed by 

pharmacological treatment with a cognitive enhancer, like the glycine/NMDAR partial receptor 

agonist, D-cycloserine (Walker et al, 2002; Nic Dhonhadchada et al, 2010), which, in turn, 

facilitates the consolidation of new extinction learning (Taylor et al, 2009; Auber et al, 2013). 

Extinction learning is theorized to engender a distinct memory trace – one encoding the absence 

of a predictable CS-US relationship - from the original memory trace (Bouton 2004). As such, 

the original memory can resurface under a number of conditions (Bouton 2004), including 

following the passage of time (i.e., spontaneous recovery; Franken et al, 1999; Di Ciano and 

Everitt 2002), in a new context (i.e., renewal; Mineka and Ohman 2002; Collins and Brandon 

2002; Thewissen et al, 2006), and following presentation of the US alone (i.e., reinstatement; 
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Rescorla and Heth 1975). These phenomena limit the efficacy of extinction enhancing strategies 

in the treatment of PTSD or addiction in both preclinical and clinical studies. At least in theory, 

memory reconsolidation inhibition should circumvent these limitations, in that it is expected to 

result in a permanent impairment of the target memory trace (Nader and Einarsson 2010). 

Consistent with this, several groups have reported enduring suppression of maladaptive 

behaviors following memory reconsolidation inhibition (Miller and Marshall 2005; Lee et al, 

2006; Brown et al, 2008; Wells et al, 2011; Schiller et al, 2012). Notably, β-adrenergic receptor 

antagonism following Pavlovian cocaine-memory reactivation abolishes subsequent cocaine CPP 

even following a cocaine priming injection in rats (Brown et al, 2008)! Also encouraging, a non-

pharmacological intervention – introduction of extinction learning within the reconsolidation 

time window – disrupts fear memory in humans for up to 1 year post-treatment (Schiller et al, 

2012).  

 Regardless of their apparent efficacy, however, the specific actions of reconsolidation 

inhibitors are still uncertain; in particular, what aspect of a complex memory is disrupted 

following reconsolidation impairment (e.g., declarative memory, emotional memory, or both). 

Preferential disruption of fear-related physiological responses, but not declarative memory for 

fearful events, in humans (Brunet et al, 2008; Kindt et al, 2009) and suppression of context-

elicited perseverative cocaine seeking, despite evidence for memory recovery after extended 

abstinence, in rats (Wells et al, 2011) suggest that memory reconsolidation inhibitors are capable 

of disrupting the intrusive, emotionally salient features of memory while sparing declarative 

memory, per se. However, it is important to note that attentional processes likely impact which 

aspects of the target, or even alternate, memories are most vulnerable at retrieval.  
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 The success of memory reconsolidation inhibitor manipulations in preclinical models of 

addiction is encouraging from a treatment perspective (Taylor et al, 2009). However, there 

remain several challenges to the development of these manipulations as viable treatment options 

for addiction. This is emphasized by the limited number of clinical studies using reconsolidation 

inhibitors for craving prevention (1; Saladin et al, 2013) and the failure of post-cocaine-cue 

memory retrieval propranolol treatment to disrupt cue-elicted craving after only 1 week in this 

particular study (Saladin et al, 2013). This is in direct opposition of preclinical findings, where, 

for instance, post-memory reactivation zif268 knockdown in the BLA disrupts stimulus-elicited 

drug-seeking behaviors for up to 50 d in rats (Lee et al, 2006). This underscores the importance 

of careful selection of preclinical model and of cross-model validation when testing the efficacy 

of possible memory reconsolidation inhibitor treatments. Preclinical models should adequately 

capture boundary conditions (i.e., memory age and strength), which reduce the effectiveness of 

memory reconsolidation inhibitors (Milekc and Alberini 2002; Eisenberg et al, 2003; 

Biedenkapp and Rudy 2004; Cammarota et al, 2004; Rossato et al, 2006; Sevenster et al, 2012, 

2013) or render them only transiently effective (Judge and Quartermain 1982; Lattal and Abel 

2004; Amaral et al, 2007; Wells et al, 2011). As addicts typically engage in cycles of use and 

abstinence for months to years prior to seeking treatment (Gawin and Kleber 1986), the cocaine-

memory trace likely becomes incorporated into expansive, diffuse, and cortically-dependent 

networks (Buhl et al, 2002; Frankland and Bontempi 2005), and consequently, becomes less 

vulnerable to disruption (Alberini et al, 2006; Amaral et al, 2008). Regrettably, even in the 

extinction-reinstatement paradigm, where drug administration is more extensive than in CPP, 

relapse testing is typically administered following a subchronic training regimen, and likely fails 

to capture the age and strength of the cocaine-memory trace in the human condition (Fuchs et al, 
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2008b). Additionally, this subchronic regimen does not adequeately match the extent of habit 

learning and inflexible cocaine-seeking behavior expected following extensive drug use in 

addiction (Everitt et al, 2008). Habit memories are presumably more resistant to disruption than 

those underlying goal directed behavior (Everitt et al, 2008), although some studies have 

suggested the opposite- namely, that habit memories can be disrupted by reconsolidation 

inhibitors, which returns behavior to a flexible, outcome-dependent state (Wells et al, 2011; 

Pauli et al, 2012). Nevertheless, future studies will be required to evaluate memory vulnerability 

following a chronic drug administration regimen. 

   

Conclusions 

 The experiments described in this dissertation identify novel molecular substrates that 

govern the reconsolidation of context-response-cocaine memories requisite for contextual 

stimulus control over maladaptive, cocaine-seeking behavior in the rodent extinction-

reinstatement paradigm. These data significantly extend previous investigations into intracellular 

control of drug-memory reconsolidation, by indicating that 1) ERK signaling within the BLA 

and 2) activation of SFKs in the DH are both essential for successful contextual cocaine-memory 

reconsolidation. They additionally underscore a complex contribution by NF-κB in the BLA to 

this phenomenon, which warrants further investigation. Importantly, identification of SFKs as 

novel hippocampal regulators of cocaine-memory reconsolidation is particularly important, in 

that the role of the DH in memory reconsolidation, in general, has been poorly understood 

(Debiec et al, 2002; Amaral et al, 2007; Ramirez et al, 2009; Wells et al, 2011). Specifically, 

this finding begins to illuminate potential mechanisms through which the DH supports protein 

synthesis-dependent cocaine-memory restabilization in the BLA and in other extrahippocampal 
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locations (Einarsson and Nader 2011). Future research into the neural circuitry and molecular 

mechanisms of drug-memory reconsolidation, in general, will undoubtedly impact the 

development of novel therapeutics designed to alleviate the ability of drug-associated stimuli to 

control maladaptive conditioned behaviors.  
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