
SYNTHETICALLY CONTROLLING DOPING AND NANOSCALE
MORPHOLOGY IN VAPOR-LIQUID-SOLID GROWN SILICON

NANOWIRES TO ENCODE FUNCTIONALITY

Joseph Dale Christesen

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department

of Chemistry in the College of Arts and Sciences.

Chapel Hill
2016

Approved by:

James Cahoon

John Papanikolas

Andrew Moran

Joanna Atkin

Rene Lopez



c© 2016
Joseph Dale Christesen

ALL RIGHTS RESERVED

ii



ABSTRACT

Joseph Dale Christesen: Synthetically Controlling Doping and
Nanoscale Morphology in Vapor-Liquid-Solid Grown Silicon Nanowires

to Encode Functionality
(Under the direction of James Cahoon)

Control of morphology and composition on nanometer length scales is a necessary tool for

tuning the optical and electrical properties of semiconductor devices. Currently, this is achieved

through “top-down” lithographic fabrication techniques, which are prohibitive due to high costs,

increased complexity, and/or low throughput. Therefore, a new strategy is needed in order

to create low cost and scalable method for fabricating nanomaterials for future semiconductor

applications. Semiconductor nanowires (NWs) synthesized through the vapor-liquid-solid (VLS)

mechanism are an ideal nanomaterial, as they enable rational synthetic control over composition,

morphology, and corresponding properties of the NW from the atomic to microscopic scale.

First, we report a bottom-up method to break the conventional “wire” symmetry and

synthetically encode a high-resolution array of arbitrary shapes along the NW growth axis.

Rapid modulation of phosphorus doping combined with selective wet-chemical etching enables

morphological features as small as 10 nm to be patterned over wires more than 50 µm in length.

We then investigate the abruptness of these heterojunctions, which is important for a range of

technologies. The abruptness of the heterojunction is mediated by the liquid catalyst, which can

act as a reservoir of material and impose a lower limit on the junction width. We demonstrate

that this “reservoir effect” is not a fundamental limitation and can be suppressed by selection of

specific VLS reaction conditions. Using this precise control of the morphology of the Si NW, we

were able synthesis a variety of devices with applications in optics, electronics, and computation.
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Finally, we investigate the effect of device geometry and compositional control over the

photovoltaic performance of axial and radial Si NW p–n junctions through finite-element simula-

tions. We compare simulated current–voltage data to experimental measurements, permitting

detailed analysis of NW performance, limitations, and prospect as a technology for solar energy

conversion.
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CHAPTER 1: INTRODUCTION

1.1 Morphology Control in Semiconductors

Since the discovery of semiconductors, control of morphology and composition has been a

necessary tool in tuning the optical and electrical properties of devices. Control of doping and

pattering of Si in particular enabled the departure from vacuum tube to the solid state transistor,

which ushered in the digital age.1 As the control of doping and pattering increased, so did the

quality and quantity of the transistors.2 The technology for controlling the morphology and

composition improved at such a rate that Gordon Moore famously predicted, "The complexity for

minimum component costs has increased at a rate of roughly a factor of two per year. Certainly

over the short term this rate can be expected to continue, if not to increase. Over the longer

term, the rate of increase is a bit more uncertain, although there is no reason to believe it will

not remain nearly constant for at least ten years."3 Moore’s law, as it is generally referred to,

continued not just for the ten years that Gordon Moore predicted, but for over fifty years.

The technology, which allowed for the growth in manufacturing of transistors in accordance

with Moore’s Law, is photolithography; a process that utilizes light to transfer a geometric

pattern from a photomask onto another substrate. This transfer is mediated by a chemical

photoresist, which when exposed to light will either become soluble (positive photoresist) or

insoluble (negative photoresist) in a photoresist developer. The selective removal of photoresists

allows for removal of, deposition on, or alteration of the exposed areas of the substrate as defined

by the photomask. This process can be repeated multiple times in sequence to create the complex

structures of various compositions and morphologies necessary to produce transistors and other
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electrical components. The resolution at which the photomask can be transferred to the photo

resist is generally limited by the Abbe diffraction limit, which can be written as

d =
λ

2n sin θ
(1.1)

where λ is the wavelength of light, θ is the angle of incidence, n is the refractive index, and d is

the spot size. Therefore, the resolution can be improved by either decreasing the wavelength

or increasing the denominator, n sin θ, which is generally referred to as the numerical aperture.

This has led to lithographic techniques such as extreme ultraviolet, immersion, and phase shift

lithography in an attempt to improve the resolution of photolithography beyond the diffraction

limit.4–7 While these techniques can improve the resolution down to tens of nanometers, they

become increasingly more complex, difficult, and/or cost prohibitive to manufacture and utilize

in various nanotechnology applications.

Other techniques for creating structures on the order of nanometers include electron–beam

lithography (EBL) and focused ion beam (FIB) milling and deposition.4,8,9 EBL utilizes electrons

instead of light to expose the resist and create the desired geometry on the substrate. Because the

wavelength of electrons at 30 keV is much smaller than the wavelength of ultraviolet (UV) photons,

EBL has a resolution of a few nanometers. However, the throughput for EBL is a limiting factor

as the electron beam must raster scan over the substrate as opposed to photolithography, which

exposes the entire sample at once. FIB milling, which uses ions to remove material selectively

from the substrate without the need for a resist, and deposition, which uses ions to selectively

react a gas phase precursor onto the sample, both suffer from the same problem as EBL in

that it is needs to raster scan the ion source over the entire sample, which greatly reduces its

throughput.

These "top-down" lithographic fabrication techniques are prohibitive for creating nanostruc-
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tures due to high costs, increased complexity, and/or low throughput, and therefore, a new

strategy is needed in order to create low cost and scalable method for creating nanomaterials for

future semiconductor applications. Significant research has been devoted to the "bottom-up"

chemical synthesis of semiconductor nanostructures, and this paradigm offers a scalable method

for creating nanostructures with atomic precision and distinct composition, size, and morphology.

These semiconductor nanostructures are generally categorized based on the number of

non-nanoscale dimensions the structure posses. 0-D structures, or quantum dots (QDs), are

structures in which all three dimensions are in the nanoscale, and they have been synthesized

with a wide variety of shapes, sizes, and compositions.10,11 Solution based synthesis methods

are the most common for QDs, and they allow for precise control of size and composition and

is readily scalable to various manufacturing processes including roll-to-roll printing.12 QDs are

usually only a few nanometers in size, which gives rise to quantum confinement effects and

including size dependent photoluminescence.10 These quantum effects have been studied for

various applications in photonics and electronics including lighting and photovoltaics.13–15 While

the quantum mechanical description for the semiconductor dot is well understood, a significant

amount of research has been devoted to understanding the chemistry and electron kinetics of

the solution interface of QD as well as transfer of electrons between QDs, which is necessary for

future applications where electronic connection between QDs is paramount.16,17

2-D materials are nanomaterials that have one nanoscale dimension, usually a single to a

few atomic layers, and two dimensions that are not nanoscale. Significant research into this

class of materials has only started to take off recently with the isolation of individual graphene

sheets about a decade ago.18 Graphene has showed great promise due to a number of excellent

properties including extreme mechanical strength, high electron and thermal conductivities, and

impermeability to gas among others, but its lack of a band gap made it unsuitable for use as
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transistor in electronic applications.19 Other 2-D materials have been studied for applications in

transistor electronics as well as photonics including transition metal dichalcongenides, which have

band gaps ranging from the UV to the infrared (IR) .20 However, most methods for synthesizing

these 2D materials require separating bulk material into individual sheets though mechanical

or chemical means, and therefore, it lacks precise control of composition as well as geometry

though research is currently progressing on addressing these issues.

1-D structures, or NWs, are high aspect ratio nanomaterials in which only two dimensions

are nanoscale, and they have become one of the most powerful tools for nanoscience. Through

semiconductor NWs, it is possible to ab initio design and synthetically tune the composition,

morphology, and corresponding properties of the NW from the atomic to microscopic scale. This

level of control makes NWs an ideal nanomaterial building block, enabling a wide variety of

new technologies as well as improvements on previous technologies, and will be the focus of this

dissertation.

1.2 Semiconductor Nanowire Synthesis

First discovered by Wagner and Ellis at Bell Labs in 1964,21 the vapor–liquid–solid (VLS)

growth mechanism is one of the most common methods for NW growth due its excellent control

of diameter22 and composition23 and its compatibility with a wide variety of materials and

systems. Discussion of the VLS mechanism should first start with a phase diagram, and as the

NWs grown in this dissertation are Si catalyzed by Au, we will use the Au–Si phase diagram as

shown in Figure 1.1 as the example even though VLS mechanism can be performed with any

metal–semiconductor combination, which forms a eutectic system. The system starts off with

pure Au nanoparticles at room temperature, and they are subsequently heated to a temperature

above the eutectic point. A vapor phase Si precursor (e.g. SiH4, Si2H8, or SiCl4) is then

introduced and reacts with the Au catalysts to form a liquid Si–Au alloy and solid Au particle.
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Figure 1.1: Si–Au binary phase diagram.

More Si precursor is continually introduced into the system such that the alloy concentration

moves toward continually increasing Si concentration until no solid Au remains, and the particle

is a complete liquid droplet. The liquid alloy is pushed out of equilibrium by the continual

incorporation of the Si precursor into the liquid droplet, and eventually, the liquid droplet

crystallizes solid Si in an area defined by the size of the original Au nanoparticle. Therefore, the

size of the initial Au catalyst determines the final diameter of the Si NW.

For many applications of VLS grown NWs, it is necessary to grow NWs with a high level

of precision over parameters such as diameter, crystallinity, crystal direction, and uniformity.

Therefore, it is crucial to understand key factors of NW growth via the VLS mechanism in

order to synthetically control crystal direction, crystal defects, kinking, and overcoating. Crystal

defects such as twin planes,24–27 stacking faults,25 and screw dislocations28–30 are know to

affect the growth morphology as well as optical31 and electronic properties32 of NWs and

can be controlled through a wide variety of synthetic parameters including gas flow rates,30

temperature,25 and surface chemistry.24 Twin planes and stacking faults can occur in group

IV and III–V NWs both perpendicular25 or parallel26 to the growth direction and have been

shown to cause electron scattering, which inhibits electron transport along the NW.33,34 These
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crystal defects can also lead to mixtures of wurtzite (WZ) and zincblende (ZB) crystal structures

generally in III–V semiconductor NWs and can be controlled through a combination of NW

diameter and temperature.25 The WZ and ZB crystal structures have different band gaps and

can even switch between direct and indirect-band gaps in certain materials.35

Beyond crystal defects, changes in the NW growth direction during synthesis, also known as

kinking, can prevent alignment of NWs or can be used in a rational design of more complex large

scale devices. NW growth direction has been shown to be controlled by a wide range of synthetic

parameters including temperature,36–38 pressure,39–41 catalyst composition,42,43 and type of

gas phase precursors.41,44,45 These parameters are different methods of changing the surface

chemistry, and it is the surface chemistry at the interface between the vapor phase precursors,

liquid catalyst, and solid NW that defines the growth. Changes to the surface chemistry at this

point will change the contact angle of the catalyst as well as its stability.46 For growth of Si

NWs in the <111> crystal direction, it has been shown that Au diffusion along the side walls

lowers the surface energy and prevents the NW from kinking into the preferred <112> crystal

direction.37,43,47 By changing the surface chemistry of the NW itself, it is possible to change the

growth direction of the NW during the growth in order to create more complex structures.24,26,48

The surface chemistry not only plays a vital role in determining the NW growth direction,

but it also plays a role in preventing amorphous deposition of the vapor-precursor on the side

of the NW.46,49–51 This deposition, generally referred to as vapor–solid (VS) growth, can lead

to tapered NWs, unintended doping, low resistance shunt pathways, and nonuniformities in

composition and structure, or as will be discussed in the next section, can be used to create

rationally designed heterostructures.52–55 Unintended VS overcoating can be prevented by either

lowering the growth temperature to a point where VS overcoating is negligible over the time

scale of the NW growth56 or by modifying the surface adsorbates to block any overcoating and

6



Figure 1.2: Schematic illustration of a (A) VLS growth of a homogeneous NW, and the subsequent
formation of heterostructures from (B) continued VLS growth or (C) VS growth.

promote stable growth.46,49–51 The surface adsorbate used are atoms or small molecules (i.e. H46,

Cl51, CH3
46,49,50) that will readily adsorb to the NW and prevent any reactions of the precursor

gas with the NW surface.

1.2.1 Heterostructures

The true power of NWs is the ability to tune structure and composition on a variety of length

scales ranging from single atoms to microns, which is due in part to the wide variety of materials

that are compatible with VLS mechanism. It is these heterostructures that enable breakthroughs

and advances in technology. The ability to modulate composition both axially and radially with

respect to the NW growth direction as schematically depicted in Figure 1.2 allows for synthetic

control of diverse set of properties including band gap, Fermi level, crystal structure, dielectric

constant, modulus, thermal conductance, mobility, carrier concentration, and many others.

Axial heterostructures are formed by switching, adding, or removing gas phase precursor

during VLS growth as depicted in Figure 1.2B. For heterostructures formed by switching, the

NW will continue to grow, utilizing the reservoir of material remaining in the catalyst while
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simultaneously incorporating a new material. Because of the time necessary to completely switch

the materials in the catalyst, the demarcation between the two materials in the solid NW will be

blurred in what is commonly know as the "reservoir effect" in the NW literature. This effect

has been observed for heterostructures involving a change in dopants (e.g., P-doped Si52 and

Si-doped GaAs57) and structures involving a change in semiconductor (e.g., Si/Ge58–60 and

GaAs/InAs61,62). For group IV NWs, transition widths comparable to the wire diameter have

been observed for P dopant transitions52 as well as junctions between Si and Ge.58–60 Several

strategies to mitigate this effect have been developed. For example, metal catalysts with a lower

solubility of semiconductor in the liquid, such as an Au1−xGax alloy,63 can shorten the transition

width. Another alternative is to forego the VLS mechanism in favor of a vapor–solid–solid

(VSS) mechanism, in which the metal catalyst is solid and has little to no solubility with the

semiconductor.64,65 The VSS growth process has been successfully demonstrated for dopant

transitions in Au-catalyzed NWs66 and for Si/Ge transitions in AuAl-catalyzed NWs.65 Although

VSS growth has been shown to produce near-atomic compositional transitions, the growth

rate is slow, preventing application for many devices. For III–V NWs, the reservoir effect has

been observed for heterostructures involving a change in dopant and a change in the group III

material.58 However, the effect is generally not observed for a change in the group V material,

which has been attributed to the low solubility of group V elements in the liquid catalyst.63 For

structures in which the group III material is changed, methods such as pulsing the group III

precursor have improved the transition width, resulting, for example, in sharper InAs/GaAs

transitions.67 In this case, it is believed that Ga reduces the solubility of In in the metal catalyst

to reduce the reservoir effect; however, a general strategy for suppression of the effect has yet to

be developed.

VS growth can be used to produce highly crystalline and atomically abrupt radial heterostruc-
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tures as depicted in Figure 1.1C unlike the unintended, amorphous VS overcoating previously

described. By increasing the temperature well above the eutectic temperature and lowering

the partial pressure of reactant gasses, the VLS mechanism is suppressed, and overcoating via

the VS mechanism is greatly enhanced. The high temperatures also facilitates the formation

of an epitaxial crystalline shell on the NW. The radial structures do not have the problem of

the reservoir effect because the heterostructure formation does not go through the catalyst.

However, at elevated temperatures, there is the possibility of diffusion of materials in the NW,

but atomically abrupt heterostructures are possible.

1.3 Properties of Semiconductor Nanowires

NWs exhibit unique optical, electrical, and mechanical properties due to their geometry as

well as compositional variation within said geometry. With control over these properties along a

single NW, one has the building blocks necessary to create devices for new technologies, and we

will discuss these unique properties and how they can be applied to various technologies and

devices.

NWs have generated a lot of interest for electronics applications due to the precise band-gap

engineering and new devices geometries.68 Because NWs are synthesized from the bottom-up, it

is much easier to control the band-gap, Fermi level, and carrier concentrations through doping

or material changes. This allows for fabrication of abrupt69 or graded70 heterostructures or thin

barriers for quantum applications including single electron transistors71 or resonant-tunneling

diodes.72

As traditional Si transistors continue to shrink, it is necessary to improve the mobility of

electrons and holes in the channel to increase the transitor speed and prevent losses due to heat.

Si has a poor electron and hole mobility relative to other semiconductors, and therefore, a new

semiconductor with higher mobilities would be advantageous. However, Si continues to be used in
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part due to its low cost, and the inability to reliably fabricate other semiconductors off of silicon–

on–insulator (SOI) substrates due to large crystal mismatches. The NW geometry, however,

allows for heterostructures between crystals with widely varying lattice constants because the

strain can be relaxed at the edge of the NW. Therefore, NWs can be grown epitaxially off of SOI

substrates, which makes it a promising candidate for integrating other higher mobility materials

with current architectures.

Similar to the precise electronic control, NWs can also be fabricated with control over optical

properties such as the type and size of the band gap and refractive index, which makes NWs

an attractive building block for light management applications such as light-emitting diodes

(LEDs), lasers, single-photon sources, and photodiodes.73,74 Altering the band gap for tuning the

emission of NWs has enabled the fabrication of LEDs with tunable emission from the UV to

the IR in a manner not possible with planar technology.75 Phosphor-free white LEDs have been

produced in InGaN/GaN NWs by tuning the length and composition of the InGaN quantum well

segments, which is not possible in planar technology due to the quantum confined Stark effect.76

NWs can also be fabricated into lasers where the NW defines both the lasing cavity and

gain material. The compact footprint of NWs make them promising candidates for applications

where current laser sources cannot be used such as optical on-chip communication and in situ

biodetection.77–79 The synthetic variety of NWs allows for tunability in cavity and the gain

medium, and NWs lasers have already been demonstrated with wavelengths ranging from the

UV all the way out to the IR and have been pumped both optically and electronically.77–79

NWs have shown promise in quantum information processing applications as well. A hurdle

for quantum information processing is on-demand generation of single photons in order to

transfer quantum states, entangle distant quantum memories, or generate encryption keys. QDs

have been considered due to their discrete energy levels and controlled emission properties, but
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inefficient extraction of photons decreases the overall efficiency of the device. QDs embedded

in axial or radial NW heterostructures are a promising candidate due to the high extraction

efficiencies provided by the NW scaffold.80

Because of their subwavelength size, NWs can generate strong resonances based on their

cross-sectional shape and size.81–83 These resonance modes lead to greatly enhanced light-matter

interactions and longer effective absorption path lengths along in the NW. This coupled with

low leakage currents in axial p-n junctions makes NWs a promising candidate for wavelength

selective avalanche photodiodes.84,85

These antenna effects also make NWs a promising candidate for next generation photovoltaic

architectures along with lower costs through reduced material usage and eliminating the need for

high quality crystals. Lower quality semiconductor materials have low minority-carrier diffusion

lengths due to either high levels of impurities or defects, and cannot be used in conventional

planar photovoltaics. The reason is because the optical and charge carrier paths are along the

same axis, and in order to collect the incident light, the optical path needs to be long and is

much longer than the minority-carrier diffusion length. NWs, on the other hand, are able to use

these lower cost materials because the optical and charge carrier paths can be decoupled, and

the charge collection lengths can be on the order of tens of nanometers while maintaining the

necessarily long optical path lengths.86 On the other side of the spectrum, NWs open up the

possibility of using more expensive materials because of the optical antenna effect. Because the

NWs can collect light from a larger region than their physical size, the NWs can be spaced apart

from one another in semiconductor a periodic array and still collect light from the entire device.

The NWs can also be can be grown off of inexpensive substrates adding another cost saving

measure in the production of photovoltaics.87

While nanoscale photonic components are important for increasing computation speeds, the
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Figure 1.3: Methods for bottom-up control of NW morphology. (A) Diameter modulation of
III–V VLS-grown NWs; scale bar, 100 nm. (B) Chemically controlled VS sidewall deposition on
Ge NWs. (C) High-temperature shell deposition on Si NWs showing periodicity as a result of
Plateau–Raleigh instability; scale bars, 400 nm. (D) Si NWs with Au silicide that acts as an
etch stop for aqueous KOH etching; scale bars, 200 nm. (E) GaAs/ GaP NWs etched in aqueous
KOH solution. (F) Twinning super lattice in InP NWs. (G) Au NWs with gaps produced by
on-wire lithography (OWL). Reprinted with permission from Christesen, J. D., Pinion, C. W.,
Hill, D. J., Kim, S. & Cahoon, J. F. Chemically Engraving Semiconductor Nanowires: Using
Three-Dimensional Nanoscale Morphology to Encode Functionality from the Bottom Up. J.
Phys. Chem. Lett. 2016, 7, 685–692. Copyright 2015 American Chemical Society.

speed increases are achieved from interconnects as opposed to computation. This is because

photons only weakly interact with one another and require more complex nonlinear materials to

create optical transistors or logic gates. Therefore, a new architecture is needed to increase the

computation frequency. Surface plasmon polaritons (SPPs) are a coherent oscillation of electrons

at the interface of a metal and a dielectric, and they operate at high frequencies comparable

to visible light but are confined to the dielectric-metal interface. So they have frequencies

comparable to light but can be confined in a small area and can interact with one another

meaning they could enable faster computing speeds. Along with application in computing,

the evanescent field of SPP produces an extremely high electric field, which has been used for

chemical detection in surface enhanced Raman spectroscopy.88
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1.3.1 Morphology

The NW geometry offers a platform for nanometer-scale morphological control, and significant

research effort has been devoted toward controlling the morphology of wires grown by VLS

mechanism.25,49,50,89–98 For example, the Gradecak research group at MIT modulated the diameter

of III–V NW catalysts by altering the catalyst supersaturation, allowing an ∼25% modulation

of the NW diameter (Figure 1.3A) during VLS growth.91 Because the morphology change is

fundamentally linked to the VLS growth mechanism, the results could potentially be generalized

to other VLS-grown NW systems. The Filler group at Georgia Tech has developed methods

to modulate the surface chemistry of NWs during growth,49,50 allowing control of VS sidewall

deposition. This method has created tear drop structures in Ge NWs (Figure 1.3B) by modulating

the flow of methyl-containing precursors, which passivate the NW sidewall and prevent deposition.

The Lieber group at Harvard University used a high-temperature deposition step following VLS

growth to induce the growth of a shell that exhibits Plateau–Raleigh instability (Figure 1.3C).90

By altering the temperature and pressures during this growth process, they created a wide variety

of periodic structures with control over both the period and cross-sectional profile. The Tian

group at the University of Chicago has utilized rapid depressurization during Si NW growth to

induce Au deposition and diffusion along the NW axis, which forms a Au silicide that acts as a

mask for ex situ wet-chemical KOH etching.89 The etch reveals a sawtooth morphology in Si

NWs (Figure 1.3D), which were used as novel atomic force microscopy (AFM) tips for interaction

with soft matter. The Samuelson group at Lund University has shown several methods of control

over the morphology of III–V NWs. With GaP–GaAs NWs, they have produced gaps through

an ex situ wet-chemical etch to selectively remove the GaAs segments (Figure 1.3E).94 For InP

NWs, they created long-range twinning super lattices that remove the cylindrical cross section

common to many NW systems (Figure 1.3F).25 Beyond VLS-grown NWs, the Mirkin group at
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Northwestern University developed a method termed on-wire lithography (OWL) for creating

nanometer-sized gaps in metal NWs (Figure 1.3G).99 The NWs are grown via electro-deposition

into a porous substrate, and the deposited material can be altered during growth. Following

growth, the porous substrate is removed and the material is etched, leaving gaps less than 5 nm

in length. Other template-assisted growth mechanisms, such as coaxial lithography100 (COAL)

and template-assisted selective epitaxy101 (TASE), have also been developed to create complex

structures.
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CHAPTER 2: METHODS

2.1 Nanowire Growth

Si NWs were grown with a home-built, hot-wall chemical–vapor–deposition (CVD) system,

which consists of a quartz tube furnace (Lindberg Blue M) with 1 inch diameter bore, fast-

responding mass-flow controllers (MKS Instruments P4B), a pressure control system (MKS

Instruments 250E), and vacuum system with base pressure of < 2 × 10−3 Torr. The CVD

system was computer-controlled using custom Labview software to enable rapid and reproducible

modulation of the NW growth conditions and gas flow rates. The NWs are grown using Au

nanoparticles dispersed onto a silicon-silicon oxide substrate within a 1 inch outer diameter

quartz tube (Chemglass Life Sciences).

2.1.1 Substrate Preparation

The NW-growth substrate (Nova Electronic Materials; p-type Si wafers with 600 nm thermal

oxide) is first cut to a width of ∼2 cm and a length from 1 to 3 cm so that the substrate resides

about midway up in the quartz tube. The substrate is then sonicated with acetone, rinsed with

acetone and isopropyl alcohol (IPA), and inserted into a UV-Ozone cleaner (Samco UV-1) for 5

minutes at a temperature of 150 ◦C. Poly-L-lysine (0.1% w/v in water) is dispersed over the

cleaned wafers for a time between 4 and 10 minutes. The wafer is then rinsed with nanopure

water (Barnstead Nanopure; 18 MΩ∗cm) and dried with nitrogen gas. Citrate-stabilized Au

nanoparticles (BBI International) diluted in nanopure water of ratios ranging from 1:1 to 1:20 are

then dispersed on the poly-L-lysine coated substrate for 4 minutes. The substrate is then rinsed

in nanopure water and dried with nitrogen before it is then reinserted into the UV-Ozone cleaner
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for another 5 minutes at a temperature of 150 ◦C. The last UV-Ozone cleaning is performed

within 6 hours of growth to remove any remaining carbon species from the substrate. Before

the wafer is inserted into the quartz tube, the quartz tube is heated to 950 ◦C for 1 hour under

20 sccm of Ar flow to remove any excess material or contaminates from the tube surface. The

quartz tube is allowed to cool down to a temperature ∼ 100◦C below the initial run temperature,

and the wafer is then inserted into the quartz tube within the single-zone quartz tube furnace,

such that the substrate is directly above the K-type thermocouple. The system is pumped down

to a base pressure of < 2× 10−3 Torr, heated to the starting temperature, and allowed to settle

before the run is started.

2.1.2 Nanowire Nucleation and Growth

NWs are nucleated at a furnace temperature between 420 ◦C and 460 ◦C, a total reactor

pressure of between 20 and 100 Torr, a carrier gas flow of between 10 and 200 standard cubic

centimeters per minute (sccm) of either H2 (Matheson Tri-Gas; 5N semiconductor grade) or Ar

(Matheson Tri-Gas; 5N semiconductor grade), a SiH4 (Voltaix) flow rate of between 0.5 and 2

sccm, and optionally dopant flows of between 0.15 and 20 sccm of either PH3 (Voltaix; 1,000

ppm in H2) or B2H6 (Voltaix; 100 ppm in H2) for between 5 and 30 minutes.

For continued NW growth, the temperature is ramped down from the nucleation temperature

to 420 ◦C with a rate of ∼1 ◦C/min in order to limit the rate of radial overcoating to less than

0.05 nm/min (see Figure 4.6). The calibrated NW growth rate at 420 ◦C and a SiH4 partial

pressure of 0.4 Torr is ∼200 nm/min. During this time period, the flow rates of B2H6 and PH3

can be changed in less than 1 second from the reactor to precisely tune the doping profile of the

NW as it grows.
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2.1.3 Epitaxial Shell Deposition

Growth of an epitaxial shell is performed directly after the completion of the axial growth of

the NW. The chamber is evacuated to its base pressure, and the furnace is then heated to 760

◦C with 0.15 sccm of SiH4 at 25 Torr without breaking vacuum in order to prevent any oxide

formation on the NWs. The SiH4 flow rate is set to its minimum to prevent supersaturation of

the catalyst and continued VLS growth. To encode an n-type shell, 0.75 sccm of PH3 is added.

The calibrated shell growth rate under these conditions is ∼1.5–2 nm/min.

2.1.4 Oxidation

Thermal oxidation treatments can be performed in order to passivate surfaces102 or effect

doping levels in Si.103–106 After the CVD growth is over, NWs were removed from the CVD

system, and loaded into another quartz tube furnace (Lindberg Blue M) with three separately

controllable temperature zones and a 5 inch diameter bore. The substrate was placed in a quartz

boat that remains outside of the furnace while the furnace is heated to temperature. The quartz

boat is attached to a quartz rod containing a magnet sealed inside of it at the far end, which

allows rapid insertion into the furnace and prevents oxidation of the magnet. The system is

pumped down to base pressure and the first zone is heated to 1000 ◦C. O2 is then introduced at

20 sccm and the system is pressurized to 100 Torr of pure O2. The substrate and the quartz

boat are inserted into the furnace by using an external magnet to slide the whole assembly in

side the tube. The NWs are then oxidized for a time from 1 to 20 min, and the external magnet

is used to quickly remove the sample from the furnace. The system is then evacuated to its base

pressure before pressurizing with Ar and removing the sample.

In order to enhance absorption in photovoltaic devices, both axial and radial p–i–n NWs were

coated with ∼40 nm of silicon oxide using a separate plasma-enhanced CVD process (Advanced

Vacuum Vision 310) .
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2.2 Wet-chemical Etching

For wet-chemical etching, NWs were mechanically transferred from the growth substrates onto

Si wafers coated with 100 nm thermal oxide and 200 nm Si nitride (Nova Electronic Materials).

The native oxide of the NWs, which were lying flat on the substrate, was etched by immersing

the substrate in concentrated buffered hydrofluoric acid (BHF) (Transense BHF Improved) for 10

s. The substrate was then rinsed in nanopure water twice for 10 seconds each and in IPA for 30

seconds. The IPA was kept at the same temperature as the etch solution to allow the temperature

of the substrate to equilibrate before inserting it into the etch solution. The substrate was then

inserted into the KOH-etching solution (20.0 g KOH; 80.0 g water; 20 mL IPA as top surface

layer) at a temperature between 20 and 40 ◦C for variable times up to 200 s. The substrate is

then rinsed in a slightly acidic solution (∼4% acetic acid in water) to quench the etching process

for 10 s, in nanopure water for 10 s, and in IPA for 15 s before drying with nitrogen. It was also

noted that for NW transferred onto a marker pattern (see Chapter 2.4.1) the etch rate increased

by ∼20-30%.

For NWs grown with significant Au diffusion along the side walls, the Au will act as an etch

stop. An Au-etch step can be performed to remove any Au from the surface and can produce

better etch results. For Au etching, the substrate is immersed in an Au etching solution (4 g KI;

1 g I2; 40 mL H2O) for 15 seconds, rinsed in nanopure water twice for 10 seconds each, rinsed in

IPA for 15 seconds, and blown dry with nitrogen. The wet-chemical etching of the NWs can be

performed directly after the Au etch by skipping the IPA rinse and drying steps, inserting the

substrate directly into the BHF solution, and following the previously described etch steps.

NWs can also be etched on the growth substrate, but there are a few considerations that need

to be taken into account in order to prevent etching of the n-type regions. While not necessary

for mechanically transferred NWs, etching on the substrate requires vigorous shaking in order
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to remove any excess BHF from the sample and allow the KOH to penetrate the NW mesh.

Without vigorous shaking, BHF is not completely rinsed, and it will continue to etch the n-type

regions through the remaining steps of the etching procedure. The etching of the n-type regions

will be nonconformal and porous. It was also noted that the etch rate on the growth substrates

was higher than mechanically transferred NWs by ∼50% and that growth substrates with a lower

density of NWs produced more conformal etching.

2.3 Imaging and Analysis

2.3.1 Scanning Electron Microscopy

Scanning electron microscope (SEM) imaging was performed with an FEI Helios 600 Nanolab

Dual Beam system with an imaging resolution <5 nm using a typical acceleration voltage of 5

kV, imaging current of 86 pA, and a working distance of ∼4 mm.

2.3.2 Transmission Electron Microscopy and Energy-Dispersive x-Ray Spectroscopy

Samples for electron microscopy were prepared by mechanical contact-transfer of the NWs

directly onto lacey-carbon transmission electron microscope (TEM) grids (Ted–Pella #01895).

Scanning transmission electron microscope (STEM) imaging was performed on a Tecnai Osiris

by Professor James McBride at Vanderbilt University operating at 200 kV with a subnanometer

probe with a current of 2 nA (spot size 3, 4k extraction voltage). The Osiris is equipped with a

Super-X energy–dispersive x–ray spectroscopy (EDS) system, which consists of four solid-state

detectors built into the objective lens. The maximum peak counts summed from the four

detectors were on the order of 45 kcps. The STEM probe was retuned periodically to maintain

the integrity of the imaging conditions and beam intensity. Drift-corrected STEM-EDS maps

were obtained using the Bruker Esprit software. Total collection times for each map were 15 min

except for chemical doping level data, which required an averaging time of 3 h. Standardless

Cliff–Lorimer quantification was performed on the deconvoluted spectra from subsections of the
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EDS maps. STEM images were obtained before and after map acquisition to note any change in

the sample.

2.3.3 Fitting Diameter and Dopant Profiles

Diameter profiles were obtained from analysis of SEM images using custom program in

MATLAB as seen in Appendix . The program first uses the scale bar to identify the scale of

each pixel in the image. The user then identifies the orientation of the NW in order for the

program to rotate the NW to vertical. Each pixel of the SEM image is then binned based on

their intensity values into three separate bins. The diameter is then calculated by scanning

across the NW, identifying the position of the two NW edges based on the binned values of each

pixel, and calculating the distance between them over the entire length of the NW.

In order to calculate the transition width between n-type and intrinsic segments of NWs, the

diameter profiles were fit to a Gaussian convoluted with an exponential. The exponential is used

to account for the "reservoir effect", and the convolution of the Gaussian is used to correct for

limits of the etching procedure due to mass transport. The equation for a Gaussian convoluted

with an exponential used to fit the experimental data is:

f(t) = cA ∗ exp

[
−(t− ct0) ∗ λa − σ2

a

σ2
a

]
∗ erf

[√
2 ∗ (t− ct0) ∗ λa − σ2

a

(2 ∗ σa ∗ λa) + 1

]

−cA ∗

[
1 + erf

[√
2 ∗ (t− ct0)

2 ∗ σa

]]
+ cA ∗ erf

[
t− ct1
λb

]
+ cI1 (2.1)

where cA is the radius of the NW, ct0 is the location of the n-type/intrinsic transition,

ct1 is the location of the intrinsic/n-type transition, σa is the Gaussian broadening, λa is the

transition width of the n-type/intrinsic transition, λb is the transition width of the intrinsic/n-type

transition, and cI1 is an offset.
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2.4 Device Fabrication

2.4.1 Marker Pattern Fabrication

Marker patterns were generated using the Nanometer Pattern Generation System (NPGS)

system, which is an EBL system, on a Hitachi S4700 Field Emission SEM to precisely identify

NW locations in order to make electrical contacts to individual NWs. A Si wafer with a 200 nm

Si nitride (Nova Electronic Materials) layer on top was cleaned by sonicating in acetone, rinsing

with acetone and IPA, and inserted into a UV-Ozone cleaner for 5 minutes at 150 ◦C. Two spacer

layers of methyl methacrylate (MMA) (MicroChem MMA (8.5) MMA EL 9) were dispersed using

a spin coater (Laurell Technologies Model WS-650-23B) onto the cleaned substrate at 4000 rpm

for 30 s, and baked at 180 ◦C for 1 minute after each layer. A final photoresist layer of polymethyl

methacrylate (PMMA) (MicroChem 950 PMMA A2) was applied under the same conditions

and again baked at 180 ◦C for 1 minute. The marker pattern was then written with the NPGS

system at a working distance of 25 mm, current of 400 pA, and a magnification of 100× for

the inner pattern and a working distance of 25 mm, a current of 7 nA, and a magnification of

20× for the outer pattern. The substrate is then developed in methyl isobutyl ketone (MIBK)

(MicroChem MIBK/IPA 1:3 Developer) for 30 s and rinsed in IPA for 1 minute. The substrate

is then loaded into an electron-beam evaporator (Thermionics VE-100) to evaporate ∼3 nm of

Cr and 50 nm of Au at a rate of <1 Å/s at a pressure of ∼ 1 × 10−7 Torr. Both metals are

degassed before evaporation onto the sample by heating the metals until they reach a deposition

rate of <0.3 Å/s with the shutter closed, waiting until the chamber reaches its base pressure,

and allowing the metals to completely cool. After the metals are evaporated, the excess metal is

lifted off by dissolving the remaining MMA and PMMA in acetone.
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2.4.2 Nanowire Registration

NWs are then transferred to the marker pattern through mechanical transfer. Two layers of

MMA and one layer of PMMA are applied using the same procedure describe before for marker

pattern fabrication. Images of the maker pattern are taken using a Zeiss HAL 100 halogen lamp

installed on a Zeiss AxioImager A2M upright microscope. A 10x objective with a numerical

aperture of 0.2 and a working distance of 14.3 mm (Zeiss EC Epiplan 10x/0.2 HD WD = 14.3

M27) was used for low-magnification images, and a 50x objective with a numerical aperture of

0.75 and a working distance of 1.0 mm (Zeiss EC Epiplan 100x/0.75 HD WD = 1 M27) was

used for high-magnification images. The locations of the NWs on the marker pattern were then

registered using custom software in Igor, and contacts were drawn to the NWs in the DesignCAD

file. After the sample is loaded into the SEM, NPGS is used to identify a transformation matix

for the underlying maker pattern relative to the SEM image. Using the transformation matix,

the inner contacts were written at a working distance of 25 mm, a current of 400 pA, and a

magnification of 100x, and the outer contacts were written at a working distance of 25 mm, a

current of 7 nA, and a magnification of 20x.

2.4.3 Nanowire Etching for Radial Photovoltaic Devices

For radial photovoltaic devices, SU-8 photoresist (MicroChem, 2000.5) was patterned by

Xing Zhang on 15–30 µm-long portions of the NWs using EBL followed by wet chemical etching

with KOH solution (18 g in 60/20 mL water/IPA at 60 ◦C) to remove the intrinsic and n-type

shells in regions of the NWs not covered with resist in order to make electrical contact to the

p-type core. SU-8 photoresist was subsequently removed using a UV-Ozone cleaner.

2.4.4 Evaporation of Metal Contacts

The pattern is developed in MIBK for 30 s and IPA for 1 minute. Before the pattern is

loaded into the electron-beam evaporator, it is etched in BHF for 10 s followed by two sequential
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water rinses for 10 s each, and an IPA rinse for 15 s before drying the sample with nitrogen. This

etch is to remove any oxide on the NWs to ensure good contact between the metal and the NWs.

Oxide will start to form on the NWs after BHF etching, and therefore, it is imperative to load

the sample directly after etching and rinsing to prevent a substantial oxide buildup. Contacts

are evaporated using Ti and Pd at pressures of < 1× 10−7 Torr. To lower the pressure below

1× 10−7 Torr, Ti and Pd are first degassed as previously described for Cr and Au, and then Ti

is evaporated with the shutter closed to getter remaining gaseous species in the chamber. Ti is

evaporated at a rate of 0.2 Å/s for 3 nm, and Pd is evaporated for 0.2 Å/s for the first 10 nm,

0.5 Å/s for the next 40 nm, and 1.0 Å/s until the total thickness is 50 nm larger than the NW

diameter. The substrate is removed from the chamber, and the resist is dissolved in acetone to

remove all excess metal.

2.4.5 Resistivity Measurements

Resitivity measurements were performed in both two terminal and four terminal configurations

using a Keithley 2636A SourceMeter in conjunction with either Signatone micropositioners (S-725)

and W probe tips (SE-TL) for two terminal measurements or a Lake Shore Cryotronics PS-100

probe station for either two or four terminal measurements. For the two terminal measurements,

voltages were sourced in a range from values between ±100 mV to ±1 V from one terminal

and currents measured from the second terminal which was held at 0 V. For the four terminal

measurement, a constant current is applied across the two outermost terminals, and the resulting

voltage drop is measured across the inner contacts. The resistance is calculated based on Ohm’s

law, and after measurement, NW diameters and lengths were determined by high resolution

SEM in order to calculate resistivity.
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2.4.6 Photovoltaic Measurements

Dark current–voltage (I–V) curves were measured by Xing Zang and Christopher Pinion

using a Keithley 2636A SourceMeter in conjunction with Signatone micropositioners (S-725)

and probe tips (SE-TL). I–V curves under 1-sun illumination were also measured by Xing Zang

and Christopher Pinion with the same SourceMeter and with metal contacts formed using a

wire bonder (West Bond model 7476D) with 1% Si/Al wire. The solar simulator used for light

measurements (Newport, model 91191 with 1 kW Xenon lamp) contained an AM1.5G filter and

was calibrated to 1-sun (100 mW/cm2) using a calibrated reference solar cell (Newport, model

91150V). After measurement, NW diameters and lengths were determined by high resolution

SEM.

2.5 Finite Element Simulations

Both optical and electrostatic finite element simulations were performed using the Comsol

Multiphysics commercial software package. Comsol Multiphysics is a finite element analysis,

simulation, and solver software package, which enables simulation of a wide variety of systems

through inclusion of relevant physics modules. Modules used for optical and electrical simulations

include the AC/DC, transport of dilute species, and electrostatics modules.

2.5.1 Optical Simulations

Three-dimensional optical simulations were performed by Christopher Pinion and were

implemented using the total-field, scattered-field method in order to evaluate Si/Au hybrid

plasmonic structures. The background field was evaluated with a plane wave normally-incident

on the substrate using periodic boundary conditions on the four horizontal boundaries, a perfectly

matched layer (PML) on the lower boundary, and the plane wave source on the upper boundary.

The scattered field was then solved after adding the Si/Au plasmonic structure to the simulation

domain and replacing all boundaries with PMLs. Images of the surface plasmon modes (see
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Figure 3.5) were generated by evaluating the scattered electric field intensity (|E|2) in a horizontal

plane 3 nm above the top surface of the NW.

2.5.2 Electrostatic Simulations

Electrostatic finite-element simulations were used to evaluate photovoltaic as well as phase

change memory devices. These simulations used cylindrical symmetry to represent the three-

dimensional structure. For both simulations, the external voltage was applied to Ohmic contacts

on the n-type regions, and the simulations included realistic doping profiles as well as drift-

diffusion physics. Simulations of the photovoltaic devices also include recombination processes

to reproduce the current–voltage characteristics of the devices.

For the simulations of photovoltaic devices, the physics is based on the standard semiconductor

drift and diffusion model107,108 in which the electron continuity equation is represented as:

dn

dt
= ∇ · (Dn∇n− µnnE)−R+G = 0 (2.2)

where n represents the concentration of electrons, t time, Dn the electron diffusion constant,µn the

electron drift mobility, E the internal electric field, R the net rate of charge-carrier recombination,

and G the optical generation rate of charge carriers. The corresponding equation for holes, p, is

given by the analogous equation with substitution of p for n. The electric field, E, is determined

by Poisson’s equation, which relates E to the electric potential, ψ, and the charge density ρ as:

ε∇E = −εrε0∇2ψ = ρ (2.3)

where εr is 11.7, the relative permittivity of Si, and ε0 is the vacuum permittivity. The charge

density, ρ, is calculated as:
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ρ = q(Nd −Na− n+ p) (2.4)

where Nd and Na are the density of donor and acceptor atoms, respectively, and q is the

elementary charge. The spatial distributions of the donor and acceptor regions are represented

as:

N =



Nd,0 +Na,0exp
[
−1

2(x−xa∆x )2
]

(x < xd)

Nd,0exp
[
−1

2(x−xd∆x )2
]

+Na,0exp
[
−1

2(x−xa∆x )2
]

(xd ≤ x ≤ xa)

Na,0 +Nd,0exp
[
−1

2(x−xd∆x )2
]

(xa < x)

(2.5)

where Nd,0 and Na,0 are the maximum donor and acceptor densities, xd and xa are the boundaries

of the heavily doped donor and acceptor regions, respectively, and x is the width of the dopant

transition as represented by a half-Gaussian function. Note that xd < xa, the length of the

intrinsic region is estimated as xa - xd, and x represents the radial direction in radial devices

and the axial direction in axial devices.

Because of the high doping levels used in NW devices, the mobility values are dependent

upon the doping level as given by the empirical relationships:109

µn = 92
cm2

V · s
+ 1268

[
1 +

(
Na +Nd

1.3× 1017cm−3

)0.91
]−1

cm2

V · s
(2.6)

and

µp = 54.3
cm2

V · s
+ 406.9

[
1 +

(
Na +Nd

2.35× 1017cm−3

)0.88
]−1

cm2

V · s
(2.7)

The diffusion constants, Dn and Dp, depend on the doping level as given by their dependence on
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mobility through the Einstein relation:

D =
kT

q
µ (2.8)

where k is Boltzmann’s constant, and T is temperature in Kelvin. The bandgap of Si also

depends on doping as a result of bandgap renormalization; the shift in bandgap can be described

empirically as:107,109

∆Egap = −0.0187

[
ln

(
Nd

7× 1017cm−3

)
+ ln

(
Na

7× 1017cm−3

)]
eV (2.9)

which is valid for |Nd −Na| > 7× 1017cm−3. The bandgap of silicon is thus given as:

Egap = Egap,0 −∆Egap (2.10)

where Egap,0 is the non-degenerate bandgap of 1.12 eV.

For calculation of the p–n junction characteristics under equilibrium conditions at zero

external applied voltage, the built-in potential, ψbi, is fixed between the Ohmic contacts. In the

absence of degenerate doping (Na;Nd < 1017 cm−3), the built-in potential can be represented as:

ψbi,0 =
kT

q
ln

(
NaNd

n2
i,0

)
(2.11)

where ni,0 = 1.07× 1010 cm−3 is the intrinsic carrier concentration for non-degenerately doped

Si. For the degenerately doped systems considered here, we calculate the intrinsic carrier

concentration, ni, as:

ni =
√
NcNvexp

(
−Egap
2kT

)
(2.12)
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Where Nc and Nv represent the conduction and valence band density of states with values of

2.86× 1019 and 2.66x1019cm−3, respectively, and Egap is the doping-level dependent bandgap

given in equation 2.10. For degenerate doping, the standard approximation for the Fermi level,

EF , which assumes EF is > 3kT from the band edge and is implicit in equation 2.11, substantially

deviates from the true value, so we instead use the Joyce-Dixon approximation110 to estimate

the difference between EF and the band edge:

∆EJD,c = EF − Ec =
kT

q

(
ln

(
Nd

Nc

)
+

1√
8

(
Nd

Nc

)
−

(
3

16
−
√

3

9

)(
Nd

Nc

)2
)

(2.13)

where Ec is the energy of the conduction band edge. An analogous expression can be written for

the valence band substituting in Nv, Na, and Ev, the energy of the valence band edge. Based on

this approximation, we introduce a correction term for the built-in voltage as:

∆Ecorrection = Egap,0 + ∆EJD,c + ∆EJD,v − ψbi,0 (2.14)

We can thus represent the final built-in voltage as:

ψbi =
kT

q
ln

(
NaNd

ni,ani,d

)
+ ∆Ecorrection +

∆Egap,0
2

(2.15)

The potential applied between the Ohmic n-type and p-type contacts, ψ,is given by:

ψ = ψbi + Vapplied (2.16)

where Vapplied is the external voltage applied to the p-type Ohmic contact such that a positive

value represents a forward-biased diode.
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To model current–voltage characteristics of the p–n junctions, the recombination term R in

equation 2.2 includes Shockley–Read–Hall (SRH)107,108 as:

RSRH =
np− n2

i

τn(p+ ni) + τp(n+ ni)
(2.17)

where τn and τp represent the minority carrier lifetimes for electrons and holes, respectively. For

all simulations we set these lifetimes equal so that τn = τp = τ . Where noted in the text, the

recombination term R also includes Auger recombination107,108 as:

RAuger =


n(np−n2

i )

τA,nN
2
d

forNd > 5× 1015

p(np−n2
i )

τA,pN2
a

forNa > 5× 1015

(2.18)

where the Auger lifetimes, τA,n and τA,p, are given in the low-injection regime by:111

τA,n =
1

1.8× 10−24cm−3(Nd)1.65
s (2.19)

and

τA,p =
1

6× 10−25cm−3(Nd)1.65
s (2.20)

The simulations include surface recombination as a boundary condition on the outer surfaces

of the simulation domain excluding the Ohmic contacts. The rate of surface recombination is

calculated as:107,108

RS =
np− n2

i

S−1
n (p+ ni) + S−1

p (n+ ni)
(2.21)

where Sn and Sp are the surface recombination velocities of electrons and holes, respectively,
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and for all simulations we set Sn = Sp = S.
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CHAPTER 3: SYNTHETICALLY ENCODING 10 NM MORPHOLOGY IN
SILICON NANOWIRES1

3.1 Introduction

Most semiconductor technologies rely on the ability to pattern materials with nanometer-

scale features using top-down lithographic tools. Over the last decade, however, bottom-up

chemical methods to control the size, shape, and composition of nanoscale materials have

progressed rapidly, resulting in a diverse set of well-controlled morphologies including dots,

rods, ribbons, and wires.112–114 Semiconductor nanowires (NWs) are recognized as an especially

important technological building block because the high aspect ratio can be used for longitudinal

transport of electrical or optical signals.112,113 A variety of devices have been demonstrated,

including sensors,115 waveguides,116 phase-change memory,117 light-emitting diodes,118 and solar

cells.83,119,120 Nevertheless, current NW-based technology has been limited by the material’s

translational symmetry and the inability to pattern arbitrary, nanometer-scale morphological

features.

NWs are typically synthesized using the VLS mechanism,21 in which a metal nanoparticle

catalyzes one-dimensional growth of a single-crystalline semiconductor material. Advancements in

VLS-based technologies have generally involved synthesis of new materials or heterostructures.121

For instance, NW superlattices, in which the composition of a NW is modulated along the

growth axis, have been reported for Si/SiGe,59 GaAs/GaP,69 InAs/InP,122,123 Zn-doped InP,27

1This chapter previously appeared as an article in Nano Letters. The original citation is as follows: Christesen,
J. D.; Pinion, C. W.; Grumstrup, E. M.; Papanikolas, J. M.; Cahoon, J. F. Synthetically Encoding 10 nm
Morphology in Silicon Nanowires. Nano Lett. 2013, 13, 6281–6286.
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CdSe/ZnSe,124 and P-doped Si.125 Modulation of NW composition often results in faceting of

the NW surface, providing some capability to control morphology during synthesis.25,27,98,123 In

addition, NW superstructures have been reported in the form of controllably kinked NWs that

break the one-dimensional shape.39,126 Nevertheless, only a handful of reports describe efforts to

alter the NW geometry and encode specific morphology. For example, controlled VS over-coating

on the NW surface has been used to create tapered structures127 and periodic variations in

morphology.50 In addition, modulation of the size of the metal catalyst during growth has

been shown to provide control over the NW diameter.91,92 For metal NWs, electrodeposition

in metal oxide templates followed by wet-chemical etching has been used to create wires with

alternating, nanoscale structures.99,128 However, a method for accurate, nanometer-scale control

of morphology in single-crystalline semiconductor NWs has not been developed. Here, we

demonstrate a new method to achieve this type of high-fidelity shape control, a process which we

term Encoded Nanowire GRowth and Appearance through VLS and Etching (ENGRAVE). The

key aspects and capabilities of this method are illustrated in Figure 3.1 and elaborated below.

Figure 3.1: Synthesis of Si NWs with encoded morphology. (A) Schematic illustration of NW
growth including rapid modulation of P dopant incorporation to form heavily-doped n-type (n)
and undoped intrinsic (i) segments that are selectively etched using wet-chemical methods to
form a grating. (B) SEM image of a NW grating encoded (from left to right) with sequential
intrinsic segments for 200, 100, 50, 25, 10, and 5 s; scale bar, 500 nm.

32



3.2 Methods

Si NWs were grown by a VLS mechanism in a home-built, hot-wall chemical vapor deposition

(CVD) system at 420 ◦C using Au nanoparticles as catalysts, silane (SiH4) as the source of Si,

and hydrogen (H2) as the carrier gas (see Chapter 2.1 for details). As illustrated schematically in

Figure 3.1A, an additional flow of phosphine (PH3) was rapidly modulated during growth125 to

encode varying levels of P, an n-type substitutional dopant with high solubility in Si.129–131 The

etch rate of doped Si with aqueous KOH solution is well-known to decrease with higher dopant

concentration.132 This effect has been observed in doped Si NWs, producing changes in diameter

along the axis.66,133 Here, we develop this effect as a tool to encode arbitrary, high-resolution

morphology along the NW growth axis, enabling new technological applications of Si NWs.

3.3 Characterization and Optimization of ENGRAVE

To delineate the spatial resolution of the ENGRAVE process, we synthesized NWs with

six intrinsic segments encoded along the axis for increasingly short time scales. As shown in

Figure 3.1B, wet-chemical etching of these segments yielded an abrupt and conformal reduction

in the NW diameter. The largest segment, encoded for 200 s, produced a feature ∼700 nm

in length while the smallest segment, encoded for 5 s, produced a feature ∼10 nm in length,

defining the lower limit of the spatial resolution for this process. This example also demonstrates

that NW growth time is directly proportional to spatial length scale. Quantitative analysis of

the NW growth rate yielded a value of 213 ± 6 nm/min, which was used throughout this work to

convert growth times to length scales. This rate is comparatively slow because of the low CVD

temperature, 420 ◦C, chosen to minimize radial over-coating and doping of the NW surface, a

known problem during Si NW synthesis.54,134 By minimizing the over-coating, we could encode

high-fidelity nanoscale features over macroscopic length scales, as exemplified in Figure 3.2A by

the 400 nm-pitch grating encoded over 50 µm of a single NW.
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Figure 3.2: Characterization of NW growth, etching, and morphology. (A) Upper: SEM image
of a grating-encoded NW more than 50 µm in axial length; scale bar, 5 µm. Lower: Higher
magnification SEM images of select sections of the NW in the upper panel; scale bars, 200 nm.
(B) Radial etch rate of Si NWs as function of encoded P doping levels. Red curve represents the
best fit to a single exponential function. Inset: SEM image of a NW with segments I, II, and
III encoded with P doping levels of 1× 1020 cm−3, 5× 1019 cm−3, and intrinsic, respectively,
and etched for 25 s; scale bar, 200 nm. (C) Schematic of the sequential process for bottom-up
synthesis of complex NW morphologies. (D) Upper: SEM image of a NW encoded with a
bow-tie; scale bar, 100 nm. Lower: NW diameter (black curve and left-hand axis) as a function
of length for the bow-tie shown in upper panel, and measured phosphine flow rate (red curve and
right-hand axis) in standard cubic centimeters per minute (sccm) as a function of time during
CVD growth.
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For the synthesis of NWs with complex morphology, we measured the etch rate of Si NWs

encoded with P doping levels ranging from 5.0× 1020 to less than 1.0× 1019 dopants/cm3, as

depicted in Figure 3.2B. Note that these doping levels were calculated from the gas-phase ratio

of Si to P during CVD growth and the actual values could be lower as a result of incomplete P

incorporation.131 Quantitative evaluation of the etch rate reveals a non-linear dependence on

doping level that is well approximated with a single exponential function and varies from 2.1

nm/s for ‘intrinsic’ segments with doping levels < 1.0× 1019 cm−3 to negligible etching (<0.1

nm/s) with heavily doped segments. The exponential dependence is most likely a result of the

logarithmic dependence of the Fermi level position on the doping level, which modulates the rate

of Si oxidation and dissolution at the semiconductor-solution interface.132

The precise calibration of the NW growth and etch rates enables rational design and synthesis

of arbitrary high-resolution morphologies, as outlined schematically in Figure 3.2C. This process

involves 1) design of the morphological profile, 2) conversion of the physical profile into a dopant

profile, 3) VLS growth of the dopant-encoded NW, and 4) wet-chemical etching. As an example,

we used this procedure to form the bow-tie structure depicted in Figure 3.2D. The phosphine

flow profile for the bow-tie (red curve Figure 3.2D) is complex, requiring over 25 changes in

flow rate over a time scale of one minute. The diameter profile (black curve Figure 3.2D) shows

the resulting structure to be smoothly tapered with a monotonically decreasing then increasing

diameter that reduces to a diameter of ∼15 nm at the narrowest point. Note that the phosphine

flow profile was modified to be asymmetric around the flow minimum to account for dopants

retained by the Au catalyst, a phenomenon termed the reservoir effect.65

We used other complex doping profiles to encode the range of morphological features shown

in SEM images in Figure 3.33. These structures include periodic (images 1–4) or non-periodic

(image 5) gratings, nanogaps with gap sizes as small as 10 nm (images 6–7), suspended nanorods
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(image 8), and sinusoidal profiles (images 9–10). These morphologies could each enable a different

class of NW-based technology. For instance, the suspended nanorods could be used as mechanical

oscillators for nanoelectromechanical systems,135 periodic gratings for optical applications in

nanophotonics.136 and non-periodic gratings as a method to control thermal transport along the

wires, enabling the use of Si as a thermoelectric material.137,138

Figure 3.3: SEM images and phosphine flow profiles for the synthesis of Si NWs with complex
morphology. The measured phosphine flow profile used to encode the morphology of each segment
is depicted in red to the left of each SEM image; all scale bars, 200 nm. The flow rates vary
from 0 to 20 sccm for each NW.

As an additional method of morphological control, the ENGRAVE NWs can be thermally

oxidized. As shown by SEM images and diameter profiles before and after thermal oxidation

(Figure 3.4A and 3.4B), the volumetric expansion of the NW caused by the lattice expansion

from Si to SiO2 results in a broadening of the outer shape. However, the Si core retains its

morphology, which can be verified by removing the thermal oxide using a BHF etch (bottom

panel in Figure 3.4A). Bright-field TEM imaging of a NW with more extensive thermal oxidation

(Figure 3.4C) shows that the center of the NW corresponds to the crystalline Si core, which is

surrounded by an oxide shell. It is also possible to completely oxidize the etched regions of the

NWs, leaving behind isolated Si segments, ellipsoidal dots, as shown by the lower TEM image

in Figure 3.4C. Oxidation of n-type doped Si is also known to drive dopants to the Si/SiO2
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interface due to electrostatic effects combined with the increased diffusion of dopants at elevated

temperatures.137,139–141 Thus, thermal oxidation can also be a route to remove dopants from the

NWs, decoupling the connection between doping level, Fermi level, and morphology.

Figure 3.4: Thermal Oxidation of ENGRAVE structures. (A) SEM images of a single ENGRAVE
NW before (top; I) and after (middle; II) thermal oxidation and after removal of the thermal
oxide (bottom; III): scale bars, 100 nm. (B) Diameter profiles derived from the SEM images in
panel A before (black; I) and after (red; II) thermal oxidation and after removal of the thermal
oxide (green; III). (C) False-colored TEM images of etched NWs after thermal oxidation, in
which the entire Si core (shaded red) retains its morphology (top) or the intrinsic segments
are fully oxidized (bottom) leaving an ellipsoidal Si nanodot (shaded red): scale bars, 50 nm.
Reprinted with permission from Christesen, J. D., Pinion, C. W., Hill, D. J., Kim, S. & Cahoon,
J. F. Chemically Engraving Semiconductor Nanowires: Using Three-Dimensional Nanoscale
Morphology to Encode Functionality from the Bottom Up. J. Phys. Chem. Lett. 2016, 7,
685–692. Copyright 2015 American Chemical Society.

3.4 Applications

Field-enhanced spectroscopies, such as surface–enhanced Raman spectroscopy (SERS), are

often performed using Noble metal nanostructures that support SPPs.142 Through careful design

of the shape of a nanostructure, SPP resonances can be used to confine and amplify incident

electromagnetic fields at specific wavelengths and spatial positions.143 Following the procedure

depicted in Figure 3.5A, we used nanogap-encoded NWs as the topological templates for Noble

metal films, creating Si/Au nanostructures with tunable SPP resonances.2 As shown by the SEM

images in Figure 3.5B, deposition of ∼50 nm of Au on the NWs by physical vapor deposition

2Simulations and experiments performed for both surface-enhanced Raman spectroscopy and memory applications
were performed by Christopher Pinion.
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preserved the high-resolution structures and nanogap morphology. We used finite-element

optical simulations (see Figure 3.5C) to design Si/Au ENGRAVE structures with specific SPP

characteristics. The NWs behave as plasmonic resonator antennas,144 in which the length of

the segments adjacent to the gap control the field enhancement as a result of constructive or

destructive interference of the SPP wave along the NW axis.145,146 For a wavelength of 633

nm, we found that segments ∼775 nm in length were on-resonance, producing intense fields

in the gap, while segments ∼1175 nm in length were off-resonance, exhibiting weaker field

enhancement. As proof-of-concept, we performed SERS imaging on the Si/Au NWs coated with

methylene blue.145,146 We observed a greater than ten-fold Raman signal enhancement from the

on-resonance structure, as shown by the spectra in Figure 3.5D. In addition, Raman imaging

(see Figure 3.5E) confirmed that the signal enhancement is localized to a narrow spatial region

around the gap. In comparison, the off-resonance NW shows a weak Raman signal arising from

both the gap and the two ends of the rods, a result that is in good agreement with the optical

simulations in Figure 3.5C. These results highlight the capability for ENGRAVE to serve as

a simple route to create nanoplasmonic structures with tunable resonances for field-enhanced

spectroscopy138 and nanophotonic technologies.143

As a second application of ENGRAVE, we fabricated core/shell Si/SiO2 nanorod-encoded

devices for use as resistive switches in non-volatile memory.117,147,148 The fabrication steps are

illustrated in Figure 3.6A. First, an n-type/intrinsic/n-type NW was synthesized with a 50

nm intrinsic channel.2 Second, the channel was etched to a diameter of ∼30 nm to produce a

suspended nanorod, and third the wire was thermally oxidized to create a ∼10 nm diameter Si

core encased by an oxide shell. Fourth, electrical contacts were fabricated to the two n-type

segments adjacent to the intrinsic channel, as shown by the SEM image in Figure 3.6B. Device

simulations149 (see Figure 3.6C) indicate that this geometry concentrates the voltage drop and
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Figure 3.5: Nanogap-encoded NWs for plasmonics. (A) Schematic illustration of Au deposition
on a nanogap-encoded NW. (B) SEM images of nanogap-encoded Si NWs with 50 nm Au, gaps
of ∼30 nm, and segment lengths of ∼775 nm (upper image) and ∼1175 nm (lower image); scale
bars, 200 nm. (C) Finite-element optical simulations of the Si/Au nanogap structures depicted in
panel B showing the scattered field (|E|2) in the plane above the NW resulting from illumination
at normal incidence with a transverse-magnetic plane wave at 633 nm. The optically excited
SPP mode is on-resonance and off-resonance in the upper and lower images, respectively; scale
bars, 200 nm. (D) Raman spectra of methylene blue collected from the planar Au film (black),
the off-resonance NW (green), and on-resonance NW (red). The shaded region denotes the
spectral range used to generate spatial maps of the Raman intensity. (E) Three-dimensional
spatial maps of the relative Raman signal intensity generated by raster scanning a 633 nm laser
over on- and off-resonance nanogap-encoded Si/Au structures with segment lengths of ∼775 nm
(upper) and ∼1175 nm (lower), respectively.
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Figure 3.6: Nanorod-encoded NWs for non-volatile memory. (A) Schematic illustration of the
sequential process used to fabricate a non-volatile memory bit. (B) SEM image of a NW device
encoded with a non-volatile memory bit (dashed box) showing Ti/Pd Ohmic contacts on the far
left and right; scale bar, 1 m. (C) Left: SEM image of the encoded memory bit corresponding
to the dashed white box in panel B; scale bar, 100 nm. Right: finite-element simulation of the
electric field magnitude across the NW at an applied bias of +8 V plotted in a logarithmic
color scale for a nanorod segment 50 nm in length and 10 nm in diameter. (D) Characteristic
switching I–V curve for an ENGRAVE NW memory device. The shaded green and red regions
define the ’set’ and ’reset’ bias ranges, respectively. (E) Resistive switching behavior over ten
memory cycles. Dashed lines represent the ’set’/’reset’ pulses between current readings, which
were acquired five times at 1 V between each ’set’ or ’reset’ pulse.
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electric field within the narrow channel region, enabling a resistive switching effect as observed

in a planar Si/SiO2 system.146,147 Initial current–voltage (I–V) measurements showed an Ohmic

response from the device with a resistance of 54.7 kΩ, indicating the presence of a thin Si filament

encapsulated by the SiO2 shell. After an electroforming process consisting of multiple I–V sweeps

at high bias (see Chapter 2.5 for details), the device converged to the characteristic "switching"

I–V behavior (see Figure 3.6D) expected from a Si/SiO2 system.146,147 The I–V curve exhibits a

low voltage region that "sets" the device to a low resistance state and a high voltage region that

"resets" the device to a high resistance state. In the latter state, we observe variations in the

current (see Figure 3.6D,E) similar to those reported previously in Si/SiO2 resistive switching

memory devices and attributed to tunneling current fluctuations.147

To use the nanorod-encoded device as non-volatile memory, we applied sequential "set" and

"reset" voltage pulses (100 s) of 8 V and 12 V, respectively, to reversibly change the resistance of

the device. As shown in Figure 3.6E, we cycled the NW device through ten memory states and

achieved on/off current ratios of nearly 102. With further development, we expect that at least

100 memory bits could be encoded on a single NW and lower voltage operation achieved with

smaller nanorod segments. These initial results demonstrate the facile integration of ENGRAVE

structures in electronic devices and furthermore highlight the emergent electronic characteristics

that can be encoded through morphology.

3.5 Conclusion

In summary, we have demonstrated a method, termed ENGRAVE, to encode high-resolution

morphology along the growth axis of Si NWs. We anticipate this process will be extended to

other NW materials, such as GaAs/GaP94,150 et al., that can be selectively etched with gas-phase

or wet-chemical techniques and will represent a general route to encode new functionality in

semiconductor NWs.
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CHAPTER 4: ENCODING ABRUPT AND UNIFORM DOPANT PROFILES
IN VAPOR–LIQUID–SOLID NANOWIRES BY SUPPRESSING THE

RESERVOIR EFFECT OF THE LIQUID CATALYST1

4.1 Introduction

Semiconductor NWs have been developed as a bottom-up technological platform for a va-

riety of electronic,129,151 photonic,73,152,153 and photovoltaic119,154–156 devices. Several of these

technologies require modulation of the NW composition along the growth axis to form heterostruc-

tures that are required for specific device functions. For instance, NWs with n-type/intrinsic or

p-type/intrinsic junctions have been explored as field-effect transistors, enabling both electronic

devices125,129,157 and sensors.66,158,159 Similarly, NWs with p-type/n-type junctions have been

synthesized in Si,69,85,133,149,159 GaAs,69 InP,160 etc, and used for photovoltaic devices,69,133,149

avalanche photodetectors,85 Esaki diodes,161,162 and light-emitting diodes.76,163 Nevertheless, it

is generally believed that heterostructures formed by the VLS process will have broad junctions

with a width approximately equal to the wire diameter.58,63,164 Considering the wide-ranging

applications for NW heterostructures, it is increasingly important to understand the microscopic

kinetic processes that govern heterostructure formation and to develop methods that overcome

the limitations on the transition width.

During the VLS process (Figure 4.1A),165,166 a liquid droplet composed of metal and semicon-

ductor is formed by supplying a vapor-phase semiconductor precursor (e.g. SiH4 and GeH4) to a

metal nanoparticle and raising the local temperature above the eutectic point for the two materi-

1Reprinted with permission from Christesen, J. D.; Pinion, C. W.; Zhang, X.; McBride, J. R.; Cahoon, J. F.
Encoding Abrupt and Uniform Dopant Profiles in Vapor–Liquid–Solid Nanowires by Suppressing the Reservoir
Effect of the Liquid Catalyst. ACS Nano 2014, 8, 11790–11798. Copyright 2014 American Chemical Society
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als. When the liquid droplet is supersaturated, which typically requires semiconductor weight

fractions of 10-50%,64,167 a NW will nucleate and grow. Heterostructures are formed by altering

the supply of vapor-phase precursors during VLS growth. However, the liquid droplet can act as

a reservoir of material even after a precursor has been removed, causing the heterojunction to be

broadened by a phenomena termed the “reservoir effect,” as illustrated in Figure 4.1B,C.65,67,96

This effect has been observed for heterostructures involving a change in dopants (e.g. P-doped

Si52 and Si-doped GaAs57) and structures involving a change in semiconductor (e.g. Si/Ge58–60

and GaAs/InAs61,62) and has been described previously.

Figure 4.1: VLS NW growth and the reservoir effect. (A) Illustration of the key kinetic processes
during Si NW growth: incorporation, evaporation, and crystallization. (B) Schematic of the
reservoir effect, showing (left) a supply of P dopant precursor in the gas phase followed by
(middle) removal of the gas-phase precursor with retention of P by the liquid catalyst and (right)
subsequent depletion of P dopants from the liquid catalyst. (C) A plot of dopant concentration
along the axial length of the NW.

Here, we investigate the uniformity and abruptness of P dopant transitions in Si NWs grown

by the VLS mechanism with Au catalysts. Transitions between n-type and intrinsic sections of

the Si NW are quantitatively evaluated by elemental mapping with ∼1 nm spatial resolution

using EDS in a STEM. Previous attempts to quantitatively resolve dopants in NWs have been

hindered by low signal-to-noise ratios and long acquisition times;66,81 however, this problem is
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mitigated by the simultaneous x-ray detection of four solid-state detectors in conjunction with

the high-brightness Schottky-type field-emission gun of the STEM used in this work (FEI Tecnai

Osiris; see Chapter 2.3.2). The transitions are also evaluated by wet-chemical etching of doped

NWs using the recently reported ENGRAVE process.168 We develop a kinetic model of NW

doping, which includes the microscopic processes of (1) P incorporation into the liquid catalyst,

(2) P evaporation from the catalyst, and (3) P crystallization in the Si NW. We find a VLS

growth regime in which the reservoir effect is fully suppressed because the rate of P evaporation

greatly exceeds the rate of P crystallization. In this regime, NWs with diameters from 50 nm to

150 nm are encoded with abrupt and uniform dopant transitions, as verified by high-resolution

morphologies encoded through the ENGRAVE process. The results suggest that the reservoir

effect can be suppressed for any VLS growth system in which the rate of liquid-vapor equilibrium

can greatly exceed the rate of NW growth.

4.2 Results

Si NWs were synthesized in a hot-wall CVD reactor at 420 ◦C and a range of total pressures

(20-80 Torr) using SiH4 and PH3 as the Si and P precursors, respectively, and H2 as the carrier

gas (see Chapter 2.1 for further details). Calibration of the NW growth rate, as described

previously,166 enabled the growth of n-type and intrinsic sections with precise axial lengths by

modulating the flow of PH3 for specific time intervals. EDS images in Figure 4.2A for NWs

grown at 20 Torr show strong P signals from the doped sections and relatively abrupt transitions

at the n-type/intrinsic interfaces, which will be analyzed in detail below. Wet-chemical etching

of the NWs in KOH solution, as detailed in Chapter 2.2, leads to diameter modulation along the

axis, as shown by the SEM image in Figure 4.2A. The large diameter segments correspond to the

n-type sections, which act as an etch stop as described previously for the ENGRAVE process.168

As shown in Figure 4.2B, the EDS and SEM diameter measurements directly correlate with the
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Figure 4.2: Characterization of P doping in VLS-grown Si NWs. (A) Top: Schematic of a Si NW
with intrinsic (i) sections depicted in red and P-doped, n-type (n) sections depicted in green.
Middle: STEM EDS image of a Si NW showing P counts in green and Si counts in red; scale
bar, 200 nm. Bottom: SEM image of Si NW after wet-chemical KOH etching; scale bar, 200
nm. (B) Top: PH3 flow profile (in units of standard cubic centimeters per minute, sccm) during
VLS growth of the NWs shown in panel A. Bottom: Diameter profile (black curve and left-hand
axis) derived from the SEM image in panel A and P signal (green curve and right-hand axis)
derived from the EDS image in panel A. (C) Active doping level from resistivity measurements
(black circles) and chemical doping level from EDS measurements (green squares) as a function
of the encoded doping level, which corresponds to the gas-phase ratio of P to Si. Literature
values for active doping level from reference 42 are shown as red diamonds, and dashed lines
represent linear fits to the data. Blue line and right-hand axis show the percentage of active
dopants based on the ratio of active to chemical doping level. (D) Top: chemical doping level
as a function of radial position for a NW with encoded doping level of 5× 1020 cm−3. Bottom:
Normalized EDS signals as a function of radial position for Si (black), P (green), Au (gold), and
O (light blue). Chemical doping level in the top panel is determined by the ratio of the P to Si
EDS signals. All NWs shown in panels A–D were grown with a SiH4 partial pressure of 0.4 Torr
and a total pressure of 40 Torr.
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PH3 flow profile. Both measurements reflect dopant incorporation in the wire and are used to

evaluate the abruptness of the n-type/intrinsic junctions.

Figure 4.3: Fit of the EDS spectrum. An example spectrum that was used to determine the
relative concentration of Si and P to calculate the chemical doping level.

The doping level of the n-type sections was evaluated using both quantitative EDS signal

analysis and single-NW resistivity measurements to determine the chemical doping level (i.e. the

density of P atoms) and the active doping level (i.e. the density of ionized P atoms), respectively.

The nominal encoded doping level, as determined by the vapor-phase ratio of PH3 to SiH4,

ranged 5 × 1020 cm−3 (1:100 PH3:SiH4) to 1 × 1019 cm−3 (1:5000 PH3:SiH4). As shown in

Figure 4.2C, EDS analysis (see Figure 4.3 for a representative fit of an EDS spectrum) yielded

chemical doping levels that were ∼60% of the nominal encoded level. Resistivity measurements,

however, yielded active doping levels (see Figure 4.2C) that were ∼10% of the encoded doping

level (see Figure 4.4, Table 4.1, and Chapter 2.4.5 for details on the resistivity measurements).
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Figure 4.4: n-type Si NW resistivity measurements. (A) A sample plot of resistance vs. contact
separation used to extract resistivity. (B) SEM image of NW used to collect the plot in A; scale
bar, 5 µm.
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The resistivity measurements are in good agreement with previous reports on NW doping with

PH3.130,131,169 However, a comparison of the chemical and active doping level measurements

(right-hand axis of Figure 4.2C) indicates that less than 13% of the dopants in the NW are

ionized and thus active for the highest doping levels, and less than 30% are active at the lowest

doping level. Although donor deactivation has been reported in silicon nanostructures as a

result of dielectric mismatch with the surrounding medium,170 the magnitude of the deactivation

determined here for NWs that are ∼100 nm in diameter is not well explained by this effect.

Instead, the deactivation is likely due to lattice distortions and/or the formation of P dimers at

the relatively low temperature (420 ◦C) used for VLS growth.171

Encoded Doping Level (cm−3) Resistivity (Ω/cm) Measured Doping Level (cm−3)
5.0× 1020 1.75× 10−2 1.69× 1018

5.0× 1020 1.21× 10−3 5.98× 1019

5.0× 1020 2.50× 10−3 2.74× 1019

5.0× 1020 1.72× 10−3 4.09× 1019

1.0× 1020 4.29× 10−3 1.48× 1019

1.0× 1020 3.09× 10−3 2.16× 1019

5.0× 1019 3.42× 10−3 1.93× 1019

5.0× 1019 7.27× 10−3 7.39× 1018

5.0× 1019 5.10× 10−3 1.19× 1019

5.0× 1019 1.06× 10−2 4.12× 1018

2.5× 1019 8.86× 10−3 5.49× 1018

2.5× 1019 7.33× 10−3 7.30× 1018

2.5× 1019 5.45× 10−3 1.10× 1019

2.5× 1019 7.95× 10−3 6.48× 1018

2.5× 1019 9.47× 10−3 4.94× 1018

2.5× 1019 8.39× 10−3 5.98× 1018

Table 4.1: Encoded doping levels and measured active doping levels. Measured resistivity values
were converted into active doping levels using the resistivity of bulk Si as a function of P doping
level.172

The uniformity of doping in the n-type sections was evaluated with radial EDS scans for

Si, P, Au, and O, as shown in Figure 4.2D (see Figure 4.5 for additional details on the radial
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Figure 4.5: EDS spectrum, HAADF-STEM image, and EDS elemental images of a
ntype/intrinsic/n-type segment. (A) Spectrum obtained from the data used to generate the
radial profile in Figure 4.7D, showing the binned areas for each element. (B) HAADF-STEM
image of the NW segment. (C–G) EDS maps of Si (red; panel C), O (light blue; panel D), Au
(dark blue; panel E), and P (green; panel F). A composite image overlaying all elements is shown
in panel G, and the radial profile in Figure 4.2D corresponds to horizontal averaging within the
red boxed region.
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Figure 4.6: Arrhenius plot for VLS growth and VS overcoating. Logarithmic plot of the axial
VLS NW growth rate (red circles and right-hand axis) and the radial VS overcoating rate (black
squares and left-hand axis) as a function of inverse temperature. Dashed lines represent the
best fit to the Arrhenius expression, yielding activation energies of 22 ± 2 kcal/mol and 42 ± 3
kcal/mol for VLS growth and VS overcoating, respectively. At a VLS growth temperature of
420 ◦C, the VS overcoating rate is less than 0.05 nm/min, but the VLS growth rate is still high
because of the nearly two-fold difference in activation energy for the two processes. Error bars
are comparable in size to the marker symbols and were omitted for clarity

scan). A plot of chemical doping level vs. radial position (see right-hand axis of Figure 4.2D)

shows an increase in the P concentration toward the outer radial positions of the NW. An

increasing P concentration toward the surface of the NW is in good agreement with previous

studies, which have reported a high surface concentration of P due to VS overcoating52,54 or

from other surface-related effects. However, due to differences in the activation energies between

VLS and VS processes, the degree of VS overcoating can be limited by growing the NWs at

lower temperatures (e.g. 420 ◦C; See Figure 4.6). Nevertheless, the region of higher doping also

corresponds to the region with higher O counts because of a native oxide on the wire surface. As

a result, we expect this region is readily removed when wires are wet-chemically etched to remove

the oxide, so electronic devices and the ENGRAVE process168 should not be substantially affected

by this layer. We also note that the radial dependence of the P signal may be overestimated as a

result of spectral overlap of an x-ray peak from Au with the peak from P because the wires also

show aggregation of Au on the wire surface (see Figure 4.5).
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Figure 4.7: Evaluating the abruptness of P dopant profiles in Si NWs. (A) EDS image, showing
P counts in green, for an n-type/intrinsic/n-type wire with a ∼100 nm intrinsic section; scale
bar, 50 nm. (B) SEM image of a NW, grown under the same conditions as in panel A, after
wet-chemical KOH etching; scale bar, 50 nm. (C) Top: PH3 flow profile (red curve) in units
of sccm for the n-type/intrinsic/n-type sections shown in panels A and B. Middle: diameter
profile (black curve) derived from the SEM image in panel B and best fit (red dashed line) to
equation 2.1. Bottom: P counts (green curve) derived from the EDS image in panel A and best
fit (red dashed line) to equation 2.1. (D) Normalized diameter profiles for etched segments along
a single NW corresponding to intrinsic segments grown for (1) 6 s (red), (2) 15 s (green), (3) 30 s
(blue), and (4) 60 s (black). (E) SEM images of the four segments corresponding to the diameter
profiles in panel D. All NWs shown in panels A–E were grown with a SiH4 partial pressure of 0.4
Torr and a total pressure of 40 Torr.
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High-resolution EDS and SEM imaging, as shown in Figure 4.7A and B, was used to quantify

the abruptness of the n-type/intrinsic transitions. Line profiles generated from vertical sectioning

of the images are displayed in Figure 4.7C. These profiles were fit to single-exponential functions

convoluted with a Gaussian (equation 2.1) to extract the characteristic decay length, λ, of

the transitions. The Gaussian convolution represents experimental broadening due to mass

transport of etchant for SEM images and represents the finite beam size for EDS imaging

(see Chapter 2.3.3 for details). The fits (dashed lines in Figure 4.7C) provide a reasonable

representation of the transition widths, and the SEM data is also corrected (see Chapter 2.3.3)

for the exponential relationship132,168 between the etch rate and encoded doping level. This

analysis yields a measured transition length of 4 nm and 5 nm from the EDS and SEM data,

respectively, in Figure 4.7C, demonstrating the good agreement between these two methods.

The measured transition widths are substantially shorter than previous reports,58,164 and we

develop below a kinetic model of NW doping in order to interpret the results. Note that for

n-type/intrinsic/n-type sections, there is no apparent dependence of the transition width on

intrinsic segment length. Diameter profiles and SEM images in Figure 4.7D and 3E show the

same profile for intrinsic segments 10 nm to 200 nm in length; however, the smaller segments are

etched to a lesser extent presumably because mass transport to the etched region is hindered by

the small dimensions. In addition, the first transition region (n-type/intrinsic) shows the same

abruptness (<10 nm) as the second transition (intrinsic/n-type).

4.3 Kinetic Modeling and Analysis

We analyze P dopant incorporation in Si NWs using the three microscopic kinetic processes

depicted in Figure 4.9A: P incorporation, P evaporation, and P crystallization.173 By analyzing

the rate equations, we can construct a kinetic model of NW growth that predicts the transition

width for a set of physically reasonable assumptions. First, we assume the engineering of the
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CVD system, such as switching speed of the mass flow controllers and rate of gas exchange

in the system, has no influence on the observed transition width, which is verified by control

growth studies (see Figure 4.8). Second, we assume the NW growth rate is independent of the

concentration of vapor-phase PH3 or P dissolved in the liquid, which is supported by our previous

studies of VLS growth kinetics.166 Third, we assume that prior to a transition, the dopant has

reached a steady-state concentration and is uniformly distributed in the liquid catalyst, which is

confirmed by the homogeneity of the P signal in Figure 4.2. Note that the kinetic analysis below

is used to interpret the transition width of n-type/intrinsic transitions but not intrinsic/n-type

transitions. For the latter transitions, in which the n-type region is grown after the intrinsic

region, an abrupt, sub-10 nm transition is consistently observed. We attribute this abruptness

to a uniformly high rate of P incorporation under all VLS growth conditions.

Figure 4.8: Transition width at various carrier gas flow rates with a constant NW growth rate.
The H2 carrier gas flow rate was altered while maintaining a constant total reactor pressure of
40 Torr. The flow rate of SiH4 was adjusted to maintain the same partial pressure of SiH4 and
thus the same NW growth rate under all conditions.

For the kinetic analysis of n-type/intrinsic transitions, we define the doping level, Nd, as the

ratio of the volumetric rate of P crystallization to volumetric rate of Si crystallization:
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Nd =
kPCCP (l)πr

2ΩP

kSiCCSi(l)πr2ΩSi
≈

kPCCP (l)

kSiCCSi(l)
(4.1)

where kPC is the rate constant for P crystallization (units of nm/s), kSiC is the rate constant for

Si crystallization (units of nm/s), CP (l) is the concentration of P in the liquid catalyst, CSi(l)

is the concentration of Si in the liquid catalyst, r is the radius of the solid NW, and ΩSi and

ΩP are the Si and P volumes per atom, respectively. We also assume ΩSi ∼ ΩP , leading to the

simplification shown on the right-hand side of equation 4.1. During an n-type/intrinsic transition,

the dopant width is dictated by the time-dependence of CP (l), which decreases as a result of P

crystallization and evaporation as:

dCP (l)

dt
= −kPECP (l)

S

V
− kPCCP (l)

A

V
(4.2)

where kPE is the rate constant for P evaporation (units of nm/s), S is the liquid-vapor interfacial

surface area, V is the volume of the liquid catalyst, and A is the cross-sectional area of the NW

(equal to r2). Solving equation 4.2 for CP (l) and inserting the result into equation 4.1 assuming

a partial sphere geometry for the liquid catalyst yields:

Nd(t) =
kPCCo,P (l)

kSiCCSi(l)
exp

−3
(

2RkPE + r2

R+αkPC

)
(R+ α)(2R− α)

t

 (4.3)

where Co,P (l) is the initial concentration of P in the metal catalyst, R is the liquid catalyst

diameter, α is
√
R2 − r2, and t is the total amount of time after the P precursor has been turned

off. The growth rate, G, of the NW, as developed previously, is:

G =
L

t
= ΩSikSiCCSi(l) (4.4)
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where L is the length of the segment grown in time t. Note that the rate constant, kSiC , as

used here is the observed rate constant for Si crystallization in a kinetic analysis that does

not explicitly consider the process of Si dissolution from the solid Si NW. As a result, the rate

constant must have a weak dependence on supersaturation of the liquid Au–Si droplet thus

on the supply of Si precursor (e.g. partial pressure of SiH4).166 Rearranging equation 4.4 and

substituting for t in equation 4.3 yields:

Nd(L) =
kPCCo,P (l)

kSiCCSi(l)
exp

 −3
(

2RkPE + r2

R+αkPC

)
(R+ α) (2R− α) kSiCϕSi

L

 =
kPCCo,P (l)

kSiCCSi(l)
exp

(
L

λ

)
(4.5)

where ϕSi = ΩSiCSi(l) is the volume fraction of Si in the liquid catalyst, and the transition width,

λ, is defined as:

λ =
(R+ α) (2R− α) kSiCϕSi

3
(

2RkPE + r2

R+αkPC

) ≈ kSiCϕSi
3(2kPE + kPC)

R (4.6)

If the catalyst droplet is assumed to be a hemisphere, then R = r, α is zero, and the tran-

sition width is linearly dependent on the NW radius, as shown on the right-hand side of

equation 4.6.58,164 However, λ is also dependent on the rate constants kSiC , kPC , and kPE , so we

consider several limiting values of these constants to understand the presence—or absence—of

the reservoir effect under a variety of synthetic conditions.

We assume that kSiC is nonzero and separately consider the limits of equation 4.6 if P

evaporation is much faster than P crystallization (i.e. kPE >> kPC) or if P crystallization is

much faster than P evaporation (i.e. kPC >> kPE). In the first limit, equation 4.6 becomes:

λ ≈ kSiCϕSi
3kPE

R, for kPE >> kPC (4.7)
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In this limit, the transition width goes to zero if the rate constant of P evaporation is much

greater than the rate constant for Si crystallization (i.e. kPE >> kSiC), causing the reservoir

effect to be fully suppressed. In the second limit, equation 4.6 becomes:

λ ≈ 2kSiCϕSi
3kPC

R =
2

3
βϕSiR, for kPC >> kPE (4.8)

where β = kSiC
kPC

is the segregation coefficient for crystallization of Si and P in the NW (i.e. the

ratio of P concentration in the liquid to P concentration in the NW). In this limit, the transition

width is linearly dependent on the radius, R, and there is no regime (for VLS growth of Si with

Au catalysts) in which the reservoir effect can be suppressed.

To experimentally delineate the different regimes in equations 4.7 and 4.8, we systematically

varied NW growth conditions—including NW diameter, growth rate (i.e. SiH4 partial pressure),

and the total CVD reactor pressure—and observed the effect on the NW transition width as

measured by wet-chemical etching (see Figure 4.9B and C). Three distinct regions (I, II, and III)

were identified. First, at low total pressures (<40 Torr) and relatively low growth rates (<300

nm/min), we observed abrupt transition widths (<10 nm) that were independent of the NW

diameter (Figure 4.9C), as shown by the data in the green shaded regions (labeled I). Second,

we observed broadened transition widths (∼10–25 nm), as shown by the yellow regions (labeled

II), for low pressures with intermediate growth rates and for high pressures with low growth

rates. This region also exhibits a diameter dependence (Figure 4.9C). Third, we observed very

broad transitions (>30 nm) and a diameter dependence (Figure 4.9C) at high NW growth rates

for all reactor pressures, corresponding to the red region (labeled III) in Figure 4.9B. These

experimental results were also confirmed by EDS images collected at the lowest pressure, 20

Torr, with the second to lowest and highest NW growth rates (corresponding to regions I and

III, respectively). As shown in the fits in Figure 4.9D, the EDS data yielded transition widths of
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Figure 4.9: Influence of NW growth rate and diameter on the abruptness of n-type/intrinsic
dopant heterostructures. (A) Illustration of the key processes for describing the time-dependent
P concentration in the catalyst and NW: incorporation, evaporation, and crystallization. (B)
Plot of transition width relative to partial pressure of SiH4 for 20 (blue), 40 (green), 60 (red),
and 80 (black) Torr total reactor pressure. Blue square data points outlined in white represent
transitions widths derived from EDS data in panel D. (C) Plot of transition width vs. diameter
for NWs grown at a SiH4 partial pressure of 0.4 Torr and a total reactor pressure of 20 (green) or
80 (black) Torr, as well as a SiH4 partial pressure of 2.0 Torr (red) and a total reactor pressure of
20 Torr. Black dashed lines are the best linear fits to each data set, and shaded areas represent
one standard deviation error in the fit. (D) EDS images (top) and plot of relative atomic counts
vs. axial length (bottom) for NWs grown at a SiH4 partial pressure of 0.4 Torr (left, green) and
2.0 Torr (right, red) at a total reactor pressure of 20 Torr, with growth rates of 100 and 500
nm/min, respectively. The wire grown at a SiH4 partial pressure of 0.4 Torr shows higher P
counts on the edge as a result of higher Au concentration on the surface (see Figure 4.5). The
transition widths from these images are plotted in panel B as blue squares with a white outline.
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∼4 nm and ∼30 nm, respectively, under these two conditions.

The three regions observed experimentally can be assigned to different limits of the ki-

netic analysis (i.e. equations 4.6–4.8). Region I corresponds to synthetic conditions in which

evaporation is the dominate term (equation 4.7), causing abrupt dopant transitions. The low

pressures and low growth rates favor efficient evaporation of P from the liquid catalyst. This

effect is consistent with the abrupt transitions observed from n-type/intrinsic/n-type NWs grown

under high vacuum conditions.169 Region II corresponds to a regime in which the rate constants

for evaporation and crystallization are of similar magnitudes (equation 4.6). Finally, region

III corresponds to a regime in which P evaporation is slow and P crystallization dominates

(equation 4.8), causing substantially broadened transitions. This regime is favored at high

NW growth rates (i.e. with high SiH4 partial pressures) that increase kSiC and ϕSi while also

disfavoring P evaporation because the higher SiH4 pressure decreases the number of surface sites

available for P associative desorption.

Using the diameter-dependent data from region III, we can calculate ϕSi. We first start with

equation 4.6 for the transition width for a non-hemispherical catalyst, and then look at the limit

where kPC » kPE such that

λ =
(R+ α)2 (2R− α) kSiCϕSi

3r2kPC
(4.9)

We combine kSiC and kPC into a segregation constant, β, to give:

λ =
(R+ α)2 (2R− α)βϕSi

3r2
(4.10)

We assume a catalyst with a diameter of 110 nm (R = 55 nm), a solid NW with a diameter of 100

nm (r = 50 nm), and a transition width of 30 nm (λ = 30 nm). Based on the assumption that
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the ratio of Si to P in the liquid catalyst is the same as the vapor phase and that the difference

in doping level is due to differences in kPC and kSiC , β is set to 5/3 from the EDS doping level

measurements. The volume fraction of Si in Au is then calculated to be: ϕSi ≈ 26± 5%, which

is in good agreement with previous reports of the equilibrium volume fraction of Si in Au at 420

◦C.164

The dependence of the dopant transition width on the NW diameter and on the P incorpo-

ration and evaporation rate constants is summarized in Figure 4.10A. Changing the synthetic

parameters of VLS NW growth permits a smooth transition between a diameter-dependent

transition width consistent with the reservoir effect to a diameter-independent transition width in

which the reservoir effect is fully suppressed because of the high rate of P evaporation. Here, we

have determined the optimal conditions for abrupt dopant transitions to be low-pressure growth

(20 Torr total reactor pressure) with a NW growth rate of ∼200 nm/min, corresponding to a

SiH4 partial pressure of 0.4 Torr. Under these conditions, both the dopant transition width and

growth rate166 are independent of the NW diameter. The only apparent disadvantage of these

low-growth-rate conditions is increased Au deposition (see Figure 4.5) on the wire surface,47

which could potentially be suppressed by addition of HCl to the CVD reactor during VLS

growth.51

The report of VLS growth conditions that produce abrupt and uniform dopant profiles, as

shown here, should assist the development of NW-based technologies. For instance, using the

ENGRAVE process,168 a variety of high-resolution morphological structures can be encoded in

NWs with diameters ranging from 50 to 200 nm, as shown in Figure 4.10B. These NWs were

grown with the PH3 flow profile modulated on or off every 6 s, which corresponds to ∼20 nm

of NW growth for each section. As demonstrated by the diameter profiles in Figure 4.10C, the

ENGRAVE NWs show no loss in spatial resolution as a function of the wire diameter, which is
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consistent with full suppression of the reservoir effect.

Figure 4.10: Suppressing the reservoir effect for diameter-independent, high-resolution het-
erostructures. (A) Plot of the n-type/intrinsic transition width as a function of NW diameter
and as a function of the ratio between rate constants for P crystallization and P evaporation,
where 0 and 1 correspond to the limits kPE >> kPC and kPC >> kPE , respectively. (B) SEM
images of ENGRAVE NWs created by alternating n-type/intrinsic sections for 6 s each. From
top to bottom the NW diameters are (1) ∼150 nm, (2) ∼100 nm, and (3) ∼50 nm; scale bars,
100 nm. (C) Diameter profiles as a function of axial length for NWs 1–3 shown in panel B.

4.4 Conclusions

By examining the width of P dopant transitions at n-type/intrinsic interfaces as a function

of Si NW diameter, growth rate (i.e. SiH4 partial pressure), and total reactor pressure, we have

identified a regime in which the reservoir effect can be fully suppressed to produce transition

widths of ∼5 nm independent of the NW diameter. Using a detailed kinetic model of NW doping,

which includes the processes of P incorporation, evaporation, and crystallization, we have shown

that P evaporation plays the primary role in achieving the abrupt interfaces. Our kinetic model
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can be applied to a wide range of NW materials grown by the VLS process. The results presented

here should provide guidelines to develop the synthetic conditions needed to achieve abrupt

compositional and morphological transitions in a variety of NW systems.
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CHAPTER 5: ROOM TEMPERATURE ELECTRONIC RATCHETS IN
ANISOTROPIC SAWTOOTH SILICON NANOWIRES

5.1 Introduction

Altering the geometry of a material to break structural symmetries can introduce emergent

properties, which can be utilized for new technologies and applications. One such technology is

a ratchet that takes a time varying force with a mean value of zero and produces directed or

rectified movement of a substance such as electrons174–176 or large biomolecules.177–179 Ratchets

have been used in a variety of applications including separation of molecules,177–179 molecular

motors,178–180 and solar energy.174–176 It was previously discovered that materials with crystal

structures that are not centrosymmetric can generate electrical current under illumination

even though they exhibit homogeneity on macroscopic scales.176 In this effect, known as the

photogalvanic effect, light acts as the external force with a mean value of zero and imposes an

unbiased, time-varying electric field on the crystal. Electrical current is generated as a result of

rectification of the electric field due to the crystal asymmetry and will propagate in a direction

determined by the asymmetry of the crystal structure. This effect has been seen in a wide variety

of materials ranging from inorganics (e.g. LiNbO3, LiTaO3, and BaTiO3
176,181,182) to polymers

(e.g. poly(vinylidene flouride)183,184).

It is also possible to fabricate ratchets that do not rely on an asymmetry in the crystal

structure of the material, but rather the geometry, to provide the asymmetry.185–190 These

ratchets, or geometric diodes, can be produced by either forming the conducting material into

an asymmetric geometry such as a sawtooth or by removing material in asymmetric shapes

such as triangles or semicircles from the conductive material. As illustrated in Figure 5.1A, it is
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possible to understand why an asymmetric structure, like a sawtooth, exhibits rectification by

first assuming classical motion of the electrons. When the electrons move along the sawtooth,

the reflection off of the surface defined by the shape of the geometric diode funnels the electrons

through the constriction. This allows for more current to flow than is defined by cross-sectional

area of the constriction. However, when electrons move against the sawtooth, any electrons

outside of the cross-sectional area of the constriction are back reflected and do not contribute

to current. This effect manifests itself as a difference in resistance based on the polarity of the

applied voltage.

Figure 5.1: Principles of geometric diodes and fabrication of sawtooth Si NWs. (A) Schematic of
a sawtooth geometric diode where electrons moving forward are scattered towards the opening
and electrons moving backwards are reflected off of the flat interface. The critical parameter is
the diameter of the constriction, referred to here as dneck, relative to the mean-free path length.
(B) NW diameter (black curve and left-hand axis) as a function of length for a single sawtooth
segment shown in panel C, and measured phosphine flow rate (red curve and right-hand axis) in
standard cubic centimeters per minute (sccm) as a function of time during CVD growth. (C)
SEM image of Si NW after wet-chemical KOH etching; scale bar, 200 nm.
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In order to observe the ratcheting effect from a geometric diode, it is necessary for key

dimensions of the material to be on the order of the mean–free path length (MFPL) in the

material, which generally requires highly conductive materials (e.g. metals and two–dimensional

electron gases (2DEGs)) and advanced lithographic techniques (e.g. EBL or FIB milling).185–190

However, for the first time, we are able to fabricate geometric diodes in Si in a bottom-up process

by encoding precise sawtooth structures in VLS-grown Si NWs using the previously described

ENGRAVE method (see Chapter 2.2. Realization of a geometric diode within Si NWs will enable

more complex electronic designs and open new technologies for future Si NW applications.

5.2 Results

Sawtooth structures have three parameters that govern their shape: the NW diameter, the

NW neck diameter, and the period. The NW diameter and the period are both controlled

during the NW growth, and the NW neck diameter is controlled through the wet-chemical etch

conditions, as described in Chapter 2.2. The most important parameter for a sawtooth structure

in determining whether or not the structure is a geometric diode and exhibits rectification is the

NW neck diameter.174 Therefore, we investigated the asymmetry caused by the neck diameter,

by varying the etch time.

Si NWs were synthesized in a hot-wall CVD with two 12 µm long n-type regions surrounding

the 7 µm long sawtooth region, which consists of 30 repeating sawtooth segments (see Chapter 2.1

for details). Calibration of the NW growth rate and etch rate as described previously allowed

precise calculation of the PH3 flow rate, shown in Figure 5.1B, necessary to produce a single

sawtooth segment as shown in Figure 5.1C. The sawtooth NWs were then transferred onto a

marker pattern and etched in a wet-chemical KOH solution as described in Chapter 2.2 for times

between 90 and 120 seconds. Two contacts were fabricated on either side of the sawtooth region

in order to perform four-point probe measurements as detailed in Chapter 2.4.5.
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The neck diameter is a critical parameter in whether or not the sawtooth NW will operate

as geometric diode, and it needs to be on the order of the MFPL for the material. In Si, the

MFPL, le can be estimated using the Drude model and the equation:191

le =
m∗veσ

ne2
(5.1)

Where m∗ is the effective mass, ve is the thermal velocity, which can be expressed as
√

3kBT/m∗,

σ is the conductance, n is the doping level, and e is the elementary charge. The MFPL for

intrinsic Si at room temperature is ∼30 nm and decreases with increased doping level. As the

neck diameter shrinks and gets closer the MFPL, the degree of rectification will increase.

To measure the degree of rectification due to the NW neck diameter, we performed four-point

probe measurements over the sawtooth regions for a variety of neck diameters. A schematic

of the four-point probe measurement is shown in Figure 5.2A, and two sample I–V curves are

shown in Figure 5.2B. In Figure 5.2B, the asymmetry in the resistance of the NW (red curve)

is evident from the differences in slope based on the applied current, which results in a max

voltage difference (red, dashed lines) measured across the sawtooth region of ∼200 mV for an

applied current of ±100 nA. The blue curve in Figure 5.2B corresponds to a NWs with larger

neck diameters and exhibits no asymmetry as the slopes for each polarity are identical. In order

to quantify this asymmetry, we take separate linear fits for positive and negative applied currents

to extract the resistance. The diode asymmetry, A, is then defined as:

A =
Rforward
Rreverse

(5.2)

where Rforward and Rreverse are defined as the resistances for the majority carrier moving along

and against the sawtooth, respectively. For A = 1, there is no asymmetry as both forward and
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Figure 5.2: Four-point probe measurements of geometric diodes. (A) Schematic illustration of
the four-point probe measurements performed on sawtooth NW. A constant current is sourced
over the two outermost contacts, and the voltage is measured over the two inner contacts. (B)
Characteristic I–V curves from four-point probe measurements for sawtooth NWs. The diode
asymmetry and neck diameter of the two measured NWs are 1.02 and 76 nm (blue) and 1.31 and
67 nm (red). The dashed lines correspond to the voltage maximums for positive and negative
currents. (C) Plot of diode asymmetry versus NW neck diameter.
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reverse directions display the same resistance. For A > 1, the majority carrier flows more easily

along the sawtooth structure than against it leading to a lower resistance in the reverse than

in the forward direction. The measured diode asymmetries for a variety of NW neck diameters

show a negative correlation with one another and reach diode asymmetry values over 2 for neck

diameters less than 45 nm, as seen in Figure 5.2C. As the NW neck diameter shrinks, it samples

more of the free path length distribution, which is dependent on the distributions of both the

velocities and scattering times, leading to a higher asymmetry. There is also a high degree of

scatter in the data that can be attributed variations in surface quality, which could be improved

through thermal oxidation treatments.102

These experiments are only a start, and more experiments are need to understand the most

important parameters that drive the geometric diode behavior. One parameter that was not

studied in this work and that should be the focus of future experiments is the temperature of

the NW. By cooling the sample to liquid nitrogen temperatures (∼77 K), the diode asymmetry

should increase as the free path length distribution is shifted to longer path lengths and the

MFPL increases accordingly. The NW diameter should also increase the diode asymmetry,

not by modifying the MFPL, but by increasing the current that can be funneled through the

junction under forward bias without affecting the current under reverse bias.174 In order to fully

understanding these effects, Monte Carlo simulations would provide a physical picture as to the

interplay between the temperature, neck diameter, NW diameter, and period of the sawtooth

segments, and their effects on the diode asymmetry.174,192

One of the main applications for geometric diodes is a rectenna, which is an antenna that

converts radiation to alternating current combined with an ultrahigh-speed diode to rectify the

current. They are used as rectennas because they have a capacitance of a few attofarads and can

be fabricated from materials with resistances of a few kΩ, which means their RC time constant
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is on the order of femtoseconds.174 Therefore, four-point probe measurements with an alternating

current source should be performed to determine the extent and the frequency response of the

ratcheting effect of sawtooth segments. The frequency response of the NW is dependent on the

RC time constant, and in Si NWs, the resistance will be the dominate term. Therefore, it will be

necessary to keep the resistance of the NW as low as possible. This could be achieve by limiting

the number of sawtooth segments and placing the contacts across the region as close to one

another as possible, by modifying the PH3 flow and etch times such that a higher doping level is

maintained through the sawtooth structure, and/or by increasing the NW diameter.

5.3 Conclusion

Here, we have successfully demonstrated a geometric diode based on Si NWs by etching

asymmetric sawtooth patterns into the Si NWs using the previously described ENGRAVE

method. To the best of our knowledge, this is the first demonstration of a bottom-up, purely Si

geometric diode, and should serve as the basis for developing advanced electrical applications

through the ENGRAVE method.

68



CHAPTER 6: DESIGN PRINCIPLES FOR PHOTOVOLTAIC DEVICES
BASED ON SI NANOWIRES WITH AXIAL OR RADIAL P–N JUNTIONS1

6.1 Introduction

Semiconductor NW p-type/n-type (p–n) junctions represent a fundamental building block

for the construction of advanced electronic and photonic devices based on single NWs. These

junctions have been realized in a range of NW systems including Si,81,102,133,193–198 InP,199 GaN,200

GaAs,201,202 and CdS.203,204 As illustrated in Figure 6.1A, two widely explored geometries are

the axial junction, in which the p–n transition is encoded along the length of the wire, and

the radial junction, in which the p–n transition is encoded from the center to outer surface,

creating a core-shell geometry. Axial p–n junctions have permitted wires to be used as sensors,159

photodiodes,85 and photovoltaics133,199 while radial junctions have primarily been used for

photovoltaic devices.81,193,200,201 Because of the ease of doping, integration, earth abundance,

and relatively low cost, Si NWs have received special attention as an important new technology,

especially for solar energy applications.120,156,205 Compared with well-developed planar crystalline

Si, wire based Si structures could enable low-cost solar cells by permitting high power-conversion

efficiencies with relatively low-quality Si.86

Here, we use finite-element simulations to delineate the characteristics and theoretical

performance of Si NWs with either axial or radial p–n junctions and with diameters limited to a few

hundred nanometers. We compare our simulation results to experimental measurements on NWs

1This chapter previously appeared as an article in Nano Letters. The original citation is as follows: Christesen, J.
D.; Zhang, X.; Pinion, C. W.; Celano, T. A.; Flynn, C. J.; Cahoon, J. F. Design Principles for Photovoltaic
Devices Based on Si Nanowires with Axial or Radial p–n Junctions. Nano Lett. 2012, 12, 6024–6029.
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Figure 6.1: Overview of NW geometries used for photovoltaics. (A) Illustration of two distinct
classes of NW p–n or p–i–n junctions that can be synthesized using VLS growth from a metal
nanoparticle, including axial junctions (top) and radial junctions (bottom). (B) Schematic of
NWs organized in a periodic horizontal array to form an ultrathin photovoltaic device.

synthesized by a VLS mechanism.206 In these VLS-grown wires, axial p–n or p-type/intrinsic/n-

type (p–i–n) junctions are encoded by in situ doping of the wire during VLS growth.133,197,199

For core/shell NWs, the radial junctions are encoded by additional in-situ doping of the shell,

which is formed by a VS-growth mechanism.81,193 Our modeling evaluates realistic NW device

geometries and accounts for the effects of degenerately doped Si and charge carrier recombination

by SRH, Auger, and surface recombination mechanisms.107

The wire-based solar cells considered here are composed of NWs oriented horizontally such

that they are uniformly illuminated along their total length. To create a large-area solar cell,

these wires can be arranged in a periodic array, as illustrated in Figure 6.1B. This topology is

well-suited to take advantage of the optical resonances and photonic crystal effects that result

from the subwavelength dimensions of the NWs and periodic arrangement, causing substantially

enhanced light absorption.81,152,207 An alternative implementation of Si wire based solar cells uses
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arrays of vertically oriented wires that are several micrometers in diameter.86,102,194,195 These

vertical wire arrays have been produced both by VLS growth102,195 and by top-down etching of

planar wafers or films.194,198 The performance has been analyzed theoretically,86,208 highlighting

the benefit of collecting charge carriers over short, radial directions that are perpendicular to

light propagation. The horizontal wires considered here operate in a different regime, in which

the diameters are confined to subwavelength dimensions (200–300 nm) to take advantage of

the optical effects in this geometry. Here, we address the device physics of these NWs to fully

understand their potential as high-quality diodes and as wire based thin-film photovoltaic devices.

6.2 Methods

Figure 6.2: Details of simulation geometries used for finite-element modeling (A) Illustration
of the axial p–i–n NW structure, which has been modeled as a two-dimensional geometry with
cylindrical symmetry. The total axial length of the simulation was fixed at 4.04 µm, the intrinsic
length at 40 nm, and radius at 120 nm. 500 nm Ohmic metal contacts (black lines) were
positioned at the left- and right-hand surfaces of the NW. (B) Illustration of the radial p–i–n
NW core-shell structure, which has been modeled as a two-dimensional geometry with cylindrical
symmetry. The axial length of the simulation was fixed at 4 µm and evenly divided between
the core and core-shell regions. The core radius and core-shell radius were fixed at 50 and 120
nm, respectively. Ohmic metal contacts (black lines) were positioned at the left- and right-hand
surfaces of the NW.

The small size and geometry of NW p–n junctions is well suited to finite element modeling that

can accommodate arbitrary geometries and include a wide range of device physics parameters.

The NWs were represented as a two-dimensional simulation domain with cylindrical symmetry
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(see Figure 6.2), which reduces computational cost but realistically represents the NWs as three-

dimensional geometries. For each simulation point, we solved for the drift and diffusion of charge

carriers in the presence of SRH, Auger, and surface recombination until converged stationary

points were found. The simulations account for band gap renormalization in degenerately doped

Si with the associated effects on built-in voltage and intrinsic carrier concentration.107 Uniform

optical generation of charge carriers was included to produce a short–circuit current density

(JSC) of 7 mA/cm2 under 1 sun illumination (except where noted otherwise), which is consistent

with experimental measurement and with theoretical predictions of optical absorption in these

structures.152,207 A detail of the equations used is provided in Chapter 2.5.

6.3 Results

To define key characteristics determined by the geometry of the nanoscale p–n junctions, we

examined the charge density and built-in electric fields for axial and radial NWs over a range of

doping levels, as illustrated in Figure 6.3. To facilitate a direct comparison of the two geometries,

both simulated structures possess a total diameter of 240 nm and include a ∼ 40 nm intrinsic

region between the n- and p-type regions. As expected, the doping level has a substantial effect

on the space charge density and the electric field strength within the wires. For axial NWs

(Figure 6.3A) with doping levels of 1018 cm−3 or greater, neither the n-type nor p-type regions

reach full depletion. For instance, at 1020 cm−3, the depletion region is at most 5% depleted,

reaching a charge density of 5 × 1018 q/cm3. For all doping levels, the electric field strength

(Figure 6.3B) is on the order of 107 V/m, a value that is sufficiently high for carriers to reach

saturation drift velocity in Si.107

For radial devices, we examined NWs with doping levels ranging from 5× 1017 to 1020 cm−3,

as shown in Figure 6.3C,D. A detailed examination reveals several unique features. First, as

observed in axial devices, the n- and p-type regions do not reach full depletion for doping levels
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Figure 6.3: Charge density and electric field distributions for axial and radial NWs. (A) Charge
density profiles in axial NWs for donor and acceptor doping levels of 1017 − 1020 cm−3. (B)
Electric field profiles caused by the charge density distributions shown in panel A. (C) Charge
density profiles (left) in radial NWs for donor and acceptor doping levels 5× 1017 − 1020 cm−3.
Three-dimensional illustration (right) of the charge density distribution for 1018 cm−3. (D)
Profiles (left) and three-dimensional illustration (right) of the electric field generated by the
charge density distributions shown in panel C.
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Figure 6.4: Depiction of the space-charge region in radial NWs at low doping levels. Schematic
of the charge density distribution in a core-shell p–i–n NW with p-type and n-type doping levels
of 3× 1017 cm−3. The p-type core appears dark blue because it has been fully depleted of holes,
reaching a charge density of −3× 1017 q/cm3.

greater than 1018 cm−3. Second, the positive and negative charge distributions are asymmetric.

For example, with a doping level of 1019 cm−3, the negative charge density reaches a maximum

value of ∼ 4× 1018 q/cm3 while the positive side reaches only half the value, ∼ 2× 1018 q/cm3.

Third, the doping level of 5× 1017 cm−3 produces a depletion region that extends to the center

of the NW. Fourth, the electric field distributions (Figure 6.3D) are asymmetric, reflecting the

asymmetry in the charge density distributions. The maximum electric field strengths increase

with higher doping levels and, similar to axial devices, are on the order of 107 V/m.

The asymmetries present in the charge density and electric field distributions of the radial

74



NWs result from the cylindrical symmetry of this junction. The magnitudes of both quantities

are lower at larger radius because of the increasing volume per unit radius in the outer regions

of the wire. This effect is especially pronounced at lower doping levels; below a doping level of

5× 1017 cm−3, the outer n-type shell retains a defined depletion region whereas the inner p-type

core is fully depleted (see Figure 6.4). This effect prevents establishment of the full built-in

potential drop across the junction, lowering the device performance and placing a lower limit on

doping level that can be used in this structure.

Figure 6.5: Analysis of axial p–i–n junction photovoltaic device characteristics. (A) Simulated
I–V curves for axial NWs with a doping level of 1018 cm−3 and τSRH = 10−8 s. (B) VOC versus
minority carrier lifetimes of τSRH = 10−10 − 10−6 s for a doping level of 1018 cm−3. Simulations
in panels A and B included SRVs of S = 105 (red), 104 (green), 103 (magenta), and 0 cm/s
(blue).

To probe the photovoltaic characteristics of axial NW p–n junctions, we analyzed the

performance of devices over a range of parameters, as presented in Figure 6.5. We have

performed simulations with SRH minority carrier lifetimes (τSRH) ranging from τSRH = 10−10 to

75



10−6 s, which reflect varying mid-band-gap trap-state densities. Simulated current–voltage (I–V)

curves for τSRH = 10−8 s are displayed in Figure 6.5A, and photovoltaic metrics for a range

of parameters are provided in Table 6.1. These I–V curves also include SRVs of S = 0 − 105

cm/s to account for a broad range of surface trap-state densities. Both short–circuit current

(ISC) and VOC show a dramatic dependence on the SRV. From S = 105 to S = 0 cm/s, VOC

increases by 75% while ISC increases by nearly 1 order of magnitude. The increase in ISC results

from a substantial increase in the internal quantum efficiency (IQE) of the wire, as discussed

later. The increase in VOC results from both the increase in ISC and a reduction in charge carrier

recombination within the depletion region, which is modulated by the SRV because of the direct

exposure of the depletion region to the outer surface.

τSRH (s) S (cm/s) VOC (V) ISC (pA) FF power (pW) n I0 (fA)
10−10 0 0.407 8.549 65.1 2.3 1.86 1.702
10−10 105 0.340 5.672 61.5 1.2 1.86 4.515
10−9 0 0.555 24.765 73.6 10.1 1.85 0.170
10−9 105 0.369 6.823 63.3 1.6 1.86 3.009
10−8 0 0.651 54.147 80.6 28.4 1.85 0.002
10−8 105 0.374 6.992 63.3 1.7 1.86 2.855
10−7 0 0.712 65.972 84.1 39.5 1.85 0.002
10−7 105 0.374 7.010 63.3 1.7 1.86 2.840
10−6 0 0.763 67.560 85.6 44.1 1.83 0.0002
10−6 105 0.374 7.012 63.3 1.7 1.86 2.838

Table 6.1: Simulated photovoltaic metrics for axial NW p–i–n junctions with donor/acceptor
doping levels of 1018 cm−3 , total NW diameter of 240 nm, and intrinsic segment length of 40 nm

We systematically examine the effect of τSRH and SRV on VOC in axial nanowires with a

doping level 1018 cm−3 in Figure 6.5B. For a SRV of S = 105 cm/s, VOC is limited to an upper

value of 0.37 V for all values of τSRH. For smaller values of SRV, increasing τSRH progressively

increases VOC, reaching a value of ∼ 0.76 V for S = 0 cm/s and τSRH = 10−6 s. Surprisingly,

this value exceeds the maximum VOC, 0.71 V, reported for monocrystalline Si.209 To understand
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this result, we can consider the expression for VOC given by the Shockley diode equation:

VOC ≈
(
nkT

q

)
ln

(
ISC
I0

)
(6.1)

where n is the ideality factor, k the Boltzmann constant, T temperature, q electron charge,

and I0 the dark saturation current. As evident from this expression, VOC is maximized by

maximizing ISC while simultaneously minimizing I0. The axial geometry is uniquely suited to

satisfy this condition because the small p–n junction area (defined by the NW cross-sectional

area) minimizes I0 while the long n- and p-type segments absorb light and maximize ISC.

A similar analysis of the photovoltaic performance of radial NWs is presented in Figure 6.6.

Current density–voltage (J–V) curves for radial NWs with a doping level of 1018 cm−3 and

τSRH ranging from 10−10 to 10−6 s are displayed in Figure 6.6A, and photovoltaic metrics for

a range of parameters are listed in Tables 6.2 and 6.3. VOC is dependent on both the τSRH

and SRV, and the dependence of VOC on these two parameters is plotted in Figure 6.6B. As

expected, VOC progressively increases with longer τSRH but, surprisingly, is relatively insensitive

to the SRV for τSRH = 10−10 − 10−8 s. For longer τSRH (10−7 − 10−6 s), however, VOC shows a

stronger dependence on SRV and is limited to a value of 0.54 V for S = 105 cm/s. With complete

elimination of surface recombination (S = 0 cm/s), VOC reaches a maximum value of 0.73 V at

τSRH = 10−6 s.

We analyzed the power-conversion efficiency (η) of wires with doping levels of 1018 − 1020

cm−3. From the results over a range of τSRH and S (see Figure 6.7), a doping level of 1018 cm−3

maximizes efficiency. Higher doping levels exhibit reduced efficiency primarily as a result of

increased Auger recombination. Doping levels below 1018 cm−3, on the other hand, fully deplete

the p-type core as discussed earlier (see Figure 6.4).

The efficiency of radial NWs was determined for progressively increasing values of JSC
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Figure 6.6: Analysis of radial p–i–n junction photovoltaic device characteristics. (A) J–V
characteristics for radial wires with a doping level of 1018 cm−3 and τSRH = 10−10 − 10−6 s,
assuming a JSC of 7 mA/cm2 and SRV of S = 0 cm/s. (B) VOC as a function of τSRH for a
doping level of 1018 cm−3 and SRVs of S = 105 (red), 104 (green), 103 (magenta) and 0 cm/s
(blue). (C) Power-conversion efficiencies (η) as a function of JSC for wires with a doping level
of 1018 cm−3 and with τSRH = 10−10 s (solid line) and 10−6 s (dashed lines) for SRVs of S = 0
(blue) and S = 105 cm/s (red).
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τSRH (s) S (cm/s) VOC (V) JSC (mA/cm2) FF η (%) n I0 (fA)
10−10 0 0.335 6.97 61.9 1.45 1.85 30.4
10−10 105 0.334 6.89 61.7 2.12 1.85 30.3
10−9 0 0.444 7.00 68.1 2.12 1.85 3.03
10−9 105 0.443 6.91 68.0 2.08 1.85 3.03
10−8 0 0.551 7.00 72.7 2.81 1.82 0.275
10−8 105 0.518 6.92 75.3 2.70 1.79 0.267
10−7 0 0.650 7.00 75.3 3.48 1.82 0.027
10−7 105 0.534 6.92 80.2 2.96 1.26 0.002
10−6 0 0.736 7.00 80.2 4.13 1.85 0.003
10−6 105 0.536 6.92 80.9 3.00 1.06 0.0001

Table 6.2: Simulated photovoltaic metrics for radial NW p–i–n junctions with donor/acceptor
doping levels of 1018 cm −3 , total NW diameter of 240 nm, and intrinsic segment length of 40
nm

τSRH (s) S (cm/s) VOC (V) JSC (mA/cm2) FF η (%) n I0 (fA)
10−10 0 0.271 6.81 57.0 1.05 1.85 117
10−10 105 0.269 6.52 56.9 1.00 1.85 117
10−9 0 0.382 6.96 64.8 1.72 1.85 11.7
10−9 105 0.379 6.64 64.8 1.63 1.85 11.7
10−8 0 0.489 6.98 70.3 2.40 1.85 1.17
10−8 105 0.484 6.65 70.6 2.27 1.84 1.14
10−7 0 0.579 6.98 75.7 3.06 1.84 0.114
10−7 105 0.542 6.65 78.0 2.81 1.77 0.096
10−6 0 0.610 6.98 81.4 3.47 1.77 0.010
10−6 105 0.552 6.65 81.2 2.98 1.48 0.004

Table 6.3: Simulated photovoltaic metrics for radial NW p–i–n junctions with donor/acceptor
doping levels of 1020 cm−3 , total NW diameter of 240 nm, and intrinsic segment length of 40 nm
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Figure 6.7: Photovoltaic performance of radial NWs at high doping levels (A) VOC as a function
of the minority carrier lifetimes, SRH, for a doping level of 1020cm−3 and SRVs of S = 105 (red)
and 0 (blue) cm/s. Dashed line and open blue squares represent simulated data points in the
absence of Auger recombination (B) Power-conversion efficiencies (η) as a function of doping
level for SRH = 10−9− 10−6 s and SRV of S = 0 (blue). Simulations assume a JSC of 7 mA/cm2.
Diameter of the NW is 240 nm and intrinsic segment length is 40 nm.

from 1 to 40 mA/cm2, as illustrated in Figure 6.6C for τSRH = 10−10 and 10−6 s. Although

experimental devices exhibited JSC of only 7–10 mA/cm2, further efforts to exploit light-trapping,

photonic crystal, or plasmonic structures could be used to substantially enhance JSC in these

systems.207,210 The simulation results demonstrate that the electrical properties of Si NWs are

sufficient to support ultrathin solar cells with efficiencies in the range of 15–25%. Notably, a

value of τSRH ∼ 10−6 s can produce an efficiency >15% at a JSC of 35 mA/cm2 with poor surface

passivation (S = 105 cm/s). Efficiency could be increased to >20% through elimination of surface

recombination (S = 0 cm/s).

We synthesized axial and radial p–i–n NWs as described in Chapeter 2.1.81,133 Measured

I–V and J–V curves for axial and radial NWs under simulated 1 sun AM1.5G illumination are

shown in Figure 6.8A and Figure 6.8B, respectively, along with the best fit simulations. The

simulated and experimental I–V curves without illumination (not shown) are well fit to the

Shockley diode equation (eq 6.1), which can be used to extract n and I0. Note that the axial

NW simulation geometry was adjusted to a diameter of 160 nm and intrinsic length of 2 µm to
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accurately reflect scanning electron microscopy images of the measured device. All experimental

photovoltaic metrics are compared to the simulations of best fit in Table 6.4. For radial devices,

a value of τSRH = 3 ns and SRV of S ≤ 105 cm/s reproduced the device parameters (VOC, fill

factor (FF), η, n, and I0) from the core-shell p–i–n NWs. Similarly for axial devices, a value of

τSRH ≥ 5 ns and a SRV of S = 7× 103 cm/s reproduced the measured device parameters. The

good agreement of all metrics with experiment validates the use of finite-element simulations to

analyze the performance of p–n junction NWs and to examine their prospect as a new class of

ultrathin solar cell. Furthermore, the simulations demonstrate that the photovoltaic performance

of axial devices is predominantly limited by SRV, whereas the performance of radial devices is

limited by the bulk SRH recombination lifetime (τSRH). Because performance is limited by one

parameter, we can at most place limits on the value of the other parameter—a lower limit τSRH

= 5 ns for axial and upper limit of S = 105 cm/s for radial devices.

τSRH (s) S (cm/s) VOC (V) JaSC (mA/cm2) FF η (%) n I0 (fA)
axial NW

experiment 0.234 4.8 48 0.36 1.91 38
simulation ≥ 5b 7× 103 0.232 4.8 55 0.41 1.65 63

radial NW
experiment 0.441 9.8 69 2.99 1.59 3.73
simulation 3 ≤ 105,c 0.449 9.8 69 3.03 1.84 3.75

Table 6.4: Comparison of experimental and simulated photovoltaic metrics for axial and radial
NWs. aEstimated using the intrinsic segment projected area for axial NWs and core-shell
projected area for radial NWs. bHigher values produced similar photovoltaic metrics. cLower
values produced similar photovoltaic metrics.

As shown in Figure 6.11, we have examined the spatially dependent IQE of axial and radial

NW junctions to understand the benefits and limitations of these geometries for efficient charge

carrier collection. In axial NWs, the p-type, intrinsic, and n-type regions are each exposed to the

outer surface. Within the depletion region, the IQE is >95% for SRVs of S = 105 cm/s and only
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Figure 6.8: Comparison of simulated and experimental I–V or J–V curves for single-NW
photovoltaics under 1 sun illumination. (A) Experimental I–V curve (black) for an axial VLS-
grown p–i–n NW with a diameter of ∼ 160 nm and synthetically encoded intrinsic length of
∼ 2000 nm. Simulated I–V curve (dashed red) was calculated using this experimental geometry,
τSRH = 100 ns, SRV of S = 7× 103 cm/s, and the experimentally measured JSC of 4.8 mA/cm2.
(B) Experimental J–V curve (black) for a radial p–i–n NW with a diameter of 260 nm composed
of a VLS-grown p-type core of ∼ 100 nm diameter and intrinsic and n-type shell thicknesses
of ∼ 45 and ∼ 35 nm, respectively. Simulated J–V curve (dashed red) was calculated using
τSRH = 3 ns, SRV of S = 105 cm/s, and assuming the experimentally measured JSC of 9.8
mA/cm2.
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drops to ∼ 80% with a SRV of S = 106 cm/s. Because the minority carrier diffusion length is

much larger than the NW diameter, the IQE shows negligible radial dependence and instead

decays exponentially along the length of the wire away from the depletion region. This decay

is well fit to a monoexponential function (see Figure 6.9), which yields the effective minority

carrier diffusion length (Leff). It has been established that the Leff is typically limited by the

SRV rather than by the bulk minority carrier lifetime. Consequently, Leff can be related to the

diffusion constant D, minority carrier lifetime τ , S, and the NW diameter, d, as197,211

Leff =

√
D

(
1

τ
+

4S

d

)−1

(6.2)

For example, with τ = 10 ns, S = 105 cm/s, and D = 1.45 cm2/s, the electron Leff from eq 6.2

is estimated to be 93 nm, which is in agreement with the fit to our simulation that yields a

value of 96 nm (see Figure 6.9). Lower values of S produce substantially larger values of Leff

and, consequently, higher values of ISC (see Figure 6.5A and Figure 6.10) as a result of high IQE

values over a larger portion of the NW.

Unlike axial p–i–n devices, radial junctions possess buried p-type and intrinsic regions that are

isolated from the wire surface. IQE as a function of radial position for a device with τSRH = 10−8

s is plotted in Figure 6.11B. Remarkably, the IQE is unity throughout the p-type and intrinsic

regions and deviates from unity only in the outer 30 nm of the n-type region. For SRV of S =

105 cm/s, the IQE decays linearly from ∼ 100% at the edge of the depletion region to 84% at the

outer surface, producing a high overall IQE of 95% for the entire core-shell region. Decreasing

the surface recombination to S = 104 cm/s improves the overall IQE to 99%, and IQE at the

surface is 98%. These results demonstrate the dramatic advantage of core-shell structures to

produce high IQE values even with relatively high SRVs and low τSRH. In Figure 6.11C, we

present a spatial map of IQE throughout the core and core-shell regions of a radial junction
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Figure 6.9: Effective minority carrier diffusion length in axial NWs (A) Simulated data (solid
colored lines) and mono-exponential fits (dashed black lines) for the IQE in the p-type quasi-
neutral region of axial NWs (see Figure 6.11A) with a doping level of 1020cm−3 and minority
carrier lifetime of SRH = 10−8 s. The fits give effective minority carrier diffusion lengths, Leff, of
324 nm, 126 nm, and 58 nm for S = 104 (green), 105 (red), and 106 (yellow) cm/s, respectively
(B) Simulated data (solid colored lines) and mono-exponential fits (dashed black lines) for the
IQE in the n-type quasi-neutral region of axial NWs (see Figure 6.11A) with a doping level of
1020cm−3 and minority carrier lifetime of SRH = 10−8 s. The fits give Leff of 203 nm, 96 nm,
and 53 nm for S= 104 (green), 105 (red), and 106 (yellow) cm/s, respectively.
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Figure 6.10: Photovoltaic performance of axial NWs at high doping levels (A) Short-circuit
current (ISC) and (B) open-circuit voltage (VOC) versus doping level for axial NWs with SRH =
10 ns and SRVs of S = 0 (blue), 103 (magenta), 104 (green), and 105 (red) cm/s. Simulations
assume a JSC of 7 mA/cm2. Diameter of the NW is 240 nm and intrinsic segment length is 40
nm.

device with S = 105 cm/s. For the core-shell region, IQE is >80% except in the vicinity of

the Ohmic contacts. For the core region, the IQE quickly approaches zero as result of surface

recombination.

In conclusion, finite element simulations were used to evaluate the performance of axial

and radial NW p–n junctions and to reproduce experimental measurements on these two

NW structures. The simulations demonstrate that Si NW photovoltaic devices are capable of

producing VOC values of ∼ 0.7 V and could serve as the basis for thin-film solar cells with

power-conversion efficiencies in the range of 15–25%. Radial wires show distinct advantages

over axial wires, exhibiting high IQE values nearly independent of surface recombination. The

experimental measurements suggest that axial structures are limited by surface recombination

whereas radial structures are limited by a bulk minority carrier lifetime of ∼ 3 ns. For radial

NWs, an improvement of the lifetime by ∼ 2 orders of magnitude would be sufficient to maximize

the photovoltaic performance. These results provide motivation for the continued development

of 200–300 nm diameter Si NW photovoltaic structures and demonstrate the utility of finite

element simulations to quantitatively evaluate and design NW p–n junctions.
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Figure 6.11: IQE of axial and radial NWs. (A) Radially integrated IQE as a function of axial
position along an axial p–i–n NW with doping level of 1020 cm−3, minority carrier lifetime of
τSRH = 10−8 s, and SRVs of S = 104 (green), 105 (red), and 106 cm/s (black). (B) Axially
integrated IQE as a function of radial position for a radial p–i–n NW with doping level of 1020

cm−3, minority carrier lifetime of τSRH = 10−8 s, and SRVs of S = 104 (green), 105 (red), and
106 cm/s (black). (C) Spatial map of IQE for a radial p–i–n NW as shown in panel B with SRV
S = 105 cm/s. Black bars indicate the positions of the Ohmic contacts.

86



CHAPTER 7: CONCLUSIONS

We investigated using rational synthetic control composition of NWs in combination with a

wet-chemical etch to encode morphology in Si NWs as an alternative route to current "top-down"

fabrication techniques for advanced optical and electronic applications. This bottom-up method,

called ENGRAVE, enables morphological features as small as 10 nm to be patterned over NWs

more than 50 µm in length. We investigate and determine the dependence of the wet-chemical

etch rate with respect to doping level in order to synthesis a wide range of shapes including

nanorods, sinusoids, bowties, tapers, nanogaps, and gratings.

We then utilized the ENGRAVE method to study the abruptness of these heterojunctions in

VLS-grown NWs. The VLS mechanism is a a process in which a liquid droplet—supplied with

precursors in the vapor phase—catalyzes the growth of a solid, crystalline NW. By modulating

the vapor phase precursors, the NW composition is altered, creating axial heterostructures,

which are important for a wide range of technologies. The abruptness of the heterojunction is

mediated by the liquid catalyst, which can act as a reservoir of material and impose a lower

limit on the junction width. We demonstrate that this “reservoir effect” is not a fundamental

limitation and can be suppressed by using slow NW growth rates (<200 nm/min) and low total

reactor pressures (<40 Torr) to enhance evaporation of the reservoir material and suppress

incorporation of the reservoir material into the NW. Using these conditions, we were able to

grow NWs with diameter independent and radially uniform dopant profiles with abrupt, sub 10

nm axial transitions.

We utilized this control over doping level and morphology in the NW to create several
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devices with applications in optics, memory, and electronics. For applications in optics, we

used nanogap-encoded NWs as templates for Noble metals, yielding plasmonic structures with

tunable resonances for surface-enhanced Raman imaging. For applications in memory, core/shell

Si/SiO2 nanorods were integrated into electronic devices that exhibit resistive switching, enabling

nonvolatile memory storage. For applications in electronics, we created a geometric diode based

on an asymmetric sawtooth geometry for use as an electronic ratchet, and further work to study

the ratcheting effect in this device is ongoing. These are just initial examples of the variety of

devices that can be synthesized using the ENGRAVE methods, and we envision this method will

become a generic route to encode new functionality in semiconductor NWs.

Finally, we investigate the effect of device geometry and compositional control over the photo-

voltaic performance of axial and radial Si NW p–n junctions through finite-element simulations.

We compare simulated current–voltage data to experimental measurements, permitting detailed

analysis of NW performance, limitations, and prospect as a technology for solar energy conversion.

Although high surface-to-volume ratios are cited as detrimental to NW performance, radial p–n

junctions are surprisingly insensitive to surface recombination, although axial devices, in which

the depletion region is exposed to the surface, are far more sensitive to SRV.The simulations

show that with further development the electrical characteristics of 200–300 nm Si NWs are

sufficient to support power-conversion efficiencies of 15–25%, and the analysis presented here can

be generalized to other semiconductor homo- and heterojunctions, which can serve as a guide for

the design of advanced nanoscale structures.
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APPENDIX: CODE FOR IMAGE ANALYSIS

f unc t i on varargout = nanoWireDiameter ( vara rg in )
% Begin i n i t i a l i z a t i o n code − DO NOT EDIT
gui_Sing leton = 1 ;
gui_State = s t r u c t ( ’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .
’ gui_OpeningFcn ’ , @nanoWireDiameter_OpeningFcn

, . . .
’ gui_OutputFcn ’ , @nanoWireDiameter_OutputFcn ,

. . .
’ gui_LayoutFcn ’ , [ ] , . . .
’ gui_Callback ’ , [ ] ) ;

i f narg in && i s cha r ( vara rg in {1})
gui_State . gui_Callback = s t r 2 f unc ( vararg in {1}) ;

end

i f nargout
[ varargout {1 : nargout } ] = gui_mainfcn ( gui_State , vara rg in { : } ) ;

e l s e
gui_mainfcn ( gui_State , vara rg in { : } ) ;

end
% End i n i t i a l i z a t i o n code − DO NOT EDIT

end %end vargout = nanoWireDiameter

% −−− Executes j u s t be f o r e nanoWireDiameter i s made v i s i b l e .
f unc t i on nanoWireDiameter_OpeningFcn ( hObject , eventdata , handles ,

va ra rg in )

%This the d i r e c t o r y where the open f i l e f unc t i on w i l l s t a r t
handles . f i l ePa t h = ’D:\ Users \Joe\SEM␣Images\ ’ ;

%I n i t i a l i z a t i o n o f v a r i a b l e s that w i l l be used throughout the
program .

handles . o r i g i na l_p i c = [ 0 , 0 ] ;
handles . o r i g ina l_rot_p ic = [ 0 , 0 ] ;
handles . nmPerPixel = 1 ;
handles . b ins = [ 0 , 0 ] ;
s e t ( handles . sca leBar , ’ S t r ing ’ , handles . nmPerPixel ) ;
handles . current_pic = [ 0 , 0 ] ;
handles . rot_pic = [ 0 , 0 ] ;
handles . d iameters = [ 0 , 0 ] ;
handles . horz_pic = [ 0 , 0 ] ;
handles . bin1_value = . 5 ;
handles . bin2_value = . 4 ;
handles . bin3_value = . 3 ;
handles . o r i g i n a l x = 0 ;
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handles . o r i g i n a l y = 0 ;
handles . data = 0 ;
handles . t r a n s i t i o n s = 0 ;
handles . f i leName = 0 ;
handles . bin_pic = 0 ;
handles .nm = 0 ;
handles . thresho ld_value = . 4 ;
handles . range_value = 8 ;
handles . gaussSpace = [ 0 , 0 ] ;

%Create the data v a r i a b l e s that get updated
%Generate the i n i t i a l p l o t in axes1
handles . current_datax = 0 ;
handles . current_datay = 0 ;

%i n i t i a l i z e the f i l t e r va lue va r i ab l e
%con t r o l s the s i z e o f the window f o r 1D Median F i l t e r
handles . cu r r en t_ f i l t e r_va lue = 3 ;

%i n i t i a l i z e the number o f t imes run
handles . num_times_run = 1 ;

%i n i t i a l i z e minmax func t i on
%minmax i s a vec to r o f 1 ’ s and 0 ’ s used to r ep r e s en t the x−value

o f
%t r a n s i t i o n s . 1 = t r a n s i t i o n .
handles .minmax = 0 ;

%i n i t i a l i z e minmaxIdx
%used in con juc t i on with f i nd ( ) to ex t r a c t the x va lue s o f

detec ted t r a n s i t i o n s
handles . minmaxIdx = 1 ;

%i n i t i a l i z e tranRad
%number o f po in t s to i gno re on e i t h e r s i d e o f t r a n s i t i o n po int

when
%ca l c u l a t i n g average diameter / stdev
handles . tranRad = 10 ;

%program output
handles . realOutput = [1 1 1 ] ;

% Choose d e f au l t command l i n e output f o r nanoWireDiameter
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

90



end % end nanoWireDiameter_OpeningFcn

% −−− Outputs from th i s func t i on are returned to the command l i n e .
f unc t i on varargout = nanoWireDiameter_OutputFcn ( hObject , eventdata ,

handles )
% Get d e f au l t command l i n e output from handles s t r u c tu r e
varargout {1} = handles . output ;

end % end nanoWireDiameter_OutputFcn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%I n i t i a l i z t i o n f unc t i on s that s e t the s c a l e o f the image and ro t a t e
%the wire to the c o r r e c t o r i e n t a t i o n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% −−− Executes on button pr e s s in s e t S c a l e .
f unc t i on setSca le_Cal lback ( hObject , eventdata , handles )

%This w i l l f i nd the s c a l e bar f o r images taken on the FEI He l i o s
FIB

%Gets a row and column along the f a r r i g h t s i d e and bottom of the
image

subWidth = length ( handles . o r i g i n a l_p i c ( 1 , : ) )−1;
subHeight = length ( handles . o r i g i n a l_p i c ( : , 1 ) )−1;

%Finds the white boxes from the SEM image
whiteHeight = f i nd ( handles . o r i g i n a l_p i c ( subHeight , : ) >=.9) ;
whiteWidth = f i nd ( handles . o r i g i na l_p i c ( : , subWidth ) >=.9) ;

%Takes the midPoint o f the white box that conta in s the s c a l e bar
midPoint = c e i l ( ( whiteWidth ( end−1)−whiteWidth ( end−2) )/2+

whiteWidth ( end−2) ) ;
consec = f a l s e ;
endColumn = subWidth ;
startColumn = whiteHeight ( end−1) ;

%Scans the columns from r i gh t to l e f t s t a r t i n g at the midPoint
un t i l

%i t h i s consecuat ive white po in t s .
whi l e ~consec

i f endColumn < numel ( handles . o r i g i n a l_p i c (midPoint , : ) ) &&
endColumn>=1
i f handles . o r i g i na l_p i c (midPoint , endColumn) >= 0.9 && . . .

handles . o r i g i na l_p i c (midPoint , endColumn−1) >=
0 . 9 , consec = true ;

end %end i f
end %end i f
i f endColumn > numel ( handles . o r i g i n a l_p i c (midPoint , : ) )
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except ion = MException ( ’ Outside ␣ o f ␣ P ic ture ␣ l im i t s ’ , . . .
’ Could␣not␣ f i nd ␣ consecuat ive ␣ po in t s ␣ to ␣ l o c a t e ␣ the ␣

s c a l e ␣bar ’ ) ;
throw ( except ion ) ;

end %end i f
i f ~consec

endColumn = endColumn − 1 ;
end %end i f

end %end whi l e

consec = f a l s e ;

%Scans the columns from l e f t to r i g h t s t a r t i n g at the midPoint
un t i l

%i t h i s consecuat ive white po in t s .
whi l e ~consec

i f startColumn < numel ( handles . o r i g i n a l_p i c (midPoint , : ) ) &&
startColumn>=1
i f handles . o r i g i na l_p i c (midPoint , startColumn ) >= 0.9 &&

. . .
handles . o r i g i na l_p i c (midPoint , startColumn+1) >=

0 .9 , consec = true ;
end%end i f

end %end i f
i f startColumn > numel ( handles . o r i g i n a l_p i c (midPoint , : ) )

except ion = MException ( ’ Outside ␣ o f ␣ P ic ture ␣ l im i t s ’ , . . .
’ Could␣not␣ f i nd ␣ consecuat ive ␣ po in t s ␣ to ␣ l o c a t e ␣ the ␣

s c a l e ␣bar ’ ) ;
throw ( except ion ) ;

end %end i f
i f ~consec

startColumn = startColumn + 1 ;
end %end i f

end %end whi l e loop

%Get the number o f p i x e l s in the s c a l e bar and outputs the ac tua l
s c a l e

temp = st r2doub l e ( handles .nm) ;
handles . nmPerPixel = temp/( endColumn−startColumn ) ;
s e t ( handles . sca leBar , ’ S t r ing ’ , handles . nmPerPixel ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end nanoWireDiameter_OpeningFcn
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% −−− Executes on button pr e s s in setRotate .
f unc t i on setRotate_Cal lback ( hObject , eventdata , handles )

%Gets a l i n e drawn by the user . Le f t c l i c k p l a c e s a po int and
r i g h t

%c l i c k ends the l i n e .
[ x , y ] = g e t l i n e ( handles . l a r g eP i c ) ;
newPic = handles . current_pic ;

%Gets 4 po in t s around the s t a r t i n g po int and makes them a value
o f

%21 or 22 ( f o r end po in t s ) . Uses 4 po in t s i n ca s e during r o t a t i on
%point i s l o s t
newPic ( f l o o r ( y (1 ) ) , f l o o r ( x (1 ) ) ) = 21 ;
newPic ( c e i l ( y (1 ) ) , f l o o r ( x (1 ) ) ) = 21 ;
newPic ( f l o o r ( y (1 ) ) , c e i l ( x (1 ) ) ) = 21 ;
newPic ( c e i l ( y (1 ) ) , c e i l ( x (1 ) ) ) = 21 ;
newPic ( f l o o r ( y (2 ) ) , f l o o r ( x (2 ) ) ) = 22 ;
newPic ( c e i l ( y (2 ) ) , f l o o r ( x (2 ) ) ) = 22 ;
newPic ( f l o o r ( y (2 ) ) , c e i l ( x (2 ) ) ) = 22 ;
newPic ( c e i l ( y (2 ) ) , c e i l ( x (2 ) ) ) = 22 ;

%Ca l cu l a t e s the l ength o f the l i n e segment
l ineSegLength = sq r t ( ( x (1 )−x (2 ) )^2+(y (1)−y (2 ) ) ^2) ;

%Vector o f the l i n e
vec_x = x (2)−x (1 ) ;
vec_y = y (2)−y (1 ) ;

%Angle between the l i n e and v e r t i c l e
theta = radtodeg ( acos ( vec_y/ l ineSegLength ) ) ;

%Rotates the p i c tu r e the c o r r e c t amount . Determines whether to
use a

%negat ive ang le or p o s i t i v e
i f vec_x > 0

rotP i c = imrotate ( newPic , −theta , ’ l o o s e ’ ) ;
e l s e

ro tP i c = imrotate ( newPic , theta , ’ l o o s e ’ ) ;
end %end i f−e l s e

%Finds the s t a r t i n g and ending po in t s
[ new_y , new_x ] = f i nd ( ro tP i c == 21) ;
[ new_y2 , new_x2 ] = f i nd ( ro tP i c == 22) ;

%Picks the l i n e going from top to bottom and takes the subPic
area

x1 = new_x(1) −500;
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x2 = new_x2(1) +500;
i f x1<=0

x1 = 1 ;
e l s e i f x1>=length ( ro tP i c ( 1 , : ) )

x1 = length ( ro tP i c ( 1 , : ) ) ;
end %end i f−e l s e i f
i f x2<=0

x2 = 1 ;
e l s e i f x2>=length ( ro tP i c ( 1 , : ) )

x2 = length ( ro tP i c ( 1 , : ) ) ;
end %end i f−e l s e i f

i f new_y(1)<new_y2(1)
subPic = rotP i c (new_y(1) : new_y2 (1) , x1 : x2 ) ;

e l s e
subPic = rotP i c (new_y2(1) : new_y(1) , x1 : x2 ) ;

end %end i f−e l s e

handles . current_pic = subPic ;
handles . o r i g ina l_rot_p ic = handles . current_pic ;
handles . rot_pic = subPic ;
c l a ( handles . l a r g eP i c ) ;
imshow ( handles . current_pic , ’ Parent ’ , handles . l a r g eP i c ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end setRotate_Cal lback

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%These f unc t i on s are used f o r e d i t i n g the image and c o l o r i n g in
%black and white a reas where the background i n t e n s i t y i s too high
%or the wire i n t e s i t y i s too low .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% −−− Executes on button pr e s s in co lo rB lack .
func t i on colorBlack_Cal lback ( hObject , eventdata , handles )

%Draws a black box over the image to remove problem areas

[ f i n a l r e c t ] = g e t r e c t ( handles . l a r g eP i c ) ;
f i na lY = f i n a l r e c t ( 1 , 2 )+f i n a l r e c t (1 , 4 ) ;
f i na lX = f i n a l r e c t ( 1 , 1 )+f i n a l r e c t (1 , 3 ) ;

i f f i n a l r e c t (1 , 1 ) < 1
f i n a l r e c t (1 , 1 ) = 1 ;

end
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i f f i n a l r e c t (1 , 2 ) < 1
f i n a l r e c t (1 , 2 ) = 1 ;

end
i f f i na lX > numel ( handles . rot_pic ( 1 , : ) )

f i na lX = numel ( handles . rot_pic ( 1 , : ) ) ;
end
i f f i na lY > numel ( handles . rot_pic ( : , 1 ) )

f i na lY = numel ( handles . rot_pic ( : , 1 ) ) ;
end

handles . rot_pic ( f l o o r ( f i n a l r e c t (1 , 2 ) ) : f l o o r ( f i na lY ) , f l o o r (
f i n a l r e c t (1 , 1 ) ) : f l o o r ( f i na lX ) )=0;

handles . current_pic = showThePic ( handles ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end colorBlack_Cal lback

% −−− Executes on button pr e s s in colorWhite .
f unc t i on colorWhite_Callback ( hObject , eventdata , handles )

%Draws a white box over the image to improve the con t ra s t o f the
wire

[ f i n a l r e c t ] = g e t r e c t ( handles . l a r g eP i c ) ;
f i na lY = f i n a l r e c t ( 1 , 2 )+f i n a l r e c t (1 , 4 ) ;
f i na lX = f i n a l r e c t ( 1 , 1 )+f i n a l r e c t (1 , 3 ) ;

i f f i n a l r e c t (1 , 1 ) < 1
f i n a l r e c t (1 , 1 ) = 1 ;

end
i f f i n a l r e c t (1 , 2 ) < 1

f i n a l r e c t (1 , 2 ) = 1 ;
end
i f f i na lX > numel ( handles . rot_pic ( 1 , : ) )

f i na lX = numel ( handles . rot_pic ( 1 , : ) ) ;
end
i f f i na lY > numel ( handles . rot_pic ( : , 1 ) )

f i na lY = numel ( handles . rot_pic ( : , 1 ) ) ;
end

handles . rot_pic ( f l o o r ( f i n a l r e c t (1 , 2 ) ) : f l o o r ( f i na lY ) , f l o o r (
f i n a l r e c t (1 , 1 ) ) : f l o o r ( f i na lX ) )=1;
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handles . current_pic = showThePic ( handles ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end colorWhite_Callback

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%These f unc t i on s are used f o r b inning the p i c tu r e i n c l ud ing
%Creat ing a l l o f the bin s l i d e r s ( bin1 , bin2 , bin3_Callback ) ,
%Se t t i ng up the i n i t i a l bin ( bins_Callback ) , and
%Allowing ed i t i n g o f the s l i d e r s ( bin1 , bin2 , bin3_edit_Callback )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% −−− Executes on button pr e s s in b ins .
f unc t i on bins_Callback ( hObject , eventdata , handles )

%Takes the average o f the mid l i n e which should in c lude the wire
midColumn = f l o o r ( l ength ( handles . current_pic ( 1 , : ) ) /2) ;
av e r ag e In t en s i t y = mean( handles . current_pic ( : , midColumn) ) ;

handles . bin3_value = ave rag e In t en s i t y ∗ 0 . 5 ; %50% of average
i n t e n s i t y

handles . bin2_value = ave rag e In t en s i t y ∗0 . 7 5 ; %75% of average
i n t e n s i t y

handles . bin1_value = ave rag e In t en s i t y ; %average i n t e n s i t y

s e t ( handles . bin1 , ’ Value ’ , handles . bin1_value ) ;
s e t ( handles . bin2 , ’ Value ’ , handles . bin2_value ) ;
s e t ( handles . bin3 , ’ Value ’ , handles . bin3_value ) ;
s e t ( handles . bin1 , ’Min ’ , handles . bin2_value ) ;
s e t ( handles . bin2 , ’Max ’ , handles . bin1_value ) ;
s e t ( handles . bin2 , ’Min ’ , handles . bin3_value ) ;
s e t ( handles . bin3 , ’Max ’ , handles . bin3_value ) ;
s e t ( handles . bin1_edit , ’ S t r ing ’ , handles . bin1_value ) ;
s e t ( handles . bin2_edit , ’ S t r ing ’ , handles . bin2_value ) ;
s e t ( handles . bin3_edit , ’ S t r ing ’ , handles . bin3_value ) ;

handles . b ins = showThePic ( handles ) ;
handles . current_pic = handles . b ins ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;
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% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end bins_Callback

% −−− Executes on s l i d e r movement .
f unc t i on bin1_Callback ( hObject , eventdata , handles )

% Hints : get ( hObject , ’ Value ’ ) r e tu rn s po s i t i o n o f s l i d e r
% get ( hObject , ’Min ’ ) and get ( hObject , ’Max’ ) to determine

range o f s l i d e r

handles . bin1_value = get ( hObject , ’ Value ’ ) ;
s e t ( handles . bin1_edit , ’ S t r ing ’ , handles . bin1_value ) ;
s e t ( handles . bin2 , ’Max ’ , handles . bin1_value ) ;

handles . b ins=showThePic ( handles ) ;
handles . current_pic = handles . b ins ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end bin1_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on bin1_CreateFcn ( hObject , eventdata , handles )

% Hint : s l i d e r c on t r o l s u sua l l y have a l i g h t gray background .
i f i s e qu a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
s e t ( hObject , ’ BackgroundColor ’ , [ . 9 . 9 . 9 ] ) ;

end
end %end bin1_CreateFcn

func t i on bin1_edit_Callback ( hObject , eventdata , handles )
end %end bin1_edit_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on bin1_edit_CreateFcn ( hObject , eventdata , handles )

% Hint : e d i t c on t r o l s u sua l l y have a white background on Windows .
% See ISPC and COMPUTER.
i f i s p c && i s e qua l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

end
end %end bin1_edit_CreateFcn

% −−− Executes on s l i d e r movement .
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f unc t i on bin2_Callback ( hObject , eventdata , handles )
% Hints : get ( hObject , ’ Value ’ ) r e tu rn s po s i t i o n o f s l i d e r
% get ( hObject , ’Min ’ ) and get ( hObject , ’Max’ ) to determine

range o f s l i d e r

handles . bin2_value = get ( hObject , ’ Value ’ ) ;
s e t ( handles . bin2_edit , ’ S t r ing ’ , handles . bin2_value ) ;
s e t ( handles . bin3 , ’Max ’ , handles . bin2_value ) ;
s e t ( handles . bin1 , ’Min ’ , handles . bin2_value ) ;

handles . b ins=showThePic ( handles ) ;
handles . current_pic = handles . b ins ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end bin2_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on bin2_CreateFcn ( hObject , eventdata , handles )

% Hint : s l i d e r c on t r o l s u sua l l y have a l i g h t gray background .
i f i s e qu a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
s e t ( hObject , ’ BackgroundColor ’ , [ . 9 . 9 . 9 ] ) ;

end
end %end bin2_CreateFcn

func t i on bin2_edit_Callback ( hObject , eventdata , handles )
% Hints : get ( hObject , ’ Str ing ’ ) r e tu rn s contents o f bin2_edit as

t ex t
% st r2doub l e ( get ( hObject , ’ Str ing ’ ) ) r e tu rn s contents o f

bin2_edit as a double
end %end bin2_edit_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on bin2_edit_CreateFcn ( hObject , eventdata , handles )

% Hint : e d i t c on t r o l s u sua l l y have a white background on Windows .
% See ISPC and COMPUTER.
i f i s p c && i s e qua l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

end
end %end bin2_edit_CreateFcn

% −−− Executes on s l i d e r movement .
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f unc t i on bin3_Callback ( hObject , eventdata , handles )
% Hints : get ( hObject , ’ Value ’ ) r e tu rn s po s i t i o n o f s l i d e r
% get ( hObject , ’Min ’ ) and get ( hObject , ’Max’ ) to determine

range o f s l i d e r

handles . bin3_value = get ( hObject , ’ Value ’ ) ;
s e t ( handles . bin3_edit , ’ S t r ing ’ , handles . bin3_value ) ;
s e t ( handles . bin2 , ’Min ’ , handles . bin3_value ) ;

handles . b ins=showThePic ( handles ) ;
handles . current_pic = handles . b ins ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end bin3_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on bin3_CreateFcn ( hObject , eventdata , handles )

% Hint : s l i d e r c on t r o l s u sua l l y have a l i g h t gray background .
i f i s e qu a l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
s e t ( hObject , ’ BackgroundColor ’ , [ . 9 . 9 . 9 ] ) ;

end
end %end bin3_CreateFcn

func t i on bin3_edit_Callback ( hObject , eventdata , handles )
% Hints : get ( hObject , ’ Str ing ’ ) r e tu rn s contents o f bin3_edit as

t ex t
% st r2doub l e ( get ( hObject , ’ Str ing ’ ) ) r e tu rn s contents o f

bin3_edit as a double
end %end bin3_edit_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on bin3_edit_CreateFcn ( hObject , eventdata , handles )

% Hint : e d i t c on t r o l s u sua l l y have a white background on Windows .
% See ISPC and COMPUTER.
i f i s p c && i s e qua l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

end
end %end bin3_edit_CreateFcn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%These f unc t i on s dea l with c r e a t i n g the t r a n s i t i o n l i n e s
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% −−− Executes on button pr e s s in ed i tL i n e s .
f unc t i on ed i tL ines_Cal lback ( hObject , eventdata , handles )

output = l i n eP l o t ( handles . diameters , handles . horz_pic ( : , : , 1 ) ,
handles . nmPerPixel , . . .
f i nd ( handles .minmax==1)) ;

f o r i = 1 : numel ( output ( : , 2 ) )
temp( i , 1 ) = f i nd ( handles . d iameters ( : , 1 )>output ( i , 2 ) ,1 , ’ f i r s t ’

) ;
end %end f o r
handles .minmax ( : , 1 ) = 0 ;
handles .minmax( temp) = 1 ;
handles . minmaxIdx = f i nd ( handles .minmax) ;

p l o tL in e s ( hObject , eventdata , handles ) ;
handles=guidata ( handles . output ) ;%ensure handles get updated
tableData ( hObject , eventdata , handles ) ;
handles=guidata ( handles . output ) ;%ensure handles get updated

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end editL ines_Cal lback

% −−− Executes on button pr e s s in dispTrans .
f unc t i on dispTrans_Callback ( hObject , eventdata , handles )

ca lcTrans ( hObject , eventdata , handles ) ;
handles=guidata ( handles . output ) ;%ensure handles get updated

p l o tL in e s ( hObject , eventdata , handles ) ;
handles=guidata ( handles . output ) ;%ensure handles get updated

%n by 2 array with the x l o c a t i o n s o f t r a n s i t i o n s in column 1 and
1 ’ s in

%the second
handles . minmaxIdx = f i nd ( handles .minmax) ;

vect ( : , 1 ) = handles . minmaxIdx ;
vect ( : , 2 ) = 1 ;

tempminmax = handles .minmax ; %c r ea t e a temporary copy o f minmax
to ed i t

entr iesToKeep = f i nd ( vect ( : , 2 ) ) ; %f i nd the x−va lue s to keep
a s s i g n i n ( ’ base ’ , ’ entr iesToKeep ’ , entr iesToKeep ) ;
a s s i g n i n ( ’ base ’ , ’ tempminmax ’ , tempminmax) ;
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tempminmax = ze ro s ( l ength ( tempminmax) ,1 ) ;

f o r m = 1 : s i z e ( entr iesToKeep )
tempminmax( vect ( entriesToKeep (m) ) ,1 ) =1;

end %end f o r

handles . minmaxIdx = vect ( entriesToKeep , 1 ) ;%r ep l a c e the o ld x−
va lue s with the new ones

handles .minmax = tempminmax ;

tableData ( hObject , eventdata , handles ) ;
handles=guidata ( handles . output ) ;%ensure handles get updated

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end dispTrans_Callback

func t i on ca lcTrans ( hObject , eventdata , handles )
%the l i s t o f s c a l e s at which to perform the ana l y s i s
s c a l e s = [ 1 , 2 , 4 , 8 ] ;

%a l i s t o f numbers between 0 and 1 i nd i c a t i n g how obvious a s tep
has to be

%at each s c a l e in order to be cons ide r ed a t r a n s i t i o n .
%Do Not Edit un l e s s you know what the va lue s mean
th r e sho ld s = [ . 1 , . 2 , . 3 , . 4 ] ;

% Create the d e r i v a t i v e s c a l e space−−minima and maxima o f the
d e r i v a t i v e

% correspond to t r a n s i t i o n s
data = CreateGaussScaleSpace ( handles . current_datay , 1 , s c a l e s ) ;

%Find the po s i t i o n o f l o c a l minima and maxima o f the most coa r s e
s c a l e

handles=guidata ( handles . output ) ;%ensure handles get updated
handles .minmax = FindLocalExtrema ( data ( : , end ) , th r e sho ld s ( end ) ,

s c a l e s ( end ) ) ;
guidata ( handles . output , handles ) ;%ensure handles get updated

%Place x−coo rd inate o f t r a n s i t i o n s in to a l i s t
handles=guidata ( handles . output ) ;%ensure handles get updated
handles . minmaxIdx = f i nd ( handles .minmax) ;
guidata ( handles . output , handles ) ;%ensure handles get updated

% Ref ine min/max po s i t i o n s through s c a l e space
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f o r i = s i z e ( s c a l e s )−1:−1:1
handles=guidata ( handles . output ) ;%ensure handles get updated

throughout the f o r loop
handles .minmax = FindLocalExtrema ( data ( : , i ) , t h r e sho ld s ( i ) ,

s c a l e s ( i ) , handles . minmaxIdx ) ;
handles . minmaxIdx = f i nd ( handles .minmax) ;

end %end f o r

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end calcTrans

func t i on p l o tL ine s ( hObject , eventdata , handles )
c l a ( handles . widthPlot ) ; %c l e a r the diameter p l o t axes
p l o t ( handles . o r i g i n a l x , handles . current_datay , ’ Parent ’ , handles .

widthPlot ) ;%p lo t the cur rent data
hold ( handles . widthPlot , ’ on ’ )

%p lo t c a l c u l a t ed t r a n s i t i o n po in t s us ing minmax
%(0 everywhere except at t r a n s i t i o n s , where i t i s 1
s e t ( handles . widthPlot , ’XLim ’ , [ 0 handles . d iameters ( end , 1 ) ] ) ;

s e t ( handles . widthPlot , ’YLim ’ , [ min ( handles . d iameters ( : , 2 ) )−5 max
( handles . d iameters ( : , 2 ) ) +5]) ;

y = get ( handles . widthPlot , ’YLim ’ ) ;
yd i f = y (2) − y (1 ) ;
p l o t ( handles . o r i g i n a l x , ( 1 . 0 ∗ handles .minmax ∗ yd i f ) + y (1) . . .

, ’ r ’ , ’ Parent ’ , handles . widthPlot ) ;
hold ( handles . widthPlot , ’ o f f ’ )
handles . t r a n s i t i o n s = [ handles . o r i g i n a l x , ( 1 . 0 ∗ handles .minmax ∗

yd i f ) + y (1) ] ;

c l a ( handles . h o r i z on t a lP i c ) ;
imshow ( handles . horz_pic , ’ Parent ’ , handles . h o r i z on t a lP i c ) ;
hold ( handles . ho r i zonta lP i c , ’ on ’ )
p l o t ( 1 . 0 ∗ handles .minmax ∗ 401 , ’ r ’ , ’ Parent ’ , handles .

h o r i z on t a lP i c ) ;
hold ( handles . ho r i zonta lP i c , ’ o f f ’ )

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end p l o tL in e s
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f unc t i on tableData ( hObject , eventdata , handles )
s t a t s = RegionStats ( handles . current_datay , handles . minmaxIdx ,

handles . tranRad ) ;
quick = handles . minmaxIdx ; %g ive quick ac c e s s to updated x va lue s

f o r t r a n s i t i o n s

%lengthdata i s a column vec to r with the l ength ( in nm) o f each
reg i on

%between t r a n s i s i t o n s
lengthdata (1 )=handles . o r i g i n a l x ( quick (1 ) ) ; %length from beginning

o f wire image area to f i r s t t r a n s i t i o n

%ca l c u a l t e the l ength between each o f the t r a n s i t i o n s
f o r m=2: l ength ( quick )

l engthdata (m)= handles . o r i g i n a l x ( quick (m) )−handles . o r i g i n a l x (
quick (m−1) ) ;

end %end f o r

%length from l a s t t r a n s i t i o n to end o f wire image area
lengthdata ( end+1)= handles . o r i g i n a l x ( l ength ( handles . o r i g i n a l x ) )−

handles . o r i g i n a l x ( quick ( end ) ) ;

output ( : , 2 ) = lengthdata ;%p lace the l eng th s in an output vec to r
output ( : , 3 ) = s t a t s ( : , 1 ) ; %p lace the mean ca l c u l a t ed diameter in

the output vec to r
output ( : , 4 ) = s t a t s ( : , 2 ) ;%p lace the standard dev i a t i on along a

reg i on o f the wire in the output vec to r

s e t ( handles . dataTable , ’Data ’ , output ) ;%load data in to s ta t sTab l e
handles . data = output ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end tableData

% −−− Executes on button pr e s s in showPic .
f unc t i on showPic_Callback ( hObject , eventdata , handles )

imshow( handles . current_pic , ’ Parent ’ , handles . l a r g eP i c ) ;
%s e t ( handles . l a rgeP ic , ’ V i s i b l e ’ , ’ on ’ ) ;
s e t ( handles . ho r i zonta lP i c , ’ V i s i b l e ’ , ’ o f f ’ ) ;
c l a ( handles . h o r i z on t a lP i c ) ;
s e t ( handles . widthPlot , ’ V i s i b l e ’ , ’ o f f ’ ) ;
c l a ( handles . widthPlot ) ;

end %end showPic_Callback
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% −−− Executes on button pr e s s in showGraphs .
f unc t i on showGraphs_Callback ( hObject , eventdata , handles )

c l a ( handles . l a r g eP i c ) ;
s e t ( handles . l a rgeP ic , ’ V i s i b l e ’ , ’ o f f ’ ) ;
%s e t ( handles . ho r i zon ta lP i c , ’ V i s i b l e ’ , ’ on ’ ) ;
imshow ( handles . horz_pic , ’ Parent ’ , handles . h o r i z on t a lP i c ) ;
s e t ( handles . widthPlot , ’ V i s i b l e ’ , ’ on ’ ) ;
p l o t ( handles . current_datax , handles . current_datay , . . .

’ Parent ’ , handles . widthPlot ) ;
s e t ( handles . widthPlot , ’ xl im ’ , [ min ( handles . d iameters ( : , 1 ) ) . . .

max( handles . d iameters ( : , 1 ) ) ] ) ;
s e t ( handles . widthPlot , ’ yl im ’ , [ min ( handles . d iameters ( : , 2 ) )−20

. . .
max( handles . d iameters ( : , 2 ) ) +20]) ;

end %end showGraphs_Callback

% −−− Executes on button pr e s s in ca lcDiameter .
f unc t i on calcDiameter_Callback ( hObject , eventdata , handles )

%Takes in the handles and makes a p i c tu r e based on the b ins
%re tu rn s the p i c tu r e

%c r e a t e s a matrix to put the diameters f o r each row i t scans
d iameters = ze ro s ( s i z e ( handles . current_pic , 1 ) , 2 ) ;
currentRow = 1 ;

b ins = handles . current_pic ;

a s s i g n i n ( ’ base ’ , ’ vert_plot ’ , b ins ) ;
l e f t_ s i d e = [ ] ;
r i gh t_s ide = [ ] ;
%Loops over a l l the l i n e s in the p i c tu r e
f o r k=1: s i z e ( bins , 1 )

%Sets v a r i a b l e s f o r each l i n e
s t a r t ed = f a l s e ; bin2Count = 0 ; s ta r tPos = 0 ;
bin3Count = 0 ; blankCount = 0 ; endPos = 0 ;
c r o s sSe c = 0 ;
tempArray = [ ] ;

%Loops over a l l the columns in the cur rent l i n e (k )
f o r j =1: s i z e ( bins , 2 )

%I f the bin conta in s a 1 s t a r t the diameter count or r e s e t
%a l l o f the other counts
i f b ins (k , j ) == 1

i f ~ s t a r t ed
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s t a r t ed = true ;
s ta r tPos = j ;

e l s e
endPos = j ; bin2Count = 0 ;
bin3Count = 0 ; blankCount = 0 ;

end
%bin2 count , w i l l s t a r t the count i f i t r eaches 10 then i t
%w i l l s top the count
e l s e i f b ins (k , j ) > 0 .6

bin2Count = bin2Count+1;
i f ~s ta r ted , s t a r t ed = true ; s ta r tPos = j ;
e l s e i f bin2Count < 11

endPos = j ; blankCount = 0 ;
e l s e

s t a r t ed = f a l s e ; bin2Count = 0 ;
bin3Count = 0 ; blankCount = 0 ; c r o s sSe c = endPos−

s ta r tPos ;
tempArray=[tempArray ; c ros sSec , s tartPos , endPos ] ;

end
%bin3 count , w i l l s t a r t the count t i l l i t r eaches 5 , then

i t
%w i l l s top the count
e l s e i f b ins (k , j ) > 0 .3

bin3Count = bin3Count+1;
i f ~s ta r ted , s t a r t ed = true ; s ta r tPos = j ;
e l s e i f bin3Count < 6

endPos = j ; blankCount = 0 ;
e l s e

s t a r t ed = f a l s e ; bin2Count = 0 ;
bin3Count = 0 ; blankCount = 0 ; c r o s sSe c = endPos−

s ta r tPos ;
tempArray=[tempArray ; c ros sSec , s tartPos , endPos ] ;

end
%Can only have 2 blank spaces in a row be f o r e the count

w i l l
%stop
e l s e i f b ins (k , j ) < 1

blankCount = blankCount+1;
i f blankCount > 3

s t a r t ed = f a l s e ; bin2Count = 0 ;
bin3Count = 0 ; blankCount = 0 ; c r o s sSe c = endPos−

s ta r tPos ;
tempArray=[tempArray ; c ros sSec , s tartPos , endPos ] ;

end
end %end i f−e l s e statements f o r determining the b ins

end %end loop over columns
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%determins the max diameter f o r the cur r ent row
[M, I ] = max( tempArray ( : , 1 ) ) ;
d iameters ( currentRow , 2) = M;
diameters ( currentRow , 1 ) = k ;
currentRow = currentRow+1;
l e f t_ s i d e (k ) = tempArray ( I , 2 ) ;
r i ght_s ide (k ) = tempArray ( I , 3 ) ;

end%end loop over rows

a s s i g n i n ( ’ base ’ , ’ l e f t_ s i d e ’ , l e f t_ s i d e ) ;
a s s i g n i n ( ’ base ’ , ’ r i gh t_s ide ’ , r i gh t_s ide ) ;
a s s i g n i n ( ’ base ’ , ’ s c a l e ’ , handles . nmPerPixel ) ;
handles . d iameters = diameters .∗ handles . nmPerPixel ;

handles . current_datax = handles . d iameters ( : , 1 ) ;
handles . current_datay = handles . d iameters ( : , 2 ) ;

handles . o r i g i n a l x = handles . d iameters ( : , 1 ) ;
handles . o r i g i n a l y = handles . d iameters ( : , 2 ) ;

handles . horz_pic = imcrop ( imrotate ( handles . o r ig ina l_rot_pic , 9 0 )
, [ 0 , 3 5 0 , . . .
l ength ( handles . o r i g ina l_rot_p ic ( : , 2 ) ) , 4 0 0 ] ) ;

imshow ( handles . horz_pic , ’ Parent ’ , handles . h o r i z on t a lP i c ) ;
p l o t ( handles . d iameters ( : , 1 ) , handles . d iameters ( : , 2 ) , ’ Parent ’ ,

handles . widthPlot ) ;
s e t ( handles . widthPlot , ’XLim ’ , [ 0 handles . d iameters ( end , 1 ) ] ) ;
s e t ( handles . widthPlot , ’YLim ’ , [ min ( handles . d iameters ( : , 2 ) )−5 max

( handles . d iameters ( : , 2 ) ) +5]) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

showGraphs_Callback ( hObject , eventdata , handles ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end calcDiameter_Callback

% −−− Executes on button pr e s s in showOrig inal .
f unc t i on showOriginal_Callback ( hObject , eventdata , handles )
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handles . current_pic = handles . o r i g i n a l_p i c ;
showPic_Callback ( hObject , eventdata , handles ) ;

end %end showOriginal_Callback

% −−− Executes on button pr e s s in showRot .
func t i on showRot_Callback ( hObject , eventdata , handles )

handles . current_pic = handles . o r i g ina l_rot_p ic ;
showPic_Callback ( hObject , eventdata , handles ) ;

end %end showRot_Callback

func t i on b ins=showThePic ( handles )
temp = handles . rot_pic ;
bin1 = handles . bin1_value ;
bin2 = handles . bin2_value ;
bin3 = handles . bin3_value ;

bin1_array = ( temp > bin1 ) ;
bin2_array = ( temp > bin2 ) ;
bin3_array = ( temp > bin3 ) ;

b ins = ( bin1_array+bin2_array+bin3_array ) . / 3 ;
imshow ( bins , ’ Parent ’ , handles . l a r g eP i c ) ;
s e t ( handles . ho r i zonta lP i c , ’ V i s i b l e ’ , ’ o f f ’ ) ;
c l a ( handles . h o r i z on t a lP i c ) ;
s e t ( handles . widthPlot , ’ V i s i b l e ’ , ’ o f f ’ ) ;
c l a ( handles . widthPlot ) ;

handles . current_pic = bins ;
handles . bin_pic = bins ;

end %end showThePic

func t i on scaleBarLength_Callback ( hObject , eventdata , handles )
% Hints : get ( hObject , ’ Str ing ’ ) r e tu rn s contents o f sca leBarLength

as t ext
% st r2doub l e ( get ( hObject , ’ Str ing ’ ) ) r e tu rn s contents o f

sca leBarLength as a double

handles .nm = get ( hObject , ’ S t r ing ’ ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end scaleBarLength_Callback

func t i on scaleBarLength_CreateFcn ( hObject , eventdata , handles )
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% Hint : e d i t c on t r o l s u sua l l y have a white background on Windows .
% See ISPC and COMPUTER.
i f i s p c && i s e qua l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

end
end %end scaleBarLength_CreateFcn

func t i on scaleBar_CreateFcn ( hObject , eventdata , handles )
end %end scaleBar_CreateFcn

% −−− Executes on button pr e s s in saveTable .
f unc t i on saveTable_Callback ( hObject , eventdata , handles )

name = s t r r e p ( handles . f i leName , ’− ’ , ’_ ’ ) ;
temp = c e l l s t r (name ( 11 : end−4) ) ;
answer = inputd lg ( ’ Var iab le ␣Save␣Name ’ , ’ ’ , 1 , temp) ;
data = get ( handles . dataTable , ’Data ’ ) ;
z0 = ones ( l ength ( data ( : , 1 ) ) , 1) ;
data ( : , 2 ) = [ ] ;
data = [ data , z0 ] ;

ho lder = [ 0 , 0 , 0 , 0 ] ;
f o r i =1: l ength ( data ( : , 1 ) )

r = f i nd ( ho lder ( : , 1 )==data ( i , 1 ) ) ;
i f r ~= 0

ho lder ( r , 2 ) = ( ho lder ( r , 2 ) ∗ ho lder ( r , 4 )+data ( i , 2 ) ) /( ho lder
( r , 4 )+data ( i , 4 ) ) ;

ho lder ( r , 3 ) = ( ho lder ( r , 3 ) ∗ ho lder ( r , 4 )+data ( i , 3 ) ) /( ho lder
( r , 4 )+data ( i , 4 ) ) ;

ho lder ( r , 4 ) = ho lder ( r , 4 )+data ( i , 4 ) ;
e l s e

ho lder = [ ho lder ; data ( i , : ) ] ;
end %end i f−e l s e

end %end f o r
ho lder = sort rows ( ho lder ( : , 1 : 4 ) ) ;
ho lder = num2cel l ( ho lder ) ;
output {1 ,1} = ’Doping␣Level ’ ;
output {1 ,2} = ’ Segment␣Diameter ’ ;
output {1 ,3} = ’ Std␣Dev ’ ;
output {1 ,4} = ’Number␣Averaged ’ ;
output = [ output ; ho lder ] ;

uni = unique ( data ( : , 1 ) ) ;
neg1 = uni == −1;
uni ( neg1 ) = [ ] ;

f o r i = 1 : l ength ( uni )
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c e l l { i , 1} = uni ( i ) ;
c e l l { i , 2} = [ ] ;

end %end f o r

minmax = f i nd ( handles .minmax==1) ;
minmax = [ 1 ; minmax ; l ength ( handles .minmax) ] ;
f o r i =1: l ength ( data ( : , 1 ) )

i f data ( i , 1 ) ~= −1
r = f i nd ( uni==data ( i , 1 ) ) ;
i f isempty ( c e l l { r , 2 } )

c e l l { r , 2} = handles . d iameters (minmax( i ) :minmax( i +1)
, : ) ;

c e l l { r , 3} = handles . d iameters (minmax( i ) :minmax( i +1)
, : ) ;

e l s e
c e l l { r , 2} = [ c e l l { r , 2 } ; handles . d iameters (minmax( i ) :

minmax( i +1) , : ) ] ;
c e l l { r , 3} = [ c e l l { r , 3 } ; 0 , 0 ; handles . d iameters (

minmax( i ) :minmax( i +1) , : ) ] ;
end %end i f−e l s e

end %end i f
end %end f o r

f o r i =1: l ength ( c e l l ( : , 1 ) )
s t r u c t ( i ) . dopingLevel = c e l l { i , 1 } ;
s t r u c t ( i ) . segData = c e l l { i , 2 } ;
s t r u c t ( i ) . segLength = c e l l { i , 3 } ;

end %end f o r
a s s i g n i n ( ’ base ’ , answer {1} , s t r u c t ) ;

end %end saveTable_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on saveTable_CreateFcn ( hObject , eventdata , handles )
end %end saveTable_CreateFcn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%These methods are used f o r nav igat i on through f i l e s i n c l ud ing
%Showing the cur rent f i l e name ( f i l eNameStr ing_Cal lback ) ,
%Moving to the next f i l e ( nextButton_Callback ) , and
%Moving to the prev ious f i l e ( prevButton_Callback )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

func t i on open_ClickedCallback ( hObject , eventdata , handles )
[ f i leName , f i l ePa th , f i l t e r I n d e x ] = u i g e t f i l e ( s t r c a t ( handles .

f i l ePa th , ’ ∗ . t i f ’ ) ) ;

%Skips opening i f cance l i s c l i c k e d
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i f f i leName == 0
return

end %end i f
handles . f i l ePa t h = f i l ePa t h ;
handles . f i leName = fi leName ;
s e t ( handles . f i l eNameStr ing , ’ S t r ing ’ , s t r c a t ( f i l ePa th , f i leName ) )

;
p i c = imread ( s t r c a t ( f i l ePa th , f i leName ) , ’ t i f f ’ ) ;
i f numel ( p i c ( 1 , 1 , : ) )==3, p i c = rgb2gray ( p i c ) ; end
handles . o r i g i na l_p i c = im2double ( p i c ) ;
handles . current_pic = handles . o r i g i n a l_p i c ;

showPic_Callback ( hObject , eventdata , handles ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end open_ClickedCallback

func t i on save_ClickedCal lback ( hObject , eventdata , handles )

folder_name = u i g e t d i r ( handles . f i l ePa t h ) ;

%Skips sav ing i f cance l i s c l i c k e d
i f folder_name == 0

return
end %end i f

c e l l_ar ray = {} ;
c e l l_ar ray {1} = handles . f i leName ( 1 : end−4) ;
savename = inputd lg ( ’ Base␣Save␣ F i l e ␣Name : ’ , ’ Save␣ F i l e ’ , 1 ,

c e l l_ar ray ) ;

%Skips sav ing i f cance l i s c l i c k e d
i f isempty ( savename )

re turn ;
end %end i f
savename = s t r c a t ( ’ \ ’ , savename {1}) ;

newPic = handles . o r i g ina l_rot_p ic ( : , : ) ;
[ r , c ] = f i nd ( newPic>1) ;
newPic ( r , c ) = 1 ;
f i l ename = s t r c a t ( folder_name , savename , ’ _or ig inal_rot_pic . t i f ’ ) ;

newPic = handles . bin_pic ( : , : ) ;
[ r , c ] = f i nd ( newPic>1) ;

110



newPic ( r , c ) = 1 ;
f i l ename = s t r c a t ( folder_name , savename , ’ _rot_pic . t i f ’ ) ;

temp = { ’ Length ’ , ’Mean␣Diameter ’ , ’ Standard␣Deviat ion ’ } ;
v1 = genvarname ( s t r c a t ( savename ( 2 : end ) , ’ _dataTable_header ’ ) ) ;
v2 = genvarname ( s t r c a t ( savename ( 2 : end ) , ’ _dataTable ’ ) ) ;
v3 = genvarname ( s t r c a t ( savename ( 2 : end ) , ’ _plotData ’ ) ) ;
v4 = genvarname ( s t r c a t ( savename ( 2 : end ) , ’ _t ran s i t i on s ’ ) ) ;
v5 = genvarname ( s t r c a t ( savename ( 2 : end ) , ’ _hor izonta lP ic ’ ) ) ;
eva l ( [ v1 ’=␣temp ; ’ ] )
eva l ( [ v2 ’=␣ handles . data ; ’ ] )
eva l ( [ v3 ’=␣ handles . d iameters ; ’ ] )
eva l ( [ v4 ’=␣ handles . t r a n s i t i o n s ; ’ ] )
eva l ( [ v5 ’=␣ handles . horz_pic ; ’ ] )

save ( s t r c a t ( folder_name , savename ) , v1 , v2 , v3 , v4 , v5 ) ;
end %end save_ClickedCal lback

func t i on f i l eNameStr ing_Cal lback ( hObject , eventdata , handles )
end %end f i leNameStr ing_Cal lback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on f i leNameString_CreateFcn ( hObject , eventdata , handles )

% Hint : e d i t c on t r o l s u sua l l y have a white background on Windows .
% See ISPC and COMPUTER.
i f i s p c && i s e qua l ( get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
s e t ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

end
end %end fi leNameString_CreateFcn

% −−− Executes on button pr e s s in nextButton .
func t i on nextButton_Callback ( hObject , eventdata , handles )

temp = d i r ( f u l l f i l e ( handles . f i l ePa th , ’ ∗ . t i f ’ ) ) ;

%Check f o r the next . t i f image in the f o l d e r
f o r i =1: l ength ( temp)

i f strcmp ( temp( i ) . name , handles . f i leName )
i f i<length ( temp)

handles . f i leName = temp( i +1) . name ;
e l s e

handles . f i leName = temp (1) . name ;
end %end i f−e l s e
break ;

end %end i f
end %end f o r

%Sets the handles and reads in the new f i l e
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s e t ( handles . f i l eNameStr ing , ’ S t r ing ’ , s t r c a t ( handles . f i l ePa th ,
handles . f i leName ) ) ;

p i c = imread ( s t r c a t ( handles . f i l ePa th , handles . f i leName ) , ’ t i f f ’ ) ;
i f numel ( p i c ( 1 , 1 , : ) )==3, p i c = rgb2gray ( p i c ) ; end
handles . o r i g i na l_p i c = im2double ( p i c ) ;
handles . current_pic = handles . o r i g i n a l_p i c ;

showPic_Callback ( hObject , eventdata , handles ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i
handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end nextButton_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on nextButton_CreateFcn ( hObject , eventdata , handles )
end %end nextButton_CreateFcn

% −−− Executes on button pr e s s in prevButton .
func t i on prevButton_Callback ( hObject , eventdata , handles )

temp = d i r ( f u l l f i l e ( handles . f i l ePa th , ’ ∗ . t i f ’ ) ) ;

%Check f o r the prev ious . t i f image in the f o l d e r
f o r i =1: l ength ( temp)

i f strcmp ( temp( i ) . name , handles . f i leName )
i f i >1

handles . f i leName = temp( i −1) . name ;
e l s e

handles . f i leName = temp( l ength ( temp) ) . name ;
end %end i f−e l s e
break ;

end %end i f
end %end f o r

%Sets the handles and reads in the new f i l e
s e t ( handles . f i l eNameStr ing , ’ S t r ing ’ , s t r c a t ( handles . f i l ePa th ,

handles . f i leName ) ) ;
p i c = imread ( s t r c a t ( handles . f i l ePa th , handles . f i leName ) , ’ t i f f ’ ) ;
i f numel ( p i c ( 1 , 1 , : ) )==3, p i c = rgb2gray ( p i c ) ; end
handles . o r i g i na l_p i c = im2double ( p i c ) ;
handles . current_pic = handles . o r i g i n a l_p i c ;

%Shows the p i c tu r e
showPic_Callback ( hObject , eventdata , handles ) ;

% Choose d e f au l t command l i n e output f o r s l i d e r_gu i

112



handles . output = hObject ;

% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;

end %end prevButton_Callback

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r op e r t i e s .
f unc t i on prevButton_CreateFcn ( hObject , eventdata , handles )
end %end prevButton_CreateFcn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% END nanoWireDiameter .m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Function that a l l ows the user to ed i t t r a n s i t i o n s l i n e s . Le f t c l i c k
and

%hold to move the l i n e s around . While moving around a l i n e use ’d ’ to
%de l e t e the l i n e . Use space bar to e x i t and return to

nanoWireDiameter
func t i on xVal = l i n eP l o t ( diameters , pic , nmPerPixel , l i n e s )

%I n i t i a l i z e v a r i a b l e s
j = 1 ; l ineTag = 0 ; l ineTag2 = 0 ; currentLineTag = 0 ; de l e t ed =

[ ] ;

%Set up the f i g u r e
f i g u r e

%make a subplot that conta in s 2 rows and 1 column
a = subplot ( 2 , 1 , 1 ) ;

%p lo t the graph o f d iameters
p l o t ( d iameters ( : , 1 ) , d iameters ( : , 2 ) ) ;
s e t ( a , ’XLim ’ , [ 0 d iameters ( end , 1 ) ] ) ;
s e t ( a , ’YLim ’ , [ min ( d iameters ( : , 2 ) )−5 max( diameters ( : , 2 ) ) +5]) ;

%get the po s i t i o n o f the graph . 1= l e f t , 2=bottom , 3=width , 4=
he ight .

%Al l measured from the bottom l e f t corner
pos1 = get ( a , ’ Po s i t i on ’ ) ;

%second p lo t
b = subplot ( 2 , 1 , 2 ) ;
aspectRat io1 = pos1 (4 ) /pos1 (3 ) ;
he ight = aspectRat io1 ∗numel ( p i c ( 1 , : ) ) ;
[ row co l ] = f i nd ( pic >1) ;

%Makes a l l the va lue s g r e a t e r than 1 now equal to 1
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f o r i = 1 : numel ( row )
p i c ( row ( i ) , c o l ( i ) ) = 1 ;

end %end f o r

%pro j e c t the cur r ent p i c tu r e to 3 more dimensions f o r RGB
i f numel ( p i c ( : , 1 ) )>he ight

newPic = p ic ( ( numel ( p i c ( : , 1 ) )−he ight ) / 2 : ( numel ( p i c ( : , 1 ) )+
he ight ) / 2 , : ) ;

e l s e
newPic = p ic ( : , : ) ;

end %end i f−e l s e
newPic ( : , : , 2 ) = newPic ( : , : ) ;
newPic ( : , : , 3 ) = newPic ( : , : , 2 ) ;

%Sets the po s i t i o n o f p i c t u r e . image as opposed to imshow makes
t h i s

%work
h = image ( newPic ) ;
pos2 = get (b , ’ Po s i t i on ’ ) ;
pos2 (3 ) = pos1 (3 ) ;
pos2 (2 ) = pos1 (2 ) − pos2 (4 ) ;
s e t (b , ’ Po s i t i on ’ , pos2 ) ;

i f narg in == 4
f o r i = 1 : numel ( l i n e s ( : , 1 ) )

yLim = get ( a , ’ yl im ’ ) ;
l = l i n e ( [ l i n e s ( i , 1 ) ∗nmPerPixel l i n e s ( i , 1 ) ∗nmPerPixel ] ,

yLim , ’ Color ’ , ’ red ’ , . . .
’ tag ’ , s t r c a t ( ’ l i n e ’ , i n t 2 s t r ( j ) ) ) ;

s e t ( l , ’ parent ’ , a )
yLim = get (b , ’ yLim ’ ) ;
l = l i n e ( [ l i n e s ( i , 1 ) l i n e s ( i , 1 ) ] , yLim , . . .

’ Color ’ , ’ red ’ , ’ tag ’ , s t r c a t ( ’ l i n e ’ , i n t 2 s t r ( j ) , ’_2 ’ )
) ;

s e t ( l , ’ parent ’ , b ) ;
j = j +1;

end %end f o r
end %end i f

%Sets the f unc t i on s to be c a l l e d f o r button pr e s s and mouse c l i c k
. Also

%waits f o r the @endAndOutput func t i on to c a l l uiresume .
s e t ( gcf , ’WindowButtonDownFcn ’ , @createLine )
s e t ( gcf , ’ KeyPressFcn ’ , @endAndOutput )
u iwa i t ( g c f ) ;
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%This func t i on makes a l i n e or f i n d s the c l o s e s t l i n e to the
mouse

%c l i c k to determine the l i n e to be moved .
func t i on c r ea t eL ine ( src , event )

%This f i r s t part w i l l c r e a t e a l i n e f o r a l e f t c l i c k
i f strcmp ( get ( src , ’ Se lect ionType ’ ) , ’ a l t ’ )

c l i c k e d=get ( gca , ’ cu r r en tpo in t ’ ) ;
xcoord=c l i c k e d (1 , 1 , 1 ) ;
yLim = get ( a , ’ yl im ’ ) ;
l i n e ( [ xcoord xcoord ] , yLim , ’ Color ’ , ’ red ’ , . . .

’ tag ’ , s t r c a t ( ’ l i n e ’ , i n t 2 s t r ( j ) ) ) ;
yLim = get (b , ’ yLim ’ ) ;
l = l i n e ( [ xcoord/nmPerPixel xcoord/nmPerPixel ] , yLim , . . .

’ Color ’ , ’ red ’ , ’ tag ’ , s t r c a t ( ’ l i n e ’ , i n t 2 s t r ( j ) , ’_2 ’ )
) ;

s e t ( l , ’ parent ’ , b ) ;
j = j +1;

%This e l s e part c y c l e s through a l l the l i n e s and p i ck s which
one i s

%c l o s e s t in order to p ick which l i n e to drag
e l s e

c l i c k e d=get ( gca , ’ cu r r en tpo in t ’ ) ;
xcoord=c l i c k e d (1 , 1 , 1 ) ;
minDist = i n f ;
f o r i =1: j−1

i f ~any ( de l e t ed == i )
l 1 = f i ndob j ( a , ’ tag ’ , s t r c a t ( ’ l i n e ’ , i n t 2 s t r ( i ) )

) ;
l 2 = f i ndob j (b , ’ tag ’ , s t r c a t ( ’ l i n e ’ , i n t 2 s t r ( i ) ,

’_2 ’ ) ) ;
l ineX = get ( l1 , ’ xdata ’ ) ;
l ineX = l ineX (1 , 1 ) ;
i f abs ( l ineX−xcoord ) < minDist

minDist = abs ( l ineX−xcoord ) ;
l ineTag = l1 ;
l ineTag2 = l2 ;
currentLineTag = i ;

end %end i f d i s t anc e i s sma l l e r than the cur r ent
min d i s t anc e

end %end f o r determining i f the l i n e was de l e t ed
end %end loop ing over a l l the l i n e s

s e t ( gcf , ’ windowbuttonmotionfcn ’ ,@moveLine )
s e t ( gcf , ’ KeyPressFcn ’ , @deleteLine )
s e t ( gcf , ’ windowbuttonupfcn ’ ,@moveDone)

end %end i f r i g h t c l i c k or l e f t c l i c k
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end %end c r ea t eL ine func t i on

%Drags the l i n e whi l e the l e f t c l i c k i s depressed
func t i on moveLine ( src , event )

c l i c k e d=get ( gca , ’ cu r r en tpo in t ’ ) ;
xcoord=c l i c k e d (1 , 1 , 1 ) ;
s e t ( l ineTag , ’ xdata ’ , [ xcoord xcoord ] ) ;
s e t ( l ineTag2 , ’ xdata ’ , [ xcoord/nmPerPixel xcoord/nmPerPixel ] ) ;

end %end moveLine func t i on

%Resets the f unc t i on s a f t e r the l e f t c l i c k i s r e l e a s e d
func t i on moveDone( src , event )

s e t ( gcf , ’ windowbuttonmotionfcn ’ , ’ ’ )
s e t ( gcf , ’ windowbuttonupfcn ’ , ’ ’ )
s e t ( gcf , ’ KeyPressFcn ’ , @endAndOutput )

end %end moveDone func t i on

%Use space bar to e x i t the program
func t i on endAndOutput ( src , event )

i f strcmp ( event . Character , ’ ␣ ’ )
k = 1 ;
f o r i =1: j−1

i f ~any ( de l e t ed == i )
temp = f i ndob j ( gcf , ’ tag ’ , s t r c a t ( ’ l i n e ’ , i n t 2 s t r

( i ) ) ) ;
temp2 = get ( temp , ’ xdata ’ ) ;
xVal (k , 1 ) = k ;
xVal (k , 2 ) = temp2 (1 , 1 ) ;
k = k+1;

end %end i f l i n e has been de l e t ed
end %end loop over a l l l i n e s
xVal = sort rows ( xVal , 2) ;
uiresume ( gc f ) ;
c l o s e ;

end %end i f the keypres s was a space
end %end endAndOutput func t i on

%use the ’d ’ key whi le a l i n e i s s e l e c t e d to d e l e t e i t
f unc t i on de l e t eL in e ( src , event )

i f strcmp ( event . Character , ’d ’ )
d e l e t e ( l ineTag ) ;
d e l e t e ( l ineTag2 ) ;
d e l e t ed = [ de l e t ed currentLineTag ] ;
s e t ( gcf , ’ windowbuttonmotionfcn ’ , ’ ’ )
s e t ( gcf , ’ windowbuttonupfcn ’ , ’ ’ )
s e t ( gcf , ’ KeyPressFcn ’ , @endAndOutput )

end %end i f key p r e s s was d
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end %end de l e t eL in e func t i on

end %end xVal = l i n eP l o t func t i on

func t i on [ space ] = CreateGaussScaleSpace ( data , der iv , s c a l e s )
% space = CreateGaussScaleSpace ( data , der iv , s c a l e s )
% Computes the Gaussian s c a l e space o f a 1D data s e t . ( Sca l e

parameters
% are in data−spac ing un i t s . )
% Input :
% data A 1D data s e t
% der iv The order o f Gaussian s c a l e space to compute ( e . g . 0

i s a
% smoothing s c a l e space ; 1 i s an edge de t e c t i ng s c a l e

space )
% s c a l e s A l i s t ( vec to r ) o f s c a l e s to compute
% Output :
% space A s c a l e space r ep r e s en t a t i on o f the input data

% de f a u l t s
i f ( narg in < 3)

s c a l e s = 1 : 2 0 ;
end
i f ( narg in < 2)

de r i v = 0 ;
end

f o r i = 1 : l ength ( s c a l e s )
s c a l e = s c a l e s ( i ) ;

% Find the gauss ian kerne l , convolve
g = GaussianKernel1D ( s ca l e , de r i v ) ;

% we have to pad the data to avoid the d e r i v a t i v e blowing up at
the

% boundar ies
padData = [ data (1 ) ∗ones ( l ength ( g ) ,1 ) ; data ; data ( end ) ∗ones ( l ength

( g ) ,1 ) ] ;
fData = conv ( padData , g ) ;

% Res ize the f i l t e r e d data
o f f s e t = ( l ength ( fData ) − l ength ( data ) ) / 2 ;
fData = fData ( o f f s e t : o f f s e t+length ( data )−1) ;
space ( : , i ) = fData ;

end ;

func t i on [ k e rne l ] = GaussianKernel1D ( s ca l e , der iv , width )
% GaussianKernel1D ( sigma , der iv , width ) Creates a cente red Gaussian
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% kerne l o f the s p e c i f i e d d e r i v a t i v e order and the s p e c i f i e d s c a l e .
The

% width parameter s p e c i f i e s how many sigma from the cente r the ke rne l
% should extend .
i f ( narg in < 3)

width = 3 ;
end ;
% sigma = sq r t ( s c a l e /(2∗ pi ) ) ;
sigma = s c a l e ;
range = 1:2∗width ∗( c e i l ( sigma ) ) + 1 ;
c en te r = range ( c e i l ( l ength ( range ) /2) ) ;
d e r i v s ( 1 , 1 : l ength ( range ) ) = 1 ;
d e r i v s ( 2 , 1 : l ength ( range ) ) = −(( range−c en te r ) /( sigma^2) ) ;
d e r i v s ( 3 , 1 : l ength ( range ) ) = ( ( range−cen te r ) .^2 − ( sigma^2) ) /( sigma^4)

;
d e r i v s ( 4 , 1 : l ength ( range ) ) = −(( range−c en te r ) .^3 − 3 ∗ ( sigma^2) ∗ (

range−cent e r ) ) /( sigma^6) ;
d e r i v s ( 5 , 1 : l ength ( range ) ) = ( ( range−cen te r ) .^4 − 6 ∗ ( sigma^2) ∗ (

range−cent e r ) .^2 + 3 ∗ ( sigma^4) ) /( sigma^8) ;
k e rne l = (1/( sigma∗ s q r t (2∗ pi ) ) ) ∗ exp (−(( range−c en te r ) .^2) /(2∗ sigma

^2) ) ;
k e rne l = ke rne l .∗ de r i v s ( de r i v +1 , : ) ;

f unc t i on [ extrema ] = FindLocalExtrema ( data , thresho ld , s ca l e ,
r e g i on s )

% maxmin = FindLocalExtrema ( data )
% Finds l o c a l l y maximal or minimal va lue s in the y d i r e c t i o n o f the

g iven
% data .
%
% Input :
% data 1D data array ( image )
% thre sho ld What f r a c t i o n o f t o t a l maximum or minimum a data

po int
% needs to be f o r c on s i d e r a t i on (non−maximum supr e s s i on

)
% s c a l e S p e c i f i e s the number o f data po in t s in a l o c a l

neighborhood
% ( neighborhood l e g th i s 2 ∗ s c a l e + 1)
% reg i on s S p e c i f i e s a s e t o f r e g i on s to look in−− i f not

suppl i ed ,
% the whole data r eg i on w i l l be searched
% Output :
% extrema a vec to r the same s i z e as the input data with value 1

at
% input data maxima and minima , 0 e l s ewhere

i f ( narg in < 3)
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s c a l e = 1 ;
end
i f ( narg in < 2)

th r e sho ld = 0 . 5 ;
end

% r e s c a l e data
rdataMax = data / max( data ) ;
rdataMin = data / min ( data ) ;

winmax = ze ro s ( s i z e ( data ) ) ;
winmin = ze ro s ( s i z e ( data ) ) ;

% Note : I t would have been n i c e to do the f o l lw i n g as a vec to r
operat ion ,

% even with in the min/max de t e c t i on below . For reasons opaque to me,
the

% max( ) func t i on doesn ’ t seem to work in a vec to r opera t i on . We
wanted

% something l i k e :
% winmax( i i ) = max( rdataMax ( i i−s c a l e : i i+s c a l e ) ) ;
% But , t h i s seems to generate a vec to r mostly of , almost l i k e the

maximum
% i s being app l i ed cummulatively . Oh, we l l . . . t h i s i sn ’ t too slow i f

the
% data are not too big .
% c r ea t e a s l i d i n g window min & max
f o r i = 1+s c a l e : s i z e ( data , 1 )−s c a l e

winmax( i ) = max( rdataMax ( i−s c a l e : i+s c a l e ) ) ;
winmin ( i ) = max( rdataMin ( i−s c a l e : i+s c a l e ) ) ;

end

maxima = ze ro s ( s i z e ( data ) ) ;
minima = ze ro s ( s i z e ( data ) ) ;

% f i nd the l o c a l minima and maxima
i f ( narg in < 4) % reg i on s not de f ined−−search everywhere

i i = (1+ s c a l e : s i z e ( data , 1 )−s c a l e ) ’ ;
maxima( i i ) = rdataMax ( i i ) >= thre sho ld & rdataMax ( i i ) >= winmax(

i i ) ;
minima ( i i ) = rdataMin ( i i ) >= thre sho ld & rdataMin ( i i ) >= winmin (

i i ) ;
e l s e % only search in s p e c i f i e d r e g i on s

f o r i = 1 : l ength ( r e g i on s )
i i = (max(1+ sca l e , r e g i on s ( i )−s c a l e ) : min ( s i z e ( data , 1 )−s ca l e ,

r e g i on s ( i )+s c a l e ) ) ’ ;
maxima( i i ) = rdataMax ( i i ) >= thre sho ld & rdataMax ( i i ) >=

winmax( i i ) ;
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minima ( i i ) = rdataMin ( i i ) >= thre sho ld & rdataMin ( i i ) >=
winmin ( i i ) ;

end
end

% combine min and max
extrema = maxima + minima ;

func t i on [ s t a t s ] = RegionStats ( data , reg ionIdx , rad iu s )
% [ s t a t s ] = RegionStats ( data , r eg ion Idx )
% Finds s t a t i s t i c s f o r data broken up in to d i s t i n c t r e g i on s .
% Input :
% data The data to ana lyze
% reg ionIdx The i n d i c e s that demarcate d i s t i n c t data r e g i on s
% rad iu s The rad iu s o f t r a n s i t i o n r e g i on s ( data with in

t r a n s i t i o n
% reg i on s i s exc luded from s t a t i s t i c s )

i f ( narg in < 3)
rad iu s = 1 ;

end

reg i on = 1 : r eg ion Idx (1 )−rad iu s ;
s t a t s (1 , : ) = [mean( data ( r eg i on ) ) , s td ( data ( r eg i on ) ) ] ;
f o r i = 2 : l ength ( reg ion Idx )

r eg i on = reg ion Idx ( i −1)+rad iu s : r eg ion Idx ( i )−rad iu s ;
s t a t s ( i , : ) = [mean( data ( r eg i on ) ) , s td ( data ( r eg i on ) ) ] ;

end
reg i on = reg ion Idx ( end )+rad iu s : l ength ( data ) ;
s t a t s ( end+1, : ) = [mean( data ( r eg i on ) ) , s td ( data ( r eg i on ) ) ] ;
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