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ABSTRACT

Yuying Xie: ESTIMATION OF GRAPHICAL MODELS WITH BIOLOGICAL
APPLICATIONS

(Under the direction of Yufeng Liu and William Valdar)

Graphical models are widely used to represent the dependency relationship among ran-

dom variables. In this dissertation, we have developed three statistical methodologies for

estimating graphical models using high dimensional genomic data. In the first two, we

estimate undirected Gaussian graphical models (GGMs) which capture the conditional de-

pendence among variables, and in the third, we describe a novel method to estimate a

Gaussian Directed Acyclic Graph (DAG).

In the first project, we focus on estimating GGMs from a group of dependent data.

A motivating example is that of modeling gene expression collected on multiple tissues

from the same individual. Existing methods that assume independence among graphs are

not applicable in this setting. To estimate multiple dependent graphs, we decompose the

problem into two graphical layers: the systemic layer, which is the network affecting all

outcomes and therefore describing cross-graph dependency, and the category-specific layer,

which represents the graph-specific variation. We propose a new graphical EM technique

that estimates the two layers jointly; and also establish the estimation consistency and

selection sparsistency of the proposed estimator. We confirm by simulation and real data

analysis that our EM method is superior to a naive one-step method

Next, we consider estimating GGMs from noisy data. A notable drawback of exist-

ing methods for estimating GGMs is that they ignore the existence of measurement error

which is common in biological data. We propose a new experimental design using technical

replicates, and develop a new methodology using an EM algorithm to efficiently estimate

the sparse GGM by taking account the measurement error. We systematically study the

asymptotic properties of the proposed method in high dimensional settings. Simulation
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study suggests that our method have substantially higher sensitivity and specificity to esti-

mate the underlying graph than existing methods.

Lastly, we consider the estimation of the skeleton of a Directed Acyclic Graph (DAG)

using observational data. We propose a novel method named AdaPC to efficiently esti-

mate the skeleton of a DAG by a two-step approach. The performance of our method is

systematically evaluated by numerical examples.
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CHAPTER 1

Introduction

With the advance of technology in recent years, we have witnessed a data explosion

in many fields including biological science, social network and engineering. As a result, in

order to better explore and understand the information behind large and maybe noisy data

sets, there is a great need for the development of new statistical methodologies. A graphical

model is a probabilistic model which uses a graph to denote the conditional dependence

structure among random variables. Since graphs are conveniently used to provide insight

and capture complex dependencies among random variables, graphical models have become

an important focus of research in recent years. For example, in biological research, genes

can be represented by the nodes of a graph, and the correlations between genes can be

represented by the edges. In the area of finance, nodes of a graph can represent different

stocks in Nasdaq and edges can represent the partial correlation between stocks.

There are two commonly used branches of graphical models. The first is Markov Ran-

dom Fields, i.e. Markov networks. A Markov random field (MRF) is a model over an

undirected graph representing conditional independence between variables (Pearl, 1995).

The simplest continuous MRF is Gaussian graphical model (GGM), since the first two mo-

ments can fully specify the corresponding distribution. In Sections 1.2 and 1.3, some basic

background and extension of GGM in the statistical machine learning literature are in-

troduced. The second is Bayesian networks, also known as Directed Acyclic Graph (DAG)

which are models over directed graphs and commonly used for causal inference (Pearl, 2009).

In Sections 1.4 and 1.5, the background and recent advances in Baysian networks are briefly

discussed. For more details on graphical model please refer to the comprehensive book by

Pearl (2009).



1.1 Gaussian Graphical Models

Gaussian Graphical models (GGMs) are widely used to represent conditional depen-

dencies among sets of normally distributed outcome variables that are observed together.

For example, observed, and potentially dense, correlations between measurements of ex-

pression for multiple genes, stock market prices of different asset classes, or blood flow for

multiple voxels in functional Magnetic Resonance Imaging (fMRI)-measured brain activity

can often be more parsimoniously explained by an underlying graph corresponding to the

partial correlation. The partial correlation matrix is normally assumed to be sparse, since

most of the time two variables interact with each other through other variables, hence the

partial correlation between these two variables given all other variables is zero. As methods

for estimating these underlying graphs have matured, a number of elaborations to the basic

GGM have been proposed; these include elaborations that seek either to model more closely

the sampling distribution of the data, or to model prior expectations of the analyst about

structural similarities among graphs representing data sets that are related.

Introduced more formally, the conditional dependence relationships among a set of p

outcome variables, y = (y1, ..., yp), can be represented by a graph G = (X,E) where each

variable corresponds to a node in the set V and conditional dependencies are represented

by the edges in the set E. If we further assume that the joint distribution of the outcome

variables is multivariate Gaussian, y ∼ N (0,Σ), then conditional dependencies are reflected

in the non-zero entries of the precision matrix Ω = Σ−1. Specifically, variables i and j are

conditionally independent given the other variables if and only if the (i, j)-th element of

Ω is zero. Inferring the dependence structure of such a Gaussian graphical model is thus

equivalent to estimating which elements of its precision matrix are non-zero.

When the underlying graph is sparse, as is often assumed, the ordinary maximum

likelihood estimate (MLE) is dominated by shrinkage methods: The MLE of Ω typically

results a graph that is fully connected, and so gives a result that is unhelpful for estimating

graph topology. To impose sparsity, and thereby provide a more informative inference about

network structure, a number of methods have been introduced that estimate the precision

matrix under `1 regularization. For example, Meinshausen and Bühlmann (2006) proposed

2



to determine iteratively the edges of each node in G by regressing the corresponding variable

yj on the remaining variables y−j under an `1 penalty, an approach which can be viewed

as optimizing a pseudo-likelihood (Rocha et al., 2008; Ambroise et al., 2009; Peng et al.,

2009). Several groups have proposed sparse penalized maximum likelihood to estimate

GGMs(see for example Yuan and Lin, 2007; Banerjee et al., 2008; d’Aspremont et al., 2008;

Rothman et al., 2008). Several efficient implementations solving this problem have also been

published including the graphical-LASSO (GLASSO) algorithm (Friedman et al., 2008) and

the QUadratic Inverse Covariance (QUIC) algorithm (Hsieh et al., 2011). The asymptotic

properties of such penalized estimation schemes have also been described in theoretical

studies (for example, Rothman et al., 2008; Lam and Fan, 2009).

1.2 Extensions of Gaussian Graphical Models

Although a single graph provides a useful representation for an underlying dependence

structure, several extensions of GGMs have been proposed. In the context where the pre-

cision matrix, and hence the graph, is dynamic over time, Zhou et al. (2010) proposed a

weighted method to estimate the graph’s temporal evolution. Another practical extension

is the simultaneous estimation of multiple graphs that may share some common structure.

For example, when inferring how brain regions interact using fMRI data, each subject’s

brain corresponds to a different graph, but we would nonetheless, expect some interaction

patterns to be common across subjects, as well as patterns specific to an individual. In

such cases, joint estimation of multiple related graphs can be more efficient than estimat-

ing graphs separately. For joint estimation of Gaussian graphs, Varoquaux et al. (2010)

and Honorio and Samaras (2010) proposed methods using group-LASSO (Yuan and Lin,

2006), and multitask-LASSO respectively. Both methods assume that all graphs share

the same pattern, namely that the precision matrices have the same pattern of zeros. To

provide greater flexibility, Guo et al. (2011) proposed a joint penalized method using a

hierarchical penalty, and derived the convergence rate and sparsistency properties for the

resulting estimators. Under the same setting, Danaher et al. (2014) extended the graphical

3



lasso (Friedman et al., 2008) to estimate multiple graphs from independent data sets using

penalties based on the generalized fused lasso or, alternatively, the sparse group lasso.

However, in some applications, data from different categories are naturally dependent,

hence the methods mentioned above are not valid. In Chapter 2, we develop a new graphical

EM method to estimate the GGMs from dependent data sets.

1.3 Bayesian Networks and Directed Acyclic Graphs

Causality is an important topic in scientific research. Bayesian networks have become

popular in recent years for their application in causal inference (Glymour, 1987; Koller

and Friedman, 2009; Pearl, 1995, 2000, 2009). Though estimating causal effect requires

experimental data, when the causal structure, the DAG of the Bayesian network, is given,

the post-intervention distributions and causal effects can be estimated from observational

data using various existing methods (Pearl, 2000).

A Bayesian network is a probabilistic graphical model that uses a directed acyclic graph

(DAG) to represent the conditional dependencies of a set of random variables. More for-

mally, a DAG is a mathematical object consisting of a pair (V,E), where V is the set of

vertices indicating random variables and E contains all the directed edges representing di-

rect causal relationship among the variables. A directed edge is an ordered pair of nodes:

For example, the edge from node X → node Y can be represented as (X,Y ). Implicit in

the notation (X,Y ) are several additional constraints on the relationship between X and

Y : X is said to be a parent of Y , Y is a child of X, and the two node are adjacent with one

another. A directed path in G is a sequence of distinct vertices with directed edge pointing

from each vetex to its successor. X is called the an ancestor of Y , and Y a descendant of

X, if there is a directed path from X to Y . There are no directed cycles in a DAG, namely,

there are no two distinct vertices that are ancestors of each other. This requirement is a

necessary condition for causal inference (Spirtes et al., 2000).

Given a Bayesian network including the DAG G(V,E) and corresponding probability

distribution P, it is well known that there are other DAGs which can describe exactly the

same conditional independence information of P (Chickering and Boutilier, 2002). Hence
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we could only identify an class of DAGs called the Markov equivalence class given the data.

The DAGs in a Markov equivalence class share the same skeleton structure and v-structures

(Pearl, 2009). Here, skeleton of a DAG is the undirected version of DAG, and a v-structure

(Xi, Xj , Xk) is a triple structure in a DAG with the edges oriented as (Xi → Xj ← Xk).

Using the shared skeleton structure and v-structures in a Markov equivalence class, we

define a completed partially directed acyclic graph (CPDAG) which uniquely represents

the corresponding Markov equivalence class (Andersson et al., 1997). A CPDAG has the

following properties: 1) The skeleton of a CPDAG is the same for each DAG in the Markov

equivalence class; 2) If an edge in such a CPDAG is directed, all the DAGs in the equivalence

class have the same directed edge; 3) For every undirected edge (Xi−Xj) in such a CPDAG,

there exists at least a DAG with Xi → Xj and a DAG with Xi ← Xj .

1.4 Estimation of Directed Acyclic Graphs and Skeleton

Estimating DAG can be challenging, since the size of the space of DAGs is super-

exponential in the number of nodes (Kalisch and Bühlmann, 2007). However, when the

dimension is small or moderate, there are several quite successful methods using greedy or

structurally restricted approaches (See for example, Chickering and Boutilier, 2002; Chow

et al., 1968; Heckerman and Chickering, 1995; Spiegelhalter et al., 1993).

In order to handle high dimensional data, Spirtes et al. (2000) proposed a sequential

method called Peter-Clark algorithm also known as PC-algorithm. Starting from a fully

connected graph, the PC algorithm recursively removes edges based on conditional indepen-

dence test to obtain an undirected graph, namely the skeleton of the DAG. The resulting

skeleton can then be partially directed via additional tests to obtain further information of

the corresponding DAG. After proposed, the PC-algorithm has gained a lot of attentions

especially in high-dimensional settings among different areas(See for example, Kalisch et al.,

2010; Stekhoven et al., 2012; Zhang et al., 2012),since it is computationally feasible for thou-

sands of variables when the underlying graph is sparse and efficient. There is also an R

package available (Kalisch et al., 2012). Moreover, the PC-algorithm estimation consistency

has also been studied (Kalisch and Bühlmann, 2007). As a drawback of the PC-algorithm,
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the results of PC-algorithm are order-dependent, in the sense that different initial nodes

would lead to different outputs. To overcome this drawback, Colombo and Maathuis (2013)

proposed a modified PC-algorithm called PC-stable algorithm, which is order-invariant.

Another drawback of the PC-algorithm is the large number of tests for high dimensional

data, since it starts from a fully connected graph. To address this problem, one can start

with the so called moral graph (also known as the independence graph) instead of the

fully connected graph. A moral graph is a undirected graph generated from a DAG by

connecting two parents of the same node corresponding to the v-strucure, and then removing

the direction from all edges. Therefore, the moral graph of a DAG contains or equals

to its skeleton. Namely, the skeleton could be obtained by removing extra edges in the

corresponding moral graph. Based on this fact, Spirtes et al. (2000) proposed the the

Independence Graph (IG) algorithm, which first estimates the independence graph, i.e. the

moral graph, and then removes extra edges using conditional independence tests. Under

the multivariate Gaussian assumption, the moral graph becomes the partial correlation

graph which can be uniquely determined by Ω as described in Section 1.1. Under Gaussian

assumption, Ha et al. (2014) proposed the PenPC algorithm which is similar to the IG

algorithm. The concept behind PenPC is that they first estimate the precision matrix Ω via

penalized regression, and then use a modified PC-stable algorithm to delete the extra edges

due to v-structures. The advantage of the PenPC algorithm relies on the fact that it screens

out most of the extra edges in the first step leaving much few conditional independence tests

to be performed in the following step. Thus the PenPC algorithm enjoys better accuracy

and faster computational speed.

A network is denoted as scale-free when its degree distribution (asymptotically) follows

a power law. The biological networks and social networks are conjectured to be scale-free,

and hence have many v-structures which leads to a great amount of extra edges in the

first step of PenPC algorithm. To address this shortcoming, we proposed a new method,

denoted as AdaPC, to estimate the intercept of precision and covariance matrices and then

remove extra edges to recover the skeleton in Chapter 4. Since in scale-free networks, the

covariance matrices are relative sparse, thus the resulting interception between precision

and covariance matrices are much sparser than precision matrices alone.
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CHAPTER 2

Joint Estimation of Multiple Dependent Gaussian Graphical Models with Ap-
plications to Mouse Genomics

2.1 Introduction

Gaussian Graphical models (GGMs) are widely used to represent conditional depen-

dencies among sets of normally distributed outcome variables that are observed together.

For example, observed, and potentially dense, correlations between measurements of ex-

pression for multiple genes, stock market prices of different asset classes, or blood flow for

multiple voxels in functional Magnetic Resonance Imaging (fMRI)-measured brain activity

can often be more parsimoniously explained by an underlying graph whose structure may

be relatively sparse. As methods for estimating these underlying graphs have matured, a

number of elaborations to the basic GGM have been proposed; these include elaborations

that seek either to model more closely the sampling distribution of the data, or to model

prior expectations of the analyst about structural similarities among graphs representing

data sets that are related. In this paper, we propose an elaboration that seeks to model

an additional feature of the sampling distribution — a feature increasingly encountered in

biomedical data — whereby correlations between the observed outcome variables are more

realistically considered to be the byproduct of multiple underlying conditional dependencies

acting at different levels: Specifically, the case where, for example, observed correlations

between expressed genes in different tissues (e.g., liver, kidney, brain) measured on the same

individual result from distinct dependence structures existing not only within the specific

tissue but also across tissues (system-wide) at the level of the whole body. We describe these

independent graphical strata as the “category-specific” and the “systemic” layers, and use

latent outcome variables to approach their estimation.



Introduced more formally, the conditional dependence relationships among a set of p

outcome variables, Y = (Y1, . . . , Yp), can be represented by a graph G = (Γ, E) where each

variable corresponds to a node in the set Γ and conditional dependencies are represented

by the edges in the set E. If we further assume that the joint distribution of the outcome

variables is multivariate Gaussian, Y ∼ N (0,Σ), then conditional dependencies are reflected

in the non-zero entries of the precision matrix Ω = Σ−1. Specifically, variables i and j are

conditionally independent given the other variables if and only if the (i, j)-th element of

Ω is zero. Inferring the dependence structure of such a Gaussian graphical model is thus

equivalent to estimating which elements of its precision matrix are non-zero.

When the underlying graph is sparse, as is often assumed, the ordinary maximum

likelihood estimate (MLE) is dominated by shrinkage methods: The MLE of Ω typically

implies graph that is fully connected, and so gives a result that is unhelpful for estimating

graph topology. To impose sparsity, and thereby provide a more informative inference about

network structure, a number of methods have been introduced that estimate the precision

matrix under `1 regularization. For example, Meinshausen and Bühlmann (2006) proposed

to determine iteratively the edges of each node in G by regressing the corresponding variable

Yj on the remaining variables Y−j under an `1 penalty, an approach which can be viewed

as optimizing a pseudo-likelihood (Rocha et al., 2008; Ambroise et al., 2009; Peng et al.,

2009). More recently, a large number of papers have proposed for estimation of GGMs

using sparse penalized maximum likelihood (see for example Yuan and Lin, 2007; Banerjee

et al., 2008; d’Aspremont et al., 2008; Rothman et al., 2008; Ravikumar et al., 2011).

Efficient implementations to address this problem include the graphical-LASSO (GLASSO)

algorithm (Friedman et al., 2008) and the QUadratic Inverse Covariance (QUIC) algorithm

(Hsieh et al., 2011). The convergence rate and selection consistency of such penalized

estimation schemes have also been described in theoretical studies (for example, Rothman

et al., 2008; Lam and Fan, 2009).

Although a single graph provides a useful representation for an underlying dependence

structure, several extensions of GGMs have been proposed. In the context where the pre-

cision matrix, and hence the graph, is dynamic over time, Zhou et al. (2010) proposed a

weighted method to estimate the graph’s temporal evolution. Another practical extension
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is the simultaneous estimation of multiple graphs that may share some common structure.

For example, when inferring how brain regions interact using fMRI data, each subject’s

brain corresponds to a different graph, but we would nonetheless, expect some interaction

patterns to be common across subjects, as well as patterns specific to an individual. In

such cases, joint estimation of multiple related graphs can be more efficient than estimat-

ing graphs separately. For joint estimation of Gaussian graphs, Varoquaux et al. (2010)

and Honorio and Samaras (2010) proposed methods using group-LASSO (Yuan and Lin,

2006), and multitask-LASSO respectively. Both methods assume that all graphs share

the same pattern, namely that the precision matrices have the same pattern of zeros. To

provide greater flexibility, Guo et al. (2011) proposed a joint penalized method using a

hierarchical penalty, and derived the convergence rate and sparsistency properties for the

resulting estimators. Under the same setting, Danaher et al. (2014) extended the graphical

lasso (Friedman et al., 2008) to estimate multiple graphs from independent data sets using

penalties based on the generalized fused lasso or, alternatively, the sparse group lasso.

The methods discussed above for estimating multiple Gaussian graphs focus on set-

tings in which data collected from different categories are stochastically independent. In

some applications, however, data from different categories are more naturally considered

stochastically dependent. In a study considered here, gene expression data have been col-

lected on multiple tissues in multiple mice. Specifically, for each mouse, we have expression

measurements for p genes in each of K different tissues (or categories, in our terminology),

represented by the p-vector Yk (k = 1, . . . ,K). Gene expression profiles between mice may

be from a similar network structure, but are otherwise stochastically independent. Gene

expression profiles for different tissues within the same mouse, however, are stochastically

dependent. For this type of data, increasingly common in biomedical research, the above

methods are not applicable.

To explore the gene network structure across different tissues, and to characterize the

dependence among tissues, we consider a decomposition of the observed gene expression Yk

into two latent vectors

Yk = Z +Xk (2.1)
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where Z,X1, . . . , XK are mutually independent. Because cov(Yk, Yl) = var(Z) for any

k 6= l, Z represents the sample dependence across different tissues. Letting Ωj denote the

precision matrix of Xj for tissue j, and defining var(Z) = Ω−1
0 , we aim to estimate Ωk for

all k = 0, 1, . . . ,K from the observed outcome data {Y1 = y1, . . . , YK = yK}. To accomplish

joint estimation of multiple dependent networks, two new methods are proposed: a one-step

method and an expectation-maximization (EM) method. To our knowledge, this is the first

work proposing joint estimation of such systemic and category-specific networks.

In the above decomposition, z can be viewed as representing “systemic” variation in

gene expression, that is, variation manifesting simultaneously in all measured tissues of the

same mouse, whereas xk represents “category-specific” variation, that is, variation unique

to tissue k. An important property of this two-layer model is that sparsity in the systemic

and category-specific networks can produce graphs for the outcome variable y that are

highly connected (i.e., not sparse). Conversely, highly connected graphs for the outcome y

can easily arise from relatively sparse underlying dependencies acting at two levels. This

phenomenon is illustrated in Figure 2.1. Category-specific networks Ω1 and Ω2 are depicted

for the two categories C1 and C2 (Figure 2.1a,b); these might correspond to, for example,

liver and brain tissue-types. The systemic network Ω0 is depicted in Figure 2.1c; this

reflects relationships affecting all tissues at once, for example, gene interactions that are

responsive to hormone levels or other globally-acting processes. Despite the fact that all

three underlying networks, Ω0, Ω1 and Ω2, are sparse, the precision matrix of observed

variables within each tissue — that is, the “aggregate” network ΩYk = (Ω−1
0 + Ω−1

k )−1

(following Eq (2.1)) — is nonetheless highly connected. Existing methods aiming to estimate

a single sparse network layer are therefore ill-suited to this problem because they impose

sparsity in the wrong place — on the aggregate network rather than on the two simpler

layers that generate it. Even methods that seek a common structure shared by categories

will be inappropriate because the dependence between the categories is not only structural

but also stochastic: Even if a mouse has biological replicates (e.g., genetically identical but

distinct mice) that exhibit the same structure of systemic network, that mouse’s own tissues

are affected by individual-specific system-wide stochastic variation.
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b) Category−specific network for C2, Ω2
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1

23

4

5

6

7 8

9

10

e) Aggregate network for C2, Ωy2
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Figure 2.1: Illustration of systemic and category-specific networks using a toy example with two
categories (C1 and C2) and p = 10 variables. a) Category-specific network for C1. b) Category-
specific network for C2. c) Systemic network affecting variables in both C1 and C2. d)Aggregate
network, ΩY1

= (Ω−1
1 + Ω−1

0 )−1, for category C1. e) Aggregate network, ΩY2
= (Ω−1

2 + Ω−1
0 )−1 , for

C2.

The remainder of the article is organized as follows. In Section 2.2, we introduce

our dependent Gaussian graphical model, its implementation, and the one-step and EM

methods. In Section 2.3, we study the asymptotic properties of the proposed methods.

In Section 2.4, we illustrate the performance of our methods through simulations and real

mouse study.

2.2 Methodology

For convenience the following notations are used throughout the paper. We denote

the true precision and covariance matrices respectively as Ω∗ and Σ∗. For any matrix

W = (ωij), we denote the determinant as det(W ), the trace as tr(W ) and W− as the

off-diagonal entries of W . We further denote the jth eigenvalue of W as φj(W ), and the

minimum and maximum eigenvalues of W as φmin(W ) and φmax(W ). The Frobenius norm

‖W‖F is defined as
∑

i,j ω
2
ij ; the operator/spectral norm ‖W‖2 is defined as φmax(WWT);

the infinity norm ‖W‖∞ is defined as max|wij |, and we also define |W |1 =
∑

i,j |ωij | .
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2.2.1 Problem formulation

In the problem we address, measurements are available on the same p outcome variables

in each of K distinct categories on each of n subjects. Some dependency is anticipated

among outcomes both at the level of the category and at the level of the subject. We

describe dependency at the level of the category as “category-specific”. Drawing an analogy

with physiology, we describe dependency at the level of the subject (i.e., the individual, the

mouse, etc) as “systemic”; that is, modelled as if affecting outcomes in all categories of the

same subject simultaneously. Our primary example is the measurement of gene expression

giving rise to transcript abundance readings on p genes on K tissues (e.g., liver, kidney,

brain) in n laboratory mice. Letting Yk,i be the i-th data vector for the k-th category, we

model

Yk,i = Xk,i + Zi (i = 1, . . . , n; k = 1, . . . ,K), (2.2)

where Zi is the random vector corresponding to the shared systemic random effect, and

Xk,i is the random effect corresponding to the k-th category. We assume that Xk,i and Zi

are independent and identically distributed p−dimensional random vectors with mean 0,

and covariance matrices Σk and Σ0 respectively, for i = 1, . . . , n and k = 1, . . . ,K. For

simplicity, we further assume that Xk,i, and Zi are independent of each other and each

follows a multivariate Gaussian distribution.

For the i-th sample in the k-th category, we observe the p-dimensional realization of Yk,i,

vector yk,i = (yk,i1, . . . , yk,ip)
T. Without loss of generality, we assume these observations

are centered, i.e.,
∑n

i=1 yk,ij = 0 (j = 1, . . . , p; k = 1, . . . ,K). Let y·,i be the combined

data vector with y·,i = (yT
1,i, . . . , y

T
K,i)

T, such that y·,i follows a Gaussian distribution with

covariance ΣY = {dΣk}+J⊗Σ0 = {ΣY (l,m)}1≤l,m≤K , where {d·} is a block diagonal matrix,

J is a square matrix with all 1′s as the entries, ⊗ is the Kronecker product and ΣY (l,m)

is the covariance matrix between Yl and Ym. We denote the n by Kp dimensional data

matrix by y = (y·,1, . . . , y·,n)T, and let Ωk = (Σk)
−1 = (ωk(i,j))p×p, and ΩY = (ΣY )−1

Kp×Kp.

Our goal is to estimate Ωk. Although Xk and Z are latent variables, we can show that Ωk

is identifiable under the model setup in (2.2) with K ≥ 2. More details can be found in
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Section 2.6. For simplicity, we write Ω and Σ for {Ωk}Kk=0 and {Σk}Kk=0 respectively in the

following derivation.

The log-likelihood of the data can be written as

L(Ω | y) = −npK
2

log(2π) +
n

2

[
log{det(ΩY )} − tr(Σ̂Y ΩY )

]
,

where

Σ̂Y = n−1
n∑
i=1

yiy
T
i = {Σ̂Y (l,m)}1≤l,m≤K (2.3)

is the Kp×Kp sample covariance matrix. Under our setting, the log-likelihood can also be

expressed as

L(Ω | y) ∝
K∑
k=1

[
log{det(Ωk)} − tr(Σ̂Y (k,k)Ωk)

]
+ log{det(Ω0)}

− log{det(A)}+

K∑
l,m=1

tr
(

ΩlΣ̂Y (l,m)ΩmA
−1
)
, (2.4)

where A =
∑K

k=0 Ωk. The detailed derivation can be found in the Supplementary material.

A natural way to achieve a sparse estimate of Ω is to maximize the penalized log-

likelihood

Ω̂ = argmax
Ω�0

P(Ω) = argmax
Ω�0

L(Ω | y)− λ1

K∑
k=1

|Ω−k |1 − λ2|Ω−0 |1. (2.5)

Because the likelihood is complicated in its full form, direct estimation of the precision

matrices in (2.5) is difficult. Estimation can proceed directly, however, given the values z

of the latent outcome vector Z. Using this observation and recalling that Z ∼ N (0,Σ0),

we can first estimate Σ0 and then the other parameters subsequently. In Sections 2.2.2 and

2.2.3, we consider estimation of these multiple dependent graphs using a one-step procedure

and a method based on the EM algorithm.

2.2.2 One-step method

The idea behind our one-step method is to generate a good initial estimate for Σ and

then obtain estimates for Ω through a subsequent one-step optimization. Because var(Z) =
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cov(Yl, Ym), for any m 6= l, it is natural to use the covariance matrix ΣY (l,m) between all

pairs of Yl and Ym to estimate Σ0 as

Σ̂0 =
1

K(K − 1)

∑
m6=l

Σ̂Y (m,l) =
1

K(K − 1)n

∑
m 6=l

n∑
i=1

(
ym,iy

T
l,i

)
. (2.6)

Using the fact that var(Xk) = var(Xk)− var(Z), we can then obtain an estimate for Σk as

Σ̂k = Σ̂Y (k,k) − Σ̂0 =
1

n

n∑
i=1

(
yk,iy

T
k,i

)
− Σ̂0. (2.7)

Note that although Σ̂k is symmetric, it is not necessarily positive semidefinite. Positive

definiteness can be ensured, however, using the projection approach of Xu and Shao (2012):

for any possible non-positive definite matrix Σ̂k, we obtain the projection Σ̂′k by solving

Σ̂′k = argmin
Σ�0

‖Σ− Σ̂k‖∞. (2.8)

Lastly, we estimate Ω by minimizing K + 1 separate functions, Wk, defined as follows:

Wk(Ωk) = tr(Σ̂′kΩk)− log{det(Ωk)}+ λ
∑
i 6=j

∣∣ωk(i,j)

∣∣ , (2.9)

where k = 0, 1, . . . ,K, and λ = λ2 when k = 0 and λ = λ1 otherwise. The minimization

problem of (2.9) can be solved efficiently by various algorithms such as GLASSO as proposed

by Friedman et al. (2008) or by QUIC as proposed by Hsieh et al. (2011). We refer to this

approach as the “one-step” method and compare its performance with the EM method

defined next.

2.2.3 Graphical EM method

The one-step method provides an estimate of Ω. In the spirit of the classic Expectation-

Maximization (EM) algorithm (Dempster et al., 1977), this estimate of Ω can be used to

obtain a better estimate of Σ, which in turn can be used to obtain a better estimate of Ω.

This procedure can then be iterated until the estimates of Ω converge, leading to a graphical

EM, described in detail below.
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First, we rewrite the sampling model as

Z

Y1 − Z
...

YK − Z


∼ N





0

0

...

0


,



Σ0 0 . . . 0

0 Σ1 . . . 0

...
...

...
...

0 0 . . . ΣK




,

and the log-likelihood on the observed data Y = y as

L(Ω | y, z) ∝ log
{

det(Ω0)
}
− tr

(
Ω0zz

T/n
)

+
K∑
k=1

[
log
{

det(Ωk)
}
− tr

(
Ωk

n∑
i=1

(yk,i − zi)(yk,i − zi)T/n
)]
.

The above log likelihood cannot be calculated directly because the values of zi and ziz
T
i

are unobserved. But we can calculate a function Q(Ω | Ω(t), y) in which zi and ziz
T
i are

substituted by their expected values conditional on Ω and y. This implies the following EM

steps.

E step:

Q(Ω | y,Ω(t)) ∝
K∑
k=1

(
log{det(Ωk)} − tr

[
ΩkE

{
n∑
i=1

(yk,i − zi)(yk,i − zi)T/n | y,Ω(t)

}])

+ log{det(Ω0)} − tr

{
Ω0E

(
n∑
i=1

ziz
T
i /n | y,Ω(t)

)}

=

K∑
k=0

{
log{det(Ωk)} − tr

(
ΩkΣ̇

(t)
k

)}
.

M step:

Ω(t+1) = argmin
Ω
−Q(Ω | y,Ω(t)) + λ1

∑
i 6=j

K∑
k=1

∣∣ωk(i,j)

∣∣+ λ2

∑
i 6=j

∣∣ω0(i,j)

∣∣ , (2.10)

where Ω(t) and ω
(t)
k(i,j) denote the estimates from the t-th iteration, and Σ̇

(t)
k is defined as

Σ̇
(t)
k =E

{
n∑
i=1

(yk,i − zi)(yk,i − zi)T/n | y,Ω(t)

}

=Σ̈Y (k,k) −
K∑
l=1

(
Σ̈Y (k,l)Ω

(t)
l

)
(A(t))−1 − (A(t))−1

K∑
l=1

(
Ω

(t)
l Σ̈Y (l,k)

)
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+ (A(t))−1
K∑

l,k=1

(
Ω

(t)
l Σ̈Y (l,k)Ω

(t)
k

)
(A(t))−1 + (A(t))−1, (k = 1, . . . ,K). (2.11a)

Σ̇
(t)
0 =

n∑
i=1

E
(
ziz

T
i /n | y,Ω(t)

)
= (A(t))−1 + (A(t))−1

K∑
l,k=1

(
Ω

(t)
l Σ̈Y (l,k)Ω

(t)
k

)
(A(t))−1, (2.11b)

where Σ̈y is an estimator for Σ∗y, here Σ̈y = Σ̂y. Thus, at the t+ 1 iteration, problem (2.74)

is decomposed into K + 1 separate optimization problems:

Ω
(t+1)
k = argmin

Ωk

tr
(

ΩkΣ̇
(t)
k

)
− log{det(Ωk)}+ λ

∑
i 6=j

∣∣ωk(i,j)

∣∣ , (2.12)

where λ = λ2 when k = 0, otherwise λ = λ1 for k = 0, . . . ,K. We then can use GLASSO

(Friedman et al., 2008) to solve (2.12).

We summarize the proposed EM method in the following steps:

Step 1 (Initial value). Initialize Σ̂0 and Σ̂k for all k = 1, . . . ,K using (2.3), (2.6), (2.7)

and (2.8).

Step 2 (Updating rule: the M step). Update Ωk using (2.12) for all k = 0, . . . ,K using

GLASSO.

Step 3 (Updating rule: the E step). Update Σ̇k using (2.76a) and (2.76a).

Step 4 (Iteration). Iterate Steps 2 and 3 until convergence is achieved.

The next proposition demonstrates the convergence property of our graphical EM al-

gorithm.

Proposition 2.1. With λ1 > 0 and λ2 > 0, the graphical EM algorithm solving (2.5) has

the following properties:

1. The penalized log-likelihood in (2.5) is bounded above;

2. For each iteration, the penalized log-likelihood is non-decreasing;

3. For a prespecified threshold δ, after finite steps, the objective function in (2.5) con-

verges in the sense that

|P(Ω(t+1))− P(Ω(t))| < δ.

16



The detail of proof could be found in the Proof section.

2.2.4 Model selection

We consider two options for selecting the tuning parameter λ = (λ1, λ2), minimization

of the extended BIC (Chen and Chen, 2008), and cross-validation. Extended BIC is quick to

compute and explicitly takes into account both goodness of fit and model complexity. Cross-

validation, by contrast, is more computationally demanding and focuses on the predictive

power of the model.

In our model we define extended BIC as

BICγ(λ) = −2L({Ω̂k}Kk=0) + ν(λ) log n+ 2γ log

(
Kp(p− 1)/2

ν(λ)

)
, 0 ≤ γ ≤ 1,

where {Ω̂k}Kk=0 are the estimates with the tuning parameter set at λ, L(·) is the likelihood

function described in (2.4), the degrees of freedom, ν(λ), is the sum of the number of non-

zero off-diagonal elements on {Ω̂k}Kk=0. The criterion is indexed by a parameter γ ∈ [0, 1].

The tuning parameter λ is selected by

λ̂ = argmin{BICγ(λ) : λ1, λ2 ∈ (0,∞)}.

In describing the cross-validation procedure, we define the predictive negative log-

likelihood function as follows:

F(Σ,Ω) = tr(ΣΩ)− log{det(Ω)}.

To select λ using cross-validation, we first randomly split the dataset equally into J

groups, and denote the sample covariance matrix from the j-th group as Σ(j,λ) and the

precision matrix estimated from the remaining groups as Ω̂(−j,λ). Then we choose λ as

argmin
λ


J∑
j=1

F(Σ(j,λ), Ω̂(−j,λ)) : λ1, λ2 ∈ (0,∞)

 .

The performance of these two selection methods is provided in Section 2.4.
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2.3 Asymptotic properties

In this section we study the asymptotic properties of our proposed methods. First, we

introduce the notation and the regularity conditions on the true precision matrices {Ω∗k}Kk=0,

where Ω∗k = (ω∗k(j,j′))p×p. Let Tk =
{

(j, j′) : j 6= j′, ω∗k(j,j′) 6= 0
}

be the set of indices of all

nonzero off-diagonal elements in Ω∗k, qk = |Tk| be the cardinality of Tk, and q =
∑K

k=0 qk.

Let {Σ∗k}Kk=0 be the true covariance ma

trices for z and {xk}Kk=1, and Σ∗Y = {Σ∗Y (l,m)}1≤l,m≤K be the true covariance matrices for

y. We assume that the following regularity conditions hold.

Condition 1. There exist constants τ1, τ2 such that for all k = 0, 1, . . . ,K, 0 < τ1 <

φmin(Ω∗k) ≤ φmax(Ω∗k) < τ2 <∞.

Condition 2. There exists a constant τ3 > 0, such that mink=0,...,Kmin(j,j′)∈Tk

∣∣∣ω∗k(j,j′)

∣∣∣ ≥
τ3.

Condition 1 bounds the eigenvalues of Ω∗k, thereby guaranteeing the existence of its

inverse and facilitating the proof of consistency. Condition 2 is needed to bound the nonzero

elements away from zero.

The following theorems discuss estimation consistency and selection sparsistency of our

methods.

Theorem 2.1 (Consistency of the one-step method). Under Conditions 1-2, (p +

q) log p/n = o(1), and a1(log p/n)1/2 ≤ λ1, λ2 ≤ b1{(1 + p/q) log p/n}1/2 for some con-

stants a1 and b1. Let {Ω̂k}Kk=0 be the minimizer defined by (2.9) using the one-step method,

then
K∑
k=0

∥∥∥Ω̂k − Ω∗k

∥∥∥
F

= Op

[{
(p+ q) log p

n

}1/2
]
.

Before we introduce the main theorem of the EM algorithm, we first present a corollary

of Theorem 2.1 which gives a good estimator of Σ∗Y .

Corollary 2.1. Suppose that Conditions 1-2 hold, and Ω̂k is the one-step solution on The-

orem 2.1, then Σ̌k = (Ω̂k)
−1 satisfies

18



∥∥Σ̌k − Σ∗k
∥∥
F

= Op

[{
(p+ q) log p

n

}1/2
]
.

To study our EM estimator, we need a good estimator for Σ∗Y which specifies in the

following condition.

Condition 3. We assume there exists an estimator Σ̃Y such that

‖Σ̃Y − Σ∗Y ‖F = Op

[{
(p+ q) log p

n

}1/2
]
.

The rate in Condition 3 is required to control the convergence rate of the E-step estimate

Σ̇k and thus the consistency of the estimate from the EM method. Under the conditions in

Theorem 2.1, we can use the one-step estimator Ω̂0, . . . , Ω̂K to obtain Σ̃Y = J ⊗ (Ω̂0)−1 +

{d(Ω̂k)
−1}, which satisfies Condition 3 by Corollary 2.1.

Theorem 2.2 (Consistency of the EM method). Suppose Conditions 1-3 hold, and (p +

q) log p/n = o(1), and a2(log p/n)1/2 ≤ λ1, λ2 ≤ b2{(1 + p/q) log p/n}1/2 for some constants

a2 and b2. Then the solution, {Ω̂k}Kk=0, of the EM method satisfies

K∑
k=0

∥∥∥Ω̂k − Ω∗k

∥∥∥
F

= Op

[{
(p+ q) log p

n

}1/2
]
.

Theorem 2.3 (Sparsistency of the one-step method). Under the assumptions of Theorem

2.1. If we further assume that
∑K

k=0

∥∥∥Ω̂k − Ω∗k

∥∥∥ = Op(ηn) for a sequence of ηn → 0,

and (log p/n + η2
n)1/2 = O(λ1) = O(λ2), then with probability tending to 1, the minimizer

{Ω̂k}Kk=0 satisfies ω̂k(j,j′) = 0 for all (j, j′) ∈ T ck , k = 0, . . . ,K.

To obtain sparsistency we require a lower bound on the rate of the regularization pa-

rameters λ1 and λ2. For consistency, we need an upper bounds for λ1 and λ2 to control

the biases. In order to have both consistency and sparsistency to hold simultaneously,

we need the bounds to be compatible, that is, we need (log p/n + η2
n)1/2 = O(λ1, λ2) =

{(1 + p/q) log p/n}1/2. Using the inequalities ‖W‖2F /p ≤ ‖W‖2 ≤ ‖W‖2F , there are two

scenarios describing the rate of ηn, as in Lam and Fan (2009). In the worst case, where∑K
k=0 ‖Ω̂k−Ω∗k‖ has the same rate as

∑K
k=0 ‖Ω̂k−Ω∗k‖F , the two bounds are compatible only

when q = O(1). In the most optimistic case, where
∑K

k=0 ‖Ω̂k−Ω∗k‖2 =
∑K

k=0 ‖Ω̂k−Ω∗k‖2F /p,

we have η2
n = (1 + q/p) log p/n, and compatibility of the bounds requires q = O(p).
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Theorem 2.4 (Sparsistency of EM method). Under the assumptions of Theorem 2.2, and

if we further assume that
∑K

k=0

∥∥∥Ω̂k − Ω∗k

∥∥∥ = Op(ηn) and
∑K

k=0

∥∥∥Σ̃k − Σ∗k

∥∥∥ = Op(ζn) for

sequences of ηn → 0 and ζn → 0. Moreover let ζn + ηn = O(λ1) = O(λ2), then with

probability tending to 1, the minimizer {Ω̂k}Kk=0 in Theorem 2.2 satisfies ω̂k(j,j′) = 0 for all

(j, j′) ∈ T ck , k = 0, . . . ,K.

Similar to the discussion above, for the EM algorithm, we have both consistency and

sparsistency when q = O(p) for the best scenario, and q = O(1) for the worst case. Details

of the proof can be found in the Supplementary material.

2.4 Simulation

We assessed the performance of the one-step and EM methods by applying them to

simulated data generated by two types of synthetic network: a chain network and a nearest-

neighbor (NN) network (Figure 2.2). Twenty-four simulation settings were considered.

These varied the base architecture of the category-specific network, the degree to which

the actual structure could deviate from this basic architecture, and the number of outcome

variables (nodes).
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a) Chain network, ρ = 0
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b) Chain network, ρ = 0.2
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c) Chain network, ρ = 1
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d) Nearest−neighbor network, ρ = 0
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e) Nearest−neighbor network, ρ = 0.2
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f) Nearest−neighbor network, ρ = 1

Figure 2.2: Network topologies generated in the simulations. Top row (a-c) shows chain networks
with noise ratios ρ = 0, 0.2, and 1. Bottom row (d-e) shows nearest-neighbor (NN) networks with
ρ = 0, 0.2, and 1.
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2.4.1 Simulating category-specific and systemic networks

Under each of the 24 simulation conditions, i.i.d. samples were generated, with systemic

outcomes generated as Zi ∼ N (0,Ω−1
0 ), category-specific outcomes as xki ∼ N (0,Ω−1

k ), and

observed outcomes as yki = xki + zi, for k = 1, . . . ,K = 4, and i = 1, . . . , n. The following

base architectures were considered for the five networks (Ωk)
K
k=0:

• Chain/Chain network with p = 30 and p = 100 nodes: the K category-specific net-

works and the systemic network are all chain-networks.

• NN/Chain network with p = 30 and p = 100 nodes: the K category-specific networks

are NN-networks and the systemic network is a chain-network.

• Chain/NN network with p = 30 and p = 100 nodes: the K category-specific networks

are chain-networks and the systemic network is an NN-networks.

• NN/NN network with p = 30 and p = 100 nodes: the K category-specific networks

and the systemic network are all NN-networks.

Chain networks were generated using the algorithm in Fan et al. (2009), constructing

Σ = {σi,j} by generating σi,j = exp(−|si − sj |/2) for s1 < s2 < . . . < sp as si − si−1 ∼

Uniform(0.5, 1) for i = 2, . . . , p. NN networks were generated using the method of Li and

Guo (2006), sampling p points uniformly on [0, 1]2 and then calculating all pairwise distances

to find the m nearest neighbors of each point. Pairs of nodes were linked if they are mutual

m-nearest neighbors, with m = 5 in our model. Under this construction, elements in the

precision matrix for each edge are first generated from uniform [0.5, 1] or [−1,−0.5]. The

diagonal entry of each row is taken as the sum of the absolute values of that row’s elements.

Then, the numbers in each row are divided by their corresponding diagonal entry so that

the final precision matrix has diagonal elements of 1 and is positive definite. The structures

of the chain and NN network are shown in Figures 2.2a and 2.2d respectively.

Simulated networks were allowed to deviate from their base architectures by a specified

degree ρ, through random addition of edges following the method of Guo et al. (2011).

Specifically, for each Ωk for k = 0, 1, . . . ,K generated above, we randomly picked a sym-

metric pair of zero elements and replaced them with a random value generated uniformly
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from [−1,−0.5]∪ [0.5, 1]. This procedure was repeated ρT times, with T being the number

of links in the initial structure, and ρ ∈ {0, 0.2, 1}. For each simulation trial we generate two

independent realizations of the data tensor y, each corresponding to sample size n = 300.

The first realization is used for tuning and training, and the second realization is for testing.

2.4.2 Criteria for evaluating performance

The performance of the one-step and EM methods are compared by examining of their

receiver operating characteristic (ROC) curves, and numerically using a number of metrics

including the entropy loss

EL = tr{(Ω)−1Ω̂} − log[det{(Ω)−1Ω̂}]− p ,

and the Frobenius loss

FL = ‖Ω− Ω̂‖2F /‖Ω‖2F ,

where Ω is the true precision matrix and Ω̂ is the corresponding estimate. We also report

the false positive rate (FP), the false negative rate (FN) and the Hamming distance (HD).

2.4.3 Estimation of category-specific Ωk and systemic networks Ω0

As shown in our toy example in Figure 2.1, existing methods are designed to estimate

aggregate network ΩYk instead of category-specific (Ωk) and systemic (Ω0) networks. In

this section, we focus only on our proposed one-step and EM methods.

Results of the simulations are reported in Table 2.1. Summary statistics are based on

50 replicate trials under each of the 24 conditions, and given for model fitting under both

extended BIC and under cross-validation criteria (as described in Section 2.2.4). In general,

the one-step method under either model selection criteria resulted in higher values of entropy

loss, Frobenius loss, false negative rates and hamming distance. For both methods, cross-

validation tended to select models with more false positive links but fewer false negative

links leading to a denser graph.

ROC curves for the one-step and EM methods are plotted in Figure 2.3; each curve is

based on 100 replications with the constraint λ1 = λ2. In the plots, the ROC curves of
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the EM method are seen to dominate those of the one-step method. Under all the settings,

the EM method outperforms the one-step method as the structures become increasingly

complicated (i.e., as ρ is increased). In general, the EM method delivers more accurate

results than the one-step method.
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Figure 2.3: Receiver operating characteristic (ROC) curves assessing power and discrimination
of graphical inference under different simulation settings. Each panel reports performance of the
EM method (blue line) and the one-step method (dashed line), plotting true positive rate (y-axis)
against false positive rate (x-axis) for a given noise ratio ρ.
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2.4.4 Estimation of aggregate networks ΩYk

Although our goal is to estimate the two layers of network that generate the data, we

can also use our estimators of Ω0 and Ωk, k = 1, . . . ,K to estimate the aggregate network

ΩYk = (Ω−1
k +Ω−1

0 )−1 as a derived statistic. Doing so allows us to compare our method with

existing methods that aim explicitly to estimate the aggregate network ΩYk ; these methods

would otherwise be incomparable.

We compare the performance for our EM method with two existing methods for es-

timating multiple graphs: the hierarchical penalized likelihood method (HL) proposed by

Guo et al. (2011), and the joint group lasso (JGL) proposed by Danaher et al. (2014). The

results of this comparison are reported in Table 2.3, which gives Frobenius and Entropy loss

for the four methods under each setting. False positive rates and false negative rates are

not reported: These are inapplicable here because the aggregate networks are not sparse.

Under most simulation settings examined, including Chain/NN, NN/Chain, and NN/NN,

the graphical EM method performs the best in terms of both losses. For the Chain/Chain

setting, the EM performs second best, with the best results achieved by HL. The stronger

performance of HL under this setting is explained by the fact that when both Ωk and Ω0

are chain networks, the corresponding ΩYk can have strong banding structure with large

absolute value within the band and small absolute value outside the band; the HL method

performs well because it is designed to work on such structures.

2.5 Application to gene expression data in mouse

To demonstrate the potential utility of our approach, we apply the EM method to mouse

genetic data from two experimental studies, those of Dobrin et al. (2009) and Crowley et al.

(2014). In each case we aim to infer systemic and category-specific gene co-expression

networks from transcript abundance measurements collected by microarray. In describing

our inference on these datasets we find it helpful to distinguish two interpretations of a

network.

Potential Network: The network of biologically possible interactions in the type of sys-

tem under study.
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Induced Network: The subgraph of the potential network that could be inferred in the

population under study. This is a statistical (not physical) phenomenon, and describes

the dependency structure induced by the interventions (or perturbations) applied to

the system.

A trivial example is the relationship between caloric intake, sex, and body weight. Body

weight is influenced by both the state of being male or female and the degree of calorie

consumption; these relations constitute edges in the potential network. Yet in a population

where caloric intake varies but where individuals are exclusively male, the effect of sex is

undefined, and corresponding edges relating sex to body weight would be undetectable (and

therefore absent) in the induced network. More generally, the induced network for a system

is defined both by the potential network and the intervention applied to it: Two populations

of mice could have the same potential network but when subject to distinct interventions

could have different induced networks. Conversely, when estimating the dependency struc-

ture of variables arising from population data, the degree to which the induced network

reflects the potential network is a function of the intervention bias.

The Dobrin et al. (2009) dataset comprises expression measurements for 23,698 tran-

scripts on 301 male mice in four tissues: adipose, liver, brain and muscle. These mice arose

from an F2 cross between two contrasting inbred founder strains, one with normal body

weight physiology and the other with a heritable tendency for rapid weight-gain. As is the

nature of an F2 cross of inbred strains, the analyzed offsprings constitute an i.i.d. sample of

individuals who are genetically distinct, and are subject to a randomized allocation of nor-

mal and weight-inducing DNA variants (alleles) at multiple locations along their genomes.

Any gene expression network inferred on such a population would in turn be expected to

emphasize more strongly those subgraphs of the underlying potential network related to

body weight. Moreover, since the intervention alters a property affecting the entire individ-

ual, we might expect it to exert at least some of its effect systemically — that is, globally

across all tissues in each individual.

We illustrate the effect of this intervention bias on network inference using a subset of

the F2 data, inferring the dependency structure of gene co-expression among three groups
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of well-annotated genes in brain and liver. The first group, an obesity-related gene set,

includes the gene Aif1, which has been implicated in obesity in a genomewide association

study (Thorleifsson et al., 2009), and seven other genes that are in the co-expressed network

of Aif1 (Dobrin et al., 2009): Pycard, Ctss, Psmb9, Ifi44, Rgl2 ,H2-Eb1 and Hck. The second

group, an imprinting-related gene set, includes the gene Igf2, which has been implicated in

genetic imprinting and parent-of-origin effects, and seven other genes that are involved in

co-expression network of Igf2 (Obayashi et al., 2008): Peg3, Prkra, Tab1, Nrk, Pde4b, Mdk

and Rab8a. The third group comprises seven genes implicated in the functioning of the

extracellular matrix (the ECM-related gene set): Col1A2, Ltbp1, Ptrf, Cdh11, Dcn, Fbln5,

and bgn. These groups were chosen based on criteria independent of our analysis, and

represent three groups whose respective effects would be exaggerated under very different

interventions. Specifically, we would expect pronounced edges within the following gene sets

in the following types of populations: the obesity-related set in F2 populations derived from

founders contrasting in obesity-related outcomes; the ECM-related set in F2 populations

from founders contrasting in ECM characteristics; and the imprinting-related set in offspring

of a reciprocal cross, that is, a population in which the factor being deliberately varied is

the parent-of-origin (i.e., the mother or father) from which a DNA variant is inherited.

Tissue-specific and systemic networks inferred on the Dobrin et al. (2009) dataset by our

EM method are shown Figure 2.4. Each node represents a gene and the thickness of an edge

is proportional to the magnitude of the associated partial correlation. The systemic network

in Figure 2.4c includes edges on the Aif1 obesity-related pathway only, which is consistent

with the F2 exhibiting a dependency structure largely induced by an obesity-related genetic

intervention that acts systemically. The category-specific networks are shown in Figures 2.4a

and b. After taking account of the systemic network, part of the Aif1 pathway can still be

found on all category-specific networks. This suggests that the genetic effect induces both

systemic and tissue-specific variation related to the Aif1 pathway. Figure 2.4 also illustrates

the heterogeneity between different categories: It shows that, for instance, Aif1 and Rgl2

are linked on brain but not on liver. In their analysis, Dobrin et al. (2009) used a correlation

network approach whereby (unconditional) correlations with statistical significance above a
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predefined threshold were declared as edges, and found evidence supporting a role for Aif1

in tissue-to-tissue co-expression.
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Figure 2.4: Topology of gene co-expression networks inferred by the EM-method for the data from
a population of F2 mice with randomly allocated high-fat vs normal gene variants. Panels a) and b)
display the estimated brain-specific and liver-specific dependency structures respectively. Panel c)
shows the estimated systemic structure describing whole body interaction that simultaneously affect
variables in both tissues.

The Crowley et al. (2014) data set measures mRNA expression levels of 23, 000 genes

in four tissues (brain, liver, lung and kidney) in 45 mice arising from three independent

reciprocal F1 crosses. A reciprocal F1 cross between two inbred strains — say, strains P1

and P2 — involves generating two sub-populations: one group comprises offspring from

mating P1 females with P2 males; the other comprises offspring from mating P2 females

with P1 males. Across the two groups, all mice have the same DNA (i.e., the same genetic

background), with each mouse having one copy of each gene from P1 and another copy from

P2; but between groups the parent from whom DNA is inherited differs, with, for example,

one group inheriting P1 through the mother and the other group inheriting P1 through

the father. The underlying intervention in a reciprocal cross is therefore not the varying

of genetics as such but the varying of parent-of-origin (i.e., epigenetics). In the Crowley

et al. (2014) experiment, three independent reciprocal crosses were performed using all pairs

from the three inbred strains CAST, PWK and WSB, i.e., CAST with PWK, CAST with

WSB, and PWK with WSB. Note that although the three strains used were not selected

specifically for their contrast on a particular outcome measure (they were in fact selected

for mutual genetic dissimilarity), across the different crosses we would nonetheless expect
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differences in expression entirely due to genetic background. To remove this genetic effect,

and therefore focus primarily on the varying of parent-of-origin, for each reciprocal pairing

(e.g., CAST with PWK, which comprises CAST x PWK and the reciprocal PWK x CAST)

we centered the data for each gene: For jth gene expression for the ith mouse in CAST x

PWK, we subtracted the mean of jth gene among all CAST x PWD and PWD x CAST

mice. Moreover, to be comparable with our analysis of Dobrin et al. (2009) above, we include

only brain and liver data, and restrict attention to the same set of genes as in the analysis

of the F2 mice. Applying our EM method to this reciprocal cross data identifies three edges

on the systemic network (Figure 2.5 c) that include the genes Igf2, Tab1, Nrk and Pde4b,

all from the imprinting-related set implicated in mediating parent-of-origin effects. Thus,

the inferred patterns of systemic-level gene relationships in the two studies coincide with

the intervention biases we would expect based on the structure of those studies, with genes

affecting body weight in the Dobrin et al. (2009) data and genes affected by parent-of-origin

in the Crowley et al. (2014) data.
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Figure 2.5: Topology of gene co-expression networks inferred by the EM-method for the data
from a population of reciprocal F1 mice. Panels a) and b) display the estimated brain-specific and
liver-specific dependency structures respectively. Panel c) shows the estimated systemic structure
describing whole body interaction that simultaneously affect variables in both tissues.

To demonstrate the use of our method for higher dimensional data, we examine a larger

subset of genes from the Dobrin et al. (2009) study. Selecting the p = 1000 genes that had

the largest within-group variance among the four tissues in the F2 population, we applied our

graphical EM method, using extended BIC to select the tuning parameter λ. The topologies
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of the tissue-specific and systemic networks are shown in Figures 2.6a-d, with a zoomed-in

view of the edges of the systemic network shown in Figure 2.6f. The systemic network is

sparse, with 249 edges connecting 62 of the 1000 genes (Figure 2.6e). Its sparsity may reflect

there being few interactions simultaneously occurring across all tissues in this F2 population,

with one contributing reason being that some genes are being expressed primarily in one

tissue and not others. We note that the systemic network also includes a connection between

two genes, Ifi44 and H2-Eb1, that are members of the Aif1 network of Figure 2.4. To

characterize more broadly the genes identified in the systemic network, we conducted an

analysis of gene ontology (GO) enrichment (Shamir et al., 2005): The distribution of GO

terms associated with connected genes in the systemic network was contrasted against the

background distribution of GO terms in the entire 1000-gene set. This showed that the

systemic network is significantly enriched for genes associated with immune and metabolic

processes, which accords with recent studies linking obesity to strong negative impacts

on immune response to infection (Milner and Beck, 2012; Lumeng, 2013). In their study,

Dobrin et al. (2009) also showed that the enrichment of inflammatory response processes

in co-expression from liver and adipose, again using unconditional correlations. We note

that obesity is a complex trait that affects and is affected by interactions between and

cooperation among different tissues. By looking at the four tissues collectively, we can

build a systemic network revealing dependencies common to all tissues; these dependencies

may closely associate with the obesity phenotype but may not be so easily identified (or

distinguished) in networks inferred on tissues analyzed singly, or on different tissues model

without a shared graphical component.

2.6 Discussion

Herein we consider joint estimation of multiple Gaussian graphical models that are

stochastically dependent, and we propose a decomposition of the modeled graphs into two

layers: a systemic layer, characterizing the sample dependency, and a category-specific layer,

representing graph-specific variation. We then propose novel one-step and EM methods that

jointly estimate the two layers using only data observed on their combined outcomes. We
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evaluate performance of our methods in theory and simulation, and demonstrate promising

application of these models in mouse genetics. We are exploring several extensions to this

work. First, for the EM method, we currently use estimates from the one-step method

generate a single set of starting values. To better explore the domain of the joint penalized

likelihood, we could instead initialize from multiple start-points. Second, we can extend

our `1 penalized maximum likelihood approach to general non-convex penalties such as

the SCAD penalty (Fan and Li, 2001), MCP (Zhang, 2010), and the truncated `1-function

(Shen et al., 2012). Furthermore, we believe it would be both practicable and useful to

extend these methods beyond the Gaussian assumption (as in for example Cai et al., 2011;

Liu et al., 2012; Xue and Zou, 2012).

Table 2.1: Summary statistics reporting performance of the EM and one-step methods inferring
graph structure for different networks. In each cell, the number before and after the slash correspond
to the results using extended BIC and cross-validation, respectively.

True networks
Category-specific / Systemic

ρ Method EL FL FP(%) FN(%) HD (%)

p = 30

Chain / Chain

0 One step 0.9 /0.8 0.06 /0.05 20.9 /24.6 0.0 /0.0 20.9/24.6
0 EM 0.6/0.5 0.04/0.03 17.5/22.8 0.0/0.0 17.5/22.8

0.2 One step 0.9 /0.8 0.05 /0.05 21.4 /24.7 3.5 /2.5 24.9/27.2
0.2 EM 0.6/0.6 0.04/0.03 16.6/22.7 2.6/1.3 19.2/24.0
1 One step 1.1 /0.9 0.07 /0.05 14.0 /23.0 32.5 /21.1 46.5/44.1
1 EM 0.8/0.6 0.05/0.04 12.9/25.2 28.5/14.2 41.4/39.4

NN / Chain

0 One step 1.2 /0.9 0.07 /0.06 22.2 /17.6 27.0 /15.8 49.2/33.4
0 EM 0.8/0.6 0.05/0.04 15.3/21.4 17.4/6.8 32.7/28.2

0.2 One step 1.2 /0.8 0.06 /0.05 21.8 /21.4 42.8 /27.5 64.6/48.9
0.2 EM 0.8/0.6 0.05/0.04 16.0/27.0 34.9/17.0 50.9/44.0
1 One step 1.0 / 0.8 0.06 /0.05 9.1 /16.5 86.6 /63.4 95.7 / 79.9
1 EM 0.9/0.6 0.05/0.04 8.6 /29.4 84.2/43.5 92.8/ 72.9

Chain / NN

0 One step 0.8 /0.8 0.04 /0.05 23.4 /24.7 1.4/3.3 24.8/28.0
0 EM 0.5/0.5 0.03/0.03 17.5/22.0 1.8 /3.1 19.3 / 25.1

0.2 One step 0.8 /0.8 0.05 /0.05 21.1 /24.3 9.3 /10.1 30.4 /34.4
0.2 EM 0.6/0.6 0.03/0.03 15.8/24.8 8.2/7.0 24.0/ 31.8
1 One step 1.0 /0.8 0.07 /0.05 10.7 /21.8 43.1 /30.4 53.8 / 52.2
1 EM 0.8/0.6 0.05/0.04 10.6/24.9 36.3/22.7 46.9/ 47.6

NN / NN

0 One step 1.0 /0.8 0.06 /0.05 17.9 /16.0 28.7 /20.8 46.6 / 36.8
0 EM 0.7/0.5 0.04/0.03 13.9 /20.4 18.9/8.6 32.8 29.0

0.2 One step 1.0 /0.8 0.06 /0.05 16.9 /19.4 44.1 /31.8 61.0/51.2
0.2 EM 0.7/0.6 0.04/0.03 13.7 /24.7 36.6/18.9 50.3/ 43.6
1 One step 1.0 /0.8 0.06 /0.05 3.6 /18.9 87.3 /58.2 90.9 / 77.1
1 EM 0.9/0.6 0.05/0.04 4.8 /25.9 83.2/45.3 88.0/71.2
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Table 2.2: Summary statistics reporting performance of the EM and one-step methods inferring
graph structure for different networks. In each cell, the number before and after the slash correspond
to the results using extended BIC and cross-validation, respectively.

True networks
Category-specific / Systemic

ρ Method EL FL FP(%) FN(%) HD (%)

p = 100

Chain / Chain

0 One step 6.2 /4.9 0.13 /0.10 6.4 /12.1 0.0 /0.0 6.4/ 12.1
0 EM 3.6/2.9 0.08/0.06 5.0/9.2 0.0/0.0 5.0/9.2

0.2 One step 6.1 /4.6 0.13 /0.09 5.4 /12.6 7.3 /3.8 12.7 / 16.4
0.2 EM 3.6/2.9 0.07/0.05 4.8/9.9 6.9/3.0 11.7/12.9
1 One step 6.4 /4.6 0.12 /0.08 2.5/12.5 50.3 /29.1 52.8/ 41.6
1 EM 4.1/3.1 0.08/0.05 3.9 /14.1 41.3/21.4 45.2/35.5

NN / Chain

0 One step 5.0 /4.2 0.10 /0.08 3.1/7.6 36.7 /21.8 39.8/29.4
0 EM 3.7/3.1 0.07/0.06 4.2 /7.8 25.5/14.0 29.7 21.8

0.2 One step 5.5 /4.3 0.11 /0.08 2.5/9.5 59.1 /35.0 61.6/44.5
0.2 EM 4.3/3.2 0.09/0.06 3.9 /10.7 47.7/24.5 51.6 35.2
1 One step 4.3 /3.7 0.08 /0.07 1.1 /5.2 90.6 /76.6 91.7/81.8
1 EM 3.8/3.1 0.07/0.05 1.8 /8.2 87.1/66.2 88.9 / 74.4

Chain / NN

0 One step 4.5 /4.1 0.10 /0.08 5.4 /14.9 5.4/4.9 10.8/19.8
0 EM 3.0/2.8 0.06/0.05 4.6/8.7 5.7 /4.8 10.3/ 13.5

0.2 One step 4.9 /4.2 0.10 /0.08 4.7 /15.0 19.4 /12.8 24.1/27.8
0.2 EM 3.5/3.0 0.07/0.05 4.2/10.1 17.4/10.9 21.6/ 21.0
1 One step 5.0 /3.8 0.10 /0.07 1.7/12.6 66.6 /43.1 68.3/55.7
1 EM 3.9/3.0 0.07/0.05 2.0 /13.3 59.6/37.0 61.6/50.3

NN / NN

0 One step 4.3 /3.7 0.09 /0.07 2.3/7.1 43.7 /27.5 46.0/34.6
0 EM 3.2/2.7 0.06/0.05 2.6 /7.1 31.5/17.8 34.1/24.9

0.2 One step 4.9 /3.9 0.10 /0.08 1.8/8.8 66.4 /41.1 68.2/49.9
0.2 EM 3.9/3.1 0.08/0.05 2.3 /10.4 55.4/29.2 57.7/ 39.6
1 One step 4.2 /3.5 0.08 /0.07 0.2/4.5 96.3 /81.1 96.5 / 85.6
1 EM 3.9/3.1 0.07/0.06 0.3 /6.8 94.6/71.1 94.9/ 77.9

32



Table 2.3: Summary statistics reporting performance of HL, JGL, one-step and the EM methods
estimating aggregate network ,ΩY , under different simulation settings with dimension p = 30 and
100.

True networks
Category-specific / Systemic

ρ Method p EL FL p EL FL

Chain / Chain

0 HL 30 0.277 0.013 100 1.032 0.015
0 JGL 30 1.184 0.086 100 3.093 0.066
0 One step 30 0.795 0.049 100 4.863 0.095
0 EM 30 0.521 0.031 100 2.940 0.058

0.2 HL 30 0.405 0.018 100 1.557 0.021
0.2 JGL 30 0.867 0.059 100 3.288 0.063
0.2 One step 30 0.819 0.050 100 4.649 0.088
0.2 EM 30 0.555 0.032 100 2.909 0.052
1 HL 30 0.636 0.033 100 2.370 0.035
1 JGL 30 0.947 0.058 100 3.658 0.063
1 One step 30 0.875 0.051 100 4.550 0.082
1 EM 30 0.630 0.035 100 3.132 0.048

NN / Chain

0 HL 30 1.185 0.063 100 5.914 0.096
0 JGL 30 1.190 0.070 100 5.958 0.101
0 One step 30 0.888 0.055 100 4.182 0.081
0 EM 30 0.629 0.037 100 3.120 0.058

0.2 HL 30 1.143 0.065 100 5.640 0.093
0.2 JGL 30 1.209 0.081 100 5.724 0.101
0.2 One step 30 0.818 0.050 100 4.292 0.084
0.2 EM 30 0.612 0.035 100 3.245 0.058
1 HL 30 0.978 0.057 100 4.057 0.070
1 JGL 30 1.065 0.065 100 4.371 0.074
1 One step 30 0.790 0.048 100 3.650 0.071
1 EM 30 0.640 0.036 100 3.091 0.054

Chain / NN

0 HL 30 1.060 0.055 100 5.221 0.089
0 JGL 30 1.085 0.068 100 4.930 0.088
0 One step 30 0.760 0.045 100 4.141 0.079
0 EM 30 0.555 0.031 100 2.812 0.052

0.2 HL 30 1.034 0.055 100 4.794 0.075
0.2 JGL 30 1.209 0.081 100 5.009 0.089
0.2 One step 30 0.769 0.044 100 4.186 0.078
0.2 EM 30 0.572 0.031 100 3.021 0.052
1 HL 30 0.850 0.047 100 3.888 0.066
1 JGL 30 1.065 0.065 100 4.319 0.089
1 One step 30 0.810 0.050 100 3.794 0.070
1 EM 30 0.621 0.037 100 3.042 0.050

NN / NN

0 HL 30 1.018 0.059 100 4.726 0.082
0 JGL 30 1.085 0.068 100 4.520 0.074
0 One step 30 0.780 0.048 100 3.664 0.070
0 EM 30 0.563 0.033 100 2.719 0.048

0.2 HL 30 0.957 0.053 100 4.690 0.081
0.2 JGL 30 1.116 0.073 100 4.639 0.082
0.2 One step 30 0.796 0.048 100 3.943 0.077
0.2 EM 30 0.597 0.034 100 3.085 0.053
1 HL 30 0.823 0.049 100 3.637 0.065
1 JGL 30 0.980 0.060 100 3.738 0.064
1 One step 30 0.760 0.047 100 3.527 0.069
1 EM 30 0.643 0.038 100 3.112 0.057
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a) Adipose
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b) Brain
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Figure 2.6: Topology of co-expression networks inferred by the EM method applied to measure-
ments of the 1000 genes with highest within-tissue variance in a population of F2 mice. Panels a),
b), c) and d) display the category-specific networks estimated for adipose, hypothalamus, liver and
muscle tissues respectively. Panel e) shows the structure of the estimated systemic network, describ-
ing across-tissue dependencies, with panel f) showing a zoomed-in view of the connected subset of
nodes in this graph.
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2.7 Appendix

2.7.1 Derivation of likelihood for y

We first state Sylvester’s determinant theorem which is required for this derivation.

Lemma 2.1 (Sylvester theorem). If A, B are matrices of size p×n and n× p respectively,

then

det(Ip +AB) = det(In +BA),

where Ia is the identity matrix of order a.

We would like to derive the expression of ΩY using {Ωk}Kk=0. In our setting, Y

follows a Kp−variate Gaussian distribution with mean 0 and covariance matrix ΣY =

{ΣY (l,m)}1≤l,m≤K ; thus f(Y ) ∝ exp(Y TΩY Y ). In addition, we can also derive f(Y ) from

joint probability f(Y,Z) by integrating out Z. We can write f(Y ) as follows,

f(Y ) =

∫
f(Y | Z)f(Z)dZ

∝
∫

exp

[
K∑
k=1

{
(Yk − Z)TΩk(Yk − Z)

}
+ ZTΩ0Z

]
dZ.

We then expand the formula and get

f(Y ) = exp

{
K∑
k=1

(Y T
k ΩkYk)

}∫
exp

[
ZT

(
K∑
k=0

Ωk

)
Z − 2

{
K∑
k=1

(Y T
k Ωk)

}
Z

]
dZ

= exp

{
K∑
k=1

(Y T
k ΩkYk)

}∫
exp

(
ZTAZ − 2cTZ

)
dZ

= exp

{
K∑
k=1

(Y T
k ΩkYk)

}
exp(−cTA−1c)

∫
exp

{
(AZ − c)TA−1(AZ − c)

}
dZ

= exp

{
K∑
k=1

(Y T
k ΩkYk)

}
exp(−cTA−1c)

∫
exp

{
(Z −A−1c)TA(Z −A−1c)

}
dZ

∝ exp

[
K∑
k=1

(Y T
k ΩkYk)−

{ K∑
k=1

(Y T
k Ωk)

}
A−1

{ K∑
k=1

(ΩkYk)
}]

= exp
{
Y T
(
{dΩk}1≤k≤K − {ΩlA

−1Ωk}1≤l,k≤K
)
Y
}

= exp(Y TΩY Y ) ,
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where A =
∑K

k=0 Ωk and c =
∑K

k=1 ΩkYk. We denote {ΩlA
−1Ωk}1≤l,k≤K as a block matrix

in which the (l, k)th block is ΩlA
−1Ωk.

Thus we have y ∼ N (0,
[
{dΩk}Kk=1 − {ΩlA

−1Ωk}1≤l,k≤K
]−1

) and Ωy = {dΩk}1≤k≤K −

{ΩlA
−1Ωk}1≤l,k≤K . Next, we derive the expression for det(ΩY ). We know that

ΣY ={d Σk}1≤k≤K +


I

...

I


(

Σ0 · · · Σ0

)

={d Σk}1≤k≤K

IKp + {d Ωk}1≤k≤K


I

...

I


(

Σ0 · · · Σ0

) ,

where I and IKp are p× p and Kp×Kp identity matrices respectively. By Lemma 2.1, we

have

det(ΣY ) =

{
K∏
k=1

det(Σk)

}
det

I +

(
Σ0 · · · Σ0

)
{dΩk}1≤k≤K


I

...

I




=

{
K∏
k=1

det(Σk)

}
det

(
I + Σ0

K∑
k=1

Ωk

)

=

{
K∏
k=1

det(Σk)

}
det

(
Σ0Ω0 + Σ0

K∑
k=1

Ωk

)

=

{
K∏
k=0

det(Σk)

}
det(A).

Therefore, we have log{det(ΩY )} =
∑K

k=0 log{det(Ωk)} − log{det(A)}. Combining pre-

vious results, we can write the log-likelihood as

L(ΩY ) =− npK

2
log(2π) +

n

2

[
log{det(ΩY )} − tr

(
Σ̂Y ΩY

)]
=− npK

2
log(2π) +

n

2
log{det(ΩY )} − n

2
tr
(
Σ̂Y ΩY

)
=− npK

2
log(2π) +

n

2

[ K∑
k=0

log det(Ωk)− log{det(A)}
]

− n

2
tr
(

Σ̂Y

[
{dΩk}1≤k≤K − {ΩlA

−1Ωk}1≤l,k≤K
])
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=− npK

2
log(2π) +

n

2

[ K∑
k=1

log det(Ωk) + log{det(Ω0)} − log{det(A)}
]

− n

2
tr
(

Σ̂Y {dΩk}1≤k≤K − Σ̂Y {ΩlA
−1Ωk}1≤l,k≤K

)
=− npK

2
log(2π) +

n

2

K∑
k=1

log{det(Ωk)}+
n

2

[
log{det(Ω0)} − log{det(A)}

]
− n

2

K∑
k=1

tr
(

Σ̂Y (k,k)Ωk

)
+
n

2
tr
(

Σ̂Y

(
Ω1 · · · ΩK

)T

A−1

(
Ω1 · · · ΩK

))
=− npK

2
log(2π) +

n

2
tr
((

Ω1 · · · ΩK

)
Σ̂Y

(
Ω1 · · · ΩK

)T

A−1
)

+
n

2

[
log{det(Ω0)} − log{det(A)}

]
+
n

2

K∑
k=1

[
log{det(Ωk)} − tr

(
Σ̂Y (k,k)Ωk

)]
=− npK

2
log(2π) +

n

2

K∑
l,m=1

tr
(

ΩlΣ̂Y (l,m)ΩmA
−1
)

+
n

2
log{det(Ω0)}

− n

2
log{det(A)}+

n

2

K∑
k=1

[
log{det(Ωk)} − tr(Σ̂Y (k,k)Ωk)

]
.

2.7.2 Proof of Identifiability

To demonstrate identifiability of our model, it is sufficient to show the parameters Ωk

are identifiable for all k = 0, . . . ,K. To that end, we decompose Yk in two different ways as

follows

Yk = Xk − U + Z + U = X∗k + Z∗ (k = 1, ...,K),

where U is a p-dim of random vector. With U 6= 0, we have nonunique decompositions of

Yk. Under the model assumption, the resulting X∗k and Z∗ need to satisfy

cov(X∗l , X
∗
m) = 0 (1 ≤ l,m ≤ K), (2.13)

cov(X∗l , Z
∗) = 0 (l = 1, . . . ,K). (2.14)

Expanding (2.13), we have

cov(X∗l , X
∗
m) = cov(Xl, Xm) + var(U)− cov(Xl, U)− cov(Xm, U)

= 0 + var(U)− cov(Xi, U)− cov(Xj , U) = 0,
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which implies that

var(U) = cov(Xl, U) + cov(Xm, U). (2.15)

Similarly, from (2.14), we have

cov(X∗l , Z
∗) = cov(Xl − U,Z + U)

= cov(Xk, Z)− var(U)− cov(U,Z) + cov(U,Xl)

= 0− var(U)− cov(U,Z) + cov(U,Xl) = 0,

which implies that

var(U) = −cov(U,Z) + cov(U,Xl). (2.16)

Since (2.16) hod for any l, we have

cov(U,Xl) = cov(U,Xm) (1 ≤ l,m ≤ K). (2.17)

Combining (2.15), (2.16) and (2.17), we can show

cov(U,Xk) = −cov(U,Z) (2.18)

var(U) = −2 cov(U,Z) = 2 cov(U,Xl) (1 ≤ l ≤ K). (2.19)

From (2.18) and (2.19) we can further show that

var(X∗l ) = var(Xl − U)

= var(Xl) + var(U)− 2 cov(U,Xl) = var(Xl)

var(Z∗) = var(Z + U)

= var(Z) + var(U)− 2 cov(U,Z) = var(Z).

Therefore, for different decompositions of Yl the resulting var(Z) and var(Xl) remain

the same. Consequently, our model is identifiable.
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2.7.3 Proof of Proposition 2.1

We divide the proof into two parts. For part I, we first prove that the penalized log-

likelihood is bounded, and for part II, we will show that the penalized log-likelihood does

not decreases for each step of the graphic EM algorithm.

As shown in (2.4), the log-likelihood can be expressed as

L({Ωk}Kk=0) ∝
K∑
k=1

[
log{det(Ωk)} − tr(Σ̂Y (k,k)Ωk)

]
+ log{det(Ω0)}

− log{det(A)}+
K∑

l,m=1

tr
(

ΩlΣ̂Y (l,m)ΩmA
−1
)

=
K∑
k=0

log{det(Ωk)} − log{det(A)} −
K∑
k=1

tr
(
Σ̂Y (k,k)Ωk

)
+

K∑
l,m=1

tr
(

ΩlΣ̂Y (l,m)ΩmA
−1
)
.

If λ1 > 0 and λ2 > 0, by Lagrangian duality the problem (2.5) is equivalent to the

following constrained optimization problem:

max

{
K∑
k=0

log{det(Ωk)} − log{det(A)} −
K∑
k=1

tr
(
Σ̂Y (k,k)Ωk

)
+

K∑
l,m=1

tr
(

ΩlΣ̂Y (l,m)ΩmA
−1
)}

, (2.20)

subject to Ωk � 0 and |Ω−k |1 ≤ C(λ1, λ2) for k = 0, . . . ,K and some C(λ1, λ2) < ∞. Here

Ω− represents the off-diagonal entries of Ω. Since the {Ω−k }
K
k=0 are bounded, the potential

problem comes from the behavior of the diagonal entries which can grow to infinity. Because

of the positive-definite requirement, diagonal entries of {Ωk}Kk=0 have to be positive. After

some algebra, (2.20) becomes

K∑
k=0

log{det(Ωk)} − log{det(A)} −
K∑
k=1

tr
(
Σ̂Y (k,k)AA

−1Ωk

)
+

K∑
l,m=1

tr
(

Σ̂Y (l,m)ΩmA
−1Ωl

)

=

K∑
k=0

log{det(Ωk)} − log{det(A)} −
K∑
k=1

tr(Σ̂Y (k,k)Ω0A
−1Ωk)

39



−
∑
l 6=m

tr
{

(Σ̂Y (m,m) − Σ̂Y (m,l))ΩlA
−1Ωm

}
=

K∑
k=0

log{det(Ωk)} − log{det(A)} −
K∑
k=1

tr(Σ̂Y (k,k)Ω0A
−1Ωk)

−
∑

l>m≥1

tr(M(l,m)ΩlA
−1Ωm), (2.21)

where M(l,m) = {Σ̂Y (l,l) + Σ̂Y (m,m) − 2Σ̂Y (m,l)}. The equality in (2.21) comes from the fact

that

tr
{

(Σ̂Y (m,m) − Σ̂Y (m,l))ΩlA
−1Ωm

}
= tr

[{
(Σ̂Y (m,m) − Σ̂Y (m,l))ΩlA

−1Ωm

}T]
= tr

{
ΩmA

−1Ωl(Σ̂Y (m,m) − Σ̂T
Y (m,l))

}
= tr

{
(Σ̂Y (m,m) − Σ̂Y (l,m))ΩmA

−1Ωl

}
.

Since all Ωj are positive definite and |Ω−j |1 are bounded for j = 0, . . . ,K, we can

decompose them into Ωj = Bj +Dj , where Bj are matrices with bounded diagonal entries

and are invertible, namely 0 ≤ τ3 ≤ φmin(Bj) ≤ φmax(Bj) ≤ τ4, while Dj are diagonal

matrices with all entries are greater than some positive number ε and possibly grow to

infinity, in other words, 0 ≤ ‖D−1
j ‖ ≤ 1/ε. We also define BA =

∑K
k=0Bk and DA =∑K

k=0Dk; and by Weyl’s inequality

(K + 1)τ3 ≤ φmin(BA) ≤ φmax(BA) ≤ (K + 1)τ4,

0 < (K + 1)ε ≤ φmin(DA),

φmax(D−1
A ) ≤ 1

(K + 1)ε
,

Then we can consider four different cases:

Case one: |Dj |1 are bounded for all j = 0, . . . ,K.

In this case, det(Ωj) and ‖Ωj‖∞ are both bounded above for (j ∈ {0, . . . ,K}; thus the

function in (2.21) is also bounded above.

Case two: All |Dj |1 are bounded except Dl.

In this case, we only need to control the behavior of the following terms

log{det(Ωl)} − log{det(A)} −
∑

K≥k>l
tr(M(k,l)ΩkA

−1Ωl)−
∑

l>m≥1

tr(M(l,m)ΩlA
−1Ωm)

− tr(Σ̂Y (l,l)Ω0A
−1Ωl)
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=
[

log{det(Ωl)} − log{det(A)}
]
−
∑

K≥k>l
tr
{
M(k,l)Ωk(BA +DA)−1(Bl +Dl)

}
−
∑

l>m≥1

tr
{
M(l,m)(Bl +Dl)(BA +DA)−1Ωm

}
− tr

{
Σ̂Y (l,l)Ω0(BA +DA)−1(Bl +Dl)

}
= I + II + III + IV.

We first want to bound term I which is log{det(Ωl)} − log{det(A)}. Since A =
∑K

k=0 Ωk

and all Ωk are positive definite, by Minkowski determinant theorem it follows that

det(A) ≥ {det(
∑
k 6=l

Ωk)
1/p + det(Ωl)

1/p}p

≥ {det(Ωl)
1/p}p = det(Ωl).

Therefore, we have I = log{det(Ωl)} − log{det(A)} < 0.

To bound II and III, using Woodbury matrix identity we know

‖ΩlA
−1‖ = (Bl +Dl)(BA +DA)−1 = (Bl +Dl){D−1

A −D
−1
A (D−1

A +B−1
A )−1D−1

A }

= BlD
−1
A +DlD

−1
A −BlD

−1
A (D−1

A +B−1
A )−1D−1

A

−DlD
−1
A (D−1

A +B−1
A )−1D−1

A ; (2.22)

‖A−1Ωl‖ = (BA +DA)−1(Bl +Dl) = {D−1
A −D

−1
A (D−1

A +B−1
A )−1D−1

A }(Bl +Dl)

= D−1
A Bl +D−1

A Dl −D−1
A (D−1

A +B−1
A )−1D−1

A Bl

−D−1
A (D−1

A +B−1
A )−1D−1

A Dl. (2.23)

We also know DA =
∑K

k=0(Dk) and D−1
A =

{
d(
∑K

k=0Dk(i,i))
−1
}

. We want to bound the

spectral normal of (2.22) and (2.23). In order to do so, we first show

‖D−1
A ‖ =

∥∥∥{
d

1∑K
k=0Dk(i,i)

}∥∥∥ ≤ 1

(K + 1)ε
; (2.24)

‖BlD−1
A ‖ ≤ ‖Bl‖ ‖D

−1
A ‖ ≤

τ4

(K + 1)ε
; (2.25)

‖D−1
A Bl‖ ≤ ‖Bl‖ ‖D−1

A ‖ ≤
τ4

(K + 1)ε
; (2.26)

‖DlD
−1
A ‖ = ‖D−1

A Dl‖ =
∥∥∥{

d

Dl(i,i)

DA(i,i)

}∥∥∥ =
∥∥∥{

d

Dl(i,i)∑K
k=0Dk(i,i)

}∥∥∥ ≤ 1. (2.27)
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By Weyl’s inequality,

‖(B−1
A +D−1

A )−1‖ =
1

φmin(B−1
A +D−1

A )
≤ 1

φmin(B−1
A ) + φmin(D−1

A )

≤ 1

φmin(B−1
A )

= φmax(BA) ≤ (K + 1)τ4 (2.28)

‖BlD−1
A (B−1

A +D−1
A )−1D−1

A ‖ ≤ ‖Bl‖ ‖D
−1
A ‖

2 ‖(B−1
A +D−1

A )−1‖ ≤ τ2
4

(K + 1)ε2
(2.29)

‖D−1
A (B−1

A +D−1
A )−1D−1

A Bl‖ ≤ ‖Bl‖ ‖D−1
A ‖

2 ‖(B−1
A +D−1

A )−1‖ ≤ τ2
4

(K + 1)ε2
(2.30)

‖DlD
−1
A (B−1

A +D−1
A )−1D−1

A ‖ ≤ ‖DlD
−1
A ‖ ‖(B

−1
A +D−1

A )−1‖ ‖D−1
A ‖ ≤

τ4

ε
(2.31)

‖D−1
A (B−1

A +D−1
A )−1D−1

A Dl‖ ≤ ‖D−1
A Dl‖ ‖(B−1

A +D−1
A )−1‖ ‖D−1

A ‖ ≤
τ4

ε
. (2.32)

Combining (2.24)–(2.32), we show that the spectral norm of (2.22) and (2.23) are bounded,

namely

‖ΩlA
−1‖ = ‖(Bl +Dl)(BA +DA)−1‖

= ‖BlD−1
A +DlD

−1
A −BlD

−1
A (D−1

A +B−1
A )−1D−1

A −DlD
−1
A (D−1

A +B−1
A )−1D−1

A ‖

≤ ‖BlD−1
A ‖+ ‖DlD

−1
A ‖+ ‖BlD−1

A (D−1
A +B−1

A )−1D−1
A ‖

+ ‖DlD
−1
A (D−1

A +B−1
A )−1D−1

A ‖

≤ τ4

(K + 1)ε
+ 1 +

τ2
4

(K + 1)ε2
+
τ4

ε

≤ (K + 2)ετ4 + (K + 1)ε2 + τ2
4

(K + 1)ε2
<∞. (2.33)

‖A−1Ωl‖ = ‖(BA +DA)−1(Bl +Dl)‖

= ‖D−1
A Bl +D−1

A Dl −D−1
A (D−1

A +B−1
A )−1D−1

A Bl −D−1
A (D−1

A +B−1
A )−1D−1

A Dl‖

≤ ‖D−1
A Bl‖+ ‖D−1

A Dl‖+ ‖D−1
A (D−1

A +B−1
A )−1D−1

A Bl‖

+ ‖D−1
A (D−1

A +B−1
A )−1D−1

A Dl‖

≤ τ4

(K + 1)ε
+ 1 +

τ2
4

(K + 1)ε2
+
τ4

ε

≤ (K + 2)ετ4 + (K + 1)ε2 + τ2
4

(K + 1)ε2
<∞. (2.34)

Since M(l,k) and M(k,l) only depends on the value of Σ̂y which is calculated from the

data, they are bounded above for any k 6= l. Based on the assumption that |Ωk|1 is bounded
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for any k 6= l, we can bound ‖Ωk‖ using the fact ‖Ωk‖ < p‖Ωk‖∞ < p|Ωk|1 < ∞. We can

show that

II =
∑

K≥k≥l

{
− tr

(
M(k,l)ΩkA

−1Ωl

)}
=

∑
K≥k≥l

p∑
j=1

{
−
(
M(k,l)ΩkA

−1Ωl

)
(j,j)

}
≤

∑
K≥k≥l

(
p‖M(k,l)ΩkA

−1Ωl‖
)

(2.35)

≤
∑

K≥k≥l

(
p‖M(l,k)‖ ‖Ωk‖ ‖A−1Ωl‖

)
<∞,

where the inequality of (2.35) is due to Lemma 2.5; in particular for real matrix B, we have

maxi,j |B(i,j)| ≤ ‖B‖. Similarly, we can prove that the term III is also bounded above.

Since ‖Ω0‖ is bounded by assumption, we can bound term IV as follows:

IV = −tr
(
Σ̂Y (l,l)Ω0A

−1Ωl

)
=

p∑
j=1

{
−
(
Σ̂Y (l,l)Ω0A

−1Ωl

)
(j,j)

}
≤ p‖Σ̂Y (l,l)Ω0A

−1Ωl‖ (2.36)

≤ p‖Σ̂Y (l,l)‖ ‖A−1Ωl‖ ‖Ω0‖ <∞.

Thus the log-likelihood in (2.21) is bounded above in this Case.

Case three: |Ω0|1 is the only matrix not bounded. In this case, following the same

argument as (2.22) in Case two, we can get |Ω0A
−1|1 < ∞. Combining with the fact that

log{det(Ω0)} − log{det(A)} < 0, we prove that the log likelihood in (2.21) is also bounded

in this setting.

Case four: At least |Ωr|1 and |Ωs|1 are not bounded, namely |Dr|1 and |Ds|1 are not

bounded with some rate going to infinity. Without lost of generality, we assume |Dr|1 and

|Ds|1 have fastest rate going to infinity.

By the Hadamard’s inequality (Horn and Johnson, 1985), we have
∑p

i=1(log Ωk(i,i)) ≥

log{det(Ωk)}, and notice that
∑p

i=1(log Ωk(i,i)) has the same rate go to infinity as∑p
i=1(logDk(i,i)), since Ωk(i,i) = Bk(i,i) + Dk(i,i) with Bk(i,i) being bounded. Thus the

order of log likelihood in (2.21) is equivalent to the order of

K∑
k=0

p∑
i=1

{log(Dk(i,i))} − log{det(A)} −
∑

l>m≥1

{
tr(M(l,m)ΩlA

−1Ωm)
}
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−
K∑
k=1

{
tr(Σ̂Y (k,k)Ω0A

−1Ωk)
}
. (2.37)

Using Minkowski determinant theorem, it follows that

det(A) = det(BA +DA) ≥ {det(DA)1/p + det(BA)1/p}p

≥ {det(DA)1/p}p = det(DA) = det(
K∑
k=0

Dk);

using Woodbury matrix identity we also know that A−1 = (BA+DA)−1 = D−1
A −D

−1
A (D−1

A +

B−1
A )−1D−1

A ; by definition we have Ωl = Bl + Dl and Ωm = Bm + Dm. Combining these

results, we know (2.37) is bounded by:

K∑
k=0

p∑
i=1

{log(Dk(i,i))} − log
{

det(

K∑
k=0

Dk)
}
−
∑

l>m≥1

{
tr(M(l,m)ΩlA

−1Ωm)
}

−
K∑
k=1

{
tr(Σ̂Y (k,k)Ω0A

−1Ωk)
}

=

K∑
k=0

p∑
i=1

{
log(Dk(i,i))

}
− log

{
det(

K∑
k=0

Dk)
}
−
∑

l>m≥1

{
tr(M(l,m)DlD

−1
A Dm)

}
+
∑

l>m≥1

[
tr
{
M(l,m)DlD

−1
A (D−1

A +B−1
A )−1D−1

A Dm

}]
−
∑

l>m≥1

{
tr(M(l,m)BlA

−1Ωm)
}
−
∑

l>m≥1

{
tr(M(l,m)DlA

−1Bm)
}

−
K∑
k=1

{
tr(Σ̂Y (k,k)D0D

−1
A Dk)

}
+

K∑
k=1

[
tr
{

Σ̂Y (k,k)D0D
−1
A (D−1

A +B−1
A )−1D−1

A Dk

}]
−

K∑
k=1

{
tr(Σ̂Y (k,k)B0A

−1Ωk)
}
−

K∑
k=1

{
tr(Σ̂Y (k,k)D0A

−1Bk)
}
. (2.38)

For any k ∈ {1, . . . ,K}, we have

‖DkD
−1
A ‖ = ‖D−1

A Dk‖ =
∥∥∥{

d

Dk(i,i)

DA(i,i)

}∥∥∥ =
∥∥∥{

d

Dk(i,i)∑K
l=0Dl(i,i)

}∥∥∥ ≤ 1. (2.39)

Combining (2.24)–(2.32) and using Woodbury matrix identity we can show

‖A−1Dl‖ = ‖(BA +DA)−1Dl‖

= ‖D−1
A Dl −D−1

A (D−1
A +B−1

A )−1D−1
A Dl‖

≤ ‖D−1
A Dl‖+ ‖D−1

A (D−1
A +B−1

A )−1D−1
A Bl‖
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≤ 1 +
τ2

4

(K + 1)ε2
<∞, (l = 0, . . . ,K). (2.40)

Using 2.28 and 2.39 we obtain the inequalities:

∑
l>m≥1

tr
{
M(l,m)DlD

−1
A (D−1

A +B−1
A )−1D−1

A Dm

}
=

∑
l>m≥1

p∑
j=1

{
M(l,m)DlD

−1
A (D−1

A +B−1
A )−1D−1

A Dm

}
(j,j)

≤
∑

l>m≥1

p‖M(l,m)DlD
−1
A (D−1

A +B−1
A )−1D−1

A Dm‖

≤
∑

l>m≥1

p‖M(l,m)‖ ‖DlD
−1
A ‖ ‖(D

−1
A +B−1

A )−1‖ ‖D−1
A Dm‖ ≤ ∞; (2.41)

K∑
k=1

tr
{

Σ̂Y (k,k)D0D
−1
A (D−1

A +B−1
A )−1D−1

A Dk

}
=

K∑
k=1

p∑
j=1

{
Σ̂Y (k,k)D0D

−1
A (D−1

A +B−1
A )−1D−1

A Dk

}
(j,j)

≤
K∑
k=1

p‖Σ̂Y (k,k)D0D
−1
A (D−1

A +B−1
A )−1D−1

A Dk‖

≤
K∑
k=1

p‖Σ̂Y (k,k)‖ ‖D0D
−1
A ‖ ‖(D

−1
A +B−1

A )−1‖ ‖D−1
A Dk‖ ≤ ∞. (2.42)

Additionally, using (2.34) and (2.40), we can prove

∑
l>m≥1

tr(M(l,m)BlA
−1Ωm)

=
∑

l>m≥1

p∑
j=1

{
M(l,m)BlA

−1Ωm

}
(j,j)
≤

∑
l>m≥1

p‖M(l,m)BlA
−1Ωm‖

≤
∑

l>m≥1

p‖M(l,m)‖ ‖Bl‖ ‖A−1Ωm‖ ≤ ∞; (2.43)

∑
l>m≥1

tr(M(l,m)DlA
−1Bm)

=
∑

l>m≥1

p∑
j=1

{
M(l,m)DlA

−1Bm
}

(j,j)
≤

∑
l>m≥1

p‖M(l,m)DlA
−1Bm‖

≤
∑

l>m≥1

p‖M(l,m)‖ ‖DlA
−1‖ ‖Bm‖ ≤ ∞; (2.44)

K∑
k=1

tr
{

Σ̂Y (k,k)B0A
−1Ωk

}
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=

K∑
k=1

p∑
j=1

{
Σ̂Y (k,k)B0A

−1Ωk

}
(j,j)
≤

K∑
k=1

p‖Σ̂Y (k,k)B0A
−1Ωk‖

≤
K∑
k=1

p‖Σ̂Y (k,k)‖ ‖B0‖ ‖A−1Ωk‖ ≤ ∞ (2.45)

K∑
k=1

tr
{

Σ̂Y (k,k)D0A
−1Bk

}
=

K∑
k=1

p∑
j=1

{
Σ̂Y (k,k)D0A

−1Bk
}

(j,j)
≤

K∑
k=1

p‖Σ̂Y (k,k)D0A
−1Bk‖

≤
K∑
k=1

p‖Σ̂Y (k,k)‖ ‖D0A
−1‖ ‖Bk‖ ≤ ∞ (2.46)

Using (2.41) - (2.46), the order of log likelihood in (2.21) is equivalent to:

K∑
k=0

p∑
i=1

{
log(Dk(i,i))

}
− log

{
det(

K∑
k=0

Dk)
}
−
∑

l>m≥1

{
tr(M(l,m)DlD

−1
A Dm)

}
−

K∑
k=1

{
tr(Σ̂Y (k,k)D0D

−1
A Dk)

}
=

p∑
i=1

K∑
k=0

{
log(Dk(i,i))

}
−

p∑
i=1

{
log
( K∑
k=0

Dk(i,i)

)}
−

p∑
i=1

∑
l>m≥1

(
M(l,m)(i,i)

Dl(i,i)Dm(i,i)∑K
k=0Dk(i,i)

)

−
p∑
i=1

K∑
l=1

(
Σ̂Y (l,l)(i,i)D0(i,i)Dl(i,i)∑K

k=0Dk(i,i)

)
, (2.47)

where Σ̂Y (l,l)(i,j) and M(l,m)(i,i) represents the entry in ith row and jth column of the matrix

Σ̂Y (l,l) and M(l,m) respectively.

Next, we will show the diagonal entries of M(l,m) are positive. We know that Σ̂Y (l,l) Σ̂Y (l,m)

Σ̂Y (m,l) Σ̂Y (m,m)

 =

Y T
l

Y T
m

(Yl Ym

)
/n

is non-negative definite, and Σ̂Y (m,l) = Σ̂T
Y (l,m). Thus for any vector a, we have

aT

(
I −I

) Σ̂Y (l,l) Σ̂Y (l,m)

Σ̂Y (m,l) Σ̂Y (m,m)


 I

−I

 a = aT{Σ̂Y (l,l) + Σ̂Y (m,m) − Σ̂Y (m,l) − Σ̂T
Y (m,l)}a ≥ 0.
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Thus Σ̂Y (l,l) + Σ̂Y (m,m)− Σ̂Y (m,l)− Σ̂T
Y (m,l) is non-negative definite, and its diagonal entries,

which equals to the diagonal entries of M(l,m), are non-negative.

If we focus on a specific i ∈ (1, ...., p), then the only positive term is
∑K

k=0{logDk(i,i)}.

Thus, if we could bound it using the remaining of the terms in (2.47), then we will complete

the proof.

Without loss of generality, we assume Ds(i,i) and Dr(i,i) have the highest and second

highest rates among those positive term. We have logDs(i,i)−log(
∑K

k=0Dk(i,i)) < 0, and also

the rate of M(s,r)(i,i)Ds(i,i)Dr(i,i)/{
∑K

k=0Dk(i,i)} equals to M(s,r)(i,i)Dr(i,i). Since M(s,r)(i,i) >

0 for any i, the term logDr(i,i)−M(s,r)(i,i)Ds(i,i)Dr(i,i)/{
∑K

k=0Dk(i,i)} would go to negative

infinity as Dr(i,i) → ∞. If the second highest rate for the positive term is D0(i,i), we

can simply replace M(s,r)(i,i) with Σ̂Y (s,s)(i,i), and the proof can also be carried out. This

completes the proof of part I.

In summary, the only condition to bound the likelihood is that Σ̂Y (l,l)(i,i) and M(l,m)(i,i)

are greater than zero for any l,m, and i. In other words, there is no constant variable in

Yk; and there are no variables that are perfectly correlated between categories l and m.

For part II, we will show that the penalized log-likelihood does not decreases for each

step of the graphic EM algorithm. For simplicity, we write Ω for {Ωk}Kk=0 in the following

derivation. We can write the full log-likelihood as

L(Ω | y, z) ∝ log{det(Ω0)} − tr(Ω0zz
T/n)

+
K∑
k=1

[
log{det(Ωk)} − tr(Ωk(yk − z)(yk − z)T/n)

]
.

The above log likelihood cannot be calculated directly because the values of z and zzT

are unobserved. But we can calculate a function Q(Ω | Ω(t), y) in which z and zzT are

substituted by their expected values conditional on Ω and y. We define

Q(Ω | y,Ω(t)) = E
{
L(Ω | y, z) | Ω(t)

}
= E

[
log{f(y, z | Ω)} | Ω(t)

]
= E

[
log{f(y | Ω)}+ log{f(z | y,Ω)} | Ω(t)

]
= log{f(y | Ω)}+ E

[
log{f(z | y,Ω)} | Ω(t)

]
, (2.48)
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where f(y | Ω) and f(y, z | Ω) are the probability of y and joint probability of (y, z)

respectively. The equality in (2.48) is due to the fact that expectation is over values of z,

and log{f(y | Ω)} is a constant with respect to the expectation since y is observed.

Based on (2.48), we have

log{f(y | Ω)} − Pen(Ω)

= Q
(
Ω | y,Ω(t)

)
− E

[
log{f(z | y,Ω)} | Ω(t)

]
− Pen(Ω),

where Pen(Ω) is the penalty function which is λ1
∑K

k=1 |Ω
−
k |1 + λ2|Ω−0 |1 in our case.

The M step in graphic EM is to update Ω(t) → Ω(t+1) through

Ω(t+1) = argmax
Ω

Q(Ω | y,Ω(t))− Pen(Ω). (2.49)

Comparing the penalized log-likelihoods for steps t and t+ 1, we can get

log{f(y | Ω(t+1))} − Pen
(
Ω(t+1)

)
− log{f(y | Ω(t))}+ Pen(Ω

(t)
k )

= Q
(
Ω(t+1) | y,Ω(t)

)
− Pen(Ω(t+1))− E

[
log{f(z | y,Ω(t+1))} | Ω(t)

]
−Q

(
Ω(t) | y,Ω(t)

)
+ Pen(Ω(t)) + E

[
log{f

(
z | y,Ω(t)

)
} | Ω(t)

]
.

By (2.49), it follows that

Q
(
Ω(t+1) | y,Ω(t)

k

)
− Pen(Ω(t+1))−Q

(
Ω(t) | y, {Ω(t)

)
+−Pen(Ω(t)) > 0, (2.50)

since Ω(t+1) is the maximizer over the term Q(Ω | Ω(t))− Pen(Ω).

Moreover, by Gibbs’ inequality, we have

−E
[

log{f(z | y,Ω(t+1))} | Ω(t)
]

+ E
[

log{f(z | y,Ω(t))} | Ω(t)
]
> 0. (2.51)

Combining (2.50) and (2.51), we have

log{f(y | Ω(t+1))} − Pen(Ω(t+1))− log{f(y | Ω(t))}+ Pen(Ω(t)) > 0,

which completes the proof for part II.

Thus with an upper bound, d ,for the penalized log-likelihood P(Ω) together with an

prespecified threshold δ, for at most
{
T − P(Ω(0))

}
/δ steps, there are two consecutive steps
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t and t+ 1 satisfying

|P({Ω(t+1)
k }Kk=0)− P({Ω(t)

k }
K
k=0)| < δ,

which completes the proof.

2.7.4 Proof of Theorem 2.1

In this proof, we need to use Lemma 3 of Bickel and Levina (2008). We state the result

here for completeness.

Lemma 2.2. Let Zi be i.i.d. N (0,Σp) and φmax(Σp) ≤ k̄ <∞. Then , if Σp = {σab},

pr

(∣∣∣∣∣
n∑
i=1

(ZijZik − σjk)

∣∣∣∣∣ ≥ nν
)
≤ C1 exp(−C2nν

2), for |ν| ≤ δ ,

where C1, C2 and δ depend on k̄ only.

We first show that φmax(Σ∗Y ) is bounded above. Let v = (vT
0 , . . . , v

T
K)T ∈ R(K+1)p and

vTv = 1. With Condition 1, we have

vTΣ∗Y v =
K∑
k=1

vT
k Σ∗kvk + (

K∑
k=1

vT
k )Σ∗0(

K∑
k=1

vk)

≤ Kτ2 + (

K∑
k=1

vT
k

K∑
k=1

vk)(

K∑
k=1

vT
k )Σ∗0(

K∑
k=1

vk)/(

K∑
k=1

vT
k

K∑
k=1

vk)

≤ Kτ2 + τ2(
K∑
k=1

vT
k

K∑
k=1

vk)

≤ Kτ2 + 2τ2‖
K∑
k=1

vk‖2 ≤ Kτ2 + 2K2τ <∞.

In order to estimate Ωk, we need to minimize (2.9), where Σ̂′k is the only input. First, we

would like to bound the maximum absolute entry of matrix Σ̂k−Σ∗k. We assume Condition

2 holds, and let Σ̂0 =
∑n

i=1 yl,iy
T
m,i/n and Σ̂k =

∑n
i=1 yk,iy

T
k,i/n − Σ̂0 (l 6= m; k ∈ 1...K).

Using the union sum inequality and Lemma 2.2:

pr

(
max

1≤i,j≤p
|σ̂0(i,j) − σ∗0(i,j)| ≥ C3{(log p)/n}1/2

)

=pr

 ⋃
1≤i,j≤p

[
|σ̂0(i,j) − σ∗0(i,j)| ≥ C3{(log p)/n}1/2

]
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≤
∑

1≤i,j≤p
pr
(
|σ̂0(i,j) − σ∗0(i,j)| ≥ C3{(log p)/n}1/2

)
≤ p2C1 exp{−C2nC

2
3 (log p)/n}

=C1p
2−C2

3C2 → 0 ,

for any sufficiently large C3. Therefore with probability tending to 1,

‖Σ̂0 − Σ∗0‖∞ ≤ C3{(log p)/n}1/2,

where ‖W‖∞ denotes maxi,j |ωi,j | for a matrix W . Similarly we have,

‖Σ̂0 + Σ̂k − Σ∗0 − Σ∗k‖∞ ≤ C4{(log p)/n}1/2 (k = 1, . . . ,K).

Then by the triangle inequality, we have

‖Σ̂k − Σ∗k‖∞ ≤ (C3 + C4){(log p)/n}1/2.

Thus ‖Σ̂k−Σ∗k‖∞ = OP
[
{(log p)/n}1/2

]
(k = 0, . . . ,K). The same rate can also be derived

for Σ̂0 =
∑

m6=l
∑n

i=1 ym,i(yl,i)
T/{K(K − 1)n} and Σ̂k =

∑n
i=1 yk,iy

T
k,i/n− Σ̂0 following the

similar proof strategy. Next, we want to bound ‖Σ̂′k − Σ∗k‖∞ (k = 0, . . . ,K). By triangle

inequality, we have

‖Σ̂′k − Σ∗k‖∞ = ‖Σ̂′k − Σ̂k + Σ̂k − Σ∗k‖∞

≤ ‖Σ̂′k − Σ̂k‖∞ + ‖Σ̂k − Σ∗k‖∞

≤ 2‖Σ̂k − Σ∗k‖∞,

by the definition of projection in (2.8). Thus we also have ‖Σ̂′k−Σ∗k‖∞ = OP
[
{(log p)/n}1/2

]
(k = 0, . . . ,K).

For simplicity, we will write Ω = Ωk, Ω∗ = Ω∗k, Σ̂′ = Σ̂′k and ∆ = ∆k, where ∆k =

Ωk − Ω∗k (k = 0, . . . ,K) and λ = λ1 or λ2. Let Ω̂ be our estimate minimizing (2.9) and

define function V(Ω) as a normalized target function of (2.9),

V(Ω) =tr(ΩΣ̂′)− log{det(Ω)}+ λ|Ω−|1 − tr(Ω∗Σ̂′) + log{det(Ω∗)} − λ|Ω∗−|1

=tr{(Ω− Ω∗)(Σ̂′ − Σ∗)} −
[

log{det(Ω)} − log{det(Ω∗)}
]

+ tr{(Ω− Ω∗)Σ∗}+ λ(|Ω−|1 − |Ω∗−|1). (2.52)
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For the one-step algorithm, our estimate Ω̂ minimizes V(Ω). Notice that V(Ω) is also

a function of ∆, thus we define G(∆) ≡ V(Ω∗ + ∆). It is easy to check G(0) = 0, and

∆̂ = Ω̂−Ω∗ minimizes the function G(∆). The main idea of the proof is as follows: we first

define a closed bounded convex set A which contains 0, and show that G is strictly positive

on the boundary of A. Since G is continuous and G(0) = 0, it implies that G has a local

minimum inside A. We define

A = {∆ : ∆ = ∆T, ‖∆‖F ≤Mrn} ,

∂A = {∆ : ∆ = ∆T, ‖∆‖F = Mrn} , (2.53)

where M is a positive constant and rn = {(p+ q)(log p)/n}1/2 → 0.

For the logarithm term in (2.52), we use the Taylor expansion f(t) = log det(Ω + t∆),

the integral form of the remainder, and the symmetry of ∆, Σ∗, and Ω∗ to derive

log{det(Ω∗ + ∆)} − log{det(Ω∗)}

= tr(Σ∗∆)− vec(∆T)

{∫ 1

0
(1− v)(Ω∗ + v∆)−1 ⊗ (Ω∗ + v∆)−1dv

}
vec(∆) ,

where . Thus, we can rewrite (2.52) as,

G(∆) =tr{∆(Σ̂′ − Σ∗)}+ vec(∆T)

{∫ 1

0
(1− v)(Ω∗ + v∆)−1 ⊗ (Ω∗ + v∆)−1dv

}
vec(∆)

+ λ(|Ω∗− + ∆−|1 − |Ω∗−|1) = I + II + III . (2.54)

where where vec(·) returns the vectorization of a matrix. To show that G(∆) is strictly

positive on ∂A, we need to bound I, II and III. First, we bound I using symmetry arguments

once again, and the triangular inequality,

|tr{∆(Σ̂′ − Σ∗)}| = |(vec(∆))Tvec(Σ̂′ − Σ∗)| =

∣∣∣∣∣∣
∑
i,j

δij(σ̂
′
ij − σ∗ij)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i 6=j

δij(σ̂
′
ij − σ∗ij)

∣∣∣∣∣∣+

∣∣∣∣∣∑
i

δii(σ̂
′
ii − σ∗ii)

∣∣∣∣∣ = I′ + II′.

As discussed above, with probability tending to 1,

max
i 6=j
|σ̂′ij − σ∗ij | = ‖vec(Σ̂′ − Σ∗)‖∞ ≤ 2(C3 + C4){(log p)/n}1/2 ,
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and hence term I′ is bounded by

I′ ≤ |∆−|1 max
i 6=j
|σ̂′ij − σ∗ij | ≤ 2(C3 + C4){(log p)/n}1/2|∆−|1. (2.55)

We could also bound term II′ with probability tending to 1 using the Cauchy-Schwartz

inequality and Lemma 2.2,

II′ ≤

{
p∑
i=1

(σ̂′ii − σ∗ii)2

}1/2

‖∆+‖F ≤ p1/2 max
1≤i≤p

|σ̂′ii − σ∗ii| ‖∆+‖F

≤2(C3 + C4){p(log p)/n}1/2‖∆+‖F ≤ 2(C3 + C4){(p+ q)(log p)/n}1/2‖∆+‖F , (2.56)

where ∆+ is the digonal entries of ∆.

In order to bound II, we use results established in Rothman et al. (2008, Theorem 1):

vec(∆T)

{∫ 1

0
(1− v)(Ω∗ + v∆)−1 ⊗ (Ω∗ + v∆)−1dv

}
vec(∆) ≥ ‖∆‖2F /(4τ2

2 ) . (2.57)

Lastly, we would like to bound III. For an index set B and a matrix M = {mij}, define

MB ≡ {mij : (i, j) ∈ B}. Recall that T = {(j, j′) : j 6= j′, ω∗j,j′ 6= 0} and let Tc be its

complement. Note that |Ω∗−|1 = |Ω∗−T |1, and |Ω∗− + ∆−|1 = |Ω∗−T + ∆−T |1 + |∆−Tc |1. Then,

using the triangular inequality, this implies

λ(|Ω∗− + ∆−|1 − |Ω∗−|1) ≥ λ (|∆−Tc |1 − |∆
−
T |1) . (2.58)

Combining (2.55), (2.56), (2.57) and (2.58), we can show,

G(∆) ≥ ‖∆‖2F /(4τ2
2 )− 2(C3 + C4){(log p)/n}1/2|∆−|1

− 2(C3 + C4)
{

(p+ q)(log p)/n
}1/2‖∆+‖F + λ (|∆−Tc |1 − |∆

−
T |1)

= ‖∆‖2F /(4τ2
2 ) +

{
λ− 2(C3 + C4){(log p)/n}1/2

}
|∆−Tc |1

−
[
2(C3 + C4){(log p)/n}1/2 + λ

]
|∆−T |1 − 2(C3 + C4){(p+ q)(log p)/n}1/2‖∆+‖F

≥‖∆‖2F /(4τ2
2 ) + (a1 − 2C3 − 2C4){(log p)/n}1/2|∆−Tc |1

−
[
2(C3 + C4){(log p)/n}1/2 + b1

{
(1 + p/q)(log p)/n

}1/2
]
|∆−T |1

− 2(C3 + C4)
{

(p+ q)(log p)/n
}1/2‖∆+‖F ,
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where the last inequality uses the condition a1{(log p)/n}1/2 ≤ λ1, λ2 ≤ b1{(1 +

p/q)(log p)/n}1/2. Thus when a1 is large enough, the term (a1 − 2C3 −

2C4){(log p)/n}1/2|∆−Tc |1 is always positive. By using the Cauchy-Schwartz inequality we

have

|∆−T |1 ≤
√
q‖∆−T‖F ≤

√
q‖∆−‖F ≤

√
q‖∆‖F , (2.59)

‖∆+‖F ≤ ‖∆‖F .

Thus we have,

G(∆) ≥‖∆‖2F /(4τ2
2 )− (2C3 + 2C4 + b1){(p+ q)(log p)/n}1/2‖∆‖F

− (2C3 + 2C4){(p+ q)(log p)/n}1/2‖∆‖F

=‖∆‖2F
[
1/(4τ2

2 )− (4C3 + 4C4 + b1){(p+ q)(log p)/n}1/2‖∆‖−1
F

]
. (2.60)

We know ∆ ∈ ∂A, where ∂A = {∆ : ∆ = ∆T, ‖∆‖F = Mrn} and rn = {(p+q)(log p)/n}1/2.

Thus we have ‖∆‖−1
F {(p+ q)(log p)/n}1/2 = 1/M and plug it into (2.60) and get

G(∆) ≥ ‖∆‖2F
[
1/(4τ2

2 )− (4C3 + 4C4 + b1)/M
]
> 0,

for any sufficiently large M. Since G is continuous and G(0) = 0, with the fact that G is

strictly positive on the boundary of A, namely ∂A, it implies that G has a local mini-

mum inside A. Therefore we have ‖Ω̂ − Ω∗‖F ≤ Mrn, and thus ‖Ω̂ − Ω∗‖F = Op(rn) =

Op({(p+ q)(log p)/n}1/2) which completes the proof.

2.7.5 Proof of Corollary 2.1

Let Ω̂k = Ω∗k + ∆k be the one-step solution. By Theorem 2.1, we have

‖Ω̂k − Ω∗k‖F = ‖∆k‖F = Op

[{
(p+ q) log p

n

}1/2
]
.

Using the Woodbury matrix identity twice, we know that

Σ̌k = (Ω∗k + ∆k)
−1 = Σ∗k − Σ∗k(∆

−1
k + Σ∗k)

−1Σ∗k

= Σ∗k − Σ∗k(∆k −∆k(Ω
∗
k + ∆k)

−1∆k)Σ
∗
k
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= Σ∗k − Σ∗k∆kΣ
∗
k + Σ∗k∆k(∆k + Ω∗k)

−1∆AΣ∗k.

By Condition 1, we have τ2
−1 < φmin(Σ∗k) < φmax(Σ∗k) < τ1

−1. Follow the proof of

Theorem 2.2, we can get

‖Σ̌k − Σ∗k‖F ≤ ‖Σ∗k∆kΣ
∗
k‖F + ‖Σ∗k∆k(∆k + Ω∗k)

−1∆kΣ
∗
k‖F

≤ ‖Σ∗k‖2‖∆k‖F + ‖Σ∗k‖2‖∆k‖2F ‖(∆k + Ω∗k)
−1‖

≤ ‖∆k‖F /(τ2
1 ) + ‖∆k‖2F ‖(I + Σ∗k∆k)

−1‖ ‖Σ∗k‖/(τ2
1 )

≤ ‖∆k‖F /(τ2
1 ) +

1

τ3
1

‖∆k‖2F (1− ‖Σ∗k∆k‖)−1 (2.61)

. ‖∆k‖F /(τ2
1 ) +

2

τ3
1

‖∆k‖2F (2.62)

= Op

[{
(p+ q) log p

n

}1/2
]
,

the inequality of (2.61) is due to Lemma 2.4, since ‖Σ∗k∆k‖ < 1 when n and p is large

enough. The inequality of (2.62) holds when n and p is large enough since

‖Σ∗k∆k‖ ≤ ‖Σ∗k∆k‖F ≤ ‖Σ∗k‖ ‖∆k‖F ≤
1

τ2
1

‖∆k‖F → 0 .

Thus we finish the proof.

2.7.6 Proof of Theorem 2.2

To prove Theorem 2.2, we use the following Lemma.

Lemma 2.3. Suppose that Condition 1-2 hold, (p + q)(log p)/n = o(1), and λ1, λ2 ≤

b3{(1+p/q)(log p)/n}1/2 for some constant b3 and ‖Σ̃k−Σ∗k‖F = Op

[
{(p+ q)(log p)/n}1/2

]
.

Let {Ω̃k}Kk=0 be the minimizer define by (2.9) replacing Σ̂k with Σ̃k, then

K∑
k=0

∥∥∥Ω̃k − Ω∗k

∥∥∥
F

= Op

[{
(p+ q) log p

n

}1/2
]
.

Proof. This proof is analogous to the proof of Theorem 2.1. Define G(∆) the same as in

(2.52), and define a closed bounded convex set A as (2.53). We only need to show G(∆) is

strictly positive on ∂A, and can write G(∆) = I + II + III as in (2.54). To bound I, we use
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matrix symmetry and the Cauchy-Schwarz inequality,

|tr{∆(Σ̃− Σ∗)}| ≤ ‖Σ̃− Σ∗‖F ‖∆‖F = D1 {(p+ q)(log p)/n}1/2 ‖∆‖F ,

where D1 is some constant. For II and III, they have the same bound as (2.57) and (2.58)

respectively. We can show

G(∆) ≥‖∆‖2F /(4τ2
2 )−D1 {(p+ q)(log p)/n}1/2 ‖∆‖F + λ(|∆−Tc |1 − |∆

−
T |1)

≥‖∆‖2F /(4τ2
2 )−D1 {(p+ q)(log p)/n}1/2 ‖∆‖F − λ|∆−T |1

≥‖∆‖2F /(4τ2
2 )−D1 {(p+ q)(log p)/n}1/2 ‖∆‖F

− b3 {(p+ q)(log p)/n}1/2 ‖∆‖F (2.63)

=‖∆‖2F
[

1

4τ2
2

− (D1 + b3) {(p+ q)(log p)/n}1/2 ‖∆‖−1
F

]
=‖∆‖2F

[
1

4τ2
2

− (D1 + b3)/M

]
> 0,

for any sufficiently large M defined in (2.53). The inequality of (2.63) uses the result of

(2.59) and the condition λ ≤ b3{(1 + p/q)(log p)/n}1/2.

Here we state a known matrix result and provide a short proof for completeness.

Lemma 2.4. Let F be any p× p matrix with ‖F‖ < 1. Then (I − F )−1 =
∑∞

k=0 F
k, and

‖(I − F )−1‖ ≤ 1

1− ‖F‖
.

Proof. Note that
(∑N

k=0 F
k
)

(I − F ) = I − FN+1. Since ‖F k‖ ≤ ‖F‖k and ‖F‖ < 1, we

have F k → 0 as k →∞. As a result of this,

lim
N→∞

(
N∑
k=0

F k

)
(I − F ) = I,

thus (I − F )−1 =
∑∞

k=0 F
k, and we can get

‖(I − F )−1‖ = ‖
∞∑
k=0

F k‖ ≤
∞∑
k=0

‖F k‖ ≤
∞∑
k=0

‖F‖k ≤ 1

1− ‖F‖
.
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In the proof of Theorem 2.2, we also need the Lemma 1 from Lam and Fan (2009), and

we state the result here for completeness.

Lemma 2.5. Let A and B be real matrices such that the product AB is defined. Then we

have

‖AB‖F ≤ ‖A‖‖B‖F .

In particular, if A = {aij}, then |aij | ≤ ‖A‖ for each i, j. When both A and B are symmetric

matrices, we also have

‖AB‖F = ‖BTAT‖F = ‖BA‖F ≤ ‖B‖ ‖A‖F .

To prove Theorem 2.2, we assume Conditions 1-3 hold. In the proof of Theo-

rem 2.1, we have shown that for the first M step, we obtain estimators Ω̂
(1)
k such

that
∑K

k=0

∥∥∥Ω̂
(1)
k − Ω∗k

∥∥∥
F

= Op

[
{(p+ q)(log p)/n}1/2

]
. In the E-step, if we can show

‖Σ̇k − Σ∗k‖F = Op

[
{(p+ q)(log p)/n}1/2

]
, then by Lemma 2.3, the next M-step estima-

tor Ω̂
(2)
k would also be bound by

∑K
k=0

∥∥∥Ω̂
(2)
k − Ω∗k

∥∥∥
F

= Op

[
{(p+ q)(log p)/n}1/2

]
. Since

our EM algorithm guarantees to end in finite steps, the estimator from EM algorithm would

have the same bound as the one-step algorithm.

From Condition 3, we assume there exists Σ̃y such that

‖Σ̃y − Σ∗y‖F = Op

[
{(p+ q)(log p)/n}1/2

]
.

From the E-step expression (3.11), we know that

Σ̇0 = (Â(1))−1 + (Â(1))−1
K∑

l,k=1

{
Ω̂

(1)
l Σ̃y(l,k)Ω̂

(1)
k

}
(Â(1))−1

Σ∗0 = A−1 +A−1
K∑

l,k=1

{
Ω∗l Σ

∗
y(l,k)Ω

∗
k

}
A−1.

Define ∆A = Â(1) −A, where A =
∑K

k=0 Ω∗k. We know from Theorem 2.1 that

‖∆A‖F = Op

[
{(p+ q)(log p)/n}1/2

]
.
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Using the Woodbury matrix identity twice, we know that

(Â(1))−1 = (A+ ∆A)−1

= A−1 −A−1(∆−1
A +A−1)−1A−1

= A−1 −A−1{∆A −∆A(A+ ∆A)−1∆A}A−1

= A−1 −A−1∆AA
−1 +A−1∆A(∆A +A)−1∆AA

−1.

By Condition 1, we have τ1 < φmin(A) < φmax(A) < (K + 1)τ2. Using Lemma 2.4, we

have

‖(Â(1))−1 −A−1‖F ≤‖A−1∆AA
−1‖F + ‖A−1∆A(∆A +A)−1∆AA

−1‖F

≤‖A−1‖2‖∆A‖F + ‖A−1‖2‖∆A‖2F ‖(∆A +A)−1‖ (2.64)

≤‖∆A‖F /(τ2
1 ) + ‖∆A‖2F ‖(I +A−1∆A)−1A−1‖/(τ2

1 ) (2.65)

≤‖∆A‖F /(τ2
1 ) + ‖∆A‖2F ‖(I +A−1∆A)−1‖/(τ3

1 )

≤‖∆A‖F /(τ2
1 ) +

1

τ3
1

‖∆A‖2F /(1− ‖A−1∆A‖) (2.66)

.
1

τ2
1

‖∆A‖F +
2

τ3
1

‖∆A‖2F (2.67)

=Op

[{
(p+ q) log p

n

}1/2
]
.

The inequality of (2.64) is due to Lemma 2.5; inequality of (2.65) is due to the fact that

‖A−1‖2 = 1/(φmin(A))2 ≤ 1/(τ2
1 ), inequality of (2.66) is due to Lemma 2.4 and inequality

of (2.67) can be achieved when n is large enough since

‖A−1∆A‖ ≤ ‖A−1∆A‖F ≤ ‖A−1‖ ‖∆A‖F ≤
1

τ2
1

‖∆A‖F → 0 .

Next, define

∆1 = (Â(1))−1 −A−1, ∆k,2 = Ω̂
(1)
k − Ω∗k (2.68)

{∆(l,k),3}1≤l,k≤K = {Σ̃y(l,k)}1≤l,k≤K − {Σ∗y(l,k)}1≤l,k≤K , (2.69)
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where ‖∆1‖F , ‖∆k,2‖F and ‖∆(l,k),3‖F all have the same rate of Op

[
{(p+ q)(log p)/n}1/2

]
.

With (2.68) and (2.69), Σ̇
(1)
0 − Σ∗0 can be expressed as follows

Σ̇
(1)
0 − Σ∗0 =(Â(1))−1 + (Â(1))−1

K∑
l,k=1

{
Ω̂

(1)
l Σ̃(l,k)Ω̂

(1)
k

}
(Â(1))−1

−A−1 −A−1
K∑

l,k=1

{
Ω∗l Σ

∗
y(l,k)Ω

∗
k

}
A−1

= ∆1 + ∆1

( K∑
l,k=1

Ω∗l Σ
∗
y(l,k)Ω

∗
k

)
A−1 +A−1

( K∑
l,k=1

∆l,2Σ∗y(l,k)Ω
∗
k

)
A−1

+A−1
( K∑
l,k=1

Ω∗l ∆(l,k),3Ω∗k

)
A−1 +A−1

( K∑
l,k=1

Ω∗l Σ
∗
y(l,k)∆k,2

)
A−1

+A−1
( K∑
l,k=1

Ω∗l Σ
∗
y(l,k)Ω

∗
k

)
∆1 +B,

where B is the remainder terms with following value

B =∆1

( K∑
l,k=1

∆l,2Σ∗y(l,k)Ω
∗
k

)
A−1 + ∆1

( K∑
l,k=1

Ω∗l ∆(l,k),3Ω∗k

)
A−1 + ∆1

( K∑
l,k=1

Ω∗l Σ
∗
y(l,k)∆k,2

)
A−1

+ ∆1

( K∑
l,k=1

Ω∗l Σ
∗
y(l,k)Ω

∗
k

)
∆1 +A−1

( K∑
l,k=1

∆l,2∆(l,k),3Ω∗k

)
A−1 +A−1

( K∑
l,k=1

∆l,2Σ∗y(l,k)∆k,2

)
A−1

+A−1
( K∑
l,k=1

∆l,2Σ∗y(l,k)Ω
∗
k

)
∆1 +A−1

( K∑
l,k=1

Ω∗l ∆(l,k),3∆k,2

)
A−1 +A−1

( K∑
l,k=1

Ω∗l ∆(l,k),3Ω∗k

)
∆1

+A−1
( K∑
l,k=1

Ω∗l Σ
∗
y(l,k)∆k,2

)
∆1 + ∆1

( K∑
l,k=1

∆l,2∆(l,k),3Ω∗k

)
A−1 + ∆1

( K∑
l,k=1

∆l,2Σ∗y(l,k)∆k,2

)
A−1

+ ∆1

( K∑
l,k=1

∆l,2Σ∗y(l,k)Ω
∗
k

)
∆1 + ∆1

( K∑
l,k=1

Ω∗l ∆(l,k),3∆k,2

)
A−1 + ∆1

( K∑
l,k=1

Ω∗l ∆(l,k),3Ω∗k

)
∆1

+ ∆1

( K∑
l,k=1

Ω∗l Σ
∗
y(l,k)∆k,2

)
∆1 + . . .+ ∆1

( K∑
l,k=1

∆l,2∆(l,k),3∆k,2

)
∆1.

Each term of B is product of at least two ∆ term, where ∆ are ∆1, ∆k,2 or

∆(l,k),3. Additionally, we know ‖∆1‖F , ‖∆k,2‖F and ‖∆(l,k),3‖F all have the same rate

of Op

[
{(p+ q)(log p)/n}1/2

]
, and ‖Ω∗l ‖F , ‖Σ∗y(l,k)‖F and ‖A‖F are bounded. Thus ‖B‖F =

Op(‖∆‖21) = op(‖∆‖21) as n and p go to infinity. We then can bound ‖Σ̇(1)
0 −Σ∗0‖ as follows
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‖Σ̇(1)
0 − Σ∗0‖F ≤

∥∥∥∥∥∥∆1

 K∑
l,k=1

Ω∗l Σ
∗
y(l,k)Ω

∗
k

A−1

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥A−1

 K∑
l,k=1

∆l,2Σ∗y(l,k)Ω
∗
k

A−1

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥A−1

 K∑
l,k=1

Ω∗l ∆(l,k),3Ω∗k

A−1

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥A−1

 K∑
l,k=1

Ω∗l Σ
∗
y(l,k)∆k,2

A−1

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥A−1

 K∑
l,k=1

Ω∗l Σ
∗
y(l,k)Ω

∗
k

∆1

∥∥∥∥∥∥
F

+ ‖∆1‖F + op(‖∆1‖F )

≤ ‖∆1‖FK2τ2
2 /(τ

2
1 ) +

K∑
l=1

‖∆l,2‖FKτ2/(τ
3
1 ) +

K∑
l,k=1

‖∆(l,k),3‖F τ2
2 /(τ

2
1 ) +

K∑
k=1

‖∆k,2‖FKτ2/(τ
3
1 )

+ ‖∆1‖FK2τ2
2 /(τ

2
1 ) + op(‖∆1‖F ) = Op

[{
(p+ q) log p

n

}1/2
]
.

Similarly for Σ̇
(1)
k , we can prove that ‖Σ̇(1)

k − Σ∗k‖F = Op

[
{(p+ q)(log p)/n}1/2

]
.

Then by Lemma 2.3, the corresponding M-step estimator Ω̂
(2)
k would also be bound by∑K

k=0

∥∥∥Ω̂
(2)
k − Ω∗k

∥∥∥
F

= Op

[
{(p+ q)(log p)/n}1/2

]
, and follow previous step we can show

‖Σ̇(2)
k − Σ∗k‖F = Op

[
{(p+ q)(log p)/n}1/2

]
for k = 0, . . . ,K and so on. Since our EM algo-

rithm guarantees to end in finite steps, the estimator from EM algorithm would have the

same bound as the One-step algorithm and we finish the proof.

2.7.7 Proof of Theorem 2.3

This proof follows a similar argument to that in Lam and Fan (2009, Theorem 2). The

derivative for Wk(Ωk) w.r.t. ωk(i,j) can be written as

∂Wk(Ωk)

∂ωk(i,j)
= 2{σ̂′k(i,j) − σk(i,j) + λ sign(ωk(i,j))} ,

where λ = λ1 for k = 1, . . . ,K and λ = λ2 otherwise. For (i, j) ∈ T ck , it is sufficient to

show that the sign of ∂Wk(Ωk)/∂ωk(i,j) at the local minimum ω̂k(i,j) only depends on the

sign of ω̂k(i,j) with probability tending to 1. Namely, the rate for λ dominates the rate

of σ̂′k(i,j) − σk(i,j). To see that, without generality we suppose ω̂k(i,j) < 0 for (i, j) ∈ T ck .

Then there is a small ε > 0 such that ω̂k(i,j) + ε < 0. Since ω̂k(i,j) is the local minimum,

∂Wk(Ωk)/∂ωk(i,j) should be positive at ω̂k(i,j) +ε for small ε > 0. Because ∂Wk(Ωk)/∂ωk(i,j)

has the same sign at ω̂k(i,j) and is continuous function, ∂Wk(Ωk)/∂ωk(i,j) should be negative
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at ω̂k(i,j) +ε for small ε > 0, which contradicts with previous conclusion. Thus, ω̂k(i,j) would

be 0.

Let Ω̂k = Ω∗k + ∆k and Σ̌k = Ω̂−1
k . Since

∑K
k=0

∥∥∥Ω̂k − Ω∗k

∥∥∥ = Op(ηn), we have ∆k =

Op(ηn). Using the Woodbury formula twice, we have that

Σ̌k = (Ω∗k + ∆k)
−1 = Σ∗k − Σ∗k(∆

−1
k + Σ∗k)

−1Σ∗k

= Σ∗k − Σ∗k(∆k −∆k(Ω
∗
k + ∆k)

−1∆k)Σ
∗
k

= Σ∗k − Σ∗k∆kΣ
∗
k + Σ∗k∆k(∆k + Ω∗k)

−1∆AΣ∗k.

By Condition 1, we have τ2
−1 < φmin(Σ∗k) < φmax(Σ∗k) < τ1

−1 and we can get

‖Σ̌k − Σ∗k‖ ≤ ‖Σ∗k∆kΣ
∗
k‖+ ‖Σ∗k∆k(∆k + Ω∗k)

−1∆kΣ
∗
k‖

≤ ‖Σ∗k‖2‖∆k‖+ ‖Σ∗k‖2‖∆k‖2‖(∆k + Ω∗k)
−1‖

≤ ‖∆k‖/(τ2
1 ) + ‖∆k‖2‖(I + Σ∗k∆k)

−1‖ ‖Σ∗k‖/(τ2
1 )

≤ ‖∆k‖/(τ2
1 ) +

1

τ3
1

‖∆k‖2(1− ‖Σ∗k∆k‖)−1 (2.70)

. ‖∆k‖/(τ2
1 ) +

2

τ3
1

‖∆k‖2 (2.71)

= Op(ηn),

the inequality of (2.70) is due to Lemma 2.4, since ‖Σ∗k∆k‖ < 1 when n is large enough.

The inequality of (2.71) holds when n large enough since

‖Σ∗k∆k‖ ≤ ‖Σ∗k∆k‖F ≤ ‖Σ∗k‖ ‖∆k‖ ≤
1

τ1
‖∆k‖ → 0 .

From the proof of Theorem 2.1, we also know ‖vec(Σ̂′k)−vec(Σ∗k)‖∞ = Op[{(log p)/n}1/2]

and the ∂Wk(Ωk)/∂ωk(i,j) at the local minimum ω̂k(i,j) is 2{σ̂′k(i,j)− σ̌k(i,j) +λ sign(ω̂k(i,j))}.

Combining the results we have

max
i,j
|σ̂′k(i,j) − σ̌k(i,j)| = max

i,j
|σ̂′k(i,j) − σ

∗
k(i,j) + σ∗k(i,j) − σ̌k(i,j)|

≤ max
i,j
|σ̂′k(i,j) − σ

∗
k(i,j)|+ max

i,j
|σ∗k(i,j) − σ̌k(i,j)|

≤ |vec(Σ̂′k)− vec(Σ∗k)|∞ + ‖Σ̌k − Σ∗k‖

= Op[{(log p)/n}1/2 + ηn].
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Hence if λ � (log p/n)1/2 + ηn, the term λ sign(ωk(i,j)) dominates over σ̂k(i,j) − σ̌k(i,j) with

probability tending to 1, making the sign of the ∂Wk(Ωk)/∂ωk(i,j) depends only on the sign

of ωk(i,j) at ω̂k(i,j) , thus completes the proof.

2.7.8 Proof of Theorem 2.4

Assume the last iteration for EM minimizes

W ′k(Ωk) = tr(Σ̇kΩk)− log(det(Ωk)) + λ
∑
i 6=j

∣∣ωk(i,j)

∣∣ ,
where λ = λ1 for k = 1, . . . ,K and λ = λ2 otherwise. The derivative for W ′k w.r.t. ωk(i,j) is

∂W ′k(Ωk)

∂ωk(i,j)
= 2(σ̇k(i,j) − σk(i,j) + λsign(ωk(i,j))).

Similar to the proof of Theorem 2.3, it is enough to show that for (i, j) ∈ T ck , that the

sign of ∂Wk(Ωk)/∂ωk(i,j) at the local minimum ω̂k(i,j) only depends on the sign of ω̂k(i,j)

with probability tending to 1. Let Ω̂k be the local minimum in Theorem 2.2, and define

Σ̌k = Ω̂−1
k .

From the proof of Theorem 2.2 and 2.2, we have shown ‖Σ̇k − Σ∗k‖F = Op[{(p +

q)(log p)/n}1/2] and ‖Σ̌k − Σ∗k‖ = Op(ηn). Combining the results yields that

max
i,j
|σ̇k(i,j) − σ̌k(i,j)| ≤ max

i,j
|σ̇k(i,j) − σ∗k(i,j)|+ max

i,j
|σ∗k(i,j) − σ̌k(i,j)|

≤ ‖vec(Σ̇k)− vec(Σ∗)k‖∞ + ‖Σ̌k − Σ∗k‖

≤ ‖Σ̇k − Σ∗k‖F + ‖Σ̌k − Σ∗k‖

= Op[{(p+ q)(log p)/n}1/2 + ηn].

Therefore, if λ � {(p + q)(log p)/n}1/2 + ηn, the sign of
∂W ′

k(Ωk)
∂ωk(i,j)

only depends on

sgn(ωk(i,j)). This completes the proof.

2.7.9 Extension with Similarity Parameter αk

As suggested by one of the reviewers, we can extend our model to allow systemic

layer varying among tissues. For example, since muscle and adipose both are developed
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from mesoderm, they are more close related with each other compared with brain which is

developed from Ectoderm. We extend our model to the follows:

Yk,i = Xk,i + αkzi (k = 1, . . . ,K; i = 1, . . . , n), (2.72)

where Xk,i ∼ N (0,Σk), Zi ∼ N (0,Σ0), αk is the similarity parameter and Xk,i and Zi are

independent with each other. For identifiability issue, we also assume max(diag(Σ0)) = 1.

Similar to section 2.7.1, the likelihood of Y can be written as follows:

f(Y ) =

∫
f(Y | Z)f(Z)dZ

∝
∫

exp

{
K∑
k=1

(Yk − αkZ)TΩk(Yk − αkZ) + ZTΩ0Z

}
dZ

= exp

(
K∑
k=1

Y T
k ΩkYk

)∫
exp

{
ZT
( K∑
k=1

α2
kΩk + Ω0

)
Z − 2

( K∑
k=1

αkY
T
k Ωk

)
z

}
dz

= exp

(
K∑
k=1

Y T
k ΩkYk

)∫
exp

(
zTAextz − 2cT

extz
)

dz

= exp
( K∑
k=1

Y T
k ΩkYk

)
exp

(
− cT

extA
−1
extcext

)∫
exp

{
(AextZ − cext)

TA−1
ext(AextZ − cext)

}
dZ

∝ exp

{
K∑
k=1

Y T
k ΩkYk − (

K∑
k=1

αkY
T
k Ωk)A

−1
ext(

K∑
k=1

αkΩkYk)

}

= exp

[
Y T
(
{dΩk}1≤k≤K − {αlαkΩkA

−1
extΩk}1≤l,k≤K

)
Y

]

= exp(Y TΩY Y ) ,

thus Y ∼ N (0,
[
{dΩk}Kk=1 − {αlαkΩlA

−1
extΩk}1≤l,k≤K

]−1
), where Aext =

∑K
k=1 α

2
kΩk + Ω0

and cext =
∑K

k=1 αkΩkYk. Therefore,

ΩY = {dΩk}Kk=1 − {αlαkΩkA
−1
extΩk}1≤l,k≤K .

Similarly, we derive det(ΩY ). We know that

ΣY ={d Σk}1≤k≤K +


α1I

...

αKI


(
α1Σ0 · · · αKΣ0

)
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={d Σk}1≤k≤K

I + {d Ωk}1≤k≤K


α1I

...

αKI


(
α1Σ0 · · · αKΣ0

) ,

and the det(ΣY ) can be expressed as follows:

det(ΣY ) =

{
K∏
k=1

det(Σk)

}
det

I +

(
α1Σ0 · · · αKΣ0

)
{dΩk}1≤k≤K


α1I

...

αKI




=

{
K∏
k=1

det(Σk)

}
det

(
I + Σ0

K∑
k=1

α2
kΩk

)

=

{
K∏
k=1

det(Σk)

}
det

(
Σ0Ω0 + Σ0

K∑
k=1

α2
kΩk

)

=

{
K∏
k=0

det(Σk)

}
det(Aext),

where Aext = Ω0 +
∑K

k=1 α
2
kΩk. Therefore, we have log{det(ΩY )} =

∑K
k=0 log{det(Ωk)} −

log{det(Aext)}. Combining previous result, we can write the log-likelihood as

L(ΩY ) =− npK

2
log(2π) +

n

2

[
log{det(ΩY )} − tr

(
Σ̂Y ΩY

)]
=− npK

2
log(2π) +

n

2

[ K∑
k=0

log{det(Ωk)} − log{det(Aext)}
]

− n

2
tr
(

Σ̂Y

[
{dΩk}1≤k≤K − {αlαkΩlA

−1
extΩk}1≤l,k≤K

])
.

Under this setting, we have

Z

Y1

...

YK


∼ N





0

0

...

0


,



Σ0 α1Σ0 . . . αKΣ0

α1Σ0 Σ1 + α2
1Σ0 . . . α1αkΣ0

...
...

...
...

αKΣ0 α1αkΣ0 . . . ΣK + α2
kΣ0




.
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For simplicity, we represent {Ω}Kk=0 as Ω and {αk}Kk=1 as α, and thus have

Z | Y,Ω, α ∼ N

(α1Σ0, . . . , αKΣ0)Σ−1
Y


Y1

...

YK

 ,Σ0 − (α1Σ0, . . . , αKΣ0)Σ−1
Y ΩY


α1Σ0

...

αKΣ0


 .

We can derive E(Z | Y,Ω, α), Var(Z | Y,Ω, α) and E(ZZT | Y,Ω, α) as follows:

E(Z | Y,Ω, α) = (α1Σ0, . . . , αKΣ0)ΩY


Y1

...

YK



= (α1Σ0, . . . , αKΣ0)
(
{dΩk}1≤k≤K −


α1Ω1

...

αKΩk

 (α1A
−1
extΩ1, . . . , αkA

−1
extΩk)

)

Y1

...

YK



=
(

(α1Σ0Ω1, . . . , αKΣ0ΩK)− Σ0

( K∑
k=1

α2
kΩk

)
(α1A

−1
extΩ1, . . . , αkA

−1
extΩk)

)

Y1

...

YK



=
(

(α1Σ0Ω1, . . . , αKΣ0ΩK)− Σ0

(
Aext − Ω0

)
(α1A

−1
extΩ1, . . . , αkA

−1
extΩk)

)

Y1

...

YK



= (α1A
−1
extΩ1, . . . , αkA

−1
extΩk)


Y1

...

YK


= A−1

extcext,

Var(Z | Y,Ω, α) = Σ0 − (α1Σ0, . . . , αKΣ0)ΩY


α1Σ0

...

αKΣ0



= Σ0 − (α1A
−1
extΩ1, . . . , αkA

−1
extΩk)


α1Σ0

...

αKΣ0
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= Σ0 −A−1
ext

( K∑
k=1

α2
kΩk

)
Σ0

= Σ0 −A−1
ext

(
Aext − Ω0

)
Σ0

= A−1
ext

E(ZZT | Y,Ω, α) = Var(Z | Y,Ω, α) + E(Z | Y,Ω, α)E(Z | Y,Ω, α)T

= A−1
ext +A−1

extcextc
T
extA

−1
ext,

where cext =
∑K

k=1 αkΩkYk.

As in the manuscript, let yk,i be the realization of Yk,i and y be the n by Kp dimensional

data matrix. We can modify our EM algorithm to calculate αk and Ωk jointly. The modified

EM algorithm is described as follows:

The E step calculates:

Q(Ω |, y, α(t),Ω(t)) =
K∑
k=1

E
[
L
(
xk | y, α(t),Ω(t)

)]
+ E

[
L
(
z | y, α(t),Ω(t)

)]
∝

K∑
k=1

(
log{det(Ωk)} − tr

[
ΩkE

{
n∑
i=1

(yk,i − αkzi)(yk,i − αkzi)T/n | y, α(t),Ω(t)

}])

+ log{det(Ω0)} − tr

{
Ω0E

(
n∑
i=1

ziz
T
i /n | y, α(t),Ω(t)

)}

=

K∑
k=1

(
log{det(Ωk)} − tr

[
Ωk

n∑
i=1

(yk,iy
T
k,i)/n− Ωk

n∑
i=1

{
αkyk,iE

(
zi | y, α(t),Ω(t)

)T}
/n

− Ωk

n∑
i=1

{
αkE

(
zi | y, α,Ω

)
yT
k,i

}
/n+ Ωk

n∑
i=1

{
α2
kE
(
ziz

T
i | y, α(t),Ω(t)

)}
/n

])

+ log{det(Ω0)} − tr

{
Ω0E

( n∑
i=1

ziz
T
i /n | y, α(t),Ω(t)

)}
(2.73)

=

K∑
k=0

[
log{det(Ωk)} − tr

(
ΩkΣ̇

(t)
k

)]
.

The M step: Since the function in (2.73) is biconcave function, we can first fix α(t) and

update Ω by solving

Ω(t+1) = argmin
Ω
−Q(Ω | y, α(t),Ω(t)) + λ1

∑
i 6=j

K∑
k=1

∣∣ωk(i,j)

∣∣+ λ2

∑
i 6=j

∣∣ω0(i,j)

∣∣ , (2.74)
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where α(t) and Ω(t) denote the estimates from the t-th iteration. We then normalize

Ω
(t+1)
0 by

Ω
(t+1)
0 =

Ω
(t+1)
0

max
{

diag(Ω
(t+1)
0 )

} .
Then fixing Ω(t+1), we update αk by the following equation

α̂
(t+1)
k =

tr
[
Ω̂

(t+1)
k

∑n
i=1

{
yk,iE(zi | y, α(t),Ω(t))T + E(zi | y, α(t),Ω(t))yT

k,i

}]
2tr
(

Ω̂
(t+1)
k

∑n
i=1E(zizT

i | y, α(t),Ω(t))
) . (2.75)

The value of Σ̇
(t)
k is defined as

Σ̇
(t)
k =E

(
n∑
i=1

(yk,i − αkzi)(yk,i − αkzi)T/n | y, α(t),Ω(t)

)

=
n∑
i=1

{
yk,iy

T
k,i − αkyk,iE(zT

i | y, α(t),Ω(t))
}
/n

−
n∑
i=1

{
αkE(zi | y, α(t),Ω(t))yT

k,i + α2
kE(ziz

T
i | y, α(t),Ω(t))

}
/n

=Σ̈Y (k,k) −
K∑
l=1

(
Σ̈Y (k,l)Ω

(t)
l

)
(A

(t)
ext)
−1 − (A

(t)
ext)
−1

K∑
l=1

(
Ω

(t)
l Σ̈Y (l,k)

)
+ (A

(t)
ext)
−1

K∑
l,k=1

(
Ω

(t)
l Σ̈Y (l,k)Ω

(t)
k

)
(A

(t)
ext)
−1 + (A

(t)
ext)
−1, (k = 1, . . . ,K). (2.76a)

Σ̇
(t)
0 =

n∑
i=1

E
(
ziz

T
i | y, α(t),Ω(t)

)
/n

=(A
(t)
ext)
−1 + (A

(t)
ext)
−1

K∑
l,k=1

(
Ω

(t)
l Σ̈Y (l,k)Ω

(t)
k

)
(A

(t)
ext)
−1, (2.76b)
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CHAPTER 3

Estimation of Gaussian Graphical Model from Data with Dependent Noise
Structure

3.1 Introduction

Graphical models have been widely used in a broad range of field to investigate the re-

lationships among variables. Gaussian graphical models (GGMs) is the simplest graphical

model for contentious random vector which jointly follows a multivariate Gaussian distribu-

tion.A central question for Gaussian graphical models (GGMs) is to recover the structure of

an undirected Gaussian graph. Let G = (V,E) be an undirected graph representing the con-

ditional dependence relationship between components of a random vector y = (y1, . . . , yp)

as follows. The vertex set V = {V1, . . . , Vp} represents the components of y. The edge set

E consists of pairs (i, j) indicating the conditional dependence between yi and yj given all

other components. In applications, the fundamental question for GGMs is to recover the

edge set E. It has been shown that recovering the structure of GGMs is equivalent to recov-

ering the support of the population precision matrix of the data (Dempster et al., 1977). We

assume y = (y1, . . . , yp)
T ∼ N (µ,Σ), where Σ = (σij) is the population covariance matrix.

The precision matrix, denoted as Ω = (ωij), is the inverse of covariance matrix. There is

an edge between Vi and Vj , i.e. (i, j) ∈ E, if and only if ωij 6= 0. Consequently, the support

recovery of the precision matrix Ω equals the recovery of the structure of the graph G.

The problems of estimating a large sparse precision matrix and recovering its support

have drawn considerable recent attention. There are mainly two approaches in the literature.

The first one is a penalized likelihood estimation approach with a lasso-type penalty on

entries of the precision matrix (see for example Yuan and Lin, 2007; Banerjee et al., 2008;

d’Aspremont et al., 2008; Rothman et al., 2008; Ravikumar et al., 2011). The other one

is the neighbourhood based approach, by running a lasso-type regression or Dantzig type



selection of each variable on all the rest of variables to estimate the precision matrix column

by column. See for example Meinshausen and Bühlmann (2006), Yuan (2010), Cai et al.

(2011) and Sun and Zhang (2013). The optimal convergence rate and selection consistency

of such penalized estimation schemes have also been described in theoretical studies (for

example, Rothman et al., 2008; Lam and Fan, 2009; Sun and Zhang, 2013).

In spite of an extensive literature on the topic, a notable drawback of existing methods

for estimating GGMs is that they ignore the existence of measurement error. Measurement

error is both common and varied in biological data. An example of such error is illustrated in

Figure 3.1, depicting microarray data. Each blue dot, (x, y), represents two measurements of

the expression level of a single gene, in the same individual; i.e., a pair of technical replicates.

Each green dot represents two measurements of the expression level of a single gene, but

in different individuals; i.e., a pair of biological replicates. As shown in Figure 3.1, a large

proportion of the total variation among patients is from measurement error. Moreover,

Labaj et al. (2011) showed that RNA-seq could reliably quantify expression of only 30%

of the genes with a relative error less than 20% of the total variance. Many factors could

introduce variation to microarray and RNA-Seq result, including:

1. the degradation rates of RNA among different genes in RNA collection procedure;

2. the amplification efficiency in the PCR step(Hansen et al., 2010);

3. mapping methods (Degner et al., 2009) used in an RNA-seq experiment;

4. molecular constitution and secondary structure of the RNA sample. (Hansen et al.,

2010; Li et al., 2010a).

Therefor, new methodology is needed to recover the structure of the graph G while taking

account the underlying measurement error.
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Figure 3.1: Effect of measurement error is illustrated through a scatter plot. Each point represents
a gene, X and Y axes are gene expression levels measured by microarray. Blue dots are technical
replicates that are the same sample measured twice using two different microarrays. Green dots are
biological replicates. A large proportion of the total variance is due to measurement error.

To explore the network structure using noisy data, we consider a decomposition of the

observed y into two latent vectors

Y = X + ε,

where X and ε are mutually independent. We further assume X ∼ N (µX ,ΣX) and ε ∼

N (µε,Σε). Letting ΩX and Ωε denote the precision matrices of X and ε respectively, we

aim to estimate ΩX from the observed outcome Y = y. With the existence of measurement

error, the graph for the outcome variable y is then highly connected (i.e dense), and the
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absolute value of off-diagonal entries of ΩY are smaller than those of ΩX . This phenomenon

is illustrated in Figure 3.2
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Figure 3.2: Effect of measurement error on ΩY with p = 10 variables. The left figures is the true
ΩX , and the right figure is ΩY = (Ω−1

X + Ω−1
ε )−1.

Under our setting, We hence have ΣY = ΣX + Σε, but ΩX is not identifiable under

this model. To see it, let δ be some small positive number such that (ΣX − δI) is positive

definite. Then we have

ΣY = ΣX + Σε = (ΣX − δI) + (δI + Σε)

= Σ′X + Σ′ε = (Ω′X)−1 + Σ′ε.

Therefore, ΩX is not identifiable when only y is available.

To address this issue, we propose a new experimental design using technical replicates

(e.g., identical sample but distinct measurements). Specifically, for each sample, we repeat

the measurement R times, and denote the results as p-vectors yr (r = 1 . . . R). For each

observed yr, we decompose it as

Yr = X + εr, (3.1)

where εr ∼ N (µε,Σε). The following proposition guarantees the identifiability of the new

experimental design.
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Proposition 3.1. Let yr,i be the ith observed data vector for the rth measurement under

the model (3.1) for R ≥ 2. Then, Ωx is identifiable.

The proof is included in Section 3.6.

To estimate dependency networks taking into account measurement error, we propose

two new methods: a one-step method and an expectation-maximization (EM) method.

The remainder of the article is organized as follows. In Section 3.2, we introduce our

Gaussian graphical model with measurement error, its implementation, and the one-step

and EM methods. In Section 3.3, we study the asymptotic properties of the proposed

methods. In Section 4, we illustrate the performance of our methods through simulations.

3.2 Methodology

For convenience of the reader, we summarize here notation to be used throughout the

chapter. We use Ω∗ = (Σ∗)−1 and Σ∗ to denote the true precision and covariance matrices

respectively. Given a matrix W = (ωij), we use det(W ) to denote the determinant, tr(W )

to denote the trace and W− to denote the off-diagonal entries of W . We further use φj(W )

to denote the jth eigenvalue of W , and φmin(W ) and φmax(W ) to denote the minimum

and maximum eigenvalues of W . The Frobenius norm of W is ‖W‖2F =
∑

i,j ω
2
ij ; the

operator/spectral norm ‖W‖2 is φmax(WWT); and |W |1 is
∑

i,j |ωij |. Finally, we denote

‖W‖∞ as the element-wise maximum maxi,j |ωi,j |.

3.2.1 Problem formulation

In this subsection, there are R measurements on the same p outcome variables on n

subjects. One example of this kind of data is the measurement of gene expression on p

genes in n human brain samples for R = 3 times per sample. Letting Yi,r = (Yi,r1, . . . , Yi,rp)

be a p-dimensional random vector denoting the r-th measurement for the i-th sample. We

model

Yi,r = Xi + εi,r (i = 1, . . . , n; r = 1, . . . , R), (3.2)

where εi,r is the random vector corresponding to the rth random measurement error for the

ith individual, and Xi is the random effect of our interest. We assume that Xi and εr,i are
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i.i.d. p−dimensional random vectors follow multivariate Gaussian distribution with mean

0, and covariance matrices ΣX and Σε respectively, for i = 1, . . . , n, and r = 1, . . . , R.

Let Yi be the joint data vector as Yi = (Y T
i,1, . . . , y

T
i,R)T, and thus Yi ∼ N (0,ΣY ), where

ΣY = {dΣx + Σε} + J ⊗ Σx = {ΣY (l,m)}1≤l,m≤K , where {d·} is a block diagonal matrix, J

is a square matrix with all 1′s as the entries and ⊗ is the Kronecker product. Our goal

is to estimate ΩX given n i.i.d observations {yi}ni=1. The corresponding likelihood can be

written as

L(ΩX ,Ωε | y) = −nRp
2

log(2π) +
n

2

{
log det(ΩY )− tr(Σ̂Y ΩY )

}
, (3.3)

where

Σ̂Y = n−1
n∑
i=1

yiy
T
i = {Σ̂Y (l,m)}1≤l,m≤K . (3.4)

We can also express the log-likelihood as

L(ΩX ,Ωε | y) ∝ R log det(Ωε)−
R∑
r=1

{
tr(Σ̂Y (r,r)Ωε)

}
+ log det(ΩX)

− log det(RΩε + ΩX) +
K∑

l,m=1

tr
(

ΩεΣ̂Y (l,m)Ωε(RΩε + ΩX)−1
)
. (3.5)

The detailed derivation can be found in the section 3.6.1. However, the likelihood is compli-

cated and non-concave in its full form. Direct estimation of the precision matrix ΩX using

maximum likelihood is difficult. However, in order to estimate ΩX following the frame work

of Glasso, we only need a good estimate for ΣX (Friedman et al., 2008). Recalling the

model 3.2 and the fact that cov(Yl, Ym) = ΣX , we can first estimate ΣX and then ΩX sub-

sequently. In Sections 3.2.2 and 3.2.3, we consider estimation of the Gaussian graph with

measurement error using a one-step procedure and a method based on the EM algorithm.

3.2.2 One-step method

In this subsection, we first estimate Σx and then obtain estimates for Ωx through a

subsequent one-step optimization. By the fact that var(x) = cov(ym, yl), for any m 6= l,we
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can estimate Σx through

Σ̂X =
1

R(R− 1)

∑
m 6=l

Σ̂Y (m,l) =
1

K(K − 1)n

∑
m 6=l

n∑
i=1

ym,i(yl,i)
T. (3.6)

Using the fact that Σε = var(Yr)− var(X), we can then obtain an estimate for Σε as

Σ̂ε =
1

R

R∑
r=1

(
Σ̂Y (r,r) − Σ̂0

)
=

1

nR

R∑
r=1

n∑
i=1

(
yk,iy

T
k,i

)
− Σ̂0. (3.7)

While this is not needed for one step estimation, it will be useful in the next section.

Note that Σ̂X preserves symmetry, but does not necessarily guarantee positive def-

initeness. We use a simple projection approach to make the estimate positive definite.

Specifically, let Σ̂X =
∑p

j=1 φj(Σ̂X)vjv
T
j , where vj is the j-th eigenvector.

ηj =

 φj(Σ̂k) if φj(Σ̂k) > τ1 > 0 ;

τ1 otherwise,

where τ1 is a pre-specified lower bound on the minimum eigenvalue. Then we have Σ̂′k =∑p
j=1 ηjvjv

T
j , which is positive definite. We then estimate Ωx by minimizing the following

functions:

W(Ωx) = tr(Σ̂′xΩk)− log det(Ωk) + λ
∑
j 6=j′

∣∣ωx(j,j′)

∣∣ , (3.8)

where λ is the tuning parameter. The optimization problem of (3.8) is well studied, and

several efficient algorithms are available for example see Friedman et al. (2008) and Hsieh

et al. (2011). We denote to this procedure as the “one-step” method and introduce the EM

method in next section.

Using (3.7), we can also estimate the Σε even though it is not our main interest by

minimizing:

tr(Σ̂′εΣ
−1
ε ) + log det(Σε) + λ2

∑
j 6=j′

∣∣σx(j,j′)

∣∣ , Σ̂ε (3.9)

which can be solved efficiently using the method, spcov, proposed by Bien and Tibshirani

(2011).
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3.2.3 Graphical EM method

The result of the one-step method is a local solution depending on the initial value

of Σ̂X . When we treat X as a missing value, our model turns to a classic estimation of

parameter under missing data. As introduced by Dempster et al. (1977) in 1970s, the EM

algorithm got a lot of attention for dealing with missing value. We introduce this EM

method as follows.

The E step calculates:

Q(ΩX ,Ωε | y,Ω(t)
X ,Ω

(t)
ε ) ∝−

R∑
r=1

(
tr

[
ΩkE

{
n∑
i=1

(yr,i − xi)(yr,i − xi)T/n | y,Ω(t)
x ,Ω

(t)
ε

}])

+ log det(Ωx) +R log det(Ωε)

− tr

{
Ω0E

(
n∑
i=1

xix
T
i /n | y,Ω

(t)
X ,Ω

(t)
ε

)}

=R
{

log det(Ωε)− tr
(

ΩεΣ̇
(t)
ε

)}
+ log det(ΩX)− tr

(
ΩXΣ̇

(t)
X

)
.

The M step solves:

(Ω
(t+1)
X ,Ω(t+1)

ε ) = argmin
ΩX ,Ωε

−Q(ΩX ,Ωε | y,Ω(t)
X ,Ω

(t)
ε )

+Rλ1

∣∣Σ−ε ∣∣+ λ2

∑
j 6=j′

∣∣Ω−X ∣∣ , (3.10)

where (Ω
(t)
x ,Ω

(t)
ε denote the estimates from the t-th iteration, and (Σ̇

(t)
ε , Σ̇

(t)
X ) are defined as

follows:

Σ̇(t)
ε =E

(
1

nR

R∑
r=1

n∑
i=1

{
(yi,r − xi)(yi,r − xi)T

}
| y,Ω(t)

X ,Ω
(t)
ε

)

=
1

nR

R∑
r=1

n∑
i=1

{
yr,iy

T
r,i − yr,iE(zT

i | y,Ω
(t)
X ,Ω

(t)
ε )− E(zi | y,Ω(t)

X ,Ω
(t)
ε )yT

k,i

}
+

1

n

n∑
i=1

{
E(ziz

T
i | y,Ω

(t)
X ,Ω

(t)
ε )
}

=
1

R

R∑
r=1

Σ̈Y (r,r) −
1

R

R∑
r=1

R∑
l=1

(
Σ̈Y (r,l)Ω

(t)
ε

)
(Ω

(t)
X +RΩ(t)

ε )−1
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− 1

R
(Ω

(t)
X +RΩ(t)

ε )−1
R∑
r=1

R∑
l=1

(
Ω(t)
ε Σ̈Y (l,r)

)
+

1

R
(Ω

(t)
X +RΩ(t)

ε )−1Ω(t)
ε

R∑
l,r=1

(
Σ̈Y (l,r)

)
Ω(t)
ε (Ω

(t)
X +RΩ(t)

ε )−1

+ (Ω
(t)
X + Ω(t)

ε )−1, (3.11a)

Σ̇
(t)
X =

1

n

n∑
i=1

E
(
xix

T
i | y,Ω

(t)
X ,Ω

(t)
ε

)
= (Ω

(t)
X +RΩ(t)

ε )−1Ω(t)
ε

K∑
l,r=1

(
Σ̈Y (l,r)

)
Ω(t)
ε (Ω

(t)
X +RΩ(t)

ε )−1

+ (Ω
(t)
X +RΩ(t)

ε )−1 (3.11b)

where Σ̈Y is an estimator for Σ∗Y , here Σ̈Y = Σ̂Y . Thus, at the t + 1 iteration, problem

(3.10) is decomposed into two separate optimization problems:

Ω
(t+1)
X = argmin

ΩX

{
tr
(

ΩXΣ̇X

)
− log det(ΩX) + λ2

∣∣Ω−X ∣∣1} , (3.12a)

(Ω(t+1)
ε )−1 = Σ(t+1)

ε = argmin
Σε

{
tr
(

Σ−1
ε Σ̇x

)
+ log det(Σε) + λ1

∣∣Σ−1
ε

∣∣
1

}
. (3.12b)

The key difference between this Chapter and Chapter 2 is that we put sparsity on Σε instead

of Ωε. We then can use GLASSO (Friedman et al., 2008) to solve (3.12a), and use spcov

proposed by Bien and Tibshirani (2011) to solve (3.12b).

Th proposed EM method is summarized as follows:

Step 1 (Initial value). Initialize Σ̂X and Σ̂ε (3.4), (3.11a) and (3.11b).

Step 2 (Updating rule: the M step). Update ΩX using (3.12a) using GLASSO, and Ωε

using (3.12b) using spcov.

Step 3 (Updating rule: the E step). Update Σ̇X and Σ̇ε using (3.11a) and (3.11b).

Step 4 (Iteration). Iterate Steps 2 and 3 until convergence is achieved.

The next proposition demonstrates the convergence property of our penalized EM al-

gorithm. We define P(ΩX ,Ωε) as follows
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P(ΩXΩε) = L(ΩX ,Ωε | y)−Rλ1

∣∣Σ−1
ε

∣∣− λ2

∣∣Ω−1
X

∣∣ (3.13)

Proposition 3.2. With λ1 > 0 and λ2 > 0, the graphical EM algorithm solving (2.5) has

the following properties:

1. The penalized log-likelihood in (3.13) is bounded above;

2. For each iteration, the penalized log-likelihood is non-decreasing;

3. For a prespecified threshold δ, after finite steps, the objective function in (3.13) con-

verges in the sense that

|P(Ω
(t+1)
X ,Ω(t+1)

ε )− P(Ω
(t)
X ,Ω

(t)
ε )| < δ.

This proposition is similar to proposition 2.1 in Chapter 2; Thus the proof is skipped.

3.3 Asymptotic properties

In this section, we study the asymptotic properties of our proposed methods including

estimation consistency and sparsistency. Using similar notation as in Chapter 2, we denote

Ω∗X and Ω∗ε to be the true precision matrices, and TX =
{

(j, j′) : j 6= j′, ω∗X(j,j′) 6= 0
}
Tε ={

(i, j) : i 6= j, σ∗ε(i,j) 6= 0
}

be the set of indices of all nonzero off-diagonal elements in Ω∗X

and Ω∗ε respectively. We define qX = |TX | and qε = |Tε| be the cardinality of TX and

Tε , and q = qX + qε. Let Σ∗X and Σ∗ε be the true covariance matrices for X and ε, and

Σ∗Y = {Σ∗Y (l,m)}1≤l,m≤K be the true covariance matrices for Y . We assume that the following

regularity conditions hold.

Condition 1. There exist constants τ1, τ2 such that for all r ∈ {X, ε}, 0 < τ1 <

φmin(Ω∗r) ≤ φmax(Ω∗r) < τ2 <∞.

Condition 2. There exists a constant τ3 > 0, such that min(i,j)∈TX

∣∣∣ω∗X(i,j)

∣∣∣ ≥ τ3 and

min(i,j)∈Tε

∣∣∣σ∗ε(i,j)∣∣∣ ≥ τ3 .
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Condition 1 bounds the eigenvalues of Ω∗X and Ω∗ε , thereby guaranteeing the existence

of its inverse and facilitating the proof of consistency. Condition 2 is needed to bound the

nonzero elements away from zero.

The following theorems discuss estimation consistency and selection sparsistency of our

methods.

Theorem 3.1 (Consistency of the one-step method). Under Conditions 1-2, (p +

qX) log p/n = o(1), and a3(log p/n)1/2 ≤ λ2 ≤ b3{(1 + p/qX) log p/n}1/2 for some con-

stants a3 and b3. Let Ω̂X be the minimizer defined by (3.8) using the one-step method, then

∥∥∥Ω̂X − Ω∗X

∥∥∥
F

= Op

[{
(p+ q) log p

n

}1/2
]
.

The proof of Theorem 3.1 is similar to the one for Theorem 2.1, and hence is omitted.

Before we introduce the main theorem of the EM algorithm, we first present a corollary

of Theorem 3.1 which gives a good estimator of Σ∗Y .

Corollary 3.1. Suppose that Conditions 1-2 hold, let Σ̂one
ε be the minimizer defined by 3.9,

then ∥∥∥Σ̂one
ε − Σ∗ε

∥∥∥
F

= Op

[{
(p+ qε) log p

n

}1/2
]
.

To study our EM estimator, we need a good estimator for Σ∗Y which specifies in the

following condition.

Condition 3. We assume there exists an estimator Σ̃Y such that

‖Σ̃Y − Σ∗Y ‖F = Op

[{
(p+ q) log p

n

}1/2
]
.

The rate in Condition 3 is required to control the convergence rate of the E-step estimate

Σ̇X and Σ̇ε, and thus the consistency of the estimate from the EM method. Under the

conditions in Theorem 3.1 and Corollary 3.1, we can use the one-step estimator Ω̂X and

Σ̂one
ε to obtain Σ̃Y = J ⊗ (Ω̂X)−1 + {dΣ̂one

ε }, which satisfies Condition 3 by Corollary 3.1.

Theorem 3.2 (Consistency of the EM method). Suppose Conditions 1-3 hold, and (p +

q) log p/n = o(1), and a4(log p/n)1/2 ≤ λ1, λ2 ≤ b4{(1 + p/q) log p/n}1/2 for some constants
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a2 and b2. Then the solution, Ω̂X , of the EM method satisfies∥∥∥Ω̂X − Ω∗X

∥∥∥
F

= Op

[{
(p+ q) log p

n

}1/2
]
.

Theorem 3.3 (Sparsistency of the one-step method). Under the assumptions of Theorem

2.1. If we further assume that
∥∥∥Ω̂X − Ω∗X

∥∥∥ = Op(ηn) for a sequence of ηn → 0, and

(log p/n + η2
n)1/2 = O(λ1), then with probability tending to 1, the minimizer Ω̂X satisfies

ω̂X(i,j) = 0 for all (i, j) ∈ T cX .

The sparsistency requires a lower bound on the rate of the regularization parameters

λ2, while the consistency need an upper bounds to control the biases. To achieve both

consistency and sparsistency simultaneously, we need the bounds to be compatible, that is,

we need (log p/n + η2
n)1/2 = O(λ2) = {(1 + p/qX) log p/n}1/2. Using the same argument

as in Chapter 2, there are two scenarios describing the rate of ηn. In the worst case, the

two bounds are compatible only when qX = O(1) and in the most optimistic case, the two

bounds are compatible when qX = O(p).

3.4 Numerical Example

We assessed the performance of the graphical Lasso (glasso), one-step and EM methods

by applying them to simulated data generated by two types of noise structures: banded

network and block network. We simulate the GGM network for X using nearest neighbour

(NN) as described in Chapter 2. The structure of those networks are shown in (Figure 3.3).

Figure 3.3: Network topologies generated in the simulations.
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3.4.1 Simulating X and ε networks

Under each of the 12 simulation conditions, i.i.d. samples were generated, with true

outcomes generated as Xi ∼ N (0,Ω−1
x ), measurement error as εri ∼ N (0,Σε), and observed

outcomes as yi,r = xi + εi,r, for r = 1, . . . , R = 3, and i = 1, . . . , n. The following base

architectures were considered:

• NN/Banded network with p = 30 and p = 100 nodes: the true outcomes network ΩX

is NN-network and the measurement error network Σε is Banded-networks.

• NN/Block network with p = 30 and p = 100 nodes: the true outcomes networks ΩX

is NN-networks and the measurement error network Σε is a block-network.

Banded network for Σ is generated as follows,

σε(i,j) =


1 i = j

U(0.3, 1) if 1 ≤ i− j + 1 ≤ 3 and i 6= j;

0 otherwise.

We generate block networks for Σ as follows,

σε(i,j) =


1 i = j

U(0.3, 1) if 1 + 4(K − 1) ≤ i, j ≤ 4K and i 6= j;

0 otherwise,

where K is the block size. We set K = 5, and 10 for p = 30 and 100 respectively. NN net-

works were generated using the method of Li and Guo (2006), sampling p points uniformly

on [0, 1]2 and then calculating all pairwise distances to find the m nearest neighbors of each

point. Pairs of nodes were linked if they are mutual m-nearest neighbors, with m = 5 in

our model. Under this construction, elements in the precision matrix for each edge are first

generated from uniform [0.5, 1] or [−1,−0.5]. The diagonal entry of each row is taken as the

sum of the absolute values of that row’s elements. We then calculate the inverse of this ma-

trix, and the numbers in each row of the inverse matrix are divided by their corresponding

diagonal entry so that the final covariance matrix has diagonal elements of 1 and is positive

definite.
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We consider three different noise levels, ρ ∈ {0.3, 0.5, 0.7}, for our simulation. The noise

level ρ is defined as ρ = tr(Σε)/{tr(Σx)+tr(Σε)}. For each simulation trial we generate two

independent realizations of the data tensor y, each corresponding to sample size n = 300.

The first realization is used for tuning and training, and the second realization is for testing.

We first compare our EM method with one of the most widely used method for GGMs,

the Graphical Lasso (Glasso) ignoring the existent of measurement error (Friedman et al.,

2008). ROC curves are plotted in Figure 3.4; each curve is based on 100 replications across

various tuning parameters. For the comparison purpose, we set λ1 = λ2 for our EM method.

In the plots, the ROC curves of the EM method are seen to dominate those of the Glasso

method especially for high noise level setting. In general, the EM method delivers more

accurate results than the Glasso method.

Figure 3.4: Receiver operating characteristic (ROC) curves assessing power and discrimination of
graphical inference for p = 100 and n = 500. Each panel reports performance of the EM method
(blue line) and the Glasso method (red line), plotting true positive rate (y-axis)against false positive
rate (x-axis) for a given noise ratio.

We then compare the EM method with the one-step method using the same criteria

described in Chapter 2. Results of the simulations are reported in Table 3.2. Summary

statistics are based on 50 replicate trials under each conditions, and given for model fitting

under both extended BIC and under cross-validation criteria. In general, the one-step

and EM methods under either model selection criteria resulted in lower values of entropy
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loss, Frobenius loss, false negative rates and hamming distance than Glasso ignoring the

measurement error. These results are due to the fact that Glasso estimates ΩY instead of

ΩX . In most of the setting, the EM method delivers more accurate result than the one-step

method.

ROC curves are plotted in Figure 3.5; each curve is based on 100 replications across

various tuning parameters with the constraint λ1 = λ2 for both EM and one-step methods.

In the plots, the EM method has uniformly better sensitivity and specificity than the one-

step method in estimating Ωx.

Table 3.1: Summary statistics reporting performance of the EM and one-step methods inferring
graph structure for different networks. In each cell, the number before and after the slash correspond
to the results using extended BIC and cross-validation, respectively.

True networks
Category-specific / Systemic

ρ Method EL FL FP(%) FN(%) HD (%)

p = 30

NN / Banded

0.3 Glasso 1.2/1.1 0.15/0.15 30.4 /28.6 0.2 /0.0 30.4/28.6
0.3 One step 0.8/0.8 0.06 /0.06 23.6 /24.7 0.0 /0.0 23.6/24.7
0.3 EM 0.6/0.5 0.04/0.03 15.5/19.8 0.0/0.0 15.5/19.8
0.5 Glasso 2.5 /2.4 0.43/0.42 35.4 /33.6 5.4/3.5 40.8/37.1
0.5 One step 0.8/0.7 0.05/0.04 25.4 /26.7 3.7 /2.8 29.1/29.5
0.5 EM 0.7/0.6 0.04/0.03 15.3/20.7 1.6/1.4 16.9/22.1
0.7 Glasso 3.8/3.7 0.72 /0.70 34.0 /32.0 27.5 /26.1 61.5/58.1
0.7 One step 1.2 /1.1 0.08/0.06 15.3/25.1 32.2 /23.1 47.5/48.2
0.7 EM 0.8/0.6 0.06/0.05 13.9/23.2 27.4/15.2 41.3/38.4

NN / Block

0.3 Glasso 1.7/1.5 0.17/0.16 32.2 / 27.6 25.0/22.8 57.2/50.4
0.3 One step 1.1/1.0 0.08/0.07 23.2/20.6 27.2 /28.8 50.4/49.4
0.3 EM 0.8/0.6 0.06/0.05 17.2/22.3 17.3/8.7 34.5/31.0
0.5 Glasso 2.7 /2.8 0.44 /0.44 43.8 /37.2 30.8 /32.5 74.6/69.7
0.5 One step 1.2/0.9 0.07 /0.06 21.6 /20.4 37.3 / 38.4 58.9/58.8
0.5 EM 0.8/0.7 0.06/0.05 16.4/26.0 34.0/18.0 50.4/52.0
0.7 Glasso 5.8 / 4.8 0.76 /0.75 45.1/40.2 50.6 /53.4 95.7 / 93.6
0.7 One step 1.0 / 0.9 0.06 /0.05 9.7 /20.0 76.6 /63.5 86.3/ 83.5
0.7 EM 0.9/0.8 0.05/0.04 9.6 /28.4 64.2/43.3 72.8/ 71.7
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Table 3.2: Summary statistics reporting performance of the EM and one-step methods inferring
graph structure for different networks. In each cell, the number before and after the slash correspond
to the results using extended BIC and cross-validation, respectively.

True networks
Category-specific / Systemic

ρ Method EL FL FP(%) FN(%) HD (%)

p = 100

NN / Banded

0.3 Glasso 14.4/14.1 0.20/0.19 27.4 /24.9 10.4/14.9 37.8/39.8
0.3 One step 4.1/4.0 0.11 /0.09 25.4/24.9 6.3/6.9 31.7/31.8
0.3 EM 3.0/3.0 0.06/0.05 21.6/25.7 5.7 /4.8 27.3/ 30.5
0.5 Glasso 23.9 /22.6 0.43/0.41 34.7 /35.0 19.4/12.8 54.1/47.8
0.5 One step 4.8/4.3 0.10 /0.09 10.7 /16.0 20.7/14.8 31.4/30.8
0.5 EM 3.5/3.2 0.07/0.06 5.2/10.7 17.6/9.9 22.8/ 20.6
0.7 Glasso 29.0 /28.7 0.70 /0.67 41.3/42.6 42.6/ 41.1 83.9/83.7
0.7 One step 5.1 /4.8 0.10 /0.08 7.7/13.3 65.6/45.1 73.3/68.4
0.7 EM 3.8/3.5 0.07/0.06 5.1 /12.0 59.1/38.0 64.2/50.0

NN /Block

0.3 Glasso 17.0 /16.8 0.22 /0.18 23.1/27.4 35.7 /31.8 58.8/59.2
0.3 One step 4.9 /4.3 0.11 /0.09 16.1/ 17.5 33.7 /28.8 49.8/46.3
0.3 EM 3.8/3.2 0.06/0.06 4.2 /7.8 35.3/27.0 39.5 / 34.8
0.5 Glasso 25.3 /24.3 0.41/0.38 30.5/ 29.1 48.1 /50.0 78.6/79.1
0.5 One step 5.2 /4.8 0.11 /0.09 3.4/9.1 59.3 /51.0 62.7/60.1
0.5 EM 4.3/4.2 0.10/0.08 3.5 / 7.7 55.3/52.2 58.8 / 59.5
0.7 Glasso 29.3 /28.7 0.74 /0.73 44.1 /50.2 80.1/76.6 124.2/126.8
0.7 One step 4.2 /3.9 0.09 /0.07 8.1 / 15.2 80.6 /71.6 88.7/86.8
0.7 EM 3.8/3.3 0.07/0.05 1.8 / 8.2 81.1/67.3 82.9 / 75.5

Figure 3.5: Receiver operating characteristic (ROC) curves assessing power and discrimination
of graphical inference for p ∈ {30, 100} and n = 500. Each panel reports performance of the EM
method (blue line) and the one-step method (green line), plotting true positive rate (y-axis)against
false positive rate (x-axis) for a given noise ratio.
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3.5 Discussion

We propose a new experimental design using technical replicates to estimate GGMs

from noisy data which is common in biological science. We then propose novel one-step

and EM methods to estimate graph using data with technical replicates. We show that

our method is asymptotically consistent for high dimensional GGMs, and also evaluate our

method using simulation. There are several interesting directions for further investigation

in the future.

First, for the measurement error covariance matrix Σε, we currently simply assume

it is sparse. However, we know there are several sources for measurement error: RNA

preparation procedure, RNA degradation ,PCR amplification steps, and so on. If we can

well specify the covariance matrices for those sources, we can propose a more efficient

methodology to estimate the underlying graph. Second, how to choose sample size n and

number of technical replicate R under limited budget? The choose of n and R would depends

on the signal noise ratio, but how to quantify this ratio in high dimension setting is a very

interesting topic. Third, with the popularity of RNA-seq, it is practical and useful to extend

our methods from Gaussian assumption to high dimensional discrete data. Furthermore,

beside obtaining a point estimate of the graph, how to perform statistical inference in

graphical models is an important issue. especially in biological science. Recently, Ren

et al. (2015) proposed an novel estimator for GGMs, which enjoys asymptotic normality.

Extending our frame work with similar estimator would be an important extension.

3.6 Appendix

3.6.1 Derivation of likelihood for y

Since from 2.7.1, we have

L(Ω | y) ∝
K∑
k=1

[
log{det(Ωk)} − tr

(
Σ̂Y (k,k)Ωk

)]
+ log{det(Ω0)}

− log{det(A)}+

K∑
l,m=1

tr
(

ΩlΣ̂Y (l,m)ΩmA
−1
)
.
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Replacing Ω0 and Ωk with ΩX and Ωε respectively, it follows that

L(Ωx,Ωε | y) ∝ R log det(Ωε)−
R∑
r=1

{
tr(Σ̂Y (r,r)Ωε)

}
+ log{det(ΩX)}

− log{det(RΩε + Ωx)}+
K∑

l,m=1

tr
(

ΩεΣ̂Y (l,m)Ωε(RΩε + Ωx)−1
)
.

3.6.2 Proof of Identifiability

To demonstrate identifiability of our experimental design, we follow the similar proof

strategy as shown in Chapter 2. It is enough to prove under different decompositions, the

parameters ΩX and Ωε have the same value. Given random vector Yr, we decompose it in

two different ways:

Yr = X − U + εr + U = X∗ + ε∗r (r = 1, ..., R),

where U is a p-dim of random vector. Under our assumption, the two decompositions have

the following properties

cov(ε∗l , ε
∗
m) = 0 (1 ≤ l,m ≤ R), (3.14)

cov(ε∗l , X
∗) = 0 (l = 1, . . . , R). (3.15)

Rearranging (3.14) and (3.15), we have

var(U) = cov(εl, U) + cov(εm, U); (3.16)

var(U) = −cov(U,X) + cov(U, εl). (3.17)

We know that (3.17) hold for any l; thus we have

cov(U, εl) = cov(U, εm) (1 ≤ l,m ≤ R). (3.18)

Combining (3.16), (3.17) and (3.18), we can show

cov(U, εk) = −cov(U,X), (3.19)

var(U) = −2 cov(U,X) = 2 cov(U, εl) (1 ≤ l ≤ R), (3.20)
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which indicate that

var(ε∗l ) = var(εl − U)

= var(εl) + var(U)− 2 cov(U, εl) = var(εl)

var(X∗) = var(X + U)

= var(X) + var(U)− 2 cov(U,X) = var(X).

This completes the proof.

3.6.3 Proof of Corollary 3.1

The proof is similar to the proof of Corollary 1. We only need to prove

‖Σ̂one
ε − Σ∗ε‖F = Op

[{(p+ q) log p

n

}1/2]
,

where is the solution of (3.9). This can be achieved by similar proving strategy as (Lam

and Fan, 2009), and we omitted for simplicity.
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CHAPTER 4

Estimation of the Skeletons in High Dimensional Directed Acyclic Graphs using
Adaptive Group Lasso

4.1 Introduction

Bayesian network is a commonly used probabilistic graphical model that encodes the

conditional dependence of a set of random variables. The structure of Bayesian network

is represented by a directed acyclic graph (DAG). In a DAG, all the edges are directed

without forming a directed loop. The problem of estimating Bayesian networks has received

a significant amount of attention, with applications in biological and medical sciences for

inferring gene regulatory networks (Friedman, 2004; Glymour, 1987; Koller and Friedman,

2009; Sachs et al., 2005). This popularity is partly attributable to the fact that DAGs can

be used to model causal effects (Pearl, 2000).

It has been shown that the skeleton of a DAG, but not the DAG itself, is identifiable

when only observational data is available (Chickering and Boutilier, 2002; Pearl, 2009). The

skeleton of a DAG is the graph generated by removing all directions from the DAG. The

importance of estimating the skeleton of a DAG is fourfold:

1. Skeleton estimation is the first step to construct the DAG.

2. With observational data, the skeleton is still identifiable but the corresponding DAG

is not.

3. Skeleton can be used to assess the direction of some edges in the DAG.

4. The skeleton can be used to design follow-up intervention experiments to construct

the direction of edges (Maathuis et al., 2009).

In the framework of graphical model, we consider the relationship among a set of p ran-

dom variables X = (X1, . . . , Xp) represented by G(V,E). Verma and Pearl (1990) proposed



one of the earliest algorithms, called the Inductive Causation (IC) algorithm to estimate the

skeleton of DAG. Specifically, for each pair of variables Xi and Xj , they search for the set

Sij ∈ {V \ (i, j)}, such that Xi |= Xj |Sij (by conditional independence test), and connect Xi

and Xj with an undirected edge if and only if no Sij is found. For each edge, IC algorithm

has to perform 2p−2 tests, and thus, is not feasible for high dimensional data.

To handle high dimensional data, Spirtes et al. (2000) proposed a sequential method

called the PC-algorithm. Starting from a fully connected graph, the PC-algorithm recur-

sively removes edges based on conditional independence tests to obtain the skeleton of

the DAG. In the PC-algorithm, the search for the separating set Sij is limited to nodes

Xk ∈ adj(G, Xi), and hence the number of tests is reduced significantly. However, the result

of the PC-algorithm is order-dependent in the sense that different initial nodes would lead to

different outputs. Recently, (Colombo and Maathuis, 2013) proposed an order-independent

PC algorithm, called the PC-stable algorithm, and showed that both the PC and the PC-

stable algorithms consistently estimate the skeleton of a sparse DAG with p = O(nr) for

some r > 0.

Instead of starting from a fully connected graph, Spirtes et al. (2000) proposed the the IG

(Independence Graph) algorithm that starts by estimating the moral graph (independence

graph), and then removes the extra edges using conditional independence tests. A moral

graph from a DAG is the undirected graph created by connecting two parents of the same

node (v-structure). Therefore, the skeleton of a DAG could also be obtained by removing

the extra edges due to v-structure. Under the multivariate Gaussian assumption, the moral

graph equals the GGM which is uniquely determined by Ω. Under this setting, Ha et al.

(2014) proposed the PenPC algorithm, which is similar to the IG algorithm. In the PenPC,

they first adapt the neighbourhood selection method to learn the non-zero structure in

the precision matrix Ω (Meinshausen and Bühlmann, 2006). Then a modified PC-stable

algorithm is applied to delete the extra edges due to v-structure. The advantage of the

PenPC algorithm is that by screening out most of the extra edges in the first step, it allows

fewer conditional independence tests in the second step. The PenPC algorithm thus provides

fewer cumulative mistaken probabilities and faster computing speed. Ha et al. (2014) also
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show that the PenPC algorithm is consistent even when the dimension p = O(exp(na)) for

some a ≥ 0.

All existing methods tend to have high false negative rate when analyze high dimensional

data. These high false negative rates can be undesirable: in certain circumstances, the cost

of missing true edges is much higher than including false edges. For example, in biological

research, there are many technologies to test the newly discovered edges, but given the

large number of candidate edges, a missing edge is much harder recover. This phenomena

is exacerbated when analyzing data generated from a DAG with hubs. A hub is defined as

a node densely-connected to other nodes. Examples of hubs include the super-hub genes

in biology, and google website in media network (Hao et al., 2012; Tan et al., 2014). In

these networks, the difference between the GGM and the skeleton of the DAG is large due

to the existence of a large number of v-structures induced by the hubs. Consequently, the

number of tests in the second step of the PenPC algorithm would be very large. To address

this challenging problem, we propose a new method named AdaPC, which uses an adaptive

group lasso penalty to efficiently estimate the skeleton of a DAG.

The idea behind our AdaPC is as follows: we first estimate a graphM(V, J) representing

the dependency (including marginal dependence and conditional dependence given all other

variables) among a set of random variables. An undirected edge (Xi, Xj) belongs to J , if

and only if Xi and Xj are both marginally dependent and conditional dependent given

X−{i,j}. Interestingly, the edge set of the skeleton is a subset of J . Therefore, we remove

the extra edges from J to recover the graph of skeleton. A sketch of the AdaPC algorithm

is:

1 construct M(V, J) using penalized regression;

2 remove edges arising from a v-structure plus a common ancestor or directed path

using a modified PC-algorithm.

The remainder of the article is organized as follows: in Section 4.2, we discuss some back-

ground, terminology, and the concept behind our AdaPC algorithm; in Section 4.3 we

introduce the details of the AdaPC algorithm; in Section 4.4, we compares the performance

of the AdaPC with other existing methods; in Section 4.5, we illustrate the performance

88



of our method through human Gilioblastoma multiforme cancer data; and finally close this

Chapter with discussion in Section 4.6.

4.2 Preliminaries

4.2.1 Definition and Terminology for DAG

A graph G(V,E) includes a vertex set V = 1, ..., p and a edge set E ⊆ V × V that

connect some pair of vertices. In our setting, the vertex corresponds to the component

of a p−dimensional random vector X = (X1, . . . , Xp), and the edge (Xi, Xj) ∈ E denotes

the certain relationship between random variable Xi and Xj . If an edge (Xi, Xj) ∈ E but

(Xj , Xi) /∈ E, we call it a directed edge; If (Xi, Xj) ∈ E indicates (Xj , Xi) ∈ E, we denote

it an undirected edge. A directed graph G without directed cycle is denoted as directed

acyclic graph (DAG). After removing all the directions of a DAG, we obtain its skeleton.

If there is a directed edge (Xi, Xj) in graph G, the node Xi is said to be adjacent with

Xj , and is a parent of node Xj . We denote the set of parents of Xj as pa(Xj), and the

set of adjacent nodes of Xj as adj(G, Xj). A directed path in G is a sequence of distinct

vertices in which a directed edge pointing from each vertex in the sequence to its successor.

If there is a directed path from X to Y , X is an ancestor of Y , and Y is a descendant of X.

A v-structure is the form Xi → Xj ← Xk, where Xi and Xk are marginally independent

but conditionally dependent given their common descendant Xi.

Consider a set of random variables (X1, ..., Xp)
T following a distribution P. This distri-

bution P is said to factorize according to a DAG G(V,E) if P can be written as the product

of a serial of conditional density:

P(X) =

p∏
i=1

Pi(Xi|pa(G, Xi)).

The conditional independence relationship in a DAG can be inferred by the concept of d-

separation (Pearl, 2000). For example, if Xi /∈ adj(G, Xj), then Xi and Xj are d-separated

in G by a set S ⊆ (V/(Xi, Xj)). Namely, Xi |= Xj |S in any distribution P which is factorize

according to G. A distribution P is faithful to a DAG G(V,E), if the conditional inde-

pendence relationship inferred from G(V,E) using d-separation is exactly the same as the
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conditional independence relationship in P. For simplicity, we assume the random vector

(Xi, ..., Xp)
T follows a multivariate Gaussian distribution. It is worth to pointing out that

not all distribution P can be faithfully represented by a DAG (Spirtes et al., 2000). How-

ever, Meek (1995) showed that the non-faithful distribution of multivariate Gaussian family

form a Lebesgue null set in the space of distributions associated with a DAG G(V,E).

4.2.2 Gaussian Graphical Model and Correlation Graph

Let X be a p-dimensional random vector following a multivariate normal distribution

N (µ,Σ), and define Ω = (ωij) = Σ−1. As discussed in Chapter 1.1, Xi is independent with

Xj given the rest of variables if and only if ωij = 0. Thus Ω can be used to construct a

Gaussian Graphical Model (GGM), which represents the conditional dependence relation-

ships among a set of variables. The GGM of X can be represented by an undirected graph

C(V, F ), where each variable corresponds to a node in the set V and conditional dependen-

cies are represented by the edges in the set F . The undirected edge between vertices i and

j, also denoted as (i, j) ∈ F , if variables Xi and Xj are conditionally independent given all

the other variables.

A GMM is different from the skeleton of a DAG because of the so called v-structure.

Given a v-structure Xi → Xj ← Xk, Xi and Xk are conditionally dependent given any

separating set Sik containing Xj . Therefore, Xi and Xk are dependent given all other

variables i.e. (i, k) ∈ F .

We also define the skeleton of a DAG as graph G(V,Eu), where V is the set of vertices

and Eu is the set of undirected edges. It has been shown that the set of edges F equals the

set of edges Eu from the corresponding DAG plus the edges arising from v-structure, and

therefore it implies that E ⊂ F (Ha et al., 2014).

Let K(V,H) represent the correlation graph (CG) corresponding to marginal correlation

relationship between variables. Specifically, an undirected edge (i, j) ∈ H if and only if

variables Xi and Xj are marginally dependent (correlated under Gaussian assumption).

While correlation does not equal causality, causal relationship infers correlation. When P

is faithful to G(V,E), there is an edge between Xi and Xj in a skeleton G(V,Eu), if and

only if Xi and Xj are conditionally dependent given any subset in {V \ {i, j}} including ∅
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(Spirtes et al., 2000). Hence Eu is also a subset of H. The extra edges in H come from two

structures:

• a directed path between two nodes (X → . . .→ Z → . . .→ Y ),

• two nodes have a common ancestor (X ← . . .← Z → . . .→ Y ).

We denote M(V, J) as the graph representing the dependency (including marginal depen-

dence and conditional dependence given all other variables) among a set of random vari-

ables. An undirected edge (i, j) belongs to J , if and only if Xi and Xj are both marginally

dependent and conditional dependent, namely J = F ∩H.

The relationship among a DAG, the skeleton, GGM and CG is illustrated in Figure 4.1

using a toy example. Two different DAGs are shown in Figure 4.1 (a) and (b), with X,Y, Z,

and W represent different random variables. The corresponding skeletons, GGMs, CG and

GGM ∩ CG are shown in the rest of Figure 4.1. In Figure 4.1 (c) and (h), X and Z are

connected in GGM due to the v-structure X → W ← Z. Because of the directed path

Y → Z →W , Y and W are connected in CG as shown in Figure 4.1 (d) and (i). Similarly,

because of the co-ancestor structure (X ← Y → Z) as shown in Figure 4.1 (f), there is an

edge between X and Z in CG as shown in Figure 4.1 (i). The common edges shared among

GGM and CG, which are the sparest graph and also contain the true DAG structures are

shown in Figure 4.1 (e) and (j). In summary, the difference between graph M(V, J) and

skeleton G(V,Eu) is due to a v-structure plus a common ancestor or a directed path.
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Figure 4.1: Illustration of the relationship among DAG, skeleton, GGN, CG, and GGN ∩ CG.

4.3 Methodology

For convenience, we use the following notation throughout this Chapter. We denote

the true precision and covariance matrices respectively as Ω∗ = (Σ∗)−1. For any matrix

W = (ωij), we denote the determinant as det(W ) and the trace as tr(W ). We further denote

the minimum and maximum eigenvalues of W as φmin(W ) and φmax(W ). The Frobenius

norm of W is defined as ‖W‖2F =
∑

i,j w
2
ij , and the operator/spectral norm ‖W‖2 is defined

as φmax(WWT). Given a DAG G(V,E), we define the corresponding skeleton, GGM, CG

and GGM ∩ CG as G(V,Eu), C(V, F ), K(V,H) and M(V, J) respectively.

4.3.1 Problem Formulation

We have n independent observations of the p−dimensional random vector X denoting

as X which is a p×n dimensional matrix. Let Xi correspond to the vector of n independent

observations of Xi. There is some level of dependency among the outcomes variables, which

is entailed by an underlying DAG: G(V,E). Let Xi be the i−th random variable, we model
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Xi =
∑

j∈pa(G,Xi)

ai,jXj + Zi, (4.1)

where the Zi ∼ N (0, σ2
i ) is the latent variables representing the unexplained variation in

the node Xi, and ai,j is the direct effect of node Xj on Xi for j ∈ pa(G, xi). Define the

adjacency matrix of DAG G(V,E) as A = (ai,j). We assume X follows a multivariate

Gaussian distribution with covariance Σ. The adjacency matrix A is not symmetric, and

its non zero entries uniquely entail the structure of the corresponding DAG. Additionally,

the covariance matrix, Σ, and the precision matrix, Ω, for the random vector X have the

following relationship with A:

Σ = ({d σi} −A)−1({d σi} −A)−T

Ω = ({d σi} −A)T ({d σi} −A) ,

Our gaol is to estimate the skeleton G(V,Eu). In the next section, we introduce the AdaPC

method using modified penalized regression with adaptive group lasso penalty to estimate

the skeleton.

4.3.2 The AdaPC Algorithm

The idea behind our AdaPC algorithm is that we want to first estimate the common

edges between C(V, F ) and K(V,H). Namely, we want our estimate (ω̂ij σ̂ij)1≤i,j≤p 6= 0 given

(ω∗ijσ
∗
ij)1≤i,j≤p 6= 0; and (ω̂ij σ̂ij)1≤i,j=p = 0 given (ω∗ijσ

∗
ij)1≤i,j≤p = 0. One way to solve this

problem is using group lasso. However, group lasso is not suitable in this situation, since

it attempts to identify common 0 structure from Σ and Ω instead of common nonzero.

Therefore, we propose a modified adaptive group lasso to address this issue. Our AdaPC

algorithm proceeds in two steps:

1. estimation of M(V, J) by neighbourhood selection,

2. removal of extra edges by a modified PC-stable algorithm.
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Step 0 (Initial Estimation). Given a vertex j, we obtain the initial estimators for θj =

(θ1,j , . . . , θj−1,j , θj+1,j , . . . θp,j) and βj = (βj,1, . . . , βj,j−1, βj,j+1, . . . βj,p) as follows,

θint
j = argmin

θj

(
n−1‖Xj −X−jθj)‖2 + λ1|θj |1

)
,

βint
j,i =

XT
i Xj

‖Xi‖‖Xj‖
, for i 6= j,

where λ1 is the tuning parameter. .

Step 1 (Neighborhood Selection). Denote γj = (θT
j , β

T
j )T, Yj =

(XT
j ,X

T
j /
√
p, . . . ,XT

j /
√
p)T, and define Zj as,

Zj =



X−j 0 · · · 0

0 X1/
√
p · · · 0

... 0
. . .

...

0 0 · · · Xp/
√
p


.

We estimate γj by solving

{θ̂j , β̂j} = argmin
γj

(
n−1‖Yj − Zjγ

T
j ‖+ λ2

∑
i 6=j

wij

√
θ2
j,i + β2

j,i

)
, (4.2)

where wij = (θ̂i,j ∧ β̂i,j)−1 is the weight associated with the ith group. After p

penalized regressions, we construct theM(V, J) as follows: (i, j) ∈ J if θ̂i,j β̂i,j 6= 0 or

θ̂j,iβ̂j,i 6= 0 for i 6= j.

Since θi,j = −ωij/ωjj and βi,j = σij , identifying the non-zero entries in (θ1, . . . , θp) and

(β1, ..., βp) equals estimating the non-zero off-diagonal entries in Ω and Σ respectively.

If using group lasso, it tends to shrink the group (θi,j , βi,j) to 0, when both elements

are close to 0. On the other hand, when one of the elements significantly differs from

0, it leads to make both elements non-zero. However, with the weight wij , we would

place a large weight on the group where at least one of the elements is close to zero,

and hence shrink the estimate to zero.

Step 2 (Modified PC-algorithm). We recover the skeleton G(V,Eu) by applying a modified

PC-stable algorithm to remove the extra edges onM(V, J). Given a undirected graph
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A(V,L), we denote the subgraph of A on a subset of vertices VS as A(VS) and define

some terminologies as follows:

adj(A, i) = {m : (i,m) ∈ L},

adj(A, i, j) =
{
m : m ∈ adj(A, i) ∩ adj(A, j)

}
,

Con(A, v) = { l: there is a path between l and v including v itself },

Loop(A, i, j) = {l : there is a loop containing i, j and l },

S(A)ij =
[ ⋃
v∈adj(A,i,j)

Con
(
A(V \ {i, j}), v

)]⋂ [
adj(A, i)

⋃
adj(A, j)

]
.

The modified PC-algorithm is described as follows:

1. Set k = 0 and A(V,L) =M(V, J).

2. Repeat: k = k + 1

2.1 Repeat: Select an edge (i, j) ∈ L with |S(A)ij | ≥ k

2.1.1 Repeat: Select an vertex set Vs ⊆ S(A)ij with |Vs| = k

2.1.1.1 Set Vk =
[
adj(A, i)

⋃
adj(A, j)

]⋂
Loop(A, i, j) \ [Vs ∪ {i, j}]

2.1.1.2 If Xi and Xj are conditionally independent given {Xl : l ∈ Vs}, then

L = L \ (i, j)

2.1.2 Until: (i, j) /∈ L or all |Vs| = k have been selected

2.2 Until: all edges (i, j) ∈ L with |S(A)ij | ≥ k have been selected

3 Until: all edges (i, j) ∈ L have |S(A)ij | < k

The rational behind this step is briefly described as follows: if two nodes i and j

connected in M but not in skeleton, they must come from a structure containing a v-

structure (inducing (i, j) ∈ F ) and a common ancestor or directed path between i and j

(inducing (i, j) ∈ H).

4.4 Simulation Examples

We compare the performances of the AdaPC algorithm with the PC-stable algorithm

by applying them to various simulated data sets. The PC-stable algorithm is implemented
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using the R-package pcalg. Our results suggest that our algorithms dominate the PC-stable

algorithms in both low and high-dimensional settings.

4.4.1 Simulating set-up

We used the following procedure to generate a DAG using the ER model. First, we

generated a random adjacency matrix A with all entries equal zero. We then randomly

select pE/2 entries from the lower triangle and set them to be the independent realizations

of a U([0.1 : 1]) random variable, where p is the dimension of graph and E is the expected

edges for each node. The nonzero entry Ai,j can be interpreted as the weight for the edge

(i, j). The structures of the DAG with E ∈ {2, 5} and p = 20 are shown in Figures 4.2 (a)

and (b) respectively.

Figure 4.2: DAG topologies used in the simulations. (a) and (b) shows the DAG with E = 2 and
5 respectively.

With adjacency matrix A, we generate the corresponding Σ and Ω using the following

formulae:

Σ = (I −A)−1(I −A)−T

Ω = (I −A)T (I −A),
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and generate i.i.d sample by X ∼ N (0,Σ).

4.4.2 Relationship between M and skeleton

In this section, we focus only on the relationship between graphM and skeleton under

different sparsities. We simulate different DAGs (p = 100) with various sparsity levels

E ∈ {5, 10, 20, 50} following the procedure described above.

Figure 4.3: Illustration of the relationship between graph M and skeleton. Each panel plots the
Ω value (x-axis) against the Σ value (y-axis) with red dots representing those entries with edges in
the skeleton, while blue dots representing entries without edges.

Results reported in Figure 4.3. In general, when the DAG is sparse as in Figure 4.3 (a)

and (b), the majority of the red dots (edges in skeleton) are far away from the axes, while

the blue dots are mostly on the axes. This corresponds to the fact that graph M is close

to skeleton. With the increase of sparsity, blue and red dots are mixed with each other

suggesting that graphM is significantly different from skeleton as in Figure 4.3 (c) and (d).

However in the dense cases, all existing methods would fail to recover skeleton efficiently,
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since PC, PenPC and AdaPC algorithms all aim for sparse DAG. This result demonstrates

the power of the first step of our AdaPC algorithm.

4.4.3 Estimation of M

We compare the performance of our AdaPC method with a separate method for esti-

mating M. The separate method is described as follows:

1. estimate the sparse precision matrix Ω using neighbourhood selection;

2. estimate the sparse covariance matrix Σ by hard thresholding.

σ̃ij = σ̂ijI(|σ̂ij | > λ),

where λ is a prespecified tuning parameter and σ̂ij is the sample correlation between

Xi and Xj .

3. construct the M(V, J) by following rule: (i, j) ∈ J , if σ̃ijω̂ij 6= 0 or σ̃jiΩ̂ji 6= 0.

The results of this comparison are reported in Figure 4.4; each curve is based on 20

replications. In the plots, the ROC curves of the AdaPC method outperform those of the

separate method (λ3 = {0.01, 0.025, 0.1, eBIC selected}) especially when the structure is

sparse.

Figure 4.4: Receiver operating characteristic (ROC) curve for estimating M. Each panel reports
the performance of the AdaPC method (blue line) and the separate method (orange, grey, yellow
and brown lines represent the fixed λ3for a given sparsity parameter E.
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4.4.4 Estimation of the Skeleton

In this subsection, we compared the performance of the AdaPC and PC-stable algorithm

for estimating skeleton. The results is shown in Figure 4.5 based on 100 replications. The

ROC result in Figure 4.5 shows the performance of the AdaPC and PC-stable algorithms for

different sparsity levels (E = 3, 5 and 10). Each curve is the average of 100 replication. In

the plots, the AdaPC method consistently performs better than the PC algorithm especially

when the graph is relative dense. Additionally, when E = 10, PC algorithm can only identify

around 45% of the true edges even with α = 0.90. This is due to the fact that PC algorithm

recursively performs many test for each edge, and hence even with high α value it tends to

falsely remove many true edges especially when the underlying structure is relative dense.

In the other hand, our AdaPC overcomes this drawback through much least tests in the

second step. This is another important advantage for AdaPC.
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Figure 4.5: ROC curve assessing power and discrimination of estimating the skeleton of a DAG.
The blue solid line represents the AdaPC algorithm and dash red line is result from PC-stable
algorithm.

4.5 Application

To illustrate the power of our approach in real data, AdaPC was applied to the Glioblas-

toma multiforme (GBM) cancer data set, consisting of 487 patients with 17814 genes and

534 micro-RNAs, from the Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas Re-

search Network., 2012). Based on microarray data, the patients are classified into four

cancer subclasses: 128 Classical,146 Mesenchymal, 86 Neural, and 127 Proneural with sam-
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ple size 128, 146, 86 and 127 respectively (Verhaak et al., 2010). Verhaak et al. (2010)

selected 840 signature genes(210 genes per class) to best represent each class using ClaNC,

on which we base. Our method is designed for single graph, thus we only focus on the

largest class, Mesenchymal, with top 394 genes with highest variation in this subclass.

Before estimating the skeleton, we control the effect of micro-RNAs by fitting `1 pe-

nalized linear regression of gene expression against micor-RNA expression. We applied our

adaPC method and PC-stable method to the residues. The topologies of the gene networks

under different methods are shown in Figures 4.5 a) and b) with the same total amount

of edges i.e. 474 edges. The resulting structure from AdaPC is a scale free like structure

with only 7 nodes have more than 7 edges (maximum degree is 10). These nodes are often

referred as hubs since they are extremely densely connected to other nodes. This scale-free

network structure has been shown to be common in biological networks, for example see

Hao et al. (2012). The 7 hub genes are ASCL1, BAI3, GRIA2, GRIK1, KLRC3, NR0B1,

SLC4A4. Here BAI3 (adhesion G protein-coupled receptor B3), GRIA2 (glutamate recep-

tor, ionotropic, AMPA 2), GRIK1 (glutamate receptor, ionotropic, kainate 1) and NR0B1

(Orphan nuclear receptor), KLRC3 (killer cell lectin-like receptor subfamily C, member 3),

and NR0B1 (Orphan nuclear receptor) are cell transmembrane receptors which are stimu-

lated by external signals and pass signals by activating downstream proteins. Hence those

genes are potential candidates for hubs (Antoni et al., 2010; Choi et al., 2012; Li et al.,

2010b; amd Akihisa Imagawa et al., 2013; Tajima et al., 2003). Additionally, ASCL1, tran-

scription factors, activates the transcription of target genes through binding to the specific

DNA motif, e.g. E box in the promoter region (Augustyn et al., 2014), and thus could be

a hub gene.

In comparison, the skeleton inferred from PC-stable algorithm shows a pattern without

obvious hub (maximum edge degree is 6). There is no gene connected with more than 6

other genes. Figure 4.7 compares the edge degree distribution between AdaPC and PC-

stable methods. The skeleton from the AdaPC method has a heavier right tail compared

dwith the one from PC-Stable method. The phenomena is due to the fact for a node with

q degrees it need to reject 2q tests for each edge in order to recover the true structure.

However, when q is relative large, e.g in the case of hub, when high probability some of
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those test would not reject the null hypothesis and hence lead to removal of the edges.

In sum, to estimate skeleton with hubs, AdaPC would be a better choice over PC-stable

algorithm.
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Figure 4.6: Topology of the skeleton networks inferred by the EM method applied to measurements
of the 394 genes with highest within-tissue variance in Mesenchymal subclass. Panels a) and b)
display the skeleton networks estimated by AdaPC method and PC-stable method respectively.
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Figure 4.7: Distribution of edge degree from skeleton networks in 4.6.

4.6 Discussion

Due to computational efficiency, causal structure learning algorithms in sparse high

dimensional settings are often based on sequential tests such as PC-algorithm and PC-

statble algorithm. Due to large amount of tests, those methods only can handle the data

with dimension p is polynomial scale of sample size n, and tend to miss a large proportion

of true edges when the structure is relatively dense. To address this issue, we propose

a two-step approach, the AdaPC, to estimate the skeleton of DAG in high dimensional

setting. In the first step, we estimate theM, which is interception of GGM and Covariance

graph, using weighted penalized regression. In the following step, we recover the skeleton

by removing those extra edges which are only due the special V-structure plus common

ancestor, and hence is rare. Numerical studies show that our AdaPC algorithm dominate

existing methods. A possible direction of future work is the extend the Gaussian assumption

to discrete data such as RNAseq. Another possible direction is to extend the single graph

frame work to multiple graphs.
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inference using graphical models with the R package pcalg. Journal of Statistical Software,
47:1–26.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and tech-
niques. The MIT Press.

Labaj, P., Leparc, G., Linggi, B., Markillie, L. M., Wiley, S., and Kreil, D. (2011). Char-
acterization and improvement of rna-seq precision in quantitative transcript expression
profiling. Bioinformatics, 27:383–391.

Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance
matrices estimation. The Annals of Statistics, 37:4254–4278.

Li, H. and Guo, J. (2006). Gradient directed regularization for sparse gaussian concentration
graphs, with applications to inference of genetic networks. Biostatistics, 7:302–317.

Li, J., Jiang, H., and Wong, W. H. (2010a). Modeling non-uniformity in short-read rates
in rna-seq data. Genome Biology, 11:R50.

Li, J.-M., Zeng, Y.-J., Peng, F., Li, L., Yang, T.-H., Hong, Z., Lei, D., Chen, Z., and Zhou,
D. (2010b). Aberrant glutamate receptor 5 expression in temporal lobe epilepsy lesions.
Brain Rese.

Liu, H., Han, F., Yuan, M., Lafferty, J., and Wasserman, L. (2012). High-dimensional
semiparametric gaussian copula graphical models. The Annals of Statistics, 40:2293–
2326.

105



Lumeng, C. (2013). Innate immune activation in obesity. Molecular Aspects of Medicine,
34:12–29.

Maathuis, M., Kalisch, M., and Buhlmann, P. (2009). Estimating high-dimensional inter-
vention eeffect from observational data. The Annals of Statistics, 37(6A):3133–3164.

Meek, C. (1995). Strong completeness and faithfulness in bayesian networks. In Besnard, P.
and Hanks, S., editors, In Uncertainty in Artificial Intelligence, pages 411–418. Morgan
Kaufmann.
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