
DE NOVO PROTEINS DESIGNED FROM EVOLUTIONARY PRINCIPLES

Timothy Michael Jacobs

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Bioinformatics and Computational Biology.

Chapel Hill
2015

Approved by:

Brian Kuhlman

Jack Snoeyink

Alexander Tropsha

Edward Collins

Jane Richardson

c© 2015

Timothy Michael Jacobs

ALL RIGHTS RESERVED

ii

ABSTRACT

Timothy Michael Jacobs: DE NOVO PROTEINS DESIGNED FROM EVOLUTIONARY
PRINCIPLES

(Under the direction of Brian Kuhlman)

Protein engineering has rapidly developed into a powerful method for the optimization,

alteration, and creation of protein functions. Current protein engineering methods fall into

the category of either high-throughput directed evolution techniques, or engineering through

the use of computational models of protein structure. Despite significant innovation in both

of these categories, neither is capable of handling the most difficult and desirable protein en-

gineering goals. The combination of these two categories is an area of active research, and

the development and testing of combination methods is the focus of this dissertation. Chap-

ters 2 and 3 describe the development of a computational framework for de novo protein

design called SEWING (Structural Extension WIth Native-fragment Graphs). In contrast to

existing methods of de novo design, which attempt to design proteins that match a designer-

supplied target topology, SEWING generates large numbers of diverse protein structures. We

show that this strategy is highly effective at creating diverse helical backbones. Experimental

characterization of SEWING designs shows that the experimental structures match the de-

sign models with sub-angstrom root mean square deviation (RMSD). Chapter 3 extends this

methodology to the creation of protein interfaces. Using this method, several de novo designed

proteins are created that bind their designated target. Chapter 4 describes the combination of

directed evolution and computational modeling through the improvement of directed evolution

techniques. In this chapter, a web tool called SwiftLib is developed, which allows rapid gen-

eration of degenerate codon libraries. SwiftLib allows protein engineers to determine optimal

degenerate codon primers for the incorporation of desired sequences, such as sequence pro-

files generated from computational modeling and evolutionary data. Together, these chapters

iii

outline the creation of tools for the engineering of protein functions, and provide additional

evidence that computational modeling and evolutionary principles can be combined for the

improvement of protein engineering methods.

iv

TABLE OF CONTENTS

1 INTRODUCTION . 1

1.1 Introduction to Protein Engineering . 1

1.2 Methods and Strategies for Protein Engineering 2

1.2.1 Directed Evolution . 2

1.2.2 Computational Protein Design . 5

1.2.3 Protein Redesign . 7

1.2.4 De Novo Protein Design . 11

1.3 Opportunities for Improved Engineering Methods 13

2 DESIGN OF STRUCTURALLY UNIQUE PROTEINS USING STRATE-
GIES INSPIRED BY EVOLUTION . 23

2.1 Introduction . 23

2.2 Results . 24

2.2.1 Overview of the SEWING Method . 24

2.2.2 Contiguous SEWING Design and Characterization 26

2.2.3 Discontiguous SEWING Characterization 28

2.2.4 Discussion . 30

2.3 Supplemental Methods . 32

2.3.1 Computational Modeling . 32

2.3.2 Experimental Materials and Methods 34

v

2.4 Supplemental Figures . 40

2.5 Supplemental Tables . 46

2.6 Command Lines and Input Files . 49

2.6.1 Inputs for the Extraction of Features from a Set of Structures Into a
Features Database . 49

2.6.2 Inputs for generating SEWING nodes from Features database 50

2.6.3 Inputs for Running Geometric Hasher to Generate Edges 50

2.6.4 Inputs for Generating SEWING backbones 51

2.6.5 Inputs for the Optimization of SEWING Designs 53

3 FUNCTIONAL INCORPORATION OF BINDING MOTIFS INTO DE
NOVO DESIGNED PROTEINS . 60

3.1 Introduction . 60

3.2 Materials and Methods . 61

3.2.1 Selection of Target Interfaces . 61

3.2.2 Computational Design Protocol . 63

3.2.3 Protein Expression and Purification . 66

3.2.4 Yeast Surface Display . 68

3.2.5 Isothermal Titration Calorimetry . 68

3.2.6 Surface Plasmon Resonance . 68

3.2.7 Crystallography . 69

3.3 Results . 69

3.4 Discussion and Future Directions . 74

3.5 Command Lines and Input Files . 76

3.5.1 Inputs for the Construction of Protein Backbones from a Starting Inter-
face Peptide . 76

vi

4 SWIFTLIB: RAPID DEGENERATE-CODON-LIBRARY OPTIMIZATION
THROUGH DYNAMIC PROGRAMMING 81

4.1 Introduction . 81

4.2 Materials and Methods . 85

4.2.1 DP For One Degenerate Codon . 85

4.2.2 DP For Multiple Degenerate Codons . 88

4.3 Results . 91

4.3.1 Library Designs . 91

4.3.2 Comparison with ILP . 97

4.4 Discussion . 98

4.5 Supplemental Materials . 100

4.5.1 Additional libraries for problem 2 . 100

4.5.2 ILP with One Degenerate Codon . 101

4.5.3 ILP with Multiple Degenerate Codons 103

4.5.4 Additional Library Design Problems . 106

5 CONCLUSIONS . 115

5.1 Introduction . 115

5.2 Lessons and Future Directions of Protein Engineering with SEWING 115

5.3 Lessons and Limitations in Refinement of Directed Evolution Libraries 118

5.4 Future of Protein Engineering Techniques . 119

vii

LIST OF TABLES

S2.1 DALI z-score comparison of De Novo designed proteins 46

S2.2 Sequences of designed proteins . 47

S2.3 Crystallography statistics for CA01 . 48

S2.4 NMR statistics for DA05 . 48

3.1 Experimental summary of interface designs . 69

4.1 Library Design Problem 1. 85

4.2 Solutions To Library Design Problem 1 . 88

4.3 Library Design Problem 2 . 92

4.4 Solutions to Library Design Problem 2 . 93

4.5 DP and ILP running times . 95

S4.1 Additional Problem 2 Solutions. 100

S4.2 Problem Definitions for additional libraries. 105

S4.3 Error for SwiftLib Solutions for additional Library Design Problems. 107

S4.4 SwiftLib running times for additional Library Design Problems. 108

S4.5 ILP Running times for additional Library Design Problems. 109

viii

LIST OF FIGURES

1.1 Anchoring strategies for interface design . 10

2.1 Overview of the SEWING method. 25

2.2 Well folded SEWING designs. 28

2.3 Structural and biophysical analysis of CA01. 29

2.4 Structural analysis of discontiguous design DA05 30

S2.1 CD Spectra for folded SEWING designs . 40

S2.2 Size Exclusion Chromatography and Multi-Angle Light Scattering 41

S2.3 Fragment Analysis for Discontinguous Assemblies 42

S2.4 Electron density for CA01 structure . 43

S2.5 DALI structural comparison of SEWING models 44

S2.6 Chemical and thermal denaturation of discontiguous design DA03 45

3.1 Starting scaffolds for interface design . 62

3.2 Schematic of the SEWING append method . 65

3.3 SEWING Interface Design Models . 67

3.4 Designed binders to Troponin C . 70

3.5 SPR data for designed binders to GαQ . 72

3.6 Comparison of 3OHM-2 design model and crystal structure 73

3.7 Fragment analysis of PLC-β3 binding region . 75

S4.1 DP’s running time . 101

5.1 Thermal denaturation of DA05 redesigns . 116

5.2 β-strand containing SEWING designs. 118

ix

Chapter 1

INTRODUCTION

The focus of this dissertation is the development of computational tools that aid in various

aspects of protein engineering. This introduction will cover the goals and challenges related to

protein engineering, and review various protein engineering methods along with their strengths

and limitations.

1.1 Introduction to Protein Engineering

Proteins are responsible for a diverse array of cellular functions, including chemical catal-

ysis, intra- and inter- cellular signaling, molecular scaffolding, and immune response. Pro-

tein engineering encompasses the optimization, alteration, and creation of protein structures

and functions. The earliest studies in protein engineering involved the solid-state synthesis

of peptide fragments derived from naturally occurring enzymes[1, 2]. These studies, along

with crystal structures of naturally occurring proteins, helped elucidate the basic determi-

nants of protein structure and function, and led quickly to the first design of a functional

synthetic peptide[3]. The subsequent development of modern molecular biology techniques

allowed researchers to test modifications to full-length proteins, and initial efforts resulted in

the reprogramming of enzyme specificity, the selection of a catalytic antibody, and the devel-

opment of entirely novel sequences that adopt well-folded tertiary structures[4, 5, 6]. These

successes demonstrated important proof that engineered proteins could be made to adopt a va-

riety of new structures and functions, and set the stage for an impressively rapid advancement

in protein engineering efforts. Today, the implications of protein engineering are ubiquitous:

pharmaceuticals, such as engineered insulin analogs, are developed to improve pharmacoki-

1

netic and pharmacodynamic properties; therapeutic antibodies for the treatment of cancers

and autoimmune diseases are frequently engineered to exhibit improved binding affinity and

reduced antigenicity[7, 8]. Outside the clinic, engineered proteins have found extensive use as

research tools, allowing live-cell imaging, light-mediated cellular probing, and a wide variety

of other commonly used biochemical techniques[9, 10, 11, 12, 13].

1.2 Methods and Strategies for Protein Engineering

1.2.1 Directed Evolution

Directed evolution is a widely used experimental strategy that broadly describes the gen-

eration of DNA libraries, and the selection of encoded proteins based on a chosen phenotype.

DNA libraries can be generated by strategies that vary widely in their ease of use, level of

control, and cost. The earliest described techniques utilize processes that mimic natural pro-

tein evolution, and offer the lowest level of control. DNA shuffling is one such technique,

in which homologous DNA sequences are digested and recombined[14, 15]. Another evolu-

tionarily inspired technique is error-prone polymerase chain reaction (PCR), in which specific

buffer conditions and non-proofreading polymerases are used to increase the error rate of PCR

reactions[16]. With both techniques, little control over the specific location and identity of

inserted mutations is possible. Despite this limitation, the low barrier to entry and the ability

to incorporate mutations throughout an entire gene has led to widespread use. The several

successes resulting from libraries generated using these mechanisms demonstrate the power of

natural evolutionary processes in the generation of functional diversity, a principle that will

be applied to computational design in Chapters 2 and 3

The rapid development of DNA synthesis techniques over the past two decades has led to

a number of possibilities for DNA library generation. Specifically, synthesis technologies have

evolved to allow the addition of nucleotide mixtures at specific positions in short oligonucleotide

sequences. The result of this technique is PCR oligonucleotides that contain degenerate codons,

which introduce a subset of amino-acid mutations at desired positions. In this way, the diversity

of DNA libraries can be restricted to favor desired amino acid sequences. These non-random

2

libraries allow researchers to impart external information, such as computational prediction

and evolutionary information into generated libraries. Unfortunately, the degeneracy of the

genetic code and the limitations of current screening strategies complicate this process, which is

further discussed in Chapter 4. It is noteworthy that more exacting control of DNA diversity

can be achieved through mixing of specific trinucleotide phosphoramidite primers, but the

resultant combinatorial expansion in required primers restricts the use of such libraries to

highly specialized applications[17].

DNA library generation can easily create libraries that are much larger than can be rea-

sonably screened by existing high-throughput techniques, such as phage-, yeast-, mRNA- and

ribosome-display, which range in their screening capacity from approximately 107 to 1013 DNA

sequences[18]. Screening of protein sequences involves the coupling of protein function to the

DNA sequence that encodes it. In the case of phage and yeast display, DNA library mem-

bers are combined with plasmids that allow the presentation of the functional protein on the

surface of a yeast cell or bacteriophage. In the case of mRNA and ribosome display, in-vitro

translation techniques are used to couple the protein-encoding RNA to the fully translated

protein.

The applications of directed evolution are restricted to engineering problems in which

the desired phenotype can be readily screened for. The most common use cases for directed

evolution are the generation and optimization of binding affinity for a target molecule, and

the generation and optimization catalytic activity. In the case of evolving binding affinity

this selection is often achieved through panning, a technique in which the target substrate

is immobilized on a surface and protein-displaying molecules are applied and washed with

increasing stringency. While effective, panning is susceptible to biases introduced by vari-

able cellular display and translation. This limitation can be partially mitigated by single-cell

screening techniques, such as flow cytometry, in which the binding affinity can be normalized

by the amount of surface-bound protein[19, 20]. The successes in directed evolution of protein

binders are numerous and impressive. In favorable cases, protein sequences have been selected

that bind their target molecule with femtomolar dissociation constants[21, 22]. However, di-

rected evolution of binding is most often successful if a basal affinity is already established,

3

and is therefore not ideally suited for creation of de novo binders[23]. Additionally, in most

cases, it is difficult or impossible to dictate the binding orientation and binding location on

the target molecule, which is a critical attribute for many functions, such as steric agonism

and antagonism.

The second common use case for directed evolution is the optimization or modification

of catalytic activity. The ability to generate novel and improved enzymes has implications

in the generation of many high-value molecules and holds great promise for the production

of biofuels, materials, and pharmaceuticals[24]. The most common goal in the evolution of

protein catalysts is the improvement of enzymatic activity in a specified environment, such

as at elevated temperature or in the presence of non-organic solvents. However, studies have

demonstrated that other catalytic goals, such as modified substrate specificity and even de

novo function, can be achieved[25, 26].

Unlike protein-binding, evolution for catalytic function is often complicated by the lack of

a general and straightforward screening method. Frequently, the development of a selection

scheme requires a clever and system-dependent solution such as the use of substrate analogs

with fluorescent leaving groups[27], the creation of a covalent modification[28], or the cou-

pling of enzyme function to viability[29, 30]. Evolved binding to transition-state analogs is

an attractively general screening strategy, but studies have shown that increased affinity does

not translate to increased catalytic activity and transition state analogs are not available for

all substrates[31]. Additionally, even in favorable cases experimentally evolved enzymes fail

to approach the astounding rate enhancements of 1019 achieved by some naturally occurring

enzymes[32, 33]. Most successful catalysts have been evolved from existing enzyme backbones,

and the mediocre rate enhancements achieved for novel reactions may indicate limits in adapt-

ing existing protein backbones for novel reactions. One potential solution to this problem

is usage of highly diverse pools of novel backbones, such as those generated by the methods

described in Chapter 2.

The protein engineering applications of directed evolution extend beyond the evolution of

binding and catalysis, with results encompassing the creation of novel fluorescent proteins,

the increasing of protein thermostability, and the generation of novel and well-folded protein

4

structures[34, 35, 36, 37]. These efforts, though fewer in comparison, demonstrate that directed

evolution, through ingenuity in library generation and screening strategies, can be applied to

many useful and difficult protein engineering tasks.

1.2.2 Computational Protein Design

Computational protein design, in the context of this dissertation, entails the usage of

computational models of protein structure. Computational design protocols typically employ

a search algorithm, which samples the sequence and conformational space available to the

polypeptide chain, a score function, which evaluates the predicted energy of a given conforma-

tion. The challenges of computational protein design are two-fold: the conformational space

available to a polypeptide chain is exceedingly large, and accurate evaluation of protein ener-

getics is difficult to calculate efficiently. The issue of large conformational space was famously

described in a paper by Cyrus Levinthal in 1969 in which he postulated that a conservative

estimate for the number of conformations available to a 100 residue protein was 3300[38]. This

value will increase significantly if the amino-acid composition of the protein is not fixed, as in

the case of protein design. Given the enormity of this value, it is unfeasible for computational

design protocols to exhaustively sample the available conformational space. Additionally, the

energy landscape of protein folding has many local minima and maxima, which hinder the

ability of gradient based optimization methods to find global minimal. These local minima

render continuous physics-based sampling strategies, such as molecular dynamics, inefficient

for sampling of large-scale protein motions. A common strategy to address these difficulties

is reducing the degrees of freedom available during a conformational search algorithm. The

most prevalent method to accomplish this task is a technique called protein redesign, in which

design simulations start from the experimentally solved structure of a protein sequence. In

many cases, protein redesign is conducted with a completely fixed backbone conformation,

limiting the search space tremendously. If backbone motion is allowed, it is common practice

to fix the bond angles and lengths and sample backbone conformations only through modifica-

tion of phi and psi internal coordinates. Even with these simplifications, conformational space

remains very large and the level of sampling required for many protein engineering problems

5

necessitates the use of large computing clusters, which have only become available in recent

years. The second challenge in computational protein design is the energetic evaluation of a

given conformational state. These energetics, though understood in principle, are extremely

difficult to compute efficiently and with high accuracy[39]. Quantum mechanical simulations,

for example, are highly accurate, but the required computational expense limits these simula-

tions to systems with a very small numbers of atoms[40]. On the opposite end of the spectrum,

coarse-grained representations of atomic systems can be used to approximate the energetics of

a protein structure[41]. Coarse models have the advantage of rapid calculation and smoother

energy landscapes, but often fail to capture the level of intricacy needed to achieve most

modern protein engineering goals. Currently, the predominant methods of evaluating the en-

ergetics of protein structure lie between these two extremes, with a mixture of physical force

fields rooted in classical mechanics and empirical potentials derived from observation of known

protein structures. These force fields allow energetic evaluations to be conducted on physi-

ologically large protein structures and retain much of the accuracy granted by more precise

equations. One such force field is implemented in the Rosetta molecular modeling suite, which

was used for all of the computational modeling tasks contained in this text[42]. The Rosetta

force-field is composed of approximately 15 score terms, which aim to capture the major deter-

minants of protein energetics. Importantly, the Rosetta force-field is pairwise decomposable,

meaning the total energy of a given conformational state can be represented as the sum of

residue-pair energies. This simplification affords rapid re-evaluation of similar conformational

states, which is a common occurrence in many sampling strategies. A simplified version of the

current default Rosetta score function, is detailed in Equation 1.1.

Etot =
∑

Θvdw + Θsolv + Θelec + Θrot + Θrama (1.1)

In this equation, the Θvdw term captures the van der Waals forces between atoms through

a Lennard-Jones potential and Θsolv is the Lazaridus-Karplus implicit solvation term. Θelec is

a simplification of several hydrogen bonding terms and a coulombic electrostatic potential with

6

a distance-dependant dielectric. Θrot and Θrama encompass emperically derived potentials to

capture sidechain rotameric preferences, backbone Φ/Ψ preference, and amino-acid identitites.

Development and improvement of force-fields for protein evaluation is a highly active area

of research and many of the existing challenges, such as accurate hydrogen bond design, have

experienced recent development[43, 44]. Continued efforts in force-field and score-function

improvements are numerous and outside the scope of this dissertation.

1.2.3 Protein Redesign

Protein redesign is a common engineering strategy in which design begins from an ex-

perimental structure of an existing protein. The potential of an existing protein backbone

to accommodate multiple sequences was eloquently demonstrated by Lim, et al. through the

introduction of random mutations into the core of λ-repressor[45]. Following this publication,

computational algorithms designed to place distinct amino-acid sidechain conformations, or

rotamers, onto known protein backbones were used to redesign protein cores of many existing

proteins[46, 47, 48, 49]. In one particularly demonstrative example, Dantas et al. applied

these methods to redesign of nine globular proteins[50]. A serendipitous result from this study

was that the thermostability of several redesigned proteins was increased relative to the native

sequence. This result is particularly illustrative of the way in which protein redesign can be

applied to difficult and valuable protein engineering tasks. In a related study, Murphy et al.

incorporated local backbone flexibility in the redesign of a 4-helix bundle protein. Strikingly,

despite a backbone RMSD of only 1.7A from the starting crystal structure, the redesigned

protein was stabilized by more than 12 kcal/mol. This result was particularly impressive due

to the fact that of the 38 residues designed, all were mutated from their wild-type identity,

demonstrating both the ability of computational redesign methods to identify unique packing

solutions and the ability of similar protein structures to accommodate different sequences.

Redesign methods have also been applied to the task of engineering protein conformational

switches, as in the case of a designed sequence that could adopt either a coiled-coil or zinc-finger

like fold dependent on the pH and presence of transition metals[51]. Conformational switching

is a critical component of many biological functions, such as viral infection and transcriptional

7

regulation, and therefore represents an important engineering accomplishment[52, 53]. The de-

sign of protein interfaces represent another important application of protein redesign. Unlike

protein cores, which are composed predominantly of hydrophobic amino acids, protein inter-

faces contain many polar and charged amino acids that serve the dual purpose of promoting

solubility, and generating affinity and specificity through inter-chain hydrogen bonds. Initial

applications of protein redesign for the engineering of protein interfaces were aimed at the re-

engineering of existing protein-protein interfaces. In these studies, homo-oligomeric proteins

were redesigned to change oligomeric state, a monomeric protein was designed into a domain

swapped dimer, and specificity inducing interactions were incorporated to generate orthogonal

interface pairs[54, 55, 56, 57, 58, 59]. These successes supported the use of protein redesign

towards the engineering of novel, or de novo protein interfaces. De novo interface design repre-

sents a significantly more difficult challenge for the computational design of interfaces, due to

the fact that one must determine both a rigid body orientation and an appropriate sequence

for the binding pair. For this reason, the de novo design of protein interfaces has remained

a difficult and largely unsolved problem. A comprehensive review of protein interface design

from 2013 reported that only 5 designs out of a total 158 tested demonstrated strong binding

in a verifiably correct manner[60]. Importantly, this statistic represents an optimistic view of

the field, given that unsuccessful design projects are rarely published. In a few cases of de novo

interface design, binders have been generated that bind the target protein very weakly, or bind

in a manner inconsistent with the design model, highlighting the challenge of generating both

affinity and orientation specificity[61, 62]. In these cases predominantly hydrophobic residues

were utilized in the design model, which can lead to broad specificity. However, successful re-

designs tend to be more hydrophobic than most native interactions. This result is likely caused

by both score-function inaccuracies and the difficulty of sampling complex, multi-residue polar

networks between amino acid sidechains[60]. A successful strategy used to account for these

interactions has been the use of properly defined or regular hydrogen bonding anchors to im-

part specificity, a topic I recently reviewed in detail[63]. In one case, Stranges et al. utilize

the regular hydrogen bonding pattern of beta-strand pairing to design a highly accurate ho-

modimeric protein (fig 1A)[64]. In another study, metal coordination was used in a similar

8

fashion to dictate the binding orientation of a designed homodimer (Figure 1.1B)[65]. In both

of these studies, symmetry across the dimeric axis allows each amino acid mutation to impart

twice the effect. This concept of utilizing symmetry in the design of protein-protein interfaces

has recently been used in spectacular fashion towards the design of protein nanocages[66]. In

the absence of symmetry, de novo interface design has been particularly challenging. In one

case, a 16 residue extension was built onto an existing peptide interface (Figure 1.1C). In this

study backbone flexibility was incorporated into the design simulation, allowing the design of

helix packed tightly into a groove, a strategy commonly used in natural protein interfaces.

The use of so-called hot spot residues to serve as a framework for selecting appropriate protein

backbones for redesign was applied to the design of two de novo binders to influenza hemag-

glutinin. In this study, nearly 80 designs were tested, highlighting the difficulty in generating

accurate design models. The usage of portions of natural interfaces as templates has been

successful in the redesigning of natural interfaces, and work has been conducted to apply these

methods to de novo interfaces[57, 67]. Relatedly, investigators have shown that the grafting of

antigen epitopes from antibody interfaces allows for robust antibody re-elicitation, and holds

significant promise for the design of vaccines against difficult targets[68, 69]. These studies

have involved the grafting of protein segments into existing protein structures; an alternative

approach is the custom design of de novo backbones to these accommodate interface motifs, a

strategy explored in Chapter 3 of this document. These successes in computational interface

engineering demonstrate significant potential. However, the affinities of most de novo inter-

faces are relatively weak and often necessitate the use of directed evolution for improvement

to functionally relevant binding. This combination strategy for interface engineering leverages

the benefits of both directed evolution and computational design and serves as inspiration for

the methods described in later chapters.

In addition to the concrete engineering examples, protein redesign methods have been

invaluable in the continued improvements to computational design methods. By limiting

conformational sampling to the local space around an existing structure, rigorous sampling of

sidechain and backbone conformations can be achieved. These studies, coupled with careful

analysis of existing protein structures, have given rise to many advanced sampling strategies

9

Figure 1.1: Anchor motifs found in natural and designed protein interfaces. Polar residues
illustrated in red and blue, hydrophobic residues in white. (A) β-strand pairing across a
designed protein interface (PDB code 3ZY7). (B) Designed metal-mediated protein interface
(PDB code 3V1E). (C) Designed helix-in-groove interface (PDB code 2XNS). (D) Naturally
occurring interface mediated by hydrogen bonds (PDB code 1BGS).

commonly used for protein engineering tasks, including loop design and prediction[70, 71, 72,

73] and local backbone sampling[74, 75, 76]. In sum, protein redesign is a well-studied protein

engineering technique capable of addressing many engineering goals with atomic level precision.

10

1.2.4 De Novo Protein Design

De novo protein design is an alternative approach to computational protein engineering

in which no starting experimental structure is used. The lack of a starting structure allows

de novo designed proteins to incorporate structural features not found in naturally occurring

structures. The ability to accurately engineer these novel structural details would expand the

landscape of designable structures, which may be necessary to realize many complex protein

functions. Unlike protein redesign where it is possible to hold the backbone degrees of freedom

fixed, de novo design requires explicit backbone sampling. Protein backbones designed from

scratch lose the assurance of designability afforded by existing protein structures and therefore

serve as a rigorous test of protein design force-fields and sampling methods. Commonly, the

task of de novo design is split into the generation of large numbers of novel backbones and

the subsequent design of sidechains onto these backbones via the previously described redesign

techniques. To address the task of backbone sampling, several methods have been developed.

For α-helical coiled-coil proteins, which form a regular and repetitive structure, Francis

Crick famously derived a parameterization of the conformational space[77]. This parameteriza-

tion was utilized in an early example of de novo design to generate backbone conformations for

a variety of right-handed coiled-coil structures, many of which had not yet been observed in the

set of known experimental structures[78]. More recently, similar methodologies were applied

to the design of helix-bundle proteins that demonstrate incredible thermodynamic stability[79]

and coiled-coils with water-soluble pores[80]. In all cases, design models matched experimen-

tal structures with atomic-level accuracy, demonstrating the precision afforded by parametric

methods. Additionally, parametric methods benefit from the ability to easily produce large

number of unique protein backbones through simple iteration of the available parameter space.

To date, the applications of parametric design methods have been restricted to the engineering

of proteins with repetitive sequences, which, similar to many of the interface design methods

discussed above, benefit from the use of symmetry. In certain cases, such as the engineering of

protein nanomaterials, symmetric structural repetition can be a powerful engineering advan-

tage, allowing structures to be readily extended to arbitrary length. However, the regularity of

parametrized backbones is also a disadvantage for certain engineering tasks, as it precludes the

11

incorporation of backbones outside of the parameter space, which is a a common occurrence

in protein functional sites[81]

Another successful strategy for the de novo design of protein backbones is the use of

fragment libraries derived from the protein data bank (PDB). Design simulations of this type

typically starts from an elongated chain of set length. Backbone torsion angles from PDB

fragments are applied to random windows of the protein backbone in order to fold the chain

into a globular structure. Often, a coarse-grained representation of atomic structure is used

during this process to smooth the energy landscape and focus sampling on the generation

of gross structural features such as secondary structure and a hydrophobic core[82]. The

application of fragment-based methods to de novo design gave rise to the first de novo protein

not composed of symmetric elements[83]. The designed protein, called Top7, adopted a fold

not yet observed in the PDB and matched the design model with atomic level accuracy. This

promising initial result let to additional fragment-based design studies, which resulted in the

accurate design of several canonical protein folds[84, 85]. The authors attribute the success of

these studies to the adherence of several rules for designing ideal proteins, or proteins composed

entirely of regular structural features commonly observed in the PDB. The proteins designed

in this fashion are often highly thermostable, consistent with parametrically designed proteins,

but similarly lack structural idiosyncrasies such as long loops, bulges, and cavities that are

often needed for protein function[86, 79]. Existing methods for de novo design universally

start with the definition of a target topology: In the case of parametric design, topologies

are dictated by the parameterization space, whereas in fragment folding methods, restraints

on secondary structure and residue-pair distances are applied to guide backbone sampling

to a desired topology. This dependence on a target topology restricts the space of designed

molecules to those explicitly defined by the designer and may hinder the ability to create the

novel topologies required for desired function. However, these proof-of-concept successes in

protein design provide valuable evidence that current force-fields used in computational design

are able to accurately identify physically realistic and designable protein backbones.

12

1.3 Opportunities for Improved Engineering Methods

The protein engineering techniques outlined here have been successfully employed towards

the design and optimization of numerous proteins. Nevertheless, each of these techniques is

limited, and the ability to reliably engineer many desired protein properties and functions

remains elusive. The focus of this dissertation is the development of novel computational

tools that build on the successes of these existing strategies. Directed evolution allows diverse

sampling for a given function but lacks the fine-grained structural control vital for many

applications. Conversely, existing computational design allows atomic-level control but is

limited to the adaptation of existing structures or the generation of a provided topology, which

may or may not be able to accommodate the desired function. The goal of this work is to

address the methodological gap between the function-first attributes of directed evolution and

the structure-first attributes of computational design. The following chapters describe tools

designed to bridge this gap through the incorporation of design principles from one method to

the other. Chapter 2 describes a novel computational method for the de novo design of large

numbers of highly diverse protein backbones without the use of a target fold. A fundamental

tenant of this method is the computational adaptation of the evolutionary principles used to

great effect in directed evolution techniques. Chapter 3 extends this method towards the design

of protein-protein interfaces bolstered by naturally occurring interface templates. Finally,

Chapter 4 focuses on the efficient incorporation of computational predictions into directed

evolution techniques.

13

REFERENCES

1. Gutte, B. (1975) A synthetic 70-amino acid residue analog of ribonuclease s-protein with
enzymic activity. J. Biol. Chem. 250, 889–904

2. Bärwald, K. R., Reid, R. E., and Gutte, B. (1975) Formation and enzymic properties
of dimeric RNase P. FEBS Lett. 60, 423–426

3. Gutte, B., Däumigen, M., and Wittschieber, E. (1979) Design, synthesis and charac-
terisation of a 34-residue polypeptide that interacts with nucleic acids. Nature 281,
650–655

4. Napper, A. D., Benkovic, S. J., Tramontano, A., and Lerner, R. A. (1987) A stereospe-
cific cyclization catalyzed by an antibody. Science 237, 1041–1043

5. Clarke, A. R., Atkinson, T., and John Holbrook, J. (1990) FROM ANALYSIS TO SYN-
THESIS: NEW LIGAND BINDING SITES ON THE LACTATE DEHYDROGENASE
FRAMEWORK. PART II. In Proteins: Form and Function, 39–44. Elsevier

6. Hecht, M. H., Richardson, J. S., Richardson, D. C., and Ogden, R. C. (1990) De novo
design, expression, and characterization of felix: a four-helix bundle protein of native-like
sequence. Science 249, 884–891

7. Pandyarajan, V. and Weiss, M. A. (2012) Design of non-standard insulin analogs for
the treatment of diabetes mellitus. Curr. Diab. Rep. 12, 697–704

8. Riechmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human
antibodies for therapy. Nature 332, 323–327

9. Wu, Y. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn,
K. M. (2009) A genetically encoded photoactivatable rac controls the motility of living
cells. Nature 461, 104–108

10. Ai, H.-W., Baird, M. A., Shen, Y., Davidson, M. W., and Campbell, R. E. (2014)
Engineering and characterizing monomeric fluorescent proteins for live-cell imaging ap-
plications. Nat. Protoc. 9, 910–928

14

11. Gautier, A., Juillerat, A., Heinis, C., Corrêa, I. R., Jr, Kindermann, M., Beaufils, F.,
and Johnsson, K. (2008) An engineered protein tag for multiprotein labeling in living
cells. Chem. Biol. 15, 128–136

12. Möglich, A. and Moffat, K. (2010) Engineered photoreceptors as novel optogenetic tools.
Photochem. Photobiol. Sci. 9, 1286–1300

13. Binz, H. K. and Plückthun, A. (2005) Engineered proteins as specific binding reagents.
Curr. Opin. Biotechnol. 16, 459–469

14. Crameri, A., Raillard, S. A., Bermudez, E., and Stemmer, W. P. (1998) DNA shuffling
of a family of genes from diverse species accelerates directed evolution. Nature 391,
288–291

15. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature
370, 389–391

16. Zhou, Y. H., Zhang, X. P., and Ebright, R. H. (1991) Random mutagenesis of gene-sized
DNA molecules by use of PCR with taq DNA polymerase. Nucleic Acids Res. 19, 6052

17. Virnekäs, B., Ge, L., Plückthun, A., Schneider, K. C., Wellnhofer, G., and Moroney,
S. E. (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed
oligonucleotides for random mutagenesis. Nucleic Acids Res. 22, 5600–5607

18. Leemhuis, H., Kelly, R. M., and Dijkhuizen, L. (2009) Directed evolution of enzymes:
Library screening strategies. IUBMB Life 61, 222–228

19. Boder, E. T. and Wittrup, K. D. (1997) Yeast surface display for screening combinatorial
polypeptide libraries. Nat. Biotechnol. 15, 553–557

20. Boder, E. T. and Wittrup, K. D. (2000) Yeast surface display for directed evolution of
protein expression, affinity, and stability. Methods Enzymol. 328, 430–444

21. Boder, E. T., Midelfort, K. S., and Wittrup, K. D. (2000) Directed evolution of antibody
fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci.
U. S. A. 97, 10701–10705

22. Vasserot, A. P., Dickinson, C. D., Tang, Y., Huse, W. D., Manchester, K. S., and
Watkins, J. D. (2003) Optimization of protein therapeutics by directed evolution. Drug
Discov. Today 8, 118–126

15

23. Bolon, D. N., Voigt, C. A., and Mayo, S. L. (2002) De novo design of biocatalysts. Curr.
Opin. Chem. Biol. 6, 125–129

24. Turner, N. J. (2009) Directed evolution drives the next generation of biocatalysts. Nat.
Chem. Biol. 5, 567–573

25. Yano, T., Oue, S., and Kagamiyama, H. (1998) Directed evolution of an aspartate
aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. U. S. A. 95,
5511–5515

26. Buchholz, F. and Stewart, A. F. (2001) Alteration of cre recombinase site specificity by
substrate-linked protein evolution. Nat. Biotechnol. 19, 1047–1052

27. Luis Briseño Roa, ., Jim Hill, ., Stuart Notman, ., David Sellers, ., Andy P. Smith,
., Christopher M. Timperley, ., *, Janet Wetherell, ., Nichola H. Williams, ., Gareth
R. Williams, ., Alan R. Fersht, ., and Griffiths, A. D. (2006) Analogues with fluores-
cent leaving groups for screening and selection of enzymes that efficiently hydrolyze
organophosphorus nerve agents. J. Med. Chem. 49, 246–255

28. Cesaro-Tadic, S., Lagos, D., Honegger, A., Rickard, J. H., Partridge, L. J., Blackburn,
G. M., and Plückthun, A. (2003) Turnover-based in vitro selection and evolution of
biocatalysts from a fully synthetic antibody library. Nat. Biotechnol. 21, 679–685

29. Chin, J. W., Martin, A. B., King, D. S., Wang, L., and Schultz, P. G. (2002) Addition
of a photocrosslinking amino acid to the genetic code of escherichia coli. Proceedings of
the National Academy of Sciences 99, 11020–11024

30. Tao, H. and Cornish, V. W. (2002) Milestones in directed enzyme evolution. Curr. Opin.
Chem. Biol. 6, 858–864

31. Baca, M., Scanlan, T. S., Stephenson, R. C., and Wells, J. A. (1997) Phage display of
a catalytic antibody to optimize affinity for transition-state analog binding. Proc. Natl.
Acad. Sci. U. S. A. 94, 10063–10068

32. Wolfenden, R. and Snider, M. J. (2001) The depth of chemical time and the power of
enzymes as catalysts. Acc. Chem. Res. 34, 938–945

33. Yuan, L., Kurek, I., English, J., and Keenan, R. (2005) Laboratory-directed protein
evolution. Microbiol. Mol. Biol. Rev. 69, 373–392

16

34. Song, J. K. and Rhee, J. S. (2001) Enhancement of stability and activity of phospholipase
A1 in organic solvents by directed evolution. Biochimica et Biophysica Acta (BBA) -
Protein Structure and Molecular Enzymology 1547, 370–378

35. Eijsink, V. G. H., G̊aseidnes, S., Borchert, T. V., and van den Burg, B. (2005) Directed
evolution of enzyme stability. Biomol. Eng. 22, 21–30

36. Sawano, A. and Miyawaki, A. (2000) Directed evolution of green fluorescent protein by
a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic
Acids Res. 28, E78

37. Wei, Y., Kim, S., Fela, D., Baum, J., and Hecht, M. H. (2003) Solution structure of a
de novo protein from a designed combinatorial library. Proc. Natl. Acad. Sci. U. S. A.
100, 13270–13273

38. Levinthal, C. (1969) How to fold graciously. Mossbauer spectroscopy in biological
systems 22–24

39. Dill, K. A. (1990) Dominant forces in protein folding. Biochemistry 29, 7133–7155

40. Hatfield, M. P. D. and Lovas, S. (2014) Conformational sampling techniques. Curr.
Pharm. Des. 20, 3303–3313

41. Tozzini, V. (2005) Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15,
144–150

42. Leaver-Fay, A., Tyka, M., Lewis, S. M. S. M., Lange, O. F., Thompson, J., Jacak, R.,
Kaufman, K. W., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper,
S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y.-E. A., Fleishman, S. J., Corn,
J. E., Kim, D. E., Lyskov, S., Berrondo, M., Mentzer, S., Popović, Z., Havranek, J. J.,
Karanicolas, J., Das, R., Meiler, J., Kortemme, T., Gray, J. J., Kuhlman, B., Baker, D.,
and Bradley, P. (2011) Rosetta3: An Object-Oriented software suite for the simulation
and design of macromolecules. Methods Enzymol. Volume 487, 545–574

43. O’Meara, M. J., Leaver-Fay, A., Tyka, M., Stein, A., Houlihan, K., DiMaio, F., Bradley,
P., Kortemme, T., Baker, D., Snoeyink, J., and Kuhlman, B. (2015) A combined
Covalent-Electrostatic model of hydrogen bonding improves structure prediction with
rosetta. J. Chem. Theory Comput. 11, 609–622

17

44. Leaver-Fay, A., O’Meara, M. J., Tyka, M., Jacak, R., Song, Y., Kellogg, E. H., Thomp-
son, J., Davis, I. W., Pache, R. A., Lyskov, S., Gray, J. J., Kortemme, T., Richardson,
J. S., Havranek, J. J., Snoeyink, J., Baker, D., and Kuhlman, B. (2013) Scientific bench-
marks for guiding macromolecular energy function improvement. Methods Enzymol.
523, 109–143

45. Lim, W. A. and Sauer, R. T. (1989) Alternative packing arrangements in the hydropho-
bic core of lambda repressor. Nature 339, 31–36

46. Dahiyat, B. I. (1997) De novo protein design: Fully automated sequence selection.
Science 278, 82–87

47. Desjarlais, J. R. and Handel, T. M. (1995) De novo design of the hydrophobic cores of
proteins. Protein Sci. 4, 2006–2018

48. Malakauskas, S. M. and Mayo, S. L. (1998) Design, structure and stability of a hyper-
thermophilic protein variant. Nat. Struct. Biol. 5, 470–475

49. Nauli, S., Kuhlman, B., and Baker, D. (2001) Computer-based redesign of a protein
folding pathway. Nat. Struct. Biol. 8, 602–605

50. Dantas, G., Kuhlman, B., Callender, D., Wong, M., and Baker, D. (2003) A large scale
test of computational protein design: Folding and stability of nine completely redesigned
globular proteins. J. Mol. Biol. 332, 449–460

51. Ambroggio, X. I. and Kuhlman, B. (2006) Computational design of a single amino acid
sequence that can switch between two distinct protein folds. J. Am. Chem. Soc. 128,
1154–1161

52. Beckett, D. (2004) Functional switches in transcription regulation; molecular mimicry
and plasticity in protein-protein interactions. Biochemistry 43, 7983–7991

53. Zheng, A., Yuan, F., Kleinfelter, L. M., and Kielian, M. (2014) A toggle switch con-
trols the low ph-triggered rearrangement and maturation of the dengue virus envelope
proteins. Nat. Commun. 5, 3877

54. Grueninger, D., Treiber, N., Ziegler, M. O. P., Koetter, J. W. A., Schulze, M.-S., and
Schulz, G. E. (2008) Designed protein-protein association. Science 319, 206–209

18

55. Kuhlman, B., O’Neill, J. W., Kim, D. E., Zhang, K. Y., and Baker, D. (2001) Conversion
of monomeric protein L to an obligate dimer by computational protein design. Proc.
Natl. Acad. Sci. U. S. A. 98, 10687–10691

56. Kortemme, T., Joachimiak, L. a., Bullock, A. N., Schuler, A. D., Stoddard, B. L., and
Baker, D. (2004) Computational redesign of protein-protein interaction specificity. Nat.
Struct. Mol. Biol. 11, 371–379

57. Potapov, V., Reichmann, D., Abramovich, R., Filchtinski, D., Zohar, N., Ben Halevy,
D., Edelman, M., Sobolev, V., and Schreiber, G. (2008) Computational redesign of a
Protein–Protein interface for high affinity and binding specificity using modular archi-
tecture and naturally occurring template fragments. J. Mol. Biol. 384, 109–119

58. Lewis, S. M., Wu, X., Pustilnik, A., Sereno, A., Huang, F., Rick, H. L., Guntas, G.,
Leaver-Fay, A., Smith, E. M., Ho, C., Hansen-Estruch, C., Chamberlain, A. K., Truhlar,
S. M., Conner, E. M., Atwell, S., Kuhlman, B., and Demarest, S. J. (2014) Generation
of bispecific IgG antibodies by structure-based design of an orthogonal fab interface.
Nat. Biotechnol. 32, 191–198

59. Kapp, G. T., Liu, S., Stein, A., Wong, D. T., Reményi, A., Yeh, B. J., Fraser, J. S.,
Taunton, J., Lim, W. a., and Kortemme, T. (2012) Control of protein signaling using a
computationally designed GTPase/GEF orthogonal pair. Proc. Natl. Acad. Sci. U. S.
A.

60. Stranges, P. B. and Kuhlman, B. (2013) A comparison of successful and failed protein
interface designs highlights the challenges of designing buried hydrogen bonds. Protein
Sci. 22, 74–82

61. Karanicolas, J., Corn, J. E., Chen, I., Joachimiak, L. a., Dym, O., Peck, S. H., Albeck,
S., Unger, T., Hu, W., Liu, G., Delbecq, S., Montelione, G. T., Spiegel, C. P., Liu,
D. R., and Baker, D. (2011) A de novo protein binding pair by computational design
and directed evolution. Mol. Cell 42, 250–260

62. Jha, R. K., Leaver-Fay, A., Yin, S., Wu, Y., Butterfoss, G. L., Szyperski, T., Dokholyan,
N. V., and Kuhlman, B. (2010) Computational design of a PAK1 binding protein. J.
Mol. Biol. 400, 257–270

63. Jacobs, T. M. and Kuhlman, B. (2013) Using anchoring motifs for the computational
design of protein-protein interactions. Biochem. Soc. Trans. 41, 1141–1145

19

64. Stranges, P. B., Machius, M., Miley, M. J., Tripathy, A., and Kuhlman, B. (2011)
Computational design of a symmetric homodimer using β-strand assembly. Proc. Natl.
Acad. Sci. U. S. A. 108, 1–6

65. Der, B. S., Machius, M., Miley, M. J., Mills, J. L., Szyperski, T., and Kuhlman, B.
(2012) Metal-mediated affinity and orientation specificity in a computationally designed
protein homodimer. J. Am. Chem. Soc. 134, 375–385

66. King, N. P., Sheffler, W., Sawaya, M. R., Vollmar, B. S., Sumida, J. P., André, I.,
Gonen, T., Yeates, T. O., and Baker, D. (2012) Computational design of self-assembling
protein nanomaterials with atomic level accuracy. Science 336, 1171–1174

67. Lewis, S. M. and Kuhlman, B. A. (2011) Anchored design of protein-protein interfaces.
PLoS One 6, e20872

68. Azoitei, M. L., Correia, B. E., Ban, Y.-E. A., Carrico, C., Kalyuzhniy, O., Chen, L.,
Schroeter, A., Huang, P.-S., McLellan, J. S., Kwong, P. D., Baker, D., Strong, R. K., and
Schief, W. R. (2011) Computation-guided backbone grafting of a discontinuous motif
onto a protein scaffold. Science 334, 373–376

69. Azoitei, M. L., Ban, Y.-E. A., Julien, J.-P., Bryson, S., Schroeter, A., Kalyuzhniy, O.,
Porter, J. R., Adachi, Y., Baker, D., Pai, E. F., and Schief, W. R. (2012) Computational
design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. J. Mol.
Biol. 415, 175–192

70. Das, R. (2013) Atomic-Accuracy prediction of protein loop structures through an RNA-
Inspired ansatz. PLoS One 8, e74830

71. Canutescu, A. A. and Dunbrack, R. L. (2003) Cyclic coordinate descent: A robotics
algorithm for protein loop closure. Protein Sci. 12, 963–972

72. Mandell, D. J., Coutsias, E. a., and Kortemme, T. (2009) Sub-angstrom accuracy in
protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods
6, 551–552

73. Stein, A. and Kortemme, T. (2013) Improvements to robotics-inspired conformational
sampling in rosetta. PLoS One 8, e63090

74. Davis, I. W., Arendall, W. B., Richardson, D. C., and Richardson, J. S. (2006) The
backrub motion: how protein backbone shrugs when a sidechain dances. Structure 14,

20

265–274

75. Tyka, M. D., Jung, K., and Baker, D. (2012) Efficient sampling of protein conformational
space using fast loop building and batch minimization on highly parallel computers. J.
Comput. Chem. 33, 2483–2491

76. Lauck, F., Smith, C. A., Friedland, G. F., Humphris, E. L., and Kortemme, T. (2010)
RosettaBackrub—a web server for flexible backbone protein structure modeling and
design. Nucleic Acids Res. 38, W569–W575

77. Crick, F. H. C. (1953) The packing of α-helices: simple coiled-coils. Acta Crystallogr.
6, 689–697

78. Harbury, P. B. (1998) High-Resolution protein design with backbone freedom. Science
282, 1462–1467

79. Huang, P.-S., Oberdorfer, G., Xu, C., Pei, X. Y., Nannenga, B. L., Rogers, J. M.,
DiMaio, F., Gonen, T., Luisi, B., and Baker, D. (2014) High thermodynamic stability
of parametrically designed helical bundles. Science 346, 481–485

80. Thomson, a. R., Wood, C. W., Burton, a. J., Bartlett, G. J., Sessions, R. B., Brady,
R. L., and Woolfson, D. N. (2014) Computational design of water-soluble -helical barrels.
Science 346, 485–488

81. Brown, J. H., Cohen, C., and Parry, D. A. (1996) Heptad breaks in alpha-helical coiled
coils: stutters and stammers. Proteins 26, 134–145

82. Rohl, C. A., Strauss, C. E., Misura, K. M., and Baker, D. (2004) Protein structure
prediction using rosetta. Methods Enzymol. 383, 66–93

83. Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., and Baker, D.
(2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302,
1364–1368

84. Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T. B., Montelione, G. T., and
Baker, D. (2012) Principles for designing ideal protein structures. Nature 491, 222–227

85. Murphy, G. S., Sathyamoorthy, B., Der, B. S., Machius, M. C., Pulavarti, S. V., Szyper-
ski, T., and Kuhlman, B. (2014) Computational de novo design of a four-helix bundle
protein - DND 4HB. Protein Sci. 00, 1–12

21

86. Murphy, G. S., Mills, J. L., Miley, M. J., Machius, M., Szyperski, T., and Kuhlman, B.
(2012) Increasing sequence diversity with flexible backbone protein design: the complete
redesign of a protein hydrophobic core. Structure 20, 1086–1096

22

Chapter 2

DESIGN OF STRUCTURALLY UNIQUE PROTEINS USING
STRATEGIES INSPIRED BY EVOLUTION

2.1 Introduction

Most efforts in de novo protein design have been focused on creating idealized proteins

composed of canonical structural elements. Examples include the design of coiled-coils, repeat

proteins, TIM barrels and Rossman folds[1, 2, 3, 4]. These studies are excellent for studying the

minimal determinants of protein structure, but they do not aggressively explore new regions of

structure space. Additionally, idealized structures may not always be the most effective starting

points for engineering novel protein functions. Functional sites in proteins are often created

from structural idiosyncrasies, such as kinks, pockets and bulges. The lack of these structural

elements from de novo designed proteins highlights a key difference between natural protein

evolution and current design methods. Specifically, that protein design methods universally

begin with a target structure in mind. Therefore, the space of designable structures that can

accommodate these non-ideal protein elements is limited by the imagination of the designer.

In contrast, natural evolution is uncaring of the structure being evolved so long as the result

accomplishes the necessary function. This lack of a predetermined target fold is a powerful

feature of protein evolution that holds significant potential for the design of novel structures

and functions. In an effort to tap this potential we sought to develop a method of computational

protein design inspired by mechanisms found in natural protein evolution. Nature uses gene

duplication and homologous recombination to mix and match elements of protein structure to

give rise to novel structures and functions[5, 6, 7]. This phenomenon is most evident at the level

of independently folding protein domains [8, 9, 10], but recent studies have shown that these

same principles function at a smaller scale during the evolution of distinct, globular protein

23

folds[11]. Insertions, deletions and replacement of secondary and supersecondary structural

elements are used by nature to sample alternative tertiary structures[12]. Our design strategy,

called SEWING (Structure Extension With Native-substructure Graphs), computationally

mimics this process by building new protein structures from pieces of naturally occurring

protein domains. The process is not dictated by the need to adopt a specific target fold,

but rather aimed at creating large sets of alternative structures that satisfy predefined design

requirements. One of the strengths of this approach is that it ensures that all of the structural

elements of the protein are inherently designable, while at the same time allowing for the

incorporation of structural oddities unlikely to be found in idealized proteins. Here, we apply

SEWING to the design of helical proteins. We show that designed structures are highly diverse,

and contain structural features absent from alternative design strategies.

2.2 Results

2.2.1 Overview of the SEWING Method

SEWING begins with the extraction of small structural motifs, or substructures, from

existing protein structures. These serve as the basic building block for all generated models.

We aimed to identify substructures that were both large enough to carry information regarding

structural preference, yet small enough to allow combinations that can generate novel globular

structures. Ultimately, we chose to extract two distinct types of substructures. The first

type of substructure is composed of contiguous stretches of protein structure that encompass

two secondary structural elements separated by a loop (Figure 2.1). These substructures

capture the relative orientation between adjacent secondary structure elements and maintain

local packing interactions. Additionally, there is evidence that substructures of this size adopt

a relatively limited number of conformations that have been sampled exhaustively in known

protein structures [12]. The second type of substructure is composed of groups of 3-5 secondary

structural elements, where each element makes make van der Waals contacts with every other

but are not necessarily contiguous in primary sequence (Figure 2.1, Supplementary Methods).

24

Non-adjacent, or discontiguous substructures maintain longer-range tertiary interactions that

provide valuable stability, and are often conserved during protein evolution [13].

Figure 2.1: Overview of the SEWING method. (A) Contiguous SEWING workflow for CA01.
(B) Discontiguous SEWING workflow for DA05. Each panel, from left to right: parental PDBs
with extracted substructures; Graph schematic colored nodes indicate substructures contained
in final design model, superimposed structures show structural similarity indicated by adjacent
edges; Design model before sequence optimization and loop design; Final design models.

The goal of SEWING is to combine and modify these extracted components in order to

develop new tertiary structures. In nature, homologous recombination guides the formation of

new protein chimeras, in which sequence similarity between DNA strands leads to combination

of the genetic material. This process enriches for proteins that are more likely to be well-folded

and functional, as sequence similarity filters for segments that are structurally compatible. In

the case of SEWING, we know the three dimensional structures of the building blocks, and

therefore, we can directly use structural information to probe which substructures are well

suited for combination. During SEWING, contiguous substructures are eligible for combi-

nation if the c-terminal region of one substructure shares high structural similarity with the

n-terminal region of another substructure, and superposition of the two regions does not create

any steric clashes between other regions in the two substructures. This type of superposition

ensures that the three-dimensional spacing between all pairs of secondary structural elements

25

adjacent in primary sequence is similar to that observed in the PDB. During discontiguous

SEWING, combinations are created by superimposing two elements (helices in this study)

from one substructure with two elements from another substructure. For both contiguous and

discontiguous SEWING, structure similarity is identified using a fast geometric hashing ap-

proach that ensures that the regions of interest can align with low-RMSD[14]. Once pairwise

structural similarity is calculated between all substructures, these data are used to generate

two large graphs: a contiguous graph and a discontiguous graph (Figure 2.1). The nodes in

each graph represent the substructures, and the edges indicate a level of structural similarity

that allows recombination. Novel structures are generated from each graph by traversing a

path, where each followed edge adds new structural elements to the design model. In this way,

many unique structures can be efficiently generated by randomly sampling paths. The num-

ber of edges included in the sampled paths can control the approximate size of the generated

structures. Importantly, unlike previously described methods of de novo backbone generation,

no target structure is required, and output structures span a diverse set of globular folds. Sim-

ilar to natural evolution, the design models created by recombination alone are suboptimal,

and require additional refinement through mutagenesis. This optimization step was achieved

using iterative steps of sidechain packing and backbone minimization available in the Rosetta

molecular modeling suite [15]. Preference for the amino acid sequence present in the parental

substructure was used to better preserve the structural interactions inherent to the parent

substructures. To test SEWING, we designed a diverse set of helical proteins using graphs

composed of contiguous substructures or discontiguous substructures. Contiguous substruc-

tures were extracted from a non-redundant dataset of approximately 8000 high-quality crystal

structures [16]. Discontiguous substructures were extracted from a non-redundant subset of

structures from the protein data bank (PDB), generated using the Pisces server [17]. In total,

33928 contiguous substructures, and 4584 discontiguous substructures were extracted.

2.2.2 Contiguous SEWING Design and Characterization

Design models from the contiguous graph were generated using 3-edge paths, and were

therefore composed of substructures extracted from 4 existing structures from the PDB (Fig-

26

ure 2.1). Initially, 10,000 alternative tertiary structures were created and used as templates for

rotamer-based sequence optimization and energy minimization. These models were filtered and

sorted using metrics that evaluate predicted energy (normalized by sequence length), sidechain

packing, buried polar groups, and sequence/structure agreement[18]. The top 1,000 of design

models were then further refined with 3 rounds of the same sequence optimization protocol. In

total, 11 designs based on contiguous SEWING were selected for experimental characterization.

8 of these designs expressed well in E. coli and were readily purified from the soluble fraction

of 1L cultures. 4 of the 8 proteins were monomeric via Size Exclusion Chromotagraphy/Multi-

angle light scattering, had a circular dichroism (CD) spectra characteristic of a helical protein

and unfolded cooperatively upon thermal denaturation (Figure 2.2, S2.6). Two of the designed

proteins are hyperthermophiles and require high concentrations of chemical denaturant in or-

der to observe thermal unfolding (Figure 2.2B). For one design, CA01, several thermodynamic

parameters were determined by fitting a modified Gibbs-Hemholtz equation to the thermal and

chemical denaturation surface (Figure 2.3B, Supplemental Methods). The extrapolated melt-

ing temperature of 126 ◦C places it among the top .01% of values in the ProTherm database of

protein stabilities [19]. The crystal structure of CA01 was solved to 2.2Åand shows excellent

agreement with the design model, with a Cα RMSD of 0.7Å. Similarly, the side-chain packing

of the protein core is nearly identical between the design model and experimental structure

(Figure 2.3).

The structural variety in the design models for the well-folded proteins is of particular note

(Figure 2.2). The SEWING generated models often include non-ideal elements such as kinked

or highly curved helices, long loops, and near perpendicular helix-crossing angles (Figure 2.2).

The topologies of SEWING models are also quite variable, particularly when compared to

previously designed alpha-helical proteins, which are restricted entirely to coiled-coils, repeat

proteins and up-down four helix bundles (Figure 2.2C). To further examine the structural di-

versity of SEWING models, we searched for structurally similar domains using the DALI server

[20]. Surprisingly, despite being derived from elements of existing structures, SEWING models

adopt conformations that differ considerably from any known structure (Figure S2.5). This

27

Figure 2.2: Well folded SEWING designs. (A) Final design models for contiguous and dis-
contiguous SEWING. (B) Temperature denaturation curves for well-folded SEWING designs,
colored to match design models. (C) A comparison of previously design helical structures
(black dots), to SEWING models (colored squares) demonstrates the structural complexity
of SEWING designs. Crossing angles were counted as unique if they differed by >20 degrees
from each other.

serendipitous result further demonstrates the potential of recombination for the production of

novel protein structures.

2.2.3 Discontiguous SEWING Characterization

To test discontiguous SEWING, models were generated from 2-edge paths, and thus were

composed of structural elements from 3 parent structures. The variable number of helical

elements in the discontiguous substructures therefore allowed design models to be composed of

between 5 and 11 helices. Unlike models from the contiguous-substructure graph, discontiguous

models require the addition of loops between consecutive helices. Loops were designed using

a database of fixed-length fragments from the PDB, hashed on the geometric transform from

the first to last residue of the fragment [21]. For each designed loop, fragments were selected

28

from the fragment-database based on the transform between the two disconnected helices. Each

fragment was then superimposed onto the design structure and optimized using gradient-based

minimization in Cartesian space. The best-scoring loop fragment was selected for use in the

final design model. Any path that created structures for which no loop-fragment could be

found was eliminated from the set of designs. Design models were filtered and optimized in

the same way as models from the contiguous graph. In total, 10 were selected for experimental

characterization.

Of these 10 designs, 2 expressed at levels sufficient for purification. Both purified proteins

were helical and folded as evidenced by CD (Figure 2.2). Similar to the results from the con-

tiguous designs, one discontiguous design demonstrated very high thermostability, requiring

Figure 2.3: Structural and biophysical analysis of contiguous design CA01. (A) Backbone
superimposition of CA01 design model (green) and crystal structure (blue). (B) Chemical
and temperature denaturation of CA01. A sharp unfolding transition is observed prior at 5M
GdmCl and 350 K (C) Comparison of sidechain packing between design model (green) and
crystal structure (blue) at three different layers of the structure.

29

high levels of denaturant to completely unfold(Figure S2.6). The structure of DA05 was solved

using nuclear magnetic resonance (NMR) spectroscopy. The first 4 helices of the experimen-

tal structure match the design model very closely, with a Cα RMSD of 0.9Å (Figure 2.4).

However, the NMR data indicate the final helix of the protein is disordered in solution. In

an effort to identify the errors in the design model that led to the unstructured region, struc-

tural preference for the designed sequence was evaluated with fragment analysis as described

previously [2]. Interestingly, the fragments extracted for the unstructured region showed espe-

cially poor preference for the designed helical structure (Figure S2.3). In light of this result,

fragment analysis was conducted on the remaining discontiguous design models. In nearly all

cases, the sequences for the designed loop regions showed poor agreement with the designed

structure. This discrepancy suggests that errors in the loop design protocol could account for

the relatively lower success rate of the discontiguous designs.

Figure 2.4: Structural analysis of discontiguous design DA05 via NMR reveals that the first
four helices of the structure match well with the design model. However, the 5th helix of the
structure is disordered in solution (Supplemental Methods).

2.2.4 Discussion

Our results show that computational adaptations of basic evolutionary principles, such

as recombination and mutation, can be used to accurately and rapidly design a diverse set of

helical protein structures. Additionally, these methods allow incorporation of the idiosyncratic

30

structural elements that have proven difficult to incorporate into de novo designed structures.

A surprising result from this study is that despite the incorporation of these non-ideal protein

elements, several of the designed proteins exhibit high levels of thermostability, consistent with

proteins designed using solely ideal structures[1, 2]. This result suggests that proteins designed

for specific function have the potential to retain some of the remarkable thermodynamic prop-

erties achieved by modern protein design methods. The structure diversity displayed by the

SEWING designs demonstrates the power of recombination to generate novel structures. In

creating the designs, only a small portion of the SEWING graph was sampled. The graph

for contiguous SEWING contains over 30,000 nodes with 345 million edges, allowing an esti-

mated 7 × 1016 unique backbones that could be created by following three consecutive edges

(Supplementary Methods). The diversity will further increase when alternative types of su-

persecondary structure are included, such as βα motifs and β-hairpins, and discontiguous and

contiguous SEWING are merged. We anticipate that this structural diversity will be advanta-

geous for functional design, as every backbone generated with SEWING has unique surface and

pocket features that provide potential binding sites for ligands or macromolecules. Addition-

ally, SEWING offers a direct approach for stitching together functional motifs from naturally

occurring proteins, an approach frequently used by Nature to generate multi-functional pro-

teins and allosteric systems.

31

2.3 Supplemental Methods

2.3.1 Computational Modeling

Extraction of Substructures

Contiguous and discontiguous substructures are composed of elements of secondary struc-

ture defined by the DSSP implementation in Rosetta[22]. The Rosetta implementation used

here simplifies secondary structure classification to helices (H), loops (L), and β-strands (E).

Contiguous substructures are composed of 3 adjacent elements of secondary structure that fol-

low the pattern HLH. Discontiguous substructures are composed of 3-5 helical (H) elements, in

which each helix makes favorable Leonard Jones contacts with every other (a clique). Contigu-

ous substructures were extracted from the Top8000 dataset using the SmotifFeaturesReporter

built into the Rosetta Features framework. Discontiguous substructures were extracted using

the ModelFeaturesReporter on a non redundant set of the PDB generated from the Pisces

web server[17]. A complete set of inputs and commands can be found in the Supplemental

Material.

Geometric Hashing of Substructures

The geometric hashing algorithm used to calculate an all-against-all comparison of ex-

tracted substructures is an implementation of the algorithm described by Nussinov et. al[14].

The computational implementation is distributed as part of the Rosetta molecular modeling

suite. The current implementation differs from the described algorithm in that noncollinear

triplets (RS) were restricted to N/Cα/C backbone atoms of the same residue. For contiguous

substructures two RS that place 10 atoms of the same Rosetta AtomType from a single sec-

ondary structure element into identical or adjacent quarter-angstrom bins were considered suf-

ficient to infer structurally similarity. For discontiguous substructures, RS pairs were required

to place 10 atoms of the same Rosetta AtomType from two elements secondary structure. To

prevent clashes during recombination, any two RS pairs were rejected if they 1) placed any

two atoms of different Rosetta AtomTypes in the same or adjacent bins, or 2) placed atoms for

32

additional elements of secondary structure in the same or adjacent bins. Rosetta commands

for running the geometric hasher can be found in the Supplemental Material.

Graph Generation and Computational Design of Novel Structures

The extracted substructures were used to create nodes in a large graph. Edges were

drawn between any two substructures that are deemed structurally similar by the geometric

hashing metrics described previously. In total, the completed graphs contained 33,928 nodes

and 345,700,224 edges for the contiguous substructures, and 4,584 nodes and 31,045 edges for

the discontiguous substructures. The following equations were used to estimate the number of

k-edge assemblies in a given graph:

n =number of nodes

e =number of edges

den(n, e) =
2× e

n(n− 1)
(2.1)

number of k-edge assemblies = n× n× den(n, e)× n× den(n, e)2 . . . den(n, e)k (2.2)

= nk+1 × den(n, e)
k(k+1)

2 (2.3)

De Novo backbones were created from the graphs by random traversal of edges and struc-

tural recombination. Recombination of contiguous substructures entails an RMSD superim-

position of all matched atoms from the geometric hashing algorithm, followed by the creation

of a chimeric secondary structure element in which the atoms N-terminal to the midpoint

of aligned region come from one substructure, and atoms C-terminal to the midpoint of the

aligned region come from the other. Discontiguous substructures were recombined by aligning

33

the substructures on the two overlapping helices and removing the two helices from one of the

parents (chosen randomly).

Sequences were designed onto recombined backbones by several rounds of Monte Carlo ro-

tamer optimization followed by gradient-based energy minimization in Cartesian space. Early

rounds of optimization were conducted with a dampened repulsive term, which was iteratively

increased during the course of the optimization. Throughout the simulation, an energy bonus

of 1 Rosetta Energy Unit (REU) was given to rotamers with the same amino-acid as the same

position in the parental substructures. Loops were designed using a LoopHash-derived loop

creation protocol[21]. A RosettaScript implementation of the graph-traversal and subsequent

sequence optimization is provided in the Supplemental Materials[23].

2.3.2 Experimental Materials and Methods

Cloning and Expression

Linear gene fragments (gBlocks) encoding each protein were synthesized by Integrated

DNA Technologies (Coralville, Iowa), and subcloned into either in-house pQE-HT and/or

pCDB24 expression vectors. pQE-HT was constructed by inserting a TEV protease site be-

tween the hexa-histidine tag and BamHI restriction cut site. The final constructs were trans-

formed into chemically competent BL21 Star E. coli cells and grown overnight at 37 C, and

225 r.p.m. in Luria-Bertani (LB) medium supplemented with 50µg/mL Ampicillin. The fol-

lowing day, 10mL of the overnight culture were used to inoculate 1.5L cultures of LB broth.

Cells were grown at 37 C until an optical density (O.D.) of approximately 0.8 was reached.

Protein expression was induced using 0.66mM of isopropyl thio-β-D-galactoside (IPTG), and

cells continued to grow at 25 C. Cells were harvested after approximately 15 hours of protein

expression and collected by centrifugation for 15 minutes at 4500 r.p.m.

For pCDB24 constructs, genes were subcloned using Gibson Assembly after vector lin-

earization with BamHI. Protein was expressed in the same way as pQE-HT constructs.

34

Protein Purification

Cells were resuspended by vortexing in 25mL of wash buffer (20mM Tris-HCl, 300mM

NaCl, 80mM Imidazole, pH 8.0). Resupsended cells were lysed by sonication at 4◦C for 5

minutes. Cell debris was cleared by centrifugation at 20,000 r.p.m. at 4◦C for 60 minutes.

Cleared supernatant was filtered with a 5 micron filter and applied to an Econo-Pac gravity

chromatography column (Bio-Rad) previously loaded with 5mL of His60 Ni Superflow Resin

(Clontech) and equilibrated with 20mL of wash buffer. The column was washed with 40mL

of wash buffer and bound protein was eluted in 15mL of elution buffer (20mM Tris-HCl,

300mM NaCl, 50mM Imidazole, pH 8.0). Purified protein was dialyzed overnight into 4 liters

of wash buffer prepared without imidazole. Dialyzed samples were cleaved with TEV (pQE-

HT constructs) or ULP1 (pCDB24 constructs) protease overnight at 4◦C or for 1 hour at

room temperature respectively. Cleaved samples were applied again to nickel chromatography

columns equilibrated with dialysis buffer and the flow-through was collected as the final sample.

Protein purity was assessed via SDS-PAGE electrophoresis.

Circular Dichroism (CD)

CD measurements were conducted on a Jasco J-815 CD spectrometer. All measurements

were made in a buffer composed of 25mM sodium phosphate, 50mM NaCl, pH 7.0. Protein

concentrations ranged from 10-150µM. All wavelength scans were collected at 20◦C. Wave-

length scans for contiguous designs were recorded using a 0.1mm cuvette with readings every

1nm from 280nm to 190nm. Measurements for discontiguous designs were recorded using a

1mm cuvette with readings every 1nm from 260 to 200nm (S2.1). Temperature denaturation

was recorded at 222nm from 4 to 95◦C for contiguous design, and from 20 to 95◦C for dis-

contiguous designs. Measurements were taken every 1nm, and temperature was increased 3◦C

every minute. Fraction folded was calculated as:

x=temperature

u(x)=linear fit of post-transition CD data

f(x)=linear fit of pre-transition CD data

35

sm(x)=CD data after rectangular smoothing with window of size 5

sm(x)− u(x)

f(x)− u(x)
× 100 (2.4)

The free energy surface for CA01 was calculated using a Gibbs-Hemholtz equation modified

to account for denaturant concentration[24].

Size Exclusion Chromatography/Multi-Angle Light Scattering (SEC/MALS)

SEC/MALS experiments were conducted using a Wyatt DAWN HELEOS II light scatter-

ing instrument interfaced to an Agilent FPLC System equipped with a Superdex S200 10/300

and a Wyatt T-rEX refractometer. Prior to sample loading, the equipment was equilibrated

with a buffer composed of 25mM sodium phosphate, 250mM NaCl, 0.05% sodium azide, pH

7.0.

Crystallography

Samples of CA01 used for crystallographic studies were subject to size exclusion chromatog-

raphy on a Superdex S75 16/600 equilibrated with 100mM Ammonium Acetate. Protein con-

taining fractions were pooled and concentrated to an A280 of 12.8 (approximately 15mg/mL).

Crystals were grown in 24-well hanging drop format in a buffer composed of 0.1M Tris:HCL

pH 8.5, 1.0M Ammonium Phosphate Dibasic. Crystals were flash frozen in liquid nitrogen and

data collected at the Advanced Photon Source (APS) BM line official name. The structure was

solved by molecular replacement using the Rosetta model and PHASER. Models were refined

using iterative rounds of Phenix refine and manual refinement in COOT[25, 26, 27].

Nuclear Magnetic Resonance (NMR) Spectroscopy of DA05

Good signal dispersion was observed in 1D 1H NMR spectra recorded for unlabeled DA05

and subsequently also in heteronuclear resolved 2D NMR experiments recorded for [5% 13C,U-

15N]-labeled[28] DA05 and [U-13C,15N]-labeled DA05, which confirmed the finding inferred

36

from CD that the designed protein is well folded. Moreover, DA05 turned out to be highly

soluble indicating that NMR-based structure determination appeared to be feasible. Hence,

we acquired a comprehensive set of higher-dimensional NMR experiments for resonance as-

signment and structure determination (see Methods section).

NMR Solution Structure of DA05

Protein DA05 was nominated as a PSI:Biology community outreach target assigned to the

Northeast Structural Genomics Consortium (http://www.nesg.org; NESG target ID OR626).

The 2D [15N, 1H]-HSQC spectrum of DA05 (Figure 2.4) shows that a homogeneous NMR sam-

ple containing well-folded DA05 was obtained. Furthermore, the correlation time for isotropic

reorientation estimated from average 15N spin relaxation times (τc = 6 ns at 25 ◦C) is

monomeric in solution, as seen previously by size exclusion chromatography. A high-quality

NMR solution structure was obtained (Table S2.3) and will be deposited into the protein data

bank. Comparison of the DA05 NMR structure and the computationally predicted structure is

the most rigorous test of the success of our design. We compared the predicted structure and

the experimental structure by calculating several metrics: root mean square deviation (RMSD)

values for backbone heavy atoms N, Cα, and C, by comparing φ, ψ, χ1 dihedral angles, and

by identifying NOE-derived 1H1H upper-distance limit constraints which are violated in the

design model. The RMSD value calculated for all backbone heavy atoms N, C and C of the

first four α-helices (residues: 4-20, 24-41, 44-60, and 65-81) between the DA05 design model

and the mean coordinates of the 20 conformers is 1.1Å. Notably, the first and last turn of helix

1 exhibit increased flexible disorder. In contrast to the first four α-helices, α-helix 5 of the

design model was not observed in NMR structure. The comparison of φ and ψ dihedral angles

of the design model with the corresponding range observed in the 20 conformers representing

the NMR solution structure likewise documents the high accuracy of the design model. 94% of

φ angles and 96% of ψ angles in the design model are within ±15◦ of the corresponding angles

of the regular secondary structure elements in the NMR solution ensemble. However, χ1 and

χ2 angles in the NMR ensemble are not in similarly good agreement with the corresponding

angles in the model mostly because they are not well defined.

37

Detailed NMR Methods

In order to acquire heteronuclear 13C/15N-resolved NMR spectra, designed protein DA05

was grown and purified as described above, except that cells were harvested by centrifugation

at OD600 of 0.6 and then washed and transferred to minimal media with uniformly labeled

13C glucose and 15N ammonium chloride. Subsequently, protein over-expression was induced

by adding 0.5 mM IPTG. NMR samples of [U-13C,15N]-labeled DA05 and biosynthetically-

directed fractionally [5% 13C,U-15N]-labeled[28] DA05 were prepared at concentrations of 0.6

mM and 0.2mM in 90% H2O/10% D2O containing 25 mM sodium phosphate 50 mM NaCl

(pH 6.5), 0.02% NaN3, and 0.5mM PMSF. An isotropic overall rotational correlation time of

6 ns was inferred from averaged 15N spin relaxation times, indicating that DA05 is monomeric

in solution. The following spectra were recorded for [U-13C, 15N]-DA05 at 25 ◦C on Varian

INOVA 750 spectrometer (with total measurement time of 6 days) equipped with a cryogenic

1H13C,15N probe: 2D [15N,1H] HSQC, aliphatic and aromatic 2D constant-time [13C,1H]

HSQC, 3D HNCO, 3D HN(CA)CO, (4,3)D HNNCαCαβ, (4,3)D CαβCα(CO)NHN, aliphatic

and aromatic (4,3)D HCCH, [29, 30], 3D aliphatic and aromatic (H)CCH COSY, 3D H(CC-

TOCSY-CO)NHN[31], simultaneous 3D 15N/13Caliphatic/13C aromatic-resolved [1H, 1H]-

NOESY (mixing time 70 ms, measurement time 2 days)[32], and long-range 2D [15N,1H] HSQC

for His side chains [33]. For [5% 13C, U-15N]-DA05, aliphatic 2D constant-time [13C,1H]-

HSQC spectra (with constant time delays of 28, 42 and 56ms) were acquired as described[34]

(measurement time: 13.5 hours) in order to obtain stereo-specific assignments for Val and Leu

isopropyl groups[28]. All NMR spectra were processed using PROSA[35] and analyzed using

CARA[36]. Sequence-specic backbone (HN, N, Cα, Hα, and CO) and Hβ/Cβ resonance as-

signments were obtained by using the program AutoAssign[37, 38]. Resonance assignment of

side-chains was accomplished using (4,3)D HCCH, 3D H(CC-TOCSY-CO)NH, and simultane-

ous 3D 15N/13Caliphatic/13Caromatic-resolved [1H, 1H]-NOESY. Overall, for residues 1-100,

sequence-specific resonance assignments were obtained for 95% of backbone and 99% of side-

chain resonances assignable with the NMR experiments listed above (Table S2.3). Chemical

shifts will be deposited in the BioMagResBank soon. 1H1H upper distance limit constraints

for structure calculation were obtained from simultaneous 3D 15N/13Caliphatic/13Caromatic-

38

resolved [1H,1H]-NOESY, and backbone dihedral angle constraints for residues located in

well-defined regular secondary structure elements were derived from chemical shifts using

the program TALOS N[39]. Automated NOE assignment was performed iteratively with

CYANA[40, 41, 42], and the results were verified by interactive spectral analysis. Stereo-

specific assignments of methylene protons were performed with the GLOMSA module of

CYANA, and the final structure calculation was performed with CYANA followed by renement

of selected conformers in an explicit water bath [43]using the program CNS[44]. Validation of

the 20 rened conformers was performed with the Protein Structure Validation Software (PSVS)

server[45]. The NMR structure will be deposited in the PDB.

39

2.4 Supplemental Figures

Figure S2.1: CD Spectra for folded SEWING designs. All models demonstrate peaks at
222nm and 208nm, characteristic of a helical protein.

40

Figure S2.2: Size-exclusion chromatography/multi-angle light scattering data for SEWING
designs. Experimentally fitted values for CA01, CA04, CA05, CA11, and DA05 suggest designs
are monomeric in solution. The fitted value of DA03, despite a single homogenous peak, lies
between a monomer and dimer.

41

Figure S2.3: Fragment analysis for design DA05. The sequence of DA05 was used to select
200 9-residue fragments for each 9-residue window in the structure(10). The average RMS-
D/window is plotted, indicating a poor sequence/structure agreement in loop regions and in
the disordered 5th helix.

42

Figure S2.4: Design model CA01 superimposed with experimental electron density.

43

Figure S2.5: The top three design models determined by DALI Z-score, superimposed with
closest structural homolog (Table S1)

44

Figure S2.6: Full chemical and thermal denaturation of discontiguous design DA03 shows
that the protein is highly thermostable, requiring high levels of denaturant to unfold.

45

2.5 Supplemental Tables

Design Closest natural structural homolog Z-score RMSD

CA04 4G2V-A 6.8 5.2
CA03 2hsb-A 7 3.6
CA01 1un8-B 7 3.5
2LTA 3s3t-A 7 2.3
2LVB 2ofw-A 8.8 2.7
1YQS 3epb-A 8.9 2.1
CA11 3j98-G 9.1 2.6
2LV8 3gx1-B 9.5 2.6
2LN3 3zie-B 10.1 2.6
2KL8 5aj3-J 10.6 1.8
4UOS 4x0r-A 12.4 4.8
CA05 3dfb-A 12.4 1.1
4TGL 2wcd-T 14.5 5.9
DA05 4jhr-A 15.7 1.3
DA03 3dby-M 20.8 0.7

Table S2.1: DALI z-score comparison of De Novo designed proteins. SEWING design models
are shown in red. Other designs are represented by 4-letter PDB code.

46

CA01 PEQMAEEIRQALEKILKQLENEIEIARNAGDDEREDRYRIAYLAALEAYRLLAEGVRIPEAVQ
RAAAYLASMGYPHYAELFRAKGEELVKRLLEGKVTGEEFARQLVFYPAQAV

CA02 GVAKKLAIEAKQKGNLDAAAAFEDAQRALEMGHKDGAIAALLGALYLATGDERYRLEAEK
MEADARKQLKTDGQSQEAHEALKGAQLG

CA03 VSIQEQEKKKMELIIEELKRRLLTNGYDNESAEALAWAILALVYMKQGDGARAATAAAMAA
LMAQDPQKANEAAEAAKRLNTNDTTENRKIALQKAMEGANEALKYVTEMRK

CA04 EVEKKLAIKQQQAGNFDLALEYLKRELLTNGYDNTEAEAAAAAQIARDAKVNEDLGLMSE
EEAERLRQRMIKVLLKLGKPLKKIQQMID

CA05 PFSEIGKFLGLAAKELQRGNLANAAVYIEKAAKEALKAGFKPMADYMNLAAERAKQGDYE
TACKELYKAILEMFKISTKEGKQAPPDGVEGFKILQDAHRSWN

CA06 VGDAESMALLAALLGGAPLDVALEVVSKVKNVAAKVEEGANQGGMGENARAAIAMIAGA
AAGAMAAAKKALHQGRKQEAEALERAARIALQQLDLLRKLGELGAEEQAKIALSLAAKAA
ELARSEAARH

CA07 PLERAIREGRAEDVARILLNLGVRATRAAIEAERAALEGGMSQKAADLAKLAAIKLAQGNEE
EAERLGRKALEV

CA08 AQELKEQAKRALKEGKGPEALRLIAKALKDEGLDRAAAKAEELAQRAEEGKVTLEEALKR
ALRQALQERGEESKFDEELNKIK

CA09 AGDAKMGALIAGLEANKPLEKVERVANEVAEDAKKIEELLAHGKKELAREELKKLAEKLK
DGPEGIRALIELIEARGNGDAERIDKHQKEARS

CA10 TEVMDRVRQALEDNNDTPQAKKILELLLEKLKRVLETNGYDNTSAEGEAAAQIGREAKVA
EDLGLLSPEAAEKIRQEMIKIALKLDFPLKKIQQMLD

CA11 VKADRDEGQRQLEMESYDQAIEELLRAANKAQEEGNHDEAAKDVAQAILAAKELGKHPAQ
IRQELEQKGISREAIEKGMREA

DA01 PRDAFERAMEMYKNGKYDRAIEYFRAVFSYGTTHEHAGRAMKYLGSAALGAGRTEEAIEA
YLKAFAMLPNETETQKNLKIAQKLASL

DA02 SDDVLKQMKKAIKKGDYKTAVKLGEKEVRLDPNNTDALYLAALAMFQLGANAKKDDDRL
SYLDAARRLVEVAGLTDTSKMINDALKKAKEKADK

DA03 PEDEARKEHAYWLAVLTLHAQLVLKALHDSEKTDILMAQEFVETFTRLLKRGTDYGLASQ
AAAVAAAAFKLFLMIIIMKQKAGKIIINLSIEQLNKMVKEVEKYIEVLKDLKKSGTGTDDGEA
AERMLGKALKWCEKANRANKGLLEADDAEQAAIEWAIYAAKFAKELSNRAQKNADATG

DA04 PTDDIAAQCLKECAEALRGAQAAVQQLYETALRQAKNGKGEGGEKLARFAKAFKELLRRI
ESIKDNVNTPLGGLVLLASVLGAVAGVAGEFGREIAESEFPGEGAKVLIGAAARAPDLLKTL
IAAITQEGTFAYGKWHAEITTLLKIIKLVLEALLQAVKIAAGGGVSDEMKDIIEDIKKAQERIE
KAI

DA05 PDENIAKFEKAYKKAEELNQGELMGRALYNIGLEKNKMGKVKEAIEYFLRAKKVFDAEHD
TDGARRAAKSLSEAYQKVEGSGDKGKIFQKEGESI

DA06 NRVELKILEKIAAVNADQAVKVSLQIAKDNPTEAREGAGNAAVAVGLARAALEMAEKAAIG
FGGTEVAAILAKMRKMVEIARKAAQIAGKAHEGYKAREQASIAEETATKAAKQVTADAVQ
VMGDDGY

DA07 VDDLIKKATEQIKEGRTEDAEKTAQKVLEADPSAADGHLNRGIALYLGGRYDLAAEDLKRA
AALQQSDEAKKNLENALRAS

DA08 LTIAGQAVIDMAQLSAIMTSQIVKYLTSIATDPDLIGRYKTASEEFARAIDYLEQARDALIKG
DYDSLNIYASAAKDGARNAELSFTGPVYIPEALHQAAQWLEALCDIVLIISKTTQPVTDIVAE
LLKASKWARKMLEITAKQLVYETDDVKKYAIDGAKALDAMEGDLRALSQGVSGGLYWLK
RAKEYL

DA09 PVDEWLKRAAKYLNNGQTKMAELEAAKVLAKEKDNAEALKRRAKARFLAGKLPEAIEDA
LLARARTDETEAKALELLIRKQIKG

DA10 PDDLLAKARKSYNNGRAADVVRVVAKLVIKHSNNTDARQLAADALEELAKQAKTDDGRK
MYMKGAYLLRYGADFTDDLAKAMKEAARFADN

Table S2.2: Sequences of designed proteins

47

Space group C 2 2 21

Average mosaicity 0.17

Rwork/Rfree 20/25%

Resolution 92.16 to 2.20

Rmerge 0.069

Mean((I)/sd(I)) 21.9

Completeness 99.6

Multiplicity 7.1

Table S2.3: Crystallography statistics for CA01

Completeness of resonance assignments (%)

Backbone/side chain 94.9/98.6

Completeness of stereospecific assignments (%)

Val and Leu isopropyl (%) 100

Conformationally-restricting distances constraints

Intraresidue [i = j] 322

Sequential [—i - j— = 1] 230

Medium range [1 ¡ —I - j— ¡ 5] 290

Long range [—I - j— 5] 263

Dihedral angle constraints (φ/ψ) 65/65

Average number of constraints per residue 13.4

Average number of long range distance constraints per residue 2.9

CYANA target function (Å2) 0.008± 0.003

Average number of distance constraint violations per conformer

0.2-0.5 Å 4.1

>0.5Å 0

Average number of dihedral angle constraint violations per conformer

>10◦ 0

Average RMSD from mean coordinates (Å)

Regular secondary structure elements, backbone heavy atoms 0.47

Regular secondary structure elements, all heavy atoms 0.98

Ordered residues, backbone heavy atoms 0.5

Ordered residues, all heavy atoms 1

Global quality scores (raw/Z-score)

PROCHECK G-factor (φ and ψ) 0.62/2.75

PROCHECK G-factor (all dihedral angles) 0.45/2.66

MOLPROBITY clash score 10.38/-0.26

Verify 3D 0.32/-2.25

ProsaII 0.91/1.08

RPF scores

Recall/precision/F-measure 0.993/0.835/0.907

DP-score 0.822

Ramachandran plot summary (%)

Most favored 96

Additionally allowed 4

Generously allowed 0

Disallowed 0

Table S2.4: NMR statistics for DA05

48

2.6 Command Lines and Input Files

2.6.1 Inputs for the Extraction of Features from a Set of Structures Into a

Features Database

Command

rosetta_scripts.linuxgccrelease @flags_report

RosettaScript

<ROSETTASCRIPTS>

<SCOREFXNS>

</SCOREFXNS>

<TASKOPERATIONS>

</TASKOPERATIONS>

<FILTERS>

</FILTERS>

<MOVERS>

<ReportToDB name=features database_name=scores.db3>

<feature name=ResidueFeatures />

<feature name=PoseConformationFeatures />

<feature name=ResidueConformationFeatures />

<feature name=ProteinResidueConformationFeatures />

<feature name=ResidueSecondaryStructureFeatures />

<feature name=SecondaryStructureSegmentFeatures />

<feature name=ModelFeatures />

</ReportToDB>

</MOVERS>

<APPLY_TO_POSE>

</APPLY_TO_POSE>

<PROTOCOLS>

<Add mover_name=features />

</PROTOCOLS>

</ROSETTASCRIPTS>

Flag File

-parser:protocol extract_features.xml

-l inputs.txt

-ignore_unrecognized_res true

49

-delete_old_poses true

2.6.2 Inputs for generating SEWING nodes from Features database

Command

sewing_hasher.linuxgccrelease @flags

Flags File (contiguous)

-sewing:mode generate

-sewing:assembly_type discontinuous

-model_file_name continuous.models

-inout:dbms:database_name scores.db3

Flags File (discontiguous)

-sewing:mode generate

-sewing:assembly_type discontinuous

-model_file_name discontinuous.models

-inout:dbms:database_name scores.db3

2.6.3 Inputs for Running Geometric Hasher to Generate Edges

Inputs for the Generation of Plain-Text Edge File

sewing_hasher.linuxgccrelease @flags

Inputs for the Generatation of Plain-Text Edge File from Contiguous Sub-

structures

-model_file_name continuous.models

-score_file_name continuous.scores

-sewing:mode hash

-sewing:num_segments_to_match 1

-sewing:min_hash_score 10

-sewing:max_clash_score 0

50

Inputs for the Generatation of Plain-Text Edge File from Discontiguous Sub-

structures

-model_file_name discontinuous.models

-score_file_name discontinuous.scores

-sewing:mode hash

-sewing:num_segments_to_match 2

-sewing:min_hash_score 10

-sewing:max_clash_score 0

Command for the converstion of text-file to binary

sewing_hasher.linuxgccrelease @flags

Flags for the converstion of text-file to binary for contiguous edges

-model_file_name continuous.models

-score_file_name continuous.scores

-sewing:mode convert

Flags for the converstion of text-file to binary for discontiguous edges

-model_file_name discontinuous.models

-score_file_name discontinuous.scores

-sewing:mode convert

2.6.4 Inputs for Generating SEWING backbones

Command

rosetta_scripts.linuxgccrelease @flags

RosettaScript

<ROSETTASCRIPTS>

<SCOREFXNS>

</SCOREFXNS>

51

<TASKOPERATIONS>

</TASKOPERATIONS>

<FILTERS>

</FILTERS>

<MOVERS>

<MonteCarloAssemblyMover

name=assemble

cycles=1000

min_segments=5

max_segments=5

add_probability=0.05

delete_probability=0.005

/>

</MOVERS>

<PROTOCOLS>

<Add mover_name=assemble />

</PROTOCOLS>

</ROSETTASCRIPTS>

Flags

-nstruct 1

-s dummy.pdb

-sewing:model_file_name continuous.models

-sewing:score_file_name continuous.scores

-sewing:skip_refinement true

-parser:protocol generate.xml

-mh:match:ss1 true

-mh:match:ss2 true

-mh:match:aa1 false

-mh:match:aa2 false

-mh:score:use_ss1 true

-mh:score:use_ss2 true

-mh:score:use_aa1 false

-mh:score:use_aa2 false

-mh:path:motifs xsmax_bb_ss_AILV_resl0.8_msc0.3.rpm.bin.gz

-mh:path:scores_BB_BB xsmax_bb_ss_AILV_resl0.8_msc0.3

-mh:gen_reverse_motifs_on_load false

52

2.6.5 Inputs for the Optimization of SEWING Designs

Command

rosetta_scripts.linuxgccrelease @flags

RosettaScript

<ROSETTASCRIPTS>

<TASKOPERATIONS>

</TASKOPERATIONS>

<SCOREFXNS>

<talaris_cart weights="talaris2013_cart" />

</SCOREFXNS>

<FILTERS>

<CavityVolume name="cav_vol" />

<ExposedHydrophobics name="ex_hy" threshold=-1 />

<SSPrediction name="sspred"

threshold=1

use_probability=true

use_svm=true

/>

<PackStat name="packstat" threshold=0 chain=0 repeats=1 />

<SSShapeComplementarity name="ss_sc" />

<BuriedUnsatHbonds2 name=bunsat

scorefxn=talaris_cart

cutoff=20

generous_hbonds=true

sasa_burial_cutoff=0.01

AHD_cutoff=90

dist_cutoff=3.0

hxl_dist_cutoff=3.5

sulph_dist_cutoff=3.3

metal_dist_cutoff=2.7 />

</FILTERS>

<MOVERS>

<FastRelax name=fastrelax

repeats=1

disable_design=false

scorefxn=talaris_cart

cartesian=1

>

<MoveMap>

<Chain number=1 chi=1 bb=1 />

53

</MoveMap>

</FastRelax>

<AssemblyConstraintsMover name=ACM

native_rotamers_file="%%rotfile%%"

native_bonus=1.0

/>

</MOVERS>

<PROTOCOLS>

<Add mover_name="ACM"/>

<Add mover_name="fastrelax"/>

<Add filter_name="cav_vol" />

<Add filter_name="ex_hy" />

<Add filter_name="packstat" />

<Add filter_name="sspred" />

</PROTOCOLS>

</ROSETTASCRIPTS>

Flags

-use_input_sc

-linmem_ig 10

-parser:protocol refinement.xml

-constrain_relax_to_start_coords

-relax:default_repeats 3

54

REFERENCES

1. Huang, P.-S., Oberdorfer, G., Xu, C., Pei, X. Y., Nannenga, B. L., Rogers, J. M.,
DiMaio, F., Gonen, T., Luisi, B., and Baker, D. (2014) High thermodynamic stability
of parametrically designed helical bundles. Science 346, 481–485

2. Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T. B., Montelione, G. T., and
Baker, D. (2012) Principles for designing ideal protein structures. Nature 491, 222–227

3. Joh, N. H., Wang, T., Bhate, M. P., Acharya, R., Wu, Y., Grabe, M., Hong, M.,
Grigoryan, G., and DeGrado, W. F. (2014) De novo design of a transmembrane zn-
transporting four-helix bundle. Science 346, 1520–1524

4. Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., and Baker, D.
(2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302,
1364–1368

5. Hughes, A. L. (2005) Gene duplication and the origin of novel proteins. Proc. Natl.
Acad. Sci. U. S. A. 102, 8791–8792

6. Blake, C. C. F. (1978). Do genes-in-pieces imply proteins-in-pieces?

7. Bashton, M. and Chothia, C. (2007) The generation of new protein functions by the
combination of domains. Structure 15, 85–99

8. Koide, S. (2009) Generation of new protein functions by nonhomologous combinations
and rearrangements of domains and modules. Curr. Opin. Biotechnol. 20, 398–404

9. Eisenbeis, S., Proffitt, W., Coles, M., Truffault, V., Shanmugaratnam, S., Meiler, J., and
Höcker, B. (2012) Potential of fragment recombination for rational design of proteins.
J. Am. Chem. Soc. 134, 4019–4022

10. Vogel, C., Bashton, M., Kerrison, N. D., Chothia, C., and Teichmann, S. A. (2004).
Structure, function and evolution of multidomain proteins

11. Grishin, N. V. (2001) Fold change in evolution of protein structures. J. Struct. Biol.
134, 167–185

55

12. Fernandez-Fuentes, N., Dybas, J. M., and Fiser, A. (2010) Structural characteristics of
novel protein folds. PLoS Comput. Biol. 6, e1000750

13. Aronson, H. E., Royer, W. E., and Hendrickson, W. A. (1994) Quantification of tertiary
structural conservation despite primary sequence drift in the globin fold. Protein Sci.
3, 1706–1711

14. Nussinov, R. and Wolfson, H. J. (1991) Efficient detection of three-dimensional struc-
tural motifs in biological macromolecules by computer vision techniques. Proc. Natl.
Acad. Sci. U. S. A. 88, 10495–10499

15. Leaver-Fay, A., Tyka, M., Lewis, S. M. S. M., Lange, O. F., Thompson, J., Jacak, R.,
Kaufman, K. W., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper,
S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y.-E. A., Fleishman, S. J., Corn,
J. E., Kim, D. E., Lyskov, S., Berrondo, M., Mentzer, S., Popović, Z., Havranek, J. J.,
Karanicolas, J., Das, R., Meiler, J., Kortemme, T., Gray, J. J., Kuhlman, B., Baker, D.,
and Bradley, P. (2011) Rosetta3: An Object-Oriented software suite for the simulation
and design of macromolecules. Methods Enzymol. Volume 487, 545–574

16. Richardson, J. S. and Richardson, D. C. (2013). Invited review: Studying and polishing
the PDB’s macromolecules

17. Wang, G. and Dunbrack, R. L. (2003) PISCES: A protein sequence culling server.
Bioinformatics 19, 1589–1591

18. Sheffler, W. and Baker, D. (2010) RosettaHoles2: a volumetric packing measure for
protein structure refinement and validation. Protein Sci. 19, 1991–1995

19. Kumar, M. D. S., Bava, K. A., Gromiha, M. M., Prabakaran, P., Kitajima, K., Uedaira,
H., and Sarai, A. (2006) ProTherm and ProNIT: thermodynamic databases for proteins
and protein–nucleic acid interactions. Nucleic Acids Res. 34, D204–D206

20. Holm, L. and Rosenström, P. (2010) Dali server: conservation mapping in 3D. Nucleic
Acids Res. 38, W545–9

21. Tyka, M. D., Jung, K., and Baker, D. (2012) Efficient sampling of protein conformational
space using fast loop building and batch minimization on highly parallel computers. J.
Comput. Chem. 33, 2483–2491

56

22. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637

23. Fleishman, S. J., Leaver-Fay, A., Corn, J. E., Strauch, E.-M., Khare, S. D., Koga, N.,
Ashworth, J., Murphy, P., Richter, F., Lemmon, G., Meiler, J., and Baker, D. (2011)
RosettaScripts: a scripting language interface to the rosetta macromolecular modeling
suite. PLoS One 6, e20161

24. Kuhlman, B. and Raleigh, D. P. (1998) Global analysis of the thermal and chemical
denaturation of the n-terminal domain of the ribosomal protein L9 in H2O and D2O.
determination of the thermodynamic parameters, deltah(o), deltas(o), and deltac(o)p
and evaluation of solvent isotope effects. Protein Sci. 7, 2405–2412

25. Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W.,
Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D.
(2012) Towards automated crystallographic structure refinement with phenix.refine.
Acta Crystallogr. D Biol. Crystallogr. 68, 352–367

26. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and
Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674

27. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and develop-
ment of coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501

28. Neri, D., Szyperski, T., Otting, G., Senn, H., and Wüthrich, K. (1989) Stereospecific
nuclear magnetic resonance assignments of the methyl groups of valine and leucine in
the DNA-binding domain of the 434 repressor by biosynthetically directed fractional
13C labeling. Biochemistry 28, 7510–7516

29. Kim, S. and Szyperski, T. (2003) GFT NMR, a new approach to rapidly obtain precise
high-dimensional NMR spectral information. J. Am. Chem. Soc. 125, 1385–1393

30. Atreya, H. S. and Szyperski, T. (2004) G-matrix fourier transform NMR spectroscopy for
complete protein resonance assignment. Proc. Natl. Acad. Sci. U. S. A. 101, 9642–9647

31. Cavanagh, J., Fairbrother, W. J., Arthur G. Palmer, I., Skelton, N. J., and Rance, M.
(2010) Protein NMR Spectroscopy: Principles and Practice. Academic Press

32. Shen, Y., Atreya, H. S., Liu, G., and Szyperski, T. (2005) G-matrix fourier transform
NOESY-based protocol for high-quality protein structure determination. J. Am. Chem.

57

Soc. 127, 9085–9099

33. Pelton, J. G., Torchia, D. A., Meadow, N. D., and Roseman, S. (1993) Tautomeric states
of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-
transducing protein from escherichia coli, using two-dimensional heteronuclear NMR
techniques. Protein Sci. 2, 543–558

34. Penhoat, C. H. d., Li, Z., Atreya, H. S., Kim, S., Yee, A., Xiao, R., Murray, D.,
Arrowsmith, C. H., and Szyperski, T. (2005) NMR solution structure of thermotoga
maritima protein TM1509 reveals a zn-metalloprotease-like tertiary structure. J. Struct.
Funct. Genomics 6, 51–62

35. Güntert, P., Dötsch, V., Wider, G., and Wüthrich, K. (1992) Processing of multi-
dimensional NMR data with the new software PROSA. J. Biomol. NMR 2, 619–629

36. Keller, R. Cantina-Verlag; goldau, switzerland: 2004. The Computer Aided Resonance
Assignment Tutorial

37. Zimmerman, D. E., Kulikowski, C. A., Huang, Y., Feng, W., Tashiro, M., Shimotaka-
hara, S., Chien, C., Powers, R., and Montelione, G. T. (1997) Automated analysis of
protein NMR assignments using methods from artificial intelligence. J. Mol. Biol. 269,
592–610

38. Moseley, H. N., Monleon, D., and Montelione, G. T. (2001) Automatic determination
of protein backbone resonance assignments from triple resonance nuclear magnetic res-
onance data. Methods Enzymol. 339, 91–108

39. Shen, Y. and Bax, A. (2013) Protein backbone and sidechain torsion angles predicted
from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241

40. Buchner, L. and Güntert, P. (2015) Systematic evaluation of combined automated NOE
assignment and structure calculation with CYANA. J. Biomol. NMR 62, 81–95

41. Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determina-
tion with automated NOE assignment using the new software CANDID and the torsion
angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227

42. Güntert, P., Mumenthaler, C., and Wüthrich, K. (1997) Torsion angle dynamics for
NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298

58

43. Linge, J. P., Williams, M. A., Spronk, C. A. E. M., Bonvin, A. M. J. J., and Nilges, M.
(2003) Refinement of protein structures in explicit solvent. Proteins 50, 496–506

44. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve,
R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Si-
monson, T., and Warren, G. L. (1998) Crystallography & NMR system: A new software
suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.
54, 905–921

45. Bhattacharya, A., Tejero, R., and Montelione, G. T. (2007) Evaluating protein struc-
tures determined by structural genomics consortia. Proteins 66, 778–795

59

Chapter 3

FUNCTIONAL INCORPORATION OF BINDING MOTIFS INTO DE
NOVO DESIGNED PROTEINS

3.1 Introduction

Protein-protein interactions mediate a wide variety of cellular processes. Designed and

engineered protein-protein interactions have the potential to probe and modify these pro-

cesses to great effect. Antibodies, for instance, have long-been experimentally engineered to

bind a multitude of targets for applications ranging from laboratory reagents to therapeutics

[1, 2]. Many methods exist for the generation and optimization of protein-protein interac-

tions. Directed evolution is a powerful experimental method used to screen large libraries of

dna and protein sequences for the generation or optimization of a selectable attribute, such

as protein-protein binding. However, the library sizes available to directed evolution methods

are limited by experimental constraints, and are rarely able to sample the entirety of a de-

sired sequence-space. Additionally, directed evolution methods are often unable to select for

properties such as specificity of binding partners and binding locations, and thermostability;

all of which are critical properties for most downstream applications. Computational design is

a rapidly improving strategy for the creation of novel protein-protein interfaces, and benefits

from atomistic control over the properties of the engineered protein. Recent computational

design efforts efforts have succeeded in the generation of de novo homo-dimers, metal-mediated

interactions, protein nano-cages, and viral antagonists[3, 4, 5, 6]. In each of these cases, the

protein binder has been designed by modifying the surface residues of an existing protein struc-

ture that has been selected for structural properties conducive to the design task, such as shape

complementarity to the target molecule. An alternative starting point for the computational

design of protein interfaces is the creation of new, or de novo, protein backbones. However,

60

many de novo protein design strategies target a single fold, and are therefore poorly suited

for sampling a large number of diverse backbones for compatibility with the desired binding

partner[7, 8, 9, 10]. Recently, we described a novel method of de novo protein design, called

SEWING, that utilizes evolutionary principles to create large numbers of highly diverse and

designable protein structures. Here, we extend SEWING to the creation of protein backbones

as templates for interface design. Our results indicate that SEWING can be used for the

generation of well-folded de novo proteins that retain binding to the intended target.

3.2 Materials and Methods

3.2.1 Selection of Target Interfaces

As an initial test of our method, we sought to design de novo protein backbones that incor-

porate binding peptides from 4 distinct protein-protein interfaces: Activated GαQ bound to

its effector, phospholipase Cβ3 (PLC-β3) (PDB: 3OHM); Scallop Troponin C bound to a pep-

tide fragment from Troponin I (PDB: 3TZ1); Vinculin head domain bound to Actinin peptide

(PDB: 1YDI); and anti-apoptotic protein Mcl-1 in complex with a BH3 peptide derived from

proapoptotic protein Bim (PDB: 3KJ0). These interfaces were selected due to a combination

of therapeutic relevance, size and structure of the binding peptide, and availability of binding

affinities.

61

Figure 3.1: Starting scaffolds for interface design. In all cases, the binding peptide used as
the starting structure is highlighed in orange. (A) Interface between Mcl-1 (pink) and BH3
peptide from Bim (PDB: 3KJ0). (B) Interface between scallop Troponin C (teal) and peptide
derived from scallop Troponin I (PDB: 3TZ1). (C) Interface between Vinculin head domain
(blue) and Actinin peptide (PDB: 1YDI). (D) Interface between GαQ and a peptide derived
from PLC-β3 (PDB: 3OHM).

In the case of vinculin, troponin, and Mcl-1 interfaces, the binding peptide adopts a single

helix conformation with affinities ranging from 1nM to 1µM[11, 12, 13]. A helix binding to a

62

groove on a target protein is commonly utilized interface motif in naturally occurring protein-

protein interactions, and therefore these interfaces serve as an excellent proof-of-concept for

the generality of this interface design method(Figure 3.1A, 3.1B, 3.1C)[14]. In the case

of the GαQ interface, a 27-residue binding peptide adopts a kinked helix-turn-helix confor-

mation(Figure 3.1D) that binds PLC-β3 with a dissociation constant of 4µM[15]. The two

helices in the PLC-β3 peptide are nearly perpendicular to one another in the binding pose, a

conformation not seen in previously designed proteins, and thus a highly challenging test our

methods ability to design an accommodating structure.

From a clinical perspective, the Mcl-1/BH3 and GαQ/Cβ3 interfaces are of particular

interest. Mcl-1, a Bcl-2 antiapoptotic protein, protects cells from programmed cell death. The

sequestration of BH3 peptide by antiapoptotic proteins allows cells to evade death, and can lead

to cancer development[16, 17]. There are several members of the anti-apoptotic Bcl-2 family

with varying specificity for different BH3 peptides. The multi-specific nature of many BH3

peptides can convolute experimental studies into the effects of certain pathways and researchers

have engineered binders with high specificity towards various Bcl-2 family members[18]. The

design strategy employed here can be used to similar effect by extending the interface surface

area and allowing the introduction of specificity-inducing interactions not achievable with a

peptide alone.

The signalling through the GαQ/PLC-β3 interface is an important regulator of cell proliferation[15].

Recent studies have implicated excess GαQ signaling in the development of ocular cancers

[19, 20]. Therefore, the inhibition of GαQ signalling via a specific antagonist to the GαQ/PLC-

β3 interface represents a potential method of treatment.

3.2.2 Computational Design Protocol

The previous chapter describes a novel method of protein design in which substructures

from known protein structures are recombined using structural similarity. We showed that

this method gives rise to diverse sets of highly designable de novo protein backbones. In those

works, substructures were defined by secondary structure boundaries, without consideration of

potential function. The all-against-all structurally similarity between substructure pairs was

63

precomputed, and used to construct a graph of potential recombination events. In this chapter,

additional nodes are defined by their functional properties (in this case, binding to the target

molecule) and appended through on-the-fly structural similarity to the other nodes in the

graph. When constructing novel backbones, only paths that include the desired function node

are considered. In this way, de novo protein backbones can be constructed that incorporate

substructures intended to impart function on the designed protein (Figure 3.2).

In this study we aimed to design novel proteins that incorporate binding epitopes from

4 target interfaces. In all cases, the contiguous SEWING framework designed in Chapter 2

was used, which recombines substructures based on overlap of a single secondary structure

elements(Figure 3.2). For the 3 interface peptides consisting of a single helix, additional

substructures can be appended to either the amine or carboxy terminus of the starting peptide.

However, in these cases the addition of substructures from both termini was not allowed for

fear that multiple structural alignments over the same region could allow the introduction of

structural deviations in the peptide backbone that could reduce modeling accruacy or hinder

binding. In the case of the PLC-β3 peptide, which consists of two α-helices, additions to

both termini were allowed. Additionally, in order to preserve residues deemed to be critical for

binding, any structural recombinations that resulted in the shortening of the peptide such that

any of these critical residues was removed were not considered. Finally, in order to prevent

the addition of substructures that would cause steric occlusion of the intended binding, all

design models were built in the presence of the structure for the intended binding partner.

Together, these additional requirements create a much more restrained system than the designs

outlined in the previous chapter. In order to account for this additional complexity, a low

resolution score-function was implemented to guide sampling towards backbones that not only

avoid clashes, but also favor the potential to design favorable inter- and intra- chain contacts.

Importantly, the implemented score-function terms do not take into consideration the amino

acid identities of the protein being designed, but rather quantify the ability to design a favorable

contact during later sequence optimization steps. The full designability score-function used

for these simulations is described in Equation 3.1

64

Figure 3.2: Schematic of the SEWING append method. The PLC-β3 peptide (orange) is
used as the initial substructure node. Additional contiguous substructures derived from natural
proteins are added by structural similarity. The final design model (rainbow) illustrates the
design is a chimera from the various substructures.

EBB =
∑
1→n

Θclash + Θintra−design + Θinter−design (3.1)

65

In this equation, the Θintra−design favors designability of intra-chain contacts, the Θinter−design

favors design of inter-chain contacts, and the Θclash term prevents both intra- and inter-chain

backbone clashes. All score terms were normalized to account for the variable numbers of

residues between different designs. Weights for each of the three terms were varied empirically

to favor design models that demonstrate a clash-free globular topology that maximizes inter-

face area. When designing structures, additional edges from the substructure graph can be

added or removed in a monte-carlo based process that attempts to optimize the EBB.

For each of the 4 binding peptides, 1,000 design simulations, each consisting of 10,000

monte-carlo cycles were run. Simulations were allowed to follow either 2 or 3 edges, resulting

in final design models of either 3, 4, or 5 helices, dependent on the number of helices in the

starting substructure. Following backbone creation, sequence refinement was carried out as

previously described in Chapter 2, with the additional modification that mutation of critical

interface residues was not permitted. Fully refined design models were filtered on metrics

to favor low predicted energy, tight packing of the protein core, and shape complementarity

between the designed protein and desired binding partner[21]. In total, 10 design models were

selected for experimental characterization (Figure 3.3).

3.2.3 Protein Expression and Purification

Linear gene fragments (gBlocks) encoding each protein were synthesized by Integrated

DNA Technologies (Coralville, Iowa). Additional 19 base-pair overhangs were added to each

fragment to allow gibson cloning into in-house pCDB24 vectors previously linearized with XhoI

restriction enzyme(New England Biolabs)[22]. Constructs were transformed into chemically

competent BL21 Star E. coli cells and grown overnight at 37 ◦C, and 225 r.p.m. in Luria-

Bertani (LB) medium supplemented with 50ug/mL Ampicillin. The following day, 10mL of

the overnight culture were used to inoculate 1.5L cultures of LB broth. Cells were grown at

37 ◦C until an optical density (O.D.) of approximately 0.8 was reached. Protein expression

was induced using 0.66mM of isopropyl thio-β-D-galactoside (IPTG), and cells continued to

grow at 25 ◦C. Cells were harvested after approximately 15 hours of protein expression and

collected by centrifugation for 15 minutes at 4500 r.p.m. pCDB24 constructs are expressed

66

Figure 3.3: Experimentally characterized binding interfaces. Design models for each of the
10 experimentally characterized designs (orange) shown in complex with the target protein. A
summary of experimental results can be found in Table 3.1

as fusions to the Saccharomyces cerevisiae protein Smt3, which aids in protein expression and

solubility. A deca-histidine tag is included upstream of the Smt3 gene. Proteins were purified

from cell pellets as described in the previous chapter.

67

3.2.4 Yeast Surface Display

In addition to pCDB24, all genes encoding proteins designed to bind GαQ were cloned into

the pETCON2 yeast-display vector[6]. Briefly, 50 base-pair overhangs containing homology to

the pETCON vector were used for cloning via homologous recombination. EBY100 yeast were

transformed with completed constructs. Upon induction with galactose-containing media,

encoded proteins are displayed on the surface of the yeast cell as fusions to the aga1p and

aga2p proteins[23]. HA and C-myc tags are expressed on the amine and carboxy termini,

respectively.

Biotinylated GαQ was labeled with streptavidin fused to Alexa Fluor 633 (ThermoFisher).

Protein-displaying cells were labeled with chicken anti-C-myc antibodies, followed by Goat

anti-chicken fused to alexa fluor 488. Simultaneous detection of protein expression and binding

to GαQ was analyzed through detection of the respective fluorophores on a FACSAria flow

cytometer(BD).

3.2.5 Isothermal Titration Calorimetry

The binding affinity of designs 3TZ1-2 and 3TZ1-3 to Troponin C was measured via isother-

mal titration calorimetry on a MicroCal Auto-iTC200. Purified designs at a concentration

between 20µM and 30 µM were loaded in the sample cell, and purified Troponin C was at

a concentration of 400µM was titrated in through 20 injections of 2µl over 1 hour. The re-

sults were fit to a single-state binding event, and yielded affinities of 7.1µM(N=0.95) and

3.8µM(N=1.36) for designs 3TZ1-2 and 3TZ1-3, respectively. All experiments were conducted

in a buffer composed of 25mM NaPO4, 50mM NaCl.

3.2.6 Surface Plasmon Resonance

The affinities of 3OHM-1, 3OHM-2, and 3OHM-3 against GαQ were measured on a Pro-

teOn XPR36 biosensor. Biotinylated GαQ at a concentration of 100nM was loaded onto a

neutravidin sensor chip (ProteOn NLC). Affinity for design models was calculated by flowing

purified designs at 5 concentrations, ranging from 0.37µM to 30µM. Resultant data was fit to

an equilibrium binding model for single-state binding. All experiments were conducted in a

68

buffer composed of 20mM HEPES pH 7.0, 10mM NaF, 30µM AlCl3, 10mM MgCl2, 150mM

NaCl, 2mM DTT, 0.005% Tween-20.

3.2.7 Crystallography

Sample of 3OHM-2 used for crystal growth were further purified via size exclusion chro-

matography on a Superdex S75 16/600 equilibrated with 100mM Ammonium Acetate. Pooled

fractions were concentrated to 225µM and grown in 24-well crystallography trays (Hampton

Research). Crystals formed in approximately 3 days in a buffer composed of 0.1M diammo-

nium hydrogen citrate, and 15% Polyethylene Glycol (PEG). Crystals were flash frozen in

liquid nitrogen after cryoprotection in a solution composed of the mother liquor mixed with

30% ethylene glycol. The structure was solved by molecular replacement with pairs of poly-

alanine helices derived from the design model, followed by further refinement with SHELXE

and arp/warp.[24, 25, 26].

3.3 Results

The 10 models selected for experimental characterization are highly diverse, consistent

with results from Chapter 2. The functional peptides vary in their positioning in the com-

pleted designs, and designs encompass both 3 and 4 helix-bundles (Figure 3.3). These results

further demonstrate the advantage of SEWING in producing large numbers of diverse protein

backbones.

design expression helical well-folded binding

3KJ0-1 no ND ND ND

1YDI-1 no ND ND ND

1YDI-2 no ND ND ND

3OHM-1 yes yes ND yes

3OHM-2 yes yes yes yes

3OHM-2 yes yes ND yes

3TZ1-1 no ND ND ND

3TZ1-2 yes yes ND yes

3TZ1-3 yes yes ND yes

3TZ1-4 no ND ND ND

Table 3.1: Experimental summary of interface designs. 5 of the 10 designs were expressed
well in bacteria and were helical via CD. 3 of the 5 designs were well-folded via CD, and all 3
bound their desired target.

69

5 of the 10 designs were readily purified from bacterial culture. All of the purified proteins

contained significant helical content via Circular Dichroism (CD), but display variety in melting

temperature and cooperativity of unfolding (Table 3.1, Figures 3.4 and 3.5).

Figure 3.4: Thermal denaturation and isothermal titration calorimetry for 3TZ1-2 (top) and
3TZ1-3 (bottom). In both cases, a cooperative unfolding event is observed indicating a well
folded structure. Binding to Troponin C is observed in both cases.

Binding was assayed through 3 separate methods: yeast surface display, isothermal titra-

tion calorimetry (ITC), and surface plasmon resonance (SPR). In the case of binders to the

scallop Troponin C, affinity was determined via ITC. Titrations of purified Troponin C into

design models showed endothermic binding for both 3TZ1-2 and 3TZ1-3 designs. In both

cases, affinity for Troponin C molecule was determined to be in the low micromolar range,

consistent with the reported affinities of binding the peptide alone [11, 27]. The interaction

between Troponin C and Troponin I peptide has been shown to demonstrate increased affinity

in the presence of calcium. In our experiments, excess calcium was not added, and yet the

70

affinities aligned well with previously reported data for binding in the presence of calcium,

indicating that our measured affinities may represent a lower bound of affinity. Unfortunately,

additional experiments conducted in the presence of calcium could not be readily fit (data not

shown).

For the designs incorporating the PLC-β3, binding was assessed both via yeast display and

SPR. For both assays, strong binding to GαQ was observed (Figure 3.5). Equilibrium analysis

of SPR data shows that all three tested designs bind to GαQ in the high nanomolar, to low

micromolar range, comparable to the 4µM binding measured for the PLC-β3 peptide alone

(data not shown). For one design, 3OHM-2, a crystal structure was solved for the unbound

state. The crystal structure contains two molecules in the asymmetric unit, and agreement

between the design model and crystal structure is poor (Figure 3.6). Curiously, the crystallized

conformation of design appears to be inconsistent with the designed binding mode(Figure 3.6).

Given that it is unlikely such high affinity binding was achieved serendipitously, this suggests

that either the crystallized conformation differs from the conformation in solution, or that the

designed protein undergoes a conformational change upon binding.

71

Figure 3.5: Equilibrium analysis of SPR data for the 3OHM-1, 3OHM-2, and 3OHM-3 show
that all designs bind GαQ. Binding affinities were fit to 14µM, 1.3µM and 239nM, respectively

72

Figure 3.6: Comparison of 3OHM-2 design model and crystal structure shows that the
crystallographic form (gray) is incompatible with the designed binding orientation (orange).
However, binding is observed in the low µM range (Figure 3.5, Table 3.1).

73

3.4 Discussion and Future Directions

The results reported here provide strong preliminary data for the use of de novo design

for the improvement of peptide binding affinity. Each design that was able to be purified

showed strong helical character, and maintained binding affinity to the target protein that was

at least as strong as the peptide alone. However, stability and cooperativity of unfolding for

designs reported here is much less than than previously reported de novo designs, highlighting

the difficulty in restricting de novo design by forcing the incorporation of desired structural

features. One hypothesis for this difficulty is that in many of the tested cases the sequences

for the binding peptide show relatively poor preference for the bound structure, suggesting

the possibility of a conformational change upon binding (Figure 3.7). Consequently, de novo

designs made to incorporate this structure must similarly pay the energetic cost of forcing

the binding region into the disfavored conformation. This difficulty became apparent when

attempting to forward-fold the molecule, which has been shown in previous studies to be an

excellent predictor of design quality(i.e. predict the designed structure using only sequence

data)[7]. To mitigate this difficulty, interfaces in which the binding peptide shows strong

structural preference for the bound state can be utilized in future studies.

High-resolution structural validation of binding proteins was not achieved in this study and

in one case a crystal structure of a design in the unbound state suggests the molecule is capable

of adopting a tertiary structure that differs significantly from the design model. Additional

experiments to elucidate the structural features of this design must be conducted in order to

gauge the accuracy of the designed molecule. One strategy for continued development of this

designed binder is to use multi-state design to introduce mutations that favor the designed

conformation and disfavor the conformation observed in the experimental structure. Specific

mutations that eliminate sidechain-backbone hydrogen bonds in the undesired state have been

identified and further experimental analysis is ongoing. Another encouraging result from these

studies was the agreement between in vitro purified proteins and yeast-displayed designs,

suggesting that future workflows can involve directed evolution to further improve binding

affinities or increase stability of the designed protein. In this study, all designed proteins

74

Figure 3.7: Fragment analysis of PLC-β3 binding region. The sequence of 3OHM-2 was
used to select 200 9-residue fragments for each 9-residue window in the structure. The average
RMSD between the selected fragments and design model is shown for each window. The region
of the structure taken from PLC-β3, shown in orange, is a region in which there is especially
high RMSD, indicating a poor sequence/structure agreement. Other areas of high RMSD
correspond to loop regions, for which there is often poor agreement (Chapter 2)

were entirely α-helical, similar to previously reported designs from the SEWING method.

Further improvements to the computational framework should allow extension of this method

to alternative forms of secondary structure, and thus expand the generality of this strategy for

interface design.

75

3.5 Command Lines and Input Files

3.5.1 Inputs for the Construction of Protein Backbones from a Starting

Interface Peptide

RosettaScript

<ROSETTASCRIPTS>

<SCOREFXNS>

</SCOREFXNS>

<FILTERS>

</FILTERS>

<MOVERS>

<AppendAssemblyMover

name=aam

cycles=10000

add_probability=0.05

delete_probability=0.005

switch_probability=0.89

max_temperature=0.10

min_temperature=0.05

base_native_bonus=0.5

neighbor_cutoff=1

min_segments=5

max_segments

>

<GlobalRequirements>

<GlobalLengthRequirement

dssp="H"

min_length=8

max_length=30

/>

<GlobalLengthRequirement

dssp="L"

min_length=1

max_length=5

/>

</GlobalRequirements>

</AppendAssemblyMover>

</MOVERS>

<PROTOCOLS>

<Add mover_name=aam/>

</PROTOCOLS>

</ROSETTASCRIPTS>

76

RosettaScript

#The PDB for the starting peptide to be used

#for the SEWING append protocol

-s 3OHM_startnode.pdb

#The desired binding partner, aligned with the starting

#peptide in the designed binding orientation

-sewing:partner_pdb 3OHM_partner.pdb

#Sequence positions that must be kept during the

#structural chimerization process

-sewing:keep_model_residues 6 10 13 14 17 32

77

REFERENCES

1. Liu, J. K. H. (2014) The history of monoclonal antibody development – progress, re-
maining challenges and future innovations. Ann. West. Med. Surg. 3, 113–116

2. Nissim, A. and Chernajovsky, Y. (2008) Historical development of monoclonal antibody
therapeutics. In Therapeutic Antibodies, Handbook of Experimental Pharmacology,
3–18. Springer Berlin Heidelberg

3. Stranges, P. B., Machius, M., Miley, M. J., Tripathy, A., and Kuhlman, B. (2011)
Computational design of a symmetric homodimer using β-strand assembly. Proc. Natl.
Acad. Sci. U. S. A. 108, 1–6

4. Der, B. S., Machius, M., Miley, M. J., Mills, J. L., Szyperski, T., and Kuhlman, B.
(2012) Metal-mediated affinity and orientation specificity in a computationally designed
protein homodimer. J. Am. Chem. Soc. 134, 375–385

5. King, N. P., Sheffler, W., Sawaya, M. R., Vollmar, B. S., Sumida, J. P., André, I.,
Gonen, T., Yeates, T. O., and Baker, D. (2012) Computational design of self-assembling
protein nanomaterials with atomic level accuracy. Science 336, 1171–1174

6. Fleishman, S. J., Whitehead, T. A., and Ekiert, D. C. (2011) Computational design of
proteins targeting the conserved stem region of influenza hemagglutinin. Science 332,
816–821

7. Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T. B., Montelione, G. T., and
Baker, D. (2012) Principles for designing ideal protein structures. Nature 491, 222–227

8. Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., and Baker, D.
(2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302,
1364–1368

9. Huang, P.-S., Oberdorfer, G., Xu, C., Pei, X. Y., Nannenga, B. L., Rogers, J. M.,
DiMaio, F., Gonen, T., Luisi, B., and Baker, D. (2014) High thermodynamic stability
of parametrically designed helical bundles. Science 346, 481–485

10. Harbury, P. B. (1998) High-Resolution protein design with backbone freedom. Science
282, 1462–1467

78

11. Kato, Y. S., Yumoto, F., Tanaka, H., Miyakawa, T., Miyauchi, Y., Takeshita, D.,
Sawano, Y., Ojima, T., Ohtsuki, I., and Tanokura, M. (2013) Structure of the ca(2+)-
saturated c-terminal domain of scallop troponin C in complex with a troponin I fragment.
Biol. Chem. 394, 55–68

12. Fire, E., Gullá, S. V., Grant, R. a., and Keating, A. E. (2010) Mcl-1-Bim complexes
accommodate surprising point mutations via minor structural changes. Protein Sci. 19,
507–519

13. Bois, P. R. J., Borgon, R. a., Vonrhein, C., and Izard, T. (2005) Structural dynamics of
-actinin – vinculin interactions . Mol. Cell. Biol. 25, 6112–6122

14. Jacobs, T. M. and Kuhlman, B. (2013) Using anchoring motifs for the computational
design of protein-protein interactions. Biochem. Soc. Trans. 41, 1141–1145

15. Waldo, G. L., Ricks, T. K., Hicks, S. N., Cheever, M. L., Kawano, T., Tsuboi, K., Wang,
X., Montell, C., Kozasa, T., Sondek, J., and Harden, T. K. (2010) Kinetic scaffolding
mediated by a phospholipase c-beta and gq signaling complex. Science 330, 974–980

16. Lomonosova, E. and Chinnadurai, G. (2008) BH3-only proteins in apoptosis and beyond:
an overview. Oncogene 27 Suppl 1, S2–19

17. Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., and Korsmeyer,
S. J. (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis,
serving as prototype cancer therapeutics. Cancer Cell 2, 183–192

18. Chen, T. S., Palacios, H., and Keating, A. E. (2013) Structure-based redesign of the
binding specificity of anti-apoptotic Bcl-x(L). J. Mol. Biol. 425, 171–185

19. Lyon, A. M., Dutta, S., Boguth, C. A., Skiniotis, G., and Tesmer, J. J. G. (2013) Full-
length gαq–phospholipase c-β3 structure reveals interfaces of the c-terminal coiled-coil
domain. Nat. Struct. Mol. Biol. 20, 355–362

20. Van Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O’Brien,
J. M., Simpson, E. M., Barsh, G. S., and Bastian, B. C. (2009) Frequent somatic
mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599–602

21. Sheffler, W. and Baker, D. (2010) RosettaHoles2: a volumetric packing measure for
protein structure refinement and validation. Protein Sci. 19, 1991–1995

79

22. Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. a., and Smith,
H. O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases.
Nat. Methods 6, 343–345

23. Boder, E. T. and Wittrup, K. D. (1997) Yeast surface display for screening combinatorial
polypeptide libraries. Nat. Biotechnol. 15, 553–557

24. Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W.,
Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D.
(2012) Towards automated crystallographic structure refinement with phenix.refine.
Acta Crystallogr. D Biol. Crystallogr. 68, 352–367

25. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and
Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674

26. Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallogr. A 64, 112–122

27. Yumoto, F., Tanaka, H., Nagata, K., Miyauchi, Y., Miyakawa, T., Ojima, T., and
Tanokura, M. (2008) Spectroscopic and ITC study of the conformational change upon
ca2+-binding in TnC c-lobe and TnI peptide complex from akazara scallop striated
muscle. Biochem. Biophys. Res. Commun. 369, 109–114

80

Chapter 4

SWIFTLIB: RAPID DEGENERATE-CODON-LIBRARY
OPTIMIZATION THROUGH DYNAMIC PROGRAMMING1

4.1 Introduction

In vitro evolution couples genetic diversity generation with either a screen or a selection

to identify proteins with some desired phenotype. Although creating highly diverse DNA

libraries is trivial, the efficient isolation of the sought-after phenotype presents a bottleneck,

limiting the number of DNA sequences that can be tested. Techniques for selecting crossover

loci in gene shuffling [1, 2, 3], for open-reading-frame selection [4, 5], for screening neutral drift

libraries [6], and for screening restricted-alphabet libraries [7, 8, 9] all aim to distill sequence

space to a manageable size while maximizing the likelihood that the remaining sequences will

yield the desired phenotype.

Degenerate codon (DC) libraries are attractive in that they focus diversity to regions the

library designer thinks will be most productive, they can be molded to include as much or

as little diversity at particular positions as is necessary, and they are relatively inexpensive

to make. Unfortunately, canonical “NNN” diversification (N = A, C, G, or T) can be used

at only a small number of positions before exceeding the experimental size limits. Take for

example the 107 diversity limit imposed by yeast surface display, a rather middle-of-the road

limit; larger than the 103 limit for 96-well format screening, and smaller than the 1013 limit

for mRNA display. NNN diversification would exceed a 107 diversity limit if used at a mere

four positions. NNN is particularly inefficient since it commits 64 DNA sequences to produce

1This chapter previously appeared as an article in the Journal of Nucleic Acids Research. The original
citation is as follows:
Jacobs, T. M., Yumerefendi, H., Kuhlman, B., & Leaver-Fay, A. (2015). SwiftLib: rapid degenerate-codon-
library optimization through dynamic programming. Nucleic Acids Research, 43(5), e34.

81

only 20 distinct amino acid (AA) sequences. “NNK” (K = G or T) is better, since it uses

only 32 DNA sequences for the same 20 AAs. There are more tricks to increase the AA:DNA

ratio: the “22c trick” [10] uses three separate DCs to get all 20 AAs from only 22 DNA

sequences, and the “small intelligent libraries” technique [11] uses four DCs to get all 20 AAs

for exactly 20 DNA sequences. Still, using 20 DNA sequences allows full randomization at only

five positions before bumping into a 107 diversity limit. To randomize more positions requires

limiting the AA diversity. The NDT degenerate codon (D=A, G, or T), which codes for 12

AAs using 12 DNA sequences has been suggested as one way to reduce the AA diversity [9].

Multiple-sequence alignments [12] or computational protein design [13] have also been used

to suggest which AAs might be worth considering at each position. However, having a set of

candidate AAs at each position leaves the library designer with deciding which DCs to use

so that diversity is spread out most productively while adhering to the diversity limit. This

paper presents an efficient algorithm for making this decision.

Early work in automating DC optimization mostly focused on matching some target AA

distribution by creating “spiked” DCs, where the nucleotide ratios are not uniform [14, 15,

16, 17, 18, 19, 20]. These efforts focused on single positions at a time and made no attempt

at trading off between positions. Firth, Patrick, and Blackburn created and still host a web

server for selecting DCs for a given set of amino acids [21, 22] which is a significant boon to

anyone looking to partially automate the process of designing a DC library.

Mena and Daugherty introduced LibDesign, the first algorithm we are aware of for whole

library optimization [23]. It takes as input a set of sequences for the positions to be randomized,

taken either from protein design trajectories or from multiple sequence alignments, and tallies

the AA frequencies at each position. Starting with the (24 − 1)3 = 3375 possible DCs (24

representing the number of bit strings of length 4 to give all combinations of A, C, G, and T;

the −1 to throw out the bit string where all four nucleotides are absent), LibDesign chooses

small subsets (6 or 7 DCs) for each position by choosing first the smallest DC that gives the

82

most commonly observed AA (really, just a single codon), then the smallest DC that gives the

two most commonly observed AAs, and so on, until it has a DC that covers all the observed

AAs. It then uses brute-force enumeration of all codons in the subsets, looking for combinations

with high scores (more on this score later) and that stay below a specified diversity limit.

Treynor et al. [24] introduced a technique for building DC libraries while considering en-

ergies computed by protein design software, treating the library optimization problem (“what

DC should be assigned to each position?”) as a variant of the rotamer optimization prob-

lem (“what rotamer should be assigned to each position?”) and using previously developed

dead-end elimination theorems to solve it. (Briefly, rotamers, or rotational isomers, represent

discrete side-chain conformations that differ from each other only in their dihedral angles [25].)

Instead of looking at rotamer-pair energies, their optimization algorithm looks at the average

AA pair energies for a given pair of DCs; each AA pair energy is taken simply as the rotamer

interaction energy between the two rotamers that interact most favorably with the template

structure (and sequence). One obvious drawback of this technique is that it does not consider

how the rotamers of two AAs might relax in each other’s presence. It also lacks a way to limit

the size of the resulting library, and must be run repeatedly (requiring the user to exclude AAs

that might be responsible for producing too much diversity) until a library of the right size is

produced.

Allen et al. [26] followed with another library design technique, CLEARSS. It begins by

computing for every position and for every AA-subset size the optimal AA subset as defined

by an input set of scored sequences (e.g. the 1000 lowest-energy sequences that emerged from

a set of protein design trajectories). It then enumerates all assignments of per-position sizes

so that the product of those sizes is within a user-specified size range and picks the best

assignment. The algorithm’s reliance on brute-force enumeration means that it is quite slow.

It can be made to run quickly when the number of AAs at each position is either very low

or very high so that there is little to enumerate, but it is much slower when an intermediate

number of AAs is used. Curiously, the authors designed their algorithm to enumerate based

on the number of AA sequences instead of the number of DNA sequences, which represents

the actual experimental constraint. They also incorrectly assert that the optimal set of AAs

83

for a particular position will be no larger than the one that contains all of the AAs that appear

in the input designs; this would not be the case should a DC pull in AAs in addition to the

desired ones, as DCs frequently do. Based on this assertion, CLEARSS restricts the number

of AA subsets it examines and as a result may miss the optimal DC choice in spite of the fact

that it uses brute force enumeration.

Parker et al. [27] introduced both a dynamic programming (DP) solution and an integer-

linear programming (ILP) solution to solve a DC library optimization problem where the

library is guided by sequence alignments only and the designer has not even chosen which

positions to randomize. They make the very relevant observation that trying to optimize the

library so that pairwise information is included (e.g. including PHE at residue 10 only if ARG

is included at position 20 because PHE10 is only ever seen if ARG20 is also present) makes

the library optimization problem NP-Complete; thus the need for an ILP solution to optimize

their pairwise quality and novelty metrics. The dynamic programming algorithm they give

is quite different from the one presented here; notably, it is unable to enforce a limit on the

size of the resulting library, merely a limit on the number of positions which are randomized.

Their ILP solution, in contrast, is able to enforce a library size limit. Chen et al. [28] extended

this result in designing a DC library with ILP where multiple DCs were allowed at a single

position, with the restriction that only one position among those that would be covered by the

same primer – those that lie in a single stretch of DNA – be allowed to use multiple DCs.

The dynamic programming algorithm presented here also allows multiple DCs per position,

but removes the restriction that only one position per stretch use multiple DCs. Experimen-

tally, the construction of such a library would require purchasing multiple primers to cover the

stretch, where the number of primers needed is the product of the number of degenerate codons

used at each position within the stretch. The algorithm allows the user to limit the total num-

ber of primers that could be used and, with that limit, determines the optimal way to distribute

the use of those primers. Surprisingly, the use of multiple DCs allows the algorithm to come

up with very efficient libraries where the degeneracy of the genetic code can all but be avoided

so that, at least for the test cases examined here, the AA:DNA ratio approaches 1. The imple-

mentation that we have deployed online, which we call SwiftLib, offers an accessible alternative

84

pos 268 269 270 271 272 276 330 331 332
A 3 8 1 81 4 105 10 2 1
C 0 0 0 0 0 0 0 0 0
D 8 5 0 0 0 0 29 7 9
E 23 7 0 0 0 0 21 23 17
F 0 0 0 0 0 0 0 0 0
G 0 0 0 1 0 59 4 1 5
H 1 0 0 0 0 0 0 1 9
I 10 2 98 0 0 0 0 0 1
K 22 0 0 0 0 0 5 4 9
L 17 8 5 0 0 0 0 14 0
M 13 9 5 0 2 0 3 7 4
N 6 4 0 0 0 0 8 19 15
P 0 0 0 0 0 0 0 0 0
Q 42 2 0 0 1 0 6 29 18
R 35 4 0 0 0 0 27 12 21
S 7 44 8 113 43 36 45 34 29
T 6 58 23 4 30 0 42 46 57
V 7 49 60 1 120 0 0 0 5
W 0 0 0 0 0 0 0 1 0
Y 0 0 0 0 0 0 0 0 0

Table 4.1: Rosetta [29, 30, 31] was used to generate two hundred designs for a set of surface
residues in a protein-interface-design application using the 1XBI PDB. These are the AA
counts for each of the nine designed positions. The designable positions are contained in two
stretches, divided by the vertical bar.

to the previously published ILP approaches [27, 28] because it requires no back end. SwiftLib

is implemented in only ∼2K lines of JavaScript and runs inside web browsers; the code executes

on the user’s computer. It is, to our knowledge, the first web server for optimizing degenerate

codon libraries. SwiftLib is accessible at http://rosettadesign.med.unc.edu/SwiftLib.

4.2 Materials and Methods

4.2.1 DP For One Degenerate Codon

We have formulated the optimization of degenerate codon libraries with a linearly-additive

error function that we wish to minimize, subject to the constraint that the library size not

exceed a given limit. This error function treats each residue separately, omitting any consid-

eration of residue-pair information that might be present. Because it is linearly additive and

each of its errors are integers, its optimization admits a rapid dynamic programming solution.

85

http://rosettadesign.med.unc.edu/SwiftLib

The input for the problem is a 20× n table of amino acid counts for n designable residues

and a diversity limit, L. The count Ci(a) is the number of times that amino acid a ∈ A

appeared in the set of input sequences at position i, where A is the set of amino acids. We

define the error for choosing a particular degenerate codon d ∈ D at position i as

Ei =
∑
a∈A

δ(a 6∈ p(d))Ci(a) (4.1)

where p(d) is the set of AAs produced by d, and δ(x 6∈ y) is the delta function which yeilds

a value of one if x is absent from the set y and zero otherwise, and D is the set of all 3375

degenerate codons. Effectively, this objective function penalizes the exclusion of AAs that

were observed in the input sequences, with greater penalties applied to AAs that appeared the

most. The error generated by an assignment D = {d1 . . . dn} to all n designable positions is

simply the sum of the individual errors:

E(D) =

n∑
i

Ei(di). (4.2)

Let |d| represent the number of DNA sequences defined by a particular degenerate codon d,

and |D| represent the product
∏n

i |di|. Then the optimization problem can be formulated as:

min
D∈Dn

E(D)

subject to the constraint that |D| ≤ L.

This problem can be inverted so that instead we solve for the smallest library that achieves

any particular error level e. If we have a list of these library sizes for all possible errors, then

we can simply pick out the smallest error that can be generated with a library beneath the

given limit. This optimization strategy mirrors the one that Bellman originally described when

inventing dynamic programming [32]. Let sei denote the smallest size min|d| of all degenerate

codons that at position i generate a particular error level Ei(d) = e, and infinity if there are

no degenerate codons that produce that error level. Let Se
i−1 denote the size of the smallest

sub-library Di−1 = {d1 . . . di−1} defined over the range between the first designable position

86

up to and including position i − 1 that generates error E(Di−1) = e. Se
i can be expressed

recursively as:

Se
i = min

0<e′≤e
Se−e′
i−1 × s

e′
i (4.3)

with the recursion bottoming out at Se
1 = se1. Since the error is integral, we can turn this

recursion on its head and build up a table of partial solutions. If the maximum error that can

be produced at any position is m, then two n × nm tables are needed to hold the solution.

The dynamic programming algorithm is as follows: For all 1 < i ≤ n and for all 0 ≤ e ≤ m× i,

compute

S[i, e] = min
0≤e′≤e∗

S[i− 1, e− e′]× si[e′] (4.4)

and

T [i, e] = arg min
0≤e′≤e∗

S[i− 1, e− e′]× si[e′]. (4.5)

where e′ represents the choice of error contributed by position i, e∗ is the smaller of e and m,

and T represents a traceback table that can be used to reconstruct the optimal degenerate-

codon assignment after the smallest error that satisfies the library size limit has been identified.

This algorithm populates the two tables in O(n2m2) time and the traceback to reconstruct

the optimal solution takes O(n) time.

This solution can be trivially extended to place penalties on AAs, including the STOP

codon, that the user would prefer to exclude (but not forbid) from the library, as long as those

penalties are also integral. It is also possible to forbid or to require AAs by restricting the set

of degenerate codons from which to chose; this is more of a preprocessing addition than it is

a modification to the DP algorithm.

87

Table 4.2: The manual solution to the first library design problem, along with the best
solution produced by LibDesign [23], and three solutions produced by dynamic programming
(DP). The table reports the chosen DCs at each position, the amino acids produced by those
DCs, the number of nucleic-acid sequences the DCs prescribe (#NA), the number of unique
AAs and AA sequences the DCs produce (#AA), the percentage of codons that produce desired
AAs and the percentage of library members that contain only desired AAs (%Des), the error as
calculated from equations 4.1 and 4.2, and the LibDesign scorea. DP solution 1 used one DC
per position, solution 2 considered two DCs per position with a limit of 4 primers total, and
solution 3 considered three DCs per position with a limit of 15 primers total. The automated
solutions were restricted to a diversity limit of 3.2 × 108, the size of the manually designed
library. The maximum achievable LibDesign score for this problem is 200 (higher is better).
The manual solution took several hours. LibDesign took 18 minutes 51 seconds. The three
dynamic-programming solutions took 0.15, 0.28, and 13.57 seconds.

Solution pos 268 269 270 271 272 276 330 331 332 Totals

Manual

DCs VDR RBT RYY KCT RBT RVT RVW VNW VVW 105a

AAs
EGIKLM AGIS AITV AS AGIS ADGN ADEGKN ADEGHIKL ADEGHK

QRV TV TV ST RST NPQRSTV NPQRST

#NAs 18 6 8 2 6 6 12 24 18 3.2× 108

#AAs 9 6 4 2 6 6 9 15 12 2.5× 107

%Des 89 83 100 100 67 50 100 75 89 16.5
Error 29 39 18 6 3 0 9 8 10 122

LibDesign

DCs VNK DYG RYA KCA DYG KSA VVK VNK VNK 75a

AAs
ADEGHIKLM ALM AITV AS ALM AGS ADEGHKN ADEGHIKL ADEGHIKL
NPQRSTV STV STV STOP PQRST MNPQRSTV MNPQRSTV

#NAs 24 6 4 2 6 4 18 24 24 2.9× 108

#AAs 16 6 4 2 6 3 12 16 16 5.7× 107

%Des 83 100 100 100 83 75 83 79 83 28.6
Error 0 24 18 6 1 0 3 1 0 53

DP Sol. 1

DCs VNS DYG DYA KCA DYG RSC RVM VNS VNS 157a

AAs
ADEGHIKL ALM AIL AS ALM AG ADEG ADEGHIKL ADEGHIKL
MNPQRSTV STV STV STV ST KNRST MNPQRSTV MNPQRSTV

#NAs 24 6 6 2 6 4 12 24 24 2.9× 108

#AAs 16 6 4 2 6 4 12 16 16 6.4× 107

%Des 83 100 100 100 83 75 100 79 83 34.4
Error 0 24 5 6 1 0 9 1 0 46

DP Sol. 2

DCs VNS DBG, RAM DYA KCA DYG RSC RVM VAM, WBG VNS 173a

AAs
ADEGHIKL ADEGKL AIL AS ALM AG ADEG DEHKLM ADEGHIKL
MNPQRSTV MNRSTVW STV STV ST KNRST NQRSTW MNPQRSTV

#NAs 24 13 6 2 6 4 12 12 24 2.9× 108

#AAs 16 13 6 2 6 4 9 12 16 1.0× 108

%Des 83 77 100 100 83 75 100 100 83 33.4
Error 0 4 5 6 1 0 9 3 0 28

DP Sol. 3

DCs
MKC, RYG, AKS, RMC DYA DCA DYG RSC ADG, RVC, DBG, VNS 192a

VAM SWA SAA VAM

AAs
ADEHIKLM ADEILM AIL AST ALM AGST ADEGKM ADEGHKLM ADEGHIKLM
NQRSTV NQRSTV STV STV NQRST NQRSTVW NPQRSTV

#NAs 14 12 6 3 6 4 11 15 24 2.9× 108

#AAs 14 12 6 3 6 4 11 15 16 1.9× 108

%Des 100 100 100 100 83 75 100 93 83 48.6
Error 0 0 5 2 1 0 0 0 0 8

4.2.2 DP For Multiple Degenerate Codons

The dynamic programming algorithm can also be extended to allow multiple degenerate

codons at a single position while constraining the total number of primers that must be pur-

chased to accommodate the extras. Using multiple degenerate codons at a single position

allows the exploration of a wider set of AAs while keeping the size of the library down; it is

cheaper (in terms of library size) to get the AA set {C,W,Y} using the two degenerate codons

TRT (R=A or G) and TGG, with a DNA size of 3 than it is to use the single degenerate

codon TRK (K= G or T) with a DNA size of 4, and this economy is especially important

88

since TRK also pulls in a STOP codon. Indeed, if the library-designer wishes to forbid STOP

codons entirely, then the AA set {C,W,Y} can only be designed if multiple degenerate codons

are considered. However, it is more expensive (in terms of money) to use multiple degenerate

codons because more primers have to be purchased.

We assume that the primer boundaries are defined ahead of time; this allows us to talk

about a stretch of DNA that contains a set of designable positions. (We do not consider

here the more challenging problem of trying to simultaneously optimize the DCs and the

stretch boundaries, which would require knowledge of the G/C content of the DNA between

the designable positions and the annealing temperature for the PCR reaction used for gene

assembly.) For a single stretch, the number of primers that must be purchased is the product

of the number of degenerate codons chosen at each of its randomized positions; the cartesian

product of the selected degenerate codons must be purchased to cover all combinations.

The user may wish to constrain this problem by defining limits on the number of degenerate

codons per position, Lp, on the number of primers to order per stretch, Ls, and on the

number of primers to purchase total, LT . In the analysis that follows, we consider the sensical

assignment of values 1 ≤ Lp ≤ Ls ≤ LT only, and also assume that LT is at least as large as

the number of stretches.

The DP solution to this problem is similar to the one given above; it again solves for the

smallest library that produces a given error, but also pays attention to the primer counts:

at iteration i, DP solves for the smallest library containing all positions up to and including

position i given that it produces an error level e, using j primers total, and using k primers to

cover i’s stretch. Now, the number of extra primers required if j′ degenerate codons are used

at position i depends on how many codons have already been used at all the other positions

on the same stretch. If k′ represents the product of the number of degenerate codons at all

positions less than i that are on the same stretch as i, then using j′ degenerate codons at

position i means using j′ × k′ primers for that stretch; if j′′ represents the number of primers

used total for all positions less than i, then using j′ degenerate codons at position i will have

one of two possible effects on the total number of primers demanded, depending on whether

or not position i is the first position in a stretch: if i is the first position in a stretch, it will

89

mean using j′′ + j′ primers total, and if i is not the first position in a stretch, it will mean

using j′′ + j′−1
j′ k

′ primers total.

The DP solution for this problem is given by the following two equations:

S[i, j, j′, e] = min
1≤k′≤Ls

min
0≤e′≤e∗

(4.6)

S[i− 1, j − j′, k′, e− e′]× si[j′, e′]

if position i is the first randomized position for a stretch, and

S[i, j, k, e] = min
1≤j′≤j∗ | k/j′∈I

min
0≤e′≤e∗

(4.7)

S[i− 1, j − j′ − 1

j′
k,
k

j′
, e− e′]× si[j′, e′]

if position i is not the first randomized position for a stretch. where j∗ is the smaller of j and

Lp. The table si holds the smallest-library sizes for position i for each error value between 0

and m, and for each number of degenerate codons between 1 and Lp. The equations for the

traceback table are similarly constructed.

This dynamic programming algorithm runs in O(n2m2L2
sLT) time plus an initial expense

of computing the si tables, which requires O(n3375Lp) time to consider all combinations degen-

erate codons. This initial expense can be shaved by first computing the subset of degenerate

codons that produces the smallest error for each distinct coverage of AAs that contribute to

the error (either by their absence or their presence) and then enumerating combinations of

degenerate codons from this subset. The speedup offered by this technique decreases as more

and more AAs contribute to the error. In our test cases, the sizes of these subsets are in the

range of 100 to 400, making the initial expense of populating the si tables negligible. This

algorithm requires O(n2mLsLT) memory to store the S and T tables.

In both dynamic programming solutions, a very simple speedup can be obtained if one

is only interested in knowing about the minimum-error library or about the N lowest-error

libraries with sizes less than the given diversity limit: if the total library error is iterated over

90

in the outermost loop (instead of the position), one may stop as soon as the first library of

size less than L is found, or as soon as the first N libraries of size less than L are found. This

output-sensitive algorithm runs in O(n(k + 1)2L2
sLT) time, where k is the total error for the

worst library sought (i.e. the smallest total error if only one library is sought). For this reason,

SwiftLib runs fastest when it is able to find a low-error solution. Furthermore, the use of a

sparse array can reduce the memory overhead significantly; since SwifLib is implemented in

JavaScript, the JavaScript interpreter has this option.

4.3 Results

4.3.1 Library Designs

We chose two library design test cases where manual solutions had been created before our

DP algorithm was implemented. For each test case, we used DP to design three degenerate

codon libraries with three different library design goals: 1) allowing only one DC per position,

2) allowing at most two DCs per position and allowing twice as many primers as there are

stretches, and 3) allowing at most three DCs per position and allowing a larger number of

primers. The libraries were assessed only on how well they capture the sought-after sequence

diversity; the DP libraries have not been synthesized or screened.

We compared the results from DP to the previously published LibDesign algorithm [23].

This algorithm is a natural comparison for ours as its inputs and goals are nearly identical.

LibDesign takes a set of input sequences, selects a small set of degenerate codons for each

position based on the AA counts from the input sequences, and then enumerates all combina-

tions of degenerate codons. The LibDesign score for a library is the number of sequences in

the input set that are generated by the library: every amino acid in a particular sequence has

to be encoded in the library in order for that sequence to contribute to the score. LibDesign

attempts to maximize its score (in contrast to SwiftLib which minimizes its error metric).

This score is at the furthest end of the spectrum from our error metric in complexity: our

error term treats each position independently, Parker et al.’s ILP alogirthm is more complex

91

Table 4.3: Rosetta was used to generate 1000 sequences on residues near the Jα helix of
the A. sativa LOV2 domain (PDBid 2V0U). The table below gives the AA counts for each
position. The library was constructed using five separate DNA stretches, divided by vertical
bars, which contained 12 randomized positions. The counts for the native AAs are shown in
bold.

413 475 477 479 493 495 514 520 528 529 531 532
A 990 3 1 21 323 1 0 0 934 115 0 992
C 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0
F 1 0 460 0 0 964 3 0 0 0 0 0
G 9 0 390 349 351 23 45 0 17 5 0 0
H 0 0 34 0 257 12 2 0 0 498 0 0
I 0 0 1 630 2 0 86 0 0 0 0 1
K 0 559 0 0 0 0 0 0 0 0 1 0
L 0 0 0 0 11 0 10 349 0 110 14 0
M 0 0 5 0 10 0 16 8 49 197 4 4
N 0 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 0 0 0 0 0 0 0
R 0 438 0 0 0 0 0 0 0 74 91 0
S 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0
V 0 0 0 0 46 0 0 643 0 0 0 3
W 0 0 109 0 0 0 640 0 0 1 890 0
Y 0 0 0 0 0 0 198 0 0 0 0 0

since it considers residue-pair information, but LibDesign captures higher-order inter-residue

dependencies still.

The AA counts for Problem 1 are given in Table 4.1. These counts came from 200 protein

design trajectories at nine positions in a particular protein. The designed libraries are given

in Table 4.2. The manual solution was produced by a novice library designer who focused

only on the most-commonly observed AAs at each of the designable positions and sought

out degenerate codons that were capable of covering these AAs. For this reason, the library

contains much higher per-position error than the dynamic programming libraries. For this

problem, the third dynamic programming solution was constrained to use 15 or fewer primers.

The dynamic programming solutions to Problem 1 have much lower errors than the manual

solution. DP solution 1, which like the manual solution uses only a single DC per position,

achieves a considerably lower error. It also produces a library with twice as much AA diversity

(the number of unique protein sequences), while actually decreasing the DNA diversity. DP

solution 2, using at most four primers and two degenerate codons, decreases the error still

further from DP solution 1, choosing to use two degenerate codons at positions 269 and 331,

where both the manual solution and DP solution 1 had the highest per-position error and

a low AA:DNA ratio. It also delivers four times the AA diversity as the manual solution.

DP solution 3 chooses to divide its 15 primers into one group of 9, using three DCs for both

92

Table 4.4: Solutions. The manual library was created by an expert library designer using
degenerate codons to cover the AAs selected by Rosetta, along with the ISOR technique [33]
for ensuring that the native AAs (shown in bold) were present; the library’s size and error are
computed as if an extra codon for the native AA (given in parentheses) were present at each
position, though the ISOR technique does not guarantee that adjacent randomized positions
will achieve full diversity. For the automated solutions, the library size was restricted to
109 and the wild type AA was required to be covered by the degenerate codons themselves.
The maximum achievable LibDesign score for this problem is 1000 (higher is better). The
three dynamic programming solutions represent allowing one degenerate codon per position,
allowing two degenerate codons per position restricted to 10 primers total, and allowing three
degenerate codons per position restricted to 25 primers total (though only 24 were chosen).
See Table 4.2 for a description of row labels. The manual solution took hours to generate,
LibDesign took 52 minutes 37 seconds, and the three dynamic programming solutions took
1.40, 0.23, and 0.89 seconds.

Solution Pos 413 475 477 479 493 495 514 520 528 529 531 532 Totals

Manual

DCs
GCC, ARA, KGG, RBA, SNC, KKC, DDC, CTG, RYG, CDT, WGG, GCC, 955a

(AAA) (GAG) YWC, (CAG) (TTG) (CAT) WKG, (GTG) (GGG) RYG, (CTG) (ATT)
(ACC) (CTG) (GTG)

AAs
AK EKR FGHL AGIQ ADGH CFGHV CDFGILM LV AGM AHLMR LRW AI

TWY RTV LPRV NRSVWY TV TV

#NAs 2 3 7 7 9 5 14 2 5 8 3 2 8.9× 107

#AAs 2 3 7 7 9 5 13 2 5 7 3 2 6.4× 107

%Des 100 100 71 57 67 60 57 100 60 86 100 100 4.9
Error 10 3 7 0 12 1 2 8 0 6 5 7 61

LibDesign

DCs RMA RRA NNK VNA SNC YWC TDK KTA GSA VNK TKG RYA 81a

AAs
AEKT EGKR ACDEFGHIKLM AEGIKL ADGHL FHLY CFLWY LV AG ADEGHIK LW AITV

NPQRSTVWY PQRTV PRV STOP LMNPQR
STOP STV

#NAs 4 4 32 12 8 4 6 2 2 24 2 4 9.1× 108

#AAs 4 4 21 11 8 4 6 2 2 16 2 4 3.6× 108

%Des 50 75 34 33 63 50 67 100 100 54 100 75 0.4
Error 10 3 0 0 12 24 149 8 49 1 96 4 356

DP Sol. 1

DCs RMA RRA DBS VDA SNC YWC WDS STA GSA VNS TKG RYA 795a

AAs
AEKT EGKR ACFGIL EGIK ADGH FHLY CFIKLM LV AG ADEGHIK LW AITV

MRSTVW LQRV LPRV NRSWY LMNPQR
STOP STV

#NAs 4 4 18 9 8 4 12 2 2 24 2 4 7.6× 108

#AAs 4 4 12 8 8 4 12 2 2 16 2 4 3.0× 108

%Des 25 50 28 25 63 50 67 100 100 46 100 75 0.4
Error 10 3 34 21 12 24 47 8 49 1 96 4 309

DP Sol. 2

DCs
AAA, RRA DSG VNA SNC CAC DKG, STA RBG CWC, WKG RYA 966a

GSA YWC KKC WWC RBG

AAs
AGK EGKR AFGHL AEGIKL ADGHL CFG FGILMN LV AGM AGHLM LM AITV

RSTWY PQRTV PRV HV RVWY RTV RTV RW

#NAs 3 4 10 12 8 5 10 2 6 8 4 4 8.9× 108

#AAs 3 4 10 11 8 5 10 2 6 8 4 4 8.1× 108

%Des 100 75 60 33 63 60 70 100 50 87 100 75 1.3
Error 1 3 6 0 12 1 2 8 0 1 1 4 39

DP Sol. 3

DCs
AAA, RVA DBG, ATA, ATR, GSA ATR, VTG ATG, DKG, WKG ATR, 999a

GSA, HWC CAA, SNC YWC KGG, GSA SMC GYA
TTC GSA YWC

AAs
AFGK AEG AFGHILMN AGIQ ADGHI AFG FGHIL LMV AGM ADGHLM LM AI

KRT RSTVWY LMPRV HLY MWY PRVW RW MV

#NAs 4 6 15 4 10 6 8 3 3 10 4 4 1.0× 109

#AAs 4 6 14 4 10 6 8 3 3 10 4 4 9.3× 108

%Des 100 67 53 100 70 67 100 100 100 80 100 100 13.3
Error 0 0 0 0 0 0 0 0 0 0 1 0 1

positions 268 and 269, and one group of 6, using three DCs for position 330 and two DCs

for position 331. As a result, its error drops to 8 while its AA:DNA ratio increases to 2:3; at

only a single position does it use more than one codon for an amino acid. It delivers nearly

ten times the AA diversity as the manual solution. The fraction of amino acid sequences also

increases as the number of degenerate codons increases so that nearly half of all sequences

in DP solution 3 contain only desired amino acids, in contrast to one sixth in the manually

constructed library. The dynamic programming algorithm was much faster than the manual

93

process; the manual solution took hours to generate but DP solutions 1, 2, and 3 took 0.15,

0.28, and 13.57 seconds.

The AA counts for Problem 2 are given in Table 4.3. These counts came from 1000 protein

design trajectories at twelve positions in a particular protein. The designed libraries are given

in Table 4.4. The manual solution came from an expert library designer and took advantage

of two techniques: the ISOR technique for ensuring that the native AA is present in the

library [33], and the use of multiple degenerate codons. Briefly, ISOR ensures that the WT

amino acids are present in the library by creating extra “primers” by partial digestion of the

WT gene. The designer of this library made two mistakes. First, the library’s intended size

was 109, but it came out more than ten times smaller at just under 108. Second, the library

designer meant to use a codon for leucine (“CTG”) at position 520, but mistakenly chose (and

subsequently ordered) the codon “CAG”, which codes for glutamine, instead. The error of 61

reported in Table 4.3 for the manual library was calculated as if “CTG” had been ordered.

In the automated solutions for this design problem, the libraries were forced to include

the wild-type AA at each position, mimicking the use of the ISOR technique in the manually-

constructed library. DP solutions 1 and 2 were similarly constrained as in Problem 1. DP

solution 3 was constrained to use at most 25 primers. The automated solutions were limited

to a 109 library size, since that was the intended size for this library, even though the manual

solution was an order of magnitude smaller. DP solutions 4-6, constructed with a diversity of

108, are given in Table S1.

Compared against the manual solution, the dynamic programming solutions to Problem 2

were mixed. The manual solution itself included the use of multiple degenerate codons at some

positions and took advantage of the ISOR technique, which likely explains why it achieved a

lower error than DP solution 1, which used only a single degenerate codon per position. DP

solution 2, however, does produce a lower error than the manual solution, even though it does

not use the ISOR technique. It chooses to place two degenerate codons at the same positions

that the manual solution does, and two more in the other two stretches that the manual-

library’s designer chose not to explore. As a result, it achieves a slightly larger AA diversity,

though, at the cost of almost 10x higher DNA diversity. Now, we have calculated the AA

94

Table 4.5: (in seconds) for the three variations on the two library design problems. The
running times for the ILP solutions include only the amount of time for the glpsol solver to
run, and do not include the preprocessing step of examining degenerate codon combinations;
the running times for the DP solutions include both preprocessing and optimization steps.
Running times were measured on a 2013 MacBookPro with a 2.3 GHz i7 processor and 4 GB
of RAM. DP was run within Chrome version 34.0.1847.13.

Prob 1 Prob 1 Prob 1 Prob 2 Prob 2 Prob 2
1 DC 2 DCs 3 DCs 1 DC 2 DCs 3 DCs

DP 0.15 0.28 13.57 1.40 0.23 0.89
ILP 0.46 661.08 1607.67 0.09 46.86 4.09

diversity for the manual library by treating the wild type AA – which the ISOR technique

adds – as if it were encoded by a second (or third) degenerate codon at each position. This

overestimates the manual library’s diversity, since if one position receives its wild-type AA,

then its adjacent positions will also receive their wild-type AAs. In spite of this overestimation,

DP solution 2 exceeds the manual library’s AA diversity.

DP solution 3 reduces the error still further. It achieves an error of 1, missing only the

lysine at position 531 that appeared once in the Rosetta simulations. It also achieves a 14:15

AA:DNA ratio, coding for a single AA at position 377 with two codons and all others at all

positions with only a single codon. DP solution 3 included several AAs that were not observed

in the Rosetta designs; we cannot conclude, then, that the use of multiple DCs is perfectly

molding the DNA to the desired set of AAs. The error function offers no penalty for including

unobserved AAs (simply no bonus for doing so), so the DP algorithm’s inclusion of extra

unobserved AAs in attempting to cover all the observed AAs is expected. However, the high

AA:DNA ratio is not expected since this ratio is not directly optimized. The unobserved AAs

can be squeezed out if the diversity limit is dropped, at the expense of increasing the resulting

error. A seventh DP solution (Table S1) which was constrained in the same ways that DP

solution 3 was, except that its diversity limit was 107, defines a library with an error of 69 –

similar to that produced by the manual solution – and which contains only six AAs that were

unobserved in the original designs. DP solution 7 achieves a perfect 1:1 AA:DNA ratio.

95

For problem 2, the DP solutions were completed much more quickly than the manual one.

The manual solution took many hours to construct, whereas DP solutions 1, 2, and 3 took

1.40, 0.23, and 0.89 seconds.

In both problems, the DP solutions achieved lower error levels than the LibDesign solutions,

which is not unexpected given that LibDesign was not optimizing our error metric. What was

unexpected, however, was that the dynamic programming solutions as well as the manual

solutions achieved a better (higher) LibDesign score than LibDesign did. Since LibDesign

relies on exhaustive enumeration of the codons it chose at the beginning, this result suggests

that the original choices for which codons to consider were sub-optimal. The ability of the

dynamic-programming libraries to achieve such high LibDesign scores (the highest possible

score for Problem 1 was 200, the highest possible score for Problem 2 was 1000; the third DP

solutions achieved scores of 192 and 999) is the result of having achieved such low errors; almost

all of the AAs that came out of the computational designs were covered, meaning almost all

of the input sequences were fully covered. It is likely that DP would have produced much

worse LibDesign scores if its best solution had a much higher error. LibDesign’s reliance on

brute force enumeration meant that it took much longer to produce its libraries than the DP

algorithm; at Problem 1, it took 18 minutes and 51 seconds, at Problem 2, it took 52 minutes

37 seconds.

The Supplemental Material presents the results from an additional 798 library design

problems from 38 proteins where we selected subsets of residues of varying sizes and redesigned

those residues with Rosetta. We report the error level (Table S3) and running time (Table S4)

as we varied a) the diversity limit, b) the number of degenerate codons per position, and c)

the primer limit. These results show that if one started from a degenerate codon library using

only a single degenerate codon per position and had the choice between either making the

library 10 times larger or allowing two degenerate codons per position and 10 primers total,

that the error reduction is much greater for the latter rather than the former (23% reduction

vs. 75% reduction; P-value < 0.00001, 1-tailed T test). The median running time for these

798 jobs was 0.61 seconds, with the longest job taking 104 seconds.

96

4.3.2 Comparison with ILP

This section concludes with a comparison between our DP algorithm and the previously-

published integer-linear-programming formulations of the problem. Integer linear program-

ming (ILP), sometimes called mixed integer programming, is an NP-Complete problem [34]

where many problem instances admit a rapid solution. Indeed, the frequency with which ILP

problems present themselves in process optimization has led to a wide availability of commer-

cial ILP solvers, including the free GLPK solver, used in Chen et.al [28] and which we have

used here. When an ILP solver produces a solution, which is not guaranteed, it produces

the exact solution, and so it is a natural comparison point for our DP algorithm which also

produces an exact solution.

In the Supplemental Materials, we give a reformulation of the previously published ILP

solutions for a single degenerate codon per position that optimizes our error metric, and a

novel ILP formulation to allow multiple degenerate codons per position. The multiple DC

formulation requires computing the sum of a product of variables, which is challenging to do

with ILP, and so it runs slowly.

There are four principle advantages that DP has over ILP: DP runs in polynomial time

whereas ILP is NP-complete, DP is faster, a single DP execution can provide more than a

single solution, and DP is more easily implemented than ILP. To show that DP is faster, we

compared ILPs running time against DP’s running time for the two problems presented above

and in the Supplemental Materials for 268 additional jobs. The running times for problems

1 and 2 are given in Table 4.5. In five of the six cases, DP completed in less time than

ILP. Library design jobs where multiple degenerate codons were allowed degraded the ILP

running time substantially. For 192 of the 220 jobs using multiple degenerate codons from the

Supplemental Materials, DP completed in less time than ILP. In 107 of those cases, no ILP

solution was obtained in 1000 minutes at which point we killed the ILP solver. Assuming these

jobs had finished in exactly 1000 minutes, the median speedup for DP over ILP when using

multiple degenerate codons was 5752.

A single execution of DP produces more than just a single library. The DP algorithm

computes the size of the smallest library capable of achieving every error level starting at 0

97

and building upwards until it finds a library that is beneath the given size limit. As a result, it

can report each of those library sizes as a function of error level to give the user insight into how

the error changes as a function of library size. Without having to re-run the algorithm, they

can see what would happen to the error as they increased the size of their library. Furthermore,

DP can provide the codons that comprise the larger libraries if the user is interested in them

in O(n) time. SwiftLib presents users with a scatter plot of the Pareto-optimal libraries –

scored by library size and error level – with the log-library size given on the x-axis, and the

error level on the y-axis. They can then click on any of the dots in the plot to display the DCs

that make up that library.

The fourth advantage, that DP has a simpler implementation than ILP, means that we

are able to create a website that has no back end. This site simply serves up the code to

run DP (which can be downloaded from the website or from github: https://github.com/

aleaverfay/swiftlib_javascript and the code is executed within the user’s web browser;

the heavy computation is performed on the user’s own computer. In contrast, a website that

relied on an ILP solution would have to queue ILP jobs to be performed on a back end server

and then delivered results as they completed. Even if ILP were as fast as DP, such a server

might accumulate a heavy backlog of work. SwiftLib, needing only to deliver the DP source

code, could accommodate many more users before it started to slow down.

The largest drawback of DP in comparison to ILP is in its restricted objective function.

With ILP, one is able to formulate more complicated functions to optimize, such as the pairwise

quality and novelty metrics presented by Parker et al. [27]. It it our opinion, however, that

the advantage of being able to consider multiple degenerate codons per position (within a

reasonable amount of time) outweighs the weakness in not being able to incorporate pairwise

data.

4.4 Discussion

Directed evolution is rapidly becoming a standard complement to computational protein

design [13, 24, 35, 36, 37, 26, 38, 39, 40, 41, 42, 28, 43, 44, 45, 46]. It allows protein designers

to test vastly more designs than could individually be expressed, purified, and assayed. As

98

https://github.com/aleaverfay/swiftlib_javascript
https://github.com/aleaverfay/swiftlib_javascript

a result, shortcomings in the current generation of energy functions and sampling protocols

can be overcome, and useful proteins that vary only slightly in their sequences from a starting

design can be found. Since there are so many ways for a design to fail, some of the best insight

can come from finding a successful design and contrasting it against the sequences that the

design score function most favors. Directed evolution offers a means to find such successful

designs.

Degenerate codon libraries are a natural complement to computational protein design

as they allow a designer to focus diversity to the active site or interface positions in ways

that error-prone PCR, for example, could not. However, degenerate codon libraries are quite

difficult to optimize by hand; there are thousands of possible DCs and so finding the best

one that also offers a reasonable compromise with the other positions being optimized while

the whole library stays beneath a given diversity limit is a daunting task at best. The task

becomes decidedly harder once the possibility of choosing multiple degenerate codons at a

single position is introduced. Moreover, manually designing DC libraries is highly error prone,

as observed in this study. It is no surprise that automated construction of DC libraries has

been the focus of several prior studies [23, 24, 26, 27, 28]. SwiftLib offers a rapid solution to

the design of degenerate codon libraries. Because it expects as inputs a set of AA counts for

each position to be randomized, which are readily derived from the outputs of protein design

simulations, it should fit naturally into the computational-protein designer’s workflow.

SwiftLib was able to find libraries that covered nearly every AA present in the input designs

when it was allowed to consider multiple DCs at each position. SwiftLib could make it much

easier to screen libraries that cover the potentially-useful AAs as suggested by computational

design or multiple-sequence alignments by reducing the number of sequences that have to be

tested to achieve full coverage.

99

Table S4.1: See Tables 2 and 4 for a description of the rows. Solution 4 took 0.17 s. Solution
5 took 0.33 s. Solution 6 took 0.99 s. Solution 7 took 1.7s.

Solution Pos 413 475 477 479 493 495 514 520 528 529 531 532 Totals

Manual

DCs
GCC, ARA, KGG, RBA, SNC, KKC, DDC, CTG, RYG, CDT, WGG, GCC, 955a

(AAA) (GAG) YWC, (CAG) (TTG) (CAT) WKG, (GTG) (GGG) RYG, (CTG) (ATT)
(ACC) (CTG) (GTG)

AAs
AK EKR FGHL AGIQ ADGH CFGHV CDFGILM LV AGM AHLMR LRW AI

TWY RTV LPRV NRSVWY TV TV

#NAs 2 3 7 7 9 5 14 2 5 8 3 2 8.9× 107

#AAs 2 3 7 7 9 5 13 2 5 7 3 2 6.4× 107

%Des 100 100 71 57 67 60 57 100 60 86 100 100 4.9
Error 10 3 7 0 12 1 2 8 0 6 5 7 61

DP Sol. 4

DCs RMA RRA DBS VDA SNC YWC TDS STA GSA SHC TKG RYA 581a

AAs
AEKT EGKR ACFGIL EGIK ADGH FHLY CFLWY LV AG ADHL LW AITV

MRSTVW LQRV LPRV STOP PV

#NAs 4 4 18 9 8 4 6 2 2 6 2 4 9.6× 107

#AAs 4 4 12 8 8 4 6 2 2 6 2 4 5.6× 107

%Des 50 75 56 33 63 50 67 100 100 67 100 75 0.7
Error 10 3 34 21 12 24 149 8 49 277 96 4 687

DP Sol. 5

DCs
AAA, RRA DSG VNA SNC CAC DKG, STA GSA CWC, WKG RYA 893a

GCA YWC TTC WWC RBG

AAs
AK EGKR AFGHL AEGIKL ADGHL FH FGHILM LV AG AGHLM LM AITV

RSTWY PQRTV PRV NRVWY RTV RW

#NAs 2 4 10 12 8 2 12 2 2 8 4 4 9.4× 107

#AAs 2 4 10 11 8 2 11 2 2 8 4 4 7.9× 107

%Des 100 75 60 33 63 100 75 100 100 88 100 75 4.6
Error 10 3 6 0 12 24 0 8 49 1 1 4 118

DP Sol. 6

DCs
AAA, RRA AYG, GSA, CWC, CAC, ATR, VTG ATG, CWC, WKG ATR, 987a

GSA KGG, MWA RBG GGA, KGG, GSA RBG GCA
YWC TTC YWC

AAs
AGK EG FGHL AGIKLQ AGHL FGH FGHIL LMV AGM AGHLM LM AI

KR MTWY MRTV MWY RTV RW M

#NAs 3 4 8 6 8 3 8 3 3 8 4 3 9.6× 107

#AAs 3 4 8 6 8 3 8 3 3 8 4 3 9.6× 107

%Des 100 75 75 67 75 100 100 100 100 88 100 100 24.6
Error 1 3 2 0 2 1 0 0 0 1 1 3 14

DP Sol. 7

DCs
AAA, RRA DSG, ATA, CAC, CAC, KGG, STA ATG, CDC, WKG ATA, 944a

GCA YWC CAA, GBA, TTC TAC, GSA RYG GCA
GSA MTG WTS

AAs
AK EKR AFGHL AGIQ AGHLMV FH FGILMWY LV AGM AHLMRTV LMRW AI

RSTWY

#NAs 2 4 10 4 6 2 7 2 3 7 4 2 9.0× 106

#AAs 2 4 10 4 6 2 7 2 3 7 4 2 9.0× 106

%Des 100 75 60 100 100 100 100 100 100 86 100 100 38.6
Error 10 3 6 0 2 24 2 8 0 6 1 7 69

4.5 Supplemental Materials

4.5.1 Additional libraries for problem 2

In addition to the set of libraries presented for Problem 2 in the main text, Table S4.1

presents four more dynamic programming solutions. These solutions were constructed with

smaller library-size limits. Solutions 4-6, which mirror solutions 1-3 in the number of DCs

considered per position and in the primer limits, were limited to a size of 108 – the size of

the manual solution. Solution 7 was limited to a size of 107. These solutions all result in

higher error levels than the solutions generated with a size limit of 109; however, they allocate

more of their diversity toward the desired amino acids, with 39% of the library 7 sequences

containing only desired amino acids – 10-fold higher than for the manual solution. Solution 6

has a much lower error than the manual solution, and Solutions 6 and 7 both achieve a perfect

1:1 AA:DNA ratio.

100

Error vs runtime

1 10 100 10000

0.0001

0.001

0.01

0.1

1

10

100

1000

20 primers

10 primers

1 primer

30 primers

Error

R
u

n
tim

e
 (
s
)

Figure S4.1: DP’s running time as a function of the amount of error in 798 library design
problems. The output-sensitive DP algorithm has an O(n(k + 1)2L2

sLT) running time com-
plexity, which is evidenced in the quadratic shape of the running time as a function of the error
the problems produced. In these problems Ls was set to LT ; no other limit besides LT was
placed on Ls. The running time curves shift upwards as the limit on the number of primers
increase. (Error values of 0 are plotted at 0.1 and that x-axis value relabeled.)

4.5.2 ILP with One Degenerate Codon

ILP is a problem of optimizing a linear objective function of v variables subject to a set of

constraints formulated as linear inequalities. An example ILP program would be to maximize

x1 + 2x2 − 1.5x3 with the constraints x3 > x2, x1 + x2 + x3 < 12, x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0

and where x1, x2, x3 ∈ I. ILP is a more restricted version of linear programming, which allows

the variables to be real-valued, and which is often solved rapidly. One of the more common

approaches to ILP is to solve the linear program, and then to “round down” to the nearest

101

integers; the rounding, however, may produce a solution that violates one of the constraints,

at which point either the 2v nearby integer assignments to the variables must be considered

or some other complex heuristic must be employed. Our DP solution represents a theoretical

improvement over the ILP solution; polynomial time solutions are preferable to NP-complete

solutions.

We reformulated the ILP solutions put forward by Parker et al. and Chen et al. to optimize

the error metric given in Equation 2: one formulation considers only a single DC per position,

the second (novel) formulation allows multiple DCs per position and multiple positions per

stretch to use multiple DCs. Our error metric is in fact very similar to the one used by Chen

et al., where they sought a particular set of AAs for each position and minimized the number

of AAs that were excluded; this would be equivalent to putting a count of 1 on each desired

AA and using our error metric.

To optimize a single DC per position, first introduce for every position i and every achiev-

able error level e at that position a binary-valued variable die to represent whether the smallest

DC which gives error e has been chosen. For each position i, add a constraint

1 =
∑
e

die (4.8)

to make sure that one and only one DC is chosen per position. Then add a constraint on the

library size

log(L) ≥
∑
i

∑
e

log(|die|)× die (4.9)

where |die| represents the size of the degenerate codon that the variable die corresponds to. The

ILP optimization problem becomes

Minimize
∑
i

∑
e

e× die (4.10)

102

subject to the above linear constraints.

4.5.3 ILP with Multiple Degenerate Codons

The ILP formulation becomes much more difficult to express when allowing multiple DCs

at multiple positions per stretch. The challenge stems from needing to constrain the sum of

a product. Given that all constraints must be formulated as linear inequalities, it is trivial to

constrain a pure sum of variables in ILP, and it is also easy to constrain a pure product of

variables by computing a sum of logs; however, constraining a mixture of sums and products

is not straight forward. The total number of primers used is the sum of the number used for

each stretch, and the number used for each stretch is the product of the number used at each

position in that stretch; thus constraining the total number of primers used is challenging.

Let n be the number of designable positions, m be the total number of error levels, and o

be the number of degenerate codons to consider at each position. The user will have provided

two constraints L on the size of the library, and LT on the number of primers total that can

be purchased.

To begin, add the binary-valued variable (henceforth boolean variable) die,j for each position

i, for each number of degenerate codons that could be assigned j, and for each achievable error

level e, to represent whether or not the smallest set of exactly j DCs that achieves an error level

of e has been chosen at position i. Then for each position add a one-and-only-one constraint

1 =
∑
e

∑
j

die,j (4.11)

to ensure that only a single set of degenerate codons is chosen at each position.

Boolean AND and OR operations, which are needed to solve this problem, can been rep-

resented by the addition of new variables and new constraints. To represent the boolean OR

of k boolean variables {x1, x2, ...xk} requires adding one new boolean variable orvar, adding

103

one constraint of the form

orvar ≤ x1 + x2 + ...+ xk (4.12)

and adding k constraints of the form

orvar ≥ xi (4.13)

for each i ≤ k. To represent the boolean AND of k boolean variables requires adding one new

boolean variable andvar, adding one constraint of the form

andvar + k − 1 ≥ x1 + x2 + ...+ xk (4.14)

and adding k constraints of the form

andvar ≤ xi (4.15)

for each i ≤ k.

To count the number of DCs used at each position, add n×o binary variables qij representing

whether a set of DCs containing exactly j elements has been chosen for position i and a set of

constraints representing the boolean OR of the set of die,j variables.

To count the number of primers used for each stretch, add for each stretch with p positions

op boolean variables representing all possible combinations of numbers of DCs assigned to each

position. For example, consider a single stretch made up of three positions, a, b, and c that

could each take on two DCs. Let the six boolean variables, qa1 , qa2 , qb1, q
b
2, q

c
1, q

c
2 represent

whether the positions were assigned either 1 or 2 degenerate codons. Then it is possible to

express the number of primers needed for this stretch using a set of 23 = 8 additional boolean

variables sabcx,y,z each representing the boolean AND of qax, qby, and qcz for x, y, z ∈ {1, 2}. With

the sabcx,y,z variables, the following linear inequality can be used to constrain the total number

104

Table S4.2: Proteins are labeled by their PDB id; lower-case letters after the PDB id represent
which chain from the PDB was used. The amino acid diversity (AA diversity) is calculated as
the product over all positions of the number of amino acids that appeared at those positions in
the Rosetta designs. Proteins are sorted by the number of designable positions, but it is worth
highlighting that the amino acid diversity varies quite widely – some proteins accommodate
more amino acids than others and so have higher amino acid diversities as a result.

PDB Designable positions AA diversity
1BKF 52 53 54 2.9e+02
2BOPa 366 368 369 1.4e+03
1AMM 87 88 89 106 128 3.6e+02
3LZM 81 82 83 85 86 4.9e+04
1PLC 47 48 50 51 76 7.1e+04
1JBC 117 118 119 122 185 187 7.2e+05
1RRO 48 51 52 53 54 55 1.3e+06
1CYO 43 44 45 46 47 48 1.6e+06
1CTJ 37 38 41 42 45 46 49 3.5e+05
1KNB 479 482 486 487 488 489 490 6.3e+06
1NIF 171 172 173 174 239 240 241 1.2e+07
1RA9 77 78 79 80 81 82 83 1.8e+07
4FGF 76 77 79 81 82 83 126 3.4e+07
1MLA 151 152 154 155 156 172 174 175 9.5e+06
1AKY 6 105 106 109 110 111 112 113 4.1e+08
1TTAa 3 5 59 60 61 62 63 64 65 2.9e+08
1IFC 45 63 64 65 66 67 81 82 83 1.8e+09
2CPL 31 35 77 79 82 83 84 106 108 109 5.4e+08
1IGD 25 26 27 28 29 30 31 32 33 34 1.5e+09
2END 65 66 67 68 69 70 71 72 73 103 5.8e+09
1LAM 237 238 239 240 241 242 243 244 294 295 7.2e+09
1PHP 196 197 198 199 200 201 220 221 237 239 5.4e+10
1HFC 182 183 184 185 194 195 196 219 220 222 223 1.2e+09
2RN2 73 74 75 76 77 78 79 80 81 82 104 5.7e+11
1XIC 182 183 184 185 190 191 192 193 194 195 198 224 1.2e+11
1SNC 9 10 11 12 71 72 73 74 75 92 93 96 2.7e+11
5P21 11 13 14 81 83 84 85 86 89 90 116 117 125 4.2e+08
1RCF 50 51 52 82 83 84 85 86 116 117 141 163 166 1.0e+11
1FNC 164 165 166 167 168 199 201 258 261 267 268 269 270 2.2e+11
3CHY 11 56 57 58 59 60 63 64 66 67 68 69 85 4.1e+12
1CKAa 134 135 136 137 159 160 161 162 163 164 170 171 172 6.7e+12
2MHR 55 56 57 58 59 60 61 62 63 70 73 74 77 7.5e+14
2PHY 31 33 38 39 60 61 62 63 64 65 66 67 70 120 4.4e+14
1DAD 1 2 3 4 33 34 36 102 105 106 109 111 112 113 114 3.1e+12
1PHB 207 208 209 210 211 212 213 214 215 216 218 220 221 224 225 1.9e+15
1WHI 37 38 39 59 60 61 62 63 84 85 87 91 106 109 111 114 2.1e+14
1CEM 211 212 213 214 215 216 240 243 244 247 257 258 259 260 261 279 282 3.1e+14
1XYZa 598 626 630 640 642 671 672 673 674 675 676 677 678 679 682 684 714 9.3e+16

of primers:

LT ≥ . . .+ 8sabc2,2,2+

4sabc2,2,1 + 4sabc2,1,2 + 4sabc1,2,2+

2sabc2,1,1 + 2sabc1,2,1 + 2sabc1,1,2+

1sabc1,1,1 + . . . (4.16)

where the ellipses represent the counts of the number of primers needed by the other stretches

besides the one composed of positions a, b, and c; each stretch must be represented by a similar

set of variables in this constraint.

105

Finally add a constraint on the library size

log(L) ≥
∑
i

∑
j

∑
e

log(|die|)× die,j (4.17)

where |die,j | represents the size of the set of degenerate codons that the variable die,j corresponds

to. The ILP optimization problem becomes

Minimize
∑
i

∑
j

∑
e

e× die,j (4.18)

subject to the above linear constraints.

A set of python scripts to prepare the input to the ILP solver and to interpret the output

generated by the GLPK solver can be downloaded from the SwiftLib website.

4.5.4 Additional Library Design Problems

To expand our set of library design problems, we selected a subset of residues from 38

PDBs [47], ran fixed-backbone redesign 1000 times using Rosetta, and counted the number of

times each amino acid appeared at each of the design positions. For each design problem, we

calculated the amino-acid diversity as the product of the number of amino-acids with non-zero

counts, and then tested each design problem while varying the limit on the library size (at

10%, 100% and 1000% of the amino acid diversity), the limit on the number of primers (10, 20,

and 30), and the number of degenerate codons per position (1, 2, or 3). When using multiple

degenerate codons per position, we artificially declared primer boundaries at every 20 residues.

We forbade the stop codon in these library design jobs.

Table S4.2 gives the residues involved in the 38 design problems. The errors and run-

ning times are given in Tables S4.3 and S4.4; the running times represent only the dynamic

programming portion of the running time, the running time for the initial enumeration of

degenerate codon combinations is not included. Running time was measured on a dual-CPU,

10-core per CPU, 2.5GHz Xeon E5-2670 machine with 54 GB of RAM running Ubuntu 14.04.

106

Table S4.3: Error for SwiftLib Solutions for 38 additional Library Design Problems.

PDB div. limit 1 DC 2 DCs 3 DCs PDB div. limit 1 DC 2 DCs 3 DCs
#primers 1 10 20 30 10 20 30 #primers 1 10 20 30 10 20 30

1BKF
2.80e+01 514 112 112 112 112 112 112

2BOPa
1.43e+02 377 102 102 102 102 78 78

2.88e+02 50 5 5 5 4 1 1 1.43e+03 130 6 6 6 6 1 1
2.88e+03 4 0 0 0 0 0 0 1.43e+04 48 0 0 0 0 0 0

1AMM
3.60e+01 171 36 36 36 36 36 36

3LZM
4.91e+03 172 36 36 36 36 26 23

3.60e+02 40 1 1 1 1 0 0 4.91e+04 80 6 3 3 6 3 2
3.60e+03 27 0 0 0 0 0 0 4.91e+05 69 1 0 0 1 0 0

1PLC
7.10e+03 138 47 47 47 47 35 30

1JBC
7.19e+04 172 58 55 55 26 21 20

7.10e+04 65 11 11 11 11 5 2 7.19e+05 129 39 35 35 9 4 3
7.10e+05 39 1 0 0 1 0 0 7.19e+06 110 34 30 30 7 1 0

1RRO
1.35e+05 311 147 112 112 147 112 98

1CYO
1.64e+05 293 100 89 89 94 80 70

1.35e+06 128 26 9 9 26 9 6 1.64e+06 134 30 16 16 30 16 9
1.35e+07 64 10 1 1 10 1 0 1.64e+07 93 6 3 3 6 2 1

1CTJ
3.49e+04 222 64 45 45 64 44 41

1KNB
6.34e+05 557 168 137 137 168 137 109

3.49e+05 144 21 15 15 21 15 13 6.34e+06 426 57 33 33 57 33 24
3.49e+06 117 8 5 5 8 5 3 6.34e+07 320 6 1 1 6 1 1

1NIF
1.22e+06 633 220 151 151 220 144 101

1RA9
1.83e+06 282 146 112 112 146 112 98

1.22e+07 466 54 17 14 44 14 7 1.83e+07 177 45 23 23 45 23 19
1.22e+08 391 6 3 3 6 0 0 1.83e+08 144 29 9 9 29 9 8

4FGF
3.35e+06 364 124 104 104 124 103 96

1MLA
9.53e+05 229 61 51 50 61 48 42

3.35e+07 282 63 35 35 63 34 26 9.53e+06 192 32 20 17 30 17 11
3.35e+08 228 17 9 9 17 8 6 9.53e+07 171 7 0 0 4 0 0

1AKY
4.08e+07 366 133 112 112 133 107 95

1TTAa
2.94e+07 272 115 72 72 106 68 54

4.08e+08 296 71 45 45 71 39 29 2.94e+08 178 39 23 23 33 21 16
4.08e+09 241 36 21 21 36 20 14 2.94e+09 148 12 8 8 6 2 1

1IFC
1.75e+08 421 128 61 61 128 61 51

2CPL
5.37e+07 263 91 65 63 80 57 47

1.75e+09 354 93 35 31 93 35 30 5.37e+08 226 44 20 18 41 20 10
1.75e+10 329 83 25 23 83 25 22 5.37e+09 205 29 3 1 29 3 0

1IGD
1.47e+08 202 92 71 71 92 71 65

2END
5.78e+08 131 52 41 41 52 40 37

1.47e+09 175 66 45 45 66 45 41 5.78e+09 108 30 22 22 30 21 18
1.47e+10 151 46 25 25 46 25 23 5.78e+10 90 18 12 12 18 12 9

1LAM
7.17e+08 335 130 109 109 130 109 103

1PHP
5.41e+09 582 196 152 134 196 149 124

7.17e+09 280 84 57 57 84 57 52 5.41e+10 464 112 68 49 112 62 46
7.17e+10 254 53 32 32 53 32 27 5.41e+11 389 57 27 21 57 27 20

1HFC
1.23e+08 438 170 154 145 82 62 50

2RN2
5.66e+10 1280 683 591 591 665 529 451

1.23e+09 377 110 103 101 29 20 14 5.66e+11 1082 433 366 366 396 289 229
1.23e+10 346 94 90 88 9 5 2 5.66e+12 958 289 248 248 262 163 120

1XIC
1.21e+10 394 118 86 86 118 82 77

1SNC
2.65e+10 762 107 65 60 107 44 38

1.21e+11 344 81 56 56 81 55 54 2.65e+11 738 83 45 42 83 24 18
1.21e+12 325 71 47 47 71 46 45 2.65e+12 722 66 32 30 66 8 5

5P21
4.16e+07 124 57 40 32 57 35 26

1RCF
1.01e+10 304 88 55 53 87 49 39

4.16e+08 83 23 14 8 23 14 8 1.01e+11 268 58 28 23 53 20 13
4.16e+09 54 8 3 1 8 3 1 1.01e+12 247 39 10 8 34 2 0

1FNC
2.18e+10 497 149 86 75 148 73 53

3CHY
4.09e+11 441 228 147 147 207 135 111

2.18e+11 443 93 43 36 93 28 17 4.09e+12 324 125 68 68 125 68 51
2.18e+12 407 64 23 22 64 10 4 4.09e+13 257 82 43 43 82 43 34

1CKAa
6.73e+11 960 357 183 156 357 183 146

2MHR
7.55e+13 1043 626 561 561 626 547 519

6.73e+12 835 257 109 98 257 109 93 7.55e+14 856 479 417 417 479 411 378
6.73e+13 762 209 64 54 209 64 50 7.55e+15 715 344 286 286 344 278 267

2PHY
4.41e+13 695 324 245 192 324 233 185

1DAD
3.14e+11 349 92 66 59 92 64 53

4.41e+14 568 237 161 113 237 157 109 3.14e+12 280 50 32 27 50 28 20
4.41e+15 520 198 135 89 198 132 87 3.14e+13 233 22 12 9 22 8 4

1PHB
1.93e+14 778 372 315 315 372 315 307

1WHI
2.07e+13 463 81 55 48 81 52 44

1.93e+15 663 272 220 220 272 220 213 2.07e+14 434 52 32 27 52 32 25
1.93e+16 608 217 168 168 217 168 168 2.07e+15 417 35 16 11 35 16 9

1CEM
3.05e+13 356 83 52 44 83 51 43

1XYZa
9.34e+15 1235 412 298 266 412 230 184

3.05e+14 337 65 35 29 65 34 27 9.34e+16 1132 317 218 187 317 152 112
3.05e+15 322 50 21 16 50 18 14 9.34e+17 1073 282 183 155 282 116 79

The median running time was 0.61 seconds for the entire set of 798 design problems; the

longest running time was 104 seconds. Figure S4.1 shows that the observed running time scales

quadratically in an output-sensitive fashion with the error and that running time increases with

the limit on the number of primers.

Increasing the number of degenerate codons from two to three had a relatively minor change

in the error; the mean reduction in error was 22% (median = 6%, σ = 31%). Increasing the

primer limit from 10 to 30 had a larger reduction in error of 49% (median = 49%, σ = 27%).

The greatest improvement came from going from a single degenerate codon per position to

multiple degenerate codons per position, with a 75% (median = 75%, σ = 14%) reduction in

error when switching to 2 degenerate codons per position and a limit of 10 primers total, and

an 84% (median = 86%, σ = 12%) reduction in error when switching to 2 degenerate codons

107

Table S4.4: Running times in seconds for SwiftLib Solutions for 38 Library Design Problems.

PDB div. limit 1 DC 2 DCs 3 DCs PDB div. limit 1 DC 2 DCs 3 DCs
#primers 1 10 20 30 10 20 30 #primers 1 10 20 30 10 20 30

1BKF
2.80e+01 0.00 0.09 0.35 0.76 0.12 0.37 0.91

2BOPa
1.43e+02 0.00 0.10 0.40 0.86 0.12 0.51 0.89

2.88e+02 0.00 0.04 0.15 0.33 0.04 0.14 0.31 1.43e+03 0.00 0.05 0.16 0.36 0.04 0.14 0.31
2.88e+03 0.00 0.04 0.14 0.30 0.03 0.26 0.31 1.43e+04 0.00 0.05 0.14 0.30 0.04 0.15 0.30

1AMM
3.60e+01 0.00 0.08 0.26 0.60 0.07 0.28 0.67

3LZM
4.91e+03 0.00 0.11 0.44 0.98 0.13 0.44 0.89

3.60e+02 0.00 0.07 0.20 0.48 0.06 0.21 0.47 4.91e+04 0.00 0.07 0.25 0.58 0.07 0.25 0.54
3.60e+03 0.00 0.05 0.22 0.46 0.04 0.20 0.44 4.91e+05 0.00 0.07 0.22 0.49 0.07 0.23 0.49

1PLC
7.10e+03 0.00 0.10 0.42 0.95 0.12 0.44 0.84

1JBC
7.19e+04 0.00 0.13 0.55 1.25 0.10 0.36 0.81

7.10e+04 0.00 0.06 0.24 0.55 0.06 0.22 0.48 7.19e+05 0.00 0.10 0.39 0.91 0.07 0.26 0.58
7.10e+05 0.00 0.05 0.26 0.46 0.05 0.20 0.65 7.19e+06 0.00 0.09 0.38 0.83 0.06 0.40 0.55

1RRO
1.35e+05 0.01 0.42 1.26 2.63 0.54 1.82 5.65

1CYO
1.64e+05 0.01 0.31 1.17 2.20 0.35 1.21 2.21

1.35e+06 0.00 0.11 0.32 0.71 0.13 0.34 0.70 1.64e+06 0.00 0.13 0.40 0.83 0.15 0.42 0.80
1.35e+07 0.00 0.08 0.27 0.60 0.09 0.34 0.81 1.64e+07 0.00 0.08 0.30 0.66 0.09 0.29 0.62

1CTJ
3.49e+04 0.00 0.18 0.56 1.36 0.20 0.58 1.30

1KNB
6.34e+05 0.02 0.56 1.68 3.51 0.72 2.20 3.82

3.49e+05 0.00 0.11 0.38 0.83 0.12 0.41 0.90 6.34e+06 0.01 0.19 0.69 1.28 0.23 0.66 1.21
3.49e+06 0.00 0.09 0.34 0.75 0.09 0.55 0.75 6.34e+07 0.01 0.10 0.32 0.70 0.14 0.32 0.71

1NIF
1.22e+06 0.02 0.54 1.34 2.99 0.82 1.86 2.71

1RA9
1.83e+06 0.01 0.58 1.59 3.35 0.72 2.06 3.99

1.22e+07 0.01 0.13 0.37 0.80 0.14 0.37 0.74 1.83e+07 0.01 0.19 0.52 1.12 0.23 0.57 1.20
1.22e+08 0.01 0.10 0.29 0.70 0.07 0.38 0.64 1.83e+08 0.00 0.15 0.40 0.89 0.67 0.42 0.93

4FGF
3.35e+06 0.01 0.43 1.47 3.23 0.56 2.05 4.10

1MLA
9.53e+05 0.01 0.22 0.75 1.68 0.25 1.51 1.84

3.35e+07 0.01 0.21 0.60 1.25 0.26 0.68 1.33 9.53e+06 0.01 0.13 0.46 0.97 0.15 0.51 0.97
3.35e+08 0.01 0.09 0.34 0.78 0.10 0.35 0.79 9.53e+07 0.01 0.10 0.32 0.75 0.08 0.31 0.74

1AKY
4.08e+07 0.01 0.58 1.86 4.26 0.73 2.49 7.58

1TTAa
2.94e+07 0.01 0.46 1.02 2.17 0.43 1.23 2.23

4.08e+08 0.01 0.28 0.80 1.65 0.34 0.84 1.55 2.94e+08 0.01 0.16 0.62 1.19 0.17 0.57 1.20
4.08e+09 0.01 0.17 0.53 1.16 0.32 0.57 1.10 2.94e+09 0.00 0.10 0.42 0.98 0.14 0.38 0.88

1IFC
1.75e+08 0.02 0.51 0.97 2.22 0.71 1.32 2.49

2CPL
5.37e+07 0.01 0.29 0.96 2.25 0.31 1.08 2.17

1.75e+09 0.01 0.36 0.69 1.53 0.45 0.78 1.64 5.37e+08 0.01 0.17 0.57 1.20 0.18 0.56 1.09
1.75e+10 0.01 0.31 0.61 1.28 0.41 0.93 1.41 5.37e+09 0.01 0.12 0.39 0.89 0.15 0.43 0.87

1IGD
1.47e+08 0.01 0.50 1.33 2.88 0.52 1.59 4.74

2END
5.78e+08 0.01 0.22 0.87 1.79 0.26 0.95 2.06

1.47e+09 0.01 0.33 1.01 2.06 0.41 1.16 2.36 5.78e+09 0.01 0.17 0.62 1.43 0.17 0.64 1.40
1.47e+10 0.01 0.26 0.72 1.58 0.31 0.79 1.84 5.78e+10 0.00 0.13 0.52 1.20 0.16 0.80 1.15

1LAM
7.17e+08 0.01 0.62 1.88 4.01 0.67 2.49 5.30

1PHP
5.41e+09 0.03 0.97 2.84 5.34 1.50 4.03 7.12

7.17e+09 0.01 0.34 1.08 2.34 0.42 1.25 3.15 5.41e+10 0.02 0.48 1.24 2.24 0.62 1.45 2.57
7.17e+10 0.01 0.24 0.74 1.60 0.26 0.83 1.78 5.41e+11 0.02 0.27 0.70 1.42 0.33 0.83 1.59

1HFC
1.23e+08 0.02 0.55 1.99 4.13 0.32 1.16 3.66

2RN2
5.66e+10 0.16 7.58 24.45 56.79 11.16 33.03 60.45

1.23e+09 0.01 0.33 1.34 2.80 0.17 0.62 1.31 5.66e+11 0.12 3.23 10.32 24.58 4.16 10.93 21.28
1.23e+10 0.01 0.29 1.19 2.61 0.21 0.48 1.06 5.66e+12 0.08 1.61 5.53 13.04 2.96 4.52 7.05

1XIC
1.21e+10 0.02 0.55 1.73 3.68 0.66 2.08 4.49

1SNC
2.65e+10 0.04 0.37 1.06 2.17 0.46 0.99 2.21

1.21e+11 0.02 0.38 1.21 2.81 0.43 1.42 3.29 2.65e+11 0.04 0.28 0.83 1.85 0.34 0.68 1.45
1.21e+12 0.01 0.34 1.05 2.41 0.61 1.24 2.74 2.65e+12 0.04 0.24 0.72 1.60 0.28 0.73 1.17

5P21
4.16e+07 0.00 0.26 0.73 1.60 0.25 0.93 1.68

1RCF
1.01e+10 0.01 0.24 0.85 2.08 0.29 1.02 2.10

4.16e+08 0.00 0.13 0.57 1.19 0.14 0.59 1.27 1.01e+11 0.01 0.15 0.57 1.33 0.17 0.55 1.38
4.16e+09 0.00 0.11 0.49 1.13 0.14 0.49 1.19 1.01e+12 0.01 0.11 0.44 1.10 0.12 0.61 0.97

1FNC
2.18e+10 0.02 0.57 1.44 2.83 0.76 1.59 2.86

3CHY
4.09e+11 0.02 1.33 3.23 6.94 1.67 6.68 7.36

2.18e+11 0.02 0.32 0.86 1.83 0.41 0.75 1.91 4.09e+12 0.01 0.63 1.48 3.22 0.81 1.82 3.27
2.18e+12 0.02 0.23 0.65 1.47 0.31 0.56 1.22 4.09e+13 0.01 0.41 1.07 2.41 0.50 1.87 2.44

1CKAa
6.73e+11 0.10 2.76 4.30 8.01 4.17 6.41 10.21

2MHR
7.55e+13 0.17 9.32 32.85 72.58 14.25 50.86 104.34

6.73e+12 0.07 1.69 2.46 5.06 2.49 3.18 6.15 7.55e+14 0.10 5.73 19.47 43.00 8.79 30.32 57.90
6.73e+13 0.06 1.22 1.54 2.98 3.02 2.15 3.54 7.55e+15 0.07 3.79 11.28 24.33 5.29 22.53 32.66

2PHY
4.41e+13 0.06 2.82 7.95 12.28 4.16 10.85 18.18

1DAD
3.14e+11 0.01 0.38 1.47 2.77 0.46 1.75 3.34

4.41e+14 0.04 1.80 4.40 6.49 2.64 6.19 8.76 3.14e+12 0.01 0.24 0.86 1.90 0.29 0.92 1.91
4.41e+15 0.03 1.33 3.78 5.02 2.70 4.81 6.75 3.14e+13 0.01 0.20 0.66 1.87 0.24 0.64 1.42

1PHB
1.93e+14 0.07 3.56 10.98 23.92 5.36 15.84 32.95

1WHI
2.07e+13 0.03 0.34 1.29 2.71 0.42 1.71 3.20

1.93e+15 0.05 2.31 7.02 14.15 3.18 8.93 19.65 2.07e+14 0.03 0.23 0.94 1.94 0.28 1.08 2.29
1.93e+16 0.04 1.75 4.87 10.25 2.31 13.11 14.01 2.07e+15 0.02 0.18 0.74 1.63 0.33 0.78 1.73

1CEM
3.05e+13 0.02 0.37 1.24 2.74 0.44 1.65 5.54

1XYZa
9.34e+15 0.23 4.26 12.23 21.31 6.51 12.36 23.80

3.05e+14 0.02 0.28 1.05 2.28 0.34 1.15 2.51 9.34e+16 0.19 2.80 7.02 12.77 4.02 6.38 10.55
3.05e+15 0.02 0.23 0.83 1.92 0.27 0.86 2.66 9.34e+17 0.17 2.24 5.78 10.13 3.64 4.54 6.74

per position and a limit of 30 primers total. Surprisingly, the use of multiple degenerate codons

per position makes increasing the library size more effective: a 10 fold increase in the library

size when using 2 or 3 degenerate codons per position reduces the error by 55% (median =

50%, σ = 26%) and 60% (median = 61%, σ = 26%); however, the same increase in size when

using a single degenerate codon per position results in only a 23% (median = 16%, σ = 20%)

reduction in error.

The library design problems where the diversity limits were set as 100% of the amino-acid

diversities were given to the GLPK ILP solver. The running times for these jobs are reported

in Table S4.5; specifically, only the running time for the solver is reported, the running time

of the python script used to enumerate the degenerate codon combinations and to create the

input file for the solver is not reported. Several of the ILP jobs did not run correctly. None of

the 1PHB library design jobs with 3 degenerate codons per position could be run. This protein

had a single stretch with 12 designable positions, requiring 312 = 531, 441 binary variables to

108

Table S4.5: Running times in seconds for ILP Solutions for 38 Library Design Problems.
Jobs that took more than 60000 seconds were killed before they completed, and so the running
times reported for these jobs represent a lower bound on how long those jobs would have taken
to complete. The 1PHB running times for the jobs that could not be run are reported with a
dash. Jobs that exited with an assertion failure are indicated with an asterix; the shortest job
that failed ran for 8 hours first.

PDB div. limit 1 DC 2 DCs 3 DCs PDB div. limit 1 DC 2 DCs 3 DCs
#primers 1 10 20 30 10 20 30 #primers 1 10 20 30 10 20 30

1BKF 2.88e+02 0 0 0 0 0 0 0 2BOPa 1.43e+03 0 0 0 0 2 0 0
1AMM 3.60e+02 0 0 0 0 0 0 0 3LZM 4.91e+04 0 0 0 0 33 2 1
1PLC 7.10e+04 0 0 0 0 22 2 0 1JBC 7.19e+05 0 1 0 0 12 3 0
1RRO 1.35e+06 0 28 2 2 19233 626 122 1CYO 1.64e+06 0 120 7 6 48024 1586 676
1CTJ 3.49e+05 0 6 2 2 54880 5628 2667 1KNB 6.34e+06 0 32 6 6 60000 60000 60000
1NIF 1.22e+07 0 12 2 0 13759 41 3 1RA9 1.83e+07 0 2311 65 52 60000 60000 *30440
4FGF 3.35e+07 0 98 16 24 60000 60000 60000 1MLA 9.53e+06 0 265 5 0 60000 1868 112
1AKY 4.08e+08 0 60000 5354 5504 60000 60000 60000 1TTAa 2.94e+08 0 267 5 6 60000 60000 32343
1IFC 1.75e+09 0 129 5 1 60000 60000 8853 2CPL 5.37e+08 0 406 10 2 60000 739 72
1IGD 1.47e+09 0 60000 60000 60000 60000 60000 60000 2END 5.78e+09 0 1196 820 678 60000 60000 60000
1LAM 7.17e+09 0 60000 60000 60000 60000 60000 60000 1PHP 5.41e+10 0 60000 7261 502 60000 60000 60000
1HFC 1.23e+09 0 99 25 9 *55109 60000 60000 2RN2 5.66e+11 0 60000 60000 60000 60000 60000 60000
1XIC 1.21e+11 0 60000 60000 60000 60000 60000 60000 1SNC 2.65e+11 0 13681 34 16 60000 60000 21730
5P21 4.16e+08 0 97 7 0 *36467 60000 1376 1RCF 1.01e+11 0 2190 44 4 60000 60000 60000

1FNC 2.18e+11 0 60000 256 22 60000 60000 27801 3CHY 4.09e+12 0 60000 60000 60000 60000 60000 60000
1CKAa 6.73e+12 0 60000 60000 *46226 60000 60000 60000 2MHR 7.55e+14 0 60000 60000 60000 60000 60000 60000
2PHY 4.41e+14 0 60000 60000 60000 60000 60000 60000 1DAD 3.14e+12 0 60000 495 98 60000 60000 60000
1PHB 1.93e+15 0 60000 60000 60000 - - - 1WHI 2.07e+14 0 60000 974 512 60000 60000 60000
1CEM 3.05e+14 0 60000 60000 15474 60000 60000 60000 1XYZa 9.34e+16 0 60000 60000 *46180 60000 60000 60000

count the number of primers used for that stretch. The python script to generate the ILP input

file for these jobs created a 72GB input file in free MPS format (using 140 GB of memory to

do so). The GLPK solver, however, exited with the error message “too many rows” when it

tried to read in this file. Additionally, several library design jobs failed with the assertion error

(“piv1 != 0.0”); these jobs, identified by their PDBid, the number of DCs per position, and the

primer limit, were (5P21,3,10), (1XYZa,2,30), (1HFC,3,10), (1CKAa,2,30), and (1RA9,3,30).

The ILP jobs with a single degenerate codon per position all finished in under half a second.

None the less, DP was faster than ILP for 29 of the 38 test cases with a median speedup of 2.0x.

The use of multiple degenerate codons per position caused the ILP running times to increase

dramatically. If it had not already finished, we stopped the solver after 1000 minutes. Of the

220 jobs using multiple degenerate codons that could be run, 107 (49%) did not complete in

1000 minutes. We have reported the running time for these jobs in Table S4.5 as 1000 minutes

(60,000 seconds), though this represents only a lower bound on their running time. SwiftLib

outperformed ILP in 194 of the 220 jobs in which multiple degenerate codons were considered

and which could be run by the GLPK solver. For these 220 jobs, the median speedup for DP

over ILP was 5752.

109

REFERENCES

1. Voigt, C. A., Martinez, C., Wang, Z.-G., Mayo, S. L., and Arnold, F. H. (2002) Protein
building blocks preserved by recombination. Nature Structural & Molecular Biology 9,
553–558

2. Saraf, M. C., Horswill, A. R., Benkovic, S. J., and Maranas, C. D. (2004) Famclash:
a method for ranking the activity of engineered enzymes. Proceedings of the National
Academy of Sciences 101, 4142–4147

3. Zheng, W., Ye, X., Friedman, A. M., and Bailey-Kellogg, C. (2007) Algorithms for se-
lecting breakpoint locations to optimize diversity in protein engineering by site-directed
protein recombination. In Proc. CSB, volume 6, 31–40

4. Waldo, G. S. (2003) Improving protein folding efficiency by directed evolution using the
gfp folding reporter. In Directed Enzyme Evolution, 343–359. Springer

5. Gerth, M. L., Patrick, W. M., and Lutz, S. (2004) A second-generation system for
unbiased reading frame selection. Protein Engineering Design and Selection 17, 595–
602

6. Gupta, R. D. and Tawfik, D. S. (2008) Directed enzyme evolution via small and effective
neutral drift libraries. Nature methods 5, 939–942

7. Fellouse, F. A., Wiesmann, C., and Sidhu, S. S. (2004) Synthetic antibodies from a
four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proceedings
of the National Academy of Sciences of the United States of America 101, 12467–12472

8. Koide, A., Gilbreth, R. N., Esaki, K., Tereshko, V., and Koide, S. (2007) High-affinity
single-domain binding proteins with a binary-code interface. Proceedings of the National
Academy of Sciences 104, 6632–6637

9. Reetz, M. T., Kahakeaw, D., and Lohmer, R. (2008) Addressing the numbers problem
in directed evolution. ChemBioChem 9, 1797–1804

10. Kille, S., Acevedo-Rocha, C. G., Parra, L. P., Zhang, Z.-G., Opperman, D. J., Reetz,
M. T., and Acevedo, J. P. (2012) Reducing codon redundancy and screening effort of
combinatorial protein libraries created by saturation mutagenesis. ACS synthetic biology
2, 83–92

110

11. Tang, L., Gao, H., Zhu, X., Wang, X., Zhou, M., and Jiang, R. (2012) Construction
of ”small-intelligent” focused mutagenesis libraries using well-designed combinatorial
degenerate primers. BioTechniques 52, 149–158

12. Reetz, M. T. and Wu, S. (2008) Greatly reduced amino acid alphabets in directed
evolution: making the right choice for saturation mutagenesis at homologous enzyme
positions. Chemical Communications 5499–5501

13. Hayes, R. J., Bentzien, J., Ary, M. L., Hwang, M. Y., Jacinto, J. M., Vielmetter,
J., Kundu, A., and Dahiyat, B. I. (2002) Combining computational and experimental
screening for rapid optimization of protein properties. Proceedings of the National
Academy of Sciences 99, 15926–15931

14. Arkin, A. P. and Youvan, D. C. (1992) Optimizing nucleotide mixtures to encode specific
subsets of amino acids for semi-random mutagenesis. Nature Biotechnology 10, 297–300

15. Labean, T. H. and Kauffman, S. A. (1993) Design of synthetic gene libraries encoding
random sequence proteins with desired ensemble characteristics. Protein Science 2,
1249–1254

16. Jensen, L. J., Andersen, K. V., Svendsen, A., and Kretzschmar, T. (1998) Scoring func-
tions for computational algorithms applicable to the design of spiked oligonucleotides.
Nucleic acids research 26, 697–702

17. Wolf, E. and Kim, P. S. (1999) Combinatorial codons: a computer program to approxi-
mate amino acid probabilities with biased nucleotide usage. Protein science 8, 680–688

18. Wang, W. and Saven, J. G. (2002) Designing gene libraries from protein profiles for
combinatorial protein experiments. Nucleic acids research 30, e120–e120

19. Craig, R. A., Lu, J., Luo, J., Shi, L., and Liao, L. (2010) Optimizing nucleotide sequence
ensembles for combinatorial protein libraries using a genetic algorithm. Nucleic acids
research 38, e10–e10

20. Nov, Y. and Segev, D. (2013) Optimal codon randomization via mathematical program-
ming. Journal of Theoretical Biology

21. Patrick, W. M., Firth, A. E., and Blackburn, J. M. (2003) User-friendly algorithms for
estimating completeness and diversity in randomized protein-encoding libraries. Protein
engineering 16, 451–457

111

22. Firth, A. E. and Patrick, W. M. (2008) GLUE-IT and PEDEL-AA: new programmes for
analyzing protein diversity in randomized libraries. Nucleic acids research 36, W281–
W285

23. Mena, M. A. and Daugherty, P. S. (2005) Automated design of degenerate codon li-
braries. Protein Engineering Design and Selection 18, 559–561

24. Treynor, T. P., Vizcarra, C. L., Nedelcu, D., and Mayo, S. L. (2007) Computation-
ally designed libraries of fluorescent proteins evaluated by preservation and diversity of
function. Proceedings of the National Academy of Sciences 104, 48–53

25. Ponder, J. W. and Richards, F. (1987) Tertiary templates for proteins. Use of packing
criteria in the enumeration of allowed sequences for different structural classes. Journal
of Molecular Biology 193, 775–791

26. Allen, B. D., Nisthal, A., and Mayo, S. L. (2010) Experimental library screening demon-
strates the successful application of computational protein design to large structural
ensembles. Proceedings of the National Academy of Sciences 107, 19838–19843

27. Parker, A. S., Griswold, K. E., and Bailey-Kellogg, C. (2011) Optimization of combina-
torial mutagenesis. Journal of Computational Biology 18, 1743–1756

28. Chen, T. S., Palacios, H., and Keating, A. E. (2012) Structure based re-design of the
binding specificity of anti-apoptotic Bcl-xL. Journal of molecular biology

29. Kuhlman, B. and Baker, D. (2000) Native protein sequences are close to optimal for
their structures. Proceedings of the National Academy of Sciences, USA 97, 10383–8

30. Das, R. and Baker, D. (2008) Macromolecular modeling with rosetta. Annual Review
of Biochemistry 77, 363–382

31. Leaver-Fay, A., Tyka, M., Lewis, S. M. S. M., Lange, O. F., Thompson, J., Jacak, R.,
Kaufman, K. W., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper,
S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y.-E. A., Fleishman, S. J., Corn,
J. E., Kim, D. E., Lyskov, S., Berrondo, M., Mentzer, S., Popović, Z., Havranek, J. J.,
Karanicolas, J., Das, R., Meiler, J., Kortemme, T., Gray, J. J., Kuhlman, B., Baker, D.,
and Bradley, P. (2011) Rosetta3: An Object-Oriented software suite for the simulation
and design of macromolecules. Methods Enzymol. Volume 487, 545–574

32. Bellman, R. (1957) Dynamic Programming. Princeton University Press, Princeton, NJ

112

33. Herman, A. and Tawfik, D. S. (2007) Incorporating synthetic oligonucleotides via gene
reassembly (ISOR): a versatile tool for generating targeted libraries. Protein Engineering
Design and Selection 20, 219–226

34. Karp, R. (1972) Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, 85–103. Plenum Press

35. Mena, M. A., Treynor, T. P., Mayo, S. L., and Daugherty, P. S. (2006) Blue fluores-
cent proteins with enhanced brightness and photostability from a structurally targeted
library. Nature biotechnology 24, 1569–1571

36. Guntas, G., Purbeck, C., and Kuhlman, B. (2010) Engineering a protein–protein inter-
face using a computationally designed library. Proceedings of the National Academy of
Sciences 107, 19296–19301

37. Chica, R. A., Moore, M. M., Allen, B. D., and Mayo, S. L. (2010) Generation of longer
emission wavelength red fluorescent proteins using computationally designed libraries.
Proceedings of the National Academy of Sciences 107, 20257–20262

38. Lippow, S. M., Moon, T. S., Basu, S., Yoon, S.-H., Li, X., Chapman, B. A., Robi-
son, K., Lipovšek, D., and Prather, K. L. (2010) Engineering enzyme specificity using
computational design of a defined-sequence library. Chemistry & biology 17, 1306–1315

39. Khersonsky, O., Röthlisberger, D., Dym, O., Albeck, S., Jackson, C. J., Baker, D., and
Tawfik, D. S. (2010) Evolutionary optimization of computationally designed enzymes:
Kemp eliminases of the KE07 series. Journal of molecular biology 396, 1025–1042

40. Fleishman, S. J., Whitehead, T. A., Ekiert, D. C., Dreyfus, C., Corn, J. E., Strauch,
E.-M., Wilson, I. A., and Baker, D. (2011) Computational design of proteins targeting
the conserved stem region of influenza hemagglutinin. Science 332, 816–821

41. Khersonsky, O., Röthlisberger, D., Wollacott, A. M., Murphy, P., Dym, O., Albeck, S.,
Kiss, G., Houk, K., Baker, D., and Tawfik, D. S. (2011) Optimization of the in-silico-
designed kemp eliminase KE70 by computational design and directed evolution. Journal
of molecular biology 407, 391–412

42. Azoitei, M. L., Correia, B. E., Ban, Y.-E. A., Carrico, C., Kalyuzhniy, O., Chen, L.,
Schroeter, A., Huang, P.-S., McLellan, J. S., Kwong, P. D., et al. (2011) Computation-
guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334,
373–376

113

43. Khersonsky, O., Kiss, G., Röthlisberger, D., Dym, O., Albeck, S., Houk, K. N., Baker,
D., and Tawfik, D. S. (2012) Bridging the gaps in design methodologies by evolu-
tionary optimization of the stability and proficiency of designed kemp eliminase ke59.
Proceedings of the National Academy of Sciences 109, 10358–10363

44. Whitehead, T. A., Chevalier, A., Song, Y., Dreyfus, C., Fleishman, S. J., De Mattos,
C., Myers, C. A., Kamisetty, H., Blair, P., Wilson, I. A., et al. (2012) Optimization of
affinity, specificity and function of designed influenza inhibitors using deep sequencing.
Nature biotechnology 30, 543–548

45. Dutta, S., Chen, T. S., and Keating, A. E. (2013) Peptide ligands for pro-survival protein
bfl-1 from computationally guided library screening. ACS chemical biology 8, 778–788

46. Blomberg, R., Kries, H., Pinkas, D. M., Mittl, P. R., Grütter, M. G., Privett, H. K.,
Mayo, S. L., and Hilvert, D. (2013) Precision is essential for efficient catalysis in an
evolved kemp eliminase. Nature

47. Ding, F. and Dokholyan, N. V. (2006) Emergence of protein fold families through ratio-
nal design. PLoS Comput Biol 2, e85

114

Chapter 5

CONCLUSIONS

5.1 Introduction

These chapters describe the development of new computational tools to aid in the engineer-

ing of protein structures and functions. The unifying theme of this work is the combination

of evolutionary principles and computational structural modeling. The application of these

methods has demonstrated the great potential of this combination strategy, and the resul-

tant tools will enable continued improvement to protein engineering methods. The purpose

of this chapter is to explore the limitations of these methods, and conjecture their continued

improvement.

5.2 Lessons and Future Directions of Protein Engineering with SEWING

Chapters 2 and 3 of this dissertation describe the development and application of a novel

strategy for designing proteins and protein interfaces that leverages evolutionary concepts

to create large numbers of highly diverse and designable protein backbones. We describe

two strategies, contiguous and discontiguous SEWING, which attempt to capture and reuse

different structural attributes from native protein structure (Chapter 2). Accurate designs from

both strategies were achieved, but by and large, contiguous SEWING was more successful than

discontiguous. A critical difference between these two methods is the necessity to design loops

between elements of secondary structure. Our results indicate that our attempts at creation

of these de novo loops were largely unsuccessful, and could be responsible for the lower success

rate of discontiguous SEWING. To further test this hypothesis, we have attempted to redesign

the fifth helix of discontiguous design DA05, which was shown to be disordered in solution,

115

using the contiguous SEWING method. To accomplish this, the final loop and helix from

the DA05 model was removed and the remainder of the structure was added to the SEWING

graph, similar to the addition of binding motifs described in chapter 3. Three designs from

this method were experimentally characterized. All three designs expressed well in bacteria

and displayed cooperative unfolding transitions (Figure 5.1). Two of the designs, DA05R1 and

DA05R2 were significantly more thermostable than the original DA05 design, with DA05R1

displaying an increase in melting temperature of over 20 ◦C. Given that the first four helices of

the redesigned structure remained largely identical to the original DA05, this result provides

strong evidence that the new helix is responsible for the improved thermostability of this

design, and is likely well-folded.

Figure 5.1: Thermal denaturation of DA05 redesigns. Design models of DA05R1 (pink)
and DA05R2 (orange) superimposed on the original DA05 design model (gray). Next to each
design model is a thermal denaturation of the redesigned protein (red line) compared with the
original DA05 thermal melt (blue line). In both cases, the redesigned protein displays higher
thermostability than the initial design.

This result provides further support for the contiguous SEWING method, and illustrates

the advantage of utilizing native loops in the creation of de novo designs. Since the initial

116

work with discontiguous SEWING, alternative methods for designing loops de novo have been

developed[1]. The application of these methods to discontiguous SEWING may yield improved

success rates, allowing de novo designs to incorporate many of the complex tertiary interac-

tions frequently seen in areas of protein function, such as enzymatic active sites and nucleic

acid binding motifs. Additionally, the redesign of DA05 illustrates that contiguous and discon-

tiguous SEWING are not mutually exclusive, and that their combination can allow for both

increased diversity, and improved accuracy.

The SEWING method differs starkly from alternative strategies of de novo backbone gen-

eration in that a target topology is not necessarily provided. While this attribute is a benefit

in many cases, it can also be a limitation. A targeted fold directs sampling towards a much

more confined region of conformation space and therefore increased sampling of that space

can be achieved. This fine-grained sampling can be highly useful in the engineering of protein

structures that rely critically on exact orientation, such as with protein nanomaterials and

capsid-like cages[2, 3]. The limited sampling of a specified conformational space in SEWING

has proven to be a challenge in the design of β-sheet containing proteins, which often rely

on the specific orientation of non-adjacent β-strands to accommodate the backbone-backbone

hydrogen bonding pattern. Currently, SEWING relies on a single structural superimposition

between any two substructures. One way to increase the local sampling necessary to generate

these types of structural features is to generate multiple alignments for each pair of substruc-

tures, allowing two substructures to be combined in many ways that generate similar but

distinct chimeras. Similarly, parametric approaches could be applied to sample the local space

around a given structural supimposition. Alternatively, larger substructures that already con-

tain these types of interactions can be used in the SEWING graph. To test this strategy an

alternative SEWING graph containing βαβ motifs that exhibit hydrogen bonding between the

first and last β-strand is currently being tested. Initial computational results suggest that this

strategy may help design these difficult interactions (Figure 5.2).

The Sewing strategy was also employed towards the generation of de novo proteins that

bind a target molecule. While binding was observed, high resolution structural validation of

the designed structures was not achieved. This result could indicate that designed structures

117

Figure 5.2: Computational design models of two SEWING designs constructed from βαβ
substructures. β-strand residues are shown in sticks to highlight the formation of hydrogen
bonds between non-adjacent β-strands

contain elements that adopt multiple conformations. The use of multi-state design, and careful

binding motif selection was proposed in chapter 3 as a potential solution to this issue. The

interfaces designed in chapter 3 relied on existing structures of a known binding interface,

and therefore this method is not readily adopted to design of binders to targets with no

known binders. One potential future direction is to incorporate successful anchoring motifs

into SEWING designs[4, 5, 6, 7]. The ability to incorporate these types of functional motifs

into SEWING designs is ongoing, with preliminary computational results in the generation of

calcium binding proteins.

5.3 Lessons and Limitations in Refinement of Directed Evolution Libraries

Chapter 4 describes the development of a web tool called SwiftLib for the rapid gener-

ation of degenerate codon libraries. The worldwide availability through a website, and near

118

instantaneous runtime allow researchers to very rapidly test large numbers of variables, such

as number of primers, in order to best accommodate the desired sequence diversity in a de-

generate codon library. The tool does not, however, attempt to define the best strategy for

selecting how to identify sequences likely to give the desired function. This topic is a subject

of much work, with solutions ranging from computational design[8, 9], evolutionary sequence

profiles[10], and over-enrichment of specific amino-acids[11, 12]. These methods have illus-

trated that frequently better results can be achieved through small enriched libraries rather

than large random ones[13]. Few comparisons between these various methods have been tested,

which could in part be attributed to the lack of a deterministic and rapid way of generating a li-

brary from a given collection of sequences predicted to be informative. SwiftLib offers a unique

solution to this problem and could enable quantitative comparison between various library re-

finement methods. This information would be highly valuable to protein engineers, and could

allow for the development of improved methods. One limitation of SwiftLib is the inability

to incorporate information regarding coupled sequence positions, a common phenomenon in

evolutionary data. Additional studies into the importance of this data are necessary to fully

determine the extent of this limitation.

5.4 Future of Protein Engineering Techniques

Protein engineering techniques have developed rapidly over the past several decades and

have been applied to the generation of proteins used extensively in clinical and industrial

applications. The chapters here develop several new strategies and tools to aid in protein

engineering, with the goal of combining effective elements of natural protein evolution, and

structure guided computational design. These results provide valuable preliminary data that

this strategy can be used to engineer proteins and protein-interactions that are difficult to

design with alternative techniques. Our analysis has highlighted several areas of improvement,

and continued development will elucidate the extent to which these techniques can be applied

to a wider variety of engineering challenges.

119

REFERENCES

1. Das, R. (2013) Atomic-Accuracy prediction of protein loop structures through an RNA-
Inspired ansatz. PLoS One 8, e74830

2. King, N. P., Sheffler, W., Sawaya, M. R., Vollmar, B. S., Sumida, J. P., André, I.,
Gonen, T., Yeates, T. O., and Baker, D. (2012) Computational design of self-assembling
protein nanomaterials with atomic level accuracy. Science 336, 1171–1174

3. Huang, P.-S., Oberdorfer, G., Xu, C., Pei, X. Y., Nannenga, B. L., Rogers, J. M.,
DiMaio, F., Gonen, T., Luisi, B., and Baker, D. (2014) High thermodynamic stability
of parametrically designed helical bundles. Science 346, 481–485

4. Jacobs, T. M. and Kuhlman, B. (2013) Using anchoring motifs for the computational
design of protein-protein interactions. Biochem. Soc. Trans. 41, 1141–1145

5. Der, B. S., Machius, M., Miley, M. J., Mills, J. L., Szyperski, T., and Kuhlman, B.
(2012) Metal-mediated affinity and orientation specificity in a computationally designed
protein homodimer. J. Am. Chem. Soc. 134, 375–385

6. Stranges, P. B., Machius, M., Miley, M. J., Tripathy, A., and Kuhlman, B. (2011)
Computational design of a symmetric homodimer using β-strand assembly. Proc. Natl.
Acad. Sci. U. S. A. 108, 1–6

7. Fleishman, S. J., Corn, J. E., Strauch, E.-M., Whitehead, T. a., Karanicolas, J., and
Baker, D. (2011) Hotspot-centric de novo design of protein binders. J. Mol. Biol. 413,
1047–1062

8. Guntas, G., Hallett, R. A., Zimmerman, S. P., Williams, T., Yumerefendi, H., Bear,
J. E., and Kuhlman, B. (2015) Engineering an improved light-induced dimer (iLID) for
controlling the localization and activity of signaling proteins. Proc. Natl. Acad. Sci. U.
S. A. 112, 112–117

9. Guntas, G., Purbeck, C., and Kuhlman, B. (2010) Engineering a protein-protein in-
terface using a computationally designed library. Proc. Natl. Acad. Sci. U. S. A. 107,
19296–19301

10. Verma, R., Schwaneberg, U., and Roccatano, D. (2012) Computer-Aided protein di-
rected evolution: a review of web servers, databases and other computational tools for

120

protein engineering. Comput. Struct. Biotechnol. J. 2, e201209008

11. Schilling, J., Schöppe, J., and Plückthun, A. (2014) From DARPins to LoopDARPins:
novel LoopDARPin design allows the selection of low picomolar binders in a single round
of ribosome display. J. Mol. Biol. 426, 691–721

12. Koide, S. and Sidhu, S. S. (2009) The importance of being tyrosine: Lessons in molecular
recognition from minimalist synthetic binding proteins. ACS Chem. Biol. 4, 325–334

13. Lutz, S. and Patrick, W. M. (2004) Novel methods for directed evolution of enzymes:
quality, not quantity. Curr. Opin. Biotechnol. 15, 291–297

121

	INTRODUCTION
	Introduction to Protein Engineering
	Methods and Strategies for Protein Engineering
	Directed Evolution
	Computational Protein Design
	Protein Redesign
	De Novo Protein Design

	Opportunities for Improved Engineering Methods

	DESIGN OF STRUCTURALLY UNIQUE PROTEINS USING STRATEGIES INSPIRED BY EVOLUTION
	Introduction
	Results
	Overview of the SEWING Method
	Contiguous SEWING Design and Characterization
	Discontiguous SEWING Characterization
	Discussion

	Supplemental Methods
	Computational Modeling
	Experimental Materials and Methods

	Supplemental Figures
	Supplemental Tables
	Command Lines and Input Files
	Inputs for the Extraction of Features from a Set of Structures Into a Features Database
	Inputs for generating SEWING nodes from Features database
	Inputs for Running Geometric Hasher to Generate Edges
	Inputs for Generating SEWING backbones
	Inputs for the Optimization of SEWING Designs

	FUNCTIONAL INCORPORATION OF BINDING MOTIFS INTO DE NOVO DESIGNED PROTEINS
	Introduction
	Materials and Methods
	Selection of Target Interfaces
	Computational Design Protocol
	Protein Expression and Purification
	Yeast Surface Display
	Isothermal Titration Calorimetry
	Surface Plasmon Resonance
	Crystallography

	Results
	Discussion and Future Directions
	Command Lines and Input Files
	Inputs for the Construction of Protein Backbones from a Starting Interface Peptide

	SWIFTLIB: RAPID DEGENERATE-CODON-LIBRARY OPTIMIZATION THROUGH DYNAMIC PROGRAMMING
	Introduction
	Materials and Methods
	DP For One Degenerate Codon
	DP For Multiple Degenerate Codons

	Results
	Library Designs
	Comparison with ILP

	Discussion
	Supplemental Materials
	Additional libraries for problem 2
	ILP with One Degenerate Codon
	ILP with Multiple Degenerate Codons
	Additional Library Design Problems

	CONCLUSIONS
	Introduction
	Lessons and Future Directions of Protein Engineering with SEWING
	Lessons and Limitations in Refinement of Directed Evolution Libraries
	Future of Protein Engineering Techniques

