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ABSTRACT

ELIZABETH ANNE SELL: Universal Abelian Covers for Surface Singularities

{zn = f(x, y)}

(Under the direction of Professor Jonathan Wahl)

In recent work, W. D. Neumann and J. Wahl construct explicit equations for many

interesting normal surface singularities with rational homology sphere links, which they call

splice quotients. The construction begins with the topological type of a normal surface

singularity, that is, a good resolution graph Γ that is a tree of rational curves. If Γ satisfies

certain combinatorial conditions, then there exist splice quotients with resolution graph Γ.

Let {zn = f(x, y)} define a surface Xf,n with an isolated singularity at the origin in C3. For f

irreducible, we completely characterize, in terms of n and the Puiseux pairs of f, those Xf,n

for which the resolution graph satisfies the combinatorial conditions defined by Neumann and

Wahl. Briefly stated, we find that the conditions are not often satisfied. Furthermore, given

a splice quotient (X, 0), it turns out that “equisingular deformations” of (X, 0) are usually

not splice quotients, as we demonstrate already for singularities of the form {z2 = xP + yQ}

with rational homology sphere link.
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CHAPTER 1

Introduction

Overview. Let (X, 0) ⊂ (Cn, 0) be the germ of a complex analytic normal surface

singularity. The intersection of X with a sufficiently small sphere centered at the origin

in Cn is a compact connected oriented three-manifold Σ that does not depend upon the

embedding in Cn. This manifold is called the link of (X, 0). Since X \ {0} is homeomorphic

to the cone over Σ, the homeomorphism type of the link determines the topology of (X, 0).

The dual resolution graph Γ of a good resolution of the singularity is also a topological

invariant; that is, the homeomorphism type of the link can be recovered from Γ, and W.

Neumann proved that (aside from a few exceptions) the converse is true as well [15]. In

general, there can be many different analytic types of singularities that have the same link.

Let Σ be the link of a normal surface singularity (X, 0), and assume that Σ is a rational

homology sphere (QHS). That is, H1(Σ, Q) = 0, or, equivalently, H1(Σ, Z) is a finite group.

The link is a QHS if and only if any good resolution graph Γ of (X, 0) is a tree of rational

curves. The structure of the finite abelian group H1(Σ, Z) can be determined from the

resolution graph Γ, and this group is also referred to as the discriminant group D(Γ). The

universal abelian cover (UAC) of Σ, in the topological sense, is a regular covering space

with automorphism group D(Γ) = H1(Σ, Z). Coverings of Σ correspond to coverings of the

manifold X r {0}. The analytic structure of X r {0} lifts to an analytic structure on its

UAC, and there is a unique way to add a point 0 to the UAC, resulting in a singularity

(Y, 0) and a finite map (Y, 0) → (X, 0) that is unramified away from the singular point. We



refer to the singularity (Y, 0) together with with this map as the universal abelian cover of

the singularity (X, 0).

In general, it is not easy to produce an analytic realization, i.e., defining equations, for

a normal surface singularity with a given topological type. This is where universal abelian

covers play a significant and surprising role. It turns out that in some cases it is easier to

produce equations for the UAC than it is to produce them for the singularity itself.

Although the connection is seen only in retrospect, one can find this idea in the work

of F. Klein [4], who determined defining equations for the quotient singularities C2/G, for

finite non-cyclic subgroups G of SU(2). These equations are sometimes complicated, but

equations for C2/[G,G], where [G,G] denotes the commutator subgroup of G, are simple.

They are all of the form xp + yq + zr = 0, and the values of p, q, and r are determined by G.

Since C2 r {0} is the universal cover of C2 r {0}/G, one can see that C2/[G,G] → C2/G is

the universal abelian cover in the sense above. Klein’s result was extended to several other

groups by J. Milnor in [10].

In [14], Neumann produced equations for the universal abelian covers of weighted ho-

mogeneous surface singularities with QHS link; the equations are a generalization of those

that appear in Klein’s work for C2/[G,G]. Recently, the concept was extended by Neumann

and J. Wahl [18] to a larger class of singularities. This work has led to a recent interest in

universal abelian covers and related topics (see [7], [13], [20], [21], [24]), and there are still

many unanswered questions.

The work of Neumann and Wahl (described in Chapter 2; see also [17] and [26]) provides

a method for generating analytic data for singularities from topological data. Starting with

a resolution graph Γ that satisfies certain combinatorial conditions, the “semigroup con-

ditions”, there is an algorithm that produces equations for a family of complete intersection

2



surface singularities. The equations are referred to as splice diagram equations, since they

are generated from the splice diagram, another combinatorial object that depends upon Γ. If

Γ satisfies a further set of conditions, the “congruence conditions”, then one can choose a set

of splice diagram equations such that every singularity (Y, 0) in the family is the universal

abelian cover of a singularity with resolution graph Γ. The algorithm also produces an ex-

plicit action of the discriminant group D(Γ) on Y such that the quotient of Y by this group

action is a normal surface singularity with resolution graph Γ. The resulting quotient sing-

ularities are called splice quotients. If Σ is a ZHS (H1(Σ, Z) = 0), then only the semigroup

conditions are relevant. When they are satisfied, the family of normal surface singularities

produced by the algorithm are said to be of splice type.

The upshot is that the algorithm allows one to produce defining equations for singularities

of a given topological type, and the key point is that the construction goes through the

universal abelian cover, which in general has much simpler equations than those of the

quotient.

Given a normal surface singularity (X, 0) with QHS link and a good resolution graph Γ,

one can ask the following questions:

(1) Does Γ satisfy the semigroup and congruence conditions needed for the Neumann-

Wahl algorithm?

(2) If the answer to (1) is yes, is (X, 0) itself a splice quotient? That is, does the

Neumann-Wahl algorithm produce a singularity that is analytically isomorphic to

(X, 0)?

(3) If (X, 0) is a splice quotient, are “equisingular deformations” of (X, 0) also splice

quotients?

(4) If the answer to (1) or (2) is no, what is the UAC of (X, 0)?

3



It was originally conjectured that rational and QHS-link minimally elliptic singularities would

be splice quotients, and one wondered whether all Q-Gorenstein singularities with QHS

link would turn out to be splice quotients. But, counterexamples were found in the paper

of I. Luengo-Velasco, A. Melle-Hernández, and A. Némethi [7]. There, the authors give

an example of a hypersurface singularity for which the resolution graph does not satisfy

the semigroup conditions, and an example of a singularity for which the semigroup and

congruence conditions are satisfied, but the analytic type is not a splice quotient. However,

there are nice classes of singularities for which the answer to both (1) and (2) is yes, namely

weighted homogeneous singularities, as shown by Neumann in [14], and rational and QHS-

link minimally elliptic singularities, as shown by T. Okuma in [21]. Question (3) was raised

by Neumann and Wahl in [17], and we show in Chapter 3 that the answer is generally no.

As for question (4), very little is known. A recent preprint of J. Stevens [24] constructs the

UAC (using a completely different method) for some particular examples of singularities for

which the semigroup conditions are not satisfied.

Results. Suppose {f(x, y) = 0} defines a reduced curve with a singularity at the origin

in C2. Then for n > 1, the surface

Xf,n := {zn = f(x, y)}

has an isolated (hence normal) singularity at the origin in 0 ∈ C3. In this dissertation, we

study singularities of the form (Xf,n, 0) with QHS link. This is a natural class of singularities

to study after weighted homogeneous, rational, and minimally elliptic singularities, and is not

as difficult as the entire class of hypersurface singularities. One reason for this is that there

is a well-known algorithm for constructing the resolution graph of such singularities from

the topological data of the plane curve singularity defined by f(x, y) = 0. One of the main

4



results of this work is a complete characterization of the (Xf,n, 0), with f irreducible, that

have a resolution graph that satisfies the semigroup and congruence conditions (Theorem

6.0.1). In particular, even for n = 2, it is rare that the conditions are satisfied.

For f irreducible, the construction of the resolution graph of (Xf,n, 0) requires a finite set

of pairs of positive integers associated to f, known as the topological pairs (p1, a1), . . . , (ps, as)

(a variant of the more commonly known Puiseux pairs), defined in [3]. These pairs satisfy the

following properties: pi and ai are relatively prime for each i, a1 > p1, and ai+1 > aipipi+1.

The topological pairs completely determine the topology of the plane curve singularity. More

specifically, they describe the cabling of the iterated torus knot that results from the inter-

section of {f(x, y) = 0} with a small sphere around the origin in C2. If f1 and f2 have the

same topological pairs, then (Xf1,n, 0) and (Xf2,n, 0) have the same link (equivalently the

same resolution graph), but are not necessarily analytically isomorphic.

The ZHS case has already been studied. In [16], Neumann and Wahl prove that the link

of (Xf,n, 0) is a ZHS if and only if f is irreducible and all pi and ai are relatively prime to

n, and in that case, they prove in [19] that any such (Xf,n, 0) is of splice type. That is, not

only are the semigroup conditions satisfied, but furthermore, every (Xf,n, 0) with ZHS link

is isomorphic to one that results from the Neumann-Wahl algorithm.

For f irreducible, there is an explicit criterion, given by R. Mendris and Némethi in [8],

in terms of n and the topological pairs that determines when the link of (Xf,n, 0) is a QHS

(see Proposition 4.1.2). Stated briefly, it says that the link is a QHS if and only if there does

not exist an i for which both ai and pi have prime factors in common with n/(n, pi+1 · · · ps)

(n for i = s). So one can see that there are plenty of (Xf,n, 0) for which the link is a QHS

but not a ZHS. For the rest of this discussion, we assume that the link of (Xf,n, 0) is a QHS.

5



Let the resolution graph of (Xf,n, 0) be denoted Γf,n, and let s be the number of topolog-

ical pairs associated to f. If s = 1, then (Xf,n, 0) has the topological type of the weighted

homogeneous singularity defined by zn = xa1 + yp1 , which, as mentioned above, is a splice

quotient. The analytic types for s = 1 will be discussed further below. The following is one

of our main results.

Theorem (6.0.1). Let f be irreducible with s ≥ 2 topological pairs, and assume that

(Xf,n, 0) has QHS link. Then Γf,n satisfies the semigroup and congruence conditions if and

only if either

(i) (n, ps) = 1, (n, pi) = (n, ai) = 1 for 1 ≤ i ≤ s−1, and as/(n, as) is in the semigroup

generated by {as−1, p1 · · · ps−1, ajpj+1 · · · ps−1 : 1 ≤ j ≤ s − 2}, or

(ii) s = 2, p2 = 2, (n, p2) = 2, and (n
2
, p1) = (n

2
, a1) = 1.

(Here, (a, b) denotes the greatest common divisor of a and b.)

Excluding Case (ii), which is rather restrictive, this result says that if any of the top-

ological pairs (pi, ai) besides as have factors in common with n, then (Xf,n, 0) does not have

the topological type of a splice quotient. So, one could say that if (Xf,n, 0) gets “too far”

from the ZHS case (in which all analytic types are splice quotients), it cannot even have the

topology of a splice quotient.

Consider the following example:

Xn := {zn = y5 − (x3 + y2)2}.

The plane curve singularity defined by y5 − (x3 + y2)2 = 0 is irreducible with 2 topological

pairs,

p1 = 2, a1 = 3, p2 = 2, and a2 = 15.

6



The link of (Xn, 0) is a QHS if and only if neither 6 nor 10 divides n. We can say the following

about Xn :

• If n is not divisible by 2, 3, or 5, then (Xn, 0) has ZHS link and hence is a splice

quotient. In fact, we could replace y5 − (x3 + y2)2 by any curve with the same

topological pairs, and we would still have a splice quotient.

• If n is divisible by 3, Theorem 6.0.1 says that (Xn, 0) does not even have the top-

ological type of a splice quotient.

• If n = 5k, where k is not divisible by 2 or 3, then (Xn, 0) has the topology of a

splice quotient (Case (i) of Theorem 6.0.1). The discriminant group has order 16.

In Chapter 7, we show that (Xn, 0) is itself a splice quotient. However, if we replace

y5 − (x3 + y2)2 by another curve with the same topological pairs, it is unlikely that

the new singularity will be a splice quotient.

• If n = 2k, where k is not divisible by 3 or 5, then (Xn, 0) has the topology of a

splice quotient (Case (ii) of Theorem 6.0.1). The discriminant group has order 15.

It is unclear whether or not (Xn, 0) is a splice quotient. However, if we replace

y5 − (x3 + y2)2 by (x3 − y2 − y3)2 − 4y5, which has the same topological pairs, it is

a splice quotient.

This brings us to an important point. If a resolution graph satisfies the semigroup and

congruence conditions, a priori we do not know what the equations of the splice quotients

produced from the Neumann-Wahl algorithm look like. In Cases (i) and (ii) of Theorem

6.0.1, we know that there are splice quotients with the same topological type of an (Xf,n, 0),

but it is not immediately clear whether or not there even exist any splice quotients defined by

an equation of the form zn = g(x, y). By studying the analytic types of the splice quotients,

we are able to prove the following

7



Theorem (7.1.1 and 7.2.1). Suppose Γf,n satisfies the semigroup and congruence con-

ditions. Then there exists a splice quotient that is defined by an equation of the form

zn = g(x, y), where g is irreducible and has the same topological pairs as f.

As we mentioned above, another question of interest is the behavior of splice quotients

under deformation. Given a splice quotient (X, 0), it is not necessarily true that any defor-

mation of (X, 0) with the same topological type is also a splice quotient. For example, the

weighted homogeneous singularity defined by

z2 = x4 + y9

is a splice quotient, but one can show that the deformation

z2 = x4 + y9 + txy7

is not, although it has the same link as the original.

For normal surface singularities in general, there is not a clear notion of what “equisin-

gular deformations” should be. However, for weighted homogeneous surface singularities,

there is one reasonable definition. Recall that a singularity (X, 0) is weighted homogeneous

if it is defined by weighted homogeneous polynomials. One can consider the equisingular

deformations to be those given by adding higher weight terms to the defining equations of

X. (For further discussion, see the beginning of Chapter 3.)

We thoroughly investigate this problem for singularities of the form {z2 = xP + yQ} with

QHS link. There turn out to be three separate cases to consider, and in each case, we are

able to give a versal splice quotient deformation (Propositions 3.2.3, 3.2.7, and 3.2.20). In

two of the three cases, the versal equisingular deformation is in general not a family of splice

quotients; that is, there exist equisingular deformations that are not splice quotients.
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Outline of dissertation. In Chapter 2, we provide a summary of the Neumann-Wahl

algorithm from [18], which we use throughout this work. In particular, the chapter con-

tains explicit definitions of the semigroup conditions, splice diagram equations, action of the

discriminant group, and congruence conditions.

Chapter 3 contains the discussion of the equisingular deformations of singularities of the

form {z2 = xP +yQ} with QHS link. In the first part of the chapter, we outline our approach

to the problem in general, and in the second part, we explicitly treat each of the three cases

mentioned above. Chapter 3 is essentially independent of all of the chapters that follow.

Chapters 4, 5, and 6 are devoted to proving Theorem 6.0.1 on the characterization of

the topological types of splice quotients of the form (Xf,n, 0). Some of the computations

that are necessary for the proof depend greatly upon work done by Mendris and Némethi

in [8]. Section 4.1 contains a description of the minimal good resolution graph of (Xf,n, 0);

for the most part, the section is a reiteration of material that appears in [8]. In Section 4.2,

we compute everything that is needed in order to explicitly describe the associated splice

diagram. In Section 5.1, we describe the semigroup conditions for the splice diagram asso-

ciated to (Xf,n, 0) as completely as possible. Section 5.2 contains additional computations

that we need in order to check the congruence conditions. Finally, in Chapter 6, we use the

computations from the previous two chapters to prove Theorem 6.0.1.

After obtaining the characterization of the topological types of splice quotients, we inves-

tigate the analytic types of the splice quotients themselves in Chapter 7. The main results

appear in Theorems 7.1.1 and 7.2.1, as stated above. We also give several concrete examples

to illustrate the results.
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CHAPTER 2

The Neumann-Wahl algorithm

This chapter contains a summary of the results in [18] that we apply throughout this

work. The Neumann-Wahl algorithm begins with a negative-definite resolution graph Γ that

is a tree of rational curves and the splice diagram ∆ associated to Γ. Splice diagrams were

introduced by Eisenbud and Neumann [3] for plane curve singularities (building on work of

Siebenmann), and later generalized by Neumann and Wahl. The splice diagram is also a

means for encoding topological data, but in general it carries less information than Γ; that

is, one cannot always recover Γ from ∆. If ∆ satisfies some combinatorial conditions, the

“semigroup conditions” (Definition 2.0.1), then the algorithm produces a set of equations

that defines a family of isolated complete intersection surface singularities. The algorithm

also produces an action of the finite abelian group D(Γ), the discriminant group of Γ, on

the coordinates used for the splice diagram equations. If Γ satisfies further combinatorial

conditions, the “congruence conditions” (Definition 2.0.7), then one can choose a set of splice

diagram equations such that the discriminant group acts on every singularity (Y, 0) in the

family. Furthermore, the quotient of (Y, 0) by D(Γ) is an isolated normal surface singularity

with resolution graph Γ, and the covering given by the quotient map is the universal abelian

covering. The resulting quotient singularities are called splice quotients. If the discriminant

group is trivial (i.e., the associated link Σ is a ZHS), then only the semigroup conditions are

relevant. When they are satisfied, the family of normal surface singularities produced by the

algorithm are said to be of splice type. We describe this more completely below.



Terminology: In a weighted graph, the valence of a vertex is the number of adjacent

edges. A node is a vertex of valence at least three, a leaf is a vertex of valence one, and a

string is a connected subgraph that does not include a node.

The procedure for computing the splice diagram ∆ associated to a resolution graph Γ

that is a tree of rational curves is as follows. First, omit the self-intersection numbers of

the vertices and contract all strings of valence two vertices in Γ. To each node v in the

resulting diagram ∆, we attach a weight dve in the direction of each adjacent edge e. Let Γve

be the subgraph of Γ defined as follows. Remove the vertex that corresponds to the node v,

and the edge that corresponds to e, and let Γve be the remaining connected subgraph that

was connected to v by e. Then the weight dve is det(−Cve), where Cve is the intersection

matrix of the graph Γve. Figure 2.1 contains a simple example, the resolution graph of

{z4 = x2y8 − (x5 + y3)3} and the associated splice diagram.

Γ = •
−2

•
−3

•
−2

•
−2

•
−2

∆ = • 5 • 12 23 • 2 •

•
−3

•
−3

•
−3

•

3

•

3

•

3

Figure 2.1. A resolution graph Γ and its associated splice diagram ∆.

Let ∆ be the splice diagram associated to Γ. Let v be a node in ∆, e an edge adjacent to

v, and dve the weight at v in the direction of e. We define a subgraph ∆ve as follows. Remove

v and e, and let ∆ve be the remaining connected subgraph that was connected to v by e.

For any two vertices v and w in ∆, the linking number ℓvw is the product of the weights

adjacent to but not on the shortest path from v to w. Let ℓ′vw be the linking number of v

and w, excluding the weights around v and w.
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Definition 2.0.1 (Semigroup Conditions). The semigroup condition at v in the direction

of e is

dve ∈ N〈ℓ′vw | w is a leaf in ∆ve〉.

We say that ∆ satisfies the semigroup conditions if the semigroup condition for every node v

and every adjacent edge e is satisfied. Note that for an edge leading to a leaf, the condition

is trivial.

To each leaf w in ∆, associate a variable Zw. If ∆ satisfies the semigroup conditions, then

for each v and e as above, we can write

dve =
∑

w∈∆ve

αvwℓ′vw,

with αvw ∈ N. Then a monomial

Mve =
∏

w∈∆ve

Zαvw

w ,

with αvw as above is called an admissible monomial for e at v. For an edge e leading directly

to a leaf w, the only choice of admissible monomial is Zdve
w . Note that if one associates the

weight ℓvw to Zw, then for this weight system, the so-called v-weighting, Mve is weighted-

homogeneous of total weight dv =
∏

e dve, where the product is taken over all edges e adjacent

to v.

Example 2.0.2. In the example from Figure 2.1, ∆ satisfies the semigroup conditions,

since 23 is in the semigroup generated by 3 and 5, and 12 is the semigroup generated by 6

(and 9). Let the variables Z1, . . . , Z5 correspond to the leaves of ∆ as follows:

12



• 5
Z1 • 12 23

3

v1

• 2

v2

• Z5

•
Z2

•
Z3

3

•
Z4

3

.

Then there are three choices for an admissible monomial at the node v1 for the edge with

weight 12: Z2
3 , Z2

4 , and Z3Z4. There are two choices for an admissible monomial at v2 for

the edge with weight 23: Z1Z
4
2 and Z6

1Z2.

Definition 2.0.3 (Splice Diagram Equations). Suppose ∆ satisfies the semigroup con-

ditions. For each node v and adjacent edge e, choose an admissible monomial Mve. Let δv

denote the valence of the vertex v. A a set of splice diagram equations for ∆ is a set of

equations of the form

{
∑

e

avieMve + Hvi = 0 : 1 ≤ i ≤ δv − 2, v a node in ∆

}
,

where

• for each v, all maximal minors of the matrix (avie) have full rank,

• each Hvi is a convergent power series in the Zw for which all of the terms have

v-weight greater than or equal to dv.

It is easy to see that one can always use the following matrix in place of (avie):




1 0 · · · 0 a1 b1

0 1 · · · 0 a2 b2

...
...

. . .
...

...
...

0 0 · · · 1 aδv−2 bδv−2




,

where all ai and bi are nonzero, and aibj − ajbi 6= 0 for all i 6= j.

13



A set of splice diagram equations for Example 2.0.2 is given by





Z5
1 + aZ3

2 + bZ3Z4 + H = 0

Z1Z
4
2 + c1Z

3
4 + d1Z

2
5 + G1 = 0

Z3
3 + c2Z

3
4 + d2Z

2
5 + G2 = 0





,

where a, b, c1, c2, d1 and d2 are all nonzero, and c1d2 − c2d1 6= 0. The first equation belongs

to the node v1, and the second two equations belong to v2. Therefore, H must be a convergent

power series with v1-weight greater than or equal to 180, and G1 and G2 must be convergent

power series with v2-weight greater than or equal to 414.

We now describe the aforementioned action of the discriminant group. Let Γ be a

negative-definite tree of rational curves (equivalently, the dual resolution graph associated

to a good resolution of a normal surface singularity with QHS link). Each vertex v ∈ Γ

corresponds to an exceptional curve Ev. Let

E :=
⊕

v∈Γ

ZEv.

The intersection pairing defines a natural injection E →֒ E∗ = Hom(E, Z), and the discrim-

inant group is the finite abelian group

D(Γ) := E∗/E.

The order of D(Γ) is det(Γ) := det(−C(Γ)), where C(Γ) : E × E → Z is the intersection

pairing. There are induced symmetric pairings of E ⊗ Q into Q and D(Γ) into Q.

Let ev ∈ E∗ be the dual basis element corresponding to Ev. That is, ev(Ew) = δvw.

Neumann and Wahl proved the following propositions.
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Proposition 2.0.4 ([18], Prop. 5.2). Let e1, . . . , et be the dual basis elements of E∗

corresponding to the t leaves of Γ. Then the homomorphism E∗ → Qt defined by

e 7→ (e · e1, . . . , e · et)

induces an injection D(Γ) →֒ (Q/Z)t.

Consider the map (Q/Z)t →֒ (C∗)t defined by

(r1, . . . , rt) 7→ (exp(2πir1), . . . , exp(2πirt)) =: [r1, . . . , rt].

Proposition 2.0.5 ([18], Prop. 5.3). Let the leaves of a resolution graph Γ be w1, . . . , wt.

Then the discriminant group D(Γ) is naturally represented by a diagonal action on Ct, where

the entries are t-tuples of det(Γ)-th roots of unity. Each leaf wj corresponds to an element

[ej · e1, . . . , ej · et] := (exp(2πi(ej · e1)), . . . , exp(2πi(ej · et))).

Any t − 1 of these elements generate D(Γ).

Definition 2.0.6. This diagonal action on Ct induces a natural action of the discriminant

group on the polynomial ring C[Z1, . . . , Zt] via

e · Zk = [−e · ek]Zk = exp(−2πi(e · ek))Zk.

Definition 2.0.7 (Congruence conditions). Let Γ be a graph for which the associated

splice diagram ∆ satisfies the semigroup conditions. Then we say that Γ satisfies the congru-

ence condition at a node v if one can choose an admissible monomial for each adjacent edge e

such that all of these monomials transform by the same character under the action of D(Γ).

If this condition is satisfied for every node v, then Γ satisfies the congruence conditions.
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In other words, Γ satisfies the congruence conditions if and only if there is a set of splice

diagram equations for ∆ on which the discriminant group acts equivariantly.

We should mention here that Okuma gives a single condition that is equivalent to the

semigroup and congruence conditions together, “Condition 3.3” of [21]. That this condition

is equivalent to the semigroup and congruence conditions is shown in [18].

From now on, we will often say “Γ satisfies the semigroup and congruence conditions”, as

opposed to “∆ satisfies the semigroup conditions and Γ satisfies the congruence conditions”.

The next three propositions show that the congruence conditions are, in theory, not difficult

to check.

Proposition 2.0.8 ([18], Prop. 6.5). Let w, w′ be distinct leaves of Γ, corresponding to

distinct leaves of ∆, and let ℓww′ denote their linking number. Then

ew · ew′ = −ℓww′/ det(Γ).

Proposition 2.0.9 ([18], Prop. 6.6). Suppose we have a string from a leaf w to an

adjacent node v with associated continued fraction d/p, as in the following diagram,

−k1 −k2 −ks

• • • •
w v ,

where

d

p
= k1 −

1

k2 −
1

. . . − 1

ks

.

Then, if dv is the product of weights at v,

ew · ew = −dv/(d
2 det(Γ)) − p/d.
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Proposition 2.0.10 ([18], Prop. 6.8). Let Γ be a graph for which the associated splice

diagram ∆ satisfies the semigroup conditions. Then the congruence conditions are equivalent

to the following: For every node v and adjacent edge e, there is an admissible monomial

Mve =
∏

Zαw
w (w running over the leaves in ∆ve) such that for every leaf w′ in ∆ve,

(2.1)

[
∑

w 6=w′

αw
ℓww′

det(Γ)
− αw′ew′ · ew′

]
=

[
ℓvw′

det(Γ)

]
.

Remark 2.0.11. It is easy to check, using Proposition 2.0.9, that this condition is always

satisfied for an edge leading directly to a leaf.

Let us use Proposition 2.0.10 to check the congruence conditions for Γ from Example

2.0.2.

Γ = •
−2

•
−3

•
−2

•
−2

•
−2

∆ = • 5
Z1 • 12 23

v1

• 2

v2

• Z5

•
−3

•
−3

•
−3

•

3

Z2

•

3

Z3

•

3

Z4

The leaves of ∆ are labelled 1 through 5, and the nodes v1 and v2. One can check that

det(Γ) = 3. For the node v1, we must check the conditions for the edge with weight 12. The

admissible monomials are Z2
3 , Z2

4 , and Z3Z4.

Since ℓv1w′ is divisible by 3 for w′ = 3, 4, and 5, the right hand side of (2.1) is [0] for each

w′ in question. It is easy to check, by Proposition 2.0.9, that

e3 · e3 = e4 · e4 = −2 · 32 · 23

32 · 3 − 1

3
= −47

3
, and

e5 · e5 = −2 · 32 · 23

22 · 3 − 1

2
= −35.

Furthermore,
ℓ35

det(Γ)
=

ℓ45

det(Γ)
= 23 and

ℓ34

det(Γ)
=

46

3
. Therefore, for w′ = 3, Equation (2.1)

is

(2.2)

[
α4

46

3
+ α3

47

3

]
= [0] ,
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and for and w′ = 4, it is

(2.3)

[
α3

46

3
+ α4

47

3

]
= [0] .

For w′ = 5, it is easy to see that the equation is always satisfied. The only possible values of

α3 and α4 for which Equations (2.2) and (2.3) both hold are α3 = 1 and α4 = 1. Therefore,

the congruence condition at v1 holds, but we must use the admissible monomial Z3Z4 and

not the other two.

For node v2, we must check the condition for the edge with weight 23. Again, ℓv2w′ is

divisible by 3 for w′ = 1 and 2, so the right hand side of (2.1) is [0] . Furthermore, ℓ12 = 12,

and

e1 · e1 = −3 · 5 · 12

52 · 3 − 3

5
= −3, and

e2 · e2 = −3 · 5 · 12

32 · 3 − 1

3
= −7.

From here, it is easy to see that Equation (2.1) holds for both w′ = 1 and 2 for any choice

of admissible monomial. Hence, Γ satisfies the semigroup and congruence conditions.

Getting back to the general situation, suppose a resolution graph Γ satisfies the semigroup

and congruence conditions. Then, by a set of splice diagram equations for Γ, we mean

equations as in Definition 2.0.1 such that for each v, the admissible monomials Mve and the

power series Hvi transform equivariantly under D(Γ).

We are almost prepared to state the main result concerning the Neumann-Wahl algo-

rithm, but we need the following technical definition that comes up in the proof. A resolu-

tion tree Γ is quasi-minimal if any string in Γ either contains no (−1)-weighted vertex, or

consists of a unique (−1)-weighted vertex.
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Theorem 2.0.12 ([18], 7.2). Suppose Γ is quasi-minimal and satisfies the semigroup and

congruence conditions. Then

(1) A set of splice diagram equations for Γ defines an isolated complete intersection

singularity (Y, 0).

(2) The discriminant group D(Γ) acts freely on a punctured neighborhood of 0 in Y.

(3) The quotient X := Y/D(Γ) has an isolated normal surface singularity and a good

resolution with dual resolution graph Γ.

(4) (Y, 0) → (X, 0) is the universal abelian cover.

(5) For any node v, the v-grading on functions on X (induced by the v-grading on

functions on Y ) is det(Γ) times the grading by order of vanishing on the exceptional

curve Ev.

(6) Y → X maps the curve {Zw = 0} to an irreducible curve, whose proper transform on

the good resolution of X is smooth and intersects the exceptional curve transversally,

along Ew. In fact, the function Z
det(Γ)
w , which is D(Γ)-invariant and hence defined

on X, vanishes to order det(Γ) on this curve.

Point (6) turns out to be very important for us; see the discussion surrounding the

End-Curves Theorem (3.1.2) in Chapter 3.
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CHAPTER 3

Deformations of {z2 = xP + yQ}

“Equisingular deformations”. For normal surface singularities, there are several no-

tions that one could use to define “equisingular deformations” (e.g, deformations that admit

a simultaneous resolution, µ-constant deformations), but in general the different definitions

do not agree. However, for weighted homogeneous surface singularities, there is one reason-

able definition. Recall that a singularity (X, 0) is weighted homogeneous if it is defined by

weighted homogeneous polynomials. One can consider deformations given by adding higher

weight terms to the defining equations of X. H. Pinkham and J. Wahl proved ([23],[25])

that the higher weight deformations correspond precisely to deformations that admit a si-

multaneous resolution, i.e., a family of resolutions inducing a locally topologically trivial

deformation of the exceptional set.

Another class of singularities for which there is a good definition of equisingularity are

those defined by an equation of the form z2 = f(x, y). In this case, all deformations are

given by deforming the plane curve singularity defined by f(x, y) = 0, so one may as well

let the equisingular deformations be those given by deforming the plane curve singularity in

an equisingular way. Although equisingularity is well-defined for plane curve singularities,

we should note that it is in general very difficult to write down, say, a versal equisingular

deformation.

Going back to the weighted homogeneous case, we know that any weighted homogeneous

surface singularity with QHS link is a splice quotient [14]. However, as Neumann and Wahl



mentioned in [19] (p.17), it is not clear whether or not equisingular deformations of such

singularities are splice quotients as well. In this chapter, we investigate the equisingular

deformations of the Brieskorn-type singularities defined by an equation of the form z2 =

xP + yQ. In particular, we show that there are very few such singularities for which the

versal equisingular deformation is a family of splice quotients.

First of all, let us recall that in the ZHS link case (P and Q odd and relatively prime),

this problem has been solved. In fact, we have the much more general

Theorem 3.0.1 (Neumann and Wahl ([19], Cor 4.2)). Any normal surface singularity

defined by an equation of the form zn = f(x, y) with ZHS link is of splice type.

(See Remark 3.1.3 for a word on the proof.) Since any deformation of ({z2 = xP + yQ}, 0)

remains of the form ({z2 = f(x, y)}, 0), this says that in the ZHS case, all equisingular

deformations are of splice type.

3.1. General approach

For those (X, 0) = ({z2 = xP + yQ}, 0) for which the link is a QHS but not a ZHS, we

would like to determine which members of the versal equisingular deformation are also splice

quotients. There are two different approaches that we employ.

Approach I. For (X, 0) weighted homogeneous, Neumann [14] gave an explicit method

for writing down splice diagram equations for the UAC (Y, 0) and the action of the discrim-

inant group on (Y, 0). (This is a precursor to the Neumann-Wahl algorithm.) In Approach

I, we write down a versal equisingular equivariant deformation (equivariant under the action

of the discriminant group) of the UAC. We then compute the quotient by the action of the

discriminant group. The resulting family of splice quotients is a “versal splice quotient defor-

mation” of (X, 0). However, this family may not present itself in the form {z2 = f(x, y; t)},
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which makes it difficult to compare this family with a versal equisingular deformation of

(X, 0). When this occurs, one can attempt to change coordinates to return to the desired

form. Sometimes this is easily done, and sometimes it is not, as we will see in Section 3.2.

(In particular, see Remark 3.2.19.)

Note that Approach I can be implemented when (X, 0) is weighted homogeneous because

the UAC is weighted homogeneous as well, and hence we know how to write down the versal

equisingular deformation that is needed on the level of the UAC.

Approach II. In order to describe the second approach, we need to state the End-Curves

Theorem of Neumann and Wahl.

Roughly speaking, the End-Curves Theorem says that a singularity is a splice quotient

if and only if the UAC can be constructed by adjoining certain “roots of functions” to the

local ring. Let OX denote the local analytic ring of the germ of a normal surface singularity

(X, 0). Suppose there is a function f in the maximal ideal of OX such that ({f = 0} ∩ X)

is n copies of a reduced curve C. Adjoining to OX a new element U such that Un = f and

normalizing induces an n-fold cyclic cover of normal surface singularities, (Y, 0) → (X, 0),

that is unramified away from 0. For, at any point on C away from 0, C is defined by, say,

{v = 0} in some local coordinates, so f = vn locally. Thus the cover consists of n smooth

pieces over {f = 0}, since it is locally given by normalizing Un = vn. Clearly, if the link Σ

of (X, 0) is a QHS, then n must divide the order of the discriminant group.

Let (X, 0) be the germ of a normal surface singularity with QHS link and minimal good

resolution graph Γ. An irreducible exceptional curve E in the minimal good resolution of

(X, 0) is called an end-curve if it intersects the rest of the exceptional set in exactly one

point. That is, E is an end-curve if it corresponds to a leaf (vertex of valence one) in Γ.
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Definition 3.1.1. A function f in the maximal ideal of OX is called an end-curve

function (associated to E) if the proper transform of its zero locus in the minimal good

resolution is nC, where C is a smooth irreducible curve that intersects the end-curve E

transversally in exactly one point and does not intersect any other exceptional curve. Here,

n is the order of the image of the dual basis element corresponding to E in the discriminant

group.

Theorem 3.1.2 (Neumann/Wahl). A normal surface singularity (X, 0) with QHS link

is a splice quotient if and only if for every end-curve E of the minimal good resolution of

(X, 0) there exists an end-curve function associated to E in the maximal ideal of OX .

In the ZHS case, this theorem is proved in [19]. For the QHS case, one direction, that

splice quotients have end-curve functions, is point (6) of Theorem 2.0.12. In the other

direction, a proof is announced but not yet published.

It is precisely these end-curve functions whose roots we adjoin to construct the UAC (see

the Example below), and the newly adjoined variables can always be used as coordinates for

the UAC. Upon adjoining all of the end-curve functions there is no need to normalize.

Remark 3.1.3. In the ZHS case, the End-curves Theorem says (X, 0) is of splice type

if and only if there exist end-curve functions. Theorem 3.0.1, which says that any normal

surface singularity defined by an equation of the form zn = f(x, y) with ZHS link is of splice

type, is a corollary of the End-curves Theorem. This is because one can produce end-curve

functions for ({zn = f(x, y)}, 0) from end-curve functions that are known to exist for the

splice diagram of the plane curve singularity ({f(x, y) = 0}, 0). The argument does not work

for the general QHS case; it is only in the ZHS case that the functions are all guaranteed to

lift to end-curve functions for ({zn = f(x, y)}, 0).
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Example 3.1.4. Let X ⊂ C3 be defined by

X := {z2 = x4 + y9}.

The minimal good resolution graph of (X, 0), shown in Figure 3.1, has three leaves, labeled

E1, E2 and E3. The discriminant group has order 9, and the order of the images of the dual

basis elements associated to the leaves are 1, 9, and 9, respectively. One can explicitly verify

that there exist corresponding end-curve functions: x, z − x2, and z + x2. For instance, let

g = z2 − x4 − y9, so that OX = C[[x, y, z]]/(g). We have

g = (z − x2)(z + x2) − y9.

That ({z−x2 = 0}∩X) is a smooth irreducible curve counted 9 times is seen by considering

the ring OX/(z − x2) ≃ C[[x, y]]/(y9).

We now construct the UAC of (X, 0) by adjoining roots of the end-curve functions to OX .

Adjoin U such that U9 = z − x2, and then normalize by adjoining V := y/U. (Equivalently,

we could have adjoined V, the 9th root of the end-curve function z + x2.) This results in a

normal surface singularity (Y, 0) with equation

V 9 = U9 + 2x2,

•
E1

−2

•E2

−2
•
−5

•
−1

•
−5

• E3

−2

Figure 3.1. Minimal good resolution graph of {z2 = x4 + y9}.
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which is a 9-fold abelian cover, and hence the universal abelian cover, of (X, 0). The action

of the discriminant group, Z/9Z, is generated by

(U, V, x) 7→ (ζU, ζ−1V, x),

where ζ is a primitive 9th root of unity. ¤

We can now describe Approach II. Given a splice quotient (X, 0), we can search for

deformations of (X, 0) that also have end-curve functions.

Question 3.1.5. When does an end-curve function continue to be an end-curve function

under deformation?

Consider the following particular situation. Let (X, 0) ⊂ (C3, 0) be a hypersurface sing-

ularity with local ring OX = C[[x, y, z]]/(g). Suppose that g can be written as follows:

(3.1) g = f1f2 − hn,

where f1, f2, and h are power series, and h is irreducible. Furthermore, suppose that the

fi are end-curve functions (necessarily associated to end-curves for which the image of the

corresponding dual basis element has order n in the discriminant group). Let g + εg̃ be an

equisingular deformation of g. Then the fi lift to end-curve functions for g + εg̃ if and only

if (3.1) lifts to

(3.2) g + εg̃ = (f1 + εf̃1)(f2 + εf̃2) − (h + εh̃)n.

If we consider this problem only to first order, i.e., ε2 = 0, then (3.1) lifts to (3.2) if and only

if g̃ = f1f̃2 + f̃1f2 − nhn−1h̃.
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Proposition 3.1.6. To first-order, the end-curve functions fi for g as given in (3.1) lift

to end-curve functions for the deformation g + εg̃ if and only if g̃ is in the ideal generated

by f1, f2, and hn−1.

3.2. Specific computations

Let us first discuss equisingular deformations of weighted homogeneous hypersurface

singularities. It is well known that for an isolated complete intersection singularity (X, 0),

any basis of the first Tjurina module T 1
X gives a (mini)versal deformation of (X, 0). Recall

that for a ring of the form OX ≃ C[[x, y, z]]/(g),

T 1
X = OX/

(
∂g

∂x
,
∂g

∂y
,
∂g

∂z

)
.

If g is weighted homogeneous, there is a natural way to define the weight of an element of

T 1
X , namely, h ∈ T 1

X is weighted homogeneous of weight k if and only if h is a weighted

homogeneous polynomial such that

weight(h) = weight(g) + k.

Combining this with the result of Pinkham and Wahl mentioned in the first paragraph of

this chapter, we have the following fact.

Fact 3.2.1 ([23],[25]). Let (X, 0) ⊂ (C3, 0) be a hypersurface singularity that is weighted

homogeneous of degree d and defined by {g(x, y, z) = 0}. Let {g1, . . . , gm} be a basis for the

subspace of weighted homogeneous elements with nonnegative weight in the C-vector space

T 1
X . Then the family defined by

{g + t1g1 + · · · tmgm = 0}

is a versal equisingular deformation of (X, 0).
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Now, it is clear that for singularities defined by equations of the form z2 = xP + yQ, the

versal equisingular deformation remains of the form z2 = f(x, y; t).

There is a well-known algorithm for computing the minimal good resolution graph of a

weighted homogeneous surface singularity (e.g. [22]), and we use these results freely. The

resolution graph is star-shaped, and all exceptional curves are rational except possibly the

central curve. We begin by recalling when the singularities of interest have a QHS link.

Theorem 3.2.2 ([22]). The link of ({xP +yQ +zR = 0}, 0) is a QHS if and only if either

(1) (P,QR) = 1, or

(2) (P,Q,R) = 2 and P/2, Q/2, R/2 are pairwise relatively prime.

Proof. Orlik and Wagreich ([22], Prop. 3.5.1) show that if g is the genus of the central

curve in the minimal good resolution graph of ({xP + yQ + zR = 0}, 0), then

2g = c2c1c2c3 − c(c1 + c2 + c3) + 2,

where

c = (P,Q,R), c1 = (Q,R)/c, c2 = (P,R)/c, and c3 = (P,Q)/c.

It is easy to deduce that g = 0 if and only if either

(1) c = 1 and at least two of the ci are 1, or

(2) c = 2 and c1 = c2 = c3 = 1.

This is equivalent to the statement of the theorem. ¤

It is easy to determine that the link is a ZHS if and only if P, Q, and R are pairwise

relatively prime (c = c1 = c2 = c3 = 1). In case (1), the order of the discriminant group is

P (c1−1). In case (2), the order of the discriminant group is PQR/4. All of these statements
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follow from the explicit formula for the determinant of the resolution graph that is given in

[22], §2.5.

For R = 2, one can distinguish three cases for which the link is a QHS but not a ZHS.

They are:

(i) z2 = x2p + yq, with (2p, q) = 1,

(ii) z2 = x2p + y2q with (p, q) = 1,

(iii) z2 = xpk + yqk, with p, q, and k odd, k > 1, and (p, q) = 1.

We will study Cases (i) and (ii) in detail below, employing the two approaches outlined above.

In these two cases, it is rare for all equisingular deformations to remain splice quotients.

However, we begin with Case (iii), which turns out to be easy to handle via the End-

Curves Theorem; we will show that all equisingular deformations are splice quotients in this

case. We are free to use

X := {z2 = xpk − yqk}

instead for convenience.

Proposition 3.2.3. All equisingular deformations of (X, 0) are splice quotients.

Proof. Clearly, we have

(3.3) z2 =
k∏

j=1

(xp − ζjyq),

where ζ is a primitive kth root of unity. An equisingular deformation of (X, 0) must preserve

the factorization on the right hand side of (3.3). This is because all deformations of (X, 0)

come from deforming the plane curve singularity given by xpk − yqk = 0 in an equisingular

way, and in an equisingular family of plane curve singularities, each of the branches must

itself be deformed in an equisingular way.
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We claim that the factors fj := xp − ζjyq, 1 ≤ j ≤ k, together with x and y, are the

end-curve functions for (X, 0). If so, any equisingular deformation of (X, 0) also has end-

curve functions (x, y, and the deformed fj), and therefore is a splice quotient. To show

that these functions are indeed end-curve functions, we construct the UAC of (X, 0) via the

Neumann-Wahl algorithm, and apply Theorem 2.0.12 (6). Alternatively, we could do an

explicit construction of the resolution of (X, 0), but it would ultimately be less efficient to

do so here.

The splice diagram ∆ for Case (iii) is shown in Figure 3.2. For simplicity we assume that

neither p nor q is equal to 1, although the following argument goes through regardless.

•x
p • q

k

• y

•
z1

2

...

•
zk

2

Figure 3.2. Splice diagram for Case (iii): {z2 = xpk + yqk}.

A set of splice diagram equations for ∆, as described in Chapter 2, is





z2
1 + a1x

p + b1y
q = 0

z2
2 + a2x

p + b2y
q = 0

...
...

z2
k + akx

p + bky
q = 0





,

where all ai and bi are nonzero, and aibj − ajbi 6= 0 for all i 6= j.

The discriminant group has order 2k−1. One can check, using Propositions 2.0.8 and

2.0.9, that the discriminant group elements ex and ey act trivially on (z1, . . . , zk, x, y), and

ezj
(1 ≤ j ≤ k) acts as follows:

ezj
· (z1, . . . , zk, x, y) = (−z1, . . . , zj, . . . ,−zk, x, y),
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so that ezj
has order 2. Therefore, x and y are invariant under the group action, as are

wj := z2
j , 1 ≤ j ≤ k, and

z := z1 · · · zk,

since k is odd. The splice diagram equations are invariant under the action of the discriminant

group, and the quotient satisfies the following equations in x, y, z, and wj:

z2 =
k∏

j=1

wj, and

wj = −(a1x
p + b1y

q), 1 ≤ j ≤ k.

Therefore,

(3.4) z2 = (−1)
k∏

j=1

(a1x
p + b1y

q).

If, for 1 ≤ j ≤ k, we let aj = −1 and bj = ζj, where ζ is a primitive k-th root of unity, then

(3.4) is equal to (3.3), the defining equation of X.

We have shown that the splice diagram equations for the UAC of (X, 0) are





z2
1 − xp + ζyq = 0

z2
2 − xp + ζ2yq = 0

...
...

z2
k − xp + yq = 0





,

that is, {z2
j = fj : 1 ≤ j ≤ k}. Recalling Definition 3.1.1 of end-curve functions, we see

that Theorem 2.0.12 (6) implies that x, y, and the fj are end-curve functions for (X, 0). ¤

Remark 3.2.4. Consider X := {zn = xpk − yqk}, with k > 1, (p, q) = 1, and n relatively

prime to p, q, and k. Then (X, 0) has QHS link, and the discriminant group has order nk−1.

If we were to consider equisingular deformations of (X, 0) given by adding higher weight
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terms only of the form xiyj, i.e., equisingular deformations of (X, 0) given by deforming the

plane curve singularity xpk − yqk, then by the End-Curves Theorem, all such deformations

are splice quotients.

Case (i): {z2 = x2p + yq}.

Let X1 ⊂ C3 be defined by

X1 := {z2 = x2p + yq},

with (2p, q) = 1. For q ≥ 3, the surface X1 has an isolated singularity at the origin 0. We

also assume that p > 1 since otherwise, (X1, 0) is a rational double point of type Aq−1, which

is taut, and therefore uninteresting in this context. By Fact 3.2.1, a versal equisingular

deformation of (X1, 0) is given by

(3.5)



z2 = x2p + yq +

∑

(i,j)∈I

tijx
iyj



 , where

I =

{
(i, j) ∈ Z2 | 0 < i < 2p − 1, 0 < j < q − 1,

i

2p
+

j

q
≥ 1

}
.

We want to determine which members of this family are splice quotients.

Approach I. The goal is to write down a versal splice quotient deformation of (X1, 0).

Just as in Example 3.1.4, we construct the UAC of (X1, 0) by adjoining roots of end-curve

functions. We could use the algorithm given by Neumann in [14] to construct the UAC, but

for our purposes, using the end-curve functions is more convenient. The difference is that

Neumann’s algorithm actually yields a family of singularities, and we would then have to

search for the analytic type of the UAC of (X1, 0), as we did in Case (iii).
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Adjoin U such that U q = z−xp to OX1
, and then normalize by adjoining V := y/U. This

results in a normal surface singularity (Y1, 0) with equation

(3.6) V q = U q + 2xp,

which is the universal abelian cover of (X1, 0). Note that since (p, q) = 1, the link of the

UAC is always a QHS by Theorem 3.2.2, but never a ZHS. The action of the discriminant

group Z/qZ on U must be given by U 7→ ζU, where ζ is a primitive q-th root of unity; x

must be invariant; and V = x/U implies that V 7→ ζ−1V. Therefore, the action of Z/qZ on

(Y1, 0) is generated by

(3.7) (U, V, x) 7→ (ζU, ζ−1V, x),

where ζ is a primitive q-th root of unity.

Proposition 3.2.5. A first-order versal splice quotient deformation of (X1, 0) is given

by

(3.8)



z2 = x2p + yq +

∑

(i,j)∈I+

εijx
iyj



 , where

I+ = {(i, j) ∈ I | i ≥ p}.

Proof. We begin by writing down a versal equisingular equivariant deformation of

(Y1, 0). By Fact 3.2.1, we need a basis for the subspace of nonnegative weight elements

of

T 1
Y1

= OY1
/
(
V q−1, U q−1, xp−1

)

that are invariant under the action of H := Z/qZ given by (3.7). (We are interested in

H-invariant elements since H acts trivially on (3.6), the equation defining Y1.) It is easy to
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see that a basis is given by {xk(UV )l}, where (k, l) runs over the set

K =

{
(k, l) ∈ Z2 | 0 ≤ k < p − 1, 0 < l < q − 1,

k

p
+

2l

q
≥ 1

}
.

Therefore, the family

(3.9)



V q = U q + 2xp +

∑

(k,l)∈K

εklx
k(UV )l



 ,

is a versal first-order equisingular H-invariant deformation of (Y1, 0). For simplicity, we will

just write Σ to indicate the sum over all (k, l) ∈ K. The invariants under the group action

are

A := U q, B := V q, y = UV, and x.

They satisfy the equations yq = AB and B = A + 2xp +
∑

εklx
kyl (from (3.9)). So we have

yq = A(A + 2xp +
∑

εklx
kyl).

This is not of the form z2 = f(x, y), but we can put it into that form by completing the

square in A. Make a change of coordinates: z := A + xp + 1
2

∑
εklx

kyl. Then

(3.10) yq = (z − xp − 1

2

∑
εklx

kyl)(z + xp +
1

2

∑
εklx

kyl).

Since we are looking at first-order deformations, εklεmn = 0 for all (k, l) and (m,n) in K,

hence this is the same as

yq = z2 − x2p − xp
∑

εklx
kyl,

i.e.,

z2 = x2p + yq +
∑

εklx
p+kyl.

It is easy to check that (k, l) ∈ K if and only if (p + k, l) ∈ I+. Thus (3.8) is a first-order

versal splice quotient deformation of (X1, 0). ¤
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On the level of tangent spaces, we see that if (i, j) ∈ I and i < p, then the deformation

z2 = x2p + yq + εijx
iyj is not a splice quotient. In general, such deformations do exist in

the versal equisingular family (3.5); that is, I 6= I+ in general. For example, consider z2 =

x4 + y9 + εxy7. Therefore, we have shown that in general, not all equisingular deformations

of (X1, 0) are splice quotients. More specifically,

Corollary 3.2.6. If all elements in the versal equisingular deformation of (X1, 0) are

splice quotients, then q < 4p/(p − 1).

Proof. To see this, fix an integer i such that 1 ≤ i ≤ 2p − 1. If (i, j) ∈ I, then

i

2p
+

j

q
≥ 1 ⇐⇒ j ≥

(
1 − i

2p

)
q.

There exist integers j such that (i, j) ∈ I if and only if

q − 2 ≥
(

1 − i

2p

)
q ⇐⇒ q ≥ 4p

i
.

Now suppose that q ≥ 4p/(p − 1). Then there exists j such that (p − 1, j) ∈ I, and hence,

not all elements of the versal equisingular deformation are splice quotients. ¤

So far, we have written down a first-order versal splice quotient deformation of (X1, 0).

However, it is not difficult to write down the versal splice quotient deformation to all orders.

Theorem 3.2.7. A versal splice quotient deformation of (X1, 0) is given by

(3.11)



z2 = x2p + yq +

∑

(i,j)∈I+

tijx
iyj +

1

4


 ∑

(i,j)∈I+

tijx
i−pyj




2
 , where

I+ = {(i, j) ∈ I | i ≥ p}.
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Proof. The proof is the same as that of Proposition 3.2.5 up to Equation (3.10). Here,

we will use tkl as the deformation parameters, to distinguish from the first order parameters

εkl. So Equation (3.10) becomes

(3.12) yq = (z − xp − 1

2
Σtklx

kyl)(z + xp +
1

2
Σtklx

kyl),

where Σ indicates the sum over all (k, l) ∈ K. This is the same as

yq = z2 − x2p − xpΣtklx
kyl − 1

4

[
Σtklx

kyl
]2

,

i.e.,

z2 = x2p + yq + Σtklx
p+kyl +

1

4

[
Σtklx

kyl
]2

.

Again, (k, l) ∈ K if and only if (p + k, l) ∈ I+. ¤

Remark 3.2.8. The end-curve functions for the family (3.11) can be seen in Equation

(3.12).

Approach II. Now let us look at the problem from the point of view of end-curve

functions. The minimal good resolution graph of (X1, 0) is star-shaped with three arms:

two strings of type q/λ, and one string of type p/η, where λ satisfies 2pλ ≡ −1(q) and η

satisfies qη ≡ −1(p). (In this notation, the continued fraction expansions for the strings

go from the central node to the leaf.) The central curve has self-intersection −b, with

b = (1 + 2pλ + qη)/pq. The discriminant group is cyclic of order q. The associated splice

diagram is shown in Figure 3.3. As in Example 3.1.4, the images of the dual basis elements

corresponding to the Ei have order 1, q, and q, and the end-curve functions are x, z − xp,

and z + xp.

We have OX = C[[x, y, z]]/(g), with

g = (z − xp)(z + xp) − yq.
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•
E1

p

•
q

E2 •
q

• E3

Figure 3.3. Splice diagram for Case (i): {z2 = x2p + yq}.

By Proposition 3.1.6, a first-order deformation g + εg̃ will admit a decomposition

g + εg̃ = (z − xp − εf̃1)(z + xp + εf̃2) − (y + εh̃)q,

if and only if g̃ is in the ideal generated by z−xp, z +xp, and yq−1, i.e., (z, xp, yq−1). Recall

that

I =

{
(i, j) ∈ Z2 | 0 < i < 2p − 1, 0 < j < q − 1,

i

2p
+

j

q
≥ 1

}
.

Therefore, if g̃ = xiyj for (i, j) ∈ I, then i ≥ p. On the other hand, if i ≥ p, we have

g + εxiyj = (z − xp − ε

2
xi−pyj)(z + xp +

ε

2
xi−pyj) − yq.

Therefore, Approach II yields the same answer as Proposition 3.2.5.

The versal splice quotient family (3.11) has terms that are quadratic in the deformation

parameters tij. Perhaps there is a change of coordinates that would transform the family

(3.11) into one with only linear terms in the deformation parameters, but it seems unlikely.

However, we can point out one linear family of splice quotients, using end-curves.

Proposition 3.2.9. The linear family over C[[tij]]

(3.13)



z2 = x2p + yq +

∑

(i,j)∈I++

tijx
iyj



 , where

I++ = {(i, j) ∈ I | i ≥ p, j ≥ q/2},

is a family of splice quotients.
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Proof. This can be seen by the following end-curve decomposition of (3.13),

(z − xp − 1

2
Σtijx

i−pyj)(z + xp +
1

2
Σtijx

i−pyj) = yq − 1

4
[Σtijx

i−pyj]2,

in which the right side is yq times a unit since all j ≥ q/2. ¤

In general, this is not the entire versal splice quotient deformation restricted to linear terms

in the deformation parameters. That is, I+ 6= I++ in general, even when I = I+ (e.g.,

z2 = x6 + y5 + tx4y2).

Finally, let us consider those (X1, 0) for which I = I+. In this case, the entire versal

equisingular deformation is a family of splice quotients. For, the versal splice quotient

deformation (3.11) is itself a versal equisingular deformation since it agrees with the versal

equisingular deformation (3.5) to first order. Upon closer inspection, it turns out that there

are very few of these. Recall from Corollary 3.2.6 that

I = I+ =⇒ q < 4p/(p − 1),

and note that 4p/(p − 1) ≤ 5 for p ≥ 5. The table in Figure 3.4 gives a complete list,

excluding the rational double point ({z2 = x4 + y3}, 0), since it is taut (equivalently, I is

empty).

Recall that a normal surface singularity is called elliptic (sometimes called “weakly”

elliptic) if

χ(Zmin) = 0,

where Zmin is the minimal cycle, also known as the fundamental cycle of Artin, associated

to a good resolution graph Γ. The cycle Zmin is defined to be the minimal nonzero effective

cycle Z such that Z ·Ei ≤ 0 for all Ei in the exceptional set corresponding to Γ. A singularity

is minimally elliptic if it is Gorenstein and has geometric genus equal to 1. Minimally elliptic
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singularities are elliptic. In the case we are studying, the geometric genus can easily be

computed by the following

Fact 3.2.10 ([11], 4.23). The geometric genus of ({xa + yb + cd = 0}, 0) is given by

pg = #

{
(i, j, k) ∈ N3 :

i

a
+

j

b
+

k

c
≤ 1

}
.

Claim 3.2.11. Those (X1, 0) for which the entire versal equisingular deformation is a

family of splice quotients are all elliptic.

Proof of Claim. The table in Figure 3.4 gives a complete list of the X1 = {z2 =

x2p + yq} in question, together with the corresponding geometric genus pg. For those with

pg = 1, there is nothing to check. Furthermore, Gorenstein singularities with pg = 2 are

elliptic ([11], 4.18). Therefore, the only case that we must check is {z2 = x2p + y3}, where

p > 5 and (p, 3) = 1. We directly show that χ(Zmin) = 0.

2p q pg

4 5 1

4 7 1

6 5 1

8 3 1

8 5 2

10 3 1

> 10, (p, 3) = 1 3 ⌊p
3
⌋

Figure 3.4. List of all {z2 = x2p+yq} for which the entire versal equisingular

deformation is a family of splice quotients.

38



If p ≡ 1 (mod 3), the resolution graph is as in Figure 3.5, where the number of (−2)-

curves on the right is (p− 4)/3, i.e., n = (p + 8)/3. (The string from E4 to En has continued

fraction expansion p
(p−1)/3

.)

E1

•−3

•
−3

•
−1

•
−4

•
−2

•
−2

E2 E3 E4 E5 En

Figure 3.5. Minimal good resolution graph of {z2 = x2p + y3}, for p ≡ 1 (mod 3).

The minimal cycle is

Zmin = E1 + E2 + 3E3 + E4 + · · · + En.

Recall that for a good resolution graph, the canonical cycle is the rational cycle ZK such

that

ZK · Ei = E2
i − 2gi + 2

for all Ei in the exceptional set. (When (X, 0) is Gorenstein, hence numerical Gorenstein,

ZK has integer coefficients.) In this case, the canonical cycle ZK is

ZK =
p − 1

3
E1 +

p − 1

3
E2 + (p − 2)E3 +

p − 1

3
E4 +

p − 4

3
E5 + · · · + 2En−1 + En.

Therefore,

ZK − Zmin =
p − 4

3
E1 +

p − 4

3
E2 + (p − 5)E3 +

p − 4

3
E4 +

p − 7

3
E5 + · · · + 2En−2 + En−1.

From here, it is not difficult to check that

χ(Zmin) =
1

2
Zmin · (ZK − Zmin) = 0.

If p ≡ 2 (mod 3), the resolution graph is as in Figure 3.6, where the number of (−2)-
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E1

•−2

E2 •−2

•
−2

•
−2

•
−2

•
−2

•
−3

•
−2

•
−2

E3 E4 E5 E6 E7 E8 En

Figure 3.6. Minimal good resolution graph of {z2 = x2p + y3}, for p ≡ 2 (mod 3).

curves on the right is (p−5)/3, i.e., n = (p+16)/3. (The string from E6 to En has continued

fraction expansion p
(p−1)/3

.) The minimal cycle is

Zmin = E1 + 2E2 + E3 + 2E4 + 3E5 + 2E6 + E7 + E8 + · · · + En.

The canonical cycle ZK is

ZK =
p − 2

3
E1 +

2p − 4

3
E2 +

p − 2

3
E3 +

2p − 4

3
E4 + (p − 2)E5

+
2p − 4

3
E6 +

p − 2

3
E7 +

p − 5

3
E8 + · · · + 2En−1 + En.

Therefore,

ZK − Zmin =
p − 5

3
E1 +

2p − 10

3
E2 +

p − 5

3
E3 +

2p − 10

3
E4 + (p − 5)E5

+
2p − 10

3
E6 +

p − 5

3
E7 +

p − 8

3
E8 + · · · + 2En−2 + En−1.

Again, it is easy to check that χ(Zmin) = 1
2
Zmin · (ZK − Zmin) = 0. ¤

Remark 3.2.12. The converse to this Claim is not true. The singularity ({z2 = x8 +

y7}, 0) is elliptic, but not all elements of the versal equisingular deformation are splice quo-

tients. The resolution graph is given in Figure 3.7.

One can check that

Zmin = 2E1 +E2 +2E3 +3E4 +4E5 +5E6 +6E7 +7E8 +6E9 +5E10 +4E11 +3E12 +2E13 +E14
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E1

•−4

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

Figure 3.7. Minimal good resolution graph of {z2 = x8 + y7}.

and ZK = 2Zmin. Hence ZK − Zmin = Zmin, and

χ(Zmin) =
1

2
Z2

min = −1.

Remark 3.2.13. We should also note that in the ZHS case of ({z2 = xP + yQ}, 0), in

which all deformations are splice quotients (Theorem 3.0.1), not all of the singularities are

elliptic. For example, consider ({z2 = x5 + y11}, 0). The resolution graph is shown in Figure

3.8.

•
E1

−11

•
−2

•
−1

•
−3

•
−2

E2 E3 E4 E5

Figure 3.8. Minimal good resolution graph of {z2 = x5 + y11}.

One can check that

Zmin = E1 + 5E2 + 10E3 + 4E4 + 2E5

and

ZK = 3E1 + 12E2 + 24E3 + 10E4 + 5E5.

Hence ZK − Zmin = 2E1 + 7E2 + 14E3 + 6E4 + 3E5, and χ(Zmin) = −1.
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Case (ii): {z2 = x2p + y2q}.

Let X2 ⊂ C3 be defined by

X2 := {z2 = x2p + y2q},

with (p, q) = 1. We also assume p, q > 1, since otherwise (X2, 0) is a rational double point.

By Fact 3.2.1, a versal equisingular deformation of (X2, 0) is given by

(3.14)



z2 = x2p + y2q +

∑

(i,j)∈J

tijx
iyj



 , where

J =

{
(i, j) ∈ Z2 | 0 < i < 2p − 1, 0 < j < 2q − 1,

i

2p
+

j

2q
≥ 1

}
.

Note that the xpyq term has weight 0; therefore,

{z2 = x2p + y2q + tpqx
pyq}

with tpq 6= ±2 gives the full weighted homogeneous family of singularities with this topological

type.

Approach I. Recall that the goal is to write down a (first-order) versal family of splice

quotients. Things are more complicated in this case than they were in Case (i). This time,

it is no easier to construct the UAC of (X2, 0) using end-curve functions, so we will use the

Neumann-Wahl algorithm.

The minimal good resolution graph of (X2, 0) is star-shaped with four arms: two strings

of type q/λ, and two strings of type p/η, where λ satisfies pλ ≡ −1(q) and η satisfies

qη ≡ −1(p). The central curve has self-intersection −b, with b = (2 + 2pλ + 2qη)/pq. The

discriminant group is cyclic of order 2pq. The associated splice diagram is shown in Figure

3.9.
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•

q

B

•

p

C

•
p

•

q

A

•
D

Figure 3.9. Splice diagram for Case (ii): {z2 = x2p + y2q}.

Using the coordinates A, B, C, and D, the Neumann-Wahl algorithm yields equations

of the form 



Cp + a1A
q + b1B

q = 0

Dp + a2A
q + b2B

q = 0





,

where the ai and bi are complex numbers such that a1b2 − a2b1 6= 0. To get the actual UAC

of (X2, 0), one must choose these coefficients carefully.

It turns out that the following equations define the UAC of (X2, 0):

(3.15) (Y2, 0) :=





Cp − kAq − kBq = 0

Dp + kAq − kBq = 0





,

where k = 1√
2
.

Remark 3.2.14. The UAC of (X2, 0) is never a QHS. This can be determined, for

example, by using the method described in [25] to show that the genus of the central curve

in the minimal resolution graph of the weighted homogeneous singularity (Y2, 0) is nonzero.

See also [12], Prop. 12.2.

The Neumann-Wahl algorithm also yields the action of the discriminant group H :=

Z/2pqZ on the UAC (Y2, 0). The group action is generated by the following two elements:

(A,B,C,D) 7→
([

− p

2q

]
A,

[
p

2q

]
B,−C,−D

)
,
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and

(A,B,C,D) 7→
(
−A,−B,

[
− q

2p

]
C,

[
q

2p

]
D

)
,

where [r] = exp(2πir). Taking care to distinguish between the cases when p and q are both

odd and when one of them is even, one can show that this action is generated by

(3.16) (A,B,C,D) 7→ (ξA, ξ−1B, ζC, ζ−1D),

where ξ is a primitive 2q-th root of unity and ζ is a primitive 2p-th root of unity. (For p and

q both odd, take the first element composed with the square of the second, and for p even,

take the square of the first element composed with the second.)

The invariants under this action are A2q, B2q, C2p, D2p, AB, CD, CpAq, CpBq, DpAq,

and DpBq. However, modulo the equations in (3.15), they can all be written in terms of

these four:

A2q, B2q, AB, CD.

The equations (3.15) of (Y2, 0) are weighted homogeneous of weight pq and transform by −1

under the generator (3.16) of the action of H. We must deform (Y2, 0) by adding equisingular

terms that also transform by −1 under the generator, and then mod out by the action of H.

Recall that for a ring OY of the form C[[A,B,C,D]]/(f1, f2),

T 1
Y = O2

Y /J,

where J is the submodule generated by

〈
∂f1

∂A
,
∂f2

∂A

〉
,

〈
∂f1

∂B
,
∂f2

∂B

〉
,

〈
∂f1

∂C
,
∂f2

∂C

〉
, and

〈
∂f1

∂D
,
∂f2

∂D

〉
.

When f1 and f2 are weighted homogeneous, there is a natural way to define the weight of

an element of T 1
Y , namely 〈g1, g2〉 is weighted homogeneous of weight k if and only if g1 and
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g2 are weighted homogeneous polynomials such that

weight(gi) = weight(fi) + k, for i = 1, 2.

Fact 3.2.15 ([23],[25]). Let (Y, 0) ⊂ (C4, 0) be a complete intersection singularity that

is weighted homogeneous and defined by the ideal (f1, f2). Let

{〈g11, g12〉, . . . , 〈gm1, gm2〉}

be a basis for the subspace of weighted homogeneous elements with nonnegative weight in T 1
Y .

Then the family defined by





f1 + t1g11 + · · · tmgm1 = 0

f2 + t1g12 + · · · tmgm2 = 0





is a versal equisingular deformation of (Y, 0) (equisingular in the sense of having a simulta-

neous resolution).

Definition 3.2.16. Let T denote the subspace of weighted homogeneous elements in T 1
Y2

that transform by −1 under the generator of the H-action and have nonnegative weight.

Lemma 3.2.17. A weighted homogeneous basis of T is given by the vectors

{〈(CD)α(AB)βAq, (CD)α(AB)βAq〉 | 0 ≤ α ≤ p − 2, 0 ≤ β ≤ q − 2}.

Proof. Clearly, the elements listed in this set are weighted homogeneous of nonnegative

weight and transform by −1 under the generator of the H-action.

Refer to the equations (3.15) that define (Y2, 0). T 1
Y2

= O2
Y2

/J, where J is the submodule

generated by the vectors

〈
Cp−1, 0

〉
,

〈
0, Dp−1

〉
,

〈
Aq−1,−Aq−1

〉
, and

〈
Bq−1, Bq−1

〉
.
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It is easy to check that the only monomials that transform by −1 under the action of

the generator are Aq, Bq, Cp, Dp, plus any H-invariant monomial times one of these four.

Recall that all of the H-invariant monomials can be written in terms of A2q, B2q, AB, and

CD. Furthermore, Cp and Dp can clearly be written in terms of Aq and Bq modulo (3.15).

We have the following relations in T 1
Y2

:

〈0, 0〉 = 〈Cp, 0〉 = 〈kAq + kBq, 0〉 = 〈kAq, 0〉 + 〈kBq, 0〉;

〈0, 0〉 = 〈0, Dp〉 = 〈0, kBq − kAq〉 = 〈0, kBq〉 − 〈0, kAq〉.

Therefore,

〈Aq, 0〉 = 〈−Bq, 0〉, and

〈0, Aq〉 = 〈0, Bq〉.

Multiplying each of these equations first by Aq and then by Bq implies

〈A2q, 0〉 = 〈B2q, 0〉 = 〈−(AB)q, 0〉, and

〈0, A2q〉 = 〈0, B2q〉 = 〈0, (AB)q〉.

Furthermore,

Bq−1〈Aq−1,−Aq−1〉 + Aq−1〈Bq−1, Bq−1〉 = 〈2(AB)q−1, 0〉, and

−Bq−1〈Aq−1,−Aq−1〉 + Aq−1〈Bq−1, Bq−1〉 = 〈0, 2(AB)q−1〉.

Since the left hand side of each of these equations is trivial in T 1
Y2

(i.e., is in the sub-

module J), we see that 〈(AB)q−1, 0〉 and 〈0, (AB)q−1〉 are trivial, and therefore so are

〈A2q, 0〉, 〈0, A2q〉, 〈B2q, 0〉, and 〈0, B2q〉. Hence, the only nontrivial elements of T are vectors

containing products of AB, CD, and Aq, or AB, CD, and Bq.

The nontrivial weighted homogeneous elements of T with nonnegative weight are of the

form 〈(CD)α(AB)βAq, (CD)α(AB)βAq〉 (Aq could be replaced by ±Bq in either entry, as
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appropriate). Note that the values of α and β must be the same in both entries for weighted

homogeneity. Furthermore, we must have 0 ≤ α ≤ p− 2, 0 ≤ β ≤ q − 2, since (CD)p−1 and

(AB)q−1 are trivial in either entry. At this point, it should be clear that the elements listed

indeed form a basis. ¤

Proposition 3.2.18. A first-order versal splice quotient deformation of (X2, 0) is given

by

(3.17)



z2 = x2p + y2q +

∑

(i,j)∈J+

εijx
iyj



 , where

J+ = {(i, j) ∈ Z2 | p ≤ i < 2p − 1, q ≤ j < 2q − 1}

= {(i, j) ∈ J | i ≥ p and j ≥ q}.

Proof. We consider the first-order family defined by

(3.18)





Cp − kBq − kAq + kΣεαβ(CD)α(AB)βAq = 0

Dp − kBq + kAq + kΣεαβ(CD)α(AB)βAq = 0





,

where Σ denotes the sum over all (α, β) ∈ K, and

K = {(α, β) ∈ Z2 | 0 ≤ α ≤ p − 2, 0 ≤ β ≤ q − 2}.

By first order, we mean εαβεγδ = 0 for all (α, β), (γ, δ) ∈ K. Also, recall that k is defined to

be 1/
√

2.

By Fact 3.2.15 and Lemma 3.2.17, (3.18) is a versal equisingular H-equivariant defor-

mation of (Y2, 0). We will compute the quotient of this family by H. The equations (3.18)
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imply

CpDp = (kBq + kAq − k(Σεαβ(CD)α(AB)β)Aq)(kBq − kAq − k(Σεαβ(CD)α(AB)β)Aq)

= k2B2q − k2A2q − 2k2(Σεαβ(CD)α(AB)β)(AB)q

=
1

2
B2q − 1

2
A2q − Σεαβ(CD)α(AB)β+q.

In terms of the invariants S := A2q, T := B2q, y := AB, and x := CD, we have

2xp = T − S − Σεαβxαyβ+q.

Therefore,

T = S + 2xp + Σεαβxαyβ+q.

The relation y2q = ST yields

y2q = S ·
{
S + 2xp + Σεαβxαyβ+q

}
.

This is a first order family of splice quotients; when all εαβ = 0, it is isomorphic to (X2, 0).

We want to write this in the form z2 = x2p + y2q plus higher order terms, so we complete

the square in S. Let z = S + xp + 1
2
Σεαβxαyβ+q, and the family becomes

y2q =

(
z − xp − 1

2
Σεαβxαyβ+q

)(
z + xp +

1

2
Σεαβxαyβ+q

)
.

That is,

z2 = x2p + y2q + Σεαβxα+pyβ+q.

Finally, it is clear that (α + p, β + q) ∈ J+ if and only if (α, β) ∈ K. ¤

Remark 3.2.19. In this case, as opposed to Case (i) (Theorem 3.2.7), at this point it is

unclear how to write down a versal splice quotient deformation in the form z2 = x2p + y2q

plus higher order terms in tαβ. There is a change of coordinates that will do this, but we
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have been unable to find a simple presentation. On the other hand, see Proposition 3.2.20

below.

Approach II. We now consider deformations of (X2, 0) from the point of view of end-

curve functions. Recall that the resolution graph of (X2, 0) has four leaves. The associated

splice diagram is

•

q

E2

•

p

E3

•
p

•

q

E1

•
E4

The dual basis elements corresponding to E1 and E2 have order 2q in the discriminant

group, and those corresponding to E3 and E4 have order 2p. Let g = z2 − x2p − y2q, so that

OX2
= C[[x, y, z]]/(g). Consider the following decompositions:

g = (z − xp)(z + xp) − y2q;(3.19)

g = (z − yq)(z + yq) − x2p.(3.20)

One can verify, e.g., using Theorem 2.0.12 (6), that the end-curve functions for the Ei are

z − xp, z + xp, z − yq, and z + yq, respectively.

By Proposition 3.1.6, the decomposition (3.19) lifts to a decomposition of the first order

deformation g + εg̃ if and only if g̃ is in the ideal generated by z − xp, z + xp, and y2q−1.

Similarly, (3.20) lifts if and only if g̃ is in the ideal generated by z − yq, z + yq, and x2p−1.

For a splice quotient deformation, g̃ must be in the intersection of the two ideals. Therefore,

g + εxiyj for (i, j) ∈ J is a splice quotient if and only if i ≥ p and j ≥ q, i.e., if and only if

J = J+. This statement is in agreement with Proposition 3.2.18.

Finally, we can use end-curve functions to prove the following.
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Proposition 3.2.20. The linear family over C[[tij]]


z2 = x2p + y2q +

∑

(i,j)∈J+

tijx
iyj





is a versal family of splice quotients.

Proof. Consider the following decompositions of z2 = x2p + y2q +
∑

tijx
iyj, where Σ

indicates summation over all (i, j) ∈ J+:

(z − xp − 1

2

∑
tijx

i−pyj)(z + xp +
1

2

∑
tijx

i−pyj) = y2q − 1

4

[∑
tijx

i−pyj
]2

;

(z − yq − 1

2

∑
tijx

iyj−q)(z + yq +
1

2

∑
tijx

iyj−q) = x2p − 1

4

[∑
tijx

iyj−q
]2

.

In the first equation, the right side is divisible by y2q since all j ≥ q, so the two factors

on the left side are the end-curve functions of order 2q analogous to (3.19). Similarly, in the

second equation the right side is divisible by x2p since all i ≥ p, and we have the remaining

two end-curve functions. This linear family must be versal since it agrees with the first-order

versal family of splice quotients from Proposition 3.2.18. ¤

Remark 3.2.21. On the level of tangent spaces, we see that if i < p or j < q, then

the deformation z2 = x2p + y2q + εxiyj is not a splice quotient. In fact, there is only

one X2 for which there are no terms in the versal equisingular deformation with i < p or

j < q : {z2 = x4 + y6}. It is easy to check that ({z2 = x4 + y6}, 0) is minimally elliptic.
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CHAPTER 4

The topology of {zn = f(x, y)}, for f irreducible

Let {f(x, y) = 0} ⊂ C2 define an analytically irreducible plane curve with a singularity

at the origin. Let Xf,n ⊂ C3 be defined by

Xf,n := {zn = f(x, y)}.

The goal of Chapter 6 is to characterize those (Xf,n, 0) for which the link has the topological

type of a splice quotient; that is, we determine which topological types satisfy the semigroup

and congruence conditions as defined by Neumann and Wahl in [18]. This chapter and the

next contain all of the preliminary material that we will need.

In [8], Mendris and Némethi prove that for f irreducible, the link of (Xf,n, 0) completely

determines the Newton/topological pairs of f and the value of n, with two well-understood

exceptions. In doing so, they give a presentation of the construction of the resolution graph

of (Xf,n, 0) that is very useful for our purposes. In particular, they give a criterion that

determines when (Xf,n, 0) has QHS link. Section 4.1 is mostly a reiteration of their work, and

we use their notation whenever possible. For technical reasons, we will use a modification

of the minimal good resolution graph, a quasi-minimal resolution graph, for many of the

computations in the next few chapters. In §4.2, we set up the notation needed to describe

the associated splice diagram and compute all of the weights at each node.

There is one case in which the resolution graph does not quite have the same structure

as the general case. It is referred to as the “pathological case” by Mendris and Némethi,



and we use this terminology as well. Most of the computations need to be done separately

for the pathological case.

4.1. Resolution graph

In this section, we describe the construction of the minimal good resolution graph of

(Xf,n, 0) for f irreducible. As mentioned above, most of this section is a reiteration of work

that appears in [8]. It begins with the plane curve singularity defined by {f = 0}. It has

long been known (see, e.g. [2]) that in a neighborhood of the singular point, one can solve

for one variable as a fractional power series in the other, leading to an expression of the

following form, the so-called Puiseux expansion:

y = c1x
m1/p1 + c2x

m2/p1p2 + c3x
m3/p1p2p3 + . . . , ci ∈ C.

Only finitely many of these terms are significant with respect to the topology of the sing-

ularity, and the pairs of positive integers (pk,mk) that appear in this expresssion are called

the Puiseux pairs of f. Alternatively, if we write

y = xq1/p1(c1 + xq2/p1p2(c2 + xq3/p1p2p3(c3 + · · · ) · · · )),

the pairs (pk, qk) are referred to as the Newton pairs. They satisfy the following properties:

gcd(pk, qk) = 1, pk ≥ 2, qk ≥ 1, and q1 > p1.

Suppose that f has s Newton pairs (pk, qk), 1 ≤ k ≤ s. Define ak by a1 = q1, and

(4.1) ak = qk + ak−1pk−1pk, 2 ≤ k ≤ s.

The pairs (pk, ak) are defined by Eisenbud and Neumann in [3], and are referred to as the

topological pairs of f. These are the integers that appear in the splice diagram of the plane
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curve singularity {f = 0} in C2. Note that

gcd(pk, ak) = 1, a1 > p1, and ak > ak−1pk−1pk.

Embedded resolutions. Let (X, 0) be a normal surface singularity, and let g : (X, 0) →

(C, 0) be the germ of an analytic function. Then an embedded resolution of {g = 0} in

(X, 0) is a manifold X̃ together with a proper map π : X̃ → X, such that π induces a

biholomorphism of X̃ \ π−1(0) and X \ {0}, and π−1({g = 0}) is a divisor with only normal

crossings. We also assume that no irreducible component of the exceptional set E := π−1(0)

intersects itself. The closure of π−1({g = 0}−{0}) is called the proper transform of {g = 0}.

The embedded resolution graph Γ(X, g) of π is defined as follows. To each irreducible

curve in the exceptional set E, we assign a vertex, and to each irreducible component of the

proper transform of {g = 0} we assign an arrowhead. We draw an edge between two vertices

or between a vertex and an arrowhead, if the corresponding components intersect in X̃.

Each vertex v corresponding to the exceptional curve Ev is labeled with the self-intersection

number E2
v , the genus gv of Ev, and the multiplicity mv of g in Ev. The multiplicity mv is

the order of vanishing of g ◦π along Ev. An arrowhead is labeled with the multiplicity of the

corresponding irreducible component of the proper transform.

A resolution of (X, 0) is a manifold X̃ together with a proper map π : X̃ → X, such that

π induces a biholomorphism of X̃ \ π−1(0) and X \ {0}. A resolution is called good if each

irreducible component of the exceptional divisor E is smooth, and E is a normal crossing

divisor. Again, we assume that no irreducible component of the exceptional set E intersects

itself. For a good resolution, the resolution graph of π is constructed in the same way as

the embedded resolution graph above, only there are no arrowheads or multiplicities in this

graph. A resolution graph or embedded resolution graph is called minimal if it does not
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contain any vertices with genus 0 and self-intersection −1. A minimal resolution graph is not

necessarily good, but there does exist a unique minimal good (embedded) resolution graph.

The minimal good embedded resolution graph of {f = 0} in C2 is a tree of rational

curves, denoted Γ(C2, f). This graph is constructed as follows (e.g., [2]). For 1 ≤ k ≤ s,

determine the continued fraction expansions

pk

qk

= µ0
k −

1

µ1
k −

1

µ2
k −

1

. . . − 1

µtk
k

, and
qk

pk

= ν0
k − 1

ν1
k − 1

ν2
k − 1

. . . − 1

νrk

k

,

where µ0
k, ν0

k ≥ 1, and µj
k, νj

k ≥ 2 for j > 0. Then Γ(C2, f) (with multiplicities omitted) is

given as in Figure 4.1.

•
−µ1

1 • ...
−µ2

1 •
−µ

t1
1 •

−µ0
2−1

• ...
−µ1

2 •
−µ

ts−1

s−1 •
−µ0

s−1

• ...
−µ1

s •
−µts

s •
−1

•−ν
r1
1

...

•−ν
rs−1

s−1

...

•−νrs
s

...
•−ν2

1 •−ν2
s−1 •−ν2

s

•−ν1
1 •−ν1

s−1 •−ν1
s

Figure 4.1. Minimal good embedded resolution graph of {f = 0} in C2.

Following the notation of Mendris and Nèmethi [8], we consider this diagram in a more

convenient schematic form (Figure 4.2), where the dashed lines represent strings of rational

•
v0

•
v1

•
v2

· · · •
vs−1

•
vs

•
v1

•
v2

•
vs−1

•
vs

Figure 4.2. Schematic form of Γ(C2, f).
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curves (possibly empty). The multiplicities of the vertices vk and vk are as follows:

mvk
= akpkpk+1 · · · ps, for 1 ≤ k ≤ s,

mv0
= p1p2 · · · ps,

mvk
= akpk+1 · · · ps, for 1 ≤ k ≤ s − 1,

mvs
= as.

(We will need these multiplicities in §5.2.)

There is an algorithm for constructing an embedded resolution graph (not necessarily

minimal) of the function z : (Xf,n, 0) → (C, 0) from the graph Γ(C2, f), for which the

ideas first appeared in [5]. Here, we follow the presentation in §3 and 4 of [8]. The out-

put of this algorithm, without any modifications by blow up or down, is referred to by

the authors as the canonical embedded resolution graph of z in (Xf,n, 0), and is denoted

Γcan(Xf,n, z). The n-fold “covering” or “graph projection” produced in the algorithm is

denoted q : Γcan(Xf,n, z) → Γ(C2, f). We reproduce here only what is necessary for our

purposes. For full details, the reader should see [8].

Definition 4.1.1. Define positive integers dk, hk, h̃k, p′k, and a′
k as follows.

• dk = (n, pk+1pk+2 · · · ps) for 0 ≤ k ≤ s − 1, and ds = 1;

and, for 1 ≤ k ≤ s,

• hk = (pk, n/dk);

• h̃k = (ak, n/dk);

• p′k = pk/hk;

• a′
k = ak/h̃k.

If w is a vertex in Γ(C2, f), then all vertices in q−1(w) have the same multiplicity and

genus, which we denote mw and gw, respectively.
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Proposition 4.1.2 ([8], Corollary 4.2). Let q : Γcan(Xf,n, z) → Γ(C2, f) be the “graph

projection” mentioned above. Then Γcan(Xf,n, z) is a tree such that the following hold:

(a) #q−1(vs) = 1, #q−1(vk) = hk+1 · · ·hs, (1 ≤ k ≤ s − 1)

#q−1(vs) = h̃s, #q−1(vk) = h̃khk+1 · · ·hs, (1 ≤ k ≤ s − 1)

#q−1(v0) = h1 · · ·hs;

(b) mvk
= a′

kp
′
kp

′
k+1 · · · p′s (1 ≤ k ≤ s),

mv0
= p′1p

′
2 · · · p′s,

mvk
= a′

kp
′
k+1 · · · p′s (1 ≤ k ≤ s − 1),

mvs
= a′

s;

(c) gvk
= 0 (0 ≤ k ≤ s),

gvk
= (hk − 1)(h̃k − 1)/2 (1 ≤ k ≤ s).

In particular, the link of (Xf,n, 0) is a QHS if and only if (hk − 1)(h̃k − 1) = 0

for all k, 1 ≤ k ≤ s.

Remark 4.1.3. We are only interested in those (Xf,n, 0) that have QHS link. Part

(c) of Proposition 4.1.2 tells us exactly when this occurs. Note that gcd(hk, h̃k) = 1 since

gcd(pk, ak) = 1 for all k. In particular, if n is prime, (Xf,n, 0) automatically has QHS link.

From this point forward, we assume that (Xf,n, 0) has QHS link; equivalently, either hk

or h̃k is 1 for all k.

The appearance of Γcan(Xf,n, z) is displayed in Figure 4.3, which is reproduced from [8].

By abuse of notation, we have labelled any vertex in q−1(vk) (respectively, q−1(vk)) with vk

(respectively, vk). The dashed lines represent strings of vertices. By the construction, each
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string must contain at least as many vertices as its image in Γ(C2, f). It is important to

remember that in Γcan(Xf,n, z), these strings are not necessarily minimal.

•v0

... h1
•
v1

h̃1

•v0 •
v1

. . . •
v1

...
...

... hs−1
•

vs−1

h̃s−1

•v0 •
vs−1

. . . •
vs−1

... h1
•
v1

h̃1

· · · · · · ...
... hs

•
vs

h̃s

•

•v0 •
v1

. . . •
v1

•
vs

. . . •
vs

...
... hs−1

•
vs−1

h̃s−1

...
•

vs−1

. . . •
vs−1

•v0

... h1
•
v1

h̃1

•v0 •
v1

. . . •
v1

Figure 4.3. Schematic form of Γcan(Xf,n, z).

Definition 4.1.4. A minimal good embedded resolution graph of z in (Xf,n, 0), denoted

Γmin(Xf,n, z), is obtained from Γcan(Xf,n, z) by blowing down any rational curves of self-

intersection −1 for which the corresponding vertex has valence one or two. By dropping

the arrowhead and multiplicities of Γmin(Xf,n, z) and then blowing down any appropriate

rational curves of self-intersection −1, we obtain a minimal good resolution graph of (Xf,n, 0),

denoted Γmin(Xf,n).
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Recall that a node is a vertex of valence at least three, a leaf is a vertex of valence one,

and a string is a connected subgraph that does not include a node.

Proposition 4.1.5 ([8]). All of the nodes in Γcan(Xf,n, z) survive as nodes in

Γmin(Xf,n, z). That is, they are not blown down in the minimalization process, and after

minimalization, they still have valence at least three.

Proposition 4.1.6 ([8]). Assume that by deleting the arrowhead of Γmin(Xf,n, z) we

obtain a non-minimal graph. This situation can happen if and only if n = ps = 2.

Because of this property, we refer to n = ps = 2 as the pathological case, and it is treated

separately.

A quasi-minimal resolution graph. Since the notation used to describe these graphs

is cumbersome, we would like use the simplest version of the resolution graph to which the

results of Neumann and Wahl can be applied. One complication that arises is that certain

strings in Γcan(Xf,n, z) may completely collapse upon minimalization. Therefore, if we use

the graph Γmin(Xf,n) in what follows, we would constantly need to note that certain strings

may not actually be there, and more importantly, that certain leaves in the splice diagram

may not actually be there. We will avoid this by using a uniquely defined quasi-minimal

resolution graph.

Recall that a resolution tree Γ is quasi-minimal if any string in Γ either contains no (−1)-

weighted vertex, or consists of a unique (−1)-weighted vertex. Recall that Theorem 2.0.12,

the main theorem of Neumann and Wahl concerning splice quotient singularities, applies to

quasi-minimal resolution graphs that satisfy the semigroup and congruence conditions.

Definition 4.1.7. We define quasi-minimal graphs Γqmin(Xf,n, z) and Γqmin(Xf,n) uniquely

as follows. Perform the minimalization process as usual on Γcan(Xf,n, z), except on any string
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from a leaf to a node that completely collapses. In that case, instead of blowing down the en-

tire string, stop when the string has become one vertex of self-intersection −1. The resulting

graph is Γqmin(Xf,n, z). Drop the arrowhead and multiplicities to obtain Γqmin(Xf,n), which is

indeed quasi-minimal (excluding the pathological case). In particular, if there does not exist

a string from a leaf to a node that completely collapses, then Γqmin(Xf,n, z) = Γmin(Xf,n, z)

and Γqmin(Xf,n) = Γmin(Xf,n). We may refer to Γqmin(Xf,n) as the quasi-minimal resolution

graph, although it is certainly not the only quasi-minimal modification of Γcan(Xf,n, z).

Example 4.1.8. Let n = 4, p1 = 3, p2 = 3, q1 = 4, and q2 = 1 (a2 = 37). The various

resolution graphs defined above are shown in Figure 4.4. Multiplicities are omitted.

•
−4

•
−4

•
−1

•−2 •−2

•−2 •−2

(a) Γ(C2, f)

•
−1

•
−16

•
−1

•
−4

•−2 •−2 •−2 •−2 •−2

•−2 •−2 •−2 •−2 •−3

•−2

•−1

(b) Γcan(Xf,n, z)

•
−1

•
−16

•
−1

•
−4

•−2 •−2 •−2 •−2 •−2

•−2 •−2 •−2 •−2 •−2

(c) Γqmin(Xf,n)

•
−15

•
−1

•
−4

•−2 •−2 •−2 •−2 •−2

•−2 •−2 •−2 •−2 •−2

(d) Γmin(Xf,n)

Figure 4.4. Different versions of the resolution graph for Example 4.1.8.

The difference between Γmin(Xf,n) and Γqmin(Xf,n) is not of great significance; we only

use Γqmin(Xf,n) because it makes the arguments easier and the theorem of Neumann and

Wahl can still be applied to it.

The pathological case. Here we describe the minimal resolution graph for the patho-

logical case n = ps = 2. Since n/hs = n/ds−1 = 1, by definition hk = h̃k = 1 for 1 ≤ k ≤ s−1,
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and h̃s = 1 since gcd(ps, as) = 1. Therefore, the link is a QHS and Γmin(Xf,n, z) has the form

shown in Figure 4.5. The minimal resolution graph Γmin(Xf,n) is obtained from Γmin(Xf,n, z)

• • · · · • •

• • • •
−1

vs

• • · · · • •

• • •

Figure 4.5. Schematic form of Γmin(Xf,n, z) in the pathological case.

by deleting the arrowhead and blowing down the vertex vs. No other blow downs are nec-

essary (see [8], Prop. 5.2).

4.2. Splice diagram

Recall the procedure for computing the splice diagram ∆ associated to a resolution graph

Γ that is a tree of rational curves; it is described in Chapter 2, and we repeat it here for

convenience. First, omit the self-intersection numbers and contract all strings of valence

two vertices in Γ. To each node v in the resulting diagram ∆, we attach a weight dve in the

direction of each adjacent edge e. Let Γve be the subgraph of Γ defined as follows. Remove

the vertex that corresponds to the node v, and the edge that corresponds to e, and let Γve

be the remaining connected subgraph that was connected to v by e. Then the weight dve is

det(−Cve), where Cve is the intersection matrix of the graph Γve.

Definition 4.2.1. Let ∆f,n be the splice diagram associated to Γqmin(Xf,n). Note, how-

ever, that for computing the weights of ∆f,n, we can use any modification of Γcan(Xf,n, z)

that is a good resolution graph.
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Almost all of the determinants that we need at each node for the splice diagram are

explicitly computed in [8]. We again use their notation in what follows.

Subgraphs of Γqmin(Xf,n). We must label all of the subgraphs of Γqmin(Xf,n) whose

determinants are the weights of ∆f,n.

By Proposition 4.1.5, the nodes of Γqmin(Xf,n) can be identified with the nodes of

Γcan(Xf,n, z). If a vertex v in Γqmin(Xf,n) is identified with a vertex in q−1(vk), we say

that v is “of type vk”. Similarly, the leaves of Γqmin(Xf,n) can be identified with the leaves

of Γcan(Xf,n, z), and we will say that a vertex v in Γqmin(Xf,n) is “of type vk” if it is the

image (under minimalization) of a vertex in q−1(vk). We will use the same terminology for

the corresponding vertices of ∆f,n.

Γ(vk) and Γ(vk). Let w be a vertex in Γ(C2, f), and let v′ be any vertex of type w

in Γqmin(Xf,n, z). Consider the shortest path from v′ to the arrowhead in Γqmin(Xf,n, z). If

w 6= vs, then there is at least one node on this path; let v′′ be the node on the path that

is closest to v′. If w = vk, 1 ≤ k ≤ s − 1, let Γ(v′) be the maximal string between v′ and

v′′, excluding v′ and v′′ themselves. If w = vk, 0 ≤ k ≤ s, let Γ(v′) be the maximal string

between v′ and v′′, including v′ but excluding v′′. If w = vs, let Γ(v′) be the maximal string

between v′ and the arrowhead, excluding v′.

Since these strings do not depend on the choice of v′ of type w, it is be more convenient

to refer to any such Γ(v′) by Γ(w) instead. Hence we have defined Γ(vk) and Γ(vk).

Γ−(vk). Fix an integer k, 1 ≤ k ≤ s, and consider the collection of connected sub-

graphs that results from removing all of the vertices of type vk in Γqmin(Xf,n, z). There are

h̃khk+1 · · ·hs isomorphic components that contain vertices of type vk. These are all strings

of type Γ(vk). There are also hk · · ·hs isomorphic components that contain vertices of type

v0. These subgraphs are denoted Γ−(vk). Note that Γ−(v1) = Γ(v0).
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ΓA(vk). Finally, fix an integer k, 1 ≤ k ≤ s, and fix one particular vertex v′ of type vk.

Delete v′, and let ΓA(vk) be the connected subgraph of Γqmin(Xf,n, z) − v′ that contains the

arrowhead. In particular, ΓA(vs) = Γ(vs). (The subgraphs ΓA(vk) do NOT appear in [8]; in

particular, ΓA(vk) is not the same as their Γ+(vk).)

Computation of the weights. For any resolution graph Γ, let det(Γ) := det(−C),

where C is the intersection matrix of the exceptional curves in Γ. If Γ is empty, then we

define det(Γ) to be 1. Now define

D(vk) = det(Γ(vk)), 1 ≤ k ≤ s;

D(vk) = det(Γ(vk)), 0 ≤ k ≤ s;

D−(vk) = det(Γ−(vk)), 1 ≤ k ≤ s;

DA(vk) = det(ΓA(vk)), 1 ≤ k ≤ s.

The next three lemmas give us formulas for these determinants.

Lemma 4.2.2 ([8]). Refer to Definition 4.1.1 for the notation.

D(v0) = a′
1,

D(vk) = p′k, 1 ≤ k ≤ s,

D(vs) = n/(hsh̃s),

D(vk) = n · qk+1/(dk−1h̃kh̃k+1), 1 ≤ k ≤ s − 1.

It follows from the construction of Γcan(Xf,n, z) that if D(vs) = 1, this indicates that

Γ(vs) is empty, and the arrowhead in Γcan(Xf,n, z) is connected directly to vs. If D(vk) = 1,

then the string Γ(vk) collapses to a single (−1)-curve in Γqmin(Xf,n), and completely collapses

in the minimal resolution graph Γmin(Xf,n).

The determinants D(vk) give us the weights of the splice diagram at any node of type vk

on the h̃k edges towards a vertex of type vk. Similarly, D(v0) is the weight at the nodes of

type v1 on the h1 edges towards a node of type v0.
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For clarity, we picture the splice diagram ∆f,n at the various nodes. For the nodes of

type vk, 2 ≤ k ≤ s − 1, refer to Figure 4.6. For type v1 and vs, refer to Figure 4.7.

•
D−(vk)

···

... hk
• DA(vk) • ···

•

D−(vk)

··· h̃k. . .

•

p′

k

vk

•

p′

k

vk

Figure 4.6. Splice diagram at a node of type vk, 2 ≤ k ≤ s − 1.

•
a′

1

v0

... h1
• DA(v1) • ···

•

a′

1

v0 h̃1. . .

•

p′

1

v1

•

p′

1

v1

(a) Type v1

•···

... hs
• D(vs)

D−(vs)

D−(vs)
•

•··· h̃s. . .

•

p′

s

vs

•

p′

s

vs

(b) Type vs

Figure 4.7. Splice diagram at a node of type v1 and a node of type vs.

Now all that remains is the computation of D−(vk), 2 ≤ k ≤ s, and DA(vk), 1 ≤ k ≤ s−1.

Lemma 4.2.3 ([8]). If s ≥ 2,

D−(v2) = a′
2 · (a′

1)
h1−1(p′1)

h̃1−1,
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and if s ≥ 3,

D−(vk)

a′
k

= (a′
k−1)

hk−1−1(p′k−1)
h̃k−1−1

[
D−(vk−1)

a′
k−1

]hk−1

,

for 3 ≤ k ≤ s.

The following expression for D−(vk) is sometimes preferable:

(4.2) D−(vk) = a′
k(p

′
k−1)

h̃k−1−1D−(vk−1)
hk−1/a′

k−1.

We briefly describe the method of proof (reproduced from [8], §2.5), since we need it

to compute DA(vk). Let W be the set of non-arrowhead vertices in a decorated graph Γ,

and A the set of arrowhead vertices. By a decorated graph, we mean that each w ∈ W is

decorated with a self-intersection number ew, a genus gw, and a multiplicity mw, and each

a ∈ A is decorated with a multiplicity ma. Let V = W∪A. Let C be the intersection matrix

(Ew · Ev)(w,v)∈W×W . As defined above, det(Γ) = det(−C).

For any vertex w ∈ W, let Vw be the set of all v ∈ V that are adjacent to w. The set V

is called a “compatible set” if

ewmw +
∑

v∈Vw

mv = 0 for any w ∈ W.

In particular, the vertices and arrowhead in Γcan(Xf,n, z) are a compatible set (since

(z ◦ π) · Ew = 0 for any w, where π is the embedded resolution). This set of relations can

also be written in matrix form. Fix an ordering of the set W . Let mW be the column vector

with entries {mw}w∈W , and let mA be the column vector with entries {∑a∈A∩Vw
ma}w∈W .

Then

(4.3) mW = −C−1 · mA.
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Given any two vertices w1 and w2, let Γw1w2
be the maximal (non-connected) graph that

is left after removing the shortest path (including w1 and w2) between the two vertices from

Γ. Similarly, Γww := Γ − {w}. Then, in the case that Γ is a tree,

(4.4) −C−1
w1w2

=
det(Γw1w2

)

det(Γ)
.

Now we are prepared to compute DA(vk).

Lemma 4.2.4. Assume s ≥ 2. Let Ak be defined recursively by

As−1 = as−1ps−1p
′
s + qs,

and, for 1 ≤ k ≤ s − 2,

Ak = akpkp
′
k+1Ak+1 + qk+1ak+2 · · · as.

Then

(4.5) DA(vk) =
nAk ·

{∏s
j=k+1(p

′
j)

h̃j−1D−(vj)
hj−1

}

hkh̃kdkak+1 · · · as

, for 1 ≤ k ≤ s − 1.

Proof. We will use the graph Γcan(Xf,n, z) to compute these determinants, since we

have nice expressions for the multiplicities of the vertices in Proposition 4.1.2. Consider the

augmentation of Γcan(Xf,n, z) obtained by removing one vertex v′ of type vs−1 plus all of

the connected subgraphs of Γcan(Xf,n, z) − v′ except the one containing the arrowhead, and

replacing v′ by an arrowhead with multiplicity mvs−1
. This graph forms a compatible set

with the following schematic form.

65



(mvs−1
) •

w1

Γ−(vs)

... hs − 1 • Γ(vs)
w2

•
w3

(1)

Γ−(vs) h̃s. . .

(mvs )

•
vs

•
vs

The vertex w2 is q−1(vs). Note that if Γ(vs−1) is empty, then w1 = w2, and similarly, if

Γ(vs) is empty, w2 = w3. The following argument is valid whether these strings are empty

or not. The determinant of this graph is DA(vs−1). By (4.3), we have

mvs
= −C−1

w2w1
· mvs−1

− C−1
w2w3

.

By (4.4),

−C−1
w2w1

=
D−(vs)

hs−1(p′s)
h̃sD(vs)

DA(vs−1)
,

and

−C−1
w2w3

=
D−(vs)

hs−1(p′s)
h̃sD(vs−1)

DA(vs−1)
.

Therefore,

mvs
DA(vs−1) = (mvs−1

D(vs) + D(vs−1))D−(vs)
hs−1(p′s)

h̃s .
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Recall from Definition 4.1.1 that p′khk = pk, a′
kh̃k = ak, and dk = hk+1 · · ·hs. Applying

Lemma 4.2.2 and Proposition 4.1.2(b), we have

DA(vs−1) =

(
a′

s−1p
′
s−1p

′
s ·

n

hsh̃s

+
n · qs

ds−2h̃s−1h̃s

)
D−(vs)

hs−1(p′s)
h̃s

a′
sp

′
s

=

(
n(a′

s−1p
′
s−1p

′
sh̃s−1hs−1 + qs)

hs−1h̃s−1hsh̃s

)
D−(vs)

hs−1(p′s)
h̃s−1

a′
s

=

(
n(as−1ps−1p

′
s + qs)

hs−1h̃s−1hsh̃s

)
D−(vs)

hs−1(p′s)
h̃s−1

a′
s

=
nAs−1D−(vs)

hs−1(p′s)
h̃s−1

hs−1h̃s−1ds−1as

.

We prove the general expression (4.5) by induction on k. Assume the expression is correct

for all j such that k+1 ≤ j ≤ s−1, and consider the following augmentation of Γcan(Xf,n, z).

Remove one vertex v′ of type vk plus all of the connected subgraphs of Γcan(Xf,n, z) − v′

except the one containing the arrowhead, and replace v′ by an arrowhead with multiplicity

mvk
. This graph forms a compatible set with the following schematic form.

(mvk
) •

w1

Γ−(vk+1)

... hk+1 − 1 •
w2

. . . . . .

ΓA(vk+1)

•
w3

(1)

Γ−(vk+1) h̃k+1. . .

(mvk+1
)

•
vk+1

•
vk+1

The vertex w2 is of type vk+1. Here, w1 and w2 might be the same vertex, but w2 6= w3.

The determinant of this graph is DA(vk). Again, by (4.4), we have

−C−1
w2w1

=
D−(vk+1)

hk+1−1(p′k+1)
h̃k+1DA(vk+1)

DA(vk)
.
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Upon removing the shortest path from w2 (type vk+1) to w3, we are left with the following

subgraphs: one of type Γ(vk), and for each j, k + 1 ≤ j ≤ s, hj − 1 of type Γ−(vj) and h̃j

of type Γ(vj). Thus,

−C−1
w2w3

=
D(vk)

∏s
j=k+1 D−(vj)

hj−1(p′j)
h̃j

DA(vk)
.

From (4.3), we deduce

mvk+1
DA(vk) = D−(vk+1)

hk+1−1(p′k+1)
h̃k+1DA(vk+1)mvk

+ D(vk)
s∏

j=k+1

D−(vj)
hj−1(p′j)

h̃j .

By induction, DA(vk+1) is given by the corresponding expression in (4.5), and so the equation

above is equivalent to

DA(vk) =

(
nAk+1p

′
k+1mvk

hk+1h̃k+1dk+1ak+2 · · · as

+
nqk+1p

′
k+1 · · · p′s

dk−1h̃kh̃k+1

)
s∏

j=k+1

D−(vj)
hj−1(p′j)

h̃j−1

mvk+1

=

(
nAk+1p

′
k+1a

′
kp

′
k · · · p′s

hk+1h̃k+1dk+1ak+2 · · · as

+
nqk+1p

′
k+1 · · · p′s

dk−1h̃kh̃k+1

)
s∏

j=k+1

D−(vj)
hj−1(p′j)

h̃j−1

a′
k+1p

′
k+1 · · · p′s

=

(
na′

kp
′
kp

′
k+1Ak+1

hk+1h̃k+1dk+1ak+2 · · · as

+
n · qk+1

dk−1h̃kh̃k+1

)
s∏

j=k+1

D−(vj)
hj−1(p′j)

h̃j−1

a′
k+1

=

(
n(a′

kp
′
kp

′
k+1Ak+1hkh̃k + qk+1ak+2 · · · as)

hkh̃khk+1h̃k+1dk+1ak+2 · · · as

)
s∏

j=k+1

D−(vj)
hj−1(p′j)

h̃j−1

a′
k+1

.

Since a′
kp

′
kp

′
k+1Ak+1hkh̃k+qk+1ak+2 · · · as = akpkp

′
k+1Ak+1+qk+1ak+2 · · · as = Ak by definition,

and hkh̃khk+1h̃k+1dk+1a
′
k+1 = hkh̃kdkak+1, the proof is complete. ¤

Remark 4.2.5. Although DA(vk) is an integer, it is not always easy to see it from the

expression (4.5). The product hkh̃kdk divides n, but the aj, k+1 ≤ j ≤ s, may divide either

Ak or D−(vj)
hj−1, depending on the situation.
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By the same method used in the last proof, one can prove the following

Lemma 4.2.6. The determinant of Γqmin(Xf,n) is given by

det(Γqmin(Xf,n)) = (a′
s)

hs−1(p′s)
h̃s−1

[
D−(vs)

a′
s

]hs

,

which can also be written

det(Γqmin(Xf,n)) = (p′s)
h̃s−1D−(vs)

hs/a′
s.

Finally, we use the following technical computations so frequently in future sections that

we list them here for convenience.

Fact DM. Suppose that hkh̃k = 1 for 1 ≤ k ≤ s − 1. Then

D−(vk) = ak, 2 ≤ k ≤ s − 1, and

D−(vs) = a′
s.

Fact DA1. Assume that hs = 1, and suppose that for some k, 1 ≤ k ≤ s − 2, hih̃i = 1

for k + 1 ≤ i ≤ s − 1. Then

DA(vi) = n(ps)
h̃s−1, for k + 1 ≤ i ≤ s − 1, and

DA(vk) =
n

hkh̃k

(ps)
h̃s−1.

In particular, if hkh̃k = 1 for 1 ≤ k ≤ s − 1, then all DA(vk) = n(ps)
h̃s−1.

Fact DA2. Define integers Ãi as follows:

Ãi := as − aipip
2
i+1 · · · p2

s−1(ps − p′s), for 1 ≤ i ≤ s − 2, and

Ãs−1 := as − as−1ps−1(ps − p′s).
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Assume that hs 6= 1, and suppose that for some k, 1 ≤ k ≤ s−2, hih̃i = 1 for k+1 ≤ i ≤ s−1.

Then

DA(vi) =
nÃiD−(vs)

hs−1

hsas

, for k + 1 ≤ i ≤ s − 1, and

DA(vk) =
nÃkD−(vs)

hs−1

hkh̃khsas

.

In particular, if hkh̃k = 1 for 1 ≤ k ≤ s − 1, then all DA(vk) = n
hs

Ãk(as)
hs−2.

Fact DM is immediately clear from Lemma 4.2.3.

Proof of Fact DA1. Since hs = 1 implies p′s = ps, we have

As−1 = as−1ps−1ps + qs = as.

We claim that for all i such that k ≤ i ≤ s − 2, Ai = ai+1 · · · as. This follows easily by

induction, since Ai = aipip
′
i+1Ai+1 + qi+1ai+2 · · · as, p′i+1 = pi+1, and aipipi+1 + qi+1 = ai+1.

Therefore, by Lemma 4.2.4,

DA(vi) =
nai+1 · · · as(ps)

h̃s−1

hih̃idiai+1 · · · as

, for k ≤ i ≤ s − 1.

By definition, di = hi+1 · · ·hs = 1, and thus DA(vi) and DA(vk) are as stated. ¤

Proof of Fact DA2. Since the link is a QHS, hs 6= 1 implies h̃s = 1 and a′
s = as.

Since qs = as − as−1ps−1ps,

As−1 = as−1ps−1p
′
s + qs

= as − as−1ps−1(ps − p′s).
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Then, if hs−1 = 1,

As−2 = as−2ps−2ps−1[as − as−1ps−1(ps − p′s)] + qs−1as

= as[as−2ps−2ps−1 + qs−1] − as−2ps−2as−1p
2
s−1(ps − p′s)

= as−1[as − as−2ps−2p
2
s−1(ps − p′s)]

= as−1Ãs−2.

One can show, by induction, that Ai = ai+1 · · · as−1Ãi, for k ≤ i ≤ s − 2. Therefore, by

Lemma 4.2.4,

DA(vi) =
nai+1 · · · as−1ÃiD−(vs)

hs−1

hih̃idiai+1 · · · as

, for k ≤ i ≤ s − 1.

By definition, di = hi+1 · · ·hs = hs, and thus DA(vi) and DA(vk) are as stated. ¤

The pathological case. We can use the non-minimal resolution graph Γcan(Xf,n, z) to

compute the determinants for the splice diagram in the pathological case n = ps = 2 as

well. Therefore, the formulas given in the preceding section are true for the pathological

case (when applicable). Since for 1 ≤ k ≤ s − 1, all hkh̃k = 1, and n/hs = 1, by Facts DM

and DA2, we have

D−(vk) = ak, for 2 ≤ k ≤ s, and

DA(vk) = Ãk, for 1 ≤ k ≤ s − 1.

Finally, by Lemma 4.2.6, det(Γ) = as. The splice diagram is given in Figure 4.8.

• a1 • Ã1 · · · as−1• Ãs−1 Ãs−1 •as−1 · · · Ã1 • a1 •

•

p1

•

ps−1

•

ps−1

•

p1

Figure 4.8. Splice diagram for the pathological case.
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CHAPTER 5

The Neumann-Wahl algorithm for {zn = f(x, y)}

In this chapter, we continue with the computations that we need to prove Theorem 6.0.1

concerning the topological types of Xf,n = {zn = f(x, y)}. In §5.1, we describe the semigroup

conditions for the splice diagram associated to the quasi-minimal resolution graph of (Xf,n, 0)

as completely as possible. As for the congruence conditions, the action of the discriminant

group defined in the Neumann-Wahl algorithm can be computed via Propositions 2.0.8 and

2.0.9. The first of these propositions is generally easier to apply, because it requires only the

splice diagram, whereas the second one requires the resolution graph as well. The purpose

of §5.2 is to use Proposition 2.0.9 to compute explicitly the character given by ew · ew, where

w is a leaf in the splice diagram associated to (Xf,n, 0).

5.1. Semigroup conditions

Assume that (Xf,n, 0) has QHS link (see Prop. 4.1.2 (c)). In this section, we describe the

semigroup conditions on the splice diagram ∆f,n associated to Γf,n := Γqmin(Xf,n). Unless

stated otherwise, we assume that we are not in the pathological case. Let us begin by fixing

some notation.

Notation. Recall that for each node of type vk in Γf,n, there are hk + h̃k + 1 adjacent

edges, connected to subgraphs of type Γ−(vk), Γ(vk), and ΓA(vk), respectively (see §4.2).

The corresponding pieces of ∆f,n associated to the subgraphs Γ−(vk) and ΓA(vk) are denoted

∆−(vk) and ∆A(vk), respectively. Recall that Γ−(v1) = Γ(v0), and ΓA(vs) = Γ(vs), and keep



in mind that Γ(vs) may be empty. The corresponding determinants are D−(v1) = a′
1 and

DA(vs) = n/hsh̃s.

Semigroup conditions in the direction of ∆−(vk). We begin with the semigroup

condition at a node of type vk, 2 ≤ k ≤ s, in the direction of any of the hk edges that lead to

subdiagrams of the form ∆−(vk). It is clear that this semigroup condition will be the same

for any node v of type vk. By Definition 2.0.1, the condition is

D−(vk) ∈ N〈ℓ′vw | w is a leaf in ∆−(vk)〉.

Proposition 5.1.1. At a node of type vk, 2 ≤ k ≤ s, the semigroup condition in the

direction of any of the hk edges that lead to a subdiagram of the form ∆−(vk) is equivalent

to

(5.1) a′
k ∈ N〈a′

k−1, p′1p
′
2 · · · p′k−1, a′

jp
′
j+1 · · · p′k−1, 1 ≤ j ≤ k − 2〉.

Furthermore, if h̃k = 1, this condition is automatically satisfied.

Proof. We prove this by induction on k. Fix a node v of type vk in ∆f,n. Let Lk be the

semigroup

Lk := N〈ℓ′vw | w is a leaf in ∆−(v) = ∆−(vk)〉.

The leaves in ∆−(vk) are of type vj, for j such that 0 ≤ j ≤ k − 1. Hence, there are k

generators for Lk, namely, ℓ′vwj
, 0 ≤ j ≤ k − 1, where wj denotes any leaf in ∆−(v) of type

vj.
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Claim 5.1.2. Let v be a node of type vk, 2 ≤ k ≤ s, and let wj be a leaf of type vj in

∆−(v), 0 ≤ j ≤ k − 1. Then

ℓ′vwj
=





p′1 · · · p′k−1 · D−(vk)/a
′
k for j = 0

a′
jp

′
j+1 · · · p′k−1 · D−(vk)/a

′
k for 1 ≤ j ≤ k − 2

a′
k−1 · D−(vk)/a

′
k for j = k − 1.

If this claim is true, then D−(vk) and all generators of Lk are divisible by D−(vk)/a
′
k,

and the first statement of the Proposition is clearly true.

Proof of Claim 5.1.2. For k = 2, the claim is true, since if v is a node of type v2,

ℓ′vw0
= (a′

1)
h1−1(p′1)

h̃1 ,

ℓ′vw1
= (a′

1)
h1(p′1)

h̃1−1, and

D−(v2) = a′
2(a

′
1)

h1−1(p′1)
h̃1−1.

(See Figure 4.7.) Clearly, the semigroup condition at v in the direction of ∆−(v) is equivalent

to a′
2 ∈ N〈a′

1, p′1〉.

Now assume the claim is true for k such that 2 ≤ k ≤ i − 1; we will show that it is

true for k = i. Refer to Figure 5.1 for what follows. Fix a node v of type vi, and (abusing

notation), let vi−1 denote the unique node of type vi−1 in ∆−(v). Then

ℓ′vwj
=





ℓ′vi−1wj
· D−(vi−1)

hi−1−1(p′i−1)
h̃i−1 for 0 ≤ j ≤ i − 2,

D−(vi−1)
hi−1(p′i−1)

h̃i−1−1 for j = i − 1.
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∆−(vi−1)

D−(vi−1)

... hi−1
•

D−(vi)

vi−1

h̃i−1...∆−(vi−1)

D−(vi−1)

... hi
•
v

h̃i...•

p′

i−1

wi−1

•

p′

i−1

wi−1

∆A(vi)

•

p′

i

•

p′

i

∆−(vi)

Figure 5.1. Relevant portion of ∆f,n at a node v of type vi.

Therefore, by induction,

ℓ′vwj
=





p′1 · · · p′i−2 · D−(vi−1)/a
′
i−1 · D−(vi−1)

hi−1−1(p′i−1)
h̃i−1 for j = 0

a′
jp

′
j+1 · · · p′i−2 · D−(vi−1)/a

′
i−1 · D−(vi−1)

hi−1−1(p′i−1)
h̃i−1 for 1 ≤ j ≤ i − 3

a′
i−2 · D−(vi−1)/a

′
i−1 · D−(vi−1)

hi−1−1(p′i−1)
h̃i−1 for j = i − 2

D−(vi−1)
hi−1(p′i−1)

h̃i−1−1 for j = i − 1.

By Lemma 4.2.3,

D−(vi)

a′
i

= (p′i−1)
h̃i−1−1D−(vi−1)

hi−1−1 · D−(vi−1)

a′
i−1

,

and hence the claim is true. ¤

Thus, we have proved the first statement of the Proposition. The second statement is

implied by a result in Teissier’s appendix to [27] (see the Appendix of this work for an

explanation). ¤

Semigroup conditions in the direction of ∆A(vk). Fix an integer k, 1 ≤ k ≤ s− 1,

and fix a node v of type vk. The semigroup condition at v in the direction of ∆A(v) is a bit
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more complicated, and we do not prove a proposition that is analogous to Proposition 5.1.1.

Rather, we describe the generators of the semigroup in question and prove a lemma that will

be very useful in proof of Theorem 6.0.1. In practice, however, the fact that either hi or h̃i

is equal to 1 (since the link is a QHS) for all i makes things much simpler than they appear

here.

By definition, the semigroup condition is DA(vk) ∈ Rk, where

Rk := N〈ℓ′vw | w is a leaf in ∆A(v) = ∆A(vk)〉.

Refer to Figure 5.2 for what follows. There is at least one leaf ws in ∆A(v) of type vs

connected to vs (the unique node of type vs), and if n/hsh̃s 6= 1, there is a leaf wa resulting

from the string Γ(vs) in Γf,n. These contribute ℓ′vws
and ℓ′vwa

as generators of Rk.

Now travel along the shortest path from v to vs. If k < s − 1, this path contains one

node of type vm, for each m such that k + 1 ≤ m ≤ s − 1. Since there can be no confusion

here, we will simply refer to the nodes along this path as vm. Each of these nodes is directly

• DA(vk)
v

• DA(vk+1)

vk+1

h̃k+1

... hk+1

∆−(vk+1)

•
wk+1

...

•
wk+1

∆−(vm−1) • DA(vm)
vm

h̃m

... hm

•
vm−1

h̃m−1

... hm−1

∆−(vm−1) •
wm

...

•
wm

•
wm

m−1

...

•
wm

m−1

• n/hsh̃svs

h̃s

... hs

•wa

∆−(vs) •
ws

...

•
ws

Figure 5.2. Relevant portion of ∆f,n at a node v of type vk.
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connected to at least one leaf wm of type vm. Each such leaf contributes the generator ℓ′vwm

to Rk. If hi = 1 for k + 1 ≤ i ≤ s, there are no further leaves in ∆A(v), and we have listed

all the generators of Rk.

For each m such that hm 6= 1, k + 1 ≤ m ≤ s, there are more generators for Rk, namely

ℓ′vw for each type of leaf w in ∆−(vm). There are m different types of leaves that appear:

type vj, for j such that 0 ≤ j ≤ m − 1. Let wm
j be a leaf of type vj in ∆−(vm) (clearly, the

linking number with v will be the same for any such leaf). Now we have accounted for all

possible generators of Rk.

To summarize, the generators of the semigroup Rk are:





ℓ′vwa
(†),

ℓ′vwm
for any m s.t. k + 1 ≤ m ≤ s,

ℓ′vwm
j
, 0 ≤ j ≤ m − 1, for any m s.t. k + 1 ≤ m ≤ s and hm 6= 1





.

(†) Absent if n/hsh̃s = 1.

The following Lemma is needed in Chapter 6, but it is convenient to prove it here.

Lemma 5.1.3. Suppose that (Xf,n, 0) has QHS link, and that ∆f,n satisfies the semigroup

conditions. Assume s ≥ 3, and that hs−1h̃s−1 = 1. Then hkh̃k = 1 for 1 ≤ k ≤ s − 2.

Proof. We prove this by induction on k. The proof must be divided into two cases:

(a) hs = (n, ps) = 1, and (b) hs = (n, ps) 6= 1.

Case (a). Assume that hs = 1 and hs−1h̃s−1 = 1. First, we must show that hs−2h̃s−2 = 1.

By Proposition 4.1.2(a), there is a unique node of type vs−1 in ∆f,n, which we will simply

denote vs−1, and a unique node of type vs−2; call this node v. We will show that the semigroup

condition for v in the direction of ∆A(v) cannot be satisfied if hs−2h̃s−2 6= 1. The splice

diagram in this case is pictured in Figure 5.3. The semigroup condition is: DA(vs−2) is in
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∆−(vs−2)

• DA(vs−2)

v

... hs−2

h̃s−2

• DA(vs−1)

vs−1

• n/h̃s

vs

h̃s

•wa

∆−(vs−2)

•
...

• •

ps−1

ws−1

•

ps

ws

...

•

ps

ws

Figure 5.3. Splice diagram ∆f,n for hs = hs−1h̃s−1 = 1.

the semigroup generated by

{
DA(vs−1), ps−1(ps)

h̃s−1(n/h̃s), ps−1(ps)
h̃s (†)

}
.

(†) Absent if n/h̃s = 1.

By Fact DA1 in §4.2,

DA(vs−1) = n(ps)
h̃s−1, and

DA(vs−2) =
n

hs−2h̃s−2

(ps)
h̃s−1.

Clearly, DA(vs−2) and every generator of the semigroup are divisible by (ps)
h̃s−1, and there-

fore the semigroup condition is equivalent to:
n

hs−2h̃s−2

is in the semigroup generated by

{
n, ps−1(n/h̃s), ps−1ps (†)

}
.

If hs−2h̃s−2 6= 1, then n is too large. But then the semigroup condition implies that

n/hs−2h̃s−2 is divisible by ps−1, which is impossible since hs−1 = (n, ps−1) = 1. Thus, we

must have hs−2h̃s−2 = 1. (Note that the argument is valid for both n/h̃s = 1 and h̃s = 1.)

For the induction step, we assume that hih̃i = 1, for all i such that k + 1 ≤ i ≤ s − 1,

and show that hkh̃k = 1. The proof is very similar to that of the base step. By Proposition

4.1.2(a), there is a unique node of type vk; call this node v. We show that the semigroup
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condition for v in the direction of ∆A(v) cannot be satisfied if hkh̃k 6= 1. The splice diagram

in this case is pictured in Figure 5.4. The semigroup condition is DA(vk) ∈ Rk, where Rk is

defined as above. Since hs = 1, and hs−1h̃s−1 = · · · = hk+1h̃k+1 = 1, the generators of Rk are





ℓ′vws
= pk+1 · · · ps−1(ps)

h̃s−1 · n/h̃s,

ℓ′vwa
= pk+1 · · · ps−1(ps)

h̃s , (†)

ℓ′vwk+1
= DA(vk+1),

ℓ′vwm
= pk+1 · · · pm−1 · DA(vm), k + 2 ≤ m ≤ s − 1.





(†) Absent if n/h̃s = 1.

Again, by Fact DA1 in §4.2,

DA(vm) = n(ps)
h̃s−1, for k + 1 ≤ m ≤ s − 1, and

DA(vk) =
n

hkh̃k

(ps)
h̃s−1.

Clearly, DA(vk) and every generator of Rk are divisible by (ps)
h̃s−1, and the semigroup

condition is equivalent to:
n

hkh̃k

is in the semigroup generated by

{
n

h̃s

pk+1 · · · ps−1, pk+1 · · · ps−1ps (†), n, npk+1 · · · pm−1 | k + 2 ≤ m ≤ s − 1

}
.

If hkh̃k 6= 1, all of the generators of Rk are too large except for n

h̃s

pk+1 · · · ps−1 and

pk+1 · · · ps−1ps (†). Then the semigroup condition implies that n/hkh̃k is divisible by pk+1,

∆−(vk)

•
v

... hk

h̃k

• DA(vk+1)

vk+1

• DA(vm)

vm

• DA(vs−1)

vs−1

• n/h̃s

vs

h̃s

•wa

∆−(vk)

•
...

• •

pk+1

wk+1

•

pm

wm

•

ps−1

ws−1

•

ps

ws

...

•

ps

ws

Figure 5.4. Splice diagram ∆f,n for hs = hs−1h̃s−1 = · · · = hk+1h̃k+1 = 1.

79



which is impossible since hk+1 = (n, pk+1) = 1. Thus, we must have hkh̃k = 1. (Again, note

that the argument is valid for both n/h̃s = 1 and h̃s = 1.)

Case (b). Assume that hs 6= 1 and hs−1h̃s−1 = 1. First of all, note that if n/hs = 1, then

by Definition 4.1.1, hi = h̃i = 1 for 1 ≤ i ≤ s − 1, so there is nothing to prove. Therefore,

assume n/hs 6= 1. We use the same strategy as in the proof of Case (a), and begin by showing

that the semigroup conditions imply that hs−2h̃s−2 = 1.

By Proposition 4.1.2(a), there are hs nodes of type vs−2; let v be any such node. We

will show that the semigroup condition for v in the direction of ∆A(v) cannot be satisfied if

hs−2h̃s−2 6= 1. Refer to Figure 5.5.

Since h̃s = 1, and hs−1h̃s−1 = 1, the generators of Rs−2 are





ℓ′vws
= ps−1 · D−(vs)

hs−1 · n/hs,

ℓ′vwa
= ps−1 · D−(vs)

hs−1p′s,

ℓ′vws−1
= DA(vs−1),

ℓ′vws
j

= ps−1 · D−(vs)
hs−2(p′s) · n/hs · ℓ′vsws

j
, 0 ≤ j ≤ s − 1.





.

∆−(vs−2)

• DA(vs−2)

v

... hs−2

h̃s−2

•
DA(vs−1)

vs−1

∆−(vs−2)

•
...

• •

ps−1

ws−1

• n/hs

vs

... hs

•wa

∆−(vs) •

p′

s

ws

Figure 5.5. Splice diagram ∆f,n for hs 6= 1, hs−1h̃s−1 = 1.
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By Fact DA2 in §4.2,

DA(vs−1) =
nÃs−1D−(vs)

hs−1

hsas

, and

DA(vs−2) =
nÃs−2D−(vs)

hs−1

hs−2h̃s−2hsas

.

We claim that DA(vs−2) and all generators of Rs−2 are divisible by D−(vs)
hs−1/as, which is an

integer by Lemma 4.2.3, since a′
s = as. (Also, note that n/(hs−2h̃s−2hs) is an integer). This is

clearly true for DA(vs−1), ℓ′vws
, and ℓ′vwa

. To see that ℓ′vws
j

is also divisible by D−(vs)
hs−1/as,

recall from Claim 5.1.2 that we have

ℓ′vsws
j

=





p′1 · · · p′s−1 · D−(vs)/a
′
s for j = 0

a′
jp

′
j+1 · · · p′s−1 · D−(vs)/a

′
s for 1 ≤ j ≤ s − 2

a′
s−1 · D−(vs)/a

′
s for j = s − 1.

Since a′
s = as here, the statement is true.

Thus, the semigroup condition is equivalent to n

hs−2h̃s−2hs

Ãs−2 is in the semigroup gener-

ated by: 



n/hs · as · ps−1,

as · p′s · ps−1,

n/hs · Ãs−1,

n/hs · p′s · p′1p′2 · · · p′s−2p
2
s−1

n/hs · p′s · a′
jp

′
j+1 · · · p′s−2p

2
s−1, 1 ≤ j ≤ s − 2,

n/hs · p′s · as−1 · ps−1





.

We want to show that the semigroup condition implies hs−2h̃s−2 = 1. Since Ãs−2 = as −

as−2ps−2p
2
s−1(ps −p′s) < as, the first generator listed is clearly too large. All of the remaining

generators besides asp
′
sps−1 are divisible by n/hs 6= 1. Write

n

hs−2h̃s−2hs

Ãs−1 = Masp
′
sps−1 +

n

hs

N,
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where M, N are in N ∪ {0}. Then we have

{
n

hs−2h̃s−2hs

− Mp′sps−1

}
as =

n

hs

N +
n

hs−2h̃s−2hs

as−2ps−2p
2
s−1(ps − p′s)

=
n

hs

{
N + a′

s−2p
′
s−2p

2
s−1(ps − p′s)

}
.

Therefore, since h̃s = (n, as) = 1, n/hs divides n

hs−2h̃s−2hs

− Mp′sps−1. But we have

0 <
n

hs−2h̃s−2hs

− Mp′sps−1 ≤
n

hs−2h̃s−2hs

≤ n

hs

,

with equalities if and only if M = 0 and hs−2h̃s−2 = 1. Hence we must have hs−2h̃s−2 = 1.

The proof of the induction step is virtually identical to the argument just given. Assume

that hih̃i = 1, for all i such that k + 1 ≤ i ≤ s − 1. By Proposition 4.1.2(a), there are hs

nodes of type vk; let v be any such node. We will show that the semigroup condition for v

in the direction of ∆A(v) cannot be satisfied if hkh̃k 6= 1. Refer to Figure 5.6.

∆−(vk)

•
v

... hk

h̃k

• DA(vk+1)

vk+1

• DA(vm)

vm

•
DA(vs−1)

vs−1

∆−(vk)

•
...

• •

pk+1

wk+1

•

pm

wm

•

ps−1

ws−1

• n/hs

vs

... hs

•wa

∆−(vs) •

p′

s

ws

Figure 5.6. Splice diagram ∆f,n for hs 6= 1, hs−1h̃s−1 = · · · = hk+1h̃k+1 = 1.
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Since h̃s = 1, and hs−1h̃s−1 = · · · = hk+1h̃k+1 = 1, the generators of Rk are





ℓ′vws
= pk+1 · · · ps−1 · D−(vs)

hs−1 · n/hs,

ℓ′vwa
= pk+1 · · · ps−1 · D−(vs)

hs−1p′s,

ℓ′vwk+1
= DA(vk+1),

ℓ′vwm
= pk+1 · · · pm−1 · DA(vm), k + 2 ≤ m ≤ s − 1,

ℓ′vws
j

= pk+1 · · · ps−1 · D−(vs)
hs−2(p′s) · n/hs · ℓ′vsws

j
, 0 ≤ j ≤ s − 1.





By Fact DA2 in §4.2,

DA(vm) =
nÃmD−(vs)

hs−1

hsas

, for k + 1 ≤ m ≤ s − 1, and

DA(vk) =
nÃkD−(vs)

hs−1

hkh̃khsas

.

We claim that DA(vk) and all generators of Rk are divisible by D−(vs)
hs−1/as. This is clearly

true for DA(vk), ℓ′vws
, ℓ′vwa

, and ℓ′vwm
, k + 1 ≤ m ≤ s − 1. That ℓ′vws

j
is also divisible by

D−(vs)
hs−1/as follows from Claim 5.1.2 as above.

Thus, the semigroup condition is equivalent to n

hkh̃khs

Ãk is in the semigroup generated

by: 



n/hs · as · pk+1 · · · ps−1,

as · p′s · pk+1 · · · ps−1,

n/hs · Ãk+1,

n/hs · Ãm · pk+1 · · · pm−1, k + 2 ≤ m ≤ s − 1,

n/hs · p′s · p′1p′2 · · · p′kp2
k+1 · · · p2

s−1

n/hs · p′s · a′
lp

′
l+1 · · · p′kp2

k+1 · · · p2
s−1, 1 ≤ l ≤ k − 1,

n/hs · p′s · a′
k · p2

k+1 · · · p2
s−1,

n/hs · p′s · al · pk+1 · · · plp
2
l+1 · · · p2

s−1, k + 1 ≤ l ≤ s − 2,

n/hs · p′s · as−1pk+1 · · · ps−1





.

83



We want to show that the semigroup condition implies hkh̃k = 1. Since

Ãk = as − akpkp
2
k+1 · · · p2

s−1(ps − p′s) < as,

the first generator listed is too large. All of the remaining generators besides asp
′
spk+1 · · · ps−1

are divisible by n/hs 6= 1. Write

n

hkh̃khs

Ãk = Masp
′
spk+1 · · · ps−1 +

n

hs

N,

where M, N are in N ∪ {0}. Just as in the proof of the base step, one can show that the

only possibility is M = 0 and hkh̃k = 1. ¤

The pathological case. For the pathological case n = ps = 2, Proposition 5.1.1 is valid

for 2 ≤ k ≤ s − 1, and since h̃k = 1 for 1 ≤ k ≤ s − 1, the semigroup condition at a node of

type vk in the direction of ∆−(vk) is always satisfied. Since ps − p′s = 2 − 1 = 1,

Ãs−1 = as − as−1ps−1, and

Ãk = as − akpkp
2
k+1 · · · p2

s−1, for 1 ≤ k ≤ s − 2.

Refer to Figure 4.8 for the splice diagram. The semigroup condition for a node of type vk in

the direction of a subdiagram of the form ∆A(vk) for 1 ≤ k ≤ s−3 is: Ãk is in the semigroup

generated by





Ãk+1,

pk+1 · · · pm−1Ãm, k + 2 ≤ m ≤ s − 1,

pk+1 · · · ps−1as−1,

pk+1 · · · ps−1ajpj+1 · · · ps−1, 1 ≤ j ≤ s − 2,

p1 · · · pkp
2
k+1 · · · p2

s−1





.
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For k = s − 2, this semigroup condition is: Ãs−2 is in the semigroup generated by





Ãs−1,

ps−1as−1,

ajpj+1 · · · ps−2p
2
s−1, 1 ≤ j ≤ s − 2,

p1 · · · ps−2p
2
s−1





.

Finally, for k = s − 1, this semigroup condition is: Ãs−1 is in the semigroup generated by





as−1,

ajpj+1 · · · ps−1, 1 ≤ j ≤ s − 2,

p1 · · · ps−1





.

5.2. Action of the discriminant group

In order to use Proposition 2.0.10 to check the congruence conditions for the resolution

graph Γf,n (when the semigroup conditions are satisfied), we need the continued fraction

expansions of the strings from leaves to nodes. This is essentially done in Mendris and

Némethi’s paper ([8], proof of Prop. 4.5), but we will need a bit more detail than they

included.

Background. We begin with a summary of facts that we need, which can be found in

[8], 2.11-2.13. Let a, Q, and P be strictly positive integers with gcd(a,Q, P ) = 1. Then

(X(a,Q, P ), 0) is defined to be the isolated surface singularity lying over the origin in the

normalization of ({UaV Q = W P}, 0). For the rest of this section, (m,n) denotes gcd(m,n).

Let λ be the unique integer such that 0 ≤ λ < P/(a, P ) and

Q + λ · a

(a, P )
= m · P

(a, P )
,
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for some positive integer m. If λ 6= 0, then let [k1, . . . , kt] be the continued fraction expansion

of P/(a,P )
λ

. That is,

P/(a, P )

λ
= k1 −

1

k2 −
1

. . . − 1

kt

,

and all ki ≥ 2.

Then the minimal embedded resolution graph (see §4.1) of the coordinate function

V : X(a,Q, P ) → C in (X(a,Q, P ), 0) is given by the following string (omitting the multi-

plicities of the vertices):

−k1 −k2 −kt

(0) • • •
(

P
(Q,P )

)

.

If λ = 0, the string is empty. One can similarly describe the embedded resolution graphs of

the functions U and W, but we do not need them here.

Now we compute the minimal resolution graph Γ of the singularity in the normalization

of N -fold cover of (X(1, Q, P ), 0) branched over V M = 0, where (Q,P ) = 1 and (N,M) = 1.

The graph Γ is the resolution graph of the singularity in the normalization of

X1 := {UV Q = W P , TN = V M} ⊆ C4.

We claim that we may assume M = 1, since this space has the same normalization as

X2 := {UV Q = W P , TN = V } ⊆ C4.

To see this, note that since (N,M) = 1, there exist positive integers r and s such that

rM − sN = 1. Let (X̄i, 0) denote the isolated singularity in the normalization of Xi, for

i = 1, 2, and let OX̄i
be the local analytic ring of (X̄i, 0). Now consider the element

t :=
T r

V s
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of the quotient ring of OX̄1
, which is integral over OX̄1

, since

tM = T and tN = V.

Adjoining t to OX̄1
results in the ring

C[[U, t,W ]]/(UtQN − W P ),

which is clearly isomorphic to OX̄2
.

Therefore, Γ is the resolution graph of the singularity in the normalization of {UV QN =

W P}, which is isomorphic to the singularity at the origin in

X

(
1, Q

N

(N,P )
,

P

(N,P )

)
= {UV QN/(N,P ) = W P/(N,P )}.

Hence, we have the following

Lemma 5.2.1. Let Γ be the resolution graph of the singularity in the normalization of the

N -fold cover of (X(1, Q, P ), 0) branched over V M = 0, where (Q,P ) = 1 and (N,M) = 1.

Let λ be the unique integer such that 0 ≤ λ < P/(N,P ) and

Q
N

(N,P )
+ λ = m · P

(N,P )

for some positive integer m. Then Γ is a string of vertices with continued fraction expansion

P/(N,P )
λ

. That is, Γ is

−j1 −j2 −jr

• • • ,

where [j1, . . . , jr] is the continued fraction expansion of P/(N,P )
λ

.

Strings in Γf,n. Now we turn to the strings that we are interested in. We need the

continued fraction expansion of the strings in Γf,n from leaves of type vk, 0 ≤ k ≤ s, to the

corresponding node of type vk (from type v0 to type v1).
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Recall the construction of Γ(C2, f) from §4.1. The continued fraction expansion in

Γ(C2, f) from vk to vk for 1 ≤ k ≤ s is given by pk

ηk
, where 0 ≤ ηk < pk and

qk

pk

= ν0
k − ηk

pk

⇐⇒ qk + ηk = ν0
kpk.

The corresponding string in Γ(C2, f) is (multiplicities of vertices omitted):

−ν1
k −ν2

k −ν
rk
k

(0) • • • (akpk · · · ps) ,

where [ν1
k , . . . , ν

rk

k ] =
pk

ηk

. Let X := X(1, qk, pk). Since qk + ηk = ν0
kpk, the string above

is the embedded resolution graph of V akpk+1···ps in X. It follows from the construction of

Γf,n that the collection of strings that lies above this one in Γf,n is the minimal (possibly

non-connected) resolution graph of the singularity in the normalization of

{UV qk = W pk , T n = V akpk+1···ps}.

There are (n, akpk+1 · · · ps) = h̃kdk = h̃khk+1 · · ·hs connected components (recall from Def-

inition 4.1.1 that dk = hk+1 · · ·hs for 1 ≤ k ≤ s − 1, and ds = 1), each being the resolution

graph of the normalization of

{UV qk = W pk , T n/h̃kdk = V a′

k
p′

k+1
···p′s}.

Now we are in the situation of Lemma 5.2.1, with Q = qk, P = pk, and N = n/h̃kdk. We

have (N,P ) = (n/h̃kdk, pk) = hk by definition of hk, and so in this case P/(N,P ) = p′k (as

expected from Proposition 4.2.2). If p′k = 1, then in Γf,n, the string of type vk will consist of

a single (−1)-curve.

Suppose p′k 6= 1. By Lemma 5.2.1, the continued fraction expansion of the string(s) from

a leaf of type vk to the corresponding node of type vk in the resolution graph Γf,n is given
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by
p′k
η′

k

, where η′
k is the unique integer such that 0 < η′

k < p′k and

qk
n

hkh̃kdk

+ η′
k = mp′k,

for some positive integer m. That is,

η′
k = −qk

n

hkh̃kdk

+ mp′k.

Since ak = qk + ak−1pk−1pk, we have

(5.2) η′
k ≡ −ak ·

n

hkh̃kdk

(mod p′k).

Knowing the congruence class of η′
k modulo p′k is enough for our purposes.

The continued fraction expansion from v0 to v1 is given by q1

η0
= a1

η0
, where 0 ≤ η0 < a1

and

p1

a1

= µ0
1 −

η0

a1

⇐⇒ p1 + η0 = µ0
1a1.

Using an argument analogous to the one above, we have that the continued fraction expansion

of the string(s) from a leaf of type v0 to the corresponding node of type v1 in Γf,n is given

as in Lemma 5.2.1, with Q = p1, P = a1, and N = n/h1d1. The expansion is
a′

1

η′
0

, where

p1
n

h1h̃1d1

+ η′
0 = ma′

1,

for some positive integer m. Thus,

(5.3) η′
0 ≡ −p1 ·

n

h1h̃1d1

(mod a′
1).

Recall the notation defined in Chapter 2: for r ∈ Q, [r] = exp(2πir), and for a leaf

w ∈ Γf,n, ew denotes the image in the the discriminant group of the dual basis element in

E∗ corresponding to w.
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Corollary 5.2.2. Let wk be any leaf of type vk in Γf,n, 0 ≤ k ≤ s. Then

[ew0
· ew0

] =

[
(n/h1h̃1d1)(p1a2 · · · as − A1p

′
1)

a′
1a2 · · · as

]
,

[ewk
· ewk

] =

[
(n/hkh̃kdk)(akak+1 · · · as − Aka

′
k)

p′kak+1 · · · as

]
, for 1 ≤ k ≤ s − 1, and

[ews
· ews

] =

[
(n/hsh̃s)(as − a′

s)

p′s

]
.

Proof. Proposition 2.0.9 says that for any leaf w connected by a string of vertices to a

node v,

ew · ew = −dv/(d
2 det(Γ)) − p/d,

where dv is the product of weights at the node v, and d/p is the continued fraction expansion

of the string from w to v. Let dvk
be the product of the weights at any node of type vk, 1 ≤

k ≤ s (Refer to Figures 4.6 and 4.7). Then

dvk
= DA(vk)D−(vk)

hk(p′k)
h̃k .

Furthermore, by Lemma 4.2.6, we have

det(Γ) = (p′s)
h̃s−1 · D−(vs)

hs

a′
s

.

Since DA(vs) = n/(hsh̃s), we have

ews
· ews

= −(n/hsh̃s)D−(vs)
hs(p′s)

h̃s

(p′s)
2 det(Γ)

− η′
s

p′s

= −(n/hsh̃s)a
′
s

p′s
− η′

s

p′s
.

By Equation (5.2), η′
s ≡ −as · n

hsh̃s

(mod p′s) (recall that ds = 1 by definition), and thus we

have

[ews
· ews

] =

[
(n/hsh̃s)(as − a′

s)

p′s

]
.
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We will need the following fact. For any k such that 1 ≤ k ≤ s − 1,

det(Γ) =
D−(vk)

a′
k

s∏

j=k

(p′j)
h̃j−1 · D−(vj)

hj−1.

This is clearly true, since

det(Γ) =
D−(vs)

a′
s

(p′s)
h̃s−1 · D−(vs)

hs−1,

and, by Lemma 4.2.3, for 1 ≤ j ≤ s,

D−(vj)

a′
j

=
D−(vj−1)

a′
j−1

(p′j−1)
h̃j−1−1 · D−(vj−1)

hj−1−1.

Now, for 1 ≤ k ≤ s − 1,

ewk
· ewk

= −DA(vk)D−(vk)
hk(p′k)

h̃k

(p′k)
2 det(Γ)

− η′
k

p′k

= −

(
nAk·

∏s
j=k+1

(p′j)
h̃j−1D−(vj)

hj−1

hkh̃kdkak+1···as

)
D−(vk)

hk(p′k)
h̃k

(p′k)
2 D−(vk)

a′

k

(∏s
j=k(p

′
j)

h̃j−1 · D−(vj)hj−1
) − η′

k

p′k

= −

(
nAk

hkh̃kdkak+1···as

)
a′

k

p′k
− η′

k

p′k
.

Hence, applying Equation (5.2),

[ewk
· ewk

] =

[
(n/hkh̃kdk)ak

p′k
− (n/hkh̃kdk)Aka

′
k

p′kak+1 · · · as

]
=

[
(n/hkh̃kdk)(akak+1 · · · as − Aka

′
k)

p′kak+1 · · · as

]
.

Finally, we have

ew0
· ew0

= −DA(v1)(a
′
1)

h1(p′1)
h̃1

(a′
1)

2 det(Γ)
− η′

0

a′
1

= −

(
nA1·

∏s
j=2

(p′j)
h̃j−1D−(vj)

hj−1

h1h̃1d1a2···as

)
(a′

1)
h1(p′1)

h̃1

(a′
1)

2(a′
1)

h1−1(p′1)
h̃1−1

(∏s
j=2(p

′
j)

h̃j−1 · D−(vj)hj−1
) − η′

0

a′
1

= −

(
nA1

h1h̃1d1a2···as

)
p′1

a′
1

− η′
0

a′
1

.
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Therefore, by (5.3),

[ew0
· ew0

] =

[
(n/h1h̃1d1)p1

a′
1

− (n/h1h̃1d1)A1p
′
1

a′
1a2 · · · as

]
=

[
(n/h1h̃1d1)(p1a2 · · · as − A1p

′
1)

a′
1a2 · · · as

]
.

¤
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CHAPTER 6

Characterization of the topological types of splice quotients

In this chapter, we consider Xf,n = {zn = f(x, y)}, where f is an irreducible plane curve

with a singularity at the origin having s ≥ 2 topological pairs (see §4.1). Let {(pi, ai)}s
i=1

be the topological pairs. We determine which (Xf,n, 0) have a splice diagram and resolution

graph that satisfy both the semigroup conditions and the congruence conditions, as defined

by Neumann and Wahl (see Chapter 2). Let Γf,n denote the good quasi-minimal resolution

graph Γqmin(Xf,n) defined in §4.1, and let ∆f,n be the splice diagram associated to Γf,n.

Recall that the semigroup conditions depend only on ∆f,n, whereas the congruence conditions

depend on Γf,n as well. With this in mind, we will often say “Γf,n satisfies the semigroup

and congruence conditions”, as opposed to “∆f,n satisfies the semigroup conditions and

Γf,n satisfies the congruence conditions”. If Γf,n satisfies the semigroup and congruence

conditions, then there exist splice quotients with resolution graph Γf,n, but whether or not

there is a splice quotient of this topological type defined by an equation of the form zn =

f(x, y) is another question. The analytic types of the resulting splice quotients are studied

in Chapter 7. For the remainder of the chapter, (p, q) denotes gcd(p, q).

Theorem 6.0.1 (Main Theorem). Assume (Xf,n, 0) has QHS link. Then Γf,n satisfies

the semigroup and congruence conditions if and only if either

(i) (n, ps) = 1, (n, pi) = (n, ai) = 1 for 1 ≤ i ≤ s−1, and as/(n, as) is in the semigroup

generated by {as−1, p1 · · · ps−1, ajpj+1 · · · ps−1 : 1 ≤ j ≤ s − 2}, or

(ii) s = 2, p2 = 2, (n, p2) = 2, and (n
2
, p1) = (n

2
, a1) = 1.



Remark 6.0.2. 1) The ZHS link case belongs to (i) (see Proposition 6.0.3).

2) For the so-called pathological case n = ps = 2, both semgroup and congruence

conditions are satisfied only for s = 2.

3) There are classes of (Xf,n, 0) for which the semigroup conditions are satisfied but the

congruence conditions are not; we do not write up a complete list of these types. An

example with this property is given by n = 2, s = 2, p1 = 2, a1 = 3, p2 = 3, and

a2 = 20. The minimal good resolution graph and splice diagram for this example

are given in Figure 6.1.

−3 −4 −1 −3

•Γ= • • • • 3
∆= • 3 30 • 3 •

•−3 •−3 •

3

•

3

Figure 6.1. Example for which the semigroup conditions are satisfied but

the congruence conditions are not.

Recall from Definition 4.1.1 that

• di = (n, pi+1pi+2 · · · ps) for 0 ≤ i ≤ s − 1, and ds = 1;

and, for 1 ≤ i ≤ s,

• hi = (pi, n/di); • p′i = pi/hi;

• h̃i = (ai, n/di); • a′
i = ai/h̃i.

The link of (Xf,n, 0) is a QHS if and only if for each i, either hi or h̃i is equal to 1 (Proposition

4.1.2(c)). We assume that this condition holds in all that follows.

The remainder of this chapter is devoted to proving Theorem 6.0.1. We treat the following

cases separately:

• hs = h̃s = 1,

• h̃s 6= 1 (=⇒ hs = 1),
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• hs 6= 1 (=⇒ h̃s = 1).

The first of these cases is the easiest to handle. The following result of Neumann and

Wahl was mentioned in Chapter 1.

Proposition 6.0.3 ([16]). The link of (Xf,n, 0) is a ZHS if and only if the plane curve

singularity {f(x, y) = 0} has only one branch at 0 and n is relatively prime to each integer

pi and ai in the topological pairs of f.

Remark 6.0.4. In [16], the proposition is incorrectly stated. The pairs in question are

identified as the Newton pairs instead of the topological pairs.

Clearly, n is relatively prime to each topological pair if and only if hih̃i = 1 for 1 ≤ i ≤ s.

Proposition 6.0.5. Suppose hsh̃s = 1. Then ∆f,n satisfies the semigroup conditions if

and only if hih̃i = 1 for 1 ≤ i ≤ s − 1, that is, if and only if the link is a ZHS.

Proof. If hih̃i = 1 for all i, 1 ≤ i ≤ s, then the semigroup conditions are satisfied. It

is not difficult to see that this follows from the second statement of Proposition 5.1.1. A

complete proof and discussion can be found in [19].

Now assume that the semigroup conditions are satisfied. Since hs = (n, ps) = 1, there is

only one node of type vs−1 (see Prop. 4.1.2), which we denote vs−1. The splice diagram ∆f,n

is shown in Figure 6.2.

The semigroup condition at the node vs−1 in the direction of ∆A(vs−1) is

DA(vs−1) ∈ N〈n, ps〉.

By Lemma 4.2.4,

DA(vs−1) =
nAs−1

hs−1h̃s−1ds−1as

,
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∆−(vs−1)

•... hs−1

DA(vs−1) D−(vs)
vs−1

h̃s−1

• n

ps

vs

•

∆−(vs−1)

•
vs−1

...

•
vs−1

•
vs

Figure 6.2. Splice diagram for hs = h̃s = 1.

where As−1 = as−1ps−1p
′
s + qs. Since p′s = ps, we have As−1 = as, and, by definition, ds−1 =

hs = 1. Thus,

DA(vs−1) =
n

hs−1h̃s−1

.

The semigroup condition implies hs−1h̃s−1 = 1. For, if not, n > n/hs−1h̃s−1, and hence,

n/hs−1h̃s−1 ∈ Nps, which is impossible since hs = (n, ps) = 1.

If s = 2, we are done. If s ≥ 3, then by Lemma 5.1.3, hih̃i = 1 for 1 ≤ i ≤ s. ¤

The remaining (Xf,n, 0) with QHS link are divided into two cases:

(i) h̃s = (n, as) 6= 1;

(ii) hs = (n, ps) 6= 1.

These lead to cases (i) and (ii) of the Main Theorem, respectively.

6.1. Case (i) (n, as) 6= 1

The purpose of this section is to prove the following

Proposition 6.1.1. Suppose h̃s = (n, as) 6= 1. Then Γf,n satisfies the semigroup and

congruence conditions if and only if both of the following hold:

(I) hih̃i = 1 for 1 ≤ i ≤ s − 1,

(II) a′
s = as/h̃s ∈ N〈as−1, p1 · · · ps−1, ajpj+1 · · · ps−1 : 1 ≤ j ≤ s − 2〉.
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Remark 6.1.2. The condition (II) is clearly not always satisfied. For example, take n

divisible by as.

Claim 6.1.3. Assume that hih̃i = 1 for 1 ≤ i ≤ s− 1. Then the following are equivalent:

(a) a′
s = as/h̃s ∈ N〈as−1, p1p2 · · · ps−1, ajpj+1pj+2 · · · ps−1 : 1 ≤ j ≤ s − 2〉,

(b) ∆f,n satisfies the semigroup conditions,

(c) Γf,n satisfies the semigroup and congruence conditions.

Once we have shown Claim 6.1.3, one direction of Proposition 6.1.1 is clear.

Proof of Claim 6.1.3. We have hih̃i = 1 for 1 ≤ i ≤ s− 1, and hs = 1. Therefore, by

Fact DM in §4.2,

D−(vk) = ak, 2 ≤ k ≤ s − 1, and

D−(vs) = a′
s,

and by Fact DA1,

DA(vk) = n(ps)
h̃s−1, for 1 ≤ k ≤ s − 1.

The splice diagram ∆f,n is shown in Figure 6.3. There is exactly one node of type vk in ∆f,n

for 1 ≤ k ≤ s, which we denote vk. The leaves are denoted z0, . . . , zs−1, u1, . . . , uh̃s
, and y,

as in Figure 6.3.

It is clear from Proposition 5.1.1 that the semigroup condition at the node vk in the

direction of ∆−(vk) is satisfied for 2 ≤ k ≤ s− 1, and at node vs, the condition is equivalent

• a1
z0 • n(ps)h̃s−1

a2

p1

v1

• n(ps)h̃s−1

v2

p2

as−1 • n(ps)h̃s−1 a′

s

ps−1

vs−1

• n/h̃s

vs

h̃s

• y

•
z1

•
z2

•
zs−1

•

ps

u1

...

•

ps

u
h̃s

Figure 6.3. Splice diagram for h̃s 6= 1 and hih̃i = 1, 1 ≤ i ≤ s − 1.
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to (a). Furthermore, one can see by examination of the splice diagram that the semigroup

condition at each vk in the direction of ∆A(vk) (i.e., in the direction of vs) is always satisfied

(including in the case n = h̃s). Therefore, we have (a) ⇐⇒ (b).

It remains to prove (b) =⇒ (c), i.e., ∆f,n satisfies the semigroup conditions =⇒ Γf,n

satisfies the congruence conditions.

Assume that ∆f,n satisfies the semigroup conditions. We use Proposition 2.0.10 to show

that the congruence conditions are satisfied. We repeat this result here for convenience.

Proposition 2.0.10. Let Γ be a graph for which the associated splice diagram ∆ satisfies

the semigroup conditions. Then the congruence conditions are equivalent to the following:

For every node v and adjacent edge e, there is an admissible monomial Mve =
∏

Zαw
w (w

running over the leaves in ∆ve) such that for every leaf w′ in ∆ve,

(6.1)

[
∑

w 6=w′

αw
ℓww′

det(Γ)
− αw′ew′ · ew′

]
=

[
ℓvw′

det(Γ)

]
.

Recall (Remark 2.0.11) that there is nothing to check for edges leading directly to leaves.

By Lemma 4.2.6, we have

det(Γf,n) = (ps)
h̃s−1.

In Figure 6.3, it is easy to see that for any node v and any leaf w′ in ∆f,n, ℓvw′ is always

divisible by (ps)
h̃s−1. That is,

[
ℓvw′

det(Γf,n)

]
= [0]

for any node v and any leaf w′ in ∆f,n. Thus in Equation (6.1), the right hand side is always

[0] in this setting.

First we show that for all vk in ∆f,n, 2 ≤ k ≤ s, the congruence condition for the edge

in the direction of ∆−(vk) (i.e., the edge in the direction of v1) is satisfied for any choice of

admissible monomial. For any leaf zj, 0 ≤ j ≤ s − 1, it is easy to see that ℓzjw′ is divisible

98



by (ps)
h̃s−1 for all leaves w′ 6= zj in ∆f,n. Therefore, for any leaf w′ ∈ ∆−(vk), the left

hand side of Equation (6.1) is [−αw′ew′ · ew′ ] . The proof of Fact DA1 in §4.2 tells us that

Ai = ai+1 · · · as for 1 ≤ i ≤ s − 1. Therefore, by Corollary 5.2.2, we have

[ez0
· ez0

] = [0],

since A1p
′
1 = a2 · · · asp1, and, for 1 ≤ j ≤ s − 1,

[ezj
· ezj

] = [0],

since Aja
′
j = aj+1 · · · asaj. Since all of the subgraphs ∆−(vk) contain leaves only of the form

zj, 0 ≤ j ≤ k − 1, Equation (6.1) holds for all leaves in ∆−(vk) for any choice of admissible

monomial. In fact, we have shown that the action of the discriminant group element ezj
is

trivial for 0 ≤ j ≤ s − 1.

Next, we show that for 1 ≤ k ≤ s − 2, the congruence condition at vk in the direction

of ∆A(vk) (i.e., in the direction of vs) is satisfied for the admissible monomial Zk+1, where

Zk+1 the variable associated to the leaf zk+1, as described in Chapter 2. So, let αzk+1
= 1

and αw = 0 for all leaves w 6= zk+1. For any leaf w′ 6= zk+1 in ∆A(vk), Equation (6.1) is

equivalent to
[

ℓzk+1w′

det(Γf,n)

]
= [0] ,

which is clearly true. For w′ = zk+1, Equation (6.1) is equivalent to

[−ezk+1
· ezk+1

] = [0],

which we have shown above. Therefore, the congruence condition is satisfied, using the

admissible monomial Zk+1.

All that remains is the congruence condition for the node vs−1 in the direction of vs.

We claim that the monomial U1 · · ·Uh̃s
(which is easily seen to be an admissible monomial)
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satisfies the condition, where Uj is the variable associated to the leaf uj, 1 ≤ j ≤ h̃s. It is

clear from the splice diagram that

[
ℓuiuj

det(Γf,n)

]
=

[
(n/h̃s)a

′
s

ps

]
for i 6= j,

and by Corollary 5.2.2, since each uj is a leaf of type vs,

[euj
· euj

] =

[
(n/h̃s)(as − a′

s)

ps

]
for all j.

Hence, for each uj, Equation (6.1) for the monomial U1 · · ·Uh̃s
is

[
(h̃s − 1)

(n/h̃s)a
′
s

ps

− (n/h̃s)(as − a′
s)

ps

]
= [0].

This is clearly true, since h̃sa
′
s = as. Finally, for the leaf y, Equation (6.1) for U1 · · ·Uh̃s

is




h̃s∑

j=1

ℓyuj

det(Γf,n)


 = [0] .

Since ℓyuj
is divisible by (ps)

h̃s−1 for all j, the congruence condition is satisfied. This concludes

the proof of Claim 6.1.3. ¤

Now we move on to the other direction of Proposition 6.1.1, that Γf,n satisfies the semi-

group and congruence conditions implies conditions (I) and (II). If we show that (I) must

hold, then (II) is automatic by Claim 6.1.3. We prove that hih̃i = 1 for 1 ≤ i ≤ s − 1

by showing that the congruence conditions imply that hs−1h̃s−1 = 1, then applying Lemma

5.1.3. We really do need the congruence conditions here; see the example in Remark 6.0.2

3).

Claim 6.1.4. Suppose that h̃s 6= 1. If Γf,n satisfies the semigroup and congruence con-

ditions, then hs−1h̃s−1 = 1.
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Proof. Since the link is a QHS and h̃s 6= 1, we know that hs = 1. The splice diagram

∆f,n is shown in Figure 6.4.

We will show that the congruence condition at the node vs−1 cannot be satisfied if

hs−1h̃s−1 6= 1. Let Uj be the variable associated to the leaf uj (respectively, Y associated to

y) as labelled in Figure 6.4, and let euj
be the element in the discriminant group associated

to the leaf uj. By Proposition 2.0.10, the congruence condition at vs−1 in the direction of

∆A(vs−1) implies, in particular, that there exists an admissible monomial

H = Uα1

1 · · ·Uα
h̃s

h̃s

Y β

such that for every leaf uj, 1 ≤ j ≤ h̃s,

(6.2)

[
β

ℓyuj

det(Γf,n)
+

∑

i6=j

αi

ℓuiuj

det(Γf,n)
− αjeuj

· euj

]
=

[
ℓvs−1uj

det(Γf,n)

]
.

We will show that this is impossible unless hs−1h̃s−1 = 1. By Lemmas 4.2.6 and 4.2.3,

det(Γf,n) = (ps)
h̃s−1

(
D−(vs)

a′
s

)
= (ps)

h̃s−1(p′s−1)
h̃s−1−1D−(vs−1)

hs−1

a′
s−1

.

∆−(vs−1)
D−(vs−1)

•... hs−1

DA(vs−1) D−(vs)

vs−1

h̃s−1

• n/h̃s

ps ps

vs

h̃s

• y

∆−(vs−1)

•

...

•

p′

s−1

•
u1

...

•
u

h̃s

Figure 6.4. Splice diagram for h̃s 6= 1
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One can easily check that

[
ℓvs−1uj

/ det(Γf,n)
]

= [0] ,

[
ℓyuj

/ det(Γf,n)
]

= [0] ,

[
ℓuiuj

/ det(Γf,n)
]

=
[
(a′

sn/h̃s)/ps

]
(for i 6= j),

and by Corollary 5.2.2,

[euj
· euj

] = [((as − a′
s)n/h̃s)/ps].

Therefore, for each j,

[
βℓyuj

det(Γf,n)
+

∑

i6=j

αiℓuiuj

det(Γf,n)
− αjeuj

· euj

]
=

[(
∑

i6=j

αi

)
a′

sn/h̃s

ps

− αj
(as − a′

s)n/h̃s

ps

]

=







h̃s∑

i=1

αi


 a′

sn/h̃s

ps

− αj
asn/h̃s

ps


 .

Hence the congruence condition (6.2) is equivalent to







h̃s∑

i=1

αi


 a′

sn/h̃s

ps

− αj
asn/h̃s

ps


 = [0] .

The exponents of the admissible monomial H satisfy

DA(vs−1) =




h̃s∑

i=1

αi


 (ps)

h̃s−1n/h̃s + β(ps)
h̃s .

By Lemma 4.2.4, As−1 = as, and DA(vs−1) = (n/hs−1h̃s−1)(ps)
h̃s−1. Therefore we have

(6.3)
n

hs−1h̃s−1

=




h̃s∑

i=1

αi


n/h̃s + βps.

If all αj ≥ 1, then this implies that all αj must equal 1, β must be 0, and hs−1h̃s−1 = 1.

Therefore, if hs−1h̃s−1 6= 1, there exists some j such that αj = 0. Then the congruence
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condition for the leaf uj is
[(

∑

i6=j

αi

)
a′

sn/h̃s

ps

]
= [0] ,

that is,
(

∑

i6=j

αi

)
a′

sn/h̃s ∈ Zps.

Since a′
s and n/h̃s are relatively prime to ps, this implies that

∑
i6=j αi ∈ Zps. But, by

Equation (6.3), this implies that n/(hs−1h̃s−1) is divisible by ps, which is a contradiction.

Therefore, the congruence conditions cannot be satisfied unless all αj = 1, β = 1, and

hs−1h̃s−1 = 1. ¤

This concludes the proof of Proposition 6.1.1.

6.2. Case (ii) (n, ps) 6= 1

The goal of this section is to prove the following

Proposition 6.2.1. Suppose hs = (n, ps) 6= 1. Then Γf,n satisfies the semigroup and

congruence conditions if and only if

(∗) s = 2, p2 = 2, (n, p2) = 2, and (
n

2
, p1) = (

n

2
, a1) = 1.

Let us first assume that Γf,n satisfies the semigroup and congruence conditions. We prove

that (∗) must hold in four steps:

Step 1. The semigroup conditions imply that hs = ps, i.e., n is divisible by ps.

Step 2. The semigroup conditions imply that hih̃i = 1 for 1 ≤ i ≤ s − 1.

Step 3. The congruence conditions imply that ps = 2.

Step 4. The congruence conditions imply that s = 2.
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Except where otherwise stated, we assume that we are not in the pathological case n = ps =

2. Recall that since the link is a QHS, h̃s = 1 and a′
s = as.

Step 1. The semigroup conditions imply that hs = ps.

Claim 6.2.2. The semigroup condition at a node of type vs−1 in the direction of ∆A(vs−1)

is equivalent to the following:
n

hs−1h̃s−1hs

[as−as−1ps−1(ps−p′s)] is in the semigroup generated

by

{
n

hs

as, asp
′
s (†), n

hs

p′1 · · · p′s,
n

hs

a′
jp

′
j+1 · · · p′s : 1 ≤ j ≤ s − 1

}
.

(†) Absent if n
hs

= 1.

Proof of Claim. Let v be a node of type vs−1, as pictured in Figure 6.5. The semi-

∆−(vs−1)

•
DA(vs−1)

D−(vs)

v

h̃s−1

... hs−1

∆−(vs−1)

•
...

• • n/hs

vs

... hs

•wa

∆−(vs) •

p′

s

ws

Figure 6.5. Splice diagram for hs 6= 1.

group condition in question is: DA(vs−1) is in the semigroup

Rs−1 := N〈ℓ′vw | w is a leaf in ∆A(vs−1)〉.
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The generators of the semigroup Rs−1 were computed in §5.1; they are ℓ′vws
, ℓ′vwa

(†), and

ℓ′vws
j
, 0 ≤ j ≤ s − 1. It is easy to check that

ℓ′vws
= (n/hs)D−(vs)

hs−1,

ℓ′vwa
= p′sD−(vs)

hs−1, and

ℓ′vws
j

= (n/hs)p
′
sD−(vs)

hs−2ℓ′vsws
j
, 0 ≤ j ≤ s − 1.

By Claim 5.1.2, we have

ℓ′vsws
j

=





p′1 · · · p′s−1 · D−(vs)/as for j = 0

a′
jp

′
j+1 · · · p′s−1 · D−(vs)/as for 1 ≤ j ≤ s − 2

a′
s−1 · D−(vs)/as for j = s − 1.

Therefore, all generators of Rs−1 are divisible by D−(vs)
hs−1/as. Furthermore, by Lemma

4.2.4,

DA(vs−1) =
nAs−1D−(vs)

hs−1

hs−1h̃s−1hsas

,

where

As−1 = as−1ps−1p
′
s + qs = as − as−1ps−1(ps − p′s).

Upon factoring out D−(vs)
hs−1/as from all terms, the claim is clear. ¤

Now, since ps > p′s,

n

hs−1h̃s−1hs

[as − as−1ps−1(ps − p′s)] <
n

hs−1h̃s−1hs

as ≤
n

hs

as,

and hence the first term in the semigroup in Claim 6.2.2 is too large. All of the remaining

generators of the semigroup are divisible by p′s. Therefore, the semigroup condition implies

that p′s divides (n/hs−1h̃s−1hs)[as−as−1ps−1(ps−p′s)]. Since p′s divides ps−p′s, and (as, ps) = 1,
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this implies that p′s divides n/(hs−1h̃s−1hs). If so, then p′s must be 1, since by definition

p′s = ps/(n, ps), and thus (p′s, n) = 1. This concludes the proof of Step 1.

Step 2. The semigroup conditions imply that hih̃i = 1 for 1 ≤ i ≤ s − 1.

From now on, we assume hs = (n, ps) = ps (equivalently, p′s = 1). Note that if n/hs = 1,

then Step 2 is automatically true by definition of the hi and h̃i. Therefore, assume that

n/hs 6= 1. The strategy is to show that the semigroup conditions imply that hs−1h̃s−1 = 1,

and then Step 2 follows from Lemma 5.1.3.

From the proof of Step 1, the semigroup condition at a node v of type vs−1 in the direction

of ∆A(vs−1) is equivalent to:
n

hs−1h̃s−1hs

[as −as−1ps−1(ps −1)] is in the semigroup generated

by
{

as,
n

hs

p′1 · · · p′s−1,
n

hs

a′
s−1,

n

hs

a′
jp

′
j+1 · · · p′s−1 : 1 ≤ j ≤ s − 2

}
.

Hence, we may write

n

hs−1h̃s−1hs

[as − as−1ps−1(ps − 1)] = β0as +
n

hs

B,

where

B =
s−2∑

j=1

βja
′
jp

′
j+1 · · · p′s−1 + βs−1a

′
s−1 + βsp

′
1 · · · p′s−1,

for some βj ∈ N ∪ {0}, 0 ≤ j ≤ s. Then we have

(
n

hs−1h̃s−1hs

− β0

)
as =

n

hs

B +
n

hs−1h̃s−1hs

as−1ps−1(ps − 1)

=
n

hs

(
B + a′

s−1p
′
s−1(ps − 1)

)
.

Obviously, the right hand side is divisible by n/hs 6= 1. Since (n, as) = 1 by assumption, this

implies that n/hs divides n/(hs−1h̃s−1hs) − β0. But

0 <
n

hs−1h̃s−1hs

− β0 ≤
n

hs−1h̃s−1hs

≤ n

hs

.
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Recall that ps ≥ 2 by definition, so the right hand side must be greater than 0. Therefore,

the only possibility is n/hs = n/(hs−1h̃s−1hs) − β0, i.e., β0 = 0 and hs−1h̃s−1 = 1.

Step 3. The congruence conditions imply that ps = 2.

From now on, we assume that hih̃i = 1 for 1 ≤ i ≤ s − 1, and hs = ps. We show that

the congruence condition in Proposition 2.0.10 for a node v of type vs−1 in the direction of

∆A(v) cannot hold unless ps = 2. The only difficulty is in notation.

By Fact DM in §4.2,

D−(vk) = ak, for 2 ≤ k ≤ s,

and by Fact DA2,

DA(vk) =
n

ps

Ãk(as)
ps−2, for 1 ≤ k ≤ s − 1,

where

Ãs−1 = as − as−1ps−1(ps − 1), and

Ãk = as − akpkp
2
k+1 · · · p2

s−1(ps − 1), 1 ≤ k ≤ s − 2.

Suppose that ps > 2. The appearance of the splice diagram ∆f,n associated to the minimal

good resolution graph Γmin(Xf,n) is shown in Figure 6.6. (Recall that p′s = 1 implies that

there is no leaf of type vs, since that string completely collapses in the minimal resolution

graph.)

•
n/ps

y

• a1
z1,0 • as−1 •

v
DA(vs−1) as • as DA(vs−1)

ps−2

• as−1 • a1 • z2,0

•

p1

z1,1

•

ps−1

z1,s−1

•

ps−1

z2,s−1

•

p1

z2,1

∆−(vs)

as

{z3,i}

...

∆−(vs)

as

{zps,i}

Figure 6.6. Splice diagram for hs = ps and hih̃i = 1 for 1 ≤ i ≤ s − 1.
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For each i, 0 ≤ i ≤ s − 1, there are hs = ps leaves of type vi. We label these leaves

{zj,i : 1 ≤ j ≤ ps, 0 ≤ i ≤ s − 1} ,

as indicated in Figure 6.6. The leaf on the edge with weight n/ps is denoted y, and is

absent if n/ps = 1. Let the corresponding variables for the splice diagram equations be Zj,i,

respectively, Y. Let G be an admissible monomial for v in the direction of ∆A(v) = ∆A(vs−1).

We know that the variable Y cannot appear in any admissible monomial G, by the argument

in Step 2 (β0 = 0). Therefore,

G =

ps∏

j=2

(Zj,0)
αj,0 · · · (Zj,s−1)

αj,s−1 ,

with all αj,k ∈ N ∪ {0} and

(6.4) DA(vs−1) =
s−1∑

k=0

ℓ′vz2,k

(
ps∑

j=2

αj,k

)
.

(It is clear that ℓ′vzj,k
= ℓ′vz2,k

for all j 6= 1.)

For convenience of notation, we make the following definition:

m(i) :=





p1 · · · ps−1 for i = 0

aipi+1 · · · ps−1 for 1 ≤ i ≤ s − 2

as−1 for i = s − 1.

Note that by Claim 5.1.2,

m(i) = ℓ′vszj,i

for any j, where vs denotes the unique node of type vs (the central node). It is clear from

Figure 6.6 that

ℓ′vz2,i
= (n/ps)(as)

ps−2m(i), and

ℓvz2,i
= (n/ps)(as)

ps−2m(i)as−1ps−1,

108



for 1 ≤ i ≤ s − 1. Therefore, Equation (6.4) is equivalent to

DA(vs−1) = (n/ps)(as)
ps−2

s−1∑

k=0

m(k)

(
ps∑

j=2

αj,k

)
,

that is,

(6.5) Ãs−1 =
s−1∑

k=0

m(k)

(
ps∑

j=2

αj,k

)
.

Let us consider the congruence condition in Proposition 2.0.10 for the node v in the

direction of ∆A(v) for each of the leaves z2,i, 0 ≤ i ≤ s − 1. Note that

ℓzj,kz2,i
= ℓz1,kz2,i

for any j 6= 2.

Thus the congruence condition for the leaf w′ = z2,i for any admissible monomial G is

equivalent to

(6.6)

[
s−1∑

k=0

(
ps∑

j=3

αj,k

)
ℓz1,kz2,i

det(Γf,n)
+

∑

k 6=i

α2,k

ℓz2,kz2,i

det(Γf,n)
− α2,iez2,i

· ez2,i

]
=

[
ℓvz2,i

det(Γf,n)

]
.

By Lemma 4.2.6,

det(Γf,n) = (as)
ps−1.

For 0 ≤ i ≤ s − 1,

(6.7)
ℓvz2,i

det(Γf,n)
=

(n/ps)as−1ps−1m(i)

as

.

Furthermore, it is clear that

(6.8) ℓz1,kz2,i
=

n

ps

(as)
ps−2m(i)m(k), for 0 ≤ k, i ≤ s − 1.

Claim 6.2.3. Fix i such that 0 ≤ i ≤ s − 1. Then

• For 0 ≤ k ≤ s − 1 and k 6= i,

[
ℓz2,kz2,i

det(Γf,n)

]
=

[−(n/ps)m(i)m(k)(ps − 1)

as

]
, and

• [ez2,i
· ez2,i

] =

[
(n/ps)(m(i))2(ps − 1)

as

]
.
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Let us assume for now that the Claim is true and finish the proof of Step 3. By Equation

(6.8) and the Claim, we can simplify the left side of Equation (6.6) as follows:

Left side of (6.6) =

[
s−1∑

k=0

(
ps∑

j=3

αj,k

)
n
ps

m(i)m(k)

as

− m(i)(ps − 1)
s−1∑

k=0

α2,k

n
ps

m(k)

as

]

=

[
(n/ps)m(i)

as

{
s−1∑

k=0

(
ps∑

j=2

αj,k

)
m(k) − ps

s−1∑

k=0

α2,km(k)

}]

=

[
(n/ps)m(i)

as

{
Ãs−1 − ps

s−1∑

k=0

α2,km(k)

}]
(by (6.5))

=

[
(n/ps)m(i)

as

{
as − as−1ps−1(ps − 1) − ps

s−1∑

k=0

α2,km(k)

}]

=

[
(n/ps)m(i)

as

{
−as−1ps−1(ps − 1) − ps

s−1∑

k=0

α2,km(k)

}]
.

Therefore, the congruence condition (6.6) is equivalent to

[
(n/ps)m(i)

as

{
−as−1ps−1(ps − 1) − ps

s−1∑

k=0

α2,km(k)

}]
=

[
(n/ps)as−1ps−1m(i)

as

]
,

which is clearly equivalent to

[
−(n/ps)m(i)ps

as

(
as−1ps−1 +

s−1∑

k=0

α2,km(k)

)]
= [0].

Since (as, n) = 1, this is equivalent to

(6.9) m(i)

(
as−1ps−1 +

s−1∑

k=0

α2,km(k)

)
∈ Zas.

Therefore, if the congruence conditions are satisfied, that implies, in particular, that (6.9)

holds for all i such that 0 ≤ i ≤ s − 1. We must show that this is impossible.

First of all, we claim that if (6.9) holds for all i, this implies that as divides

S := as−1ps−1 +
s−1∑

k=0

α2,km(k).
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For, suppose there exists a prime factor q of as that does not divide S. Then q must divide

m(i) for 0 ≤ i ≤ s − 1. In particular, q divides m(s − 1) = as−1, and since (as−1, ps−1) = 1,

this implies that q divides as−2, because m(s−2) = as−2ps−1. This, in turn, implies q divides

as−3, and so forth, down to a1. But m(0) = p1 · · · ps−1, which cannot possibly be divisible by

q. Therefore, q divides S, and thus as divides S.

Finally, we claim that for ps > 2, it is impossible for as to divide S, and therefore the

congruence conditions cannot possibly be satisfied. Recall Equation (6.5), which is equivalent

to

as − as−1ps−1(ps − 1) =
s−1∑

k=0

m(k)

(
ps∑

j=2

αj,k

)
.

This implies that

s−1∑

k=0

α2,km(k) ≤ as − as−1ps−1(ps − 1),

and hence

S = as−1ps−1 +
s−1∑

k=0

α2,km(k) ≤ as − as−1ps−1(ps − 2).

But, if ps > 2, as − as−1ps−1(ps − 2) < as, which implies that S < as, and hence S cannot be

divisible by as. Therefore, we must have ps = 2 for the congruence conditions to be satisfied.

Proof of Claim 6.2.3. We begin with the second statement. Recall that for 1 ≤ i ≤

s − 2,

Ai = ai+1 · · · as−1Ãi, and

Ãi = as − aipip
2
i+1 · · · p2

s−1(ps − 1),

111



where Ai is as defined in Lemma 4.2.4. Since z2,i is a leaf of type vi, Corollary 5.2.2 implies

that, for 1 ≤ i ≤ s − 2,

[ez2,i
· ez2,i

] =

[
(n/ps)(aias − aiÃi)

pias

]

=

[
(n/ps)a

2
i p

2
i+1 · · · p2

s−1(ps − 1)

as

]

=

[
(n/ps)(m(i))2(ps − 1)

as

]
.

The equality is just as easily obtained for i = 0 and i = s − 1.

It remains to show that

[
ℓz2,kz2,i

det(Γf,n)

]
=

[−(n/ps)m(i)m(k)(ps − 1)

as

]
,

for 0 ≤ k ≤ s − 1 and k 6= i. Without loss of generality, we can assume i < k. For

1 ≤ i < k ≤ s − 2, i 6= k − 1, we have ℓz2,kz2,i
= DA(vk)aipi+1 · · · pk−1, and hence,

[
ℓz2,kz2,i

det(Γf,n)

]
=

[
(n/ps)Ãkaipi+1 · · · pk−1

as

]

=

[
(n/ps)(as − akpkp

2
k+1 · · · p2

s−1(ps − 1))aipi+1 · · · pk−1

as

]

=

[−(n/ps)(ps − 1)akpkp
2
k+1 · · · p2

s−1 · aipi+1 · · · pk−1

as

]

=

[−(n/ps)(ps − 1)akpk+1 · · · ps−1 · aipi+1 · · · pk−1pkpk+1 · · · ps−1

as

]

=

[−(n/ps)(ps − 1)m(k)m(i)

as

]
.

The remaining cases are all similar and easy to check. ¤

Note that the proof of Step 3 is valid whether or not n/ps = 1.

Step 4. The congruence conditions imply that s = 2.

So far, we have that the semigroup and congruence conditions imply that hs = ps =

2, hih̃i = 1 for 1 ≤ i ≤ s − 1, and n = 2n′. Here, we assume n′ > 1; the pathological case
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n′ = 1 is treated separately below. We will show that for s ≥ 3, the congruence conditions

at a node v of type vs−2 in the direction of ∆A(v) cannot possibly be satisfied. Clearly, if

s = 2, there is no such node. We should note that the congruence condition at a node of

type vs−1 that we studied in Step 3 could be satisfied for s ≥ 3. For example, take

a1 = 3, a2 = 19, a3 = 117,

p1 = 2, p2 = 3, p3 = 2,

and any n = 2n′ such that n′ is relatively prime to 2, 3, 19, and 117.

Figure 6.7 depicts the splice diagram in the general situation. Recall the definition

m(i) =





p1 · · · ps−1 for i = 0

aipi+1 · · · ps−1 for 1 ≤ i ≤ s − 2

as−1 for i = s − 1.

The semigroup condition at v in the direction of ∆A(v) is

DA(vs−2) ∈ N〈DA(vs−1), asps−1, n′ps−1m(i), 0 ≤ i ≤ s − 1〉.

Recall that

DA(vs−1) = n′(as − as−1ps−1), and

DA(vk) = n′(as − akpkp
2
k+1 · · · p2

s−1), for 1 ≤ k ≤ s − 2.

• a1
z0 • . . . •

v
DA(vs−2) as−1 • DA(vs−1) as • as DA(vs−1) • as−1 . . . • a1 • y0

•

p1

z1

•

ps−2

zs−2

•

ps−1

zs−1

•

n′

y
•

ps−1

ys−1

•

p1

y1

Figure 6.7. Splice diagram for n > 2, hs = ps = 2, and hih̃i = 1 for

1 ≤ i ≤ s − 1.
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We claim that DA(vs−1) and asps−1 cannot appear in the expression for DA(vs−2) that comes

from the semigroup condition. Suppose

n′(as − as−2ps−2p
2
s−1) = αn′(as − as−1ps−1) + βasps−1 +

s−1∑

i=0

γin
′m(i)ps−1,

with α, β, γi ∈ N∪{0}. If β 6= 0, then βasps−1 must be divisible by n′ > 1. By assumption,

(as, n
′) = 1 since h̃s = 1, and (ps−1, n

′) = hs−1 = 1, and hence n′ must divide β. But then

βasps−1 ≥ n′asps−1 > n′as > n′(as − as−2ps−2p
2
s−1) = DA(vs−2), and this is impossible.

Therefore, β = 0.

Hence, we can cancel n′ from the equation above, leaving

as − as−2ps−2p
2
s−1 = α(as − as−1ps−1) +

s−1∑

i=0

γim(i)ps−1.

Since m(s − 1) = as−1, we have

(α − γs−1)as−1ps−1 = (α − 1)as +
s−2∑

i=0

γim(i)ps−1 + as−2ps−2p
2
s−1,

which implies (α − γs−1)as−1ps−1 > (α − 1)as. Now suppose α > 1. Then

(α − γs−1)as−1ps−1 > (α − 1)as > (α − 1)2as−1ps−1

(since as = qs + as−1ps−1ps and ps = 2.) This implies (α − γs−1) − 2(α − 1) > 0, i.e.,

2 > α + γs−1.

But this is impossible for α > 1.

Now suppose α = 1. Clearly, γs−1 must be 0, and so we have

as−1ps−1 =
s−2∑

i=0

γim(i)ps−1 + as−2ps−2p
2
s−1,

i.e.,

as−1 =
s−2∑

i=0

γim(i) + as−2ps−2ps−1.
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But m(i) is divisible by ps−1 for 0 ≤ i ≤ s − 2, so this would imply as−1 is divisible by ps−1,

which is a contradiction. Therefore, α = 0, and we have

(6.10) as − as−2ps−2p
2
s−1 =

s−1∑

i=0

γim(i)ps−1.

(Note that this semigroup condition is already quite restrictive, because it requires as to be

divisible by ps−1.)

Now let us return to the congruence conditions for the node v in the direction of ∆A(v) =

∆A(vs−2). An admissible monomial for v in that direction must be of the form

H = Y γ0

0 · · ·Y γs−1

s−1 ,

for some γi ∈ N ∪ {0}. The congruence condition for the leaf ys−1 is

[
ℓvys−1

det(Γf,n)

]
=

[
s−2∑

i=0

γi

ℓys−1yi

det(Γf,n)
− γs−1eys−1

· eys−1

]
.

We have
[

ℓvys−1

det(Γf,n)

]
=

[
n′as−2ps−2as−1ps−1

as

]
,

and, since Claim 6.2.3 is still valid in this setting,

[
ℓys−1yi

det(Γf,n)

]
=

[−n′m(s − 1)m(i)

as

]
, for 0 ≤ i ≤ s − 2, and

[
eys−1

· eys−1

]
=

[
n′(m(s − 1))2

as

]
.

Thus the congruence condition is equivalent to

[
n′as−2ps−2as−1ps−1

as

]
=

[
−n′as−1

as

(
s−1∑

i=0

γim(i)

)]
,

that is,

n′as−1

(
as−2ps−2ps−1 +

s−1∑

i=0

γim(i)

)
∈ Zas.
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Since (as, n
′) = 1, we must have

as−1

(
as−2ps−2ps−1 +

s−1∑

i=0

γim(i)

)
= Nas

for some N in Z. If we multiply both sides of this equation by ps−1 and apply Equation

(6.10), we get

as−1as−2ps−2p
2
s−1 + as−1(as − as−2ps−2p

2
s−1) = Nasps−1,

i.e., as−1 = Nps−1. This implies ps−1 divides as−1, which is a contradiction.

Therefore, we have shown that if s ≥ 3, then the congruence condition for the node v of

type vs−2 in the direction of ∆A(v) cannot be satisfied for the leaf ys−1. Hence, the congruence

conditions imply that s = 2. This concludes the proof (except for in the pathological case)

that Γf,n satisfies the semigroup and congruence conditions implies (∗).

Finally, we show that (∗) implies that the semigroup and congruence conditions are

satisfied. Let n = 2n′ for n′ > 1. We have D−(v2) = a2 and

DA(v1) = n′(a2 − a1p1) = n′(q2 + a1p1).

The splice diagram in this situation is shown in Figure 6.8. The only semigroup condition

that needs to be checked is

DA(v1) ∈ N〈a2, n′a1, n′p1〉.

• a1
z0 • DA(v1) a2 • a2 DA(v1) • a1 • y0

•

p1

z1

•

n′

w
•

p1

y1

Figure 6.8. Splice diagram for (∗), n > 2.
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Since a1 and p1 are relatively prime, the conductor of the semigroup generated by a1 and

p1 is greater than a1p1, hence a1p1 + q2 is in the semigroup generated by a1 and p1, and

therefore this semigroup condition is satisfied. It is easy to argue that a2 cannot occur in

the semigroup representation of DA(v1) (see the proof of Step 4 above).

Now we must check that the congruence conditions are satisfied. We need only check

them for the central node and the left-most node, since the conditions for the right node will

be the same as for the left. Recall that by Lemma 4.2.6,

det(Γf,n) = a2.

By Corollary 5.2.2, we have

[ez0
· ez0

] =

[
n′(p1a2 − (a2 − a1p1)p1)

a1a2

]
=

[
n′p2

1

a2

]
,

[ez1
· ez1

] =

[
n′(a1 − (a2 − a1p1)a1)

p1a2

]
=

[
n′a2

1

a2

]
.

We also have

[
ℓz0z1

det(Γf,n)

]
=

[
n′(a2 − a1p1)

a2

]
=

[−n′a1p1

a2

]
.

The linking of number of the central node with any leaf is divisible by a2, so for the central

node, the congruence conditions are equivalent to the following: there exist α0 and α1 in

N ∪ {0} such that a2 = α0p1 + α1a1,

[
α1

−n′a1p1

a2

− α0
n′p2

1

a2

]
= [0], and

[
α0

−n′a1p1

a2

− α1
n′a2

1

a2

]
= [0].

But these conditions are obviously both satisfied for any α0, α1 such that a2 = α0p1 + α1a1.
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Similarly, for the left-most node v, we know that there exist β0 and β1 such that β0p1 +

β1a1 = a2 −a1p1. The congruence condition for the leaf w is trivially true, so the congruence

conditions for the left node are equivalent to

[
β1

−n′a1p1

a2

− β0
n′p2

1

a2

]
=

[
n′a1p

2
1

a2

]
, and

[
β0

−n′a1p1

a2

− β1
n′a2

1

a2

]
=

[
n′p1a

2
1

a2

]
.

These conditions are also both satisfied for any such β0 and β1.

Therefore, aside from the pathological case, we have finished the proof of the Main

Theorem 6.0.1.

The pathological case.

For the pathological case n = ps = 2, Steps 1 through 3 from the proof of Proposition

6.2.1 are automatically true. We have only to prove that if Γf,n satisfies the semigroup

and congruence conditions, then s must be 2. The splice diagram is pictured in Figure 6.9.

We can use essentially the same argument as in Step 4 above to show that for s ≥ 3, the

congruence conditions at the node v of type vs−2 in the direction of ∆A(v) cannot possibly

be satisfied for the leaf ys−1.

• a1
z0 • Ã1 · · · as−2 • Ãs−2 as−1

v

• Ãs−1 Ãs−1 • as−1 · · · Ã1 • a1 • y0

•

p1

z1

•

ps−2

zs−2

•

ps−1

zs−1

•

ps−1

ys−1

•

p1

y1

Figure 6.9. Splice diagram for the pathological case, s > 2.
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Recall the definition

m(i) =





p1 · · · ps−1 for i = 0

aipi+1 · · · ps−1 for 1 ≤ i ≤ s − 2

as−1 for i = s − 1.

The semigroup condition at v in the direction of ∆A(v) is

Ãs−2 ∈ N〈Ãs−1, ps−1m(i), 0 ≤ i ≤ s − 1〉.

Recall that

Ãs−1 = as − as−1ps−1, and

Ãk = as − akpkp
2
k+1 · · · p2

s−1, for 1 ≤ k ≤ s − 2

(see the end of §5.1). We claim that Ãs−1 cannot appear in the expression for Ãs−2 that

comes from the semigroup condition. We have

as − as−2ps−2p
2
s−1 = α(as − as−1ps−1) +

s−1∑

i=0

γim(i)ps−1.

Precisely the same argument as in Step 4 above shows that α = 0, and we have

(6.11) as − as−2ps−2p
2
s−1 =

s−1∑

i=0

γim(i)ps−1.

Now let us return to the congruence conditions for the node v in the direction of ∆A(v).

Suppose the semigroup conditions are satisfied, and let H = Y γ0

0 · · ·Y γs−1

s−1 be an admissible

monomial for v in that direction. The congruence condition for the leaf ys−1 is

[
ℓvys−1

det(Γf,n)

]
=

[
s−2∑

i=0

γi

ℓys−1yi

det(Γf,n)
− γs−1eys−1

· eys−1

]
.

Clearly,
[

ℓvys−1

det(Γf,n)

]
=

[
as−2ps−2as−1ps−1

as

]
,
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and, for 0 ≤ i ≤ s − 2,

[
ℓys−1yi

det(Γf,n)

]
=

[
Ãs−1m(i)/ps−1

as

]
,

=

[−as−1ps−1m(i)/ps−1

as

]

=

[−as−1m(i)

as

]
.

Corollary 5.2.2 holds for 0 ≤ k ≤ s − 1 in the pathological case, so

[
eys−1

· eys−1

]
=

[
as−1as − Ãs−1as−1

ps−1as

]
(since As−1 = Ãs−1)

=

[
as−1[as−1ps−1]

ps−1as

]

=

[
a2

s−1

as

]
.

Thus the congruence condition is equivalent to

[
as−2ps−2as−1ps−1

as

]
=

[
−as−1

as

(
s−1∑

i=0

γim(i)

)]
,

that is,

as−1

(
as−2ps−2ps−1 +

s−1∑

i=0

γim(i)

)
= Nas

for some N in Z. If we multiply both sides of this equation by ps−1 and apply Equation

(6.11), we get

as−1as = Nasps−1,

i.e., as−1 = Nps−1. This implies ps−1 divides as−1, which is a contradiction. Therefore, the

congruence conditions cannot be satisfied for s > 2.

It only remains to check that the semigroup and congruence conditions are satisfied for

s = 2. The splice diagram is shown in Figure 6.10.
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• a1
z0 • DA(v1) DA(v1) • a1 • y0

•

p1

z1

•

p1

y1

Figure 6.10. Splice diagram for the pathological case, s = 2.

Here, DA(v1) = a2 − a1p1, so the semigroup conditions are satisfied, as discussed above.

It is easy to check that the congruence conditions are also satisfied.
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CHAPTER 7

The splice quotients

Theorem 6.0.1 characterizes the (Xf,n, 0) = ({zn = f(x, y)}, 0), with f irreducible, that

have the topological type of a splice quotient. That is, the Theorem characterizes those

for which the resolution graph Γf,n satisfies the semigroup and congruence conditions, and

hence those for which there exist splice quotients with resolution graph Γf,n. In this chapter,

we study the analytic types of the splice quotients that result from the Neumann-Wahl

algorithm. Recall that the Neumann-Wahl algorithm produces a family of singularities

via the splice diagram equations, and thus, upon taking the quotient by the action of the

discriminant group, a family of splice quotients with resolution graph Γf,n. It is important

to understand that if one begins with an arbitrary analytic type of (Xf,n, 0), there need not

be a splice quotient of that analytic type. By considering specific analytic types of the splice

equations, we show that in both cases, there exist splice quotients defined by an equation of

the form zn = g(x, y), which is not clear a priori.

In each case, we begin with the splice diagram ∆f,n and write down a set of splice diagram

equations that (automatically) defines an isolated complete intersection singularity (Y, 0),

and compute the action of the discriminant group D(Γf,n) on (Y, 0), as described in Chapter

2. We then compute the quotient of (Y, 0) under the group action; the resulting singularities

are splice quotients with resolution graph Γf,n. We must choose the equations for Y carefully

in order to end up with quotients of the form {zn = g(x, y)}. In each case, we also give some

concrete examples.



7.1. Case (i) (n, as) 6= 1

The goal of this section is to prove the following

Theorem 7.1.1. Let n be an integer greater than 1, and suppose that f(x, y) = 0 defines

an irreducible plane curve singularity with topological pairs {(pi, ai) : 1 ≤ i ≤ s} that satisfy

the following conditions: (n, ps) = 1, (n, pi) = (n, ai) = 1 for 1 ≤ i ≤ s − 1, and as/(n, as)

is in the semigroup generated by {as−1, p1 · · · ps−1, ajpj+1 · · · ps−1 : 1 ≤ j ≤ s − 2}. Then

there exists a splice quotient that is defined by an equation of the form zn = g(x, y), where g

is irreducible and has topological pairs {(pi, ai) : 1 ≤ i ≤ s}.

For any (Xf,n, 0) that satisfies these conditions, the link is a QHS and the resolution

graph Γf,n satisfies the semigroup and congruence conditions (Case (i) of Theorem 6.0.1).

In the case that the link of (Xf,n, 0) is a ZHS (n relatively prime to all pi and ai), the

splice equations were studied by Neumann and Wahl in [19] (see below for some details).

Therefore, we assume that h̃s = (n, as) 6= 1.

The cases n/h̃s 6= 1 and n/h̃s = 1 are different enough to warrant separate treatment.

n/h̃s 6= 1. We must recall the notation used in the proof of Proposition 6.1.1. The splice

diagram ∆f,n for Case (i) is reproduced in Figure 7.1. Recall that ezk
, respectively euj

, ew,

denotes the image in the discriminant group D(Γf,n) of the dual basis element associated to

the leaf zk, respectively uj, w (see Chapter 2). The capital letters Zk, Uj, and W are the

• a1
z0 • n(ps)h̃s−1

a2

p1

v1

• n(ps)h̃s−1

v2

p2

as−1 • n(ps)h̃s−1 a′

s

ps−1

vs−1

• n/h̃s

vs

h̃s

• w

•
z1

•
z2

•
zs−1

•

ps

u1

...

•

ps

u
h̃s

Figure 7.1. Splice diagram for Case (i), n/h̃s 6= 1.
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variables for the splice equations associated to the corresponding leaves. Recall that D(Γf,n)

has order (ps)
h̃s−1.

It is easy to check (refer to the analysis of the congruence conditions in §6.1) that the

discriminant group elements ezk
act trivially on the all of the variables. Therefore, the action

of D(Γf,n) is generated by the elements euj
, 1 ≤ j ≤ h̃s. This action is given as follows:

(7.1)





euj
· Ui =

[
(n/h̃s)a′

s

ps

]
Ui, i 6= j,

euj
· Uj =

[
− (n/h̃s)(as−a′

s)
ps

]
Uj,

euj
· Zk = Zk, 0 ≤ k ≤ s − 1,

euj
· W = W.

In §6.1, we determined admissible monomials that satisfy the congruence conditions for

every node and adjacent edge. The discriminant group acts trivially on every such admissible

monomial. For 2 ≤ k ≤ s, let

Mk(Z0, . . . , Zk−1) =
k−1∏

j=0

Z
αj,k

j

be an admissible monomial for the node vk at the edge leading towards ∆−(vk) (i.e., in the

direction of the leaf z0). Since all Zk are invariant under the action of the discriminant group,

we can choose any admissible monomial for the splice equations. For 1 ≤ k ≤ s− 2, there is

only one admissible monomial at vk in the direction of ∆A(vk), namely Zk+1. Finally, there

is only one choice of admissible monomial for vs−1 in the direction of ∆A(vs−1) that will also

satisfy the congruence conditions, and that is U1 · · ·Uh̃s
.

For the sake of simplicity, we will write h instead of h̃s from now on.
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The following is a set of splice equations for ∆f,n, which define an isolated complete

intersection singularity (Y, 0):

(7.2)





Za1

0 + b1Z
p1

1 + c1Z2 + H1 = 0

M2(Z0, Z1) + b2Z
p2

2 + c2Z3 + H2 = 0

...
...

Ms−2(Z0, . . . , Zs−3) + bs−2Z
ps−2

s−2 + cs−2Zs−1 + Hs−2 = 0

Ms−1(Z0, . . . , Zs−2) + bs−1Z
ps−1

s−1 + cs−1U1 · · ·Uh + Hs−1 = 0

Ups

1 + d1Ms(Z0, · · ·Zs−1) + f1W
n/h + G1 = 0

...
...

Ups

h + dhMs(Z0, · · ·Zs−1) + fhW
n/h + Gh = 0





where bk and ck (1 ≤ k ≤ s − 1) are nonzero complex numbers; dj and fj (1 ≤ j ≤ h) are

nonzero complex numbers such that difj −djfi 6= 0 for all i 6= j; each Hk (1 ≤ k ≤ s−1) is a

convergent power series with all terms having vk-weight greater than or equal to akpkn(ps)
h−1;

and each Gj (1 ≤ j ≤ h) is a convergent power series with all terms having vs-weight greater

than or equal to a′
s(ps)

h(n/h). Furthermore, we require that the Hk and Gj be invariant

under the action of the discriminant group as well.

In order to compute the quotient of (Y, 0) by D(Γf,n), we first need the subalgebra of

C[[Z0, . . . , Zs−1, U1, . . . , Uh,W ]] that is invariant under the action. We have already stated

that the Zk and W are themselves invariant.

Lemma 7.1.2. The subalgebra of C[[U1, . . . , Uh]] of elements that are invariant under the

action of the discriminant group D(Γf,n) given in (7.1) is generated by

U j := Ups

j , 1 ≤ j ≤ h, and

V := U1 · · ·Uh.
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Proof. Suppose the monomial M := Uα1

1 · · ·Uαh

h is invariant under the action of D(Γf,n).

We can assume all αj < ps; otherwise, we could factor out a power of Uj. We can also assume

that at least one of the αj is zero, because otherwise we could factor out a power of V. The

element euj
in D(Γf,n) transforms M by the character

[
a′

s · n/h

ps

(
∑

k 6=j

αk

)
− (as − a′

s) · n/h

ps

αj

]
=

[
a′

s · n/h

ps

{
h∑

k=1

αk − hαj

}]

(recall that as = ha′
s). Therefore, M is invariant under all euj

if and only if

a′
s

n

h

{
h∑

k=1

αk − hαj

}
∈ Z · ps for all j.

Since (a′
s, ps) = 1 and, by assumption, (n, ps) = 1, this is equivalent to

h∑

k=1

αk − hαj ∈ Z · ps for all j.

Consider, for 1 ≤ j ≤ h,

hαj = Njps +
h∑

k=1

αk,

with Nj ∈ Z. Recall that we can assume that at least one of the αj is zero, say, α1 = 0. Then

0 = N1ps +
h∑

k=1

αk.

Therefore, for any αj > 0, we have

hαj = Njps − N1ps = ps(Nj − N1).

Since (h, ps) = 1, any nonzero αj must be divisible by ps. But we have assumed that all

αj < ps, and therefore all αj = 0 and M = 1. ¤

Clearly, these invariants satisfy

V ps = U1 · · ·Uh.
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We can now rewrite the splice equations (7.2) in terms of the invariant monomials. Since we

are only looking for a particular analytic type of splice quotient, we can simplify things by

setting all of the Hk and Gj equal to 0, and all of the bk and ck equal to 1. Then we have

(7.3)





Za1

0 + Zp1

1 + Z2 = 0

M2(Z0, Z1) + Zp2

2 + Z3 = 0

...
...

Ms−2(Z0, . . . , Zs−3) + Z
ps−2

s−2 + Zs−1 = 0

Ms−1(Z0, . . . , Zs−2) + Z
ps−1

s−1 + V = 0

U1 + d1Ms(Z0, · · ·Zs−1) + f1W
n/h = 0

...
...

Uh + dhMs(Z0, · · ·Zs−1) + fhW
n/h = 0





.

The local analytic ring of the quotient of (Y, 0) by D(Γf,n) is therefore C[[{Zk}, {U j}, V,W ]]

modulo the ideal generated by V ps = U1 · · ·Uh and the equations (7.3).

It is clear that we can iteratively solve for Z2, Z3, . . . , Zs−1 in terms of Z0 and Z1. That

is,

Z2 = −(Za1

0 + Zp1

1 ) =: g2(Z0, Z1),

Z3 = −(M2(Z0, Z1) + Zp2

2 )

= −(M2(Z0, Z1) + (g2(Z0, Z1))
p2) =: g3(Z0, Z1),

and so forth, until we have

Zk = gk(Z0, Z1), 2 ≤ k ≤ s − 1.
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Therefore, we can rewrite the admissible monomials Mk as polynomials in Z0 and Z1 only.

In particular, let

M̃s−1(Z0, Z1) := Ms−1(Z0, Z1, g2(Z0, Z1) . . . , gs−2(Z0, Z1)), and

M̃s(Z0, Z1) := Ms(Z0, Z1, g2(Z0, Z1), . . . , gs−1(Z0, Z1)).

Now, consider the equation

Ms−1(Z0, . . . , Zs−2) + Z
ps−1

s−1 + V = 0

from (7.3). Clearly, we can solve for V in terms of Z0 and Z1, as follows:

V = −[Ms−1(Z0, . . . , Zs−2) + Z
ps−1

s−1 ]

= −[M̃s−1(Z0, Z1) + (gs−1(Z0, Z1))
ps−1 ]

:= Ṽ (Z0, Z1).

Similarly, from the equations U j + djMs(Z0, · · ·Zs−1) + fjW
n/h = 0, we can solve for U j in

terms of Z0, Z1, and W :

U j = −[djM̃s(Z0, Z1) + fjW
n/h].

Finally, since V ps = U1 · · ·Uh, we have

(7.4) [Ṽ (Z0, Z1)]
ps = (−1)h

h∏

j=1

[djM̃s(Z0, Z1) + fjW
n/h].

This equation defines a hypersurface in C3 with coordinates Z0, Z1, and W. It is a splice

quotient by definition, and it has the same resolution graph as the (Xf,n, 0) whose data we

began with.

Remark 7.1.3. The end curve functions can be seen in Equation (7.4).
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Let x := Z0, y := Z1, z := W ; let fj = 1 for all j; and let dj = −ζj, where ζ is a

primitive h-th root of unity. Then (7.4) becomes

(7.5) [Ṽ (x, y)]ps = (−1)h[zn − [M̃s(x, y)]h],

and hence,

zn = [M̃s(x, y)]h + (−1)h[Ṽ (x, y)]ps .

We claim that

g(x, y) = [M̃s(x, y)]h + (−1)h[Ṽ (x, y)]ps

is irreducible. If so, then g must have topological pairs {(pi, ai)} by the following result of

Mendris and Némethi. (Recall that the topological pairs can be recovered from the Newton

pairs and vice versa.)

Theorem 7.1.4 ([8]). Let f : (C2, 0) → (C, 0) be an irreducible plane curve singularity

with Newton pairs {(pi, qi)}s
i=1, s ≥ 2, and let n ≥ 2 be an integer. Let LX be the link of the

hypersurface singularity (X, 0) = ({f(x, y)+zn = 0}, 0). If LX is a rational homology sphere,

then from the link LX one can completely recover the Newton pairs of f and the integer n.

The statement holds in greater generality, but we have stated only what we need in order

to avoid complications.

In order to prove that g is irreducible, we will write down the splice equations in the

ZHS case, and show that the same polynomial g arises in the splice type equations. Take a

positive integer N that is relatively prime to all pi and ai. The splice diagram ∆ for (Xf,N , 0)

is in Figure 7.2 A set of splice equations for this ∆ is given by
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• a1
z0 • N a2

p1

v1

• N

v2

p2

as−1 • N as

ps−1

vs−1

• N

vs

• w

•
z1

•
z2

•
zs−1

•

ps

u

Figure 7.2. Splice diagram for the ZHS case.

(7.6)





Za1

0 + Zp1

1 + Z2 = 0

M2(Z0, Z1) + Zp2

2 + Z3 = 0

...
...

Ms−2(Z0, . . . , Zs−3) + Z
ps−2

s−2 + Zs−1 = 0

Ms−1(Z0, . . . , Zs−2) + Z
ps−1

s−1 + U = 0

Ns(Z0, · · ·Zs−1) + Ups + WN = 0





.

It should be clear that we can use precisely the same admissible monomials Mk, 2 ≤ k ≤ s−1,

as we did in Equations (7.3) above. On the other hand, for an admissible monomial

Ns(Z0, · · ·Zs−1) =
s−1∏

k=0

Zβk

k ,

we cannot use Ms as in (7.3). The exponents for Ns satisfy

as =
s−1∑

k=0

βkℓ
′
vszk

,

whereas the exponents αk for Ms satisfy

a′
s =

s−1∑

k=0

αkℓ
′
vszk

.

It should be clear that the ℓ′vszk
are the same for both splice diagrams (Figure 7.1 and Figure

7.2). However, since a′
s = as/h,

[Ms(Z0, · · ·Zs−1)]
h =

s−1∏

k=0

Zαkh
k
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is an admissible monomial for the node vs in the ZHS splice diagram, i.e., we can use

Ns = Mh
s in the last equation of (7.6). Now, solving iteratively for Z2, Z3, . . . , Zs−1, and

then U, in terms of Z0 and Z1, one obtains

U = Ṽ (Z0, Z1),

where Ṽ is exactly the same polynomial as before. The last equation in (7.6) is equivalent

to

WN = −
(
[Ṽ (Z0, Z1)]

ps + Ñs(Z0, Z1)
)

,

where Ñs(Z0, Z1) = Ns(Z0, Z1, g2(Z0, Z1), . . . , gs−1(Z0, Z1)), with gk as defined above. Fi-

nally, if we let Ns = Mh
s , we have

WN = −
(
[Ṽ (Z0, Z1)]

ps + [M̃s(Z0, Z1)]
h
)

.

By construction, this equation defines a hypersurface with ZHS link, and therefore the curve

on the right hand side is irreducible by Theorem 6.0.3 of Neumann and Wahl.

This concludes the proof of Theorem 7.1.1 in the case that n/h̃s 6= 1, and we now present

some concrete examples.

Example 7.1.5. We begin with a simple example:

s = 2, p1 = 2, p2 = 2,

n = 25, a1 = 3, a2 = 15.

The splice diagram ∆ is shown in Figure 7.3. The following is a set of splice equations for
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∆, as in (7.3) :




Z3
0 + Z2

1 + U1U2U3U4U5 = 0

U2
1 + W 5 + d1Z1 = 0

...
...

U2
5 + W 5 + d5Z1 = 0





.

Note that Z1 is the only admissible monomial at the node on the right in the direction of

z0. Let x := Z0, y := Z1, z := W, and dj = −ζj, where ζ is a primitive 5th root of unity.

Equation (7.5) in this case is

(x3 + y2)2 = −
5∏

j=1

(z5 − ζjy),

and therefore

z25 = y5 − (x3 + y2)2.

The computer algebra system SINGULAR verifies that the plane curve singularity defined

by

y5 − (x3 + y2)2 = 0

is irreducible, and has 2 topological pairs, (2, 3) and (2, 15), as we expect. Note that changing

n would not make any difference in the computation, as long as n remained divisible by 5

and relatively prime to 2 and 3. The resulting splice quotient would be zn = y5 − (x3 + y2)2.

• 3
z0 • 400 3

2

• 5 • w

•
z1

•
u1

2

•
u2

2

•
u3

2

•
u4

2

•
u5

2

Figure 7.3. Splice diagram for Example 7.1.5
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Example 7.1.6. Here is another simple example:

s = 2, p1 = 3, p2 = 3,

n = 4, a1 = 5, a2 = 46.

The splice diagram ∆ is shown in Figure 7.4. The following is a set of splice equations for

∆:




Z5
0 + Z3

1 + U1U2 = 0

U3
1 + W 2 + Z0Z

4
1 = 0

U3
2 + W 2 − Z0Z

4
1 = 0





.

In this case, we have a choice of admissible monomials for the node on the right in the

direction of z0; we could use Z6
0Z1 instead of Z0Z

4
1 . Let x := Z0, y := Z1, and z := W. Then

−(x5 + y3)3 = (z2 + xy4)(z2 − xy4),

and therefore

z4 = x2y8 − (x5 + y3)3.

Again, SINGULAR verifies that the plane curve singularity defined by

x2y8 − (x5 + y3)3 = 0

• 5
z0 • 12 23

3

• 2 • w

•
z1

•
u1

3

•
u2

3

Figure 7.4. Splice diagram for Example 7.1.6
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is irreducible, and has 2 topological pairs, (3, 5) and (3, 46), as expected. Using the other

admissible monomial mentioned above yields

z4 = x12y2 − (x5 + y3)3.

Example 7.1.7. Now we present a slightly more complicated example:

s = 3, p1 = 2, p2 = 2, p3 = 2,

n = 15, a1 = 7, a2 = 29, a3 = 129.

The splice diagram ∆ is shown in Figure 7.5. The following is a set of splice equations for

∆: 



Z7
0 + Z2

1 + Z2 = 0

Z11
0 Z1 + Z2

2 + U1U2U3 = 0

U2
1 + W 5 + d1Z1Z2 = 0

U2
2 + W 5 + d2Z1Z2 = 0

U2
3 + W 5 + d3Z1Z2 = 0





.

Again, let x := Z0, y := Z1, and z := W. Then

Z2 = −(x7 + y2),

and thus

Z1Z2 = −y(x7 + y2).

• 7
z0 • 60 29

2

• 60 43

2

• 5 • w

•
z1

•
z2

•
u1

2

•
u2

2

•
u3

2

Figure 7.5. Splice diagram for Example 7.1.7
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Therefore, Equation (7.5) in this case yields

[x11y + (x7 + y2)2]2 = −
3∏

j=1

(z5 − djy(x7 + y2)).

Let dj be the jth power of a primitive third root of unity, and we have

z15 = y3(x7 + y2)3 − [x11y + (x7 + y2)2]2.

Again, SINGULAR verifies that the plane curve singularity defined by

y3(x7 + y2)3 − [x11y + (x7 + y2)2]2 = 0

is irreducible, and has the three expected topological pairs.

n/h̃s = 1. We proceed analogously in the case n/h̃s = 1. The splice diagram is shown in

Figure 7.6. The action of the discriminant group is precisely the same as in (7.1), only in

this case, there is no variable W. We begin with a set of splice equations, which are only

• a1
z0 • n(ps)n−1

a2

p1

v1

• n(ps)n−1

v2

p2

as−1 • n(ps)n−1 a′

s

ps−1

vs−1

•
vs

n

•
z1

•
z2

•
zs−1

•

ps

u1

...

•

ps

un

Figure 7.6. Splice diagram for Case (i), n/h̃s = 1.
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slightly different from those in (7.3):

(7.7)





Za1

0 + Zp1

1 + Z2 = 0

M2(Z0, Z1) + Zp2

2 + Z3 = 0

...
...

Ms−2(Z0, . . . , Zs−3) + Z
ps−2

s−2 + Zs−1 = 0

Ms−1(Z0, . . . , Zs−2) + Z
ps−1

s−1 + U1 · · ·Un = 0

Ups

1 + d1Ms(Z0, · · ·Zs−1) + f1U
ps
n = 0

...
...

Ups

n−1 + dn−1Ms(Z0, · · ·Zs−1) + fn−1U
ps
n = 0





,

where, as before, dj and fj (1 ≤ j ≤ n − 1) are nonzero complex numbers such that

difj − djfi 6= 0 for all i 6= j.

Let (Y, 0) be the isolated complete intersection singularity defined by (7.7). Lemma 7.1.2

still applies, and we can compute the quotient of (Y, 0) by D(Γf,n) as above. In this case,

there exists a splice quotient of the form

(7.8) [Ṽ (Z0, Z1)]
ps = (−1)n−1Un

n−1∏

j=1

[djM̃s(Z0, Z1) + fjUn],

which defines a hypersurface in C3 with coordinates Z0, Z1, and Un.

Now, let x := Z0, y := Z1, and let fj = 1 for all j. Then (7.8) becomes

(7.9) [Ṽ (x, y)]ps = (−1)n−1Un

n−1∏

j=1

[Un + djM̃s(x, y)].

Now, if we let z := Un + M̃s(x, y), we have

(−1)n−1[Ṽ (x, y)]ps = [z − M̃s(x, y)]
n−1∏

j=1

[z − (1 − dj)M̃s(x, y)].
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Finally, let dj = 1 − ζj, where ζ is a primitive n-th root of unity, so that 1 − dj = ζj, and

hence

zn = [M̃s(x, y)]n + (−1)n−1[Ṽ (x, y)]ps .

The argument that we used above for n/h̃s 6= 1 can be used here to prove that

g(x, y) = [M̃s(x, y)]n + (−1)n−1[Ṽ (x, y)]ps

is irreducible, and hence has topological pairs {(pi, ai)}s
i=1. The following example will show

that this case is hardly different from the case that n/h̃s 6= 1.

Example 7.1.8. Consider this example:

s = 3, p1 = 2, p2 = 2, p3 = 2,

n = 3, a1 = 7, a2 = 29, a3 = 129.

This is the same as Example 7.1.7, except that here n = 3 instead of 15. The splice diagram

∆ is shown in Figure 7.7. The following is a set of splice equations for ∆:





Z7
0 + Z2

1 + Z2 = 0

Z11
0 Z1 + Z2

2 + U1U2U3 = 0

U2
1 + U2

3 + d1Z1Z2 = 0

U2
2 + U2

3 + d2Z1Z2 = 0





.

• 7
z0 • 60 29

2

• 60 43

2

•

•
z1

•
z2

•
u1

2

•
u2

2

•
u3

2

Figure 7.7. Splice diagram for Example 7.1.8

137



Let x := Z0 and y := Z1. Then

Z2 = −(x7 + y2),

and thus

Z1Z2 = −y(x7 + y2).

In this case, Equation (7.9) is

[x11y + (x7 + y2)2]2 = U3(U3 − d1y(x7 + y2))(U3 − d2y(x7 + y2)).

If we make a change of coordinates, z := U3 + y(x7 + y2), and Let dj = ζj − 1, where ζ is a

primitive third root of unity, we have

[x11y + (x7 + y2)2]2 = z3 − y3(x7 + y2)3,

z3 = y3(x7 + y2)3 + [x11y + (x7 + y2)2]2.

We have already checked that the plane curve singularity defined by

y3(x7 + y2)3 + [x11y + (x7 + y2)2]2 = 0

is irreducible, and has the three expected topological pairs.

7.2. Case (ii) (n, ps) 6= 1

Theorem 7.2.1. Let n be a positive even integer and suppose that f(x, y) = 0 defines

an irreducible plane curve singularity with two topological pairs, (p1, a1) and (2, a2), such

that (n, a2) = (n
2
, a1) = (n

2
, p1) = 1. Then there exists a splice quotient that is defined by an

equation of the form zn = g(x, y), where g is irreducible and has topological pairs (p1, a1) and

(2, a2).
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For any (Xf,n, 0) that satisfies these conditions, the link is a QHS and the resolution

graph Γf,n satisfies the semigroup and congruence conditions (Case (ii) of Theorem 6.0.1).

This time, let us begin with the pathological case. We have s = 2, n = p2 = 2, and h1h̃1 = 1.

The splice diagram ∆f,n is given in Figure 7.8.

Recall that DA(v1) = a2−a1p1, and the order of the discriminant group D(Γf,n) is a2. As

always, eyj
, respectively ezj

, denotes the image in D(Γf,n) of the dual basis element associated

to the leaf yj, respectively zj. The capital letters Y0, Y1, Z0 and Z1 are the variables for the

splice equations associated to the corresponding leaves.

Let us order the variables as follows: (Y0, Y1, Z0, Z1). Then for any leaf w in ∆f,n, we de-

note the diagonal action prescribed by the Neumann-Wahl algorithm of ew on (Y0, Y1, Z0, Z1)

by

ew 7→ [ew · ey0
, ew · ey1

, ew · ez0
, ew · ez1

] .

It is easy to check the following (see §6.2):

ey0
7→

[−p2
1

a2

,
−a1p1

a2

,
p2

1

a2

,
a1p1

a2

]
,

ey1
7→

[−a1p1

a2

,
−a2

1

a2

,
a1p1

a2

,
a2

1

a2

]
,

ez0
7→

[
p2

1

a2

,
a1p1

a2

,
−p2

1

a2

,
−a1p1

a2

]
,

ez1
7→

[
a1p1

a2

,
a2

1

a2

,
−a1p1

a2

,
−a2

1

a2

]
.

• a1
z0 • DA(v1) DA(v1) • a1 • y0

•

p1

z1

•

p1

y1

Figure 7.8. Splice diagram for the pathological case.
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We claim that the action of discriminant group is actually generated by

e :=

[
p1

a2

,
a1

a2

,
−p1

a2

,
−a1

a2

]
.

Since we know that any three of the four elements above generate the discriminant group

([18], Prop. 5.3), and eyi
= e−1

zi
for i = 1, 2, then clearly, ez0

and ez1
generate. Since a1 and

p1 are relatively prime, there exist integers M and N such that Mp1 + Na1 = 1. Then

eM
z0

◦ eN
z1
7→

[
p1

a2

,
a1

a2

,
−p1

a2

,
−a1

a2

]
,

and it is not difficult to see that this element has order a2.

A set of splice equations for ∆f,n is





Za1

0 + b1Z
p1

1 + c1Y
α
0 Y β

1 + H1 = 0

Y a1

0 + b2Y
p1

1 + c2Z
α
0 Zβ

1 + H2 = 0





,

where the bi and ci are nonzero complex numbers, H1 and H2 are higher weight power series

in the appropriate sense, and

αp1 + βa1 = a2 − a1p1.

It is easy to check that the congruence conditions hold for any such choice of α and β. We

must also require that H1 transforms by the character
[
−a1p1

a2

]
under the action of e, and H2

transforms by
[

a1p1

a2

]
.

Let H1 = H2 = 0, and b1 = b2 = c1 = c2 = −1, and let (Y, 0) denote the singularity

defined by

(7.10)





Za1

0 = Zp1

1 + Y α
0 Y β

1

Y a1

0 = Y p1

1 + Zα
0 Zβ

1





.

We will compute the quotient of (Y, 0) by D(Γf,n). Note that the product of any admissible

monomial from the first equation and any admissible monomial from the second equation
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is invariant under the group action. In fact, one can show that the subalgebra of the local

analytic ring of (Y, 0) of elements that are invariant under the action of the discriminant

group D(Γf,n) given by e is generated by

(7.11) A := Y0Z0, B := Y1Z1, C := Zα
0 Zβ+p1

1 , and D := Y α
0 Y β+p1

1

For now, assume that this is true. The proof is at the end of the section. These invariants

satisfy the following relations:

CD = AαBβ+p1 and C + D = Aa1 − Bp1 − AαBβ.

Therefore,

C(C − Aa1 + Bp1 + AαBβ) = −AαBβ+p1 ,

that is,

{
C − 1

2
(Aa1 − Bp1 − AαBβ)

}2

=
1

4
(Aa1 − Bp1 − AαBβ)2 − AαBβ+p1 .

Hence, there exists a splice quotient of the form {z2 = g(x, y)}. Let x := A, y := B, and

z =: 2(C − 1
2
(Aa1 − Bp1 − AαBβ)), and we have

(7.12) z2 = (xa1 − yp1 − xαyβ)2 − 4xαyβ+p1 .

In [6], H. Laufer proves that if the link of a singularity defined by an equation of the

form z2 = g(x, y), with g reduced, has QHS link, then the link uniquely determines the

equisingularity type of g. Therefore, since the singularity defined by (7.12) has the same

resolution graph as ({z2 = f(x, y)}, 0), where f is irreducible and has topological pairs

(p1, a1) and (2, a2), then

g(x, y) = (xa1 − yp1 − xαyβ)2 − 4xαyβ+p1
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must also be irreducible with topological pairs (p1, a1) and (2, a2).

Example 7.2.2. Consider the following example:

n = 2, p1 = 3, p2 = 2,

a1 = 5, a2 = 31.

The splice diagram ∆ is shown in Figure 7.9. The following is a set of splice equations for

∆ as in (7.10): 



Z5
0 = Z3

1 + Y 2
0 Y 2

1

Y 5
0 = Y 3

1 + Z2
0Z

2
1





.

The action of Z/31Z is generated by

[
3

31
,

5

31
,
−3

31
,
−5

31

]
.

In this case, we have invariants

A := Z0Y0, B := Z1Y1, C := Z2
0Z

5
1 , and D := Y 2

0 Y 5
1 ,

and Equation (7.12) is

z2 = (x5 − y3 − x2y2)2 − 4x2y5.

For good measure, SINGULAR confirms that

(x5 − y3 − x2y2)2 − 4x2y5 = 0

is irreducible, and has topological pairs (3, 5) and (2, 31).

• 5
z0 • 16 16 • 5 • y0

•

3

z1

•

3

y1

Figure 7.9. Splice diagram for Example 7.2.2
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The rest of Case (ii), s = 2, p2 = 2, n = 2n′, and h1h̃1 = 1, is a generalization

of the pathological case. The splice diagram is shown in Figure 7.10. Here, DA(v1) =

n′(a2 − a1p1), and the discriminant group still has order a2. Let us order the variables as

follows: (Y0, Y1, Z0, Z1,W ). It is easy to check the following (see §6.2):

ey0
7→

[−n′p2
1

a2

,
−n′a1p1

a2

,
n′p2

1

a2

,
n′a1p1

a2

, 0

]
,

ey1
7→

[−n′a1p1

a2

,
−n′a2

1

a2

,
n′a1p1

a2

,
n′a2

1

a2

, 0

]
,

ez0
7→

[
n′p2

1

a2

,
n′a1p1

a2

,
−n′p2

1

a2

,
−n′a1p1

a2

, 0

]
,

ez1
7→

[
n′a1p1

a2

,
n′a2

1

a2

,
−n′a1p1

a2

,
−n′a2

1

a2

, 0

]
,

ew 7→ [0, 0, 0, 0, 0] .

Analogous to the pathological case, the action of discriminant group is generated by

e 7→
[
n′p1

a2

,
n′a1

a2

,
−n′p1

a2

,
−n′a1

a2

, 0

]
.

This element has order a2, since n′ is relatively prime to a2, and n′, a1, and p1 are pairwise

relatively prime. Note that this e is “the same” as the generator in the pathological case

above, meaning the two elements have the same action on C[[Y0, Y1, Z0, Z1]].

• a1
z0 • DA(v1) a2 • a2 DA(v1) • a1 • y0

•

p1

z1

•

n′

w
•

p1

y1

Figure 7.10. Splice diagram for Case (ii), n > 2.
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One particular set of splice equations is

(7.13)





Za1

0 = Zp1

1 + Y α
0 Y β

1

Y a1

0 = Y p1

1 + Zα
0 Zβ

1

W n′

= Zα
0 Zβ+p1

1 − Y α
0 Y β+p1

1





,

where

αp1 + βa1 = a2 − a1p1.

(See the proof of Propostion 6.2.1.)

Since that the first two equations are the same as the splice equations we used in the

pathological case, and that the third equation is invariant under the action of D(Γf,n), one

can see that the subalgebra of invariants is generated by A, B, C, D (as defined in (7.11)),

and W.

We have the following relations between the invariants A, B, C, D, and W :

CD = AαBβ+p1 , C − D = W n′

, and

C + D = Aa1 − Bp1 − AαBβ.

We can easily write C and D in terms of W, A, and B :

C =
1

2
(W n′

+ Aa1 − Bp1 − AαBβ), and

D = −1

2
(W n′ − (Aa1 − Bp1 − AαBβ)).

Therefore,

1

4
(W n′

+ Aa1 − Bp1 − AαBβ)(W n′ − (Aa1 − Bp1 − AαBβ)) = −AαBβ+p1 ,

and hence,

W 2n′

= (Aa1 − Bp1 − AαBβ)2 − 4AαBβ+p1 .
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If we let x := A, y := B, and z := W, then we have shown that there exists a splice quotient

defined by an equation of the form

zn = (xa1 − yp1 − xαyβ)2 − 4xαyβ+p1 ,

which is precisely the equation that we got in the pathological case n = 2. We have already

shown that

g(x, y) = (xa1 − yp1 − xαyβ)2 − 4xαyβ+p1

is irreducible with topological pairs (p1, a1) and (2, a2).

All that remains in the proof of Theorem 7.2.1 is to prove the following

Lemma 7.2.3. Consider the subalgebra of the local analytic ring of (Y, 0),

OY = C[[Y0, Y1, Z0, Z1]]/(Z
a1

0 − Zp1

1 − Y α
0 Y β

1 , Y a1

0 − Y p1

1 − Zα
0 Zβ

1 ),

that is invariant under the action of Z/a2Z generated by

[
p1

a2

,
a1

a2

,
−p1

a2

,
−a1

a2

]
.

This subalgebra is generated by

A := Y0Z0, B := Y1Z1, C := Zα
0 Zβ+p1

1 , and D := Y α
0 Y β+p1

1 .

Proof. Consider the associated graded ring R of OY with respect to the weight filtration

given by the right hand node in the splice diagram in Figure 7.8. The weights for each variable

are as follows

Y0 Y1 Z0 Z1

p1(a2 − a1p1) a1(a2 − a1p1) a1p
2
1 a2

1p1

.
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Neumann and Wahl prove in [18] (Theorem 2.6(2)) that for any node v, the corresponding

weight filtration has associated graded ring a reduced complete intersection, defined by the

v-leading forms of the splice equations. Therefore, our associated graded ring R is defined

by the equations

Y a1

0 = Y p1

1 + Zα
0 Zβ

1 , and

Za1

0 = Zp1

1 .

The action of G := Z/a2Z obviously preserves the weight filtration, and since it is a diagonal

action, the ring of invariants RG is generated by monomials.

First of all, we show that A, B, C, and D generate the ring of invariants RG. We

do this by considering the invariant monomials case-by-case and showing that each such

monomial can be written as a finite sum of terms, each of which is a monomial in A, B, C,

and D times something of lower weight. Then, by downward induction on the weight, every

invariant monomial is in the ring generated by A, B, C, and D. Obviously, for any monomial

that contains both Y0 and Z0 or both Y1 and Z1, there is nothing to prove. Therefore, there

are four cases of interest:

(a) ZI
0Z

J
1 such that a2 divides p1I + a1J,

(b) Y I
1 ZJ

0 such that a2 divides a1I − p1J,

(c) Y I
0 ZJ

1 such that a2 divides p1I − a1J,

(d) Y I
0 Y J

1 such that a2 divides p1I + a1J.

At first, we will assume that I and J are both nonzero in each case.

Case (a): ZI
0Z

J
1 such that a2 divides p1I + a1J. Let p1I + a1J = a2m, for some positive

integer m. Recall that α and β are defined by

a2 − a1p1 = αp1 + βa1.
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So, we have p1I + a1J = (αp1 + βa1 + a1p1)m; that is,

p1(αm − I) = a1(J − (β + p1)m).

First, suppose that αm − I ≥ 0. Since a1 and p1 are relatively prime,

αm − I = a1d, and

J − (β + p1)m = p1d,

for some nonnegative integer d. Thus, I + a1d = αm, and J = p1d + (β + p1)m. Since

Za1

0 = Zp1

1 , we have

ZI
0Z

J
1 = ZI

0Z
p1d+(β+p1)m
1

= ZI
0Z

a1d
0 Z

(β+p1)m
1

= Zαm
0 Z

(β+p1)m
1

= Cm.

Note that ZI
0Z

J
1 = Cm even for d = 0.

Now suppose that αm − I < 0. Then I − αm = a1d, and (β + p1)m − J = p1d, for some

positive integer d. Thus, I = a1d + αm, J + p1d = (β + p1)m, and

ZI
0Z

J
1 = Za1d+αm

0 ZJ
1

= Zαm
0 Zp1d

1 ZJ
1

= Zαm
0 Z

(β+p1)m
1

= Cm.
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Case (b): Y I
1 ZJ

0 such that a2 divides a1I − p1J. First of all, we claim that either I ≥ p1

or J ≥ a1. For, if not, then |a1I − p1J | < a1p1 < a2, and therefore, m must be 0. But that

implies a1I = p1J, and hence p1 divides I and a1 divides J, which is a contradiction.

Suppose J ≥ a1. Then Y I
1 ZJ

0 is clearly a multiple of B = Y1Z1. If J < a1, then I ≥ p1,

and therefore

Y I
1 ZJ

0 = Y I−p1

1 (Y a1

0 − Zα
0 Zβ

1 )ZJ
0 .

Let M = min(a1, J), which we have assumed is greater than 0. Then

Y I
1 ZJ

0 = AMY I−p1

1 Y a1−M
0 ZJ−M

0 − Y I−p1

1 Zβ
1 Zα+J

0 .

If min(I − p1, β) 6= 0, the second term is a multiple of B, and we are finished. It is not

possible for I to be p1, for if so, we would have J = a1 − a2m/p1, and since J < a1, this

implies J < 0, since a2 > 2a1p1. Finally, if β = 0, then I must be divisible by p1, and

therefore

Y I
1 ZJ

0 = (Y a1

0 − Zα
0 )dZJ

0 .

Every term in this expression is a multiple of A except for Zαd+J
0 , which is treated below.

Case (c): Y I
0 ZJ

1 such that a2 divides p1I − a1J. As above, it is clear that either I ≥ a1 or

J ≥ p1. If J ≥ p1, then Y I
0 ZJ

1 is clearly a multiple of A. If J < p1, then I ≥ a1, and therefore

we have

Y I
0 ZJ

1 = Y I−a1

0 (Y p1

1 + Zα
0 Zβ

1 )ZJ
1 .

Let M = min(p1, J), which we assume is greater than 0. Then

Y I
0 ZJ

1 = BMY I−a1

0 Y p1−M
1 ZJ−M

1 − Y I−a1

0 Zα
0 Zβ+J

1 .

If min(I − a1, α) 6= 0, the second term is a multiple of A, and we are finished. Using the

same argument as in Case (b), one can see that it is not possible for I to be a1. Therefore
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the only problem is α = 0. In that case, I must be divisible by a1, and thus

Y I
0 ZJ

1 = (Y p1

1 − Zβ
1 )dZJ

1 .

Every term in this expression is a multiple of B except for Zβd+J
1 , which is treated below.

Case (d): Y I
0 Y J

1 such that a2 divides p1I + a1J. Let p1I + a1J = a2m, where m is a

positive integer. As in Case (a), we may write

p1(αm − I) = a1(J − (β + p1)m).

First, suppose that αm − I ≥ 0. Again, we have

αm − I = a1d, and

J − (β + p1)m = p1d,

for some nonnegative integer d. Thus, I + a1d = αm, and J = p1d + (β + p1)m. Since

Y p1

1 = Y a1

0 − Zα
0 Zβ

1 , we have

Y I
0 Y J

1 = Y I
0 (Y a1

0 − Zα
0 Zβ

1 )dY
(β+p1)m
1 .

The terms on the right hand side are all of the form

Y
I+a1(d−k)
0 Zαk

0 Zβk
1 Y

(β+p1)m
1 , 0 ≤ k ≤ d.

For k = 0, the term is Dm. The rest of the terms are divisible by either A or B unless

min(I + a1(d − k), αk) and min(βk, (β + p1)m) are both zero. But since we are assuming

that I is nonzero, this cannot happen. For αm − I < 0, the argument is virtually identical.

All that remains are the invariants of the form Y I
0 , Y J

1 , ZI
0 , and ZJ

1 . If ZI
0 is invariant,

then p1I = a2m, for some positive integer m. Then

p1I = (αp1 + βa1 + a1p1)m,
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and hence p1(I − αm) = a1(β + p1)m. Clearly, I − αm > 0, and

I − αm = a1d, and

(β + p1)m = p1d,

for some positive integer d. Then

ZI
0 = Zαm+a1d

0 = Zαm
0 Z

(β+p1)m
1 = Cm.

Note that the argument holds for α = 0 as well, since in that case C = Zβ+p1

1 . In the same

way, it is easy to show that any invariant of the form ZJ
1 is equal to Cm as well.

Let Y I
0 be invariant, so that p1I = a2m. Then, just as above, we have I −αm = a1d and

(β + p1)m = p1d, for some positive integer d. Thus

Y I
0 = Y αm+a1d

0 = Y αm
0 (Y p1

1 + Zα
0 Zβ

1 )d.

This expression consists of terms of the form

Y αm
0 Zαk

0 Y
p1(d−k)
1 Zβk

1 , 0 ≤ k ≤ d.

For k = 0, this is Dm (even if α = 0), and the rest of the terms are multiples of A or B

unless min(αm,αk) and min(βk, p1(d− k)) are both zero. The only possibility is α = 0 and

k = d. In this case, the monomial in question is Zβd
1 , and we covered the invariant powers of

Z1 above.

Finally, let Y J
1 be invariant, so that a1J = a2m. Then we have J − (β + p1)m = p1d, and

αm = a1d, for some positive integer d. Thus,

Y J
1 = Y

(β+p1)m
1 (Y a1

0 − Zα
0 Zβ

1 )d.
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This expression consists of terms of the form

Y
a1(k−d)
0 Zαk

0 Y
(β+p1)m
1 Zβk

1 , 0 ≤ k ≤ d.

For k = 0, this is Dm (even if β = 0), and the rest of the terms are multiples of A or B unless

min(a1(d− k), αk) and min((β + p1)m,βk) are both zero. The only possibility is β = 0 and

k = d. In this case, the monomial in question is Zαd
0 Y p1m

1 , and this falls into Case (b).

Now, we have shown that the ring of invariants RG in the associated graded ring is

generated by A, B, C, and D. It is not hard to see that the ring of invariants for the

associated graded is equal to the associated graded of the ring of invariants. That is, if In

denotes the ideal of elements of weight greater than or equal to n (so that R =
⊕

In/In+1),

then, since the group action preserves the weight filtration, (In/In+1)
G ≃ IG

n /IG
n+1. Finally,

lifts of generators for the associated graded ring of the ring of invariants generate the entire

algebra of invariants, since it is a complete local ring. ¤
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Appendix

The goal of this appendix is to verify the proof of the second statement from Proposition

5.1.1, which we restate as follows.

Proposition 7.2.4. Suppose that (Xf,n, 0) := ({zn = f(x, y)}, 0) is a normal surface

singularity with QHS link, and with f irreducible. Let {(pk, ak) : 1 ≤ k ≤ s} be the

topological pairs associated to the irreducible plane curve singularity, and let p′k, a′
k be defined

as in Definition 4.1.1. Assume that s ≥ 2. Then, for all k such that 2 ≤ k ≤ s, ak is in the

semigroup generated by

{
a′

k−1, p′1p
′
2 · · · p′k−1, a′

jp
′
j+1 · · · p′k−1, 1 ≤ j ≤ k − 2

}
.

Clearly, it would be enough to show that ak is in the semigroup generated by

{ak−1, p1p2 · · · pk−1, ajpj+1 · · · pk−1, 1 ≤ j ≤ k − 2} .

For, if we had

ak = γ0p1p2 · · · pk−1 +
k−2∑

j=1

γjajpj+1 · · · pk−1 + γk−1ak−1,

then, since pj = hjp
′
j and aj = h̃ja

′
j for all j,

ak = (γ0h1h2 · · ·hk−1)p
′
1p

′
2 · · · p′k−1 +

k−2∑

j=1

(γjh̃jhj+1 · · ·hk−1)a
′
jp

′
j+1 · · · p′k−1

+(γk−1h̃k−1)a
′
k−1.

The proof that ak is in the semigroup generated by

{ak−1, p1p2 · · · pk−1, ajpj+1 · · · pk−1, 1 ≤ j ≤ k − 2}

is equivalent to Lemma 2.2.1 in Teissier’s appendix to [27] (attributed to Azevedo [1] and

Merle [9]), but to show the equivalence requires some explanation.
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To begin, we must give the precise definition of the Puiseux pairs {(pk,mk)}. Throughout,

as a technical condition, we assume that y = 0 is not a tangent to f = 0 at the singular

point.

Definition 7.2.5. (see, e.g. [2]) Suppose a Puiseux expansion of f is given by

y =
∑

aκx
κ, aκ 6= 0, κ ∈ Q, κ ≥ 1.

• Let κ1 be the smallest exponent that is not an integer, and let κ1 = m1

p1
, with

m1 > p1, and gcd(p1,m1) = 1. Then (p1,m1) is the first Puiseux pair of f.

• Let κ2 be the smallest exponent that cannot be written q
p1

for some integer q > p1.

Write κ2 = m2

p1p2
, p2 > 1, gcd(p2,m2) = 1. Then (p2,m2) is the second Puiseux pair.

• Inductively, let κi+1 be the smallest exponent that cannot be written q
p1···pi

. Write

κi+1 = mi+1

p1···pi+1
, pi+1 > 1, gcd(pi+1,mi+1) = 1. Then (pi+1,mi+1) is the (i + 1)-st

Puiseux pair.

• There exists s such that p1 · · · ps = p is a common denominator of all exponents in

the Puiseux series. Then (pk,mk), 1 ≤ k ≤ s, are the Puiseux pairs.

The pi are the same for the Puiseux pairs, Newton pairs, and topological pairs. It is

easy to check (see §4.1) that the Puiseux pairs (pk,mk) are related to the topological pairs

(pk, ak) as follows:

(7.1) a1 = m1, and ak = mk − mk−1pk + ak−1pk−1pk, 2 ≤ k ≤ s.

There is yet another finite set of positive integers that is equivalent to the set of Puiseux

pairs of f called the “characteristique” ([27]) or Puiseux characteristic of f.

153



Definition 7.2.6. ([27], II.3) Suppose that f has Puiseux parameterization





x = tp,

y =
∑

j≥m ajt
j, aj 6= 0,

where m > p and m 6= 0 (mod p). The Puiseux characteristic of f is (p, β1, . . . , βs), defined

inductively as follows:

• p is the multiplicity of the singularity;

• β1 is the smallest positive integer such that β1 6= 0 (mod p), and e1 := (p, β1);

• βi+1 is the smallest positive integer such that βi+1 6= 0 (mod ei), and ei+1 :=

(ei, βi+1);

• the procedure ends once we reach s such that es = 1.

Note that β1 = m.

By a careful reading of the two definitions, one can see that the Puiseux characteristic

(p, β1, . . . , βs) and the Puiseux pairs (pk,mk) are related as follows:

p1 =
p

e1

,

pk =
ek−1

ek

, 2 ≤ k ≤ s, and

mk =
βk

ek

, 1 ≤ k ≤ s.

Therefore, it is easy to see that

p = p1 · · · ps,(7.2)

βk = mkpk+1 · · · ps, 1 ≤ k ≤ s − 1,(7.3)

βs = ms.(7.4)
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Finally, we define integers β̄k inductively as follows (see [27], Thm. 3.9):

β̄0 = p

β̄1 = β1

β̄k = pk−1β̄k−1 − βk−1 + βk, 2 ≤ k ≤ s.

The semigroup generated by the β̄k is referred to as the semigroup associated to the irre-

ducible plane curve singularity defined by f. There is much more that can be said about this

semigroup, but we reproduce only what we require.

We are now ready to state the result from Teissier’s appendix.

Lemma ([27], Lemma 2.2.1). If 〈β̄0, . . . , β̄s〉 is the semigroup of an irreducible plane curve

singularity, one has

pkβ̄k ∈ N〈β̄0, . . . , β̄k−1〉, for 1 ≤ k ≤ s.

To see that this is equivalent to the statement that ak is in the semigroup generated by

{ak−1, p1p2 · · · pk−1, ajpj+1 · · · pk−1, 1 ≤ j ≤ k − 2} ,

we need only rewrite the β̄k in terms of the topological pairs (pi, ai).

Claim 7.2.7. For 1 ≤ k ≤ s − 1, β̄k = akpk+1 · · · ps, and β̄s = as.

Proof. For k = 1, this is true by (7.3) since a1 = m1. Assume the statement is true up

to k − 1. Then

β̄k = pk−1β̄k−1 − βk−1 + βk

= pk−1(ak−1pk · · · ps) − mk−1pk · · · ps + mkpk+1 · · · ps

= [ak−1pk−1pk − mk−1pk + mk]pk+1 · · · ps,
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and this is equal to akpk+1 · · · ps by (7.1). ¤

Therefore, for 1 ≤ k ≤ s, the Lemma is equivalent to

akpk · · · ps ∈ N〈p1 · · · ps, ajpj+1 · · · ps | 1 ≤ j ≤ k − 1〉.

If we divide each term by pk · · · ps, we have

ak ∈ N〈p1 · · · pk−1, ak−1, ajpj+1 · · · pk−1 | 1 ≤ j ≤ k − 2〉.
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Math., Birkhäuser, 2002, pp. 181–190.

18. , Complete intersection singularities of splice type as universal abelian covers,
Geom. Topol. 9 (2005), 699–755.

19. , Complex surface singularities with integral homology sphere links, Geom. Topol.
9 (2005), 757–811.

20. T. Okuma, The geometric genus of splice-quotient singularities,
http://arXiv:math.AG/0610464, 2006.

21. , Universal abelian covers of certain surface singularities, Math. Ann. 334 (2006),
no. 4, 753–773.

22. P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with C∗-action, Ann.
of Math. 93 (1971), 205–228.

23. H. Pinkham, Deformations of normal surface singularities with C∗-action, Math. Ann.
232 (1978), no. 1, 65–84.

24. J. Stevens, Universal abelian covers of superisolated singularities,
http://arXiv:math.AG/0601669, 2006.

25. J. Wahl, Deformations of quasi-homogeneous surface singularities, Math. Ann. 280
(1988), no. 1, 105–128.

26. , Geometry, topology, and equations of normal surface singularities, Singularities
and Computer Algebra, London Math. Soc. Lecture Note Ser., no. 324, Cambridge
University Press, 2006, pp. 351–371.

27. O. Zariski, Le problème des modules pour les branches planes, École Polytechnique, 1973.
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