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ABSTRACT 

JINHEE PARK: Feeding Outcomes in Very Preterm Infants:  

Preliminary Effects of Positioning 

(Under the direction of Dr. Suzanne Thoyre) 

 

Background/Significance: Oral feeding emerges during a dynamic process of the 

organization of inputs from subsystems within the infant and the environment. Very preterm 

infants (VP, ≤ 30 weeks gestational age) are at risk for impaired lung function, which 

significantly limits their organizational capacity and contributes to feeding difficulties. A 

head-elevated side-lying (HEL) position has recently been proposed as a strategy that may 

improve oral feeding in VP infants by supporting breathing during feeding.  

Purpose: The primary purpose of this study is to test the preliminary effects of the 

HEL position on the physiologic stability and feeding performance of VP infants when 

bottle-fed, compared to the head-elevated supine (HES) position. In addition, methods for 

measuring changes in physiologic stability across the feeding period are examined. 

Methods:  Using a within-subject cross-over design, six VP infants were bottle-fed 

twice on one day, in both the HEL and HES positions. The following variables were 

measured before and/or during feeding: physiological stability (heart rate [HR], oxygen 

saturation [SpO2], respiratory characteristics) and feeding performance (overall milk transfer, 

proficiency, efficiency, and duration of feeding). Three methods were used to examine 

changes in physiologic stability across the feeding period.  

Results: Compared to the HES position, VP infants fed in the HEL position show 

significantly less variation in HR, less severe and fewer decreases in HR, shorter and more 
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regular intervals between breaths, breathing frequency that is closer to the pre-feeding state, 

and more variation in breath duration. VP infants also demonstrate a more stable HR over 

time, especially during the early minutes of feeding, and improved regulated breathing over 

time by demonstrating shorter and more regular intervals between breaths and more variation 

in breath duration across the feeding period. In addition, the method using the first 6 minutes 

of bottle-in period is suggested as the most effective for examining significant changes in 

physiologic stability over time. No significant findings for SpO2 and feeding performance are 

found. 

Conclusions: The findings indicate that the HEL position may be a feeding strategy 

to support better regulation of breathing during feeding that allows VP infants to better 

maintain physiologic stability throughout the feeding.  
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CHAPTER I 

 

INTRODUCTION 

In the United States, over 80,000 babies are born very preterm (VP ≤ 30 weeks 

gestational age) every year (Hamilton, Martin, & Ventura, 2010). These infants are at high 

risk for impaired lung function due to early exposure of the immature lungs to extrauterine 

conditions and their need for supplemental oxygen or airflow for prolonged periods 

(Ehrenkranz et al., 2005; Jobe & Bancalari, 2001). The impaired lung function, combined 

with prematurity, significantly interferes with these infants’ ability to eat, which contributes 

to frequent feeding difficulties.  

Oral feeding behavior emerges from nonlinear and dynamic interactions of multiple 

systems that are involved in oral feeding (Goldfield, 2007). These systems include the oral-

motor, neurologic, cardio-respiratory, and gastrointestinal systems, which continuously self-

organize both within and between the systems to establish stability in response to the internal 

inputs from the infant and external inputs from the environment. This self-organization 

process creates a functional feeding synergy, i.e., sucking, swallowing, and breathing, in 

which the infant sucks sufficiently to meet his or her nutritional needs for growth, swallows 

swiftly to minimize the disruption of breathing, and breathes with adequate depth and 

frequency to maintain physiologic stability.  

However, for VP infants, impaired lung function limits their ability to self-organize, 

thus generating inefficient feeding synergies that contribute to feeding difficulties. VP infants 
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are not able to integrate a sufficient number and depth of breaths into sucking and 

swallowing rhythms consistently; therefore, breathing is disrupted, interrupted, abbreviated, 

and for brief periods completely absent during feeding (Craig, Lee, Freer, & Laing, 1999; 

Gewolb & Vice, 2006; Lau, Smith, & Schanler, 2003). Thus, sucking strength and frequency 

is limited for VP infants, which in turn decreases their milk intake, and thus limits the 

amount of swallowing that is required and minimizes the interruption of breathing that 

swallowing creates (Gewolb, Bosma, Taciak, & Vice, 2001; Mizuno et al., 2007). Although 

this adaptation may increase a VP infant’s physiologic stability, it is at the expense of 

sufficient intake. Further, when immaturity limits the ability of the infant to increase 

breathing by decreasing his or her sucking frequency or strength, insufficient breathing may 

result in physiologic distress, fatigue, and early cessation of feeding.  

These inefficient or dysfunctional feeding synergies contribute to feeding difficulties 

in VP infants, as evidenced by increased physiological instability (Craig et al., 1999; Gewolb 

& Vice, 2006; Mizuno et al., 2007; Thoyre & Carlson, 2003), poor sucking patterns (Gewolb, 

Bosma, et al., 2001; Medoff-Cooper, McGrath, & Shults, 2002; Mizuno et al., 2007; Mizuno 

& Ueda, 2003), poor coordinated rhythms of swallowing and breathing (Gewolb & Vice, 

2006; Lau et al., 2003; Mizuno & Ueda, 2003), poor intake (Lau et al., 2003; Mizuno et al., 

2007), and a prolonged length of time before becoming a full oral feeder (Pickler, Mauck, & 

Geldmaker, 1997; Pridham et al., 1998). If left unresolved, feeding difficulties may persist 

for years after discharge from the hospital (Hawdon, Beauregard, Slattery, & Kennedy, 2000; 

Thoyre, 2007) and contribute to chronic growth failure and altered eating patterns (Kurzner 

et al., 1988; Wood et al., 2003). Thus, for VP infants, feeding strategies need to focus on 
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supporting breathing in order to maintain physiological stability throughout feeding and to 

enable them to continue to feed long enough to obtain adequate nutritional intake for growth.  

 The correct positioning of the infant during feeding is a potential strategy for 

improving breathing during feeding (L. Clark, Kennedy, Pring, & Hird, 2007; McFarland, 

Lund, & Gagner, 1994; Mizuno et al., 2007). A head-elevated supine (HES) position is 

commonly used in the neonatal intensive care unit (NICU) when preterm infants are bottle-

fed. This position reduces the work of breathing by facilitating an infant’s lung expansion 

through a 45-60 degree angle of head elevation (Dellagrammaticas, Kapetanakis, 

Papadimitriou, & Kourakis, 1991; Jenni et al., 1997). It also enhances the caregiver’s ability 

to provide support of the head-neck alignment in a neutral position and provides better visual 

access for nurses and parents to observe the infant’s responses to feeding. However, the HES 

position may interfere with maintaining adequate patency of the upper airway by allowing 

the soft palate and tongue to fall back due to gravity, thus contributing to inefficient 

breathing. Also, gravity increases the transit time of the milk to the back of the oral cavity, so 

the infant may have less time to control the bolus of milk that creates the conditions for 

dysfunctional swallowing, thus increasing the potential for breathing interruptions and 

aspiration during feeding.  

A head-elevated side-lying (HEL) position recently has been proposed as a potential 

strategy that may avoid some of the disadvantages of the HES position (L. Clark et al., 2007). 

The HEL position is a common position for an infant feeding naturally at the breast. Better 

coordination of breathing with swallowing (Goldfield, Richardson, Lee, & Margetts, 2006) 

and less disruption of breathing (Blaymore Bier et al., 1997; Dowling, 1999; P. P. Meier, 

2001) have been reported in breastfeeding compared to bottle feeding. Because the HEL 
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position may better mimic breast-feeding when an infant is bottle-fed, as compared to the 

HES position, infants who feed in the HEL position may be able to assume some of the 

advantages of breastfeeding to improve their breathing during feeding. The HEL position 

may also facilitate safe and efficient swallowing by creating conditions for better fluid 

management during feeding (Lau & Schanler, 2000; Mathew, 1991a). In the HEL position, 

the lowered angle of the bottle slows the gravitational milk flow by decreasing the 

hydrostatic pressure generated by the volume of milk in the inverted bottle. The milk flows 

into the infant’s cheeks first and has a slower transit time to the back of the oral cavity. Thus, 

the slower flow of milk may allow the infant to have more time to form a bolus and control 

the movement of that bolus. This ability allows the infant to swallow more safely and 

efficiently, thereby preventing aspiration and prolonged breathing interruption. The HEL 

position also reduces the work of breathing by facilitating upper body antigravity control 

(Vanderghem, Beardsmore, & Silverman, 1983) and promoting better patency of the upper 

airway that may be a result of reduced gravitational effects on the anatomical tissues (e.g., 

tongue and soft palate) surrounded by the upper airway  (Litman et al., 2005).  

Despite the potential benefits of the HEL position, very limited evidence of the 

effects of this feeding position on feeding outcomes has been published. Thus, studies to test 

the preliminary effects of the HEL position as a feeding intervention are needed.  

To examine the short-term effects of feeding interventions, a number of variables 

have been used. These variables are primarily cardio-respiratory variables that include heart 

rate (HR), respiratory rate, and/or percentage of hemoglobin saturated with oxygen, which is 

commonly referred to as oxygen saturation (SpO2) (L. Clark et al., 2007; Dowling, 1999; 

Hill, Kurkowski, & Garcia, 2000; Mathew, 1991a; McCain, 1995; Mizuno, Inoue, & 
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Takeuchi, 2000; Pickler, Frankel, Walsh, & Thompson, 1996; Shiao, Youngblut, Anderson, 

DiFiore, & Martin, 1995), sucking performance (Mizuno et al., 2000; Pickler & Reyna, 2004; 

Scheel, Schanler, & Lau, 2005), and actual oral feeding performance, including overall milk 

transfer, proficiency, and/or efficiency (Dowling, 1999; Lau & Schanler, 2000; Pickler & 

Reyna, 2004). Most studies use the averaged values of each variable during the entire feeding 

time. Some studies analyze only subsections of feedings, e.g., continuous versus intermittent 

sucking periods (Shiao et al., 1995), or the first and last three minutes of feeding (Hill et al., 

2000). However, because infants’ oral feeding behaviors are emergent as the subsystems 

continuously interact, and thus can change across the feeding period, an averaged outcome 

based on the entire feeding or based on data extracted from subsections of the feeding cannot 

take into account feeding dynamics and the non-stationary state of infants’ feeding responses.  

For example, even if two infants have a similar number of physiologic distress events 

or the same mean SpO2 level during feeding, the patterns of physiologic responses to feeding 

can be different from each other. One infant may exhibit more physiologic instability during 

the early period of feeding, but may gradually adapt and become more physiologically stable 

across time. In contrast, another infant may maintain physiologic stability during the early 

period of feeding, but may become fatigued and less physiologically stable as the feeding 

progresses. That is, these different patterns of physiologic stability can reflect different infant 

adaptive capacities. If the aim is to customize feeding interventions to the individual infant’s 

needs, these two infants would require different feeding interventions. Thus, a more precise 

method of measuring physiologic stability across time may enhance the understanding of 

infants’ feeding difficulties and bring more precision to the application of feeding 

interventions.  
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Therefore, the primary purpose of this study is to test the preliminary effects of the 

HEL position compared to the HES position on the physiologic stability and feeding 

performance of VP infants when bottle-fed. In addition, this research examines methods for 

measuring changes in physiologic stability across the feeding period.  

 

RESEARCH QUESTIONS AND HYPOTHESES 

 

It is hypothesized that, when compared to VP infants fed in the HES position, VP 

infants fed in the HEL position will demonstrate: 

H1: greater physiologic stability (i.e., less variation in HR and SpO2, less severe and 

fewer changes in HR and SpO2, a higher respiratory rate that is closer to that of the pre-

feeding state, and less variation in breath-to-breath intervals and in the duration and 

amplitude of breaths) and better feeding performance (i.e., overall milk transfer, proficiency, 

efficiency, and duration of feeding) over the entire feeding period; and 

H2: fewer changes in physiologic stability from the pre-feeding period across the 

feeding period. Three methods are chosen to examine the changes in physiologic stability 

across the feeding period in order to explore this hypothesis. 

 

If the HEL position is found to produce better responses than the HES position, this 

information will provide a foundation for developing a randomized controlled trial to 

investigate the effects of the HEL position more definitively using physiologic measures that 

are sensitive to the changing dynamics of VP infant feeding. This new feeding strategy has 

the potential to promote the development of oral feeding skills and support adequate growth 
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and development in VP infants and serve as a feeding strategy that can readily be applied to 

neonatal care.  



 

 

CHAPTER II 

 

This chapter presents the theoretical framework and literature review. As the purpose 

of this study is to examine the preliminary effects of feeding position and methods for 

measuring changes in physiologic stability across feeding, the literature review discusses oral 

feeding during infancy, the development of oral feeding skills in preterm infants and VP 

infants, and feeding problems in VP infants and how feeding position may improve these 

problems.  

The foundation for understanding the mechanisms of infant oral feeding is provided 

in discussion of the three major components of oral feeding, i.e., sucking, swallowing, and 

breathing, and their interrelationships during feeding. The next section discusses the 

challenges of preterm infants and VP infants for developing competent oral feeding skills. 

The section regarding feeding problems in VP infants summarizes the current literature on 

this topic and examines measures and variables that have been used to evaluate feeding 

problems in this population. Next, feeding positions that have been used when feeding 

infants, advantages and disadvantages of each feeding position as they apply to VP infants, 

and reasons that the HEL position is a potential strategy to improve feeding problems in VP 

infants are discussed. Finally, a brief discussion of nursing implications is provided in terms 

of ways that the HEL position is applicable to clinical settings as a feeding strategy as well as 

ways that methods used to determine changes in physiologic stability across the feeding are 

applicable to feeding research.
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THEORETICAL FRAMEWORK 

Dynamic systems theory guides the understanding of the complexities of feeding 

dynamics in infants and positioning as a feeding intervention (Goldfield, 2007; Thelen & 

Spencer, 1998; Thelen & Ulrich, 1991). Infant oral feeding is a highly complex and dynamic 

process in nature that requires interactions of multiple subsystems, including the oral-motor, 

neurological, cardio-respiratory, and gastrointestinal systems. These systems continuously 

interact both within and between the systems to establish stability in response to the internal 

inputs from the infant and external inputs from the environment during feeding. This 

continuous process of interactions among subsystems toward stability is called self-

organization (J. E. Clark, 1995; Thelen & Ulrich, 1991). Through self-organization, the 

infant generates a functional feeding synergy, i.e., sucking, swallowing, and breathing, in 

which oral feeding behavior emerges as a consequence.  

During feeding, the goals of breathing and feeding appear to compete with each other 

for the limited anatomical resources of the pharyngeal anatomy (Rogers & Arvedson, 2005). 

That is, for breathing, the airway opens to transfer air to the lungs, and for swallowing, the 

airway needs to be closed to move fluid and food directly into the esophagus. Thus, in the 

process of self-organization, these subsystems must find the most effective relationships 

amongst sucking, swallowing, and breathing that lead to conditions where the demands of 

breathing and feeding are balanced adequately. When the most ideal feeding synergies are 

created through self-organization, the demands of breathing and feeding are balanced 

adequately, and the infant sucks with efficiency and endurance to obtain adequate nutritional 

needs for growth, swallows safely and rapidly to minimize the interruption of breathing, and 

breathes with an adequate number and depth of breaths. However, when inefficient and 
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dysfunctional feeding synergies are created for any reason, this balance of breathing and 

feeding is destabilized, and breathing may be suppressed excessively during sucking and 

swallowing, resulting in physiologic distress, fatigue, and early cessation of feeding. In this 

way, oral feeding behavior emerges from the ongoing interactions of constituent subsystems, 

rather than being fixed by maturational events in the nervous system (Thelen & Ulrich, 

1991). Therefore, the feeding behaviors that have emerged through the self-organization 

process can be used to examine and understand infants’ feeding difficulties. 

Each subsystem involved in oral feeding also has the capacity for shaping and 

guiding the dynamics of the oral feeding system. That is, if any one of the subsystems is 

limited in its ability to self-organize, the self-organization of the entire feeding system and, 

therefore, the feeding synergy will be compromised. Thus, the functionality of each 

subsystem sets boundaries, thereby either facilitating or constraining the entire feeding 

system’s ability to self-organize (J. E. Clark, 1995; Handford, Davids, Bennett, & Button, 

1997; Humphry, 2002).  

The functionality of each subsystem also can be affected by internal and external 

factors. Internal factors are the infant’s inherent characteristics that impact oral feeding skills 

and may include, but are not limited to, the infant’s level of maturity, health condition, and 

feeding experience. For example, immaturely developed oral-motor, neurological, cardio-

respiratory, and/or gastrointestinal systems can interfere with any one or more of the 

functions of sucking, swallowing, and breathing, thus generating inefficient and 

dysfunctional feeding synergies that could contribute to feeding difficulties. However, these 

immature infant feeding skills improve and develop as the subsystems mature with an 

increase in postmenstrual age (PMA) (Amaizu, Shulman, Schanler, & Lau, 2008; Lau, 
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Alagugurusamy, Schanler, Smith, & Shulman, 2000; Mizuno & Ueda, 2003). In addition, 

preterm infants who are born at a young gestational age (GA), especially less than 30 weeks, 

often have complications due to prematurity, most notably, necrotizing enterocolitis (NEC), 

neuro-developmental impairments, and bronchopulmonary dysplasia (BPD). These 

complications, combined with prematurity, can significantly interfere with any one or more 

of the functions of the subsystems that are involved in the feeding process. Therefore, such 

complications can limit the infant’s ability to self-organize the entire feeding system, which 

could result in even more severe and frequent feeding difficulties as well as further interfere 

with the expected normal development of oral feeding skills (Gewolb, Bosma, et al., 2001; 

Gewolb & Vice, 2006). Many studies have documented the co-morbidities of preterm infants 

as a significant contributor to increased feeding problems and delayed development of 

competent oral feeding skills (Jadcherla, Wang, Vijayapal, & Leuthner, 2010; Pickler et al., 

1997; Pickler & Reyna, 2003; Pridham et al., 1998).  

Moreover, the feeding experience is one of the critical internal factors that impacts 

infant oral feeding skills. As infants explore the most effective feeding synergies through 

self-organization, they learn to reduce the competition between the goals of breathing and 

feeding by changing the characteristics of the sucking, swallowing, and breathing rhythms. 

Thus, the feeding synergies that emerge become more cooperative rather than competitive 

through experience with oral feeding. Clinical evidence supports this idea by showing a more 

rapid transition to full oral feedings and a shorter length of stay in the NICU when preterm 

infants have more oral feeding experience per day, regardless of the infant’s health condition 

(Pickler, Best, & Crosson, 2009).  
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Because each subsystem is open to environmental factors, the functionality of these 

subsystems also can be affected by external factors. External factors are contextual factors 

that surround the infant during feeding and impact the oral feeding process. These 

environments include the distal environment (e.g., the NICU environment, especially lights 

and noise) and the proximal environment (e.g., flow of milk, the positioning of the infant, 

and the caregiver’s feeding strategies). Successful and safe oral feeding requires that the 

infant can self-organize the feeding system in response to external and internal challenges 

well enough to maintain physiologic stability throughout the feeding. However, because 

preterm infants have increased internal challenges due to immature or impaired functionality 

of those subsystems (i.e., the oral-motor, neurological, cardio-respiratory, and 

gastrointestinal systems), the energy expenditure required to modulate these internal 

challenges is already high, and additional energy may be less available for external 

challenges. Thus, for preterm infants, especially those with increased internal challenges, 

external challenges from the environment become even more critical for the self-organization 

process.  

Because external factors can be modified, they can be targeted to facilitate the self-

organization of the feeding system. One external factor is NICU environment. Excessive 

noise and light in NICU have been documented as environmental stresses that create adverse 

changes in physiological responses (Peng et al., 2009; Wachman & Lahav, 2010) and to 

which the infant must adjust during feeding. Therefore, if the noise and light are controlled or 

minimized during feeding, the additional effort needed to deal with these demands could be 

avoided, thereby allowing the infant to focus on the oral feeding process. 
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Moreover, fast milk flow from the bottle can increase the bolus size of each suck and 

swallowing frequency, which can contribute to more interrupted breathing due to 

swallowing, thereby increasing breathing difficulties (Al-Sayed, Schrank, & Thach, 1994; 

Mathew, 1991a). In contrast, slow milk flow may allow infants to have more time to form a 

bolus and control its movement, thus contributing to safe and efficient swallowing that 

minimizes breathing interruptions and consequently improves feeding performance (Lau, 

Sheena, Shulman, & Schanler, 1997). Similarly, when the infant is fed in the side-lying or 

prone position, the upper airway may be less constrained by anatomical tissues (i.e., the 

tongue and soft palate) due to gravity than in the supine position, thereby promoting better 

patency of the upper airway (Litman et al., 2005). Thus, the flow of milk and feeding 

position are two of the external factors that may either impose more demands or reduce the 

challenge of feeding.  

Finally, the caregiver co-regulates the feeding process. When the infant is fed by a 

supportive caregiver who recognizes and responds promptly to the infant’s cues (e.g., 

holding the nipple still when the infant pauses to reorganize his/her breathing after sucking 

bursts, rather than jiggling it to stimulate sucking), the infant’s ability to self-organize the 

feeding process may be improved (Thoyre & Brown, 2004).  

In accordance with the extant subsystems that interact within the infant and 

environment, infants must take multiple paths to create the stability that emerges from the 

self-organization process (Goldfield, 1995; Thelen & Ulrich, 1991). Thus, identifying and 

examining changes in the feeding synergies that have emerged through the continuous self-

organization process can contribute to a better understanding of infants’ feeding difficulties. 

For example, most physiologically stable infants (e.g., healthy full-term and preterm infants) 
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are able to adjust their breathing patterns along with sucking and swallowing to maintain 

physiologic stability over the course of the feeding, even if this adjustment is more efficient 

in full-term infants than preterm infants (Mathew, Clark, Pronske, Luna-Solarzano, & 

Peterson, 1985; Shivpuri, Martin, Carlo, & Fanaroff, 1983). Thus, the feeding systems of 

these physiologically stable infants may be better able to balance the demands of breathing 

and feeding (than those of VP infants who have more internal constraints), thereby 

decreasing any instability in their physiologic responses throughout the feeding and 

contributing to adequate nutritional intake for growth.   

However, for VP infants (≤ 30 weeks of GA), the ability to self-organize system 

components is often compromised by their inherent impaired lung functioning and 

prematurity (Gewolb, Bosnia, Reynolds, & Vice, 2003; Gewolb & Vice, 2006; Mizuno et al., 

2007). VP infants are not able to integrate a sufficient number and depth of breaths into 

sucking and swallowing rhythms consistently; breathing is disrupted, interrupted, abbreviated 

and, for brief periods, completely absent during feeding. VP infants may limit sucking in 

order to limit the amount of swallowing that is required to minimize the interruption of 

breathing that occurs during swallowing (Gewolb, Bosma, et al., 2001; Mizuno et al., 2007). 

This adaptation may increase their physiologic stability, but this strategy is at the expense of 

sufficient milk intake. Further, when immaturity limits the ability of the infant to increase 

breathing by decreasing his or her sucking frequency or strength, insufficient breathing may 

ensue, leading to physiologic distress, fatigue, and early cessation of feeding. Thus, the 

feeding system of VP infants may be less able to balance the demands of breathing and 

feeding than that of healthy term or preterm infants, thereby increasing the instability of the 
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VP infant’s physiologic responses throughout the feeding and contributing to inadequate 

nutritional intake for growth.  

Because infant feeding behaviors emerge from the interaction of multiple subsystems, 

these behaviors can be modified by changing the system components. All of the subsystems 

are not stationary, nor do they change in a synchronous manner, so some will restrict the 

infant’s oral feeding performance more than others. The most compromised subsystem can 

be a rate-limiter, which holds back the infant’s feeding performance (Thelen & Ulrich, 

1991). For example, for preterm infants, the most immature function at the time of feeding 

can operate as a rate-limiter for feeding performance. For infants who were just introduced to 

oral feeding, their lack of feeding experience may act as a rate-limiter. Thus, manipulating 

the rate-limiter(s) can facilitate significant changes in the overall dynamics of the oral 

feeding system (Thelen & Spencer, 1998; Thelen & Ulrich, 1991).  

Considering the high prevalence of lung disease in VP infants, impaired lung function 

in VP infants can operate as a primary rate-limiter for the efficient self-organization of the 

oral feeding process. For VP infants, feeding interventions that support breathing may create 

conditions for improved self-organization, thus leading to more efficient feeding synergies. 

Based on several potential benefits, the positioning of the infant during feeding is considered 

in this study to be a strategy that may support adequate breathing during feeding. Two 

feeding positions are compared: the HEL and HES positions.  

In conclusion, during feeding, the oral-motor, neurologic, cardio-respiratory, and 

gastrointestinal systems self-organize both within and between systems to create stability 

(i.e., they balance the demands of feeding and breathing) in response to internal inputs from 

the infant and external inputs from the environment. For VP infants, impaired lung function 
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operates as a rate-limiter for this self-organization process. Thus, VP infants are often 

challenged to develop efficient feeding synergies (i.e., coordination of sucking, swallowing, 

and breathing), and the ensuing instability of their physiologic responses throughout the 

feeding contributes to inadequate nutritional intake for growth. Thus, feeding interventions 

that support breathing may create conditions for improved self-organization, thereby leading 

to more efficient feeding synergies. The feeding position is one of the external factors that 

supports breathing and can facilitate self-organization of the feeding system in VP infants 

(Table 2.1). 

 

Table 2.1. Dynamic Systems Theory Concepts, Feeding Concepts, and Variables 

Concepts Concept Used in Feeding Variable 

Stability vs. Instability Coordination vs. competition 

amongst sucking, swallowing, 

and breathing  

Physiological stability and 

feeding performance  

Self-organization Process of interactions amongst 

sucking, swallowing, and 

breathing toward the conditions 

where the demands of feeding 

and breathing are adequately 

balanced 

Changes in physiological 

stability over the course of the 

feeding  

Patterns Relationship amongst sucking, 

swallowing, and breathing 

Coordinated rhythms of sucking, 

swallowing, and breathing (in 

further work) 

Rate-limiters Factors that interfere most with 

oral feeding skills 

Severity of lung disease 

 

Internal Factors 

 

Infant’s inherent characteristics 

that affect oral feeding skills 

Level of maturity 

Health condition 

Feeding experience 

External Factors Proximal and distal 

environments around the infant 

during feeding 

 

NICU environment 

Flow of milk 

Positioning of the infant 

Caregiver’s strategies for 

feeding 

Intervention Manipulation of the rate-limiter HEL feeding position to support 

breathing 
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LITERATURE REVIEW 

Oral Feeding During Infancy 

An infant’s task during oral feeding is to suck and swallow within an ongoing life-

supporting respiratory cycle (Goldfield, 2007). Thus, infant oral feeding skills are reflected in 

the infant’s ability to coordinate sucking and swallowing with breathing in order to maintain 

an adequate level of ventilation for physiological stability while engaging in feeding long 

enough to obtain an adequate nutritional intake for growth (Thoyre, Shaker, & Pridham, 

2005). The precise and proper coordination of a suck-swallow-breath triad allows the infant 

to feed efficiently without undue effort; however, inadequate coordination may put the infant 

at risk for feeding difficulties. How well the infant achieves the proper coordination of 

sucking, swallowing, and breathing during feeding depends on the basic functioning of the 

oral-motor, neurological, and cardio-respiratory systems. Any one or more dysfunctions of 

any of these systems may operate as a physiologic constraint on the infant’s ability to eat and 

may interfere with proper feeding coordination, thus leading to feeding problems.  

Sucking 

There are two types of sucking: nutritive sucking and non-nutritive sucking. Nutritive 

sucking is the process of obtaining nutrition, and non-nutritive sucking refers to sucking in 

the absence of nutrient flow. In the context of oral feeding, the term sucking refers to 

nutritive sucking. Sucking is an integrated movement of the lips, cheeks, tongue, jaw, and 

palate for the formation of a bolus and its propulsion to the back of the oral cavity for 

swallowing (Delaney & Arvedson, 2008; Rogers & Arvedson, 2005). A mature sucking 

pattern consists of the rhythmic alternation of suction and expression (Glass & Wolf, 1994; 

Lau et al., 2000). Here, suction is defined as the negative intraoral pressure that draws milk 
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into the oral cavity, and expression is defined as the compression and stripping of the nipple 

between the tongue and the hard palate (Lau et al., 2000). The efficient rhythmic alternation 

of these two components of sucking allows infants to achieve adequate nutrients for growth. 

Efficient sucking results from the involvement of intact and mature oral structures 

and neurological functions in order to develop the integrated oral-motor movements 

necessary for sucking. Full-term infants are born with well-developed oral structures and 

neurological function, so they have many advantages for developing efficient sucking (Glass 

& Wolf, 1994; Shaker, 1990). That is, well-developed buccal sucking pads located in the 

cheeks lateral to the mouth facilitate the ability to compress the nipple from the sides as the 

pads move inward during sucking. A well-defined rooting and sucking reflex helps the infant 

find the nipple and initiate sucking. Moreover, the innate physiological flexor tone, which 

keeps an infant’s arms close in to the body, hips and knees flexed, and head and neck flexed 

forward, provides a stable base for oral-motor movements (Shaker, 1990).   

For preterm infants, poorly developed oral-motor structures and neurological function 

can make efficient sucking difficult. For example, depending on the level of maturity, 

preterm infants may have small or absent sucking pads. This deficiency creates a wide-open 

space in the mouth that can interfere with efficiently creating negative pressure suction 

(Shaker, 1990). Also, preterm infants typically have weak muscle tone around the mouth and 

less tongue strength than full-term infants. These problems make it difficult for them to suck 

with an adequate amount of contraction, thereby contributing to reduced sucking strength and 

endurance (Lau et al., 2003; Medoff-Cooper, Warren, & Kaplan, 2001; Mizuno & Ueda, 

2003). Further, their poorly developed neurological systems interfere with rhythmic and 

integrated oral-motor movement (Glass & Wolf, 1994; Shaker, 1990). The lack of 



32 

 

physiological flexor tone, combined with the adverse effect of gravity in this case, also 

contributes to extended posture, which leads to poor neck, trunk, and shoulder stability. Such 

problems may place these infants at a disadvantage for efficient oral-motor movements. All 

of these disadvantages of preterm infants contribute to immature sucking patterns related 

primarily to expression, and these problems can lead to a decrease in the overall sucking 

efficiency and, thus, consumption of formula (Lau et al., 2000).   

Swallowing 

The normal process of swallowing is described traditionally in terms of three phases: 

oral, pharyngeal, and esophageal (Rogers & Arvedson, 2005). The oral phase is the 

preparatory stage of swallowing. During this oral phase, the infant sucks milk from the bottle 

or breast into the mouth, forms a bolus, and transports the bolus to the back of the oral cavity 

to generate the swallowing reflex by the integrated movement of his/her tongue, jaw, palate, 

and cheeks. The pharyngeal phase begins with swallowing. When swallowing is triggered, 

the muscles of the soft palate contract to seal off the nasal cavity from the milk, and the 

epiglottis effectively closes the airway by the upward movement of the laryngo-hyoid 

complex. During the esophageal phase, the upper and lower esophageal sphincters open to 

transport the bolus into the stomach (Rogers & Arvedson, 2005).  

Safe and efficient swallowing, like efficient sucking, requires intact and mature 

oropharyngeal structures and neurological functions. Full-term infants are able to develop the 

integrated and properly timed oral-motor movements necessary for swallowing based on 

their well-developed oral-motor structures and neurological functions. However, for preterm 

infants, their immature neurological and oral-motor functions may interfere with any one or 

more functions of the sequential swallowing process, thereby contributing to aspiration or 
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prolonged breathing interruption (Hanlon et al., 1997; Lau et al., 2003; Mizuno & Ueda, 

2003). For example, the weak oropharyngeal muscle tone of preterm infants interferes with 

developing appropriate pharyngeal pressure gradients to propel the bolus through the 

pharynx, so the bolus may not be cleared efficiently from the pharynx by one swallow, which 

may create conditions for fluid threats to the airway and/or continued stimulation of the 

swallowing reflex, thereby leading to multiple swallows that obstruct the airway for a 

prolonged period (Hanlon et al., 1997). Moreover, immature neurologic control in response 

to sensory receptors can contribute to a persistent swallowing reflex even after the bolus is 

cleared, also leading to increased breathing interruption during swallowing (Hanlon et al., 

1997). Immature neurologic control also interferes with the ability to swallow during the 

safest time when no airflow is present (i.e., at the beginning and end of inspiration or 

expiration) to minimize the risk of aspiration (Lau et al., 2003; Mizuno & Ueda, 2003). 

Therefore, all of these abnormal swallowing patterns in preterm infants can interrupt the 

feeding process and contribute to feeding difficulties. 

Breathing 

Oral feeding is a physiologically expensive work for the infant, requiring some 

respiratory adjustments to maintain adequate physiologic stability during feeding. Several 

clinical studies have documented decreases in respiratory frequency, minute ventilation, and 

tidal volume during oral feeding (Al-Sayed et al., 1994; Bamford, Taciak, & Gewolb, 1992; 

Koenig, Davies, & Thach, 1990; Mathew et al., 1985). However, most healthy full-term and 

preterm infants, who are physiologically stable, are able to adjust their breathing patterns in 

response to changing physiologic demands of feeding over time; i.e., they can integrate a 

sufficient number and depth of breaths for adequate ventilation into sucking and swallowing 



34 

 

rhythms. However, for preterm infants with lung disease, their lung function is not suitably 

stable and flexible enough to adjust their breathing patterns to sucking and swallowing (Craig 

et al., 1999; Gewolb & Vice, 2006). Breathing is disrupted, interrupted, abbreviated, and at 

times completely absent, thus contributing to physiological distress (Craig et al., 1999; 

Gewolb & Vice, 2006; Lau et al., 2003; Mizuno & Ueda, 2003).  

Relationship of Sucking and Breathing 

Two distinct phases of nutritive sucking, namely the continuous sucking (CS) and 

intermittent sucking (IS) phases, have been identified in infant feeding and are thought to be 

important in the regulation of breathing during feeding (Mathew, 1991b; Mathew et al., 

1985). Initially, the infant demonstrates vigorous and continuous sucking patterns with long 

sucking bursts and few or brief sucking pauses, often for periods lasting at least 30 seconds, 

in order to stimulate the milk to ‘let down’ from the breast (considered the CS phase). After 

this pattern is observed, the infant gradually shifts to more intermittent sucking patterns with 

shorter sucking bursts and longer sucking pauses than in the CS phase (considered the IS 

phase). During the CS phase, more formula is consumed, but breathing is reduced markedly 

by sucking and swallowing (Shiao, 1997). During the IS phase, most physiologically stable 

infants (e.g., healthy full-term and preterm infants) are able to stabilize their respiration to the 

approximate previous level, even if the recovery is more gradual in preterm infants than full-

term infants (Mathew et al., 1985; Shivpuri et al., 1983).  

However, preterm infants with respiratory problems may not be able to recover their 

respiration to the approximate level for maintaining physiologic stability. The changes in 

ventilation during the CS phase may be too great to recover, and the challenges associated 

with increasing ventilation to recover often result in physiologic distress (Craig et al., 1999; 
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Gewolb & Vice, 2006; Mizuno et al., 2007), thus interfering with the ability to continue to 

suck over the course of the feeding (Gewolb, Bosma, et al., 2001; Mizuno et al., 2007). 

Moreover, preterm infants, especially those with respiratory problems, are not able to 

intersperse breaths into sucking and swallowing rhythms properly, so that they often present 

only a suck/swallow dyad during the sucking bursts with breathing that follow in an 

alternating fashion (Palmer, 1993). Therefore, in these infants, the length of the sucking burst 

has a more direct effect on breathing during feeding than it does for physiologically stable 

infants.  

Relationship of Swallowing and Breathing 

The most notable characteristic of swallowing in relation to breathing regulation 

during feeding is that the pharyngeal anatomy is shared for both the swallowing and 

breathing functions; however, the two activities are mutually exclusive (Rogers & Arvedson, 

2005). Thus, breathing is inhibited briefly during swallowing, a phenomenon referred to as 

obligatory deglutition apnea (Hanlon et al., 1997), such that swallowing can significantly 

affect breathing during feeding. Safe and efficient swallowing relies on well-timed and 

continuous reconfigurations of the pharynx to prevent aspiration and to reduce the duration 

of breathing interruptions caused by swallowing. The development of rhythm in temporally 

integrated motor functions is an inherent part of neurological functioning. Healthy infants 

with intact and mature neurological functions are able to fit the timing of the swallow so that 

it occurs at the safest time when there is no airflow, i.e., at the beginning or end of inspiration 

or expiration, and to close and reopen the airway in a fast repetitive fashion either for feeding 

or breathing (Lau et al., 2003; Mizuno & Ueda, 2003). However, for preterm infants, 

immature neurological functions often interfere with this integrated action, resulting in a 
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prolonged duration of swallowing and inadequate timing of swallowing within the 

respiratory cycle, which can contribute to an increase in the breathing interruptions required 

for swallowing and risk of aspiration (Hanlon et al., 1997; Lau et al., 2003; Mizuno & Ueda, 

2003). Thus, inefficient swallowing in preterm infants is a significant factor that causes 

breathing difficulties during feeding.  

Relationship of Sucking and Swallowing 

During oral feeding, sucking is generally followed by swallowing, but swallowing is 

delayed until an appropriate volume is accumulated within the infant’s mouth in order to 

stimulate the swallow reflex (Rogers & Arvedson, 2005). That is, the ratio of sucking to 

swallowing depends on the sucking volume. Koenig et al. (Koenig et al., 1990) compare the 

relationship between sucking and swallowing during the CS phase with that during the IS 

phase when healthy full-term and preterm infants are being bottle-fed. During the CS phase, 

most sucks are paired with swallows, whereas during the IS phase, about one-third of the 

sucks are followed immediately by swallows. This pattern was found to be similar for full-

term and preterm infants. Increased swallowing during the CS phase is thought to be a 

consequence of an increase in the volume of milk with each suck. 

In summary, oral feeding skills involve sucking, swallowing, and breathing, and these 

components are related to each other for efficient and successful feeding. Dysfunction in any 

one of these three functions may have a profound effect on the other functions, thus 

interfering with proper coordination. The stable functioning of the oral-motor, neurological, 

and cardio-respiratory systems underlies the proper function of each individual component 

involved in oral feeding as well as the coordination amongst these functions. However, for 

preterm infants, these immaturely developed systems can alter any one or more of the 
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functions of sucking, swallowing, and breathing and interfere with proper feeding 

coordination, thus leading to feeding problems.   

 

Development of Oral Feeding Skills in Preterm Infants 

Since 1980, the rate of preterm births (< 37 weeks of GA) has climbed steadily from 

9.5% to 12.8% for all live births in the United States (Hamilton et al., 2010). Although 

improvements in the treatment of preterm infants in NICUs have greatly enhanced these 

infants’ chances of survival, many common care issues still remain areas of concern. 

Prominent among these concerns is early feeding problems. Once medical stability has been 

attained for these infants, successful oral feeding, either from the bottle or breast, is often the 

final competency that preterm infants need to attain before being discharged home.  

However, successful progression to full oral feeding is often a difficult and time-

consuming task for preterm infants due to their complex medical and developmental issues. 

The inadequate feeding capabilities of preterm infants often delay discharge, thus increasing 

the length of hospital stay, which has been correlated with increased medical costs and an 

iatrogenic risk of complications (Kirkby, Greenspan, Kornhauser, & Schneiderman, 2007). 

More importantly, persistent feeding difficulties lead to poor nutritional status and growth 

failure that have consequences regarding the subsequent stages of growth and neuro-

developmental milestones after discharge (Thoyre, 2007; Wood et al., 2003). Therefore, 

assisting preterm infants to develop competence in oral feeding is a primary responsibility of 

nurses and families during the final weeks of neonatal care.  

Breastfeeding is the preferred feeding method for preterm infants because it is less 

physiologically stressful than bottle feeding (Dowling, 1999; Goldfield et al., 2006; P. P. 
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Meier, 2001). Despite this benefit, breastfeeding preterm infants presents unique challenges,  

including establishing and maintaining the mother’s milk supply and providing adequate 

caloric and nutritional intake (Callen & Pinelli, 2005). Immediately after birth, younger 

preterm infants do not have the capability to breastfeed with sufficient endurance and 

frequency to stimulate maternal milk production due to their immaturity and health issues. 

Thus, mothers of preterm infants must begin to establish their milk supply by pumping, and 

they are often required to pump their milk for months until their infant is physiologically 

stable enough to attempt nutritive sucking at the breast. Therefore, mothers of preterm infants 

often have difficulty establishing and maintaining a sufficient milk supply.  

In addition, even after breastfeeding has been initiated, extra milk must be provided 

from the bottle because the mother is not always able to be present during feeding times or 

because intake from the breast is not consistently adequate. Also, especially for younger 

preterm infants, human milk may not be sufficient as the sole source of nutrients. Human 

milk fortifier often needs to be added to the breast milk to increase the caloric intake and 

provide additional nutrients for adequate growth and development. Consequently, 

breastfeeding preterm infants is not always possible in the NICU, and most preterm infants 

are at least partially bottle-fed either formula or expressed breast milk. 

For preterm infants, feeding milestones include the first bottle feeding and the 

achievement of independent bottle feedings, i.e., sufficient intake so as not to require 

supplemental gavage feeding. Oral feeding requires the integration of multiple systems, both 

within and outside the infant. However, preterm infants are born before the maturation of 

these systems, especially the oral-motor, neurological, cardio-respiratory, and gastrointestinal 

systems. Currently, no universally agreed upon criteria are available for determining when to 
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initiate and how to best maintain oral feeding in preterm infants. However, many clinicians 

typically rely on empirical criteria based on the infant’s PMA (i.e., 34 weeks of PMA or 

greater) and developmental and maturational characteristics (e.g., nutritive sucking and gag 

reflex) (Kinneer & Beachy, 1994). That is, preterm infants must begin oral feeding when 

they are also in the process of developing motor and sensory neuro-pathways and becoming 

competent at physiologic and behavioral regulation (Thoyre, 2007). Thus, preterm infants 

often experience feeding difficulties due to their immature systems. Feeding difficulties are 

especially common during the transition period when infants are seeking ways to accomplish 

oral feeding using a trial and error approach. Further, repeated feeding difficulties may 

provide negative neurological stimulation that alters or delays the development of oral 

feeding skills, which can be associated with long-term feeding problems (Hawdon et al., 

2000; Thoyre, 2007). Therefore, understanding feeding behaviors in preterm infants and 

developing early interventions during this transition period may facilitate the process of 

developing oral feeding skills and, consequently, prevent feeding problems over the long 

term.  

Although feeding problems in preterm infants arise from the infants’ own immaturity, 

it is believed that immaturity is transient and problems associated with it are likely to be 

resolved as an infant matures (Lau et al., 2003; Mizuno & Ueda, 2003). However, when 

complications due to prematurity are present (e.g., NEC, neurologic impairments, and BPD), 

these complications, combined with prematurity, increase feeding problems (Pickler et al., 

1997) and often interfere with the anticipated maturation patterns of oral feeding skills 

(Gewolb, Vice, Schwietzer-Kenney, Taciak, & Bosma, 2001), thus placing these infants at 

risk for persistent feeding problems for years after hospital discharge (Thoyre, 2007). 
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Persistent feeding problems have the potential for serious health consequences, including 

malnutrition and impaired intellectual growth (Ernst, Radmacher, Rafail, & Adamkin, 2003; 

Johnson, Cheney, & Monsen, 1998; Wood et al., 2003). 

The most common complication of prematurity is impaired pulmonary function. All 

preterm infants have obvious or subtle altered pulmonary function due to early exposure of 

their immature lungs to air, the act of breathing, or to factors that interfere with the normal 

genetic schedule of lung development in late gestation (Friedrich et al., 2007; Friedrich, 

Stein, Pitrez, Corso, & Jones, 2006; Hjalmarson & Sandberg, 2002). Compared to infants 

born at term, even those preterm infants without lung disease have abnormal lung function, 

including increased airway resistance, less lung compliance, lower functional residual 

capacity, and impaired gas mixing capacity (Friedrich et al., 2006; Hjalmarson & Sandberg, 

2002; Hoo, Dezateux, Henschen, Costeloe, & Stocks, 2002). When immature lungs interact 

with exposure to supplemental oxygen and/or positive pressure ventilation, more severe 

impairments are seen. BPD, the most severe pulmonary disease of infancy, is viewed as a 

continuum of disturbed pulmonary development (Hjalmarson & Sandberg, 2005) and is 

classified as mild, moderate, or severe, depending on the duration and degree of 

supplemental oxygen that is required (Jobe & Bancalari, 2001).   

VP infants, who comprise approximately 2% of live births in the United States, are at 

high risk for developing severe lung disease because they often need respiratory support, 

such as supplemental oxygen or air flow, for prolonged periods to support their immaturely 

developed lungs (Ehrenkranz et al., 2005; Jobe & Bancalari, 2001). Many factors may 

contribute to feeding difficulties in VP infants; however, impaired lung function is thought to 

be the foremost contributor that significantly interferes with the normal development of oral 
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feeding skills (Gewolb, Bosma, et al., 2001; Gewolb et al., 2003; Gewolb & Vice, 2006; 

Mizuno et al., 2007). For VP infants, impaired lung function interferes with the ability to 

integrate a sufficient number and depth of breaths into adequate sucking and swallowing 

rhythms (Craig et al., 1999; Gewolb & Vice, 2006). Inadequate breathing causes a persistent 

reduction in the amount of air that remains in the lungs after expiration (functional residual 

capacity) throughout feeding, resulting in decreased blood oxygenation (Mizuno et al., 2007; 

Thoyre & Carlson, 2003). The infant becomes fatigued easily and may not have the energy to 

continue the efficient coordination of sucking, swallowing, and breathing, thus leading to 

feeding difficulties, including an increased risk of aspiration, physiological distress and poor 

intake. Further, repeated feeding difficulties may provide negative feedback that alters or 

delays the development of adequate oral feeding skills and may lead to persistent feeding 

difficulties for years after discharge (Hawdon et al., 2000; Thoyre, 2007), thus contributing 

to chronic growth failure (Bott et al., 2006; Johnson et al., 1998).  

Therefore, for VP infants, feeding interventions need to focus on supporting adequate 

ventilation in order to maintain physiological stability throughout feeding, which will enable 

the infant to continue to feed with the least amount of expended energy.  

 

Feeding Problems in Very Preterm Infants 

Feeding difficulties for VP infants in NICU during early oral feeding have been well-

documented by examining short-term feeding outcomes (e.g., physiologic stability and 

feeding performance) and long-term feeding outcomes (e.g., the length of the transition 

period to full oral feeding).  
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Physiologic Stability 

Physiologic stability during feeding has been evaluated using cardio-respiratory 

variables that include respiration, e.g., respiratory rate, intervals between breaths, duration 

and depth of breaths, and the relationship of breathing with swallowing, and/or SpO2, as well 

as HR. 

Respiration. Mizuno et al. (2007) reported some respiratory characteristics and SpO2 

levels for VP infants when these infants were able to fully oral feed (average 40 weeks of 

PMA) in terms of the severity of lung disease: no BPD, moderate BPD, and severe BPD. The 

respiratory variables used in the study include respiratory rate and the duration of deglutition 

apnea during feeding (calculated as the duration of apnea associated with each swallow). 

Infants with either moderate or severe BPD demonstrated a higher mean respiratory rate and 

longer deglutition apnea time during feeding than infants without BPD, and more severe 

apnea was seen in infants with severe BPD. Also, the partial pressure of carbon dioxide 

(PCO2) level and SpO2 level were examined. A higher PCO2 level, longer periods of oxygen 

desaturation, and a decreased mean SpO2 during feeding were noted in infants with BPD 

compared to those without BPD. More severe desaturation was seen in infants with severe 

BPD. In sum, the Mizuno et al. study shows that infants with BPD have difficulty 

maintaining physiologic stability during feeding, and these difficulties depend on the severity 

of BPD.  

Craig et al. (1999) examined respiratory patterns by examining respiratory rate and 

variation in duration and depth of breaths during sucking periods and non-sucking pause 

periods with six preterm infants (23 to 29 weeks of GA) with BPD, and compared these 

infants to their full-term counterparts (n = 12). The preterm infants were studied once a week 
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for four weeks shortly after being available for oral feeding (35 to 40 weeks of PMA at the 

first test session). The full-term infants demonstrated more irregular duration and depth of 

breaths during the sucking periods than the pause periods; however, during the pause periods, 

their breathing patterns became more orderly and consistent. Preterm infants with BPD failed 

to show any uniformity in breathing patterns, even during the pause periods, compared to 

sucking periods across all test sessions. These erratic breathing patterns were more 

significant when the infant had severe BPD. The Craig et al. study demonstrates that 

breathing during the sucking period is interrupted constantly by the need to protect the 

airway when swallowing the milk during the sucking periods. This occurrence causes 

significantly more irregular breathing patterns both in full-term and preterm infants, but full-

term infants are able to reorganize their breathing patterns during the pause period to meet 

their respiratory needs. However, preterm infants with BPD are not able to adapt their 

breathing patterns in response to the demands of feeding.  

Gewolb and Vice (2006) also studied some respiratory characteristics by examining 

the variability of the intervals between breaths during swallow runs (i.e., three swallows with 

inter-swallow intervals of ≤ 2 seconds) and apneic swallows (i.e., swallows in runs of three 

swallows not associated with breathing movements) in preterm infants with BPD (n = 14) 

compared to those without BPD (n = 20). The GA ranged from 26 to 33 weeks, and all 

infants were studied between 32.1 to 39.7 weeks of PMA. To control potential bias by the 

variability in PMA across groups, each group was stratified at ≤ 35 and > 35 to 40 weeks of 

PMA. The variability of intervals between breaths was quantified using the coefficient of 

variation (CV), which was significantly higher for infants with BPD than for infants without 

BPD at both ≤ 35 and > 35 weeks of PMA. The percentage of apneic swallows was higher 
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for infants with BPD than for infants without BPD at both ≤ 35 and > 35 weeks of PMA, but 

a significant difference was seen only at > 35 weeks of PMA. These results indicate that 

infants’ feeding skills may improve with maturation and/or experience in the group of infants 

without BPD, but for infants with BPD, BPD remains a significant factor that interferes with 

the development of infant oral feeding skills. This Gewolb and Vice (2006) study indicates 

that the integration of respiration during feeding is compromised in infants with BPD, and 

even after infants have matured, BPD can still be a significant factor that interferes with the 

normal expected development of oral feeding skills.  

Two studies found in the literature examine physiologic stability using preterm 

infants, including VP infants, but not in relation to BPD. First, Mizuno and Ueda (2003) 

studied SpO2 and respiratory rates during weekly bottle feedings from 32 to 36 weeks of 

PMA with 24 preterm infants (< 32 weeks of GA). These infants were free of apnea or 

supplemental oxygen for at least 48 hours before the time of the study. A bottle with a 

controlled flow of milk (i.e., slower flow than with standard bottle nipples) was used in this 

study. At 32 and 33 weeks of PMA, more than half of these infants exhibited brief apnea, 

coughing, and oxygen desaturation below 85% during feeding; however, after 34 weeks of 

PMA, all infants were able to finish the feeding without apnea and oxygen desaturation 

below 85 percent. Moreover, the respiratory rate decreased significantly from the pre-feeding 

level during both the CS and IS phases for all weeks of PMA, but the reduction during the IS 

period after 34 weeks of PMA was smaller than that at 32 or 33 weeks of PMA. Thus, the 

Mizuno and Ueda (2003) study indicates that when preterm infants do not have respiratory 

complications, feeding difficulties are likely to be resolved as infants mature. 
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The second study that examines physiologic stability using preterm infants, including 

VP infants, but not in relation to BPD, is that of Thoyre and Carlson (2003). They examined 

the occurrence, severity, and pattern of oxygen desaturation with 22 preterm infants (average 

28 weeks of GA) when they were bottle-fed near the time of discharge from the NICU (range 

33.5 to 40 weeks of PMA). These infants averaged 10.82 separate desaturation events during 

feeding, which is defined as any decrease in SpO2 below 90% for ≥ 1 second and spent, on 

average, 20% of their feeding time with desaturation events. A total of 140 desaturation 

events (59%) were classified as mild (SpO2 85-89), 47 events (20%) were classified as 

moderate (SpO2 81-84), and 51 events (21%) were classified as severe (SpO2 ≤ 80). 

Moreover, the desaturation events were distributed fairly evenly, with slightly more events 

during the final third when the feeding time was divided into three equal periods. This 

Thoyre and Carlson (2003) study demonstrates that VP infants remain vulnerable to 

hypoxemic events during feeding near the time of discharge, which is not consistent with the 

results from the Mizuno and Ueda study (2003). However, at the time of their study, Thoyre 

and Carlson (2003) did not control for respiratory problems and used the standard flow bottle 

nipples that are commonly used to feed most infants. These factors may have contributed to 

increased oxygen desaturation during feeding.  

Given that the safest period for swallowing is when there is no airflow (i.e., at the 

beginning and end of inspiration or expiration), three studies of VP infants (Gewolb & Vice, 

2006; Lau et al., 2003; Mizuno & Ueda, 2003) examined respiration in relation to 

swallowing. Gewolb and Vice (Gewolb & Vice, 2006) classified the relationship between 

breathing and swallowing based on nine possible pairs of swallowing (S) with inspiration (I), 

expiration (E), and apnea (A, i.e., no airflow detected for more than two seconds), as follows: 
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(1) I-S-I, i.e., interrupted inspiration, (2) A-S-I, i.e., apnea followed by a swallow, then 

inspiration, (3) E-S-I, i.e., end of expiration, (4) I-S-A, inspiration preceding a swallow 

followed by apnea, (5) A-S-A, i.e., a run of apneic swallows, (6) E-S-A, i.e., expiration 

preceding a swallow followed by apnea, (7) I-S-E, i.e., end of inspiration, (8) A-S-E, i.e., 

apnea followed by a swallow then expiration, and (9) E-S-E, i.e., interrupted expiration. 

Infants with BPD are more likely to have a greater percentage of swallows directly related to 

apnea (A-S-A, A-S-E, A-S-I, E-S-A, I-S-A) than non-BPD infants (Gewolb & Vice, 2006). 

These results are consistent with those reported in the Mizuno and Ueda study (2003) 

in which the phases of swallowing were examined weekly from 32 to 36 weeks of PMA for 

24 preterm infants who were born less than 32 weeks of GA. The A-S-A pattern was noted as 

the most dominant pattern in younger preterm infants at 32 and 34 weeks of PMA; with 

maturation, the most dominant pattern was I-S-E (Mizuno & Ueda, 2003).  

The study by Lau et al. (2003) also supports these findings. Preterm infants (26 to 29 

weeks of GA) were studied during one to two oral feedings per day and when they reached 

independent oral feeding. Full-term infants were studied during their first two weeks and 

between two to four weeks of age. For preterm infants, the swallows occurred most 

commonly during apneic swallow runs. However, with experience, preterm infants shifted to 

swallowing more during the inspiration phase, even if swallowing related to apnea was more 

frequent. Full-term infants were likely to swallow at the start and/or end of inspiration and at 

the start and/or end of expiration, suggesting that full-term infants exhibit safe swallowing to 

minimize the risk of aspiration and/or the path of least resistance to conserve energy (Lau et 

al., 2003).  
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Heart rate. In addition to respiration, HR is used as a cardio-respiratory variable 

during feeding. During activities such as feeding, cardiac output increases to provide the 

necessary blood, oxygen, and nutrients to tissues in response to increased respiratory efforts. 

Adults are able to increase the contractility of the heart to increase cardiac output, but the 

immature hearts of infants rely more on HR rather than stroke volume to increase their 

cardiac output (Blackburn, 2007). Thus, HR can be an indicator of the physiologic work of 

infants to maintain stability. However, compared to other cardio-respiratory variables, HR 

has not been examined extensively as an indicator of physiologic stability during the feeding 

of VP infants.  

Several studies have included HR as a variable of physiologic stability for testing 

feeding strategies with VP infants (Hill et al., 2000; Shiao, Brooker, & DiFiore, 1996). Hill et 

al. (2000) examined the effect of oral supports, i.e., cheek and jaw supports, to provide the 

stability of oral-motor movements for sucking during feeding. Although no significant 

difference in HR was found between groups with and without oral supports, HR tended to 

increase in infants without oral supports compared to infants with oral supports. This finding 

may indicate that the provision of oral supports decreases the physiologic work of feeding.  

Shiao et al. (1996) examined physiologic stability with and without a nasogastric tube 

present during feeding. Increased oxygen desaturation events were reported when infants did 

not have a nasogastric tube. Desaturation events were related significantly to a low HR and 

instability in HR before and after desaturation. These findings may demonstrate that a low 

HR and an increase in the instability of HR are indicators of physiologic distress when 

infants fail to maintain physiologic stability. Thus, a change in HR can represent physiologic 



48 

 

stability, and further studies are needed to understand this variable during feeding in VP 

infants.   

All of these studies, both respiratory- and HR-related, contribute to the understanding 

of feeding difficulties in VP infants; however, they all have some limitations. Some studies 

use the averaged values of each variable during the entire feeding (Mizuno et al., 2007; 

Thoyre & Carlson, 2003), and some studies analyze only subsections of feedings, e.g., the CS 

and IS phases (Mizuno & Ueda, 2003; Shiao et al., 1996), two sucking bursts from the first 

and last two minutes of feeding (Lau et al., 2003), swallow runs (Gewolb & Vice, 2006), 

sucking and pause periods (Craig et al., 1999), or the first and final three minutes of feeding 

(Hill et al., 2000). However, because infant feeding behaviors are emergent as the infant’s 

subsystems interact and, thus, can change across the feeding period, an averaged outcome 

obtained from the entire feeding period or from data extracted from subsections of the 

feeding cannot take into account feeding dynamics and the non-stationary state of infants’ 

feeding responses. Thus, a more precise method of measuring physiologic stability across 

time may enhance the understanding of infants’ feeding difficulties and bring more precision 

and effectiveness to the application of feeding interventions.  

Feeding Performance 

Feeding performance has been examined along with sucking performance and 

variables that are based on the actual amount of milk transferred to the infant. These feeding 

performance measures include proficiency (the percentage of milk taken during the first five 

minutes of the feeding), efficiency (the amount of milk consumed in milliliters divided by 

total feeding time, i.e., ml/min), and overall milk transfer (the percentage of milk taken 

during the entire feeding) (Lau et al., 2000; Lau et al., 1997; Mizuno & Ueda, 2003).   
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Feeding performance has been studied extensively because it is the most observable 

indicator of the development of preterm infants’ oral feeding skills. Mizuno and Ueda (2003) 

studied sucking pressure, duration, and amplitude weekly from 32 to 36 weeks of PMA with 

24 healthy preterm infants (< 32 weeks of GA). Sucking pressure, frequency, and duration 

increased with age, especially between 33 and 36 weeks of PMA, and efficiency (ml/min) 

was enhanced with an increase in PMA.  

Similarly, Lau et al. (1997) examined the presence of two components of sucking 

(i.e., suction and expression) and actual oral feeding performance (i.e., proficiency, 

efficiency, and overall milk transfer) with healthy preterm infants (26 to 29 weeks of GA) 

when infants were introduced to oral feeding (34.3 ± 1.6 weeks of GA) and reached full oral 

feedings (37.2 ± 2.0 weeks of GA). Over time, the sucking patterns switched from premature 

sucking patterns that primarily use the expression component to a more mature pattern that 

consists of both suction and expression. Proficiency, efficiency, and overall milk transfer also 

improved significantly over time; however, no correlation was found between the oral 

feeding performance measures and the predominant sucking pattern used by the infant. Thus, 

actual oral feeding performance may be enhanced by other factors, such as increased strength 

and endurance and decreased fatigue throughout the feeding, rather than solely from 

maturation of sucking patterns.  

In another study by Lau et al. (2000), the development of sucking patterns is 

evaluated using a systematic scale with five primary stages based on the presence/absence of 

suction and the rhythm of the two components of sucking (suction and expression). Seventy-

two healthy preterm infants (26 to 29 weeks of GA) were assessed three times when these 

infants were taking 1-2, 3-5, and 6-8 oral feedings per day. These infants were around 34 
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weeks of PMA at the first feeding observation. Similar to the results of the previous Mizuno 

and Ueda (2003) and Lau et al. (1997) studies, the sucking patterns matured with an increase 

in PMA and the number of oral feedings per day. Overall milk transfer and efficiency also 

were enhanced when infants reached the more mature stages of sucking. Thus, these three 

studies (i.e., Mizuno and Ueda 2003, and Lau et al. 1997 and 2000) demonstrate that an 

infant’s sucking ability and feeding performance may be compromised by immaturity; 

however, this situation can improve with maturation. 

Medoff-Cooper, Bilker, and Kaplan (2001) conducted a cross-sectional study to 

examine changes in sucking performance as a function of GA with 186 healthy preterm 

infants (33 to 40 weeks of GA) who were capable of oral feeding soon after birth. These 

infants were grouped by GA (33, 34, 35, 36, 37, and term age). Each sucking parameter was 

assessed for a five-minute session of feeding during the first week of oral feeding. Overall, 

sucking performance improved with an increase in GA as evidenced by an increased number 

of sucks, increased and stabilized sucking pressure, longer sucking bursts, a decreased 

number of sucking bursts, and stabilized ‘intersuck’ intervals within bursts.  

A more recent study by Medoff-Cooper et al. (2002) also examined the sucking 

abilities of 213 infants when they reached 40 weeks of PMA according to GA. These infants 

were divided into three groups: (1) 75 infants born at 24-29 weeks, (2) 68 infants born at 30-

32 weeks, and (3) 70 term infants. Nine sucking parameters were assessed: the number of 

sucks, number of bursts, intersuck intervals, sucks per burst, interburst width, suck width, 

intersuck width, mean maximum pressure, and intersuck width/interburst width. VP infants 

in Group 1 showed significantly fewer sucks, an increased suck width, and a lower ratio of 

sucks to bursts compared to the other two groups. However, the most competent group of 



51 

 

infants at the time of data collection was the group of more mature preterm infants (Group 2). 

This outcome may have been the result from the benefits attained from the increased feeding 

experience compared to that of Group 3 as well as greater maturity at birth and fewer medical 

complications compared with Group 1. Therefore, these two studies also support that sucking 

performance improves with maturation of the feeding system. However, the level of maturity 

alone is not sufficient for predicting sucking skills. Infants’ health conditions and feeding 

experience during the postnatal period also can be significant factors for the development of 

oral feeding skills. 

Two studies are found that examine sucking performance in relation to BPD. Gewolb 

et al. (2001) examined the sucking ability of preterm infants (26 to 32 weeks of GA) 

according to level of maturation in relation to BPD. Fourteen preterm infants with BPD were 

studied weekly from 32.1 to 39.7 weeks of PMA and compared with a PMA-matched control 

group without BPD (n = 20). To control potential bias by the variability in PMA across 

groups, each group was stratified at ≤ 35 and > 35 to 40 weeks of PMA. Infants with BPD 

showed decreased sucking frequency and duration and increased variability of peak-to-peak 

intervals for sucking compared to infants without BPD, but a significant difference was 

evident only in the group of infants at > 35 weeks of PMA. Also, for infants with BPD, no 

improvement in sucking ability was found with an increase in PMA. That is, BPD appears to 

be a significant factor that contributes to a decrease in sucking ability even after 35 weeks of 

PMA.  

Mizuno et al. (2007) examined the differences in sucking ability among 20 preterm 

infants who were born less than 31 weeks of GA, according to the severity of lung disease: 

no BPD, moderate BPD, and severe BPD. The study was conducted when the infants were 
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able to take full oral feedings (average 40 weeks of PMA). Three sucking parameters were 

measured: sucking frequency, pressure, and duration of each suck and burst. Not 

surprisingly, for infants with severe BPD, all of the sucking parameters lagged behind their 

non-BPD counterparts, and only sucking frequency and pressure significantly decreased in 

comparison to infants with moderate BPD. This result may have two possible explanations. 

The weak sucking effort in infants with severe BPD may be compensatory strategy to avoid 

the respiratory compromise associated with sucking and swallowing and, therefore, may be 

advantageous in maintaining breathing. Otherwise, because infants with severe BPD 

demonstrate higher PCO2 levels and decreased SpO2 levels compared to other groups, this 

increased physiological distress may have a disadvantageous effect on sucking performance. 

The results from the two studies support that respiratory problems significantly interfere with 

efficient sucking performance as well as the normal development of sucking. 

In summary, feeding performance is compromised by the immature feeding system of 

preterm infants, but can be improved with maturation and/or experience with oral feedings. 

However, when infants have medical complications, such as BPD, oral feeding skills are 

compromised more significantly and may not follow a normal expected developmental 

process.   

Long-Term Outcomes 

From a broad perspective, feeding problems also have been reported in terms of the 

time required for initiating oral feeding and achieving full oral feeding. VP infants, especially 

those with medical complications, require a longer time to initiate oral feeding and to become 

full oral feeders than preterm infants without complications (Pickler et al., 1997; Pridham et 

al., 1998).  
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Significance/Gap 

Oral feeding is a physiologically demanding task that requires the efficient 

coordination of sucking, swallowing, and breathing in order to maintain an adequate level of 

ventilation for physiological stability while engaging in feeding long enough to obtain 

adequate nutritional intake for growth (Thoyre et al., 2005). For VP infants who have 

impaired pulmonary functionality, the effort required to feed, combined with challenges 

associated with respiration, often results in feeding difficulties, evidenced by physiological 

distress (Craig et al., 1999; Gewolb & Vice, 2006; Mizuno et al., 2007; Thoyre & Carlson, 

2003), poor sucking patterns (Gewolb, Bosma, et al., 2001; Medoff-Cooper et al., 2002; 

Mizuno et al., 2007; Mizuno & Ueda, 2003), poor coordinated rhythms of swallowing and 

breathing (Gewolb & Vice, 2006; Lau et al., 2003; Mizuno & Ueda, 2003), poor intake (Lau 

et al., 2003; Mizuno et al., 2007), and a prolonged length of time to become a full oral feeder 

(Pickler et al., 1997; Pridham et al., 1998). Up to 80% of VP infants are reported to have 

feeding difficulties after hospital discharge (Thoyre, 2007), which can lead to chronic growth 

failure (Kurzner et al., 1988; Wood et al., 2003). Thus, for VP infants, feeding strategies need 

to focus on supporting adequate breathing in order to maintain physiological stability 

throughout feeding, thus enabling the infant to continue to feed.  

The positioning of the infant during feeding is a potential factor for supporting 

breathing during feeding (L. Clark et al., 2007; McFarland et al., 1994; Mizuno et al., 2007). 

However, limited experimental evidence regarding positioning is available. Therefore, 

studies and tests of the effects of feeding position on the feeding outcomes of VP infants 

during feeding are needed.  
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Feeding Position in Very Preterm Infants 

Several positions have been used for infant feeding. A traditional position for infant 

feeding is a cradle position in which the infant is placed in a semi-reclining position with the 

support of one of the caregiver’s arms. The cradle position is frequently chosen by parents 

when feeding their infant, both at the breast and bottle, because this position can provide 

closeness to their infant, which helps promote infant-parent bonding. However, this position 

may not be adequate for breathing for preterm infants, because these infants have less head 

control and rely on the caregiver to maintain their head and neck in neutral alignment. It is 

common for a cradled position to result in an excessively flexed neck (that is, the head bent 

too far forward). Especially for VP infants who often experience breathing difficulties during 

feeding, the cradle position may provide additional respiratory challenges, thereby increasing 

feeding difficulties.     

The HES position is commonly used in the NICU when VP infants are bottle-fed. In 

this position, the infant sits in a reclining position at a 45-60 degree angle to the buttocks on 

the caregiver’s lap. The caregiver supports the infant’s head, neck and trunk with one hand 

while holding the bottle with the other hand. The HES position aims for head elevation to 

reduce the work of breathing by facilitating the infant’s lung expansion (Dellagrammaticas et 

al., 1991; Jenni et al., 1997) and provides good support of the head-neck alignment in the 

neutral position. The HES position also can provide good visual access for nurses and parents 

to observe infants’ responses to feeding. However, the HES position has some disadvantages.  

In the supine position, gravity may cause the soft palate and tongue to fall back and 

push the infants’ head backward without careful support by the caregiver, thereby narrowing 

the upper airway (Carlo, Beoglos, Siner, & Martin, 1989; Litman et al., 2005). This 
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occurrence increases resistance to airflow, which interferes with efficient breathing during 

feeding. In addition, gravity makes the milk move quickly to the back of the oral cavity, so 

that the infant may have less time to form a bolus and control its movement.    

The HEL position has been recognized recently as a more useful strategy for feeding 

VP infants, especially those who have breathing difficulties during feeding, and it may 

compensate for some of the disadvantages of the HES position. In the HEL position, the 

infant is placed in a side-lying position on the caregiver’s lap with a head elevation at about a 

45 degree angle. The infant’s head and trunk are in a natural straight alignment, and the 

infant’s head and neck are supported by the caregiver’s hand in a neutral flexion.  

This position is natural for when infants are fed at the breast. Clinical observations 

have shown that there is better coordination of breathing with swallowing (Goldfield et al., 

2006) and less disruption of breathing during breastfeeding compared to bottle feeding 

(Blaymore Bier et al., 1997; Dowling, 1999; P. P. Meier, 2001), and positioning may be a 

contributing factor to these differences. The HEL position may also facilitate improved fluid 

management during feeding, which reduces the duration of breathing interruptions caused by 

swallowing (Lau & Schanler, 2000; Mathew, 1991a). In the HEL position, the lowered angle 

of the bottle may slow the gravitational milk flow by decreasing the hydrostatic pressure 

generated by the volume of milk in the inverted bottle. Further, milk may flow to the cheek 

first and have a slower transit time to the back of the oral cavity, thus giving the infant more 

time to form a bolus and control its movement. The HEL position may also reduce the work 

of breathing by facilitating upper body antigravity control (Vanderghem et al., 1983) and 

promoting better patency of the upper airway (Litman et al., 2005). In the HEL position, 

gravity allows the infant to achieve a flexed-toward-midline body position more easily, 
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which may ensure smooth and well-modulated oral-motor movements (Wolf & Robin, 1992, 

pp. 85-157). The HEL position may also require less effort from the caregiver to provide the 

head-neck support that promotes patency of the upper airway (Carlo et al., 1989). Because 

the infant’s body is well-supported by a pillow and/or the caregiver’s lap in the HEL 

position, the caregiver can focus on the position of the head and neck. Moreover, when the 

infant is able to experience both breast and bottle feedings, the infant can be fed in a 

consistent position for both feeding conditions, which may reduce the infant’s efforts to 

adjust to changes in position and facilitate the infant’s learning how to eat. 

Although numerous potential benefits of the HEL position have been noted, 

experimental evidence is very limited. Only two studies have been conducted in the area of 

infant feeding position (L. Clark et al., 2007; Mizuno et al., 2000). Mizuno et al. (2000) 

examined the effects of a prone position – as compared to a supine position – on SpO2, 

sucking performance, and ventilation volume during bottle-feeding with 14 sick infants (12 

full-term and 2 preterm) who often experienced feeding difficulties. One of the two positions 

was randomly selected and applied for one hour before and during feeding. The other 

position was evaluated at the next feeding with the same infant in the same manner. Milk 

flow was standardized at a consistent flow rate in both positions. Higher SpO2 levels, a lower 

percentage of feeding time when the SpO2 was less than 90%, and greater tidal volume were 

observed in the prone position compared to the supine position. Also, the infant showed 

greater sucking pressure, shorter durations for each suck, more frequent sucks and higher 

sucking efficiency (ml/min) in the prone position than in the supine position. No significant 

difference was seen in respiration rate between the positions. Even if feeding performance 

and physiological distress during feeding improved significantly in the prone position 
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compared to the supine position, the prone position may not be as easily accepted as the other 

positions (e.g., supine or side-lying position). Furthermore, because the direction of the bottle 

is required to be opposite to that in the other positions (e.g., supine or side-lying position), a 

special bottle system is needed to generate milk flow. Also, the results obtained from sick 

infants cannot be applied to those for VP infants. However, this study does demonstrate that 

the position of the infant during feeding makes a difference in feeding outcomes. 

The second study is a pilot study that uses a cross-over design with six VP infants fed 

three times for three to five days both in the HES and HEL positions (total feeding 

observations = 36) and examines the effects of feeding position on the physiological 

variables of HR and SpO2 during bottle feeding (L. Clark et al., 2007). Mean variation of HR 

and mean SpO2 levels were calculated for the baseline and the first and middle three minutes 

of feeding. The variability of HR increased and the SpO2 decreased from the baseline in the 

early three minutes of feeding in both positions. However, as the feeding progressed, this 

change recovered toward the baseline in the HEL position, whereas the SpO2 declined 

further, and the variability of HR did not recover at the baseline in the HES position. 

However, statistically significant difference was found only for SpO2. Even though this study 

has a small sample size, the trends shown in the study support further examination of the 

HEL position as a feeding strategy to gain physiological stability during feeding for VP 

infants.  

These two experimental studies demonstrate the potential of position as a strategy 

during feeding that can impact an infant’s oral feeding outcomes. However, because Mizuno 

et al. (2000) examined the effects of only the prone position mainly with term infants who 

were ill, the study cannot provide experimental evidence for the HEL position for VP infants. 
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The L. Clark et al. (2007) pilot study supports further examination of the effect of the HEL 

position during bottle feeding of VP infants.  

The primary purpose of this study is to test the preliminary effects of the HEL 

position (compared to the HES position) on the physiologic stability and feeding 

performance of VP infants when bottle-fed. In addition, methods for measuring changes in 

physiologic stability across the feeding period are examined.  

 

Nursing Implications 

Feeding position is a feeding strategy that can be readily applied to neonatal care. 

However, because of limited experimental evidence about feeding positions, no precise and 

consistent feeding position is currently recommended for health care professionals to follow. 

Therefore, a small-sized study to examine the preliminary effects of the HEL position on VP 

infants during feeding may provide a foundation for developing a randomized controlled trial 

in a larger group to investigate the effects of the HEL position more definitively than has 

been undertaken previously. Understanding the effects of positioning on the feeding 

outcomes of VP infants will add to the knowledge base aimed to promote the development of 

oral feeding skills and support adequate growth and development in these infants. In 

addition, the method of measuring physiologic stability across the feeding time can enhance 

the understanding of VP infants’ feeding difficulties and bring more precision and 

effectiveness to the application of this feeding intervention. 

 

 

 

 



 

 

CHAPTER III 

 

METHODS 

This study compares the preliminary effects of the HEL position and the HES 

position on the physiologic stability and feeding performance of VP infants when bottle-fed. 

In addition, methods for measuring changes in physiologic stability across the feeding time 

are examined. To examine the preliminary effects of the HEL position, two hypotheses are 

tested. When compared to infants bottle-fed in the HES position, VP infants bottle-fed in the 

HEL position will demonstrate (1) greater physiological stability (less variation in HR and 

SpO2, less severe and fewer changes in HR and SpO2, a higher respiratory rate that is closer 

to that of the pre-feeding state, and less variation in breath-to-breath intervals, duration and 

amplitude of breath) and better feeding performance (overall milk transfer, proficiency, 

efficiency, and duration of feeding), and (2) fewer physiological changes from the pre-

feeding period across the feeding period.  

To measure changes in physiologic stability across the feeding time, three methods 

that create intervals of feeding time were tested in this study. Simulations for each method 

were conducted to determine the most useful method, as determined by the one that requires 

the smallest number of infants to detect a position effect with 80% power.  

In order to evaluate the feasibility and acceptability of possible data collection and 

analysis plans, a pilot trial with one infant was conducted. Based on this feasibility study, 

modifications were made to the data collection and analysis plans and are now incorporated 
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into the methods for the dissertation study. (See Appendix A for the complete feasibility 

study.)  

 

Research Design 

A within-subject cross-over design, in which each participant was fed in both the 

HEL and HES positions, is used for this study. To control for differential carry-over effects, 

counterbalancing strategies were used in which each participant was randomly assigned to 

one of two possible sequences: HES position first and then HEL position, or HEL position 

first and then HES position (Brink & Wood, 1998). To control for infant maturation and 

attrition, the two study feedings were completed in a single day. This study design was 

chosen to control for various subject characteristics (e.g., level of maturity, health condition, 

and feeding experience prior to the study) that could affect infant oral feeding skills (Howe, 

Sheu, Hinojosa, Lin, & Holzman, 2007; Pickler, Best, Reyna, Wetzel, & Gutcher, 2005; 

Pickler et al., 1997; Pridham et al., 1998) and ensure the equivalence of the groups being 

compared.  

 

Setting 

The Newborn Critical Care Center (NCCC) at North Carolina Children's Hospital in 

Chapel Hill, North Carolina was chosen as the study site. A single site was selected to reduce 

possible sources of extraneous variation (such as different hospital policies) on preterm infant 

feeding. The NCCC is a leading level three nursery in the Southeast for neonatal care and 

consists of seven rooms and 60 beds. Three of the rooms are devoted to intermediate care 
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with separate nursing staffs, where the study was conducted. Approximately 750 infants are 

admitted each year from more than 50 counties throughout North Carolina.  

 

Sample 

Six VP infants who met the inclusion criteria were selected for this study, regardless 

of gender, race, or ethnicity. Inclusion criteria for this study include: (1) the infant must be 

born at or less than 30 weeks of GA, (2) the infant must be able to feed orally, and (3) the 

infant’s mother must be willing to allow the infant to bottle-feed for two feedings on the 

study day. Infants were enrolled in the study when they began oral feeding. Once infants 

were able to consume by mouth at least 50% of their prescribed milk for three consecutive 

days, the study commenced. Infants were excluded if they had congenital conditions or had 

acquired medical conditions that may be associated with feeding difficulties beyond the 

scope of this intervention. Such conditions may include a congenital anomaly that interferes 

with oral feeding (e.g., cleft palate or paralysis of facial muscles), grade IV intraventricular 

hemorrhage, high risk for neurological impairments (≥ 8 on neurobiologic risk score 

[NBRS]), ventilator-dependence beyond 60 days of life, and/or inability to begin oral feeding 

prior to 40 weeks of PMA. Infants also were excluded if neither the mother nor father 

understood or read English. 

The expected sample demographics were based on the population of the NCCC 

nursery in 2009: 137 infants were admitted who were less than 30 weeks of GA, and 111 of 

these infants survived to discharge; 49.5% of the infants were male and 50.5% were female; 

and the breakdown for race was 42% White, 43% Black, 2% Asian, 10% Hispanic, and 3% 

Other. Given these data, it was anticipated that recruitment for the study could be completed 
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in less than two months. It was expected that about half the infants would be male and half 

female. Many Hispanic infants were expected to have parents who did not speak or read 

English; however, it was anticipated that approximately 20% of Hispanic parents who were 

eligible for this study (10% of the VP nursery population) would speak or read English based 

on the nursery population in 2009. Therefore, taking into consideration the percentage of 

Hispanic infants with parents who are able to speak or read English, the demographic 

breakdown of infants enrolled in the proposed study was expected to be 48% Black, 45% 

White, 2% Hispanic, and 5% Asian and Others.  

Data collection was completed between June 1 and September 30, 2011. The study 

sample includes 67% female and 33% male; and the breakdown for race is 50% White, 33% 

Hispanic, and 17% Black. The distribution of the sample by gender or race is slightly 

different from that of the VP nursery population in 2009 because only the subgroup of VP 

infants who met the inclusion and exclusion criteria for this study during a certain period of a 

year is included in this study. 

 

Recruitment and Retention 

Once approval from both the Institutional Review Board at the University of North 

Carolina at Chapel Hill and the Nursing Research Council at the UNC Health Care System 

had been obtained, recruitment began. To identify eligible infants for the study, the principal 

investigator (PI) visited the NCCC every day for about an hour. Once a potential candidate 

was identified through monitoring the unit census data and through chart review, the PI 

followed the infant’s progress until the infant met the criteria for recruitment. When the 

infant began oral feeding, the PI asked the nurse (for that day and for that infant) to inform 
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the infant’s mother that her child was eligible for the feeding study and to ask if the mother 

would be interested in learning more about the feeding study. If the mother was interested, 

the PI met with the mother in the nursery at a time convenient for the mother to explain the 

study and obtain consent (Appendix B). The PI closely followed the feeding progress of the 

enrolled infants through regular visits to the nursery. Once an infant was able to eat by mouth 

at least 50% of his or her prescribed milk for three consecutive days, the study feeding was 

scheduled with the NCCC staff and mother. At the conclusion of the study, each mother was 

given a photograph of her infant taken during the study in appreciation of her infant’s 

participation. 

All eligible infants, regardless of gender or race, were approached for recruitment. 

Sixteen infants were identified as potential candidates for the study. However, mothers for 

two infants did not want their infants to participate in the study; two infants were under 

contact precautions when the study needed to be conducted; one infant was transferred before 

the study was scheduled; one infant became a full oral feeder before the study was scheduled; 

and one infant began to use a special nipple and bottle system for managing her feeding 

problems, which was contrary to study protocol. After excluding these seven infants, the 

study was conducted with nine infants. However, three of the nine infants also had to be 

excluded later from the analysis because of problems with synchronization between the 

physiological and behavioral data, inaccurate calibration of measurements, and clinical 

events that affected the infant’s physiologic responses to feeding during one of the feeding 

observations. The final study sample was six VP infants.  
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Intervention 

Each infant was bottle-fed in the two feeding positions, HES and HEL (Figure 3.1). 

To control for variation in the interactions between the infant and caregiver during feeding 

across feeding positions, one neonatal nurse in the NCCC performed both of the bottle 

feedings per infant. Also, the nurse who fed each infant was asked to follow a standardized 

feeding protocol to the extent possible (Appendix C). In the HEL position, the infant was 

placed in a side-lying position on the caregiver’s lap with one ear facing the ceiling and the 

head and trunk elevated to approximately a 45-60 degree angle. The infant’s head and trunk 

were in a neutral straight alignment, and the infant’s head and neck were supported by the 

caregiver’s hand in neutral flexion, i.e., chin tilted down slightly, without the neck being 

extended and without excessive flexion. In the HES position, the infant was placed in a 

reclining position at approximately a 45-60 degree angle to the buttocks on the caregiver’s 

lap, also with the infant’s head, neck, and trunk in neutral straight alignment. In both feeding 

positions, the infant was swaddled with a blanket, providing a flexed body position. 

 

  

       HES position           HEL position 

Figure 3.1. Feeding Positions used in the Study. HES = head-elevated supine; HEL = head-

elevated side-lying. 
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Variables and Measures 

Four types of variables were measured prior to and/or during feeding: a) physiologic 

stability, b) feeding performance, c) infant characteristics, and d) intervention fidelity. The 

timeline, specific variables, and measures are described in Table 3.1.  

 

Table 3.1. Variables and Measures 

Concept Variable Measure Pre-feed Feed 

Physiologic stability  Heart rate (HR) 

 

 

 

 

 

 

 

 

 

Oxygen saturation (SpO2)  

 

 

 

 

 

 

Respiratory characteristics 

(RESCs) 

HR: Mean, Standard Deviation 

(SD), Coefficient of Variance 

(CV), % of feeding time > 

10%, > 15%, and > 20% 

above pre-feeding period, % 

of feeding time < 10%, < 

15%, and < 20% below pre-

feeding period, % of feeding 

time <100bpm  

 

SpO2: Mean, SD, CV, % of 

feeding time < 5% pre-

feeding period (classified as 

mild [5-10%], moderate [10-

15%], or severe [>15%]), % 

of feeding time <85% 

 

RESCs: Mean, SD, CV of 

intervals between breaths, 

duration and amplitude of 

breaths, respiratory rate, 

breathing pause < 3 seconds 

X 

 

 

 

 

 

 

 

 

 

X 

 

 

 

 

 

 

X 

X 

 

 

 

 

 

 

 

 

 

X 

 

 

 

 

 

 

X 

Feeding Performance 

 

Overall milk transfer 

 

 

Proficiency 

 

 

 

Efficiency 

 

 

Duration of Feeding  

Percentage of prescribed milk 

consumed 

 

Percentage of prescribed milk 

taken during the first 5 

minutes of the feeding 

 

Total volume/total feeding time 

(ml/min) 

 

Total feeding time minus non-

feeding and burping periods 

(min) 

 X 

 

 

X 

 

 

 

X 

 

 

X 

Infant Characteristics 

- Level of maturity  

 

 

- Health condition 

 

 

 

 

Gestational age (GA), 

Postmenstrual age (PMA) 

 

Neuro-biological risk score 

(NBRS), severity of lung 

disease
a
  

 

 

History of Hospitalization Form 

Feeding Data Collection Form 

 

 

X 

 

 

X 
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- Feeding experience  

 

 

- Additional descriptors  

Number of cumulative nipple 

feedings prior to the study 

 

Gender, birth weight, weight on 

the day of study, APGAR score, 

types and lengths of 

supplemental oxygen or air flow 

X 

 

 

X 

Intervention Fidelity 

-Caregiver feeding actions 

 

 

 

 

 

 

 

 

 

-Infant position 

 

Proportion of onset of feeding 

based on caregiver’s preparation 

of infant for feeding and infant 

readiness 

 

Number of rest periods provided 

by the caregiver, stimulating 

infant sucking, and limiting milk 

flow events 

 

Proportion of feeding time that the 

infant is held in a semi-upright 

position for the condition of the 

HES position and in a side-lying 

position for the condition of the 

HEL position 

 

Dynamic-Early Feeding Skills 

(D-EFS) coding scheme 

 

 

 

 

X 

 

 

 

 

X 

 

 

 

 

X 

Note. 
a 
The severity of lung disease was identified when the infant reached 36 weeks of 

PMA, according to definitions of lung disease (Jobe & Bancalari, 2001). 

 

Physiologic Stability 

The physiological variables used in this study are HR, SpO2, and RESCs, and these 

variables were measured continuously 30 minutes prior to the feeding until the feeding was 

completed. Pre-feeding period is defined as a 2-minute period prior to the feeding when the 

infant is calm and quiet in the bed and no demands are placed on him or her; this period is 

used to calculate a pre-feeding level for each feeding. Feeding period is defined as the period 

of time from the first time the bottle is placed in the infant’s mouth until the last time it is 

removed. The feeding period is used to calculate the overall physiologic stability during the 

entire feeding. Bottle-in period is defined as the amount of time that the bottle is placed in the 

infant’s mouth; it is calculated by subtracting the non-feeding and burp periods from the 

feeding period. The feeding period and bottle-in period vary from infant to infant in terms of 
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length of feeding time, because some infants feed longer than others. The bottle-in periods 

are used to measure overall physiologic stability without potentially confounding data (i.e., 

non-feeding and burp periods) and to measure changes in physiologic stability over time. 

Heart rate. HR was measured using the BioNex Bio-Potential Amplifier (MindWare 

Technology, Gahanna, OH), which is a commercially available instrument that is used to 

monitor electrocardiograms (ECGs), sampling at 1,000 samples per second. The ECG signals 

were simultaneously digitized by the amplifier and stored as an analog waveform on the 

computer using BioLab Data Acquisition Software (MindWare Technology, Gahanna, OH). 

HR in beats per minute (bpm) were extracted from the RR interval on the ECG signals for 

every one second as a digitized text file using AcqKnowledge software (BIOPAC Systems 

Inc., Goleta, CA), and this text file was used for analysis. Under resting conditions, the 

newborn’s heart rate ranges from 120 to 160 bpm, with significant state-related variations, 

such as infant’s age and health condition (Blackburn, 2007).  

During the pre-feeding, feeding, and bottle-in periods, the mean, standard deviation 

(SD), coefficient of variance (CV, i.e., the ratio of the SD divided by the mean for the 

assigned period) for HR were calculated for each infant by feeding position. The SD and CV 

were used to index the function stability for HR. Additionally, the percentages of time with 

increases and decreases in HR were calculated during the bottle-in periods. Increases in HR 

are defined as changes in HR that are at least 10% (mild), 15% (moderate), and 20% (severe) 

above the HR of the pre-feeding period, and decreases in HR are defined as changes in HR 

that are at least 10% (mild), 15% (moderate), and 20% (severe) below the HR of the pre-

feeding period, and below 100 bpm.  
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Oxygen saturation. Percentage of hemoglobin saturated with oxygen, which is 

commonly referred as SpO2, was measured using the Radical-7 Pulse Co-Oximeter (Masimo 

Corporation, Irvine, CA) with the averaging set at two seconds, sampling at 1,000 samples 

per second. The Radical-7 Pulse Co-Oximeter measures a more accurate level of arterial 

oxygen saturation in the blood than a traditional pulse oximeter, because the Radical-7 Pulse 

Co-Oximeter extracts the best possible signal, especially under challenging clinical 

conditions (e.g., movement and low perfusion), by transmitting four wavelengths of light 

through the tissue of the infant’s foot to better distinguish all four types of hemoglobin: 

oxyhemoglobin (oxygenated blood), deoxyhemoglobin (non-oxygenated blood), 

carboxyhemoglobin (blood with carbon monoxide content), and methemoglobin (blood with 

iron in the ferric state) (Goldman, Petterson, Kopotic, & Barker, 2000; Jubran, 1999). The 

accuracy of the SpO2 level as determined by this co-oximeter, as reported by the 

manufacturer, is ±3 % above 70%, regardless of movement and low perfusion. The SpO2 

signals also were simultaneously digitized by the amplifier and stored as an analog waveform 

on the computer using BioLab Data Acquisition Software (MindWare Technology, Gahanna, 

OH). The SpO2 trends for every one second were simultaneously extracted as a digitized text 

file using the BioLab software, and this text file was used for analysis. The optimal range of 

SpO2 in preterm infants has not fully defined, however, in practice, between 85 to 95% is 

commonly considered as an acceptable range limit to detect acute hypoxemia as well as to 

avoid hyperoxemia. 

During the pre-feeding, feeding, and bottle-in periods, the mean, SD, and CV of SpO2 

were calculated for each infant by feeding position. The SD and CV were used to index the 

function stability of SpO2. Additionally, the percentages of time with changes in SpO2 were 
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calculated during the bottle-in periods. Changes in SpO2 are defined as decreases in SpO2 at 

least 5% below the SpO2 of the pre-feeding period and below the value of 85%. The 

percentages of feeding time when SpO2 decreases at least 5% below the pre-feeding period 

are further classified as mild (5-10%), moderate (10-15%), or severe (>15%) desaturation.  

Respiratory characteristics. RESCs were measured using the respiratory effort 

monitoring system (Ambu Sleepmate, Glen Burnie, MD), sampling at 1,000 samples per 

second. This respiratory effort monitoring system measures the chest expansion that is 

associated with respiratory effort by a movement detection sensor that has elastic strips and 

bands on both sides and that is placed around the infant’s chest. A flat small microphone 

attached to the infant’s neck also measures breathing and swallowing sounds, and these 

amplified sounds are used to validate breathing. Respiratory signals were digitized by the 

amplifier and stored as an analog waveform on the computer. The peaks and troughs were 

marked on the respiratory waveform using the AcqKnowledge software (BIOPAC Systems 

Inc., Goleta, CA), and these peaks and troughs were used to calculate the intervals between 

breaths and the duration, amplitude of breaths, and respiratory rate per minute. Under resting 

conditions, the newborn’s respiratory rate ranges from 30 to 60 breaths per minute, with 

significant state-related variations, such as infant’s age and health condition (Blackburn, 

2007). 

Interval between breaths corresponds to the distance between peaks, breath duration 

corresponds to the distance between troughs, and breath amplitude corresponds to the 

distance between a depth of trough and the depth of the next peak (Figure 3.2). Respiratory 

rates were computed from the peaks for a breath. During the pre-feeding and the first six 

minutes of a bottle-in period, the mean, SD, and CV of each of these measures and 
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respiratory rates were calculated. The SD and CV were used to index the functional stability 

of the interval between breaths, breath duration and amplitude. During the first six minutes of 

the bottle-in period, the percentages of time with breathing pauses of more than three seconds 

also were calculated. Because respiration is measured by the chest movement associated with 

respiratory effort, this signal can be highly confounded by the infant’s movements during 

non-feeding and burping periods. Therefore, to remove potentially confounding data, only 

the bottle-in periods were used for respiratory analysis (i.e., the break periods were 

eliminated from the feeding period). In addition, the first six minutes of the bottle-in period 

were chosen for the respiratory analysis because this analytic procedure is new and the initial 

minutes of the feeding period have been found to be the most vulnerable period for 

physiological changes (Thoyre & Carlson, 2003).   

 

 

Figure 3.2. Definitions of Respiratory Characteristics 
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Feeding Performance 

Feeding performance measures include overall milk transfer, proficiency, efficiency 

(Lau et al., 1997; Pickler et al., 2005; Pickler, Chiaranai, & Reyna, 2006), and duration of 

feeding. Overall milk transfer refers to the percentage of milk taken from the prescribed 

amount of milk during the entire feeding and is an index that incorporates the infant’s oral 

motor skills and overall level of endurance. Proficiency refers to the percentage of milk taken 

from the prescribed amount of milk during the first five minutes of feeding. Proficiency is an 

index of the infant’s oral motor skills because its measurement is taken at the beginning of a 

feeding when fatigue is expected to be minimal. Efficiency refers to the amount of milk 

consumed in milliliters divided by total feeding time (ml/min) and is an index of the infant’s 

oral motor skills as well as fatigue (Lau et al., 1997; Pickler et al., 2005). Duration of feeding 

is defined as the feeding time in minutes that does not include non-feeding and burping 

periods. Lau et al. (1997) have reported an indicator of successful oral feedings using feeding 

performance measures with 82 VP infants at their first oral feeding. Ninety-six percent of the 

infants were successful at oral feeding (i.e., overall milk transfer ≥ 80%) when they 

demonstrated an efficiency of ≥ 1.5 ml/min and proficiency ≥ 30 percent. These infants also 

became full oral feeders at an earlier PMA than their counterparts who did not meet both 

criteria (Lau et al., 1997). 

To calculate overall milk transfer and efficiency, the amount of prescribed milk (ml) 

was recorded prior to the feeding, and the amount of prescribed milk taken (ml) was recorded 

at the end of the feeding. The total length of feeding time in minutes, including non-feeding 

and burping periods, was calculated retrospectively from the mark on the physiologic data 

stream when the bottle was first inserted and last removed. To determine proficiency, the 
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feeding was stopped briefly at five minutes using a stopwatch, and the amount of milk 

remaining in the bottle (ml) was recorded. In order to minimize interruption of the natural 

flow of sucking, if the infant was sucking at the 5-minute stopping point, then the recording 

of the remaining milk waited until the end of this sucking burst. Fluid lost during feeding was 

measured by the difference in bib weight of a bib weighed between pre-and post-feedings, 

and this weight was subtracted from the amount of milk consumed. To calculate the duration 

of feeding time in minutes, the duration of the non-feeding and burping periods also was 

calculated retrospectively from the mark on the physiologic data stream when the bottle was 

inserted and removed. Duration of feeding was calculated by subtracting the non-feeding and 

burping periods from the total length of feeding time.  

Infant Characteristics 

Infant characteristics, as incorporated in this study, include level of maturity, health 

condition, feeding experience, and additional descriptors obtained from the infant’s medical 

records using the History of Hospitalization Form (Appendix F) and Feeding Data Collection 

Form (Appendix G). For this study, level of maturity is assessed by both GA, as determined 

by maternal dates and physical examination, and PMA, a calculation of GA plus postnatal 

age. Health condition is assessed in terms of neurological and respiratory status. 

Neurological status is identified using NBRS (range of 0-28) to identify the degree of 

neurological risk of the infant (Brazy, Eckerman, Oehler, Goldstein, & O'Rand, 1991; Brazy, 

Goldstein, Oehler, Gustafson, & Thompson, 1993). The NBRS (Appendix D) has seven 

items that indicate possible medical conditions that are associated with neurologic problems. 

They were scored for severity on a 4-point Likert scale based on a medical chart review. A 

high NBRS indicates a high risk of neurologic problems. A significant correlation of the 
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NBRS with the Bayley mental and psychomotor developmental scores (r = -.37 to -61) and 

with abnormal neurologic examination scores (r = .59 to .73) at 6, 15, and 24 months 

corrected age have been reported with a total of 257 infants ≤ 1500 g birth weight (Brazy et 

al., 1991; Brazy et al., 1993). The inter-rater reliability between scores was 97% using ten 

chart reviews (Brazy et al., 1991). Respiratory status is identified using diagnostic criteria for 

BPD (none, mild, moderate, or severe), depending on the duration and degree of 

supplemental oxygen required at 36 weeks of PMA (Jobe & Bancalari, 2001) (Appendix E). 

To collect these data, the PI revisited the nursery for chart reviews when the infant reached 

36 weeks of PMA. Feeding experience is measured by the number of cumulative oral 

feedings either from the bottle or breast prior to the study (Pickler et al., 2005; Pickler & 

Reyna, 2003). Additional descriptors include gender, race, birth weight and weight at the 

time of study, APGAR score, and types and durations of supplemental oxygen or air flow.  

Intervention Fidelity 

Fidelity is assessed by determining whether the assigned position was delivered 

properly, and whether the caregiver’s feeding strategies were carried out consistently within 

and across the infants according to the specified feeding protocol (Appendix C). To assess 

intervention fidelity, the behaviors of both the infants and caregivers were recorded using a 

Panasonic digital video camera HDC-TM700 with a close-up angle of the infant’s face and 

upper body. The entire feeding period recorded on the videotapes was coded continuously 

using the Noldus Observer XT (Noldus Information Technology Inc., Asheville, NC), an 

observational coding program.  

To assess whether the assigned position was delivered properly, two infant position 

variables were evaluated using the ‘infant position’ subscale of the dynamic-early feeding 
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skills (D-EFS) observational coding scheme: (1) the proportion of feeding time that the infant 

is held in a semi-upright position for the condition of the HES position (supine), and (2) the 

proportion of feeding time that the infant is held in a side-lying position for the condition of 

the HEL position (side-lying). To assess the feeding strategies implemented by the caregiver, 

the ‘caregiver feeding action’ and the ‘infant engagement’ subscales of the D-EFS 

observational coding scheme were revised based on the feeding protocol. Five caregivers’ 

feeding behaviors were evaluated using the revised coding scheme: (1) whether the caregiver 

prepared the infant for the feeding by rooting and inviting the infant to participate (prep), (2) 

whether the feeding began with the infant in a state of readiness (ready), (3) the number of 

rest periods provided with the bottle out of the mouth (numb rest periods), (4) the number of 

times the infant received stimulation that could cause an increase in sucking and potentially 

cause more milk to be expelled into his or her mouth (stim suck), and (5) the number of times 

the flow of milk was limited to allow time for the infant to swallow and resume a pattern of 

breathing (limit flow).  

Duration was calculated for the codes of the ‘infant position’ subscale and divided by 

the duration of the bottle-in periods (i.e., non-feeding and burping periods removed) to 

calculate the proportion of feeding time when the infant is held in a semi-upright position for 

the condition of the HES position (supine) and in a side-lying position for the condition of 

the HEL position (side-lying). Frequency was calculated for the codes to assess the 

caregivers’ feeding behaviors. The frequencies of the two codes used to assess the 

caregivers’ feeding behaviors were further divided by the total number of bottle-in episodes 

to calculate the proportion of onsets of the feeding that is contingent upon the caregiver’s 
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behavior to prepare the infant (prep) and the infant’s readiness (ready). Specific descriptions 

of each code are provided on the revised D-EFS list (Appendix H).  

Kappa coefficients have been reported for the caregiver feeding actions (81 to 93%), 

infant engagement (54%), and infant position (77%) from 75 feeding observations from 20 

preterm infants born at less than 32 weeks of GA (Thoyre, 2009). However, the revised codes 

have not been used prior to this study; therefore, they were assessed and refined, as needed, 

prior to the coding data for this study based on discussion with the mentor and using 

videotapes from the feasibility study and past studies of the mentor. 

The PI coded all of the data. The mentor created a gold standard by coding three 

videotapes of past studies conducted by the mentor using the coding scheme that is used in 

this study. Before data coding commenced, the PI was trained with the gold standard until the 

Kappa coefficient reached 85% or greater. The PI also re-coded the three videotapes after 

finishing half of the data coding for this study to assess a drift in reliability as well as intra-

rater reliability. The reliability had not decayed over time (85 - 95% Kappa coefficient). To 

evaluate inter-rater reliability, five of the twelve videotapes for this study were re-coded by 

the second trained observer. Before coding data, the second coder also was trained with the 

three gold standard videotapes until the Kappa coefficient reached 85% or greater. The 

Kappa coefficients of five feeding observations between the PI and the second coder ranged 

from 78 to 87%. All Kappa coefficients found in this study suggest excellent reliability 

(Bakeman & Gottman, 1997). 
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Procedure 

Two study feedings were conducted in a single day for each infant based on a 

predetermined order of feeding position, within the routine feeding schedule in the nursery. 

All equipment for monitoring and video recording was set up immediately before the feeding 

that occurred just prior to the first study feeding to collect pre-feeding data during the inter-

feeding period without disturbing the infant (i.e., when the nurse provided pre-feeding care to 

the infants, such as measuring their temperatures and changing diapers).  

To measure the physiological variables, a pulse oximeter sensor was placed on the 

infant’s foot and secured with an opaque sensor wrap. Electrodes were placed on the infant’s 

chest and abdomen, and respiration bands were placed around the infant’s chest at the nipple 

level. A microphone was placed at the suprasternal notch and secured with a hydrogel tape. 

The camera was attached to the physiologic cart using a flexible arm that allowed the angle 

of the camera to be changed, which allowed the nurses to access the infant easily and without 

interruption. The angle of the camera was adjusted to capture a close-up angle of the infant’s 

face and upper body. 

The infant began to be monitored and videotaped 30 minutes prior to each study 

feeding to capture pre-feeding data, and the infant continued to be monitored until the 

feeding was completed. All equipment remained on the infant until the second study feeding 

was completed. When the infant exhibited readiness cues for feeding at the scheduled feeding 

time (i.e., opening mouth and descending tongue in response to presentation of the nipple), 

the infant was provided routine nursery care by the assigned nurse or mother. The infant was 

swaddled with a blanket, which allowed a flexed body position. The bib was weighed prior to 

and after feeding to measure fluid lost from drooling during feeding. Ambient stimuli, such 



77 

 

as noise and bright lights, were minimized by controlling unnecessary personnel and pulling 

the curtain around the infant’s bedside if needed.  

A neonatal nurse in the NCCC performed bottle-feeding for the infant using a 

standardized feeding protocol. The infant was placed either in the HES or HEL feeding 

position according to the predetermined order. The caregiver used a soft voice to maintain 

the infant’s alert state (White-Traut et al., 2002), and then the feeding proceeded. The feeding 

was stopped briefly at five minutes, and the amount of milk remaining in the bottle (ml) was 

recorded. The feeding was determined to be ‘finished’ when the infant had been fed the 

prescribed amount of breast milk or formula, or no longer engaged in feeding, or 30 minutes 

had elapsed from bottle-feeding initiation. Following the feeding, the amount of milk 

consumed, the length of feeding time, and the weight of the bib were recorded. The infant 

was given the nursery’s post-feeding care by the nurse and settled on the bed. This process 

was repeated for each study feeding. After two study feedings had been completed, all 

monitoring equipment was removed gently.  

Possible confounding factors were standardized as much as possible. The caregiver’s 

approach to feeding between feeding positions was controlled by using a single caregiver for 

both feedings per infant. All caregivers who fed the infant were asked to follow a 

standardized feeding protocol (Appendix C). The fidelity of the delivery of the intervention 

was confirmed by observational measurements to assess whether the assigned position was 

delivered properly and whether the caregiver consistently followed the feeding protocol 

within and across the infants. The same type of nipple that the nursery used was used for all 

study infants. Also, each infant was fed with the same nipple (cleansed properly) for the two 
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study feedings to control for variation in milk flow, because a wide variation in milk flow 

within and between commercial bottle nipples has been documented (Mathew, 1988).  

Three people were involved in data collection during the feeding: the PI, the 

physiologic equipment research assistant (RA), and the nurse caregiver. (The nurse caregiver 

was not necessarily the same nurse caregiver throughout the study, however, but was the 

same person for the two study feedings for the same infant on the same day.) The PI oversaw 

the data collection, and adjusted the video camera angle to capture the infant’s and 

caregiver’s movements. The PI also recorded any other significant events during each 

feeding. The trained RA managed the physiologic equipment and monitored the data streams. 

Also, the RA put a mark on the physiologic data streams when the bottle was inserted or 

removed. A nurse performed the bottle feedings.  

 

Data Preparation  

Three types of data were analyzed: physiologic data (HR, SpO2, and RESCs), 

descriptive data (infant characteristics and feeding performance), and observational data 

(intervention fidelity).  

The physiologic data include HR, SpO2, and RESCs. All physiologic data were 

simultaneously digitized by the amplifier and stored as an analog waveform on a computer 

using the BioLab Data Acquisition Software . The waveform data were constructed using the 

BioLab and AcqKnowledge software to facilitate data analysis using the statistical program. 

The event marks inserted on the physiologic data streams when the bottle was inserted or 

removed by the RA during data collection, were verified and corrected by the PI, if needed, 

through examination of the videotape. The verified events were downloaded to a tab-
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delimited text file and used to separate the pre-feeding, feeding, and bottle-in periods from 

the total data. ECG signals were imported to the AcqKnowledge software that allows HR 

data to be extracted from ECG signals as a digitized text file. HR data were extracted for 

every one second, and the resultant text files were used for analysis. The SpO2 trends for 

every one second were extracted as a digitized text file during data acquisition, and these text 

files were used for analysis. The digitized text files for events, HR, and SpO2 data were 

imported to Microsoft Excel and then copied and pasted into a single spreadsheet to create 

one dataset per feeding (Figure 3.3).  

 

Table 3.2. Illustration of Heart Rate and Oxygen Saturation Dataset for Analysis 

Id Group Period Time Lapse Time
a
 HR (bpm) SpO2 (%) 

2 1 Baseline 1:24:56 PM 319 143.54 99.36 

2 1 Baseline 1:24:57 PM 320 145.28 99.35 

Data omitted for illustration 

2 1 Bottle-In 1:53:28 PM 2031 182.93 99.35 

2 1 Bottle-In 1:53:29 PM 2032 170.45 99.35 

2 1 Bottle-In 1:53:30 PM 2033 153.45 99.35 

2 1 Bottle-In 1:53:31 PM 2034 149.25 99.35 

2 1 Bottle-In 1:53:32 PM 2035 149.25 99.35 

2 1 Bottle-In 1:53:33 PM 2036 154.24 99.35 

2 1 Bottle-In 1:53:34 PM 2037 170.45 99.35 

Data omitted for illustration 

2 1 Bottle-In 1:59:52 PM 2415 156.25 99.35 

2 1 Bottle-In 1:59:52 PM 2416 150.38 99.35 

2 1 Bottle-In 1:59:52 PM 2417 147.42 99.35 

2 1 Break 1:59:52 PM 2418 148.15 99.35 

2 1 Break 1:59:52 PM 2419 153.85 99.34 

2 1 Break 1:59:52 PM 2420 159.57 99.35 

2 1 Break 1:59:52 PM 2421 163.93 99.35 

Note. HR = heart rate; SpO2 = oxygen saturation. 
a
Lapse Time= time in seconds from 

beginning of file. 
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For respiratory analysis, the respiratory waveform was imported to the 

AcqKnowledge software, which allows the peaks and troughs to be marked on the respiratory 

waveform. The peaks and troughs for breaths were determined based on a consistent rule 

(Appendix I) and all peaks and troughs were confirmed by listening to the breathing and 

swallowing sounds on the videotapes as recorded by the microphone attached to the infant’s 

neck. The times and values for each peak and trough marked on the waveform were 

downloaded to a tab-delimited text file. These text files were translated to Microsoft Excel 

that was used for calculating the intervals between breaths and the duration and amplitude of 

breaths (Figure 3.4). Specific procedures for respiratory data management are provided on 

Appendix J. 

Table 3.3. Illustration of Respiratory Characteristics Dataset for Analysis 

Period 
Peak 
time 

(second) 

Peak 
value 
(volt) 

Trough 
time 

(second) 

Trough 
value 
(volt) 

Amplitude 
a
 Duration

 b
 Interval

 c
 

Baseline 1.168 0.006581 0.884 -0.00614 0.013 0.908 1.112 

Baseline 2.280 0.005574 1.792 -0.00894 0.015 1.076 0.868 

Baseline 3.148 0.002168 2.868 -0.00667 0.009 0.732 0.704 

Baseline 3.852 0.006561 3.600 -0.00448 0.011 1.176 1.184 

Baseline 5.036 0.005311 4.776 -0.00462 0.010 0.940 0.912 

Data omitted for illustration 

Bottle-In 3065.31 0.016422 3065.06 -0.01675 0.033176 0.508 0.464 

Bottle-In 3065.77 0.021767 3065.56 -0.01687 0.038632 0.44 0.433 

Bottle-In 3066.21 0.020868 3066.00 -0.01817 0.039034 0.42 0.423 

Bottle-In 3066.63 0.024966 3066.42 -0.01836 0.043328 0.432 0.436 

Bottle-In 3067.06 0.027645 3066.86 -0.02178 0.049429 0.436 0.444 

Note. 
a
 Amplitude = the next peak value minus the prior trough value. 

b
 Duration = the time 

taken from a trough to the next trough. Interval = the time taken from a peak to the next 

peak. 

 

Data cleaning involved determining a 2-minute period prior to feeding to calculate the 

pre-feeding levels, and removing physiologic data artifacts. The pre-feeding levels were 

calculated from the pre-feeding period for each feeding. Two or three 2-minute pre-feeding 
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periods were selected from areas where: (1) minimum variability of HR, SpO2, and 

respiratory data occurred; (2) neither increasing nor decreasing patterns of HR, SpO2, and 

respiratory data occurred; and (3) the infant was calm and quiet as noted on the videotape. 

Among several 2-minute segments, the period with the smallest SD for HR and SpO2 were 

selected. When the pre-feeding period was not sufficient to find the qualified period for the 

pre-feeding period criteria because the infant exhibited readiness cues for oral feeding earlier 

than the scheduled feeding time, the pre-feeding period for another feeding for the same 

infant was used. Detectable changes in pre-feeding periods between two feedings in a day 

were not expected to occur. For three feeding observations, the pre-feeding period was 

insufficient to find the qualified 2-minute segment of pre-feeding period.  

Artifacts were determined by comparing the trace of waveform data and the infant’s 

actual activities on the videotapes. Artifacts for SpO2 are defined as either: (a) areas of SpO2 

trace that exceed the physiologically possible signal changes from one second to the next 

(SpO2 ≥ 5%) or (b) areas that show erratic pulse waveforms that do not correspond to ECGs 

of more than two seconds, accompanied by the infant’s large-scale movements (e.g., 

handling the infant for burping, moving the infant back to the crib, or crying), as determined 

from the videotapes. Similarly, artifacts for HR are defined as either: (a) areas of HR trace 

that exceed the physiologically possible signal changes from one second to the next (HR ≥ 10 

bpm) or (b) areas that show erratic ECG signals (e.g., noisy baseline, irregular amplitude of 

QRS peak, and/or irregular R-R interval), accompanied by the infant’s large-scale 

movements as determined from the videotapes. Artifacts for RESCs were determined by 

comparing the traces of respiratory waveform data, the infant’s actual activities on the 

videotapes, and the breathing and swallowing sounds measured by the microphone attached 
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to the infant’s neck. All of the artifacts were removed from the physiologic dataset, and the 

artifact-free physiologic dataset was converted to SAS 9.2 for data analysis.  

Descriptive data include infant characteristics and feeding performance data. All 

descriptive data were entered twice by the PI for cross-verification, and all discrepancies 

were resolved and corrected by comparing these two datasets. Nominal data were coded 

numerically to facilitate analysis (e.g., male = 0, female = 1, White = 0, or African-American 

= 1, etc). Numerical data were entered as they appeared, with no modification. All 

descriptive data were entered into a single Excel spreadsheet and converted to SAS 9.2 for 

data analysis. 

 Observational data were coded using the Noldus Observer XT program, which 

generated frequencies and durations of all the behavioral codes. Duration was chosen for the 

codes of infant position and divided by the duration of the bottle-in period (i.e., non-feeding 

and burping periods removed) to calculate the proportion of feeding time when the infant was 

held in a semi-upright position for the condition of the HES position (supine) and in a side-

lying position for the condition of the HEL position (side-lying). Frequency was chosen for 

the codes to assess the caregiver’s feeding behaviors. The frequency for codes of some 

caregivers’ feeding behaviors was further divided by the total number of bottle-in episodes to 

calculate the proportion of onsets of feeding based on a caregiver’s behavior to prepare the 

infant (prep) and the infant’s readiness (ready). All observational data were converted into a 

single Excel spreadsheet for calculating descriptive statistics using SAS 9.2. 
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Data Management 

All data collected as part of this study were stored on a laptop computer (dedicated 

for this research project) that is the property of the PI, under a password-protected system in 

which two separate passwords are required to access information. The initial password is 

used to activate the computer, and a different password is required to open any files 

containing protected health information. Also, data were backed up on a password-protected 

external hard drive. After being entered into an Excel spreadsheet, hardcopy information was 

stored in a locked drawer in the PI’s office in the School of Nursing at the University of 

North Carolina at Chapel Hill.  

Data Analysis 

Several analyses were conducted using SAS 9.2, including descriptive statistics, 

paired t-tests, linear mixed modeling (LMM), and simulations. Statistical significance is 

defined as a p-value less than .10 for all analyses. With six VP infants, this study may not be 

powered sufficiently. That is, the paired t-test at a two-sided 0.05 significance level would 

have 80% power to identify an effect size of 1.44 with six VP infants. A repeated measures 

analysis of variance over four time points for the difference between measurements in the 

two positions would generate an effect size of 0.59 with 80% power at a two-sided 0.05 

significance level (computed with nQuery Advisor, Statistical Solutions, Inc., Saugus, MA). 

However, the PI acknowledges that this study will not be powered sufficiently to detect a 

significant difference between groups. Because this work is a pilot study, the results will be 

used to provide evidence of trends toward significant difference to justify future study.  

Prior to analysis, descriptive statistics (i.e., mean, SD, minimum, and maximum) of 

the major outcome variables were calculated and tabulated to summarize the variability and 



84 

 

distribution of the data. The major outcome variables include HR, SpO2, some of the RESCs 

(i.e., intervals between breaths, duration of breath, amplitude of breath, and respiratory rate), 

and feeding performance.  

 

H1. It is hypothesized that, compared to VP infants bottle-fed in the HES position, VP 

infants bottle-fed in the HEL position would demonstrate greater physiological stability 

and better feeding performance during feeding. 

To address Hypothesis 1, during the pre-feeding, feeding, and bottle-in periods, the 

mean, SD, and CV for HR and SpO2 were calculated. In addition, during the bottle-in 

periods, the percentages of time with the degrees of change in HR and SpO2 were calculated. 

For RESCs, the mean, SD, and CV of breath-to-breath intervals, duration and amplitude of 

breaths, and respiratory rate were calculated during the pre-feeding and first six minutes of 

the bottle-in periods. During the first six minutes of the bottle-in periods, the percentage of 

time with breathing pauses longer than three seconds also was calculated. Paired t-tests were 

used to assess the differences in each physiologic measure between the feeding positions. A 

comparison of feeding performance measures between the feeding positions was made using 

paired t-tests. The normality assumption for all outcome variables was assessed and, if 

normality was questionable, nonparametric alternative tests (i.e., the Wilcoxon signed rank 

test and the sign test) were used. 

 

H2. It is hypothesized that, compared to VP infants bottle-fed in the HES position, VP 

infants bottle-fed in the HEL position would demonstrate fewer physiological changes 

from the pre-feeding period across the feeding period.  
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To address Hypothesis 2, three different methods were chosen to create intervals of 

feeding time, because no clear understanding is currently available to examine changes in 

physiologic stability across the feeding period in terms of best time and intervals. To remove 

potentially confounding data, non-feeding and burping periods were eliminated, and the 

bottle-in periods were examined using three intervals of time: (1) dividing the entire bottle-in 

period into three equal intervals (which differed in length according to infant and/or feeding 

observation, e.g., some infants fed for longer periods of time than others); (2) extracting 2-

minute intervals from the initial, middle, and final third of the feeding period; and (3) 

dividing the first six minutes of the bottle-in period into three 2-minute intervals (0-2, 2-4, 

and 4-6 minutes each) (Figure 3.5).  

The mean, SD, and CV for HR and SpO2 were calculated during the pre-feeding 

period and for each interval of time. For RESCs, the mean, SD, and CV of the intervals 

between breaths and breath duration and amplitude were calculated only during the pre-

feeding and successive two minutes for the first six minutes of the bottle-in period (i.e., 

Method 3), because the RESCs variable is new and exploratory. LMM was used for each 

variable and method to examine whether a significant pattern in physiologic stability was 

evident across the three time points during feeding by controlling for the pre-feeding period 

as a covariate, and to determine whether this pattern was different according to feeding 

position. Covariance structures accounted for possible within-infant correlations for 

outcomes across time and feeding positions. Residual analysis was conducted for all 

longitudinal outcome variables to assess if each outcome variable was normally distributed or 

had no outliers or asymmetry. The transformation of the data and/or sensitivity analyses were 

performed to resolve the non-normality, outliers, or asymmetry, as needed. Finally, a 
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thousand simulations of LMMs for each longitudinal outcome variable and method were 

conducted for varying numbers of infants in order to determine the most optimal method, as 

determined by the method that requires the smallest number of infants to detect a position 

effect with 80% power.   

 

 

Figure 3.3. Example of the Time Intervals using the Three Methods with 12-Minute Duration 

Feeding 

 

Intervention Fidelity 

To evaluate the intervention fidelity, the entire feeding period was coded for the two 

infant positions (HES/supine and HEL/side-lying) and the five feeding behaviors 

implemented by the caregiver (prep, ready, numb rest period, stim suck, and limit flow). 

Duration was calculated for the codes of the infant position and divided by the duration of the 

bottle-in periods (i.e., non-feeding and burping periods removed) to calculate the proportion 

of feeding time when the infant was held in a semi-upright position for the condition of the 
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HES position and in a side-lying position for the condition of the HEL position. Frequency 

was calculated for the codes to assess the caregiver’s actions. For some codes of caregiver 

feeding behaviors, the frequency was further divided by total number of bottle-in episodes to 

calculate the proportion of onsets of feeding based on the caregiver’s behavior to prepare the 

infant and the infant’s readiness. Descriptive statistics (i.e., mean, SD, minimum, and 

maximum) of each behavioral code were calculated and tabulated to assess the variability of 

the intervention delivery within and across the infants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER IV 

 

RESULTS 

This chapter presents the findings of the study. Several analytic strategies are 

employed in this study. Descriptive statistics of the study infants and major variables are 

presented first. Following the descriptive statistics, the results of paired t-tests to address 

Hypothesis 1 and linear mixed modeling to address Hypothesis 2 are presented. Also, 

simulated sample size results are presented to suggest the optimal method among three 

candidate methods to examine changes in physiological stability over feeding time. Finally, 

descriptive statistics to evaluate intervention fidelity are provided. 

 

Characteristics of Study Infants 

Six VP infants, who were admitted to the NCCC at North Carolina Children’s 

Hospital in Chapel Hill, North Carolina between June 1, 2011 and September 30, 2011, are 

the subjects of this study. The infants’ characteristics are summarized in Table 4.1. The 

infants were similar with respect to birth characteristics. Most of the infants were female, and 

half were white. The infants differed in their PMA and feeding experience but had similar 

feeding skills at the time of the study. The infants were able to consume on average 58.3% 

(ranged from 49.4% to 66.1%) of their prescribed milk by mouth for 72 hours prior to the 

study. Certain types of respiratory support were required prior to the study across infants but 

only two infants were receiving supplemental oxygen and airflows at the time of the study. 



89 

 

Four infants had either mild or moderate lung disease. One infant had a higher score 

on the NBRS than the other infants, which indicated an intermediate risk for neurologic 

problems (Brazy et al., 1993). 
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Descriptive Statistics of Major Variables 

Prior to analysis, the variability and distribution of the data were examined by 

calculating the descriptive statistics. The mean, SD, minimum, and maximum of the major 

variables were calculated and tabulated per infant by feeding position during the pre-feeding, 

feeding, and bottle-in periods. Pre-feeding period is defined as a 2-minute period prior to 

feeding when the infant is calm and quiet in the bed and no demands are placed on him or 

her. Feeding period is defined as the period of time from the first time the bottle is placed in 

the infant’s mouth until the last time it is removed. Bottle-in period is defined as the period 

that the non-feeding and burp periods are removed from the feeding period. The major 

variables include HR, SpO2, several RESCs (i.e., the interval between breaths, duration of 

breath, amplitude of breath, and respiratory rate), and feeding performance.  

 

Heart Rate  

Table 4.2 presents the mean, SD, minimum, and maximum of individual HR 

measurements taken during the pre-feeding, feeding, and bottle-in periods by feeding 

position. During the pre-feeding period, the mean HR for each infant ranged from 149.0 to 

165.2 bpm in the HES position and from 143 to 165.2 bpm in the HEL position. The 

minimum HR for each infant ranged from 140.8 to 155.8 bpm in the HES position and from 

135.7 to 155.8 bpm in the HEL position. The maximum HR for each infant ranged from 

155.0 to 172.4 bpm in the HES position and from 150.8 to 172.4 bpm in the HEL position. 

During the pre-feeding period, HR was computed individually for each infant. As a 

consequence, at least one infant had a mean HR greater than the maximum HR of another 

infant, and at least one infant had a mean HR lower than the minimum of another infant.  
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During the feeding period, the mean HR for each infant increased from that of the 

pre-feeding period, and ranged from 154.1 to 176.0 bpm in the HES position and from 153.6 

to 178.0 bpm in the HEL position. Variability in HR also increased from that of the pre-

feeding period. The minimum HR for each infant was lower than during the pre-feeding 

period, and ranged from 75.3 to 100 bpm in the HES position and from 92.0 to 137.0 bpm in 

the HEL position. The maximum HR for each infant was higher than during the pre-feeding 

period, and ranged from 174.4 to 200.7 bpm in the HES position and from 173.4 to 196.1 

bpm in the HEL position. During the bottle-in periods, the ranges of the mean, minimum, and 

maximum HR were similar to those during the feeding period.  

 

Table 4.2. Descriptive Statistics for Heart Rate for Each Infant by Position  

Infant Period 
HES position  HEL position 

Mean SD Min Max Mean SD Min Max 

1 

Pre-feeding 149.9 2.9 140.8 156.3 143.9 2.8 135.7 150.8 

Feeding 
a
 168.7 14.6 86.3 200.7 171.1 10.4 107.3 196.1 

Bottle-in 
b
 167.3 13.8 86.3 200.0 170.8 10.2 107.3 196.1 

2 

Pre-feeding 157.8 2.1 149.3 161.3 155.1 1.7 150.8 157.9 

Feeding 160.1 10.8 96.3 178.6 153.6 9.6 113.9 173.4 

Bottle-in 159.3 11.1 96.3 176.0 152.1 8.9 113.9 166.2 

3 

Pre-feeding 148.7 2.3 141.8 155.0 149.8 2.3 143.9 155.4 

Feeding 166.3 6.7 88.2 176.5 178.0 4.8 137.0 191.7 

Bottle-in 165.8 7.2 88.2 175.4 178.4 4.0 159.2 191.7 

4 

Pre-feeding 165.2 3.0 155.8 172.4 165.2 3.0 155.8 172.4 

Feeding 176.0 10.8 94.8 198.0 176.3 6.7 132.2 193.0 

Bottle-in 174.4 12.0 94.8 186.3 176.9 6.5 132.2 193.0 

5 

Pre-feeding 149.0 3.0 141.5 161.3 151.9 2.5 145.6 159.6 

Feeding 154.9 11.7 100.0 184.6 164.9 7.3 113.6 186.9 

Bottle-in 153.3 12.1 100.0 184.6 163.7 7.0 116.7 178.6 

6 

Pre-feeding 158.6 5.4 142.2 169.0 158.6 5.4 142.2 169.0 

Feeding 154.1 15.5 75.3 174.4 156.6 10.4 92.0 176.0 

Bottle-in 157.3 10.5 95.7 172.4 156.5 9.7 92.0 174.9 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; Min = minimum; Max = 

maximum. Unit for heart rate is bpm. 
a
 Feeding period = the period of time from the first 

time the bottle is placed in the infant’s mouth until the last time when it is removed. 
b
 Bottle-

in periods = the non-feeding and burp periods are removed from the feeding period. 
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Oxygen Saturation 

Table 4.3 presents the mean, SD, minimum, and maximum of individual SpO2 levels 

during the pre-feeding, feeding, and bottle-in periods by feeding position. During the pre-

feeding period, the SpO2 levels remained over 99% except for infant 6. The mean SpO2 for 

infant 6 was 97.9% and had more variability in SpO2 than the other infants, and ranged from 

92.5% to 98.9 percent. 

During the feeding period, the mean SpO2 for each infant decreased from that of the 

pre-feeding period, and ranged from 93.4% to 99.0% in the HES position and from 93.4% to 

99.2% in the HEL position. The variability in SpO2 increased from that of the pre-feeding 

period. The minimum SpO2 for each infant was lower than during the pre-feeding period, and 

ranged from 41.9% to 86.8% in the HES position and from 52.0% to 89.7% in the HEL 

position. The maximum SpO2 for each infant remained similar to that during the pre-feeding 

period, and ranged from 99.4% to 99.9% in both the HES and HEL positions. During the 

bottle-in periods, the ranges of the mean, minimum, and maximum SpO2 were similar to 

those during the feeding period. 
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Table 4.3. Descriptive Statistics for Oxygen Saturation for Each Infant by Position 

Infant Period 
HES position  HEL position 

Mean SD Min Max Mean SD Min Max 

1 

Pre-feeding 99.3 0.1 98.7 99.4 99.4 0.0 99.3 99.4 

Feeding 
a
 97.4 2.5 86.3 99.4 99.0 1.35 89.7 99.4 

Bottle-in 
b
 97.4 2.5 86.3 99.4 99.0 1.4 89.7 99.4 

2 

Pre-feeding 99.8 0.0 99.8 99.8 99.9 0.0 99.9 99.9 

Feeding 96.6 4.6 79.8 99.8 96.7 4.1 80.9 99.9 

Bottle-in 96.7 4.6 79.8 99.8 96.8 4.0 80.9 99.9 

3 

Pre-feeding 99.8 0.0 99.8 99.9 99.8 0.0 99.8 99.9 

Feeding 99.0 2.0 81.8 99.9 99.2 2.0 84.8 99.9 

Bottle-in 99.1 2.0 81.8 99.9 99.2 2.0 84.8 99.9 

4 

Pre-feeding 99.8 0.2 98.9 99.9 99.8 0.2 98.9 99.9 

Feeding 98.4 4.4 67.9 99.9 97.1 5.0 69.8 99.9 

Bottle-in 98.1 4.9 68.0 99.9 96.9 5.2 69.8 99.9 

5 

Pre-feeding 99.8 0.0 99.8 99.8 99.8 0.0 99.8 99.8 

Feeding 98.6 2.3 86.8 99.8 98.7 2.3 85.9 99.8 

Bottle-in 98.5 2.4 86.8 99.8 98.6 2.4 85.9 99.8 

6 

Pre-feeding 97.9 1.0 92.5 98.9 97.9 1.0 92.5 98.9 

Feeding 93.4 10.6 41.9 99.9 94.4 7.4 52.0 99.9 

Bottle-in 94.2 7.3 57.1 99.9 95.1 5.9 69.1 99.9 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; Min = minimum; Max = 

maximum. Unit for oxygen saturation is %. 
a
 Feeding period = the period of time from the 

first time the bottle is placed in the infant’s mouth until the last time when it is removed. 
b
 

Bottle-in periods = the non-feeding and burp periods are removed from the feeding period. 

 

 

Respiratory Characteristics 

RESCs were examined as the interval between breaths, breath duration, breath 

amplitude, respiratory rate, and percentage of feeding time with breathing pauses longer than 

three seconds. Figure 4.1 depicts examples of variation in interval between breaths, breath 

duration, and breath amplitude that were frequently observed in the respiratory waveforms 

during feeding. Individual descriptive statistics were calculated and tabulated for the interval 

between breaths, breath duration, breath amplitude, and respiratory rate. 

 

 



95 

 

Pre-feeding Period 

 

Feeding Period 

 

Figure 4.1. Examples of Variation in Respiration during Feeding 

 

Interval between breaths. Table 4.4 presents the mean, SD, minimum, and 

maximum of the individual intervals between breaths during the pre-feeding and first six 

minutes of the bottle-in period by feeding position. During the pre-feeding period, the mean 

interval between breaths for each infant ranged from 0.84 to 1.20 seconds in the HES 
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position and from 0.72 to 1.20 seconds in the HEL position. The minimum interval between 

breaths for each infant ranged from 0.32 to 0.86 seconds in the HES position and from 0.39 

to 0.83 seconds in the HEL position. The maximum interval between breaths for each infant 

ranged from 1.12 to 4.74 seconds in the HES position and from 1.08 to 4.74 seconds in the 

HEL position. During the pre-feeding period, the interval between breaths was computed 

individually for each infant. As a consequence, at least one infant had a mean interval 

between breaths that was longer than the maximum interval between breaths of another 

infant, and at least one infant had a mean interval between breaths that was shorter than the 

minimum of another infant.  

During the first six minutes of the bottle-in period, the mean interval between breaths 

for each infant was longer than during the pre-feeding period, and ranged from 1.11 to 1.64 

seconds in the HES position and from 1.03 to 1.45 seconds in the HEL position. The 

variability in interval between breaths increased from that of the pre-feeding period. The 

minimum interval between breaths for each infant decreased from that of the pre-feeding 

period, and ranged from 0.37 to 0.41 seconds in the HES position and from 0.25 to 0.42 

seconds in the HEL position. The maximum interval between breaths for each infant 

increased from that of the pre-feeding period, and ranged from 11.02 to 42.23 seconds in the 

HES position and from 11.04 to 16.95 seconds in the HEL position.  
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Table 4.4. Descriptive Statistics for the Interval between Breaths for Each Infant by Position 

Infant Period 
HES position HEL position 

Mean SD Min Max Mean SD Min Max 

1 
Pre-feeding  1.09 0.18 0.83 2.41 1.09 0.18 0.83 2.41 

First 6 min bottle-in 1.33 2.91 0.37 36.06 1.14 1.73 0.34 11.04 

2 
Pre-feeding  0.84 0.15 0.32 1.12 0.72 0.10 0.48 1.08 

First 6 min bottle-in 1.61 3.05 0.40 21.4 1.27 2.01 0.42 16.91 

3 
Pre-feeding  1.11 0.11 0.86 1.50 1.00 0.19 0.50 1.56 

First 6 min bottle-in 1.11 1.28 0.39 11.02 1.03 1.36 0.36 11.68 

4 
Pre-feeding  0.99 0.32 0.39 2.94 0.99 0.32 0.39 2.94 

First 6 min bottle-in 1.64 3.23 0.41 21.90 1.29 2.14 0.25 16.95 

5 
Pre-feeding  1.18 0.22 0.81 2.35 1.19 0.18 0.68 1.75 

First 6 min bottle-in 1.32 2.11 0.38 14.82 1.45 2.40 0.37 15.14 

6 
Pre-feeding  1.20 0.45 0.56 4.74 1.20 0.45 0.56 4.74 

First 6 min bottle-in 1.48 3.43 0.38 42.23 1.38 2.08 0.33 12.68 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; Min = minimum; Max = 

maximum. Unit for interval between breaths is second. 

 

Breath duration. Table 4.5 presents the mean, SD, minimum, and maximum of 

individual breath duration during pre-feeding and the first six minutes of the bottle-in period 

by feeding position. During the pre-feeding period, the mean duration of breath for each 

infant ranged from 0.84 to 1.20 seconds in the HES position and from 0.72 to 1.20 seconds in 

the HEL position. The minimum duration of breath for each infant ranged from 0.24 to 0.84 

in the HES position and from 0.39 to 0.84 seconds in the HEL position. The maximum 

duration of breath for each infant ranged from 1.14 to 5.02 seconds in the HES position and 

from 1.02 to 5.02 seconds in the HEL position. Again, during the pre-feeding period, 

duration of breath was computed individually for each infant. As a consequence, at least one 

infant had a mean duration of breath that was longer than the maximum duration of breath of 

another infant, and at least one infant had a mean duration of breath that was shorter than the 

minimum of another infant.  



98 

 

During the first six minutes of the bottle-in periods, the mean breath duration for each 

infant was shorter than during the pre-feeding period, and ranged from 0.63 to 0.88 seconds 

in the HES position and from 0.67 to 0.80 seconds in the HEL position. The minimum 

interval between breaths for most infants decreased from that of the pre-feeding period, and 

ranged from 0.34 to 0.42 seconds in the HES position and from 0.28 to 0.44 seconds in the 

HEL position. Changes in the maximum duration of breath from the pre-feeding period 

showed the opposite direction in most infants by feeding position. In the HES position, the 

maximum duration of breath was shorter than that during the pre-feeding period, except for 

infant 2, and ranged from 1.80 to 2.11 seconds; however in the HEL position, the maximum 

duration of breath was longer than that during the pre-feeding period, except for infant 4 and 

6, and ranged from 1.69 to 3.08 seconds. The overall variability in breath duration increased 

during feeding from the pre-feeding period for most infants. 

 

Table 4.5. Descriptive Statistics for Breath Duration for Each Infant by Position 

Infant 
Period 

HES position HEL position 

Mean SD Min Max Mean SD Min Max 

1 
Pre-feeding  1.09 0.17 0.84 2.37 1.09 0.17 0.84 2.37 

First 6 min bottle-in 0.63 0.25 0.36 2.07 0.67 0.27 0.35 3.08 

2 
Pre-feeding  0.84 0.13 0.24 1.14 0.72 0.09 0.52 1.02 

First 6 min bottle-in 0.72 0.20 0.34 1.56 0.80 0.26 0.44 2.27 

3 
Pre-feeding  1.11 0.15 0.65 1.99 1.00 0.13 0.80 1.44 

First 6 min bottle-in 0.88 0.24 0.42 1.88 0.75 0.22 0.38 1.69 

4 
Pre-feeding  0.99 0.31 0.38 2.92 0.99 0.31 0.38 2.92 

First 6 min bottle-in 0.70 0.24 0.40 1.87 0.79 0.29 0.28 2.20 

5 
Pre-feeding  1.18 0.21 0.82 2.42 1.19 0.15 0.81 1.66 

First 6 min bottle-in 0.80 0.24 0.39 2.11 0.76 0.24 0.36 2.13 

6 
Pre-feeding  1.20 0.45 0.61 5.02 1.20 0.45 0.61 5.02 

First 6 min bottle-in 0.76 0.27 0.36 1.80 0.73 0.26 0.28 2.06 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; Min = minimum; Max = 

maximum. Unit for breath duration is second. 
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Breath amplitude. Table 4.6 presents the mean, SD, minimum, and maximum of 

individual breath amplitude during pre-feeding and the first six minutes of the bottle-in 

period by feeding position. During the pre-feeding period, the mean amplitude of breath for 

each infant ranged from 0.010 to 0.028 volts in the HES position and from 0.010 to 0.027 

volts in the HEL position. The minimum amplitude of breath for each infant ranged from 

0.003 to 0.008 volts in both the HES and HEL positions. The maximum amplitude of breath 

for each infant ranged from 0.012 to 0.145 volts in the HES position and from 0.014 to 0.179 

volts in the HEL position. During the pre-feeding period, amplitude of breath also was 

computed individually for each infant. As a consequence, at least one infant had a mean 

amplitude of breath that was greater than the maximum amplitude of breath of another infant, 

and at least one infant had a mean amplitude of breath that was lower than the minimum of 

another infant.  

During the first six minutes of the bottle-in period, the mean amplitude of breath for 

each infant increased from that of the pre-feeding period, and ranged from 0.050 to 0.181 

volts in the HES position and from 0.037 to 0.129 volts in the HEL position. The variability 

in breath amplitude increased from that of the pre-feeding period. The minimum amplitude of 

breath for each infant was similar to that during the pre-feeding period, and ranged from 

0.004 to 0.030 volts in the HES position and from 0.009 to 0.020 volts in the HEL position. 

However, the maximum amplitude of breath for each infant increased from the pre-feeding 

period, ranging from 0.158 to 0.609 volts in the HEL position and from 0.120 to 0.474 volts 

in the HES position. 
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Table 4.6. Descriptive Statistics for Breath Amplitude for Each Infant by Position 

Infant 
Period 

HES position HEL position 

Mean SD Min Max Mean SD Min Max 

1 
Pre-feeding  0.011 0.001 0.008 0.014 0.011 0.001 0.008 0.014 

First 6 min bottle-in 0.061 0.040 0.006 0.372 0.087 0.047 0.020 0.337 

2 
Pre-feeding  0.010 0.002 0.007 0.020 0.011 0.002 0.005 0.015 

First 6 min bottle-in 0.050 0.024 0.004 0.158 0.037 0.014 0.009 0.120 

3 
Pre-feeding  0.010 0.001 0.004 0.012 0.010 0.002 0.006 0.020 

First 6 min bottle-in 0.066 0.024 0.011 0.178 0.092 0.035 0.017 0.232 

4 
Pre-feeding  0.011 0.007 0.003 0.044 0.011 0.007 0.003 0.044 

First 6 min bottle-in 0.074 0.033 0.021 0.245 0.129 0.070 0.012 0.474 

5 
Pre-feeding  0.028 0.016 0.006 0.145 0.020 0.018 0.003 0.179 

First 6 min bottle-in 0.111 0.061 0.016 0.458 0.079 0.038 0.013 0.346 

6 
Pre-feeding  0.027 0.013 0.005 0.090 0.027 0.013 0.005 0.090 

First 6 min bottle-in 0.181 0.080 0.030 0.609 0.113 0.049 0.011 0.442 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; Min = minimum; Max = 

maximum. Unit for breath amplitude is volt. 

 

 

Respiratory rate. Table 4.7 presents individual respiratory rates per minute during 

the pre-feeding and the first six minutes of the bottle-in period by feeding position. During 

the pre-feeding period, the respiratory rate for each infant ranged from 51 to 70 per minute in 

the HES position and from 50 to 82 per minute in the HEL position. During the first six 

minutes of the bottle-in period, the respiratory rate for each infant decreased from that of the 

pre-feeding period, and ranged from 36 to 53 per minute in the HES position and from 41 to 

53 per minute in the HEL position. 
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Table 4.7. Descriptive Statistics for Respiratory Rate for Each Infant by Position 

Infant 

HES position HEL position 

Pre-feeding period 
First 6 min of  

bottle-in period 
Pre-feeding period 

First 6 min of  

bottle-in period 

1 54 46 54 53 

2 70 36 82 47 

3 54 53 60 58 

4 60 36 60 46 

5 51 44 50 41 

6 50 40 50 43 

Mean 56 42 59 48 

SD 8 6 12 6 

Min 51 36 50 41 

Max 70 53 82 53 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; Min = minimum; Max = 

maximum. Respiratory rate is calculated per minute. 

 

Feeding Performance 

Feeding performance was examined in terms of the overall milk transfer, proficiency, 

efficiency, and duration of the feeding time in minutes. Overall milk transfer was calculated 

as the percentage of milk consumed from the prescribed amount of milk (%). Efficiency was 

calculated as the amount of milk in milliliters consumed by total feeding time in minutes 

(ml/min). Proficiency was calculated as the percentage of milk consumed during the first five 

minutes of the feeding period (%). Duration of feeding time was calculated as the minutes of 

the feeding time after removing the non-feeding and burping periods. Individual feeding 

performance measures are described in Table 4.8. All infants consumed almost all their 

prescribed milk; this overall milk transfer ranged from 80% to 100% for both positions. 

During the first five minutes of feeding, the infants consumed an average 44.3% in the HES 

position, ranging from 25.5% to 86.5%, and 42.3% in the HEL position, ranging from 24.3 to 

57.5 percent. Efficiency ranged from 1.5 to 3.1 ml/min in the HES position and from 1.8 to 
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3.7 ml/min in the HES position. Duration of feeding time ranged from 7.4 to 14.8 minutes in 

the HES position and from 10.3 to 18.0 minutes in the HEL position. 

Table 4.8. Descriptive Statistics for Feeding Performance for Each Infant by Position 

Infant 

HES position HEL position 

Overall 

milk 

transfer 

(%) 

Effi-

ciency 

(ml 

/min) 

Pro-

ficiency 

(%) 

Duration 

of 

feeding 

time 

(min) 

Overall 

milk 

transfer 

(%) 

Effi-

ciency 

(ml 

/min) 

Pro-

ficiency 

(%) 

Duration 

of 

feeding 

time 

(min) 

1 86.7 2.4 37.8 13.3 80.0 1.8 37.8 18.0 

2 100.0 2.6 29.7 14.0 100.0 2.8 24.3 13.4 

3 80.0 1.5 28.6 14.8 91.4 2.0 37.1 14.2 

4 100.0 3.1 86.5 7.4 100.0 2.3 45.9 10.9 

5 100.0 3.0 57.5 10.0 100.0 2.6 57.5 10.3 

6 89.4 1.9 25.5 10.2 100.0 3.7 51.1 11.2 

Mean 92.7 2.4 44.3 11.6 95.2 2.5 42.3 13.0 

SD 8.6 0.6 23.7 2.9 8.2 0.7 11.8 2.9 

Min 80.0 1.5 25.5 7.4 80.0 1.8 24.3 10.3 

Max 100.0 3.1 86.5 14.8 100.0 3.7 57.5 18.0 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; Min = minimum; Max = 

maximum. 
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Hypothesis 1: When compared to infants bottle-fed in the HES position, VP infants 

bottle-fed in the HEL position would demonstrate greater physiological stability and 

better feeding performance. 

 

Hypothesis 1 was tested using paired t-tests to assess the differences in physiological 

stability and feeding performance between the two feeding positions. Because this is a pilot 

study, the significance level was set at p = .10, and p-values less than .20 were considered to 

be indicative of trends. Results from nonparametric alternative tests (i.e., the Wilcoxon 

signed rank test and the sign test) also were computed. The conclusions for the alternative 

tests were the same as for the paired t-tests except that some cases no longer indicated 

possible trends. Consequently, only results for the paired t-tests are reported (Tables 4.9 - 

4.17). 

 

Comparisons of Physiological Stability 

The physiological variables include HR, SpO2, and RESCs. Physiological stability 

was examined by calculating the mean, SD, and CV (the ratio of the SD divided by the mean 

for the assigned period) of each physiological variable. For HR and SpO2, the percentages of 

feeding time with degrees of changes from an individual infant’s pre-feeding level also were 

calculated.  

 

Heart Rate  

The mean, SD, and CV of HR during the pre-feeding, feeding, and bottle-in periods 

are described in Table 4.9. During the pre-feeding period, no significant differences were 

found in the mean, SD, and CV of HR prior to each of the infant’s two feeding observations, 

and only the trend of a lower SD of HR was observed prior to the feeding condition in the 
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HEL position compared to that of the HES position. Therefore, the study infants exhibited 

comparable HR states prior to the experimental conditions. During the feeding period, no 

difference in the means for HR was observed; however, the infants showed significantly less 

variation in HR (i.e., lower SD and CV of HR) when fed in the HEL position compared to 

the HES position. Similarly, during the bottle-in periods, no difference in the means for HR 

was observed; however, the infants showed significantly less variation in HR (i.e., lower SD 

and CV of HR) when fed in the HEL position compared to the HES position. 

 

Table 4.9. Comparisons of Heart Rate between Feeding Positions (n = 6) 

Variables 
Feeding Position 

t p-value 
HES HEL 

Pre-feeding period     

Mean of HR (bpm) 154.9 ± 6.7 154.1 ± 7.4 -0.62 .564 

SD of HR
 
 3.1 ± 1.2 3.0 ± 1.3 -1.62 .166 

CV of HR
 
 0.02 ± 0.01 0.02 ± 0.01 -1.37 .229 

Feeding period     

Mean of HR (bpm) 163.3± 8.5 166.7 ± 10.2 1.26 .264 

SD of HR 11.7 ± 3.1 8.2 ±2.3 -5.55 .003 

CV of HR 0.07 ± 0.02 0.05 ± 0.02 -4.92 .004 

Bottle-in periods     

Mean of HR (bpm) 162.9± 7.7 166.4 ± 10.8 1.18 .292 

SD of HR 11.1 ± 2.2 7.7 ±2.4 -4.67 .005 

CV of HR 0.07 ± 0.01 0.04 ± 0.02 -4.33 .007 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; CV = coefficient of 

variation; HR = heart rate. Data are expressed as mean ± SD. 

 

Changes in Heart Rate 

Both increases in HR and decreases in HR during feeding were examined. Increases 

in HR are defined as HRs at least 10% (mild), 15% (moderate), and 20% (severe) above 

those of the pre-feeding period, and decreases in HR are defined as HRs at least 10% (mild), 

15% (moderate), and 20% (severe) below those of the pre-feeding period, and HRs below 
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100 bpm. HR cutoffs for each category were calculated per feeding observation based on the 

pre-feeding period for a given feeding; these cutoffs were used to calculate the percentage of 

feeding time for each category. Using infant 1 as an example, the percentages of feeding time 

with HRs greater than 164.9, 172.4, and 179.9 were calculated for HRs at least 10%, 15%, 

and 20% above the pre-feeding period, respectively. Similarly, the percentages of feeding 

time with HRs less than 134.9, 127.4, and 119.9 were calculated for HRs at least 10%, 15%, 

and 20% below the pre-feeding period, respectively. Individual HR cutoffs that were used to 

define the degrees of changes in HR per feeding position are presented in Table 4.10. 

 

Table 4.10. Individual Cutoffs Used for Defined Changes in Heart Rate from the Pre-feeding 

periods per Position 

Infant 
HES position HEL position 

1 2 3 4 5 6 1 2 3 4 5 6 

Mean HR during 

pre-feeding period 
149.9 157.8 148.7 165.2 149.0 158.6 143.9 155.1 149.8 165.2 151.9 158.6 

HR at 10% above 

pre-feeding mean 
164.9 173.6 163.6 181.7 163.9 174.5 158.3 170.6 164.8 181.7 167.1 174.5 

HR at 15% above 

pre-feeding mean 
172.4 181.5 171.0 190.0 171.4 182.4 165.5 178.4 172.3 190.0 174.7 182.4 

HR at 20% above 

pre-feeding mean 
179.9 189.4 178.4 198.2 178.8 190.3 172.7 186.1 179.8 198.2 182.3 190.3 

HR at 10% below 

pre-feeding mean 
134.9 142.0 133.8 148.7 134.1 142.7 129.5 139.6 134.8 148.7 136.7 142.7 

HR at 15% below 

pre-feeding mean 
127.4 134.1 126.4 140.4 126.7 134.8 122.3 131.8 127.3 140.4 129.1 134.8 

HR at 20% below 

pre-feeding mean 
119.9 126.2 119.0 132.2 119.2 126.9 115.1 124.1 119.8 132.2 121.5 126.9 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; HR = heart rate. Unit 

for heart rate is bpm. 

 

The percentages of feeding time with defined changes in HR are described in Table 

4.11. Compared to being fed in the HES position, infants fed in the HEL position tended to 

spend more time with an increase in HR from the pre-feeding period; however, a significant 

difference was found only in mild increases in HR between the feeding positions. When fed 
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in the HEL position, infants tended to spend less time with a decrease in HR from that of the 

pre-feeding period; however, a significant difference was found only in severe decreases in 

HR between the feeding positions. Using clinically significant criteria for bradycardia (i.e., 

HR below 100 bpm), when fed in the HEL position, infants spent significantly less time with 

a decrease in HR below 100 bpm than in the HES position.  

For some cases, even when the mean percentage of feeding time for the two feeding 

positions were not very close, the difference in mean values was not statistically significant. 

This occurrence is a consequence of large variability (e.g., the percentage of feeding time 

with a moderate increase in HR has means of 7.9 and 30.1 for the two positions and p = .190, 

but the SD for the HEL position is 45.7). 

 

Table 4.11. Comparisons of Percentage of Feeding Time with Defined Changes in Heart Rate 

between Feeding Positions (n = 6) 

Variables 
Feeding Position 

t p-value 
HES HEL 

% of feeding time with increases in HR     

10% above pre-feeding period (mild) 26.5 ± 32.1  39.7 ± 45.0 2.33 .068 

15% above pre-feeding period (moderate)
 

7.9 ± 12.4 30.1 ± 45.7 1.52 .190 

20% above pre-feeding period (severe)
 

1.0 ± 2.1 12.9 ± 20.9 1.52 .190 

% of feeding time with decreases in HR     

10% below pre-feeding period (mild) 5.0 ± 3.3 3.3 ± 3.8 -1.31 .246 

15% below pre-feeding period (moderate) 3.3 ± 1.7 2.2 ± 1.8 -0.98 .373 

20% below pre-feeding period (severe) 2.2 ± 1.2 0.8 ± 0.7 -3.46 .018 

less than 100 bpm 0.7 ± 0.6 0.3 ± 0.5 -5.08 .004 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; HR = heart rate. Data 

are expressed as mean ± SD.  
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Oxygen Saturation 

The mean, SD, and CV of SpO2 during the pre-feeding, feeding, and bottle-in periods 

are described in Table 4.12. No differences in the mean, SD, and CV of SpO2 were found 

prior to each of the infant’s two feeding observations. Therefore, the infants exhibited 

comparable SpO2 states prior to the experimental conditions. Both during the feeding and 

bottle-in periods, no significant differences in mean, SD, and CV of SpO2 between the 

feeding positions were found. However, during the bottle-in periods, trends of less variation 

in SpO2 (i.e., lower SD and CV of SpO2) were observed in the HEL position than in the HES 

position. 

 

Table 4.12. Comparisons of Oxygen Saturation between Feeding Positions (n = 6) 

Variables 
Feeding Position 

t p-value 
HES HEL 

Pre-feeding period     

Mean of SpO2 (%)  99.4 ± 0.8 99.4 ± 0.8 1.19 .288 

SD of SpO2
 
 0.2 ± 0.4 0.2 ± 0.4 -1.03 .351 

CV of SpO2
 
 0.00 ± 0.00 0.00 ± 0.00 -1.03 .351 

Feeding period     

Mean of SpO2 (%) 97.2 ± 2.1 97.5 ± 1.8 0.76 .483 

SD of SpO2 4.4 ± 3.2 3.7 ± 2.3 -1.34 .237 

CV of SpO2 0.05 ± 0.04 0.04 ± 0.02 -1.31 .246 

Bottle-in period     

Mean SpO2 (%) 97.3 ± 1.8 97.6 ± 1.6 0.71 .511 

SD of SpO2 3.9 ± 2.0 3.5 ± 1.9 -1.67 .155 

CV of SpO2 0.04 ± 0.02 0.04 ± 0.02 -1.61 .169 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; CV = coefficient of 

variation; SpO2 = oxygen saturation. Data are expressed as mean ± SD.  

 

Changes in Oxygen Saturation 

Changes in SpO2 are defined as SpO2 levels at least 5% below those of the pre-

feeding period and below 85 percent. The changes in SpO2 at least 5% below those of the 

pre-feeding period were further classified as mild (5-10%), moderate (10-15%), or severe 
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(>15%) decreases in SpO2. SpO2 cutoffs for each category were calculated based on the pre-

feeding period for a given feeding and were used to calculate the percentage of feeding time 

for each category. Using infant 1 as an example, the percentage of feeding time with SpO2 

levels less than 94.3% was calculated first and was classified as the percentage of feeding 

time with SpO2 levels between 89.4% and 94.3% (i.e., mild), between 84.4% and 89.4% 

(i.e., moderate), and less than 84.4% (i.e., severe). Individual SpO2 cutoffs used to define 

degrees of changes in SpO2 per feeding position are presented in Table 4.13. 

 

Table 4.13. Individual Cutoffs Used for Defined Changes in Oxygen Saturation from the Pre-

feeding Periods per Position 

 HES position HEL position 

Infant 1 2 3 4 5 6 1 2 3 4 5 6 

Mean SpO2 during 

pre-feeding period 
99.3 99.8 99.8 99.4 99.8 99.8 97.9 99.8 99.8 97.9 99.9 99.8 

SpO2 at 5% below 

pre-feeding mean 
94.3 94.8 94.8 94.4 94.8 94.8 93.0 94.8 94.8 93.0 94.9 94.8 

SpO2 at 10% below 

pre-feeding mean 
89.4 89.8 89.8 89.5 89.8 89.8 88.1 89.8 89.8 88.1 89.9 89.8 

SpO2 at 15% below 

pre-feeding mean 
84.4 84.8 84.8 84.5 84.8 84.8 83.2 84.8 84.8 83.2 84.9 84.8 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; SpO2 = oxygen 

saturation. Unit for oxygen saturation is %. 

 

The percentages of feeding time with changes in SpO2 are described in Table 4.14. 

No significant differences were found in the percentages of feeding time with SpO2 levels at 

least 5% below the pre-feeding level between feeding positions. Even after the percentages of 

feeding time with SpO2 levels at least 5% below the pre-feeding level were classified as mild, 

moderate, and severe decreases in SpO2, no significant differences in each classification were 

found between the feeding positions. Similarly, using clinically significant criteria for 

desaturation (i.e., SpO2 less than 85%), no significant differences between the feeding 

positions were evident. 
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Table 4.14. Comparisons of Percentage of Feeding Time with Defined Changes in Oxygen 

Saturation between Feeding Positions (n = 6) 

Variables 
Feeding Position 

t  p-value 
HES HEL 

% of feeding time with SpO2 at least 

5% below pre-feeding period 
14.9 ± 8.7 14.6 ± 10.3 -0.11 .914 

Mild desaturation 
a
 8.9 ± 3.8 8.1 ± 4.5 -0.53 .618 

Moderate desaturation
 b

  3.2 ± 3.0 4.1 ± 3.5 1.04 .346 

Severe desaturation 
c
 2.8 ± 3.3 2.4 ± 3.0 -0.75 .489 

% of feeding time with SpO2 less 

than 85%  
3.1 ± 3.8 2.9 ± 3.7 -0.40 .708 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; SpO2 = oxygen 

saturation. Data are expressed as mean ± SD. 
a 
Decreases in SpO2 between 5-10% below pre-

feeding period, 
b 

decreases in SpO2 between 10-15% below pre-feeding period, 
c 
decreases in 

SpO2 at least 15% below pre-feeding period. 

 

Respiratory Characteristics 

 RESCs were examined in terms of the interval between breaths, breath duration, 

breath amplitude, respiratory rate, and percentage of feeding time with breathing pauses 

longer than three seconds. During the pre-feeding and first six minutes of the bottle-in 

periods, the mean, SD, and CV of the intervals between breaths, breath duration, breath 

amplitude, and respiratory rate were calculated. During the first six minutes of the bottle-in 

period, the percentages of feeding time with breathing pauses longer than three seconds also 

were calculated.  

The mean, SD, and CV of RESCs during the pre-feeding and first six minutes of the 

bottle-in period are described in Tables 4.15 and 4.16. No significant differences were found 

for all RESCs prior to each of the infant’s two feeding observations, and only the trend of 

less variation of breath amplitude (i.e., lower SD of breath amplitude) and less variation of 

breath duration (i.e., lower SD and CV of breath duration) were observed prior to the 

condition for the HEL position, compared to prior to that of the HES position. Therefore, 

infants were in comparable respiratory states prior to the experimental conditions. During the 
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first six minutes of the bottle-in period, the infants showed significantly shorter intervals 

between breaths and less variation in interval lengths between breaths (i.e., lower SD of 

interval between breaths) when fed in the HEL position compared to the HES position. In 

addition, the trend of lower CV of intervals between breaths that also indicates less variation 

in intervals between breaths was observed in the HEL position. No significant differences in 

mean and SD of breath duration were found; however, the infants showed significantly 

greater variation in breath duration (i.e., higher CV of breath duration) when fed in the HEL 

position compared to the HES position. No significant differences in mean, SD, and CV for 

breath amplitude between the feeding positions were found. The respiratory rate was 

significantly higher in the HEL position than in the HES position. Infants tended to spend 

less time with breathing pauses that were longer than three seconds in the HEL position; 

however, no significant difference between the feeding positions was found. Therefore, 

infants in the HEL position breathed with significantly shorter breaths and more regular 

intervals between breaths, with higher frequency that is closer to the pre-feeding states, and 

more variation in durations of breath compared to being fed in the HES position.  
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Table 4.15. Comparisons of Respiratory Characteristics during the Pre-feeding Period (n = 6) 

Variables 
Feeding Position That Followed 

t p-value 
HES HEL 

Interval between Breaths     

Mean (seconds)  1.07 ± 0.13 1.04 ± 0.18 -1.41 .219 

SD  0.24 ± 0.13 0.24 ± 0.13 -0.00 .997 

CV
 
 0.22 ± 0.10 0.22 ± 0.10 0.21 .843 

Breath Duration      

Mean (seconds)
 
 1.07 ± 0.13 1.03 ± 0.18 -1.42 .214 

SD  0.23 ± 0.12 0.22 ± 0.14 -2.00 .102 

CV  0.22 ± 0.10 0.20 ± 0.11 -1.71 .148 

Breath Amplitude      

Mean (volts)  0.016 ± 0.009 0.015 ± 0.007 -0.81 .456 

SD  0.007 ± 0.006 0.007 ± 0.007 1.50 .193 

CV  0.342 ± 0.228 0.407 ± 0.296 1.27 .261 

Respiratory Rate (per minute)
 
 56 ± 8 59 ± 12 1.34 .236 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; CV = coefficient of 

variation. Data are expressed as mean ± SD.  

 

Table 4.16. Comparisons of Respiratory Characteristics between Feeding Positions during 

the First Six Minutes of Bottle-in Period (n = 6) 

Variables 
Feeding Position 

t p-value 
HES HEL 

Interval between Breaths     

Mean (seconds) 1.41 ± 0.20 1.26 ± 0.15 -2.13 .087 

SD  2.67 ± 0.82 1.95 ± 0.36 -2.47 .056 

CV  1.86 ± 0.43 1.55 ± 0.13 -1.96 .107 

Breath Duration      

Mean (seconds) 0.75 ± 0.09 0.75 ± 0.05 0.06 .953 

SD  0.24 ± 0.02 0.26 ± 0.02 1.10 .321 

CV  0.33 ± 0.05 0.34 ± 0.04 2.37 .064 

Breath Amplitude      

Mean (volts) 0.091 ± 0.049 0.089 ± 0.032 -0.06 .955 

SD  0.044 ± 0.022 0.042 ± 0.018 -0.13 .898 

CV  0.490 ± 0.098 0.462 ± 0.069 -0.85 .434 

Respiratory Rate (per minute) 42 ± 6 48 ± 6 2.67 .044 

% Feeding time with Breathing 

pauses > 3 seconds (%) 
48.4 ± 14.7 41.9 ± 8.6 -1.32 .245 

Note. HES = head-elevated supine; HEL = head-elevated side-lying; CV = coefficient of 

variation. Data are expressed as mean ± SD.  
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Comparisons of Feeding Performance 

Feeding performance measures are described in Table 4.17. Compared to being fed in 

the HES position, infants fed in the HEL position tended to consume slightly more milk and 

showed slightly lower proficiency and higher efficiency; however, none of these effects were 

significant. Only the trend of longer feeding time was observed in the HEL position 

compared to the HES position. 

 

Table 4.17. Comparisons of Feeding Performance between Feeding Positions (n = 6) 

Variables 
Feeding Position 

t p-value 
HES HEL 

Overall milk transfer (%) 92.7 ± 8.6 95.2 ± 8.2 0.89 .414 

Proficiency (%) 44.3 ± 23.7 42.3 ± 11.8 -0.22 .833 

Efficiency (ml/min) 2.4 ± 0.6 2.5 ± 0.7 0.33 .756 

Duration of feeding time (minutes) 11.6 ± 2.9 13.0 ± 2.9 1.55 .182 

Note. HES = head-elevated supine; HEL = head-elevated side-lying. Data are expressed as 

mean ± SD.   

 

 

Conclusions for Hypothesis 1 

Hypothesis 1 is partially supported. Compared to the HES position, study infants fed 

in the HEL position exhibited significantly less variation in HR. In the HEL position, the 

infants spent significantly less time with severe decreases in HR (i.e., decreases in HR below 

20% pre-feeding levels), bradycardia (i.e., less than 100 bpm), and more time with mild 

increases in HR (i.e., an increase in HR above 10% pre-feeding levels) compared to being fed 

in the HES position. In addition, infants breathed with significantly shorter breaths and more 

regular intervals between breaths, higher frequency that was closer to the pre-feeding states, 

and more variation in durations of breath in the HEL position compared to when they were 

fed in the HES position. No significant findings for SpO2 and feeding performance were 
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evident; however, trends of less variation in SpO2 and longer duration of feeding were 

evident in the HEL position compared to the HES position. 
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Hypothesis 2: When compared to infants bottle-fed in the HES position, VP infants 

bottle-fed in the HEL position would demonstrate fewer physiological changes from the 

pre-feeding period across the feeding period. 

 

To measure physiological changes over time, three methods were chosen to create 

three intervals for the feeding time. To remove potentially confounding data, non-feeding and 

burping periods were eliminated, and the summed bottle-in periods were examined using 

three intervals of time: (1) dividing the entire bottle-in period into three equal intervals, (2) 

extracting 2-minute intervals from the initial, middle, and final third of the bottle-in period, 

and (3) using successive 2-minute intervals during the first six minutes of the bottle-in period 

(see Figure 3.4). The mean, SD, and CV for HR and SpO2 were calculated for the pre-feeding 

period and for each interval of feeding time. The changes in RESCs over time were examined 

using only Method 3 (i.e., successive two minutes during the first six minutes of the bottle-in 

period) because the RESCs were calculated only during the first six minutes of the bottle-in 

period. Individual data using each physiologic variable and method were plotted by feeding 

position and are presented in Appendices K, L, and M. 

LMM was used to examine whether a significant pattern could be found in all the 

physiologic variables across the three time points during feeding by controlling for the pre-

feeding level as a covariate, and to determine whether this pattern was different according to 

the feeding position. LMMs were calculated separately for each physiologic variable and 

method by taking the following steps. First, all possible fixed and random effect components 

were included in the preliminary LMMs. The fixed effect components include time, feeding 

position, and interaction between time and feeding position. To examine the effect of feeding 
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position on the feeding period more accurately, the physiologic variables during the feeding 

period were modeled, controlling for the pre-feeding period as a covariate. Time and feeding 

position also were considered as random effect components to account for possible within-

infant correlations of physiological variables across time and feeding positions. Random 

effect components were treated as either random ANOVA factors or random regression 

coefficients, and one of these was chosen based on Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) scores. Second, the preliminary LMMs were reduced 

by removing non-significant fixed components, except for feeding position, as long as both 

AIC and BIC scores improved. Because this is a pilot study, the significance level was set at 

p = .10 so that significant components remained in the final reduced models. Also, p-values 

less than .20 were considered indicative of trends. Third, when the final reduced LMMs still 

had non-significant fixed effect components, adjusted LMMs were considered to account for 

the possible different effects of feeding position at each time point based on the plots. Only 

when both AIC and BIC scores improved were the adjusted LMMs reported. Finally, residual 

analysis was conducted using the final reduced LMMs for each physiologic variable and 

method. 

 

Changes in Heart Rate over Feeding Time 

 

Method 1: Dividing the entire bottle-in period into three equal intervals 

The averages of the mean HRs over time by feeding position using Method 1 are 

plotted in Figure 4.2, and the associated LMM results are reported in Table 4.18. In the full 

LMM for the HR mean, no significant effects were found for time, feeding position, 

interaction between time and feeding position, and pre-feeding covariate. Even after 
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removing all non-significant fixed effect components except for feeding position, no 

significant effect of feeding position was found (F1, 5 = 1.53; p = .272).  

The averages of SD for HR over time by feeding position using Method 1 are plotted 

in Figure 4.2, and the associated LMM results are reported in Table 4.18. In the full LMM, 

the SD for HR significantly decreased over time (F2, 10 = 5.02; p = .031), and this pattern is 

significantly different by feeding position (F1, 5 = 6.80; p = .048). Also, a trend toward an 

interaction effect between time and feeding position (F2, 10 = 2.69; p = .116) was found. After 

removing the pre-feeding covariate, a significant effect remained for time (F2, 10 = 5.02; p = 

.031), feeding position (F1, 5 = 7.54; p = .041), and a trend toward an interaction effect 

between time and feeding position (F2, 10 = 2.71; p = .115) was found. The adjusted LMM 

considered a possible difference in SD for HR between the feeding positions during the first 

third feeding interval. The adjusted LMM suggested that, compared to the HES position, the 

SD for HR was significantly lower in the HEL position, especially during the first third 

feeding interval (F1, 29 = 19.33; p = < .001).  

The averages of the CV for HR over time by feeding position using Method 1 are 

plotted in Figure 4.2, and the associated LMM results are reported in Table 4.17. In the full 

LMM, the CV for HR significantly decreased over time (F2, 10 = 4.57; p = .039), and this 

pattern was significantly different by feeding position (F1, 5 = 5.50; p = .066). Also, a trend 

toward an interaction effect between time and feeding position (F2, 10 = 1.92; p = .197) was 

found. After removing the pre-feeding covariate and the interaction term, a significant effect 

remained for time (F2, 10 = 4.12; p = .049), and feeding position (F1, 5 = 5.37; p = .068). The 

adjusted LMM considered a possible difference in the CV for HR between the feeding 

positions during the first third feeding interval. This adjusted LMM suggested that the CV for 
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HR was significantly lower in the HEL position, especially during the first third feeding 

interval (F1, 29 = 16.20; p < .001), than in the HES position.  
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Figure 4.2. Changes in Heart Rate over Time using Method 1. HEL = head-elevated side-

lying; HES = head-elevated supine; CV = coefficient of variance. 
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Method 2: Extracting 2-minute intervals from the initial, middle, and final third of the 

bottle-in period 

 The averages of the mean HR over time by feeding position using Method 2 are 

plotted in Figure 4.3, and the associated LMM results are reported in Table 4.18. In the full 

LMM for the HR mean, no significant effects of time, feeding position, interaction between 

time and feeding position, and pre-feeding covariate were found. Even after removing all 

non-significant fixed effect components except for feeding position, no significant effect of 

feeding position was found (F1, 5 = 1.58; p = .265).  

The averages of the SD for HR over time by feeding position using Method 2 are 

plotted in Figure 4.3, and the associated LMM results are reported in Table 4.18. In the full 

LMM, the SD for HR significantly decreased over time (F2, 10 = 6.88; p = .013), but this 

pattern is not significantly different by feeding position (F1, 5 = 1.45; p = .282). No significant 

effects of interaction between time and feeding position and pre-feeding covariate were 

found. After removing the interaction term and pre-feeding covariate, a significant effect of 

time (F2, 10 = 6.41; p = .016) was still evident, but no significant effect of feeding position (F1, 

5 = 1.55; p = .268) was found. The adjusted LMM considered a possible difference in SD for 

HR between the feeding positions during the first and final 2-minute feeding intervals. This  

suggested that compared to the SD for HR for the HES position, the SD for HR in the HEL 

position was significantly lower only during the first and final 2-minute feeding intervals 

with the same amount of difference between the feeding positions (F1, 29 = 14.19; p = < .001).  

The averages of the CV for HR over time by feeding position using Method 2 are 

plotted in Figure 4.3, and the associated LMM results are reported in Table 4.18. In the full 
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LMM, the CV for HR significantly decreased over time (F2, 10 = 5.59; p = .024), but this 

pattern is not significantly different by feeding position (F1, 5 = 1.61; p = .260). No significant 

effects of interaction between time and feeding position and pre-feeding covariate were 

found. After removing the interaction term, a significant effect of time (F2, 10 = 4.12; p = 

.049) was found, but no significant effects of feeding position (F1, 5 = 1.51; p = 0.273) and 

pre-feeding covariate (F1, 26 = 0.92; p = .346) were found. The adjusted LMM considered a 

possible difference in the CV for HR between the feeding positions during the first and final 

2-minute feeding intervals. This model suggested that compared to the CV for HR in the 

HES position, the CV for HR in the HEL position was significantly lower only during the 

first and final 2-minute feeding intervals with the same amount of difference between the 

feeding positions (F1, 29 = 12.20; p = .002). 
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Figure 4.3. Changes in Heart Rate over Time using Method 2. HEL = head-elevated side-

lying; HES = head-elevated supine; CV = coefficient of variance. 
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Method 3: Successive two minutes during the first six minutes of the bottle-in period 

 The averages of the mean HR over time by feeding position using Method 3 are 

plotted in Figure 4.4, and the associated LMM results are reported in Table 4.17. In the full 

LMM for the mean for HR, only a trend toward the effect of feeding position (F1, 5 = 3.78; p 

= .111) was found, and no significant effects of time, interaction between time and feeding 

position, and pre-feeding covariate were found. After removing all non-significant fixed 

effect components except for feeding position, a trend toward the effects of feeding position 

(F1, 5 = 2.33; p = .188) was still evident.  

The averages of the SD for HR over time by feeding position using Method 3 are 

plotted in Figure 4.4, and the associated LMM results are reported in Table 4.17. In the full 

LMM, the SD for HR significantly decreased over time (F2, 10 = 10.26; p = .004), and the SD 

for HR was significantly lower across all time points in the HEL position compared to the 

HES position (F1, 5 = 6.73; p = .049). After removing the interaction term, significant effects 

of time (F2, 10 = 10.18; p = .004) and feeding position (F1, 5 = 6.67; p = .049) were still 

evident, but no significant effect of the pre-feeding covariate (F1, 26 = 0.48; p = .494) was 

evident.   

The averages of CV for HR over time by feeding position using Method 3 are plotted 

in Figure 4.4, and the associated LMM results are reported in Table 4.17. In the full LMM, 

the CV for HR significantly decreased over time (F2, 10 = 9.51; p = .006), and the CV for HR 

was significantly lower across all time points in the HEL position compared to the HES 

position (F1, 5 = 7.16; p = .040). After removing the pre-feeding covariate and interaction 

term, significant effects of time (F2, 10 = 8.91; p = .006) and feeding position (F1, 5 = 7.98; p = 

.037) were still evident.   
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Figure 4.4. Changes in Heart Rate over Time using Method 3. HEL = head-elevated side-

lying; HES = head-elevated supine; CV = coefficient of variance. 
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Table 4.18. Changes in Heart Rate over Time by Feeding Position using Three Methods of 

Feeding Time Intervals 

 Method 1 
a
 Method 2 

b
 Method 3 

c
 

Mean SD CV Mean SD CV Mean SD CV 

Full model          

Time .940 .031 .039 .970 .013 .024 .984 .004 .006 

Position .257 .048 .066 .252 .282 .260 .111 .049 .040 

Time * Position .749 .116 .197 .963 .378 .401 .854 .888 .889 

Pre-feeding period .817 .463 .336 .861 .450 .344 .298 .495 .624 

Reduced model          

Time - .031 .049 - .016 .028 - .004 .006 

Position .272 .041 .068 .265 .268 .273 .188 .050 .037 

Time * Position - .115 - - - - - - - 

Pre-feeding period - - - - - .346 - .494 - 

Note. CV = coefficient of variance. Data are expressed as p-values. 
a
 Method 1 = Dividing 

the entire bottle-in period into three equal intervals. 
b
 Method 2 = Extracting 2-minute 

intervals from each third of the bottle-in period. 
c
 Method 3 = successive 2-minute intervals 

for the first six minutes of the bottle-in period. 
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Changes in Oxygen Saturation over Feeding Time 

Method 1: Dividing the entire bottle-in period into three equal intervals 

For all the LMMs for SpO2 using Method 1, a significant effect for the pre-feeding 

covariate was found, which indicates that lower values for each mean, SD, and CV of SpO2 

during the pre-feeding period are associated with lower values for each mean, SD, and CV of 

SpO2 across the feeding period (Table 4.19).  

The averages of the mean SpO2 levels over time by feeding position using Method 1 

are plotted in Figure 4.5, and the associated LMM results are reported in Table 4.19. In the 

full LMM for the mean of SpO2, no significant effects of time, feeding position, and 

interaction between time and feeding position were evident. Even after removing all non-

significant fixed effect components except for feeding position, no significant effect of 

feeding position was found (F1, 5 = 0.39; p = .561). The adjusted LMM considered a possible 

difference in the mean of SpO2 between feeding positions during the first third feeding 

interval; however, no significant difference was found (F1, 28 = 1.09; p = .306).  

The averages of SD for SpO2 over time by feeding position using Method 1 are 

plotted in Figure 4.5, and the associated LMM results are reported in Table 4.19. In the full 

LMM for the SD of SpO2, only a trend toward the effect of time (F2, 10 = 2.62; p = .122) was 

evident, and no significant effects of time, feeding position, and interaction between time and 

feeding position were found. After removing the interaction term, a trend toward the effect of 

time (F2, 10 = 2.52; p = .130) was evident, but no significant effect of feeding position (F1, 5 = 

0.05; p = .838) was found. The adjusted LMM considered a possible difference between 

feeding positions during the first third feeding interval and a decreasing pattern for the SD of 

SpO2 at the final third feeding interval. This model suggested that no significant difference 
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was evident between the feeding positions during the first third feeding interval (F1, 27 = 1.04; 

p = .317). After removing that term, the SD of SpO2 significantly decreased at the final third 

feeding interval from that of the first and middle third feeding intervals (F1, 28 = 4.87; p = 

.036).  

The averages of CV for SpO2 over time by feeding position using Method 1 are 

plotted in Figure 4.5, and the associated LMM results are reported in Table 4.19. In the full 

LMM for the CV of SpO2, only a trend toward the effect of time (F2, 10 = 2.41; p = .140) was 

found, and no significant effects of time, feeding position, and interaction between time and 

feeding position were found. After removing the interaction term, a trend toward the effect of 

time (F2, 10 = 2.32; p = .148) was still evident, but no significant effect of feeding position (F1, 

5 = 0.07; p = .807) was found. The adjusted LMM considered a possible difference in CV of 

SpO2 between the feeding positions during the first third feeding interval and a decreasing 

pattern of CV of SpO2 at the final third feeding interval. This model suggested that no 

significant differences in the SD of SpO2 between the feeding positions during the first third 

feeding interval (F1, 27 = 0.93; p = .344) were evident. After removing that term, the CV for 

SpO2 significantly decreased at the final third feeding interval from that of the first and 

middle third feeding intervals (F1, 28 = 4.55; p = .042). 
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Figure 4.5. Changes in Oxygen Saturation over Time using Method 1. HEL = head-elevated 

side-lying; HES = head-elevated supine; CV = coefficient of variance; SpO2 = oxygen 

saturation. 
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Method 2: Extracting 2-minute intervals from the initial, middle, and final third of the 

bottle-in period 

For all the LMMs for SpO2 using Method 2, a significant effect of the pre-feeding 

covariate was found, which indicates that lower values for each mean, SD, and CV of SpO2 

during the pre-feeding period are associated with lower values for each mean, SD, and CV of 

SpO2 across the feeding period (Table 4.19). 

 The averages of the mean SpO2 over time by feeding position using Method 2 are 

plotted in Figure 4.6, and the associated LMM results are reported in Table 4.19. In the full 

LMM for the mean of SpO2, no significant effects of time, feeding position, and interaction 

between time and feeding position were found. Even after removing all non-significant fixed 

effect components except for feeding position, no significant effect of feeding position was 

found (F1, 5 = 0.55; p = .493). The adjusted LMM considered a possible difference in mean 

SpO2 between the feeding positions during the first 2-minute feeding interval and an 

increasing pattern of mean SpO2 toward the final 2-minute feeding interval; however, no 

significant effects were found.  

The averages of SD for SpO2 over time by feeding position using Method 2 are 

plotted in Figure 4.6, and the associated LMM results are reported in Table 4.19. In the full 

LMM for the SD of SpO2, a significant effect of time (F2, 10 = 3.55; p = .069) was found; 

however, no significant effects of feeding position and the interaction between time and 

feeding position were found. After removing the interaction term, a significant effect of time 

(F2, 10 = 3.49; p = .071) was still evident, but no significant effect of feeding position (F1, 5 = 

0.29; p = .614) was found. The adjusted LMM considered a possible difference in SD of 

SpO2 between the feeding positions during the first 2-minute feeding interval and a 
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decreasing pattern of SD of SpO2 toward the final 2-minute feeding interval. This model 

suggested that no significant difference in the SD of SpO2 was evident between the feeding 

positions during the first 2-minutefeeding interval (F1, 27 = 0.39; p = .540). After removing 

that term, the SD of SpO2 significantly decreased at the final 2-minutefeeding interval from 

that of the first and middle third feeding intervals (F1, 28 = 6.93; p = .014).  

The averages of CV for SpO2 over time by feeding position using Method 2 are 

plotted in Figure 4.6, and the associated LMM results are reported in Table 4.19. In the full 

LMM for CV of SpO2, a significant effect of time (F2, 10 = 2.98; p = .097) was found; 

however, no significant effects of feeding position and the interaction between time and 

feeding position were found. After removing the interaction term, a significant effect of time 

(F2, 10 = 2.98; p = .097) was evident, but no significant effect of feeding position (F1, 5 = 0.37; 

p = .568) was found. The adjusted LMM considered a possible difference in CV of SpO2 

between the feeding positions during the first 2-minute feeding interval and a decreasing 

pattern of CV of SpO2 toward the final 2-minutefeeding interval. This model suggested that 

no significant difference in the SD for SpO2 was evident between the feeding positions 

during the first 2-minutefeeding interval (F1, 27 = 0.34; p = .567). After removing that term, 

the CV for SpO2 significantly decreased at the final 2-minutefeeding interval from that of the 

first and middle third feeding intervals (F1, 28 = 5.94; p = .021). 
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Figure 4.6. Changes in Oxygen Saturation over Time using Method 2. HEL = head-elevated 

side-lying; HES = head-elevated supine; CV = coefficient of variance; SpO2 = oxygen 

saturation. 
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Method 3: Successive two minutes during the first six minutes of the bottle-in period 

 For all the LMMs for SpO2 using Method 3, a significant effect of the pre-feeding 

covariate was found, which indicates that lower values for each mean, SD, and CV of SpO2 

during the pre-feeding period are associated with lower values for each mean, SD, and CV of 

SpO2 across the feeding period (Table 4.19). 

The averages of the mean SpO2 levels over time by feeding position using Method 3 

are plotted in Figure 4.7, and the associated LMM results are reported in Table 4.19. In the 

full LMM for the mean of SpO2, only a trend toward the effect of time (F2, 10 = 2.01; p = 

.185) was evident, and no significant effects of time, feeding position, and interaction 

between time and feeding position were found. After removing the interaction term, a trend 

toward the effect of time (F2, 10 = 2.00; p = .185) was still evident, but no significant effect of 

feeding position was found (F1, 5 = 2.03; p = .213). The adjusted LMM considered a possible 

difference in the mean SpO2 between feeding positions across the three successive 2-minute 

feeding intervals by considering an increasing pattern of mean SpO2 at the 2- 4-minute 

feeding interval. This model suggested that the mean SpO2  significantly increased during the 

2- 4-minute feeding interval (F1, 27 = 4.00; p = .056), and a trend of higher SpO2 levels in the 

HEL position compared to in the HES position across the three successive 2-minute feeding 

intervals was observed (F1, 27 = 2.03; p = .166).  

The averages of SD for SpO2 over time by feeding position using Method 3 are 

plotted in Figure 4.7, and the associated LMM results are reported in Table 4.19. In the full 

LMM for the SD for SpO2, only a trend toward the effect of time (F2, 10 = 2.57; p = .126) was 

found, and no significant effects of time, feeding position, and interaction between time and 

feeding position were found. After removing the interaction term, a trend toward the effect of 
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time (F2, 10 = 2.54; p = .128) was still evident, but no significant effect of feeding position (F1, 

5 = 0.62; p = .468) was found. The adjusted LMM considered a possible difference in the SD 

of SpO2 between the feeding positions during the 0-2 and 2-4 minutes of feeding intervals by 

considering a decreasing pattern of SD for SpO2 at the 2- 4-minute feeding interval. This 

model suggested that the SD of SpO2 significantly decreased during the 2- 4-minute feeding 

interval (F1, 27 = 3.85; p = .060), but no significant difference of SD for SpO2 between feeding 

positions during the 0-2 and 2-4 minutes of feeding intervals (F1, 27 = 0.82; p = .373) was 

found.  

The averages of the CV for SpO2 over time by feeding position using Method 3 are 

plotted in Figure 4.7, and the associated LMM results are reported in Table 4.19. In the full 

LMM for the CV of SpO2, only a trend toward the effect of time (F2, 10 = 2.52; p = .130) was 

found, and no significant effects of time, feeding position, and interaction between time and 

feeding position were found. After removing the interaction term, a trend toward the effect of 

time (F2, 10 = 2.50; p = .132) was found, and no significant effect of feeding position (F1, 5 = 

0.72; p = .435) was found. The adjusted LMM considered a possible difference in the CV of 

SpO2 between the feeding positions during the 0-2 and 2-4 minutes of feeding intervals by 

considering a decreasing pattern of CV of SpO2 at the 2- 4-minute feeding interval. This 

model suggested that the CV of SpO2  significantly decreased during the 2- 4-minute feeding 

interval (F1, 27 = 3.75; p = .063), but no significant difference of CV of SpO2 between feeding 

positions during the 0-2 and 2-4 minutes of feeding intervals (F1, 27 = 0.86; p = .363) was 

found. 
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Figure 4.7. Changes in Oxygen Saturation over Time using Method 3. HEL = head-elevated 

side-lying; HES = head-elevated supine; CV = coefficient of variance; SpO2 = oxygen 

saturation. 
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Table 4.19. Changes in Oxygen Saturation over Time by Feeding Position using Three 

Methods of Feeding Time Intervals 

 Method 1 
a
 Method 2 

b
 Method 3 

c
 

Mean SD CV Mean SD CV Mean SD CV 

Full model          

Time .710 .122 .140 .337 .069 .097 .185 .126 .130 

Position .548 .835 .804 .492 .612 .564 .213 .465 .433 

Time * Position .518 .580 .587 .958 .788 .829 .976 .794 .859 

Pre-feeding period .002 <.001 <.001 .005 <.001 <.001 .004 <.001 <.001 

Reduced model          

Time - .130 .148 - .071 .097 .185 .128 .132 

Position .561 .838 .807 .493 .614 .568 .213 .468 .435 

Time * Position - - - - - - - - - 

Pre-feeding period .002 <.001 <.001 .004 <.001 <.001 .004 <.001 <.001 

Note. CV = coefficient of variance. Data are expressed as p-values. 
a
 Method 1 = Dividing 

the entire bottle-in period into three equal intervals. 
b
 Method 2 = Extracting 2-minute 

intervals from each third of the bottle-in period. 
c
 Method 3 = successive 2-minute intervals 

for the first six minutes of the bottle-in period. 
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Changes in Respiratory Characteristics over Feeding Time 

Interval between Breaths 

The averages of the mean intervals between breaths over successive 2-minute 

intervals during the first six minutes of the bottle-in period by feeding position are plotted in 

Figure 4.8, and the associated LMM results are reported in Table 4.20. In the full LMM, the 

mean interval between breaths was significantly longer over time in the HEL position 

compared to the HES position (F1, 5 = 7.87; p = .038), and a trend toward the effect of time 

was found (F2, 10 = 2.71; p = .115). No significant effects of interaction between time and 

feeding position and pre-feeding covariate were evident. After removing the interaction term 

and pre-feeding covariate, a significant effect of feeding position (F1, 5 = 8.25; p = .035) was 

still evident, and a trend toward the effect of time (F2, 10 = 2.71; p = .115) was found.    

The averages of the SD for the intervals between breaths over successive 2-minute 

intervals during the first six minutes of the bottle-in period by feeding position are plotted in 

Figure 4.8, and the associated LMM results are reported in Table 4.20. In the full LMM, the 

SD for interval between breaths was significantly lower over time in the HEL position 

compared to the HES position (F1, 5 = 7.64; p = .040), and a significant effect of the pre-

feeding covariate (F1, 24 = 3.54; p = .072) was found. No significant effects of time and 

interaction between time and feeding position were evident. After removing the time and 

interaction terms, a significant effect of feeding position (F1, 5 = 6.91; p = .047) and pre-

feeding covariate (F1, 28 = 3.49; p = .072) were found.    

The averages of the CV for the intervals between breaths over successive 2-minute 

feeding intervals during the first six minutes of the bottle-in period by feeding position are 

plotted in Figure 4.8, and the associated LMM results are reported in Table 4.20. In the full 
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LMM, the CV of the interval between breaths was significantly lower over time in the HEL 

position compared to the HES position (F1, 5 = 4.67; p= .083), and a trend toward the effect of 

the pre-feeding covariate (F1, 24 = 2.51; p = .126) was found. No significant effects of time 

and interaction between time and feeding position were found. After removing the time and 

interaction terms, a significant effect of feeding position (F1, 5 = 4.19; p = .096) and a trend 

toward the effect of pre-feeding covariate (F1, 28 = 2.42; p = .131) were still evident. The 

adjusted LMM considered a possible difference in the CV of intervals between breaths 

between the feeding positions, especially during the 2-4 and 4-6 minutes of feeding intervals. 

This adjusted model suggested that compared to the HES position, the CV for intervals 

between breaths was significantly lower in the HEL position, especially during the 2-4 and 4-

6 minutes of feeding intervals (F1, 29 = 6.15; p = .019).  
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Figure 4.8. Changes in Interval between Breaths over Time using Method 3. HEL = head-

elevated side-lying; HES = head-elevated supine; CV = coefficient of variance. 
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Breath Duration 

The averages of the mean for breath duration over successive 2-minute intervals 

during the first six minutes of the bottle-in period by feeding position are plotted in Figure 

4.9, and the associated LMM results are reported in Table 4.20. In the full LMM for mean 

breath duration, a  significant effect of time (F2, 10 = 3.75; p = .061) is evident; however, no 

significant effects of feeding position, interaction between time and feeding position, and 

pre-feeding covariate were found. After removing the interaction term and pre-feeding 

covariate, a significant effect of time (F2, 10 = 3.64; p = .065) and no significant effect of 

feeding position (F1, 5 = 0.00; p = .956) were found.   

The averages of the SD for breath duration over successive 2-minute intervals during 

the first six minutes of the bottle-in period by feeding position are plotted in Figure 4.9, and 

the associated LMM results are reported in Table 4.20. In the full LMM for SD of breath 

duration, only a trend toward the effect of pre-feeding covariate (F1, 24 = 2.01; p = .169) was 

evident, and no significant effects of time, feeding position, and interaction between time and 

feeding position were found. After removing the time and interaction terms, a trend toward 

the effect of the pre-feeding covariate (F1, 28 = 1.77; p = .194) and no significant effect of 

feeding position (F1, 5 = 1.70; p = .249) were found. The adjusted LMM considered a possible 

difference in the SD of breath duration between the feeding positions only during the 0-2 and 

4-6 minutes of feeding intervals. This adjusted model suggested that compared to the HES 

position, the SD for breath duration was significantly higher during the 0-2 and 4-6 minutes 

of feeding intervals in the HEL position (F1, 29 = 5.48; p = .026). 

The averages of the CV for breath duration over successive 2-minute intervals during 

the first six minutes of the bottle-in period by feeding position are plotted in Figure 4.9, and 



140 

 

the associated LMM results are reported in Table 4.20. In the full LMM for CV of breath 

duration, a  significant effect of time (F2, 10 = 3.64; p = .065) was found; however, no 

significant effects of feeding position, interaction between time and feeding position, and 

pre-feeding covariate were found. After removing the interaction term and pre-feeding 

covariate, a significant effect of time (F2, 10 = 3.45; p = .073) and no significant effect of 

feeding position (F1, 5 = 1.38; p = .293) were still evident. The adjusted LMM considered a 

possible difference in the CV for breath duration between the feeding positions only during 

the 0-2 and 4-6 minutes of feeding intervals. This adjusted model suggested that compared to 

the HES position, the CV of breath duration was significantly higher during the 0-2 and 4-6 

minutes of feeding intervals in the HEL position (F1, 29 = 6.03; p = .020). 
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Figure 4.9. Changes in Breath Duration over Time using Method 3. HEL = head-elevated 

side-lying; HES = head-elevated supine; CV = coefficient of variance. 



142 

 

Breath Amplitude 

The averages of mean breath amplitude over successive 2-minute intervals during the 

first six minutes of the bottle-in period by feeding position are plotted in Figure 4.10, and the 

associated LMM results are reported in Table 4.20. In the full LMM for mean breath 

amplitude, a significant effect of time (F2, 10 = 3.99; p = .053) and pre-feeding covariate (F1, 24 

= 9.01; p = .006) were evident; however, no significant effects of feeding position and 

interaction between time and feeding position were found. After removing the interaction 

term, a significant effect of time (F2, 10 = 3.70; p = .063) and pre-feeding covariate (F1, 26 = 

9.01; p = .006) were still evident, but no significant effect of feeding position (F1, 5 = 0.04; p 

= .844) was found.   

The averages of the SD for breath amplitude over successive 2-minute intervals 

during the first six minutes of the bottle-in period by feeding position are plotted in Figure 

4.10, and the associated LMM results are reported in Table 4.20. In the full LMM for the SD 

of breath amplitude, a significant effect of time (F2, 10 = 5.04; p = .031) and pre-feeding 

covariate (F1, 24 = 5.34; p = .030) were found; however, no significant effects of feeding 

position and interaction between time and feeding position were found. After removing the 

interaction term, a significant effect of time (F2, 10 = 4.58; p = .039) and pre-feeding covariate 

(F1, 26 = 5.34; p = .029) were still evident, but no significant effect of feeding position (F1, 5 = 

0.07; p = .807) was found.  

The averages of the CVs for breath amplitude over successive 2-minute intervals 

during the first six minutes of the bottle-in period by feeding position are plotted in Figure 

4.10, and the associated LMM results are reported in Table 4.20. In the full LMM for the CV 

of breath amplitude, no significant effects of time, feeding position, interaction between time 
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and position, and pre-feeding covariate were evident. After removing all non-significant 

fixed components except for feeding position, no significant effect of feeding position was 

found (F1, 5 = 1.55; p = .268). The adjusted LMM considered a possible difference in CV of 

breath amplitude between the feeding positions only during the 0-2 and 2-4 minutes of 

feeding intervals. This adjusted model suggested that compared to the HES position, only a 

trend of lower CV of breath amplitude during the 0-2 and 2-4 minutes of feeding intervals 

was observed in the HEL position (F1, 29 = 2.71; p = .111). 
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Figure 4.10. Changes in Breath Amplitude over Time using Method 3. HEL = head-elevated 

side-lying; HES = head-elevated supine; CV = coefficient of variance. 
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Table 4.20. Changes in Respiratory Characteristics over Time by Feeding Position using 

Method 3 

 Interval between 

Breaths 

Breath Duration Breath Amplitude 

Mean SD CV Mean SD CV Mean SD CV 

Full model          

Time .115 .423 .834 .061 .388 .062 .053 .031 .699 

Position .038 .040 .083 .975 .223 .254 .844 .807 .293 

Time * Position .942 .546 .262 .663 .290 .312 .417 .337 .680 

Pre-feeding period .990 .072 .126 .903 .169 .547 .006 .030 .830 

Reduced model          

Time .115 - - .065 - .073 .063 .039 - 

Position .035 .047 .096 .956 .249 .293 .844 .807 .268 

Time * Position - - - - - - - - - 

Pre-feeding period - .072 .131 - .194 - .006 .029 - 

Note. CV = coefficient of variance. Data are expressed as p-values.  
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Residual Analysis 

Changes in Heart Rate over Time 

Residual analysis was conducted using the final reduced model separately for each 

HR measure and method. Most HR measures were normally distributed and had no outliers. 

However, the Shapiro-Wilk tests of normality were significant for the CV of HR using 

Method 1 (W = 0.93, p = .027) and the SD and CV of HR using Method 2 (SD: W = 0.89, p 

= .002; CV: W = 0.91, p = .007), indicating that these measures were not normally 

distributed and the associated LMM results are questionable. To resolve the non-normality, 

data were transformed using 0.35, 0.6, and 0.6 powers, respectively. After transformation, the 

Shapiro-Wilk tests of normality were no longer significant for the CV of HR using Method 1 

(W = 0.97, p = .309) and the SD and CV of HR using Method 2 (SD: W = 0.95, p = .090; 

CV: W = 0.95, p = .110). The final reduced LMMs for these measures were recalculated for 

the transformed data. The conclusions were the same as the results for the untransformed 

data. These results suggest that the effects of time and feeding position for the CV of HR 

using Method 1 and for the SD and CV of HR using Method 2 are not affected by the non-

normality, and it is reasonable to report the results for the untransformed data. 

 

Changes in Oxygen Saturation over Time 

Residual analysis was conducted using the final reduced model separately for each 

SpO2 measure and method. Most SpO2 measures were normally distributed and had no 

outliers. However, the Shapiro-Wilk tests of normality were significant for the mean SpO2 

using Method 2 (W = 0.92, p = .014) and the mean SpO2 using Method 3 (W = 0.92, p = 

.013), indicating that these measures were not normally distributed and the associated LMM 
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results are questionable. To resolve the non-normality, the data were transformed using 5.5 

and 5.0 powers, respectively. After the transformation, the Shapiro-Wilk tests of normality 

were no longer significant for the mean SpO2 using Method 2 (W = 0.94, p = .063) and for 

the mean SpO2 using Method 3 (W = 0.94, p = .064). The final reduced LMMs for these 

measures were recalculated for the transformed data. The conclusions were the same as the 

results for the untransformed data. These results suggest that the effects of time and feeding 

position on the mean SpO2 using Methods 2 and 3 are not affected by the non-normality, and 

it is reasonable to report the results for the untransformed data. 

 

Changes in Respiratory Characteristics over Time 

Residual analysis was conducted using the final reduced model separately for each 

RESCs measure that was used for the linear mixed modeling. Most RESCs measures were 

normally distributed and have no outliers. However, the Shapiro-Wilk tests of normality were 

significant for the mean breath amplitude (W = 0.87, p < .001), indicating that this measure 

was not normally distributed and the associated LMM results are questionable. To resolve the 

non-normality, data were transformed through 0.9 power. After the transformation, the 

Shapiro-Wilk tests of normality were no longer significant for the mean breath amplitude (W 

= 0.97, p = .456). The final reduced LMM for mean breath amplitude was recalculated for 

the transformed data. The conclusion was the same as the result for the untransformed data. 

This finding suggests that the effects of time and feeding position on mean breath amplitude 

are not affected by the non-normality, and it is reasonable to report the results for the 

untransformed data. 
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Conclusions for Hypothesis 2 

Hypothesis 2 is partially supported. When the study infants were fed in the HEL 

position compared to the HES position, they exhibited significantly less variation in HR 

across the feeding period. Specifically by method, Method 1 (i.e., dividing the entire bottle-in 

period into three equal intervals) demonstrated that variation in HR significantly decreased 

over time in both positions; however, in the HEL position, the infants exhibited significantly 

less variation in HR across the feeding period, compared to being fed in the HES position. 

When considering the adjusted model based on the plot, the difference of variation in HR 

between the feeding positions appears to derive mostly from the difference during the first 

third of the feeding period. In Method 2 (i.e., extracting 2-minute intervals from the initial, 

middle, and final third of the bottle-in period), variation in HR also significantly decreased 

over time in both positions; however, this pattern did not significantly differ according to 

feeding position. When considering the adjusted model based on the plot, the infants 

exhibited significantly less variation in HR in the HEL position only during the first two 

minutes and the final two minutes of the feeding period compared to when fed in the HES 

position. In Method 3 (i.e., successive two minutes during the first six minutes of the bottle-

in period), variation in HR also significantly decreased over time in both positions; however, 

in the HEL position, the infants exhibited significantly less variation in HR across all time 

points with a similar amount of difference between the feeding positions compared to when 

fed in the HES position.  

The RESCs findings reveal that compared to the HES position, the infants breathed 

with significantly shorter breaths and more regular intervals between breaths across the 

feeding period when fed in the HEL position. When considering the adjusted model based on 
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the plot, the difference in variation in intervals between breaths between the feeding positions 

appears to derive mostly from the difference during the last four minutes of the first six 

minutes of the bottle-in period. Breath duration became significantly more regular over time 

in both positions; however, this pattern did not significantly differ according to feeding 

position. When considering the adjusted model based on the plot, the infants fed in the HEL 

position exhibited significantly more irregularity in breath duration only during the 2-4 and 

4-6 minutes of feeding intervals compared to when fed in the HES position. No significant 

findings of breath amplitude were found, but considering the adjusted model based on the 

plot, a trend of lower variation in breath amplitude only during the 0-2 and 2-4 minutes of the 

feeding intervals was found for the HEL position.  

No significant findings for SpO2 were found to support Hypothesis 2; however, in 

Method 3 (i.e., successive 2 minute intervals during the first six minutes of the bottle-in 

period), the adjusted model based on the plot, that considered an increasing pattern during the 

2- to 4-minute feeding interval, suggested a trend of higher SpO2 levels across the three 

successive 2-minute intervals in the HEL position. 

 

Power Analysis Simulations 

Simulations were conducted to address power for longitudinal measures of HR, SpO2, 

and RESCs analyzed with linear mixed modeling. The purpose was to suggest the optimal 

method to detect position effects among the three candidate methods that were used for 

examining physiologic changes over time as determined by requiring the smallest number of 

infants to detect a position effect with 80% power. The findings may also suggest estimated 

sample sizes for future study.  



150 

 

Using mean and covariance estimates based on observed data for each outcome 

measure and method, a thousand simulations of full factorial LMMs for values during the 

feeding period, controlling for the pre-feeding period as a covariate, were computed for 

varying numbers of infants. The number of infants was increased until the estimated 

probability of a significant position effect reached 80%. In this way, the necessary sample 

size was estimated to achieve 80% power for detecting a position effect that allowed for 

within-infant correlations for outcomes across time and feeding positions. If the estimated 

probability did not reach 80% by 100 infants, the search was stopped, and the associated 

method was considered impractical for the current outcome. For the physiologic stability 

measures that did not meet the normality assumption in the residual analysis (i.e., the SD of 

HR using Method 1, the SD and CV of HR using Method 2, the mean SpO2 using Method 2 

and Method 3, and mean breath amplitude), power-transformed data (using the powers 

reported earlier) were used for the simulations. 

Table 4.21 describes the minimum numbers of infants required for an estimated 

power of 80% for a significant position effect for each physiological variable and method. 

Overall, the HR and interval between breaths variables have enough power to detect a 

significant position effect with the smallest number of infants. The SpO2 and breath duration 

and amplitude variables do not have enough power, even with over 100 infants for some 

methods. 

In terms of choosing the most useful method for HR, Methods 1 and 3 have enough 

power to detect a significant position effect with a smaller number of infants than with 

Method 2. Especially for the SD and CV for HR, Method 3 requires the smallest number of 

infants to detect a significant position effect. For SpO2, only Method 3 has 80% power to 
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detect a significant position effect with fewer than 100 infants. When using Methods 1 and 2, 

the SpO2 variable does not have enough power even with over 100 infants. Therefore, the 

results suggest that Method 3 may be the most useful method to detect a significant effect of 

feeding position on changes in HR and SpO2 over time while requiring the smallest number 

of infants. 

 

Table 4.21. Number of Infants Required for an Estimated Power of 80% 

 Method 1
 a
 Method 2

 b
 Method 3

 c
 

Heart Rate     

Mean 29 37 27 

SD 11 32
 d
 8 

CV 14 
d
 28

 d
 8 

Oxygen Saturation    

Mean > 100 > 100
 d
 36

 d
 

SD > 100 > 100 80 

CV > 100 > 100 75 

Interval between Breaths    

Mean - - 10 

SD - - 7 

CV - - 10 

 Breath Duration    

Mean - - > 100 

SD - - > 100 

CV - - > 100 

Breath Amplitude    

Mean - -   > 100
 d
 

SD - - > 100 

CV - - > 100 

Note. CV = coefficient of variance. 
a
 Method 1 = Dividing the entire bottle-in period into 

three equal feeding intervals. 
b
 Method 2 = Extracting 2-minute intervals from each third of 

the bottle-in period. 
c
 Method 3 = Successive 2-minute intervals for the first six minutes of 

the bottle-in period. 
d 

Because normality was questionable, the transformed data were used. 
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Intervention Fidelity 

Intervention fidelity was assessed by determining whether the assigned position was 

delivered properly, and whether the caregiver’s feeding strategies were consistently carried 

out across and within the infants based on the feeding protocol (Table 4.22). To evaluate 

whether the assigned position was delivered properly, the proportion of feeding time that the 

infants were in the HES position (supine) and in the HEL position (side-lying) were 

calculated. For both conditions, the infants were placed in each of the assigned positions for 

the majority of the feeding time (mean 97.3% of feeding period for HES position; 99.7% of 

feeding period for HEL position).  

To evaluate whether the caregiver’s feeding strategies were consistently carried out 

across and within the infants based on the feeding protocol, five caregivers’ feeding 

behaviors, as described in the feeding protocol, were assessed. For both conditions (HES and 

HEL), the caregivers consistently prepared the infants for the feeding before placing the 

nipple in their mouth (prep). However, high variability was observed in the caregivers’ 

feeding behaviors of placing the nipple in the mouth based on the infant’s behavioral cues of 

readiness (ready), moving the nipple to stimulate sucking (stim suck), allowing time for the 

infants to minimize sucking and resume breathing by limiting the flow of milk (limit flow), 

and providing rest periods with the bottle out of the mouth (numb rest periods) across infants 

and feeding conditions. Overall, in the HEL position, the caregivers were more likely to 

provide fewer rest periods with the bottle out of the mouth (numb rest periods), more likely 

to stimulate sucking by moving the nipple (stim suck), and more likely to initiate feedings 

when infants demonstrated readiness (ready). In terms of the caregivers’ feeding behaviors of 

limiting the flow of milk, for infants 1 and 2, the designated caregivers provided fewer 
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opportunities to allow time for the infants to minimize sucking and resume breathing when 

they were fed in the HEL position; but for infants 4, 5, and 6, the caregivers provided slightly 

fewer actions to limit the flow of milk (limit flow) in the HEL position. However, the mean 

frequency of this behavior was slightly higher in the HES position. Therefore, the 

intervention of feeding position was delivered properly; however, the caregivers’ feeding 

behaviors were different between conditions.  

 

Table 4.22. Descriptive Statistics for Intervention Fidelity 

Infant 

Condition 
1 2 3 4 5 6 Mean SD 

Supine 

Side-lying 
a
 

HES 94 100 100 100 91 100 97.3 4.0 

HEL 100 100 100 100 99 99 99.7 0.4 

Prep 
b
 

HES 100 100 100 100 100 100 100 0 

HEL 100 100 100 100 100 100 100 0 

Ready 
c
 

HES 0 0 25 50 0 75 25.0 31.6 

HEL 100 33 50 67 100 100 75.0 29.3 

Stim Suck 

Events 
d
 

HES 58 35 108 30 35 35 50.2 30.0 

HEL 99 32 114 40 65 46 66.0 33.5 

Limit Flow 

Events 
e
 

HES 43 14 1 4 6 34 17.0 17.4 

HEL 21 2 1 9 9 37 13.2 13.7 

Numb Rest 

Periods 
f
 

HES 5 4 3 1 1 3 2.8 1.6 

HEL 1 2 3 2 2 2 2.0 0.6 

Note. HES = head-elevated supine; HEL = head-elevated side-lying. 
a
 Proportion of the 

feeding time (using the bottle-in period) that the infant is held in a semi-upright position for 

the condition of the HES position (Supine) and in a side-lying position for the condition for 

the HEL position (Side-lying); 
b
 Proportion of onset of feeding episodes that the caregiver 

prepared the infant for feeding; 
c
 Proportion of onset of feeding episodes that the infant 

demonstrated readiness; 
d
 Number of times the caregiver stimulated infant sucking; 

e
 Number 

of times the caregiver limited the flow of milk; 
f
 Number of rest periods provided by the 

caregiver. 

 

 

 



 

 

CHAPTER V 

DISCUSSION 

This final chapter interprets the results presented in Chapter IV. This study examines 

the preliminary effects of the HEL feeding position on physiologic stability and feeding 

performance, as compared to the HES feeding position, for VP infants (≤ 30 weeks of GA) 

who are transitioning from gavage feeding to full oral feeding. In addition, methods for 

measuring changes in physiologic stability across the feeding time are examined.  

To examine the preliminary effects of the HEL position, two hypotheses were tested 

by examining physiologic stability and feeding performance during and across the feeding 

time. To examine methods for measuring changes in physiologic stability across the feeding 

time, three methods to create intervals of feeding time were chosen and examined. 

Simulations for each method were conducted to determine the most optimal method, as 

determined by which method requires the smallest number of infants to detect a position 

effect with 80% power. Finally, intervention fidelity was evaluated.  

This chapter is organized as follows: interpretation of the results of the two 

hypotheses, power simulations analysis, discussion of intervention fidelity, description of the 

study’s strengths, limitations, and implications, and, finally, presentation of conclusions. 
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Hypothesis 1 

Hypothesis 1 premises that VP infants would have greater physiologic stability and 

better feeding performance when they are fed in the HEL position compared to the HES 

position. Physiologic stability was measured in terms of HR, SpO2, and RESCs (i.e., breath-

to-breath intervals, duration and amplitude of breaths, respiratory rate, and breathing pauses 

> 3 seconds). Feeding performance was measured in terms of overall milk transfer, 

proficiency, efficiency, and duration of feeding. 

 

Heart Rate 

It is well known that during oral feeding, normal breathing patterns are modulated by 

the act of sucking and swallowing. Several studies involving both term and preterm infants 

have shown that breathing alternation while feeding reduces minute ventilation by decreasing 

inspiration time, breathing frequency, and tidal volume (Bamford et al., 1992; Koenig et al., 

1990; Mathew et al., 1985; Shivpuri et al., 1983). However, the decrease in ventilation has a 

greater impact on VP infants than healthy full term infants because of their reduced capacity 

to self-organize changes in ventilation due to immaturity and/or compromised lung function 

(Gewolb & Vice, 2006; Mizuno et al., 2007).  

One of the strategies neonates employ to self-organize physiologic changes during 

activities such as feeding is to increase their HR to provide the necessary oxygen and 

nutrients to tissues in response to increased respiratory efforts (Blackburn, 2007). The 

increase in HR is considered a compensatory process, possibly indicating that the infant is 

coping with the physiologic demands of feeding to maintain homeostasis. Large increases in 

HR may indicate that feeding is placing excessive physiologic demands on the infant. 
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However, for VP infants, especially those with respiratory problems, decreased ventilation 

while feeding may be too great to be recovered through the compensatory process and can be 

frequently associated with decreases in HR. The decrease in HR is considered a potentially 

life-threatening event, which could result from stimulation of the sensory receptors in the 

pharyngeal-largyngeal area by microaspiration of food, gastro-esophageal reflux, or a large 

bolus of milk, or stimulation of carotid body chemoreceptors caused by a decrease in oxygen 

saturation (Glass & Wolf, 1994). Although the degree of change in HR that can be tolerated 

by VP infants while feeding is unknown, it is not uncommon to see changes in HR within 

10% above or below the resting HR. In this study, VP infants exhibited significantly less 

variation in HR, spent less time with severe decreases in HR (i.e., at least 20% below that of 

the pre-feeding period) and bradycardia (i.e., less than 100 bpm), and spent more time only 

with mild increases in HR (i.e., at least 10% above that of the pre-feeding period) when fed 

in the HEL position as compared to the HES position. The findings suggest that VP infants 

fed in the HEL position are able to handle the physiologic demands of feeding more 

effectively by modulating their HR through a compensatory process. However, when fed in 

the HES position, VP infants may not be able to handle the physiologic challenges by 

modulating their HR through a compensatory process, thereby resulting in increased 

variation in HR, and more time with severe decreases in HR and bradycardia (i.e., less than 

100 bpm). These findings may be a consequence of the increased physiologic challenges 

faced by VP infants when they are fed in the HES position as compared to the HEL position.  
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Oxygen Saturation 

Another major physiologic variable used in this study is SpO2. In this study, no 

statistically significant difference in SpO2 between the feeding positions was found. Only a 

trend towards less variation in SpO2 in the HEL position as compared to the HES position 

was evident. These SpO2 findings can be explained in several possible ways. The VP infants 

in this study had relatively healthy cardio-respiratory conditions (i.e., two infants had no lung 

disease, three infants had mild lung disease, and one infant had moderate lung disease). Thus, 

the study infants might have been able to modulate their breathing or HR in response to the 

demands of feeding without severely compromising their cardio-respiratory status which 

could cause oxygen desaturation. Another explanation of no significant differences in SpO2 

levels is that the number of observations was relatively small, so statistically significant 

differences were not evident. However, a trend towards less variation in SpO2 levels in the 

HEL position suggests further examination of the effect of the HEL position on SpO2.  

 

Respiratory Characteristics 

The RESCs findings indicate that VP infants show decreased breathing frequency, 

longer and more irregular intervals between breaths, and shorter breath durations during the 

feeding period than during the pre-feeding period in both feeding positions. These findings 

are concordant with previous findings that suggest that during oral feeding, normal breathing 

patterns are modulated by the act of sucking and swallowing, resulting in decreased 

inspiration time, decreased respiratory frequency, decreased minute ventilation, and 

decreased tidal volume (Bamford et al., 1992; Koenig et al., 1990; Mathew et al., 1985; 

Shivpuri et al., 1983). However, when VP infants were fed in the HEL position, decreased 
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breathing was significantly less marked than in the HES position, especially for breathing 

frequency and intervals between breaths. That is, in the HEL position, VP infants breathed 

with significantly higher frequency that is closer to that of the pre-feeding state, and with 

shorter breaths and more regular intervals between breaths, suggesting that they were able to 

breathe better and with less interruption than in the HES position. In addition, VP infants, 

who show higher respiratory rates during the pre-feeding period, tend to have more benefits 

from the HEL position, i.e., the differences in respiratory rate during feeding between the 

feeding positions were more remarkable for those infants with higher respiratory rate during 

the pre-feeding period, than that of other infants. This observed pattern suggests that this 

intervention may be best targeted to those infants who have increased respiratory 

requirements in a resting state (i.e., a marker of a rate limiter). Further study is warranted to 

examine a moderate effect of pre-feeding respiratory states on the relationship between the 

HEL position and physiologic outcomes. 

Another RESCs finding from this study is that breath duration is significantly more 

irregular in the HEL position than in the HES position. Increased irregularity in breathing 

duration can be explained by a feeding pattern that is frequently observed in preterm infants. 

Normally, infants coordinate breathing with sucking and swallowing during feeding. That is, 

they are able to properly and efficiently integrate breathing into sucking and swallowing 

rhythms. However, VP infants have difficulty integrating sufficient breathing while sucking 

and swallowing the milk, so they often adopt a less complex pattern of coordination, which 

presents only a suck-swallow dyad during the sucking bursts with breathing that follows in 

an alternating fashion (Palmer, 1993). This feeding pattern may be a functional strategy to 

protect the airway when the proper coordination of sucking, swallowing, and breathing is too 
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difficult; however, this pattern may cause longer cessations of breathing that could increase 

the cardio-respiratory load during feeding, especially during long sucking bursts.  

This study finds that in the HES position, VP infants are more likely to adopt a less 

complex pattern of coordination (i.e., alternating clusters of sucks and breaths)), which may 

contribute to longer cessation of breathing. In the HEL position, infants were more likely to 

demonstrate a more complex coordination pattern (i.e., integrating breathing into sucking 

bursts)), as depicted in Figure 5.1. Craig et al. (1999) report that during the sucking bursts, 

breathing is constantly interrupted by the need to defend the airway when swallowing the 

milk than during the period when the infant is not sucking, which causes irregular breath 

durations and shallow breath depths. Therefore, in this study, VP infants’ efforts to adopt a 

more mature, more complex feeding patterns (i.e., integrating more breathing into the 

sucking bursts) in the HEL position may increase variation in breath duration during the 

sucking bursts, which also can increase the average variation in breath durations during the 

overall feeding period. As a consequence, the RESCs findings from this study suggest that 

the HEL position may create a condition that supports improved regulation of breathing 

while sucking and swallowing and that minimizes the long cessations of breathing. 

Therefore, in the HEL position, the cardio-respiratory load during feeding is decreased, 

which allows for infants to maintain greater physiologic stability throughout the feeding, as 

demonstrated by the findings of HR and SpO2, i.e., less variation in HR, less severe and 

fewer decreases in HR, and trend towards less variation in SpO2. Also, the HEL position may 

facilitate the practice of a more mature and complex feeding pattern as compared to the HES 

position.  Therefore, the HEL position may be a strategy to improve feeding outcomes by 
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supporting a breathing (i.e., a rate-limiter), which limits VP infants’ capacity to self-organize 

the entire feeding system.   

 

 

a. HES Position 

 

 

b. HEL Position 

 

 

Figure 5.1. Example of Tracing of Sucking and Breathing Pattern in Two Different Positions. 

HES = head-elevated supine; HEL = head-elevated side-lying. 

 

Two major mechanisms of the HEL position may contribute to the physiological 

benefits over the HES position. First, the HEL position is the natural position that is assumed 

by infants when they are fed at the breast. The physiologic benefits of breastfeeding for 
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preterm infants are well documented. Previous researchers have found that during 

breastfeeding, as compared with bottle feeding, preterm infants better coordinate breathing 

with swallowing (Goldfield et al., 2006), resulting in less disruption of breathing (Blaymore 

Bier et al., 1997; Chen, Wang, Chang, & Chi, 2000; Dowling, 1999; P. Meier, 1988). This 

study’s findings reveal that VP infants are better able to regulate breathing during feeding by 

demonstrating a respiratory rate that is closer to their pre-feeding respiratory rate, shorter and 

more regular intervals between breaths, and more variation in duration of breath in the HEL 

position compared with the HES position. These findings are somewhat similar to those of 

previous studies that demonstrate the physiologic advantages of breastfeeding as compared to 

bottle-feeding (Blaymore Bier et al., 1997; Chen et al., 2000; Dowling, 1999; Goldfield et al., 

2006; P. Meier, 1988). Although this study does not include a direct comparison of the 

physiologic responses to feeding between the HEL position and breastfeeding, the findings 

suggest that the HEL position, which better mimics the natural position of breastfeeding than 

the HES position, might contribute to the physiologic advantages of breastfeeding over bottle 

feeding.  

The second potential mechanism of the HEL position is that it may create conditions 

for infants to better manage the flow of milk. Several research studies have consistently 

demonstrated that under more rapid milk flow conditions, breathing is more interrupted as a 

consequence of the increased bolus size of each suck and swallowing frequency (Al-Sayed et 

al., 1994; Mathew, 1991a). This study premises that in the HEL position, the lowered angle 

of the bottle may slow the gravitational milk flow by decreasing the hydrostatic pressure 

generated by the volume of milk in the inverted bottle. Although this study does not include a 

direct measure of the rate of milk flow in each position, the potentially slower flow of milk 
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by gravity in the HEL position may permit infants to swallow less, and in turn, have fewer 

interruptions of breathing. In addition, in the HEL position, gravitationally the milk is 

directed toward the cheek rather than directly to the back of the oral cavity, so that infants 

may have more time to form a bolus and control its movement for safe and efficient 

swallowing which minimize breathing interruptions. This additional time may also allow the 

infant to raise the distal portion of the tongue in order to slow the flow of milk and delay 

swallowing, thereby providing additional time for breathing. Therefore, better fluid 

management by several potential mechanisms of the HEL position may minimize the 

interruption of breathing during feeding, which allows the infant to maintain greater 

physiologic stability throughout the feeding. 

 

Feeding Performance 

In this study, no significant findings for any of the feeding performance measures 

were found; however, a trend toward longer duration of feeding was observed for the HEL 

position. Several factors of the trend of longer duration of feeding in the HEL position can be 

explained and support further examination. The longer duration of feeding may indicate that 

infants are able to maintain engagement in the activity of feeding for a longer period of time. 

Als (1986), in her synactive theory of development, proposed that the first task of preterm 

infant development is to achieve control over the autonomic system, and that this autonomic 

system development affects and supports the development of an infant’s motor and state 

systems. Thoyre and Brown (2004) also report that physiologic conditions that occur during 

feeding have a significant effect on infants’ engagement in feeding. In the current study, 

when fed in the HEL position as compared to the HES position, VP infants exhibited greater 
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physiological stability as demonstrated by less variation in HR, less severe and fewer 

decreases in HR, frequency of breathing that is closer to that of the infant’s pre-feeding state, 

and shorter breaths and more regular intervals between breaths. The greater physiologic 

stability in the HEL position over that observed in the HES position may serve to conserve 

the necessary energy that supports an infant’s engagement in feeding at the behavioral level 

for a longer period of time.  

In addition, even if VP infants were able to consume similar amounts of their 

prescribed milk in both feeding positions, i.e., mean 92.7% and 95.2% of the prescribed milk 

in the HES and HEL positions, respectively, VP infants tended to spend more time 

consuming a similar amount of milk when being fed in the HEL position. This finding may 

support the fact that the potentially faster flow of milk in the HES position, compared to the 

HEL position, may encourage infants to consume the milk faster. In other words, when fed in 

the HEL position, infants may be allowed to feed at a slower pace, which may provide 

additional time to better control the bolus for safe and efficient swallowing, possibly 

contributing to greater physiologic stability throughout the feeding as evidenced in the 

findings for the physiologic parameters. This longer duration of feeding may also indicate 

that the infant’s stomach fills more slowly and with less gastric distention. Rapid stomach 

filling may be associated with gut hyperperfusion and peripheral hypoperfusion after feeding 

(Yao, Wallgren, Sinha, & Lind, 1971). Although this study did not measure physiologic 

responses after feeding, the physiology of slower feeding leads to the consideration that the 

longer duration of feeding in the HEL position may have different physiologic impacts after 

feeding.  
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Conclusions of Hypothesis 1 

The findings of this study partially support Hypothesis 1 that VP infants would have 

greater physiologic stability when they are fed in the HEL position, compared to the HES 

position, by demonstrating less variation in HR, less severe and fewer decreases in HR, 

shorter breaths and more regular intervals between breaths, respiratory rates that are closer to 

the the pre-feeding state, and more variation in breath duration. Although the findings for 

SpO2 and feeding performance are statistically non significant, the trends of less variation in 

SpO2 and longer duration of feeding in the HEL position support further examination of the 

HEL position using these variables. In conclusion, the HEL position may be a feeding 

strategy that can reduce the physiologic work by supporting a breathing (i.e., a rate-limiter) 

during feeding which may allow VP infants to better handle the physiologic challenges of 

feeding.  

 

Hypothesis 2 

Hypothesis 2 premises that VP infants would demonstrate fewer physiologic changes 

from the pre-feeding period across the feeding period when they are fed in the HEL position, 

compared to the HES position. Infants’ feeding behaviors emerge from the continuous 

interaction within and between the subsystems that are involved in the feeding process and, 

thus, can change across the feeding period (Goldfield, 2007). Therefore, different feeding 

dynamics over time can reflect different infants’ adaptive capacities in response to the 

demands of feeding. Hypothesis 2 was established to examine more precisely the different 

feeding dynamics according to feeding position by taking into account the non-stationary 

state of infants’ feeding responses across the feeding period. To examine changes in 
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physiologic stability over time, three methods were chosen to explore the optimal way to 

divide the feeding for across-feeding analysis: (1) dividing the entire bottle-in period into 

three equal intervals; (2) extracting 2-minute intervals from the initial, middle, and final third 

of the bottle-in period; and (3) using successive two minutes during the first six minutes of 

the bottle-in period (see Figure 3.4). All three methods were used to examine changes in HR 

and SpO2 over time. Because RESCs measures are new and exploratory, some of the RESCs 

(i.e., intervals between breaths, breath duration and amplitude) were calculated for the first 

six minutes of the bottle-in period, and only Method 3 was used to examine the change of 

RESCs over time.  

 

Heart Rate 

In this study, statistically significant differences between the HES and HEL positions 

were evident only for variation in HR. Overall, variation in HR was the highest in the initial 

minutes of feeding and decreased as the feeding progressed in both positions; however, in the 

HEL position, VP infants exhibited significantly less variation in HR across the feeding 

period, including the early minutes, compared with the HES position. Specifically by 

method, when the entire bottle-in period was divided into three equal intervals (i.e., Method 

1), the VP infants exhibited significantly less variation in HR, especially during the first third 

period (see Figure 4.2). When 2-minute intervals were extracted from the initial, middle, and 

final third of the bottle-in period (i.e., Method 2), variation in HR was not significantly 

different by feeding position over time; but, when considering the adjusted model to examine 

possible differences of variation in HR at each time point based on the plot, significantly less 

variation in HR was observed during the first and final 2-minute intervals when fed in the 
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HEL position (see Figure 4.3). When the successive 2- minute intervals during the first six 

minutes of the bottle-in period (i.e., Method 3) were examined, variation in HR was 

significantly less across all time points with a constant amount of difference between the 

feeding positions (see Figure 4.4).  

Despite the statistically non significant findings derived from Method 2, the overall 

findings partially support Hypothesis 2 that VP infants would demonstrate fewer physiologic 

changes from pre-feeding across the feeding period when they are fed in the HEL position, 

compared to the HES position, by demonstrating a more stable HR over time in the HEL 

position. One explanation of the statically non-significant difference of HR patterns between 

the feeding positions in Method 2 is that the three 2-minute intervals extracted from the 

initial, middle, and final third of the bottle-in period may not sufficiently reflect the 

conditions of the feeding dynamics; i.e., meaningful data may be lost through this method.  

For all the methods and in both positions, variation in HR was found to be the highest 

in the initial minutes of the bottle-in period, and this variation declined as infants adapted to 

the feeding process. This pattern may indicate that more physiologic adjustments, through 

modulation of HR, were required when infants began feeding. This finding is somewhat 

similar to that of a previous study that reports that the initial minutes of feeding are the 

physiologically most vulnerable period, as demonstrated by more frequent desaturation 

events (Thoyre & Carlson, 2003). Changes in HR can indicate the physiologic load of coping 

with the demand of feeding activity. Therefore, the finding in Method 1, which shows that 

the biggest difference in variation of HR between the feeding positions is during the first 

third bottle-in period, further suggests that the HEL position may reduce physiologic work, 
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especially during the beginning of the feeding, which possibly is the time when infants 

require the most physiologic adjustments.  

The findings of this study are inconsistent with a previous study that found no 

difference in variation in HR of VP infants over time between the HES and HEL positions 

(L. Clark et al., 2007). Despite statistical non significance, from a visual inspection, these 

previous researchers observed a pattern of increased variation in HR in the first three minutes 

of feeding from the pre-feeding period, then recovery of variation in HR near to the pre-

feeding period in the middle three minutes of feeding, with a more marked recovery of HR in 

the HEL position. One explanation for discrepancies in the findings may be the different 

period and interval of time when the measurements were taken in the two studies. Also, 

during a typical feeding observation, infants have periods of feeding and periods of resting or 

burping, during which the nipple is not in the infant’s mouth. In this study, in order to 

remove potentially confounding data, the resting and burping periods were eliminated, and 

combined bottle-in periods were used for creating intervals of feeding time. However, L. 

Clark et al. (2007) do not clarify whether they include non-feeding and burping periods in 

taking their measurements at the beginning and middle point of feeding. This fact may 

further contribute to the difference of the findings between the two studies. 

 

Oxygen Saturation 

No significant pattern for SpO2 over time by feeding position was found for any of 

the analysis methods. Although statistically non significant differences in SpO2 were found 

between the feeding positions, from visual inspection based on the plots, in Method 1 (i.e., 

dividing the entire bottle-in period into three equal intervals) and Method 2 (i.e., extracting 2-
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minute intervals from each third of the bottle-in period), the mean SpO2 decreased and the 

variation in SpO2 increased from the pre-feeding period in the initial minutes of the bottle-in 

period. Then, they partially recovered over time toward the pre-feeding period as the infants 

adapted to the feeding process with slightly higher and more stable SpO2 levels in the HEL 

position over time (see Figures 4.5 and 4.6). However, when successive 2-minute intervals 

during the first six minutes of the bottle-in period (i.e., Method 3) were observed, the mean 

and variation of SpO2 moved in the opposite direction at the 4-6 minutes interval, thereby 

decreasing the mean SpO2 and increasing the variation in SpO2 again (see Figure 4.7). When 

the adjusted model considered this nonlinear pattern of SpO2 over time in Method 3, a trend 

towards a higher mean SpO2 across all time points in the HEL position, compared to the HES 

position, was observed.  

This finding differs from the Clark study that showed a significant interaction effect 

of time and position, suggesting that the mean SpO2 decreases in the first three minutes of 

feeding in both feeding positions; however, in the middle three minutes of feeding, the mean 

SpO2 increases in the HEL position and decreases further in the HES position (L. Clark et al., 

2007). Again, the difference in the findings from these two studies can be explained by the 

different periods and intervals of feeding time that were used for taking the measurements. 

Another explanation is the different cardio-respiratory conditions of the study infants, even if 

in the Clark study, the severity of lung disease of the sample was not specified. In this study, 

the cardio-respiratory conditions of the study infants reflect relatively healthy infants (i.e., 

two infants had no lung disease, three infants had mild lung disease, and one infant had 

moderate lung disease), which may have allowed the study infants to cope with the demands 

of feeding without severely compromising their cardio-respiratory status, which could result 
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in a decrease in SpO2. Finally, the number of observations in the current study was smaller 

than that in the Clark’s study (6 feeding observations per position in the current study and 18 

feeding observations per position in Clark’s study), so that statistically significant differences 

may not be evident in the current study. 

Even if all of the changes in SpO2 observed in the current study were slight and 

statistically non significant and occurred within the normal range, the trend towards higher 

and visually more stable SpO2 over time in the HEL position compared to the HES position 

suggest further examination in a different and larger sample to clarify the patterns of SpO2 

over time across the methods. 

 

Respiratory Characteristics 

In this study, VP infants breathed with significantly shorter breaths and more regular 

intervals between breaths across all successive 2-minute intervals during the first six minutes 

of bottle-in periods when being fed in the HEL position as compared to the HES position (see 

Figure 4.8). When considering the adjusted model to examine the possible difference of 

variation in intervals between breaths at each time based on the plots, the significant 

difference of variation in intervals between breaths between the feeding positions may derive 

from a difference during the last four minutes of the first six minutes of the bottle-in period. 

That is, variation in intervals between breaths was likely to increase over time in the HES 

position, whereas in the HEL position, such variation remained approximately at the same 

level. This finding suggests that the HEL position may support VP infants in consistently 

regulating their breathing over time by sustaining the regularity of intervals between breaths.  
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No statistically significant difference in breath duration and amplitude over time by 

feeding position was observed in this study. However, when the adjusted model was 

considered for examining the possible differences in variations in breath duration at each 

time based on the plot, VP infants exhibited more irregular breath duration in the HEL 

position only in the 0-2 and 4-6 minutes of the bottle-in period (see Figure 4.9). Like the 

previous description of increased irregularity of breath duration in Hypothesis 1, this finding 

suggests that the integration of breathing into sucking and swallowing rhythms is less 

compromised when VP infants are fed in the HEL position (see Figure 5.1). Therefore, all the 

findings for longitudinal RESCs measures further strengthen the potential mechanisms of the 

HEL position to support breathing over time by demonstrating better modulation of breathing 

over time.  

 

Conclusions of Hypothesis 2 

The findings of longitudinal measures partially support Hypothesis 2 that VP infants 

would demonstrate fewer physiologic changes from the pre-feeding period across the feeding 

period when fed in the HEL position, compared to the HES position, by demonstrating more 

stable HR over time in the HEL position, especially during the early minutes of feeding. 

Although statistically non significant findings were found for SpO2, the trend of higher and 

visually more stable SpO2 over time in the HEL position supports further examination of the 

HEL position with regard to this variable. In addition, although RESCs measures used for 

this study are new and exploratory, the significant findings for some of the measures (i.e., 

shorter breaths and more regular intervals between breaths over time and increased variation 

in breath duration at the first and last two minutes of the first six minutes of the bottle-in 
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periods) strengthen the findings of other physiologic parameters and supports further 

examination as an indicator of physiologic work during feeding. 

 

Comparisons of Methods for Examining Feeding Over Time  

 Examining infants’ physiologic responses to feeding over time may better reflect the 

conditions of feeding dynamics by taking into account the non-stationary state of infants’ 

feeding responses. In addition, the values divided by small intervals of feeding time can 

provide trend information and counter the criticism that an averaged value smoothes too 

much of the data streams and loses too much information. However, no clear understanding 

of the optimal period and intervals of feeding for across-feeding analysis currently exists. 

Therefore, this study employs three methods to create intervals of feeding time and examines 

changes in physiologic stability over time using HR, and SpO2. 

Somewhat different patterns of change in HR and SpO2 across the methods were 

observed in this study, which may imply potential advantages and disadvantages of each 

method. In the HR findings using each method as an example, Method 1 (i.e., dividing the 

entire bottle-in period into three equal intervals) shows that variation in HR increase in the 

first third bottle-in period, decline in the middle third period, and remain approximately at a 

similar level during the final third period. The difference in variation of HR between feeding 

positions was most remarkable during the first third period (see Figure 4.2.). For Method 2 

(i.e., extracting 2-minute intervals from the initial, middle, and final thirds of the bottle-in 

period), variation in HR also were the highest during the initial two minutes in both 

positions, but in the HES position, it declined further during the middle two minutes and 

remained steady during the final two minutes, whereas in the HEL position, the variation in 
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HR declined slightly less during the middle two minutes, but further declined during the final 

two minutes (see Figure 4.3). The different HR pattern in Method 2 indicates that 2-minute 

intervals extracted from each third of the bottle-in period may not be sufficient to reflect the 

whole of the feeding dynamics. Method 3 (i.e., successive 2-minute intervals during the first 

six minutes of the bottle-in period) closely reflects the decreased variation in HR from the 0-

2 minutes to the 2-4 minutes in the HES position that are missing in the other methods, 

resulting in a constant amount of difference in variation of HR between feeding positions 

across all time points (see Figure 4.4). This finding suggests that Method 3 may provide 

more precise variability. 

Therefore, different physiologic patterns over time across the methods may indicate 

both advantages and disadvantages. In Method 1, the overall feeding dynamics can be 

presented, but true variability may be smoothed, especially for feedings of long duration. 

Method 2 can provide comparable interval lengths in each period across feedings to be cross-

compared, regardless of feeding time. However, meaningful data may be left out. In Method 

3, the smaller epochs may allow for more precision to reflect continuous feeding dynamics, 

but do not demonstrate the whole dynamics of feeding by not including the data after the first 

six minutes of the bottle-in periods.  

The most useful method, as determined by the method that requires the least number 

of infants to detect a position effect with 80% power, can be recommended by conducting 

simulations of LMMs for each method and variables for varying numbers of infants. The 

findings from these simulations suggest that Method 3 may be the optimal, most efficient 

method to examine changes in both HR and SpO2 over time by feeding position since it 

requires the least number of infants. Therefore, the first six minutes of bottle-in periods may 
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be sufficient to examine dynamics of feeding over time according to feeding position, which 

may allow for less cost and effort in collecting and analyzing data.   

 

Intervention Fidelity 

Intervention fidelity was assessed in this study by determining whether the assigned 

position is delivered properly, and whether the caregiver’s feeding strategies were consistent 

across the two feeding conditions. In both feeding conditions, the assigned feeding position 

was properly delivered for most of the feeding time (mean 97.3% of feeding period for HES; 

99.7% of feeding period for HEL). Five caregivers’ feeding behaviors, based on the feeding 

protocol that the nurse caregivers were asked to follow during the study (Appendix B), were 

assessed. For both feeding conditions, the caregiver consistently prepared the infants for the 

feeding before placing the nipple in their mouths across infants and feeding conditions. 

However, in the condition of the HEL position, caregivers provided fewer rest periods with 

the bottle out of the infant’s mouth, stimulated sucking by moving the nipple more often, and 

initiated feedings when infants demonstrated behavioral cues of readiness more often. 

Caregivers’ feeding behaviors of limiting the flow of milk varied across infants and feeding 

conditions. For some infants, the caregiver was more likely to tip the bottle back to limit the 

flow of milk in the HES position; and for some infants, the caregiver was slightly more likely 

to tip the bottle back in the HEL position. However, the mean frequency of this behavior was 

slightly higher in the HES position than in the HEL position. 

Even if the assigned position was delivered properly, part of the feeding protocol was 

not consistently followed during the study, as demonstrated by high variability in some of the 

caregivers’ feeding behaviors within and between infants. Several factors may contribute to 
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these findings. First, even if nurses were asked to read and follow the feeding protocol as 

much as they could before the study commenced, they were not systematically trained to use 

the feeding protocol. Also, a single nurse caregiver performed both feedings per infant for the 

comparable feeding strategies between two experimental conditions; however, three different 

nurse caregivers were used for all study infants. Possibly, different feeding strategies across 

the caregivers may have contributed to the variability of the caregivers’ feeding behaviors 

across the infants. Finally, based on the feeding protocol, the designated caregiver’s feeding 

behavior to limit the flow of milk and provide rest periods should be offered contingent upon 

the infant’s needs while feeding. Therefore, the variability of these feeding behaviors 

between feeding conditions suggests that infants may demonstrate different needs for 

external support to regulate breathing with sucking and swallowing in each feeding position, 

rather than indicating the caregiver’s poor compliance with the protocol.  

The inconsistency of the caregivers’ feeding behaviors may confound the study 

findings in several ways. The designated caregiver’s feeding behavior to stimulate sucking 

can cause the infant to increase sucking and potentially cause more milk to be expelled into 

his or her mouth, thus contributing to physiologic distress, especially if this event occurs 

when the infant is regulating his or her breathing after a sucking burst. Thus, the higher 

frequency of this behavior in the HEL position may mask some of the physiologic benefits of 

the HEL position. In addition, the more onsets of feeding when the infant demonstrates 

readiness in the HEL position may increase the infant’s ability to maintain engagement and 

to maintain more physiologic stability throughout the feeding in the HEL position compared 

to the HES position. Therefore, further testing is warranted to examine the effect of the HEL 

position by controlling the possible confounding variables. Also, in future studies, a single 
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and better trained interventionist, and better monitoring of the caregiver’s strategies to feed 

during the study would increase confidence in the findings. Even if the feeding protocol was 

not consistently followed during the study, variation in ways  the caregivers fed the infants in 

this study may mimic actual conditions of how infants are fed in the NICU.  

 

Strengths of the Study 

This study is one of the first studies to examine the effect of the HEL position on 

feeding outcomes. So far, only one pilot study has been published that examines the effect of 

the HEL position. Moreover, this study includes more specific and new measures to examine 

physiologic stability than are found in previous studies. For example, the CV is used to 

quantify the variability of the physiologic parameters in this study. In addition, this study is 

the first to include specific and systematic approaches to examine RESCs, including intervals 

between breaths, breath duration and amplitude, respiratory rate, and breathing pauses longer 

than three seconds. Breath-by-breath analysis was conducted to quantify all the RESCs 

measures. Also, in order to control movement artifacts of respiratory signals that were 

detected by chest movements associated with respiratory effort, all respiratory signals were 

validated by the amplified breathing and swallowing sounds that were measured from the 

microphone attached to the infant’s neck. Finally, this study is the first to analyze and 

compare several methods to examine patterns of physiologic stability across the feeding time. 

 

Limitations of the Study 

The limitations of this study include its small sample size and different caregiver 

feeding behaviors within and across the infants, which may confound the effects of the HEL 
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position on the infants’ responses to feeding. A larger sample and replication would increase 

confidence in the findings as well as allow potential covariates to be tested. A single and 

better trained caregiver is also recommended for future studies. In addition, the RESCs 

measures and methods used to examine the patterns of physiologic stability over time in this 

study are new and exploratory and, therefore, all of these measures and methods should be 

replicated with a larger population and different feeding conditions for further clarification. 

In particular, the mediating effect of RESCs measures on other physiologic parameters could 

become an important area for further study. Finally, although physiologic benefits are found 

in this study, long-term benefits for infants who are consistently fed in this way are still 

unknown, because this study examines only two feeding observations per infant by 

alternating feeding position. Therefore, subsequent study to extend these findings also is 

needed.  

 

Implications of the Study 

The results of this study have several implications for both clinical practice and 

research. Feeding position is a feeding strategy that can readily be applied to neonatal care. 

However, because of limited experimental evidence, no precise and consistent feeding 

position has been recommended for health care professionals to follow. Therefore, the 

findings from this study that demonstrate evidence of greater physiologic stability when VP 

infants are fed in the HEL position can lead to changed practice for feeding infants in the 

NICU, especially those infants who have difficulty maintaining physiologic stability during 

feeding. This study also can provide a foundation for developing a randomized controlled 

trial in a larger group to investigate the effects of the HEL position more definitively. 
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In addition, the RESCs measures and methods used to measure the patterns of 

physiologic stability across the feeding time provide valuable information that could be used 

to design a future study to understand feeding difficulties, both for researchers as well as to 

help clinicians better understand feeding difficulties and potentially bring more precision and 

effectiveness to the application of this feeding intervention.  

 

Conclusions 

This study finds that the HEL position has significant short-term physiologic benefits 

over the HES position. In the HEL position, as compared to the HES position, VP infants 

maintain more physiologic stability by demonstrating less variation in HR, less severe and 

fewer decreases in HR, shorter breaths and more regular intervals between breaths, a higher 

respiratory rate that is closer to that of the pre-feeding state, and more variation in breath 

duration. When the feeding period is divided into small intervals using three methods, in the 

HEL position, VP infants demonstrate more stable HR over time, especially during the early 

minutes of feeding, and better regulated breathing over time by demonstrating shorter breaths 

and more regular intervals between breaths and more variation in breath duration across the 

feeding period than in the HES position. Therefore, all the study findings suggest that the 

HEL position may be a feeding strategy to modulate a rate-limiter by supporting better 

regulation of breathing that could allow VP infants to better maintain physiologic stability 

throughout the feeding. In addition, the first six minutes of bottle-in periods is suggested to 

be sufficient for effectively examining significantly different changes in physiologic stability 

over time according to the feeding position that requires the smallest number of infants to 
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demonstrate an effect.  Because this is a small-sized study, all of the findings and methods 

used in this study should be further investigated in a larger study. 



179 

 

SUMMARY OF APPENDICES 

 

 

Appendix A Feasibility Study 

Appendix B Study Consent 

Appendix C Intervention Protocol          

Appendix D Neuro-Biological Risk Score (NBRS) 

Appendix E Diagnostic Criteria for Bronchopulmonary Dysplasia                 

Appendix F History of Hospitalization Form 

Appendix G Feeding Data Collection Form 

Appendix H Dynamic-Early Feeding Skill (D-EFS) Coding Scheme 

Appendix I Protocol for Respiratory Data Management 

Appendix J Rules to Mark Peaks and Troughs on Respiratory Waveforms 

Appendix K Plots of Individual Heart Rate using Each Method 

Appendix L Plots of Individual Oxygen Saturation using Each Method 

Appendix M Plots of Individual Respiratory Characteristics 

Appendix N Protocol to Set up Infant Feeding Data Collection Cart 

Appendix O Protocol for Data Collection 

 

 

 

 

 

 

 

 

 



180 

 

Appendix A. Feasibility Study 

 

 

The purpose of this study is to test the feasibility and acceptability of data collection 

plans for examining physiologic stability and feeding performance of VP infants (≤ 30 weeks 

of gestational age [GA]) when bottle-fed in the head-elevated side-lying (HEL) and the head-

elevated supine (HES) positions. This study also examines data analysis plans: (1) to 

determine physiologic data artifacts, (2) to determine pre-feeding baselines, (3) to measure 

feeding performance and physiologic stability, and (4) to trial approaches for measuring 

changes in physiologic stability across the feeding period. 

 

Study Design 

Using a within-subject cross-over design, one infant was fed in both the HEL and the 

HES positions over the course of two days; the order of the feeding position was randomly 

assigned.   

 

Subject 

One infant who met the following criteria was selected from the Newborn Critical 

Care Center (NCCC) at North Carolina Children's Hospital in Chapel Hill, North Carolina: 

(a) born at less than or equal to 30 weeks GA, and (b) orally fed at least once per day for 

three consecutive days prior to the study. Infants were excluded if they had congenital or 

acquired medical conditions that may be associated with feeding difficulties beyond the 

scope of this intervention, e.g., a congenital anomaly that interferes with oral feeding (e.g., 

cleft palate or paralysis of facial muscles), grade IV intraventricular hemorrhage, high risk 
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for neurological impairments (≥ 8 neuro-biologic risk score [NBRS]), ventilator-dependence 

beyond 60 days of life, and/or inability to begin oral feeding prior to 40 weeks postmenstrual 

age (PMA). Details of the infant characteristics are given in the Table A. 1. 

 

Table A. 1. Infant Characteristics 

Level of Maturity  

GA (weeks) 27.7 

PMA (weeks) 34.3 

Health condition  

NBRS
a
 1 

Oxygen in use during feeding Yes 

Feeding experience  

Days since first oral feeding 13 

Number of oral feedings prior to the study  24 

Additional descriptors  

Gender Male 

Race White 

Birth weight (grams) 920 

Weight at the study (grams) 1,885 

1-minute APGAR  3 

5-minute APGAR 7 

Days on ventilator 1 

Days on CPAP
b
 26 

Days on oxygen 39 

Note. 
a
This score is used to identify the degree of neurological risk of the infant based on the 

duration and severity of medical events that may affect brain injury (range 0-28). 
b
CPAP=continuous positive airway pressure 
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Intervention 

The infant was bottle-fed in two feeding positions according to the predetermined 

order. In the HES position, the infant was placed in a reclining position at a 45-degree angle 

to the buttocks on the caregiver’s lap. In the HEL position, the infant was placed in the side-

lying position on the caregiver’s lap with one ear facing the ceiling and the head elevated at a 

45 degree angle. In both feeding positions, the infant’s head and trunk was in neutral straight 

alignment, and the infant’s head and neck was supported by the caregiver’s hand in neutral 

flexion, i.e., chin tilted down slightly, without the head being extended and without excessive 

flexion. The infant was swaddled with a blanket, providing a flexed body position, but the 

lower arms were not constrained for behavioral observation (Figure A. 1). 

 

  

HES position (Feeding 1) HEL position (Feeding 2) 

Figure A. 1. Intervention 
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Variables and Measures 

Physiologic stability includes heart rate (HR) and oxygen saturation (SpO2). These 

variables were measured continuously using a pulse oximeter (Ohmeda 4700, Boulder, CO) 

prior to and during feeding, sampling at 91 samples per second and averaging set at 3 

seconds. Oximeter-generated HR and SpO2 were confirmed using an electrocardiogram 

(ECG) (Gould Electronics, Valley View, OH) to determine artifacts. Feeding performance 

includes overall milk transfer (%), efficiency (ml/min), and proficiency (%). Overall milk 

transfer was measured by determining the percentage of prescribed volume taken over the 

total feeding time. Efficiency is the total volume taken over the total feeding time. 

Proficiency was measured by determining the percentage of prescribed volume taken in the 

first 5 minutes of the feeding. Each feeding was also video-recorded using a Sony Digital 

Video Camera DCR-VX2100 to test the videotaping procedures.   

 

Data Collection 

After the approval from both the Institutional Review Board at the University of 

North Carolina at Chapel Hill and the Nursing Research Council at the North Carolina 

Children's Hospital has been obtained, one mother was approached to consent for her infant. 

After one infant was enrolled, data collection was completed over the course of two days. 

Three scheduled feeding times for the study were attempted. For the first expected feeding 

observation, the infant was not ready for oral feeding, so feeding was not attempted. The 

study feeding was attempted at the next scheduled oral feeding; however immediately after 

the first feeding observation, the infant had to undergo an eye exam. Eye exams can be 

upsetting for the infant, leading to fatigue. Also, eye drops used for eye exams can slow 



184 

 

gastric mobility, thereby decreasing an infant’s appetite. Thus, on the second expected 

feeding observation, the infant’s ability to perform oral feeding was decreased significantly. 

The infant engaged in predominantly non-nutritive sucking with only a brief period of 

suckling, which led to only 1 cc of intake. The third feeding observation was conducted on 

the next day.  

For each study feeding, the process described below was repeated. All equipment for 

monitoring and video recording was set up after completion of the feeding immediately prior 

to the study feeding (i.e., when the infant was being burped) to collect pre-feeding baseline 

data without disturbing the infant. To measure the physiologic variables, a pulse oximeter 

probe was placed on the infant’s foot and the infant’s own ECG leads were used. The camera 

and tripod were set up to capture a close-up angle of the infant’s face and upper body. During 

the pre-feeding period, the camera was placed in front of the incubator, and during the 

feeding, it was placed by the chair where the infant was fed.  

The infant began to be monitored and videotaped 30 minutes prior to each study 

feeding to capture baseline data, and this monitoring and videotaping continued until the 

feeding was completed. All equipment remained on the infant until all study feedings were 

completed on the same day. When the infant exhibited readiness cues for feeding at the 

scheduled feeding time (i.e., opening mouth and descending tongue in response to 

presentation of the nipple), the infant was given routine nursery care and swaddled with a 

blanket, allowing a flexed body position with the lower arms visible for behavioral 

observation. The bib was weighed to identify the fluid lost from drooling during feeding. The 

infant was placed either in the HES or HEL feeding position according to predetermined 

order. A trained RA performed bottle-feeding using a standardized feeding protocol. The 
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feeding was stopped briefly at five minutes to record the amount of milk remaining in the 

bottle (ml). The feeding was finished when the infant no longer engaged in feeding. 

Following the feeding, the amount of milk consumed, the length of feeding time, and the 

weight of the bib were recorded. The infant was given the nursery’s post-feeding care and 

settled on the bed.  

 

Feasibility of Data Collection Procedures  

Overall, the data collection procedures are feasible; however three notable issues 

were raised from the feasibility study and, as a result, modifications were made for the final 

study.  

First, an unpredictable clinical event occurred prior to the study that may have 

affected the infant’s ability to perform oral feeding, thus threatening the internal validity of 

the study. Prior to the second feeding observation, the infant underwent an eye exam.  An eye 

exam can tire an infant as well as affect their appetite because the eye drops (i.e., 

cyclomydril) used for pupil dilatation have an adverse effect on gastric mobility. Thus, the 

infant’s decreased oral feeding performance on the second feeding observation may be 

attributable to this stressful clinical event, rather than the feeding position. To reduce the 

potential problems associated with such an event, the data collection period will be extended 

over a two-day period, if necessary, so that two feedings can be captured under stable 

conditions for each infant.  

Second, the study implementation was not valid for one of the feeding observations. 

For the second observation, the infant engaged in predominantly non-nutritive sucking with 

only a brief period of suckling, which led to only 1 cc intake. Oral feeding requires three 
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major components—sucking, swallowing, and breathing; however this feeding observation 

did not have a sufficient amount of sucking and swallowing to test the effects of the feeding 

position on feeding outcomes. Thus, to address the validity of a feeding observation with 

little intake, two criteria were set to define a valid feeding observation. The infant must 

demonstrate at least 0.5 ml/min of sucking efficiency over the course of the entire 

observation to ensure that a sufficient amount of sucking and swallowing occurs that will 

validate the testing of the effect of position. In addition, the bottle-in periods of the 

observation must total at least six minutes to ensure the sufficient duration of feeding to 

examine the changes in infants’ responses to feeding over time adequately. Moreover, to 

increase the likelihood that the infant is ready to engage in feeding, the inclusion criteria for 

controlling the infant’s oral feeding experience will be changed to oral feeding at least four 

times per day for three consecutive days prior to the study (instead of the originally planned 

once per day for three consecutive days). It is anticipated that a more experienced infant will 

be more likely to engage in feeding twice during the observation period. Finally, the data 

collection period for each infant will be extended to a two-day period, if necessary, to be able 

to collect two valid observations.  

The third issue encountered during the feasibility study was a potential problem 

identified at the clinical site. In order to videotape the pre-feeding condition, the camera was 

placed in front of the incubator to capture a close-up angle of the infant’s face and upper 

body. The camera and tripod took up half the amount of space of the incubator itself, so the 

camera and tripod interfered with the nurses’ access to the infant in the incubator. A smaller 

camera with a smaller tripod, which can be placed either on the incubator or the physiologic 

cart, is now planned for use in the final study. 
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Feasibility of Data Preparation 

Physiologic data were simultaneously digitized by the A-D converter and stored in 

analog waveform using the Windaq Data Acquisition Software (DATAQ Instrument, Akron, 

OH) on a computer. The waveform data file, sampling at 91 samples per second, was 

compressed into 1 sample per second using the Windaq software and converted to a digital 

Excel file for analysis. Physiologic data artifacts were removed from the data by comparing 

the trace of waveform data and the infant’s actual activities as shown on the videotapes. To 

set up the criteria for artifacts, two researchers examined the data to define the artifacts and 

discuss the rationale for decisions to be made regarding the artifacts. Based on these 

discussions, artifacts were defined as: (a) areas of HR and/or SpO2 trace that exceed 

physiologically possible signal changes (HR ≥ 10 bpm and/or SpO2 ≥ 5%), and/or (b) areas 

that show erratic pulse waveforms that do not correspond to ECGs of more than 3 seconds, 

accompanied by large-scale movement (e.g., handling infants for burping, moving infant 

back to the crib, or infant crying), as determined from the videotapes. Data considered as 

artifacts were removed by considering a lag between changes in pulse waveforms and data of 

HR and SpO2 due to an averaged time of 3 seconds. That is, the artifacts were removed from 

2 seconds after the start of problematic pulse waveforms to 2 seconds after the end of 

problematic pulse waveforms (Table A. 2). Using these criteria, one feeding observation 

could be examined by two observers to determine inter-observer agreement, and 99% 

agreement was demonstrated. Feeding 1 contained 10% artifact signals during the feeding 

period; and feeding 2 showed that 13.5% of recordings contained artifact signals.  
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Table A. 2. Methods of Artifact Removal 

Original data Rationale Data artifact removed 

HR SpO2 Videotape 
Pulse 

waveforms 
HR SpO2 

132.78 87.21   132.78 87.21 

136.50 87.94   136.50 87.94 

140.22 88.67   140.22 88.67 

148.52 89.40   148.52 89.40 

156.82 90.01 burping erratic 156.82 90.01 

160.26 90.50 burping erratic 160.26 90.50 

163.69 90.87 burping erratic   

165.12 90.74 burping erratic   

166.55 90.62 burping erratic   

166.55 90.50 burping erratic   

166.55 90.38 burping erratic   

166.55 90.13 burping erratic   

166.55 89.89 burping erratic   

165.98 89.65 burping erratic   

165.69 89.40 burping erratic   

160.83 89.16 burping erratic   

156.25 88.92 burping erratic   

28 seconds of data were omitted 

124.48 86.85 burping erratic   

125.91 86.48 burping erratic   

127.34 86.11 burping erratic   

128.77 85.99 burping erratic   

129.91 85.99 burping erratic   

131.06 85.99 burping erratic   

131.06 85.99 burping erratic   

131.06 85.99 stroking    

133.64 86.11 stroking    

136.21 86.24   136.21 86.24 

138.22 86.48   138.22 86.48 

140.22 86.72   140.22 86.72 

138.22 86.85   138.22 86.85 
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Feasibility of Data Analysis Plans 

Feeding Performance 

The feeding performance outcomes of the infant when bottle-fed in two different 

feeding positions are provided in Table A. 3. As expected, feeding performance outcomes for 

feeding 1 confirm the fact that this feeding was not valid in terms of implementation in order 

to examine the effects of feeding position on feeding outcomes. 

Table A. 3. Feeding Performance 

 Feeding 1 Feeding 2 

Feeding characteristics   

Prescribed milk (ml) 34 34 

Consumed milk (ml) 1 10 

Consumed milk at 5 minutes of the feeding (ml) 1 3 

Length of total feeding time (min) 8 17.93 

Feeding performance   

Overall milk transfer (%) 2.94 29.41 

Proficiency (%) 2.94 8.82 

Efficiency (ml/min) 0.13 0.56 

 

Physiologic Stability 

Pre-feeding Baseline 

Pre-feeding baselines were calculated from the pre-feeding period of each feeding. 

Three two-minute pre-feeding periods were selected from periods that exhibited: (1) 

minimum variability in HR and SpO2; (2) neither increasing nor decreasing patterns of HR 

and SpO2; and (3) the infant being calm and quiet, as seen on the videotape. Among these 

three 2-minute segments from the pre-feeding periods, the period with the smallest SD of HR 

and SpO2 was selected. The mean, SD, and CV (the ratio of the SD divided by the mean for 
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the assigned period) were calculated (Table A. 4). However, for feeding 2, because the infant 

exhibited readiness cues for oral feeding earlier than the scheduled feeding time, the pre-

feeding period was observed only for 10 minutes, which was insufficient for determining 2-

minute periods that qualified for the baseline criteria. Thus, the criteria for the pre-feeding 

baseline need to be assessed to for further validation for the final study and refined, as 

needed.  

Table A. 4. Pre-feeding Baseline 

  

  

HR  SpO2 

Mean SD CV Mean SD CV 

Feeding 1  174.04 0.76 0.00 97.82 0.80 0.01 

Feeding 2 164.98 2.18 0.01 96.93 1.31 0.01 

 

Physiologic Stability 

Physiologic stability was measured using mean, SD, and CV during the entire feeding 

period. Because the CV is calculated using the SD normalized by the mean of the data, this 

measurement may provide a more appropriate measure of the rhythmic variability of infants’ 

physiologic responses to feeding (Table A. 5).  

Table A. 5. Physiological Stability 

  

  

HR  SpO2 

Mean SD CV Mean SD CV 

Feeding 1  166.24 12.20 0.07 88.15 4.66 0.05 

Feeding 2 183.06 7.98 0.04 92.16 4.44 0.05 

 

Physiologic stability was also measured in terms of physiologic distress events, 

identified as hypoxemic events and problematic changes in HR (i.e., bradycardia or 
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tachycardia). Hypoxemic events are defined as the proportion of feeding time where two 

classifications are met: (1) SpO2 > 5% below the baseline and less than 85%, and (2) SpO2 > 

5% below the baseline and classified as mild (5-10%), moderate (10-15%), or severe (>15%). 

Both classifications were able to demonstrate the differences between feedings and provide 

useful information. Classification 1 provided clinically significant information by using 

criteria used by clinicians to define desaturation (< 85%), and classification 2 provided 

information regarding the level of severity by separating SpO2 > 5% below the baseline into 

three levels (Figure A. 2 and A. 3).  

 

Figure A. 2. Proportion of Feeding Time with Hypoxemic Events using Classification 1 

 

 

Figure A. 3. Proportion of Feeding Time with Hypoxemic Events using Classification 2 
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Problematic changes in HR are defined as (1) changes of HR > and < 5% baseline, (2) 

> and < 10% baseline, and (3) less than 100 bpm. Each cut-off describes the level of HR 

changes and can discriminate the differences between feedings, with the exception of less 

than 100 bpm because this cut-off parameter did not occur in either feeding (Figure A. 4). 

 

Figure A. 4. Proportion of Feeding Time with Problematic Changes in HR  

Using Three Cut-off Parameters 

 

Changes in Physiologic Stability 

Three methods were trialed to measure changes in physiologic stability over time as 

the infant becomes accustomed to bottle feeding or becomes fatigued. The hypothesis is that 

infant feeding behavior can change as the infant becomes fatigued and/or accustomed to the 

demands of the feeding; these changes can be affected by the feeding positions. That is, the 

infant who feeds in the HEL position, which may provide a better physiologic support during 

feeding than the HES position, may adjust better to physiologic challenges throughout the 

feeding; thus, physiologic stability would be maintained better in the HEL position. To 

examine changes in physiologic stability only during the feeding period, potentially 

confounding data (i.e., non-feeding and burp periods) were eliminated and bottle-in periods 
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were summed. Changes in physiologic stability during summed bottle-in periods were 

examined using three intervals of time: (1) 2-minute intervals with removal of the last period 

of data with less than 2 minutes; (2) three equal periods by dividing total bottle-in periods 

into three periods; and (3) 2-minute periods extracted each from initial, middle, and final 

third of feeding period (Figure A. 5). The three time intervals were selected by taking into 

account two exploratory questions: (1) what time epoch would reflect the most precise 

variability of physiologic variables across a given feeding, and (2) what periods of feeding 

time would allow for comparisons of changes in physiologic variables across feedings in 

terms of the different durations? 

 

Figure A. 5. Three Sets of Time Intervals 

Note. Numbers indicate seconds. *Feeding 1 does not meet the criteria that are 

required for this method. 

 

Each method offers advantages and disadvantages (Figure A. 6 and A. 7). In method 

1, the smaller epoch allows for more precision, but the larger number of intervals with longer 

feeding observations may make the pattern difficult to interpret. Further, the statistical 

approach needs to support comparisons of feedings of different durations. Method 2 ensures 

three time points during feeding, regardless of length of feeding time; however true 
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variability will be smoothed with longer feedings. Method 3 provides comparable interval 

lengths in each period across feedings, regardless of length of feeding time. However, 

meaningful data may be left out, and this method requires at least 6 minutes of bottle-in time 

to cross-compare each interval and avoid missing data.  

Method 1 

 

Method 2 

 

Method 3 

 

Figure A. 6. Changes in Physiologic Stability over Time in Feeding 1 

Note.  Feeding 1 does not meet the criteria that are needed for method 3. 
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Method 1 

 

Method 2 

 

Method 3 

 

Figure A. 7. Changes in Physiologic Stability over Time in Feeding 2 
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In summary, the overall data analysis plans are feasible and useful for examining the 

effects of feeding position. However, feeding 1 was not a valid feeding observation that may 

not represent infants’ physiologic responses to feeding. Furthermore, method 3 (to measure 

changes in physiologic stability) could not be trialed in feeding 1 because of insufficient 

length of feeding. Thus, the usefulness of all the data analysis plans to detect the differences 

between feedings that are considered valid remains unknown. Therefore, all the methods for 

data analysis, with modifications as needed, should be assessed further in order to validate 

the final study design.   

 

Conclusion 

Overall, data collection procedures are feasible; however some modifications will 

make the future study more valid. All measures for description of physiologic stability, such 

as mean, SD, CV, and physiologic distress events, may be useful for evaluating the 

effectiveness of feeding position. Each method to examine changes in physiologic stability 

offers advantages and disadvantages. However, this feasibility study is based on two feeding 

observations from one infant and one feeding observation was not valid. Thus, all measures 

for physiologic stability and all three methods for changes in physiologic stability across the 

feeding time need further assessment with more valid and increased number of feeding 

observations.  
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Appendix B. Study Consent 

 

University of North Carolina-Chapel Hill 

Parental Permission for a Minor Child to Participate in a Research Study  

Social Behavioral Form 
________________________________________________________________________ 

 

IRB Study # 11-1017  

Consent Form Version Date: 8/2/2011  

 

Title of Study: Bottle Feeding Outcomes in Very Preterm Infants: Effects of Positioning 

 

Principal Investigator: Jinhee Park, PhD(c), MSN, RN 

UNC-Chapel Hill Department: School of Nursing 

UNC-Chapel Hill Phone number: (919) 966-8418 

Email Address:   
Faculty Advisor: Suzanne Thoyre, PhD, RN 

Funding Source and/or Sponsor: Funded by Linda Waring Mathews Research Fund 

Scholarship from the UNC’s School of Nursing 

_________________________________________________________________ 

 

What are some general things you should know about research studies? 
You are being asked to allow your baby to take part in a research study.  To join the study is 

voluntary. You may refuse to give permission, or you may withdraw your permission for your baby to 

be in the study, for any reason.   

 

Research studies are designed to obtain new knowledge. This new information may help people in the 

future. Your baby may not receive any direct benefit from being in the research study. There also may 

be risks to being in research studies. 

 

Deciding not to be in the study or leaving the study before it is done will not affect you and your 

baby’s relationship with the researcher, your baby’s health care provider, or the University of North 

Carolina-Chapel Hill. If your baby is a patient with an illness, your baby does not have to be in the 

research study in order to receive health care. 

 

Details about this study are discussed below.  It is important that you understand this information so 

that you and your baby can make an informed choice about being in this research study.   

You will be given a copy of this permission form. You should ask the researchers named above, or 

staff members who may assist them, any questions you have about this study at any time. 

 

What is the purpose of this study?  
The purpose of this research study is to learn more about how we can help very early born preterm 

infants learn to feed safely.  

 

How many people will take part in this study? 
If your baby is in this study, your baby will be one of approximately 10 babies in this research study. 
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How long will your baby’s part in this study last?  
Your baby’s participation will be for two bottle feedings across one or two days, depending on how 

many times he or she is being fed by mouth at the time of the study. We will collect information 

about how your baby is breathing, heart rate, oxygenating, sucking, and swallowing while your baby 

is feeding in two different positions: a semi-upright in front position and a side-lying position. We 

will also collect information about how your infant is breathing, heart rate, and oxygenating while 

he/she is sleeping between feedings.  

 

What will happen if your baby takes part in the study? 
During the course of this study, the following will occur: We will plan to observe two bottle feedings 

that occur between 9 am and 6 pm on one day when your baby is early in their learning to feed. If 

your baby is not able to do two bottle feedings during this time, we will return the following day. For 

the two study feedings, a nurse will feed your baby with a bottle in two different positions: (1) one 

feeding in the semi-upright in front position (i.e. providing head-elevation at a 45 degree angle to the 

buttocks with baby facing the feeder) and (2) the second feeding in a side-lying position (i.e. 

providing head-elevation at 45 degree angle to buttocks placed on the side-lying position). The semi-

upright in front position has been typically used in Neonatal Intensive Care Units when preterm 

infants are fed and the head-elevated side-lying position has been recently recognized to potentially 

be effective for some preterm infants. We will start the study feeding only when/if your baby looks 

ready to eat and when you do not plan to breast feed your baby. We will feed your baby in both 

positions using the nursery’s techniques that aim to support your baby during feeding.  

 

On the day(s) of the study we will collect three types of information: medical record data, videotaped 

observational data, and physiologic data. We will write down information that is in your baby’s 

medical record to describe your baby’s age, size, and health condition. Second, we will videotape 

your baby while he or she is being fed and while he or she is sleeping between feedings. During the 

feeding, the camera will focus on your baby’s face and upper body so we can record your baby’s 

responses to the feeding. Prior to and after the feedings, the camera will focus on your baby’s entire 

body so that we can collect the general movement of his/her body during a time when they are calm. 

Third, we will collect information about your baby’s breathing, heart rate, oxygenation prior to, 

during (including information about sucking and swallowing) and after feeding. This will help us 

further understand your baby’s responses to these two feeding positions.  

 

Each feeding will be done at your baby’s bedside. Your baby's heart rate and oxygen will be 

monitored as they usually are in the nursery. Breathing will be measured with a stretchy band that is 

about 1 inch wide that wraps around your baby’s chest to measure breathing. The band is not tight 

and does not stick to your baby’s skin. To prevent potential risks to your baby’s skin irritation by the 

band, these bands will be covered with silky fabric and then placed on the top of your baby’s clothes. 

A small, flat microphone will be placed on your baby’s neck during the feeding so we can hear your 

baby swallowing and breathing. Hydrogel tape will be used to attach this microphone which will 

ensure no skin irritation when it is removed. If your baby has skin breakdown around the neck, the 

microphone will be placed on your baby’s upper chest. The sounds from the microphone will be 

transmitted to the videotape for later assessment of your baby’s feeding responses. For the bottle 

feedings, we will place a small pressure sensor inside the bottle that will detect your baby’s sucking. 

This sensor does not change the flow of milk from the bottle and your baby will not sense that it is 

there. If your baby has a feeding tube in their nose we will gently remove it, without untaping it, 

before the study feedings. The tube will be gently re-placed prior to your baby’s next tube feeding. 

After each feeding your baby will be settled in their bed as they usually are in the nursery.  
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The research team for data collection will include the principal investigator, Jinhee Park advised by 

Dr. Thoyre and two research assistants from the School of Nursing. Dr. Thoyre has 19 years 

experience as a neonatal nurse and 17 years experience studying preterm infant feeding. Jinhee Park 

is a neonatal nurse who has cared for preterm infants for over 3 years and has acquired techniques and 

approaches for studying preterm infants feeding by working with Dr. Thoyre since 2007. Since we 

want all babies to have similar support during the feeding, a nurse from the nursery will feed your 

baby during the study.  

 

What are the possible benefits from being in this study? 
The benefits to you and your baby of participating in this study may be that the research nurses will 

formally assess your baby’s feeding skills and be able to discuss these skills with you and your baby’s 

nurses. You will also be helping us to understand the effect that a baby’s position has on their ability 

to eat. 

 

What are the possible risks or discomforts involved from being in this study?   
There are no known risks or discomforts for you and your baby. The two feeding positions being 

compared in this study are commonly used positions for feeding preterm infants. Your baby's 

breathing, heart rate, and oxygenation will be monitored before, during, and after the feeding to 

ensure safety throughout the feeding study. Potential skin irritation by the microphone or breathing 

band will be avoided by attaching the microphone on your baby’s neck using hydrogel tape or 

covering the breathing band with silky fabric and then placing it on the top of your baby’s clothes. 

Before feeding your baby we will check with your baby’s nurse to make sure their feeding plan 

allows for bottle feeding at that time. We will not be changing what your baby eats. We do not want 

to interfere in any way with your visitation or your breastfeeding your baby. You may hold your baby 

between feedings as you normally would. You will not be able to feed your baby for the two study 

bottle feedings. However, you are welcome to sit near your baby while we trial the two feeding 

positions. In addition, there may be uncommon or previously unrecognized risks that might occur.  

 

How will your baby’s privacy be protected?   
No infants’ or mothers’ names will be identified in any report or publication about this study. All 

forms and files including videotapes will be identified with an ID number, rather than a name. When 

we report this information we will not report any names. A document connecting your baby’s name 

with the ID number will be kept in a locked file cabinet in Dr. Thoyre’s office in the School of 

Nursing. Videotapes will be stored on the secured server with a password protection. Upon 

completion of the study the file will be destroyed unless you agree to their use for educational 

purposes (see below). Although every effort will be made to keep research records private, there may 

be times when federal or state law requires the disclosure of such records, including personal 

information. This is very unlikely, but if disclosure is ever required, UNC-CH will take all steps 

allowable by law to protect the privacy of personal information. In some cases, your information in 

this research study could be reviewed by representatives of the University, research sponsors, or 

government agencies (for example, the FDA) for purposes such as quality control or safety. A copy of 

this consent form will be placed in your baby’s medical record.  

 

We would like to use video examples of your baby feeding to teach nurses and mothers in the future 

about common feeding issues for preterm infants. You are being asked for permission to use 

videotapes with your baby for teaching purposes. Please put your initials on one of the following 

options: 
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___Yes, I agree. Videotapes taken during this study of my baby can be used in the future for teaching 

purposes. 

___No, I do not agree. Videotapes taken during this study can only be used for this study's purposes. 

We would like to be able to contact you in the future for a follow-up research study to learn more 

about feeding issues for older preterm infants. You are being asked for permission for us to contact 

you in the future about another study. To do this we would need to save your address and phone 

number. Please put your initials on one of the following options: 

___Yes, I agree. My address and phone number can be saved and you may contact me to tell me 

about a future research study . 

___No, I do not agree. Please do not contact me about a future study and do not save my address and 

phone number. 

 

Will you or your baby receive anything for being in this study? 

You and your baby will not be paid for participating in this study but you will be given a photograph 

of your baby during the study in appreciation of you and your baby’s participation in the study. If you 

desire, after the study the research nurse will talk to you about what she has learned about your baby's 

feeding skills. 

 

What if you want to stop before your baby’s part in the study is complete? 
Your baby can withdraw from this study at any time, without penalty. The investigators also have the 

right to stop your baby’s participation at any time. This could be because your baby has had 

unexpected reaction, or has failed to follow instructions, or the entire study has been stopped. 

 

Will it cost you anything for your baby to be in this study? 
There will be no costs to you for participating.  

 

What if you have questions about this study? 
You have the right to ask, and have answered, any questions you may have about this research. If you 

have questions, complaints or concerns, you should contact the researchers listed on the first page of 

this form. 

 

What if you have questions about your baby’s rights as a research participant? 
All research on human volunteers is reviewed by a committee that works to protect your rights and 

welfare.  If you or your baby has questions or concerns about your baby’s rights as a research subject, 

or if you would like to obtain information or offer input, you may contact the Institutional Review 

Board at 919-966-3113 or by email to IRB_subjects@unc.edu. 

 

 

 

 

 

 

 

 

 

 

mailto:IRB_subjects@unc.edu
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

 

Title of Study: Bottle Feeding Outcomes in Very Preterm Infants: Effects of Positioning 

 

Principal Investigator: Jinhee Park, PhD(c), MSN, RN 

 

Parent’s Agreement:  

I have read the information provided above.  I have asked all the questions I have at this time.  

I voluntarily give permission to allow my child to participate in this research study. 

 

___________________________________________________ 

Printed Name of Research Participant (Child) 

 

___________________________________________________ _________________ 

Signature of Parent  Date 

 

___________________________________________________ 

Printed Name of Parent 

 

 

___________________________________________________ _________________ 

Signature of Research Team Member Obtaining Permission  Date 

 

___________________________________________________ 

Printed Name of Research Team Member Obtaining Permission 
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Appendix C. Intervention Protocol 

 

Standardized Feeding Protocol 

 

Pre-Feeding Preparation: 

1. Hold infant supported at shoulders with blanket and caregiver’s hands. 

2. Hold infant in a flexed body position (shoulders adducted, hips and knees flexed). 

3. Provide minimal movement of the infant’s body. 

4. Bring infant to an alert state and maintain the alert state (by vocalizing).  

 

General Feeding Strategies: 

1. Hold infant in left or right arm supported at the shoulders with blanket. 

2. Hold infant in a flexed body position (shoulders adducted, hips and knees flexed) 

3. Hold infant in either a HEL position or a HES position. 

o HEL position 

The caregiver should be seated comfortably creating a lap that provides head 

elevation at a 45 degree of angle to the buttocks. A pillow can be used to support 

head elevation. The infant will be placed in a side-lying position (i.e., one ear 

facing toward the ceiling and another ear facing the caregiver’s lap) on the 

caregiver’s lap, with the head at the knee end of the lap and bottom against the 

caregiver’s stomach. The infant’s head and trunk should be in a natural straight 

alignment, and the infant’s head and neck should be supported by the caregiver’s 

hand in a neutral flexion (chin tilted down slightly, not with the head extended or 

with excessive flexion). 

 

 
 

o HES position 

The infant sits in a reclining position at a 45 degree of angle to the buttocks on the 

caregiver’s lap. The caregiver supports the infant’s head, neck and trunk with one 

hand while holding the bottle with the other. The infant’s head and trunk should 

be in a natural straight alignment, and the infant’s head and neck should be 

supported by the caregiver’s hand in a neutral flexion (chin tilted down slightly, 

not with the head extended or with excessive flexion). 
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4. Allow minimal movement of the infant’s body. 

5. Avoid any prodding techniques to encourage sucking. 

6. Avoid any movements of the nipple that would increase the milk flow from the 

nipple. 

 

Contingently Structured Feeding Strategies: 

1. Infant is prepared for feeding by stroking the infant’s lips with the bottle nipple. 

2. Nipple placed into infant’s mouth at outset of each feeding contingent upon infant 

cues of readiness to feed (infant opens mouth and descends tongue in response to 

presentation of the nipple, arms flexed and close in to the body)  

3. Prevent prolonged breathing pauses.  

o When infant has not had sufficient breaths (number depends on the infant’s 

baseline respiratory rate), move the nipple of the bottle to the roof of the infant’s 

mouth to stop the infant’s sucking and cue the infant to breathe.  

o If infant does not respond with cessation of sucking and resumption of breathing, 

remove the nipple from the infant’s mouth. 

o Resume feeding when infant provides cues of readiness to feed and is 

physiologically stable. 

4. Prevent fatigue prior to and during the feeding. 

o When infant displays early signs of fatigue (infant body tone decreasing, milk 

coming out of infant’s mouth, and prolonged sucking pauses), remove the nipple 

from the infant’s mouth, minimize movement of the infant and rest the infant. 

o Resume feeding when infant provides cues of readiness to feed and is 

physiologically stable. 

5. Maintain the infant’s engagement in feeding. 

o Respond to cues of physiologic or behavioral distress (head moving away from 

the nipple, arms extending outward, color change, noisy respirations, coughing, 

choking, double swallowing, prolonged apnea, desaturation) and cues of fatigue 

(infant body tone decreasing, milk coming out of the infant’s mouth, and 

prolonged sucking pauses) by removing the nipple. 

o Resume feeding when infant provides cues of readiness to feed and is 

physiologically stable. 

6. Discontinue feeding if the infant has taken the prescribed amount of milk, if 30 

minutes have elapsed from the first time the bottle was placed in the infant’s mouth, 

or if the infant does not re-initiate feeding after the feeding has been paused.
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Appendix D. Neuro-Biological Risk Score (NBRS) 

 

Neuro-Biological Risk Score (NBRS)  

Total score: __________ (≤ 4 low risk; 5-7 intermediate risk; ≥8 high risk)                               

Points 0 1 2 4 

Ventilation No mechanical ventilation < 7 days 8-28 days > 28 days 

PH Never < 7.15 

<7.15 for < 1 hr (<7.15 for 

2x) or < 7.15 all 
respiratory, any duration  

< 7.15 metabolic for > 
1hr (<7.15 for 2x) or < 

7.00 metabolic, any 

duration 

Cardiorespiratory arrest 

Seizures None 
Controlled on one drug 

and normal interictal EEG 

Not controlled on one 
drug or abnormal 

interictal EEG 

Status epilepticus > 12 

hr 

Intraventricul

ar hemorrhage 
None Germinal matrix only 

Blood in one or both 

ventricles 

Intra parenchymal 
blood or development 

of overt hydrocephalus 

Periventricula

r leukomalacia 
None 

Questionable changes that 

resolve 

Moderate or definite 

changes that resolve 

Cyst formation or 
cerebral atrophy with 

large ventricles 

Infection 
None or antibiotics for 

possibility of infection 
with negative cultures 

Highly suspicious or 
documented infection 

without changes in blood 

pressure 

Septic shock 

(documented sepsis and 
hypotension) 

Meningitis 

Hypoglycemia No glucose < 30 mg/dL 
< 30 mg/dL asymptomatic 

and < 6 hr duration 

< 30 mg/dL 

asymptomatic and > 6 hr 

or symptomatic any 

duration 

< 30 mg/dL 
> 24 hr and 

symptomatic 

 

Note. Adapted from “Nursery Neurobiologic Risk Score: Levels of Risk and Relationships with Nonmedical 

Factors” by J. E. Brazy et al., 1993, Developmental and Behavioral Pediatrics, 14, p. 376. 
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Appendix E. Diagnostic Criteria for Bronchopulmonary Dysplasia 

 

 

Diagnostic Criteria for Bronchopulmonary Dysplasia 

Gestational Age < 32 weeks 

Time point of assessment 36 wk PMA or discharge to home, whichever comes first 

None Treatment with oxygen > 21% for less than 28 day, no supplemental oxygen 

therapy at 36 wk PMA or discharge, whichever comes first 

Mild BPD Treatment with oxygen > 21% for at least 28 day plus breathing room air at 

36 wk PMA or discharge, whichever comes first 

Moderate BPD Treatment with oxygen > 21% for at least 28 day plus need for < 30% 

oxygen at 36 wk PMA or discharge, whichever comes first 

Severe BPD Treatment with oxygen > 21% for at least 28 day plus need for ≥ 30% 

oxygen and/or positive pressure (positive-pressure ventilation or nasal 

continuous positive airway pressure) at 36 wk PMA or discharge, whichever 

comes first 

Note. Adapted from “Bronchopulmonary Dysplasia” by A. H. Jobe and E. Bancalari, 2001, American Journal 

of Respiratory and Critical Care Medicine, 163, p. 1,726. 
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Appendix F. History of Hospitalization Form  

ENT DATE   /     / VER DATE   /     / 

INITIAL INITIAL 

 

History of Hospitalization 

 
SUBJECT ID ___________ 

Today’s date (e.g., 05/15/2010) ___/___/___ 

Research Team today ___________________________________________ 

 

GENERAL CHARACTERISTICS 

 

Infant’s Gender:  1-M           0-F               

 

Mother’s race: 1-African-American    2-Euro-American    3-Latino     

            4-American Indian     5-Other  (specify) ___________ 

 

Father’s race: 1-African-American    2-Euro-American    3-Latino     

           4-American Indian    5-Other  (specify) ___________  

 

BIRTH HISTORY 

 

MOTHER: 

 

ObstetEDC ___________G ___ P___  

# Fullterm ___ # Preterm ___ # AB ___ # Living Children ___ 

 

Pregnancy complications _________________________________________________________ 

Labor/delivery Complications______________________________________________________ 

 

INFANT: 

 

Apgar: 1” ________ 5” _________                 

Birthweight (g) __________           

Size (Circle one)     LGA    AGA    SGA 

HC (cm) _________  Length (cm) _________     

Gestational Age at Birth ______________  

How was gestational age determined? ________________________________ 

GA by Ballard _____________wks. 

 

PMA at discharge: ___________        Weight at discharge: ___________ 

 

Infant Abnormalities _____________________________________________________________ 
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RESPIRATORY  

         

Treatment: 

Ventilator    #days _______ 

CPAP     #days _______ 

Supplemental O2 and/or airflows #days _______ 

 

Comments/Diagnoses____________________________________________________________ 

 

CARDIOVASCULAR 

 

PDA  Y (1) N (0)   Treated Y (1)   N (0) 

CHF  Y (1) N (0) 

Other _________________________________________________________________________ 

 

NEUROLOGICAL 

 

IVH  Y (1) N (0)  IVH Grade (1-4) ________                   PVL    Y (1)  N(0) 

 

Comments/Findings/US__________________________________________________________ 

 

OTHERS 

 

NEC   Y (1) N (0)  

Comments_____________________________________________________________________ 

______________________________________________________________________________ 

 

INFECTIONS  Y (1) N (0)  

Comments_____________________________________________________________________ 

______________________________________________________________________________ 

 

JAUNDICE  Y (1) N (0)  

Comments_____________________________________________________________________ 

______________________________________________________________________________ 

 

METABOLIC  Y (1) N (0)  

Comments_____________________________________________________________________ 

______________________________________________________________________________ 

 

SURGERY  Y (1) N (0)  

Comments_____________________________________________________________________ 

______________________________________________________________________________ 
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NEUROBIOLOGICAL RISK SCORE (NBRS) =  ____ 

 

Points 0 1 2 4 
Ventilation No mechanical 

ventilation 

< 7 days 8-28 days > 28 days 

PH Never < 7.15 <7.15 for < 1 hr 

(<7.15 for 2x) or < 

7.15 all respiratory, 

any duration  

< 7.15 metabolic 

for > 1hr (<7.15 for 

2x) or < 7.00 

metabolic, any 

duration 

Cardiorespiratory 

arrest 

Seizures None Controlled on one 

drug and normal 

interictal EEG 

Not controlled on 

one drug or 

abnormal interictal 

EEG 

Status epilepticus > 

12 hr 

Intraventricular 

hemorrhage 

None Germinal matrix 

only 

Blood in one or 

both ventricles 

Intra parenchymal 

blood or 

development of 

overt 

hydrocephalus 

Periventricular 

leukomalacia 

None Questionable 

changes that 

resolve 

Moderate or 

definite changes 

that resolve 

Cyst formation or 

cerebral atrophy 

with large 

ventricles 

Infection None or antibiotics 

for possibility of 

infection with 

negative cultures 

Highly suspicious 

or documented 

infection without 

changes in blood 

pressure 

Septic shock 

(documented sepsis 

and hypotension) 

Meningitis 

Hypoglycemia No glucose < 30 

mg/dL 

< 30 mg/dL 

asymptomatic and 

< 6 hr duration 

< 30 mg/dL 

asymptomatic and 

> 6 hr or 

symptomatic any 

duration 

< 30 mg/dL 

> 24 hr and 

symptomatic 

 
 

 

SEVERITY OF LUNG DISEASE =   _______  

 

*Time point of 

assessment 
36 wk PMA or discharge to home, whichever comes first 

None Treatment with oxygen > 21% for less than 28 day, no supplemental oxygen 

therapy at 36 wk PMA or discharge, whichever comes first 

Mild BPD Treatment with oxygen > 21% for at least 28 day plus breathing room air at 36 wk 

PMA or discharge, whichever comes first 

Moderate BPD Treatment with oxygen > 21% for at least 28 day plus need for < 30% oxygen at 36 

wk PMA or discharge, whichever comes first 

Severe BPD Treatment with oxygen > 21% for at least 28 day plus need for ≥ 30% oxygen 

and/or positive pressure (positive-pressure ventilation or nasal continuous positive 

airway pressure) at 36 wk PMA or discharge, whichever comes first 
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Appendix G. Feeding Data Collection Form 

ENT DATE    /     /     VER DATE    /     / 

INITITAL INITIAL 

 

Feeding Data Collection Form 
 

SUBJECT ID ___________ 
Today’s date (e.g., 05/15/2010) ___/___/___ 

Research Team today ___________________________________________ 

 

FEEDING HISTORY 

Date of first gavage feeding ___/___/___        

Day of Life_______    NGWT(g) _________       NGPCA ___________     

Date of first PO feeding ___/___/___    

Day of Life_______    PO1WT(g) ________  PO1PCA __________ 

Date of full PO feeding ___/___/___ 

Day of Life_______    FULLWT(g) ________  FULLPCA __________ 

 

Date of onset BM/Formula History Date of onset BM/Formula History 

    

    

    

    

    

    

    
 

EXPNIPP (# of cumulative oral feedings from either bottle or breast since first oral feeding) 

= ________________ 

 
  
Feeding 

Time 

DATE      /       / DATE      /       / DATE      /       / 

Milk taken by 

mouth 

Milk taken by 

tube 

Milk taken by 

mouth 

Milk taken by 

tube 

Milk taken by 

mouth 

Milk taken by 

tube 

2AM       

5AM       

8AM       

11AM       

2PM       

5PM       

8PM       

11PM       

 DATE      /       / DATE      /       / DATE      /       / 

2AM       

5AM       

8AM       

11AM       

2PM       

5PM       

8PM       

11PM       
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Feeding 

Time 

DATE      /       / DATE      /       / DATE      /       / 

By mouth By tube By mouth By tube By mouth By tube 

2AM       

5AM       

8AM       

11AM       

2PM       

5PM       

8PM       

11PM       

 DATE      /       / DATE      /       / DATE      /       / 

2AM       

5AM       

8AM       

11AM       

2PM       

5PM       

8PM       

11PM       

 DATE      /       / DATE      /       / DATE      /       / 

2AM       

5AM       

8AM       

11AM       

2PM       

5PM       

8PM       

11PM       

 DATE      /       / DATE      /       / DATE      /       / 

2AM       

5AM       

8AM       

11AM       

2PM       

5PM       

8PM       

11PM       

 DATE      /       / DATE      /       / DATE      /       / 

2AM       

5AM       

8AM       

11AM       

2PM       

5PM       

8PM       

11PM       

 DATE      /       / DATE      /       / DATE      /       / 

2AM       

5AM       

8AM       

11AM       

2PM       

5PM       

8PM       

11PM       
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SUBJECT CHARACTERISTICS AT THE STUDY 
 

Recorded apnea in past 24 hours:  ___________ 

Recorded bradycardia in past 24 hours: ______ 

Last dose of theophylline or caffeine:  amount ________time given ______ 

Recorded clinical events that affect oral feeding skills (e.g., eye exam) in past 24 hours:  

Y (1) _______________ N (0) 

Supplemental Oxygen and/or airflow Prior to Feeding (O2DOS)       

Y (1): Amount ________ N (0):  Setting ______ 

Last recorded hematocrit________ 

Study weight (STUWG): ________ gm   Study PMA (STUPMA): _________     

 

STUDY FEEDING 1: 
 

Feeding Position:  HES / HEL               

Prescribed feeding today: amount __________   formula/MBM __________ 

Auxiliary Temperature:  ______         

Supplemental 02 and/or airflow during feeding 1: Y(1)  No(0) If Yes, Amount:   

Initial Bottle in Time:      Final Bottle out Time:     

Total Feeding Time:     

Amount Consumed at 5 minute (mL):    Amount Consumed (mL):    

 

Overall Milk Transfer (%, amount consumed/prescribed milk * 100):    

Efficiency (mL/min, amount consumed/total feeding time):    

Proficiency (%, amount consumed at 5 minute/prescribed milk * 100):    

 

 Notes: 

 

Time Events 
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STUDY FEEDING 2: 
 

Feeding Position:  HES / HEL               

Prescribed feeding today: amount __________   formula/MBM __________ 

Auxiliary Temperature:  ______         

Supplemental 02 and/or airflow during feeding 1: Y(1)  No(0) If Yes, Amount:   

Initial Bottle in Time:      Final Bottle out Time:     

Total Feeding Time:     

Amount Consumed at 5 minute (mL):    Amount Consumed (mL):    

 

Overall Milk Transfer (%, amount consumed/prescribed milk * 100):    

Efficiency (mL/min, amount consumed/total feeding time):    

Proficiency (%, amount consumed at 5 minute/prescribed milk * 100):    

   

Notes: 

 

Time Events 
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Appendix H. Intervention Fidelity 

Modified Dynamic-Early Feeding Skills Coding Scheme (D-EFS) 
Categories Description 

1.  Caregiver Feeding Actions  

1.1. Nipple  in Nipple in: coded when nipple is fully seated in mouth; 

modified as infant’s readiness to feed and preparation provided 

for a feeding. 

 

Ready to feed- infant is ready for participating in the 

feeding (it is different from hunger cues—e.g., crying or 

fussing, just sucking on lips, tongue, or figure) 

:opening mouth to seek the nipple, moving head toward the 

nipple, bringing both arms close to the mouth, having 

flexed & toned body or facial tone for feeding activity 

 

Not ready to feed- infant is not showing any initiation cues 

for participating in the feeding 

: infant remains a sleep, tired, passive, or does not take the 

nipple voluntarily or may be accept the nipple but sucking 

is weak and intermittent or actively avoiding the feeding, 

using energy to move away from nipple, to signal the 

caregiver to stop, pushing away, pulling away, turning 

away 

 

Unable to determine (UTD) readiness- when the video 

angle is not good enough or this moment went so fast to 

figure out. 

 

Prepared for a feeding - caregiver inducing rooting 

responses by touching the nipple, finger, or pacifier across 

the infant’s lips or cheeks. 

 

Not prepared for a feeding- caregiver not inducing rooting 

responses. 

 

Unable to determine (UTD) preparation- when the video 

angle is not good enough or this moment went so fast to 

figure out. 

 

 

1.2.  Nipple out Nipple out; code when space is visible between the infant’s lips 

and the bottle nipple 

 

1.3. Stimulating infant sucking Any movement of the nipple by the feeder that may stimulate a 

suck; intention is not assumed  

: the feeder may be adjusting the nipple to hold the bottle better 

or to seat the nipple on the tongue better, may occur in the 

process of  checking to see if the infant is drooling or the 

amount of milk left in the bottle, or trying to arouse the infant 

or stimulate the infant to engage in sucking by moving the 

nipple (do not code when the bottle is moving by the infant’s 

sucking) 
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*Note. From the infant’s perspective, the nipple has moved in 
the mouth and this reflexively may stimulate sucking; it may 

also cause fluid to drip into the mouth placing a demand on the 
infant to manage the fluid. 

 

*Note. When the caregiver moves the nipple to reduce the 
vacuum pressure in the mouth in order to take the nipple out, 

do not code “stimulating infant sucking”.  

 

1.4. Limiting milk flow Moving nipple downward (or to side if infant is side-lying) 

with enough time allowing for infants to breath and swallow 

accumulated milk in the oral cavity. 

: limits bottle nipple from dripping milk into infant’s mouth; 

breaks infant’s seal on nipple/stop sucking; the changed angle 

of the milk in the bottle against the gravity. 

 

*Note. If after the nipple is tip back to limit the milk flow the 

caregiver tips the nipple back up after the infant has initiated 

sucking then it is just limiting milk flow ( do not code for 
“stimulating infant sucking” when the nipple is back up). 

If the caregiver tips the nipple back up before the infant has 

initiated sucking, then there is stimulating sucking after the 
limiting milk flow (code for “ stimulating infant sucking” when 

the nipple is back up) 

2. Infant Position  

2.1. Non feeding position 

 

 

 

2.1. Supine position  

        

Position when the nipple is not placed in the infant’s mouth. 

(e.g., during burping and break or during pre-and post-feeding 

period) 

 

Infant placed in a supine position on the caregiver’s lap with 

upper forehead facing the ceiling and the upper body elevated 

at least a 45 degree angle; the infant’s head, chin, and sternum 

in a straight alignment with chin tilted down slightly. 

 

2.2. Side-lying position 

 

 

 

 

2.3. Not in supine position 

 

 

2.4. Not in side-lying position 

 

 

2.5. Out of screen 

Infant placed in a side-lying position on the caregiver’s lap 

with one ear facing the ceiling and the upper body elevated at 

least a 45 degree angle; the infant’s head, chin, and sternum in 

a straight alignment with chin tilted down slightly. 

 

Infant placed in a supine position but the infant’s head turns 

toward the shoulder; the infant’s chin elevated. 

 

Infant placed in a side-lying position but the infant’s head turns 

toward the shoulder; the infant’s chin elevated. 

 

Code when the infant’s position changed after the angle of the 

video is back; not code  when the infant’s position remained 

the same after the angle of the video is back (need to choose 

other codes under infant position). 

 

Note. Revised from “Dynamic Early Feeding Skills Coding Scheme” developed by S. Thoyre (2009), with 

permission. 
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Appendix I. Protocol for Respiratory Data Management 

 

Protocol for Respiration Analysis Using the Acknowlege 4.1. 
 

Definitions of Respiratory Characteristics 

 Intervals between breaths: distance between a peak and the next peak 

 Breath duration: distance between a trough to the next trough 

 Breath amplitude: distance between a trough and the next peak 
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STEP 1. Converting a biolab file (.mw) into a acqKnowledge file (.acq)  

 

1. Open the file collected with the BioLab 3.0.4.  

2. In the configuration window, cancel the channels except for respiration by 

clicking ON/OFF button on the left side of each channel. 

3. Click VIEW and you can see the respiration channel only. 

4. Click SAVE ALL TEXT to save the respiration channel as a text file. Save this 

with the same name plus _resp (i.e., xxxxx_resp.txt). 

5. Open the AcqKnowledge 4.1.  

6. Click FILE > OPEN and select the text file you saved from the BioLab program 

7. Put wave data start on the line (3), sample rate interval (1 milisecs), column 

delimiter (tab) when the window pops up to ask these. *Make sure the line data 

start by opening the text file with word pad 

8. Two channels will be opened: Channel 0 (Time) and Channel 1 (Respiration) 

9. Save this waveform file as xxxxx_resp.acq  

 

 

STEP 2. Mark the peak and trough on the respiratory waveform 

 

File preparation 

1. Open the acqknowledge file (xxxxx_resp.acq) that converted from the BioLab. 

2. Take off the visibility of channel 0 on the screen by clicking channel icon with 

holding down ALT key in the upper part of graph display. 

3. When you see only channel 1(Respiration), duplicate the respiration channel on 

channel 2 to work on (EDIT<DUPLICATE WAVEFORM) 

4. Take off the visibility of original waveform and then you can only see the 

duplicated respiration channel on the channel 2. 

5. Filter the waveform to adjust the file adequately to mark peaks and troughs 

(TRANSFORM<DIGITAL FILTER<FIR<HIGH PASS) and fix the frequency 

cutoff at “0.5” Hz then click OK. Make sure if the frequency cutoff is too high, the 

peak will be swashed down. 

6. Smooth the waveform to remove noisy points on the waveform 

(TRANSFORM<SMOOTHING) 

7. In the field for smoothing factor, put the number that multiply 0.1 by the sample 

rate of the waveform (i.e., sampling rate * 0.1=1000*0.1=100) and choose mean 

value and transform entire waveform. 

8. Resample the waveform to appropriate rate for respiration. It would be 

recommended to use the number that multiply maximum signal of respiration of 

preterm infants by 4 (i.e., 60 per minute * 4 = 240). So, resample to 250. 

(TRANSFORM<RESAMPLE WAVEFORM) 
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Mark the peak and trough 

 

Run cycle detector (ANALYSIS<FIND CYCLE or Click  on the toolbar). Set up the 

dialog box as the below. Make sure the cursor need to be at the beginning of the 

waveform before running cycle detector.  

 

 

  
 

 

Note.  

You can move cursor or make selection on the waveform using I-beam tool  on the 

toolbar. 

You can autoscale the waveform vertically using  on the toolbar. 

You can autoscale the waveform vertically using  on the toolbar. 

 

 

 

 

Next, choose the selection tab and set it up as the below. 
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Then, click “PREVIEW” to see if the peaks and troughs are captured adequately. Play 

with the data until a majority of peaks are captured by adjusting threshold. 

 

 
 

 

 

 

 

 



 

219 

 

When you are satisfied with the peaks and troughs captured, choose output tab to mark 

the peaks and troughs on the waveform and set it up as the below. 

 

 
 

Then, you can see the arrow marked on the waveform.  
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Clean artifacts by removing and adding marks manually.  

To remove the mark, click event zap tool and put the cursor on the mark you want to 

remove and click.  

To add the mark, click and hold event tool  and choose event type 

(GENERAL<MINIMUM to add the peak and GENERAL<MAXIMUM to add the 

trough). Then, put the cursor on the point where you wan to add the mark and click. 

To move the mark, click  and put the cursor on the mark that you want to move and 

click. When it turns red, you can move the mark with holding down ALT key. 

Then, you can have the cleaned waveform with all the marks for peaks and troughs. 
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To check if all peaks and troughs that you really want are marked, click event palette tool 

 or go DISPLAY<SHOW<EVENT PALETTE. Sometimes one peak or trough  is 

double marked even if we cannot see this on the screen. Thus, you  need to go over all the 

marks and clean  them manually if it is doubled using event palette tool. 
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STEP 3. Export the time and value of each peak and trough into excel file 

To export the time and voltage of each peak, select Time and Max on the measurement 

box and select channel 2.   

 

 
 

Next, run cycle detector, again. Set up the dialog box as below at this time (i.e., select 

events and maximum to maximum). Make sure the cursor need to be at the beginning of 

the waveform before running cycle detector. 
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Under selection tab, set up as below. 

 

 
 

On Events under Ouput tab, uncheck the output events because we don’t want to mark 

peaks and troughs on the waveform at this time. 
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Under measurement tab, set it up as the below. Check “save measurements into excel 

spreadsheet file”. Then, click “FIND ALL CYCLES”. If you also want to have a 

waveform on subsequent channel for time and voltage of each peak, then check “display 

measurement values” as channels in graph.  

 

 
 

Now, you have an excel spread sheet to have time and voltage of each peak. Save this 

excel file for analysis. 
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When you check “display measurement values” as channels in graph, you will also have 

the subsequent graph on the window. 

 

 
 

To export the time and voltage of each trough, select Time and Min on the measurement 

box and select channel 2.  
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Next, run cycle detector, again. Set up the dialog box as below at this time (i.e., select 

events and minimum to minimum). Make sure the cursor need to be at the beginning of 

the waveform before running cycle detector. Set up the selection tab and output tab as 

same as the one when you generate time and voltage for each peak. Click “FIND ALL 

CYCLES”. 
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Now, you have an excel spread sheet to have time and voltage of each trough. Save this 

excel file for analysis. Merge the excel files of peak and trough for analysis. 

 

 
 

Merge the excel files of peak and trough and save it for analysis. 

 

 
 

 
Created and updated by Jinhee Park on 4/13/2011 
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Appendix J. Rules to Mark Peaks and Troughs on Respiratory Waveforms 

 

 

How to mark the peak and valley on the respiratory waveform 
 

Variation of Breathing when not Sucking 

 

* All breathing signals should be confirmed by listening to the breathing sounds on video 

clips 

 

1. Uninterrupted/ideal Breaths 

 
 Peak=the point of maximum chest circumference, between inspiration and 

expiration 

 Valley=the point of minimum chest circumference, between inspiration and 

expiration 

 

2. Gasp or big breaths: mark them as a valid breath because it is also a respiratory 

effort to achieve oxygen. 

 Peak=the point of maximum chest circumference, between inspiration and 

expiration 

 Valley=the point of minimum chest circumference, between inspiration and 

expiration 
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3. Breaths with double peaks  

If you clearly hear separate inspiration and expiration sound for each breath; they 

have wide enough intervals between peaks to achieve air flow from each breath, then 

mark each peak and valley based on the rules for ideal breaths. 

 

 
 

If not, consider them as one breath. 

 Peak= the highest point 

 Valley= the minimum point between inspiration and expiration 

 

 
 

4. Breaths with multiple shallow peaks (by  several shallow inspirations and 

expirations)  

Mark it as one breath. 

 Peak= the highest point 

 Valley= the minimum point between inspiration and expiration 
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Variations of Breathing during Sucking Bursts 

 

*All interrupted breathing should be confirmed by listening to the breathing and 

swallowing sounds on the video clips. 

 

1. Interrupted inspiration 

 Peak=the point when the inspiration is completed (no more increasing pattern 

follow-highest point) 

 Valley=the point at the end of expiration  

 For breaths with the double peaks, apply the same rule for breaths with double 

peaks when not sucking in order to decide if they need to be marked as one breath 

or not. 

 

Note.  

Sw=swallow sound 

S= the start of breathing burst 

SS= the start of breathing burst right after the bottle is inserted 

F= the end of breathing burst 

 

 

 

 
 

 

 

  

Sw 

  

Sw 

 Sw 

 Sw 

 Sw 
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2. Interrupted expiration 

 Peak=the point at the end of inspiration (highest point) 

 Valley=the point when the expiration is completed (no more decreasing pattern 

follow) 

 

Note.  

Sw=swallow sound 

S= the start of breathing burst 

SS= the start of breathing burst right after the bottle is inserted 

F= the end of breathing burst 

 

 

 

 
 

 

 Sw 

 Sw 

 Sw 
 Sw 

 Sw 

 Sw  Sw 
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3. Interrupted peak (at the end of inspiration/ the start of expiration)  

 Peak=the point of maximum chest circumference, between inspiration and 

expiration 

 Valley=the point of minimum chest circumference, between inspiration and 

expiration 

 

Note.  

Sw=swallow sound 

S= the start of breathing burst 

SS= the start of breathing burst right after the bottle is inserted 

F= the end of breathing burst 

 

If you hear inspiration and expiration sound before and after swallowing sound, then 

mark it as a breath. 

 

 
 

 

 

 Sw  Sw 

 Sw 

 Sw  Sw 

 Sw 
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If you do not hear any breathing sound during this period, then do not mark it as a breath. 

 

 

 

 
 

 

 

 
 

5. Interrupted breaths more than 3 seconds 

 

Do not mark the peak during breathing pause 

 

Note.  

Sw=swallow sound 

S= the start of breathing burst 

SS= the start of breathing burst right after the bottle is inserted 

F= the end of breathing burst 

 

 
 

 
 

 
Created and updated by Jinhee Park on 11/24/2011 

Sucking 

Breathing pause ≥ 3 seconds 

 Sw 
 Sw 

 Sw 
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Appendix K. Plots of Individual Heart Rate using Each Method 

 

 

1. Method 1: dividing the entire bottle-in periods into three equal periods 
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Mean Heart Rate in the HES position 
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SD of Heart Rate in the HEL position 
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SD of Heart Rate in the HES position 
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CV of Heart Rate in the HEL position 
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CV of Heart Rate in the HES position 
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2. Method 2: extracting 2-minute periods from the initial, middle, and final 

third of the bottle-in periods 

 

Mean Heart Rate in the HEL position 
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Mean Heart Rate in the HES position 
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SD of Heart Rate in the HEL position 
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SD of Heart Rate in the HES position 
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CV of Heart Rate in the HEL position 
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CV of Heart Rate in the HES position 
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3. Method 3: successive 2 minutes during the first 6-minute bottle-in periods 

 

Mean Heart Rate in the HEL position 
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Mean Heart Rate in the HES position 
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SD of Heart Rate in the HEL position 
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SD of Heart Rate in the HES position 
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CV of Heart Rate in the HEL position 

 

 

 

CV of Heart Rate in the HES position 
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Appendix L. Plots of Individual Oxygen Saturation using Each Method 

 

 

1. Method 1: dividing the entire bottle-in periods into three equal periods 
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Mean SpO2 in the HES position 
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SD of SpO2 in the HEL position 
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SD of SpO2 in the HES position 
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CV of SpO2 in the HEL position 
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CV of SpO2 in the HES position 
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2. Method 2: extracting 2-minute periods from the initial, middle, and final 

third of the bottle-in periods 

 

Mean SpO2 in the HEL position 
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Mean SpO2 in the HES position 
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SD of SpO2 in the HEL position 
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SD of SpO2 in the HES position 
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CV of SpO2 in the HEL position 
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CV of SpO2 in the HES position 
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3. Method 3: successive 2 minutes during the first 6-minute bottle-in periods 

 

Mean SpO2 in the HEL position 
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Mean SpO2 in the HES position 
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SD of SpO2 in the HEL position 
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SD of SpO2 in the HES position 
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CV of SpO2 in the HEL position 

 

C
V

 o
f 

S
p
O

2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Time

Pre-feeding 0-2 minutes 2-4 minutes 4-6 minutes

POSITION=HEL position

Subject01 Subject02 Subject03
Subject04 Subject05 Subject06

 
 

 

CV of SpO2 in the HES position 
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Appendix M. Plots of Individual Respiratory Characteristics  

 

1. Interval between Breaths 
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SD of Intervals between Breaths in the HEL position 
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CV of Intervals between Breaths in the HEL position 
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2. Breath Duration 

 

Mean Breath Durations in the HEL position 
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SD of Breath Durations in the HEL position 
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CV of Breath Durations in the HEL position 
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3. Breath Amplitude 

 

Mean Breath Amplitudes in the HEL position 
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SD of Breath Amplitudes in the HEL position 
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CV of Breath Amplitudes in the HEL position 
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Appendix N. Protocol to Set up Infant Feeding Data Collection Cart 

STEP 1. PREPARATION 

 

Check out everything that belongs on the feeding cart. 

If there is missing or broken items, purchase or make the new one. 

Before going to the nursery, disassemble all equipment from the cart and clean them all with 

disinfectant wipes, then re-assemble them. 

Equipment  Laptop & wireless mouse  

 BioNex Chassis 

 Masimo Radical-7 Pulse Co-Oximeter 

 Panasonic HDC-TM700 

 Samba 201 Micro Pressure Measurement System  

Instrument  <Primary> 

Sucking  Feeding bottle  

 Storage bottle  

 Transducer sensor 

 Measured bibs (2x) 

Respiration  Piezo Respiration band  

 Pulse oximeter cable & adhesive sensor  

 Adhesive placement wraps (Red) 

Hear rate  EGC leads 

 Wet electrodes  

Swallowing  Microphone set (mic, power supply, earphone, & 2 cables) 

 Hydro gel tape 

 Double sided tape 

Others  Stopwatch 

 Alcohol swabs  

 Zip bag 

 Tool bag (tapes, screwdrivers, cable ties, 2 AA batteries, 2 9v batteries, 

scissors, and hemostats) 

 Extension cord 

  <Extra> 

  Feeding bottle 

 Measured bibs 

 Piezo Respiration band 

 Wet electrodes 

 Pulse oximeter adhesive sensor 

 Pulse oximeter replacement wrap 

 Hydrogel tape and double sided tape for the mic 

File folder  History of Hospitalization & Feeding Data Collection Form with stamp 

from IRB 

 Protocols (intervention & data collection) with stamp from IRB 

 Informed consent form with Stamp from IRB 

 HIPPA authorization form with Stamp from IRB 
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STEP 2. SET UP THE BIONEX CHASSIS  

 

Connect the BioNex Chassis to power 

Connect to power, using the DC IN post on the back panel of the BioNex Chassis. Press the 

power button on the back panel of the BioNex Chassis. Make sure the green power light on the 

front panel is on. 

 

Connect the BioNex Chassis to the Lenovo laptop. 

Use the USB cable to connect the BioNex Chassis to the USB port on the laptop.  

 

Connect the equipment to the BioNex Chassis  

 

Panasonic HDC-TM700 

 

: Using AV multi-cable, connect video cable (Yellow) to the COM port on the video amplifier 

and connect audio cables (Red and white) to either R or L on the video amplifier. Connect the 

other side of the cable to the AV multi connecter on the right bottom of the Panasonic HDC-

TM700. 
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Masimo Radical-7 pulse co-oximeter 

: Using analog output cable, connect the two mono jack to channel 1 (pulse wave), channel 2 

(SpO2) on the 4-channel pass-thru amplifier. Connect the serial output cable to the analog output 

connecter on the back of the Masimo Radical-7 pulse co-oximeter.  

 

                     
 

Connect the pulse oximeter cable and sensor to Masimo pulse oximeter. 
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Respiratory effort system 

: Connect the respiration band to the first channel (respiration) on the transducer amplifier. 
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Samba 201 micro pressure measurement system  

: Connect the analog output cable from micro pressure measurement system to channel 3 

(sucking) on the 4-channel pass-thru amplifier.  

 

                              
 

Connect the transducer to the optical connector on the side of the Samba 201 control unit.  Note. 

The caps to protect the optical sensor need to be uncovered and re-caped after the completion of 

data collection. 
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Audio Trainer  

: Connect the microphone to the camcorder (mic-see 43 on the picture at the bottom of this page) 

to transmit the sound into the video clips.  

 

                         
 

To send the microphone signal out, connect the analog out cable to mono jack connected to 

headphone terminal  (see 44 on the picture at the bottom of this page) and connect the other 

side of the cable to channel 3 (swallowing) on the 4-channel pass-thru amplifier. To hear the 

sound during feeding, connect the earphone to stereo jack.  
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BioNex 3-Channel Bio-Potential and GSC amplifier 

: Connect the ECG cable to the 3-Channel Bio AMP &GSC amplifier. 
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STEP 3. SET UP INITIAL SETTING FOR THE EQUIPMENT  

 

Samba 201 Micro Pressure Measurement System 

 

 Press the power button and hold it down for 5 seconds to turn it on. 

 
 

 The warming up process takes between 1 and 2 minutes depending on the ambient te

mperature. 

 
 

 After warming up, the Samba 201 will search for the connected transducer. 

 

 When the Zero Baseline setting window appears, highlight ‘ZERO Channel 1’ and pr

ess button 1 to synchronize the pressure value received from the transducer sensor an

d the value registered by the internal barometer. Note. Detach the nipple from the bott

le before you press button 1 because the transducer tip needs to be exposed to the air 

for 1-2 seconds to detect the atmosphere pressure as a zero baseline. 
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 Enter Menu<SETUP, highlight frequency 40Hz using the menu navigation keys and 

press 1 to confirm. 

 

 
 

 In the same manner, set pressure unit (mbar), and measurement mode (relative). Note.

 ‘Relative value’ is a change from the zero baseline which will be atmosphere pressur

e and ‘Absolute value’ is a value that adds a change of pressure to the zero baseline. 

 

         
 

 Go back to the monitoring window by pressing button 3. 

 



 

270 

 

Panasonic HDC-TM700 

 Open LCD monitor and hit the power button .  

 If you see the screen to ask the output mode, then touch ‘A/V output’. 

 If you see the screen to ask the type of memory, then touch ‘Built-in Memory’. 

 
 

 Select a motion picture recording mode 

 Select the motion picture recording mode  (A) by turning a mode dial.  

 Press record start/stop button to start recording (C). When you begin recording, 

will change to  (B). 

 

 

            ⒞ 

 

 

 

 

 

 

 

 

 

⒞
 (C)  
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 Set date and time 

 MENU<SETUP<CLOCK SET 

 Touch the date and time to be set, and then set the desired value using the arrow b

utton . 

 

 
 

 Adjust the MIC volume  

 MENU<RECORD SETUP<MIC LEVEL<SET+AGC 

 Adjust the volume of MIC by touching arrows and touch ‘ENTER’ to confirm. 

 
 

 Touch ‘EXIT’ to go back to recording window. 

 

 Adjust the headphone volume  

 Touch the LCD screen and you can see ‘F’ arrow on the left bottom of the screen. 

 

 
 

 Touch the ‘F’ arrow and go next using the arrow on the right side until you can se

e the symbol of headphone. 
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 Touch the symbol of headphone and adjust the volume using the arrows. 

 

 
 

 After adjusting the volume, touch the ‘F’ arrow again to exit. 
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Masimo Radical-7 pulse co-oximeter 

  

 Turn the power on. 

 Set the averaging time as 2 seconds. 

 Press menu button  

 Press the next icon  until “general” is highlighted and then press the menu butt

on to select this parameter 

 Select “averaging time” by hitting the menu button again and then change averagi

ng time to 2 second using  or icon and hit to confirm. 

 Press check icon  to accept this setting and then exit . 

 

 Decrease the volume of the pulse beep 

 Press  and press the decrease loudness button until the volume of the pulse 

beep is gone. 

 

 Alarm off. 

 Press menu button , select alarm, and set the alarm condition as ‘all mute’. Not

e. Alarm will be indicated by the alarm sign  flashing on the left side of the M

asimo machine.  

 

 Set up the clock if you want to download the trend data 

 Press menu button  

 Press the next icon  until “clock” is highlighted and then press the menu button

 to select this parameter 

 Select the desired value using  or icon and press check icon  to accept 

each value and then exit . 

 

 Erasing trend memory before each data collection (Optional, if you want to download

 the trend data from the Masimo) 

 Press to access the trend menu 

 Press to enter the trend menu 

 Press  two times to access the “clear trend” button 

 Press to delete trend data 
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STEP 4. SET UP CONFIGURATION OF THE BIOLAB 3.0.6 DATTA ACQUISITION 

PROGRAM 

 

Turn on the Lenovo computer and select ‘computer log in only’ (put id:bnix and 

pw:kathy@24) 

Turn on the BioNex Chassis and double click on the BioLab 3.0.6 icon. The 

configuration window will open.  

 

General Setting 

Select sample rate (1000), acquisition mode (Continuous), and file mode (Auto Name).  

Under Chart Attribute tab, choose plot type as Stacked Chart. 
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Channel Setting 

Enable channels needed by clicking ON/OFF on the left side of the configuration window 

and assign each channel as follows: channel 1(Pulse Wave), channel 2 (SpO2), channel 3 

(Sucking), channel 4 (Swallowing), channel 5 (Respiration), channel 9 (ECG).  

Select the smallest amount of gain for channel 5 (50) and channel 9 (100).  

Select the filter type as ECG for Channel 9. 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

276 

 

Set up scaling for SpO2 and Sucking channel 

 

Channel 2 (SpO2) 

: Select ‘Map range’ to map voltage range to scale unit of SpO2 and click view scale to open 

the preview scaling window. Set up scaling settings (scaled units: %, scaling method: map 

range, Volt max:1, Volt min:0, Measure Max: 100, Measure Min: 0) and click OK to 

confirm. 

 

 
 

Channel 3 (Sucking) 

: Select ‘Map range’ to map voltage range to scale unit of Sucking and click view scale to 

open the preview scaling window. Set up scaling settings (scaled units: mabr, scaling 

method: map range, Volt max: 4.583, Volt min: 1.25, Measure Max: 350, Measure Min: -50) 

and click OK to confirm. 
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Audio/Video Setting 

: Click ‘Audio/Video’ tap to set up module for video camera. 

Enable Camera 1 by clicking ON. 

Put Camera Name as “Panasonic HDC-TM700” 

Set up Audio input (Audio input: line) and Video input (Video input: Composite, Video 

system: NTSC, Video resolution: 360*240, Encoding: MPEG2) 

Check the video file by clicking preview and adjust the quality of the video if needed. 
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Set up Trending 

Click ‘Trending’ tab to extract the trending data for HR and SpO2 every second from ECG 

and SpO2 waveform sampling at 1000 samples per second. Enable the first two trends by 

clicking ON/OFF button. For the first trend for HR, select ‘ECG’ for the trend channel, 

‘mean’ for the trend type. For the second trend for SpO2, select ‘SpO2’ for the trend channel, 

‘mean’ for the trend type.  

 

 
 

 

Save all setting (Setting<Save Configuration as). 

 

 
Created and updated by Jinhee Park on 6/27/2011 
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Appendix O. Protocol for Data Collection 

 

Before leaving the lab 

 Check out everything that belongs on the feeding cart (use the check list) 

 Turn on the Lenovo computer and select ‘computer only log on’ (put id:bnix and pw:

kathy@24) 

 Turn on the BioNex Chassis and all the equipment and open the BioLab 3.0.6 icon.  

 Open the BioLab 3.0.6. 

 Open the configuration file (JP MW cfg.nwcfg) that previously set up and saved on th

e JP dissertation folder on the desktop. 

 Check out the initial setting of the equipment 

 Samba 201: Frequency (40Hz), Unit (mbar), Measurement mode (Relative) 

 Panasonic HDC TM700: Check out the date and time.  

 Masimo pulse oximeter: Averaging time (2 seconds), alarm and pulse beep sound 

(off), the date and time  

 

 Check out the setting of the configuration window.  

General setting  
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Channel setting 

 

 
 

Scale setting for SpO2 channel 
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Scale setting for Sucking channel 

 

 
 

Audio/Video Setting 
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Trending setting 

 

 
 

 Exit the BioLab program. 

 Shunt down the all equipment and computer. 

 Disconnect the pulse oximeter sensor, transducer, respiration band, EKC leads, and m

icrophone set from the equipment and put them back into the first drawer. 

 Fold the camera up inside the room under the top of the cart. 

 Remind which position will be the first. Note. Determine if which position would be t

he first by picking a paper from the envelop for the first subject. From the second subj

ect, the order of the position will be alternated.   
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In the nursery 

 Make environment be as quite as possible (Pull the curtain down, Dim the light etc) 

 Connect the cables to the BioNex Chassis and to the equipment  

 Turn the computer on (The receiver of wireless mouse must be unplugged from the U

SB port before you turn on the computer). 

 Turn on the power of the BioNex Chassis and all equipment (Pulse oximeter, Pressure

 measurement system, Microphone, ECG, and camera) 

 Open BioLab 3.0.6. 

 Open the configuration file (JP MW cfg.nwcfg) that previously set up and saved on th

e JP dissertation folder on the desktop. 

 Put sensors to a baby  

 Pulse oximeter: Place pulse oximeter sensor on the infant’s foot without their own

 pulse oximeter sensor and secure with additional placement wrap. 

 ECG: place electrodes on the infant’s chest as below. Note. Do not remove the inf

ant’s own electrodes if he/she has but you can move them if needed. 

  

 
 

 

 Respiration: Place respiratory band around the infant’s chest at nipple level on th

e top of the infant’s clothes.  

 Microphone: Place the mic on the infant’s mid neck at the suprasternal notch wit

h a double-sided tape and secure with a hydrogel tape.  

 

 Make sure the signals are all good before the infant is settled. 

 Let all instruments warm up 30 min 
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Baseline data collection 

 Begin to record at least 30 minutes before scheduled feeding time (When recording, y

ou can see green light on the right bottom) 

 Click AQUIRE on the bottom of the configuration window 

 Enter the name of the file in the Jinhee’s dissertation folder based on the following or

der: study name, subject ID, the order of feeding, condition. (i.e., JP01F1HES: JP=Jin

hee Park’s dissertation, 01=the first subject, F1=the first feeding on that infant, HES=

head elevated supine position). 

 Hit START/STOP button on the upper left of the BioLab acquisition screen to start re

cording. 

 Hit record button on the video camera 

 Send the analog out calibration signals from the Masimo to the BioNex Chassis.  

 Pulse wave: Hit menu , select ‘output’, and set ‘Analog 1’ to ‘0V Signal’. Veri

fy that the BioLab shows a voltage of approximately 0V on pulse wave channel. S

et ‘Analog 1’ to ‘1V Signal’ and then verify that the BioLab shows a voltage of ap

proximately 1V on pulse wave channel. 

 Hit menu , select ‘output’, and set ‘Analog 2’ to ‘0V Signal’. Verify that that th

e BioLab shows an approximately 0% of SpO2 on the second channel. Set ‘Analo

g 2’ to ‘1V Signal’ and then verify that the BioLab shows approximately 100% of 

SpO2 on the second channel. 

 Send the analog out calibration signals from the Samba 201 to the BioNex Chassis. 

 Press menu button and navigate to ‘ANALOG CALIB’ using the menu navigation 

keys and confirm by pressing button 1. 

 Highlight the minimum value (MIN) in the Analog Calibration window and then t

he displayed voltage is being sent to the analog port (Verify the signal is approxi

mately -50 mbar). 

 Highlight the maximum value (MAX) and then the displayed voltage is being sent 

to the analog port (Verify the signal is approximately 350 mbar). 

 Continue to record until the feeding is completed. 

 Physiologic operator needs to monitor that signals of all channels look good. If the sig

nal is lost or has too many noise, then let the PI knows and troubleshoots. 

 

 Pulse wave & EKG 

 

Normal EKG signal: regular R-R interval 

 
It usually comes with regular pulse wave form. 
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When the baby is moving, EKG can be disturbed a bit. 

 

 
 

                 BUT, the signal goes flat or has irregular waveform for few seconds, 

                  report this to PI. 

 

 
 

 SpO2 

 

Signals on the masimo and the BioLab need to be corresponding each other.  

Note. The alarm of the Masimo will be indicated only by the symbol of alarm flas

hing. Please let PI know if alarm is flashing. 

 
 

 Sucking: When the nipple is pressed and released, the signal goes up and down. 

 

 
 

 Swallowing 
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 Respiration: When infants breathe, the signal goes up and down by associating wi

th the chest movement for breathing. 

 

 
 

 

Data collection during feeding 

 When the infant wakes up for feeding, provide routine nursery care by his/her assigne

d nurse. 

 If NG tube is in place, it will be gently removed without untaping. 

 Swaddle the infant with the blanket and place him/her in the predetermined position. 

 Weigh a bid and put it around the neck. 

 Write down the amount of prescribed milk 

 Set up the stopwatch for 5 minutes 

 Begin to feed. 

 Write a memo when significant events were occurred using Journal (F12) of the BioL

ab program. 

 When alarm is ringing, briefly take the bottle out and measure the amount of the milk 

remained in the bottle. 

 When feeding is determined to be finished, record the amount of milk consumed, the l

ength of feeding time, the weight of the bib. 

 Pour the milk remained out of the bottle. 

 Take the transducer tip out of the bottle and put it back into the storage bottle filled w

ith the distilled water. 

 If you can see proteins on the tip, physiologic operator to go to the BBL, to clean the t

ransducer tip based on the protocol, and to bring it back to the nursery for the second 

feeding.  

 Provide post feeding nursery care and settle back the infant on the crib. 

 

Data collection after feeding 

 Set up the stopwatch for 30 minutes 

 Click STOP on the bottom of the configuration window when alarm is ringing. 

 Shutting down all equipment. 

 Remain all equipment on the infant until the second feeding observation is completed. 

 Repeat the procedure from warming up all instruments for 30 minutes for the second f

eeding. 

 

After Data collection 

 Shutting down all equipment, computer, and BioNex Chassis. 

 Gently remove all monitoring equipment. 

 Wipe down all cables and monitoring equipment as it is put away from the baby and p

ut it back into the drawer in the physiologic cart. Note. Put the research stuffs being c
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onsidered as dirty to the zip bag (like used bottle, nipple, resp. band). 

 Report any meaningful events during the study. 

 Ask nurse to re-insert NG tube right before the next gavage feeding 

 

fter arriving at the lab 

 Clean up all the equipment or throw away if it is disposable. 

 

<Transducer tip> 

 Pour distilled water into the cylinder in the lab. 

 Put an enzyme mixture into the cylinder. 

 Submerge the transducer tip in distilled water.  

 Place the cylinder on the center of the magnetic stirring plate. 

 Set the speed to 3-4 level. 

 Soak the transducer tip in this mixture for 10 to 20 minutes. 

 Rinse it again with a clean distilled water for 10 to 20 minutes with the magnetic s

tirring plate. 

 Put it back into a cleaned and dry storage bottle. 

 

<Bottle> 

 Clean with the soap and put it on the dry rack. 

 After drying, put it into a cleaned zip bag and put it back into the first drawer. 

 

<Pulse oximeter sensor and cable> 

 Washing the light blue band. 

 Wipe down the black band and the crystal sensor with alcohol swab or disinfectan

t wipes. 

 

<Respiration band> 

 Washing the light blue band. 

 Wipe down the black band and the crystal sensor with alcohol swab or disinfectan

t wipes. 

 

<Others> 

 Wipe down other equipment with alcohol swab or disinfectant wipes. 

 

 Look through the data if it is properly collected and decide if re-collecting data is nee

ded on the following day. 

#1.  At least 0.5 ml/min of sucking efficiency 

#2. At least six minutes duration of the bottle-in periods of the observation 

 

 Back up the data to two places: Archive (on the secured server) and Working data (on

 the personal computer or external hard driver) 

 Erase all data on the laptop that used for data acquisition after back up. 

 

 Download the trend data from the Masimo Radical-7 pulse co-oximeter if needed. 

 Assure that the Radical-7 serial output mode is set to “ASCII2” (MENU <OU
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PUT). 

 Open Trendcom software on the computer. 

 Under the ‘instrument’ menu in Trendcom, select ‘Radical-7 (V7619 or greater)’. 

 Under the ‘COM Port’ menu, select ‘COM5’. 

 Click on ‘Retrieve Trend’. The following message may appear: “please make sure

 the Radical is set to ASCII2 output mode” and click OK. 

 Name the file. 

 Save the file to the appropriated folder. 

 You will have date, time, SpO2, pulse rate and perfusion index (PI) every 2 secon

ds that is same as averaging rate you set. 

 

 Download the video files from the Panasonic HDC-TM700 if you need a high resoluti

on AVCHD video file. 

 Assure that HD Writer AE 2.1 is installed in the computer. 

 Connect the video camera to the computer with the USB cable. 

 Turn the video camera on. 

 Open HD Writer AE 2.1. 

 Click ‘Copy to PC’< ‘Video Camera (E)’< ‘Next’. 

 Select the video file what you want to download. 

 Assign the folder and name the file. 

 Click ‘Execute’. 

 

 After downloading the video files, format built-in memory on the Panasonic camera 

 MENU<SETUP<FORMAT MEDIA<BUILT-IN MEMORY. 

 When formatting is complete, touch ‘EXIT’ to exit the message screen. 

 

 

Created and updated by Jinhee Park on 6/27/2011 
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