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ABSTRACT 

Nisha Gottfredson: An empirical evaluation of the disaggregated effects of educational 

diversity in a national sample of law schools 

(Under the direction of A T. Panter, Ph.D) 

 

 The use of race-conscious admissions practices to achieve student diversity in 

academic institutions has recently been challenged. An understanding of how racial diversity 

in law school affects students is useful to develop administrative policies that support social 

and intellectual growth of students after they are admitted. A nationally-representative 

sample of 2,180 students from 64 accredited U.S. law schools was used to model the 

mechanism through which institutional diversity may influence student outcomes in a 

multigroup, multilevel SEM framework. Results suggest that racial heterogeneity directly 

and indirectly increases exchange of ideas and decreases racist/classist attitudes. The effects 

of racial diversity were mediated by increased contact with racially diverse peers. Results 

were similar for White and non-White students. This study confirms the usefulness of 

admissions policies that permit racial diversity in academic institutions, and imply that 

educators should focus on increasing intergroup contact between students.  
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Chapter 1 

An Empirical Evaluation of the Disaggregated Effects of Educational Diversity in a National 

Sample of Law Schools 

Opinion and practices relating to racial equality in education have changed 

dramatically since the Brown v. Board of Education ruling in 1954. Between the 1960s and 

the 1980s, the many institutions focused on affirmative action programs that would promote 

racial equality by fostering assimilation and integration of racial and ethnic minorities into 

mainstream White culture (Edwards, 2004). At the same time, discomfort with the idea of 

equalizing access to higher education through affirmative action is evident in a number of 

Supreme Court cases that involved White plaintiffs arguing against racial quotas or the 

consideration of race in admissions into institutions of higher education (e.g., Regents of the 

University of California v. Bakke, 1978; Gratz v. Bollinger, 2003; Grutter v. Bollinger, 

2003). Meanwhile, resistance to the idea of assimilation into White culture at the expense of 

heritage and culture has also become a point of contention for many minority groups 

(Edwards, 2004). Both of these factors, along with research findings that suggested a variety 

of benefits that arise from diverse learning environments (e.g., Antonio, 2001; Antonio, 

Chang, Hakuta, Kenny, Levin & Milem, 2004; Bowen & Bok, 1998; Chang, Denson, Sáenz 

& Misa, 2006; Gurin, Dey, Hurtado & Gurin, 2002; Holzer & Neumark, 2006; Niemann & 

Maruyama, 2005) have redirected the emphasis of race-conscious admissions away from 
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equalizing access per se and towards the potentially instrumental value of educational 

diversity and multiculturalism for producing other desirable student outcomes. 

A notable example of this trend occurred in 2003 when the Supreme Court ruled that 

institutions of higher education have a “compelling interest in attaining a diverse student 

body” (Grutter, p. 16). The case dealt with a lawsuit against the University of Michigan Law 

School and was brought by Grutter, a White student who claimed that she was being 

discriminated against based on her race when she was not admitted to the law school. The 

Court, in a 5-4 majority, favored the Law School. It reasoned that a diverse student body 

could promote the mission of the Law School to train future citizens and leaders to become 

successful in an increasingly diverse society. The Court ruled that it is within the 

constitutional rights of academic institutions to diversify their student bodies, as long as race 

is considered a subjective “plus factor” in the decision-making process. This approach is in 

contrast to the quantifiable approach used by undergraduate admissions at the University of 

Michigan (Gratz v. Bollinger, 2003) that is now illegal because of its explicit consideration 

of race in admissions. 

 Despite ruling in favor of the Law School and its race-conscious admissions policies, 

the Court majority implied that at some point (perhaps 25 years in the future) race-conscious 

admissions practices may no longer be appropriate. Recent Supreme Court rulings under the 

recently appointed Chief Justice Roberts have suggested that an even earlier prohibition of 

race-conscious admissions policies may be inevitable (e.g., Parents v. Seattle, 2007; 

Meredith v. Jefferson Co. Board of Education, 2007). 

In a number of states (including California, Michigan, Texas, and Washington), race-

neutral admissions policies have been required in response to state-level legislation banning 
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the use of race in admissions decisions. One example of state legislation was California’s 

Proposition 209, which banned the consideration of demographic factors in admissions and 

severely reduced minority representation at Berkeley and UCLA (Allen, Jayakumar, Griffin, 

Korn, & Hurtado, 2006). Some proposed race-neutral admissions plans include automatic 

admission for the top 10% of high school (or college) students from every graduating class or 

random admissions lotteries among applicants. These suggested approaches raise a number 

of problems, as illustrated by the Texas “Ten Percent Plan” (e.g., reducing minority 

representation at flagship schools but increasing enrollment of less qualified Whites at these 

schools; Bucks, 2003). In addition, these approaches are inferior to the consideration of race 

in admissions if the aim of an educational institution is to construct an ethnically/racially 

diverse and academically talented class of students. Holzer and Neumark (2006) have 

recommended following the lead of businesses that aim to employ diverse workforces. These 

businesses recruit and screen candidates more extensively, provide more training, and 

carefully evaluate worker performance. Such policies prevent businesses from lowering 

employee standards while increasing workplace diversity. 

 A clever suggestion for crafting a diversity-conscious, race-neutral admissions 

formula for law schools has recently been proposed by Shultz (2007). Shultz conducted focus 

groups with lawyers, judges, professors and students to identify the skills necessary for 

success in the legal field. She identified 26 “effectiveness factors” that can be assessed in 

prospective law students to predict whether they will become effective lawyers. The 

consideration of factors such as personality to predict future performance has been widely 

used in the domain of business, but remains untested in educational admissions.  While 

Shultz’s (2007) proposed plan is more time and energy intensive for admissions committees 
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than the reliance on a smaller number of admissions criteria, this suggestion may be the most 

promising to date. 

 Prior to the Grutter decision in 2003, LSAC funded researchers from the University 

of North Carolina at Chapel Hill and Greensboro and from the University of California at 

Los Angeles to form the Educational Diversity Project (EDP). One of the main goals of this 

project is to determine how much, if at all, diversity, including racial diversity, affects 

student outcomes, and if so, to understand the mechanisms through which this occurs. Such 

understanding will assist administrators in maximizing educational outcomes for their 

students in the face of reduced flexibility in admissions criteria.  

 In this investigation, I will examine whether there are measurable educational effects 

of diversity, with a focus on understanding ethnic/racial diversity. I adopt this focus because 

it is the only type of educational diversity that is currently being challenged in courts. The 

relationships to be tested involve aspects of student diversity that are presumed to be directly 

linked to a racially-diverse class of students, yet can be directly manipulated by school 

administrators should race-conscious admissions become more difficult to employ due to 

legal obstacles.  The following paragraphs elaborate on social and psychological research and 

legal precedents that bear on this research objective.  

Prejudice reduction through intergroup contact.  The University of Michigan Law 

School strives to accept “a mix of students with varying backgrounds and experiences who 

will respect and learn from each other” (Grutter v. Bollinger, 2003, p.1). The Law School 

argued, and the Court concurred, that a critical mass of historically- underrepresented and 

discriminated against ethnic/racial groups must be enrolled for minority students to 

participate in class without feeling isolated or like “spokespersons” for their race or ethnic 
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group. Kent Syverud, a former University of Michigan Law School professor, testified 

during Grutter that the presence of a critical mass of underrepresented students causes a 

reduction in racial stereotypes. He opined that the critical mass helps students to understand 

that there is “no minority viewpoint, but rather a variety of viewpoints among minority 

students” (p. 7). In essence, he testified that student prejudices about racial minorities at law 

school are reduced in the presence of a diverse student body.  

In 1954, Allport laid out optimal conditions for reducing prejudice in environments 

containing diverse groups of people, a perspective that has come to be known as contact 

theory. According to Allport, mere contact between groups is not sufficient to reduce 

prejudice because “prejudice screens and interprets our perceptions” (p. 252). True 

knowledge and understanding of so-called “outgroups” are required for prejudice reduction 

to occur. Allport theorized that not only must people be frequently exposed to members of an 

outgroup in casual situations, but also that groups should be of equivalent social standing in a 

cooperative environment, and the interactions should be supported and encouraged by an 

authority figure or an institution.  

In a recent meta-analysis of 515 studies of contact theory, Pettigrew and Tropp (2006) 

confirmed that increased contact with outgroups, even when not under the optimal conditions 

specified by Allport, showed a consistent, small-to-medium effect in reducing prejudice and 

increasing positive attitudes about an outgroup. Further, Pettigrew and Tropp (2006) found 

that the benefits of frequent contact generalize beyond the specific outgroup of exposure 

(e.g., to other ethnic/racial groups). 

 Confronting criticism that research findings supporting contact theory might be 

caused by selection (e.g., people who are prejudiced avoid outgroups while non-prejudiced 
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people seek contact with outgroups), Powers and Ellison (1995) employed endogenous 

switching regression models, an econometric technique that compares causal models. They 

found no evidence of selection bias, providing support for the hypothesized directionality of 

outgroup contact on prejudice. 

 These findings form the basis for one of the diversity constructs developed in this 

study. Intergroup contact measures the frequency with which an individual interacts with 

peers of different ethnic/racial backgrounds. I hypothesize that frequent interactions with 

diverse others of equal social standing in academic environments results in general prejudice 

reduction as suggested by Allport (1954). Students attending the same law school meet 

Allport’s condition of having equal social standing because they were both selected for 

admission and chose to attend the same law school. A study examining EDP’s baseline 

sample, which modeled the impact of cooperative intergroup contact during undergraduate 

years on attitudes favoring ethnic/racial and socio-economic minorities, suggested that this 

type of frequent, casual, cooperative contact with ethnically/racially diverse peers diminishes 

prejudice (Gottfredson, Panter, Daye, Allen, Wightman & Deo, in press). 

 Outgroup prejudice is not specific to a single group of individuals. Contact theory 

suggests that integroup contact should reduce general prejudice against outgroups (Allport, 

1954). It is for this reason that I am using the construct titled perceptions of a meritocracy to 

measure general outgroup prejudices. Researchers Federico and Sidanios (2002) have 

identified two main components that account for dominant group members’ objections to 

policies such as affirmative action. The first, “principled conservatism,” is linked to 

individualistic work ethic and politically conservative values. The second is “general group-

dominance,” a desire to maintain a privileged position at the expense of other groups. Reyna, 
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Korfmacher, and Tucker (2005) report that these two attitudes tend to co-occur; outgroup-

based stereotypes may mediate the effect of conservatism on anti affirmative-action attitudes. 

After controlling for an individual’s political orientation, measures of perceptions of a 

meritocracy remain predictive prejudice against economically and socially disadvantaged 

groups. 

Racial diversity and the exchange of ideas.  In Grutter, the University of Michigan 

Law School argued that student learning is enhanced when students are surrounded by other 

students who do not share the same beliefs and values and who have not had the same life 

experiences. In a diverse student body each student contributes to the learning of other 

students by providing a different perspective on issues. In law school, this diverse exchange 

of ideas would mainly take place during classroom discussions and in other extracurricular 

academic settings. 

 An exchange of diverse viewpoints among students of the same racial/ethnic 

background is possible to some degree because every student, regardless of their 

race/ethnicity, has had a different set of life experiences can provide a new perspective. As 

shown by Panter, Daye, Allen, and Wightman (2005), however, race/ethnicity accounts for a 

significant proportion of variation in a variety of life experiences, family and neighborhood 

histories, attitudes, beliefs, and values. Furthermore, as Lempert testified in the Grutter 

(2003) case, students who have experienced a lifetime of racial discrimination may be able to 

offer perspectives not available to most White students. Such perspectives are particularly 

important for aspiring lawyers who will encounter situations involving complicated 

racial/ethnic dynamics and who may enter a field of law that focuses on issues involving 
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underrepresented populations. This research forms the basis for another measure used in this 

study, diversity of ideas. 

Objectives of the Research 

  The importance of student racial/ethnic diversity has been demonstrated by a 

number of scientists using different methodologies. Antonio et al. (2004), using racially 

diverse and homogenous focus groups as experimental conditions, demonstrated that 

complex thinking significantly increases when college students are surrounded by racially 

diverse peers. In addition to this experimental evidence, a number of correlational studies 

imply that racial diversity at educational institutions improves a number of student outcomes 

(Shaw, 2005) including increased citizenship, academic skills, and intellectual engagement 

(Gurin et al., 2002), increased cognitive openness (Gottfredson et al., in press), and increased 

cultural knowledge (Antonio, 2001). These findings suggest that there would be value in 

continuing race-conscious admissions practices in higher education, but may not be 

sufficiently persuasive to prevail in the contemporary legal climate.  

 Ethnic/racial diversity alone is not always sufficient to benefit student learning 

(e.g., Allport, 1954; Gurin et al., 2002; Holzer & Neumark, 2006; Niemann & Maruyama, 

2005). Supportive environments also appear to be essential for harvesting the benefits of 

diversity. The results of the present study should provide those who make policy with 

knowledge of which types of diversity influence various student outcomes so that they can 

allocate limited educational resources to pursuing the most efficacious practices.  

 A number of race-neutral alternatives to admissions formulae have been proposed, 

some of which could potentially result in an academically talented and racially diverse 

student bodies that are on par with, or even superior to, those that could be obtained through 
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race-conscious admissions (e.g., Shultz, 2007 for law school admissions). Yet it is important 

also to model the precise mechanisms through which ethnic/racial diversity influences 

student outcomes. For example, what are the effects of diversity of ideas and intergroup 

contact on perceptions of a meritocracy? Does intergroup contact mediate the beneficial 

effects of racial heterogeneity? What, if any, benefits do the racial heterogeneity of a school 

provide above and beyond intergroup contact?  

 The present study utilizes a large nationally-representative sample of a law students 

and a large volunteer sample of law students. Hypothesized directional relationships are 

tested with data using a series of models that capture several features of the data. Baseline 

measures of attitudes and obtained as the law students entered law school in Fall 2004 and 

were reassessed when the students exited law school in Spring 2007, along with several 

additional assessments of experiences during law school. School-level measures of racial 

heterogeneity, sector, selectivity, and enrollment were obtained from publicly available data 

provided by the American Bar Association (ABA). Constructs that cannot be assumed to be 

measured without error were modeled as latent variables, and multiple-group models were 

tested.  

 This research was motivated by a practical question of contemporary importance. I 

attempt to model parsimoniously the structural mechanism by which educational diversity 

may influence educational outcomes and which potentially differs across ethnic/racial 

groups. The nesting of students within schools necessitates a multilevel modeling framework 

(e.g., Raudenbush & Bryk, 2002) while my inability to directly measure the constructs 

involved without measurement error dictates a latent variable modeling framework (e.g., 
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Thurstone, 1947). In doing so, I demonstrate how to conduct a multigroup multilevel 

structural equation model (MSEM) with categorical indicators given the available resources. 

 Using appropriate statistical models for appropriate substantive questions has 

numerous benefits. In the present case, missing data, ordinal manifest variables, unobserved 

latent variables, and nesting of students within schools can all be modeled in the same state-

of-the-art framework of MSEM. There are, however, inherent limitations to using newly 

developed or developing models. Accordingly, in addition to testing substantive theory, a 

goal of this manuscript is to contribute to continued development of the quantitative methods 

used by identifying some of the practical weaknesses of using MSEM with a real-world data 

situation. 

Summary of Hypotheses 

 1. Contact diversity reduces racist/classist prejudice. There is strong support for the 

claim that intergroup contact, based on Allport’s (1954) contract theory, reduces prejudice 

among members of different racial/ethnic groups. Here I will examine whether frequent, 

informal interactions with diverse peers reduces ethnic/racial and social class prejudice 

among law students.  

 2. Racial diversity promotes a diversity of ideas. Diversity of ideas in law school is 

measured in the present research by student reports of high quality class discussions, an 

atmosphere that allows a respectful exchange of diverse beliefs and political views, and a 

sense of openness to new ideas. I hypothesize that, after taking into account the attributes of 

the law schools that students choose to attend (enrollment, sector, and selectivity) and the 

student attributes (age, gender, LSAT score, SES, political orientation), more racially diverse 

schools will be characterized by greater diversity of ideas.  
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 3. Intergroup contact mediates the effects of racial diversity.  As suggested by a 

number of researchers (Allport, 1954; Gurin et al., 2002; Holzer & Neumark, 2006; Niemann 

& Maruyama, 2005), racial diversity has the potential for positive or negative effects on 

student outcomes. Benefits must be encouraged through cooperative contact between groups. 

Thus, the model specifies that intergroup contact mediates the effects of racial diversity on 

diversity of ideas within a school and on perceptions of a meritocracy. 

 4. Exchange of diverse ideas reduces prejudice. The final hypothesis is that a 

students’ exposure to new and diverse ideas will reduce prejudice towards people of lower 

SES and minorities in that they will become disillusioned with previously-held beliefs that 

these groups have earned disadvantage through a meritorious system (e.g., because of their 

innate intellectual ability, work ethic, and so on). Theoretically, the effect of racial diversity 

on perceptions of a meritocracy might be partially mediated by increased exposure to 

alternative viewpoints. The sparse extant empirical literature on this topic now runs counter 

to the proposed hypothesis. Some studies have shown that students who enter school with 

unfavorable attitudes regarding affirmative action that coincide with high levels of racism 

tend to develop more socially acceptable “principled objections” to affirmative action as their 

education increases (Federico & Sidanious, 2002; Reyna, et al., 2005). The present research 

will add to the limited evidence bearing on the hypothesis. 

Methodological Background 

 Muthén and Satorra (1995) discussed two approaches to modeling complex data in 

an SEM framework: aggregated disaggregated analyses. Aggregated analysis methods are 

useful for developing an overall population average model that does not generalize to any 

particular sampling unit. Disaggregated analysis estimates variability across independent 
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sampling units so that estimates generalize to individuals in a sample. Disaggregated 

analyses are more informative but they are more difficult to estimate and sensitive to 

misspecification. Both model types will be estimated in the course of the analysis with the 

final goal of estimating and interpreting parameters from disaggregated models.  

 Disaggregated multilevel structural equation models (MSEMs) were first developed 

in the late 1980s by Goldstein and McDonald (1988). In 1989, McDonald and Goldstein 

developed an analytical solution to obtain maximum-likelihood estimates for balanced and 

unbalanced MSEMs with continuous data; however, these solutions were impractical to 

implement in practice and were not widely available. In the same year, Muthén presented a 

maximum-likelihood based estimator (MUML) that could handle unbalanced data and that 

was computationally more feasible to implement than McDonald and Goldstein’s (1989) true 

maximum-likelihood estimator. Unfortunately, MUML could not handle missing data or 

categorical outcomes. A number of researchers proposed estimation techniques for specific 

MSEM formulations throughout the 1990s and early 2000s (e.g., du Toit & du Toit, 2002; 

Lee & Poon, 1998; Raudenbush, 1995). In 2004, Liang and Bentler expanded Lee and Poon’s 

(1998) technique by deriving an expectation-maximization (EM) algorithm for obtaining full 

information maximum-likelihood solutions with a generalized MSEM formulation. This 

relatively recent development has increased the feasibility of implementing MSEM analyses 

with missing data and has become incorporated into a number of software programs. 

 The presence of categorical data provides an added complexity to the estimation of 

MSEMs. The issue of non-continuous data in MSEMs was only recently confronted in the 

literature by Rabe-Hesketh, Skrondal, and Pickles (2004; also Skrondal & Rabe-Hesketh, 

2004). When latent variable indicators are categorical, there is no closed-form solution to the 
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marginal likelihood (Rabe-Hesketh, Skronda, & Pickles, 2005). In this case, the likelihood 

must be approximated by the computationally-intensive numerical integration procedure. The 

most commonly used procedure for evaluating likelihoods of multilevel data with categorical 

outcomes is Gauss-Hermite quadrature (Bock & Lieberman, 1970). Other techniques, 

including adaptive quadrature, are also available. However, these techniques are even more 

computationally intensive and are only necessary in the case of a large number of 

independent sampling units (e.g., N=200) or in the case of large intra-class correlations (e.g., 

ICC=.35; Rabe-Hesketh, et al., 2005). MSEM for categorical data is now widely available in 

software programs including Mplus (Muthén & Muthén, 2007) and GLLAMM (Rabe-

Hesketh, Skrondal, & Pickles, 2006).  

 As an alternative to full information maximum likelihood (FIML) estimation, a 

diagonally weighted least squares statistic (WLSMV) that provides a standard error and 

mean-adjusted chi-square test statistic is available in Mplus (Muthén, du Toit, & Spisic, 

1997; Muthén & Muthén, 2007; Wirth & Edwards, 2007). WLSMV depends on the analysis 

of polychoric or tetrachoric correlation matrices rather than raw data. This limited 

information estimator is less efficient than FIML, and requires often untenable assumptions 

regarding missingness mechanisms (i.e., missing completely at random; Rubin, 1976). 

However, there are two benefits to using the WLSMV estimator. First, computational time is 

not dependent on the number of random effects in the model so it is more feasible for 

estimating very complex models. Second, the two-stage estimation procedure enables the 

estimation of a saturated model for the multilevel data, and is thus able to provide global fit 

statistics that are not available with maximum likelihood estimation methods (Asparouhov & 

Muthén, 2007).  
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 MSEM has been frequently touted as an important procedure for modeling real-life 

psychological, sociological, and economic data given its ability to simultaneously handle 

nested data and data that has been measured with error simultaneously. A number of 

quantitative researchers have published expository papers demonstrating empirical examples 

of the use of the procedure (e.g., Kaplan & Elliott, 1997, Liang & Bentler, 2004; Muthén, 

1994; Muthén, Khoo, & Gufstafsson, 1997; Skrondal &Rabe-Hesketh, 2004). However, 

these examples have involved idyllic data scenarios. For instance, most involved very simple 

CFA or MIMIC structures and all except the examples from Skrondal and Rabe-Hesketh 

(2004) predated the incorporation of software programming for declaring data as categorical 

(e.g., MSEM for categorical data was not implemented in Mplus until 2004 in version 3).   



   

 

 

 

Chapter 2 

Method 

Sample and Participants 

 National data were collected from law students at two time points. There were two 

types of participants: those attending law schools selected in our core (nationally-

representative) sample and those attending law schools with administrators who volunteered 

to participate in our study. Data were collected by a multisite, multidisciplinary team of 

Educational Diversity Project (EDP) researchers during law school orientation in Fall 2004. 

Student participants were again contacted in Spring 2007 as they were expected to be 

completing law school. Web-based surveys were conducted through Qualtrics®, an online 

survey software program. Institutional characteristics of the schools were provided by the 

American Bar Association (ABA) on law schools. Table 1 presents descriptive statistics of 

the volunteer and random law schools, and Table 2 provides information about the 

demographic characteristics of students who participated in the study. 

Participants in the volunteer sample include 1,963 incoming law school students from 

16 ABA-approved, accredited law schools. Administrators of the 16 law schools in this 

sample volunteered to be a part of EDP after hearing about the study through a presentation 

at an annual Law School Admissions Council (LSAC) meeting, or after reading about the 

study from a newsletter widely distributed to admissions counselors. Schools in the volunteer 

sample are not a probability sample of law schools in the U.S., but they represent 12 states 
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spanning the continental United States and characteristics of students attending these schools 

do not differ significantly from those of student attending schools selected in the nationally 

representative sample. On average, 58.2% of law students per volunteer school completed 

baseline surveys.  

 Baseline participants in the core sample were 6,100 incoming law school students 

from 50 nationally representative, ABA-approved, accredited U. S. law schools. Schools in 

this sample were drawn using two methods. EDP investigators oversampled schools that 

were identified as having very high minority populations (N = 7), and randomly drew 46 

schools from the remaining 177 ABA-approved law schools. Of these schools, one was 

ineligible to participate and two were non-responsive, resulting in a sample of 50 law 

schools. In the schools with high minority representations, average student response rates 

were 75.5%, and student response rates at the remaining schools were 51.8% on average. 

Higher response rates in the former are partially attributable to the administration method; all 

students in the high minority representation sample completed surveys during law school 

orientation, while the other sample included some students who completed the surveys 

during orientation and others who took surveys home with them.  

In total, 8,063 students provided baseline data. Sixty-five percent (N=5,258) of the 

baseline participants consented to be re-contacted by EDP. Of these, 393 students could not 

be re-contacted due to invalid e-mail addresses. Out of the remaining participants, 2,695 

either completed the follow up survey (N = 2,180) or were confirmed to have left law school 

prior to Spring 2007 (N = 515). Data from the volunteer and core samples were combined to 

obtain the maximum possible independent sampling units (ISUs) as necessary for obtaining 

stable estimates. This decision to combine the volunteer and core samples for the sake of 



   

 17 

estimating a disaggregated model precluded the use of sampling weights that are available 

for the core sample. The elimination of sampling weights in conjunction with the non-

random loss of individuals from baseline to follow-up (see below) limits my ability to 

generalize study findings to law school students in the Nation.  

Missing Data Considerations.  

 Taking into account the known reasons for attrition (permission to re-contact not 

granted, invalid e-mail addresses, or law school dropout), 54.0% of nonresponders did not 

complete the follow-up survey for reasons that are unknown to the EDP. A listwise or 

pairwise deletion of cases for which follow-up data are missing might provide severely 

biased results if the missingness mechanism is not completely at random (e.g., Little & 

Rubin, 2002).  

 Table 3 compares baseline item responses of people who completed the follow-up 

survey and those who failed to complete the follow-up survey. Attriters and non-attriters do 

not appear to differ with respect to the amount of intergroup contact that they had during 

college, or with respect to socioeconomic background during childhood. A higher proportion 

of females and White students responded to the follow-up survey. Also, people who 

responded to the follow-up survey were slightly less likely to be politically moderate or 

slightly conservative, and were less likely to be neutral or to slightly agree with items 

comprising the perceptions of a meritocracy construct at baseline (to be described later). 

Results from inferential tests of group differences for these items are statistically significant, 

but are generally uninformative about the practical differences given the large sample sizes in 

both groups.  
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 Fortunately, information about the most sensitive outcome variables was collected at 

baseline, along with a number of demographic measures. Controlling for these baseline 

variables, nonresponse to the follow-up items is not likely to be a function of unobserved 

data on the outcome variables of interest. The mechanisms of non-response (probably related 

to Bar Examination and job search-related stressors) should be uncorrelated with diversity 

experiences in law school. Thus, it is reasonable to assume that the follow-up data are 

missing at random (MAR; Little & Rubin, 2002), conditional on baseline covariates.  If 

MAR assumptions are met, full information maximum-likelihood estimation techniques 

should provide unbiased parameter estimates by using all available data, including cases for 

which only partial information is available, rather than the sample covariance matrix in the 

likelihood function that only uses complete cases (e.g., Arbuckle, 1996; Enders & Bandalos, 

2001; Wothke, 2000). 

 Full information maximum likelihood is not a magic bullet for handling missing data, 

and particularly not in this study. Parameters are estimated using a conditional likelihood of 

the endogenous variables on the exogenous variables. This means that cases for which 

follow-up data are not present are deleted from the analyses, greatly reducing statistical 

power to detect effects.  

 Multiple imputation (MI; Rubin, 1987) is also not an option for recovering missing 

data in this study. MI is a technique for obtaining unbiased parameter estimates and standard 

errors by creating a missing data model and predicting missing data values. Unlike other 

imputation techniques, MI incorporates random error that is consistent with the sampling 

error that would have existed had the values been observed. It is useful when data are MAR, 

but only when endogenous data are normal or dichotomous. Imputing categorical data results 
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in non-discrete values that must be either rounded, creating substantial bias (Horton, Lipsitz, 

& Parzen, 2003), or it must be treated as continuous, also introducing bias. 

Measures 

 Institutional characteristics. Background attributes of the law school included: school 

enrollment, percent of applications accepted (the reverse of selectivity), and sector (public (0) 

or private (1)). 

 Background characteristics. Student self-reported demographics from the EDP 

baseline survey included: age, race/ethnicity (coded as White or non-White), gender, LSAT 

scores, political orientation (a five-point scale ranging from 1 (Extremely Liberal ) to 5 

(Extremely Conservative), and relative family household income during childhood (a five-

point scale ranging from 1 (Far Below Average) to 5 (Far Above Average). Self-reported age, 

race/ethnicity, gender, and LSAT scores were verified with the LSAC databases. 

 Baseline and follow-up attitudes. On both the baseline and follow-up EDP survey, 

students answered questions pertaining to their socio-political beliefs on a Likert-type scale 

ranging from 1 (Strongly Disagree) to 5 (Strongly Agree). At both time points, students rated 

how much they agreed with the following statements: “In America today, every person has 

an equal opportunity to achieve success;” “Because Irish, Italians, Jews, and many other 

minorities overcame prejudice and worked their way up, Blacks should do the same without 

any special favors;” and “People at the bottom of the economic scale are probably lazier than 

those at the top.” These variables comprise the perceptions of a meritocracy factor. Students 

who score highly on the perceptions of a meritocracy factor are inclined to attribute 

economic success and failure to individual characteristics, and to ignore social and historical 

barriers, or facilitators, to success. The follow-up measures are estimated in a measurement 
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model. However, due to the excessive computing time necessary for each additional random 

component estimated in a multilevel structural equation model with ordinal measures, the 

pre-test measures were summed to create a composite estimate of baseline attitudes. 

 Three diversities. Three types of diversity were measured in this study: (1) racial 

heterogeneity (Racial Diversity Index; RDI), (2) frequency of contact with diverse peers 

(intergroup contact), and (3) diversity of ideas. RDI is measured at the school level, and the 

other two diversities contain variance at both the individual and school level.  

 RDI, a measured variable, is calculated by summing the squares of the proportions of 

each ethnic/racial group in a school and subtracting that number from one (Formula 1; 

Lieberson, 1969). This creates a variable that is large (closer to one) when a school has many 

medium-sized ethnic/racial groups and is small (closer to zero) if there is a dominant 

ethnic/racial group: 

  ∑−=

groups

ethnicall

pRDI
2

1     (1) 

 Intergroup contact is based on student reports of frequency of interactions with peers 

of various ethnic/racial backgrounds during college (measured at baseline) and law school 

(measured at follow-up). On a three-point scale from 1 (never) to 3 (frequently), students 

rated how often they interacted with African American, Asian American, Hispanic/Latino, 

Native American, and White peers. Frequencies were summed across the five groups to 

create an approximately normally distributed variable ranging from five to 15.  

 Lastly, diversity of ideas is a latent construct composed of four indicators. On a five-

point Likert-type scale, students rated the quality of class discussions at their school, how 

much their school is characterized by respectful exchange of political views, how much their 
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school is characterized by respect for expression of diverse belief, and how open their school 

is to new ideas. 

Data Analyses 

 Modeling ordinal latent variable indicators: Latent response formulation. As is 

typically the case in psychological measurement, latent constructs (perceptions of a 

meritocracy and diversity of ideas) were measured by asking participants to rate their beliefs 

and attitudes using a Likert-type ordinal response scale. In nonlinear factor analysis with 

ordered categories (i.e., a graded item response model; Samejima, 1969; Skrondal & Rabe-

Hesketh, 2004; Wirth & Edwards, 2007), it is assumed that the item response choice is 

governed by how much an individual is characterized by the underlying, normally distributed 

common factor, theta. If an individual’s level of theta falls below the lowest threshold, the 

participant will respond in the first category. If theta falls between the first and second 

thresholds, the participant will respond in the second category, and so on. The conditional 

probability that an individual will choose a particular response level can be modeled with a 

normal ogive, or, for computational ease, with a logit model. If a logistic error distribution is 

assumed, then the model is equivalent to the proportional-odds model (McCullagh & Nelder, 

1989) and the within-level variances are fixed to π
2
/3. 

 Measurement Model Formulations for Multilevel Covariance Structures. Goldstein 

and McDonald (1988) were the first to suggest estimating a common factor model at each 

data level: 

                                                      
WWWWW

BBBBB

Θ+ΛΦΛ=Σ

Θ+ΛΦΛ=Σ

'

'
                                               (2) 

Where the ‘B’ subscript refers to the between (school) level and the ‘W’ subscript denotes 

the within (student) level. Σ represents the model-implied population covariance matrix at a 
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given level.  Each level has a unique factor loading matrix )(Λ , factor intercorrelation matrix 

)(Φ , and residual matrix )(Θ . The within and between covariance models combine to form 

the total covariance structure for the total model: 

   WBWWWBBBT Θ+Θ+ΛΦΛ+ΛΦΛ=Σ ''                         (3) 

 The model given in this equation shall be referred to as the Between and Within 

measurement model formulation. 

 The model simplifies greatly if it can be assumed that the factor structure at both 

levels is consistent. This assumption is testable. If the factor loading matrices at each level 

are constrained to equivalence such that WΛ = BΛ =Λ , the model equations simplify, and the 

interpretation of the latent variables is, appealingly, the same for both levels. In such a 

model, the construct is viewed as a single factor with variance that is parsed into school-level 

variation and student-level variation (Bollen, Bauer, Christ, & Edwards, in press; Goldstein 

& McDonald, 1988; Skrondal & Rabe-Hesketh, 2004). This restriction would be appropriate 

only if the factor structure at the within and between levels was equivalent. 

 The model is further simplified if there is no systematic unique variance in an item 

response that resides at the between level (i.e., the expected vale of BΘ is zero). Imposing 

this restriction implies that, at the school level, the only true variance in an item results from 

the common factor, and not from any other source that is consistent for all students nested 

within a school. The major motivation for imposing this restriction is model parsimony. The 

factor indicators in this study should have specific individual-level variance; however, it 

would be difficult to conceive of a specific factor influencing the variables at the school-

level.  
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 If both of these restrictions are tested and are found to be permissible, the 

measurement model reduces to the more interpretable Variance Components formulation 

described by Rabe-Hesketh, Skrondal, and Pickles (2004), and Skrondal & Rabe-Hesketh 

(2004): 

   

WBWT

WWW

BB

Θ+ΛΛΦ+ΛΛΦ=Σ

Θ+ΛΛΦ=Σ

ΛΛΦ=Σ

''

'

'

                   (4)  

 Figures 1 through 4 present a comparison of the Between and Within formulation 

and the Variance Components formulation of measurement models for the latent constructs 

in this analysis. The Variance Components measurement model is nested within the Between 

and Within formulation but it requires that a parameter be fixed to a boundary value ( BΘ =0) 

such that regularity conditions for a likelihood ratio test are violated. Because the between-

level residual variances are likely to be zero or very close to zero, this violation cannot be 

ignored. However, the models can be compared using fit statistics such as the AIC and the 

BIC.  

 Random Intercept Structural Models for Multilevel Data. In the structural model, 

student-level latent variables are regressed on other student-level latent variables, student-

level measured variables, and school-level measured variables: 

                             ijjBijWijWij zx ξηη +Γ+Γ+Β=                                                    (5) 

where η is random over students and schools and represents a latent variable, B contains the 

fixed regression coefficient(s) relating the latent variables, x represents a vector of observed 

variables measured at the student level, z represents a vector of observed variables measured 

at the school level, WΓ contains fixed regression coefficients relating the student-level 



   

 24 

measured variables to the endogenous latent variables, BΓ  contains fixed regression 

coefficients relating school-level measured variables to the endogenous latent variables, and 

ijξ is the unexplained factor variance. 

 The corresponding data model for the underlying true score of a given item 

(represented as y
*
) is: 

   ijjBijWijijyij zxy εηηα +Γ+Γ+Β+Λ+=*                    (6) 

Where yα represents the randomly distributed school mean (i.e., the random intercept) of that 

item (Bollen, et al., in press). 

 Comparing Models. If data are categorical and not MCAR, only the AIC and BIC 

(Akaike’s information criterion and Bayesian information criterion) are currently available 

for evaluating the fit of disaggregated models with full-information maximum likelihood. 

When numerical integration is used, there is no covariance matrix available from which to 

derive a saturated model that is required for estimating a model chi square statistic 

(Asparouhov & Muthén, 2007; Mehta & Neale, 2005). A number of global fit indices rely on 

the chi-square, including the TLI, CFI, and RMSEA. Nested models can be compared with 

model chi-squares if a Satorra-Bentler scaling correction for nonnormality is used (Satorra & 

Bentler, 1999).  

 As an alternative to full information maximum-likelihood, the WLSMV estimator 

is available for multilevel categorical data in Mplus. The WLSMV estimator uses a two-stage 

limited information approach to estimating model parameters as well as an unrestricted 

covariance matrix that can be used for obtaining global model fit indices that are chi-square 

based. However, this estimator is less efficient than the robust maximum-likelihood (MLR) 

alternative and requires missing data assumptions that have been shown to be inappropriate 
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for this data set (MCAR; Asparouhov & Muthén, 2007). Because global fit indices for 

MSEMs with categorical data are only currently available for the WLSMV estimator, fit 

indices will be reported for some models based on WLSMV solutions; however, parameter 

estimates, information criteria, and LRTs for MLR estimates will be reported because these 

estimates are more efficient and should be less biased under an MAR missing data 

mechanism. 

Both the AIC and the BIC penalize for overparameterization in favor of more 

parsimonious models. The primary reason for using the BIC is to choose the “true” model for 

the data (i.e., given the data, which model has the highest likelihood). The AIC, on the other 

hand, is not based on the existence of a true model. Instead, the index maximizes predictive 

ability for future studies (Kuha, 2004). Both pieces of information provide unique and 

valuable information. Optimally, the best model would be both the most likely given the 

observed data and would have the greatest predictive validity. 

 Analysis Plan. Following the strategy of Muthén (1994), a relatively simple 

aggregated analysis was carried out to ensure that the hypothesized measurement and 

structural models fit reasonably well in the population. An aggregated analysis does not 

distinguish person-level and school-level variance, but it provides corrects standard error 

estimates for dependence within clusters by using a sandwich estimator (Muthén & Satorra, 

1995). Aggregated analyses are useful in the preliminary stage of two-level covariance 

structure analysis because they are less computationally intensive and provide information 

for evaluating whether hypothesized measurement and structural models are reasonable.   

 The first step in the disaggregated analysis was testing the Variance Components 

measurement model formulations against the more complex alternative, the Between and 
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Within formulation. Once the Variance Components measurement models were determined 

to provide a superior fit (see Results section for details), the hypothesized model (Figure 5) 

was tested against an alternative model (Figure 6).  

 The hypothesized model draws upon a collection of theoretical models of the 

effects of diversity ranging from Allport’s (1954) contact theory, the 2003 Supreme Court 

ruling on affirmative action, to a variety of recent empirical work. The model posits that 

racial diversity within a law school is directly and positively related to both individual 

intergroup contact and to diversity of ideas. In turn, both intergroup contact and diversity of 

ideas are hypothesized to lead to decreased perceptions of a meritocracy. These relationships 

should be present even after controlling for students’ initial scores on perceptions of a 

meritocracy, their intergroup contact during college, age, gender, racial/ethnic minority status 

(White vs. non-White), political orientation, childhood relative income, the sector of the law 

school they attend, and the selectivity of the law school they attend.  

 Intergroup contact and diversity of ideas are hypothesized to be mediating variables 

in the model; however, they consist of retrospective measures assessed concurrently with the 

items measuring perceptions of a meritocracy at follow-up. This is a hindrance to the ability 

to infer causality because of the issue of selection (Holland, 1988). Despite the inclusion of 

all covariates that are likely to confound the relationship between racial diversity, intergroup 

contact, diversity of ideas, and perceptions of a meritocracy, it is possible that some 

unforeseen confounding variables may not be accounted for in the model. For this reason, an 

alternative model was tested that allowed correlations, rather than directional arrows, 

between all of the measures assessed at the second time point. Correlations were specified for 

both the within and the between parts of the correlational model so that the alternative 
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models are not chi-square equivalent. The model with a lower AIC and BIC provides a better 

fit to the data and is considered to be a more plausible representation of reality.  

 Multiple Groups Analysis. On average, 69% of the student bodies in the schools in 

both the core and volunteer samples are White. It is conceivable that the pattern of results 

might be moderated by the race/ethnicity of the student. While there were 1,113 White 

respondents at follow up, only 125 African American, 108 Asian American, 71 

Mexican/Hispanic, and 116 multiracial students responded to the follow-up survey. 

Unfortunately, these numbers indicate that the statistical power to detect differences between 

non-White groups in a multiple groups analysis would be too low; however, given that 

Whites are generally the majority racial group in a school it is sensible to make a distinguish 

between Whites and non-Whites (e.g., ethnic/racial minorities).  

 As a first step in the multiple group multilevel SEM analysis, measurement 

invariance was tested for Whites and non-Whites following the procedure specified Millsap 

and Tein (2004) for categorical data. Measurement invariance for ordinal data requires that 

two criteria be met: 1) items must have the same relationship to the latent variance for both 

groups (i.e., equivalent factor loadings for all items; equivalently, no differential item 

functioning in the slope parameters), and 2) conditional on a particular value of the latent 

variable, Whites and non-Whites must endorse a level of the item at equal rates (i.e., 

equivalent thresholds for all levels on all items; no differential item functioning in the 

difficulty parameters).  Once measurement invariance was verified (see Results section), two 

structural models were tested. The first constrained the structural paths of interest to equality 

(i.e., the paths from intergroup contact were constrained). The second model allowed these 

paths to be freely estimated across ethnic/racial groups. School-level effects are, by 
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definition, constant for all individuals within a school and therefore cannot vary across 

ethnic/racial groups within schools. Model fit was compared using likelihood ratio tests.  

 Estimation. Mplus v. 5 (Muthén & Muthén, 1998-2007) was used to estimate all 

SEMs in this study. A full-information maximum-likelihood estimator for non-normal and 

dependent data (MLR) was used for all analyses and the WLSMV estimator was used to 

obtain global fit statistics as previously discussed. The MLR estimator is asymptotically 

equivalent to the estimator proposed by Yuan and Bentler (2000).  Gauss-Hermite quadrature 

with five integration points was used to numerically evaluate the likelihood.  The 

combination of few items per each latent variable and many dimensions to integrate over 

made the use of relatively few quadrature points a realistic, if less than desirable, option.  

 As of version 5, estimating the multiple groups model in Mplus cannot be carried 

out using the standard “grouping” at the same time that the “two level” command is used. As 

an alternative, Mplus estimates the equivalent of a multiple groups analysis as a finite 

mixture model with complete training data (i.e., indicators of group membership).  



   

 

 

 

Chapter 3 

Results 

This section briefly presents results from the aggregated analysis first, followed by 

results from several disaggregated models. 

 Aggregated Model (Table 4). The global fit (obtained using the WLSMV estimator) 

of the hypothesized diversity model indicated that the model-implied covariance structure 

was a close approximation to the population covariance structure. The null hypothesis of 

perfect model fit was rejected (χ
2

(25)=155.77). This finding is not surprising given the large 

sample size: all models are approximations to the population (e.g., MacCallum, Browne & 

Cai, 2007). However, the estimated CFI and TLI were well above .90 (.95 and .94, 

respectively), and the estimated RMSEA was .05. Interestingly, the choice of estimator 

(MLR vs. WLSMV) made little difference in terms of standardized structural estimates, 

significance levels, or direction of effects in the aggregated model. Parameter estimates 

obtained with the MLR estimator are reported. 

 Factor loadings ranged from 1.00 to 1.81 on the perceptions of a meritocracy factor 

and from 1.00 to 2.28 on the diversity of ideas factor. Structural parameter estimates for the 

population-average model indicate that racial diversity (RDI) significantly increases contact 

between students of different race/ethnicities (β=3.12; SE=.60; std β = .24). Standardized 

regression coefficients (labeled std β) are reported to provide an indication of the effect size. 

These coefficients are equivalent to standardized regression coefficients in typical regression 
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analysis. RDI does not significantly predict diversity of ideas or perceptions of a meritocracy 

in the aggregated model. Intergroup contact was a hypothesized mediator of the effect of RDI 

on perceptions of a meritocracy and on diversity of ideas. This hypothesis was supported in 

the preliminary model: Intergroup contact significantly predicted reduced perceptions of a 

meritocracy (β=-.06; SE=.02; std β = -.07) and diversity of ideas (β=.11; SE=.02; std β = .17). 

Recall that these effects control for intergroup contact during college, pre-test perceptions of 

a meritocracy, race, gender, age, childhood SES, and school selectivity. Neither LSAT scores 

nor school sector were significantly related to the endogenous variables and so they were 

eliminated from the model. It was also hypothesized that diversity of ideas would be 

negatively causally linked to perceptions of a meritocracy at follow-up; however, this effect 

was nonsignificant. 

 The model described above provides some valuable information. For instance, it 

gives a rough idea of which covariates might be necessary to include as predictors of various 

endogenous variables in the disaggregated model. However, there are serious drawbacks to 

this model. Most importantly, student-level effects are confounded with school-level effects 

(e.g., Muthén & Satorra, 1995; Raudenbush & Bryk, 2002). Every variable measured at the 

person-level has some proportion of variance that is constant for all individuals clustered 

within a school (i.e., school-level variance). While school-level predictors only explain 

variance at the between level, predictors at the individual level predict some proportion of 

between variance and some proportion of within variance. Under the aggregated approach, it 

is not known whether the factor structure at the within-level and between-level is consistent, 

or whether structural paths are consistent across levels. Disaggregating the variance between 
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and within provides a more precise understanding of the specific person- and school-level 

mechanisms underlying the effects of educational diversity in law schools.  

 Disaggregated Measurement Models. The first step in conducting a disaggregated 

analysis was to determine the correct measurement models for the latent variables. Recall 

that there was a choice between the Between and Within formulation and the Variance 

Components formulation (Bollen, et al., in press). The Variance Components formulation is 

more parsimonious and is more intuitive than the Between and Within formulation but makes 

some strong, albeit testable, assumptions. Namely, the Variance Components model assumes 

that: (1) all of the unique variance in measured variables resides at the person-level (i.e., 

there is no specific school-level variance in an indicator that does not result from the 

common factor); and (2) the common factor loading structure is invariant across levels of 

nesting. From a practical standpoint, the Between and Within measurement models require a 

minimum of several hours each to converge while the Variance Components models could be 

estimated in a matter of seconds. Computing time drastically increases as more random 

effects are introduced into a structural model. Also, the Variance Components estimates were 

more stable when using numerical integration, as required here by the ordinal nature of the 

indicators.  

For the diversity of ideas construct, two between-level residual variances in the 

Between and Within model had to be fixed to zero to avoid Heywood cases (boundary 

variance estimates). This adjustment alone provides some evidence that the Variance 

Components model is more appropriate because one requirement of this formulation is that 

between-level residuals are zero. After these residual variances were fixed, standard error 

results from the MLR estimator could not be estimated because the solution was a potential 
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saddle point. Because of this, the Mplus program calculated standard errors using a first-

order Taylor series approximation. The information criteria were very slightly lower for the 

Between and Within formulation (AIC = 20,309.63, BIC = 20,446.06, sample-size adjusted 

BIC = 20,369.81) than for the Variance Components formulation (AIC = 20,381.23; BIC = 

20,489.24; sample-size adjusted BIC = 20,428.88); however, in light of the Heywood cases 

and instability of the Between and Within solution, the Variance Components formulation 

was selected. Table 5 contains factor loadings and threshold estimates for the Variance 

Components formulation of the diversity of ideas measurement model. 

 Measurement model selection for the perceptions of a meritocracy factor was more 

straightforward. A single between-level residual had to be fixed to zero in the Between and 

Within formulation measurement model but there were otherwise no convergence issues. The 

information criteria indices indicated that the Variance Components model provided a 

superior fit (AIC = 16,020.54, BIC = 16,111.48, sample-size adjusted BIC = 16,060.64) to 

the Between and Within model (AIC = 16,023.50, BIC = 16,137.18, sample-size adjusted 

BIC = 16,073.64). Table 6 contains parameter estimates for the Variance Components 

formulation of the perceptions of a meritocracy measurement model. 

 The intra-class correlation (ICC; Muthén, 1994) is estimated for latent variables by 

dividing the estimated variance at the between-level into the total latent variable variance 

(between plus within) in the unconditional measurement model. As noted by Raudenbush, 

Roawn, and Kang (1991), the intra-class correlations are generally larger for latent variables 

than for measured variables due to the disattenuation for measurement error. The ICC for 

diversity of ideas is fairly low (.03). It is higher (.14) for the perceptions of a meritocracy 

factor. The ICC indicates the proportion of the variance in the latent variable that resides at 
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the level of the school. In other words, it is the correlation between students resulting simply 

from attending the same law school. The ICC for intergroup contact during law school was 

estimated to be .22 in SAS Proc Mixed. 

 Alternative Models. Two structural models were compared under the assumption of 

population homogeneity (i.e., a single group model for Whites and non-Whites). Model 

comparisons were necessary in this analysis because the non-experimental survey design 

does not allow researchers to draw firm conclusions about causality (Cook & Campbell, 

1979). All plausible models should be tested and considered to rule out substantively 

different alternatives (MacCallum, Wegener, Uchino, & Fabrigar, 1993). Thus, a model with 

correlations between all constructs measured in the follow-up survey at both the within and 

the between levels was considered as an appropriate alternative to the model with directional 

paths from intergroup contact to diversity of ideas at the within level, intergroup contact to 

perceptions of a meritocracy at the within level, and from diversity of ideas to perceptions of 

a meritocracy at the within level. The alternative models considered here are not nested and 

so cannot be compared using a LRT. BIC and AIC indices are available for the MLR-

estimated models and were designed for the purpose of comparing fit of non-nested models. 

Global fit indices from WLSMV-estimated models were also used as a heuristic for 

comparing model fit. 

Parameter estimates for the correlational model (depicted in Figure 6) are presented in 

Table 7.  Many of the structural paths originating from exogenous covariates were fixed in 

this and subsequently reported models because there were not enough independent sampling 

units in the sample to derive stable estimates of all of the parameters in the model if these 

paths were freely estimated. Values were fixed to parameter estimates from single-factor 
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Multiple Indicator Multiple Cause (MIMIC; Bollen, 1989) models. All paths that involved 

perceptions of a meritocracy, diversity of ideas, and intergroup contact were estimated in all 

models. Some paths from RDI were fixed to zero on the basis of MIMIC models as 

necessitated for convergence of the between-level covariance matrix. The alternative model 

fits well. On 29 degrees of freedom, the chi-square distributed discrepancy function for the 

alternative model is 124.69 with a CFI and TLI of .96 and an RMSEA of .04. 

The nonsignificant correlation between perceptions of a meritocracy and diversity of 

ideas at the within level indicated that the hypothesized directional path between diversity of 

ideas and perceptions of a meritocracy is not supported (see Table 7). Thus, it was not 

estimated in the test of the hypothesized model. The (revised) hypothesized model (full 

results shown in Table 8) was more generalizable and was more likely given the data than the 

alternative correlational model. The AIC for the correlation model was 40,890.12 and was 

40,819.39 for the hypothesized directional model. The BIC for the correlation model was 

41,024.79 and was 40,949.17 for the directional model. Recall that lower information 

criterion values reflect a better fit relative model fit. Also on 29 degrees of freedom, the 

WLSMV-estimated chi-square distributed discrepancy function for the revised hypothesized 

model was 118.17 with a CFI of .97, a TLI of .96, and an RMSEA of .04. While this model is 

not formally nested with the alternative model, it is clear from the global fit statistics that the 

hypothesized model performs slightly better than its competing alternative. Thus, parameter 

estimates from this “best fitting” (single group) model will be described in detail in the text. 

As was the case with the aggregated model, standardized parameter estimates are quite 

similar when estimated with the WLSMV estimator and with the MLR estimator.  
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Best Fitting Model. Racial diversity (RDI) was expected to directly affect intergroup 

contact during law school, diversity of ideas, and perceptions of a meritocracy at follow-up. 

Indeed, RDI significantly increased intergroup contact during law school (β = 3.20; SE = .66; 

std β = .61) and was a marginally significant direct predictor of diversity of ideas (β = .46; SE 

= .28; std β = .24). The direct effect of RDI on perceptions of a meritocracy at follow-up was 

fairly strongly negative (β = -.60; SE = .16; std β = -.50). Racial diversity also indirectly 

affected diversity of ideas and perceptions of a meritocracy through its relationship with 

intergroup contact during law school. The effect of intergroup contact on diversity of ideas is 

small to moderate, but significant and positive (β=.17; SE=.02; std β = .20), and its effect on 

perceptions of a meritocracy is small but significantly negative (β=-.10; SE=.01; std β = -

.14). Inferential tests of indirect effects in two-level models are not currently available.  

Perceptions of a meritocracy was negatively correlated with diversity of ideas at the 

school level (β=-.04; SE=.02; std β = -.90) but these constructs were not significantly 

correlated at the within level. Directional effects of between variables measured at the 

individual-level are not estimable at the between level as a limitation of the estimation 

method currently used in Mplus (version 5). The parameterization of multilevel SEMs does 

not incorporate within-level variables in the between-level predictor-side matrix. To allow 

such a model would require a more complex restructuring of the model. 

The proportion of between variance in intergroup contact during law school grew to 

.39 in the final model, a large increase from the unconditional ICC of .22. This change is an 

indication that more of the within-level variation than between-level variation in intergroup 

contact has been explained by the covariates in the final model. The proportion of variance at 

the between-level in the final model for perceptions of a meritocracy is .65, a large increase 
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from .14 in the unconditional model. The proportion of variance at the between level had a 

very slight increase from .03 in the unconditional model to .04 in the final model. These 

statistics indicate that demographics (age, gender, race/ethnicity, political orientation, and 

childhood relative income), as well as baseline perceptions of a meritocracy and intergroup 

contact during college, explain a larger proportion of the variance in intergroup contact 

during law school, perceptions of a meritocracy at follow-up, and diversity of ideas than 

school-level predictors (RDI and selectivity). Intergroup contact during law school also 

predicts some of the individual-level variation in the endogenous latent variables. 

 Measurement Invariance across Race/Ethnicity. Once the causal model was selected, 

racial group invariance was tested. Measurement invariance is a prerequisite for making 

inferences about structural invariance (Millsap, R.E & Meredith, W., 2007). A likelihood 

ratio test (LRT) with the Satorra-Bentler scaling correction factor for nonnormality was 

nonsignificant for both diversity of ideas (χ
2

(13)=1.07) and for perceptions of a meritocracy 

(χ
2

(9)=1.13). Two structural models were compared: one with freely estimated paths for all 

within-level parameters and one with important structural paths constrained to equality 

across groups. The corrected LRT was nonsignificant (χ
2

(3)=1.52) indicating structural 

invariance of the mechanism of diversity for Whites and non-Whites. Thus, the “best fitting” 

single group model remains the most parsimonious model of the mechanism of how racial 

diversity influences student experiences with diversity in law school, and how attitudes about 

socio-political issues are influenced by racial heterogeneity within a school, as well as 

experiences with diversity. 



   

 

 

 

Chapter 4 

Discussion 

 In this manuscript, I aimed to simultaneously contribute to a substantively important 

question by employing the most appropriate statistical methodology that is currently 

available. In doing so, I put the developing methodology to the rigorous test or real-world 

data analysis. As such, there are two main components to the discussion. The first section 

concerns findings related to educational diversity, and the second section discusses my 

experience with implementing MSEM. Practical advice for applied researchers is given, 

along with suggested directions for future developments in the methodology. 

Educational Diversity 

 Support for Hypotheses. It is important to note that although the link between school-

level racial diversity and student-level contact may seem trivial, it should not be taken for 

granted. Whitehead and Wittig (2004) found that some students resist multiculturalism in 

schools by choosing to self-segregate. Springer (1996) called Allport’s (1954) Contact 

Theory into question based on findings that college students who are not receptive to diverse 

interactions self-segregate when faced with racially diverse environments. The significant 

causal link between school-level racial diversity and intergroup contact during law school 

was significant even after controlling for contact during college and for other background 

factors. Thus, this study provides evidence to suggest that self-segregation does not 

completely hinder the positive effects of racial diversity in law schools. As an additional 
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note, the possibility of selection bias of students into racially diverse schools was tested in 

the EDP sample. Using LSAC data on admissions decisions, we determined that prospective 

students were driven primarily by school selectivity and that racial diversity was uncorrelated 

with students’ decisions to matriculate to a particular law school. 

This study was conducted to test several hypotheses about educational diversity in 

law schools. First, on the basis of Allport’s (1954) contact theory of prejudice reduction, I 

believed that higher levels of intergroup contact during the law school years would lead to 

decreased prejudices about disadvantaged populations. This hypothesis was fully supported 

by the data. Controlling for students’ predispositions to intergroup contact with diverse peers, 

baseline prejudices, political orientation, ethnicity/race, gender, and childhood SES, students 

who interacted with a diverse group of peers during law school had less prejudiced beliefs at 

the completion of law school. In addition, intergroup contact partially mediated the effect 

that school-level racial diversity had on reducing prejudice.   

Allport (1954) theorized that the presence of diverse groups is necessary but not 

sufficient for reduction in prejudice against other groups. Rather, he said that interactions 

should be cooperative, supported by an authority, and that all parties should be of equal 

social status. Law students are generally of equivalent social standing, and if they choose to 

interact during law school, their interactions are more likely to be cooperative (e.g., studying 

and socializing together) than competitive. Little is presently known about how supportive 

law school faculty and administrators in these law schools were; however, research by 

Pettigrew and Tropp (2006) suggests that gains can still be made without this support. The 

effectiveness of administrative support for intergroup contact is an important topic for future 

study. 
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The effect of intergroup contact during law school on perceptions of a meritocracy at 

follow-up was small but statistically significant. An increase in one standard deviation of 

intergroup contact during law school is associated with a decrease in .10 standard deviations 

on the perceptions of meritocracy scale at follow-up. The recent meta-analysis by Pettigrew 

and Tropp (2006) suggested a moderate effect size. The effect in the law school sample may 

not have been as large for a few reasons. First, law school is a competitive environment and 

not all student interactions may be positive. Second, we do not have information on how 

much these interactions were supported by law school faculty and administrators. Third, the 

average student entering law school is in his or her mid-to-late twenties with more 

crystallized belief systems than those of younger students, making law student attitudes and 

beliefs more difficult to influence. 

The second hypothesis was that schools with more racial diversity would be 

characterized by a more robust exchange of diverse ideas. There was a moderate but 

nonsignificant direct effect of racial diversity on diversity of ideas, as well as a substantial 

indirect effect of racial diversity on diversity of ideas via intergroup contact. The statistical 

significance of indirect effects cannot be tested across levels of the MSEM; however, both 

paths in the indirect effect are moderate-to-large and are statistically significant. These 

effects persisted after controlling for student demographics and school characteristics (e.g., 

selectivity, sector).  

 This finding suggests that racial diversity at a school is not in and of itself sufficient 

to promote a diverse exchange of ideas, but the extent to which there are intra-personal 

interactions across racial/ethnic groups in a school, a robust exchange of ideas follows. This 

effect is not possible without the presence of school-level racial diversity.  
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 Theory is mixed regarding the relationship between the diversity of ideas to which 

students are exposed to and their prejudiced attitudes. For instance, Chang (2002) found that 

students who were compulsorily exposed to courses dealing with issues of multiculturalism 

had reductions in racism compared to students who did not have such exposure. On the other 

hand, Federico and Sidanius (2002) and Reyna, et al. (2005) presented empirical support for 

the notion that prejudices can be strengthened and supported with exposure to higher 

education. It is perhaps not surprising, then, that I found no significant relationship between 

diversity of ideas and perceptions of a meritocracy at the individual level. There was a 

significant negative correlation between the constructs at the school-level, indicating that 

schools that are characterized by a more diverse exchange of ideas have lower average levels 

of prejudice. The standardized effect of this correlation was quite large (.90); however, 

directional hypotheses cannot be tested at the school-level in current software and both 

directional effects are plausible. All that can be inferred from this finding is that low levels of 

prejudice in a school coexist with a more robust exchange of ideas within a school.  

 Policy Implications. This study was motivated by the recent challenges to the use of 

affirmative action in education. There were two purposes: 1) to provide empirical support for 

the benefits of racial diversity in education, and 2) to determine mediating mechanisms that 

have the potential to be manipulated by school administrators. The latter, while beneficial for 

any academic administrator wishing to boost the effects of educational diversity, will become 

particularly important should race-conscious admissions policies be completely banned. 

 The first major substantive implication of this study is that racial diversity provides 

measurable benefits for students. Furthermore, the finding of no ethnic/racial group 

differences in the structure of the effects suggests that these benefits accrue for students of all 
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race/ethnicities. Assuming that the mission of the majority of institutions of higher education 

is to facilitate the exchange of diverse ideas, administrator should focus on achieving a 

racially diverse student body to the extent possible. Increasing the racial heterogeneity of the 

student body will also disabuse law students of prejudiced attitudes before they enter into the 

workforce. 

 Second, the finding that the benefits of racial diversity are partially mediated by 

intergroup contact suggests a mechanism through which educators can maximize the benefits 

of racial diversity within their school while working with a fixed amount of racial diversity in 

the student body. By actively encouraging cooperative interactions between students of 

different ethnic and racial backgrounds, students will be exposed to a wider array of new 

ideas and out-group prejudices will dissipate. For example, law schools may encourage 

students to form discussion groups with peers whose viewpoints differ from their own. This 

particular technique is supposed by an experimental study conducted by Antonio, et al. 

(2004), who found that students that were randomly assigned to racially diverse focus groups 

developed a higher degree of integrative complexity in their perspectives on an array of 

issues compared to the racially homogenous groups. Administrators may also encourage 

student group leaders to actively recruit students of diverse racial/ethnic backgrounds to 

participate in extracurricular student groups (e.g., mock trial, student journals).  

 Limitations. It is not legally possible to manipulate experimentally racial diversity in 

law schools so causality cannot be proved. This limitation was minimized with the inclusion 

of potentially confounding covariates, a longitudinal design, and with alternative model 

comparisons. Furthermore, self-selection of students into racially diverse schools was 
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eliminated as a possibility by examination of admissions and matriculation records. This 

finding is consistent for both genders and all racial/ethnic groups in the study.   

Current State of Methodology.  

For the most part, the ability to use MSEMs to model data offers a tremendous 

advantage over other commonly used approaches to modeling structural and nested processes 

(e.g., multilevel modeling without latent variables, structural equation modeling without 

accounting for nesting, or that account for nesting by using a population-average aggregated 

approach). Indeed, few diversity researchers even use these approaches, instead opting to 

conduct multiple regressions that do not control for nesting (e.g., Antonio, 2001; Gurin, et 

al., 2002), or correlation coefficients (e.g., Chang, 2002). 

 Multilevel modelers are very familiar with the consequences of ignoring nestedness 

in data. Researchers who model multilevel data as single level data are plagued with inflated 

standard errors and high rates of type I error (e.g., Bryk & Raudenbush, 2002). Structural 

equation modelers are equally well versed in the pitfalls inherent in failing to use common 

factor models to model unobserved constructs. Using measured variables, including 

composites, in the place of latent constructs results in lower reliability and reduced construct 

validity (e.g., Hoyle & Robinson, 2004). Measurement models, on the other hand, provide a 

statistical way to implement multitrait-multimethod measurement (Campbell & Fiske, 1959) 

and to model directly unique error variance in items (Thurstone, 1947). Psychologists 

frequently encounter nested data, either due to sampling strategies or because of naturally 

occurring clusters in the population (such as students nested in schools). Often, the 

proportion of variation in a variable that is attributable to each level of nesting provides 

interesting information. Just as often, psychologists are interested in measuring constructs 
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that are not directly observable. MSEM, to the extent that it is theoretically developed and 

computationally practical, is able to handle both of these situations simultaneously. 

 There is a major advantage to using a disaggregated (i.e., multilevel) SEM approach 

to handling complex survey data over the aggregated (i.e., population average) approach. The 

population-average approach is useful for drawing inferences about average trends that may 

appear in a population but it is not useful for making inferences about a particular individual 

in the population (Muthén & Satorra, 1995). The disaggregated/multilevel approach enables 

more finely tuned inferences by parsing variance at the between- (school-) level from the 

variance at the within- (student-) level. This provides two pieces of information: (1) the 

correlation between students that is associated with attending the same school (intraclass 

correlation; ICC), and (2) the variability that exists across schools and across individuals 

around the population average. 

  MSEM is not new, but its incorporation into statistical software is relatively recent. 

As such, there are very few instances of applied uses of MSEM in the literature (exceptions 

being pedantic illustrations authored by developers of the approach). With the exclusion of 

Skrondal and Rabe-Hesketh’s (2004) textbook, there are no published examples of 

conducting a MSEM with categorical data. Skrondal and Rabe-Hesketh (2004) did not 

mention issues of missing data.  

 Computational Issues. Numerical integration is required to implement maximum 

likelihood estimation when data are categorical. Item response theorists, who have conducted 

nonlinear factor analysis for decades, have developed a number of numerical estimation 

techniques that provide unbiased, precise, and stable estimates when only one or two random 

effects are present (see Swygert, McLeod, & Thissen, 2001; Wirth & Edwards, 2007). 
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Researchers dealing with only a couple of factors have a choice between using upwards of 15 

quadrature points, or using fewer adaptive quadrature points. Multilevel structural equation 

modelers typically do not have such a luxury. 

 In this analysis, I was extremely frugal with allowing dimensions of integration. 

Instead of using a measurement model for baseline perceptions of a meritocracy, I computed 

a composite score. Instead of declaring intergroup contact as Poisson-distributed at baseline 

and at follow-up, I treated it as a continuous variable. The Variance Components 

measurement model formulation was used instead of the Between and Within measurement 

model formulation. Despite these choices, there were still five dimensions of numerical 

integration required to evaluate the likelihood of the structural models. Adaptive quadrature 

was not a viable option, and non-adaptive quadrature points had to be limited to avoid 

allowing the exponential growth in computing time to become unwieldy. Each additional 

quadrature point increases points of integration by an additive power, so five quadrature 

points were generally used for model estimation. Schillings and Bock (2005) were able to 

recover population parameter values with as few as two adaptive quadrature points, 

providing some credence to the idea that population parameter values can be recovered with 

five non-adaptive quadrature points.  

 A MSEM would be extremely difficult to implement if the Between and Within 

measurement model formulation were used. Each single factor measurement model took 

several days each to converge, and often resulted in problematic solutions (e.g., Heywood 

cases, saddle points). Whenever possible, the more interpretable Variance Components 

model should be used. 
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 Limitations on Testing Theorized Model. I encountered two barriers to theory testing 

while using MSEM. First, only variables with no variation at level one can be used to predict 

between-level variation in other variables. For instance, only the within-level directional 

effect of diversity of ideas on perceptions of a meritocracy could be specified; covariation 

between these factors was allowed at the between level, but predictive paths were not 

permitted. The second limitation was relatively minor. The standard error of cross-level 

indirect effects is not estimable in Mplus. Thus, the statistical significance of the indirect 

effects of racial diversity on perceptions of a meritocracy and on diversity of ideas was not 

tested. 



   

 

 

 

Chapter 5 

Conclusion 

 Educational Diversity. Educational institutions have a long way to go before ethnic 

and racial groups receive equal representation (Isaacs, 2008). This study provides empirical 

evidence that ethnic/racial diversity benefits students of all ethnic/racial backgrounds, over 

and above the economic benefits that clearly exist for disadvantaged groups. Meanwhile, the 

use of race conscious admissions decisions is becoming increasingly stringent (Gratz vs. 

Bollinger, 2003; Meredith vs. Jefferson Co. Board of Ed., 2007; Parents vs. Seattle, 2007). 

Therefore, educational administrative policy would benefit from research that focuses on 

enhancing educational diversity with race neutral policies. Shultz (2007) recommends 

increasing racial diversity in schools by evaluating prospective students based on 

“effectiveness factors.” The current study recommends that administrators focus efforts on 

increasing positive interactions between students of different backgrounds. Once 

implemented, the effectiveness of these strategies should be evaluated. 

 Multilevel Structural Equation Modeling with Categorical and Missing Data. 

Researchers now have at their disposal a useful tool for modeling the structural relationships 

between latent variables that are measured with non-normally distributed variables that 

contain variation at more than one level. MSEM is an important development for accurate 

representation of theoretical processes. As previously discussed, there is some room for 

improvement in software and technical documentation. Given the rate of new technological 
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developments, MSEM shows great promise as a technique to be regularly implemented in 

applied research.
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Table 1 

Law School Characteristics for Volunteer and Core Baseline Samples 

 Mean/Proportion SD Min Max 

 Volunteer Core Volunteer Core Volunteer Core Volunteer Core 

RDI .46 .43 .10 .16 .23 .17 .66 .71 

Private .50 .54       

Enrollment 923.56 717.78 556.88 340.07 361 220 2868 1667 

Selectivity .30 .27 .11 .08 .16 .12 .60 .47 

Note. RDI = Racial Diversity Index, a measure of the racial heterogeneity (the compliment of 

the sum of the squared proportion of each ethnic group); unity indicates complete 

heterogeneity and zero indicates pure homogeneity. Selectivity is calculated as the number 

admitted over the number of applications so lower numbers indicate greater selectivity. 

Core sample N = 50 schools; Volunteer sample N = 16 schools. 
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Table 2 

Demographic Characteristics of Baseline Participants in Volunteer and Core Samples 

 Mean/Proportion SD Min Max 

 Vol. Core Vol. Core Vol. Core Vol. Core 

Female .52 .52       

Age 25.41 25.42 5.04 5.15 19 18 58 61 

Childhood Household 

Income 3.49 3.37 1.52 1.39 1 1 8 8 

LSAT 159.15 156.68 5.47 7.04 136 120 179 180 

Political Orientation 2.56 2.69 .93 .97 1 1 5 5 

Married or Civil 

Union .17 .18  

 

 

 

 

 

Race/Ethnicity         

 White .69 .68       

 African 

 American .06 .10  

 

 

 

 

 

 Asian-

American .10 .09  

 

 

 

 

 

 Mexican- 

 American or 

 Hispanic .05 .05  

 

 

 

 

 

 Multiethnic .09 .08       

Note. Childhood household income and ranges from 1 (Below $10,000) to 8 (Over $500,000). 

Political Orientation ranges from 1 (Extremely Liberal) to 5 (Extremely Conservative). Volunteer 

sample consists of 1963 people. Core sample consists of 6,100 people.  
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Table 3  

Attrition Analysis 

Item Attriters N=5,883 Completers N=2,180 

Gender   

 Female 50.3% 56.7% 

Race/Ethnicity   

 African American 9.5% 7.1% 

 Asian American 9.4% 7.1% 

 Mexican/Hispanic 5.3% 4.9% 

 Multiracial 8.6% 8.1% 

 White 67.1% 72.8% 

Political Orientation   

 Extreme Liberal 8.1% 11.9% 

 Liberal 36.0% 42.5% 

 Moderate 32.2% 26.3% 

 Conservative 18.7% 15.9% 

 Extreme 

Conservative 

2.5% 2.1% 

Relative Childhood Income   

 Very Low 4.2% 4.1% 

 Low 12.8% 14.2% 

 Average 34.9% 35.0% 

 High 41.1% 41.5% 

 Very High 7.1% 5.1% 

“Because Irish, Italians, Jews, and many other minorities overcame prejudice and worked 

their way up, Blacks should do the same without any special favors.”  

 Strongly Disagree 16.0% 18.6% 

 Disagree 30.2% 35.3% 

 Neutral 30.1% 26.7% 

 Agree 16.9% 14.4% 

 Strongly Agree 5.5% 4.6% 

Note. Chi-square test statistics indicate that endorsement patterns differ significantly for 

attriters and completers on all of these items. 
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Table 4 

Final Aggregated Model 

Outcome Predictor Regression Weight (SE) 

Perceptions of a meritocracy 
(Time 2) 

 

Racial Diversity Index -.44(.34) 

 Intergroup contact during 

Law School -.07(.02)*** 

 Perceptions of a meritocracy 

(Time 1) .44(.02)*** 

 Intergroup contact in College .0(-)
a 

 Female -.38(.06)*** 

 White .45(.09)*** 

 Age .0(-)
a
 

 Politically Conservative .0(-)
a
 

 Relative Childhood Income .0(-)
a
 

 Percent of Students Accepted 1.16(.48)* 

Diversity of ideas Racial Diversity Index -.18(.28) 

 Intergroup contact during 

Law School .11(.02)*** 

 Perceptions of a meritocracy 

(Time 1) -.05(.02)** 

 Intergroup contact during 

College .0(-)
a
 

 Female .0(-)
a
 

 White .30(.07)*** 

 Age .01(.01) 

 Politically Conservative .0(-)
a
 

 Relative Childhood Income .08(.03)* 

 Percent of Students Accepted .0(-)
a
 

Intergroup contact during 
Law School 

 

Racial Diversity Index 3.12(.60)*** 

 Perceptions of a meritocracy 

(Time 1) -.05(.02)** 

 Intergroup contact during 

College .18(.02)*** 

 Female .0(-)
a
 

 White .0(-)
a
 

 Age .03(.01)*** 

 Politically Conservative .07(.05) 

 Relative Childhood Income -.20(.04)*** 

 Percent of Students Accepted .0(-)
a
 

Perceptions of a meritocracy (Time 2) with Diversity of 

ideas -.05(.05) 
Note. Bolded predictors indicate hypothesized paths; AIC=40,797.62; BIC=41,101.40; n-adjusted 

BIC=40,929.84 from MLR estimator. 

χ
2
(24)=98.08; CFI=.97; TLI=.97; RMSEA=.04 from WLSMV estimator. 

a 
Fixed to zero based on earlier models.  *p<.05; **p<.01; ***p<.001  
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Table 5 

Diversity of ideas Variance Component Measurement Model  

 Loading (SE) 

 Quality of Class Discussions 1.00(-) 

 Respectful Exchange of Political 

 Views 

1.58(.12)*** 

 Expression of Diverse Belief 2.34(.24)*** 

 School is Open to New Ideas 1.09(.08)*** 

Thresholds  

 Discuss 1 -3.07 

 Discuss 2 -.31 

 Discuss 3 3.00 

 Respect 1 -5.17 

 Respect 2 -2.71 

 Respect 3 -.07 

 Respect 4 3.08 

 Belief 1 -4.41 

 Belief 2 -1.18 

 Belief 3 2.95 

 Open 1 -3.94 

 Open 2 -2.10 

 Open 3 -.15 

 Open 4 2.26 

Note. AIC=20,381.23; BIC=20,489.24; n-adjusted BIC=20,428.88. ICC=.03 
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Table 6 

Perceptions of a meritocracy Variance Component Measurement Model  

 Loading (SE) 

 In America today, everyone has an 

 equal opportunity to succeed 

1.00(-) 

 Because Irish, Italians, and Jews 

 worked their way up, Blacks should 

 do the same without any special f

 avors 

2.14(.18)*** 

 People on the bottom of the socio-

 economic scale are probably lazier 

 than people at the top 

1.81(.14)*** 

Thresholds  

 Equal 1 -3.27 

 Equal 2 .12 

 Equal 3 3.10 

 Equal 4 5.54 

 Favor 1 -.84 

 Favor 2 1.32 

 Favor 3 2.82 

 Favor 4 5.14 

 Lazy 1 -2.49 

 Lazy 2 1.35 

 Lazy 3 2.86 

 Lazy 4 5.65 

Note. AIC=16,020.54; BIC=16,111.48; n-adjusted BIC=16,060.64. ICC=.14 
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Table 7 

Single Group Disaggregated Two-Level Model with Correlations between Time 2 Outcomes 

Outcome Predictor Regression Weight (SE) 

Perceptions of a meritocracy 
(Time 2) 

 

Racial Diversity Index 

 

-2.41(.13)*** 

 Perceptions of a meritocracy 

(Time 1) 

.25(.01)*** 

 Intergroup contact in College .0(-)
a 

 Female -.28(.04)*** 

 White .27(.06)*** 

 Age .0(-)
a
 

 Politically Conservative .21(.03)*** 

 Relative Childhood Income .0(-)
a
 

 Percent of Students Accepted .0(-)
a
 

Diversity of ideas Racial Diversity Index 3.17(.36)*** 

 Perceptions of a meritocracy 

(Time 1) 

-.04(.02)* 

 Intergroup contact during 

College 

.0(-)
a
 

 Female .0(-)
a
 

 White .31(.07)*** 

 Age .02(.00)*** 

 Politically Conservative .0(-)
a
 

 Relative Childhood Income .08(.03)* 

 Percent of Students Accepted 2.44(.40)*** 

Intergroup contact during 
Law School 

 

Racial Diversity Index 

 

4.50(.90)*** 

 Perceptions of a meritocracy 

(Time 1) 

 

-.01(.02) 

 Intergroup contact during 

College 

.18(.02)*** 

 Female .0(-)
a
 

 White -.19(.09)* 

 Age .03(.01)*** 

 Politically Conservative .0(-)
a
 

 Relative Childhood Income -.13(.04)*** 

 Percent of Students Accepted .13(1.17) 

Perceptions of a meritocracy with Diversity of ideas Within -.04(.04) 

Perceptions of a meritocracy with Diversity of ideas 

Between 

-.14(.04)*** 

Perceptions of a meritocracy w/ Intergroup contact Within -.15(.04)*** 

Perceptions of a meritocracy w/ Intergroup contact Between -.06(.05) 

Diversity of ideas with Intergroup contact Within .37(.06)*** 

Diversity of ideas with Intergroup contact Between .08(.07) 
Note. Bolded predictors indicate hypothesized paths; AIC=40,890.12; BIC=41,199.53; n-adjusted 

BIC=41,024.79 from MLR estimator.  
a
Fixed to zero for identification purposes—nonsignificant in previous 

analyses. χ
2

(29)=124.69; CFI=.96; TLI=.96; RMSEA=.04 from WLSMV estimator; *p<.05; **p<.01; ***p<.001 
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Table 8 

Single Group Disaggregated Two-Level Model with Causal Paths between Time 2 
Outcomesb 

Outcome Predictor Regression Weight (SE) 

Perceptions of a meritocracy 
(Time 2) 

 

Racial Diversity Index 

 

-.60(.16)*** 

 Intergroup contact (Law) -.10(.01)*** 

 Perceptions of a meritocracy 

(Time 1) 

 

.26(.01)*** 

 Intergroup contact (College) .0(-)
a 

 Female -.26(.04)*** 

 White .28(.06)*** 

 Age .0(-)
a
 

 Politically Conservative .23(.03)*** 

 Relative Childhood Income .0(-)
a
 

 Percent of Students Accepted .0(-)
a
 

Diversity of ideas Racial Diversity Index .46(.28)† 

 Intergroup contact (Law) .17(.02)*** 

 Perceptions of a meritocracy 

(Time 1) 

 

-.04(.02)* 

 Intergroup contact (College) .0(-)
a
 

 Female .0(-)
a
 

 White .32(.07)*** 

 Age .02(.01)** 

 Politically Conservative .0(-)
a
 

 Relative Childhood Income .09(.04)* 

 Percent of Students Accepted 1.64(.37)*** 

Intergroup contact during 
Law School 

 

Racial Diversity Index 

 

3.20(.66)*** 

 Perceptions of a meritocracy 

(Time 1) 

-.02(.02) 

 Intergroup contact (College) .19(.02)*** 

 Female .0(-)
a
 

 White -.40(.11)*** 

 Age .03(.01)*** 

 Politically Conservative .0(-)
a
 

 Relative Childhood Income -.14(.04)*** 

 Percent of Students Accepted .0(-)
a
 

Perceptions of a meritocracy w/ Diversity of ideas Within -.02(.04) 

Perceptions of a meritocracy w/ Diversity of ideas Between -.04(.02)** 
Note. Bolded predictors indicate hypothesized paths; AIC=40,819.39; BIC=41,117.55; n-adjusted 

BIC=40,949.17 from MLR estimator.  
a
Fixed to zero for identification purposes—nonsignificant in previous 

analyses.  
b
No causal path between Diversity of ideas and Perceptions of a meritocracy was estimated given the 

non-significant correlation in correlational model..  χ
2

(29)=118.17; CFI=.97; TLI=.96; RMSEA=.04 from 

WLSMV estimator; *p<.05; **p<.01; ***p<.001 
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School Level

Student Level

Diversity of

Ideas

Within

Diversity of

Ideas

Between

Quality of Class

Discussions

Expression of

Diverse Belief

Respectul

Exchange of Views

B1 B2 B3

εB1 εB3
εB2

εW3εW2εW1

School Open to

New Ideas

B4

εB4

εW4

1.0
λB2 λB3 λB4

1.0 λW2 λW3 λW4

 
 Figure 1. Between and Within measurement model formulation for diversity of ideas 

construct. Individual-level item variances are implicitly fixed to π
2
/3 by the logit function 

relating the ordinally-measured items to the factor. Between-level item intercept variances 

are continuous. 
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School Level

Student Level

Diversity of

Ideas

Within

Quality of Class

Discussions

Expression of

Diverse Belief

Respectul

Exchange of Views

εW3εW2εW1

School Open to

New Ideas

εW4

Diversity of

Ideas

Between

1.0 λ2 λ3
λ4

 

Figure 2. Variance Components measurement model formulation for diversity of ideas 

construct. Individual-level item variances are implicitly fixed to π
2
/3 by the logit function 

relating the ordinally-measured items to the factor. 
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School Level

Student Level

Perception of

Meritocracy

Within

Perception of

Meritocracy

Between

Everyone has

Equal Opportunity

Lower SES is

Lazy

No Special

Favors for Blacks

B1 B2 B3

εB1 εB3εB2

εW3εW2εW1

1.0

1.0

λB2

λW3λW2

λB3

 

Figure 3. Between and Within measurement model formulation for perceptions of a 

meritocracy construct. Individual-level item variances are implicitly fixed to π
2
/3 by the logit 

function relating the ordinally-measured items to the factor. Between-level item intercept 

variances are continuous. 
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School Level

Student Level

Perception of

Meritocracy

Within

Everyone has

Equal Opportunity

Lower SES is

Lazy

No Special

Favors for Blacks

εW3εW2εW1

Perception of
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Figure 4. Variance Components measurement model formulation for perceptions of a 

meritocracy construct. Individual-level item variances are implicitly fixed to π
2
/3 by the logit 

function relating the ordinally-measured items to the factor.  
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Figure 5. Hypothesized structural model. Plusses and minuses indicate hypothesized 

direction of effect.   
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Figure 6. Correlational Model- An alternative to the hypothesized model. Plusses and 

minuses indicate hypothesized direction of effect. 
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Figure 7. Best fitting model. Statistically significant paths are drawn. Plusses and minuses 

indicate estimated direction of effect. Measurement models are invariant for Whites and non-

Whites. Structural paths with equality constraints for Whites and non-Whites were better 

fitting than unequal structural paths. 
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