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ABSTRACT 
 

JOSEPH E. BURGENTS: Tumor-Induced Immune Suppression of Therapeutic 
Cancer Vaccines 

(Under the direction of Jonathan S. Serody) 
 
 

Therapeutic cancer vaccines offer an attractive strategy for treating cancer.  Not only can 

the immune system specifically target tumor cells, but it also provides long-term memory 

needed to prevent recurrent disease.  Despite the therapeutic appeal of cancer vaccines, 

they have not been effective clinically.  Thus, we set out to determine the mechanisms by 

which the presence of tumor inhibited vaccine efficacy.  For this work, we focused on 

tolerant preclinical tumor models.  Vaccination of tolerant neu-N mice with alphaviral 

replicon particles expressing rat neu (neuET-VRP) failed to induce regression of 

established neu-expressing tumors.  The inability of VRPs to induce regression in neu-N 

mice was due to a dominant role of the immunosuppressive tumor environment in these 

animals, as opposed to central deletion of tumor-specific lymphocytes.  Accordingly, 

transfer of neu-specific lymphocytes into neu-N mice did not inhibit tumor growth.  On 

the other hand, we demonstrated that myeloid-derived suppressor cells (MDSC) were a 

main mediator of suppression in neu-N mice.  Depletion of MDSCs, along with provision 

of neu-specific lymphocytes and neuET-VRP vaccination, induced tumor regression in 

the majority of neu-N mice.  We also identified other immunosuppressive mechanisms 

that suppressed anti-tumor immunity in neu-N mice.  These included suppression by Treg 

cells, CD200 and IDO.  As MDSCs were the main mediator of suppression following 
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therapeutic vaccination, we evaluated genes important for their function.  We found that 

MDSCs expressed NLRP3, a member of the inflammasome complex that generates IL-1β 

and IL-18.  While the NLRP3 inflammasome is known to enhance immunity in response 

to both microbial and non-microbial stimuli, its role in anti-tumor immunity is not 

known.  We found that NLRP3 promoted the accumulation of MDSCs in the tumor 

following therapeutic dendritic cell (DC) vaccination.  The decreased accumulation of 

MDSCs in Nlrp3-/- mice led to a fourfold improvement in survival compared to wild type 

mice after DC vaccination.  These data establish an unexpected role for NLRP3 in 

impeding anti-tumor immunity and suggest novel approaches to improving cancer 

vaccines.  In summary, our data suggest that current therapeutic vaccines are not effective 

due to the robust immunosuppressive mechanisms present in the tumor environment. 
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Immune Recognition of Non-Self versus Self 

 In order to protect the host from invading microbes, the immune system must be 

able to specifically recognize and react to foreign antigens, while at the same time 

maintaining tolerance to self-antigens.  This is accomplished through the actions of both 

the innate and adaptive immune system.  The innate immune system recognizes 

pathogens using receptors that are genetically fixed, while the adaptive immune system 

uses receptors that are generated de novo. 

 

Innate immune system 

 The innate immune system is composed of cells with pattern recognition receptors 

that can recognize foreign antigens (147).  These cells include macrophages, dendritic 

cells (DC), mast cells, neutrophils, and eosinophils.  Pattern recognition receptors are 

intra or extracellular receptors that recognize specific motifs present on pathogens, with 

the classic example being Toll-like receptor (TLR) 4, which recognizes 

lipopolysaccharide (LPS) expressed by gram negative bacteria (306). Activation of TLRs 

leads to downstream activation of NF-κB, the mitogen-activated protein (MAP) kinase 

pathway and phosphoinositide (PI3) kinase and results in the generation of 

proinflammatory cytokines such as IL-12/IL-23 and enhanced expression of co-

stimulatory molecules such as CD80/CD86.  Other pattern recognition receptors include 

mannan-binding lectin (MBL), C-reactive protein (CRP), serum amyloid protein (SAP), 

macrophage scavenger receptor (MSR), protein kinase receptor (PKR), and nucleotide-

binding domain, leucine rich containing (NLR) proteins (147).  NK cells, which are also 

part of the innate immune system, are unique in that they do not contain receptors for 
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foreign pathogens.  Instead, they have inhibitory receptors specific for self-major 

histocompatibility complex (MHC) molecules, and are therefore activated by lack of 

inhibitory self proteins (219). 

 

Adaptive immune system 

 The adaptive immune system is composed of T and B lymphocytes that contain 

antigen-specific receptors assembled from rearranged gene segments (20). This allows 

for a greater diversity of receptor specificity compared to the innate immune system, as 

well as the selection of unique, antigen-specific clones.  The differentiation of antigen-

specific memory cells upon antigen challenge is also a defining characteristic of adaptive 

imunity, and allows for a much more robust and rapid immune response upon reinfection 

with a previously encountered organism.  With the increased diversity of receptor 

specificity of the adaptive immune system, exists the potential for the development of 

receptors specific for self-antigens.  Therefore, the adaptive immune system needs to be 

regulated in a way to ensure that lymphocytes will not react against host cells.  This is 

done at both the sites of lymphocyte development (central tolerance) and in the periphery 

(peripheral tolerance). 

 In central tolerance, immature T and B lymphocytes whose receptors are able to 

bind self-antigens with high avidity are deleted (118, 155, 160).  Although central 

tolerance mechanisms are believed to deplete the majority of self-specific lymphocytes, 

cells with receptors specific for self-antigens do escape into the periphery.  Therefore, 

further regulatory mechanisms exist to ensure that these cells do not mediate tissue 

pathology.  These mechanisms of peripheral tolerance include induction of anergy, 
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suppression of adaptive immune cells by regulatory T cells of which the best 

characterized are thymically selected CD4+CD25+ Foxp3-expressing cells (Treg cells), and 

induction of cell death (266, 273). 

 Adaptive immune responses are regulated by the innate immune system.  Innate 

antigen presenting cells (APCs) present antigen to T cells in the context of MHC class I 

or class II molecules.  This ensures activation of an antigen-specific immune response.  

Also, optimal stimulation of adaptive immunity requires upregulation of co-stimulatory 

molecules on innate cells, which occurs upon recognition of foreign antigen through 

receptors specific for PAMPs and DAMPs.  This adds an additional layer of regulation to 

ensure that lymphocytes are only activated against foreign pathogens.  Finally, activation 

of the innate immune system results in the production of inflammatory cytokines, which 

drives the polarization of naïve T cells down a number of diffent effector pathways (336).  

For example, activation of the innate immune system by viruses results in expression of 

type 1 cytokines such as IL-12/IL-23 which drives expression of IFNγ by T cells and 

promotes polerization of Th1 cells (55, 149).  On the other hand, innate immune 

recognition of helminths results in expression of type 2 cytokines such as IL-4 and IL-13, 

which promote Th2 cell polarization (55).  Other T cell polerization pathways also exist, 

including Treg cells and Th17 cells, which are controlled by the cytokines TGF-β and IL-6 

(336).  Thus, three signals determine the nature of adaptive immune responses: (1) 

recognition of antigen in the context of MHC molecules, (2) expression of costimulatory 

molecules that promote activation of naïve T cells, and (3) expression of polarizing 

cytokines that determine the pathway of T cell differentiation (149). 
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Immune recognition of tumor cells 

 The progression of tumors presents a unique challenge to the immune system, in 

that these cells are derived from self and therefore would not be expected to express the 

PAMPs and DAMPs needed to activate innate immunity and promote tumor-specific 

adaptive immunity.  Also, as the majority of antigens characterized at this time on tumor 

cells are derived from self, as either overexpressed self-proteins or reactivation of 

proteins present during development, it is unclear whether a sufficient repitroire of 

tumor-specific lymphocytes exists in the periphery to respond to these antigens.  As 

discussed below, many attempts have been made to activate the immune system to treat 

cancer, but these have not been effective clinically as a result of the difficulty with 

initiating and maintaining antigen-specific responses to self-antigens present on tumor 

cells.  The overall focus of the current work was to evaluate the mechanisms of tolerance 

that dominate in preventing the immune system from reacting against tumor cells.  

Specifically, we focused on the mechanisms of suppression induced by tumors that 

inhibit efficacy of therapeutic cancer vaccines. 

 

History of Tumor Immunotherapy 

 The discovery that the immune could be involved in tumor clearance had its 

earliest origins over 200 years ago when it was first noted that infections in cancer 

patients were sometimes associated with cancer remissions (334).  Serious investigation 

into this phenomenon was first conducted by William Coley in the 1890s after he 

observed the remission of cancer in a patient suffering from infection with Streptococcus 

pyogenes.  From this observation he went on to treat cancer patients with streptococcal 
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cultures.  His findings of tumor regression in some of these patients was published in 

1893 and is the first manuscript to describe the successful use of immunotherapy (51).  

His bacterial preparations became known as ‘Coley’s toxin’ and were used to treat nearly 

1,000 patients with a reported success rate of approximately 10% (334).  Interestingly, as 

will be discussed later, this success rate is comparable to the best current rates achieved 

over 100 years later.  Despite this, ‘Coley’s toxin’ was not widely accepted, and, as a 

result of animal studies with transplantable tumors, the subsequent years were filled with 

much dispute about the potential to utilize a patient’s immune system to treat cancer 

(338).  Currently, it is believed that Coley’s toxin was effective in stimulating innate 

immune responses via activation of TLRs and other PAMPs present on innate immune 

cells.   

 In the 1950’s, a number of reports demonstrated that methylcholanthrene-induced 

tumors could be recognized by the immune system when transplanted into syngeneic 

mice (15, 93, 161, 247).  As a result of these data, multiple different investigators began 

to evaluate the use of cancer immunotherapy and in the 1960’s Frank Burnet proposed 

that lymphocytes continually patrol tissues and eliminate transformed cells through the 

recognition of tumor associated antigens (TAA) (40).  He labeled this process 

‘immunosurveillance.’  This began an earnest search for TAAs that could be recognized 

by the immune system and for which cancer vaccines could be designed. 

 Burnet’s ‘immunosurveillance’ hypothesis appeared counter to his previous 

theory of immunological tolerance, in which he proposed that self-specific lymphocytes 

are deleted during the development of the immune system (41).  Although there was 

much excitement with Burnet’s immunosurveillance hypothesis, for a number of reasons, 
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the scientific community returned to the general belief that immunotherapy was not 

possible.  One of the main arguments against the ability of the immune system to 

recognize tumor cells was that T cell-deficient, athymic nude mice do not have an 

increased frequency of tumor incidence, although the validity of these experiments was 

later questioned when it was discovered that these mice do in fact contain functional T 

cells (190, 302-304).  It was argued that, although the immune system could recognize 

chemically induced tumors, spontaneous tumors could not be recognized by the immune 

system (129).  Therefore, the general opinion of the scientific community that prevailed 

until the 1990s was that immunotherapy was not clinically feasible. 

 Resurgence for tumor immunotherapy began in the 1990s with the discovery of 

numerous TAAs in both mice and humans (27, 29, 200, 255, 318, 321).  It was also 

discovered at this time that some T cells could escape central tolerance, leaving open the 

possibility that tumor-specific T cells were present in the periphery (10, 95, 194).  Also, 

numerous studies reported increased tumor incidence in immune deficient mice, 

implicating both adaptive and innate immunity in tumor immunosurveillance (60, 154, 

276, 290, 291, 320).  With the establishment that the immune system could recognize 

tumor cells and the identification of TAAs, focus shifted to evaluating the mechanisms 

that prevent immune-mediated clearance of tumor cells in cancer patients. 

 

Immunosupressive Tumor Environment 

 As tumors are derived from host cells, many of the mechanisms of central and 

peripheral tolerance discussed above that prevent immune responses against self-antigen 

likely prevent the induction of anti-tumor immunity.  In addition, there are a number of 
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mechanisms of active suppression induced by tumor cells that inhibit anti-tumor 

immunity.  These include the induction of Treg cells and myeloid-derived suppressor cells 

(MDSC), induction of the suppressive molecule IDO, and the action of a number of 

immune inhibitory receptors including CD200R, CTLA-4, and PD-1 (Fig. 1-1).  In the 

current work, we evaluated the contribution of a number of these suppressive 

mechanisms in inhibiting anti-tumor immunity in preclinical vaccine models. 

For a description of the myriad of immunosuppressive properties that are present in the 

tumor environment please see Figure one.   

 

Regulatory T cells 

 Treg cells are potent suppressors of anti-tumor immunity and are a significant 

contributor to peripheral tolerance (75, 266, 280, 355).  Treg cells were initially identified 

as suppressor T cells by Gershon et al. in 1970 (108, 109).  Within ten years following 

their initial discovery, it was demonstrated that Treg cells inhibited anti-tumor immunity 

(22, 42, 101, 230).  Although there was evidence of suppressive T cells, the absence of a 

definitive marker for these cells left much skepticism in the field.  A resurgence of 

interest into suppressive populations of T cells occurred in 1995 when Sakaguchi et al. 

identified the IL-2 receptor, CD25, as a phenotypic marker for Treg cells (268).  

Subsequent studies demonstrated that Treg cells express a lineage-specific transcription 

factor, Foxp3, and Treg cells are now identified by expression of CD4 and FoxP3 (94, 

133, 159).  The importance of FoxP3 (scurfin) was first shown with the description of the 

scurfy mouse by Godfrey et al. in the early 1990s, which succumb to autoimmune disease 

due to the unregulated proliferation and activation of T cells (114, 115).   In recent years 
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the field of Treg biology has exploded and a number of different subsets of Treg cells have 

been described, including inducible Treg cells as well as CD8+ regulator T cells (52, 124, 

332, 333).  CD4+CD25+FoxP3+ Treg cells make up approximately 5-10% of CD4+ cells in 

normal mice and humans but increase in numbers with increased tumor burden. 

 The first evidence of Treg cells inhibiting anti-tumor immunity came from studies 

in which Treg cells were depleted using anti-CD25 depleting antibody (clone PC61) which 

resulted in decreased tumor growth (233, 282).  Later, adoptive transfer experiments 

definitively demonstrated that Treg cells suppress anti-tumor immunity in both mice and 

humans (9, 54, 316).  Unfortunately, as CD25 is also a marker for activated T cells, use 

of CD25 depleting Ab is limited and is only effective when administered prior to tumor 

challenge (233).  Future treatment targeting Treg cells will likely need to inhibit specific 

mechanisms of Treg mediated suppression. 

 A number of suppressive mechanisms have been proposed for Treg cells.  These 

include direct interaction with effector T cells, suppression through interaction with 

APCs, and production of suppressive cytokines (267, 279, 330, 355).  Treg cells can also 

directly mediate killing of effector T cells and APCs though granzyme B or perforin 

dependent pathways (117, 123).  As mentioned above, Treg cells are defined by their 

expression of the IL-2 receptor, CD25.  Treg cells can suppress effector T cells through 

competition for IL-2, which is an important growth cytokine for T cells (56).  As Treg 

cells make up an increased percentage of cells in tumor-bearing animals, this might be an 

important mechanism of Treg-mediated suppression of anti-tumor immunity.   

 Treg cells also suppress T cells through interaction with APCs.  Treg cells express 

the inhibitory molecule CTLA-4, and interaction of CTLA-4 on Treg cells with CD80 or 
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CD86 on DCs induces expression of indoleamine 2,3-dioxygenas (IDO) in DCs.  IDO, 

which will be discussed in more detail below, suppresses T cell activation and 

proliferation and appears to play a major role in T cell suppression in the tumor 

environment (202).  

 Treg cells also suppress T cells through the production of the suppressive 

cytokines IL-10 and TGF-β (279, 333).  Specifically, production of these cytokines is a 

proposed mechanism for induction of, as well as suppression mediated by, the subset of 

inducible Treg cells (48, 111, 124, 240).  IL-10 and TGF-β also inhibit APC function.  Of 

note, other cells in the tumor environment besides Treg cells, namely APCs, can also 

produce these cytokines. 

 Regardless of the exact mechanism of Treg-mediated suppression of anti-tumor 

immunity, Treg cells are involved in inhibiting anti-tumor effector T cells and multiple 

studies aimed at inhibiting Treg cells have resulting in increased immunity and decreased 

tumor growth.  Treatment with CTLA-4-specific antibody increased anti-tumor immunity 

(177).  Treatment with antibody specific to GITR, which is expressed on the surface of 

Treg cells and activated effector T cells, decreased the in vitro suppressive activity of Treg 

cells and increased anti-tumor immunity when administred in vivo (163, 283, 316).  

Finally, treatment with low dose cyclophosphamide, which has been shown to 

preferentially deplete Treg cells, resulted in increased anti-tumor immunity and decreased 

tumor growth (21, 113). 
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Myeloid-derived suppressor cells 

 Meloid-derived suppressor cells (MDSC) are immature bone marrow derived 

myeloid cells that accumulate in the spleen and tumor of mice and humans.  Although the 

first evidence of induction of bone marrow-derived myeloid cells with suppressive 

function was over 20 years ago (350), these cells are only now being fully described 

(105).  Under normal conditions, MDSCs give rise to mature myeloid cells (i.e. 

macrophages, dendritic cells, and granulocytes), but under situation of tumor growth, as 

well as trauma and some chronic infections, these cells expand and accumulate in the 

spleen and tumor where they are involved in the suppression of anti-tumor immunity. 

 In mice, MDSCs are defined by expression of surface markers Gr-1 and CD11b, 

while in humans they are defined as CD14-CD11b+  or CD33+ lineage 

(CD3,CD14,CD19,CD57) negative HLA-DR- (6, 35, 173).  In mice, MDSCs can be 

divided into two groups based on staining with antibodies specific for Ly-6G and Ly-6C 

(348).  Using antibodies that are specific to these two genes allows identification of the 

two subsets of MDSCs.  The first group, representing approximately 70% of splenic 

MDSCs in tumor-bearing animals, displays a granulocytic morphology and is identified 

as CD11b+Ly-6Ghi.  The second group displays a monocytic morphology and is identified 

as CD11b+Ly-6G-Ly-6C+ (348).  Monocytic MDSCs also express CD115 and F4/80.  As 

discussed below, both granulocytic and monocytic MDSCs can suppress T cells by a 

variety of different mechanisms. 

 In normal, tumor-free, mice MDSCs make up at most 2% of total splenocytes, but 

in tumor-bearing mice they can make up close to 40% of splenocytes (348).  A similar 

tenfold expansion is observed in the blood of cancer patients (6, 59, 231).  The expansion 
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of MDSCs appears to be a direct result of increased production of a number of factors 

including cyclooxygenase 2, prostaglandins, stem-cell factor, IL-1β, IL-6, and VEGF (38, 

103, 238, 286).  STAT3 is believed to be the main transcription factor responsible for 

MDSC expansion (49, 166, 221).  Once expanded, MDSCs are activated by a number of 

different factors, including IFNγ, IL-4/IL-13, and TLR agonists, which activate the 

transcription factors STAT1, STAT6, and NF-κb, respectively (34, 58, 105, 106, 171, 

264, 287).  

 MDSCs suppress T cells by a variety of different mechanisms.  First, MDSCs 

suppress T cells through enhanced metabolism of L-arginine through the production of 

arginase 1 and iNOS (252).  Depletion of L-arginine inhibits T cell proliferation by 

decreasing expression of the CD3 ζ-chain and by preventing expression of cell cycle 

regulators cyclin D3 and cyclin-dependent kinase 4 (253, 254).  Production of NO from 

L-arginine suppresses T cells by inhibting JAK3/STAT5 signaling (23).   

 Production of ROS by MDSCs is also a main mechanism of MDSC-mediated 

suppression (173, 271).  Production of ROS by MDSCs might be particularly important 

in the tumor environment as many tumor-associated factors including TGF-β, IL-3, IL-6, 

IL-10, and GM-CSF have been shown to induce ROS production by MDSCs (105).  

Also, MDSCs were unable to suppress T cells in vitro when ROS production by MDSCs 

was inhibited (173, 271). 

 Peroxynitrate, which is the product of NO reacting with the ROS superoxide 

anion, has also been shown to inhibit T cells through nitrosylation of tyrosine (33).  

Peroxynitrate has also been implicated in antigen-specific suppression mediated by 

MDSCs.  Nitration of the T cell receptor on CD8+ T cells following direct cell contact 
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with MDSCs inhibited antigen specific stimulation while maintaining responsiveness to 

non-specific stimulation (216). 

 Recent data suggest that MDSCs can also suppress T cells indirectly through the 

induction of Treg cells (138, 275, 345).  A number of different mechanism have been 

proposed to explain MDSC mediated induction of Treg cells, which include IFN-γ 

dependent IL-10 production (138), interaction of CD80 with CTLA-4 (345), and 

presentation of TAAs to Treg cells (275). 

 Depletion or inhibition of MDSCs has been shown to improve immunotherapy.  

Depletion of MDSCs with anti-Gr-1 Ab decreased tumor growth in a number of murine 

tumor models (179, 207, 274, 310).  The chemotherapeutic agent gemcitabine also 

depletes MDSCs resulting in decreased tumor growth (305).  Approaches to inhibit 

MDSC function or expansion that have resulted in increased anti-tumor immunity include 

treatment with the cyclooxygenase 2 (COX-2) inhibitor celecoxib (308), the 

phosphodiesterase 5 inhibitor sildenafil (274), the ROS inhibitor nitroaspirin (57), 

blocking antibody to the SCF ligand c-kit (238), the VEGF blocking antibody avastin 

(170), and the MMP9 inhibitor amino-biphosphonate (199).  A third treatment approach 

targeting MDSCs is to induce their maturation.  This approach is particularly appealing as 

maturing MDSCs into macrophages and DCs will not only eliminate a suppressive 

population but has the potential to increase the number of APCs that can promote anti-

tumor immunity.  For example, the vitamin A metabolite all-trans retinoic acid (ATRA) 

induces differentiation of MDSCs into macrophages and DCs and treatment with ATRA 

has been shown to enhance tumor-specific T cell responses and decrease tumor growth 

(169, 205, 220). 
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NLRP3 inflammasome 

 As has been discussed, it is becoming increasingly clear that the inflammation 

associated with the tumor environment promotes both cancer initiation and progression 

(16, 30, 53, 156, 191).  One of the main cytokines important for the induction and 

maintenance of the inflammatory tumor environment is IL-1β.  There are a number of 

mechanisms responsible for the generation of IL-1β including the activity of the NLR 

family, pyrin domain containing 3 (NLRP3; CIAS1; NALP3) inflammasome  which 

converts pro-IL-1β into its active form IL-1β.  The NLRP3 inflammasome is a protein 

complex composed of NLRP3, ASC/PYCARD/TMS/CARD5, Cardinal and pro-caspase-

1 (3, 192, 193, 314). Formation of this complex results in the proteolytic maturation of 

caspase-1 which cleaves and activates pro-IL-1β and pro-IL-18 to generate IL-1β and IL-

18 (192). 

 NLRP3 is an intracellular sensor activated by a wide variety of both microbial and 

nonmicrobial molecular motifs.  The microbial motifs are part of the pathogen associated 

molecular patterns (PAMPs) and include gram positive and negative bacteria, RNA and 

DNA viruses, polyI:C, and LPS (193).  The nonmicrobial signals include aluminum salts, 

asbestos, ATP, silica crystals and urate crystals (96, 97, 135, 193).  Many of these 

nonmicrobial signals are associated with tissue injury and are referred to as damage 

associated molecular patterns (DAMPs) (164, 193).  Little is known about whether the 

NLRP3 inflammasome is activated in the tumor environment.  Recently, Ghiringhelli et al. 

found that NLRP3 was activated by ATP released from tumors cells that were exposed to 

specific chemotherapy drugs (110).  Further, they reported that activation of IFN-γ 
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producing CD8+ T cells was dependent on activation of NLRP3 in DCs (110).  These 

data suggested that NLRP3 played a role in the generation of anti-tumor immunity. 

 The role of NLRP3 in the tumor environment in the absence of chemotherapy or 

in the context of therapeutic vaccination is not known.  Given previous work 

demonstrating that IL-1β could inhibit immune responses in tumor-bearing hosts, we 

hypothesized that NLRP3 would inhibit anti-tumor immunity (167, 265).  Chapter three 

of this dissertation will focus on the role of NLRP3 in the setting of therapeutic 

vaccination against melanoma.   

  

CD200:CD200R 

 CD200 (OX-2) is a type 1 transmembrane protein with two IgSF domains but no 

known cytoplasmic signaling motif (19).  CD200 is expressed on a variety of different 

cell types of both hematopoietic and non-hematopoeitic origin (339).  The receptor for 

CD200, CD200R, is restricted to myeloid cells (132, 340).  CD200R is almost identical to 

CD200 except for the addition of a cytoplasmic ITIM motif that delivers an inhibitory 

signal to myeloid cells after binding with CD200 (132).  CD200 is therefore believed to 

be involved in the regulation of myeloid cells. 

 Consistent with its role in the regulation of myeloid cells, CD200 knockout mice 

have increased numbers of macrophages and granulocytes in lymphoid organs and are 

more susceptible to collagen-induced arthritis (CIA) and experimental allergic 

encephalomyelitis (EAE) (132).  In addition, CIA and EAE can be suppressed by 

treatment with CD200R agonists (121, 132).  In vitro, addition of CD200R agonists 

suppresses T cells through decreased IL-2 and IFN-γ and increased IL-10 (119). 
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 Our group has shown that expression of CD200 by melanoma cells suppresses T 

cell proliferation and cytokine production in vitro (244).  In a humanized mouse model of 

CLL, treatment with anti-CD200 antibody resulted in inhibition of tumor growth (168).  

Blocking CD200 also improved anti-tumor immunity in a murine breast cancer model 

(120).  These data suggest that CD200 is an important mediator of immunosuppression in 

the tumor environment.  Neu-overexpressing breast cancer cells have high levels of 

expression of CD200, much more than that found from melanoma cells, and therefore 

this pathway could be critically important for blocking immune responses to breast 

cancer cells. 

 

Indoleamine 2,3-dioxygenase 

 Indoleamine 2,3-dioxygenase (IDO) catalyzes the breakdown of the essential 

amino acid tryptophan (201).  The first evidence of an immunoregulatory role for IDO 

came from a study by Munn et al. where they demonstrated that production of IDO 

protected the fetus from T cell attack (215).  The proposed mechanism was decreased T 

cell proliferation due to IDO-dependent depletion of tryptophan (215, 325).  The 

downstream metabolites of the kynurenine pathway initiated by IDO can also suppress T 

cell proliferation and induce apoptosis (83, 100). 

 IDO is expressed by pDCs in the tumor draining lymph node and by tumor cells 

(211, 213, 214, 319).  IDO expression by tumor cells correlated with poor prognosis in 

patients with ovarian (232), endometrial (143), and colorectal (32) cancer.  Furthermore, 

inhibiting IDO promoted tumor immunity in a number of mouse models (211, 212). 
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CTLA-4 and PD-1 

 Optimal activation of T cells is believed to require recognition of cognate antigen 

as well as binding to costimulatory molecules on APCs (178).  The main costimulatory 

receptor on T cells is CD28, which binds to both B7-1 (CD80) and B7-2 (CD86) on 

APCs (98, 122, 128).  Lack of adequate co-stimulation, particularly with CD4+ T cells, 

results in a hyporesponsive state called anergy (273).  One hypothesis for the low level of 

anti-tumor immunity in cancer patients is lack of adequate co-stimulation.  This has led to 

investigation evaluating the efficacy of vaccination with irradiated tumor cells expressing 

B7-1.  Unfortunately, this has not been effective at inducing regression of established 

tumors in mice or in treating cancer patients (73).  This is likely because, in addition to 

co-stimulatory receptors, T cells also express inhibitory receptors that have a much 

greater affinity for B7-1 and B7-2 than CD28 (13, 181). 

 The first such inhibitory receptor identified was CTLA-4 (37).  Unlike CD28, 

which is constitutively expressed on the surface of T cells, CTLA-4 is induced on the 

surface of T cells, with maximum levels observed 2-3 days following activation (141, 

329).  In support of a dominant role of CTLA-4 in inhibiting immunity, CTLA-4-/- mice 

succumb within 3-4 weeks from massive proliferation of activated lymphocytes (47).  

More recently, CTLA-4 was shown to be constitutively expressed on Treg cells (355).  In 

2008, Wing et al. showed conclusively that CTLA-4 was important for Treg function 

(337).  In addition, they demonstrated that lack of CTLA-4 expression on Treg cells 

alleviated suppression of anti-tumor immunity.  They were able to induce regression of 

RLmale leukemia cells in 60% of mice following adoptive transfer of splenocytes 

containing CTLA-4 deficient Treg cells (337).  As a result of the clear role of CTLA-4 in 
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inhibiting immunity, a number of clinical trials have evaluated the efficacy of CTLA-4 

blockade for the treatment of cancer (73).  Although results to date have been mixed, 

CTLA-4 does appear to play a role in inhibiting tumor immunity (73).  Future work is 

needed to determine the mechanisms responsible for CTLA-4 dependent suppression of 

anti-tumor immunity and for which specific cancers CTLA-4 targeted therapy will be 

most effective. 

 A more recently described inhibitory receptor that also appears to be involved in 

inhibiting anti-tumor immunity is programmed cell death-1 (PD-1; CD279) (145, 158).  

Like CTLA-4, PD-1 is expressed on T cells upon activation (2).  The role of PD-1 as an 

inhibitory receptor was confirmed based on the autoimmune phenotype of PD-1-/- mice 

(228, 229).  Two ligands have been identified for PD-1, PD-L1 (B7-H1) and PD-L2 (B7-

DC), which both share homology to B7-1 and B7-2 (67, 99).  Upon interaction with its 

ligand, PD-1 transmits an inhibitory signal through phosphorilization of its ITIM and 

ITSM motifs (158).  PD-L1 is expressed on a wide range of cells, including cells of both 

hematopoetic and non-hematopoetic origin, while PD-L2 expression is limited to 

activated DC, macrophages, and bone marrow-derived mast cells and resting B1 cells 

(158).  PD-L1 can also be upregulated on some cells, including macrophages, DCs, and 

endothelial cells in response to both type I and type II IFNs (80, 158, 272).  PD-L1 is also 

expressed by many different types of tumor cells and has been associated with decreased 

T cell immunity and poor prognosis (66, 127, 313).  Also, expression of PD-L1 is 

upregulated by IFN-γ (25, 66).  Murine studies have demonstrated that PD-L1 expression 

by tumor cells and PD-1 expression by T cells inhibit anti-tumor immunity (25, 146, 

301).  It appears as though expression of PD-L1 by tumor cells renders them resistant to 
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T cell-mediated killing (130).  Two human anti-PD-1 Abs, CT-011 and MDX-1106, are 

currently in phase II trials (73).  We are particularly interested in the role of PD-1 in our 

VRP vaccines as VRPs induce high levels of type I IFNs (209).  Induction of PD-L1 by 

IFNs might be a main mechanism of tumor-induced tolerance to therapeutic VRP 

vaccines. 

 

Current Types of Tumor Immunotherapy  

 Many different types of immunotherapy aimed at inducing anti-tumor immunity 

have been tested in both mice and humans.  The different types of immunotherapy can be 

grouped into three main categories.  The first involves non-specific immunotherapy.  This 

approach uses cytokines or other immune agonists (e.g. TLR agonist) to activate the 

immune system.  Treatment of patients with IFNα or IL-2, which are the current 

standards of care for metastatic melanoma, are examples of non-specific immunotherapy 

(185, 256, 260).  Another example of non-specific immunotherapy is antibody-mediated 

blockade of the inhibitory molecule CTLA-4, which results in a 10-20% clinical response 

rate for melanoma (12, 245).  Although these strategies show some efficacy there are 

many side effects to treatment due to systemic activation of the immune system.  They 

also appear to work best in cancers that induce a significant endogenous immune 

response  (e.g. as in melanoma and renal cancer). 

 A second type of immunotherapy that has shown increasing promise in recent 

years is adoptive cell therapy (ACT).  This involves treatment of patients with their own 

tumor-specific lymphocytes that have been activated and expanded in vitro (258).  

Activation in vitro allows for stimulation of tumor-specific lymphocytes in the absence of 
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the suppressive mechanisms present in the tumor environment.  This approach has been 

most successful for the treatment of metastatic melonama, being pioneered by Steven 

Rosenberg (258).  Rosenberg’s first clinical trials using ACT with autologous tumor 

infiltrating lymphocytes (TIL) to treat 86 patients were reported in 1988 with an overall 

response rate of 34% (257, 261).  Since these initial studies, this therapy has been 

optimized to reach objective response rates of 70% and complete response rates of 16% 

(74).  It is important to note that ACT is much more effective in patients following 

lymphodepleting regimens, which both promote homeostatic proliferation of adoptively 

transferred cells and depletion of regulatory cells (258).  One of the major limitations of 

ACT is that it is a highly specialized, labor intensive process that is specific to each 

patient and requires a great deal of laboratory expertise.  Therefore, widespread adoption 

of this approach for clinical therapy has been very slow.  Additionally, the magnitude or 

nature of the suppressive tumor environment might differ for other types of cancer and 

might prevent in vitro activated lymphcytes from functioning in vivo.  Despite these 

potential limitations, there is substantial enthusiasm for the use of ACT for the treatment 

of patients with certain types of tumors such as malignant melanoma or renal cell cancer.   

 A third category of immunotherapy is the generation of therapeutic cancer 

vaccines.  The goal of these vaccines is to specifically stimulate the patient’s immune 

system in vivo against tumor cells.  Unlike traditional vaccines, which are prophylactic in 

nature, these vaccines have been used predominantly for the treatment of established 

disease.  This presents a much more formidable challenge as these vaccines need to 

overcome the mechanisms of tolerance that have already been established to allow the 

tumor to progress.  A number of different types of vaccines have been investigated for 
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their ability to induce anti-tumor immunity.  These include peptide based vaccines, DC 

vaccines, whole tumor cell vaccines, plasmid DNA, and viral vectors (70).  Despite 

numerous attempts to utilize therapeutic cancer vaccines, the clinical response rates 

remain poor (259).  The main focus of this dissertation was to understand why these 

vaccines have been so ineffective at inducing tumor regression.  We used two different 

types of therapeutic cancer vaccines in our work: DC vaccines and VEE viral replicon 

particles. 

 

Therapeutic Cancer Vaccines 

DC vaccines 

 DCs are professional APCs first described by Ralph Steinman in 1972 (293, 295, 

296, 298).  DCs are able to stimulate both T and B lymphocytes (18) and appear to be the 

critical APCs for the stimulation of naïve T cells.  Due to their ability to be effective 

stimulators of adaptive immunity, DC based vaccines were one of the first types of 

immunotherapy investigated (36, 46, 91, 195).  Many different types of DC vaccines 

have been tested in both animal models and in humans and can be grouped based on the 

origin of the DC as well as the method of antigen loading (36, 44, 137, 223, 239, 297). 

 One of the main benefits of DC vaccines, apart from their superior ability to 

stimulate the immune system, is the use of ex vivo activated and matured DCs.  This is 

especially important as endogenous DCs found in cancer patients are often suboptimal 

stimulators of immunity (246, 342).  Ex vivo activated DCs express high levels of 

costimulatory molecules and proinflammary cytokines such as IL-12 needed to induce 

potent Th1 responses.  Therefore, isolation of DCs and activation in vitro offers a 
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compelling approach to enhancing anti-tumor immunity.  DCs that are fully matured and 

activated in vitro appear resistant to immune modulating factors that likely exist in vivo in 

the tumor environment (150, 151, 324). 

 Ex vivo generated DC vaccines have been used to treat a number of different 

cancers including melanoma and renal cancer (17, 87, 112, 224, 294).  In these trials, the 

overall objective response rates currently do not exceed 15%.  Much effort has been 

placed on improving DC vaccines by selecting the best type of DC and by evaluating the 

best way to load DCs with antigen (152).  Despite data indicating that these DCs are 

better able to stimulate immune responses, these vaccines are still not effective at 

inducing tumor regression, possibly due to the induction of local immunosuppressive 

factors (152). 

 

Viral vector vaccines 

 Viral vectors offer an attractive approach for vaccination against tumor antigens. 

The purpose of viral vector vaccines is to deliver TAAs in the context of viral infection.  

Viral vectors can deliver TAAs for presentation to on both MHC I and MHC II, allowing 

them to activate both CD8 and CD4 T cells, respectively.  Viral vectors can also elicit a 

strong humoral response as well as activate innate immunity (8).  Using viral vectors, as 

opposed to peptide vaccines, allows for targeting of multiple known and unknown TAA 

epitopes, inducing a potentially more effective polyclonal response (8). 

 As mentioned above, viral vectors can also be combined with DC based vaccines 

by infecting DCs in vitro and treatment with these viral transduced DCs.  Viral vectors 

can also be used to infect APCs in vivo.  One benefit of direct treatment with viral 
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vectors, as opposed to treating with virus infected DCs, is that autologous DCs do not 

need to be generated, which, like ACT, is a very labor intensive, specialized process that 

is not easily transferable to most places of patient care. 

 A number of viral vector based therapeutic vaccines are being investigated for 

their efficacy against both infectious diseases and cancer (72, 259).  The most common 

vectors currently being tested in late stage clinical trials utilize recombinant poxvirus and 

adenovirus, but other viruses are also being tested for use in cancer vaccines, including 

alphaviruses, vesicular stomatitis virus and herpes simplex viruses (8).  These viral 

vectors are being used to target most types of cancer (8, 72, 259).  Most of these vaccines 

are still in early phase trials.  Unfortunately, those that have been tested in late stage trials 

show little efficiacy, even against tumors that are known to be immunogenic, such as 

melanoma (259). 

 

VEE replicon particles 

 A more recent type of viral vector based vaccine that gives optimal stimulation of 

the immune system while also addressing the main limitations of current viral vectors are 

Venezualin equine encephelytis (VEE) viral replicon particles (VRP) (11, 116, 218, 248). 

To generate VRPs, replicon RNA, containing the TAA of interest, is co-transfected into 

cultured cells along with helper RNAs encoding the structural genes of the virus.  The 

resultant VRPs, isolated from supernatant, lack structural genes and are therefore unable 

to replicate upon infection.  Despite their inability to produce new virions, they are able 

to infect target cells and express TAAs at very high levels (248). 
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 Use of VRPs, as opposed to other viral vector based systems, addresses two main 

limitations of current viral vaccines.  First, as VRPs are propagation defective, they have 

significantly less safety concerns compared to other viral based vaccines (116).  Second, 

there is limited endogenous immunity in humans to VEE in North America and 

vaccination with VRPs induces a low frequency of anti-vector immunity (116, 248, 328).  

This is a major benefit because it means that VRPs can potentially be used for multiple 

vaccinations without losing effectiveness. 

 Another main benefit of VRPs is that they have a natural tropism for DCs and B 

cells (187, 209, 227).  Thus, VRPs given in vivo, which naturally infect APCs, 

circumvents the need to generate substantial quantites of virus and DCs for in vitro 

infection.  Infection of DCs with VRPs resultes in increased expression of costimulatory 

molecules and production of proinflamatory cytokines IL-6, TNF-α, and IFN-α (209).  

Vaccination with VRPs induces potent cellular and humoral immunity to TAAs as 

demonstrated in a number of mouse models (116, 208, 222). 

VRPs have been used in murine tumor models to target a number of TAAs, 

including Her-2/neu (174, 208, 222, 331), HPV E7 and E9 (45, 323), tyrosinase (116), 

and prostate-specific membrane antigen (PSMA) (76, 107), leading to prevention and 

even regression of antigen-expressing tumors.  Early phase clinical trials are underway 

evaluating the use of VRPs to treat colorectal, breast, lung, pancreatic, colon, and prostate 

cancer (clinicaltrials.gov).  
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Murine Models of Cancer 

 One of the biggest challenges in evaluating the efficacy of cancer vaccines is the 

lack of stringent animals models that recapitulate the multitude of hurdles needed to 

achieve potent immunity clinically.  The majority of vaccine studies have evaluated 

vaccines using tumors that express exogenous antigens in animals where that tumor does 

not naturally grow, or they have administered the vaccines before tumor challenge.  As 

the antigens expressed by these tumors are not self-antigens, vaccination in this setting is 

not limited by central deletion of high avidity/affinity T cells that may be generated by 

the vaccine.  Furthermore, as these vaccines are administered prior to tumor challenge, or 

to mice with microscopic tumors, these studies do not reflect the potent 

immunsuppressive environment generated by an established tumor. 

 We used two different murine cancer models to test both our vaccines and the 

nature of the immunosuppressive tumor environment.  These included the MMTV neu-

transgenic mouse model and the B16-F10 melanoma model.  Both are extremely 

stringent models in which the tumors express true self-antigens, and in which the 

induction of tumor regression is difficult.  Our vaccines were evaluated therapeutically 

for their ability to induce regression in mice with established tumors. 

 

MMTV neu-transgenic mouse 

 The estimated lifetime risk for women developing breast cancer is 12% with a 

nearly 3% lifetime risk of mortality (134).  There are at least 4 subtypes of breast cancer 

(139, 243, 292).  One of these subtypes is identified by the expression of Her-2/neu.  Her-

2/neu is an oncogene associated with approximately 30% of breast cancers (134, 140).  
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Furthermore, overexpression of Her-2/neu is associated with worse prognosis (289, 292).  

Also, as Her-2/neu specific T cells as well as Her-2/neu-specific antibody have been 

identified in patients with Her-2/neu+ breast cancers, it presents an attractive target for 

vaccines directed against Her-2/neu (61, 63-65, 90, 144, 241, 347). 

 In order to investigate the role of Her-2/neu in tumor progression and to test Her-

2/neu-specific vaccine strategies, a number of groups have generated neu-transgenic 

mice.  One such mouse that has been studied extensively is the MMTV neu-transgenic 

mouse (neu-N) that expresses the rat protoconcogene neu under control of the MMTV 

promoter (126).  These mice express high levels of rat neu which is 85% homologous to 

human HER-2/neu, including at sites of immune development in the thymus and bone 

marrow.  All female mice succumb to spontaneous mammary adenocarcinoma at 5-6 

months of age (251).  Neu-N mice therefore represent an extremely stringent animal 

model within which to test potential immunotherapy regimens as a substantial fraction of 

the high affinity/avidity T cells are deleted centrally. 

 A number of vaccine strategies have been evaluated for their ability to induce 

regression in neu-N mice (81, 188, 207, 211, 251, 284).  Although some of these vaccines 

have shown efficacy in a prophylactic setting, to date no one has demonstrated complete 

regression of palpable tumors in these mice. 

 

B16-F10 melanoma 

 Melanoma will affect 1 in 50 people during their lifetime (134).  The estimates in 

the United States for 2009 are 68,720 cases and 8,650 deaths (134). Much effort has been 

undertaken to develop immunotherapy for melanoma.  This is mainly because 1) other 
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forms of cancer treatment, i.e. chemotherapy and radiotherapy, are not very effective at 

treating melanoma, and 2) melanoma is considered to be more immunogenic compared to 

other human cancers. 

 The B16 melanoma cell line was originally isolated from a spontaneous tumor in 

C57BL/6 mice by Isaiah Fidler in the 1970s and is the most commonly used mouse 

model for melanoma (84, 86).  The most aggressive varient of B16 is B16-F10 (86).  

Homologs of the five most common TAA for human melanoma (gp100/pmel17, MART-

1/Melan-A, tyrosinase, TRP-1/gp75, and TRP-2) are all expressed by B16-F10 (236).  

Also, CTLs specific for each of these antigens have been identified in mice (26, 50, 77, 

237).  Unlike most human melanomas, B16-F10 is a very poorly immunogenic tumor.  

Although the reason for its poor immunogenicity is unknown, it is likely a result of low 

levels of MHC class I expression (85).  Characteristic of its poor immunogenicity, 

treatments such as IL-2 therapy, ACT, and vaccinations with irradiated tumor cells or 

viral vectors that induce regression of other C57BL/6 tumors (e.g. EL-4 thymoma and 

MCA-induced sarcomas) and have shown some efficacy against human melanoma have 

little to no effect against B16 melanoma (236).  The low immunogenicity of B16 

melanoma, compared to human melanoma, makes B16 a stringent model for testing 

vaccine strategies targeting melanoma TAAs. 

 

Dissertation Aims 

 While it is now clear that the immune system is capable of recognizing and killing 

tumor cells, attempts to design effective therapies to utilize the immune system to target 

cancer have not been effective.  It is unclear whether the ineffectiveness of cancer 
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vaccines is due mainly to the central deletion of tumor-specific lymphocytes during 

development or due to the dominant role of the immunosppressive tumor environment.  

Therefore, the main goal of this study was to evaluate the role of these two factors in the 

lack of activity of active vaccination.  We examined the many mechanisms of tumor-

induced immune suppression that may play a role in inhibiting vaccine efficacy.  Of 

particular focus, we evaluated the role and mechanism for activity of myeloid-derived 

suppressor cells following therapeutic vaccination. 
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Figure 1-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-1.  Mechanisms of tumor-induced immune suppression.  A number of 

different mechanisms of suppression are present in the tumor environment (please see 

text for description). These include the induction of regulatory T cells (Treg cells) and 

myeloid-derived suppressor cells (MDSC), induction of the suppressive molecule IDO, 

and the action of a number of immune inhibitory receptors including CD200R, CTLA-4, 

and PD-1.  The main focus of the current work was to evaluate the relative contribution 

of these mechanisms in inhibiting the efficacy of therapeutic cancer vaccines. 
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Abstract 

 We previously demonstrated that therapeutic vaccination of FVB/N mice with 

alphaviral replicon particles expressing rat neu (neuET-VRP) induced regression of 

established neu-expressing tumors.  In the current study, we evaluated the efficacy of 

neuET-VRPs in a tolerant mouse model using mice with transgenic expression of neu.  

Using the same approach that induced regression of 70 mm2 tumors in FVB/N mice, we 

were unable to inhibit tumor growth in tolerant neu-N mice, despite demonstrating neu-

specific B and T cell responses post-vaccination.  As neu-N mice have a limited T cell 

repertoire specific to neu, we hypothesized that the absence of these T cells led to 

differences in the vaccine response.  However, transfer of neu-specific T cells from 

vaccinated FVB/N mice was not effective in inducing tumor regression as these cells did 

not proliferate in the tumor-draining lymph node.  Vaccination given with low dose 

cyclophosphamide to deplete regulatory T cells delayed tumor growth but did not result 

in tumor regression.  Finally, we demonstrated that T cells given with vaccination were 

effective in inhibiting tumor growth if administered with approaches to deplete myeloid-

derived suppressor cells.  Our data demonstrate that both central deletion of lymphocytes 

and peripheral immunosuppressive mechanisms are present in neu-N mice.  However, the 

major impediment to successful vaccination is the peripheral tumor induced immune 

suppression. 
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Introduction 

Immunotherapy has the potential to become an essential component of a 

successful treatment regimen for metastatic cancer (70, 89, 258, 259, 299, 327).  Not only 

can the immune system be utilized to specifically target tumor cells, but it also provides 

long term memory needed to prevent recurrent disease.  Of the various types of 

immunotherapy, vaccination with viral vectors is particularly promising (8, 183, 204, 

218, 235, 242, 262, 312, 317, 352, 354).  Expression of tumor associated antigens (TAA) 

by viral vectors primes the immune system against multiple known and unknown 

epitopes specific to tumor cells.  Vaccination with viral vectors has the potential to 

activate both humoral and cellular anti-tumor immunity.  Delivery of TAAs in the context 

of viral infection has the capacity to activate toll-like receptors, which may be critical for 

overcoming mechanisms of tumor-induced tolerance (183, 312, 354). 

Virus replicon particles offer an attractive viral vector based system for targeting 

TAAs (11, 116, 218, 248).  Previously, our group and others have generated Venezuelan 

equine encephalitis replicon particles (VRP), which are replication-deficient vectors in 

which the structural genes of the parent strain are replaced by a foreign gene of interest.  

For packaging of VRP in trans, the replicon RNA is co-transfected into cultured cells 

along with helper RNAs encoding the structural genes of the virus.  The VRPs harvested 

from the culture supernatant are propagation-defective vectors able to infect target cells 

and express TAAs at very high levels.  VRPs, as compared to other viral vectors, offer 

the benefit of inducing a low frequency of anti-vector immunity, which allows the same 

VRP vaccine to be used for multiple vaccinations without decreased effectiveness (248). 
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VRPs have been used in mouse tumor models to target a number of TAAs, 

including Her-2/neu (174, 208, 222, 331), HPV E7 and E9 (45, 323), tyrosinase (116), 

and prostate-specific membrane antigen (76, 107), leading to prevention and even 

regression of antigen-expressing tumors.  These studies have either evaluated the use of 

VRPs as prophylactic vaccines, or therapeutic vaccines in animals given tumor cell lines 

that are not naturally found in that host.  VRPs have yet to be evaluated as therapeutic 

vaccines in a stringent model of tumor immunity using an animal model in which tumors 

arise spontaneously. 

We described previously the design and efficacy of a therapeutic VRP vaccine 

against rat neu-overexpressing tumors (208). We found that a single vaccination with 

dendritic cells infected with VRPs encoding the extracellular transmembrane domain of 

rat neu (VRP-neu DCs) led to regression of established neu-expressing tumors in FVB/N 

mice.  Vaccination with VRP-neu DCs induced potent cellular and humoral anti-neu 

immunity, and tumor regression was dependent on CD4+ T cells.  Here, we extend these 

studies to tolerant neu-N mice in which the rat neu gene, driven by the MMTV promoter, 

is expressed as a self antigen (126).  We explored the ability of neuET-VRPs to regress 

established tumors in neu-N mice and the roles of central and peripheral tolerance in 

inhibiting vaccine efficacy.   
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Materials and Methods 

Mice, cell lines, and reagents  

 FVB/N and neu-N mice were purchased from The Jackson Laboratory (Bar 

Harbor, ME) and Charles River Laboratory (Wilmington, MA), respectively.  Female 

mice (7-14 weeks) were used for all experiments.  All experiments were conducted in 

accordance with protocols approved by the University of North Carolina Institutional 

Animal Care and Use Committee.  Rat neu-expressing NT2 cells, NIH-3T3 (American 

Type Culture Collection), and 3T3neu have been described (251).  3T3-neu/GM cells 

were a gift from Dr. Marion Couch (UNC, Chapel Hill, NC).  RNEU420-429 

(PDSLRDLSVF) peptide was purchased from New England Peptide (Gardner, MA).   

 

Flow cytometric analysis 

 Monoclonal antibodies (mAbs) used for flow cytometry were purchased from 

eBioscience (San Diego, CA).  Anti-c-ErbB2/neu (Ab4) mAb was purchased from 

Calbiochem (San Diego, CA).  Cells were stained according to the manufacturers’ 

instructions.  Acquisition was done using BD FacsCalibur (BD Biosciences, San Jose, 

CA) and the resultant data analyzed using FlowJo Flow Cytometry Analysis Software 

(Tree Star Inc., Ashland, OR). 

 

VRP vaccine 

 VRPs encoding the extracellular-transmembrane domain (AA 1-697) of rat neu 

(neuET-VRP) or VRPs lacking an inserted transgene (null-VRP) have been described 

(208, 311).  VRP-DC vaccines were generated from bone marrow (BM) derived DCs as 
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described (208, 209, 225).  DCs were infected for 2 h at 37 °C with VRPs at a 

multiplicity of infection (MOI) of 10.  VRP-DCs (106) were injected subcutaneously 

(s.c.) in the right mammary gland adjacent to established tumors.  As noted, some mice 

were vaccinated in vivo with 106 VRPs given into the rear footpad. 

 

Detection of serum anti-neu IgG 

 Serum anti-neu IgG levels were determined as described (208).  Concentration of 

anti-neu IgG was determined by standard curve generated with Ab4 anti-neu mAb. 

 

Isolation of tumor-infiltrating lymphocytes (TILs) and IFN-γ staining 

 TILs were isolated as described (208).  Cells were stained for CD4 and CD8, and 

intracellular cytokine staining for IFN-γ performed using the BD PharMingen reagents 

after activation of cells 4-6 h with PMA/ionomycin or RNEU420-429 peptide. 

 

Vaccination with neuET-VRPs and 3T3-neu/GM cells 

 Tolerant neu-N mice were challenged with 5 × 104 freshly prepared NT2 cells s.c. 

in the right mammary fat pad.  FVB/N mice were challenged with 2 × 106 NT2 cells.  For 

therapeutic vaccination, tumors were allowed to grow 4-7 days before vaccination with 

either VRPs given in vivo, VRP infected DCs, or 3T3-neu/GM cells.  For prophylactic 

vaccination, mice were vaccinated 21 and 7 days before tumor challenge.  Tumor area (L 

× W) was measure 2-3 times weekly with metric calipers, and mice were sacrificed when 

tumors reached a maximum of 200mm2. 
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For regulatory T cell (Treg cell) depletion experiments, neu-N mice were treated 

intraperitoneally (i.p.) with cyclophosphamide (CY; 100mg/kg) 2-3 days prior to VRP 

vaccination.  CD25+ cells were depleted by i.p. injection of 0.5 mg of PC61 mAb on days 

-7 and -4 prior to tumor challenge.  3T3-neu/GM cells were irradiated at 5,000 rads and 3 

× 106 cells/mouse injected as described (81). 

  

Adoptive cell transfer 

 For adoptive cell transfer experiments into lethally irradiated recipients, 

splenocytes were isolated from naïve FVB/N or neu-N mice.  5-10 × 106 splenocytes, 

along with 3-5 x 106 T cell depleted syngeneic BM cells, were transferred i.v. to neu-N or 

FVB/N mice18-24 h after irradiation at 850 rads (135 rads/min).  NT2 tumor cells were 

injected s.c. at the time of splenocyte and BM cell transfer. 

For Treg cell transfer experiments, CD4+CD25+ cells were isolated from spleens of 

tumor bearing mice by positive selection using Miltenyi columns (Miltenyi Biotec, 

Bergisch Gladbach, Germany) as described (341).  Treg cells were injected i.v. one day 

prior to VRPs. 

For FVB/N T cell adoptive transfer experiments, CD25- T cells were isolated 

from spleens of FVB/N mice 7 days after priming with 106 neuET-VRPs using Cedarlane 

total T cell columns (Cedarlane Laboratories, Nornby, ON, Canada) followed by isolation 

using Miltenyi columns for the depletion of CD25-expressing cells (341).  Cells were 

restimulated in vitro with neuET-VRP DCs (DC:T cell ratio = 1:50) 5-7 days in the 

presence of IL-2 (20U/ml) and then labeled with CFSE.  Tumor-challenged neu-N mice 
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received i.v. injections of 107 restimulated T cells two days following CY treatment.  

Mice were vaccinated the next day with neuET-VRPs. 

 

Statistical analysis 

 Statistical differences for T cell subsets, antibody levels and CFSE intensities 

were calculated by two-tailed Student’s t test.  Significant differences in survival were 

determined by Kaplan-Meier survival analysis.  Significant differences in tumor growth 

curves were determined by two-way RM ANOVA.  All statistical analyses were 

conducted using SigmaStat® 3.5 software, with a p value ≤ 0.05 considered significant. 
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Results 

Therapeutic vaccination of tolerant neu-N mice with neuET-VRP DCs fails to inhibit 

tumor growth despite induction of anti-neu immunity 

 We previously demonstrated that a single therapeutic vaccination of non-tolerant 

FVB/N mice with dendritic cells infected with neuET-expressing VRPs (VRP-neu DCs) 

led to regression of established rat neu-expressing tumors (208).  Tumor regression in 

FVB/N mice was completely dependent on CD4+ T cells and only partially dependent on 

CD8+ T cells (208).  In the current study, we evaluated the efficacy of neuET-VRPs as a 

therapeutic vaccine in tolerant neu-N mice.  Although these mice develop spontaneous 

focal mammary adenocarcinomas, we employed the same strategy previously used in 

FVB/N mice by orthotopically challenging neu-N mice with NT2 cells.  This cell line 

was developed by Reilly et al. from a spontaneous tumor formed in a neu-N mouse and 

has been used in multiple studies evaluating anti-tumor immunity in neu-N mice (81, 

188, 251).  Using a cell line, as opposed to treatment of spontaneous tumors, allows for 

treatment of mice without having to wait 25-50 weeks for the development of tumors.  It 

also allows for better control of tumor burden and the amount of antigen presentation by 

the tumor cells.  Using the same approach that was successful previously in FVB/N mice, 

therapeutic vaccination of tolerant neu-N mice with VRP-neu DCs failed to inhibit 

growth of NT2 tumors (Fig. 2-1A). 

To determine if vaccination induced an immune response in neu-N mice, cytokine 

and antibody production specific to neu were measured after vaccination.  Vaccination of 

neu-N mice with VRP-neu DCs stimulated both humoral and cell mediated anti-neu 

immunity, demonstrated by induction of both anti-neu Ab production as well as an 
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increased number of IFN-γ+ CD8+ T cells at the tumor site (Fig. 2-1B,C).  However, the 

induction of neu-specific Ab was markedly diminished in neu-N compared to the 

induction seen previously in non-tolerant FVB/N mice (208).  

 

Direct vaccination with neuET-VRPs is superior to vaccination with neuET-VRP DCs 

 In our initial studies, we vaccinated mice with VRP-neu DCs.  Others have 

vaccinated mice directly with viral vectors, including VRPs (45, 76, 107, 116, 174, 222, 

323, 331).  In order to directly compare these two vaccination strategies, we vaccinated 

tumor bearing FVB/N mice with either VRP-neu DCs or directly with neuET-VRPs.  

Both vaccination methods induced regression of established tumors in FVB/N mice, 

although direct vaccination with neuET-VRPs led to complete regression of tumors at an 

earlier time (Fig. 2-2A).  We also evaluated the induction of humoral and cell-mediated 

immunity.  We found that direct vaccination with neuET-VRPs resulted in increased 

production of anti-neu Ab as well as an increased number of IFN-γ+ CD8+ T cells 

compared to vaccination with VRP-neu DCs (Fig. 2-2B,C).  Thus, in all subsequent 

experiments, mice were vaccinated directly with neuET-VRPs and not VRP-neu DCs. 

Given the more robust immune response induced by neuET-VRPs, we evaluated 

whether direct VRP vaccination of tumor bearing neu-N mice with neuET-VRPs could 

induce tumor regression.  Despite increased induction of anti-neu immunity, direct VRP 

vaccination in neu-N mice did not inhibit tumor growth (Fig. 2-2D).  These data suggest 

that the immune response generated in neu-N mice is not sufficient to mediate tumor 

regression.   
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neuET-VRP vaccine is similar to 3T3-neu/GM vaccine when administered therapeutically 

 One potential hypothesis for our findings is the inferior immune activity of VRP 

vaccines compared to other approaches.  Previous investigators have used 3T3-neu/GM 

vaccination and demonstrated tumor regression in a minority of vaccinated neu-N mice 

when given with CY within the first 3 days after tumor challenge (188).  Thus, we were 

interested in determining if the lack of anti-tumor efficacy using VRPs expressing neu 

was due to impaired activity of the vaccine.  For this work, we compared the efficacy of 

3T3-neu/GM vaccination with neuET-VRPs given seven days post-tumor injection, 

which is an approach that allows for treatment of 30-50 mm2 tumors.  We found that both 

vaccines were unable to inhibit tumor growth when given this late after tumor challenge 

(Fig. 2-3).  Thus, the lack of efficacy in neu-N mice was independent of the type of 

vaccine used.   

 

Both central and peripheral tolerance mechanisms in neu-N mice inhibit efficacy of 

neuET-VRPs as a therapeutic vaccine 

 Our group and other investigators have shown that the T cell repertoire reactive 

with neu is significantly different in neu-N compared to FVB/N mice (284).  Thus, we 

hypothesized that absence of high avidity T cells in the neu-N mice compromised 

efficacy of neuET-VRP vaccination.  In order to evaluate the role of the T cell repertoire 

in vaccine efficacy, we lethally irradiated neu-N mice and transferred splenocytes or T 

cells from non-tolerant FVB/N mice.  Transfer of FVB/N splenocytes into irradiated neu-

N recipients did not lead to tumor regression, suggesting that tolerance in neu-N mice is 

not solely a result of a difference in the repertoire of neu-specific T cells (Fig. 2-4A).  To 
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evaluate if infusion of Treg cells might have biased these results, we transferred naïve or 

activated CD25- T cells from FVB/N mice into non-irradiated neu-N mice.  Again, there 

was no difference in tumor growth (data not shown).   

 In order to ensure that transferred FVB/N cells were functional and contained a 

sufficient repertoire of neu-specific lymphocytes, we transferred cells from FVB/N mice 

into syngeneic FVB/N recipients.  When FVB/N mice were used as recipients, transfer of 

FVB/N splenocytes with vaccination did lead to tumor regression (Fig. 2-4B).  On the 

other hand, transfer of neu-N splenocytes into FVB/N mice did not result in tumor 

regression, consistent with an altered anti-neu repertoire in neu-N mice (Fig. 2-4B).  

Thus, our data demonstrate that (1) infusion of lymphocytes from FVB/N mice, which 

are effective in FVB/N mice, is not able to induce tumor regression in neu-N mice after 

vaccination, and (2) that the T cell repertoire in neu-N mice is unable to mediate anti-

tumor effects in a non-tolerant model.  These data suggest that the impaired immune 

response in neu-N mice is a combination of impaired T cell function and peripheral 

immunosuppression, in which the peripheral suppression is dominant.   

 

Proliferation of T cells upon neuET-VRP vaccination is preferentially suppressed in the 

tumor draining lymph node (TDLN) 

 One of the main characteristics of tumor induced tolerance is the induction of  

local immunosuppression at the site of tumor and the tumor draining lymph node.  Thus, 

we sought to evaluate whether the response to neuET-VRP vaccination was locally 

suppressed in the TDLN compared to the spleen.  We adoptively transferred activated, 

CFSE labeled, T cells from non-tolerant FVB/N mice into neu-N mice and evaluated the 
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proliferation of these cells after neuET-VRP vaccination.  Approximately 5-10% of the 

restimulated cells were RNEU420-429-antigen specific as demonstrated by tetramer 

staining.  Proliferative responses were demonstrated by dilution of CFSE from adoptively 

transferred T cells isolated from the spleen and TDLN 5 days after vaccination.  There 

was a significantly higher percentage of CFSEhi cells in the TDLN compared to the 

spleen, consistent with localized suppression in the TDLN (Fig. 2-5).  When analyzed 60 

days after T cell transfer and repeated vaccination, very few of the CFSE-labeled cells 

isolated from the TDLN had proliferated more than two times.  Thus, the TDLN in 

tumor-bearing neu-N mice suppresses the proliferative activity of T cells that mediate 

anti-tumor activity in FVB/N mice.   

 

Depletion of CD4+ FoxP3+ Treg cells with cyclophosphamide improves efficacy of neuET-

VRP vaccine 

 The inability of therapeutic VRP vaccination to inhibit tumor growth in neu-N 

mice suggests that VRPs alone are insufficient to overcome tumor-induced tolerance.  

Previous studies have demonstrated that Treg cells are involved in mediating tolerance in 

neu-N mice (81, 188, 284).  We found increased numbers of CD4+ FoxP3+ T cells at the 

tumor site in mice vaccinated with neuET-VRPs compared to mice vaccinated with either 

null-VRPs or saline consistent with neu-specific induction of Treg cells by VRPs (Fig. 2-

6A).  In order to evaluate the role of Treg cells in the response of neu-N mice to VRP 

vaccination, we treated mice with low dose CY (100mg/kg), which has been shown to 

preferentially deplete Treg cells (81, 186).  Consistent with previous reports, we found that 

CY treatment two days prior to vaccination resulted in a significant decrease in the 
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relative percentage of FoxP3+ Treg cells.  The decrease in the number of Treg cells was 

transient, lasting only 9 days.  Therapeutic vaccination of neu-N mice with neuET-VRP 

combined with CY treatment resulted in a significant delay in tumor growth (Fig. 2-6B) 

but did not lead to complete regression in any of the treated mice.  In contrast, treatment 

of neu-N mice with the anti-CD25 mAb, PC-61, did not have an impact on the growth of 

tumor cells post vaccination (data not shown). 

In order to confirm that Treg cells inhibit the effectiveness of vaccination with 

neuET-VRPs, we isolated Treg cells from tumor bearing mice and transferred them into 

tumor bearing FVB/N mice.  Addition of either FVB/N or neu-N Treg cells inhibited the 

regression of tumors in FVB/N mice (Fig. 2-6C).  Interestingly, there was no difference 

in suppression mediated by Treg cells from either FVB/N or neu-N mice, demonstrating 

that Treg cells isolated from neu-N mice are functionally equivalent to Treg cells isolated 

from FVB/N mice (Fig. 2-6C).   

 

Provision of FVB/N splenocytes along with depletion of myeloid-derived suppressor cells 

(MDSC) inhibits tumor progression in neu-N mice 

 One of the main characteristics of tumor bearing neu-N mice is an accumulation 

of CD11b+, Gr-1+ MDSCs (1), which make up approximately 40% of splenocytes, or 

over 1.2 × 108 cells in neu-N mice with established tumors, and are involved in the 

suppression of tumor-specific T cells (105, 234).  In order to evaluate the role of MDSCs 

in neu-N mice, we depleted Gr-1+ cells using two different mAbs, clone RB6-8C5 or 

1A8.  RB6-8C5 is specific for both Ly-6G (Gr-1) and Ly-6C, while 1A8 is specific for 

only Ly-6G (92).  We used our transplant model with transferred FVB/N splenocytes in 
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order to provide a sufficient repertoire of neu-specific T cells to induce regression once 

peripheral mechanisms of tolerance were inhibited.  Tumors in mice that received isotype 

control Ab continued to progress once established, whereas tumors in the majority of 

mice treated with anti-Gr-1 mAbs did not progress (Fig. 2-7A).  There was a significant 

difference in tumor size after day 49 between both Gr-1 depletion groups and the isotype 

control group (p = 0.02).  There was no difference in tumor growth when MDSCs were 

depleted without transfer of FVB/N splenocytes (Fig. 2-S1). 

 In order to evaluate the mechanism of inhibition of tumor growth following 

depletion of MDSCs, we examined both the number of IFN-γ+ T cells in the spleen as 

well as the amount of serum anti-neu Ab in mice surviving to day 60.  There was no 

difference in the percentage of CD8+ IFN-γ+ T cells in mice that received 1A8 mAb or 

isotype Ab.  Interestingly, there were fewer CD8+ IFN-γ+ T cells in mice receiving RB6-

8C5, possibly a result of depletion of Ly-6C+ T cells (Fig. 2-7B) (270).  There was a 

significant increase in the percentage of CD4+ IFN-γ+ T cells in the spleens of mice given 

1A8 mAb compared to isotype Ab, but no increase in mice receiving RB6-8C5 mAb 

(Fig. 2-7C).  When we looked at anti-neu Ab levels, we found that mice with non-

progressing tumors following Gr-1 depletion had significantly more anti-neu Ab in their 

serum compared to mice with progressing tumors, consistent with increased anti-neu B-

cell mediated immunity upon depletion of MDSCs (Fig. 2-7D).  Thus, these data suggest 

that in the neu-N model peripheral MDSCs play a critical role in abrogating the immune 

response after active and passive immunotherapy potentially by inhibiting antibody-

mediated tumor regression. 
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Discussion 

In the current study we evaluated the efficacy of alphaviral replicon particles as a 

therapeutic cancer vaccine in a neu-tolerant mouse model.  We previously reported 

regression of established tumors in non-tolerant FVB/N mice with a single neuET-VRP 

vaccination (208).  We found that the same neuET-VRP vaccine given once or multiple 

times was unable to induce regression of tumors in tolerant neu-N mice, despite the 

production of anti-neu antibodies as well as an increase in tumor infiltrating IFN-γ+ CD8+ 

T cells following vaccination.  Therefore, it appears that neuET-VRPs can induce anti-

neu immunity in tolerant neu-N mice, but that vaccination alone is insufficient to 

overcome tumor-induced tolerance. 

By and large, most of the previous preclinical work suggesting a benefit for 

immunotherapy in the treatment of cancer has used two models, either a prophylactic 

approach or treatment of microscopic disease.  Our data suggest that the immune 

response necessary to induce tumor regression or prevention in these models differs from 

that necessary for regression of established tumors.  The environment in the TDLN and at 

the site of tumor growth is critically important in blunting the immune response to 

established tumors, which includes suppression of T cell proliferation in the TDLNs of 

neu-N mice.  This is supported by our data showing a lack of efficacy of neuET-VRP and 

3T3-neu/GM vaccination for the treatment of 30 mm2 tumors, when both vaccines have 

been shown by us (data not shown) and others to be successful in preventing tumor 

growth and in the treatment of microscopic tumors (81, 188, 331).  The inability to 

induce regression in tolerant mice underscores the need for using relevant animal models 

in a therapeutic setting when evaluating the efficacy of cancer vaccines. 
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Treg cells play a major role in the induction and maintenance of tolerance to TAAs 

(353, 355).  We found an increased number of intratumoral Treg cells in neu-N mice 

vaccinated with neuET-VRPs compared to mice vaccinated with null-VRPs, consistent 

with neu-specific induction of Treg cells by VRPs.  Treatment of mice with low-dose CY 

has been shown to preferentially decrease the number and function of Treg cells, and 

Ercolini et al. demonstrated that treatment of vaccinated neu-N mice with CY prevented 

tumor growth (81, 186).  Therefore, we evaluated the effect of low dose CY on the 

effectiveness of therapeutic neuET-VRP vaccination.  We found that CY treatment along 

with neuET-VRP vaccination inhibited tumor growth in neu-N mice.  Unfortunately, 

repeated treatment with CY or anti-CD25 mAb did not improve survival, likely due to the 

negative effects of these treatments on effector T cells after vaccination (data not shown).  

Despite the inability to deplete Treg cells for more than nine days, we still observed a 

difference in tumor growth with CY treatment.  It is quite possible that persistent 

elimination of Treg cells could induce more profound anti-tumor responses in neu-N mice 

after vaccination. 

Although central tolerance mechanisms are clearly involved in neu-N mice, they 

are not the sole reason these mice do not respond to VRP vaccination.  Peripheral 

mechanisms of tolerance are also involved since transfer of FVB/N splenocytes into 

lethally irradiated neu-N mice was unable to induce tumor regression.  We were able to 

rescue a majority of neu-N mice when VRP vaccination was combined with both 

adoptive transfer of neu-specific lymphocytes and depletion of MDSCs.  Morales et al. 

recently found that T cells isolated from tumor-bearing neu-N mice and expanded ex vivo 

in the presence of IL-7, IL-15 and IL-2 could mediate a substantial delay in tumor growth 
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if given concurrent with lymphodepleting chemotherapy and the depletion of MDSCs 

(207).  Others have also demonstrated a decrease in tumor growth in other models after 

inhibiting or depleting MDSCs (169, 176, 205, 285, 305, 310).  When we combined 

depletion of MDSCs, adoptive transfer of FVB/N splenocytes and VRP vaccination we 

were able to induce tumor regression in 40% of mice, regardless of which Gr-1 specific 

mAb they received.  The inhibition of tumor growth was accompanied by a dramatic 

increase in anti-neu Ab levels, consistent with enhanced anti-neu immunity following 

MDSC depletion and suggesting that the presence of MDSCs has a direct inhibitory 

effect on the generation of anti-tumor B cell immunity.  Interestingly, we did not observe 

an increase in the number of IFNγ+ CD8+ T cells upon depletion of MDSCs.  In fact, the 

number of IFNγ+ CD8+ T cells was lower in mice treated with anti-Gr-1 Ab clone RB6-

8C5.  We previously demonstrated that the response to neuET-VRP vaccination in 

FVB/N mice is only partially dependent on CD8+ T cells, while being completely 

dependent on CD4+ T cells (208). 

As we initially hypothesized that tolerance in neu-N mice was mainly due to the 

negative selection of neu-specific T cells in the thymus, we were somewhat surprised to 

find that regression of tumors in neu-N mice following adoptive cell transfer required 

depletion of MDSCs.  These findings are somewhat at odds with previous work from 

Dudley et al. in which approximately 50% of patients with melanoma had a clinical 

response after the adoptive transfer of activated T cells following lymphodepleting 

chemotherapy.  There are multiple reasons why tumor regression in a breast cancer model 

may differ from that found in patients with melanoma (28).  One hypothesis for this 

difference is the susceptibility of the different tumors to anti-tumor immune mechanisms.  
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Work over the past two decades has shown that immune modulation can have a 

substantial effect on the growth of melanoma; unfortunately this has not been found for 

most carcinomas like breast cancer.  It is intriguing to speculate that the role of MDSCs 

may be one difference between the effectiveness of anti-tumor immunity for these 

different tumors.  In general, the number of MDSCs found post vaccination in breast 

cancer models is substantially greater than that found in either patients with melanoma or 

animal models of melanoma (7, 88, 348).  Thus, it is quite possible that activation of T 

cells ex vivo can overcome Treg mediated suppression in melanoma, but that the 

substantial number of MDSCs found at the tumor site in breast cancer poses another 

hurdle that needs to be cleared for effective anti-tumor immunity. 

Our data underscore the need for inhibiting peripheral tolerance even if antigen-

specific T cells are present.  For effective vaccine approaches for the treatment of cancer, 

patients may require high avidity tumor-specific lymphocytes, but our data suggest that 

even if provided, these cells might be ineffective if not combined with strategies to 

inhibit the suppressive tumor microenvironment. 
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Figure 2-1 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 2-1. Therapeutic vaccination of tolerant neu-N mice with VRP-neu DCs does 

not inhibit tumor growth despite the induction of anti-neu immunity.  A, 8-12 week 

old neu-N mice (n = 9 per group) were challenged with 5 x 104 NT2 cells and vaccinated 

on days 3, 17 and 31 with saline, null-VRP or neuET-VRP DCs.  B, neu-N mice were 

vaccinated with either VRP-null DCs or VRP-neu DCs and similarly boosted two weeks 

later.  At seven days post-boost, sera were evaluated for anti-neu IgG.  Columns, mean (n 

= 6); bars, SEM; *, p = 0.002.  C, neu-N mice, 8-12 weeks of age, were challenged with 

5 x 104 NT2 cells and vaccinated with VRP-null DCs or VRP-neu DCs on days 3, 17 and 

31.  5-6 weeks post-tumor challenge TILs were isolated and stimulated for 4 h with 

PMA/ionomycin and analyzed by intracellular IFN-γ staining.  One of two similar 

experiments is depicted.  Columns, mean (n = 3); bars, SEM; *, p = 0.014. 
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Figure 2-2 
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Figure 2-2.  Direct vaccination with neuET-VRPs is superior to vaccination with 

VRP-neu DCs.  A, Non-tolerant FVB/N mice were challenged with 2 x 106 NT2 cells 

and vaccinated 7 days later with VRP-neu DCs or neuET-VRPs.  Vaccinations were 

repeated on day 21.  One of two similar experiments is depicted.  Points, mean (n = 5); 

bars, SEM.  B,C, FVB/N mice were vaccinated with VRP-neu DCs or neuET-VRPs and 

boosted on day 14.  Sera and spleens were harvested on day 21.  B, Sera were analyzed 

for neu-specific IgG.  Columns, mean (n = 6); bars, SEM; *, p = 0.002.  C, Splenocytes 

were stimulated with RNEU420-429 peptide and analyzed for intracellular IFN-γ.  Columns, 

mean (n = 6); bars, SEM; *, p = 0.004.  D, Tolerant neu-N mice, 8-12 weeks of age, were 

challenged with 5 x 104 NT2 cells and vaccinated on days 7, 21, and 34 with neuET-

VRPs.  Points, mean (n = 4); bars, SEM.   
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Figure 2-3 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2-3.  Therapeutic vaccination of neu-N mice with neuET-VRP or 3T3-

neu/GM vaccine along with CY inhibits tumor growth but does not induce tumor 

regression.  Neu-N mice (7-12 weeks of age, n = 22) were challenged with 5 x 104 NT2 

cells. On day 5 post tumor challenge, mice were injected i.p. with 100 mg/kg CY.  On 

day 7, mice were vaccinated with 3T3-neu/GM cells (solid triangles) or neuET-VRPs 

(open triangles) or left untreated (solid circle).  Vaccines were repeated every 14 days.  

There was a significant difference in survival between both vaccination groups compared 

to the no vaccine control group (p = 0.007, Kaplan Meier survival analysis), but no 

difference between the vaccines (p = 0.25). 
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Figure 2-4 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2-4.  Both central and peripheral tolerance mechanisms inhibit efficacy of 

neuET-VRP vaccine.  A. 5 × 106 splenocytes from either FVB/N or neu-N mice were 

injected i.v. along with 5 × 106 T cell-depleted BM cells into lethally irradiated neu-N 

mice, 8-12 weeks of age, followed by tumor challenge with 5 x 104 NT2 cells.  Mice 

were vaccinated with neuET-VRPs on day 4 post-tumor challenge.  Points, mean (n = 3-

5); Bars, SEM.  B. Same as (A) except that splenocytes were transferred into FVB/N 

mice challenged with 2 x 106 NT2 cells. Points, mean (n = 3-5); Bars, SEM. 
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Figure 2-5 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 2-5.  Proliferation of T cells upon neuET-VRP vaccination is suppressed at 

the tumor draining lymph node (TDLN).  107 CFSE labeled in vitro stimulated T cells 

were transferred i.v. into NT2 tumor bearing neu-N mice followed by vaccination with 

neuET-VRPs.  5 days later, cells were harvested from the TDLN and spleen and analyzed 

for CFSE dilution.  One of three similar experiments is depicted.  Left, CFSE staining of 

CD4+ and CD8+ T cells isolated from the TDLN and spleen.  Right, % of transferred cells 

that failed to proliferate (CFSEhi).  Columns, mean (n = 4); Bars, SEM; *, p < 0.001. 
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Figure 2-6 
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Figure 2-6.  Depletion of CD4+ FoxP3+ Treg cells with CY improves efficacy of 

neuET-VRP vaccine.  A, neu-N mice were vaccinated with null-VRPs or neuET-VRPs 

three days post-tumor challenge with 5 x 104 NT2 cells.  At 5-6 weeks, TIL were isolated 

and analyzed for CD4 and FoxP3 expression by FACS.  Columns, mean (n = 3); bars, 

SEM; *, p = 0.014.  B, neu-N mice (n = 8 per group) were treated with CY (100 mg/kg) 

two days post-tumor challenge.  On day 4, mice were vaccinated with neuET-VRPs and 

similarly boosted on days 18 and 32.  One of three similar experiments is depicted.  There 

was a significant improvement in survival in mice receiving CY with neuET-VRP 

vaccine (p = 0.030, Kaplan Meier survival analysis).  C, On day 6 post-tumor challenge 

CD4+, CD25+ Treg cells from tumor bearing FVB/N mice or neu-N mice were transferred 

into FVB/N mice treated with CY.  The next day, mice were vaccinated with neuET-

VRPs.  Points, mean (n = 3-5); bars, SEM.   
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Figure 2-7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2-7.  Depletion of MDSCs inhibits tumor progression in neu-N mice.  A, 107 

naïve FVB/N splenocytes were injected i.v. along with 5 × 106 T cell-depleted BM cells 

into lethally irradiated neu-N mice followed by tumor challenge with 5 x 104 NT2 cells.  

Mice were vaccinated with neuET-VRPs 4 days later.  Mice were injected i.p. with 

300µg anti-Gr-1 mAb (RB6-8C5 or 1A8) or rat IgG control every 3 days starting on day 

7 post-tumor challenge.  Tumor growth curves of individual mice are depicted.  Tumor 

growth of both Gr-1 Ab groups were significantly different than isotype controls (p = 

0.024, two-way RM ANOVA; Bonferroni posttests compared to isotype control, *, p < 

0.05; **, p < 0.01; ***, p < 0.001).  B,C, Percentage of CD8+ (B) and CD4+ (C) T cells in 

the spleen at day 60 that were IFN-γ+ following 6 h stimulation with PMA/ionomycin.  

Points, individual mice; line, mean; bars, SEM, *, p < 0.05.  D, Serum anti-neu Ab levels 

on day 60 in mice with progressing or non-progressing tumors (tumors < 25mm2 from 

both Gr-1 mAb groups).  Points, individual mice; line, mean; bars, SEM, *, p = 0.01. 
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Figure 2-S1 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2-S1. No difference in tumor growth following depletion of MDSCs without 

adoptive transfer of neu-specific lymphocytes from FVB/N mice.  Neu-N mice, 10-12 

weeks of age, were challenged with 5 x 104 NT2 cells.  On day 4 post-tumor challenge, 

mice were vaccinated with 1 x 106 neuET-VRPs and similarly boosted on days 18 and 32.  

Mice were injected i.p. with 300 µg anti-Gr-1 mAb (RB6-8C5) or rat IgG control mAb 

every 3 days starting on day 7 post-tumor challenge.  Points, mean (n = 4); bars, SEM. 
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Abstract  

 The inflammasome is a proinflammatory complex that generates IL-1β and IL-18.  

It is activated by a subgroup of NLR proteins in response to microbial and nonmicrobial 

stimuli.  Among NLRs, NLRP3 senses the widest array of stimuli and enhances adaptive 

immunity.  However, its role in antitumor immunity is unknown.  Therefore, we 

evaluated the function of the NLRP3 inflammasome in the immune response using 

dendritic cell vaccination against the poorly immunogenic melanoma cell line B16-F10.  

Vaccination led to a fourfold improvement in survival for Nlrp3-/- over WT mice. This 

outcome was confirmed using vaccination against E.G7-OVA tumor cells.  Immunity 

was dependent on CD8+ T cells and exhibited immune specificity and memory.  

Increased vaccine efficacy in Nlrp3-/- mice was not due to differences in dendritic cells 

but rather to differences in myeloid-derived suppressor cells (MDSCs).  Though MDSCs 

expressed NLRP3, the absence of NLRP3 did not alter the morphology of MDSCs or 

their functional capacity to inhibit T cells.  The number of MDSCs in peripheral 

lymphoid tissues was similar.  However, the number of peritumoral MDSCs was reduced 

fivefold in Nlrp3-/- mice.  Adoptive transfer experiments demonstrated that Nlrp3-/- 

MDSCs were significantly less efficient in reaching the tumor site.  Depletion of MDSCs 

with an anti-Gr-1 antibody increased survival of tumor-bearing WT mice but not Nlrp3-/- 

mice.  We conclude that NLRP3 increases accumulation of MDSCs in the tumor and 

inhibits antitumor T cell immunity post DC vaccination.  This work establishes an 

unexpected role for NLRP3 in impeding antitumor response and suggests novel 

approaches to improving antitumor vaccines. 
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Introduction 

 NLR family, pyrin domain containing 3 (NLRP3) is a member of the nucleotide-

binding domain and leucine-rich repeat containing gene family of intracellular sensors.  

When activated, NLRP3 forms a protein complex called the inflammasome (192, 193, 

314).  The inflammasome combines NLRP3 with the adaptor molecule, 

ASC/PYCARD/TMS/CARD5, Cardinal and pro-caspase-1 to form a multimer (3).  The 

result is the proteolytic maturation of caspase-1 that cleaves and activates proIL-1β and 

proIL-18 to generate IL-1β and IL-18 (192).  

 NLRP3 is activated by a wide variety of both microbial and nonmicrobial 

molecular motifs.  The microbial signals are part of the pathogen associated molecular 

patterns or PAMPs and include gram positive and negative bacteria, RNA and DNA 

viruses, polyI:C, and LPS (193).  The nonmicrobial signals of NLRP3 activation include 

exogenous compounds such as asbestos and endogenous signals such as urate crystals 

(96, 97, 193).  Many of these nonmicrobial stimuli are included in the group of signals 

referred to as damage associated molecular patterns or DAMPs (164).  Furthermore, 

increasing evidence indicates a role for inflammasome products in enhancing Th1, Th2 

and Th17 responses (125).  These mechanisms allow the inflammasome to respond to 

many pathological environments (281).   

 In contrast to the extensive literature on PAMPs and DAMPs, there have been few 

studies of NLRP3 in the tumor microenvironment.  However, work on caspase-1 

activated cytokines suggests a potential tumor promoting role.  For example, IL-1β 

promotes tumor growth in several mouse models (167, 265).  Conversely, reduction of 
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IL-1β diminishes metastases in the lung (175) and knocking-out IL-1β inhibited local and 

metastatic growth in a murine melanoma model (326).   

 Human studies have been less definitive but remain consistent with the murine 

data.  For example, the risk of gastric cancer is associated with genetic polymorphisms 

linked to enhanced IL-1β expression (79).  Similar studies on IL-18 polymorphisms have 

demonstrated an increased risk for other epithelial cancers (226).  More directly, serum 

IL-18 concentrations are inversely correlated with survival in hepatocellular cancer (309).   

 These cytokines can contribute to tumorigenesis by a variety of mechanisms; 

however, an emerging interest is the increased activity of myeloid derived suppressor 

cells (MDSCs) (234, 315).  MDSCs are a heterogeneous population of immature myeloid 

cells that are most readily identified in the mouse by their expression of Gr-1 and CD11b 

(104).  These cells suppress T cell responses directly by a variety of mechanisms (307).  

Furthermore, MDSCs also contribute to tumorigenesis indirectly by inducing regulatory 

T cells (138), skewing towards a Th2 immune response (285), suppressing NK cells 

(131), and increasing angiogenesis (343).  Clinical studies have documented these cells in 

several human cancers (59) including head and neck (349), renal cell (351), and 

hepatocellular (131) cancers.  Both murine and human studies have found the number of 

MDSCs increases with tumor burden (59, 198). 

 These data led us to test the hypothesis that activation of NLRP3 could inhibit the 

antitumor immune response required for cancer vaccine efficacy by activating cytokines 

and recruiting MDSCs.  This premise implies that blockade of NLRP3 would result in an 

improved vaccine response.  We tested this hypothesis using a dendritic cell vaccine in 

the B16-F10 and E.G7-OVA tumor models. 
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Materials and Methods 

Mice 

 Nlrp3-/- mice were generated as described (335) and were backcrossed for a total 

of nine generations to C57BL/6J mice.  All other mice were purchased from Jackson 

Laboratories (Bar Harbor, ME).  All experiments were conducted using protocols 

approved by Institutional Animal Care and Use Committee of the University of North 

Carolina at Chapel Hill.   

 

Dendritic Cell Vaccination Model 

 Tumor lines were purchased from the American Type Culture Collection (ATCC, 

Rockland, MD).  Subcutaneous tumors were formed by injecting either 10,000 cells 

(B16-F10, Lewis Lung) or 5x105 cells (E.G7-OVA) in the leg.  The leg diameter was 

measured three times a week and mice were euthanized when this diameter reached 6 

mm.   

 DCs were isolated from bone marrow cultures treated with GM-CSF and IL-4 

(Peprotech Inc, Rocky Hill, NJ) (208).  The DCs were pulsed with either B16-F10 lysates 

or with class I and class II peptides (SIINFEKL and ISQAVHAAHAEINEAGR) and 

matured with LPS.  1x106 cells were subcutaneously injected on day three and ten after 

tumor injection.   

 Cell depletion was accomplished by the intraperitoneal injection of 200 mcg of 

PK136 (NK cell) and RB6-8C5 (MDSC) and 500 mcg of 2.43 (CD8 T cell) and GK1.5 

(CD4 T cell) mAb (BioExpress, West Lebanon, NH).  The schedule for lymphoid cell 
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depletion was day -1, day 0 and then biweekly.  MDSC depletion was also biweekly 

starting on day 6.  Efficacy of cell depletion was confirmed by FACS analysis.  

 

Flow Cytometry and Fluorescent Microscopy 

 Flow cytometry was performed as previously described (322).  Cryosections were 

obtained after perfusing mice with 4% paraformaldehyde.  The slides were fixed with 

acetone and blocked with 10% goat serum.  Primary antibody signals were amplified 

using anti FITC and anti PE antibodies.   

 Gr-1+, CD11b+ cells were counted by making a “digital slide” from a low power 

photomicrograph using ImageJ software.  Fluorescent images were optimized with 

“Brightness/Contrast” adjustments and then converted with the “Binary” command.  

Background noise was reduced with one application of the “Despeckle” command.  The 

digital slide was completed by the “Analyze Particles” command.  The fidelity of these 

digital images was confirmed by comparing them to the original photomicrograph.  

Double staining cells were then counted using the “Colocalization” plug-in.   

 

MDSC Assay 

 MDSCs for the in-vitro suppression assays were harvested by FACS sorting from 

the lungs of WT and Nlrp3-/- mice two weeks after intravenous injection with 1x106 B16-

F10 melanoma cells.  Immunosuppression was evaluated by adding these cells to a mixed 

lymphocyte reaction.  Stimulator cells were taken from the adherent fraction of BALB/cJ 

splenocytes and responder cells were harvested from the non-adherent fraction of 

C57BL/6J splenocytes.  Stimulators and CD11b+ Gr-1+ cells were treated with mitomycin 
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C and responders were labeled with CFSE.  For the migration assays, MDSCs were 

harvested from the spleens of EGFP transgenic C57BL/6 or Nlrp3-/- mice by 

immunomagnetic bead separation (Miltenyi, Bergisch Gladbach, Germany) two weeks 

after intravenous tumor injection.   

 

Real time PCR 

 PCR amplification was performed using Nlrp3 specific primers and probe: 5’-

CTCCCGCATCTCCATTTGT-3’, 5’-GCGTGTAGCGACTGTTGA-3’, and FAM-

CCACACTCTCACCTAGACGCGC-TAMRA with TaqMan PCR reagents and 7900HT 

Thermocycler (Applied Biosystems).  Expression values normalized to cell number are 

reported. 

 

Statistical Analysis 

 Data are reported as a mean + standard error of the mean (SEM).  Results were 

considered significant if p < 0.05 as determined by the Mann Whitney test.  Comparisons 

in survival were done by the Cox proportional hazard regression method. 
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Results 

Dendritic cell vaccination improves survival in Nlrp3-/- mice but not WT mice 

 We examined the function of NLRP3 in a tumor model by comparing the survival 

of WT and Nlrp3-/- mice after the subcutaneous injection of B16-F10 melanoma cells.  In 

this model, none of the WT or Nlrp3-/- mice survived (Fig. 3-1A).  The median survival 

was also not significantly different (15.3 vs. 16.6 days, p = NS).  Therefore, the presence 

or absence of NLRP3 is not critical for the growth of B16-F10 tumor cells. 

 The survival of Nlrp3-/- mice could be improved by treatment with a dendritic cell 

(DC) vaccine.  In these experiments, mice were given an inoculation of 1x106 WT DCs 

pulsed with B16-F10 tumor cell lysate.  To mimic treatment of human disease, these 

inoculations were given three and ten days after tumor injection.  With this treatment, 

only 9.1% of the WT mice demonstrated long term survival while Nlrp3-/- mice showed 

nearly a 4-fold increase in survival (35%).  The hazard ratio favoring survival in the 

Nlrp3-/- mice was 2.4 [1.2 – 4.8] (p = 0.017) (Fig. 3-1B).   

 The survival benefit was not limited to Nlrp3-/- mice in the B16-F10 model 

system.  To demonstrate its broader applicability, WT and Nlrp3-/- mice were 

subcutaneously injected with 5x105 E.G7-OVA tumor cells.  The mice were then treated 

with 1x106 peptide pulsed DCs using the same schedule.  As before, Nlrp3-/- mice had a 

substantial improvement in survival compared to WT mice (28.6% vs. 62.5%) (Fig. 3-

S1). 

 

 

 



 67 

NLRP3 expression by the host limits the effectiveness of the dendritic cell vaccine 

 Next, we determined if this survival advantage was dependent on the expression 

of NLRP3 by the DCs used for vaccination.  In these experiments, Nlrp3-/- tumor-bearing 

mice were treated with DC vaccines from WT or Nlrp3-/- mice.  Thirty three percent of 

the Nlrp3-/- mice injected with Nlrp3-/- DC vaccine survived compared to 40% injected 

with the WT vaccine (p = NS) (Fig. 3-1C).  Thus, the Nlrp3-/- DC vaccine produced 

survival that was comparable to WT vaccines in Nlrp3-/- mice.   

 Subsequently, we evaluated the effectiveness of vaccination using Nlrp3-/- and 

WT DCs in WT tumor-bearing mice.  None of the WT mice survived in these 

experiments.  WT mice treated with a WT vaccine had a median survival of 21.8 days 

versus 16.1 days with an Nlrp3-/- vaccine (p=NS) (Fig. 3-1D).  From these data, we 

conclude that the poor outcome in WT mice was due to NLRP3 expression by the host 

and not the vaccine.  

 

The benefit of the dendritic cell vaccine in Nlrp3-/- mice is CD8 dependent 

 Having established a survival advantage for vaccinated Nlrp3-/- mice, their 

immunological memory was tested by rechallenging these mice three months after their 

initial tumor exposure.  Eleven Nlrp3-/- mice received a second tumor injection and ten 

survived (90.9%) (Fig. 3-2A).  Two of the surviving WT mice were also rechallenged 

and one survived (50%).  Due to the low number of WT mice surviving the first tumor 

challenge, we were unable to establish any meaningful statistical comparisons.  

Nevertheless, these experiments demonstrate an antitumor memory response in the Nlrp3-
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/- mice and imply the improved outcome was due to an enhanced immune response to the 

vaccine.  

The specificity of this tumor protection was examined by challenging surviving 

Nlrp3-/- mice with an unrelated tumor.  In these experiments, eight Nlrp3-/- mice received 

1x104 Lewis lung carcinoma cells (LLCa).  Two of these mice survived (25%) (Fig. 3-

2A).  This result was significantly less than those rechallenged with B16-F10 cells (p = 

0.003) but not different than naive Nlrp3-/- mice injected LLCa cells (survival = 20%).  

Therefore, the immunological memory generated after vaccination in Nlrp3-/- mice was 

specific only for the tumor used in the vaccine.   

The efficacy of the adaptive immune response was further tested by examining 

the survival of Nlrp3-/- mice after depletion of CD4+, CD8+, or NK cells (Fig. 3-S2).  The 

survival of the cell depleted mice was compared to control Nlrp3-/- mice by calculating a 

hazard ratio using Cox regression analysis.  In this analysis, a hazard ratio greater than 

one signifies a poorer outcome for the cell-depleted Nlrp3-/- mice.  As shown in Fig. 3-

2B, the survival of all three cohorts of cell-depleted Nlrp3-/- mice was decreased 

compared to the Nlrp3-/- mice.  However, this finding was only statistically significant for 

Nlrp3-/- mice after the depletion of CD8+ T cells (HR = 2.06, p = 0.028).  Therefore, the 

enhanced activity of tumor vaccination given to Nlrp3 -/- mice required the presence of 

CD8+ T cells.   
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Nlrp3-/- MDSCs are morphologically and functionally equivalent to WT suppressor cells 

in vitro 

 The vaccine’s dependence on CD8+ cells is consistent with our hypothesis that 

MDSCs are differentially suppressing T cell immunity (172).  This premise was further 

strengthened by gene expression studies of peritumoral cells.  In these experiments, cells 

from subcutaneous B16-F10 tumors were sorted by their expression of Gr-1 and CD11b.  

Both Gr-1+, CD11b+ and Gr-1-, CD11b+ cells expressed NLRP3 at transcript numbers 

significantly greater than found in CD11b- cells (4.30 + 0.13, 4.69 + 0.94 vs. 0.00 + 0.0, 

p = 0.033) (Fig. 3-3).  These results demonstrate that NLRP3 is expressed by both 

MDSCs (Gr-1+, CD11b+) and other myeloid cells (Gr-1-, CD11b+).  It was not expressed 

by CD11b- cells including the tumor cells and tumor infiltrating lymphocytes.  It was also 

not expressed in cells from Nlrp3-/- mice as expected. 

 Given the expression of NLRP3 in MDSCs, we compared the morphology and 

functional activity of these cells from Nlrp3-/- and WT tumor-bearing mice.  Since the 

numbers of MDSCs within the tumor are limited, we isolated these cells from the lungs 

of WT and Nlrp3-/- mice with B16-F10 metastasis.  MDSCs from both mice could be 

further divided into two subpopulations based on their expression of Gr-1 and CD11b.  

The Gr-1++, CD11b+ cells had a neutrophil morphology and the Gr-1+, CD11b+ cells had 

a monocytic morphology.  These subpopulations correspond to the granulocytic and 

monocytic MDSCs described by Youn et al. (348).  However, there were no morphologic 

differences between Nlrp3-/- or WT MDSCs within each subpopulation (Fig. 3-4A).   

Both populations of Gr-1, CD11b double positive cells were then tested for their 

ability to suppress a mixed lymphocyte reaction (MLR).  The monocytic MDSCs 
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displayed a greater suppressive capacity compared to the granulocytic MDSCs.  

However, we did not find a difference in the ability of WT compared to Nlrp3-/- MDSCs 

to suppress T cell proliferation in vitro (Fig. 3-4B).   

Regardless of the differences between Gr-1++ and Gr-1+ MDSCs, the central 

observation from these experiments is that no differences were detected when comparing 

cells from WT and Nlrp3-/- mice.  These data suggest that the disparity in the vaccine 

response between the WT and Nlrp3-/- mice cannot be explained by differences in the 

intrinsic suppressive capacity of the MDSCs.   

 

Nlrp3-/- mice have fewer MDSCs at the tumor site 

 Since the survival advantage of the Nlrp3-/- mouse could not be explained by 

functional differences in MDSCs, we speculated that this advantage was due to a 

reduction in the number of MDSCs.  In the first series of experiments, splenic and tumor 

draining lymph node MDSCs were measured by flow cytometry 14 days after tumor 

injection.  The average leg size was 4.6 + 0.3 mm in the WT mouse and 3.8 + 0.1 mm in 

the Nlrp3-/- mouse (p = NS).  We found no significant differences in the number of Gr-1, 

CD11b double positive cells isolated from WT and Nlrp3-/- mice.  There was a trend to a 

lower percentage of splenic MDSCs in the Nlrp3-/- mice but this finding was not 

statistically significant (1.61 + 0.24% vs. 2.67 + 0.40%, p = 0.11) (Fig. 3-5B).  No such 

trend was noted in the tumor draining lymph node (5.9 + 1.6 x 104 cells vs. 5.7 + 1.1 x 

104 cells, p = 0.78).  This observation suggests that MDSCs are mobilized to a similar 

degree in the spleen and lymph nodes of each mouse.   
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 We next evaluated the number of MDSCs within the tumor mass by 

immunofluorescent microscopy.  Mice were included in this analysis only if their tumor 

was visible by light microscopy.  This approach revealed a five fold increase in the 

number of CD11b/Gr-1+ cells in the peritumoral area of WT mice compared to Nlrp3-/- 

mice (18.6 + 3.0/LPF vs. 3.5 + 0.5/LPF, p = 0.02) (Fig. 3-5A).   

 Since immunohistochemistry cannot distinguish between Gr-1++ and Gr-1+ cells, 

the percentage of these two populations was measured using flow cytometry.  In these 

experiments, tumors were harvested when palpable; mice without tumor were excluded.  

Gating on the Gr-1+, CD11b+ cells revealed a 4.7 fold increase of the monocytic MDSCs 

in WT mice compared to Nlrp3-/- mice (2.1 + 0.5% vs. 0.45 + 0.24%, p = 0.003) (Fig. 3-

5C), while a six fold increase was noted in the granulocytic MDSCs (0.54 + 0.18% vs. 

0.09%, p = 0.003).  No difference was observed in the number of MDSCs in the tumor 

with out vaccination (Table 3-S1).  Thus, both flow cytometry and 

immunohistochemistry demonstrated a significant reduction in the number of peritumoral 

MDSCs in Nlrp3-/- mice compared to WT mice following DC vaccine.   

 

Depletion of MDSCs improves survival in vaccinated WT but not Nlrp3-/- mice 

 To establish if the decrease in peritumoral MDSCs accounted for the improved 

survival in Nlrp3-/- mice, we measured survival in WT and Nlrp3-/- mice following 

MDSC depletion.  Anti-Gr-1 antibody was injected twice a week beginning on day 6 

post-tumor challenge.  This treatment produced a 2.6 fold decrease in the number of 

MDSCs in the spleen (Fig. 3-S3).  As shown in Fig. 3-6, depletion of MDSCs eliminated 

the survival advantage of the vaccinated Nlrp3-/- mice over WT mice (HR = 1.15, p = 
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0.75).  When compared to our earlier experiments, we found this change was exclusively 

due to an improvement in overall survival in the WT mice from 9.1% to 38.9% (HR = 

2.06, p <0.05).  There was no difference in overall survival of the Nlrp3-/- mice after 

MDSC depletion (40.0% vs. 35.0%, p = 0.82).  This result strongly suggests that the 

decreased number of peritumoral MDSCs accounts for the increased efficacy of the 

dendritic cell vaccine in Nlrp3-/- mice. 

 

NLRP3 expression promotes migration of MDSCs into the tumor 

 The number of peritumoral MDSCs could be increased by enhanced migration.  

To assess the effect of NLRP3 expression on migration, WT or Nlrp3-/- EGFP+ MDSCs 

were intravenously injected into tumor bearing Nlrp3-/- mice and detected by flow 

cytometry.  83.4 + 0.7% of the EGFP+ cells expressed Gr-1 and CD11b at the time of the 

injection (Fig. 3-7A).  This approach revealed that significantly fewer Nlrp3-/- MDSCs 

migrated into the tumor compared to WT MDSCs (178.1 + 91.0 cells/tumor vs. 448.0 + 

36.1 cells/tumor, p < 0.05) (Fig. 3-7B).  These results were not biased by tumor size 

since no difference in tumor size was detected at the time of injection (4.1 + 0.06 mm vs. 

4.2 + 0.25 mm. p = NS).   
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Discussion 

 DC vaccines represent a promising therapy for cancer; however, their efficacy is 

frequently suboptimal.  This inefficiency was substantiated in our model by the vaccine’s 

inability to improve survival in WT mice.  This outcome is not surprising since we used a 

poorly immunogenic tumor and administered the vaccine after tumor initiation.  

Interestingly, we found that the efficacy of DC vaccination could be markedly improved 

by inactivating NLRP3.   

 Further analysis implicated differences in MDSCs as the reason for the survival 

advantage in Nlrp3-/- mice.  NLRP3 does not appear to affect the ability of MDSCs to 

suppress T cells.  Instead, the Nlrp3-/- mice had a significant reduction in the number of 

MDSCs at the tumor site.  Such a reduction would result in a decrease in MDSC 

inhibition of cytotoxic CD8+ T cells and prompt a more effective antitumor response.  

This interpretation explains the loss of effectiveness of the vaccine in a CD8 depleted 

animal.  It also explains why MDSC depletion by anti-Gr-1 antibodies restored the 

efficacy of the vaccine in WT mice to a level comparable to Nlrp3-/- mice. 

 Our findings further show that the differences in MDSC number are likely due to 

differences in the migration of these cells to the tumor site.  These cells were present in 

the spleen and tumor draining lymph node in equal numbers suggesting that MDSCs are 

mobilized to the peripheral lymphoid organs independently of NLRP3.  However, when 

EGFP MDSCs were injected into tumor bearing mice, WT cells were 2.5 times more 

efficient than Nlrp3-/- cells in their migration into tumors.  This difference was not due to 

tumor size since both WT and knockout mice had similar size tumors at the time of 



 74 

injection.  This observation suggests a critically important role for NLRP3 in the 

migration of MDSCs to the tumor microenvironment.   

 Inflammasome activation has been associated with infiltration of other myeloid 

cells including monocytes, macrophages, and granulocytes (165, 203, 217).  One 

potential mechanism for this migration is the activation of IL-1β by the inflammasome.  

Over expression of IL-1β leads to the enhanced migration of monocytes (24) and MDSCs 

(315).  Conversely, IL-1 receptor blockade delays MDSC recruitment (38).  Despite the 

appeal of this mechanism, we have been unable to document differences in IL-1β in the 

tumors of WT and Nlrp3-/- mice.  IL-1β was undetectable in western blotting and ELISAs 

on tumor homogenates, ex-vivo tumor isolates, and in-vitro tumor/macrophage co-

cultures (not shown).  Though not conclusive, these results suggest the possibility that 

MDSC recruitment may be IL-1β independent.  Such a conclusion is possible since the 

activation of IL-1β only accounts for a portion of inflammasome function.  This complex 

also leads to the generation of IL-18 (192), IL-33 (180), and chemotactic factors (335). 

 We believe our interpretation is more consistent with the literature than several 

alternative hypotheses.  One such hypothesis is that WT MDSCs had a survival 

advantage over Nlrp3-/- MDSCs.  However, NLRP3 is more likely to induce cell death 

than cell survival.  For example, monocytes that are hypersensitive to NLRP3 activation 

are prone to cell death in a cathespin B dependent manner (102).  Furthermore, myeloid 

cells from Nlrp3-/- mice are resistant to cell death induced bacterial pathogens (335). 

 Wild type MDSCs are also not likely to have a proliferative advantage over 

Nlrp3-/- cells.  Though multiple mechanisms are involved, MDSC expansion appears to 

take place in niches distant from the tumor.  The primary sites of proliferation of MDSCs 
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and their precursors are the spleen, bone marrow, and liver (1, 142, 172, 182).  Finding 

no significant differences in the percentage of MDSCs in the spleens of WT and Nlrp3-/- 

mice strongly argue against proliferation as a reason for differences in peritumoral 

MDSC number.  

 At first glance, our result stands in contrast to recent findings that NLRP3 might 

enhance adaptive immunity.  Several reports have shown that NLRP3 is required for 

alum adjuvant function in enhancing IgE production and Th2 priming, although there are 

conflicting reports regarding the effect of NLRP3 on IgG production (78, 165, 180, 196).  

More recently, Ghiringhelli et al. demonstrated that the NLRP3 inflammasome was 

critically important in the P2X7R-dependent activation of DCs to generate IFN-γ 

producing CD8+ T cells (110).  This was mediated by the release of ATP from dying 

tumor cell lines in the presence of the chemotherapeutic drugs oxaliplatin, doxorubicin or 

mitoxantrone.  These data suggest that NLRP3 plays a role in preventing tumor growth 

after administration of chemotherapy, which is somewhat at odds with our findings as 

well as earlier findings by others on the role of IL-1β in tumors (167).  However, a major 

difference between the two studies is the inclusion of chemotherapy induced apoptosis.  

Furthermore, the requirement for the NLRP3 inflammasome was bypassed by the 

addition of IL-12, which we have found is significantly generated by the DCs used by our 

group.  Thus, our findings suggest that in the presence of IL-12, which alone can generate 

Th1 polarized T cells, activation of the NLRP3 inflammasome enhances the 

accumulation of MDSCs and therefore suppresses peritumoral immune responses.  Thus, 

the function of NLRP3 in cancer may be quite complex and different depending on the 

stimuli used for activation of the inflammasome.   
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 In summary, the expression of NLRP3 in the tumor microenvironment diminishes 

antitumor immunity and vaccine efficacy by facilitating the migration of MDSCs to the 

site of tumor growth.  Since the MDSCs also express NLRP3, their influx becomes part 

of a positive feedback loop leading to further expansion of these cells.  These findings 

support a novel role for NLRP3 in cancer progression. 
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Figure 3-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3-1.  Dendritic cell vaccine improves survival in Nlrp3-/- mice but not WT 

mice.  A. Survival curves of WT and Nlrp3-/- mice after receiving a subcutaneous 

injection with 10,000 B16-F10 melanoma cells.  B. Survival of Nlrp3-/- mice was 

significantly improved after receiving 1x106 tumor-lysate pulsed DCs (DC Vx) on day 3 

and day 10 after tumor injection.  No improvement was seen in WT mice.  C. Nlrp3-/- 

mice show improved survival after receiving vaccines from either Nlrp3-/- or WT mice.  

D. WT mice show no improvement in survival after receiving vaccines from WT or 

Nlrp3-/- mice.  
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Figure 3-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-2.  Vaccinated Nlrp3-/- mice demonstrate an antitumor memory response.  

A. Survival curves of vaccinated or naive Nlrp3-/- mice after rechallenge with B16-F10 

cells or Lewis Lung cancer (LLCa) cells.  B. Survival of vaccinated Nlrp3-/- mice 

following depletion of CD8+, CD4+, and NK cells.  The graph shows the hazard ratio and 

confidence interval comparing the survival of the cell depleted animals with Nlrp3-/- 

mice.  Values greater than 1 imply decreased survival compared to untreated Nlrp3-/- 

mice.  
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Figure 3-3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-3.  Nlrp3 is expressed by peritumoral myeloid cells.  Expression of Nlrp3 by 

real time PCR in (1) Gr-1+, CD11b+ (2) Gr-1-, CD11b+ and (3) Gr-1-, CD11b- sorted 

cells.  The panel on left is a representative dot plot of sorted cells from a subcutaneous 

B16-F10 tumor.  The panel on the right is a bar graph of Nlrp3 transcripts normalized to 

cell number. 
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Figure 3-4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-4.  WT and Nlrp3-/- MDSCs have a similar morphology.  A. Flow cytometry 

dot plots for cells isolated from WT and Nlrp3-/- mice after intravenous injection with 

B16-F10 tumor cells.  Cells were sorted by the gates shown and then examined under 

cytospin with Wright Giemsa staining. Lens magnification is 500X; scale bar is 20 µm.  

B. Line graph showing suppression of a MLR reaction by granulocytic (solid line) and 

monocytic (dashed line) MDSCs from WT (squares) and Nlrp3-/- (diamonds) mice.  

Significance was determined by comparing proliferation with control MLR response 

(dotted line).  Results are averaged from three separate experiments.  
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Figure 3-5 
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Figure 3-5.  Nlrp3-/- mice have fewer myeloid derived suppressor cells at the tumor 

site.  A. Representative immunofluorescent images for Gr-1 and CD11b at the tumor site 

in Nlrp3-/- (middle row) and WT (bottom row) mice.  First column: Light microscopic 

images of melanoma.  Second column: Immunofluorescence for Gr-1.  Third Column: 

Immunofluorescence for CD11b.  Fourth Column: Digital representations.  Fifth Column: 

Double positive cells by co-localizing software.  Lens magnification is 40X; scale bar is 

500 µm.  B. Percentages of MDSCs from the spleen and total number of MDSCs in the 

lymph node of WT (striped) and Nlrp3-/- (solid) mice determined by flow cytometry 14 

days after tumor injection.  C. Increased percentage of monocytic MDSCs (right) and 

granulocytic MDSCs (center) from the tumor in WT (striped) and Nlrp3 (solid) mice 

determined by flow cytometry.  The graph on the left shows the increased number of Gr-

1+, CD11b+ cells in WT mice determined by microscopy 
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Figure 3-6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-6.  Depletion of myeloid derived suppressor cells improves vaccine 

response in WT but not Nlrp3-/- mice.  Survival curves WT and Nlrp3-/- mice treated 

with anti-Gr-1 antibody (dotted arrows) and dendritic cell vaccine (solid arrows). 
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Figure 3-7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3-7.  Migration of myeloid derived suppressor cells is enhanced by NLRP3.  

A. Upper dot plots show gates for detecting EGFP+, Gr-1+, CD11b+ cells using isotype 

stained, EGFP- control cells.  Lower dot plots are EGFP+ splenic MDSCs prior to 

injection into Nlrp3-/- mice.  B. Representative dot plots of cells recovered from B16 

tumors in Nlrp3-/- mice.  Upper panels are WT EGFP+ MDSCs and lower panels are 

Nlrp3-/- EGFP+ MDSCs.  Values represent the average number of cells recovered from 

each tumor. 
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Table 3-S1 

Accumulation of MDSCs in WT and Nlrp3-/- mice with or without DC vaccination 

     * p < 0.001 (Kruskal/Wallis with Bonferroni Correction) 

Tumor-derived MDSCs (% of total cells)  Splenic MDSCs Treatment Mouse n Tumor 
Diameter All Monocytic Granulocytic  All 

- WT 5 6.8 + 0.6 2.2 + 1.0 1.9 + 0.8 0.32 + 0.21  3.4 + 0.6 
- Nlrp3-/- 4 7.1 + 1.1 1.7 + 0.5 1.5 + 0.5 0.11 + 0.06  3.7 + 1.1 

DC Vaccine WT 11 5.1 + 0.3 3.0 + 0.5 2.1 + 0.4 0.50 + 0.14  2.9 + 0.5 
DC Vaccine Nlrp3-/- 11 3.9 + 0.2 0.5 + 0.3* 0.5 + 0.2* 0.09 + 0.04*  1.8 + 0.4 
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Figure 3-S1 

 

 

 

 

 

 

 

 

Figure 3-S1.  Dendritic cell vaccine improves survival in Nlrp3-/- mice but not WT 

mice using an E.G7-Ova model.  Survival curves of WT and Nlrp3-/- mice after 

receiving a subcutaneous injection with 500,000 E.G7-Ova tumor cells.  WT (squares) 

and Nlrp3-/- (diamonds) received a 1x106 DCs pulsed with Ova peptide days 3 and day 

10.  The survival of Nlrp3-/- mice was significantly improved by this vaccination.  

Survival of vaccinated WT mice (squares) was not significantly better than unvaccinated 

WT mice (triangles). 
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Figure 3-S2 

 

 

 

 

 

 

 

 

 

 

Figure 3-S2. Antibody depletion of CD4+ and CD8+ cells.  Representative dot plots of 

splenocytes from WT and Nlpr3-/- mice that are either untreated or treated with anti-CD4 

(lower left) or anti-CD8 (lower right) antibody.  Combined data from both strains of mice 

are given in graphic form on right.  All mice received B16-F10 melanoma and DC 

vaccines.  The efficiency of depletion was the same in both strains. 
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Figure 3-S3 

 

 

 

 

 

 

 

Figure 3-S3.  Depletion of MDSCs with Gr-1 antibody.  Representative dot plots of 

splenocytes from WT mice that are either untreated or treated with anti-Gr-1 antibody.  

All mice received B16-F10 melanoma and DC vaccine on day 3 and 10.  Splenocytes 

were harvested on day 14.  Bar graphs of combined data are on right. 



 

CHAPTER FOUR 

EVALUATION OF MULTIPLE IMMUNE SUPPRESSIVE MECHANISMS 
THAT INHIBIT THERAPEUTIC CANCER VACCINES  
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Abstract 

 We previously demonstrated that the immunosuppressive tumor environment was 

the major impediment to successful therapeutic VRP vaccination of neu+ tumors in 

tolerant neu-N mice.  Two major components of this suppressive environment were Treg 

cells and MDSCs.  Depleting either of these cells improved efficacy of our VRP vaccine.  

Here, we extend these studies to evaluate the involvement of other potential mechanisms 

of suppression in neu-N mice.  These included the inhibitory molecules CD200, 

indolamine 2-3 dioxygenase (IDO), CTLA-4, and PD-1.  We found that blocking either 

CD200 or IDO improved efficacy of neuET-VRP vaccination, whereas blocking CTAL-4 

or PD-1 had no effect on tumor growth.  Additionally, we report that intratumoral 

vaccination with VRPs inhibited tumor growth in neu-N mice, likely due to innate 

immune activation via TLR stimulation.  Finally, as we previously identified MDSCs as a 

major suppressor of anti-tumor immunity in neu-N mice, we examined the effect of TF 

expression on MDSC function.  TF has been shown to promote migration of 

macrophages.  Therefore, we hypothesized that TF suppresses anti-tumor immunity by 

promoting the migration of MDSCs.  Although we found that TF promoted migration of 

MDSCs in vitro, it did not promote migration of MDSCs in vivo and the absence of TF 

had no impact on tumor growth.  In summary, these data suggest that multiple 

mechanisms of suppression are present in the tumor environment.  Future studies 

evaluating the effect of combination therapies targeting multiple mechanisms of immune 

suppression are warranted in order to determine the optimal treatment regimens for 

cancer patients.
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Introduction 

 We previously identified the immunosuppressive tumor environment as the major 

impediment to successful therapeutic vaccination of neu+ tumors in neu-transgenic (neu-

N) mice (39).  Depleting either Treg cells or MDSCs improved the efficacy of therapeutic 

neuET-VRP vaccination.  However, there are multiple other mechanisms that can impact 

on the immune response after tumor vaccination.  Here, we will evaluate whether 

blocking the activity of CD200, IDO, CTLA-4 or PD-1 impacts on tumor growth after 

active immunotherapy.   

 CD200 (OX-2) is a type 1 transmembrane protein with two IgSF domains but no 

known cytoplasmic signaling motif (19).  CD200 is expressed on a variety of different 

cell types of both hematopoietic and non-hematopoeitic origin (339).  The receptor for 

CD200, CD200R, is restricted to myeloid cells (132, 340).  CD200R is almost identical to 

CD200 except for the addition of a cytoplasmic ITIM motif which delivers an inhibitory 

signal to myeloid cells after binding with CD200 (132).  Therefore, CD200 is proposed to 

be important for the regulation of myeloid cells.  Expression of CD200 by tumor cells 

suppressed T cells in vitro (197, 244), and blocking CD200 improved anti-tumor 

immunity in a humanized mouse model of CLL and in a murine breast cancer model 

(120, 168).   

 Indoleamine 2,3-dioxygenase (IDO) catalyzes the breakdown of the essential 

amino acid tryptophan and is involved in the suppression of T cells through both the 

depletion of tryptophan and the production of metabolites of the kynurenine pathway 

(212).  IDO is expressed by both pDCs in the tumor draining lymph node and by tumor 

cells and has been associated with poor prognosis in patients with a number of different 
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types of cancer (32, 143, 211, 213, 214, 232, 319).  In addition, IDO has been proposed 

to increase the function of Treg cells (14, 277).  Furthermore, inhibiting IDO promoted 

anti-tumor immunity in a number of mouse models (211, 212).   

 CTLA-4 is an inhibitory receptor expressed on the surface of activated T cells 

(37, 141, 329).  In support of an inhibitory role for CTLA-4, CTLA-4-/- mice die by four 

weeks of age due to massive proliferation of activated lymphocytes (47).  More recently, 

CTLA-4 was shown to be constitutively expressed on Treg cells and to be vital for their 

function (337, 355). In addition, lack of CTLA-4 expression on Treg cells alleviated 

suppression of anti-tumor immunity (337).  A number of clinical trials have evaluated the 

efficacy of CTLA-4 blockade for the treatment of cancer (73).  Although results to date 

have been mixed, CTLA-4 does appear to play a role in inhibiting anti-tumor immunity 

(73).  Future work is needed to determine the mechanisms responsible for CTLA-4 

dependent suppression of anti-tumor immunity and for which specific types of cancer 

CTLA-4 targeted therapy will be most effective.  . 

 A more recently described inhibitory receptor that also appears to be involved in 

inhibiting anti-tumor immunity is programmed cell death-1 (PD-1; CD279) (145, 158).  

Like CTLA-4, PD-1 is expressed on T cells upon activation (2).  Also like CTLA-4, PD-

1-/- mice suffer from autoimmune disease (228, 229).  Two ligands have been identified 

for PD-1, PD-L1 (B7-H1) and PD-L2 (B7-DC) (67, 99).  PD-L1 is expressed on a wide 

range of cells, including those of both hematopoetic and non-hematopoetic origin, while 

PD-L2 expression is limited to activated DC, macrophages, and bone marrow-derived 

mast cells and resting B1 cells (158).  PD-L1 can also be upregulated on some cells, 

including macrophages, DCs, and endothelial cells in response to both type I and type II 
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interferons (80, 158, 272).  PD-L1 is also expressed by many different types of tumor 

cells and has been associated with decreased T cell immunity and poor prognosis (66, 

127, 313).  Murine studies have demonstrated that PD-L1 expression by tumor cells and 

PD-1 expression by T cells inhibit anti-tumor immunity (25, 146, 301).  Mechanistically, 

expression of PD-L1 by tumor cells renders them resistant to T cell-mediated killing 

(130).  We are particularly interested in the role of PD-1 in our VRP vaccines as VRPs 

induce high levels of type I IFNs (209).  Induction of PD-L1 by IFNs might be a main 

mechanism of tumor-induced suppression of therapeutic VRP vaccines. 

 In chapter two we identified MDSCs as the major suppressive cells that inhibited 

VRP vaccine efficacy in neu-N mice.  Depletion of MDSCs resulted in regression of 40% 

of neu-N mice when combined with VRP vaccination and adoptive transfer of neu-

specific lympohocytes (39).  Therefore, we were interested in identifying genes important 

for the function of MDSCs.  Once such gene that was identified by microarray analysis of 

MDSCs from tumor-bearing neu-N mice was tissue factor (TF) (Burgents, Serody, 

unpublished).  TF (coagulation factor III) plays a key role in the initiation of coagulation 

upon binding to factor VII (43, 189).  TF is mainly expressed by cells shielded from 

contact with blood, e.g. vascular adventitia, organ capsules, epidermis, and mucosal 

epithelium , thereby being distributed in a way to activate coagulation when vascular 

integrity is compromised (71).  More recently, TF expression has been reported on 

activated myeloid cells in response to inflammatory cytokines (31).  TF is also expressed 

on tumor cells and has been associated with increased growth and metastasis (184, 263, 

269).  This is believed to be because TF promotes the migration of both tumor cells and 

myeloid cells (68, 148, 249).  As we found TF expressed by MDSCs in the tumor 
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environment, we were interested in evaluating whether TF promoted MDSC-mediated 

suppression of anti-tumor immunity by enhancing the migration of MDSCs to the tumor. 

 Thus, here we have taken a systematic approach to evaluating the role of multiple 

inhibitory pathways in the activity of DC or VRP vaccination in several preclinical 

models.   
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Materials and Methods 

Mice, cell lines, and reagents  

 FVB/N and C57BL/6 mice mice were purchased from The Jackson Laboratory 

(Bar Harbor, ME).  MMTV-neu (neu-N) mice were purchased from Charles River 

Laboratory (Wilmington, MA).  Female mice (7-14 weeks) were used for all 

experiments.  All experiments were conducted in accordance with protocols approved by 

the University of North Carolina Institutional Animal Care and Use Committee.  B16-

F10 and HUVEC cells were purchased from ATCC (Rockland, MD).  Rat neu-expressing 

NT2 cells have been described (251).  Anti-CD200 Ab was provided by Trillium 

Therapeutics (Toronto, ON).  PD-1 (J43), CTLA-4 (UC10-4F10-11), CD4 (GK1.5), CD8 

(53.6.72), and isotype control Abs for in vivo experiments were purchased from Bio X 

Cell (West Lebanon, NH).  1MT was purchased from Sigma-Aldrich (St. Louis, MO). 

 

Flow cytometric analysis 

 All monoclonal antibodies (mAbs) used for flow cytometry were purchased from 

eBioscience (San Diego, CA).  Cells were stained according to the manufacturers’ 

instructions.  Acquisition was done using BD FacsCalibur (BD Biosciences, San Jose, 

CA) or MACSQuant Analyzer (Bergisch Gladbach, Germany).  Resultant data were 

analyzed using FlowJo Flow Cytometry Analysis Software (Tree Star Inc., Ashland, OR). 

 

VRP & DC vaccines 

 VRPs encoding the extracellular-transmembrane domain (AA 1-697) of rat neu 

(neuET-VRP), the melanoma antigen gp100 (gp100-VRP) or VRPs lacking an inserted 
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transgene (null-VRP) have been described (208, 311). Tolerant neu-N mice were 

challenged with 5 × 104 freshly prepared NT2 cells s.c. in the right mammary fat pad.  

FVB/N mice were challenged with 2 × 106 NT2 cells.  C57BL/6 mice were challenge 

with 1 x 104 B16-F10 cells or 1 x 106 E.G7-OVA cells s.c. in the right rear leg flank.  For 

therapeutic VRP vaccination, tumors were allowed to grow 4-7 days before vaccination 

with 2 x 105 – 1 x 106 VRPs injected in the footpad. For intratumoral VRP vaccines, 1 x 

105 null-VRP or neuET-VRP were injected into tumors greater than 10 mm2.  For DC 

vaccines, DCs were isolated from bone marrow cultures treated with GM-CSF and IL-4 

(Peprotech Inc, Rocky Hill, NJ) (208).  The DCs were pulsed with either B16-F10 lysates 

or OVA class I peptide (SIINFEKL) and matured with LPS.  1x106 cells were injected 

s.c. adjacent to the tumor site. 

  

Adoptive cell transfer experiments 

 For adoptive cell transfer experiments into lethally irradiated recipients, 

splenocytes were isolated from naïve FVB/N or neu-N mice.  1 × 107 splenocytes, along 

with 3-5 x 106 T cell depleted syngeneic BM cells, were transferred i.v. to neu-N or 

FVB/N mice 18-24 h after irradiation at 850 rads (135 rads/min).  NT2 tumor cells were 

injected s.c. on the same day as splenocyte and BM cell transfer. 

 

Treatment with IDO inhibitor 1MT 

 The 1MT solution was prepared as described (136).  Briefly, 1 g of 1MT (Sigma) 

was added to a 15 mL conical tube with 7.8mL Methocel/Tween solution (0.5% Tween 

80/0.5% Methylcellulose in water).  This mixture was bead milled overnight by adding 1-
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2 mL of 3 mm glass beads and mixing by inversion.  4 mL Methocel/Tween solution was 

added the next day to bring the concentration to approximately 85 mg/mL.  100µL of this 

solution (8.5 mg) was administered to mice twice per day by oral gavage for the five 

consecutive days following each VRP vaccine. 

 

TFshRNA and CD200shRNA NT2 cell lines 

 Mission lentiviral transduction particles (Sigma, St. Louis, MO) containing 

shRNA specific for CD200 

(CCGGGCCCATAGTACACCTTCACTACTCGAGTAGTGAAGGTGTACTATGGGC

TTTTTG) and TF 

(CCGGGCACAAATGCTTTAGATTGTACTCGAGTACAATCTAAAGCATTTGTGC

TTTTTG) or non-target control transduction particles (product #SHC002V) were used to 

stabily transduce NT2 tumor cells.  NT2 cells were thawed into T75 flasks in NT2 media 

(RPMI 1640 supplemented with 20% FBS, 2mM L-glutamine, 12mM HEPES, 0.1mM 

NEAA, 1mM Na Pyruvate, 1% Pen/Strep, 50µM 2-ME, 0.2U/mL Novolin R-Insulin).  

The next day, cells were plated in a 96 well plate at 1.6 x 104 cells per well in 120 µL and 

incubated overnight.  4µg/mL Polybrene was added to each well followed by addition of 

lentiviral particles at an MOI of 5.  Lentiviral particles were removed the next day and 

fresh media was added.  On the following day, media was replaced with NT2 media 

containing 2µg/mL puromycin to select for transduced cells.  Cells were expanded for 5-

7 days and tested for expression of either CD200 or TF.  Limited dilution cloning was 

used to generate cell lines.  Cell lines were maintained with puromycin at a concentration 

of 0.5 µg/mL. 
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In vitro trans endothelial migration (TEM) assay 

 On day -2, 5 x 104 HUVEC cells were plated onto matrigel coated filters of 24-

well transwell migration plates.  The following day the cells were activated for 24 hours 

with addition of 1 ng/mL IL-1β.  5 x 105 MDSCs from the spleens of either WT or 

TFfloxLysMcre tumor-bearing mice were added to the upper chamber.  MDSCs were 

isolated by magnetic separation using miltenyi beads for Gr-1+ cells.  Cells were greater 

than 95% Gr-1+CD11b+.  100 ng/mL rTF was added to wells as indicated.  The number 

of cells in the lower chamber was counted after 24 hours. 

 

In vivo migration of MDSCs 

 On day -1 C57BL/6 mice were lethally irradiated at 950 rads (135 rads/min).  The 

next day BM was isolated from eGFP-B6, TFfloxLysMcre, and B6 mice.  5 x 106 total BM 

cells were injected i.v. to irradiated recipients.  The experimental group received a 1:1 

ratio of eGFP-B6 BM to TFfloxLysMcre BM, while the control group received a 1:1 ratio 

of eGFP-B6 to B6 BM.  8 weeks later, mice were challenged with 2 x 106 E.G7-OVA 

tumor cells.  On day 14 post-tumor challenge tumors were harvested and digested with 

collagenase A. The percent GFP+ MDSCs was determined by FACS. 

 

Statistical analysis 

 Statistical differences between groups was determined by two-tailed Student’s t 

test or ANOVA analysis.  Significant differences in survival were determined by Kaplan-

Meier survival analysis. All statistical analyses were conducted using SigmaStat® 3.5 

software, with a p value ≤ 0.05 considered significant. 



 99 

Results 

Blocking CD200 improves efficacy of neuET-VRP vaccine 

 We previously demonstrated that the immunosuppressive tumor environment is 

the major impediment to successful therapeutic VRP vaccination of neu-N mice (39).  In 

the current report, we evaluated a number of potential mechanisms of immune 

suppression that might be involved in inhibiting vaccination in neu-N mice.  One such 

mechanism that has been proposed to inhibit tumor immunity is the inhibitory molecule 

CD200 (120, 210).  We found that CD200 was expressed by our neu+ NT2 tumor cells 

(data not shown).  Therefore, we sought to determine whether inhibition of CD200 with 

an anti-CD200 blocking Ab would improve the efficacy of therapeutic neuET-VRP 

vaccination.  Treatment with anti-CD200 Ab inhibited tumor growth following 

vaccination with neuET-VRP suggesting that CD200 is involved in promoting tumor 

growth of neu-expressing tumors (Fig. 4-1A). 

 In our previous study we found that neu-N mice lacked a sufficient repertoire of 

neu-specific lymphocytes to induce regression of neu-expressing tumors.  Therefore, we 

hypothesized that adoptive transfer of neu-specific lymphocytes from FVB/N mice along 

with treatment with CD200 blocking Ab would result in a further decrease in tumor 

growth compared to CD200 Ab treatment without adoptive cell transfer.  While treatment 

with CD200 blocking Ab improved efficacy of neuET-VRP vaccination, we did not 

observe an increased effect of CD200 Ab treatment when combined with transfer of FVB 

splenocytes (Fig. 4-1B).  These data indicate that although CD200 inhibits tumor growth 

it is not the main or dominant mechanisms of suppression of tumor-specific lymphocytes. 
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 We next sought to further investigate the mechanism of increased vaccine 

efficacy with CD200 Ab treatment.  We depleted mice of either CD4+ cells or CD8+ cells 

and measured tumor growth following CD200 Ab treatment and neuET-VRP 

vaccination.  When CD200 Ab treatment was combined with depletion of CD4+ cells, 

there was no longer a significant difference between groups based on CD200 Ab 

treatment, consistent with CD4+ cells being involved in the improved efficacy of 

vaccination following CD200 Ab treatment (Fig. 4-2).  On the other hand, the effect of 

CD200 Ab treatment was not dependent on CD8+ cells, as these mice still had decreased 

tumor growth following CD200 Ab treatment (Fig. 4-2). 

 One of the main sources of CD200 in the tumor environment is production by 

tumor cells.  In fact, we have shown that NT2 tumor cells express high levels of CD200 

(data not shown).  Therefore, we wanted to determine whether CD200 expressed by the 

tumor cells was responsible for the observed CD200-dependent inhibition of tumor 

growth.  To do this, we transduced NT2 cells with lentivirus expressing shRNA for either 

CD200 or a control shRNA that is not specific for any known mouse gene.  NT2 cells 

were stably transduced to express each shRNA.  Transduction with CD200 shRNA 

resulted in a greater than 95% knockdown of C200 compared to NT2 cells transduced 

with the control shRNA (data not shown).  We challenged neu-N mice with either CD200 

shRNA or control shRNA NT2 cells followed by vaccination with neuET-VRPs.  There 

was a trend, that was not statistically significant, for smaller tumors in mice given NT2-

CD200 ShRNA tumors compared to those given the control tumors (p = 0.08, Fig. 4-3A).  

To ensure that CD200 remained knocked down in vivo in the population of CD200 

shRNA NT2 cells, we harvested the tumors on day 46 and measured CD200 surface 
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levels by FACS.  We found that CD200 remained knocked down in vivo in CD200 

shRNA tumors (Fig. 4-3B). 

 These data are consistent with CD200 being involved in inhibiting anti-neu 

immunity following therapeutic VRP vaccine,  The effect of CD200 is clearly not 

dependent on CD8+ lymphocytes but possibly dependent of CD4+ T cells.  More work 

will be needed to address whether the effect of CD200 is dependent on CD4+ T cells and 

whether CD200 expressed by the tumor cells promotes tumor growth. 

 

Inhibiting IDO improves efficacy of neuET-VRP vaccine 

 Another mechanism of suppression in the tumor environment that has been shown 

to inhibit T cells as well as increase the activity of Treg cells, is the production of IDO 

(212).  DCs in the TDLN are a main producer of IDO in the tumor environment.  We 

found increased IDO production at the TDLN compared to the spleen (Fig. 4-4A).  In 

order to examine the role of IDO in the induction of tolerance in neu-N mice we treated 

mice with the IDO inhibitor 1 methyl tryptophan (1MT).  1MT was administered by oral 

gavage twice a day for the first 5 days after each vaccination.  Mice treated with 1MT 

along with neuET-VRP had a significant delay in tumor growth which resulted in a 

modest improvement in median survival compared to control treated mice (Fig. 4-4B).  

These data suggest that production of IDO does inhibit anti-tumor immunity in neu-N 

mice. 
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Treatment with blocking antibodies to the inhibitory receptors CTLA-4 or PD-1 does not 

improve neuET-VRP vaccine efficacy 

 CTLA-4 and PD-1 are inhibitory receptors expressed by T cells that have been 

shown to be involved in suppression of anti-tumor immunity (158).  We were interested 

in whether either of these inhibitory receptors were involved in the suppression of anti-

neu immunity in neu-N mice.  For these experiments, tumor-bearing neu-N mice were 

treated with blocking Abs specific for either CTLA-4 or PD-1.  Treatment with either 

blocking Ab did not inhibit tumor growth in neu-N mice (Fig. 4-5A).  We went on to 

evaluate the effect of these blocking Ab in our transplant model with transfer of FVB/N 

splenocytes and again did not see a difference in tumor growth (Fig. 4-5B).  Therefore, it 

appears as though neither of these inhibitory receptors plays a major role in suppression 

of anti-tumor immunity in our VRP model. 

 

Intratumoral VRP vaccination improves efficacy of neuET-VRP vaccine 

 One approach that investigators have used to overcome the local immune 

suppression in the tumor is the activation of TLR ligands (278, 344).  VRPs can 

potentially activate innate immune cells through TLR3 due to the production of dsRNA 

intermediates upon infection (4, 250, 300).  Since we previously observed a specific 

suppression of T cells in the TDLN (39), we examined the effect of intratumoral VRP 

vaccination on tumor growth in neu-N mice.  Mice were challenged with 5 x 104 NT2 

cells and either vaccinated with neuET-VRPs in the footpad every 2 weeks or left 

untreated.  Mice were also injected twice a week with 1 x 105 neuET-VRPs, 1 x 105 null-

VRP, or saline into the tumor.  We found that intratumoral injection of VRPs inhibited 
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tumor growth (Fig. 4-6).  Interestingly, the inhibition of tumor growth by intratumoral 

VRP vaccination was not dependent on the expression of neu by VRPs and did not 

require footpad vaccination.  Thus, activation of the innate immune response, perhaps via 

TLR3 stimulation, was sufficient to diminish tumor growth.  

 

Tissue factor expression by MDSCs promotes migration in vitro but does not inhibit 

tumor growth 

 As we previously found that MDSCs were a dominant suppressor of anti-tumor 

immunity in neu-N mice, we were interesting in evaluating genes that might be important 

for their function in the tumor environment (39).  One such gene that we found to be 

expressed by MDSCs in tumor-bearing mice was tissue factor (TF) (data not shown).  TF 

is mainly known for its role in the initiation of coagulation upon interaction with factor 

VII, but it has also been shown to play a role in the progression of tumor growth as well 

as metastasis by promoting migration (189, 269).  TF also promoted migration of 

macrophages (249).  Therefore, we evaluated whether TF promoted the migration of 

MDSCs.   

 In order to specifically address the role of TF on MDSCs we used TFfloxLysMcre 

mice in which TF is selectively knocked out on myeloid cells based on expression of 

LysM. As TFfloxLysMcre mice are on the C57BL/6 background we challenged these mice 

with B16F10 melanoma cells.  MDSCs isolated from tumor-bearing TFfloxLysMcre mice 

had decreased migration to TF in vitro compared to MDCSs from WT mice (Fig. 4-7A).  

Addition of rTF enhanced migration of MDSCs (Fig 4-7A).  These data suggest that TF 

promotes migration of MDSCs.  We also addressed whether TF expression by MDSCs 
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promoted their accumulation in the tumor.  For these studies, we transferred 1:1 ratios of 

either TFfloxLysMcre BM to eGFP BM or WT BM to eGFP BM into lethally irradiated 

C57BL/6 recipients.  Eight weeks later, mice were challenge with EG.7 tumor cells and 

the percentage GFP+ MDSCs in the tumor was determined by FACS.  We found equal 

percentages of GFP+ and GFP- MDSCs in both groups suggesting that TFfloxLysMcre 

MDSCs were able to effectively migrate and accumulate in the tumors compared to WT 

MDSCs (Fig. 4-7B).  We also injected TFfloxLysMcre mice or WT mice with B16-F10 

melanoma with or without gp100-VRP vaccine and did not observe any difference in the 

number of MDSCs in the tumor (data not shown). 

 Although we were not able to demonstrate a role for TF in the migration of 

MDSC in vivo, it was still possible that TF expression by MDSCs promoted tumor 

growth (269).  Therefore, we challenged TFfloxLysMcre or WT mice with B16-F10 

followed by vaccination with gp100-VRP.  There was no difference in survival between 

TFfloxLysMcre and WT mice, suggesting that TF expression by MDSCs did not promote 

tumor growth or inhibit vaccine efficacy (Fig. 4-8). 

 MDSCs are not the main source of TF in the tumor environment as tumor cells 

also express TF.  Therefore, we sought to investigate whether expression of TF by tumor 

cells promoted tumor growth or the migration of MDSCs.  To do this, we knocked down 

TF expression in our neu-expressing NT2 cells by stably transducing these cells with 

lentiviral vectors expressing TF shRNA.  Transduction with TF shRNA resulted in a 95% 

knockdown of TF expression.  Mice were challenged with TF shRNA NT2 cells or 

control shRNA NT2 cells followed by neuET-VRP vaccination.  There was no difference 

in tumor growth based on TF expression by the tumor cells (Fig. 4-9A).  Also TF 
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expression by the tumor cells did not promote migration of MDSCs to the tumor (Fig. 4-

9B).  Actually, there were significantly more MDSCs in the tumors of mice challenged 

with TF shRNA NT2 cells, but this was likely because of slightly larger tumors in these 

mice (Fig. 4-9).  Nevertheless, TF does not appear to play a role in promoting tumor 

growth or in inhibiting vaccine efficacy in our tumor vaccine models.
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Discussion 

 We previously identified the tumor suppressive environment as the major 

impediment to successful VRP vaccination (39).  We identified Treg cells and MDSCs as 

having a dominant role in the suppression of VRP vaccines (39).  In the current report, 

we extended these studies to the investigation of other possible mechanisms of tumor-

induced suppression that might play a role in inhibiting VRP vaccines.  We found that 

CD200 and IDO both promoted growth of neu-expressing tumor in VRP vaccinated neu-

N mice.  We also found that intratumoral vaccination with VRPs was able to inhibit 

tumor growth regardless of antigen expression by the VRPs.  Surprisingly, CTLA-4 and 

PD-1 did not appear to play a role in inhibiting anti-tumor immunity in our VRP model.  

Finally, although TF appeared to inhance migration of MDSCs in vitro it was not a major 

factor in their migration to the tumor in vivo and blocking the expression of TF by either 

MDSCs or tumor cells did not diminsh tumor growth. 

 We found that treatment with CD200 blocking Ab inhibited tumor growth in neu-

N mice vaccinated with neuET-VRPs.  The effect of CD200 Ab treatment was not 

dependent on CD8+ cells but appeared to be dependent on CD4+ cells. However, 

confirmation of this finding will require additional groups being treated with anti-CD-200 

mAb and the inclusion of a group of mice that undergoes depletion of CD4+ T cells 

without anti-CD200 treatment.  Future work will focus on confirming our initial findings 

and evaluating mechanisms by which the blockade of CD200 promotes the efficacy of 

vaccine therapy.   

 Our data with CD200 Ab treatment are consistent with other reports 

demonstrating a role for CD200 in suppressing anti-tumor immunity (120, 168, 210, 244, 
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288).  The first attempt to use CD200 Ab as a treatment to enhance anti-tumor immunity 

was performed in a humanized B-CLL model in which treatment with CD200 Ab 

resulted in an almost complete inhibition of tumor growth by adoptively transferred 

human PBMCs (168).  At the onset of our study, the efficacy of CD200 Ab treatment had 

not been evaluated in a solid tumor model or in mice in which tumors arise spontaneously 

(i.e. tolerant animals).  Recently, Gorczynski et al. reported decreased tumor growth of 

transplanted breast cancer cells in mice treated with anti-CD200 Ab (120). 

 We also demonstrated that IDO is involved in promoting tumor growth in neu-N 

mice.  Inhibiting IDO improved survival of mice vaccinated with neuET-VRPs.  Others 

have also inhibited tumor growth by treatment with 1MT (136).  Further study is needed 

to address the exact mechanism of IDO-dependent suppression of anti-tumor immunity.  

Both pDCs and tumor cells express IDO and the role of these cells in the production of 

IDO in the growth of MMTV-Neu tumors cells needs to be evaluated.  As we have 

already demonstrated that Treg cells play a major role in suppressing anti-neu immunity, it 

will be important to determine if the Treg-dependent suppression that we observe is 

dependent on IDO production by DCs induced by Treg cells.  In addition, IDO has also 

been proposed to increase the function of Treg cells (14, 277), and future work should 

determineif blocking IDO decreases the number or function of Treg cells in the tumor 

environment.   

 The effects that we see with CD200 Ab treatment and IDO may be related.  pDCs, 

as well as myeloid cells (e.g. MDSC, personal observation) express CD200R and CD200 

induces expression of IDO on these cells (82).  Therefore, it is possible that the similar 

effects that we observe with CD200 Ab treatment and IDO inhibition involve the same 
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mechanism.  This conclusion is even more compelling given our CTLA-4 Ab results in 

which blocking CTLA-4 did not have an effect on tumor growth.  CTLA-4 expression on 

Treg cells is thought to be a main inducer of IDO (355). As we did not observe an effect of 

CTLA-4 treatment it is possible that a main source of IDO in our tumor model is through 

CD200 and not CTLA-4 induction of pDCs. 

 A number of studies as well as many current clinical trials address the role of the 

inhibitory receptors CTLA-4 and PD-1 on inhibiting anti-tumor immunity (73).  

Therefore, we were surprised to find that blocking these receptors did not improve 

efficacy of our neuET-VRP vaccines.  Our data demonstrate that CTLA-4 and PD-1 are 

not the dominant mechanisms of suppression of anti-neu immunity in neu-N mice.  

Although we demonstrated previously that Treg cells are involved in suppression in neu-N 

mice, Treg cells can suppress independent of CTLA-4 (157, 355).  This appears to be the 

case in neu-N mice.   

  Treatment of tumor-bearing neu-N mice with PD-1 blocking Ab also did not 

inhibit tumor growth.  PD-L1 expression by tumor cells is thought to render these cells 

resistant to T cell-mediated killing (130).  This might be the case in our model, but since 

this mode of immune escape is a last line of defense, other mechanisms of suppression 

are likely dominant, e.g. MDSCs, Treg cells, and IDO.  It is possible that combination 

therapy with PD-1 blocking Ab and MDSCs depletion would result in a synergistic effect 

due to the alleviation of suppressive mechanisms upstream of PD-1.  The same might be 

the case with combination therapies to deplete Treg cells or inhibit IDO.  The presence of 

multiple mechanisms of tumor-induced immune suppression needs to be taken into 
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account when designing clinical trials aimed at inhibiting the suppressive peritumoral 

environment. 

 We also demonstrated that intratumoral injection of VRPs inhibited tumor growth 

in neu-N mice.  The effect of intratumoral VRP injection could be the result of signaling 

through TLR3 by dsRNA produced upon VRP infection.  Intratumor injection of the TLR 

agonists induced anti-tumor immunity and decreased tumor growth in colon cancer, 

melanoma, and breast cancer mouse models (278, 344). Upon infection, VRPs produce 

dsRNA intermediates that can potentially activate innate immune cells through TLR3 (4, 

250, 300).  Inhibition of tumor growth by intratumoral VRP vaccination was not 

dependent on the expression of neu by VRPs and did not require footpad vaccination.  It 

is possible that activation of the innate immunity was sufficient to diminish tumor 

growth.  Alternatively, it is possible that the effect of intratumoral VRP vaccination 

induced adaptive immunity specific to neu and that neu expression by VRPs was not 

needed because neu is already expressed at significantly by tumor cells and cross-

presented by infected DCs.  

 As we previously found that MDSCs were a dominant suppressor of anti-tumor 

immunity in neu-N mice, we were interesting in evaluating genes that might be important 

for their function in the tumor environment (39).  We reported here that TF is expressed 

by MDSCs and promotes TEM in vitro.  We were unable to demonstrate a role for TF in 

the migration of MDSCs in vivo on in the promotion of tumor growth.  TF is expressed 

by both myeloid cells as well as tumor cells, with tumor cells being the main source in 

the tumor environment.  We also knocked down TF in our tumor lines to evauate the role 

of TF expression by tumor cells and still did not observe any difference in tumor growth 
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or migration of MDSCs.  Therefore, although TF is expressed by MDSCs it does not 

appear to be vital for their function in the tumor environment. Others have reported TF 

dependent promotion of tumor growth and metastasis (184, 263, 269).  We were unable 

to knock down total TF levels at the tumor site by more than 50% (data not shown).  It is 

possible that further knockdown of TF would result in significant inhibition of tumor 

growth.   

 In summary, we report here the evaluation of a number of suppressive 

mechanisms that inhibit VRP vaccination in neu-N mice.  The identification of multiple 

suppressive mechanisms induced by the tumor further illustrates the great challenge of 

designing successful therapeutic cancer vaccine regimens.  Successful therapy will likely 

need to address multiple mechanisms of suppression, as there are likely many layers of 

suppression utilized by the tumor to suppress anti-tumor immunity.
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Figure 4-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-1. Blocking CD200 improves efficacy of neuET-VRP vaccine in neu-

transgenic mice.  A, neu-N mice were treated with anti-CD200 Ab (200 µg) i.p. twice 

per week starting three days post-tumor challenge with 5 x 104 NT2 cells.  On day four 

post tumor challenge, mice were vaccinated with neuET-VRPs and similarly boosted on 

days 18 and 32. B, 1 × 107 splenocytes from FVB/N mice were injected i.v. along with 5 

× 106 syngeneic T cell-depleted BM cells into lethally irradiated neu-N mice, followed by 

tumor challenge with 5 x 104 NT2 cells.  Mice were treated with 200µg anti-CD200 Ab 

twice per week starting on day 3 post tumor challenge.  Mice were vaccinated with 

neuET-VRPs on day four post-tumor challenge and vaccine was repeated every 14 days.  

Points, mean (n = 5); Bars, SEM; *, p < 0.05. 

B. 

* * 
* * * 

A. 

* * 
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Figure 4-2 

 

 

 

 

 

 

 

 

 

Figure 4-2.  Decreased tumor growth following CD200 Ab treatment is not 

dependent on CD8+ T cells, but possibly dependent on CD4+ T cells.  neu-N mice 

were treated with anti-CD200 Ab (200 µg) i.p. twice per week starting three days post-

tumor challenge with 5 x 104 NT2 cells.  On day four post tumor challenge, mice were 

vaccinated with neuET-VRPs and similarly boosted on days 18 and 32.  Mice were also 

treated i.p. with 500µg of either isotype, anti-CD4, or anti-CD8 Ab twice per week as 

indicated.  Tumor weight was determined on day 50 post tumor challenge. Columns, 

mean (n = 4); Bars, SEM; *, p < 0.05 compared to isotype. 

* * 
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Figure 4-3 

 

 

 

 

 

 

 

 

Figure 4-3.  CD200 expression by tumors cells does not promote tumor growth 

following neuET-VRP vaccine.  Neu-N mice were challenged with 5 x 104 cont shRNA 

or CD200 shRNA NT2 cells.  On day four and every two weeks thereafter mice were 

vaccinated with neuET-VRPs.  A. Tumor size at day 46 post tumor challenge. Columns, 

mean (n = 4); Bars, SEM; p = 0.08.  B. Expression of CD200 on CD45- tumor cells 

isolated from mice on day 46 post tumor challenge. Columns, mean (n = 4); Bars, SEM; 

*, p = 0.001. 

A. B. 

* 
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Figure 4-4 

 

 

 

 

 

 

 

 

Figure 4-4.  Inhibition of IDO with 1MT improves efficacy of neuET-VRP vaccine in 

neu-N mice.  A. MFI of IDO from CD11c+ cells isolated from either the TDLN or spleen 

of tumor bearing neu-N mice.  Columns, mean (n = 5); Bars, SEM; p = 0.008.  B. neu-N 

mice were challenged with 5 x 104 NT2 cells followed by neuET-VRP vaccine on day 4, 

18, and 32.  Mice were treated with the IDO inhibitor 1 methyl tryptophan (1 MT) or 

saline by oral gavage twice a day for the first 5 days after each vaccination. There was a 

significant improvement in survival in mice receiving 1MT (p < 0.05, Kaplan Meier 

survival analysis). 

B. A. 
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Figure 4-5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-5.  Treatment with CTLA-4 or PD-1 blocking Ab does not improve efficacy 

of neuET-VRP vaccine in neu-N mice.  A.  neu-N mice were challenged with 5 x 104 

NT2 tumor cells followed by vaccination with neuET-VRP on day 4 and 18.  Mice were 

injected i.p. with 200µg hamster IgG isotype Ab, anti-CTLA-4 Ab (UC10-4F10-11), or 

anti-PD-1 Ab (J43) twice per week. Mean tumor size ± SEM on day 35 is reported (p = 

0.86, One-way ANOVA).  B. 7.5 x 106 naïve FVB/N splenocytes were injected i.v. along 

with 2.5 × 106 T cell-depleted BM cells into lethally irradiated neu-N mice followed by 

tumor challenge with 5 x 104 NT2 cells.  Mice were vaccinated with neuET-VRPs on day 

4 and 18 post-tumor challenge.  Mice were injected i.p. with 200µg hamster IgG isotype 

Ab, anti-CTLA-4 Ab (UC10-4F10-11), or anti-PD-1 Ab (J43) twice per week. Mean 

tumor size ± SEM on day 35 is reported (p = 0.55, One-way ANOVA). 

 

A. B. 
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Figure 4-6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-6.  Intratumoral injections of VRP inhibits tumor growth in neu-N mice. 

Neu-N mice (n = 28) were challenged with 5 x 104 NT2 tumor cells.  On day 4 post 

tumor challenge, mice were either vaccinated with 1 x 106 neuET-VRP (dashed lines) or  

left untreated (solid lines).  Mice received intratumor injections every 3-4 days with 

either 1 x 105 null-VRP (open circles) or 1 x 105 neuET-VRP (open triangles).  Control 

mice received intratumor injections with PBS (filled circles).  There was a significant 

difference in survival upon intratumor injection with either null-VRP or neuET-VRP 

compared to PBS (p = 0.010, Kaplan Meier survival analysis). 
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 Figure 4-7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-7.  TF promotes migration of MDSCs in vitro but not in vivo.  A.  Trans 

endothelial migration of splenic Gr-1+ MDSCs with or without the addition of 100 ng/mL 

recombinant TF. Columns, mean (n = 8); Bars, SEM.  B. On day -1 C57BL/6 mice were 

lethally irradiated at 950 rads (135 rads/min). 5 x 106 total BM cells from either eGFP-

B6, TFfloxLysMcre, or B6 mice were injected i.v. into lethally irradiated B6 recipients. The 

WT control group received a 1:1 ratio of eGFP-B6 to B6 BM while the experimental 

TFfloxLysMcre group received a 1:1 ratio of eGFP-B6 to TFfloxLysMcre BM.  8 weeks later, 

mice were challenged with 2 x 106 E.G7-OVA tumor cells.  On day 14 post-tumor 

challenge tumors were harvested and digested with collagenase A. Mean percent GFP+ 

MDSCs ± SEM is reported. 

 

WT TFfloxLysMcre WT TFfloxLysMcre 

NS 

p = 0.06 

p = 0.03 

p = 0.01 

A. B. 
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Figure 4-8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-8.  TF expression by myeloid cells does not promote tumor growth. 

TFfloxLysMcre or TFflox control mice were challenged with 1 x 104 B16-F10 cells and 

vaccinated on days 3 and 10 with 1 x 106 gp100-VRPs.  Mice were sacrificed when 

tumor size reached 200mm2.

TFfloxLysMcre mice 
TFflox mice 
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Figure 4-9 

 

 

 

 

 

 

 

 

Figure 4-9.  TF expression by tumor cells does not promote tumor growth or the 

accumulation of MDSCs.  Neu-N mice were challenged with 5 x 104 control shRNA or 

TF shRNA NT2 cells and vaccinated with neuET-VRP on day 4 and 18.  A. Mean tumor 

size on day 35 post-tumor challenge ± SEM.  B. Mean number of Gr-1+CD11b+ MDSCs 

in the tumor of mice on day 35 post-tumor challenge ± SEM (p < 0.01, student’s t test). 

 

* 
A. B. 
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 In our previous work we demonstrated that therapeutic vaccination with neuET-

VRPs induced regression of neu-expressing tumors in WT mice (208).  These same VRPs 

were unable to inhibit tumor growth in transgenic neu-N mice.  We evaluated whether the 

inability of VRPs to induce regression in neu-N mice was due to a dominant role of 

active suppression of anti-tumor immunity in these animals, as opposed to central 

deletion of neu-specific lymphocytes.  Transfer of neu-specific lymphocytes into neu-N 

mice did not inhibit tumor growth, suggesting that the lack of a sufficient repertoire of 

neu-specific lymphocytes was not the reason why these mice did not respond to neuET-

VRP vaccination.  We demonstrated that MDSCs were a major mediator of suppression 

in neu-N mice.  Depletion MDSCs, along with provision of neu-specific lymphocytes and 

neuET-VRP vaccination, resulted in tumor regression in the majority of mice.  We went 

on to identify a number of other immunosuppressive mechanisms that play a role in 

suppressing anti-tumor immunity in neu-N mice, including Treg cells, CD200 expression, 

and the generation of IDO. 

 As MDSCs appeared to be one of the major impediments to successful immunity 

following therapeutic VRP vaccination, we went on to investigate the function of these 

cells.  We found that activation of the NLRP3 inflammasome mediated the accumulation 

of MDSCs in the tumor following therapeutic DC vaccination.  The decreased 

accumulation of MDSCs in Nlrp3-/- mice improved the efficacy of our DC vaccine.  

Therefore, we were able to demonstrate that immunotherapy aimed at augmenting 

MDSCs function was able to improve efficacy of therapeutic vaccines. 
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VRP Vaccines 

 We were somewhat surprised with the degree to which the immunosuppressive 

tumor environment was involved in suppression of our neuET-VRP vaccine in neu-N 

mice.  Although we hypothesized that the immunosuppressive tumor environment was 

involved in suppression of anti-neu immunity in neu-N mice, we had anticipated that 

central deletion of high avidity neu-specific T cells would be the major hurdle to 

successful vaccine therapy.  This is because neu-N mice are known to lack high avidity 

neu-specific CD8+ T cells compared to FVB/N mice (284).  Surprisingly, we did not 

observe any difference in tumor growth following adoptive transfer of FVB/N 

splenocytes.  These data have important implications for current clinical trials utilizing 

VRPs as therapeutic cancer vaccines. 

 There are a number of clinical trials using VRPs currently being proposed or in 

early phase trials for treatment of cancer patients (Table 5-1).  The farthest along is a 

phase I/II study using VRPs expressing the carcinoembryonic antigen (CEA).  CEA is a 

TAA expressed by a variety of cancers including colorectal, breast, lung, pancreatic, and 

colon cancers.  The purpose of this early phase trial is to determine both the safety of 

VRP vaccination as well as the effect of the vaccine on CEA-specific immune responses 

(NCT00529984; ClinicalTrials.gov).  Other VRP vaccines are being designed for 

treatment of prostate and breast cancer (Table 5-1).  Based on our pre-clinical results 

reported here, we would predict these trials to show little efficacy when measuring 

overall response rates.  VRP vaccines might be able to induce tumor-specific 

lymphocytes, similar to what we observed in neu-N mice, but without addressing the 

highly immunosuppressive peritumoral environment, clinical efficacy would be unlikely.  
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This is even more likely as many of these early phase trials enroll patients with advanced 

disease, which would have an even more advanced immunosuppressive environment than 

what we observed in our studies or what would be expected in cancer patients with early 

disease. 

 While clinical trials evaluating the efficacy of VRP vaccines are still in early 

phases, other viral vaccines have been evaluated for their efficacy in cancer patients.  The 

clinical response rates from these trials have been quite modest.  For example, the 

cumulative overall objective response rate using the viral vaccines Fowlpox, Vaccinia, 

and Adenovirus for treatment of metastatic melanoma was only 1.9% (259).  Our 

findings would support that active vaccination is unlikely to be effective without 

approaches to diminish the peritumoral immunosuppressive environment.   

 We have identified a number of immunosuppressive mechanisms that inhibit VRP 

vaccines.  Although we found MDSCs to be the main suppressors of anti-tumor immunity 

in neu-N mice, not all mice were rescued following depletion of MDSCs.  This is likely 

because there are multiple mechanisms of immune suppression in neu-N mice. 

 Although regression in neu-N mice required adoptive transfer of neu-specific 

lymphocytes from FVB/N mice, provision of tumor-specific lymphocytes might not be a 

requirement in cancer patients.  The neu-N mouse is an extremely stringent model in 

regards to central deletion of tumor-specific lymphocytes as neu is expressed at very high 

levels in the thymus (251).  Cancer patients, including those with Her-2/neu+ breast 

cancer, do contain Her-2/neu-specific lymphocytes that can be expanded post vaccination 

(29, 61, 62, 162).  Thus, it is conceivable that vaccination may be more effective in 

expanding antigen-specific T cells in clinical trials as compared to that found using 
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MMTV-Neu mice.  Alternatively, an optimal vaccine strategy may require ACT which 

would allow for a rapid expansion of antigen-specific T cells, which is found in the 

lymphopenic environment after stem cell transplantation. 

  

NLRP3 Inflammasome 

 We report here that the NLRP3 inflammasome has a negative regulatory role in 

anti-tumor immunity.  Others have demonstrated that activation of the inflammasome 

promotes infiltration of other myeloid cells including monocytes, macrophages, and 

granulocytes (165, 203, 217).  As MDSCs are the main myeloid cell in the tumor 

environment, the dominant role of NLRP3 in this context is one of immune suppression.  

This goes against the prevailing notion that NLRP3 promotes immunity, but our data is 

consistent with the role of immature myeloid cells in the context of the suppressive tumor 

environment (78, 165, 180, 196).  

 We were unable to determine the mechanism for NLRP3-dependent accumulation 

of MDSCs in the tumor.  As discussed in chapter three, the decreased number of MDSCs 

in Nlrp3-/- mice could be due to effects on migration, proliferation, or maturation of 

MDSCs.  One potential hypothesis that was not directly addressed by our work is that 

NLRP3 is important for preventing the maturation of immature myeloid cells in the 

peritumoral environment.  This could be mediated through STAT3, which is the main 

transcription factor for MDSCs (105).  STAT3 is specifically activated in immature 

myeloid cells (MDSCs) from tumor-bearing mice compared to immature myeloid cells 

isolated from mice without tumors (221).  The two main cytokines in the tumor 

environment known to activate STAT3 are IL-1β and IL-6.  As has already been 
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discussed, NLRP3 is involved in the conversion of pro-IL-1β to its active form.  

Therefore, it is possible that NLRP3 dependent accumulation of MDSCs is a result of IL-

1β dependent activation of STAT3. 

 We were also unable to determine what activated NLRP3 in the tumor 

environment.  To date, no one has demonstrated that tumor cells stimulate NLRP3 during 

tumor progression.  Recently, Ghiringhelli et al. reported that NLRP3 was activated by 

ATP released from chemotherapeutically killed tumors cells (110).  Although it is 

possible that dying tumor cells activate NLRP3 in our model we have been unable to 

demonstrate this either in vitro with tumor lysate, or ex vivo in isolated MDSCs 

(Burgents, Van Deventer, Woodford, McElvania-Tekippe, Serody, Ting, unpublished).  

Another possibility is that NLRP3 is activated by our DC vaccine.  Unfortunately, we 

have also been unable to demonstrate DC-dependent activation of NLRP3 in vitro in 

bone marrow-derived macrophages.  Current studies are aimed at determining the method 

of activation of NLRP3 in our DC vaccine model. 

 It is interesting to note that we did not observe a survival advantage in Nlrp3-/- 

mice when vaccinated with a melanoma-specific, gp100-VRP vaccine (Fig. 5-1).  This 

suggests that the effect we see with NLRP3 is specific to our DC vaccine.  This also 

supports a role for the vaccine and not the tumor in activating NLRP3.  There are two 

possible explanations for why we do not observe a survival advantage in Nlrp3-/- mice 

with our VRP vaccine.  First, the VRPs were injected in the footpad of mice whereas the 

DCs were injected in the peritumoral region.  Activation of NLRP3 could be a result of 

injection of DC into the tumor area as opposed to some intrinsic difference between DC 

and VRP vaccination.  It is quite possible that injection of VRPs into the tumor would 
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have the same effect as our DC vaccine, especially considering that RNA viruses are a 

known activator of the NLRP3 inflammasome (193).  Although there was not a 

significant diference in survival between Nlrp3-/- and WT mice with our VRP vaccine, 

the trend suggested decreased survival in Nlrp3-/- compared to WT mice (Fig. 5-1).  It is 

tempting to speculate that this could be due to the NLRP3-dependent promotion of anti-

tumor immunity when NLRP3 is activated at a site other than the tumor environment, i.e. 

the draining lymph node following VRP vaccination in the footpad.   

 The second possible explanation for why there is not a survival advantage in 

Nlrp3-/- mice following VRP vaccination is the difference in the immune response 

elicited by each vaccine.  The DCs used in our vaccine, which are activated and matured 

by LPS, express high levels of IL-12 but low levels of type I IFNs.  On the other hand, 

VRP infected DCs express high levels of type I IFN and IL-6, but very little IL-12 (209).  

Also, as a RNA virus based vaccine, VRPs might induce anti-tumor immunity in a 

NLRP3-dependent manner, whereas our DC vaccine can likely stimulate the immune 

system independent of NLRP3 (5, 110).  Again, the trend towards decreased survival in 

Nlrp3-/- mice following VRP vaccination would support his conclusion.  Further research 

is needed to evaluate the scope to which NLRP3 affects anti-tumor immunity.  This will 

greatly affect the design of therapies aimed at modulating the NLRP3 inflammasome. 

 

Role of B cells in neu-VRP Vaccines 

 Most of the work by our group and others has focused on using vaccines to 

generate T cell specific tumor immunity.  One of the main benefits of VRP vaccines, 

compared to other vaccines, is that they are strong activators of both cellular and humoral 
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immunity (116, 208, 222).  Our initial studies investigating the efficacy of neuET-VRP 

vaccination in FVB/N mice demonstrated that CD4+ T cells were critical for VRP-

induced regression of neu-expressing tumors (208).  Surprisingly, there was only a partial 

dependence on CD8+ T cells, with the majority of mice still able to regress tumors 

following depletion of CD8+ T cells (208).  We have not been able to show specifically 

that B cells are critical for the immune response after VPR vaccination although our data 

support a correlation between antibody titers and vaccine efficacy (Fig. 5-2).  B cells 

could be important in anti-tumor immunity either due to (1) infection of B cells with 

presentation of antigen by these cells or (2) generation of anti-neu antibody (Ab).  Future 

studies should investigate the role of B cells in FVB/N or neu-N mice by either depletion 

of B cells with anti-CD20 Ab or by transfer of B cell-depleted splenocytes in our 

transplant model.   

 If B cells and anti-neu Ab production do promote anti-tumor immunity in neu-N 

mice following VRP vaccination, strategies to augment Ab production in these mice 

might improve vaccine efficacy.  One such strategy that can be employed to increase Ab 

production in neu-N mice is treatment with recombinant BAFF.  BAFF is a cytokine 

important for the growth and survival of B cells (153).  Also, BAFF has been shown to 

increase the production of autoantibodies, and blocking BAFF appears to be a viable 

strategy to treat autoimmune disease (69, 153, 206).  Therefore, we are interested in 

whether treatment with BAFF will increase production of anti-neu Abs in neu-N mice.  

To date, BAFF has not been investigated for its use in augmenting tumor 

immunotherapy.  We have preliminary data suggesting that treatment of mice with 

recombinant BAFF can improve efficacy of our neuET-VRP vaccine in neu-N mice (Fig. 
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5-3).  Future studies are aimed at further evaluating the role of B cells in neu-N mice, and 

whether treatment with BAFF will improve efficacy of VRP vaccines.  Also, we are 

interested in determining whether vaccination with BAFF expressing VRPs will increase 

anti-neu Ab levels and induce regression of tumors in neu-N mice. 

 

Concluding Remarks 

Therapeutic cancer vaccines offer are an attractive strategy to treat cancer.  They 

can be used to specifically target tumor cells without the negative side effects of other 

treatment regimens.  Also, as they utilize the patient’s immune system, these patients 

should be protected from recurrent disease.  Despite the elegance and simplicity of 

design, vaccine therapy has not been successful clinically in the overwhelming majority 

of the patients treated.  Objective response rates for cancer vaccines are dismal, with 

approximately 2- 5% of patients responding clinically to this therapy.  The data presented 

here offer a a compelling rationale for the role of tumor-induced immune suppression in 

inhibiting the efficacy of therapeutic cancer vaccines.  Our data underscore the need for 

inhibiting peripheral tolerance even if tumor-specific T cells are present.  For effective 

vaccine approaches for the treatment of cancer, patients may require high avidity tumor-

specific lymphocytes, but our data suggest that even if provided, these cells might be 

ineffective if not combined with strategies to inhibit the suppressive tumor environment.  

We also presented novel data implicating a role of the NLRP3 inflammasome in 

inhibiting anti-tumor immunity.  This is counter to the prevailing notion that NLRP3 

promotes immune response, but again these data underscore the dominant nature of the 

suppressive tumor environment.  Despite their lack of success so far, we believe that 
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cancer vaccines still warrant significant focus due to the huge potential that they 

represent, but further work is clearly needed to evaluate the many mechanisms of 

suppression that prevent these vaccines from being effective. 
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Table 5-1.  Current VRP vaccines in clinical trials for treatment of cancer 
 

Cancer TAA Status Sponsor Preclinical Refs. 
Colorectal, Breast, 
Lung, Pancreatic, 

Colon 
CEA Phase I/II AlphaVax (346) 

Prostate PSMA Proposed/Phase I AlphaVax/ 
Sloan-Kettering (76) 

Breast Her-2/neu Proposed AlphaVax (174, 208, 222) 
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Figure 5-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-1.  No difference in survival of B16 challenged WT and Nlrp3-/- mice 

following gp100-VRP vaccine.  WT (C57BL/6) (n = 3) or Nlrp3-/- (n = 8) mice were 

challenged with 1 x 104 B16-F10 melanoma cells followed by vaccination with 1 x 106 

gp100-VRPs on days 3 and 10 post-tumor challenge.  Mice were sacrificed when tumor 

diameter reached 6mm. (p = 0.43, Log-rank, Mantel-Cox, test)
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Figure 5-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-2.  Serum anti-neu Ab levels are inversely correlated with tumor size in 

neu-N mice following therapeutic neuET-VRP vaccination.  1 x 107 FVB/N 

splenocytes and 5 x 106 syngeneic T cell depleted BM cells were injected i.v. into lethally 

irradiated neu-N mice.  On the same day, mice were challenged with 5 x 104 NT2 cells.  

Mice were vaccinated with neuET-VRPs on day 4 post-tumor challenge and boosted 

every 14 days.  Anti-neu antibody levels in the serum were determined when mice were 

sacrificed.  Data reported are combined from two experiments, one in which mice were 

treated with Gr-1 depleting Ab (200 µg 2x/wk) and the other in which mice were treated 

with recombinant human BAFF (1 µg/day for the 3 consecutive days following each 

vaccine and 2x/wk on the weeks without vaccine).  Significant regressions were also 

obtained from each individual experiments. Points, individual mice; line, linear 

regression; p < 0.0001.

p < 0.0001 
r2 = 0.76 
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Figure 5-3 

 

 

 

 

 

 

 

 

 

Figure 5-3.  Treatment with rBAFF improves survival in neu-N mice following 

adoptive transfer of FVB/N splenocytes and neuET-VRP vaccine. 1 x 107 FVB/NJ 

splenocytes and 5 x 106 syngeneic T cell depleted BM cells were injected i.v. into lethally 

irradiated neu-N mice.  On the same day, mice were challenged with 5 x 104 NT2 cells.  

Mice were vaccinated with neuET-VRPs on day 4 post-tumor challenge and boosted 

every 14 days.  Mice were treated with recombinant human BAFF (1 µg) s.c. on the three 

consecutive days following each vaccine and twice on the weeks without vaccine.  

Survival to 50mm2 is reported (n = 5 per group, p = 0.0288, Log-rank, Mantel-Cox, test).
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