
Continuous Optimization Methods for
the Quadratic Assignment Problem

Tao Huang

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Statistics and Operations Research.

Chapel Hill
2008

Approved by:

Jon W. Tolle

J. Scott Provan

David S. Rubin

Vidyadhar G. Kulkarni

Shu Lu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210604028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


c©2008
Tao Huang

ALL RIGHTS RESERVED

ii



Abstract

TAO HUANG: Continuous Optimization Methods for
the Quadratic Assignment Problem

(Under the direction of Jon W. Tolle)

In this dissertation we have studied continuous optimization techniques as they are

applied in nonlinear 0-1 programming. Specifically, the methods of relaxation with a

penalty function have been carefully investigated. When the strong equivalence proper-

ties hold, we are guaranteed an integer solution to the original 0-1 problem. The quadratic

assignment problem (QAP) possesses such properties and consequently we have devel-

oped an algorithm for the QAP based on the method of relaxation using the quadratic

penalty function. In our algorithm we have applied two pre-conditioning techniques that

enables us to devise a scheme to find a good initial point and hence obtain good solutions

to the QAP. Furthermore, we have shown how quadratic cuts can be used to improve

on the current solutions. Extensive numerical results on several sets of QAP test prob-

lems (including the QAPLIB) have been reported and these results show our algorithm

produces good solutions for certain classes of problems in a small amount of time.
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Chapter 1

Introduction

1.1 Background

Consider a situation where we have N facilities and N locations, and we are to assign

each facility to a location. For a possible assignment, there is a cost associated with each

pair of facilities which is proportional to both the flow and the distance between the pair.

There is also a cost of placing a facility at a certain location. Our objective is to assign

the facilities to the locations such that the total cost is minimized. Specifically, suppose

we are given a set N = {1, 2, . . . , N}, a flow matrix F = (fij) ∈ RN×N , a distance matrix

D = (dkl) ∈ RN×N , and a fixed cost matrix C = (cik) ∈ RN×N , where fij represents the

cost associated with transporting the commodities over a unit distance from facility i to

facility j, dkl is the distance from location k to location l, and cik is the cost of assigning

facility i to location k. The problem can be formulated as follows.

(1.1) minimize
π∈ΠN

N∑
i=1

N∑
j=1

fijdπ(i)π(j) +
N∑
i=1

ciπ(i)

where ΠN is the set of all the permutations of N . The product fijdπ(i)π(j) is the cost

of simultaneously assigning facility i to location π(i) and facility j to location π(j).

Although in the context of facility to location assignments the distance matrix D is almost

always symmetric, in a more general setup no assumption is made on the symmetry of

the matrices F and D.

Problem (1.1) is known as the quadratic assignment problem (or QAP for short).

It was originally introduced in 1957 by Koopmans and Beckmann [70]. Koopmans and

Beckmann derived the QAP as a mathematical model to study the assignment of a set of

economic activities to a set of locations. Since then the QAP has been a subject of exten-

sive research in combinatorial optimization, not only due to its theoretical and practical



importance, but also because of its complexity. With the advent of high performance

computing capability, we have seen a large number of formerly intractable combinatorial

problems that have become practically solvable in the last decade. Unfortunately, the

QAP is not among those problems. In general, QAP instances of size N ≥ 20 are still

considered intractable. The QAP remains one of the most challenging combinatorial

problems from both a theoretical and a practical point of view.

For recent comprehensive surveys of various aspects of the QAP, the reader is re-

ferred to Anstreicher [4], Burkard and Çela [18], Burkard et al. [19], Çela [27], Finke et

al. [33], and Pardalos et al. [92].

To facilitate the discussion, we will denote a QAP instance with a flow matrix F ,

distance matrix D, and cost matrix C by QAP(F,D,C). When C = 0, we denote the

instance by QAP(F,D).

1.1.1 Applications

The QAP initially occurred as a facility location problem, which remains one of its ma-

jor applications. In addition, the QAP has found applications in other areas such as

scheduling [40], manufacturing [51], parallel and distributed computing [13], combina-

torial data analysis [63], ergonomics [81, 96], archaeology [71], and sports [61]. In the

following we briefly describe two applications that will shed insight into the applicability

and significance of the QAP.

Steinberg Wiring Problem. This early application is due to Steinberg [106] who

gave a detailed account of computer backboard wiring problems. Given a set E =

{E1, E2, . . . , Em} of m electronic components, we require Ei to be connected to Ej by

Wij wires. Hence we have a symmetric connection matrix W = (wij) with its diagonal

elements wii = 0, i = 1, 2, . . . ,m. In addition, there are r points P1, P2, . . . , Pr on the

backboard, where r ≥ m. Let dkl be some distance measure that may be interpreted as

the length of wire needed to connect two electronic components if one is placed at Pk

and the other is placed at Pl. Hence we obtain a symmetric distance matrix D = (dkl)

with zeros down the diagonal. The most commonly used distance measures between two

points are the Euclidean distance and Manhattan distance, i.e., the `2-norm and `1-norm

respectively of a vector that emanates from one point and ends at the other. The goal is

to place the m electronic components at the r points on the backboard such that the total

2



P1
•

P2
•

P3
•

P4
•

P5
•

P6
•

P7
•

P8
•

P9
•

P10
•

P11
•

P12
•

P13
•

P14
•

P15
•

P16
•

P17
•

P18
•

P19
•

P20
•

P21
•

P22
•

P23
•

P24
•

P25
•

P26
•

P27
•

P28
•

P29
•

P30
•

P31
•

P32
•

P33
•

P34
•

P35
•

P36
•

Figure 1.1 Backboard Configuration1

wire length needed is minimized. By introducing r −m fictitious electronic components

with no wires running to or between them, we get r components that have to be placed at

r points. Hence the backboard wiring problem becomes a quadratic assignment problem;

the connection matrix W becomes the flow matrix in problem (1.1).

As illustrated in Figure 1.1, Steinberg showed a section of the backboard of a mod-

ified Univac Solid-State Computer, on which 34 electronic components E1, E2, . . . , E34

were to be placed and connected. The dots P1, P2, . . . , P36 indicate the possible positions

where the electronic components must be placed. The positions form a two-dimensional

grid and any two adjacent dots are at a distance of 1 unit both horizontally and verti-

cally. Steinberg provided the connection matrix W = (wij), for 1 ≤ i < j ≤ 34. In this

example, two fictitious components E35 and E36 are added so that in every assignment

two positions will be empty.

Hospital Layout. Elshafei [32] at the Institute of National Planning in Cairo, Egypt

investigated a hospital layout problem in which several clinics of a public hospital in

Cairo were to be located so as to minimize the total distance that the patients had to

travel to receive treatment in the clinics. The problem resulted from a rapid increase

in the number of patients in the Outpatient department at the time. As a result, the

department became overcrowded with an average daily number of patients exceeding

700 and those patients having to move among its 17 clinics. The location of the clinics

relative to one another was criticized for causing too much travel by the patients and

1Copyright c©1961 Society for Industrial and Applied Mathematics. Reprinted with permission from
[106].
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Table 1.1 Hospital Layout – Facilities and Their Functions2

Facility Function Facility Function

1 Receiving and Recording 11 X-Ray
2 General Practitioner 12 Orthopedic
3 Pharmacy 13 Psychiatric
4 Gynecological and Obstetric 14 Squint
5 Medicine 15 Minor Operations
6 Pediatric 16 Minor Operations
7 Surgery 17 Dental
8 Ear, Nose and Throat 18 Dental Surgery
9 Urology 19 Dental Prosthetic
10 Laboratory

serious delays. Since the flow of the patients was confined between the receiving and

recording room and the 17 clinics, the study focused exclusively on the relative location

of these 18 facilities. All the facilities needed roughly the same area except for the Minor

Operations which occupied nearly twice as much space as any other facility. Hence the

Minor Operations section was split into two pseudo facilities that had to be placed side

by side. As in Table 1.1, there were 19 facilities to be considered in the layout planning.

As Elshafei stated, the estimates of the patient flows between the clinics were avail-

able on a yearly basis. Thus a symmetric flow matrix was obtained by averaging the flows

between each pair of facilities. The flow between the two pseudo facilities was assigned

a very large number such that their adjacency was forced. The distances between the

locations could be reasonably measured by tracing the paths of the patients moving from

one location to another; the resulting distance matrix therefore was symmetric. Thus the

hospital layout problem was formulated as a quadratic assignment problem. In Table 1.2

the lower triangular part shows the flows between the facilities and the upper triangular

part shows the distances between the locations.

Other applications of the QAP abound in the literature. For more references to

different applications of the QAP, the reader is referred to Burkard et al. [19], Çela [27],

Pardalos et al. [92], and Padberg and Rajal [90].

2Copyright c©1977 Palgrave Macmillan. Reprinted with permission from [32].
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1.2 Alternative Formulations

The quadratic assignment problem is often stated as (1.1). This is because problem (1.1)

readily reveals the combinatorial structure of the QAP. However, problem (1.1) is rarely

used in posing solution methods for the QAP. Instead, alternative formulations have been

suggested that allow for different solution approaches. In the following we discuss three

alternative formulations that are often cited in the literature.

1.2.1 Quadratic 0-1 Programming Formulation

We observe that there is a one-to-one correspondence between ΠN , the set of all the

permutations of N , and the set of N × N permutation matrices X = (xij). To be

specific, we have

(1.2) xij =

{
1 if facility i is assigned to location j, i.e., π(i) = j;

0 otherwise.

X is a permutation matrix if and only if

N∑
j=1

xij = 1, i = 1, . . . , N,(1.3a)

N∑
i=1

xij = 1, j = 1, . . . , N,(1.3b)

xij ∈ B, i, j = 1, . . . , N,(1.3c)

where B = {0, 1}.
(1.3a) and (1.3b) are referred to as the assignment constraints and the coefficient

matrix of the assignment constraints referred to as the assignment matrix. With the

assignment constraints, we can formulate the QAP as the following quadratic 0-1 pro-

gramming problem:

minimize
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

fijdklxikxjl +
N∑
i=1

N∑
k=1

cikxik(1.4)

subject to (1.3a)–(1.3c).

Problem (1.4) is also called the Koopmans-Beckmann formulation because it was initially

used by Koopmans and Beckmann [70].
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The equivalence between problems (1.1) and (1.4) is obvious. The term fijdklxikxjl

contributes to the objective function only if xik = xjl = 1, i.e., if facility i is assigned to

location k and facility j to location l. The term cik contributes to the objective function

only if facility i is assigned to location k.

Note that the sum of the constraints in (1.3a) is equal to the sum of the constraints

in (1.3b). Hence the assignment constraints in (1.3a) and (1.3b) are linearly dependent.

It is easy to see that after deleting one of the assignment constraints, the remaining

assignment constraints are linear independent. Therefore, we can write (1.4) in a more

compact form using the matrix-vector notation:

minimize 1
2
xTQx+ cTx(1.5)

subject to Lx = b

x ∈ Bn,

where Q ∈ Rn×n with n = N2 is symmetric, c ∈ Rn, L ∈ Rm×n with m = 2N − 1,

and b ∈ Rm is a vector of all ones. Note that the assumption on the symmetry of Q

is valid because we can always substitute 1
2
(Q + QT ) for Q to achieve the symmetry if

Q is asymmetric. In this formulation Q and L have special structures. More generally,

(1.5) with arbitrary symmetric Q and L with full row rank is called a quadratic 0-1

programming problem.

1.2.2 Trace Formulation

For two N ×N matrices A and B, we have

tr(ABT ) = 〈A,B〉 =
N∑
i=1

N∑
j=1

aijbij

where tr(·) denotes the trace of a matrix and 〈·, ·〉 the inner product of two matrices.

Given a permutation π ∈ ΠN , the associated permutation matrix X as defined in (1.2),

and a N × N matrix D, XD is equivalent to a rearrangement of the rows of D in the

order of π and DXT a rearrangement of the columns of D in the order of π. Therefore,

we have

XDXT =
(
dπ(i)π(j)

)
,

tr(FXDTXT ) = 〈F,XDXT 〉 =
N∑
i=1

N∑
j=1

fijdπ(i)π(j),(1.6)
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and also

tr(CXT ) =
N∑
i=1

ciπ(i).(1.7)

The following are some of the well-known properties of the traces of two matrices

A and B:

tr(A+B) = tr(A) + tr(B),(1.8a)

tr(AB) = tr(BA), and(1.8b)

trA = trAT .(1.8c)

From (1.8a), (1.6), and (1.7), the QAP of the form (1.1) can be written as

minimize tr
[
(FXDT + C)XT

]
(1.9)

subject to X ∈ PN

where PN is the set of all N×N permutation matrices. Furthermore, using the properties

(1.8b) and (1.8c) we will show that if either F = F T or D = DT then

(1.10) tr(FXDTXT ) = tr(FXDXT ).

For D = DT , (1.10) holds trivially. For F = F T but D 6= DT , it follows that

tr(FXDTXT ) = tr(FXDTXT )T

= tr(XDXTF T )

= tr(XDXTF )

= tr(FXDXT ).

Similarly we can show that if either F = F T or D = DT then

(1.11) tr(F TXDXT ) = tr(FXDXT ).

(1.10) and (1.11) suggest that we can reformulate a QAP instance in which either the flow

matrix or the distance matrix but not both are asymmetric into an equivalent instance

in which both matrices are symmetric. For example, in a case where F is symmetric but

D is not, we substitute D̄ = 1
2
(D + DT ) for D. In Section 4.3.2 we will use the above

result to symmetrize F or D when one or the other is asymmetric.
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1.2.3 Kronecker Product

In the Koopmans-Beckmann formulation in (1.4), we can rewrite

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

fijdklxikxjl

as

xT



f11d11 · · · f1Nd11 f11d1N · · · f1Nd1N
...

. . .
... · · · ...

. . .
...

fN1d11 · · · fNNd11 fN1d1N · · · fNNd1N

· · ·
· · ·
· · ·

f11dN1 · · · f1NdN1 f11dNN · · · f1NdNN
...

. . .
... · · · ...

. . .
...

fN1dN1 · · · fNNdN1 fN1dNN · · · fNNdNN


x

= xT

 d11F · · · d1NF
...

. . .
...

dN1F · · · dNNF

x = xT (D ⊗ F )x

with x = vec(X) =
(
x11 · · ·xN1 · · · x1N · · ·xNN

)T
. Here vec(·) denotes the vector

formed by the columns of a matrix and ⊗ denotes the Kronecker product. Thus the

QAP can be formulated as

minimize vec(X)T (D ⊗ F ) vec(X) + vec(C)T vec(X)(1.12)

subject to X ∈ PN .

Note that the Hessian of the objective function of the QAP is Q = 2D⊗F . One of

the useful properties of a Kronecker product [48] is that the eigenvalues of the Kronecker

product D⊗F are the N2 eigenvalues formed from all possible products of the eigenvalues

of F and D. This will be used to compute the smallest and largest eigenvalues of Q in

Chapter 4.

1.3 Theoretical Complexity

Sahni and Gonzalez [103] have established the complexity of exactly and approximately

solving the QAP. Before we present their results, we introduce the following definition of

an ε-approximation algorithm and an ε-approximation solution for the QAP.
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Definition 1.1 Given ε > 0, an algorithm is said to be an ε-approximation algorithm

for the QAP if for every instance QAP(F,D),∣∣∣∣∣Z∗(F,D)− Ẑ(F,D)

Z∗(F,D)

∣∣∣∣∣ ≤ ε,

where Z∗(F,D) > 0 is the optimal objective value and Ẑ(F,D) is the objective value

of the solution obtained by the algorithm. The solution obtained by an ε-approximation

algorithm is said to be an ε-approximation solution for the QAP.

Theorem 1.1 (Sahni and Gonzalez [103], 1976) The quadratic assignment problem

is NP-complete. For an arbitrary ε > 0, there does not exist a polynomial-time ε-approx-

imation algorithm for the QAP unless P = NP.

Although there exist polynomially solvable cases [19, 27] of the QAP where special

structural conditions hold on the coefficient matrices, Theorem 1.1 implies that in general

it is unlikely that a polynomial-time algorithm for the QAP will be found. Furthermore,

even finding an ε-approximation solution to the QAP is a very difficult problem.

1.3.1 Other NP-Complete Problems as the Special Cases

Several well-known NP-complete problems can be formulated as special cases of the

QAP. While the QAP is not a tractable problem, in practice no one would want to

use algorithms developed for the QAP to solve those NP-complete problems since the

specialized algorithms for solving those problems are far more efficient than any solution

method for the QAP. However, the relationship between the QAP and those problems

sheds light upon the inherent complexity of the QAP. In the following we present three

well-known combinatorial optimization problems as special cases of the QAP.

The Traveling Salesman Problem. We are given a set of N cities and pairwise

distances between them, and our task is to find the shortest tour that visits each city

exactly once. Let {1, 2, . . . , N} represent the N cities and the N ×N matrix D = (dij)

the distances between the cities. We can formulate the traveling salesman problem as

the QAP with the distance matrix equal to D and the flow matrix being the adjacency

matrix of a cycle on N vertices.

10



The Graph Partitioning Problem. Consider an edge weighted graph G = (V,E)

with |V | = N and an integer k that divides N . We are to partition V into k sets of equal

cardinality and meanwhile minimize the total weight of the edges cut by the partition. We

can formulate this problem as the QAP with the distance matrix equal to the weighted

adjacency matrix of G and the flow matrix being −1 multiplying the adjacency matrix of

a graph consisting of k disjoint complete subgraphs each of which has N
k

vertices. Note

that 1) the sum of the elements of the weighted adjacency matrix of G remains constant,

and 2) by formulating the problem as the QAP we effectively maximize the sum of the

elements of the weighted adjacency matrix of a union of k disjoint subgraphs of G, each

of which is induced by N
k

vertices of G. Hence the QAP formulation is equivalent to

minimizing the total weight of the edges cut by the partition.

The Maximum Clique Problem. Suppose we have a graph G = (V,E) with |V | =
N . We would like to find a subset V1 of the largest cardinality such that V1 ⊆ V and

V1 induces a clique in G, i.e., all the vertices of V1 are connected by edges in G. Let

us consider the QAP with the distance matrix equal to the adjacency matrix of G and

the flow matrix given as −1 multiplying the adjacency matrix of a graph consisting of

a clique of size k and N − k isolated vertices. Note that a clique of size k exists only if

the QAP has an optimal objective value of −k2 + k, i.e., the sum of the elements of the

adjacency matrix of a clique of size k. The maximum clique can be found by solving a

series of N QAP instances for k = 1, 2, . . . , N .

1.4 Published QAP Test Problems

Due to the increased research activities in the QAP, several sets of QAP test problems

have been proposed by the research community. These test problems provide a platform

on which various solution methods for the QAP can be evaluated or compared. In the

following we will discuss four sets of QAP test problems that are accessible to the research

community. We will use some of these instances to test our proposed algorithm for the

QAP in Chapter 5.

QAPLIB [22] Instances. The QAPLIB was first published in 1991 to provide a uni-

fied test base for the QAP. This is the most commonly used set of test problems among

the researchers of the QAP. It consists of 137 QAP instances with the sizes ranging from
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10 to 256. 4 out of the 137 instances have a size greater than 100. A complete list of

the QAPLIB instances with the objective values of the optimal or best known solutions

is given in Table B.1 in Appendix B.1. The QAPLIB instances and their solution sta-

tus have been made available via its website at http://www.seas.upenn.edu/qaplib/.

The online version is updated on a regular basis and contains the most current informa-

tion of the solution status. As of this writing, except for those with optima known by

construction, the largest instances that have been optimally solved have a size of 36.

Instances by Drezner, Hahn and Taillard [30]. Drezner, Hahn and Taillard pro-

posed a total of 142 QAP instances with the sizes ranging from 12 to 729 and whose

characteristics are complementary to the QAPLIB instances. According to Drezner,

Hahn and Taillard, the QAPLIB instances are difficult for the exact methods but are

solved relatively easily by the heuristic methods within a fraction of one percent of the

optimal or best known solutions. The instances proposed by Drezner, Hahn and Taillard

were constructed in such a way that they are difficult for the heuristic methods but in-

stances of a size up to 75 are solved relatively easily by the exact methods in a reasonable

amount of time.

One of the measures for the difficulty of QAP instances is the landscape rugged-

ness [3], defined as the normalized variance of the difference between two neighboring

solutions. The variance is normalized such that the ruggedness is between 0 and 100,

with a larger value for a more difficult problem. For some of the instances proposed by

Drezner et al., the ruggedness is nearly 100.

Instances by Palubeckis [91]. Palubeckis proposed a set of 10 QAP instances with

the sizes ranging from 20 to 200. Limited computational results show that these instances

are more difficult for the heuristics than some of the well-known QAPLIB instances.

Instances by Stützle and Fernandes [108]. Stützle and Fernandes proposed a to-

tal of 644 instances with the sizes ranging from 50 to 500. This set of instances with

more varied characteristics than the other sets were constructed mainly for study of the

performance of the heuristic methods.

12



1.5 Practical Complexity

The advances in computer hardware in the last decade have brought about significant

progress in solving some of the most difficult combinatorial optimization problems. The

traveling salesman problem is an example. TSP instances with thousands of cities can

be solved in practice [27]. However, the QAP is an exception. It is generally considered

computationally difficult [6, 16, 22] to solve the QAP of modest sizes, say N ≥ 20. The

QAP instances with N = 30 is roughly the current practical limit for the exact solution

methods [4, 6]. Several problems from QAPLIB with about N = 30 that had been open

for decades were only recently solved. For the solution of the QAPLIB instance nug30 an

average of 650 computers were used over a one-week period, providing the equivalent of

almost 7 years of computation on a single HP9000 C3000 workstation [6]. The CPU time

used to solve the QAPLIB instance tho30 is equivalent to over 15 years of computation

on a single C3000. Table 1.3 lists the years in which the problems were exactly solved

and the CPU time spent for nearly a dozen recently solved large QAP instances from the

QAPLIB.

Table 1.3 Recently Solved Large QAPLIB Instances

Problem Year Solved3 CPU Days4

kra30a 2000 99
kra30b 2000 1527
kra32 2000 5536
nug27 2000 113
nug28 2000 722
nug30 2000 3999
ste36a 2001 18
ste36b 1999 60
ste36c 1999 200
tai25a 2003 394
tho30 2000 8997

Note that most of these successes were achieved in the distributed computing en-

vironments where massive networks of computers were utilized to meet the daunting

3These data are excerpted from the QAPLIB website.
4These data are due to Anstreicher [4].
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computational demand.

1.6 Asymptotic Behavior

The QAP exhibits an interesting asymptotic behavior. As outlined below, if certain

probabilistic conditions on the problem data are satisfied, the ratio of its best and worst

objective values approaches 1 as the problem size goes to infinity. On one hand, this

behavior suggests that the error of any heuristic method vanishes as the problem size

tends to infinity. That is, if the problem size is large enough, the QAP becomes a trivial

problem in the sense that every heuristic method finds an almost optimal solution. On

the other hand, as the problem size increases, all the feasible solutions to the QAP are

clustered between two level sets of the objective function that become arbitrarily close.

This renders an exact algorithm such as the branch and bound method very inefficient.

In this situation the branch and bound method tends to enumerate a majority of the

nodes in the branch and bound tree unless arbitrarily tight lower bounds are available.

This behavior will also cause difficulty for the continuous optimization methods that we

use in this research. Due to the clustering of the feasible points as the problem size

increases, our algorithm using the continuous optimization methods may not be able to

“distinguish” between the good and bad solutions and hence may fail to find a good

solution.

In an early work Burkard and Fincke [20] studied the difference between the best

and worst objective values of some special cases of the QAP. They first considered the

planar QAP, where the distance matrix consists of pairwise distances between the points

chosen independently and uniformly from the unit square in the plane and the flows are

independent random variables on [0, 1]. Then they investigated the QAP where both the

flows and the distances are independent random variables on [0, 1]. In both cases they

showed that the difference between the best and worst objective values approaches 0 with

a probability tending to 1 as the problem size goes to infinity.

Later Burkard and Fincke [21] investigated the asymptotic behavior of a generic

combinatorial optimization problem. They considered a sequence PN , N = 1, 2, . . .,

of minimization problems with a sum objective function as described below. For each

positive integer N , PN was given by specifying a ground set SN , a set FN ⊆ 2SN of

feasible solutions, and a nonnegative cost function cN : SN 7→ R+. The objective function
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f : FN 7→ R was defined as

(1.13) f(X) =
∑
x∈X

cN(x)

for all X ∈ FN . Burkard and Fincke showed that the ratio of the best and worst objective

values of (1.13) converges to 1 in probability as N → ∞. Szpankowski [109] improved

the order of convergence by showing that the convergence holds almost surely. In the

almost sure convergence the probability that the ratio of the best and worst objective

values approaches 1 is equal to 1.

Çela [27] showed that the QAP is a special case of combinatorial optimization prob-

lems with a sum objective function. More specifically, it was shown that the ground set

is SN = {(i, j, k, l) : 1 ≤ i, j, k, l ≤ N}. Each permutation π of N corresponds to a

feasible solution Xπ as a subset of SN , Xπ = {(i, j, π(i), π(j)) : 1 ≤ i, j ≤ N}. The set

FN of the feasible solutions consists of all feasible solutions Xπ for π ∈ ΠN . The cost

function is given as cN(i, j, k, l) = fijdkl. Based on the work of Burkard and Fincke [21]

and Szpankowski [109] for general combinatorial problems, Çela obtained the following

theorem.

Theorem 1.2 (Çela [27], 1998) Consider a sequence of QAP(FN , DN) with N × N

flow and distance matrices FN = (fNij ) and DN = (dNij ). Assume that for M > 0 the fNij

and, distinctly, the dNij are identically and independently distributed random variables on

[0,M ] with finite first, second, and third moments. Let Zmin and Zmax denote the optimal

and worst objective values of QAP(FN , DN), respectively:

Zmin = min
π∈ΠN

N∑
i=1

N∑
j=1

fNij d
N
π(i)π(j)

Zmax = max
π∈ΠN

N∑
i=1

N∑
j=1

fNij d
N
π(i)π(j)

Then the following holds almost surely:

lim
N→∞

Zmin

Zmax

= 1.

Several other authors obtained different analytical forms of the asymptotic behav-

ior of the QAP by imposing slightly different probabilistic conditions. The readers are

referred to Frenk, Houweninge and Rinnooy Kan [37] and Rhee [99, 100] for more details.
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Frenk, Houweninge and Rinnooy Kan [37] conduct computational experiments to

empirically verify the asymptotic property of the QAP. Their results confirm that the

ratio converges to 1 relatively quickly. For the examples they use, the ratio falls within

0.1 of its theoretical value from approximately N = 50 onwards.

1.7 Synopsis of the Remaining Chapters

In Chapter 2 we will survey the literature on the solution approaches for nonlinear 0-1

programming. As special cases of nonlinear 0-1 programming, we will also survey the

solution methods specific for quadratic 0-1 programming and the QAP. In Chapter 3

we will study the methods of relaxation with penalty functions. We will discuss the

properties of weak and strong equivalence of the relaxation using two penalty functions.

The asymptotic properties of the relaxation using the quartic penalty function will also

be discussed. Based upon the method of relaxation using the quadratic penalty function,

we will propose an algorithm for the QAP in Chapter 4. We will describe two important

techniques used in our algorithm, i.e., the convex transformation of the objective function

of the QAP and the pre-conditioning the Hessian of the objective function. Then we

will show how quadratic cuts can be applied to improve the solutions to the QAP. In

Chapter 5 we will describe the implementation details of our algorithm for the QAP.

Then we will show and discuss the numerical results of our algorithm on the QAPLIB

instances and other published QAP test problems. We will draw conclusions and discuss

possible extensions of our algorithm for the QAP to quadratic 0-1 programming and

general nonlinear 0-1 programming in Chapter 6.
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Chapter 2

Nonlinear 0-1 Programming

In this chapter we will present a brief overview of formulations of nonlinear 0-1 pro-

gramming and its main solution approaches reported in the literature. The quadratic

assignment problem, the focus of this dissertation, is a special case of quadratic 0-1

programming which in turn is a subclass of nonlinear 0-1 programming. Hence in prin-

ciple we could solve the quadratic assignment problem as a nonlinear 0-1 programming

problem. We will also give a brief summary of the extensive literature in the solution

techniques for quadratic 0-1 programming. Last we will discuss the methods to solve the

quadratic assignment problem.

2.1 Formulations

To simplify the notation but without loss of generality, we consider a nonlinear 0-1

programming problem of the following form

minimize f(x)(2.1)

subject to g(x) ≤ 0

x ∈ Bn

where f : Rn 7→ R, g : Rn 7→ Rm, and B = {0, 1}. Since any equality constraint can

be replaced by two equivalent inequality constraints, this form includes the cases with

equality constraints and the QAP can be viewed as a special case of it.

Problem (2.1) is important in its own right. For a list of references to the applications

of nonlinear 0-1 programming, see Balas and Mazzola [9], Boros and Hammer [15], and

Hansen et al. [60]. In addition, an integer or mixed-integer nonlinear programming

problem with bounded variables can be transformed into an equivalent nonlinear 0-1



programming problem by binary expansions. In particular, we can replace an integer

variable y with bounds l ≤ y ≤ u by the following:

y = l + x1 + 2x2 + 4x3 + · · ·+ 2K−1xK

where xi ∈ B for i = 1, . . . , K and K is given by

K = blog2(u− l)c+ 1.

It is shown in Hammer and Rudeanu [58] that any function in 0-1 variables can be

reduced to a polynomial in the same variables. Indeed, if we set

∆i(x1, . . . , xi−1, xi+1, . . . , xn)(2.2)

= f(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn), and

ηi(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xi−1, 0, xi+1, . . . , xn),(2.3)

it is easy to verify that

(2.4) f(x1, . . . , xn) = xi∆i(x1, . . . , xi−1, xi+1, . . . , xn) + ηi(x1, . . . , xi−1, xi+1, . . . , xn).

Applying (2.4) recursively, we can reduce (2.1) to the following polynomial 0-1 program-

ming problem:

minimize f(x) =

p0∑
k=1

ck
∏
j∈Nk

xj(2.5)

subject to

pi∑
k=1

aik
∏
j∈Nik

xj ≤ bi, i = 1, 2, . . . ,m

x ∈ Bn

where Nk ⊆ N = {1, 2, . . . , n}, k = 1, 2, . . . , p0 and Nik ⊆ N , k = 1, 2, . . . , pi, i =

1, 2, . . . ,m. Note that the property x2
j = xj,∀j, implies all variables have a power of 1 in

the terms in which they appear. (2.5) is also called multilinear 0-1 programming.

Moreover, Rosenberg [101] has shown that any unconstrained polynomial 0-1 pro-

gramming problem minimizex∈Bn f(x) can be reduced to the quadratic case. We replace

all occurrences of a product of two variables xixj appearing in the terms of order greater

than two in f(x) by a new variable xn+l and then add the following corrective term in

the objective function

µ(xixj + (3− 2xi − 2xj)xn+l)
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for some µ > f̃ − f where f̃ is the value of f(x) at some x ∈ Bn and f is a lower bound

on f(x) on Bn, given as f =
∑p0

k=1 min(0, ck). Note that (xixj + (3− 2xi− 2xj)xn+l) = 0

for xn+l = xixj and (xixj + (3 − 2xi − 2xj)xn+l) ≥ 1 otherwise. Hence any solution for

which xn+l 6= xixj cannot be optimal. Applying the above reduction recursively leads

to an unconstrained quadratic 0-1 programming problem. Note that such a reduction

scheme does not apply to constrained cases. Also the number of new variables increases

rapidly with the order of the multilinear terms.

2.2 General Solution Approaches

Various solution approaches have been proposed for nonlinear 0-1 programming problems.

We will follow the outline of Hansen et al. [60] and give a brief introduction to the four

main approaches, i.e., linearization, algebraic, enumerative, and cutting-plane methods,

of which enumerative methods appear to be the most efficient [60]. The purpose of

the survey in nonlinear 0-1 programming is not to conduct an exhaustive review on the

subject but rather to shed light on the study of the QAP. Hence, we will focus on the

basic ideas of the four approaches while skipping the elaborate details of their variants

and extensions. For more details of these approaches, the reader is referred to Balas

and Mazzola [8, 9], Boros and Hammer [15], Hansen [59], and Hansen et al. [60]. We

will postpone discussing the continuous optimization approach in which 0-1 problems are

transformed into equivalent continuous optimization problems via relaxation and using

penalty functions until Chapter 3.

2.2.1 Linearization Methods

Fortet [35] (see also Watters [115]1) has shown that a polynomial 0-1 programming prob-

lem can be reduced to a linear 0-1 programming problem by replacing each distinct

product
∏

j∈Nk xj by a new 0-1 variable xn+k and adding two new constraints∑
j∈Nk

xj − xn+k ≤ |Nk| − 1, and(2.6)

−
∑
j∈Nk

xj + |Nk|xn+k ≤ 0.(2.7)

1According to Hansen et al. [60] Watters independently rediscovered the linearization.
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The constraint (2.6) implies that xj = 0 for some j ∈ Nk if xn+k = 0 and xn+k = 1 if

xj = 1 for all j ∈ Nk. The constraint (2.7) implies that xn+k = 0 if and only if xj = 0

for some j ∈ Nk and xn+k = 1 if and only if xj = 1 for all j ∈ Nk.
The above scheme can potentially introduce a large number of new variables and

new constraints. Glover and Woolsey [46] proposed several rules to obtain smaller sets of

constraints that are equivalent to (2.6) and (2.7). In another paper [47], they introduced

new continuous variables yk ∈ [0, 1] which automatically take the value 0 or 1 in any

feasible solution instead of the 0-1 variables xn+k. Nevertheless, the increase in the

number of variables and number of constraints makes solution techniques based on their

approaches problematic at best.

2.2.2 Algebraic Methods

The algebraic methods proposed in the literature usually apply to the unconstrained

cases. The most well-known algebraic method is the Basic Algorithm [56, 58]. The

method exploits the local optimality condition as follows. Setting i = 1 in (2.4) we have

the following

(2.8) f(x1, . . . , xn) = x1∆1(x2, . . . , xn) + η1(x2, . . . , xn)

where ∆1(·) and η1(·) are defined in (2.2) and (2.3). For an optimal solution (x∗1, . . . , x
∗
n),

we have

f(x∗1, x
∗
2, . . . , x

∗
n) ≤ f(x̄∗1, x

∗
2, . . . , x

∗
n)

where x̄∗1 = 1− x∗1. Hence

(x∗1 − x̄∗1)∆1(x∗2, . . . , x
∗
n) ≤ 0

is a necessary condition for optimality. This condition can be used to eliminate x1 from

(2.8) as follows. We define

ψ1(x2, . . . , xn) =

{
∆1(x2, . . . , xn) if ∆1(x2, . . . , xn) < 0;

0 otherwise.

It is easy to see that minimizing f(x1, . . . , xn) is equivalent to minimizing

ψ1(x2, . . . , xn) + η1(x2, . . . , xn).
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Continuing such an elimination process for x2, . . . , xn−1 yields a sequence of function

ψ1, ψ2, . . . , ψn−1. The minimum of f can be traced back from the minimum x∗n of

ψn−1(xn) + ηn−1(xn).

Extensions to this method allow for the solution of constrained problems through the

transformation of the constrained problems into the equivalent unconstrained problems

using penalty functions [58].

The efficiency of this approach depends critically on how ψ1, ψ2, . . . , ψn−1 are ob-

tained. Computationally, determining these functions is generally intractable for prob-

lems of realistic sizes [15].

2.2.3 Enumerative Methods

One of the earliest enumerative methods is a lexicographical enumeration algorithm pro-

posed by Lawler and Bell [75] for constrained nonlinear 0-1 programming problems with

a monotone objective function. Later Mao and Wallingford [78, 29] extended their algo-

rithm to the cases with a general objective function. These algorithms are equivalent to

branch-and-bound methods with rigid and problem-independent branching rules; i.e., the

branching variables are chosen according to some a priori ordering. Many branch-and-

bound algorithms for unconstrained and constrained nonlinear 0-1 programming were

proposed in the late 1960s and the 1970s. The branch-and-bound algorithms obtain bet-

ter results than the lexicographical enumeration algorithms by choosing the branching

variables according to rules based on the problem structures. The reader is referred to

Hansen et al. [60] for a list of references to branch-and-bound algorithms and a framework

of these algorithms.

A branch-and-bound algorithm uses a branching rule to split to problem to be solved

into smaller subproblems. The most common branching rules are depth-first search and

best-first search. In the former, we branch on the deepest node in the branch-and-bound

tree if possible; backtracking consists of finding the last branching variable for which

a branch remains unexplored. In the latter, the subproblem with the smallest lower

bound on the objective value is selected. Bounds are computed on the objective value or

constraint left-hand side values and used in tests to curtail the enumeration. A penalty

is computed for an unfixed variable as an increment that may be added to a bound if it

is fixed at 0 or 1. Tests based on the penalties are performed to determine the variables

that must take a value of 0 or 1 in all feasible or optimal solutions.
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Once the framework has been laid out, a particular branch-and-bound algorithm

is based upon how the bounds and penalties are computed. Many schemes to compute

bounds and penalties for nonlinear 0-1 programming have been proposed. The quality of

the bounds and penalties usually improves with the amount of computation required to

obtain them. There is a trade-off between the quality of the bounds and penalties and

the expense required to obtain them.

2.2.4 Cutting-Plane Methods

The original cutting-plane method for constrained nonlinear 0-1 programming is due to

Granot and Hammer [50]. In their algorithm, the nonlinear 0-1 programming problem is

transformed into an equivalent generalized covering problem. The latter problem is solved

as a linear 0-1 programming problem. Unfortunately, the number of generalized covering

constraints thus obtained can be very large, making the linear 0-1 programs difficult to

solve. To overcome such difficulty, Granot and Granot [49] proposed a cutting-plane

algorithm in which only a small set of generalized covering inequalities are generated in

the initial generalized covering problem. The initial generalized covering problem is a

relaxation of the original 0-1 problem, referred to as the generalized covering relaxation

(GCR). In this algorithm, the GCR is first solved and the optimal solution x∗ obtained. If

x∗ is infeasible to the original problem, a new generalized covering inequality is generated

for each constraint violated by x∗. The new inequalities are added to the GCR and the

resulting GCR is re-solved. Otherwise, the original problem has been solved.

The algorithm of Granot and Granot can be improved in several ways. First, the

GCR can be solved by a heuristic. Second, some inequalities can be discarded to maintain

a moderate size of the GCR. Finally, stronger cuts can be derived for the GCR. The

papers of Balas and Mazzola [8, 9] contain the details of this algorithm.
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2.3 Quadratic 0-1 Programming

In this section, we will survey the solution methods for quadratic 0-1 programming prob-

lems. In particular, we will consider the linearly constrained cases of the following form:

minimize 1
2
xTQx+ cTx(2.9)

subject to Ax ≤ b

x ∈ Bn

where Q ∈ Rn×n is a symmetric matrix, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. When

Q is not symmetric, we can always replace Q by Q̄ = 1
2
(Q + QT ). Note that by the

same argument as in nonlinear 0-1 programming (2.9) includes the cases where equality

constraints Ax = b are present. In the following, we will not consider the methods

for solving unconstrained quadratic 0-1 programming problems, which the reader will

find abound in the literature. Neither will we discuss algorithms that specialize in the

quadratic knapsack problems, an important application of quadratic 0-1 programming.

We will outline the main solution approaches for the quadratic assignment problem in

section 2.4.

Existing methods for solving (2.9) primarily fall into two classes. In the first class,

the problem is transformed into an equivalent linear 0-1 integer problem and then solved

while in the second class the nonlinear objective function is dealt with directly through

some enumerative scheme. For the linearization techniques, the transformations for

general nonlinear 0-1 programming discussed in section 2.2.1 are readily applicable to

quadratic 0-1 programming problems. In addition, Glover [45] proposed a perhaps most

compact mixed integer linear reformulation of quadratic 0-1 programming problems. As

McBride and Yormark [80] indicated, the linearization techniques do not yield very effi-

cient solution methods for the problem (2.9) due to the increase in the number of variables

and number of constraints. For example, in the worst case where all the cross-product

quadratic terms are present, using the linearization technique in (2.6) and (2.7) requires

n(n − 1)/2 additional 0-1 variables and n(n − 1) additional constraints. Although the

alternative linearizations yield more compact formulations, convergence is still slow.

The enumeration methods have proved to be more attractive for solving (2.9).

Among the earlier enumerative schemes are Mao and Wallingford [78], and Laughhunn

[73]. Mao and Wallingford extended Lawler and Bell’s lexicographical enumeration al-
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gorithm [75] to handle quadratic 0-1 programming problems whose objective function

is not monotonic. Laughhunn proposed a Balas-type [7] algorithm using some simple

bounding penalties based on the objective function. As McBride and Yormark [80] also

pointed out, these earlier enumerative methods are not effective for problems of practical

size. More recent research has favored branch-and-bound methods whose performance

hinges on good lower bounds on the objective function. Hence obtaining tight bounds

on the objective function has been the focus in the study of branch-and-bound meth-

ods. The most frequently used approaches include linearization techniques, Lagrangian

decomposition methods, and, more recently, semidefinite relaxations.

To obtain a bound via linearization, the techniques described in section 2.2.1 can be

used. However, those techniques do not produce good bounds [2]. Adams and Sherali [2]

proposed a linearization scheme specifically for quadratic 0-1 programming problems. It

was shown that their linearization yielded predominantly tighter bounds than the other

linearizations found in the literature.

Lagrangian decomposition methods provide a different approach for computing

lower bounds. Michelon and Maculan [83] applied Lagrangian decomposition to study

nonlinear integer programming problems. Solving the dual Lagrangian relaxation re-

quires the solution of a continuous nonlinear programming problem and an integer linear

programming problem at each iteration. Later, Michelon and Maculan [84] studied the

Lagrangian decomposition for the problem (2.9). They showed that the solution to the

continuous quadratic programming problem can be expressed in a closed form. Hence

the dual problem was easier to solve in that only one subproblem had to be solved in

order to compute the objective function of the dual problem. Elloumi et al. [31] pre-

sented a different decomposition for quadratic 0-1 programming with linear constraints

and showed that it compared favorably to the linearization of Adams and Sherali [2].

A quite recent method, often yielding tight bounds, is the semidefinite relaxation for

equality constrained quadratic 0-1 programming [95]. In this approach, the linear equal-

ity constraints are replaced by the squared norm constraints to obtain an equivalent

quadratically constrained 0-1 problem. The Lagrangian dual problem of the quadrati-

cally constrained problem is formed and the Lagrangian is homogenized to obtain a pure

quadratic form. Then the products of variables are replaced by new variables which form

a symmetric, rank one, and positive semidefinite matrix. Using hidden semidefinite con-

straints in the Lagrangian dual problem, a semidefinite program is obtained. Taking the
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Lagrangian dual of the resulting semidefinite program leads to the semidefinite relaxation

of the original problem. Some promising results have been reported for this approach.

2.4 Methods for the Quadratic Assignment Problem

Branch-and-bound and cutting-plane methods are primarily the two types of algorithms

that have been used to solve the quadratic assignment problem to optimality. Branch-

and-bound algorithms have been the more successful of the two for the QAP, outperform-

ing cutting-plane algorithms whose running time is simply too long [27]. In the following

we will briefly discuss cutting-plane methods. We will describe in detail branch-and-

bound methods for the QAP in section 2.4.1.

There are two classes of cutting-plane methods: traditional cutting-plane methods

and polyhedral cutting-plane or branch-and-cut methods. Traditional cutting-plane al-

gorithms have been developed by Balas and Mazzola [9], Bazaraa and Sherali [11, 12],

and Kaufmann and Broeckx [69]. These algorithms make use of mixed integer linear pro-

gramming formulations for the QAP which are well suited for Benders’ decomposition.

They either solve the QAP to optimality or compute a lower bound. The computational

experience for polyhedral cutting-plane methods is still very limited, due to lack of good

understanding of the combinatorial structure of the QAP polytope [27]. Recently, en-

couraging results [90, 65] in polyhedral cuts have been obtained, leading one to believe

that polyhedral cutting-plane algorithms can be used to solve reasonably sized QAP

instances in the future.

2.4.1 Branch-and-Bound Methods

In a branch-and-bound method for the QAP, the algorithm starts with an empty per-

mutation with no facility assigned to any location and successively expands it to a full

permutation in which all the facilities are assigned to the locations. The important com-

ponents for a branch-and-bound algorithm for the QAP are the branching rule, selection

rule, and lower bounding technique.

There are three common types of branching rules: single assignment [44, 74], pair

assignment [39, 72, 88], and relative positioning [85]. In the single assignment branching,

the algorithm assigns a single, not yet allocated facility i to an unoccupied location j
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at each branching step. The pair assignment rule allocates a pair of facilities to a pair

of locations at each branching step. In the relative positioning branching, the levels of

branch-and-bound tree do not correspond to the assignments of facilities to locations.

The partial permutations at each level are determined in terms of the distances between

facilities, i.e., their relative positions. Numerical results show that the single assignment

branching rule outperforms the pair assignment or relative positioning branching rules

[19, 92]. The choice of the facility-location pair (i, j) is made according to the selection

rule. Several rules have been proposed by different authors [10, 17, 79]. The appropriate

rule usually depends on the bounding technique employed.

2.4.2 Lower Bounds

The performance of branch-and-bound algorithms depends critically on the quality of

the lower bounds. Many efforts have been made to derive tight and yet computationally

efficient lower bounds. In this section we will briefly describe five bounding techniques

for the QAP: Gilmore-Lawler and related lower bounds, lower bounds based on linear

programming relaxations, eigenvalue based lower bounds, lower bounds based on semidef-

inite relaxations, and convex quadratic programming bounds.

Gilmore-Lawler and Related Lower Bounds. One of the first lower bounds for the

QAP was derived by Gilmore [44] and Lawler [74]. For QAP(F,D) of size N , we define

a N ×N matrix C = (cij) by

cij , min
π∈ΠN :
π(j)=i

N∑
k=1

fiπ(k)djk, i, j = 1, . . . , N.

It is well known that the entries cij can be easily computed by sorting vectors Fi and Dj

in increasing and decreasing order respectively, where Fi denotes the i-th row of matrix

F and Dj denotes the j-th row of matrix D. It is easy to see that the following holds for

π ∈ ΠN :

(2.10) Z(F,D, π) =
N∑
i=1

N∑
j=1

fπ(i)π(j)dij ≥
N∑
i=1

Fπ(i)D
T
i ≥

N∑
i=1

cπ(i)i.

From (2.10) we have

min
π∈ΠN

Z(F,D, π) ≥ min
π∈ΠN

N∑
i=1

cπ(i)i , GLB,
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where GLB is the Gilmore-Lawler lower bound for QAP(F,D). After matrix C is com-

puted, it takes O(n3) time to compute GLB by solving a linear assignment problem.

Hence the overall complexity for computing the Gilmore-Lawler bound is O(n3).

The Gilmore-Lawler bound is one of the simplest and cheapest bounds to compute,

but unfortunately this bound is not tight and, in general, the gap between the Gilmore-

Lawler bound and the optimal objective value increases quickly as the problem size

increases. Various reduction schemes have been proposed to improve the quality of the

Gilmore-Lawler bound by transforming the coefficient matrices F and D. Li et al. [77]

proposed an improvement on the bound via a variance reduction scheme. Reduction

schemes based on reformulations [24, 25] and dual formulations [54, 55] have also been

proposed.

Lower Bounds Based on Linear Programming Relaxations. Several authors

have proposed mixed integer linear programming (MILP) formulations for the QAP. In

the context of lower bound computations two MILP formulations are of importance.

Frieze and Yadegar [38] replaced the products xikxjl of 0-1 variables by continuous vari-

ables yijkl and introduced extra linear constraints to obtain an MILP formulation for

the QAP. To obtain a lower bound, Frieze and Yadegar derived a Lagrangian relax-

ation of their MILP formulation and solved it approximately by applying subgradient

optimization techniques. They showed that the resulting bounds are better than the

Gilmore-Lawler bounds.

Based upon the MILP formulation of Frieze and Yadegar, Adams and Johnson [1]

obtained a slightly more compact MILP formulation:

minimize
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

fijdklyijkl(2.11)

subject to (1.3a)–(1.3c)

N∑
i=1

yijkl = xjl, j, k, l = 1, . . . , N

N∑
j=1

yijkl = xik, i, k, l = 1, . . . , N

yijkl = yklij, i, j, k, l = 1, . . . , N

yijkl ≥ 0, i, j, k, l = 1, . . . , N.
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They showed that the continuous relaxation of (2.11) is tighter than the continuous

relaxation of the formulation of Frieze and Yadegar. Moreover, many of the previously

published lower bounding techniques can be explained based upon the Lagrangian dual

of this relaxation.

Eigenvalue Based Lower Bounds. These bounds are based on the relationship be-

tween the objective value of the QAP in the trace formulation and the eigenvalues of

the flow and distance matrices. If designed and implemented prudently, these bound-

ing techniques can produce bounds of better quality than the Gilmore-Lawler bounds or

bounds based on linear programming relaxations. However, the eigenvalue based bounds

are expensive to compute and hence are not appropriate for use as bounding techniques

in branch-and-bound algorithms. Eigenvalue based bounds for the QAP with symmetric

matrices are proposed by several authors [33, 52, 53, 98].

Lower Bounds Based on Semidefinite Relaxations. Semidefinite programming

(SDP) relaxations for the QAP were studied by Karisch [68], Zhao [117], and Zhao et

al. [118]. In their papers, interior-point methods or cutting-plane methods are used to

solve the SDP relaxations to obtain lower bounds for the QAP. These solution methods

require at least O(n6) time per iteration. In terms of quality the bounds they obtained

are competitive with the best existing lower bounds for the QAP. For many QAPLIB

instances, such as those of Hadley et al. [53], Nugent et al. [88] and Taillard [110, 111],

semidefinite relaxations provide the best existing bounds. However, the prohibitively

high computation requirements makes the use of such approaches impractical.

Convex Quadratic Programming Bounds. The quadratic programming bound [5]

for QAP(F,D) is defined as the optimal objective value of the following quadratic pro-

gramming problem:

minimize vec(X)TQ vec(X) + γ(QPB)

subject to Xe = XT e = e

X ≥ 0,

where Q = (D⊗F )−(I⊗S)−(T⊗I). The matrices S and T and constant γ are obtained

from the spectral decompositions of V TFV and V TDV , where V is an N×(N−1) matrix
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with orthonormal columns such that eTV = 0. The objective function of (QPB) is convex

on the nullspace of the equality constraints, so computing the quadratic programming

bound requires solving a convex quadratic programming problem. In [16] the Frank-Wolfe

(FW) algorithm [36, 82] is proposed to approximately solve (QPB). Although the FW

algorithm is known for its poor asymptotic performance, in this context it is attractive

because the computation required at each iteration is dominated by the solution of a

single, small linear assignment problem. It is worth noting that this bounding technique

was used to solve several very difficult QAP instances in Table 1.3 to optimality.
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Chapter 3

Methods of Relaxation with a Penalty
Function

3.1 Introduction

In Chapter 2 we outlined several solution approaches to nonlinear 0-1 programming

problems that use discrete optimization techniques. In this chapter we will discuss a

class of algorithms for a nonlinear 0-1 programming problem that are based upon the

continuous optimization techniques. In this class of algorithms the integrality constraints

on the variables of the 0-1 optimization problem are relaxed to obtain a continuous

optimization problem. A penalty function is introduced to force the solutions to the

continuous relaxation to be integer. Then the continuous optimization problem is solved

to obtain an optimal or good integer solution to the original 0-1 problem.

Consider the nonlinear 0-1 programming problem of (2.1). We replace Bn with X
and obtain the following relaxation:

minimize f(x)(3.1)

subject to g(x) ≤ 0

x ∈ X

where X is some path-connected set with Bn ⊂ X ⊆ Rn and f(x) is bounded below on

X . Note that the global optimal solution to (3.1) provides a lower bound for the optimal

solution to (2.1). In general this lower bound is not equal to the minimum of (2.1);

the global solution to (3.1) may not be integer. In continuous optimization approaches,

it is standard to introduce a suitable penalty term to the objective function to force

the optimal solutions to the continuous relaxation to be integer. Thus we consider the



following relaxation with a penalty function:

minimize f(x) + µΦ(x)(3.2)

subject to g(x) ≤ 0

x ∈ X

where Φ : Rn 7→ R and µ > 0 is the penalty parameter.

In order to find an optimal solution, or at least a good integer solution, to (2.1) by

solving (3.2) the following properties are desirable. For all values of µ greater than some

finite µ0:

(A1) Φ(x) = 0 for x ∈ Bn and Φ(x) > 0 for x ∈ X \Bn.

(A2) Every 0-1 feasible solution to (2.1) is a local minimum of (3.2).

(A3) The global minimum of (3.2) occurs at a 0-1 point.

(A4) The converse of (A2) is true; i.e., every local minimum of (3.2) is a 0-1 feasible

solution to (2.1).

Given an appropriate value of µ0, the following implications are a consequence of these

properties. Property (A1) ensures that (2.1) and (3.2) have the same objective values at

x ∈ Bn. With property (A2) every 0-1 feasible solution to (2.1) can be found by solving

its relaxation if we start close enough to the 0-1 solution. Note that this property does not

preclude the existence of noninteger local solution to (3.2). Property (A3) together with

(A1) enables a global optimization algorithm, if available, for the continuous relaxation

to find the (global) optimum of the original 0-1 problem. Property (A4) guarantees that

we can always find a 0-1 feasible solution to (2.1) by solving (3.2). Note that in absence

of property (A4), property (A3) is needed for a global solution to (3.2) to be optimal

for (2.1) whereas properties (A2) and (A4) together imply property (A3). Based upon

whether property (A4) is satisfied or not, we have the following two definitions.

Definition 3.1 (Weak Equivalence)

A nonlinear 0-1 programming problem (2.1) and its relaxation (3.2) are said to be

weakly equivalent if properties (A1)–(A3) hold for all µ > µ0.

Definition 3.2 (Strong Equivalence)

A nonlinear 0-1 programming problem (2.1) and its relaxation (3.2) are said to be

strongly equivalent if properties (A1), (A2), and (A4) hold for all µ > µ0.
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To solve (3.2) globally and hence obtain the optimal solution to (2.1), it suffices

that only weak equivalence holds. In this case, there are two major difficulties with a

continuous optimization approach. First, we need to determine the threshold value µ0

such that for all µ > µ0 weak equivalence holds. Except for some special cases, µ0 is

generally unknown for a nonlinear 0-1 programming problem. Second, even in the cases

where µ0 is known, we still need to solve a continuous global optimization problem that,

when there are multiple local solutions, can be extremely difficult.

Hence we have to be content with finding a good 0-1 solution to (2.1) by solving

(3.2) locally. We face several challenges. First, we have the same issue of determining

the threshold value µ0 as above. In the cases where µ0 is unknown, we need to solve

a sequence of optimization problems of form (3.2) with an increasing µ until we find

a 0-1 solution or determine that the algorithm fails to find a 0-1 solution. Second, in

the cases where only weak equivalence holds, there are local minima to (3.2) which are

not 0-1 feasible solutions to (2.1). Thus to guarantee that a continuous optimization

approach finds a 0-1 solution to (2.1), an algorithm for solving (3.2) must avoid the

non-integer local minima. Because of the existence of non-integer local minima in the

above cases, choosing Φ(x) such that strong equivalence holds is usually desirable. Under

strong equivalence, we can always find a 0-1 feasible solution to (2.1) by solving (3.2).

However, only a certain class of nonlinear 0-1 programming problems with a specific

penalty function possess the strong equivalence properties.

We introduce two penalty functions that have been used in the literature for 0-1

problems. It is obvious that the 0-1 constraints on the variables x ∈ Bn are equivalent to{
xT (e− x) = 0

0 ≤ x ≤ e

or

x ◦ (e− x) = 0

where ◦ denotes the Hadamard product or component-wise product of two vectors, and

e is the vector of all ones. Setting Φ(x) = xT (e− x) and X = {x ∈ Rn : 0 ≤ x ≤ e}, we

obtain the relaxation:

minimize f(x) + µxT (e− x)(3.3)

subject to g(x) ≤ 0

0 ≤ x ≤ e.
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Alternatively, we can set Φ(x) = ‖x ◦ (e− x)‖2 to obtain the following:

minimize f(x) + µ‖x ◦ (e− x)‖2(3.4)

subject to g(x) ≤ 0

x ∈ X

where ‖·‖ denotes the `2 or Euclidean norm of a vector, Bn ⊂ X ⊆ Rn and f(x) is

bounded below on X . It will be shown that weak equivalence holds between (2.1) and

(3.3) under some mild conditions on f(x) whereas weak equivalence between (2.1) and

(3.4) does not hold in general. Furthermore, it can be shown that strong equivalence

holds for (3.3) when (2.1) represents the QAP.

We refer to Φ(x) = xT (e− x) in (3.3) as the quadratic penalty function and Φ(x) =

‖x ◦ (e−x)‖2 in (3.4) as the quartic penalty function. It is easy to see that the quadratic

penalty function is concave and the quartic penalty function is neither concave nor convex.

We note that almost all of the literature on continuous optimization approaches via

relaxation and a penalty function has focused on studying the quadratic penalty function.

The paper of Davydov and Sigal [28] seems to be the sole study employing the quartic

penalty function in their continuous relaxation. They used a different penalty parameter

for each component of the penalty term; i.e., their penalty term is ‖µ ◦ x ◦ (e− x)‖2 with

µ ∈ Rn being a positive vector.

In the following sections, the results from both the literature and this research on

several relevant topics on the methods of relaxation with a penalty function are presented

and discussed. In section 3.2, the general conditions under which weak equivalence holds

are established. Section 3.3 presents the weak equivalence properties in the context

of relaxation using the quadratic penalty function. Two special cases of quadratic 0-1

programming problems in which µ0 is known are also discussed. In section 3.4 strong

equivalence is shown to hold for the QAP relaxation using the quadratic penalty function.

We also show how to compute an estimate of µ0 for which strong equivalence holds.

Section 3.5 outlines a smoothing algorithm developed by Ng [87] and its drawbacks

are discussed. We describe asymptotic properties of the quartic penalty function in

section 3.6. Then the chapter is concluded with a summary of the methods of relaxation

with a penalty function.
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3.2 General Weak Equivalence

Giannessi and Niccolucci [41] studied the problem of minimizing a function f(x) on a

set, say Z̄, and the related problem of minimizing f(x) with a penalty function on a

larger set in which Z̄ is embedded. The latter problem is a relaxation of the former

one. They established the conditions under which the two problems attain the same

global minimum in terms of both the optimal objective value and the set of minimum

points. Note that in their original study no other assumptions than compactness are

made on Z̄. In fact Z̄ is not necessarily a discrete set. Since the focus of this section is

on nonlinear 0-1 programming of which the QAP is a special case, we will adapt their

results to the context of nonlinear 0-1 programming and state the conditions under which

weak equivalence holds.

Setting R = {x ∈ Rn : g(x) ≤ 0} and Z = Bn, we rewrite (2.1) as

minimize f(x)(3.5)

subject to x ∈ R ∩ Z

and (3.2) as

minimize f(x) + µΦ(x)(3.6)

subject to x ∈ R ∩ X

where X is define in (3.1).

Theorem 3.1 (Giannessi and Niccolucci [41], 1976, modified) For problems (3.5)

and (3.6), suppose that R ⊆ Rn is closed, X is compact, Z ⊂ X ⊂ Rn, and the following

conditions hold:

(i) f is bounded below on X and there exists an open set A ⊃ Z and real numbers

α,L > 0 such that, for each x, y ∈ A, f satisfies the following Hölder condition:

|f(x)− f(y)| ≤ L‖x− y‖α.

(ii) Φ is continuous on X , and Φ(x) = 0 for each x ∈ Z and Φ(x) > 0 for each

x ∈ X \Z.

(iii) For each z ∈ Z, there exists a neighborhood S(z) of z and a real number ε(z) > 0

such that

Φ(x) ≥ ε(z)‖x− z‖α, for each x ∈ S(z) ∩ (X \Z).
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Then there exists µ0 such that for each µ > µ0 problems (3.5) and (3.6) are weakly

equivalent.

Proof. We only need to show that for each µ > µ0 properties (A2) and (A3) are satisfied.

Figure 3.1 illustrates the sets that will appear in this proof. We introduce the sets

X̄ = R∩X , Z̄ = R∩Z, and S̄(z) = A∩ S(z) for z ∈ Z. It will be shown that for each

z̄ ∈ Z̄, the function

Fz̄(x) =
f(z̄)− f(x)

Φ(x)

is bounded on S̄(z̄) ∩ (X̄ \Z̄).

For all x ∈ S̄(z̄) ∩ (X̄ \Z̄), we have

Φ(x) ≥ ε(z̄)‖x− z̄‖α and

|f(x)− f(z̄)| ≤ L‖x− z̄‖α.

Thus

|Fz̄(x)| ≤ L

ε(z̄)
, β(z̄) <∞.

Consequently we have
f(z̄)− f(x)

Φ(x)
≤ β(z̄).
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Let µ > β , max
z̄∈Z̄
{β(z̄)}. For each z̄ ∈ Z̄, we have

(3.7) f(x) + µΦ(x) > f(x) + β(z̄)Φ(x) ≥ f(z̄), for each x ∈ S̄(z̄) ∩ (X̄ \Z̄).

Therefore each z̄ ∈ Z̄ is a local minimum for µ > β, which verifies property (A2).

Now we set

S =

[ ⋃
z̄∈Z̄

S̄(z̄)

]
∩ X̄ ⊃ Z̄

and

X0 = X̄ \S = X̄ ∩

[
Rn \

⋃
z̄∈Z̄

S̄(z̄)

]
.

Hence X0 is compact. Furthermore, Φ is continuous and positive on X0. Thus

MΦ = inf
x∈X0

Φ(x) = min
x∈X0

Φ(x) > 0.

Since f is bounded below on X̄ , we have

Mf = inf
x∈X̄

f(x) > −∞.

Let

(3.8) γ =
f(z̄∗)−Mf

MΦ

where f(z̄∗) = min
z̄∈Z̄

f(z̄). Obviously 0 ≤ γ <∞. For µ > γ and x ∈ X0,

f(x) + µΦ(x) > Mf + γMΦ = f(z̄∗).

That is, the global minimum of (3.6) cannot occur on X0. By (3.7) the global minimum

of (3.6) must be attained at some z̄ ∈ Z̄; i.e., property (A3) is satisfied. Setting µ0 =

max{β, γ} completes the proof.

Remark 3.1 In the original proof in Giannessi and Niccolucci [41], γ is defined as

γ =
supx∈X̄ f(x)−Mf

MΦ

<∞,

which requires that f be also bounded above. They have

f(x) + µΦ(x) > Mf + γMΦ ≥ f(z̄), for each x ∈ X0,
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for each z̄ ∈ Z̄ and µ > γ. This is unnecessary since in order to prove weak equivalence,

we only need to show that the global minimum does not occur on X0. Hence, we defined

γ as in (3.8) and relaxed the upper bound on f .

Remark 3.2 Alternatively we can define γ = (f(z̄) −Mf )/MΦ for some z̄ ∈ Z̄ with

f(z̄) <∞. Thus for µ > γ and x ∈ X0,

f(x) + µΦ(x) > Mf + γMΦ = f(z̄) ≥ f(z̄∗).

In theory such a definition of γ will generally result in a larger γ.

Remark 3.3 The compactness of X can be relaxed. In this case we define MΦ =

inf
x∈X0

Φ(x) > 0. Note that the infimum may not be attained on X0.

3.3 Relaxation Using the Quadratic Penalty

Function

In this section we will present the results of Giannessi and Niccolucci [41] which show

that not only problems (2.1) and (3.3) are weakly equivalent but also the relaxation using

the quadratic penalty function (3.3) has a strictly concave objective function for µ > µ0.

We will also discuss two special cases of nonlinear 0-1 programming in which µ0 can be

efficiently computed.

Before we proceed, we will survey other relevant research on the subject in the liter-

ature. One of the earliest work was due to Raghavachari [97]. Raghavachari studied the

linear 0-1 programming problem where f(x) and g(x) are linear functions in (2.1) and

(3.3). It was shown that every 0-1 feasible solution to {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ e} is an

extreme point of the polyhedron. Using the well-known property (e.g., [62, 112]) that a

strictly concave function on a compact convex set attains its minima at extreme points,

Raghavachari established that (2.1) is equivalent to a concave minimization problem of

the form (3.3) for a sufficiently large µ. Kalantari and Rosen [66] derived a lower bound

for µ0 such that for µ > µ0 the equivalence in Raghavachari [97] holds. Furthermore,

Kalantari and Rosen [67] and Borchardt [14] independently studied linearly constrained

nonlinear 0-1 programming problems. They showed that the above equivalence result

and lower bound for µ0 obtained in linear 0-1 programming generalize to the cases with
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a concave nonlinear objective function and linear constraints. They also described how

to extend their results to 0-1 programming problems with a general nonlinear objec-

tive function and linear constraints. However, in both Kalantari and Rosen [67] and

Borchardt [14], computing the lower bound for µ0 requires solving a continuous global

minimization problem of a concave objective function over a polytope, which itself is an

intractable problem. Li [76] proposed a scheme of solving nonlinear 0-1 programming

problems, where both f(x) and g(x) are nonlinear in (2.1), by solving a sequence of

problems

minimize f(x) + µxT (e− x)

subject to g(x) ≤ 0

xT (e− x) ≤ 1
µ

0 ≤ x ≤ e

for an increasing penalty parameter µ. Li chose the initial µ such that µxT (e − x) is

of the same order of magnitude as f(x). The constraint xT (e − x) ≤ 1
µ

was meant to

accelerate the convergence to a 0-1 point and overcome the difficulty of µ becoming too

large. Li also noted that the proposed method heavily depends on the initial point and

it may converge to a non-integer local minimum.

Now we state the main results on problem (2.1) and its relaxation using the quadratic

penalty function. Giannessi and Niccolucci [41] proved that conditions (ii) and (iii) of

Theorem 3.1 hold for the quadratic penalty function. Furthermore, they showed that

under a mild condition the objective function f(x) +µxT (e−x) in (3.3) becomes strictly

concave for a sufficiently large µ. They obtained the following theorem.

Theorem 3.2 (Giannessi and Niccolucci [41], 1976) For problems (2.1) and (3.3),

suppose that f satisfies condition (i) of Theorem 3.1 with α = 1; i.e., f is bounded below

on X = {x ∈ Rn : 0 ≤ x ≤ e} and Lipschitz continuous on an open set A ⊃ Z = Bn.

Furthermore, f ∈ C2(X ). Then there exists µ0 such that for each µ > µ0, problems (2.1)

and (3.3) are weakly equivalent and (3.3) has a strictly concave objective function.

Now for a nonlinear 0-1 programming problem (2.1) that satisfies the conditions in

Theorem 3.2, we can obtain a relaxation of form (3.3) whose objective function is strictly

concave. If {x ∈ Rn : g(x) ≤ 0} is a convex set, e.g., a polyhedron when g(x) is linear,
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we can exploit the extensive theory and methods for minimization of concave functions

to globally solve (3.3) and hence find the optimal solution to (2.1). To this end, we need

to determine the threshold value µ0 in Theorem 3.2 a priori. In the following we will

discuss two cases of quadratic 0-1 programming where µ0 can be determined. We will

describe how to compute µ0 for the QAP as a special case of quadratic 0-1 programming

in section 3.4.

In unconstrained quadratic 0-1 programming problems, we set µ0 = max
{

1
2
λ̄, 0
}

,

where λ̄ is the largest eigenvalue of the Hessian of the quadratic objective function.

In this case the Hessian is constant, so λ̄ can be computed efficiently. For µ > µ0,

the objective function of the relaxation using the quadratic penalty function is strictly

concave. Since the only constraints in the relaxation are 0 ≤ x ≤ e, the minima of the

relaxation coincide with the vertices of the unit hypercube. The global minimum occurs

at one of the vertices. Note that unconstrained quadratic 0-1 programming exhibits the

strong equivalence properties.

We now consider the linearly constrained quadratic 0-1 programming problems. In

general, setting µ0 to max
{

1
2
λ̄, 0
}

in (3.3) does not guarantee that the global minimum

is attained at a vertex of the unit hypercube because there are other vertices that are

non-integer. The global minimum may occur at a non-integer vertex. We illustrate this

by the following example.

Example 3.1 Consider the following quadratic 0-1 programming problem with a convex

objective function

minimize
(
x1 − 1

2

)2
+ x2

2(3.9)

subject to 1.1x1 + x2 = 1

x1, x2 ∈ B.

We plot the contours of the objective function and the constraint in figure 3.2. The

constraint 1.1x1 + x2 = 1 crosses line x2 = 0 at (0.9091, 0). The only feasible integer

solution is (0, 1); point (1, 0) is not feasible. The minimum of the relaxed problem obtained

by replacing x1, x2 ∈ B with 0 ≤ x1, x2 ≤ 1 is at (0.724, 0.2036). The only eigenvalue of

the Hessian of the objective function of (3.9) is 2. It is easy to see that for µ > 1
2
λ̄ = 1,(

x1 − 1
2

)2
+ x2

2 + µ
∑2

i=1(xi − x2
i ) is strictly concave. We substitute 1− 1.1x1 for x2 and
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Figure 3.2 A Simple Problem with a Convex Quadratic Objective Function

obtain the following one-dimensional relaxation:

minimize
x1

P (x1;µ) , 2.21(1− µ)x2
1 − (3.2− 2.1µ)x1 + 1.25(3.10)

subject to 0 ≤ x1 ≤ 0.9091.

Figure 3.3 illustrates the objective function of problem (3.10) parameterized by µ. As we

can see, for µ = 3, P (x1;µ) is strictly concave. However, the global minimum occurs at

x1 ≈ 0.9091, which is non-integer. We observe that P (0;µ) = P (0.9091;µ) = 1.25 for

µ ≈ 13.0919 and the global minimum occurs at x1 = 0 for µ > 13.0919. Figure 3.3(d)

shows that the global minimum is at x1 = 0 for µ = 20.

Zhu [119] studied the quadratic 0-1 programming problem of form (2.9). The relax-

ation using the quadratic penalty function is

minimize 1
2
xTQx+ cTx+ µxT (e− x)(3.11)

subject to Ax ≤ b

0 ≤ x ≤ e.

Zhu obtained the following result that gives an estimate of µ0 in Theorem 3.2 for linearly

constrained quadratic 0-1 programming problems.
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Figure 3.3 Parameterized Objective Function in One-Dimensional Relaxation
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Theorem 3.3 (Zhu [119], 2003) Suppose that (2.9) is feasible and all the components

of A and b are integral. Let

(3.12) µ0 = 1
2
λ̄+ 2(f̄ − f) max

i=1,...,m
‖Ai‖∞

where λ̄ is the largest eigenvalue of Q, f̄ is the upper bound on the objective value of

(2.9), f is the lower bound on the objective value of (3.11) for µ = 1
2
λ̄, and Ai is the

i-th row of matrix A. Then for each µ > µ0, (2.9) and (3.11) are weakly equivalent and

(3.11) is a quadratic programming problem with a strictly concave objective function.

Remark 3.4 The upper bound f̄ is approximated by the sum of all the positive com-

ponents of 1
2
Q and c with f̄ = 0 if there is no positive component. To compute the lower

bound f , Zhu recommends a polynomial time algorithm of Pardalos and Rodgers [93].

We would like to point out that the estimate of µ0 by (3.12) has two drawbacks.

First, (3.12) may introduce an unnecessarily large penalty parameter µ for (3.11) because

the lower bound and upper bound estimates f and f̄ are not tight. Second, the value of

µ0 computed by (3.12) is sensitive to the scaling of the linear constraint coefficients. The

following example illustrates the second drawback.

Example 3.2 For the quadratic 0-1 programming problem (3.9), we multiply the coeffi-

cients of the linear constraint by 100 and omit the constant term in the objective function.

Thus we have the following equivalent problem:

minimize x2
1 + x2

2 − x1(3.13)

subject to 110x1 + 100x2 = 100

x1, x2 ∈ B

Obviously (3.13) satisfies the integrality condition on the components of A and b in The-

orem 3.3. We have λ̄ = 2, f̄ = 2, and f = 0. Thus µ0 = 1
2
(2) + 2(2 − 0)(110) = 441.

In fact, we can scale the coefficients of the linear constraint to arbitrarily large integers,

hence resulting in an arbitrarily large µ0. Note that figure 3.3 shows that µ > 13.0919 is

sufficient for the problem in Example 3.1.

In summary, Theorem 3.2 establishes weak equivalence between a nonlinear 0-1

programming problem (2.1) and its relaxation using the quadratic penalty function (3.3).
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Although the global minimum of (3.3) for µ > µ0 is attained at a 0-1 solution, in general

there are non-integer local minima to (3.3). For the cases where the constraints of (3.3)

form a convex set and µ0 in Theorem 3.2 can be determined, we can attempt to globally

solve the concave minimization problem and find the optimal solution to the original

0-1 problem. However, the global concave minimization problem is generally NP-hard.

Alternatively, we can locally solve the relaxation, but an algorithm that searches for a

local minimum may end up at a non-integer local minimum of the relaxation and hence

fail to find an integer feasible solution to the original 0-1 problem. In example 3.1, the

global minimum is at (x1, x2) = (0, 1) for µ > 13.0919, but a local algorithm starting

close to (x1, x2) = (1, 0) will get trapped in the local minimum at (x1, x2) ≈ (0.9091, 0),

as is obvious in figure 3.3(d).

In the next section we will discuss the relaxation using the quadratic penalty function

for the QAP. The QAP possesses nice properties that preclude the above difficulty.

3.4 Strong Equivalence of the QAP Relaxation

Pardalos and Rosen [94] considered the QAP of the form:

minimize xTQx(3.14)

subject to Lx = b

x ∈ Bn

and its relaxation:

minimize xT (Q− µI)x(3.15)

subject to Lx = b

x ≥ 0,

where µ is such that Q−µI is negative definite. They showed that (3.14) and (3.15) are

equivalent in the sense that the feasible solutions to (3.14) coincide with the minima of

(3.15) and the objective values of (3.14) and (3.15) at each 0-1 feasible point differ by a

constant.

In this research we consider the QAP of form (1.5) and its relaxation using the
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quadratic penalty function:

minimize 1
2
xTQx+ cTx+ µxT (e− x)(3.16)

subject to Lx = b

x ≥ 0.

Since the assignment constraints Lx = b and the nonnegativity constraints x ≥ 0 com-

bined imply upper bounds x ≤ e, we do not explicitly write the upper bounds on x in

(3.16). Note that the difference between (3.15) and (3.16) is in the linear terms in the

objective function of (3.16). Before we present the main theorem, we need the following

lemma.

Lemma 3.4 The set of the feasible solutions to the QAP

Z̄ = {x ∈ Bn : Lx = b}

coincide with the set of extreme points or vertices of the following polyhedral set

X̄ = {x ∈ Rn : Lx = b, x ≥ 0} .

Proof. It is well-known (refer to Proposition A.1 in Appendix A.1) that the assignment

matrix L in (1.5) is totally unimodular. Consequently, for every basic matrix B of L,

detB = ±1. If xB are the basic variables, we have

BxB = b.

By Cramer’s rule, the j-th component of xB

(xB)j =
detBj

detB
, ∀j.

Where Bj is obtained from B by replacing its j-th column with b. If we expand the

determinant of Bj by the cofactors of the j-th column, we have detBj being integer

valued since b is a vector of all ones. Hence (xB)j is an integer; i.e., the basic solutions

to Lx = b are integer valued. It follows that the basic feasible solutions to Lx = b, x ≥ 0

are also integer valued, and so are the extreme points of set X̄ . Since Lx = b, x ≥ 0

implies x ≤ e, we have x ∈ Bn at the extreme points.
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Theorem 3.5 The QAP (1.5) and its relaxation using the quadratic penalty function

(3.16) are strongly equivalent for µ > µ0 = 1
2
λ̄, where λ̄ is the largest eigenvalue of Q.

Proof. For µ > 1
2
λ̄, the objective function of (3.16) is strictly concave. By Lemma 3.4,

the 0-1 feasible solutions of (1.5) coincide with the extreme points of the feasible region

of (3.16). Since a strictly concave function over a closed convex set attains its minima at

the extreme points, by definition 3.2, (1.5) and (3.16) are strongly equivalent.

We can select some µ > µ0 = 1
2
λ̄ so (1.5) and (3.16) are strongly equivalent. Al-

ternatively, the following proposition provides an inexpensive method to compute an

estimate of µ0.

Proposition 3.6 (Bazaraa and Sherali [12], 1982) Suppose Q = (qij) ∈ Rn×n is

symmetric and qij ≥ 0 for i, j = 1, . . . , n. Let µ0 = 1
2
‖Q‖∞, where ‖Q‖∞ = max

i=1,...,n

n∑
j=1

|qij|.

Then Q− 2µI is negative definite for µ > µ0.

Interested readers are referred to Appendix A.2 for the proof of Proposition 3.6.

By Theorem 3.5, we will always find a 0-1 feasible solution to the QAP (1.5) by

locally solving its relaxation (3.16). That is, a 0-1 feasible solution is guaranteed for

the QAP via the method of relaxation using the quadratic penalty function. However, a

solution thus obtained depends on the starting point. It is likely that starting from an

arbitrary point the method fails to find a good 0-1 solution to the QAP. In section 3.5, we

will discuss an algorithm that attempts to address the issue of a suitable starting point.

3.5 A Smoothing Algorithm

In the method of relaxation using the quadratic penalty function for nonlinear 0-1 pro-

gramming, our goal is to find a good, if not optimal, 0-1 solution to (2.1) by locally

solving (3.3). If only weak equivalence holds, we require the algorithm that solves (3.3)

to avoid non-integer local minima so we can find a 0-1 feasible solution to (2.1). In

the case where strong equivalence holds, a 0-1 feasible solution to (2.1) is guaranteed.

In either case, the local 0-1 solution obtained by solving (3.3) heavily depends on the

starting point. Hence we need a scheme to start from a point that will lead to a good

0-1 solution.
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To our knowledge, Ng [87] is the first of such work to address the issue of a suitable

starting point for the method of relaxation using the quadratic penalty function. Ng

developed a smoothing algorithm for the following nonlinear 0-1 programming problem

minimize f(x)(3.17)

subject to Ax = b

x ∈ Bn.

In the proposed algorithm the relaxation of (3.17) of the following form

minimize
x

P (x;µ, γ) , f(x) + µxT (e− x)− γ
n∑
i=1

(
log xi + log(1− xi)

)
(3.18)

subject to Ax = b

is solved sequentially with an increasing µ and a decreasing γ. The initial µ is chosen to

be very small and the initial γ to be sufficiently large. The barrier term −γ
∑n

i=1

(
log xi+

log(1 − xi)
)

serves two purposes. It replaces the bound constraints 0 ≤ x ≤ e in (3.3)

and it has a smoothing effect; i.e., for a sufficiently large γ the multiple local minima

have disappeared and P (x;µ, γ) becomes unimodal.

Ng [87] noted that with the initial µ and γ thus chosen, the algorithm effectively

starts from the analytic center of the feasible region X̄ = {x ∈ Rn : Ax = b, 0 ≤ x ≤ e },
given as the optimal solution to the following problem:

minimize −
n∑
i=1

(
log xi + log(1− xi)

)
(3.19)

subject to Ax = b.

More specifically Ng proved the following theorem.

Theorem 3.7 (Ng [87], 2002) Suppose X̄ 6= ∅, x∗(γ) is the optimal solutions to (3.18)

for µ = 0, and x∗ is the optimal solution to (3.19). Then lim
γ→∞

x∗(γ) = x∗.

The basic idea of the smoothing algorithm is that starting from a “neutral” point,

i.e., the analytic center of the feasible region, and by gradually imposing integrality on

the variables, the algorithm has a better chance to follow a continuous trajectory to

the global or at least a good solution to (3.17). The following example shows how the

smoothing algorithm works.
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Figure 3.4 Illustration of Smoothing Algorithm in Two-Dimensional Subspace

Example 3.3 Consider the following quadratic 0-1 programming problem

minimize f(x1, x2, x3) = −3x2
1 − 2

(
x2 − 1

2

)2
+ x2

3(3.20)

subject to x1 + x2 + x3 = 1

x1, x2, x3 ∈ B.

There are three feasible solutions to (3.20) whose objective values are f(1, 0, 0) = −3.5,

f(0, 1, 0) = −0.5, and f(0, 0, 1) = 0.5 respectively. Obviously (x1, x2, x3) = (1, 0, 0) is

the optimal solution to (3.20). For the illustration purpose, we replace x1, x2, x3 ∈ B by

0 ≤ x1, x2, x3 ≤ 1 and then x3 by 1−x1−x2. Hence we obtain the following 2-dimensional

relaxation (without adding a penalty term):

minimize f(x1, x2) = −2x2
1 + 2x1x2 − x2

2 − 2x1 + 1
2

(3.21)

subject to x1 + x2 ≤ 1

0 ≤ x1, x2 ≤ 1.

We plot the contour of the objective function and the constraint of (3.21) in figure 3.4.

Now we apply the smoothing algorithm to (3.20). We set the initial µ to 0.01 and the

initial γ to 100. In two successive iterations, µ is increased by a ratio of 1.15 and γ

decreased by a ratio of 0.6. The algorithm starts at the analytic center of the feasible

region,
(

1
3
, 1

3
, 1

3

)
. The trajectory of the iterates are projected onto the x1-x2 plane as
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indicated by the symbols “×” in figure 3.4. Note that the smoothing algorithm does find

the optimal solution to (3.20).

We would like to point out that the performance of the smoothing algorithm is very

sensitive to the parameters chosen. These parameters include the initial values of µ and

γ, and the ratios of their increase or decrease. Second, the choice of the ratio of increase

for µ relative to the ratio of decrease for γ also affects the performance of the algorithm.

Thirdly, a suitable set of parameters for the algorithm is often problem-dependent. These

drawbacks considerably restrict the applicability of the smoothing algorithm.

3.6 Asymptotic Properties of the Quartic Penalty

Function

In this section we will first show that for a nonlinear 0-1 programming problem its relax-

ation using the quartic penalty function does not exhibit weak equivalence for any finite

penalty parameter µ. Then we will define asymptotic equivalence between a nonlinear 0-1

programming problem and its relaxation with a penalty function. Last we will prove that

the QAP relaxation using the quartic penalty function possesses the weak asymptotic

equivalence properties but not the strong asymptotic equivalence properties.

Proposition 3.8 For a nonlinear 0-1 programming problem (2.1) with an objective func-

tion f ∈ C2, weak equivalence does not hold for its relaxation using the quartic penalty

function.

Proof. Let us consider the relaxation of the form (3.4). Setting R = {x ∈ Rn : g(x) ≤ 0}
in (3.4), we have

minimize
x

f(x) + µ‖x ◦ (e− x)‖2 , P (x;µ)(3.22)

subject to x ∈ R ∩ X

where X is defined in (3.1). If weak equivalence were to hold, it would have to be the

case that for every instance of (2.1) every feasible solution is a local minimum of (3.22)

for some sufficiently large µ. On the contrary, we will show that for some instances there

exists a feasible solution which cannot be a local minimum of (3.22) for any finite µ.
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Indeed, it is clearly the case that in some instances there will be a point z ∈ Bn ∩R for

which there exist s ∈ Rn and 0 < ᾱ <∞ such that

z + αs ∈ R ∩ X for 0 < α ≤ ᾱ

and

∇f(z)T s < 0.

By the Taylor’s formula, we have

(3.23) f(z + βs) = f(z) + β∇f(z)T s+ 1
2
β2sT∇2f(z + ξβs)s, 0 < ξ < 1,

where 0 < β ≤ ᾱ. The following holds

(3.24) ∇f(z)T s+ 1
2
βsT∇2f(z + ξβs)s < σ∇f(z)T s

for 0 < σ < 1 if and only if

1
2
βsT∇2f(z + ξβs)s < (σ − 1)∇f(z)T s.

Note that (σ − 1)∇f(z)T s > 0. Let

M = sup
0<β≤ᾱ

{
1
2
sT∇2f(z + ξβs)s

}
,

and

β0 =

{
ᾱ if M ≤ 0

min
(
ᾱ, (σ − 1)∇f(z)T s/M

)
otherwise

.

Thus, (3.24) holds for 0 < β < β0. By (3.23), we have

(3.25) f(z + βs) < f(z) + σβ∇f(z)T s

for 0 < β < β0. Furthermore, we have

‖(z + βs) ◦ (e− z − βs)‖2 = β2

n∑
i=1

[(1− 2zi − βsi)si]2 .

Let

M̄ = sup
0<β<β0

n∑
i=1

[(1− 2zi − βsi)si]2 .
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Note that M̄ > 0. Defining β1 = min
(
β0,−σ∇f(z)T s/(µM̄)

)
, we have that for 0 < β <

β1,

µβ2

n∑
i=1

[(1− 2zi − βsi)si]2 ≤ µβ2M̄ < −σβ∇f(z)T s

or

µ‖(z + βs) ◦ (e− z − βs)‖2 < −σβ∇f(z)T s.(3.26)

Adding (3.25) and (3.26), we get

P (z + βs;µ) = f(z + βs) + µ‖(z + βs) ◦ (e− z − βs)‖2

< f(z) = P (z;µ)

for 0 < β < β1. Thus z cannot be a (local) minimum of (3.22).

Now we consider the following asymptotic properties between nonlinear 0-1 pro-

gramming problem (2.1) and its relaxation with a penalty function (3.2):

(B1) Φ(x) = 0 for x ∈ Bn and Φ(x) > 0 for x ∈ X \Bn.

(B2) Every 0-1 feasible solution to (2.1) is a limit point of some sequence of (local)

minima x̂(µ) of (3.2) as µ→∞.

(B3) The sequence of the global minima x∗(µ) of (3.2) has the limit at a 0-1 point.

(B4) The limit point of any sequence of (local) minima x̂(µ) of (3.2) as µ→∞ is a 0-1

feasible solution to (2.1).

Similar to definitions (3.1) and (3.2), we define the following.

Definition 3.3 (Weak Asymptotic Equivalence)

A nonlinear 0-1 programming problem (2.1) and its relaxation (3.2) are said to be

weakly asymptotically equivalent if properties (B1)–(B3) hold.

Definition 3.4 (Strong Asymptotic Equivalence)

A nonlinear 0-1 programming problem (2.1) and its relaxation (3.2) are said to be

strongly asymptotically equivalent if properties (B1), (B2), and (B4) hold.
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To show that only weak asymptotic equivalence holds for the QAP and its relaxation

using the quartic penalty function, we consider the following relaxation of the QAP:

minimize
x

1
2
xTQx+ cTx+ µ‖x ◦ (e− x)‖2(3.27)

subject to Lx = b,

The above form is equivalent to setting X = Rn in (3.4). We will first show that for

each 0-1 feasible solution to the QAP, there is a sequence of local minima of (3.27) that

converge to the 0-1 point as µ → ∞. We will also show that there exists a sequence of

local minima of (3.27) that converge to a noninteger point as µ→∞.

Before we prove the main theorem, we need the following three lemmas. Lemma 3.9

gives the bounds on the norms of two matrices.

Lemma 3.9 Given n × n symmetric matrices Q and D with D being positive definite,

we let H = 1
2µ
Q+D and W = −(LH−1LT )−1. Furthermore, let µ0 > 0 be such that for

µ ≥ µ0, H is positive definite. Then, for µ ≥ µ0, we have

‖H−1‖ < τ1 and(3.28)

‖W‖ < τ2(3.29)

where τ1 <∞ and τ2 <∞ are independent of µ.

Proof. Before we proceed, we need the following notation. Let pk(z) denote a polynomial

of degree k in x, i.e.,

pk(z) = a0 + a1z + a2z
2 + · · ·+ akz

k.

Note that lim
z→0

pk(z) = a0. Similarly we will also use the notation qk(z) and rk(z). Now

we have, for µ ≥ µ0,

H−1 =

(
1

2µ
Q+D

)−1

=
adj
(

1
2µ
Q+D

)
det
(

1
2µ
Q+D

)
where adj(·) denotes the adjoint of a matrix, i.e., [adjA]ij = Aji and Aji denotes the (j,i)-

cofactor of A. Note that each component of adj
(

1
2µ
Q+D

)
is a polynomial of degree
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n− 1 in
1

µ
. Hence we have

(3.30) H−1 =
[p

(ij)
n−1

(
1
µ

)
]

pn

(
1
µ

)
where we use the superscript (ij) to denote the (i,j)-th component of the adjoint. Thus

‖H−1‖ =
1

pn

(
1
µ

)‖[p(ij)
n−1

(
1

µ

)
]‖

<
1

pn

(
1
µ

) n∑
i=1

p
(ii)
n−1

(
1

µ

)
, ζ1(µ)

where the inequality follows from the fact that the eigenvalues of H are all positive. Since

pn

(
1
µ

)
> 0 for µ ≥ µ0, ζ1(µ) is continuous on Ω , {µ : µ0 ≤ µ <∞}. Furthermore,

lim
µ→∞

ζ1(µ) =
1

a0

n∑
i=1

a
(ii)
0

where a0 and a
(ii)
0 denote the constant terms in pn

(
1
µ

)
and p

(ii)
n−1

(
1
µ

)
, respectively. It is

easy to see that ζ1(µ) is bounded on Ω. Let τ1 = sup
µ∈Ω

ζ1(µ) and thus

‖H−1‖ < τ1

which proves (3.28).

Now we rewrite W as follows

W = −(LH−1LT )−1 = −(LD−1(I +
1

2µ
QD−1)−1LT )−1.

Note that LH−1LT is invertible since L has a full row rank and so is I + 1
2µ
QD−1

since det(I + 1
2µ
QD−1) detD = detH 6= 0. Using a similar argument as in (3.30),

(I+ 1
2µ
QD−1)−1 is a rational function in 1

µ
whose numerator is a matrix of polynomials of

degree n−1 and whose denominator is a polynomial of degree n. Note that premultiplying

(I + 1
2µ
QD−1)−1 by LD−1 and postmultiplying it by LT preserves the degree of the

polynomials in the numerator and denominator. Hence we have

LD−1(I +
1

2µ
QD−1)−1LT =

[q
(ij)
n−1

(
1
µ

)
]

qn

(
1
µ

)
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and furthermore

(LD−1(I +
1

µ
QD−1)−1LT )−1 = qn(

1

µ
)
[r

(ij)

(n−1)2

(
1
µ

)
]

rn(n−1)

(
1
µ

) .
Therefore,

‖W‖ =
qn( 1

µ
)

rn(n−1)

(
1
µ

)‖[r(ij)

(n−1)2

(
1

µ

)
]‖

<
qn( 1

µ
)

rn(n−1)

(
1
µ

) n∑
i=1

r
(ii)

(n−1)2

(
1

µ

)
, ζ2(µ).

ζ2(µ) is bounded on Ω and let τ2 = sup
µ∈Ω

ζ2(µ). Thus we have

‖W‖ < τ2

which completes the proof.

We have the following lemma that defines the relationship between a feasible solution

to the QAP and the local minima of (3.27). Note that in the proofs of Lemmas 3.10 and

3.11 that follow, we use λ and λ̃ to denote Lagrange multipliers.

Lemma 3.10 Let x̂ be a feasible solution to the QAP. The QAP relaxation using the

quartic penalty function (3.27) has local minima x∗(µ) in some neighborhood of x̂ for

sufficiently large µ. Furthermore,

lim
µ→∞

x∗(µ) = x̂.

Proof. Consider the following first order optimality conditions for (3.27).

Qx+ c+ 2µ(X − 3X2 + 2X3)e+ LT λ̃ = 0

Lx = b

where X is an n×n diagonal matrix formed from x and λ̃ ∈ Rm is the vector of Lagrange

multipliers. Replacing λ̃ with 2µλ and then dividing the first system of equations through

by 2µ, we get

F (x, λ) =

[ 1
2µ

(Qx+ c) + (X − 3X2 + 2X3)e+ LTλ

Lx− b

]
= 0.
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The Jacobian of F (x, λ) is as follows.

J(x, λ) =

[ 1
2µ
Q+ I − 6X + 6X2 LT

L 0

]
=

[
H(x) LT

L 0

]
.

where H(x) = 1
2µ
Q+ I − 6X + 6X2. Note that J(x, λ) is independent of λ. We let

x0 = x̂,

λ0 = 0.

Since x̂ is a feasible solution to the QAP, we have

F (x0, λ0) =

[ 1
2µ
w

0

]
,

‖F (x0, λ0)‖ =
1

2µ
‖w‖,

where w = Qx̂+ c.

Let B((x0, λ0), r) denote a neighborhood of (x0, λ0) with a radius r > 0. For

(x, λ1), (y, λ2) ∈ B((x0, λ0), r),

J(x, λ1)− J(y, λ2) =

[
6(X2 − Y 2 + Y −X) 0

0 0

]
.

‖J(x, λ1)− J(y, λ2)‖ = 6‖X2 − Y 2 + Y −X‖

≤ 6‖X − Y ‖‖X + Y − I‖.

Note that for i = 1, . . . , n,

− r < xi − x̂i < r and − r < yi − x̂i < r,

− (2r + 1) ≤ 2x̂i − 2r − 1 < xi + yi − 1 < 2x̂i + 2r − 1 ≤ 2r + 1,

|xi + yi − 1| < 2r + 1.

Hence,

‖J(x, λ1)− J(y, λ2)‖ < 6N(2r + 1)‖x− y‖.

That is, J(x, λ) is Lipschitz continuous on B((x0, λ0), r) with the Lipschitz constant

γ , 6N(2r + 1). Let X̂ be an n× n diagonal matrix formed from x̂ and we have

H(x0) =
1

2µ
Q+ I − 6X̂ + 6X̂2 =

1

2µ
Q+ I.
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To simplify the notation, we denote H(x0) by H in the following. Note that

det J(x0, λ0) = det

[
I 0

−LH−1 I

] [
H LT

L 0

] [
I −H−1LT

0 I

]

= det

[
H 0

0 −LH−1LT

]
= detH det(−LH−1LT ).

Let µ0 > 0 be such that H is positive definite for µ ≥ µ0. Thus, J(x0, λ0) is nonsingular

for µ ≥ µ0. Furthermore, we have

J(x0, λ0)−1 =

[
H−1(I + LTWLH−1) −H−1LTW

−WLH−1 W

]
where W = −(LH−1LT )−1. Therefore, we have that for µ ≥ µ0,

‖J(x0, λ0)−1‖ ≤ ‖H−1(I + LTWLH−1)‖+ ‖−H−1LTW‖+ ‖−WLH−1‖+ ‖W‖

≤ ‖H−1‖+ ‖H−1‖2‖L‖2
F‖W‖+ 2‖H−1‖‖L‖F‖W‖+ ‖W‖

= ‖H−1‖+
(
‖H−1‖‖L‖F + 1

)2 ‖W‖

≤ τ1 +
[
τ1

√
N(2N − 1) + 1

]2

τ2 , β,

which follows from lemma 3.9 and the observation ‖L‖F =
√
N(2N − 1) with ‖·‖F

denoting the Frobenius norm of a matrix. Also we have

‖J(x0, λ0)−1F (x0, λ0)‖ ≤ ‖J(x0, λ0)−1‖‖F (x0, λ0)‖

≤ β

2µ
‖w‖ , η.

As a result,

α = βγη =
1

2µ
6N(2r + 1)β2‖w‖ ≤ 1

2

for a sufficiently large µ. Note that for r ≥
−1+

√
1+ 4

3Nβ

4
> 0,

r ≥ 1

6N(2r + 1)β
=

1

βγ
≥ 1−

√
1− 2α

βγ
, r0.

Therefore, by the Kantorovich theorem [64, 89], the system F (x, λ) has a unique

solution in the closure of B((x0, λ0), r0). Moreover, as µ→∞, α→ 0 and r0 → 0. Since

for a sufficiently large µ, the Hessian H(x) at such a solution is positive definite, the

solution is a minimum.

Now we present the result regarding the noninteger local minima of (3.27) in the

following.
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Lemma 3.11 For the QAP with N ≥ 5, its relaxation using the quartic penalty function

(3.27) has a noninteger local minimum x∗(µ) in some neighborhood of x̃ = 1
N
e for a

sufficiently large µ. Furthermore,

lim
µ→∞

x∗(µ) = x̃.

Proof. The proof is very similar to that of lemma 3.10. We have

F (x, λ) =

[ 1
2µ

(Qx+ c) + (X − 3X2 + 2X3)e+ LTλ

Lx− b

]
and

J(x, λ) =

[
H(x) LT

L 0

]
.

We define x0 and λ0 as follows:

x0 = x̃ =
1

N
e,

λ0 =

[ −κ1(N)d

0

]
∈ Rm

where κ1(N) = 1
N
− 3

N2 + 2
N3 and d ∈ RN is a vector of ones. From the structure of L,

we have

LTλ0 = −κ1(N)e,

Le = Nb.

Let X̃ be an n× n diagonal matrix formed from x̃. Then

1

2µ
(Qx0 + c) + (X̃ − 3X̃2 + 2X̃3)e+ LTλ0 =

1

2µ

(
1

N
Qe+ c

)
=

1

2µ
w

and

Lx0 − b =
1

N
Le− b = 0

where w = 1
N
Qe+ c. Therefore

F (x0, λ0) =

[ 1
2µ
w

0

]
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and

‖F (x0, λ0)‖ =
1

2µ
‖w‖.

At x0 = 1
N
e, we have

H(x0) =
1

2µ
Q+ I − 6X̃ + 6X̃2 =

1

2µ
Q+ κ2(N)I

where κ2(N) = 1− 6
N

+ 6
N2 . For N ≥ 5, κ2(N) > 0 and hence κ2(N)I is positive definite.

The rest of the proof follows as in Lemma 3.10.

We have the following theorem.

Theorem 3.12 For N ≥ 5, the QAP (1.5) and its relaxation using the quartic penalty

function (3.27) are weakly asymptotically equivalent but not strongly asymptotically equiv-

alent.

Proof. The proof follows from Definitions 3.3 and 3.4, and Lemmas 3.10 and 3.11.

3.7 Summary

In this chapter, we first described the relaxation with a penalty function for a nonlinear

0-1 programming problem. Then we introduced two definitions: weak equivalence and

strong equivalence. We have shown that under mild conditions weak equivalence holds

for a nonlinear 0-1 programming problem and its relaxation using the quadratic penalty

function and the relaxation has a strictly concave objective function. Furthermore, strong

equivalence holds for the QAP and its relaxation using the quadratic penalty function.

A smoothing algorithm that attempts to address the issue of the starting point for the

relaxation using the quadratic penalty function was described and its drawbacks were

discussed. We showed that weak equivalence does not hold for a nonlinear 0-1 program-

ming problem and its relaxation using the quartic penalty function for any finite penalty

parameter. Then we defined weak asymptotic equivalence and strong asymptotic equiv-

alence and showed that only weak asymptotic equivalence holds for the QAP relaxation

using the quartic penalty function.

In this research, we apply the method of relaxation with a penalty function to solve

the QAP. By the strong equivalence properties of the QAP, we can solve its relaxation
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using the quadratic penalty function for some finite penalty parameter and always find an

integer solution to the QAP. On the other hand, the QAP relaxation using the quartic

penalty function possesses weak asymptotic equivalence only and it has the following

drawbacks:

• By (weak) asymptotic equivalence, for a solution to the relaxation using the quartic

penalty function to be close to an integer solution of the QAP, the penalty param-

eter may have to be very large. This can cause numerical difficulties in solving the

relaxation, especially in higher dimensions.

• In absence of strong asymptotic equivalence, the algorithm can terminate at a local

solution that is not integer.

Accordingly, the quadratic penalty function is preferred and hence the method of re-

laxation using the quadratic penalty function will be used in this research. With the

relaxation using the quadratic penalty function, we have a concave minimization prob-

lem for a sufficiently large penalty parameter. Unless we can globally solve this problem,

the solution we obtain depends critically on the starting point. In Chapter 4, we will

describe how a good starting point might be found. Assuming we have one, denoted by

x0, we have the following options:

(i) Start from x0 and solve the QAP relaxation using the quadratic penalty function

for a sufficiently large penalty parameter µ.

(ii) Start from x0 and gradually increase the penalty parameter µ, solving a series

of relaxations of the form (3.16). It is to be hoped that the solutions to the

relaxations follow some path leading to a good integer solution.

For option (ii), we have noticed the following:

• As we gradually increase the penalty parameter µ, the path the algorithm follows

may not be continuous. The iterates may jump when µ increases beyond the

threshold value µ0. This occurs when the Hessian of the objective function at the

solution to the relaxation changes from a positive definite matrix to an indefinite

one. Hence even if we start from a good initial point, we may still get a mediocre

solution.
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• By gradually increasing the penalty parameters, we will need to solve many opti-

mization problems before an integer solution can be obtained. This can be perceiv-

ably very expensive.

Naturally, one would ask whether the extra computation involved in option (ii) pays off.

Our numerical experience has indicated that the significant amount of extra computation

expended in solving a series of optimization problems is not justified by any improvement

over the solution obtained by solving a single relaxation problem. Hence, we will adopt

option (i) in this research. In Chapter 4, we will describe our algorithm for the QAP

which is based on option (i).
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Chapter 4

Solving the QAP via Relaxation and
Quadratic Cuts

4.1 Overview

In Chapter 3 we showed that strong equivalence is a desirable property when we use the

continuous relaxation and penalty function techniques to solve a nonlinear 0-1 program-

ming problem. The QAP relaxation with the quadratic penalty function possesses such a

property. As we also mentioned in Section 3.7, we will solve a single relaxation problem

of form (3.16) for a sufficiently large penalty parameter as described in Theorem 3.5.

By the strong equivalence, we are guaranteed to obtain an integer solution to the

QAP by solving (3.16). Nevertheless, two fundamental issues need to be addressed:

1. If we start from an arbitrary point and solve (3.16), chances are that we will only

get an “average” solution to the QAP. Thus we need to choose a starting point for

(3.16) so we can on the average obtain a “good” solution to the QAP.

2. Since there is no guarantee that we will obtain the optimal solution to the QAP by

solving (3.16), if possible, we would like to use a current solution to find a better

one.

In the discussions that follow in this chapter, we will denote the objective function

of the QAP by q(x), i.e.,

q(x) = 1
2
xTQx+ cTx.



4.1.1 The Algorithmic Framework

In this section we will outline the framework of our proposed algorithm for the QAP. The

framework as depicted in Figure 4.1 addresses the two issues brought up in the above.

In step (1) of the framework, we solve the following quadratic programming relax-

ation:

minimize
x

q(x)(QPR)

subject to Lx = b

x ≥ 0

to obtain a starting point x0. In step (2), we start from x0 and solve the QAP relaxation

with the quadratic penalty function (3.16) for the penalty parameter µ to obtain an

initial solution to the QAP. That is, we solve

minimize
x

q(x) + µxT (e− x)(RXP)

subject to Lx = b

x ≥ 0.

Since there is no guarantee that the resulting solution will be optimal to the QAP or

even a “good” one, we would like to employ a method to find a better one. Let us denote

the incumbent solution, or the current best solution, by x̂. It is obvious that any solution

to the QAP with a smaller objective value, if it exists, must satisfy

(4.1) q(x) ≤ q(x̂)− ε

for some small positive ε. This suggests that we add (4.1) to (RXP) and solve the

resulting more restricted problem. We refer to (4.1) as a quadratic cut. More specifically,

we set the incumbent solution x̂ in step (3), and in step (4) starting from x0 we solve the

relaxation with the penalty and quadratic cut :

minimize
x

q(x) + µxT (e− x)(RPC)

subject to x ∈ Ω

where Ω is defined as

(4.2) Ω = {x ∈ Rn : Lx = b, q(x) ≤ q(x̂)− ε, x ≥ 0} .
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Begin

(1) Solve (QPR) for x0.

(2) Starting from x0, solve (RXP).

(3) Set or update incumbent
solution x̂. Set k = 0.

(4) Starting from x0, solve (RPC)
or (DPC).

Found an integer

solution?

(5) Increment k by 1. Generate a
random starting point xk.

(6) Starting from xk, solve (TPC).

Found an integer

solution?

k = Ξ?

End

No

Yes

No

Yes

Yes

No

Figure 4.1 Flowchart of the Algorithmic Framework
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Alternatively, we can replace the objective function of (RPC) with a slightly different

one. That is, in step (4) we start from x0 and solve the minimal distance problem with

the penalty and quadratic cut :

minimize
x

P (x; ρ) , ‖x− x0‖2 + ρxT (e− x)(DPC)

subject to x ∈ Ω

where ρ is chosen to be greater than one so that ∇2
xP (x; ρ) is negative definite. From

the form of P (x; ρ), ∇2
xP (x; ρ) is either negative definite or positive definite (except for

ρ = 1). If ∇2
xP (x; ρ) were positive definite, (DPC) would have a unique optimum, which

is unlikely to be an integer solution. We will explain why ‖x−x0‖2 is used in the objective

function in Section 4.4.

Since the optimal solution to either (RPC) or (DPC) satisfies (4.1), if it is integer it

will be a better solution than x̂. However, even though the objective functions of (RPC)

and (DPC) are concave, the presence of the quadratic cut allows the possibility that an

optimal solution to (RPC) or (DPC) may not be at an integer point. That is, strong

equivalence does not hold for (RPC) or (DPC). If we obtain an integer solution, we go

back to step (3), update x̂ and solve (RPC) or (DPC) again. Otherwise, knowing that

we are unable to obtain a better solution to the QAP by solving (RPC) or (DPC) from

the given starting point, we try different points in Ω to see whether any of them would

lead to an improved solution. To this end, we randomly generate a point xk in Ω in step

(5) and in step (6) we solve the quartic penalty problem with the quadratic cut :

minimize
x

‖x ◦ (e− x)‖2(TPC)

subject to x ∈ Ω

starting from xk. We will discuss why we use the quartic penalty function as the objective

function in Section 4.4. If we find an integer solution to (TPC), we go back to step (3),

update x̂, and carry on from there. Otherwise, if we fail to find an integer solution to

(TPC), we go back to step (5), generate a different random starting point, and re-solve

(TPC) with the new starting point. We define the number of stalled cuts as the number

of successive times we fail to find an integer solution to (TPC). We terminate when the

number of stalled cuts reaches a prescribed number Ξ.

In the following discussions, we will collectively refer to (QPR), (RXP), (RPC),

(DPC) and (TPC) as the relaxation problems, and (RPC), (DPC) and (TPC) as the
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relaxation problems with the quadratic cut.

There are several techniques or components that are indispensable to our proposed

algorithm for the QAP. We will describe the convex transformation of the objective

function in Section 4.2. In Section 4.3 we will describe in detail the techniques of pre-

conditioning that play a crucial role in our algorithm. We will discuss the considerations

in the formulation of the relaxation problems with the quadratic cut in Section 4.4. In

Section 4.5 we will show how to compute random starting points for (TPC).

4.2 Convex Transformation of the Objective

Function

4.2.1 Motivation

In this section we will motivate the study of the techniques of convex transformations of

the QAP that are essential for addressing the two issues described in Section 4.1.

To address the issue of a good starting point, we need to transform the general QAP

with a nonconvex objective function to an equivalent problem with a convex objective

function. To see why this is the case, note that in our proposed algorithm we start

(RXP) from the optimal solution to (QPR). When the objective function is nonconvex,

finding the global minimum is generally intractable; there are possibly multiple local

minima and a priori information about which local minima lead to “good” solutions to

the QAP is unavailable. An arbitrary local minimum x0 does not necessarily lead to a

“good” solution to the QAP. On the other hand, if we have a convex objective function

(QPR) becomes a convex quadratic programming problem and we can efficiently compute

its global minimum. We can then argue that the integer solutions closer to the global

minimum tend to have better objective values than the integer solutions farther away

from the global minimum.

Another reason to have a convex objective function lies in the use of the quadratic

cut. To improve on the incumbent solution, we need to solve the relaxation problems with

the quadratic cut. If q(x) is nonconvex, the feasible regions of the relaxation problems

with the quadratic cut are nonconvex sets, which make it difficult to solve the problems

and even more difficult to find integer solutions to the problems. However, if q(x) is con-

vex, the feasible regions are convex sets and the relaxation problems with the quadratic
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cut become more tractable.

4.2.2 Techniques of Convex Transformation

From the discussion in Section 4.2.1, it is clear that we need to have the objective function

of the QAP to be convex. Fortunately we can transform a QAP instance with a nonconvex

objective function to an equivalent problem with a convex objective function. There

have been several forms of convex transformations suggested. White [116] described one

convex transformation for the QAP. The quadratic term of the objective function of (1.4)

is equivalent to the following:

(4.3) 1
2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

fijdkl
[
(xik + xjl)

2 − (xik + xjl)
]
,

which is obvious because x2
ik = xik and x2

jl = xjl for xik, xjl ∈ B. For the QAP, we have

fij ≥ 0 and dkl ≥ 0. Thus, in general the function (4.3) is convex and White showed that

if certain conditions on the flows and distances are satisfied, it becomes strictly convex.

In a different approach, Hammer and Rubin [57] replaced the objective function

q(x) with the following:

f(x; γ) = 1
2
xTQx+ 1

2
γxT (x− e) + cTx(4.4)

= 1
2
xT (Q+ γI)x+ (c− 1

2
γe)Tx.

Obviously f(x; γ) = q(x) for x ∈ Bn and hence the transformation does not alter the

solutions to the original 0-1 problem. Let λ denote the smallest eigenvalue of Q. Choosing

γ > −λ, we assure that f(x; γ) is a strictly convex function.

It is easy to see that we do not have to choose the same parameter for all the terms in

xT (x− e). Instead we can use the following slightly more general convex transformation

f(x;φ) = 1
2
xTQx+ 1

2

n∑
i=1

φi(x
2
i − xi) + cTx(4.5)

= 1
2
xT (Q+ diag(φ))x+ (c− 1

2
φ)Tx

where φ = (φi) ∈ Rn is such that Q+diag(φ) is positive definite. Hence, (4.4) is a special

case of (4.5).

The convex transformation (4.5) enables us to obtain an equivalent problem with

a strictly convex objective function through perturbing the diagonal elements of the

65



Hessian. As an additional advantage, (4.5) offers a simple and yet effective way to shift

the eigenvalues of the Hessian of the resulting function, which is crucial for our pre-

conditioning algorithm in Section 4.3. Transformation (4.3) does not produce a strictly

convex function nor does it have the advantage of controlling the eigenvalues as with

(4.5). Hence, we will not consider transformation (4.3) any further and we will adopt

transformation (4.5) in our algorithm.

4.3 Pre-Conditioning the Hessian of the Objective

Function

4.3.1 Motivation

The condition number of a positive definite matrix A (see e.g., [107]) is defined as

cond(A) =
λ(A)

λ(A)
,

where λ(·) and λ(·) denote the smallest eigenvalue and largest eigenvalue of a matrix

respectively. If cond(A) is small (near 1), we say A is well-conditioned. The technique

of improving the condition number of a matrix, i.e., bringing it closer to 1, is referred to

as pre-conditioning.

Using the convex transformation (4.5), we can transform the general QAP to an

equivalent problem with a strictly convex objective function. The condition number of

the positive definite Hessian of the resulting objective function plays a crucial role in

how our algorithm performs. The condition number manifests itself in two ways. First,

for the relaxation problems described in Section 4.1, the condition number governs how

numerically stable those problems are. With a well-conditioned positive definite Hessian

the problems become easier to solve in the sense that we see a higher percentage of success

in solving the problems to optimality and, if they are successfully solved, it takes fewer

iterations for an optimization algorithm to converge.

Second, with a well-conditioned positive definite Hessian we have a greater chance

of finding “good” solutions to the QAP. For a quadratic function whose Hessian is pos-

itive definite, its level sets are hyperellipsoids at a common center. The lengths of the

axes of a hyperellipsoid are inversely proportional to the square root of the eigenvalues,

λ1, . . . , λn, of the Hessian; i.e., the lengths are proportional to 1/
√
λ1, . . . , 1/

√
λn. Hence,
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Figure 4.2 Contours of Convex Quadratic Functions

a hyperellipsoid with a well-conditioned Hessian has a shape closer to a hypersphere. To

illustrate the implication of this, we consider the unconstrained examples in Figure 4.2.

In Figure 4.2(a) and Figure 4.2(b), the level sets passing through two integer points are

plotted for a convex quadratic function. x̃ denotes the unconstrained minimum of the

convex quadratic function and p1, p2 denote two integer points. The objective value of

p1 is less than that of p2. In general, with the method of relaxation using a penalty

function, the algorithm tends to follow a path to the nearest integer point because of the

“pull” induced by the penalty term in the objective function. In Figure 4.2(a) where the

level sets are ellipses whose major and minor axes are significantly different in length, if

we start from x̃, the algorithm tends to follow the solid line from x̃ to p2 instead of the

dashed line to p1. On the other hand, in Figure 4.2(b) where the level sets are circles,

starting from x̃, the algorithm tends to go to p1 which has a better objective value than

p2. The objective function with a well-conditioned Hessian has contours that are more

“circular” in shape and the nearest 0-1 integer point to the unconstrained minimum is

more likely to be optimal. Thus, if we start from the unconstrained minimum, we have

a better chance of finding a “good” integer solution. This argument can also be applied

to the constrained cases.

For these reasons, we would like to have a scheme that performs the convex trans-

formation and, at the same time, pre-conditions the Hessian of the objective function.

To this end, we first scale the objective function by 1
σ
, σ > 0; i.e., the objective func-

tion becomes 1
σ
q(x). Note this does not alter the solutions to the QAP but scales the
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eigenvalues of Q. Then we add a positive multiple of identity matrix γI to the Hessian

as in (4.4) to make it positive definite. Thus, we obtain an equivalent problem with the

objective function:

1
2
xT
(

1

σ
Q+ γI

)
x+

(
1

σ
c− 1

2
γe

)T
x.

Let Q̃ = 1
σ
Q+γI. Suppose σ and γ are chosen such that Q̃ is positive definite and hence

we have

(4.6) cond(Q̃) =
λ(Q)/σ + γ

λ(Q)/σ + γ
= 1 +

(λ(Q)− λ(Q))/σ

λ(Q)/σ + γ
,

λ(Q)

σ
+ γ > 0.

Note that for given γ and σ, cond(Q̃) depends on (λ(Q) − λ(Q)) as well as λ(Q). To

make cond(Q̃) dependent on (λ(Q) − λ(Q)) but not on λ(Q) alone, we add −λ(Q)I to

Q before we apply scaling; i.e., the objective function becomes:

1
2
xT
(

1

σ
(Q− λ(Q)I) + γI

)
x+

(
1

σ
(c+ 1

2
λ(Q)e)− 1

2
γe

)T
x.

Let Q̃ = 1
σ
(Q− λ(Q)I) + γI. Choosing σ and γ so that Q̃ is positive definite we have

(4.7) cond(Q̃) =
(λ(Q)− λ(Q))/σ + γ

γ
= 1 +

λ(Q)− λ(Q)

γσ
, γ > 0.

Using (4.7) instead of (4.6) for the condition number of Q̃ enables an easier determination

of γ and σ which, we will show in Section 4.3.3, can be done analytically. We define

the spread of the eigenvalues of a matrix, denoted by sp(·), as the difference between

its largest and smallest eigenvalues. We have sp(Q) = λ(Q) − λ(Q). To bound the

condition number of Q̃ by some given constant κ, (4.7) suggests the following two-step

pre-conditioning scheme:

(i) minimize sp(Q);

(ii) determine γ and σ in (4.7) such that Q̃ is positive definite and cond(Q̃) ≤ κ.

4.3.2 Minimizing the Spread of Eigenvalues

In this section we will describe two heuristics that attempt to minimize the spread of

the eigenvalues of the Hessian of the objective function. The first algorithm is due to

Carter [26], and the second one is based upon the work of Finke, Burkard and Rendl [33].

Carter [26] devised a variation of the modified Cholesky factorization of Gill and

Murray [43] that simultaneously attempts to minimize the spread of the eigenvalues for
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a general positive semidefinite matrix. His method proceeds as follows. Let Q be the

Hessian of a general quadratic function and Q̄ be a positive definite matrix derived from

Q by modifying its diagonal elements by φj, j = 1, . . . , n. Q̄ is factored into LLT , i.e.,
q̄11 q̄21 · · q̄n1

q̄21 q̄22 · · q̄n2

· · · · ·
· · · · ·
q̄n1 q̄n2 · · q̄nn

 =


l11

l21 l22

· · ·
· · · ·
ln1 ln2 · · lnn



l11 l21 · · ln1

l22 · · ln2

· · ·
· ·
lnn

 .

For j = 1, . . . , n,

q̄jj = qjj + φj =

j∑
r=1

l2jr =

j−1∑
r=1

l2jr + l2jj,(4.8)

q̄ij = qij =

j∑
r=1

lirljr =

j−1∑
r=1

lirljr + lijljj, i = j + 1, . . . , n.

Requiring the positive definiteness of Q̄, we have the following of the column-wise Cholesky

factorization:

ljj =

√√√√q̄jj −
j−1∑
r=1

l2jr > 0

lij =
1

ljj

(
qij −

j−1∑
r=1

lirljr

)
=
pij
ljj
, i = j + 1, . . . , n,(4.9)

where pij , qij −
∑j−1

r=1 lirljr, i = j + 1, . . . , n. In the modified Cholesky factorization,

the key is to determine the ljj. Once they have been determined, the lij, i > j, can be

determined from (4.9). Then the φj can be recovered from (4.8).

Since the goal is to minimize the spread of the eigenvalues of Q̄, we need to determine

ljj such that sp(Q̄) is minimized. Carter [26] used a simple approximation in which the

sum of the eigenvalues is to be minimized. This is valid since the eigenvalues are all

positive. The sum of the eigenvalues is equal to the trace of a matrix. Thus we are to

minimize
n∑
j=1

q̄jj =
n∑
j=1

j∑
i=1

l2ji

which is the sum of the squares of all the components in L. Taking the sum by columns

instead of by rows, we have

(4.10)
n∑
j=1

q̄jj =
n∑
j=1

n∑
i=j

l2ij
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A greedy heuristic is used to minimize the column sum in (4.10) at each iteration of the

column-wise Cholesky factorization. For j = 1, . . . , n, the jth column sum is

(4.11)
n∑
i=j

l2ij = l2jj +
n∑

i=j+1

p2
ij

l2jj

We let

l̂jj =

4

√√√√ n∑
i=j+1

p2
ij.

Thus at each iteration the value of ljj that minimizes (4.11) is given by

ljj =

{
l̂jj if l̂jj > ε;

ε otherwise.

where ε is a small positive number. For j = n,
∑n

i=j l
2
ij is minimized by lnn = 0. Note

that setting lnn = 0 does not cause the factorization to fail because we do not need to

evaluate (4.9) for j = n. However, it results in the smallest eigenvalue of Q̄ being equal

to zero.

Note that in the modified Cholesky factorization algorithm of Gill and Murray, ljj is

chosen such that the off-diagonal elements of L are uniformly bounded. Also the diagonal

perturbation φ is optimal in the sense that an a priori bound on its norm is minimized.

Hence the algorithm is numerically stable. In Carter’s variant, ljj is chosen to myopically

minimize the column sum of L at each iteration. With that modification, Carter relaxes

the bound on the off-diagonal elements of L. Furthermore, control of the norm of the

diagonal perturbation is also lost. As a result, Carter’s algorithm becomes numerically

unstable. In Table 4.1 we compare Carter’s algorithm with Gill and Murray’s modified

Cholesky factorization on a set of selected QAPLIB instances. Contrary to what is

intended, Carter’s algorithm drastically increases the spread of the eigenvalues instead

of minimizing it on this set of problems. Hence we will not use Carter’s algorithm.

Finke, Burkard, and Rendl [33] developed an algorithm to reduce the spread of the

eigenvalues in the context of the QAP. Although their purpose was to obtain improved

bounds for the QAP, the approach can be readily adapted for our purpose. We describe

their approach as follows. Suppose we are given QAP(F,D,C) where F,D,C ∈ RN×N .

We assume F and D are symmetric. When either F or D, but not both, are asymmetric,

we can symmetrize it as shown in Section 1.2.2. Let g, h, r, s ∈ RN be vectors to be
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Table 4.1 Comparison of Carter’s and Gill and Murray’s Algorithms

sp(Q̄)
Problem

Carter Gill & Murray

chr12b 8.026e+08 2.694e+06
esc16a 7.376e+06 4.621e+03
had14 5.686e+09 3.170e+04
had20 5.449e+14 7.782e+04
lipa20b 3.052e+14 3.019e+05
nug12 2.505e+08 1.433e+04
nug15 1.266e+11 2.725e+04
nug20 1.215e+14 5.664e+04
rou15 6.479e+11 4.456e+06
scr20 6.971e+12 1.875e+07
tai10a 9.521e+09 1.809e+06
tai17a 1.302e+14 5.345e+06

determined and define

G = geT + egT and

H = heT + ehT .

Using the trace formulation of the QAP given in Section 1.2.2, we consider the following

two reduction rules.

(Rd1) Let F̄ = F −G, D̄ = D −H, and C̄ = 2F̄ ehT + 2geTD + C.

(Rd2) Let F̄ = F −R, D̄ = D − S, and C̄ = diag(F̄ )sT + r diag(D)T + C.

In the above, R = diag(r), S = diag(s), diag(F̄ ), and diag(D) denote the vectors formed

from the diagonals of matrices F̄ and D, respectively. The following theorem shows that

neither reduction rule (Rd1) nor (Rd2) will alter the solutions to the original QAP.

Theorem 4.1 (Finke, Burkard, and Rendl [33], 1987) With reduction rule (Rd1)

or (Rd2), tr(FXD + C)XT = tr(F̄XD̄ + C̄)XT for every X ∈ PN , where PN is the set

of all N ×N permutation matrices.

Proof. We first prove that the reduction results in an equivalent problem for every X ∈ Π
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in (Rd1). Observing that Xe = e, XT e = e, eTX = eT , and eTXT = eT , we have

tr(FXD + C)XT = tr
[
(F̄ +G)X(D̄ +H) + C

]
XT

= tr(F̄XD̄ + F̄XH +GXD + C)XT

= tr(F̄XD̄ + F̄XheT + F̄XehT + geTXD + egTXD + C)XT

= tr(F̄XD̄ + F̄XheT + F̄ ehT + geTD + egTXD + C)XT .(4.12)

Furthermore, we have

tr F̄XheTXT = tr F̄XheT = trXheT F̄ = tr F̄ T ehTXT ,

tr egTXDXT = trXDXT egT = trXDegT = tr geTDTXT .

Thus (4.12) is equal to

tr
(
F̄XD̄ + (F̄ + F̄ T )ehT + geT (D +DT ) + C

)
XT

= tr(F̄XD̄ + 2F̄ ehT + 2geTD + C)XT .

Now for reduction rule (Rd2), we have

tr(FXD + C)XT = tr
[
(F̄ +R)X(D̄ + S) + C

]
XT

= tr(F̄XD̄ + F̄XS +RXD + C)XT .(4.13)

Note the following identities

tr F̄XSXT = tr diag(F̄ )sTXT ,

trRXDXT = tr r diag(D)TXT .

Thus (4.13) becomes

tr(F̄XD̄ + diag(F̄ )sT + r diag(D)T + C)XT

as required.

Our goal is to minimize the spread of the eigenvalues of the Hessian Q of the

QAP objective function. Since the eigenvalues of Q are all possible products of the

eigenvalues of F and D as noted in Section 1.2.3, we tend to minimize sp(Q) if we

minimize sp(F ) and sp(D). Applying both reduction rules (Rd1) and (Rd2), we can
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reduce F to F̄ = F −G−R and D to D̄ = D−H−S. C is updated accordingly. Note F̄

and D̄ are also symmetric. Since there is no simple formula for sp(F̄ ) in terms of matrix

elements, we instead minimize the upper bound for sp(F̄ ) given by Mirsky [86]:

sp(F̄ ) ≤ m(F̄ ) ,
(

2
N∑
i=1

N∑
j=1

f̄ 2
ij −

2

N
(tr F̄ )2

)1
2
.

m(F̄ ) is minimized at

gk =
1

N − 2

( N∑
j=1

fkj − fkk − y
)
, k = 1, . . . , N,(4.14a)

rk = fkk − 2gk, k = 1, . . . , N(4.14b)

where y = 1
2(N−1)

(∑N
i=1

∑N
j=1 fij − trF

)
. Similarly by minimizing m(D̄) we have

hk =
1

N − 2

( N∑
j=1

dkj − dkk − z
)
, k = 1, . . . , N,(4.15a)

sk = dkk − 2hk, k = 1, . . . , N.(4.15b)

where z = 1
2(N−1)

(∑N
i=1

∑N
j=1 dij − trD

)
. It can be shown that the reduced matrices

F̄ and D̄ have row and column sums equal to zero as well as zero diagonals. Hence

the objective function of QAP(F̄ , D̄, C̄) is not convex. Before we proceed, we need the

following proposition.

Proposition 4.2 Given symmetric matrices A and B, let Ā = A−αI and B̄ = B−βI.

Then, for M = Ā⊗ B̄, min
α,β

sp(M) is attained at

α = 1
2

(
λ(A) + λ(A)

)
,(4.16a)

β = 1
2

(
λ(B) + λ(B)

)
.(4.16b)

Proof. Let σ(Ā) and σ(B̄) be defined as

σ(Ā) = {λ ∈ R : λ(Ā) ≤ λ ≤ λ(Ā)},

σ(B̄) = {λ ∈ R : λ(B̄) ≤ λ ≤ λ(B̄)}.

Varying α and β shift the eigenvalues of Ā and B̄ without changing their spreads. Using

an argument of symmetry in terms of σ(Ā) and σ(B̄) relative to 0, it suffices to consider

the three cases depicted in Figure 4.3: a) λ(Ā) > 0 and λ(B̄) > 0; b) 0 ∈ σ(Ā) and
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matrix

σ(·)

B̄Ā

r2
r1

s1
s2

(a) λ(Ā) > 0, λ(B̄) > 0

matrix

σ(·)

s1
r1

Ā

s2
r2

B̄

(b) 0 ∈ σ(Ā), λ(B̄) > 0

B̄

σ(·)

s1
r1

Ā matrix

s2
r2

(c) 0 ∈ σ(Ā), 0 ∈ σ(B̄)

Figure 4.3 Spreads of Eigenvalues of Ā and B̄
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λ(B̄) > 0; and c) 0 ∈ σ(Ā) and 0 ∈ σ(B̄). In Figure 4.3, s1 = sp(A), s2 = sp(B), and r1

and r2 are the vertical coordinates of the mid-points of σ(Ā) and σ(B̄) respectively. By

varying r1 and r2, we change the positions of σ(Ā) and σ(B̄) relative to 0.

In the case shown in Figure 4.3(a), we have r1 >
s1

2
and r2 >

s2

2
, and

λ(M) = (r1 +
s1

2
)(r2 +

s2

2
),

λ(M) = (r1 −
s1

2
)(r2 −

s2

2
),

sp(M) = r1s2 + s1r2,

inf
r1,r2

sp(M) = s1s2.

In the case shown in Figure 4.3(b), we have −s1

2
≤ r1 ≤

s1

2
and r2 >

s2

2
, and

λ(M) = (r1 +
s1

2
)(r2 +

s2

2
),

λ(M) = (r1 −
s1

2
)(r2 +

s2

2
),

sp(M) = 1
2
s1s2 + s1r2,

inf
r1,r2

sp(M) = s1s2.

In the case shown in Figure 4.3(c), we have −s1

2
≤ r1 ≤

s1

2
and −s2

2
≤ r2 ≤

s2

2
,

and

λ(M) = max
(

(r1 +
s1

2
)(r2 +

s2

2
), (r1 −

s1

2
)(r2 −

s2

2
)
)
,

λ(M) = min
(

(r1 +
s1

2
)(r2 −

s2

2
), (r1 −

s1

2
)(r2 +

s2

2
)
)
,

sp(M) = 1
2
s1s2 + δ

where δ = 1
2

max(r1s2 + s1r2,−r1s2 − s1r2) + 1
2

max(r1s2 − s1r2, s1r2 − r1s2). Note that

δ =


max(r1s2, s1r2) ≥ 0 if r1s2 ≥ 0 and s1r2 ≥ 0

max(−r1s2,−s1r2) ≥ 0 if r1s2 ≤ 0 and s1r2 ≤ 0

max(−r1s2, s1r2) > 0 if r1s2 < 0 and s1r2 > 0

max(r1s2,−s1r2) > 0 if r1s2 > 0 and s1r2 < 0

.

Hence,

min
r1,r2

sp(M) = 1
2
s1s2.

Therefore, for all r1 and r2, min
α,β

sp(M) is attained at r1 = r2 = 0, which is equivalent to

(4.16a) and (4.16b).
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By Proposition 4.2, we can apply reduction rule (Rd2) for R = αI and S = βI to

F̄ , D̄ and C̄ before we obtain the Hessian of the objective function Q̄ = 2D̄ ⊗ F̄ . We

summarize the above results in Algorithm 4.1.

We have run the Matrix Reduction algorithm on the QAPLIB instances with the

number of locations N ≤ 100. The results are shown in Appendix B.2. Roughly speaking,

the Matrix Reduction algorithm on the average reduces the spread of eigenvalues of the

original Hessian by an order of magnitude for the set of instances we have run. However,

the algorithm causes fill-in and produces almost completely dense Hessian matrices for

the set of instances except lipa20a–lipa90a. For lipa20a–lipa90a, the algorithm in fact

produces sparser matrices. When the Hessian is dense and we use the exact Hessian in an

optimization algorithm to solve the relaxation problems, we will experience substantial

slow-down in the optimization, especially as the problem size increases. We will discuss

how to overcome this difficulty in Section 5.1.2.

4.3.3 Bounding the Condition Number of the Hessian

In this section we will describe an algorithm to bound the condition number of the

Hessian. We can apply the algorithm to the Hessian of the original objective function of

the QAP, or to the modified Hessian as the output of Algorithm 4.1. In either case the

Hessian is generally nonconvex. Hence we need to make the Hessian positive definite and

bound the condition number of the resulting Hessian Q̃ by some constant κ > 1. From

the discussions in Section 4.3.1 and (4.7) in particular, we have

cond(Q̃) = 1 +
λ(Q)− λ(Q)

γσ
≤ κ or

γσ ≥ λ(Q)− λ(Q)

κ− 1
, η, γ ≥ γmin and σmin ≤ σ ≤ σmax

where γmin > 0 and σmax > σmin > 0 are given. γmin is chosen such that Q̃ is sufficiently

positive definite; σmin is typically 1 because we do not want to increase the values by

scaling.

We would like both γ and σ to be as small as possible. Thus we choose γ and σ to
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Algorithm 4.1 (Matrix Reduction).

Input: F , D and C ∈ RN×N where F and D are symmetric matrices.

Output: a symmetric matrix Q ∈ RN2×N2
with reduced spread of eigenvalues and

c ∈ RN2
.

Compute vectors g, h, r, s and matrices G,H,R, S:

Compute g and r by (4.14a)–(4.14b);

Let G = geT + egT and R = diag(r);

Compute h and s by (4.15a)–(4.15b);

Let H = heT + ehT and S = diag(s);

Apply reduction rule (Rd1):

F ← F −G;

C ← C + 2FehT + 2geTD;

D ← D −H;

Apply reduction rule (Rd2):

F ← F −R;

C ← C + diag(F )sT + r diag(D)T ;

D ← D − S;

Let α = 1
2

(
λ(F ) + λ(F )

)
and β = 1

2

(
λ(D) + λ(D)

)
;

F ← F − αI;

C ← C + β diag(F )eT + αe diag(D)T ;

D ← D − βI;

Compute Q and c:

Let Q = 2D ⊗ F and c = vec(C);
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be the optimal solution to the following minimization problem.

minimize
γ,σ

ζγ + σ(4.17)

subject to γσ ≥ η

γ ≥ γmin

σmin ≤ σ ≤ σmax

where ζ > 0 is a pre-determined weight for γ relative to σ. We will discuss how to choose

ζ later in this section. Note that (4.17) can be solved analytically. In particular, we

have three cases to consider: 1) in Figure 4.4(a), γminσmin < η and η
γmin

< σmax; 2) in

Figure 4.4(b), γminσmin < η and η
γmin
≥ σmax; and 3) in Figure 4.4(c), γminσmin ≥ η. In

Figure 4.4, the shaded areas are the feasible region of (4.17). We depict the objective

function values as parallel isolines. For t1 > t2, moving in the direction from ζγ + σ = t1

to ζγ + σ = t2 decreases the objective value. Since σ = η
γ

is a strictly convex function

in γ for γ > 0, the minimum is attained where one of the isolines touches the feasible

region at a single point. In cases 1) and 2), we let γ̄min = max(γmin,
η

σmax
) and γ̄ =

√
η
ζ
.

It is easy to verify that the solution to (4.17) is

γ∗ =


γ̄min if γ̄ ≤ γ̄min

γ̄ if γ̄min < γ̄ ≤ η
σmin

η

σmin

otherwise

,

σ∗ =
η

γ∗
.

In case 3), the solution to (4.17) is

γ∗ = γmin and σ∗ = σmin.

We summarize the above results in Algorithm 4.2.

Now we return to the issue of how to choose the weight ζ in (4.17). Hammer and

Rubin [57] have the following result regarding the parameter γ in (4.4) in their study of

the convex transformation of quadratic 0-1 programming problems.

Theorem 4.3 (Hammer and Rubin [57], 1970) For i = 1, 2, let γi be such that

f(x; γi) in (4.4) is strictly convex, and x̃i denote the optimal solution to a convex min-

imization problem whose objective function is f(x; γi). Furthermore, let p = 1
2
e denote
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σ ( η
σmax

, σmax)

σmax

σmin

γmin γ

ζγ + σ = t1

ζγ + σ = t2

( η
σmin

, σmin)

γσ = η

(γmin,
η

γmin
)

(a) γminσmin < η, η
γmin

< σmax

( η
σmax

, σmax)

σ

γmin γ

γσ = η

( η
σmin

, σmin)

(γmin,
η

γmin
)

ζγ + σ = t2

ζγ + σ = t1

σmax

σmin

(b) γminσmin < η, η
γmin
≥ σmax

σ

ζγ + σ = t2

σmax

σmin

ζγ + σ = t1

γσ = η

γmin γ

(c) γminσmin ≥ η

Figure 4.4 Minimization for γ and σ
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Algorithm 4.2 (Scaling and Shift).

Input: a symmetric matrix Q ∈ Rn×n, c ∈ Rn, scalars γmin > 0, σmax > σmin > 0,
κ > 1, and ζ > 0.

Output: a positive definite matrix Q ∈ Rn×n whose condition number is bounded
by κ, and c ∈ Rn.

Let

η =
λ(Q)− λ(Q)

κ− 1
;

if γminσmin < η then

Let γ̄min = max(γmin,
η

σmax
) and γ̄ =

√
η
ζ
;

if γ̄ ≤ γ̄min then

Let γ = γ̄min;

else if γ̄min < γ̄ ≤ η
σmin

then

Let γ = γ̄;

else

Let γ = η
σmin

;

end (if)

Let σ = η
γ
;

else

Let γ = γmin and σ = σmin;

end (if)

Q← 1
σ
Q+ (γ − λ(Q)

σ
)I;

c← 1
σ
c+ 1

2
(λ(Q)

σ
− γ)e;
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the center of the hypercube 0 ≤ x ≤ e. Then

‖x̃1 − p‖ > ‖x̃2 − p‖

for γ1 < γ2.

Remark 4.1 The results in Theorem 4.3 hold for both unconstrained and constrained

cases as long as we have convex minimization problems where the unique optimal solu-

tions exist.

Theorem 4.3 essentially shows that as we decrease γ, the minimum of f(x; γ) moves

in a direction away from the center of the hypercube 0 ≤ x ≤ e. We have argued that

with a well-conditioned Hessian the integer points closer to the continuous minimum tend

to have smaller objective values. Having the minimum move away from the center of the

hypercube will make the integer points more “distinguishable” in terms of their objective

values. Therefore, we would like γ∗ to be small relative to σ∗ in the solution to (4.17).

To that end we choose ζ > 1. From our empirical results, it is appropriate to set ζ to a

value between 2 and 10.

We have run the Scaling and Shift algorithm on the QAPLIB instances with size

N ≤ 100 in two settings. The results are shown in Appendix B.3. In the first setting

we have applied the algorithm to the Hessian of the original objective function; in the

second setting we have applied the algorithm to the modified Hessian produced by the

Matrix Reduction algorithm. In both settings we bound the condition number of the

resulting Hessian by κ = 100. As we can see from the results shown, the magnitudes

of σ and γ (which is equal to λ in Table B.3) are relatively small as compared with the

magnitude of the spread of eigenvalues as shown in Table B.2. The values of σ and γ

required to satisfy the bound on the condition number of the Hessian in the first setting

are roughly two or three times as large as those in the second setting. Furthermore, in

the first setting the sparsity of the Hessian is preserved whereas almost complete fill-in

occurs in the second setting except for instances lipa20a–lipa90a. The fill-in is caused by

the Matrix Reduction algorithm as discussed earlier.
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4.4 Formulating the Relaxation Problems with

Quadratic Cuts

In motivating the convex transformation in Section 4.2.1, we argued that the integer

solutions closer to the minimum x0 of (QPR) tend to have better objective values than

those farther away from x0. By a similar argument, we would like the optimal solution

to (RPC) or (DPC) to be close to x0 as well as being integral so the solution would be

a “good” one to the QAP. In (RPC) the QAP objective function q(x) plays a role in

keeping the solution close to x0 in the sense that moving in a direction away from x0 is

an ascent direction for q(x). We replace q(x) with the penalty term ‖x− x0‖2 in (DPC)

to make such a goal explicit. The quadratic cut confines the iterates within q(x) < q(x̂)

and hence an integer solution to (RPC) or (DPC), if found, must be an improved solution

to the QAP.

As we have mentioned, we may get a noninteger solution by solving (RPC) or (DPC)

starting from x0. In that case, we could start from a different point and re-solve (RPC)

or (DPC). We have observed the following with such a strategy:

• Since we have already failed to find an integer solution starting from x0, there is no

point in having q(x) or ‖x− x0‖2 in the objective function because their presence

may lead the iterates back towards x0, which in turn can result in a noninteger

solution. Thus we drop q(x) or ‖x − x0‖2 from the objective function and start

from a point xk ∈ Ω, k ≥ 1, independent of x0. We would like to either find an

integer solution in Ω or determine that xk leads to a noninteger solution. In the

latter case, we try a different xk and solve the problem repeatedly until we find an

integer solution or have failed a prescribed number of times. Clearly, it is crucial

that we be able to solve these problems quickly.

• After we drop q(x) or ‖x−x0‖2, the objective function contains only the quadratic

penalty function, which is concave. If we solve the resulting optimization problem,

convergence to a solution is not as fast as if the objective function were convex or at

least locally convex. This suggests that we replace the quadratic penalty function

with a penalty function that is at least locally convex. It is easy to see that the

quartic penalty function ‖x ◦ (e− x)‖2 is convex near the 0-1 integer points.

Thus, we solve the quartic penalty problem with the quadratic cut described in Sec-
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tion 4.1.1, starting from a randomly generated point.

4.5 Random Starting Points for the Quartic Penalty

Problems

In this section we will show how to compute a starting point xk for (TPC). For the

quartic penalty function, every 0-1 integer point is a local strict minimum. Hence, every

0-1 integer point has a domain of attraction. A domain of attraction of a point x is the

set of points starting from which the algorithm will converge to x. Ideally we would like a

starting point xk for (TPC) to fall within the domain of attraction of some integer point

in Ω. Consequently, starting from xk, we will find an integer solution in Ω. However,

these domains of attraction are not known a priori. Given that, it is reasonable to

generate a starting point by sampling a point uniformly in Ω. We argue that if we start

our algorithm from a sufficiently large number of such sampling points, we will almost

surely find an integer point in Ω; i.e., as the number of sampling points goes to ∞, the

probability of finding an integer point in Ω is 1.

To generate a point uniformly distributed in Ω, one would naturally think of the

acceptance-rejection method in which Ω is enclosed by a region for which an efficient

technique to generate uniform points is known. For example, a hyperellipsoid is such an

enclosing region. However, the number of trial points that must be generated to obtain

a point in Ω grows exponentially in the dimension of Ω [102, 105]. Alternatively, the

symmetric mixing algorithm by Smith [105] is an approach based upon a continuous state

Markov process with certain regularity conditions on the transition probability function.

Under the assumption that the region S of interest is an open set of full dimension,

the sequence of points generated by the symmetric mixing algorithm is shown to be

asymptotically uniformly distributed on S. A sequence {x`} is said to be asymptotically

uniformly distributed on S if x` is uniformly distributed on S as `→∞.

In our case, Ω is not full dimensional due to the presence of equality constraints

Lx = b. Let p = (N − 1)2. We partition x as follows.

(4.18) x =

[
y

z

]
, y ∈ Rm, z ∈ Rp
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after possible rearranging the order of the coordinates in x. We rewrite Lx = b as[
Ly Lz

] [ y
z

]
= b

where Ly ∈ Rm×m is nonsingular and Lz ∈ Rm×p. Thus we have

(4.19) y = L−1
y b− L−1

y Lzz = b̃−Gz

with b̃ ∈ Rm and G ∈ Rm×p defined as

b̃ = L−1
y b,(4.20a)

G = L−1
y Lz.(4.20b)

Denoting Q =

[
Qy Qu

QT
u Qz

]
, we rewrite q(x) ≤ q(x̂)− ε as

1
2

[
yT zT

] [ Qy Qu

QT
u Qz

] [
y

z

]
+
[
cTy cTz

] [ y
z

]
≤ q(x̂)− ε,

1
2
yTQyy + 1

2
yTQuz + 1

2
zTQT

uy + 1
2
zTQzz + cTy y + cTz z ≤ q(x̂)− ε.(4.21)

Substituting (4.19) in (4.21) and simplifying, we get

1
2
zT
[
GTQyG− (QT

uG+GTQu) +Qz

]
z

+
[
QT
u b̃+ cz −GT (Qy b̃+ cy)

]T
z + 1

2
b̃TQy b̃+ cTy b̃ ≤ q(x̂)− ε,

1
2
zT Q̃z + c̃T z ≤ q̄(x̂)

with Q̃ ∈ Rp×p, c̃ ∈ Rp and q̃ ∈ R defined as

Q̃ = GTQyG− (QT
uG+GTQu) +Qz,(4.22a)

c̃ = QT
u b̃+ cz −GT (Qy b̃+ cy),(4.22b)

q̄(x̂) = q(x̂)− ε− 1
2
b̃TQy b̃− cTy b̃.(4.22c)

Note that

Q̃ =
[
−GT I

] [ Qy Qu

QT
u Qz

] [ −G
I

]
=
[
−GT I

]
Q

[ −G
I

]
.

Since Q is positive definite, Q̃ is positive definite. Furthermore, x ≥ 0 is equivalent to

y ≥ 0 or Gz ≤ b̃,

z ≥ 0.

84



Thus we have the following full dimensional set

(4.23) S =
{
z ∈ Rp : Gz ≤ b̃, 1

2
zT Q̃z + c̃T z ≤ q̄(x̂), z ≥ 0

}
.

Now we apply the symmetric mixing algorithm to generate points in the interior of S,

denoted by int(S). We outline the approach in Algorithm 4.3. For the moment, let us

Algorithm 4.3 (Smith [105], 1984) (Symmetric Mixing).

Input: region S, an initial point zk−1 ∈ int(S), and number of iterations r.

Output: zk, a point asymptotically uniformly distributed on int(S).

Let w0 = zk−1;

for i = 1 to r

Generate a random direction di by sampling a point uniformly
on the unit hypersphere;

Determine the line segment L = {α ∈ R : wi−1 + αdi ∈ int(S)};

Generate τ i from the uniform distribution on L;

Let wi = wi−1 + τ idi;

end (for)

Let zk = wr;

assume that initially a point z0 ∈ int(S) is available. We will discuss how to obtain an

initial interior point of S in Section 5.1.5. Thus we can recursively generate a sequence of

asymptotically independent uniformly distributed points {zk} in int(S) for k = 1, 2, . . ..

To sample a point uniformly on the unit hypersphere, we generate p independent

normally distributed random numbers v = (vj), j = 1, 2, . . . , p, where vj is from N (0, 1),

and let

di =
v

‖v‖
.

It is well-known (e.g., [34, 102]) that the random vector di is uniformly distributed on

the unit hypersphere.

We determine the line segment L as follows. Let Gj, j = 1, 2, . . . ,m, denote row j
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of G, i.e., GT =
[
GT

1 · · · GT
m

]
. For constraints Gz ≤ b̃, we define

λj =
b̃j −Gjz

i−1

Gjdi
, j = 1, 2, . . . ,m,

λ+ = min
j=1,...,m

{λj : λj > 0},

λ− = max
j=1,...,m

{λj : λj < 0}.

For constraints z ≥ 0, we define

µj = −
zi−1
j

dij
, j = 1, 2, . . . , p,

µ+ = min
j=1,...,p

{µj : µj > 0},

µ− = max
j=1,...,p

{µj : µj < 0}.

For constraint 1
2
zT Q̃z + c̃T z ≤ q̄(x̂), we define

ν+ =
−β1 +

√
β2

1 − 4β0β2

2β0

,

ν− =
−β1 −

√
β2

1 − 4β0β2

2β0

where β0 = 1
2
(di)T Q̃di, β1 = (Q̃zi−1 + c̃)Tdi, and β2 = 1

2
(zi−1)T Q̃zi−1 + c̃T zi−1 − q̄(x̂). It

is easy to verify that β0 > 0 for positive definite Q̃ and β2 < 0 if zi−1 is in the interior of
1
2
zT Q̃z + c̃T z ≤ q̄(x̂). Consequently, ν+ > 0 and ν− < 0. Let α+ = min{λ+, µ+, ν+} and

α− = max{λ−, µ−, ν−}. We have found the line segment

L = {α ∈ R : α− < α < α+}.

After we have obtained zk, we can recover yk by (4.19). Hence we have a starting point

xk for (TPC).
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Chapter 5

Algorithm Implementation and Numerical
Results

5.1 Implementation Details

We will now discuss the details of implementation of our algorithm for the QAP. We

will first describe in Section 5.1.1 how we solve the relaxation problems. In Section 5.1.2

we will discuss the use of limited-memory BFGS update to approximate the Hessian

for speedup. In Section 5.1.3 we will compare solving (RPC) vs. (DPC). Then we will

show in Section 5.1.4 that (TPC) can be solved efficiently, one of the key factors for the

performance of our algorithm. In Section 5.1.5 we will describe how to find an initial

interior point to start the Symmetric Mixing algorithm. How we choose the values of the

various parameters in our algorithm will be discussed in Section 5.1.6.

5.1.1 Solving Optimization Problems Using IPOPT

The relaxation problems introduced in Section 4.1.1 can be solved using a general non-

linear optimization algorithm. Generally speaking, due to the presence of the convex

quadratic constraint in the relaxation problems with the quadratic cut, any robust imple-

mentation of a sequential quadratic programming algorithm or interior-point algorithm

can be used to solve those optimization problems. In the implementation of our algorithm

for the QAP, we favor an interior-point algorithm because we believe that the way the

inequality constraints are handled in a typical nonlinear interior-point algorithm (e.g.,

[23, 113, 114]) is more conducive to success in finding integer solutions to (RPC) and



(DPC). In particular, we consider the following nonlinear optimization problem

minimize
x

f(x)

subject to g(x) ≤ 0

h(x) = 0

where f : Rn 7→ R, g : Rn 7→ Rp and h : Rn 7→ Rr are smooth functions. In a typical

nonlinear interior-point algorithm ([23, 113, 114]), the proposed algorithm approximately

solves a sequence of barrier problems of the form

minimize
x,s

f(x)− µb
p∑
i=1

log(si)

subject to g(x) + s = 0

h(x) = 0

for a decreasing sequence of barrier parameters µb converging to zero. In our context,

the barrier problems are of the form

minimize
x,s

f(x)− µb log(s)− µb
n∑
i=1

log(xi)(5.1)

subject to Lx = b

q(x) + s = q(x̂)− ε

where f(x) represents the objective function of (RPC) or (DPC). In solving (RPC) or

(DPC), the iterates could follow a path back toward x̂, the incumbent solution. This is

more likely when we have obtained an integer solution by solving (RXP) and are trying

to find a better integer solution via (RPC)—(RXP) and (RPC) have the same objective

function. For an appropriately chosen initial µb, the barrier term −µb log(s) in (5.1)

pushes the iterates away from the quadratic cut at the beginning and the barrier terms

−µb
∑n

i=1 log(xi) prevent the iterates from initially getting too close to x̂. Thus, a typical

nonlinear interior-point algorithm with an appropriate choice of initial µb tends to avoid

following a path back toward x̂, which consequently gives us a better chance of finding

an integer solution to (RPC) or (DPC). In this research, we use IPOPT, version 3.2.3, an

interior-point code implementing the method of Wächter and Biegler [114], to solve the

relaxation problems. For (RPC) or (DPC), we set “mu strategy”, the IPOPT option for

the barrier parameter update strategy, to “monotone”. For the other relaxation problems,

88



“mu strategy” is set to “adaptive”. With the “monotone” barrier parameter update

strategy, the algorithm starts from some initial value of µb and monotonically decreases

µb as it proceeds whereas with the “adaptive” barrier parameter update strategy, the

algorithm dynamically adjusts (increases or decreases) the barrier parameter µb during

the iterations.

5.1.2 Approximating the Hessian with an L-BFGS Update

The primary reason for using a limited-memory BFGS update is that the Hessian of the

QAP objective function is usually very dense. As we can see from Table B.2, the majority

of the original QAPLIB instances listed in the table have dense Hessians, e.g., most of

them having more than 50% of the nonzero elements in the Hessian. When the Matrix

Reduction algorithm is used, all the listed QAPLIB problems except lipa20a–lipa90a

have almost completely dense Hessians. Consequently, the optimization algorithm using

the exact Hessian becomes slow. The situation becomes even worse as the problem

size increases. To speed up solving the relaxation problems, we use the limited-memory

BFGS (L-BFGS) update to approximate the Hessian. In our implementation, we set

“hessian approximation”, the IPOPT option indicating what Hessian information is used,

to “exact” when the exact Hessian is to be used. When the L-BFGS update is to be

used, we set “hessian approximation” to “limited-memory”.

An important issue we need to consider when we use the L-BFGS approximation is

the convergence of the optimization algorithms. Generally speaking, for difficult nonlin-

ear optimization problems, using the L-BFGS update may result in convergence problems.

That is, it may cause the algorithm to diverge on a problem on which the algorithm would

converge if the exact Hessian were used. In our case, since we have a well-conditioned

positive definite Hessian, using the L-BFGS update to approximate the Hessian does not

exhibit this difficulty.

We have run steps (1) and (2) of our algorithm for the QAP, as shown in Figure 4.1,

on a subset of the QAPLIB instances using both the exact Hessian and L-BFGS update.

For the pre-conditioning, we have applied the Scaling and Shift algorithm but not the

Matrix Reduction algorithm. The results are shown in Table 5.1. Column “pubval”

shows the objective values of the published optimal solutions or best known solutions.

“solval” represents the objective value of our solutions using both the exact Hessian and
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Table 5.1 Exact Hessian vs. L-BFGS Approximation

solval # iter CPU1 (sec)
Problem pubval exact lbfgs exact lbfgs exact lbfgs
bur26c 5426795 5628125 5544761 163 58 73.3 0.64
chr12a 9552 29072 32432 111 21 0.5 0.03
chr15b 7990 34414 45372 133 34 1.6 0.06
chr18a 11098 58398 38658 113 37 2.8 0.09
chr20c 14142 46722 25842 123 49 5.0 0.11
chr22a 6156 10864 11128 127 41 8.6 0.12
chr25a 3796 14258 10966 149 54 20.4 0.19
els19 17212548 32095222 38323406 124 51 5.5 0.12
esc16d 16 28 48 96 20 0.7 0.05
esc32a 130 276 336 151 26 44.3 0.17
had12 1652 1778 1798 98 25 1.0 0.05
had14 2724 2766 2770 132 22 2.9 0.05
had16 3720 3878 4134 145 32 6.2 0.09
had18 5358 5742 5692 136 62 10.7 0.23
had20 6922 7446 7512 124 41 17.0 0.22
kra30a 88900 112250 106050 257 50 224.5 0.50
kra32 88700 116510 112850 279 44 307.0 0.48
lipa20b 27076 29107 27076 110 45 13.3 0.22
lipa30a 13178 13725 13584 180 63 314.3 1.25
nug12 578 734 702 164 22 1.6 0.05
nug15 1150 1488 1464 158 28 4.0 0.06
nug17 1732 2124 1918 120 26 5.7 0.08
nug20 2570 2900 2788 178 44 20.0 0.19
nug22 3596 4008 4330 216 61 42.6 0.31
nug24 3488 4468 4144 254 42 74.0 0.30
nug27 5234 6288 5716 208 64 118.3 0.66
nug30 6124 7330 6862 282 45 413.9 0.67
rou12 235528 260900 279742 104 18 1.0 0.03
rou15 354210 444336 411710 110 27 3.0 0.08
rou20 725522 844792 795974 116 39 15.2 0.20
scr12 31410 43422 39948 149 35 1.2 0.05
scr15 51140 79644 82942 126 35 2.4 0.06
scr20 110030 187576 182044 211 67 15.1 0.20
sko42 15812 19214 17030 190 97 2476.6 7.23
ste36a 9526 14092 13702 209 104 130.3 1.44
tai12a 224416 276546 279476 105 23 1.0 0.05
tai15b 51765268 53530792 53606615 212 25 6.0 0.05
tai17a 491812 574930 544786 108 25 6.0 0.09
tai20b 122455319 146002742 143654171 132 48 16.0 0.23
tai25a 1167256 1302072 1392138 129 36 65.7 0.38
tai30b 637117113 798646283 798289184 179 66 292.7 1.11
tai35a 2422002 2792988 2562302 134 74 654.7 2.52
tai40b 637250948 905391924 821196315 177 101 1720.5 4.38
tho30 149936 180602 177196 187 47 203.3 0.55
tho40 240516 290582 265608 203 72 1600.3 1.88

1CPU time is based on an Intel Pentium 4 2.80 GHz processor.
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L-BFGS update; “# iter” stands for the number of iterations. Note that the majority of

the CPU time shown in Table 5.1 is spent on solving (RXP); the time spent on (QPR)

is almost negligible. As is shown, although the objective values of the solutions can be

better or worse than those with the exact Hessian, the L-BFGS approximation usually

results in extraordinary speedup in solving these optimization problems, especially the

instances of larger sizes.

5.1.3 Solving (RPC) vs. (DPC)

In our algorithm for the QAP, we can solve either (RPC) or (DPC) to find a better

solution after we have solved (RXP). To compare the performance of our algorithm

using both formulations, we have run steps (1) through (4) in Figure 4.1 on a subset

of the QAPLIB instances. That is, if we find an integer solution in step (4) we go

back to step (3); otherwise we exit. For the pre-conditioning, we have applied both the

Matrix Reduction algorithm (except for bur26c whose flow and distance matrices are

both asymmetric) and the Scaling and Shift algorithm. The L-BFGS update has been

used to approximate the Hessian.

The results are shown in Table 5.2. The column headers “pubval” and “solval”

have connotations similar to those used in Table 5.1. In Table 5.2, “# cuts” denotes

the number of successive times we obtained an improved integer solution by solving

(RPC) or (DPC). The CPU time pertains to solving (RPC) or (DPC) only, i.e., not

including that in solving (QPR) and (RXP). As we can see, solving (RPC) yields better

solutions than using formulation (DPC) for some problems whereas the contrary is true

for other problems, indicating that the appropriate formulation is problem dependent.

One strategy is to solve both (RPC) and (DPC) and then choose the better of the two

solutions produced by them.

5.1.4 Solving (TPC) Efficiently

The main point in solving (TPC) described in Section 4.1 is that we start from multiple

trial points in Ω as defined in (4.2) and determine if one of those points leads to an integer

solution. The more trials points we attempt, the greater are the chances of finding an

integer solution in Ω. Thus, the ability to solve (TPC) efficiently is a key to the success

in finding an improved solution to the QAP.
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Table 5.2 Quadratic Cut: Solving (RPC) vs. (DPC)

solval # cuts CPU1 (sec)
Problem pubval RPC DPC RPC DPC RPC DPC
bur26c 5426795 5587938 5569676 0 0 1.2 0.9
chr12a 9552 15398 15136 0 1 0.1 0.3
chr15b 7990 17644 17644 0 0 0.2 0.1
chr18a 11098 27920 27920 0 0 0.3 0.2
chr20c 14142 24442 24442 0 0 0.4 0.4
chr22a 6156 8268 9458 1 0 1.0 0.5
chr25a 3796 9722 8504 1 0 1.6 1.0
els19 17212548 25347796 31160654 1 0 0.9 0.3
esc16d 16 20 24 1 0 0.5 0.3
esc32a 130 324 202 1 0 4.8 5.9
esc64a 116 134 136 0 0 91.7 107.2
had12 1652 1682 1682 0 0 0.1 0.1
had14 2724 2744 2744 0 0 0.1 0.1
had16 3720 3780 3780 0 0 0.2 0.1
had18 5358 5430 5430 0 0 0.2 0.2
had20 6922 7196 7150 1 1 0.7 0.5
kra30a 88900 108700 107040 1 0 3.3 1.3
kra32 88700 104010 106270 1 0 5.1 3.3
lipa20b 27076 27076 27076 1 1 0.5 0.3
lipa30a 13178 13524 13525 0 0 1.7 1.4
lipa50a 62093 62849 63117 0 0 20.0 13.0
lipa80b 7763962 7763962 7763962 0 0 91.1 64.8
nug12 578 662 626 0 0 0.1 0.1
nug15 1150 1312 1336 0 1 0.1 0.2
nug17 1732 1844 1844 0 0 0.2 0.2
nug20 2570 2854 2824 1 0 0.7 0.4
nug25 3744 4152 4324 0 0 0.9 1.0
nug30 6124 6822 6584 0 0 2.0 2.0
rou12 235528 245718 245718 0 0 0.1 0.1
rou15 354210 387978 387978 0 0 0.1 0.1
rou20 725522 774224 774224 0 0 0.3 0.2
scr12 31410 36628 40206 0 1 0.1 0.1
scr15 51140 64450 62642 0 0 0.1 0.1
scr20 110030 160320 164522 1 0 0.7 0.3
sko42 15812 17056 17548 0 0 11.9 7.1
sko64 48498 51260 53446 0 0 83.9 77.8
ste36a 9526 12596 13504 0 0 4.8 3.3
tai12a 224416 236436 236436 0 0 0.1 0.1
tai15b 51765268 52485675 52766595 1 0 0.5 0.1
tai20b 122455319 150009318 149128616 0 2 0.7 0.9
tai30b 637117113 782365838 822906526 1 0 10.6 4.2
tai40b 637250948 845276670 813760201 0 0 10.2 8.6
tai64c 1855928 2235970 2209780 0 0 212.2 127.1
tho30 149936 167852 177828 0 0 1.9 1.5
tho40 240516 277278 269536 0 0 6.3 6.3
wil50 48816 49880 50500 0 0 18.2 20.8
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Since the objective function of (TPC) is convex near a 0-1 integer point, a nonlinear

optimization algorithm is able to converge rapidly towards an integer point (possibly

infeasible). If such an integer point is in Ω, we have obtained an integer solution to

(TPC); otherwise, we have determined that the given starting point does not lead to

an integer solution and we should try a different starting point. In addition, using the

L-BFGS update to approximate the Hessian, as discussed in Section 5.1.2, further speeds

up solving (TPC).

To illustrate how efficiently (TPC) can be solved, we have run steps (5) and (6) of

our algorithm multiple times on a subset of the QAPLIB instances. That is, for each

instance in the set, we started from 50 different randomly generated initial points and

solved (TPC). The results are shown in Table 5.3. Column “avg itr” represents the

Table 5.3 Solving Multiple Instances of (TPC) with LBFGS

Problem avg itr CPU1 (sec) Problem avg itr CPU1 (sec)

bur26c 11.5 0.45 nug15 8.9 0.07
chr12a 10.9 0.06 nug17 8.9 0.11
chr15b 11.1 0.08 nug20 9.0 0.17
chr18a 11.0 0.11 nug25 10.9 0.36
chr20c 11.1 0.14 nug30 10.2 0.86
chr22a 9.9 0.20 rou12 11.8 0.06
chr25a 11.7 0.31 rou15 11.9 0.10
els19 12.3 0.15 rou20 11.6 0.19
esc16d 9.0 0.08 scr12 11.5 0.06
esc32a 9.6 0.93 scr15 11.4 0.10
esc64a 8.2 12.37 scr20 11.3 0.16
had12 9.3 0.05 sko42 9.0 3.15
had14 8.9 0.08 sko64 9.5 14.98
had16 9.3 0.09 ste36a 10.4 1.51
had18 9.4 0.12 tai12a 11.1 0.05
had20 9.4 0.18 tai15b 12.0 0.12
kra30a 9.3 0.81 tai20b 10.0 0.15
kra32 10.6 1.04 tai30b 11.6 0.91
lipa20b 9.8 0.19 tai40b 11.5 2.55
lipa30a 10.0 0.91 tai64c 10.6 12.52
lipa50a 9.1 6.12 tho30 10.6 0.85
lipa80b 9.8 39.00 tho40 9.7 2.31
nug12 9.0 0.06 wil50 9.9 6.04
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average number of iterations taken to solve (TPC). The CPU time is the average time

spent on solving (TPC). As we can see, (TPC) can indeed be solved quickly. Taking the

nontrivial instance lipa80b for example, it takes an average of 39 seconds to solve (TPC).

5.1.5 Initial Interior Point for the Symmetric Mixing Algorithm

To use the Symmetric Mixing algorithm outlined in Section 4.5 for generating asymptot-

ically uniformly distributed points in the interior of S, where S is defined in (4.23), we

initially need a point z0 ∈ int(S). We set x̄ to x0, the optimal solution to (QPR), and

extract z̄ according to the partition in (4.18), i.e.,

x̄ =

[
ȳ

z̄

]
, ȳ ∈ Rm, z̄ ∈ Rp.

Suppose that int(S) is nonempty. It is easy to see that z̄ satisfies 1
2
z̄T Q̃z̄ + c̃T z̄ < q̄(x̂)

with strict inequality. Q̃, c̃ and q̄(x̂) are defined in (4.22a)–(4.22c). Also the following

holds for z̄:

Gz̄ ≤ b̃,

z̄ ≥ 0,

where G and b̃ are defined in (4.20a)–(4.20b). However, the strict inequalities may not

be satisfied. Thus, we start from z̄ and solve the following unconstrained optimization

problem

(5.2) minimize
z

f(z) , − log(q̄(x̂)− 1
2
zT Q̃z− c̃T z)−

m∑
i=1

log(b̃i+δ−Giz)−
p∑
i=1

log(zi+δ)

for an interior point in S. δ is chosen such that the logarithmic terms in (5.2) are properly

defined. δ should be small enough so that the optimal solution to (5.2) is in the interior

of S. In our implementation, δ is set to 10−6.

The Hessian of the objective function of (5.2) is

∇2f(z) =
1

θ
Q̃+

1

θ2
(Q̃z + c̃)(Q̃z + c̃)T +GTΓ−2

1 G+ Γ−2
2

where θ = q̄(x̂) − 1
2
zT Q̃z − c̃T z, Γ1 = diag(b̃ − Gz) + δI, and Γ2 = diag(z) + δI. Note

that Q̃ is positive definite and for w ∈ Rp, we have

wT (Q̃z + c̃)(Q̃z + c̃)Tw =
(
(Q̃z + c̃)Tw

)2 ≥ 0.
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Thus, f(z) is strictly convex and (5.2) has a unique minimum. We choose z0 in the

Symmetric Mixing algorithm to be the minimum of (5.2).

5.1.6 Choice of Parameters

Penalty Parameter µ in (RXP) and (RPC). In (RXP) and (RPC), we choose

the penalty parameter µ > 1
2
λ(Q) through computing the largest eigenvalue of Q rather

than using the estimate of µ by Proposition 3.6. This is because using the property

that the eigenvalues of Q are formed from all possible products of the eigenvalues of

the flow matrix F and distance matrix D, computing the largest eigenvalue of Q is not

very expensive for the QAP instances we have run, especially those from the QAPLIB.

Moreover, the method in Proposition 3.6 yields an unnecessarily large value for µ.

ε in the Quadratic Cut. For all the test problems we have run, the elements of the

flow matrix F and distance matrix D are all integers, and there is no linear cost term;

i.e., C in (1.1) is zero. By formulation (1.1), it is easy to see that any solution better

than x̂ must have an objective value that is at least one less than that at x̂. That is,

we could choose ε to be one and the quadratic cut will not exclude any solutions that

are better than x̂. Note that we have scaled the objective function after we apply the

Scaling and Shift algorithm. Thus, we set ε to 1/σ.

Penalty Parameter ρ in (DPC). As we have shown in Section 4.1.1, we need to

choose ρ > 1. Based on our numerical experience we have set a default value of 2 for ρ.

Number of Iterations r in the Symmetric Mixing Algorithm. As we have dis-

cussed in Section 4.5, a point generated by the Symmetric Mixing algorithm is uniformly

distributed on S when the number of iterations r goes to ∞. However, in a practical

implementation of the algorithm, we have to choose a finite value for r. Through experi-

ments, we have found out that a default value of 200 for r yields reasonably good results

for the QAP test problems we have run.
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5.2 Results on the QAPLIB Instances

We have run our algorithm by the default settings on the QAPLIB [22] instances with

the number of locations N < 100. More specifically, we have applied the pre-conditioning

algorithms, i.e., the Matrix Reduction algorithm and the Scaling and Shift algorithm,

before the main iterations as outlined in Figure 4.1. The results are reported in Table 5.4.

In the table, “ObjVal” indicates the objective values of the published solutions or the

solutions obtained by our algorithm. For the entries under column “Type”, “OPT”

stands for optimum and “BKS” for best known solution. We have also computed the

gap, a commonly used measure of the quality of a solution by an approximate algorithm,

defined as follows:

(5.3) gap =
Ẑ− Z∗

Z∗
× 100

where Z∗ is the optimal or best known objective value and Ẑ is the objective value of

the solution obtained by our algorithm. The CPU time in the format minutes : seconds

is based on an Intel Pentium 4 2.80 GHz processor. Note that we did not run the trivial

instance esc16f whose flow matrix is 0—Any feasible solution is an optimal solution to

instance esc16f.

Table 5.4 Results on the QAPLIB Instances with N < 100

Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
bur26a 26 5426670 OPT 5575423 2.74 3.61
bur26b 26 3817852 OPT 3938345 3.16 4.55
bur26c 26 5426795 OPT 5664686 4.38 3.38
bur26d 26 3821225 OPT 4027956 5.41 3.55
bur26e 26 5386879 OPT 5469384 1.53 3.61
bur26f 26 3782044 OPT 3937035 4.10 4.41
bur26g 26 10117172 OPT 10459179 3.38 3.64
bur26h 26 7098658 OPT 7256589 2.22 4.39
chr12a 12 9552 OPT 15398 61.20 0.52
chr12b 12 9742 OPT 16592 70.31 0.39
chr12c 12 11156 OPT 14214 27.41 0.56
chr15a 15 9896 OPT 29806 201.19 0.88
chr15b 15 7990 OPT 17644 120.83 0.67
chr15c 15 9504 OPT 29210 207.34 0.86
chr18a 18 11098 OPT 27920 151.58 1.11
chr18b 18 1534 OPT 2542 65.71 1.59
chr20a 20 2192 OPT 3948 80.11 1.41

Continued on next page
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Continued from previous page

Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
chr20b 20 2298 OPT 6880 199.39 1.94
chr20c 20 14142 OPT 24442 72.83 1.28
chr22a 22 6156 OPT 8268 34.31 2.88
chr22b 22 6194 OPT 9354 51.02 2.73
chr25a 25 3796 OPT 9236 143.31 2.59
els19 19 17212548 OPT 25347796 47.26 2.13
esc16a 16 68 OPT 94 38.24 1.06
esc16b 16 292 OPT 294 0.68 1.23
esc16c 16 160 OPT 166 3.75 1.51
esc16d 16 16 OPT 30 87.50 1.14
esc16e 16 28 OPT 52 85.71 1.53
esc16f 16 0 OPT Not run
esc16g 16 26 OPT 42 61.54 1.16
esc16h 16 996 OPT 1066 7.03 1.31
esc16i 16 14 OPT 24 71.43 1.17
esc16j 16 8 OPT 10 25.00 1.26
esc32a 32 130 BKS 296 127.69 22.45
esc32b 32 168 BKS 300 78.57 18.97
esc32c 32 642 BKS 686 6.85 19.53
esc32d 32 200 BKS 258 29.00 17.83
esc32e 32 2 OPT 6 200.00 23.89
esc32f 32 2 OPT 6 200.00 23.88
esc32g 32 6 OPT 12 100.00 21.16
esc32h 32 438 BKS 478 9.13 12.77
esc64a 64 116 BKS 130 12.07 6:31.78
had12 12 1652 OPT 1682 1.82 0.58
had14 14 2724 OPT 2744 0.73 0.45
had16 16 3720 OPT 3780 1.61 0.72
had18 18 5358 OPT 5430 1.34 0.91
had20 20 6922 OPT 7140 3.15 1.69
kra30a 30 88900 OPT 100780 13.36 6.83
kra30b 30 91420 OPT 106780 16.80 12.08
kra32 32 88700 OPT 104970 18.34 8.52
lipa20a 20 3683 OPT 3795 3.04 1.39
lipa20b 20 27076 OPT 27076 0.00 1.47
lipa30a 30 13178 OPT 13608 3.26 5.42
lipa30b 30 151426 OPT 151426 0.00 4.80
lipa40a 40 31538 OPT 32085 1.73 16.23
lipa40b 40 476581 OPT 476581 0.00 13.61
lipa50a 50 62093 OPT 62849 1.22 47.39
lipa50b 50 1210244 OPT 1210244 0.00 52.84
lipa60a 60 107218 OPT 108256 0.97 1:45.31
lipa60b 60 2520135 OPT 2520135 0.00 2:17.01
lipa70a 70 169755 OPT 170623 0.51 4:33.27
lipa70b 70 4603200 OPT 4603200 0.00 3:04.59
lipa80a 80 253195 OPT 255134 0.77 6:32.61
lipa80b 80 7763962 OPT 7763962 0.00 8:18.31
lipa90a 90 360630 OPT 364664 1.12 11:25.53
lipa90b 90 12490441 OPT 12490441 0.00 8:27.56
nug12 12 578 OPT 626 8.30 0.91

Continued on next page
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Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
nug14 14 1014 OPT 1072 5.72 0.52
nug15 15 1150 OPT 1324 15.13 0.67
nug16a 16 1610 OPT 1690 4.97 0.69
nug16b 16 1240 OPT 1354 9.19 0.89
nug17 17 1732 OPT 1844 6.47 0.75
nug18 18 1930 OPT 2098 8.70 1.09
nug20 20 2570 OPT 2810 9.34 2.42
nug21 21 2438 OPT 2770 13.62 2.52
nug22 22 3596 OPT 3980 10.68 4.23
nug24 24 3488 OPT 3984 14.22 2.39
nug25 25 3744 OPT 4210 12.45 3.80
nug27 27 5234 OPT 6026 15.13 4.00
nug28 28 5166 OPT 5854 13.32 4.38
nug30 30 6124 OPT 6992 14.17 6.06
rou12 12 235528 OPT 245718 4.33 0.41
rou15 15 354210 OPT 387978 9.53 0.61
rou20 20 725522 OPT 774224 6.71 1.16
scr12 12 31410 OPT 38274 21.85 0.61
scr15 15 51140 OPT 66914 30.84 0.61
scr20 20 110030 OPT 159960 45.38 1.34
sko42 42 15812 BKS 17730 12.13 29.88
sko49 49 23386 BKS 25272 8.06 59.47
sko56 56 34458 BKS 38124 10.64 1:32.75
sko64 64 48498 BKS 51690 6.58 4:06.50
sko72 72 66256 BKS 69990 5.64 5:51.66
sko81 81 90998 BKS 95574 5.03 12:12.05
sko90 90 115534 BKS 125012 8.20 14:37.48
ste36a 36 9526 OPT 14212 49.19 13.05
ste36b 36 15852 OPT 37778 138.32 22.81
ste36c 36 8239110 OPT 11546668 40.14 16.08
tai10a 10 135028 OPT 153250 13.49 0.52
tai10b 10 1183760 OPT 1415640 19.59 0.50
tai12a 12 224416 OPT 236436 5.36 0.61
tai12b 12 39464925 OPT 51433727 30.33 0.70
tai15a 15 388214 OPT 421164 8.49 1.09
tai15b 15 51765268 OPT 52485675 1.39 1.48
tai17a 17 491812 OPT 542856 10.38 1.00
tai20a 20 703482 OPT 770440 9.52 1.31
tai20b 20 122455319 OPT 147889773 20.77 3.00
tai25a 25 1167256 OPT 1269666 8.77 2.86
tai25b 25 344355646 OPT 436069858 26.63 9.20
tai30a 30 1818146 BKS 1965172 8.09 7.55
tai30b 30 637117113 BKS 777619629 22.05 13.36
tai35a 35 2422002 BKS 2572476 6.21 9.89
tai35b 35 283315445 BKS 354305731 25.06 32.27
tai40a 40 3139370 BKS 3378478 7.62 19.63
tai40b 40 637250948 BKS 815986827 28.05 34.48
tai50a 50 4938796 BKS 5209870 5.49 53.22
tai50b 50 458821517 BKS 600132348 30.80 2:32.42
tai60a 60 7205962 BKS 7556190 4.86 2:06.83

Continued on next page
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Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
tai60b 60 608215054 BKS 726133324 19.39 2:17.06
tai64c 64 1855928 BKS 2041062 9.98 28:46.23
tai80a 80 13515450 BKS 14536796 7.56 6:31.76
tai80b 80 818415043 BKS 952760408 16.42 7:56.01
tho30 30 149936 OPT 177632 18.47 6.39
tho40 40 240516 BKS 280050 16.44 17.69
wil50 50 48816 BKS 50934 4.34 1:12.13

In terms of the quality of the solutions by our algorithm, for almost half of the

QAPLIB instances in Table 5.4, the gap as defined in (5.3) is less than 10%. For the

13 QAPLIB instances with N ≤ 14, we enumerated all the feasible solutions. Then we

divided the solutions into 1000 equal intervals between the best and worst objective values

and counted the number of occurrences in these intervals. The histograms are plotted

in Figure 5.1. It appears that the objective values of the feasible QAP solutions follow

a normal distribution. We also plotted our solutions along with the optimal solutions

on the histograms. In Figure 5.1, the solid vertical lines indicate the optimal solutions

and the dashed vertical lines show the solutions by our algorithm. If we define a good

solution to be one that is better than the majority of the feasible solutions, the solutions

to all these 13 instances by our algorithm are good solutions. Note that for instances

chr12a and chr12b, the gap is 61.2% and 70.31% respectively. This leads us to believe

that a measure by gap can give a bias towards the very few feasible solutions (including

the optimum) at the long left tail of a normal distribution and hence distort the quality

of otherwise good solutions.

As for the solution times, in Table 5.5 we compare the CPU time of our algorithm

with that of the exact algorithms for the recently solved large QAPLIB instances that

we showed in Table 1.3. The column header “Exact” is for the exact algorithm that

optimally solved these instances and “Proposed” for our algorithm. “Gap” measures the

solutions by our algorithm. As we can see, the solution times of our algorithm is virtually

negligible compared to those of the exact algorithms. Moreover, the gap is not very large

for the instances except ste36a–ste36c.
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Figure 5.1 Performance of the Algorithm on the QAPLIB Instances with N ≤ 14
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Table 5.5 Comparison on Recently Solved Large QAPLIB Instances

CPU Time
Problem

Exact (days) Proposed (secs)
Gap %

kra30a 99 6.83 13.36
kra30b 1527 12.08 16.80
kra32 5536 8.52 18.34
nug27 113 4.00 15.13
nug28 722 4.38 13.32
nug30 3999 6.06 14.17
ste36a 18 13.05 49.19
ste36b 60 22.81 138.32
ste36c 200 16.08 40.14
tai25a 394 2.86 8.77
tho30 8997 6.39 18.47

5.3 Results on Other Published QAP Test Problems

We have also run our algorithm on the other three sets of QAP test problems described in

Section 1.4. The pre-conditioning algorithms have been applied before the main iterations

of our algorithm for these problems. The results are shown in Tables 5.6–5.8, which have

the same column headers and entries in column “Type” as in Table 5.4. The CPU time

is also based on an Intel Pentium 4 2.80 GHz processor.

Instances by Drezner, Hahn and Taillard [30]. The results on these instances

(with N < 100) are summarized in Table 5.6. By the measure of gap, it seems that our

algorithm does not perform well on this set of problems. This is probably due to the

rugged landscape of the feasible regions of these instances as described in Section 1.4.

Since our continuous optimization algorithm relies on the information of the feasible

region in search for solutions, a steep landscape of the feasible region may well affect the

performance. In spite of that, the solution times for these instances are relatively small.
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Table 5.6 Results on the Instances by Drezner et al. with N < 100

Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
dre15 15 306 OPT 774 152.94 0.95
dre18 18 332 OPT 886 166.87 1.11
dre21 21 356 OPT 1166 227.53 2.44
dre24 24 396 OPT 1146 189.39 3.13
dre28 28 476 OPT 1150 141.60 4.47
dre30 30 508 OPT 1306 157.09 5.72
dre42 42 764 OPT 2544 232.98 27.06
dre56 56 1086 OPT 3084 183.98 1:43.36
dre72 72 1452 OPT 2988 105.79 6:47.04
dre90 90 1838 OPT 6220 238.41 12:40.42
tai27e01 27 2558 OPT 3176 24.16 3.83
tai27e02 27 2850 OPT 4410 54.74 4.59
tai27e03 27 3258 OPT 5504 68.94 6.75
tai27e04 27 2822 OPT 5332 88.94 6.91
tai27e05 27 3074 OPT 3546 15.35 4.25
tai27e06 27 2814 OPT 7458 165.03 4.58
tai27e07 27 3428 OPT 4966 44.87 4.45
tai27e08 27 2430 OPT 4388 80.58 4.87
tai27e09 27 2902 OPT 3506 20.81 6.69
tai27e10 27 2994 OPT 3532 17.97 7.41
tai27e11 27 2906 OPT 4502 54.92 4.34
tai27e12 27 3070 OPT 4726 53.94 6.50
tai27e13 27 2966 OPT 3462 16.72 6.20
tai27e14 27 3568 OPT 7422 108.02 4.61
tai27e15 27 2628 OPT 4474 70.24 4.28
tai27e16 27 3124 OPT 3962 26.82 6.98
tai27e17 27 3840 OPT 5228 36.15 6.69
tai27e18 27 2758 OPT 7618 176.21 7.78
tai27e19 27 2514 OPT 3496 39.06 4.23
tai27e20 27 2638 OPT 4170 58.07 5.19
tai45e01 45 6412 OPT 21432 234.25 37.72
tai45e02 45 5734 BKS 18246 218.21 35.37
tai45e03 45 7438 BKS 16666 124.07 39.75
tai45e04 45 6698 BKS 13684 104.30 44.28
tai45e05 45 7274 BKS 25714 253.51 1:24.41
tai45e06 45 6612 BKS 10374 56.90 30.81
tai45e07 45 7526 BKS 16254 115.97 1:44.62
tai45e08 45 6554 BKS 12076 84.25 59.95
tai45e09 45 6648 BKS 20568 209.39 42.19
tai45e10 45 8286 BKS 31740 283.06 1:25.80
tai45e11 45 6510 BKS 15378 136.22 56.58
tai45e12 45 7510 BKS 17550 133.69 40.72
tai45e13 45 6120 BKS 21738 255.20 59.02
tai45e14 45 6854 BKS 13704 99.94 49.67
tai45e15 45 7394 BKS 11808 59.70 56.94
tai45e16 45 6520 BKS 17194 163.71 49.22
tai45e17 45 8806 BKS 13980 58.76 59.92
tai45e18 45 6906 BKS 13786 99.62 43.87
tai45e19 45 7170 BKS 22336 211.52 39.64

Continued on next page
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Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
tai45e20 45 6510 BKS 14990 130.26 54.03
tai75e01 75 14488 OPT 24916 71.98 6:48.53
tai75e02 75 14444 BKS 30526 111.34 7:20.37
tai75e03 75 14154 BKS 43146 204.83 11:55.23
tai75e04 75 13694 BKS 47736 248.59 10:48.25
tai75e05 75 12884 BKS 27546 113.80 6:42.32
tai75e06 75 12554 BKS 23706 88.83 7:25.70
tai75e07 75 13782 BKS 31468 128.33 6:29.44
tai75e08 75 13948 BKS 30974 122.07 6:47.31
tai75e09 75 12650 BKS 21412 69.26 6:26.47
tai75e10 75 14192 BKS 30436 114.46 10:23.98
tai75e11 75 15250 BKS 32098 110.48 10:28.92
tai75e12 75 12760 BKS 31228 144.73 8:28.57
tai75e13 75 13024 BKS 35388 171.71 7:53.45
tai75e14 75 12604 BKS 23666 87.77 6:14.20
tai75e15 75 14294 BKS 27450 92.04 9:41.09
tai75e16 75 14204 BKS 25176 77.25 8:17.50
tai75e17 75 13210 BKS 30466 130.63 7:01.82
tai75e18 75 13500 BKS 29550 118.89 6:32.97
tai75e19 75 12060 BKS 23470 94.61 6:19.22
tai75e20 75 15260 BKS 30976 102.99 11:01.59

Instances by Palubeckis [91]. The results on these instances (with N < 100) are

listed in Table 5.7. By the measure of gap, our algorithm performs well on this set of

problems. Moreover, the solution times are relatively small.

Table 5.7 Results on the Instances by Palubeckis with N < 100

Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
Inst20 20 81536 OPT 83036 1.84 1.49
Inst30 30 271092 OPT 278900 2.88 7.08
Inst40 40 837900 OPT 848464 1.26 21.64
Inst50 50 1840356 OPT 1857684 0.94 54.64
Inst60 60 2967464 OPT 3034136 2.25 1:58.63
Inst70 70 5815290 OPT 5856766 0.71 4:10.94
Inst80 80 6597966 OPT 6656386 0.89 8:20.28

Instances by Stützle and Fernandes [108]. The results on these instances (with

N < 100) are contained in Table 5.8. Due to their varied characteristics, these instances

are more difficult than the QAPLIB instances. There are about a quarter of the instances
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in the table for which the gap of the solutions by our algorithm is less than 10%. For

several instances, we have seen unusually large values (> 1000%) of the gap of the

solutions. Nevertheless, the solution times are relative small.

Table 5.8 Results on the Instances by Stützle and Fernandes with N < 100

Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
GridRandom.974820449 50 550969 BKS 570631 3.57 57.58
GridRandom.974820450 50 400389 BKS 419420 4.75 55.13
GridRandom.974820451 50 357607 BKS 372707 4.22 55.28
GridRandom.974820452 50 246191 BKS 259915 5.57 58.95
GridRandom.974820453 50 156957 BKS 173474 10.52 51.28
GridRandom.974820454 50 93887 BKS 112891 20.24 55.14
GridRandom.974820455 50 64481 BKS 81120 25.80 1:56.72
GridRandom.974820456 50 35469 BKS 46175 30.18 53.75
GridRandom.974820457 50 11378 BKS 15802 38.88 56.38
GridRandom.974820458 50 339024 BKS 353328 4.22 1:06.47
GridRandom.974820459 50 253761 BKS 270335 6.53 53.70
GridRandom.974820460 50 220469 BKS 240132 8.92 56.48
GridRandom.974820461 50 152116 BKS 166068 9.17 1:01.66
GridRandom.974820462 50 97538 BKS 105731 8.40 53.03
GridRandom.974820463 50 52986 BKS 63133 19.15 53.08
GridRandom.974820464 50 42454 BKS 52821 24.42 59.61
GridRandom.974820465 50 15373 BKS 22518 46.48 51.30
GridRandom.974820466 50 4718 BKS 8228 74.40 54.45
GridRandom.974820467 50 285840 BKS 307068 7.43 57.14
GridRandom.974820468 50 207863 BKS 221392 6.51 1:02.77
GridRandom.974820469 50 182387 BKS 199667 9.47 1:08.41
GridRandom.974820470 50 121797 BKS 139181 14.27 58.11
GridRandom.974820471 50 79749 BKS 96057 20.45 1:00.56
GridRandom.974820472 50 39927 BKS 48481 21.42 51.72
GridRandom.974820473 50 25008 BKS 33328 33.27 58.45
GridRandom.974820474 50 16887 BKS 25758 52.53 52.19
GridRandom.974820475 50 4579 BKS 9557 108.71 52.78
GridRandom.974820476 50 151403 BKS 168663 11.40 59.75
GridRandom.974820477 50 105515 BKS 125565 19.00 50.09
GridRandom.974820478 50 86290 BKS 98282 13.90 1:00.48
GridRandom.974820479 50 62820 BKS 78251 24.56 58.36
GridRandom.974820480 50 36278 BKS 46863 29.18 53.22
GridRandom.974820481 50 23683 BKS 34381 45.17 58.16
GridRandom.974820482 50 12728 BKS 21038 65.29 1:00.50
GridRandom.974820483 50 5336 BKS 8576 60.72 57.50
GridRandom.974820484 50 2914 BKS 4800 64.72 53.86
GridStructured.974825925 50 4243 BKS 6603 55.62 1:13.94
GridStructured.974825926 50 25986 BKS 41700 60.47 58.69
GridStructured.974825927 50 91887 BKS 115187 25.36 1:15.84
GridStructured.974825928 50 303320 BKS 329910 8.77 1:08.89
GridStructured.974825929 50 1770 BKS 2302 30.06 1:13.97
GridStructured.974825930 50 16335 BKS 33001 102.03 57.92
GridStructured.974825931 50 53538 BKS 83525 56.01 1:11.88

Continued on next page
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Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
GridStructured.974825932 50 161448 BKS 173852 7.68 56.78
GridStructured.974825933 50 3620 BKS 6427 77.54 1:10.36
GridStructured.974825934 50 9152 BKS 16050 75.37 1:03.11
GridStructured.974825936 50 59994 BKS 80919 34.88 1:13.95
GridStructured.974825937 50 149938 BKS 167170 11.49 59.77
GridStructured.974825938 50 1914 BKS 3137 63.90 1:54.67
GridStructured.974825939 50 4747 BKS 8545 80.01 1:09.63
GridStructured.974825940 50 29106 BKS 38705 32.98 1:04.50
GridStructured.974825941 50 69820 BKS 84801 21.46 1:01.03
GridStructuredPlus.974826006 50 3493 BKS 4835 38.42 1:21.23
GridStructuredPlus.974826008 50 24313 BKS 43435 78.65 1:04.45
GridStructuredPlus.974826009 50 118283 BKS 144073 21.80 1:21.02
GridStructuredPlus.974826010 50 251804 BKS 278376 10.55 1:03.00
GridStructuredPlus.974826011 50 2312 BKS 3360 45.33 1:24.86
GridStructuredPlus.974826012 50 12939 BKS 23851 84.33 1:17.31
GridStructuredPlus.974826013 50 77515 BKS 89607 15.60 1:26.50
GridStructuredPlus.974826014 50 175559 BKS 197787 12.66 55.25
GridStructuredPlus.974826015 50 3551 BKS 5124 44.30 1:10.53
GridStructuredPlus.974826016 50 11276 BKS 21432 90.07 1:02.23
GridStructuredPlus.974826017 50 46340 BKS 67421 45.49 1:09.31
GridStructuredPlus.974826018 50 121688 BKS 147915 21.55 1:11.19
GridStructuredPlus.974826019 50 952 BKS 1886 98.11 2:01.30
GridStructuredPlus.974826020 50 5645 BKS 9396 66.45 1:09.48
GridStructuredPlus.974826021 50 29568 BKS 45305 53.22 1:00.36
GridStructuredPlus.974826022 50 65000 BKS 75289 15.83 1:00.84
RandomRandom.974820375 50 15946893 BKS 16537777 3.71 1:01.22
RandomRandom.974820376 50 10711742 BKS 11289450 5.39 54.80
RandomRandom.974820377 50 10146457 BKS 10557496 4.05 51.03
RandomRandom.974820378 50 7411328 BKS 8079555 9.02 1:26.55
RandomRandom.974820379 50 4899211 BKS 5402286 10.27 1:17.94
RandomRandom.974820380 50 3429288 BKS 3796952 10.72 1:10.36
RandomRandom.974820382 50 2402176 BKS 2741599 14.13 1:09.08
RandomRandom.974820383 50 856989 BKS 1099838 28.34 1:01.11
RandomRandom.974820384 50 213156 BKS 333450 56.43 1:04.02
RandomRandom.974820385 50 8663908 BKS 8892523 2.64 51.39
RandomRandom.974820386 50 6539530 BKS 6761932 3.40 51.36
RandomRandom.974820387 50 5951176 BKS 6293057 5.74 54.89
RandomRandom.974820388 50 4528015 BKS 5073935 12.06 2:15.39
RandomRandom.974820389 50 2380849 BKS 2620562 10.07 56.08
RandomRandom.974820390 50 1823708 BKS 2112342 15.83 54.41
RandomRandom.974820391 50 761773 BKS 902353 18.45 48.58
RandomRandom.974820392 50 365155 BKS 534099 46.27 1:31.48
RandomRandom.974820393 50 154444 BKS 306380 98.38 1:07.48
RandomRandom.974820394 50 8647476 BKS 9245593 6.92 57.98
RandomRandom.974820395 50 4173308 BKS 4487094 7.52 50.92
RandomRandom.974820396 50 4674438 BKS 5207040 11.39 1:29.47
RandomRandom.974820397 50 3923467 BKS 4418304 12.61 1:13.17
RandomRandom.974820398 50 2856016 BKS 3409958 19.40 2:05.42
RandomRandom.974820399 50 1294453 BKS 1738705 34.32 53.19
RandomRandom.974820400 50 546764 BKS 773856 41.53 56.69
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Published Our Solution
Problem N ObjVal Type ObjVal Gap % CPU Time
RandomRandom.974820401 50 417346 BKS 601975 44.24 1:04.67
RandomRandom.974820402 50 72019 BKS 220232 205.80 1:49.67
RandomRandom.974820403 50 4704435 BKS 5281055 12.26 52.72
RandomRandom.974820404 50 3265590 BKS 3653103 11.87 1:00.84
RandomRandom.974820405 50 2658867 BKS 2928053 10.12 50.42
RandomRandom.974820406 50 2034005 BKS 2518458 23.82 1:00.36
RandomRandom.974820407 50 1198629 BKS 1462483 22.01 56.77
RandomRandom.974820408 50 510924 BKS 669760 31.09 56.33
RandomRandom.974820409 50 421734 BKS 797261 89.04 1:03.55
RandomRandom.974820410 50 124931 BKS 234408 87.63 53.86
RandomRandom.974820411 50 35129 BKS 72184 105.48 1:07.39
RandomStructured.974823931 50 16107 BKS 129475 703.84 1:13.22
RandomStructured.974823932 50 405846 BKS 1157676 185.25 57.33
RandomStructured.974823933 50 2917225 BKS 4216994 44.55 59.84
RandomStructured.974823934 50 8550661 BKS 9387923 9.79 1:07.31
RandomStructured.974823935 50 5427 BKS 39103 620.53 1:22.63
RandomStructured.974823936 50 186096 BKS 528067 183.76 1:15.02
RandomStructured.974823937 50 2288762 BKS 3018895 31.90 1:21.28
RandomStructured.974823938 50 4437380 BKS 4877027 9.91 1:06.27
RandomStructured.974823939 50 4088 BKS 50110 1125.78 1:21.59
RandomStructured.974823940 50 76534 BKS 312674 308.54 1:02.20
RandomStructured.974823941 50 1528696 BKS 2380591 55.73 1:49.03
RandomStructured.974823942 50 4715920 BKS 5143016 9.06 1:36.06
RandomStructured.974823943 50 5824 BKS 87875 1408.84 1:16.17
RandomStructured.974823944 50 49366 BKS 208407 322.17 1:05.61
RandomStructured.974823945 50 1077626 BKS 1650709 53.18 1:47.78
RandomStructured.974823946 50 2119306 BKS 2514942 18.67 1:33.27
RandomStructuredPlus.974824391 50 7646 BKS 159450 1985.40 1:15.73
RandomStructuredPlus.974824392 50 228623 BKS 481569 110.64 56.38
RandomStructuredPlus.974824393 50 2004066 BKS 2418744 20.69 2:48.66
RandomStructuredPlus.974824394 50 7718049 BKS 8705132 12.79 1:29.70
RandomStructuredPlus.974824395 50 4153 BKS 51694 1144.74 1:06.84
RandomStructuredPlus.974824396 50 224556 BKS 581878 159.12 1:03.30
RandomStructuredPlus.974824397 50 1594195 BKS 2210934 38.69 1:04.53
RandomStructuredPlus.974824398 50 4709065 BKS 4984611 5.85 1:01.28
RandomStructuredPlus.974824399 50 4513 BKS 54409 1105.61 1:22.77
RandomStructuredPlus.974824400 50 100341 BKS 368518 267.27 57.77
RandomStructuredPlus.974824401 50 1486604 BKS 1848590 24.35 1:00.47
RandomStructuredPlus.974824402 50 3448081 BKS 3959981 14.85 1:25.48
RandomStructuredPlus.974824403 50 1607 BKS 17823 1009.09 1:26.59
RandomStructuredPlus.974824404 50 50958 BKS 222046 335.74 1:08.22
RandomStructuredPlus.974824405 50 1124591 BKS 1362367 21.14 56.75
RandomStructuredPlus.974824406 50 1801276 BKS 2142610 18.95 1:30.89

106



5.4 Summary of Numerical Results

In Sections 5.2 and 5.3, we have shown the numerical results of our algorithm for the QAP

on a variety of QAP test problems. For many problems, our algorithm has performed

reasonably well and produced good solutions in a small amount of time. As our algorithm

is designed to quickly find good solutions through exploiting the problem structures via

continuous optimization techniques, there are classes of problems that are inherently

difficult for our algorithm.

In our discussion of the results on the QAPLIB instances in Section 5.2, we showed

that the commonly used performance measure gap can be biased towards the very few

feasible solutions at the extreme of the tail of a normal distribution. Based upon the

exhaustively enumerated results, we have demonstrated that our algorithm has produced

good solutions for the QAPLIB instances of a size N ≤ 14. However, the gap measures

for several of these instances are fairly large. Hence, we believe that gap is not an ap-

propriate measure to evaluate the performance of an algorithm that seeks good solutions

to the QAP. This suggests that a more appropriate measure of performance should be

considered. We will discuss possible further research into such a performance measure in

Section 6.2.
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Chapter 6

Conclusions, Further Research and
Extensions

6.1 Conclusions

In this research we have developed an algorithm for the QAP based upon several continu-

ous optimization techniques. Although the method of relaxation with a penalty function

has been proposed earlier in the context of QAP or in the related study of nonlinear

0-1 programming, the pre-conditioning of the Hessian of the objective function in our

algorithm is a novel application of such a technique in this context. Using the convex

transformation to devise a scheme for an initial point is also unique. Furthermore, the

quadratic cut is the first attempt to use a higher order cut in the context of quadratic

0-1 programming with the QAP as a special case. Finally, employing random sampling

in the interior of the feasible region for different starting points is an original application

of random sampling in the context of the QAP.

We have implemented our proposed algorithm for the QAP and run it on a variety of

QAP test instances. The numerical results have shown that our algorithm can potentially

produce good solutions in a small amount of time for certain classes of QAP instances.

6.2 Further Research and Extensions

As Figure 5.1 shows, the objective values of the feasible solutions to the QAP appear to

follow a normal distribution. Hence, we suggest further research to formalize this result.

If this conjecture is true, we can sample among the QAP solutions and draw inferences

on the underlying normal distribution. Then based upon the estimates of the mean and

variance, denoted by µ and σ2, of the normal distribution, we can use a performance



measure as follows. In particular, for a QAP solution whose objective value is q̂, we have

P

(
Z <

q̂ − µ
σ

)
= α

where Z denotes a standard normal variate. That is, we use α as a measure of the quality

of the QAP solution.

Extension of our algorithm for the QAP to quadratic 0-1 programming is a straight-

forward task. In general, the strong equivalence does not hold for a quadratic 0-1 pro-

gramming problem; therefore, solving the relaxation using the quadratic penalty function

is not a guarantee for an integer solution. However, almost all other techniques in our

algorithm can be readily applied in the context of quadratic 0-1 programming. When an

integer solution cannot be obtained by solving the relaxation with the quadratic penalty

function, there needs to be some other scheme to obtain an integer point to start the

relaxation problems with the quadratic cut.

After we extend our algorithm to quadratic 0-1 programming, we can then think of

further extending it to general nonlinear 0-1 programming. There are two possibilities:

1. Some reduction techniques such as those described in Section 2.1 can be applied

to reduce a general nonlinear 0-1 programming problem to an equivalent quadratic

0-1 programming problem. Then the extension of our algorithm to quadratic 0-1

programming is applied to solve the resulting quadratic 0-1 programming problem.

2. Utilizing the idea of a sequential quadratic programming algorithm for continuous

nonlinear programming, we can approximate a nonlinear 0-1 programming problem

by a quadratic 0-1 programming problem. Then the extension of our algorithm to

quadratic 0-1 programming is applied to solve the resulting quadratic 0-1 program-

ming approximation. With this option, we need to address such issues that arise

when the solution to the quadratic 0-1 programming approximation is infeasible to

the original nonlinear 0-1 programming problem or the quadratic 0-1 programming

approximation is an infeasible problem.
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Appendix A

Proofs from Literature

A.1 Total Unimodularity of the Assignment Matrix

Proposition A.1 (Salkin and Mathur [104], 1989) The assignment matrix L in (1.5)

is totally unimodular.

Proof. Consider the following assignment matrix:

L =



1 · · · 1 1
1 · · · 1 1

· · · ·
1 · · · 1 1

1 1 · 1
. . . . . . · . . .

1 1 · 1


.

Note that we have deleted the last assignment constraint. Hence matrix L has a full row

rank. Since each element of L is either 0 or 1, the determinant of every 1× 1 submatrix

of L is 0 or 1. Now by induction, suppose the determinant of every submatrix of size

(k − 1)× (k − 1), denoted by detLk−1, is 0, 1, or −1 and let Lk be any k × k submatrix

of L, where k ≥ 2. There are three cases we need to consider: i) If any column of Lk

is all zeros, then detLk = 0. ii) If any column of Lk has only a single 1, expand the

determinant of Lk by the cofactors of that column. We have detLk = ± detLk−1. Hence,

detLk = 0, 1, or −1. iii) If every column of Lk has two 1’s, then one 1 in each column

must be from the facility constraint and the other from the location constraint. In this

case the sum of the rows in Lk corresponding to the facility constraints is equal to the

sum of the rows corresponding to the location constraints and thus detLk = 0.
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A.2 Proof of Proposition 3.6

Proof. Let S = (sij) = Q− 2µI. First we show that

(A.1)
n∑
i=1

n∑
j=1
j 6=i

sijx
2
i =

n−1∑
i=1

n∑
j=i+1

sijx
2
i +

n−1∑
i=1

n∑
j=i+1

sijx
2
j .

Note
∑n

j=n+1(·) = 0. Hence

n−1∑
i=1

n∑
j=i+1

sijx
2
i =

n∑
i=1

n∑
j=i+1

sijx
2
i .

In the last term of (A.1), we can reverse the order of summation, giving

n−1∑
i=1

n∑
j=i+1

sijx
2
j =

n∑
j=2

j−1∑
i=1

sijx
2
j .

Since S is symmetric, we have

n∑
j=2

j−1∑
i=1

sijx
2
j =

n∑
i=1

i−1∑
j=1

sijx
2
i .

Therefore, the right-hand side of (A.1) is

n−1∑
i=1

n∑
j=i+1

sijx
2
i +

n−1∑
i=1

n∑
j=i+1

sijx
2
j

=
n∑
i=1

n∑
j=i+1

sijx
2
i +

n∑
i=1

i−1∑
j=1

sijx
2
i =

n∑
i=1

n∑
j=1
j 6=i

sijx
2
i .

Now for any x 6= 0, we have

xTSx =
n∑
i=1

siix
2
i + 2

n−1∑
i=1

n∑
j=i+1

sijxixj

=
n∑
i=1

(
sii +

n∑
j=1
j 6=i

sij

)
x2
i −

n−1∑
i=1

n∑
j=i+1

sij
(
xi − xj

)2

=
n∑
i=1

(
− 2µ+

n∑
j=1

qij

)
x2
i −

n−1∑
i=1

n∑
j=i+1

qij
(
xi − xj

)2

≤
n∑
i=1

(
− 2µ+

n∑
j=1

qij

)
x2
i < 0

which completes the proof.
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Appendix B

Test Problems and Numerical Results

B.1 QAPLIB Instances

Table B.1 lists the complete set of the QAPLIB instances along with their sizes N and

the objective values of the optimal or best known solutions. In column “objval”, the

asterisked entries are the objective values of the best known solutions and the other

entries are the objective values of the optimal solutions.

Table B.1 A Complete List of the QAPLIB Instances

Problem N objval Problem N objval
bur26a 26 5426670 bur26b 26 3817852
bur26c 26 5426795 bur26d 26 3821225
bur26e 26 5386879 bur26f 26 3782044
bur26g 26 10117172 bur26h 26 7098658
chr12a 12 9552 chr12b 12 9742
chr12c 12 11156 chr15a 15 9896
chr15b 15 7990 chr15c 15 9504
chr18a 18 11098 chr18b 18 1534
chr20a 20 2192 chr20b 20 2298
chr20c 20 14142 chr22a 22 6156
chr22b 22 6194 chr25a 25 3796
els19 19 17212548 esc16a 16 68
esc16b 16 292 esc16c 16 160
esc16d 16 16 esc16e 16 28
esc16f 16 0 esc16g 16 26
esc16h 16 996 esc16i 16 14
esc16j 16 8 esc32a 32 130 *
esc32b 32 168 * esc32c 32 642 *
esc32d 32 200 * esc32e 32 2
esc32f 32 2 esc32g 32 6
esc32h 32 438 * esc64a 64 116 *
esc128 128 64 * had12 12 1652
had14 14 2724 had16 16 3720
had18 18 5358 had20 20 6922
kra30a 30 88900 kra30b 30 91420
kra32 32 88700 lipa20a 20 3683
lipa20b 20 27076 lipa30a 30 13178
lipa30b 30 151426 lipa40a 40 31538
lipa40b 40 476581 lipa50a 50 62093
lipa50b 50 1210244 lipa60a 60 107218
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Problem N objval Problem N objval
lipa60b 60 2520135 lipa70a 70 169755
lipa70b 70 4603200 lipa80a 80 253195
lipa80b 80 7763962 lipa90a 90 360630
lipa90b 90 12490441 nug12 12 578
nug14 14 1014 nug15 15 1150
nug16a 16 1610 nug16b 16 1240
nug17 17 1732 nug18 18 1930
nug20 20 2570 nug21 21 2438
nug22 22 3596 nug24 24 3488
nug25 25 3744 nug27 27 5234
nug28 28 5166 nug30 30 6124
rou12 12 235528 rou15 15 354210
rou20 20 725522 scr12 12 31410
scr15 15 51140 scr20 20 110030
sko42 42 15812 * sko49 49 23386 *
sko56 56 34458 * sko64 64 48498 *
sko72 72 66256 * sko81 81 90998 *
sko90 90 115534 * sko100a 100 152002 *
sko100b 100 153890 * sko100c 100 147862 *
sko100d 100 149576 * sko100e 100 149150 *
sko100f 100 149036 * ste36a 36 9526
ste36b 36 15852 ste36c 36 8239110
tai10a 10 135028 tai10b 10 1183760
tai12a 12 224416 tai12b 12 39464925
tai15a 15 388214 tai15b 15 51765268
tai17a 17 491812 tai20a 20 703482
tai20b 20 122455319 tai25a 25 1167256
tai25b 25 344355646 tai30a 30 1818146 *
tai30b 30 637117113 * tai35a 35 2422002 *
tai35b 35 283315445 * tai40a 40 3139370 *
tai40b 40 637250948 * tai50a 50 4938796 *
tai50b 50 458821517 * tai60a 60 7205962 *
tai60b 60 608215054 * tai64c 64 1855928 *
tai80a 80 13515450 * tai80b 80 818415043 *
tai100a 100 21054656 * tai100b 100 1185996137 *
tai150b 150 498896643 * tai256c 256 44759294 *
tho30 30 149936 tho40 40 240516 *
tho150 150 8133398 * wil50 50 48816 *
wil100 100 273038 *

B.2 Results of Matrix Reduction Algorithm

In Table B.2 the columns under “Original” are for the Hessian of the original objective

function of the QAP and the columns under “MatRed” for the modified Hessian produced

by the Matrix Reduction algorithm. The column header “sp eigvals” stands for the
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spread of eigenvalues. Since the Matrix Reduction algorithm can cause fill-in and produce

denser matrices, we show the percentage of nonzero elements in the original Hessian and

modified Hessian. Note that since the Matrix Reduction algorithm requires that both

the flow matrix and distance matrix be symmetric, we have not run instances bur26a–

bur26h—These instances are asymmetric problems in that both the flow matrix and

distance matrix are asymmetric, so we cannot symmetrize the flow matrix or distance

matrix as discussed in Section 1.2.2 when only one of them but not both are asymmetric.

Table B.2 Matrix Reduction Algorithm on QAPLIB Instances with N ≤ 100

Original MatRed
Problem sp eigvals nonzeros % sp eigvals nonzeros %
chr12a 286770.4 13.8 69022.2 100
chr12b 313910.8 13.8 66952.8 100
chr12c 235817.4 13.8 58282.1 100
chr15a 333640.1 11.6 76936.0 100
chr15b 365987.6 11.6 86874.9 100
chr15c 317854.4 11.6 75107.4 100
chr18a 406621.2 9.9 97606.7 100
chr18b 23151.1 9.9 5122.5 93.8
chr20a 57711.9 9.0 11699.4 100
chr20b 50026.1 9.0 10993.9 100
chr20c 634422.9 9.0 144979.7 100
chr22a 136795.6 8.3 27171.1 100
chr22b 128071.2 8.3 25848.5 100
chr25a 124052.6 7.4 23727.0 100
els19 634928254.8 29.4 136819917.2 100
esc16a 518.5 20.4 51.4 100
esc16b 992.8 49.4 46.9 100
esc16c 879.0 27.4 138.7 100
esc16d 241.5 11.3 48.0 100
esc16e 374.9 11.3 55.4 100
esc16f 0.0 0.0 0.0 0.0
esc16g 405.8 11.3 61.5 100
esc16h 6227.8 61.8 611.9 100
esc16i 319.0 8.1 58.8 100
esc16j 214.8 6.4 36.6 100
esc32a 1880.6 11.7 292.3 100
esc32b 1568.0 17.1 160.0 100
esc32c 4982.7 20.8 412.3 100
esc32d 2088.2 14.3 193.5 100
esc32e 1016.5 1.0 163.8 100
esc32f 1016.5 1.0 163.8 100
esc32g 778.6 1.4 119.7 100
esc32h 3148.9 22.4 263.0 100
esc64a 3462.4 2.8 377.9 100
had12 5450.0 84.0 316.1 100
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Original MatRed
Problem sp eigvals nonzeros % sp eigvals nonzeros %
had14 9423.2 86.2 622.8 100
had16 12655.9 87.9 799.4 100
had18 17799.1 89.2 994.0 99.4
had20 23272.6 90.2 1301.1 100
kra30a 477544.8 35.4 44941.3 100
kra30b 485917.1 35.4 44832.7 100
kra32 519479.2 31.2 48832.8 100
lipa20a 9018.2 90.2 198.8 73.5
lipa20b 89257.7 85.0 4532.3 100
lipa30a 30856.6 93.4 446.8 84.2
lipa30b 483435.9 90.7 20401.5 100
lipa40a 73329.8 95.1 676.2 83.6
lipa40b 1478400.0 92.5 51014.8 100
lipa50a 141054.3 96.0 908.4 82.2
lipa50b 3613869.7 94.1 91994.0 100
lipa60a 241197.3 96.7 1397.0 81.8
lipa60b 7501093.4 95.4 177231.7 100
lipa70a 378559.1 97.2 1726.5 82.8
lipa70b 13699403.1 95.6 279857.9 100
lipa80a 563256.6 97.5 2051.3 80.1
lipa80b 22845506.1 96.3 428487.5 100
lipa90a 796872.0 97.8 2562.2 80.8
lipa90b 36541373.7 96.8 633114.5 100
nug12 2477.2 57.3 307.5 97.2
nug14 4278.1 64.4 496.2 100
nug15 4858.7 62.2 593.0 99.1
nug16a 6374.5 68.1 694.9 100
nug16b 5380.1 61.5 518.7 100
nug17 7010.6 65.8 766.0 100
nug18 7658.3 65.9 777.1 100
nug20 9962.2 67.0 900.8 95.0
nug21 11063.3 59.2 1401.8 99.1
nug22 17168.7 60.3 2301.0 100
nug24 14601.7 61.6 1450.5 100
nug25 14882.3 61.4 1295.3 100
nug27 22240.4 61.6 2446.7 99.5
nug28 20491.8 61.7 2017.2 99.5
nug30 24075.4 62.9 2158.2 96.9
rou12 812749.7 82.8 92167.2 100
rou15 1245417.3 86.3 132120.5 100
rou20 2353227.0 88.8 186990.6 100
scr12 353163.4 35.6 55458.9 97.2
scr15 504987.3 34.8 88811.8 100
scr20 1074731.2 29.4 181114.9 95.0
sko42 54688.2 66.7 4239.9 99.1
sko49 78533.6 66.2 5567.0 100
sko56 116132.1 66.5 7897.6 99.5
sko64 156756.3 66.6 9643.4 100
sko72 215761.9 67.8 12683.8 99.8
sko81 289918.6 68.5 15588.4 100
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Original MatRed
Problem sp eigvals nonzeros % sp eigvals nonzeros %
sko90 369755.5 67.7 19116.9 99.7
sko100a 475791.6 67.9 22697.2 100
sko100b 482676.7 67.6 23041.4 100
sko100c 464872.7 66.8 23605.9 100
sko100d 468341.5 66.7 22373.5 100
sko100e 470164.5 66.6 23773.7 100
sko100f 465137.9 66.9 22454.1 100
ste36a 226235.1 25.8 45835.2 98.8
ste36b 933769.9 25.8 330459.9 99.4
ste36c 187350938.0 25.8 39477423.8 99.4
tai10a 526767.2 77.4 67962.9 100
tai10b 13531710.5 63.0 1938952.0 100
tai12a 862064.1 81.5 88684.3 100
tai12b 372653118.4 67.9 102113287.0 100
tai15a 1283257.7 84.6 120370.6 100
tai15b 3670595334.0 67.2 3656764.0 100
tai17a 1566009.8 85.4 148563.3 100
tai20a 2247575.1 87.4 184594.0 100
tai20b 1743764415.1 75.0 561909312.8 100
tai25a 3523086.3 90.3 242668.8 100
tai25b 3797033258.7 76.8 1190483331.1 100
tai30a 5345957.1 91.5 298627.7 100
tai30b 5382582768.2 76.3 1647781512.1 100
tai35a 7044932.1 92.0 349655.2 100
tai35b 1938296811.9 65.7 550496468.9 100
tai40a 9044489.3 92.9 423452.9 100
tai40b 3945470210.1 69.1 709679729.5 100
tai50a 13945390.5 94.4 613883.8 100
tai50b 2836669109.0 65.8 679096990.7 100
tai60a 19842023.1 95.0 672106.7 100
tai60b 3587653910.5 66.2 664239331.9 100
tai64c 36686416.0 4.1 7819714.8 100
tai80a 35386508.4 95.6 953084.5 100
tai80b 4149925240.0 67.2 568166623.6 100
tai100a 53794793.9 96.1 1188864.7 100
tai100b 6275787104.3 67.9 809642681.6 100
tho30 666341.6 46.6 86862.8 99.1
tho40 1046789.0 38.0 111206.4 100
wil50 157996.8 86.2 8137.4 98.7
wil100 794292.0 88.3 22451.5 100

B.3 Results of Scaling and Shift Algorithm

In Table B.3 the columns under “Original” are the results for the first setting, i.e.,

applying the algorithm to the Hessian of the original objective function, and the columns

under “MatRed” the results for the second setting, i.e., applying the algorithm to the
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modified Hessian produced by the Matrix Reduction algorithm. σ is the scaling factor as

described in Section 4.3.3. λ and λ are the smallest and largest eigenvalues, respectively,

of the resulting Hessian produced by the Scaling and Shift algorithm. Note that λ is

equal to γ discussed in Section 4.3.3. Column “nz %” shows the percentage of nonzeros

in the resulting Hessian. We have not run instances bur26a–bur26h in the second setting

for the same reason as mentioned in Appendix B.2.

Table B.3 Scaling and Shift Algorithm on QAPLIB Instances with N ≤ 100

Original MatRed
Problem

σ λ λ nz % σ λ λ nz %
bur26a 1388.3 277.7 27766.8 85.8 – – – –
bur26b 1168.7 233.7 23373.4 85.8 – – – –
bur26c 1259.3 251.9 25185.7 83.9 – – – –
bur26d 1060.0 212.0 21200.7 83.9 – – – –
bur26e 1377.4 275.5 27548.5 78.3 – – – –
bur26f 1159.5 231.9 23189.6 78.3 – – – –
bur26g 1919.1 383.8 38382.2 89.1 – – – –
bur26h 1615.5 323.1 32309.3 89.1 – – – –
chr12a 120.3 24.1 2406.9 14.5 59.0 11.8 1180.8 100
chr12b 125.9 25.2 2518.3 14.5 58.2 11.6 1163.0 100
chr12c 109.1 21.8 2182.7 14.5 54.3 10.9 1085.1 100
chr15a 129.8 26.0 2596.2 12.1 62.3 12.5 1246.7 100
chr15b 136.0 27.2 2719.1 12.1 66.2 13.2 1324.8 100
chr15c 126.7 25.3 2534.0 12.1 61.6 12.3 1231.8 100
chr18a 143.3 28.7 2866.1 10.2 70.2 14.0 1404.2 100
chr18b 34.2 6.8 683.9 10.2 16.1 3.2 321.7 93.8
chr20a 54.0 10.8 1079.8 9.3 24.3 4.9 486.2 100
chr20b 50.3 10.1 1005.3 9.3 23.6 4.7 471.3 100
chr20c 179.0 35.8 3580.0 9.3 85.6 17.1 1711.4 100
chr22a 83.1 16.6 1662.4 8.5 37.0 7.4 740.9 100
chr22b 80.4 16.1 1608.5 8.5 36.1 7.2 722.6 100
chr25a 79.2 15.8 1583.1 7.5 34.6 6.9 692.3 100
els19 5662.8 1132.6 113255.6 29.7 2628.7 525.7 52574.1 100
esc16a 5.1 1.0 102.3 20.8 1.0 1.0 52.4 100
esc16b 7.1 1.4 141.6 49.8 1.0 1.0 47.9 100
esc16c 6.7 1.3 133.3 27.8 1.4 1.0 100.0 100
esc16d 2.4 1.0 100.0 11.7 1.0 1.0 49.0 100
esc16e 3.8 1.0 100.0 11.7 1.0 1.0 56.4 100
esc16f 1.0 1.0 1.0 0.4 1.0 1.0 1.0 0.4
esc16g 4.1 1.0 100.0 11.7 1.0 1.0 62.5 100
esc16h 17.7 3.5 354.7 62.2 5.6 1.1 111.2 100
esc16i 3.2 1.0 100.0 8.4 1.0 1.0 59.8 100
esc16j 2.2 1.0 100.0 6.8 1.0 1.0 37.6 100
esc32a 9.7 1.9 194.9 11.8 3.0 1.0 100.0 100
esc32b 8.9 1.8 178.0 17.2 1.6 1.0 100.0 100
esc32c 15.9 3.2 317.3 20.9 4.2 1.0 100.0 100
esc32d 10.3 2.1 205.4 14.4 2.0 1.0 100.0 100
esc32e 7.2 1.4 143.3 1.0 1.7 1.0 100.0 100
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Original MatRed
Problem

σ λ λ nz % σ λ λ nz %
esc32f 7.2 1.4 143.3 1.0 1.7 1.0 100.0 100
esc32g 6.3 1.3 125.4 1.5 1.2 1.0 100.0 100
esc32h 12.6 2.5 252.2 22.5 2.7 1.0 100.0 100
esc64a 13.2 2.6 264.5 2.9 3.8 1.0 100.0 100
had12 16.6 3.3 331.8 84.7 3.2 1.0 100.0 100
had14 21.8 4.4 436.3 86.7 5.6 1.1 112.2 100
had16 25.3 5.1 505.6 88.3 6.4 1.3 127.1 100
had18 30.0 6.0 599.6 89.5 7.1 1.4 141.7 99.4
had20 34.3 6.9 685.7 90.5 8.1 1.6 162.1 100
kra30a 155.3 31.1 3106.0 35.6 47.6 9.5 952.8 100
kra30b 156.7 31.3 3133.1 35.6 47.6 9.5 951.7 100
kra32 162.0 32.4 3239.5 31.3 49.7 9.9 993.2 100
lipa20a 21.3 4.3 426.8 90.5 2.0 1.0 100.0 73.5
lipa20b 67.1 13.4 1342.8 85.3 15.1 3.0 302.6 100
lipa30a 39.5 7.9 789.5 93.6 4.5 1.0 100.0 84.2
lipa30b 156.3 31.3 3125.1 90.8 32.1 6.4 642.0 100
lipa40a 60.9 12.2 1217.1 95.1 5.8 1.2 116.9 83.6
lipa40b 273.3 54.7 5465.0 92.6 50.8 10.2 1015.2 100
lipa50a 84.4 16.9 1688.1 96.1 6.8 1.4 135.5 82.2
lipa50b 427.2 85.4 8544.4 94.1 68.2 13.6 1363.3 100
lipa60a 110.4 22.1 2207.4 96.7 8.4 1.7 168.0 81.8
lipa60b 615.5 123.1 12310.0 95.5 94.6 18.9 1892.2 100
lipa70a 138.3 27.7 2765.4 97.2 9.3 1.9 186.8 82.8
lipa70b 831.8 166.4 16636.0 95.6 118.9 23.8 2377.8 100
lipa80a 168.7 33.7 3373.3 97.5 10.2 2.0 203.6 80.1
lipa80b 1074.2 214.8 21483.1 96.3 147.1 29.4 2942.2 100
lipa90a 200.6 40.1 4012.3 97.8 11.4 2.3 227.5 80.8
lipa90b 1358.5 271.7 27170.0 96.8 178.8 35.8 3576.3 100
nug12 11.2 2.2 223.7 58.0 3.1 1.0 100.0 97.2
nug14 14.7 2.9 294.0 64.9 5.0 1.0 100.1 100
nug15 15.7 3.1 313.3 62.7 5.5 1.1 109.5 99.1
nug16a 17.9 3.6 358.9 68.5 5.9 1.2 118.5 100
nug16b 16.5 3.3 329.7 61.9 5.1 1.0 102.4 100
nug17 18.8 3.8 376.3 66.1 6.2 1.2 124.4 100
nug18 19.7 3.9 393.3 66.2 6.3 1.3 125.3 100
nug20 22.4 4.5 448.6 67.2 6.7 1.3 134.9 95.0
nug21 23.6 4.7 472.8 59.4 8.4 1.7 168.3 99.1
nug22 29.4 5.9 588.9 60.6 10.8 2.2 215.6 100
nug24 27.2 5.4 543.1 61.7 8.6 1.7 171.2 100
nug25 27.4 5.5 548.3 61.6 8.1 1.6 161.8 100
nug27 33.5 6.7 670.3 61.7 11.1 2.2 222.3 99.5
nug28 32.2 6.4 643.4 61.9 10.1 2.0 201.9 99.5
nug30 34.9 7.0 697.4 63.1 10.4 2.1 208.8 96.9
rou12 202.6 40.5 4052.1 83.4 68.2 13.6 1364.5 100
rou15 250.8 50.2 5016.0 86.7 81.7 16.3 1633.7 100
rou20 344.7 68.9 6894.9 89.1 97.2 19.4 1943.6 100
scr12 133.6 26.7 2671.1 36.3 52.9 10.6 1058.5 97.2
scr15 159.7 31.9 3194.0 35.3 67.0 13.4 1339.5 100
scr20 233.0 46.6 4659.6 29.7 95.6 19.1 1912.8 95.0
sko42 52.6 10.5 1051.1 66.8 14.6 2.9 292.7 99.1
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Original MatRed
Problem

σ λ λ nz % σ λ λ nz %
sko49 63.0 12.6 1259.6 66.2 16.8 3.4 335.4 100
sko56 76.6 15.3 1531.7 66.5 20.0 4.0 399.4 99.5
sko64 89.0 17.8 1779.5 66.6 22.1 4.4 441.4 100
sko72 104.4 20.9 2087.8 67.8 25.3 5.1 506.2 99.8
sko81 121.0 24.2 2420.1 68.5 28.1 5.6 561.2 100
sko90 136.7 27.3 2733.1 67.7 31.1 6.2 621.4 99.7
sko100a 155.0 31.0 3100.3 67.9 33.9 6.8 677.1 100
sko100b 156.1 31.2 3122.7 67.6 34.1 6.8 682.3 100
sko100c 153.2 30.6 3064.5 66.8 34.5 6.9 690.6 100
sko100d 153.8 30.8 3075.9 66.7 33.6 6.7 672.3 100
sko100e 154.1 30.8 3081.9 66.7 34.7 6.9 693.0 100
sko100f 153.3 30.7 3065.4 66.9 33.7 6.7 673.5 100
ste36a 106.9 21.4 2137.9 25.9 48.1 9.6 962.3 98.8
ste36b 217.2 43.4 4343.3 25.9 129.2 25.8 2583.8 99.4
ste36c 3076.1 615.2 61521.3 25.9 1412.0 282.4 28240.5 99.4
tai10a 163.1 32.6 3262.2 78.4 58.6 11.7 1171.7 100
tai10b 826.7 165.3 16533.8 64.0 312.9 62.6 6258.7 100
tai12a 208.7 41.7 4173.2 82.2 66.9 13.4 1338.5 100
tai12b 4338.3 867.7 86766.0 68.6 2271.0 454.2 45419.1 100
tai15a 254.6 50.9 5091.6 85.1 78.0 15.6 1559.4 100
tai15b 13615.6 2723.1 272311.3 67.6 429.8 85.9 8595.0 100
tai17a 281.2 56.2 5624.6 85.7 86.6 17.3 1732.4 100
tai20a 336.9 67.4 6738.4 87.7 96.6 19.3 1931.1 100
tai20b 9384.5 1876.9 187690.1 75.3 5327.2 1065.4 106544.4 100
tai25a 421.8 84.4 8436.4 90.5 110.7 22.1 2214.1 100
tai25b 13848.1 2769.6 276961.6 77.0 7754.1 1550.8 155081.2 100
tai30a 519.6 103.9 10392.3 91.6 122.8 24.6 2456.2 100
tai30b 16487.8 3297.6 329756.0 76.4 9122.6 1824.5 182451.4 100
tai35a 596.5 119.3 11929.9 92.1 132.9 26.6 2657.8 100
tai35b 9894.1 1978.8 197882.6 65.7 5272.8 1054.6 105456.8 100
tai40a 675.9 135.2 13517.3 92.9 146.2 29.2 2924.8 100
tai40b 14116.2 2823.2 282323.3 69.2 5986.9 1197.4 119737.1 100
tai50a 839.2 167.8 16784.7 94.4 176.1 35.2 3521.6 100
tai50b 11969.4 2393.9 239387.6 65.8 5856.4 1171.3 117128.7 100
tai60a 1001.1 200.2 20021.2 95.0 184.2 36.8 3684.8 100
tai60b 13460.9 2692.2 269217.1 66.2 5792.0 1158.4 115840.3 100
tai64c 1361.2 272.2 27223.9 4.1 628.4 125.7 12568.8 100
tai80a 1336.9 267.4 26737.2 95.7 219.4 43.9 4388.0 100
tai80b 14477.3 2895.5 289546.0 67.3 5356.8 1071.4 107136.0 100
tai100a 1648.3 329.7 32966.1 96.1 245.0 49.0 4900.8 100
tai100b 17803.3 3560.7 356066.8 67.9 6394.6 1278.9 127892.2 100
tho30 183.4 36.7 3669.0 46.7 66.2 13.2 1324.7 99.1
tho40 229.9 46.0 4598.6 38.1 74.9 15.0 1498.9 100
wil50 89.3 17.9 1786.6 86.2 20.3 4.1 405.5 98.7
wil100 200.3 40.1 4005.8 88.3 33.7 6.7 673.5 100
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