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ABSTRACT

QIANG SUN: On High Dimensional Sparse Regression and Its Inference
(Under the direction of Hongtu Zhu and Joseph Ibrahim)

In the �rst part of this work, we aim to develop a sparse projection regression modeling

(SPReM) framework to perform multivariate regression modeling with a large number of

responses and a multivariate covariate of interest. We propose two novel heritability ratios

to simultaneously perform dimension reduction, response selection, estimation, and test-

ing, while explicitly accounting for correlations among multivariate responses. Our SPReM

is devised to speci�cally address the low statistical power issue of many standard statisti-

cal approaches, such as the Hotelling's T 2 test statistic or a mass univariate analysis, for

high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse

unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP.

Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a

sequential SURP approximation. Theoretically, we have systematically investigated the con-

vergence properties of SURP and the convergence rate of SURP estimates. Our simulation

results and real data analysis have shown that SPReM outperforms other state-of-the-art

methods.

In the second part of this work, we propose a Hard Thresholded Regression (HTR)

framework for simultaneous variable selection and unbiased estimation in high dimensional

linear regression. This new framework is motivated by its close connection with the L0

regularization and best subset selection under orthogonal design, while enjoying several key

computational and theoretical advantages over many existing penalization methods (e.g.,

SCAD or MCP). Computationally, HTR is a fast two-stage estimation procedure consisting

of the �rst step for calculating a coarse initial estimator and the second step for solving a
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linear program. Theoretically, under some mild conditions, the HTR estimator is shown

to enjoy the strong oracle property and thresholded property even when the number of

covariates may grow at an exponential rate. We also propose to incorporate the regularized

covariance estimator into the estimation procedure in order to better trade o� between noise

accumulation and correlation modeling. Under this scenario with regularized covariance

matrix, HTR includes Sure Independence Screening as a special case. Both simulation and

real data results show that HTR outperforms other state-of-the-art methods.

In the third part of this work, we focus on multicategory classi�cation and propose

the sparse multicategory discriminant analysis. Many supervised machine learning tasks

can be cast as multicategory classi�cation problems. Linear discriminant analysis has been

well studied in two class classi�cation problems and can be easily extended to multicatig-

ory cases. For high dimensional classi�cation, traditional linear discriminant analysis fails

due to diverging spectra and accumulation of noise. Therefore, researchers have proposed

penalized LDA (Fan et al. 2012, Witten and Tibshirani 2011). However, most available

methods for high dimensional multi-class LDA are based on an iterative algorithm, which

is computationally expensive and not theoretically justi�ed. In this paper, we present a

new framework for sparse multicategory discriminant analysis (SMDA) for high dimensional

multi-class classi�cation by simultaneous extracting the discriminant directions. Our SMDA

can be cast as an convex programming which distinguishes itself from other state-of-the-art

method. We evaluate the performances of the resulting methods on the extensive simulation

study and a real data analysis.
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CHAPTER1: INTRODUCTION

In this paper document, we give some perspectives on high dimensional sparse regression

and inference. We aim to build a framework of high dimensional inference, by considering

three sub-topics. The �rst project is about hypothesis testing in multivariate linear regres-

sion with ultra high dimensional responses. The second project touches the fundamental

framework of simultaneous variable selection and unbiased estimation in ultra-high dimen-

sional space. The third part of this work concerns high dimensional multicategory classi�-

cation problem where many traditional method fails due to the diverging spectra of sample

covariance matrix and noise accumulation issue in high dimenional regime. We �rst start

from literature review.
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CHAPTER2: LITERATURE REVIEW

Traditionally, statistical inference considers a probability model for a population and con-

siders data that arose as a sample from the population. For many problems, the estimates

of the population characteristics, or parameters, can be substantially re�ned as the sample

size n towards in�nity with �xed number of unknown parameters p. Recently, researchers

are interested in high dimensional statistical inference, when the number of unknown pa-

rameters p is much larger than the sample size n, that is p� n. This encompasses supervise

regression and classi�cation models where the number of covariates is of much larger order

than n, unsupervised settings such as clustering or graphical modeling with more variables

than observations or multiple testing where the number of considered testing hypotheses is

larger than sample size. Such framework has become increasingly frequent and important

in diverse �elds of sciences, engineering, and humanities, ranging from genomics and health

sciences to economics, �nance and machine learning and characterizes many contemporary

problems in statistics. For example, in imaging genetic studies between genotypes and phe-

notypes, hundreds of thousands of as single-nucleotide polymorphisms (SNPs) are considered

as potential covariates for high dimensional imaging measures; in disease classi�cation using

microarray or proteomics data, tens of thousands of expression s of molecules are potential

predictors. When interactions are considered, the dimensionality grows exponentially and

result in ultra-high dimensionality, where ultra-high dimensionality refers to the case where

the dimensionality grows at a non-polynomial rate as the sample size increases. Donoho

et al. (2000) convincingly demonstrates the need for developments in high dimensional data

analysis and presents the curses and blessings of dimensionality.

The high dimensionality poses challenges to statistical accuracy, model interpretability
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and computational complexity, while in conventional studies, when the sample size n is much

larger than the number of variables or parameters p, none of the three aspects needs to be

sacri�ced for the e�ciency of others. However, traditional method fails due challenges posed

by high dimensionality. We introduce the di�culties introduced by high dimensionality in

the following.

A notorious di�culty of high dimensional model selection comes from the collinearity

among the predictors, as pointed out by Fan and Lv (2008). The collinearity can easily

be spurious in high dimensional geometry, which can make us select a wrong model and

thus lead to completely wrong scienti�c conclusions. Statistically, this is due to the model

identi�ability issues in high dimensional framework.

Another well recognized issue for high dimensional statistical analysis goes to the noise

accumulation problem both in statistics and computer science. The quanti�cation of the

impact of high dimensionality has been fully characterized both in regression and classi�ca-

tion problems (Bühlmann and Geer 2011). The prediction error can be unbounded while the

classi�cation error can be as bad as random guessing due to noise accumulation in estimating

the coe�cient parameters and the population centroids respectively.

The philosophy that will generally rescue us, is to "believe" that in fact only a few, say s0

of the unknown parameters are non-zero, namely the parameters are assumed to be sparse.

With sparsity, variable selection can improve estimation accuracy and model interpretability

by e�ectively identifying the subset of important predictors and thus achieving parsimonious

representation.

Sparsity arises in many scienti�c endeavors. In genomic studies, it is generally believed

that only a fraction of molecules are related to biological outcomes. For example, in disease

classi�cation, it is commonly believed that only one speci�c gene or tens of genes are re-

sponsible for the disease development. Selection tens of genes helps not only statisticians in

constructing a more reliable classi�cation rule, but also biologists to understand molecular

mechanisms.

To study the theoretical property of high dimensional sparse regression and classi�cation,
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as pointed out in Fan and Li (2006), it is helpful to di�erentiate two types of statistical

endeavors in high dimensional statistical learning: accuracy of estimated model parameters

by controlling the risk bound and accuracy of the expected loss of the estimated model.

The former is called consistency and appears in many contexts where we want to identify

the signi�cant predictors and characterize the precise contribution of each to the response

variable. The latter property is called persistence in Greenshtein et al. (2004) and arises

frequently in machine learning problems such as classi�cation. More recently, Fan and Li

(2001) has proposed the oracle property for high dimensional sparse regression by requiring

the estimator identifying the true subset model and achieving the optimal estimation rate

simultaneously.

Another important issue involves the estimation of a covariance matrix or its inverse (the

precision matrix). Examples include portfolio management and risk assessment (Fan et al.

2008), high dimensional classi�cation such as the Fisher discriminant (Hastie et al. 2009),

graphic models (Meinshausen and Bühlmann 2006), statistical inference such as controlling

false discoveries in multiple testing (Leek and Storey 2008, Efron 2010), �nding quantitative

trait loci based on longitudinal data (Yap et al. 2009, Xiong et al. 2011) and testing the

capital asset pricing model (Sentana 2009), among others. Yet, the dimensionality is often

either comparable with the sample size or even larger. In such cases, the sample covariance

is known to have poor performance (Johnstone 2001), and some regularization is needed.

Realizing the importance of estimating large covariance matrices and the challenges that

are brought by the high dimensionality, in recent years researchers have proposed various

regularization techniques to consistently estimate Σ. One of the key assumptions is that

the covariance matrix is sparse, namely many entries are 0 or nearly so (Bickel and Levina

2008b, Cai et al. 2010, Lam and Fan 2009, Rothman et al. 2009, Cai and Liu 2011a). Fan

et al. (2013) further extends such framework to conditional sparsity by allowing the presence

of common factors. This is useful in �nancial returns which depend on the equity market

risks, housing prices which depend on the economic health and gene expressions, among

many others.
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The major contribution of this dissertation involves building a framework of high di-

mensional hypothesis test, a framework of simultaneous variable selection and estimation

and a uni�ed framework for sparse multicategory discriminant analysis. All of the projects

involve incorporating covariance estimation into the regression framework to better trade o�

between noise accumulation and correlation modeling for possibility of relaxing conditions

for consistent variable selection. We will separately introduce the the back ground in the

following sections respectively.

2.0.1 Multivariate Regression and High Dimensional Test

Multivariate regression modeling with a multivariate response y ∈ Rq and a multivariate

covariate x ∈ Rp is a standard statistical tool in modern high-dimensional inference, with

wide applications in various large-scale applications, such as genome-wide association studies

(GWAS) and neuroimaging studies. For instance, in GWAS, our primary problem of interest

is to identify genetic variants (x) that cause phenotypic variation (y). Speci�cally, in imaging

genetics, multivariate imaging measures (y), such as volumes of regions of interest (ROIs),

are phenotypic variables, whereas covariates (x) include single nucleotide polymorphisms

(SNPs), age, and gender, among others. The joint analysis of imaging and genetic data may

ultimately lead to discoveries of genes for neuropsychiatric and neurological disorders such as

autism and schizophrenia (Scharinger et al. 2010, Paus 2010, Peper et al. 2007, Chiang et al.

2011). Moreover, in many neuroimaging studies, there is a great interest in the use of imaging

measures (x), such as functional imaging data and cortical and subcortical structures, to

predict multiple clinical and/or behavioral variables (y) (Knickmeyer et al. 2008, Lenroot

and Giedd 2006). This motivates us to systematically investigate a multivariate linear model

with a multivariate response y and a multivariate covariate x.

Throughout this paper, we consider n independent observations (yi,xi) and a Multivari-

ate Linear Model (MLM) given by

Y = XB + E, or yi = BTxi + ei, (2.1)
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where Y = (y1, . . . ,yn)T , X = (x1, . . . ,xn)T , and B = (βjl) is a p × q coe�cient matrix

with rank(B) = r? ≤ min(p, q). Moreover, the error term E = (e1, . . . , en)T has E(ei) = 0

and Cov(ei) = ΣR for all i, where ΣR is a q × q matrix. Many hypothesis testing problems

of interest, such as comparison across groups, can often be formulated as

H0 : CB = B0 v.s. H1 : CB 6= B0, (2.2)

where C is an r× p matrix and B0 is an r× q matrix. Without loss of generality, we center

the covariates, standardize the responses, and assume rank(C) = r.

We focus on a speci�c setting that q is relatively large, but p is relatively small. Such a

setting is general enough to cover two-sample (or multi-sample) hypothesis testing for high-

dimensional data (Chen and Qin 2010, Lopes et al. 2011). There are at least three major

challenges including (i) a large number of regression parameters, (ii) a large covariance

matrix, and (iii) correlations among multivariate responses. When the number of responses

and the number of covariates are even moderately high, �tting the conventional MLM usually

requires estimating a p× q matrix of regression coe�cients, whose number pq can be much

larger than n. Although accounting for complicated correlations among multiple responses

is important for improving the overall prediction accuracy of multivariate analysis (Breiman

and Friedman 1997, Cook et al. 2010), it requires estimating q(q+1)/2 unknown parameters

in an unstructured covariance matrix.

There is a great interest in the development of e�cient methods for handling MLMs

with large q. Four popular traditional methods include the mass univariate analysis, the

Hotelling's T 2 test, partial least squares regression, and dimension reduction methods. As

pointed by Klei et al. (2008) and many others, testing each response variable individually

in the mass univariate analysis requires a substantial penalty of controlling for multiplicity.

The Hotelling's T 2 test is not well-de�ned, when q > n. Even when q ≤ n, the power of the

Hotelling's T 2 can be very low if q is nearly as large as n. Partial least squares regression

(PLSR) aims to �nd a linear regression model by projecting y and x to a smaller latent space
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(Chun and Keles 2010, Krishnan et al. 2011), but it focuses on prediction and classi�cation.

Although dimension reduction techniques, such as principal component analysis (PCA), are

considered to reduce the dimensions of both the response and covariates (Formisano et al.

2008, Kherif et al. 2002, ROWE and Ho�mann 2006, Teipel et al. 2007), most of the methods

ignore the variation of covariates and their associations with responses. Thus, such methods

can be sub-optimal for our problem.

Some recent developments primarily include regularization methods and envelope models

(Peng et al. 2010, Tibshirani 1996, Breiman and Friedman 1997, Cook et al. 2010, Cook,

R. D., Helland, I. S. and Su 2013, Lin et al. 2012). Cook, Li and Chiaromonte (2010)

developed a powerful envelope modeling framework for MLMs. Such envelope methods

use dimension reduction techniques to remove the immaterial information, while achieving

e�cient estimation of the regression coe�cients by accounting for correlations among the

response variables. However, the existing envelope methods are limited to the n > max(p, q)

scenario. Recently, much attention has been given to regularization methods for enforcing

sparsity in B (Peng et al. 2010, Tibshirani 1996). These regularization methods, however, do

not provide a standard inference tool (e.g., standard deviation) on the regression coe�cient

matrixB. Lin et al. (2012) developed a projection regression model (PRM) and its associated

estimation procedure to assess the relationship between a multivariate phenotype and a set

of covariates without providing any theoretical justi�cation.

In this dissertation, we present a new general framework, called sparse projection regres-

sion model (SPReM), for simultaneously performing dimension reduction, response selection,

estimation, and testing in a general high dimensional MLM setting. We introduce two novel

heritability ratios, which extend the idea of principal components of heritability from familial

studies (Klei et al. 2008, Ott and Rabinowitz 1999), for MLM and overcome over-�tting and

noise accumulation in high dimensional data by enforcing the sparsity constraint. We de-

velop a fast algorithm for both sparse unit rank projection (SURP) and sparse multi-rank

projection (SMURP). Furthermore, a test procedure based on the wild-bootstrap method is

proposed, which leads to a single p−value for the test of an association between all response
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variables and covariates of interest, such as genetic markers. Simulations show that our

method can control the overall Type I error well, while achieving high statistical power.

2.0.2 High Dimensional Sparse Regression

Consider the linear model

yi = xTi β + εi, i = 1, . . . , n, (2.3)

wher yi is a univariate response, xi = (xi,1, . . . , xi,p)
T is a p−dimensional covariate vector,

β = (β1, . . . , βp)
T is a p× 1 regression coe�cient vector, and {εi : i = 1, . . . , n} are indepen-

dent and identically distributed (i.i.d) errors. The theory of linear models is well established

for traditional applications, where the dimension p is �xed and the sample size n is much

larger than p. With the development of many modern technologies, however, in many bio-

logical, medical, social, and economical studies, p is comparable with, or much larger than,

n, making valid statistical inferences a great challenge. Let A be subset of indices such

that A = {j|βoj 6= 0} and pA be the cardinality of A, where βo = (βo1 , . . . , β
o
p)
T is the true

parameter β. For prediction accuracy and variable selection consistency, it is common to

assume a sparsity assumption, that is, pA << p.

For model (2.3), many regularization methods for variable selection minimize

Q(β) =
1

2n
||y −Xβ||22 +

p∑
j=1

pλ(βj), (2.4)

where y = (y1, · · · , yn)T , X is an n × p non-stochastic matrix with the ith row xTi , || · ||2

represents the L2 norm, and pλ(·) is a penalty function (e.g., SCAD or Lasso), which depends

on a tuning parameter λ > 0. The most well-known best subset selection corresponding

to the L0 penalty function can achieve simultaneous parameter estimation and variable

selection (Akaike 1973, Schwarz 1978). The subset selection methods coupled with di�erent

selection criteria-including the Cp statistics, the Akaike information criterion (AIC), the

Bayesian information criterion (BIC), minimum description length (MDL), and the risk
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in�ation criterion (RIC) are special cases of the L0 penalized regression, resulting from

the assignment of di�erent values to λ. However, solving the L0 regularization with a

�xed λ is an NP-hard problem and its computational methods based on exhaustive search

rapidly become impractical when the number of covariates increases (Huo and Ni 2007,

Fan and Peng 2004, Fan and Li 2001, Zhang 2010). To address such computational issue,

di�erent convex/nonconvex penalty functions have been used in Q(β) and been extensively

investigated in order to mimic the L0 regularization (Tibshirani 1996, Fan and Li 2001, Fan

and Peng 2004, Zhang 2010, Meinshausen and Bühlmann 2006, Leng et al. 2004, Zou 2006).

Instead of developing another penalty function, we develop a new hard thresholded

regression (HTR) modeling framework for performing simultaneous variable selection and

unbiased estimation in model (2.3) in this dissertation. The key idea of HTR is to minimize

H(β) = ||W ×XT (y −Xβ)||1 + λ||β||1, (2.5)

where W is a p0 × p weighted matrix based on some initial estimates of β, which will be

introduced in Section 2. As shown in Sections 2 and 3, HTR simultaneously enjoys two key

computational and theoretical properties as follows.

� (i) Since H(β) is convex and HTR can be casted as a linear program, minimizing

H(β) is computationally e�cient even in high-dimensional settings.

� (ii) Under some mild conditions, the HTR estimate, which minimizes H(β), is an

oracle estimator and achieves unbiased estimation.

Due to its nice properties (i) and (ii), our HTR estimate may be a good addition to the

extensive regularization literature.

Our HTR shares some important similarities with the regularization methods in (2.5).

The penalty function of H(β) is the same as that of the popular Lasso (Tibshirani 1996),

when pλ(βj) = λ|βj |. As shown in Section 2, HTR has a close connection with the L0 and

hard-thresholding regularizations (Akaike 1973, Schwarz 1978, Zheng et al. 2013), since all of

them reduce to the best subset selection under the orthonormal design, that is, n−1XTX =
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Ip, where Ip is a p×p identity matrix. A comparison of the regularization path between the

L0 regularization regression and HTR is shown in Figure 2.1.

Our HTR di�ers signi�cantly from the regularization methods (2.5) in several major

ways. A major advantage of HTR over nonconvex regularizations is its computational e�-

ciency (i), even though they may enjoy nice theoretical properties, such as oracle property

(Barron et al. 1999, Lin et al. 2008). Although there are many impressive works on non-

convex regularization methods (Wang et al. 2013a, Kim and Kwon 2012, Zhang and Zhang

2012, Fan and Lv 2011, Kim et al. 2008, Wang et al. 2013b), several important questions

still remain. Speci�cally, due to the non-convexity of the penalty function, multiple local

minima always exist, while it is di�culty to identify the oracle estimator among multiple

minima, even if the oracle estimator may be known to exist along the solution path.

A major advantage of HTR over convex regularization methods is its nice theoretical

property (ii). Due to the convexity of the penalty function, convex regularization methods,

such as Lasso, su�er from the bias issue and thus they can be suboptimal in terms of risk

estimation. See Fan and Li (2001) for detailed discussions. Moreover, the shrinkage bias

introduced by convex regularization methods poses major challenges to statistical inferences,

such as constructing con�dence intervals or testing, in high dimensional settings (Zhang and

Zhang 2011, van de Geer et al. 2013, Chatterjee and Lahiri 2011). There is a major con�ict

of optimal prediction and consistent variable selection in the lasso method (Meinshausen

and Bühlmann 2006, Leng et al. 2004, Zou 2006).

We make three major contributions in this part as follows.

� We systematically investigate a fast two-step estimation procedure for HTR. The �rst

step is to calculate a ridge estimator and the second step is to solve a linear program-

ming.

� We provide a comprehensive theoretical analysis of HTR. We show that the HTR

estimator enjoys the strong oracle property even when the number of covariates may

grow at an exponential rate.
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Figure 2.1: Solution paths of L0 regularization regression and HTR: We consider a simple
example that yi = xiβ + εi, where β = (3, 2,−1.5, 0, 0, 0)T and εi's are independently and
identically distributed as N(0, 1). We plot the estimates of regression coe�cients β̂j , j =
1, 2, . . . , 6 for this example. Left Panel L0 Penalized Regression estimates, as a function of
λ; Right Panel Hard Thresholded Regression estimates, as a function of λ.

� We propose to incorporate the regularized covariance estimator into the estimation

procedure in order to better trade o� between noise accumulation and correlation

modeling.

2.0.3 Sparse Multicategory Discriminant Analysis

Discriminant analysis is widely used in classi�cation problems. Fisher's linear discrim-

inant analysis is proposed by R.A. Fisher, and has been successfully used in the machine

learning literature. Nowadays, high throughput data from microarray and proteomics tech-

nologies has been frequently used in many contemporary statistical studies. In the case

of microarray data, the dimensionality is frequently in thousands, whereas the sample size

is typically only order of tens. The large p small n case poses challenges for classi�cation

problems.
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When the feature space dimension p is far more larger than the sample size n, the Fisher's

linear discriminant rule fails owing to diverging spectra as demonstrated by Bickel and

Levina (2008b), who showed that the independence rule in which the correlation structure

is ignored performs better than the naive bayes rule. However, in my data analysis, for

example, the microarray studies, correlation structure can is an essential characteristic of

the data and is usually not negligible. To circumvent this issue, Fan et al. (2012) proposes

the regularized optimal a�ne discriminant (ROAD) method. Their method focuses on the

binary classi�cation problem, where, on the other hand, many real world problems have more

than two classes to deal with. Typical examples include text catergorization and microarray

data analysis, etc. Witten and Tibshirani (2011) proposes the penalized LDA and extend

the framework to multicategoty problem by using a sequential approach. However, their

problem is not convex and is extremely computational expensive.

In this paper we propose a uni�ed approach, called sparse multicategory discriminant

analysis (SMDA), which enjoys following attractive properties.

� It reduces to penalized version of the ROAD estimator when there are only two classes.

� It results a fast convex programming algorithm comparing to the penalized LDA frame-

work proposed by Witten and Tibshirani (2011).

� Interpretable discriminant directions are produced owing to the penalized penalty.

This dissertation is organized as follows. We present Sparse Projection Regression Model

in chapter 2 . Chapter 3 is contributed to the Hard Thresholded Regression which can be

cast as linear programming. Sparse Multicategory Discriminant Analysis is discussed in

Chapter 4. Conclusions and discussions are touched in Chapter 5.
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CHAPTER3: SPARSE PROJECTION REGRESSION MODEL

We develop a Sparse Projection Regression Model (SPReM) framework to perform mul-

tivariate regression modeling with a large number of responses and a multivariate covariate

of interest. We propose two novel heritability ratios to simultaneously perform dimension

reduction, response selection, estimation, and testing, while explicitly accounting for cor-

relations among multivariate responses. Our SPReM is devised to speci�cally address the

low statistical power issue of many standard statistical approaches, such as the Hotelling's

T 2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate

the estimation problem of SPReM as a novel sparse unit rank projection (SURP) problem

and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to

the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation.

Theoretically, we have systematically investigated the convergence properties of SURP and

the convergence rate of SURP estimates. Our simulation results and real data analysis have

shown that SPReM outperforms other state-of-the-art methods.

3.1 Model Setup and Heritability Ratios

We introduce SPReM as follows. The key idea of our SPReM is to appropriately project

yi in a high-dimensional space onto a low-dimensional space, while accounting for the cor-

relation structure ΣR among the response variables and the hypothesis test in (2.2). Let

W = [w1, · · · ,wk] be a q×k nonrandom and unknown direction matrix, where wj are q×1

vectors. A projection regression model (PRM) is given by

WTyi = (BW)Txi + WTei = βTwxi + εi, (3.1)
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where βw is a p × k regression coe�cient matrix and the random vector εi has E(εi) = 0

and Cov(εi) = WTΣRW. When k = 1, PRM reduces to the pseduo-trait model considered

in (Amos et al. 1990, Amos and Laing 1993, Klei et al. 2008, Ott and Rabinowitz 1999). If

k << min(n, q) and W were known, then one could use likelihood (or estimating equation)

based methods to e�ciently estimate βw, and (2.2) would reduce approximately to

H0W : Cβw = b0 v.s. H1W : Cβw 6= b0, (3.2)

where Cβw = CBW and b0 = B0W. In this case, the number of null hypotheses in (3.2)

is much smaller than that of (2.2). It is also expected that di�erent W's strongly in�uence

the statistical power of testing the hypotheses in (2.2).

A fundamental question arises

“how do we determine an `optimal' W to achieve good statistical power of testing (2.2)?”

To determine W, we develop a novel de�ation approach to sequentially determine each

column of W at a time starting from w1 to wk. We focus on how to determine w1 below

and then discuss how to extend it to the scenario with k > 1.

To determine an optimal w1, we consider two principles. The �rst principle is to

maximize the mean value of the square of the signal-to-noise ratio, called the heritabil-

ity ratio, for model (3.1). For each i, the signal-to-noise ratio in model (3.1) is de�ned

as the ratio of mean to standard deviation of a signal or measurement wTyi, denoted by

SNRi = wTBTxi/(w
TΣRw)0.5. Thus, the heritability ratio (HR) is given by

HR(w) = n−1
n∑
i=1

SNR2
i =

wTBTSXBw

wTΣRw
, (3.3)

where SX = n−1
∑n

i=1 xix
T
i . The HR has several important interpretations. If the xi are

independently and identically distributed (i.i.d) with E(xi) = 0 and Cov(xi) = ΣX , then as
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n→∞, we have

HR(w)→p wTBTΣXBw

wTΣRw
=

Var(wTBTxi)

Var(εi)
,

where →p denotes convergence in probability. Thus, HR(w) is close to the ratio of the

variance of signal wTBTxi to that of noise εi. Moreover, HR(w) is close to the heritability

ratio considered in (Amos et al. 1990, Amos and Laing 1993, Klei et al. 2008, Ott and

Rabinowitz 1999) for familial studies, but we de�ne HR from a totally di�erent perspective.

With such new perspective, one can easily de�ne HR for more general designs, such as

cross-sectional or longitudinal design. One might directly maximize HR(w) to calculate

an `optimal' w1, but such a w1 can be sub-optimal for testing the hypotheses in (2.2) as

discussed below.

The second principle is to explicitly account for the hypotheses in (2.2) under model

(2.1) and the reduced ones in (3.2) under model (3.1). We de�ne four spaces associated with

the null and alternative hypotheses of (2.2) and (3.2) as follows:

SH0 = {B : CB = B0}, SHW = {B : CBW = B0W},

SH1 = {B : CB 6= B0}, SH1W
= {B : CBW 6= B0W}.

It can be shown that they satisfy the following relationship:

SH0 ⊂ SHW and SH1W
⊂ SH1 for any W 6= 0.

Due to potential information loss during dimension reduction, both SHW − SH0 and SH1 −

SH1W
may not be the empty set, but we need to choose W such that SH1 −SH1W

≈ ∅. The

next question is how to achieve this.

We consider a data transformation procedure. Let C1 be a (p− r)× p matrix such that

rank[CT CT
1 ] = p and CCT

1 = 0. (3.4)
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Let D = [CT CT
1 ]T be a p × p matrix and x̃i = (x̃Ti1, x̃

T
i2) = D−Txi be a p × 1 vector,

where x̃i1 and x̃i2 are, respectively, the r × 1 and (p − r) × 1 subvectors of x̃i. We de�ne

B̃ = [B̃T
1 B̃T

2 ]T = DB or B = D−1B̃, where B̃1 and B̃2 are, respectively, the �rst r rows

and the last p− r rows of B̃. Therefore, model (3.1) can be rewritten as

WTyi = (D−1B̃W)Txi + WTei (3.5)

= WT (B̃1 −B0)T x̃i1 + WTBT
0 x̃i1 + WT B̃T

2 x̃i2 + WTei.

In (3.5), due to (3.4), we only need to consider the transformed covariate vector x̃i1, which

contains useful information associated with B̃1 −B0 = CB−B0.

We de�ne a generalized heritability ratio based on model (3.5). Speci�cally, for each i,

we de�ne a new signal-to-noise ratio as the ratio of mean to standard deviation of signal

wT (B̃1 − B0)T x̃i1 + wTei, denoted by SNRi,C = wT (B̃1 − B0)T x̃i1/(w
TΣRw)0.5. The

generalized heritability ratio is then de�ned as

GHR(w;C) = n−1
n∑
i=1

SNR2
i,C =

wT (B̃1 −B0)TSX̃1
(B̃1 −B0)w

wTΣRw
, (3.6)

where SX̃1
= n−1

∑n
i=1 x̃i1x̃

T
i1. If the xis are random, then we have

GHR(w;C)→p wT (B̃1 −B0)TCov(x̃i1)(B̃1 −B0)w

wTΣRw
=

wTΣCw

wTΣRw
, (3.7)

where ΣC = (B̃1 − B0)T (D−TΣXD
−1)(r,r)(B̃1 − B0), and (D−TΣXD

−1)(r,r) is the upper

r × r submatrix of D−TΣXD
−1. Particularly, if C = [Ir 0], then ΣC reduces to wT (B̃1 −

B0)T (ΣX)(1,1)(B̃1 − B0)w, in which (ΣX)(1,1) is the upper r × r submatrix of ΣX . Thus,

GHR(w;C) can be interpreted as the ratio of the variance of wT (B̃1 −B0)T x̃i1 relative to

that of wTei. We propose to calculate an optimal w∗ as follows:

w∗ = argmax
w

GHR(w;C). (3.8)
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We expect that such an optimal w∗ can substantially reduce the size of both SH1 − SH1W

and SHW − SH0 and thus the use of such an optimal w∗ can enhance the power of testing

the hypotheses in (2.2). Without loss of generality, we assume B0 = 0 from now on.

We consider a simple example to illustrate the appealing properties of GHR(w;C).

Example We consider model (2.1) with p = q = 5 and want to test the nonzero e�ect of the

�rst covariate on all �ve responses. In this case, r = 1, C = (1, 0, 0, 0, 0), B0 = (0, 0, 0, 0, 0),

and D = I5, which is a 5× 5 identity matrix. Without loss of generality, it is assumed that

(ΣX)(1,1) = 1.

We consider three di�erent cases of ΣR andB. In the �rst case, we set ΣR = diag(σ2
1, · · · , σ2

5)

and the �rst column of B to be (1, 0, 0, 0, 0). It follows from (3.6) that

GHR(w;C) =
w2

1

σ2
1w

2
1 + σ2

2w
2
2 + · · ·+ σ2

5w
2
5

and wT
∗ = (c0, 0, 0, 0, 0),

where c0 is any nonzero scalar. Therefore, w∗ picks out the �rst response, which is the sole

one that is associated with the �rst covariate.

In the second case, we set ΣR = diag(σ2
1, · · · , σ2

5) with σ2
1 ≥ · · · ≥ σ2

5 and the �rst row

of B to be (1, 1, 0, 0, 0). It follows from (3.6) that

GHR(w;C) =
(w1 + w2)2

σ2
1w

2
1 + σ2

2w
2
2 + · · ·+ σ2

5w
2
5

and wT
∗ = (

σ2
2

σ2
1

c0, c0, 0, 0, 0),

where c0 is any nonzero scalar. Therefore, w∗ picks out both the �rst and second response

with larger weight on the second component. This is desirable since β11 and β21 are equal

in terms of strength of e�ect and the noise level for the second response is smaller than that

of the �rst one.

In the third case, we set the �rst row of B to be (1, 1, 0, 0, 0) and the �rst and second

columns of ΣR are set as σ2(1, ρ, 0, 0, 0) and σ2(ρ, 1, 0, 0, 0), respectively. It follows from
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(3.6) that

GHR(w;C) =
(w1 + w2)2

σ2w2
1 + 2σ2

2ρw1w2 + σ2
2w

2
2 +Q(w3, w4, w5)

and wT
∗ = (c0, c0, 0, 0, 0),

where Q(w3, w4, w5) is a non-negative quadratic form of (w3, w4, w5). Thus, the optimal w∗

chooses the �rst two responses with equal weight, since they are correlated with each other

with same variance and β11 = β21 = 1.

For high dimensional data, it is di�cult to accurately estimate w∗, since the sample

covariance matrix estimator Σ̂R can be either ill-conditioned or not invertible for large q > n.

One possible solution is to focus only on a small number of important features for testing.

However, a naive search for the best subset is NP-hard. We develop a penalized procedure

to address these two problems, while obtaining a relatively accurate estimate of w. Let Σ̃R

and Σ̂C be, respectively, estimators of ΣR and ΣC . Here we use Σ̃R to denote the covariance

estimator other than sample covariance matrix Σ̂R. To obtain Σ̂C , we need to plug B̂, an

estimator of B, into ΣC . Without loss of generality, we consider the ordinary least squares

estimate of B. By imposing a sparse structure on w1, we recast the optimization problem

as

max{w
T Σ̂Cw

wT Σ̃Rw
} s.t. ||w||1 ≤ t, (3.9)

where || · ||1 is the L1 norm and t > 0.

3.1.1 Sparse Unit Rank Projection

When r = 1, we call the problem in (3.8) as the unit rank projection problem and

its corresponding sparse version in (3.9) as the sparse unit rank projection (SURP) prob-

lem. Actually, many statistical problems, such as two-sample test and marginal e�ect test

problems, can be formulated as the unit rank projection problem (Lopes et al. 2011). We

consider two cases including ` = (CB)T = 0 and ` = (CB)T 6= 0. When ` = (CB)T = 0,

the solution set of (3.6) is trivial, since any w 6= 0 is a solution of (3.6). As discussed later,

this property is extremely important for controlling the type I error rate.
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When ` = (CB)T 6= 0, (3.6) reduces to the following optimization problem:

w∗ = argmax
wTΣRw=1

wTΣCw = argmax
wTΣRw≤1

wTΣCw = argmax
wTΣRw≤1

wT `, (3.10)

where ` is the sole eigenvector of ΣC , since ΣC is a unit-rank matrix. To impose an L1

sparsity on w, we propose to solve the penalized version of (3.10) given by

wλ = argmax
wTΣRw≤1

wT `− λ||w||1. (3.11)

Although (3.11) can be solved by using some standard convex programming methods, such

methods are too slow for most large-scale applications, such as imaging genetics. We there-

fore reformulate our problem below. Without special saying, we focus on ` = (CB)T 6= 0.

By omitting a scaling factor ||Σ−1/2
R `||2, which will not a�ect the generalized heritability

ratio, we note that (3.10) is equivalent to the following

w0 = argmin
w

1

2
wTΣRw −wT `. (3.12)

We consider a penalized version of (5.12) as

w0,λ = argmin
w

f(w) = argmin
w

1

2
wTΣRw −wT `+ λ||w||1. (3.13)

A nice property of (5.13) is that it does not explicitly involve the inequality constraint,

which leads to a fast computation. We de�ne (5.12) as the oracle, since wλ converges to w0

as λ→ 0. It can be shown that

w0 = Σ−1
R `. (3.14)

We obtain an equivalence between (5.13) and (3.11) as follows.

Theorem 3.1.1 Problem (5.13) is equivalent to problem (3.11) and wλ ∝ w0,λ.
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We discuss some connections between our SURP problem and the optimization prob-

lem considered in Fan et al. (2012) for performing classi�cation in high dimensional space.

However, rather than recasting the problem as in (3.10) and then (5.13), they formulate it

as

wc = argmin
||w||1≤c,wT `=1

wTΣRw,

which can further be reformulated as

wλ = argmin
wT `=1

1

2
wTΣRw + λ||w||1. (3.15)

Since (5.14) involves a linear equality constraint, they replace it by a quadratic penalty as

wλ,γ = argmin
1

2
wTΣRw + λ||w||1 +

1

2
γ(wT `− 1)2. (3.16)

This new formulation requires the simultaneously tuning of λ and γ, which can be compu-

tationally intensive. However, in Fan et al. (2012), they stated that the solution to (5.15) is

not sensitive to γ, since solution is always in the direction of Σ−1
R ` when λ = 0, as validated

by simulations. Their formulation (5.14) is close to the formulation (5.13). This result sheds

some light on why wλ,γ is not sensitive to γ. Finally, we can show that the solution path to

(5.13) has a piecewise linear property.

Proposition 3.1.2 Let ` ∈ Rq be a constant vector and ΣR be positive de�nite. Then, w0,λ

is a continuous piecewise linear function in λ.

We derive a coordinate descent algorithm to solve (5.13). Without loss of generality,

suppose that w = (w̃1, w̃
T
2 )T = (w̃1, · · · , w̃q)T , w̃j for all j ≥ 2 are given, and we need to

optimize (5.13) with respect to w̃1. In this case, the objective function (5.13) becomes

f1(w̃1, w̃2) =
1

2
(w̃1, w̃

T
2 )

 σ11 Σ12

Σ21 Σ22


 w̃1

w̃2

− (˜̀
1w̃1 + ˜̀T

2 w̃2) + λ|w̃1|+ λ||w̃2||1,

20



where ` = (˜̀
1, ˜̀T

2 ) and σ11, Σ12, and Σ22 are subcomponents of ΣR. Then, by taking the

sub-gradient with respect to w̃1, we have

f ′1(w̃1, w̃2) = w̃1σ11 + Σ12w̃2 + λΓ1 − ˜̀
1

where Γ1 = sign(w̃1) for w̃1 6= 0 and is between −1 and 1 if w̃1 = 0. Let Sλ(t) = sign(t)(|t|−

λ)+ be the soft-thresholding operator. By setting f ′1(w̃1, w̃2) = 0, we have w̃1 = Sλ(˜̀
1 −

Σ12w̃2)/σ11. Based on this result, we can obtain a coordinate descent algorithm as follows.

Algorithm

(a) Initialize w at a starting point w(0) and set m = 0.

(b) Repeat:

� (b.1) Increase m by 1: m← m+ 1

� (b.2) for j ∈ 1, · · · , p, if w̃(m−1)
j = 0, then set w̃(m)

j =0;

otherwise: w̃(m)
j = argmin f(w̃

(m)
1 , · · · , w̃(m)

j−1, w̃j , w̃
(m−1)
j+1 , · · · , w̃(m−1)

q )

(c) Until numerical convergence: we require |f(w(m))− f(w(m−1))| to be su�ciently small.

3.1.2 Extension to Multi-rank Cases

In this subsection, we extend the sparse unit rank projection procedure to handle multiple

rank test problems when r > 1. We propose the k−th projection direction as the solution

to the following problem:

argmax
wT
k ΣCwk

wT
k ΣRwk

s.t. wT
k ΣRwj = 0, ∀j < k. (3.17)

It can be shown that (3.17) is equivalent to

argmaxwT
k ΣCwk s.t. wT

k ΣRwk ≤ 1,wT
k ΣRwj = 0, ∀j < k. (3.18)
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Following the reasoning in Witten and Tibshirani (2011), we recast (3.18) into an equivalent

problem.

Proposition 3.1.3 Problem (3.18) is equivalent to the following problem:

argmax
w

wTBTCTΣ
1/2
11 P

k−1
⊥ Σ

1/2
11 CBw

wTΣRw
, (3.19)

where P k−1
⊥ is the projection matrix onto the orthogonal space spanned by {Σ1/2

11 CBwj , 1 ≤

j ≤ k − 1}, in which Σ11 = (D−TΣXD
−1)(r,r).

Based on Proposition 3.1.3, we consider several strategies of imposing the sparsity struc-

ture on wk. A simple strategy is to consider the following problem given by

argmax
wk

wT
k Σk

Cwk − λ||wk||1 s.t. wT
k ΣRwk ≤ 1, (3.20)

where Σk
C = BTCTΣ

1/2
11 P

k−1
⊥ Σ

1/2
11 CB. When the rank of C is greater than 1, the problem

in (3.20) is no longer convex, since it involves maximizing an objective function that is

not concave. A potential solution is to use the minorization-maximization (MM) algorithm

(Lange et al. 2000). Speci�cally, for any �xed w(m), we take a Taylor series expansion of

wT
k Σk

Cwk at w(m) and get

wT
k Σk

Cwk − λ||wk||1 ≥ 2wT
k Σk

Cw
(m)
k −w

(m)T
k Σk

Cw
(m)
k − λ||wk||1. (3.21)

Thus, the right hand side of (3.21) minorizes the objective function (3.20) at w
(m)
k and

is a convex function, which can be solved by using some convex optimization methods.

However, based on our extensive experience, the MM algorithm is too slow for most large-

scale problems, such as imaging genetics.

To further improve computational e�ciency, we consider a surrogate of (3.20). Re-

call the discussion in the second principle, we are only interested in extracting informa-

tive directions for testing hypotheses of interest. We consider a spectral decomposition
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of (D−TΣXD
−1)(r×r) as (D−TΣXD

−1)(r×r) =
∑r

j=1 γj`j`
T
j , where (γj , `j) are eigenvalue-

eigenvector pairs with γ1 ≥ γ2 ≥ · · · ≥ γr. Then, instead of solving (3.20), we propose to

solve r SURP problems as

wk
λ = argmin

1

2
wT
k ΣRwk −

√
γk`

T
kCBwk + λk||wk||1 for 1 ≤ k ≤ r. (3.22)

Solving (3.22) leads to r sparse projection directions. In (3.22), since we sequentially extract

the direction vector according to the input signal ΣC , it may produce a less informative

direction vector compared with those from (3.20). However, such formulation leads to a fast

computational algorithm and our simulation results demonstrate its reasonable performance.

Thus, (3.22) is preferred in practice.

3.1.3 Test Procedure

We consider three statistics for testing H0W against H1W in (3.2). Based on model (3.1),

we calculate the ordinary least squares estimate of βw, given by β̂w = (
∑N

i=1 xix
T
i )−1

∑N
i=1 xiy

T
i W.

Subsequently, we calculate a k × k matrix, denoted by Tn, as follows:

Tn = (Cβ̂w − b0)TΣ−1
Ω̃

(Cβ̂w − b0), (3.23)

where ΣΩ̃ is a consistent estimate of the covariance matrix of Cβ̂w − b0. Speci�cally, let

β̃w be the restricted least squares (RLS) estimate of β under H0, which is given by

β̃w = β̂w − (XTX)−1CT [C(XTX)−1CT ]−1(Cβ̂w − b0).

Then, we can set ΣΩ̃ = C(XTX)−1
∑N

i=1 a
2
ixiε̃

T
i ε̃ix

T
i (XTX)−1CT , where ai = 1/{1 −

xTi (XTX)−1xi} and ε̃i = WTyi − β̃
T
wxi. When k > 1, we use the determinant, trace

and eigenvalues of Tn as test statistics, which are given by

Wn = det(Tn), Trn = trace(Tn), and Royn = max(eig(Tn)), (3.24)
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where det, trace, and eig, respectively, denote the determinant, trace and eigenvalues of a

symmetric matrix. When k = 1, all three statistics in (3.24) reduce to the Wald-type (or

Hotelling's T 2) test statistic. For simplicity, we focus on Trn throughout the paper.

We propose a wild bootstrap method to improve the �nite sample performance of the

test statistic Trn. First, we �t model (2.1) under the null hypothesis (2.2) to calculate the

estimated regression coe�cient matrix, denoted by B̂0, with corresponding residuals êi =

yi − B̂T
0 xi for i = 1, . . . , n. Then we generate G bootstrap samples z(g)

i = (B̂0)Txi + η
(g)
i êi

for i = 1, . . . , n, where η(g)
i are independently and identically distributed as a distribution

F , which is chosen to be ±1 with equal probability. For each generated wild-bootstrap

sample, we repeat the estimation procedure for estimating the optimal weights and the

calculation of the test statistic Tr(g)n . Subsequently, the p-value of Trn is computed as

1
G

∑G
g=1 1(Tr(g)n ≥ Trn), where 1(·) is an indicator function.

3.1.4 Tuning Parameter Selection

We consider several methods to select the tuning parameter λ. The �rst one is cross

validation (CV), which is primarily a way of measuring the predictive performance of a

statistical model. However, the CV technique can be computationally expensive for large-

scale problems. The second one is the information criterion, which has been widely to

measure the relative goodness of �t of a statistical model. However, neither of these two

methods are applicable for SURP, since our primary interest is to �nd informative directions

for appropriately testing the null and alternative hypotheses of (2.2). If the null hypothesis

is true, it is expected that CB̂ only contains noisy components and the estimated direction

vectors should be random. In this case, the test statistics Trn, Wn, and Royn should not be

sensitive to the value of λ. This motivates us to use the rejection rate to select the tuning

parameter as follows:

λ̂ = argmax
0≤λ≤λmax

{(Rejection Rate)λ}, (3.25)

where λmax is the largest λ to make w nonzero.
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3.2 Asymptotic Theory

We investigate several theoretical properties of SURP and its associated estimator. By

substituting Σ̃R and ̂̀= CB̂ into (5.13), we can calculate an estimate of w0 as

ŵλ = argmin
w

1

2
wT Σ̃Rw −wT ̂̀+ λ||w||1. (3.26)

The following question arises naturally:

how close is ŵλ to w0?

We address this question in Theorems 3.2.1 and 3.2.2.

We consider the scenario that there are a few nonzero components in w0, that is, a

few response variables are associated with the covariates of interest. Such a scenario is

common in many large-scale problems. We make a note here that the sparsity of w0 = Σ−1
R `

does not require neither Σ−1
R nor ` to be sparse, and hence are more quite �exible. Let

S0 = {j : w0,j 6= 0} be the active set of w0 = (w0,1, · · · , w0,q)
T and s0 is the number of

elements in S0. We use the banded covariance estimator of ΣR (Bickel and Levina 2008b)

such that ||Σ̃R−ΣR||2 = Op((
log q
n )

α
2(α+1) ) for some well behaved covariance class U(ε0, α, C1),

which is de�ned as

U(ε0, α, C1) = {Σ = (σjj′) : max
j

∑
j′

{|σj′j | : |j′ − j| > k} ≤ C1k
−α for all k > 0

and 0 < ε0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ε0}.

We have the following results.

Theorem 3.2.1 Assume that ΣR ∈ U(ε0, α, C1) and

λ = max{(knt01 + C1k
−α
n )||w0||2, t02} � (

log(q ∨ n)

n
)

α
2(α+1) ||w0||2, (3.27)

where kn � ( log(q∨n)
n )

− 1
2(α+1) , t01 :=

√
2(η1 + 1) 1

γ(ε0,δ)

√
log(q∨n)

n , and t02 := C0
ε0

√
2(η2 + 1)

√
log(q∨n)

n ,

in which γ(ε0, δ) and δ = δ(ε0) only depends on ε0. Then, with probability at least 1− (q ∨
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n)−η1 − (q ∨ n)−η2, we have

||ŵλ −w0||2 ≤ Cλ
√
s0, (3.28)

where C is a constant not depending on q and n. Furthermore, for ||`||2 > δ0, we have

|| ŵλ

||ŵλ||2
− w0

||w0||2
||2 ≤

2Cλ
√
s0

||w0||2
. (3.29)

Theorem 3.2.1 gives an oracle inequality and the L2 convergence rate of ŵλ in the sparse

case, which indicates direction consistency and is important to ensure the good performance

of test statistics. This result has several important implications. If
√
s0( log q

n )
α

2(α+1) = o(1),

then ||ŵλ − w0||2 converges to zero in probability. Therefore, our SURP should perform

well for the extremely sparse cases with s0 << n. This is extremely important in practice,

since the extremely sparse cases are common for many large-scale problems. Although we

consider the banded covariance estimator of ΣR in Theorem 3.2.1 (Bickel and Levina 2008b),

the convergence rate of ŵλ can be established for other estimators of ΣR and ` as follows.

Theorem 3.2.2 Suppose that we have ||Σ̃R − ΣR||2 = Op(an) = op(1) and || ˆ̀− `||∞ =

Op(bn) = op(1), then

||ŵλ −w0||2 = Op((an ∨ bn)
√
s0). (3.30)

Furthermore, for ||`||2 > δ0, we have

|| ŵλ

||ŵλ||2
− w0

||w0||2
||2 = Op(

(an ∨ bn)
√
s0

||w0||2
). (3.31)

Theorem 3.2.2 gives the L2 convergence rate of ŵλ for any possible estimators of ΣR and

`. A direct implication is that we can consider other estimators of ΣR in order to achieve

better estimation of ΣR under di�erent assumptions of ΣR. For instance, if ΣR has an

approximate factor structure with sparsity, then we may consider the principal orthogonal

complement thresholding (POET) method in Fan et al. (2013) to estimate ΣR. Moreover,

if we can achieve good estimation of ` for large p, then we can extend model (2.1) to the
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scenario with large p. We will systematically investigate these generalizations in our future

work.

Remark The SPReM estimator ŵλ is closely connected with those estimators in Witten

and Tibshirani (2011) and Fan et al. (2012) in the framework of penalized linear discriminant

analysis. However, little is known about the theoretical properties of such estimators. To

the best of our knowledge, Theorems 3.2.1 and 3.2.2 are the �rst results on the convergence

rate of such estimators under the restricted eigen-vectors of problem (3.9).

Remark The SPReM estimator ŵλ does not have the oracle property due to the asymptotic

bias introduced by the L1 penalty. See detailed discussions in (Fan and Li 2001, Zou 2006).

However, our estimation procedure may be modi�ed to achieve the oracle property by using

some non-concave penalties or adaptive weights. We will investigate this issue in more depth

in our future work.

3.3 Numerical Examples

3.3.1 Simulation 1: Two Sample Test in High Dimensions

In this subsection, we consider high-dimensional two-sample test problems and compare

SPReM with the High-dimensional Two-Sample test (HTS) method in Chen and Qin (2010)

and the Random Projection (RP) method proposed by Lopes et al. (2011). Both HTS

and RP are the state-of-the-art methods for detecting a shift between the means of two

high-dimensional normal distributions. It has been shown in Lopes et al. (2011) that the

random projection method outperforms several competing methods when q/n converges to

a constant or ∞.

We simulated two sets of samples {y1, ...,yn1} and {yn1+1, . . . ,yn} from N(β1,ΣR) and

N(β2,ΣR), respectively, where β1 and β2 are q × 1 mean vectors and ΣR = σ2(ρjj′), in

which (ρjj′) is a q × q correlation matrix. We set n = 2n1 = 100 and the dimension of

the multivariate response q is 50, 100, 200, 400, and 800, respectively. We are interested

in testing the null hypothesis H0 : β1 = β2 against H1 : β1 6= β2. This two-sample test
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problem can be formulated as a special case of model (2.1) with n = n1 + n2. Moreover, we

have BT = [β1,β2] and C = (1,−1). Without loss of generality, we set β1 = β2 = 0 to

assess type I error rate and then introduce a shift in the �rst ten components of β2 to be 1

to assess power. We set σ2 to be 1 and 3 and consider three di�erent correlation matrices

as follows.

� Case 1 is an independent covariance matrix with (ρjj′) = diag(1, · · · , 1).

� Case 2 is a weak correlation matrix with ρjj′ = 1(j′ = j) + 0.3× 1(j′ 6= j).

� Case 3 is a strong correlation covariance matrix with ρjj′ = 0.8|j
′−j|.

Simulation results are summarized in Tables 3.1 and 3.2. As expected, both HTS and RP

perform worse as q gets larger, whereas our SPReM works very well even for relatively large

q. This is consistent with our theoretical results in Theorems 3.2.1 and 3.2.2. Moreover,

HTS and RP cannot control the type I error rate well in all scenarios, whereas our SPReM

based on the wild bootstrap method works reasonably well. According to the best of our

knowledge, none of the existing methods for the two sample test in high dimensions work

well in this sparse setting. For cases (ii) and (iii), Σ−1
R (β1 − β2) is not sparse, but SPReM

performs reasonably well under the correlated scenarios. This may indicate the potential of

extending SPReM and its associated theory to non-sparse cases. As expected, increasing

σ2 decreases statistical power in rejecting the null hypothesis. Since both SPReM and

RP signi�cantly outperform HTS, we increased q to 2,000 and presented some additional

comparisons between SPReM and RP based on 100 simulated data sets in Figure 1.

3.3.2 Simulation 2: Multiple Rank Cases

In this subsection, we evaluate the �nite sample performance of SMURP. The simulation

studies were designed to establish the association between a relatively high-dimensional

imaging phenotype with a genetic marker (e.g., SNP or haplotype), which is common in

imaging genetics studies, while adjusting for age and other environmental factors. We set

the sample size n = 100 and the dimension of the multivariate phenotype q to be 50, 100,
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200, 400 and 800, respectively, and then simulated the multivariate phenotype according to

model (1). The random errors were simulated from a multivariate normal distribution with

mean 0 and covariance matrix with diagonal elements 1. For the o�-diagonal elements in the

covariance matrix, which characterize the correlations among the multivariate phenotypes,

we categorized each component of the multivariate phenotype into three categories: high

correlation, medium correlation and very low correlation with the corresponding number of

components (1, 1, q − 2) in each category, and then we set the three degrees of correlation

among the di�erent components of the multivariate phenotype according to Table 3. The

�nal covariance matrix is set to be ΣR = σ2(ρjj′), where (ρjj′) is the correlation matrix. We

considered σ2 = 1 and 3.

For the covariates, we included two SNPs with an additive e�ect and 3 additional con-

tinuous covariates. We varied the minor allele frequency (MAF) of the �rst SNP, whereas

we �xed the MAF of the second SNP to be 0.5. For the �rst SNP, we considered 6 scenarios

assuming the MAFs are 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. We simulated the

three additional continuous covariates from a multivariate normal distribution with mean

0, standard deviation 1, and equal correlation 0.3. We �rst set B = 0 to assess type I error

rate. To assess power, we set the �rst response to be the only components of the multivari-

ate phenotype associated with the �rst SNP and the second response to be the component

related to the second SNP e�ect. Speci�cally, we set the coe�cients of the two SNPs to be

1 for the selected responses and all other regression coe�cients to be 0. We are interested

in testing the joint e�ects of the two SNPs on phenotypic variance.

We applied SPReM to 100 simulated data sets. Note that to the best of our knowledge,

no other methods can be used to test the multi-rank test problem and thus we only focus

on SPReM here. Table 4 presents the estimated rejection rates corresponding to di�erent

MAFs, q, and σ2. Our SPReM works very well even for relatively large q under both σ2 = 1

and 3. Speci�cally, the wild bootstrap method can control the type I error rate well in

all scenarios. For the power, SPReM performs reasonably well under the small MAFs and

q = 800. It may indicate that our method can perform well for much larger q if the sample
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size gets larger. As expected, increasing σ2 decreases statistical power in rejecting the null

hypothesis.

3.3.3 Alzheimer's Disease Neuroimaging Initiative (ADNI) Data Analysis

The development of SPReM is motivated by the joint analysis of imaging, genetic,

and clinical variables in the ADNI study. �Data used in the preparation of this arti-

cle were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food

and Drug Administration (FDA), private pharmaceutical companies and non-pro�t orga-

nizations, as a $60 million, 5-year publicprivate partnership. The primary goal of ADNI

has been to test whether serial magnetic resonance imaging (MRI), positron emission to-

mography (PET), other biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impairment (MCI) and early

Alzheimer's disease (AD). Determination of sensitive and speci�c markers of very early AD

progression is intended to aid researchers and clinicians to develop new treatments and mon-

itor their e�ectiveness, as well as lessen the time and cost of clinical trials. The Principal

Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and University

of California, San Francisco. ADNI is the result of e�orts of many coinvestigators from

a broad range of academic institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to

recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date these

three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the research,

consisting of cognitively normal older individuals, people with early or late MCI, and people

with early AD. The follow up duration of each group is speci�ed in the protocols for ADNI-1,

ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the

option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org. "

The Huamn 610-Quad BeadChip (Illumina, Inc. San Diego, CA) was used to genotype
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818 subjects in the ADNI-1 database, which resulted in a set of 620,901 SNPs and copy

number variation (CNV) markers. Since the Apolipoprotein E (ApoE) SNPs, rs429358

and rs7412, are not on the Human 610-Quad Bead-Chip, they were genotyped separately

and added to the data set manually. For simplicity, we only considered the 10, 479 SNPs

collected on the chromosome 19, which houses the famous ApoE gene commonly suspected of

having association with Alzheimer's disease. A complete GWAS of ADNI will be reported

elsewhere. The SNP data were preprocessed by standard quality control steps including

dropping any SNP that has more than 5% missing data, imputing the missing values in

each SNP with its mode, dropping SNPs with minor allele frequency < 0.05, and screening

out SNPs violating the Hardy-Weinberg equilibrium. Finally, we obtained 8, 983 SNPs on

chromosome 19, including the ApoE allele as the last SNP in our dataset.

Our problem of interest is to perform a genome-wide search for establishing the asso-

ciation between the 10, 479 SNPs collected on the chromosome 19 and the brain volume

of 93 regions of interest (ROIs). We �tted model (1) with all 93 ROIs as responses and a

covariate vector including an intercept, a speci�c SNP, age, gender, whole brain volume, and

the top 5 principal components to account for population strati�cation. To reduce popula-

tion strati�cation e�ects, we only used 761 Caucasians from all 818 subjects. Subjects with

missing values were removed, which leads to 747 subjects. We set λ = λmax in our SPReM

for computational e�ciency. To test the SNP e�ect on all 93 ROIs, we calculated the test

statistic and its p−value for each SNP. We further performed a standard massive univariate

analysis. Speci�cally, we �tted a linear model with the same set of covariates and calculated

a p−value for every pair of ROIs and SNPs.

We developed a computationally e�cient strategy to approximate the p−value of each

SNP with di�erent MAFs. In the real data analysis, we considered a pool of SNPs consist-

ing of 6 MAF groups including MAF∈ (0.05, 0.075], MAF∈ (0.075, 0.15], MAF∈ (0.15, 0.25],

MAF∈ (0.25, 0.35], MAF∈ (0.35, 0.45], and MAF∈ (0.45, 0.50]. Each MAF group contains

40 SNPs. For each SNP, we generated 10,000 wild bootstrap samples under the null hypoth-

esis to obtain 10,000 bootstrapped test statistics. Then, based on 40×10, 000 bootstrapped
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samples for each MAF group, we use the Satterthwaite method to approximate the null

distribution of the test statistic by a Gamma distribution with parameters (aT , bT ). Speci�-

cally, we set aT = E2/V and bT = V/E by matching the mean (E) and the variance (V) of the

test statistics and those of the Gamma distribution. The histograms and the �tted gamma

distributions along with the QQ-plots are, respectively, presented in Figures 2-3. Figures 2

and 3 reveal that our gamma approximations work reasonably well for a wide range of MAFs

when λ = λmax. Since we only use Gamma(aT , bT ) to approximate the p−value of large test

statistic, we only need a good approximation at the tail of the Gamma distribution. See

Figure 3 for details. For each SNP, we matched its MAF with the closest MAF group in

the pool and then calculated the p−value of the test statistic based on the approximated

gamma distribution. We present the manhattan plot in Figure 4 and the top 10 SNPs with

their p−values for SPReM and the mass univariate analysis in Table 5 for λ = λmax.

We have several important �ndings. The ApoE allele was identi�ed as the top one

signi�cant covariate with − log10(p) ∼ 15 and 9 respectively, indicating a strong associa-

tion between the ApoE allele and imaging phenotype, a biomarker of Alzheimer's disease

diagnosis. This �nding agrees with the previous result in Vounou et al. (2012). We also

found some interesting results regarding rs207650 on the TOMM40 gene, which is one of

the top 10 signi�cant SNPs with − log10(p) ∼ 5 and 4 respectively. The TOMM40 gene

is located in close proximity to the ApoE gene and has also been linked to AD in some

recent studies (Vounou et al. 2012). We are also able to detect some additional SNPs, such

as rs11667587 on the NOVA2 gene, among others, on the chromosome 19, which are not

identi�ed in existing genome-wide association studies. The new �ndings may shed more

light on further Alzheimer's research. The p−values for those top 10 SNPs calculated from

SPReM are much smaller than those calculated from the mass univariate analysis. In other

words, to achieve comparable p−values, the mass univariate analysis requires many more

samples. This strongly demonstrates the e�ectiveness of our proposed method.
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3.4 Discussion

In this paper, we have developed a general SPReM framework based on the two heritabil-

ity ratios. Our SPReM methodology has a wide range of applications, including sparse linear

discriminant analysis, two sample tests, and general hypothesis tests in MLMs, among many

others. We have systematically investigated the L2 convergence rate of ŵλ in the ultra-high

dimensional framework. We further extend the SURP problem to the SMURP and o�ered a

sequential SURP approximation algorithm. We carried out simulation studies and examined

a real data set to demonstrate the excellent performance of our SPReM framework compared

to other state-of-the-art methods.

3.5 Assumptions and Proofs

Throughout the paper, the following assumptions are needed to facilitate the technical

details, although they may not be the weakest conditions.

Assumption A1. C(n−1XTX)−1CT � 1, that is, there exists constant c0 and C0 such

that c0 ≤ C(n−1XTX)−1CT ≤ C0.

Assumption A2. 0 ≤ ε0 ≤ λmin(ΣR) ≤ λmax(ΣR) ≤ 1/ε0.

Assumption A3. The covariance estimator Σ̃R satis�es: ||Σ̃R −ΣR||2 = Op(an) ≤ op(1).

Remark : Assumption A1 is a very weak and standard assumption for regression models.

Assumption A2 has been widely used in the literature. Assumption A3 requires a relatively

accurate covariance estimator in terms of spectral norm convergence. We may use some good

penalized estimators of ΣR under di�erent assumptions of ΣR (Bickel and Levina 2008b, Cai

et al. 2010, Lam and Fan 2009, Rothman et al. 2009, Fan et al. 2013).

Proof of Theorem 3.1.1 The Karush Kuhn Tucker (KKT) conditions for problem (3.11)

are given by:

`− λΓ− γΣRw = 0, γ ≥ 0, γ(
1

2
wTΣRw −

1

2
) = 0,

1

2
wTΣRw ≤

1

2
,
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where Γ is a q×1 vector and equals the subgradient of ||w||1 with respect to w. We consider

two scenarios. First, suppose that |`j | > λ for some j. We must have γΣRw 6= 0, which

leads to γ > 0 and wTΣRw = 1. Thus, the KKT conditions reduce to

`− λΓ− γΣRw = 0, γ ≥ 0, wTΣRw = 1.

If we write w̃ = γw, this is equivalent to solving problem (5.13) with w̃ and then take

normalization. Second, if |`j | ≤ λ for any j, then w = 0 and γ = 0, which is the solution of

(5.13) as well. This �nishes the proof.

Proof of Proposition 3.1.2 It follows from Theorem 2 of Rosset and Zhu (2007).

Proof of Proposition 3.1.3 The proof is similar to that of Proposition 1 of Witten and

Tibshirani (2011). Letting w̃k = Σ
1/2
R wk, then problem (3.18) can be rewritten as

argmax w̃T
k Σ
−1/2
R BTCTΣ

1/2
11 CBΣ

−1/2
R w̃k s.t. ||w̃k||2 ≤ 1,

which is equivalent to

argmax w̃kAP
k−1
⊥ uk s.t ||w̃k||2 ≤ 1, ||uk||2 ≤ 1, (3.32)

where A = BTCTΣ
1/2
11 . Thus, w̃k and uk that solve problem (3.32) are the k-th left

and right singular vectors of A (Witten and Tibshirani 2011). Therefore, we have P k−1
⊥ =

I−
∑k−1

j=1 uju
T
j and uk is the k-th eigenvector ofATA, or equivalently the k-th right singular

vector of A. For problem (3.32), w̃k is the k-th left singular vector of A. Therefore, the

solution of (3.19) is the k-th discriminant vector of (3.18).

Proof of Theorem 3.2.1 In this theorem, we speci�cally use the banded covariance esti-

mator Σ̃R = Bkn(Σ̂R), where Bk(Σ) = [σjj′I(|j′ − j| ≤ k)] and Σ̂R is the sample covariance

matrix of yi − B̂Txi.

First, we de�ne J = {||Σ̃R −Bkn(ΣR)||∞ ≤ t1}
⋂
{|| ˆ̀− `||∞ ≤ t2}, where t1 and t2 are
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speci�ed as in Lemma 3.5.2. Then, it follows from Lemma 3.5.2 that P (J ) ≥ 1 − 3(q ∨

n)−η1 − 2(q ∨ n)−η2 .

On the set J , by taking λ = max{knt1 + C1k
−α
n , t2} and using Lemma 3.5.1, we have

1

2
(ŵλ −w0)T Σ̃R(ŵλ −w0) + λ||ŵλ||1 ≤ (wT

0 (ΣR − Σ̃R) + εT )(ŵλ −w0) + λ||w0||1

≤ ||Σ̃R − ΣR||2||w0||2||ŵλ −w0||1 + ||ε||∞||ŵλ −w0||1 + λ||w0||1

≤ (knt1 + C1k
−α
n )||w0||2||ŵλ −w0||1 + t2||ŵλ −w0||1 + λ||w0||1

≤ λ||ŵλ −w0||1 + λ||w0||1.

Let w0,S0 = [w0,jI(j ∈ S0)], where w0,j is the j−th component of w0. The above equation

can be rewritten as

(ŵλ −w0)T (Σ̃R − ΣR + ΣR)(ŵλ −w0) + λ||ŵλ,S0 ||1 + λ||ŵλ,Sc0
||1

≤ λ||ŵλ,S0 −w0,S0 ||1 + λ||w0,S0 ||1 + λ||ŵλ,Sc0
||1,

which yields

{λmin −O(1)(
log(q)

n
)

α
2(α+1) }||ŵλ −w0||22 ≤ 2λ

√
s0||ŵλ −w0||2.

Finally, we obtain the following inequality

||ŵλ −w0||2 ≤
2λ
√
s0

λmin −O(1)( log(q)
n )

α
2(α+1)

≤ Cλ
√
s0,

which �nishes the proof.

Proof of Theorem 3.2.2 It follows from Lemma (3.5.1) that

1

2
(ŵλ −w0)T Σ̃R(ŵλ −w0) + λ||ŵλ||1 ≤ (wT

0 (ΣR − Σ̃R) + (ˆ̀− ˆ̀))(ŵλ −w0) + λ||w0||1

≤ (||Σ̃R − ΣR||2||w0||2 + || ˆ̀− `||∞)||ŵλ,S −w0,S ||1 + λ||w0,S ||1
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Note that ||ŵλ||1 ≤ ||w0,S0 ||1 − ||w0,S0 − ŵλ,S0 ||1 + ||ŵλ,Sc0
||1. Then, by taking

λ = ||Σ̃R − ΣR||2||w0||2 + ||ˆ̀− `||∞ � Op(an||w0||2 ∨ bn),

we have

1

2
(ŵλ −w0)T Σ̃R(ŵλ −w0) ≤ (||Σ̃R − ΣR||2||w0||2 + || ˆ̀− `||∞)(||ŵλ,S0 −w0,S0 ||1 + ||ŵλ,Sc0

||1)

− λ(||w0,S0 ||1 − ||w0,S − ŵλ,S0 ||1 + ||ŵλ,Sc0
|) + λ|w0,S0 ||1

= Op(an ∨ bn)||ŵλ,S0 −w0,S0 ||1 ≤ Op(an ∨ bn)
√
s0||ŵλ,S −w0,S0 ||2.

By using Weyl's inequality, we have

(ŵλ −w0)T Σ̃R(ŵλ −w0) ≥ (λmin(ΣR)− ||Σ̃R − ΣR||2)||ŵλ −w0||22

where ||Σ̃R − ΣR||2 = Op(an) = op(1). Finally, we have

||ŵλ −w0||22 ≤
Op(an ∨ bn)

√
s0||ŵλ,S −w0,S ||2

λmin(Σ)−Op(an)
, (3.33)

which �nishes the proof.

Lemma 3.5.1 We have the following basic inequality

1

2
(ŵλ −w0)T Σ̃R(ŵλ −w0) + λ||ŵλ||1 ≤ {wT

0 (ΣR − Σ̃R) + ( ˆ̀− `)T }(ŵλ −w0) + λ||w0||1.

(3.34)

Proof We rewrite the optimization problem (3.26) as

ŵλ = argmin
1

2
(w − Σ̃−1

R
ˆ̀)T Σ̃R(w − Σ̃−1

R
ˆ̀) + λ||w||1.

Thus, we have

1

2
(ŵλ − Σ̃−1

R
ˆ̀)T Σ̃R(ŵλ − Σ̃−1

R
ˆ̀) + λ||ŵλ||1 ≤

1

2
(w0 − Σ̃−1

R
ˆ̀)T Σ̃R(w0 − Σ̃−1

R
ˆ̀) + λ||w0||1,
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which yields

1

2
||ŵλ −w0||2Σ̃R + λ||ŵλ||1 ≤ (ˆ̀− Σ̃Rw0)T (w̃λ −w0)

= {wT
0 (ΣR − Σ̃R) + ( ˆ̀− `)T }(ŵλ −w0) + λ||w0||1,

in which we have used ˆ̀= ΣRw0 + ˆ̀− ` in the last equality.

Lemma 3.5.2 For all t1 ≥ t01 and t2 ≥ t02, we have

P (J ) ≥ 1− 3(q ∨ n)−η1 − 2(q ∨ n)−η2 . (3.35)

Proof First, it follows from Lemma A.3 of Bickel and Levina (2008b) that

P (||Σ̃R −Bkn(ΣR)||∞ ≥ t1) ≤ 2(k + 1)q exp{−n(t01)2γ(ε0, δ)}

≤ 2(kn + 1)(q ∨ n) exp{−2n(η1 + 1)
1

γ(ε0, δ)

log (q ∨ n)

n
γ(ε0, δ))}

≤ 3((q ∨ n)kn) exp{−(η1 + 1) log ((q ∨ n)kn))}

≤ 3((q ∨ n)kn)−(η1+1)+1 ≤ 3(q ∨ n)−η1 ,

where t01 =
√

2(η1 + 1) 1
γ(ε0,δ)

√
log(q∨n)

n .

Second, we know that
√
n(ˆ̀

j−`j)
σjCX

is Sub(1)-distributed, where CX = C( 1
nX

TX)−1CT .

Then by the union sum inequality, we have

P (max
j
|
√
n(ˆ̀

j − `j)
C0/ε0

| ≥ t2) ≤ P (max
j
|
√
n(ˆ̀

j − `j)
σjCX

| ≥ t2)

≤ 2(q ∨ n) exp{−(t02)2

2
}.

(3.36)

By taking (t02)2 = 2η2 log(q ∨ n), we can rewrite the above inequality as

P (|| ˆ̀− `||∞ ≥
C0

ε0

√
(2η2 + 2) log(q ∨ n)

n
) ≤ 2(q ∨ n)−η2
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Finally, we get

P (J ) ≥ 1− P (||Σ̃R −Bk(ΣR)||∞ ≥ t01)− P (|| ˆ̀− `||∞ ≥
C0

ε0

√
(2η2 + 2) log(q ∨ n)

n
)

≥ 1− 3(q ∨ n)−η1 − 2(q ∨ n)−η2 ,

which �nishes the proof.
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Figure 3.1: Simulation 1 results: the estimated rejection rates as functions of q for two
di�erent σ2 values. The upper and lower rows are, respectively, for powers and for type I
error rates, whereas the left and right columns correspond to σ2 = 1 and σ2 = 3, respectively.
In all panels, the lines obtained from SPReM and RP are, respectively, presented in red
and in blue, and the results for independence, weak, and strong correlation structures are,
respectively, presented as thick, dashed, and dotted lines.
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Figure 3.2: Histograms and their gamma approximations based on the wild bootstrap sam-
ples under the null hypothesis for di�erent MAFs for λ = λmax.
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Figure 3.3: QQ-plot of the gamma approximations based on the wild bootstrap samples
under the null hypothesis for di�erent MAFs for λ = λmax.
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Figure 3.4: ADNI GWAS results: Manhattan plot of − log10(p)-values on chromosome 19
by SPReM for λ = λmax.

Table 3.1: Simulation 1: power and type I error are reported for two sample test at 5
di�erent qs at signi�cance level α = 5% when σ2 = 1.

Power Type I error
q 50 100 200 400 800 50 100 200 400 800

case 1

SPReM 1.000 1.000 1.000 1.000 1.000 0.035 0.060 0.055 0.040 0.035
RP 1.000 1.000 1.000 1.000 0.025 0.000 0.000 0.000 0.000 0.000

HTS 0.965 0.320 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
case 2

SPReM 1.000 1.000 1.000 1.000 1.000 0.060 0.075 0.055 0.045 0.050
RP 1.000 1.000 1.000 1.000 0.970 0.000 0.000 0.000 0.000 0.000

HTS 1.000 0.245 0.030 0.005 0.000 0.000 0.000 0.000 0.000 0.000
case 3

SPReM 1.000 1.000 1.000 1.000 1.000 0.040 0.055 0.085 0.060 0.050
RP 1.000 1.000 1.000 0.535 0.015 0.000 0.000 0.000 0.005 0.000

HTS 1.000 0.140 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 3.2: Simulation 1: power and type I error are reported for two sample test at 5
di�erent qs at signi�cance level α = 5% when σ2 = 3.

Power Type I error
q 50 100 200 400 800 50 100 200 400 800

case 1

SPReM 0.990 0.910 0.825 0.795 0.680 0.030 0.065 0.045 0.035 0.080
RP 1.000 1.000 0.175 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HTS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
case 2

SPReM 0.840 0.825 0.775 0.645 0.580 0.045 0.030 0.030 0.060 0.030
RP 1.000 1.000 0.180 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HTS 0.105 0.015 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
case 3

SPReM 0.780 0.755 0.590 0.465 0.525 0.050 0.055 0.050 0.040 0.075
RP 1.000 0.260 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HTS 0.095 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.3: Correlation matrix of responses used in the simulation

High Med Low
High 0.9 0.6 0.3
Med 0.6 0.9 0.1
Low 0.3 0.1 0.1

Table 3.4: Simulation 2: the estimates of rejection rates were reported at 6 di�erent MAFs,
5 di�erent qs, and 2 di�erent σ2 values at signi�cance level α = 5%. For each case, 100
simulated data sets were used.

Power Type I error
σ2 = 1

MAF\q 50 100 200 400 800 50 100 200 400 800
0.050 0.950 0.955 0.930 0.940 0.930 0.045 0.060 0.030 0.070 0.080
0.100 0.995 0.990 0.990 0.980 0.975 0.045 0.055 0.040 0.045 0.045
0.200 1.000 1.000 1.000 1.000 1.000 0.045 0.045 0.080 0.030 0.060
0.300 1.000 1.000 1.000 1.000 1.000 0.065 0.040 0.020 0.065 0.060
0.400 1.000 1.000 1.000 1.000 1.000 0.050 0.070 0.035 0.060 0.070
0.500 1.000 1.000 1.000 1.000 1.000 0.060 0.050 0.030 0.020 0.035

σ2 = 3

0.050 0.915 0.875 0.765 0.795 0.735 0.050 0.040 0.030 0.050 0.065
0.100 0.970 0.960 0.940 0.875 0.865 0.040 0.055 0.070 0.080 0.050
0.200 0.995 0.985 0.975 0.975 0.970 0.015 0.050 0.060 0.010 0.065
0.300 1.000 1.000 0.990 0.970 0.955 0.045 0.055 0.055 0.080 0.040
0.400 0.995 1.000 1.000 0.990 0.985 0.055 0.035 0.045 0.050 0.070
0.500 0.995 1.000 1.000 0.985 0.980 0.085 0.055 0.055 0.065 0.030
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Table 3.5: Comparison between SPReM and the massive univariate analysis (MUA) for
ADNI data analysis: the top 10 SNPs and their − log10(p) values for λ = λmax.

SNP apoe_allele rs11667587 rs2075650 rs7248284 rs3745341

SPReM 5.04E-16 5.95E-06 9.58E-06 2.56E-05 3.83E-05
MUA 3.43E-11 4.42E-04 1.12E-04 8.75E-04 1.00E-03
SNP rs4803646 rs8106200 rs2445830 rs8102864 rs740436

SPReM 4.65E-05 1.16E-04 1.32E-04 1.93E-04 2.17E-04
MUA 7.56E-04 3.70E-03 1.33E-02 9.34E-04 1.63E-03
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CHAPTER4: HARD THRESHOLDED REGRESSION

In this chapter, we propose a Hard Thresholded Regression (HTR) framework for si-

multaneous variable selection and unbiased estimation in high dimensional linear regression.

This new framework is motivated by its close connection with the L0 regularization and

best subset selection under orthogonal design, while enjoying several key computational

and theoretical advantages over many existing penalization methods (e.g., SCAD or MCP).

Computationally, HTR is a fast two-stage estimation procedure consisting of the �rst step

for calculating a coarse initial estimator and the second step for solving a linear program.

Theoretically, under some mild conditions, the HTR estimator is shown to enjoy the strong

oracle property and thresholded property even when the number of covariates may grow at

an exponential rate. We also propose to incorporate the regularized covariance estimator

into the estimation procedure in order to better trade o� between noise accumulation and

correlation modeling. Under this scenario with regularized covariance matrix, HTR includes

Sure Independence Screening as a special case. Both simulation and real data results show

that HTR outperforms other state-of-the-art methods.

4.1 Methods

4.1.1 Hard Thresholded Regression (HTR)

Consider n independent observations {(yi,xi) : i = 1, . . . , n} from model (2.3) with

the true parameter vector βo. Without loss of generality, we standardize each column of

X = (x̃1, · · · , x̃p) so that ||x̃k||2 =
√
n for k = 1, . . . , p. The target of HTR in (2.5) is to

estimate βo from the data. Our HTR algorithm is a two-stage approach.

1. Compute an initial estimator of β, denoted by β̂init, with a reasonably small risk error
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bound. For instance, let β̂ridge = (XTX + λinitIp)
−1XTy be a ridge estimator of β,

where Ip is the p × p identity matrix and λinit ≥ 0 is a tuning parameter. When

λinit = 0, β̂ridge reduces to the ordinary least squares estimator of β. We will use

β̂ridge as a candidate of β̂init and examine its risk error bound in Section 2.5.

2. Construct the weight matrix W based on β̂init, denoted by Ŵ, and then write the

HTR estimator as

β̂HTR = argmin
1

n
||Ŵ ×XT (y −Xβ)||1 + λ||β||1. (4.1)

Throughout the paper, we set Ŵ as

Ŵ = diag(ŵj) and ŵj = |β̂init,j |γ for j = 1, 2, . . . , p, (4.2)

where γ is a positive constant and β̂init,j is the j−th component of β̂.

Numerically, computation of β̂HTR is very straightforward, since the objective function

in (4.1) is convex and can be recast into a linear programming problem. Speci�cally, we

introduce a p×1 slack vector η = {ηj = 1
n |[ŴXT (y−Xβ)]j |, j = 1, . . . , p}, β+ = {β+

j }j≥1,

and β− = {β−j }j≥1. Then, the minimization in (4.1) can be rewritten as

min

p∑
j=1

{ηj + λ(β+
j + β−j )} subject to η ≥ 0,β+ ≥ 0,β− ≥ 0, and

− η ≤ 1

n
ŴXT (y −Xβ) ≤ η,

where the optimization variables are η, β+, and β− in Rp. Finally, β can be recovered

by β = β+ − β−.

There are at least two major motivations for HTR. The �rst one comes from the score

equation of the maximum likelihood estimator. Let `n(β) and Un(β) be, respectively, the

likelihood (or quasi-likelihood) and score functions of β. The score equation and its weighted
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version are given by

Un(β) =
∂

∂β
`n(β) = 0 and Ŵ × Un(β) = 0, (4.3)

which are equivalent to ||Un(β)||1 = 0 and ||Ŵ×Un(β)||1 = 0, respectively. For model (2.3),

Un(β) reduces to XT (y −Xβ) and thus β̂HTR can be regarded as the penalized weighted

score estimator with the L1 norm ||β||1. Moreover, R(β) = (R1(β), R2(β), . . . , Rp(β))T =

Un(β) can be regarded as the risk function of β and Ŵ is the risk calibration weight matrix

for imposing additional information learned from the �rst stage. Therefore, based on (4.3),

it is possible to extend HTR to more general scenarios, such as generalized linear model.

The second motivation comes from the Dantzig selector (Candes and Tao 2007) and the

least absolute gradient selector (LAGS) (Yang 2012). These two selectors are equivalent to

solving the objective function as

β̂ = argminβ
1

n
||XT (y −Xβ)||a + λ||Vβ||1, (4.4)

where V is a p × p weight matrix. The Dantzig selector and LAGS correspond to (|| ·

||a,V) = (|| · ||∞, Ip) and (|| · ||a,V) = (|| · ||∞, diag(1/|β̂init,1|, · · · , 1/|β̂init,p|)), respectively.

As pointed by Candes and Tao (2007), one would want to constrain the size of the correlated

residual vector XT (y −Xβ) rather than the size of the residual vector y −Xβ, since such

an estimation procedure is invariance under orthogonal transformations of X. Moreover,

since the correlated residual vector measures the correlation between the predictors and the

response, one would obviously want to include the explanatory variables that are highly

correlated with the response y in the model.

A major drawback of the Dantzig selector is shrinkage bias, leading to suboptimal risk

estimation, even though a double Dantzig selector can reduce the bias (James and Radchenko

2009). Moreover, to address the same bias issue, similar to the adaptive Lasso (Zou 2006),

LAGS uses adaptive weights calculated from β̂init to directly penalize di�erent regression

coe�cients. An advantage of HTR is that it directly reduces the e�ects of those risk functions
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Rj(β) associated with `insigni�cant' βjs' in both estimation and variable selection. When

s << min(p, n) and p is comparable with n, we expect that HTR outperforms LAGS in

terms of bias and mean squared error. See Section 4 for details.

4.1.2 Orthonormal Design Case

We examine the orthonormal design case in order to delineate some connections between

HTR and other existing regularization methods. In this case, we have XTX = nIp and

β̂ols = (β̂ols1 , · · · , β̂olsp )T = n−1XTy.

Best subset selection of size k reduces to choosing the k largest coe�cients in absolute

value and setting the rest to 0. Speci�cally, for some value of λ, this is equivalent to

β̂j = β̂olsj 1|β̂olsj |>λ
for j = 1, · · · , p, (4.5)

which have a strong connection with hard shrinkage. For the Lasso (Tibshirani 1996), its

solutions have the following form

β̂lasso,j = sgn(β̂olsj )(|β̂olsj | − λ)+ for j = 1, · · · , p, (4.6)

which has a strong connection with the soft shrinkage proposals of Donoho and Johnstone

(1994), Donoho et al. (1995). However, there is a major shrinkage bias in (4.6).

Many convex/nonconvex penalty functions in (2.4) have been proposed to reduce the

e�ect of the shrinkage bias in Lasso for statistical inferences (Candes and Tao 2007, Fan

and Li 2001, Zou 2006, Zhang 2010). For instance, with the hard-thresholding penalty

pλ(t) = 0.5[λ2 − (λ− t)2
+]1(t ≥ 0), we can obtain the hard thresholding estimator in (4.5).

In the case of orthonormal design, the hard thresholding penalty is also equivalent to the

L0−penalty pλ(t) = 0.5λ21(t 6= 0). However, for nonorthonormal designs, although non-

convex regularization can be bene�cial in selecting important covariates in model (2.3),

additional computational and theoretical questions arise due to the nonconvexity of the

penalty function.
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Both HTR and LAGS try to mimic best subset selection, while avoiding various issues

associated with convex/nonconvex penalty functions used in Q(β). Speci�cally, we keep the

L1-penalty function pλ(t) = λ|t|, whereas we replace the loss function in Q(β) by the score

equation (or risk function) of β. In the case of orthonormal design, HTR reduces to

argmin
β

p∑
j=1

ŵj |βj − β̂olsj |+ λ

p∑
j=1

|βj |, (4.7)

whose solutions are given by

β̂HTR,j = β̂olsj 1(λ ≤ ŵj) for j = 1, · · · , p. (4.8)

By taking the ridge estimator, we obtain ŵj = β̂olsj /(1+λinit) and thus β̂HTR reduces to the

hard thresholding estimator in (4.5) for some value of λ. We can also use the `biased' lasso

estimate β̂lasso,j to construct ŵj in the �rst stage and then calculate an unbiased estimator

β̂HTR by calibrating the bias in β̂lasso,j . Thus, for HTR, we only need a coarse initial

estimator in the �rst stage, which could then help us in identifying the activation set S of

the true β◦.

We make a note that HTR is di�erent from the hard-thresholding procedure. Given β̂init

and λn > 0, the hard thresholding (HT) estimator β̂HT is de�ned as

β̂HT =

 β̂init, if |β̂init| ≥ λn,

0, if |β̂init| ≤ λn.
(4.9)

The hard-thresholding rule aims to remove the false positives at the second stage, while

largely preserving the parameter estimator calculated in the �rst stage. In contrast, our

HTR always re-estimates β in order to calibrate the estimation bias introduced in the �rst

stage. Therefore, a coarse initial estimator of β is su�cient in the �rst stage of HTR.
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4.1.3 Theoretical Results

We formally establish the strong oracle property of β̂HTR, when the number of param-

eters is large and grows with the sample size n. We start with the following regularity

conditions. Throughout the paper, the following conditions are needed to facilitate the

technical details, although they may not be the weakest conditions.

Regularity Conditions (RCs)

(RC1) 0 < b ≤ λmin(n−1XTX) ≤ λmax(n−1XTX) ≤ B <∞.

(RC2) limn→∞ log (p)/log (n) ≤ v for some 0 ≤ v < 1.

(RC3) λn−1/2 → 0 and λn1/2(γ−v(γ+1)) →∞.

(RC4) The initial estimates β̂init satisfy E[||β̂init − β||22|X] = O(pn−1).

Remarks. Condition (RC1) assumes that the predictor matrix has reasonably good

behavior, which is also considered in Fan and Peng (2004). Condition (RC2) speci�es that

the growth rate of p is at most a polynomial, that is, p = O(nv), v < 1. It is worth pointing

out that Condition (RC2) is weaker than that used in Fan and Peng (2004), for which they

assume that p satis�es p3 = o(n). Condition (RC3) speci�es the relationship between λ

and n. To construct the risk calibration weight matrix Ŵ, we take a �xed γ such that

γ > 2v/(1− v). Condition (RC4) requires that the initial estimator used in the �rst stage

has a reasonably good behavior in terms of the risk error bound. Such an error bound is

generally available for many standard estimators of β.

As an illustration, we show below that the ridge estimator used in the �rst stage satis�es

(RC4) as given in the following proposition.

Proposition 4.1.1 (Risk Error For Ridge Estimates) Under (RC1), β̂ridge satis�es

E[||β̂ridge − β||22|X] ≤ 2
λ2
init||β◦||22 + σ2npB

n2b2
. (4.10)
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Furthermore, if λ2
init||β◦||22 = O(np), then we have

E[||β̂ridge − β||22|X] = O(
p

n
). (4.11)

We next study the strong oracle properties of β̂HTR. Before we state the main theorem,

we introduce the oracle estimator, denoted as β̂◦, as

β̂◦ = argmin
β,βj=0,∀j 6∈S

1

2n

n∑
i=1

(yi − xTi β)2 =

 (XT
1 X1)−1XT

1 y

0

 , (4.12)

in which without loss of generality, it is assumed that the �rst s regression coe�cients

are nonzero and the remaining p − s regression coe�cients are zero. Moreover, X1 is the

corresponding design matrix for the �rst s regression coe�cients. Theorem below provides

the strong oracle property of β̂HTR.

Theorem 4.1.2 (Strong Oracle Property of β̂HTR) Assume that conditions (RC1)-(RC4)

hold. Then, as n→∞, we have

Pr(β̂HTR = β̂◦)→ 1. (4.13)

Combining Proposition 2.1 and Theorem 2.2 yields the strong oracle property β̂HTR,

when we set β̂init = (XTX + λinitIp)
−1XTy in the �rst stage. Our result gives the

strong oracle property under very mild conditions by only assuming λn−1/2 → 0 and

λn1/2(γ−v(γ+1)) → ∞ in (RC3). We shall compare our result with adaptive Lasso in the

�xed dimension setting. Adaptive lasso achieves oracle property by requiring λn1/2 → 0, or

equivalently, the bias term λ goes to 0 with faster rate than n−1/2. However, in HTR, the

bias term λ can diverge to ∞ with no faster rate than n1/2. This can further validate the

superiority of HTR estimator: the thresholding level λ is only used to shut down the noise

without introducing any bias term to the �nal estimator.
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4.2 HTR under Ultra-High Dimensional Setting

4.2.1 Ultra-High Dimensional HTR

We discuss how to extend HTR for the ultra-high dimensional setting with p >> n.

For instance, it is common to assume that p may grow at an exponential rate in n. In this

case, the standard HTR in (4.1) may fail for p >> n. In particular, condition (RC1) fails,

since λmin(n−1XTX) = 0 for p > n. Thus, we need to use a new covariance matrix of

predictors x, denoted by Σ̃X , which is positive de�nite, to replace n−1XTX in (4.1). The

use of a positive-de�nite Σ̃X to replace n−1XTX is also very common in the regularization

literature. For instance, in Zou and Trevor (2005), the elastic net estimator for model (2.3)

is de�ned as

argmin
β
{βTnΣ̃Xβ − 2yTXβ + λ||β||1}, (4.14)

in which nΣ̃X = (XTX + λ2Ip)/(1 + λ2) for some λ2 > 0.

Our new ultra-high dimensional HTR algorithm for p� n is also a two-stage approach

as follows.

1. Compute β̂init, which satis�es the following estimation error bound

||β̂init − β◦||2 ≤ C0

√
s log(p)

n
(4.15)

in a large probability set J0, that is, Pr(J0) = 1 − δn,p,s → 1 or δn,p,s = o(1).

Speci�cally, we use the Lasso estimator of β, denoted by β̂lasso, as a candidate of

β̂init, since it has been shown in Zhang and Huang (2008) that (4.15) holds for β̂lasso

under the sparse Riesz condition. We may use other regularization estimators of β,

such as the Dantzig estimator, since the error bound (4.15) is widely available for them

in the ultra-high dimensional framework.
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2. Construct Ŵ and estimate β̂HTR according to

β̂HTR = argmin
β

1

2
||Ŵ(XTy − nΣ̃Xβ)||1 + λ||β||1. (4.16)

We will show below that our ultra-high dimensional HTR is a general framework for

carrying out screening, variable selection, and estimation. We �rst establish a connection

between ultra-high dimensional HTR and Sure Independence Screening (SIS) when p is

much larger than n. With a large dimensionality p, the computational cost and estimation

accuracy are major di�culties for any statistical method. To overcome such di�culties, Fan

and Lv (2008) introduced the SIS methodology to reduce dimensionality from a high p to a

relatively large scale dn with dn ≤ n. Speci�cally, let ω = XTy = (ω̃1, . . . , ω̃p)
T be a p× 1

vector of marginal correlations of predictors with the response variable. The standard SIS

method is to select the features according to their marginal correlations with the response

variable contained in ω, and then �lter out those with weak marginal correlations with the

response variable. This SIS procedure is equivalent to a special case of HTR by taking

Ŵ = diag(|ω̃1|, . . . , |ω̃p|) and 1
n Σ̃X = diag{XXT } = Ip in (4.16). Thus, (4.16) reduces to

β̂HTR,j = w̃j1(|w̃j | ≥ λ) = argmin
β
{

p∑
j=1

[|w̃j ||w̃j − βj |+ λ|βj |]}. (4.17)

Without loss of generality, it is assumes that |w̃1| > |w̃2| > · · · > |w̃p|. For any given

q ∈ (0, 1), we can select the covariates corresponding to the �rst [qn] largest |w̃j |s by taking

λ = |w̃[qn]| in (4.17), where [qn] denotes the integer part of qn. Furthermore, we may

combine the order of {w̃j}j learned from SIS with HTR (SIS+HTR) to recalculate β̂HTR.

Second, we show that our HTR procedure allows us to extend SIS to more complex

settings, when predictors may be highly correlated. The incorporation of the correlation

structure among predictors is critical for better variable selection and estimation in model

(2.3). An important strategy is to balance between noise accumulation and correlation mod-

eling. Without loss of generality, we assume that the true covariance matrix of x, denoted
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as Σx, has a geometric decay structure and then we can use its regularized bandable conva-

riance estimator, denoted as Σ̃X , to approximate Σx (Bickel and Levina 2008b). Extensions

to other covariance structures can also be done by using other regularized estimators in

the literature (Cai et al. 2010, Lam and Fan 2009, Rothman et al. 2009, Fan et al. 2013).

Speci�cally, we set ω̃ = Σ̃−1
X XTy and Ŵ = diag(|ω̃|). In this case, (4.16) reduces to

β̂HTR = argmin
β
{||diag(|ω̃|)( 1

n
XTy − Σ̃Xβ)||1 + λ||β||1}. (4.18)

Since we explicitly account for the joint information of all covariates by regularizing their

covariance matrix estimation through a de-correlation procedure instead of using the inde-

pendence rule, we may call (4.18) as a Sure Correlation Screening (SCS) procedure, which

could avoid the faithful assumption used in Fan and Lv (2008).

4.2.2 Theoretical Results

We formally investigate the strong oracle property of β̂HTR under the ultra-high di-

mensional scenario. We start with the following regularity condition on Σx. Speci�cally,

throughout the paper, it is assumed that Σx belongs to a well behaved covariance class

U(ε0, α, C1), which is de�ned as

U(ε0, α, C1) = {Σ = (σjj′) : max
j

∑
j′

{|σj′j | : |j′ − j| > k} ≤ C1k
−α for all k > 0

and 0 < ε0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ε0},

where ε0, C1, and α are positive scalars. The condition Σx ∈ U(ε0, α, C1) basically requires

that Σx be bandable. Such a condition on Σx can be relaxed by employing di�erent covari-

ance estimators (Bickel and Levina 2008b, Cai et al. 2010, Lam and Fan 2009, Rothman

et al. 2009, Fan et al. 2013).

We also introduce the L∞ Correlation Condition (LCC) for model identi�ability. For

a given set S with cardinality pS and its complement SC = {1, · · · , p}/S with cardinality
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pSC = p− pS , we consider a partition of the p× p matrix Σ according to (S, SC) as follows:

Σ =

 ΣSS ΣSSC

ΣSCS ΣSCSC

 ,

where ΣS1S2 is a pS1 × pS2 matrix corresponding to indices in S1 and S2, in which S1 and

S2 are equal to either S or SC . We say that (Σ, S) satis�es the L∞ correlation condition, if

there exists a u0(n, p, pS) > 0 such that

min
||τS ||∞=1,||τ

SC
||∞=1

||ΣSSτS + ΣSSCτSC ||∞ > u0(n, p, pS), (4.19)

where τS and τSC are pS × 1 and (p− pS)× 1 vectors, respectively.

The L∞ correlation condition is used to rule out the case of strong collinearity in the

same spirit of condition 4 in Fan and Lv (2008). The sample version of LCC closely resembles

the irrepresentable condition �rst proposed by Zhao and Yu (2006). The ir-representable

condition is equivalent to putting a regularization constraint on the regression coe�cients of

the irrelevant covariates XSC on the relevant covariates XS , ||Σ−1
SSΣSSC ||1 ≤ 1−u0(n, p, pS)

for some constant u0(n, p, pS) > 0. Similar to the ir-representable condition, if we put the

constraint in the L∞ norm rather than the L1 norm, i.e. ||Σ−1
SSΣSSC ||∞ ≤ 1 − u0(n, p, pS)

and hold s �xed, this would imply the LCC condition by observing

min
τ∈Ω0

||ΣSSτS + ΣSSCτSC ||∞ ≥ min
τ∈Ω0

||Σ−1
SS(τS − Σ−1

SSΣSSCτSC )||∞

≥ min
τ∈Ω0

1
√
p
S

λmin(ΣSS)||τS − Σ−1
SSΣSSCτSC ||∞

≥ ε0√
p
S

u0(n, p, pS),

(4.20)

where Ω0 = {||τS ||∞ = 1, ||τSC ||∞ = 1}. Generally, we allow u0(n, p, pS) to diverge to 0.

We examine an example of Σ to show that for some Σ, the LCC condition holds,

whereas the ir-representable condition does not. Speci�cally, we consider a speci�c Σ0

with Σ0
SS = IpS , Σ0

SCSC
= Ip−pS , and Σ0

SSC
= (Σ0

SCS
)T = [1pSρ/

√
pS ,0, · · · ,0], where 1pS

55



is a pS × 1 vector with all ones. Therefore, the LCC condition allows us to go beyond the

ir-representable condition for consistent variable selection.

Proposition 4.2.1 For S = {1, . . . , pS} and Σ0 de�ned as above, (Σ0, S) satis�es the LCC

condition, but not the ir-representable condition.

We de�ne the oracle estimator of β in the ultra-high dimensional setting as

β̃◦ = ( {(Σ̃SS)−1XT
Sy}T ,0T )T , (4.21)

where Σ̃X,SS denotes the submatrix of Σ̃X corresponding to the indices in the true active

set S. Note that the di�erence between β̃◦ and the oracle least squares estimate β̂◦ is very

small, since ||Σ̃X,SS−ΣX,SS ||12 ≤ ||Σ̃X−ΣX ||12 = Op((
log(p)
n )α/(2(α+1))) for ΣX ∈ U(ε0, α, C1)

(Bickel and Levina 2008b). Moreover, if the ordinary least squares estimator is desirable,

especially when s/n is moderate, we can �rst identify an initial active set, denoted as Sn,

and then we can calculate β̂ref = (XT
Sn
XSn)−1XT

Sn
y. Before we present the main results

below, we let Σkn = Bkn(Σ) = (σij1(|i−j|≤kn)).

Theorem 4.2.2 (Strong Oracle Property of β̂HTR under p >> n with thresholded property)

Suppose that Σx ∈ U(ε0, α, C1), (4.15) holds, and (Bkn(Σx),Sn) satis�es the LCC condition.

If the tuning parameter λ satis�es

m < λ < M

for kn � (log p/n)−1/(2(α+1)) and t0 de�ned in Lemma 6.1, where

m
.
= Cγ0 (2kn + 1)(s log(p)/n)γ/2 max{ε0−1,

√
2(η + 1)

γ(ε0, δ)
(
log p

n
)1/2},

and M
.
= [u0(n, p, s) − 2t0 − 2kαn ](minj∈S |β◦j | − C0

√
s0 log p/n)γ , then with probability at

least 1− δn,p,s − 3p−η, we have

β̂(λ) = β̃◦. (4.22)
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Theorem 5.3.1 quanti�ed our HTR estimator under the ultra-high dimensional scenario.

Assuming that η0
.
= minj∈S |β◦j | > C0

√
s log(p)/n and u0(n, p, s) is �xed, we roughly require

ηγ0 & λ & (s log(p)/n)γ/2(2kn + 1). However, in Wang et al. (2013a), the calibrated CCCP

method identi�es the oracle estimator when η � λ � s
√

log(p)/n. We point out an

interesting phenomenon: within the range (m,M) with m and M de�ned in the above

theorem, β̂HTR stays at oracle estimator β̃◦. This agrees with our intuition that HTR's

solution path has a piece-wise constant property. We mention that our result is not directly

comparable with the calibrated CCCP method and any other method in the literature as

we only require that M > λ > m rather than M � λ � m. Finally, Theorem 5.3.1 is in

line with the important theoretical properties of L0 penalized regression considered in Zheng

et al. (2013). This may further validate our HTR method.

4.3 Numerical Examples

4.3.1 Simulation Study

Continuous responses were generated according to model (2.3) with

β◦ = (3, 2, 0, 0,−1.5, 0, . . . , 0︸ ︷︷ ︸
p−5

)T and n = 100. Moreover, in model (2.3), xi follows the

N(0,ΣX) distribution with covariance matrix ΣX and εi is independent of xi and has a

normal distribution with mean 0 and standard deviation σ = 2. Write ΣX = σ(ρij), we

consider three di�erent correlation structures of (ρij) including

� Case 1: independent correlation design with (ρij) = diag(1, · · · , 1);

� Case 2: weak correlation design with ρij = 0.30|i−j|;

� Case 3: relatively strong correlation design with ρij = 0.95|i−j|.

We consider both relatively high dimension p = 40 and ultra-high dimension case p =

2000� n.

We investigate the sparsity recovery and estimation properties of the HTR estimator via

numerical simulations. We compared the HTR estimator with the following estimators: the
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oracle estimator which assumes the availability of the active set S0; the adaptive lasso esti-

mator proposed by Zou (2006); the smoothly clipped absolute deviation (SCAD) estimator

(Fan and Li 2001); and the minimax concave penalty (MCP) estimator with a = 3 Zhang

(2010). For SCAD, n1/2−fold cross-validation was used to select the tuning parameter λ; for

ALasso and HTR, sequential tuning in Bühlmann and Geer (2011) was used; and the MCP

estimator was computed using the R package PLUS with the theoretically optimal tuning

parameter value λ = σ
√

2/np. For the case p = 30, we also computed regularized estimators

based on LAGS. To estimate the bandable covariance estimator Σ̃X in HTR, the banding

parameter was selected by cross validation as described in Bickel and Levina (2008b). To

further demonstrate the performance by using the regularized covariance matrix, we also

compared the HTR estimates with the sample covariance matrix, and the independence

covariance matrix and denoted them as HTRsam and HTRind, respectively.

For each simulation setting, we generated 100 simulated data sets and applied di�erent

estimators to each dataset. Then, we calculated di�erent statistics for each estimator and

included them in Tables 4.1, 4.2, 4.3 and 4.4. We calculated the mean and median of

|β̂i| − |βi| with i = 1, 2, 3 in order to measure the downward shrinkage bias. To measure

the sparsity recovery, we calculated the mean and median of number of zero coe�cients

incorrectly estimated to be nonzero (i.e. false positive, denoted as FP) and the mean and

median of number of nonzero coe�cients correctly estimated to be nonzero (i.e. true positive,

denoted by TP). To measure the estimation accuracy, we calculated the mean and median

squared error (MSE) and the mean and median absolute error (MAE).

It is not surprising that Lasso always over�ts. Other procedures improve the perfor-

mance of Lasso by reducing the estimation bias and the false positive rate. The best overall

performance is achieved by the HTR estimator with relatively small shrinkage bias, MSE,

MAE, and FP. The MCP and SCAD also have overall �ne performance. In the relatively

high dimensional (p = 30) example, HTR outperforms LAGS in all three cases. When the

dimension is 2000, in all cases, the HTR with sample covariance matrix encourages false se-

lections and thus it has worse performance compared with that with regularized covariance
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estimator. When the correlation structure gets stronger, ignoring the correlation structure

would produce too sparse solution and miss true variables, which veri�es our conjecture.

This veri�es the e�ectiveness of using regularized covariance matrix in the regression proce-

dure.

Table 4.1: Mean of simulation results for p = 40: |β̂1| − |β1|, |β̂2| − |β2|, |β̂3| − |β3|, MSE,
MAE, TP, and FP. For each case, 100 simulated data sets were used.

Case Methods |β̂1| − |β1| |β̂2| − |β2| |β̂3| − |β3| MSE MAE TP FP

1 Oracle -0.0054 0.0219 -0.0017 0.0373 0.2670 NA NA

Lasso -0.1004 -0.0788 -0.1399 0.1158 0.7599 3.00 10.76

ALasso -0.0090 0.0058 -0.0307 0.1061 0.7603 3.00 9.10

SCAD -0.0042 0.0215 -0.0054 0.0387 0.3199 3.00 5.91

MCP -0.0059 0.0214 -0.0031 0.0378 0.2743 3.00 5.18

HTR -0.0052 0.0174 -0.0097 0.0679 0.0679 3.00 5.58

LAGS -0.0158 0.0182 -0.0478 0.3770 1.0466 3.00 5.77

2 Oracle -0.0054 0.0219 -0.0017 0.0373 0.2670 NA NA

Lasso -0.1004 -0.0788 -0.1399 0.1158 0.7599 3.00 10.76

ALasso -0.0090 0.0058 -0.0307 0.1061 0.7603 3.00 9.10

SCAD -0.0042 0.0215 -0.0054 0.0387 0.3199 3.00 5.91

MCP -0.0059 0.0214 -0.0031 0.0378 0.2743 3.00 5.18

HTR -0.0052 0.0174 -0.0097 0.0679 0.0679 3.00 5.58

LAGS -0.0158 0.0182 -0.0478 0.3770 1.0466 3.00 5.77

3 Oracle -0.0105 0.0073 0.0002 0.0487 0.2949 NA NA

Lasso -0.1412 -0.1160 -0.1315 0.1880 1.0013 3.00 11.43

ALasso -0.0113 0.0002 -0.0350 0.1923 0.9959 3.00 9.46

SCAD -0.0072 0.0083 -0.0041 0.0183 0.3721 3.00 5.62

MCP -0.0104 0.0054 -0.0005 0.0487 0.2955 3.00 5.04

HTR -0.0212 -0.0027 -0.0103 0.0918 0.0918 3.00 5.60

LAGS 0.0856 -0.0485 -0.0619 0.6434 1.3617 3.00 5.69

4.3.2 Bardet-Biedl syndrome gene expression study

We applied HTR to the Bardet Biedl syndrome gene expression study in Scheetz et al.

(2006). For this data set, F1 animals were intercrossed and 120 twelve-week-old male o�-

spring were selected for tissue harvesting from the eyes and for microarray analysis. The

microarrays used to analyze the RNA from the eyes of these animals contain more than

31, 042 di�erent probe sets (A�ymetric GeneChip Rat Genome 230 2.0 Array). The in-

tensity values were normalized using the RMA (robust multi-chip averaging, Bolstad et al.

(2003), Irizarry et al. (2003)) method to obtain summary expression values for each probe set.
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Table 4.2: Median of simulation results for p = 40: |β̂1| − |β1|, |β̂2| − |β2|, |β̂3| − |β3|, MSE,
MAE, TP, and FP. For each case, 100 simulated data sets were used.

Case Methods |β̂1| − |β1| |β̂2| − |β2| |β̂3| − |β3| MSE MAE TP FP

1 Oracle 0.0086 -0.0171 0.0016 0.0221 0.2283 NA NA

Lasso -0.1127 -0.1430 -0.1274 0.1072 0.7584 3.00 11.00

ALasso 0.0045 -0.0304 -0.0272 0.0702 0.8080 3.00 8.50

SCAD 0.0125 -0.0156 -0.0032 0.0241 0.2775 3.00 5.00

MCP 0.0121 -0.0156 -0.0032 0.0221 0.2334 3.00 5.00

HTR 0.0104 -0.0210 -0.0020 0.0521 0.0797 3.00 6.00

LAGS -0.0366 0.0097 0.0431 0.2264 0.9493 3.00 5.00

2 Oracle -0.0054 0.0219 -0.0017 0.0270 0.2393 NA NA

Lasso -0.1004 -0.0788 -0.1399 0.1062 0.6894 3.00 10.00

ALasso -0.0052 -0.0018 -0.0214 0.0736 0.7603 3.00 8.00

SCAD -0.0002 0.0270 0.0029 0.0188 0.3199 3.00 5.00

MCP 0.0012 0.0246 -0.0003 0.0274 0.2743 3.00 5.00

HTR 0.0051 0.0156 -0.0048 0.0482 0.0679 3.00 5.00

LAGS -0.0048 0.0121 -0.0458 0.3219 1.0466 3.00 5.00

3 Oracle -0.0105 0.0073 0.0002 0.0350 0.2718 NA NA

Lasso -0.1412 -0.1160 -0.1315 0.1460 0.8972 3.00 10.00

ALasso -0.0061 -0.0182 -0.0274 0.1167 0.9959 3.00 8.00

SCAD -0.0073 -0.0061 -0.0150 0.0082 0.3721 3.00 5.00

MCP -0.0116 -0.0112 -0.0087 0.0353 0.2955 3.00 5.00

HTR -0.0204 -0.0119 -0.0040 0.0484 0.0918 3.00 5.00

LAGS 0.0317 -0.0250 -0.0874 0.5245 1.3617 3.00 5.00
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Table 4.3: Mean of simulation results for p = 2000: we report |β̂1|−|β1|, |β̂2|−|β2|, |β̂3|−|β3|,
MSE, MAE, TP, and FP. For each case, 100 simulated data sets were used.

Case Methods |β̂1| − |β1| |β̂2| − |β2| |β̂3| − |β3| MSE MAE TP FP

1 Oracle 0.0041 -0.0096 -0.0123 0.0316 0.2489 NA NA

Lasso -0.2878 -0.3141 -0.3094 0.3895 1.7974 3.00 27.17

ALasso -0.1560 -0.1685 -0.1683 0.5123 1.8002 3.00 23.81

SCAD 0.0046 -0.0095 -0.0186 0.0472 0.4175 3.00 9.08

MCP 0.0040 -0.0104 -0.0106 0.0324 0.2562 3.00 5.13

HTR 0.0030 -0.0122 -0.0122 0.0363 0.2621 3.00 5.03

HTRsam 0.0039 -0.0283 -0.0113 0.0812 0.2857 2.99 5.04

HTRind 0.0035 -0.0106 -0.0122 0.0346 0.2563 3.00 5.02

2 Oracle -0.0016 0.0058 -0.0087 0.0352 0.2565 NA NA

Lasso -0.2340 -0.2153 -0.3020 0.2963 1.5513 3.00 25.46

ALasso -0.1185 -0.1008 -0.1580 0.4462 1.5513 3.00 22.23

SCAD -0.0017 0.0066 -0.0116 0.0462 0.4058 3.00 9.22

MCP -0.0015 0.0058 -0.0105 0.0363 0.2607 3.00 5.09

HTR 0.0082 0.0077 -0.0397 0.0635 0.2798 2.99 5.01

HTRsam -0.0021 0.0048 -0.0105 0.0392 0.2654 3.00 5.02

HTRind 0.0098 0.0117 -0.0528 0.1096 0.3092 2.97 5.00

3 Oracle 0.0510 -0.0228 -0.0160 0.3832 0.8544 NA NA

Lasso -0.0874 -0.1487 -0.3443 0.7433 1.7430 3.00 14.87

ALasso 0.0389 -0.1478 -0.2206 0.9337 1.7430 3.00 12.47

SCAD -0.0112 0.1355 -0.2903 14.2929 5.7731 1.69 7.19

MCP 1.4171 -2.0000 -0.4810 9.6553 5.4525 1.52 5.93

HTR 0.1147 -0.1520 -0.1663 1.2495 1.4264 2.85 5.32

HTRsam 0.1851 -0.2627 -0.2174 1.7857 1.7192 2.75 5.40

HTRind 2.3034 -1.1562 -1.5000 16.3439 6.5666 1.08 5.00
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Table 4.4: Median of simulation results for p = 2000: we report |β̂1| − |β1|, |β̂2| − |β2|,
|β̂3| − |β3|, MSE, MAE, TP, and FP. For each case , 100 simulated data sets were used.

Case Methods |β̂1| − |β1| |β̂2| − |β2| |β̂3| − |β3| MSE MAE TP FP

1 Oracle -0.0041 -0.0075 -0.0148 0.0263 0.2364 NA NA

Lasso -0.2787 -0.3063 -0.2874 0.3670 1.6493 3.00 24.00

ALasso -0.1621 -0.1744 -0.1787 0.5236 1.6493 3.00 22.00

SCAD -0.0017 -0.0073 -0.0121 0.0341 0.2891 3.00 6.00

MCP -0.0041 -0.0095 -0.0130 0.0266 0.2442 3.00 5.00

HTR -0.0088 -0.0075 -0.0148 0.0269 0.2416 3.00 5.00

HTRsam -0.0041 -0.0071 -0.0130 0.0269 0.2416 3.00 5.00

HTRind -0.0068 -0.0075 -0.0148 0.0267 0.2399 3.00 5.00

2 Oracle 0.0052 0.0093 0.0011 0.0274 0.2424 NA NA

Lasso -0.2317 -0.2061 -0.2826 0.2696 1.3675 3.00 19.00

ALasso -0.1190 -0.1076 -0.1580 0.4662 1.3675 3.00 18.00

SCAD -0.0065 0.0087 0.0001 0.0376 0.3320 3.00 6.00

MCP 0.0052 0.0093 0.0011 0.0274 0.2506 3.00 5.00

HTR 0.0070 0.0093 -0.0059 0.0274 0.2424 3.00 5.00

HTRsam -0.0009 0.0078 0.0011 0.0277 0.2454 3.00 5.00

HTRind 0.0088 0.0103 -0.0059 0.0274 0.2424 3.00 5.00

3 Oracle 0.0247 -0.0256 -0.0367 0.2431 0.7758 NA NA

Lasso -0.0797 -0.1612 -0.3583 0.5996 1.6926 3.00 11.50

ALasso 0.0197 -0.2193 -0.2073 0.8302 1.6926 3.00 10.00

SCAD 1.4099 -2.0000 0.2486 7.1601 4.2030 2.00 6.00

MCP 1.4253 -2.0000 -0.0403 7.9969 4.2880 2.00 6.00

HTR 0.0997 -0.0912 -0.0647 0.4382 1.0802 3.00 5.00

HTRsam 0.0948 -0.0951 -0.0749 0.5165 1.1728 3.00 5.00

HTRind 3.0845 -2.0000 -1.5000 16.0711 6.6339 1.00 5.00
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The outcome of interest is the expression of TRIM32, corresponding to probe 1389163_at,

a gene which has been shown to cause Bardet-Biedl syndrome (Chiang et al. 2006), which

is a genetic disease of multiple organ systems including the retina. Following Scheetz et al.

(2006), we focused on 18, 957 probes out of the 31, 042 probe sets on the array that exhibited

a su�cient signal for reliable analysis and at least 2-fold variation in expression.

The aim of this data analysis is to �nd the genes, whose expressions are correlated with

that of gene TRIM32. We used model (2.3) to address this problem and applied di�erent

regularization methods in the analysis. We �rst standardized the probes so that they have

mean zero and standard deviation 1. As in Huang et al. (2008), we focused on 3000 probes

with the largest variances among the 18, 975 covariates and considered two approaches. The

�rst approach is to regress on the p = 3000 probes. The second approach is to regress on the

200 probes among the 3000 with the largest marginal correlation coe�cients with TRIM32.

We randomly partitioned the data 100 times, each with a training set of size 80 and a test

set of 40 observations. The prediction mean squared error was computed within the test

set, while the scaled estimators and the lasso estimator with a �xed penalty level λ were

computed based on the training set.

In addition, we compared the prediction performance of all the estimators mentioned in

the simulations. In each replication, we computed all the regularization estimators based on

the training set of 80 observations. The penalty level is selected by 5-fold cross validation

over the training data set. Table 4.5 includes the median of downward prediction bias

(DPBias), de�ned as
∑#test sample

i=1 |(ŷi)| − |yi|, median of the mean squared prediction

error (MSPE), and the average selected model size in the 100 replications for p = 300 and

2000. For MCP, the tuning parameters were selected by cross validation since the standard

deviation of the random error is unknown. HTR works at least as good as, if not better

than, ALasso, SCAD, and MCP with much sparser models and small prediction errors. It is

worth pointing out that the HTR procedure produces the sparsest solution yet with a well

controlled prediction error. Moreover, HTR controls the downward prediction bias well. The

performance of the MCP procedure is satisfactory but its optimal performance depends on
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another tuning parameter a. In screening or diagnostic applications, it is often important to

develop an accurate diagnostic test using as few features as possible in order to control the

cost. The same consideration also matters when selecting target genes in gene therapies.

Table 4.5: Gene Expression Data Analysis

p Method MSPE DPBias avg model size

300 Lasso 0.1511 -0.1412 26.23
Alasso 0.1573 -0.0934 17.36
SCAD 0.4728 0.5114 11.23
MCP 0.4475 0.5874 5.55
HTR 0.2618 -0.0789 3.94

2000 Lasso 0.2120 -0.1591 33.00
Alasso 0.1736 -0.0667 22.84
SCAD 0.2017 -0.1498 12.97
MCP 0.2699 -0.0588 6.99
HTR 0.1999 -0.0520 6.42

4.4 Conclusions and Further Discussions

The main contribution of this paper is two fold. First, we have o�ered a new perspec-

tive to achieve unbiased estimation instead of non-convex penalized regression, which can

be formulated as a linear programming and thus is computational tractable. The global

optimal solution is assured. Secondly, we have proposed a new framework to incorporate

the covariance estimator into the regression procedure for better trade o� between noise

accumulation and correlation modeling and leave the possibility of relaxing conditions for

consistent variable selection.

4.5 Proofs

We present the proofs of all theoretical results below.
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Proof of Proposition 4.1.1. Note that

β̂ridge(λ)− β◦ = −λ(XTX + λI)−1β◦ + (XTX + λI)−1XTε. (4.23)

Then, it follows from (RC1) that

E[||β̂ridge(λ)− β◦||22|X] = E[|| − λ(XTX + λI)−1β◦ + (XTX + λI)−1XTε||22|X]

≤ 2λ2{λmin(XTX) + λ}−2||β◦||22 + 2{λmin(XTX) + λ}−2E[εTXXTε]

= 2{λmin(XTX) + λ}−2{λ2||β◦||22 + Tr(XTX)σ2}

≤ 2
λ2||β◦||22 + σ2pλmax(XTX)

(λmin(XTX) + λ)2

≤ 2
λ2||β◦||22 + σ2npB

(nb+ λ)2
≤ 2

λ2||β◦||22 + σ2npB

n2b2
,

which yields the proof of Proposition 4.1.1.

Proof of Theorem 5.2.2. The proof of Theorem 5.2.2 consists of two steps. The �rst step

is to show the exact support recovery as

lim
n→∞

P(S ⊂ Sn) = 1, (4.24)

where Sn = {j|β̂HTR,j 6= 0}. The second step is to show

lim
n→∞

P(Sn ⊆ S) = 1, (4.25)

We prove (4.24) as follows. It is easy to show that the Karush-Kuhn-Tucker (KKT)

conditions of (4.1) lead to

Ŵ(
1

n
XTX)sign(XT (y −Xβ̂HTR)) = λ× sign(β̂HTR), (4.26)
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where sign(x) is the signum function of x. Thus, if β̂HTR,j 6= 0, then we have

ŵj [
1

n
XTX× sign(XT (y −Xβ))](j) = λ× sign(β̂HTR,j),

where [a](j) denotes the j-th component of any vector a. Since | 1n [XTX × sign(XT (y −

Xβ))](j)| ≤ || 1nX
TX||∞, we have

λ|sign(β̂
(n)
i )| ≤ ŵj ||

1

n
XTX||∞. (4.27)

Therefore, to prove (4.24), it su�ces to show that as n→∞, we have

P(∪j∈SC{ŵj ||
1

n
XTX||∞ > λ})→ 0. (4.28)

Write Σ̂ = 1
nX

TX. We now bound the left-hand side (LHS) of (4.28) as follows:

P(∪j∈Sc{ŵj ||Σ̂||∞ > λ}) ≤
∑
j∈Sc

P(ŵj ||Σ̂||∞ ≤ λ)

≤
∑
j∈Sc

P(β̂2
init,j ≥ (

λ

||Σ̂||∞
)2/γ) ≤ E||β̂init − β◦||22

(λ/||Σ̂||∞)2/γ
= O((

1

λnγ/2−v/2(γ+1)
)2/γ),

(4.29)

We prove (4.25) as follows. Rewrite the KKT conditions as following,

sign(XT (y −Xβ̂HTR)) = λ× (Σ̂)−1Ŵ−1sign(β̂HTR). (4.30)

Therefore, to prove (4.25), it su�ces to show that as n→∞, we have

P(λ||(Σ̂)−1||∞{max ŵ−1
j } < 1 ∀j ∈ S)→ 1. (4.31)

The LHS of (4.31) is bounded by

(LHS) ≥ P(min
j∈S

(ŵj) > λ||(Σ̂)−1||∞) = P(min
j∈S

(
∣∣β̂init,j∣∣) > [λ||(Σ̂)−1||∞]1/γ). (4.32)
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Since minj∈S
∣∣β̂init,j∣∣ ≥ minj∈S |β◦j | − ||β̂init,S − β◦S ||∞ ≥ minj∈S |β◦j | − ||β̂init,S − β◦||2, we

have

RHS of (4.32) ≥ P(min
j∈S
|β◦j | > [λ||(Σ̂)−1||∞]1/γ + ||β̂init − β◦||2) (4.33)

where E(||β̂init − β◦||22) = O( pn). Further, by assumption RC3, we have

η > (
Bλ√
n

√
p

n
)1/γ +

√
p

n
Op(1) ≥ [

λn
n
||(Σ̂)−1||∞]1/γ +

√
p

n
Op(1), (4.34)

yielding limn→∞ P(Sn = S) = 1.

Denote the event {Sn = S} as J . In J , we have

XT (y −XS β̂S) =

 XT
S (y −XS β̂S)

XT
Sc(y −XS β̂S)

 . (4.35)

The KKT conditions yield

β̂Sn = β̂S = (XT
SXS)−1XT

S y = β̂◦S . (4.36)

It should note that the consistent selection property actually implies the strong oracle prop-

erty, unlike the dilemma involved in the Lasso. This �nishes the proof of Theorem 5.2.2.

Proof of Proposition 4.2.1. It can be easily shown that ||Σ−1
11 Σ12||1 = 1, thus the Ir-

representable Condition fails. On the other hand, we have

min
Ω)

||Σ11τ1 + Σ12τ2||∞ ≥ min
τ∈Ω0

||Σ−1
11 (τ1 − Σ−1

11 Σ12τ2)||∞

≥ min
τ∈Ω0

1√
s
λmin(Σ11)||τ1 − Σ−1

11 Σ12τ2||∞

≥ ρ

s
,

(4.37)

i.e., the LCC condition holds with u0(n, p, s) = ρ
s .
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Proof of Theorem 5.3.1 Suppose, we are on J0, then we have ||β̂init− β◦||12 ≤ C0

√
s log p
n .

As we stated before, it su�ces for us to show the support recovery, i.e., Sn = S with large

probability, as it implies the strong oracle property by the KKT conditions. First, we show

Sn ⊆ S with large probability. It su�ces to show that

∃j ∈ Sc, ŵj ||Σ̃||∞ < λ with large probability. (4.38)

We note that,

Pr(∃j ∈ Sc, ŵj ||Σ̃||∞ < λ) ≤
∑
j∈Sc

Pr(ŵj ||Σ̃||∞ ≤ λ)

≤
∑
j∈Sc

Pr(|β̃j | ≥ (
λ

||Σ̃||∞
)1/γ)

≤ p× Pr(||Σ̃||∞ ≥
λ

||β̃ − β||γ2
)

≤ p× Pr(||Σ̃−Bk(Σ)||max ≥
1

2kn

λ

(C0

√
s log p/n)γ

)

+ p× Pr(||Bk(Σ)||max ≥
1

2kn

λ

(C0

√
s log p/n)γ

)

= (R1) + (R2)

(4.39)

We consider the probability bound for terms (R1) and (R2) in the above inequality

separately. For (R2),

(R2) ≤ Pr(||Σ||max ≥
1

2kn

λ

(C0

√
s log p/n)γ

)

≤ Pr(||Σ||2 ≥
1

2kn

λ

(s log p/n)γ/2
)

= 0

(4.40)

since λ > Cγ0
ε0

(2kn + 1)(s log p/n)γ/2.

Next, we bound (R1). By Lemma 6.1, for 1
2kn+1

λ

(C0

√
s log p/n)γ

≥
√

2(η + 1) 1
γ(ε0,δ)

√
log p
n ,
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we have

(R1) ≤ 3p−η. (4.41)

This indicates that Sn ⊇ S. The second step is based on the �rst step, where we

shall use a proof by contradiction to show that Sn ⊆ S with the additional assumption

λ ≥ (u0 − 3C( log p
n )

α
2(α+1) )(η − C

√
s log p/n). De�ne J1 = {||Σ̃ − Bkn(Σ)||∞ ≤ t0}, with t0

de�ned in Lemma 6.1 ; η = minj∈S βj and τ1. Then it su�ces to show that

||τS ||∞ < 1, with large probability. (4.42)

If not, then we would have τ ∈ Ω0.

Combining the KKT conditions and the LCC condition gives us that, conditional on

the event J0 ∩ J1,

λ

η̂γ
≥ ||Σkn,11τ1 + Σkn,12τ2||∞ − ||Σ̃kn,11 − Σkn,11||∞ − ||Σ̃kn,12 − Σkn,12||∞

≥ u0(n, p, s)− 2C1k
α
n − 2||Σ̃kn − Σkn ||∞.

(4.43)

Further de�ne J = J0 ∩ J1. In the event J ,

η̂γ ≤ (
λ

u0(n, p, s)− 2C1kαn − 2t0
). (4.44)

On the other hand,

η̂ ≥ η − ||β̂init − β◦||∞

≥ η − C0

√
s0 log p/n.

(4.45)

Combining (4.44) and (4.45) together leads to λ ≥ (u0(n, p, s) − 2C1k
α
n − 2t0)(η −

C0

√
s0 log p/n)γ , which is a contradiction.
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In conclusion, with probability at least Pr(J ) ≥ 1− δn,p,s − 3p−η, we have

Sn = S, (4.46)

and further we have

β̂HTR = β̃◦. (4.47)

Lemma 4.5.1 For all t ≥ t0, we have

P (J2) ≥ 1− 3(p ∨ n)−η. (4.48)

Proof First, it follows from Lemma A.3 of Bickel and Levina (2008b) that

P (||Σ̃−Bkn(Σ)||∞ ≥ t) ≤ (2kn + 1)p exp{−n(t0)2γ(ε0, δ)}

≤ (2kn + 1)(p ∨ n) exp{−2n(η + 1)
1

γ(ε0, δ)

log (p ∨ n)

n
γ(ε0, δ))}

≤ 3((p ∨ n)kn) exp{−(η + 1) log ((p ∨ n)kn))}

≤ 3((p ∨ n)kn)−(η+1)+1 ≤ 3(p ∨ n)−η,

where t0 =
√

2(η + 1) 1
γ(ε0,δ)

√
log(p∨n)

n .
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CHAPTER5: SPARSE MULTICATEGORY DISCRIMINANT ANALYSIS

Many supervised machine learning tasks can be cast as multi-class classi�cation prob-

lems. Linear discriminant analysis has been well studied in two class classi�cation problems

and can be easily extended to multi-class cases. For high dimensional classi�cation, tradi-

tional linear discriminant analysis fails due to diverging spectra and accumulation of noise.

Therefore, researchers have proposed penalized LDA (Fan et al. 2012, Witten and Tibshi-

rani 2011). However, most available methods for high dimensional multi-class LDA are

based on an iterative algorithm, which is computationally expensive and not theoretically

justi�ed. In this paper, we present a new framework for sparse multicategory discriminant

analysis (SMDA) for high dimensional multi-class classi�cation by simultaneous extracting

the discriminant directions. Our SMDA can be cast as an convex programming which dis-

tinguishes itself from other state-of-the-art method. We evaluate the performances of the

resulting methods on the extensive simulation study and a real data analysis.

5.1 Fisher's Linear Discriminant Analysis

Suppose the random variables representing two classes C1 and C2 follow p-variate normal

distributions X|Y = 1 ∼ N(µ1,Σ) and X|Y = 2 ∼ N(µ2,Σ) respectively. For any linear

discriminant rule

δw(X) = 1{wT (X− µa) > 0}, (5.1)

where µa = (µ1 + µ2)/2 and 1 denotes the indicator function. De�ne µd = µ1 − µ2, then

the misclassi�cation rate of the classi�er δx is

W (δw) = 1− Φ{wTµd/(w
TΣw)

1
2 }. (5.2)
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The mission is to �nd a good data projection direction w. Note that the Fisher discrim-

inant

δF (X) = 1{(Σ−1µd)
T (X− µa) > 0} (5.3)

corresponds to the Bayes rule, which minimizes the misclassi�cation error, or equivalently,

solves the following constrained optimization problem,

argmin
w

wTΣw s.t. wTµd = 1. (5.4)

An extension of Fisher's LDA is possible by considering above formulation. Suppose

there are K classes and, for j = 1, . . . ,K, the jth class has mean µj and common covariance

structure Σ. Fisher's reduce rank approach to multi-class classi�cation problem is to �nd r ≤

K − 1 discriminant directions (w1,w2, . . . ,wr) such that separate the population centroid

the most in the projected space S = span(w1,w2, . . . ,wr). Then the population centroids

and new observation X are both projected to S. The observation X will be assigned to the

class whose projected centroid is closest to the projection of X on S. It is not necessary

to compute all K − 1 discriminant directions (DDs) whose span is that of all K population

centroids; the process can stop as long as the projected population centroids are well spread

out in S. In light of this procedure, Fisher's LDA sequentially solve

argmax
wk

wT
kBwk

wT
k Σwk

s.t. wT
k Σwj = 0, ∀j < k, (5.5)

where B = UTU = (µ1 − µa, . . . ,µK − µa)(µ1 − µa, . . . ,µK − µa)T is the between class

covariance and µa =
∑K
i=1 µi
K . The resulting solution, wk , is referred as the k-th discriminant

direction.

In order to solve (5.5), we can be reformulate it as the following constraint form,

argmax
wk

wT
kBwk s.t. wT

k Σwk ≤ 1 and wT
k Σwj = 0,∀j < k. (5.6)
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5.2 Sparse Multicategory Discriminant Analysis

In high dimensions, there are several reasons that why Fisher's linear discriminant rule

does not lead to a suitable classi�er in high dimensions,

1 Σ̂ is singular and fails to converge to Σ in high dimensions;

2 The sample population centroids are contaminated by the noise accumulation e�ect

when p is large;

3 The classi�er results non-interpretable discriminant by using all features.

Some work has been done to modify Fisher's linear discriminant rule to appreciate for

high dimensional issues. Duintjer Tebbens and Schlesinger (2007) required the solution

does not lie in the null space of B. Others have proposed to modify problem (5.5) by

using a positive de�nite estimate of Σ, see Friedman (1989), Dudoit et al. (2002), Bickel

and Levina (2004) among many others. More recently, Fan et al. (2012) has proposed the

regularized optimal a�ne discriminant (ROAD) method; Cai and Liu (2011c) proposed a

direct estimation approach for sparse linear discriminant analysis. However, their method

focuses on binary classi�cation problem and extension to multi-class problem is unavailable.

Witten and Tibshirani (2011) reformulate the problem (5.5) as

w◦k = argmax
wk

wT
kBwk subject to wT

k Σwk ≤ 1, (5.7)

where Bk = 1
nX

TY(YTY)−1/2P⊥k (YTY)−1/2YTX with P⊥k de�ned as an orthogonal pro-

jection matrix into the space that is orthogonal to (YTY)−1/2YTXŵi for all i < k.

Then they propose the k-th penalized discriminant direction ŵk to be the solution to

argmax
wk

{wT
kB

kwk − Pk(wk)} subject to wT
k Σwk ≤ 1. (5.8)

However, in general, problem (5.8) is not a convex programming even if lasso penalty is

used, i.e. Pk(wk) = λk||wk||1, because it involves maximizing an objective function that is
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not concave. Thus solving (5.8) sequentially is computationally intractable. Moreover, the

k-th discriminant estimator depends on all the previous discriminant estimator, and thus

the estimation error could be accumulated and enlarged.

In this paper, we propose a uni�ed framework for linear discriminant analysis, which has

a very close connection with the ROAD classi�er and Witten's penalized LDA framework.

We shall make use of Theorem 5.2.2, which provides a reformulation of criterion (5.5). We

start with a representation of the between correlation matrix B in the following proposition

Proposition 5.2.1 We can decompose B as ΨTΨ, such that ΨT = (µ1 + 1√
K−1

(µK −
√
Kµa), . . . ,µK−1 + 1√

K−1
(µK −

√
Kµa)).

The above proposition gives a full rank representation of B such that B = ΨTΨ, where

Ψ is a full rank matrix. We exploit such a representation in our procedure by providing the

following reformulation of criterion (5.5).

Theorem 5.2.2 The solution W◦ = (w◦1, . . . ,w
◦
K−1) to problem (5.5) also solves

argmin{1

2
Tr(WTΣW)− Tr(LTW)}, (5.9)

where LT = PTΨ and P is the eigen-matrix of ΨΣ−1ΨT , i.e. ΨΣ−1ΨT = PΛPT with Λ the

diagonal matrix.

Given the above theorem, we are ready to propose the uni�ed framework, sparse multi-

category discriminant analysis (SMDA). We would like to add a penalty function for capacity

control. As our primary interest is classi�cation error control (risk control), Lasso penalty

is added for regularization. We de�ne the sparse discriminant directions (SDDs) to be the

solution to

W◦ = argmin{1

2
Tr(WTΣW)− Tr(LTW) +

K−1∑
k=1

λk||wk||1}. (5.10)

Corollary 5.2.3 (Binary Case) In binary classi�cation setting, problem (5.10) reduces

to

w◦ = argmin{1

2
wTΣw −wT `+ λ||w||1}, (5.11)
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where ` = µ1 − µ2.

The above optimization procedure was �rst proposed by Sun et al. (2014) and can be

obtained by �rst considering a reformulation of criterion (5.4) in binary classi�cation setting

as

w0 = argmin
w

1

2
wTΣRw −wT `, (5.12)

then transfer (5.12) to its corresponding penalized version

w0,λ = argmin
w

f(w) = argmin
w

1

2
wTΣRw −wT `+ λ||w||1. (5.13)

Therefore, by Corollary 5.2.3, we indeed have a uni�ed procedure by including their result

as special case. Moreover, we discuss some connections between formulation (5.11) and the

optimization problem considered in Fan et al. (2012) for performing high dimensional binary

classi�cation . However, rather than recasting the problem as in (5.11), they formulate it as

wc = argmin
||w||1≤c,wT `=1

wTΣRw,

which can further be reformulated as

wλ = argmin
wT `=1

1

2
wTΣRw + λ||w||1. (5.14)

Since (5.14) involves a linear equality constraint, they replace it by a quadratic penalty as

wλ,γ = argmin
1

2
wTΣRw + λ||w||1 +

1

2
γ(wT `− 1)2. (5.15)

Their formulation requires the simultaneously tuning of λ and γ, which can be computa-

tionally intensive. However, in Fan et al. (2012), they stated that the solution to (5.15) is

not sensitive to γ, since solution is always in the direction of Σ−1
R ` when λ = 0, as validated
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by simulations. Their formulation (5.14) is close to the formulation (5.13). This result sheds

some light on why wλ,γ is not sensitive to γ. The estimation procedure (5.11) also enjoys

other nice properties, for example, the solution path of (5.11) enjoys the piecewise linear

property. We refer reader to Sun et al. (2014) for more details.

5.2.1 A Vector-Wise Coordinate Descent Algorithm

We develop a fast computational algorithm to problem (5.33) by using the co-ordinate

descent. What makes the co-ordinate descent algorithm particularly attractive for prob-

lem (5.33) is that there is an closed form formula for each or-ordinate. We write W =

(w1, . . . ,wp), where wi is the i-th column of W. Without of generality, suppose that w̃j

for all j ≥ 2 are given, and we need to optimize (5.33) with respect to w1. In this case, the

objective function (5.33) becomes

g(w1) =
1

2
Tr
(

(w1,W̃2:p)Σ(w1,W̃2:p)T
)
−Tr

(
L(w1,W̃2:p)T

)
+||λ�w1||1+

K−1∑
k=2

||λ�w̃k||1,

(5.16)

where λ = (λ1, . . . , λK−1)T and � denotes the hadamard product, i.e. element-wise product.

We take the derivative of g(w1) over w1,

g′(w1) =
1

2

∑
k 6=1

σ1kw̃
k +

∑
k 6=1

σ1kw̃
k

+ σ11w
1 − `1 + diag(λ)Γ

=
∑
k 6=1

σ1kw̃
k + σ11w

1 − `1 + diag(λ)Γ.

(5.17)

By simple calculation, we can construct the co-ordinate update as

w1 =
S(`1 −

∑
k 6=1 σ1kw̃

k,µ)

σ11
, (5.18)

where S(·, ·) is the vector-wise soft thresholding operator, that is,

S(x,λ) = sign(x)max(|x| − λ,0). (5.19)
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Based on this result, we can obtain a coordinate descent algorithm as follows

Algorithm

(a) Initialize W at a starting point W(0) and set m = 0.

(b) Repeat:

� (b.1) Increase m by 1: m← m+ 1

� (b.2) for j ∈ 1, · · · , p, if w̃j
(m−1) = 0, then set w̃j

(m) = 0;

otherwise: w̃j
(m) = argmin g(w̃1

(m), · · · , w̃
j−1
(m) ,w

j , w̃j+1
(m−1), · · · , w̃

p
(m−1)).

(c) Until numerical convergence: we require ||W(m) −W(m−1)|| to be su�ciently small.

5.2.2 Implementation of SMDA

Let Σ̃ and L̂ be, respectively, estimators of Σ and L. Here we use Σ̃ to denote any

positive covariance estimator other than sample covariance matrix Σ̂. Then the sample

version of the problem reduces to

Ŵ = argmin{1

2
Tr(WT Σ̃W)− Tr(L̂W) +

K−1∑
k=1

λk||wk||1}. (5.20)

Let Σ̃ be a regularized covariance estimator of Σ, which will be discussed in detail

in section 5.2.3. Further more, we take Ψ̂T = (µ̂1 + 1√
K−1

(µ̂K −
√
Kµ̂a), . . . , µ̂K−1 +

1√
K−1

(µ̂K −
√
Kµ̂a)) be an estimator of ΨT , where µ̂k =

∑
j∈Ck

xj
nk
, Ck is the index set of

k-th class and nk = ]{Ck}, the cardinality of Ck for 1 ≤ k ≤ K − 1. We further decompose

Ψ̂Σ̃−1Ψ̂T as P̂Λ̂P̂T , i.e., (Λ̂, P̂) is the eigen-pair of Ψ̂Σ̃−1Ψ̂T , we then take L̂ as P̂T Ψ̂.

We remind the reader that, as Fisher's linear discriminant analysis, it is usually not

necessary to compute all K − 1 discriminant directions, the procedure can stop as long as

the data is well separated in the projection space. Moreover, we point out the connection

between the discriminant directions and a eigen problem. By Theorem 5.2.2, we know

Λ = diag(λ1, λ2, . . . , λK−1), where λ1 ≥ . . . ≥ λK−1 is the eigen-value matrix to Σ−1B,
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which is composed of objective values corresponding to the discriminant rules of (5.5). Note

that the eigen-vetors that corresponds to the smaller eigenvalues will tend to be very sensitive

to the exact choice of training data and express high variability in risk estimation. Based on

this observation, we propose a "eigen-cut" procedure to achieve a reduced rank projection,

which is implemented as following:

� Compute Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂K−1);

� Calculate the sample cdf of λi's: F̂n(λi) =
∑i

k=1 λ̂k/
∑K−1

k=1 λ̂k, for 1 ≤ i ≤ K − 1;

� Cue the discriminant directions corresponding to the eigenvalue which satis�es: F̂n(λi) <

αcut, for 1 ≤ i ≤ K − 1.

The above procedure only preserves the discriminant directions that account for 1−α of

the separation and ignores the ones that contribute little. Such procedure is also commonly

used in factor analysis. We recommend to use αcut = 0.10 based on the our simulations,

which works for most of the settings.

5.2.3 Estimation of Covariance Matrices

Our procedure requires to estimate a positive covariance estimator and this section is

contributed to this issue. We discuss four commonly assumed covariance structures of X

and provide corresponding estimators.

Shrunken Covariance Matrices

Friedman (1989) �rst proposes the regularized discriminant analysis (RDA) by shrinking

the sample covariance matrix to an identity matrix such that the variance of associated with

the sample based estimate at the expense of potentially increased bias. Friedman considers

to shrink the covariance estimator to the identity matrix, i.e.

Σ̃γ = (1− γ)Σ̂n + γI, (5.21)
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where γ is the regularization parameter to control the shrinkage toward an identity matrix,

I, which can be chosen by cross validation. Further, Ledoit and Wolf (2004) shows that the

above estimator is consistent when p/n is bounded, while, at the same time, enjoys very

good computational property. We explore this estimator in both simulations and real data

analysis. Moreover, we would like to point reader to Zou and Trevor (2005), where the

elastic net estimator for a linear model can be recast as the solution to

argmin
β
{βTnΣ̃nβ − 2yTXβ + λ||β||1}, (5.22)

in which Σ̃γ is de�ned as in (5.21).

Sparse Precision Matrices

Precision matrix estimation is strongly connected to the estimation of graphical models.

To be more speci�c, for Gaussian distributions, recovering the structure of the graph G

is equivalent to estimating the support of the precision matrix (Lauritzen 1996). In this

setting, it is natrual to assume a sparse graph structure and thus a sparse precision matrix.

Cai et al. (2011) proposes the constrained l1-minimization for inverse matrix estimation

(CLIME) which enjoys very attractive computational e�ciency for high dimensional data

and is adopted by our method. Speci�cally, the CLIME estimator Ω̂ = (ω̂ij) is de�ned as

Ω̂ = (ω̂ij) with ω̂ij = ω̂ji = ω̂1
ijI{|ω̂1

ij | ≤ ω̂1
ji|+ ω̂1

jiI{|ω̂1
ji| ≤ ω̂1

ij |}, where Ω̂1 is estimated by

min ||Ω||1 subject to: (5.23)

|Σ̂Ω− I|∞ ≤ γ, Ω ∈ Rp×p. (5.24)

In the end, Σ̃ is taken as Ω̂−1.
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Bandable Covariance Matrix

Motivated by applications such as climatology and spectroscopy, where there is a natural

metric on the index set and |i− j| large implies near independence or conditional indepen-

dence ofXi andXj , Bickel and Levina (2008b) proposes to regularize large covariance matrix

through banding or tapering over a well behaved class of matrices: the bandable class of

covariance matrices, i.e.

U(ε0, α, C) = {Σ = (σjj′) : max
j

∑
j′

{|σj′j | : |j′ − j| > k} ≤ Ck−α for all k > 0

and 0 < 1/M ≤ λmin(Σ) ≤ λmax(Σ) ≤M}. (5.25)

Cai and Liu (2011b) further relaxes the above assumption by only requiring that the

eigenvalue of Σ is bounded from above, that is, λmax(Σ) ≤ M . They then propose a

new tapering estimator and show estimators by tapering the maximum likelihood estimator

achieves minimax risk spectral norm rate min{n−2α/(2α+1)+ log p
n , pn}. Speci�cally, the taper-

ing estimator is de�ned as Σ̃ = (wij σ̂ij), where σ̂ij is the (i, j) element of sample covariance

matrix Σ̂n and wij has the following form

wij =


1, when |i− j| ≤ k/2

2− 2|i−j|
k , when k/2 < |i− j| < k

0, otherwise.

(5.26)

Sparse Covariance Matrices

In many applications, there is no natural order on the features space like we assumed for

bandable covariance matrices. In this setting, permutation-invariant estimators are favored

and general sparsity assumption is usually imposed on the whole covariance matrix, i.e.

most of entries in each row/column of covariance matrix are zero or negligible. We apply a

hard thresholding procedure proposed in Bickel and Levina (2008a) under this setting. The

thresholding estimator Σ̃ = (σ̃ij) is given by σ̃ij = σ̂ijI(|σ̂ij | ≥ γ
√

log p
n ) for some tuning
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parameter γ, which can be chosen by cross validation.

5.2.4 Tuning Parameter Selection

Regularization Parameter λ

In this section, we consider to select tuning parameters λk for the SMDA problem (5.33).

The simplest approach would be to take λk = λ, i.e. the same tuning parameter value

for all components. However, as mentioned in Witten and Tibshirani (2011), this results

in e�ectively penalizing each discriminant direction more than previous discriminant since

the loss function corresponding to the k-th discriminant direction is equal to k-th largest

eigenvalue of ΨΣ−1ΨT , denoted as λk(ΨΣ−1ΨT ). Thus, instead of having k distinctive

tuning parameters, we set

λk = λ× λk(ΨΣ−1ΨT ), (5.27)

where λ is a single tuning parameter. By reducing the number of tuning parameter from k

to 1, we signi�cantly reduce the computation burden of this procedure. Finally, the tuning

parameter can be chosen by cross validation.

Regularization Parameter in Covariance Estimation

In this section, we talk about the choice of regularization parameter in covariance matrix

estimation. Inspired by Bickel and Levina (2008b), we propose a cross validation methods

to choose the regularization parameter in a very general setting. We take the shrunken

covariance estimator Σγ as an example and state that our method can be generalized to all

other settings. We propose to select the tuning parameter γ by minimizing the risk

R(γ) = E||Σ̂γ − Σ||(1,1) (5.28)

with the oracle γ given by

γ◦ = argmin
γ

R(γ). (5.29)
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We choose the l1 to l1 matrix norm over than other matrix norms mainly for computa-

tional issues. We shall note that the selection of γ is not sensitive to the choice to norm. We

next propose a N-fold cross validation scheme to estimate the risk and thus γ◦: randomly

partition the original sample into N equal size subsamples, choose a single subsample as the

validation sample and the remaining N − 1 subsamples as the construction data. We use

the sample covariance matrix of the validation data as the target to choose the best γ for

the construction sample. The cross validation is repeated N times and denote Σ̂c,k
γ , Σ̂v,k as

the shrunken covariance matrix estimator of construction data and the sample covariance

matrix of the validation data from the v-th split respectively. Then the risk (5.28) can be

estimated by

R̂(γ) =
1

N

N∑
k=1

||Σ̂c,k
γ − Σ̂v,k||(1,1) (5.30)

and γ is selected as

γ̂ = argmin
k

R̂(γ). (5.31)

Generally we found little sensitivity to the choice of N and use 3-fold cross validation

through out this paper.

5.2.5 Covariance Structure Selection

In this section, we talk about how we can adapt to the covariance structure of Σ. We

propose a simple criterion based on prediction performance of the classi�er. Write f the

prediction accuracy and f̂ the estimated prediction accuracy. Suppose we have a �nite

set of covariance structure, denoted as Θ = to choose from: shrunken covariance matrices,

sparse precision matrices, bandable covariance matrices and sparse covariance matrices in

this paper, then we propose to maximize the following criterion for covariance structure

selection

argmax
k∈Θ

{fk(λ, γ)}, (5.32)
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where λ and γ are regularization parameters in optimization and covariance matrix esti-

mation respectively. For a proper estimation of fk's, subsampling method can be used as

discussed in last subsection.

5.3 Theoretical Investigation

In this section, we investigate the theoretical property of SMDA and its associated esti-

mator. By substituting Σ̃ and L̂, we can calculate an estimate of W◦ as

Ŵλ = argmin{1

2
Tr(WT Σ̃W)− Tr(L̂TW) +

K−1∑
k=1

λk||wk||1}. (5.33)

For two vetors a,b, a natural way to measure the discrepancy of their directions is the L2

norm distance as L2 convergence indicates the direction consistence. For two set of vectors,

A = {a1, . . . ,aK} and B = {b1, . . . ,bK}, we consider the the following loss function,

||A−B||2,∞
.
= max

k
||ak − bk||2. (5.34)

We focus on the scenario that there are a few nonzero components in wj,0, the j-th

column of W◦, that is, a few response variables are associated with the covariates of interest

in each projection direction. Such a scenario is common in many large-scale problems. Let

Sj = {i : wi,j,0 6= 0} be the active set of wj,0 = (w1,j,0, · · · , wp,j,0)T and sj is the number of

elements in Sj . Further we make the following assumptions.

Assumptions

1 We assume there exist constants (m,M) and (σmin, σmax), such that

0 < m ≤ λmin(Σ) ≤ λmax(Σ) ≤M <∞ and

0 < σmin ≤ inf
j∈{1,...,p}

σj ≤ sup
j∈{1,...,p}

σj ≤ σmax <∞.

2 Assume that 0 < p0 ≤ inf
nj
n ≤ sup

nj
n ≤ p1 < 1.
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3 We require the estimators Σ̃ and Ψ̃ΩΨT is consistent in the sense that

||Σ̃− Σ||12 = an (5.35)

with probability at least 1− δ1,n,p; and,

||Ψ̃ΩΨT −ΨΩΨT ||12 = bn (5.36)

with probability at least 1 − δ2,n,p. Moreover we assume that ΨΩΨT has distinctive

eigenvalues.

Now we are ready to present the main result.

Theorem 5.3.1 Assume that assumptions 1-3 holds,and

λ = max{an||W◦||2,∞, t01} � an||W◦||2,∞ ∨ bn||Ψ||∞,2 ∨ log p/n (5.37)

where t01 := Cbbn||Ψ||∞,2∨ η0
cK

log p/n, in which, cK and Cb does not depend on n, p, s0. Then

with probability at least 1− (K − 1)p−η0 − δ1,n,p − δ2,n,p, we have

||Ŵλ −W◦||2,∞
.
= max

j
{||ŵj,λ −wj,0||2} ≤ C

√
sλ, (5.38)

where C is constant not depending n and p.

Theorem 5.3.1 gives an oracle inequality and the column-wise L2 convergence rate of

Ŵλ in the sparse case, which indicates column-wise direction consistency. This result has

several important implications. If
√
s0λ = o(1), then ||Ŵλ −W◦||2 converges to zero in

probability. Therefore, our SMDA should perform well for the sparse cases with s0 << n.

This is extremely important in practice, since the extremely sparse cases are common for

many large-scale problems.
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5.4 Simulation Studies

In this section, we present extensive simulation study and compare our SMDA method

with several other methods including independence rule (Naive Bayes), RDA (Friedman

1989) and Penalized LDA (Witten and Tibshirani 2011) , denoted as PLDA, and DSDA in

binary classi�cation setting. We denote SMDA with bandable covariance matrix estimator,

shrunken covariance matrix estimator, sparse covariance matrix estimator and sparse preci-

sion matrix as SMDA-Ba, SMDA-Sh, SMDA-SC, SMDA-SP respectively. We also consider

the SMDA framework by using the sample covariance matrix Σ̂n, which is singular when

p > n. To remedy this issue, we add a small constant η (e.g. η = 10−6) to all diagonal

entries of the matrix Σ̂n and denote such estimator SMDA-Sa. In all simulations studies, we

consider the number of features p = 1, 000 and the sample size of the training and testing

data is n = 100 for each class.

Setting 1 (Sparse Strong Signal and Dense Weak Signal With Independent Features) In

the �rst setting, we consider two classes, C1 and C2. We take xki (∈ Ck) ∼ N(µk,Σ), ∀k =

1, 2, and 1 ≤ i ≤ n,where, Σ = (σij) is taken such that σij = 1 for i = j; σij = 0 for i 6= j.

Further more, we consider three di�erent cases. In case 1, we consider a sparse strong signal

setting and set µ1 = (110,0p−10),µ2 = 0 by introducing a mean shift 110. In case 2 and 3, we

consider a relatively dense but weak signal setting and set µ1 = (1200/
√

10,0p−200),µ2 = 0

and µ1 = (1500/
√

30,0p−500),µ2 = 0 respectively.

Corresponding result is presented in Table 5.1. Regularizing the covariance matrix helps

improve the classi�cation accuracy, especially when the signal becomes relatively denser and

weaker. Moreover, when the signal is sparse and strong, regularizing the covariance matrix

helps reduce the variance of classi�cation error and number of selected features.

Setting 2 (Sparse Signal With Power Decay Correlation) There are three classes: C1, C2

and C3 with xki (∈ Ck) ∼ N(µk,Σ),∀k = 1, 2, 3, and 1 ≤ i ≤ n. In this setting, we introduce

a mean shift such that µ1 = (15,−15,0p−10),µ2 = (−15,15,0p−10) and µ3 = (110,0p−10).

Σ = (σij) is taken such that σij = 1 for i = j; σij = ρ|i−j| for i 6= j, with ρ varies from 0 to
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0.9.

Corresponding result is presented in Table 5.2 and 5.3. We see that SMDA-Ba has

the overall �ne performance over other methods especially when ρ is large (the bandable

structure is strong), which is not surprising as it coincides with our intuition. SMDA-Sh

performs rather well when ρ is small (ρ ≤ 0.6).

Setting 3 (Sparse Signal With Equal Correlation) There are three classes: C1, C2 and C3

with xki (∈ Ck) ∼ N(µk,Σ), ∀k = 1, 2, 3, and 1 ≤ i ≤ n. In this setting, we introduce a

mean shift such that µ1 = (15,−15,0p−10),µ2 = (−15,15,0p−10) and µ3 = (110,0p−10).

Σ = (σij) is taken such that σij = 1 for i = j; σij = ρ for i 6= j, with ρ varies from 0 to 0.9.

Result is summarized in Table 5.4 and 5.5. We see that SMDA-Sh and SMDA-Sa has the

overall �ne performance over other methods, but SMDA-Sh helps with the variable selection

and its variance.

Setting 4 (Sparse Signal With Block Diagonal Correlation) In this example, we follow the

set up as in the above example, except that the covariance matrix is taken to be block

diagonal. There are 5 blocks with each of dimension 200 × 200. We further consider two

separate cases: in the �rst case, we take each block as a power decay correlation matrix,

i.e., the (i, j) element in each block is taken to be (ρ|i−j|; in the second case, we take each

block as a equal correlated matrix with pairwise correlation ρ, or in other words, Σ = (σij)

with σij = 1, if i = j; ρ, otherwise.

Result with the block diagonal setting where each block is taken to be a AR(1) covariance

matrix is summarized in Table 5.6 and 5.7. It shares similar pattern with setting 2. We omit

the result with the block diagonal setting where each block is taken to be a equal correlation

matrix as it shares similar spirit with setting 3.

Setting 5 (Sparse Signal With Sparse Correlation Matrix) In this example, we follow the

basic set up as in setting 2, while the correlation matrix is taken to be very sparse. We

consider the AR(1) population correlation model, Σ = [σij ] = [ρ|i−j|] with ρ = 0.5. The
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value of 0.5 was chosen so that the matrix is very sparse. The resulting matrix is then

permuted at random to have sparse correlation but not bandable structure.

Setting 6 (Sparse Signal With Sparse Precision Matrix) In this example, we follow the

basic set up in setting 5, instead of sparse correlation, we consider a sparse precision matrix

(inverse of correlation matrix) Ω as the underlying mechanism. We take the precision matrix

as the diagonal block matrix with block size 5 where each block has o�-diagonal entries equal

to 0.5 and diagonal 1. Finally the resulting matrix is then randomly permuted.

Results from above two settings are summarized in Table 5.8. In setting 5, SMDA-SC

out performs all the other methods as the population covariance matrix has sparse covari-

ance structure. In setting 6, SMDA-Sh and SMDA-SC performs the best and then followed

by SMDA-SP. The reason is that that corresponding covariance matrix also has a sparse

covariance matrix structure. In linear discriminant analysis, as pointed by Friedman (1989),

the prediction accuracy can often be improved by replacing Σ̂n by a shrunken estimate.

Likewise, Zou and Trevor (2005) conjectured that whenever ridge regression improves on

OLS (ordinary least square), elastic net will improve lasso by incorporating the shrunken

estimation of covariance matrix. We view our result as a partial validation and a general-

ization of Friedman and Zou's conjecture. However, we show by simulation that the type of

regularization is better to adapt to the structure of covariances matrices, shrunken estimate

does not always give the best performance in all cases. For example, when the correlation

between covariates has a bandable structure, which is appropriate for applications such as

climatology, spectroscopy and GWA studies, bandable estimation of covariance matrices has

the best performance in terms of risk estimation.

5.5 An Application To Cancer Research Study

In cancer research study, a reliable and precise classi�cation of tumors is essential for

successful treatment of cancer. cDNA microarrays and high-density oligonucleotide chips

have allowed us monitoring the expression levels for thousands of genes simultaneously
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Table 5.1: Setting 1: independent features setting. We report the Median Testing Classi�-
cation Error (MTE) in percentage, the Median of number of nonzero coe�cients (denoted
as s) and their standard deviations (in parentheses).

SMDA-Sa SMDA-Ba SMDA-Sh SMDA-SC SMDA-SP DSDA PLDA NB

MTE 7.5 (2.29) 6.5(2.20) 6.8(1.80) 6.5(1.83) 6.5(1.91) 7.5(2.27) 21.8(3.11) 24.0(3.60)
s 15(24.2) 13(21.6) 12(15.5) 13(16.9) 12(18.1) 12 (10.2) 1000 (0) 1000(0)

MTE 10.5(2.59) 5.5(2.10) 5.0(1.55) 5.3(1.58) 5.5(1.58) 15.5(3.31) 5.5(1.62) 10.0(1.90)
s 398(89.7) 695(248.7) 571(209.6) 671(205.9) 565(196.4) 87(14.2) 1000 (0) 1000(0)

MTE 17.5(3.06) 9.0(2.30) 9.0(2.32) 9.0(2.38) 9.0(2.14) 29.0(3.92) 9.0(1.90) 14.0(2.81)
s 446(96.0) 970.5(109.2) 903(116.3) 969(117.1) 884(116.6) 97 (18.6) 1000 (0) 1000(0)

Table 5.2: Setting 2: Sparse Signal with Power Decay Correlation. We report the Median
Testing Classi�cation Error in percentage and its standard deviations (in parentheses).

rho SMDA-Sa SMDA-Ba SMDA-Sh SMDA-SC SMDA-SP PLDA NB RDA

0 3.00(1.04) 2.33(1.13) 2.00(0.89) 2.33(0.93) 2.67(2.03) 7.33(1.68) 13.00(2.13) 66.67(0)
1 4.33(1.19) 3.67(2.48) 2.67(0.93) 3.33(1.07) 3.33(2.08) 9.17(1.97) 14.00(2.28) 66.67(0)
2 6.00(1.37) 5.00(1.58) 4.33(1.33) 4.33(1.42) 5.17(2.55) 10.33(1.74) 15.17(2.3) 66.67(0)
3 7.67(1.41) 6.33(1.57) 5.33(1.39) 6.00(1.63) 6.33(2.82) 11.83(1.79) 16.67(2.11) 66.67(0)
4 8.67(1.72) 8.00(1.90) 7.33(1.57) 7.33(1.74) 8.00(2.12) 14.17(2.00) 18.33(2.22) 66.67(0)
5 10.33(1.76) 8.67(1.72) 8.33(1.80) 8.33(1.50) 9.00(3.00) 15.00(2.97) 20.67(2.36) 66.67(0)
6 11.67(2.04) 9.83(1.83) 10.67(1.73) 10.00(1.78) 11.00(4.23) 18.67(2.74) 24.00(2.67) 66.67(0)
7 12.00(1.90) 10.17(1.91) 12.17(1.41) 11.00(2.47) 12.33(2.93) 21.67(3.49) 26.33(3.04) 66.67(0)
8 11.00(2.31) 9.33(1.91) 12.33(1.89) 10.67(2.11) 12.67(2.96) 32.00(3.09) 31.00(3.26) 66.67(0)
9 7.33(2.41) 6.50(2.61) 9.67(2.84) 9.00(4.83) 10.00(5.10) 32.50(1.79) 39.00(3.51) 66.67(0)

Table 5.3: Setting 2:Sparse Signal with Power Decay Correlation. We report the Median of
number of nonzero coe�cients and its standard deviations (in parentheses).

ρ SMDA-Sa SMDA-Ba SMDA-Sh SMDA-SC SMDA-SP

s1 s2 s1 s2 s1 s2 s1 s2 s1 s2
0 10 (8.5) 13(21.2) 10(2.5) 10(3.6) 10(1.5) 10(16.9) 10(2.7) 10(6.3) 10(0.8) 14(1.9)
1 10(10.7) 13(23.2) 10(2.4) 9(3.2) 10(2.1) 10(15.3) 10(2.0) 10(4.4) 10(0.6) 17(1.9)
2 10(6.3) 12(17.3) 10(2.1) 9(2.7) 10(2.2) 10(18.7) 10(1.6) 10(4.1) 10(0.6) 12(2.2)
3 10(2.5) 12(11.2) 10(2.3) 9(3.2) 10(1.7) 10(17.0) 10(1.6) 10(3.8) 10(0.9) 15(2.5)
4 10(1.1) 10(11.1) 9(1.8) 8(3.0) 10(1.2) 10(14.8) 10(2.6) 10(5.9) 10(0.7) 14(2.0)
5 9(3.8) 10(15.6) 9(2.0) 7(3.5) 10(3.7) 10(13.4) 10(1.1) 10(3.1) 10(0.8) 14(2.3)
6 8(2.3) 9(16.3) 8(1.7) 7(3.2) 10(1.1) 10(15.3) 10(1.2) 8(3.8) 10(1.2) 13(2.5)
7 8(2.8) 7(16.3) 8(1.3) 6(2.3) 10(0.8) 10(11.7) 10(1.4) 7(3.7) 10(1.3) 11(2.4)
8 6(1.7) 3(12.1) 7(1.4) 5(2.5) 10(1.4) 10(11.5) 9(3.2) 6(8.3) 10(1.9) 10(8.7)
9 6(1.7) 3(12.7) 6(2.3) 4(4.3) 10(0.2) 9(10.2) 8(7.9) 7(18.3) 10(1.9) 10(7.2)

88



Table 5.4: Setting 3: Sparse Signal With Equal Correlation. We report the Median Testing
Classi�cation Error in percentage and its standard deviations (in parentheses).

ρ SMDA-Sa SMDA-Ba SMDA-Sh SMDA-SC SMDA-SP PLDA NB RDA
0 3.00(1.10) 2.67(1.05) 2.00(0.95) 2.33(1.03) 3.00(1.10) 7.83(2.04) 13.00(2.07) 66.67(0.00)
1 3.33(1.08) 4.33(1.33) 3.00(1.10) 4.83(2.17) 3.00(0.99) 21.50(9.13) 26.67(9.12) 66.67(0.00)
2 2.83(0.92) 3.50(1.19) 2.67(0.99) 2.67(3.39) 3.33(1.18) 42.50(8.22) 38.33(9.82) 66.67(0.00)
3 2.00(0.75) 2.33(1.11) 2.00(0.84) 2.00(2.09) 3.33(2.32) 45.67(5.50) 46.67(8.72) 66.67(0.00)
4 1.17(0.63) 1.67(1.03) 1.33(0.84) 1.33(2.54) 3.00(4.29) 44.67(10.42) 51.67(8.38) 66.67(0.00)
5 0.67(0.61) 1.00(0.69) 0.67(0.64) 1.33(6.72) 2.67(4.19) 47.50(12.38) 55.33(7.80) 66.67(0.00)
6 0.33(0.34) 0.50(0.44) 0.33(0.50) 0.33(4.58) 5.67(8.36) 55.83(9.76) 57.67(6.77) 66.67(0.00)
7 0.00(0.16) 0.00(0.25) 0.33(0.37) 0.00(5.41) 17.33(17.23) 56.33(8.65) 60.50(6.00) 66.67(0.00)
8 0.00(0.03) 0.00(0.16) 0.00(0.32) 0.00(0.44) 25.50(19.04) 57.17(5.86) 61.67(4.87) 66.67(0.00)
9 0.00(0.00) 0.00(0.00) 0.00(0.23) 0.00(0.00) 41.17(19.34) 55.83(9.42) 62.67(5.31) 66.67(0.00)

Table 5.5: Setting 3: Sparse Signal With Equal Correlation. We report the Median of
number of nonzero coe�cients and its standard deviations (in parentheses).

ρ SMDA-Sa SMDA-Ba SMDA-Sh SMDA-SC SMDA-SP

s1 s2 s1 s2 s1 s2 s1 s2 s1 s2
0 10(13.0) 13(21.6) 10(2.7) 10(3.1) 10(1.3) 10(16.2) 10(2.8) 11(5.8) 10(2.6) 13(25.3)
1 13(15.5) 70(24.5) 12(8.1) 43(21.2) 12(17.7) 78(30.6) 53(26.7) 43(30.6) 10(2.7) 11(25.1)
2 18(29.3) 89(31.7) 14(9.2) 53(19.8) 13(14.2) 85(27.1) 16(17.6) 135(68.0) 10(5.0) 12(39.3)
3 22(26.9) 95(30.0) 14(12.2) 52(18.6) 11(21.7) 85(34.1) 11(25.1) 113(97.8) 10(5.0) 10(41.4)
4 22(30.2) 101(32.2) 16(10.8) 59(17.6) 10(9.1) 80(21.7) 16(20.0) 103(93.8) 10(3.4) 11(50.8)
5 26(34.5) 111(36.9) 15(12.6) 61(17.7) 10(3.3) 75(13.6) 45(37.4) 90(104.6) 10(3.3) 11(52.7)
6 48(28.4) 136(33.8) 23(17.1) 64(24.9) 10(2.1) 69(11.8) 85(39.8) 100(66.0) 12(6.2) 16(52.1)
7 41(11.9) 133(16.5) 29(19.4) 66(23.9) 10(1.7) 53(9.6) 73(35.9) 117(64.1) 12(11.1) 20(98.6)
8 16(3.9) 108(7.8) 58(30.8) 103(36.4) 10(1.5) 42(7.3) 17(16.3) 110(24.1) 9(14.5) 17(135.0)
9 11(2.7) 97(7.7) 66(13.9) 96(13.8) 10(0.8) 31(9.7) 10(2.6) 106(23.2) 6(24.6) 15(92.8)

Table 5.6: Setting 4: Sparse Signal With Block Diagonal Correlation. We report the Median
Testing Classi�cation Error in percentage and its standard deviations (in parentheses).

ρ SMDA-Sa SMDA-Ba SMDA-Sh SMDA-SC SMDA-SP PLDA NB RDA
0 3.00(0.99) 2.33(1.08) 2.00(0.75) 2.33(0.80) 2.33(0.87) 8.50(1.80 13.33(2.24) 66.67(0.00)
1 4.33(1.11) 3.67(1.32) 3.00(1.00) 3.00(1.35) 4.00(1.16) 8.17(1.40 14.00(2.07) 66.67(0.00)
2 6.00(1.72) 5.33(2.25) 4.00(1.25) 4.33(1.48) 5.00(1.39) 9.83(1.49 15.33(2.22) 66.67(0.00)
3 7.33(1.44) 6.67(1.77) 5.67(1.42) 5.67(1.61) 6.33(1.45) 10.67(1.68 16.83(2.31) 66.67(0.00)
4 8.67(1.64) 7.33(1.59) 7.00(1.50) 7.00(1.48) 8.00(1.54) 13.00(1.14 18.50(2.45) 66.67(0.00)
5 10.50(1.52) 9.00(1.73) 8.67(1.67) 8.67(1.86) 9.33(1.76) 15.33(2.12 20.83(2.30) 66.67(0.00)
6 12.00(1.95) 10.00(1.93) 10.33(1.76) 10.00(1.74) 11.00(1.88) 16.83(1.57) 24.00(2.40) 66.67(0.00)
7 12.17(2.26) 10.33(2.17) 11.67(1.93) 11.33(2.06) 12.00(1.92) 21.17(2.65) 27.17(2.75) 66.67(0.00)
8 11.00(2.53) 9.67(2.26) 12.33(2.07) 11.00(2.30) 12.33(2.10) 27.67(3.71) 30.67(3.38) 66.67(0.00)
9 7.17(2.23) 7.00(2.47) 9.33(2.18) 9.00(3.06) 10.00(2.23) 33.83(2.58) 38.33(3.66) 66.67(0.00)
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Table 5.7: Setting 4: Sparse Signal With Block Diagonal Correlation. We report the Median
of number of nonzero coe�cients and its standard deviations (in parentheses).

ρ SMDA-Sa SMDA-Ba SMDA-Sh SMDA-SC SMDA-SP

s1 s2 s1 s2 s1 s2 s1 s2 s1 s2
0 10(3.0) 15(17.1) 10(3.7) 10(5.0) 10(0.8) 10(13.6) 10(1.8) 11(4.8) 10(2.8) 13(21.9)
1 10(8.2) 13(23.7) 10(2.1) 9(2.5) 10(1.1) 11(13.6) 10(1.8) 10(4.4) 10(4.5) 18(27.0)
2 10(10.5) 13(22.7) 10(2.4) 9(3.0) 10(0.3) 10(6.8) 10(1.3) 10(3.6) 10(2.3) 17(25.4)
3 10(2.1) 11(11.9) 9(2.5) 9(4.1) 10(3.8) 11(23.7) 10(2.0) 10(4.1) 10(4.1) 18(28.7)
4 10(4.1) 11(13.4) 9(1.7) 8(3.2) 10(0.7) 10(11.4) 10(1.4) 10(4.7) 10(4.8) 15(27.8)
5 9(1.8) 10(12.1) 8(1.6) 7(2.1) 10(1.4) 10(16.8) 10(0.9) 9(3.4) 10(3.8) 18(27.7)
6 8(1.4) 8(8.3) 8(1.9) 7(2.7) 10(0.4) 10(12.3) 10(1.1) 8(3.8) 10(3.6) 12(26.5)
7 7(1.6) 7(13.4) 7(1.5) 6(2.4) 10(1.6) 10(14.4) 10(0.9) 7(2.5) 10(3.9) 10(26.1)
8 6(2.0) 5(13.5) 7(1.3) 6(2.3) 10(0.7) 10(11.8) 9(1.3) 7(4.7) 10(1.4) 10(14.7)
9 5(1.4) 2(12.4) 6(1.5) 4(2.4) 10(0.3) 9(7.9) 8(2.5) 6(7.9) 10(0.6) 10(6.2)

Table 5.8: Setting 5& 6: Sparse Signal with Sparse Correlation or Sparse Precision Matrix.
We report the Median Testing Classi�cation Error (MTCE) in percentage, the Median of
number of nonzero coe�cients in both projection directions (denoted as s1 and s2 respec-
tively) and their standard deviations (in parentheses) in both of Sparse Correlation (SC)
setting and Sparse Precision (SP) setting.

SMDA-Sa SMDA-Ba SMDA-Sh SMDA-SC SMDA-SP PLDA NB RDA

SC MTE 2.67(0.91) 2.33(1.14) 1.67(0.75) 2.00(0.79) 3.00(1.03) 9.83(1.55) 16.33(2.31) 66.67(0)
s1 18(29.5) 10(3.3) 10(0.7) 10(2.2) 10(1.6) 1000(0) 1000(0) 1000(0)
s2 55(46.6) 10(5.0) 10(13.6) 12(7.0) 11(20.6) 1000(0) 1000(0) 1000(0)

SP MTE 2.67(1.05) 2.33(1.17) 2.00(0.87) 2.00(0.76) 2.33(0.94) 8.00(1.92) 13.67(2.17) 66.67(0)
s1 10(17.8) 10(2.6) 10(1.0) 10(1.5) 10(3.3) 1000(0) 1000(0) 1000(0)
s2 13(28.7) 10(3.8) 11(13.1) 11(4.6) 12(25.8) 1000(0) 1000(0) 1000(0)
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and lead to a more complete understanding of the molecular variations among tumors and

hence to a �ner and more informative classi�cation. The ability to successfully distinguish

between tumor classes (already known or yet to be discovered) using gene expression data

is an important task for better diagnostics and treatment.

We examine the performance of Pen-MDA on human breast tumor microarray datasets

publicly available at https://genome.unc.edu/cgi-bin/SMD/publication/viewPublication.

pl?pub_no=107&23820 and described in Harrell et al. (2011). The data consisted of a

combined microarray data set of four studies taken from the public domain. We utilized

the microarray as presented in the following breast cancer datasets: GSE2034, GSE12276,

GSE2603 and the NKI295. The clinical data from these patients was obtained from previous

studies (Bos et al. 2009; Zhang et al. 2009). NC60 cell line microarray data was obtained

from http://genome-www.stanford.edu/nci60/.Additional microarrays from the GEO for

the MDA-MB-231 cells were downloaded from GSE12237 and GSE2603. Probes in these ex-

ternal sets were assigned to Entrez Gene identi�ers and replicate gene names were collapsed

to the median. The data from the four tumor datasets were then combined using Distance

Weighted Discrimination (Benito et al. 2004) to remove the systematic biases present in

di�erent microarray datasets. In all datasets, samples were standardized to zero mean and

unit variances before other analyses were performed. The samples have 4 subtypes: lumi-

nal A/B, Her2-enriced, basal-like and normal-like. We note that the normal-like subtype is

much rarer We delete the normal-like subtype since they are much rarer than others.

We are interested in the classi�cation of tumors based on the gene expression pro�les.

We further focus on 1000 genes with the largest variances among the 18, 975 covariates. We

randomly partition the data 100 times, each with a training set of size 2/3 of the original

sample and a test set of 1/3 of the observations. We report the training error, testing error

and number of genes selected for SMDA, NB, RDA and penalized LDA, and summarize the

result in Table 5.9. We shall notice that SMDA-Sh and SMDA-Ba has similar performance

and out performs all other comparative methods in terms of classi�cation error. All of PLDA,

NB and RDA make use of 1000 genes and yet produce worse performance, especially, RDA
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performs the worst and is similar to random guessing. Overall, the SMDA by incorporating

covariance structure is a validated classi�cation technique.

Table 5.9: Real data analysis: We report Median Test Classi�cation Error (MTE) and
Median of number of nonzero coe�cients.

Methods MTE s1 s2 s3

SMDA-Sa 0.2458 52 52 73
SMDA-Sh 0.1620 46 49 52
SMDA-Ba 0.1654 145 189 226
SMDA-SC 0.1844 190 190 190
SMDA-SP 0.2430 74 322 499

PLDA 0.1899 1000 1000 1000
NB 0.1899 1000 1000 1000

RDA 0.6983 1000 1000 1000

5.6 Conclusions and Discussions

In this paper, we introduce a uni�ed framework, Penalized Multiple Discriminant Anal-

ysis (SMDA), for linear discriminant analysis in high dimensional multi-class classi�cation

setting. Our SMDA has very close connection with the ROAD methodology proposed by

Fan et al. (2012) when considered in binary classi�cation setting. We also proposed to in-

corporate the regularization covariance estimator into the classi�cation setting to improve

the risk estimation by trade-o� between noise accumulation and correlation modeling, and

we demonstrate its e�ectiveness in various simulation settings and a real data example.

Further, we propose a simple method to choose the covariance structure based on the clas-

si�cation error. Both theory and numerical examples have shown the superiority of our

SMDA framework over other methods.
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5.7 Appendix

Proof of Proposition 5.2.1 Denote µ̃a = Kµa−µK
K−1 , then we have

ΨT = (µ1 +
1√

K − 1
(µK −

√
Kµa), . . . ,µK−1 +

1√
K − 1

(µK −
√
Kµa))

= (µ1 − µ̃a +

√
K

K − 1
(µK − µa), . . . ,µK−1 − µ̃a +

√
K

K − 1
(µK − µa)).

(5.39)

Write a =
√
K

K−1(µK − µa), then we end up with

ΨTΨ =
K−1∑
k=1

(µk − µ̃a + a)(µk − µ̃a + a)T

=
K−1∑
k=1

(µk − µ̃a)(µk − µ̃a)T +
K

K − 1
(µK − µa)(µK − µa)T

=

K−1∑
k=1

(µk − µa)(µk − µa)T − 2

K−1∑
k=1

1

K − 1
(µk − µa)(µa − µK)T

+
1

K − 1
(µK − µa)(µK − µa)T +

K

K − 1
(µK − µa)(µK − µa)T

=
K∑
k=1

(µk − µa)(µk − µa)T

= B.

(5.40)

Proof completed.

In order to arrive at the main theorem, we need the following lemmas.

Lemma 5.7.1 If (λ,v) is an eigen-pair of Σ−1/2BΣ−1/2 then (λ,Σ−1/2) is the eigen-pair

of Σ−1B; vice, versa.

Proof Suppose (λ,v) is an eigen-pair of Σ−1/2BΣ−1/2, then we have

Σ−1/2BΣ−1/2v = λv, (5.41)

multiplying Σ−1/2 on both side, we conclude that (λ,Σ−1/2v) is the eigen-pair of Σ−1B;

vice, versa.
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Since Σ−1/2BΣ−1/2 and Σ−1B have the same rank, we conclude that the eigen-pair of

Σ−1/2BΣ−1/2 and Σ−1B has one-to-one correspondence with the same eigenvalues.

Lemma 5.7.2 The eigen-pairs of Σ−1B solves the Fisher's linear discriminant rule (5.5).

Proof Before we state the proof, we start by some notation and de�nitions. Suppose Mq×q

has eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λq. Denote λj(M) as the j-th large eigen value of M , i.e.

λj .

First, we observe that problem (5.5) can reduce to the following problem,

v◦1 = argmax
vT1 Bv1

vT1 v1
and (5.42)

v◦k = argmax
vTkBvk

vTk vk
s.t. vk ⊥ vj = 0, ∀1 ≤ j < k, 1 ≤ k ≤ K − 1, (5.43)

w◦k = Σ−1/2v◦k, ∀1 ≤ k ≤ K − 1, (5.44)

where (λk,w
◦
k), 1 ≤ k ≤ K − 1 are the solutions to problem (5.5). Then

w◦k = Σ−1/2vk where (λk(Σ
−1/2BΣ−1/2),vk) is the eigen-pair of Σ−1/2BΣ−1/2, ∀1 ≤ k ≤ K−1.

(5.45)

Thus applying Lemma 5.7.1, we conclude the result.

Proof of Theorem 5.2.2 Write

Q(W) =
1

2
Tr(WTΣW)− Tr(LW), (5.46)

where, L = PTΨ.

Denote the minimizer of Q(W) as W◦, then W◦ satis�es

∂Q(W◦) = ΣW◦ − LT = 0. (5.47)

Thus, we conclude W◦ = Σ−1ΨTP. In order to show that the problem 5.9 gives the solution

to Fisher's linear discriminant rule (5.5), by Lemma 5.7.2, we only need to show that the
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solution is composed of eigen-vectors of Σ−1B. More formally, we need to verify that W◦ is

indeed the eigen-matrix of Σ−1B, i.e. each column of W◦ is a eigen-vector of Σ−1B. Note

that we have the following equality holds

ΨΣ−1ΨT = PΛPT . (5.48)

Left multiply Σ−1ΨT and right multiply PT on both side of 5.48, we end up with

Σ−1ΨTΨΣ−1ΨTP = Σ−1ΨTPΛ, (5.49)

i.e.

Σ−1BW◦ = W◦Λ. (5.50)

Proof completed.

Lemma 5.7.3 We have the following basic inequality

1

2
Tr{(Ŵλ −W0)T Σ̃(Ŵλ −W0)}+

K−1∑
k=1

λk||ŵk,λ||1

≤ Tr{(WT
0 (Σ− Σ̃) + (L̂− L)T )(Ŵλ −W0)}+

K−1∑
k=1

λk||wk,0||1.

(5.51)

Proof We �rst rewrite the optimization problem as

argmin
1

2
Tr{(Ŵλ − Σ̃−1L̂)T Σ̃(Ŵλ − Σ̃−1L̂)}+

K−1∑
k=1

λk||ŵk,λ||1. (5.52)

Thus, we have

1

2
Tr{(Ŵλ − W̃−1L̂)T Σ̃(Ŵλ − W̃−1L̂)}+

K−1∑
k=1

λk||ŵk,λ||1

≤ 1

2
Tr{(W0 − Σ̃−1L̂)T Σ̃(W0 − W̃−1L̂)}+

K−1∑
k=1

λk||wk,0||1,

(5.53)
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which yields,

1

2
Tr{(Ŵλ −W0)T Σ̃(Ŵλ −W0)}+

K−1∑
k=1

λk||ŵk,λ||1

≤ Tr{(L̂− Σ̃W0)T (Ŵλ −W0)}+
K−1∑
k=1

λk||wk,0||1

≤ Tr{(WT
0 (Σ− Σ̃) + (L− L̂)T )(Ŵλ −W0)}+

K−1∑
k=1

λk||wk,0||1,

(5.54)

in which we have used L̂ = ΣW0 + L̂− L0 in the last equality.

Lemma 5.7.4 There exists a constant cK such that for any t > Cb||Ψ||∞,2bn, we have

Pr(||ˆ̀j − `j ||∞ > t) ≤ 2p exp{−cKnt2} for 1 ≤ j ≤ K − 1. (5.55)

Proof First, we de�ne Â = Ψ̃ΩΨT and A = ΨΩΨT . By assumptions and matrix perturba-

tion theory, we know that

|λj(Â)− λj(A)| = O(cn) for 1 ≤ j ≤ K − 1,

and

||φ̂j − φj || ≤ O(
∑
i 6=j

||∆A||
λj − λi

) ≤ Cbbn,

where Cb is a constant.

Thus, we have

Pr(|Ψ̂T
·i φ̂j −ΨT

·iφj | > t) ≤ Pr(|Ψ̂T
·i φ̂j −ΨT

·i φ̂j | > t/3) + Pr(|ΨT
·i φ̂j −ΨT

·iφj | > t/3)

≤ Pr(||Ψ̂T
·i −ΨT

·i ||2 > t/3) + Pr(Cbn||ΨT
·i ||12 > t/3)

≤ Pr(
√
K − 1||Ψ̂T

·i −ΨT
·i ||∞ > t/3)

≤ 2 exp{−ci,Knt2},
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where

ci,K =
1

18σ2
i [
∑

k 6=j,K(
√
K√
K−1

nk
n )2 + (1−

√
K√
K−1

nj
n ) + (1−

√
KnK/n)2

(
√
K−1)2

]

≥ 1

18σ2max(K − 1)[(K − 2)(
√
K√
K−1

p1)2 + (1−
√
K√
K−1

p0) + (1−
√
Kp0)2

(
√
K−1)2

]

.
= cK .

Thus, by union-sum inequality, we have

Pr(||ˆ̀j − `j ||∞ > t) ≤ 2p exp{−cKnt2}. (5.56)

Proof of Theorem 5.3.1

Frist, we de�ne J1 = ∩K−1
j=1 {||ˆ̀j−`j || ≤ t1}. Taking t1 = t01 = max{η0/cK

√
log p
n , Cb||Ψ||∞,2bn},

by lemma 5.7.4, we have

Pr(J1) ≥ 1− (K − 1)p−η0 . (5.57)

Further de�ne J2 = {||Σ̃ − Σ|| ≤ an} and J3 = {|| ˜ΨΣΨT − ΨΣΨT || ≤ bn} and let J0 =

∩3
j=1Jj . Thus

Pr(J1) ≥ 1− (K − 1)p−η0 − δ1,n,p − δ2,n,p. (5.58)

On the set J0, by taking λj = max{an||wj,0||2, t01} and using the basic inequality, we have

1

2
Tr{(Ŵλ −W0)T Σ̃(Ŵλ −W0)}+

K−1∑
j=1

λj ||ŵj,λ||1

≤ Tr{(WT
0 (Σ− Σ̃) + (L− L̂)T )(Ŵλ −W0)}+

K−1∑
j=1

λj ||wj,0||1

≤
K−1∑
j=1

{||Σ− Σ̃||2||w0,j ||2||ŵj,λ −wj,0||2 + ||ˆ̀j − `||∞||ŵj,λ −wj,0||1 +

K−1∑
j=1

λj ||wj,0||1

K−1∑
j=1

{λj ||ŵj,λ −wj,0||1 + λj ||wj,0||1}

(5.59)
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Let w0,S0 = [w0,jI(j ∈ S0)], where w0,j is the j−th component of w0. Then the above

equation can be rewritten as

1

2

K−1∑
j=1

{(ŵj,λ −wj,0)T (Σ̃− Σ + Σ)(ŵj,λ −wj,0) + λj ||ŵj,λ,Sj ||1 + λj ||ŵj,λ,Sc0
||1}

≤
K−1∑
j=1

{λj ||ŵj,λ,Sj −wj,0,Sj ||1 + λj ||wj,0,Sj ||1 + λj ||ŵj,λ,Scj
||1}

which yields

K−1∑
j=1

(m−O(an))||ŵj,λ −wj,0||22 ≤ 2
K−1∑
j=1

λj
√
sj ||ŵj,λ −wj,0||2.

Finally, we obtain the following inequality, by taking λ = max{λ1, . . . , λK−1} and s0 =

max{λ1, . . . , λK−1}

||Ŵλ −W0||2,∞ ≤
2λ
√
s0

λmin −O(1)an
≤ Cλ

√
s0,

which �nishes the proof.
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