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ABSTRACT

Sean Skwerer: Tree Oriented Data Analysis
(Under the direction of J. S. Marron and Scott Provan)

Complex data objects arise in many areas of modern science including evolutionary biology,

nueroscience, dynamics of gene expression and medical imaging. Object oriented data analysis

(OODA) is the statistical analysis of datasets of complex objects. Data analysis of tree data objects is

an exciting research area with interesting questions and challenging problems. This thesis focuses on

tree oriented statistical methodologies, and algorithms for solving related mathematical optimization

problems.

This research is motivated by the goal of analyzing a data set of images of human brain arteries.

The approach we take here is to use a novel representation of brain artery systems as points in

phylogenetic treespace. The treespace property of unique global geodesics leads to a notion of

geometric center called a Fréchet mean. For a sample of data points, the Fréchet function is the sum

of squared distances from a point to the data points, and the Fréchet mean is the minimizer of the

Fréchet function.

In this thesis we use properties of the Fréchet function to develop an algorithmic system for

computing Fréchet means. Properties of the Fréchet function are also used to show a sticky law

of large numbers which describes a surprising stability of the topological tree structure of sample

Fréchet means at that of the population Fréchet mean. We also introduce non-parametric regression

of brain artery tree structure as a response variable to age based on weighted Fréchet means.
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PREFACE

This thesis is based on collaborative work with my advisors J. S. Marron and Scott Provan in the

domain of tree oriented data analysis. Chapter 1, which provides an overview of tree oriented data

analysis and background material, is the original work of the student.

Chapter 2, which describes the treespace Fréchet mean optimization problem, and related theory

and methods, is the original work of the student. Section 2.1 provides an overview and discussion

of the problem, and these perspectives are an original contribution by the student. Section 2.2 and

section 2.3 focus on summarizing existing theory and methodology. Sections 2.4 and 2.5 contain

novel unpublished research by the student.

Chapter 3 summarizes data analytic results. This analysis was conducted by the student, with

one exception, the result attributed to Megan Owen in Section 3.1. The discussion of Fréchet

mean degeneracy in this chapter is an extension of research from a paper written by this student in

collaboration with a number of authors (see reference) (Skwerer et al., 2014).

Chapter 4 contains novel theoretical analysis by the student. Section 4.1 contains background

material. Section 4.2 provides a summary of related research that the student contributed to as part of

a collaborative research group. Section 4.3 contains an original presentation of basic definitions and

novel unpublished results by the student. Section 4.4 contains the main result of the chapter which is

unpublished research by the student.

Chapter 5 contains a novel method for regression of tree data objects against a Euclidean response

variable. This method was described by J. S. Marron and implemented by the student. The data

analysis was conducted by the student. This is unpublished research.
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CHAPTER 1: INTRODUCTION

1.1 Dissertation Overview

Complex data objects arise in many areas of modern science including evolutionary biology,

longitudinal studies, dynamics of gene expression and medical imaging. Object oriented data analysis

(OODA) is the statistical analysis of datasets of complex objects. The atoms of a statistical analysis

are traditionally a number or a vector of numbers. In functional data analysis the atoms of interest

are curves; for excellent treatment of functional data analysis see (Ramsay and Silverman, 2002,

2005). OODA progresses from functions to more complex objects such as images, two-dimensional

or three-dimensional shapes, and combinatorial structures such as graphs or trees.

Data analysis of tree data objects, or tree oriented data analysis, is an exciting research area

with interesting questions and challenging problems. This thesis focuses on tree oriented statistical

methodologies, and algorithms for solving related mathematical optimization problems. The mathe-

matical focus of this thesis is driven by the goal of analyzing a data set of images of human brain

arteries collected by the CASILab at UNC-CH (Bullitt et al., 2008). From this perspective, this thesis

is aimed at making contributions to morphology, the study of the form and structure of organisms.

In this thesis, trees are primarily modeled as points in Billera, Holmes, Vogtman treespaces.

The original motivation for creating BHV treespaces was to create a firm mathematical basis for

statistical inference of evolutionary histories by developing a geometric space of phylogenetic trees.

In phylogenetics, trees can be used as abstract representations of evolutionary histories. In such

an abstraction the root represents some common ancestor, the leaves represent species, branches

represent speciation events, and length represents passage of time. A phylogenetic tree, (i) is a

tree, (ii) has a positive length associated with each of its edges, and (iii) has leaves which are in

bijection with an index set {0, 1, . . . , r}, which corresponds to a list of species. A BHV treespace

is a geometric space of all phylogenetic trees with leaves in bijection with the same index set i.e.

{0, 1, . . . , r}. For a more detailed description of phylogenetic trees and BHV treespaces see Sec.

1.2.
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A central question of tree oriented data analysis is “what are appropriate notions of mean and

variance for a set of trees?” Typically, the mean of a dataset is specified as the sum of the observations

divided by the number of observations. The mean of real numbers could also be specified as the

solution to an optimization problem. An arithmetic mean is the real number that minimizes the

sum of squared distances to data points. A more general notion of mean for metric spaces, called

a Fréchet mean (a.k.a, barycenter or center of mass), is a point that minimizes the sum of squared

distances to the data points. The Fréchet mean is equivalent to the arithmetic mean in the case when

data points are vectors. BHV treespaces have nice properties for statistics, including the existence of

a unique shortest path between every pair of points, and the existence of a unique Fréchet mean for

a set of points. The focus of Ch. 2 is mathematical theory and methods for solving Fréchet mean

optimization problems defined for data sets on BHV treespace.

Prior to the research for this thesis, tube tracking algorithms were applied to a brain angiography

dataset from the CASILab to reconstruct 3D models for the brain artery systems i.e. tubular 3D trees

(Aylward and Bullitt, 2002). The main research advance for representing these trees as points in a

BHV treespace was finding a morphologically interpretable fixed index set. The index set used in this

research was determined by a technology in neuroimage analysis, called group-wise landmark based

shape correspondence, which optimally places landmarks on the cortical surface of each member

in a sample. This algorithm simultaneously optimizes a term which spreads landmarks out in each

subject and a term which forces landmarks to similar positions for all subjects. More details about

this representation of artery trees as points in a BHV treespace are explained in Sec. 1.3.

Results from analysis of this cortical landmark and brain artery data using Fréchet means in

BHV treespaces are presented in Ch. 3. In summary, these results show there is little similarity in

the topological connections of brain arteries from the base of the brain to points where arteries are

nearest to cortical landmarks, with the level of resolution available.

Fréchet means in BHV treespaces exhibit an unusual stability property which is known as

stickiness. Contrasting the typical behavior of sample means, where typically small changes in the

data result in small changes in the sample mean, stickiness refers to the phenomenon of the sample

mean sticking in place regardless of small changes in the dataset. Stickiness examples and a rigorous

definition for stickiness are presented in Ch. 4. The observation of this property was attributed to

Seth Sullivant, and studied further by the the SAMSI working group for data sample on manifold

2



stratified spaces, e.g. data sampled from BHV treespaces, during the 2012 Object Oriented Data

Analysis program at SAMSI. In this thesis, a new contribution to stickiness research is made, we

characterize the limiting behavior of Fréchet sample means on BHV treespaces as obeying a sticky

law of large numbers. This is the main result in Ch. 4.

Kernel smoothing is a flexible method for studying the relationships between variables. It is used

in estimating probability densities and in regression. In Ch. 5, we present a novel method for kernel

smoothing regression of tree-valued response against a real-valued predictive variable. This method

is applied to the brain artery systems from the CASILab which will first be introducted in Sec. 1.3.

The rest of this chapter is about phylogenetic trees and mapping brain artery trees to phylogenetic

treespace.

1.2 Phylogenetic trees and BHV treespaces

1.2.1 Graphs and trees

A graph is a set of points, called vertices (use vertex for a single point), and a set of lines

connecting pairs of vertices, called edges. A tree is a connected graph which has no cycles of edges

and vertices. The degree of a vertex is the number of edges connected to it. The vertices of a tree

with degree one are called leaves, and the edges connected to them are called pendants. Non-leaf

vertices are called interior vertices. Edges which are not connected to leaves are called interior edges.

An edge weighted tree is a tree T together with a positive length |e|T associated with every edge

e ∈ T . Contracting an edge means its length shrinks to zero thereby identifying its two endpoints

to form a single vertex. A tree topology T ′ that is created by contracting some edges in a tree T is

called a contraction of T . A star tree is a tree with only pendant edges.

1.2.2 Phylogenetic trees

Evolutionary histories or hierarchical relationships are often represented graphically as phyloge-

netic trees. In biology, the evolutionary history of species or operational taxonomic units (OTU’s)

is represented by a tree. Figure 1.1 is a very early graphical depiction of a phylogenetic tree from

(Haeckel, 1866).

The root of the tree corresponds to a common ancestor. Branches indicate speciation of a nearest

common ancestor into two or more distinct taxa. The leaves of the tree correspond to the present

species whose history is depicted by the tree.
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A labeled tree is a tree T with r+1 leaves distinctly labeled using the index set I = {0, 1, . . . , r}.

A phylogenetic tree is a labeled edge-weighted tree. The set of edges for a tree T is written ET . Edge

e in T is associated with a split, Xe ∪ X̄e in T . This is a partition of I into two disjoint sets of labels,

Xe and X̄e on the two components of T that result from deleting e from T , with Xe containing the

index 0. The topology of a phylogenetic tree is the underlying graph and pendant labels separated

from the edge lengths. The topology of a phylogenetic tree is uniquely represented by the set of splits

associated with its edges. Formally, two splits Xe ∪ X̄e and Xf ∪ X̄f are compatible if and only if

Xe ⊂ Xf and X̄f ⊂ X̄e, or Xf ⊂ Xe and X̄e ⊂ X̄f . Compatibility can be interpreted in terms of

subtrees: the subtree with leaves in bijection with X̄e contains the subtree with leaves in bijection

with X̄f , or vice versa. If every pair of splits in a set of splits is compatible then that set is said to be

a compatible set. Each distinct set of compatible splits is equivalent to a unique phylogenetic tree

topology. A maximal tree topology is one in which no additional interior edges can be introduced i.e.

|ET | = 2r − 1, or equivalently every interior vertex has degree 3.

1.2.3 Construction of BHV Treespaces

A BHV treespace, Tr is a geometric space in which each point represents a phylogenetic tree

having leaves in bijection with a fixed label set {0, 1, 2, . . . , r}.

A non-negative orthant is a copy of the subset of n-dimensional Euclidean space defined by

making each coordinate non-negative, Rn≥0. Here, only non-negative orthants are used, so we use

orthant to mean non-negative orthant. An open orthant is the set of positive points in an orthant.

Phylogenetic treespace is a union of many orthants, each corresponding to a distinct tree topology,

wherein the coordinates of a point are interpreted as the lengths of edges. For a given set of compatible

edges E, the associated orthant is denoted O(E), and for a given tree T , the orthant in treespace

containing that point is denoted O(T ). Trees in Tr have at most r − 2 interior edges. Each orthant

of dimension r − 2 corresponds to a combination of r − 2 compatible edges. Orthants are glued

together along common faces. The shared faces of facets with k positive coordinates are called the

k-dimensional faces of treespace.

Take T4 as an example. There are fifteen possible pairs of compatible edges. Each compatible

pair is associated with a copy of R2
≥0, one axis of the orthant for each edge in the pair. The fifteen
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orthants are glued together along common axes. Views of the two main features of T4 are displayed

in Figure 1.2. See Figure 1.3 for a visualization of the split-split compatibility graph of T4
1.

Each clique in the split-split compatibility graph represents a compatible combination of splits,

or equivalently the topology of a phylogenetic tree. A graph is complete if there is an edge between

every pair of vertices. In a graph, a clique is a complete subgraph. Each full phylogenetic tree is a

maximal clique in the split-split compatibility graph because a clique represents a set of mutually

compatible splits. The split-split compatibility graph of T4 has fifteen maximal cliques, each of

which is represented an edge in the graph. The split-split compatibility graph of T4 determines how

the orthants of T4 are glued.

1.3 Brain artery data

The brain artery trees used in this study were reconstructed from a data set of Magenetic

Resonance (MR) brain images collected by the CASILab at the University of North Carolina at

Chapel Hill. This data set is publicly available and hosted at the MIDAG website (Bullitt et al., 2008).

The database has images for various magnetic resonance modalities, including T1, T2, Magenetic

Resonance Angiography (MRA), and Diffusion Tensor Imaging (DTI). The study enrolled 109

apparently healthy subjects. Each image is tagged with subject features of age, sex, handedness and

self-identified race. The MRA was aquired at 0.5 x 0.5 x 0.8 mm3 accuracy.

Arteries branch out mostly as a tree from the heart and deliver blood to the entire body. In

particular arteries transport oxygen and nutrient-rich blood to the brain. Magnetic Resonance

Angiography (MRA) is a technique in medical imaging to visualize arteries. MRA uses the fact that

blood flowing in the arteries has a distinct magnetic signature. Full 3D image acquisition is achieved

by combining cross sectional 2D images. See Figures 1.4 and 1.5 below for an MRA slice and an

artery reconstruction for the same subject. A limiting factor is that MRA has a resolution threshold

and consequently there are arteries that are too small for detection. MRA detects only arteries which

feed blood rich with oxygen and nutrients to the body, and not veins which carry depleted blood back

to the heart.

The arteries visible in MRA are generally naturally described as a tree. In most regions of the

body and at the level of resolution possible, arteries branch like a tree without any loops. A major

1An interesting fact is that the compatibility graph of T4 is a Peterson graph.

5



part of this research has been opening up the possibility of using the space of phylogenetic trees as a

mathematical basis for developing statistical methods for the study of artery trees. Phylogenetic trees

have a common leaf set. However artery trees do not. A common leaf set is artificially introduced by

determining points on the cortical surface that correspond across different people. The next section

describes the details of representing brain artery systems as points in BHV treespace.

1.4 Mapping Brain Artery Systems to BHV treespace

Figure 1.6(a) gives a detailed view of artery centerlines. Each tree consists of branch segments,

and each branch segment consists of a sequence of spheres fit to the bright regions in the MRA

image. The sphere centers are 3D points on the center line of the artery, and the radius approximates

the arterial thickness. A method for visualizing the structure of large trees was used to detect any

remaining discrepancies (Aydin et al., 2009b).

1.4.1 Correspondence

In addition to the brain artery trees, the data set also includes reconstructions of the cortical

surface. A cortical correspondence is made by determining points on the cortical surface that

correspond across different people. A group-wise shape correspondence algorithm based on spatial

locations is used to place landmarks on the cortical surface (Oguz et al., 2008). Each landmark

is located in a corresponding spot on the cortical surface in every subject. In this study we use

sixty-four landmarks for the right hemisphere and sixty-four landmarks for the left hemisphere (see

Figure 1.6(a)). The landmarks are combined with the artery tree by the following procedure. For

each landmark, find the closest point on the tree of artery centerlines, called the landmark projection

(see Figure 1.6(b)). Each landmark and the line segment to its closest point become part of the tree.

The tree is extracted by tracing the parts of the tree that are between the root and the landmarks. Any

parts of the artery tree that are not between a landmark projection and the base are trimmed (see

Figure 1.6(c)). The base of the tree, called the root, and the 128 landmarks, add up to a total of 129

common leaves. Once the tree has been extracted each edge is associated with a positive length.

The weight for each interior edge is the arc-length for the centerline of the artery tube. The pendant

for each landmark has length equal to the projection distance plus the artery tube length from the

projection point to the nearest artery branch. The pendant length for the root of the tree is zero.

6



1.5 Other approaches to tree oriented data analysis

The branching structures of blood arteries and pulmonary airways are naturally modeled as trees.

There is a large scope for progress in statistics for a population of trees. Currently, at the time that this

dissertation is being written, research in tree oriented data analysis includes four major directions:

combinatorial trees, Dyck paths, treeshapes and phylogenetic trees.

A seminal papaer in the combinatorial tree approach to studying populations of anatomical

trees laid foundations by proposing a metric, several notions of center, variation, and a method of

principal components (Wang and Marron, 2007). Later fast PCA algorithms for combinatorial trees

were developed (Aydin et al., 2009a). The most recent innovation for combinatorial tree is smoothing

method for nonparametric regression with combinatorial tree structures as response variables against

a univariate Euclidean predictor (Wang et al., 2011) .

Another approach uses a Dyck path mapping of trees to curves (Harris, 1952). A Dyck path for

a tree is produced by recording the distance on the tree to the root vertex during a depth first left to

right traversal. Representing trees as Dyck paths opens up the possibility to use methods such as

functional PCA (Shen et al., 2012).

The treeshape approach is an area of active research. A tree-shape is a graph theoretic tree with

a real matrix of fixed dimensions associated with each edge of the tree. Tree-shapes and statistics for

tree-shapes were introduced in (Feragen et al., 2012). This approach allows very general descriptions

of trees and thus allows for much richer representations of anatomical trees such as lungs or arteries

than the above approaches. The generality of this approach comes with the cost of a very complicated

sample space. A related approach, unlabled-trees, is a special case of treeshape, where the edge

attributes are restricted to be non-negative numbers.

1.5.1 BHV treespace geodesics

We now give an explicit description of geodesics in treespace.

Let X ∈ Tr be a variable point and let T ∈ Tr be a fixed point. Let ΓXT = {γ(λ)|0 ≤ λ ≤ 1}

be the geodesic path from X to T . Let C be the set of edges which are compatible in both trees, that

is the union of the largest subset of EX which is compatible with every edge in T and the largest

subset of ET which is compatible with every edge in X .
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The following notation for the Euclidean norm of the lengths of a set of edges A in a tree T will

be used frequently,

||A||T =

√∑
e∈A
|e|2T (1.1)

or without the subscript when it is clear to which tree the lengths are from.

A support sequence is a pair of disjoint partitions, A1∪ . . .∪Ak = EX \C and B1∪ . . .∪Bk =

ET \ C.

Theorem 1.5.1. (Owen and Provan, 2009) A support sequence (A,B) = (A1, B1), . . . , (Ak, Bk)

corresponds to a geodesic if and only if it satisfies the following three properties:

(P1) For each i > j, Ai and Bj are compatible

(P2) ‖A1‖
‖B1‖ ≤

‖A2‖
‖B2‖ ≤ . . . ≤

‖Ak‖
‖Bk‖

(P3) For each support pair (Ai, Bi), there is no nontrivial partition C1 ∪ C2 of Ai, and partition

D1 ∪D2 of Bi, such that C2 is compatible with D1 and ‖C1‖
‖D1‖ <

‖C2‖
‖D2‖

The geodesic between X and T can be represented in Tn with legs

Γl =



[
γ(λ) : λ

1−λ ≤
‖A1‖
‖B1‖

]
, l = 0[

γ(λ) : ‖Ai‖‖Bi‖ ≤
λ

1−λ ≤
‖Ai+1‖
‖Bi+1‖

]
, l = 1, . . . , k − 1,[

γ(λ) : λ
1−λ ≥

‖Ak‖
‖Bk‖

]
, l = k

The points on each leg Γl are associated with tree Tl having edge set

El = B1 ∪ . . . ∪Bl ∪Al+1 ∪ . . . ∪Ak ∪ C

Lengths of edges in γ(λ) are

|e|γ(λ) =



(1−λ)‖Aj‖−λ‖Bj‖
‖Aj‖ |e|X e ∈ Aj

λ‖Bj‖−(1−λ)‖Aj‖
‖Bj‖ |e|T e ∈ Bj

(1− λ)|e|X + λ|e|T e ∈ C

.
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The length of Γ is

d(X,T ) =

wwww(‖A1‖+ ‖B1‖, . . . , ‖Ak‖+ ‖Bk‖, |eC |X − |eC |T )

wwww (1.2)

and we call this the geodesic distance from X to T .
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Figure 1.1: Phylogenetic tree depicting divergence of plants, protozoa, and animal kingdoms, Haeckel
(1866).
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(a) An open half book with three pages. In this diagram the pages of the book are three copies of
R2
≥0 and the spine is a copy of R≥0. The spine is labeled with the split {0, 1}|{2, 3, 4}. Each page

has the spine as one axis and the other axis is labeled with a split compatible with {0, 1}|{2, 3, 4}.
In T4 every one of the ten splits of {0, 1, 2, 3, 4} is the label for the spine of the open half book.
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(b) A five-cycle. A five-cycle is five copies of R2
≥0 glued together along commonly labeled axes

and at their origins.

Figure 1.2: Spaces called a half-open book with three pages, depicted in (a) and a five cycle of
quadrants, depicted in (b), appear in T4 repeatedly. For a global view of the structure of T4 see Fig.
1.3.
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{0,1,2}|{3,4} {0,1,3}|{2,4} 

{1,3}|{0,2,4} 

{0,1}|{2,3,4} 

{0,1,4}|{2,3} 

{0,2}|{1,3,4} 

{0,3}|{1,2,4} {1,2}|{0,3,4} 

{0,4}|{1,2,3} 

{1,4}|{0,2,3} 

Figure 1.3: Split-split compatibility graph of T4. Each split has a node. Two splits are compatible
if they are joined by an arc. This shows the overall connectivity of T4, all possible splits for
{0, 1, 2, 3, 4}, and all possible topologies for 4-trees. Each vertex and the three edges emanating
from it in the graph corresponds to a copy of an open book like in Figure 1.2(a). Each five-cycle in
the graph is a copy of a five-cycle depicted in Figure 1.2(b)

Figure 1.4: One slice of a Magnetic Resonance Angiography (MRA) image. Bright regions indicate
blood flow. Bright regions are tracked through MRA slices to recover arteries tubes as shown in
Figure 1.5.
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Figure 1.5: The data object is a reconstructed brain artery tree consisting of four subtrees, left, right,
anterior, and posterior. The goal of this research is statistical analysis of a sample of such data
objects.
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(a) (b)

(c)

Figure 1.6: Illustrates steps for cortical correspondence. (a) Artery centerlines (blue) with the cortical
landmarks (red). (b) Find the closest point on the artery tree to each landmark (red segments are
landmark projections). Arteries which are not between the landmark projections and the base (cyan)
are trimmed. (c) The result of this procedure is a cortical correspondence tree.
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CHAPTER 2: Methods for Fréchet Means in Phylogenetic Treespace

2.1 Introduction

The central research problem of this chapter is efficient computation of the Fréchet mean of a

discrete sample of points in BHV treespaces. The novel algorithmic system designed in this research

project improves upon the current solution methodologies in (Miller et al., 2012) (Bac̆àk, 2012).

These methods are applied to the sample of brain artery trees introduced in Chapter 1.

The contents of this Chapter are organized as follows: In Sec. 2.1.1 we define the Fréchet mean

in BHV treespace, and give an overview discussion of the Fréchet optimization problem. In Sec.

2.2 we present global methods for optimizing the Fréchet function i.e. methods which can move

from one orthant of treespace to another. In Sec. 2.3 we describe how the combinatorics of treespace

geodesics lead to polyhedral subdivision of treespace into regions where the Fréchet function has

a fixed algebraic form. The focus of Sec. 2.4 is differential properties of the Fréchet function. In

Sec. 2.5.1, a method finding the minimizer of the Fréchet function in a fixed orthant of treespace is

presented. Application of these method to brain artery systems is the focus of Ch. 3.

2.1.1 Fréchet means in BHV treespace

For a given data set of n phylogenetic trees T 1, T 2, . . . , Tn in Tr, the Fréchet function is

the sum of squares of geodesic distances from the data trees to a variable tree X . A geodesic

γ : [0, 1]→ Tr is the shortest path between its endpoints. The geodesic fromX to T i is characterized

by a geodesic support, (Ai,Bi) =
(
(Ai1, B

i
1), . . . , (Ai

ki
, Bi

ki
)
)

(Thm. 1.5.1). Given the geodesic

supports (A1,B1), . . . , (An,Bn) the Fréchet function is

F (X) =

n∑
i=1

d(X,T i)2 =

n∑
i=1

 ki∑
l=1

(‖xAil‖+ ‖Bi
l‖)2 +

∑
e∈Ci

(|e|T − |e|T i)2

 . (2.1)

The objective is to solve the Fréchet optimization problem

min
X∈Tr

F (X) (2.2)
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Elementary Fréchet function properties:

• The Fréchet function is continuous because the geodesic distances d(X,T i) are continuous

(Owen and Provan, 2009; Miller et al., 2012).

• The Fréchet function F (X) is strictly convex (Sturm, 2003), that is F ◦ γ : [0, 1] → R is

(strictly) convex for every geodesic γ(λ) in Tr.

As a consequence of these properties we have the following result.

Lemma 2.1.1. The Fréchet mean exists and is unique.

Proof. A strictly convex function either has a unique minimizer or can be made arbitrarily low.

Assuming that the data points are finite, then a minimizer of the Fréchet function must also be finite.

Therefore the Fréchet function has a unique minimizer.

The Fréchet mean T̄ is the unique minimizer of the Fréchet function.

2.1.1.1 Problem Discussion

The Fréchet optimization problem, in BHV treespace, requires both selecting the minimizing tree

topology and specifying its edge lengths. Tree topologies are discrete and so the problem of selecting

the minimizing tree topology is a combinatorial optimization problem; however it is possible to

make search strategies which take advantage of the continuity of BHV treespace to find the correct

tree topology. It is natural to consider this problem in two modes of search: global, i.e. strategies

which change the topology and edge lengths; and local, i.e. strategies which only adjust edge lengths.

One motivation to consider global search and local search separately is that the local optimization

problem is convex optimization constrained to a Euclidean orthant.

The global search problem is challenging because the geometry of treespace creates difficulty

in two essential parts of optimization (1) making progress towards optimality and (2) verifying

optimality. In treespace a metrically small neighborhood can actually be quite large in a certain

sense. In constructing the space, the topological identification of the shared faces of orthants may

create points in the closure of many orthants. In terms of trees, the neighborhood around a tree X ,

N(X), is comprised not only of trees with the same topology as X but also trees which have X as
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a contraction. However, the list of tree topologies which have a particular tree X as a contraction

can be quite large. For example, if X is a star tree then X is a contraction of any tree i.e. X is a

contraction of (2r − 3)!! maximal phylogenetic tree topologies.

Local optimality conditions for non-differentiable functions are based on the rate of change of the

objective function along directions issuing from a point. Since the neighborhood of a pointX contains

all trees which have X as a contraction, verifying that X is optimal requires demonstrating that

any tree which contains X as a contraction has a larger Fréchet function value. For example, when

X is a star tree, N(X) contains every tree with the same pendants as X , and having infinitesimal

interior edge lengths. In this sense finding a descent direction can be essentially as hard as finding

the topology of the Fréchet mean itself.

Proximal point algorithms, a broad class of algorithms, are globally convergent not only for the

Fréchet optimization problem, but are globally convergent for any well defined lower-semicontinuous

convex optimization problem on a non-positively curved metric space (Bac̆àk, 2012). This class of

algorithms has nice theoretical properties, and certain implementations of proximal point algorithms

are practical for the Fréchet optimization problem on non-positively curved orthant spaces.

Proximal point algorithms are applicable to optimization problems on metric spaces. The general

problem is minimizing a function f on a metric space M with distance function d : M ×M → R.

A proximal point algorithm solves a sequence of penalized optimization problems of the form

Pk(f) : min
xk

f(xk) + αkd
2(xk−1, xk) (2.3)

where αk influences the proximity of a solution to the point xk−1. Some good references for

proximal point algorithms are (Bačák, 2012; Bertsekas, 2011; Li et al., 2009; Rockafellar, 1976).

Implementing a generic proximal point algorithm to minimize the Fréchet function on treespace

does not seem advantageous. In particular, given a non-optimal point X0 finding a point X such that

F (X) < F (X0) is not made any easier by penalizing the objective function F (X) + αd2(X0, X).

Penalizing the objective function with αd(X0) does not provide any additional structure for checking

the neighborhood, N(X0), of X0 for a descent direction.

Split proximal point algorithms avoid directly tackling the complicated problem of minimizing

F (X) by solving many much easier subproblems. For objective functions which can be expressed as
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a sum of functions, f = f1 + . . .+ fm, a split proximal point algorithm alternates among penalized

optimization problems for each function. Let {1, 2, . . . ,m} index the functions f1, . . . , fm. A

generic split proximal point algorithm is: choose some sequence i1, i2, . . . where each term in the

sequence is an element of {1, 2, . . . ,m} and sequentially solve the split proximal point optimization

problem:

Pk(f
ik) : min

xk
f(xk) + αkd

2(xk−1, xk) (2.4)

Different versions of split proximal point algorithms are based on the choice of the sequence i1, i2, . . .

and the choice of the sequence {αk}. Naturally, a split proximal point procedure can be applied to

the Fréchet optimization problem by separating the Fréchet function into a sum of squared distance

functions, F (X) = d2(X,T 1) + . . .+ d2(X,Tn). For the Fréchet function the split proximal point

optimization problem is

Pk(d
2(Xk, T ik)) : min

xk
d2(Xk, T ik) + αkd

2(Xk−1, Xk) (2.5)

For the Fréchet mean optimization problem on a geodesic non-positively curved space, the solution to

a split proximal point optimization problem can be obtained easily in terms of geodesics. The solution

to Pk(d2(Xk, T ik)) must be on the geodesic between Xk−1 and T ik . The term d2(Xk, T ik) is the

squared distance from the variable point to T ik and the term d2(xk−1, xk) is the squared distance from

the search point to Xk−1. Given any point, there is at least one point on the geodesic between Xk−1

and T ik for which the value of both terms is at least as small. Since Xk must be on this geodesic, the

distance from Xk to Xk−1 and the distance form Xk to T ik can be parameterized in terms of the

proportion t : 0 ≤ t ≤ 1 along the geodesic from Xk−1 to T ik : d(Xk, T ik) = (1− t)d(Xk−1, T ik)

and d(Xk, Xk−1) = td(Xk−1, T ik). Parameterizing d2(Xk, T ik) + αkd
2(Xk−1, Xk) in terms of

t makes Pk(d2(Xk, T ik)) into a problem of minimizing a quadratic function in t. The optimal

step length is t = min{1, α
1+α}. Even more importantly, several versions of split proximal point

algorithms have been shown to converge globally to the Fréchet mean (Bac̆àk, 2012). Split proximal

point algorithms for Fréchet means on non-positively curved orthant spaces are discussed further in

Section 2.2.
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The overall strategy for minimizing the Fréchet function will be to use a split proximal point

algorithm for global search and switch to a local search procedure. The motivation for switching to a

local search procedure is that the if local search is initialized close to the optimal solution then faster

convergence can be achieved. The local optimization problem is minimizing the Fréchet function

in a fixed orthant O. One feature of the local optimization problem is that the Fréchet function is

a piecewise C∞ function whose algebraic form depends on the geodesic distance from X to the

data trees. But, the Fréchet function is only C1 when X is restricted to the interior of a maximal

dimension orthant. Analysis of differential properties of the Fréchet function is presented in Sec. 2.4.

In Tr, the Owen-Provan algorithm for the geodesic Γ(X,T i) has complexity O(r4), and with

n data points the total complexity of finding the algebraic form of F (X) would be O(nr4). New

algorithms for dynamically updating the algebraic form of F (X) asX varies are presented in Section

2.6. Such algorithms will be especially useful in updating the objective function after small changes

are made in the edge lengths ofX; in particular these methods help accelerate local search algorithms.

Here is a high-level outline of the algorithmic system for solving the Fréchet mean optimization

problem developed in this chapter:

Treespace Fréchet mean algorithm

input: T 1, T 2, . . . , Tn, X0 ∈ Tr, ε > 0, δ > 0, a > 0, 0 < c < 1, {αk}, K ∈ N

F0 = inf; F1 = F (X0)

while F1 − F0 > a

SPPA for K steps (Sec. 2.2)

c=1;

while c ≤ K

Xk = argminX
{
d2(X,T ik) + αkd

2(Xk−1, X)
}

endwhile

while approximate optimality conditions (2.5) are not satisfied

compute a descent direction P (Sec. 2.5.1.1)

find a step-length, α, satisfying decrease condition (Sec. 2.5.1.2)

let Xk+1 = Xk + αP

if |e| < ε then remove e
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endwhile

endwhile

The following sections discuss implementation details and present theoretical analysis pertaining

to certain aspects of the problem. The next section presents specific global search procedures, both

of which are versions of split proximal point algorithms. The remaining sections focus on aspects of

the local search problem.

2.2 Global search methods

Proximal point algorithms as applied to the Fréchet optimization problem have been studied in

(Bac̆àk, 2012) and (Sturm, 2003). The former views the Fréchet mean problem from the paradigm of

convex optimization while the later studies Fréchet means in the context of stochastic analysis in

metric spaces of non-positive curvature. In this Chapter two global search algorithms are discussed,

the Inductive Mean Algorithm, which is stochastic, and the Cyclic Split Proximal Point Algorithm,

which is deterministic. Both of these are versions of split proximal point algorithms.

2.2.1 Inductive means

The Inductive Mean Algorithm is a method for calculating the Fréchet Mean based on (Sturm,

2003, Thm. 4.7). This algorithm was developed independently in (Bac̆àk, 2012) and (Miller et al.,

2012) and has been called Sturm’s algorithm, named after the K. T. Sturm who is attributed with its

discovery in proving that inductive means converge to the Fréchet mean in the more general context

of probability distributions on non-positively curved metric spaces.

Consider a sequence (Yi)i∈N of independent identically distributed random observations from

the uniform distribution on {T 1, T 2, . . . , Tn}. Define a new sequence of points (Sk)k∈N in Tr by

induction on k as follows:

S1 := Y1,

and

Sk :=

(
1− 1

k

)
Sk−1 +

1

k
Yk,

where the right hand side denotes the point 1
k fraction of the distance along the geodesic from Sk−1

to Yk. The point Sk is called the inductive mean value of Y1, . . . , Yk. The expected squared distance

between Sk and T̄ is less than or equal to F (T̄ )/k.
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2.2.2 Cyclic Split Proximal Point Algorithm

Choose a permutation, (p0, p1, . . . , pn−1), of {1, 2, . . . , n}. Define a new sequence of points

(Rk)k∈N in Tr by induction on k as follows:

R1 := Yp1 ,

and

Rk :=

(
1− 1

k

)
Rk−1 +

1

k
Yp(kmodn)

.

The sequence {Rk} converges to T̄ as k approaches infinity (Bac̆àk, 2012).

2.3 Vistal cells and squared treespace

The value of the Fréchet function at X depends on the geodesics from X to each of the data

trees. The goal in this section is to describe how treespace can be subdivided into regions where the

combinatorial form of geodesics from X to the data trees are all fixed. Descriptions of such regions

will be used in analyzing the differential properties of the Fréchet function.

Analysis of the Fréchet function starts at the level of a geodesic from a variable tree X to a fixed

source tree T . Given a fixed tree T , a vistal cell is a region V of treespace where the form of the

geodesic from any tree X in V to T is constant. The description of geodesics in Section 1.5.1 is now

built upon further to study how the combinatorics of geodesic supports for Γ(X,T ) can vary as X

varies.

Definition 2.3.1. (Miller et al., 2012, Def. 3.3) Let T be a tree Tr. Let O be a maximal orthant

containing T . The previstal facet, V(T,O;A,B), is the set of variable trees, X ∈ O, for which the

geodesic joining X to T has support (A,B) satisfying (P2) and (P3) with strict inequalities.

The description of the previstal facet V(T,O;A,B) becomes linear after a simple change of

variables. Let xe denote the coordinate in Tr indexed by edge e.

Definition 2.3.2. (Miller et al., 2012, Def. 3.4) The squaring map Tr → Tr acts on x ∈ Tr ⊂ RE+

by squaring coordinates:

(xe|e ∈ E)→ (ξe|e ∈ E), where ξe = x2
e
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Denote by T 2
r the image of this map, and let ξe = x2

e denote the coordinate indexed by e ∈ E.

The image of an orthant in Tr is then the equivalent orthant in T 2
r , and the image of a previstal

facet V(T,O;A,B) in T 2
r is a vistal facet denoted by V2(T,O;A,B). With this change of variables,

‖S‖ =
∑

e∈S ξe.

The squaring map induces on the Fréchet function F a corresponding pullback function

F 2(ξ) = F (
√
ξ), where(

√
ξ)e =

√
ξe.

Since the Fréchet function F (X) has a unique minimizer F 2(ξ) must also have a unique minimizer.

Proposition 2.3.3. (Miller et al., 2012, Prop. 3.5) The vistal facet V2(T,O;A,B) is a convex

polyhedral cone in T 2
r defined by the following inequalities on ξ ∈ Rr−2.

(O) ξ ∈ O; that is, ξe ≥ 0 for all e ∈ E, and ξe = 0 for e /∈ E, where O = Rr−2
≥0 .

(P2) ‖Bi+1‖2
∑
e∈Ai

ξe ≤ ‖Bi‖2
∑

e∈Ai+1

ξe for all i = 1, . . . , k − 1.

(P3) ‖Bi \ J‖
∑

e∈Ai\I

ξe ≥ ‖J‖
∑
e∈I

ξe for all i = 1, . . . , k and subsets I ⊂ Ai, J ⊂ Bi such that

I ∪ J is compatible.

Proposition 2.3.4. (Miller et al., 2012, Prop. 3.6) The vistal facets are of dimension 2r − 1, have

pairwise disjoint interiors, and cover T 2
r . A point ξ ∈ T 2

r lies interior to a vistal facet V2(T,O;A,B)

if and only if the inequalities in (O), (P2), and (P3) are strict.

Points which are not on the interior of vistal facets are in vistal cells, the faces of vistal facets. A

point ξ is on a vistal facet precisely when some of the inequalities in (O), (P2) or (P3) are satisfied

at equality. In such a situation, there is more than one valid support for the geodesic from T to the

pre-image X of ξ.

A system of equations defining a vistal cell can be formed by combining the systems of equations

from adjacent vistal facets and forcing appropriate constraints to equality. A canonical description of

vistal cells is given in (Miller et al., 2012, Sec. 3.2.5).

Let T 1, . . . , Tn be a set of points in Tr. A region V in squared treespace where the geodesics

ΓXT 1 , . . . ,ΓXTn can be represented by a fixed set of supports is called a multi-vistal cell. A multi-

vistal cell is an intersection of vistal facets of T 1, . . . , Tn. Multi-vistal cells and their pre-images
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in Tr, pre-multi-vistal cells, are regions where the Fréchet function can be represented with a fixed

algebraic form.

The systems of equations defining pre-vistal facets and pre-vistal cells are quadratic cones

with cone points at the origin of treespace. In squared treespace, the vistal facets and vistal cells

are polyhedral cones. Multi-vistal facets are also polyhedral cones with cones points at the origin

of treespace, because they are intersections of polyhedral cones with cone points at the origin of

treespace. This nice geometric structure is useful both in determining when a search point is on

the boundary of a vistal cell, and thus when the objective function has multiple forms, and for

dynamically updating the objective function during line searches, as described in Sec. 2.6.

2.4 Differential analysis of the Fréchet function in treespace

Analysis of how F (X) changes with respect to X provides useful insights for designing fast

optimization algorithms. This analysis is aimed at providing summaries for how the value of F (X)

changes with respect to X . These results also play an important role in Ch. 4, which focuses on

stickiness of Fréchet means in treespace.

Let X and Y be points in Tr such that X and Y share a multi-vistal facet. If this is the case, then

either (i) X and Y have the same topology, (ii) X is a contraction of Y or (iii) Y is a contraction

of X . Assume that if the topologies of trees X and Y differ then X is a contraction of Y , that is

O(X) ⊆ O(Y ). Let Γ(X,Y ;α) be the parameterized geodesic from X to Y with 0 ≤ α ≤ 1.

Definition 2.4.1. The directional derivative from X to Y is

F ′(X,Y ) = lim
α→0

F (Γ(X,Y ;α))− F (X)

α
(2.6)

The main results of this section are summarized as follows: Cor. 2.4.3 gives the value of

the directional derivative when O(X) = O(Y ) and Thm. 2.4.7 gives the value of the directional

derivative when O(X) ⊆ O(Y ), when assuming Y is contained on the interior of a multi-vistal

facet. In Lem. 2.4.8 we show that when when Y is on a multi-vistal face the value of the directional

derivative can be expressed equivalently using any of the representations for the geodesics from

T 1, . . . , Tn to Y . In Lem. 2.4.9 and Lem. 2.4.11 we show that the directional derivative is continuous

and convex with respect to Y on Tr. Thm. 2.4.17 states that the value of the directional derivative can

be decomposed into a contribution from the change in F (X) resulting in adjusting positive length
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edges in X , and a contribution from the change in F (X) resulting in increasing the lengths of edges

from zero.

When both X and Y are in the relative interior of the same maximal orthant of treespace, where

the gradient at X is well defined in O(Y ), the directional derivative can be expressed in terms of

the gradient at X inside O(Y ). However when O(X) $ O(Y ), the gradient at X might not be well

defined in O(Y ). Analysis of the directional derivative in the later situation, which is one of the

main focuses of this section, is important because it facilitates concise specification of optimality

conditions and an efficient algorithm for verifying that a point on a lower dimensional face of an

orthant O is the minimizer of the Fréchet function within O.

Theorem 2.4.2. (Miller et al., 2012)[Thm. 2.2] The gradient of F is well defined on the interior of

every maximal orthant O.

Idea of proof. The Fréchet function is smooth in each multi-vistal facet, and it can be shown that the

gradient function has the same value in every multi-vistal facet containing X in the interior of O.

Therefore the gradient is well -defined on the interior of O.

Corollary 2.4.3. When O(X) = O(Y ) the value of directional derivative from X to Y can be

expressed in terms of the gradient at X , and the differences in edge lengths pe = |e|Y − |e|X , as

F ′(X,Y ) =
∑
e∈EX

pe [∇F (X)]e (2.7)

Proof. Expression of a directional derivative of a smooth function in terms of its gradient is a

standard technique in calculus.

The gradient may not be well defined on a lower-dimensional orthant of treespace. For a point

on a lower dimensional orthant of treespace, a well defined analogue to the gradient is the restricted

gradient.

Definition 2.4.4. Let (Ai1, B
i
1), . . . , (Ai

ki
, Bi

ki
) be a support sequence for the geodesic from X to

T i. The restricted gradient is the vector of partial derivatives which correspond to points Y with
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O(X) ⊆ O(Y ) and Y −X parallel to the axes of O(X). If |e|X > 0 then

[∇F (X)]e = lim
∆e→0

F (X + ∆e)− F (X)

∆e
(2.8)

=

n∑
i=1

 |e|X
(

1 +
||Bil ||
||Ail ||

)
if e ∈ Ail

(|e|X − |e|T i) if e ∈ Ci
(2.9)

and if |e|X = 0 then [∇F (X)]e = 0.

When X is on the interior of a maximal orthant of treespace then the restricted gradient is the

same as the gradient. Note that in the case when Ail = {e}, |e|X
(

1 +
||Bil ||
||Ail ||

)
= |e|X + ‖Bi

l‖.

Second order derivatives will be used in calculating Newton directions in Sec. 2.5.

Definition 2.4.5. Let X be a point in the interior of a multi-vistal cell relative to an orthant O of

treespace. The restricted Hessian on O is the matrix of second order partial derivatives with entries

having the following values:

[
∇2F (X)

]
ef

= 2
r∑
i=1



1 +
‖Bil‖
‖Ail‖
− ‖Bil‖
‖Ail‖3

x2
e if e = f , e ∈ Ail , |Ail| > 1

1 if e = f , e ∈ Ail , Ail = {e}

1 if e = f e ∈ Ci

− ‖B
i
l‖

‖Ail‖3
xexf if e 6= f e, f ∈ Ail

0 otherwise

(2.10)

If either |e|X = 0 or |f |X = 0 then
[
∇2F (X)

]
ef

= 0.

Theorem 2.4.6. The value of the restricted gradient at a point X can be expressed equivalently

using the algebraic form of the Fréchet function from any of the multi-vistal facets containing X .

Proof. The restricted gradient has the same value using any of the valid support sequences defined

by vistal cells on the relative interior of O. Here we verify that at X the gradient of d2(X,T i) is

the same for every valid support and signature. The gradient of d2(X,T i) for the support (A,B) is

given as follows. Let the variable length of edge e in X be written as xe.

∂d2(X,T i)

∂xe
=

 2
(

1 + ||Bl||
||Al||

)
xe if e ∈ Ail

2
(
xe − |e|iT

)
if e ∈ Ci

(2.11)
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The geodesic Γ has a unique support(A,B) satisfying

‖A1‖
‖B1‖

<
‖A2‖
‖B2‖

< . . . <
‖Ak‖
‖Bk‖

. (2.12)

From (Miller et al., 2012), any other support (A′,B′) for Γ must have a signature S ′ in (P3) with

some equality subsequences. Suppose that A′j and B′j are in some equality subsequence satisfying

(P2) with B′j containing the edge e. Then for the support pair Ai and Bi such that Bi contains e, it

must hold that ‖A
′
i‖

‖B′i‖
=
‖Aj‖
‖Bj‖ . Now we can see that

(
1 +

||B′j ||
||A′j ||

)
xe =

(
1 + ||Bi||

||Ai||

)
xe, and that the

gradient of d2(X,T i) is the same on every multi-vistal facet containing X on the relative interior of

O.

Now we extend the results for directional derivatives to the situation when O(X) ⊂ O(Y ).

Theorem 2.4.7. Suppose that Y lies in the interior of multi-vistal facet VY , and X is some point in

VY . Let (Ai1, B
i
1), . . . , (Ain, B

i
n) be the support pairs for the geodesic from Y to T i and let Ci be

the set of edges in Y which are common in T i. Let EX be the set of edges with positive lengths in

X . Let P be the vector with components pe = |e|Y − |e|X so that Γ(X,Y ;α) = X + αP , and let

Zα := Γ(X,Y ;α). Then the value of directional derivative from X to Y is

F ′(X,Y ) =
∑
e∈EX

pe [∇F (X)]e + 2
n∑
i=1

 ∑
l:‖Ail‖X=0

(
‖Ail‖P ‖Bi

l‖T
)
−

∑
e∈Ci\EX

pe|e|T i

 .

Proof. Let Z be a point on the geodesic segment between X and Y . The length of edge e in Z be

|e|Z = |e|X + αpe. The Fréchet function is the sum of squared distances from a variable point to

each of the data points T 1, . . . , Tn, so the directional derivative of the Fréchet function is the sum

over the indexes of the data points of the directional derivatives of the square distances.

F ′(X,Y ) = lim
α→0

F (Zα)− F (X)

α
(2.13)

= lim
α→0

∑n
i=1 d

2(Zα, T
i)−

∑n
i=1 d

2(X,T i)

α
(2.14)

=

n∑
i=1

(
lim
α→0

d2(Zα, T
i)− d2(X,T i)

α

)
(2.15)
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For a set of edges A, let ‖A‖X =
√∑

e∈A |e|X . If an edge e has zero length in a tree, X , or is

compatible with X but not present then take |e|X to be 0. The squared distance from Zα to T i can

be expressed as

d2(Zα, T
i) =

ki∑
l=1

(‖Ail‖Zα + ‖Bi
l‖)2 +

∑
e∈Ci

(|e|Zα − |e|T i)2. (2.16)

The squared distance has three types of terms: a term representing the contribution from common

edges, terms for support pairs with ‖Ail‖X > 0, and terms for support pairs with ‖Ail‖X = 0. In the

first two cases the gradient is well-defined, and taking the inner-product of the directional vector and

the gradient will yield their contributions to the directional derivative. In the third case the gradient is

undefined, and its value will be obtained by analyzing the limit directly as follows.

(
lim
α→0

∑ki

l=1(‖Ail‖Zα + ‖Bi
l‖)2 −

∑ki

l=1(‖Ail‖X + ‖Bi
l‖)2

α

)
. (2.17)

Bringing out the sum and canceling in the numerators yields,

ki∑
l=1

lim
α→0

‖Ail‖2Z − ‖Ail‖2X + 2‖Bi
l‖
(
‖Ail‖Z − ‖Ail‖X

)
α

. (2.18)

The limit of the fraction can be split into the sum of two limits,

lim
α→0

‖Ail‖2Z − ‖Ail‖2X + 2‖Bi
l‖
(
‖Ail‖Z − ‖Ail‖X

)
α

(2.19)

= lim
α→0

‖Ail‖2Z − ‖Ail‖2X
α

+ lim
α→0

2‖Bi
l‖
(
‖Ail‖Z − ‖Ail‖X

)
α

. (2.20)

If every edge in Ail has length zero in X , and thus ‖Ail‖X = 0, the expression the limit on the left is

zero and the limit on the right simplifies to

2‖Bi
l‖‖Ail‖P . (2.21)
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The partial derivative of the squared distance from X to T i with respect to the length of edge e,

that is the component for edge e in the restricted gradient vector, is

[∇d2(X,T i)]e =

 |e|X
(

1 +
||Bil ||
||Ail ||

)
if e ∈ Ail

(|e|X − |e|T i) if e ∈ Ci.
(2.22)

The directional derivative of the squared distance simplifies to

lim
α→0

d2(Z, T i)− d2(X,T i)

α
(2.23)

=
∑
e∈EX

pe[∇d2(X,T i)]e + 2
∑

l:‖Ail‖X=0

‖Bi
l‖
√∑
e∈Ail

p2
e

− 2
∑

e∈Ci\EX

pe|e|T i . (2.24)

Summing the directional derivatives of the squared distances over T 1, . . . , Tn yields the expression

for the value of the directional derivative in the theorem.

We now extend the results to the situation where Y is allowed to be on a vistal face. In this

situation there can be multiple valid support sequences for the geodesics from Y to T 1, . . . , Tn.

Lemma 2.4.8. Suppose that X and Y are in the same multi-vistal facet, V , and that Y is on a face of

V on the interior of an orthant. The value of the directional derivative can be expressed equivalently

using any valid support sequences for the geodesics from Y to T 1, . . . , Tn.

Proof. The form of F ′(X,Y ) is constant within an open multi-vistal facet, and changes at boundaries

of vistal facets. When Y reaches the boundary of a vistal facet - that is either at least one of the

(P2) constrains reaches equality, at least one of the (P3) constraints reaches equality, or when the

length of an edge reaches zero or increases from zero - this is called the collision of Y with the

boundary of that vistal facet. A point T i, and associated geodesic Γ(T i, Y ) are said to generate

the vistal facet collision. When Y collides with a (P2) boundary of a vistal facet at least two

support pairs for the geodesic merge; and when Y collides with a (P3) boundary at least two support

pairs for the geodesic could be split in such a way that the resulting support is valid. In either

case there are at least two valid forms for the geodesic. Let (C1, D1), (C2, D2) be support pairs

which are formed from a partition of the support pair (Ail, B
i
l ), such that either of the following

support sequences for the geodesic from Y to T i is valid: (Ai1, B
i
1), . . . , (Ail, B

i
l ), . . . , (A

i
m, B

i
m) or
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(Ai1, B
i
1), . . . , (C1, D1), (C2, D2), . . . , (Aim, B

i
m); and ‖C1‖

‖D1‖ = ‖C2‖
‖D2‖ =

‖Ail‖
‖Bil‖

. Rescaling the lengths

of edges in Ail does not change the form of the geodesic for small α and l ≤ k. Parameterizing the

lengths of edges in terms of α and canceling α yields

√∑
e∈C1

p2e

‖D1‖ =

√∑
e∈C2

p2e

‖D2‖ =

√∑
e∈Ai

l
p2e

‖Bil‖
. That

fact, and the fact that C1∪C2 partitionAil andD1∪D2 partitionBi
l implies that ‖D1‖

√∑
e∈C1

p2
2 +

‖D2‖
√∑

e∈C2
p2
e = ‖Bi

l‖
√∑

e∈Ail
p2
e. Thus the directional derivative is continuous across vistal

facet boundaries from (P2) and (P3) constraints.

Now we extend the results for directional derivatives to directions issuing from X to points Y in

a small enough radius such that O(X) ⊆ O(Y ) and X and Y share a multi-vistal facet.

Lemma 2.4.9. The directional derivative, F ′(X,Y ), is a continuous function of Y over the set of Y

such that O(X) ⊆ O(Y ) and X and Y share a vistal facet.

Proof. The directional derivative is a continuous function at the faces of orthants because when an

edge length |e|Y increases from zero its contribution to F ′(X,Y ) is a continuous function which

starts at the value zero. Thus, when the topology of Y changes F ′(X,Y ) changes continuously as a

function of the edge lengths.

The following lemma is used in the proof of Lem. 2.4.11.

Lemma 2.4.10. Let Y 0 and Y 1 be a points in Tr such that O(X) ⊆ O(Y 0) and O(X) ⊆ O(Y 1).

Let Y t = Γ(Y 0, Y 1; t) be the point which is proportion t along the geodesic from Y 0 to Y 1. The point

which is α proportion along the geodesic fromX to Y t is t proportion along the geodesic between the

point ΓX,Y 0(α) and the point ΓX,Y 1(α); that is, Γ(X,Y t;α) = Γ(Γ(X,Y 0;α),Γ(X,Y 1;α); t).

Proof. Let Y 0(α) = ΓXY 0(α) and let Y 1(α) = ΓXY 1(α). Let C = EY 0(α)∩EY 1(α). By definition

EX ⊆ C. The length of e in Y 0(α) is

|e|Y 0(α) =

 |e|X + α|e|Y 0 if e ∈ C

α|e|Y 0 if e ∈ EY 0 \ C
(2.25)

and the length of e in Y 1(α) is

|e|Y 1(α) =

 |e|X + α|e|Y 1 if e ∈ C

α|e|Y 1 if e ∈ EY 1 \ C.
(2.26)
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A geodesic support sequence which is valid for the geodesic between Y 0 and Y 1 is valid for the the

geodesic between Y 0(α) and Y 1(α). The incompatibilities of edges in A and B are the same for

any α. Suppose that a support sequence satisfies (P2) and (P3) for some α. Factoring out α from

the numerators and denominators of the (P2) and (P3) ratios reveals that the combinatorics of the

geodesic between Y 0(α) and Y 1(α) depends on the relative proportions of lengths of edges in Y 0

and Y 1, and not on the value of α. That is,

‖Al‖Y 0(α)

‖Bl‖Y 1(α)
=

√∑
e∈Al α|e|Y 0√∑
e∈Bl α|e|Y 1

=
‖Al‖Y 0

‖Bl‖Y 1

. (2.27)

Now we show that |e|ΓY 0(α)Y 1(α)(t)
= |e|ΓXY t (α). The combinatorics of the geodesic between

Y 0(α) and Y 1(α) do not depend on α, therefore which edges have positive lengths in the lth leg of

ΓY 0(α)Y 1(α) does not depend on α. The length of edge e at ΓY 0(α)Y 1(α)(t) is

|e|ΓY 0(α)Y 1(α)(t)
=



(1−t)‖Aj‖α−t‖Bj‖α
‖Aj‖α |e|Y 0(α) e ∈ Aj

t‖Bj‖α−(1−t)‖Aj‖α
‖Bj‖α |e|Y 1(α) e ∈ Bj

(1− t)|e|Y 0(α) + t|e|Y 1(α) e ∈ C.

(2.28)

(2.29)

Substituting ‖Aj‖α = α‖Aj‖, ‖Bj‖α = α‖Bj‖, 2.25, and 2.26 yields

|e|ΓY 0(α)Y 1(α)(t)
=



α
(1−t)‖Aj‖−t‖Bj‖

‖Aj‖ |e|Y 0 e ∈ Aj

α
t‖Bj‖−(1−t)‖Aj‖

‖Bj‖ |e|Y 1 e ∈ Bj

|e|X + α((1− t)|e|Y 0 + t|e|Y 1) e ∈ C.

(2.30)

Now the length of e in ΓXY t(α) is

|e|ΓXY t (α) =

 |e|X + α|e|Y t if e ∈ C

α|e|Y t if e ∈ EY t \ C.
(2.31)
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The length of e in Y t is given by

|e|Y t =



(1−t)‖Aj‖−t‖Bj‖
‖Aj‖ |e|Y 0 e ∈ Aj

t‖Bj‖−(1−t)‖Aj‖
‖Bj‖ |e|Y 1 e ∈ Bj

((1− t)|e|Y 0 + t|e|Y 1) e ∈ C.

(2.32)

Therefore |e|ΓY 0(α)Y 1(α)(t)
= |e|ΓXY t (α) holds.

Lemma 2.4.11. The directional derivative F ′(X,Y ) is a convex function of Y over the set of Y

such that O(X) ⊆ O(Y ) and X and Y share a vistal facet.

Proof. Let Y 0 and Y 1 be a points in Tr such that O(X) ⊆ O(Y 0) and O(X) ⊆ O(Y 1). Let Y t be

the point which is proportion t along the geodesic from Y 0 to Y 1. Let ΓXY t(α) : [0, 1]→ Tr be a

function which parameterizes the geodesic from X to Y t. Using Lem. 2.4.10 and the strict convexity

of F together yields

F (ΓXY t(α)) < F (ΓXY 0(α))(1− t) + F (ΓXY 1(α))t. (2.33)

The directional derivative from X in the direction of ΓXY t(α) is

F ′(X,Y t) = lim
α→0

F (ΓXY t(α))− F (X)

α
. (2.34)

Substituting for F (ΓXY t(α)) using the inequality on line (2.33) yields,

F ′(X,Y t) ≤ lim
α→0

F (ΓXY 0(α))(1− t) + F (ΓXY 1(α))t− F (X)

α
. (2.35)

Note that strict inequality may not hold even though the Fréchet function is convex because in the

limit the value may approach an infimum. Simplifying by separating the fraction and limit reveals
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that the directional derivative is convex in Y ,

F ′(X,Y t) ≤ (1− t) lim
α→0

F (ΓXY 0(α))− F (X)

α
+ t lim

α→0

F (ΓXY 1(α))− F (X)

α
(2.36)

= (1− t)F ′(X,Y 0) + tF ′(X,Y 1). (2.37)

Lemma 2.4.12. Let X and Y be points such that O(X) ⊆ O(Y ). F ′(X,Y ) is a C1 function of Y

on the interior of the orthant O.

Proof. Within any fixed multivistal face the algebraic form of F is a sum of smooth functions, and

the restricted gradient function is continuous at the boundaries of multivistal faces relative to O.

Definition 2.4.13. Let (A1, B1), . . . , (Ak, Bk) be a support sequence for the geodesic from Y to a

tree T , as in the definition of directional derivative above, Def. 2.4.1. Let any support pair (Al, Bl)

such that ‖Al‖X = 0 be called a local support pair.

Local support pairs will be the earliest support pairs in a support sequence for the geodesic

between Y and T . Y and X share a vistal facet; that is, their geodesics to T can be represented

with the same support sequence. According to (P2), any support pair such that ‖Al‖X = 0 must be

among the first support pairs in the support sequence. Thus, let (A1, B1), . . . , (Am, Bm) be local

support pairs, and let (Am+1, Bm+1), . . . , (Ak, Bk) be the rest of the geodesic support sequence

being used to represent the geodesic between Y and T .

Let B̃ be all edges from T which are incompatible with at least one edge in Y but not incompati-

ble with any edge in X and let Ã be all edges from Y which are incompatible with some edge in

B̃.

Lemma 2.4.14. Then any sequence of local support pairs, (A1, B1), . . . , (Am, Bm) have the prop-

erty that the sets A1, . . . , Am partition Ã and B1, . . . , Bm partition B̃.

Proof. Any edge in T which is incompatible with an edge in a local support pair (Al, Bl) is

compatible with every edge in X because for a local support pair ‖Al‖X = 0. Therefore any edge

from T in a local support pair must be in B̃.
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An edge in B̃ is compatible with every edge in X therefore cannot be in any of the support pairs

with edges from X and thus must be in a local support pair.

Suppose an edge, e, from Y is in a local support pair, (Al, Bl); then it must incompatible with at

least one edge in T . All the edges which are in Bl must be compatible with all edges in X because

‖Al‖X = 0. Since e is incompatible with some edge in T that is not incompatible with any edge in

X , e must be in Ã.

Let e be an edge in Ã. Edge e is not in X , and edge e is incompatible with at least one edge

in T which no edge in X is incompatible with. Edge e must be in a support pair so that along the

geodesic the length of e contracts to zero before all the edges in B̃ can switch on. Therefore e must

be a support pair with at least one of the edges in B̃ that it is incompatible with. Since all edges in B̃

are in local support pairs, all edges in Ã must also be in local support pairs.

Definition 2.4.15. Let O⊥(X) be the orthogonal space to O(X) at X , that is the union of all

orthogonal spaces in all orthants containing O(X).

Corollary 2.4.16. Let X,Y ∈ Tn, withO(X) ⊆ O(Y ) and with X and Y in a common multi-vistal

cell, VXY , let YX be the projection of Y onto O(X), and let Y⊥ be the projection of Y onto O⊥(X)

at X . Then any sequence of local support pairs which is valid for the geodesic from Y to T is also

valid for the geodesic from Y⊥ to T and vice versa.

Proof. Lem. 2.4.14 implies local support pairs for the geodesic from Y to T and Y⊥ to T would be

composed from the same sets of edges. Factoring out α, we see that the relative lengths of edges in

Ã are the same in Y and Y⊥.

Theorem 2.4.17. (Decomposition Theorem for Directional Derivatives) Let X,Y ∈ Tn, with

O(X) ⊆ O(Y ) and with X and Y in a common multi-vistal cell, VXY , let YX be the projection of

Y onto O(X), and let Y⊥ be the projection of Y onto O⊥(X) at X . Then,

F ′(X,Y ) = F ′(X,YX) + F ′(X,Y⊥). (2.38)

Proof. Note that since X and Y are in the same orthant, the geodesic ΓXY is just the line segment

XY . Let P = Y − X , and let PX and P⊥ be its decomposition into the parts corresponding to

YX and Y⊥. Let Z be a point on XY denoted by |e|Z = |e|X + αpe. Let ZX = X + αPX and
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let Z⊥ = X + αP⊥ be the component of Z orthogonal to O(X). By Cor. 2.4.3, the value of the

directional derivative from X to YX is

F ′(X,YX) = lim
α→0

F (ZX)− F (X)

α
=
∑
e∈EX

pe [∇F (X)]e . (2.39)

and the directional derivative from X to Y⊥ is

F ′(X,Y⊥) = lim
α→0

F (Z⊥)− F (X)

α
(2.40)

= 2

n∑
i=1

 ∑
l:‖Ail‖X=0

‖Bi
l‖
√∑
e∈Ail

p2
e

− ∑
e∈Ci\EX

|e|T ipe

 . (2.41)

The partial derivative at X is well defined and is equal to zero for edges which (i) have length zero in

X , (ii) positive length in Y , and (iii) are in support pairs such that ‖Ail‖X > 0. Therefore the claim

of the theorem holds.

2.5 Interior point methods for optimizing edge lengths

In this section, the local search problem is defined, the fundamentals for iterative local search

algorithm - i.e. initialization, an improvement method and an optimality qualification - are discussed,

and an iterative search algorithm is presented.

Consider a variable tree X ∈ Tr and a fixed set of edges E. The goal is to minimize the Fréchet

function but under the restriction that the topology of X may only have edges from E. Under this

restriction, the geometric location of X is restricted to the orthant defined by the set of edges E,

O(E). As the edge lengths of X vary the geodesic from X to T i will also vary, and the support

sequence (Ai,Bi) = (Ai1, B
i
1), . . . , (Ai

ki
, Bi

ki
) will change whenever X crosses the boundary of a

vistal cell. Local search can be formulated as the following convex optimization problem.

Objective

min F (X) =
n∑
i=1

 ki∑
l=1

(‖Ail‖+ ‖Bi
l‖)2 +

∑
e∈Ci

(|e|X − |e|T i)2

 (2.1)
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Constraints

|e|X ≥ 0 ∀ e ∈ E (2.2)

The minimizer of this optimization problem, X∗, satisfies F (X∗) ≤ F (X) for all X in O(E).

2.5.0.1 Optimality Qualifications

There are two cases for the optimal solution X∗: either every edge in X∗ has a positive length or at

least one edge in X∗ does not. If every edge of X∗ has positive length, then X = X∗ if and only if

∇F (X) = 0 because the Fréchet function is continuously differentiable in the interior of O. The

optimality condition for a point on a lower dimensional face of treespace must be expressed in terms

of directional derivatives. In that case the optimality condition is

F ′(X,Y ) ≥ 0 for all Y such that O(X) ⊆ O(Y ) (2.3)

By using Thm. 2.4.17 to separate the directional derivative into the contribution from the component

of Y in O(X), and the component of Y which is perpendicular to O(X) the optimality condition

becomes

[∇F (X)]e = 0 for all e : |e|X > 0

F ′(X,Y ) ≥ 0 for all Y such that the component of Y in O(X) is 0
(2.4)

For the local search problem i.e. identifying the minimizer of the Fréchet function on an orthant of

treespace, O(E) there must be a unique solution because the Fréchet function is strictly convex and

O(E) is a convex set. Also, optimality conditions for the local search problem are only different

from global optimality conditions in one aspect, which is that rather than requiring F ′(X,Y ) ≥ 0

for all Y perpendicular to O(X), it is only necessary to consider the subset of such points Y that are

in O(E).
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Approximate optimality conditions

Conditions for a point X on the interior of an orthant to be approximately optimal are:

|[∇F (X)]e| < δ for all e : |e|X > ε

[∇F (X)]e ≥ 0 or |[∇F (X)]e| < δ for all e : |e|X < ε
(2.5)

If these approximate optimality conditions are satisfied then F (X∗) will not differ much from the

Fréchet function value when the lengths of edges with positive derivatives are set to 0.

2.5.1 A damped Newton’s method

The following algorithm is designed to find approximately optimal edge lengths for a fixed tree

topology. Detailed explanations for the steps of this algorithm are in the following subsections.

Interior point algorithm for optimal edge lengths

input: T 1, T 2, . . . , Tn, X0 ∈ Tr, ε > 0, δ > 0, 0 < c < 1

while approximate optimality conditions (2.5) are not satisfied

do

compute a descent direction P (Sec. 2.5.1.1)

find a feasible step-length, α, satisfying decrease condition (Sec. 2.5.1.2)

let Xk+1 = Xk + αP

if |e| < ε then remove e

endwhile

2.5.1.1 Newton steps

A successful iterative algorithm will make substantial progress to an optimal point. This can be

achieved using a modified Newton’s method. Newton’s method uses a descent vector which points to

the minimizer of a quadratic approximation of the objective function. The quadratic approximation

in Newton’s method uses the first three terms of the Taylor expansion of F (X). For the Fréchet

function the entries of the Hessian matrix of second order partial derivatives is given in Def. 2.4.5.
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The Hessian matrix is positive definite because the Fréchet function is strictly convex. Thus,

when the Hessian and gradient are well defined, the second order Taylor approximation is

g(X; p) =F (X) +
∑
e∈E
∇(F (X))e(pe) +

∑
e∈E

∑
e′∈E

(pe)(pe′)
[
∇2F (X)

]
ee′

(2.6)

The minimizer in p of g(X; p) is the Newton vector pN = −∇F (X)(∇2F (X))−1. In cases where

Hessian is not well defined or poorly scaled the Newton vector either must be modified or shouldn’t

be used at all. There are two such cases: (i) the Hessian is poorly scaled if any set Ail has ‖Ail‖ close

to zero and |Ail| > 1; and (ii) the Hessian is not well defined on the shared faces of multivistal cells

for edges in a support pair which changes from one side of the shared face to the other.

In case (i), as ‖Ail‖ approaches zero |
[
∇2F (X)

]
ee′
| increases without bound for e, e′ ∈ Ail .

Thus, the Hessian matrix may become ill conditioned. But even as ‖Ail‖ approaches zero, other

entries of the gradient and Hessian are stable. If e ∈ Ail , and e′ /∈ Ail , and e, e′ ∈ Ail for l 6= q, then

those entries |
[
∇2F (X)

]
ee′
| approaches zero.

But even if case (i) occurs, the edges which have lengths approaching zero will have very little

effect on the lengths of large scale edges. The mixed second order partial derivatives, with one

edge e in Ail with ‖Ail‖ → 0, and the other edge e′ in Ail with ‖Ail‖ bounded positively from below,

are essentially zero. Therefore, these mixed partial derivatives should have very little effect in the

quadratic approximation g(X; p).

In case (ii),
[
∇2F (X)

]
ee′

) does not agree on the shared face of multi-vistal cells. In this case

a direction of improvement is based on the gradient and the algebraic form of the Hessian matrix

for points strictly within that shared face. The Newton direction is obtained by solving for the

minimizer of the second order Taylor series quadratic model. The solution is obtained by solving the

linear system ∇2F (X)p = −∇F (X). Since the entries of ∇2F (X) may jump across vistal cells

the entries of this matrix will change in a non-uniform way and the solution pN will jump.

2.5.1.2 Choosing a step length

The taking a full step along the Newton direction minimizes the quadratic approximation of the

Fréchet function, however taking a full step may result in a new point which actually has a larger

Fréchet function value or that may be on outside the orthant boundaries.
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The first precaution is to calculate the maximum step length α0 such that |e|k+1 = |e|k+α0pe ≥

0 for all e. If α0 ≤ 1 then let α = α0c0 where 0 < c0 < 1.

Choosing step-length which satisfies the following sufficient decrease condition will ensure a

substantial decrease in the objective function value at every step. Let 0 < c1 < 1.

F (Xk + αp) ≤ F (Xk) + c1α∇F ′kp (2.7)

The curvature condition, which rules out unacceptably short steps, requires the step-length, α, to

satisfy

∇F (Xk + αp)′p ≥ c2∇F ′kp (2.8)

for some constant c2 in the interval (c1, 1).

2.5.1.3 Initialization

For initializing an interior point search, any point in O(E) would suffice, but it is preferential to start

with a good guess for edge lengths. The global search algorithms presented in the next section could

provide a starting point for a local search. One good start strategy can be derived by noticing that the

Fréchet function can be separated into a quadratic part and a part involving sums of norms.

F (X) =
n∑
i=1

ki∑
l=1

‖Ail‖2 + 2‖Ail‖‖Bi
l‖+ ‖Bi

l‖2 +
∑
e∈Ci

(|e|2X − |e|T i)2 (2.9)

The only terms that cannot be expressed in a quadratic function of the edge lengths are collected into

function

S(X) =
n∑
i=1

ki∑
l=1

2‖Ail‖‖Bi
l‖ (2.10)

The quadratic parts are collected into function

Q(X) =
n∑
i=1

ki∑
l=1

‖Ail‖2 + ‖Bi
l‖2 +

∑
e∈Ci

(|e|X − |e|T i)2, (2.11)
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The minimizer of Q(X), X∗Q, can be easily found by solving∇Q(X) = 0; the solution is

|e|X∗Q =

∑n
i=1 |e|T i
n

. (2.12)

The optimal value |e|X∗Q is non-negative, and if e is common in any of T 1, . . . , Tn, then |e|X∗Q is

positive. The gradient of S(X) is non-negative at any feasible X , which implies that the optimal

edges lengths in X∗ must be no larger than the edge lengths in X∗Q i.e. the optimal solution is in the

closed box

0 ≤ |e|X ≤ |e|X∗Q ∀e ∈ E. (2.13)

Thus a reasonable starting point would be X∗Q.
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2.6 Updating Geodesic Supports

In this section we consider the problem of updating the Fréchet function while navigating an

orthant of treespace.

The algebraic form of the Fréchet function depends on the geodesics from the variable tree X to

the data trees T 1, . . . , Tn. Updating these involves changing the algebraic form so it continues to

represent the individual geodesics as X moves from one point of treespace to another. Finding the

correct algebraic form from scratch takes order O(r4n) complexity; in this section we offer more

efficient methods based on iteratively updating the geodesics. These methods take advantage of

the polyhedral form of the vistal subdivision of squared treespace (Miller et al., 2012), which are

based in turn on the optimality properties of a geodesic from (Owen and Provan, 2009). The next

subsection describes the setup for systematically updating the algebraic form of the Fréchet function.

2.6.0.4 Setup and notation

All discussion in this section takes place in squared treespace. Let X0 and X1 be fixed trees in the

same orthant, so that the geodesic between them is a line segment. Let Xλ = (1−λ)X0 +λX1 be a

variable tree on this segment. The length of each edge in Xλ is |e|Xλ = (1− λ)|e|X0 + λ|e|X1 , and

the change in the length of e with respect to λ is de = |e|X1 − |e|X0 . Thus |e|Xλ = |e|X0 +λde. Let

Γi,λ be the geodesic from Xλ to T i with supports (Ai,λ,Bi,λ) = (Ai,λ1 , Bi,λ
1 ), . . . , (Ai,λ

ki,λ
, Bi,λ

ki,λ
).

These supports will be constant in the vistal cell Vλ containing Xλ. We describe conditions under

which Xλ leaves Vλ, and the associated updates to the supports.

2.6.0.5 Intersections with (P2) constraints

The (P2) bounding inequalities for Vλ can be written in the form

‖Bi,λ
l+1‖

2
∑
e∈Ai,λl

|e|X0 + λde ≤ ‖Bi,λ
l ‖

2
∑

e∈Ai,λl+1

|e|X0 + λde i = 1, . . . , kl − 1, l = 1, . . . , n.

(2.14)

Simplification yields

ailλ+ bil ≥ 0 (2.15)
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where

ail = ‖Bi,λ
l ‖

2
∑

e∈Ai,λl+1

de − ‖Bi,λ
l+1‖

2
∑
e∈Ai,λl

de,

and

bil = ‖Bi,λ
l ‖

2
∑

e∈Ai,λl+1

|e|X0 − ‖Bi,λ
l+1‖

2
∑
e∈Ai,λl

|e|X0 .

There are several cases for solutions, λil = −bil/ail , and each signifies a distinct situation. The case

λ = 0 implies X0 is on a (P2) boundary of Vλ. Any positive solution, 0 < λ ≤ 1 corresponds to a

point along the geodesic segment at which the segment intersects a (P2) constraint. Finding λ > 1

signifies an intersection with a (P2) boundary beyond X1, and if a solution is negative then there

is an intersection with the geodesic in the opposite direction to d. The first (P2) inequalities to be

violated in moving along the geodesic segment are

argmin
{
λil
}
.

i, l : λi,l > 0
(2.16)

If a (P2) constraint is satisfied at equality, the corresponding supports may be combined to make a

new support satisfying (P2) at strict inequality, and still satisfying (P1) and (P3). Combining the

current flow values into this new support pair will provide a warm start for subsequently tracking

intersections with (P3) constraints, and further (P2) violations.

2.6.0.6 Intersections with (P3) constraints

From (Miller et al., 2012, Prop. 3.3) inequality constraints for (P3) are

‖Bi,λ
l \ J‖

2
∑

e∈Ai,λl \I
|e|X0 + λde − ‖J‖2

∑
e∈I |e|X0 + λde ≥ 0

for all i = 1, . . . , k and subsets I ⊂ Ai,λl , J ⊂ Bi,λ
l such that I ∪ J is

compatible.

(2.17)

Determining whether or not a support pair satisfies (P3) can be restated as the following extension

problem.

Extension Problem

Given: Sets A ⊆ EX , and B ⊆ ET i
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Question: Does there exist a partition C1 ∪ C2 of A and a partition of D1 ∪D2 of B such that

(i) C2 ∪D1 corresponds to an independent set in G(A,B),

(ii) ‖C1‖
‖D1‖ ≤

‖C2‖
‖D2‖

The extension problem can be reformulated from a maximum independent set problem to a maximum

flow problem. Each support pair (Ai,λl , Bi,λ
l ) has a corresponding incompatibility graph as defined

in (Owen and Provan, 2009, Sec. 3). The vertex weights of the incompatibility graph at a point along

the geodesic segment can be parameterized in terms of λ as

wλe =



|e|X0+λde∑
e′∈Ai,λ

l

|e′|X0+λd′e
e ∈ Ail

|e|Ti∑
e′∈Bi,λ

l

|e′|Ti
e ∈ Bi

l

(2.18)

Although wλe is a non-linear function of λ, matters are simplified by rescaling the lengths of edges to

have sum 1 within each support pair separately. The approach is to complete the parametric analysis

of that extension problem and then map back to find λ for the original weights.

Let V 0 and V 1 be formed by rescaling the lengths of edges in X0 and X1 to sum to 1. Suppose

that some (P3) constraint defined by
∑
be|e|X ≥ 0 is satisfied at equality by λ̃, that is

∑
be((1−

λ̃)|e|V 0 + λ̃|e|V 1) = 0. The following gives a transformation between the solution when the weights

in each support pair are scaled to have sum 1, and before scaling.

0 =
∑

be((1− λ̃)|e|V 0 + λ̃|e|V 1) (2.19)

=
∑

be

(
(1− λ̃)

|e|X0∑
e′∈Ail

|e′|X0

+ λ̃
|e|X1∑

e′∈Ail
|e′|X1

)
(2.20)

=
∑

be (c0|e|X0 + c1|e|X1) (2.21)

=
∑

be ((1− λ)|e|X0 + λ|e|X1) (2.22)
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Thus
∑
be((1− λ)|e|X0 + λ|e|X1) = 0 is satisfied by

λ =
c1

c0 + c1
=

λ̃/
∑

e∈Ail
|e|X1

(1− λ̃)/
∑

e′∈Ail
|e′|X0 + λ̃/

∑
e′∈Ail

|e′|X1

. (2.23)

Assuming the weights of edges in each support pair are already scaled to have sum 1, the weights

are parameterized as a linear function as

w̃λ̃e =


|e|Ail + λ̃d̃e e ∈ Ail

|e|Bil e ∈ Bi
l

(2.24)

where d̃e =
|e|X1∑

e′∈Ai
l
|e′|X1

− |e|
Xλ∑

e′∈Ai
l
|e′|X0

is the change in capacity for the arc from the source to

node e ∈ Ai,λl .

Parametric analysis of the extension problem will yield a method for updating the objective

function along the segment from X0 to X1. In an incompatibility graph the capacity for an arc from

the source s to a node e in Ail is cse = we, for arcs from a node f in Bi
l to the terminal node t the

capacity is cft = wf (fixed), and the capacity for an arc from a node in Ail to an incompatible node

in Bi
l is infinity. Assume an initial flow for the directed graph G(Ai,λl , Bi,λ

l ) is calculated for λ = 0.

For arc (e, e′), variable flow is zee′ and the flow for λ = 0 is z0
ee′ . Residual capacity for arc (e, e′) is

ree′ = cee′ − zee′ + ze′e. Recall, that d̃e = |e|V 1 −|e|V 0 is the change in capacity for the arc from the

source to node e ∈ Ai,λl from X0 to Xλ. As λ increases the flow may become infeasible because an

arc capacity has decreased, or an augmenting path may exist because the arc capacity has increased.

The net change in the total arc capacity is zero because
∑

e d̃e =
∑

e(|e|V 1−|e|V 0) = 0, and thus the

total increase in arc capacity must equal the total decrease in arc capacity. Therefore the maximum

flow will be inhibited not by a change in total capacity, but rather by a bottleneck preventing a balance

of flow as λ increases. To balance the flow, excess flow from arcs with decreasing capacities must

shift to arcs with increasing capacities. The key is to identify directed cycles in the residual graph

oriented along arcs with increasing capacities and against arcs with decreasing capacities.

If de > 0 then e is a “supply” node and if de < 0 then e is a “demand” node. A (P3) constraint

is violated precisely at the smallest positive λ such that balancing supply and demand is not possible.
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An augmenting path is a path in the residual network from a supply node to a demand node. If there

is an augmenting path from each supply node to each demand node then it is possible to maintain a

feasible flow for some λ > 0 by pushing flow along augmenting paths. In pushing flow along a set

of augmenting paths, where Pe is the augmenting path for supply node e, the residual capacity along

arc (e′, e′′) is

re′e′′ = r0
e′e′′ + λ

 ∑
e:(e′′,e′)∈Pe

de −
∑

e:(e′,e′′)∈Pe

de

 . (2.25)

For a set of augmenting paths an arc is a bottleneck at λ if it has has zero residual capacity at λ.

Once a bottleneck is reached at least one augmenting path is no longer valid. Thus a given set of

augmenting paths cannot feasibly balance the total flow at the smallest positive value λ∗ which has a

bottleneck arc.

Each supply node with flow blocked by a bottleneck needs a new augmenting path. If such a

path cannot be found then supply and demand cannot be balanced for λ > λ∗. This signifies that

Xλ∗ is on a (P3) boundary of its vistal cell. Thus support pair (Ail, B
i
l ) could be partitioned into a

support pairs (C1, D1) and (C2, D2) (or even into a sequence of support pairs as described in (Miller

et al., 2012, Lem. 3.23)) to create a valid support for the same geodesic from Xλ to T i. If a supply

node does not have any augmenting path, then increasing λ will result in excess flow capacity which

cannot be utilized to push flow from s to t.

A minimum cover for λ > λ∗ can be constructed; and in what follows “the minimum cover”

refers to the one which is being constructed. If e does not have an augmenting path, then increasing λ

will cause the residual capacity rse to become positive in a maximum flow. Therefore e cannot be part

of the minimum cover. Consequently, to cover the edges adjacent to e, every node adjacent to e in Bi
l

must be in the minimum cover. Supply nodes which have augmenting paths will be in the minimum

cover unless all of their adjacent arcs are adjacent to nodes in Bi
l which are already in the minimum

cover. In summary the minimum cover is C1 ∪D2 where D2 is comprised of elements in Bi
l which

are adjacent to elements of Ail which do not have augmenting paths and C1 is comprised of elements

in Ail which do not have augmenting paths or which have all their adjacent arcs covered by elements

from Bi
l . The new support sequence is formed by replacing (Ail, B

i
l ) with (C1, D1), (C2, D2) where

C2 = Ail \ C1 and D1 = Bi
l \D2.
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Standard net flow techniques can be used to find a feasible flow from supply nodes to demand

nodes. If no feasible flow exists, then the cut from the Supply-Demand Theorem can be used to

construct a minimum cover for the solution to the (P3) extension problem.

(P3) Intersection Algorithm

initialize Λ = 0, ree′ = cee′ , zee′ = 0

find a maximum flow in G(Aλ,il , Bλ,i
l )

while Λ < 1

do

find a feasible flow in the residual network

if supplies and demands are infeasible

halt, a (P3) boundary intersection

endif

augment flow until some residual capacity reaches zero

calculate smallest λ∗ > Λ with a bottleneck arc

using the residual capacities:

rλ
∗
e′e′′ = rΛ

e′e′′ + (λ∗ − Λ)
(∑

e:(e′′,e′)∈Pe de −
∑

e:(e′,e′′)∈Pe de

)
Λ = λ∗

endwhile
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CHAPTER 3: Tree data analysis with Fréchet means

The focus of this chapter is application of Fréchet means in tree-oriented data analysis of brain

artery systems.

3.1 Discussion

As described in Ch. 1, a landmark based shape correspondence of the cortical surface is used in

mapping angiography trees to points in BHV treespace. In this chapter we apply the Fréchet mean

algorithms from Ch. 2 to summarize the angiography dataset. In this section we refer to the brain

artery systems mapped to treespace via landmark embedding as brain artery trees.

A star tree is a phylogenetic tree which only has pendants. The pendant lengths for minimizing

the Fréchet sum of squares are quite easy to obtain. Each pendant is in every tree topology, and

therefore the terms in the Fréchet function contributed by pendants are completely independent from

other edges. In fact, the terms involving a pendant are minimized by arithmetic average length of that

pendant. Ignoring the interior structure and optimizing pendant lengths yields the optimal star tree.

In earlier stages of research leading up to this thesis it became clear that the Fréchet mean of

the brain artery trees was either the optimal star tree or very close to the optimal star tree. This

observation is based on results from a study done by Megan Owen, a collaborator involved in

the SAMSI Object Oriented Data Analysis program. In her study she used Sturm’s algorithm to

approximate the Fréchet mean of brain artery trees. Let Sk be an estimate of the Fréchet mean after k

steps of Sturm’s algorithm. In that study it was shown that in 50,000 steps of Sturm’s Algorithm the

Fréchet sum of squares at Sk always exceeded the Fréchet sum of squares of the optimal star tree.

Having a star tree or nearly star tree Fréchet mean is consistent with two other observations about

the distribution of artery trees. The first observation is that the geodesic between any pair of subjects

sweeps down near the origin of the space. Take for example the geodesic visualization in Fig. 3.1.

Notice how the geodesic sweeps down drastically near the middle. This pattern is ubiquitous among

pairs in this data set. The second observation is that the brain artery trees are all closer to the optimal

star tree than they are to any of each other.
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The artery tree Fréchet mean being degenerate is not an anomalous case. Theory about the

behavior of Fréchet sample mean will be discussed in Ch. 4, in which the focus is formal study of

the tendency for Fréchet means to be degenerate in treespace. In the next section we explore how the

Fréchet mean varies over the range of treespace embeddings using 3 to all 128 landmarks.

3.2 Reduced landmark analysis

Nested subsets of landmarks are used in a hierarchical approach to studying the variability of

vascular geometry with respect to the cortical surface across this sample. Here we study the effect of

decreasing the number of landmarks on the Fréchet mean, the sample statistic which describes the

center of the distribution.

The Fréchet means for tree representations using 3 up to 128 landmarks are calculated. Fig. 3.2

shows the ratio of the number of interior edges out of the maximum possible. Notice that in many

cases the Fréchet mean has a highly degenerate topology, with the number of interior edges dropping

off steadily when around 24 landmarks are used.

Rather than visualize the entire sequence of Fréchet mean trees we select a few interesting ranges

for discussion. The ratio for the number of interior edges out of the maximum possible, as shown in

Fig. 3.2, jumps up and down in the range from 3 landmarks to 12 landmarks, and steadily climbs

up until reaching 18 landmarks. The Fréchet means for 6, 7, 8, and 9 landmarks are in Fig. 3.3

(on the next page). There we can see the pattern of edge contractions and expansions. Notice that

the pair of landmarks 17 and 49 are stable in this range. Views of the trees in the range from 15 to

18 landmarks are in Fig. 3.4, there we can see that although the ratio of interior edges to maximal

possible is steadily increasing there are both edges contracting and expanding in this range as well,

though relatively fewer edges are contracting.

The small increase from zero interior up to 1 edge, at 69 landmarks is noteworthy. In fact the

same interior edge is present in the Fréchet mean using 69, 70, 71 and 74 landmarks. It is suprising

that this split isn’t in the Fréchet mean for 72 or 73 landmarks. Moreover, this split has a length of

about 2mm in all four of those cases. This deserves further investigation. It either suggests that the

lengths of edges which are incompatible with this split are fluctuating up and down in the range 69 to

74, or that this split is present in the Fréchet mean for 72 and 73 edges, but Sturm’s algorithm did not

capture this feature before the search terminated. This line of investigation will be pursued in future

research.
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The tendency of the Fréchet mean to be degenerate can be attributed to incompatible edges in

among the data trees. Such incompatible edges represent that the artery system infiltrates regions

near landmarks in topologically variable ways.

In the next chapter we take a theoretical approach to understanding the general behavior of

Fréchet means in treespace.
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Figure 3.1: Example of a geodesic between artery trees showing five points along the geodesic. Blue
edges are only in the tree of the first subject, red only in the other subject and green are common
to both (pendants are not included in this visualization). The drastic dip along the geodesic path is
characteristic for pairs of artery trees from this data set.
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means as a function of increasing the number of landmarks.

49



0

50

100

150

200

56

125

112

81
17

49

Frechet mean Data Set 4, 6 Landmarks

D
is

ta
nc

e 
fr

om
 r

oo
t (

m
m

)

(a)

0

50

100

150

200

81
17

49

125

112

96

56

7 Landmarks

D
is

ta
nc

e 
fr

om
 r

oo
t (

m
m

)

(b)

0

50

100

150

200

96

125

112

81
17

49
15

56

8 Landmarks

D
is

ta
nc

e 
fr

om
 r

oo
t (

m
m

)

(c)

0

50

100

150

200

96

125

112

17
49

81

1

15

56

9 Landmarks

D
is

ta
nc

e 
fr

om
 r

oo
t (

m
m

)

(d)

Figure 3.3: Tree views for the Frechet means for data sets having 6, 7, 8, and 9 landmarks.
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Figure 3.4: Tree views for the Frechet means for data sets having 15, 16, 17, and 18 landmarks.
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CHAPTER 4: Fréchet means and stickiness

4.1 Introduction

In the analysis of brain artery systems in Ch. 3 we observed that the Fréchet mean becomes

increasingly degenerate as the number of landmarks increases. Stickiness describes a finer point,

which is that not only is the topology of the sample mean tree degenerate, but that if the sample is

large enough then the topology of the sample mean is stable at the topology of the population mean

when data points are added or removed from the sample.

Denote by Fn(X) and T̄n the Fréchet function and the Fréchet mean for a sample of n inde-

pendent and identically distributed observations on BHV treespace, T 1, T 2, . . . , Tn, as defined in

Sec. 2.1.1. The focus of this chapter is the probability distribution of T̄n that is the Fréchet mean

sampling distribution for n observations. The main result Thm. 4.4.1 is a sticky law of large numbers

for sampling distributions of Fréchet means on BHV treespace.

In treespace, depending on the population, the Fréchet mean sampling distribution can and often

will exhibit the unusual property of stickiness. Contrasting the typical behavior of sample means, in

most contexts small changes in the data result in small changes in the sample mean, but stickiness

refers to the phenomenon of a sample mean which does not respond to small changes in the data.

More precisely stickiness refers to the tendency of a sampling distribution to be fully supported on a

lower dimensional subset of the sample space than the population distribution.

Definition 4.1.1. A probability measure on treespace, Tr, is said to to have a sticky Fréchet mean, T̄ ,

if T̄ is degenerate and for every point T in Tr there exists some α > 0 such that the topology of T̄ is

the same when the probability mass at T is increased by up to α.

Motivated to theoretically quantify stickiness, researchers have characterized the limiting distri-

butions of sample means in BHV treespaces with 5 or fewer leaves (Barden et al., 2013) and open

books (Hotz et al., 2012) with sticky central limit theorems. Sticky central limit theorems

1. state the existence of a random finite sample size N such that for sample sizes beyond N the

sample means stick with probability 1 ( N quantifies the intensity of stickiness); and
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2. characterize the limiting sampling distribution on its support.

The remaining contents of this chapter are as follows. Sec. 4.2 summarizes existing results for

stickiness of sampling distributions on T3. Sec. 4.3 mathematically describes probability measures

on BHV treespace and further characterizes the notion of a sticky Fréchet mean. Sec. 4.4 contains

the main result of this chapter, a sticky law of large numbers for sampling distributions of Fréchet

means for population distributions spread over a negatively curved region of treespace.

4.2 Stickiness for Fréchet means on T3

The space T3 of phylogenetic trees with index set {0, 1, 2, 3} with pendant lengths included, as

depicted in Fig. 4.1, is equivalent to an open half-book. This space is composed of three copies,

L1, L2, L3 of R5
≥0, called pages, pasted together on a four dimensional face, L0, called the spine.

For more details about the construction of phylogenetic treespaces see Sec. 1.2.3. Each page of the

book corresponds to one of the three possible tree topologies, and the spine corresponds to the star

tree topology. Let L+
k = Lk \ L0 be the portion of the kth page which is disjoint from the spine.

Thus, T3 can be formed by a disjoint partition of the pages and spine, as L0 ∪ L+
1 ∪ L

+
2 ∪ L

+
3 .

The sticky law of large numbers for open books (Hotz et al., 2012, Thm. 4.3), is restated in this

section for the special case of T3. Assume T 1, ..., Tn are independently sampled from a probability

measure, i.e. distribution, µ that is square-integrable and has spositive mass on each of L+
1 , L

+
2 , L

+
3 .

Definition 4.2.1. The first moment of µ on the kth page is the real number

mj =

∫
L+
j

xdµ(x)−
∑
i 6=j

∫
L+
k

xdµ(x).

Theorem 4.2.2. (Hotz et al., 2012, Thm. 2.9) Assuming µ is square integrable and has positive mass

on each page, the moments mj , j = 1, 2, 3 are either

1. (sticky) mj < 0 for all j ∈ {1, 2, 3},

or there is exactly one index k ∈ {1, 2, 3} such that mk ≥ 0, in which case either

2. (non-sticky) mk > 0, or

3. (partly sticky) mk = 0.

Let T̄ = argminX∈T3
∫
T3 d(X,T )2dµ(T ).

Theorem 4.2.3. (T3 Sticky LLN) (Hotz et al., 2012, Thm. 4.3)

53



ℝ≥0  

0,3 |{1,2} 
ℝ≥0  

ℝ≥0
4   

ℝ≥0  

1 
2 

3 0 

0 
2 

3 1 

0 
1 

3 2 

ℝ≥0
5   

ℝ≥0
5   

ℝ≥0
5   

Figure 4.1: Depiction of T3: three copies of R5
≥0, L1, L2, L3, each corresponding to one of three

possible tree topologies pasted together on a copy of R4
≥0, denoted L0.

1. If the moment mj satisfies mj < 0, then there is a random integer N such that T̄n /∈ L+
j for

all n ≥ N with probability 1. Furthermore T̄ /∈ L+
j .

2. If the moment mk satisfies mk > 0, then there is a random integer N such that T̄n ∈ L+
k for

all n ≥ N with probability 1. Furthermore T̄ ∈ L+
k .

3. If the moment mk satisfies mk = 0, then there is a random integer N such that T̄n ∈ Lk for

all n ≥ N with probability 1. Furthermore, T̄ ∈ L0.

The focus in the proceeding sections is a Sticky LLN for T3. Analysis leading to a Sticky LLN

for Tr in general is facilitated by a slight change of tack. The analysis for open books uses the

moments mk to precisely describe the conditions of stickiness. A comment, in (Hotz et al., 2012,

Rem. 2.11) which states that mk is a directional derivative of the Fréchet function from the spine into

the kth page, can be used to formulate an equivalent characterization of stickiness. Sec. 2.4 gives a

detailed analysis of directional derivatives from lower dimensional faces into higher dimensional
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faces of Tr, which play analogous roles to directional derivatives from the spine into pages of T3. The

next section describes probability measures on BHV treespace, and characterizes levels of stickiness

for the Fréchet mean of a probability measure.

4.3 Fréchet means for probability measures on treespace

Suppose that µ is a probability measure on BHV treespace, Tr. Let 0 denote the origin of Tr.

Assume that the distance between 0 and T ∈ Tr, d(0, T ) has bounded expectation under the measure

µ:

∫
Tr
d(0, T )dµ(T ) <∞. (4.1)

BHV treespace can be partitioned into disjoint open orthants, each corresponding to a unique

phylogenetic tree topology. Any probability measure µ on Tr decomposes uniquely as a weighted

sum of probability measures µO on the open orthants of BHV treespace. Therefore there are non-

negative numbers {wO} summing to 1 such that for any Borel set A ⊆ Tr, the measure µ takes the

value

µ(A) =
∑
O
wOµO(A ∩ O). (4.2)

The Fréchet function for a probability measure µ is

Fµ(X) =

∫
Tr
d2(X,T )dµ(T ) (4.3)

The Fréchet function is strictly convex and its minimizer is the Fréchet mean, T̄ (Sturm, 2003)[Prop.

4.3].

Properties for directional and partial derivatives for the Fréchet function for a probability measure

µ follow a development similar to the properties for the Fréchet function for a sample as in Ch. 2.

Thus we state their key properties now without detailed proofs.

Let T be a tree, let X be a variable point, Let Y be a tree such that O(X) ⊆ O(Y ) such that X

and Y share a multi-vistal cell. Let (A1, B1), . . . , (AkT , BkT ) be a support for the geodesic from Y to

T . Let (A1, B1), . . . , (AmT , BmT ) be local support pairs, and let (AmT+1, BmT+1), . . . , (AkT , BkT )

be the rest of the geodesic support sequence being used to represent the geodesic between Y and T .
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The restricted gradient of the Fréchet function in the minimal orthant containing X is

[∇Fµ(X)]e = 2

∫
Tr


(

1 + ‖Bl‖T
‖Al‖X

)
|e|X if e ∈ Al

(|e|X − |e|T ) if e ∈ C

 dµ(T ). (4.4)

if |e|X > 0 and 0 otherwise. Let pe = |e|Y − |e|X for all e ∈ EY . The directional derivative of the

Fréchet function for probability measure µ from X in the direction Y is

F ′µ(X,Y ) =
∑
e∈EX

pe[∇Fµ(X)]e +

∫
Tr

mT∑
l=1

2‖Bl‖T
√∑
e∈Al

p2
e +

∑
e∈CT∩S

−2pe|e|T

 dµ(T ).

(4.5)

The directional derivative decomposes the sum of the directional derivative along the component

YX of Y in O(X) and the component Y⊥ of Y which is perpendicular to O(X)

F ′µ(X,Y ) = F ′µ(X,YX) + F ′µ(X,Y⊥). (4.6)

A point X is the Fréchet mean of µ if and only if it satisfies the Fréchet optimality conditions

[∇Fµ(X)]e = 0 ∀ e ∈ EX (4.7)

F ′µ(X,Y ) ≥ 0 ∀ Y s.t. the component of Y in O(X) is 0. (4.8)

The Fréchet mean, T̄ , for a measure µ is either

1. sticky on the minimal open orthant containing T̄ if F ′µ(T̄ , Y ) > 0 for all Y which are

perpendicular to O(T̄ ) at T̄ ,

2. partially sticky on the minimal open orthant containing T̄ if F ′µ(T̄ , Y ) ≥ 0 for all Y which are

perpendicular to O(T̄ ) at T̄ and F ′(T̄ , Y ) = 0 for some Y which is perpendicular to O(T̄ ) at

T̄ , or

3. non-sticky if T̄ is non-degenerate.

Lemma 4.3.1. If µ is partially sticky, then the set of Y s.t. F ′µ(T̄ , Y ) = 0 is a convex subset of

treespace.
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Proof. The directional derivative F ′µ(T̄ , Y ) is a convex function of Y for Y in a small neighborhood

of T̄ . The level set {Y |F ′µ(T̄ , Y ) ≤ 0} is a convex set and there are no Y such that F ′µ(T̄ , Y ) <

0.

4.4 LLN for sample means in BHV treespace

This section starts out by stating a classical strong law of large numbers for Tr which is a special

case of the strong law of large numbers introduced in (Sturm, 2003) for metric spaces of non-positive

curvature, of which treespace is a special case. The novel result in this section is that sample means

in BHV treespace obey a sticky law of large numbers.

Theorem 4.4.1. (Strong Law of Large Numbers). There is a unique point T̄ ∈ Tr such that

lim
n→∞

T̄n = T̄

holds with probability one. The point T̄ is the Fréchet mean of µ.

Proof. This is a special case of (Sturm, 2003, Prop. 6.6) which gives a Strong Law of Large Numbers

for distributions on globally non-positively curved metric spaces.

The treespace Strong LLN (Thm. 4.4.1) guarantees, that for any ε > 0, there exists a finite

integer N such that for all n > N , d(T̄n, T̄ ) < ε. This guarantees that for large enough samples,

every e ∈ ET̄ close to its length in T̄ , and that if T̄ is degenerate then any edges in T̄n which are not

in ET̄ must have lengths which are bounded above by ε. The following Sticky LLN specifies that

when T̄ is degenerate then for large enough samples the Fréchet sample mean, T̄n, will not contain

any edges which are not in T̄ .

Theorem 4.4.2. (Sticky Law of Large Numbers)

1. Sticky case: If F ′(T̄ , Y ) > 0 for all Y which are perpendicular to O(T̄ ) at T̄ then there exists

a random integer N such that for all n > N , F ′n(X,Y ) > 0 for all Y which are perpendicular

to O(T̄ ) and ET̄n = ET̄ .

2. Partially sticky case: If F ′(T̄ , Y ) ≥ 0 for all Y in the normal space of T̄ and F ′(T̄ , Y ) = 0

for some Y in the normal space of T̄ then there exists a random integer N such that for all
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n > N , if F ′(T̄ ;Y ) > 0 then F ′(X,Y ) > 0, and if F ′(T̄ ;Y ) = 0 then the sample mean T̄n

has a positive probability of being in O(Y ).

3. Non-sticky case: If T̄ is non-degenerate then there exists a random integer N such that for all

n > N ET̄n = ET̄ .

Proof. The treespace Strong Law of Large Numbers (Thm. 4.4.1 guarantees the existence of a finite

integer N such that for all n > N , |e|T̄n > 0 for all e ∈ ET̄ .

Next we show that there must exist some finite integer N such that for all n > N , |e|T̄n = 0 for

all e such that |e|T̄ = 0. Essentially the proof is based on the Fréchet optimality conditions. Let X

be a point in O(T̄ ). For every Y such that the component of Y in O(T̄ ) is zero the values of the

directional derivatives F ′µ(X,Y ) and F ′n(X,Y ) are independent of the precise edge lengths of X ,

provide that every edge in O(T̄ ) has a positive length. We show the directional derivative F ′n(X,Y )

for Y perpendicular toO(T̄ ) approaches F ′µ(X,Y ) with probability 1. for any X ∈ O(T̄ ). This will

suffice to prove the claim since we have already established that ET̄ ⊆ ET̄n using the Strong Law of

Large Numbers.

Consider a point in the minimal open orthant containing the Fréchet mean, X ∈ O(T̄ ), and a

point Y such that the component of Y in O(T̄ ) is zero. Since the component of Y in O(T̄ ) is zero

F ′n(X,Y ) =
1

n

n∑
i=1

 mi∑
l=1

2‖Bi
l‖
√∑
e∈Ail

p2
e +

∑
e∈Ci∩S

−2pe|e|T i


Treespace Tr can be subdivided into a disjoint set of the open interiors of vistal cells such that for each

vistal cell V , the geodesic from Y to any T in V can be represented with the same combinatorial form.

Thus the directional derivative from X to Y can be separated into a sum of terms each contributed by

a vistal cell V . Let 1T∈int(V) be an indicator function with value 1 if T ∈ int(V) and 0 otherwise.

F ′n(X,Y ) =
∑
V

 n∑
i=1

1T i∈int(V)
1

n

mi∑
l=1

2‖Bi
l‖
√∑
e∈Ail

p2
e

+
∑

e∈Ci∩S

−2pe|e|T i

 (4.9)
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For a fixed V ⊆ O, each T i ∈ V is equivalent to a random vector in O; thus by the classical Law of

Large Numbers (Shapiro et al., 2009, Sec. 7.2.5)

lim
n→∞

1

n

n∑
i=1

1T i∈int(V)

mi∑
l=1

2‖Bi
l‖
√∑
e∈Ail

p2
e

+
∑

e∈Ci∩S

−2pe|e|T i

 (4.10)

= µ(int(V))

∫
int(V)

mT∑
l=1

2‖Bl‖T
√∑
e∈Al

p2
e +

∑
e∈CT∩S

−2pe|e|T

 dµint(V)(T ) (4.11)

with probability 1. Hence, by summing over all vistal cells,

lim
n→∞

F ′n(X,Y )→ F ′µ(X,Y ) (4.12)

with probability 1.

4.4.1 Extensions

In treespace and the open book, where stickiness has been observed and studied theoretically,

the population is distributed on a negatively curved region of the sampling space. It is conjectured

that positively curved geometry leads to “antistickiness” and negatively curved geometry leads to

“stickiness” (Hotz et al., 2012). Although the topic of antistickiness is not explored any further here,

it may be a topic of future research. The 2-dimensional sphere would be an ideal model space to

study antistickiness phenomenon for sample means on positively curved metric spaces. There may

also be theoretical connections between robust estimation, sparse estimation, and stickiness, although

investigating these connections is outside of the scope of this thesis.

It is plausible that sticky central limit theorems will generalize to any dimension of treespace

because they all share the property of global non-positive curvature. The sticky LLN here is a

precursor for a central limit theorem because it characterizes the limiting distribution as sticky i.e.

characterizes the support of the limiting distribution. In this sense this result further justifies the

conjecture that sticky central limit theorems are generalizable to any dimension of treespace. A

sticky central limit theorem for samples on BHV treespace would be an interesting topic for further

research.
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CHAPTER 5: Treespace kernel smoothing

5.1 Introduction

One way that methods for statistical analysis of populations of complex objects e.g. tree-

structured data, functional data, and manifold data, can contribute to biological sciences, such as

neuroscience and developmental biology, is through the use of flexible models for studying trends in

parts of anatomy. The motivation of this chapter is to study the variation in branching and geometry

of 3D anatomical trees as a function of age. In particular, in this chapter, Fréchet kernel smoothing

of brain artery trees over age is introduced for analysis of the CASILab cross-sectional dataset of

human brain artery systems described in Ch 1.

Kernel smoothing of tree-structured data objects was first studied in (Wang et al., 2011). The

findings in that paper serve as a motivation to continue studying non-parametric regression for

tree-structured data. In that paper they found an increase in common structure among 20 to 30 year

old subjects, and a decrease in common structure among 30 to 50 year old subjects. The method in

that paper is based on connectivity only, and the goal of this chapter is to obtain deeper insights by

including additional structural information in the tree-data object representation.

The approach in this chapter, and that previous approach, both use the framework of kernel

smoothing (see (Fan and Gijbels, 1996; Härdle, 1991; Wand and Jones, 1994) for books on kernel

smoothing), but differ in their representations of artery systems, and thus in their choice of metric.

The previous work represents artery systems as binary trees, which are purely topological objects.

It uses the integer tree metric, which counts the total number of non-common nodes between two

trees (Wang and Marron, 2007). In this chapter artery systems are represented as points in BHV

treespace. This representation captures the topological structure of the entire tree and lengths of

individual artery segments.

The organization of the rest of this chapter is as follows. In Sec. 5.2, a novel method for kernel

smoothing of data points which have tree-structured response, and predictive values in a Euclidan

space is presented. In Sec. 5.3 we present a case study of the sample of human brain artery systems
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of normal adults collected at the UNC Chapel Hill CASILab discussed in Sec. 1.3. Sec. 5.4 is an

appendix for descriptions of algorithms used in this research.

5.2 Methodology

5.2.1 Treespace Kernel Smoothing

Consider a dataset of bivariate observations (x1, T
1), . . . , (xn, T

n), where x1, . . . , xn are ex-

planatory observations in R and T 1, . . . , Tn are dependent observations in a BHV treespace, T .

Kernel smoothing can be used to study the relationship between explanatory and dependent variables

in a flexible way.

A weighting for a dataset is an assignment of a weight, a positive real number wi, to each

observation i = 1, . . . , n, such that
∑
wi = 1. In the context of smoothing, a kernel K is a function

used to create weightings. A kernel takes as input two points x and x′ in the space of explanatory

variables. The operations of the kernel are (1) calculate the distance between x and x′, (2) scale

their distance by division by the band width parameter h, and (3) pass the scaled distance into a

non-negative, symmetric window function D. In summary a kernel function is

K(x, x′;h) = D

(
‖x− x′‖

h

)

For kernel K and bandwidth h, at a given point x, the kernel-weight function assigns a weight to

observation i

wi(x) =
K(x, xi;h)∑
i

K(x, xi;h)

Here, a Gaussian density function is used for the kernel. The weighted Fréchet function F : T →

R≥0, which generalizes the Fréchet function introduced in Ch. 2, is a sum of weighted mean squared

distances

F (T ;w) =
n∑
i=1

wid(T, T i)2.

Following a development parallel to methods for Fréchet means, the unique minimizer of the weighted

Fréchet function is called the weighted Fréchet sample mean

T̄ (w) = argminT∈T F (T ;w).
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Figure 5.1: Schematic of Fréchet kernel smoothing. Data are blue dots, a noisy sample from the
green curve; the red dashed curve is a Gaussian kernel function and the vertical bars represent the
relative weights of data points; red dot is kernel weighted mean at x, T̄ (w(x)); and the blue curve is
the kernel smooth.

Fig. 5.1 shows a schematic of Fréchet kernel smoothing. There we can see how an estimate for

the response value at the point x is created using a local Fréchet mean.

The results of kernel smoothing are dependent on the bandwidth h. When h is very small, the

weights are concentrated on data points within a narrow range, and the smoothed values are very

localized. An extreme case, when h = 0, results in local estimates which are either empty or just the

data points themselves. At the other extreme, when the bandwidth is very large, all data points have

very similar weights, and the smoothed tree for any value x is very similar to the overall Fréchet

mean of the dataset.

The bandwidth parameter, h, in classic nonparametric regression, is selected to optimize some

expected error, or its empirical (e.g. cross-validation) or asymptotic estimate. See (Fan and Gijbels,

1996; Härdle, 1991; Wand and Jones, 1994) for detailed descriptions of such techniques. A scale

space approach to the bandwidth selection problem, which compares smooths across a range of

window sizes to look for consistent patterns as recommended in (Chaudhuri and Marron, 1999), is

used here.

Adapting the optimization algorithms from Ch. 2 to solve for a weighted Fréchet mean T̄ (w)

is straightforward. The step length in each iterative step of a cyclic split proximal point algorithm

can be modified to account for the weight, wi, on each term in the Fréchet sum of squares. For
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a random split proximal point algorithm (a.k.a Sturm’s algorithm), the probability of sampling a

data point, T i, at each iteration is equal to its weight, wi. For descent methods, the only changes

come from appropriately multiplying terms in the Fréchet function and its derivatives by the weights,

w1, . . . , wn.

5.2.2 Methods for summarizing treespace smooths

Summarizing treespace smooths is a critical step in studying the relationship between predictive

and response variables. Key summaries of each tree, such as the total number of interior edges, and

the sum of interior edge lengths are just the first step. Comparing these summaries across smoothing

bandwidths can provide insights into the data. But these comparisons are somewhat limited in that

they don’t capture topological variation across the smooth. Tree topologies are discussed in the

introduction to phylogenetic trees in Sec. 1.2.

5.2.2.1 Minimum Length Representative Sequences

Summarizing length and number of edges does not capture the variation in tree topologies in a tree-

smooth. While counting the number of edges quantifies degeneracy, it does not consider the variety

of splits in tree topologies across the smooth. Thus the aim here is to summarize the topological

variability in an ordered set of trees.

For a set of trees T 1, . . . , Tn a representative tree topology, R, is a tree topology such that

every element, T i, has a subset of the edges in the topology R. A representative tree topology

may not exist for an arbitrary set of trees. For T 1, . . . , Tn, a representative set of tree topologies,

R1, . . . , Rk, has the property that every element T i has a subset of the edges in topology Rj for some

j. For an ordered set of trees T 1, . . . , Tn a representative sequence is a sequence of tree topologies

R1, . . . , Rk such that R1 is a representative tree topology for the first i1 trees, T 1, . . . , T i1 , R2 is

a representative tree topology for the next i2 trees, T i1+1, . . . , T i2 , and so on. A minimum length

representative sequence is a representative sequence with the fewest number of representative tree

topologies possible. An algorithm for finding a minimum length representative sequence is in the

last section of this chapter, Sec. 5.4.

In data analysis, a minimum length representative sequence for the predicted response trees in a

tree-smooth will be used to capture the variety of tree topologies over the range of the predictive

variable.
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5.3 Case study of CASILab angiography dataset

In Ch. 3 we studied how the ratio of interior edges to the maximum possible number of interior

edges varied over reduced sets of landmarks. When this ratio is close to 1 it indicates a relatively

higher degree of common structure. In this analysis, we will work with 17 landmarks because of the

relatively high degree of common structure.

This data set contains 85 subjects with ages approximately uniformly distributed in the range 20

to 80 years. Because the density of observations affects the results a closer look at the distribution of

ages will make for a more informed analysis. As we can see in Fig. 5.2, there are only 2 subjects

over 70. While we will use all the available data in the analysis, due to the sparsity of data over 70,

we will not attempt to make any estimates in that range.
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Figure 5.2: Kernel density estimate for distribution of subject ages.

A Gaussian probability density is used for the kernel window function. The effect of scale

is studied across six smoothing levels: h = 1, 2, 3, 4, 5, 6 years. In this data analysis, the kernel

estimator will be evaluated at the ages from data points. These point estimates are adequate to study

the relationship between artery trees and ages.

Now we begin discussing the results. We discuss the results in terms of two key summaries of

treesmooths, the sum of interior edge lengths and the number of interior edges. Then we study the

topological variability across ages as summarized by minimum length representative sequences.

Fig. 5.3 displays the sum of the interior edge lengths (top) and the number of interior edges.

Notice that for the total length there is a clear overall downward trajectory which becomes increasingly

evident as the bandwidth increases. This is consistent with a previous study, which showed a
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Figure 5.3: Summaries from treesmooth family with bandwidths h = 1, 2, 3, 4, 5, 6 colored from
blue to burgundy to red. Sum of lengths of interior edges over age (top); and number of interior
edges over age.

significant decrease in total length of the entire artery system with age (Skwerer et al., 2014).

Fluctuations in total length for smooths using narrower windows, h = 1, 2, 3, colored blue to purple

in Fig. 5.3, are positively correlated with fluctuations in the number of edges. This pattern is shown

clearly in the scatterplots of number of edges and total length in Fig. 5.4. For smoothing levels

h = 4, 5, 6, burgundy to red, a striking pattern in the scatterplots emerges. The line of trees along the

top of the plot coincides with the flat segment over the range of 40 to 55 years in Fig. 5.3. We will

offer a further interpretation for this pattern in our discussion of topological variability across the

smooth.

For summarizing the topologies across the smooth we use a minimum length representative

sequence as described in Sec. 5.2.2.1. Smoothing dramatically decreases the length of the minimum

representative sequence. The sequence of data trees T 1, . . . , T 85, ordered by ages, x1, . . . , x85 are

their own minimal length representative sequence. The number of representative topologies by

smoothing bandwidth are summarized in Table 5.1.

h yrs # Top.
0 85
1 7
2 2
3 2
4 1
5 1
6 1

Table 5.1: Number of topologies in the minimal representative sequence for each smoothing window.
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Figure 5.4: Scatter plots of number of interior edges and total length for smoothing windows
h = 1, 2, 3, 4, 5, 6 years with the same colors as Fig. 5.3. We see a positive correlation between these
variables indicating that their up and down fluctuations across ages coincide.

The representative topology is the same for bandwidths h = 4, 5, 6. In fact this representative

topology is the topology of the overall Fréchet mean of the entire dataset, shown in Fig. 5.5. The

patterns we see in Fig. 5.3 and Fig. 5.4 represent the smooth trees varying between various degenerate

trees that are contractions of this representative topology.

For smoothing bandwidths h = 1, 2, 3 several representative topologies are needed to capture

different ranges of ages.

For bandwidth h = 2 the first representative topology captures ages 20 to 38, and the second

captures ages 39 to 68. For h = 3 the first representative topology captures ages 20 to 39 and the

second captures ages 40 to 68. The representative topologies are the same for bandwidths h = 2, 3;

these are shown in Fig. 5.6, where we can see that the representative topology for ages 20 to 38 only

has one edge which is not shared by the overall Fréchet mean, and the representative topology for

ages 39 to 70 is the topology of the overall Fréchet mean.

For h = 1 the first representative topology captures the topologies in the treesmooth for ages 20

to 24, the second captures ages 25 to 33, the third captures 34 to 42, the fourth captures 43 to 50, the

fifth captures 51 to 52, the sixth captures 54 to 62 and the seventh captures 63 to 68.
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Figure 5.5: Representative topology for treespace smooths with bandwidths h = 4, 5, 6. These
bandwidths are large enough so the representative topology for the treesmooth is equal to the topology
of the overall Fréchet mean.

5.4 Minimum Length Representative Sequence Algorithm

In this section we describe an algorithm to find a minimum length representative sequence for a

sequence of trees T 1, . . . , Tn.

Let R(i, 1), . . . , R(i, ki) be a minimum length representative sequence for T 1, . . . , T i. When

i = 1 the minimum length representative sequence is R(1, 1) = T 1.

Let S(i, n) be a representative topology for (T i+1, . . . , Tn) if a representative topology exists.

Let k0 = 0. Let i∗ be an non-negative integer which minimizes ki among all i such that S(i, n)

exists.

Theorem 5.4.1. A minimum length representative sequence for T 1, . . . , Tn is

R(i∗, 1), . . . , R(i∗, ki∗), S(i∗, n) (5.1)

Proof. The proof will be by contradiction. Suppose there exists representative sequence R1, . . . , Rl

with length l less than ki∗ + 1 for T 1, . . . , Tn. Suppose that Rl is representative for T j+1, . . . , Tn

then R1, . . . , Rl−1 are a representative sequence for T 1, . . . , T j having length l − 1 < ki∗. But this

is a contradiction because ki∗ must be less than or equal to the length of any representative sequence

for T 1, . . . , T j .
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Figure 5.6: Representative topologies for treesmooths for both bandwidths h = 2, 3. The dotted edge
in the left hand tree is the only edge which is not in the overall Fréchet mean.
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