
MODELING OF COMPLEX LARGE-SCALE FLOW PHENOMENA

Abhinav Golas

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2015

Approved by:

Ming C. Lin

Dinesh Manocha

David Adalsteinsson

Anselmo Lastra

Jason Sewall



cO 2015

Abhinav Golas

ALL RIGHTS RESERVED

ii



ABSTRACT

Abhinav Golas: MODELING OF COMPLEX LARGE-SCALE FLOW
PHENOMENA.

(Under the direction of Ming C. Lin)

Flows at large scales are capable of unmatched complexity. At large spatial scales, they

can exhibit phenomena like waves, tornadoes, and a screaming concert audience; at high den-

sities, they can create shockwaves, and can cause stampedes. Though strides have been made

in simulating flows like fluids and crowds, extending these algorithms with scale poses chal-

lenges in ensuring accuracy while maintaining computational efficiency. In this dissertation,

I present novel techniques to simulate large-scale flows using coupled Eulerian-Lagrangian

models that employ a combination of discretized grids and dynamic particle-based represen-

tations. I demonstrate how such models can efficiently simulate flows at large-scales, while

maintaining fine-scale features.

In fluid simulation, a long-standing problem has been the simulation of large-scale scenes

without compromising fine-scale features. Though approximate multi-scale models exist,

accurate simulation of large-scale fluid flow has remained constrained by memory and com-

putational limits of current generation PCs. I propose a hybrid domain-decomposition model

that, by coupling Lagrangian vortex-based methods with Eulerian velocity-based methods,

reduces memory requirements and improves performance on parallel architectures. The re-

sulting technique can efficiently simulate scenes significantly larger than those possible with

either model alone.

The motion of crowds is another class of flows that exhibits novel complexities with in-

creasing scale. Navigation of crowds in virtual worlds is traditionally guided by a static global

planner, combined with dynamic local collision avoidance. However, such models cannot cap-
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ture long-range crowd interactions commonly observed in pedestrians. This discrepancy can

cause sharp changes in agent trajectories, and sub-optimal navigation. I present a technique

to add long-range vision to virtual crowds by performing collision avoidance at multiple spa-

tial and temporal scales for both Eulerian and Lagrangian crowd navigation models, and a

novel technique to blend both approaches in order to obtain collision-free velocities efficiently.

The resulting simulated crowds show better correspondence with real-world pedestrians in

both qualitative and quantitative metrics, while adding a minimal computational overhead.

Another aspect of real-world crowds missing from virtual agents is their behavior at

high densities. Crowds at such scales can often exhibit chaotic behavior commonly known

as crowd turbulence; this phenomenon has the potential to cause mishaps leading to loss

of life. I propose modeling inter-personal stress in dense crowds using an Eulerian model,

coupled with a physically-based Lagrangian agent-based model to simulate crowd turbulence.

I demonstrate how such a hybrid model can create virtual crowds whose trajectories show

visual and quantifiable similarities to turbulent crowds in the real world.

The techniques proposed in this thesis demonstrate that hybrid Eulerian-Lagrangian

modeling presents a versatile approach for modeling large-scale flows, such as fluids and

crowds, efficiently on current generation PCs.
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Chapter 1: Introduction

From rolling crowds, rising smoke, to water in fountains and rivers, our world is full of

things that flow. These are very different from rigid objects like rocks, pieces of furniture

etc. which maintain their shape. The key property of any flow is that it deforms continuously

with no consistent rigid shape. Under this definition, a number of other commonly observed

phenomena can be classified as flows. These include moving crowds of people, vehicular

traffic, and even granular media like sand and other grains. Owing to their omnipresence

nature, virtual environments often need to model flows for an immersive experience. This

dissertation focuses on efficient modeling and simulation of such flows.

Given their variable nature, a single model cannot describe all flows – but most flow mod-

els do have significant similarities, particularly in their underlying representations and ap-

proaches used to simulate them. A multitude of models already exist for simulating different

kinds of flows. For example, most Computer Generated Imagery (CGI) in movies uses fluid

simulation models based on the Navier-Stokes equations [Bridson and Müller-Fischer, 2007].

These models trace their lineage back to the middle ages, when siege warfare motivated

the study of flows to help understand the dynamics of moving large quantities of earth and

water. Thus began research into the problem of advection, which describes the transport

of any media by bulk motion of the flow. The advection problem for a conserved property f

by a velocity field u can be described by the following differential equation:

∂f

∂t
+∇ · (fu) = 0 (1.1)

This description covers everything from flowing water, to marching armies, and even to

how air affects projectiles like bullets and arrows traveling through it. For flows consisting

of discrete objects like people, this translates into simply moving all underlying objects



from one point in space to another. For these scenarios and others where the velocity is

incompressible, the advection equation can be simplified to the more well-known form:

∂f

∂t
+ u · ∇f = 0 (1.2)

For continuum flows like water solving the advection problem efficiently remains a key con-

cern.

Their continuously deforming nature makes continuum flow advection a significantly more

complex problem as compared to discrete rigid objects. Since the latter maintain shape and

form, their motion can be completely described by defining the velocity of any two points

on or within the object – or by two vectors at one point: velocity and angular velocity.

Velocity at any other point within the extent of the object can then be derived analytically.

This property does not hold for flows – velocity at any two points along a flow may not be

correlated. This difference allows flows to exhibit the variety of behaviors they exhibit, but

increases the complexity in simulating these very behaviors using a computer. Given initial

values for velocities, a flow model defines their time evolution – usually using differential

equations. A simulation then proceeds by updating the simulation state – velocity, position

etc. – over short intervals of time, called time steps.

However, advection forms only one part of flow models. The flows discussed in this

thesis also share one other component, one that maintains density. In fluids this is the

“incompressibility” constraint, which mandates that a fluid must maintain a constant density.

This constraint is traditionally modeled using a pressure force applied on the velocity field ṽ

resulting from advecting the velocity by itself. The nature of this pressure force is repulsive

in high-density regions, and attractive in low-density regions. Mathematically it takes the

form of a corrective term:

vt+∆t = ṽ −∆t
1

ρ
∇p (1.3)

where vt+∆t is the velocity at the next time step, ρ is the density of the fluid, and ∇p is the
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gradient of pressure, which is computed as the solution to the equation:

∆t

ρ
∇2p = −∇ · ṽ (1.4)

This equation enforces the incompressibility constraint, and belongs to the class of elliptic

differential equations. The key characteristic of such equations is that their solution at any

point in space depends on the solution at every other point in space. This implies that

information in an elliptic differential equation travels at infinite speed throughout the entire

domain. An intuitive analogue to this is to consider a force applied on a rigid object, where

the entire object moves while maintaining its rigid structure without deforming. The lack of

deformation is due to the near-instantaneous propagation of the effects of the force through

the object. Collision avoidance in crowds is also similar in nature; it ensures that virtual

pedestrians do not collide with one another by maintaining a minimum distance, and thus

local crowd density does not increase above a maximum threshold value.

As we increase the scale of the problem – be it in terms of spatial scale or increased

detail – the complexity of the simulation increases, which translates into inaccurate results,

significantly slower simulation, or both. There may be multiples sources of this complex-

ity. The first source is the validity of the model itself. Motion of certain flows can exhibit

patterns that cannot yet be captured using differential equations. Crowds of pedestrians for

instance, can change their velocities discontinuously based on individual decisions of those

very pedestrians. However, models do exist for simulating the navigation of virtual pedestri-

ans in a medium-sized domain – like a small hall for instance – with an average pedestrian

density of up to 3−4 people per m2. However, the same models are unable to recreate crowd

behavior when domains are significantly larger (e.g. a large battlefield), or when crowd den-

sity is higher (e.g. in congested conditions when stampedes may occur). Existing crowd

navigation models cannot model such scenarios since the criteria for pedestrian navigation

are not yet modeled as a scale-invariant set of equations like the Navier-Stokes equations.
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Thus, for flows such as crowds, any proposed model should be able to closely match observed

real-world data.

The second aspect of this problem is the impact on performance. In order to make large-

scale flow simulation viable, performance of proposed models must scale with increasing

detail or size. In that context, the problem of solving elliptic differential equations like

Eqn.(1.4) can be computationally more complex than advection. Advection relies purely on

local information, like local velocity and local value of the property being advected. On the

other hand, elliptic problems like incompressibility require incorporating information from

the entire region in which the flow exists, i.e. the domain of the simulation. This global

dependence is commonly modeled as a system of equations (like for equation (1.4)), or a

global optimization problem as in the case of collision avoidance in crowds. In order to

understand issues in scaling performance, it is important to understand the discretizations

used by most models.

1.1 Modeling Flows

Any flow model must begin by defining certain properties: the domain, or the extent of

the flow, and the velocity v and density ρ within the domain. For the flows discussed in this

dissertation, the most common approach is to define sample points where these properties

are explicitly defined, then use a set of basis functions to interpolate them at any other

point in space. There are multiple options for choosing sample points, a common example

being uniformly spaced samples along an orthogonal basis. The resulting discretizations

are known as finite difference methods. These are popular since they are easy to analyze

mathematically for correctness, and amenable to parallelization due to the regular nature

of sample positions. Apart from how sample points are chosen for a discretization, one

other important distinction is whether these sample points are static over time, or can move

dynamically with the flow. The former leads to Eulerian models, while the latter defines

Lagrangian models. For example, fluids can be simulated on Eulerian grids, or using particles
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that move with the flow. In the latter case, particles also serve as markers on where the flow

exists, removing the need for defining the property explicitly.

This dissertation looks into the problem of simulating flows at large scales using verifiably

correct models that are efficient and scalable on desktop computers. However, to understand

the complexity this poses, we must first understand these two representation classes and their

impact on computational complexity.

1.1.1 Eulerian Representation

Eulerian representations discretize the flow domain, i.e. the space in which the flow exists,

and may exist in the future. To do so, they define stationary points in the domain, where flow

properties are sampled; values at other points in space are defined by interpolating sample

values. Defining the behavior of a flow over time then requires describing the variation of

flow properties at sample points over time. To illustrate this principle, consider a simple

example of a stream with water flowing over rocks. Assuming the stream flow is in a stable

state, the velocity of water at any particular point in the stream does not change with

time. As a result, using an Eulerian discretization for this case, velocity values at any

sample point will remain constant over time, even though water is moving. In addition, a

simulation may focus on a small part of the stream – its domain – simulated with appropriate

velocity boundary conditions. Simulation may then be performed by choosing sample points

distributed uniformly throughout the domain.

The choice of the simulation domain and the granularity of discretization defines an

Eulerian discretization. The chosen domain must be large enough to encompass a region

where flow features of interest occur. However, due to limited computational resources, the

placement and number of sample points is also a key decision. For most flow models, the

domain of simulation can be made larger while keeping the number of sample points constant,

without any computational penalty for one time step, i.e. the small duration of time by which

the simulation advances in one step. However, the length of the time step must be modified

5



in accordance with stability and accuracy constraints. Though not required explicitly, most

Eulerian models fix the domain, sampling positions, and desired time step at the beginning

of the simulation for efficiency reasons. The static nature of these setups presents a problem

for large scale flows, as covering the entire region where interesting flow features may occur,

with sufficient resolution and a sufficiently small time step requires a prohibitive number of

sample points.

The smallest scale resolved by Eulerian discretizations is defined by the minimal spac-

ing between sample points. Thus, given certain computational restrictions, most Eulerian

discretizations balance domain size with the separation between sample points. Thus,

flows can either be sampled at fine granularity in small domains, or coarsely in larger

domains [Fedkiw et al., 2001]. Adaptive discretizations are possible and have been pro-

posed where sample points are added and removed based on the expected local details

[Losasso et al., 2004, Adams et al., 2007]. Though computationally efficient as compared to

näıve discretizations with uniformly spaced sample points, these methods have additional

costs as well. Mathematical analysis of the method becomes more complex, and the irregu-

lar structure makes parallelization more challenging. In addition, choosing the appropriate

sampling rate is a non-trivial undertaking, since predicting when and where detailed flow

phenomena may appear is hard. This leads to constraints on the spatial variation of sam-

pling rates. For example, in structures like octrees, sampling rates can vary only by a factor

of two for adjacent samples for quality reasons, as heuristics maintaining sampling rates do

not permit a larger variation.

This restriction on sampling rate variation has implications when simulating large scales.

At sufficiently large scales, uniform sampling like the one chosen for the simulated stream

or even adaptive sampling becomes untenable, as the spatial resolution of the flow becomes

too low to resolve any features of interest, and choosing sufficient sample points becomes

computationally intractable. For example, the chosen sampling rate may be insufficient

for resolving a swirling motion in a container of liquid, or the sudden deviation of a few
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pedestrian in a dense crowd.

1.1.2 Lagrangian Representation

An alternative approach to sampling flows is to follow a methodology similar to that

used for rigid bodies. In such Lagrangian discretizations, sample points are advected with

the flow itself. This leads to a very different definition of the domain, which now defines

sample points not in the space which the flow may occupy, but only in the space the flow

does occupy. For flows like water and crowds where spatial extent is restricted, Lagrangian

discretizations can reduce the memory footprint of sampling. However, temporal progression

of flow properties changes in such a discretization. To illustrate this, consider the previous

example of the stream again. If the sample points where velocity is measured are Lagrangian

and move with the stream flow, then velocity samples will show a temporal variation. At

different time instants, the same Lagrangian sample may measure the velocity of water deep

inside the stream, over a rock feature, or even falling off a cliff. To reconcile this viewpoint

with the previously discussed Eulerian view, derivatives with respect to time are defined

differently in the Lagrangian viewpoint, using material derivatives. These can be related to

Eulerian derivatives by the following equation:

Dx

Dt
=

dx

dt
+ v · ∇x (1.5)

The above equation expresses the rate of change of a property as observed from a frame of

reference moving at velocity v as the rate of change of the property w.r.t. a static frame of

reference plus the effect of the motion – the spatial gradient of the property in the direction of

motion. One complication that arises from the use of Lagrangian discretizations is ensuring

consistent spacing of sample points. Over time, sample points can get clustered, leading

to instability and accuracy issues. To remedy this, sample points must be redistanced or

re-sampled periodically to ensure that the minimum and maximum separation between two
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nearby sample points can be bounded.

In cases where the flow domain is a superset of the flow extent, Lagrangian discretizations

may have a lower memory footprint than Eulerian methods. For example, a mass of water

moving through a pipe always occupies a small finite region within the pipe. Over a period

of time, though the flow may occupy a large segment of the pipe (the flow domain), at any

instant of time the flow extent is always much smaller. Lagrangian discretizations for such a

flow can discretize the smaller flow extent, while a static Eulerian discretization must work

with the flow domain. In spite of these savings however, the growth rate of this memory

footprint with increasing scale or detail remains high for both classes – growing at least

linearly with the area (in 2D) or volume (in 3D) of the flow, and at quadratic or cubic rates

with detail respectively.

Increasing memory footprint of the discretization used to resolve finer detail or increased

spatial scale poses a computational issue for flow simulations, particularly due to the elliptic

problems discussed earlier, which need to access a significant percentage of this memory foot-

print multiple times. Thus, to maintain reasonable throughput in the simulation, memory

bandwidth must be sufficiently large.

1.2 Utilizing Parallel Desktop Architectures

To understand why larger memory footprints are poorly suited for shared memory archi-

tectures like desktops, it is necessary to look at the problem from an architecture perspective.

Recent developments in processor architectures have attempted to increase computational

performance by adding additional cores to processors, allowing more tasks to be run in

parallel. This trend is evident in all compute architectures, including CPUs, as well as co-

processors like the GPUs and the Intel® Xeon Phi. This push is motivated by the fact

that a lot of workloads relevant for real-world applications are compute-bound, i.e. their

performance is limited by the number of computing cores. However, with these parallel ar-

chitectures, flow simulations can quickly become memory-bound, or more accurately memory
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bandwidth bound, where computing cores spend most of the time waiting for data to be de-

livered by the memory subsystem, thus adding more cores does not help speed up the overall

execution time of the simulation. This situation happens most often in elliptic problems

noted previously, where systems of equations may need to access and update large regions

of memory repeatedly in a global step.

Though this can be addressed by improving memory subsystem throughput, it is a com-

plex problem, bounded by the cost of adding high-speed memory units close to computing

cores. The solution commonly used is a hierarchy of caches, with slow DRAM chips at

the bottom. In this hierarchy, latency and throughput limitations of DRAM are hidden by

multiple levels of caches, each higher level of cache having lower latency of access, higher

throughput, but smaller size. Owing to the cost constraint of adding bigger caches, in order

to efficiently utilize these increasing computational resources, algorithms for flow simulation

need to be architecture-aware in two key aspects.

First, any proposed algorithms need to be amenable to parallelization, preferably with

minimal interaction or dependencies between parallel threads. The latter desire stems from

the fact that highly parallel architectures like GPUs work optimally when each thread can

run independently. Secondly, the working set of the algorithm and its overall memory band-

width requirements need to be small. Ensuring this constraint helps ensure that at larger

scales, computation does not become memory-bound, and the simulation can fully exploit all

available compute cores. A smaller working set has a higher likelihood of remaining resident

in high-speed caches, reducing latency of access, and improving overall throughput.

To incorporate these performance aspects, this dissertation proposes novel algorithms for

scenarios where näıvely scaling existing models is untenable – either since the model cannot

accurately capture phenomena at these scales like in the case of crowds, or since it leads

to memory-bound computation as in the case of fluids. In case of fluids, this dissertation

addresses computational scaling at large spatial scales. For crowds, it looks at modeling

crowd behavior at large spatial scales, and at high densities.
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1.3 Coupled Hybrid Simulation

In this dissertation I propose the use of coupled Eulerian-Lagrangian models for efficiently

simulating phenomena at multiple spatial and temporal scales. These models are capable of

simulating previously infeasible flow scenarios, as well as replicating certain flow behaviors

not captured by existing models. An additional feature of these models is a lower memory

footprint at large scales resulting in improved performance on parallel architectures, allowing

the simulation of flows at larger scales than existing models under a limited computational

budget.

These hybrid models can be used to simulate a number of real-world scenarios of interest

in computer graphics and other fields, notably:

� Simulating fluids at large scales: Existing Eulerian models for simulating flu-

ids scale poorly, with memory requirements growing with the 3rd power of scale, and

computational requirements growing with the 4th power. These make large-scale sim-

ulations highly inefficient, to the extent that more computational power does little to

increase performance.

� Flow of pedestrians in large environments: Most crowd models use a Lagrangian

discretization, where each pedestrian is considered a discrete entity. These models

include a trade-off between performance and accuracy w.r.t. distance – performing

collision avoidance up to a nearby threshold distance. This is suitable for most real-

world scenarios, but provides inaccurate results when the scene domain is large, while

considering a larger threshold distance makes the algorithms scale quadratically with

number of pedestrians. As a result, simulations are unable to maintain the desired

real-time simulation rate.

� Turbulent crowd flow in congested environments: Congested crowds have con-

ditions where the first assumption of simulated crowds fails; these simulations often
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assume that pedestrians can avoid contact with others. However, in extremely con-

gested environments where crowd density is very high (5−6 people per m2 and higher),

pedestrians collide almost continuously with others, giving rise to chaotic emergent be-

havior like stampedes, which cannot be replicated by existing models.

This dissertation discusses these scenarios in detail and proposes coupled Eulerian-

Lagrangian models for efficient simulation.

1.4 Thesis Statement

My thesis statement is as follows:

Complex large-scale flows such as crowds and fluids can be simulated efficiently and scal-

ably on current desktop hardware using novel algorithms that simulate multiple spatial and

temporal scales using coupled Eulerian and Lagrangian discretizations.

To support this thesis, I present three methods; one method to efficiently simulate fluids

at scale scales, and two methods to accurately simulate crowds at larger spatial scales, and

at high densities.

1.5 Main Results

Large-scale Fluid Simulation

Simulating fluids in large scale scenes with high visual fidelity using state-of-the-art meth-

ods can lead to high memory and compute requirements. Since memory requirements are

proportional to the product of domain dimensions, simulation performance is limited by

memory access, as solvers for elliptic problems are not compute-bound on modern desktop

systems. This is a significant concern for large-scale scenes. To reduce the memory footprint

and memory/compute ratio, a different representation, called vorticity can be used, where

vorticity represents rotational motion in fluid flow. When represented using a Lagrangian

singularity representation, vorticity can represent rotational fluid motion very compactly.

11



In Chapter 2, I propose a hybrid model exploiting this insight; Using Lagrangian vortex

singularity elements in the fluid interior, coupled with an Eulerian velocity-based simulation

near all interfaces (with air or solid objects). The key benefit in using this model is that

the memory footprint of the simulation is reduced significantly, as instead of discretizing the

fluid volume, we discretize its surface, with additional cost proportional to the amount of

vortex features.

The main contributions of my work are:

� Demonstration of a hybrid simulation algorithm that utilizes coupled Eulerian and

Lagrangian discretizations at different spatial scales to simulate fluids

� A novel coupling algorithm that conserves vortex features in the fluid as well as mass

and momentum of the flow

� An algorithm that can simulate large gaseous flows many orders of magnitude faster

than existing methods, with significant gains for liquid flows

These results were published in [Golas et al., 2012].

Long-range collision avoidance in crowds

Local collision avoidance algorithms in crowd simulation often ignore virtual pedestrians

(agents) beyond a neighborhood of a certain size. This cutoff can result in sharp changes

in trajectory when large groups of agents enter or exit these neighborhoods. In this work, I

exploit the insight that exact collision avoidance is not necessary between agents at such large

distances, and propose modeling the avoidance problem at multiple spatial and temporal

scales to perform approximate, long-range collision avoidance. This model can be used

with both Eulerian and Lagrangian discretizations, as well as coupled Eulerian-Lagrangian

discretizations for maximum efficiency.

This work is discussed in detail in Chapter 3. The primary results in my work are:
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� A model that performs collision avoidance approximately at multiple spatial and tem-

poral scales for both Eulerian and Lagrangian discretizations

� A hybrid model that utilizes both Eulerian and Lagrangian discretizations with coupled

avoidance models to simulate collision avoidance in crowds at a wide range of crowd

densities

� Simulated behavior generated by this hybrid model shows close correspondence to

observed real-world crowd behavior

� Demonstration that efficient implementations of these models can simulate thousands

of virtual pedestrians at interactive rates on current CPUs

This work was published as [Golas et al., 2013b, Golas et al., 2013a]

Crowd Turbulence in High-density crowds

With the growth in world population, the density of crowds in public places has been

increasing steadily, leading to a higher incidence of crowd disasters at high densities. Recent

research suggests that emergent chaotic behavior at high densities – known collectively as

crowd turbulence – is responsible. Thus, a deeper understanding of crowd turbulence is

needed to facilitate efforts to prevent and plan for chaotic conditions in high-density crowds.

However, it has been noted that existing algorithms modeling collision avoidance cannot

faithfully simulate crowd turbulence.

I propose a hybrid model for simulating crowd turbulence, that couples a Lagrangian

agent model with an coarse Eulerian model for frictional forces arising from pedestrian

interactions. The main results of this work are:

� A novel model that couples a fast-varying Lagrangian agent model with a slow varying

Eulerian model for inter-personal stress – normal and tangential forces between nearby

pedestrians
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� Simulated behavior generated by this model shows close correspondence to observed

real-world crowd behavior and known metrics

� Scalar implementation capable of interactive performance on current desktop CPUs

This work was published as [Golas et al., 2014].

1.6 Organization

The remainder of this dissertation is organized as follows. The discussion of hybrid models

begins with the simulation of fluids at large scales in Chapter 2. This is followed by my work

on collision avoidance behavior of crowds at large scales in Chapter 3. Finally, I discuss a

model for simulating chaotic behavior in crowds at high-densities in Chapter 4. Chapter 5

concludes this dissertation by presenting a summary of this work, its contributions, and a

discussion of future work.
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Chapter 2: Large-scale Fluid Simulation using Velocity-Vorticiy Domain

Decomposition

2.1 Introduction

State-of-the-art methods for fluid simulation, including velocity-based Eulerian methods

and smoothed particle hydrodynamics, model the entire spatial extent of the fluid. Dis-

cretization of this space is often chosen to be able to sample sufficiently fine details under

the restriction of limited computational resources. As a result, scenes with large spatial

scales can only be simulated to coarse detail on PCs, relying on procedural methods to infuse

detail. The simple computational kernels of these methods are largely memory-bandwidth

bound, since domains of interest cannot reside in caches of current generation CPUs, and

computational complexity cannot mask the cost of memory accesses. An alternate approach

to modeling fluids is to model fluid detail, represented by the vorticity of the fluid, i.e. the

curl of the velocity field. For incompressible flows, vorticity can be compactly represented

by Lagrangian singularity elements. They are thus free of numerical dissipation, which can

be a significant issue with Eulerian methods, and do not need to explicitly model the pres-

(a) (b) (c)

Figure 2.1: Examples of fluids simulated with my technique: (a) a city block hit by a
tsunami (vortex domain in yellow) (b) seagulls flying through smoke (c) smoke flow around
a sphere. I achieve up to three orders of magnitude of performance over standard grid-only
techniques.



sure of the fluid. Though this leads to computational savings for scenes with unbounded

fluid, robust and efficient modeling of obstacles or free-surfaces with two-way coupling using

vorticity methods is challenging. Vortex singularity elements also serve as intuitive models

for visual fluid detail, e.g. a smoke ring can be modeled as a vortex curve or filament.

These aspects make detail modeling of fluids with vortex singularity elements attractive,

especially for large-scale scenes. To extend the applicability of these methods to free-surface

fluids and scenes with deformable elements, I propose a hybrid domain-decomposition ap-

proach. Since Eulerian methods are adept at modeling such surfaces, coupling them with

vortex methods can provide a robust, flexible, and efficient approach to fluid simulation.

Particularly for scenes with large spatial scales but concentrated regions of detail, my ap-

proach can provide substantial computational and memory savings with reduced numerical

dissipation, allowing simulations with more detail than previously possible.

It also poses significant challenges, the biggest of which is coupling heterogeneous methods

in the same simulation while ensuring a consistent velocity field that matches the actual

fluid velocity. I address this problem by separately coupling fluid flux and vorticity across

simulation boundaries. I propose an iterative coupling algorithm that matches fluid flux

across boundaries using appropriate boundary conditions for grid simulations and by creating

vortex singularities on the boundary for vortex simulations. To accurately transfer vorticity

across boundaries, I use a novel vortex particle creation algorithm and velocity boundary

conditions for advection. It is important to note that maintaining vortex surface elements

is computationally expensive and numerically ill-conditioned if surface mesh quality is poor.

I develop an approach that addresses both of these issues by constructing meshes using

grid faces, and efficiently computing fluxes induced by these face elements, even allowing

pre-computation. I extend hierarchical approach of [Lindsay and Krasny, 2001] for faster

computation of flux induced by vortex particles and surface elements.

Main Results: The key contributions of this work are:

� a hybrid fluid simulation algorithm that preserves vortex fluid features by using a com-
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pact vortex basis with Lagrangian elements in the interior of the fluid, while enforcing

arbitrary boundary conditions such as nonrigid obstacles and free surfaces using an

Eulerian grid representation near boundaries;

� a novel two-way coupling between Eulerian Navier-Stokes simulations and Lagrangian

vorticity simulations, which conserves vorticity over time and ensures continuity in the

velocity and vorticity fields;

� a sampling algorithm to create a vortex particle representation of a given velocity field

by minimizing residual in the L2 norm; and

� an efficient and well-conditioned approach to computing strength of vortex surface

elements, and an O(m logm) algorithm to evaluate flux using hierarchical methods.

The coupling techniques introduced in this chapter are quite general and can be used

to connect different kinds of fluid simulation techniques in a heterogeneous domain decom-

position framework. When applied to grid-based and vorticity-based methods, this method

enables efficient simulation of large fluid volumes using a vorticity representation while sup-

porting rich and complex interaction at boundaries. I demonstrate the benefits of this

approach on several large-scale scenes (see Fig. 2.1) which would have a prohibitive compu-

tational cost using existing techniques.

These results were published in [Golas et al., 2012].

2.2 Related Work

Physically-based simulation of fluids has been a major focus of computer graphics research

over the past decade. In this section, I briefly review the work in this area that is most

relevant to this work. These may can be classified into two broad categories: velocity-

based methods, which discretize the velocity field of the fluid directly, and vorticity-based

methods, which describe it indirectly by its curl (vorticity) instead. These methods may
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further classified in orthogonal categories based on the type of discretization, i.e. Eulerian

or Lagrangian methods.

2.2.1 Velocity-based methods

Most of the de facto standard techniques for fluid simulation in computer graphics use

a velocity-based representation. In such methods, one solves a discretization of the Navier-

Stokes equations, which describe the evolution of the velocity field of a fluid over time.

A popular approach to solving these equations is by using finite difference methods

on Eulerian grids — this was introduced to computer graphics by the pioneering work

of Foster and Metaxas [Foster and Metaxas, 1996]. Stam [Stam, 1999] proposed semi-

Lagrangian advection schemes to allow for unconditionally stable fluids, and Foster and

Fedkiw [Foster and Fedkiw, 2001] developed methods for producing realistic, robust liq-

uid surfaces in simulations. These methods have the advantage of being simple to im-

plement and producing visually compelling results, including interactions with rigid and de-

formable objects [Chentanez et al., 2006, Batty et al., 2007, Robinson-Mosher et al., 2008].

Similar techniques have also been proposed using tetrahedral meshes [Wendt et al., 2007,

Klingner et al., 2006, Chentanez et al., 2007] instead of rectilinear grids. However, Eule-

rian simulators have traditionally faced two challenges. First, they suffer from signifi-

cant numerical dissipation, typically exceeding the desired viscosity in the fluid, causing

flow detail to be undesirably damped out. Recent developments in improved advection

schemes offer benefits in this aspect [Kim et al., 2007, Selle et al., 2008, Mullen et al., 2009,

Lentine et al., 2011, Zhu and Bridson, 2005], while techniques for introducing additional

detail have also been proposed [Fedkiw et al., 2001, Selle et al., 2005, Kim et al., 2008,

Narain et al., 2008, Schechter and Bridson, 2008, Pfaff et al., 2010]. However, a second,

more fundamental challenge is that Eulerian methods require voxelization of the entire sim-

ulation domain. The elliptical pressure projection operator needed to solve these equa-

tions demands that all pressure values be strongly coupled with each other, leading to
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large computational and memory requirements for expansive scenes. Some recent work has

attempted to address this issue, with level-of-detail representations [Losasso et al., 2004],

coarse grid projections [Lentine et al., 2010], and model reduction [Treuille et al., 2006b,

Wicke et al., 2009], but these are often incompatible with techniques for reducing dissipation.

An alternative approach is that of smoothed particle hydrodynamics, which models the

fluid volume as a system of particles with pairwise forces between them. This approach has

been employed for interactive simulation of liquids [Müller et al., 2003]. Similar to Eule-

rian grids, these methods can lead to a large number of particle primitives to sample fluid

extent. In addition, enforcing incompressibility correctly can be expensive, owing to ir-

regular computational elements. These concerns have been addressed partly with adaptive

sampling [Adams et al., 2007] and predictive-corrective schemes for incompressiblility pro-

jection [Solenthaler and Pajarola, 2009]. Sin et al. [Sin et al., 2009] proposed a point-based

approach that combines features from particle-based and grid-based methods. However, for

the large scales under consideration, computational costs remain substantial for all such

techniques.

2.2.2 Vorticity-based methods

Vortex simulations are a class of methods which were originally devised for aircraft wing

design, and have recently begun to receive attention in computer graphics as well. These

methods model the evolution of fluid vorticity, which is the curl of the velocity field, in-

stead of velocity itself. With the exception of Elcott et al. [Elcott et al., 2007]’s Eulerian

approach representing vorticity on a tetrahedral mesh, most of the methods in this category

are Lagrangian, using singularities with the Green’s function of the Laplace operator.

In this formulation, singularity methods can be applied, representing the

vorticity distribution as a superposition of singularities such as particles

[Chorin, 1973, Park and Kim, 2005], curves/filaments [Angelidis and Neyret, 2005,

Weißmann and Pinkall, 2009], or surfaces/sheets in 3D space. Vortex singularities are
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excellent basis functions for fluid velocity for a number of reasons. They offer a compact

and exact representation of fluid velocity in unbounded domains, automatically ensure

incompressibility, and are immune to numerical dissipation. Due to their Lagrangian nature,

vortex singularity methods also allow easier user control of the simulation as compared to

grid methods. These features have made these methods popular for interactive simulations

[Angelidis et al., 2006, Weißmann and Pinkall, 2010]. Curve or filament representations

also ensure incompressibility of vorticity, but can only model inviscid fluids. This is not the

case with vortex particles, which allow viscous fluids to be modeled, at the cost of a slightly

compressible vorticity field. The divergence-free constraint can be enforced iteratively

through particle strength exchange methods [Cottet and Koumoutsakos, 1998], which can

also model viscosity.

Enforcing boundary conditions requires the solution of a dense linear system. Though

capable of arbitrary accuracy — conditions are enforced at mesh resolution — for nonrigid

obstacles, precomputation of the linear system is impossible, which makes these the limit-

ing factor in vortex simulations. Also, due to the singular nature of vortex singularities,

proximity of elements has a major impact on the conditioning of this linear system, to the

extent of rendering the system unsolvable due to poor conditioning. Large variations in the

size of elements have a similar effect on conditioning. These issues make efficient and robust

modeling of nonrigid obstacles non-trivial. It is also difficult to model the dynamics of free

surfaces in this framework.

While there have been a number of hybrid simulation techniques combining, for example,

rectilinear grids with tetrahedral meshes [Feldman et al., 2005], or grids with particle-based

methods [Losasso et al., 2008], all these work solely with velocities, and I am aware of no

work in computer graphics that allows combining velocity- and vorticity-based methods in

the same simulation.

The remainder of the chapter is organized as follows. The hybrid domain decomposition

algorithm is described in Section 2.3. I propose some tools for improving the efficiency of
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Figure 2.2: Several seagulls flying through clouds of smoke to demonstrate airflow around
their wings. On this scenes, my simulation achieved speedups of >1,000x

vortex simulations in Section 2.4. Finally, results and analysis of my implementation are

described in Section 2.5.

2.3 Hybrid Fluid Simulation

Given velocity-based and vorticity-based methods have complementary advantages, I pro-

pose a hybrid approach that combines the respective strengths of both techniques. In partic-

ular, many different techniques have been proposed to support different types of boundary

conditions for velocity-based methods, including free surfaces, deformable and thin objects,

and two-way coupling. On the other hand, vorticity-based methods can compactly repre-

sent effectively infinite volumes of fluid where detail in the fluid motion is spatially limited.

Therefore, I propose to combine both methods through a domain decomposition approach

(Section 2.3.2), representing the fluid using velocity-based methods near boundaries such

as obstacles and free surfaces, and employing vorticity-based methods in the large interior
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region of the fluid.

However, the disparate nature of velocity and vorticity methods makes it challenging to

combine them into a single heterogeneous simulation. An essential problem is that of cou-

pling together the two representations at the interface between them, so that they represent

a consistent velocity field for the entire fluid. I present a novel two-step coupling algorithm

to address this problem: first matching normal velocities at the interface using an alternat-

ing scheme (Section 2.3.3), and then transferring vorticity information across subdomains

through particle seeding (Section 2.3.4). As I show below, matching both velocity and vor-

ticity across the interface is necessary to obtain a consistent and convergent simulation in

this framework.

2.3.1 Subdomains

My simulation consists of Eulerian (Gi) and Vortex (Vi) subdomains. For notational

simplicity, I use G and V to refer to the union of all Eulerian subdomains and Vortex sub-

domains respectively. Eulerian subdomains model the Navier Stokes equations using uniform

grids, with velocity u sampled on a staggered grid. Operator splitting is used to integrate

each term one by one, with a BFECC Semi-Lagrangian scheme for advection, explicit inte-

gration for external forces, and a sparse Poisson solve for enforcing incompressibility using

pressure. Advection and Incompressibility solve steps take volume flux boundary conditions

from the hybrid simulator, instead of zero flux enforced in traditional solvers. For more

details I refer the reader to [Bridson and Müller-Fischer, 2007, Carlson, 2004].

Vortex subdomains (Vi) model the evolution of vorticity ω = ∇× u, using the vorticity

form of the Navier Stokes equations:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω, (2.1)

∇ · ω = 0, (2.2)
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under the assumption of no density gradients. Under this formulation, velocity can be

expressed using the Green’s function of the Laplace operator, giving rise to the Biot-Savart

formula:

u(x) =
1

4π

∫
R3

ω(z)× x − z

‖x − z‖3
dz. (2.3)

for a vorticity distribution in an infinite domain. Note the absence of a pressure term, as the

velocity so defined is incompressible by definition. As mentioned before, this distribution

can be represented as a superposition of discrete primitives such as points (particles), curves

(filaments), or surfaces/meshes (sheets) giving rise three types of vortex singularity methods.

I use a particle representation owing to its ease of use, and the possibility of modeling

viscosity, which is not possible using filaments. Also, due to poor long term stability of ideal

singularities, regularized singularities or “vortex blobs” are typically preferred. A popular

choice is the Rosenhead-Moore kernel, a regularized form of the Biot-Savart kernel with a

constant smoothing radius a to give

u(x) =
1

4π

∫
R3

ω(z)× x − z

(‖x − z‖2 + a2)3/2
dz. (2.4)

The smoothing radius governs the concentration of vorticity represented by a vortex blob,

which affects the scale of vorticity features that can be represented by it.

The vortex particle algorithm proceeds by advecting vortex particles, perturbing par-

ticle strengths to model vortex stretching and viscosity, and creating vortex sheets

to model obstacles. Particles whose strength falls below a minimum threshold are

culled. For more details about advection, stretching and viscosity, I refer the reader to

[Cottet and Koumoutsakos, 1998]. Obstacles are modeled by creating vortex sheets on their

surface. [Weißmann and Pinkall, 2010] propose creating filaments along the edges of a polyg-

onal mesh for this purpose, where the strength (Γi) of each filament (fi) is determined to

enforce zero flux through each face of the mesh, i.e.
∑

i Γifluxi(fj) + fluxV(fj) = 0. I

utilize a similar algorithm relying on vortex particles instead of filaments to enforce flux.
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In the hybrid case, I create sheets to match a non-zero flux, resulting in the equation for

the strength of each filament:
∑

i Γifluxi(fj) + fluxV(fj) = fluxG(fj). In case of multiple

vortex domains, either all vortex sheets can be computed using one solve, or by iteratively

solving for the strength of each vortex sheet separately. This choice usually depends on

whether linear systems for each component can be precomputed or not.

2.3.2 Hybrid Domain Decomposition

In my hybrid approach, I divide the simulation domain into a number of non-degenerate,

overlapping subdomains, each of which is simulated using either the vortex method or Eule-

rian Navier-Stokes simulation.

It is natural to define one large region V, consisting of the interior of the fluid at least

a distance d away from boundaries, on which the vortex method is applied. This region

consists of one or more disjoint subdomains Vi. The other subdomains, labeled Gi, use

Eulerian Navier-Stokes simulations, and may contain boundaries such as static or moving

obstacles and free surfaces. I assume that all Eulerian subdomains Gi are disjoint from each

other (if not, I may merge any grids that overlap), and each of them overlaps with the vortex

subdomain V, in order to apply my coupling algorithm. Thus, the burden of supporting

various boundary conditions is lifted from the vortex method, and placed on grid-based

methods for which numerous techniques are available.

This decomposition is illustrated in Figure 2.3. For single-phase simulations like smoke,

the domain consists of grids immersed in a vortex simulation, with the vortex domain ex-

tending to a user-specified distance d inside every grid. For free-surface simulations like

water, the vortex simulation is embedded inside an Eulerian grid, with the boundary of the

vortex domain being a distance d inside the fluid surface. As boundaries move, so do their

corresponding subdomains, so that at all times the boundaries are contained entirely within

grids and remain at least a distance d from the extent of the vortex subdomain.

Fluid velocities in the vortex subdomain are determined using the grid velocities as
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(a) (b)

Figure 2.3: Decomposition of domain into vortex (red) and Eulerian grid (blue) subdo-
mains for (a) single-phase flows, and (b) free-surface flows. Dotted lines denote grid region
boundaries, while solid lines denote the vortex coupling sheet

boundary conditions. That is, the boundary of the vortex subdomain, which is a surface

that lies entirely within the grid, is treated as an obstacle whose normal velocities are given

by the grid velocity field, and a vortex sheet is computed on this surface to match the

corresponding fluxes. Thus, the velocity field can be evaluated at any point in the interior

using the Rosenhead-Moore kernel (2.4).

I define the timestepping scheme of the hybrid simulation as follows. Each subdomain is

advanced independently over one time step ∆t while assuming that velocities in the others

are constant. Assuming constant velocities in other subdomains introduces an error on the

order of O(∆t) in both vortex and grid regions: in the vortex region because boundary

conditions are determined by the grid; and in the grid because advection carries velocities

in from the vortex region. In general, this magnitude of error is acceptable because the rest

of the simulation (like most techniques for fluid simulation in graphics) is also first-order

accurate. At the end of the time step, I couple the simulations back together by matching

normal velocities at the boundaries, thus enforcing incompressibility, and matching vorticity

in the interior of the overlap region. It can be shown that when the overlap region is simply

connected, if both grid and vortex velocity fields have equal flux at the boundary and equal
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vorticity in the interior, they must be identical [Cantarella et al., 2002]. For overlap regions

with complex topologies, additional circulation constraints are needed. Thus, I can ensure

that the combined simulation is consistent: where the grid and the vortex domains overlap,

they agree on the fluid velocity.

In the following two subsections, I describe my proposed coupling techniques in more

detail.

2.3.3 Velocity coupling

Each Eulerian solver stores a velocity field which determines the velocity uGi
at any point

within its grid Gi. Similarly, the vortex method determines the velocity uV at any point

in its subdomain V. By allowing domains Gi and V to overlap, I can enforce consistency

between the corresponding simulations by ensuring that uGi
and uV are equal in the overlap

region Oi = Gi ∩V.

To enforce this constraint, I recall that the velocity field in any region is uniquely deter-

mined by the distribution of vorticity within it, and the flux at the boundaries of the region.

Therefore, discrepancies between the velocities seen by different subdomains can only occur

from having incorrect vorticity information in the interior or incorrect flux at the boundary.

Assuming consistent vorticity in the overlap region, I need to ensure that flux across the

boundary of the overlap region is consistent, i.e. velocity induced by both simulations is the

same uGi
= uV at the boundary .

Velocity can be matched at ∂Gi by enforcing the desired velocity as boundary conditions

for the incompressibility projection step. To do the same with vortex simulation requires

the creation of a vortex sheet S to match normal flux through ∂V, i.e.

(uS + uV) · n = uGi
· n (2.5)

on the sheet, where uS is the velocity induced by the vortex sheet S.
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Thus the velocity coupling can be formulated as a fixed point iteration, one iteration of

which can be expressed as follows:

1. Determine the velocity uV + uS at the boundary ∂Gi of the Eulerian subdomain

2. Using uV + uS as the boundary condition, perform the incompressibility projection on

the grid Gi

3. Determine the velocity uGi
at the boundary ∂V of the subdomain V

4. Compute strength of the vortex sheet S to match vortex velocity uV to uGi

Coupling iterations are performed till uG and uV + uS converge. For coupling multiple

Eulerian subdomains with the vortex subdomain, this iteration can be performed in lockstep

for every pair of overlapping subdomains.

This algorithm belongs to the class of methods known as the Schwarz alternating methods

[Toselli and Widlund, 2004], which are commonly used in domain decomposition methods.

Schwarz alternating methods are guaranteed to converge to a unique solution for second order

PDEs, and thus this iteration ensures that the velocity field is consistent at the boundaries

of all subdomains, and consequently in the entire domain.

2.3.4 Vorticity exchange

Velocity coupling on the subdomain boundaries will yield consistent velocities over the

entire overlap region only if the vorticities seen by both representations are equal. However,

even if the vorticities are equal in the initial conditions, they will gradually go out of sync

over time, as vorticity is transported into the overlap region through advection. Therefore,

to ensure consistency at all times, I need to account for this by exchanging vorticity between

the grid and the particle domains. I derive this procedure by considering the two cases

where vorticity is brought into the overlap region from the vortex particles and from the grid

domain respectively.
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From the vortex particle domain, vorticity enters the overlap region when a vortex particle

flows in and crosses the boundary of the grid. In this case, transferring vorticity into the

grid’s velocity field can be done with appropriate boundary conditions. When I perform

velocity advection on the grid using, say, a semi-Lagrangian scheme, it typically requires

velocity information at locations outside the grid; I fill this in using the velocities determined

by the vortex particle representation. Thus, as a vortex particle enters the overlap region,

advection on the grid automatically pulls in its corresponding vorticity. Further, when the

particle moves into the grid-only region, it may be deleted as its vorticity remains represented

on the grid, or preserved to drive vorticity confinement.

Handling the transfer from the grid to vortex particles is somewhat more involved. As

advection on the grid moves velocities around, the vorticity present in the grid-only region

may be transported into the overlap region. This vorticity is unaccounted for by existing

vortex particles in the overlap region, creating error in the representation. Therefore, I must

insert new vortex particles in the overlap region to make the vorticities match.

I do this in a greedy fashion, at each iteration inserting the particle which best reduces

the difference between the vorticity due to the particles and the vorticity present in the

grid, denoted ∆ω. This is the particle at position xp with strength αp which minimizes the

L2-norm of the vorticity difference,

ε =

∫
Gi∩V

(
∆ωp(x) + k(x− xp, αp)

)2
dV, (2.6)

where k is the Rosenhead-Moore kernel. I found that the smoothing kernel used to obtain

the Rosenhead-Moore kernel from the Biot-Savart kernel is well approximated by a Gaussian

of standard deviation a/2. The choice of Gaussian smoothing is motivated by its smoothing

properties in scale space, due to which features smaller than a are smoothed away, and

computational efficiency afforded due to its linear separability property. Therefore, I smooth

∆ω with the Gaussian and choose xp at which the smoothed field attains its maximum
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magnitude in the overlap region. Once xp is fixed, it is straightforward to find the particle

strength αp which minimizes ε, as k is linear in αp. I add this particle into the simulation

and then repeat the process, until ε or ‖αp‖ fall below chosen thresholds.

With this process, I maintain consistency between the grid and the vortex particles in

the overlap region. To reduce the particle count, I also merge particles which are within a

certain fraction of the smoothing radius a of each other. At every time step, I consider the

O(dn2) cells in the overlap region. Though in the worst case, all these cells may result in

new vortex particles, temporal coherency results in the creation of O(dn) particles per step.

I note that even though the Rosenhead-Moore kernel has infinite support, vortex particles

can be created with finite information offered by the grid, since the distribution of vorticity

around a particle decays rapidly with distance.

The outline of my resulting algorithm is shown in Figure 2.5.

2.4 Efficient vortex particle simulation

Vortex particle simulation is one of the major underlying components of my method.

In this section, I discuss my implementation, including optimizations — some derived from

theoretical concerns, others from practical ones. Efficient algorithms for purely Eulerian

fluid simulation already exist, thus I do not delve into them here. As discussed in Section

2.2, the three main steps of vortex particle simulation are advection, stretching, and ob-

stacle handling. Advection requires the computation of velocity at every particle position,

and näıve summation using the Biot-Savart law leads to an O(p2) algorithm for p particles.

[Lindsay and Krasny, 2001] propose a hierarchical summation approach to compute veloci-

ties, that reduces the cost of this step to O(p log p). However, in the presence of obstacles,

the most expensive step is evaluating flux through the obstacle surface, and the subsequent

linear system solve. In addition, mesh quality plays a pivotal role in the conditioning of this

system.
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2.4.1 Well-conditioned vortex sheet computation

The computation of vortex sheets that match normal velocities at their surface is a

major step in vortex singularity simulation and my velocity coupling algorithm. Like any

other vortex singularity element, the sheet induces a velocity field determined by the Biot-

Savart law. In practice, these sheets are discretized as polygonal meshes, where each

mesh face is a singularity with a distribution of vorticity. I use the approach proposed

by [Weißmann and Pinkall, 2010], which assumes a constant strength for each face and rep-

resents each with a filament geometry defined by the edges of the face. To determine the

strength of each face, a linear system is constructed that matches normal velocities or total

flux at the face in accordance with equation (2.5). Due to reciprocity between filaments, the

resulting matrix is symmetric. I first evaluate the net flux on each boundary polygon due

to all vortex particles in the scene, giving uV · n, and then solve a linear system to compute

vortex sheet strengths that will produce the desired change in flux, (uGi
− uS) · n.

In the presence of topological holes, fluxes are insufficient to uniquely determine the ve-

locity field, and a circulation constraint must be specified for each hole. For example, if

the sheet is a torus, normal fluxes alone cannot capture a purely tangential flow through

the torus. For a formal discussion, I refer the reader to [Cantarella et al., 2002]. The condi-

tion number of this problem depends heavily on the quality of the underlying mesh. When

matching flux through each face, a high variance in face areas can result in a poorly condi-

tioned system. Similarly, due to the singular nature of these vortex elements, the minimum

separation between faces also affects conditioning. Very low separation among a few faces

can skew the eigenvalues of the matrix, making it poorly conditioned to the extent of losing

rank.

To remedy this, I propose constructing vortex sheets using grid faces. Since I construct

sheets at a distance d from any surface, this is equivalent to measuring distance using the

infinity norm. The resulting mesh has two important properties, firstly that faces have zero

variance of area, and that minimum separation between two faces is at least the grid cell
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width ∆x. Using these meshes results in linear systems with much better conditioning than

those obtained using the traditional marching cubes algorithm, which relies on the 2-norm.

In addition, the entries of any possible matrix constructed can be precomputed, since the

set of all possible mesh faces is a finite set.

2.4.2 Hierarchical methods for flux computation

As noted earlier, flux computation is one of the major computational kernels of my

algorithm. Since the velocity induced by a vortex element is the curl of its corresponding

vector potential Φ, Stokes’ theorem lets us express its flux through a polygon η as

flux(η) =

∫∫
η

u(x) · dA =
∑
i

∫
∂ηi

Φ(x) · dl (2.7)

where

Φp(x) =
1

4π

∫
R3

ω(z)√
‖x − z‖2 + a2

. (2.8)

To create the linear system I need to determine flux induced by a vortex particle or

filament though a polygon. Though closed forms can be obtained for both, a better approach

is to extend the hierarchical structure created to compute velocities. This structure can be

easily extended to compute the vector potential induced by a set of vortex particles at any

point in space. Then, a quadrature rule can be used to evaluate the integral in equation

(2.7). I found that a 5th order Gauss-Legendre quadrature achieves a relative error < 0.01

when compared to the closed form.

Creating a hierarchical approach for filaments is non-trivial. However, using the same

idea of evaluating integrals with Gaussian quadrature, a filament edge can be discretized into

a number of vortex particles placed according to the quadrature sample positions, with their

strengths being the filament strength multiplied by quadrature weights, strength vectors

being aligned to the edge. This is especially simple for the mesh I create, since edge lengths

are equal, but can be applied to any polygonal mesh.
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Example dt
Grid Resolution Simulation Time Grid Resolution Simulation Time Max. Vortex Average coupling

Speedup
(Eulerian) Eulerian (s) (Hybrid) Hybrid (s) Particles sheet size

Dam Break 0.0167 128x192x128 93.375 - 83.122 15860 490x490 1.123
256x384x256 1313.94 - 514.41 32089 2316x2316 2.55

Smoke around 0.04 72x118x72 3.66 32x34x32 1.033 11516 1232x1232 3.54
sphere 0.04 144x236x144 47.712 64x68x64 5.959 23976 1232x1232 8.006

0.04 144x236x144 47.712 64x68x64 29.7295 20105 4928x4928 1.604
0.04 288x474x288 1277.37 128x136x128 177.044 34298 5640x5640 7.214

Wave 0.04 600x100x120 403.89 - 118.897 1567 2742x2742 3.4
City 0.04 312x60x210 87.51 - 66.801 7208 1722x1722 1.31
Seagull 0.04 520x256x520 NA 84x60x84 15.31 25674 1296x1296 >1000

Table 2.1: Single thread performance for my examples (All time values for one simulation
step)

Thus the same hierarchical approach used for vortex particles can be used for vortex sheet

velocity and flux computation, creating a unified representation for the vortex simulation.

This suggests an iterative approach to solving the linear system to determine vortex sheet

strength, since for a mesh containing m faces, instead of using O(m2) operations for matrix

vector multiplication, I can do the same computation hierarchically in O(m logm) operations.

This is especially helpful since for a grid of size O(n×n×n), m can be O(n2), thus a matrix-

vector multiply of complexity O(n4) can be performed with O(n2 log n) operations. By using

Fast Multipole Methods, this cost can be brought down further to O(n2).

As to the choice of iterative methods, I use the GMRES algorithm with restarts

[Barrett et al., 1994], since the matrix is indefinite. I observe convergence in O(n) itera-

tions on average, O(n2) iterations in the worst case. Thus, the strength of a vortex sheet

can be determined in O(n4 log n) time in the worst case, and O(n3 log n) on average.

It is important to note that the underlying bounding volume hierarchy constructed for

this method is also used to accelerate neighborhood queries needed for the vortex stretching

step, bringing its complexity down from O(p2) to O(kp) where k is the number of neighbors

considered.

2.5 Results

My method was used to simulate a number of challenging examples. Vorticity confine-

ment was not used in any scenario.

Coupled simulation in unbounded space: Seagulls in flight (Figure 2.2) are used
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to demonstrate how my method can be used for a scenario which would be challenging to

simulate with either vortex or velocity methods alone. In this scene, three seagulls fly through

four plumes of laminar smoke flow. To best demonstrate the effect of obstacle interaction,

buoyancy is not modeled — the flow is kept laminar and does not become turbulent on its

own. Vortex methods cannot be coupled robustly with deformable objects, while a domain

of this size cannot be voxelized in desktop or mobile PC memory. The deforming wings of

the seagulls induce vorticial details into the flow, which is carried by vortex particles even

after the birds have moved on to different parts of the scene. Although I have applied a

bound to the domain by determining the extents of all elements of the scene, the domain is

unbounded in principle; the memory savings noted are lower bounds of what can be obtained

with even larger scenes.

Preservation of vortex features: Figures 2.4a and 2.4b show fluid flow around simple

boundaries where vortex features are preserved. It is important to note that speedup ob-

tained for the sphere scene is not as significant as the seagull scene, since it has high-detail

vortices in nearly its entire domain of interest, and thus cannot benefit as greatly from a

compact representation of vorticity.

Tsunami striking a city (Figure 2.1a). A tsunami breaks over a city block, demonstrat-

ing fluid detail created by a high number of rigid objects; this scenario involves interaction

with a large area of obstacle surfaces. The complexity of my approach scales with the total

surface area of all elements in the scene — this scene is not expected to enhance performance

as well as other cases. However, my approach helps in preserving flow details even in the

absence of vorticity confinement.

Velocity coupling/comparison: In this scene, I show wave forming, cresting, and

breaking. Visual fidelity and detail are maintained, resulting in a qualitatively similar sim-

ulation as previous methods, while affording performance benefits.

Scenes are modeled and rendered using Blender® and Maya®. Water is rendered as a

mesh with an appropriate water shader, while smoke is rendered as a density field. Smoke
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is advected passively through the flow, but can also be used to create density estimates for

buoyancy forces.

2.5.1 Performance

For each of these examples, the vortex smoothing radius a is chosen to be close to the grid

cell width; in all the examples shown here, this was in the range [∆x, 4∆x]. Correspondingly,

the size of the overlap region d is kept between [a, 2a] to allow sufficient information to create

vortex particles, since the decay of the vorticity kernel is faster than linear. In practice, I

have observed that an average of 2-3 coupling iterations are sufficient to allow the simulation

regions to converge with an error of 10−4 in the L2 norm of the residual.

I measured the performance of my method on an Intel® Xeon® X5560 processor running

at 2.8GHz on a system with 48GB of RAM and 8MB lowest-level cache. My method is

implemented in C/C++, and some components use SIMD (4-wide single-precision SSE)

instructions to improve performance and resource utilization.

The timing and performance results for all of my examples are shown in Table 3.1;

here I show a performance comparison between purely Eulerian and hybrid simulation for

single phase and free-surface simulations demonstrating the speedups obtained by using my

method. Overall my approach gives varying speedups that are most pronounced for single-

phase simulations. This is expected; free-surface scenes require regeneration of the coupling

vortex sheet every step, which represents additional overhead in my technique not present

in standard fluid solvers and proportionally mitigates (but does not eliminate) the overall

advantage of my technique in efficiency.

Additional scope for optimization of these results exists, by using appropriate precon-

ditioners for GMRES, and more optimized solvers. In addition, for free-surfaces, the same

coupling sheet can potentially be used for multiple frames and linear solvers can be warm

started with values from the previous time steps leading to more performance benefits.
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2.5.2 Controlling Dissipation

As some of my examples may appear diffusive, I offer some insight into controlling diffu-

sion. First of all, it is important to note that smoke sources in my scenes introduce purely

laminar flow, with no model for buoyancy. This is done in order to highlight the preserva-

tion of vorticity across subdomain boundaries, since such an observation would be difficult

in turbulent flow. Because my coupling algorithm matches flux and vorticity, any error in

the latter would be observed as spurious vorticity at subdomain boundaries.

Three main sources of possible diffusion while using my algorithm are the choice of

smoothing radius a, grid advection, and vortex stretching algorithms chosen. In figure 2.6

I show the difference in using PIC v.s. FLIP advection algorithms [Zhu and Bridson, 2005].

The choice of advection algorithms has an equally large impact in single-phase simulations,

and some of my examples exhibit such dissipation as well. However, as shown by the ex-

ample, this can be readily addressed by the use of less dissipative advection algorithms.

The impact of advection algorithms on grid vorticity is analogous to the effect of vorticity

stretching in vortex domains along with the choice of smoothing kernel. Accurate and stable

stretching of vortex particles requires careful creation of new particles as needed, and the

enforcement of the divergence-free vorticity constraint. Deviation from the constraint results

in a tradeoff between numerical stability and diffusive behavior. Though a higher order ker-

nel can improve accuracy, third order and higher kernels induce negative vorticity which is

visually undesirable. The choice of smoothing radius is also important since it controls the

highest frequency of vorticity detail that can be modeled.

2.6 Summary

I have presented a hybrid simulation algorithm for simulating fluids in large-scale scenes

with a reduced memory and computational footprint that is proportional to the total area

of all surfaces. It provides memory and execution time improvements from 2x–1000x, de-
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pending on the scene. This performance gain is achieved via a novel algorithm that couples

vortex singularity methods and Eulerian velocity simulations. I also propose a vortex par-

ticle creation algorithm, which creates particles to compactly represent a velocity field by

minimizing the L2 norm of the difference. My generalized approach also offers a flexibility

to choose different regimes and numerical methods for distinct regions of a scene.

2.6.1 Limitations and future work

My method discretizes the vorticity space – rather than spatial extent – using one set of

basis functions, defined by the smoothing radius a. To achieve high performance, my method

relies on sparsity in this space. For scenes that contain dense vortex detail, my method’s

computational advantage diminishes, bringing its performance closer to other techniques.

For specific static scenes, more compact bases could be derived, but such an approach would

not scale to dynamic scenes without substantial pre-computation.

I also note that my particle seeding algorithm chooses a subset of possible vortex bases:

those centered at grid cell centers. Though this does not reduce the applicability of the

method, the possibility of expanding the set of bases to different smoothing radii and gen-

eralized particle placement would add to the efficiency and compactness of the vortex rep-

resentation.

My formulation uses overlapping subdomains for coupling since it simplifies the coupling

algorithm. A non-overlapping coupling, if possible, could allow the formulation of a vortex

boundary condition for free-surfaces and two-way coupled obstacles. This would reduce

the need for a full-fledged grid simulation, and afford greater flexibility in the choice for

simulation methods.

Representing velocity fields as vortex particles opens the possibility of compact storage

and manipulation of velocity fields. This can be used for artistic control of fluid velocity and

even for accurate modeling of fluid turbulence. Further investigation of these avenues would

be valuable for increasing fidelity and artistic control of existing algorithms as well.
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(a)

(b)

Figure 2.4: Examples of fluid flow and domain decomposition (a) static, for single-phase
flows, (b) dynamic, for free-surface flows changing with the topology of water extent
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For each time step:

1. Advance level-set surfaces, if any

2. Advect velocity fields uGi
and apply any external forces

3. Convect vortex particles in V

4. Repeat until convergence or maximum iterations:

(a) Perform incompressibility projection on all grids Gi using boundary condi-
tions uV + uS from vortex particle simulation

(b) Rebuild vortex sheet(s) S in the middle of grid-vortex overlap

(c) Determine strength of vortex sheet(s) S to match vortex and grid velocities
as per Equation (2.5)

5. Vorticity exchange

(a) Create vortex particles to minimize vorticity residual

(b) Perform vortex stretching to model fluid viscosity

Figure 2.5: The main steps of my method.

(a) (b)

Figure 2.6: Dam Break example at t=0.48s using PIC(left) and FLIP(right) showing
maximum height reached by water
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Chapter 3: Hybrid Long-Range Collision Avoidance for Crowd Simulation

3.1 Introduction

Long-range vision is critical to human navigation; in addition to avoiding nearby obsta-

cles, the human visual system looks ahead to perform dynamic global planning and local

navigation. By considering the distribution of other pedestrians and obstacles over large

distances, people can anticipate overcrowded regions and navigate around them, thereby

finding efficient, uncongested paths to their goals. Thus long-range vision greatly improves

crowd flow and progress. Most existing work addresses either global navigation around

static obstacles or local avoidance of collisions with nearby pedestrians, but often neglects

the importance of long-range collision avoidance. Modeling long-range collision avoidance

holds tremendous potential, to improve the flow of simulated crowds and help them reach

their goals faster. To maximize utility, such a model should improve crowd flow without

disrupting existing crowd simulation pipelines. Thus I consider this as the primary goal of

this work.

The state of the art for this topic is a synthetic-vision based steering algorithm proposed

by Ondrěj et al. [Ondřej et al., 2010]. This method explores a vision-based approach for

collision avoidance among walkers. It offers global efficiency among the agents in terms

of overall walking time. Achieving reasonable performance is perhaps the key challenge of

using this approach for large-scale, interactive applications. Even a parallel, GPU-based

implementation cannot handle more than 200 agents at interactive rates. Complementing

this approach, my work addresses this problem by offering a simple and efficient alternative

that naturally extends existing local collision avoidance algorithms to provide long-range

collision avoidance. My avoidance algorithm works based on the concept of lookahead, i.e.

future agent states are approximated using past and present information; and these states



Figure 3.1: Results without lookahead (left) and with lookahead (right) for 2 demo sce-
narios. Crossing: (Top) shows two groups of agents seeking to exchange positions at
simulation time t = 10 s. Note how, with lookahead, the bigger group parts to allow smaller
group through. Circle: (Bottom) shows agents on the edge of a circle heading to diametri-
cally opposite points at simulation time t = 40 s. Note significantly improved progress with
lookahead.
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are used to model possible collisions with agents not considered by local collision avoidance.

My method is robust even in presence of obstacles and chaotic crowd motion, and provides

improved correspondence to real-world behavior.

Collision avoidance algorithms can be broadly classified into two categories: discrete and

continuum – based on the underlying representation of crowds. I formulate and demonstrate

my lookahead approach for both classes of algorithms, as the problem is not restricted to

either class. Though my demonstration in this chapter uses specific examples of continuum

and discrete algorithms, my technique can be easily applied and generalized to other collision

avoidance algorithms.

The use of continuum and discrete algorithms for collision avoidance also brings up

a common issue with either class, namely their applicability to different ranges of agent

density. Continuum algorithms (e.g. [Narain et al., 2009]) are ideally suited for medium

to high densities, since the continuum assumption holds when pedestrian paths are tightly

constrained by the nearby neighbors found at these levels of density. On the other hand,

though discrete algorithms can be applied at any density, their computational costs escalate

at high densities, along with numerical issues in some cases. Since crowds can exhibit an

entire spectrum of densities even in any particular scene, these cases are not exceptions,

but common occurrences. This insight suggests the need for an inexpensive hybrid scheme

that locally blends both approaches for efficient collision avoidance over the entire spectrum

of crowd densities. Such a scheme should choose the most suitable underlying algorithm

for a particular simulation sub-domain, especially for problem cases where the wrong choice

can lead to instabilities or other computational issues such as in scenarios of high or low

densities, high variance of agent velocities, etc.

To address these problems, this chapter introduces the following main results:

� A novel approach for approximate long-range collision avoidance that can be used with

discrete or continuum algorithms with minimal increase in computational costs.

� An inconsistency metric to measure oscillations in agent trajectories that can be used to
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detect chaotic crowd behavior and curtail lookahead or to serve as a basis for comparing

crowds, real or simulated.

� A hybrid algorithm that combines existing continuum and discrete collision avoidance

algorithms to efficiently compute smooth local collision avoidance responses in any

sub-domain.

� Comparison to real-world data that demonstrates improved speed sensitivity to density

in simulated crowds using my algorithm, similar to human crowds as measured using

the fundamental diagram.

My results show significant improvements in crowd progress with minor increases in com-

putational costs In Fig. 3.1, I demonstrate my approach on two scenarios, where improve-

ments in crowd behavior and progress are seen with less than 3x computational overhead.

My approach is able to perform interactive long-range steering for both large, dense crowds

and sparsely populated scenes, but also achieve interactive rates on a commodity laptop.

3.2 Background

I model a crowd as a set of agents, each of which has a specified goal position that it

attempts to reach while avoiding collisions with other agents and with static obstacles in the

environment. The standard crowd simulation loop that I and others often use is as follows:

1. For each agent, perform global planning to find a path to the goal that avoids collisions

with static obstacles while ignoring other agents. Set the preferred velocity vp along

the direction of the initial segment of the path.

2. For each agent, perform local collision avoidance (LCA) to steer the preferred velocity

vp away from collisions with other agents, yielding the actual velocity v that the agent

moves with.
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Below, I briefly discuss some of the prior work relating to these two steps and discuss some

of the data and techniques used for validating crowd simulation.

Most algorithms for global planning represent the connectivity of free space in the en-

vironment as a graph, and perform search queries for each agent to determine a collision-

free path [Shao and Terzopoulos, 2007, Bayazit et al., 2002, Kamphuis and Overmars, 2004,

Lamarche and Donikian, 2004, Pettré et al., 2005, Sung et al., 2004, Sud et al., 2007]. I do

not diverge from previous work in this aspect.

A variety of models have been proposed for local collision avoidance among

agents. These may use either discrete or continuum representations of the

crowd. In discrete models, each agent considers other agents as individual ob-

stacles, and attempts to avoid all of them simultaneously. Collision avoid-

ance in this context can be formulated in terms of repulsion forces between

agents [Reynolds, 1987, Helbing and Molnár, 1995, Reynolds, 1999, Heigeas et al., 2003,

Lakoba et al., 2005, Sugiyama et al., 2001, Sud et al., 2007, Pelechano et al., 2007], or ge-

ometrically based algorithms [Fiorini and Shiller, 1998, Feurtey, 2000, Paris et al., 2007,

Sud et al., 2008, Kapadia et al., 2009]; the state of the art involves treating possible col-

lisions as obstacles in velocity space [van den Berg et al., 2008a, van den Berg et al., 2008b,

Guy et al., 2009, van den Berg et al., 2009]. As considering the interaction of all pairs of

agents becomes expensive in large crowds, such methods typically only take into account

neighboring agents that lie within a specified radius, limiting the amount of lookahead pos-

sible. Guy et al. [Guy et al., 2010] propose a method to mitigate the computational cost of

large neighborhoods by approximately clustering agents.

In a continuum-based approach, one first obtains from the set of agents a density field

and a velocity field by accumulating the agents’ positions and velocities on a background

grid. This smoothed representation can then be used to compute the ideal motion of agents

while avoiding regions of high density. The method of Treuille et al. [Treuille et al., 2006a]

performs a global solve over the obtained density and velocity fields, giving compelling results
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including long-range congestion avoidance effects. However, its computational cost increases

steeply with the number of distinct goals in the simulation, making this approach unsuit-

able for interactive crowd simulation where agents may have many diverse goals. Narain

et al. [Narain et al., 2009] propose a technique that prevents overcrowding in highly dense

crowds, but it relies on purely local information and thus cannot plan around congestion at

a large distance.

Validating crowd simulation has always been challenging. Historically, the presence of

so-called “emergent phenomena” has been considered evidence which suggested correctness.

Steerbench is a suite of tests designed to allow comparison of models [Singh et al., 2009].

While it suggests some basis for comparing models, it does not present (or use) a ground

truth; there is no data of human pedestrians used in performing the benchmarks.

In the pedestrian dynamics community, the most common quantitative metrics for crowd

behavior deal with aggregate crowd properties: flow and density. The relationship between

flow and density has been referred to as the “fundamental diagram” [Weidmann, 1993]. In

addition to this aggregate analysis, Guy et al. propose a new statistical metric for measuring

how likely a particular pedestrian model is to match a given set of data [Guy et al., 2012].

In recent years, experiments have been performed with human subjects in various scenar-

ios and several data sets have been made publicly available: “one-dimensional” pedes-

trian movement, uni-directional movement [Seyfried et al., 2005], uni- and bi-directional

flow in a corridor [Zhang et al., 2011, Zhang et al., 2012], and flow through a bottleneck

[Seyfried et al., 2009]. The value of lookahead is greatest in the case of conflict. As such, I

do not perform validation against the uni-directional corridor or bottleneck flow. Instead, I

perform analysis on an experimental setup similar to [Zhang et al., 2012]. Ideally, I would

prefer data of pedestrians moving over a large space, however, even in this limited scenario,

I can show that lookahead improves the behavior of the simulated crowds (see Fig. 3.12).

My approach aims to extend some of the existing work in LCA algorithms to support long-

range collision avoidance queries. I accomplish this through the simple yet effective approach
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of extrapolating agents’ motion into the future. My algorithm is described in section 3.3,

and I demonstrate its application to continuum and discrete algorithms in section 3.3.1 and

section 3.3.2. In some cases lookahead may not be possible, particularly in presence of

obstacles and turbulent flow. These are detailed in section 3.4 in addition to a novel metric

for measuring oscillation and chaotic behavior in crowds. Furthermore, using discrete models

alone can be extremely expensive in dense crowds, while continuum models are poorly suited

to representing the motion of sparse crowds. In section 3.5, I propose a hybrid algorithm

that blends results from continuum and discrete algorithms, producing consistently realistic

results for both low and high densities under various velocity conditions. I demonstrate

the advantages of my proposed techniques with examples in section 3.6, and compare my

proposed lookahead based long-range collision avoidance algorithm with real-world data in

section 3.7. Finally, I conclude with the limitations of my method, and discuss avenues for

future work in section 3.8.

3.3 Lookahead for Long-Range Collision Avoidance

In this section, I describe my approach for efficiently computing long-range collision

avoidance for both continuum-based and discrete agent-based crowd models. The problem

can be summarized as follows: For each agent with a given preferred velocity vp (as computed

by the global planning stage), I wish to find an updated velocity v close to the preferred

velocity vp that avoids congestion in front of the agent at a range of distances from far to

near, and also avoids collisions with neighboring agents. Influences from nearer agents should

receive priority; that is, the agent should not divert itself to collide with a nearby agent in

trying to avoid congestion farther away.

Given the extensive amount of already existing work on local collision avoidance algo-

rithms, my aim is to take advantage of these existing techniques to solve the problem of

long-range collision avoidance. In this chapter, I propose a general approach for decompos-

ing long-range collision avoidance into a sequence of simple LCA queries. Thus, my algorithm
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Figure 3.2: Effect of extrapolation in time from x = 0, t = 0 to x = 4, t = i∆t. Dotted line
indicates effective radius (P ≥ 0.4) of agent for collision avoidance, while spread of gaussian
curve indicates splatting area for density field creation.

can re-use existing LCA algorithms with minimal increase in computation and coding effort.

I show how to apply this approach to both the discrete and continuum settings, resulting

in efficient algorithms for long-range collision avoidance in both cases. The crux of the idea

lies in evaluating LCA queries not only on the current state of the crowd, but on its future

state, estimated at a series of future times, enabling greater lookahead while using only local

operations.

When an agent plans its long-term motion, it needs to estimate the motion of other agents

over a large time interval into the future. While the future motions of other agents are of

course unknown, they can be estimated with some degree of confidence using the agents’

current velocities. To reflect the uncertainty in this estimation, I treat an agent’s predicted

location in the future not directly as a point, but as a probability distribution representing

the expected probability of finding the agent at a given position. Intuitively, one can think of

this as a traveling “blob” of probability, whose center x(t) is linearly extrapolated from the

agent’s current position and velocity, and whose spread σ(t) gradually expands over time,

reflecting the increasing uncertainty as one looks further in the future.
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In the continuum representation of the crowd, this has the effect of smoothing out the

influence of any agent on the crowd density field, which enlarges the distance over which

it influences the motion of other agents while simultaneously attenuating the magnitude

of its effect. Thus, when an agent performs a short lookahead, only its nearby agents are

significantly influential, while over a large lookahead, it only sees a smoothed-out density field

that averages over many agents across a large area. In the discrete model, an agent is treated

as a rigid, impenetrable “blocker” of fixed radius. When the agent position is uncertain, I

consider a point to be blocked by the agent if the probability that the agent covers that point

is at least a certain threshold p. As can be seen in Fig. 3.2, as the uncertainty increases, the

effective size of the blocker decreases. This has the desirable effect that agents planning far

into the future are not excessively hindered by the estimated motion of other agents, given

that the latter is unreliable.

With this model for uncertainty, I can formulate the basic lookahead algorithm for long-

range collision avoidance. The algorithm starts with the preferred velocities vp obtained from

the global planning stage, and performs a number of iterations i = imax, imax−1, . . . , 0 with

decreasing time horizons ∆ti = 2i−1∆t, i > 0, and ∆t0 = 0. In each iteration, I extrapolate

the state of the crowd by a time interval ∆ti into the future, perform an LCA query (with

uncertainty) using the preferred velocity, and then replace the preferred velocity with the

result of the LCA, as illustrated in Fig 3.3. In the last iteration, I set the lookahead ∆t0

to zero, so that I perform the standard LCA with no uncertainty, and thus maintain the

collision avoidance guarantees of the underlying LCA.

With this scheme, agents are sampled in a larger radius than in the standard LCA query,

and extrapolated queries are biased towards the direction of motion, providing lookahead.

My approach smoothly merges the effects of distant and nearby avoidance considerations.

Congestion avoidance with a long time horizon takes place in earlier levels, influencing the

final result by updating the preferred velocity; nevertheless, this can still be overridden if

needed to avoid imminent collisions with nearby agents, which are considered later in the
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process.

The algorithm is defined formally in Fig. 3.4, where I denote by v = A(vp, vc, x, ρ) an LCA

query performed for an agent at position x with current velocity vc and preferred velocity

vp in a region of local density ρ (people per unit area), producing a collision-free velocity v.

In the following subsections, I apply my generic long-range collision avoidance algorithm to

two examples of LCA algorithms, one continuum-based and one discrete, showing the broad

applicability of my technique. I also describe some optimizations that are possible in the

specific cases.

3.3.1 Continuum Lookahead

Continuum representations treat the crowd as a continuous distribution of density ρ and

velocity v over space, through which any given agent must navigate. The knowledge of the

density distribution enables us to determine congestion directly as regions of high density.

It is well known that pedestrians walk slower in regions of high density [Fruin, 1971], a fact

that can be formalized into a graph known as the fundamental diagram relating density, ρ, to

a natural walking speed: vmax = f(ρ) Therefore, agents should navigate around overcrowded

regions to avoid lowering their speed and maximize their rate of progress towards their goals.

In this section, I first describe a simple algorithm that uses this idea to avoid congestion

over a short time horizon, then extend it to look much further in time using my long-range

approach.

Consider an agent that has a preferred velocity vp pointing towards of the goal. Suppose

over the planning time horizon ∆t, the agent maintains a constant heading along a chosen

direction v̂ and walks at the maximum speed allowed by the fundamental diagram f . Then

to first order, the density it passes through will change at a rate of fv̂ · ∇ρ, and so its

displacement after time ∆t will be

d(∆t) = fv̂∆t+
1

2
(fv̂ · ∇ρ)f ′v̂∆t2, (3.1)
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where f and f ′ are evaluated at the density at the current position. I choose v̂ to maximize the

progress towards the goal, vp ·d(∆t). This formulation reduces to the following optimization

problem,

argmax
v̂

(
vp · v̂ +

f ′∆t

2
(v̂ · ∇ρ)(vp · v̂)

)
‖v̂‖ ≤ 1. (3.2)

I can solve this problem using projected gradient descent, with the direction of the current

velocity as the initial guess; this converges in less than ten iterations on average. This

simple approach produces excellent avoidance results with maximal progress while still being

computationally inexpensive. Though similar in spirit to [Narain et al., 2009], it avoids the

need to calculate a global pressure to exert forces.

Before formulating the lookahead algorithm for continuum crowds, I first need to estimate

the future densities of the crowd. In accordance with the uncertainty model, extrapolation

further into the future requires that each agent’s contribution to the density field be spread

out over larger and larger areas, which can become inefficient with the traditional “splatting”

approach. Instead, it is more efficient to represent future states on coarser grids, which will

automatically have the effect of increasing the agents’ effective footprint. Each successive

grid is coarsened by a user-defined factor c, which represents the increase in uncertainty

σ(∆t) from one level of lookahead to the next. Thus, a pyramid of grids is constructed,

where each level is coarser than the one below it by a factor c. Level i of the pyramid

contains the future state of the crowd at time t+ ∆ti.

With this representation, the lookahead algorithm as defined in Fig. 3.4 can be directly

applied. For each cell at the bottom of the pyramid, I solve the LCA problem separately

at multiple levels of the pyramid, starting from the top and cascading the solution at level i

as the preferred velocity at level i − 1. Though this involves redundant computation being

a depth-first approach, I prefer this approach as opposed to the breadth-first model where

all cells at level i are solved, and the solution is cascaded down to level i − 1. This allows

improved parallelism since there is no interdependence of solutions of neighboring cells, a

reduced memory footprint since intermediate solutions do not need to be stored, and reduced
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interpolation and smoothing artifacts.

3.3.2 Discrete Lookahead

I now extend the algorithm to discrete collision avoidance. Here, I use an extended recip-

rocal velocity obstacle (RVO) algorithm [van den Berg et al., 2009], which is implemented in

the RVO2 library [van den Berg et al., ]. The RVO algorithm performs collision avoidance

in velocity space, that is, the space of possible velocities that an agent may choose. In this

space, I create a “velocity obstacle” for each neighboring agent, which represents the set of

velocities that would lead to a collision with that agent. Then, choosing a velocity outside

the union of all these obstacles ensures collision avoidance. Each obstacle is modeled as a

constraint in a linear optimization problem to determine a collision-free velocity closest to

the preferred velocity.

The RVO library requires the choice of a neighborhood radius R and time horizon τ ,

and only guarantees collision-free behavior within time τ with nearby agents no further than

R distance away. This technique is limited to local planning in a small neighborhood, as

increasing τ and R to large values degrades the performance of the method. To support long-

range collision avoidance, I apply my algorithm to RVO-based LCA with minor modifications.

Instead of constructing trees for each future instant, I approximate future neighbor

searches from the current state. Recall that my generic algorithm has multiple levels, and

at the ith level, I consider a lookahead of ∆ti time into the future. In the discrete setting,

I search for agents which may collide with the current agent within time ∆ti. Since dis-

tance between two agents can change at most by 2vmax∆ti in this time, where vmax is the

maximum agent speed, the agents relevant at level i are those that lie at distances between

R + 2vmax∆ti−1 and R + 2vmax∆ti from the current agent at the present time. Once these

neighbors are determined, I create velocity constraints using the agents’ extrapolated future

positions, with their effective radii rf reduced by a ratio c for every step into the future.

(This constant is the same as that grid coarsening factor for the continuum formulation, since
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both density and effective agent radius are inversely proportional to the standard deviation

of the probability distribution assumed for the agent.)

Now, all the long-range interactions considered at different levels are represented simply

as constraints on the final velocity of the agent. Instead of solving the levels one after

another, I may apply all the constraints simultaneously in a single RVO optimization. This

means that only one optimization solve needs to be performed per agent, but at the expense

of an increase in the number of constraints. I therefore adopt a level-of-detail approach to

reduce the number of constraints by adaptively grouping distant agents into clusters.

As I extrapolate agents further in time, their effective radius reduces further, and thus

have a decreased effect on agent velocity. Thus, it is prudent to cluster these agents both

to improve efficiency, and to increase the probability of avoiding a future collision. I use a

spatial hierarchy, such as a k − d tree, over the agent positions to choose the clusters. Such

a hierarchy already exists in the RVO implementation to support nearest neighbor queries,

and so does not require additional computational effort. The nodes of the tree can provide

suitable candidates for agent clusters.

When considering lookahead at level i, that is, until future time ∆ti, I only consider

agents at a distance between R + 2vmax∆ti−1 and R + 2vmax∆ti. These agents should be

grouped into clusters of size ∆ti
∆t

as shown in Fig. 3.5 . Instead of performing multiple searches

to collect nodes at each level, I perform one tree traversal where the level of the node can

be determined based on its distance from the agent. Thus, I perform a tree traversal where

at any node C, I can determine its level i by checking which distance band it lies in, i.e.

dC ∈ [R + 2vmax∆ti−1, R + 2vmax∆ti]. However, every node may not form a good candidate

since the distribution of agents in the subtree of this node may be sparse. Therefore I use

a maximal separation as a quality measure of each node, i.e. maxi∈subtree(C) disti, where

disti = mink∈subtree(C)(‖xi − xk‖). Though exact computation of this value is expensive, I

compute an approximate value during tree construction by choosing the maximum of child

values, and the separation between the nodes themselves. Thus, if a node satisfies this
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quality constraint, it can be added as a velocity constraint.

Once I have a chosen a set of agents to form a cluster, I set its position xC and velocity

vC as the mean of the positions and current velocities of its member agents. I choose the

effective radius rC of the cluster so that it covers all the expected agent positions, and is

padded by the effective agent radius rf for time t + ∆ti. In other words, for a cluster of m

agents {x1, x2, . . . , xm}, I define

xC =
1

m

m∑
j=1

xj, (3.3)

vC =
1

m

m∑
j=1

vj, (3.4)

rC = rf + max
j
‖xj − xC‖. (3.5)

With this definition, I define my discrete lookahead algorithm in Fig 3.6.

3.4 Curtailing Lookahead

The discussion thus far has been based on the assumption that agent states can be

extrapolated to any future time. However in certain cases, the information available to long-

range collision avoidance may be insufficient to create a reliable future state. In such cases,

I curtail lookahead to the last reliable future time.

If the extrapolated path intersects an obstacle, I can infer that the agent has a plan to

prevent this. However, determining this plan would require a query to the local planner,

which in turn would require positions of all neighbors. This can recursively trigger local

planning queries for an increasing number of agents, thus increasing computational cost.

Thus choosing the simpler alternative of curtailing lookahead is a computationally efficient

choice. This also has parallels among human crowds, which tend to plan within their visual

range. Since obstacles restrict the visual range, it is natural to allow obstacles to curtail the

planning region in a simulation as well.
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The other scenario where I propose curtailing lookahead is when an agent has a chaotic

trajectory - as measured over a small window of previous time steps. Extrapolating such a

trajectory using any low-order polynomial function is likely to result in large approximation

errors. This may even be indicative of a chaotic crowd, or an artifact in the underlying

algorithm. In either case, the local crowd state is not amenable for long-range collision

avoidance, as its future state is hard to predict.

I now detail the exact method utilized to address these two cases.

3.4.1 Obstacles

I allow extrapolation step i if and only if the path from the agent’s current position to its

extrapolated position does not intersect any obstacles, which can be modeled as a visibility

query. Correct extrapolation of the agent’s position would necessitate a model for agent

response to an obstacle. As previously explained, this can result in a significant increase

in computation. In addition, this may require information from the global planner. This

information is typically not available. While it could be made available, this would require

significant changes to the simulation pipeline, undercutting one of the goals of this approach:

to extend current systems with minimum modification.

These queries can be efficiently implemented for both continuum and discrete simulations.

Continuum simulations traditionally model obstacles as distance fields. These can be used

to efficiently perform the needed intersection tests. The extrapolation curve representing the

expected trajectory can be checked for collisions by finding the minimum distance to any

obstacle in the scene. Such algorithms involve sampling the distance field at multiple points

- either uniformly or adaptively - along the curve, with sampling controlled by the cell width

of the distance field and the curvature of the curve itself. This approach can also be used

for discrete simulations. However, in case the underlying simulation represents obstacles as

discrete objects, an alternate approach can be used. In such a scenario, the problem can be

modeled as a ray shooting problem. Using a hierarchical structure for static obstacles in the
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scene, such visibility queries can be performed efficiently at run-time.

3.4.2 Chaotic Crowds

Extrapolation assumes that agent velocity is temporally consistent, i.e. the agent is ex-

pected to follow a predictable path. However, if the underlying crowd flow presents chaotic

disturbances, then future agent states cannot be determined reliably with low-order extrap-

olation. Determining whether a crowd exhibits chaotic behavior locally or globally requires

the knowledge of agent velocities for a time window. Given this information, I propose a new

‘inconsistency metric’ to detect chaotic behavior, and measure the suitability of the agent’s

state to extrapolation.

Inconsistency Metric

In case of an oscillating agent trajectory, extrapolation of an agent’s position is not

feasible due to the uncertainty in the agent’s velocity. This oscillation can be measured by

the acceleration of the agent, determined using its first-order approximation as

δv =
vi − vi−1

∆t
, (3.6)

where vi is the agent velocity at step i, and ∆t is the time step between the two steps. Thus

for each agent, a relative deviation can be computed at every time step i.

The inconsistency metric is computed using a set of n deviation vectors. These 2-

dimensional deviation vectors are concatenated into a n × 2 matrix M . I use Principal

Component Analysis (PCA) to analyze the deviation vectors by computing the eigenvalues

of the matrix:

C =
1

n
MTM. (3.7)
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The eigen-decomposition of this matrix is of the form:

XTΛ2X, (3.8)

where Λ is a diagonal matrix with entries λ1 and λ2, as shown in Fig. 3.7 . The metric is

then defined as the sum of the magnitudes of the eigenvalues:

σ = |λ1|+ |λ2| (3.9)

Low values of the metric indicate a smooth low-order trajectory of the agent, while higher

values indicate chaotic paths. The rows of X give the corresponding eigenvectors x1 and x2,

which can be used to further analyze the nature of the deviation.

To determine whether an agent can be accurately extrapolated, the inconsistency metric

can be computed on a local neighborhood of the agent. In this case the matrix M is

constructed from the deviation vectors of the agent and its neighbors over a time window

of τ seconds, i.e. for k agents, data for f time steps, f = τ
∆t

is concatenated into a kf × 2

matrix M . The contribution of older samples can be also weighted to facilitate graceful

degradation. For analysis of the entire crowd, the metric can be computed for all agents

using a single matrix containing all deviation vectors for the given time window. Such

analysis can be useful for comparing collision avoidance algorithms, preferring those which

result in smoother paths as indicated by slowly varying velocity.

Curtailing

The inconsistency metric value as computed for the local neighborhood of an agent can

be used to curtail the extent of lookahead. Variation of velocity in the vicinity of the

agent indicates that the agent velocity is likely to change in the near future as well. For

inconsistency values near zero, the agent can perform the allowed maximum imax lookahead

steps. As the metric value rises to a maximum σmax and beyond, the maximum allowed
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lookahead steps decrease to zero, at which point only local collision avoidance is performed.

I use linearly spaced transition points, performing at most i lookahead steps if the metric

value σ lies in the range:

σ ∈
[

(i− 1)σmax

imax

iσmax

imax

]
(3.10)

for simplicity. The agent’s choice of how far to look ahead is assumed to be based on local

crowd conditions. Thus, only neighbors as defined by the local collision avoidance algorithm

are used for computing the inconsistency metric for an agent. This metric value controls

the agent’s lookahead steps, as well as the lookahead of any agents considering this agent

for collision avoidance. This implies that if a distant agent cluster has a metric value higher

than that allowed for the lookahead step, then that cluster will not be considered for collision

avoidance at that step, since that cluster cannot be expected to behave coherently as a single

entity. Also, though the metric can be computed for every agent, its value is expected to

vary smoothly, hence it can be sampled at certain points and interpolated for remaining

agents, improving the efficiency of this computation.

3.5 Hybrid Crowd Simulation

Collision avoidance guarantees, provided by algorithms discussed thus far, are condi-

tional on certain assumptions. In situations where these assumptions are violated, collision

avoidance guarantees do not hold, and this can produce incorrect or at least visually unap-

pealing results. For example, continuum algorithms work on the assumption that a crowd

can be represented accurately as a density field. In low density regions, where this as-

sumption does not hold, agents routinely collide with each other, or have to be pushed

apart creating oscillatory behavior. In addition, grid representations of these fields can

suffer from aliasing issues, resulting in damped or smoothed velocities. Discrete algo-

rithms suffer from numerical issues at high densities, due to low inter-agent separation.

For example, force based methods use repulsive forces that are inversely proportional to
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distance. As a result, strict limits need to be enforced to prevent agents from colliding,

either on the time step, or on the repulsive forces themselves. In geometric methods like

RVO [van den Berg et al., 2008a, van den Berg et al., 2009], this is reflected in increased

constraints on the solution, meaning that the algorithm needs to spend more computational

time to converge, or risk failing to compute a collision-free velocity. In addition, computa-

tional costs of discrete algorithms are proportional to the number of agent neighbors. Since

this cost rises sharply for high density regions, discrete algorithms can lose their performance

edge for such scenarios.

My lookahead formulation performs successive local collision avoidance queries, thus such

errors are likely to accumulate and cause significant issues. To address this issue, I propose a

simple and efficient hybrid algorithm that blends discrete and continuum collision avoidance

results. This is possible since problem cases for either class of algorithms do not overlap. The

choice of algorithm is based on both density and variance in velocity. For varying density,

there are three possible cases:

� [0, ρcmin]: Discrete collision avoidance

� [ρcmin, ρdmax]: Blend Discrete and Continuum collision avoidance

� [ρdmax, ρmax]: Continuum collision avoidance

where ρdmax is the maximum density at which discrete collision avoidance can be applied,

ρcmin is the minimum density for continuum collision avoidance, and ρcmin ≤ ρdmax. By

using linear blending, this can be expressed as:

v = vdisc(1− w) + vcontw (3.11)

w = wρ = clamp

(
ρ− ρcmin

ρdmax − ρcmin
, 0, 1

)
(3.12)

where clamp(x,min,max) clamps the value of x to the range [min,max], and vdisc and vcont

are collision-free velocities generated by discrete and continuum algorithms respectively. In
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my examples I use ρcmin = 2, ρdmax = 4, ρmax = 5.5. The values of these parameters are

guided by the densities observed in human crowds, being less than 5.5 people per m2 in

most cases. For choosing ρcmin, I rely on guidance from [Hughes, 2003], which states that

the crowds can be represented as a continuum “provided the characteristic distance scale

between pedestrians is much less than the characteristic distance scale of the region in which

the pedestrians move’’. In medium-scale examples like those shown in this chapter, densities

above ρcmin = 2 people per m2 satisfy this constraint in the average sense. At higher density

ranges, I observe qualitatively similar results using continuum and hybrid algorithms at

densities higher than 4 people per m2, which guides the choice of ρdmax.

To address the case of high velocity variance, I can define similar linear blending weights.

In this case, blending weights are controlled by the standard deviation σv of the local velocity.

I blend discrete and continuum velocities in a user-defined range [c1v, c2v], where v is the local

velocity, and c1, c2 are constants. In regions of low velocity variance, continuum avoidance

is preferred, with discrete avoidance preferred in regions of low variance, where variance is

σ2
v . Then, in a manner similar to equation (3.12), I can define blending weights for this case

as well:

wσv = clamp

(
c2v − σv

(c2 − c1) v
, 0, 1

)
(3.13)

Note that this weight has a slightly different form to maintain the convention in (3.11).

I now need to combine these two weights to produce a single interpolation weight. Though

a number of possible combinations exist, I choose w = wρwσv . This is biased towards a dis-

crete solution, which ensures that the likelihood of regions with high velocity variance being

simulated with continuum methods remains low. This weighing can be tuned by appropri-

ately choosing c1 and c2. I find best results by choosing c1 = 1, c2 = 2. It is important to

note that these two weights are not independent. As has been noted by [Narain et al., 2009]

and others, velocity variance decreases at high densities. Thus adding a weight for velocity

variance does not affect high density behavior significantly.
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Scene #Agents

Simulation Time

Method
Duration

Improv per
-ement Step

(s) (ms)

Crossing 500
Disc 135.2

2.6x
0.98

Disc LA 52.5 3.68

Circle 1000
Disc 347.2

2.2x
2.6

Hyb LA 156.0 5.2

4 way 2000

Disc

- -

5
Disc LA 47.3
Cont LA 6.8
Hyb LA 16.29

4 groups 2000
Cont 107.1

1.5x
6.6

Cont LA 72.28 6.89

Table 3.1: Single thread performance for my examples (dt = 0.01s). Legend: LA - with
lookahead, Disc - Discrete, Cont - Continuum, Hyb - Hybrid. Note: > 20 fps performance
in all cases (> 60 fps w Hyb) and 1.5x - 2.6x reduction in simulation duration with LA

3.6 Results

My algorithms were implemented in C/C++ using scalar code. In Table 3.1, I provide

running times on a quad-core Intel Core i7 965 at 3.2GHz. Note that these times can

be significantly improved by using appropriate vector instructions. I modified the RVO2

library to remove the restriction of maximum neighbors so as to provide collision avoidance

guarantees for the neighborhood threshold supplied.

My lookahead and hybrid algorithms were tested on a number of cases. The first example

scenes demonstrate the lookahead algorithm for the continuum and discrete cases. In the

discrete case, two groups of agents – one bigger than the other – head towards each other on

a collision course. Using my lookahead algorithm, the larger group of agents parts to allow

the smaller group to go through, which is not observed in the traditional RVO algorithm.

Though I encounter a 3.5x slowdown, the progress seen by agents is more than double, thus

over the time of the simulation, the overall cost is less than 2x. In the continuum case 3.10,

where 4 groups of agents attempt to reach diametrically opposite regions, more distant agents

avoid the high density region in the center. In contrast to a simulation without lookahead,

agents are able to reach their destination sooner, demonstrating improved crowd flow and
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progress. An advantage of the continuum case is that lookahead is extremely inexpensive, as

is seen with this example, where significant improvements in behavior can be seen at almost

no cost

The second example scene demonstrates a 4-way crossing. With traditional collision

avoidance schemes, a bottleneck quickly develops in the middle of the scene hindering

progress and causes spurious behavior. Such behavior is significantly reduced with looka-

head, both in the discrete and continuum cases. Using hybrid algorithm in this case pro-

vides two benefits. Oscillation of agents in low density regions is reduced as compared to

the continuum algorithm, while significant performance benefits are obtained vs. the dis-

crete algorithm. Though discrete lookahead slows down significantly due to the number of

neighbors to be considered, the hybrid algorithm shows a performance benefit of 3x while

retaining the same behavior. A visual comparison in Fig. 3.8 shows the difference in the 4

kinds of simulation.

I replicated the well-known circle demo with 2000 agents. In this scenario, agents are

seeded on a circle and attempt to reach the diamterically opposite point as shown in Fig.

3.1 . At a 2x extra computational cost, I observe significant improvement in behavior and

progress. Agents are able to reach their goal in less than half the time, which balances the

computational cost.

To quantify the benefit of curtailing lookahead I analyze the circle (Fig. 3.1 ) and 4-groups

(Fig. 3.10 ) demos. I examine how the choice of σmax and imax affects the simulation dura-

tion, i.e. the total time taken by all agents to reach their goals. Fig. 3.9 shows the results

of this experiment. In each graph, dotted lines represent simulation duration of constant

lookahead, while solid lines represent curtailed lookahead. In both scenarios, as σmax in-

creases, overall performance improves beyond constant lookahead, as demonstrated by lower

simulation durations. As σmax continues to increase, simulation performance asymptotically

approaches constant lookahead. It is clear that constant lookahead in scenarios with incon-

sistent behavior causes agents to become overly conservative, reducing the efficiency of crowd
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flow. By curtailing lookahead with appropriate parameters, agents reach their goals more

efficiently, providing improvements of 10−100%. In addition to improvements in simulation

performance, curtailing lookahead also results in reduced computation.

Evaluation of the inconsistency metric for curtailing lookahead increases computation

by less than 5%, and this extra computation is balanced by the reduction in number of

lookahead steps. Performance can be improved further by coarser evaluation, as noted in

Section 3.4.2.

Most demos in this video use a maximum of 8 lookahead steps. As demonstrated by Fig.

3.9 , different scenarios and collision avoidance algorithms can demonstrate best performance

for different values of imax and σmax. My experiments indicate that imax and σmax can be

optimized one at a time in order. This task if simplified by the fact that these optimizations

do not exhibit local minima.

3.7 Comparison to Real-World Data

I compare the simulation result of my proposed algorithm against available open-source

data. I use the data provided by [Zhang et al., 2012], specifically a bi-directional flow in

a constrained environment, whose scene setup is shown in Fig. 3.11 . In this experiment,

two groups of pedestrians travel down a narrow corridor 3.6 m wide in opposing directions.

Though this presents a restricted environment, agents attempt to move in a constant di-

rection due to which they can lookahead, and their future position can be determined with

some reasonable accuracy. I compare the behavior of real pedestrians with that of sim-

ulated crowds first by examining the relationship between speed and density (commonly

known as the fundamental diagram), and second, by using the metric defined in section

3.4.2. I provide comparison results using the discrete collision avoidance algorithm, RVO2

[van den Berg et al., 2009, van den Berg et al., ]. Fig. 3.12 demonstrates how adding looka-

head causes the simulated agents to exhibit a density-dependent behavior similar to that of

real pedestrians. Real pedestrians demonstrate a significant sensitivity to density. Speeds
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decrease by a factor of 2–3 as crowd density increases for 1 person per m2 to 3 people per m2.

However, a significant number of agents using RVO2 move with a maximum speed towards

the goal as denoted by the number of sample points at v = 1.6 m/s in Fig. 3.12 (Top).

In Fig. 3.12 (Bottom), I note that agents show the same downward trend of speed with

increasing density as real pedestrians. Though the observed patterns do not match human

behavior exactly, the graphs demonstrate that adding lookahead improves the behavior of

simulated agents. Exact matching cannot be expected unless the underlying local collision

avoidance algorithm models human behavior exactly. One caveat is that agents exhibit a

decreased aversion to being in dense scenarios, as is indicated by significant clustering in

density range of 3–3.5 people per m2. This is partly due to lower speeds resulting in slower

dissipation of congestion.

Simulated crowds in the experimental setup get to their goals in 98.4 seconds with looka-

head, while taking approximately 169.88 seconds with purely local collision avoidance. For

the same example, real crowds are able to navigate the same scene in 76.75 seconds. Thus,

in addition to improved crowd behavior, lookahead results in a 1.73x improvement in crowd

progress bringing the progress of the simulated crowd within 28.2% of observed crowds. Us-

ing a window of 10 time steps, i.e. 0.4 seconds, I computed my inconsistency metric for

simulated crowds. Local collision avoidance produced metric values in the range [0, 3.192]

with a mean of 0.635, while crowds with lookahead resulted in values in the range [0, 2.776]

with a mean of 0.505. The inconsistency metric measures path smoothness as indicated

by low-acceleration. By this measure, lookahead improves the mean path smoothness by

20.55%. Real-world observations in this experimental setup are made using head-trackers,

which introduce a minor oscillation into agent positions. To remove this oscillation, I com-

pute metric values for real-world data after smoothing the trajectories over a window of 2

time steps. The resulting data produces metric values in the range [0, 2.213] with a mean of

1.45.
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3.8 Summary and Future Work

I have presented a new, generic algorithm that can extend both existing discrete and

continuum methods to provide a simple yet effective lookahead to achieve long-range collision

avoidance for crowd simulations. This approach results in smoother crowd movement and

exhibits an agent’s tendency to avoid congestion that is often observed in real crowds. To

quantify the smoothness of agent trajectories, I have proposed a novel metric. This metric

also serves as the means to curtail the extend of lookahead in presence of chaotic crowd

behavior. In addition, I have proposed the use of this metric for comparing crowd simulation

algorithms based on smoothness, as well as comparing simulated crowds to real-world data.

I have further introduced a hybrid technique that enables the simulation system to seamlessly

transition between discrete and continuum formulations by locally blending the results and

by optimizing for performance and quality of resulting simulations based on the local crowd

density.

My stated goal is to improve crowd flow using long-range collision avoidance; measured

as crowd progress. With the improvements proposed in this chapter, simulated crowds

reach their desired goals 1.5x-2.6x faster (shown in Table 3.1) while using speeds similar

to those used by real crowds in similar scenarios (shown in Fig. 3.12 ). As shown by

these measures, lookahead brings the behavior of simulated crowds closer to real humans.

However, in some cases I observe outliers. After detailed analysis, I believe these cases

arise due to the underlying collision avoidance model. In case of Fig. 3.12 , solitary agents

sometimes turn around to avoid collisions with oncoming groups of agents. This occurs

when the space behind said agent is empty. Thus the geometrically optimal solution for

collision avoidance as defined by [van den Berg et al., 2009] led the agent to turn around.

This behavior is independent of lookahead and inherent in the underlying collision avoidance

algorithm. However, lookahead allows agents behind such agents to preemptively avoid the

oncoming group. Though this improves overall flow, it makes this artifact visually more
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prominent.

In case of Fig. 3.1 , the larger group parts cleanly for the other. The underlying

[van den Berg et al., ] algorithm optimizes with respect to hard constraints. Thus, con-

straints from near agents and far groups are equally important and must be respected. In

this case, it leads to the clean separation of the larger group. To remedy this artifact, the

formulation of constraints in [van den Berg et al., 2009] would need to be revisited taking

into account of observed human behaviors.
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v = vp

x + v

Figure 3.3: Effect of lookahead. Note how lookahead allows the orange agent to see the
approaching crowd and adjust its velocity from preferred velocity vp to v by incorporating
information from the future crowd state at time t+ ∆t.
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For each leaf node p

� Foreach level i in range imax to 0 DO

1. Determine future state of crowd xi = x+ vc∆ti

2. Solve local collision avoidance problem v = A(vp, vc, xi, ρi)

3. Update preferred velocity vp = v

� END Foreach

Figure 3.4: Lookahead Algorithm using LCA algorithm A.

Figure 3.5: Distant agents can be clustered for collision avoidance, cluster size being pro-
portional to distance. Since possible collisions with distant agents lie in future timesteps,
extrapolated future agent states have high uncertainty, and hence small effective radii, mak-
ing individual avoidance inefficient.
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For each agent j, traverse the tree T starting from the root node, at each node C:

� If node C does not satisfy maximal separation constraint recurse on its children

� If constraint is satisfied and its level i ≤ imax, formulate velocity obstacle con-
straint for node C

where imax is the highest tree level considered.

Figure 3.6: Lookahead Algorithm using RVO.
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Figure 3.7: My proposed inconsistency metric σ is computed as the sum of the eigenvalues
λ1, λ2 of the given deviation vectors δv (in red), which represents the variance of these
deviations. The eigenvectors x1, x2 (in green) corresponding to these eigenvalues represent
the principal components of the space of deviations.
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(a) (b)

(c) (d)

Figure 3.8: 4 way crossing of agents with 2000 agents. (a) Discrete (b) Discrete with
lookahead (c) Continuum (d) Continuum with lookahead. Note lack of agent buildup in
cases with lookahead.
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Figure 3.9: Effect of Curtailing Lookahead in the circle (Top) and 4 groups (Bottom) demo.
Solid lines show curtailed lookahead, while dotted lines show constant lookahead. Note how
curtailing lookahead with a maximum metric value σmax allows agents to reach their goals
faster, as demonstrated by the reduced duration. In some cases, curtailing can double the
improvement shown by lookahead (circle, imax = 16). Even with optimal choice of mmax, I
see benefits of 10%.
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(a)

(b)

Figure 3.10: 4 groups of agents in circular formation exchange their positions. Notice
how lookahead (b) shows red and green agents moving around the built up region in the
center and avoid getting stuck as is the case in (a).
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Figure 3.11: Experimental setup for bi-directional crowd flow (Image courtesy
[Zhang et al., 2012]).
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Figure 3.12: Speed v.s. density plots for simulated crowds using (Top) traditional local
collision avoidance, and (Bottom) long-range collision avoidance. Note how simulation with
lookahead improves correspondence to speeds observed in the real-world data as compared
to density, and how collision avoidance with lookahead demonstrates the same downward
trend in speed with increasing density.
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Figure 3.13: Crowd motion using (Top) real-world data, (Middle) Local collision avoidance,
(Bottom) Long-range collision avoidance.
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Chapter 4: Simulation of Turbulent Behavior in Human Crowds

4.1 Introduction

Crowd disasters, like those at the Hajj in Mecca and the Love Parade disaster in 2010,

have shown that current crowd control methods can prove untenable at high densities. As

population increases, instances of high-density crowds can only grow more frequent. This

poses a significant safety risk that can only be addressed by a deeper understanding of

crowd behavior in such conditions. Recent research by Helbing et al. [Helbing et al., 2007,

Helbing and Mukerji, 2012] has started to shed light on the unique characteristics of crowd

motion in these high-density disasters.

Under normal conditions, crowds of pedestrians typically move smoothly, with slowdowns

and fluctuations only near obstacles. When the density and urgency of pedestrians increases,

however, the behavior of crowds changes dramatically. First, the crowd begins to exhibit

stop-and-go waves: the motion of pedestrians alternates between stopped at high density

and moving forward at low density, with these density waves traveling backwards through

the crowd. Second, at even higher densities, the crowd shows a chaotic, oscillatory behavior

reminiscent of turbulence in fluids, with pedestrians being pushed in all directions, even

backwards against their desired direction of motion. The term crowd turbulence has been

introduced to describe such conditions [Helbing et al., 2007].

Even under such extreme conditions, pedestrian motion shows a coherent structure.

Individual motion is replaced by mass motion, and the scale of turbulent oscillations

spans several times the pedestrian separation. Crowds also exhibit a stick-slip instability

[Helbing et al., 2007] which leads to a rupture when stress in the crowd becomes too large.

As a result, the crowd splits up into clusters of different sizes, with strong velocity correla-

tions within each cluster, and distance-dependent correlations between clusters.



Simulation can be an invaluable tool to understand the processes behind this behav-

ior, and to formulate strategies to prevent their occurrence. However, existing crowd sim-

ulation techniques have been found to be inadequate for modeling crowd turbulence by

[Helbing et al., 2007]. I hypothesize that at high densities, physical forces between pedestri-

ans become relevant as they are brought into close contact. Accordingly, I propose that a

model for inter-personal forces is essential for simulating crowd behavior at high-densities. I

use a continuum approach where inter-personal forces are represented as stress fields caused

by discomfort and friction of the underlying simulated pedestrians.

Numerical simulations of real-world scenarios using my model demonstrate close quali-

tative and quantitative correspondence to observed data. I believe that models like mine

incorporating inter-personal stress can be used to obtain a better understanding of crowd

behavior in dense, panicked situations for both theoretical analysis and practical situations.

4.2 Background

Behavior of pedestrians in public spaces has been the focus of much research

over the past few decades. This includes insights obtained by observing real-world

crowds [Fruin, 1971], as well as observations made in controlled laboratory conditions

[Zhang et al., 2011, Zhang et al., 2012] to help improve crowd flow in public spaces. A

well-known result of such research is that pedestrian speed decreases with crowd density

[Pipes, 1953, Polus et al., 1983, Fruin, 1993, Weidmann, 1993, Seyfried et al., 2005]. This

relationship is known as the fundamental diagram. Another major focus of research is to

understand crowd behavior in order to help reduce the occurence of disasters [Fruin, 1993].

Recent research has started looking into disasters at large scales and high crowd densi-

ties. Insights offered by [Helbing et al., 2007] into the crowd disasters at the Hajj, and by

[Helbing and Mukerji, 2012] into the Love Parade disaster in particular, form the basis for

my proposed model.

For large-scale or high-density crowds, simulations offer the one of very few avenues for
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study, as such crowds cannot be recreated safely under controlled conditions. The field of

crowd simulation is quite broad and includes modeling of navigation, psychological factors,

social interactions, and so on; navigation, however, is the most important factor for repro-

ducing the dynamics of large-scale crowd motion. Accordingly, in this section I review the

related work in this area relevant to the problem of simulating crowd turbulence, restricting

attention to models that adhere to the fundamental diagram.

Virtual crowds are traditionally modeled as collections of individual virtual agents. In

this model, the navigation problem is decomposed into two sub-problems, global planning

and local navigation. Global planning plots a path for each agent to its goal, while only

considering static obstacles in the scene. Local navigation then attempts to guide the agent

along this path while avoiding collisions with other agents in the scene. As this component

is responsible for reacting to the motion of other agents, it determines how well the model

can reproduce stop-and-go waves and crowd turbulence.

Local navigation algorithms can be broadly classified into discrete or con-

tinuum algorithms. Discrete algorithms [Guy et al., 2010, Moussäıd et al., 2011,

Portz and Seyfried, 2010, Curtis and Manocha, 2012, Reynolds, 1987] solve the navigation

problem for each agent individually, considering other agents as separate entities. For effi-

ciency reasons, only a limited set of nearby agents is considered for avoidance. The alternate

approach is to consider the crowd as a continuum [Hughes, 2003, Treuille et al., 2006b], with

the avoidance problem being recast as navigating around regions of congestion. This is ideally

suited for medium to high densities. Narain et al. [Narain et al., 2009] propose a macro-

scale collision avoidance model for calm dense crowds, though densities at which turbulence

is not observed. The lookahead approach described in Chapter 3 is also appropriate for

this purpose, as it allows local navigation methods to conform to the fundamental diagram

without explicit modeling.

One of the key insights offered by recent studies of crowd disasters [Helbing et al., 2007,

Helbing and Mukerji, 2012], has been the similarity of crowds to granular materials be-
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yond the level of analogy established in previous work [Hoogendoorn et al., 2007]. There-

fore, I draw on ideas from granular flow simulation in developing my model. Granu-

lar materials have long been the focus of scientific study, and accurate numerical sim-

ulation of their behavior is challenging both for discrete and continuous approaches

[Behringer et al., 1999]. Nevertheless, several approximate continuum models have been

proposed [Quecedo et al., 2004, Aranson and Tsimring, 2001, Josserand et al., 2004]. These

models reproduce much of the qualitative properties of granular materials, and their relative

computational efficiency guides my decision to use a continuum formulation for my approach.

Existing work has sought to model crowd turbulence using discrete force-based mod-

els. Yu et al. [Yu and Johansson, 2007] propose that existing force-based models like social

forces [Helbing and Molnár, 1995] can be used to recreate situations where variance of agent

velocity reaches levels similar to those seen in turbulent crowds. However, their results do

not demonstrate the emergent clusters of motion that is characteristic of turbulent flows.

Similarly, the model proposed by Moussäıd et al. [Moussäıd et al., 2011] demonstrates fluc-

tuations in agent positions similar to turbulent crowds, but does not match any other crowd

turbulence metrics like the “pressure” defined by [Helbing et al., 2007], or the clustering of

agents demonstrated by turbulent crowds.

I postulate that similar to granular media, an essential component in any model for

turbulent crowds is inter-personal friction, as described in Section 4.4. This, combined with

a physically-based model for agent acceleration completes my model for crowd turbulence,

detailed in Section 4.3. I have validated my model against two observed instances of real-

world crowd turbulence, the Hajj, and the Love Parade disaster of 2010 in Section 4.5. I

conclude with the limitations of my model and scope for future work in Section 4.6.
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4.3 Continuum Model for Crowd Turbulence

4.3.1 Crowd as a Continuum

Real-world crowds consist of individuals, and most exisiting crowd simulation models

emulate this using discrete virtual pedestrians or agents. Doing so is essential for resolving

possible pedestrian motion at low-to-medium densities. Higer density models subsume this

discrete model into a continuum navigation model, where discrete agents represent pedestri-

ans, but their motion is modeled using a continuum representation of the crowd. Since this

model is primarily intended for high-density crowds, I begin with this continuum represen-

tation, similar to the Fluid Implicit Particle (FLIP) approach [Brackbill and Ruppel, 1986].

In the continuum formulation, the crowd state is defined in terms of two properties, den-

sity ρ (people per m2) and current velocity v. These properties are defined in a continuous

2-dimensional space tending to zero outside the bounds of the crowd. To couple this repre-

sention with discrete agents, I define a per-agent state using position xi and current velocity

vi defined in two dimensions.

In particular, the density field ρ can be defined as

ρ(x) =
∑
i

w(x− xi), (4.1)

where the sum is computed over all agents, and w is a smoothing kernel. In my simulations,

I use the piecewise bilinear hat function with a support of 1m. Continuum representations

of any agent property, like velocity, can then be computed as a weighted average,

v(x) =

∑
iw(x− xi)vi

ρ(x)
. (4.2)

The time evolution of the crowd in this FLIP formulation is as follows. The position

of each agent changes according to its current velocity. However, as agents are performing

active locomotion rather than being passive physical objects, their velocities must be updated
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through a computational procedure taking into account both their planning decisions and

external forces. This is performed in two steps: first, a global planning step computes a

preferred velocity vp for each agent to direct it towards its goal. Local navigation then

computes a collision-free velocity vcf accounting for influences from other nearby agents.

The collision-free velocity field is then constructed using equation (4.2).

In order to obtain valid behavior, these fields must be defined appropriately at boundaries,

particularly near solid obstacles. Continuity of the density field, in particular, is essential to

obtain correct behavior and avoid collisions with obstacles. In grid cells which are partially

covered by obstacles, I compute a coverage fraction φ ∈ [0, 1] – the fraction of the cell covered

by obstacles. In such cells Equations (4.1) and (4.2) can be corrected by dividing by the

fraction (1−φ). In cells completely covered by obstacles, density is defined via extrapolation.

That is, the density of the cell is chosen to be that of nearest cell not completely covered by

obstacles, ensuring that the gradient of density is purely tangential at obstacle boundaries.

This choice allows the local collision avoidance model described in Section 4.3.3, and the

stress model in Section 4.4 to generate correct behavior around solid obstacles.

4.3.2 Continuum Turbulence Model

My model for crowd turbulence consists of a local navigation algorithm that defines

appropriate behavior over the full range of low to high crowd densities. Even though my

primary focus is a model for crowd behavior at high densities, a model for low-medium

densities is necessary to impose realistic initial and boundary conditions for high-density

regions.

I assume the existence of global planner that provides a preferred velocity vp for each

agent at every time step, defining the optimal direction for the agent to reach its goal. I do

not make any assumptions about its temporal continuity or smoothness, thus the preferred

velocity may change sharply between time steps.

I begin by choosing an existing local navigation algorithm that satisfies the fundamental
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diagram. Given the preferred velocity vp, the algorithm attempts to compute a “collision-

free” velocity vcf , that is, a velocity close to vp which will not bring the agent into collision

with its neighbors. Adherence to the fundamental diagram implies that as crowd density

ρ increases, the collision-free speed of the agent |vcf | decreases toward zero. Agents tend

towards this velocity over a characteristic time τ , via an acceleration

a =
vcf − vt

τ
. (4.3)

Such a model is appropriate for densities up to those observed in most real-world crowds,

i.e. up to a density of 5.5 to 6 people per m2 [Pipes, 1953, Weidmann, 1993]. At higher den-

sities, collision avoidance may be impossible, as agents may be in near-constant contact with

other agents. Thus, existing collision avoidance models cannot be used directly. Therefore, I

introduce a high-density model which describes the effects of these contact interactions, and

whose contribution is zero below a threshold density.

In keeping with observations of [Helbing et al., 2007], I postulate that crowd behavior

at high densities is controlled predominantly by inter-personal stress similar to the stresses

observed in granular media. Accordingly, I define the stress σ as a symmetric 2 × 2 tensor

field representing the internal forces in the crowd. This tensor σ can be decomposed into its

normal and deviatoric components,

σ = pI + s, (4.4)

where the normal component p represents normal or repulsion forces, while the deviatoric

stress s is trace-free and represents frictional forces. I describe how to compute p and s in

section 4.4. The force due to stress is

∇ · σ = ∇p+∇ · s. (4.5)

Therefore, the combined contribution of stress forces (4.4) and local navigation (4.3) can
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then be expressed by modifying the definition of agent acceleration as:

a =
vcf − vt

τ
− 1

ρ
(∇p+∇ · s) (4.6)

The acceleration implied by this equation may be greater than what can be achieved

by pedestrians in the real world. The spontaneous oscillations seen in crowd turbulence

can also arise from limits on pedestrians’ response to variations in the crowd, namely, their

bounded accelerations. Thus, I impose a constraint that the magnitude of the actual agent

acceleration must be smaller than a constant amax. Thus, the agent velocity v changes as

dv

dt
= â min (amax, ‖a‖) . (4.7)

where â is the direction of the acceleration vector. The agent position can then be updated

through time integration.

The resulting algorithm is shown in Fig. 4.1 .

� Define the crowd density field using Equation (4.1)

� For each agent a, compute optimal direction v̂ using Equation (4.9)

� Use Equation (4.2) to determine the continuum velocity field

� Compute frictional stress using this velocity field

� Advect agents and update states using Equation (4.7)

Figure 4.1: Continuum Simulation Algorithm for Crowd Turbulence

4.3.3 Local Collision Avoidance

I use the lookahead-based collision avoidance model defined in chapter 3 for computing

the collision-free velocity vcf . My choice of this model is guided by the fact that it has

been validated against real-world data for low-medium density crowds. In my model, this

optimal direction is computed independently for every agent.
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To recap, in this model agents move at their maximum natural speed in a direction that

maximizes progress towards goal. The agent velocity can thus be expressed as vcf = v̂f(ρ),

where f(ρ) is the average speed at the given density ρ. I use the same linear form for

f(ρ) proposed in chapter 3, with the exception of having the minimum value of f(ρ) to be

0.01m/s instead of zero. Assuming that the agent maintains a constant heading along a

chosen direction v̂ for a planning horizon ∆t, the displacement after time ∆t will be:

d(∆t) = f v̂∆t+
1

2
(f v̂ · ∇ρ)f ′v̂∆t2 (4.8)

where f and f ′ are evaluated at the density at the current position. The direction v̂ is chosen

to maximize progress towards goal vp · d(∆t), giving the optimization problem

arg max
v̂

(
vp · v̂ +

f ′∆t

2
(v̂ · ∇ρ)(vp · v̂)

)
(4.9)

subject to ‖v̂‖ ≤ 1. Solving this problem using their lookahead approach yields a velocity

that satisfies the fundamental diagram.

4.4 Inter-personal Stress

I now complete my model by defining the method to compute inter-personal stress. As

noted previously, under low-to-medium density conditions, local collision avoidance computes

a path that avoids collisions with other agents. At higher densities, agents may be unable to

avoid collisions. In such constrained conditions, I postulate that agent behavior is governed

predominantly by the desire to avoid or minimize the likelihood of contact and collisions

with other agents and static elements in the scene. This implies that when possible, agents

attempt to maximize inter-agent separation, as that would reduce the likelihood of collisions.

At a macroscopic scale, this is equivalent to the crowd as a whole trying to attain a state

with lower mean density. This is analogous to the role of pressure in fluids and granular

materials.
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Considering the crowd as a compressible fluid, I define a pressure-like field p as a monoton-

ically increasing function of density ρ. Its effect is to allow density fluctuations to propagate

through the crowd, similar to the waves observed in turbulent crowds. In order to avoid

confusion with the “pressure” metric [Helbing et al., 2007] used later in the chapter, I call

this functional form discomfort. The behavior described previously can thus be expressed as

a desire by the crowd to lower discomfort caused by high densities and cramped spaces by

moving along its gradient. By ensuring that the gradient of density is tangential to obstacles

in Section 4.3.1, I ensure that pressure gradient is tangential to obstacles as well, ensuring

that the component of agent velocity normal to obstacles is zero.

To define a functional form for discomfort, I make certain observations:

1. Discomfort must be a constant below a critical density of 3.5 people per m2, i.e. its

gradient is zero. Pedestrians at such densities can move freely towards their goal, and

thus I expect virtual agents to do the same.

2. At higher densities, discomfort rises steeply. This is expected as pedestrians still have

available space to navigate and reach lower density regions.

3. Beyond a certain yield density of 5.5 to 6 people per m2 the gradient of discomfort

reduces and plateaus. This is a reflection of the fact that at such densities, pedestrians

would lose the available space to navigate and thus have a more limited set of responses.

Note that a number of functions can follow these considerations and yield similar results. I

choose a form similar to one proposed by [Hughes, 2002], where a similar concept of discom-

fort is proposed:

g(ρ) =



0, if ρ < ρcrit

c1
ρ√

ρyield−ρ+ε
− c2, ρcrit ≤ ρ < ρyield

c3ρ− c2, ρ ≥ ρyield

(4.10)

where ε is a small positive constant, c1 is a parameter, and c2 and c3 are chosen to ensure
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continuity of the function at ρcrit and ρyield. The function grows steeply to the yield point

ρyield after which it grows linearly. Specific values used for these constants as used in my

simulations are defined in Section 4.5.

The other essential component of inter-personal stress is friction. Without modeling

friction, stick-slip instabilities observed in turbulent crowds cannot be obtained. Friction

modeled here represents the combination of two possible responses. The first is the friction

between agents in contact, which in turbulent crowds can cause physical damage and even

rip clothes off of people [Helbing et al., 2007]. The second follows from the original intent

of pedestrians to avoid collisions. At very high densities, relative motion between agents is

likely to cause contact. In such situations, maintaining the relative configuration amongst

agent neighbors can be a viable strategy to avoid collisions. At a macroscopic scale, this

corresponds to clusters of agents moving coherently.

Though the use of friction as part of a collision avoidance algorithm has been suggested in

different contexts, these approaches have modeled only one kind of friction [Helbing et al., ].

In order to obtain stick-slip instabilities, it is essential to model both static and kinetic

friction, along with an appropriate yield condition that controls the transition between the

two. Static friction prevents relative motion between two bodies in contact, while kinetic

friction acts to oppose relative velocity between two bodies already having relative motion.

A number of models exist in the domain of granular materials to model such phenomena.

I choose a computationally efficient continuum model [Narain et al., 2010], which I find is

sufficient to replicate stick-slip instabilities.

Based on the maximum dissipation principle, this formulation computes the frictional

stress which minimizes the kinetic energy of the crowd flow, as defined using velocity from

Equation (4.7). However, the frictional stress is constrained by a yield criterion, which

relates the magnitude of frictional stress to the amount of normal stress, which in my case
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is discomfort. In keeping with [Narain et al., 2010], I use the Drucker-Prager yield criterion:

‖s‖F ≤
√

3αg(ρ) (4.11)

where ‖s‖F =
√∑

s2
ij is the Frobenius norm, and α is the coefficient of friction.

The kinetic energy after a time step ∆t can be approximated [Narain et al., 2010] as

E =
1

2ρyield

∫
‖ρ (vt −∇p) + ∆t∇ · s‖2dV, (4.12)

which is a quadratic functional of the frictional stress field s. The value of s is determined by

minimizing E subject to the yield criterion (4.11). Upon discretizing s on the simulation grid

and approximating the yield criterion by an intersection of half-spaces, I obtain a constrained

quadratic programming problem, which can be solved using standard methods. I obtain

efficient convergence using the solver proposed by [Dostál and Schöberl, 2005].

4.5 Validation

I ran simulations using my model to recreate the behavior observed in two crowd disasters.

For all simulations, the critical density ρcrit was 3.5 people per m2, yield density ρyield = 5.5

people per m2, constants c1 = 13.33, c2 = 1.5, with ε = 0.01. I use a friction coefficient α = 0

at densities less than ρcrit , α = 0.75 at densities greater than ρyield, with linearly interpolated

values for ρ ∈ [ρcrit, ρyield]. I use a second-order midpoint method for time integration.

Animated visualizations of the simulations generated by my crowd turbulence model in

the following two scenarios can be found online 1

1 http://gamma.cs.unc.edu/CrowdTurbulence
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40m

20m

20m

Figure 4.2: Scene setup for Hajj simulations. The scene consists of two merging sets of
agents emerging from the inlets shown in the blue checkerboard pattern, following the path
highlighted by dotted arrows and exiting via the wavy yellow outlet on the right. Corridor
dimensions are shown by red arrows.
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Figure 4.3: Representative trajectories taken by agents in the Hajj simulation to travel a
distance of 8m in laminar (red, right), stop-and-go (black, middle) and turbulent flow (blue,
left), with time rescaled to unity.
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Figure 4.4: Temporal evolution of velocity components vx and vy. Under laminar flow vy
will remain close to zero. However, under turbulent flow, such as in this case, I observe
motion that is orthogonal and even against the desired direction of motion (along the +x
direction).
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Figure 4.5: (a) Plot of average speed vs. density. Note that even though average speeds
may be low at high densities, high variance implies that agent speeds may be significantly
higher than the mean (b) Plot of crowd “pressure”P (x) = ρ(x) Varx(v) as defined by
[Helbing et al., 2007]. I observe values greater than 0.02 at local densities of 7 people per
m2 and higher, which are indicative of crowd turbulence.
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Figure 4.6: Plot of crowd “pressure” overlaid with mean flow velocities for a time period
of 3 seconds for (a) stop and go flow, and (b) turbulent flow. Note formation of irregular
clusters as denoted by isocontour lines. Color bars show range of “pressures” observed; note
that values greater than 0.02 do not arise in the occurrence of stop-and-go waves.
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Figure 4.7: Scene setup for Love Parade simulations. The scene consists of three merging
sets of agents, emerging from the inlets shown in the blue checkerboard pattern. Agents from
the bottom two inlets proceed towards the third inlet at the top and vice versa, following
the paths highlighted by the dotted arrows. Corridor dimensions are shown by red arrows.
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Figure 4.8: Plot of crowd “pressure” overlaid with mean flow velocities for a time period of
3 seconds for turbulent flow. Note formation of irregular clusters as denoted by isocontour
lines. Color bars show range of “pressures” observed.

93



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Local density (1/m2)

A
vg

. l
oc

al
 s

pe
ed

 (
m

/s
)

(a)

2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Local density (1/m2)

"P
re

ss
ur

e"
 (

1/
s2 )

(b)

Figure 4.9: (a) Plot of average speed v.s. density. (b) Plot of crowd “pressure”. I observe
values greater than 0.02 at local densities of 5.5 people per m2 and higher, which are indicative
of crowd turbulence.
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Figure 4.10: Plot of crowd “pressure” P (t) = 〈ρ(t) Vart(v)〉x in the Hajj scenario with both
discomfort and friction (top), and with discomfort alone (bottom). 〈·〉x denotes the mean
computed over the entire scene. Note how discomfort alone is unable to recreate turbulent
flow conditions.
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Figure 4.11: Plot of the magnitude of the strain rate tensor ‖∇v + (∇v)T‖F at t = 3s for
turbulence flow in Hajj scenario. Note cluster formation as shown by isocontours.
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4.5.1 Hajj

The Hajj is an Islamic pilgrimage to the city of Mecca, where millions of people undertake

every year. Over the past two decades, it has been the location of multiple crowd disasters

resulting in the loss of over a thousand lives. As a result, it has also been the focus of research

in crowd analysis and simulation. Simulations have been performed on a representative

scene proposed by [Helbing and Mukerji, 2012, Yu and Johansson, 2007]. The scene setup

is shown in Fig. 4.2 .

I ran simulations for a wide variety of average densities, ranging from 3.5 people per m2

(4400 agents) to 6 people per m2 (6800 agents). I observe the emergence of stop-and-go

waves even at densities at lower end of my range, while at the higher end of the spectrum I

observe the emergence of crowd turbulence. As seen in Fig. 4.5a , the variation of speed

vs. density follows a similar decreasing trend as observed for other models and real-world

data. At densities below 5 people per m2, behavior is primarily dictated by the existing

local navigation model from chapter 3. Since my model utilizes a linear representation of

the fundamental diagram, slope of the curve at these densities follows a linear trend. At

densities higher than 5 people per m2, my model exhibits a close correspondence with the

speed trend noted by [Helbing et al., 2007], as well as similar magnitudes.

I use the“pressure” metric P defined by Helbing et al. [Helbing et al., 2007] as an indi-

cator of crowd turbulence:

P (x, t) = ρ(x, t) Varx,t(v) (4.13)

where Varx,t(v) is the variance of velocity. In practice, I only compute this variance with

respect to either space or time. Previous work shows that real crowds become turbulent at

values of P greater than 0.02. As shown in Fig. 4.5b , my simulation replicates turbulent

crowd conditions at densities greater than 7 people per m2.

Fig. 4.3 shows representative trajectories for agents moving in the Hajj scene. Under

laminar flow conditions, agents move unhindered along their desired direction of motion,
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forward along the x-axis. At the onset of stop-and-go flow, I observe that agents sometimes

come to a standstill, as denoted by the trajectory becoming vertical for a short period of time.

However, at the onset of turbulent flow, I see that agents can even be pushed backwards

against their will. Fig. 4.4 shows that in such cases, agents may move in nearly any direction,

including directions orthogonal and opposite to their intended direction of motion, as shown

by the variation of the velocity components vx and vy.

Fig. 4.6b and Fig. 4.6a demonstrate the cohesive flow that arises at the onset of stop-

and-go waves and turbulence respectively. At the onset of stop-and-go waves, a concentration

of agents develops behind and in front of the rarefaction wave. As these disturbances intensify

into crowd turbulence, I see creation of agent clusters as illustrated by irregular isocontours

in Fig. 4.6a . The stick-slip instability manifests at the boundaries of these clusters. As

demonstrated by these plots, my model is able to replicate known observations of crowd

turbulence at the Hajj.

4.5.2 Love Parade 2010

The Love Parade was an annual electronic dance music festival held in Germany. At the

event in 2010, held at a railway yard in Duisburg, Germany, a crowd control failure led to

21 casualties from suffocation, with more than 510 people injured. Though the venue was

intended for 250,000 people, up to 500,000 people reportedly attended, with about 3200 police

present for crowd control. Due to miscommunication between the various police groups, two

inlets were opened allowing a large influx of pedestrians to enter a corridor blocked by an

outflux of pedestrians wanting to leave the concert. The resulting bottlenecked situation

caused turbulent conditions to develop, leading to multiple casualties.

Based on known data from the venue, I set up a representative scene to model a portion of

the railway yard where the mishap occurred. This scene setup is shown in Fig. 4.7 . Recently,

the disaster was analyzed in [Helbing and Mukerji, 2012], and an official documentary 2

2“Official Documentary of the Love Parade 2010 Disaster”, http://www.youtube.com/watch?v=
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reinforced the view that crowd turbulence was responsible for the casualties.

I note that in my simulations, I observe turbulence at densities of 5.5 people per m2

and higher, as seen in Fig. 4.9b , and observe turbulent oscillations similar to those seen

in the official documentary (5:42–5:52). As seen in Fig. 4.8 , most intense turbulence

is observed in the region where incoming and outgoing agents meet. In addition, I see

formulation of clusters with stick-slip instabilities similar to those observed in the Hajj

scenario as demonstrated by variation in “pressure” throughout the crowd.

4.5.3 Importance of Friction in Simulating Crowd Turbulence

In order to validate the hypothesis that inter-personal friction is essential for simulating

crowd turbulence, I simulated the Hajj scenario with discomfort alone. As is evident from

the “pressure” plot in Fig. 4.10 , without the added contribution of friction, turbulence is

not observed.

As noted earlier, cluster formation is one of the hallmarks of crowd turbulence. A plot

of the magnitude of the strain rate tensor ‖∇v + (∇v)T‖F in Fig. 4.11 shows isocontours

delineating variation in velocity. These variations indicate shear regions where agents slip

against each other, thereby marking cluster boundaries. Such a transition cannot occur

without friction, underlining its importance in a crowd turbulence model.

4.6 Summary

In this chapter, I have postulated that modeling inter-personal forces is necessary for

simulating crowd turbulence. To validate this hypothesis I propose a novel model for tur-

bulent crowds, using which I am able to simulate stop-and-go waves as well as chaotic

behavior symptomatic of crowd turbulence. These reproduce the features of well-known

crowd disasters at the Hajj and the Love Parade disaster of 2010. My model also shows

good correspondence with quantitative metrics proposed for detecting crowd turbulence and

8y73-7lFBNE (2010).
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establishes the importance of modeling friction for simulating crowd turbulence.

My model can simulate such crowds with globally computed stress at interactive rates on

current generation PCs. I believe this finding opens up possibilities of real-time response to

crowd conditions that may pose threats of developing into crowd turbulence. It should also

prove to be a valuable aid for safety planning and disaster prevention, by allowing planners

to test designs for the possibility of crowd turbulence.

The numerical validation shown in this chapter has focused on the limited set of metrics

reported in previous work. My model is consistent with real-world data as measured by

these metrics. The lack of detailed real-world datasets prevents more extensive validation of

the model, my hypothesis, and the underlying forces.

In order to ensure efficient simulation, I compute stress using the solver used by

[Narain et al., 2010] which approximates the Frobenius norm using the infinity norm.

Though the error of such an approximation is bounded, it may cause minor deviations from

expected behavior. A solver that can determine stress under Frobenius norm constraints

could improve accuracy of computed results.

Though my model closely matches data from real instances of crowd turbulence, I believe

that results can be further improved with automatic parameter tuning [Guy et al., 2012] and

validation of my model with more real-world data. Expanding the limited set of publicly

available data from crowd disasters with fine-grained information about pedestrian trajec-

tories and velocities would allow the development of significantly more accurate models.
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Chapter 5: Conclusion

In this dissertation, I have proposed the use of coupled Eulerian-Lagrangian models for

simulating complex large-scale flows. These models are capable of simulating previously

infeasible scenarios efficiently and scalably on current parallel architectures. I have demon-

strated their applicability for incompressible and weakly compressible flows like fluids and

crowds. As demonstrated by the examples in this dissertation, these methods can recreate

phenomena not just for visualization in computer graphics, but also those of interest in the

domain of engineering.

5.1 Summary of Results

I have presented a technique of simulating fluids at large-scales by using Eulerian velocity-

based models coupled with Lagrangian vorticity-based models. Lagrangian models for dis-

cretizing vorticity offer a compact representation for fluid velocity in domains where the

fluid is homogeneous, but can be expensive to the point of being intractable at surfaces.

Conversely, Eulerian velocity-based models excel at modeling velocity transitions, including

discontinuous transitions at fluid-air and fluid-solid boundaries. By coupling these two mod-

els together – using Lagrangian vortex models in the fluid interior, coupled with Eulerian

velocity models at surfaces – I demonstrate that large-scale scenes which were previously too

expensive to simulate on PCs, can be simulated efficiently using such a coupled model.

To enable interaction between these disparate models for simulation, I propose a novel

coupling algorithm that conserves momentum and vorticity across subdomains. I also pro-

pose an algorithm to represent incompressible vector fields like velocity using Lagrangian

vortex singularity elements. This can be leveraged to compactly store and modify incom-

pressible vector fields, particularly for controllable fluid simulations. In addition, my pro-



posed method can be used with dynamically changing domain boundaries, which allows

flexible simulation with memory footprints up to 1000x smaller than comparable Eulerian

simulations, along with similar performance improvements.

Secondly, I have presented a method for simulating collision avoidance behavior of pedes-

trians in large-scale environments. I propose solving this problem of long-range collision

avoidance using a recursive formulation using short-range collision avoidance at multiple

spatial and temporal scales. The proposed algorithm is agnostic to the underlying short-

range algorithm, and as demonstrated using two examples, it can be applied to many such

algorithms to significantly improve collision avoidance behavior without compromising per-

formance.

To quantify the benefits of this approach, I propose a metric to measure path smoothness,

by quantifying the deviation of velocity from a desired or mean velocity. Real-world crowds

consistently exhibit very small deviations from this mean path, while crowds simulated with

short-range avoidance demonstrate significantly higher deviations. Simulating the same sce-

narios with long-range avoidance using my proposed algorithm generates behavior closer to

real-world behavior as noted qualitatively with visual inspection, and quantitatively with

the proposed metric. In addition, completion times, i.e. the time taken for all agents to

reach their goal, for crowds simulated using long-range avoidance are closer to real-world

pedestrians than for short-range simulation. Finally, I also propose a simple scheme for

hybrid simulations to ensure efficient collision avoidance at a wide range of densities. By

using linear blending of Eulerian and Lagrangian collision avoidance algorithms, the most

efficient algorithm can be used at all densities while maintaining smooth transitions with

correct behavior.

In addition to simulating crowd behavior at large spatial scales, I also propose a method

to simulate crowds at high densities. In such conditions, crowd behavior deviates significantly

from that which we observe in everyday conditions. Collision avoidance becomes untenable

as pedestrians reach states of near-constant contact and collision with others. Thus, a
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model for crowd behavior dictated by collision response is needed to accurately simulate

such conditions. I postulate that a model for the resulting inter-personal forces is essential

for simulating crowds in such conditions. To compute inter-personal stress in such crowds, I

propose a coupled Eulerian-Lagrangian model, where discrete Lagrangian agents are driven

by forces defined using an Eulerian stress model.

My proposed model can replicate known crowd behaviors in such conditions, including

stop-and-go waves, and more chaotic behaviors known collectively as crowd turbulence. In

qualitative visual comparisons, and quantitative comparisons using known metrics, pedes-

trians simulated using my proposed algorithm show close correspondence to available data

from two recent recorded instances of crowd turbulence, at the Hajj in Mecca, and the Love

Parade disaster in Duisberg, Germany, in 2010. My proposed formulation can simulate

crowds at interactive rates on current generation PCs. This is made possible by the use of

a coarse large-scale Eulerian model for stress coupled with a fine grained Lagrangian model

for pedestrian motion.

5.2 Limitations

I discuss specific limitations of each of my proposed methods in their corresponding

chapters. In this chapter I discuss the limitations of my general approach. While coupled

Eulerian-Lagrangian methods present a promising approach for modeling physical phenom-

ena at varying scales, it is important to understand their limitations for correct application.

The utility of such coupled methods lies in utilizing two methods whose complexity scales

in a complementary fashion with scale. For example, the complexity of vortex methods

scales with vortex detail, and is unrelated to size, while that for Eulerian velocity-based

methods scales with the size of the domain, but avoids the complexity explosion with detail by

clamping the amount of velocity detail it maintains. Such a complementarity may not exist

in all physical phenomena of interest. Even though such a complementarity exists, coupling

two or more models presents a challenge unique to the phenomena under consideration, i.e.

103



the coupling algorithms presented in this dissertation may not be applicable directly to the

phenomena of interest. The efficiency of such a method cannot be guaranteed, but is highly

likely for cases where the underlying models are complementary for the scales in question.

It is also important to note that the approaches presented in this dissertation choose to

discretize certain scales of the underlying phenomena, which existing models are not able

model accurately while maintaining efficiency. Though the proposed approach is capable

of modeling any scales of interest, the choice of underlying models and their parameters is

governed by these particular scales, and may need to be modified appropriately for different

phenomena. Particularly, for phenomena which are not completely understood, significant

experimentation may be needed to converge to scales of interest. However, as long as the

underlying models are capable to simulating particular scales, the interaction and interplay

of phenomena at multiple scales can be modeled using this approach.

5.3 Future Work

Coupled Eulerian-Lagrangian models are a promising approach for various multi-scale

physical phenomena, and open up avenues for modeling various physical phenomena, as well

as improve the computational efficiency of existing models. Here, I list certain such examples,

and other avenues of research made possible with the models proposed in this dissertation.

One aspect highlighted by the hybrid fluid simulation proposed in Chapter 2 is that it is

possible to simulate any free-surface fluid using vorticity-based Lagrangian methods, using

an Eulerian velocity-based model for vorticity creation and exchange at the surface. Thus,

a promising avenue for future research would be to explore the creation of an accurate La-

grangian model for vorticity exchange at a free-surface that does not rely on an intermediate

model. Doing so would reduce a 3-dimensional simulation to a 2-dimensional simulation

using a Boundary Element Model, significantly reducing memory requirements, and opening

the door for the use of Fast Multipole Methods for efficient fluid simulation using Lagrangian

vortex methods for fluids in multiple states.
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This dissertation focuses on enabling the possibility of simulations working at multiple

spatial and temporal scales. However, it does not explore all possible avenues for improving

simulation performance using this model. One key aspect is that components of the simu-

lation at multiple spatial and temporal scales do not need to execute with the same time

step—components modeling larger spatial and temporal scales can be executed on a coarser

scale. In addition, the use of varied scales and specific computational kernels also lends

an opportunity of exploiting vector and parallel architectures including multi-core CPUs,

GPUs, as well as other many core architectures. The use of these methods on such data-

parallel architectures opens up the possibility of simulating virtual environments impossible

to recreate previously.

Though implementations of the proposed algorithms in this dissertation focus on shared

memory architectures commonly seen in desktop computers, the same concepts can also be

applied to message passing approaches used in multi-node clusters. For such architectures,

the cost of accessing a layer in the memory hierarchy gets replaced by the cost of sending

messages across nodes—farther nodes mimicking lower layers of the hierarchy. Similarly,

a small working set implies a limited number of messages sent across nodes, improving

performance. An interesting avenue for further work would be to map coupled Eulerian-

Lagrangian models to MPI (Message Passing Interface) based architectures. Though the

motivation to use these models remains the same, challenges faced in obtaining optimal

performance on such architectures are likely to be very different, and may even provide

insights to further improve the core models themselves.
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[Ondřej et al., 2010] Ondřej, J., Pettré, J., Olivier, A.-H., and Donikian, S. (2010). A
synthetic-vision based steering approach for crowd simulation. In ACM SIGGRAPH 2010
papers, SIGGRAPH ’10, pages 123:1–123:9, New York, NY, USA. ACM. 39

[Paris et al., 2007] Paris, S., Pettre, J., and Donikian, S. (2007). Pedestrian reactive naviga-
tion for crowd simulation: a predictive approach. Computer Graphics Forum, 26(3):665–
674. 43

[Park and Kim, 2005] Park, S. I. and Kim, M. J. (2005). Vortex fluid for gaseous phenom-
ena. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’05, pages 261–270. ACM. 19

[Pelechano et al., 2007] Pelechano, N., Allbeck, J. M., and Badler, N. I. (2007). Control-
ling individual agents in high-density crowd simulation. Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 99–108. 43

110
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for real-time fluids. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 826–834.
ACM. 19, 77

[van den Berg et al., 2009] van den Berg, J., Guy, S. J., Lin, M. C., and Manocha, D. (2009).
Reciprocal n-body collision avoidance. Proc. Intl. Symposium on Robotics Research. 43,
50, 57, 61, 63, 64

[van den Berg et al., ] van den Berg, J., Guy, S. J., Snape, J., Lin, M. C., and Manocha,
D. RVO2 Library: Reciprocal collision avoidance for real-time multi-agent simulation. 50,
61, 64

112



[van den Berg et al., 2008a] van den Berg, J., Lin, M. C., and Manocha, D. (2008a). Recip-
rocal velocity obstacles for realtime multi-agent navigation. Proc. IEEE Conf. Robotics
and Automation, pages 1928–1935. 43, 57

[van den Berg et al., 2008b] van den Berg, J., Patil, S., Sewall, J., Manocha, D., and Lin,
M. C. (2008b). Interactive navigation of individual agents in crowded environments. Proc.
ACM Symposium on Interactive 3D Graphics and Games, pages 139–147. 43

[Weidmann, 1993] Weidmann, U. (1993). Transporttechnik der Fussgaenger. Number 90. 2
edition. 44, 76, 81

[Weißmann and Pinkall, 2009] Weißmann, S. and Pinkall, U. (2009). Real-time interactive
simulation of smoke using discrete integrable vortex filaments. In Workshop in VRIPS
2009. Eurographics Association. 19

[Weißmann and Pinkall, 2010] Weißmann, S. and Pinkall, U. (2010). Filament-based smoke
with vortex shedding and variational reconnection. In ACM SIGGRAPH 2010 papers,
SIGGRAPH ’10, pages 115:1–115:12. ACM. 20, 23, 30

[Wendt et al., 2007] Wendt, J. D., Baxter, W., Oguz, I., and Lin, M. C. (2007). Finite
volume flow simulations on arbitrary domains. Graph. Models, 69:19–32. 18

[Wicke et al., 2009] Wicke, M., Stanton, M., and Treuille, A. (2009). Modular bases for fluid
dynamics. In ACM SIGGRAPH 2009 papers, SIGGRAPH ’09, pages 39:1–39:8. ACM. 19

[Yu and Johansson, 2007] Yu, W. and Johansson, A. (2007). Modeling crowd turbulence by
many-particle simulations. Phys. Rev. E, 76:046105. 78, 97

[Zhang et al., 2011] Zhang, J., Klingsch, W., Schadschneider, A., and Seyfried, A. (2011).
Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J.
Stat. Mech., 2011(06):P06004. 44, 76

[Zhang et al., 2012] Zhang, J., Klingsch, W., Schadschneider, A., and Seyfried, A. (2012).
Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram.
Journal of Statistical Mechanics: Theory and Experiment, 2:2. xii, 44, 61, 72, 76

[Zhu and Bridson, 2005] Zhu, Y. and Bridson, R. (2005). Animating sand as a fluid. In
ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 965–972, New York, NY, USA.
ACM. 18, 35

113


