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ABSTRACT 

 

So-Young Eun 

The Function of a Novel Guidance Molecule, Plexin-A1, on Immune Dendritic Cells 

(Under the direction of Jenny P-Y. Ting) 

 

Plexins (Plxns) and their ligand molecules, semaphorins were originally known as 

axonal guidance factors in neurons.  PlxnA1, in particular, was discovered in neurons 

along with its soluble ligand Sema3A, another neuronal guidance cue.  Since then, it has 

also been implicated in a variety of contexts such as cardiovascular development, 

carcinogenesis, or immune responses.  In the immune system, PlxnA1 was originally 

detected in bone marrow-derived dendritic cells (DCs), regulated by Class II 

Transactivator (CIITA), the master regulator of MHC class II molecules.  PlxnA1 

expression was shown highly upregulated in mature DCs where it appeared to play a 

crucial role in T cell priming.  The work presented here demonstrates a dual role of 

PlxnA1 on the surface of DCs in cognate T cell priming upon conjugation as well as in 

chemokine-induced DC migration.  The mechanism by which PlxnA1 stimulates T cell 

activation upon contact involves small GTPases.  PlxnA1 stimulates naïve T cell 

activation in an antigen-dependent manner, and augments chemotaxis of DCs towards 

defined chemokines attracting mature DCs, such as CCL19/21, and CXCL12, as 
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demonstrated using DCs lacking PlxnA1.  It was observed that upon T cell engagement, 

PlxnA1-deficient DCs contained significantly reduced levels of Rho-GTPase, leading to a 

defect in the polarization of actin filaments towards the interface with T cells downstream 

of Rho.  As also suggested by a previous observation that plxnA1-/- mice showed reduced 

symptoms of experimental autoimmune encephalomyelitis upon challenge, PlxnA1 

presents its potential to be a target for developing therapeutics against autoimmune 

disorders among others.   
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CHAPTER I: INTRODUCTION 
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1.1.  Plexins and Semaphorins 

1.1.1.  Plexins.   

Plexins (Plxns) and Semaphorins were initially studied in the neuronal system.  The 

name of Plxn was derived from the plexiform layers of the optic tectum and the neural retina 

where its expression was primarily observed [1, 2].  The Plxn family is divided into four 

subfamilies designated A through D, and comprises nine members (Figure 1.1) [3].  In the 

murine species, the A subfamily of Plxns consists of four members including PlxnA1 which 

is the main focus of this project [3].  Plxns are well-conserved throughout the animal 

kingdom from invertebrates to vertebrates, which suggests an important role in normal 

function and development [3-7].   

Plxns are type I transmembrane glycoproteins, and remain membrane-bound except for 

the B type subfamily in vertebrates that contain convertase-cleavage sites that lie adjacent to 

the membrane-spanning region [2, 8-10].  Indeed, in human cell lines and tissue samples, 

cleaved B type Plxns such as PlxnB1 and PlxnB2 are the predominantly found [8].  The 

shorter fragment cleaved from the full-length protein contains the entire cytoplasmic portion 

plus the membrane-spanning region along with a very short extracellular part of the full 

length protein, whereas the longer fragment contains most of the N-terminal extracellular 

part before the cleavage site.  It has been suggested that proteolytic processing of B type 

Plxns by proprotein convertases occurs in post-Golgi compartments and or at the cell surface.  

However, according to the observation, the two cleaved fragments (a shorter fragment: 

~100kDa; a longer one: ~200kDa) were still weakly bound together as a heterodimer via 

non-disulfide linkage.  Moreover, compared to a noncleavable mutant form of the protein, the 

heterodimer exhibited higher affinity for their ligand, Sema4D, leading to a stronger collapse 
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response of fibroblasts [8].  Consequently, the heterodimer of B type Plxns seems to remain 

plasma membrane-bound and respond to surface ligands.  However, another report suggested 

that a secreted PlxnB1 protein exists in humans.  The authors stated that two different 

versions of PlxnB1 mRNAs were found, one of which was full-length, but the other a splice 

variant that was truncated within the extracellular portion of the protein, due to a frame shift 

in the open reading frame [3].  Thus, it is plausible that B type Plxns could be released into 

the extracellular environment spontaneously or upon ligand stimulation.  However, the 

question of whether and how such events take place is left unknown.   

The N-terminal Sema domain of Plxns is responsible for ligand-binding [11-13].  

The Sema domains are shared by Plxns, Semaphorins, and the proto-oncogenic MET and 

RON (Recepteur d'Origine Nantais) receptor tyrosine kinases (RTKs).  The Sema domain 

is known to mediate protein-protein interactions including Semaphorin dimerization as 

well as Semaphorin interactions with Plxn and Neuropilin (Nrp) [3, 11-15].  The Sema 

domain is also an autoinhibitory element for Plxn activity, in the resting state.  A 

truncated mutant of Plxn protein lacking the Sema domain was shown to be constitutively 

active and nonresponsive to ligand stimulation, suggesting that Plxns undergo a 

conformational change upon ligand-binding [16].  Crystal structures of Sema3A and 

Sema4D revealed that the Sema domain is the largest known among the seven-blade β-

propeller folds, approximately 500 amino acids long [11, 12].  The β-propeller folds are 

widely used for protein-protein interaction as well as for catalytic activity itself (reviewed 

in [13]).   

The N-terminal Sema domain in Plxn is followed by three sequential PSI (present in 

Plxns, Semaphorins and Integrins) repeats and three or four sequential IPT domain 
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repeats (Immunoglobulin-like fold shared by Plxns and Transcription factors) followed 

by the trans-membrane-domain [4, 11, 17].  PSI is also called a small cysteine-rich 

domain (CRD) or MRS (Met-related sequence), and it is shared by MET and RON as 

well as by most of the Semaphorin family except viral Sema VIII [2, 18].  A putative 

function for the PSI domain of Plxns was suggested by homophilic binding of Plxns 

cloned from Xenopus tadpole [2].  Overexpression of Plxn protein in mouse fibroblast L 

cells caused cellular adhesions to purified Plxn proteins immobilized on plates.  Such 

intercellular aggregation occurred only in the presence of calcium ions, which were 

partially blocked by Plxn-specific antiserum.  These authors ascribed the homophilic 

interaction of Plxn proteins to serial cysteine-rich PSI domains implying disulfide bridges, 

although no experimental evidence was provided [2].  This assumption was mainly based 

upon the evidence that cysteine-rich repeats in the PSI domain of Sema3A (also referred 

to collapsin-1 or SemD) are responsible for forming a homodimer of Sema3A via a 

disulfide bond, eliciting its collapse-inducing activity [19, 20].  The crystal structure of 

the integrin β3 subunit PSI domain revealed its importance in creating a platform for 

binding an α subunit as well as in regulating ligand-binding [21].  The functions of the 

PSI in Plxns is still only implied based on the domain-specific functional analyses of 

other well-studied proteins homologous to Plxns, and no functions of the PSI domain in 

Plxns has been specifically determined to date [18, 22]. 

IPT is also referred to as simply Ig domain or TIG (transcription factor Ig domain), 

similar to the Ig-like domain sequence of the NF-κB family members [13, 23, 24].  

Sequential copies of IPT in Plxns are also found in MET and RON, while some of the 

Sema members (II-V, VII) contain only a single copy of the Ig-like domain [13, 23, 24].  
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Sequential IPT domains appear to be involved in modulating protein-protein interactions 

or in protein-binding itself.  A monoclonal antibody specific for the PSI domain of β2 

integrin did not suppress ligand-binding of the receptor but antibody specific for the 

putative Ig-like domain adjacent to PSI did block ligand-binding.  This suggests that the 

putative Ig-like domain of β2 integrin is necessary for dimerization of αβ subunits [25].  

In other reports, natural splicing variants of RON lacking a region within the IPT domain 

caused hyperactive kinase activity of the protein, which became oncogenic in human 

colorectal carcinoma cells, suggesting a regulatory role in controlling the catalytic 

activity exhibited by other protein domains [26, 27].  More dramatic evidence of IPT 

domain function was revealed by a mutant Met protein containing serial IPT domains but 

lacking the Sema domain.  The third and fourth IPT domains of Met were sufficient to 

bind its ligand, hepatocyte growth factor (HGF) with higher affinity, but antagonized 

HGF-induced invasive growth.  The authors proposed a role in which the IPT domains 

cooperate with the Sema domain in binding to HGF and in controlling HGF-induced Met 

kinase activity [28].  The potential importance of serial IPT domains in Plxns was shown 

by its role in binding triggering receptors on myeloid cells 2 (Trem-2), a TREM family 

member of Ig superfamily, in a Cos-7 cell overexpression system.  PlxnA1 interaction 

with Trem-2 was maintained with the IPT domain of PlxnA1 lacking the Sema and the 

PSI domains, suggesting that the IPT domain of PlxnA1 contributes to Trem-2-binding 

[29].  Absolute necessity of the IPT domain for the functional interaction of PlxnA1 with 

Trem-2 was not proven under physiologically relevant conditions in this report.  However, 

a recently published study provided another example of additional insights into a function 

of the IPT domain, using another Trem family protein called PDC-Trem on the surface of 
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plasmacytoid dendritic cells.  The authors showed that association between PlxnA1 and 

PDC-Trem was abrogated in the absence of the IPT domain, while their association was 

still intact without the Sema domain, suggesting that the IPT domain in PlxnA1 is 

responsible for cis-interactions with Trem proteins [30].   

The cytoplasmic element of Plxns was shown to be essential for transducing signal 

upon the ligand binding.  A spinal neuron over-expressing a truncated mutant of PlxnA1 

that lacked the cytoplasmic tail did not respond to Sema3A stimulation even when 

associated with its co-receptor, Nrp-1 [3, 15, 16].  Unlike MET and RON receptors that 

contain tyrosine kinase activity, the cytoplasmic portions of Plxns or Semaphorins have 

not exhibited any kinase activity [31].  Instead, Plxns contain two segmented R-Ras 

GTPase-activating protein (GAP) domains homologous to p120 RasGAP and SynGAP in 

their cytoplasmic regions [32].  A region required for binding small GTPases such as 

Rnd1 or RhoD is located between the GAP domains [32, 33].  The relationship between 

Plxns and small GTPases will be discussed later.   

 

1.1.2. Semaphorins.   

Plxns have been known as receptors for Semaphorin molecules upon which Plxns 

transduce signals for axonal growth or collapse [3, 4, 11-15, 34, 35].  Semaphorins, 

primarily referred to collapsins, were first identified in the early 1990s as axonal 

guidance factors [36, 37].  Since then, more than twenty members of Semaphorins have 

been identified and categorized into eight subclasses based on their origins and sequence 

homologies, including invertebrate (Class I and II) Semaphorins, viral (Class VIII) and 

vertebrate (class III through VII) Semaphorins (Figure 1.2) [38, 39].   
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Figure 1.1.  Mouse and human Plxn molecules.   The Plxn family is divided into 
four subfamilies designated A through D, and comprises a total of nine members.  
Soluble huPlxnB1 is a short splice variant that is also found in humans along with 
full-length PlxnB1.   
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Figure 1.2.  Invertebrate (I and II), vertebrate (III~VII), and viral (VIII) 
Semaphorins.  Class II, III, and VIII semaphorins are secreted, but the other members (I, 
IV-VII) are membrane-bound, either membrane-spanning (IV~VI) or GPI-anchored (VII).   
 

The membrane-bound semaphorins (I, and IV through VII) as well as secreted 

members (II-III, and VIII) exist, indicating that semaphorin-Plxn interactions might be 

initiated by trans-interaction between two membrane-bound proteins on adjacent cells; by 

interaction between soluble secreted ligand and a membrane-bound receptor; or by 

binding of a soluble secreted ligand and a secreted receptor [3, 9].  One in particular, 

Sema4D which is categorized as a membrane-bound semaphorin also has a secreted 

soluble form, generated by alternative splicing or by proteolytic cleavage upon cellular 

stimulation [40-44].    
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Particularly, Class III Semaphorins require two receptor components, one of which 

is a Plxn and the other, a Neuropilin.  Neuropilins funtion to facilitate high-affinity 

binding to the ligand.  The co-receptor, Plxns are responsible for transducing signals 

through the cytoplasmic tail [3, 4, 15, 19, 32, 34, 45-49].  An exception is Sema3E, for 

which PlxnD1 is sufficient for binding and a signaling response [50].  However, more 

recent evidence suggests that some Semaphorins utilize not only Plxns and Nrps, but 

proteins such as integrins, CD72 or TIM-2, as their receptors [51-54].  The molecular 

interactions between Plxns and semaphorins are therefore much more complex than have 

been observed thus far.   

Semaphorins have been shown to function as either attractive or repulsive guidance 

cues, even in the same neuron [55-57].  For example, an identical cortical explant from 

rat embryos showed opposing responses, upon encountering two different Semaphorins:  

The explants exhibited growth cone collapse upon Sema3A (known previously as SemD), 

but axonal outgrowth in response to Sema3C (SemE) [55].  Furthermore, Sema3A is also 

capable of inducing axonal outgrowth, although it is well established to cause growth 

cone collapse.  One of the factors that affect the cellular response to Sema3A appears to 

be the cellular level of cyclic nucleotides, leading to either growth cone collapse or 

axonal outgrowth [56].  The availability of their coreceptors could also be a switch 

between attractive and repulsive signaling, in the presence of the same ligand.  Neurons 

expressing both PlxnD1 and Nrp-1 were attracted to Sema3E, but neurons expressing 

PlxnD1 alone were repelled from it [58].  Sema6D has also been shown to induce 

completely opposite phenotypes through PlxnA1 depending on which co-receptor of 

PlxnA1 is evidenced by VEGFR2 and Off-track in cardiac morphogenesis of chick 
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embryonic development [59].  Thus, it appears that a single Semaphorin can generate 

differential signals depending on the cellular contexts.  Beyond the original observations, 

it is now well understood that stimulation of Plxns with Semaphorins is not only 

implicated in neuronal networking but also in regulating immune responses as well as 

cell migration and tumorigenesis in various tissues [29, 30, 40, 52, 54, 60-77].   

In the immune system, multiple Plxns and semaphorins have been functionally 

recognized, although this area of research is still in its infancy.  PlxnA1 is expressed in 

mature dendritic cells (DCs) [29, 71, 73, 78].  And PlxnA1 has been shown to bind 

Sema6D which is expressed on T lymphocytes, stimulating T cell activation as 

demonstrated by our group and others [29, 71, 78, 79].  PlxnA4 is also detected in DCs, 

where its functionality is still unclear [73].  However, in T cells, it is recognized as a 

negative regulator of T cell responses by employing plxna4-/- mice.  From the report, 

PlxnA4 is suspected to cooperate with Nrp-1 in order to respond to Sema3A stimulation 

in T cells, in that the hyper-proliferative phenotype of PlxnA4-/- T cells is similar to that 

of Nrp-/- T cells or Sema3A-/- T cells [73].  On the other hand, PlxnB1 and C1 appear in 

human immature DCs and monocytes, respectively, and both respond upon engagement 

with Sema4D (CD100), previously reported as a ligand for CD72 on B cells [80, 81].  It 

is interesting that dramatic downregulation of PlxnC1 funtions parallel to induction of 

PlxnB1 upon in vitro DC maturation.  In the report, PlxnC1-expressing monocytes and 

PlxnB1-expressing immature DCs showed reduced migration when Sema4D was added, 

whether their migration was spontaneous or chemokine-induced.  Such inhibition of 

migration by Sema4D ligation suggests that Sema4D suppresses migration of monocytes 

or immature DCs through either PlxnC1 or PlxnB1, respectively [81].  In contrast, 
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PlxnC1 is also reported to be found on mature DCs, where it is inhibitory for integrin-

mediated DC adhesion and migration upon poxviral Sema A39R, using plxnc1-/- mice [69, 

70].  A discrepancy in expression patterns of PlxnC1 in these reports may be due to the 

differences between humans and mice.  Meanwhile, interaction of PlxnB1 with Sema4D 

has also been identified to be crucial for B cell survival and proliferation [60, 82].  Given 

these reports, it is clear that each Plxn has multiple ligands, some of which are shared by 

other Plxns.  As a result, the functional outcome of each Plxn would then be dependent 

on the spatiotemporal availability of a particular ligand.  The consequences of these 

molecular interactions and signal transductions are therefore expected to be much more 

complex than initially presumed.  The importance of Plxns and Semaphorins in other 

systems with cumulative findings of their functions is reviewed by others [82-84]. 

 

1.2. PlxnA1 and small GTPases 

Small GTPases (G-proteins) have been implicated in Nrp-1/PlxnA1-mediated Sema3A 

response in neurons, and their signaling to the actin cytoskeleton for axonal guidance.  

Indeed, multiple small GTPases that directly or indirectly associate with PlxnA1 have been 

identified [3, 32, 33, 85-90].  Our Plxn study was performed in the context of DC-T cell 

conjugation.  Although the mechanism regulating DC cytoskeleton is not fully understood, 

cytoskeletal organization and integrin activation upon DC-T cell conjugation are known to be 

critical for activation of both participants [91-93].  Thus, it is important to include a 

discussion of PlxnA1-associated small G-proteins. 

 

1.2.1. Rho GTPases:   
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PlxnA1 has been linked to Rho or Rho-like GTPases.  PlxnA1 overexpressed in HEK 

293T cells has been found to physically interact with both Rnd1 and RhoD as shown by GST 

pull-down assays [33].  Rnd1 is known as a constitutively active member of the Rho GTPase 

family [87, 94].  Rnd1 and RhoD appear to either pass Sema3A-induced collapse signal or 

block it, respectively.  PlxnA1 signaling upon Sema3A engagement is suggested to be 

balanced by these two players.  None of the other Rho-related GTPases tested such as Rac1, 

Rnd2 or RhoG seems to form a complex with overexpressed PlxnA1 protein, in GST pull-

down assays [33].  In general, studies have shown that Rnd1 activation signals the 

disassembly of actin cytoskeleton and Rnd1 regulates actin cytoskeleton by antagonizing 

RhoA activity, for example, via activation of RhoGAP proteins [87, 95-98].  Rho and Rac are 

known to activate actin polymerization through the following mechanism.  Rho and Rac both 

activate LIM-kinase through their downsream kinase, ROCK and PAK, respectively [86, 99, 

100].  In turn, LIM-kinase phosphorylates and inactivates cofilin, an actin-depolymerizing 

factor, thereby activating actin polymerization [101-103].  Taken together, actin filaments are 

depolymerized for the retraction of lamellipodia and filopodia in collapsed growth cones, 

explaining a role of Rnd1 in the collapse response [33, 85, 104].  Interestingly, recruitment of 

Rnd1 to PlxnA1 was important for its role in facilitating the collapse response upon Sema3A 

[33].  This is partly due to the fact that RhoD binds to the overlapping site in PlxnA1 protein.  

Thus, RhoD is thought to antagonize Rnd1 by competing for the binding site on PlxnA1 or 

by changing a conformation of the Rnd1-binding region of PlxnA1 [33].  Rnd1 has also been 

implicated in R-Ras signaling for integrin activation as well as for the collapse response in 

the context of interaction with Plxns [105-107].  Rnd1 requirement for the Sema3A-induced 
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collapse response will be further discussed related to the regulation of R-Ras activity by 

PlxnA1.   

Regarding RhoA and Rac1, the same group showed earlier that neither RhoA nor Rac1 

specifically interacts with PlxnA1 [32].  However, other investigators reported subsequently 

that overexpressed Rac1 physically interacts with co-expressed PlxnA1 and is required for 

PlxnA1 signaling for cell collapse upon Sema3A engagement in COS cells [90].  This has 

been reproduced in dorsal root ganglia and spinal motor neurons by others [89, 90, 108, 109].   

However, the collapse induced by a constitutively active form of PlxnA1 does not seem to 

require Rac1 activity, suggesting that Rac1 is not located downstream of PlxnA1 in the 

signaling cascade [90].  Regarding discrepancies among reports, it should be noted that most 

of the studies have been performed in certain model systems using proteins overexpressed in 

cell lines.   

Collapsin response mediator protein (CRMP) is another family of molecules that is 

physically associated with PlxnA1 and implicated in Sema3A-induced axonal repulsion [110, 

111].  Overexpressed CRMP2 is shown to be tightly associated with co-expressed PlxnA1 

upon Sema3A stimulation, leading to facilitated Sema3A-induced cell contraction [110].  

CRMP2 is primarily related to regulation of microtubule dynamics, as well as functioning as 

a substrate of Rho kinase, to binding actin filaments [112-114].   

In summary, Rho and Rho-like small GTPases including RhoA, Rac1, Rnd1, and RhoD, 

seem to interact with PlxnA1 directly or indirectly.  In general, they function in regulating 

cellular behaviors such as cell adhesion and motility through rearrangement of the actin 

cytoskeleton upon Sema3A stimulation by interacting with PlxnA1.  In fact, Rho and Rho-

like G-proteins are analogous in their underlying mechanism of action resulting in similar 
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phenotypes, even though they have been recognized for their distinct roles depending on cell 

types and cellular settings.  Furthermore, PlxnA1 has also been shown to induce completely 

opposite phenotypes upon the same stimulus, depending on its available co-receptor or on the 

cellular level of cyclic nucleotides, suggesting that there are cellular mechanisms regulating 

multiple mechanisms [56, 59].  Thus, it is likely that PlxnA1 utilizes parallel and distinct 

pathways by employing a differential Rho GTPase in a particular context. 

 

1.2.2. R-Ras and Rap GTPases:  

 

 

Figure 1.3.  The cytoplasmic region of PlxnA1 from the membrane-spanning sequence 
(TM) through domains homologous to SynGAP (C1) and R-RasGAP (C2).  Critical Arg 
(R) residues at position 1430 and position 1746 in amino acid sequence of PlxnA1.  Rnd1 
and RhoD bind to PlxnA1 between C1 and C2.  
 

The activity of Small GTPases including Rho GTPases as well as the Ras superfamily 

is regulated by their own guanine nucleotide exchange factors (GEFs) and GTPase-activating 

proteins (GAPs).  GEFs activate G-protein signaling by facilitating the exchange reaction 

from G-protein-bound GDP to GTP.  In contrast, GAPs dampen the signaling of G-protein by 

facilitating G-protein-bound GTP hydrolysis.  These regulatory elements of individual G-

proteins are critical for controlling the activity of specific GTPases by which cellular 
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behaviors such as cell adhesion or movement are regulated under certain physiological 

conditions (reviewed in [115]).   

PlxnA1 has been linked to regulation of R-Ras function through its potential activity of 

GTPase activating protein (GAP) based on its sequence homology [32, 105].  A Ras-related 

small GTPases, R-Ras is highly homologous to human Ras (H-Ras) [116].  Despite the 

sequence similarity, however, R-Ras has been demonstrated to play a distinct role from that 

of protooncogenic H-Ras [117, 118].  R-Ras activates integrin signaling for cellular 

migration and adhesion [119].  Notably, PlxnA1 contains segmented R-Ras GAP conserved 

regions including critical R residues essential for the GAP activity, in its cytoplasmic region 

(Figure 1.3) [32].  Instigated by the sequence homology of PlxnA1 to R-RasGAP, several 

studies have sought to reveal GAP activity of PlxnA1 for R-Ras.  Mutations of conserved R 

residues (R1430 and R1746) in the GAP region of PlxnA1 completely abolished Sema3A-

induced collapse in COS-7 cells, suggesting R-RasGAP activity of PlxnA1 is required for a 

Sema3A-induced response.   

However, direct evidence of GAP activity by PlxnA1 has not been forthcoming [32].  It 

is PlxnB1 that has displayed direct evidence of GAP activity for R-Ras [105].  This study 

revealed that R-RasGAP conserved regions in PlxnB1 are required for its GAP activity 

specifically for R-Ras.  Rnd1-binding to PlxnB1 is also required for its R-Ras GAP activity, 

such that PlxnB1 performs R-Ras GAP activity in response to Sema4D engagement, only 

when Rnd1 is provided.  According to the report, endogenous PlxnB1 naturally signals for 

neurite retraction upon Sema4D but overexpressed mutant PlxnB1 lacking critical R residues 

does not facilitate R-Ras GTP hydrolysis but suppresses Sema4D-induced neurite retraction 

in PC12 cells [105].  A subsequent report from the same group shows that PlxnB1 suppresses 
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R-Ras-mediated activation of β1 integrin upon Sema4D, leading to a reduction of integrin-

mediated cell migration [107].  In general, it has been known that R-Ras plays a crucial role 

in cellular adhesion by stimulating integrins, which in turn promote cell adhesion and 

migration, as mentioned earlier [119-121].  Interesting enough, R-RasGAP activity of 

PlxnB1 suppresses such cellular behaviors [105, 107].   

Contrary to PlxnB1 exhibiting R-Ras GAP activity, direct evidence is still lacking that 

PlxnA1 performs this function [105].  It has been implied that Plxn-A1 signaling in response 

to Sema3A is linked to growth cone collapse through its possible R-RasGAP activity, 

analogous to PlxnB1 effect upon Sema4D [105].  In line with previous findings that 

mutations in the GAP domain of PlxnA1 suppress the Sema3A-induced repulsion, this report 

demonstrates that downregulation of R-Ras activity is also required for the Sema3A-induced 

growth cone collapse.  Introduction of a constitutively active R-Ras mutant into rat 

hippocampal neurons suppresses growth cone collapse upon Sema3A stimulation [32, 33, 

105].  Another report suggests a link between PlxnA1 and Rac as well as Rnd1 and R-Ras 

[122].  The report demonstrates that a molecule called FARP2 (a RacGEF), which is 

associated with PlxnA1 in a resting state dorsal root ganglion, becomes dissociated from 

PlxnA1 to activate Rac, upon Sema3A stimulation.  In turn, Rnd1 is recruited to PlxnA1 

upon Sema3A to stimulate the R-RasGAP activity of PlxnA1, resulting in axonal repulsion 

[122].  Although direct proof of PlxnA1 GAP activity for R-Ras is still lacking and it has 

been indirectly implied only in the context of Sema3A stimulation along with Nrp-1-PlxnA1 

association, GAP activity of PlxnA1 for R-Ras has been presumed based on such a change in 

cellular behaviors [105, 122]. 
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A Ras-like small GTPase, Rap1 was introduced as another possible player upon PlxnA1 

signaling.  Rap1 is activated by R-Ras for integrin stimulation in a macrophage-like cell line 

[123].  Analogous to R-Ras, Rap1 has been implicated in translation of environmental stimuli 

into integrin-mediated cellular adhesion and motility in immune cells, among others [124-

132].  In particular, Rap1 has been shown to play a key role in chemokine-induced DC 

trafficking.  The importance of Rap1 in DC migration is revealed from a mouse model 

deficient in a Rap1 effector molecule RAPL (Regulator of cell Adhesion and Polarization 

enriched in Lymphoid tissues), where DCs are impaired in migration towards the draining 

lymph nodes [125].  Furthermore, Rap1 activity has been found to be required for BCR and 

LFA-1-mediated activation of B cells which are professional antigen-presenting cells (APC) 

[133].  Also, in activating T cells, Rap1 plays a key role in regulating both T cell-APC 

interactions and T cell receptor-mediated T cell responses through LFA-1-ICAM-1 

interaction.   

However, fine tuning of Rap1 activity seems critical for overall T cell response [129, 

131].  Rap1 is transiently activated upon T cell receptor stimulation through calcium influx, 

and consequently elevated Rap1 activity strengthens the affinity between LFA-1 and ICAM-

1 upon T cell engagement with antigen-presenting cells (APC) [129].  CD3 stimulation 

increases Rap1 activity, while CD28 dampens it, thereby modulating LFA-1 affinity to 

ICAM-1, although both CD3 and CD28 are known to induce calcium influx upon T cell 

activation [131, 134, 135].  However, a constitutively active Rap1 antagonizes Erk activation 

induced by antigen-dependent TCR stimulation but also causes extensively elevated levels of 

p27kip1, an indicator of cell cycle arrest, with subsequent reduction of IL-2 levels.  

Overexpression of a dominant negative Rap1 or a RapGAP also reduces the stability of T 
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cell-APC conjugates, and subsequent IL-2 production [129].  CD3 and CD28-mediated 

precise modulation of transient Rap1 activity is critical for optimal T cell activation, by 

maintaining stable T cell-APC conjugation via optimal LFA-1-ICAM-1 interaction [129, 

131].  Since strict regulation of appropriate Rap1 activity appears to be critical for optimal T 

cell response, some of the T cell stimulatory factors might also down regulate Rap1 activity 

for precise control of its optimal levels.  Collectively, Rap1 is shown to be involved in T cell 

activation as well as in DC trafficking.  

Our original observations indicate that PlxnA1 on DCs is essential for cognate T cell 

activation, in which R-RasGAP activity of PlxnA1 is presumably involved.  In addition, 

Rap1 seems to be activated by R-Ras, facilitating our hypothesis that Rap1 activity is 

regulated by PlxnA1 upon T cell conjugation [71, 105, 123].  In accordance with our 

observations described in Chapter II, we are currently seeking to determine whether Rap1 

activity is regulated by PlxnA1.  Rap1 and R-Ras may be sequentially operational upon T 

cell engagement, as suggested by a report that Rap1 is downstream of R-Ras signaling 

towards αMβ2 integrin activation in a macrophage-like cell line [123].  Another possibility is 

that PlxnA1 might display a GAP activity for Rap1 without involving R-Ras, since PlxnA1 

contains a SynGAP conserved region essential for GAP activity [32, 136].  Such a possibility 

is also supported by observations that Rap1 and R-Ras share some of their GAP proteins 

[137].  

  

1.3. PlxnA1 in the immune system: 

Plxns function in a spatiotemporally orchestrated manner, as is evident from the 

differential expression of the A subfamily of Plxns in the mouse nervous system [138, 
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139].  Coordinated Plxn activity becomes even more complex when considering the 

multitude of combinations and/or differential availability of their multiple co-receptors 

and/or ligands [15, 29, 34, 51, 59, 140].  It has been well-documented that PlxnA1 

responds to Sema3A stimulation, in the nervous system.  On the surface of neurons, Plxn-

A1 forms a receptor complex with Nrp-1 resulting in high affinity binding of Sema3A.  

This results in the transduction of PlxnA1 signals through its cytoplasmic tail, causing 

growth cone collapse in neuronal development [9, 10, 34, 141].  As mentioned previously, 

PlxnA1 signaling upon Sema3A can transduce either attractive or repulsive depending on 

the context [56, 142].  Nevertheless, the critical role of PlxnA1 in the nervous system is 

evident from impaired neuronal networking in the absence of PlxnA1. 

In previous studies by our group involving the regulation of genes by CIITA in 

mouse bone marrow-derived DCs, we observed a strong correlation between CIITA and 

the regulation of PlxnA1, using Affymetrix analysis [71].  CIITA is the master regulator 

governing the expression of MHC class II molecules that present antigens to cognate T 

cell receptor (TCR) on CD4+ T helper cells, in order to initiate antigen-specific T cell-

mediated adaptive immunity [143-145].  In the absence of CIITA, transcripts of PlxnA1 

along with MHC class II are very low in DCs [71].  Regulation of PlxnA1 by CIITA 

during DC maturation has several important implications: 1) CIITA governs adaptive 

immunity by regulating expression of MHC class II molecules, without which antigen-

specific T cell immunity would be impaired, as exemplified by the human genetic 

disorder, Bare Lymphocyte Syndrome [143, 146, 147]; 2) DCs that highly express 

PlxnA1 are the sentinels for host immune response against pathogens and are required for 

vaccine-induced immunity including the vaccines targeting cancers [148, 149].  DCs are 
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the main mediators of the innate-adaptive immunity transition, and also are the only 

known cell type that is capable of activating naïve T lymphocytes, initiating T cell-

mediated adaptive immunity [150-154].  Indeed, based on our own studies, PlxnA1 on 

DCs is critical for DC function in activating naïve T cells.  A DC-like cell line shows 

reduced capacity to activate cognate T cells upon in vitro depletion of PlxnA1, as 

revealed by significantly less secretion of IL-2, a pro-inflammatory proliferative cytokine 

[71].  Therefore, it will be of interest to determine whether PlxnA1 is required for the 

initiation of T cell response in vivo, including the step in which PlxnA1 is required for T 

cell activation by DCs and the mechanisms by which PlxnA1 exerts its role. 

Candidates for PlxnA1 ligand in the immune system include Sema3A primarily 

identified in the nervous system, and Sema6D studied in cardiovascular development of 

chick embryos [15, 29, 34].  In the cardiovascular system, PlxnA1 forms a complex with 

vascular endothelial growth factor receptor 2 (VEGFR2) or with Off-track, leading to a 

differential phenotype, upon Sema6D stimulation [59].  Sema6D stimulation results in 

augmented migration of outgrowing cells from the conotruncal segment of cardiac 

explants of chick embryos where PlxnA1 is associated with VEGFR2, while Sema6D 

treatment lessens migration of those from the ventricle segment where PlxnA1 is 

interacting with Off-track.  Taken together, it is evident that PlxnA1 can respond to a 

multitude of ligands, for each of which it may function as a receptor or pair with 

additional co-receptors, in a spatiotemporal manner [15, 59].  Thus, to understand the role 

of PlxnA1on DCs, it is imperative to determine the ligand for this receptor on T 

lymphocytes.  
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1.4. BMDCs and antigen-presentation to CD4+ T lymphocytes. 

DCs are a highly heterogeneous cell type in terms of developmental lineages, 

phenotypes, and functionalities.  For example, there are currently three known subsets of 

DCs that reside in the mouse spleen [155-158]: myeloid DCs (mDCs: CD11c+ CD11b+ 

CD8α-); lymphoid DCs (lDCs: CD11c+ CD11blow CD8α+); and plasmacytoid DCs (pDCs: 

mPDCA-1+ B220+) [155-158].  Other immune tissues seem to have comparable subsets 

of DCs [155, 157, 158].  Each subtype of DCs shares CD11c as a common surface 

marker, but myeloid DCs (mDCs) lack CD8α and CD205 surface expression whereas 

lymphoid DCs (lDCs) express CD205 along with the CD8α homodimer analogous to 

thymic DCs [159].  CD8α- mDCs can be generated in vitro from bone marrow myeloid 

precursor cells, but CD8α+ lDCs and T cells develop from their common thymic 

lymphoid precursors [160-163].  It was reported that CD8α
+ DCs had not been 

reproducibly generated from CD8α-DCs, suggesting that these two subtypes might be 

derived from unique lineages [163, 164].  Thus, CD11c+ DCs were initially considered to 

have two distinct lineages, mDCs and lDCs.  However, their ontogenies became vague 

when common myeloid progenitors were found to develop into CD8α
+ DCs [165].  

Furthermore, both CD8α- and CD8α+ DCs could also be generated from lymphoid 

precursors from the thymus or the spleen [166].  Thus, the definitions of ‘myeloid’ 

lineage of CD8α- DCs versus the ‘lymphoid’ lineage of CD8α+ DCs are now under 

dispute.  Even though the patterns of their surface marker expression cannot represent 

their specific lineage, at least their localization patterns are distinctive.  It has been shown 

that CD8α+ lDCs reside in the T cell area of the spleen and thymic medulla, inducing 

tolerance by suppressing T cell response against self-antigens most likely derived from 
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dying cells.  In contrast, CD8α- mDCs are located either in the marginal zone of the 

spleen or in the periphery and take up foreign antigens and migrate to the T cell area to 

initiate T cell responses [167].  These distinct functions correlating with their localization 

appear to be supported by independent findings that CD8α
- mDCs have superior 

phagocytic capacities compared to CD8α
+ lDCs [157, 168, 169].  Other studies suggest, 

however, that both subsets of DCs are stimulatory but that the T cell responses elicited by 

either subset appear unique.  According to the authors, CD8α
+ DCs present antigens on 

both MHC class I and II molecules, leading to CTL expansion and CD4+ T cell response, 

respectively [170-172].  In contrast, CD8α- DCs primarily expand CD4+ T cell response 

[173].  However, both subsets of DCs have also been demonstrated to equally induce 

antiviral protective CTL response, in vivo [174].  Debates are still continuing on T cell 

polarization to either Th1 or Th2 by either subset.  Several studies have shown that 

CD8α+ lDCs and CD8α- mDCs polarize CD4+ T cells to Th1 and Th2 responses, 

respectively, attributed to the higher amount of IL-12p70 produced by CD8α
+ lDCs [173, 

175-179].  Th1-inducing interferon-γ (IFN-γ) production by T cells mainly depends on 

the amount of IL-12p70 [176, 180, 181].  However, others have witnessed that CD4+ T 

cells produce comparable levels of Th1 and Th2 cytokines, upon in vivo activation by 

either subset of DCs [182].  Investigations are still continuing with a recent publication 

showing that CD8α- mDCs and CD8α+ lDCs are both capable of inducing Th1 response 

by producing interferon-γ (IFN-γ) but through differential mechanisms.  IFN- γ 

production by CD8α- mDCs is IL-12p70-dependent but that of CD8α
+ lDCs does not 

appear to be [183].  Thus, these two subsets seem adaptable in inducing an appropriate T 

cell response but either subset may respond more efficiently depending on the antigenic 
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route [182].  BMDCs generated with GM-CSF and IL-4 along with TNF-α have been 

considered similar to mDCs in terms of morphological features including very low levels 

of CD8α [71, 161, 184].   

On the other hand, a recently identified subset, mPDCA-1+ pDCs represent a third 

category in DC subsets [185-187].  Murine pDCs express distinct surface markers such as 

B220, Ly-6C, and mPDCA-1, although pDCs express CD11c, and also CD8α upon 

activation [185, 186, 188-190].  pDCs are enriched by Flt3-Ligand in vivo as well as in 

vitro from mouse bone marrow precursors [191, 192].  Functionally, pDCs are poor at 

stimulating naïve T cells [193].  Because of this weak T cell-priming capacity, pDCs used 

to be considered immature DCs or DC precursor cells [185, 192-194].  pDCs are rather 

tolerogenic, since they perform strong inhibitory activity against antigen-specific T cell 

response, primarily by inducing regulatory T cells from naïve T cells, in some cases [195, 

196].  Instead, pDCs are devoted to producing high levels of Type I IFN upon viral 

challenge, inducing antiviral immunity. As such, pDCs are also referred to IFN-

producing cells [197].  Differences between murine and human pDCs and their TLR-

mediated innate immune properties are a different subject and reviewed elsewhere [188, 

198]. 

Mature DCs are the most potent professional antigen-presenting cells (APCs) 

comprising a unique cellular repertoire that performs the critical role of activating naïve 

T cells, resulting in the initiation of T cell-mediated adaptive immunity [199].  Under 

unstimulated conditions, however, DCs remain in an immature state, where they have 

high phagocytic capacity but very low ability to initiate T cell response.  This is a 

consequence of the cells neither being equipped with MHC molecules to load antigens, 
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nor with costimulatory molecules necessary for T cell stimulation [200, 201].  Thus, in 

case immature DCs encounter naïve T cells, they induce T cell anergy leading to immune 

tolerance instead of T cell-mediated immunity [202, 203].  In vivo, immature DCs 

circulate in the blood and reside in peripheral tissues where they become mature and 

activated upon encountering pathogens and/or inflammatory cytokines (e.g.TNF-α ) [175, 

204-207].  Maturation of DCs leads to high levels of MHC class II molecules as well as 

costimulators resulting in T cell activation and a subsequent immune response rather than 

tolerance [199, 200]. 

In order to activate naïve T cells located in the secondary lymphoid organs, DCs in 

the periphery must take up antigens, process them, and present the resulting peptide 

antigens on surface MHC molecules.  These DCs that have taken up antigens become 

mobilized and migrate from the inflamed tissue to the draining lymph nodes (DLNs) 

where they encounter naïve T cells.  DCs are mobilized in the periphery by inflammatory 

cytokines including TNF-α, resulting in CCR7 upregulation on the cells.  CCR7 functions 

as a receptor for chemokines CCL19 and CCL21 that guide DCs to the DLNs [208-210].  

CCR7 is known to be critical for DC migration, since CCR7-/- Langerhans cells are 

unable to migrate from the skin to the DLNs even in the presence of normal levels of 

chemokines [211].  Ultimately, upon DC-T cell engagement, DCs should contain the 

operational ability including MHC molecules presenting peptides to activate T cells.  

Such potential to activate T lymphocytes is gained during the migration and maturation 

of DCs on their way to T cell areas [208, 210, 212].  DC function, therefore, encompasses 

a multitude of events that culminate in their ability to activate T cells and initiate an 

adaptive immune response.    
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1.5.  Our research on PlxnA1 on the surface of BMDCs 

Our initial study suggested that PlxnA1 on mature DCs is essential for T cell 

stimulation [71].  The mechanism by which PlxnA1 transduces a signal upon T cell 

conjugation was to be defined.  As summarized, small G-proteins and cytoskeletal 

elements were expected to be involved in the PlxnA1 pathway.  Our laboratory has 

investigated PlxnA1 in the context of DC surface function upon cognate T cell 

conjugation, to determine whether and what small G-proteins would be regulated by 

PlxnA1.  One of the PlxnA1 ligands present on T cells has been identified.  More 

importantly, based on independent studies, it is evident that PlxnA1 interaction with its 

ligand not only contributes to T cell-priming but also stimulates DCs for further 

activation of T cell response [29, 79].  Since PlxnA1 has been implicated in the model 

inflammatory disease, experimental autoimmune encephalomyelitis (EAE) induced by 

myelin oligodendrocyte glycoprotein (MOG) peptide, it would be valuable to understand 

what T cell responses DC cell surface PlxnA1 induces.  This information will foster the 

development of therapeutics in modulating PlxnA1 function in excessive inflammatory 

conditions [29].   

The work presented here indicates that PlxnA1 plays a dual role in T cell priming.  

PlxnA1 is not only shown to be crucial in stimulating naïve T cells upon conjugation, but 

also in chemokine-induced DC migration.  Moreover, we have found that PlxnA1 is 

important for rearrangement of actin filaments through small GTPases in DCs towards 

the interface with T cells upon contact, which is crucial for T cell activation.  In the 
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absence of such a stimulatory role for PlxnA1 in the initial stages of T cell activation, 

subsequent T cell proliferation is demonstrated to be significantly reduced.   

 

 

 



CHAPTER II: RHO ACTIVATION AND ACTIN POLARIZATION ARE 

DEPENDENT ON PLEXIN-A1 IN DENDRITIC CELLS 

 
 
 
 



 28

Abstract 

We recently identified expression of the semaphorin receptor, PlxnA1, in dendritic 

cells (DCs); however, its function in these cells remains to be elucidated.  To investigate 

function and maximize physiological relevance, we devised a retroviral approach to ablate 

PlxnA1 gene expression using small hairpin RNA (shRNA) in primary bone marrow-derived 

DCs.  We show that PlxnA1 localizes within the cytoplasm of immature DCs, becomes 

membrane-associated and is enriched at the immune synapse in mature DCs.  Reducing 

PlxnA1 expression with shRNA greatly reduced actin polarization as well as Rho activation 

without affecting Rac or Cdc42 activation.  A Rho inhibitor, C3, also reduced actin 

polarization.  These changes were accompanied by the near-ablation of T cell activation.  We 

propose a mechanism of adaptive immune regulation in which PlxnA1 controls Rho 

activation and actin cytoskeletal rearrangements in DCs that is associated with enhanced DC-

T cell interactions. 

 

 



 29

Introduction 

 Dendritic cells (DCs) are the most potent type of antigen-presenting cells (APCs), and 

the only APCs capable of initiating primary immune responses via presentation of antigen in 

the context of major histocompatibility complex (MHC) class II molecules [175, 213].  

Following initial antigen encounter, formation of a physical site known as the “immune 

synapse” between a T cell and DC is required for initiation of the adaptive immune response.  

The immune synapse shares similar characteristics with the neuronal synapse, including 

expression of semaphorins, plxns and neuropilins [214, 215].  Semaphorin family proteins 

were first observed in the central nervous system (CNS) where they mediate repulsive and 

attractive axon guidance cues during neural development [3, 216].  Semaphorins are both 

secreted and membrane-bound, and they are recognized by Plxn family receptors [3, 15, 217, 

218].  Plxns mediate cytoskeletal rearrangements that can result in either axon extension or 

retraction via interaction of their conserved C-terminal Plxn domain with Rho family 

GTPases [39, 219].  A generally held hypothesis is that developing neurons may utilize plxns 

to regulate their cytoskeleton and the formation of synapses.  However, most studies have 

relied upon overexpression system in cell lines, whereas regulatory mechanisms of PlxnA1 in 

primary cells, neuronal or otherwise, are underexplored.   

 In the immune system, semaphorins, Plxns and neuropilins regulate various activities, 

including regulation of T cell activation, B cell signaling, monocyte cytokine production and 

regulation of DC migration [49, 53, 69, 71, 220-226].  We previously demonstrated that the 

inhibition of PlxnA1 expression in a transformed DC cell line reduced T cell activation [71, 

227].  However, the mechanism through which PlxnA1 regulates BMDC interactions with T 
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cells has remained largely unexplored.  We report the novel investigation of PlxnA1 function, 

involving Rho family control of the actin cytoskeleton, in regulating DC-T cell interactions.  
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Materials and Methods 

 

Mice:  All experiments were performed with 8-12 week old C57BL/6 mice from Jackson 

Laboratory.  OT-II mice, which express the OVA323-339-specific TCR transgene on the 

C57BL/6 background, were obtained from Dr. Michael Croft, (La Jolla Institute of Allergy 

and Immunology, La Jolla, CA).  All animal procedures were conducted in complete 

compliance with the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals and are approved by the Institutional Animal Care and Use Committee of the 

University of North Carolina, Chapel Hill.   

 

Cells:  Murine BMDCs were isolated and cultured as previously described [184].  T cells 

from OT-II mice were isolated from the spleen and purified by negative selection with T 

enrichment columns (R&D systems).  

 

Conjugation Assay, C3 treatment and Immunofluorescence confocal microscopy:  DCs 

at Day 12 were harvested and pulsed overnight with 50 µg/ml ovalbumin (OVA) (Sigma-

Aldrich).  DCs (1 x 106) were washed with PBS and combined with an equal number of 

spleen T cells from OT-II transgenic mice in 100 µl of medium.  Cells were pulled down in 

microtubes by centrifugation at 1,500 rpm for 10 seconds and incubated at 37°C for 45 min. 

in a water bath.  Following conjugation, 1 x 105 cells in 100 µl of PBS were added onto each 

poly-L-lysine coated coverslip (BD Biosciences), fixed in 4% paraformaldehye (PFA) for 15 

min., permeabilized in 0.3% saponin for 5 min., and blocked in 5% BSA in PBS for 30 min. 

Cell conjugates were stained with antibody for 1 hr. at room temperature. For staining actin 



 32

cytoskeleton, Alexa 647-conjugated phalloidin was used. Coverslips were mounted with 

FluorSave (Calbiochem).  Images were captured with the Fluoview FV500 laser scanning 

confocal microscope (Olympus).  C3 exoenzyme specifically inhibits Rho GTPase activity. 

C3 (10 µg/ml) was added into DC culture from Day 11.5 to Day 12 and during OVA-pulse, 

for a total of 24 hr.  After washing, DCs were harvested and conjugated with OT-II T cells 

before confocal microscopy analysis.  Phalloidin-Alexa Fluor 647 was used to stain actin 

filaments. 

 

Analysis of Actin polarization at the Immune Synapse:  Double blind studies were 

performed to analyze prepared slides of actin immune synapse polarization using wild-type, 

PlxnSh, or CtrlSh treated DCs.  Actin polarization was determined in reference to control 

polarized and non-polarized samples.  For each treatment group, 70 cells were analyzed and 

counted.  The percentage of cells displaying actin polarization was enumerated.  Actin 

fluorescence intensity at the interface of conjugating cells was quantified via Image J 

analysis [228].  Briefly, fluorescence intensities of total and interface area were calculated, 

respectively, for each sample.  The fluorescence intensity at the interface was then compared 

with the total fluorescence for each cell and represented graphically. 

 

Flow Cytometry:  Flow cytometry was performed on wild-type, PlxnSh, and CtrlSh virus 

tansduced DCs at Days 10 and 12, as [71].  Staining was quantified with a BD FACSCalibur. 

 

Assays for GTP-bound Rho, Rac and Cdc42:  Prior to conjugation, OT-II T cells were 

fixed in 4% PFA for 1 min. and washed three times before incubation with an equal number 
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of OVA-pulsed DCs for 20 min. at 37°C.  Following conjugation, DCs and T cells were 

washed with PBS and lysed in Nonidet P-40 lysis buffer (2 x 107/ml).  Rho, Rac and Cdc42 

assays were performed according to the manufacturer’s instructions using Rhotekin- or PAK-

bound agarose beads provided through a gift from Dr. Keith Burridge (University of North 

Carolina, Chapel Hill, NC), or purchased from Upstate Biotechnology [229, 230].  Lysate 

controls were blotted for total Rho, Rac or Cdc42 to demonstrate relative protein amounts 

among samples.  Percentage of Rho-GTP was calculated via Image J analysis [228]. 
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Results 

 

Retroviral shRNA eliminates Plxna1 expression in BMDCs  

Previously, we used plasmid-based shRNA to target and reduce PlxnA1 expression in a 

DC-like cell line [71].  In the interest of examining a more biologically relevant system for 

the inhibition of PlxnA1 expression, we produced a retroviral-based RNA interference vector 

using the H1 promoter and a previously reported targeting sequence for generation of a short-

hairpin structure that targets PlxnA1 mRNA (PlxnSh) for degradation in primary DCs (Fig. 

2.1A) [71].  As a control, an identical PlxnA1 targeting sequence with a one-base pair 

mutation was cloned into the shRNA vector (CtrlSh).  These vectors were used to generate 

viral particles for infection of DCs.  GFP expression allowed us to determine that the virus 

was able to infect DCs with an efficiency of approximately 98% (not shown).  Real-time 

PCR and immunoblotting indicate that DCs spinoculated with PlxnSh virus displayed greatly 

inhibited PlxnA1 mRNA and protein expression as compared to DCs infected with the 

mutated CtrlSh (Fig. 2.1B-C).  Flow cytometry analysis of untransduced, CtrlSh and PlxnSh-

transduced DCs indicates that expression of MHC-II (82.2%, 84.4%, and 85.7% positive, 

respectively) and co-stimulatory molecules (CD86: 97.3%, 98.4%, and 96.1% positive, 

respectively), were not altered by viral transduction or the absence of PlxnA1, reflecting 

specificity of the shRNA knockdown targeting (data not shown).   

 

shRNA knockdown of PlexinA1 inhibits DC mediated T cell activation:   

To functionally test the effect of retroviral PlxnSh in primary mouse DCs, we 

performed an antigen presentation assay using whole OVA protein or OVA peptide-pulsed 
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DCs and OT-II T cells.  DCs transduced with PlxnSh virus exhibited approximately a >80% 

reduction in T cell stimulation compared with DCs transduced with CtrlSh as assessed by IL-

2 production (Fig. 2.2A-B).  Importantly, this reduction was observed with both whole OVA 

protein- and peptide-pulsed DCs (Fig. 2.2A-B).  These observations suggest that the 

inhibition of T cell activation associated with PlxnA1 knockdown in DCs is not attributable 

to a defect in antigen processing or presentation by MHC class II.  

 

Localization of plxnA1 in mature DCs at the Immune Synapse:   

To examine PlxnA1 during DC maturation, DCs from C57BL6 mice  were cultured in 

GM-CSF and IL-4 for 10 days and then in TNF-α for 2 additional days to achieve complete 

maturation [71].  Flow cytometry analysis of Day 10 and 12 DCs revealed CD11c+ cells that 

lack expression of B220, CD14, and F4/80, indicating enrichment and uniformity of the 

population.  Day 12 DCs exhibited a more mature phenotype demonstrated by higher 

expression levels of MHC class II when compared with their Day 10 counterparts (Fig. 2.3A).  

Immunofluorescent confocal microscopy was used to visualize the localization of PlxnA1 

during DC maturation.  Although PlxnA1 was absent in immature Day 6 DCs, it was 

detected in maturing Day 10 DCs as a cytoplasmic protein (Fig. 2.3B).  Upon the addition of 

TNF-α, the protein became primarily located on the cell membrane and this pattern was 

sustained through Day 12 (Fig. 2.3B).  As expected from previous reports, the MHC class II 

antigen (IAb) was detected as an intracellular protein in immature DCs but localized to the 

membrane periphery as the DCs matured [231].  In Day 12 DCs, PlxnA1 was detected at the 

cell surface along with IAb, and the merged image suggests colocalization (Fig. 2.3C).  
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 Given PlxnA1’s localization to the cell membrane in mature DCs, we examined 

whether PlxnA1 was found in the immune synapse.  Mature day 12 DCs were pulsed with 

OVA overnight and incubated with T cells purified by negative selection column from 

splenocytes of OT-II TCR transgenic mice [232].  Staining DC-T cell conjugates for ICAM-

1, IAb, and TCR indicated that immune synapse-associated proteins of both DCs and T cells 

were enriched at the cell interface (Fig. 2.3).  PlxnA1 localized to the DC-T cell interface in 

70 ± 4.2% of DC-T cell conjugates (200 conjugates counted in five experiments).  Analysis 

of IAb, ICAM-1 and PlxnA1 staining demonstrates a non-punctate distribution at the 

interface that correlates with recent descriptions of the multifocal structures of the DC-T cell 

immune synapse not characterized by a p- or c-SMAC (Fig. 2.3D) [91].  TCR staining 

identified T cell conjugates while IAb indicated DCs.  ICAM-1, expressed by both T cells 

and DCs, is observed at the immune synapse.   

 

PlxnA1 regulates actin polarization and Rho activation in DCs during T cell interactions:  

Actin polarization in DCs occurs during their interaction with T cells, resulting in an 

accumulation of F-actin and the actin-bundling protein, fascin, at the DC-T cell interface [91, 

233].  Given that Plxns are known to regulate actin and cytoskeleton rearrangements, we 

examined the possibility that PlxnA1 could regulate actin localization in DCs during 

interactions with T cells.  Immunofluorescent staining of DC-T cell conjugates, revealed F-

actin accumulation at the DC-T cell interface in WT DCs or CtrlSh DCs while DCs 

transduced with PlxnSh virus show dispersed actin (Fig. 2.4A).  The F-actin signals are 

mostly attributed to DCs as nonassociated ad DC-associated T cells in these images do not 

exhibit much actin staining.  Cells transduced with PlxnSh or CtrlSh were selected based on 
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GFP expression.  The intensity of actin staining at the interface of DC-T cell conjugates was 

quantified (Fig. 2.4B).  Additionally, a double-blind study revealed that cell conjugates 

formed wit PlxnA1-deficient DCs displayed reduced actin polarization in >50% of DCs when 

compared to controls (Fig. 2.4C). 

Given that small GTPases are known to regulate the actin cytoskeleton, we next 

examined the ability of PlxnA1 to regulate Rho, Rac or Cdc42 in DCs during interactions 

with T cells [234].  OVA-pulsed PlxnSh- or CtrlSh-transduced DCs were incubated with 

fixed OT-II T cells for 20 min. prior to lysis.  To analyze Rho activation from the DCs but 

not the T cells, OT-II T cells were fixed for 1 min. with 4% paraformaldehyde prior to 

incubation with DCs.  Fixed OT-II T cells did not exhibit any significant accumulation of 

active Rho, Rac or Cdc42 (Fig. 2.4D, left panels).  To assay for endogenous Rho, Rac and 

Cdc42 activity in DCs, the mixed cultures were lysed and precipitated with RBD or PBD-

bound agarose beads for GTP-bound Rho, Rac or Cdc42 followed by immunoblotting (Fig. 

2.4D, right panels, respectively).  Lysate controls for total Rho, Rac or Cdc42 show equal 

loading on the SDS-PAGE gel.  The percentage of GTP-Rho in relation to total Rho was 

calculated (Fig. 2.4D).  The Rho family activation assay revealed two observations.  First, 

efficient activation of Rho, Rac and Cdc42 in DCs requires antigen-specific interaction of T 

cells with DCs (compare pulsed to unpulsed DC).  Second, inhibition of PlxnA1 expression 

by shRNA in DCs results in decreased levels of GTP-Rho compared to DCs transduced with 

CtrlSh virus (compare pulsed DC).  Significantly, PlxnA1 inhibition affected Rho activation 

but not Rac or Cdc42 activation in pulsed DCs.  These results illustrate that antigen-specific 

DC-T cell interactions are required for the activation of Rho, Rac and Cdc42 and that PlxnA1 

regulates Rho activation in antigen presenting DCs. 
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Finally, we also examined whether a specific inhibitor of Rho activity would affect 

actin rearrangements in DCs conjugated with OT-II T cells.  Immunofluorescent analysis 

illustrated that pretreatment of DCs with the Rho inhibitor, C3, greatly reduced the 

accumulation of F-actin in DCs at the interface with T cells (Fig. 2.4E).  We also observed 

similar results with Y27632, an inhibitor of ROCK kinase (Rho kinase, an effector molecule 

of RhoA) (data not shown).  Enumeration of cell conjugates demonstrated a >2-fold 

reduction in the percentage of DCs with synapse polarized actin in C3-treated samples vs 

control (Fig. 2.4F).  These results clearly illustrate that Rho can regulate actin rearrangements 

at the immune synapse in DCs conjugated with T cells. 
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Discussion 

 

 Through the exclusive use of primary DCs, we report that PlxnA1 expression is 

essential for optimal activation of T lymphocytes.  PlxnA1 is expressed on the cell surface in 

a multifocal distribution that is characteristic of proteins in or near the immunological 

synapse between DCs and T cells (Fig. 2.3) [235].  We also report the novel finding of Rho 

activation and actin cytoskeleton regulation by a Plxn in the immune system.  It is clear from 

our observations that PlxnA1 regulates Rho activation in DCs.  Significantly, we observed 

that PlxnA1 regulation of Rho activation was distinct from activation of Rac or Cdc-42 (Fig. 

2.4D).  In the absence of PlxnA1 expression, we observed a significant loss of actin 

polarization, Rho activation, and T cell stimulation by DCs (Fig. 2.2 and 2.4).  Previous 

studies have illustrated the importance of actin rearrangements at the immunological synapse 

for efficient T cell-DC interactions, and our data supports these findings.  We suggest a 

model in which PlxnA1 regulates Rho activation and subsequent actin polarization in DCs.  

Our current work also demonstrates that PlxnA1 expression is critical for DC-mediated 

activation of T lymphocytes in a manner distinct from MHC class II processing or altered 

expression of co-stimulatory molecules (Fig. 2.2).  One likely scenario is that Rho activation 

via PlxnA1 affects cell adhesion, dendrite formation, and thus, the ability of DCs to interact 

with multiple T cells.  Supporting this model, we observed a significant reduction in actin 

polarization to the immune synapse in DCs treated with the Rho inhibitor C3 (Fig. 2.4E-F).  

In summary, this report begins to address the mechanism of DC-T cell regulation by PlxnA1 

expression at the immune synapse. 
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Figure 2.1.  Retroviral shRNA to PlxnA1 inhibits expression.  DNA cassettes consisting 
of the human H1 RNA promoter upstream of sequences encoding PlxnA1 or control mutated 
mouse shRNAs were prepared by DNA amplification using the mouse PlxnA1 shRNA 
vectors described previously (15) as template and the following oligonucleotide primers:  
5’GCGATATCCCGCGGAATTCGAACGCTGAC-3’ and 
5’GCTCTAGAGGCCGGTATCGCTCGATT-3’ (A).  Transcription of the retroviral plasmid 
during viral production is driven by the immediate early enhancer/promoter region of the 
cytomegalovirus (CMV) promoter.  Viral packaging is mediated by an extended packaging 
signal (Ψ+) and long terminal repeat elements (∆LTR (R U5)).  A phosphoglycerate kinase 
(PGK) promoter drives expression of an enhanced green fluorescent protein (EGFP cds). 
Viral shRNA targeting of PlxnA1 eliminated the expression of PlxnA1 (B) mRNA and (C) 
protein (250kDa) in day 12 BMDCs. mRNA was assessed by realtime PCR, and the protein 
was assessed by immunoblotting (B & C). 
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Figure 2.1.  
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Figure 2.2.  shRNA interference of PlxnA1 inhibits DC mediated T cell activation.  OVA 
peptide (323-339) (A) or whole OVA protein-pulsed DCs (B) transduced with PlxnSh or 
CtrlSh-containing virus were incubated with OT-II T cells.  Lysates were assayed for IL-2 
production by ELISA.  Results are expressed as the mean of triplicate wells +/- SD from 3 
experiments. 
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Figure 2.2. 
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Figure 2.3.  PlxnA1 localizes to the DC surface and the DC-T cell interface.  Flow 
cytometry analysis of DC phenotype at days 10 and 12 of in vitro culture, comparing CD11c, 
MHC class II, CD8, B220, CD14 and F4/80 expression to an appropriate isotype control (A).  
DCs were collected on Day 6, 10 and 12 and stained for PlxnA1 (green) and IAb (red) before 
resolving the images by confocal microscopy (B).  Day 12 DCs were fixed and stained for 
PlxnA1 (green) and IAb (red) (C).  Matured bone marrow DCs were pulsed overnight with 50 
µg/ml OVA and incubated with OT-II T cells for 45 min., fixed, permeabilized and stained 
for (top panels) TCR β (green), and IAb (red), (second row) ICAM-1 (green) and IAb (red), 
(third row) PlxnA1 (green), and IAb (red) and (bottom panels) PlxnA1 (green), and ICAM-1 
(red).  PlxnA1 localized to the DC-T cell interface in 70 ± 4.2% of the 200 DC-T cell 
conjugates counted from five independent experiments (D).  DIC, Differential interference 
contrast. 
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Figure 2.3. 
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Figure 2.3. 
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Figure 2.4.  PlxnA1 regulates polarization of actin at the DC-T cell interface.  
Conjugated DCs and T cells (1 x 105/cover slip) on poly-L-lysine-coated coverslips were 
fixed, permeabilized, and stained for actin and PlxnA1.  Alexa 647-conjugated phalloidin 
was used to stain actin filaments.  PlxnA1 in DCs was visualized via a polyclonal rabbit anti-
mouse PlxnA1 antiserum, followed by incubation with an anti-rabbit IgG (H+L) Alexa 546-
conjugated antibody.  Analysis of PlxnA1 and actin expression was performed with WT DCs 
(top panels), PlxnSh DCs (middle panels), or CtrlSh DCs (bottom panels) as selected based 
on fluorescence of the viral GFP tag.  Data are representative of six different experiments.  T 
cells conjugated with DCs are highlighted with a white circle (A).  Image J analysis was 
performed on multiple cell conjugates for actin fluorescence intensity at the DC-T cell 
interface (B).  Actin-polarized DCs conjugated with T cells were counted in two independent 
double-blinded experiments and displayed as averages of percent polarized.  A total of 70 
cells for each sample were counted in each experiment (C).  PlxnA1 regulates Rho activation 
but not activation of Rac1 or Cdc42.  DCs transduced with PlxnSh or CtrlSh virus were 
pulsed with OVA and incubated with fixed OT-II T cells for 20 min.  Cells were lysed and 
precipitated for GTP-Rho (top panels), GTP-Rac (middle panels), or GTP-Cdc42 (bottom 
panels), and immunoblotted with anti-Rho, anti-Rac, or anti-Cdc42 antibodies, respectively. 
Probing lysate controls for total Rho, Rac, or Cdc42 indicates approximately equal protein 
amounts.  The percentage of GTP-Rho in relation to total Rho was calculated via Image J 
analysis.  As a control, OT-II T cells at 5 x 106/100 µl were fixed (F) or unfixed (UF) prior to 
activation with anti-CD3ε, 145-2C11 (34) for 20 min., followed by a Rho, Rac, or Cdc42 
assay.  Blots are representative of three independent experiments (D).  Immunofluorescent 
analysis of actin polarization in C3 treated DCs vs WT (E).  Enumeration of the percentage 
of DCs with immune synapse polarized actin in C3-treated vs. untreated (WT) samples.  A 
total of 70 cells were counted for each sample in each experiment (F). 
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Figure 2.4. 
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Figure 2.4. 

 

 



CHAPTER III: A DUAL ROLE OF DENDRITIC CELL PLEXIN-A1  

IN T CELL STIMULATION 
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Abstract 

 

PlxnA1 was originally recognized as an axonal guidance molecule which is engaged by 

its ligand, semaphorin 3A, in neurons.  Subsequently, PlxnA1 has been studied in a variety of 

systems, among which it stands out on mature dendritic cells (DCs), where it plays an 

important function in T cell priming.  The current work shows that PlxnA1 plays a dual 

physiologic role on the surface of DCs by stimulating naïve T cell activation and by 

augmenting DC migration.  Soluble PlxnA1-Fc fusion protein competitively inhibited 

antigen-dependent T cell activation stimulated by myeloid DCs expressing surface PlxnA1.  

In accordance, PlxnA1-/- DCs do not fully activate cognate T cells as demonstrated by co-

culture of OVA-pulsed PlxnA1-/- DCs with T cells bearing OVA-specific TCRs.  These 

experiments were extended to in vivo analysis, and the results show that PlxnA1-/- DCs have a 

reduced capacity to stimulate T cell activation resulting in severely reduced T cell expansion 

and significantly reduced numbers of interferon-γ expressing cells.  Additionally, PlxnA1-/- 

DCs exhibit a reduced ability to migrate toward CCL19 or CCL21 in vitro.  This result is 

recapitulated in vivo with PlxnA1-/- DCs exhibiting inefficient migratory activities to the 

draining lymph nodes based on the subcutaneous introduction of labeled DCs in mouse foot 

pads.  Evidence provided by others suggests that Rap1 activity lies downstream of R-Ras, for 

which PlxnA1 is expected to exhibit GAP activity.  Rap1 has also been shown to suppress 

Rho via Arap3 which performs a RhoGAP activity as a Rap1 effector protein.  GST-pull-

down assays were performed to capture active Rap1 in PlxnA1-/- or WT DCs conjugating 

with cognate T cells.  Our preliminary data showed that Rap1 activity was elevated in 

PlxnA1-/- DCs, compared to WT controls upon T cell conjugation.  Based on this result, the 
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presence of PlxnA1 correlates with reduced Rap1 levels as well as with subsequent activation 

of Rho in DCs, upon T cell contact.  We hypothesize that suppression of Rap1 by PlxnA1 in 

line with R-Ras upon T cell conjugation not only signals for regulation of integrin activity 

but also for actin remodeling and polarization towards the T cell interface.  We further 

hypothesize that PlxnA1 downregulates Rap1 to allow chemokine-induced DC migration, as 

well.  Collectively, the current data indicate that PlxnA1 on DCs plays a dual role in 

regulating chemokine-induced DC migration and as a possible costimulator of T cells upon 

contact.   
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Introduction 

 

Significance of PlxnA1 expressed on DCs:  PlxnA1 was initially discovered in 

neurons, where it regulates axonal growth in response to semaphorin 3A (Sema3A), a soluble 

guidance factor [142].  Subsequent studies on PlxnA1 have been extended to various 

physiological contexts including cardiovascular development, and particularly immune 

responses fueled by our original findings that PlxnA1 expression is upregulated by CIITA 

(MHC Class II transactivator) during DC maturation [59, 66, 71, 236].  CIITA is the master 

regulator, controlling the expression of MHC class II molecules in antigen-presenting cells 

(APCs) [143-145].  Without the expression of MHC class II genes which is governed by 

CIITA, T cell-mediated adaptive immunity cannot be initiated, as exemplified by the human 

genetic disorder, Bare Lymphocyte Syndrome [146, 147].  PlxnA1 was found to constitute 

one of the genes regulated by CIITA [71].  Indeed, DCs that highly express PlxnA1 are the 

most potent APCs capable of activating naïve T lymphocytes, and initiating T cell-mediated 

adaptive immunity [148, 150-154].   

To be able to prime T cells, DCs must accomplish several critical tasks.  For priming T 

helper cells in particular, DCs must take up and properly process protein antigens for 

subsequent presentation of peptides on MHC class II molecules [148].  However, previous 

studies suggested that PlxnA1 is not involved in any of these functions.  DCs lacking PlxnA1 

do not show any defect in antigen uptake or in loading peptide antigens onto surface MHC 

Class II molecules [29, 71].  Furthermore, pulsing PlxnA1-depleted DCs with OVA peptides 

did not restore stimulatory T cell response, suggesting that antigen-processing is not the 

major step where PlxnA1 is involved in [71, 78].  PlxnA1 is also not critical for DC 
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upregulation of MHC class II and costimulatory molecules such as CD40, CD80 or CD86 

necessary to steer T cells towards immunity rather than tolerance [29, 199, 200].  These 

results point to a role for PlxnA1 in the events that drive DC-T cell conjugation.  This is 

supported by our own observation that actin polarization towards the DC-T cell interface, 

which is critical for T cell stimulation, is severely impaired in PlxnA1-depleted DCs, upon T 

cell engagement [71, 78, 91, 92].   

Furthermore, we and others independently showed that, a T cell surface molecule, 

Sema6D can bind to PlxnA1 on DCs [29, 79].  Thus, PlxnA1 on DCs engages T cell surface 

molecules including Sema6D upon DC-T cell conjugation.  A role of PlxnA1 in priming T 

cells upon contact could be verified by blockade with the competitive inhibitor, PlxnA1-Fc 

fusion protein which contains PlxnA1 ectodomain tethered to the Fc region of IgG.  

Analogous experiments using PlxnA1-/- DCs may confirm results with PlxnA1-Fc fusion 

protein blockade, and underscore the importance of this molecule in T cell proliferation.   

Subpopulations of DCs: DCs are a highly heterogeneous cell type composed of 

different subsets of DCs.  There are three major subtypes of DCs based on their 

differential surface markers: myeloid DCs (mDCs: CD11c+ CD11b+ CD8α-); lymphoid 

DCs (lDCs: CD11c+ CD11blow CD8α+); and plasmacytoid DCs (pDCs: CD11clow 

mPDCA-1+ B220+), all of which are localized in the secondary lymphoid organs 

including the spleen [155-158].   

The distinct nature of the ‘myeloid’ versus ‘lymphoid’ lineages of DCs has been 

under discussion with regard to their origin and function.  It is still unclear whether 

CD8α- mDCs and CD8α+ lDCs develop from distinct myeloid and lymphoid lineages 

[163-166].  Nontheless, their distinct pattern of distribution appears to comply with their 
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discrete functions: CD8α+ lDCs are thought to be tolerogenic, whereas CD8α
- mDCs are 

considered stimulatory [167].  Such stimulatory activity of CD8α
- mDCs seem to be 

supported by their superior phagocytic capacity [157, 168, 169].  However, both subsets 

of DCs have been observed to be stimulatory in other studies [170-174].  For example, 

both subsets of DCs have been demonstrated to equally induce antiviral CTL response in 

vivo [174].  In addition, it used to be assumed that CD8α
+ lDCs were superior to CD8α- 

mDCs in inducing Th1 response, due to the higher levels of IL-12p70 production by 

CD8α+ lDCs [173, 175-179].  That was because abundant IL-12p70 produced by lDCs 

was believed to be responsible for inducing IFN-γ, skewing Th1 response [176, 180, 181].  

However, accumulated evidence suggests that DCs are not the only factors affecting T 

cell fates [182].  Moreover, recent publication revealed that there is a mechanism 

circumventing IL-12p70 for IFN-γ induction [183].  Thus, either subset of cells exhibit 

versatility by performing compensatory mechanisms, resulting in the induction of 

appropriate T cell responses initiated through different routes.   

A third category of DCs, called pDCs express distinct markers such as mPDCA-1, 

Ly-6C as well as B220 [185-190].  pDCs can be induced to develop from mouse bone 

marrow cells in vitro by the addition of Flt3-Ligand [191, 192].  Functionally, pDCs are 

not well-equipped for antigen presentation, nor as potent as other subtypes of DCs in 

stimulating T cell-mediated immunity [185, 192-196].  pDCs also called IFN-producing 

cells are primarily devoted to the production of high levels of Type I IFN in response to 

viral challenge, inducing antiviral immunity [197].  Since a recent publication implicated 

PlxnA1 involvement in pDC function, it would be informative to profile PlxnA1 
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expression in these DC subtypes, in order to identify distinct roles for this molecule in 

these functionally diverse cell populations [30].   

Migration of DCs:  As mentioned previously, in order to achieve the unique capacity 

for T cell priming, DCs must undertake several critical steps prior to T cell engagement.  One 

of those tasks is to migrate from the periphery to T cell areas in the secondary lymphoid 

tissues [237, 238].  CCL21 (SLC) and CCL19 (ELC) are the major chemokines that induce 

migration of mature DCs from the periphery to DLNs, by stimulating their receptor CCR7 on 

DCs [200, 239, 240].  Immature DCs express low levels of CCR7, which becomes 

upregulated upon DC maturation.  CCR7-expressing DCs become mobilized upon 

stimulation with antigens or inflammatory cytokines such as TNF-α, and as a result, migrate 

into DLNs [208-210].  CCR7 on DCs is critical for DC migration, as CCR7-/- Langerhans 

cells in the skin are unable to migrate to DLNs [211].  Recent studies implicated CXCL12 

(SDF-1α) as an additional chemokine important for DC migration, which binds to its receptor, 

CXCR4 on DCs [209, 241, 242].  Concurrently, other chemokine receptors such as CCR1 

and CCR5, responsible for binding CCL5 (RANTES) are downregulated upon DC 

maturation [240].   

PlxnA1 is a well-known pathfinder in neuronal axon growth in response to Sema3A, a 

soluble guidance cue, suggesting that PlxnA1 could also play an important role in 

chemokine-induced DC migration [4, 34, 140, 243].  Although no impairment was observed 

in DC migration to the DLNs in plxna1-/- animals by another group, their methodology which 

entails skin painting with fluorescent isothiocyanate (FITC) harbors complicating factors.  It 

is imperative to reexamine the migratory capacity of DCs lacking PlxnA1, using hypothesis-

driven experimental approaches [29].   
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Rho, R-Ras, and Rap Small G-proteins:  Rho GTPase plays a role downstream of 

PlxnA1 upon T cell conjugation that directs actin polarization towards the T cell contact sites 

as shown in Chapter II [78].  Rho GTPase-mediated actin polarization in DCs has been 

shown to be critical for T cell activation [91, 244].  However, Rho GTPase (A, B or C) does 

not seem to directly interact with PlxnA1, leaving an unaddressed gap between PlxnA1 and 

Rho signaling [32, 33].   

Functioanlly, PlxnA1 is anticipated to directly interact with R-Ras, a Ras-related small 

GTPase.  PlxnA1 has been linked to regulation of R-Ras function through its potential 

GTPase activating protein (GAP) activity based on sequence homology [32, 105].  R-Ras is 

highly homologous to human Ras (H-Ras) [116].  Despite the sequence similarity, R-Ras has 

been demonstrated to play a distinct role from protooncogenic H-Ras [117, 118].  It is well 

established that R-Ras activates integrin signaling, resulting in cellular migration and 

adhesion [119].  A GAP is a regulatory element for a specific GTP-binding protein, 

suppressing G-protein signaling by facilitating G-protein-bound GTP hydrolysis.  Upon 

facilitated hydrolysis of GTP, G-proteins become inactivated remaining bound to GDP [115].  

Plxns contain segmented R-Ras GAP conserved regions including the invariant R residues 

critical for GAP activity [32, 105, 107].  In addition, circumstantial evidence suggests that 

PlxnA1 has GAP activity for R-Ras.   

Rap1, a Ras-like small GTPase has been introduced as a downstream factor, activated 

by R-Ras [123].  Rap1 has also been implicated in translation of environmental stimuli into 

integrin-mediated cellular adhesion and motility, in general, and also in immune cells [124-

132].  Rap1 has been shown to play a key role in chemokine-induced DC trafficking, through 

its effector molecule, RapL (Regulator of cell Adhesion and Polarization enriched in 
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Lymphoid tissues) [125].  Rap1 regulates not only integrin activity but also actin dynamics, 

through its diverse effector molecules [130, 245].  More importantly, Rap1 suppresses Rho 

activity by one of its effector molecules called Arap3, which exhibits GAP activity for Rho 

[246].  As mentioned previously in Chapter II, Rho is activated downstream of PlxnA1 upon 

T cell engagement [78, 246].  We are currently seeking to determine whether Rap1 activity is 

regulated by PlxnA1.  R-Ras and Rap1 in DCs may be sequentially operational in the PlxnA1 

pathway upon T cell engagement.  However, it is also possible that PlxnA1 directly 

suppresses Rap1 activity without involving R-Ras, since PlxnA1 contains a SynGAP 

conserved region which is known to be essential for the GAP activity of Rap [32, 136].  The 

latter possibility is also supported by the findings that Rap1 and R-Ras share some of their 

GAP proteins [137].  Our primary question is whether Rap1 activity is regulated by PlxnA1 

and if that results in Rho activation upon T cell engagement.   
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Materials and Methods 

 

Medium: Cells were cultured in complete RPMI-1640 medium (Gibco) supplemented with 

10% (v/v) heat-inactivated fetal calf serum (ATLANTA Biologicals), 2.0 mM L-Glutamine, 

50 µM β-mercaptoethanol, 25mM HEPES, 100 U/ml penicillin, 100 µg/ml streptomycin, 

nonessential amino acids, and sodium pyruvate, as previously described [184]. 

 

Cells and mice:  Bone marrow-derived DC (BMDCs) were generated as previously 

described [71, 78, 184].  Briefly, DCs were enriched from mouse bone marrow cells (2 x 

105/ml) for 12 days by the addition of GM-CSF (Day 0: 20 ng/ml; Day 3: 10 ng/ml; Day 6: 

10 ng/ml; Day 8 and 10: 5 ng/ml) and IL-4 (Day 6 and 8: 10 ng/ml; Day 10: 5 ng/ml), as well 

as TNF-α (Day 10: 20 ng/ml; Day 11: 10 ng/ml) (Peprotech) in complete RPMI-1640 

medium.  Cells were harvested at Day 12 and used for in vitro migration assays or further 

pulsed with 1 µM ovalbumin (OVA) protein (Worthington Biochemical) or 0.1 µM OVA 

peptide (323-339, GenScript) at 37oC, overnight.  OVA-pulsed DCs were used for co-culture 

experiments or for injection into recipient mice along with CFSE-labeled OT-II T cells that 

have been enriched using Mouse T Cell Enrichment Columns or Mouse T cell CD4 Subset 

Columns (R&D Systems).  For real-time PCR analyses of PlxnA1 expression, the 

splenocytes or the bone marrow cells isolated from C57BL/6 mice were sorted using MoFlo 

(Dako), following staining with Phycoerythrin (PE)-, Fluorescein isothiocyanate (FITC)- or 

Allophycocyanin (APC)-conjugated antibodies against cell surface markers: CD19 (B cells), 

CD3 (T cells), CD11c and CD11b (mDCs and macrophages (Mac)) and CD11c, B220 and 

mPDCA-1 (pDCs). (eBioscience).  BM-derived pDCs were enriched with Flt3L (R&D 



 61

Systems) treatment for 10 days in complete RPMI 1640 medium at 37oC in 5% CO2, as 

described [191], and the mPDCA-1+ B220+ and CD11c+ pDCs isolated by FACS.  C57BL/6 

mice were obtained from Jackson Laboratory.  The C57BL/6 Ly5.1, recipient mice used for 

adoptive transfer experiments were purchased from the National Cancer Institute, Bethesda, 

MD.  Plxna1-/- mice were provided by our collaborators, Dr. Yutaka Yoshida and Dr. 

Thomas Jessell at Columbia University [243].  The plxna1-/- mice back-crossed for five 

generations into the C57BL/6 strain at Columbia University were backcrossed an additional 

four generations into the identical strain.  OT-II-C57BL/6 mice which are OVA323-339 

peptide-specific TCR transgenic animals were obtained from Dr. Michael Croft (La Jolla 

Institute for Allergy and Immunology, La Jolla, CA) [78].  Animals were housed at UNC-

Chapel Hill under specific pathogen-free conditions, and animal procedures were performed 

in compliance with the National Institutes of Health Guides for the Care and Use of 

Laboratory Animals, as pre-approved by the Institutional Animal Care and Use Committee of 

the University of North Carolina at Chapel Hill. 

 

Preparation of cDNA and Real-Time quantitative PCR:  Total RNA was isolated from 

each population of freshly isolated or ex vivo cultured cells, using RNeasy Plus total RNA 

isolation kit (Qiagen), from which complementary DNA was generated using random 

primers and SuperScript III reverse transcriptase (Invitrogen), according to the 

manufacturers’ instructions.  Real-time PCR was performed using CyBrGreen Mix (Applied 

Biosystems) and the following oligonucleotides [79]: Plxna1 primers, forward 5’-

CAATCCTGCTACCGTGGAGAA-3’, reverse 5’-CCGCAGAAGTCGTCATCAAT-3’ [71]; 

Ccr7 primers, forward 5’-AAAGCACAGCCTTCCTGTGT-3’, reverse 5’-
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AGTCCACCGTGGTATTCTCG-3’ [247]; Cxcr4 primers, forward 5’-

CAGAGGCCAAGGAAACTGCT-3’, reverse 5’-CTGACGTCGGCAAAGATGAA-3’ [248], 

and β-actin, forward 5’-AGGGCTATGCTCTCCCTCAC-3’; reverse 5’-CTCTCAGC 

TGTGGTGGTGAA-3’ [79, 248].  Real-time PCR was performed using AB Prism 7700 

instrument (Applied Biosystems).  The levels of Plxna1, Ccr7, and Cxcr4 transcripts were 

normalized to β-actin expression [79].  Each experiment had triplicate samples and each 

value shown is representative of three independent experiments.    

 

Cloning and expression of PlxnA1-Fc:  The extracellular fragment (265-3969 bp) of full-

length Plxna1 cDNA sequence was subcloned in TOPO-TA (Invitrogen), and fused to the 5’-

end of the Fc portion of human IgG1 cDNA (792-1487 bp: Hinge-CH2-CH3) in the pCEP4 

mammalian expression vector (Invitrogen).  A Kozak sequence (GCCACCC) was added at 

the 5’-end of PlxnA1 upstream of the translation start site (ATG, 265-267 bp) followed by its 

intrinsic signal peptide sequence.  For a Fc-only construct, Kozak, ATG and IL-2 signal 

sequences (TAC AGG ATG CAA CTC CTG TCT TGC ATT GCA CTA AGT CTT GCA 

CTT GTC ACG) were added to the 5’-end of the Fc portion of human IgG1 (792-1487) 

along with restriction enzyme sites at either end using PCR, subcloned into TOPO-TA and 

cloned into the pCEP4 backbone (Invitrogen).  Both the constructs were sequenced, 

transiently over-expressed in HEK293 cells, and the resulting protein purified using protein 

A/G agarose beads (Pierce).  Transient expression was established by introducing the pCEP4 

cDNA construct of PlxnA1-Fc or Fc-only into HEK293 cells using calcium-phosphate co-

precipitation [249].  After a 72 hr-incubation in serum-free IMDM medium (Gibco), culture 

supernatant was removed from the cells, and passed through sterilizing-grade filters 
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(Millipore).  Prior to the purification step, expression of PlxnA1-Fc and Fc-only control 

protein was confirmed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western-blotting.  Briefly, filtered supernatants were incubated with Protein A/G agarose 

beads at 4oC overnight.  Beads were washed three times with PBS, and boiled in SDS-PAGE 

loading buffer.  Protein eluted from the beads was subjected to 8% or 15% SDS-PAGE 

followed by Coomassie blue staining or transfer to nitrocellulose membrane.  PlxnA1-Fc or 

Fc-only protein was detected using the anti-Fc of the human IgG conjugated to horse radish 

peroxidase (Invitrogen).  For functional assays, PlxnA1-Fc and Fc-only protein were purified 

using Protein A/G columns (Invitrogen), dialyzed with PBS, and concentrated using Amicon 

Ultra (100 kDa or 10 kDa, Millipore).  Protein concentration was determined by Bradford 

protein assay, and the samples stored in 25% glycerol/PBS at -70oC.   

 

Co-Culture of DCs with OT-II T cells:  Prior to DC-T cell co-culture, BMDCs from 

plxna1-/- mice and WT controls were examined for the expression of the following surface 

markers using either FITC-conjugated or PE-conjugated fluorescent antibodies as followed: 

anti-CD86-PE, anti-CD80-PE, anti-I-Aβ-FITC and anti-CD40-PE along with anti-CD11c-

APC (BD Biosciences).  BMDCs (2 x 105) were co-cultured with 1 x 106 OT-II T cells in 

complete RPMI-1640 medium.  Prior to co-culture, CD3+ T cells or CD4+ T cells were 

enriched employing Mouse T cell enrichment columns or Mouse T cell CD4 Subset Columns 

(R&D Systems), respectively, according to the Manufacturer’s instructions.  Cells were 

labeled with Carboxy-Fluorescein Succinimidyl Ester (CFSE: Sigma) by incubation in 

serum-free RPMI medium with 1 µM of CFSE at 37oC for 10 min. followed by several 

washes with complete RPMI medium [79].  For blocking experiments, PlxnA1-Fc or Fc-only 
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control protein was added to the DC-T cell co-culture at Day 0.  Cultured cells were 

harvested at specific time points post co-culture.  Harvested cells were treated with anti-

mouse CD32/CD16 Fc blocker, and stained with APC-conjugated anti-TCR antibody (anti-

TCR-APC) or with biotinylated anti-Vβ5 antibody or anti-CD69 (anti-Vβ5-biotin or anti-

CD69-biotin) followed by streptavidin conjugated with APC (SA-APC) (eBioscience).  Cells 

were fixed in 1% formaldehyde/PBS and stored at 4oC for flow cytometry.  Cells from each 

time course were analyzed at the same time by flow cytometry using the Dako Cyan 

cytometer and analytical software, Summit 4.3 or FlowJo (TreeStar).    

 

Intravenous Co-Transfer of DCs and CFSE-labeled OT-II T cells: CFSE-labeled OT-II T 

cells (2 x 106) and OVA-pulsed BMDCs (5 x 105) from plxna1-/- mice or WT control mice 

were simultaneously injected intravenously into the tail vein of C57BL/6 Ly5.1 mice.  

Splenic T cells isolated from the spleen with hypotonic RBC-lysis (15.5 mM NH4Cl; 1 mM 

KHCO3; 10 µM EDTA in H2O) 72 hr. post-transfer were analyzed.  Three mice were used 

per group in each experiment and the data shown is representative of two independent 

experiments 

 

Analysis of OT-II T cells from recipient mice: The spleen from each recipient mouse that 

was co-injected intravenously with DCs and CFSE-labeled OT-II T cells was isolated and 

prepared as a single cell suspension following erythrocyte depletion with hypotonic RBC-

lysis.  Splenocytes were treated with anti-mouse CD32/CD16 Fc blocker and stained with 

anti-Vβ5-biotin followed by SA-Pacific Blue (PB), along with anti-Ly5.2-APC-Cy7 and anti-

TCR-APC (eBioscience).  The Vβ5+ cell population gated out of the viable Ly5.2+ TCR+ T 
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cell population was analyzed for the presence of a CFSE fluorescence shift using flow 

cytometry.    

 

ELISPOT assay: IFN-γ ELISPOT assays were performed according to the manufacturer’s 

instructions (eBioscience).  Briefly, a 96 well ELISPOT plate was pre-coated with anti-IFN-γ 

antibody at 4oC overnight.  Splenic single cell suspensions were prepared as described, and 

re-stimulated with peptide OVA323-339 (0.1 µM) or left unstimulated in complete RPMI 

medium for 24 hr. at 37oC with 5% CO2.  The cells were serially diluted 1:1 to 1.25 x 105 

cells, starting from 2 x 106 cells.  After a 24 hr-incubation, cells were removed by washing 

and IFN-γ detected using biotinylated anti-IFN-γ antibody followed by Avidin-Horse Radish 

Peroxidase (Av-HRP).  Freshly prepared AEC (3-amino-9-ethyl carbazole) substrate solution 

supplemented with 0.015% H2O2 was added to each well, and developed for 10 to 45 min.  

The reaction was stopped with distilled water, and the plates dried overnight in the absence 

of light.  Purple spots, each of which representing a cell that had secreted IFN-γ, were 

enumerated using a microscope.  Spots were counted double blinded, and the differences 

between the two groups (w/ WT DCs vs w/ PlxnA1-/- DCs) were evaluated by a student t-test.   

 

In vitro Migration Assay: Ninety six trans-well Chemo Tx plates (5 µm pore size; 

NeuroProbe) were used as previously described [184].  Briefly, the chemokines, CCL19, 

CCL21, CXCL12, and CCL5 (PeproTech) as well as the complement factor, C5a (R&D 

Systems) were serially diluted at a 1:1 ratio in 28 µl of serum-free RPMI 1640 medium and 

placed in the bottom wells.  BMDCs (1 x 105) from plxna1-/- mice or WT controls suspended 

in serum-free RPMI-1640 medium were added onto the hydrophobic membrane filter, and 
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the assembly incubated for 3 hr. at 37oC in a 5% CO2 incubator.  Cells on the filter were 

removed by aspiration, and the cells still remaining on the filter washed with Versene and 

PBS.  Cells that migrated through the filter were spun down at 1,500 rpm at 4oC for 5 min.  

Medium from each bottom well was transferred to the corresponding well of a 96 well 

ELISA plate (Corning) for a XTT assay. 

 

XTT Assay:  XTT viability assays were performed on the cells present in the bottom wells of 

the trans-well plates.  XTT [2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) 

carbonyl]-2H-tetrazolium hydroxide] (Sigma-Aldrich) was dissolved in pre-warmed serum-

free RPMI 1640 medium at 1 mg/ml.  PMS (Phenazine MethoSulfate: Sigma-Aldrich) was 

dissolved at 1.5 mg/ml in PBS and stored at 4oC for up to 3 hr.  Fifty micro-liters of PMS 

solution were added to 10 ml XTT solution, 50 µl of which was then added to each of the 96 

wells.  The plates were incubated for 4 hr. at 37oC in the presence of 5% CO2.  A standard 

reference plate was prepared using 1 x 105 cells serially diluted at a 1:1 ratio.  The number of 

cells that migrated was deduced from the standard curve made from the standard reference 

plates.  Optical density was measured at 450 - 650 nm using a spectrophotometer, Spectra 

Max 190 (Molecular Devices).  The average of triplicate wells reflecting one concentration 

of each chemokine was displayed with standard deviations.  All the experiments were 

performed in triplicate. 

 

Subcutaneous Transfer of BMDCs into Mouse Foot Pads: BMDCs (2 x 106) generated 

from plxna1-/- mice and from WT control mice were simultaneously injected subcutaneously 

into mouse foot pads following differential labeling with CMFDA (CellTrackerTM Green 
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CMFDA: 5-chloromethyl fluorescein diacetate; Molecular Probes) on PlxnA1-/- DCs and 

CMRA (CellTrackerTM Orange CMRA: Molecular Probes) on WT DCs.  An identical was 

performed with the only variation being the switching of the labeling dyes.  Labeling of the 

cells with either reagent was performed according to the manufacturer’s instructions.  Briefly, 

a final concentration of 0.8 µM CMFDA or CMRA was added to 1 x 107/ml of BMDCs 

derived from plxna1-/- or WT mice in pre-warmed PBS (Mg2+- and Ca2+-free) and incubated 

for 30 min. at 37oC.  After washing twice with PBS, cells were incubated in PBS for another 

30 min. at 37oC.  Differentially labeled cells were mixed in equal ratios (CMRA+ WT mixed 

with CMFDA+ KO; CMFDA+ WT mixed with CMRA+ KO) and prepared at 2 x 106 cells /30 

µl of PBS for subcutaneous transfer into the foot pads of the recipient C57BL/6Ly5.1 

congenic mouse.  Thirty six hours post-BMDC transfer, the recipient mice were euthanized 

and their popliteal draining lymph nodes (DLNs) isolated along with the non-DLNs (axillary).  

Both sides of the popliteal LNs were pooled together per mouse, and single cell suspensions 

prepared in 2% FCS-containing PBS by gently grinding the tissues with pellet pestles and 

filtering the suspension through a cell strainer (BD Biosciences).  Cells (1 x 106) were treated 

with anti-CD32/CD16 Fc blocker and then stained with anti-CD11c-APC-Cy7 along with 

anti-Ly5.2-APC.  The cells gated out of viable Ly5.2+ populations were analyzed in two-

dimensional plots with CMRA (FL2) and CMFDA (FL1), by flow cytometry (Flow 

Cytometer, Dako Cyan).  Four to eight recipient mice were used per group, resulting in a 

total 16 to 32 mice per experiment.  The result shown is representative of three independent 

experiments.  Statistical analysis between the two groups per set was carried out using a 

student t test (Prism Software). 
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GST pull-down assay for activated Rap1:  DCs (1 x 106) were conjugated with OT-II T 

cells (1 x 106) that had been fixed with 1% formaldehyde at 37oC for 2 min., as described 

previously [78, 246, 250].  Cells were lyzed in a modified immune precipitation assay buffer 

(50 mM Tris, pH 7.4, 75 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.1% 

SDS), containing protease inhibitors as well as 1 mM NaF, and 1 mM sodium vanadate.  Cell 

debris was removed by centrifugation and lysates incubated with 50 µg of GST-RalGDS-

RBD (provided by Dr. Leslie Parise, University of North Carolina at Chapel Hill) 

immobilized on glutathione beads to capture GTP-bound active Rap1.  The amount of active 

Rap1 and total Rap1 from the lysate was determined by Western blotting with a polyclonal 

anti-Rap1 antibody (Santa Cruz Biotechnology) that recognizes both Rap1A and Rap1B, 

followed by an anti-rabbit IgG HRP secondary antibody (Santa Cruz Biotechnology).  The 

relative amount of active Rap1 was determined by comparing the amount of pulled-down 

active Rap1 to the total amount of Rap1 from cell lysates.   
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Results 

 

PlxnA1 is primarily expressed in myeloid DCs.   

DCs are comprised of highly heterogenous cell types, including subsets of which 

exhibit overlapping but distinct properties and functionalities.  Although PlxnA1 was 

originally found to be highly expressed in mature BMDCs, we profiled PlxnA1 expression 

patterns in different subsets of DCs along with other immune cells.  PlxnA1 transcript levels 

in different subsets of freshly isolated DCs and bone marrow-derived DCs, along with other 

cell types such as B and T lymphocytes were determined by real-time quantitative PCR.  

PlxnA1-/- BMDCs were used as a negative control for PlxnA1 expression (Fig. 3.1).  PlxnA1 

was found to be predominantly expressed in DCs, with the highest expression detected in 

mature BMDCs cultured for 12 days in vitro, followed by freshly isolated splenic (CD11c+ 

CD8α-) mDCs and the mDCs isolated from bone marrow that were not subjected to culture 

(Fig. 3.1).  Splenic (CD11c+ CD8α+) lymphoid DCs (IDCs) exhibited PlxnA1 expression but 

the level was lower than their myeloid counterparts from the spleen [155-158].  In addition, it 

is notable that mature BMDCs treated with TNF-α showed higher levels of PlxnA1 

expression than those of freshly isolated DCs with no stimulation, confirming our 

observations that PlxnA1 is upregulated upon maturation [71].  PlxnA1 transcripts were also 

detected in BM-derived macrophages (Mac), but not in unstimulated peritoneal cells mainly 

composed of Macs remaining in a resting state (Fig. 3.1).  PlxnA1 mRNA levels were 

maintained very low in freshly isolated splenic B and T lymphocytes [155-158].  In addition, 

either freshly isolated or in vitro Flt3L-induced (CD11c+ mPDCA-1+ B220+) pDCs from 

bone marrow did not express significant levels of of PlxnA1.  This is contrast to a previous 



 70

report which demonstrated PlxnA1 transcription in pDCs, where it was suggested to be 

involved in TLR signaling [30].  Nevertheless, PlxnA1 appears to be expressed at much 

higher levels in myeloid lineages, especially in BMDCs.   

 

PlxnA1-Fc inhibits T cell proliferation. 

Accrued evidence suggests a role for PlxnA1 is mainly in DC-T cell conjugation.  

PlxnA1 is primarily involved in actin polarization upon T cell engagement as previously 

addressed in Chapter II [78].  In addition, one of the ligands for PlxnA1, Sema6D, is 

expressed on T cells [29, 79].   

To directly test whether PlxnA1 plays a role upon T cell contact, soluble PlxnA1-Fc 

fusion protein was utilized, as a competitive inhibitor of PlxnA1.  PlxnA1-Fc fusion protein 

is composed of the PlxnA1 extracellular region linked to the Fc portion of the human IgG1 

molecule resulting in it being secreted as a soluble protein (Fig. 3.2A).  The truncated 

PlxnA1-Fc protein is expected to associate with PlxnA1 ligands expressed on T cells, by 

competing with endogenous PlxnA1 on DCs.  As a control, the Fc portion of human IgG1 

alone was generated.  The Fc-only protein was designed to be secreted by the addition of a 

signal peptide sequence to the 5’-end of the Fc portion (Fig. 3.2A).  The soluble PlxnA1-Fc 

and Fc-only coding sequence was cloned into the pCEP4 mammalian expression vector, and 

the protein products generated in HEK293 cells.  Both of the proteins were tested for purity 

as well as the level of expression using SDS-PAGE and Western blotting.  As shown on a 

SDS-PAGE gel visualized by Coomassie blue, the molecular weight of PlxnA1-Fc and Fc-

only was approximately 180 kDa, and 25 kDa, respectively, as predicted (Fig. 3.2Ba).  This 
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was confirmed by Western blotting with HRP-conjugated anti-human Fc IgG (Fig. 3.2Bb).  

Both of the proteins produced in HEK293 in serum-free condition were highly enriched with 

little contamination (Fig. 3.2Ba-b).  Their expression levels were also relatively high, 

compared to that of the same coding sequence cloned in other vectors (data not shown).   

For a DC-T cell co-culture experiment, freshly isolated splenic OT-II T cells were 

labeled with CFSE, and put into culture along with OVA protein-pulsed BMDCs in the 

presence of PlxnA1-Fc protein or Fc-only protein.  As a negative control, DCs left unpulsed 

(No OVA control DCs) were used in cultures with T cells.  Cells were harvested at 96 hr. 

post co-culture, and stained with Vβ5-biotin followed by APC-streptavidin.  The cells gated 

as the Vβ5+ live lymphocyte population was analyzed according to its CFSE peaks.  The 

PlxnA1-Fc-treated group showed less efficient T cell proliferation than the Fc-only group.  

As shown in Figure 3.2C, proliferating cells accumulated more in the second peak (39.6%), 

representing the first descendants of the originally CFSE-labeled ancestors, while only 27.6% 

of the cells in the second peak were detected in cells treated with Fc-only protein.  In contrast, 

the proportion of dividing cells that have undergone further division was dramatically 

reduced in the PlxnA1-Fc treated group, 15,6%, 4.4% and 1.8% in the 3rd-5th peak, 

respectively (Fig. 3.2C, the middle panel).  This is reduced when compared to control cells 

treated with Fc-only which have 20.8%, 8.5%, and 5.4% of cells in the 3rd-5th peaks 

respectively (Fig. 3.2C, the left panel).  The OT-II T cells stimulated by DCs without OVA 

pulse did not proliferate, as expected (Fig. 3.2C, the right).  These results support the 

contention that PlxnA1 participates in stimulating T cells at the level of cell-cell contact, in 

line with antigen-loaded MHC class II and co-stimulators including B7 molecules, in an 

antigen-dependent manner.   
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Data in Figure 3.2 are from a co-culture representative of three independent 

experiments using the CD3+ T cells from OT-II transgenic mice.  Experiments using CD4+ 

OT-II T cells also show similar reduced proliferation patterns in the PlxnA1-Fc treated group 

compared to Fc-only controls (data not shown).  Regarding the stimulatory effect of PlxnA1-

Fc on T cells through its binding to Sema6D or other ligands on T cells, the addition of 

PlxnA1-Fc into a co-culture of OT-II T cells and PlxnA1-/- DCs did not improve proliferation 

efficiency compared to those with Fc-only protein, suggesting that PlxnA1-Fc has little effect 

on T cell proliferation.  This is further supported by the lack of augmentation effect of 

PlxnA1-Fc in T cell proliferation upon anti-CD3 and ani-CD28 stimulation (data not shown).   

 

PlxnA1-/- DCs are less effective in stimulating co-cultured OT-II T cells.   

DC-T cell co-culture with PlxnA1-Fc demonstrated that T cell proliferation is inhibited 

upon interfering with the PlxnA1 interaction with its ligand on T cells (Fig. 3.2C).  However, 

the inhibition by PlxnA1-Fc might have been partial, due to its competitive binding with 

endogenous PlxnA1 from DCs.  Therefore, the blocking effect of PlxnA1 should be further 

examined in the future by utilizing different dilutions of PlxnA1-Fc and Fc-only to determine 

an optimal blocking concentration. Considering the possibility of partial inhibition by 

PlxnA1-Fc, DCs completely lacking PlxnA1 (PlxnA1-/- DCs) could be used instead.  T cell-

stimulation with PlxnA1-/- DCs would clearly show the severity of the defect in T cell 

response caused by lack of PlxnA1 on DCs.   

Prior to co-culture experiments, it was confirmed that the expression of co-stimulatory 

molecules such as CD86, CD80, or CD40 along with CD11c is not affected by the removal 

of PlxnA1, and neither is that of I-Ab, as previously determined (Fig. 3.3A) [29, 71].  As 
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suggested by our studies using RNAi or PlxnA1-Fc protein (Fig. 3.2), our co-culture 

experiments using PlxnA1-/- DCs revealed that T cells bearing OVA323-339-specific TCRs 

were not activated in the absence of PlxnA1 on DCs (Fig. 3.3) [78].  In DC-T cell co-culture, 

OVA323-339-specific Vβ5+ T cells cultured with PlxnA1-/- DCs did not proliferate compared to 

WT control DCs (Fig. 3.3B) [71, 78].  The effect of PlxnA1 deficiency on T cell proliferation 

was even observable at Day 2, an early time point, with this effect becoming much more 

pronounced as the cell proliferations were continually progressing through Day 4, and 7 (Fig. 

3.3B).  This pattern of inefficient Vβ5+ T cell proliferation in the absence of PlxnA1 was 

reiterated in the total T cell population (Fig. 3.3C).  It should be noted that in both the total 

TCR+ and the Vβ5+ OVA-specific populations, a majority of T cells were proliferative even 

upon stimulation with PlxnA1-/- DCs, compared to those with nonpulsed WT DCs (Fig. 3.3B-

C).  However, a dramatic difference between groups with and without PlxnA1 became 

apparent when considering the number of cell divisions they had undergone.  T cells cultured 

with PlxnA1-/- DCs were two or three cell cycles behind T cells stimulated with WT control 

DCs at Day 4 and 7.  The lack of engagement between PlxnA1 and Sema6D accounts for 

inefficient T cell proliferation at the later time points, with DCs lacking PlxnA1 [79].  

Furthermore, much greater numbers of the Vβ5+ T cells incubated with PlxnA1-/- DCs 

remained non-proliferative at Day 4 (WT 9.2%; KO 23.3%; No OVA 56.2%) and Day 7 (WT 

0.4%; KO 6.3%; No OVA 61.4%).  The percent of CD69+ T cells detected in the culture that 

contained PlxnA1-/- DCs was comparable to those with WT DCs, as opposed to T cells with 

no OVA control DCs, exhibiting few CD69+ T cells (45.7%; 40.0%; 0.6%) at Day 2 (Fig. 

3.3C).  This suggests that T cells interacting with PlxnA1-/- DCs were able to upregulate the 

early activation marker, CD69, through TCR stimulation and co-stimulations, but were not 
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fully activated to undergo efficient proliferation due to the lack of a stimulation through 

PlxnA1.   

Since the CD3+ T cells used in co-culture experiments contained both CD4+ and CD8+ 

T cells, CD8+ T cells were subsequently analyzed separately.  CD8+ T cells included in the T 

cell preparation showed no proliferation but a great reduction in total numbers, suggesting 

that CD8+ T cells do not proliferate in response to OVA-pulsed BMDCs, and die off due to 

lack of TCR stimulation (data not shown).  This result confirms that the target cells of OVA-

pulsed BMDCs are OVA-specific CD4+ T cells, as originally established [251].   

The current co-culture experiments using PlxnA1-/- DCs not only verified the results 

of our PlxnA1-Fc blocking assays, but also revealed the impairment in T cell proliferation 

resulting from the complete lack of PlxnA1 on DCs, as opposed to the partial blocking of 

PlxnA1 interaction with competitive inhibition (Fig. 3.2 and 3.3).  

    

PlxnA1-/- DCs are less effective in stimulating T cells in vivo. 

We have confirmed that PlxnA1 on DCs augments T cell priming as shown by in vitro 

DC-T cell co-culture (Fig. 3.2C and 3.3B-C).  To test whether the lack of PlxnA1 on DCs 

would cause a defect in T cell response under more physiologically relevant conditions, in 

vivo T cell activation experiments were performed by employing adoptive transfer.  PlxnA1-/- 

or WT DCs that were OVA-pulsed were intravenously transferred into the tail vein of Ly5.1 

congenic mice along with CFSE-labeled OT-II T cells at a 1:4 ratio.  DCs left unpulsed were 

also transferred with OT-II T cells, as negative controls.   

Analysis of the Vβ5+ T cells gated out of the viable Ly5.2+ TCR+ populations at 72 hr. 

post-transfer revealed that a significantly reduced number of cells had undergone cell 
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divisions among the Vβ5+ T cells injected with PlxnA1-/- DCs compared to those with the 

WT DC counterparts (WT 52.1%; KO 30.8%; No OVA 6.5%) (Fig. 3.4A).  Dividing cells in 

both groups underwent similar division cycles, but the number of cells in each cell cycle with 

PlxnA1-/- DCs was consistently reduced compared to that with WT (WT 1.9%, 3.1%, 6.1%, 

7.2%, 9.3%, and 24.5% vs KO 1.0%, 1.8%, 2.0%, 3.7%, 6.5%, and 15.8% in the 2nd -7th peak, 

respectively) (Fig. 3.4A, left and middle panels).  T cells in both groups were still 

proliferating compared to those with no OVA-pulsed control DCs (Fig. 3.4A).  In vivo T cell 

activation assay suggests that significantly fewer T cells were activated in the presence of 

DCs lacking PlxnA1.   

A defect of PlxnA1-/- DCs in priming T cells was also observed by significantly 

reduced numbers of IFN-γ producing cells upon OVA restimulation, ex vivo, using an IFN-γ 

ELISPOT assay.  Each spot represents a single IFN-γ producing cell, and 186 spots per 1.25 

x 105 splenocytes on average were obtained from the mice exposed to WT DCs versus 57 

spots to PlxnA1-/- DCs (Fig. 3.4B).  We also observed a more than five-fold decrease (0.5% 

vs 3.2%) in IFN-γ producing cells in the Ly5.2+ Vβ5+ viable populations upon OVA-

rechallenge when primarily stimulated by PlxnA1-/- DCs compared to WT controls, using 

intracellular IFN-γ staining and flow cytometry (data not shown).  Significantly fewer IFN-γ-

producing cells were generated upon stimulation by DCs lacking PlxnA1, suggesting that 

PlxnA1 is likely to play a role in inducing a Th1 response.  However, despite the reduced 

numbers of IFN-γ producing cells that were attributable to the lack of PlxnA1 on DCs, the 

remaining cells that do not produce IFN-γ in our assay might have produced other cytokines.  

Therefore, cytokine analysis should be considered for a broad range of cytokines including 

the ones that induce either Th2 (IL-13 or IL-4), or Th17 (IL-23) response.   
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PlxnA1-/- DCs exhibit reduced migration in vitro.   

Previously, RNAi was utilized to deplete PlxnA1 in DCs, through the introduction of 

retroviral short hairpin RNA [71, 78].  Although RNAi was successful in depleting PlxnA1, 

the retroviral transduction induced DC activation, implicating changes in their migration 

characteristics.  This effect limited the utility of migration assays in analyzing the role of 

PlxnA1 in DC function.  In addition, difficulties were encountered in obtaining a sufficient 

number of virus-infected DCs, in the process of depleting PlxnA1 by RNAi.  These problems 

were completely circumvented by utilizing the plxna1-/- mice obtained from our collaborators 

[243].   

Utilizing this model, we were able to observe significant reductions in PlxnA1-/- DC 

migration towards CCL19 (ELC) and CCL21 (SLC) compared to WT controls, in a trans-

well migration assay (Fig. 3.5A-B).  Migrating cells were quantified by a XTT assay by 

virtue of the characteristic of XTT-tetrazolium, which is reduced to orange-colored formazan 

by cellular metabolic activity.  DCs with or without PlxnA1 were also tested with CXCL12 

(SDF-1α), a chemokine, suggested to support DC migration to DLNs [242].  Although we 

consistently observed lower numbers of PlxnA1-/- DCs that had migrated towards CXCL12 

compared to their WT counterparts, variability in cells migrating towards CXCL12 was 

much greater than towards the cytokines CCL19 or 21 (Fig. 3.5C).  Since DCs used for the 

assay were TNF-α-treated mature DCs, neither PlxnA1-/- DCs nor WT DCs migrated towards 

CCL5 due to downregulation of its receptors which include CCR1 and 5, upon DC 

maturation (Fig. 3.5D) [200, 210].  We also examined the migration of PlxnA1-/- DCs 

towards C5a, a complement factor, to serve as a control.  C5aR is also downregulated upon 

DC maturation, resulting in very low numbers of DCs migrating towards C5a (Fig. 3.5E) 
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[200].  In order to verify whether comparable numbers of PlxnA1-/- DCs and WT DCs were 

loaded for migration assays, both populations were subjected to XTT assays using serial 

dilutions starting from 1 x 105 cells.  The control XTT assay samples provided means to 

deduce the number of cells from the optical density values determined by spectrophotometry.  

Based on this conversion, cell numbers were found to be equivalent between PlxnA1-/- DCs 

and their WT counterparts (Data not shown).  Based on the XTT assay, approximately  up to 

25% of the WT DCs migrated to the bottom well at the optimal concentration of CCL19 (1 

µg/ml), CCL21 (2 µg/ml) and CXCL12 (2 µg/ml), compared to less than 5% of the PlxnA1-/- 

DCs (Fig. 3.5A-C).   

To determine whether the chemokine receptor expressions are affected by the lack of 

PlxnA1 on DCs, the expression levels of CCR7 and CXCR4, receptors for CCL19/21 and 

CXCL12, respectively, were examined.  The transcript levels and surface expression of 

CCR7 and CXCR4 were compared between PlxnA1-/- and WT DCs by real-time quantitative 

PCR (Fig. 3.5F) and by flow cytometry using surface staining with anti-CCR7-PE or anti-

CXCR4-PE along with anti-CD11c-APC (Fig. 3.5G), respectively.  Data from the 

quantitative PCR and the flow cytometry on Day 12-harvested BMDCs demonstrate that 

PlxnA1-/- and control DCs have the comparable levels of chemokine receptors, CCR7 and 

CXCR4 (Fig. 3.5F-G).  Transcript levels of CCR7 and CXCR4 in PlxnA1-/- DCs were found 

to exhibit considerable variability compared to WT controls, but ultimately the differences in 

expression of both chemokines in PlxnA1-/- and WT control cells were proven insignificant 

(p>>0.05) (Fig. 2.5F).  Therefore, PlxnA1 is not likely to be involved in the upregulation of 

these receptors but probably in the signaling upon chemokine stimulations for migration. 
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PlxnA1-/- DCs are less effective in migration to the draining lymph nodes.  

We established that PlxnA1-/- DCs are unable to migrate towards defined chemokines in 

vitro (Figure 3.5).  To determine whether the lack of PlxnA1 on DCs would result in defects 

in DC migration in vivo, equal numbers of differentially labeled PlxnA1-/- DCs and WT 

controls were subcutaneously co-transferred into the hind foot pads of C57BL/6Ly5.1 

congenic mice.  The major advantage of this strategy is that both populations are subjected to 

identical microenvironments.   

Among the cells isolated from the popliteal DLNs, the transferred CD11c+ Ly5.2+ 

populations contained less PlxnA1-/- DCs compared to WT DCs from both sets of 

differentially labeled cells (CMRA+ WT vs CMFDA+ KO; CMFDA+ WT vs CMRA+ KO).  

Few CMRA+ or CMFDA+ cells were detected from non-DLNs (axillary) (data not shown).  

However, differences in the number of migrating cells between CMRA+ WT vs CMFDA+ 

PlxnA1-/- DCs were lower than the reverse experiment (CMFDA+ WT vs CMRA+ PlxnA1-/- 

DCs).  The differences between CMRA+ WT vs CMFDA+ PlxnA1-/- DCs were found to be 

statistically insignificant (p>0.05), compared to the differences between CMFDA+ WT vs 

CMRA+ PlxnA1-/- DCs which were found to be siginificant (p= ~ 0.01).  Although the data 

consistently showed that the number of PlxnA1-/- DCs migrating to the DLNs was less than 

their WT counterparts, there were samples that exhibited fewer migrating DCs regardless of 

the PlxnA1 status of the cells (Fig. 3.6).  The question of whether DCs lacking PlxnA1 have 

a defect in migration in vivo upon challenge or maturation signals will have to be addressed 

by alternative strategies.   
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Rap1 is downstream of the PlxnA1 pathway in DCs.   

Several observations have facilitated our hypothesis of a role of PlxnA1 in the 

regulation of Rap1 upon T cell conjugation.  First of all, Rap1 has been found to function 

downstream of R-Ras signaling in a macrophage-like cell line [123].  In addition, PlxnA1 

with its possible GAP activity towards R-Ras based upon sequence homology with other R-

RasGAPs, suggests that Rap1 might be downstream of PlxnA1.  Secondly, a Rap1 effector 

molecule called Arap3, has been shown to perform a RhoGAP function to suppress Rho 

activity [246].  Therefore, Rap1 would generate a negative signal for Rho activation, which 

was observed in the presence of PlxnA1 on DCs upon T cell conjugation, as shown in 

Chapter II [78].   

In order to determine whether Rap1 is regulated by PlxnA1 upon T cell engagement, 

the level of activated Rap1 was measured in PlxnA1-/- DCs and their WT counterparts upon 

conjugation with T cells, by employing a GTP-Rap1 pull-down assay.  As shown in Figure 

3.7, our preliminary result demonstrates that PlxnA1-/- DCs contain an elevated level of 

activated Rap1 compared to WT DCs.  In fact, WT DCs exhibited levels lower than those 

observed in control DCs that were left unpulsed (-OVA) or DCs maintained in the absence of 

T cell conjugation (Fig. 3.7).  Since the OT-II T cells were fixed in 1% formaldehyde prior to 

the conjugation, there was no contribution of activated Rap1 from T cells.  The reduction in 

activated Rap1 levels upon WT DC-T cell conjugation suggests that Rap1 activation is 

suppressed by PlxnA1.  In addition, baseline Rap1 activity in PlxnA1-/- DCs appears elevated 

upon T cell engagement, compared to the basal level of Rap1 activity under unstimulated 

conditions.   
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Based on the assumption that PlxnA1 can exhibit R-RasGAP activity, the reduction of 

downstream Rap1 activity upon T cell conjugation would be due to R-Ras function 

suppressed by the GAP activity of PlxnA1 [32, 105, 123].  The reduction of Rap1 activity 

upon T cell conjugation, in the presence of PlxnA1 on DCs, may explain the previous 

observation demonstrating that Rap1 suppresses Rho via one of its effectors [246].   
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Discussion 

 

PlxnA1 is expressed on myeloid DCs.   

Among the different subsets of freshly isolated DCs and bone marrow-derived DCs, 

along with other cell types including B and T lymphocytes, PlxnA1 was detected primarily in 

myeloid DCs, especially in in vitro cultured BMDCs, by real-time quantitative PCR (Fig. 

3.1).  The expression of PlxnA1 in the myeloid cell types was evident from the lack of a 

similarly pronounced signal in splenic B and T lymphocytes.   

PlxnA1 transcription was not detected in freshly isolated or in vitro Flt3L-induced 

(CD11c+ mPDCA-1+ B220+) pDCs isolated from bone marrow.  This result is in stark 

contrasts to a previous report suggesting significant levels of PlxnA1 transcription in Flt3L-

induced pDCs, where it was functionally implicated in TLR7 and TLR9 signaling pathways 

[30].  Our unpublished data using freshly isolated pDCs from mouse bone marrow stimulated 

with known agonists for TLR7 and 9 also suggests a reduction in the Type I- IFN response in 

PlxnA1-/- pDCs compared to their WT counterparts (data not shown).  Therefore, a means for 

detecting PlxnA1 protein is necessary, but unfortunately a currently available commercial 

antibody lacks specificity.  Since transcript levels do not correlate with the amount of 

functional protein, surface expression as well as total protein expression of PlxnA1 should 

also be determined using PlxnA1-specific monoclonal antibodies, which we are in the 

process of producing.  Conversely, it is possible that low PlxnA1 transcript levels do not 

represent actual protein expression (Figure 3.1), because of the possibility of an extensive 

half-life of the protein.  Irregardless, PlxnA1 appears to be expressed at much higher levels in 

myeloid lineages, especially in BMDCs, compared to other immune cells.  Based on this 
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observation, we chose to study PlxnA1 function in mature BMDCs.  The current study is 

based on our hypothesis that PlxnA1 must play an important role in cells that highly express 

the protein [175, 176, 178, 179].  We also expect that Th responses stimulated with BMDCs 

would be similar to those with myeloid DCs. 

 

PlxnA1 plays a role in T cell priming upon conjugation. 

Accumulated evidence suggests that PlxnA1 is involved in the events that occur during 

DC-T cell conjugation.  In support of this role is the observation that Sema6D, a PlxnA1 

ligand, is expressed on T cells [29, 79].  Experiments employing DC-T cell co-culture with 

PlxnA1-Fc blockage demonstrate that DCs lacking PlxnA1 intercellular activity exhibit only 

suboptimal T cell priming upon contact, resulting in inefficient T cell proliferation (Fig. 

3.2C).  The basic experiment indicates that the intercellular activity of PlxnA1 upon T cell 

engagement is essential for T cell priming.  Even though there is the possibility of a direct 

stimulatory effect from PlxnA1-Fc, overall inhibition of T cell proliferation by PlxnA1-Fc 

suggests that activation of DCs through PlxnA1 needs to occur for optimal T cell priming.   

We can conclude from this experiment that blocking PlxnA1 interaction with T cell 

components upon DC contact is sufficient to inhibit naïve T cell proliferation.  That PlxnA1 

affects T cell responses from the initial phase in supported by our previous observation that 

PlxnA1 is involved in F-actin polarization towards the interface upon T cell conjugation 

(Chapter II) [78].  Actin polarization in APCs has previously been shown to play a crucial 

role in optimal conjugation with T cells and subsequent T cell responses [91, 92, 233, 244].   

In addition, our co-culture experiments with PlxnA1-/- DCs demonstrate that T cells are 

not fully activated to undergo efficient proliferation and clonal expansion due to the lack of a 
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stimulation through PlxnA1 (Fig. 3.3A-B).  However, T cells stimulated by DCs lacking 

PlxnA1 are still able to upregulate the early activation marker, CD69, through TCR 

stimulation and co-stimulations (Fig. 3.3B).   

T cell stimulation by DCs lacking PlxnA1 not only confirmed the results of the 

PlxnA1-Fc blocking assays, but also demonstrated the grave consequences to T cell 

proliferation resulting from the complete lack of PlxnA1 on DCs, as opposed to the partial 

blocking of PlxnA1 interaction with competitive inhibition (Fig. 3.2C and 3.3B-C).  Since 

previous studies have shown no defect of PlxnA1-/- DCs in antigen uptake or processing as 

well as in antigen binding affinity of MHC Class II molecules on the cell surface, the impact 

of PlxnA1 on T cell priming is attributable to the role of PlxnA1 upon DC-T cell engagement.  

Furthermore, PlxnA1 has been shown to perform cis-interactions with a complex of Trem-

2/DAP12 surface proteins which is known to transduce a mitogenic signal through the Erk 

pathway [29, 252].  Since DAP12 activation was also shown to occur in the context of 

Sema6D-PlxnA1 ligation, it supports our findings that the lack of PlxnA1 on DCs leads to 

inefficient proliferation of cognate T cells, although Sema6D does not appear solely 

responsible for the stimulatory activity of PlxnA1 especially in the early phases of T cell 

activation [29, 79]. 

 

OT-II T cell activation by DCs lacking PlxnA1 is reduced in vivo. 

The question of whether the lack of PlxnA1 on DCs would cause a defect in T cell 

responses under more physiologically relevant conditions was addressed by our in vivo T cell 

activation experiments employing adoptive transfer.  In vitro co-cultures suggested that 

proliferation of T cells stimulated with DCs lacking PlxnA1 was not as efficient as those with 
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WT DCs (Fig. 3.3).  In vivo T cell activation assays suggest that a significantly reduced 

number of T cells were activated in the presence of DCs lacking PlxnA1.  The exogenous 

Ly5.2+ TCR+ T cells co-transferred with PlxnA1-/- DCs in the spleen of each recipient were 

also significantly fewer than those with WT DCs, as determined by exogenous Vβ5+ T cell 

staining, suggesting that more T cells might have died due to the lack of optimal stimulation 

by co-transferred PlxnA1-/- DCs.  The question of whether PlxnA1 plays a role in T cell 

survival is an interesting one and should be addressed in future studies.  Nontheless, DCs 

lacking PlxnA1 did not produce as a vigorous T cell proliferation as WT controls in vivo (Fig. 

3.4A).  In addition, the lack of OVA-specific Vβ5+ T cell proliferation in the presence of 

unpulsed control DCs supports the accepted model of antigen-dependent in vivo T cell 

activation by OVA-stimulated BMDCs (Fig. 3.4A, the right panel).   

A defect of PlxnA1-/- DCs in priming T cells was also uncovered by significantly fewer 

number of IFN-γ-producing cells upon OVA restimulation, ex vivo, using an IFN-γ ELISPOT 

assay (Fig. 3.4B).  Since the ELISPOT assay cannot specifically measure exogenous OVA-

specific T cells, flow cytometric analysis using intracellular IFN-γ staining was also 

performed.  There was a more than five-fold reduction in the number of IFN-γ-producing 

cells in the exogenous OVA-specific T cell population upon OVA-re-challenge when 

formerly stimulated by PlxnA1-/- DCs compared to WT controls (data not shown).  

Significantly fewer IFN-γ-producing cells were generated upon stimulation when they were 

originally activated by DCs lacking PlxnA1, suggesting that PlxnA1 plays a role in inducing 

a Th1 response.  Indirect evidence suggested that PlxnA1 might favor a Th1 response 

through the production of IL-12p70, based on the findings that only when PlxnA1 was 

present on DCs, a higher level of IL-12 was detected from DCs upon stimulation by Sema6D, 
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a PlxnA1 ligand, [29, 180].  However, the cells that did not produce IFN-γ in our assay might 

have produced other cytokines, inducing a Th2 (IL-13 or IL-4), or a Th17 (IL-23) response.  

Thus, cytokine profiling upon DC-T cell co-culture utilizing cytokine arrays followed by 

ELISA and/or ELISPOT assays will address the question of whether PlxnA1 on DCs plays a 

role in the fate-determination of cognate T cells.  The results should then be verified by 

additional ELISPOT assays for various cytokines on ex vivo re-challenged splenocytes 

isolated from the recipients after adoptive transfer.  An additional question to be answered is 

what Th response occurs in the absence of PlxnA1  [253].   

 

PlxnA1-/- DCs exhibit reduced migration. 

PlxnA1 is a well-known path-finder in neurons for axonal growth in response to a 

soluble guidance cue, Sema3A [4, 34, 140, 243].  This is the primary reason why PlxnA1 has 

been suspected to play a role in chemokine-induced DC migration.  However, no impairment 

was previously observed in DC migration to the DLNs in plxna1-/- animals [29].  Although 

skin painting with FITC is a commonly used method, it harbors some disadvantages in 

measuring DC migration in vivo, for the following reasons: 1) Free FITC can be carried over 

from the skin and taken up by resident DCs in DLNs [208, 212]; 2) The skin tissue treated 

with FITC contains complex subsets of DCs including Langerhans cells and dermal DCs 

which are still poorly characterized [208, 212], and 3) Unidentified immune defects in 

plxna1-/- animals could interfere with DC behavior.  To address these shortcomings, we 

employed two different strategies: 1) We examined the in vitro DC migratory capacity 

towards defined chemokines; and 2) We analyzed in vivo migration of PlxnA1-/- DCs and 
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WT controls into the DLNs by the application of differential labeling and subsequent 

subcutaneous co-transfer into congenic recipient mice.   

PlxnA1-/- DCs exhibited a more than 50% reduction in migration towards chemokines, 

CCL19 (ELC) and CCL21 (SLC), compared to WT controls (Fig. 3.5A-B).  Despite larger 

variations in migratory activity towards CXCL12, we also observed reduced migration of 

PlxnA1-/- DCs towards CXCL12, compared to WT DCs (Fig. 3.5C).  Irregardless of PlxnA1 

status, few DCs migrated towards CCL5.  This result was expected since DC maturation 

results in the downregulation of its receptors, CCR1 and 5 (Fig. 3.5D).  Analysis of transcript 

levels and surface expression of CCR7 and CXCR4 in PlxnA1-/- and WT DCs revealed that 

expression of these chemokine receptors is not affected by PlxnA1 status of the cells (Fig. 

3.5F-G).  Therefore, PlxnA1 is most likely not involved in the upregulation of these receptors 

but probably in the signaling induced upon chemokine stimulations for migration.   

The question of whether the lack of PlxnA1 on DCs would affect migration in vivo was 

addressed by differential labeling of DCs from plxna1-/- and WT mice and by subsequent co-

transfer into congenic Ly5.2+ mice.  Despite the advantages of this strategy in that both 

populations are subjected to identical microenvironments, we encountered an unexpected 

problem associated with using the two different dyes (CMFDA and CMRA).  Co-transfer 

following labeling of PlxnA1-/- DCs with CMRA and of WT DCs with CMFDA into the foot 

pads resulted in significantly reduced migration of PlxnA1-/- DCs to the DLNs, suggesting 

inefficient trafficking of PlxnA1-/- DCs.  However, reversal of the staining (CMRA+ WT and 

CMFDA+ PlxnA1-/- DCs) resulted in reduced trafficking of the CMRA+ WT DCs compared 

to the CMFDA+ WT DCs to the DLNs.  This resulted in the differences between CMRA+ WT 

versus CMFDA+ PlxnA1-/- DCs in migration being statistically insignificant (p>0.05), 
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whereas migration CMFDA+ WT versus CMRA+ PlxnA1-/- DCs was statistically different 

(p= ~ 0.01).  A one possible explanation could be that CMRA is more toxic to cells than 

CMFDA, causing more cell death for CMRA+ DCs, in vivo.  Indeed, when CMRA+ WT DCs 

and CMFDA+ PlxnA1-/- DCs migrated, the differences observed were less, possibly due to 

more cell death of the CMRA+ WT DCs (Fig. 3.6).  When using CMRA+ PlxnA1-/- DCs and 

CMFDA+ WT DCs, the differences observed were greater, also possibly due to higher cell 

death of CMRA+ PlxnA1-/- DCs.  Nontheless, the data consistently showed that the numbers 

of PlxnA1-/- DCs migrating to the DLNs were less than their WT counterparts, although there 

were some samples in either group that had few migrated DCs regardless of their origins (Fig. 

3.6).   

To definitively answer the question of whether PlxnA1 deficiency results in defective 

DC trafficking in vivo upon challenge or maturation signals, alternative strategies should be 

employed.  A different approach is to use a single fluorescent dye without any reported 

toxicity and label a single population, PlxnA1-/- or WT DCs, but leaving the other unlabeled.  

By virtue of the congenic mice expressing the Ly5 antigen, differences in migration are 

expected to be easily determined between labeled and unlabeled exogenous DCs.  

 

Rap1 is downstream of the PlxnA1 pathway in DCs. 

Previously, it was observed that the level of activated Rho GTPase is upregulated by 

PlxnA1 signaling upon T cell contact, resulting in subsequent actin polarization towards the 

interface with T cells (Chapter II) [78].  Actin polarization in APCs, especially DCs, is 

known to be critical for T cell stimulation [91, 92, 233, 244].  Rho GTPases (Rho A, B or C) 

do not appear to bind to PlxnA1, directly [32, 33].  In contrast, it is strongly suggested that R-
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Ras GTPase interacts with PlxnA1 through its conserved domains for R-RasGAP.  In 

addition, there is circumstancial evidence suggesting that PlxnA1 exhibits R-RasGAP 

activity [32, 105].  Rap1 has appeared as another potential player downstream of PlxnA1 

since Rap1 can be activated by R-Ras [123].  Rap1 is also linked to Rho via Arap3 which 

suppresses Rho activation [246].  In line with R-Ras and Rho, the level of activated Rap1 in 

PlxnA1-/- DCs was verified to determine whether Rap1 is regulated by PlxnA1.  By means of 

GST pull-down assays, the level of active Rap1 in PlxnA1-/- DCs was detected was greater 

than that of WT DCs, upon T cell engagement.  Furthermore, the level of activated Rap1 in 

WT DCs upon T cell engagement was even reduced compared to its basal levels under 

resting conditions such as no stimulation by T cells or a specific antigen (Fig. 3.7).  This 

finding suggests that Rap1 activity is suppressed by PlxnA1, as a consequence of the R-

RasGAP activity of PlxnA1.  It is also plausible that PlxnA1 might perform a GAP activity 

towards Rap1, based on the conserved SynGAP region of PlxnA1 which is known to be 

essential for RapGAP activity [32, 136].  Indeed, there is a group of the R-RasGAPs that also 

serve as RapGAPs [137].   

Similar to R-Ras, Rap1 also signals for cellular adhesion and/or migration mainly by 

activating integrins [119, 121, 132, 245, 254].  Indeed, Rap1 is known to play a critical role 

in regulating cell migration and/or adhesion, in immune cells among others [125, 129-131, 

133, 245, 250, 254, 255].  With regard to DCs, defective Rap1 signaling was found to cause 

impaired DC trafficking in vivo [125].  The physiological significance of suppressing Rap1 

activity upon stimulation has been suggested for T cells [129, 131].  CD28 suppresses Rap1 

activity while CD3 stimulates Rap1 activation, upon T cell activation by APCs.  Rap1 

downregulation by CD28 was shown to prevent activation-induced cell death or cell cycle 



 89

arrest which is mediated through a hyperactive LFA-1-ICAM-1 interaction.  Hyperactive 

Rap1 activity resulted in reduced Erk activation, concomitant with upregulation of p27kip1, an 

indicator of cell cycle arrest, leading to less IL-2 production by T cells [129].  Therefore, a 

potential suppressive role of PlxnA1 on Rap1 activity could be a part of PlxnA1’s function in 

promoting an optimal T cell response, by regulating integrin activation. 

Regardless of R-Ras involvement, it should be verified whether the Rap1 activity is 

suppressed by PlxnA1 upon T cell conjugation, and whether this results in an elevated level 

of Rho activation.  Suppression of Rap1 activity by PlxnA1 upon T cell conjugation is 

anticipated not to only result in elevated levels of Rho activity leading to actin remodeling 

and polarization but also in the regulation of integrin activities through effector molecules 

such as RapL which are responsible for cell adhesion and/or migration.  Ultimately, the study 

of Rap1 activity regulation by PlxnA1 should be extended to cover the events involved in 

chemokine-induced DC migration.   
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Figure 3.1.  PlxnA1 transcript levels determined by real-time PCR:  PlxnA1 RNA 
transcript levels were measured as follows.  1) BMDCs or Mac: Twelve day-cultured mature 
BMDCs derived from WT and plxna1-/- mice; BM-derived CD11b+ CD11c- Mac; Flt3L-
induced mPDCA-1+ CD11c+ B220+ pDCs ; and 2) freshly isolated cells:  CD11c+ CD11b+ 
mDCs from BM; mPDCA-1+ CD11c+ B220+ pDCs from BM; peritoneal cells; splenic 
CD11c+ CD8α– mDCs; DC11c+ CD8α+ lDCs; and splenic CD3+ T cells and CD19+ B cells.  
Except for the PlxnA1-/- BMDCs as a negative control, all the other samples were prepared 
from WT C57BL/6J mice.  Except Day12 BMDCs and peritoneal cells, each group of cells 
was sorted by FACS (MoFlo) for RT-PCR analysis.  And PlxnA1 transcript levels were 
calculated and normalized β-actin levels.  Each value represents fold increase over PlxnA1-/- 
DCs as 1.  Data is representative of three independent experiments. 
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Figure 3.1 
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 Figure 3.2.  DC-T cell co-culture with PlxnA1-Fc blockade: The extracellular fragment of 
murine PlxnA1 cDNA fused to human IgG1 Fc (PlxnA1-Fc) and Fc only control with an IL-
2 signal peptide sequences were expressed in HEK293 cells, and purified using protein A/G 
agarose beads (A).  A Coomassie blue-stained SDS PAGE gel (Ba) and Western blot (Bb) 
performed with anti-human IgG-Fc-HRP show the purified PlxnA1-Fc protein (arrow: ~180 
kDa) and Fc only control protein (arrow: ~25 kDa), respectively (B).  For each DC-T cell co-
culture experiment, PlxnA1-Fc or Fc only was added in the co-culture of BMDCs along with 
CFSE-labeled OT-II T cells at Day 0.  Harvested cells were stained with Vβ5-APC and 
CFSE peaks were analyzed on channel FL1 among the cells gated out of Vβ5+ live 
lymphocytes by flow cytometry (C). 
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Figure 3.2 
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Figure 3.3.  DC-T cell co-culture using PlxnA1-/- DCs:  BMDCs generated from plxna1-/- 
mice or WT littermates were pulsed with OVA protein at Day 12 for 12 hrs., and stained for 
mature DC surface markers, CD86, CD80, I-Ab, CD40 and CD11c (dark lines), using FITC-
conjugated antibodies for I-Ab, PE-antibodies for CD86, CD80 and CD40, and APC-
conjugated antibody for CD11c, to compare surface expression in PlxnA1-/- DCs with those 
on WT counterparts, respectively.  Isotype controls were used with isotype-matched and 
fluorescent conjugate-matched hamster or rat antibodies (gray lines) to set a percentage of 
positive cells for desired marker expression in each sample gated out of total live populations 
(A).  DCs from both groups were added in co-culture with CFSE-labeled OT-II T cells at 1:5 
ratios, respectively.  Cells were harvested at Day 2, 4, and 7, stained with anti-Vβ5-biotin or 
anti-CD69-biotin followed by SA-APC or anti-TCR-APC, and analyzed by flow cytometry.  
Plots were gated out of a live lymphocyte population, from which Vβ5-positive or Vβ5-
negative populations were enumerated (B).  Live lymphocyte populations from Day 2 
samples was displayed with CFSE reduction and CD69 expression for Day 2 samples (C, the 
top row) and TCR expression for Day 4 and 7 (C, the middle and the bottom rows).  One 
experiment representative of three independent experiments is shown.   
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Figure 3.3 
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Figure 3.3 
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Figure 3.3 
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Figure 3.4.  T cell activation assay in vivo:  Day 12 BMDCs from plxna1-/- or WT 
littermates were pulsed with 0.1 µM peptide OVA323-339, and intravenously transferred into 
the tail vein of B6-Ly5.1 congenic mice along with CFSE-labeled OT-II T cells at 1:4 ratios.  
The splenic T cells from each mouse were analyzed 72 hr. post-transfer.  After staining with 
anti-Vβ5-biotin followed by SA-pacific blue along with anti-TCR-APC and anti-Ly5.2-APC-
Cy7, CFSE-labeled Vβ5+ T cells were gated out of Ly5.2+ TCR+ T cells and visualized by 
flow cytometry (A).  IFN-γ production was determined by ELISPOT, 24 hr. post-
restimulation with OVA, ex vivo (B).  Each group reflects an experiment performed in 
triplicate and the figure is representative of two independent experiments.  Statistical analysis 
was carried out by student t-test using software Prism.   
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Figure 3.4 
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Figure 3.5.  In vitro migration assay for PlxnA1-/- DCs:  PlxnA1-/- DCs were tested for 
their migratory activities towards various chemokines, in vitro using 96-transwell plates.  
Day 12 BMDCs from plxna1-/- mice and from WT littermates were exposed to CCL19 (A), 
CCL21 (B), CXCL12 (C), CCL5 (D), and C5a (E, a complement factor as a negative control).  
Cells migrated towards each chemokine present in the bottom wells were measured at 450-
650 nm using a XTT assay.  For setting standard curves, PlxnA1-/- DCs along with WT DCs 
(1 x 105 cells each) were also subjected to XTT assays with serial dilutions at a 1:1 ratio.  
Standard curves served as internal controls for the equivalent numbers of WT and PlxnA1-/- 
DCs used for each assay.  The average of triplicate wells reflecting one concentration of each 
chemokine is displayed with standard deviations.  One representative of ten independent 
experiments is shown (A-E).  The number of cells in each sample was deduced based on the 
equation aquired from either standard curve.  Expression of CCR7 and CXCR4 was 
compared between PlxnA1-/- DCs and WT DCs, both from the preparations used for in vitro 
migration assays.  Real-time PCR was performed on cDNA from PlxnA1-/- DCs or WT 
counterparts for Ccr7 and Cxcr4 along with PlxnA1 expression.  Transcript levels were 
normalized to β-actin levels and expressed as fold over WT (F).  Surface expression of CCR7 
and CXCR4 along with that of CD11c+ was compared among the total live populations from 
PlxnA1-/- or WT BMDCs using anti-CCR7-PE, anti-CXCR4-PE, or anti-CD11c-APC 
antibodies (dark lines).  Isotype controls were prepared with isotype-matched and fluorescent 
conjugate-matched hamster or rat antibodies (gray lines) to reflect the positive population 
that was gated out of total viable cell population (G).  Data is representative of three 
independent experiments (F-G).  Statistical analysis of the real-time PCR on CCR7 and 
CXCR4 between the two groups per set was carried out by student t test and Prism software. 
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Figure 3.5 
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Figure 3.5 
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Figure 3.6.  In vivo migration assay for PlxnA1-/- DCs:  PlxnA1-/- DCs were examined for 
their migration, from skin tissue to the DLNs.  Day 12 BMDCs from plxna1-/- mice and WT 
littermates were OVA-pulsed, differentially labeled with CMRA and CMFDA, respectively, 
and mixed at a 1:1 ratio (1 x 106 cells each).  As an internal control, the labeling was reversed.  
Equal numbers of differentially labeled PlxnA1-/- and WT DCs were subcutaneously 
transferred to the hind foot pads of Ly5.1 congenic mice.  At 36 hr. post-transfer, DLNs 
(popliteal) and NDLNs (axillary) were isolated from the recipient mice and the total LN cells 
stained with anti-CD11c-APC-Cy7 and Ly5.2-APC.  The transferred CMRA (FL2)+ or 
CMFDA (FL1)+ DC populations were analyzed in two-dimensional plots from cells gated out 
of a CD11c+ Ly5.2+ live population using flow cytometry.   Either group is represented as 
percent CMFDA+ or CMRA+ cells from Ly5.2+ CD11c+ cells for each recipient’s DLNs.  
Each open circle reflects a single recipient mouse.  Data is representative of three 
independent experiments.  Statistical analysis between the two groups per set was carried out 
by student t test and Prism software. 
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Figure 3.6 
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Figure 3.7.  GST pull-down assay for activated Rap1 in PlxnA1-/-DCs upon DC-T cell 
conjugation.  The amount of active Rap1 in PlxnA1-/- DCs upon T cell conjugation was 
compared to WT counterparts by GST pull-down assays.  OVA-pulsed DCs (1 x 106) from 
plxna1-/- or WT mice were prepared.  CD4+ OT-II T cells (1 x 106) were isolated and fixed 
with 1% formaldehyde.  Negative controls for antigen-dependent DC-T cell conjugation were 
non-OVA pulsed PlxnA1-/- or WT DCs with T cells as well as the ones pulsed with OVA but 
incubated without T cells.  Subsequent to incubating each group of DCs with or without T 
cells at 37oC for 2 min., GTP-bound Rap1 was precipitated with RBD-GST-agarose beads 
and detected along with total Rap1 from each cell lysate using western-blotting.  GTP-Rap1 
and total amounts of Rap1 from WT and PlxnA1-/- DCs are shown in the rectangular box.      
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Figure 3.7 
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4.1.  Finding PlxnA1 ligand on naïve T cells for T cell activation (Fig. 4.1; Fig. 5.1) 

The work presented here shows that PlxnA1 on the surface of DCs is crucial for 

priming T cells upon DC-T cell conjugation, as well as for chemokine-induced DC migration.  

Although Sema6D on T cells has been identified as a PlxnA1 ligand (See Appendix), it is 

expected that PlxnA1 pairs with more than one ligand expressed on T cells in a 

spatiotemporal manner.  It is because Sema6D is shown upregulated upon activation, while 

PlxnA1 is already expressed on mature DCs prior to encountering T cells, that I reasoned that 

there might be another ligand of PlxnA1 on naïve T cells [29, 71, 78, 79].  Identifying the 

PlxnA1 ligand expressed on naïve T cells that triggers intracellular signaling cascade upon 

cognate T cell engagement would allow us to examine more closely what molecular events 

take place upon activation of PlxnA1.  When monoclonal antibody for PlxnA1 is available, 

we would like to perform high-throughput methods such as mass spectrometry, in order to 

identify Plxn-A1-interacting proteins from naïve T cells.   

 

4.2.  A role of PlxnA1 in T cell polarization (Fig. 4.2) 

Our in vitro co-culture experiment using PlxnA1-/- DCs showed inefficient proliferation 

of cognate T cells stimulated by DCs lacking PlxnA1 not only in the earlier time point (Day 

2) but also in the later stage (at Day 7), (See Fig. 3.3).  Such data suggest that PlxnA1 might 

be involved in T cell polarization process.  Extended function of PlxnA1 was also supported 

by a recent observation that Sema6D, PlxnA1 ligand, augments T cell response in the later 

stage of primary response [79].  Potential involvement of PlxnA1 in T cell polarization was 

suggested by a previous finding that PlxnA1 augments IL-12 secretion by DCs in response to 

Sema6D [29].  Moreover, the same report showed that IFN-γ production was significantly 
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reduced in plxna1-/- animals along with alleviated EAE symptoms upon MOG challenge [29].  

Although recent evidence suggests that there are IL-12-independent pathways for induction 

of Th1 response, it is well studied that Th1 response is facilitated by IFN-γ which is strongly 

induced by IL-12 production from DCs in a variety of contexts [180, 183, 256-260].  In this 

regard, lower numbers of IFN-γ- producing cells in the OVA-recall response after in vivo T 

cell priming by PlxnA1-/- DCs, also implies that PlxnA1 favors inflammatory Th1 response 

(See Fig. 3.4).  However, cytokine profiling should be valuable to determine whether PlxnA1 

plays a role in terminal differentiation of T cells, since other cytokines inducing Th2 (IL-13 

or IL-4), or Th17 (IL-23) response has not been tested.  Cytokine arrays followed by 

ELISPOT/ELISA assays on DCs with or without PlxnA1 upon in vitro DC-T cell co-culture 

will provide a clue whether PlxnA1 on DCs affects T cell fates.  Additionally, in vivo T cell 

priming followed by ex vivo antigen-recall response using ELISPOT assays will verify in 

vitro results.  One additional question to that is what T cell response would be default in the 

absence of PlxnA1 [253].     

   

4.3.  PlxnA1 on migratory activity of DCs 

Previously, no impairment was found in DC migration from the periphery to DLNs in 

plxna1-/- animals by others [29].  However, the methodology that they used entailing skin 

painting with FITC to measure DC migration in vivo has some disadvantages as mentioned 

elsewhere (Chapter III).  Due to such drawbacks, it was imperative to re-examine the 

migratory properties of PlxnA1-/- DCs, and in the current study, we have performed in vitro 

and in vivo analyses.  In vitro chemotaxis assays for defined chemokines including CCL21 

and CCL19, PlxnA1-/- DCs showed significantly reduced capacity to migrate towards such 
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chemokines.  However, there was no obvious difference in expression of CCR7 and CXCR4 

in PlxnA1-/- DCs which are receptors for CCL21/19 and CXCL12, respectively, suggesting 

no role of PlxnA1 in regulating the expression of either receptor (See Fig. 3.5).  Therefore, 

PlxnA1 is likely involved in the signaling upon chemokine-induced migration of DCs.   

However, in the course of confirming whether inefficient DC migration upon 

chemokine stimulation would be physiologically relevant in vivo, we have encountered an 

unexpected complication with differential labeling.  DC trafficking from the periphery to 

DLNs has been tested in vivo using differentially labeled DCs from plxna1-/- mice or WT 

littermates using two different fluorescent dyes, CMFDA and CMRA.  Results showed that 

one pair of differentially labeled DCs (CMFDA+ PlxnA1-/- and CMRA+ WT)) found in 

recipient DLNs showed insignificant difference between PlxnA1-/- and WT DCs  (p>0.05) 

compared to the other pair (CMRA+ PlxnA1-/- and CMFDA+ WT) of which much more 

CMFDA+ WT DCs were found in DLNs than CMRA+ PlxnA1-/- DCs (p= ~ 0.01) (See Fig. 

3.6).  In general, lower numbers of CMRA-labeled DCs were found in cells from DLNs than 

those of CMFDA-labeled ones.   

One explanation would be that CMRA might have been more toxic than CMFDA, 

causing cell death.  It is also possible that lack of PlxnA1 on DCs could have been 

compensated by other factors in vivo, such that a migratory defect of DCs did not appear as 

severe in animals as isolated DCs upon defined chemokines tested in vitro.  In order to 

clarify whether the lack of PlxnA1 on DCs causes a severe defect in DC trafficking to DLNs 

upon challenge, an alternative strategy is to label PlxnA1-/- DCs or WT DCs with one 

fluorescent dye such as CMFDA which is thought to be minimally toxic.  After transfer into 
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the periphery such as hind foot pads of congenic Ly5.1 recipient mice, both unlabeled and 

CMFDA-labeled Ly5.2+ DCs can be analyzed in comparison.   

 

4.4.  Small GTPases involved in PlxnA1 signaling (Fig. 4.3) 

As previously shown, we have observed that PlxnA1 affects DC activity in chemokine-

induced migration as well as in T cell priming upon conjugation.  However, it is yet to be 

defined the molecular mechanism by which PlxnA1 signals for regulating such cellular 

behaviors.  Previously, our group showed that DCs contained elevated levels of Rho GTPase 

activity only in the presence of PlxnA1 upon T cell engagement, followed by subsequent 

actin polarization towards the interface with T cells [78].  In the absence of PlxnA1, elevated 

Rho activity was not evident upon T cell conjugation, neither was actin polarization, which is 

known to be crucial for T cell response [91, 92, 233, 244].  However, there is still a gap 

between PlxnA1 and Rho GTPase, based on the evidence that Rho GTPases (RhoA, B, or C) 

do not directly bind to PlxnA1 [32, 33].   

Instead, PlxnA1 has been suggested to interact with R-Ras, and perform R-RasGAP 

activity, upon Sema3A stimulation that requires downregulation of R-Ras activity [32, 105].  

Although PlxnA1 has never been directly proven to exhibit such activity, R-RasGAP 

conserved sequence in the cytoplasmic region of PlxnA1 supports that this might be the case 

[32].   

It is evident that R-Ras activates integrin signaling, for cellular migration and adhesion 

[119].  Related to R-Ras functionality, Rap1 has also been implicated in cell adhesion and 

migration, in the immune cells among others [124, 126, 130, 132, 250, 254, 255, 261-263].  

Based on recent evidence, Rap1 functions downstream of R-Ras activity in macrophage-like 
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cell line [123].  In addition, Rap1 has a link to Rho via Arap3, a Rap1 effector protein, which 

performs RhoGAP activity, suppressing Rho activation [246].  Based on these links, we 

hypothesized that Rap1 might be regulated by PlxnA1.   

To test our hypothesis, Rap1 activity has been compared in DCs in the presence or 

absence of PlxnA1 upon T cell conjugation using GST pull-down assays.  Our preliminary 

attempts to compare Rap1 activity in PlxnA1-/- DCs to WT controls produced promising 

results, showing that a level of activated Rap1 in PlxnA1-/- DCs was elevated compared to 

WT DCs upon T cell contact (Fig. 3.7).  This preliminary result suggests that PlxnA1 

potentially down-regulates Rap1 activity.  As suggested previously, it could be through its 

GAP activity for R-Ras, PlxnA1 suppresses R-Ras activation, which would results in 

downregulation of Rap1 activity.  Another possibility is that PlxnA1 might play a GAP 

activity directly for Rap1 without involving R-Ras.  This is less likely but still possible since 

PlxnA1 has SynGAP conserved region, known to be essential for RapGAP activity [136].  

Ras and Rap proteins also share some of their GAPs [137, 264].   

Regardless of whether R-Ras mediates PlxnA1-Rap1 pathway, our focus is to 

determine whether Rap1 downstream of PlxnA1 regulates activity of RhoA, as well, because 

RhoA was previously observed upregulated by PlxnA1 upon T cell interaction (Fig 2.4) [78].  

As mentioned previously, a link between Rap1 and RhoA has been connected by a Rap1 

effector molecule called Arap3, which is a RhoA-GAP, thereby suppressing RhoA activity 

[246].  In this way, downregulation of Rap1 activity by PlxnA1 which would result in 

elevated levels of RhoA activity (Fig. 2.4) [78].  Therefore, following the current 

experiments to verify suppression of Rap1 activity by PlxnA1, our aim is to determine 

whether Rho GTPase is suppressed by Rap1 upon T cell engagement.  Downregulation of 
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Rap1 activity by PlxnA1 could be mimicked by introducing a known Rap1GAP protein into 

PlxnA1-/- DCs via transduction of adenoviral particles that are available through 

collaborations.  Our hypothesis will be tested whether reduction of Rap1 activity executed by 

this exogenous Rap1GAP protein in the absence of PlxnA1 would lead to subsequent 

elevation of Rho activity.  Furthermore, Rap1 functionally interacts with integrins, by 

reciprocally activating each other through its effector molecules such as RapL [130, 245, 254, 

265].   

Collectively, it appears that Rap1 would signal through Rho for actin remodeling, but 

also signal for integrin activation through its distinct effector molecules, in order to regulate 

cell adhesion and/or migration.  Therefore, analogous to other contexts, Rap1 potentially 

regulated by PlxnA1 upon T cell conjugation is also likely to signal for activation of integrins 

as well as for actin remodeling in DCs, both of which are thought to contribute to optimal 

stimulation of T cell response.  If this hypothetical pathway of PlxnA1-Rap1 is definitively 

proven, PlxnA1 relationship with Rap1 should be further tested in chemokine-induced DC 

migration, as well. 

 

4.5.  PlxnA1: its clinical implications 

It is clearly shown that PlxnA1 on the surface of DCs is crucial not only in T cell 

priming but also in chemokine-induced DC migration.  PlxnA1 is also implicated in 

augmentation of IFN-γ production, which is indicative of Th1 inflammatory response [180, 

183, 256-260].  Such evidence that PlxnA1 is a stimulatory factor for T cell-mediated 

immunity proposes that PlxnA1 is a potential target for developing therapeutics against 

autoimmune inflammatory disorders such as multiple sclerosis (MS).  Indeed, in EAE model 
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mimicking human MS, plxna1-/- mice showed significantly lower clinical morbidity scores 

along with profound reduction of IFN-γ production, compared to WT individuals, upon 

challenge [29].   

Therefore, the mechanism of PlxnA1 signaling should be dissected including 

identification of its ligand as well as its effector molecules.  Understanding PlxnA1 signaling 

mechanism will direct to a way of efficiently attenuating PlxnA1 signaling in vivo without 

causing significant side effects, for example, through the usage of PlxnA1-Fc blockade.   
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Figure 4.1. Diagram of intercellular molecular interactions on the surface of DCs and 
CD4+ naïve T cells upon conjugation for T cell priming.  Not only the interaction of 
antigen-loaded MHC class II molecules with cognate TCRs, but also other costimulatory 
interactions have been appreciated for their importance in T cell priming, such as the 
interaction of B7 with CD28, CD40 with CD40L (CD154), and ICAM-1 with LFA-1.  
PlxnA1 interaction with its ligand on T cells is now evidently an additional co-stimulation for 
T cell activation.  
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Figure 4.2.  Diagram of Sema6D stimulation and subsequent signaling events upon DC- 
T cell interaction.  It is a collective illustration of known signaling events upon Sema6D 
interaction with PlxnA1 upon DC-T cell interaction.  In the late stage of T cell response, 
Sema6D stimulation is shown to activate c-Abl kinase activity in T cells, resulting in 
phosphorylation of Lat as well as Ckrl, leading to augmented IL-2 production [79].  On DC 
side, DAP12 is shown to be activated upon Sema6D, leading to elevated levels of IL-12 
production, although PlxnA1 association with Trem-2-DAP12 complex does not seem to be 
changed by Sema6D engagement [29].
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Figure 4.3.  Diagram of hypothetical signaling events stimulated by PlxnA1 upon 
engagement with its ligand on naïve T cells in the context of DC-T cell conjugates.  
Upon T cell priming, PlxnA1 interaction with its ligand is thought to not only stimulate T 
cells directly (#1) but also stimulate DCs for further T cell stimulation (#2).  Signaling events 
in DCs involving Rap1 possible regulation by PlxnA1 is expected to contribute to the latter 
(#2).  Rap1 has been connected to suppression of Rho via its effector molecule, Arap3, a 
RhoGAP.  In addition, Rho is activated upon T cell stimulation only in the presence of 
PlxnA1, as shown in Chapter II.  It is also shown that Rap1 is activated by R-Ras.  Thus, 
based on our preliminary data that a level of activated Rap1 in DCs upon T cell conjugation 
was elevated in the absence of PlxnA1 as shown in Chapter III, it is hypothesized that Rap1 
is regulated by PlxnA1 either via its R-RasGAP activity or directly with its possible RapGAP 
activity.  Rap1 is hypothesized not only to signal for actin remodeling through Rho, but also 
to signal for modulation of integrin activity through its effector molecules such as RapL, both 
of which are thought to contribute to optimal T cell response. 
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Figure 5.1.  Detection of Sema6D-Fc fusion protein colocalization with PlxnA1via 
confocal microscopy.  The extracellular portion of Sema6D was fused with the Fc protion of 
human IgG1 in the pCDNA3 backbone (A).  A 3 kb full-length cDNA encoding Sema6D 
isoform 6 (Sema6D-6) was isolated from mouse brain RNA by RT-PCR (B).  Expression of 
Sema6D-Fc (100 kDa) from drug-selected Chinese hamster ovary stable cell lines was 
confirmed by western-blotting (C).  Cos-7 cells were transfected with either a PlxnA1 or 
CD8α-expressing plasmid and then incubated with biotin-conjugated Sema6D-Fc fusion 
protein (S6D-Fc).  Biotin-Sema6D-Fc was detected by streptavidin (SA)-conjugated Alexa 
Fluor 555 (red).  PlxnA1 was detected by staining with anti-PlxnA1 rabbit polyclonal Ab 
followed by Alexa Fluor 647-conjugated anti-rabbit IgG (Blue).  CD8α was detected with an 
anti-CD8α mAb followed by anti-mouse Alexa Fluor 647.  Purple color demonstrates 
Ecolocalization of biotin-S6D-Fc with PlxnA1 (D).  PlxnA1-expressing mouse DCs cultured 
for 12 days were incubated with biotin-S6D-Fc or control human IgG followed by the 
staining procedure described in D (E).  To confirm that PlxnA1 expression by DCs was 
necessay for Sema6D-Fc association, we used a small hairpin RNA (ShRNA) to reduce 
PlxnA1 expression as described in Chapter II [78].  DCs transduced with an empty retroviral 
control (EV), a retrovirus containing a mutated shRNA (CtrlSh), or a retrovirus bearing 
shRNA for PlxnA1 (PlxnSh) were used in a localization assay with Sema6D-Fc.  The 
staining protocol is identical to the one described in D.  Purple color demonstrates that the 
red signal for biotin-S6D-Fc colocalized with the blue signal for PlxnA1.  A reduction in 
PlxnA1 expression correlated with a reduced capacity of Sema6D-Fc to associate with DCs. 
 
Published in O’Connor, B.P., et al.  Semaphorin 6D regulates the late phase of CD4+ T cell 
primary immune responses. 2008, PNAS 105(35): 13015-20. 
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Figure 5.1.  
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