
Development of a Carbon Nanotube-Based Micro-CT and its Applications in 

Preclinical Research 

Laurel May Burk 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Physics and Astronomy. 

Chapel Hill 

2013 

Approved By 

Dr. Otto Zhou (advisor) 

Dr. J. Larry Klein, M.D. 

Dr. Yueh Z. Lee, M.D. 

Dr. Jianping Lu 

Dr. Amy Oldenburg



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013  

Laurel May Burk  

ALL RIGHTS RESERVED



iii 

 

ABSTRACT 

LAUREL MAY BURK: Development of a Carbon Nanotube-Based Micro-CT and its 

Applications in Preclinical Research 

(Under the direction of Dr. Otto Z. Zhou) 

 

Due to the dependence of researchers on mouse models for the study of human 

disease, diagnostic tools available in the clinic must be modified for use on these much 

smaller subjects. In addition to high spatial resolution, cardiac and lung imaging of mice 

presents extreme temporal challenges, and physiological gating methods must be developed 

in order to image these organs without motion blur. Commercially available micro-CT 

imaging devices are equipped with conventional thermionic x-ray sources and have a limited 

temporal response and are not ideal for in vivo small animal studies. 

Recent development of a field-emission x-ray source with carbon nanotube (CNT) 

cathode in our lab presented the opportunity to create a micro-CT device well-suited for in 

vivo lung and cardiac imaging of murine models for human disease. The goal of this thesis 

work was to present such a device, to develop and refine protocols which allow high 

resolution in vivo imaging of free-breathing mice, and to demonstrate the use of this new 

imaging tool for the study many different disease models. 

In Chapter 1, I provide background information about x-rays, CT imaging, and small 

animal micro-CT. In Chapter 2, CNT-based x-ray sources are explained, and details of a 

micro-focus x-ray tube specialized for micro-CT imaging are presented. In Chapter 3, the 

first and second generation CNT micro-CT devices are characterized, and successful 
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respiratory- and cardiac-gated live animal imaging on normal, wild-type mice is achieved. In 

Chapter 4, respiratory-gated imaging of mouse disease models is demonstrated, limitations to 

the method are discussed, and a new contactless respiration sensor is presented which 

addresses many of these limitations. In Chapter 5, cardiac-gated imaging of disease models is 

demonstrated, including studies of aortic calcification, left ventricular hypertrophy, and 

myocardial infarction. In Chapter 6, several methods for image and system improvement are 

explored, and radiation therapy-related micro-CT imaging is present. Finally, in Chapter 7 I 

discuss future directions for this research and for the CNT micro-CT.
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1. Background and Motivation 

1.1 X-rays 

1.1.1 Discovery of X-rays 

On November 8th, 1895, Roentgen (50-year-old professor of Physics at Julius 

Maximilian University of Wurzburg, Germany), testing his cathode ray tube, saw a 

glimmer of light from his barium platinocyanide fluorescent screen, which was located 

over a meter away from the cathode ray tube. He had discovered “eine neue Art von 

Strahlen” – “a new kind of rays” [1]. Roentgen had been looking for the “invisible high-

frequency rays” predicted by Hermann Ludwig Ferdinand von Helmholtz, which had 

been predicted based on from Maxwell’s theory of electromagnetic radiation. Roentgen 

called these rays X-strahlen – “x-rays”, x for unknown [1].  

When testing the opacity of objects to these mysterious x-rays, Roentgen held up 

a small lead disk in front of his glowing phosphorescent screen and saw not only the 

outline of the disk, but also the outline of the bones in his own fingers! [1] He then took 

images using photographic film in order to make permanent records of these images. The 

second shadowgraph that Roentgen took of his wife’s hand (wearing a ring) was taken on 

22 Dec 1895 (Figure 1-1) and was circulated widely, making Roentgen and his x-rays 

famous. 
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Figure 1-1: The first radiograph image taken by Roentgen, of his wife’s hand [2]. 

1.1.2 Properties and Characteristics 

X-rays are electromagnetic waves with wavelengths ranging from approximately 

100 nm to 0.01 nm. Their propagation and properties are understood not only as waves 

governed by Maxwell’s Equations, but also as particles using the principles of quantum 

mechanics. In medical imaging it is often helpful to think of x-rays as discrete photons, 

each possessing energy related to the frequency ν and wavelength λ by 

          

where h is Planck’s constant. 

When Roentgen saw the ghostly shadow of his own hand appear on the 

fluorescent screen lit by the glow of the “x-rays”, he was also witnessing the birth of 

radiography. The most wide-spread and well-known use of x-rays today is for clinical 

diagnosis. In addition to the simple 2D radiograph, x-rays are used for fluoroscopy, 
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angiography, breast cancer screening (mammography and digital breast tomosynthesis), 

and computed tomography (CT). 

1.1.3 Photon-Matter Interactions 

The utility of x-rays for medical and other imaging devices is made possible 

because of the interaction between photons and matter, resulting in absorption or 

deflection of some number of photons from their direct path to a detector or film. The 

dominant interactions between photons and physical matter include coherent scattering, 

the photoelectric effect, Compton scattering, and pair production. A brief description of 

each follows. 

Coherent Scattering 

Coherent scattering is an elastic collision between the incoming photon and an 

atom within the target material. This scattering, which is a classical rather than quantum 

effect, most generally is seen in interactions between matter and low-energy radiation. Of 

all the interaction types we consider, it is the only one which is non-ionizing. Where 

coherent scattering is present in x-ray medical imaging, it does not contribute to patient 

dose but it does contribute heavily to image noise, deteriorating image quality. 

Figure 1-2: Coherent scattering of an x-ray photon by an atom. [3] 

The Photoelectric Effect 
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The photoelectric effect, the discovery of which resulted in Albert Einstein’s 

receipt of the Nobel Prize in 1921, is a quantum interaction between photons and matter. 

In this interaction, the energy of an incoming photon is completely absorbed by a single 

electron which is then ejected from the target material.  The ejection of such an electron, 

called a “photoelectron,” occurs only when the energy of the incoming photon exceeds 

the work function, or electron binding energy, of the target material. Any surplus in 

energy between the photon and the target material work function is transferred entirely 

into the kinetic energy of the photoelectron. When a now-vacant k-shell orbital, formerly 

occupied the photoelectron, is filled immediately by another electron from a different 

orbital, the atom also emits so-called characteristic radiation; this is a release of 

electromagnetic radiation at an energy equal to that of the energy gap between the two 

orbitals. A related occurrence is the Auger effect [3], where the outer shell electron fills 

the vacant inner shell, and the released energy of the characteristic photon is then 

transferred to yet another orbital electron (the Augur electron) which now possesses 

sufficient energy to escape the atom. Now a new orbital vacancy has been created, which 

can be filled through the emission of characteristic radiation or cascade with yet another 

augur effect. We can see that the photoelectric effect always leads to three end products: 

1) characteristic radiation or auger electrons, 2) an ejected electron (photoelectron), and 

3) a positive ion left behind in the target material. For the purposes of medical x-ray 

imaging, photoelectric interactions are the most desired interaction because the x-ray 

photon is completely absorbed, producing little in the way of scattered radiation that 

would lead to image degradation from scatter noise. Although the ionizing nature of the 

photoelectric effect contributes to radiation dose in a patient because ejected 



5 

 

photoelectron is left free to collide with atoms of nearby tissues causing DNA damage, 

none of this dose is wasted, and it is entirely necessary for image production.  

Figure 1-3: The photoelectric effect. [5] 

Compton Scattering 

While a small amount of image-degrading scattered radiation comes from 

coherent scattering, the overwhelming majority is a result of Compton scattering. In this 

inelastic scattering interaction, only part of the x-ray photon’s energy is transmitted to the 

electron, while the rest is retained by the scattered photon. The amount of energy retained 

by the photon is a function of the ratio of the initial photon energy to the ejected 

electron’s binding energy, and of the scattering angle. The well-known equation which 

describes the Compton Effect is 

       
 

   
(      ). 

Scattering is concentrated in the forward direction for wavelengths much smaller 

than the scatterer size, meaning that higher energy scattered photons also happen to be 

the least deflected. Thus, these photons are more likely to travel entirely through the 

patient and be scattered on a small angle so that they will hit the imaging plate or detector 

as image noise. While the deflection of photons contributes to the creation of an x-ray 

attenuation image at the detector, Compton scattering results in two main problems: the 
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aforementioned generation of image-deteriorating noise, and a radiation safety hazard in 

the area surrounding the x-ray imaging procedure which must be contained with radiation 

shielding materials.  

Figure 1-4: Compton scattering of an x-ray by an atom. [3] 

Pair Production 

The final matter-photon interaction, pair production, is only relevant for very high 

energies (~1 MeV), so it is of limited relevance for most medical x-ray imaging 

applications. For photons of this very specific energy, interaction with the nucleus of the 

target material results in complete absorption of the photon and simultaneous production 

of an electron and positron pair (each of rest mass 511 keV). A somewhat related process, 

photodisintegration, occurs when a photon with energy equal to or greater than the 

binding energy of nucleons dissipates its energy to nucleus, leading to the ejection of 

protons or neutrons from the target atom. As with pair production, this event is highly 

unlikely for a typical medical imaging application, and the loose-cannon behavior of free 

protons or neutrons in biological tissues would result in undesirable effects in a patient. 

1.1.4 X-ray Attenuation and the Attenuation Coefficient 

Because of the many aforementioned ways that photons can interact with matter, 

when a group of x-rays are impendent upon some bulk of material, not all will travel in a 
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straight path through to the other side. Regardless of the method, whether by Compton 

scattering or the photoelectric effect or by a combination of other physics, the incoming 

beam will be attenuated in a statistical but ultimately predictable way, dependent upon 

the energy of the photons and various properties of the bulk material.  

The simplest case to consider is a monoenergetic x-ray beam of initial intensity Io 

and a homogenous material into which the beam enters. The intensity of the x-ray beam 

will be attenuated exponentially as it travels through the homogenous material of 

thickness d. This will occur according to Beer’s law, which states that the outgoing 

intensity is      
   , where µ is a bulk property of the target material called the linear 

attenuation coefficient. If the initial x-ray intensity Io is known and the exiting intensity I 

can be measured directly, then assuming the path length d is also known, the numerical 

value of µ can be solved forward straightforwardly as   
 

 
  (

  

 
). Because the photon-

matter interactions that are simplistically summarized by the single value µ are statistical, 

a sufficiently large number of photons must be included in Io in order to accurately 

measure the linear attenuation coefficient; but assuming that this condition is met, µ is 

found trivially in the simple case. 

Supposing that the target material is not homogenous but is instead made of 

several materials, each with their own linear attenuation coefficient, it is easy to conclude 

that the outgoing x-ray intensity I will be affected multiplicatively through each different 

material with a path length dn and its linear coefficient µn, giving      
 ∑      for the 

intensity of an x-ray beam after a linear trajectory through the materials 

Because the linear attenuation coefficient µ for a given material is physically 

dependent upon all of the mass-energy interactions described in Section 1.1.3, µ is not 
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truly a constant. Rather it depends upon the energy of the photons which interact with the 

material, so it is in fact best expressed as a function µ(E).   

Figure 1-5: the contributions by different physical interactions to the mass attenuation 

coefficient of soft tissue over a range of energies. [4]  

Additionally, µ depends upon a variety of physical properties such as density and 

atomic number. As a consequence, it is possible for two very different types of materials 

to have the same or similar linear attenuation coefficients. Thus while µ can be a helpful 

metric for comparing different materials, it is only meaningful in context and should be 

used cautiously. 

For visual example, Figure 1-5 shows how a single material, soft tissue, exhibits 

different mass attenuation coefficients over a range of energies, and which mass-photon 

interactions contribute most to the attenuation coefficient at that energy. 

1.1.5 X-Ray Tube Design 

The basics of x-ray generation are essentially the same as in Roentgen’s day. The 

classic x-ray tube design consists of an electron source and an anode/target material 

which is held at high voltage and bombarded with electrons to generate x-rays. These 

components are housed within an evacuated tube or enclosure. 
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Figure 1-6: Diagram of a conventional x-ray tube with stationary anode and heated 

filament cathode. [4] 

 

Cathode (electron source) 

The source of electrons in a conventional x-ray tube is a helical filament cathode 

filament made of tungsten wire or a similar material. A voltage of up to 10 V is applied to 

this filament generating a current of 3 – 7 A, and electrical resistance produces heat so 

that electrons are released through thermionic emission [4]. Because the thermionic 

electron emission is not directional, a focusing cup which partially surrounds the cathode 

filament is held at a negative bias so that the resulting electric field bends the electron 

trajectory into a more focused beam.  

Anode  

The anode within the x-ray tube serves two important purposes. First, it is set at a 

high positive voltage with respect to the other tube components so that the electron beam 

is heavily accelerated towards it, gaining kinetic energy which will be imparted to the x-

ray beam. Second, the material of the anode is appropriately chosen so that, when the 

electron beam bombards it, x-rays are generated. For this second purpose, the anode is 

also called the target material. 

1.1.6 Generation of X-rays from the Target 
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When accelerated electrons strike the anode material, the resulting x-rays are 

generated through two different mechanisms: these are Bremsstrahlung and characteristic 

radiation. 

Bremsstrahlung 

Sometimes known by the descriptive “white radiation,” Bremsstrahlung (German 

for “braking radiation”) is electromagnetic radiation emitted when one charged particle 

decelerates as it is deflected by another charged particle [4]. For the relevant scenario 

which occurs inside of an x-ray tube, the two charged particles of interest are accelerated 

electrons and the atoms of the anode target material. The energy of the photon emitted is 

equal to the kinetic energy lost by the charged particle during deceleration. The nickname 

of white radiation describes the broad and continuous distribution of this radiation across 

the energy spectrum, with the maximum cut-off energy equal to the initial kinetic energy 

of the electron as it enters the target material. This maximum energy can only occur, 

however, when the energy of the electron is converted into a single photon, which is a 

relatively rare event. Much more often, multiple photons are released per electron; as a 

result the energy spectrum of Bremsstrahlung (from many electrons with the same initial 

kinetic energy) is weighted more heavily to the lower end of the spectrum. The energy 

spectrum from a tube displays a drop-off at the lower energy end as well, but this can be 

attributed to filtration by the x-ray window material. 

Characteristic Radiation 
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Characteristic x-rays are generated by an atom when outer-shell electrons collapse 

down into vacancies in the inner shells. The energy of the x-ray is equal to the difference 

between the energy levels of these two shells, and the photons are called “characteristic” 

because these energy level differences are particular to a given element. The 

characteristic radiation energy levels for a given target material will appear in the x-ray 

spectrum as discrete peaks across the broad Bremsstrahlung energy spectrum (Figure 1-

7).  

Figure 1-7: Energy spectrum of x-rays generated by a 90 kVp tube with an anode target. 

The broad energy curve of Bremsstrahlung is dominant, with sharp energy spikes 

corresponding to the Kα and Kβ energies for tungsten. [4] 

Anode design 

The anode is oriented at an angle with respect to the oncoming electron beam so 

that the x-ray beam propagates in a direction orthogonal to the electron beam. The 

effective focal spot length of the emitted x-ray beam is equal to the actual focal spot 

length of the electron beam multiplied by sin(θ), where θ is the anode angle. The effect of 

the anode angle on x-ray field coverage and focal spot size is shown in Figure 1-8. 
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Figure 1-8: The effects of different focal spot size (filament size in traditional x-ray 

sources) and anode angle. [4] 

A large amount of heat is generated within the anode along with x-ray production, 

and this heat load can be a limiting factor in the amount of flux generated by an x-ray 

tube. The transmission of heat away from the anode is a major design concern. In 

stationary anode configurations, it is common to insert the target material within a copper 

block which helps carry heat away. Most commercial x-ray sources feature a complex 

rotating anode rather than a simple stationary anode in order to spread the heat load over 

a much larger volume of material. 

1.1.7 X-ray Tube Rating 

The x-rays generated by a particular tube are characterized by (1) the cathode 

current, (2) anode voltage, (3) anode material, and (4) any additional filtration material. 

The cathode current and anode voltage together define the anode current of the tube, and 

thus the overall flux of x-rays emitted from the tube. The anode voltage and the anode 

material determine the energy spectrum of the photons generated through Bremsstrahlung 

and characteristic radiation. The spectrum and total number of photons are modified as 

the beam passes through any the filter material (including the x-ray exit window).  

Limitations of the Conventional X-ray Tube 
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The fundamental design of the x-ray tube has changed very little since the 

developments made by William Coolidge many decades ago, with the exception of the 

rotating anode. Conventional x-ray tubes are the most commonly type of x-ray source, 

but they have some limitations. The thermionic filament cathode requires significant 

heating generation and high power consumption, contributing to a bulky system requiring 

external cooling. Also, the thermionic electron emission limits the temporal resolution of 

the system; electron emission cannot be switched rapidly with a filament cathode, and 

external mechanical shuttering must be used to create temporally narrow pulses. Finally, 

thermionic emission is spatially isotropic, requiring an additional focusing cup to direct 

the beam towards the anode, and the emitted electrons have a very wide energy 

distribution. 

1.2 Computed Tomography 

1.2.1. Historical Background 

The modern application of computed tomography was only made possible with 

the development of the computer in the 60s. Nonetheless, the mathematical framework 

necessary for generating CT images, the theory of backprojection, was developed in 1917 

by J.H. Radon, a Bohemian mathematician [5]. Radon’s calculations showed that how 

distribution of a material in a layer of a bulk object could be theoretically fully known as 

long as the values of a number of line integrals along many paths passing through the 

same layer are also known. This work was widely applied and never used for medical 

purposes, so the power of Radon’s equations would not be realized until several decades 

later. In the late 1950s and early 1960s, physicist A.M. Cormack worked on a calculation 

for determining radiation dose distributions at different depths in the human body [5]. 



14 

 

This work was done independent of and unaware of Radon’s earlier publication, and it 

was only theoretical and he never applied it himself in imaging experiments.  

G.N. Hounsfield is regarded as the true inventor of CT. Unaware of the earlier 

work by Radon and by Cormack, in 1972 he independently acquired and reconstructed 

the first computed tomography image of the head of a patient with a cystic frontal lobe 

tumor [5]. He did this with hardware manufactured by EMI Ltd, a company better known 

to most for their contributions in music as the recording company that signed the Beatles. 

The so-called “EMI scanner” maintained a total monopoly on the technology until 

Siemens launched their own project in 1974. Hounsfield and Cormack were jointly 

awarded the Nobel Prize in medicine in 1979 for their contributions in the development 

of the CT scanner [5]. 

From rapid adoption of the new technology in the early eighties, very little 

progress was made until new scanning geometries such as spiral CT (developed by 

Kalender in 1989), and computing and detector technologies advanced to increase 

resolution and imaging speed. Since those new developments, the CTs have become an 

integral part of the clinic. In 2010, the number of CT operating in clinics is estimated to 

be above 50,000 [5]. Despite the availability of many other imaging modalities, the 

prominence of CT imaging is guaranteed for the near future. 

1.2.2 System Components  

A CT scanner consists primarily of an x-ray source and a detector with which x-

ray signals are recorded after passing through an imaging object or patient. X-rays must 

pass through all portions of the object or patient through sufficient paths in order to allow 

3D reconstruction, so the source and/or detector generally rotates (or rotates and 
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translates) to facilitate acquisition from many angles. Generally, the patient lies on a 

stationary horizontal bed and the x-ray source is attached to a rotation gantry, but the 

exact geometric configuration of the CT components has been modified over time. 

1.2.3 CT Generations – Technological Improvements 

Although the basic physics of computed tomography and the general physical 

components of a CT scanner (x-ray source, detector, and rotation gantry) have not 

changed significantly over the years, scanning geometries have been modified over the 

years in a series of generations [4].  

Pencil Beam 

The original CT scanners featured a single pencil beam x-ray source which was 

both translated and rotated to provide full coverage of a sample slice. Two small 

detectors positioned opposite the pencil beam acquired images for two CT slices 

simultaneously. This configuration resulted in very little scatter reaching the detector, but 

scan times were prohibitively long. 

Narrow Fan Beam 

The next generation followed the same translation and rotation path of the x-ray 

source, but the x-ray beam was now a narrow fan of approximately 10 degrees rather than 

a pencil, and the two-detector array was upgraded to a 30 detector linear array. Scan 

times decreased and scatter, while still minimal, increased. 

Wide Fan Beam 

In the third generation, a wide fan beam x-ray source allowed the entire patient 

slice to be covered and a line of over 800 detector pixels in an arc were positioned 

opposite on the gantry. Both fan beam source and detector arc were rotated around the 
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patient. In the fourth generation, a stationary ring of detectors surrounds the patient and 

only the x-ray source rotates.  

Helical geometry 

With the development of slip-ring technology, the gantry is permitted to rotate 

continuously, increasing volume scan speeds. To take advantage of fast rotation speeds, a 

geometry was developed in which the patient bed is translated through the gantry linearly 

as the fan beam source rotates, effectively passing the beam in a spiral around the patient. 

Cone beam CT 

With a cone-beam x-ray source and a large 2-D detector positioned opposite, a 

full image acquisition can be acquired in a single gantry rotation. Due to the expense of 

building such a detector array, this configuration is only practical for imaging 

applications with small fields of view, such as dental and head CT and micro-CT (see 

Section 1.3).The CNT micro-CT described in this work has a cone beam geometry.  

A cone beam x-ray source must be capable of high flux in order to illuminate the 

entire imaging object at once within a short exposure time. Cone beam CT also has the 

drawback of allowing more scatter to reach the detector plane. 

1.2.4 Theory of CT Reconstruction 

In Section 1.1.4, it was seen that the total attenuation I/Io experienced by an x-ray 

beam as it travels through a bulk of non-uniform material can be expressed by the sum 

     
 ∑      or by the line integral      

∫  ( )  
 
 .    [5] 

According the Radon’s theory, in order to calculate the 3D distribution of 

attenuation values within a bulk material, a sufficiently large number of attenuation line 

integrals must be recorded. Linear x-ray trajectories should cover at least 180 degrees of 
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rotation and pass through each volume segment many times in order to obtain sufficient 

information. 

If a sufficient number and distribution of line integrals have been measured, an 

inverse transform can be performed to obtain all values of µ(x, y) within the object. The 

general principle behind an exact algebraic solution to this problem is visualized in 

Figure 1-9. 

 

Figure 1-9: Physical depiction of the theory behind algebraic-based CT reconstruction. 

Each linear attenuation path can be decomposed into the contributing voxel components 

and those components can be solved for directly. [5] 

This type of direct algebraic solution, however, is extremely time-consuming, so a 

method of convolution and back projection is generally performed instead. An exact 

solution could theoretically be obtained, but in practice there is a spatial sampling 

distribution which corresponds to frequency limitations in an image which has been 

inverted with a Fourier transform. To prevent the image distortion which results from 

sampling restrictions, different convolution kernels can be applied prior to the inversion / 

back projection algorithm, acting as a high pass filter to prevent the unsharpening of 

object edges which would otherwise occur in the final reconstructed volumes. 

1.2.5 Attenuation Coefficient and Hounsfield Units 
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As described previously, the attenuation coefficient for a given voxel (3-D pixel 

or volume segment) derived by CT is not always physically meaningful because it 

depends upon several variables including x-ray energy. In order to convert the attenuation 

coefficients to a meaningful range for diagnostic imaging, a scaling is applied to convert 

into Hounsfield units (HU). This weighting anchors values for water and air at 0 HU and 

-1000 HU, respectively, so that the CT values for any arbitrary tissue with attenuation 

coefficient µT is given by            
(         )

           
        .   [5] 

On this scale, HU for a given material can still have a range of values depending 

upon scanning parameters, but the values are anchored enough to give narrow ranges 

within the typical settings for clinical CT. Figure 1-10 shows common attenuation ranges 

in HU for various materials within the human body. 

 

Figure 1-10: Attenuation ranges in HU for various relevant materials. [5] 

1.2.6 Assessing Image Quality 

Noise 

Due to the probabilistic nature with which photons interact with matter, uniform 

regions within a material are not guaranteed to appear as a continuous region of uniform 

attenuation coefficient in a CT image.  For even an ideal CT system, statistical flux (or 
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quantum noise) will be present. The noise value σ increases if the detector sees a lower 

photon flux, and so it depends upon the attenuation I/I0, the tube mAs Q, and the slice 

thickness T: 

    √
   ⁄

   
 , 

where ε is a factor for system efficiency and fA is a factor which incorporates the effect of 

the chosen reconstruction algorithm [5].  

Contrast-to-Noise Ratio (CNR) 

CNR quantifies the ability of a viewer to distinguish between two different 

regions in an image; it depends upon both the difference in average attenuation values of 

the two regions, µa and µb, as well as their respective noise levels σa and σb: 

         
     

 

 
(     )

. 

The greater the CNR value, the easier to distinguish between the two materials. 

Spatial Resolution 

Spatial resolution of a system is defined as the ability to differentiate between fine 

structures. Achieving high spatial resolution is essential for many radiological 

applications, or else detailed features are blurred and diagnostic power is lost. The spatial 

resolution depends upon many factors, including the focal spot size of the tube and the 

magnification achieved through system geometry. Resolution is quantified through such 

metrics as the modulation transfer function (MTF). 

Magnification 
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The magnification of the projected image at the detector is dependent upon the 

distance between the x-ray source and detector/film (Sf) and the distance between the 

object and detector/film (f):   
  

(    )
. This relationship is illustrated in Figure 1-11. 

Figure 1-11: The effect of geometry on image magnification. [3] 

A larger magnification factor will reduce the effect of low detector resolution if 

this is the limiting factor in image spatial resolution, but it will also decrease the overall 

field of view of the scanner. 

Point Spread Function / Line Spread Function 

A qualitative assessment of image spatial resolution is visual differentiation of 

line pairs, but a more systematic metric is needed for system assessment. One such metric 

is the normalized point response function, which is the system response to an input of 

point impulse. This is determined experimentally by imaging a small hole in an 

attenuating material and measuring the profile at the detector compared with the known 

size of the hole. The same procedure may be used with a narrow slit between two lead 

sheets (or a thin attenuating wire, or the sharp edge of an attenuating material) to obtain 

the line spread function. A sample line spread function is shown in Figure 1-12. 
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Figure 1-12: Example of line spread functions for two different kinds of film with 

different spatial resolutions. [3] 

Modulation Transfer Function (MTF) 

A common measure of system spatial resolution is the modulation transfer 

function (MTF), which is defined as the magnitude of the spatial Fourier transform of the 

line spread function:    ( )   | (   ( ))|     [3] 

Figure 1-13: Sample MTF curves corresponding to the line spread functions shown in 

Figure 1-12. [3] 

A sample MTF curve is displayed in Figure 1-13. Imaging systems suppress high 

spatial frequencies, in effect behaving as low pass filters. It is common to speak of the 

10% MTF, or 5% MTF, which is the frequency in cycles/mm or line pairs/mm 

corresponding with that value of MTF on the curve. 

1.2.7 Imaging Artifacts  
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In order to use reconstructed CT volumes for diagnostic and treatment purposes as 

a proxy for actual patient volumes, it is necessary to assume that all relevant features in 

the patient appear in the CT image. Likewise, all features which appear in the CT image 

should correspond with physical features in the patient or imaging object. While this 

second assumption is usually correct, sometimes an imaging system will produce 

artificial structures, known as image artifacts. Some major causes of imaging artifacts 

include patient movement, beam hardening, radiation scatter, partial volume effects, and 

patient size exceeding the scanner field of view. 

 Figure 1-14: common CT image artifacts including (a) patient motion, (b) beam 

hardening, (c) partial volume, (d) metal implant (beam hardening), and (e) exceeding 

field of view. [5] 

Patient Motion and Volume Inconsistency 

Patient motion as a source of image distortion is easy to understand intuitively. 

However, the distortions are not as straightforward as in the case of two-dimensional x-
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ray imaging, when blurs appearing only in the moving regions. Because CT volume 

reconstruction is achieved by tracing linear x-ray paths backwards from the detector, 

motion blur in an isolated region of object space can lead to distortions and streaks in 

surrounding volumes in reconstruction space. Any type of temporal inconsistency in the 

imaging object space, whether patient motion or contrast agent concentration, can lead to 

distortion throughout portions of the reconstructed CT volume. We will revisit this topic 

again as it motivates the need for physiological motion gating in live animal imaging. 

Beam Hardening 

The artifact known as beam hardening arises from the assumption in CT 

reconstruction that the energy spectra of the x-ray beam is constant as it travels through 

the imaging object, and the fact that this assumption is never strictly true. From the 

earlier discussion of x-ray energy, we know that certain wavelengths of photons are more 

strongly attenuated by a given material than others. For example, low-energy photons are 

strongly attenuated by bone while higher energy photons are not. When a polychromatic 

x-ray beam passes through bone, more of the low energy photons are attenuated than the 

high energy photons, leading to a shift in the energy spectrum on either side of the bone. 

If the x-ray beam then encounters another identically-dense piece of bone along its travel 

path, it will be less attenuated overall this second time around because there are fewer 

low-energy photons available to be disproportionally attenuated. What this leads to in 

reconstruction space are two different types of beam-hardening artifact types. The first is 

dark streaks of photon starvation on either side of a strongly-attenuating material such as 

bone or metal. The second is an apparent increase in density toward the center of a bulk 

of truly uniform material, which is called “cupping” artifact due to the gentle curved 

shape of this artifact in a line profile drawn across a uniform region in the image. 
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Both dark streaks from photon starvation and cupping artifacts are due to the 

polychromatic nature of the x-ray beam and the lack of accounting for this nature in 

traditional CT reconstruction. These artifacts could be eliminated entirely if CT imaging 

was performed with a monochromatic x-ray beam, or if the reconstruction algorithm took 

into account the energy dependence of attenuation. A common and straightforward fix 

which reduces the severity of beam hardening artifacts is to pre-filter the x-ray beam with 

a material, such as steel or aluminum, to reduce the number of low-energy photons in the 

x-ray beam before they enter the imaging object. 

Partial Volume Effect 

This class of image artifact applies especially to helical CT image acquisitions, 

but they are present though less severe in cone-beam CT. In partial volume artifacts, high 

contrast structures extend partially into adjacent slices. This results in a loss of sharpness 

in the feature edge along the z-direction and especially the appearance of shadows along 

the edge of these highly attenuating features. Partial volume effects can also occur within 

the x-y plane though usually less severely, since spatial resolution in-plane is better than 

along the z-axis. Partial volume effects, combined with beam hardening dark streaks, 

create characteristic image artifacts near the interfaces of high- and low-attenuation 

materials. 

Field of View Artifacts 

An essential assumption in CT reconstruction is that all portions of the imaging 

object are contained entirely within the field of view. If some portion of the object is 

outside of this field of view, then some x-ray paths will pass through it and the 

attenuation performed by this excess material will be attributed to some portion of the 

volume which is contained in the field of view. What this means in practice is that, in the 
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reconstructed image, areas at the edge of the field of view and adjacent to the extra 

material will appear hyperdense compared with their true composition. When the amount 

of extra material outside the field of view is small, and the outer portions of the 

reconstructed volume are not diagnostically crucial to view accurately, FOV artifacts are 

easy to interpret correctly and they are mostly harmless. However, if there are large 

amounts exterior material or if they are made of highly attenuating materials such as bone 

or metal, large streak artifacts can appear which obscure large areas of the reconstructed 

image. 

As with beam hardening artifacts, a robust field of study exists to minimize the 

effect of field of view artifacts using special algorithms and corrections [Hsieh 2003]. 

This is an important problem to solve because of the increasing use of flat panel detectors 

in CT, and especially because the average patient size in the clinic has increased over 

time. 

1.3 Pre-clinical high resolution CT (Micro-CT) 

Due to the success of CT in human-scale and clinical imaging, this modality has 

now been applied to non-clinical imaging applications such as tissue samples, biopsies, 

and living animals. Micro-computed tomography (micro-CT or µ-CT) is the small-scale 

high resolution counterpart to the CT scanners used in hospitals, and the general 

principles by which it operates are the same as discussed in the previous sections on CT. 

Ex-vivo and in-vitro imaging of biological samples using micro-CT is widely used for the 

same reasons clinical CT has become popular. 

 In particular, in-vivo small animal imaging has taken off in recent years to meet 

the demands of researchers who study models of human disease in genetically engineered 

mouse models (GEMMs) or other small animals and rodents such as rats and rabbits. 
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Mice in particular are heavily used in biomedical studies of disease because their genome 

is widely known, they reproduce quickly, and they are small and inexpensive to house. 

Researchers studying disease in mice require the same tools of diagnosis and disease 

monitoring as are available in the clinic, including optical and fluorescence imaging, 

ultrasound, magnetic resonance, and of course computed tomography. 

There are special requirements for CT imaging of in-vitro and in-vivo small 

imaging, and the micro-CT scanner is adapted to these needs. In-vitro micro-CT and in-

vivo small animal micro-CT are addressed separately in the following sections. 

1.3.1 In-vitro Micro-CT 

In in-vitro imaging, the primary demands are high contrast resolution and 

extremely high spatial resolution (between 5 and 50 microns) [5]. Thus, the smallest 

possible focal spot sizes are required of these scanners, generally at the expense of tube 

flux and therefore scanning speed. Long scan times are an annoyance for in-vitro imaging 

applications but not a serious problem, since the imaging objects are stationary and 

therefore will not move or change over the scan time, except perhaps for vibrational 

motion or evaporation of liquid in some samples. High radiation dose is also often 

relatively high but not considered an important factor since the imaging subject is not a 

living organism. 

1.3.2 In-vivo Micro-CT  

Live small animal micro-CT is much more analogous to clinical CT than in-vitro 

imaging. High spatial resolution is required but must be compromised on to some degree, 

because here radiation dose and scanning time are important parameters to be minimized. 

Particularly in longitudinal imaging studies where animals are scanned repeatedly over a 
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period of weeks or months, radiation dose needs to be minimized using the ALARA 

principle (As Low As Reasonably Possible). At the same time, scan timing is a crucial 

consideration, both because physiological processes of interest may evolve over the span 

of seconds or minutes, and also because rapid respiration and cardiac rates of mice (~120 

and ~500 bpm, respectively) can introduce significant motion blur in images if not 

compensated for in some way. A comparison between the characteristics of in-vitro and 

in-vivo micro-CT scanning requirements is displayed in Table 1 [5]. 

 In-vitro micro-CT In-vivo micro-CT 

Focal spot size 1-30 µm 50-200 µm 

x-ray power 1-30 W 10-300 W 

Spatial resolution 5-100 µm 50-200 µm 

Scan time 10-300 min 2s – 30min 

Detector Flat panel Flat panel 

Field of measurement 1-50 mm 30-100 mm 

Dose Not important  ALARA 

Table 1-1: Comparison between in-vitro and in-vivo micro-CT parameters. [5] 

Respiratory-Gated In-Vivo Micro-CT  

The use of in-vivo micro-CT has been recently demonstrated for a variety of 

preclinical murine imaging applications [6, 7]. The high contrast between air and 

pulmonary tissue makes micro-CT particularly useful for studies of lung diseases such as 

lung carcinoma and emphysema [8]; iodine-based blood pool agents provide superb 

contrast against soft tissue to permit studies of the heart [9 – 12] and vascular systems. 

However as a consequence of the animal’s rapid respiration rate (~200 bpm conscious 

and ~120 bpm anesthetized), clinical breath-hold imaging techniques are not feasible. 

Some method of respiratory and/or cardiac gating must be employed to reduce motion 

blur of the thorax when performing in vivo imaging of the heart and lungs. In a method 

known as physiological gating, projection x-ray images to be used in reconstruction are 
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matched to a particular phase of the respiratory or cardiac cycles (or both, depending 

upon the imaging application). 

In the method of retrospective respiratory gating, x-ray projection images are 

acquired and each projection is sorted into a bin corresponding to a different phase of the 

respiratory cycle. Then during reconstruction, only projections corresponding to a single 

phase of respiration are used to generate the 3D CT image. To guarantee full angular 

coverage in the phase of interest, multiple rotations of the gantry are necessary. In 

extrinsic retrospective respiratory gating, a sensor must be used to monitor abdominal 

motion throughout the scan so that projections can be sorted into the correct phase bin [8, 

13, 14]. In intrinsic retrospective gating, an algorithm is used to sort the projections into 

the correct phase based on visual inspection of the images themselves [15, 16]. Both 

intrinsic and extrinsic retrospective gating techniques have the benefit of easy 

implementation and fast scan times but result in an increased radiation dose to the subject 

due to the resultant oversampling, potentially violating the ALARA principle. 

Prospective gating circumvents this problem by synchronizing x-ray exposure with the 

physiological phase of interest. One possible method of prospective gating involves 

intubating subjects and directly manipulating airway pressure through a ventilator, 

controlling the amplitude and periodicity of the respiratory motion so that it matches x-

ray exposure windows [17 – 19]. This protocol eliminates the wasted radiation dose of 

retrospective gating, but it requires advanced animal handling techniques to prevent 

damage to the trachea and vocal chords. At least one instance of repeated intubation is 

available in the literature [20] without complications, but no information is available 

about limits to the frequency of the procedure or maximal number of procedures possible 
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on a single animal. Additionally, the process of mechanical ventilation has been shown to 

induce lung injury in otherwise previously healthy specimens [21 – 24]. These risks mean 

that forced breathing and breath-hold gating methods are not ideal for longitudinal 

studies, particularly for sensitive disease models. Also, while external control of lung 

pressure and volume aids the imaging process, it can result in measures of tidal lung 

volumes and related values which are not accurate or physiologically relevant to the 

study.  

A less invasive method of prospective gating permits free-breathing mice to be 

imaged by tracking respiratory chest motion of the animal with a pressure sensor or CCD 

camera and synchronizing x-ray pulses with a desired phase in the respiration cycle [25]; 

this general approach was used in my own work reported throughout the rest of this 

thesis. While the researcher does not have direct control of the physiological state of a 

free-breathing subject, it has been demonstrated that, in general, a healthy adult mouse 

under anesthesia and temperature control generally exhibits stable, quasi-periodic 

respiratory motion so that images of the thorax are blur-free [25]. The aforementioned 

technique has the drawback of increased scan times per CT image, but it keeps radiation 

dose to the subject low and does not require intubation (along with the associated risks). 

In order to achieve optimal results, one requires an x-ray source with good temporal 

resolution (100 ms or less to achieve blur-free respiration images [26]) and reliable 

information about the position of the subject’s lungs and abdomen at any given point of 

time.  

 Cardiac-Gated In-Vivo Micro-CT 

CT imaging of murine models of cardiac disease presents a set of unique 

challenges [27]. It has been demonstrated that in human cardiac imaging, acquisition 
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times of 75.5 ms or less per slice are required to eliminate in-plane arterial motion blur in 

a typical patient with 50 bpm or greater cardiac rate [28]. To replicate the clinical 

imaging technique with a murine subject of 350 bpm or greater while anesthetized, 

freezing motion of the heart within a single phase of the cardiac cycle requires imaging in 

less than 10 to 15 milliseconds. Thus successful cardiac gating requires each x-ray 

projection exposure to persist for 15 ms or less in order to capture the diastolic phase 

without blur. Current micro-CT systems with conventional thermionic x-ray sources 

cannot easily produce such short yet uniform pulses non-periodically. Also, in cardiac-

gated imaging there is no option for externally controlling heartbeats to coincide with 

pre-determined x-ray pulse intervals. Either prospective or retrospective gating 

techniques may be applied to micro-CT small animal cardiac imaging, with the same 

benefits and drawbacks discussed for respiratory gating. 

For physiologically-gated small animal cardiac micro-CT imaging, the scanner’s 

x-ray source must have a small FSS, be capable of high flux for short pulse generation, 

yet also be capable of generating these pulses non-periodically and with almost 

instantaneous response time. These are very high demands! In Chapter 2 we introduce an 

x-ray source based on the principle of field emission, featuring a carbon nanotube-based 

cathode, which meets all of these requirements. 
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2. Carbon Nanotube X-ray Sources 

2.1 Carbon Nanotubes 

Carbon consists of two historically well-known solid allotropic forms: graphite, 

diamond. Graphite is structured in planar sheets, while diamond forms a crystal which is 

incredibly strong. In recent years, additional allotropes of carbon have been discovered, 

including buckminsterfullerene (C60 or buckyball) and the carbon nanotube. 

Buckminsterfullerene is a semiconductor, has many resonance structures, and is aromatic 

[1]. Carbon nanotubes (CNTs) are a recently discovered form of carbon [2] with 

interesting mechanical, thermal, chemical and electronic properties ready to be applied in 

industry.  

The first documentation of the existence of CNTs was by Sumio Iijima in 1991; 

these were multiwalled carbon nanotubes consisting of several layers of rolled-up 

graphite sheets. In 1993, single-walled CNTs were synthesized, consisting of a single 

rolled graphite sheet. The outer diameters of multiwalled CNTs range from 2 to 100 nm, 

while those of single walled CNTs are between 0.4 and 2 nm. Depending upon the rolling 

direction of the graphite sheets, or their chirality vector, CNTs can exhibit different 

properties, such as metallic or semi-conducting behavior.
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Attribute Comment 

Metallic to semiconductor electrical conductivity, 

depending on microstructure 

No other known molecule has this property 

Electrical conductivity: 10
8
 per ohms per meter Comparable to that of copper 

Thermal conductivity: 10
4
 W/(m*K) > than that of diamond 

Carrier mobility: 10
4
 cm

2
 V

-1
 s

-1
 > than that of GaAs 

Supports a current density of 10
9
 A cm

-2
 Due to very weak electromigration 

Nanoscale heterojunctions Common defect that can create an on-tube 

heterojunction 

Young's modulus: 1 TPa Stiffer than any other known material 

Tensile strength: 150 GPa 600 times the strength/ weight ratio of steel 

Table 2-1: Summary of the physical attributes of carbon nanotubes [3]. 

 

Table 2-1 summarizes the unique properties of CNTs. Of particular interest for 

field emission applications are the strength and conductivity of CNTs.  

Figure 2-1: Potential-energy diagram illustrating the effect of an external electric field on 

the energy barrier for electrons at a metal surface. [5] 

2.2 Carbon Nanotube Field Emission X-ray Source 

As discussed in Section 1.1.5, the electron sources in most x-ray sources use a 

thermionic mechanism with heated filaments. An alternative mechanism for reliable 

electron emission is the well-understood process of quantum tunneling. The process of 

field emission lowers the effective work function of a material through the application of 

a high electric field over its surface so that electrons nearest the Fermi level are able to 

tunnel through to the vacuum level (Figure 2-1) [4]. Field emission has clear benefits for 
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electron emission when compared with thermionic emission: no heating of the source is 

required, and the switching speed of the source is limited only by the modulation of an 

electric field. 

The current generated from a material by field emission is expressed with the 

Fowler-Nordheim equation I = aV
2
 exp(-bφ

3
/2/βV), where I, V, φ and β are the emission 

current, the applied voltage, the emitter material’s work function, and a geometric field 

enhancement factor, respectively. Work functions are inherent material properties and 

cannot be modified except by the selection of a different material. Even for metals, a 

typical work function on the order of 10
4
 V/micron would require impractically high 

voltages for field emission, so the other variables of the Fowler-Nordheim equation must 

be explored instead [5]. In particular, the field enhancement factor β can be maximized 

by creating an emitter surface with an extremely sharp tip or profusion, which in effect 

maximizes the electric field at site for easier electron tunneling. 

Because of their extremely high aspect ratio, along with their strength and high 

electrical and thermal conductivity, CNTs are an excellent choice of field emitter material 

and have been considered for this application as early as 1995 [6]. Since then, many 

different applications of CNT field emission have been proposed. In addition to use in x-

ray sources (which is our primary interest), prototype devices have been developed 

including field emission display [7] and liquid crystal backlight display [8]. A field 

emission x-ray source with single wall carbon nanotube-based cathode was first built in 

our lab over ten years ago; a schematic of the device is shown in Figure 2-2a. 

The field emission material used in the first CNT x-ray source was purified 

single-wall carbon nanotube SWNT bundles that were produced by laser ablation [9].  
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The average CNT diameter was 1.4 nm and the average bundle diameter was 50 nm. The 

performance of the SWNT film as a cold-cathode for x-ray generation was tested using 

triode-type geometry. As shown in Figure 2-2a the experimental setup consisted of a 

gated SWNT field-emission cathode and  copper metal anode/target contained within a 

vacuum chamber. A gate consisting of a metal grid 50–200 mm away from the cathode, 

was kept at electrical ground. A negative voltage was applied to the cathode (Vg) and a 

positive voltage to the anode (Va). Thus, an electric field was generated between the 

cathode and gate which was switched on and off by modulating the cathode voltage. The 

anode was kept at a constant positive high voltage. Electrons were only emitted from the 

cathode when the electric field was present, and only then were these electrons 

accelerated to the anode and x-rays were emitted from the copper target. 

A Si-PIN photodiode detector and a multichannel analyzer were used to record 

the emitted x-rays. As expected, the energy spectrum of the x ray thus generated is the 

same as those by the thermionic electrons, with strong characteristic Cu Ka and Kb lines 

and a broad Bremsstrahlung background (Figure 2-2c). 
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Figure 2-2: (a) A schematic of the triode-type field emission x-ray tube with SWNT 

cathode. The gate electrode is a metal mesh 50–200 mm away from the cathode. Electron 

emission is triggered by the voltage applied between the gate and the cathode. X-ray is 

produced when the emitted electrons were accelerated and bombarded on the copper 

target. (b) The emission current transmission rate Ia /(Ia1Ig) versus anode voltage (Va) 

measured in the triode configuration at different gate voltages. (c) Energy spectrum of the 

x ray generated from a copper target at an acceleration voltage of 14 kV. [10] 

To demonstrate the viability of this CNT based field emission x-ray source, 

images of a fish and a humanoid hand were taken using Polaroid™ films placed behind 

the objects outside the x-ray chamber (Figure 2-3). Due to the limitation of the power 

supply and vacuum feedthrough, the acceleration voltage was set at only 14 kV, much 

lower than the typical energies required for medical imaging applications. The effective 

focal spot of this first x-ray source was 3.2 mm in diameter.  

Figure 2-3: X-ray projection images acquired using an early CNT x-ray source and 

Polaroid™ films.  Imaging subjects included (a) a fish and (b) a human hand. X-ray 

parameters were 14 kVp and 180 mAs. X-ray output and applied gate voltage are plotted 

over time (c) when operated at 1 kHz and 50% duty cycle. The height of the signal 

indicates the photon energy rather than the intensity. [10] 
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2.2.1 Applications of CNT X-ray Sources 

Since our lab first introduced its CNT cathode field emission x-ray setup capable 

of biological imaging in 2002, this technology has been implemented in stationary source 

tomography devices [11], radiation therapy applications [12], and small animal micro-CT 

imaging. X-ray sources based on field emission are able to be built compactly because of 

the lack of heat considerations from the cathode, and the CNT cathodes can be built in 

arrays so that emitted beams can be conformed into various shapes [12]. For micro-CT 

applications, a particularly crucial advantage of field emission x-ray technology is the 

rapid source modulation enabled by electric field switching at the cathode surface rather 

than physical shuttering of a thermionic filament. 

In order to make a CNT x-ray tube with the correct properties for small animal 

micro-CT, cathode fabrication and tube design were optimized. This is the focus of the 

remainder of the chapter. 

2.3 CNT cathode design for a Micro-CT X-ray Source 

While the first CNT x-ray source created in our lab was capable of capturing x-

ray projection images of some biological materials, significant modification was 

necessary before such a source could be used in medical applications The flux demands 

and operating conditions for such applications require a high current density on the order 

of 102–103 mA cm
-2

 and electron acceleration voltages ranging from 30 to 220 kV for 

various imaging and radiation therapy applications. 

In order to meet these high demands, carbon nanotube fabrication methods needed 

to be optimized to maintain desired film thicknesses, emitter densities and adhesion. 

Electrophoretic deposition (EPD), an automated industrial process with high throughput, 
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is capable of efficiently depositing even CNT coatings on conducting substrates [13]. Our 

method of fabricating field emission cathodes combines electrophoresis with 

photolithography of functionalized CNTs to exert fine control over film thickness and 

morphology. 

 

Figure 2-4: The procedure used to create a CNT cathode through EPD. On inset figures, 

optical microscope images of a cathode after (a) photolithography, (b) CNT deposition, 

and (c) liftoff with NMP and vacuum annealing. [14] 

The general method of CNT cathode fabrication is as follows [15], illustrated in 

Figure 2-4. First the substrate is spin coated with a uniform layer of OmniCoat™ SU-8 

release (MicroChem, Inc.) and then spin coated again with a layer of epoxy-based SU-8 

negative photoresist (Step 1). The photoresist is patterned to the desired cathode shape 

and size using UV contact photolithography and the exposed layer is then removed to 

reveal the surface beneath (Step 2). When a glass substrate is used, a thin silver contact 
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lines must be thermally evaporated onto the surface with photoresist to provide electrical 

contact. Then the CNTs are applied using EPD. The CNT coating thickness is controlled 

by adjusting both the applied voltage and deposition time. After soft baking, sonication in 

a stripping solution of N-Methyl-2-Pyrrolidone stripped the photoresist, and excess 

stripping solution was removed by acetone rinsing before performing the vacuum anneal. 

The adhesion between the CNT composite film and the substrate is strong enough 

that few CNTs are removed from the substrate surface after photoresist liftoff. With SEM 

imaging (Figure 2-5) we confirm that CNTs are randomly oriented after EPD and 

vacuum annealing. An activation process of mechanically removing a top layer of the 

composite film using an adhesive tape causes the surface CNTs to align vertically with 

one end firmly embedded inside the matrix and the other end protruding from the surface 

(Figure 2-5c). This vertical morphology is optimal both for adhesion and for field 

enhancement. 

Figure 2-5: SEM images showing the top surface of the composite CNT film both: (a) 

before and (b) after vacuum annealing. The CNTs are randomly oriented on the surface. 

(c) Cross-sectional SEM image of the CNT cathode after the activation process. The 

surface CNTs are now vertically aligned in direction perpendicular to the substrate 

surface. Cross-sectional SEM images of two cathodes fabricated under the same 

conditions except different CNT concentrations in the EPD inks. Cathode shown in (e) 
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was made using an ink with 4× the CNT concentration than the cathode shown in (d). 

[14] 

The cathode emission is evaluated in triode mode and with applied high anode 

voltage (50 kV) illustrated in Figure 2-6a inset. After a conditioning process, the cathode 

operated stably as part of a field emission source with a 50 kV anode voltage, appropriate 

for an x-ray source in a micro-CT imaging system. For a 0.50 mm x 2.35 mm elliptical 

cathode and focusing layouts used in the micro-CT x-ray source (Figure 2-6a), a stable 

cathode current of 3 mA is easily achieved with an applied gate voltage (Vg) of ∼1800 

V. This source has a transmission rate through to the anode of 60% of cathode current; 

the rest is lost to the gate and focusing electrodes. A transmission rate of less than 100% 

is fully expected, however, as the process of focusing to a smaller focal spot on the anode 

involves some blockage of the electrons that are emitted from the CNT cathode. 

In Figure 2-6b, lifetime stability of a CNT cathode in a micro-CT x-ray 

configuration was examined. The 0.5 mm x 2.35 mm elliptical CNT cathode was 

operated for 4500 minutes with the appropriate parameters for cardiac micro-CT, 

including a 50 kV applied anode voltage and gate voltage adjusted to maintain a stable 

pulsed 3.0 mA cathode current. Pulses were 20 ms in duration and occurred at a 

frequency of 1 Hz (2% duty cycle). Over this lifetime test there was a gate voltage 

degradation of approximately 300 V (from 1800 to 2100 V) over the 5400 minute test, 

which is equivalent to 810 successive cardiac micro-CT image acquisitions.  
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Figure 2-6: (a) Field emission current as a function of the applied gate voltage from a 

0.50 mm × 2.35 mm elliptical CNT cathode at constant anode voltage. For comparison 

the data from the same cathode measured in the parallel-plate geometry (cathode-to-

anode spacing was 150 μm) is also shown. (b) Emission lifetime measurement of a 0.50 

mm × 2.35 mm CNT cathode at constant current mode in triode geometry. [14] 

 

2.4 Optimization of Gate Mesh / Improvement of Focal Spot Size and 

Transmission Rate 

Optimization of a micro-focus field emission x-ray source with CNT cathode does 

not begin and end with cathode optimization. A great deal of time and effort was put 

toward improving the focal spot size and transmission rate of the micro-focus tube by 

investigating modifications to the static focusing structures and the gate mesh [15]. 

Simulations of electron emission, beam path, and transmission rates were performed, and 

these results were verified through experiment. Commercial electron optics software 

(OPERA-3D, Cobham Technical Service) was used to simulate the effects of varying 

tube construction parameters. The software is based on finite element analysis and 

includes the self-consistent behavior of a charged particle beam in an electrostatic field.  

In order to perform accurate simulations, an accurate model for CNT field 

emission needed to be input into the simulation software. Three different electron 

distribution models were explored, and they are illustrated in Figure 2-7 [15]. The first 

assumes purely unidirectional electron emission from CNT tips, the second assumes a 
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random distribution of electron emission from single emission points, and the third 

assumes some random distribution across a forward bias. Each of these field emission 

models were used in simulation with a variety of voltages applied to the top static 

focusing structure, and the resulting focal spot sizes were generated. These same focusing 

structure voltages were tested experimentally on an actual CNT field emission cathode, 

and the true focal spot size was measured. The procedure for focal spot measurement 

involved imaging the geometric sharpness of a 1mm tungsten crosswire and estimating 

FSS based on the European Standard EN 12543-5 [16]. The results of simulation using 

the three emission models were are plotted, along with true experimental results, in 

Figure 2-8 [15]. 

 

Figure 2-7: (left) Schematics of CNT configuration on the surface. When there is no 

electric field CNTs are randomly oriented. When an external field is applied 

perpendicular to the surface, the CNTs with free ends will align themselves along the 

field direction. (middle) SEM pictures of CNT film. (right) The 3 distribution model 

studied (a) No beam divergence assumed where all the particles are emitted at an angle of 

90° from the emission surface. (b)The random distribution model, and (c) The forward 

biased model. [15] 
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Figure 2-8: Plot of the FSS (axis) as a function of the top focusing voltage for a 2.35 x 

0.5 mm cathode, operating at 40KV anode voltage and about 1300V gate voltage for 

0.2mA cathode current. The simulated results for the 3 different beam distributions have 

been compared with actual experimental data. The experimental measurements show best 

agreement with the forward biased beam distribution in terms of both FSS size and also 

transmission rate. This confirmed the accuracy of the emission model and from here on 

the forward biased distribution has been used for all the electron optics simulations. [15] 

As can be seen from the plots in Figure 2-8, the simulation-generated focal spot 

sizes generated with the assumption of forward-biased electron emission most closely 

match the values from experiment, both in numerical values and in trend shape. Thus, the 

assumption of forward biased electron field emission was used for all further simulations. 

2.4.1 Optimizing Gate Mesh Design 

Previously, an optimal focal spot size of 112 x 152 microns was obtained. This 

was larger than original estimates, and the design of the gate mesh was hypothesized to 

be responsible for this discrepancy. The previous gate mesh was a 2D woven tungsten 

mesh (Figure 2-9 left). But as can be seen, simulations with the new forward-biased field 

emitter assumption how that the 2D gate over-focuses the electrons to the point that the 

static focusing structures cannot optimally correct it, and the transmission rate suffers as a 

result. However, a 1D gate mesh with wires running parallel to the long axis of the 

cathode (Figure 2-9, right), draw the electrons through with little divergence. The switch 

from a 2-D to a 1-D gate mesh with a pitch of 100 microns (wire width of 25 microns and 
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50 micron tungsten etched mesh), results in an improvement focal spot size visualized in 

Figure 2-10. For a wide range of top focus structure voltages, the 1-D mesh outperforms 

the 2-D mesh as quantified by smaller FSS on both the long and short axis. 

Figure 2-9: (left) Shows the beam divergence after passing through the 2D gate mesh 

which is used for extraction of the electron from the emission surface. The particles 

cross-over dramatically making it very difficult to focus them back to a point on the 

anode surface. (right) When the gate mesh is replaced by a 1D linear mesh, the particles 

display less divergence making it easier to focus the beam to a small focus spot. [15] 

 

Figure 2-10: (left) are the optical images of the 2D mesh and 1D mesh. (right) The 

measured FSS as a function of the top focusing voltage at 40KV anode voltage and 

1200V gate voltage. An isotropic 100μm FSS is obtained using the 1D mesh which is 

smaller than the FSS using the 2D mesh. [15] 

The 1D mesh also improves transmission rate to the anode, as expected. The 

results of this analysis are displayed in Figure 2-11. In both simulation and in experiment, 

while transmission rate of electrons through the gate mesh are roughly equivalent for 

both 2D and 1D, the reduced divergence of the 1D mesh allows a greater percentage of 

electrons to make it to the anode for the generation of electrons (50% vs. 37% for 

simulation, and 50% vs. 40% for experiment). 
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In summary, modifications to the gate mesh, which were motivated by greater 

understanding of the electron beam path after revising the simulation assumptions of the 

directionality of field emission from CNT cathodes, resulted in superior performance 

quantified by a greater transmission rate of electrons to the anode and a smaller FSS. By 

switching to a 1-dimensional tungsten gate mesh, the maximum FSS was reduced to 

approximately 100 x 100 microns as had been originally predicted, and anode 

transmission rate increased to from 40% to 50%.  

Figure 2-11: (left) Representative current density distribution (simulated) on the anode 

surface. A Gaussian fitting is done to obtain the FSS, which is defined as the area within 

which 80% of the anode current resides. (right) Comparison of the transmission rate 

between simulation and experimental. There is an overall gain in anode transmission 

using the 1D mesh. [15] 

2.5 Conclusions 

The optimization of parameters within the CNT micro-focus field emission x-ray 

source, including cathode manufacture and gate mesh redesign, resulted in crucial 

improvements of tube performance. These improvements were made after manufacture of 

the first CNT micro-CT, Cyclops (described in Section 3.1) but before the bulk of 

imaging performed with the second-generation CNT micro-CT, Charybdis (the primary 
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focus of this dissertation). For this reason, the success of all imaging studies performed 

with the Charybdis micro-CT device would not be possible without the hard work of Dr. 

Xiomara Calderon-Colon and Dr. Shabana Sultana, whose dissertation work in part was 

summarized this chapter [14, 15].  
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3. Carbon Nanotube Micro-CT Device and Initial In Vivo 

Imaging 

3.1 1
st
 Generation CNT Micro-CT Device: Cyclops 

3.1.1 Design Overview 

The first iteration of micro-CT with a carbon nanotube-based x-ray source is 

described herein [1]. This prototype featured a stationary x-ray source and detector pair 

and a rotating sample bed oriented vertically. The system characteristics, including focal 

spot size, flux, and temporal resolution are evaluated, as was the performance for scans of 

both a sacrificed mouse and free-breathing live mice with prospective respiratory gating. 

Due to hardware construction, the imaging object positioned vertically and is 

itself rotated 200 degrees during a micro-CT scan in order to obtain full angular coverage 

in the x-ray projections. The sample/subject holder was securely attached to a computer-

controlled rotation stage. The flat panel detector is a high-speed model with a CsI 

scintillator deposited on an array of photo-diodes (C7940DK-02, Hamamatsu). The active 

area contained 2400 x 2400 pixels, and each pixel was 50 x 50 microns (total active area 

of 12 cm x 12 cm). Only the central one-fourth of its area was utilized for this 

application. System geometry was measured with a 216 mm source-to-detector distance 

and 135 mm source to object distance (magnification of x1.6). These values were chosen 

to minimize overall distances to preserve flux, while still containing the subject area of 

interest fully within the detector’s active area. The cone angle of the CNT x-ray source 

was a fixed 14 degrees.
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Figure 3-1: The prototype CNT-based micro-CT scanner and primary components. The 

x-ray source (a) and camera (b) are stationary. The imaging subject is oriented vertically 

in plastic sample holder (c) and rotated with a computer-controlled rotation stage (d). 

Subject respiratory motion is tracked with a pneumatic respiration sensor (e) attached to 

the mouse’s abdomen. Isoflurane anesthesia vaporized in medical-grade oxygen is 

delivered to the subject through a nose cone (f). [1] 

Scanning parameters for this device were chosen at default as 40 kVp, 0.7 mA 

anode current, and 325 step-and-shoot projections were acquired over 195 degrees of 

gantry rotation (0.6 degree step size). The detector frame rate was fixed at 1 Hz, but 

during a prospectively-gated protocol total scan times ranged from 5 to 10 minutes 

depending upon individual subject physiology (discussed in the gating protocol section 

that follows). The detector was operated with 1 x 1 binning to preserve optimal spatial 

resolution but could be operated in 2 x 2 or 4 x 4 binning to emphasize noise reduction 

over spatial resolution.  
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Figure 3-2: Representative samples of the respiration signals from the BioVet 

physiological monitoring system with the corresponding physiological triggers (red 

dotted squares) superimposed at the corresponding phase portions of the respiration 

cycles. These physiological triggers are gated with the exposure windows to generate the 

x-ray triggers, as illustrated in figure 2(b). X-ray imaging windows were 50 ms in 

duration for both peak inspiration (a) and end expiration (b). [1] 

Figure 3-3: (a) Diagram of workflow in the CNT micro-CT system. The scanner is 

controlled by a computer running an automated control program written in LABVIEW. 

Subject physiology is monitored simultaneously with the camera frame rate and x-ray 

source readiness. If the simultaneity gating condition is satisfied, and only when this 

condition is satisfied, an x-ray pulse is triggered by the controlling computer. (b) A 

diagram of the timing for physiologically-gated image acquisition. When the subject’s 

desired abdominal position coincides with the fixed frame rate of the detector, an x-ray 

projection is acquired, followed object rotation. [1] 

Image reconstruction was performed using the commercial Feldkamp-based 

software package Cobra (Exxim Computing Corp, Livermore, CA, USA). After post-

processing with a custom MATLAB program to correct for raw air values and remove 

dark pixels and lines, CT volumes were reconstructed at a resolution of 62 microns 

isotropic. The total reconstructed volume array was 512
3
. 

Because of the fast response time and uniform output of the CNT x-ray source, 

dynamic prospective respiratory gating was possible with this micro-CT scanner. With 

the period of respiration for a sedated mouse in the range of 80-150 bpm, the system 
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temporal resolution of 50 ms allows the acquisition of blur-free images during the low-

motion portions of both the peak inhalation and full exhalation phases of respiration, as 

depicted in Figure 3-2 (top and bottom, respectively).  

The timing circuit for prospective respiratory micro-CT imaging in step-and-shoot 

mode is visualized in Figure 3-3. The camera readout time was 470 ms, and so the 

acceptable exposure window for x-ray synchronization was defined as the time window 

between the end of the previous frame’s readout and the beginning of the next frame 

readout, minus the temporal width of the x-ray pulse (in this case, 50 ms). This was set so 

that x-ray pulses could only fire during the camera exposure window and no part of the 

pulse could extend into readout (which would cause misfiring). Not only did x-ray 

exposures need to synchronize with the camera window, but they also needed to occur 

concurrently with the desired abdominal position of the subject (inhalation or exhalation). 

The abdominal position was measured using a pneumatic pillow pressure sensor attached 

to a pressure transducer, and the signal was monitored using a commercial physiological 

monitoring system (BioVet, m2m Imaging Corp, Cleveland, OH, USA). When the signal 

from the respiratory pressure sensor coincided with the pre-set level corresponding to the 

desired phase of the respiratory cycle, a TTL high signal was output from the BioVet 

program. Dynamic physiological gating resulted from the logic AND operation between 

the detector exposure window and the physiological trigger from BioVet (Figure 3b). 

3.1.2 CNT-Based Field Emission Micro-Focus X-Ray Source 

The basics of the carbon nanotube cathode contained in our micro focus x-ray 

tube are described in Section 2.2. In this prototype micro-focus tube, optimal current 

density had not yet been achieved, and therefore flux from the tube was limited by the 
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cathode current and not by the anode heat load. It had been shown that the diameter of the 

focal spot from a CNT x-ray source was linearly related to the diameter of the cathode 

[2]. In this micro focus tube, the cathode was an ellipse of 2.35 mm x 0.5 mm, which 

corresponds to a theoretical optimal focal spot size of 100 microns isotropic.  

The carbon nanotube cathode was housed inside of a small vacuum chamber and 

optimal static focusing structure values were determined experimentally to optimize the 

focal spot size, which for the selected parameters resulted in a 117 micron x 117 micron 

focal spot. The exit window of the x-ray chamber was comprised of 200 microns of 

beryllium, and no additional filtration was used to modify the energy spectrum. 

3.1.3 System Characterization 

MTF Analysis 

To determine system MTF, the system geometry was temporarily modified to 

maximize magnification at the expense of tube flux so that the reconstructed CT volume 

resolution would be 10 microns isotropic. With this modification, a 10 micron tungsten 

wire phantom (QRM, Nuremburg, Germany) was oriented parallel to the rotation axis 

and then scanned with standard system parameters. System MTF was calculated using the 

method of [3]. 

Contrast-to-Noise Ratio 

The contrast and noise values of the micro-CT scanner with standard scanning 

parameters was evaluated by imaging a 25 mm diameter cylindrical contrast phantom 

comprised of acrylic with five 15mm diameter cylindrical cavities, each filled with a 

different contrast material. These materials were air, water, fat simulating material (22% 

fat soybean oil), iodinated contrast agent (30 mgI/mL of iohexol), and a bone simulating 



54 

 

material (hydroxyapatite powder). The standard geometry was restored for this scan so 

that CT volumes were reconstructed in voxels with edge lengths of 62 microns each and 

appropriate scaling was applied so that CT numbers appeared in Hounsfield units. The 

mean value and standard deviation of a 3mm diameter region of interest within each 

material in the contrast phantom was acquired and compared. The contrast to noise ratio 

between the different materials was calculated. 

Figure 3-4: Configuration for the system temporal resolution measurement. [1] 

Temporal Resolution 

 In order to evaluate the temporal effect of imaging a moving object on the overall 

spatial resolution in a reconstructed image, a rotating wire phantom was imaged. A 1mm 

diameter tungsten wire was inserted into a cutout region of an aluminum wheel (Figure 3-

4), and the aluminum disc was rotated by a motor. The effective linear speed of this wire 

is 6.0 cm/s at the bottom of the field of view and 7.5 cm/s at the top of the field of view. 

For comparison in physiology, the organ motions of a mouse’s heart and lungs are 2 cm/s 

and 1 cm/s, respectively [4, 5]. An optical switch trigger was used in lieu of the 

physiological TTL trigger from mouse respiration, but otherwise acquisition occurred as 

diagrammed in Figure 3-2. Exposure windows of 5, 10, 20, 50, and 100 ms were tested 

and x-ray projection images were acquired with each setting. 
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3.1.4 Micro-CT Imaging of Mice 

Inflated Mouse Lung In Situ 

Micro-CT images were acquired of a sacrificed mouse with inflated lung. Because 

the imaging object was stationary, no gating was required and long pulse widths were 

used to maximize image quality at the expense of temporal resolution. The scanning 

parameters were 40 kV anode voltage, 0.7 mA anode current, and 400 ms x-ray pulse 

width. 325 projections were acquired over a total of 195 degrees. An additional 1 mm of 

aluminum was used as filtration after the x-ray exit window. CT volume was 

reconstructed with voxels 31 micron edge length. CNR was measured between regions of 

the heart blood pool and the trachea (air), and between the blood pool and the chest wall. 

Respiratory-Gate Micro-CT of a Free-Breathing Mouse 

Five adult male wild-type mice were imaged using respiratory-gated free-

breathing micro-CT. During imaging, subjects were anesthetized with vaporized 

isoflurane gas in medical grade oxygen at a concentration of 1 to 2% (adjusted as 

necessary for a constant rate of respiration in the range of 80 to 180 bpm). Each subject 

was secured to the animal bed and the pneumatic pressure respiration sensor with 

adhesive tape. 

Scanning parameters were 40 kV anode voltage, 0.7 mA anode current, and 50 ms 

x-ray pulse widths. 325 projections were acquired over 195 degrees of rotation. CT 

volumes were reconstructed to a voxel size of 62 microns per voxel edge. Two images 

were acquired per imaging subject: one during the peak inhalation phase of respiration 

and one during the full exhalation phase.  
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3.1.5 Results 

System MTF was measured at 6.2 lp/mm for 10% MTF and 7.3 lp/mm for 5% 

MTF (corresponding to resolutions of 81 and 68 microns, respectively). The system MTF 

curve is shown in Figure 3-5. 

Figure 3-5: System MTF measurement for the prototype CNT micro-CT. 

 

A reconstructed CT slice of the contrast phantom is shown in Figure 3-6. 

Measured attenuation values in HU for each material in the contrast phantom are 

displayed in Table 3-1. All materials are visibly distinguishable from one another in the 

CT slice. The CNT between water and air is 10.0. The CNR between water and oil is 3.7. 

 

Figure 3-6. Reconstructed CT image slice of the contrast phantom comprised of (1) air, 

(2) water, (3) fat mimic, (4) iodinated contrast agent and (5) bone simulating material. [1] 
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Material μ  (HU) σ 

Air -1000 100 

Water 0 100 

Fat simulating material -366 97 

Contrast Agent 1106 130 

Bone  simulating material 1622 196 

Table 3-1. Averages (μ) and standard deviations (σ), in Hounsfield units, of the pixel 

values from the ROIs manually place in the center of the various materials shown in 

figure 7. [1] 

Figure 3-7: Temporal response of the dynamic micro-CT scanner. Images were taken at 

40 kV, 0.7 mA anode current and various x-ray pulse widths. For the reference purpose, 

shown in the very right is an image taken from single 100 ms x-ray pulse exposure when 

the wire was static, followed by the images of the moving wire taken at 100 ms, 50 ms, 

20 ms, 10 ms and 5 ms pulse width. [1] 
 

Temporal Analysis 

In Figure 3-7, the images of the rotating wire phantom at different exposure times 

are displayed. Motion blur is clearly visible for images where the x-ray exposure length 

was greater than 20 ms. Quantitatively, the percent widening of the FWHM of a line 

profile drawn across the rotating wire phantom was 626%, 286%, 60%, 11%, and 3% for 

pulse widths of 100 ms, 50 ms, 20 ms, 10 ms, and 5 ms, respectively. 

Micro-CT of Inflated Mouse Lung in Sacrificed Mouse 

Figure 3-8 shows axial and coronal reconstructed CT slices of the sacrificed 

mouse with inflated lung. The measured CNR was 10.0 between the heart and trachea but 

only 0.5 between the heart and chest wall. This clearly illustrates the need for iodinated 

contrast agent enhancement to distinguish between the blood pool and surrounding tissue. 
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The combination of no physiological motion and the high resolution reconstruction (31 

microns voxel size) allows clear visualization of fine structures within the inflated lung.  

 

 

Figure 3-8: Axial (a) and coronal (b) reconstructed slices from a micro-CT scan of a 

sacrificed mouse with inflated lungs. Reconstructed spatial resolution is 31 μm isotropic. 

Imaging parameters were 40 kVp, 0.7 mA anode current, 400 ms pulse width, 1 mm 

aluminum filtration and 325 projections over 195 degrees. The CNR between heart and 

trachea was calculated as 10.0. The CNR between heart tissue and chest wall tissue was 

calculated as 0.5. [1] 

Respiratory-gated micro-CT of live free-breathing mice 

Reconstructed axial and coronal CT slices of a free-breathing adult male mouse 

acquired during peak inhalation and full exhalation respiratory phases are shown in 

Figure 3-9. Temporal and spatial resolution is sufficient to distinguish some small 

structures in the lung, but fewer than can in the inflated lung CT images of Figure 3-8. 

Unlike in the inflated lung imaging, no additional aluminum filtration was used for these 

images, so some beam hardening artifacts near the ribs are present. 
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Figure 3-9: Axial and coronal slices from an in vivo CT of the same mouse. Images were 

reconstructed from two consecutive scans of a single mouse using the same imaging 

protocol at 62 × 62 × 62μm3 isotropic voxel size. Images shown are from peak 

inspiration (a) and (c), and full exhalation (b) and (d) in the axial and coronal views, 

respectively. [1] 

3.1.6 Discussion 

The prototype CNT-cathode micro-CT scanner was designed for the application 

of prospective respiratory-gated in vivo imaging of free-breathing adult mice, and it 

succeeded in this goal. The spatial resolution of 62 microns in reconstructed CT volumes 

is sufficient for viewing many fine structures within the mouse lung and the fast response 

time of the source and electronics allows x-ray pulses to be synchronized with non-

periodic mouse abdominal motion. The CNR between tissue and air within the lungs of 

10.0 is more than sufficient to produce quality images. The CNR between cardiac muscle 

and the blood pool is too low to distinguish between these two materials, however. This 

is quite expected, given that the HU numbers for unenhanced blood and surrounding 

tissues are very similar for any CT device. This particular limitation can be easily 

corrected through intravenous administration of an iodinated contrast agent into the blood 
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pool. Results of contrast phantom imaging show that the CNR between water and 30 

mgI/mL concentration of a contrast agent is 9.6, which is an extreme improvement over 

the CNR difference of 0.5 between blood and myocardial tissue measured in vivo. 

While the results of this study are a promising first effort, there are consequences 

of the current limited spatial resolution of 81 microns and temporal resolution of 50 ms 

when the goal is in vivo imaging of free-breathing mice. Limited spatial and temporal 

resolutions are related to each one another; they are primarily the result of limited flux 

from the tube, which in turn is dependent upon the maximum achievable current from 

this particular carbon nanotube cathode. Inherent temporal resolution of a carbon 

nanotube x-ray source is on the order of a millisecond or less if flux were not a concern. 

Because flux is limited, not only do x-ray pulses need to be longer than desired to get the 

appropriate number of photons to lower noise, but also the system geometry must be 

arranged to minimize the distance between the source and the object or detector. This in 

turn restricts the magnification possible with this tube. Assuming no changes are made 

with respect to the choice of flat panel detector, the best way to increase spatial resolution 

is to achieve a larger magnification factor.  

Additionally, the limited tube flux has implications for image quality as it relates 

to artifact elimination. The respiratory-gated micro-CT images of adult mice show beam 

hardening artifacts near high-density features such as the ribs. As discussed earlier in 

Section 1.2.7, this occurs when a large proportion of the x-ray photons from the micro-

CT are low energy. The effect of beam hardening in reconstructed micro-CT images from 

the carbon nanotube cathode can be reduced by applying an aluminum filter between the 

x-ray tube exit window and the imaging object, as was done when imaging the sacrificed 
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mouse with inflated lung. However, tube flux limitations from this micro focus CNT tube 

do not permit the loss of any additional flux which would result from supplemental beam 

filtration. Additionally, if the micro-focus tube could be run at a higher energy, say 50 kV 

or 60 kV rather than 40 kV, the overall energy spectrum would be shifted higher and the 

percentage of low energy photons contributing to beam hardening artifacts would be 

reduced. 

Finally, the configuration of a stationary x-ray tube and flat panel detector 

requires both that the imaging object be rotated but also that it be positioned vertically. 

For phantom imaging this does not pose any obvious issues, but for in vivo imaging of 

murine subjects, the limitations are clear. Vertical positioning is not natural for mice, and 

physical rotation of the animal could cause shifting of tissues and organs leading to 

additional motion blur beyond that inherent from imaging of free-breathing subjects. 

So, while this first iteration CNT micro-CT, Cyclops, was successful in many 

respects, it also presented many avenues for improvement in the next phase. The ideal 

CNT based x-ray source for micro-CT will be capable of generating an anode current 

greater than 0.7. This would allow the same number of photons to be generated in a 

shorter x-ray pulse length (less than 25ms rather than 50ms), which not only would 

reduce lung motion in respiratory gated images, but would also open the possibility of 

gating to cardiac motion. Greater tube flux would allow some amount of post-tube 

filtration to reduce low-energy photons which contributed to beam hardening. Ideally the 

anode voltage would also be increased above 40 kV to help with this effort. Increased 

tube flux would also open the possibility of changing the system geometry to increase 

magnification and therefore spatial resolution. 
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Improvements not specifically related to the CNT cathode performance include 

changing the system orientation to match that of human-scale CT devices, so that the 

mouse may lie in a natural prone position during image acquisition and not be subjected 

to rotation. This would mean that both the x-ray source and detector would be mounted 

on a rotating gantry, but the gantry would need to be both strong and extremely stable so 

as not to introduce vibrations which would degrade spatial resolution. 

This is our wish list for a CNT micro-CT scanner. It is the list of requirements 

which motivated the design of the next-phase CNT micro-CT scanner, Charybdis. It was 

during development of the Charybdis version of CNT micro-CT that I first began work 

on the project. 

3.2 2
nd

 Gen Rotating Gantry CNT Micro-CT (Charybdis) 

3.2.1 System Details 

The compact CNT x-ray tube used in the Charybdis micro-CT scanner was based 

in large part off of the experimental prototype described in SECTION 2.2. The primary 

enhancement between the current tube and the previous comes from the CNT cathode. 

The x-ray tube can now be operated at an anode voltage of 50 kV and an anode current of 

2 mA is easily achieved (compared with 0.7 mA previously). As before, the anode is 

made from tungsten and the x-ray exit window is comprised of 0.2 mm beryllium [6]. 

Because of the increase in tube output, an additional 0.5 mm of aluminum could be 

placed over the x-ray exit window to filter low energy photons and reduce beam 

hardening. Even with added filtration steady x-ray pulses as short as 15 ms can be 

generated while still providing sufficient flux for high CNR [6, 7]. 
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As before, a flat panel CsI detector (C7940DK-02, Hamamatsu Corp) is used as 

the camera to capture x-ray projections. Both this detector and the compact CNT x-ray 

source are now mounted on a small-bore goniometer (Huber 430, Germany) on opposite 

sides of the gantry. A small plastic animal bed is positioned horizontally along the 

gantry’s axis of rotation and attached to a computer-controlled bislider in order to 

remotely adjust subject positioning before a scan. This new configuration allows a mouse 

to lie comfortably in the prone position during acquisition of a micro-CT image. An 

automated control program was written in LabView (National Instruments, Austin, TX, 

USA) to rotate the goniometer in a step-and-shoot mode during image acquisition. 

 

 
Figure 3-10: Pictures of (a) the CNT-cathode field emission microfocus x-ray tube and 

(b) the tabletop micro-CT scanner, composed of the CNT x-ray tube, a CsI flat-panel 

detector, a small-bore goniometer, and a horizontally-oriented stationary mouse bed. The 

x-ray tube’s body dimension is 150 mm x 70 mm x 70 mm. The CT scanner is operated 

in a step-and-shoot mode; a full scan is completed in one rotation of the cone-beam x-ray 

source. [6] 
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Figure 3-11: A CAD rendering of the CNT micro-CT imaging system offers a slightly 

less cluttered view of the system. The rotating gantry, x-ray source, detector, and mouse 

bed are labelled.  

Scanner geometry was also optimized for maximum tube flux (and therefore 

maximum temporal resolution) by reducing the object-to-detector distance as much as 

possible while still keeping the bore diameter sufficiently wide for imaging subject 

clearance. The source-to-object distance was set for the best compromise between large 

magnification, and low overall distance for maximum flux full coverage of the detector 

active area by the cone beam angle (20 degrees) without photon drop-off from anode heel 

effect. The final geometric configuration included a source-to-object distance of 120 mm 

and an object-to-detector distance of 40 mm (minimum for subject clearance). This 

resulted in a magnification factor of 1.3 at the detector. The overall effective field of view 

of the scanner is 46 mm x 46 mm and an effective digital sampling of 38 microns x 38 

microns at the object plane. 

The general protocol for acquisition, unless stated otherwise, was 400 step-and-

shoot projections acquired at 0.5 degree intervals for a total 200 degree angular coverage 

(180 degrees plus the cone beam angle of 20 degrees). The system’s spatial resolution 

was measured as 6.2 lp/mm for 10% MTF [6], the same as for the previous micro-CT 
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scanner, using the same method. After acquisition, images were reconstructed to a 3D CT 

volume using a commercial software package (COBRA EXXIM, Exxim Computing 

Corp., Livermore, CA). 

Because of the higher flux capabilities of the x-ray source in this micro-CT 

scanner, and the resulting improved spatial resolution, the physiological gating 

techniques previously developed to eliminate abdominal respiratory motion can also be 

employed to freeze cardiac motion as well as respiratory motion. In the studies described 

in the rest of this chapter, respiratory-gated and simultaneous cardiac- and respiratory-

gated in vivo micro-CT imaging of adult wildtype mice is demonstrated 

 

3.2.2 Respiratory-Gated Micro-CT Imaging 

Respiratory Imaging Animal Handling Protocol 

Twelve C57BL/6 wild type adult female mice were imaged in this study [7]. 

Subjects were anesthetized with approximately 1.5% vaporized isoflurane anesthesia in 

medical grade oxygen at a flow rate of 1.5 to 2 L/min, which was delivered through a 

nose cone attached to the animal bed. Precise isoflurane dosage was adjusted as necessary 

throughout the study to maintain steady respiration rates between 80 and 120 bpm. 

Subjects were placed in prone position on this horizontally-oriented stationary plastic bed 

with their abdomens resting atop a pneumatic pillow pressure sensor which recorded 

abdominal respiratory motion. A small piece of stretchable medical bandage (Coban; 3M 

Medical, St. Paul, MN) was used to lightly restrain subjects around the abdomen so that it 

maintained constant contact with the pneumatic sensor. Animals were not intubated; they 

were permitted to freely breathe the anesthesia/oxygen mix throughout imaging. 
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Two sets of CT images were acquired for each animal; one during peak 

inspiration and one during full exhalation. Threshold levels were manually selected in the 

BioVet physiological monitoring software corresponding with the point of maximum 

inhalation. A user-defined delay ranging from 150 to 200 ms was used to mark the 

exhalation timepoint for gated imaging of that respiratory phase.  

Figure 3-12: A representative respiratory trace from a single animal, with x-ray pulses 

(actual temporal width) superimposed at peak inspiration (a) and end-expiration (b). X-

ray pulses are fired only during breaths where the respiration phase of interest 

synchronizes with the x-ray exposure window. [7] 

Image Analysis 

Respiratory-gated murine lung CT images were post-processed and analyzed 

using OsiriX imaging software [8]. Lung volumes were calculated for each CT image 

using a region-growing volume analysis. For each image, two threshold values were 

established; one to distinguish between soft tissue and lung parenchyma, the other to 

distinguish between lung and the major airways. The lung and trachea combined volume 

within the thoracic cavity of each subject was generated through the placement of 

multiple seed points throughout the trachea and lung which were then allowed to evolve 
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through snake evolution. Secondarily, the trachea volume was measured independently 

by placing seeds only within the trachea. This then allowed the lung volume to be 

calculated independently by subtracting the values. Lung density was measured in HU to 

correct for true air volume. Tidal lung volume was calculated by subtracting exhalation 

volume from inhalation volume. In addition to volume measurements, the tracheal 

diameter was measured directly with the OsiriX software interface. 

Respiratory-Gated Imaging Results 

The average scan time for acquisition of a respiratory-gated micro-CT scan was 

13.4 ± 1.8 min. The average subject respiration rate was 96.2 ± 7.1 breaths/min. A 

sample imaging trace with superimposed x-ray pulse timing is displayed in Figure 3-12. 

Representative images of a mouse lung during full expiration and peak 

inspiration, as axial and coronal CT slices, are shown in Figure 3-13. 3-D volume 

renderings of lungs and trachea at each of the two respiratory phases are shown in Figure 

3-14. Differences in lung size and shape can be seen between the phases in both Figures 

3-13 and 3-14.  

Anatomical parameters found through analysis of micro-CT images with OsiriX 

software are similar to those reported in a comparable study of free-breathing adult mice 

[9]. Our derived tidal volumes vary appreciably from reports in Ford et al, however. 

Direct comparisons are not necessarily appropriate, however, since respiration rates of 

subjects in our study are different from those in Ford, et al., presumably due to differing 

dosages of anesthesia. Comparison of minute volumes do show much greater agreement 

across studies, likely reflecting the uniform oxygen needs of murine subjects regardless 

of experimental conditions. 
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Table 3-2: Comparison of Respiration Rate, Tracheal Diameter, and Organ and 

Parenchymal Volume at Peak Inspiration and End-expiration for Imaged Mice [7] 

Variable Peak Inspiration End Expiration 

Respiration Rate 

(breaths/min) 

92 ± 8.0 101 ± 10.5 

Tracheal Diameter (mm) 0.94 ± 0.067 0.88 ± 0.071 

Organ volume (mL) 0.41 ± 0.071 0.26 ± 0.069 

Parenchymal Volume (mL) 0.23 ± 0.026 0.11 ± 0.024 

Data are expressed as mean ± standard deviation  
 
 

Table 3-3: Comparison of Functional Reserve Capacity, Tidal Volume, and Minute 

Volume Between the Present Study and a Recent Study by Ford et al [7]. 
 

Variable Ford et al. CNT micro-CT 

Functional reserve capacity 

(mL) 

0.16 ± 0.03 0.11 ± 0.02 

Tidal volume (mL) 0.09 ± 0.03 0.12 ± 0.02 

Minute volume (mL/min) 12.47 ± 4.2 (estimated) 11.93 ± 2.64 

Data are expressed as mean ± standard deviation [7] 

 

Figure 3-13: Axial (top) images through the lower lung of a single animal and 

reformatted coronal (bottom) images obtained at the same slice location obtained during 

the peak inspiration (a, c) and full expiration (b, d) portions of the respiratory cycle. [7] 
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Figure 3-14: Shaded surface renderings of a mouse lung and trachea in inspiration (a) and 

expiration (b). Differences in the shape and volume of the lungs in each respiratory phase 

are easily distinguished. [7] 

 

3.2.3 Cardiac-Gated Micro-CT Imaging 

Cardiac Imaging Animal Handling Protocol 

Ten C57BL/6 wild type adult male mice with average masses of 26.8 ± 4.1 g, 

were imaged in this study [6]. Subjects were anesthetized by an average 1.5% vaporized 

isoflurane anesthesia in medical grade oxygen, adjusted to constant respiration rates. 

Subjects were placed in prone position on this horizontally-oriented stationary plastic bed 

with their abdomens resting atop a pneumatic pillow pressure sensor which recorded 

abdominal respiratory motion. A small piece of stretchable medical bandage (Coban; 3M 

Medical, St. Paul, MN) was used to lightly restrain subjects around the abdomen so that it 

maintained constant contact with the pneumatic sensor. The ECG signal was obtained 

from affixing three ECG electrodes to both of the mouse’s forepaws and one hind paw. 

Animals were not intubated; they were permitted to freely breathe the anesthesia/oxygen 

mix throughout imaging.  
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Immediately prior to imaging, a blood-pool contrast agent (Fenestra VC, 50 mg 

I/mL, Advanced Research Technologies, Inc., Montreal, Canada) was administered via 

tail vein injection in a single bolus at the manufacturer-recommended dosage of 0.02 mL 

per gram animal body weight. This contrast agent has a demonstrated retention time in 

the blood pool of up to two hours [10] and provides significant contrast enhancement in 

the blood pool with respect to the surrounding soft tissue.  

 

Figure 3-15: (a) Illustrative timing diagram for the dynamic gating method that the 

micro-CT system used to gate the x-ray exposure and image acquisition to a nonperiodic 

physiological trigger signal. The camera readout (470 ms) and integration (500 ms) 

regions are designated as 1 and 0, respectively. (b) Generation of the physiological 

trigger corresponding to the R peak in the ECG cycle and end-expiration in the 

respiration cycle. A relatively constant heart rate (<10%) was maintained throughout each 

scan. [6] 

Two sets of CT images were acquired for each animal; one during diastole 

(triggered on the r-wave) and one during systole (triggered 55 ms after the r-wave). All 

images were also synchronized with the end-exhalation phase of the respiratory cycle to 

eliminate abdominal respiratory motion. As in the respiratory study, threshold levels were 

manually selected in the BioVet physiological monitoring software corresponding with 

the point of maximum inhalation and a user-defined delay ranging from 150 to 200 ms 

was used to mark the exhalation timepoint. A similar threshold level was chosen 

corresponding to the cardiac r-wave (Figure 3-15). 
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Physiological Gating 

In this study, the physiological trigger was generated by simultaneously gating to 

both the cardiac and respiratory motion, in order to ensure that all x-ray projection 

images are acquired during the exact same phase of the respiratory and cardiac cycles. 

The generation of the physiological trigger corresponding to the R peak in the ECG cycle 

and end-expiration in the breathing cycle is presented graphically in Figure 3-15b. The 

respiration trigger points in BioVet were to the end-expiration portion of respiration. The 

cardiac trigger points in BioVet were set at peaks of the R waves in the ECG signal. The 

first R wave occurring within the acquisition window generated a software trigger point 

in BioVet, from which the physiological trigger can be derived after a user-definable 

delay. For imaging of the heart during diastole, there was no delay between the r-wave 

and the trigger output. For imaging of the heart during systole, a delay of 55 ms was 

inserted between the r-wave and the trigger output. The physiological trigger was 

required to coincide with the camera exposure window, as described previously, before 

the x-ray would be triggered for projection image acquisition (Figure 3-15a). 

Image Acquisition and Reconstruction 

For cardiac micro-CT, the CNT x-ray source was operated with 50 kVp anode 

voltage, 2 mA anode current, and 15 ms x-ray pulse widths. Averaged bright and dark 

images were collected for detector calibration. A total of 400 projections were acquired 

over 200° total gantry rotation in step-and-shoot mode, with each step covering 0.5°. CT 

volumes were reconstructed with a voxel size of 76 microns using a Feldkamp algorithm 

and the commercial Exxim Cobra software.  

Cardiac Imaging Results 
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In this study, the average respiration rate and average heart rate of the ten mice 

after anesthetization was 101 ± 14 breaths and 418 ± 42 beats per minute, respectively. 

The average scanning time for a single CT volume (not including reconstruction time) 

was 22 ± 4.5 min. The entrance dose for acquiring one volumetric data set was calculated 

to be 0.10 Gy, based on the entrance exposure of 10.85 R that was measured at the 

isocenter. The data acquisition time for two cardiac phases was 44 ± 9 min and the 

entrance dose for two cardiac CT scans gated at two different points in the cardiac cycle 

was 0.20 Gy. All subjects survived the imaging protocol. Representative CT images of a 

single mouse, acquired during diastole and systole, are displayed in Figure 3-16. The 

respiratory and cardiac rates of this particular animal were 115 ± 3 and 437 ± 2 bpm, 

respectively. For each cardiac phase, axial and coronal CT slices at corresponding 

locations are shown with major cardiovascular structures labeled, including the aorta 

(AO), left ventricle (LV), and right ventricle (RV). Images in the diastolic phase clearly 

display thickening of the interventricular septum (IVS) and the reduced volume of the 

LV. The presence of iodinated contrast agent in the blood pool allows easy visualization 

of these structures, as well as the papillary muscles and major thoracic branches of the 

aorta. The average CT values measured within ROI in the ventricles and the ventricle 

wall are 455 ± 49 and 120 ± 48 HU, respectively. Thus, CNR between the ventricles and 

the ventricle wall is calculated to be 6.9. 
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Figure 3-16: (a) and (b) Axial and (c) and (d) coronal slice images of a C57BL/6 mouse 

at (a) and (c) 0 and (b) and (d) 55 ms after the R wave. All images have the same display 

window and level. The voxel spacing in- and out-of-plane is 76 microns. Major anatomic 

structures of the cardiopulmonary vascular system are readily identified in the contrast 

enhanced images. The aorta (AO), left ventricle (LV), and right ventricle (RV) are 

labeled for reference. [6] 

Line profiles drawn across Figures 3-16a and 3-16b are overlaid each other in 

Figure 3-17. The chosen line paths travel across both left and right ventricles and the IVS 

and can be used to demonstrate sharpness of the ventricle boundaries (and the quality of 

the motion gating). Boundary sharpness was quantified by performing a linear best fit 

across the transition regions. Successful cardiac gating will result in a crisp image at the 

ventricle boundaries and can be quantified by steeper slopes in the linear fit (assuming 

equal levels of contrast enhancement within the blood pool in all examined images of a 

subject). The sharpest boundary from this image set was between the right ventricle and 

the IVS during diastole, with a slope of 797 HU/mm. Overall, feature boundaries are 

more sharply defined in the images of diastole than in the images of systole. 
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Figure 3-17: Intensity profiles along the two lines within the axial images shown in 

Figure 3-16a and b. For each intensity profile, the two boundary regions between the 

ventricles and the ventricle wall were linearly fit. The derived slopes are shown in Table 

3-4. The three (IVS, VW, and LV) sections of the line profiles are labeled in the plot. The 

width at the midheight of the IVS section changed from 1.3 mm at 0 ms to 1.8 mm at 55 

ms, representing a change of 0.5 mm in the ventricle wall thickness from diastole to 

systole. [6] 

Segment Slope (HU/mm) 

1 797 

2 454 

3 418 

4 331 

Table 3-4: Slopes of the four boundary regions as labeled in Fig. 4. Unit is HU/mm. [6] 

3.2.4 Conclusions and Motivation for Further Studies 

With these initial in vivo imaging studies, we demonstrated the capability of the 

CNT-based field emission micro-CT scanner for high resolution prospectively-gated 

imaging of murine lungs and murine hearts. Subjects were free-breathing and in a natural 

prone position throughout the imaging protocol, so all derived values obtained from these 

images are as true to physiologically-relevant as possible while using anesthetized 

animals. This is an important qualification, because true values of parameters such as 

tidal lung volume can be used to assess subject health when the animals being imaged are 

mouse models of human disease.  

With respect to the respiratory-gated lung imaging of healthy mice, some lessons 

were learned which motivate the work reported in further chapters of this dissertation. 
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We learned that image quality in the reconstructed CT volumes is only as good as the 

physiologic gating protocol and the quality of the respiratory and cardiac signals from 

which gating is triggered. This is somewhat obvious, as without the ability to accurately 

determine what phase of the respiratory or cardiac cycle is occurring with a great degree 

of accuracy, x-ray pulses cannot be consistently synchronized and disruptive motion blur 

will mar the final images. A detailed discussion of this phenomenon, and a method for 

correcting this motion blur from CT sets retrospectively, is the focus of Section 6.1. We 

also observed that the quality of the respiration signal derived from the pneumatic 

pressure sensor was dependent upon the tension of the band securing the animal to the 

sensor. Excessive pressure can cause atelectasis (reversible collapse of portions of the 

lung), which will lead to incorrect lung volume measurements. It is trivial enough to 

obtain a high quality respiration signal from a healthy adult mouse, but for mouse pups or 

for some animals with lung and abdominal diseases the process can become more 

complex. Further exploration of the issue, and development of a new respiration sensor to 

address these limitations, is the focus of Section 4.3. However, when considering most 

adult GEMMs, the imaging and analysis tools described in this study can be implemented 

powerfully for the study of disease. 

Additional observations were made with respect to the performance of gated 

cardiac in vivo imaging with the CNT micro-CT device. The spatial resolution of the 

mouse cardiac CT images collected using the present protocol were comparable to the 

published results obtained by prospective gating and ventilation [11] and slightly better 

than the results from retrospective gating [12]. The resolution of these images was 

sufficient to view most structures of interest, but the smallest of vessels are still a 
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challenge to capture. This is not just a matter of system spatial resolution, but also a 

matter of the temporal resolution achievable with the current CNT micro-focus tube. A 

15 millisecond pulse width appears sufficient for accurate measurements of ventricle 

volumes and myocardium wall diameters, but in principle a higher temporal resolution 

will lead to further reductions in motion blur provided that the gating technique is equally 

precise. 

Two concerns arise which are distinct to cardiac imaging. First, the gating 

requirements of synchronizing both cardiac and respiratory signals with the detector 

acquisition window leads to a significant increase in scan time compared with only 

respiratory-gated imaging (an average 22 min versus 10-15 min). This is an issue with 

respect to imaging throughput, but it is more significant when combined with the second 

concern, which is that administration of a contrast agent into the blood pool is necessary 

to distinguish it from soft tissue. We then are limited by the successful administration of 

the contrast agent along with the retention time of that agent. Only agents that remain in 

the body for longer than the average scan time of 22 minutes are of use. Any biological 

mechanism which occurs on a shorter time scale than the imaging time is also out of 

reach. Thus, perfusion studies pose a significant challenge. Nonetheless, much 

information about an animal model can be determined using parameters which are 

obtainable from CNT micro-CT in vivo imaging. And using specialized contrast agent 

protocols, useful phenomena can be observed. A closer look at three cardiac disease 

models is the focus of Chapter 4.
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4. Respiratory-Gated Imaging Studies  

4.1 Imaging of a Murine Model for Lung Cancer  

4.1.1 Introduction  

Lung cancer is one of the leading causes of death in the United States, with 

222,520 new cases reported in 2010 and 157,300 deaths [1]. Computed tomography has 

become an important tool for the diagnosis of lung carcinoma, and recent results of the 

National Lung Screening Trial [2] show that when low dose CTs are used to screen 

current and former heavy smokers, the increased detection of early stage cancers 

significantly can significantly decrease mortality in these patients. Logic dictates that this 

technology, used frequently and reliably in the clinic, would be equally useful in 

preclinical studies of lung cancer. 

New innovations for diagnosis and treatment are dependent upon preclinical 

research of murine models for lung carcinoma, though the small size and rapid respiration 

rate (~200bpm) of mouse disease models are significant challenges to high quality in 

vivo imaging with minimal organ motion blur. To obtain such images with conventional 

micro-CT devices using thermionic x-ray sources, intubation is generally required to 

control the animal’s breathing. However, such techniques have been linked to increased 

airway trauma and are not ideal for models of lung disease, particularly in longitudinal 

studies where repeated intubation would compound the negative effects
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The goal of this study was to demonstrate use of a CNT micro-CT for the gated in 

vivo imaging a mouse model for lung carcinoma. The resulting CT images allow non-

invasive assessment of disease progression over time and provide structural and 

functional information about changes within the lung parenchyma over a period of 

several weeks. The results of CNT micro-CT imaging were compared with those 

obtained through existing optical imaging techniques.  

4.1.2 Methods 

Disease Model  

Four adult mice (2 males and 2 females) with multifocal, LSL-induced lung 

tumors (LSL-Kras) expressing firefly luciferase (LSL-Luc) [3] and four littermate 

gender-matched control animals were imaged with both optical imaging (possible due to 

the presence of the firefly luciferase gene) and prospective respiratory-gated micro-CT 

imaging in a longitudinal study to track disease development. In this model, tumor 

growth was appreciable over a period of several weeks, so imaging was performed at two 

time points over a month, beginning twenty weeks after initial tumor inoculation. Despite 

appreciable progression of disease over the course of the study, all animals survived 

through the final micro-CT imaging 23 weeks after inoculation. 

Imaging Protocol 

Subjects were free-breathing during the imaging while inhaling 1-1.5% isoflurane 

gaseous anesthesia (exact dosage of anesthesia was adjusted as necessary to maintain 

breathing rates in the range of 80-120 bpm, with respiration uniform in rate and 

amplitude). 400 images were acquired in a standard step-and-shoot protocol with 0.5 
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degree step size over a total of 200 degrees. X-ray pulses were 30ms in duration, 2.5 mA 

anode current and 50 kV anode voltage. 

Respiratory motion was registered via the pneumatic pressure sensor, and 

respiratory gating was used to acquire blur-free images during discrete phases of the 

respiratory cycle. Two sets of micro-CT images were acquired per animal, corresponding 

to both the maximum inhalation and full exhalation phases. 

Corresponding optical imaging was based on the Luc+ signal and performed on a 

Xenogen IVIS Kinetix. 

Figure 4-1: Axial lung slices of respiratory-gated micro-CT imaging of two female 

Kras+/Luc+ mice imaged at 3-week intervals. Compared with the earlier time point (left), 

later images (right) show both a greater number of lung tumors and a growth in diameter 

of individual tumors. 

Data Post-processing  

Micro-CT images were post-processed with ITK-Snap dicom viewing software 

[4]. Lung volumes were measured in the program using 3-D region growing analysis and 

thresholds derived from air and soft tissue HU values. The same method with different 

threshold values was then used to measure individual tumor volumes. Due to the large 

number of tumors, the volumes of only the largest three tumors in each image were 
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measured. The relationships between tumor size, lung volumes, and optical signal were 

then compared. 

4.1.3 Results 

Successfully respiratory gated micro-CT images and optical signals were obtained 

for all animals. The tumors were readily identified on the CT images in all lobes for the 

Kras+ mice; the smallest tumor that could reliably identified measured approximately 

300 microns in diameter.  

Representative reconstructed micro-CT images of two of the subjects at two 

different time points (three weeks’ separation) are displayed in Figure 4-1 with the largest 

tumor diameters measured and labeled on axial slices. Identical axial slices at different 

time points are displayed side-by-side to track the growth of the tumors. In addition to an 

increase in size of existing tumors, additional small tumors have developed by the second 

imaging timepoint and are distinguishable in the CT images. 

Figure 4-2: 2D optical imaging of four female mice: two control subjects (left) and two 

Kras+/Luc+ mice (right), twenty weeks after initial inoculation with tumor cells. At 

bottom, corresponding axial CT slices of each of the four mice are displayed at a 

matching timepoint. The total luciferase optical signal increase compares with an increase 
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in total tumor load, although detailed structure of the lungs and any present tumors is not 

visible. 

For an estimate of the total bulk tumor volume, we had initially proposed to 

subtract the total lung volumes of the disease model mice from those of the average of the 

control mice (measured by micro-CT as 700 ± 40 mm
3
). Interestingly, however, the 

disease model mice had greater lung volumes than the control mice for all subjects in the 

first timepoint and for three of the four subjects in the second timepoint. This increase in 

lung volume in the Kras+ mice suggests organ remodeling to compensate for the increase 

tumor load. As a substitute, we used the volumes of the three largest tumors identified 

within the lungs as a quantitative representation for disease progression.  

Figure 4-3: (a) 3-D rendering of the lungs of a mouse exhibiting tumors during the first 

imaging timepoint. (b) Axial, (c), sagittal, and (d) coronal views of the CT volume during 

the region growing algorithm in ITK-Snap.  



83 

 

Figure 4-4 (left): Estimated tumor volume measurement (sum of three largest masses) 

during the two imaging timepoints. Over the three weeks of the study, the masses grew 

considerably; male subjects exhibited the most growth over time. (Right) Lung volumes 

of tumor-burdened subjects during the two imaging timepoints. Contrary to the 

hypothesis, lung volumes for tumor-burdened subjects were greater than for the controls, 

and lung volumes did not always decrease over time. 

 

Figure 4-5: Semi-transparent 3-D rendering of healthy (left) and tumor burdened (right) 

mouse lungs. Images were generated using OsiriX processing software and in vivo 

respiratory-gated micro-CT images. 

4.1.4 Discussion  

Our technique for imaging free-breathing mice with respiration-gated CNT micro-

CT is well-suited for the imaging of small animals with lung disease.  It appears superior 

to optical techniques for tracking tumor volume, as it can provide both structural and 

functional information about disease development. In addition to simplifying animal 

handling and setup, the free-breathing protocol allowed by CNT micro-CT reduces 

airway trauma to the subjects. This benefit is essential for longitudinal studies of the 
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lungs, allowing more precise tracking of serial tumor volumes in mouse models for 

disease. Furthermore, the technique of prospective respiration gating minimizes 

abdominal motion blur, allowing even small lung tumors to be readily identified in the 

resulting CT images.  

As expected, tumor load correlated positively with optical measurements of 

luciferase [4-2]. In more detailed quantitative comparisons, however, the relationship 

between optical signal and estimated tumor volume is not linear. Nonlinearity is 

expected, however, since CT is a 3-D modality and the optical imaging technique is 2-D. 

Optical imaging is a straightforward and rapid method for generating a quantitative value 

related total tumor burden, but the exact volume cannot be easily determined by this 

technique. However, micro-CT gives information about the 3-D distribution of masses 

within the lung parenchyma and can theoretically provide exact tumor volumes, as well 

as the tidal lung volume of each subject. Thus, micro-CT can provide both detailed 

structural and functional information in longitudinal studies of lung disease. 

Due to the poor contrast to noise ratio between the lesions and the surrounding 

healthy soft tissue, manual segmentation was required in order to estimate the volumes of 

individual tumors. This is straightforward when the masses are relatively free-standing 

and surrounded only by air within the lungs. However, tumors within the topmost 

portions of the lungs and near the heart are much more difficult to segment. Nonetheless, 

for this cohort of subjects, the lesions were relatively few in number and large in size, so 

we believe that tracking the growth of the three largest tumors over time was a relevant 

metric for disease progression (Figure 4-4 left). 
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Volume renderings of lung airways were generated for CT images acquired 

during the full-exhalation phase of respiration (Figure 4-3), and volume measurements 

were compared over time for each individual subject (Figure 4-4 right). Though at first 

we expected that lung volume would decrease as tumor volume increased and that total 

tumor volume could be calculated through this method, the relationship did not hold. 

Neither, however, did lung volume always increase over time. Interestingly, the female 

subjects experienced a decrease in lung volume and the males experienced an increase in 

lung volume, but the sample size is too small and the confounding variables too 

numerous to draw any conclusions from this fact. But it does demonstrate that the 

relationship between lung volume and tumor burden is complex and warrants further 

study. 

Respiratory-gated CNT micro-CT imaging of subjects with lung carcinoma has 

certain limitations; however, for estimates of tumor burden and lesion distribution over 

time, it provides more detail than can be provided from 2D optical imaging. The results 

of this first lung tumor experiment present CNT micro-CT as a useful tool for the study 

of lung disease progression in mice.  

4.1.5 Follow-up: Lung Cancer Imaging Study 

After the initial lung cancer imaging study, we wished to confirm the results with 

another study of five tumor-burdened and five control mice. This time imaging was 

performed three times, at four week separations. Identical imaging parameters were used 

as in the previous study. 
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Figure 4-6: Axial (top) and Coronal (bottom) CT slices acquired at three-week intervals 

of a control animal (time elapsing left to right). 

 

Figure 4-7: Axial (top) and Coronal (bottom) CT slices acquired at three-week intervals 

of a mouse exhibiting multifocal lung tumors (time elapsing left to right). 

With this cohort of animals, the tumors were more numerous, tiny, and distributed 

throughout all lobes of the lungs. The combined effectiveness of the respiratory motion 

gating protocol and the system’s spatial resolution allowed tumors as small as 300 

microns in diameter to be easily detected in reconstructed micro-CT images. Due to the 
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overwhelming number of individual small tumors in the advanced cases studied here, 

however, little additional quantitative information about total tumor burden could be 

gathered by either counting the individual number of masses or by attempting tumor 

volume measurements. Because the lesions are discontinuous and numerous, and because 

contrast between tumors and vessels, the heart, and portions of atelectasis in the lung is 

inherently poor, even manual segmentation is impractical. As before, tumor burden 

estimates cannot be made through total lung volume measurements since organ 

remodeling over the course of the disease means that the lungs do not remain static in 

size or shape. Based on this follow-up imaging study, we come face-to-face with the 

quantitative limitations of even high-resolution physiologically-gated micro-CT imaging. 

These limitations, however, are just as severe for other non-invasive imaging modalities; 

optical planar imaging is accurate in order of magnitude but not accurate in determining 

tumor burden, and MRI of murine lung tumors has not been demonstrated as a viable 

alternative. If lesions were highly vascularized then the contrast problem could be tackled 

with the administration of an iodinated agent, though distinguishing between vascularized 

masses and healthy vessels in the lungs may still be a challenge. For present, 

development of contrast agents targeted to lung carcinomas is the most obvious 

opportunity for improvement.  

However, the limitations of our method are most obvious for very advanced stage 

lung cancer. In early stages when screening and diagnosis is the primary goal, and when 

masses are small, few, and individuated, CNT micro-CT is capable of identifying and 

quantifying disease. 

4.2 Challenges in Lung and Abdominal Micro-CT Imaging 
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4.2.1 Soft tissue contrast in Abdominal Micro-CT 

Many different abdominal imaging applications were attempted with the CNT 

micro-CT, with varying degrees of success. Early on in my work, ignorant of much that 

experienced radiologists find obvious, I attempted to image different diseases and organs 

which CT as an imaging modality is simply ill-suited to attempt. Contrast between 

different soft-tissue organs, especially those within the abdomen, is inherently 

challenging in CT because all organs have HU values very close to one another and close 

to that of water unless a contrast agent is used. Although administration of a biliary lipid-

based contrast agent is helpful in distinguishing between many different features (Figure 

4-8), not all structures and lesions can be viewed this way. Among the less-successful 

studies I attempted include murine models for colon cancer, pancreatic tumor, and large 

metastatic tumors located in the lymph nodes beneath the limbs. That last application was 

particularly discouraging, since the masses were enormous and visible to the naked eye as 

large underarm bulges – but on CT the tumor tissue was not distinguishable from other 

soft tissue. The common link in all of these studies was that the lesion we sought to 

visualize had very similar or identical linear attenuation coefficients to the surrounding 

soft tissue. Currently no contrast agent exists which targets these structures in order to 

provide the necessary enhancement.  
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Figure 4-8: Contrast-enhanced images of the lung and other nearby organs. With the 

hepatic agent on board, the liver is now able to be distinguished from the gallbladder, and 

the spleen is brightly illuminated. 

 

When working exclusively within a single imaging modality, it is easy to forget 

that a wide variety of other complementary modalities exist and with humility we must 

consider that another method may be superior to CT for various applications. When time 

is short and high spatial resolution is not required, ultrasound should be considered; when 

time is available and high spatial resolution is necessary, the obvious choice for soft 

tissue imaging is MRI. These two modalities do not use ionizing radiation, so from a dose 

perspective they are preferable to CT. 

4.2.2 Abdominal Pressure and Atelectasis 

One infrequent but frustrating consequence of using a pressure-based respiration 

sensor for physiological monitoring and gating is that the tension applied by the 

abdominal band or tape can cause atelectasis, or a temporary collapsing of a portion of 

the lung. When this occurs during imaging, it is often not noticed until later during the 3D 

reconstruction process – when it is too late to repeat imaging. Atelectasis obscures the 
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collapsed area of the lung in CT images and prevents accurate measurement of lung 

volumes (Figure 4-9). Although atelectasis can occur in healthy adult animals, from my 

experience it is more likely to occur in young mice and animals with lung disease. 

Figure 4-9: Effect of atelectasis on in vivo lung imaging. Partial lung collapse of the left 

lung of an adult mouse is seen in reconstructed axial (A) and sagittal (B) CT slices; 3-D 

volume renderings of the airspaces display the effect of atelectasis more dramatically in 

front (C) and rear (D) views. 

 

Seeking an alternative to the pneumatic respiration sensor, we explored 

contactless monitoring options. The follow section addresses the development of a fiber 

optic sensor which tracks small motion using laser displacement. 

4.3 Non-contact Respiration Sensor and Imaging Applications 

4.3.1 Background 

Previously, a pneumatic air chamber sensor has been employed to track 

respiratory motion and gate prospectively to the desired breath phase using the CNT 

micro-CT device. The technology has already been successfully demonstrated for a 
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variety of applications and disease models which require non-invasive imaging of adult 

mice. To ensure a strong signal output, the pneumatic sensor typically requires some 

small amount of additional pressure to be applied around the abdomen, such as that 

resulting from an adhesive medical tape placed around the animal and sensor. This 

requires that the externally applied pressure be temporally uniform so that changes in the 

respiratory signal strength correspond directly with abdominal motion alone. 

Furthermore, while the applied pressure is generally small and does not affect a healthy 

adult animal or its breathing response in any obvious way, this is not necessarily the case 

for an animal with lung disease or a structural deformity of the ribs, abdomen, or 

diaphragm. Neither is this guaranteed for an animal which has not reached physical 

maturity and whose small size and weight alone does not exert enough pressure on the air 

chamber sensor to give a strong signal without applying a greater external pressure to 

compensate. The consequences of exceeding an animal’s tolerance for externally-applied 

pressure about the abdomen include temporary atelectasis, preventing an accurate 

measure of lung volume and other physiological information. At worst, a delicate animal 

model might be permanently physically affected, or at least temporarily affected in a way 

that would obfuscate symptoms of the disease being tracked. An ideal method of 

abdominal position tracking would include no risk of physical impact to the subject and 

would involve no physical contact with the subject. Such a tool would allow non-invasive 

quantitative assessment of lung function without perturbation by the compressive band 

required with a pressure-based respiration sensor. 

To avoid this problem, one might make do with non-gated imaging (and the 

inevitable motion blur in the abdomen) or employ an alternative, contactless method of 
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respiration monitoring. Novel contactless respiration tracking has been demonstrated for 

the human clinical setting including methods such as laser monitoring of the chest wall 

location [5] and electromagnetic sensing [6]. In small animal imaging, intrinsic gating [7] 

does not require physical contact with the subject, although the gating is retrospective in 

nature and requires an additional radiation dose when compared with prospective 

methods. In our previous work with in vivo murine micro-CT, we have refined a 

prospective technique for respiration gating using the output of a pneumatic air chamber 

sensor, and we would prefer to use a displacement-measurement sensor which does not 

require physical contact with the subject but which generates a familiar output trace 

matching that from the pneumatic sensor. With this in mind, a fiber-optic laser 

displacement sensor setup was developed to incorporate a commercially-available fiber 

optic sensor (Philtec Inc., Annapolis MD) into the BioVet physiological monitoring 

system (m2m Imaging Corp, Cleveland OH) that tracks the signal from the respiration 

pressure sensor. A voltage-splitting circuit and high-pass filter were added to best 

replicate the familiar respiration wave shape free of added noise or a DC offset, which 

allowed the use of signal amplification through BioVet.  

This new non-contact sensor and our conventional pressure sensor were both 

tested for the gated imaging of wild type mice; the quality of the respiration traces and 

the resulting images were compared. Finally, we employed this sensor to obtain 

prospectively-gated in-vivo images of models which were previously unattainable using 

established techniques: a congenital diaphragmatic hernia model in which bowel contents 

have herniated into the thoracic cavity, and 11-day-old mouse pups.  
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Figure 4-10: The plastic mouse bed allows the animal to lie prone with its head inside the 

nose cone for gaseous anesthesia delivery, and the non-contact displacement sensor is 

positioned a few millimeters away from the animal’s ribs. The design allows 

simultaneous testing of the pressure and non-contact sensors with murine subjects. [7] 

4.3.2 Materials / Methods 

Hardware 

The contactless sensor developed for non-invasive respiration monitoring is based 

on a fiber optic displacement sensor with analog amplified output (Philtec RC60-C8T35 

Fiber Optic Analog Amplifier). It consists of a small rectangular sensor tip from which 

the laser signal exits perpendicularly, reflects from a nearby surface (either dull or 

reflective) and is picked up again by the sensor tip. The sensor is connected to the 

electronics housing via long, thin fiber optic bundles which carry the optical signal out to 

and back from the tip without significant loss. The ratio of signal strength between the 

output and measured reflected light is used as a surrogate for the distance between the 

sensor tip and the reflective surface, allowing sensitive measurements of small 

displacements to be converted into an output direct current voltage of 0-5V. After the 

addition of a voltage-splitter and high-pass filter to remove a direct current offset, this 

signal is input into our current BioVet monitoring system so that the signal enhancement 

and gating triggering features of that hard- and software can be utilized as a comparison 

with BioVet’s established pneumatic pressure sensor.  

An animal bed composed of acrylonitrile butadiene styrene (ABS) plastic (Figure 

4-10) was designed to allow the subject to be positioned prone with the noncontact 
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sensor’s tip stabilized next to the ribcage at a gap distance of a few millimeters from skin 

to signal-exit surface. This was achieved by modifying a bed which interfaces with the 

pneumatic air chamber sensor, adding a rectangular slot in the support wings into which 

the sensor was inserted with emission-tip oriented facing the chest. The emission tip must 

be perpendicular to the measured surface for proper results.  A reflective surface was not 

required for use of this displacement sensor; either bare skin or fur allowed enough signal 

reflection for the sensor to receive a strong usable signal for respiration gating. For the 

purposes of all in-vivo studies mentioned in this paper, no shaving or other manipulation 

of the subject’s fur was performed. Subtle abdominal movements of 1 mm or less are 

easily detected using the fiber optic displacement sensor, in accordance with the 

specifications provided by Philtec, Inc. 

CT images were acquired in a step-and-shoot mode with 400 projections acquired 

over a total 200 degrees of gantry rotation.  All images were acquired with 50kVp x-rays 

and 0.5mm Al filter in addition to the 0.2 mm Be window of the x-ray tube. Cathode 

currents and exposure times were adjusted to suit each imaging subject and its gating 

requirements; they are listed separately in the methods section of each imaging study. 

Physiological information from the animal was gathered and monitored using BioVet 

software, with respiration signal derived from either the pressure sensor (in comparison 

testing) or non-contact sensor (for comparison testing and imaging studies). In the former 

setup, the pneumatic sensor was placed beneath the animal’s abdomen while in prone 

position. In the latter, the non-contact displacement sensor was placed next to the 

animal’s ribcage (a few millimeters gap distance) in a slot built into the wings of the 

animal bed. In both cases, the signal was read into the BioVet program and appropriate 
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threshold levels were selected for gating. The radiation dose for each scan was 12.5 cGy. 

After acquisition, images were preprocessed and reconstructed in the normal fashion.  

Figure 4-11: A schematic of the timing structure employed in prospective gating is shown 

above. X-rays are to be fired only during the maximum inhalation phase of respiration, 

but this must also fall within the acquisition window of the fixed-frame rate flat panel 

detector. When these two conditions are met, the x-ray is switched on to acquire a 

projection image, and the gantry is then rotated to await the next synchronized event. [8] 

 

Figure 4-12: The custom-built CNT cone beam micro-CT used in this study (left) consists 

of a compact field-emission x-ray source and flat panel detector mounted adjacent to one 

another on a rotating gantry. The sensor is integrated into the complete hardware of the 

micro-CT system as in the flowchart above (right). The sensor’s output is fed into BioVet 

and the computer’s timing program, so that appropriate physiological gating can be 

achieved with the x-ray source. [8] 

In vivo studies: 
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All animal imaging studies were performed in accordance with a protocol 

approved by the Institutional Animal Care and Use Committee at the University of North 

Carolina at Chapel Hill. 

Wild-type subjects. Respiration-gated in vivo cone beam CT was performed on 

four wild-type (9C57BL/6N) male mice with masses ranging from 25 to 30 grams, using 

the previously described imaging parameters, 30 ms x-ray pulses and a 9C57BL/6N 1.67 

mA tube current. Subjects were initially anesthetized using a mix of oxygen and 2.5% 

isoflurane and were then maintained at a mix of 1.0-1.5% isoflurane and were free-

breathing for the duration. Anesthesia dosage was adjusted to maintain stable respiration, 

with rates of 93 ± 8 bpm for both pressure and noncontact sensors for all subjects. The 

total imaging time was approximately 15 minutes and subjects were under anesthesia for 

a total of approximately 25 minutes. Two sets of images were acquired, with triggering 

first by the pneumatic pillow sensor and then by the contactless sensor. Each animal was 

imaged first during the peak inhalation phase, and then three of the four animals were 

then re-imaged at the full exhalation phase so that utility of the technique could be shown 

for both major phases of respiration. This versatility of respiration phase is necessary for 

volumetric lung imaging. Both pieces of hardware were kept in the imaging field of view 

during all scans to control for any resulting imaging artifacts. Each sensor registered the 

same respiration rate during imaging; a more detailed comparison in the case of wild-type 

adults is the subject of Section 3.1; this matching of breath shape and rate was seen for all 

animals and models studied in this work. 

The signals from the two sensors were analyzed and compared in terms of both 

signal strength and shape in order to justify using their outputs interchangeably for 
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physiological gating. To quantitatively assess the shapes of breaths measured by each 

sensor, we noted the timepoint corresponding to the maximum signal output (point of 

maximum inhalation) and compared the results between the non-contact and pneumatic 

sensors for all subjects. Additionally, we measured the signal outputs of the sensors over 

an average breath (averaged over 400 breaths) for each of the four subjects, sampling 

every 2 ms, and then plotted these results as comparison curves to assess the subtle 

differences in breath signal shape resulting from the distinct mechanisms underlying the 

function of the two respiration sensors (pressure versus position).  

Both qualitative and quantitative comparisons between the two sets of micro-CT 

images were made to assess overall image quality. As a surrogate measurement of 

physiological motion blur present in the gated images, a measurement of average 

diaphragm slope was taken for each set. This was achieved by identifying four lines 

across the transition from lower lung to diaphragm (two in the left lung and two in the 

right lung) and calculating the slope in HU/pixel of these paths as they crossed the 

boundary. These four values were averaged together to give a single diaphragm slope for 

each CT image; in this way, motion blur effects from each of the two gating protocols 

could be compared quantitatively. 

After establishing the characteristics of the noncontact sensor and its derived 

respiration signal, we demonstrated its application with specific in-vivo imaging studies, 

including a model for congenital diaphragmatic hernia in adult mice and a model for 

cystic fibrosis in 11-day-old mouse pups.  

Congenital diaphragmatic hernia model. The first candidate for imaging with 

non-contact respiration gating was a murine model for congenital diaphragmatic hernia 
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developed by suppression of the Slit3 gene [9,10]. The disease is characterized by 

deformation of the diaphragm in infants which allows the lower organs to breach the 

diaphragm wall and displace the lungs, causing pulmonary hypoplasia and pulmonary 

hypertension. To study the progression of this disease longitudinally, respiration-gated 

micro-CT was considered as a diagnostic tool; however, the characteristic diaphragmatic 

weakness of this disease made the model a poor choice for any imaging which would 

require pressure to be applied at the abdomen. Even if images could successfully be 

acquired, it would be uncertain whether the applied pressure from a pneumatic sensor 

would exacerbate the physical characteristics of the disease and lead to misrepresentative 

results. Fortunately, development of a non-contact displacement sensor allowed in-vivo 

micro-CT to be performed without any physical manipulation of the study subjects. Two 

adult male and two adult female animals of a 129x1/SvJ/C57BL/6 mix with masses 

between 20 and 25 grams were imaged using the protocol discussed in Section 2.1. One 

each of each sex were Slit3 -/- and had diaphragmatic hernias; the other two were Slit3 

+/+ and displayed the normal phenotype. Immediately prior to imaging, an iodinated 

contrast agent (Fenestra VC, ART Advanced Research Technologies Inc, Montreal 

Canada) was applied intravenously through the tail vein in a bolus at the recommended 

dosage of 0.1mL/mg body weight. Subjects were initially anesthetized using a mix of 

oxygen and 2.5% isoflurane and were then maintained at a mix of 1.0-1.5% isoflurane 

and were free-breathing for the duration. Anesthesia dosage was adjusted to maintain 

stable respiration, with rates of 98 ± 15 bpm for all subjects. The total imaging time was 

approximately 15 minutes and subjects were under anesthesia for a total of approximately 

25 minutes. In this application, only the contactless respiration sensor was used for 
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triggering the gated images. The 30 ms x-ray pulses were gated to the maximum 

inhalation phase of the respiration cycle with a tube current of 1.67 mA. 

Osteoclastogenesis and Rib Fractures In Adult Mice An additional adult 

GEMM which cannot withstand even the mildest of abdominal pressure is a model for 

rapid osteoclastogenesis. Bone tissue density is regulated by a particular class of cells: 

osteoblasts which generate new bone tissue, and osteoclasts which reabsorb bone. 

Diseases which are characterized by a loss of bone density, such as in age-related 

osteoporosis, are the result of a lack of balance between the activity and prevalence of 

these two classes of cells. Our colleagues and collaborators in the lab of Arjun Deb, in 

Department of Medicine at the University of North Carolina at Chapel Hill, have studied 

site-specific βcatenin regulated osteoclastogenesis and the effect of corticosteroids in 

reversing this rapid bone loss in adult mice [11]. Due to the extreme delicacy of the ribs 

of these animals, especially during the advances stages of osteoclastogenesis, a standard 

protocol of prospective respiratory gating with a pressure-based sensor could not be 

employed to acquire the necessary in vivo micro-CT images of lungs and ribs. However, 

in vivo imaging was desired in order to study the exact nature of the disease progression 

without sacrifice and ex vivo skeletal imaging. Thus, our contactless respiration sensor 

enabled acquisition of CT images which would otherwise be unattainable with 

conventional methods. 

To generate the animals for this study, Cre transgenic mice (C57Bl/6) were 

crossed with mice with both βcatenin alleles floxed (βcatenin fl/fl) to generate mice 

heterozygous for both alleles. These mice were then backcrossed with another generation 

of βcatenin fl/fl mice. These resulting 8-month-old mice were injected intraperitoneally 
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for 11 days with Tamoxifen (Tam) dissolved in corn oil (10mg/mL) to delete βcatenin in 

Cre expressing cells. Two groups of control C57Bl/6 mice were injected daily with Tam 

and with oil, respectively.  

Representatives of each of the three populations were imaged on day 0 (one day 

before injections commenced) and day 10 using a CNT field-emission micro-CT. On day 

0, the pneumatic pressure sensor was used to track respiration and trigger gating; on day 

10, the contactless respiration sensor was used for all animals. On both days a standard 

scanning protocol was used, with 30ms x-ray pulses (1.67 mA anode current) 

synchronized with the end-exhalation phase of respiration. After 3D reconstruction, lung 

volume measurements were performed using region growing in ITK-Snap and lung 

volume images were generated for side-by-side comparison. 

11-day old mouse pups. Another consequence of the development of a non-

contact respiration sensor was the capability to image mouse pups in the one to two week 

age range. Amongst the challenges discovered in our previous effort to image mice at this 

age were their small size (ten grams or less) and the correspondingly weak respiration 

signal transmitted through the pressure sensor when placed beneath them. In past 

attempts to utilize the pressure sensor for respiratory-gated imaging, we found that by 

adding pressure with the elastic medical tape about the abdomen, animal instability was 

increased. The lightly-anesthetized pups would be more prone to motion, with both gasps 

and intermittent kicks which in turn resulted in significant artifacts. Moreover, the 

likelihood of atelectasis of some or most of the left lung was much greater in the imaging 

of these pups than their adult counterparts. 
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Non-invasive imaging of mouse pups is desirable for disease models in which 

interesting physiological changes occur within less than a month of age. Such is the case 

for the Scnn1b-Tg murine model of cystic fibrosis [12, 13], in which tracheal mucus 

obstruction leads to neonatal mortality in some subjects while their littermates survive to 

maturity [14]. This model has been imaged at ages as early as a few days to six weeks 

using ungated, high-speed volumetric computed tomography [15], but the resulting 

spatial resolution is inferior to that of physiologically-gated imaging. As a demonstration 

of our capability for imaging young subjects with non-contact CT techniques, we 

performed respiration-gated micro-CT on four 11-day-old wild-type animals 

(9C57BL/6N), with an average mass of 4.4 +/- 0.3g. CTs were acquired both with and 

without prospective respiration gating. Subjects were initially anesthetized using a mix of 

oxygen and 2.5% isoflurane and were then maintained at a mix of 1.0-1.5% isoflurane 

and were free-breathing for the duration. Dosage was adjusted to maintain stable 

respiration, with rates of 57 ± 10 for both pressure and noncontact sensors for all 

subjects. The total imaging time was approximately 15 minutes and subjects were under 

anesthesia for a total of approximately 25 minutes. 35 ms x-ray pulses at 1.5 mA tube 

current were gated to the maximum inhalation phase of the respiration cycle using the 

contactless sensor for triggering.  

4.3.3 Results 

Comparison of non-contact sensor to pneumatic pressure sensor  
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Figure 4-13 Left. Simultaneously-acquired respiration traces from the standard pressure 

sensor (top) with x20 signal amplification and the non-contact displacement sensor 

(bottom) with x2 amplification are displayed in the BioVet GUI. Right. For seven CT 

scans, the signal traces from both respiration sensors are analyzed to define the timepoint 

of maximum sensor output (ms) for each breath. [8] 

For each of the four adult wild-type mice, simultaneous measurement of 

respiration data was acquired from both the pressure and noncontact sensors; an image of 

the BioVet software interface displaying both respiration traces simultaneously is shown 

in figure 4. With the chosen placement of the noncontact sensor tip in relation to the 

subject’s ribcage, signal traces closely match in both period and shape, and in particular 

the peak of the signal shape from both sensors matches temporally. As these signals are 

used to determine the timepoint at which x-rays are fired, matching signals result in 

identical timing of the x-ray pulses. Moreover, the enhanced sensitivity of the laser 

displacement sensor over the pressure sensor results in reduced need for the signal 

amplification through the BioVet hardware. This results in a greater signal to noise ratio 

and a cleaner respiration signal for gating, reducing the likelihood of pulse mistiming due 

to electrical noise. In Figure 4-13 (right), the signal traces from both respiration sensors 

corresponding with seven CT scans were analyzed to define the timepoint of maximum 

sensor output (ms) for each breath. The average over all breaths of the elapsed time 

between the beginning of the breath cycle to the signal peak was determined, as well as 
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the standard deviation. The average temporal location of this peak measured for each of 

the two devices agreed within 5 milliseconds. Error bars for both methodologies are 

displayed. The large errors result from variation amongst breaths in a single scan and 

from signal noise, the difference in timing from the two signals is insignificant with 

respect to these uncertainties 

Figure 4-14. Comparison curves showing the relationship between the signals from the 

noncontact and pressure-based sensors. The four plots demonstrate this relationship 

during scans of the four subjects. Each data point on the curves corresponds to one 2 ms 

time period in the 300 ms-defined breath cycle. Particularly noticeable are the asymmetry 

of the upper and lower branches of the curves and their generally non-linear shape despite 

the temporal matching of the breath peak and trough. [8] 

Although the breath signals acquired with the two different sensors have 

qualitatively similar shapes and match temporally with respect to the maximum 

inhalation and full exhalation positions in the respiratory cycle, the curves of ascent and 

descent connecting these two points are not completely identical. This is a consequence 

of the fact that the pneumatic sensor outputs a signal corresponding linearly with 
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abdominal pressure while the contactless sensor’s signal corresponds quasi-linearly with 

physical abdominal position. While the variables of abdominal pressure and position are 

highly correlated, their dependence is not necessarily linear. This is evident when the 

outputs of the noncontact and pressure sensors for an average breath (averaged over 400 

breaths of a single CT session to reduce noise) are plotted against one another for every 

time point in a single breath period (every 2 ms for a 300 ms breath) as in figure 5. These 

comparison curves result in a closed loop terminating at the same minimum (the full 

exhalation timepoint) and maximum (the complete inhalation timepoint). The upper and 

lower curves are distinct from one another, indicating that the relationship between 

abdominal pressure and abdominal position is different in the inhalation half of 

respiration than it is in the exhalation half. Neither the upper nor the lower curves are 

fully linear in general, yet this is expected because as stated earlier, the two variables 

being measured are not believed to be linearly dependent. We note that the lower curves 

(inhalation half of the breath cycle) typically exhibit a more linear shape than the upper 

curves (exhalation half), though there is variability from animal to animal. We conclude 

that for the respiration phases of greatest interest to the researcher, the maximum 

inhalation and full exhalation phases, the two sensors are equivalent in their output and 

timing. However, in the intermediate phases one cannot use the signal types 

interchangeably and should therefore proceed with caution. For all the studies that follow, 

we acquired images only during the two main respiration phases of interest. 
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Figure 4-15. Transverse, coronal, and sagittal CT slices of an adult wild-type using the 

non-contact (a) and pressure (b) sensors to monitor and prospectively gate to respiratory 

motion. During the acquisition of each image, both the fiber-optic cable from the 

displacement sensor and the plastic tubing from the pneumatic sensor were included in 

the field of view so that image artifacts arising from these structures would be 

comparable between the two scans. [8] 

 

Images obtained with both the noncontact sensor (Figure 4-15a) and the 

pneumatic pressure sensor (Figure 4-15b) were not obscured by compression-induced 

atelectasis. Just as the respiration signal traces from the two sensors were nearly identical 

in shape, the image quality of both sets of images is comparable. The extent of motion 

blur in the diaphragm is consistent between gating methods, as is the fine structure detail 

in the lungs visible in transverse slices. A noticeable streak artifact arises in both sets of 

images due to the presence of the highly-attenuating fiber-optic cable which was kept in 

place even during the pressure-sensor imaging for consistency of the comparison 

experiment. Even with the artifact present, many qualitative observations can be made of 

the subject’s physiology, though the results of quantitative density measurements and 

some volume measurements obtained through automatic segmentation programs may be 

distorted. Nonetheless, the diagnostic value of these images is still far greater than that of 

micro-CT images obscured by pressure-induced atelectasis. 
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 Non-contact Diaphragm 

Slope (HU/pixel) 

Standard 

Deviation 

Pressure Diaphragm 

Slope (HU/pixel) 

Standard 

Deviation 

M1 167 45 117 39 

M2 107 49 192 95 

M3 149 62 146 46 

M4 142 30 106 18 

All 

Subjects 

141 48 140 61 

 

Table 4-1: Diaphragm slopes for control subjects with physiological gating from each 

respiration sensor. Two separate lines were traced from each of the left and right lungs to 

the diaphragm (four lines total per CT image) to obtain average slope values. [8] 

Figure 4-16: Line plots were measured across the lung/diaphragm boundary at four 

different locations in the left and right lungs (two line plots per lung) for each image 

acquired. The slope of the path across the boundary was measured for each gating 

protocol (pressure or noncontact sensor) and compared for each of the four subjects. [8] 

Respiratory motion blur, as quantified by the slope of the line plot across the 

lung/diaphragm boundary, does not vary significantly between images obtained with the 

two different respiration sensors (Table 4-1). The average slopes resulting from the non-

contact and pressure protocols were 141 HU/pixel and 140 HU/pixel, respectively. The 

variation of slopes for subjects within a given gating protocol is much greater than the 

variation between protocols, which implies that image quality with respect to motion blur 

is essentially the same using either respiration sensor. Other factors not controlled for in 

this comparison, such animal handling and the stability and health of the subject, can 
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have an even greater impact on image quality. This is because proper respiration gating 

through any method relies on consistent breath depth even though true periodicity is not 

required; if lung volume varies appreciably over the total scan time, motion artifacts will 

arise.  

Imaging Applications 

Congenital diaphragmatic hernia model. Images were successfully obtained for 

four age-matched male animals, two wild-type mice and two animals with congenital 

diaphragmatic hernias. With the presence of blood pool iodinated contrast agent, CTs of 

the wild-type animals display healthy heart and lungs (Figure 4-17a) and vasculature of 

the liver (Figure 4-17b) with expected physiology. The presence of the fiber optic cable 

in the most anterior slices resulted in dark-streak beam hardening (Figure 4-17a) which 

nonetheless did not obscure qualitative results. No such streak artifact is visible in the 

mid-liver slice (Figure 4-17b), as the sensor position did not extend that far in the 

posterior direction. 

 

Figure 4-17: Respiration-gated micro-CT of the knockout hernia model. In the mid-lung 

axial slice (a), note that the liver appears to have displaced one lung (animal’s right, 

image left). In what should be the mid-liver slice (b), the bowels and lower organs have 

been displaced upwards in the body and are in contact with the lower parenchyma of the 

lungs. [8] 
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A striking difference was observed in the CT images of the diaphragmatic hernia 

model animals in both axial slices shown in Figure 4-17. A large volume of the right lung 

has been displaced by the liver and other organs crossing the diaphragm, and the presence 

of iodine in the blood pool visualizes that the heart is compressed and distorted in shape 

(left). In the lower axial slice where one would expect only the base of the lungs and the 

liver, lower organs are visible. Because the respiration monitoring apparatus did not 

involve applied pressure, or any direct contact with the subject, these results are 

unquestionably the result of disease progression and not influenced by animal handling 

during image acquisition.  

Osteoclastogenesis and Rib Fractures In Adult Mice 

  

Figure 4-18: (a) Reconstructed axial slices of respiratory-gated micro-CT images 

acquired on day 0 (before injection) and day 10 of three mice representing populations 

injected with Tam (Cre-), Oil, and βcatenin-CK). (b) Lung volumes of each subject 

derived from the micro-CT images in (a). Severe lung and rib deformation is exhibited 

for the βcatenin-CKO animal between days 0 and 10. [11] 
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Figure 4-18a shows representative reconstructed axial micro-CT slices of mice 

from the three populations during day 0 and day 10. 3D renderings of lung volumes are 

shown in figure 4-18b. Dramatic lung and rib deformation is seen in the day 10 images of 

the βcatenin-CK mice after Tam injection, and complete atelectasis of one of the lungs 

has occurred spontaneously even without any pressure being applied to the abdomen 

during imaging. Even in the presence of such severe disease, respiratory abdominal 

motion was able to be measured with the contactless fiber optic sensor and used for 

physiological gating during image acquisition. Successful in vivo imaging of this animal 

would certainly have not been possible with the use of a pressure-based respiration 

sensor. 

Figure 4-19: A prospectively-gated CT image of a 9-day-old mouse pup using the 

pressure-based sensor to monitor and gate to respiration motion. The pressure required 

for use of this sensor results in high rates of atelectasis in the left lung (seen here as a 

complete pneumothorax). [8] 

11-day old mouse pups. Micro-CT images of 11-day-old mouse pups imaged 

using prospective respiration gating from the laser-displacement non-contact sensor are 

shown in Figures 4-20b and 4-20d. Transverse slices of the lungs  show details of fine 

pulmonary structures which are more clearly visible in gated imaging (4-20b) than 

without gating (4-20a), and coronal slices (4-20d) demonstrate a sharp contrast across the 

diaphragm which is an indication of low respiratory motion blur, compared with the non-
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gated comparison CT image (figure 4-20c). In addition to the overall image quality, no 

atelectasis was observed in any of the pups imaged using the non-contact sensor. In 

contrast, the earlier CT images of mouse pups acquired using the pneumatic pressure 

sensor and Coban tape compression (Figure 4-19) demonstrate severe atelectasis and as a 

result provide no useful data on the structure or function of the left lung. 

Figure 4-20: CT transverse and coronal slices of 11-day-old mouse pups imaged without 

respiration gating (a), (c), and using prospective respiration gating from the laser-

displacement non-contact sensor (b), (d).. Fine details of the lungs are more clearly 

visualized with respiration gating, as is the definition between lungs and diaphragm 

(indicated with arrows). [8] 

4.3.4 Discussion 

We have presented a new method of respiration monitoring and gating which 

broadens the possible applications for in vivo prospectively gated cone beam micro-CT 

imaging. The quality of the respiration signal from the noncontact displacement sensor is 

equal to or superior to that from a pneumatic air chamber pressure sensor and transducer, 

and the signal shapes from both detectors are so similar that no modification of the 

method of physiological triggering for imaging is necessary. In a comparison of in vivo 
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micro-CT of wild-type adult mice using both respiration sensors, the image quality was 

comparable except for the presence of the x-ray-opaque fiber optic cable in the field of 

view and its resulting artifacts. For disease models prone to atelectasis when subject to 

mild abdominal compression, the noncontact displacement sensor allowed diagnostically 

useful in vivo CT imaging that would not be achievable using formerly established 

methods. 

A major limitation to wide-spread utilization of this new fiber optic displacement 

sensor is the cable itself, which with our current micro-CT beam energy, filtration and 

standard reconstruction technique causes moderate beam hardening artifacts in the most 

anterior slices. This is especially problematic as the lung and heart regions are those 

which most require prospective respiration gating for successful in-vivo imaging. 

Without correcting or preventing this artifact, the image quality obtained using the new 

noncontact sensor in the majority of imaging applications is still inferior to our 

previously established gating method using the pressure respiration sensor; although for 

the special applications discussed in this paper the opposite is true. One possibility for 

future work involves placing the sensor closer at the subject’s lower abdomen, away from 

the region of interest. However, the respiration motion of lower regions is substantially 

different from the chest in both magnitude and shape, so that the derived signal will not 

match the familiar respiration trace of the pneumatic sensor and our established gating 

protocol will need to be modified. Alternatively, the x-ray opaque fiber optic cable could 

be replaced with a more radiolucent alternative material. Nonetheless, it should be 

stressed that reconstruction technique employed for these studies was a Feldkamp 

algorithm with no further corrections for beam hardening and streaking artifacts. Much 
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work has been done by others to tackle this class of reconstruction artifact [16,17], and 

such advanced reconstruction techniques could be employed to complement the non-

contact protocol we have outlined. Presented without any additional correction, the 

images displayed in this paper are a worst-case-scenario of image quality, and we believe 

that the effects of beam hardening on image quality could be greatly reduced while 

maintaining the demonstrated animal-handling benefits of a contactless respiration 

sensor. 

4.3.5 Conclusions 

We have demonstrated that a non-contact respiration sensor based on fiber optics 

broadens the potential application for in vivo micro-CT of mice, extending this tool for 

use with mouse pups and adult murine models for diaphragmatic hernia, rapid 

osteoclastogenesis, and other similarly restrictive abdominal deformations. For the 

imaging of healthy adult mice and models which can withstand light pressure on the 

abdomen, traditional methods of respiration gating are still preferable due to artifacts 

arising from the fiber optic cable, though these artifacts could be prevented or removed 

using other reconstruction techniques. While the sensor was developed for small animal 

x-ray imaging, it could be equally applied to any physiologically-gated imaging modality 

without loss of functionality. In this work we successfully employed the non-contact 

sensor along with a CNT field emission x-ray micro-CT to perform prospectively gated 

imaging. The images acquired with such a setup are diagnostically useful and, with 

further correction for streaking artifacts, could provide accurate quantitative data 

regarding lung function disease progression in these studies.
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5. Cardiac Imaging Studies Performed With CNT Micro-CT 

5.1 Introduction  

Cardiovascular disease is currently the leading cause of mortality worldwide. 

According to the World Health Organization, 17.3 million people died from 

cardiovascular disease in 2008 [1]. This trend provides the motivation for research and 

advancements in cardiac animal modeling, diagnostic testing and imaging, as well as new 

treatment and disease management. Advancements in the field have been made possible 

primarily through research and testing in murine models. Researchers have created 

murine models of many cardiac diseases [2, 3, 4], but all studies are limited by the 

imaging options for the evaluation of murine cardiac structure and function. 

Our carbon nanotube field-emission micro-CT system combines the high 

temporal resolution of field emission x-ray with a flat panel detector in an imaging device 

optimized for in vivo imaging of free-breathing small animals. In the preceding chapters 

we have demonstrated the utility of this device for high resolution imaging of the murine 

lung and heart without relying upon complicated animal handling techniques or 

intubation to control respiration. In this chapter, the micro-CT device is used for imaging 

of three different cardiac diseases: aortic calcification, left ventricular hypertrophy, and 

myocardial infarction. 

5.2 Detection of Aortic Arch Calcification in Apolipoprotein E-Null 

Mice
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5.2.1 Background 

The presence of calcifications within the aortic arch correlates with an increase in 

risk of cardiovascular diseases, independent of other risk factors. [5] Our collaborators in 

the University of North Carolina department of Cardiology, Hirofumi Tomita, MD, PhD 

and Nobuyo Maeda, PhD, have demonstrated in their work how absence of the 

apolipoprotien E (apoE-knockout or apoE-KO) in mice of two different strain 

backgrounds exhibit different patterns and severity of calcifications in the aortic arch. 

Namely, they have shown that those apoE-KO animals with 129S6/SvEvTac background 

develop more calcification than apoE-null animals with C57Bl/6J background. [6] Their 

work prior to our collaboration relied primarily upon histology to determine differences 

in aortic arch angle and on location and severity of calcifications. In the work that 

follows, we demonstrate that cardiac-gated in vivo micro-CT using the CNT x-ray source 

gives the same diagnostic power as histological analysis but non-invasively and without 

sacrifice of subjects [7]. Moreover, we show that a current commercial micro-CT 

alternative is less successful at the in vivo imaging of calcifications than our system. 

5.2.2 Methods 

Imaging was performed on representatives of two apoE-null mouse strains, 129-

apoE KO (129/SvEvTac inbred) and B6-apoE KO (>10 generations’ backcross to 

C57BL/6J). Subjects were male and aged 16-18 months. Their diet and environment was 

typical of a laboratory animal, but genetics and advanced age led to the development of 

atherosclerotic plaques in the aortic arch. 

Imaging of subjects was performed on the CNT micro-CT using the standard 

cardiac-gated protocol. A gated protocol was observed so that projections were acquired 
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during end-diastolic phase of the cardiac cycle and the end-exhalation phase of 

respiration. Imaging time ranged from 15 to 25 minutes each, with specific duration 

dependent upon individual heart and respiratory rates. After image acquisition, 3D 

reconstruction was performed in the typical method to obtain a DICOM output.  

Comparison imaging on a conventional micro-CT with thermionic x-ray source 

was performed with a CT 120 (Gamma Medica Inc) using the best attempt at cardiac and 

respiratory gating achievable with this device. Imaging parameters were 80 kV anode 

voltage, 32 mA anode current. 220 projections were acquired per scan, each with a 16 ms 

exposure.  

Quality Comparison Imaging 

One animal from each of the two strains was imaged on each micro-CT scanner 

using the protocols described above. DICOM images from each scanner were analyzed 

and compared using ImageJ (NIH, Bethesda MD, USA).  The most inferior cluster of 

identifiable calcifications was selected. A line profile was drawn across the calcification 

cluster using ImageJ to measure the sharpness of the calcification edge. A region of 

interest in the soft tissues was used to provide a baseline value for the profiles. The HU 

values were normalized to the mean values of nonmoving bone in the slice of interest. 

The slope from the peak to the nearest point at baseline was calculated. Contrast to noise 

estimates was also measured, normalized by the number of imaging projections. 

Calcification Quantification Imaging 

Seven 129-apoE KO and 5 B6-apoE KO mice were imaged using the CNT micro-

CT for the purposes of quantifying calcification in the aortic arch with this modality. 

Reconstructed CT volumes were analyzed using a custom-made MATLAB program (The 

Mathworks Inc). Rectangular volumes containing the aortic arch and the 3 great vessels 
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(innominate artery, left carotid artery, and left subclavian artery) were identified. A 

threshold was then derived from a region of interest drawn in uncalcified myocardial 

tissue to represent soft tissue, and another region of interest was drawn to represent bone. 

The program examined each image and selected pixels representing calcification using a 

threshold defined by a mean radiodensity +4 standard deviations. As the program 

scanned the VOI corresponding to each structure, each slice containing calcifications was 

displayed alongside a binary image showing which pixels were identified as 

calcifications, so the user could identify errors. After scanning through the image stack, a 

composite image displayed all the calcifications identified in the user-defined aortic 

branch artery region. The user then selected rectangular VOIs corresponding to the 

innominate, left subclavian, and left carotid arteries based on the distribution of 

calcifications. Finally, the program displayed the number of voxels identified as 

calcifications in each branch artery and the entire heart, the threshold radiodensity used to 

define calcifications, and the radiodensity of the region of bone selected as a scaling 

factor. Calcification volume is reported as volume without density correction. 

Aortic Arch Measurement  

After obtaining images using CNT-based micro-CT, mice were anesthetized with 

2.5% avertin and then perfused with 4% paraformaldehyde under physiological pressures. 

The aortic tree was dissected free of surrounding tissue under a dissection microscope. 

The aortic samples were then placed in a flat transparent chamber 1.2 mm in depth, and 

their images were captured. Plaque areas in the aortic arch were measured using ImageJ 

software as previously described [6]. Cross-sectional histological preparations of the 

aortic arch between the innominate artery and left carotid artery were made at 50-lm 

intervals, and the mean cross-sectional plaque size was determined from 3 cross-sections. 
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To detect plaques, the sections were stained by Sudan IV and counterstained with 

hematoxylin. Calcification of the plaques was also detected by von Kossa stainings. The 

plaque and calcification areas were then measured using ImageJ software by hand, and 

their ratio was calculated. 

4.2.3 Results 

Comparison Between CNT-Based Micro-CT and Conventional Micro-

CT 

Calcification edge sharpness in CT images, quantified by the slope across the 

interface in normalized units of attenuation, was 1.6 ± 0.3 for CNT micro-CT images 

compared with 0.8 ± 0.2 for conventional micro-CT images. This represents a 

quantitative assessment of the superiority of CNT micro-CT for accurate visualization 

and distinction of calcification in the aortic arch. Representative images from the 2 

devices of the arch calcifications are shown in Figure 5-1. 

 

Figure 5-1: Micro-CT of aortic calcification using CNT micro-CT (left) and a 

commercial micro-CT system (right). CNT micro-CT images display lower noise and 

sharper edge definition [7]. 

Calcification in the Plaques 
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In representative aortic arch images of the 129-apoE KO and B6-apoE KO mice 

acquired with the CNT-based micro-CT (Figure 5-2a), calcifications are clearly 

visualized within the inner curvature. Calcification volume within the inner curvature was 

0.90 ± 0.18 mm
3
 for 129-apoE KO mice compared with 0.22 ± 0.10 mm

3
 for B6-apoE 

KO mice, or approximately quadruple the volume of calcification in 129-apoE KO 

compared with B6-apoE KO. This was consistent with prior knowledge of the likelihood 

of calcified plaque in the animal models. 

Histological Assessment 

Representative cross-sectional arch plaques of the 129-apoE KO and B6-apoE KO 

mice stained by Sudan IV are shown in Figure 5-2e. Calcification area in the plaques was 

also detected by von Kossa staining in the 2 groups. The histological calcification area 

divided by the plaque area was significantly higher in the 129-apoE KO than in the B6-

apoE KO mice (16.9 ± 2.0 versus 9.6 ± 0.8%, P<0.05, 3 animals for each genotype). 
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Figure 5-2: A, Representative carbon nanotube micro-CT images of 129-apoE KO and 

B6-apoE KO mice. White areas at the inner curvature of the aortic arch indicate 

calcifications. B, Calcification volume in the aortic arch of the 2 strains. C, 

Representative images of excised aortas. D, Comparison between the 2 strains of plaque 

areas in the aortic arch. E, Representative arch plaques by cross-section stained with 

Sudan IV and counterstained with hematoxylin. Arch calcification was detected by von 

Kossa staining (brown, arrows). Scale bar, 200 lm. CT indicates computed tomography; 

KO, knockout [7]. 

5.2.4 Discussion 

Because the CNT-based x-ray source in our micro-CT is capable of a 10 ms 

temporal resolution, which is not directly achievable using conventional thermionic 

sources, the physiological gating was more successful at removing motion blur in CNT 

micro-CT images than when a similar protocol was employed with a conventional micro-

CT. The tight and reliable pulse control of our micro-CT is crucial (< 1ms), as well, 

because since the R-wave interval at 600 beats per minute is 100 ms, errors of pulse 

control >5 to 10 ms can cause significant additional blur.  

Although in vivo imaging of arch calcification has already been reported in B6-

apoE KO mice using a conventional micro-CT scanner [8, 9] our work shows that images 

using the CNT-based micro-CT have better spatial resolution for aortic plaque 

calcification than those using a conventional micro-CT scanner. This superiority is 

quantified by significantly improved sharpness of the calcifications and the higher 

contrast to noise of the calcifications on the CNT-based micro-CT. The dramatic 

difference in the contrast-to-noise value of the calcifications between the 2 micro-CT 

scanners may be primarily a result of the blur during acquisition. 

One important limitation of our current technique is that atherosclerotic plaques 

are not detectable by our CNT micro-CT, even after administration of an iodinated 
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contrast agent. As more specific molecular probes for atherosclerotic plaques have been 

developed, however, these may be helpful to detect total plaques [10-12]. 

Overall, however, CNT micro-CT is a powerful tool for assessing the severity and 

distribution of aortic calcifications without sacrifice. 

5.3 Cardiac Imaging Left Ventricular Hypertrophy  

The current standard modality for in vivo murine cardiac imaging is 

echocardiography. With high frequency ultrasound (10 to 15 MHz), the heart is evaluated 

primarily using an M-mode technique [13] rather than with the planar images of the 

standard human echocardiography techniques. Wall motion and thicknesses are derived 

from A-mode type measurements by examining the changes in the reflected signal. 

Integrated software allows the estimation of basic cardiac parameters.  

Although the echocardiogram has been instrumental in murine cardiac research, 

there are still significant limitations to the resulting ultrasound images.  The ventricular 

volume or mass cannot be directly evaluated due to the lack of sufficient imaging planes, 

so a geometric approximation must be employed [14]. Because left ventricular function 

cannot be measured directly, it is estimated based on wall thicknesses [13,14].  

Additionally, the quality and reproducibility of an echocardiogram depends greatly on 

subject condition and operator skill. For these reasons, although echocardiography may 

be routinely performed, it is clear that the implementation of more powerful imaging 

tools would advance research cardiac disease in murine models.  

Computed tomography (CT) has rapidly become the primary tool for cardiac 

imaging in the clinic. Yet, a review of methods of analysis of left ventricular function in 

mice published in 2007 fails to even mention the use of CT [13]. More recent work has 

sought to improve the versatility of echocardiography for the evaluation of systolic and 
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diastolic function as compared with MRI [15], but CT remains underutilized for this 

application. The ability to translate techniques from clinical cardiac-CT to the pre-clinical 

mouse model would therefore serve as an important tool in mouse models of human 

cardiac disease.   

Here we demonstrate the utility of the CNT based imaging system for quantitative 

cardiac evaluation of normal mice using respiratory and cardiac gated CNT micro-CT 

imaging techniques and a blood pool contrast imaging protocol. Quantitative 

measurements of ejection fraction and wall thicknesses are performed to assess both 

function and morphology.  

Furthermore, we explore the application of this technology on pathology with a 

murine model of left ventricular hypertrophy. Transverse aortic constriction (TAC) is an 

effective technique for inducing left ventricular hypertrophy (LVH) in mice and is the 

model selected for this investigation [16]. Studying the murine LVH model offers a 

quantitative evaluation of the adaptive cardiac response to increased hemodynamic load, 

which is often a symptom of cardiomyopathies, aortic stenosis, aortic insufficiency, and 

hypertension [17].  

5.3.1 Materials and Methods:  

Mouse Models  

LVH was induced in 7 wild-type, 10-12 week old, 25 - 35g male mice. LVH was 

achieved in this model using the TAC technique, which surgically narrows the abdominal 

aorta [16].  The mice were imaged at two weeks and four weeks, enough time to observe 

cardiac remodeling in response to the TAC. Seven wild type mice that did not undergo 
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the TAC procedure were also imaged to establish a comparative baseline. Tail vein 

catheters were placed for contrast administration immediately prior to imaging. 

Image acquisition 

All studies were performed under protocols approved by the Institutional Animal 

Care and Use Committee of the University of North Carolina at Chapel Hill. A total of 

seven mice underwent micro-CT imaging with respiratory and cardiac gating and the 

CNT micro-CT system. The subjects were anesthetized using gaseous isoflurane without 

intubation. They were treated initially with a 2.5% isoflurane dose mixed with medical 

grade oxygen and then maintained with a 1.0-1.5% dose through a nose cone connected 

to the custom animal bed. Animals were placed prone on the animal bed and secured with 

Coban elastic medical tape (3M Medical, St. Paul, MN). Respiratory and cardiac gating 

was monitored externally throughout the scan. 

Fenestra VC (ART Advanced Research Technologies Inc, Montreal, Canada), an 

iodine blood pool contrast agent, was administered in a bolus at a 0.1 ml/5 g dose through 

a tail vein catheter immediately prior to imaging. Image acquisition was performed 

during the simultaneous full exhalation phase of the respiratory cycle and either diastole 

or systole phase of the cardiac cycle. The exhalation phase was defined as a fixed time 

delay of 150-180ms after peak inhalation (90ms synchronization exposure window). 

Diastole and systole were defined as a 0ms or 55ms delay after the r-wave of the cardiac 

signal, respectively, as confirmed by experimentation.  

CT images were obtained at 50 kVp, 3 mA cathode current in 15 ms pulses. 286 

images were acquired over 200 degrees total rotation (0.7 degrees per step) while 

operating in step-and-shoot mode. The delivered dose per gated cardiac image was 7 

cGy. This was calculated from direct dose measurements performed with a calibrated ion 
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chamber with a 6 cm
3
 active volume (model 10X5–6, Radcal, Monrovia, CA) centered in 

the scanner isocenter, which was then read out by a calibrated dosimeter (Accu-Pro 9096, 

Radcal, Monrovia, CA).  

Image Reconstruction and Analysis 

Cone beam CNT x-ray source CT reconstructions were performed with Cobra 

(Exxim Corporation, Pleasanton, CA). Images were reconstructed to an 80 micron voxel 

size. Preprocessing was performed with custom software written in MATLAB 

(Mathworks Inc, Natick MA) to eliminate bad pixels and correct for cone beam 

heterogeneity. Total reconstruction time including preprocessing was approximately 3 

minutes per data set. Data were reconstructed into DICOM compatible formats to 

simplify post-processing and data storage. After reconstruction, images were normalized 

to Hounsfield units through system calibration using air and a water phantom.  

Image Analysis 

Because CT is a true 3-D modality, images may be viewed as 2-D slices along 

any arbitrary plane after reconstruction rather than choosing the plane-of-view during 

acquisition. We measure the wall thicknesses of the interventricular septum (IVS) and 

left ventricle inferior (LVI) wall for each subject by selecting viewing planes 

perpendicular to each wall and averaging the wall thickness measurements at three 

different portions of both the IVS and LVI with ImageJ [18]. Total volume of the left 

ventricle is not measured directly, but relative estimates of the volume from one 

timepoint to the next may be made by comparing the cubed value of the wall thicknesses. 

Left ventricle volumes were measured for each image set using a semi-automatic 

segmentation algorithm based on volume-growing region competition snakes and the 

open-source program ITK-SNAP [19]. After setting an HU threshold to roughly define 
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the region of myocardial tissue surrounding blood pool of the left ventricle, small seed 

volumes were manual inserted in approximately a dozen regions within the LV and then 

allowed to propagate via snake evolution until the entire ventricle was filled. Ventricle 

volumes were automatically output and recorded in mm
3
. 

Ejection fraction measurements have long been made in the clinic using CT 

estimates of LV volumes [20], and the same method is possible in murine cardiac CT 

provided that high-resolution and low-blur images can be obtained [21]. The calculation 

of ejection fraction for each subject was performed with the measured LV volumes for 

diastole and systole, VDia and VSys, as 

   
         

    
 

5.3.2 Results 

All animals survived the surgery, and successful cardiac- and respiratory-gated 

imaging was performed for all animals in diastole and systole for the two week post-

procedure time-point. Four of the original seven survived an additional two weeks and 

were successfully imaged at the four week post-procedure time-point.  

 

Figure 5-3: Myocardium wall thicknesses during systole, measured from micro-CT 

images, increase along with the time elapsed since the TAC procedure. Similarly-
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proportioned enlargement is seen in both the interventricular septum and the inferior wall 

of the left ventricle; the growth of each is approximately 10-12% over the study’s four 

week period. 

After banding, the widths of the interventricular septum and the LV inferior wall 

steadily increased over four weeks of observation (Figure 5-3). CT measurements of both 

interventricular septum and the left ventricular interior wall thicknesses demonstrated an 

overall 10-12% increase in myocardial wall thicknesses in a single dimension over the 

four weeks following the TAC procedure. Cubing to get an estimated volumetric increase 

of 33-40%, these results are comparable with the 40-50% increase in subject heart weight 

after 4 weeks of banding compared against sham animals, which has been reported in the 

literature, determined by the masses of the hearts excised from LVH and control animals 

[16].  

Figure 5-4: (a) Axial and (b) coronal CT views of control subjects. Two weeks post-

banding, (c) axial and (d) coronal CT views of the LVH model. Hypertrophy is observed, 
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and broadening of the left ventricle is particularly noticeable in the axial plane. Four 

weeks post-banding, (e) axial and (f) coronal CT views of the LVH model. Dramatic 

remodeling of the left ventricle is observed, and lengthening along the since the two-

week image is visible especially in the coronal view (f). The magnitude of this 

hypertrophy over this timescale is consistent with previous findings using 

echocardiography. Window: 2325 and Level: 188 for all images in Figure 

 In addition to measuring wall thicknesses, which can theoretically be obtained 

equally well through echocardiography, we were also able to visualize how the original 

ellipsoid shape of the murine heart is distorted as cardiac remodeling occurs over time 

(Figure 5-4). From the images at the two week time-point, the left ventricle has become 

more spherical in shape during the diastolic phase in response to the TAC procedure 

(Figure 5-4b). After four weeks have elapsed, the left ventricle has grown substantially 

when compared against the control image but is similarly proportioned, and the ventricle 

is elongated along the anteroposterior axis when compared against the two week time-

point. This distortion of heart morphology over time in response to TAC is accompanied 

by a change in ejection fraction (Figure 5-5). The relationship between these two 

variables is not linear, however. Within two weeks of banding, ejection fractions decrease 

33% from 0.59 (+/- 0.07) to 0.39 +/- 0.08. Interestingly, there is partial recovery of 

ejection fraction between the two week and four week post-banding time-points, 

increasing to 0.45 +/- 0.08. 
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Figure 5-5: Ejection fraction for subjects at the control time-point and at 2-weeks and 4-

weeks post-banding. Although EF decreases as expected soon after banding, partial 

recovery of function is seen by the 4-week time-point. 

 

 Respiration Rate St. Dev. Cardiac Rate St Dev 

Control 108 11 426 48 

2 Week  111 13 456 75 

4 Week 108 9 422 29 

Table 5-1. Average respiratory and cardiac rates for subjects at each clinical time-point.  

 

5.3.3 Discussion 

The estimation of left ventricular volume using echocardiography requires an 

ellipsoid geometrical model to estimate the volume of the left ventricle. The dimensions 

of this ellipsoid are measured using m-mode echocardiography; accurate measurements 

are orientation dependent and reliant upon operator experience. Furthermore, the 

geometric model is not guaranteed to accurately reflect the true change of physical 

dimensions of the heart caused by LVH and may not be generically applicable. Our 

measurements of ventricle volume are not subject to the assumptions of geometrical 

models, because the entire volume is measured with objective region-growing volume 

measurements. A direct 3-D measurement of volume such as that provided by CT should 
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provide a more consistent and accurate measurement when compared against these 

geometric estimates. Moreover, the subjectivity involved with user technique is reduced 

with CT, so that we can be more confident in the consistency of the measurements. 

Though the region-growing volume measurement is more computationally complex than 

a 1-D or 2-D ultrasound measurement,, the method removes uncertainties related to 

positioning and operator error and is therefore a more straightforward and reliable 

measure of cardiac function than the use of geometric assumptions in echocardiography. 

Other than CT or MRI, the only other direct method of measurement would require 

sacrifice of the subjects in order to directly measure the heart weight and cardiac 

dimensions from an arbitrary plane. Given the obvious limitations of acquiring masses of 

excised subject hearts, we believe that CT is a promising alternative to MRI. 

The ejection fraction changes quantified in our study do not offer a 

straightforward indication of decreased myocardial function with respect to the time 

elapsed after the TAC procedure, as one might initially expect. This is due to adaptive 

structural changes in the heart compensating for arterial flow restriction, taking place 

over a period of weeks. The TAC procedure results in an immediate decrease in EF, 

while the induced enlargement of the myocardium characteristic of LVH generally results 

in partial recovery of EF by the four-week time-point. So while physiologically-gated CT 

allows a direct measurement of ejection fraction in murine subjects, this measurement 

alone does not translate into full understanding of cardiac function and structural changes 

for LVH models. However, CT imaging allows direct observation of the relationship 

between LVH and cardiac output, while echocardiography depends upon potentially 

inaccurate estimates of EF based on wall thicknesses. 
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 Cardiac imaging with CT presents some unique possible sources of error. Unlike 

echocardiography, CT requires an administration of iodinated contrast agent in order to 

visualize the blood pool, and sufficient imaging contrast between the blood pool and 

myocardium is required for all measurements. The imaging timeframe is constrained by 

the half-life of the chosen contrast agent in the body, and insufficient contrast bolus for 

any reason will prevent any structural or functional cardiac information from being 

extracted from the CT image set. Also because CT relies upon ionizing radiation, total 

radiation dose delivered to the subject must be considered when designing protocols. This 

is especially true for longitudinal studies. Prospectively gated micro-CT, such as in our 

protocol, prevents wasted dose as compared with retrospective gating, and our relatively 

low dose of 7 cGy per scan allows many imaging timepoints without nearing the LD50 of 

590 cGy [22]. Nonetheless, absolute dose restrictions must be observed and are an 

additional consideration which is particular to x-ray imaging. 

Like all in vivo CT protocols, our method requires the administration of 

anesthesia during image acquisition. Respiration and cardiac rates of all subjects and at 

all three timepoints were comparable with each other and depressed from the conscious 

state; values are listed in Table 5-1. The presence of anesthetics, both inhaled and 

injectable, is known to result in depression of cardiac function. [23]. While the slowing of 

cardiac rate can be beneficial for gated imaging by reducing physiological motion within 

a short timeframe, this may also result in less accurate measurements of cardiac function 

when compared to the ideal of conscious imaging. However, inhalation of vaporized 

anesthesia results in less cardiac depression compared to injectable alternatives, which is 

a potential advantage of our technique over CT imaging protocols which utilize ketamine 
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and xylazine injectibles instead of inhaled isoflurane [23]. Since echocardiography is 

often performed while subjects are anesthetized, a comparison between the current 

standard technique and our own is reasonable even if the results of each may differ 

slightly from those obtained with a conscious subject. Also, ejection fraction and left 

ventricular mass do not differ significantly between sedated and fully anesthetized 

subjects when those subjects exhibit ischemic LV failure [24], so isoflurane may not 

affect studies of some cardiac diseases. Even considering the potential drawbacks of 

cardiac depression that accompany the administration of anesthesia, we believe that the 

benefits of using CT for functional and structural cardiac imaging outweigh these 

concerns.  

Other methods of cardiac imaging with micro-CT systems have relied upon 

intubation and ventilation of the subject [25]; this is a complex procedure which requires 

expertise and can complicate longitudinal studies. Imaging with the field emission CNT 

micro-CT does not require intubation or a complex animal-handling setup, however. The 

administration of an IV contrast agent via tail vein, which is required in all cardiac CT 

protocols, is minimally invasive, straightforward to achieve, and has no long-term effects 

on the subject. The free-breathing imaging method outlined in this paper is inherently 

non-invasive and only requires an external connection with adhesive-lined EKG leads on 

three paws and a pneumatic respiration sensor placed under the abdomen.  

Application of recently developed techniques could improve image quality and 

decrease scan time, such as applying a more sensitive respiratory sensor [26]. The 

geometric parameters of the system can also be adjusted to further reduce scan time by 

compromising on spatial resolution, depending upon the demands of a particular imaging 
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application. Finally, obtaining additional CT images at intermediate time-points will 

further illuminate the process of cardiac remodeling and the functional changes that result 

from restricted arterial flow resulting in LVH. The results of this study demonstrate that 

field emission-based gated CT imaging can serve a critical role in the diagnosis, 

surveillance, and treatment of many murine models of human cardiac disease. 

In conclusion, CNT-enabled cardiac gated micro-CT imaging demonstrates the 

ability to quantitatively analyze the morphology and physiology of wild type and mice 

with LVH providing a powerful new tool for the study of cardiovascular biology.  

5.4 Delayed contrast enhancement of a murine model for Ischemia 

Reperfusion with Carbon nanotube micro-CT 

5.4.1 Introduction and Motivation 

As previously mentioned, the current standard for in-vivo murine cardiac imaging 

is echocardiography due to the speed and simplicity of this modality. Unfortunately, 2-D 

ultrasound images cannot easily distinguish between nonfunctional infarct, ischemic, 

stunned, hibernating, and healthy myocardium, as these differences are largely functional 

rather than structural on the length scales visible with this or any other currently available 

in-vivo murine imaging modality. The current gold standard for determining myocardial 

tissue viability in the clinical setting is MRI with delayed contrast enhancement, which 

combines the ease and high spatial resolution of structural imaging with a contrast 

administration protocol that illuminates necrotic myocardial tissue [27]. Ischemia of the 

coronary arteries followed by reperfusion can result in acute myocardial infarction and 

subsequent edema. This results in contrast agent retention within necrotic regions of the 

myocardium and a characteristic delayed contrast enhancement effect in these regions 

after IV administration. This imaging technique is possible because the gadolinium-based 
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vascular contrast agents used in MR imaging distribute themselves in the extracellular 

spaces of healthy myocardium soon after intravenous administration, while these agents 

are too large to be admitted into the normal myocardial cells. However, the cellular 

changes resulting from ischemia affect arterial flow rate and the permeability of the 

capillaries. Necrotic and acute infarcted regions of myocardium suffer a loss of 

membrane integrity, allowing contrast agent molecules to leak into these regions over 

time, and furthermore the contrast is retained in these tissues past the typical wash-out 

time in healthy extracellular spaces. The result is a characteristic delayed enhancement in 

necrotic regions of myocardium captured in MR images acquired during an appropriate 

time window during which gadolinium has leeched into infarcted tissue but has not yet 

leeched out again. The same mechanism of contrast medium leakage in infarcted tissue 

applies to many iodinated blood contrast agents used in CT whose particles are of 

approximately the same size as the gadolinium agents of MRI. Moreover, the surgically-

induced ischemia and reperfusion of the LAD is expected to significantly inhibit 

functionality the left ventricular myocardium and decrease its ability to contract and 

pump blood. Any change in cardiac output can be quantified by a comparison of the 

ejection fraction of subjects, both those which have undergone ischemia and reperfusion 

and those which have not. Delayed iodine contrast enhancement of myocardial tissue in 

murine models has also been demonstrated in small animal studies using micro-CT [21, 

28]. These studies employed CT scanners with traditional thermionic x-ray sources and 

thus are limited by x-ray source temporal resolution. Additionally, these protocols 

involved continuous IV contrast agent infusion in order to achieve the desired 

enhancement. 
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The advantages of the CNT micro-CT device for cardiac imaging have been 

already been stated in this work. In particular, the non-invasive nature of our prospective 

physiological gating allows the imaging of otherwise sensitive disease models; this 

description certainly applies to an imaging subject which has recently suffered a heart 

attack.  

Here, we evaluate a murine model for acute myocardial infarction using the CNT 

micro-CT and a delayed contrast enhancement technique using an iodinated contrast 

agent administered in a bolus. The surgical model for ischemia and reperfusion was 

produced by surgical occlusion of the left anterior descending artery (LAD) with a suture. 

Ischemia was maintained for thirty minutes and was followed by twenty four hours of 

reperfusion prior to obtaining CT images. Two different iodine-based contrast media 

were administered to the subjects via tail vein catheter. Iohexol 300 mg/mL (Omnipaque 

300, Novation, Irving TX) was chosen to demonstrate the delayed contrast effect due to 

its rapid distribution and quick wash-out. Fenestra VC (Art Advanced Research 

Technologies, Inc, Montreal, Canada) [29], with different molecular properties and a 

longer half-life, was then administered to highlight the blood pool and left ventricle 

volumes in order to evaluate cardiac output. In CT images acquired over multiple time-

points following IV contrast administration and during both the systolic and diastolic 

phases, the structural and functional changes caused by LAD obstruction were observed. 

5.4.2 Methods 

Disease Model 

All studies were performed under protocols approved by the Institutional Animal 

Care and Use Committee of the University of North Carolina at Chapel Hill. Myocardial 
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infarction was induced by LAD occlusion in 8 wild-type, 10-12 week old, 25 - 35g male 

mice one day prior to the imaging study. Tail vein catheters were placed for contrast 

administration immediately prior to imaging. Subjects were anesthetized using isoflurane 

vapor in medical grade oxygen (initial dose at 2.5% followed by a continual dose of 1-

1.5%, adjusted as necessary to maintain constant respiratory and cardiac rates for all 

procedures). Animals breathed freely throughout the entire imaging procedure, 

preventing possible complications that could arise from intubation and forced ventilation 

[30]. A custom imaging cradle interfaced with a small bellows-type pneumatic respiration 

sensor for tracking abdominal and organ motion. Cardiac signals were monitored via 

ECG leads affixed to the paws (Soft Cloth Pre-wired Neonatal Radiolucent Electrode, 

3M, St. Paul, MN). Analog signals generated by the respiratory pressure sensor / 

transducer and by EKG were input into BioVet and were used to trigger prospective 

physiologically-gated imaging.  

Imaging Protocol 

All CT images were acquired during the end exhalation phase of respiration and 

at or 55 ms following the R-wave, corresponding to the diastolic and systolic phases, 

respectively. The protocol including contrast administration and image acquisition times 

is visualized in Figure 5-6. Iohexol 300mgI/mL was administered at a dose of 0.1 mL/5g 

body weight, followed by two CT acquisitions triggered on the R-wave. These CT 

images were obtained to show delayed contrast enhancement in the infarcted regions of 

the myocardium, and they occurred at approximately 5 and 15 minutes after contrast 

administration to determine optimal time delay. Fenestra VC was then administered at a 

0.1 mL/5g dose, followed by images acquired at 0 and 55 ms after the R-wave. This 
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second pair of images was used to compare ventricular volumes in diastole and systole 

and to calculate changes in ejection fraction caused by ischemia and reperfusion. 

7 wild-type mice were also scanned as controls. Physiologically-gated micro-CT 

images of these animals were obtained during the diastolic and systolic cardiac phases 

after administration of the iodinated lipid blood pool agent. These images were used as a 

baseline comparison for ejection fraction measurements.  

Figure 5-6. A flow-chart visualization of the contrast administration and imaging protocol 

of this work. Four micro-CT images were acquired using two iodinated contrast agents, 

Iohexol 300 mg I/mL and Fenestra VC. Images were acquired during either diastole (on 

r-wave) or systole (55 ms delay from r-wave). The acquisition of each gated micro-CT 

image required 10 to 15 minutes. After successful completion each stage of the protocol, 

the next immediately commenced. 

Images were acquired in a step-and-shoot protocol with 286 projections over a 

total of 200 degrees gantry rotation. Each x-ray projection exposure was 15 milliseconds 

in duration at 50 kVp energy and 3 mA cathode current. The system control software, 

written in LabView (National Instruments Corp, Austin, Texas, US), synchronized the 

flat-panel detector (operating on a 1 Hz fixed frame rate) and the x-ray source with 

trigger signals generated by the physiological monitoring system corresponding with the 

desired respiration and cardiac phases. The absolute minimum scan time of the system is 

286 seconds to allow for gantry rotation and image readout. Synchronization 

requirements imposed by a physiologically-gated protocol increase the scan time to an 
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approximate minimum of ten minutes per scan, although the exact scan duration is 

dependent upon cardiac and respiration rates. 

Image Processing and Analysis 

After acquisition, projections were preprocessed with a script in MATLAB 

(MATLAB and Imaging Processing Toolbox Release 2010b, The MathWorks, Inc., 

Natick, Massachusetts, US) to eliminate bad pixels and lines and then reconstructed to a 

3-D volume with commercial reconstruction software (COBRA, Exxim Computing 

Corporation, Pleasanton, CA). As a part of 3D reconstruction, Hounsfield unit correction 

was performed to normalize to known attenuations of water and air. Scanner resolution 

after reconstruction was 77 μm isotropic with the current geometric configuration. 

A MATLAB program was written to analyze 3-D image sets of the first iohexol-

enhanced CTs acquired for each subject. HU thresholds were defined in order to segment 

and measure the total volumes of infarct and of the left ventricle myocardium. Infarct 

sizes were reported as a percentage of the total left ventricle myocardium for best 

comparison with histology. 

Using a partially-automatic segmentation algorithm based on volume-growing 

region competition snakes in the dicom viewer ITK-SNAP [19], left ventricle blood pool 

volumes were measured for micro-CT images enhanced with the iodinated lipid blood 

pool contrast agent. A threshold HU range was defined to distinguish between 

myocardial tissue and the blood pool of the left ventricle. Small seed volumes were 

manually within the LV and propagated via snake evolution until the entire ventricle was 

filled. After segmentation, left ventricle volumes were recorded in mm
3
. 

CT estimates of LV volumes are commonly used in the clinic for calculation of 

ejection fraction [20]. The same method can be used murine cardiac CT, provided that 
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high-resolution and low-blur images can be obtained [21]. The calculation of ejection 

fraction for each subject was performed with the measured LV volumes for diastole and 

systole, VDia and VSys, as 

   
         

    
. 

Histology 

After imaging, subjects were sacrificed and their hearts were cut into 1mm slices 

and stained with triphenyl tetrazolium chloride (TTC) to visualize healthy and necrotic 

tissues. Slices were digitally photographed (both front and back) with an Olympus DP71 

digital camera (Olympus Corporation, Center Valley, Pennsylvania USA) with 200 ISO 

speed and 0.71 s exposure time. The resulting photographs were stored in jpeg format 

with dimensions of 1360 x 1024 pixels and 144 dpi.  

A MATLAB program was written to analyze each digitized histological slice to 

segment and measure the areas of myocardium with negative TTC stain uptake 

corresponding to infarcted tissue. The calculated infarct volume was reported as a 

percentage of total myocardium volume for each subject and compared with the percent 

infarct volume obtained from CT images. 

5.4.3 Results 

All eight animals survived the surgery and imaging, and quality CT images were 

obtained. During CT acquisition, the mean respiration rate of the ischemia reperfusion 

model mice was 108 ± 17 bpm and the mean cardiac rate was 420 ± 70 bpm. Obvious 

delayed contrast enhancement following iohexol administration was seen in the left 

ventricle wall in CT images for all subjects. The blood pool contrast agent revealed 

changes in cardiac function which were quantified by low ejection fractions. All subjects 
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demonstrated areas of myocardial infarct in the LAD distribution in reconstructed CNT 

micro-CT images; these regions corresponded with the areas lacking TTC stain uptake in 

the histological results. 

Figure 5-7. Micro-CT images of the ischemia reperfusion murine model. Images taken an 

average of 13 (a) and 30 (b) min after administration of Iohexol show obvious delayed 

contrast enhancement of infarcted tissue.  

Axial cross-sections of the micro-CT images for a representative subject are 

displayed in grayscale in Figure 5-7. Images acquired an average of (a) twelve and (b) 

twenty-five minutes after administration of the short half-life iodine contrast agent show 

hyper-enhancement within the myocardial wall which corresponds to the region most at 

risk of ischemia when the left anterior descending artery is obstructed. Delayed 

enhancement is visible at both time points, indicating that the optimal time window for 

visualizing infarcted tissue lies somewhere in the range of 5-30 minutes after 

administration and is not limited by the approximate scan time of cardiac-gated micro-CT 

(10-20 min for a single phase). The first acquired CT, on average occurring 13 minutes 

after contrast injection, is optimal for visualizing hyperenhancement of the infarcted 

region. Only one image is required to visualize the infarct if it is acquired within the 

appropriate time window.  

A visual comparison is made between delayed contrast micro-CT axial slices and 

histological slices (figure 5-9 top). Corresponding TTC-stained axial heart slices clearly 
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exhibit regions lacking protein uptake in the same regions of the myocardial wall, and are 

equivalent in size and shape, as those regions which display delayed contrast 

enhancement in micro-CT.  

Figure 5-8. CT numbers (in Hounsfield units) were measured for regions-of-interest 

comprised of the blood pool, myocardium, and infarct regions for each of the first two 

acquired CT images of each subject. Delayed hyperenhancement occurs in both 

visualized timepoints following the administration of Iohexol but is strongest during the 

first image acquisition (an average of thirteen minutes after injection). While the CT 

numbers for blood and infarct are similar in many of the images, the two are easily 

distinguishable within the context due to the location of the infarct, which is always 

imbedded within the myocardial wall. Both blood and infarct are clearly distinguishable 

from myocardium in all Iohexol-enhanced images. This is particularly true during the 

first of the two observed time points. 

This relationship is quantified in Table 5-2, where for each subject the percent 

volume of infarcted tissue as measured by both CT and by histological analysis is 

recorded. Calculations from CT volumes estimate the average percent volume of 

infarcted tissue within the left ventricle as 30.5 ± 7.8% while the analysis of histology 

gives the percent infarct as 32.2 ± 10.7% (similarity p < 0.71).  
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Figure 5-9. Areas of delayed iodine contrast enhancement in the infarcted myocardium 

are visible in micro-CT images (upper left) due to contrast agent retention in fibrotic 

tissue. These portions of infarcted myocardial tissue appear on histological slices stained 

with TTC (Triphenyl tetrazolium chloride) in pale pink due to their lack of marker uptake 

(upper right). Indicators for infarcted myocardium are comparable in location, shape, and 

volume in both CT grayscale images and stained histological slices. 

At the bottom of  Figure 5-9, CT images of the same subject after administration 

of an iodinated lipid blood pool contrast agent. Images acquired during diastole (bottom 

left) and systole (bottom right) are used to calculate the ejection fraction. 

Subject ID CT Percent Infarct Histology Percent Infarct Difference 

1 24.8 20.2 4.6 

2 32.7 33.2 -0.5 

3 13.3 20.6 -7.3 

4 35.7 36.5 -0.8 

5 37.6 26.2 11.4 

6 34.0 33.8 0.2 

7 27.0 30.9 -3.9 

8 52.7 42.5 10.2 

AVERAGE 30.5 32.2  

ST DEV 7.8 10.7  
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Table 5-2: Infarcted volumes calculated as a percentage of the total left ventricle wall 

volume, derived from computed tomography images and from TTC-stained histological 

slices.  

In addition to the structural changes within the myocardium resulting from 

ischemia and reperfusion, micro-CT images provide information on heart function via 

ejection fractions, calculated from the images acquired during the diastolic and systolic 

cardiac phases. The average calculated EF for the ischemia-reperfusion subjects was 0.36 

± 0.11 (n = 6) compared with 0.59 ± 0.7 (n = 7) for control subjects, quantifying a 

statistically significant difference in cardiac function resulting from the procedure (p < 

0.01).  

Figure 5-10: Calculated ejection fractions for mice 24 hours after ischemia and 

reperfusion (n = 6) and control mice (n = 7). 

5.4.4 Discussion 

The results of CT image analysis and TTC-stained histological analysis confirm 

that the location, shape, and general size of the infarcted regions generally agree between 

modalities. While the percent infarcted tissue from histological analysis is on average 

slightly greater than that derived by CT (32.2±10.7% vs. 30.5±7.8%), the difference is 

slight and may be attributable to the non-isotropic spatial resolution of the images of the 

TTC-stained gross slices. Specifically, while reconstructed micro-CT images have a 

resolution of less than 80 microns in x, y, and z directions, photographing both the front 
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and back of each 1mm TTC-stained slice results in an effective out-of-plane spatial 

resolution of only 500 microns. A possible result of this low out-of-plane resolution is an 

over-estimate of infarct volume reported by histology. Thinner slicing of harvested 

organs would improve accuracy but is practically challenging. 

Interestingly, the literature has suggested that delayed contrast enhancement 

imaging methods may slightly overestimate infarct volumes due to contrast retention in 

the peripheral zone of edematous but not necrotic myocardium [27]; however, our results 

do not conform to this trend. Additional investigation of the phenomenon as it applies to 

iodinated contrast-enhanced micro-CT imaging may be warranted. 

While the volume of infarcted tissue can be measured by tissue staining, 

measurement of the cardiac function of ischemia-reperfusion animals can only be 

determined with in-vivo imaging. Micro-CT imaging facilitated accurate left ventricle 

blood pool measurements during diastole and systole, so that cardiac function could be 

quantified by EF. The values of EF calculated for healthy subjects and for subjects 

following ischemia reperfusion were quantifiably different and statistically significant, 

demonstrating the use of CNT micro-CT for such measurements. 

Although prospective physiological gating and a free breathing protocol have 

many advantages, increased imaging time results from the requirement of synchronizing 

both respiratory and cardiac motion for each x-ray projection. The ten to fifteen minute 

image acquisition time is on the same order of magnitude as the iohexol contrast washout 

time, which poses a challenge in synchronizing imaging to the timepoint of maximum 

iodine concentration in infarcted tissues. It would be optimal if the system scan time were 

reduced in order to allow acquisition of additional CT images prior to contrast washout. 
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Alternatively, development of a contrast agent with a longer half-life with the correct 

properties to allow delayed contrast enhancement effects would have the same benefit as 

reducing scan time. Proposed improvements in the CNT micro-CT protocol, such as 

reducing the total number of projection images and applying a post-reconstruction 

bilateral filter to reduce Gaussian noise, promise to preserve image quality while 

simultaneously reducing scan time. 

The protocol of this study relied upon administration of two separate iodinated 

contrast agents; the long half-life lipid agent was administered only to guarantee 

sufficient contrast to perform LV volume measurements for ejection fraction. However, 

even with current hardware speed limitations, two CT image sets were acquired during 

the duration of iohexol in the blood pool; even images from the second acquisition 

exhibited sufficient contrast to measure LV blood pool volume. An amended procedure 

of sequential diastolic and systolic phase imaging immediately after iohexol 

administration would eliminate the need for multiple contrast agents and any 

complication that could arise from such a protocol. More rapid CT image acquisition 

would further facilitate the goal of single-contrast agent myocardial infarct imaging. 

5.4.5 Conclusions 

The carbon nanotube micro-CT offers specific benefits over other imaging 

devices for in-vivo murine cardiac imaging. The short (15ms), high flux pulses produced 

by electronic triggering of the CNT cold cathode x-ray source allows a significant 

reduction in cardiac- and respiratory-motion blur. As this method of gated imaging does 

not require intubation and forced ventilation, it is minimally invasive and therefore 

appropriate for the most delicate of disease models (in particular a myocardial infarct 
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model which must be imaged shortly after recovering from surgery). With CT images 

visualizing the delayed contrast effect, regions of myocardial infarct appear distinct from 

the surrounding healthy tissue of the left ventricle; these results compare in size, shape, 

and location to the regions of infarct indicated by TTC staining in histology. 

Furthermore, the pair of CT images obtained in diastole and systole allowed 

measurement of ejection fractions, quantifying a significant decrease in heart function in 

subjects after undergoing ischemia and reperfusion. A delayed-enhancement contrast 

protocol, combined with the particular benefits of our novel CNT-cathode micro-CT and 

prospective respiratory and cardiac gating, provides a new tool for the study of 

myocardial infarction.  
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6. Improving Micro-CT Image Quality and Other Topics 

6.1 Analysis of respiration data to improve image quality 

6.1.1 Introduction 

In Chapters 3 and 4, we demonstrated that respiratory monitoring with a 

pneumatic pressure sensor and a subsequent prospective respiratory gated protocol results 

in high quality in vivo micro-CT images of free-breathing mice. While not truly periodic, 

the abdominal motion of these free-breathing animals was steady and reproducible 

enough that gated imaging was able to eliminate abdominal motion blur. Nonetheless 

there are some mouse models of interest, such as those for heart disease and certain 

cancers, which present such severity of symptoms at the time of imaging that stabilizing 

respiratory motion is non-trivial. In extreme cases, motion blurring can obscure features 

of interest in images or prevent the use of automatic analysis tools such as volume-

growing algorithms, leading to time-consuming hand segmentation or a loss of data. 

These animal models are also poor candidates for intubation or the increased radiation 

dose of a retrospectively-gated imaging protocol. Prospectively-gated imaging is 

preferable if the protocol can be altered to accommodate the subject’s physiological 

limitations. As an example, one might apply some strict limitations on the variability of 

respiratory motion throughout the duration of the imaging protocol and reject this entire 

micro-CT data set if the standard is not met [1]. Still, some studies have such small 

sample sizes that any loss of image sets must be prevented if possible. 
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With the use of the CNT micro-CT, we propose a new retrospective method of 

motion-blur reduction in micro-CT image sets. We first identify individual x-ray 

projection images which most contribute to the motion blur and then reconstruct the data 

after the removal of these inferior projections.  

6.1.2 Methods 

Sixteen C57/B6J female adult mice with masses between twenty and twenty-five 

grams were imaged using the field-emission cone beam micro-CT. 400 projections were 

acquired in a step-and-shoot-mode over a total gantry angle of 200 degrees in half degree 

steps. Scans were performed at 50 kVp, at 30 mAs cathode current in 30 ms pulses. The 

subjects were anesthetized with isoflurane vaporized in medical grade oxygen and 

breathed freely throughout imaging. During micro-CT imaging, the mice rested on a 

custom-designed bed built from acrylonitrile butadiene styrene (ABS) and were lightly 

restrained in prone position with a strip of Coban bandage (3M Medical, St. Paul, MN) 

around the abdomen. All of the performed animal studies conformed to guidelines set by 

the Institutional Animal Care and Use Committee of the University of North Carolina in 

an approved protocol. After acquisition, images were reconstructed COBRA (and 

normalized to Hounsfield units. 

Respiration was monitored and recorded through BioVet. In order to implement 

gated imaging, we measured each subject's breathing pattern with the pneumatic bellows 

sensor. For the purposes of this study, peak imaging was defined as that which centered 

the x-ray pulse at the time point of maximum inhalation (greatest measured pressure per 

cycle) and base imaging was defined as that which centered the x-ray pulse at the time 

point of full exhalation (minimum measured pressure per cycle).  Base imaging was 
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achieved by triggering from the point of maximum amplitude and introducing a time 

delay of 120-200 ms before image acquisition, dependent upon the breathing rate of the 

subject. Due to the long, trough shape of the respiration base and the small signal 

amplitude in this region with respect to overall signal noise, triggering from the signal 

peak and applying a fixed time delay provided more consistent results than triggering 

from a defined pressure minimum in the base region. The entire respiratory trace was 

recorded for each animal and each micro-CT scan at a sampling rate of 500 Hz, noting 

which breath cycles corresponded to the acquisition of an x-ray projection image. With 

this method we were able to retain a complete data set of the respiratory motion and x-ray 

triggering for the entirety of the imaging procedure, allowing analysis of the respiration 

data to be performed at a later date. A peak image was acquired for all sixteen animals, 

and nine of the animals also were imaged at the base respiration phase for a total of 

twenty-seven image sets analyzed. Both phases were considered in order to demonstrate 

the general applicability of our results. 

An analysis program was written in MATLAB (Mathworks Inc, Natick MA) to 

process the respiratory trace recording and extract 400 segments corresponding to the 

breaths during which projection images were acquired. Each breath segment was defined 

as 500 ms in length, beginning 200 ms prior to the leading edge of the x-ray pulse in the 

case of peak imaging, and beginning at 400 ms prior to the leading edge for base imaging 

(Figure 6-1). The definition of breath length was able to be maintained throughout the 

study, as it included all relevant phases of the respiratory cycle without overlap 

(inhalation and the majority of the exhalation phase) for respiration rates between 70 and 

120 bpm. Using the procedure defined above, the respiration data corresponding to each 
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CT image is represented by a 400 x 250 matrix, with each entry an effective measure of 

the animal's chest position during a 2 ms interval in a particular breath cycle. For each 

projection n, the breath height (heightn, in mV) was defined as the maximum entry in the 

breath matrix, and the breath width (widthn, in ms) was defined as its full width at half 

maximum. 

For all image sets, an average breath was calculated by performing a row-wise 

average of the full 400 x 250 image breath matrix. The result was a single 1 x 250 breath 

matrix where each entry was a millivolt signal corresponding to the average abdominal 

position at each 2 ms interval of the entire 500 ms breath Scans were performed at 50 

kVp, at 30 mAs cathode current in 30 ms pulses in duration (Figure 6-2). This average 

breath’s shape was characterized by its height (heightavg) and width (widthavg) just as was 

done with of the 400 individual breaths in a CT scan.  

 

Figure 6-1: A typical “average breath” signal (mean over 400 breath cycles) for a single 

respiratory-gated murine micro-CT.  

To implement free-breathing prospectively-gated imaging, it is assumed that the 

breaths corresponding to every acquired projection are identical in shape. In particular, 

one assumes that the subject’s abdomen always returns to the same physical position 
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during each projection acquisition. In other words, this is an assumption that each of the 

400 individual breath matrices for a single CT are identical to each other and to the 

average breath matrix for that CT. If this assumption is false, motion blur will be present 

in the reconstructed images; the more inaccurate this assumption proves to be, the greater 

the corresponding level of motion blur that will be present after reconstruction. We 

hypothesized that by identifying those breaths which are most dissimilar to all others and 

eliminating their corresponding projection images prior to 3-D reconstruction, motion 

blur would be reduced when compared against the full-projection-set image. Three 

separate criteria were tested to define a so-called inferior breath in separate restricted 

reconstructions: the Pearson’s correlation coefficient of the breath compared to an 

average of all breaths; the difference between the maximum peak height of the breath and 

the maximum peak height of the average breath (i.e. mean height); and the difference 

between the peak height of the breath and the mode peak height of all breaths (mode 

height). The techniques are described in more detail in the next section. For a fair 

comparison between the methods, the algorithms were applied to remove the same 

number of projections (20 of 400 total, or five percent of the original number of 

projections). To investigate how more aggressive correction would affect overall image 

quality, reconstructed images were also created after 10, 40, and 80 projections were 

removed using the same restriction criterion (correlation coefficient). In total, for each 

original CT image set, six restricted data sets were generated for comparison (one by 

mode height, one by mean height, and four by the correlation coefficient method). 

Mean Height and Mode Height. The terms “mean height” and “mode height” are 

used to describe two different methods of projection removal focusing on the similarity 
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of the heights of the 400 relevant breaths during a CT scan. The mean height criterion 

tests a hypothesis that the majority of the motion blur is caused by projections acquired 

during breaths whose heights are significantly different from the height of the average 

breath. For each projection n and its corresponding breath matrix, MHn = heightn – 

heightavg was calculated; those with the largest values for MHn were excluded from the 

reconstruction. The average breath and its height may not be the best representation of all 

breaths, especially in cases where a change in shape occurs part way through image 

acquisition. To test this hypothesis a mode height criterion was also evaluated. MDHn = 

mode(height) - heightn was calculated, and those projections with the largest values for 

MDHn were excluded from the reconstructed image. 

Pearson’s Correlation Coefficient. While our initial observations suggested that 

breath height and breath width were inversely related and that an analysis of one would 

provide information about the other for a particular subject, we wanted to investigate this 

hypothesis by also considering a restriction criterion which evaluates the overall breath 

shape. A slightly more sophisticated metric which contains the temporal consistency of 

overall breath shape in one simple numerical value is the correlation coefficient 

comparing each 1x250 breath matrix to the others using the Pearson’s correlation 

coefficient. The output of this calculation (obtained by applying the CORRCOEF 

function in MATLAB to compare each individual breath matrix to the average breath 

matrix) is a 400x1 matrix containing values between 0 and 1 which describes how closely 

the shape of each of the 400 individual breaths corresponds to the shape of the average, 

with those closest to 1 representing breaths with the best correlation. To perform 
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projection subtraction, breaths with the lowest correlation coefficients are those marked 

for removal prior to reconstruction. 

After reconstruction, the amount of motion blur in each data set was determined 

by calculating the slope from the diaphragm to the right lung in a representative coronal 

slice (Figure 6-2a); the same slice and same portions of the diaphragm were analyzed for 

both the full and restricted data sets for the most accurate comparison. The slopes were 

calculated using an average of five pixel-wide lines across the diaphragm in units of 

HU/pixel, where the reconstructed resolution is 80 microns for each pixel (Figure 6-2b). 

 

Figure 6-2: (a) A coronal CT slice indicating the path of the five-pixel-wide slope 

measurement across the diaphragm and right lung. (b) The gradient is calculated along 

the path for the original unrestricted image set and all six of the restricted image sets. 
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6.1.3 Results 

Figure 6-3 : Comparisons between diaphragm slopes of original uncorrected image sets 

and those of image sets with five percent of projections removed as determined by: the 

correlation coefficient (upper left), mean breath height (upper right), mode breath height 

(lower left), and all combined criteria (lower right).  

Table 6-1(a): Quantitative comparison of restriction criteria 

Image Set Average gradient Percentage of images with best improvement 

Unrestricted Set 82 --- 

Correlation 5% 91 41% 

Mean height 5% 89.7 30% 

Mode height 5% 91.3 52% 

 

Table 6-1(b): Quantitative comparison of number of removed projections 

Image Set Average gradient Percentage of images with best improvement 

Unrestricted Set 78.9 --- 

Corr. 2.5% 88.5 13% 

Corr. 5% 89.5 21% 

Corr. 10% 90.8 33% 

Corr. 20% 88.1 46% 

In Table 6-1, Quantitative changes in the diaphragm gradient measurement are 

demonstrated after applying different projection exclusion criteria. At the top are the 
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results of removing five percent of the projections by correlation coefficient, mean height 

comparison, and mode height comparison; the rightmost column displays the percentage 

of data sets for which this restriction criteria was considered best. In cases where multiple 

criteria provide equal improvement, all are marked as best, resulting in columns summing 

to greater than one hundred percent. Mode height results in the best overall results.  At 

bottom, a single restriction criterion (correlation) is applied and the number of projections 

removed is varied. The greatest number of removed projections appears to give the best 

results as quantified by diaphragm gradient; however the resulting under-sampling 

artifacts result in inconsistent image quality, so removal of greater than five percent of 

projections is not recommended for this imaging protocol. 

 

Figure 6-4: Comparisons between diaphragm slopes of original uncorrected image sets 

and those of image sets with (a) 10, (b) 20, (c) 40, and (d) 80 of the original 400 total 

projections removed after being selected due to low correlation coefficients. The ratio of 
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new slope to uncorrected slope is displayed on the vertical axis; data points located above 

the y=1 line represent improvement in image quality as quantified by the chosen metric.  

All micro-CT image sets saw a reduction in motion blur (quantified by an 

increase in diaphragm slope) using at least one of the three projection-removal 

techniques. Furthermore, in twenty-two of twenty-seven images studied, the algorithm 

led to quantifiable improvement regardless of the projection-removal criteria chosen 

(correlation, mean height, or mode height). These results are summarized in Table 6-1a 

and in Figure 6-3. The three different removal criteria (correlation coefficient, mean 

height, and mode height) are compared fairly by removing the same total number of 

projections (20 of the original 400) using each selection criterion; the combined data are 

also displayed together in a single graph (top left). The y-axis of each plot is the ratio of 

new diaphragm slope over the uncorrected slope, so any data point above the y=1 line 

indicates improvement by the method. Because the uncorrected original micro-CT 

images are ranked along the horizontal from lowest blur to highest blur, it is possible to 

compare how the success of each correction method is related to the initial quality of the 

image sets. The lowest-blurred (or highest quality) original images are less likely to be 

improved by the correction algorithm, which is expected due to the lack of significant 

motion blur needing to be corrected. On the other hand, the images exhibiting the greatest 

degree of motion blur are also less likely to be improved by the correction, and in some 

cases the image quality may be deteriorated. To understand this phenomenon, we need to 

look at how the images are affected by removing more or fewer total projections from the 

original set. 
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Figure 6-5: (a) An axial CT slice of the heart and lungs, with respiration gating and no 

additional corrections is displayed. (b) The same axial slice is shown after five percent of 

the total 400 projections (those whose corresponding breaths have the lowest correlation 

coefficients compared with the mean breath shape) were removed prior to reconstruction.  

The twenty-four image sets which were improved with the correlation coefficient 

criterion were further analyzed to determine the optimal number of projections to 

remove. The results are summarized in Figure 6-4. Ten, twenty, forty, and eighty of the 

original 400 projections (2.5%, 5%, 10%, and 20%) were removed from each of these 

image sets using the correlation coefficient removal technique. As before, the y-axis of 

each plot is the ratio of new diaphragm slope over the uncorrected slope, and data points 

above the y=1 line are indicative of motion-blur reduction. As more projections are 

removed the average ratio tends to increase, but at the same time there is greater 

variability from one image set to the next. This effect is most extreme in the 20% 

removal plot (lower right), where significant image degradation appears in several of the 

data sets. Table 6-1b provides further illustration of this effect. The image blur is reduced 

after the removal of a greater number of projections until approximately ten percent of 

the worst projections are absent. The step representing the greatest change in image 
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quality is that between the original and 2.5% removal sets; in most circumstances 

removing more than five percent of the original number of projections does not appear 

benefit image quality. While a stricter application of the correction algorithm would be 

expected to lead to greater improvement, this trend breaks down at the removal of twenty 

percent of the projections. This limitation is most likely due to an increase in streaking 

artifacts caused by angular under-sampling [2, 3]. These artifacts overwhelm any 

improvements from blur-reduction if too many projections are removed prior to 

reconstruction, and the effect is magnified when many of the absent projections are 

located at adjacent gantry positions. We believe that such a trend would not exist under 

an imaging protocol where inferior projections are replaced with duplicated exposures at 

identical angles, or if a correction technique such as image interpolation [4] were applied 

to the projections prior to reconstruction. 

6.1.4 Discussion 

In order to obtain sufficiently-detailed CT images of mouse lungs, a certain 

threshold spatial resolution must be achieved. For ex-vivo imaging applications, current 

commercial micro-CT technology can provide spatial resolution down to one micron, 

allowing clear visibility of fine lung structures. Image quality of in vivo micro-CT, 

however, is limited not only by the inherent spatial resolution of the scanner itself but is 

usually dominated by the effects of physiological motion [5]. Without some form of 

respiration gating in place, the fine details of the lungs are obscured and much of the 

diagnostic power of CT is lost. Not all respiration gating methods and protocols are 

equally successful, and optimal elimination of motion blur artifact is achieved with the 

shortest x-ray pulse possible. Moreover, these pulses must be well-synchronized with 
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respiratory motion, so the quality of the image is only as good as the synchronization 

technique. 

Reducing the motion blur in CT images of freely breathing lungs better allows in 

vivo study of emphysema, interstitial lung disease, and other diseases in which high 

spatial resolution is necessary but invasive animal handling protocols also must be 

avoided. The goal is an in vivo spatial resolution approaching that achievable by ex vivo 

imaging. A technique of retrospective analysis for breath data which reduces motion blur 

in the final micro-CT images is therefore highly desirable. Motion blur resulting from 

poorly-synchronized projection images is reduced by removing these projections. Since 

each projection corresponds to a single breath and the quality of the projection depends 

upon the motion of inhalation or exhalation, it is important to be able to define a breath 

by meaningful parameters.  

In determining a single quantitative criterion by which to classify a breath, both 

the volume of inhalation and the temporal duration of the breath are simple measures 

which still convey much information. The theory of blur reduction by sub-optimal 

projection removal, and of physiological gating in general, depends upon an assumption 

that the surrogate measure of physiological state corresponds to the actual physical 

position of the animal and its organs – in this case, an assumption that pressure on a 

sensor beneath the animal's abdomen corresponds directly to the position of the animal's 

chest and diaphragm. While this has been shown to be generally reliable, it is important 

to note that breath height is dependent upon the force with which the animal is affixed to 

the pressure sensor (animal's body weight and the tension in the bandage restraining 

animal to bed and sensor) in addition to the volume of air inhaled. Thus, breath heights 
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are only usefully compared within a single scan, not between different imaging sessions 

or between different animals other than qualitatively (breath shape rather than specific 

numerical values). In extremely rare cases, the tension of the bandage could change mid-

imaging because of slipping adhesive, rendering comparison of heights before and after 

the tension change invalid. Except in these circumstances, however, a direct and inverse 

relationship between breath height and width is observed, as within any individual 

imaging session the minute oxygen needs of an animal are expected to remain 

approximately constant regardless of respiratory rate [6], and increased volume load will 

compensate accordingly.  

During our analysis of different breathing trends and the resulting quality of CT 

images, three general trends in the breath heights (or widths, due to their inverse 

relationship) were observed over the course of a single scan. These three classifications 

are displayed in Figure 6-6. The first trend is called “flat” since a plot of the heights of 

projection breaths is steady over time. This indicates a consistency of breath shape over 

the course of the CT which produces the best quality image displaying no visible motion 

blur. The next category is called “incline” as the breath heights either steadily increase or 

decrease over the course of image acquisition. As a general rule, an upward incline in 

heights will correspond to a downward incline in widths and vice versa (Figure 6-7). This 

trend is less likely to lead to motion streak artifacts but can introduce a diffuse blurring at 

the edges of fine structures, increasing the effective voxel size in the reconstructed 

images. The final classification, called “stair-step,” is characterized by a sudden and 

sustained change in breath height (either an increase or decrease). The plot of breath 

height over time may be split into two or more stair-steps; this category of breath height 
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progression is the one most likely to result in visible motion streaking artifacts. Along 

with any of these three general classifications, there may also be the presence of a small 

number of gasps, in which the animal abruptly inhales deeply and afterward returns to the 

prior respiration pattern.  

 

Figure 6-6: Plots of breath width versus projection (breath count) number for three 

different micro-CT scans corresponding to (a) flat, (b) stair-step, and (c) incline trends. 

Through observation of breath heights and widths over time for each imaging 

session, I noticed that motion artifacts were absent in cases where breath height and 

width are constant or change gradually over time. Likewise, a sharp change in height or 

width over a short period of time, especially when such changes occur more than once 

during image acquisition, is usually accompanied by visible blur manifest as streaks of 

motion in the ribs as viewed in a sagittal slice (Figure 6-8). The directions of the motion 
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streaks correspond to the angular orientation of the x-ray beam paths when those aberrant 

breaths occur. 

 

Figure 6-7: There is a characteristic, roughly-inverse relationship over time between (a) 

the measured breath height and (b) the breath width for a single animal and micro-CT 

imaging session.  These physical variables are dependent due to the subject’s minute 

oxygen needs which must be met regardless of respiration rate. 

 

In fifteen of the twenty-seven image sets examined in this study, motion blur was 

graded at 0 (no easily visible blur due to respiratory motion of the abdomen). In the 

analysis of breath shapes over the duration of the scans, the majority of these low-blur 

images may be characterized as “flat” in breath height and width or “incline” shaped with 

a very gradual and steady increase or decrease in height and/or width. The presence of 

one or two gasps in two of these images did not visibly affect image quality. Therefore, 

using the presence of a small number of gasps as a qualification for discarding the entire 

scan [7] seems unnecessarily strict.  Likewise, a stair-step shape where the drop is present 

for one-tenth or fewer of projections does not harm image quality provided that the 

widths adjusted only gradually. However, a true stair step shape in which approximately 

a quarter or more of breaths are different shapes from the others will certainly cause 

visible motion blur in the form of streaks in a sagittal slice view. The greater difference in 
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breath amplitudes in the two steps, the more severe the streak artifacts appear in the 

reconstructed images. 

It was expected that an exclusion criteria focusing on the correlation coefficients 

of breaths would provide the best improvement of image blur, but the results show that 

this method is slightly outperformed by the algorithm which excludes five percent of 

projections on the basis of the deviation of their heights from the mode breath height of 

the projection set. This warrants two remarks. First, it confirms the hypothesis that breath 

heights and widths are highly correlated over the timespan of a single CT scan. In fact, it 

appears that a complex simultaneous measure of both breath height and width, such as 

the Pearson’s correlation coefficient, is unnecessary – a simple measurement of breath 

height alone is sufficient. Furthermore, this finding implies that the gating protocol of 

triggering off of the peak of the respiration curve provides consistent results and that the 

peak of the respiration curve corresponds to the maximum expansion of the lungs. 

 

Figure 6-8: A characteristic stair-step change in breath height (a), results in a distinctive 

motion blur (b) which is particularly visible at the ribs. The blur is horizontally oriented, 

corresponding to the angular orientation of the CT scanner’s gantry (and thus the x-ray 

beam path) at the point in time when the respiration pattern changed. 

Although the respiration gating for this study was prospective, the analysis 

algorithm described in this paper was performed retrospectively, so identification of an 
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inferior projection was not achieved until well after the possibility of replacing it at the 

same gantry angle during the same scan. This inevitably led to under-sampling artifacts 

which in some cases could be more detrimental to image quality than the presence of 

poorly-synchronized projections. However, because breath height is easy to monitor 

throughout image acquisition, it should be possible to perform on-the-fly projection 

replacements before completion of a CT scan. This might be done by observing the 

respiration pattern of each subject for a minute or two prior to imaging to determine the 

mode breath height, or by selecting the mode height at the end of a scan and replacing the 

most poorly-synchronized projections as the gantry rewinds back to its original position. 

Either way, a strict definition of allowable breath height range would allow prospective 

respiration-shape corrections to be implemented in order to improve image quality 

without introducing under-sampling artifacts or exposing the subject to unnecessary 

increased dose. It is also worth noting that, even without implementation of a mechanical 

solution to the problem, a variety of algorithms have been developed to reduce the effect 

of under-sampling artifacts [2 – 4]. These techniques could also be used with the 

restricted data sets generated by the methods outlined in this paper. 

Based on the technological advancements of micro-CT systems currently on the 

market, a theoretical isotropic resolution of 10-20 microns can be achieved through free-

breathing live animal imaging. Practically, however, the resolution limit seems to lie 

closer to 100 microns due in large part to the motion blur which limits even the best 

available gating systems. Scanners with excellent temporal resolution work to resolve the 

issue of motion blur, while advanced animal-handling techniques stabilize and reduce 

subject motion. We believe that analysis of physiological motion and strict criteria for the 
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acceptance of individual projection images is an important third component in the 

optimization of micro-CT imaging spatial resolution, and our work herein is meant to 

address this concern. 

6.1.5 Conclusions 

Removal of a subset of inferior projections from otherwise complete CT data sets 

results in a measurable decrease in motion blur, as defined by diaphragm gradient, in 

gated images of in vivo free-breathing mice. The degree of improvement, as well as the 

ideal criteria for selecting projections for removal and the number of total removed 

projections, is dependent upon the class of respiratory motion, though our results indicate 

that a breath height-based approach is preferred. We believe that an analysis based on 

breath height has the best general applicability because it is computationally 

straightforward to implement while still containing relevant information about a subject’s 

overall respiration trend. Despite the observed improvements, retrospective removal of 

projections from the full data set can result in streak artifacts from angular under-

sampling; these artifacts are most severe when the missing projections are grouped 

closely together. This problem could be minimized or avoided by oversampling during 

the imaging process (as in retrospective physiological gating protocols) with the 

drawback of an increase in radiation dose.  

Better overall image quality could also be achieved with more sophisticated 

reconstruction techniques than the Feldkamp method, or with a pre-reconstruction streak-

reduction algorithm. Nonetheless, the method outlined in this paper conforms to a strict 

interpretation of data quality. A robust technique will take into account both pre- and 

post-reconstruction methods for the improvement of CT image quality; our breath 
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analysis technique concerns only pre-reconstruction methods which can be combined 

with the aforementioned post- and during-reconstruction methods for even further 

improvements. In the future, we wish to implement on-the-fly breath-shape recognition 

during imaging using one of the selection criteria discussed above to identify inferior 

breaths prior to each x-ray projection acquisition, preventing additional dose and under-

sampling artifact while providing the benefits of reduced motion artifact obtained in our 

retrospective analysis method. This breath pattern recognition could either replace or 

supplement established threshold-based methods in the imaging of free-breathing murine 

models with respiration gating. 

6.2 Energy Spectrum Optimization 

Because the mechanisms for x-ray attenuation are a variety of photon-matter 

interactions which are functions of energy, the selection of the x-ray energy spectrum for 

a given imaging application is crucial. Lower energy photons are better attenuated by soft 

tissue than high energy photons, but these lower energy photons most contribute to beam 

hardening artifacts. Clinical scanners are generally operated in the range of 100-140 kVp 

in order to penetrate through scanning objects as large as a human torso and so avoid 

much of the beam hardening which is seen in the lower energy scans of micro-CT. 

Charybdis is generally operated at an anode voltage range of 40 to 60 kV and with added 

filtration to remove some of the lower energy photons to reduce beam hardening. 

Experience has led us to conclude that a setting of 50 kVp with 0.5 mm of aluminum is 

best for small animal imaging applications, especially those where iodinated contrast 

agents are used. CT contrast agents exhibit a k-edge enhancement within the typical 

energy spectrum output of the scanner, and the k-edge of iodine occurs at 33.1 kV, so an 

energy spectra centering on that energy or just below should provide the best 
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enhancement of the contrast agent. Likewise, in dual energy CT or multi-energy 

subtraction imaging, two relatively non-overlapping spectra on either side of the k-edge 

will best differentiate iodine in the images. 

Figure 6-9: Simulated energy spectrum from the Charybdis micro-focus tube, with 

tungsten target, 0.2 mm Be window and additional 0.5 mm Al filter. 

Simulations of energy spectra generated by a tungsten-target x-ray source were 

performed in MATLAB using the Spektr package. Various kVp within the achievable 

range were explored, as well as different thicknesses of aluminum and copper filter. A 

sample spectrum of the standard setting used in Charybdis, 50 kV anode voltage with 0.5 

mm aluminum, is shown in Figure 6-9.  Table 6-2 displays the settings and average 

photon energy for each of the simulations along with the k-edge energy of iodine.  

As it happens, the simulated spectrum with an average energy closest but slightly 

below the k-edge of iodine was for the default settings used for micro-CT, or 50 kVp 

with an added 0.5 mm Al. Thus, scanning parameters are already optimized for iodine 

contrast. To highlight contrast from a different contrast agent, the tube energy and 

filtration can be modified to match the average x-ray energy to the appropriate material’s 

k-edge. 

kVp  Filter Materials (+0.2mm Be) Mean Energy (kV) 

40  none 26.8889 

40  0.25mm Al 27.3103 
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40 0.50mm Al 27.6897 

45  none  29.1290 

45  0.50mm Al 30.0014 

50 none 31.0927 

50 0.50mm Al 32.0074 

 K Edge of Iodine 33.169 

60 none 34.8854 

60 0.2mm Cu 42.2483 

60 0.25mm Cu 43.1970 

Table 6-2: Average x-ray energy for various anode voltages and filter materials, derived 

from simulations. The typical settings used for Charybdis, in italics, most closely match 

the k-edge of iodine, in bold.  

6.3 Bilateral Filtration 

The bilateral image filter is a smoothing, edge-preserving filter which uses the 

product of two different Gaussian kernels [9]. The first kernel weights by spatial distance, 

and the second kernel weights by the intensity difference between kernels. Different 

weighting factors for each of these two kernels are selected. The filter can be applied in 

the 2-D or 3-D domains (primarily by changing the application of the spatial kernel), and 

it has even been recently applied in 4-D within periodically-changing imaging 

applications [10, 11]. 

Although the filter can be adjusted with different types of kernels besides the 

Gaussian option, I was interested in testing the simplest implementation to see if the 

noise in CNT micro-CT images could be easily reduced. In this implementation, the pixel 

at position vector r is changed to a weighted average of nearby voxels, with weights 

depending upon physical proximity and the similarity of the HU values, according to 

  ( )  
∫  (       ) ( ( )  (  )   ) (  )
  

∫  (         
) ( ( )  (  )   )

, 

where µ(r) is the attenuation value of the voxel with position vector r, and the weighting 

function w is defined as  
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σd and σr are the constant spatial and intensity weighting functions, respectively. 

For this test, I used a respiratory-gated micro-CT image of a free-breathing mouse 

in which the field of view was centered about the abdomen and thorax. This region was 

selected due to the variety of organs with similar soft tissue contrast which can be easily 

viewed within a single reconstructed axial CT slice. 

An automated program was written in MATLAB to apply a 2-D bilateral filter to 

each axial slice in a reconstructed CT image set. After selecting the desired spatial and 

intensity weighting functions, the program loads each dicom image file sequentially and 

applies the filter, saving the filtered image into a new directory. 

After some trial and error, the optimal intensity weight factor for this abdominal 

CT was found to be 350. The optimal value is likely to be different when the focus is on 

different regions of the body, but for abdominal imaging this value resulted in the correct 

filtration. 

Two different spatial domain weight values were tested in detail for this study: 1 

and 5. CT image sets with filtration at this setting were compared quantitatively with the 

original unfiltered CT image set. 

To compare the noise reduction effects of bilateral filtration on the image set, a 

region of interest was drawn within the spleen of a single axial CT slice and the mean and 

standard deviation of the contrast was recorded in HU. An identical ROI was drawn on 

identical axial slices in the filtered images. 

Because filtration can reduce edge sharpness, this effect was analyzed in the 

original and filtered CT images by selecting a path through the spleen in a single axial CT 
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slice and plotting the line profile along that path. Identical line paths were plotted for 

matching axial slices in the original and filtered images. 

 

Spatial Weight Average Value (HU) Standard Deviation (HU) 

Unfiltered 404 69 

1 409 37 

5 392 19 

Table 6-3: The effects of bilateral filtration on image noise. 

 

Figure 6-10: Axial CT slices (left) and line profiles (right), before bilateral filtration 

(top), and after filtration using a filter with width of 1 pixel (middle) and 5 pixels 

(bottom). 

 

The bilateral filtration program successfully reduces noise in reconstructed dicom 

CT sets. As expected, increasing the spatial weighting function reduces the image noise, 

as quantified by the standard deviation of the contrast within a region of interest in the 

spleen. However, there is a predictable tradeoff in edge sharpness which is seen in the 

line plots across the spleen of each of the images. Although increasing spatial weighting 

results in reduced noise, it also blurs edge sharpness. Nonetheless, a spatial weighting of 
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1, combined with an intensity weighting of 350, nearly halves the image noise within the 

spleen while maintaining most edge sharpness.  

The success of this filter for cleaning up image noise in the reconstructed volumes 

is convincing. The entire MATLAB program is automated to clean up entire dicom sets 

in one pass and is not computationally taxing. Further refinement of the algorithm is 

warranted, including taking the spatial filtration into the 3D realm rather than applying 

the filter only within individual axial slices. Also, optimization of the weighting 

parameters for different regions of the murine body, with and without onboard contrast 

agent, would allow the algorithm to be optimized for different imaging applications. 

6.4 Radiation Therapy Applications 

6.4.1 Brain Tumor CT Imaging 

To demonstrate the feasibility of using contrast-enhanced micro-CT for image 

guidance in radiation therapy of mice, a protocol was developed to acquire a head micro-

CT of two adult male mice which had been implanted with glioblastoma multiforme U87 

human tumor cells three weeks prior to image acquisition. Immediately before imaging 

each subject, 0.5 mL of Iohexol 300 mg/mL iodine contrast agent was administered via 

tail vein injection. Animals were anesthetized with a 1.5% mixture of isoflurane gas in 

medical grade oxygen and were free-breathing throughout the study. Each subject was 

positioned prone on an ABS animal bed and lightly restrained about the abdomen and 

more firmly restrained around the skull using Coban medical tape. The pneumatic 

pressure respiration sensor was positioned beneath each mouse’s abdomen to monitor 

consciousness levels and adjust anesthesia accordingly. Because the subject’s head was 

restrained to isolate it from respiratory motion, no prospective physiological gating was 
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required; thus, the total scan time per CT image was under seven minutes. This permitted 

two sequential CTs to be acquired even considering rapid clearance of the Iohexol 

contrast agent. Typical scanning parameters were used in the acquisition, including 2.5 

mA cathode current, 30 ms pulse widths, and 50 kVp x-ray energy with 0.5 mm 

aluminum filtration. 400 projections were acquired in step-and-shoot mode over 200 

degrees of gantry rotation. Standard projection corrections and 3-D reconstructions were 

performed to obtain normalized DICOM images. 

Figure 6-11: Axial (left), coronal (center), and sagittal (right) micro-CT slices of an adult 

male mouse with a U87 brain tumor which grew from cells implanted three weeks prior 

to imaging. Contrast enhancement within the skull indicates tumor size and location. 

The resulting images (Figure 6-11) display an obvious iodine contrast 

enhancement in the region of glioblastoma within the skull. As the mechanism of contrast 

leakage within the brain tumor resembles the contrast leakage in myocardial infarct 

image (Section 5.4), we also found that the timepoint corresponding to optimal 

enhancement within the tumor was similar to the optimal timepoint for the infarct study, 

centering on ten minutes after tail vein injection. This timing corresponded with the 

second CT image acquired after initial contrast administration. 

This work demonstrates the utility of CT for targeting in image-guided radiation 

therapy for glioblastoma in mice. There are some natural limitations to application, 
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however. Most importantly, contrast administration is absolutely required to visualize the 

lesion within the brain. The iodine dose, while tolerable to subjects, is at the upper limit 

and must be appropriately timed to achieve the desired contrast enhancement. 

The success of this pilot imaging study was a motivating factor in the progress of 

an image-guided radiation therapy project which has now become a robust area of work 

for our lab. In addition to treatment of glioblastoma in adult mice with microbeam 

radiation using x-ray image guidance for targeting (projections rather than full CT, the 

motivation for which is discussed in the following section), the project has expanded to 

include treatment of medulloblastoma in P12 mice. X-ray fluorescence is being 

considered as a replacement or supplemental modality for image guided treatment. And I 

am particularly excited by the initial work in our lab to apply physiological gating 

methods to MRT of the abdomen, reducing motion blur in the radiation treatment lines 

just as it does for micro-CT images [13]. 

6.4.2 Image Guidance with X-ray Projections 

Since the initial study, MRT image guidance has moved to protocol involving a 

simple x-ray projection without contrast administration [14]. We have found that the 

quality of these projection images is sufficient to visualize basic contours of the mouse 

skull and its position in relationship to landmarks on the stabilizing mouse bed, such as 

plastic ear bars which extend into the ear canals. While x-ray projection images alone 

without iodinated contrast agent cannot show the exact tumor location, they can be 

merged with simulated MRI projections which do easily visualize tumor size and 

position. This protocol, while not optimized for image quality, is practical to implement 

because gadolinium-enhanced MRI is performed on all subjects prior to radiation 
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treatment a day prior to treatment in order to sort subjects into size-matched MRT 

treatment and control pairs. Thus the protocol does not require additional iodine contrast 

administration in addition to the gadolinium administered on the prior day. The resulting 

merged image is then used to derive targeting parameters which are used to guide the 

treatment plan. 

6.4.3 Moving Forward with Image Guided MRT 

While x-ray projection imaging may be sufficient for targeting purposes and 

accurate within the current stability range of other system components (such as stage and 

bed positioning), it is clear that pursuing a protocol of micro-CT image guidance would 

enhance the precision of the image registration portion of protocol. This would be the 

case even without iodine contrast administration, because registration between 3D CT 

and MRI skull contours would be more accurate than between their 2D counterparts, even 

without trying to match the tumor volumes between images



7. Conclusion and Future Directions 

While no work is truly complete and there are always modifications that can be 

made, CNT micro-CT is in many ways a finished product ready for use by the non-

specialist. With a user-friendly LabView-based GUI designed by Dr. Guohua Cao and a 

detailed operator’s manual written by myself, a trained technician could now replicate my 

imaging work on all of the aforementioned murine disease models and more. In fact, 

since the first Charybdis micro-CT system was built, we have constructed two additional 

stand-alone scanners: one stationed in the lab of Dr. Eric Hoffman at the University of 

Iowa in Iowa City, and one in the Biomedical Research Imaging Center (BRIC) at the 

University of North Carolina at Chapel Hill. The latter of the two devices is available to 

all researchers at UNC. 

As I consider the future directions of CNT micro-CT, I cannot help but reflect on 

the development arc of clinical CT. There, the main focuses of hardware advancement lie 

in decreasing scan times, reducing patient radiation dose, harnessing the power of multi-

energy imaging, and synergistically combining CT with other imaging modalities such as 

positron emission technology (PET). Too, there are non-hardware advancements which 

have yet to reach the clinic, including a variety of novel 3-D reconstruction methods. 

Given our lab’s sole specialization in x-ray devices, multi-modality imaging devices 

likely fall outside of our sphere. However, CT-guided radiation therapy is an obvious 

area for more development, and x-ray guided needle biopsy would be a natural extension 

due to our engineering and hardware focus.
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The primary limitation of our current hardware is the total scan time, which does not yet 

come close to rivaling that of clinical scanners or even the fastest commercial micro-CT 

(though these CTs use retrospective gating, which too has its limitations). In the clinic, 

scan times have been dramatically reduced with dual-source / detector scanners; these 

have the added capability of dual-energy imaging. Interest in pursuing this direction in 

our lab was stymied by the high cost and engineering challenges that come with a double 

source and detector pair. Still, simply duplicating clinical developments is uninteresting, 

and doing so neglects the unique benefits of the carbon nanotube-based field emission x-

ray source. We have so far focused on the fast switching time and high flux of CNT x-ray 

tubes, but the micro-CT project has not moved to multi-source arrays even as such 

technology has successfully been put to use in radiation therapy and digital breast 

tomosynthesis. Considering this previously-neglected advantage, solid-state CT is a 

natural future direction. Solid state CT scanners are capable of fast imaging that is only 

limited by flux, detector readout, and any desired physiological synchronization. This 

technology could be applied in animal imaging or for clinical human use with design 

modification. 

CNT field emission x-ray imaging is a young technology, and despite the many 

impressive directions in which our lab has taken this work, the full potential has yet to be 

reached. My thesis work is only one step along the path as this technology moves into 

clinical relevance. 
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