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ABSTRACT 

Monica E. D’Arcy: Exploring The Association Between Antidepressants and Colorectal Cancer 
in Administrative Data: Negative Controls, Active Comparators and Algorithms 

(Under the direction of Jennifer Lund) 

Some antidepressants, especially Selective Serotonin Reuptake Inhibitors (SSRIs), may 

prevent colorectal cancer (CRC), but these effects may be drug rather than class specific.  

Previous epidemiological studies have only examined class-level effects, and all studies used 

non-user comparisons, which are susceptible to several biases.   

Examining specific SSRI-CRC associations requires a large sample size and precise 

prescription records, which are features of administrative data; however, these data do not 

generally contain pathology confirmed cases and algorithms are required to identify probable 

cases. 

The goals of this dissertation were: 1) to examine the class-level associations between 

three antidepressant classes, including SSRIs, and CRC compared to a negative control, 

antihypertensive initiators (AHT), 2) to examine the association between specific SSRIs and 

CRC, and 3) to re-evaluate claims-based CRC-identification algorithms in a contemporary 

population.
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To examine the first two goals, we performed a new-user, cohort study using a 20% 

random sample of Medicare beneficiaries (2007-2013), aged ≥66. We estimated hazard ratios 

(HRs) and 95% confidence intervals (CI), and controlled measured confounding using a 

propensity score weighting approach. SSRI initiators had lower CRC rates compared with AHT 

initiators (aHR=0.85, 95% CI: 0.70-1.02). Paroxetine and fluoxetine initiators had lower CRC 

rates compared with citalopram users (aHR: 0.78, 95% CI: 0.56-1.06; aHR: 0.74, 95% CI: 0.52-

1.05, respectively). Estimates were consistent across sensitivity analyses.   

We re-evaluated CRC-identification algorithm performance in a ≥65, 2006-2009 North 

Carolina Medicare population, a proportion of which were cancer registry identified CRC cases.   

We employed a novel cohort creation strategy, whereby cases contribute information from both 

their pre-diagnostic non-case and case states to accurately capture CRC incidence. Specificity 

was lower (98.3-99.4% versus 98.5-99.6%) and Positive Predictive Value (PPV) substantially 

lower (18-37% versus 45-71%) in this population compared to the original population.  

 Results from the first two goals warrant further investigation into the SSRI-CRC 

association, including incorporating additional part D data as it becomes available.  Algorithms 

are a necessity when performing a drug-cancer study in administrative data, but should be used 

cautiously, because they are population and time specific.  These CRC-identification algorithms 

need to be updated to reflect a more contemporary and economically diverse population. Future 

validation studies should employ strategies to accurately ascertain incidence to avoid 

overestimating PPV. 
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CHAPTER 1: SPECIFIC AIMS 

Despite declines in incidence and mortality over the past 30 years, colorectal cancer 

(CRC) remains the second leading cause of cancer mortality in the United States [1] with almost 

50,000 deaths expected in 2015 [2].  CRC treatment is expensive, with the average cost per 

colon cancer Medicare beneficiary in the first year after diagnosis estimated at $30,000 in 2010 

[3].  High costs of cancer treatment have therefore generated interest in identifying existing 

drugs and supplements with the potential to prevent cancer [4].  

Antidepressants are commonly prescribed drugs, with an estimated 17% of Americans 

aged ≥65 reporting antidepressant use in a 2012 nationally representative survey [5].  

Experimental evidence, both in-vivo [6-12] and in-vitro [8, 9, 13-20], suggests that some 

antidepressants may have anti-neoplastic effects, and that these effects could be drug and not 

class specific.   

The few epidemiological studies [21-26] examining the association between both 

Selective Serotonin Reuptake Inhibitors (SSRIs) and Tricyclic Antidepressants (TCAs), and 

CRC have produced conflicting results, and all studies compared antidepressant users to non-

users.  Failure to adequately synchronize the start of follow-up can lead to improper attribution 

of events to new user and non-user groups.  The frequency and intensity of interaction with the 

healthcare system (i.e., healthcare utilization) may also differ between initiators of a drug—new 

users [27]—and non-users, and thus non-user comparisons are also susceptible to outcome 

detection bias.  

Administrative data are increasingly being used to identify both negative and positive 

effects of drug exposures on the risk of cancer.  Although drug exposure information from 
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claims is reliable, claims data do not generally contain pathology confirmed cases, because they 

are used for reimbursement, and not research purposes.  Therefore, algorithms are necessary 

to identify incident cancer cases in administrative data.  Claims data are critical to answering 

questions that could not be feasibly ascertained within the context of a randomized clinical trial 

(RCT) or an observational study, because certain questions require a very large sample size, 

precise exposure ascertainment, and do not have enough evidence to warrant an RCT, for 

example the association between specific SSRIs and CRC.  Studies performed in these data 

can also be substantially cheaper than traditional cohort studies because these data already 

exist. 

The overarching goals of this dissertation are to rigorously examine the association 

between antidepressants and CRC, including plausible reasons for conflicting results, while 

exploring some methodological considerations specific to adequately addressing this sort of 

question in administrative data.  The specific aims are as follows: 

Specific Aim 1: Compare the incidence of CRC across cohorts of new users of SSRIs, 

new users of TCAs, new users of Serotonin Norepinephrine Reuptake Inhibitors (SNRIs), 

and new users of a negative exposure control, antihypertensives (AHT) exclusive of beta-

blockers.  Explore potential reasons for high cancer incidence shortly after initiation.   

Aim 1 will be accomplished by generating cohorts of incident users to the classes of drugs of 

interest in the Medicare claims databases (parts A/B/D) for the years 2007-2013 in individuals 

aged ≥66 years.  Our comparison of antidepressant users with the control group (non-users) will 

incorporate current pharmacoepidemiology techniques to improve exchangeability.  We 

hypothesize that new users of SSRIs will have a reduced incidence of CRC compared with TCA 

new users and AHT initiators.  We hypothesize that new users of SNRIs will have an increased 

incidence of CRC compared to AHTs.  
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Rationale: To date, no study has examined the association between antidepressant classes 

and CRC using a negative exposure control, and no study has ever evaluated the association 

between SNRIs and incident CRC.  There are biologically feasible reasons why SNRIs may 

increase CRC risk through increased vascularization. 

Specific Aim 2:  Evaluate variation in the association between specific SSRIs (i.e. 

sertraline, fluoxetine, paroxetine) and CRC. 

Aim 2 will be accomplished by generating cohorts of incident users to the classes of 

drugs of interest in the Medicare claims databases (parts A/B/D) for the years 2007-2013 in 

individuals aged ≥66 years.  We hypothesize that differences in previously reported studies 

could be partially explained by inherent differences between specific drugs in the SSRI class 

with respect CRC risk.   Rationale: Experimental evidence suggests some SSRIs may have 

anti-neoplastic effects.  Epidemiologic studies examining the association between SSRIs and 

colorectal cancer (CRC) have produced inconsistent findings.  Potential heterogeneity of 

specific SSRI effects, paired with differences in SSRI use across populations, may explain 

variation in previously reported results.   

Specific Aim 3: Re-evaluate the validity of the algorithms defined by Setoguchi [28] for 

colorectal, colon and rectal cancer cases in the Medicare claims database for the years 

2006-2009 in more economically diverse and recent population without stringent 

enrollment criteria  

We will use Medicare beneficiaries, ≥65 years of age, and NC cancer registry CRC 

cases to validate the algorithm for identifying incident colon and rectal cancers in 2006-2009 

Medicare population.  We hypothesize that specificity of the algorithm has declined because of 

changes in the screening, treatment, and overall management of CRC over time, as well as 

differences between the NC and original PA/PACE populations.  Rationale: We will be using 
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these algorithms to identify probable CRC cases in Aims 1-2; however, their performance in a 

more contemporary and economically diverse population is unknown.  These algorithms were 

developed in a Pennsylvania (PA) population that was continuously co-enrolled in both 

Medicare and Pharmaceutical Contract for the Elderly (PACE)—a drug benefit program for low-

income individuals—for the years 1997-2000.  Therefore, we would also like to re-evaluate the 

algorithm in: (1) a less selected, and economically diverse group of individuals aged 65+ years 

in NC and (2) a more contemporary time period (2006-2009).  
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CHAPTER 2: BACKGROUND 

2.1 Significance 

Stress and depression are hypothesized to contribute to the progression of cancer via 

pathways involved in immune function, apoptosis, and inflammatory response.  These 

hypotheses are supported by experimental studies [29-33], although they are difficult to test in 

humans [33-39].  Depressive symptoms—often treated with antidepressants—are reported by 

approximately 10% of Americans.  Antidepressants are commonly prescribed drugs, with an 

estimated 17% of Americans aged ≥65 years reporting antidepressant use in a 2012 nationally 

representative survey [5].  It is estimated that 25% of cancer patients suffer from depression 

[40], and depression is associated with increased mortality [41].  As the 3rd most common 

cancer among men and women, and the 2rd leading cause of cancer mortality in the United 

States [42], CRC is a major public health burden. 

There is increasing in-vivo [6-12] and in-vitro [8, 9, 13-18, 20, 43] evidence that 

antidepressants are cytotoxic to cancer cells, and that some antidepressants may act as 

chemosensitizers [44-46].  There is limited [21, 22, 25] epidemiological evidence supporting 

these associations, but these studies failed to use current pharmacoepidemiologic techniques to 

ensure comparability between exposed and non-exposed populations.  They were also not 

powered to evaluate potential heterogeneity within the SSRI class. 

Experimental evidence suggests that some antidepressants may act late in the multistep 

carcinogenic process, because several of the drugs reduced tumor size, slowed tumor growth or 

were cytotoxic.  If these drugs modify CRC risk late in the carcinogenic process, then it would 

be possible to observe a population level association between antidepressant use and CRC 
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without decades of data.  With seven years of a 20% random sample of the Medicare 

population, we have the opportunity to rigorously evaluate the associations between individual 

drugs and incident CRC.  

Antidepressants are drugs used to treat depression, and depression is common among 

cancer patients [40].  Because these drugs are so commonly used, it is important to understand 

the potential harms and benefits.  If they reduce the incidence of CRC by acting late in the 

carcinogenic process—on a late adenoma or early carcinoma—then they may have adjuvant 

benefits to individuals getting treated for CRC who also have depression.  For example, some 

CRC tumors are highly resistant to Cetuximab [47], but there is evidence that some 

antidepressants (sertraline) may be cytotoxic to similar cell lines (HT-29), and reduce tumor size 

in HT-29 xenografted mice [48].   

2.2 Antidepressants, serotonin and cytotoxicity 

2.2.1 Antidepressants   

Three of the most commonly used antidepressant classes include: SSRIs, TCAs and 

SNRIs.  These drug classes increase the intercellular availability of neurotransmitters—most 

commonly serotonin, norepinephrine or dopamine—by preventing their uptake.  TCAs are 

named for their physical structure, having three rings, but are quite variable in their function and 

affinity for various neurotransmitters.  They increase neurotransmitter availability by preventing 

reuptake via binding to specific receptors or reuptake transporters, but they do this non-

selectively.  In contrast, drugs within the SNRI or SSRI class behave similarly to one another in 

that they strongly prevent only specific neurotransmitters, norepinephrine + serotonin, or 

serotonin respectively, from reuptake into the cell.  They also generally only have strong affinity 

to the neurotransmitter reuptake transporter as opposed to the receptor.  Each of these classes 

is indicated for a wide variety of conditions beyond depression.  TCAs are an older class of 

antidepressant, with more severe side effects, and are thus less frequently a first line treatment, 
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and are more often prescribed to treatment resistant or more severe forms of depression. They 

additionally have a wider indication of use including neuropathic pain (desipramine).  SNRIs are 

also indicated for neuropathic pain and fibromyalgia.  In contrast, SSRIs and not indicated for 

pain conditions.   

2.2.2 Serotonin in the body  

The majority of serotonin (5-hytroxytryptophan (5-HT)) in the body is synthesized from 

tryptophan by the enterochromaffin cells (EC), which are distributed throughout the 

gastrointestinaI (GI) Tract [49].  Serotonin then enters the lumen and interacts with the various 

serotonin receptors, and finally is taken up by enterocytes expressing the serotonin reuptake 

transporter (SERT) [50] .  Serotonin has many functions including motility control of the GI tract.  

SSRIs bind to SERT, thereby inhibiting the reuptake of serotonin into the cell.  TCAs are non-

selective and may bind to SERT, the dopamine transporter (DET) and the norepinephrine 

transporter (NET).  SNRIs preferentially bind to SERT and NET.  All three classes additionally 

have marginal affinity for some of the several known serotonin receptors classes[51]. 

The distribution and types of serotonin receptors and SERT in the GI tract, specifically 

the colon, is not completely known[50], but serotonin receptors and SERT are present in the 

colon.  Although SERT is present in the colon, there is evidence that it is expressed at much 

lower levels compared with the small intestine [52].  SSRIs modify SERT and serotonin 

expression in experimental animal models [53, 54], enhancing the biological rationale that these 

drugs could alter CRC risk in humans. 

Serotonin, serotonin receptor, and SERT dysregulation is implicated in several 

gastrointestinal (GI) diseases[50, 55-57] including irritable bowel syndrome (IBS), inflammatory 

bowel disease (IBD), celiac disease and diverticulitis.  Serotonin and SERT deficiency has also 

been observed in ulcerative colitis (UC), IBS-D, IBS-C patients, and the number of EC cells was 
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dramatically reduced in severe UC compared with non-severe UC cases [58].  The association 

between 5-HT, 5-HT receptor, SERT and these disorders is complex and not completely 

understood.  IBD, UC in particular, is a strong risk factor for CRC.  Therefore, drugs that modify 

5-HT, 5HT receptors and SERT expression may be associated with an increased or decreased 

risk of CRC. 

2.2.3 Serotonin and cancer cell cytotoxicity 

There was conflicting evidence early on concerning the association between serotonin 

and/or serotonin antagonists and both cell proliferation and tumor growth.  In two separate 

experiments, Tutton and Barkla [59, 60] found that serotonin intraperitoneally injected into rats 

with chemically induced (dimethylhydrazine (DMH)) descending colon adenocarcinomas 

increased the mitotic rate of the tumors, but not in the normal colonic crypt epithelium.  Injecting 

higher levels of serotonin into the animals resulted in a reduction of cell proliferation.  The same 

studies also found that either depleting serotonin with DL-6-fluorotryptophan, or blocking 

serotonin receptors with a serotonin antagonist (2-bromolyseric acid diethylamide (BOL)) 

decreased tumor mitotic rate without a change in colonic crypt proliferation rate.  A later study 

found [16] that fluoxetine greatly reduced human COLO320 DM viability, and increased 

serotonin and its main metabolite, but that serotonin-only treatment did not reduce viability.  

Tutton and Barkla also [61] observed that BOL was not cytotoxic to tumors induced by DMH in 

male rats, although it decreased the tumor mitotic rate.  In 1981[6] they observed that a 

serotonin antagonist in mice xenografted with 1 of 4 human colon or rectal cancer cell lines 

reduced tumor growth in some of the cell lines compared with a control group; this was one of 

the first experiments demonstrating differential effects of a serotonin antagonist on different 

colon cancer cell lines.  Finally, in 1982 [7] they evaluated how well now-commonly used SSRIs, 

fluoxetine (Prozac) and citalopram (Celexa), reduced tumor growth in mice xenografted with 1 of 

3 human colon or rectal cancer cell lines, and how these drugs affected cell proliferation in the 
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tumor and the normal tissue compared with controls.  They found that the drugs reduced tumor 

size relative to the control in two of the cell lines; the drug had no effect on one cell line relative 

to the control.  In one cell line, fluoxetine reduced tumor growth whereas citalopram just slowed 

the tumor growth relative to the control.  They also found that the drugs increased cell 

proliferation in the jejunal crypts, but decreased cell proliferation in the colonic tumors relative to 

controls. 

2.2.4 Antidepressants and cancer cytotoxicity 

2.2.4.1 In-vitro evidence 

Since the first SSRI entered the American market in 1987, there has been increasing 

evidence that some antidepressants can induce cancer cell death or reduce their viability.  More 

recent studies have provided biological evidence documenting mechanisms underlying the 

reduction of cell or tumor viability.  Many of the studies support pro-apoptotic pathways [8, 13-

15, 17, 43, 48, 62-64], although there is some evidence that the antidepressants may also act 

by modifying intracellular Ca2+ concentration [65-68], increasing immune function [69], reducing 

cell proliferation via p27 [11], and decreasing VEGF and Cyclooxygenase-2 (COX-2) expression 

[10].   

Antidepressants have been shown to reduce cancer cell viability in-vitro in lung cancer 

cells [43], prostate cancer cells [8, 67, 68], melanoma cancer cells [20], osteosarcoma cells [70], 

neuroblastoma cells [15], burkitt’s lymphoma cells [14, 71], leukemia cancer cells [13] and in 

CRC cells [17, 48, 62, 72].  One controlled study (comparison to untreated cells) [48] , 

compared the cytotoxic ability of antidepressants (sertraline, paroxetine, fluoxetine, reboxetine) 

to chemotherapies (doxorubicin, 5-FU) on CRC LS1034 cells, and found that sertraline and 

paroxetine were superior to both doxorubicin and 5-FU with respect to cell cytotoxicity.  

Doxorubicin was somewhat cytotoxic, but 5-FU had no impact on LS1034 cell viability, a cell line 

that is known to be resistant to chemotherapy.  In the same study, sertraline and paroxetine had 
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similar cytotoxic abilities on the HT29 cells to doxorubicin; however, the antidepressants 

induced apoptosis and minimal necrosis, whereas doxorubicin induced cell death by necrosis 

[48].  Necrosis is an undesirable side effect, and can result in an inflammatory response that 

has the potential to reverse chemotherapeutic effects.  Although no single study systematically 

evaluated all antidepressants in all possible cell lines, there is consistent evidence of differential 

effects by drug, class, dose and cell line.  

2.2.4.2 In-vivo evidence of antidepressant cytotoxicity  

A few studies have reported that some antidepressants reduce tumor volume [12, 48, 

73, 74] or the number of circulating cancer cells in a metastatic CRC animal model [12].  In an 

experiment comparing the cytotoxic ability of various SSRIs to 5-flourouracil (5-FU, 

chemotherapy), one study[48] found that mice treated with sertraline (SSRI), and not paroxetine 

(SSRI) or 5-FU or control (saline solution), reduced the size of HT29 xenografted tumors in mice 

after 3 weeks of treatment.   

2.2.4.3 Antidepressants to prevent neoplastic precursors 

There is some evidence [75] that fluoxetine, an SSRI, may reduce the occurrence of 

aberrant crypt foci (ACF) in rats exposed to a carcinogen (1,2 dimethylhydrazine (DMH)).  

Kannen et al observed that animals co-treated with fluoxetine developed fewer ACF compared 

with DMH-only treated animals.  Fluoxetine treatment was associated with significantly higher 

serotonin in the stromal cells within pericryptal colonic stroma near the crypt bottom compared 

to fluoxetine-untreated animals. Higher serotonin was accompanied by reduced VEGF, c-MYC 

and COX-2 expression.  VEGF is a marker of vascularization, c-MYC is an oncogene and COX-

2 is associated with inflammation and is frequently elevated in colon cancer.  ACF may be 

precursor lesions to neoplasms.  This study suggests that fluoxetine may have a very early 

chemopreventive effect. 
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2.2.4.4 Antidepressants as chemosensitizers 

Chemotherapy frequently fails due to multidrug resistance (MDR), an influx-efflux 

imbalance in which certain transporters remove the drug from the cancer cell thus reducing 

tumor cell toxicity.  There is evidence that some antidepressants may increase the potency of 

standard chemotherapies by inhibiting the removal of the chemotherapeutic drug.  For instance, 

fluoxetine (SSRI)-doxorubicin co-treatment significantly slowed the progression of tumors in 

HCT-15 xenografted mice, comparable to bevacizumab treatment [76]; the concentration of 

doxorubicin was higher in tumor cells of animals co-treated with fluoxetine.  Another study[46] 

reported that desipramine (TCA) increased the cytotoxicity of all platinum based 

chemotherapies against HT-116 cell lines; p53 and caspase expression increased in 

desipramine-cisplatin treated cells, suggesting the combination triggers apoptosis.   

2.2.5 Antidepressants: Mechanisms implicated 

The in-vivo and in-vitro evidence of antidepressant induced cancer cell death, the 

dysregulated apoptotic genes associated with their death [8, 13, 15, 17, 19, 48, 62-64, 77], the 

association between the dysregulated apoptotic genes and cancer etiology[78], and the role that 

serotonin plays in the colon, all provide strong biological rationale that some antidepressants 

could prevent incident CRC.  Fluoxetine has been used to increase serotonin availability in mice 

with trinitrobenzene sulfonic acid (TNBS) induced colitis to block SERT [54].  These drugs may 

therefore also modify circulating serotonin and SERT in humans, thus providing a biological 

basis for potentially plausible mechanisms. 

If any of the drugs or classes are chemopreventive, it is not clear is where in the natural 

history of CRC these drugs are acting to reduce the incidence.  The evidence suggests two 

plausible time points: early, because there is some evidence that fluoxetine prevents ACF in 

mice co-treated with a carcinogen [75], and late, because there is abundant evidence that 

various antidepressants kill cancer cells [8, 13, 15, 17, 43, 48, 62-65, 67, 68, 72, 77, 79, 80] and 
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reduce tumor growth [8, 12, 48, 69, 73, 75, 81].  The apoptotic genes dysregulated in many of 

the studies are genes that are altered in the final stages of the carcinogenic process in the 

normal-carcinoma CRC sequence [82].  The evidence presented herein is very similar to the 

evidence that had been presented about various COX-2 inhibitors [83-86] and CRC.  COX-2 is 

an inflammatory response that is produced in the carcinogenic process of the majority of colonic 

tumors, and COX-2 inhibitors reduce COX-2 expression and inflammation, a tumor-promoting 

feature.  Predictably, aspirin only appears to reduce the risk of tumors expressing COX-2 [87].  

Carcinogenesis is a multistep process and it is possible for a carcinogen or protective agent to 

affect multiple steps.  Day and Brown[88] empirically demonstrated that smoking likely has both 

an early and late carcinogenic effect with respect to lung cancer. 

2.2.6 Mechanisms implicated 

A hallmark of cancer is its ability for unchecked cell proliferation [78, 89]; this commonly 

corresponds to a mutation in a tumor suppressor gene.  An example of a tumor suppressor 

gene is p53, and mutations in this gene are very common in colorectal tumors [90, 91].  As the 

guardian of the genome, p53 controls both apoptosis and cell proliferation, lying upstream of 

p21 and the caspases.  In several of the laboratory studies [8, 9, 13, 14, 19, 70], caspase-3 was 

frequently upregulated after exposure to certain antidepressants.  One of the last genomic 

alterations in the progression to carcinoma in the majority of CRC tumors [90] is a p53 mutation, 

and it is found primarily in the well-characterized APC-KRAS-P53 adenoma – carcinoma 

progression [91-93].  There are many types of mutations, but those that inactivate P53 are 

associated with worse outcomes [94].  A mutation that inactivates P53 would be associated with 

reduced apoptosis and allow aberrant cells to have unchecked growth.  The BRAF gene is 

associated with apoptosis, and BRAF mutations are more common in the CpG island methylator 

phenotype (CIMP).  BRAF is an oncogene and BRAF mutations may cause the caspases 

downstream to become inactive, thereby reducing apoptosis.  Some genes that have been 
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found to be dysregulated in CRC tumors are caspase-8 and caspase-9, both of which are in the 

apoptotic pathway.  Overcoming apoptosis [78, 95, 96], and any pharmacological agent that 

increases apoptosis may prevent cancer progression, incidence, or decrease the likelihood of 

metastasis.  

2.2.7 Total evidence  

The laboratory evidence suggests biologically plausible mechanisms by which some 

antidepressants may reduce CRC development, and thus reduce CRC incidence at the 

population level.  These drugs could be acting at various points in the multistep process: 1) late, 

by acting on tumors or late adenomas 2) middle, by increasing microenvironment apoptosis 

which is inversely associated with adenomas [97], and 3) early, by preventing ACF.  Although 

some of these drugs may act on multiple points in the carcinogenic process, we can only test 

late acting effects in this study given only seven years of data.  This is akin to showing that 

smoking cessation immediately begins reducing the relative risk of lung cancer compared to 

continuing smokers[88]. 

2.3 Epidemiological evidence 

Antidepressants are commonly prescribed drugs, with an estimated 17% of Americans 

aged 65+ reporting antidepressant use in a 2012 nationally representative survey [5]. The few 

epidemiological studies [21-26] examining the association between both SSRIs and TCAs, and 

CRC have produced conflicting results, and all studies compared antidepressant users to non-

users. 

To date, no study has examined the association between SNRIs and CRC.  Some drugs 

within the SNRI class are commonly used, for example Effexor, and there are biological reasons 

why norepinephrine could accelerate the carcinogenic process via increased vascularization 

[32, 33].  This is supported by a study reporting that serum norepinephrine concentration may 
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increase the likelihood of tumor development in rats treated with the carcinogen, azoxymethane 

(AOM) [98] .  Antidepressants more reliant on norepinephrine reuptake inhibition may also be 

less effective at reducing tumor cell viability [43, 99].  This is consistent with the evidence that 

beta-blockers may reduce the incidence of cancer by reducing circulating norepinephrine[100].  

It is important to understand if some antidepressants may have more carcinogenic potential 

compared with other antidepressants, because so many cancer patients suffer from depression, 

and may be treated with antidepressants. 

Some previous studies [21, 24] have excluded CRC cases occurring in the year 

immediately following initiation to prevent protopathic bias (reverse causality).  Latent CRC can 

cause symptoms mimicking depression, for example lethargy, weight loss, or gastrointestinal 

distress[101].  Thus, CRC cases diagnosed shortly after initiation of an AD may not be 

attributable to the AD itself, but could have been latent CRC with the physical symptoms of 

depression.  We additionally hypothesize that high cancer incidence, if observed shortly after 

drug initiation, could also result from new users who have not been actively engaged with the 

healthcare system prior to drug initiation. These new users may thus experience a catch-up 

period of medical encounters, including diagnostic and cancer screening services, which we 

term “medicalization”.   

2.3.1 Reasons for study variability 

In-vivo evidence has shown that some, and not all, SSRIs may reduce CRC tumor 

volume or growth [48, 74, 102], with one study reporting superior benefit of sertraline compared 

to doxorubicin in HT29 cell-line xenografted mice[9].   The evidence suggests SSRIs may have 

different effects with respect to CRC risk, and that any potential association between an SSRI 

and CRC, could be drug and not class specific. 
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Epidemiologic studies examining the association between SSRIs and CRC risk have 

produced inconsistent findings, with three studies reporting no association [23, 24, 26], and the 

remaining studies reporting moderate (15%-45% reduction) inverse associations [21, 22, 25].  

All studies relied on the comparison between antidepressant users to non-users or past users, 

which could be prone to confounding by depression.  Both stress and depression may 

accelerate cancer progression [29, 33, 103] and therefore potentially increase observed CRC 

incidence.  Confounding by indication could therefore attenuate any protective effect.  All 

previously published studies also ignored the potential heterogeneity of specific SSRI effects.  

As a result, inconsistent findings from prior studies could be partially explained by changes in 

SSRI patterns over time and differential effects of specific SSRIs on CRC risk.  For example, a 

study with a predominately 1989 population would have reported an SSRI-CRC association 

heavily weighted to the effects of fluoxetine on tumors in a population, because that was one of 

the few SSRIs on the market at that point in time.  All previous studies are quite heterogeneous 

with respect to populations and exposure definitions (Table 1, Table 2) 
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Table 1: Epidemiological evidence 

Paper Years Type Features Ever use definition 
Outcome 

definition/ascertainment 

Xu  
2006 

1991-2000 
Nested case 
control 

 
Saskatchewan Health, Canada 

 
Any prescription for SSRI within 
10 years.  Recorded in database 

 
 

Saskatchewan Cancer Registry, 
ICD-10 codes  3188 cases, 12648 population 

controls, risk set sampling 

Coogan  
 2009 

1995-2008 Case control 
Philadelphia, US 529 case, 1955 
hospital control 

 
At least 3 months regular use, 

self report 
 

Individuals reporting CRC in past 
year during nurses interview 

Haukka 
2010 

1998-2005 
Cohort (new 
user – 3 year 
washout) 

 
Finland, unexposed = non-user 
during 1998-2005, randomly 
selected 1 non-user for each user, 
matched on birth year, sex and 
hospital district. 
 

1 prescription during study 
period, recorded in database 

Linked to Finnish cancer registry, 
ICD-7.  Covers 99% of all cancers 

Cronin-
Fenton 
2011 

1991-2008 Case control 

 
Denmark, 9979 cases, 99790 
population control, risk set sampling Any two RX during 1991-2008, 

recorded in database 

1st discharge dx = ICD8: 153.x-
154.19, ICD10: C18.x, C19.9, C20, 
C20.9 

Matched on birth year, sex, 
residence 
 

Chubak 
 2011 

2000-2003 Case control 

 
WA state health plan, 649 cases, 
649 controls.  Matched on age, 
gender, time on health plan 
 

Any 2 RX filled within 6 months 
during 2000-2003, recorded in 

database 

SEER registry linked to group 
health plan 

Walker 
2011 

? Case control 
Great Britain (GPRD), 6232 cases, 
12010 population controls 

Defined only for TCA, but 
defined as > 1 prescription in the 

years prior to DX 

GPRD – codes available upon 
request 
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 Table 2: Exposure assessment characteristics and variability in epidemiological studies 

 

Paper 
Included cases within 1 year 

of use 
OR/RR (95% CI)*  Exposure definition used in meta-analysis [104] 

Xu 
2006 

Yes 
0.84 (0.68, 1.03) 

CRC 

 
Exposure definition = Ever use definition, adjusted. 

 

Alternatives: 

Cumulative dose low: adjusted OR =0.98 (0.75, 1.30) 

Cumulative dose high: adjusted OR = 0.75 (0.56,1.01) 

Low dose 0-5 years prior to CRC: adjusted OR = 0.96 (0.72, 1.28) 

High dose 0-5 years prior to CRC: adjusted OR = 0.70 (0.50, 0.96)  

Low dose 6-10 years prior to CRC: adjusted OR = 1.20 (0.73, 1.98) 

High dose 6-10 years prior to CRC: adjusted OR = 0.93 (0.55, 1.58)  
 

Coogan 
2009 

No 
0.55 (0.35, 0.88) 

CRC 
  

 
Exposure definition = Any self-reported 3 month use adjusted 

Alternatives CRC: 

Recently initiated: adjusted OR =0.41, (0.12, 1.43) 

Sporadic: adjusted OR = 0.80, (0.33, 1.90) 

Regular use, < 3 year, adjusted OR = 0.50, (0.20,1.17) 

Regular use: >= 3 years, adjusted OR = 0.58, (0.34,0.99) 

 
Alternatives colon cancer: 

Regular use: adjusted OR = 0.47 (0.26, 0.85) 

 
Alternatives rectal cancer: 

Regular use: adjusted OR = 0.72 (0.37, 1.41) 
 

Haukka 
2010 

Yes 
1.11(0.56, 2.21) 

colon cancer 

 
Exposure definition = 1460+ DDD cumulative exposure, adjusted. 

 
Alternatives colon cancer: 

1-91 DDD, adjusted IRR  = 1.39 (0.95, 2.04) 
92-181 DDD, adjusted IRR = 1.29 (0.83, 2.02) 
182-365 DDD, adjusted IRR = 0.81 (0.49, 1.33) 
366-730 DDD, adjusted IRR = 0.85 (0.52, 1.40) 
731-1460 DDD, adjusted IRR = 1.18 (0.71, 1.94) 

 
Alternatives rectal cancer: 

1-91 DDD, adjusted IRR  = 1.26 (0.79,2.00) 
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92-181 DDD, adjusted IRR = 0.78 (0.43, 1.40) 

182-365 DDD, adjusted IRR = 1.17 (0.68, 2.02) 

366-730 DDD, adjusted IRR = 0.94 (0.53, 1.67) 

731-1460 DDD, adjusted IRR = 0.89 (0.48,1.67) 

1460+ DDD, adjusted IRR = 0.83 (0.35, 1.95) 
 

Cronin-Fenton, 2011 No 

0.97 (0.90, 1.05) 
CRC 

 
Exposure definition = Ever use definition, adjusted 
 

Alternatives: 

Recent use (1 -< 2 years) adjusted OR = 0.97 (0.88, 1.07) 

Former use (2+ years) adjusted OR = 0.97 (0.86, 1.09) 

Short term, low dose adjusted OR = 1.04 (0.89, 1.21) 

Short term, medium dose (adjusted OR = 0.98 (0.85, 1.13) 

Short term, high dose adjusted OR = 0.90 (0.78 1.03) 

Long term, low dose adjusted OR = 0.94 (0.88, 1.07) 

Long term, medium dose (adjusted OR = 0.97 (0.74, 1.16) 

 
Long term, high dose adjusted OR = 1.13 (0.85, 1.51) 
 

Chubak 
 2011 

No 
0.70 (0.5-0.9) 

CRC 

 
Exposure definition = Ever use definition, adjusted 
 

Alternatives:  

Duration < 2 years: adjusted OR = 0.6 (0.3, 1.1) 

Duration > 2 years:  adjusted OR = 1.0 (0.4, 2.8) 
 

 
         Walker 

2011 

 
No 

 
0.95 (0.8 1.12) 

CRC 

 
Effect estimate buried in the text. It isn’t clear exactly what this 
estimate is: adjusted/unadjusted, ever/never, low dose/high dose, 
duration (1-117 days, >= 177 days) 
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2.4 Claims databases and identification of incident cancers 

Administrative data are increasingly being used to identify both negative and positive 

effects of drug exposures on the risk of cancer.  Although drug exposure information from 

claims is reliable, claims data do not contain the same information as a cancer registry, because 

they are used for reimbursement, and not research purposes.  Therefore, algorithms are 

necessary to identify incident cancer cases in administrative data, with a specific algorithm 

necessary to minimize bias when we are estimating a relative effect measure [105].  Claims 

data are critical to answering questions that could not be feasibly ascertained within the context 

of an RCT or even an observational study, because certain questions require a very large 

sample size or do not have enough evidence to warrant an RCT, for instance Aim 2. 

One of the most commonly used claims-based algorithms to identify incident cancers is 

from Setoguchi and colleagues [28].  She provided four definitions (Figure 1) of varying 

sensitivity and specificity that were developed in individuals who were continuously co-enrolled 

in both Medicare and the Pharmaceutical Contract for the Elderly (PACE) program between Jan 

1,1997-Dec 31, 2000.  PACE provided comprehensive drug coverage, but was limited to a very 

low-income group of individuals.  Definitions 2 and 4 rely only upon International Classification 

of Diseases, Clinical Modification, Ninth Revision (ICD-9) diagnosis codes, whereas definitions 

1 and 3 incorporate diagnosis, procedure and treatment events.  Time, income and continuous 

enrollment criteria contribute to this source population inadequately representing a more 

economically diverse and contemporary Medicare population.   

An additional limitation to these definitions is that they group colon and rectal cancers 

together.  Although risk factors are similar for colon and rectal cancers, the effect estimates of 

risk factors vary qualitatively.  For instance, a 2008 meta-analysis [106] reported that the 

association between smoking and cancer is stronger among rectal cancer cases than among 

colon cancer cases. Also, the median age of incidence is much younger for rectal cancer [64 
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years] than for colon cancer [71 years] [1], suggestive of etiological heterogeneity.  Thus, there 

may be instances where an investigator wants to distinguish between the association between a 

particular drug exposure and colon cancer or rectal cancer. 

 

Figure 1: Incident cancer identification algorithms. 

These algorithms were validated in the 1997-2000 PA/PACE population.  See APPENDIX B for 

diagnoses and procedure codes used. 

2.5 Epidemiology of CRC 

CRC is the 3rd most incident cancer in the US and the 2rd leading cause of cancer 

mortality for both men and women combined [42].  In 2013, there were an estimated 142,820 

new CRC cases and 50,830 CRC-attributable deaths; there are currently over 1 million CRC 

survivors, whose survivor status puts them at a higher risk of future CRC [107].  Although 

screening has reduced mortality, and relative 5-year survival has improved 20 percentage 

points since 1975, CRC remains a major and costly public health burden, with the average 

treatment cost per colon cancer Medicare beneficiary estimated at ~ $30,000 in 2010 [3].  As 

with most cancers, age is a major risk factor for sporadic CRC, with 90% of cases occurring in 

individuals older than 50 [1]. 
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2.5.1 Broad molecular classifications of colorectal cancer 

Although there have been efforts to more precisely characterize genomic features of all 

CRC tumors [108-110], there are currently only two universally recognized molecular subtypes:  

The chromosomal instability phenotype (CIN) and the Microsatellite Instable (MSI).  The CpG 

Island methylator phenotype (CIMP) is becoming more commonly recognized as a distinct 

group, but it is not mutually exclusive of the other groups such that CIMP tumors may be MSI or 

Microsatellite Stable (MSS) [47, 111-113].  It is estimated that 85% of all tumors are CIN and the 

remaining 15% are MSI [112, 114].  Additionally, MSI and CIMP tumors are not consistently 

categorized as yes or no, but are often classified according to the degree of MSI or methylation 

in tumors.  These tumors may be further stratified into MSI-H, MSI-L, MSS and CIMP-H, CIMP-

L.  Other features that are used to classify tumors and provide insight into etiology are: tumor 

genetic mutations, location of the tumor [115], response to therapy [47, 116, 117], and the 

mutation rate[91].  

Corresponding to these molecular subtypes, mutations and physical characteristics, are 

at least two or more distinct pathways by which normal tissue develops into carcinoma: the 

adenoma pathway [92] and the serrated pathway [47, 109, 118-120].  

2.5.1.1 Highly Penetrant Hereditary Disorders 

Much of what has been learned about the carcinogenic process of CRC derives from 

studies of two highly penetrant, genetic disorders: Familial adenomatous polyposis (FAP) [92, 

121]  and Lynch Syndrome [121, 122], also known as Hereditary Non-Polyposis Colorectal 

Cancer (HNPCC).  These disorders contain several features that are present in the subtypes of 

sporadic CRC, which are estimated to account for ~70% of all cases [121]. 
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2.5.1.2 Lynch Syndrome 

 Lynch Syndrome is the most common hereditary disorder that predisposes a person to 

develop CRC, accounting for approximately 2%-4% of all incident CRC cases.  Individuals with 

this syndrome have a 50-80% probability of developing CRC in their lifetime [121].  These cases 

are defined by a germ-line mutation in one of the mismatch repair (MMR) genes, including: 

MLH1, MSH2, MSH6 and PMS2, with the majority of mutations occurring in the MLH1 and 

MSH2 genes.  These genes are responsible for correcting single base-pair errors during 

replication.  In the context of Lynch syndrome, this damage is manifested by microsatellite 

instability (MSI) in the tumor.  Lynch Syndrome is diagnostically confirmed by evaluating MSI, 

MMR gene staining and BRAF V600 mutation. A BRAF V600 mutation is an exclusion criteria 

for Lynch Syndrome, and the case is considered sporadic CRC 

(www.arupconsult.com/Algorithms/Lynch.pdf).  These tumors may however have KRAS 

mutations.  Tumors with MSI may not be as responsive to chemotherapy [123].  Although these 

individuals do not have more polyps than the average sporadic case, the aberrant MMR system 

accelerates the carcinogenic process such that it may only take 2-3 years to move from a small 

lesion to carcinoma [111] 

2.5.1.3 Familial adenomatous polyposis 

Familial Adenomatous Polyposis (FAP) is a highly penetrant inherited disorder 

accounting for 1% of all CRC cases [121].  These individuals have a germ-line mutation in the 

APC gene, which is a tumor suppressor gene in the Wnt signaling pathway; this mutation allows 

hundreds of polyps to develop, and because of this, individuals with this disorder are at an 

increased risk of CRC, with the average age of diagnosis at 39 years.  Only a small percentage 

of these polyps will become a carcinoma, but the absolute number of polyps an FAP affected 

individual experiences increases the lifetime probability to ~100% [121].  This disorder allowed 

investigators to finely map genetic mutations associated with each stage of colon cancers 

http://www.arupconsult.com/Algorithms/Lynch.pdf
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evolving through the classic adenoma-carcinoma sequence [92, 93].  FAP cases are 

characterized by chromosomal instability (CIN), which manifests itself by aneuploidy and is 

detected with karyotyping. 

2.5.1.4 Sporadic cases 

The majority of sporadic CRC are CIN [112]. CIN tumors generally occur in the left/distal 

colon, are highly differentiated, rarely mucinous and more likely to spread to lymph nodes and 

thus metastasize.  APC and P53 mutations are very common in CIN tumors.  Approximately 

40% of these tumors contain a KRAS mutation.  BRAF mutations are rare in CIN tumors and 

are generally mutually exclusive of KRAS mutation.   
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2.5.2.5 MSI 

Approximately 15% of tumors are MSI.  Like Lynch syndrome, sporadic MSI cases are 

characterized by microsatellite instability, but they differ from Lynch syndrome in that they do 

not have a germ line mutation in a MMR gene.  Gene function of MMR genes is generally 

inactivated by methylation at the promoter region of MLH1.  These tumors are more likely to 

occur in women, are generally found on the right/proximal colon, are poorly differentiated, 

larger, and less likely to have lymph node involvement or metastasize.  Survival is generally 

longer despite larger, poorly differentiated tumors. P53 mutations are less common in these 

tumors than in CIN tumors. 

Categorization of MSI is still evolving and some groups propose the use of more MSI 

categories including MSI-H (high), MSI-L (low) and MSS instead of MSI (yes/no) [108, 124] .  

Cut points for MSI-H includes 40% of markers demonstrating MSI, 20%-40% is considered MSI-

L and 0% is considered Microsatellite stable (MSS). 

2.5.1.6 CIMP 

CIMP tumors are sporadic cases without clear classification guidelines, but are broadly 

defined as tumors with substantial methylation at the promoter regions of particular genes.  

Some of the genes that are frequently used to classify as CIMP are CACNA1G, CRABP1, 

NEUROG1, CDKN2A, and MLH1[125]. CIMP tumors can be MSI high, MSI low or MSS[108, 

126]. They commonly have a BRAF location[113], and are thus less likely to have a KRAS 

mutation since these mutations are generally mutually exclusive. 

Like MSI tumors, some groups classify CIMP tumors in gradation including CIMP-high 

tumors, CIMP-low tumors and CIMP-0 (no evidence of methylation at gene specific sites). 
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2.5.2 CRC Risk and protective factors 

2.5.2.1 Demographic risk factors  

Except for individuals genetically predisposed to CRC (Lynch syndrome, FAP), CRC is 

rare in younger persons, and 90% of incident cases occur in persons older than 50 years of 

age[1], with the majority of cases being sporadic [121].  The median age of diagnosis is 68 

overall, although this varies by race and gender, with males having a younger median age of 

diagnosis than females, and blacks having a younger median age of diagnosis than other races.  

Median age of diagnosis also varies between colon [71 years] and rectal cancer [64 years].  The 

overall incidence in individuals over the age of 65 is 225 per 100,000 persons.   

2.5.2.2 Behavioral/Lifestyle risk factors 

The incidence of CRC is generally higher in westernized countries [127] compared with 

developing countries, suggesting lifestyle factors contribute to this difference.  There are several 

lifestyle risk factors contributing to increased risk of CRC including: alcohol intake, smoking, 

diet, obesity, central adiposity and diabetes.  A summary of non-demographical CRC risk and 

protective factors is in Table 3 and Table 4 below.
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Table 3: Summary of CRC risk factors 

 
Risk Factor 

 
Magnitude of association/other 

Alcohol [128] 

 
Dose response  
RR = 1.07, 95% CI = (1.04, 1.10) comparing 10 grams/day to none 
RR = 1.82, 95% CI = (1.41, 2.35) comparing 100 grams/day to none 
Effects stronger in men than women and in Asians compared to other groups. 
 

Smoking [106] 

 
 
 
Ever versus never smokers (26 studies; RR = 1.18, 95% CI = (1.11, 1.26)) 
North America; 13 studies; RR = 1.18, 95% CI = (1.10, 1.26) 
Rectal cancer; 10 studies; RR = 1.25, 95% CI = (1.14, 1.38) in ever versus never 
Colon cancer; 10 studies; RR = 1.12, 95% CI = (1.04, 1.21) in ever versus never 
Rectal cancer; 25 studies, RR = 1.11, 95% CI = (1.00, 1.23) in current versus never 
Colon cancer; 25 studies, RR = 1.00, 95% CI = (0.91, 1.10) in current versus never 
Men; 10 studies; RR = 1.18, 95% CI = (1.07, 1.31) 
Women; 11 studies; RR = 1.14, 95% CI = (1.03, 1.25) 
 
 
 

Body Mass 
Index/Waist 

Circumference 

 
Positive association (RR = 1.33, (95% CI = 1.25, 1.42) between BMI and CRC, comparing obese to normal 
weight individuals in meta analysis (N=41 studies)  [129]   
 
Strong association (RR = 1.46, 95% CI = 1.33, 1.60; N= 13 studies) between waist circumference—a measure 
of central adiposity—and incident cancer, comparing those in the highest versus lowest category of waist 
circumference [129] 
 
Johnson 2013 reported a 1.10, 95% CI = (1.08, 1.12) for each 8-unit increase in BMI.  
 
Other: high BMI is associated with reduced preventive screening[130], and thus could be associated with an 
increased incidence via decreased screening behavior.  
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Diet – Red 
meat/processed 

meat 
 

 
Convincing evidence supporting the positive association between red meat and processed meat consumption 
[131], and both colon and rectal cancers [132].  
 
21 studies [133] (14 on red and processed meat; 13 on red meat; 13 on processed meat) 
RR  = 1.22, 95% CI = (1.11,1.34) for CRC comparing those with the highest versus lowest intake of red or 
processed meat,  
RR = 1.14, 95% CI = (1.04,1.24) for every 100 gram/day intake of red or processed meat.  There was a linear 
positive association up until 140 g/day, and above 140 grams/day, the association plateaued.   
 

 
Insulin 

Resistance/Diabetes
[134] 

 
 
Moderate positive association in both European (N=10), RR = 1.47, 95% CI = (1.20, 1.80) and North American 
(N=14), RR = 1.21, 95% CI = (1.16, 1.26) studies between Diabetes Mellitus (DM) and CRC. 

Inflammatory 
disorders 

 

 
A Pooled standardized incidence ratio = 2.4, (95% CI = 2.1,2.7) for ulcerative colitis (UC) of population based 
cohort studies in the U.S. and Europe [135].  The association was slightly stronger in males and among 
individuals diagnosed with UC at a young age.   
 
Johnson et al [136] : RR = 2.93, 95% CI = 1.79, 4.81 
 

Family History and 
Genetics 

 

 
~20-30% of sporadic cases have a hereditary component [121].  
  
Dose response with the number of affected family members, and risk increasing from 3rd to 2nd to 1st degree 
relatives [137]. 
 
Individuals with a 1st relative, RR = 1.90, 95% CI = (1.61, 2.02) [136] 
 

Previous 
Adenomas/CRC 

 

 
~ > 70% of all carcinomas go through the adenoma pathway[119], and as such previous adenomas are a 
strong risk factor for carcinoma. 
 

Other 

Stress and depression are associated with decreased immune function [35], and therefore possibly the 
increased risk of cancer.  Animal models show that stress increased the proliferative potential of cancer [31-
33, 36, 138].  In addition, depression is associated with unhealthy behaviors (poor diet, alcohol consumption, 
smoking), all of which are all risk factors for CRC.  
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Table 4: Summary of protective factors  

 
Protective Factor 

 
Magnitude of association/other 
 

 
Physical activity 

 
Physical activity and CRC in men (RR = 0.76, 95% CI = 0.72, 0.81) and women (RR = 0.79, 95% CI = 0.71, 
0.88) [139].  
 
Inverse association between physical activity and adenomas [140].  Association was stronger for more 
advanced adenomas (RR = 0.70, 95% CI = 0.56, 0.88).   
 
Potential mechanisms: improved immune function [141], by reducing BMI or insulin resistance, or by the 
inverse association between physical activity and certain behaviors: smoking/alcohol consumption. 
 

Hormone 
replacement therapy 

(HRT) 
 

 
Cancer Prevention Study II [142]: stronger protective results among current estrogen only users (RR = 0.76, 
95% CI = 0.59, 0.97) compared with estrogen + progesterone formulations (RR = 0.93, 95% CI = 0.70, 1.23), 
 
Protective effects stronger for rectal cancer cases among current estrogen only users (RR = 0.59, 95% CI = 
0.34, 1.01) compared with CRC cases among estrogen only users (RR = 0.81, 95% CI = 0.61,1.08).   
 
Time dependent dose response reduction of CRC cases among estrogen only users 
 
The Women’s Health Initiative (WHI) [143] 93,651 from an observational study, an RCT of 16,590 evaluating 
estrogen + progesterone, an RCT of 10,722 individuals evaluating an estrogen only formulation, and an 
additional 40,785 participants in a diet study. 
 
Stronger protective effect for rectal cancer, HR = 0.57, p < 0.001 compared to colon cancer, HR = 0.70, 95% CI 
= (0.62, 0.80). 
 
No statistical association at p < 0.10 for the type of HRT, or duration of use in the two RCTs. 
 
European Prospective Investigation into Cancer and Nutrition (EPIC) [144].  
EPIC reported generally null results, although they did report a HR = 0.76, 95% CI = (0.57, 1.01) associated 
with testosterone derivatives of current progestin use.  They also reported that ever, current, or former use of 
any HRT was associated with a reduced risk of rectal cancer. 
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Diet - Calcium 

 

 
8% decreased risk associated with a 300 mg/day increase in calcium intake (N = 20 prospective studies (134)) 
 
15% reduction in relative risk for each 400 g/day of dairy product consumption N=19 studies (135).  
 
1000-2000 mg/day of calcium supplementation is associated with a 20% reduction in the risk of colorectal 
adenomas among individuals with a history of colorectal polyps [145, 146].   
 
Plausible mechanisms: 1) calcium may reduce cell proliferation by modulating cell signaling [147, 148] 2) 
calcium may modify the expression of the APC/BCatenin pathway in the normal mucosa of adenoma patients 
[149].  APC/B-catenin genetic mutations are early events (associated with early adenomas) in the multi-stage 
process of colorectal carcinogenesis[82] 
 

Diet – Vitamin D 

 
Evidence described as limited and suggestive [131].  Vitamin D, like calcium, is found in milk and dairy products, 
although much of vitamin D is obtained through ultraviolet irradiation. 
 

Diet - Fiber 

 
Evidence as probable that fiber intake was associated with a decreased risk of CRC despite inconsistent 
findings [131].  
 
10% relative risk reduction for CRC associated with 10g of total fiber intake/day in meta-analysis of 25 studies 
[150].  The risk reduction was variable over the source of fiber. 
 

Diet - other 
 
Other potentially protective factors include: folic acid, selenium and others. 
 

Non selective anti-
inflammatories 

(NSAIDS)/aspirin 
 

Aspirin and NSAID use is associated with a decreased risk of adenomas and CRC in both average risk and 
higher risk individuals. 
 
NSAID use is associated with longer survival among CRC patients [151, 152] 

Apoptosis 
 

 
Baseline apoptosis in the normal mucosa is associated with a decreased number of adenomas at colonoscopy 
and a reduced risk of adenomas in the future; this association is independent of NSAID use [97].  Overcoming 
apoptosis is one of the hallmarks of cancer [78]. 
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2.5.3 Heterogeneity of risk factors and CRC subtypes 

The aforementioned protective and risk factors broadly apply to incident colon/rectal cancer as a 

whole, although there is evidence that these factors to not act uniformly across tumor subtypes 

and features.
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Table 5: Heterogeneity of CRC risk factors  

Risk factor Heterogeneity associations 

Smoking 

  
Iowa Women’s Health Study [153] 
 Ever smoking was associated with a moderate increased risk of any incident CRC compared with 
never smoking, (RR = 1.18, 95% CI = 1.05, 1.35) 
 
Stronger association comparing current smokers to never smokers for the risk of: MSI-high tumors (RR 
= 1.99, 95% CI = 1.26, 3.14), CIMP+ tumors (RR = 1.88, 95% CI = 1.22, 2.90) and BRAF mutated 
tumors (RR = 1.92, 95% CI = 1.22, 3.02).  
 
No association between ever and never smokers and incident MSS/MSI-low tumors (RR = 1.00, 95% 
CI = 0.79, 1.25), CIMP-negative tumors (RR = 1.02, 95% CI = 0.81, 1.30), BRAF wild-type tumors (RR 
= 1.00, 95% CI = 0.65, 1.27). 
 

Aspirin 

 
Nurses’ Health Study and the Health Professionals Follow-Up Study [154] 
Inverse association between aspirin and CRC only applied to BRAF wild-type tumors (HR = 0.73, 95% 
CI = 0.64, 0.83) and not to BRAF mutated tumors (HR  = 1.03, 95% CI = 0.76, 1.38).   
 
Association between aspirin and wild-type BRAF tumors became stronger as frequency of use 
increased, whereas the association remained null between aspirin and BRAF mutated tumors 
regardless of frequency the frequency of use.   
 
Aspirin is also only associated with a reduced risk of CRC among tumors expressing COX-2 [87]. 
 
Aspirin and post-diagnosis survival [152]  
HR = 0.39, 95% CI = 0.20, 0.76) for COX-2 expressing tumors versus HR = 1.22, 95% CI = 0.36, 4.18 
for tumors not expressing COX-2 
 
Aspirin and recurrence [154, 155]  
Reduced recurrence among individuals with PIK3CA-mutant tumors (HR = 0.11, 95% CI = 0.001, 
0.832), not PIK3CA wild-type tumors (HR = 0.92, 95% CI = 0.60, 1.42),  
 
Rofecoxib (Vioxx), an NSAID, no benefit in either PIK3CA-mutant tumors (HR = 1.2, 95% CI = 0.53, 
2.72) or PIK3CA wild-type tumors (HR = 0.87, 95% CI = 0.64, 1.13) 
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Other 

 
 
Higher alcohol consumption, and red or processed meat consumption appear to be associated with 
mutations or methylation in the promoter region of the APC gene [156]. 
 
 
>= 5 years of Hormone therapy is inversely associated (RR = 0.50, 95% CI = 0.27, 0.95) with high P53 
expression [156].   
 
 
 
Potential association between BMI and BRAF mutation status [157]. 
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2.5.3.1 Why heterogeneity matters 

The evidence between antidepressants and incident CRC appears to be drug/cell line 

dependent and there is evidence to suggest that the drug or drug class will not behave uniformly 

across all cancers.  This fact should temper any conclusions we may be tempted to draw from 

potential results.  For instance, maybe some of these drugs only act to prevent MSI tumors.  

These tumors only comprise 15% of all tumors and our results will reflect the distribution of 

tumor subtypes in our population.  Additionally, tumor subtypes vary by population.  If, for 

example, certain drugs only act upon BRAF+/CIMP tumors, we would expect a stronger result in 

our population compared to a younger population since these tumors are more common in older 

women.   Our proposed data source is greatly limited by absent molecular tumor information.  
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CHAPTER 3: METHODS 

3.1 Study design and population 

3.1.1 Aim 1, Aim 2 

For Aim 1 we will conduct a new user [27], cohort study of exclusive (class 

monotherapy) initiators of SSRIs, TCAs, SNRIs or AHT excluding beta-blockers, using a 20% 

random sample of Medicare beneficiaries aged ≥66 years from 2007-2013 with simultaneous 

fee-for-service (FFS) parts A, B, and D (drug) coverage for at least one month during a calendar 

year.  We chose AHT, excluding beta-blockers, as our negative control exposure, because there 

is no compelling evidence that their use is associated with CRC risk, and we anticipated a 

substantial number of initiators. We excluded beta-blockers, because there is evidence that their 

use could reduce cancer risk [100]. 

For Aim 2 we will conduct an active comparator, new user [158], cohort study of initiators 

of specific SSRIs (citalopram, escitalopram, fluoxetine, paroxetine, sertraline) using a 20% 

random sample of Medicare beneficiaries aged ≥66 years from 2007-2013 with simultaneous 

fee-for-service (FFS) parts A, B, and D (drug) coverage for at least one month during a calendar 

year.  Active comparator studies have been shown to reduce confounding by indication, 

because initiators of the drug of interest and initiators of an alternative drug initiated for the 

same indication, are generally more similar across measured and unmeasured characteristics 

than patients who do not initiated a similarly indicated medication [159, 160]. New user designs 

remove time-related biases to which observational drug-cancer studies are susceptible [161]. 

Medicare is a guaranteed benefit available to all Americans older than the age of 66, and 

our dataset for both Aim 1 and Aim 2 includes a random sample of all Americans with 
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concurrent fee-for-service Medicare parts A, B, and D coverage in at least one month during the 

calendar year, regardless of gender, race or geographic location.  This data source is ideal for 

our study because it contains a large, representative sample of Americans aged 66+ years, the 

population is generally followed from entry at age 65 until death, the incidence of CRC in this 

population is high (225 per 100,000 persons) [1], and exposure assessment—antidepressant 

use—is reliable.   

Medicare Part A includes claims for inpatient services and hospitalizations.  We will use 

this information for procedures associated with colon or rectal cancer treatment.  These 

procedures will be used to identify incident cases.  Medicare Part B includes claims for 

outpatient services and preventive procedures such as cancer screenings.  Treatment for colon 

or rectal cancer is commonly performed in the outpatient setting.  We are using treatment and 

screening procedures to identify incident cases.   Medicare Part D includes claims for all filled 

(dispensed) prescriptions.  This information will be used to define our cohorts. 

3.1.2 Aim 3 

Aim 3 is a validation study where we will be re-evaluating algorithm performance of 

commonly used definitions to identify incidence cancer cases in a more recent and economically 

diverse population.  We will use the integrated cancer information and surveillance system 

(ICISS), a resource at the University of North Carolina (UNC).  ICISS houses several linked data 

sources with the goal of understanding cancer incidence, risk factors and patterns of care of NC 

residents [162].  ICISS contains a 100% sample of NC Medicare beneficiary enrollment and 

claims information, and NC cancer registry (NCCCR) cases that are linkable to NC Medicare 

beneficiary information.  
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3.1.2.1 Case selection and data linkage 

We identified all colon or rectal cancer cases age 65+ at diagnosis in the NCCCR from 

July 1, 2006-December 31, 2009 that were linkable to NC Medicare enrollment and beneficiary 

files.  We then further required that all cases had ≥13 months of continuous enrollment in 

Medicare parts A/B at any point between Jul 1, 2006 and Dec 31, 2009, having at least one 

claim to ensure benefit utilization.  Finally we restricted to first and primary colon or rectal 

cancer cases using the sequence id variable that is part of the cancer registry.  The NCCCR 

has a gold star rating from the association of cancer registries [163].  This rating is only given to 

those registries with timely and >= 95% case ascertainment [164]. 

3.1.2.2 Non-case selection criteria 

We identified all NC Medicare beneficiaries, not appearing in the cancer registry, who 

were continuously enrolled for 13+ months in Medicare parts A/B at some point between Jul 1, 

2006-Dec 31, 2009, were aged 65+, and had at least one in or outpatient claim in order to 

ensure benefit utilization.  We then randomly selected 150,000 of these non-cases meeting 

cohort criteria. 

3.1.2.3 Main validation cohort  

We will not require continuous enrollment during the entire study period (Jul 1, 2006-Dec 

31, 2009), but instead will create a series of continuous enrollment windows of a smaller size, 

thereby capturing a less select, and more representative, 65+ Medicare beneficiary.   

Rationale for dynamic enrollment periods 

Cancer-associated claims information changes over time for cases, and there are 

periods of time before an incident case becomes a case when claims information would be 

more representative of a non-case.  Claims information dated after the case has been 

diagnosed are more representative of prevalent and not incident cases.  Cancer cases, 



 

37 

especially those such as CRC that go through a series of events from screening, diagnosis to 

treatment, require a minimum period of time to fully “diagnose” an incident CRC case within 

claims data.  This pattern of series of events should vary by cancer type, based on screening 

and treatment guidelines.  Therefore, there is a minimum period of time that is necessary to 

follow an individual who becomes a true incident case.  In order to loosen the continuous 

enrollment criteria previously imposed, and consider cases in their pre-diagnosis non-case 

status, pre and during diagnosis incident case status, and post-diagnosis prevalent case status, 

we will create a series of cohorts that move over time.  Cases can move from pre-diagnosis 

non-case status to pre/during incident-case status, and thus in and out of the cohort, depending 

where in time they are relative to the registry diagnosis date. 

A complete window  

The cohort will consist of a series of cohorts with a minimum enrollment criteria of 365 

days that is bounded by a period of time before this window (pre-buffer) and after the window 

(post-buffer) whereby if a case is diagnosed within the pre-buffer or post-buffer, they would be 

excluded from the specific cohort, because they are potentially not contributing all critical 

information.  Non-cases are eligible for all cohorts as long as they are continuously enrolled 

during the entire period of observation (primary window + pre-buffer + post-buffer).  Cases can 

move from non-case status to case status.  After they have become a case, they can no longer 

enter future cohorts, because they are now prevalent cases (Figure 2). 
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Figure 2: Hypothetical example, series of observation windows.   

An individual that is diagnosed with colon cancer contributes information as a non-case in windows 1 and 
2, and as a case in windows 4 and 5.  There is not enough information to adequately ascertain case 
status of this individual in windows 3 and 6. 

Calculation of pre-buffer size 

We will calculate for each CRC case the mean amount of time in days between the 

registry diagnosis date and all dates of diagnostic-associated procedures (e.g. colonoscopy), 

(APPENDIX C) occurring within 365 days of the registry diagnosis date.  We will then calculate 

the earliest 1% of the distribution of these mean days, corresponding to the largest 99th 

percentile of the amount of time in days between diagnostic events and registry diagnosis dates, 

and used this value as the pre-buffer size.  We will exclude all cases and associated claims 

whose registry diagnosis date falls within this pre-buffer window, which is the pre-buffer time in 

days immediately preceding the 365-day primary window. 
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Calculation of post-buffer size 

We will calculate for each CRC case the mean amount of time in days between the 

registry diagnosis date and all dates on which a treatment code was observed (e.g., 

chemotherapy, APPENDIX C), occurring within 365 days of the registry diagnosis date.  We will 

use the 99th percentile of the distribution of these mean days as the post-buffer size.  This 

corresponds to the largest 99th percentile of the mean amount of time in days between registry 

diagnosis dates and treatment events.  We will exclude all cases and associated claims whose 

registry diagnosis date fell within this post-buffer window, or between the end of the primary 

365-day window plus the post-buffer time in days. 

3.2 Exposure ascertainment and Inclusion criteria (Aim 1, Aim 2) 

For Aim 1 all cohort members must be aged 66+ at the date of the first observable, 

dispensed prescription for an SSRI, SNRI, TCA, or AHT, and have ≥ 360 days of continuous 

enrollment in Medicare Parts A and B prior to the first (SSRI, SNRI, TCA, AHT) prescription to 

evaluate baseline covariates and clinical factors.  Initiators will have ≥180 days of continuous 

part D enrollment, and no claims for an SSRI, SNRI, TCA, or AHT prior to the first prescription 

to restrict to “new” users of the medication class.  They will have no diagnoses or treatments 

associated with CRC in claims during the baseline assessment period to exclude prevalent 

cases, and a second claim for a medication within the same class as the initial claim occurring 

within the days’ supply of the first claim date plus a grace period of 60 days. We chose 60 days 

as a grace period because initiators of these medication classes frequently augment or switch 

between drugs within the class. We used National Drug Codes (NDC) associated with 

formulations for the generic drugs of interest to classify cohort members.  The date of cohort 

entry was the date the second prescription was dispensed. 

For Aim 2 all cohort members must be aged 66+ years at the date of the first prescription 

claim for an SSRI and have at least 360 days of continuous enrollment in Medicare Parts A and 
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B prior to the first SSRI prescription to evaluate baseline covariates.  They must have at least 

180 days of part D and no claims for an SSRI prior to the first prescription to restrict to “new” 

users of the medication, and no evidence of CRC (only CRC, not other cancer sites) in the 

baseline assessment period to exclude potentially prevalent events (identified with International 

Classification of Diseases, Clinical Modification, Ninth Revision (ICD-9) diagnosis codes or 

current procedural terminology codes (CPT)).  We are only excluding potentially CRC cases, 

because other cancer sites do not commonly metastasize to the colon [165].  Finally, we require 

a second prescription claim within the day’s supply of the first claim plus a grace period of 30 

days to allow for imperfect adherence.  The second claim requirement increases the likelihood 

that the initiator was adherent for a meaningful exposure period.  We used National Drug Codes 

(NDC) associated with formulations for the following generic drug names to generate the new 

user cohorts: citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline.  The date 

of cohort entry was the date the second prescription was dispensed. 

3.3 Outcome ascertainment (Aim 1, Aim 2) 

For both Aim 1 and Aim 2, we will identify non in-situ CRC events with an algorithm 

developed by Setoguchi et al [28]. This algorithm was defined as two or more International 

Classification of Diseases, Ninth Revision (ICD-9)—codes {153.x, 154.0,154.1, 154.2} present 

within 60 days.  The date of diagnosis was the date of the first of the 2+ diagnoses. This 

definition obtained high specificity, which is necessary to minimize bias in studies evaluating 

relative measures of association [105].  This is because at non-perfect specificity, a proportion 

of non-cases will be classified as cases in both the exposed and non-exposed groups, and we 

will be adding a proportion of the total number of exposed or unexposed groups into the 

numerator of each of the risks.  By adding these additional cases to both numerators we bias 

the ratio estimate.   As an example, assume that the true risk ratio estimate is (a/b)/(c/d) where 

‘a’ is the number of events in the exposed group, ‘c’ is the number of events in the unexposed 
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group, ‘b’ is the total number of persons or person-time in the exposed group, ‘d’ is the total 

number of events in the unexposed group.  We also then assume that ‘b’ is some proportion ‘q’ 

of ‘d’ and ‘p’ is the proportion of individuals falsely classified as cases.   

The unbiased risk ratio = (a/b)/(c/d) = (a/q*d)/(c/d) = [a/(q*c)] 

At non-perfect specificity, the risk ratio becomes: [a+ p*b] /[q*(c+p*d)]  

The above equation is only unbiased when p or the proportion of falsely misclassified non-cases 

is 0, perfect specificity, or when the unbiased ratio is 1.  

3.4 Covariate assessment (Aim 1, Aim 2) 

For both Aim 1 and Aim 2 we will covariates using claims for the 360 days preceding the 

date of the first prescription claim for an SSRI, SNRI, TCA, or AHT. 

Demographic information available in the baseline assessment period included: race 

(White, Non-Hispanic, Black, Non-Hispanic, Hispanic, Asian, Native American/Pacific Islander 

or Other), sex, and age at the first prescription (coded as a continuous variable). 

ICD-9 diagnosis and procedure codes, Current Procedural Terminology (CPT) codes, or 

Healthcare Common Procedure Coding System (HCPCS) codes present in any claim during the 

baseline assessment period were used to identify clinical factors and comorbidities at the time 

of SSRI, TCA, SNRI or AHT medication initiation.  These covariates included: any potential non-

CRC cancer diagnosis (e.g., breast cancer), obesity status, diabetes mellitus type 2, chronic 

obstructive pulmonary disease—a proxy for current or past smoking [166], inflammatory 

gastrointestinal diseases, alcohol abuse indicators, colonoscopy (coded as 0 or ≥ 1) anxiety and 

depression. Individuals with ICD-9 diagnosis or procedure codes, or CPT or HCPCS procedure 

codes associated with CRC during the baseline period were identified as having prevalent CRC, 

and were excluded from the cohort. Users of estrogen-based medications and non-steroidal 
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anti-inflammatory drugs were identified as having ≥1 claim for a drug in the class in the baseline 

period. 

3.5 Confounding control (Aim 1, Aim 2) 

Although evidence suggests that more conventional multivariable methods produce 

similar results to propensity score methods, there are advantages to their use [167].  In an 

observational study, propensity scores (PS) can be used to balance measured and unmeasured 

covariates, thereby reducing the risk of unmeasured confounding [168-170].  We will use known 

and available risk factors for CRC to generate propensity scores[171].  A benefit of PS is that 

they enable a visual inspection of overlap between the treatment groups.  This overlap for the 

propensity of treatment allows identification of individuals who would never be eligible for other 

treatments.  This is important because confounding by indication (e.g. depression) may exist, 

and it is plausible that TCA users may be inherently different than SSRI or SNRI users.   

3.5.1 Aim 1 confounding control 

To control measured confounding, we will use a propensity score (PS) approach that 

weights the covariate distribution of AHT initiators to reflect the covariate distribution of each of 

the AD class initiators, with the goal of estimating the “treatment effect in the treated” [172] .  We 

seek to balance covariates across treatment groups and estimate an unconfounded association 

between the AD class (SSRI, SNRI, TCA) compared with AHT initiators and the risk of incident 

CRC. We will run three logistic regression models to estimate the predicted probability of 

initiating an AD class (SSRI, SNRI, TCA) compared with AHT initiators. We will then weigh the 

AHT initiators to the baseline covariate distribution of each of the three AD classes (SSRI, 

SNRI, TCA) using a weight of PS/(1-PS) for AHT initiators and a weight of 1 for all AD class 

initiators, a procedure referred to as standardized morbidity ratio weighting (SMRW).  We will 

thus compare initiators of SSRIs, SNRIs, or TCAs each individually to AHT initiators. PS 

weighting methods are particularly useful in this study, because the comparator group is not an 
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active comparator and we need to evaluate the extent to which AD and AHT initiators differ at 

cohort entry, and how well covariates were balanced after SMRW. 

3.5.2 Aim 2 confounding control 

We will control confounding using a propensity score (PS) weighting approach such that 

the distributions of measured covariates in the non-referent groups (escitalopram, fluoxetine, 

paroxetine, sertraline) are weighted to the covariate distribution of the referent group of 

citalopram initiators.  Citalopram was chosen as the referent group because it has the largest 

number of initiators. The goal of PS weighting is to balance covariates across treatment groups 

and estimate the unconfounded associations between specific SSRIs (compared with 

citalopram) and incident CRC.  We will run four separate logistic regression models to estimate 

the PS of initiating each non-referent SSRI drugs versus citalopram based on measured 

covariates. We will then weight the non-referent initiators to the baseline covariate distribution of 

the citalopram initiators with (1-PS)/PS, a variant of standardized morbidity ratio weighting 

(SMRW) when there are more than two non-referent groups [173]. Citalopram initiators will be 

given a weight of 1. 

3.6 Person-time at risk Aim 1, Aim 2 

For both aim 1 and aim 2, we implemented a variation of the “disease induction” and 

“latent” concepts defined by Rothman [174] to specify person-time at risk. The induction is the 

time from the start of a specific exposure from which malignant transformation begins until the 

detection of cancer, whereas the latent period is the time in which a cancer is present but not 

yet detected. It is impossible to precisely identify when cancer induction has ended and latent 

period begun.  Therefore we commonly merge the two concepts into the term “empirical 

induction”, the time from cancer initiation to a detectable cancer.  For the purposes of these two 

aims, “empirical induction” will refer from drug initiation to a detectable cancer. 
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CRC is thought to evolve through a series of genomic and physical changes over a 

period of years [93]. We hypothesized that SSRIs may have effects that are observable during 

the later stages of carcinogenesis by preventing the transition of an adenoma to a carcinoma.  

We also assumed that there would be some minimum time after drug initiation before 

observable effects could reasonably be expected to occur (empirical induction, immune time).  

We set this interval to 180 days after the second prescription, and thus person-time and cases 

began to accrue 180 days after the second prescription.  

We continued to follow individuals for up to 90 days after drug discontinuation or 

augmentation to account for cases that may be attributable to drug use, but whose tumor 

remained undetected at SSRI cessation. We censored individuals at the earliest of: the date of 

the last prescription plus the days’ supply plus a grace period to allow for imperfect adherence 

(Aim 1 or Aim 2) or drug switching (Aim 1) plus 90 days; date of death; date of Medicare parts 

A, B or D disenrollment, or the end of the study period (12/31/2013).   Figures 3, 4 illustrate 

general conceptualization of cohort entry and exit. 

 

Figure 3:  Cohort entry and exit for Aim 1 
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Figure 4: Cohort entry and exit for Aim 2 

3.7 Statistical analyses 

3.7.1 Aim 1 

 We will hazard ratios (HR) and robust 95% confidence intervals using three SMRW Cox 

proportional hazards models, one for each AD-AHT comparison.  We will censor individuals at 

the earliest of the date of the last prescription plus the days’ supply plus the grace period (60 

days) plus the latent period parameter, date of death, date of Medicare parts A, B or D 

disenrollment, or the end of the study period (12/31/2013).  

 We will examine whether there is high CRC incidence following AD or AHT initiation by 

calculating the incidence stratified by time and drug group.  We will examine one of the potential 

hypotheses for increased incidence following medication initiation, the “medicalization” 

hypothesis, by examining patterns of office visits in the 360 days prior to the first AD or AHT 

prescription. Based on our hypothesis, we expect that new users of any class, on average, will 

have fewer visits in the 360 days prior to the first prescription.  If the CRC rate is high shortly 

after initiation, and it is in part due to depressive symptoms attributable to a latent cancer 

leading to an AD prescription, then we expect patterns of healthcare utilization to differ between 

the AD and AHT initiators, which assumes that hypertension does not induce CRC-like 

symptoms.  
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3.7.2 Aim 2 

 We will estimate HRs and robust 95% confidence intervals with one SMR weighted Cox 

proportional hazards model using four sets of weights, one for each non-referent group. To 

evaluate the stability of associations, we will perform sensitivity analyses in which we varied the 

amount of time: 1) between the second prescription and when person-time and cases begins 

accrual, and 2) between medication discontinuation and when person-time and case accrual 

ceases. We examined the proportional hazards assumption by stratifying by time since initiation 

and visually inspecting changes in HR.  

3.7.3 Aim 3 

We will identify all probable cases over all cohorts for all definitions.  We will calculate 

sensitivity (the proportion of true positives captured by the algorithm); specificity (the proportion 

of true negatives classified as a non-case); positive predictive value (PPV) (the probability that 

an individual is a case given the algorithm calls an individual a case); and negative predictive 

value (NPV) (the probability the person is not a case given the algorithm classifies him as a non-

case), and corresponding 95% confidence intervals in all cohorts using the epiR package [175].  

We will adjust both NPV and PPV for the sampling fraction of non-cases.  Because individuals 

in the primary cohort may appear in multiple windows, we will use generalized estimating 

equations (GEE) to calculate the standard error to account for within subject variability.  

Because we expect that dataset to be fairly large we will employ a resampling technique to 

estimate the standard error of the GEE estimate. 

3.8 Sensitivity analyses 

3.8.1 Aim 1, Aim 2 

We performed sensitivity analyses where we varied the amount of time between the 

second prescription and when person-time and events began accrual (0-730 days), and after 

medication discontinuation when person-time and events ceased accrual (0-360 days).   
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3.8.2 Aim 3 sensitivity cohorts 

3.8.2.1 Cohort replication of Setoguchi definitions 

To mimic the continuous enrollment criteria imposed on the PA/PACE population, we 

required cohort-eligible individuals to maintain continuous part A/B enrollment for at least 36 

months.  This was to emulate the 48 months of continuous enrollment in Medicare and PACE in 

the PA/PACE validation.  We will also test the definitions among all individuals continuously 

enrolled for only ≥13 months.  We will finally examine how incorporating treatment and 

procedure codes that did not exist in 1997-2000, but did between 2006-2009, impacts the 

performance of definitions #1 and #3.  Definitions #1 and #3 use both diagnosis and treatment 

or procedural codes to identify a case.   

3.8.2.2 Low-income status (LIS) 

The PA/PACE population was highly select with respect to both continuous enrollment 

criteria and income, with cohort members having a very low maximum income.  Thus, their 

patterns of cancer diagnosis and treatment may differ from a more typical and economically 

diverse Medicare population.  They may not have the same level of mobility as a more 

economically diverse population.  We attempted to capture a lower income population by using 

a flag (“Cost Share Group Code”; CST_SHR_GRP_CD_1-CST_SHR_GRP_CD_12 variables) 

representing LIS-eligibility in the beneficiary summary file.  There is a flag for each month of 

Medicare enrollment.  Specifically we classified individuals as ever LIS if they had a code of 01-

03 (fully-subsidized part D), or 04-08 (LIS eligible, but not receiving full part D subsidy) in any 

month of the period of continuous enrollment.  

3.8.2.3 Modification of algorithms to identify colon and rectal cancer cases 

We have used modifications of definition #2 (2+ ICD-9 diagnoses within 60 days) to 

identify cancer sites not originally validated.  For example, we have used two ICD-9 codes to 

identify potential pancreatic cancer cases[176].   We have also previously attempted to identify 
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colon-only cancer cases (ICD-9 = 153.x within 60 days) with the motivation that colon cancer 

may have distinct etiology from rectal cancer with respect to a specific drugs exposure [177].   
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CHAPTER 4: SYNCHRONIZING FOLLOW-UP IN PHARMACOEPIDEMIOLOGIC STUDIES 
USING NEGATIVE CONTROL EXPOSURES: ANTIDEPRESSANTS AND CRC RISK 

4.1 Background 

Randomization, on average, balances measured and unmeasured patient characteristics 

across treatment arms. Therefore, randomized controlled trials (RCTs) provide the strongest 

evidence about the effects of drugs on disease outcomes. However, RCTs can be challenging 

to execute when evaluating cancer outcomes because of the potentially long period of follow-up 

time required to observe a sufficient number of events.  We often thus rely upon observational 

studies, but non-user comparisons—the observational analog to an RCT placebo comparison—

are susceptible to time-related biases [161, 178].  Although researchers have identified proxies 

for drug initiation in non-user groups (e.g., an office visit), a natural initiation time does not exist, 

and the mechanism to synchronize initiation times is not obvious.  Failure to adequately 

synchronize the start of follow-up can lead to improper attribution of events to new user and 

non-user groups.   

The frequency and intensity of interaction with the healthcare system (i.e., healthcare 

utilization) may also differ between initiators of a drug—new users [27]—and non-users.  In the 

extreme case where a drug non-user simply does not interact with the healthcare system, we 

would be unable to identify asymptomatic cancers, leading to an underestimation of early events 

in non-user groups.  Therefore, elevated cancer rates observed immediately following drug 

exposure compared to non-use may not represent a true relative effect of the drug on the 

development of cancer, but rather differential interaction with the healthcare system (i.e., 

outcome detection bias).  New users must visit a healthcare provider to receive a prescription. 
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This interaction with the healthcare system could lead to event detection in users that would not 

be possible for non-users who lack interaction with the healthcare system.  

Although an active comparator new user design is ideal for minimizing several sources 

of bias in pharmacoepidemiological studies [158], a natural active comparator does not always 

exist.  Furthermore, when the goal of a study is to establish whether a drug exposure, compared 

to no exposure, is causally associated with an outcome, an active comparator design cannot be 

used.  An alternative to the active comparator in a nonrandomized setting is to use a negative 

control exposure [179]—a drug or drug class that it assumed to have no association with the 

outcome.  Using a negative control can reduce the potential for outcome detection bias and 

immortal time bias by synchronizing the start of follow-up for both treatment groups and by 

conditioning on an initial interaction with the healthcare system (e.g., the start of a new 

prescription medication). This study design has previously been used to evaluate the 

association between statins and lung, CRC and breast cancers, where the negative control 

exposure was anti-glaucoma medication [180].  

As an empirical example illustrating the usage of a negative exposure control, we 

examined the associations between antidepressant (AD) classes (serotonin reuptake inhibitor 

(SSRI) initiators, tricyclic (TCA) antidepressant initiators, serotonin norepinephrine reuptake 

inhibitor (SNRI) initiators) compared with a negative exposure control (antihypertensive (AHT) 

initiators) and CRC.  Antidepressants are commonly prescribed drugs, with an estimated 17% of 

Americans aged ≥65 reporting antidepressant use in a 2012 nationally representative survey [5]. 

The few epidemiological studies [21-26] examining the association between both SSRIs and 

TCAs, and CRC have produced conflicting results, and all studies compared antidepressant 

users to non-users.  
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Previous studies [21, 24] have excluded CRC cases occurring in the year following 

initiation to prevent protopathic bias (reverse causality).  Latent CRC can cause symptoms 

mimicking depression, for example lethargy, weight loss, or gastrointestinal distress [101].  

Thus, CRC cases diagnosed shortly after initiation of an AD may not be attributable to the AD 

itself, but could have been latent CRC with the physical symptoms of depression.  Alternatively, 

relatively high CRC incidence, if observed shortly after drug initiation, could result from new 

users who have not been actively engaged with the healthcare system prior to drug initiation. 

These new users may experience a catch-up period of medical encounters, including diagnostic 

and cancer screening services, which we term “medicalization”.  It would be from this catch-up 

period that a latent cancer is diagnosed. A secondary goal of this study is to test a hypothesis 

that CRC diagnoses in new users occurring shortly after drug initiation may in part be due to an 

increase in medical encounters in the time period proximal to the first AD or AHT prescription. 

4.2 Methods 

4.2.1 IRB approval (#14-1991) and CMS approval 

 This project was reviewed by the Institutional Review Board at the University of North 

Carolina, and data use was approved by the Centers for Medicare and Medicaid Services. 

4.2.2 Selection of a negative control exposure 

We chose AHT, excluding beta-blockers, as our negative control exposure, because 

there is no compelling evidence that their use is associated with CRC risk, and we anticipated a 

substantial number of initiators. We excluded beta-blockers, because there is evidence that their 

use could reduce cancer risk [100]. 

4.2.3 Data source and study population 

We conducted a new user [158] cohort study of exclusive (class monotherapy) initiators 

of SSRIs, TCAs, SNRIs or AHTs, using a 20% random sample of Medicare fee-for-service 

(FFS) beneficiaries, aged ≥66 from 2007-2013.  
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All cohort members were aged ≥66 at the date of the first observable, dispensed 

prescription for an SSRI, SNRI, TCA, or AHT, and had ≥360 days of continuous enrollment in 

Medicare Parts A and B prior to the first (SSRI, SNRI, TCA, AHT) prescription to evaluate 

baseline covariates and clinical factors. Initiators also had ≥180 days of continuous part D 

enrollment, and no claims for an SSRI, SNRI, TCA, or AHT prior to the first prescription to 

restrict to “new” users of the medication class.  They had no diagnoses or treatments associated 

with CRC in claims during the baseline assessment period to exclude prevalent cases, and a 

second claim for a medication within the same class as the initial claim occurring within the 

days’ supply of the first claim date plus a grace period of 60 days. We chose 60 days as a grace 

period because initiators of these medication classes frequently augment or switch between 

drugs within the class. We used National Drug Codes (NDC) associated with formulations for 

the generic drugs listed in APPENDIX A to classify cohort members.  The date of cohort entry 

was the date the second prescription was dispensed. 

4.2.4 Outcome assessment 

We identified non in-situ CRC events with an algorithm developed by Setoguchi et al 

[28].  This algorithm was defined as two or more International Classification of Diseases, Ninth 

Revision (ICD-9)—codes {153.x, 154.0,154.1, 154.2} present within 60 days.  The date of 

diagnosis was the date of the first of the ≥2 diagnoses. This definition obtained high specificity, 

which is necessary to minimize bias in studies evaluating relative measures of association [105]. 
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4.2.5 Covariate assessment  

We evaluated covariates using claims for the 360 days preceding the date of the first 

prescription claim for an SSRI, SNRI, TCA, or AHT. 

4.2.5.1 Demographics 

Demographic information available in the baseline assessment period included: race 

(White, Non-Hispanic, Black, Non-Hispanic, Hispanic, Asian, Native American/Pacific Islander 

or Other), sex, and age at the first prescription (coded as a continuous variable). 

4.2.5.2 Clinical factors and concomitant medications 

ICD-9 diagnosis and procedure codes, Current Procedural Terminology (CPT) codes, or 

Healthcare Common Procedure Coding System (HCPCS) codes present in any claim during the 

baseline assessment period were used to identify clinical factors and comorbidities at the time 

of AD or AHT medication initiation. These covariates included: any potential non-CRC cancer 

diagnosis (e.g., breast cancer), obesity status (ICD-9 = 278,278.0,278.00,278.01), diabetes 

mellitus type 2 (ICD-9 = 250.xx), chronic obstructive pulmonary disease (ICD=496.0)—a proxy 

for current or past smoking [166], inflammatory gastrointestinal diseases (ICD-9=555.0-

555.2,555.9,556.0-556.6,556.8,556.9), alcohol abuse indicators (ICD-9=303,303.9,303.90-

303.93,305.0,305.00-305.03,535.3,535.30-535.31,571.0-571.3,V11.3), colonoscopy (coded as 0 

or ≥ 1, APPENDIX C) anxiety (ICD-9=300,300.01,300.02,300.09) and depression (ICD-9=296.2, 

296.20-296.26, 296.0,296.30-296.36, 298.0, 300.4,309.0,309.1,311). Individuals with ICD-9 

diagnosis or procedure codes, or CPT or HCPCS procedure codes associated with CRC (ICD-

9=V10.05, V10.06, 153,153.1-153.4,153.6-153.9, 154.0, 154.1,154.8;CPT = 3382F, 3384F, 

3386F, 3388F, 3390F, G8371, G8372, G9085-G9095) during the baseline period were identified 

as having prevalent CRC, and were excluded from the cohort. Users of estrogen-based 

medications and non-steroidal anti-inflammatory drugs were identified as having ≥1 claim for a 
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drug the class in the baseline period. All medications used to classify cohort members are listed 

in APPENDIX A. 

4.2.5.3 Confounding control  

To control measured confounding, we used a propensity score (PS) approach that the 

weighted the covariate distribution of AHT initiators to reflect the covariate distribution of each of 

the AD class initiators, with the goal of estimating the “treatment effect in the treated” [172] .  We 

sought to balance covariates across treatment groups and estimate an unconfounded 

association between the AD class (SSRI, SNRI, TCA) compared with AHT initiators and the risk 

of incident CRC.  We ran three logistic regression models to estimate the predicted probability 

of initiating an AD class (SSRI, SNRI, TCA) compared with AHT initiators. We then weighted the 

AHT initiators to the baseline covariate distribution of each of the three AD classes (SSRI, 

SNRI, TCA) using a weight of PS/(1-PS) for AHT initiators and a weight of 1 for all AD class 

initiators, a procedure referred to as standardized morbidity ratio weighting (SMRW).  We thus 

compared initiators of SSRIs, SNRIs, or TCAs each individually to AHT initiators. PS weighting 

methods were particularly useful in our study, because our comparator group was not an active 

comparator and we needed to evaluate the extent to which AD and AHT initiators differed at 

cohort entry, and how well covariates were balanced after SMRW. 

4.2.5.4 Person-time at risk 

Person-time and outcomes began accruing 180 days (i.e. empirical induction, lag) after 

the second prescription.  We then followed individuals for up to 90 days after medication 

discontinuation to account for cases that might be attributable to drug exposure, but were 

detected after drug discontinuation (i.e. latent period). See Figure 5 for a general 

conceptualization of cohort entry and exit. 
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4.2.6 Statistical analysis 

 We estimated hazard ratios (HR) and robust 95% confidence intervals using three 

SMRW Cox proportional hazards models, one for each AD-AHT comparison.  We censored 

individuals at the earliest of the date of the last prescription plus the days’ supply plus the grace 

period plus the latent period parameter, date of death, date of Medicare parts A, B or D 

disenrollment, or the end of the study period (12/31/2013).  We performed sensitivity analyses 

where we varied the amount of time between the second prescription and when person-time 

and events began accrual (180-730 days), and after medication discontinuation when person-

time and events ceased accrual (0-360 days).   

4.2.6.1 Description of medicalization  

 We examined if high CRC incidence immediately followed AD or AHT initiation by 

calculating the incidence stratified by time (0-90, 91-180, 181-360, 361-730, 731+) days and 

drug group (AHT versus AD classes).  We tested the “medicalization” hypothesis by examining 

patterns of office visits in the 360 days prior to the first AD or AHT prescription and in the 60 

days after the first prescription.  If our hypothesis is in part true, then we expect that new users 

of any class, on average, will have fewer visits in the 360 days prior to the first prescription.  If 

the CRC rate was high shortly after initiation, and the high rate was driven by depressive 

symptoms attributable to latent CRC that precipitated an AD prescription, then we would expect 

patterns of healthcare utilization to differ between the AD and AHT initiators.  A strong 

assumption is that hypertension does not induce physical CRC-like symptoms.  

 Analytic cohorts were generated in SAS V9.3 (Cary, NC) and all statistical analyses 

were completed in R [181] version 3.14.  
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4.3 Results 

We identified 830,609 initiators of SSRIs, SNRIs, TCAs, or AHTs initiators with no 

evidence use of the other medication classes in the 180 days prior to the date of the first 

prescription.  Of these initiators, only 492,213 individuals had a second prescription and met 

age, enrollment and CRC-free status (Table 6). The number of cohort members was not evenly 

distributed across the AHT and AD users with far more individuals exclusively initiating an AHT 

(n=354,934) than the other classes (SSRI: n=72,630; SNRIs: n=11,155; TCAs: n=11,320). The 

median number of days of medication use after the second prescription (overall=315 days) 

varied across classes [AHT=340 days; SSRI= 247 days; TCA=166 days; SNRI=221 days]. 

Demographic characteristics and clinical factors differed by class (Table 6), but SMRW 

significantly improved the balance of covariates (Table 7).  Initiators of an AD class were more 

likely to be white (~90% versus ~80%) and women (70% versus 57%) than AHT initiators.  A 

smaller proportion of AHT and TCA initiators had an ICD-9 diagnosis code for anxiety or 

depression compared to SSRI or SNRI initiators during the baseline assessment period. 

4.3.1 Primary analyses 

   We observed 1,341 CRC events in 480,087 person years (PY) (incidence = 279 per 

100,000 PY) (Table 8), with incidence varying from 191 per 100,000 PY for SNRI initiators to 

287 cases per 100,000 PY for AHT initiators. There was a small reduced rate of CRC for SSRI 

initiators compared with AHT initiators: aHR = 0.85 (0.71, 1.02). TCA and SNRI initiators had 

lower adjusted rates of CRC compared with AHT initiators; aHR = 0.86 95% CI = (0.54,1.39), 

aHR=0.86 (0.52,1.43), respectively, however estimates were less precise. Incidence was 

variable over time for all classes, and was generally highest in the first 90 days of follow-up 

(Figure 6), dropping sharply until approximately 180 days of use after the second prescription.  
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4.3.2 Medicalization and high short-term CRC rate 

   We examined our “medicalization” hypothesis by examining the pattern of office visits in 

the 360 days preceding the first prescription of an AD or AHT.  With the exception of slight 

increases in office visits corresponding to approximately 6 month and yearly visits, generally, for 

all drug classes (Figure 7), cohort members had fewer office visits in the 360 days prior to the 

first prescription compared to the 30 days prior to and following the first prescription, indicating 

increased interaction with the healthcare system.  This pattern was more pronounced among 

individuals diagnosed with CRC within the first 30 days after the second prescription compared 

to those diagnosed with CRC more than 180 days after the second prescription (Figure 8).  

Although a second prescription is necessary for cohort entry, increased healthcare interactions 

should begin occurring proximal to the first prescription. 

4.4 Discussion 

Our study goals were to: (1) examine the association between three AD classes (SSRIs, 

SNRIs, TCAs) and the risk of CRC compared to initiators of AHT (negative exposure control) for 

the years 2007-2013 among a cohort study of Medicare FFS beneficiaries aged ≥66 and (2) 

examine the “medicalization” phenomena by describing healthcare utilization in the time period 

before and after the first AD or AHT prescription.  We found that all AD initiators had a reduced 

rate of CRC compared with AHT initiators, although the point estimates for the SNRI and TCA 

versus AHT comparisons were imprecise.  We also provided some evidence for the 

“medicalization” phenomena by showing that, on average, initiators of both AD and AHT had a 

surge in physician encounters in the time proximal to the first prescription when compared to 

their physician encounters in the time before the first prescription.  

   We tested the stability of our results of the effects of AD on CRC risk by varying 

empirical induction and latent period assumptions (Figure 9). The adjusted association between 

SSRIs and CRC compared to AHT initiators did not vary dramatically as we varied either the 
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induction or latent parameters. For most analyses there was a small, reduced rate (5%-20%) of 

CRC among SSRI users compared with AHT initiators, with estimates falling between previously 

reported estimates [21-26].  There was little we could conclude about the SNRI-AHT and TCA-

AHT association, because precision was poor, resulting from the small numbers of SNRI and 

TCA initiators and events.  

   This was the first study to evaluate class level associations between three AD classes 

and incident CRC in a North American cohort.  We chose a negative control group of medication 

initiators to reduce time-related biases that may occur in a cohort study without start of follow-up 

synchronization.  By using PS weighting confounding control methods, we were able to assess 

how well we balanced measured risk factors and confounders. Our study used high-quality 

exposure data (from pharmacy dispensing), and we used sensitivity analyses to assess the 

stability of our reported associations between a specific AD classes and CRC.   

   We chose AHT initiators as our negative control exposure, because there is no 

compelling evidence that, as a class, AHTs affect the risk of CRC, and we hypothesized that we 

would have a large number of initiators.  However, there were marked differences between the 

AD cohorts and the AHT cohort on some key factors including sample size and follow-up time.  

A superior negative control would be one in which a smaller proportion of AD initiators had the 

likelihood to initiate the comparator class (to reduce loss of AD initiators). There were a 

substantial number of AD initiators who were ineligible for our study because they initiated both 

an AD and AHT.  We were additionally unable to control for confounding by indication 

(depression in particular), although we argue that the likely association between depression or 

anxiety, and CRC—if any—would be positive, and by not fully accounting for this, our results are 

biased towards the null.  Our reported estimates may represent an underestimation of the true 

association between AD and CRC. 
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Because our data lacked pathology confirmed CRC events, we used an algorithm to 

identify probable events.  Although the definition we used reported high specificity (>99%) in the 

population in which it was developed, its performance in our population is unknown. 

Additionally, CRC risk factors can vary by molecular features of the tumor, for instance smoking 

and BRAF status [153], and our results represent the average effect of a drug class over all 

CRC tumors.  

High CRC rates succeeded by a sharp drop after initiation mirrored our previous 

observations. We hypothesized this phenomena may be driven by “medicalization”, whereby 

new users of specific drugs had not been actively engaged in healthcare seeking activities until 

the first prescription.  New users may then undergo a catch-up period of medical care, including 

screening and diagnostic tests, ultimately leading to a latent CRC diagnosis that is not 

attributable to drug effects.  We may therefore be capturing either undiagnosed latent or 

prevalent cases as opposed to incident cases.  Global healthcare utilization patterns in the year 

leading up to the first prescription paired with stronger patterns among CRC events diagnosed 

early compared with CRC events diagnosed later support our hypothesis.  Because healthcare 

utilization patterns were similar between AD and AHT initiators we also have support that CRC 

symptoms masquerading as depression symptoms (reverse causality) may not fully explain the 

spike in CRC incidence.  We have only speculated about and tested a few of the many unknown 

factors that may be driving this spike in CRC incidence after initiation. 

4.5 Future directions  

We recommend that future pharmacoepidemiologic studies with cancer outcomes 

should examine incidence rates after follow-up begins, and exclude all person-time and cancer 

events preceding the sharp incidence decline and flattening (e.g., 180 days in our study).  

Cancers diagnosed shortly after initiation, within a period of increased healthcare utilization 

following a new prescription, may have been diagnosable during the period of relatively reduced 
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interaction with the healthcare system prior to the first prescription, making them ineligible for 

the study.  We also suggest that studies using a negative exposure control should compare 

patterns of healthcare utilization between the primary exposure groups and the control.  Marked 

differences in utilization patterns may put the study at risk for outcome detection bias.  

Medicalization patterns, and their potential for bias in pharmacoepidemiologic studies, should be 

further examined in other drug exposure and disease outcome settings.
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4.6 Tables 

Table 6: Demographic characteristics of 492,213 people initiating a single class 

 

Medication class 

 

AHT  

N = 354,934 (78.9) 

SNRI   

 N =11,155 (2.5) 

SSRI   

N = 72,630 (16.1) 

TCA    

N = 11,320 (2.5)  

N % N % N % N % 

Mean age (sd) 75.5 (7.5) 74.8 (7.4) 76.8 (8.2) 74.4 (7.0) 

66-69 94,890 26.7 3,527 31.6 17,822 24.5 3,436 30.4 

70-74 92,798 26.1 2,804 25.1 16,140 22.2 3,189 28.2 

75-79 66,659 18.8 1,913 17.1 12,590 17.3 2,079 18.4 

80-84 50,564 14.2 1,475 13.2 11,448 15.8 1,446 12.8 

85+ 50,023 14.1 1,436 12.9 14,630 20.1 1,170 10.3 

Sex 
        Male 151,474 42.7 3,142 28.2 21,669 29.8 3,670 32.4 

Female 203,460 57.3 8,013 71.8 50,961 70.2 7,650 67.6 

Race a 

        White 286,212 80.6 10,252 91.9 66,510 91.6 9,938 87.8 

Black 34,209 9.6 325 2.9 2,327 3.2 468 4.1 
Asian 11,176 3.1 183 1.6 943 1.3 325 2.9 

Hispanic 12,977 3.7 235 2.1 1,710 2.4 315 2.8 

Native American, Other, Unknown 10,360 2.9 160 1.4 1,140 1.6 274 2.4 

Comorbidities b 
        Depression c  5,948 1.7 1,575 14.1 7,873 10.8 447 3.9 

Anxiety c  24,769 7.0 2,608 23.4 19,762 27.2 1,495 13.2 

Diabetes  109,574 30.9 2,854 25.6 16,112 22.2 2,534 22.4 

 Inflammatory GI disorders  2,880 0.8 162 1.5 874 1.2 166 1.5 

Previous Cancer d 54,784 15.4 2,283 20.5 13,032 17.9 2,248 19.9 
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All AHT, SSRI, SNRI, TCA initiators had a second claim within the same class occurring within the days’ supply + 60 data. 

sd, standard deviation; COPD, smoking proxy;  

a Race was entered as Black versus White/Other for propensity score calculation and weighting 

b Comorbidities evaluated in the 360 days of part A/B enrollment up to the 1st prescription.  Other variables used to estimate propensity score and 

SMR weights include: codes associated with chronic alcohol abuse, obesity status and calendar year of first prescription.  

c not used in propensity score model.  They were strong instruments and we wanted to reduce risk for bias (Patrick et al 2011) that can occur 

when including a strong instrument into PS model. Results with or without these variables were similar (Table 7, Table 8), but covariate balance 

was superior without depression or anxiety. 

d All cancer diagnosis codes prior to the date of the 1st prescription except those for CRC.   

e Medication use defined as any observed claim in the up to 360 days of part A/B enrollment up to the date of the first prescription.   

COPD  57,443 16.2 2,191 19.6 14,990 20.6 1,958 17.3 

Medications e 

        NSAID use 65,162 18.4 3,552 31.8 15,320 21.1 3,387 29.9 

Estrogen-based medication use 7,188 2.0 568 5.1 2,443 3.4 546 4.8 

Screening 
                 Colonoscopy (Yes, 1+) 28,241 8.0 1,215 10.9 6,391 8.8 1,400 12.4 
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Table 7: Balance of select covariates of application of weights. 

  Comparison   

 

SSRI-AHT SNRI-AHT TCA-AHT 

 

SSRI AHT SNRI  AHT TCA AHT 

N  55,833 55,892 8,424 8,424 8,324 8,325 

Age 76.5 76.6 74.6 74.7 74.3 74.3 

Race (%) 

      Black 3.1% 3.1% 2.7% 2.7% 3.8% 3.8% 

White/Other 96.9% 96.9% 97.3% 97.3% 96.2% 96.2% 

Sex (%) 

      Male  28.9% 28.8% 27.0% 27.3% 31.9% 31.9% 

Female 71.1% 71.2% 73.0% 72.7% 68.1% 68.1% 

Comorbidities (%) 

     Obesity 4.2% 4.2% 5.8% 5.7% 4.3% 4.3% 

Diabetes 21.8% 21.8% 25.3% 25.1% 22.3% 22.3% 

Alcoholism 1.9% 1.9% 1.6% 1.7% 1.1% 1.1% 

Inflammatory GI 1.3% 1.3% 1.5% 1.5% 1.5% 1.5% 

Previous Cancer 17.1% 17.3% 20.1% 20.1% 19.4% 19.4% 

COPD 19.6% 19.8% 19.2% 19.2% 17.0% 17.1% 

Medications (%) 

     NSAID use 21.1% 21.2% 31.3% 31.3% 29.8% 29.8% 

Estrogen use 3.6% 3.6% 5.2% 5.2% 5.2% 5.2% 

Screening (%) 

      Colonoscopies 9.0% 9.0% 11.3% 11.3% 12.6% 12.6% 

Represents covariate balance of individuals appearing in Table 7 analysis.  Members of each antidepressant class were given weights of 1.  

Propensity scores (PS) were estimated by running three logistic regression models to estimate the predicted probability of antidepressant class 

use.  AHT initiators given weight of: propensity score /(1-propensity score).  
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Table 8: The association between AD use and algorithm-identified CRC 

Class N Median days 

followupa (Q1, Q3) 
Events Total PY Incidencea Unadjusted HR 

(95% CI) 

Adjustedbc HR 

(95% CI) 

AHT 290,958 330 (111, 786) 1,166 406,851.4 287 1.00 1.00 

SNRI 8,424 193.5 (65, 484) 18 8,095.6 191 0.77 (0.49, 1.23) 0.86 (0.54, 1.39) 

SSRI 55,833 225 (77, 544) 142 58,549.4 243 0.85 (0.71, 1.01) 0.85 (0.71, 1.02) 

TCA 8,324 133 (50, 379) 15 6,590.8 228 0.79 (0.48, 1.32) 0.86 (0.52, 1.43) 

 

c PS model does not include depression or anxiety status during baseline assessment period.   See Table 8 for results that include depression and 

anxiety in PS model. 

Table 9: Like Table 7 except excludes anxiety and depression in PS model. 

Class N 
Median days followupa 

(Q1, Q3) 
Events Total PY Incidencea 

Unadjusted HR 

(95% CI) 

Adjustedb HR 

(95% CI) 

AHT 290,958 330 (111, 786) 1,166 406,851.4 287 1.00 1.00 

SNRI 8,424 193.5 (65, 484) 18 8,095.6 191 0.77 (0.49, 1.23) 0.90 (0.54, 1.45) 

SSRI 55,833 225 (77, 544) 142 58,549.4 243 0.85 (0.71, 1.01) 0.87 (0.74, 1.05) 

TCA 8,324 133 (50, 379) 15 6,590.8 228 0.79 (0.48, 1.32) 0.86 (0.52, 1.43) 

 

Person time and cases start accruing 180 days after the date of the second prescription fill and stop at date of the last observed prescription + the 

days supply + the grace period (60 days) + 90 days. 

a per 100,000 persons. 

b We used three SMRW Cox models with robust variance to estimate HRs and 95% CI.  In each model, AHT initiators are weighted by PS/(1-PS).   

PSs are calculated for each AHT-AD comparison by calculating the probability of AD use.   
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4.7 Figures 

 

Figure 5: Conceptualization of entry/exit into AD class 

In the primary analysis, person-time and cases begin accrual after 180 days (empirical induction/lag/immune time) and continue accruing until 

90 days after (latent parameter) the date of the last prescription + the days supply + grace period (60 days). We vary person-time start and stop 

parameters in sensitivity analyses to evaluate the stability of associations between specific drugs and CRC.  The lag period can be >= 0 days. The 

latent period is >= 0 days and <=360 days. The grace period = 30 days in all analyses. This is to allow for individuals not filling the prescription 

exactly as prescribed. Baseline parameters are evaluated prior to the first observable claim.  Individuals must be age 66+ at the 1st prescription fill. 

A 2nd claim must be observed within the days supply + the grace period in order to be eligible for cohort entry.  Person time and cases start 

accruing at the date of the 2nd prescription + (empirical induction) parameter days. Person time ends at the first of (1) death; (2) 1st CRC 

algorithm identified case; (3) end of study period (12/31/2013); (4) disenrollment from Medicare parts A, B or D; (5) a date defined as the days 

supply plus + grace period + the (latent) parameter beyond the date of the last prescription fill.  
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Figure 6: CRC incidence stratified by time and drug class. 

All sub-images show incidence per 100,000 persons and 95% CI for all drugs (y-axis).  The x-axis contains a tick mark for each time strata and the 
corresponding number of cohort members below.  The incidence is generally highest in the first 0-6 months following the second prescription 
date (time 0).  This helps to justify our (lag/empirical induction/immune time) assumptions of at least 180 days, such that person time and cases 

do not begin accruing until 180 days after the second prescription. 
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Figure 7: Average number of office visits stratified by medication class.  

Bars represent average number of office visits and 95% CI stratified by AHT versus AD status. The bars are positioned at (y-axis) 30-day 
increments before the 1st prescription up to 360 days before the 1st prescription and up to 60 days after the 1st prescription.  
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Figure 8: Average number of office visits among algorithm identified CRC cases. 

Bars represent average number of office visits among algorithm-identified CRC events with a diagnosis date < 30 after the 2nd prescription 
or > 180 days after the 2nd prescription. The bars are positioned at (x-axis) 30-day increments before the 1st prescription up to 360 days 
before the 1st prescription and up to 60 days after the 1st prescription. 
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Figure 9: Sensitivity analyses with varying induction and latency assumptions. 
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All sub-images show HR and 95% CI comparing Antidepressant classes to Antihypertensive initiators.  
The x-axis for all images is the lag period in increments of ~ 3 months for a specific latent period. Figure 
9A: Sensitivity analyses where the latent period = 90 days. The primary analyses occur at lag time = 180 
days and are distinguished with a ‘*’. Person time and cases accrue until the date of the last prescription 
plus the days supply plus the grace period (60 days) plus 90 days. Figure 9B: Sensitivity analyses with 
latent period = 0 days.  Person time and cases accrue until the date of the last prescription plus the days 
supply plus the grace period (60 days).  Figure 9C: Sensitivity analyses with latent period = 180 days. 
Person time and cases accrue until the date of the last prescription plus the days supply plus the grace 
period (60 days) plus 180 days. Figure 9D: Sensitivity analyses where latency = 270 days. Person time 
and cases accrue until the date of the last prescription plus the days supply plus the grace period (60 
days) plus 270 days. Figure 9E:  Sensitivity analyses where latency = 360 days.  Person time and cases 
accrue until the date of the last prescription plus the days supply plus the grace period (60 days) plus 360 
days. 

 

 

Figure 10: Adjusted hazard ratios stratified by time on AD class. 

All sub-images show adjusted hazard ratios and 95% confidence intervals for SNRIs, SSRIs, TCAs 
compared AHT initiators during the following time: 0-3 months, 3-6 months, 6-12 months, 12-24 months, 
24+ months.  We used this to determine how well the proportional assumption held over time.   
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CHAPTER 5: SELECTIVE SEROTONIN REUPTAKE INHIBITORS AND THE RISK OF 
COLORECTAL CANCER IN A COHORT OF MEDICARE BENEFICIARIES (2007-2013) 

5.1 Background 

Despite declines in incidence and mortality over the past 30 years, colorectal cancer 

(CRC) remains the second leading cause of cancer mortality in the United States [1], with 

almost 50,000 deaths expected in 2015 [2].  CRC treatment is expensive [3], and can be 

physically and emotionally draining [182].  Therefore, there is ongoing interest in identifying 

existing drugs and supplements with the potential to prevent this cancer [4].  

Antidepressants are commonly used [5, 183] and well-tolerated drugs prescribed to treat 

a variety of conditions from depression and anxiety to neuropathic pain and menopausal hot 

flashes, with SSRIs being the most commonly prescribed antidepressant class [5].  Although 

SSRIs are primarily associated with regulation of central nervous system serotonin through 

selective binding to the serotonin reuptake transporter (SERT), both serotonin and SERT are 

present in the human colon [184], with serotonin playing an important role in motility.  In animal 

models, fluoxetine, an SSRI, has been used and shown to modify extracellular SERT and 

serotonin concentration in the colon [54].  In-vivo evidence has shown that some, but not all, 

SSRIs may reduce experimental CRC tumor volume or growth [7, 9, 74], with one study 

reporting a superior benefit of sertraline, an SSRI, compared to doxorubicin, an antineoplastic 

drug, in HT29 cell-line xenografted mice [9].  If these anti-tumor properties are also active in 

precursor lesions, then some SSRIs may reduce CRC risk.  These data also suggest that the 

associations between SSRIs and CRC could be drug- rather than class-specific. 

Epidemiologic studies examining class level association between SSRIs and risk of CRC 

have produced inconsistent findings, with three studies reporting no association [23, 24, 26], 
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and the remaining studies reporting moderate (15%-45% reduction) inverse associations [21, 

22, 25].  These studies relied on the comparison between antidepressant users to non-users or 

past users, design features that could lead to confounding by depression.  Both stress and 

depression may accelerate cancer progression [29, 33, 103] and therefore potentially increase 

observed CRC incidence in SSRI users.  Confounding by indication could therefore attenuate 

any protective effect.  Furthermore, all previously published studies ignored the potential 

heterogeneity of specific SSRI effects.  As a result, inconsistent findings from prior studies could 

be partially explained by different patterns of SSRI use and differential effects of specific SSRIs 

on CRC risk.  For example, a study of SSRIs as a class based on a 1990 population would 

report an association heavily weighted to the effects of fluoxetine on CRC risk, because there 

were few other SSRIs on the market at that time.  To examine whether specific SSRIs exhibit 

different effects on CRC risk, we compared the incidence of CRC across cohorts of older US 

adults initiating specific SSRIs using methods to reduce common sources of bias. 

5.2 Methods 

5.2.1 IRB approval (#14-1991) and CMS approval 

 This project was reviewed by the Institutional Review Board at the University of North 

Carolina, and data use was approved by the Centers for Medicare and Medicaid Services. 

5.2.2 Data source and study population 

We conducted an active comparator, new user [158], cohort study of initiators of specific 

SSRIs (citalopram, escitalopram, fluoxetine, paroxetine, sertraline) using a 20% random sample 

of Medicare beneficiaries aged ≥66 years from 2007-2013 with simultaneous fee-for-service 

(FFS) parts A (hospital insurance), B (outpatient insurance), and D (pharmacy benefit) coverage 

for at least one month during a calendar year.  Active comparator studies have been shown to 

reduce confounding by indication, because initiators of a given drug and initiators of a clinically-

relevant alternative drug share indications for treatment, and are thus are generally more similar 
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across measured and unmeasured characteristics than patients without these indications [159, 

160]. New user designs also remove time-related biases to which some observational drug-

cancer studies are susceptible [161]. 

To evaluate baseline covariates, we required cohort members to be aged ≥66 years at 

the date of the first prescription claim for an SSRI and to have at least 360 days of continuous 

enrollment in Medicare Parts A and B prior to the first SSRI prescription.  We also required, at 

least 180 days of part D and no claims for an SSRI prior to the first prescription to restrict to 

“new” users of the medication.  Finally, we excluded anyone with evidence of CRC in the 

baseline assessment period to exclude potentially prevalent cases.  These were individuals with 

any of the following International Classification of Diseases, Clinical Modification, Ninth Revision 

(ICD-9) diagnosis or current procedural terminology codes (CPT) procedure codes appearing in 

their claims in the baseline assessment period:  ICD-9=V10.05, V10.06, 153,153.1-153.4,153.6-

153.9, 154.0, 154.1,154.8;CPT = 3382F, 3384F, 3386F, 3388F, 3390F, G8371, G8372, G9085-

G9095).  We only excluded CRC cases, because cancer at other sites does not commonly 

metastasize to the colon or rectum [165].  Finally, we required a second prescription claim within 

the days’ supply of the first claim plus a grace period of 30 days to increase the likelihood that 

the patient tolerated and consumed the drug.  We used National Drug Codes (NDC) associated 

with formulations for the following generic drug names to generate the new user cohorts: 

citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline.  The date of cohort 

entry was the date the second prescription was dispensed. 

5.2.3 Outcome assessment 

We identified incident CRC events using an algorithm developed by Setoguchi et al [28].  

For a CRC diagnosis, this algorithm required two or more ICD-9 inpatient or outpatient 

diagnosis codes {153.x, 154.0, 154.1, 154.2} within 60 days. The algorithm has high reported 

specificity (> 99%) and moderate sensitivity (84%) in the Medicare population in which it was 
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developed.  The date of cancer diagnosis was defined as the date of the first diagnosis code 

observed in the claims.  

5.2.4 Covariate assessment  

We evaluated covariates using inpatient and outpatient diagnoses and procedure claims 

during the 360 days preceding the date of the first prescription claim for an SSRI.  Because we 

only required 180 days of part D enrollment, we may have only 180 days of concomitant 

medication claims, but we included up to 360 days if available. 

5.2.4.1 Demographics 

Demographic information at baseline included age (coded as a continuous variable), sex 

and race as classified by CMS (White/not Hispanic, Black/not Hispanic, Hispanic, Asian, Native 

American/Pacific Islander or Other). 

5.2.4.2 Clinical factors and concomitant medications 

We identified potential clinical factors and comorbidities and cancer screening by the 

presence of one or more ICD-9 diagnosis or procedure codes present on any claim in any 

position during the baseline assessment period.  These covariates included: (1) any potential 

non-CRC cancer diagnosis (e.g., breast cancer), (2) indicators of obesity (ICD-9 = 

278,278.0,278.00,278.01 (3) type 2 diabetes mellitus (ICD-9 = 250.xx), (4) chronic obstructive 

pulmonary disease (COPD) (ICD=496.0), (5) inflammatory gastrointestinal diseases (ICD-

9=555.0-555.2,555.9,556.0-556.6,556.8,556.9), (6) indicators of alcohol abuse (ICD-

9=303,303.9,303.90-303.93,305.0,305.00-305.03,535.3,535.30-535.31,571.0-571.3,V11.3), (7) 

colonoscopy (coded as 0 or ≥ 1, APPENDIX C) (8) anxiety (ICD-9=300,300.01,300.02,300.09) 

and (9) depression (ICD-9=296.2, 296.20-296.26, 296.0,296.30-296.36, 298.0, 

300.4,309.0,309.1,311).  COPD was used as a proxy for smoking status [166].  We identified 

users of estrogen-based medications and non-steroidal anti-inflammatory drugs (NSAIDs) as 
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those with ≥1 claim for a drug in that class in the baseline period.  All generic medication names 

used to classify cohort members are listed in APPENDIX A. 

5.2.4.3 Confounding control  

Citalopram was chosen as the referent group because it had the largest number of 

initiators. We controlled measured confounding using a propensity score (PS) weighting 

approach such that the distributions of measured covariates in the non-referent groups 

(escitalopram, fluoxetine, paroxetine, sertraline) were standardized to the covariate distribution 

of the citalopram initiators. The goal of PS weighting is to balance covariates across treatment 

groups and estimate unconfounded associations between specific SSRIs (compared with 

citalopram) and incident CRC.  We ran four separate logistic regression models to estimate the 

PS for initiating each non-referent SSRI drugs versus citalopram based on measured 

covariates.  We then weighted the non-referent initiators to the baseline covariate distribution of 

the citalopram initiators with (1-PS)/PS, a variant of standardized morbidity ratio weighting 

(SMRW) when there are more than two non-referent groups [173].  Citalopram initiators were 

given a weight of 1.  Although multivariable regression has been shown to produce similar 

results to PS weighting methods [167], PS methods allow researchers to evaluate how well 

covariates are balanced across treatment groups before and after weighting, and thus to 

examine PS model performance. 

5.2.4.4 Person-time at risk 

We implemented a variation of the “disease induction” and “latent” concepts defined by 

Rothman [174] to specify person-time at risk. The induction period is the time from the start of a 

specific exposure from which malignant transformation begins until the occurrence of cancer, 

while the latent period is the time in which a cancer is present but not yet detected.  It is 

impossible to precisely identify when cancer induction has ended and latent period begun.  We 

therefore commonly merge the two concepts into the term “empirical induction”, the time from 
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cancer initiation to a detectable cancer.  In the context of this study we use “empirical induction” 

to mean the time from drug exposure to an algorithm identified CRC case.  However, we also 

assumed that there would be some minimum time after drug initiation before observable effects 

could reasonably be expected to occur (immune time).  We set this interval at 180 days after the 

second prescription.  Because the interval between drug use and incident CRC was on the 

order of months and not years in our study, our study tests the hypothesis that SSRI effects may 

occur during later stages of carcinogenesis, preventing transition of an adenoma to invasive 

disease. 

We censored individuals at the earliest of: the date of the last prescription plus the days’ 

supply plus 30 days to allow for imperfect adherence plus 90 days; date of death; date of 

Medicare parts A, B or D disenrollment, or the end of the study period (12/31/2013).  We 

continued to follow individuals for up to 90 days after drug discontinuation or augmentation 

(latent period) to account for cases that may be attributable to drug use, but whose tumor 

remained undetected at SSRI cessation. Figure 11 illustrates general conceptualization of 

cohort entry and exit. 

5.2.5 Statistical analysis 

 We estimated hazard ratios (HRs) and robust 95% confidence intervals with one SMR-

weighted Cox proportional hazards model using four sets of weights, one for each non-referent 

group.  To evaluate the stability of associations, we performed sensitivity analyses in which we 

varied the amount of time: (1) between the second prescription and the beginning of accrual of 

person-time (180-730 days) and (2) between medication discontinuation and the cessation of 

person-time accrual (0-360 days).  We examined the proportional hazards assumption by 

stratifying by time since initiation and visually inspecting changes in HR.  Analytic cohorts were 

generated in SAS V9.3 (Cary, NC) and all statistical analyses were conducted in R version 3.14 

[181].  
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5.3 Results 

We identified 752,509 initiators of an SSRI with no evidence of SSRI use in the 180 days 

prior to the date of the first prescription.  Of these initiators, 375,610 individuals had a second 

prescription and met age, enrollment and CRC-free status at that point in time (Table 10, Figure 

13).  The median number of days of medication use after the second prescription was similar for 

all groups, varying from 180 days for users of escitalopram to 211 days for users of citalopram. 

Demographic characteristics and clinical factors were similar at baseline across cohorts 

(Table 10), and weighting further improved the overall balance of covariates (Table 11).  The 

majority of initiators were white (~90%) and female (~75%).  The average age was 78 years, 

and approximately 18% of the population had evidence of a non-CRC cancer diagnosis prior to 

the first prescription.  There were 2,422 CRC events among cohort-eligible individuals.  Cancer 

rates were not uniform over follow-up time (Figure 12) and 50% of CRC cases occurred within 

448.5 days after the second prescription, (Q1=158; Q3=848.75; range=1-2096). 

5.3.1 Primary analyses 

   In our primary analysis, we observed 602 CRC cases in 238,359 PY, an overall 

incidence of 253 per 100,000 PY (Table 12).  The crude incidence rates varied between 190 per 

100,000 PY for fluoxetine and 271 cases per 100,000 PY for citalopram.  Paroxetine and 

fluoxetine had lower adjusted HRs (aHR) compared with citalopram: aHR = 0.78, (95% CI: 

0.56,1.07) and aHR = 0.74 (95% CI: 0.52,1.05), respectively.  Adjusted rates of CRC among 

escitalopram and sertraline users were similar to those for citalopram users; aHR = 0.95 (95% 

CI: 0.76, 1.24) and aHR = 0.91 (95% CI: 0.74, 1.11), respectively.  

5.3.2 Sensitivity Analyses 

To evaluate the influence of exposure timing and tumor latency on observed 

associations, and to describe any patterns that emerged, we implemented a series of sensitivity 
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analyses to examine the stability of the associations between specific SSRI medications and 

CRC.  In almost all sensitivity analyses (Figure 14), paroxetine, fluoxetine and escitalopram 

initiators had lower adjusted rates CRC compared with citalopram initiators.  Some of the SSRI-

CRC associations varied qualitatively in our sensitivity analyses.  For example, as we increased 

the time between the second prescription and when follow-up began from 180-730 days 

(essentially a proxy for duration of use), the relative association between escitalopram use and 

CRC compared with citalopram went from no association to almost a 50% reduction, whereas 

the relatively reduced rate of CRC comparing fluoxetine or paroxetine to citalopram remained 

fairly constant.  CRC rates did not vary between sertraline and citalopram in any sensitivity 

analyses.  Varying the time for CRC accrual after SSRI discontinuation from 0-360 days did not 

qualitatively change any patterns.  The proportional hazards assumption (Figure 15) generally 

held after 180 days.  

5.4 Discussion 

In this active comparator, new user cohort study of older US adults aged 66 and older, 

we hypothesized that initiation of specific drugs within the SSRI class may reduce CRC risk 

compared to other SSRIs.  Both paroxetine and fluoxetine users had a slightly lower rate of 

CRC compared with citalopram users, 22% and 26% lower respectively, although the 

associations were not statistically significant in the primary analysis.  These protective 

associations (compared to citalopram) between paroxetine or fluoxetine use and CRC were 

fairly robust to our assumptions about the duration of use (Figure 14).  Although escitalopram 

and citalopram were not differentially associated with CRC in our primary analysis, escitalopram 

showed stronger protective associations as we increased accrual time, such that after 2 years of 

use, there was almost a 50% reduction in CRC rates among escitalopram initiators compared 

with citalopram initiators. 
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These findings compare effects by drug, within a class, but interpretation is facilitated by 

our recent observation of a small, non-significant reduced rate of CRC among SSRI initiators as 

a class compared to a negative control initiators in a similar population [177].  Because the class 

is predominately comprised of citalopram and sertraline initiators (~60%), and relative CRC 

rates did not vary between citalopram and sertraline initiators, we do not suspect that our 

referent medication, citalopram, increases the risk of CRC.  Therefore, the relative reduction of 

CRC rates for non-citalopram SSRIs we observed support our hypothesis that inherent 

differences of drugs within the SSRI class could have contributed to variability in the results of 

previously reported studies [21-26]. 

This analysis had several strengths.  Examination of drug-specific rather than class level 

effects was a novel contribution of this study, made feasible by substantial sample size, 

excellent exposure ascertainment, and a relatively high risk of CRC in the source population.  

Our use of an active comparator, new user cohort study design is a strength, because this 

design reduces unmeasured confounding, confounding by indication, and time-related biases 

[178].  Time-related biases have previously led to false and sensational drug-cancer 

associations [185, 186].  By implementing PS weighting methods we have ensured balance of 

measured covariates across treatment groups.  Finally, we assessed the stability of 

associations by using sensitivity analyses.  Sensitivity analyses also gave us some insight into 

empirical induction periods by varying our assumptions about timing between exposure and 

outcome (Figure 14).  We have deliberately chosen not to adjust for multiple comparisons, 

because we present all analyses we conducted, and because we are interested in estimation 

rather than hypotheses testing [187].  Our choice of primary empirical induction and latency 

parameters was somewhat arbitrary given our hypothesis of generally late acting effects.   

 Our findings are subject to limitations.  Because we used claims data to maximize 

sample size and exposure ascertainment, we had to rely on algorithms to identify probable CRC 
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events, and thus did not have access to pathologically confirmed outcomes.  However, the 

claims-based algorithm that we used was reported to have high specificity for identifying CRC in 

a Medicare population, and a high specificity definition minimizes bias of relative measures of 

association [105].  Without pathology information, we cannot report molecular tumor 

characteristics.  Our results represent the average effect of a particular drug on all CRC tumors, 

and thus we can only capture SSRI-CRC associations that have strong associations in 

subgroups of tumors or weaker associations that impact a large proportion of tumors.  Our study 

also only included older, Medicare FFS Americans enrolled in Part D.  It did not include 

Medicare beneficiaries who are enrolled in Medicare Advantage plans, those who elect to 

purchase generic drugs outside of the Medicare system (i.e., out-of-pocket), or those younger 

than 65.   

5.5 Conclusion 

In this large cohort study among older adults, we present evidence that SSRIs may vary 

in their chemopreventive effectiveness against CRC.  SSRIs are commonly used, inexpensive 

and generally well tolerated.  Our results warrant further investigation (including mechanistic 

studies) into the SSRI-CRC association.  Incorporating longer-term follow-up will help to clarify 

the signal, but it will not elucidate the mechanisms.  Finally, we believe this study design could 

serve as a cost-effective and timely framework for identifying other potential chemopreventive 

drugs, especially as more years of Medicare Part D data become available. 
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5.6 Tables 

Table 10: Demographic characteristics for 375,610 SSRI initiators. 

 

Medication a 

 

citalopram                  

N =  122,335 

(32.6) 

escitalopram                

N = 80,076 (21.3) 

paroxetine              

N = 34,026 (9.1) 

fluoxetine                       

N = 36,372 (9.7) 

sertraline                              

N =102,801 (27.4) 

 

N % N % N % N % N % 

Mean age (sd) 78.2 (8.2) 

 

78.5 (8.1) 

 

77.2 (7.9) 

 

75.8 (7.7) 

 

78.3 (8.1) 

 
66-69 22,635 18.5 13,666 17.1 7,290 21.4 9,875 27.2 17,815 17.3 

70-74 25,004 20.4 16,172 20.2 7,512 22.1 8,975 24.7 21,048 20.5 

75-79 22,496 18.4 14,958 18.7 6,570 19.3 6,658 18.3 19,382 18.9 

80-84 22,144 18.1 14,904 18.6 5,859 17.2 5,232 14.4 18,968 18.5 

85+ 30,056 24.6 20,376 25.4 6,795 20.0 5,632 15.5 25,588 24.9 

Sex 

          Male 34,738 28.4 22,468 28.1 9,588 28.2 10,727 29.5 29,891 29.1 

Female 87,597 71.6 57,608 71.9 24,438 71.8 25,645 70.5 72,910 70.9 

Race b 

          White 110,029 89.9 69,844 87.2 29,418 86.5 32,536 89.5 90,643 88.2 

Black 7,017 5.7 4,504 5.6 1,812 5.3 1,594 4.4 5,867 5.7 

Asian 1,131 0.9 1,334 1.7 762 2.2 544 1.5 1,602 1.6 

Hispanic 2,520 2.1 3,098 3.9 1,445 4.2 1,032 2.8 3,042 3.0 

Native American, Other, 

Unknown 
1,638 1.3 1,296 1.6 589 1.7 666 1.8 1,647 1.6 

Comorbidities c 

          Depression  14,083 11.5 12,376 15.5 3,532 10.4 4,716 13.0 11,360 11.1 

Anxiety  34,767 28.4 23,299 29.1 11,167 32.8 8,963 24.6 28,437 27.7 

Diabetes  45,826 37.5 31,349 39.1 12,673 37.2 13,572 37.3 38,911 37.9 

Inflammatory GI disorders  1,496 1.2 1,126 1.4 433 1.3 415 1.1 1,252 1.2 
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Previous Cancer d 21,559 17.6 15,607 19.5 5,885 17.3 6,212 17.1 18,993 18.5 

COPD  30,219 24.7 20,314 25.4 8,645 25.4 8,349 23.0 24,676 24.0 
Medications e 

          NSAID use 28,909 23.6 20,968 26.2 8,833 26.0 9,492 26.1 24,801 24.1 
Estrogen-based 

medication use 
3,880 3.2 2,895 3.6 1,242 3.7 1,440 4.0 3,200 3.1 

Screening 

          Colonoscopy (Yes, 1+) 11,052 9.0 7,881 9.8 3,353 9.9 3,733 10.3 9,475 9.2 

 

sd, standard deviation; COPD is a smoking proxy  

a All cohort members had a second claim for single SSRI that met age, continuous enrollment, and CRC-free status during the baseline 

assessment period. There were too few fluvoxamine initiators to make any comparisons (N = 671 at second claim), so they were excluded from all 

analyses.   

b Race was entered as Black versus White/Other for propensity score calculation and weighting 

c Comorbidities evaluated in the 360 days of part A/B enrollment up to the first prescription.  Other variables used to estimate propensity score and 

SMR weights include: codes associated with chronic alcohol abuse, obesity status and calendar year of 1st prescription. 

d All cancer diagnosis codes prior to the date of the 1st prescription except those for CRC. 

e Medication use defined as any observed claim in the up to 360 days of part A/B enrollment up to the date of the first prescription.   
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Table 11: Balance of select covariates after PS weighting. 

  Medication 

 

citalopram escitalopram paroxetine fluoxetine sertraline 

N  86,832 86,804 86,815 86,817 86,832 

Age 77.9 77.8 77.9 77.9 77.9 

Race (%) 

     Black 5.5% 5.5% 5.5% 5.6% 5.5% 

White/Other 94.5% 94.5% 94.5% 94.4% 94.5% 

Sex (%) 

     Male  27.6% 27.6% 27.5% 28.0% 27.6% 

Female 72.4% 72.4% 72.5% 72.0% 72.4% 

Comorbidities (%) 

     Depression 11.5% 11.5% 11.5% 11.3% 11.4% 

Anxiety 27.8% 27.8% 27.8% 27.7% 27.8% 

Diabetes 37.1% 37.1% 37.1% 37.2% 37.0% 

Inflammatory GI 1.2% 1.2% 1.2% 1.2% 1.2% 

Previous Cancer 16.7% 16.7% 16.7% 16.8% 16.7% 

COPD 23.4% 23.3% 23.4% 23.8% 23.4% 

Medications (%) 
     

NSAID use 23.6% 23.7% 23.8% 23.9% 23.6% 

Estrogen use 3.3% 3.4% 3.4% 3.4% 3.3% 

Screening (%) 
     

Colonoscopy (Yes, 1+) 9.2% 9.3% 9.1% 9.2% 9.2% 

 

Non-citalopram users weighted with (1-propensity score)/propensity score.  Citalopram users are the referent group and given a weight of 1. This 

is weighting of individuals appearing in the primary analysis (Table 10).  Propensity scores (PS) were estimated by running four logistic regression 

models to estimate the predicted probability of each of the non-referent SSRI drugs compared to citalopram.  NOTE:  This is not the only way to 

weight.  Alternatively, four logistic regressions can be run to predict the probability of citalopram use.  Non-referent groups would then be given a 

weight of PS/(1-PS).  Results would be identical. 
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Table 12: The association between SSRIs and incident CRC 

Drug N 
Median followup a 

(Q1, Q3) 
Events Total PY Incidence b 

Unadjusted HR 

(95% CI) 

Adjusted c HR    

(95% CI) 

citalopram 86,832 213 (68, 498) 223 82,323.8 271 1 1 

escitalopram 53,815 174 (61, 425) 125 46,506.2 269 0.99 (0.80, 1.23) 0.95 (0.74, 1.24) 

paroxetine 23,427 188 (62, 470) 48 21,705.2 221 0.82 (0.60, 1.12) 0.78 (0.56, 1.07) 

fluoxetine 25,045 180 (60, 444) 42 22,112.6 190 0.70 (0.50, 0.97) 0.74 (0.52, 1.05) 

sertraline 70,062 199 (64, 482) 164 65,711.4 250 0.92 (0.75, 1.13) 0.91 (0.74, 1.11) 

*Primary analysis assumes induction-latent period = 180 days; latent period = 90 days.  Person time starts accruing 180 days after the date of 

the 2nd prescription fill and stops accruing person time at date of the last observed prescription + the days supply + the grace period (30 days) 

+ 90 days. 

a per 100,000 persons. 

b We used one SMR weighted Cox model with robust variance to estimate HRs and 95% CIs.  Non-referent groups are weighted by (1-

propensity score)/propensity score; citalopram users given a weight of 1
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5.7 Figures 

 

Figure 11: Conceptualization of entry/exit into specific SSRI cohort 

In the primary analysis, person-time and cases begin accrual after 180 days (empirical induction/lag/immune time) and continue accruing until 

90 days after (latent parameter) the date of the last prescription + the days supply + grace period (30 days). We vary person-time start and stop 

parameters in sensitivity analyses to evaluate the stability of associations between specific drugs and CRC.  The (lag/empirical induction/immune 

time) period can be >= 180 days. The latent period is >= 0 days and <=360 days. The grace period = 30 days in all analyses. This is to allow for 

individuals not filling the prescription exactly as prescribed. Baseline parameters are evaluated prior to the first observable claim.  Individuals must 

be age 66+ at the 1st prescription fill. A 2nd claim must be observed within the days supply + the grace period in order to be eligible for cohort entry.  

Person time and cases start accruing at the date of the 2nd prescription + (empirical induction/lag/immune time) parameter days. Person time 

ends at the first of (1) death; (2) 1st CRC algorithm identified case; (3) end of study period (12/31/2013); (4) disenrollment from Medicare parts A, B 

or D; (5) a date defined as the days supply plus + grace period + the (latent) parameter beyond the date of the last prescription fill.  
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Figure 12: Incidence over time for each SSRI.   

All sub-images show incidence per 100,000 persons and 95% CI for all drugs (y-axis).  The x-axis contains a tick mark for each time strata (since 

the second prescription) and the corresponding number of cohort members below. The incidence was highest in the first 0-6 months after the 

second prescription (data not shown). 
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Figure 13: Flowchart of SSRI initiator loss 

This image shows how the number of cohort members drops for each group as exclusion criteria are sequentially applied to each cohort.
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Figure 14: Sensitivity analyses with varying induction and latency assumptions. 
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All sub-images show HR and 95% CI comparing non-referent SSRIs to citalopram.  The x-axis for all 
images is the lag period in increments of ~ 3 months for a specific latent period.  Figure 14A: Sensitivity 
analyses where the latent period = 90 days. The primary analyses occur at lag time = 180 days and are 
distinguished with a ‘*’ Figure 14B: Sensitivity analyses with latent period = 0 days.  Person time and 
cases accrue until the date of the last prescription plus the days supply plus the grace period (30 days).  
Figure 14C: Sensitivity analyses with latent period = 180 days. Person time and cases accrue until the 
date of the last prescription plus the days supply plus the grace period (30 days) plus 180 days. Figure 
14D: Sensitivity analyses where latency = 270 days. Person time and cases accrue until the date of the 
last prescription plus the days supply plus the grace period (30 days) plus 270 days. Figure 14E:  
Sensitivity analyses where latency = 360 days.  Person time and cases accrue until the date of the last 
prescription plus the days supply plus the grace period (30 days) plus 360 days. 

 

 

Figure 15: Adjusted hazard ratios stratified by time on SSRI. 

All sub-images show adjusted hazard ratios and 95% confidence intervals for escitalopram, paroxetine, 
fluoxetine and sertraline compared citalopram during the following time: 6-12 months, 12-24 months, 24+ 
months.  We used this to determine how well the proportional hazard assumption held over time.  
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CHAPTER 6: RE-EVALUATION OF COMMONLY USED DEFINITIONS TO IDENTIFY 
COLORECTAL CANCER IN A NORTH CAROLINA POPULATION (2006-2009) 

6.1 Background 

Administrative data are increasingly being used to investigate both the beneficial and 

harmful effects of drug exposures on health outcomes in large populations, with growing interest 

focused on the risk of cancer [188] .  Although drug exposure information from claims is 

generally considered reliable relative to self-report, claims data do not as reliably capture 

incident cancer because they are used for reimbursement do not contain clinical or pathologic 

details.  Therefore, algorithms are necessary to identify incident cancer cases when using 

administrative data, and very specific definitions are required to obtain unbiased hazard ratio 

estimates [105].  Claims data are critical to answering questions that could not be feasibly 

investigated within the context of a randomized clinical trial (RCT), because certain questions 

require a very large sample size or do not have enough evidence to warrant an RCT.  An 

example is examining the association between specific selective serotonin reuptake inhibitors 

and colorectal cancer [177]. 

6.1.1 Current algorithm 

One of the most commonly used claims-based algorithms to identify incident cancers 

was developed by Setoguchi and colleagues [28].  They generated four definitions (Figure 1) of 

varying sensitivity and specificity using a population of individuals who were continuously co-

enrolled in both Medicare and the Pharmaceutical Contract for the Elderly (PACE) program 

between Jan 1,1997-Dec 31, 2000.  The PACE program provides comprehensive drug 

coverage for low-income individuals.  Of the four definitions developed, definitions #2 and #4 

rely only upon International Classification of Diseases, Clinical Modification, Ninth Revision 
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(ICD-9) diagnosis codes, whereas definitions #1 and #3 incorporate diagnosis, procedure and 

treatment codes.  Passing time, low-income status and continuous enrollment criteria contribute 

to the original population inadequately representing a more economically diverse and recent 

Medicare population.  The algorithms require four years of continuous enrollment within the 

Medicare and PACE programs.  By requiring extended continuous enrollment and ignoring 

changes in case status, we may overestimate the incidence or prevalence of cancer in the 

population.  For example, a case diagnosed in late 2000 should ideally have been classified as 

a non-case for the earlier portion of the enrollment, because they are more similar to non-cases 

at that point in time.  When we overestimate the prevalence of cancer, a relatively rare outcome, 

we are likely to overestimate the positive predictive value (PPV) in the population [189] .  

Therefore, PPV as calculated in the original population may be a large overestimation of the 

PPV in the population. 

An additional limitation to these definitions is that they group colon and rectal cancers 

together.  Although risk factors are similar for colon and rectal cancers, the effect estimates of 

risk factors vary qualitatively.  For instance, a 2008 meta-analysis [106] reported that the 

association between smoking and cancer is stronger among rectal cancer cases than among 

colon cancer cases. Also, the median age at diagnosis is younger for rectal cancer [64 years] 

than for colon cancer [71 years] [1], suggestive of etiological heterogeneity.  Thus, there may be 

instances where an investigator wants to separately evaluate the association between a 

particular drug exposure and colon cancer or rectal cancer, as opposed to the combined 

outcome of colorectal cancer (CRC). 

6.1.2 Objectives 

We will re-evaluate the validity of the algorithms defined by Setoguchi [28] for CRC 

cases in a more recent and economically diverse Medicare population for the years 2006-2009.  

We will assemble a cohort with less stringent continuous enrollment criteria.  Additionally, we 
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will use information from true CRC cases about their pre-diagnosis non-case status, pre-

diagnosis and diagnostic case status, and post-diagnosis prevalent case-status to validate the 

algorithms.  Time-varying claims information is more informative than just case status in the 

development and validation of definitions to identify incident cases. 

6.2 Methods 

6.2.1 Data source 

We used the Integrated Cancer Information and Surveillance System (ICISS), a 

resource at the University of North Carolina (UNC) Lineberger Comprehensive Cancer Center.  

ICISS houses several linked data sources with the goal of understanding cancer incidence, risk 

factors and patterns of care for NC residents [162].  ICISS contains a 100% sample of NC 

Medicare beneficiary enrollment and claims information, and can link a substantial proportion of 

NC Central Cancer Registry (NCCCR) cases to the NC Medicare beneficiary files.  

6.2.1.1 Case selection and data linkage 

We identified all individuals, aged ≥65 years with a first primary diagnosis of colon or 

rectal cancer in the NCCCR from Jul 1, 2006-Dec 31, 2009 that were linkable to NC Medicare 

enrollment and beneficiary files.  We then further required that all cases had ≥13 months of 

continuous enrollment in Medicare parts A/B at any point during Jul 1, 2006-Dec 31, 2009, and 

at least one claim to ensure benefit utilization.  The NCCCR has a gold star rating from the 

North American Association of Cancer Registries [163].  This rating is only given to those 

registries with ≥95% case ascertainment, and timely reporting [164]. 

6.2.1.2 Non-case selection criteria 

We identified all NC Medicare beneficiaries not appearing in the cancer registry who 

were continuously enrolled for at least 13 months in Medicare parts A/B between Jul 1, 2006-

Dec 31, 2009, were aged ≥65 at the start of a period of ≥13 months of continuous enrollment, 
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and had at least one in or outpatient claim in order to ensure benefit utilization. We then 

randomly selected 150,000 of these non-cases meeting cohort criteria. 

6.2.2 Main validation cohort  

We did not require individuals to have continuous enrollment during the entire study 

period (Jul 1, 2006-Dec 31, 2009), but instead created a series of continuous enrollment 

windows of a smaller size, thereby capturing a less select, and more representative, aged ≥65 

Medicare beneficiary and allowing for the case status of beneficiaries to evolve over time 

6.2.2.1 Rationale for dynamic enrollment periods 

Individuals who are diagnosed with colorectal cancer are generally worked-up and 

treated according to screening and treatment guidelines.  As a result, there is a minimum period 

of time that is necessary to follow an individual in claims data in order to identify whether the 

individual becomes a true incident case. Individuals in a claims dataset can move from pre-

diagnosis non-case status to pre-diagnosis and diagnostic case status, and thus in and out of 

the cohort, depending where in time they are relative to the registry diagnosis date. In order to 

loosen the continuous enrollment criteria previously imposed by Setoguchi and colleagues and 

to more appropriately incorporate the pre-diagnosis non-case status, pre-diagnosis and 

diagnostic case status, and post-diagnosis prevalent case-status case state, we will create a 

series of cohorts that move over time 

6.2.2.2 A complete window  

The cohort will consist of a series of cohorts with a minimum enrollment criteria of 365 

days that is bounded by a period of time before this window (pre-buffer) and after the window 

(post-buffer) whereby if a case is diagnosed within the pre-buffer or post-buffer, they would be 

excluded from the specific cohort, because they are potentially not contributing all critical 

information.  Non-cases are eligible for all cohorts as long as they are continuously enrolled 
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during the entire period of observation (primary window + pre-buffer + post-buffer).  Cases can 

move from non-case status to case status.  After they have become a case, they can no longer 

enter future cohorts, because they are now prevalent cases (Figure 2). 

6.2.2.3 Calculation of pre-buffer size 

For each individual in the cohort, we calculated the mean amount number of days 

between the registry diagnosis date and the claim dates of all diagnostic-associated procedures 

(e.g. colonoscopy, APPENDIX C) occurring within 365 days of the registry diagnosis date.  We 

then calculated the earliest 1% of the distribution, corresponding to the largest 99th percentile of 

the amount of time in days between the diagnostic procedures and registry diagnosis dates, and 

used this value as the pre-buffer size.  For our analysis, we excluded all cases from the analysis 

whose registry diagnosis date fell within the pre-buffer window because the window would be 

too narrow to observe all of the diagnostic claims that might help to identify a true case. 

6.2.2.4 Calculation of post-buffer size 

We calculated for each individual the mean amount of time in days between the registry 

diagnosis date and all dates on which a treatment code was observed (e.g., chemotherapy, 

APPENDIX C) occurring within 365 days of the registry diagnosis date.  We used the 99th 

percentile of this distribution as the post-buffer size.  This corresponds to the largest 99th 

percentile of the mean amount of time in days between registry diagnosis dates and treatment 

events.  We excluded all cases whose registry diagnosis date fell within this post-buffer window 

because the window would be too narrow to observe all of the treatment-related claims that 

might help to identify a true case. 
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6.2.3 Sensitivity analyses 

6.2.3.1 Cohort replication of Setoguchi definitions 

To mimic the continuous enrollment criteria imposed on the PA/PACE population, we 

required cohort-eligible individuals to maintain continuous part A/B enrollment for at least 36 

months.  This was to emulate the 48 months of continuous enrollment in Medicare and PACE in 

the PA/PACE validation, as we do not have 48 months of data.  We also tested the Setoguchi 

definitions among all individuals continuously enrolled for only ≥13 months.  We finally 

examined how incorporating new and updated treatment and procedure codes that did not exist 

in 1997-2000 impacts the performance of definitions #1 and #3.  Definitions #1 and #3 use both 

diagnosis and treatment or procedure codes to identify a case. 

6.2.3.2 Low-income status (LIS) 

The PA/PACE population was highly select with respect to both continuous enrollment 

criteria and income, with cohort members having a very low maximum income.  Thus, their 

patterns of cancer diagnosis and treatment may differ from a more typical and economically 

diverse Medicare population.  They may not have the same level of geographic mobility as a 

more economically diverse population.  We attempted to capture a lower income population by 

using a flag (“Cost Share Group Code”; CST_SHR_GRP_CD_1-CST_SHR_GRP_CD_12 

variables) representing LIS-eligibility in the beneficiary summary file; this flag is present for each 

month of Medicare enrollment.  Specifically, we classified individuals as ever LIS if they had a 

code of 01-03 (fully-subsidized part D), or 04-08 (LIS eligible, but not receiving full part D 

subsidy) in any month of the period of continuous enrollment.  

6.2.3.3 Modification of algorithms to identify colon and rectal cancer cases 

We further evaluated modifications of definition #2 (2+ ICD-9 diagnoses within 60 days) 

to identify cancer sites not originally validated.  Because colon and rectal cancers may have 

distinct etiology, we were specifically interested in evaluating modifications of the existing 
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algorithms to identify each cancer site separately.  Because our cancer cases are distinct 

primaries, we are able to test our hypothesis of overlap. 

6.2.4 Statistical analyses 

We identified all claims-defined cases captured by all the four definitions in our primary 

analysis and in all sensitivity analyses.  We calculated sensitivity (Se) (the proportion of true 

CRC cases captured by the algorithm); specificity (Sp) (the proportion of true non-CRC cases 

classified as a non-case); positive predictive value (PPV) (the probability that an individual is a 

CRC case given the algorithm identifies the individual as a CRC case); negative predictive value 

(NPV) (the probability that an individual is non-CRC case given the algorithm identifies the 

individual as a non-case), and corresponding 95% confidence intervals using the exact binomial 

distribution as implemented in the epiR package [175] for sensitivity cohorts.  We adjusted both 

NPV and PPV for the sampling fraction of non-cases (17%).  Because individuals in the primary 

cohort may appear in multiple windows, we used generalized estimating equations (GEE) with a 

binomial distribution and a logit link to calculate Se, Sp, PPV, NPV and associated standard 

errors to account for individuals appearing in multiple windows.  Specifically, we needed to use 

a resampling (N=300) approach of 40,000 persons to estimate these values, because running 

the calculation on the full population was too computationally intensive.  The confidence 

intervals were calculated as the mean of the 300 estimates +/- 1.96*standard error of the mean.  

Bootstrapping was performed in R.  Other major analyses and cohort generation were 

performed in SAS V9.4.  Post hoc calculations and images were completed using R 3.3.1 [181]. 

6.3 Results 

Our full analytic validation cohort consisted of 149,568 non-cases and 2,951 individuals 

(colon=2,316; rectum=635) who were diagnosed from 7/1/2006-12/31/2009  (Table 13).  CRC 

cases were slightly older than non-cases (75.0 versus 74.0) when they entered the cohort, 

included a larger proportion of men (47.2% versus 39.7%), and were more likely to be LIS-
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eligible during their Medicare enrollment (24.9% versus 21.6%).  On average, cases were 

continuously enrolled for slightly less time than non-cases (34.1 months versus 38.1 months) 

and included a smaller proportion of white individuals (81.3% versus 84.6%). 

6.3.1 Creation of primary (dynamic) cohorts.   

We calculated the pre-buffer size to be 155  (5% = 44, 10% = 18, 50% = 0) days and the 

post-buffer size to be 218 (95%=168, 90%=129, 50% =12) days.  As a result of these estimated 

window sizes, we were able to construct four cohorts (Table 14) with close to two years of 

continuous Medicare parts A/B enrollment. Sensitivity varied over the four windows and 

definitions from 90.5%-95.7%, Specificity from 98.2%-99.4%, PPV from 17.6%-39.6%, and NPV 

>99.99% (Table 16) with global summary estimates shown in Table 17, Figure 16.  Compared 

with the original population, sensitivity was higher, specificity was lower and PPV was markedly 

lower in our population for all definitions.  Sensitivity was much less variable in our population 

compared with the PA/PACE population (Figure 16A), and notably, in contrast to the PA/PACE 

population, definition #1 was more sensitive than definition #2 (Figure 16A).  When we used the 

original (outdated) treatment and procedure codes from the original validation, definition #2 was 

less sensitive than definition #1,  (Figure 17A).  We captured several more cases when we 

incorporated 2006-2009 procedure and treatment codes, such that definition #1 has higher 

sensitivity and lower specificity than definition #2 with more timely codes.   

6.3.2 Sensitivity analyses 

 We re-evaluated the performance of the algorithms in a number of sensitivity analyses.  

In cohort constructed similar to Setoguchi et al (i.e., requiring longer continuous enrollment of 3 

years), sensitivity was higher, specificity was lower and PPV was significantly lower for all 

definitions (Table 19, Figure 17); however, when we stratified by low-income status among 

individuals who were continuously enrolled for 13+ months we found that the PPV was lower 
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among LIS-eligible persons (Table 19, analyses 6/7; Figure 17D). Thus, definition performance 

among LIS-eligible persons was more similar to that in the original PA/PACE population.  

6.3.3 Evaluation of modification of algorithms 

 We evaluated how well the modifications of definitions #2 (2+ ICD-9 codes within 60 

days) and definition #4 (1+ ICD-9 code) for both colon (153.x) and rectal (154.0, 154.1, 154.8) 

cancer performed among cases continuously enrolled for ≥36 months.  There was almost 

complete overlap between colon and rectal cases identified using definition 4 (Figure 18A) and 

substantial overlap between colon and rectal cases identified with definition 2 (Figure 18B), 

indicating that primary cancers of the two site were largely indistinguishable using claims data 

alone. 

6.4 Discussion 

We re-evaluated a commonly used set of claims-based algorithms to identify incident 

CRC in a contemporary and economically diverse North Carolina population for the years 2006-

2009.  We created a dynamic cohort design such that individuals could contribute both as a 

non-case and a case.  We also employed a series of sensitivity analyses to evaluate the 

definitions among individuals continuously enrolled for ≥36 months with identical codes to the 

original PA/PACE population, with treatment and procedure codes that did not exist in 1997-

2000, but existed in 2006-2009, among LIS-eligible individuals, and among colon or rectum only 

cases using modified definitions.  

In our primary cohort and in all sensitivity cohorts, sensitivity generally increased, 

whereas specificity and PPV generally decreased, with PPV decreasing substantially.  We 

captured many more cases when we incorporated 2006-2009 treatment and procedural codes 

that definition #1 became more sensitive and less specific than definition #2.  Our colon-only 

and rectal-only algorithm modifications performed poorly, especially for rectal cases, and could 
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not adequately distinguish between colon and rectal cancer cases.  These modifications should 

not be used and colon-only and rectal-only definitions should be developed, given potential 

interest in the studying associations between a specific exposure and colon cancer alone or 

rectal cancer alone. 

6.4.1 Features driving poor PPV and high false positive (FP) rate 

We attempted to identify features associated with being a FP, under the assumption that 

FP cases were not true cases.  We examined claims-based differences among true positive 

(TP) cases and FP cases in the 90 days prior to the first observed ICD-9 CRC code among 

individuals flagged by definition #2 (2 ICD-9 codes within 60 days) as case.  The codes 

statistically associated with being FPs are suggestive of prevalent—or recently diagnosed—as 

opposed to incident cases (i.e. history of colon cancer, rectal cancer, on-going surveillance).  

We are concerned that many of these FP cases may be true cases, but not newly 

diagnosed cases. This could be due to individuals obtaining treatment in a different state.  State 

cancer registries are incentivized to accurately ascertain case status of residents in their state 

and low case count, and thus if a case is not truly a NC resident, they would be removed from 

the registry once this information was known.  This may also be due to individuals undergoing 

routine surveillance for a prevalent cancer.  This may be more common now than in the 1997-

2000 population, because of the increase in the types of treatments since the algorithms were 

originally evaluated 

We hypothesized that individuals with higher income would have the financial means to 

travel outside of their home state for treatment, and conversely that very poor individuals would 

not have the means to receive care outside their home state.  This could contribute to a higher 

proportion of FP cases appearing in individuals with higher income.  We tested this hypothesis 

by comparing the proportion of LIS-eligible individuals in cases versus non-cases, by examining 
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algorithm performance stratified by LIS-status and by comparing the proportion of TP versus FP 

LIS-eligible individuals.  For all three metrics we found support for this hypothesis.  The 

PA/PACE population was comprised of individuals with very low income and potentially limited 

ability to seek care outside of PA.  This suggests that income differences between the two 

populations may in part be driving differences in the performance between the PA/PACE 

population and our NC population. 

There are a few other reasons that may be contributing to the poor PPV performance 

compared to the original population.  First, we believe the original population overestimated the 

incidence of CRC in their population.  If the incidence were overestimated, then the PPV would 

also be overestimated, because of the prevalence-PPV relationship that occurs with rare 

events.  The original validation reported a CRC incidence that was substantially higher than 

SEER age and sex adjusted estimates.  Additionally, by conditioning on having four years of 

continuous enrollment, cases will never appear as a non-case, pre incident-case.  This should 

falsely inflate the incidence of CRC.  We have shown in our analyses, that PPV drops 

substantially when we properly account for individuals have case and non-case status.  A final 

reason for marked differences between Sensitivity and PPV performance in the PA/PACE 

performance compared with the NC population could simply be time driven.  There were a 

number of new treatment, screening and surveillance modalities, as well as screening 

guidelines that changed between 1997-2000 and 2006-2009.     

6.4.2 Conclusions and future directions 

Identifying truly incident cases is critical when evaluating associations between drug 

exposures and cancer, as prevalent cases mixed with incident cases may bias or dilute any 

observable associations, and would be especially problematic if prevalent cases were included 

differentially across treatment arms.  We have, in part, mitigated this problem in the past by 

excluding individuals with evidence of CRC treatment or with a V-code indicative of “history of 
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colon/rectal cancer” during a baseline covariate assessment period, but there may still be 

prevalent cases entering the cohort.  Therefore, we need to develop algorithms to more 

specifically identify incident cancer cases.  Information specific to TP and FP individuals will 

likely be key in identifying true incident cancer cases.  We should also examine how the 

proportion of probable CRC cases varies as a function of time since drug initiation in a new user 

study design.  If the bulk of CRC cases occurs within the first few months after initiation, then 1) 

this may in part explain previously observed high CRC incidence shortly after initiation and 2) 

provides more justification for excluding cases that occur within the first few months after 

initiation (Aim 1) 

In summary, although these algorithms are required to perform studies of cancer 

incidence using administrative data (Aim1, Aim 2), some caution is warranted. We have shown 

that claims-based CRC-identification algorithm performance can vary drastically between 

populations.  Because we found some evidence that FP cases were prevalent cases, we 

suggest excluding individuals with an obvious history of colon or rectal cancer as indicated by 

the presence of V10.05/V10.06 diagnosis codes when using algorithms to identify incident CRC.  

We have also provided evidence that by requiring a long period of continuous enrollment, there 

is an overestimation of incidence, and hence PPV, and we have herein provided a template of a 

cohort design to more accurately ascertain algorithm performance in a given population.  This 

cohort design is transferrable to other populations and cancer sites.   
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6.5 Tables 

Table 13: Characteristics of cases and non-cases. 

  Cases N (%)*  

 

Non-cases N 

(%)* 

 

2,951 

 

149,568 

Mean age (sd) when first eligible for cohort 75.0 (7.8) 

 

74.0 (7.6) 

Mean months (sd) of continuous enrollment  34.1 (11.7) 

 

38.1 (7.5) 

% With break in enrollment 72 (2.4) 

 

3100 (2.1) 

% Ever eligible for LIS 735 (24.9) 

 

32,282 (21.6) 

Sex 

   Male 1393 (47.2) 

 

59,365 (39.7) 

Female 1558 (52.8) 

 

90,203 (60.3) 

Race 

   White (non-Hispanic) 2399 (81.3) 

 

126,507 (84.6) 

Black (non-Hispanic) 508 (17.2) 

 

20,421 (13.7) 

Other 44 (1.5) 

 

2,640 (1.8) 

Tumor Characteristics 

   Colon 2316 (78.5) 

 

NA 

Rectum 635 (21.5) 

 

NA 

TNM Stage 

  

NA 

0 113 (5.0) 

 

NA 

1 417 (18.6) 

 

NA 

2 485 (21.6) 

 

NA 

3 467 (20.8) 

 

NA 

4 223 (9.9) 

 

NA 

8 (B cell origin); 88(NA, co code assigned); 

99  (unknown, un-staged), X 
539 (22.8) 

 

NA 

Missing 707 

 

NA 

Grade  

  1 268 (9.1) 

 

NA 

2 1605 (54.4) 

 

NA 

3 421 (14.3) 

 

NA 

4 35 (1.2) 

 

NA 

6 18 (0.6) 

 

NA 

9 604 (20.5) 

 

NA 

Age at Diagnosis 

 

 

 

 

 

76.6 (7.8) 

 

NA 

All individuals in this table had 13+ months of continuous enrollment in Medicare parts A/B at 

some point between Jul 1,2006-Dec 31, 2009.  Three cases and 432 non-cases had 

demographic information that changed over time, (sex, race and date of birth) within the 

beneficiary summary file. These individuals were excluded from any analyses. 
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Table 14: Window characteristics stratified by case status (Group) 

Window Window 

Start 

date 

Window    

End date 
Cases (N) Non-

cases (N) 

Excluded 

cases 

Included in 

window (N) 

Enrolled during 

interval (N) 
Group 

1 1-Jul-06 8-Jul-08 476 1118 530 1594 2124 case 

2 3-Dec-06 10-Dec-

08 

452 588 987 1040 2027 case 

3 7-May-07 14-May-

09 

469 542 892 1011 1903 case 

4 9-Oct-07 16-Oct-09 469 219 1145 688 1833 case 

1 1-Jul-06 8-Jul-08 0 118824 0 118824 118824 control 

2 3-Dec-06 10-Dec-

08 

0 118179 0 118179 118179 control 

3 7-May-07 14-May-

09 

0 115542 0 115542 115542 control 

4 9-Oct-07 16-Oct-09 0 115394 0 115394 115394 control 



 

 

1
0
4
 

Table 15: Identified case characteristics by window 

Window Definition Total N 
True 

Positives 
False 

Positives 
True 

Negative 
False 

Negative 

1 4 120948 453 2117 117825 23 

1 2 120948 431 1156 118786 45 

1 3 120948 449 1324 118618 27 

1 1 120948 441 802 119140 35 

2 4 120206 429 2014 116753 23 

2 2 120206 409 1040 118033 43 

2 3 120206 426 1194 117573 26 

2 1 120206 415 736 118031 37 

3 4 117445 447 1973 114111 22 

3 2 117445 426 1020 115064 43 

3 3 117445 442 1168 114916 27 

3 1 117445 433 725 115359 36 

4 4 117227 449 1909 113704 20 

4 2 117227 429 1001 114612 40 

4 3 117227 444 1138 114475 25 

4 1 117227 440 664 114949 29 
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Table 16: Algorithm performance stratified by window 

Window Definition Se Se Lo Se Hi Sp Sp Lo Sp Hi PPV PPV Lo PPV Hi 

1 4 0.952 0.928 0.969 0.982 0.982 0.983 0.176 0.162 0.192 

1 2 0.905 0.876 0.930 0.990 0.990 0.991 0.272 0.250 0.294 

1 3 0.943 0.919 0.962 0.989 0.988 0.990 0.253 0.233 0.274 

1 1 0.926 0.899 0.948 0.993 0.993 0.994 0.355 0.328 0.382 

2 4 0.949 0.925 0.967 0.983 0.982 0.984 0.176 0.161 0.191 

2 2 0.905 0.874 0.930 0.991 0.991 0.992 0.282 0.259 0.306 

2 3 0.942 0.917 0.962 0.990 0.989 0.991 0.263 0.242 0.285 

2 1 0.918 0.889 0.942 0.994 0.993 0.994 0.361 0.333 0.389 

3 4 0.953 0.930 0.970 0.983 0.982 0.984 0.185 0.169 0.201 

3 2 0.908 0.878 0.933 0.991 0.991 0.992 0.295 0.271 0.319 

3 3 0.942 0.917 0.962 0.990 0.989 0.991 0.275 0.253 0.297 

3 1 0.923 0.895 0.946 0.994 0.993 0.994 0.374 0.346 0.403 

4 4 0.957 0.935 0.974 0.983 0.983 0.984 0.190 0.175 0.207 

4 2 0.915 0.886 0.938 0.991 0.991 0.992 0.300 0.276 0.324 

4 3 0.947 0.922 0.965 0.990 0.990 0.991 0.281 0.259 0.304 

4 1 0.938 0.912 0.958 0.994 0.994 0.995 0.399 0.370 0.428 
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Table 17: Aggregated algorithm performance 

Definition Sensitivity                      

(95% CI) 

Specificity                      

(95% CI) 

Positive Predictive 

Value (95% CI) 

Negative Predictive 

Value (95% CI) 

Def 1 0.929 0.927 0.932 0.994 0.994 0.994 0.371 0.369 0.374 1.000 1.000 1.000 

Def 2 0.909 0.906 0.911 0.991 0.991 0.991 0.288 0.285 0.290 1.000 1.000 1.000 

Def 3 0.944 0.942 0.945 0.991 0.990 0.992 0.294 0.292 0.296 1.000 1.000 1.000 

Def 4 0.954 0.953 0.956 0.983 0.981 0.985 0.182 0.180 0.183 1.000 1.000 1.000 

* Standard error calculated using 300 bootstrapped samples (N=40,000) generalized estimating equations in R.  
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Table 18: Sensitivity analyses 

Sensitivity 
Analysis 

Definition 
True 

Positives 

False 
Positives 

True 
Negative 

False 
Negative 

1 1 1666 681 229 114771 

1 2 1693 1372 202 114080 

1 3 1722 1433 173 114019 

1 4 1795 2522 100 112930 

2 1 2275 952 370 145931 

2 2 2370 1898 275 144985 

2 3 2409 1974 236 144909 

2 4 2511 3332 134 143551 

3 1 2385 1396 260 145487 

3 3 2465 2142 180 144741 

4 2 1839 1910 239 145540 

4 4 1970 3361 108 144089 

5 2 476 1221 91 147740 

5 4 519 2354 48 146607 

6 1 516 186 106 30539 

6 2 549 394 73 30331 

6 3 558 407 64 30318 

6 4 588 678 34 30047 

7 1 1759 766 264 115393 

7 2 2023 1504 202 114654 

7 3 1851 1567 172 114951 

7 4 1923 2654 100 113504 

 

1: Individuals continuously enrolled for 36+ months, original treatment and procedure codes 

2: Individuals continuously enrolled for 13+ months, original treatment and procedure codes  

3: Individuals continuously enrolled for 13+ months, 2006-2009 treatment and procedure codes 

4: Individuals continuously enrolled for 13+ months, identify colon cancer with 153.x codes 

5: Individuals continuously enrolled for 13+ months, identify rectal cancer with 154.x codes 

6: Individuals continuously enrolled for 13+ months, among LIS eligible persons 

7: Individuals continuously enrolled for 13+ months, among not LIS eligible persons 
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Table 19: Sensitivity analyses for algorithm performance for each definition 

Sensitivity 
Analysis 

Definition Se Se Lo Se Hi Sp 
Sp 
Lo 

Sp Hi PPV 
PPV 
Lo 

PPV 
Hi 

NPV 
NPV 
Lo 

NPV 
Hi 

1 1 0.879 0.864 0.893 0.994 0.994 0.995 0.710 0.691 0.728 0.998 0.998 0.998 
1 2 0.893 0.879 0.907 0.988 0.987 0.989 0.552 0.535 0.570 0.998 0.998 0.998 
1 3 0.909 0.895 0.921 0.988 0.987 0.988 0.546 0.528 0.563 0.998 0.998 0.999 
1 4 0.947 0.936 0.957 0.978 0.977 0.979 0.416 0.401 0.431 0.999 0.999 0.999 
2 1 0.860 0.846 0.873 0.994 0.993 0.994 0.705 0.689 0.721 0.997 0.997 0.998 
2 2 0.896 0.884 0.907 0.987 0.986 0.988 0.555 0.540 0.570 0.998 0.998 0.998 
2 3 0.911 0.899 0.921 0.987 0.986 0.987 0.550 0.535 0.564 0.998 0.998 0.999 
2 4 0.949 0.940 0.957 0.977 0.977 0.978 0.430 0.417 0.443 0.999 0.999 0.999 
3 1 0.902 0.890 0.913 0.990 0.990 0.991 0.631 0.615 0.646 0.998 0.998 0.998 
3 3 0.932 0.922 0.941 0.985 0.985 0.986 0.535 0.521 0.550 0.999 0.999 0.999 
4 2 0.885 0.870 0.898 0.987 0.986 0.988 0.491 0.474 0.507 0.998 0.998 0.999 
4 4 0.948 0.938 0.957 0.977 0.976 0.978 0.370 0.357 0.383 0.999 0.999 0.999 
5 2 0.840 0.807 0.869 0.992 0.991 0.992 0.280 0.259 0.303 0.999 0.999 1.000 
5 4 0.915 0.889 0.937 0.984 0.984 0.985 0.181 0.167 0.195 1.000 1.000 1.000 
6 1 0.830 0.798 0.858 0.994 0.993 0.995 0.735 0.701 0.767 0.997 0.996 0.997 
6 2 0.883 0.855 0.907 0.987 0.986 0.988 0.582 0.550 0.614 0.998 0.997 0.998 
6 3 0.897 0.871 0.920 0.987 0.985 0.988 0.578 0.546 0.610 0.998 0.997 0.998 
6 4 0.945 0.924 0.962 0.978 0.976 0.980 0.464 0.437 0.492 0.999 0.998 0.999 
7 1 0.870 0.854 0.884 0.993 0.993 0.994 0.697 0.678 0.715 0.998 0.997 0.998 
7 2 0.909 0.897 0.921 0.987 0.986 0.988 0.574 0.557 0.590 0.998 0.998 0.998 
7 3 0.915 0.902 0.927 0.987 0.986 0.987 0.542 0.525 0.558 0.999 0.998 0.999 
7 4 0.951 0.940 0.960 0.977 0.976 0.978 0.420 0.406 0.435 0.999 0.999 0.999 
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6.6 Figures 

 

Figure 16: Algorithm performance in original and current population 

A: Se/1-Sp stratified by population. B: Sp/PPV stratified by population.  NC population metrics and 

confidence intervals are calculated by bootstrapped generalized estimating equations (Actual values 

listed in Table 16).  Images use 2.5% and 97.5% CI for visualization purposes for NC GEE estimates.   
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Figure 17: Visualization of various sensitivity analyses of algorithm performance 

A: Se and 1-Sp stratified by NC population with 36+ months continuous enrollment and PA/PACE 

population B: Se and 1-Sp by NC population with 36+ months continuous enrollment and PA/PACE 

population for definitions 1, 3. C: PPV and 1-Sp calculated by NC population with 36+ months continuous 

enrollment and PA/PACE population D: PPV stratified by low-income eligible (LIS) status. A, C and are 

based on individuals who were continuously enrolled for 36+ months and with the original treatment and 

procedural codes. D PPV calculated among individuals continuously enrolled for 13+ months and uses 

updated treatment codes for definitions 1 and 3 



 

111 

 

Figure 18: Overlap of colon/rectal cancer cases identified with definition 2 and 4.   

These images are based on individuals who were continuously enrolled for 36+ months in 

Medicare parts A/B.  Colon cancer and rectal cancer cases were identified using modified 

definitions of either 153.x for colon cancer or 154.x for rectal cancer.  There is substantial overlap 

between algorithm-identified cases.  
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CHAPTER 7: CONCLUSIONS 

7.1 Main findings 

 We had three primary goals in this study: 1) to illustrate the usage of a negative 

exposure control and examine the associations between AD classes (SSRIs, TCAs, SNRIs) 

compared with a negative exposure control, AHT, and CRC, 2) to examine specific drug effects 

within the SSRI class with respect to CRC risk and 3) to re-evaluate how well the set of 

definitions we used to identify CRC cases in the first two aims worked in a more contemporary 

and economically diverse NC population.  We also used the first goal as an opportunity to 

explore reasons for relatively high cancer incidence rates occurring shortly after drug initiation, 

by examining patterns of healthcare utilization in the period of time proximal to the first 

prescription. 

We used a 20% random sample of Medicare beneficiaries for the years 2007-2013 to 

answer the first two goals.  We found that SSRI initiators had lower rates of CRC compared with 

AHT initiators (aHR=0.85, 95% CI: 0.70-1.02) and this estimate was fairly constant over 

sensitivity analyses.  For most analyses there was a small, relative reduction in the rate (5%-

20%) of CRC among SSRI users compared with AHT initiators, with estimates falling between 

previously reported estimates [21-26].  There was little we could conclude about the SNRI-AHT 

and TCA-AHT association, because precision was poor, resulting from the small numbers of 

SNRI and TCA initiators and events.  We also provided some evidence for the “medicalization” 

phenomena by showing that, on average, initiators of both AD and AHT had a surge in 

physician encounters in the time proximal to the first prescription when compared to their 
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physician encounters in the time before the first prescription. This phenomenon may contribute 

to high cancer rates shortly after medication initiation.   

The relative rate of CRC was lower among paroxetine and fluoxetine initiators compared 

with citalopram uses (aHR: 0.78, 95% CI: 0.56-1.06; aHR: 0.74, 95% CI: 0.52-1.05, 

respectively) in our primary analysis, and these estimates were consistent in numerous 

sensitivity analyses.  In contrast, we found that a relative protective effect emerged as we 

increased the amount of time between the second prescription and when cases began accrual, 

such that after 2 years of use, there was almost a 50% reduction in CRC rates among 

escitalopram users compared with citalopram initiators.   

We re-evaluated a commonly used set of CRC identification definitions in a more 

contemporary and economically diverse North Carolina population for the years 2006-2009, 

using a dynamic cohort approach such that individuals could move in and out of the cohort and 

in and out of case status.  We employed a series of sensitivity analyses to evaluate the 

definitions among individuals continuously enrolled for 36+ months with identical codes to the 

original PA/PACE population, with updated treatment and procedure codes, among LIS-eligible 

or Medicaid dual-eligible individuals, and among colon or rectum only cases using modified 

definitions. 

In our primary cohort and in all sensitivity cohorts, including that which was most similar 

to the original population with respect to continuous enrollment, sensitivity generally increased, 

whereas specificity and PPV generally decreased, with PPV decreasing substantially.  Our 

colon-only and rectal-only algorithm modifications performed poorly, especially for rectal cancer 

identification, and could not adequately distinguish between colon and rectal cancer cases.   

We found that we captured a substantial number of FP CRC cases, and that these 

individuals seemed qualitatively different from TP cases, such they had diagnoses (e.g. ICD-
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9=153.9, CRC NOS; V10.05, history of colon cancer) and procedures (surveillance tests) 

suggestive of non-specific and prevalent CRC.  Therefore high CRC rates shortly after initiation 

may also be attributable to individuals with prevalent CRC who had not visited the physician in 

the period of time before the first prescription.  For example, individuals who are prevalent 

cases, and who are also new users, may have also undergone a period of relatively reduced 

healthcare seeking behavior.  Therefore, when these individuals return to the physician for a 

routine checkup, they may undergo procedures related CRC surveillance, such as a CEA test.  

At this point, they may also receive a CRC diagnosis on their claim, and may therefore appear 

as an incident case. 

7.2 Significance 

Despite declines in incidence and mortality over the past 30 years, colorectal cancer 

(CRC) remains the second leading cause of cancer mortality in the United States [1] with almost 

50,000 deaths expected in 2015 [2].  CRC treatment is expensive, with the average cost per 

colon cancer Medicare beneficiary in the first year after diagnosis estimated at $30,000 in 2010 

[3].  High costs of cancer treatment have generated interest in identifying existing drugs and 

supplements with the potential to prevent cancer [4].  In these two large cohort studies among 

older adults, we presented evidence that SSRIs, as a class, may reduce the risk of CRC 

compared to a negative control, and that SSRIs may vary in their chemopreventive efficacy 

against CRC. SSRIs are commonly used, inexpensive and generally well tolerated. 

We used an algorithm to identify probable CRC cases in the first goals; however, we 

provided evidence in the third part of this study that the definition does not work quite as well as 

expected, with both specificity and PPV having markedly worse performance in a more recent 

and economically diverse population, and in a cohort specifically designed to capture the 

essence of a very rare event.  We hypothesize one of the reasons performance was so poor in 

our dynamic cohort compared to a static cohort is that failure to consider a case in its non-case, 
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pre-diagnostic state will falsely inflate the prevalence or incidence of this very rare event.  The 

longer the continuous enrollment criteria, the more inflated the incidence of the cancer, and 

therefore the more inflated the PPV.  Because our modifications of the colon-only or rectal-only 

cases performed so poorly, we strongly suggest that they should not be used, and that colon-

only and rectal-only definitions should be developed. 

Although these algorithms are necessary when identifying cancer incidence in 

administrative data, they should be used with caution, as their performance appear to be 

population- and time-specific.  

7.3 Future directions 

Our results from the first two goals warrant further investigation (including mechanistic 

studies) into the association between SSRIs and CRC.  Incorporating more part D data as it 

becomes available will help to clarify the signal, but it will not elucidate the mechanisms.  We 

believe this methodological approach could serve as a cost-effective and timely framework for 

identifying other potential chemopreventive drugs. 

We recommend that future pharmacoepidemiologic studies evaluating the effects of 

prescribed medications on cancer risk should examine cancer incidence rates after follow-up 

begins, and exclude all person-time and cancer events preceding the sharp incidence decline 

and flattening (e.g., 180 days in our study).  Cancers diagnosed shortly after initiation, within a 

period of increased healthcare utilization following a new prescription, may not be attributable to 

the new use of a medication, but instead to reduced physician encounters in the time leading up 

to the first prescription.  Had these individuals visited a physician prior to the first prescription, 

they may have been diagnosed with CRC, making them ineligible for the study.  These cases 

may have also been known or prevalent CRC cases that appear incident because of visit to a 

physician following a period of relatively low healthcare system interaction.  We will attempt to 
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reclassify individuals called as cases in Aim 1 as probable FP (potential known CRC or 

prevalent case) or TP cases, and examine if the proportion of cases occurring in the first few 

months after the new prescription is dominated by probable FP or prevalent cases.   If a 

substantial proportion of probable FP cases occur shortly after medication initiation, then this 

provides more justification for excluding cases and person time immediately after drug initiation. 

We suggest that studies using a negative exposure control should compare patterns of 

healthcare utilization between the primary exposure groups and the control.  Marked differences 

in utilization patterns may put the study at risk for outcome detection bias.  Medicalization 

patterns, and their potential for assessing bias in pharmacoepidemiologic studies, should be 

further examined in other drug exposure and disease outcome settings. 

In the third aim of this dissertation, we found that sensitivity of a claims-based algorithm 

to identify incidence colorectal cancer generally increased, whereas specificity and PPV 

generally decreased, with PPV decreasing substantially.  Because colon-only and rectal-only 

cancer identification algorithms performed so poorly, these modifications should not be used, 

and new colon-only and rectal-only claims-based algorithms should be developed. 

We found evidence from examining the differences between TP and FP CRC cases that 

a substantial proportion of the FP cases may be prevalent CRC cases.  It is important to be able 

to distinguish between incident and prevalent cancer cases in a drug-cancer new user study, 

because falsely identifying incident cases may bias any apparent association.  We believe that 

we will be able to use the information specific to that of a FP or TPs cases to develop new and 

more discriminating claims-based algorithms to identify incident colon, rectal and CRC cancer. 

Finally, we believe that currently used algorithms for other cancer sites that have not 

been recently re-evaluated should be examined in more contemporary populations.  These 

validation studies should carefully consider the creation of the cohort, and the impact that 
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conditioning on continuous enrollment may have on algorithm validity.  We have shown that by 

conditioning on continuous enrollment, and failing to consider cases in both their case and non-

case status, we inflate incidence and therefore PPV, because of the relationship between PPV 

and prevalence in rare events.  Cancer is generally a very rare event.  Administrative data are 

an increasingly used and vital resource for the timely evaluation of drug-cancer associations, 

but algorithms are generally necessary.  Algorithm performance can greatly influence the 

validity of a study.
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APPENDIX A – DRUG TABLES 

Antihypertensives (AHT) not including beta-blockers 

Generic Name 

Aliskiren/Amlodipine Besylate 
Aliskiren/Valsartan 
Amlodipine Besylate 
Amlodipine Besylate/Atorvastatin Calcium 
Amlodipine Besylate/Benazepril Hydrochloride 
Amlodipine Besylate/HCTZ/Olmesartan Medoxomil 
Amlodipine Besylate/Olmesartan Medoxomil 

Amlodipine Besylate/Telmisartan 
Amlodipine Besylate/Valsartan 

Azilsartan Medoxomil 
Benazepril Hydrochloride 
Candesartan Cilexetil 
Captopril 
Clevidipine Butyrate 
Dextrose/Nicardipine Hydrochloride 
Diltiazem Malate/Enalapril Maleate 
Doxazosin Mesylate 
Enalapril Maleate 
Enalapril Maleate/Felodipine 

Enalaprilat 
Epinephrine Bitartrate/Prilocaine Hydrochloride 
Eprosartan Mesylate 
Felodipine 
Fosinopril Sodium 
Irbesartan 
Isradipine 
Lidocaine/Prilocaine 
Lisinopril 
Losartan Potassium 
Moexipril Hydrochloride 

Nicardipine Hydrochloride 
Nicardipine Hydrochloride/Sodium Chloride 
Nifedipine 
Nimodipine 
Nisoldipine 
Olmesartan Medoxomil 
Perindopril Erbumine 
Phenoxybenzamine Hydrochloride 
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Phentolamine Mesylate 
Prazosin Hydrochloride 
Prilocaine 
Prilocaine Hydrochloride 
Quinapril Hydrochloride 
Ramipril 
Telmisartan 
Terazosin Hydrochloride 
Tolazoline Hydrochloride 
Trandolapril 
Trandolapril/Verapamil Hydrochloride 
Valsartan 

 

 

Serotonin Norepinephrine Reuptake Inhibitors (SNRIs) 

Generic Name 

DESVENLAFAXINE 

DULOXETINE 

MILNACIPRAN 

VENLAFAXINE 

  

Selective Serotonin Reuptake Inhibitors (SNRIs) 

Generic Name 

CITALOPRAM 
ESCITALOPRAM 
FLUOXETINE 
FLUVOXAMINE 
PAROXETINE 
SERTRALINE 
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Tricyclic Antidepressants (TCAs) 

Generic Name 

AMITRIPTYLINE 
AMOXAPINE 
BUTRIPTYLINE 
CLOMIPRAMINE 
DESIPRAMINE 
DOXEPIN 
IMIPRAMINE 
MAPROTILINE 
NORTRIPTYLINE 

PROTRIPTYLINE 
TRIMIPRAMINE 

 

 

Estrogen based medications 

Generic Name of estrogen-based medications 

ethinyl estradiol-norgestrel 

ethinyl estradiol-levonorgestrel 

Intramuscular 

estradiol-medroxyPROGESTERone 

ethinyl estradiol-ethynodiol 

ethinyl estradiol-norethindrone 

esterified estrogens 

Oral 

conjugated estrogens 

conjugated estrogens topical 

desogestrel-ethinyl estradiol 

ethinyl estradiol-etonogestrel 

ethinyl estradiol-norgestimate 

ethinyl estradiol-norelgestromin 

drospirenone-ethinyl estradiol 

drospirenone/ethinyl estradiol/levomefolate 

dienogest-estradiol 

 

NSAID generic formulations 

ATC_LABEL 

PHENYLBUTAZONE 

ACETIC ACID DERIVATIVES AND RELATED SUBSTANCES 

INDOMETACIN 
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SULINDAC 

TOLMETIN 

DICLOFENAC 

ETODOLAC 

KETOROLAC 

DICLOFENAC, COMBINATIONS 

PIROXICAM 

MELOXICAM 

IBUPROFEN 

NAPROXEN 

KETOPROFEN 

FENOPROFEN 

FLURBIPROFEN 

OXAPROZIN 

IBUPROFEN, COMBINATIONS 

NAPROXEN AND ESOMEPRAZOLE 

MEFENAMIC ACID 

MECLOFENAMIC ACID 

CELECOXIB 

ROFECOXIB 

VALDECOXIB 

OTHER ANTIINFLAM & ANTIRHEUMATIC AGNTS,NON-STEROID 

NABUMETONE 

GLUCOSAMINE 

CHONDROITIN SULFATE 
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APPENDIX B – SETOGUCHI CODES 

ICD-9-CM Diagnoses Codes for Cancer 

Colorectal Cancer 153.XX, 230.3X, 154.XX (except 154.2, 154.3 and 154.4), 230.4 

 

ICD-9 and CPT codes for complications of cancers 

Hypercalcaemia for any cancer 275.40, 275.42, 275.49 

Spinal cord compression for breast, prostate, lung, 

lymphoma, multiple myeloma or colorectal cancer 

198.3, 336.9  

Ileus/obstruction for colorectal cancer 560.8, 560.9  

Pain management or palliative care for any cancer 99551, 99552  

 

CPT codes for diagnostic procedures with biopsy 

Colorectal cancer 45305, 45308, 45309, 45315, 45317, 45320, 45331, 45333, 45383, 45384, 

45385, 45338, 45339, 45341, 45342, 45355, 45380, 44100 

 

CPT codes for surgery 

Colorectal cancer 44110, 44111, 44130, 44139, 44140, 44141, 44143, 44144, 44145, 44146, 

44147, 44150, 44151, 44152, 44153, 44155, 44156, 44160, 45110, 45111, 

45112, 45113, 45114, 45116, 45119, 45120, 45121, 45123, 45126, 45130, 

45135, 45160, 45170, 45190, 44202, 44203, 44204, 44205, 44206, 44207, 

44208, 44210, 44211, 44212, 44238, 44239 

  

CPT codes for chemotherapies 

36640, 51720, 96400, 96405, 96406, 96408, 96410, 96412, 96414, 96420, 96422, 96423, 96425, 

96440, 96445, 96450, 96500, 96501, 96504, 96505, 96508, 96510, 96511, 96512, 96520, 96524, 

96530, 96538, 96540, 96542, 96545, 96549, 96450, 99555 

  

CPT codes for radiations 

77261, 77262, 77263, 77280, 77285, 77290, 77295, 77299, 77300, 77305, 77310, 77315, 77321, 

77326, 77327, 77328, 77331, 77332, 77333, 77334, 77336, 77370, 77399, 77401, 77402, 77403, 

77404, 77406, 77407, 77408, 77409, 77411, 77412, 77413, 77414, 77416, 77417, 77419, 77420, 

77425, 77430, 77431, 77432, 77470, 77499, 76960, 55859, 55860, 55862, 55865, 77750, 77761, 

77762, 77763, 77776, 77777, 77778, 77781, 77782, 77783, 77784, 77789, 77790, 77799, 79200, 

79300, 79400, 79420, 79440, 79900, 79999 

 

Generic names for specific oral chemotherapies: Capecitabine 
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APPENDIX C – CURRENT COLONOSCOPY/SCREENING AND TREATMENT CODES 

CODETYPE CODE DESCRIPTION 

Proc CPT 45330 Diagnostic sigmoidoscopy 

Proc CPT 45331 Sigmoidoscopy and biopsy 

Proc CPT 45332 Sigmoidoscopy w/FB removal 

Proc CPT 45333 Sigmoidoscopy & polypectomy 

Proc CPT 45334 Sigmoidoscopy for bleeding 

Proc CPT 45335 Sigmoidoscopy w/submuc inj 

Proc CPT 45336 Flexible fibroptc sigmdscpy 

Proc CPT 45337 Sigmoidoscopy & decompress 

Proc CPT 45338 Sigmoidoscopy w/tumr remove 

Proc CPT 45339 Sigmoidoscopy w/ablate tumr 

Proc CPT 45340 Sig w/balloon dilation 

Proc CPT 45341 Sigmoidoscopy w/ultrasound 

Proc CPT 45342 Sigmoidoscopy w/US guide bx 

Proc CPT 45345 Sigmoidoscopy w/stent 

Proc HCPCS G0104 CA screen;flexi sigmoidscope 

Proc HCPCS G0106 Colon CA screen;barium enema 

Proc CPT 0066T CT colonography;screen 

Proc CPT 0067T CT colonography;dx 

Proc CPT 0528F Rcmnd flw-up 10 yrs docd 

Proc CPT 0529F Intrvl 3+yrs pts clnscp docd 

Proc CPT 3018F Colonoscopy assess doc'd 

Proc CPT 44388 Colonoscopy 

Proc CPT 44389 Colonoscopy with biopsy 

Proc CPT 44390 Colonoscopy for foreign body 

Proc CPT 44391 Colonoscopy for bleeding 

Proc CPT 44392 Colonoscopy & polypectomy 

Proc CPT 44393 Colonoscopy, lesion removal 

Proc CPT 44394 Colonoscopy w/snare 

Proc CPT 44397 Colonoscopy w/stent 

Proc CPT 45355 Surgical colonoscopy 

Proc CPT 45378 Diagnostic colonoscopy 

Proc CPT 45379 Colonoscopy w/FB removal 

Proc CPT 45380 Colonoscopy and biopsy 

Proc CPT 45381 Colonoscopy, submucous inj 

Proc CPT 45382 Colonoscopy/control bleeding 

Proc CPT 45383 Lesion removal colonoscopy 

Proc CPT 45384 Lesion remove colonoscopy 

Proc CPT 45385 Lesion removal colonoscopy 

Proc CPT 45386 Colonoscopy dilate stricture 

Proc CPT 45387 Colonoscopy w/stent 

Proc CPT 45391 Colonoscopy w/endoscope US 

Proc CPT 45392 Colonoscopy w/endoscopic FNB 

Proc HCPCS G0105 Colorectal scrn; hi risk ind 

Proc HCPCS G0120 Colon ca scrn; barium enema 

Proc HCPCS G0121 Colon ca scrn not hi rsk ind 
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Proc ICD9 45.21 Transabdominal endoscopy of large intestine 

Proc ICD9 45.22 Endoscopy of large intestine through artificial stoma 

Proc ICD9 45.23 Colonoscopy 

Proc ICD9 45.25 Closed [endoscopic] biopsy of large intestine 

Proc ICD9 45.41 Excision of lesion or tissue of large intestine 

Proc ICD9 45.42 Endoscopic polypectomy of large intestine 

Proc ICD9 45.43 
Endoscopic destruction of other lesion or tissue of 
large intestine 

Proc ICD9 48.36 [Endoscopic] polypectomy of rectum 

Proc ICD9 45.24 Flexible sigmoidoscopy 

Proc ICD9 48.21 Transabdominal proctosigmoidoscopy 

Proc ICD9 48.22 Proctosigmoidoscopy through artificial stoma 

Proc ICD9 48.23 Rigid proctosigmoidoscopy 

Proc ICD9 48.24 Closed [endoscopic] biopsy of rectum 

Proc CPT 45300 Proctosigmoidoscopy dx 

Proc CPT 45302 Prctsgmdscpy w coll spec brs 

Proc CPT 45303 Proctosigmoidoscopy dilate 

Proc CPT 45305 Proctosigmoidoscopy w/bx 

Proc CPT 45307 Proctosigmoidoscopy FB 

Proc CPT 45308 Proctosigmoidoscopy removal 

Proc CPT 45309 Proctosigmoidoscopy removal 

Proc CPT 45315 Proctosigmoidoscopy removal 

Proc CPT 45317 Proctosigmoidoscopy bleed 

Proc CPT 45320 Proctosigmoidoscopy ablate 

Proc CPT 45321 Proctosigmoidoscopy volvul 

Proc CPT 45327 Proctosigmoidoscopy w/stent 

 

Current Treatment codes 

CODETYPE CODE DESCRIPTION TRT Type 

Proc CPT 44110 Excise intestine lesion(s) Surgery 

Proc CPT 44111 Excision of bowel lesion(s) Surgery 

Proc CPT 44139 Mobilization of colon Surgery 

Proc CPT 44140 Partial removal of colon Surgery 

Proc CPT 44141 Partial removal of colon Surgery 

Proc CPT 44143 Partial removal of colon Surgery 

Proc CPT 44144 Partial removal of colon Surgery 

Proc CPT 44145 Partial removal of colon Surgery 

Proc CPT 44146 Partial removal of colon Surgery 

Proc CPT 44147 Partial removal of colon Surgery 

Proc CPT 44150 Removal of colon Surgery 

Proc CPT 44151 Removal of colon/ileostomy Surgery 

Proc CPT 44152 Removal of colon/ileostomy Surgery 

Proc CPT 44153 Removal of colon/ileostomy Surgery 

Proc CPT 44155 Removal of colon/ileostomy Surgery 

Proc CPT 44156 Removal of colon/ileostomy Surgery 

Proc CPT 44157 Colectomy w/ileoanal anast Surgery 

Proc CPT 44158 Colectomy w/neo-rectum pouch Surgery 
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Proc CPT 44160 Removal of colon Surgery 

Proc CPT 44204 Laparo partial colectomy Surgery 

Proc CPT 44205 Lap colectomy part w/ileum Surgery 

Proc CPT 44206 Lap part colectomy w/stoma Surgery 

Proc CPT 44207 L colectomy/coloproctostomy Surgery 

Proc CPT 44208 L colectomy/coloproctostomy Surgery 

Proc CPT 44209 Unlisted laparoscopy procedu Surgery 

Proc CPT 44210 Laparo total proctocolectomy Surgery 

Proc CPT 44211 Lap colectomy w/proctectomy Surgery 

Proc CPT 44212 Laparo total proctocolectomy Surgery 

Proc CPT 44238 Laparoscope proc, intestine Surgery 

Proc CPT 44239 Laparoscope proc, rectum Surgery 

Proc CPT 45110 Removal of rectum Surgery 

Proc CPT 45111 Partial removal of rectum Surgery 

Proc CPT 45112 Removal of rectum Surgery 

Proc CPT 45113 Partial proctectomy Surgery 

Proc CPT 45114 Partial removal of rectum Surgery 

Proc CPT 45116 Partial removal of rectum Surgery 

Proc CPT 45119 Remove rectum w/reservoir Surgery 

Proc CPT 45120 Removal of rectum Surgery 

Proc CPT 45121 Removal of rectum and colon Surgery 

Proc CPT 45123 Partial proctectomy Surgery 

Proc CPT 45126 Pelvic exenteration Surgery 

Proc CPT 45160 Excision of rectal lesion Surgery 

Proc CPT 45170 Excision of rectal lesion Surgery 

Proc CPT 45190 Destruction, rectal tumor Surgery 

Proc CPT 45300 Proctosigmoidoscopy dx Surgery 

Proc CPT 45302 Prctsgmdscpy w coll spec brs Surgery 

Proc CPT 45303 Proctosigmoidoscopy dilate Surgery 

Proc CPT 45305 Proctosigmoidoscopy w/bx Surgery 

Proc CPT 45307 Proctosigmoidoscopy FB Surgery 

Proc CPT 45308 Proctosigmoidoscopy removal Surgery 

Proc CPT 45309 Proctosigmoidoscopy removal Surgery 

Proc CPT 45315 Proctosigmoidoscopy removal Surgery 

Proc CPT 45320 Proctosigmoidoscopy ablate surgery 

Proc CPT 45321 Proctosigmoidoscopy volvul surgery 

Proc CPT 45327 Proctosigmoidoscopy w/stent surgery 

Proc CPT 45330 Diagnostic sigmoidoscopy surgery 

Proc CPT 45331 Sigmoidoscopy and biopsy surgery 

Proc CPT 45332 Sigmoidoscopy w/FB removal surgery 

Proc CPT 45333 Sigmoidoscopy & polypectomy surgery 

Proc CPT 45334 Sigmoidoscopy for bleeding surgery 

Proc CPT 45335 Sigmoidoscopy w/submuc inj surgery 

Proc CPT 45336 Flexible fibroptc sigmdscpy surgery 

Proc CPT 45337 Sigmoidoscopy & decompress surgery 

Proc CPT 45338 Sigmoidoscopy w/tumr remove surgery 

Proc CPT 45339 Sigmoidoscopy w/ablate tumr surgery 
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Proc CPT 45378 Diagnostic colonoscopy surgery 

Proc CPT 45379 Colonoscopy w/FB removal surgery 

Proc CPT 45380 Colonoscopy and biopsy surgery 

Proc CPT 45381 Colonoscopy, submucous inj surgery 

Proc CPT 45382 Colonoscopy/control bleeding surgery 

Proc CPT 45383 Lesion removal colonoscopy surgery 

Proc CPT 45384 Lesion remove colonoscopy surgery 

Proc CPT 45385 Lesion removal colonoscopy surgery 

Proc CPT 45386 Colonoscopy dilate stricture surgery 

Proc CPT 45387 Colonoscopy w/stent surgery 

Proc CPT 74270 Contrast X-ray exam of colon surgery 

Proc CPT 74280 Contrast X-ray exam of colon surgery 

Proc CPT 82270 Occult blood, feces surgery 

Proc CPT 82271 Occult blood, other sources surgery 

Proc CPT 82272 Occult bld feces, 1-3 tests surgery 

Proc CPT 82274 Assay test for blood, fecal surgery 

ICISS Med IC0068 
Colon Cancer - 
Proctosigmoidoscopy surgery 

Proc CPT 81400 Mopath procedure Level 1 chemotherapy 

Proc HCPCS C9205 Oxaliplatin chemotherapy 

Proc HCPCS C9214 Injection, bevacizumab chemotherapy 

Proc HCPCS C9215 Injection, cetuximab chemotherapy 

Proc HCPCS C9235 Injection, panitumumab chemotherapy 

Proc HCPCS C9257 Bevacizumab injection chemotherapy 

Proc HCPCS C9415 Doxorubic HCl chemo, brand chemotherapy 

Proc HCPCS J0640 Leucovorin calcium injection chemotherapy 

Proc HCPCS J8520 Capecitabine, oral, 150 mg chemotherapy 

Proc HCPCS J8521 Capecitabine, oral, 500 mg chemotherapy 

Proc HCPCS J9000 Doxorubicin HCl injection chemotherapy 

Proc HCPCS J9001 Doxorubicin HCl liposome inj chemotherapy 

Proc HCPCS J9035 Bevacizumab injection chemotherapy 

Proc HCPCS J9055 Cetuximab injection chemotherapy 

Proc HCPCS J9190 Fluorouracil injection chemotherapy 

Proc HCPCS J9206 Irinotecan injection chemotherapy 

Proc HCPCS J9263 Oxaliplatin chemotherapy 

Proc HCPCS J9303 Panitumumab injection chemotherapy 

Proc HCPCS Q2024 Bevacizumab injection chemotherapy 

Proc HCPCS Q2048 Doxil injection chemotherapy 

Proc HCPCS Q2049 Imported Lipodox inj chemotherapy 

Proc HCPCS S0116 Bevacizumab 100 mg chemotherapy 

Proc HCPCS S3722 Dose optimization AUC - 5FU chemotherapy 

Proc CPT 36260 Insertion of infusion pump chemotherapy 

Proc CPT 36640 Insertion catheter, artery chemotherapy 

Proc CPT 36823 Insertion of cannula(s) chemotherapy 

Proc CPT 4180F Adj thxpy rx'd Stg3 colon ca chemotherapy 

Proc CPT 49418 Insert tun ip cath perc chemotherapy 

Proc CPT 61517 Implt brain chemotx add-on chemotherapy 

Proc CPT 96401 Chemo, anti-neopl, sq/im chemotherapy 
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Proc CPT 96402 Chemo hormon antineopl sq/im chemotherapy 

Proc CPT 96405 Chemo intralesional, up to 7 chemotherapy 

Proc CPT 96406 Chemo intralesional over 7 chemotherapy 

Proc CPT 96409 Chemo, IV push, sngl drug chemotherapy 

Proc CPT 96411 Chemo, IV push, addl drug chemotherapy 

Proc CPT 96413 Chemo, IV infusion, 1 hr chemotherapy 

Proc CPT 96415 Chemo, IV infusion, addl hr chemotherapy 

Proc CPT 96416 Chemo prolong infuse w/pump chemotherapy 

Proc CPT 96417 Chemo IV infus each addl seq chemotherapy 

Proc CPT 96420 Chemo, ia, push technique chemotherapy 

Proc CPT 96422 Chemo ia infusion up to 1 hr chemotherapy 

Proc CPT 96423 Chemo ia infuse each addl hr chemotherapy 

Proc CPT 96425 Chemotherapy,infusion method chemotherapy 

Proc CPT 96440 Chemotherapy, intracavitary chemotherapy 

Proc CPT 96445 Chemotherapy, intracavitary chemotherapy 

Proc CPT 96446 Chemotx admn prtl cavity chemotherapy 

Proc CPT 96450 Chemotherapy, into CNS chemotherapy 

Proc CPT 96542 Chemotherapy injection chemotherapy 

Proc CPT 96549 Chemotherapy, unspecified chemotherapy 

Proc HCPCS J9190 Fluorouracil injection chemotherapy 

Proc HCPCS C8953 Chemotx adm, IV push chemotherapy 

Proc HCPCS C8954 Chemotx adm, IV inf up to 1h chemotherapy 

Proc HCPCS C8955 Chemotx adm, IV inf, addl hr chemotherapy 

Proc HCPCS G0292 Adm exp drugs,clinical trial chemotherapy 

Proc HCPCS G0355 Chemo administrate subcut/IM chemotherapy 

Proc HCPCS G0359 Chemotherapy IV 1 hr initi chemotherapy 

Proc HCPCS G0360 Each additional hr 1-8 hrs chemotherapy 

Proc HCPCS G0361 Prolong chemo infuse>8hrs pu chemotherapy 

Proc HCPCS G8371 Chemother not rec stg3 colon chemotherapy 

Proc HCPCS G8372 Chemother rec stg 3 colon ca chemotherapy 

Proc HCPCS G8373 Chemo plan docum prior chemo chemotherapy 

Proc HCPCS G8374 Chemo plan not doc prior che chemotherapy 

Proc HCPCS G8377 MD doc colon ca pt inelig ch chemotherapy 

Proc HCPCS G9021 Chemo assess nausea vomit L1 chemotherapy 

Proc HCPCS G9022 Chemo assess nausea vomit L2 chemotherapy 

Proc HCPCS G9023 Chemo assess nausea vomit L3 chemotherapy 

Proc HCPCS G9024 Chemo assess nausea vomit L4 chemotherapy 

Proc HCPCS G9025 Chemo assessment pain level1 chemotherapy 

Proc HCPCS G9026 Chemo assessment pain level2 chemotherapy 

Proc HCPCS G9027 Chemo assessment pain level3 chemotherapy 

Proc HCPCS G9028 Chemo assessment pain level4 chemotherapy 

Proc HCPCS G9029 Chemo assess for fatigue L1 chemotherapy 

Proc HCPCS G9030 Chemo assess for fatigue L2 chemotherapy 

Proc HCPCS G9031 Chemo assess for fatigue L3 chemotherapy 

Proc HCPCS G9032 Chemo assess for fatigue L4 chemotherapy 

Proc HCPCS J7150 Prescription drug, oral chem chemotherapy 

Proc HCPCS J9999 Chemotherapy drug chemotherapy 
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Proc HCPCS Q0083 Chemo by other than infusion chemotherapy 

Proc HCPCS Q0084 Chemotherapy by infusion chemotherapy 

Proc HCPCS Q0085 Chemo by both infusion and o chemotherapy 

Proc HCPCS Q0162 Ondansetron oral chemotherapy 

Proc HCPCS Q0163 Diphenhydramine HCl 50mg chemotherapy 

Proc HCPCS Q0164 Prochlorperazine maleate 5mg chemotherapy 

Proc HCPCS Q0165 Prochlorperazine maleate10mg chemotherapy 

Proc HCPCS Q0166 Granisetron HCl 1 mg oral chemotherapy 

Proc HCPCS Q0167 Dronabinol 2.5mg oral chemotherapy 

Proc HCPCS Q0168 Dronabinol 5mg oral chemotherapy 

Proc HCPCS Q0169 Promethazine HCl 12.5mg oral chemotherapy 

Proc HCPCS Q0170 Promethazine HCl 25 mg oral chemotherapy 

Proc HCPCS Q0171 Chlorpromazine HCl 10mg oral chemotherapy 

Proc HCPCS Q0172 Chlorpromazine HCl 25mg oral chemotherapy 

Proc HCPCS Q0173 Trimethobenzamide HCl 250mg chemotherapy 

Proc HCPCS Q0174 Thiethylperazine maleate10mg chemotherapy 

Proc HCPCS Q0175 Perphenazine 4mg oral chemotherapy 

Proc HCPCS Q0176 Perphenazine 8mg oral chemotherapy 

Proc HCPCS Q0177 Hydroxyzine pamoate 25mg chemotherapy 

Proc HCPCS Q0178 Hydroxyzine pamoate 50mg chemotherapy 

Proc HCPCS Q0179 Ondansetron HCl 8 mg oral chemotherapy 

Proc HCPCS Q0180 Dolasetron mesylate oral chemotherapy 

Proc HCPCS Q0181 Unspecified oral anti-emetic chemotherapy 

Proc HCPCS S5019 Chemotherapy admin supplies chemotherapy 

Proc HCPCS S5020 Chemotherapy admin supplies chemotherapy 

Proc HCPCS S9329 HIT chemo per diem chemotherapy 

Proc HCPCS S9330 HIT cont chem diem chemotherapy 

Proc HCPCS S9331 HIT intermit chemo diem chemotherapy 

Proc HCPCS S9425 Nursing services and all nec chemotherapy 

Proc CPT 0190T Place intraoc radiation src radiation 

Proc CPT 01922 Anesth, CAT or MRI scan radiation 

Proc CPT 0197T Intrafraction track motion radiation 

Proc CPT 0520F Rad dos limts prior 3D rad radiation 

Proc CPT 32553 Ins mark thor for rt perq radiation 

Proc CPT 4165F 3D-CRT/IMRT received radiation 

Proc CPT 49327 Lap ins device for rt radiation 

Proc CPT 49411 Ins mark abd/pel for rt perq radiation 

Proc CPT 49412 Ins device for rt guide open radiation 

Proc CPT 55876 Place rt device/marker, pros radiation 

Proc CPT 6045F Rad expos in end rprt fluro radiation 

Proc CPT 76950 Echo guidance radiotherapy radiation 

Proc CPT 76965 Echo guidance radiotherapy radiation 

Proc CPT 77014 CT scan for therapy guide radiation 

Proc CPT 77261 Radiation therapy planning radiation 

Proc CPT 77262 Radiation therapy planning radiation 

Proc CPT 77263 Radiation therapy planning radiation 

Proc CPT 77280 Set radiation therapy field radiation 
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Proc CPT 77285 Set radiation therapy field radiation 

Proc CPT 77290 Set radiation therapy field radiation 

Proc CPT 77295 Set radiation therapy field radiation 

Proc CPT 77299 Radiation therapy planning radiation 

Proc CPT 77300 Radiation therapy dose plan radiation 

Proc CPT 77331 Special radiation dosimetry radiation 

Proc CPT 77332 Radiation treatment aid(s) radiation 

Proc CPT 77333 Radiation treatment aid(s) radiation 

Proc CPT 77334 Radiation treatment aid(s) radiation 

Proc CPT 77336 Radiation physics consult radiation 

Proc CPT 77338 Design mlc device for imrt radiation 

Proc CPT 77370 Radiation physics consult radiation 

Proc CPT 77371 SRS, multisource radiation 

Proc CPT 77372 SRS, linear based radiation 

Proc CPT 77373 SBRT delivery radiation 

Proc CPT 77399 External radiation dosimetry radiation 

Proc CPT 77401 Radiation treatment delivery radiation 

Proc CPT 77402 Radiation treatment delivery radiation 

Proc CPT 77403 Radiation treatment delivery radiation 

Proc CPT 77404 Radiation treatment delivery radiation 

Proc CPT 77406 Radiation treatment delivery radiation 

Proc CPT 77407 Radiation treatment delivery radiation 

Proc CPT 77408 Radiation treatment delivery radiation 

Proc CPT 77409 Radiation treatment delivery radiation 

Proc CPT 77411 Radiation treatment delivery radiation 

Proc CPT 77412 Radiation treatment delivery radiation 

Proc CPT 77413 Radiation treatment delivery radiation 

Proc CPT 77414 Radiation treatment delivery radiation 

Proc CPT 77416 Radiation treatment delivery radiation 

Proc CPT 77418 Radiation tx delivery, IMRT radiation 

Proc CPT 77421 Stereoscopic X-ray guidance radiation 

Proc CPT 77422 Neutron beam tx, simple radiation 

Proc CPT 77423 Neutron beam tx, complex radiation 

Proc CPT 77427 Radiation tx management, x5 radiation 

Proc CPT 77431 Radiation therapy management radiation 

Proc CPT 77432 Stereotactic radiation trmt radiation 

Proc CPT 77435 SBRT management radiation 

Proc CPT 77469 Io radiation tx management radiation 

Proc CPT 77470 Special radiation treatment radiation 

Proc CPT 77499 Radiation therapy management radiation 

Proc CPT 77761 Apply intrcav radiat simple radiation 

Proc CPT 77762 Apply intrcav radiat interm radiation 

Proc CPT 77763 Apply intrcav radiat compl radiation 

Proc CPT 77776 Apply interstit radiat simpl radiation 

Proc CPT 77777 Apply interstit radiat inter radiation 

Proc CPT 77778 Apply interstit radiat compl radiation 

Proc CPT 77789 Apply surface radiation radiation 
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Proc CPT 77790 Radiation handling radiation 

Proc CPT 92974 Cath place, cardio brachytx radiation 

Proc ICD9 92 Nuclear medicine radiation 

Proc ICD9 92.2 
Therapeutic radiology and nuclear 
medicine radiation 

Proc ICD9 92.20 
Infusion of liquid brachytherapy 
radioisotope radiation 

Proc ICD9 92.21 Superficial radiation radiation 

Proc ICD9 92.22 Orthovoltage radiation radiation 

Proc ICD9 92.23 Radioisotopic teleradiotherapy radiation 

Proc ICD9 92.24 Teleradiotherapy using photons radiation 

Proc ICD9 92.25 Teleradiotherapy using electrons radiation 

Proc ICD9 92.26 
Teleradiotherapy of other particulate 
radiation radiation 

Proc ICD9 92.27 
Implantation or insertion of 
radioactive elements radiation 

Proc ICD9 92.28 
Injection or instillation of 
radioisotopes radiation 

Proc ICD9 92.29 Other radiotherapeutic procedure radiation 
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