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ABSTRACT

ZHENGZHENG TANG: Association Analysis of Rare Variants in
Sequencing Studies

(Under the direction of Dr. Danyu Lin)

Recent advances in sequencing technologies have made it possible to explore the

influence of rare variants on complex diseases and traits. Large-scale sequencing studies

provide the opportunity to examine the proportion of the missing heritability that is

attributable to rare variants. They also pose a range of analytical and computational

challenges that cannot be adequately addressed with existing methods.

For the association analysis of the rare variants, it is customary to aggregate rare

mutations within a gene to perform gene-level association analysis. In the first part

of the dissertation, we develop asymptotic and resampling gene-level association tests

for a variety of traits and study designs. We employ score statistics under appropriate

statistical models to achieve numerical stability and computational efficiency. The

resulting software SCORE-Seq features a large collection of utilities devoted to perform

gene-level association analysis in different scenarios.

Trait-dependent sampling has been adopted in many sequencing projects to reduce

cost. In the second part, we provide a valid and efficient maximum likelihood framework

for analyzing binary secondary traits under such sampling strategy. We produce the

commonly used gene-level association tests and compare our methods with the näıve

methods ignoring the trait-dependent sampling.

A single sequencing study is often underpowered to detect modest genetic effect of

rare variants. Several methods are available to conduct meta-analysis for rare variants

under fixed-effects models, which assume that the genetic effects are the same across all
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studies. In practice, genetic associations are likely to be heterogeneous among studies

because of differences in population composition, environmental factors, phenotype and

genotype measurements, or analysis method. In the third part, we propose a general

framework for meta-analysis of sequencing studies that allows the genetic effects to

vary among studies. We produce the fixed-effects and random-effects versions of all

commonly used gene-level association tests. Our methods take score statistics, rather

than individual participant data, as input and thus can accommodate any study designs

and any phenotypes. We demonstrate through extensive simulation studies that our

tests are more powerful than the existing ones in a wide range of practical situations.
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for detecting genetic associations when the ge-
netic effects are positive. The results for the bur-
den, VT, and VC tests are shown in the upper,
middle, and lower rows, respectively. The left
panel shows the power as a function of the ge-
netic effect on the primary trait when the corre-
lation between the primary and secondary trait-
s is 0.4. The right panel shows the power as a
function of the correlation between the primary
and secondary traits when the genetic effect on
the primary trait is 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Power of the ML and näıve methods for detect-
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CHAPTER1: LITERATURE REVIEW

1.1 Introduction

Complex diseases, such as cancer, hypertension, and diabetes, are determined by

a variety of genetic and environmental factors, as well as their interactions. Genetic

dissection of complex human disease is typically accomplished using data from large-

scale genetic association studies, which explore relationship between genetic variants

and disease phenotypes. Biological and empirical evidence suggests that rare variants

account for a significant proportion of the genetic contribution to complex human

diseases. Recent technological advances in next-generation sequencing (NGS) platforms

have made it possible to generate comprehensive information on rare variants in large

samples. Indeed, the number of sequencing studies has been increasing dramatically

due to the widespread availability of NGS technologies and decrease in costs.

Gene-level testing is widely used in rare-variant association studies; however, the

analytical methods must be tailored for different outcomes and study designs. In ad-

dition, the use of asymptotic approximations to assess the statistical significance has

notable limitations in the setting of rare-variant testing. For instance, due to the low

frequency of rare variants, asymptotic approximation may be violated, which can lead

to inflated type I error and loss of power. Furthermore, the analytical distribution

of the test statistic may not be known, and so, the statistical significance has to be

evaluated empirically. Valid resampling methods for gene-level tests would therefore

be desirable.
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Although next-generation sequencing is much more cost-effective than Sanger se-

quencing, it is not economically feasible to sequence all study subjects in a very large

cohort. A cost-effective strategy is to sequence only those subjects with extreme val-

ues of a quantitative trait. In the National Heart, Lung, and Blood Institute Exome

Sequencing Project (NHLBI ESP), subjects with the highest or lowest values for body

mass index (BMI), low-density lipoprotein (LDL), or blood pressure (BP) were select-

ed for whole-exome sequencing. Failure to account for such trait-dependent sampling

can cause severe inflation of type I error and substantial loss of power in quantitative

trait analysis, especially when combining results from multiple studies that used differ-

ent selection criteria. Thus, the valid and efficient statistical methods are needed for

rare-variant association testing under such sampling design.

Due to the limited carriers of the rare mutations and high background rates of

neutral variation even in causal genes, a single study is often underpowered to identify

rare variants. Thus, meta-analysis becomes an important tool to increase statistical

power by combining summary statistics over multiple studies. Fixed-effects models

have been adopted almost exclusively for meta-analysis in genetic research. However,

fixed-effects methods lose power if gene-level associations are heterogeneous among

studies.

In this proposal, we first conduct a literature review in Chapter 1. In Chapter

2, we introduce a general framework for gene-level association analysis and develop

asymptotic and resampling methods for different traits and study designs. In Chapter

3, we investigate a maximum likelihood framework to analyze binary secondary traits

under trait-dependent sampling. Finally, in Chapter 4, we propose methods for meta-

analysis of sequencing studies.
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1.2 Gene-level association tests

Genome-wide association studies (GWAS) using tagSNPs (representative single nu-

cleotide polymorphism in a region of the genome) have successfully identified common

SNPs with small to modest effects for virtually every complex human disease. The

standard approach for analyzing GWAS data is to apply a univariate test at each vari-

ant and then assess significance by using an appropriate p-value threshold, taking into

account multiple testing. For dichotomous disease traits, commonly used association

tests include χ2 test, Fisher’s exact test, alleles test, Armitage trend test, and tests

based on logistic regression. The χ2 test and Fisher’s exact test can be employed for

testing recessive, dominant, or codominant modes of inheritance. The alleles test and

the Armitage trend test are tests of the additive mode of inheritance, in which the geno-

types 0/1/2 are viewed as ordered categories. The regression approach is more flexible

because it allows for covariate adjustment (e.g., principle components, environmental

factors, and interactions) and different types of phenotypes (e.g., dichotomous disease

indicator, count, or continuous measurement).

Genetic association studies may test hundreds of thousands of genetic variants for

association with disease. Failure to account for the effects of multiple comparisons may

result in an abundance of false positive results. Several approaches have been developed

to correct for multiple testing. The simplest approach is to use a Bonferroni correction.

In a typical GWAS study, the p-value cutoff for declaring significance is 5× 10−8. This

figure is based on the approximate number of independent common variants across the

genome. However, the Bonferroni correction is highly conservative, especially when the

variants are in strong linkage disequilibrium. Permutation and Monte-Carlo methods

(Lin 2005) are common alternative approaches to control false positive rates.

Multivariate methods can be used to combine information across variants and test
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for disease association with multiple variants simultaneously. Such tests not only cap-

ture the linkage disequilibrium patterns, but also decrease the number of required tests

and thus reduce the penalty for multiple testing. The multivariate approach may be

more powerful than the single-variant test if the variants have moderate effect sizes.

Commonly used multivariate tests include Hotelling’s T 2 test and multivariate tests

based on regression. However, the large degrees of freedom compromise the power of

these tests. In addition, simulation shows that Hotelling’s T 2 test is highly sensitive to

allele frequencies and power reduces drastically when the number of variants increase

(Li and Leal 2008).

Technological advances in NGS platforms have made it possible to extend associa-

tion studies to rare variants in targeted exons and eventually, the entire genome. Rare

variants are believed to be enriched for functional alleles and have stronger effects on

complex diseases than common variants (Pritchard 2001, Gorlov et al. 2008). Indeed,

deep-resequencing studies of candidate genes have already demonstrated the influence

of rare variants on several complex traits (Cohen et al. 2004, Ahituv et al. 2007, Nejent-

sev et al. 2009). Single-variant analysis has limited power in rare-variant association

studies because only a small percentage of study subjects carry a rare mutation and ad-

justments need to be made for multiple testing. Other methods have been developed for

detecting rare-variant associations (Tzeng and Zhang 2007, Li and Leal 2008, Madsen

and Browning 2009, Han and Pan 2010, Liu and Leal 2010, Price et al. 2010, Wu et al.

2011, Sun et al. 2013). These methods are usually called “gene-level” methods because

they combine information across multiple variant sites within a gene and the tests are

performed for individual genes instead of individual variants. The gene-level methods

can enrich association signals and reduce the penalty for multiple testing. In addition,

prior biological knowledge (e.g., variant function, deleterious prediction) can be used to

refine the grouping of variants. In the following sections, we provide extensive reviews
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of different gene-level methods.

1.2.1 Burden tests: CAST, GRANVIL, CMC

The burden tests generate genetic variable(s) by collapsing variants on the basis of

specific criteria and applying univariate or multivariate tests for analysis of the genetic

variable(s). The commonly-used criterion is to aggregate variants with minor allele

frequencies (MAFs) less than a certain frequency threshold, and most burden tests are

based on one genetic variable. For example, the Cohort Allelic Sums Test (CAST)

collapses all variants below some frequency threshold and contrasts the number of

individuals with one or more mutations between cases and controls (Morgenthaler and

Thilly 2007). The Gene- or Region-based ANanlysis of Variants of Intermediate and

Low frequency test (GRANVIL) is another burden test similar to CAST, in which

the likelihood ratio test is performed under a linear regression framework (Morris and

Zeggini 2010).

The CAST and GRANVIL tests enrich the association signals and reduce the num-

ber of degrees of freedom for testing. However, the inclusion of non-causal variants or

the exclusion of causal variants during collapsing dilutes the association signal and ad-

versely affects the power. The Combined Multivariate and Collapsing (CMC) test was

developed to harness the advantages of both the collapsing and multivariate tests (Li

and Leal 2008). For the CMC test, variants are divided into rare and common groups

based on an allele frequency cutoff. In particular, rare variants (e.g., those with MAFs

< 0.01) are collapsed together, whereas each common variant forms a separate group.

Within each group, the individuals are coded as 1 if they carry one or more mutations

and coded as 0 otherwise. A multivariate test (e.g., Hotelling’s T 2 test) is then applied

for detecting diseases associated with those genetic variables. The CMC test is more

robust against the misclassification of causal and non-causal variants than the other
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collapsing methods. In addition, the CMC test has the advantage of allowing both rare

and common variants to contribute to the overall test for the effect of a gene, although

a large number of degrees of freedom are required when testing many common variants.

1.2.2 Weighted approach: WSS, KBAC

The CMC test depends on the ad hoc choice of a frequency cutoff to distinguish

rare and common variants. The weighted approach, on the other hand, aggregates rare

and common variants and assigns different weights to each group. In the weighted

approach, the genetic variable for an individual is calculated as a weighted sum of the

mutation counts. This approach accentuates signals from rare mutations such that the

test is not completely dominated by common mutations. The Madsen and Browning

method weights each mutation according to its frequency in the unaffected subjects and

permutes the disease status to assess the significance of a Wilcoxon-type test statistic

(Madsen and Browning 2009). In the Kernel-Based Adaptive Cluster (KBAC) method,

the weight is based on the kernel functions, depending on the estimated sample risk,

and the permutation procedure is applied to evaluate the significance of the score test

statistics under a logistic regression model (Liu and Leal 2010).

1.2.3 Maximization approach: VT

The optimal choice of the MAF cutoff depends on the true disease model, which

is unknown. In addition, a variant with frequency 0.01 is rare in a small data set of

500 individuals but is quite common in a much larger data set of 100,000 individuals.

Therefore, a fixed-threshold may not be appropriate for all diseases and data sets. The

variable threshold (VT) test developed by Price et al. (2010) uses the maximum of

the test statistics over all unique allele-frequency thresholds and assesses statistical

significance by permutation. This approach can be generalized to include multiple
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allele-frequency thresholds and different weight functions.

1.2.4 Signed approach: Han and Pan

The foregoing tests do not have good power if the variants being combined have

opposite effects on the phenotype. Several other tests aim to detect variants with

opposite effects. The methods proposed by Han and Pan incorporate the signs of the

observed effects into the calculation of the genetic variables and apply a permutation

procedure to assess the significance (Han and Pan 2010). This test was motivated by

the data-adaptive modifications to an aggregation test originally proposed for common

variant analysis, which aims to strike a balance between utilizing information from

multiple markers in linkage disequilibrium and reducing the cost of large degrees of

freedom or adjustments for multiple testing.

1.2.5 Variance-Component (VC) tests: Similarity regression, C-alpha, SKAT

VC tests are aimed at detecting variants with opposite effects within a gene. VC

tests can be motivated from the similarity regression or kernel-machine regression.

In these regression frameworks, the genetic effects are incorporated into the model

through a nonparametric function h(Gi1, . . . , GiK), where Gik is the genotype of the

kth variant for the ith subject. Supposed Gi = (Gi1, . . . , GiK), then the form of the

nonparametric function is determined by a user-specified, positive, semi-definite kernel

matrix K(Gi, Gj), which measures the genomic similarity between the genotypes of

the ith and jth subjects. Some commonly used kernels include (weighted) linear,

identity-by-descent, and quadratic kernels. By the representation theory, h(Gi) can

be written as
∑n

j=1 αjK(Gi, Gj) with parameters α1, . . . , αn. It can be shown that

this nonparametric regression framework is equivalent to the random-effects model

by treating h as subject-specific random effects with mean 0 and covariance matrix
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τK. Therefore, testing h = 0 is equivalent to testing τ = 0. Based on the working

random-effects model, the score test statistic can be constructed, and the asymptotic

distribution can be derived. A related test is SKAT-O, which is a weighted sum of the

burden and VC statistics (Lee et al. 2012).

1.3 Trait-dependent sampling

The rare variants that are involved in complex trait etiologies usually only have

moderate effect sizes, and even their aggregated frequencies across a genetic region can

be limited. Therefore, a large number of samples must be sequenced and analyzed in

order to have adequate power to detect associations. Although NGS is much more

cost-effective than Sanger sequencing, it is still expensive to generate high read depth

data for a large number of samples. To reduce expenses and increase statistical power

of association tests, many sequencing projects select samples based on the value of

a trait of primary interest (i.e., the primary trait). Indeed, previous research shows

that trait-dependent sampling can substantially increase power comparing to random

sampling with equal sample sizes. In the NHLBI ESP, multiple studies were included,

each of which was focused on one primary trait. Subjects with extreme high or low

values of the quantitative primary traits BMI, LDL and BP were selected for whole-

exome sequencing. For the binary primary traits myocardial infarction (MI) and stroke,

case-control (MI) and case-only (stroke) samples were generated for sequencing. In

addition, a large random sample was created and referred to as the deeply phenotype

reference (DPR). In addition to the primary trait, there were many quantitative and

binary secondary traits across the six studies (e.g, high-density lipoprotein, triglyceride,

diabetes). A mega- or meta-analysis that includes these secondary traits would boost

statistical power.

8



However, the trait-dependent sampling study design produces challenges for ana-

lyzing secondary traits. If the secondary trait is correlated with the primary trait, and

the primary trait is associated with a genetic variable, then spurious secondary trait

association will be created among the subjects with extreme values of the primary trait.

Thus, standard methods that ignore the sample ascertainment yield biased effect esti-

mates and inflated type I error in association tests. For quantitative secondary traits,

the properties of the näıve methods have been investigated theoretically and empirically

(Lin et al. 2013). In the subsequent materials, we show the likelihood-based methods

and the three types of gene-level tests that have been developed.

Suppose that we have a cohort of n subjects, among whom n1 subjects are selected

for sequencing. We assume that the primary trait Y1 is available on all n cohort

members. (If there are missing values on Y1, we define n as the total number of subjects

with available Y1.) The selection of subjects for sequencing may depend on the values

of Y1 in the entire cohort. By definition, the genotype G is available only on the n1

sequenced subjects. We assume that the covariate Z and the secondary trait Y2 are

available only on the n1 sequenced subjects. The values of Y2 may be missing among

the sequenced subjects.

We allow G and Z to differ between the primary and secondary traits. The observed-

data likelihood can be expressed as

n1∏
i=1

P (Y1i|G1i, Z1i)P (G1i, Z1i)
n∏

i=n1+1

∑
g,z

P (Y1i|g, z)P (g, z)

n2∏
i=1

P (Y2i|Y1i, G2i, Z2i). (1.1)

It is natural to formulate the joint distribution of Y1 and Y2 through the bivariate

linear regression model:

Y1 = βT
1 G1 + γT

1 Z1 + ε1, Y2 = βT
2 G2 + γT

2 Z2 + ε2,
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where G1 and G2 may pertain to individual variants or (weighted) burden scores. Con-

ditioned on Y1, Y2 satisfies the following linear regression model:

Y2 = δỸ1 + βT
2 G2 + γT

2 Z2 + ε̃2,

where Ỹ1 = Y1 − βT
1 G1 − γT

1 Z1.

1.3.1 Estimating parameters for the primary trait

We maximize the first two terms in expression 1.1 to obtain the maximum likelihood

estimates (MLEs) of (β1, γ1, σ11) and P (·, ·). We adopt the nonparametric maximum

likelihood estimation (NPMLE) approach to estimate P (·, ·) by the discrete proba-

bilities at (g1, z1), · · · , (gm, zm), which are the distinct observed values of (G1i, Z1i)

(i = 1, . . . , n1). We denote the point mass at (gj, zj) as qj. Then, we maximize the

following objective function

n1∑
i=1

[
logP (Y1i|G1i, Z1i) + log

m∑
j=1

I{(G1i, Z1i) = (gj, zj)}qj

]
+

n∑
i=n1+1

log
m∑
j=1

P (Y1i|gj, zj)qj,

where I{·} is the indicator function.

The maximization is carried out through an expectation-maximization (EM) al-

gorithm, in which the missing values of (G1, Z1) for the non-sequenced subjects are

inferred from the discrete probability distribution with point mass qj at (gj, zj) (j =

1, · · · ,m). Start with the initial values:

β1 = 0, γ1 = 0, σ11 = sample variance of Y1 based on (Y11, . . . , Y1n),

and qj = 1/m, j = 1, . . . ,m.

We iterate between the following E-step and M-step until convergence.
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E-step. For i = 1, . . . , n1, we set ψij = I{(G1i, Z1i) = (gj, zj)}. For i = n1 + 1, . . . , n,

we set

ψij =
P (Y1i|gj, zj)qj∑m
k=1 P (Y1i|gk, zk)qk

,

where P (y1|g, z) = (2πσ11)−1/2 exp{−(y1 − βT
1 g − γT

1 z)2/(2σ11)}.

M-step. We update the parameter values as follows:

η =

(
n∑
i=1

m∑
j=1

ψijWjW
T
j

)−1( n∑
i=1

Y1i

m∑
j=1

ψijWj

)
and

σ11 = n−1

n∑
i=1

m∑
j=1

ψij(Y1i − ηTWj)
2,

where

η =

β1

γ1

 and Wj =

gj
zj

 .
In addition,

qj = n−1

n∑
i=1

ψij, j = 1, · · · ,m.

At convergence, we obtain the estimator (β̂1, γ̂1, σ̂11, q̂1, . . . , q̂m). It follows from

Theorem 1 of Lin and Zeng (2006) that the estimator is consistent, asymptotically

normal ,and asymptotically efficient. We estimate the asymptotic covariance matrix

according to the Louis formula. For i = 1, . . . , n and j = 1, . . . ,m, let l1ij and l2ij be

the first and second derivatives, respectively, of logP (Y1i|gj, zj) + log qj with respect to

(β1, γ1, σ11, q1, . . . , qm). We then calculate the information matrix as

Q1 = −
n∑
i=1

m∑
j=1

ψijl2ij −
n∑
i=1


m∑
j=1

ψijl1ijl
T
1ij −

(
m∑
j=1

ψijl1ij

)(
m∑
j=1

ψijl1ij

)T
 .

To account for the constraint that
∑m

j=1 qj = 1, we let D denote the derivative
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matrix of (β1, γ1, σ11, q1, · · · , qm) with respect to (β1, γ1, σ11, q1, · · · , qm−1). Then, the

asymptotic covariance matrix of the estimator (β̂1, γ̂1, σ̂11, q̂1, · · · , q̂m−1) is estimated by

Ω1 = F−1, where F = DTQ1D.

1.3.2 Estimating parameters for the secondary trait

To estimate (δ, β2, γ2, σ̃22), we maximize the last term in (2.1) or equivalently apply

the standard least-squares method to the observations (Y2i, Ŷ1i, G2i, Z2i) (i = 1, . . . , n2),

where Ŷ1i = Y1i − β̂T
1 G1i − γ̂T

1 Z1i. That is,


δ̂

β̂2

γ̂2

 =


n2∑
i=1


Ŷ1i

G2i

Z2i


⊗2

−1
n2∑
i=1

Y2i


Ŷ1i

G2i

Z2i




and ̂̃σ22 = n−1
2

n2∑
i=1

(Y2i − δ̂Ŷ1i − β̂T
2 G2i − γ̂T

2 Z2i)
2,

where a⊗2 = aaT. We estimate the covariance matrix of (δ̂, β̂2, γ̂2) by

Ω2 = ̂̃σ22


n2∑
i=1


Ŷ1i

G2i

Z2i


⊗2

−1

+ JΩ̃1J
T,

where J is the Jacobian matrix of (δ̂, β̂2, γ̂2) with respect to (β̂1, γ̂1), and Ω̃1 is the block

of Ω1 corresponding to (β1, γ1).

1.3.3 Performing association tests

To calculate the score statistic for testing the null hypothesis H
(1)
0 : β1 = 0, we calcu-

late the restricted MLE of (γ1, σ11, q1, · · · , qm) underH
(1)
0 . This is accomplished through
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the aforementioned EM algorithm, in which β1 is set to 0 and only (γ1, σ11, q1, · · · , qm)

is estimated. The score statistic for testing H
(1)
0 : β1 = 0 is

U1 =
n∑
i=1

m∑
j=1

ψijl
(1)
1ij ,

where l
(1)
1ij is the component of l1ij corresponding to β1. It can be shown that U1 is

approximately multivariate normal with mean 0 and covariance matrix

V1 = F11 − F12F
−1
22 F21,

where

F11 F12

F21 F22

 is the partition of F for β1 versus the other parameters.

We test H
(1)
0 using the quadratic form

UT
1 V

−1
1 U1,

which is referred to the χ2
d distribution, where d is the dimension of β1. We also consider

the maximum test statistic

Tmax = max
j=1,...,d

|Tj|,

where Tj = U1j/V
1/2

1j , U1j is the jth component of U1, and V1j is the jth diagnonal

element of V1. The p-value of Tmax is determined by the multivariate normal distribution

of U1. Finally, we consider the weighted quadratic form

Q = UTWU,

where W is a diagonal matrix of weights that depend on the MAFs through a beta func-

tion. The null distribution of Q is approximated by
∑d

j=1 λjχ
2
1,j, where (λ1, . . . , λd) are
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the eigenvalues of V
1/2

1 WV
1/2

1 , and (χ2
1,1, . . . , χ

2
1,d) are independent χ2

1 random variables.

To test the null hypothesis H
(2)
0 : β2 = 0, we estimate δ, γ2 and σ̃22 under β2 = 0:

 δ̂
γ̂2

 =

 n2∑
i=1

Ŷ1i

Z2i


⊗2

−1 n2∑
i=1

Y2i

Ŷ1i

Z2i




and ̂̃σ22 = n−1
2

n2∑
i=1

(Y2i − δ̂Ŷ1i − γ̂T
2 Z2i)

2.

We calculate

U2 = ̂̃σ−1

22

n2∑
i=1

(Y2i − δ̂Ŷ1i − γ̂T
2 Z2i)G2i,

which is approximately multivariate normal with mean 0 and covariance matrix

V2 = ̂̃σ−1

22


n2∑
i=1

G⊗2
2i −

 n2∑
i=1

G2i

 Ŷ1i

Z2i


T

 n2∑
i=1

 Ŷ1i

Z2i


⊗2

−1 n2∑
i=1

 Ŷ1i

Z2i

GT
2i




+BΩ̃1B
T,

where B is the Jacobian matrix of U2 with respect to (β̂1, γ̂1). We test H
(2)
0 by using

the aforementioned three types of test statistics.

1.4 Meta-analysis

1.4.1 Meta-analysis of GWAS

GWAS have successfully identified common SNPs with small to modest effects for

virtually every complex human disease (Hardy and Singleton 2009). For variants with

small effect sizes, the signal in a single study may be too weak to detect due to the

14



small sample size. Meta-analysis is an important tool to combine evidence from mul-

tiple studies and explain part of the missing heritability that was not easy to capture

in individual studies. Many new findings have been made through meta-analysis of

GWAS (Saxena et al. 2007, Scott et al. 2009, Franke et al. 2010). Fixed-effects models

have been adopted almost exclusively; these models assume a common genetic effect

across studies. Multiple meta-analysis methods for GWAS have been developed and

are described below.

1. p-value-based methods

Let pk denote the p-value from the kth study among a total of K studies. Assuming

that the K studies are independent, the simplest meta-analysis approach is to combine

the p-values using Fisher’s method

T = −2
K∑
k=1

log(pk)

or Stouffer’s method

Z =

∑K
k=1 Zkwk√∑K

k=1 w
2
k

,

where wk is the square root of the sample size of the kth study, and

Zk = (sign for effect direction) ∗ Φ−1
(

1− pk
2

)
,

where Φ(·) is the cumulative density function for the standard normal distribution.

The major disadvantage of the p-value-based meta-analysis method is that it can not

provide an overall estimate of the effect size.

2. Effect estimates
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Let X1, · · · , XK denote the estimate of the effect sizes for the K studies. Inverse-

variance weighting is usually applied to estimate overall genetic effect under fixed-effects

models. The overall effect size estimate takes the form

X =

∑K
k=1 wkXk∑K
k=1wk

,

where wk is the inverse of the variance for Xk. The variance of the estimate is

var(X) =
1∑K

k=1wk
.

3. Bayesian methods

Some consortia have applied Bayesian approaches for meta-analysis. For example, the

Wellcome Trust Case Control Consortium has used the Bayes factor that represents the

ratio of the probability of the data under the null hypothesis to the probability of the

data under the alternative hypothesis. Bayesian models are intuitive, but the result

may depend on the assumptions about the prior distribution, and the genome-wide im-

plementation can be computationally intensive. It has been shown that Bayes factors

and p-values often yield similar rankings for common variants. However, differences

can be observed for rare or low-frequency variants (Wakefield 2009).

4. Methods that account for between-study heterogeneity

An alternative approach is the random-effects model in which the genetic effect is

allowed to be heterogenous among studies. There are multiple sources of heterogeneity

across genetic studies: populations with different demographic features (Waters et al.

2010, Heid et al. 2010); phenotypes with different definitions or measurements (Heid
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et al. 2009, Tobacco and Consortium 2010); and inconsistencies in data collection and

manipulation (Ioannidis et al. 2007) (e.g., genotyping platforms, quality control criteria,

or imputation methods). Nevertheless, the random-effects model is seldom used in

genetic association studies for two reasons: (1) The random-effects model requires a

large number of studies to make valid asymptotic inference, but the number of available

genetic association studies is usually small. (2) The conventional test under the random-

effects model gives less significant p-values than the corresponding test under the fixed-

effects model. In a recent paper by Han and Eskin (2011), this phenomenon was

described, and the cause was discovered to be the implicit assumption of heterogeneity

under the null hypothesis that the variant is not associated with the trait of interest.

A new test was proposed in their paper that relaxes this assumption and thus, is more

powerful than the test under the fixed-effects model when heterogeneity exists. To

account for the fact that the number of studies is small, the Monte-Carlo method is

used to obtain the p-value.

1.4.2 Meta-analysis of sequencing studies

We reviewed various gene-level tests in Section 1.1. Three major types of gene-

level tests are the burden, VT, and VC tests. None of these tests is universally most

powerful. The burden and VT tests can outperform the VC test when a large proportion

of the variants are causal and harboring unidirectional effects, whereas the VC tests

tend to be more powerful when a small proportion of the variants are causal and

harboring bidirectional effects. Therefore, it is necessary to develop different meta-

analysis methods for each of these tests. Of course, one can always combine p-values

through the Fisher and Stouffer methods; software that implements this approach has

been developed (e.g., RAREMETAL). However, it has been shown that meta-analysis

based on p-values for rare variants loses efficiency. In addition, it is impossible to
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address the heterogeneity issue using p-values. Tang and Lin (2013) and Liu et al. (2014)

have developed meta-analysis methods that combine score statistics across studies for

gene-level tests under fixed-effects models. We review the fixed-effects methods in the

subsequent materials.

Suppose that we are interested in d genetic variables, which may be the genotypes of

individual variants or the burden scores for a gene. For each of K studies, we calculate

the (multivariate) score statistic for testing the null hypothesis that none of the d genetic

variables has any effect on the trait of interest, and we also calculate the corresponding

information matrix. We sum the score statistics and information matrices over the K

studies to obtain the overall score statistic U and overall information matrix V. Note

that U is a d × 1 vector and V is a d × d matrix. Under the null hypothesis, U is

(asymptotically) multivariate zero-mean normal with covariance matrix V. It can be

shown that U is the score statistic for the common genetic effects in the joint likelihood

based on the original data of the K studies, allowing nuisance parameters to be different

among the studies (Lin and Zeng, 2010). Thus, association testing based on U and V

is equivalent to the joint analysis of the original data.

Given U and V, we perform three types of multivariate tests, which encompass all

commonly used rare-variant tests.

1. Quadratic statistic:

Q = UTV−1U.

Under the null hypothesis, Q is distributed as χ2
d. If U pertains to a specific burden

score, then Q is a burden test. If U pertains to the genotype values of common SNPs

and the burden score of rare variants, then Q is the CMC test (Li and Leal, 2008).

2. Maximum statistic:

Tmax = max
j=1,...,d

Uj
2/Vj,
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where Uj is the jth component of U, and Vj is the jth diagonal element of V. The

p-value of Tmax is determined by the multivariate normal distribution of U (Lin and

Tang, 2011). If the genetic variables consist of the burden scores at different MAF

thresholds, then Tmax is the VT test. If the genetic variables pertain to different types

of burden scores, then Tmax can be used to adjust for multiple testing with those burden

scores.

3. Weighted quadratic statistic:

Qw = UTWU,

where W is a weight matrix. The null distribution of Qw is determined by
∑d

j=1 λjχ
2
1,j,

where λj is the jth eigenvalue of V1/2WV1/2, and χ2
1,1, . . . , χ

2
1,d are independent χ2

1

random variables. If the genetic variables are the genotypes of individual SNPs, then

Qw becomes the SKAT or C-alpha test. For the SKAT test, W is a diagonal matrix

that depends on the MAFs through a beta function; for the C-alpha test, W is an

identity matrix.

These fixed-effects meta-analysis methods lose power if the genetic effects are het-

erogeneous among studies. Recently, Lee et al. (2013) proposed two test statistics to

allow for heterogeneous effects:

Het-SKAT =
d∑
j=1

K∑
k=1

w2
kjS

2
kj and

Het-SKAT-O = %

( d∑
j=1

K∑
k=1

wkjSkj

)2

+ (1− %)
d∑
j=1

K∑
k=1

w2
kjS

2
kj,

where Skj is the score statistic for testing the jth variant in the kth study, wkj is a weight

for the jth variant, and % is chosen to minimize the p-value. Het-SKAT is essentially

a test of heterogeneity at the variant level. This test will not have good power if the
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average effect size is large or the heterogeneity exhibits at the burden score instead of

the variant level. Het-SKAT-O is a weighted sum of fixed-effects burden test (under the

additive mode of inheritance) and Het-SKAT and thus is a joint test of the mean effect

at the burden score level and the heterogeneity at the variant level. Het-SKAT-O will

lose power if both the mean effects and heterogeneity exhibit at the burden score level

or if both the mean effects and heterogeneity exhibit at the individual variant level.

The p-values of Het-SKAT and Het-SKAT-O are based on asymptotic distributions.

Consequently, the type I error may not be well-controlled, the burden scores can only

be calculated under the additive mode of inheritance, and the same set of weights has

to be used for the two components of Het-SKAT-O.

In Chapter 4, we investigate the performance of the aforementioned meta-analysis

methods and compare them with proposed random-effects methods.
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CHAPTER2: A GENERAL FRAMEWORK FOR DETECTING
DISEASE ASSOCIATIONS WITH RARE VARIANTS IN

SEQUENCING STUDIES

2.1 Introduction

In this chapter, we provide a general framework for association testing with rare

variants that reflects the spirits of the existing methods but is statistically more power-

ful and computationally more efficient. Our framework covers all major study designs

(i.e., case-control, cross-sectional, cohort and family studies) and all common pheno-

types (e.g., binary and quantitative traits, and potentially censored ages at onset of

disease) and allows any covariates (e.g., environmental factors and ancestry variables).

The ability to accommodate covariates is critically important because population strat-

ification is expected to be a more severe issue with rare variants than with common

variants but may be corrected by including suitable ancestry variables (e.g., percentage

of African ancestry or principal components for ancestry) in the association analysis.

We combine information across multiple variant sites within a gene by taking a weighted

sum of the mutation counts for each study subject and relate the combined informa-

tion and covariates to disease phenotypes through appropriate regression models. We

derive theoretically optimal weights that would produce the most powerful tests among

all valid tests and develop the corresponding testing procedures. We employ score-type

statistics, which are numerically stable even in the case of extremely rare variants and

computationally fast even in the presence of covariates. We provide asymptotic normal

approximation for both fixed and variable threshold methods and develop permutation
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and other resampling tests that can accommodate covariates. We investigate theoreti-

cally and numerically when normal approximation is appropriate and when resampling

is required. We modify the popular methods of Madsen and Browning and Price et

al. to enhance statistical power, avoid permutation and accommodate covariates. We

construct data-adaptive test statistics that are powerful even when the combined rare

mutations have opposite effects on the phenotype. The advantages of the new methods

over the existing ones are demonstrated both analytically and empirically.

2.2 Methods

Suppose that a total of n subjects are genotyped on a total of m SNPs in a gene

and that there are d covariates. Here, the word “gene” refers to the group of variants

that will be collectively analyzed and may pertain to a subset of SNPs within a gene

or to a region/pathway involving multiple genes; “covariates” may include non-genetic

variables, such as age and smoking status, as well as ancestry variables, such as per-

centage of African ancestry and principal components for ancestry. For i = 1, . . . , n,

let Yi be the phenotype value of the ith subject; for i = 1, . . . , n and j = 1, . . . ,m, let

Xji denote the number of the rare mutation the ith subject carries at the jth SNP; for

i = 1, . . . , n and j = 1, . . . , d, let Zji denote the value of the jth covariate on the ith

subject. We can write

Xi =


X1i

...

Xmi

 , Zi =



1

Z1i

...

Zdi


.

We first focus on binary phenotypes and then consider other common phenotypes.

22



2.2.1 Binary phenotypes

It is natural to relate Yi to Xi and Zi through the logistic regression model:

Pr(Yi = 1) =
eβ

TXi+γ
TZi

1 + eβTXi+γTZi
,

where β and γ are m×1 and (d+1)×1 vectors of unknown regression parameters. Since

the first component of Zi is 1, the first component of γ corresponds to the intercept.

Write β = τξ, where τ is a scalar constant, and ξ = β/τ . Then equation above becomes

Pr(Yi = 1) =
eτSi+γ

TZi

1 + eτSi+γTZi
,

where Si = ξTXi. Note that ξ = (ξ1, . . . , ξm)T is a m× 1 vector of weights and that Si

is a weighted linear combination of X1i, . . . , Xmi with Xji receiving the weight ξj. We

will refer to ξ as the weight function.

The score statistic for testing the null hypothesis H0 : τ = 0 takes the form

U =
n∑
i=1

(
Yi −

eγ̂
TZi

1 + eγ̂TZi

)
Si,

where γ̂ is the restricted maximum likelihood estimator of γ, which solves the equation

n∑
i=1

(
Yi −

eγ
TZi

1 + eγTZi

)
Zi = 0.

The variance of U is estimated by

V =
n∑
i=1

viS
2
i −

(
n∑
i=1

viSiZi

)T( n∑
i=1

viZiZ
T
i

)−1( n∑
i=1

viSiZi

)
,
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where

vi =
eγ̂

TZi

(1 + eγ̂TZi)2
.

Under H0, the test statistic T = U/V 1/2 is asymptotically standard normal. In the

absence of covariates,

U =
n∑
i=1

(Yi − Y )Si,

and

V = Y (1− Y )


n∑
i=1

S2
i − n−1

(
n∑
i=1

Si

)2
 ,

where Y = n−1
∑n

i=1 Yi.

The true value of the weight function ξ = (ξ1, . . . , ξm)T is unknown and must be

determined biologically or empirically. If we set ξj = 1 (j = 1, . . . ,m), then T is a

burden test, which counts the total number of rare mutations each subject carries over

the m SNPs. If we believe that common variants are not associated with the phenotype,

then we set ξj = 0 if pj > c, where pj is the minor allele frequency (MAF) of the jth

SNP, and c is a given threshold. If we set ξj = {pj(1 − pj)}−1/2 (j = 1, . . . ,m), then

the weight function is in the same vein as that of Madsen and Browning.

If the choice of the weight function ξ is not proportional to β or ξ is estimated from

the data, then U is no longer the score statistic. However, it is simple to verify that

the test statistic T is asymptotically standard normal under H0 regardless of how ξ is

determined. The only condition is that, if ξ is estimated from the data, the estimate

converges to a constant vector as the sample size n increases. This condition is satisfied

by all sensible estimates, including those based on estimated allele frequencies. If the

choice of ξ or the limit of the estimate of ξ is proportional to β, then the corresponding

test statistic T is the most powerful among all valid tests.

The weight function ξ is similar to that of Price et al. The latter authors showed

that, for case-control studies with known allele frequencies in the control population,
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the choice of ξj = {pj(1−pj)}−1/2 (j = 1, . . . ,m) corresponds to the implicit assumption

that log(ORj) ∝ {pj(1 − pj)}−1/2 (j = 1, . . . ,m), where ORj is the odds ratio in the

2×2 table for the jth SNP. Our theory is much more general in that it assumes unknown

allele frequencies and accommodates covariates. Indeed, the proposed test statistic is

optimal if ξ is proportional to the set of regression parameters (in the limit); this result

holds for all phenotypes, including binary and continuous traits, as well as potentially

censored ages at onset of disease.

Madsen and Browning suggested to set ξj = {p̂j(1− p̂j)}−1/2 (j = 1, . . . ,m), where

p̂j is the estimate of the MAF of the jth SNP in the unaffected subjects. Because the

weights depends on the phenotype values, the authors suggested a permutation-based

test. Our testing framework allows such data-dependent weights since the frequen-

cy estimates converge to the true values as n increases. To improve the accuracy of

asymptotic approximation, we suggest to estimate the frequencies from all study sub-

jects rather than the unaffected subjects. Because the variants can be very rare, we

recommend to add pseudo counts when estimating the frequencies, as was done by

Madsen and Browning. The weight functions based on the frequency estimates in the

pooled sample and the unaffected subjects will be denoted by “MBp” and “MBu”,

respectively; the constant weight function will be denoted by “C”. The corresponding

tests will be referred to as “MBp-test”, “MBu-test” and “C-test”.

Although MBu is the weight function used by Madsen and Browning, our MBu-

test is fundamentally different from the Madsen and Browning (MB) test. The latter is

based on the sum of the ranks of the Si’s with weight function MBu over the affected

subjects. Madsen and Browning proposed to assess the statistical significance of their

rank-sum statistic by permutation. They also suggested an asymptotic normal approx-

imation by standardizing the rank-sum statistic by its mean and standard derivation.
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Because the mean and standard derivation are estimated by permutation, the asymp-

totic version of the MB test is many orders of magnitudes slower than our asymptotic

tests. The rank-sum statistic is confined to case-control analysis without covariates.

Price et al. developed a VT method by taking the maximum of the test statistics

(i.e., z-scores) over all allele-frequency thresholds and assessing statistical significance

by permutation. We describe below a more general approach that allows not only

multiple allele-frequency thresholds but also different types of weight function; it also

accommodates covariates and does not require permutation.

We consider K choices of ξ, which may correspond to different thresholds or different

types of weight function, or both. For the kth choice of ξ, the corresponding Si is

denoted by Ski. Then the “score” statistic is

Uk =
n∑
i=1

(
Yi −

eγ̂
TZi

1 + eγ̂TZi

)
Ski,

and the test statistic is Tk = Uk/V
1/2
k , where

Vk =
n∑
i=1

viS
2
ki −

(
n∑
i=1

viSkiZi

)T( n∑
i=1

viZiZ
T
i

)−1( n∑
i=1

viSkiZi

)
.

We can show that, under H0, the random vector (U1, . . . , UK)T is approximately K-

variate normal with mean 0 and covariance matrix {Vkl; k, l = 1, . . . , K}, where

Vkl =
n∑
i=1

viSkiSli −

(
n∑
i=1

viSkiZi

)T( n∑
i=1

viZiZ
T
i

)−1( n∑
i=1

viSliZi

)
.

For the two-sided test, we consider the maximum of the absolute test statistics

Tmax = max
k=1,...,K

|Tk|.
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Let tmax be the observed value of Tmax. The p-value is given by

Pr(Tmax ≥ tmax) = 1− Pr(|T1| < tmax, . . . , |TK | < tmax),

which is evaluated by treating (T1, . . . , TK)T as a K-variate normal random vector with

mean 0 and covariance matrix {rkl; k, l = 1, . . . , K}, where rkl = Vkl/(VkkVll)
1/2. (The

one-sided p-value can be calculated in a similar manner.) We reject H0 if the p-value

is smaller than the nominal significance level α.

The tests based on positive weight functions, such as C, MBu and MBp, will have

low power if the mutations being combined have opposite effects on the phenotype. The

optimal choice of ξj is βj, which is unknown. We can estimate βj from the data. It would

be tempting to set ξj to β̂j, where β̂j is an appropriate estimate of βj. There are two

major problems with this strategy. First, the test statistic T will not be asymptotically

normal. Second, the β̂j’s are highly variable (since the individual variants are very rare)

and can be quite different from the true values of the βj’s. As a compromise, we set

ξj = β̂j + δ, where δ is a given constant. We refer to this weight function as “EREC”,

an abbreviation of estimated regression coefficients. The corresponding test statistic

T will be asymptotically standard normal as long as δ is non-zero. Indeed, the EREC

test is asymptotically optimal in that ξj will converge to βj if we let δ decrease to 0

as the sample size n increases to ∞. The asymptotic normality and optimality require

large samples. For small samples, we recommend to use a relatively large value of δ so

that the weights are not unduly driven by the highly variable β̂j’s.

The Han and Pan (HP) statistic is a special case of our score statistic U (for binary

traits without covariates) in which ξj = −1 if β̂j < 0 and the corresponding p-value

< 0.1 and ξj = 1 otherwise. The SKAT statistic of Wu et al. is a weighted sum of the

squared score statistics for individual variants, and the C-alpha statistic of Neale et al.

is an unweighted sum for binary traits without covariates. Unlike the EREC test, the
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HP, C-alpha and SKAT tests are not asymptotically optimal.

Because the asymptotic approximation may not be accurate in small samples, es-

pecially when the weight function ξ involves the phenotype values Yi’s, we also provide

permutation-type tests. In the absence of covariates, we simply permute the phenotype

values Yi’s and calculate the test statistic T for each permutation. Note that it is nec-

essary to re-calculate the Si’s after permuting the Yi’s if the weight function ξ depends

on the Yi’s.

Our permutation differs from that of Price et al. in that we permute T whereas

they permuted
∑n

i=1 YiSi. The former is a pivotal statistic whereas the latter is not.

(It is desirable to permute a pivotal statistic.) If the test is one-sided and the weight

function does not depend on the phenotype values, then our permutation is equivalent

to Price et al.’s; otherwise, the two are different. For VT methods, the numerators in

the z-scores of Price et al. are the same as ours, but the denominators are not the

same as or proportional to ours. Thus, the permutation p-values are generally different

between the two methods. The permutation version of the MB test requires ranking

the Si’s for each permutation and is thus substantially slower than our permutation

tests.

In the presence of covariates, it is not appropriate to permute the Yi’s because Yi is

generally correlated with Zi. Instead, we generate Y ∗i from the fitted null model:

Pr(Y ∗i = 1) =
eγ̂

TZi

1 + eγ̂TZi
,

and replace the Yi’s with the Y ∗i ’s to calculate the test statistic. This process is repeated

and is called (parametric) bootstrap. Both permutation and bootstrap are resampling

methods. In the absence of covariates, Pr(Y ∗i = 1) is the sample proportion of cases.

A large number of resamples (i.e., permutations or bootstrap samples) are required

to obtain an accurate estimate of a small p-value. However, most p-values are relatively
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large and can be estimated accurately with a small number of resamples. Thus, we

employ a multi-stage procedure which filters out large p-values with small numbers of

resamples and uses large numbers of resamples only for the most extreme p-values.

2.2.2 Quantitative phenotypes

For quantitative traits, we consider the linear regression model:

Yi = τSi + γTZi + εi,

where εi is normal with mean 0 and variance σ2. Then the score statistic and its

variance are

U =
n∑
i=1

(
Yi − γ̂TZi

)
Si,

and

V = σ̂2


n∑
i=1

S2
i −

(
n∑
i=1

SiZi

)T( n∑
i=1

ZiZ
T
i

)−1( n∑
i=1

SiZi

) ,

where

γ̂ =

(
n∑
i=1

ZiZ
T
i

)−1 n∑
i=1

YiZi,

and

σ̂2 = n−1

n∑
i=1

(Yi − γ̂TZi)
2.

For multiple weight functions,

Uk =
n∑
i=1

(
Yi − γ̂TZi

)
Ski,
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and

Vkl = σ̂2


n∑
i=1

SkiSli −

(
n∑
i=1

SkiZi

)T( n∑
i=1

ZiZ
T
i

)−1( n∑
i=1

SliZi

) .

To perform permutation tests without covariates, we simply permute the Yi’s. In the

presence of covariates, we permute the residuals Ri = Yi − γ̂TZi (i = 1, . . . , n) to yield

the R∗i ’s, and replace Yi by Y ∗i = γ̂TZi + R∗i (i = 1, . . . , n) in calculating the test

statistic.

2.2.3 Survival outcomes

For potentially censored age-at-onset traits, we specify that the hazard function for

the age at onset conditional on Si and Zi satisfies the proportional hazards model

λ(t|Si, Zi) = λ0(t)eτSi+γ
TZi ,

where λ0 is an arbitrary baseline hazard function, and Zi is redefined to exclude the

unit component. Let Yi denote the duration of follow-up for the ith subject, and let

∆i indicate, by the values 1 vs 0, whether Ti is the actual age at onset or the censoring

time. Then the score statistic and its variance are

U =
n∑
i=1

∆i

(
Si −

∑
j∈Ri e

γ̂TZjSj∑
j∈Ri e

γ̂TZj

)
,

and

V =
n∑
i=1

∆i

∑j∈Ri e
γ̂TZjS2

j∑
j∈Ri e

γ̂TZj
−

(∑
j∈Ri e

γ̂TZjSj∑
j∈Ri e

γ̂TZj

)2
 ,
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where Ri denotes the set of subjects whose durations of follow-up are no shorter than

Yi, and γ̂ is the solution to the partial likelihood score equation

n∑
i=1

∆i

(
Zi −

∑
j∈Ri e

γTZjZj∑
j∈Ri e

γTZj

)
= 0.

We observed through simulation studies that the asymptotic score test was anti-

conservative for the low-frequency variant. To tackle this problem, we adopt the para-

metric bootstrap to assess the statistical significance. The detailed steps are described

below.

Let ST (t | z) and SC(t | z) denote the survival function for the event time and the

censoring time respectively. For i = 1, . . . , n,

1. generate event time T ∗i from the estimated survival function ST (t | zi) and in-

dependently generate censoring time C∗i from the estimated survival function

SC(t | zi);

2. set Y ∗i = min(T ∗i , C
∗
i ), with ∆∗i = 1 if Y ∗i = T ∗i and ∆∗i = 0 otherwise.

The Breslow estimator of the cumulative hazard function can be written as

Λ̂0(t) =
∑
i:Yi≤t

∆i∑
j∈Ri

eZjγ

Survival function of the event time for the individual with covariate value z takes the

form

ŜT (t | z) =
(
e−Λ̂0(t)

)ezγ̂
.

If the censoring time is independent of the covariate, the survival function of the cen-

soring time can be estimated using the Kaplan-Meier estimator as (supposed no ties in
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Yi)

ŜC(t) =
∏
i:Yi≤t

(
n− i

n+ 1− i

)1−∆i

If the censoring time is dependent on the covariate, the survival function of the censoring

time can be estimated similarly based on the proportional hazards model.

2.2.4 Family-based data

Suppose that the study contains n families with ni members in the ith family. For

i = 1, . . . , n and j = 1, . . . , ni, let yij, sij and zij denote the values of Y , S and Z for

the jth member of the ith family.

We consider using generalized estimation equations (GEE) models to capture the

dependence of the trait values. Suppose that the marginal density of yij belongs to the

exponential family with the form

P (yij) = exp {(yijθij − b(θij))φ+ c(yij, φ)} ,

where θij = τsij + γTzij, and b(.) and c(.) are specific functions. The mean and the

variance of yij are given by

E(yij) = b
′
(θij) = µij, and Var(yij) = φ−1b

′′
(θij),

where b
′

and b
′′

are the first and second derivatives of the function b(.).

Then we assume a working covariance matrix for Yi = (yi1, . . . , yini)
T

φ−1Vi = φ−1B
1/2
i Ri(α)B

1/2
i ,

where Bi = diag(b
′′
(θi1), . . . , b

′′
(θini)), and Ri(α) is a working correlation matrix for

Yi with parameter α, which is usually assumed to be independent, exchangeable or
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proportional to the kinship matrix. Then, the set of GEEs is

S(τ, γ, α) =

Sτ (τ, γ, α)

Sγ(τ, γ, α)

 =

∑n
i=1(∂µi/∂τ)TV −1

i (Yi − µi)∑n
i=1(∂µi/∂γ)TV −1

i (Yi − µi)

 ,
where µi = (µi1, . . . , µini)

T. We let Si(τ, γ, α) denote the term in S(τ, γ, α) that the ith

family contribute.

Suppose that U = Sµ(0, γ̃, α̃), where γ̃ and α̃ are the restricted maximum likelihood

estimators (MLEs) of γ and α under H0. The sandwich variance estimator of U takes

this form

Σ =

[
1 −VτγV −1

γγ

][ n∑
i=1

(Si(0, γ̃, α̃)− S(0, γ̃, α̃)/n)⊗2

][
1 −VτγV −1

γγ

]T

,

where Vτγ and Vγγ are the first derivatives of Sτ (τ, γ, α) and Sγ(τ, γ, α) with respective

to γ and then evaluated at the restricted MLEs.

We can compute the nuisance parameters γ and α through an iterative procedure

described below:

Step 1. Compute an initial estimate γ(0) based on an independent working cor-

relation matrix (R(α) = I).

Step 2. Compute the working correlation matrix Ri(α) based on the Pearson

residuals (yij − µij)/
√
b′′(θij) and the current γ(l).

Step 3. Compute Vi = B
1/2
i Ri(α)B

1/2
i .

Step 4. Update γ according to

γ(l+1) = γ(l) +
(
DT
i V
−1Di

)−1
n∑
i=1

DT
i V
−1
i (Yi − µi)

∣∣∣∣∣
γ(l)

,
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where Di =

[
∂µi/∂τ ∂µi/∂γ

]
.

We iterate Step 2-4 until convergence. As an alternative, we can estimate Ri(α) as twice

of the kinship matrix Φi. The element (k, l) in matrix Φi is defined as the expected

proportion of genes shared identical by descent (IBD) by the jth and lth members

within the ith family.

2.3 Simulation studies

We conducted extensive simulation studies to investigate the performance of the

new and existing methods. We simulated case-control data with an equal number

of cases and controls from model (1) in which the first component of γ was set to

−2. We considered mainly the following six combinations of MAFs: (1) pj = 0.001j

(j = 1, . . . , 10) with a total frequency of 5.5%; (2) pj = 0.0005j (j = 1, . . . , 10) with

a total frequency of 2.75%; (3) pj = 0.00025j (j = 1, . . . , 20) with a total frequency

of 5.25%; (4) pj = 0.005 (j = 1, . . . , 10) with a total frequency of 5%; (5) pj = 0.0025

(j = 1, . . . , 10) with a total frequency of 2.5%; and (6) pj = 0.0025 (j = 1, . . . , 20) with

a total frequency of 5%. The genotype values were simulated under Hardy-Weinberg

equilibrium and linkage equilibrium. We did not use sophisticated population genetics

models because we wished to control the number of variants and their frequencies,

which allowed us to see clearly how the new and existing methods perform under

various scenarios. We evaluated both asymptotic and resampling methods. When the

simulation studies involved asymptotic methods only, we used 10 millions replicates

(i.e., simulated data sets) to evaluate type I error and 100,000 replicates to evaluate

power at α = 10−2, 10−3 and 10−4. When the simulation studies involved resampling

methods, we used 1 million replicates to evaluate type I error and 10,000 replicates to

evaluate power at α = 10−2 and 10−3. The resampling p-values were obtained from

a 3-stage procedure with a maximum of 1 million resamples. The null hypothesis
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corresponded to H0 : βj = 0 (j = 1, . . . ,m). We considered primarily two types of

alternative hypotheses, H1 : βj = x (j = 1, . . . ,m) and H1 : βj = x/{pj(1 − pj)}1/2

(j = 1, . . . ,m), where x was chosen such that the power (of the most powerful method)

was reasonably high at α = 10−2. We report below results from six series of simulation

studies, the first four without covariates and the last two with covariates.

Our first series of simulation studies was designed to evaluate the new asymptot-

ic methods with different weight functions. We considered the aforementioned six

combinations of MAFs and generated data under the null hypothesis H0 : βj = 0

(j = 1, . . . ,m), as well as two alternative hypotheses H1 : βj = x (j = 1, . . . ,m) and

H1 : βj = x/{pj(1 − pj)}1/2 (j = 1, . . . ,m). We considered three (positive) weight

functions: C, MBp, and MBu. We also considered the maximum of the test statistics

based on weight functions C and MBp, which will be referred to as Tmax. The results

for the first combination of MAFs are displayed in Table 2.1, while those of the re-

maining five combinations are provided in Tables 2.7-2.11. The C-test, MBp-test and

Tmax are conservative; the conservativeness decreases as n, α or total allele frequency

increases. As expected, the C-test is more powerful than the MBp-test under the first

alternative hypothesis and less powerful under the second alternative hypothesis; Tmax

is nearly as powerful as the C-test under the first alternative and nearly as powerful

as the MBp-test under the second alternative. The MBu-test is unacceptably liberal;

therefore, we will not consider this asymptotic test any further.

Our second series of studies was devoted to comparisons of asymptotic and permu-

tation methods. In addition to the new methods, we evaluated the asymptotic and

permutation versions of the MB test, as well as the permutation method of Price et

al. with weight function MBu. We simulated data in the same manner as the first

series of studies. The results for the first combination of MAFs are displayed in Table

2.2. Due to the discreteness of the test statistic, the permutation version of the C-test
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is more conservative than its asymptotic counterpart and consequently less powerful.

The permutation MBp-test and MBu-test do not appear to be conservative; the former

appears to be slightly more powerful than the latter. The MB test was designed for the

second alternative hypothesis, for which the new asymptotic test based on weight func-

tion MBp is more powerful than the asymptotic version of the MB test while the new

permutation tests based on weight functions MBp and MBu are more powerful than

the permutation version of the MB test. For weight function MBu, the permutation

test of Price et al. is less powerful than our permutation test.

In the third series of studies, we compared fixed and variable threshold methods.

We simulated 11 SNPs with MAFs pj = 0.001j (j = 1, . . . , 10) and p11 = 0.03. We

considered the null hypothesis H0 : β1 = β2 = . . . = β11 = 0, as well as two alternative

hypotheses H1 : β1 = β2 = . . . = β10 = x, β11 = 0, and H1 : β1 = β2 = . . . =

β11 = x. For fixed threshold methods, we considered the thresholds of 0.01 and 0.05;

the corresponding tests are referred to as the T1 and T5 tests. For VT methods, we

excluded the thresholds for which the total numbers of rare mutations were fewer than

10. As shown in Table 2.3, all the tests appear to be conservative, especially when n

and α are small. The permutation T1 and T5 tests are more conservative than their

asymptotic counterparts. In theory, T1 and T5 are the most powerful under the first

and second alternatives, respectively. Because the frequency estimates for rare variants

are highly variable, T1 turns out to be the least powerful among all the tests under

the first alternative. The VT tests have good power under both alternatives, and the

asymptotic and permutation versions have similar power. The permutation version of

our VT test is slightly more powerful than that of Price et al.

In the fourth set of studies, we compared the C-test, MBp-test and EREC test, as

well as the HP, C-alpha and SKAT tests. Note that the last four tests were designed

to detect variants with opposite effects. The EREC, HP and C-alpha tests were based
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on permutation whereas the SKAT was based on the Davies method. For the EREC

test, we set ξj = β̂j + 1, where β̂j is the estimate of the log odds ratio βj (after adding

a pseudo-count of 1 to each of the four cells in the 2 × 2 table). For the SKAT test,

we used the default weighted linear kernel function. We set pj = 0.001j (j = 1, . . . , 10)

and considered the null hypothesis H0 : βj = 0 (j = 1, . . . , 10) and four alternative

hypotheses H1 : βj = x (j = 1, . . . , 10), H1 : βj = x/{pj(1 − pj)}1/2 (j = 1, . . . , 10),

H1 : βj = x (j = 1, . . . , 8), β9 = −x, β10 = −2x, and H1 : βj = x (j = 1, . . . , 9),

β10 = −x/2. As shown in Table 2.4, SKAT is highly conservative, especially when n

and α are small. The EREC test is slightly less powerful than the C-test and MBp-

test when the SNP effects are all positive but is much more powerful than the latter

when there are opposite effects. The EREC test is always more powerful than the HP,

C-alpha and SKAT tests.

The above four sets of studies contained no covariates. We also conducted extensive

studies with covariates. We generated data in the same manner as before except that we

added a normally distributed covariate whose mean is equal to the total number of rare

mutations and whose variance is equal to 1 and we set its regression parameter to 0.3.

Some key results are presented in Tables 2.5 and 2.6. The T1, T5, MBp and VT tests

appear to be conservative, especially when n and α are small, and their asymptotic and

bootstrap versions have similar power. The EREC test has similar power to the C-test

and MBp test when all SNP effects are positive and is much more powerful than the

latter when there are opposite effects. The EREC test is substantially more powerful

than the SKAT regardless of the alternative.
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Table 2.1: Type I erroraand power of asymptotic methods with different weight
functions

H0 : βj = 0 H1 : βj = x βj = x/{pj(1− pj)}1/2

n α C MBp Tmax MBu C MBp Tmax MBu C MBp Tmax MBu

500 10−2 0.99 0.97 0.97 3.47 0.84 0.81 0.83 0.91 0.83 0.85 0.84 0.93

10−3 0.89 0.85 0.84 4.53 0.57 0.53 0.56 0.72 0.55 0.58 0.57 0.75

10−4 0.73 0.70 0.67 4.76 0.31 0.27 0.30 0.46 0.29 0.31 0.30 0.50

1000 10−2 1.00 0.99 0.98 3.13 0.87 0.84 0.86 0.92 0.93 0.95 0.94 0.98

10−3 0.94 0.92 0.91 4.35 0.63 0.59 0.62 0.74 0.75 0.79 0.78 0.89

10−4 0.89 0.83 0.81 5.45 0.38 0.33 0.36 0.50 0.52 0.56 0.54 0.71

2000 10−2 0.99 0.99 0.99 2.55 0.95 0.94 0.95 0.97 0.97 0.98 0.98 0.99

10−3 0.97 0.96 0.95 3.41 0.82 0.78 0.81 0.86 0.87 0.90 0.89 0.95

10−4 0.89 0.91 0.89 4.25 0.61 0.54 0.59 0.68 0.69 0.74 0.73 0.84

4000 10−2 0.99 0.99 0.99 2.04 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.99

10−3 0.98 0.98 0.98 2.56 0.92 0.89 0.91 0.93 0.90 0.93 0.92 0.96

10−4 0.97 0.96 0.94 3.07 0.77 0.72 0.76 0.80 0.75 0.80 0.79 0.86

a divided by α.

Table 2.2: Type I erroraand power of asymptotic and permutation methods

Asymptotic Permutation

n α C MBp MB C MBp MBu Priceb MB

H0 : βj = 0 500 10−2 0.99 0.98 0.98 0.71 1.02 1.02 1.01 1.00

10−3 0.89 0.87 0.89 0.62 0.99 1.01 0.99 1.01

1000 10−2 1.00 1.00 1.00 0.79 1.01 1.03 1.01 1.01

10−3 0.96 0.96 0.93 0.72 1.01 1.02 1.01 1.02

H1 : βj = x 500 10−2 0.84 0.81 0.82 0.81 0.81 0.81 0.79 0.82

10−3 0.57 0.54 0.54 0.54 0.55 0.54 0.49 0.56

1000 10−2 0.86 0.84 0.85 0.85 0.84 0.84 0.82 0.85

10−3 0.63 0.58 0.60 0.60 0.59 0.58 0.53 0.60

H1 : βj = x/{pj(1− pj)}1/2 500 10−2 0.83 0.85 0.82 0.80 0.85 0.84 0.81 0.82

10−3 0.56 0.59 0.54 0.52 0.59 0.57 0.51 0.55

1000 10−2 0.93 0.95 0.92 0.92 0.95 0.94 0.93 0.92

10−3 0.75 0.80 0.73 0.73 0.80 0.77 0.74 0.74

a divided by α
b with weight function MBu
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Table 2.3: Type I erroraand power of fixed and variable threshold methods

Asymptotic Permutation

n α T1 T5 VT T1 T5 VT Priceb

H0 : βj = 0 500 10−2 0.95 0.97 0.86 0.65 0.74 0.89 0.88

10−3 0.80 0.85 0.62 0.57 0.63 0.82 0.81

1000 10−2 1.00 1.00 0.92 0.76 0.83 0.94 0.93

10−3 0.90 0.95 0.70 0.66 0.72 0.87 0.87

H1 : β1 = · · · = β10 = x, β11 = 0 500 10−2 0.49 0.68 0.74 0.43 0.65 0.75 0.75

10−3 0.20 0.37 0.45 0.17 0.34 0.48 0.47

1000 10−2 0.59 0.70 0.76 0.55 0.68 0.77 0.77

10−3 0.30 0.41 0.48 0.27 0.38 0.50 0.50

H1 : β1 = · · · = β11 = x 500 10−2 0.39 0.88 0.78 0.34 0.86 0.79 0.78

10−3 0.14 0.65 0.51 0.12 0.62 0.54 0.52

1000 10−2 0.45 0.88 0.76 0.41 0.87 0.77 0.76

10−3 0.18 0.65 0.48 0.16 0.62 0.50 0.49

a divided by α
b VT method of Price et al.
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Table 2.4: Type I erroraand power of asymptotic and permutation tests for detecting
potentially opposite effects

Asymptotic Permutation

n α C MBp SKAT C MBp EREC HP C-alpha

H0 : βj = 0 500 10−2 0.95 0.95 0.53 0.68 1.00 1.01 0.89 0.91

10−3 0.83 0.77 0.26 0.60 0.94 0.97 0.91 0.87

1000 10−2 0.99 0.98 0.75 0.77 1.02 1.02 0.97 0.96

10−3 0.97 0.95 0.57 0.73 1.02 1.04 1.01 0.97

H1 : βj = x 500 10−2 0.77 0.74 0.33 0.73 0.74 0.72 0.71 0.36

10−3 0.49 0.45 0.09 0.46 0.47 0.44 0.41 0.14

1000 10−2 0.81 0.77 0.41 0.78 0.77 0.78 0.73 0.42

10−3 0.56 0.50 0.16 0.53 0.51 0.51 0.42 0.17

H1 : βj = x/{pj(1− pj)}1/2 500 10−2 0.76 0.78 0.26 0.73 0.79 0.71 0.70 0.27

10−3 0.47 0.50 0.06 0.44 0.51 0.41 0.39 0.08

1000 10−2 0.66 0.70 0.22 0.63 0.70 0.65 0.57 0.21

10−3 0.37 0.41 0.06 0.35 0.42 0.35 0.26 0.06

H1 : β1 = · · · = β8 = x, 500 10−2 0.29 0.23 0.58 0.25 0.23 0.76 0.63 0.61

β9 = −x, β10 = −2x 10−3 0.09 0.06 0.25 0.08 0.06 0.49 0.38 0.32

1000 10−2 0.31 0.27 0.81 0.28 0.27 0.88 0.86 0.81

10−3 0.10 0.08 0.54 0.09 0.09 0.66 0.65 0.56

H1 : β1 = · · · = β9 = x, 500 10−2 0.77 0.74 0.50 0.74 0.75 0.82 0.76 0.54

β10 = −x/2 10−3 0.49 0.45 0.21 0.46 0.47 0.57 0.47 0.26

1000 10−2 0.86 0.85 0.69 0.84 0.85 0.92 0.86 0.70

10−3 0.64 0.61 0.40 0.61 0.62 0.73 0.60 0.42

a type I error is divided by the nominal significance level
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Table 2.5: Type I erroraand power of fixed and variable threshold methods with
covariates

Asymptotic Bootstrap

n α T1 T5 MBp VT T1 T5 MBp VT

H0 : βj = 0 500 10−2 0.90 0.96 0.93 0.79 0.92 0.97 0.94 0.87

10−3 0.69 0.92 0.84 0.54 0.77 0.93 0.88 0.69

1000 10−2 0.95 0.98 0.97 0.80 0.97 0.95 0.98 0.87

10−3 0.80 0.93 0.85 0.60 0.86 0.81 0.92 0.76

H1 : β1 = . . . = β10 = x, β11 = 0 500 10−2 0.32 0.56 0.67 0.64 0.32 0.56 0.67 0.64

10−3 0.09 0.25 0.34 0.32 0.10 0.25 0.35 0.34

1000 10−2 0.41 0.60 0.71 0.68 0.41 0.60 0.71 0.69

10−3 0.16 0.30 0.41 0.37 0.16 0.30 0.41 0.39

H1 : β1 = . . . = β11 = x 500 10−2 0.22 0.76 0.71 0.65 0.22 0.75 0.71 0.65

10−3 0.05 0.47 0.40 0.34 0.05 0.47 0.40 0.36

1000 10−2 0.26 0.80 0.72 0.64 0.26 0.80 0.72 0.65

10−3 0.07 0.52 0.41 0.34 0.08 0.51 0.41 0.36

a divided by α
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Table 2.6: Type I erroraand power of asymptotic and bootstrap tests
for detecting potentially opposite effects in the presence of covariates

Asymptotic Bootstrap

n α C MBp SKAT C MBp EREC

H0 : βj = 0 500 10−2 0.97 0.97 0.63 1.00 1.00 0.97

10−3 0.85 0.80 0.37 0.94 0.92 0.93

1000 10−2 0.98 0.97 0.81 0.99 0.99 0.98

10−3 1.01 0.96 0.56 1.05 1.01 0.99

H1 : βj = x 500 10−2 0.67 0.63 0.14 0.67 0.63 0.67

10−3 0.37 0.33 0.02 0.37 0.33 0.37

1000 10−2 0.74 0.69 0.23 0.74 0.70 0.75

10−3 0.45 0.40 0.06 0.46 0.41 0.47

H1 : βj = x/{pj(1− pj)}1/2 500 10−2 0.65 0.68 0.32 0.65 0.68 0.65

10−3 0.35 0.37 0.08 0.36 0.38 0.35

1000 10−2 0.58 0.63 0.47 0.59 0.63 0.62

10−3 0.30 0.33 0.18 0.30 0.33 0.32

H1 : β1 = · · · = β8 = x, 500 10−2 0.20 0.14 0.55 0.20 0.14 0.73

β9 = −x, β10 = −2x 10−3 0.05 0.03 0.23 0.06 0.03 0.44

1000 10−2 0.22 0.18 0.81 0.22 0.18 0.84

10−3 0.06 0.04 0.55 0.07 0.04 0.61

H1 : β1 = · · · = β9 = x, 500 10−2 0.67 0.63 0.31 0.67 0.63 0.78

β10 = −x/2 10−3 0.36 0.32 0.09 0.37 0.33 0.50

1000 10−2 0.79 0.76 0.53 0.79 0.77 0.89

10−3 0.51 0.48 0.23 0.52 0.49 0.67

a type I error is divided by the nominal significance level
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Table 2.7: Type I erroraand power of asymptotic methods with different weight
functions under pj = 0.0005j (j = 1, · · · , 10)

H0 : βj = 0 H1 : βj = x βj = x/{pj(1− pj)}1/2

n α C MBp Tmax MBu C MBp Tmax MBu C MBp Tmax MBu

500 10−2 0.87 0.89 0.87 1.81 0.77 0.75 0.77 0.88 0.79 0.80 0.79 0.91

10−3 0.68 0.66 0.62 1.62 0.49 0.45 0.48 0.66 0.51 0.52 0.51 0.70

10−4 0.47 0.36 0.36 1.10 0.24 0.21 0.22 0.38 0.25 0.26 0.25 0.42

1000 10−2 0.96 0.94 0.93 2.12 0.78 0.75 0.77 0.88 0.92 0.93 0.93 0.97

10−3 0.88 0.81 0.80 2.55 0.51 0.46 0.49 0.66 0.73 0.76 0.75 0.88

10−4 0.72 0.64 0.64 2.60 0.27 0.23 0.25 0.41 0.49 0.52 0.51 0.70

2000 10−2 0.97 0.97 0.96 1.96 0.82 0.78 0.81 0.88 0.97 0.98 0.97 0.99

10−3 0.93 0.89 0.89 2.53 0.56 0.51 0.55 0.68 0.86 0.89 0.88 0.95

10−4 0.80 0.76 0.75 3.00 0.32 0.27 0.30 0.44 0.68 0.72 0.71 0.84

4000 10−2 0.99 0.98 0.98 1.64 0.72 0.68 0.71 0.79 0.98 0.98 0.98 0.99

10−3 0.95 0.93 0.93 2.05 0.45 0.40 0.43 0.54 0.89 0.92 0.91 0.96

10−4 0.90 0.83 0.86 2.49 0.23 0.19 0.22 0.30 0.73 0.78 0.77 0.87

a divided by α

Table 2.8: Type I erroraand power of asymptotic methods with different weight
functions under pj = 0.00025j (j = 1 · · · , 20)

H0 : βj = 0 H1 : βj = x H1 : βj = x/{pj(1− pj)}1/2

n α C MBp Tmax MBu C MBp Tmax MBu C MBp Tmax MBu

500 10−2 0.95 0.94 0.93 3.18 0.75 0.72 0.74 0.91 0.90 0.91 0.91 0.98

10−3 0.85 0.82 0.81 4.18 0.46 0.43 0.45 0.72 0.70 0.72 0.72 0.90

10−4 0.66 0.62 0.60 4.53 0.22 0.20 0.21 0.46 0.45 0.47 0.46 0.74

1000 10−2 0.97 0.97 0.96 3.52 0.79 0.75 0.78 0.92 0.72 0.75 0.74 0.91

10−3 0.92 0.88 0.88 5.54 0.52 0.48 0.51 0.75 0.44 0.47 0.46 0.74

10−4 0.78 0.75 0.74 7.85 0.28 0.25 0.27 0.52 0.22 0.24 0.23 0.51

2000 10−2 0.99 0.99 0.99 3.00 0.91 0.88 0.91 0.96 0.63 0.67 0.66 0.85

10−3 0.96 0.93 0.94 4.79 0.73 0.68 0.72 0.86 0.35 0.38 0.37 0.63

10−4 0.88 0.86 0.87 7.07 0.50 0.44 0.49 0.69 0.16 0.18 0.17 0.39

4000 10−2 1.00 1.00 0.99 2.30 0.96 0.95 0.96 0.98 0.94 0.96 0.95 0.99

10−3 0.99 0.97 0.97 3.36 0.86 0.82 0.85 0.92 0.79 0.84 0.83 0.93

10−4 0.98 0.92 0.95 4.70 0.68 0.62 0.67 0.79 0.58 0.65 0.63 0.81

a divided by α
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Table 2.9: Type I erroraand power of asymptotic methods with different weight
functions under pj = 0.005 (j = 1, · · · , 10)

H0 : βj = 0 H1 : βj = x H1 : βj = x/{pj(1− pj)}1/2

n α C MBp Tmax MBu C MBp Tmax MBu C MBp Tmax MBu

500 10−2 0.94 0.94 0.93 2.34 0.72 0.70 0.71 0.85 0.79 0.78 0.79 0.90

10−3 0.82 0.81 0.80 2.83 0.43 0.41 0.42 0.62 0.51 0.50 0.51 0.70

10−4 0.62 0.60 0.58 2.86 0.20 0.19 0.19 0.36 0.27 0.25 0.26 0.44

1000 10−2 0.98 0.98 0.97 2.13 0.76 0.75 0.76 0.86 0.91 0.91 0.91 0.96

10−3 0.92 0.91 0.91 2.94 0.49 0.48 0.49 0.64 0.74 0.72 0.73 0.84

10−4 0.81 0.74 0.76 3.76 0.26 0.25 0.25 0.40 0.50 0.48 0.49 0.65

2000 10−2 0.98 0.98 0.98 1.61 0.89 0.89 0.89 0.94 0.97 0.96 0.97 0.98

10−3 0.96 0.96 0.96 2.06 0.70 0.70 0.70 0.79 0.86 0.86 0.86 0.91

10−4 0.90 0.91 0.91 2.56 0.47 0.46 0.46 0.58 0.68 0.67 0.68 0.78

4000 10−2 0.99 0.99 0.99 1.29 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.99

10−3 0.97 0.97 0.97 1.48 0.84 0.83 0.84 0.88 0.90 0.90 0.90 0.93

10−4 0.94 0.92 0.92 1.67 0.65 0.64 0.64 0.72 0.74 0.74 0.74 0.81

a divided by α

Table 2.10: Type I erroraand power of asymptotic methods with different weight
functions under pj = 0.0025 (j = 1, · · · , 10)

H0 : βj = 0 H1 : βj = x H1 : βj = x/{pj(1− pj)}1/2

n α C MBp Tmax MBu C MBp Tmax MBu C MBp Tmax MBu

500 10−2 0.85 0.88 0.86 1.85 0.82 0.81 0.82 0.92 0.82 0.81 0.82 0.92

10−3 0.67 0.64 0.62 1.58 0.56 0.54 0.55 0.73 0.56 0.54 0.55 0.74

10−4 0.41 0.36 0.32 0.92 0.29 0.27 0.28 0.46 0.29 0.27 0.28 0.46

1000 10−2 0.97 0.94 0.94 2.36 0.93 0.93 0.93 0.97 0.94 0.93 0.93 0.97

10−3 0.86 0.82 0.81 2.91 0.78 0.76 0.77 0.89 0.78 0.76 0.77 0.89

10−4 0.66 0.64 0.62 3.00 0.55 0.53 0.54 0.72 0.55 0.53 0.54 0.72

2000 10−2 0.97 0.97 0.96 2.13 0.91 0.91 0.91 0.96 0.98 0.97 0.97 0.99

10−3 0.91 0.89 0.89 2.94 0.73 0.72 0.72 0.84 0.89 0.89 0.89 0.94

10−4 0.84 0.82 0.82 3.64 0.49 0.48 0.49 0.65 0.73 0.72 0.72 0.84

4000 10−2 0.99 0.99 0.99 1.61 0.90 0.90 0.90 0.94 0.98 0.98 0.98 0.99

10−3 0.95 0.95 0.94 2.06 0.71 0.70 0.70 0.80 0.92 0.91 0.92 0.95

10−4 0.91 0.93 0.91 2.62 0.47 0.47 0.47 0.59 0.78 0.78 0.78 0.86

a divided by α
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Table 2.11: Type I erroraand power of asymptotic methods with different weight
functions under pj = 0.0025 (j = 1, · · · , 20)

H0 : βj = 0 H1 : βj = x H1 : βj = x/{pj(1− pj)}1/2

n α C MBp Tmax MBu C MBp Tmax MBu C MBp Tmax MBu

500 10−2 0.94 0.94 0.93 3.52 0.72 0.70 0.71 0.91 0.93 0.92 0.92 0.99

10−3 0.82 0.81 0.80 4.68 0.43 0.41 0.42 0.72 0.76 0.73 0.75 0.92

10−4 0.65 0.65 0.62 5.11 0.20 0.19 0.20 0.46 0.51 0.49 0.50 0.78

1000 10−2 0.97 0.97 0.97 4.13 0.76 0.75 0.76 0.92 0.76 0.75 0.76 0.92

10−3 0.93 0.92 0.90 6.92 0.49 0.47 0.48 0.76 0.49 0.47 0.48 0.76

10−4 0.79 0.80 0.77 10.09 0.25 0.24 0.25 0.53 0.26 0.24 0.25 0.53

2000 10−2 0.99 0.99 0.99 3.30 0.90 0.89 0.89 0.97 0.68 0.67 0.67 0.85

10−3 0.96 0.95 0.95 5.60 0.70 0.69 0.70 0.87 0.39 0.38 0.39 0.63

10−4 0.86 0.88 0.85 8.94 0.46 0.45 0.46 0.70 0.19 0.18 0.18 0.40

4000 10−2 0.99 0.99 0.99 2.17 0.96 0.95 0.96 0.98 0.96 0.95 0.95 0.98

10−3 0.98 0.98 0.98 3.17 0.84 0.83 0.83 0.92 0.84 0.83 0.83 0.92

10−4 0.98 1.00 1.00 4.54 0.64 0.64 0.64 0.79 0.65 0.64 0.64 0.79

a divided by α

Table 2.12: Type I erroraof score, Wald and LR tests with covariates

pj = 0.001j (j = 1, · · · , 10) pj = 0.0005j (j = 1, · · · , 10)

Score Wald LR Score Wald LR

n α C MBp C MBp C MBp C MBp C MBp C MBp

500 10−2 0.98 0.97 0.84 0.79 1.05 1.06 0.94 0.92 0.65 0.59 1.09 1.10

10−3 0.90 0.85 0.59 0.49 1.08 1.09 0.81 0.76 0.26 0.20 1.15 1.17

10−4 0.78 0.70 0.31 0.23 1.08 1.09 0.67 0.58 0.08 0.04 1.27 1.27

1000 10−2 0.99 0.98 0.92 0.88 1.03 1.03 0.97 0.96 0.84 0.79 1.04 1.05

10−3 0.95 0.92 0.78 0.69 1.03 1.04 0.90 0.86 0.59 0.49 1.07 1.07

10−4 0.90 0.84 0.61 0.50 1.04 1.06 0.80 0.78 0.36 0.26 1.11 1.13

a divided by α
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Table 2.13: Power of score, Wald and LR tests with covariates under H1 : βj = x
(j = 1, . . . , 10)

pj = 0.001j (j = 1, · · · , 10) pj = 0.0005j (j = 1, · · · , 10)

Score Wald LR Score Wald LR

n α C MBp C MBp C MBp C MBp C MBp C MBp

500 10−2 0.68 0.63 0.66 0.61 0.69 0.66 0.60 0.56 0.56 0.52 0.63 0.60

10−3 0.38 0.33 0.34 0.29 0.41 0.38 0.28 0.25 0.21 0.17 0.34 0.32

10−4 0.16 0.13 0.13 0.09 0.20 0.18 0.10 0.08 0.04 0.02 0.15 0.14

1000 10−2 0.74 0.69 0.73 0.68 0.75 0.71 0.73 0.69 0.72 0.67 0.75 0.72

10−3 0.45 0.40 0.44 0.38 0.48 0.43 0.44 0.39 0.40 0.35 0.48 0.44

10−4 0.22 0.18 0.20 0.16 0.25 0.22 0.20 0.17 0.16 0.12 0.25 0.22

Table 2.14: Power of score, Wald and LR tests with covariates under H1 : βj =
x/{pj(1− pj)}1/2 (j = 1, . . . , 10)

pj = 0.001j (j = 1, · · · , 10) pj = 0.0005j (j = 1, · · · , 10)

Score Wald LR Score Wald LR

n α C MBp C MBp C MBp C MBp C MBp C MBp

500 10−2 0.66 0.68 0.64 0.66 0.67 0.71 0.72 0.73 0.69 0.69 0.74 0.76

10−3 0.35 0.38 0.32 0.33 0.39 0.42 0.40 0.41 0.32 0.31 0.46 0.48

10−4 0.15 0.16 0.11 0.11 0.19 0.21 0.17 0.17 0.08 0.06 0.24 0.25

1000 10−2 0.83 0.86 0.82 0.85 0.84 0.87 0.88 0.90 0.87 0.89 0.89 0.91

10−3 0.58 0.62 0.56 0.60 0.60 0.65 0.65 0.68 0.62 0.64 0.68 0.72

10−4 0.33 0.36 0.30 0.33 0.36 0.41 0.39 0.41 0.33 0.34 0.44 0.48
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2.4 Data analysis

We considered high-depth sequence data from the exons of 202 genes encoding

known or potential drug targets for 1,957 subjects randomly drawn from the CoLaus

population-based collection. We analyzed total cholesterol (available in 1,899 subjects)

as a quantitative trait and included eight covariates in the analysis: gender, age, age2,

and the top five principal components for ancestry constructed from the GWAS SNP

data. One subject without the gender and age information was removed.

We restricted our analysis to polymorphic variants that are nonsense, missense or s-

plice site mutations. We removed variants with observed MAFs>5% or missingness>10%.

We excluded any gene whose total number of rare mutations is less than 5 and ended

up with a total of 172 genes. There were a total of 2,304 variants in these 172 genes,

and the number of variants per gene varied from 1 to 70, with a median of 11. We

applied both the asymptotic and permutation versions of our T1, T5, MBp and VT

tests, as well as the permutation EREC test. We calculated the two-sided p-values.

With 172 genes, the Bonferroni threshold at the 0.05 significance level corresponds to

p-value of 0.0003 or − log10(p-value) of 3.5.

The results based on the asymptotic and permutation methods are shown in Figures

2.1 and 2.2, respectively. One gene was identified as the most significant by all the tests:

the asymptotic p-values for T1, T5, MBp and VT are 0.00011, 0.00011, 0.00021 and

0.00057, respectively; the corresponding permutation p-values are 0.00013, 0.00013,

0.00025, and 0.0012, respectively; the p-value of the EREC test is 0.00012. (The name

of the gene is not disclosed here because the main study has not been published yet.)

All the p-values, except the VT’s, pass the Bonferroni criterion. Similar evidence of

association has been observed in other samples of the sequencing project. There were

13 variants in the top gene. Their observed MAFs ranged from 0.00026 to 0.0024, the

total frequency being 1.13%. Since the observed MAFs are all less than 1% in this case,
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T1 and T5 are the same test. For the VT test, the maximum occurs at the highest

MAF. It is interesting to point out that common SNPs in the top gene were previously

identified to be associated with total cholesterol.

We also performed a binary trait analysis by comparing high (i.e., > 6.2 mmol/L)

and desirable (i.e., < 5.2 mmol/L) total cholesterol values. There were 451 subjects

with high total cholesterol and 683 subjects with desirable total cholesterol. The results

of the analysis are shown in Figures 2.3 and 2.4. All the tests identified the same top

gene as in the case of the quantitative trait analysis: the asymptotic p-values for T1, T5,

MBp and VT are 0.00022, 0.00022, 0.00057 and 0.00088, respectively; the corresponding

bootstrap p-values are 0.00019, 0.00019, 0.00039, and 0.00033, respectively. Again, T1

and T5 are the same test. The maximum of the VT test occurs at the highest MAF,

at which threshold 18 out of the 451 subjects with high cholesterol values carry the

rare mutations as opposed to 7 out of 683 subjects with desirable cholesterol values.

The p-value of the bootstrap EREC test is 0.000021, which is the most extreme among

all the tests and is even more extreme than all the p-values of the quantitative trait

analysis. For eight out of the 10 variants in the top gene, there were more mutations

in the high group than in the desirable group (17 vs 2); for the remaining two variants,

there were fewer mutations in the high group than in the desirable group (1 vs 5).

Thus, allowing opposite effects yielded stronger evidence of association than assuming

effects of the same direction.

Finally, we compared the new methods with the existing ones. The results for the

SKAT are shown in Figure 2.5 (top panel). For the top gene, the SKAT yielded the p-

values of 0.0014 and 0.00024 in the quantitative and binary trait analyses, respectively,

which are 10 times the p-values of our EREC test. Because the other existing methods

do not allow covariates and some of them require binary traits, we performed the binary

trait analysis without the covariates for all the methods. The results are shown in the
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bottom panel of Figure 2.5 and in Figures 2.6-2.8. Although the top gene remains the

same, the results without covariate adjustment (for the top gene) are considerably less

significant than those with covariate adjustment. For the top gene, the EREC test

yielded a much more significant result (p-value= 0.00013) than all the other tests.
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Figure 2.1: Quantile-quantile plots of − log10(p-values) for the asymptotic T1, T5, MBp

and VT tests in the quantitative trait analysis of total cholesterol.
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Figure 2.2: Quantile-quantile plots of − log10(p-values) for the permutation EREC, T5,
MBp and VT tests in the quantitative trait analysis of total cholesterol.
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Figure 2.3: Quantile-quantile plots of − log10(p-values) for the asymptotic T1, T5, MBp

and VT tests in the binary trait analysis of total cholesterol.
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Figure 2.4: Quantile-quantile plots of − log10(p-values) for the bootstrap EREC, T5,
MBp and VT tests in the binary trait analysis of total cholesterol.
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Figure 2.5: Quantile-quantile plots of− log10(p-values) for the SKAT in the quantitative
and binary trait analyses of total cholesterol (with covariates) and for the SKAT and
C-alpha in the binary trait analysis of total cholesterol without covariates.
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Figure 2.6: Quantile-quantile plots of − log10(p-values) for the asymptotic T1, T5, MBp

and VT tests in the binary trait analysis of total cholesterol without covariates.
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Figure 2.7: Quantile-quantile plots of − log10(p-values) for the permutation EREC, T5,
MBp and VT tests in the binary trait analysis of total cholesterol without covariates.
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Figure 2.8: Quantile-quantile plots of − log10(p-values) for the Han-Pan test, Price et
al.’s VT test, and the asymptotic and permutation versions of the MB test in the binary
trait analysis of total cholesterol without covariates.
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2.5 Discussion

We developed a very general framework for the association analysis of rare variants.

This framework enabled us to evaluate existing methods and develop new methods. Our

theoretical analysis and simulation studies yielded new insights into the behavior of the

existing methods. The normal approximation works very well for the new methods, and

resampling is required only when the weight function depends on the phenotype values.

The new methods are numerically stable and easy to implement. The asymptotic tests

are extremely fast. A computer program implementing the new methods is posted at

our website.

We have adopted score-type statistics, which are computationally faster and more

stable than Wald and likelihood ratio (LR) statistics. Our simulation studies revealed

that Wald tests tend to be overly conservative (resulting in substantial loss of power)

while likelihood ratio tests tend to be too liberal (resulting in excessive false-positive

findings), especially for small n and low MAFs; see Tables 2.12-2.14.

Our work improves upon the pioneer work of Madsen and Browning by using more

powerful test statistics, accommodating covariates and avoiding permutation. For case-

control studies, Madsen and Browning estimated the allele frequencies in the unaffected

subjects only so that a true signal from an excess of mutations in the affected subjects

would not be deflated by using the total number of mutations in both affected and

unaffected subjects. According to our theory, the allele frequencies in the unaffected

subjects will be optimal if log(ORj) ∝ {pj(1 − pj)}−1/2 (j = 1, . . . ,m) and pj is the

frequency of the jth variant in the unaffected subjects. Even if that is the truth,

the frequency estimates are highly variable and can be very different from the true

values. The frequency estimates in the pooled sample of affected and unaffected subjects

are more stable and the corresponding MBp-test can be implemented through normal

approximation (rather than resampling).
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The optimal choice of the frequency threshold depends on the nature of association,

which is generally unknown. In addition, the frequency estimates for rare variants are

highly variable, especially for small samples with substantial missing data. Thus, VT

methods may be preferable to fixed threshold methods. Our VT approach improves

upon that of Price et al. in three aspects: (1) it uses more powerful test statistics; (2)

it can accommodate covariates; (3) it can be implemented by normal approximation

instead of permutation.

The EREC test is capable of detecting rare mutations with opposite effects. Simu-

lation studies (Tables 2.4 and 2.6) showed that the EREC test has similar power to the

tests assuming the same direction of effects when that assumption holds and is much

more powerful than the latter when that assumption fails. In addition, the EREC test

outperforms the HP, C-alpha and SKAT tests. In the real data example, the EREC

test produced the most convincing evidence of association for the top gene among all

the tests. Thus, we recommend the EREC test for general use.

The SKAT is computationally faster than the EREC, HP and C-alpha tests because

it calculates p-values analytically. Simulation studies revealed that the SKAT is overly

conservative, especially when n and α are small. The resampling methods developed

in this chapter can be used to obtain accurate p-values for the SKAT and indeed any

other tests, with or without covariates.

It is possible to incorporate biological and computational information about the

functional effects of rare variants, such as SIFT and PolyPhen scores, into the associa-

tion analysis. Indeed, our theory allows incorporation of any prior knowledge into the

weight function. Efficient use of functional/bioinformatics information requires further

investigation. It would be worthwhile to explore Bayesian methods.

Grouping methods for rare variants are in the same vein as the SNP-set methods

for GWAS studies in that multiple SNPs within a group are analyzed collectively to
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enhance statistical power. Because the data are extremely sparse for individual rare

variants, the SNP-set methods for common variants may not be applicable to rare

variants. On the other hand, the methods for rare variants can potentially be used to

combine low-frequency SNPs in GWAS studies.

We have considered one group of variants at a time. It may be desirable to analyze

several groups of variants simultaneously. Our approach can be readily extended to

multiple groups of variants. Specifically, we divide variants into, say, K groups accord-

ing to certain criteria (e.g., MAFs) and combine the information within each group.

We can express the score statistic for each group of variants as a sum of n efficient

score functions, so that the asymptotic joint distribution of the K score statistics fol-

lows from the multivariate central limit theorem. We can then use the asymptotic joint

distribution to form a multivariate test statistic. If we choose the maximum of the K

test statistics, then the formulas for K weight functions presented in the Material and

Methods section can be directly applied. If we choose the chi-squared statistic with K

degrees of freedom, then our method would be a generalization of the CMC of Li and

Leal.

We used the Bonferroni correction in the analysis of the real data. This criterion

is conservative if there is strong LD among the genes. More accurate correction for

multiple testing can be achieved by accounting for the correlations of the test statistics.

There are two possible ways to do so: one is to use permutation and one is to use Monte

Carlo. The latter is based on efficient score functions.

60



CHAPTER3: BINARY SECONDARY TRAIT ANALYSIS UNDER
TRAIT-DEPENDENT SAMPLING

3.1 Introduction

In this chapter, we propose a valid and efficient maximum likelihood (ML) frame-

work for rare-variant testing of binary secondary trait associations. We model the

quantitative primary trait using the approach described by Lin et al. (2013) and the

binary secondary trait using a probit regression model. We evaluate statistical sig-

nificance using asymptotic approximation or resampling. The resampling approach is

especially important for rare-variant tests because the asymptotic approximation can

be inaccurate when variants are rare and traits are binary. We compare the ML meth-

ods with the näıve methods; namely, the standard probit or logistic regression methods.

We demonstrate through extensive simulations that the ML methods preserve the type

I error and that the power for meta-analysis is always higher than the power for each

individual study. In contrast, the näıve methods do not hold such properties under

trait-dependent sampling. Finally, we apply our methods to data from NHLBI ESP.

3.2 Methods

For a given study, let Y1 denote the quantitative primary trait and Y2 denote a

binary secondary trait. Also, let G denote the genotypes and Z denote the covariates

(e.g., age, gender, principle components). In the single variant analysis, G pertains to

a common variant. In the gene-level analysis, G pertains to a set of variants within a

gene.
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Suppose that n1 subjects with extreme value of Y1 are selected for sequencing from

a cohort of n subjects. We assume that the primary trait Y1 is available for all members

of the cohort and the genotype G and covariate Z are available for the n1 sequenced

subjects. The secondary trait Y2 can be available only on a subset, say n2, of the

sequenced subjects. Without loss of generality, we order the data such that the first

n2 subjects correspond to subjects with available Y2 value and the remaining (n1− n2)

sequenced subjects appear next. Hence, we write the observed-data likelihood in the

following expression:

n1∏
i=1

P (Y1i | G1i, Z1i)P (G1i, Z1i)
n∏

i=n1+1

∑
g1,z1

P (Y1i | g1, z1)P (g1, z1)

n2∏
i=1

P (Y2i|Y1i, G2i, Z2i)(3.1)

where G1 and G2 are the genetic variables (e.g., burden scores) derived from the geno-

type G, Z1 and Z2 are functions of the covariate Z, and P denotes the probability

distribution function.

We postulate a continuous latent variable denoted by Y ∗2 with Y ∗2 ∈ (−∞, 0] cor-

responding to Y2 = 0 and Y ∗2 ∈ (0,∞] corresponding to Y2 = 1. Then, we model the

joint distribution of Y1 and Y ∗2 through a bivariate linear regression model:

Y1 = βT
1 G1 + γT

1 Z1 + ε1 and

Y ∗2 = βT
2 G2 + γT

2 Z2 + ε2,

where (ε1, ε1) follows a bivariate normal distribution with mean 0 and covariance

{σij; i, j = 1, 2}. We absorb the unit component in Z such that the first components of

γ1 and γ1 pertain to the intercepts. The distribution of Y ∗2 conditional on (Y1, G2, Z2)

satisfies the following linear regression model

Y ∗2 = αỸ1 + βT
2 G2 + γT

2 Z2 + ε̃2,
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where α = σ12/σ11, Ỹ1 = Y1 − βT
1 G1 − γT

1 Z1, and ε̃2 is independent of ε1 and follows

a normal distribution with mean 0 and variance σ̃22 = σ22 − σ2
12/σ11. We set σ̃22 = 1

because the residual variance is unidentifiable with the unobserved Y ∗2 . This linear

regression model is equivalent to the probit regression.

It is important to note that only the term
∏n2

i=1 P (Y2i|Y1i, G2i, Z2i) in the expression

3.1 involves the parameter of interest β2. Therefore, to make inference about β2, we only

need to focus on the probit model. However, the parameters (β1, γ1) in Ỹ1 are unknown

and need to be estimated. This can be achieved using the computationally efficient and

numerically stable EM algorithm put forth by Lin et al. (2013). Let (β̂1, γ̂1) denote

the parameter estimates from the EM algorithm and
̂̃
Y 1i denote Y1i − β̂T

1 G1i − γ̂T
1 Z1i.

Then, the score statistic for the null hypothesis H0 : β2 = 0 can be written as

U =

n2∑
i=1

(−1)Y2i+1ϕ

(
α̂
̂̃
Y 1i + γ̂T

2 Z2i

)
Φ

(
(−1)Y2i+1

(
α̂
̂̃
Y 1i + γ̂T

2 Z2i

))G2i,

where ϕ(.) and Φ(.) are the density function and cumulative density function respec-

tively of the standard normal distribution, and (α̂, γ̂2) are the restricted MLE of (α, γ2)

from the probit regression under H0. Suppose that G2 consists of m genetic variables

G2i = (G21i, · · · , G2mi). Then, U = (U1, · · · , Um) is a m×1 vector and is asymptotical-

ly multivariate normal with mean 0 and covariance matrix V = {vkl; k, l = 1, · · · ,m}.

Various gene-level test statistics can be constructed based on U and V , in order to

reflect the trait-depending sampling, and the corresponding p-value can be obtained

analytically.

Alternatively, the resampling p-value can be obtained through a parametric boot-

strap. Specifically, we generate the lth sample of the ith subject Y
(l)

2i from the fitted
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null model:

Pr(Y
(l)

2i = 1) = Φ

(
α̂
̂̃
Y 1i + γ̂T

2 Z2i

)
,

replace Y2i with Y
(l)

2i , and re-calculate the test statistic. Then, the resampling p-value

can be obtained by (L0 + 1)/(L + 1), where L0 is the number of L sampled statistics

that are at least as extreme as the observed statistic. For computational efficiency, we

employ an adaptive procedure, in which we use small numbers of samples for the large

p-values and large numbers of samples only for the small p-values.

The näıve approach is to perform standard probit or logistic regression. Two ver-

sions of the näıve method exist. The first version, referred to as probit-M or logit-M,

is to regress Y2 on (G2, Z2). The other version, referred to as probit-C or logit-C, is to

regress Y2 on (Y1, G2, Z2). The “M” and “C” stand for “marginal” and “conditional”,

respectively.

3.3 Simulation studies

3.3.1 Type I error under random sampling

We investigate the type I error of the burden (aggregate of all variants), VT, and

SKAT tests based on the probit and logistic regressions under random sampling, in

which the binary sample can be unbalanced, especially for rare diseases. In our sim-

ulation, the data were sampled using a logistic model with one covariate. We varied

the sample size and the proportion of cases. The genotypes of 10 variants were sim-

ulated, and two sets of MAFs were considered: (1) pj = 0.001j (j = 1, · · · , 10); and

(2)pj = 0.01j (j = 1, · · · , 10). One million replicates were used to evaluate the type

I error rate. The results are presented in Tables 3.1 and 3.2. The type I error rates

for the gene-level tests based on the logistic regression model are not inflated for the

unbalanced numbers of cases and controls when the MAFs of the variants are low.
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Table 3.1: Type I erroraat different nominal levels for rare-variant
tests based on probit and logistic regressions under pj = 0.001j
(j = 1, · · · , 10). Binary data are simulated using a logistic regres-
sion model.

Burden Test VT Test SKAT

Sample Size Case% α Probit Logit Probit Logit Probit Logit

500 10% 10−2 0.82 1.00 0.70 2.10 1.10 2.00

10−3 0.71 1.70 0.63 5.10 1.40 4.40

10−4 0.78 3.20 0.76 15.00 1.60 11.00

20% 10−2 0.91 0.98 0.68 1.40 0.80 1.20

10−3 0.80 1.20 0.45 2.10 0.73 1.70

10−4 0.68 1.50 0.36 3.20 0.54 2.60

50% 10−2 0.95 0.95 0.71 0.72 0.60 0.61

10−3 0.87 0.88 0.43 0.44 0.30 0.32

10−4 0.72 0.70 0.30 0.33 0.11 0.11

1000 10% 10−2 0.92 1.00 0.74 1.90 1.10 1.60

10−3 0.86 1.30 0.67 4.60 1.50 3.10

10−4 0.80 2.40 0.81 14.00 1.70 6.60

20% 10−2 0.97 0.99 0.72 1.30 0.89 1.10

10−3 0.89 1.10 0.56 1.90 0.92 1.50

10−4 0.79 1.10 0.56 3.20 0.85 2.10

50% 10−2 0.98 0.98 0.76 0.76 0.77 0.78

10−3 0.89 0.90 0.54 0.55 0.53 0.54

10−4 0.87 0.87 0.59 0.59 0.39 0.39

a divided by α.
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Table 3.2: Type I erroraat different nominal levels for rare-variant
tests based on probit and logistic regressions under pj = 0.01j
(j = 1, · · · , 10). Binary data are simulated using a logistic regres-
sion model.

Burden Test VT Test SKAT

Sample Size Case% α Probit Logit Probit Logit Probit Logit

500 10% 10−2 0.98 1.00 0.82 1.50 0.98 1.40

10−3 0.88 1.00 0.81 2.80 1.20 2.60

10−4 0.64 1.00 0.95 7.40 1.50 5.60

20% 10−2 1.00 1.00 0.84 1.10 0.86 1.00

10−3 0.94 0.99 0.77 1.50 0.81 1.40

10−4 0.85 1.00 0.79 2.60 0.84 2.10

50% 10−2 0.99 0.99 0.89 0.89 0.81 0.81

10−3 1.00 0.99 0.75 0.76 0.65 0.66

10−4 1.00 1.00 0.76 0.79 0.44 0.44

1000 10% 10−2 0.98 1.00 0.90 1.30 0.97 1.20

10−3 0.92 1.00 0.88 2.00 1.10 1.90

10−4 0.91 1.10 1.00 4.20 1.40 3.50

20% 10−2 0.99 1.00 0.92 1.10 0.92 1.00

10−3 0.97 1.00 0.87 1.30 0.91 1.20

10−4 0.95 1.00 0.90 2.00 0.90 1.60

50% 10−2 1.00 1.00 0.96 0.97 0.91 0.91

10−3 0.99 0.99 0.86 0.87 0.79 0.80

10−4 0.95 0.96 0.94 0.93 0.68 0.69

a divided by α.
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3.3.2 Type I error and power under trait-dependent sampling

We conducted extensive simulation studies to evaluate the type I error and power of

the ML methods and the näıve methods under trait-dependent sampling. Three rare-

variant association tests were performed: burden test, VT test and SKAT. Population

genetic data were generated using cosi. We simulated 10,000 haplotypes for 1000kb

regions derived from the European samples. The parameters were derived from the

models that best mimicked the real population (Schaffner et al. 2005). For each data

set, we randomly selected 3kb genetic regions, which is the average size of the coding

region of a gene (Pruitt et al. 2012). Then, we randomly paired 2 haplotypes to form

the diploid of an individual. The average number of variants across the 3kb regions

was about 60, of which 90% had MAF <= 5%. Because we focused on rare-variant

associations, the common variants with MAF > 5% were removed.

Two quantitative traits Y1 and Y ∗2 were generated from the bivariate normal distri-

bution: Y1i

Y ∗2i

 ∼ N2


βT

1 G+ γT
1 Z

βT
2 G+ γT

2 Z

 ,

σ11 σ12

σ12 σ22


 ,

where one covariate in Z was generated from the standard normal distribution. Then,

the binary secondary trait Y2 is set to 1 if Y ∗2 is positive and set to 0 otherwise. We

generated a cohort of 10,000 subjects and kept the values of (G,Z, Y2) for the 250

subjects with the smallest values of Y1 and the 250 subjects with the largest values of

Y1. In all the simulation studies, we fixed γ1 = (0, 0.2) and γ2 = (−1.4, 0.2) and varied

the values of β1 and σ12. We set the nominal significance level α at 10−3 and obtained

the p-value analytically. One million replicates were used for type I error simulations,

and 10,000 replicates were used for the power simulations.

In our implementation, we let G1 contain variants with minor alleles >= 10 and
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a burden score collapsing the remaining variants. For the burden test, G2 consists

of a burden score collapsing variants with MAF < 5%; for the VT test, G2 consists

of burden scores based on a set of allele-frequency thresholds; and for the SKAT, G2

consists of genotypes of individual variants.

We randomly selected 50% of the variants to be causal for the primary trait and

another 50% of the variants to be causal for the secondary trait. We let all of the causal

variants for the primary trait have the same positive effect sizes. The results for type

I error rates are shown in Figure 3.1. Type I error rates are a little bit deflated for the

ML methods under all scenarios. By contrast, type I error rates are inflated for the

four näıve methods if the primary and secondary traits are correlated and if there is a

genetic effect on the primary trait. The inflation for the “M” methods is more severe

than the inflation for the “C” methods.

In the power simulations, we assumed that the genetic effect sizes for the secondary

trait are proportional to −log(MAF ). In addition, positive and negative effects for

the secondary trait were considered. Figure 3.2 shows the results when the effects are

positive, and Figure 3.3 shows the results when the effects are negative.

3.3.3 Meta-analysis

To compare the power of the ML methods with the näıve methods for combining

multiple studies, we simulated data sets for two studies and combined score statistic-

s (Tang and Lin 2013). We note that the correlation between the primary and the

secondary trait and the magnitude of the genetic effects for the primary trait are po-

tentially different between the two studies because the primary traits in the two studies

may be different. We assumed that all variants have effects on the primary trait, and

we evaluated the power of the meta-analysis for the ML and the näıve methods when:

(1) the correlation between the primary and secondary trait is 0.6 in study I and -0.6
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Figure 3.1: Type I error rates for the ML and näıve methods for detecting genetic
associations when the genetic effects are positive. The results for the burden, VT,
and VC tests are shown in the upper, middle, and lower rows, respectively. The left
panel shows the power as a function of the genetic effect on the primary trait when the
correlation between the primary and secondary traits is 0.4. The right panel shows the
power as a function of the correlation between the primary and secondary traits when
the genetic effect on the primary trait is 0.4.
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Figure 3.2: Power of the ML and näıve methods for detecting genetic associations when
the genetic effects are positive. The results for burden, VT, and VC tests are shown
in the upper, middle, and lower rows, respectively. The left panel shows the power as
a function of the genetic effect on the primary trait when the correlation between the
primary and secondary traits is 0.4. The right panel shows the power as a function of
the correlation between the primary and secondary traits when the genetic effect on
the primary trait is 0.4.
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Figure 3.3: Power of the ML and näıve methods for detecting genetic associations when
the genetic effects are negative. The results for burden, VT, and VC tests are shown
in the upper, middle, and lower rows, respectively. The left panel shows the power as
a function of the genetic effect on the primary trait when the correlation between the
primary and secondary traits is 0.4. The right panel shows the power as a function of
the correlation between the primary and secondary traits when the genetic effect on
the primary trait is 0.4.
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in study II or; (2) the genetic effect for the primary trait is 0.6 in study I and -0.6 in

study II. The results are displayed in Figure 3.4. The ML methods yield larger power

than the näıve methods in the meta-analysis of our simulation studies. For the ML

methods, the power of the meta-analysis is always larger than the power of individual

studies. This is not always the case for the näıve methods. The large power with the

näıve methods for the individual studies is due to the inflation of the type I error, and

the reduced power in the meta-analysis is due to the different direction of bias in the

estimates for the two studies.

3.4 Data analysis

The NHLBI ESP is a signature project of the NIH Recovery Act investment: it was

designed to identify genetic variants in all protein-coding regions of the human genome

that are associated with heart, lung, and blood diseases. The project is comprised of

multiple studies, each of which is focused on one trait. Specifically, the NHLBI ESP

includes three studies that sequenced subjects with extreme values of specific quanti-

tative trait (i.e., BMI, LDL, or BP), one case-control study on myocardial infarction

(MI), and one case-only study on stroke. A total of 267 subjects with BMI > 40 and

178 subjects with BMI < 25 were selected for sequencing out of a total of 11,468 sub-

jects from one cohort. For the LDL study, 120 subjects with the highest LDL values

and 120 subjects with the lowest LDL values were selected out of ∼22,000 European

Americans from 4 cohorts; likewise, 120 subjects with the highest LDL values and 120

subjects with the lowest LDL values were selected out of ∼7,000 African Americans

from the same cohorts. The LDL values were adjusted for age, sex, and lipid med-

ication, and the adjusted LDL values for the selected subjects represented less than

the first percentile and greater than the 99th percentile for European ancestry and less

than the 3rd percentile and greater than the 97th percentile for African ancestry. For
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Figure 3.4: Power of the meta-analysis using the ML and näıve methods for detecting
genetic associations. The results for the burden, VT, and VC tests are shown in the
upper, middle, and lower rows, respectively. For the left panel, we set the genetic effect
on the primary trait in both studies to 0.4 and the correlations between the primary
trait and the secondary trait in Study I and Study II to 0.6 and -0.6, respectively. For
the right panel, we set the correlations between the primary trait and the secondary
trait in both studies to 0.4 and the genetic effect on the primary trait in Study I and
Study II to 0.6 and -0.6, respectively.
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the BP study, 850 subjects were selected from the top and bottom 0.2% to 1.0% of

the BP distribution (adjusted for sex, age, race, BMI, and antihypertensive treatmen-

t) for ∼100,000 European Americans and ∼20,000 African Americans from 7 cohorts.

The MI case-control study was comprised of 650 cases with early MI and 650 controls

free of MI. The stroke case-only study was comprised of of 600 subjects with ischemic

stroke. In addition to the above five studies, the NHLBI ESP included a random sam-

ple of 1,000 European Americans and 500 African Americans who had a predefined

common set of core variables (i.e., phenotypes and traits); this cohort is referred to as

the deeply phenotyped reference (DPR). Whole-exome sequencing was performed at

the University of Washington and the Broad Institute.

For illustration, we considered the status of diabetes as the trait of interest, which

is the secondary trait in the BMI, LDL, BP, MI, and stroke studies. We used both the

ML and näıve methods to analyze associations with diabetes in the LDL, BMI, and

BP studies and performed standard logistic regression analysis to identify associations

with diabetes in the MI study (adjusted for MI status), stroke study, and DPR. (We

note that both early MI and ischemic stroke are relatively rare. For a case-control

or case-only study on a rare disease, standard logistic regression analysis of secondary

quantitative traits conditional on the disease status yields approximately correct re-

sults.) After restricting our analysis to subjects with available sequencing data and

excluding subjects with sex-mismatch or relatedness, there were 627, 632, 766, 1634,

499, and 950 subjects in the LDL, BMI, BP, MI, stroke, and DPR studies, respectively.

After further restricting to subjects with available diabetes status, there were 607, 628,

693, 1553, 498, and 950. To ensure high-quality genotype calls for the analysis, we set

the individual genotype values to missing if the genotype depth (GD) was lower than

10. To reduce the number of variant calls resulting from sequencing and alignment

artifacts, we adopted a support vector machine (SVM) to separate likely true positives
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Figure 3.5: Quantile-quantile plots for the ML, näıve-M’, and näıve-C’ meta-analysis
results.

from likely artifacts by using a variety of SNP quality metrics, including allelic balance

(i.e., the proportional representation of each allele in likely heterozygotes), base quality

distribution for sites supporting the reference and alternate alleles, and the distribution

of supporting evidence between strands and sequencing cycle. After these quality con-

trol filters, there were a total of 115,515 SNPs with call rates > 90% and MAFs ≥ 0.5%.

Approximately 60% of the SNPs were in exons. We focused on single-variant analysis

under the additive mode of inheritance and included the top five principal components

for ancestry, age, squared age, gender, race, cohort, and sequencing center/target as

covariates. The natural logarithm was applied to the LDL and BMI values.

Figure 3.5 displays the quantile-quantile plots for the meta-analysis of the six studies

based on ML, näıve-M’ (logit-M’) and näıve-C’(logit-C’), and Figure 3.6 shows the pair

plots between the p-values of the ML method and the näıve methods. For the MLE

meta-analysis, the observed p-values agree very well with the global null hypothesis of

no association except at the extreme right tails. By contrast, the observed p-values

of Näıve-M’ and Näıve-C’ deviate substantially from the null distribution, reflecting

excessive false positive results.

75



Figure 3.6: Pair plots between the p-values for the ML method and the näıve methods.
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CHAPTER4: META-ANALYSIS IN SEQUENCING STUDIES

4.1 Introduction

Meta-analysis, which combines summary statistics from multiple studies, is an im-

portant tool to boost statistical power. Several research groups have recently developed

meta-analysis methods for gene-level association tests (Tang and Lin 2013, Lee et al.

2013, Liu et al. 2014, Hu et al. 2013). Most of those methods assume fixed-effects (FE)

models, under which the genetic effects are the same in all participating studies. If the

populations or environmental factors differ substantially among studies, then the effect

sizes will likely be unequal, especially for rare variants. This phenomenon is referred

to as (between-study) heterogeneity, which may also be caused by different definitions

or measurements of the phenotype and different collections or manipulations of geno-

type data (e.g., sequencing platforms and quality control criteria) (Ioannidis et al. 2007,

Waters et al. 2010, Heid et al. 2009; 2010, Tobacco and Consortium 2010). Further het-

erogeneity may arise from differences in gene annotation, variant selection and MAF

calculation.

In this chapter, we propose simple meta-analysis methods for gene-level association

tests under random-effects (RE) models, which allow the genetic effects to vary among

studies. Our methods take score statistics, rather than individual participant data, as

input and thus can accommodate any study designs (e.g., case-control, cross-sectional,

cohort, and family studies) and any phenotypes (e.g., binary, quantitative, and cen-

sored). We produce the RE versions of all commonly used gene-level association tests,

including burden, CMC, VT, VC and SKAT-O. Each test statistic provides a joint
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test of the mean and the variation of the genetic effects among the studies and thus

has high power when the average effect is large or the heterogeneity is strong or both.

We demonstrate through extensive simulation studies that our RE methods are sub-

stantially more powerful than the FE methods in the presence of moderate and high

heterogeneity and are nearly as powerful as the latter when the heterogeneity is low.

We illustrate the usefulness of the proposed methods through an application to the

NHLBI ESP.

4.2 Methods

Suppose that we are interested in the effects of d genetic variables on a particular

phenotype. For the burden test, the genetic variable is the burden score. For the

CMC test, the genetic variables consist of the burden scores for rare variants and the

genotypes for common variants. For the VT test, the genetic variables are the burden

scores at the observed MAF thresholds. For the VC test, the genetic variables are the

genotypes of individual variants.

We wish to perform meta-analysis of K independent studies. For k = 1, . . . , K, let

βk = (βk1, · · · , βkd)T denote the effects of the d genetic variables in the kth study. It is

natural to postulate the following random-effects model:

βk = µ+ ξk, k = 1, . . . , K, (4.1)

where µ = (µ1, · · · , µd)T represents the average genetic effects among the studies,

and ξk = (ξk1, · · · , ξkd)T is a set of random effects representing the deviations of the

genetic effects of the kth study from the average effects. It is assumed that ξk follows

a multivariate normal distribution with mean 0 and covariance matrix Σ.

We are interested in testing the null hypothesis that the d genetic variables are not
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associated with the phenotype in any of the K studies, i.e., β1 = β2 = · · · = βK = 0.

This null hypothesis corresponds to H0 : µ = 0 and Σ = 0 under model 4.1. When the

dimension d is large, the statistic for testing H0 with an arbitrary Σ will have many

degrees of freedom and thus have limited power. To increase power, we impose some

structure on Σ by writing Σ = σB, where σ is an unknown constant, and B is a pre-

specified matrix. Since σ = 0 is equivalent to Σ = 0, the null hypothesis H0 can be

written as H0 : µ = 0 and σ = 0.

In practice, the true structure ofB is unknown. It is reasonable to assume compound

symmetry such that

B =



b2
1 b1b2r . . . b1bdr

b2b1r b2
2 . . . b2bdr

...
...

. . .
...

bdb1r bdb2r · · · b2
d


,

where (b1, · · · bd) controls the relative degrees of heterogeneity for the d genetic effects,

and r specifies the correlation of heterogeneity. If we believe that heterogeneity is

higher for rarer variants, then we let the bj’s be inversely related to the MAFs. If

the variations of the d effects are independent, then r = 0. In constructing the test

statistics, we may set r to a certain value, say 0, or vary r from 0 to 1. It is important

to point out that the choice of B affects the power but not the type I error since σ = 0

entails Σ = 0 regardless of the value of B. As will be seen later, B is involved only in

the CMC and VC tests.

For the kth study, we obtain the d-dimensional score statistic Uk for testing the

null hypothesis that βk = 0 and the corresponding information matrix Vk. We describe

below how to use the Uk’s and Vk’s to construct the RE versions of the burden, VT,

VC and related tests. The derivations are given in the Appendix.

For the simple burden test, there is only one genetic variable, which is the burden
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score. The score statistic for testing the null hypothesis H0 : µ = 0 and σ = 0 is

RE-BS =

( K∑
k=1

Uk

)2/ K∑
k=1

Vk +
1

2

( K∑
k=1

U2
k −

K∑
k=1

Vk

)2/ K∑
k=1

V 2
k . (4.2)

The first term, denoted by FE-BS, pertains to the score statistic for testing µ = 0

under the fixed-effects model (σ = 0) and the second term to the score statistic for

testing σ = 0 given µ = 0. The two statistics are combined through direct summation

because they are uncorrelated. Since it is a joint test of the mean and heterogeneity

of the effects, RE-BS will have high power when the mean effect size is large or/and

when the between-study heterogeneity is strong.

For the CMC (Li and Leal 2008) and other tests involving multiple burden scores,

the test statistic takes a multivariate form

RE-CMC = UT
µ V

−1
µ Uµ +

U2
σ

Vσ
, (4.3)

where Uµ =
∑K

k=1 Uk, Vµ =
∑K

k=1 Vk, Uσ = 1
2

∑K
k=1 U

T
k BUk − 1

2
tr(VµB),

Vσ = 1
2
tr
(∑K

k=1 VkBVkB
)
, and tr stands for trace. If d = 1, then 4.3 reduces to 4.2.

When d > 1, we set r = 0. Alternatively, we may choose the value of r that yields the

smallest p-value for RE-CMC. The resulting test statistic is denoted by RE-CMC-O,

where O means that the test statistic is “optimized” over r. The calculation of the

p-value for RE-CMC-O needs to account for the fact multiple values of r have been

tried.

The asymptotic approximations to the distributions of RE-BS, RE-CMC and RE-

CMC-O require large K and may not be accurate for small K. Thus, we use Monte

Carlo simulation to obtain the p-values for these tests and all subsequent ones. To be

specific, we repeatedly generate Uk from the d-variate normal distribution with mean
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0 and covariance matrix Vk for k = 1, · · · , K and recalculate the test statistic. The p-

value is set to be the proportion of the simulated test statistics that are greater than the

observed test statistic. To improve computational efficiency, we employ an adaptive

procedure which uses a small number of simulations for a large p-value and a large

number of simulations for an extreme p-value. Specifically, we use 1,000 simulations

for p-values greater than 0.1, 100,000 simulations for p-values between 0.001 and 0.1, 1

million simulations for p-values less than 0.001. This adaptive strategy makes Monte

Carlo simulation almost as fast as the asymptotic approximation since most genes have

large p-values.

For the VT method, the genetic variables correspond to the burden scores at d MAF

thresholds. We perform a burden test at each MAF threshold and choose the threshold

that produces the largest test statistic. Thus, the VT test statistic is defined by

RE-VT = max
j=1,...,d

{
u2
j/vj +

1

2

( K∑
k=1

u2
kj −

K∑
k=1

vkj

)2/ K∑
k=1

v2
kj

}
,

where uj and ukj are the jth components of Uµ and Uk, respectively, and vj and vkj are

the jth diagonal elements of Vµ and Vk, respectively. The FE counterpart is FE-VT

= max
j=1,...,d

u2
j/vj.

For the VC test, the genetic variables consist of the individual genotypes of d vari-

ants. We assume that the set of average genetic effects µ is a d-variate normal random

vector with mean 0 and covariance matrix τW , where τ is an unknown constant, and

W is a pre-specified matrix. We impose compound symmetry such that

W =



w2
1 w1w2ρ . . . w1wdρ

w2w1ρ w2
2 . . . w2wdρ

...
...

. . .
...

wdw1ρ wdw2ρ · · · w2
d


,
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where (w1, · · ·wd) controls the relative magnitutes of the d average genetic effects,

and ρ indicates the correlation of the d effects. Note that W measures the within-

study random effects of individual variants whereas B measures the between-study

heterogeneity.

Since τ = 0 is equivalent to µ = 0, the null hypothesis H0 becomes τ = σ = 0. The

score statistic for testing H0 takes the form

RE-VC =

[
Uτ Uσ

]
V −1
τσ

Uτ
Uσ

 ,
where Uτ = 1

2
UT
µWUµ− 1

2
tr(VµW ), Uµ, Vµ, and Uσ were defined below equation 4.3 but

now pertain to individual variants instead of burden scores, and

Vτσ =
1

2

 tr (VµWVµW ) tr
(∑K

k=1 VkWVkB
)

tr
(∑K

k=1 VkBVkW
)

tr
(∑K

k=1 VkBVkB
)
 ,

which is the covariance matrix of (Uτ , Uσ). The FE version is FE-VC = 2U2
τ /tr (VµWVµW ).

As in the case of RE-BS, RE-CMC and RE-VT, both the mean and heterogeneity con-

tributes to RE-VC; however, the two contributions are correlated and thus cannot be

directly added.

In original VC tests, ρ is set to 0 to allow the multiple effects within a gene to

vary independently. By default, we set ρ = 0 for FE-VC and ρ = r = 0 for RE-VC.

If ρ = r = 1, then RE-VC would become RE-BS. We can choose the value of ρ that

yields the smallest p-value for FE-VC and the combination of ρ and r that yields the

smallest p-value for RE-VC. The resulting test statistics are denoted by FE-VC-O and

RE-VC-O, respectively. FE-VC-O is a standardized version of SKAT-O, and RE-VC-O

can be viewed as a RE version of SKAT-O.

RE-BS is optimal if the effects of individual variants are similar within each study.
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RE-VT allows the choice of the MAF threshold to be data-dependent. RE-VC is

desirable if the effects of individual variants within a study are different. RE-VC-

O allows the data to suggest how the effects of individual variants vary within and

between studies.

4.3 Simulation studies

We conducted extensive simulation studies to evaluate the performance of the pro-

posed and existing methods. We considered meta-analysis of five studies with sample

sizes of 800, 1,000, 1,200, 1,400, and 1,600. Following Liu et al. (2014), we generated

12,000 haplotypes of length 1000kb under a calibrated coalescent model (Hudson 2002)

mimicking a sample of three European populations (Kryukov et al. 2009). The model

includes an ancient bottleneck, recent exponential growth, differentiation and migra-

tion. For each simulated data set, we randomly selected ten 300 base-pair regions to

construct a 3kb region, which is the average size of the coding region of a gene (Pruitt

et al. 2012). The MAFs were < 1% for 97% of the polymorphic sites. We removed

variants with MAFs>5%.

We considered both quantitative and binary traits. For the quantitative trait, we

generated data from the linear regression model

Yki = βT
k Gki + γT

k Zki + εki,

where Gki consists of the genotypes of the variants in the gene for the ith subject of

the kth study, Zki consists of 1 and a normal random variable with unit variance and

with mean being the total minor allele count for the ith subject of the kth study, and

εki is standard normal. The normal covariate represents a principal component for

ancestry or a different genetically related variable. For the binary trait, we generated
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case-control data with an equal number of cases and controls from the logistic regression

model

logitP (Yki = 1) = βT
k Gki + γT

k Zki.

We set the intercepts in the linear and logistic regression models to 0 and −2, respec-

tively, and set the regression coefficients for the normal covariate to 0.3. We compared

ten meta-analysis methods: FE-BS, FE-VT, FE-VC and FE-VC-O pertain to fixed-

effects models; RE-BS, RE-VT, RE-VC and RE-VC-O are our proposed methods un-

der random-effects models; Het-SKAT and Het-SKAT-O are Lee et al. (2013)’s tests

for heterogeneous effects. For the burden tests (FE-BS and RE-BS), the burden score

was a weighted sum of the mutation counts with the jth variant receiving the weight

Beta(MAFj; 1, 25), where MAFj is the MAF of the jth variant estimated from all study

subjects. (The beta function gives more weights to rarer variants.) We set the wj’s

and bj’s involved in the VC tests (FE-VC, RE-VC, FE-VC-O and RE-VC-O) according

to Beta(MAFj; 1, 25). For FE-VC-O, we did a grid search over ρ = (0, 0.5, 1). For

RE-VC-O, we added a grid search over r = (0, 0.5, 1). We implemented Het-SKAT and

Het-SKAT-O via the MetaSKAT software (Lee et al. 2013).

We used 1 million replicates to evaluate the type I error at the nominal significance

level α = 10−2, 10−3 and 10−4 by setting β1 = β2 = . . . = β5 = 0. The results are

shown in Table 4.1. All our tests have accurate control of the type I error, although

the RE-VT test appears to be slightly conservative for the binary trait. Het-SKAT and

Het-SKAT-O tend to be conservative for both the quantitative and binary traits.

We used 10,000 replicates to evaluate the power at α = 10−4. In each replicate,

we randomly selected 80%, 50% or 20% of the variants to be potentially causal. Let

m denote the total number of potentially causal variants. We determined the genetic

effects βk = (βk1, . . . , βkm)T by specifying the average effects µ = (µ1, . . . , µm)T and

the random effects ξk = (ξk1, . . . , ξkm)T in model 4.1. The genetic effects were allowed
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to exhibit at the burden score or individual variant level. Because rarer variants tend

to have larger effects on complex diseases (Pritchard 2001, Gorlov et al. 2008), we set

the effect sizes of the m variants according to their MAFs through a beta function.

Specifically, we generated three different structures of genetic effects: (a) set µj = ajθ

and ξkj = ajδk (j = 1, . . . ,m), where aj is given by the Beta(MAFj; 1, 25) function, θ

is a constant, and δk is a normal random variable with mean 0 and variance σ; (b) set

µj and ξkj to be the same as under structure (a) if MAFj < 1% and set µj = ξkj = 0

otherwise; (c) set µj to be a normal random variable with mean 0 and variance ajτ , and

set ξkj to be a normal random variable with mean 0 and variance ajσ (j = 1, . . . ,m).

Under structures (a) and (b), the genetic effects exhibit at the burden score level for

variants with MAFs< 5% and < 1%, respectively, and the degree of (between-study)

heterogeneity is measured by the coefficient of variation σ/θ. Under structure (c), the

genetic effects exhibit at the individual variant level, and the degree of heterogeneity

is measured by the ratio of variances σ/τ . For each percentage of potential causal

variants and each genetic structure, we varied the degree of heterogeneity (i.e., σ/θ or

σ/τ) from 0 to 2 with the increment of 0.5 and tuned the value of θ or τ such that the

power is high enough to compare different methods.

Figures 4.1 and 4.2 display the power as a function of the degree of heterogeneity for

the quantitative and binary traits, respectively. When the (between-study) heterogene-

ity is low, the FE tests (FE-BS, FE-VT, FE-VC and FE-VC-O) are more powerful than

their RE counterparts (RE-BS, RE-VT, RE-VC and RE-VC-O), although the power

loss of the latter is typically small. When the heterogeneity is high, the RE tests are

much more powerful than the FE tests. Among the RE tests, RE-BS and RE-VT are

the most powerful tests under structures (a) and (b), respectively, when the percentage

of causal variants is high. Under structures (a) and (b) with low percentages of causal

variants and under structure (c), RE-VC tends to be more powerful than RE-BS. The
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Table 4.1: Type I error divided by the nominal significance level α for various meta-
analysis methods

Quantitative Phenotype Binary Phenotype

Tests α = 10−2 α = 10−3 α = 10−4 α = 10−2 α = 10−3 α = 10−4

FE-BS 0.99 0.98 0.96 1.00 0.98 0.93
RE-BS 0.99 0.95 1.02 0.99 0.93 0.92
FE-VT 0.99 0.97 1.05 0.99 0.94 0.93
RE-VT 0.99 0.97 0.94 0.96 0.87 0.81
FE-VC 1.00 0.96 0.97 0.98 0.95 1.00
RE-VC 0.98 0.96 0.95 0.93 0.91 0.95
FE-VC-O 0.99 1.03 0.92 1.00 0.97 0.96
RE-VC-O 1.00 1.04 1.04 0.96 0.99 0.90
Het-SKAT 0.95 0.86 0.82 0.85 0.77 0.69
Het-SKAT-O 1.00 0.89 0.78 0.96 0.87 0.61

power of RE-VC-O is near the top in all scenarios. Under structures (a) and (b) with

low percentages of causal variants and under structure (c), RE-VC and RE-VC-O are

considerably more powerful than Het-SKAT and Het-SKAT-O when the heterogeneity

is low or moderate and have similar power to the latter when the heterogeneity is high.

We conducted another set of simulation studies by allowing genetic effects to exist in

only a subset of the five studies. In such scenarios, it is sensible to test the association

for each study and adjust the smallest p-value by the Bonferroni correction. Thus, we

included this method, to be referred to as minP, in the simulation studies. We varied

the the number of studies with genetic effects from 1 to 5 and set βk = µ for those

studies, where µ was generated under structure (a), (b) or (c). Figure 4.3 displays

the results for the continuous trait when 50% of the variants are potentially causal.

When the number of studies with genetic effects is 4 or 5, the RE tests are slightly

less powerful than their FE counterparts. When the number is 1, 2 or 3, the RE tests

are more powerful than the FE tests. The minP tests are less powerful than the RE

tests except when the association exists in only one study. We also considered the

binary trait and different percentages of causal variants, and the conclusions remain

unchanged (data not shown).
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Figure 4.1: Power as a function of the between-study heterogeneity for the quantitative
trait. The left, middle and right panels correspond to three different genetic structures:
(a) genetic effects exhibit at the burden score level for variants with MAFs< 5%, (b)
genetic effects exhibit at the burden score level for variants with MAFs< 1%, and (c)
genetic effects exhibit at the individual variant level. For each structure, 80%, 50% or
20% of the variants in ten 300 base-pair regions were randomly selected to be potentially
causal.
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Figure 4.2: Power as a function of the between-study heterogeneity for the binary trait.
The left, middle and right panels correspond to three different genetic structures: (a)
genetic effects exhibit at the burden score level for variants with MAFs< 5%, (b) genetic
effects exhibit at the burden score level for variants with MAFs< 1%, and (c) genetic
effects exhibit at the individual variant level. For each structure, 80%, 50% or 20%
of the variants in ten 300 base-pair regions were randomly selected to be potentially
causal.
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Figure 4.3: Power as a function of the number of studies with genetic effects on the
quantitative trait. The upper, middle and lower panels correspond to three different
genetic structures: (a) genetic effects exhibit at the burden score level for variants
with MAFs< 5%, (b) genetic effects exhibit at the burden score level for variants with
MAFs< 1%, and (c) genetic effects exhibit at the individual variant level. For each
structure, 50% of the variants in ten 300 base-pair regions were randomly selected to
be potentially causal.
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4.4 Data analysis

The goal of the NHLBI ESP is to identify genetic variants in all protein-coding

regions of the human genome that are associated with heart, lung, and blood diseases.

The project consists of seven phenotype groups: low-density lipoprotein (LDL), body

mass index (BMI), blood pressure (BP), early-onset myocardial infarction (EOMI),

stroke, asthma and chronic obstructive pulmonary disease (COPD). In addition, there

is a random sample of subjects who had measurements on a set of core variables (i.e.,

phenotypes, traits), which is referred to as deeply phenotyped reference (DPR). The D-

NA samples were sequenced on the Roche NimbleGen SeqCap EZ or Agilent SureSelect

Human All Exon 50 MB at the University of Washington and the Broad Institute (Ten-

nessen et al. 2012, Lang et al. 2014). The variants were called jointly at the University

of Michigan. We set the individual genotype values to missing if the genotype depth

was lower than 10. We restricted our attention to missense, nonsense and splice-site

variants with call rates > 90% and MAFs< 5%. We excluded any gene whose total

minor allele count was less than 5 and ended up with a total of 14, 878 genes.

We considered LDL as the trait of interest and included several covariates in the

linear regression: top two principal components for ancestry, age, age2, gender, cohorts,

and sequencing targets. The principal components were calculated from the sequencing

data. The adjustment for sequencing targets was intended to remove potential batch

effects. LDL was measured in the LDL, BMI, BP, EOMI, stroke and DPR groups,

but not in the asthma and COPD groups. For each phenotype group, we treated

the African American (AA) and European American (EA) samples separately. After

excluding subjects with sex mismatch or relatedness, there were 296, 526, 214, 351,

75 and 240 AA subjects and 331, 0, 325, 484, 123 and 700 EA subjects in the LDL,

BMI, BP, EOMI, stroke and DPR groups, respectively. In the meta-analysis, the

score statistics for the eleven studies (i.e., phenotype group × race combinations) were
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obtained from SCORE-SeqTDS (Lin et al. 2013) and then combined to produce gene-

level association tests. For the burden tests, we used the MAF thresholds of 1% and

5%, the corresponding tests being T1 and T5. The matrices B and W involved in

the VC tests were specified in the same manner as in the simulation studies. We used

100,000 million Monte Carlo simulations to estimate the extreme p-values.

The results for T1, VT, VC and VC-O are displayed in Figure 4.4. (The results

for T5 are similar to T1 and thus not shown. The burden scores for T1 and VT tests

were unweighted; the weighted results are similar and not shown.) It is instructive to

examine LDLR, which is the top gene in RE-T1. Several common variants in this gene

were previously identified to be associated with lipid traits and coronary heart diseases,

and heterogeneous associations among ethnic groups were reported (Zhang et al. 2013).

In our data, there are 54 rare variants in LDLR, all with MAFs < 1%, so the T1 and T5

tests are the same. In the T1 and VC-O tests, the RE meta-analysis provides stronger

evidence of association than the FE meta-analysis: the RE-T1 and RE-VC-O p-values

are 5.4× 10−5 and 8.0× 10−5, respectively, whereas the FE-T1 and FE-VC-O p-values

are 6.3 × 10−3 and 5.7 × 10−4, respectively. The trend is reversed for the VT tests:

the FE-VT and RE-VT p-values are 4.6× 10−8 and 1.0× 10−5, respectively. For both

FE-VT and RE-VT, the maxima of the test statistics occur at the MAF threshold of

0.02%. The forest plots shown in Figure 4.5 provide helpful insights. If we collapse

variants with MAFs < 0.02%, the effects of the burden scores are largely similar among

the 11 studies; if we collapse variants with MAFs < 1%, the effects of the burden

scores are quite heterogeneous. As shown in Figure 4.6, for the variants with MAFs

< 0.02%, the carriers of mutations tend to have higher LDL levels than the non-carriers

in all studies; for the variants with MAFs > 0.02%, the distributions of the LDL values

for the carriers are very different among studies. Figures 4.5 and 4.6 show that the

heterogeneity is largely driven by the variability of genetic effects between AA and EA.
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For LDLR, the RE-VC test (p-value = 6.3×10−4) is slightly less significant than the

FE-VC test (p-value = 3.1×10−4). This is due to the fact that almost all the mutations

of each variant are from one race group (see Figure 4.6), so the heterogeneity between

the two races can be fully captured by the FE-VC test and the RE-VC test does not

gain further information. By contrast, the RE-T1 test is more powerful than the FE-T1

test because there is considerable heterogeneity at the burden score level. The Het-

SKAT and Het-SKAT-O p-values are 2.9 × 10−3 and 1.2 × 10−3, which are much less

significant than any of our RE tests. The minP p-values for T1, VT, VC and VC-O are

2.7× 10−4, 6.7× 10−4, 7.1× 10−2 and 4.0× 10−4, respectively, which are less significant

than their RE counterparts.

4.5 Discussion

In this article, we provide simple RE methods for all commonly used gene-level

association tests, including the burden, VT and VC tests. Each test statistic contains

contributions from both the mean and heterogeneity of the same type of genetic effect

(i.e., at the burden score level for the burden and VT tests and at the individual variant

level for the VC test). This is important because different tests are optimal for different

scenarios. The RE tests are generally preferable to their FE counterparts because they

are more powerful than the latter in the presence of moderate and high heterogeneity

and have similar power to the latter when the heterogeneity is low, as demonstrated in

the simulated and empirical data. The proposed methods are numerically stable and

computationally efficient. They have been incorporated into the software MASS. It

takes only a few minutes to conduct meta-analysis of several sequencing studies with

thousands of genes.

For ethical and logistical reasons, summary statistics are more readily available than

individual participant data. The proposed methods are based on score statistics and are
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Figure 4.4: Meta-analysis of the eleven studies in the NHLBI ESP: the left and middle
panels are the quantile-quantile plots for the FE and RE tests, and the right panel
compares the RE and FE results. The red dot indicates the gene LDLR.
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Figure 4.5: Forest plots for the burden tests with two MAF thresholds for the gene
LDLR in the NHLBI ESP. For each study, the estimate of the genetic effect is shown
by the square and the corresponding 95% confidence interval is shown by the line. The
meta-estimate of the genetic effect and the corresponding 95% confidence interval are
shown by the diamond.
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Figure 4.6: Standardized LDL values for the carriers of the LDLR mutations in the
NHLBI ESP. Each point represents an individual who carries a mutation. There are
54 polymorphic sites with the chr:position IDs and MAFs labeled on the x-axis. The
variants are ordered by the MAFs. The vertical line pertains to the MAF threshold
at which the test statistics of FE-VT and RE-VT are maximized. The five phenotype
groups are indicated by different colors. AA and EA subjects are shown in circles and
triangles, respectively. The horizontal line pertains to the average LDL value among
individuals who do not carry any mutation.
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as efficient as joint analysis of individual participant data (Lin and Zeng 2010). Since

it inputs score statistics rather than individual participant data, our framework can

accommodate any phenotype and any study design or studies with different designs.

For sequencing studies, score statistics are preferable to Wald and likelihood ratio

statistics (Lin and Tang 2011). The latter would entail estimation of the between-

study variance (in the univariate case) or covariance matrix (in the multivariate case),

which is numerically unstable or infeasible for rare variants.

The conventional RE approach is focused on the mean effect size (DerSimonian and

Laird 1986). That approach is not suitable for association testing for several reason-

s. First, it tests the null hypothesis of no mean effect while allowing between-study

heterogeneity. This is not the relevant hypothesis for association testing because the

existence of heterogeneity implies association in at least some studies. For this reason,

conventional RE tests are almost always less significant than FE tests and thus have

rarely been used in genetic association studies (Han and Eskin 2011). Second, the con-

ventional RE approach is based on the asymptotic distribution, which requires a large

number of studies, but the number of sequencing studies is usually small. Third, ex-

isting multivariate RE methods leave the between-study covariance matrix completely

un-structured (Jackson et al. 2010, Chen et al. 2012) and thus may lose power due to

the large number of degrees of freedom.

Our approach reflects the spirit of Han and Eskin (2011) in that it tests the joint

null hypothesis that there is no mean effect and no between-study heterogeneity. Our

framework differs from Han and Eskin’s in three major aspects. First, their method is

restricted to single-variant analysis of common SNPs whereas our methods deal with

gene-level tests of rare variants. Second, their test statistic is univariate whereas our

framework accommodates both univariate and multivariate test statistics. Third, their

method is based on the likelihood ratio statistic whereas our methods are based on the
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score statistic.

Our RE tests were derived under random-effects models and may appear to rely

on the normality of random effects, which is an untestable assumption. However, the

random-effects models were only used to motivate the forms of the test statistics. By

using Monte Carlo simulation rather than asymptotic approximation to obtain the p-

values, the proposed tests have correct type I error even if the underlying random-effects

models are completely wrong.

Our framework can be readily extended to handle multiple levels of between-study

heterogeneity. Suppose that there are several (ancestry) groups of studies such that the

genetic effects are homogeneous within each group but heterogeneous across groups. In

that case, we will sum the score statistics and information matrices over the studies

within each group and then construct the RE test statistics to account for the between-

group heterogeneity.

If the burden score is created under the additive mode of inheritance as the sum or

a weighted sum of the mutation counts over the variant sites (Madsen and Browning

2009, Morris and Zeggini 2010, Price et al. 2010, Lin and Tang 2011), then the score

statistics and information matrices for the burden and VT tests can be generated from

the score vector and information matrix for testing individual invariants used in the VC

tests (Hu et al. 2013). Specifically, the score statistic for the burden test is the sum or a

weighted sum of the score statistics for testing the effects of individual variants. Under

the dominant mode of inheritance, the burden score indicates whether there is any

mutation among the variant sites (Morgenthaler and Thilly 2007, Li and Leal 2008).

Then the above conversion can no longer be used. Our framework allows any mode of

inheritance since the creation of the burden scores is external to the construction of the

test statistics.

In meta-analysis, it is wise to have consistency across studies in terms of quality
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control criteria, gene annotation, variant selection and MAF estimation. This require-

ment is less essential for the RE tests than for the FE tests because heterogeneity (of

genetic effects) is allowed for the former but not for the latter. For studies that use

different exome capturing kits or studies in which some use whole-exome sequencing

while others use exome chips, the variants captured can be quite different among stud-

ies. In such situations, the RE tests should be used since the effects are expected to be

heterogeneous.
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APPENDIX : Test statistics in Chapter 4

Let β̂k denote the maximum likelihood estimator (MLE) of βk. By the MLE theory,

β̂k is approximately normal with mean βk and covariance matrix I−1
k , where Ik is the

(profile) information matrix for βk. Under model4.1 with fixed µ, β̂k is approximately

normal with mean µ and covariance matrix I−1
k + Σ. For rare variants, the effect

estimators β̂k’s are unstable and may not be computable. Thus, we construct test

statistics based on the score statistics rather than the Wald or likelihood ratio statistics.

We use the scaled score statistic Xk = V −1
k Uk as a surrogate for β̂k. Note that Vk is

the same as Ik except that the former is the (profile) information matrix evaluated at

βk = 0 and the latter at β̂k. For small βk, the statistic Xk is approximately normal

with mean µ and covariance matrix Ωk = V −1
k + σB,

The log-likelihood function for µ and σ based on the statistics Xk (k = 1, · · · , K)

can be written as

l(µ, σ) = −1

2

K∑
k=1

(Xk − µ)TΩ−1
k (Xk − µ)− 1

2

K∑
k=1

log |Ωk|.

By tedious but straightforward matrix differentiation, we can show that the score func-

tion consists of

Sµ(µ, σ) =
∂l(µ, σ)

∂µ
=

K∑
k=1

Ω−1
k (Xk − µ),

Sσ(µ, σ) =
∂l(µ, σ)

∂σ
=

1

2

K∑
k=1

(Xk − µ)TΩ−1
k BΩ−1

k (Xk − µ)− 1

2

K∑
k=1

tr
(
Ω−1
k B

)
,

and the corresponding Fisher information matrix is

I(µ, σ) = −E

∂2l(µ,σ)
∂µ∂µT

∂2l(µ,σ)
∂µ∂σ

∂2l(µ,σ)
∂σ∂µT

∂2l(µ,σ)
∂σ∂σ

 =

∑K
k=1 Ω−1

k 0

0 1
2
tr
(∑K

k=1 Ω−1
k BΩ−1

k B
)
 .
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The score statistic for testing H0 : µ = 0 and σ = 0 is

[
UT
µ Uσ

]
V −1
µσ

 Uµ

Uσ

 = UT
µ V

−1
µ Uµ +

U2
σ

Vσ
,

where Uµ = Sµ(0, 0) =
∑K

k=1 Uk, Uσ = Sσ(0, 0) = 1
2

∑K
k=1 U

T
k BUk − 1

2

∑K
k=1 tr(VkB),

Vµσ = I(0, 0), Vµ =
∑K

k=1 Vk, and Vσ = 1
2
tr
(∑K

k=1 VkBVkB
)
.

We now assume that µ is normal with mean 0 and covariance matrix τW . Write

X = (XT
1 , · · · , XT

K)T. The statistic X is approximately normal with mean 0 and

covariance matrix Ω = τ(JK ⊗ W ) + σ(IK ⊗ B) + diag(V −1
1 , · · · , V −1

K ), where JK is

a K ×K matrix composed of 1, IK is a K-dimensional identity matrix, and ⊗ is the

Kronecker product. Then the log-likelihood function for τ and σ can be written as

l(τ, σ) = −1

2
XTΩ−1X − 1

2
log |Ω|.

The score function consists of

Sτ (τ, σ) =
∂l(τ, σ)

∂τ
=

1

2
XTΩ−1(JK ⊗W )Ω−1X − 1

2
tr
(
Ω−1(JK ⊗W )

)
,

Sσ(τ, σ) =
∂l(τ, σ)

∂σ
=

1

2
XTΩ−1(IK ⊗B)Ω−1X − 1

2
tr
(
Ω−1(IK ⊗B)

)
,

and the corresponding Fisher information matrix is

I(τ, σ) = −E

∂2l(τ,σ)
∂τ∂τ

∂2l(τ,σ)
∂τ∂σ

∂2l(τ,σ)
∂σ∂τ

∂2l(τ,σ)
∂σ∂σ



=
1

2

tr
(
Ω−1(JK ⊗W )Ω−1(JK ⊗W )

)
tr
(
Ω−1(JK ⊗W )Ω−1(IK ⊗B)

)
tr
(
Ω−1(IK ⊗B)Ω−1(JK ⊗W )

)
tr
(
Ω−1(IK ⊗B)Ω−1(IK ⊗B)

)
 .
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The score statistic for testing H0 : τ = σ = 0 is

[
Uτ Uσ

]
V −1
τσ

Uτ
Uσ

 ,
where Uτ = Sτ (0, 0) = 1

2
UT
µWUµ − 1

2
tr(VµW ), Uσ = Sσ(0, 0) = 1

2

∑K
k=1 U

T
k BUk −

1
2
tr(VµB), and

Vτσ = I(0, 0) =
1

2

 tr
(
VµWVµW

)
tr
(∑K

k=1 VkWVkB
)

tr
(∑K

k=1 VkBVkW
)

tr
(∑K

k=1 VkBVkB
)
 .
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