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ABSTRACT

Yanqian Wang: Manipulation of Single DNA Molecules through Nano-fludic Devices: Simulation and
Theory

(Under the direction of Michael Rubinstein)

Nanofludic platforms such as solid-state nanopores and nanochannels enable the manipulation of DNA

molecules and have the potential to be a low-cost and high-efficiency DNA sequencing device.

DNA nanopore translocation is a process where DNA moves from one chamber to another through a

nanopore. To get into the pore, the molecule entropy decreases and free energy increases. In order to

thread the DNA throughout the pore, an electric bias is applied to overcome the entropic energy barrier.

The occupation of DNA impedes the ion transport and creates a blockage current of which the amplitude

and duration provide the information on the DNA sequence since different bases (or base pairs) can be

discriminated through different magnitude of blockage. Mining DNA sequence from the electric current

profile requires an accurate knowledge of the passage time of a given base along the molecule. Our model

assumes that the translocation process at high fields proceeds too fast for the chain to relax, and thus the

distribution of translocation times of a given monomer are controlled by the initial conformation of the chain

(the distribution of its loops). The model predicts the translocation time distribution is determined by the

distribution of initial conformation as well as by the thermal fluctuations to the conformation during the

translocation process.

Narrow nanochannels require high threshold electric fields to achieve DNA translocation, leading to short

dwell times of DNA in these channels. Nano-funnels integrated with nano-channels reduce the free energy

barrier and lower the threshold electric field required for DNA translocation. A focused electric field within

the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic

pressure at the nano-channel entrance which facilitates the entry at lower electric fields. Besides controlling

the speed of the molecule’s movement, appropriately designed nano-funnels such as parabolic shaped ones

can also function as tweezers that allow the trapping and stable control of the position of the DNA molecule.

A combination of a series of nano-funnels devices enable a wider range of location and speed manipulation

and can assist genome mapping and sequencing when equipped with base detector.
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CHAPTER 1: Introduction

Section 1.1: DNA manipulation and sequencing

Accurate genome sequencing is the key to deciphering the secrets of life and is vital for both fundamental

research and medical diagnostics. In the past few decades, researchers have been eagerly developing and im-

proving sequencing technologies. In 1977, Frederick Sanger and colleagues[104] proposed a DNA sequencing

method based on chain-terminating dideoxynucleotides by polymerase and analyze each piece of dideoxynu-

cleotides. During sequencing, the target DNA molecule is cut at known sites into fragments and separated

using gel electrophoresis. By measuring the length of these DNA fragments and overlapping them with the

aid of a computational algorithm, genomic information can be constructed. The Sanger method was the

basis of the 13-year Human Genome Project[72], and demonstrated great accuracy and has been widely used

since then.

Although the Sanger method is the most accurate DNA sequencing technique available today, it suffers

from several limitations, which result in its high cost and long processing times. For example, applying gel

electrophoresis to measure the lengths of DNA fragments requires large quantities of samples, which means

that time-consuming and expensive cell cultures must be performed to provide sufficient quantities of cells.

In some cases, not all species of cells can be cultured, which prevents the Sanger method from being used to

sequence these species genomes. Even if the target cell culture is available, the genome of those replicated

cells may not be exactly the same as the original culture due to genomic instability, genetic heterogeneity,

and laboratory selection of genotype. The second issue with the Sanger method is that the measurement of

DNA fragment lengths is on an ensemble basis, which can average out heterogeneity that may have biological

and clinical significance. The third issue is that efficiency in measuring these genome fragments can only

be increased so much. The electrophoretic separation of DNA fragments is based on length-dependent

reptation motion of DNA molecules in a gel or nanoarray. Increasing the electric field can potentially

accelerate the process, but will stretch the molecule and fail to completely separate DNA fragments due

to length-independent electrophoretic mobility. Once the sizes of the fragments are determined, a search

for overlapping sequences of the fragments requires alignment with a pre-existing sequence of the genome.

However, such sequence maps of the genome are often not known.

There are many other ways besides the Sanger method that enable researchers to study DNA, and
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many of them involve the mechanical control of the molecules position and movement. The incorporation

of the mechanical control of a single DNA molecule into the DNA sequencing platform can facilitate the

sequencing[115, 92]. For example, there are several techniques used to mechanically manipulate DNA[13],

including atomic force microscopy (AFM)[46], micropipettes[13], optical tweezers[26], and fixed force mag-

netic tweezers[92]. These techniques can be divided into either fixed-position methods, such as AFM, mi-

cropipettes, and optical traps, or fixed-force methods, like the magnetic trap technique.

Although these methods provide important information about DNA, there are advantages and drawbacks

to all these techniques. For example, AFM can be used to image and stretch a single DNA molecule with high

spatial positioning accuracy of up to 0.1 nm using a very stiff cantilever. However, AFM techniques generate

more signal noise compared to other approaches. The micropipette technique is usually accomplished with

a weaker cantilever to provide an additional mode of rotation compared to AFM manipulation. For both

the optical and magnetic trapping methods, researchers tether a micron-sized bead to the free end of a

DNA molecule. In an optical trap system, the bead is approximately 0.5 µm in size and is controlled via a

trapping laser, which creates forces as high as 100 pN. Compared to the optical trapping method of DNA, the

magnetic tweezer method provides easy rotation of the molecule and its weak stiffness results in a constant

force that depends on bead size. Besides these DNA manipulation techniques, researchers have also adopted

flow field systems[13] to study the static properties of the DNA molecule, such as tension when the molecule

is stretched.

In addition to mechanical manipulation, electric fields can be utilized to control the position and move-

ment of single DNA molecules. Once dissolved in aqueous solution, the backbone of DNA carries a negative

charge which allows the electrostatic force to pull the molecule in the opposite direction of the electric

field. The electric field applies force along the whole molecule rather than pulling only at the ends, which

enables it not only to stretch the DNA molecule, but also to move it at various speeds. For example, an

electric field can drive the DNA molecule in bulk solution at a constant speed, which is referred to as free

electrophoresis[70, 53]. Both Sanger’s method and nanopore sequencing platform[75, 84, 19] apply the elec-

tric field to drive DNA molecules. While the electric field is employed to separate DNA fragments through

gel electrophoresis in Sanger’s method, the nanopore allows a direct study of the sequences of the DNA

molecules utilizing the electric field. The latter scenario involves adding an electric bias across a nanopore to

create an electric field inside the pore and in its vicinity, which allows the DNA molecules to be captured near

the nanopore. The single DNA molecule, once captured by the electric field, can be further threaded through

the nanopore, which is referred to as translocation. Translocation of the DNA strand through the nanopore

is otherwise unfavorable in the absence of an electric field due to the molecule’s increased conformational

free energy. Similar dynamic processes in a restricted environment, such as a nanochannel[96, 51, 76], have
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raised great research interest in recent decades.

Section 1.2: Nanopore DNA sequencing

About two decades ago, a promising low-cost and high-throughput sequencing method was first introduced

using a nanopore to perform single-molecule real-time sequencing. The nanopore is embedded into a thin

membrane separating ionic buffer solution into two chambers - cis and trans. DNA molecules are initially

placed in the cis chamber and an electric bias is applied across the membrane to drive the negatively charged

DNA molecules to the trans side through the nanopore. During translocation, when the nanopore is partially

occupied/blocked by a DNA strand, the resistance of the nanopore increases compared to its vacant state

prior to and after translocation. Such a change in resistance can be monitored through the observation of

ionic current passing through the nanopore under certain electric biases. In principle, the occupation of the

nanopore with a different genomic base induces a distinct resistance. Therefore the passage of a molecule

through the pore generates a temporal pattern of ionic current from which the DNA sequence can be read.

The whole idea is to transform the spatial sequence of a DNA molecule into easily observed temporal signals,

i.e. electric current traces . Although the invention of an orifice-based sensor appeared as early as the 1940s

by Coulter[W.R. Hogg], in which the transport of blood cells through a pore allowed researchers to count

and size the analytes, the leap of using a nanopore platform to sequence DNA did not occur until 1996, with

the work of Kasianowicz et al.[43].

1.2.1: Protein nanopores

In the work of Kasianowicz et al.[43], the authors embed an α-hemolysin protein pore into a lipid bi-

layer. They then introduce single-stranded poly(U) RNA homopolymers into the cis chamber and force the

molecules to pass through the protein nanopore using an applied electric bias. In their study, Kasianowicz

et al. observed three distinct current blockades. The blockade with the shortest dwell time was interpreted

as the collision of RNA molecules with the nanopore orifice. The other two types of blockades corresponded

to RNA translocation events featuring two different entry orientations ( i.e., entry with either the 3’ or 5”

terminus of the RNA molecule). The authors observed that each passage event provided a trace of blockage

current, which indicated at least three features of the translocation process, including dwell time, current

levels, and rate of events. Translocation dwell time depends on molecules length and the events rate is

linked to the concentration of the analytes. The levels of the current in principle can tell the sequence of the

DNA/RNA molecule.

Using a nanopore to discriminate between nucleic acids was later attempted by Akeson and co-workers
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[3], who studied how the current signal changed for different RNA and DNA molecules. In their work, the

purine poly(A) molecule resulted in deeper blockages of current compared to the poly-pyrimidine poly(C)

and poly(U) molecules; an observation which could not otherwise be explained by its primary structure and

therefore was attributed to its voluminous secondary structure . In addition, the authors demonstrated a

clear two-level current pulse during the translocation of a block co-polymer made of bases C and A. Meller

et al. [74] also showed the capability of the α-hemolysin nanopore in distinguishing homopolymers and

heteropolymers composed of nucleobases dA and dC .

A recently commercialized version of a protein nanopore based genome sequencing device was recently

realized with the development of the MinION from Oxford Nanopore Technology. This $1000 device shows

improved sequencing accuracy and has gained the attention of many researchers since its debut in 2015. The

MinION can read up to 98 kilobases in length, though the average length is about 1 or 2 kilobases, with

accuracies of greater than 90% [60].

Although the MinION uses enzymes as regulators to control the speed of translocation to improve the

resolution, the reading precision is fundamentally limited by the simultaneous contribution of many bases to

the current signal. More sophisticated algorithms, such as the Hidden Markov Model, have been applied to

alleviate such difficulties. When these algorithms are paired with alignment strategies, the read-out accuracy

can be improved by up to 99% for some analytes [42], which is comparable to other real-time sequencing

technologies, such as SMRT [22], though still well below the accuracy of the Sanger sequencing method,

which has an overall accuracy on the order of 99.95% [60].

1.2.2: Solid-state nanopores

Although protein-based nanopores have atomically precise dimensions and consistent pore-molecule in-

teractions, they are also fragile given the imperfect stability of the lipid bilayer. The dimensions of protein

nanopores are also not tunable, which is a drawback for experimental design.

As an alternative to protein nanopores, solid-state nanopores, such as those fabricated from silicon

nitride (SiN) have also demonstrated the power to discriminate among different nucleic acid polymers[35].

In contrast, solid-state nanopores are more flexible in terms of dimension and shape, and they are robust

under many different thermal and chemical conditions [58], unlike protein nanopore experiments.

It is theoretically possible to create solid-state nanopores of any desired size, although current fabrication

technology is unable to achieve as high a precision compared to protein nanopores[11]. In addition, even

though the fabrication of some nanopores can be controlled with sub-nanometer precision [6], the thickness

of the solid-state nanopore is overall greater than protein pores [58]. This is disadvantageous, because thicker
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membranes and nanopores tend to enable greater numbers of translocating bases to contribute to the current

signal, which complicates and lowers the accuracy of the sequence read-out. Despite the unsatisfactory status

quo of fabrication, solid-state nanopores are generally easier to fabricate into arrays for parallel analysis [120],

and integrate with other electronic [85] and optical devices [73].

Since a thick membrane results in the occupation of multiple nucleobases inside the nanopore and thus

their simultaneous contributions to the electrical current signal. This makes it difficult to identify bases from

the current traces. The emergence of new membrane materials enables researchers to fabricate ultra-thin

nanopores. For example, a nanopore fabricated on a graphene membrane can be as thin as 0.34 nm, which is

comparable to the size of a single nucleotide and much smaller than the 12-nucleotides long β-barrel region

of a α-hemolysin nanopore [75]. Other promising substrates for nanopore fabrication include boron nitride

(BN) and molybdenum disulfide (MoS2), the membranes of which can be just 1.1 nm [62] and 0.65 nm thick,

respectively [61, 23].

Researchers have found that these kinds of ultra-thin nanopores have stronger interactions with DNA

molecules, which is a double-edged sword[58]. Nanopores of thickness under 3 nm can slow the analytes

translocation speed due to increased van der Walls interactions with the pore walls. Such intensified inter-

actions can clog the pore and result in increased unreliability of the sequencing platform. Sometimes the

material of the substrate itself can induce stronger interactions between the nanopore and analyte. For ex-

ample, the slow translocation time of single-stranded DNA (ssDNA) through a graphene nanopore compared

to a silicon nanopore of the same size is attributed to the hydrophobic adsorption of ssDNA to the graphene

membrane [79, 38].

One large remaining challenge in solid-state nanopore sequencing is the rapidity of the translocation speed,

which can be as fast as 30 base pairs(bp) per micro-second, faster than the allowed sequencing speed of around

1 bp per millisecond [58]. In general, a slower translocation speed can improve the temporal resolution of the

read-out of the genome bases. Various strategies have been developed to slow down the translocation speed,

such as by adding regulators to the DNA molecule[90] and changing the chemical/physical properties of the

solvent and nanopore surface[15, 124, 114]. For example, lowering the temperature slows the motion of the

ions and fluids, and also changes the DNA-nanopore interaction, leading to slower translocation speeds [119].

Researchers have also succeeded at elongating the translocation time by modulating the salt concentration

and creating gradients between the cis and trans chambers[111, 118]. Decreasing the size of the counterions,

K+ >Na+ >Li+, can also slow down DNA molecules due to a different mechanism of binding counterions to

DNA molecules[47].

Researchers have also found that the interaction between DNA and the nanopore accounts for the varia-

tion of translocation speed under various experimental conditions[66, 119, 5, 52, 1]. This interaction between
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the DNA and nanopore depends on the nanopore’s shape, size and material. Aksimentiev et al. attributed

the interaction to the hydrophobic adhesion between DNA and the nanopore walls [47]. In addition, cone-

shaped nanopores can stretch double-stranded DNA (dsDNA) near the pore and facilitate the entry of the

molecule due to the entropic interaction between the DNA and the nanopore [80]. In terms of material

effects, researchers have observed that hafnium oxide (HfO2) nanopores slow DNA translocation by a factor

of 10 compared to the same-sized nanopore made out of SiN [52]. Other nanopore membranes made of

materials such as alumina oxide (Al2O3), BN, and graphene also slow translocation speeds by one order of

magnitude in comparison to silicon counterparts [2, 62, 117]. Such slow-down was attributed to either the

entropic, hydrophobic adhesion [4] or a contact friction [65] between DNA and the material inside nanopore

wall.

The DNA and nanopore interaction is also tunable through modification of the nanopore’s surface charge.

The surface charge affects translocation by changing the electroosmotic flow and the electrostatic interaction

of DNA and the nanopore wall. For instance, the negative charge on SiN nanopore walls can be inverted to

positive by coating the surface with a pH-sensitive polymeric cushion[5]. Although this method can change

the surface charge density by a factor of 5 under feasible experimental conditions, it increases noise in the

current signal due to a higher membrane capacitance.

Hydraulic pressure is another way to control the translocation speed of the DNA molecule by exerting a

hydrodynamic force on the DNA in addition to the electric-field-induced force. By carefully adjusting the

pressure, the translocation time can be prolonged by at least an order of magnitude[64]. The pressure-induced

force is independent of the analytes charge, which allows this hydraulic pressure method to manipulate neutral

polymers.

The interplay of hydraulic pressure and electric-fields can trap DNA in the nanopore and result in ultra-

long translocation processes [37, 7, 125]. For the slow translocation events, the translocation dynamics are

different from those in the ”fast” region of translocation events, for which non-equilibrium dynamics of the

molecule apply. Slow translocation events allow the molecule to relax during the process. The first passage

time analysis with Fokker-Planck equation can study the behavior in this regime[82, 83, 37]. One advantage

of pressure modulated translocation over other methods, such as surface charge modification, is that it will

not decrease the capture rate of the analyte or increase the noise of the current signal.

Mechanical devices can also be integrated into the nanopore sequencing system to help regulate the speed

of translocation. For example, Keyser et al.[45] developed optical tweezers that could mechanically control

a single DNA molecule by attaching a laser-steered bead to the end of that molecule. The deviation of the

bead position from the focal point produces a restoring force on the bead, which is eventually transferred

to the DNA. A balance of the stall/restoring forces, along with the electrical force, helps immobilize the
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molecule. The magnitude of the electrical force can be obtained by measuring the displacement of the bead

away from the focal point. In Keyser et al.’s experiments, dsDNA was found to have an effective charge of

0.5 e per base pair[44]. In their later experiments applying optical tweezers, the authors learned that the

stall force increased with the decreasing nanopore size. Using this technique, they were able to reduce the

translocation speed to 0.1 bp per millisecond, a reduction by 5 orders of magnitude[45].

Other mechanical control methods include magnetic tweezers, in which a magnetic field gradient is used

to manipulate a DNA molecule that has been previously tethered to a magnetic-field-controlled bead[92].

However, the challenge of these mechanical strategies lies in the precise control of the bead. The Brownian

motion of the bead and the molecule, especially when heated by a laser, decreases the resolution of the bead

position, and at the same time increases the noise in the ionic current[58, 60, 108].

Besides slowing down the speed of translocation, researchers are developing new methods to better

discriminate bases as they pass through the nanopore. One such method involves transverse electrodes, in

which a pair of metal nanoelectrodes (such as freshly broken gold wires) are placed on the surface of the

membrane at the location of the nanopore[127]. Zikic et al.[130] demonstrated that the tunneling current

measured by the electrodes enabled the researchers to identify the four bases of ssDNA under different

conditions of nanopore size and electric field strength [49, 50]. Another modification of this technology is to

functionalize the transverse electrodes with different chemical reagents. When certain bases interact with

the functionalized electrodes, they generate a transient tunneling current. The reagent can be customized to

interact with different nucleotides. Since recognition is based on the transient current signal for each type of

base, this method has the potential to realize sequencing under fast translocation speeds[39]. Other emerging

methods to improve the distinguishability of bases includes the detection of current through nanogaps [94, 59]

and graphene nanoribbon [79].

The rest of the dissertation has two parts. The first part aims to interpret the noise during the DNA

translocation process and access its impact on the recognition of genome bases through nanopore sequenc-

ing platform. The second part introduces a novel nano-fluidic device- nano-funnel that can trap a single

DNA molecule prior to its passage through the nano-channel and slow down the translocation process with

prescribed funnel shapes.
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CHAPTER 2: DNA Translocation through Nanopores

Polymer translocation through a nanopore is encountered in a number of biological processes and re-

searchers have considered it as a possible method to achieve rapid gene sequencing. However, the molecular

details of this process and even the dependence of translocation time on the polymer chain length are not

completely understood. In this dissertation, we determined the distribution of translocation times for a given

monomer of the polymer chain using both analytical calculations and 3D Langevin dynamic simulations of

forced translocation. A theoretical model of forced translocation of a polymer chain through a nanopore is

proposed in this chapter. The model allows one to calculate the translocation time of individual monomers

within a polymer chain featuring a particular initial conformation. The results of the computer simulation

confirm the dependence of monomer translocation time on the polymer chain conformation. This chapter

also studies, both analytically and numerically, the broadening of the distribution of translocation times due

to the distribution of initial conformations and the thermal fluctuations of the polymer chain during the

translocation process.1

1This chapter is adapted from a manuscript that is contributed by Yanqian Wang, Sergey Panyukov, Qi Liao and Michael
Rubinstein.
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Section 2.1: Introduction

The nanopore platform has shown promise as a low-cost, high-throughput genome sequencing method.

Kasianowicz et al.[43] pioneered early experiments that studied the translocation of biological macromolecules

through a nanoscale pore. The authors specifically investigated the passage of single-stranded RNA and DNA

molecules in an electric field through a narrow ion channel in a lipid bilayer membrane. They found that

blockaded ion current could be used to detect the passage of DNA or RNA through the channel and ideally

identify individual nucleotides. The duration of this current blockage time was found to increase with the

degree of polymerization, as described in the relationship τtrans ∝ N1.27, in which τtrans is the translocation

time and N is the polymer chain length.

Many subsequent experiments adopted Kasianowicz et al.’s method and emphasized the influence of the

strength of the external field on the translocation time and translocation velocity of a biomolecule through

a channel. For example, Meller et al.[75] measured the velocity of single-stranded DNA translocation driven

by an electric field through a single α-hemolysin pore. Their results verified that polymers longer than the

pore length transported at a constant speed, while the translocation velocity of shorter polymers increased

inversely with the chain length. The translocation velocity increased nonlinearly with increased applied

voltage.

These initial studies on nanopore technology eventually led to the recently commercialized MinION

Nanopore[78] released by Oxford Nanopore Technologies, which has been widely used in genome sequencing

research and has the ability to read genome of up to 10 kilobases with a 90% accuracy rate per base[60].

However, such accuracy is still well below Sangers sequencing method. The Oxford Nanopore is made of a

protein nanopore embeded in a lipid layer. The base recognition is limited by the simultanous contribution

to the current signals by multiple bases inside of the constriction part of the protein nanopore. Although

applying a more sophisticated algorithm [54] to analyze the raw data such as the Hidden Markov Model[42]

can improve the readout accuracy, the fixed dimension of Oxford Nanopore puts a restriction on the tech-

nology. Other researcher [56, 19, 79, 22, 105, 24, 32] seek to innovate the device itself. For instance solid

state (SS) nanopore technology is more flexible in terms of dimensions and has the potential to enable single

nucleotide read-out[112, 28, 60].

More recent experiments have focused on artificial SS nanopores [34], the dimensions of which can be

systematically controlled[20]. In a typical experimental setup, a voltage potential is applied between two

chambers, cis and trans, that have been separated by a membrane. The cis and trans chambers are connected

by a single nanopore through the membrane. The potential creates a strong field both inside and near the

nanopore. This field is what drags the polyelectrolyte chain, such as DNA, towards and through this channel.
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(Compared to voltage-driven DNA translocation, the enzyme regulated translocation allows the passage of

genome bases one at a time and results in a higher sequencing accuracy. But the experimental condition is

also largely limited in order to keep the enzyme active.) If the polymer enters the pore, it blocks the measured

ion current, providing information about the translocation process. Storm et al.[56] studied translocation

of double-stranded DNA through a silicon oxide nanopore and found a power-law scaling of τtrans ∝ N1.27,

which is different from the power-law relation obtained in many other results[27, 83]. Given the residence time

as by far the most effective investigation tool for the translocation mechanism, different power-law relations

of residence time will induce disparate or even conflicting fundamental understanding of the process. While

studying polymer transolcation under a strong polymer-pore attraction, Krasilnikov et al.[48] observed that

the residence time, the time duration that polymer occupies the nanopore, first increased and then decreased

with molecular weight.

Besides experiments, a number of theoretical and simulation studies [40, 67, 29, 116, 10, 82, 9, 103, 55, 41,

27] has been devoted to the problem in the last decade. In the case of forced translocation, some researchers

have claimed the dependence of τtrans ∝ N2ν for short chains, and τtrans ∝ N1+ν for long chains in the

presence of an applied external field using a two-dimensional bond fluctuating model and two dimensional

Langevin dynamics simulation, respectively [10, 40]. The Flory exponent ν is 0.5 for ideal chain and 0.588

for swollen chain. Lubensky and Nelson [66] introduced a coarse-grained microscopic model to study the

time distribution for polymers to pass through a pore when the chain has strong interactions with the pore

itself. The authors claimed that translocation speed significantly depends on the polymers interaction within

the pore and the interaction also increases the skewness of the distribution of the residence times.

In spite of notable progress, the problem of polymer translocation is far from being completely understood.

In particular, there have been few studies on the origin of the variation of forced translocation time for a

DNA/RNA chain without hairpins. Most previous theoretical and computational research has focused on the

average translocation time and its scaling dependence on polymer length and drag force. Although polymer

conformation outside the pore is important for the dynamics of translocation, researchers have not accepted

it as a primary factor controlling the distribution of translocation time.

In spite a notable progress, the problem of polymer translocation is far from being completely understood.

In particular, there are few studies on the origin of the variation on forced translocation time of a chain

without hairpins. Most previous theoretical and computational researches focus on the average translocation

time and its scaling dependence on polymer length and drag force. Although polymer conformation outside

the pore is important for the dynamics of translocation, researchers have not accepted it as a primary

factor controlling the distribution of translocation time. This paper is aimed to evaluate the dependence of

translocation time of a given monomer on polymer conformations before translocation. The translocation
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time tm is the time interval from the first monomer getting into the pore until monomer m entering the pore.

Also we developed both analytical solution and Langevin simulations to estimate the width of translocation

time distribution.

On the rest of this chapter, a theoretical model will first be developed, and the monomer translocation

will be studied both under the model and through Langevin Dynamics simulations. Finally, the study of the

distribution of translocation time will be compared for both approaches.

Section 2.2: Model description

To study the behavior of DNA molecules under an electric field in a restricted environment, we can

borrow concepts from polymer physics to deal with large-scale behaviors to obtain a ”birds eye view” [83]

and then pursue higher resolution analysis. In polymer physics, the biological molecule is modeled as a

chain/polymer made of a number of connected segments/monomers while a charged molecule such as DNA

in salty solution can be modeled as a polyelectrolyte[77, 101].

The basic physical properties of a DNA molecule consist of its contour length, persistence length, and

effective width. The contour length is the size of the DNA molecule as it is stretched in a linear fashion. It

can be calculated as the product of the total number of base pairs in the molecule and the height of a base

pair (0.34 nm). Typically, λ-dsDNA with 48.5 kbp has a contour length of 16.5 µm, while T-4 dsDNA of

165 kbp has a contour length of 56 µm. The human (diploid) genome has 6 Gbp and its contour length can

be as long as 2 m when fully stretched. However, DNA contour length is observed to increase once the DNA

is labeled for imaging purposes with fluorescent stains. For example, when stained by YOYO-1, the contour

length of λ-dsDNA increases to 21 µm[129].

The excluded volume interactions between segments of dsDNA, which determine the effective width of the

molecule, come from two origins. First, the backbone of B-form dsDNA has been determined from the crystal

structure to be about 2 nm in width, which creates a hardcore repulsive potential. Second, the negatively

charged segments of DNA will repel each other due to the Coulombic effect, resulting in a larger effective

width than just its backbone. The effective width also depends on the ionic strength of the solvent. Larger

salt concentrations more effectively screen interactions between different strands of DNA. Such screening

decreases the excluded volume of DNA strands and therefore the effective width. For example, the effective

width of DNA is about 5 nm in a 0.1 M monovalent salt solution and can reach 20 nm in a 5 mM solution

[97].

In general, ssDNA adopts a more flexible conformation, with a persistence length estimated to be around

2 nm, while hydrogen bonding and base stacking makes dsDNA rather stiff, with a persistence length of
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about 50 nm. The persistence length of DNA depends on the ionic strength of the solvent due to Coulombic

effects . It is found that persistence length decreases as the salt concentration increases due to screened

Coulombic repulsion between segments before saturation, as explained by the Manning condensation theory

[70]. The persistence length of dsDNA can be estimated as

lp ≈ 46.1nm+ 6.3λD

where the Debye length, λD, at room temperature is estimated as a function of ionic strength, I(M), in

molar concentration,

λD(nm) ≈ 0.304√
cs(M)

[21].

Based on its dynamics, polymer translocation (PT) can be either active or passive. In the active case,

the polymer is self-driven by either entropy or chemical potential, and stays in equilibrium during the whole

process. Researchers have intensively studied the active translocation scenario using the Fokker-Planck equa-

tion under the assumption that the polymer has time to equilibrate/relax during the translocation process

[83]. However, passive/forced translocation experiments usually proceed too fast for DNA to equilibrate, in

which case tm of the mth monomer is much shorter than the relaxation time,τ(m), of polymer segment of

length m. Such fast translocation can be described by tm � τ(m), which corresponds to a strong force F,

Fb
kBT

> 1
9πm

− 1
2 , pulling the chain in the pore. Only the study of fast, non-equilibrium translocation falls in

the scope of this work.

In a translocation event, the chain is first captured [82, 115, 73] by the pore and pulled from the cis to

trans side of the membrane partitioned chamber. Our model assumes the capture state of each polymer

chain is fully relaxed on the cis side and with one end of the polymer pinned at the center of the pore. Once

the monomer moves inside the pore, it will be pulled by the electrophoretic force in the presence of the pore’s

electric field. Under this pulling motion, monomers will move and the bonds between monomers will align

towards the pore. However, not all monomers move at the same time. Only a monomer whose bond has

been aligned with the pore will move, leaving the rest of the monomers on the cis side unperturbed by the

pulling force. The moving velocity of the aligned monomer can be estimated from the balance of the pulling

force at the pore, F , with the frictional drag, f , from the solvent.At the moment when the mth monomer is

at the pore, monomers up to index m′ are moving together towards the pore. They are assumed to have the

same velocity, vm, as well as friction coefficients, ξ. The number of monomers involved in moving m′ −m

determines the speed of monomers in the pore, following F = f = (m′ −m) · ξ · vm (Figure.2.1). Therefore,
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the speed is determined by the chains conformation using the equation m′−m = Rm′/b, which is determined

from the aligned conformation. After obtaining the traveling velocity, we can calculate the translocation

time of the mth monomer (m could be any monomer indexed, from 0 to N) defined as the elapsed time from

the initial captured state to the moment when the mth monomer is in the pore.

tm ≡
∫ m

0

b

vn
dn (2.1)

The translocation time of mth monomer, tm, depends on the velocity and thus the conformation of the

polymer chain. This connection between translocation time and conformation is referred to as fingerprinting.

An identical polymer can adopt various initial conformations at the beginning of the translocation. Such

variations independent of the translocation speed can deviate the translocation time from the average value

by ∆t. Even with the same inital conformation, the conformation can change during the translocation process

due to the Brownian motion of each monomer. Under the assumption of fast/non-equilibrium translocation,

the Brownian motion fluctuates the chain only on a local scale, as the translocation time is much smaller

than chains relaxation time. This time-dependent variation in conformation adds additional fluctuation in

time, δt. We show that those fluctuations can be deconstructed and examined through their dependence on

system variables.

2.2.1: Brownian motion

The fundamental core of polymer dynamics begins with the study of Brownian motion[69]. Back in 1828,

Robert Brown first experimentally observed the random motion of pollen particles suspended in water. This

random motion became known as Brownian motion.

The theoretical side of Brownian motion was studied by Karl Pearson in 1905, who introduced the concept

of the Pearson walk, though the solution to this problem was already known in Rayleigh’s earlier work in

1880 and 1899 . Later, Einstein, Smoluchowski, and Langevin developed a theory for the time dependence of

the position of a Brownian particle by idealizing Brownian motion as random walks. The famous Einsteinian

relation gives the mean square displacement of the particle as proportional to the time elapsed with zero

average displacement[83, 69].

〈(x)
2〉 ∝ time

2

2The angle brackets indicate that the variable inside is averaged over many random realizations of the process.
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The Einstein relation describes the diffusion behavior of a particle, which has many random collisions with

solvent molecules. In contrast, a qualitatively different motion is Newtonian motion, in which the distance

traveled is the product of velocity and the time elapsed. This drift behavior is controlled by eternally

imposed forces. The interplay of drift and diffusion can be investigated from theoretical formulisms, such as

the Langevin and Fokker-Planck-Smoluchowski equations[69].

Smoluchowski equation and Langevin equation [69] The Smoluchowski equation can be derived

from the the generalization of the diffusion equation. By Fick’s law, a macroscopic particle flux j(x, t) is

proportional to the gradient of the particle density in space, i.e. j(x, t) = −D ∂c
∂x where D is the diffusion

coefficient. If there exists an external potential U(x) with force F = −∂U∂x , the particle moves with an average

velocity v = − 1
ζ
∂U
∂x , where ζ is friction coefficient and the particle is assumed large enough to fall into the

classical scope. Combining both diffusion and drift effects, the flux is

j = −D ∂c

∂x
− c

ζ

∂U

∂x
(2.2)

The continuity equation relates the flux to the change of the particle density with respect to time:

∂c

∂t
= − ∂j

∂x
(2.3)

The Smoluchowski equation can be obtained using eq(2.2), eq(2.3) and Einstein relation D = kBT
ζ :

∂c

∂t
=

∂

∂x

1

ζ

(
kBT

∂c

∂x
+ c

∂U

∂x

)
(2.4)

Eq. 2.4 still holds if the density c is substituted by the probability distribution function ψ(x, t) that a particle

is found at location x and time t:

∂ψ

∂t
=

∂

∂x

1

ζ

(
kBT

∂ψ

∂x
+ ψ

∂U

∂x

)
(2.5)

One important point about the Smoluchowski equation is that if the potential is time-independent and there

is no flux at the boundary, the distribution function ψ moves toward the equilibrium state that follows

Boltzmann distribution:

ψeq =
exp(−U(x)

kBT
)∫

dx exp(−U(x)
kBT

)

The Smoluchowski equation describes at least two possible states of solutions: the equilibrium state, in

which the flux is zero; and a steady state solution, in which the system has a constant flux. In equilibrium,
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the simplified equation for the one dimensional scenario can be written as:

1

c(x)

∂c(x)

∂x
= − ∂

∂x

(
F (x)

kBT

)

This enables us to describe the particle concentration following the Boltzmann distribution:

c(x) = c0e
−U(x)
kBT

By rearranging the Smoluchowski equation for the steady state as:

j(x) = −De−
U(x)
kBT

∂

∂x

[
c(x)e

U(x)
kBT

]

then both the concentration profile, c(x), and the constant flux, j(x) = j, can be solved analytically once

the free energy profiles are obtained. The concentration in the steady state is different from the one in

equilibrium by an additional multiplier representing the flux effects:

c(x) = e
−U(x)
kBT

[
c(0)e

U(0)
kBT −

(
j

D

)∫ x

0

dx′e
U(x)
kBT

]

A representative application of the Fokker-Planck equation is the first hitting time problem, in which the

particle undergoing a drift-diffusion process is either reflected or absorbed onto the boundaries. The active

DNA translocation with the molecule equilibrated at each moment can be studied using the first-hitting-time

model of a 1-D Brownian particle. In this model, the first hitting time (also known as first passage time) is

the time the particle gets absorbed at x given its initial location at x = 0 at time t = 0 has a distribution

ψ(t) =
|x|√

4πDt3
exp(− x2

4Dt
)

where D is the diffusion coefficient. Therefore the distribution of the first passage time of the active DNA

translocation follows a Levy distribution, a skewed distribution with a fat tail.

An alternative perspective to study the Brownian motion is to examine the Langevin equation:

ζ
dx

dt
= −∂U

∂x
+ f(t) (2.6)

where the velocity of a particle is proportional to the sum of the forces exerted on it. The Langevin equation

models the evolution of instantaneous velocity of a particle whose radius is much greater than the size of

a single solvent molecule. It can be seen from above formula that Langevin equation is an extension of
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Newton’s law to include random forces. The random force fluctuates around zero average independently and

is uncorrelated at different time moments. The random force f(t) is assumed to have a Gaussian distribution:

ψ(f(t)) ∝ exp

(
− f(t)

2

4ζkBT

)
(2.7)

with moments

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2ζkBTδ(t− t′) (2.8)

This assumption makes the Langevin equation equivalent to Smoluchowski equation.

If a free particle (zero drift) is at x0 at t = 0, its position at time t is obtained from 2.6

x(t) = x0 +
1

ζ

∫ t

0

dt′f(t′)

Since the random force f(t) is a Gaussian variable, x(t), the linear addition of f(t), is also a Gaussian

variable. With the fact that

〈x(t)〉 = x0

and

〈(x(t)− x0)2〉 =
2kBT

ζ
t = 2Dt

, the probability distribution of the single particle at time t is

ψ(x, t) = (4πDt)−1/2 exp

(
− (x− x0)2

4Dt

)
(2.9)

Brownian motion of a single particle in a harmonic potential[69] A characteristic quantity describ-

ing the Brownian motion is the time correlation function CAA(t) = corr(A(t)A(0)) = 〈A(t)A(0)〉. CAA(t)

usually decreases with time for the correlation between A(t) and A(0) decreases. As time increases, the

time correlation function CAA(t) approaches its asymptotic value 〈A〉2 with a characteristic time scale called

correlation time τ .

Consider the Brownian motion of a single particle in a harmonic potential U = 1
2kx

2, where k is spring

constant. The time correlation function of the location of the particle can be expressed as

〈x(t)x(0)〉 =

∫
dx

∫
dx′xx′G(x, x′; t)ψeq(x

′) (2.10)

where the Green function G(x, x′; t) is the probability density function finding a particle at location x at
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time t given its location x′ at time t = 0. Therefore the Green function is the solution to the Smoluchowski

equation with the initial condition G(x, x′; 0) = δ(x− x′).

∂

∂t
G(x, x′; t) =

1

ζ

∂

∂x

(
kBT

∂G(x, x′; t)

∂x
+ kxG(x, x′; t)

)
(2.11)

Solving the PDE as eq(2.11) gives the solution

G(x, x′; t) =

[
2πkBT

k
(1− exp(−2t/τ))

]−1/2

exp

[
− k (x− x′ exp(−t/τ))

2

2kBT (1− exp(−2t/τ))

]
(2.12)

where τ = ζ/k Although the explicit form of G(x, x′; t) is unnecessary for obtaining the correlation time τ ,

it is helpful for the understanding the time evolution of the distribution.

In the case as t� τ , the Green function exhibits the property of free diffusion, i.e.

G(x, x′; t) ' (4πDt)
−1/2

exp

(
− (x− x′)2

4Dt

)
(2.13)

In the other limit as t� τ , the probability density function G(x, x′; t) follows a time-independent Boltzmann

distribution, i.e.

G(x, x′; t) '
(

2πkBT

k

)−1/2

exp

(
− kx2

2kBT

)
(2.14)

The correlation time τ can be obtained through examining the decay rate of 〈x(t)x(0)〉.

∂

∂t
〈x(t)x(0)〉 =

∫
dx

∫
dx′xx′ψeq(x

′)

[
1

ζ

∂

∂x

(
kBT

∂G

∂x
+ kxG

)]
(2.15)

=

∫
dxdx′Gψeq(x

′)

[
kBT

ζ

∂

∂x

∂

∂x
(xx′)− kx

ζ

∂

∂x
(xx′)

]
= −k

ζ

∫
dx

∫
dx′xx′G(x, x′t)ψeq(x

′)

= −1

τ
〈x(t)x(0)〉

where the step from the first line to second line use the trick of integral by parts. Consider the variance of

x, 〈x2〉 = kBT
k , the time correlation function can be derived as

〈x(t)x(0)〉 =
kBT

k
exp(−t/τ) (2.16)

Since the characteristic time τ implies the time scale at which the memory of the initial state is lost, τ is

also called relaxation time in polymer physics.
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Similar results can be obtained from Langevin equation as well.

ζ
dx

dt
= −kx+ f(t) (2.17)

with 〈f(t)〉 = 0 and 〈f(t)f(t′)〉 = 2ζkBTδ(t− t′). The solution to eq(2.17) is

x(t) =
1

ζ

∫ t

−∞
dt′ exp

(
− t− t

′

τ

)
f(t′) (2.18)

The time correlation function can be written as

〈x(t)x(0)〉 =
1

ζ2

∫ t

−∞

∫ 0

−∞
dt1dt2 exp

(
− t− t1 − t2

τ

)
〈f(t1)f(t2)〉 (2.19)

=
2kBT

ζ

∫ 0

−∞
dt2 exp

(
− t− 2t2

τ

)
=
kBT

k
exp

(
− t
τ

)

Brownian motion of a single polymer chain [69] Consider a polymer chain made of N beads and

there is an interaction between two neighboring beads, referred to as a bond. There are N − 1 bonds in

total. Let the position of nth bead be Rn and the objective is to study the dependence of the position

vector (R1, R2, . . . RN ) on time t. The Brownian motion of a bead embedded within a chain is different from

the Brownian motion of a free particle. For simplicity, the interaction in the bond is modeled as a spring

potential U = k
2

∑N
n=2(Rn −Rn−1)2. Therefore the Langevin equation associated with this potential is

ζ
dRn
dt

= −k(2Rn −Rn+1 −Rn−1) + fn(t) (2.20)

with n = 2, 3, . . . , N − 1. The random forces on different beads are uncorrelated to each other and their

moments can be written as:

〈fn(t)〉 = 0

〈fn(t)fm(t′)〉 = 2ζkBTδnmδ(t− t′)

This is known as the Rouse model [69, 77]. For simplicity, we show here only the one-dimensional case of

the system. However, the results of the three dimensional case differs from the one-dimensional one only up

to a constant factor.

To simplify the problem, we first introduce two redundant variables R0 and RN+1 with their values
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R0 = R1 and RN+1 = RN . Then eq(2.20) can be rewritten in continuous limit as

ζ
∂Rn
∂t

= k
∂2Rn
∂n2

+ fn(t) (2.21)

with n = 0, 1, . . . , N and boundary conditions as

∂Rn
∂n
|n=0 =

∂Rn
∂n
|n=N = 0

The way to solve eq(2.21) is to adopt normal coordinates (X1, X2, . . . , XN ) defined as

Xp ≡
1

N

∫ N

0

dn cos
(pπn
N

)
Rn(t) (2.22)

The inverse transformation is then

Rn = X0 + 2

∞∑
p=1

Xp cos
(pπn
N

)

, where X0 represents the position of the centre of mass 1
N

∫
dnRn = X0.

Equation 2.21 can be rewritten using normal coordinates as

ζp
∂

∂t
Xp = −kpXp + fp(t) (2.23)

where

ζ0 = Nζ; ζp = 2Nζ, for p = 1, 2, . . . , N

kp =
2π2k

N
p2

〈fp(t)〉 = 0

〈fp(t)fq(t′)〉 = 2δpqkBTδ(t− t′)

As seen adopting the normal coordinates dissociates the correlation between the positions of different beads

and reduces the problem to the one of a single particle at a harmonic potential. Applying the solution 2.19

to get the time correlation function of the center of mass X0

〈(X0(t)−X0(0))2〉 =
2kBT

Nζ
t (2.24)
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and

〈Xp(t)Xq(0)〉 = δpq
kBT

kp
exp(−t/τp) (2.25)

where p = 1, 2, . . . and q = 1, 2, . . .

τp = τ1/p
2 (2.26)

τ1 =
ζ1
k1

=
ζN2b2

3π2kBT
(2.27)

X1 represents the motion of end-to-end size of the chain RN − R1. And Xp represents the motion of

a subsection of the chain consisting of N/p beads (due to the term cos
(
pπn
N

)
) with the length scale of√

kBTN
k /p [30]. Those are important conclusions that will be utilized in the next section.

2.2.2: Translocation time

At the time when the mth monomer is at the pore, the pulling force, F , is balanced by the friction force,

f , on the moving segment from mth monomer to m′th monomer.

F = (m′ −m) · ζ · vm (2.28)

We assumed that each monomer in the moving segment had the same velocity as mth monomer, vm, and

same friction coefficient, ζ. Also, since the pulling is strong and the movement is fast, the ”active” segment

adopts an almost straight line conformation, while monomers positioned far from the pore beyond m′ are

left unperturbed. Such a conformation can be expressed as

m′ −m = Rm′/b (2.29)

When we combine equations 2.29 and 2.28, we get the velocity of the monomer middle inside the pore

vm =
Fb

ζRm′

The time it takes for the mth monomer to pass through the pore is b/vm, which is the translocation time tm.

tm =

∫ m

0

b

vn
dn =

ζ

F

∫ m

0

Rn′(tn)dn (2.30)
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The average translocation time is described by the following equation:

tm =
ζ

F
· [
∫ m′

0

Rn′dn′ − 1

2b
Rm′

2
] (2.31)

, where Rn =
√
Rn(tn)2 ≈ nb2 is the ensemble-averaged distance of the nth monomer from the pore.

Therefore, we can estimate the average translocation time scale with monomer index as

tm ≈
ζb

F
m3/2 (2.32)

2.2.3: Thermal fluctuations

Since we can determine the translocation time from the conformation of the polymer, the thermal fluc-

tuation of the conformation, δR, will cause a fluctuation of translocation time, δt.

δtm =
ζ

F

∫ m

0

δRn′dn (2.33)

where the relationship between n′ and n follows 2.29, i.e. n′ − n = Rn′/b. As the fluctuation results from

random Brownian motion, only the amplitude will be of concern here.

〈δt2m〉 =

(
ζ

F

)2 ∫ m

0

di

∫ m

0

dj〈δRi′ · δRj′〉

'
(
ζ

F

)2 ∫ m

0

di

∫ m

0

dj〈δRi · δRj〉
(2.34)

Here we do the approximation of the fluctuation of the position of n′th monomer:

δRn′(tn) = δR(n+Rn′/b)(tn) ' δRn(tn) (2.35)

in the condition of δR(n′)� bn .

The way to calculate the fluctuation correlation function 〈δRiδRj〉 is to write Rn in terms of normal

coordinates, Xp, which are defined as

Xp ≡
1

N

∫ n

0

dncos
(pπn
N

)
Rn(t)

with p = 0, 1, 2, ....
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Then the coordinate of the nth monomer can be expanded as

Rn = X0 + 2

∞∑
p=1

Xpcos
(pπn
N

)

Applying above expansions, our correlation term equation 2.34 can be written as

〈δRi(ti)δRj(tj)〉 =

∫ ∫
dpdq〈(Xp(ti)−Xp(0)) (Xq(tj)−Xq(0))〉cos

(
pπi

N

)
cos

(
pπj

N

)
=

1

2

∫
dp〈(Xp(ti)−Xp(0)) (Xp(tj)−Xp(0))〉

(
cos

(
pπ(i+ j)

N

)
+ cos

(
pπ(i− j)

N

))
≈ 1

2

∫
dp〈(Xp(ti)−Xp(0)) (Xp(tj)−Xp(0))〉cos

(
pπ(i− j)

N

)
≈ Y (|ti − tj |)− Y (ti)− Y (tj)

(2.36)

where Y (t) ≡
∫
dp
(
〈Xp(t)Xp(0)〉 − 〈Xp(0)

2〉
)
cos
(
pπ(i−j)
N

)
. The third step in Eq. 2.36 assumes the fast

decay of high frequency term with cos
(
pπ(i+j)
N

)
as p increases. In function Y , Xp corresponds to the local

motion of chain segment consisting of N/p monomers with the length-scale the order of segment’s ideal size(
Nb2

p

) 1
2

in time-scale τp = τ1
p2 . At time t,the fluctuation is governed by pt =

(
t
τ1

)(− 1
2 )

mode.Therefore, the

function Y can be estimated as:

Y (t) ≈ Nb2

pt
· N
pt
δij

= b2
(
N

pt

)2

δij

= b2N2 t

τ1
δij

≈ kBT · t
ζ

δij

(2.37)

When we plug into eq.2.34, we get 〈δRi(ti)δRj(tj)〉 ≈
mintitj
τ1

(nb)2δij which allows us to get eq.2.38

〈δt2m〉 =

∫ m

0

di

∫ m

0

dj〈δRi · δRj〉 ≈ mt ·
kBTζ

F 2
(2.38)
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2.2.4: Conformational fluctuation

The fluctuation of the inital conformations, ∆Rn, is the position of nth monomer, Rn, away from its

ensemble average 〈Rn〉. Here we assume the chain’s configuration obeys the Gaussian distribution,

Φ(Rn) =
[
2π
(
〈Rn2〉 − 〈Rn〉2

)]−1/2
exp

[
− (∆Rn)

2

2 (〈R2
n〉 − 〈Rn〉2)

]
(2.39)

The fluctuation term in eq.2.39 is defined as ∆Rn ≡ Rn − 〈Rn〉. The mean squared fluctuation in position

is shown to have the same order of magnitude as the mean squared position:

〈R2
n〉 =

∫
Φ(Rn)R2

ndRn = 2
(
〈R2

n〉 − 〈Rn〉2
)

= 〈(∆Rn)2〉 (2.40)

The fluctuation in translocation time due to the fluctuation in conformations can be written as:

∆t =
ζ

F

∫ m

0

∆R(n′)dn (2.41)

Since the polymer chain obeys the Gaussian distribution, the fluctuation of its conformation has a length-

scale on order with the chain size, i.e. 〈∆Rn2〉 ≈ Rn2 .

〈∆Ri∆Rj〉 = 〈(∆Ri)2〉+ 〈∆Ri∆ (Rj −Ri)〉 = 〈Ri2〉 ≈ ib2 (2.42)

Here we use the conclusion that 〈∆Ri∆ (Rj −Ri)〉 = 0, since the fluctuation of the distance from ith to jth

monomer (j > i) is uncorrelated to the fluctuation from monomer 0 to monomer i.

When we combine eq.2.42 and eq.2.41, we can obtain the conformational broadening of translocation

time as:

〈∆t2〉 = 2

(
ζ

F

)2 ∫ m

0

di

∫ m

i

dj〈∆Ri∆Rj〉

≈
(
ζb

F

)2

m3

(2.43)

Section 2.3: Simulation setup

We used and modified the software package DLPOLY V2 to conduct our simulations. In these simulations,

forced translocation refers to the translocation that occurs under a driving force from the external field. For

the 3D simulation, the membrane was perpendicular to the translocation direction and the nanopore was a
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cylindrical void with length L and diameter w. The pore length was L = 2σ and pore width was w = 1.6σ,

in which σ was the size of the monomer. These dimensions were maintained throughout the simulations

unless specified otherwise.

The polymer chain was represented as a string of beads connected by a spring using a coarse-grained

bead-spring model. The membrane consists of fixed and regularly arranged atoms, which were considered a

steric hindrance for the monomers. The monomers could not cross the membrane except through the pore.

We used a bond potential connecting monomers i and j described by Uij = ULJij + U chij , in which the first

term is a trunked-shifted Lennard-Jones potential:

ULJij =


4εij

[(
σ
rij

)12

−
(
σ
rij

)6

+ 1
4

]
rij ≤ 21/6σ,

0 rij ≥ 21/6σ.

and the second term is a finite extensible nonlinear elastic bond potential:

U chij = −1

2
kR2

0ln

[
1−

(
rij
R0

)2
]

(2.44)

where k = 30.0ε/σ2 is the spring constant and R0 = 1.5σis the maximum chemical bond length at which

the elastic energy of the bond becomes infinite.

The motion of monomers is described by the Langevin Equation:

mir̈i = −∇Uijmiζṙi + fi(t)

, where Uij is the interaction potential between the ith and jth monomers at the bound potential(eq.2.44),

and mi, ri and ζi are the mass, coordinate, and friction coefficient, respectively. All monomers were given

the same mass, size, and friction coefficient. Here, fi(t) is the random force of the ith monomer, which is

characterized by correlation functions

〈fiα(t)〉 = 0

〈fiα(t)fjβ(t′)〉 = δijδαβδ(t− t′)2kBTζ

in which α and β denote Cartesian coordinates.

Simulations were performed in the NVT ensemble with kBT = 1.0ε using an integral time step ∆t =

0.01τLJ , in which τLJ = σ
(
m
ε

)1/2
, which is the Lennard-Jones time. The simulation systems have periodic

boundaries at in the directions other than x (i.e., the translocation direction). We used the reduced units

and the friction coefficient was ζ = 4τ−1
LJ . A pulling force was put on monomers inside the pore only, with a

strength of F = 8.0kBTσ cos
(
πx
L

)
, where x ∈

[
−L2 ,

L
2

]
and x = 0 at the center of the pore. All the simulations
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mentioned in this manuscript were Brownian simulation of 3D ideal chain translocations. The length of

chain was 800 monomers. The thermal statistics were done by running the same initial conformation 400

times and for a total of 600 different initial conformations.

Section 2.4: Results and discussion

The section will show the dependence of the ensemble average translocation time, tm , and fluctuations

of δt and ∆t on both the monomer index, m, and the pulling force, F . We compared both an analytical

approach and a Lagenvin dynamics simulation to study this question.

In the simulation, an ensemble of fully relaxed polymer chains are anchored at the pore on the cis side

with various initial conformations, Γ1,Γ2, . . . For each of those conformations, Γi, we make identical copies

in the simulations, Γi1,Γ
i
2, . . .. The translocation of each copy undergoes a different thermal history, and we

recorded the translocation time for each monomer tm
(
Γij
)
. The average translocation time was calculated

by

tm =
Σi,jtm(Γij)

Σi,j

. Within the simulation, we analyzed the thermal fluctuation, δt, by taking the standard deviation of the

distribution of the translocation time, i.e.,

δtm(Γi) =

√
Σj(tm(Γij)− tm(Γi))2

Σj

, where tm(Γi) =
Σjtm(Γij)

Σj
, and then average it over all conformations

δtm =
Σiδtm(Γi)

Σi

. The fluctuation of translocation time due to the variations of initial conformations is calculated by

∆tm =

√
Σj(tm(Γi)− tm)2

Σi

. Details of the simulation protocol are provided in Section.2.3.

We assumed that for a given initial conformation of the polymer chain, our model could describe results of

the simulations if the translocation time was much shorter than the relaxation time. Figure 2.3 compares the

translocation time for two different initial conformations of the chain. Copies of the polymer chain starting

from different initial conformations can be distinguished by both the analytical model and the simulation
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results. The identification of conformation is referred to as fingerprinting, i.e., tm is a fingerprint of initial

conformation,

tm =
ζ · b
F

(
1

b

∫ m

0

R(m′1)dm1)

.

In simulations, initial conformations of polymer chains are randomly distributed, so the average translo-

cation time corresponds to an average of all possible initial conformations. In Figure 2.4, we compare how

the monomer index depends on this translocation time for the model and simulations. The model predicts

the average translocation time using the formula, t(m) ≈ ζ·lbond
F m1+ν (see Section.2.2.2). We conclude that

predictions of average translocation time from the model agree with the simulations.

The magnitude of thermal fluctuation of the translocation time can be obtained only through Langevin

Dynamics simulation and asymptotic analysis. First, we calculated the standard deviation of the transloca-

tion time for polymer chains featuring the same initial conformation within the simulation. Then the devia-

tions were averaged over different initial conformations. We learned from the simulation that the dependence

of the thermal fluctuation on the monomer index can be described as δtm ∝ mβ , where β(simulation) = 1.16.

In Section.2.2.2, we found the theoretical asymptotic prediction of the thermal fluctuation of the transloca-

tion time was δtm ∼ m0.5t0.5 for the ideal polymer chain. If we assumed the average translocation time from

the asymptotic result was tm ∝ m1.50, then we obtained β(model) = 1.25, which is larger than the exponent

obtained through simulation. However, if we used the average translocation time of our simulation value

tm ∝ m1.36 instead of the asymptotic one, then the exponent of the thermal fluctuation became β = 1.18,

which is quite close to the simulation value of β.

The other component of fluctuation, conformational fluctuation, ∆tm, is calculated in the simulation

as the standard deviation of the thermally averaged translocation times for various initial conformations.

We also calculated the translocation time as the numerical solution of translocation time under our model

for each initial conformation in the absence of thermal perturbations. The scaling factor fitting from the

simulation ∆tm ∝ mγ ,γ(simulation) = 1.5, matched our numerical calculation based on our model γ(model) = 3
2

for the ideal polymer chain (Section.2.2.2). Our results also show that the conformational fluctuation of the

translocation time surpasses the thermal fluctuation as the conformational fluctuation increases faster with

m (Figure 2.5).

This mismatch of scaling factors of translocation time between the model and simulation can be explained

by three possible reasons. First, the model assumed rigid bonds of all polymer chains, while the bonds in

the simulation will stretch if the associated monomer is pulled towards the pore. Second, the mismatch

between the asymptotic results and the model could be attributed to the finite size effect of relatively short
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chains. Third, our model assumed that the moving section (including m′−m monomers) adopted a straight

conformation. This assumption requires higher order corrections.

Section 2.5: Concluding remarks

We introduced a theoretical model to calculate the translocation time of each monomer for a given initial

conformation of the polymer chain. We compared the theoretical predictions and simulation results for

individual initial conformations and demonstrated that translocation time is sensitive to initial conformation

of the chain, and thus can be used to fingerprint the chain conformation prior to translocation. The difference

in the predicted translocation times between the model and the simulation for a single conformation was

small compared to the difference between various initial conformations. Therefore, our theory can be used

to characterize individual chain conformations.

The scaling dependence of the average translocation time of the mth monomer was derived using the

long chain limit and characterized by the asymptotic value of the exponent 1 + υ = 1.5. Comparison of the

model prediction to the simulation shows that analytical results of thermal/conformational broadening are

in reasonable agreement. In addition, our model predicted the scaling law for thermal and conformational

fluctuation and the correlation between initial conformation and translocation time. These predictions were

also well supported by simulations.

In this work, we also investigated the ensemble average translocation time’s dependence on the monomer

index using both numerical calculation tm ∝ m1.42 and simulation tm ∝ m1.36, and compared these values

with the asymptotic prediction of tm ∝ m1.5 for the ideal polymer chain with a scaling exponent of ν =

0.5. Using our model, we also studied the scaling properties of thermal fluctuation, δtm ∝ m0.5t0.5, and

conformational broadening, ∆tm ∝ m1.5 , which matched the simulation results within uncertainty.

There are two implications from this work. First, since the translocation time is very sensitive to initial

chain conformation, in experiments the polymer can be confined in a stretched state to suppress the effect

of fluctuation on translocation time. Second, the results of the monomer-index dependent dispersion of

translocation time can improve the data analysis of the electric signal of the translocation events.
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Section 2.6: Figures

Figure 2.1: Forced translocation of the polymer through the nanopore resembles pulling a rope at a fixed
location. Here m is the index of the translocating monomer (inside the pore), and m′ is the furthest monomer
affected by the applied force. Only the aligned strand is subject to the pulling force (i.e., the section between
the mth and m′th monomer). The dotted curve is the original conformation of the polymer chain prior to
the threading motion through the nanopore.
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Figure 2.2: The setup of 3D Langevin Dyanmics simulation of translocation. (a) The bond potential con-
necting beads i and j is Uij = ULJij + U chij , where the first term is a trunked-shifted Lenard-Jones potential
and second one is a finite extensible nonlinear elastic bond potential. (b)The membrane is perpendicular to
the translocation direction and the nanopore is a cylindrical void with length L and diameter w. The pore
length L = 2 · σ and pore width w = 1.6σare maintained if not specified otherwise, where σ is the size of
monomer.(c) The chain is pinned at the pore before translocation.
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Figure 2.3: The traces of the translocation times from two chains with distinct initial conformations. Simula-
tion results of the translocation times (circles) matched the predictions of the model(lines) for two randomly
chosen initial polymer conformations. Both predictions of the thermal-averaged translocation time under the
model and the simulation matched each other and were well separated for different initial conformations (blue
and red). Therefore, translocation time can be considered as a fingerprint of initial polymer conformation.
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Figure 2.4: A log-log plot of average translocation time 〈t(m)〉 vs. m from the 3D simulations (circles) of
the ideal polymer chain compared to our model(line). The length of the chain was N = 800 monomers,
which passed through a nanopore of length,L = 2.0σ. Scaling exponent was fitted between m= [400,700]
with uncertainty +/-0.01.
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Figure 2.5: A log-log plot of the thermal broadening (dash line) and the conformational broadening (line).
Scaling factor is fitted between m= [400,700] with uncertainty +/-0.01. The amplitude of thermal fluctuation
is much smaller and increase slower with index than conformational fluctuation.
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Figure 2.6: Comparing the simulation results of conformational broadening (circles) with the model’s pre-
diction (line). The scaling factor was fitted between m = [400,700] with an uncertainty of +/- 0.01.
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CHAPTER 3: Single ds-DNA molecules in nanochannels

Section 3.1: Introduction

Like nanopores[12, 19, 110, 91, 57], nanochannels also can be utilized for the determination of genome

information on a per molecule basis.[98, 59, 57, 51, 97] However, the detection technology in those two

platforms can be different. In the nanopore system, a digest of electric signals can reveal either the nucleotide

sequence on a scale of base pair by the depth of the blockage current or the length of a DNA molecule

by the dwell times of the current blockades.[12, 57, 79] The nanochannel platform employs the optical

technology to map the genomic information of single DNA molecules, instead of the electric measurements

in nanopore practice[97]. The difference is due to the high electrical resistance that a long nanochannel

possesses (as nanochannels are generally longer than nanopores), which makes the axial ionic conductance

of the nanochannel less sensitive to the presence of DNA molecules.

When a single DNA molecule is confined to a nanochannel, it can be stretched to about half of its

full length.[97] Such a linearization of the DNA provides a map from the positions of the base pairs to

the genomic order of them. The enzyme cuts the DNA molecule into fragments on the sites of specific

motif. The fluorescent-stained fragments relax and diffuse apart and their lengths are measured through

the optical imaging. Despite of the restriction enzyme cutting[98] in nanochannels, nick-labeling[122] DNA

and denaturation mapping[95] of DNA also use the optical technology for determine the relative location

of the target motifs. Similar to Sangers method[104], the optical mapping within a nanochannel provides

the length measurement of the fragmented DNA molecules and therefore offers the frame for assembling the

genome. However, the optical mapping has the advantage of preserving the ordering of the fragments, as the

fragments within the nanochannel cannot interpenetrate each other due to the excluded-volume interaction.

The assembly of genome from the digest of the lengths of the DNA fragments requires a thorough

understanding of the statics of single DNA molecules confined to the nanochannel, such as the dependence

of the length on the contour length and the nanochannel width. This problem will be addressed in the first

part of this chapter. 1

The entry of DNA from the reservoir into a nanochannel is driven by the high field in the nanochan-

nel and in the immediate vicinity of the nanochannel entry.[82] The strength of the electric field decays

1This chapter is adapted from the theoretical part of a manuscript, which is contributed by Yanqian Wang, Sergey Panyukov
and Michael Rubinstein.
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quadratically with the distance from the nano-entrance increases, only the portion of the electric field imme-

diately surrounding the entrance contributes to the nanochannel entry. Experimental and theoretical studies

have found that this electric field outside nanochannel has small additional contribution to facilitate the

nanochannel entry.[126, 83] Driving a micron-sized DNA molecule such as T4-phage DNA into a nano-scale

channel requires a strong electric field to overcome the entropic barrier. The strong electric field results in

a fast migration speed that impedes the trapping of the DNA within the nanochannel. There have been a

number of experimental efforts [25, 18, 65, 123, 62] to slow down the DNA molecule: Their methods included

increasing the solution viscosity, decreasing its temperature, and introducing nanochannel arrays. The un-

derstanding of the driving force on the DNA is crucial in developing strategies to slow down the molecule

and many efforts were made on the related research.[63, 44, 126, 35, 116] The study of this electric-induced

force, i.e. the electro-hydrodynamic force will be also presented in this chapter.

Section 3.2: Physical properties of ds-DNA molecule

We model double-stranded DNA (ds-DNA) stained with an intercalating dye, as a semiflexible chain with

persistence length lp ' 50nm, backbone diameter a ' 2nm and contour length L ( 21µm for λ-DNA and

72µm for T4 DNA).[81, 93, 33] The ds-DNA backbone is negatively charged and is surrounded by positively

charged counterions dissolved in a polar aqueous solvent. The bare charge of the chain backbone is two

elementary charge e per basepair (bp) with the bare linear charge density 2e/bp (5.9e/nm). The counterion

condensation process reduces the net charge of the backbone to the Manning value of e/lB , where lB is

Bjerrum length, which is defined as the distance at which two elementary charges interact with electrostatic

energy equal to the thermal energy kBT , where kB is Boltzmann constant and T is absolute temperature

lB = e2/(εkBT ) (3.1)

The Bjerrum length is lB = 7Å in water at room temperature with dielectric constant ε ' 80. Correspond-

ingly, the counterion (Onsager-Manning) condensation reduces the bare linear charge density by the factor

of 4 from 2e/bp to 0.5e/bp = 0.14eÅ−1.

The remaining uncondensed mobile counterions are localized within double-layer ”coat” around backbone

with thickness equal to the Debye length. The Debye screening length depends on the concentration cs of

monovalent ions in the electrolyte solution

rD = (8πlBcs)
−1/2 (3.2)
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which is rd ' 1nm in a 70 mM aqueous solution of monovalent electrolyte. The effective diameter d of ds-

DNA can be derived from the excluded volume interaction between two charged cylinders[113] which gives

a value of d ' 6nm for a typical 70 mM monovalent electrolyte solution. In this case, the Kuhn monomers

of ds-DNA are cylindrical-like objects with length b = 2lp ' 100nm and diameter d ' 6nm. These Kuhn

segments repel each other with excluded volume v ≈ b2d = 6× 104nm3 (approximately equal symbol means

equal up to a constant factor).[77] The interaction free energy per unit volume at low concentrations can be

written as virial expansion with the second virial term corresponding to 2-body repulsion

Fint
V

=
1

2
kBTvc

2 (3.3)

where c is the Kuhn segment number density.

The Gaussian expression of the entropic free energy of a molecule with the root-mean-square end-to-end

distance R is given by

Fent =
1

2
kBT

R2

R0
2 (3.4)

where R0 ≈ (bL)1/2 is the unperturbed root-mean-square end-to-end distance of the molecule. If the inter-

action free energy Fint of the molecule is less than the thermal energy kBT , the chain conformations follow

Gaussian statistics with R0 ≈ (bL)1/2. If the interaction energy exceeds the thermal energy kBT , the inter-

action energy balances the entropic contribution to the chain free energy and determines the chain size (root

mean-square end-to-end distance) R ≈ (vb)1/5L3/5. In such a case, a chain strand with interaction energy

about kBT is called a thermal blob. Any chain strands with size below thermal blob size ξth ≈ b4/v have

conformations with Gaussian statistics. Moreover, only chains with sizes larger than the thermal blob can

swell. The minimal length of a swollen chain is Lth ≈ ξ2
th/b ' 28µm for ds-DNA, which can be compared to

the contour length L ' 21µm for λ-DNA and 72µm for T4 DNA. The chain with contour length small than

Lth will have an ideal-like conformation. The overlapping regime of such strands interpenetrating each other

is called marginal solution.[106, 107] In this regime, the interactions between monomers are mean-field-like

as opposed to the scaling cases of semidilute solutions.[77]

Section 3.3: Single DNA molecules confined to a nanochannel

Consider a molecule localized inside a long narrow nanochannel with diameter D smaller than the chain

size R in bulk solution. If the thermal blob size ξth is smaller than the molecule (ξth < R), the molecule

will be extended along the nanochannel axis for moderate confinement D < ξth < R. This regime is known

as de Gennes regime (Fig.3.1). In de Gennes regime, the conformation of the molecule can be treated as a
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combination of isometric Flory blobs of size D.

If the confinement is relatively weak (D∗ < D ≤ R0, where D∗ = b−5/4v1/2L3/4) and the excluded

volume interaction energy of the confined molecule Fint = kBT
vN2

R0D2 is lower than the thermal energy kBT ,

the molecule is not extended with longitudinal size along the nanochannel R|| ≈
√
Lb. A chain strand of size

D (called confinement blob) is unperturbed and ideal-like in all directions. The chain free energy is kBT per

such strand (confinement blob),Fent ≈ kBT (R0

D )2.

In narrower nanochannels with diameter b < D ≤ D∗ (Fig.3.2a), the excluded volume interaction free

energy between monomers is larger than kBT and the molecule elongates. A balance of the interaction

free energy and entropic free energy kBT
vN2

RD2 ≈ kBT
R2

b2N determines the optimal chain elongation R|| ≈

L( v
D2b )

1/3. In this regime (b < D ≤ D∗) the confinement free energy (Eq.3.4) is higher than the interaction

free enegy. For ds-DNA in a nanochannel of diameter D = 100nm, which is approximately equal to the

Kuhn monomer size, the length of the chain is R|| ' 7µm for λ-DNA, while for T4 DNA, the length is

R|| ' 23µm. If the nanochannel diameter D < b, then the chain can form hairpins in the nanochannel.

For smaller nanochannel diameters (D � b), the confinement forces the molecule into a conformation of

deflected strands in stead of coiled strands, known as the Odijk regime (Fig.3.1), where the bending energy

increases and dominates the free energy.[86, 87, 88]

Section 3.4: Compressed DNA molecule in a nanochannel

Consider the case in which, in addition to the transverse confinement of the DNA molecule in the

nanochannel of diameter D < R0, the molecule is also longitudinally compressed to a size R smaller than

its optimal length R|| in an open nanochannel, i.e., R < R||. The number density of Kuhn monomers is

c ≈ N
RD2 , where N is the total number of Kuhn segments per chain. The correlation length ξ is the range of

the monomer pair-correlation function and is the screening length of the monomer density fluctuations. The

interaction energy per strand of correlation length 1/2kBTvc
ξ2

b2 is on the order of kBT in marginal solvent

giving ξ ≈ b/
√
vc. The perturbation of monomer density is screened over the scale ξ. Therefore the distance

from the wall over which the density increases from c = 0 at the repulsive wall to its average value is the

correlation length ξ.

At relatively weak compression of the molecule D < ξ, and lower concentrations, c < b2

vD2 , the radial

density profile has a maximum in the center of the nanochannel and decays to zero at the nanochannel wall,

similar to the case of the uncompressed molecule. The confinement free energy is still given by Eq.3.4 and

the confinement free energy density is

F̃ent ≈ kBTc
b2

D2
(3.5)
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At higher monomer concentration c > b2

vD2 the correlation length ξ < D and the monomer density is

uniform in the central part of the nanochannel and decays to zero in the thin layer of thickness ξ near the wall

(Fig.3.2b). The wall affects only conformations of chain strands on the scale ξ near the wall. Each strand

of size ξ in the outer layer experiences a free energy penalty on the order of kBT . Since the interaction

energy of a strand of size ξ is also kBT , the layer of thickness ξ near the wall has a confinement free energy

on the same order as the interaction energy. Beyond this layer, there is no direct effect of the nanochannel

wall on the DNA free energy, while an interaction energy of marginal solvent of kBT per correlation strand

still exists.[8] The confinement energy within a correlation volume is kBTc
ξ3

ξ2/b2 , and the surface layer of

thickness ξ occupies the fraction ξ/D of the nanochannel section volume. Therefore the confinement free

energy per unit volume in this case of strong compression is
ξ
D kBTcξ

3

( ξ
2

b2
)ξ3

= kBTc
3/2v1/2bD−1.

Combining both strong and weak compression cases we rewrite the confinement energy per unit volume

within the nanochannel as

F̃conf (D) =


kBTcb

2D−2 if c < b2/(vD2),

kBTc
3/2v1/2bD−1 if c > b2/(vD2)

(3.6)

The higher monomer concentration implies greater overlap of chain strands. The interaction free energy

per unit volume is the same as Eq.3.3 and the osmotic pressure is Π ≈ 1
2kBTv

2.

Section 3.5: Electrohydrodynamic force on DNA molecule in a nanochannel

Since the DNA backbone is negatively charged, the electric field exerts a force fel on it. On the other

hand, the positively charged ions within the Debye Layer (DL) have the same amount of charge as the

backbone. Therefore electric field pulls the positive ions in the opposite direction with the force −fel. The

force on positive ions is transmitted due to the friction to the surrounding fluid, resulting in a fluid flow.

The DNA backbone is dragged by the flow in the direction opposite to the direct electrostatic force fel on

it. The total electro-hydrodynamic force feh is the sum of both forces giving through feh = fel + fdrag.

Since the flow around one strand of backbone can couple with flow around other strands, the flow profile

within the molecule also depends on the conformation of the molecule. Besides the conformation, the channel

where the molecule locates can put an additional restriction on the flow.

The electrohydrodynamic force is also studied for a compressed molecule in nanochannel. In order to

illustrate how the boundary conditions (nanochannel or bulk solution) can change this force, we consider the

molecule having the same conformation but in bulk solution. However, such conformation of DNA molecule

is not physical in bulk solution. Therefore we use cross-linked microgel with mesh size ξH as an analog to the
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compressed molecule in nanochannel. Below we discuss three special cases: i) electrophoresis of a microgel

in bulk solution ii) immobile microgel in bulk solution iii) immobile microgel in a nanochannel. For each of

those cases, the flow profile around microgel strand and forces acting on it will be discussed.

3.5.1: Electrophoresis of microgel in bulk solution

The electrostatic force on the microgel pulls it and in the steady state the gel moves with velocity v. The

constant velocity assumes that dragging force on the strand is equilibrated by electrostatic force

fdrag = −fel

Thus the net force exerted on microgel is zero

feh = 0

The sum of all forces on the DL, including the electrostatic force on counterions −fel and dragging force

−fdrag from the strand, is also zero. This perfect cancellation implies that no forces act on the solvent at

the boundary of the DL and the velocity of flow at that boundary at distance rD from strand is zero. The

flow profile is sketched in Fig.3.3a2 with maximum speed at the microgel strands, decreasing to zero at the

distance on the order of Debye length rD away from strands.

Due to this ”local” force balance the drag force is only due to shear flow within the DL, and the resulting

velocity of microgel does not depend both on fluid velocity outside of the DL and on the microgel size R.[106]

The velocity is only determined by electric field and details of charge profile within the DL, v ≈ µE, where

µ is its electrophoretic mobility.

Due to the strong drag by the backbone, the fluid in the DL flows in opposite direction to the electric

force on it.

3.5.2: Immobile microgel in bulk solution

If the microgel is immobilized in a solution by the force, the flow direction within DL would be reversed

with respect to free electrophoresis (EP) case above (see Fig 3.3b1). Within DL, the flow velocity starts from

zero at the surface of stationary microgel strands and is increasing with distance away from these strands.

In contrast to EP, the fluid no longer has zero velocity outside of the DL. Fluid flow is driven by counterion

flow within the DL and is moving with velocity v ≈ µE. In the case when there is no net flux through bulk

solution, the flow through the microgel should eventually turn back forming a circulation of fluid through and
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around the microgel. The backflow prefers a path with lowest hydraulic resistance to minimize dissipation.

The flow with lowest resistance returns at distance from the gel on the order of its size R.

The solvent within the gel of size R moves with average velocity v and is dragged by viscous force ηRv

from bulk solution. There are two additional forces acting on moving solvent in gel of size R: electrostatic

force on counterions, −fel and the drag force from microgel backbone, −fdrag. In equilibrium, sum of

these three forces has to be zero, −ηRv − fel − fdrag = 0. Therefore the dragging force with which the

solvent acts on microgel backbone is fdrag ≈ −fel − ηRv, where the velocity is v = µE. The resulting

electro-hydrodynamic force is

feh = fdrag + fel ≈ −ηRv ≈ −ηRµE (3.7)

and it is equal to the stall force required to immobilize the gel fstall = −feh.

3.5.3: Derivation of the electro-hydrodynamic force on semiflexible polyelectrolytes in nanochannels

Below we calculate the force needed to stall a semiflexible polymer with linear bare charge σ in the

channel in the presence of both electric field E and electrolyte flow speed v. This force can be equilibrated

by pressure difference in the channel or confinement and osmotic forces in the funnel.

We model the part of the polyelectrolyte inside the pore by a rigid cylindrical rod of radius a. Under

the assumption that b� a, we approximately reduce the problem of many rods to a single rod problem by

separating the space occupied by the polymer into non-overlapping cylindrical cells of radius about average

distance between polymer chains ξH . The cylinder axis coincides with local direction of the polymer which,

in general, is inclined by a certain angle θ0 with respect to the field direction E.

Double layer charge distribution

The electric potential and salt concentration are given by the Poisson-Nernst-Planck equations at the

steady state

(OJi (x)) = 0 (3.8)

where Ji is the ionic flux

Ji (x) = −Di

[
Oci (x) +

zici
kT

Oφ (x)
]

(3.9)

where the subscript i denotes the ion species with valence zi, Di and ci are the diffusion coefficient and the

concentration of the ion i, φ is the electric potential,

ε∆φ (x) = −ρe (x) (3.10)
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, ∆ is 2D Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
(3.11)

and ρe is the charge density

ρe (x) =
∑

i
zici (x) (3.12)

The potential φ (x) is determined by the Poisson-Boltzmann equation, and in Debye-Huckel approxima-

tion we find

φ (x) = (Ex) +φDl (r) (3.13)

where E denotes the electric field outside double layer, r =
√
x2 + y2, and the Double layer potential satisfies

1

r

d

dr

(
r
dφDl (r)

dr

)
= φ′′Dl (r) +

1

r
φ′Dl (r) = κ2φDl (r) (3.14)

where κ = r−1
D =

√
2nz2e2/εkT is the inverse Debye length. The solution is

φDl (r) = φ (a)
K0 (κr)

K0 (κa)
(3.15)

Here Kn is the modified Bessel function of order n. Corresponding charge density forming the double layer

is

ρe (r) = −εκ2φDl (r) (3.16)

Navier-Stokes equations

The motion of the electrolyte solution is coupled with the net charge density ρe (r) via the Navier-Stokes

equation

η∆v = −ρe (r)Oφ+ Op (3.17)

with the continuity equation

(Ov) = 0 (3.18)

Here η is the dynamic viscosity of the electrolyte, p is local fluid pressure, and ρe (x) is the electric charge

distribution due to the co-ions and counterions. Neglecting boundary effects for long polymer, there is no

dependence on the z coordinate along the polymer. In the linear approximation we get equations for three
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velocity components

η∆vx = −Exρe (r) +
∂p

∂x
, (3.19)

η∆vy =
∂p

∂y
, (3.20)

η∆vz = −Ezρe (r) (3.21)

where

Ex = E sin θ0, Ez = E cos θ0 (3.22)

and θ0 is the angle between direction of external field E and the axis z of the polymer

The velocity v satisfies the continuity condition

∂vx
∂x

+
∂vy
∂y

= 0 (3.23)

Forces on a polymer strand

The total force per unit length of the polymer is the sum of the electric and viscous forces:

feh = fel + fdrag (3.24)

The charge per unit length of the polymer is found by Gauss’s law

σ = −2πaεφ′ (a) (3.25)

and the electric force fel = σE is:

fel = σE (3.26)

The drag force per unit length of polymer is given by expression

fαdrag = 2πa

∫
dn
∑
β

Sαβnβ (3.27)

where nβ is normal to polymer surface and the stress tensor is

Sαβ = η

(
∂vβ
∂xα

+
∂vα
∂xβ

)
− pδαβ (3.28)
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Chain bending effects

The solution of the above equations is only valid on scales small with respect to the persistence length,

while at larger scales the direction of the polymer randomly changes. The coordinates x′= Rx and velocity

v (θ0, ϕ0) = Rv in global coordinate system related to the channel are connected to that in local coordinate

system which is rotated with polymer via the rotation matrix

R =


cosϕ0 cos θ0 sinϕ0 − cosϕ0 sin θ0

− sinϕ0 cos θ0 cosϕ0 sinϕ0 sin θ0

sin θ0 0 cos θ0

 (3.29)

Spherical angles θ0 = θ0 (s) and ϕ0 = ϕ0 (s), characterizing direction of the polymer, vary with contour

length s of the polymer. At scales large with respect to persistence length of polymer they are randomly

distributed in the interval 0 < θ0 < π/2 and 0 < ϕ0 < 2π.

The force acting on the polymer is the sum of forces at all its sections and can be found by averaging the

local force feh (θ0, ϕ0):

f =

∫ 2π

0

dϕ

∫ π/2

0

dθ0 sin θ0feh (θ0, ϕ0) (3.30)

Longitudinal component of the forces

Using Eq. (3.14) we find φDl (r) = κ−2∆φDl (r) and Eq. (3.21) can be rewritten as

1

r

d

dr

(
r
dŨ (r)

dr

)
= 0 (3.31)

for the function

Ũ (r) = vz (r)− εEz
η
φDl (r) , (3.32)

with the solution

ηŨ (r) = C1 + C2 ln
r

a
(3.33)

From the boundary condition vz (a) = 0 at r = a we get the integration constant:

C1 = −εEzφDl (a) (3.34)

giving

vz (r) =
εEz
η

(φDl (r)− φDl (a)) +
C2

η
ln
r

a
(3.35)
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The other undefined constant C2 determines the velocity vz = vz (R) at large scales r = ξH :

C2 =
ηvz (ξH) + εEzφDl (a)

ln (ξH/a)
(3.36)

The non-zero components of the stress tensor (3.28) are

Sxz = η
∂vz
∂x

, Syz = η
∂vz
∂y

(3.37)

Substituting it into Eq. (3.27) and taking integral over n we get the contribution from the hydrodynamic

drag force

fzdrag = 2πav′z (a) (3.38)

The bare contribution (3.26) is cancelled in the sum (3.24), and the total force per unit length comes only

from partially screened hydrodynamic contribution:

fzeh = 2π
ηvz (ξH) + εEzφDl (a)

ln (ξH/a)
(3.39)

The hydrodynamic screening is only logarithmic for the straight chain.

Transversal components of the forces

The continuity condition (3.23) can be identically satisfied by the substitution

vx =
∂ψ

∂y
, vy = −∂ψ

∂x
(3.40)

for arbitrary stream function ψ (x, y). By introducing new function

Ψ = η∆ψ (3.41)

we define a system of equations for the x, y-components:

∂Ψ

∂y
= −Exρ (r) +

∂p

∂x
, (3.42)

∂Ψ

∂x
= −∂p

∂y
(3.43)
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Similarly to Eq. (3.40) the last of those equations is identically satisfied by the substitution

Ψ =
∂U

∂y
, p = −∂U

∂x
(3.44)

with potential function U (x, y). Substituting this Ψ to Eq. (3.42) we get

∆U = −Exρ (r) (3.45)

with the solution

U (r) = Ũ (r) + εExφDl (r) , (3.46)

Ũ (r) = A+B ln (r/a) (3.47)

where A and B are integration constants and we used Eq. (3.14) and (3.16) to present the double layer

charge density in the form

ρ (r) = −ε∆φDl (3.48)

Combining Eqs. (3.41) and (3.44) we get

Ψ = η∆ψ =
∂U

∂y
(3.49)

from where we can introduce a new function u

ψ =
∂u

∂y
(3.50)

which satisfies

η∆u = U (3.51)

Using Eq. (3.14) we find

φDl (r) = κ−2∆φDl (r) = κ−2

[
φ′′Dl (r)−

1

r
φ′Dl (r)

]
(3.52)

and the above equation can be rewritten as

η∆ũ = η
1

r

d

dr

(
r
dũ (r)

dr

)
= Ũ (r) (3.53)
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with

ũ (r) = u (r)− εEx
κ2η

φDl (r) (3.54)

and the solution becomes

ηũ (r) =
1

4
r2
(
A−B +B ln

r

a

)
+ C ln

r

a
(3.55)

where C is a new integration constant.

According to Eqs. (3.40) and (3.56) the velocity distribution is related to the u as

vx =
∂2u

∂y2
, vy = − ∂2u

∂x∂y
(3.56)

As follows from Eq. (3.54) the velocity can be written as the sum of hydrodynamic and Double layer

contributions, with the first of them:

ṽx =
∂2ũ

∂y2
=

1

η

[
B

4

y2 − x2

r2
− C y

2 − x2

r4
+

1

2

(
A+B ln

r

a

)]
, (3.57)

ṽy = − ∂2ũ

∂x∂y
=

1

η

(
−B

2

xy

r2
+ 2C

xy

r4

)
(3.58)

The Double layer contribution is

vDlx = −εEx
2η

[
y2 − x2

r2

(
φDl (r)−

2

κ2r
φ′Dl (r)

)
+ φDl (r)

]
, (3.59)

vDly = −εEx
η

xy

r2

(
φDl (r)−

2

κ2r
φ′Dl (r)

)
(3.60)

where Eq. (3.52) is applied for the derivation. From the boundary conditions vx (a) = vy (a) = 0 at r = a,

we get relations between the integration constants:

B

4
− C

a2
+
εEx

2

[
φDl (a)− 2

κ2a
φ′Dl (a)

]
= 0,

A = −εEx sin θ0φDl (a)

(3.61)

where we used Eq. (3.14) ar r = a. The constant B determines the velocity at large scales r � a:

vx '
1

2η

(
A+B ln

r

a

)
, vy ' 0 (3.62)
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Using Eqs. (3.56) and (3.44), (3.51) we find components of the stress tensor (3.28)

Sxx = 2η
∂3u

∂x∂y2
− p, Sxy = η

(
∂3u

∂y3
− ∂3u

∂x2∂y

)
,

Syy = −2η
∂3u

∂x∂y2
− p, p = −η

(
∂3u

∂x3
− ∂3u

∂x∂y2

)
.

(3.63)

Substituting it into Eq. (3.27) and taking integral over n we get drag contribution

fxdrag = 2πaη

[
u(3) (r) +

1

r
u′′ (r)− 1

r2
u′ (r)

]
r=a

= 2πaU ′ (a) (3.64)

fydrag = 0 (3.65)

where we used relation (3.51) between functions u and U . Notice, that this equation is similar to Eq. (3.38),

and similarly to the case with only the longitudinal component since the bare contribution (3.26) is cancelled

in the sum (3.24). Combining the above equations we find

fxeh = 2π
ηvx + εExφDl (a)

ln (ξH/a)
, fyeh = 0 (3.66)

Eq. (3.39) and (3.66) can be written in vector form as

feh = 2π
ηv + εEφDl (a)

ln (ξH/a)
(3.67)

where R is average distance between polymer chains.

We find from Eqs. (3.67) and (3.25) the reduction of the effective charge from the bare charge:

σeff

σ
=

1

κa

1

ln (ξH/a)

K0 (κa)

K1 (κa)
'


1

κa

1

ln (ξH/a)
at κa� 1

ln [1/ (κa)]

ln (ξH/a)
at κa� 1

(3.68)

In the most limit κa� 1 the effective charge almost do not depend on both salt and polymer concentrations.

3.5.4: A compressed DNA molecule in a nanochannel

The electrostatic potential applied along the longitudinal axis of the nanochannel creates a uniform

electrostatic field inside of it. The result of this field is an electrostatic force acting in the direction opposite

to the field on the negatively charged DNA molecule compressed and immobilized inside the nanochannel.

There is also an electrostatic force acting on positive ions (counterions and positive salt ions) in the direction

of the electrostatic field and opposite force acting on negative salt ions. Outside the Debye volume around
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the DNA (and the charged walls of the nanochannel), the charge densities of positive and negative ions are

the same and the net electrostatic force on fluid is zero (due to electroneutrality). Inside the Debye volume,

however, there are more positive ions in the fluid, which results in the net electrostatic force acting on the

fluid in the direction opposite to the field.

Within the Debye layer, the flow velocity is zero at the surface of the stationary DNA strands, and this

velocity increases with distance from these strands to achieve a constant value at the boundary of the Debye

layer. In the case of no net fluid flow through the solution, the fluid flow circulates through and around the

molecule. Similar to Ohm’s law, the path of the lowest hydrodynamic resistance determines the flux of the

backflow. If the molecule is immobilized in bulk solution, the flow with lowest resistance circulates around

the molecule at a distance from it on the order of molecular size R. However, the backflow for a molecule

localized in a nanochannel is qualitatively different. The backflow is either primarily through the rest of

the nanochannel (if its hydrodynamic resistance is lower than the resistance of the microgel) or through

the molecule itself (if the molecule has a smaller hydraulic resistance than the nanochannel). In the latter

case, the scale at which the flow circulates within the molecule is its ”mesh size” ξH , defined as the average

distance between two neighboring strands.

In the case of circulating fluid flow through the molecule (Fig.3.3), the flow velocity starts from zero at

the polymer backbone, increases to a maximum value at the Debye length away from the backbone, and

then decreases (and may even change direction) at the length scale of hydrodynamic screening length ξH .

ξH ≈
[
c(x)b2

]−1
(3.69)

The flow profile in the case of strands distributed as a set of parallel rods in a very long nanochannel was

studied recently.[100] We demonstrate that the force acting on a compressed molecule with randomly oriented

strands separated by the average distance ξH in a nanochannel is similar to the force acting on a set of parallel

rods separated by a distance ξH . The viscous drag force on the molecule is fdrag ≈ −fel+fel/ ln( ξHa ), where

a is the backbone diameter. The resulting electrohydrodynamic force is

feh = fdrag + fel ≈ fel/ ln(
ξH
a

) (3.70)

In other words, the force on the DNA molecule is reduced from the electrostatic force fel by the factor of

ln( ξHa ) with its typical value around 5. If the surface of the nanochannel is charged, the counterions within a

Debye length from the surface are driven by the electric field. This then drags the fluid in the nanochannel

and creates electro-osmotic flow with flux Q. In this case, a molecule is not only pulled by the electric field
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but is also driven by the electro-osmotic fluid flow in the nanochannel with non-zero flux Q. This additional

contribution modifies the electrohydrodynamic force as

feh = (fel − 2πηlQ/A)/ ln(
ξH
a

) (3.71)

where η is the viscosity of the fluid, A is the cross-sectional area of the nanochannel, l is the length of the

rod by analogy with the molecule strand.

This chapter focuses on the theoretical results of the free energies, conformations of single ds-DNA

molecules in nanochannels as well as the forces on the molecules in presence of an electric bias. This

study allows for exploration of biological interests, including the expression of genes based on chromatin

conformation, mechanisms responsible for bacterial chromosome separation during cell division, packaging

of long DNA strands in viral phages, etc.[96, 83] It also provides the theoretical foundation for the study of

nanofunnel-confined DNA molecules in next chapter.
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Section 3.6: Figures

Figure 3.1: Regimes of the conformations of free semiflexible polymers in nanochannel confinement. At
small channel width, the chain has a conformation of deflections with the wall. At a larger channel width,
D > b, the polymer chain starts to coil and forms anisometric blobs and isometric blobs. Reprinted from
reference[97], c© IOP Publishing
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Figure 3.2: Conformation of a single molecule in a nanochannel.(a) A ds-DNA molecule confined in a long
nanochannel of diameter D. It extends along the axis of the nanochannel to longitudinal size R||. The chain
strands swell on the length scale of ξ||, within which the strand’s conformation is ideal. (b) Compression in the
longitudinal direction increases the monomer density c and decreases the size of the correlation length scale
ξ ∝ c−1/2. On a length scale larger than correlation length ξ, the fluctuations of monomer density become
uncorrelated. The hydrodynamic screening length ξH is smaller than correlation length ξ and is on the order
of the distance between neighbouring polymer strands. At length scales larger than ξH , the monomers of one
strand begin to couple hydrodynamically with monomers belonging to a different strand. (c) The monomer
concentration c increases from its minimal value at the channel wall to a maximum concentration at the
correlation length ξ away from the wall in case (b). However, the concentration in case (a) keeps increasing
up to the center of the nanochannel.
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Figure 3.3: Flow profile within and around the molecules. (a) shows three cases: (i) free microgel in bulk
solution (ii) stalled microgel in bulk solution (iii) stalled microgel in a long channel. The flow profile between
two neighbouring stands seperated by distance ξH is show as vi, vii, viii respectively. (b) The microgel in case
(i) moves in a direction opposite to electric field with velocity µE, where µ is its electrophoretic mobility.
The gel drags the solvent surrounding its strand. The motion of the solvent is reduced by the electrostatic
force acting on positive ions primarily distributed within Debye layer rD around polymer strands and the
fluid is stationary outside of the Debye Layer. The flow around the stalled microgel in (ii) is driven by the
electrostatic force on counterions and reaches its maximum speed at Debye length. The solvent within the
microgel moves together and a back flow is generated immediately outside of the microgel. The backflow
mostly passes through the molecule in (iii) instead of outside of the molecule in (ii) while the fluid flow
within the DL would be similar to the one in (ii). (c) shows the dependence of the average flow velocity on
distance away from the backbone surface.
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CHAPTER 4: Enhanced nanochannel translocation and localization of genomic DNA
molecules using three-dimensional nanofunnels

Section 4.1: Introduction

Threading a macromolecule such as DNA through a nanopore or nanochannel forces its extension and

ensures the sequential passage of molecular segments through a nanoscale volume. Electrical or optical

probing of this volume produces a highly localized signal that can be correlated to the structure or nucleotide

sequence of the DNA.[71, 16, 89, 51, 73] The transport of DNA molecules through nanoscale conduits is most

often achieved by applying an electric field across the conduit, which induces an electrostatic force on the

negatively charged DNA and pulls it into the confines of the nanopore or nanochannel. The geometry of the

region where critical dimensions decrease from the microscale to the nanoscale has been found to affect the

dynamics of this process in nanofluidic platforms based on biological pore complexes or channels fabricated

in insulating substrates.[51, 36] Control over transport dynamics in turn affects the throughput and resolving

power of such platforms vis-á-vis the efficiency with which DNA molecules are introduced to the nanoscale

region and the speed with which the DNA passes through the detection volume. Despite the acknowledged

importance of geometry on performance, however, it is difficult to develop a detailed understanding of its

role in the nanofluidic platforms thus far reported. The direct-write fabrication method of focused ion beam

(FIB) milling, can be used to pattern nanofluidic structures in a substrate with control over both their

width and depth. We fabricated nanochannels having three-dimensional nanofunnel entrances of various

shapes, visualized DNA behavior in these nanofunnels, and modeled the observed behavior in order to

better understand how controlling the geometry of the nanochannel entrance can enhance the electrokinetic

manipulation of DNA molecules in nanofluidic platforms.1

4.1.1: Funnel shapes

Consider a nanofunnel vestibule between a nanochannel and a microchannel that has its narrow end

attached to a nanochannel as shown in Fig.3. The funnel radius is assumed to have a power law dependence

on the coordinate along the nanofunnel axis with exponent α characterizing the shape of the nanofunnel.

1The experimental work was accomplished by Mike J Ramsey’s group. Jinsheng Zhou and Laurent D Menard performed
experiments and analysed data. Yanqian Wang, Sergey Panyukov and Michael Rubinstein developed the theoretical model of
nanofunnel-confined DNA molecules.
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The diameter of the nanofunnel matches the nanochannel diameter D at x = xD , where xD is the coordinate

of the nanochannel-nanofunnel interface. Thus the nanofunnel profile is

y(x) = z(x) = D(x/xD)α for x > xD (4.1)

where y(x) and z(x) are the funnel width and depth, respectively, at position x¿0 along the funnel’s longi-

tudinal axis, D is the widest dimension of the nanofunnel, and xD is the nanofunnel length. In this study,

D = 1.5µm, xD = 22µm, the nanochannel width and depth were each 100 nm, and α values of 0, 0.45 and

0.78 were used to define the nanofunnel shapes. The cross-sectional area of the nanofunnel at coordinate x

is

A(x) = D2(x/xD)2α (4.2)

For an electrostatic potential applied across the nanochannel-nanofunnel device Gausss law specifies that

the flux of the electric field through each cross-section of the nanofunnel is the same. Therefore the electric

field E decreases with coordinate x reciprocally proportional to cross-sectional area A(x) (Eq.4.2) as

E(x) = ED(x/xD)−2α (4.3)

The voltage drop across the nanofunnel is related to the electric field in the nanochannel ED as ∆V =∫ Lfunnel
xD

dxED (x/xD)
−2α

, where the nanofunnel length Lfunnel � xD usually holds. For small exponents

α < 1/2, the voltage diverges with the nanofunnel length

∆V =
1

1− 2α
EDxD

(
Lfunnel
xD

)1−2α

(4.4)

For large exponents α > 1/2 the voltage drop is almost independent of the nanofunnel length

∆V =
1

2α− 1
EDxD

[
1−

(
xD

Lfunnel

)2α−1
]
' 1

2α− 1
EDxD (4.5)

while for α = 1/2 the dependence of the voltage drop ∆V on the nanofunnel length D is logarithmic

∆V = EDxD ln (Lfunnel/xD) (4.6)

Although the forces on DNA molecule in a nanofunnel may differ from forces in a nanochannel, the

electrohydrodynamic force has the same expression (Eq.4.3) except for the dependence of electric field E(x)

and cross-sectional area A(x) on the nanofunnel coordinate. Compared to the zero axial forces on a molecule
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confined in nanochannel, however, there are net forces directed along the nanofunnel axis due to both location

dependent confinement and interaction energy. We will discuss how the geometry of the nanofunnel modifies

the forces by examing the location-dependent effective free energy of the molecule.

Section 4.2: Models

In this section we present a theoretical description of the behavior of a DNA molecule confined in a

three-dimensional nanofunnel by the applied electric field. The double-stranded DNA is modeled as a semi-

flexible chain having a Kuhn length, b, of 100 nm; a geometric backbone diameter, a, of 2 nm; and an

effective diameter, w, of 6 nm that includes the contribution of the double layer formed by counterions

around the backbone. [S3] The widths and depths of the nanochannels and nanofunnels used in this study

are sufficiently large (i.e., greater than b) to allow the random coiling of the DNA molecule. The large

aspect ratio b/w of the double-stranded DNA results in relatively weak excluded volume, three-body, and

higher-body interactions between Kuhn segments. Solutions of polymers with such large aspect ratio Kuhn

segments, called marginal solutions,[S4] are qualitatively different from ordinary polymer solutions in theta

or good solvents, as will be discussed below. At a given electric field strength, the DNA molecule assumes a

mean position and conformation that is determined by the local balance of the forces acting upon each of its

segments. These are the confinement force, the elastic force, the electrohydrodynamic force, and the osmotic

gradient force. The confinement and elastic forces are both entropic in origin and together constitute the

entropic force referred to in this chapter.

4.2.1: Confinement force

The narrower the funnel cross-section, the more contacts the DNA molecule has with the funnel walls

and the greater its confinement free energy. The confinement free energy per unit volume, Fconf , is given by

Fconf =


kBTc(x)b2A−1(x) if c(x) < b2/(vA(x))

kBTc
3/2(x)v1/2bA−1/2(x) if c > b2/(vA(x))

(4.7)

where c(x) is the number density of Kuhn segments at coordinate x along the funnel axis, A(x) is the

cross-sectional area at coordinate x, and v is the excluded volume parameter (v ≈ b2w).[106, 6] Two cases of

Equation 4.7 correspond to regimes of low and high monomer density, respectively. The low monomer density

regime is defined by a polymer correlation length, ξ(x) ≈ b/
√
c(x)v, that is greater than the nanofunnel

width and depth, in which case all of the DNA segments in volume A(x)dx feel the effects of confinement.
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The high monomer density regime occurs if the compression of the DNA molecule reduces the correlation

length so that it is smaller than the nanofunnel width and depth. In this case only those DNA segments

that are within a distance ξ(x) from the nanofunnel walls are perturbed by the walls. DNA segments in

the nanofunnel interior (located farther than ξ(x) away from the nanofunnel walls) do not incur an entropic

penalty. We found that, for the nanofunnels and DNA molecules investigated in this study, nearly all of the

DNA segments were described by the low density regime and Equation 4.7 is used in the equations below.

The variation of the confinement free energy with the location x of the molecules segments gives rise to a

confinement gradient force that pushes the molecule towards the mouth of the nanofunnel. This confinement

gradient force, fconf , expressed per Kuhn monomer, is the derivative of the confinement free energy density:

fconf = − ∂

∂x

(
∂Fconf
∂c

)
(4.8)

The expression in the parentheses can be thought of as the contribution of the confinement to the effective

monomeric chemical potential.

4.2.2: Elastic force

The conformational entropy of a macromolecule is also reduced when it is forcibly stretched by pulling

on one or both ends of the molecule.[6, 17] The general expression for the elastic free energy of a randomly

coiled polymer is kBTR
2/R2

0, where R is the end-to-end distance of the extended molecule and R0 is its

unperturbed end-to-end distance.[6] In the case of the nanofunnel-confined DNA molecule, we consider a

segment of length dx containing c(x)A(x)dxmonomers. The unperturbed mean-square end-to-end distance of

each such segment is R2
0 = b2c(x)A(x)dx. The elastic free energy of the segment is kBT (dx)2/[b2c(x)A(x)dx].

Since the volume occupied by this segment is A(x)dx, the elastic free energy per unit volume, Felas, can be

written as

Felas =
kBT

[bA(x)]2c(x)
(4.9)

The elastic force per Kuhn monomer is then

felas = − ∂

∂x

(
∂Felas
∂c

)
(4.10)

where the expression in the parentheses is the elastic contribution to the effective monomeric chemical

potential. This elastic contribution is particularly significant for the ”transition state” conformations where

the leading end of the DNA molecule is inserted into the nanochannel and is significantly stretched by the

nanochannel electric field.
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4.2.3: Electrohydrodynamic force

The electrostatic force acting on a Kuhn monomer of the DNA molecule is

fel = qE(x) (4.11)

where q is the charge per Kuhn monomer and E(x) is the electric field at coordinate x. While each nucleotide

pair has a nominal charge of 2e, counterion condensation partially shields the backbone charge, reducing

the charge per Kuhn monomer to q = eb/lB = 143e, where lB = 0.7nm is the Bjerrum length at which two

elementary charges e interact with thermal energy kBT .[6] Given the polarity of the applied electric field

(Figure 4.1), the electrostatic force pulling on the DNA monomers is directed from the mouth to the narrow

end of the nanofunnel.

The DNA backbone is further surrounded by a cloud of uncondensed counterions (cations) localized

within the double layer, delimited by the Debye length, λD, of the solution. The electrostatic force acting on

the counterions drives them from the narrow end to the wide end of the nanofunnel, in the direction opposite

to the force acting on the polyanionic DNA molecule. The migrating cations transmit the electrostatic force

through friction to the surrounding fluid, inducing electro-osmotic flow and resulting in a hydrodynamic

drag force, fdrag, acting from the induced flow onto the DNA. The magnitude of fdrag, averaged over the

cross-sectional area defined by the nanofunnel shape, depends on the fluid flow profile between DNA strands,

which in turn depends on the molecular conformation of the DNA and on the presence of the nanofunnel

walls. It is important to note that the DNA molecule acts as a weak electro-osmotic pump, generating a

pressure difference across the molecule. Whether this pressure difference forces fluid flow towards the mouth

of the nanofunnel or results in a backflow through the ”pores” (paths between strands) in the DNA molecule

depends on the relative hydraulic resistances of the two paths. Based on the dimensions of the micro- and

nanoscale channels and the monomer density of a nanofunnel-trapped T4 DNA molecule, we estimate that

the backflow through the DNA molecule has a resistance that is two orders of magnitude lower than flow

towards the nanofunnel mouth. Note that in contrast to the case of a DNA molecule stalled in bulk solution,

where fluid flow is circulated around the exterior of the DNA molecule, the presence of the nanofunnel

walls forces the flow through the DNA molecule (Figure 4.2).[63, 31] The resulting flow profile therefore

corresponds to that seen in the case of electro-osmotic flow with a counteracting pressure driven flow.[100]

If there were no force transmitted to the bulk fluid and no pressure gradient created by it, all of the force

from the electric field acting on the counterions would be transmitted back to the DNA backbone by the

hydrodynamic flow created by counterions migrating within the double layer. Therefore, the drag force on a

stationary DNA molecule in general consists of two parts: the direct drag force,feldrag = −fel , compensating
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the electrostatic force and the drag force fudrag due to electro-osmotic flow through the pores of the molecule

and the coincident backflow with combined velocity u:

fdrag(x) = −qE(x) + fudrag(x) (4.12)

As noted above, the backflow observed for a DNA molecule filling the cross-section of the nanofunnel proceeds

through the pores inside the entire volume of the molecule. The hydrodynamic resistance of the compressed

DNA to the flow through it is analogous to the resistance of a porous medium with a pore size on the order

of the mesh size, ξH(x), which is the average distance between neighboring strands:

ξH(x) ≈ [c(x)b2]−1 (4.13)

varying reciprocally with the monomer number density, c(x). We note that the mesh size (also referred to as

the hydrodynamic screening length) is distinct from the correlation length, ξ(x), determining concentration

fluctuations and osmotic pressure. ξH(x) is a purely geometric distance between neighboring strands of

double-stranded DNA and does not depend on the chain thickness or the strength of excluded volume

repulsions. For the marginal solvent case, ξ(x) > ξH(x) with the ratio ξ(x)/ξH(x) = b2c(1/2)w−1/2 � 1.

The hydrodynamic friction force acting on chain section with size ξH due to flow with velocity u depends

on the relative values of this mesh size and the Kuhn length b. In the case where ξH � b, corresponding

to coil-like chain sections, the Stokes-like friction force on a section of size ξH is on the order of −6πηuξH .

In the opposite case where ξH � b the frictional force on the rod-like chain sections is on the order of

−2πηuξH/ ln(ξH/a), where a = 2nm is the geometric backbone diameter. The corresponding friction force

on a DNA molecule per Kuhn monomer is then −6πηub2/ξH in the case of coil-like mesh segments and

−2πηub/ln(ξH/a) for rod-like mesh segments. These two limiting cases can be combined in a cross-over

expression for the drag force per Kuhn monomer

fudrag ≈ −
2πηub

ln(ξH/a) + ξH/(3b)
(4.14)

In general, the flow velocity through the DNA molecule can be due to an external pressure gradient,

background electro-osmotic flow within the nanofunnel resulting from surface charges on the device walls,

and the electro-osmotic flow induced by counterions associated with the DNA molecule plus the coincident

backflow. In our experiments there is no external pressure gradient, but the negative charge of the fused silica

walls of the device results in the electro-osmotic fluid flux Q through it with velocity ueo(x) = Q/A(x).[76]

By analogy with the electrophoretic velocity of a free-flowing molecule, the DNA counterion-induced
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velocity is proportional to the product of the electric field E(x) and effective linear charge density q/b:

ubf = −q
b

EλD
2πηa

(4.15)

where λD is the Debye length of the solution. The total drag force per Kuhn monomer is:

fdrag = feldrag + fvdrag (4.16)

= −qE(x)− 2πηb(ubf + ueo)

ln[ξH(x)/a] + ξH(x)/(3b)

= −qE(x) +
q(λD/a)E(x)− 2πηbQ/A(x)

ln[ξH(x)/a] + ξH(x)/(3b)

In our experiments, the mesh size ξH is smaller than 3b ln [ξH(x)/a] and we therefore ignore the second

term in the denominator in Equation 4.16. Combining Equations 4.12 and 4.16 gives the total electrohydro-

dynamic force, feh, per Kuhn monomer.

feh = fel + fdrag =
qred(λD/a)E(x)

ln[ξH(x)/a]
(4.17)

In Equation 4.17, we account for the electro-osmotic flow due to the surface charges on the walls of the

device as a reduction in the effective charge on the DNA molecule:

qred = q − 2πηab

λD

Q

EAnc
(4.18)

where E is the electric field in the nanochannel with cross-sectional areaAnc. This approach can be considered

as an extension of the electrohydrodynamic equivalence principle formulated in Reference [63], where in the

current work the backflow of solvent is through the molecule rather than around it due to the presence of

the nanofunnel walls.

Electrophoresis is inherently a non-equilibrium phenomenon but the stalled DNA molecule can be approx-

imated as having a quasi-equilibrium conformation. The impact of the electric field on the DNA conformation

and its location along the funnel can then be considered as resulting from an effective potential

V (x) =

∫ x (λD/a)E(x′)

ln[ξH(x′)/a]
dx′ (4.19)

and the effective free energy density, Feh, of the electrohydrodynamic forces is

Feh = qredV (x)c(x) (4.20)
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4.2.4: Osmotic gradient force

There is also a free energy contribution from the interactions between segments of the DNA molecule,

Fint. The interaction free energy density between the segments of a worm-like chain with high-aspect-ratio

Kuhn segments can be expressed in the marginal solvent regime as a two-body repulsion term:

Fint =
kBT

2
vc2(x) (4.21)

Since the concentration of DNA segments varies along the longitudinal axis of the nanofunnel (Figure

4.3), there is a gradient of the interaction free energy that induces a force pushing chain segments from high

to low density regions. This force, fosm, has the characteristics of an osmotic gradient force as it opposes

the localized concentration of DNA monomers.

fosm = − ∂

∂x

(
∂Fint
∂c

)
= −kBTv

dc(x)

dx
(4.22)

Total effective free energy. Combining the four free energy density terms (Equations 4.7, 4.9,4.20, 4.21)

and integrating their sum over the DNA volume
∫ xN
x0

. . . A(x)dx results in the expression for the total effective

free energy of the molecule:

F

kBT
= P1

∫ xN

x0

b2c(x)dx+ P2

∫ xN

x0

1

b2A(x)c(x)
dx+ P3

∫ xN

x0

v

2
c2(x)A(x)dx+

∫ xN

x0

qe

kBT
c(x)V (x)A(x)dx

(4.23)

with three numerical coefficients P1, P2, and P3 of order unity and the potential V (x) defined in Equation

4.19.

4.2.5: Effective free energy barrier

The effective free energy was evaluated to determine the DNA conformation at the lowest energy, Fmin-

the quasi-equilibrium conformation. Figure 4.3a shows the concentration profile for T4-phage DNA molecules

in the α = 0.45 nanofunnel at the energy minimum for two field strengths for which residence time measure-

ments were made. As the electric field increases, it forces the molecule towards the nanochannel entrance

where DNA compression by the funnel is greater and monomer concentration is therefore higher. Numer-

ical minimization of the effective free energy in equation 4.23 provides average coordinates, x̄0, x̄N of the

leading and trailing ends and the length L = x̄N − x̄0 of DNA molecule, as shown in Figure 4.4a and Figure

4.5a. Equation SI.17 can also be used to determine the location and the conformation of the molecule at

the effective free energy maximum, Fmax. At this state the leading section of the DNA molecule has been
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pulled into the nanochannel. Figure 4.3b shows the concentration profiles corresponding to these maximum

energy conformations for the same field strengths as the quasi-equilibrium conformations in Figure 4.3a. At

lower electric field strengths, the leading end of the molecule must penetrate deeper into the nanochannel

to initiate successful entry of the entire DNA molecule into the nanochannel. The minimum and maximum

effective free energy states of the DNA molecule described above correspond to the two balanced force confor-

mations. For the first conformation, where the DNA molecule is wholly within the nanofunnel, the position

and conformation of a trapped DNA molecule reflects the position of an effective free energy well (Fig. 4.6c).

For the second conformation, the maximum effective energy corresponds to a molecule in a transition state,

from which complete nanochannel entry or recoil back into the nanofunnel are equally probable.

As the molecule is displaced from this minimum position towards the nanochannel, the effective free

energy increases and reaches a maximum at a position where a certain number of monomers are inserted into

the nanochannel. The maximum energy conformation at a given electric field is analogous to the transition

state in chemical kinetics. The difference between the maximum and minimum effective free energies, which

is the effective free-energy barrier, ∆F = Fmax − Fmin (Fig. 4.6c). ∆F was used to calculate the mean

residence time, τ , of the molecule in the nanofunnel.

4.2.6: Thermal fluctuations

The experimentally measured thermal fluctuations, σx0
and σxN , and their correlation, ρ, can be evaluated

theoretically by analyzing the effective free energy surface near its minimum. The effective free energy

difference with respect to this minimum is the minimal work, Rmin, performed to displace the molecule from

its quasi-equilibrium state, which can be calculated as the sum of the work Ri done on each Kuhn monomer:

Rmin =
∑N

i=0
Ri (4.24)

If the i-th monomer is displaced from its quasi-equilibrium position xi by a small value δx, the restoring

force on this monomer linearly depends on the displacement, f(xi + δx) ∼ δx. The work performed upon

shifting the monomer by a small displacement δxi is

Ri = −
∫ xi+ui

xi

fi(x)dx ' 1

2
fi(xi + δxi)δxi (4.25)

For given displacements of chain ends, δx0 and δxN , we approximate the monomer displacement δx0 =
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δx(xi) by a linear function δx(x) of the monomer position x = xi in the undeformed state:

δx(x) = δx0 +
x− x0

xN − x0
(δxN − δx0) = δx0 + (x− x0)

δL

L
(4.26)

Here δL = δxN − δx0 is the variation of the molecule’s extension along the funnel axis from the equilibrium

value L = xN − x0. Combining Equations 4.24 and 4.25 and approximating the sum over i by integration

over the number of monomers dN(x) in the layer of thickness dx,

dN(x) = c(x)A(x)dx (4.27)

we obtain

Rmin = −1

2

∑N

i=0
fi(xi + δxi)δxi ' −

1

2

∫ x=xN

x=x0

f(x+ δx(x))δx(x)dN(x) (4.28)

We calculate the concentration, c′(x′), of a displaced DNA molecule, by considering the number of

monomers, dN(x), that was displaced from a chain segment with length dx in the quasi-equilibrium confor-

mation to a segment with the same number of monomers dN(x) in the higher effective free energy confor-

mation with length dx′:

dN (x) = c′ (x′)A (x′) dx′ = c (x)A (x) dx (4.29)

We further obtain:

(c(x) + δc(x)) (A(x) + δA(x)) (L+ δL) = c(x)A(x)L (4.30)

where δc(x) = c′(x′) − c(x) is the density variation produced by the displacement δx. The solution of

Equation 4.30 for δc(x), evaluated up to the second order in δA and δL is

δc(x) ' c(x)

[
−δA(x)

A(x)
− δL

L
+

(
δA(x)

A(x)

)2

+

(
δL

L

)2

+
δA

A

δL

L

]
(4.31)

Given the relationship between A(x) and x we find that

δA(x)

A(x)
' 2α

u

x
(4.32)

The segments of a stably trapped DNA molecule are typically wholly inside the funnel (they do not pen-

etrate into the nanochannel) and the contribution of entropic elasticity (fel) is much smaller than that of

confinement (fconf ) and is excluded from our consideration. In the quasi-equilibrium state, the confinement
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and osmotic forces acting on the monomers are:

fconf = P1kBT
c(x)b2

A2(x)

∂A(x)

∂x
(4.33)

fosm = −P3kBTv
dc

dx
(4.34)

and the electrohydrodynamic force, feh, is defined in Eq. 4.16. Below we calculate these forces for a DNA

molecule with ends displaced by δx0 and δxN from their average positions:

fconf (x+ δx(x)) = [1− 2
δA(x)

A(x)
]fconf (4.35)

fosm(x+ δx(x)) = −P3kBTv
d(c(x) + δc(x))

(1 + δL/L)dx
(4.36)

feh(x+ δx(x)) =

[
1− δA(x)

A(x)
+

δc(x)

c(x) ln (ξH(x)/a)

]
feh (4.37)

Using the condition of quasi-equilibrium,

fconf (x) = fosm(x)− feh(x) (4.38)

one can exclude the confinement force fconf (x) from Eq.4.35

fconf (x+ δx(x)) = −[1− 2
δA(x)

A(x)
][fosm(x) + feh(x)] (4.39)

Combining Equations 4.25-4.39 we find the minimal work in the case of a funnel with α=0.5:

Rmin

kBT
=

1

2

∫ xN

x0

[
(
δx(x)

x
− δL

L ln(ξH(x)/a)
)δx(x)(−feh(x))− 2

δx(x)

x
δx(x)fosm(x)

]
c(x)A(x)dx (4.40)

+ P3
v

2

∫ xN

x0

[
(
δx(x)

x
)2 +

δx(x)

x

δL

L
+ (

δL

L
)2

]
c2(x)A(x)dx

where upon substituting in the equations for feh and fosm we obtain

Rmin

kBT
' 1

2

∫ xN

x0

(
δx(x)

x
− δL

L ln (ξH(x)/a)

)
δx(x)

x

qredEDxD
kBT ln (ξH(x)/a)

c(x)A(x)dx (4.41)

+ P3
v

2

∫ xN

x0

[(
δx(x)

x

)2

− δx(x)

x

δL

L
+

(
δL

L

)2
]
c(x)2A(x)dx

Note that only adjustable coefficient P3 enters equation SI.35 explicitly, while coefficient P1 enters this
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minimum work implicitly through the equilibrium concentration profile c(x). Coefficient P2 is omitted from

the analysis of stably trapped DNA molecules as fel is negligible in this case as noted above (P2 does enter

into the analysis of nanofunnel residence times, Figure 4.7a. Substituting Eq. 4.28 and collecting similar

terms in powers of δx0 and δL we get

Rmin

kT
= A

(
δx0

x0

)2

+B
δx0

x0

δL

L
+ C

(
δL

L

)2

(4.42)

where coefficients A,B, and C are

A =
D2x0

2

2xD

[
P3v

∫ xN

x0

c2(x)

x
dx+

∫ xN

x0

qredExD
kBTx ln (ξH(x)/a)

c(x)dx

]
(4.43)

B =
D2x0L

2xD

[
2P3v

∫ xN

x0

(x− x0)c2(x)

x
dx− P3v

∫ xN

x0

c2(x)dx

+2

∫ xN

x0

qredExD
kBTx ln(ξH(x)/a)

(x− x0)c(x)dx

]
(4.44)

C =
D2

2xD

[
P3v

∫ xN

x0

(x− x0) c2(x)

x
dx+ P3v

∫ xN

x0

c2(x)x0dx

+

∫ xN

x0

qredExD(x− x0)2

kBTx ln (ξH(x)/a)
c(x)dx−

∫ xN

x0

qredExD(x− x0)

kBT ln2 (ξH(x)/a)
c(x)dx

]
(4.45)

The probability, P (δx0, δxN ), of a DNA conformation where the respective ends have deviated by dis-

tances δx0, δxN is

P (δx0, δxN ) =
1

2πσx0σxN
exp

[
− z

2(1− ρ2)

]
(4.46)

and z is defined as

z =
(δx0)2

σ2
x0

− 2ρδx0δxN
σx0

σxN
+

(δxN )2

σ2
xN

where

σx0 =
x0√

A−B2/C
(4.47)

σxN =
xN√

C −B2/A
(4.48)

and

ρ = −B/
√
AC (4.49)
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Figure 4.3 shows the probability distributions calculated with the above method for two representative

trapping field strengths, and its comparison with corresponding experimental results. There is good agree-

ment between the theoretical and experimental distributions despite the approximations in the calculations

above. The calculations assume a harmonic quasi free energy well centered on the lowest energy conformation

and position. Equations 4.36-4.45 also consider a nanofunnel with α=0.5 to keep the algebra more tractable

(experimental measurements were made in a nanofunnel with α=0.45).

Section 4.3: Results

4.3.1: Comparison of theoretical and experimental values

The theoretical predictions were fit to the experimental data by adjusting the relative contributions of

the electrohydrodynamic, entropic, and osmotic gradient forces using a weighted least squares method. This

was realized in practice by multiplying each of the electrohydrodynamic, entropic, and osmotic gradient

contributions to the effective free energy calculated from first principles by a coefficient of order unity,

resulting in three fitting parameters. These three fitting parameters were determined by simultaneously

optimizing across the various λ-phage and T4-phage data sets: (1) the residence time measurements of

the various nanofunnels and (2) the mean position and extension length measurements and (3) fluctuation

measurements in the α = 0.45 nanofunnel. That is, the fit was performed across eighteen independent

data sets. Each data point was weighted by the reciprocal of its variance and the sum of squared residuals

was minimized using the steepest descent algorithm. Determining the values of the fitting parameters P1,

P2, and P3 in Equations 4.23 and 4.39-4.45 above that yielded the optimal fit of theoretical predictions

to experimental values was achieved using a weighted least squares method. The independent data sets

that were included in the analysis were the residence times of λ-phage and T4-phage DNA molecules in

the absence of a nanofunnel and in the α=0, α=0.45, and α=0.78 nanofunnels (8 data sets, Fig 4.7 a); the

electric field dependent average positions, x0 and xN , of λ-phage and T4-phage DNA molecules in the α=0.45

nanofunnel (4 data sets, Fig.4.4a and Fig. 4.5a); and the electric field-dependent fluctuations, σx0
and σxN ,

and their correlation, ρ, of λ-phage and T4-phage DNA molecules in the α=0.45 nanofunnel (6 data sets,

Fig. 4.4d and Fig.4.5d). The optimal values of the fitting parameters were found to be P1 = 2.3, P2 = 1.1,

and P3 = 1.4.
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4.3.2: Lowering threshold electric field using nanofunnels

In the absence of a nanofunnel (Fig.4.1a), the high electric field in the nanochannel acts only on those

nucleotides closest to the entrance, which in turn pull the entire DNA molecule into the nanochannel if

the force is sufficient to overcome the opposing entropic force.[68, 86, 109] Although the frequency of DNA

threading can be increased by applying a larger voltage, this approach is problematic if the resulting DNA

transport velocity exceeds the sampling rates of electronic or optical detection modes.[117, 14, 99, 25, 18,

47, 24] By incorporating a three-dimensional nanofunnel with the appropriate geometry at the nanochannel

entrance (Fig. 4.1b), DNA can be more efficiently introduced to the nanochannel without an increase in the

nanochannel electric field. The nanofunnel can be shaped such that at its mouth the electrohydrodynamic

(coupled electrostatic and hydrodynamic) force gradient is greater than the entropic force gradient and DNA

entry into the nanofunnel is unimpeded. As the net force acting on the DNA molecule within the nanofunnel

drives it towards the nanochannel entrance, the increasing confinement partially extends the DNA molecule,

reducing its conformational entropy. The forces in the nanofunnel have thus done some work on the DNA

molecule and the molecule is in a conformation that can more easily enter the nanochannel than in the

case without a nanofunnel. The presence of the nanofunnel furthermore generates an additional force acting

on the entire DNA molecule and pushing it into the nanochannel entrance, an osmotic gradient force that

arises from variation in the DNA monomer concentration along the longitudinal axis of the nanofunnel.

Our theoretical model shows, and experimental measurements confirm, that the forces experienced by the

DNA molecule in the nanofunnel result in compression of the DNA leading sections towards the nanochannel

entrance by DNA trailing sections, an effect that we refer to as an electro-osmotic piston.

We imaged individual fluorescently stained DNA molecules as they were electrokinetically driven to-

wards a nanochannel through a three-dimensional nanofunnel having a square cross-sectional profile that

decreased gradually in both width and depth from 1500 to 100 nm (Fig.4.6a).[102] When the electric field

was sufficiently high, a molecule would immediately enter the nanochannel upon reaching the nanofunnel-

nanochannel junction (Fig. 4.6b, red line i). At intermediate electric fields, a molecule would reside for

a time, τ , at the nanochannel entrance, repeatedly attempting to overcome the free-energy barrier before

successfully entering (Fig.4.6b, blue line ii, τ = 47 s). At low electric fields, the residence time increased

so that a DNA molecule was in effect sustainably trapped within the nanofunnel (Fig. 4.6b, green line iii).

The low and intermediate field behaviors were modeled by balancing the confinement, electrohydrodynamic,

and osmotic gradient forces acting on each of the sections of a DNA molecule. The positional dependence

of these forces can be represented by an effective free-energy profile of the DNA molecule (Fig. 4.6c) with

the difference between the energy minimum and maximum corresponding to the effective free-energy barrier
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(∆F ) to nanochannel entry. Increasing the electric field reduces the barrier height, decreasing the residence

time according to the Arrhenius relation:

τ ∼ τ0 exp(∆F/kBT ) (4.50)

where τ0 is the minimum time needed for the molecule’s leading sections to diffusively enter the nanochannel,[96,

97]. At electric field strengths where ∆F is sufficiently greater than kBT , the free-energy minimum corre-

sponds to the trapping position of the DNA molecule located some distance from the nanochannel entrance

(Fig. 4.6c, green line iii). The field-dependent residence times were measured in three funnels with compa-

rable dimensions but different shapes, as well as for DNA entry into a nanochannel without an incorporated

nanofunnel. Measurements were carried out using DNA molecules of two different lengths λ-phage and

T4-phage genomic DNA, having stained contour lengths of 21 and 72 µm, respectively. Expected residence

times were also calculated theoretically by determining the molecular conformations corresponding to the

minimum and maximum effective free-energy at each nanochannel electric field strength and then calculating

∆F and therefore τ . We found that in each device with a nanofunnel, the longer T4-phage DNA molecules

entered the nanochannel more readily than λ-phage DNA molecules (Fig. 3a). This effect is due to the

increased size of the molecule’s trailing portion that contributes to a stronger electro-osmotic piston effect.

DNA entry into the nanochannel was easiest in funnels with larger α values. The high electric field of the

nanochannel extends farther into the nanofunnel as does the region of greater confinement. The increased

gradients of the opposing electrohydrodynamic and entropic forces therefore result in greater compression

and a greater osmotic gradient force. We used the nanochannel electric field E0 at which ∆F = 0 to compare

the effectiveness of various nanofunnels (Fig.4.7b). Since this is the field strength at which τ = τ0, values

for E0 can be estimated by extrapolating the experimental data to short residence times. The greater than

30-fold reduction in E0 that is observed experimentally is in close agreement to the reduction predicted

theoretically by direct calculation of the electric field at which ∆F = 0 (Fig. 4.7b).

4.3.3: Trapping of DNA using electro-osmotic tweezers

The controlled trapping of both λ-phage and T4-phage DNA were experimentally investigated and theo-

retically modeled. Figure 4.5 shows the results for a T4-phage DNA molecule trapped in a α=0.45 nanofunnel

at various electric field strengths. In Figure 4.5a, the evidence of DNA compression is more noticeable than

in the case of the smaller λ-phage DNA molecule (Figure 4.4a). As the molecule moves from the nanofunnel

mouth to the nanochannel entrance with increasing field strength, its extension length, L, first increases

slightly as a result of the increased confinement but then is almost constant across a range of electric field
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strengths and even decreases slightly, despite experiencing a continued increase in confinement.[96] Repre-

sentative results are shown in Figures 4.5b and 4.5c for the relative probability of various combinations of

end coordinates, x0, xN , at nanochannel electric fields of 8 V/cm and 21 V/cm, respectively. The values of

σx0 , σxN , and ρ determined from such distributions are compared in Figure 4.5d to the theoretical predic-

tions of T4-phage DNA’s thermal fluctuations. Not surprisingly, the correlation, ρ, between the fluctuation

of the leading and trailing ends is lower for the T4-phage DNA molecule than for the case of the smaller

λ-phage DNA molecule. As was the case for a λ-phage DNA molecule, the fluctuations of the leading end,

σx0
, decrease more strongly with increasing electric field than the fluctuations of the trailing end, σxN . This

effect is more dramatic in the case of T4-phage DNA and is indicative of a greater difference between the

monomer concentration at the leading and trailing segments in the longer molecule.

Within each of the three nanofunnels, the electric field strength could be reduced to achieve stable

trapping of a DNA molecule for minutes or even hours. Such trapping was systematically measured in the α

= 0.45 nanofunnel by imaging a single DNA molecule at several trapping field strengths. The mean position

of the trapped molecule is sensitive to the strength of the applied electric field and we refer to nanofunnels

operated in this mode as ”electro-osmotic tweezers” by analogy to optical or magnetic tweezers. Figure

4.4a compares the experimental mean positions of the leading end (x0) and trailing end (xN ) of a λ-phage

DNA molecule trapped over a range of field strengths to the respective values predicted by theory. As the

molecule moves from the nanofunnel mouth to the nanochannel entrance with increasing field strength, its

extension length (L = (x̄N − x̄0) increases. The electro-osmotic compression makes this observed increase

less dramatic than predicted in the absence of an electric field.[96]

In addition to tuning the trapping position, varying the applied electric field of the electro-osmotic

tweezers also affects the stiffness of the trap and therefore the magnitude of DNA thermal fluctuations.

Measured values of various combinations of end coordinates x0, xN for a DNA molecule trapped at the

representative nanochannel electric fields of 12.7 V/cm and 22 V/cm are shown in Figures 4.4b and 4.4c,

respectively. Such data were fit to bivariate normal distributions (red ellipses in Fig. 4.4b,c) to determine

the fluctuations of the end positions (σx0
, σxN ) and their correlation (ρ). The experimental results were

compared to values determined theoretically by calculating the minimal work necessary to displace the

molecule’s ends from their mean positions (Fig. 4.4d). At the lowest field strengths the molecule is weakly

trapped and thermal fluctuations are larger and highly correlated as the molecule fluctuates as a whole along

the longitudinal nanofunnel axis. At higher electric fields, the correlations between fluctuations of the ends

are reduced as compression of the leading sections of the molecule suppresses the fluctuations of this end,

while the less constrained trailing end of the molecule is freer to fluctuate.

In summary, the force gradients experienced by a DNA molecule as it is electrokinetically driven from a
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microscale reservoir into a nanochannel are highly dependent on the geometry at the nanochannel entrance

that defines how abruptly or gradually a DNA molecule experiences increased confinement. Through a

combination of experimental and theoretical results, we demonstrated that nanofunnels where α ' 1.5

were most effective at lowering the field strength needed to drive DNA transport through a nanochannel.

Nanofunnels defined by smaller values were more useful for trapping DNA molecules at voltage-dependent

positions within the nanofunnel. We expect that the theoretical model of DNA behavior described here

will guide future refinements in structures that can provide enhanced transport control in nanofluidic-based

nucleic acid and protein analysis platforms.[128]
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Section 4.4: Figures

Figure 4.1: Comparison of DNA threading into a nanochannel directly or through a three-dimensional
nanofunnel. a, Cartoon illustrating the electrohydrodynamic (red arrow) and entropic (green arrow) forces
affecting the leading portion of the DNA molecule as it is electrophoretically pulled into a nanochannel.
b, These forces and an additional osmotic gradient force (blue arrows) act on a larger portion of the DNA
molecule than in (a) due to the extended high electric field region and the confining effects of the nanofunnel.
The osmotic gradient force acts as an ”electro-osmotic piston,” providing further assistance for DNA entry
into the nanochannel. The relative electric field strengths are shown by different colors using a logarithmic
scale for clarity.
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Figure 4.2: — Concentration profiles for T4-phage DNA in the α = 0.45 nanofunnel at two field strengths.
a,b, Profiles corresponding to the quasi-equilibrium conformation and highest energy (”transition state”)
conformation, respectively. These field strengths coincide with those used in the residence time measurements
summarized in Figure 4.7.
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Figure 4.3: Comparison of experimental and theoretical x0, xN distributions for trapping of T4-phage DNA
in the α = 0.45 nanofunnel. a,b, Filled contour plots showing the probabilities of x0, xN values measured
from each fluorescence image at the low field (8 V/cm) and high field (21 V/cm) limits of the stable trapping
regime, respectively. c,d, Contour plots derived from the probability of displacement from the ”equilibrium”
position at the same low and high field conditions as (a,b) , respectively, as determined by calculating the
work necessary for the displacement.
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Figure 4.4: Electric field dependent average positions and fluctuations of λ- phage DNA molecules trapped
in a three-dimensional (α=0.45) nanofunnel. a, Experimentally measured mean values of DNA end positions
and length (symbols) at each electric field compared to the theoretically predicted values (curves). The error
bars are the standard deviations of each measurement over the entire imaging period at a given electric
field strength and thus include the contribution of thermal fluctuations. b,c, Filled contour plots showing
the probabilities of x0, xN coordinates measured from each fluorescence image at the low field (12.7 V/cm)
and high field (22 V/cm) limits of the stable trapping regime, respectively. The color scales indicate the
percentage of measurements corresponding to the various x0, xN pairs. The insets show schematically the
DNA conformations (position, length, packing density) associated with these operating conditions. The red
ellipses indicate the best-fit bivariate normal distributions (2σ) to the data. d, Comparison of parameters
of the bivariate normal distribution fitting analysis of the experimental data (symbols) and theoretical
probability distributions (curves). Changes in the positional standard deviations reflect a decrease in thermal
fluctuations at increased field strengths (i.e., stronger trapping). These fluctuations are highly correlated
(ρ > 0.95) at low field strengths as the molecule diffuses along the nanofunnel’s longitudinal axis.
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Figure 4.5: Electric field dependent average positions and fluctuations of T4 -phage DNA molecules trapped
in a three-dimensional (α=0.45) nanofunnel. a,b, Filled contour plots showing the probabilities of x0, xN
coordinates measured from each fluorescence image at the low field (8 V/cm) and high field (21 V/cm)
limits of the stable trapping regime, respectively. The color scales indicate the percentage of measurements
corresponding to the various x0, xN pairs. The insets show schematically the DNA conformations (position,
length, packing density) associated with these operating conditions. The red ellipses indicate the best-fit
bivariate normal distributions (2σ) to the data. c, Experimentally measured mean values of DNA end
positions and length (markers) at each electric field compared to the theoretically predicted values (curves).
d, Comparison of parameters of the bivariate normal distribution fitting analysis of the experimental data
(markers) and theoretical probability distributions (curves).

74



Figure 4.6: Measurement of DNA molecules within a three-dimensional nanofunnel. a, Representative
images recording the position and conformation of a λ-phage DNA molecule at various time points as it
is electrokinetically driven from right to left through a nanofunnel and into the associated nanochannel.
The top panel is a bright-field image showing the position of the nanofunnel (positive x coordinates) and
nanochannel (negative x coordinates) and the voltage polarity applied across the nanofunnel- nanochannel
device. The numbered frames (1-5) are fluorescence images of the DNA molecule stained with an intercalating
dye recorded at the indicated time points. Image analysis determined the positions of the molecule’s leading
(x0) and trailing (xN ) ends at each time point. b, The position of a molecules leading end within a nanofunnel
measured at three different nanochannel electric field strengths: 77.5 V/cm (red line, i), 54.3 V/cm (blue
line, ii), and 15.5 V/cm (green line, iii). The blue line (ii) represents behavior at an intermediate electric field
strength where the DNA molecule has a finite residence time (τ = 47 s) at the nanochannel entrance prior
to entry. The numbered orange circles indicate the leading edge measured from the numbered fluorescence
images in (a). c, Relative effective free energies at different nanochannel electric field strengths of a DNA
molecule as a function of its leading end position within the nanofunnel-nanochannel. The line colors and
labels correspond to the same electric field conditions as in (b). As the electric field strength decreases
the energy barrier to nanochannel entry (∆F ) increases and the energy minimum, which corresponds to a
trapping location, moves away from the nanochannel entrance towards the nanofunnel mouth.
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Figure 4.7: Residence time measurements and threshold electric field reduction by nanofunnels. a, Mean
residence times measured at various nanochannel electric field strengths in three different nanofunnels (de-
fined by α=0.78, α=0.45, and α=0; see Equation 2) and in the absence of a nanofunnel. Each data set is
associated with the nanofunnel indicated directly above it in the figure and is color coded accordingly. Data
were collected using stained λ-phage (48.5 kbp, open circles) and T4- phage (165.6 kbp, filled squares) DNA
molecules. The error bars indicate the standard deviations of at least 20 independent measurements per
experimental data point. The curves represent the best fit of the theoretical model to these experimental
data. b, Extrapolating the experimental electric field data in (a) to the characteristic relaxation time τ0=6
ms results in the characteristic threshold electric field strength (normalized to the threshold electric field
strength measured in the absence of a nanofunnel) for each of the three nanofunnels (red, green, and blue
symbols obtained from the data in (a) of the same colors). The solid and dashed black lines are interpolations
of theoretical values calculated for T4-phage and λ-phage DNA, respectively, over a wider range of α values.
The theoretical predictions were tested by measuring the electric field strengths required to thread DNA
molecules through nanofunnels where α=1.46 and α=1.89 (purple and orange symbols, respectively). The
error bars indicate the 68% (1σ) confidence level of the threshold electric field strengths determined from
the experimental data and are smaller than the symbols for the results from nanofunnels where α >0.45.
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