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ABSTRACT 

Hyoungki Park: Electronic and transport properties of functionalized carbon nanotubes 
(Under the direction of Jianping Lu) 

Carbon nanotubes have received much attention in recent years due to their high 

structural stability and interesting electronic and transport properties. These novel properties 

can be utilized in many areas of applications.  Many of these applications require 

modifications to pristine nanotubes. In particular, chemical functionalizations have been 

shown to be an attractive method to tailor some of electronic and mechanical properties.  In 

this study, I present our computational study on electronic and transport properties of 

covalently side-wall functionalized carbon nanotubes.  We found that functional-group-

induced impurity states play important roles in modifying electronic and transport properties 

of nanotube near the Fermi level.  A drastic difference has been found between monovalent 

and divalent functionalization cases.  In monovalent functionalizations, the impurity states 

are located near the Fermi level and have strong effects on both electronic and transport 

properties.  On the other hand, divalent functionalizations do not cause any significant 

disruption near the Fermi level due to rehybridization of two adjacent impurity states into 

bonding and antibonding states located relatively far away from the Fermi level.  We believe 

that the covalent functionalization induced property changes provide a pathway for the band 

structure engineering, electronic, and chemical sensor applications of carbon nanotubes. 
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Chapter 1 

 
 
Introduction 

 
Ever since their discovery in 1991 [1], carbon nanotubes (CNTs) have attracted 

considerable amount of attention.  In particular, single-walled carbon nanotubes (SWNTs) 

have been at the forefront of novel nanoscale investigations due to their unique mechanical, 

electrical, and chemical properties.  They have been thought to have a host of wide-ranging 

potential applications, for example, as field emitters, high-strength engineering fibers, 

chemical and electrochemical sensors, actuators, catalyst supports in heterogeneous catalysis, 

tips for scanning probe microscopy, gas storage media, and as molecular wires for the next 

generation of electronics devices [2-11].  However, several technical challenges need to be 

overcome before the extraordinary properties of these unique materials can be fully utilized.  

For example: (a) during fabrication of CNTs, unwanted byproducts such as carbon onions 

and turbostratic/amorphous graphite are also generally produced, and as produced SWNTs 

are typically bound into interwined bundles that exhibit very low solubility in either water or 

organic solvents; (b) the lack of control of diameter and/or chirality, the key geometrical and 

structural parameters which control electronic properties of these materials during 

fabrication; and (c) many of applications require modifications to the pristine nanotube to 

render it functionally active for the various applications.  In this context, chemical 

functionalization is an especially attractive candidate to address such issues, as it can 
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improve solubility and processibility and allows the unique properties of SWNTs to be 

coupled to those of other types of materials. 

In general, chemical modification strategies have targeted SWNT defects, end caps, and 

sidewalls, as well as the hollow interior [12-14].  Representative approaches to derivatization 

include covalent chemistry of conjugated double bonds within the SWNT [15-17], 

noncovalent π-stacking [18, 19], covalent interaction at nanotube ends and defects [20], and 

wrapping of macromolecules [21-23].  Since the chemically functionalized nanotubes are 

expected to have mechanical or electrical properties that are different from those of the 

pristine nanotubes due to changes in electronic structure caused by tube-functional group 

interactions, they might be used as chemical sensors or  nanometer-scale electronic devices, 

and the chemical modifications to the walls or ends of carbon nanotubes might be used to 

tailor the interaction of the nanotube with other entities, such as a solvent, a polymer matrix, 

or other nanotubes. 

Despite the amazing progress in this field, electronic and transport properties of 

functionalized SWNTs are far from being fully understood.  The purpose of the present work 

is to provide a comprehensive understanding of electronic and transport properties of 

covalently sidewall functionalized SWNTs.  Most of the carbon nanotube chemistry arises 

from its inherent curvature and one can divide a nanotube into two different areas by 

curvature: caps and sidewalls.  Caps, though more reactive, constitute a very small part of 

surface area for a typical nanotube with length in microns.  The sidewalls are a little less 

strained and more inert, thus getting high degrees of functionalization has been a major issue.  

However, recent progress have made sidewall functionalization possible with a high ratio of 

the number of attached functional groups to the number of carbon atoms in the nanotube [24-
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26], and opened up a new route to the development of novel materials and the critical 

applications of SWNTs. 

I start by reviewing the basic physical and electronic properties of SWNTs.  Next I 

survey the experimental progress achieved in nanotube sidewall functionalization toward 

their use as devices in biological and electronic setting in chapter three.  Chapter four 

provides reviews of computational methods and models used in our numerical studies.  In 

chapter five the results of our investigation on how the electronic properties of SWNTs are 

affected by covalent sidewall functionalizations are presented.  The transport properties of 

functionalized metallic tube are discussed in chapter six.  Chapter seven contains the 

summary and discussion on future research directions. 



 

 
 
 

Chapter 2 

 
 
Carbon Nanotubes 

 
 
2.1 History and development of carbon nanotubes 

 
In 1985, a confluence of events led to an unexpected and unplanned experiment with a 

new kind of microscope resulting in the discovery of a new molecule made purely of carbon.  

Buckyballs – sixty carbon atoms arranged in a soccer ball shape – had been discovered and 

the world of chemistry, not to mention the worlds of physics and material science, would 

never be the same.  In fact, what had been discovered was not just a single new molecule but 

an infinite class of new molecules: the fullerenes.  Each fullerene – C60, C70, C84, etc. – 

possessed the essential characteristic of being a pure carbon cage, each atom bonded to three 

others as in graphite.  Unlike graphite, every fullerene has exactly 12 pentagonal faces with a 

varying number of hexagonal faces (e.g., C60 has 20).  Some fullerenes, like C60, are 

spherical in shape, and others, like C70, are oblong like a rugby ball.  Dr. Richard Smalley 

recognized in 1990 that, in principle, a tubular fullerene should be possible, capped at each 

end, for example, by the two hemispheres of C60, connected by a straight segment of tube, 

with only hexagonal units in its structure.  In actuality, however, carbon nanotubes had been 

discovered 30 years earlier, but had not been fully appreciated at that time.  In the late 1950s, 

Roger Bacon at Union Carbide, found a strange new carbon fiber while studying carbon 
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under conditions near its triple point.  He observed straight, hollow tubes of carbon that 

appeared to consist of graphitic layers of carbon separated by the same spacing as the planar 

layers of graphite.  In the 1970’s, Morinobu Endo observed these tubes again, produced by a 

gas-phase process.  Indeed, he even observed some tubes consisting of only a single rolled-up 

layer of graphite.  In 1991, after the discovery and verification of the fullerenes, Sumio Iijima 

of NEC observed multi-wall nanotubes (MWNTs) formed in a carbon arc discharge [1], and 

two years later, he and Donald Bethune at IBM independently observed single-wall carbon 

nanotubes (SWNTs) [27, 28].  This was an important step forward, as the structure of a 

Figure 2.1: Various forms of carbon-based material: (a) Diamond, (b) Graphite, (c) 
Lonsdaleite, (d) Buckyball (C60), (e) C540, (f) C70, (e) Amorphous carbon, and (h) SWNT.  
The picture was taken from Wikipedia, The Free Encyclopedia (accessed June 29, 2006), 
http://en.wikipedia.org/wiki/Carbon. 
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SWNT is more basic than that of a MWNT and facilitates the study of its fundamental 

properties both theoretically and experimentally. 

Today, MWNTs are prepared in large quantities by the chemical vapor deposition 

(CVD) process.  SWNTs can be prepared in reasonably high yields by three techniques: arc-

discharge of Ni-Y catalyzed graphite electrodes [29], laser ablation of Ni-Co catalyzed 

graphite targets [30] and vapor phase pyrolysis of CO and Fe(CO)5 (HiPCO process) [31].  

Carbon nanotube samples are always contaminated with impurities including amorphous 

carbon, residual metal catalyst and graphitic nano-particles.  Thus the purification and 

chemical processing of carbon nanotubes remains as a key step in any application.   

 

2.2 Geometrical structure of SWNTs 

 
In 1992, it was theoretically predicted that the nanotubes can be metallic or 

semiconducting depending on the orientation of hexagons with respect to the nanotube axis 

(chiral angle) [32-34].  The prediction was quickly confirmed experimentally indirectly [35], 

and the direct confirmation came in 1998 [36, 37].  The structure of a SWNT can be 

conceptualized by wrapping a one-atom-thick layer of graphite (called graphene) into a 

Figure 2.2: Synthetic methods for the production of single-walled carbon nanotubes: 
Transmission Electron Microscopy (TEM) images of (a) Electric arc discharge [29], (b) 
Laser ablation [30], and (c) HiPCO products [31]. 
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seamless cylinder.  The way the graphene sheet is wrapped is represented by the chiral vector 

Ch, which represents the full circumference of the tube.  It is defined by 

 21 ˆˆ amanCh +=  (2.1) 

where 1â and 2â are the unit vectors in the hexagonal lattice, and n and m are integers (Figure  

2.2 (a)).  The so-called chiral angle which is the angle between Ch and 1â . If n = m, the chiral 

angle is 30° and the structure is called arm-chair (Figure 2.2 (b)).  If either n or m are zero, 

the chiral angle is 0° and the structure is called zig-zag (Figure 2.2 (c)).  All other nanotubes 

show chiral angles between 0° and 30°.  They are known as chiral nanotubes (Figure 2.2 (d)) 

because they produce a mirror image of their structure upon an exchange of n and m. 

Experimentally, the diameter and the chiral angle of nanotubes can be determined by 

Transmission Electron Microscopy (TEM) (e.g. [38]), Scanning Tunneling Microscopy 

(STM) (e.g. [39]), or Atomic Force Microscopy (AFM) (e.g. [40]).  

 

Figure 2.3: (a) Graphite sheet, the fabric of the nanotubes. Structure of a (b) armchair (c) 
zigzag (d) chiral SWNT. 
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2.3 Electronic structure of SWNTs 

 
Since nanotubes are just folded graphene, their electronic structure can be extracted 

from that of graphene.  The electronic structure of graphene near the Fermi energy is given 

by an occupied π band and an unoccupied π* band.  P. R. Wallace [41] derived an expression 

for the 2-D energy states of the π-electrons in the graphene plane as a function of the wave 

vectors kx and ky [42]: 

 )
2

(cos4)
2

cos()
2

3
cos(41),( 2

02

akakak
kkE yyx

yxD ++±= γ  (2.2) 

where γ0 denotes the nearest neighbor overlap integral and a = 0.246 nm is the in-plane 

lattice constant and two different signs represent the π and π* band.  The calculations show 

the π and π* just touch each other at the corners of the 2-D Brillouin zone (K points).  In the 

vicinity of Γ point (the center of Brillouin zone), the dispersion relation is parabolically 

shaped, while near the K points it shows a linear dependence on k.  At T = 0 K, the π band is 

Figure 2.4: (a) Dispersion relation for graphene. Allowed k values and dispersion relations 
of (b) metallic (6, 6) armchair nanotube and (c) semiconducting (10, 0) zig-zag nanotube. 
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completely filled with electrons and the π* band is empty.  Because the bands only touch at 

the K points, integration over the Fermi surface results in a vanishing density of states (DOS).  

On the other hand, no energy gap exists in the graphene dispersion relation.  This means we 

are dealing with a gapless semiconductor.  (Yet real graphite is a metal since the bands 

overlap by approximately 40 meV due to the interaction of the graphene planes.) 

For the description of the band structure of graphene, it is assumed that the graphene 

plane is infinite in 2-D.  For carbon nanotubes, we have a structure which is macroscopic 

along the tube axis, but the circumference is in atomic dimensions.  Hence, while the density 

of allowed states in axial direction will be high, the number of states in the circumferential 

direction will be very limited.  More precisely, the roll-up by the chiral vector Ch leads to 

periodic boundary conditions in the circumferential direction.  These boundary conditions 

define allowed modes along the tube axis according to: 

 .,...2,1,0with  2 ==⋅ jjkCh π  (2.3) 

The allowed k values depend on the diameter and helicity of the tube.  Whenever the 

allowed k values include the point K, the system is a metal with a nonzero density of states at 

the Fermi level.  When the K point is not included, the system is a semiconductor with 

different size energy gaps.  It is important to note that the states near the Fermi energy in 

both metallic and semiconducting tubes originate in states near the K point, and hence their 

transport properties are related to the properties of the states on the allowed lines.  In the case 

of armchair tubes, the tube axis is identical to the y direction and the circumference 

represents the x direction (in Figure 2.4(a) and in Equation 2.2).  The periodic boundary 

condition allows values for the wave vector in the circumferential direction according to: 

 
an

j
k jx

3

2
,

π
=  (2.4) 
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As an example of an armchair nanotube, Figure 2.4(b) shows the projection of the allowed 

1D states onto the first Brillouin zone of the graphene and the band structure for a (6, 6) 

nanotube.  In all armchair nanotubes the conduction band and the valence band cross at the 

Fermi energy for k = 2π / 3a and show in general metallic behavior. 

The periodic boundary conditions for zig-zag tubes result in allowed wave vectors 

according to: 

 
an

j
k jy

π2
, =  (2.5) 

The band structure and allowed k values for a (10, 0) zig-zag tube are shown in Figure 2.4(c).  

Note that for the (10, 0) tube K points are not among the allowed states and the tube is 

showing semiconducting behavior. 

The general rules for the metallicity of the SWNT are as follows: (n, n) tubes are metals; 

(n, m) tubes with n – m = 3j, where j is a non zero integer, are very small-gap semiconductors 

and all others are large-gap semiconductors.  Strictly within the band-folding scheme, the n – 

m = 3j tubes would all be metals, but because of tube curvature effects, a very small gap 

opens near Fermi energy when j ≠ 0 [43].  The armchair nanotubes are always metallic 

within the single electron picture, being independent of curvature because of their symmetry.  

As the tube radius R increases, the band gap of the large-gap and very small-gap tubes 

decreases as 1/R and 1/R2 respectively [33, 34, 44].  Thus, for most experimentally observed 

carbon nanotube sizes, the curvature induced energy gap of the very small-gap tubes is 

negligible and for most practical purposes all the larger diameter n – m = 3j tubes can be 

considered metallic at the room temperature.  
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2.4 Transport properties of SWNTs 

 
For metallic SWNTs, the dispersion relation around the Fermi energy is linear and the 

energetic separation between the modes at ±kF is of the order of 100 meV.  It is this large 

energetic spacing between the 1-D subbands which prevents interband scattering to a large 

extend even at room-temperature.  Since there are subbands with positive and negative slope 

at both, + kF as well as for - kF, one expects a conductance 

 
h

e
G

22
2 ⋅=  (2.6) 

for an ideal, scattering free (ballistic) metallic nanotube.  The degeneracy due to the spin is 

considered by a factor 2. 

Figure 2.5: (a) I – Vbias curve of a SWNT at a gate voltage of 88.2 mV (A) 104.1 mV (B) 
and 120 mV (C).  In the inset more I – Vbias curves are shown, with Vgate between 50 mV 
(bottom curve) and 136 mV (top curve).  (b) I – Vgate characteristic at Vbias = 30 µV [45]. 
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The experimental evidence of ballistic transport through a SWNT was first observed by 

Tans et al [45].  The experimental setup consisted in a SWNT deposited on a Si/SiO2 

substrate and atop two Pt electrodes, with an additional electrode (gate) used to change the 

electrostatic potential seen by the nanotube.  The bias voltage Vbias is measured between the 

two leads and changes the chemical potentials of the two leads, µ1 and µ2.  The gate potential 

Vgate changes the position of the energy levels of the nanotube relative to the chemical 

potentials µ1 and µ2.  In Figure 2.5(a) the I – Vbias curve is shown for three gate voltages.  The 

plateaus of non-zero current clearly show ballistic transport when a conducting channel is in 

the range of Vbias = (µ1 – µ2)/e.  The position of the steps is changed by increasing the gate 

voltage.  However, we must consider not only the level-shift effect but also the Coulomb-

charging effect of the nanotube, whereby the nanotube is considered as a capacitor with 

capacitance C.  At very low temperature, such that the thermal energy is kBT is smaller than 

the charging energy EC of an electron kBT < EC = e
2/2C, the current flow can be blocked by 

this energy shift when the charge from the current flow itself shifts the levels out of the bias 

window between µ1 and µ2.  Thus, current flow appears in Figure 2.5(b) only when Vbias > EC.  

Since the energy of the levels in a nanotube can be modified by Vgate, the step positions 

shown in the inset of Figure 2.5(a) are smoothly changed by charging Vgate. 

 

2.4.1 The elastic scattering at impurities 

For 3-D metals, the probability of a scattering by impurities, i.e. the scattering rate, is 

described by the classical Rutherford scattering theory: 

 3

4

1 1 −− =⋅∝ F

F

Fimp v
v

vτ  (2.7) 
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where vF denotes the Fermi velocity.  In particular, τimp
-1 is independent of temperature and 

proportional to the impurity concentration.  This result relies on the fact that that the velocity 

of electrons in an interval of approx. 4kBT around the Fermi energy is given by vF in a very 

good approximation.  This is in general a valid assumption for 3-D metals where EF is large 

compared to kBT.  Eq. (2.7) holds exactly, if the dispersion relation is linear within the energy 

interval of approx. 4kBT.  The condition is fulfilled for CNTs up to room temperature and 

above.  Figure 2.6 is a magnification of the metallic SWNT dispersion relation in the vicinity 

of the Fermi position at ±kF.  The arrows represent the Fermi velocities of the electrons.  

Scattering at an impurity is an elastic scattering process.  Consequently, an electron can only 

be scattered in another state at the same energy of the nanotube dispersion relation.  The 

allowed final states for an electron in an initial state at position 1 are indicated as 2 to 4 in 

Figure 2.6.  The change in electron momentum is accounted for by the impurities.  Due to the 

one-dimensionality of the system small-angle scattering as is present in 2-D or 3-D metals 

Figure 2.6: Illustration of impurity scattering processes on a metallic SWNT.  Dispersion 
relation in the vicinity of –kF and +kF.  Position 1 (black circle) indicates an initial state of 
an electron, the position 2 to 4 are potential final states after scattering events. 
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does not exist in SWNTs.  While scattering from 1 to 3 represents a forward scattering event 

without effect on the conductance, scattering from 1 to 2 or 4 is a backscattering event and 

will increase the resistance.  The two-terminal resistance of a SWNT segment of length L 

will be 

 
imp

imp

L

e

h
R

λ
⋅=

24
 (2.8) 

where λimp is the elastic mean free path which is roughly speaking the average distance 

between impurity centers.  Rimp will be temperature independent in a good approximation.  

The typical values of λimp for CVD grown SWNTs are ~1 µm [46]. 

 

2.4.2 The electron-phonon scattering 

For the discussion of the phonon scattering of electrons in SWNTs, we have to 

distinguish scattering by optical and acoustical phonons.  The starting point for describing the 

latter is the linear dispersion of the acoustical phonons with Eph = ħcphkph [47].  Since the 

velocity of sound, cph, is approx. 10
4 m/s, i.e. about two orders of magnitude smaller than the 

Figure 2.7: Electron-phonon scattering (a) illustration of an acoustic phonon scattering 
event on a metallic SWNT.  Position 1 (black circle) indicates an initial state and position 2 
is the final state after the scattering event.  (b) High-field I-V characteristics for metallic 
CNTs at different temperatures.  The right inset plot V/I = R vs. V.  The left inset shows a 
section of the dispersion relation and illustrates the phonon emission [48]. 
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Fermi velocity of the electrons (vF ~ 10
6 m/s), the scattering of an electron by an acoustic 

phonon results in a rather small electron energy change.  Figure 2.7(a) illustrates a possible 

final state 2 for an electron scattered by an acoustic phonon from an initial state 1.  The two 

states are connected by a line with a slope (cph) much smaller than the one of the electron 

dispersion relation reflecting the aforementioned difference in velocity.  Scattering from the 

crossed dispersion region around +kF to –kF is suppressed because there are no empty, 

allowed states available around –kF even at room-temperature.  Approximately 2kF has to be 

delivered by the phonon in order to have a scattering from +kF to –kF.  The corresponding 

phonon energy is ~100 meV which is much higher than kBT even at room-temperature, and 

thus scattering from +kF to –kF is suppressed. 

Since the Debye temperature of SWNTs is approx. 2000 K [48], the situation for T < 

300 K is described by the Grüneisen relation.  For 3-D metals, the temperature dependence of 

the scattering rate is given by: 

 51 Tph ∝
−τ  (2.9) 

which is composed of three factors.  The first 2T∝  comes from the density of phonon states 

in 3-D.  The second 2T∝ factor describes the small-angle scattering in 3-D metals.  And 

finally, there is a T∝ factor from the energy transfer between electron and phonon.  For 1-D 

systems such as SWNTs, the first two terms can be ignored because the 1-D phonon DOS 

shows no temperature dependence and the small-angle scattering is not allowed in 1-D 

structures.  Therefore the resistance contribution due to the acoustical phonon is given by: 

 
ph

ph

L

e

h
R

λ
⋅=

24
 (2.10) 

where phFph v τλ ⋅=  and 1−∝Tphτ .  λph is found to be ~1 µm [46, 49]. 
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For small excess energies of the electrons (approx. eV < 100 meV), scattering by optical 

phonons can be neglected since there are no unoccupied states.  For large dc biases, i.e. high 

fields, electrons in the SWNT are taking up energies well beyond values of kBT, i.e. they 

become “hot”.  Interestingly, “hot” in this case does not mean that the electron velocity has 

increased.  Because of the special situation of a linear dispersion relation, the velocity of the 

carriers remains constant while their energy increases.  This changes the situation completely.  

In the case of hot electrons, scattering by optical phonons can be the main contribution to the 

overall resistance of CNTs.  Figure 2.7(b) shows the high-field I-V characteristics of metallic 

SWNTs at different temperatures.  The curves overlap almost completely, proving a 

temperature-independent behavior.  For small voltages, approx. V < 0.2 V, the I-V 

characteristics exhibits a linear behavior.  For larger voltages, it is strongly non-linear.  For 

voltages approx. > 5V, the current exceeds 20 µA which corresponds to a current density of 

more than 109 A/cm2.  Furthermore, it seems that a saturation current I0 is approached at 

large bias.  The resistance shows a constant value R0 at small bias and increases linearly for V 

> 0.2 V (the right inset in Figure 2.7(b)), i.e. it can be expressed by R = R0 + V/I0.  This 

behavior can be explained by the inset in the left of Figure 2.7(b).  Once an electron has 

gained enough energy to emit an optical phonon, it is immediately back-scattered.  A steady 

state is approached in which the electrons moving forward direction have energies Eopt higher 

than the backward-moving ones.  The saturation current can be derived as I0 = (4e
2/h)·(Eopt/e).  

Using a value of approx. 160 meV [48], this leads to a saturation current of approx. 25 µA, in 

very good agreement with the experimental results.  Accordingly, the mean free path lopt for 

backscattering phonons is just the distance an electron needs to accumulate the threshold 

energy: λopt = (Eopt/e)·(L/V), where L denotes the electrode spacing and V the applied voltage, 
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i.e. V/L is the electric field.  If this is combined with a field-independent scattering term (i.e. 

from impurities) with a mean free path λimp, an overall empirical expression for the voltage 

dependent resistance can be obtained: 
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Theoretical analysis and fitting of experimental data have revealed that λopt is ~ 15 nm [50]. 

 

2.4.3 The electron-electron scattering 

An additional mechanism that leads to a resistance contribution is electron-electron 

scattering; a mechanism which may be especially pronounced in 1-D conductors.  Typically, 

electron-electron scattering does not result in any measurable change in resistance of a 

normal conductor.  This is true because energy and momentum conservation can only be 

fulfilled if as many electrons are backscattered as are scattered in the forward direction.  The 

situation is drastically changed for a carbon nanotube.  Figure 2.8 shows the dispersion 

Figure 2.8: Illustration of electron-electron scattering event on a metallic SWNT.  
Dispersion relation is shown in the vicinity of +kF.  Positions 1 and 1′ (black circles) 
indicate initial states of two electrons, positions 2 and 2′ are final states. 
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relation in the vicinity of kF.  Because of the mode crossing, two electrons in positions 1 and 

1′, which contribute to the forward transport, may get scattered into positions 2 and 2′, 

respectively.  The total energy and momentum is conserved during this process.  The 

scattered electrons in 2 and 2′ now occupy states in the negative current direction.  Hence, 

this process leads to a resistance increase.  With increasing temperature, the number of 

allowed initial and final states increases and so does the scattering probability.  A detailed 

analysis [51] reveals a linear dependence of the electron-electron scattering rate on the 

temperature: 
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where λe-e is the mean free path between scattering events and τe-e is the inverse scattering 

rate.  The scattering rate also rises with increasing electric excess energy, eV, of the electrons 

because the number of allowed states increases.  

 

2.4.4 The transport in low temperature and low bias regime 

In order to perform any kind of electrical measurement on a carbon nanotube it is 

essential to create some kind of contact between the tube and the outside world.  The quality 

of the electrical contacts is of paramount importance for studying electric transport 

phenomena.  With high contact resistance, individual SWNTs exhibit Coulomb blockade 

(CB) [45, 52, 53] and Luttinger liquid (LL) [54] behavior at various temperatures. 

For metallic nanotubes exhibiting high contact resistance with the electrical leads, the 

low temperature transport is dominated by CB effect.  CB occurs at low temperatures in 

systems with very small capacitance, such that adding a single electron requires an 

electrostatic energy EC = e2/2C, larger than the thermal energy kBT.  For an estimate, we can 
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express the capacitance of a nanotube as C = 2πεr ε0 L / ln(2z/r) where εr is the average 

dielectric constant of the environment, z is the distance between the nanotube and the 

conducting substrate, L is the length of the tube and r is the radius of the tube.  Assuming εr ≈ 

2, z = 300 nm and r = 0.7 nm for a typical nanotube, the charging energy will be EC ≈ 

5/L(µm) meV.  That means that for a nanotube sample of ~1 µm the Coulomb blockade will 

set in below 50 K. 

It has been theoretically predicted that in 1-D systems such as metallic SWNTs 

electrons form a Luttinger liquid rather than a conventional Fermi liquid phase [55, 56].  LL 

behavior can be characterized by some exotic properties such as low-energy charge and spin 

excitations that propagate with different velocities, and a tunneling density of states that is 

suppressed as a power law function of energy, i.e. ρ(E) ~ | E – EF |
α.  The strength of 

electron-electron interactions in a LL is described by Luttinger parameter g.  For non-

interacting electrons g = 1, whereas for repulsive Coulomb interactions g < 1.  An estimate of 

the g parameter in nanotubes is found to be g ≈ 0.22, which means that a carbon nanotube is 

a strongly correlated system.  Experimental evidence for LL behavior in an individual SWNT 

has been reported in tunneling [54, 57, 58] and resonant tunneling measurements [59], 

revealing a pronounced suppression in the tunneling density of states. 

It is interesting that for observing these CB or LL behaviors the poor contacts between 

the electrodes and the tube are needed; in fact, when highly transparent contacts were used, 

the conductance increased as the temperature decreased and neither CB nor LL were 

observed [60].   

Our computational models for the study of transport properties of functionalized 

metallic SWNTs are connected to semi-infinite leads at both ends (described in chapter 4).  
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We have used the same metallic tubes for both semi-infinite leads and the functionalized 

section.  Furthermore, our investigation of the transport properties is mainly focused on the 

low temperature and the low bias regime and the lengths of our computational models (< 10 

nm) are much shorter than the electron-phonon scattering length scale of metallic nanotubes, 

which is about ~µm even at the room temperature.  Therefore the electron-phonon scattering 

effect can be ignored.  However, the electron-electron scattering effects may be important 

Figure 2.9: (a) Conductance G vs. gate voltage at temperatures from 282 K to 1.5 K for a 
metal-on-tube device.  The device noise (conductance fluctuations in time) has been filtered 
from all traces except the one at 133 K where its amplitude is at a maximum.  (b) Profile of 
a Coulomb blockade (CB) peak in another device between 16 K and 1.7 K.  (c) Peak height 
vs. T for the peak in (b).  The solid curve illustrates G ≈ 1/T.  (d) Peak area vs. T [53]. 
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and further investigations may be required.  In our calculations, the electron-electron 

interactions are not included so that the ballistic electron transport in SWNTs and the 

scattering mechanism at the functional sites are the only dominant factors that determine 

conducting behaviors of functionalized nanotubes in this regime.  

 



 

 
 

 

Chapter 3 

 
 
Covalent Sidewall Functionalization of SWNTs 

 
 

Despite the extraordinary promise of SWNTs due to their outstanding structural and 

electronic properties, their realistic application in materials and devices has been hindered by 

processing and manipulation difficulties.  Recently, various reliable methods of the chemical 

functionalization of the nanotubes have been developed to overcome those obstacles and 

extend the scope of application spectrum of SWNTs such as covalent interactions at dangling 

functionalities at nanotube ends and defects [20, 61], sidewall covalent modifications [15-17, 

24-26, 62], and noncovalent modifications of SWNTs including polymer wrapping and 

adsorption [21, 23, 63], adsorption of amines [64] and molecules with large π-systems [18], 

forming complexes with organometallic compounds [65], and radio frequency glow-

discharge plasma modification [66].  In particular, covalent modification schemes allow 

persistent alteration of the electronic properties of the tubes, as well as to chemical tailoring 

of their surface properties, whereby new functions can be implemented that cannot otherwise 

be acquired by pristine nanotubes.  One can envision grafting of moieties that allow assembly 

of modified SWNTs onto surfaces for electronic applications, moieties that allow reaction 

with host matrices in composites, and sensing applications that may require the presence of a 

variety of functional groups bound to the SWNTs. 
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Although covalent functionalization methods have also been developed for MWNTs 

[67], fewer investigations have been devoted to this type of nanotube.  Covalent 

functionalization of SWNTs has been accomplished by three different approaches, namely, 

thermally activated chemistry, electrochemical modification, and photochemical 

functionalization [68]. 

 

Figure 3.1: Functionalization possibilities for SWNTs: (A) defect-group functionalization, 
(B) covalent sidewall functionalization, (C) noncovalent exohedral functionalization with 
surfactants, (D) noncovalent exohedral functionalization with polymers, and (E) endohedral 
functionalization with, for example, C60 [12]. 
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3.1 Origin of nanotube chemistry 

 
Most of the carbon nanotube chemistry arises from its inherent curvature [69].  One can 

divide a nanotube into different areas by curvature, which reveals that nanotubes are 

essentially a two-component molecule with two terminal caps and a long, uniform cylinder.  

The caps resemble and chemically behave like fullerenes [70].  The caps are more reactive 

than the sidewall and prone to oxidation and addition reactions.  In general, addition 

reactions to the partial carbon-carbon double bonds cause the transformation of sp2 into sp3 

hybridized carbon atoms, which is associated with a change from a trigonal-planar local 

bonding geometry to a tetrahedral geometry.  This process is energetically more favorable at 

the caps due to their pronounced curvature in two dimensions, in marked contrast to the 

sidewall with its comparatively low curvature in only one dimension.  The theoretical basis 

for this argument is that curvature induces pyramidalization (strain) and misalignment of π 

orbitals [69].  As Figure 3.2(a) shows, regular sp2-hybridized carbons have a 0° 

pyramidalization angle, θp, while regular sp
3-hybridized carbons have a θp of 19.47°.  In, for 

Figure 3.2: (a) Schematic diagram of pyramidalization angle θp [69] and (b) Stone-Wales 
(or 7-5-5-7) defect on the sidewall of a nanotube [68]. 
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example, the cap of a (10, 10) SWNT, the pyramidalization angle is θp = 11.64° (same as 

C60), compared to θp = 3.01° of the sidewall.  On the other hand, the non-zero curvature 

makes sidewall more reactive than a planar graphene sheet.  Correspondingly, the binding 

energy of atoms or functional groups on the sidewall should increase with decreasing tube 

diameter.  This tendency is supported by theoretical studies, as have been reported, for 

instance, for the bonding of radicals to the sidewall of a SWNT [71, 72].  On the contrary, the 

concave curvature of the inner surface of the nanotube imparts a very low reactivity towards 

addition reactions [73], so that carbon nanotubes have been proposed as nano-containers for 

reactive gas atoms, analogous to fullerenes encapsulating nitrogen atoms. 

Typically, around 1~3% of the carbon atoms of a nanotube are located at defect sites 

[74].  A frequently-encountered type of defect is the so-called Stone-Wales defect, which is 

composed of two pair of five-membered and seven-membered rings, and is hence referred to 

as a 7-5-5-7 defect (Figure 3.2(b)).  A Stone-Wales defect leads to a local deformation of the 

graphitic sidewall and thereby introduces an increased curvature in this region.  The strongest 

curvature exists at the interface between the two five-membered rings; as a result of this 

curvature, addition reactions are most favored at these positions. 

 

3.2 Thermally activated chemical functionalization 
 

3.2.1 Oxidation and carboxyl-based couplings 

An oxidation process for SWNTs involves extensive ultrasonic treatment in a mixture of 

concentrated nitric and sulfuric acid [20].  Such drastic conditions lead to the opening of the 

tube caps as well as the formation of holes in the sidewalls, followed by an oxidative etching 

along the walls with the concomitant release of carbon dioxide.  The final products are 
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nanotube fragments with lengths in the range of 100 to 300 nm, whose ends and sidewalls are 

decorated with a high density of various oxygen-containing groups (mainly carboxyl groups).  

Under less vigorous oxidation, such as refluxing in nitric acid, the shortening of the tubes can 

be minimized.  The chemical modification is then limited mostly to the opening of the tube 

caps and the formation of functional groups at defect sites along the sidewalls.  Nanotubes 

functionalized in this manner basically retain their pristine electronic and mechanical 

properties [61]. 

The oxidatively introduced carboxyl groups are useful sites for further modifications, as 

they enable the covalent coupling of molecules through the creation of amide and ester bonds 

(Figure 3.3(a)).  By this method the nanotubes can be provided with a wide range of 

functional moieties, for which purpose bifunctional molecules (e.g., diamines) are often 

utilized as linkers.  Illustrative examples are nanotubes equipped with dendrimers, nucleic 

Figure 3.3: (a) Schematic diagram of chemical modification of nanotubes through thermal 
oxidation, followed by subsequent esterification or amidization of the carboxyl groups [68] 
and (b) AFM three-dimensional topographic representation of a single SWNT covalently 
decorated with gold nano-particles 2-3 nm in diameter [75]. 
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acids, enzymes, metal complexes, or semiconductor and metal nanoparticles (Figure 3.3(b)) 

[75]. 

The presence of carboxyl groups leads to a reduction of van der Waals interactions 

between the CNTs.  Additionally, the attachment of suitable groups renders the tubes soluble 

in aqueous or organic solvents, opening the possibility of further modifications through 

subsequent solution-based chemistry [76-78]. 

 

3.2.2 Addition reactions at the sidewall 

The two-step functionalization of nanotubes through the oxidative introduction of 

carboxyl groups followed by the formation of amide or ester linkages does allow for a stable 

chemical modification, it has only a relatively weak influence on the electrical and 

mechanical properties of nanotubes.  By comparison, addition reactions enable the direct 

coupling of functional groups onto the π-conjugated carbon framework of the tubes.  The 

Figure 3.4: (a) Overview of possible addition reactions for the functionalization of the 
nanotube sidewall [68] and (b) TEM of 4-tert-butylphenyl-functionalized carbon nanotubes 
by the SDS/diazonium protocol. The insert is an expansion wherein the functional groups 
are clearly visible [79]. 
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required reactive species (atoms, radicals, carbenes, or nitrenes) are in general made 

available through thermally activated reactions.  A series of addition reactions have been well 

documented, the most important of which are listed in Figure 3.4(a).   

While in the initial experiments aiming at addition reactions to the sidewall only one to 

three functional groups were found per 100 carbon atoms [12], the procedures of more recent 

development have reached at least a 10% degree of functionalization [79].  Analogous to 

nanotube functionalization with carboxyl groups, the direct covalent attachment of functional 

moieties to the sidewalls strongly enhances the solubility of the nanotubes.  The good 

solubility of nanotubes modified with organic groups has been exploited for their effective 

purification [15].  In this procedure, small particles are first separated from the solution 

through chromatography or filtration, and then the covalently attached groups are removed 

through thermal annealing (T > 250°C). 

 

3.2.3 Substitution reactions on fluorinated nanotubes 

Figure 3.5: (a) Functionalization of the sidewall through nucleophilic substitution reactions 
in fluorinated nanotubes [68] and (b) TEM image zoomed-in on Undecyl (C11H23)-
functionalized individual tubes [80]. 
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The fluorine atoms in fluorinated carbon nanotubes can be replaced through 

nucleophilic substitution reactions with relative ease, thus opening a flexible approach for 

providing the sidewalls with various types of functional groups, as illustrated in Figure 3.5.  

As nucleophilic reagents, alcohols, amines, Grignard reagents, and alkyl lithium compounds 

have been successfully employed, which have resulted in up to a 15% degree of 

functionalization [80].  Moreover, by using a bifunctional reagent, such as an α, ω-diamine 

with a sufficiently long carbon chain, the nanotubes can be covalently cross-linked with each 

other [81]. 

 

3.3 Electrochemical modification of nanotubes 
 
Interest in the study of the electrochemical properties of CNTs mainly stems from their 

superior electrocatalytic properties and their high surface-to-volume ratio, as compared to 

other carbon materials that are widely used as electrode materials.  As a result of this interest, 

electrochemistry has been developed into an elegant tool for the functionalization of CNTs in 

a selective and controlled manner.  To this end, a constant potential (potentiostatic) or a 

constant current (galvanostatic) is applied to a CNT electrode immersed in a solution that 

contains a suitable reagent, whereby a highly reactive (radical) species is generated through 

electron transfer between the CNT and the reagent.  Many organic radical species have a 

tendency to react with the starting reagent or to self-polymerize, resulting in a polymer 

coating on the tubes.  Depending on the reagent used, the polymeric layer may or may not be 

bonded in a covalent manner on the nanotube sidewall.  Although the first electrochemical 

coupling were achieved with HIPCO-produced SWNTs, whose reactivity is enhanced by 
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their small diameters of down to 0.6 nm [31], large-diameter nanotubes are also found to be 

amenable to covalent electrochemical modification under specific conditions [82]. 

In addition to being simple, clean, and efficient, electrochemical modification (ECM) 

schemes are quite versatile in that they allow for an accurate control over the extent of film 

deposition through the choice of suitable electrochemical conditions, that is, the duration and 

magnitude of the applied potential.  Moreover, by utilizing reagents containing appropriate 

substituents, the surface properties of the coated tubes can be tailored, for example, from 

highly polar to predominantly hydrophobic.  ECM has proven to be a suitable tool to modify 

entangled SWNTs networks as well as individual SWNTs. 

 

3.4 Photochemical functionalization of nanotubes 
 
Unlike the chemical functionalization routes based on thermally activated chemistry or 

ECM, photochemical approaches have been employed to a much less extent up to now.  Only 

Figure 3.6: Characterization of SWNTs modified by oxidative ECM through confocal 
Raman spectroscopy: (a) AFM image of the sample showing an electrode and the SWNTs 
(8 µm ×  8 µm); (b) a confocal G-line Raman image (10 µm ×  10 µm) of the same sample 
taken with an excitation wavelength of 647.1 nm.  The electrode structure is drawn in white, 
the background appears dark blue and the SWNTs appear as light blue to red regions; (c) 
Raman spectra showing the D-line and G-line of the SWNT marked x before and after 
ECM.  The changes in the intensity and shift in the frequency of these two features are 
negligible in this case [82]. 
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one true photochemical modification case has been reported to date, which is sidewall 

osmylation [83, 84].  Initially, it was observed that SWNTs exposed to osmium tetroxide 

(OsO4) under UV-light irradiation show a pronounced increase in electrical resistance 

(Figure 3.7).  This change has been ascribed to the photo-induced cycloaddition of OsO4 to 

the partial carbon-carbon double bonds, as a result of which the π-electron density in the 

nanotubes is decreased.  It is interesting to note that when humidity is carefully avoided, the 

OsO4 addition is reversible, that is, the cycloadduct can be cleaved by photoirradiation, 

whereby the original resistance is restored. 

 

Figure 3.7: (a) Reaction scheme for sidewall osmylation of a SWNT using UV light; (b) 
resistance change of an individual metallic SWNT upon exposure to OsO4 and O2 under 
UV-light irradiation [84]. 



 

 
 
 
Chapter 4 

 
 
Theoretical Approaches 

 
 

In this chapter I will introduce a number of theoretical and computational techniques 

that are used in our studies of electronic and transport properties of covalently-sidewall-

functionalized SWNTs.  First, I will outline the general principles of density functional 

theory (DFT) and give an overview of tight-binding methods.  Then a brief review of the 

basic concepts of Landauer-Büttiker formalism and Green’s functions technique for transport 

property studies will be provided. 

 

4.1 Density functional theory 

 
Density functional theory belongs to a class of numerical methods known as ab initio 

methods.  As their name implies, the only input to such methods are the fundamental 

constants of nature and the atomic numbers of the nuclei in the system.  ab initio techniques 

aim to take into account all the interactions involving atoms and electrons of the system.  

Every electronic system can be described by a wavefunction according to the Schrödinger 

equation: 

 Ψ=Ψ EĤ  (4.1) 
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where Ψ is the wavefunction for electrons and nuclei, E is the energy, and Ĥ is the 

Hamiltonian operator given by 
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where i, j run over electrons, and A, B run over the nuclei.  The wavefunction, Ψ, is then a 

function of 3N coordinates, where N is the total number of particles, electrons and nuclei.  

Unless otherwise stated, we shall henceforth use atomic units (ħ = e2 = me =1), so that all 

energies are in Hartrees (27.2 eV) and all lengths in Bohr radii (0.53 Å). 

As is evident, the motions of particles are coupled and none moves independently of the 

other.  This presents a very complicated problem, making it impossible to solve exactly.  For 

most systems, the problem can be simplified somewhat by making the Born-Oppenheimer 

approximation [85].  Since the nuclei move on a much longer time scale then the electrons, 

one can ignore the kinetic energy of the nuclei when solving for the electrons, and treat an 

electronic Hamiltonian (the inter-nuclear repulsion also becomes a constant) for each point 

on a potential energy surface. 

 

4.1.1 The Hohenberg-Kohn theorems 

As a result of the Born-Oppenheimer approximation, the Coulomb potential arising 

from nuclei is treated as a static external potential Vext(r): 
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We define the remainder of the electronic Hamiltonian given in (4.2) as F̂ : 
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such that extVFH ˆˆˆ +=  where 

 ∑=
i

iextext VV )(ˆ r . (4.15) 

F̂ is the same for all N-electron systems, so that the Hamiltonian, and hence the ground state 

0Ψ , are completely determined by N and Vext(r).  The ground state 0Ψ  for this 

Hamiltonian gives rise to a ground state electronic density n0(r) 

 ∫∏
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Thus the ground state 0Ψ  and density n0(r) are both functional of the number of electrons 

N and the external potential Vext(r).  Density functional theory, introduced in 1964 by 

Hohenberg and Kohn [86], makes two remarkable statements.   

The first Hohenberg-Kohn theorem states that the external potential Vext(r) is uniquely 

determined by the corresponding ground state electronic density, to within an additive 

constant.  Thus, at least in principle, the ground state density determines (to within a 

constant) the external potential of the Schrödinger equation of which it is a solution.  The 

external potential and number of electrons ∫= )(d 0 rr nN  determine all the ground state 

properties of the system since the Hamiltonian and ground state wavefunction are determined 

by them.  So for all densities n(r) which are ground state densities for some external potential 

(v-representable) the functional ΨΨ= FnF ˆ][  is unique and well-defined, since n(r) 

determines the external potential and N (and therefore F̂ ) and hence Ψ .  Now a functional 

for an arbitrary external potential V(r) unrelated to the Vext(r) determined by n(r) can be 

defined: 
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 ∫+= )()(d][][ rrr nVnFnEV . (4.17) 

The second, equally powerful theorem by Hohenberg and Kohn, is that for all v-

representable densities n(r), 0][ EnEV ≥ where E0 is now the ground state energy for N 

electrons in the external potential V(r).  Thus the problem of solving the Schrödinger 

equation for non-degenerate ground states can be recast into a variational problem of 

minimizing the functional ][nEV  with respect to v-representable densities.  It should be noted 

that simple counter-examples of v-representable densities have been found [87-89], but this 

restriction and the non-degeneracy requirement are overcome by the constrained search 

formulation. 

 

4.1.2 The constrained search formulation 

Following Levy [90] we define a functional of the density n(r) for the operator F̂  as: 

 ΨΨ=
→Ψ

FnF
n

min][  (4.18) 

i.e. the functional takes the minimum value of the expectation value with respect to all states 

Ψ  which give the density n(r).  For a system with external potential V(r) and ground state 

0Ψ  with energy E0, consider a state ][nΨ , an N-electron state which yields density n(r) and 

minimizes ][nF .  Define ][nEV  as: 

 ][][ )ˆˆ()()(d][][ nnV VFVnnFnE Ψ+Ψ=+= ∫ rrr  (4.19) 

but since VFH ˆˆˆ += , by the variational principle we obtain 

 0][ EnEV ≥  (4.20) 
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with equality only if 0][ Ψ=Ψ n .  This holds for all densities which can be obtained from 

N-electron wavefunction (N-representable).  But from the definition of ][nF  (4.8) we must 

also have 

 000
ˆ][ ΨΨ≤ FnF  (4.21) 

since 0Ψ  must be one of states which yields n0(r).  Adding ∫ )()(d 0 rrr Vn  gives 

 00][ EnEV ≤  (4.22) 

Which when combined with (4.10) gives the desired result that 00 ][][ EnEnE VV =≥ . 

Thus the ground state density n0(r) minimizes the functional ][nEV  and the minimum 

value is the ground state electronic energy.  Note that the requirement for non-degeneracy of 

the ground state has disappeared, and further that instead of considering only v-representable 

densities, we can now consider N-representable densities.  The requirements of N-

representability are much weaker and satisfied by any well-behaved density, indeed the only 

condition [91] is proper differentiability i.e. that the quantity ∫ ∇ 22/1 |)(|d rr n is real and finite. 

 

4.1.3 Exchange and correlation 

The remarkable results of density functional theory are the existence of the universal 

functional F[n], which is independent of the external potential, and that instead of dealing 

with a function of 3N variables (the many-electron wavefunction) we can deal with a 

function of only three variables (the density).  The complexity of the problem has thus been 

much reduced.  The exact from of the universal functional F[n] is unknown.  The Thomas-

Fermi functional [92-94] 
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can be viewed as a tentative approximation to this universal functional, but fails to provide 

even qualitatively correct predictions for systems other than isolated atoms [95, 96] although 

recent, more accurate developments [97-101] have led to the implementation of linear-

scaling orbital-free methods for nearly-free electron metals. 

The failure to find accurate expression for the density functional is a result of the 

complexity of the many-body problem that is at the heart of the definition of the universal 

functional.  For the electron gas, a system of many interacting particles, the effects of 

exchange and correlation are crucial to an accurate description of its behavior.  In a non-

interacting system, the anti-symmetry of the wavefunction requires that particles with the 

same spin occupy distinct orthogonal orbitals, and results in the particles becoming spatially 

separated.  In an interacting system such as the electron gas in which all the particles repel 

each other, exchange will thus lead to a lowering of the energy.  Moreover, the interactions 

cause the motion of the particles to become correlated to further reduce the energy of 

interaction.  Thus it is impossible to treat the electrons as independent particles.  These 

effects are completely neglected by the Thomas-Fermi model, and must in part account for 

its failure, the other source of error being the local approximation for the kinetic energy. 

 

4.1.4 The Kohn-Sham equations 

In order to take advantage of the power of DFT without sacrificing accuracy (i.e. 

including exchange and correlation effects), we follow the method of Kohn and Sham [102] 

to map the problem of the system of interacting electrons onto a fictitious system of non-
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interacting “electrons”.  We write the variational problem for the Hohenberg-Kohn density 

functional, introducing a Lagrange multiplier µ to constrain the number of electrons to be N: 

 [ ] 0))(d()()(d][ =−−+ ∫ ∫ NnnVnF ext rrrrr µδ . (4.24) 

Kohn and Sham separated F[n] into three parts 
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in which TS[n] is defined as the kinetic energy of a non-interacting gas with density n(r) (not 

the same as that of the interacting system, although we might hope that the two quantities 

were of the same order of magnitude), the second term is the classical electrostatic (Hartree) 

energy and the final term is an implicit definition of the exchange-correlation energy which 

contains the non-classical electrostatic interaction energy and the difference between the 

kinetic energies of the interacting and non-interacting systems.  The aim of this separation is 

that the first two terms can be dealt with simply, and the last term, which contains the effects 

of the complex behavior, is a small fraction of the total energy and can be approximated 

surprisingly well. 

Using this separation, equation 4.14 can be rewritten: 

 µ
δ
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in which the Kohn-Sham potential )(rKSV  is given by 
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and the exchange-correlation potential VXC(r) is 

 
)(

][
)(

r
r

n

nE
V XC

XC δ
δ

= . (4.28) 



 

 39 

The crucial point to note here is that equation 4.16 is precisely the same equation which 

would be obtained for a non-interacting system of particles moving in an external potential 

VKS(r).  To find the ground state density n0(r) for this non-interacting system we simply solve 

the one-electron Schrödinger equation: 

 )()()(
2

1 2
rrr iiiKSV φεφ =




 +∇−  (4.29) 

for (1/2)N single particle states iφ  with energies εi, constructing the density from 
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(the factor 2 is for spin degeneracy – we assume the orbitals are single-occupied) and the 

non-interacting kinetic energy TS[n] from 
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Since the Kohn-Sham potential VKS(r) depends on the density n(r), it is necessary to 

solve these equations self-consistently i.e. having made a guess for the form of the density, 

the Schrödinger equation is solved to obtain a set of orbitals { )(riφ } from which a new 

density is constructed, and the process repeated until the input and output densities are the 

same.  After self-consistency is achieved, the total energy can be found by 
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4.1.5 Approximations of exchange-correlation functionals 

Up to this point, we have given an exact recipe for calculation for the total energy of a 

system of electrons with the exception of the approximation of the exchange-correlation 
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energy.  There are different approximations for the exchange-correlation energy functional, 

EXC[n].  Typical approximation functionals can be local, semi-local, non-local, or hybrid. 

A local density functional depends only on the density at a particular point in space and 

contains no information about neighboring points.  This is the simplest approximation that 

can be made.  An example is the well-known and oft-used local density approximation [102] 

(LDA).  This local approximation is exact for a uniform electron gas.  The LDA functional 

works remarkably well despite its simplicity and is extensively used in solid state physics. 

Semi-local functionals contain information, not only about the density at a certain point, 

but also about how the density varies near that point.  Semi- and non-local approximations 

give better descriptions and, consequently, better energies for systems that are more rapidly 

varying.  Generalized gradient approximations (GGA) are semi-local.  Examples of popular 

GGAs are the PW91 [103] and PBE [104, 105] functionals which are also often used in solid 

state physics.  Because they are non-empirical, they perform reliably and robustly for a wide 

variety of systems. 

Hybrid functionals represent the exchange energy by a mix of DFT and exact exchange 

(Hartree Fock exchange).  These are often empirical, but not always so.  The very popular 

B3LYP functional [106, 107] is one such example. 

 

4.1.6 Practical implementations of DFT calculations 

The Kohn-Sham orbitals, iφ , are usually expanded in terms of a convenient basis set as, 

 ∑=
α

ααφ ii Cb )()( rr  (4.33) 

where bα(r) are the basis functions and Cαi are the expansion coefficients.  Among the bases 

usually chosen in calculations are plane-waves [108], Gaussian orbitals [109], wavelets [110], 
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and numerical bases [111, 112].  The choice of the particular basis depends on the system 

being studied.  In our studies, we employed both plane-wave basis and numerical basis 

calculations.  In the case of the plane-wave basis, an infinite number of plane-waves will be 

required to construct the exact wavefunctions of the system.  To make computations possible, 

we truncate the above sum over basis functions and only work with those plane-waves whose 

energies are below a certain cutoff, on the premise that the wavefunctions are sufficiently 

smooth to be represented accurately by low-frequency plane-waves. 

In the study of bulk crystals, the system is infinite but periodic, and so it is necessary to 

be able to reduce this problem to the study of a finite system.  This approach turns out to 

have several advantages so that it is often easiest to study even aperiodic systems by 

imposing some false periodicity.  The system is contained within a supercell which is then 

replicated periodically throughout space (see Figure 4.1).  The supercell must be large 

enough so that the systems contained within each one, which in reality are isolated, do not 

interact significantly.   

Figure 4.1: Schematic diagram of supercell approximation.  Using the supercell, an isolated 
molecule can be studied using the same techniques which are usually applied to crystals. 
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In most systems, especially in covalently bonded solids, most properties can be 

explained in terms of valence states, with the effect of the core states being small.  This 

physical fact provides a motivation for yet another approximation that decreases the 

computational effort needed to compute system properties, namely the pseudopotential 

approximation [108]. Due to the strong interaction around atomic cores, wavefunctions 

exhibit high-frequency spatial oscillations in these regions that require the inclusion of high-

frequency plane-waves in the basis set.  To circumvent the problem of such a large basis set, 

the pseudopotential approximation replaces the ionic potential within a cutoff radius around 

the ions by a smoother potential.  The oscillatory behavior of the valence wavefunctions near 

cores are also smoothed out at the end of this procedure.  The new potential is generated to 

mimic exactly the scattering properties of the true potential outside of the cutoff.  

Pseudopotential theory is a broad area of research in itself.  Examples of the most commonly 

used pseudopotentials are Kleinman-Bylander [113] and ultrasoft potentials [114]. 

 

4.2 Tight-binding total energy models 

 
Empirical classical potential models have been applied extensively to model systems 

containing thousands to millions of atoms with great success.  However, in situations where 

quantum mechanical effects are important, classical potentials often fail to produce 

meaningful results.  For example, pair potentials fail to stabilize tetrahedral structures such as 

diamond and zincblende, since the directional covalent bonding in these systems is primarily 

determined by quantum mechanical effects.  On the other hand, DFT-based ab initio 

techniques are very accurate and take the quantum mechanical effects into full consideration.  

However, ab initio methods are very computationally demanding.  Consequently, even with 
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the most powerful supercomputers available today, the largest system one can handle using 

ab initio methods is limited to the order of 1,000 atoms.  The tight-binding (TB) method 

[115] takes an intermediate step towards modeling materials that takes into account quantum 

mechanical effects without too much computational effort. 

 

4.2.1 Orthogonal tight-binding formalism 

The idea of using a linear combination of atomic orbitals (LCAO) to represent the 

wavefunctions of aggregated of atoms (e.g. solids) was due to Bloch [116].  However, the 

success of modern orthogonal TB schemes should be credited to Slater and Koster [115], 

who presented the first detailed TB formalism for band structure calculations.  In the 

following, we shall assume periodic boundary conditions (PBC).  Extension to finite systems 

is straightforward. 

Denoting an atomic orbital n = (τ, α) at unit cell i as )( in Rrr −− τφ , we have the Bloch 

sum 
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where the sum is over the atoms in equivalent positions in all unit cells in the crystal.  τ is the 

atomic index in the cell and α specifies the atomic orbitals of atom τ.  For example, in the 

diamond structure, τ = 1, 2 and α = s, px, py, pz.  We may express the wavefunctions of the 

system as linear combinations of Bloch sums.  However, the Bloch sum formed from atomic 

orbitals is not an ideal basis, since atomic orbitals at different sites may not be orthogonal to 

each other.  It is more convenient to work in a orthogonal basis, the so called Löwdin orbitals 
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)(rnψ , which are formed by reorthogonalization of atomic orbitals )(rnφ  [117].  We shall 

assume that such a reorthogonalization is done and rewrite the Bloch sum as 
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The Hamiltonian matrix element between two Bloch sums with the same k is 

 )()()( ''
1

)(
',

'

ττ ψψττ rrrrkH
rRrk −−=∑

=

−+⋅
nn

N

i

i
nn He i . (4.36) 

In the above equation, the sum has to be carried out over all unit cells in principle.  In 

practice, one always assumes that the matrix element 'nn Hψψ  is short-ranged and decays 

to zero beyond some cut-off distance [118-120].  The matrix elements 'nn Hψψ  in the TB 

formalism are modeled by some empirical parameters which are either obtained by fitting 

experimental data or from more accurate ab initio calculations.  Eigenvalues and 

corresponding wavefunctions are then calculated by diagonalizing the Hamiltonian matrix H.  

This is the original Slater-Koster TB model [115].   

The Slater-Koster TB formalism computes only the band energies.  For atomistic 

simulations, the total energy of the system must also be derived.  Chadi [118] proposed that 

the total energy of a system in the TB framework can be written as a band structure energy 

plus a sum of pair-wise repulsive potentials.  This is consistent with the LDA expression of 

the total energy, which is a sum of the band energy and some potential contributions.  The 

idea that the terms in the total energy which are not included in the single-electron band 

energy can be approximated by a sum of pair terms is of great importance and is almost 

universally applied.  The force acting on an atom in the TB formalism contains two terms, 

one arising from the band structure energy and the other from the repulsive potential energy. 
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4.2.2 Nonorthogonal tight-binding models 

The orthogonal TB model is conceptually simple and computationally efficient.  

However, it shares with other empirical potential methods a serious drawback, the lack of 

transferability.  The assumption that an orthogonal set of orbitals can be constructed from the 

nonorthogonal atomic orbitals by the Löwdin procedure is not universally valid, i.e., an 

orthogonal transformation is valid only for a single configuration of the system.  Furthermore, 

the Löwdin orbitals are usually more extended than the nonorthogonal atomic orbitals, which 

require that the Hamiltonian matrix element 'nn Hψψ  be longer-ranged.  The usual short-

ranged TB parameterization is therefore not expected to work well across different 

environments.  Failure to properly account for the overlap effects is probably the main reason 

for the lack of transferability of orthogonal TB models, although other issues such as the two-

center approximation of the Hamiltonian matrix element, the pair-wise repulsive potentials, 

and lack of self-consistency are also important factors.  The transferability can be improved 

somewhat by including a wider range of empirical data; however the improvement is limited 

and not systematic.  Dorantes-Dávila et al. [121, 122] have proposed an iterative scheme to 

incorporate in an orthogonal TB framework the effects of the overlaps of atomic orbitals.  A 

different approach is the so-called nonorthogonal TB model.  As its name tells, this approach 

eliminates the assumption of orthogonality so that most of the drawbacks associated with this 

assumption can be overcome.  The effect of neglecting the nonorthogonality of the basis has 

been investigated by Mirabella et al. [123] and Mckinnon and Choy [124]. 

In the nonorthogonal TB model, one has to solve the generalized eigenvalue problem 

 0)( =Ψ− iiE SH  (4.37) 
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where S is the overlap matrix between TB orbitals, 

 ∫= )()(d, rrr jijiS φφ  (4.38) 

and φ  are nonorthogonal atomic TB orbitals as opposed to the orthogonalized Löwdin 

orbitals ψ .  The repulsive part of the total energy is usually assumed to be pair-wise as in the 

orthogonal TB models.   

In our calculations, the on-site (diagonal) Hamiltonian matrix elements are taken as the 

atomic ionization potentials of the corresponding orbitals as usual, i.e. Hi,i = εi and the off-

diagonal elements are calculated from overlap matrix elements jiS ,  using extended Hückel 

approximation [125]: 

 )(
2

1
,,,, jjiijiji HHKSH +=  (4.39) 

An exponential distance-dependent Wolfsberg-Helmholz parameter K proposed by Anderson 

is used in our model [126], 

 )(
0

0rreKK −−= δ  (4.40) 

where δ = 0.13 Å-1, r is the interatomic distance, r0 is the equilibrium bond length.  K0 is set 

to be 1.75 which is the typical value used in most extended Hückel calculations.  The overlap 

matrix elements jiS ,  are evaluated based on the two-center overlap integrals over Slater-type 

orbitals (STOs) defined as: 

 ),(1 ϕθφ ζ m
l

rn YeNr −−=  (4.41) 

where N is the normalization constant, n is the principal quantum number of the orbital, ζ is 

called the orbital exponent, and ),( ϕθm
lY  is the angular part of the orbital.  These atomic 
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orbitals are approximate solutions to the eigenvalue equation and they have no radial nodes 

unlike the hydrogen like orbitals. 

 

4.3 Landauer-Büttiker formalism  

 
When electrons move in a material they scatter from impurities, other lattice defects and 

from phonons.  The scattering causes the electrical resistance.  In normal-size electronic 

components this resistance follows Ohm’s law, so that the conductance G is inversely 

proportional to the length L of the device. 

 
L

A
G σ=  (4.42) 

where the conductivity σ is a material parameter independent of the sample dimensions and L 

and A are the length and the cross-sectional area of the conductor respectively.  Ohm’s law is 

understandable, because typically the scatterers are uniformly distributed into the material.  A 

longer device has also more scatterers to destroy the collective electron drift movement.  If 

we make the device smaller the number of scatterers diminishes.  In this work, we consider 

very small-scale systems.  In this regime it is not surprising that the statistical Ohm’s law is 

not valid and other theories have to be used. 

 

4.3.1 Landauer formula 

If the ohmic scale relation were to hold as the length is reduced, we would expect the 

conductance to grow indefinitely.  Experimentally, however, it is found that the measured 

conductance approaches a limiting value GC, when the length of the conductor becomes 

much shorter than the mean free path L << Lm.  Since a ballistic conductor (a conductor with 
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no scattering) should have zero resistance, this resistance arises from the interface between 

the conductor and contact pads (Figure 4.2(a)), which are dissimilar materials in terms of 

their electronic structures.  This causes a redistribution of the current at the interfaces leading 

to the interface resistance (contact resistance RC = GC
-1). 

Based on the assumptions of reflectionless contacts and small bias voltages, we can 

calculate the contact resistance.  The states in the narrow conductor belong to different 

transverse modes.  Each mode has a dispersion relation E(N, k), Figure 4.2(b), with a cut-off 

energy εN = E(N, k = 0) below which it cannot propagate (N is the index of the subband).  At 

a given energy E only the modes with a cut-off energy εN < E participate in conduction.  The 

number of conducting mode will be M (E).  We can evaluate the current carried by each 

transverse mode separately and add them up. 

Consider a single transverse mode whose +k states are occupied according to some 

function )(Ef + .  A uniform electron gas with n electrons per unit length moving with a 

Figure 4.2: Schematic diagrams of (a) a ballistic conductor connected to two contacts across 
which an external bias applied.  The contacts are assumed to be reflectionless.  (b) 
Dispersion relation for different transverse modes in the narrow conductor. 
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velocity v carries a current env.  The linear electron density associated with a single k state in 

a conductor of length L is 1/L, therefore we can write the current I+ carried by the +k states as 
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Assuming periodic boundary conditions and converting the sum over k into an integral 
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where ε is the cut-off energy of the waveguide mode.  For a multimode waveguide this 

becomes 
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Assuming that M(E) is constant over the energy range µ1 > E > µ2, we can write 

 
e

M
h

e
I 21

22 µµ −
= . (4.44) 

From where 
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and the contact resistance will be  

MMe

h
RC

Ω
≈=

k9.12

2 2
. 

The resistance of a single-mode conductor is ~ 12.9 kΩ.  In the case in which scattering may 

occur, there will be an average probability T that an electron injected in lead 1 transmits to 

lead 2.  Hence the conductance is equal to: 
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= . (4.46) 
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This is the so-called Landauer formula for the conductance [127].  Büttiker [128] developed 

the multi-probe generalization of the theory: 

 ∑ −=
q

qppqp VVGI ][  (4.47) 

where p and q index the terminals, V = µ/e, and qppq TheG ←= )/2( 2 . 

 

4.3.2 Green’s function method 

Practically, the transmission coefficients can be evaluated efficiently using Green’s 

functions and transfer-matrix approach for computing transport in extended systems, which 

can be generalized for multi-terminal transport.  This method is applicable to any 

Hamiltonian that can be described with a localized-orbital basis.   

In the Green’s function method, the system is divided into three parts [129].  These are 

the left (L), right (R), and central (C) regions (Figure 4.3); the left and right regions are 

coupled to two semi-infinite leads.  The central region is the computationally-important part 

which may include functional sites, defects, or vacancies.  Partitioning the Green’s function 

Figure 4.3: Schematic diagram of the structure across which the conductance is calculated: 
two semi-infinite leads, the left (L) and the right (R), are connected to the central region.  In 
our calculations of conductance, two semi-infinite leads are pristine metallic nanotubes and 
the central part is the functionalized section. 
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into submatrices due to the left, right, and central regions, one can obtain the Green’s 

function for the central region as  

 1)( −Σ−Σ−−= RLC
r
C HG ε . (4.48) 

The self-energy terms, ΣL and ΣR, describe the effect of semi-infinite leads on the central 

region.  The functions for the coupling can be obtained as ][ ,,,
a

RL
r

RLRL i Σ−Σ=Γ  in terms of the 

retarded (r) and advanced (a) self-energies.  An important part of the problem is calculating 

the self-energy terms.  The surface Green’s function matching method [129-131] or 

computational algorithms [132] are used to calculate the Green’s functions of semi-infinite 

leads and the self-energy terms.  These terms can be obtained by using wavefunctions of 

ideal leads also [127].  The transmission function T that represents the probability of 

transmitting an electron from the end of the conductor to the other end, can be calculated 

using Green’s functions of the central region and couplings to the leads: 

 )(Tr a
CR

r
CL GGT ΓΓ=  (4.49) 

where ar
CG ,  are the retarded and advanced Green’s functions of the center, and RL,Γ  are 

functions of couplings to the leads.  Knowing GC allows us to calculate also the spectral 

density of states as 
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4.4 Models and computational details  

 
In our computation studies on the electronic and transport properties of covalently 

functionalized SWNTs, we consider two different types of covalent functional groups based 

on their local bonding structures with the nanotubes at the functional sites.  The first type is 
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the monovalent functional groups.  These functional groups form a single covalent bond to 

the nanotube (“on-top”, Figure 4.4(a)).  Hence, the local sp2 carbon bonding structure of the 

nanotube will be changed to sp3 at the functional sites.  In other words, the π-bonding system 

of the tube will be disturbed by the local sp3 rehybridization.  Along with atomic fluorine (-F) 

and hydrogen (-H), radicals such as carboxyl group (-COOH), hydroxyl group (-OH), methyl 

group (-CH3), and amino group (-NH2) were used to systematically study this type of 

functionalization of SWNTs. 

The second type of functional groups is divalent.  As name implies, two neighboring 

covalent bonds are formed between the functional group and the nanotube (“bridge”, Figure 

4.4(b) and (c)), i.e. this type of functional group will create two adjacent functional sites on 

the sidewall of the tube.  Additions like nitrene (>NH), carbene (>CH2), dichlorocarbene 

Figure 4.4: Models of covalently functionalized SWNTs; (a) monovalent functionalization, 
(b) divalent functionalization without the sidewall opening, and (c) divalent 
functionalization with sidewall opening. 
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(>CCl2), oxygen (>O), and (R-)oxycarbonyl nitrene (>NCOOC2H5, R=C2H5) were 

experimentally explored [20, 62, 133-135] and simulated in our study.  A previous ab initio 

study [136] based on the finite tube model indicated that there might be a carbon-carbon 

bond opening (sidewall opening) at the divalently functionalized site on the tube.  Thus we 

studied both cases; without (Figure 4.4(b)) and with (Figure 4.4(c)) the sidewall opening. 

In all our DFT calculations, we employed the generalized gradient approximation 

(GGA) level exchange-correlation energy functional (PW91) [103] for electronic structure 

calculations.  The one-dimensional periodic boundary condition was applied along the tube 

axis to simulate infinitely long (rather than truncated) SWNT systems.  Interactions between 

the functional groups and their one-dimensional periodic images are avoided in our 

computational supercell models, which typically include two unit cells of the zig-zag tube 

(supercell length c = 8.52 Å), or four unit cells of the armchair tube (c = 9.84 Å).  Four to six 

k-points [137] for sampling the one-dimensional Brillouin zone were used for the geometry 

optimizations at the LDA level with a convergence criterion of 10-4 a.u. on the gradient and 

displacement and 10-6 a.u. on the total energy and electron density. 

To obtain binding energies and band structures of the functionalized nanotubes, we 

performed both the plane-wave based (CASTEP) [138] and numerical atomic basis (DMol3) 

[139] DFT calculations.  In the former ultrasoft pseudopotential [114] was used with a 300 

eV cutoff energy and in the latter the double numerical plus d basis set [111] was used.  30 k-

points were used to perform the self-consistent total energy and band structure calculations in 

both cases. 

We followed the Landauer-Büttiker formalism [127] with the nonorthogonal localized-

orbital Hamiltonian based Green’s functions method [129].  A four-orbital (one 2s and three 
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2p) nonorthogonal tight-binding Hamiltonian was used for the carbon-carbon interactions 

within the SWNT, and the extended Hückel approximation [125] was employed for the tube-

functional group interactions.  Table 1 lists the transfer integrals of the π and σ bonds 

between 2p orbitals and the transfer between 2s and 2p, and 2s and 2s orbitals of carbon 

atoms of SWNTs, respectively.  The corresponding overlap integrals are denoted by Sppπ, Sppσ, 

Ssp, and Sss.  These parameters are determined by fitting the energy dispersion relations of 2D 

graphite at the K and Γ points in the graphite Brillouin zone. 

 Table 1: Tight-binding parameters for carbon atoms of 2D graphite (eV).  The definition of 
each parameters is taken such that the overlap integrals are positive [44]. 

Transfer integral (eV) Overlap integral (eV) 

Hss -6.769 Sss 0.212 

Hsp -5.580 Ssp 0.102 

Hppσ -5.037 Sppσ 0.146 

Hppπ -3.033 Sppπ 0.129 

 

 The Extended Hückel parameters for H, N, O, F, and Cl atoms used in this work to 

describe the tube-(functional group) interactions are listed in Table 2.  The atomic Slater 

orbital coefficients for s orbital (ζs), p orbital (ζp), and atomic orbital energies (Hss and Hpp) 

are taken from Ref. [140].  n is the principal quantum number. The subroutines for 

calculating overlap integrals of Slater type orbitals are taken from Ref. [141] and the tight-

binding Hamiltonian is constructed via Slater-Koster table [115]. 

This type of tight-binding Hamiltonian keeps our computational time and memory 

requirement small, allows calculations of relatively large systems (>1000 atoms), and yet 

ensures adequate quality of results to capture the physics near the Fermi energy of the 

systems we studied.  As a result, certain phenomena involving large number of atoms, such 
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as the delocalization of the functional-group-induced impurity states in functionalized 

metallic tubes (Chapter 5) or the quantum interference effects manifested in two-monovalent-

functional-group configurations (Chapter 6) could be investigated. 

Table 2: Extended Hückel parameters for H, N, O, F, Cl atoms used in this work.  ζs and ζp 
are Slater orbital coefficients for s and p orbitals respectively; Hss and Hpp are atomic orbital 
energies; and n is the principal quantum numbers [140]. 

Element n ζs Hss (eV) ζp Hpp (eV) 

H 1 1.300 -13.6   

N 2 1.950 -26.0 1.950 -13.4 

O 2 2.275 -32.3 2.275 -14.8 

F 2 2.425 -40.0 2.425 -18.1 

Cl 2 2.183 -26.3 1.733 -14.2 

 

As a test of our tight-binding Hamiltonian, I present the band structure results obtained 

for metallic (8,8) tubes monovalently functionalized with several functional groups (-H, -OH, 

and -F).  Figure 4.5 shows calculated band structures from (a) ab initio DFT calculations at 

the GGA level, and (b) our tight-binding Hamiltonian based on the extended Hückel 

approximations.  In both cases, the one dimensional periodic boundary condition is applied in 

the direction of the tube axis and one functional group is included in every three unit cells (c 

= 8.52 Å) of (8,8) tubes.  It is clear that the electronic structure near the Fermi level, such as 

the disturbance of the metallic band crossing by the functional-group-induced impurity state 

(a detailed discussion is in chapter 5), is well reproduced by our tight-binding Hamiltonian.  

This justifies the use of the tight-binding Hamiltonian in our qualitative analyses of the 

impurity state wavefunctions and transport properties of functionalized nanotubes.  
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Figure 4.5: Band structures of (8,8) tubes functionalized with H, OH, and F from (a) ab 
initio DFT calculations at GGA level and (b) tight-binding calculations. The electronic 
structure near the Fermi level, such as the disturbance of metallic band crossing by the 
functional group induced impurity state, is well reproduced by our tight-binding 
Hamiltonian 



 

 
 
 

Chapter 5 

 
 
Electronic Properties of Functionalized SWNTs 

 
 

Experiments on nanotube functionalization start from the fluorination of SWNTs [17] 

and the substitution reaction of fluorinated SWNTs in solutions [80, 142, 143].  Direct 

functionalization to the sidewall of SWNTs by various chemical groups such as atomic 

hydrogen [144-147], carbine [20, 62, 133], nitrene [134, 135], alkyl group [148], N-

alkylidene amino group [81], and aniline [149] has also been reported.  In general, changes in 

physical properties of carbon nanotubes upon functionalization are found.  For instance, the 

band-to-band transition feature of π-electrons in the UV-vis spectra of pristine SWNTs is 

disrupted by covalent functionalization [81, 143, 148-150].  The resistance of functionalized 

SWNTs dramatically changes with respect to the pristine samples [17, 143, 147, 151]. 

Theoretically, little is known about the effect of covalent sidewall functionalization on 

electronic structures of carbon nanotubes.  From previous works, it was shown that the 

electronic and transport properties of SWNTs can be significantly modified upon adsorption 

of selective gas molecules (NO2, O2) [9, 152-155] or noncovalent functionalization of 

aromatic organic molecules [19, 156].  The effect of substitutionally doped impurities on the 

conductance of SWNTs was studied by Choi et al. [157] and Guo’s group [158].  Andriotis et 

al. studied the conductance and HOMO-LUMO gap for nanotubes with atomic hydrogen 
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adsorption [159].  In this chapter, I present our ab initio results on the electronic properties of 

covalent sidewall functionalized SWNTs. 

 

5.1 Monovalently functionalized SWNTs 

 
5.1.1 Local geometric structure at the functional site 

As shown in Figure 5.1, the COOH group induces a local distortion along the radial 

direction on the sidewall upon functionalization, which can be understood by the local sp3 

rehybridization of carbon-carbon bonding.  The overlap of valence election density, shown in 

Figure 5.1 as a contour plot, indicates the formation of a covalent bond between the 

functional group and the nanotube.  From the relaxed structures of our computational models, 

we found that the calculated bond length between the C atom on the nanotubes at the 

functional site and its nearest neighboring C atoms is about 1.52 Å (d (Å) in Table 3) across 

all functional groups (-F, -H, -COOH, -OH, -NH2, and -CH3), which is close to the C-C bond 

Figure 5.1: Atomic structure (left) of COOH-attached (6,6) SWNT and contour plot of 
electron density (right) on the slice passing through the COOH group.  Red, yellow, green, 
and blue colors on the contour plot indicate electron density from higher density to lower 
density.  The structural distortion on the nanotube is found to be confined to the nearest 
neighbors of the bonding site. 
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length in the sp3-hybridized diamond phase and significantly larger than the C-C bonding 

length of 1.42 Å in the perfect nanotube with sp2-hybridization.  This again confirms the 

dominance of the covalent sp3 bonding at the functional site.  The same behaviors are found 

for all the SWNTs (zig-zag: (8,0), (9,0), (10,0), (11,0), (12,0) and armchair: (5,5), (6,6), (7,7), 

(8,8) nanotubes) and can be considered as the common features of the covalent sidewall 

functionalization of carbon nanotubes. 

Table 3: The binding energy (Eb) and bond lengths for various functional groups on a (5,5) 
tube.  D is the molecule-tube covalent bond length; d is the C-C bond length between the 
sp3 C atom on the tube and its nearest neighbor C atoms. 

Additions Eb (eV) D (Å) d (Å) 

-F 3.192 1.423 1.503 

-OH 2.297 1.428 1.514 

-H 2.854 1.113 1.519 

-NH2 1.937 1.460 1.522 

-CH3 1.861 1.533 1.525 

-COOH 1.721 1.534 1.519 

 

 

5.1.2 Tube-(functional group) interactions 

In this work, the bonding energy Eb of the functional group is defined by the total 

energy gained by the functionalization at the equilibrium geometry (see Figure 5.2): Eb = Etot 

(tube) + Etot (group) – Etot (tube + group).  Table 3 lists the binding energies and the 

characteristic bond lengths for all functional groups examined for the (5,5) tube.  We can see 

differences among different functional groups in their strength of interaction with the tube 

(Eb in Table 3) and their covalent bond lengths (D (Å) in Table 3). 
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In Figure 5.3 we have a graph of binding energy Eb versus curvature 1/R of nanotubes 

with three different monovalent groups (-F, -OH, and -COOH).  This graph is a summary of 

our binding energy study.  For each functional group, there are two different energetic trends 

based on the types of nanotubes (metallic and semiconducting).  The differences in binding 

energy among different groups are insensitive to the size and the type of tubes.  For example, 

between -COOH and -OH, there is about 0.57 eV difference in the binding energy across all 

tubes examined.  This constant difference reflects the localized feature of the covalent 

interactions between sp3 rehybridized carbon atoms on the nanotube and the functional group 

and such interaction is molecule specific. 

On top of these functional-group-specific features, some intrinsic nanotube properties 

are revealed as well.  Our systematic study (Figure 5.3) shows the strong dependence of 

binding energy on the size (curvature) and the electronic structure (metallic or 

Figure 5.2: Schematic diagram of the binding energy calculation.  Calculate the total energy 
of the completely separated system of a SWNT and a functional group.  Then bring them 
together, relax the structure, and get the total energy of the hybrid system.  The energetic 
difference is the binding energy Eb in our calculations. 
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semiconducting) of the tube.  For all cases investigated the strength of binding is inversely 

proportional to the tube radius.  It was expected that smaller tubes would have a higher 

tendency for sp3 hybridization due to the curvature effect [69].  As we increase the curvature 

of the tubes, the strain on the sp2 carbon-carbon bonding structure is increased.  This build-up 

of strain makes the tube more reactive to covalent functionalization.  Simple linear fits 

(Figure 5.3) lead to a slope of 4.3 eV·Å for metallic tubes and 3.2 eV·Å for semiconducting 

ones.  These slopes are found to be insensitive to the type of functional groups, revealing that 

the curvature dependence is truly controlled by the local sp3 hybridization. 

Furthermore, two different energetic trends in each functional group (Figure 5.3) are 

showing that metallic tubes are more reactive to the functionalization at a given size of tubes.  

Figure 5.3: Binding energies of -F, -OH, and -COOH additions to SWNTs as functions of 
the curvature 1/R.  The differences among different functional groups are insensitive to the 
size and the chirality.  The binding to metallic tubes is systematically stronger than to 
semiconducting ones.  The binding energy increases linearly with the curvature of tubes. 
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Because of the availability of delocalized electronic states near the Fermi level, which 

enables a stronger hybridization between functional groups and nanotubes, the binding of 

groups to metallic tubes is stronger.  This is supported by recent experiments [26, 62, 135] 

and would provide a novel way to manipulate CNTs according to their electronic structure. 

 

5.1.3 Functional-group-induced impurity states 

To further study differences in their electronic structures, we examined in detail band 

structures of both metallic and semiconducting SWNTs functionalized with different groups 

(-F, -H, -COOH, -OH, -NH2, and -CH3) on the basis of their optimized structures.  As 

representatives, the band structures of the armchair metallic (6,6) tube functionalized by 

COOH and NH2 groups are shown in Figure 5.4.  For all the monovalent functional groups 

Figure 5.4: Band structure of pristine (middle), COOH-attached (left), and NH2-attached 
(right) armchair (6,6) SWNT from GGA calculations.  One functional group is included per 
three unit cells of the tube.  The sp3 defect-induced impurity state at the Fermi level is 
clearly seen in both cases. 
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considered, an individual functionalization-induced sp3 defect on the tube sidewall induces a 

half-occupied impurity state around the Fermi level.  Including more functional groups in the 

computational supercell will lead to multiple impurity states around the Fermi level.  The 

appearance of a half-filled level in the gap was also found in a recent ab initio study of 

silicon-doped SWNTs with chemical binding of atoms (F, Cl, H) and molecules (CH3, SiH3) 

at silicon substitutional sites [160]. 

Intuitively, one can consider this impurity state as a combined state of the nanotube 

bands and the molecular states of the functional group near the Fermi level.  In the case of 

the semiconducting tubes, we found that the band structure near the Fermi level is almost 

unaffected by the functionalization except for the presence of the impurity state in the gap 

and the lifting of band degeneracy due to the breaking of nanotube mirror symmetry [161, 

162] (Figure 5.5(a)).  This indicates that the impurity state mainly comes from the molecular 

states of the functional group.  Thus one can expect the state to be localized around the 

Figure 5.5: Band structures near the Fermi level (From Γ to Z) of functionalized SWNTs 
with various monovalent-functional groups from GGA calculations.  Dotted lines indicate 
the Fermi level of pristine nanotubes (set as zero in all plots).  (a) Semiconducting (10,0) 
tubes and (b) metallic (8,8) tubes. 
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functional site.  In contrast, for metallic tubes the electronic structure near the Fermi level 

undergoes significant changes and the state has a large spectrum weight contributed from the 

nanotube.  Therefore, the state is expected to be more delocalized. 

Shown in Figure 5.6 are the wavefunctions of the impurity states from GGA 

calculations for functionalized semiconducting (10,0) and metallic (9,0) nanotubes with 

COOH groups.  Unlike the localized impurity state wavefunction for the semiconducting 

nanotubes, the wavefunction for the metallic tube appears to be delocalized.  This 

delocalization might explain the reason why metallic tubes are more reactive to the covalent 

functionalization.  Due to the limit on the supercell size in our ab initio calculations, it is not 

possible to extract the localization length of the impurity state.  One may also question 

whether the appearance of the delocalization in the metallic case is due to the finite supercell 

size in our model computations.  To further confirm our conclusion we performed large-scale 

calculations using a tight-binding Hamiltonian in the extended Hückel approximation [125].  

The tight-binding Hamiltonian has been shown to reproduce well the band structures of 

nanotubes near the Fermi level (see Figure 4.5) [163].   

Figure 5.6: Iso-surfaces of the impurity state wavefunction from GGA calculations for 
COOH-attached (a) semiconducting (10,0) tube and (b) metallic (9,0) tube.  Two different 
colors represent +/- polarity of the wavefunction.  The impurity state is mostly localized 
near the functional site for the semiconducting tube and delocalized for the metallic tube. 
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Figure 5.7 shows wavefunctions of impurity states for large supercells (supercell length 

a ~ 85 Å for zig-zag tubes; a ~ 98 Å for armchair tubes).  Now it can be clearly seen that the 

impurity state is localized in the semiconducting zig-zag tube (Figure 5.7(a)), whereas for 

both zig-zag (Figure 5.7(b)) and armchair (Figure 5.7(c)) metallic tubes the states are 

delocalized over the large supercells.  Quantitative analysis reveals that the length scale 

associated with the localized impurity state is around 15 Å, and insensitive to the choice of 

the functional group and the nanotube size.  A similar length scale was found in the case of 

chemical substitution dopings [164] and in a recent experimental study of topological defects 

[165]. 

Figure 5.7: Impurity state wavefunction calculated in tight-binding approximation for large 
supercell sizes.  Wavefunctions are projected onto the unfolded nanotube coordinates for 
easy visualization: the vertical axis (T) is the tube axis and the horizontal axis (C) is the 
chiral vector axis (folding direction of the nanotube).  The F addition is located at the origin 
in all plots.  The impurity state wavefunction is clearly seen localized in the (10,0) 
semiconducting tube, while it is extended for both (9,0) and (6,6) metallic tubes. 
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5.2 Divalently functionalized SWNTs 

 
5.2.1 Geometric structures 

Divalent functional groups (>NCOOC2H5, >CCl2) form bridge-like covalent bonds with 

two carbon atoms in the sidewall of nanotubes.  They create two adjacent covalent functional 

sites.  This vicinity of the functional sites causes a strong interaction between two sites.  

Therefore, the local electronic structure is expected to be somewhat different from that with 

the monovalent functional group.  Figure 5.8 shows the local structure of the (6,6) SWNT 

with an attached NCOOC2H5 group.  The computed characteristic bond lengths, d1 and d2 (as 

defined in Figure 5.8) for the CCl2 and NCOOC2H5 adducts as well as the other SWNTs 

studied (see Figure 5.9(a)-(c)) are listed in Table 4.  All the chemical modifications result in a 

d2 separation of over 2 Å, hence our computations with periodic boundary conditions (PBC) 

Figure 5.8: Local structure of a NCOOC2H5 group attached to a (6,6) SWNT (carbon: gray, 
hydrogen: white, nitrogen: blue, oxygen: red).  Only a small fragment is shown for clarity.  
Note the opening of the nanotube sidewall.  d1 is the bond length between the N (or C if the 
functional group is CCl2) atom of the functional group and C atoms on tube sidewall. d2 is 
the distance between the two C atoms to which functional groups are attached. 
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support earlier theoretical predictions based on finite tube models [136]: both CCl2 and 

NCOOC2H5 additions open the SWNT sidewalls. 

For each type of SWNT, there are two sets of C-C bonds on tube sidewalls that can 

undergo functionalization.  We considered all those possibilities for CCl2 and NCOOC2H5 

additions and found that in armchair the functional groups tubes prefer to be attached to the 

C-C bond perpendicular to the tube axis, whereas zigzag SWNTs favor functionalization 

with the C-C bond slanted to the tube axis.  Theses conclusions agree with previous finite 

tube calculations [136].  The folding direction of SWNTs is the direction where the strain on 

the C-C bonding is the greatest and along the tube axis the strain is least, divalent covalent 

bonds along the tube axis are energetically unfavored. 

Figure 5.9: Side view of optimized structures of CCl2 modified SWNTs (carbon: gray, 
chlorine: light green): (a) (6,6) tube; (b) (9,0) tube; (c) (10,0) tube.  Top view of optimized 
structures of CCl2 modified (6,6) SWNTs with different Cl:C ratios: (d) Cl:C = 2%; (e) Cl:C 
= 12.5%; (f) Cl:C = 25%. 
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Table 4: The characteristic bond lengths, d1 and d2, of the local geometry and binding 
energies Eb (kcal mol-1) for the functionalized SWNTs.  d1 is the bond length between the C 
or N atoms of the functional group and the C atom on the sidewall; d2 is the bond length 
between the two C atoms to which the functional groups are attached. 

CCl2 (6,6) (9,0) (10,0) 

d1 (Å) 1.51 1.50 1.49 

d2 (Å) 2.18 2.16 2.19 

Eb (eV) 1.436 1.068 0.751 

NCOOC2H5 (6,6) (9,0) (10,0) 

d1 (Å) 1.41 1.40 1.40 

d2 (Å) 2.20 2.20 2.19 

Eb (eV) 2.813 2.345 2.204 

 

The functionalization of carbon nanotubes at higher functional-group concentration has 

been investigated by including a greater number of CCl2 groups in the computational 

supercell (see Figure 5.9(d)-(f)).  As in the experimental article [133], the Cl:C modification 

ratio is based on the number of Cl atoms on CCl2 groups and the number of C atoms on the 

tube sidewall.  Our DFT geometry optimizations show that sidewall opening persists even at 

higher concentrations (Cl:C ratios up to 25%). 

 

5.2.2 Tube-(functional group) interactions 

The tube-(functional group) interactions can be assessed by computing the binding 

energies of addition of CCl2 and NCOOC2H5 to the nanotubes.  In agreement with recent 

experimental observations [26, 83, 135, 166], these binding energies are larger when they 

involve metallic (6,6) or (9,0) rather than semiconducting (10,0) tubes (Table 4).  The 

functionalization of SWNTs with diazonium reagents shows high selectivity on the tube 
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electronic structures; metallic nanotubes are preferred [26, 83].  The Raman spectra of (R)-

oxycarbonyl nitrene-functionalized SWNTs also show preferential interaction with the 

metallic tubes [135].  The higher reactivity of the metallic nanotubes can be related not only 

to higher reaction exothermicity, but also to the available electron density near the Fermi 

level; this supports the stabilization of transition states by charge transfer during bond 

formation [26, 83, 167]. 

Figure 5.10 plots the binding energies of CCl2 to different SWNTs as a function of the 

modification ratio Cl:C.  In general, the binding energy between the group and nanotubes 

decreases with increasing modification ratio for all SWNTs.  However, the binding energies 

for both (6,6) and (10,0) tubes are still significant (over 14 kcal mol-1) up to a 25% 

modification ratio, suggesting the possibility of further functionalization.  Note that recent 

experiments by Haddon and co-workers achieved CCl2 functionalization up to 23% [133]. 

Figure 5.10: Average binding energies of CCl2 additions to SWNTs at different ratio of 
modification, C:Cl. 
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5.2.3 Electronic band structures 

The tube-(functional group) interaction in the covalent sidewall functionalization has 

direct consequences on the electronic properties of carbon nanotubes.  As previously pointed 

out, monovalent functional groups (-F, -H, -COOH, -OH, -NH2, -CH3) disrupt the geometries 

and electronic structures of the perfect nanotube dramatically by introducing local sp3 

hybridization defects, which induce a half-filled impurity state near the Fermi level.  What 

occurs when carbenes and nitrenes are added to nanotubes?  Such divalent reactive 

intermediates bind to two neighboring carbon atoms on the tube sidewall and alter their 

character from sp2 to sp3 hybridization.  Moreover, strained three membered rings evidently 

do not exist, as the tube sidewall where they are attached can open, such structural 

uniqueness no doubt will lead to quite different electronic properties. 

Figure 5.11: Band structures and computational models of functionalized (6,6) SWNTs: (a) 
with two separated hydrogen atoms attached as far as possible in one supercell; (b) with two 
hydrogen atoms attached in the neighboring sites; (c) with attached CCl2 group but without 
sidewall opening; (d) with attached CCl2 group with sidewall opening.  Dashed lines denote 
the Fermi level.  The line in (a) is not seen because of overlap with the impurity bands. 
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To understand these complexities, we considered computationally different models of 

nanotube functionalization at low concentration (two hydrogen atoms or one CCl2 group per 

(6,6) tube supercell with 96 carbon atoms): (a) two hydrogens are attached to nanotubes at 

independent (remote) positions; (b) two hydrogens are attached to two vicinal carbons on the 

tube sidewall; (c) a CCl2 group is attached to the nanotube as a three-membered ring without 

allowing the sidewall to open; (d) a CCl2 is attached to the nanotube with sidewall opening.  

Model (a) represents the typical monovalent functionalization studied earlier.  Model (b) is 

like the hydrogenation of  a double bond and imitates, for example, the formation of a five-

membered ring on the tube sidewall [15, 166].  Model (c) is similar, but a strained three 

membered ring is involved, which will open to give model (d) upon optimization.  

Comparisons between models (c) and (d) reveal differences in the electronic structures of 

models (a)-(d) for (6,6) SWNTs are presented in Figure 5.11. 

The two local sp3 defects resulting from the addition of two separated hydrogen atoms 

result in two impurity bands close to the Fermi level of the nanotube and significantly disturb 

the metallic band structure of the parent nanotubes (Figure 5.11(a)).  However, if the two 

hydrogen atoms are attached to neighboring carbons on the nanotube, the two resulting local 

defects interact strongly.  As a consequence, the two impurity states seem to be rehybridized 

into bonding and anti-bonding states.  Those two states are shifted away from the Fermi level 

(Figure 5.11(b)), and the band crossing at the Fermi level of the parent armchair tube is 

recovered.  In other words, the metallic behavior of the parent nanotube will be retained by 

functionalizations that form two single bonds at vicinal sidewall carbons, despite the 

introduction of two local sp3 defects into the conjugated π-electron system.  This conclusion 

is rather general, and is applicable to all functionalizations, for example, those with closed 
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three- or five-membered ring subunits on the tube sidewalls.  Thus there are interesting 

similarities in the band structures of SWNTs functionalized by two hydrogen atoms on 

adjacent carbons (Figure 5.11(b)) and by a CCl2 group forced to form a closed three-

membered ring on tube sidewall (Figure 5.11(c)).  A recent experiment on pyrrolidine ring 

functionalized SWNTs (at low modification ratio of one pyrrolidine ring to about 95 carbon 

atoms on the nanotube) showed that the metallic character of the pristine nanotube was 

retained and the overall electronic structures was not affected strongly [166]. 

I would like to stress that our computational model with two vicinal monovalent 

functional groups (Figure 5.11(a)) is not the energetically favorable configuration in normal 

monovalent functionalization processes due to the strong repulsion between two functional 

sites.  In addition, the full DFT geometry optimizations transform (c)-type to (d)-type 

structures (Figure 5.11); the latter corresponds to CCl2 adducts with opened sidewalls.  Since 

the sidewall C-C bonds are broken, the carbon atoms attached to the functional groups retain 

their sp2 hybridization.  Hence, the π-electron delocalization of the parent SWNTs is only 

perturbed modestly.  Therefore, the band structures of the pristine SWNTs are only slightly 

disturbed at low concentrations of carbene- and nitrene-like groups.  This theoretical 

conclusion is consistent with experimental findings on nanotube functionalization at low 

modification ratios: SWNTs functionalized by (R-)oxycarbonyl nitrene at a low N:C ratio of 

about 1-2% only showed minor changes in the optical absorption [135]. 

 

5.3 Summary of electronic properties 

 
In conclusion, we have performed a systematic study of electronic properties of covalent 

sidewall functionalized SWNTs.  We found that the existence of available electrons near the 
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Fermi level allows metallic tubes to make a stronger bond to the functional group than 

semiconducting ones, and smaller tubes are more reactive due to the intrinsic cylindrical 

curvature effect.  Monovalent functional groups induce impurity states near the Fermi level 

and the impurity states significantly disturb the electronic structure of the parent SWNTs.  

The impurity states are found to be tightly localized around the functional site for 

semiconducting SWNTs and more delocalized for metallic ones.  Divalent-type covalent 

functionalization creates two adjacent functional sites.  Due to the strong interaction between 

them, they rehybridize into bonding and anti-bonding states and those states are located 

relatively far away from the Fermi level.  Hence, the electronic structure of the parent 

SWNTs near the Fermi level is not substantially modified by divalent-type functional groups. 

  



 

 
 
 
Chapter 6 

 
 
Transport Properties of Functionalized SWNTs 

 
 

Sidewall functionalizations disrupt the π-bonding system and break the translational 

symmetry of SWNTs by introducing saturated sp3 carbon atoms.  As a result, the electronic 

and transport properties of SWNTs are significantly altered.  There have been many 

experimental and theoretical studies of the transport properties of carbon nanotubes.  The 

ballistic transport has been reported in defect-free multi-walled [168-170] and single-walled 

[171-173] nanotubes.  Individual SWNTs have been recognized as coherent electron 

waveguides and electron resonators [60, 174-176].  These behaviors, however, will be 

significantly changed when there are scattering centers such as covalent additions and local 

structural defects [157, 177, 178].  

In this chapter, our numerical studies of the conducting properties of covalently 

functionalized metallic SWNTs will be presented.  Systematic dependence on the functional-

group concentration is investigated for both monovalent and divalent sidewall additions.  The 

geometrical structure for the conductance study is composed of two leads (left (L) and right 

(R), both are pristine SWNTs) separated by the central section where the covalent 

functionalization groups are added (Figure 6.1(a)).  Only metallic armchair SWNTs are 

studied.  Figure 6.1(b) shows an example of the computational models with a single 



 

 75 

functional group; Figure 6.1(c) is the case with a divalent functional group.  The Landauer-

Büttiker formalism [127] was used to calculate the conductance based on Green’s functions 

method [129, 179-181] with the nonorthogonal tight-binding Hamiltonian [182, 183]. 

6.1 Monovalently functionalized SWNTs 

 
Our studies of electronic properties of monovalently functionalized SWNTs have shown 

that monovalent functional groups universally induce impurity states.  The states strongly 

disturb the local electronic structure of the parent nanotubes near the Fermi level.  Thus, one 

can easily imagine that those impurity states will be centers of scattering for conducting 

electrons of nanotubes. 

Figure 6.1: Schematic representations of (a) the structure across which the conductance is 
calculated: two semi-infinite leads (left (L) and right (R), both are pristine tubes) are 
connected to the functionalized region.  Computational models with (b) a single monovalent 
functional group (-COOH); (c) a divalent functional group (>CCl2) for the conductance 
calculation. 
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6.1.1 Electron scattering at impurity states 

Figure 6.2 shows the calculated conductance and the density of states (LDOS) of the 

pristine metallic (6,6) SWNT (Figure 6.2(a)) and  the functionalized (6,6) with a single 

COOH group attached (Figure 6.2(b)).  It is clear that the covalently functionalized site acts 

as a strong scattering center for the conducting carriers.  The ballistic conductance of 

nanotube is disturbed and there is a significant dip near the Fermi level.  This demonstrates 

that the local sp3 rehybridization of the carbon atom at the functional site and the induced 

impurity state strongly disrupt the conducting π and π* bands near the Fermi level. 

Figure 6.2: The calculated conductance and density of state (DOS) of center portion in 
Figure 6.1 of (a) pristine metallic (6,6) tube and (b) functionalized (6,6) tube with a single 
COOH group.  Ballistic conductance of the tube (a) is disturbed by functionalization and a 
significant dip appears in the conductance plot of (b). 
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Our systematic study with different types of functional groups (-F, -H, -COOH, -OH, -

NH2, and -CH2) shows that each group exhibits a different energetic position for the 

scattering as can be seen in the plots of conductance and local density of states (LDOS) 

(Figure 6.3).  The energetic position of scattering is where the conductance reaches its 

minimum, and this turns out to be well correlated with the position of the functional-group-

induced impurity state relative to the pure nanotube Fermi energy in the band structure 

Figure 6.3: The calculated conductance and local density of states (LDOS) near the Fermi 
level as a function of energy for monovalently functionalized (5,5) tube with (a) -F, (b) -
COOH, (c) -NH2, and (d) -H.  Each group exhibits a conductance minimum at a specific 
energy which correlates well with the energetic position of the functional-group-induced 
impurity state.  Z is the coordinate along the tube axis and groups are attached at Z = 60.27 
Å in all LDOS plots. 



 

 78 

calculation of the previous study.  Thus, we can attribute this scattering effect to the impurity 

state induced by the functionalization near the Fermi energy. 

6.1.2 Quantum interference effects 

With the ballistic electron conduction and a long electron phase relaxation length (which 

is about a few hundred nano-meters at low temperature and much longer than the length of 

our computational models) of nanotubes, we will be able to observe some quantum 

interference effects if we have electron scattering centers near the Fermi level.  Figure 6.4(a) 

shows the basic computational model used in our conductance calculations to explore those 

electron wave interference effects.  Two identical monovalent functional groups are attached 

on a (5,5) metallic tube and the electron conducting behavior is studied as we gradually 

increase the separation between them (L). 

Figure 6.4: The computational models with two identical monovalent functional groups (a); 
the calculated conductance contour plot of (5,5) tubes functionalized with two COOH 
groups as a function of separation between groups and energy relative to the Fermi level of 
the pristine nanotube (b); an example of the conductance calculation evaluated when the 
separation between two COOH groupss is 20 unit cells apart (L = 20 ×  2.46 = 49.2 Å) (c). 
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Figure 6.4(b) is a contour plot summarizing the calculated conductance of monovalently 

functionalized (5,5) SWNTs with -COOH functional groups as a function of energy (E – EF 

(eV)) and separation (L in the unit of 2.46 Å, which is the length of a armchair unit cell along 

the tube axis).  Figure 6.4(C) is an example of the conductance calculation evaluated when 

the separation between two COOH groups is 20 unit cells (L = 20 ×  2.46 = 49.2 Å) as 

indicated by a dotted vertical line in Figure 6.4(b). 

The first feature of immediate interest in the conductance contour plot (Figure 6.4(b)) is 

the periodic appearance of “blue areas” along the separation axis.  Those represent 

Figure 6.5: Contour plots of calculated conductance (a) with two monovalent functional 
groups of F, COOH, and H respectively (from left to right) showing functional-group-
specific energetic positions for conduction dips; (b) with two F groups.  Conductance and 
LDOS plots are evaluated when the separation L = 24 (59.04 Å), indicated as a vertical 
dotted line in the first plot. They show the strong resonant scattering effect at those two 
impurity sites (two Fs are attached at Z = 25.83 Å and Z = 84.87 Å respectively). 
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conductance dips where the conductance is reduced to zero.  Using different types of 

monovalent groups (Figure 6.5(a)), we found that the energetic position of those dips 

corresponds to the functional-group-induced impurity state energy levels (~ -0.40 eV for F 

and -0.14 eV for COOH) for each type of functional groups.  Moreover, the period of 

conductance dips along the separation axis is found to be well matched with the Fermi 

wavelength of armchair nanotubes; nm. 738.03 0 == aFλ  These indicate that the 

conductance fluctuation is mainly due to the resonant reflections of conducting carriers 

between two impurity sites.  The LDOS contour plot in Figure 6.5(b) shows the strong 

Figure 6.6: Increasing number of particle-in-box type resonant states (red peaks in (a)) are 
building up with increasing separation between two functional groups.  Black trends lines 
are superimposed to indicate the ∆E ~ L -1 relation in (a).  (b) Calculated conductance and 
(c) LDOS plots are showing energetically equally spaced resonant states.  (b) and (c) are 
evaluated at L = 28 (68.88 Å) as indicated by a white vertical line in (a). Two Fs are 
monovalently attached at Z = 15.99 Å and Z = 84.87 Å respectively. 
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resonant scattering effect at those two impurity sites (two Fs are monovalently attached at Z 

= 25.83 Å and Z = 84.87 Å respectively). 

In addition, we also observed the increasing number of discrete “particle-in-box” type 

resonant states superimposed on the fluctuation as we increased the separation between two 

impurity sites (Figure 6.6(a)).  This type of conductance oscillations has been observed in 

recent experimental and theoretical studies [60, 174-176] with two contacts of armchair 

nanotubes, and proven to be an intrinsic quantum interference phenomenon.  Since two 

impurity sites, in our study, will act as two boundaries, the quantum confinement of reflected 

Figure 6.7: Experimental observation of quantum interference effect.  The sample consists 
of a SWNT with diameter ~1.5 nm and length ~200 ± 10 nm.  At room temperature, it 
shows a conductance of 1.1 G0 in regimes I and III of the conductance (G) vs gate voltage 
(Vg) spectrum.  A conductance dip is seen in regime II.  The overall conductance of the 
sample increases as temperature decreases.  At low temperature, conductance fluctuations 
vs Vg appear and the conductance peak approaches the quantum limit 2G0.  In regime I and 
III, the rapid conductance oscillations are quasiperiodic and are attributed to resonance with 
standing waves in the 200 nm long tube.  The slower fluctuations become dramatic in 
regime II.  The origin of the slow fluctuations is attributed to resonance scattering by 
localized states in the nanotube [60]. 
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electron waves induces discrete resonant states, which cause oscillations as we can see in 

both the conductance and LDOS plots (Figure 6.6(b) and (c)).  The energy spacing between 

adjacent resonant states in Figure 6.6(c) (two Fs are monovalently attached at Z = 15.99 Å 

and Z = 84.87 Å respectively) is found to be ∆E ≈ 0.24 eV, coinciding very well with the 

experimental data and the previous theoretical prediction ∆E = hvF/2L ≈ (1.68 eV nm)/L [60, 

174-176, 184], where L = 68.88 Å is the separation of two impurity sites. 

 

6.1.3 The concentration dependence 

Recent experimental results [24-26, 62] show that the high degree of sidewall 

functionalization is possible.  Thus, it is very desirable to systematically investigate the 

dependence of the conducting properties on the functional-group concentration.  For such 

studies, we gradually increase the number of groups in a fixed-size section of the nanotube 

(Figure 6.8(a) and (b)).  There are many possible ways of arranging the functionalization 

sites for a given concentration and the conducting behavior near the Fermi level is found to 

be very sensitive to the group configurations (Figure 6.8(C)).  A small change in functional-

group configuration results in a quite different conductance spectrum. However, energetically 

we did not find any significant differences among different configurations.  Thus, to insure 

that our results are qualitatively relevant we performed calculations for 30 random 

configurations at each concentration.  The results are shown in Figure 6.9 with the solid line 

representing the average and the gray area indicating the spread of conductance values over 

30 randomly generated configurations. 

In the case of monovalent-functional groups, the conductance spectrum near the Fermi 

level carries the molecular signature of the impurity state at low concentrations of groups.  
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As the concentration increases, this signature is washed away and the conductance decreases 

rapidly for a wide range of energy, independent of the functionalization group.  Figure 6.9 

shows results of monovalently functionalized (5,5) tube with F additions (Figure 6.9(a)) and 

NH2 additions (Figure 6.9(b)) at different modification ratios (F:C = 5 %, 10 %, and 25%, 

respectively).  The conductance minimum, at the energy of the molecule-specific-impurity 

state level (~ -0.4 eV for -F and ~0.0 eV for -NH2), is clearly seen at the low modification 

ratio of 5 %.  This feature is no longer there in the case of 10 % concentration, and the 

average conductance near the Fermi level is substantially reduced.  At 25% concentration, 

the conductance approaches zero.  This feature is generally observed for the other 

monovalent groups studied.  Thus, we conclude that monovalent-functionalized CNTs lose 

their metallic character at high concentrations of additions. 

Figure 6.8: Computational models to study the conductance dependence on functional-
group concentrations and configurations: (a) monovalently functionalized tube; (b) 
divalently functionalized tube; (c) calculated conductance plots show strong dependence on 
group configurations (five Fs attached). 
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6.2 Divalently functionalized SWNTs 

 
6.2.1 Conducting behavior at low functional-group concentrations 

As the previous study pointed out, in the cases of divalent functionalization, two 

impurity states induced by two neighboring functional sites are shifted away from the Fermi 

level due to the rehybridization into bonding and anti-bonding states.  As a consequence, the 

overall electronic structures of metallic nanotubes near the Fermi level are not strongly 

affected by the divalent sidewall functionalizations at low concentrations of groups.  

Figure 6.9: Conductance calculations (on 30 different configurations of functional groups 
for each modification ratio in all graphs) of monovalently functionalized (5,5) with (a) Fs 
and (b) NH2 groups. Three different modification ratios (5%, 10%, and 25% respectively) 
are shown for each case.  Solid lines and shaded areas represent the average conductance 
and max-min ranges of the conductance fluctuations respectively.  At low concentrations 
(5%), the conductance spectrum near the Fermi level carries the molecular signature of the 
impurity state.  At about 25%, SWNTs lose their metallic character. 
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Our calculations show that the conductance near the Fermi level is almost unaffected by 

the divalent functionalization with a single functional group (>NH, >CCl2, >CH2, and >O 

were considered in our study).  Regardless whether the side wall is open (C-C bond on the 

CNT is broken, Figure 6.10(b)) or closed (the C-C bond is not broken, Figure 6.10(c)) the 

same conclusion is found, even though there are structural differences between two cases.  

Figure 6.10: The calculated conductance and LDOS near the Fermi level as a function of 
energy for a (6, 6) tube.  The functional-group is located Z = 51.66 Å in all three cases. (a) 
monovalent -COOH addition.  The functional-group-induced localized impurity state can be 
seen to be near the Fermi level in the LDOS plot. There is a corresponding conductance dip. 
(b) Divalent >NH addition with sidewall opening, and (c) divalent >NH addition without 
sidewall opening.  In both cases the rehybridized impurity states can be seen to be located 
far away from the Fermi level in the LDOS plots.  The corresponding conductances show 
little change near the Fermi level. 
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This result can be understood by examining the electronic states created by the functional 

group.  The rehybridization of the two neighboring impurity states creates strong localized 

bonding and anti-bonding states which are located far away from the Fermi level.  This can 

be clearly seen in Figure 6.10(b) and Figure 6.10(c), where significant changes in 

conductance are showing up 1eV above/below the Fermi level.  This suggests that the C-C 

bond, even when it is not broken, is significantly weakened due to the interaction with the 

divalent functional group. 

 

6.2.2 Conducting behavior at high functional-group concentrations 

Even at relatively high concentrations of divalent functional groups, this rehybridization 

effect is found to remain strong.  Examples of our calculation for CCl2 functionalized (6,6) 

tube are also shown in Figure 6.11(b) for the case of no side-wall opening (no broken C-C 

bond), and in Figure 6.11(c) for the case with side-wall opening (broken C-C bond).  In all 

three concentration ratios (12.5%, 18.8%, and 25%) studied, the metallic behavior is found to 

be robust near the Fermi level.  Even at 25%, the average conductance near the Fermi level is 

still above 50% of that of a perfect tube.  Qualitatively we found the same results whether the 

side-wall is open or not.  This suggests that the bonding-antibonding rehybridization effect of 

the functional-group-induced impurity states still prevails even at high concentration ratios of 

divalent groups. 

The dramatic difference between the monovalent and the divalent cases can be more 

clearly seen in Figure 6.12, where we plotted the conductance at the Fermi level vs. the 

functional-group concentration.  The conductance of the monovalently functionalized tube 

decreases rapidly with the increasing concentration, and the nanotube loses its metallicity 
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around 25% modification, while for the divalent cases the CNTs remain substantially 

conductive. 

 

Figure 6.11: Conductance calculations (on 30 different configurations of functional groups 
for each modification ratio in all graphs) of (a) monovalently functionalized (6, 6) with Fs, 
(b) divalently functionalized (6, 6) with >CCl2 with sidewall opening, and (c) divalently 
functionalized (6, 6) with >CCl2 without sidewall opening.  Three different modification 
ratios are shown for each case.  Solid lines and shaded areas represent the average 
conductance and max-min ranges of the conductance fluctuations respectively. 
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6.3 Summary of transport properties 
 

Systematic dependence on the functional-group concentration is investigated for both 

monovalent and divalent sidewall additions.  We found that for monovalent bonding the 

functional-group-induced impurity state resides near the Fermi level, thus it acts as a strong 

Figure 6.12: The conductance at the Fermi level vs. the functional-group concentration for 
monovalent ((6, 6) with F additions) and divalent ((6, 6) with >CCl2, with sidewall 
opening) functionalization.  Error bars represent the standard deviation range from the 
average value.  The graph shows that monovalent functionalizations decrease the 
conductance rapidly, and the CNTs lose metallicity around 25% modification ratio, while 
for divalent additions the conductive properties of CNTs remain robust. 
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scattering center and the ballistic conducting properties can be significantly affected.  At low 

concentrations of monovalent additions quantum interference effects of electron waves are 

observed, such as resonant scattering and particle-in-box type resonant states.  The 

conductance is found to decreases rapidly with the functional-group concentration and 

approaches zero at around 25% group to C ratio.  In contrast, the divalent functionalization 

has a very small effect on the conductance near the Fermi level due to the rehybridization of 

two adjacent impurity states into bonding and anti-bonding states located far away from the 

Fermi level.  With increasing functional-group concentration, the conductance is reduced 

gradually.  Evan at 25% concentration, the conductance still remains more than 50% of that 

of a perfect nanotube. 

 

 

 

 

 



 

 
 
 
Chapter 7 

 
 
Conclusion 

 
 

In the preceding chapters we have investigated electronic and transport properties of 

covalent sidewall functionalized SWNTs with either monovalent or divalent functional 

groups.  We found that covalent functionalizations not only introduce local structural defects 

but also significantly disturb the delocalized π-electron system of the nanotubes by changing 

the local carbon bonding structure from sp2 to sp3 at the functional sites.  Our careful 

computational analysis revealed several novel physical effects involving these intriguing 

micro-chemical processes of SWNTS. 

The tube-(functional group) interaction was found to be determined by several factors. 

First, we showed that the electronic structure of nanotubes plays a crucial role in determining 

the strength of the interaction.  The existence of available electrons near the Fermi level 

allows metallic tubes to make a stronger bonding to the functional group than 

semiconducting ones.  The curvature of the tubes is also important factor which has been 

recognized since the early stages of nanotube research.  The intrinsic cylindrical curvature of 

the nanotube sidewalls induces strain predominantly in the circumferential direction of the 

tube.  The strained sp2 carbon bonding structure makes the nanotube reactive to the 

functionalization.  Thus, tubes with higher curvature (smaller diameter) are expected to be 
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more reactive.  Our binding energy studies showed consistent results.  We found that the 

binding energy between the functional-group and the nanotube generally decreases with 

increasing modification ratio of SWNTs. 

Covalent functionalizations universally induce local impurity states.  This impurity state 

turns out to control the electronic and transport properties of chemically modified SWNTs.  

In the case of monovalent functionalization, the energetic position of the functional-group-

induced impurity state is found to be functional group specific.  However, in all cases studied, 

it is close to the Fermi level.  At a low degree of functionalization, we found that the impurity 

state of functionalized semiconducting tubes is located within the band gap, and its effect on 

the electronic structure of the parent tube is mild and tightly localized around the functional 

sites.  On the other hand, the metallic π and π* band crossing in metallic nanotubes is 

strongly affected by covalent functionalization near the Fermi level and the effect is extended 

over a large area of the nanotube.  These aspects of functional-group-induced impurity states 

are confirmed by our band structure and wavefunction studies. 

Since the local electronic structure at the functional site is different from that of the 

parent nanotube, one can expect to see scatterings of conducting electrons in metallic 

nanotubes.  Based on our conductance and LDOS calculations, we showed that the impurity 

state induced by monovalent-functional groups is indeed a strong scattering center of the 

electron conduction near the Fermi level.  Drastic disturbance on the conducting behavior of 

metallic tube was observed.  Each functional group exhibits its own energetic position for the 

center of the electron scattering which correlates well with the position of the impurity state, 

and creates significant dips in the ballistic conductance of metallic nanotubes. 
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Quantum interference effects were studied with two identical monovalent functional 

groups on metallic nanotubes.  As the separation between two functional groups gradually 

increases, a severe conductance reduction appears periodically at the functional-group-

specific impurity state energy level.  The spatial periodicity is found to be the same as the 

Fermi wavelength of armchair nanotubes.  Therefore, this feature can be attributed to the 

electron resonant scattering at two local impurity states.  In addition, the increasing number 

of particle-in-box type resonant states was observed with increasing separation due to the 

buildup of standing waves between the two functional-group boundaries.  Energetically 

equally spaced resonant states have been manifested in our calculated conductance and 

LDOS plots. 

All monovalent functional groups studied cause a substantial disturbance in the ballistic 

electron conduction of metallic nanotubes near the Fermi level.  Since the conducting 

behavior of functionalized tubes shows strong dependence upon the configurations of 

functional groups, the statistical average over different configurations were employed at each 

functional-group concentration to get qualitatively relevant results on the concentration 

dependence.  At low concentrations, the conductance spectrum carries the molecular 

signature, i.e. the greatest conductance reduction happens at the functional-group-specific 

energy level of the impurity state.  As the concentration increases, this signature is washed 

away and the conductance decreases rapidly for a wide range of energies and the nanotube 

loses its metallicity at high concentrations of functional groups. 

Divalent functional groups form bridge-like covalent bonds with two carbon atoms in 

the sidewalls of nanotubes.  Two impurity states at two vicinal sites overlap significantly and 

rehybridize into bonding and antibonding states located relatively far away from the Fermi 
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level.  Consequently, at low concentration of functional groups, the electronic and the 

transport properties of the parent nanotubes near the Fermi level are only mildly affected by 

the functionalization.  Even at high concentrations, nanotubes are found to remain 

substantially conductive, suggesting that the bonding-antibonding rehybridization effect of 

impurity states still prevails. 

With improvement in the accuracy of our transport calculations, which can be achieved 

by the implementation of an ab initio type Hamiltonian with self-consistent charge density, 

our computational methods and analysis techniques may be further extended to investigate 

more complicated systems such as (transition-metal)-CNT hybrid systems or (bio-molecule)-

CNT hybrid systems. 

In this work, some of novel physical effects of the chemical functionalization of carbon 

nanotubes have been revealed.  I believe that this will provide a solid foundation for the 

successful future development of this research area and open up a way to practical 

applications of functionalized SWNTs, such as micro-electrical, band structure engineering, 

bio and chemical sensor, and in many more areas. 
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