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Abstract

SETH HOPPER: The gravitational field produced by extreme-mass-ratio
orbits on Schwarzschild spacetime.

(Under the direction of Charles R. Evans.)

A stellar-mass compact object orbiting a supermassive black hole will radiate energy and

angular momentum in the form of gravitational waves, causing it to spiral inward. Such an

extreme-mass-ratio inspiral (EMRI) is an important potential source for a direct gravity

wave detection. It will require sufficiently accurate source modeling for such detections to

be made and analyzed. In this thesis I present original research that has furthered the

collective goal of accurate numerical EMRI simulations.

I begin by giving an overview of the extensive work that has been done in this field,

with an eye toward significant headway that has been made in the last decade. I then lay

the groundwork for my own work by reviewing the mathematical foundations for gravity

waves and black hole perturbation theory. Before attacking the subject of gravity waves

on a curved background, I examine the model problem of the scalar field that is induced

by an orbiting charge. This problem, while idealized, introduces many of the mathematical

and numerical techniques which are necessary to solve the perturbed Einstein equations.

At this point, with the foundation laid, I present new work on eccentric orbits of point

masses about a Schwarzschild black hole. I show how the method of extended homogeneous

solutions is generalized to find the radiative part of the first-order metric perturbation in

Regge-Wheeler (RW) gauge using frequency domain techniques. Additionally, for the first

time we computed the local point-singular nature of the metric perturbation in RW gauge.

Due mostly to such gauge artifacts, RW gauge is not ideal of performing a local self-force

calculation. Thus, I then present work on transforming the metric perturbation to Lorenz

gauge. This will allow for the direct calculation of the self-force. I end this thesis by

summarizing the potential and necessary areas of EMRI research in the near future.
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Chapter 1

Introduction

1.1 The two-body problem in general relativity

The two-body problem stands as one of the classic unsolved problems of general relativity.

The challenge is to take two gravitationally interacting objects with arbitrary initial posi-

tions and velocities (and potentially spins) and solve for their positions and the gravitational

field at all future times. Given the complexity of the nonlinear, coupled Einstein equations,

it is impossible to solve such a problem, in general, through analytical approaches. Re-

searchers have therefore turned to numerical methods to provide solutions. Early work

involved post-Newtonian theory—work that goes back to Einstein at the dawn of general

relativity and Einstein, Infeld, and Hoffmann [4]. The first numerical relativity simulation

of a two-body system was made by Hahn and Lindquist, who attempted to collide two

non-rotating black holes head on [5] in 1964. Their code only ran for a brief time, and was

not able to model the merger of the two holes. Still, it was the first step in what has be-

come an active and mature field. In recent years, interest in such simulations has increased

dramatically with the prospect of detecting gravitational waves.

1.1.1 Observational interest

Even beyond the inherent theoretical motivation for solving the two-body problem, there

exists a strong observational need to study this system. The detection of gravitational

radiation appears close at hand. Though other types of detectors (most notably resonant



bars) have been designed and built, interferometers have reached the most promising levels

of sensitivity. Gravity waves (GWs) produce slight time-dependent changes in the distances

between objects. Interferometers can detect these changes by measuring the time it takes

for photons to travel down to a mirror and back. Due to the extremely weak nature of

GWs, these detectors must be unprecedentedly sensitive. Detected GWs are anticipated to

cause fractional distance shifts of no more than one part in 1021 [6].

Detections will most likely be made by the Laser Interferometer Gravity-Wave Obser-

vatory LIGO [7]. LIGO is currently offline, as it is being upgraded with new components.

When the upgrade is complete it will enter its third stage, dubbed Advanced LIGO. Re-

searchers are hoping the first gravity waves will be detected shortly after Advanced LIGO

goes online in 2014. If detected at LIGO’s two sites, and at the VIRGO [8] and GEO600

[9] detectors, a source of GW will be identified, localized and analyzed. These detections

will not happen, however, without sufficiently accurate theoretical models of GW sources.

Even the strongest astrophysical sources will produce GW signals that are buried deeply

in the noise of a detector’s data stream. Therefore, accurate theoretical models of a large

number of waveforms will be necessary in order to correlate with detector output. Processes

such as matched filtering can be used to extract a signal that has been masked by the various

noise sources in a detector (e.g., seismic, thermal, and shot noise) [10].

In addition to their use in GW detection, accurate waveforms are also needed for source

parameter estimation. Black hole binaries produce complicated wave forms with as many

as fifteen parameters. For the case where the black holes have comparable mass, the field

of numerical relativity (NR) has been quite successful at modeling late-time waveforms. As

the mass-ratio becomes smaller NR calculations become progressively more challenging. At

this point, mass-ratios of 1:100 appear to be the outside limit of what is possible [11], and

even then the accuracy leaves much to be desired.

1.1.2 Extreme-mass-ratio inspirals

The GWs that LIGO detects will likely come from the merger of comparable mass compact

objects (black holes or neutron stars). This is because LIGO has a frequency band of ∼ 10

2



Hz −1 kHz, a range ideal for detection of binaries with comparable mass (∼ 1 − 10M�)

companions. Another likely astrophysical source of GWs are extreme-mass-ratio inspirals

(EMRIs) where solar-mass objects (∼ 1− 10M�) orbit supermassive black holes (SMBHs,

∼ 105 − 107M�). These sources are thought to exist in the centers of all major galaxies.

For instance, the SMBH at the center of the Milky Way, Sagittarius A*, has a mass of

∼ 4.3 × 106 M�. M31 (the Andromeda Galaxy) has a SMBH of ∼ 108 M� at its center.

Small (µ . 100 M�) compact objects orbiting such SMBH will radiate GWs at lower

frequencies outside the LIGO passband.

In order to detect them, the European Space Agency (ESA) is planning a space based

interferometer detector. Until recently, this was to be a joint NASA-ESA mission named

the Laser Interferometer Space Antenna (LISA) [12]. NASA funding issues led to their

backing out [13]. At this point, ESA is reworking the mission to fit within a tighter budget.

It is not yet clear how the revised mission will change in specifications (or even name) from

the original joint plan. For the purposes of this discussion I will continue to call the mission

LISA and use the old specifications.

LISA will have a passband of ∼ 10−4 − 10−2 Hz, several orders of magnitude below

LIGO. An EMRI is expected to stay in LISA’s passband for up to one million orbits as it

spirals toward the SMBH and eventually plunges. The final stages of the inspiral will be

marked by an increase in frequency and amplitude until the small body plunges toward the

event horizon and a last burst of radiation is released. This increase in frequency and in

amplitude of the signal is called a chirp. The SMBH will then ring down exponentially as

it settles back to its usual stationary state.

As with ground based detectors, LISA’s detections will have to be pulled out of the noise

of its data stream. Therefore, tables of simulated waveforms will be needed for matched

filtering and parameter estimation. Given the types of different orbits that can exist and

the number of parameters, this is a formidable task. Astrophysical SMBHs are thought to

be Kerr black holes, probably spinning at near maximal rates. In general, bound orbits in

the Kerr spacetime will be eccentric and out of the plane of the black hole’s rotation. The

orbital plane, as well as the line of apses will precess. Additionally unknown will be the
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distance to the source and its orientation relative to the detector. Finally, the small body

itself may be spinning, which can give rise to spin-orbit effects.

The previously mentioned method of general relativity simulations, numerical relativity

(NR), is not suited to the challenge of the EMRI problem. First there is a prohibitive

computational cost of such an approach. NR codes run on thousands of nodes, often for

months in order to compute 10’s of orbits. They work well for comparable mass systems

because of the similar length scales involved in the problem. The EMRI problem has two

distinct length scales: the background curvature associated with the SMBH, and the radius

of the small body. The ratio of these two scales will be on the order of the mass-ratio,

which can be as small as 10−7. Even if one could resolve the different length scales, NR

codes could not run with accuracy for the ∼ 106 orbits (as encountered with EMRIs) before

plunge. It is for these reasons that researchers have turned to perturbative approaches.

1.2 Black hole perturbation theory

In black hole perturbation theory one takes a known solution to the Einstein equations

(typically that of a Schwarzschild or Kerr black hole) as a lowest order solution to the

gravitational field. Then, at lowest order in the equations of motion the small body, or

particle, moves on a geodesic of the background spacetime. This particle pulls up a first-

order perturbation to the gravitational field. Far away in the wave zone, it is evident

that this perturbation carries energy and angular momentum away from the system in the

form of gravitational waves. The energy loss comes at the expense of the particle’s orbit.

Locally, the inspiral that results can be viewed as the result of a “self-force.” In order to

compute the self-force at the location of the particle, one must remove the singular part of

the particle’s field that does not contribute to radiation reaction. This procedure is called

“regularization.” One then seeks to find the way the orbit changes by solving the first-order

corrected equations of motion. This updated trajectory sources changes in the second-order

field, which in turn sources second-order corrections to the particle’s trajectory, and so on.

In theory, following this process through an infinite number of orders produces the true
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motion of the particle and gives the complete gravitational field. I go into the details of

first-order perturbation theory in detail in Chapter 2.

History

Black hole perturbation theory has a history going back to Regge and Wheeler [14] in

1957. They considered first-order perturbations to the Schwarzschild metric. In so doing,

they divided the metric perturbation into its even and odd-parity components and derived

their eponymous equation for the odd-parity perturbations. Their work was extended to

include a radial wave equation for the even-parity perturbations by Zerilli [15] in 1970.

Moncrief [16] re-derived both the Regge-Wheeler and Zerilli equations from a variational

principle without choosing a specific gauge. He also introduced gauge-invariant functions

of the metric perturbation amplitudes. Working with Cunningham and Price [17, 18], he

also introduced a more useful variable than Regge and Wheeler’s original odd-parity master

function. Theirs is essentially the time integral of the Regge-Wheeler function and allows

for easier reconstruction of the odd-parity metric perturbation.

Important work was also done in 1975 in the field of quasi-normal modes by Chan-

drasekhar and Detweiler [19]. These modes describe how black holes ring down when they

are perturbed without a source. The least rapidly decaying such modes are of particular

interest for the time just after a particle plunges into a black hole.

Work on perturbations of the Kerr background was pioneered by Teukolsky [20] when

he presented the equation which now shares his name. The Teukolsky equation describes

the dynamics of the Weyl scalars (e.g., ψ4, ψ0), which are tetrad projections of the Weyl

curvature tensor. There is a long history of results of computing solutions to the Teukolsky

equation for a small mass in order about a Kerr black hole. More difficult is determining

the metric from the computed curvature perturbations (see Chrzanowski [21], Cohen and

Kegeles [22, 23] (CCK), Stewart [24] and Wald [25]). The so-called CCK formalism is

powerful, yet only works for homogeneous solutions to the Teukolsky equation. Recent

work by Keidl, Wiseman, and Friedman [26] and others [27, 28] appears to have broken

through this barrier. They use the Detweiler-Whiting scheme (discussed below) to remove
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the singular contribution to the Weyl scalars and then apply the CCK formalism to the

homogeneous solution which remains.

1.3 Flat space self-force

Before diving into self-force calculations in general relativity we start by discussing some

simpler systems, which nonetheless contain many features in common with gravitational

self-force. I draw from many sources here, most notably Detweiler [29].

1.3.1 Newtonian self-force

Consider a simple two-body system described by Newtonian gravity. Let the first body have

a mass M and second body (or particle) of mass µ, which we initially take to be vanishingly

small. At this lowest-order approximation the particle will travel in an ellipse with the

center of the large body at one focus, obeying Kepler’s laws. Let us consider the special

case of circular motion at radius r, where Kepler’s third law says the angular frequency of

the motion is

Ω2 =
M

r3
. (1.3.1)

If we allow the particle to have a mass, then Kepler’s third law is [30]

Ω2 =
M

r3 (1 + µ/M)2 . (1.3.2)

When µ → 0, the small body travels in a circle of radius r, but when we allow it to have

a mass, the two bodies orbit the common barycenter with a separation r(1 + µ/M). Now,

expanding in the small mass-ratio parameter µ/M , we find

Ω2 =
M

r3

[
1− 2

µ

M
+O

(
µ2

M2

)]
. (1.3.3)

The first term is just the µ → 0 limit. The second term is a first-order correction, a

Newtonian example of a self-force. Note, of course that this is a non-radiative correction.

It is a conservative shift in the fundamental frequency in the system.
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1.3.2 Radiation reaction in electromagnetism

Consider an accelerating, non-relativistic charge in flat space. It will radiate energy via

electromagnetic waves with a power calculable from Larmour’s formula (in Gaussian units)

[31]

P =
2e2

3c3
a2. (1.3.4)

This can be used to derive the Abraham-Lorentz force

F =
2e2

3c3
ȧ, (1.3.5)

from which one can compute the acceleration due to radiated energy loss. With careful

allowance for spurious solutions, this formula is useful for computing a particle’s change in

motion due to its own radiation reaction. However, it falls short in providing an explanation

for why the particle radiates. Indeed, it is at odds with the Lorentz force law which states

that acceleration is caused by an external electromagnetic field.

Consider, for concreteness, a non-relativistic electron in circular motion about a much

more massive positive charge, which we take to be immovable. To an observer far away in

the wave zone, the electron will clearly pull up a 1/r radiation field which has a Poynting

flux that describes the energy lost by the system. On the other hand, an observer much

closer to the electron will measure the local electromagnetic field to be changing, but will

not be able to identify within it any hallmarks of radiation. Therefore, this second observer

will see the electron spiraling into the center, as predicted by Eq. (1.3.5), but will not be

able to describe this phenomenon as radiation reaction. Nor will he be able to explain the

inspiral as a result of some external field that sources the Lorentz force law.

Upon generalizing the Abraham-Lorentz force, Dirac [32] rectified this problem of ob-

server dependent descriptions of this system. Dirac generalized the system to include rel-

ativistic charges. He used a conservation of energy-momentum argument to show that the

local, symmetric Coulomb field FµνS = 1
2

(
Fµνret + Fµνadv

)
exerts no force on the charge. Here

S stands for singular or symmetric. The singular field FµνS satisfies the inhomogeneous
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Maxwell equations: FµνS ,ν = 4πjµ. However, because of the relation between the retarded

and advanced Green functions Gret(x, x′) = Gadv(x′, x), the field FµνS is invariant under

time-reversal. Therefore, it cannot be responsible for the radiation reaction. The remain-

der, which is responsible for the radiation reaction is

FµνR = Fµνret − FµνS =
1
2
(
Fµνret − Fµνadv

)
, (1.3.6)

where R stands for regular or remainder. The regular field is nonsingular everywhere and

a is homogeneous solution to the Maxwell equations. Furthermore, it produces the correct

acceleration when used with the Lorentz force law. Since Dirac’s initial work, others have

confirmed his results through different means. For a good summary see [33].

1.4 Curved space self-force

In curved space the problem of self-force becomes much more complicated. This is primarily

due to the fact that the retarded Green function no longer only has support on the past

light cone. Since radiation (both electromagnetic and gravitational) can scatter off of a

curved background (and even off itself in the case of gravity), the Green function also has

support in the entire causally connected region inside the past light cone.

1.4.1 Electromagnetic self-force

Consider a particle with charge q in free fall in curved space. Here we are only concerned

with the electromagnetic (and not gravitational) radiation that is released as the charge

accelerates. In their work on electromagnetic radiation reaction, Dewitt and Brehme [34]

separated the Green function into a direct part, which only has support on the light cone,

and a tail part, which has support inside the light cone. They follow Dirac’s conservation

approach and find that only the tail field contributes to radiation reaction. Their final result

is that the four-force on the charge due to radiation reaction is

Fµrr = qgµν
(
∇νAtail

α −∇αAtail
ν

)
uα. (1.4.1)
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This force is directly analogous to the Abraham-Lorentz force. It has great utility in that one

can compute the particle’s acceleration from it, but it is not consistent with the generalized

Lorentz force law Fµ = maµ = qFµνuν . That is, the force in Eq. (1.4.1) does not result

from an external electromagnetic field. Indeed, an observer close to the particle would notice

its changing field, but being so close, would not be able to identify radiation. Therefore,

this near-observer would see no explanation for the particle’s motion as it deviates from

a background geodesic. Furthermore, the field Atail
µ is not a solution to the curved space

electromagnetic field equations.

Detweiler and Whiting [35] circumvented these conceptual obstacles by introducing a

different decomposition of the potential. They looked at the Green functions as follows. We

know the retarded Green function has support on and inside the past light cone while the

advanced Green function has support on and inside the future light cone. Define the singular

(S) Green function to have support in the spacelike area between the retarded and advanced

Green functions. Then, the regular (R) field will be the remainder ARµ = Aret
µ − ASµ . I will

not go into the details here, but the singular field is constructed specifically to remove the

Coulomb part of the particle’s field, which produces no force. The field FSµν , constructed

from ASµ , is a solution to the inhomogeneous curved space Maxwell equations. The reg-

ular remainder FRµν , constructed from ARµ , is a homogeneous solution to those equations.

Furthermore, FRµν appears to a local observer to be responsible for the entire self-force as

computed from the Lorentz force law.

1.4.2 Gravitational self-force

Here I consider the self-force on a small object moving in a curved spacetime. I sketch out

some of the most important results in this field. For a more thorough treatment see [36],

from which I draw heavily.

Historical perspective

A major milestone for the EMRI problem came in 1997 when Mino, Sasaki, and Tanaka [37]

and subsequently Quinn and Wald [38] derived the equations of motion of a particle moving
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on a curved background. The so-called MiSaTaQuWa equations are first-order equations of

motion which (at least in theory) can be solved to give the deviation of a particle’s motion

off the background geodesic.

Mino et al. gave two derivations of the equations. The first was from a point particle

formulation. Point particles are useful, but their physical validity is questionable in certain

circumstances. For instance, a point particle pulls up a divergent 1/r local field which,

close enough to the particle, violates the fundamental assumption of perturbation theory

(that the particle’s field be small compared to the background). Their second derivation

considered the more physical scenario of a small black hole moving on a curved background.

They used matched asymptotic expansions to show that the equations of motion of the two

systems were the same. This is an important discovery, as it justifies all the work that has

been done where the small black hole is modeled as a point particle, at least up to a certain

order in perturbation theory. Although a black hole is not a point particle, we are able to

treat it as such when µ/M � 1.

Detweiler and Whiting [35] provided a powerful reinterpretation of the self-force problem.

In the Detweiler-Whiting scheme, the particle’s retarded field is separated into regular R

and singular S parts. The former is a smooth field and a homogeneous solution to the

field equations. The latter is a solution to the inhomogeneous field equations, but gives no

contribution to the self-force. Therefore, the self-force can be found by substituting in the

regular field in for the retarded field in the equations of motion.

Mathematical formalism

Let a particle with mass µ move in a spacetime dominated by a much larger body of mass M .

For the large body alone, take a known solution to the Einstein equations, with the metric

gµν to be given. Black hole perturbation theory is an expansion around gµν with a small

expansion parameter taken to be µ/M . In our work we expand around the Schwarzschild

metric in Schwarzschild coordinates, but in principle it could be any solution. At lowest

order the particle will move on a geodesic γ0 of gµν , found by solving the geodesic equation

uα∇αuβ = 0 on the background. This geodesic of the background goes into computing the
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stress-energy tensor, which serves as a source to the first-order field equations. We define

the difference between the true metric gµν and the background metric gµν to be the metric

perturbation pµν . To first-order, we find its solution by solving the field equations in Lorenz

gauge (see Chapter 2),

2p̄µν + 2Rα β
µ ν p̄αβ = −16πTµν , (∇ν p̄µν = 0). (1.4.2)

Here, 2 ≡ ∇α∇α and we use an overbar to indicate a trace-reverse. Tµν is the stress-energy

tensor of a point particle. The retarded solution is

p̄µνret(x) = 4µ
∫

γ0

Gµνret αβ(x, z)uαuβdτ. (1.4.3)

Here Gµνret αβ(x, z) is the retarded Green function associated with Eq. (1.4.2) The parameter

z represents the four spacetime coordinates being integrated over along the past geodesic.

The solution to these equations contains all the information about the first-order gravi-

tational field. At this point, the first-order field leads to a natural correction to the zeroth-

order motion of the particle. By demanding the motion be geodesic in the perturbed

spacetime gµν we obtain the correction to the equations of motion

aµ = −1
2

(gµν + uµuν)
(
2pret
να;β − pret

αβ;ν

)
uαuβ. (1.4.4)

This much appears straightforward enough, but a problem arises due to the local field of

the particle. The gravitational field of a point particle diverges like 1/r along the particle’s

worldline, and therefore the force as calculated from the retarded metric perturbation is

divergent.

Yet, there clearly is a self-force. To the distant observer, the retarded metric perturba-

tion is plainly evident as radiation which falls off with the inverse of distance. This is seen

in the form of the gravitational waveform, which is a gauge-invariant observable. But, close

to the particle, while the local gravitational field is changing, the particle is inspiralling,
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and yet there is no evidence for radiation. This paradox is once again resolved by the sep-

aration of pret
µν into singular (pSµν) and regular (pRµν) parts. The former is a solution to the

inhomogeneous equation 1.4.2, but provides no contribution to the self-force. The latter is

a smooth, homogeneous solution to Eq. (1.4.2), and fully responsible for the self-force. The

covariant derivative of pRµν is

pRµν;α = −4µ
(
u(µRν)βαγ +Rµβνγuα

)
uβuγ + ptail

µνα, (1.4.5)

where

ptail
µνα =

∫ τ−

−∞
∇α
(
Gret µνµ′ν′

[
z(τ), z(τ ′)

]
− 1

2
gµνG

β
ret βµ′ν′

[
z(τ), z(τ ′)

])
uµ
′
uν
′
dτ ′. (1.4.6)

When we substitute in pRµν for pret
µν we obtain

aµ = −1
2

(gµν + uµuν)
(

2ptail
ναβ − ptail

αβν

)
uαuβ, (1.4.7)

which are the MiSaTaQuWa equations. They are first-order equations of motion which

give the particle’s acceleration off its background geodesic due to its own acceleration. An

important feature of these equations is that they are not generally covariant, but rather

are derived specifically in Lorenz gauge. Indeed the self-force is not a gauge-invariant; its

change under a gauge transformation was computed by Barack and Ori [39]. One could even

choose a gauge where it vanishes at first-order [40]. This all serves to emphasize a crucial

point: in the end, we must calculate physically observable gauge-invariant quantities. Later

in this section we discuss this further.

The Detweiler-Whiting axiom and the conservative/dissipative split

The regular/singular split of the retarded field is very convenient, but not altogether obvious.

Detweiler and Whiting made their derivations from an axiomatic standpoint. Their axiom

is: The singular field does not contribute at all to the self-force. The self-force is entirely

due to the regular field. Their axiom is based on the symmetric nature of the singular field.
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This is analogous to the time-reversal symmetry of Dirac’s Coulomb field 1
2

(
Fµνret + Fµνadv

)
,

which is clearly not responsible for radiation. However, the gravitational case is more subtle

because the gravitational self-force is responsible for more than just radiation reaction. The

gravitational self-force separates into two distinct pieces: conservative and dissipative.

The conservative piece is a consequence of the time-symmetric portion of the gravita-

tional field. It creates discrete shifts in the physical observables of the system. For example

(see Sec. 1.3.1), by adding a finite mass to the particle, one will naturally measure the

system to be that much more massive. Furthermore, the two objects will orbit around their

common barycenter. Even beyond these Newtonian corrections, there will be changes to

the shape of the particle’s orbit, with contributions at every multipole order. The symmet-

ric, singular part is non-radiative and does not contribute to the dissipative piece of the

self-force. The conservative part of the self-force is

F cons
µ =

1
2

(
F ret
µ + F adv

µ

)
− FSµ . (1.4.8)

The dissipative piece of the self-force is the part responsible for radiation reaction, and

therefore only receives contributions from all modes ` ≥ 2. As mentioned, the singular part

of the perturbed metric is strictly conservative. Therefore, we can write the dissipative part

of the self-force as

F diss
µ =

1
2

(
F ret
µ − F adv

µ

)
. (1.4.9)

Note that adding these two pieces together gives the regular field,

FRµ = F cons
µ + F diss

µ = F ret
µ − FSµ . (1.4.10)

Mode-sum-regularization

The separation of the gravitational field into regular and singular parts is quite useful in

numerical calculations. It provides two general paths forward toward computing the self-

force.

The first and more common approach is called mode-sum regularization. In order to see
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the general idea behind mode-sum regularization, consider a scalar field ψ which is pulled

up by a particle with charge q orbiting a Schwarzschild black hole. (There is an exact

parallel to the gravitational case, just with more tedious equations) The scalar field will

satisfy the equation

2ψ(x) = q δ4 (x, xp(τ)) . (1.4.11)

Here 2 ≡ ∇α∇α, x, represents all four spacetime variables, and the particle travels on a

geodesic xp parametrized by its proper time τ . The field can be decomposed in spherical

harmonics, as shown in Chapter 3, which yields a radial wave equation for each `,m mode.

By imposing outgoing wave boundary conditions at spatial infinity, downgoing conditions

at the event horizon, and the correct internal jump conditions at the particle’s location, one

finds the retarded field at each mode, ψret
`m(x).

The idea, pioneered by Barack and Ori [41], is to then subtract off the singular part of

the self-force mode-by-mode. This subtraction is possible because, although the full field is

divergent, it is finite at each order. For a given `, taking the divergence of ψret
`m and summing

over m yields

∇αψret
` =

∑

m

∇αψret
`m. (1.4.12)

Given this, we compute the self-force `-by-` from

F `α = ∇αψret
` −Aα (`+ 1/2)−Bα −

Cα
`+ 1/2

+ · · · (1.4.13)

The full self-force Fα is then a convergent sum over the F `α. The coefficients Aα, Bα, . . .

are called the regularization coefficients. They are independent of ` (though they depend

in general on the physical parameters of the problem) and are computed analytically.

Mode-sum regularization has been used successfully by numerous groups to compute

self-forces due to scalar, electromagnetic, and gravitational fields from particles moving on

Schwarzschild and Kerr backgrounds, in radial, circular, and eccentric orbits.
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Effective sources

As an alternative to mode-sum regularization, there is the effective-source approach. This

was developed independently by Vega and Detweiler [42] and Barack and Golbourn [43].

Here, one computes pSµν analytically, and then, the field is regularized by subtracting pSµν

from pret
µν and forming pRµν , which is formally smooth along the worldline (though in practice

will have a discontinuity at some order of differentiability). Having formed pRµν , one can then

solve the first-order field equations, typically in the time-domain. Having already removed

the singular part, the self-force is trivial to compute at any stage in the integration. This

is a nice conceptual idea, though it does have several practical challenges. Foremost among

these is the analytic computation of pSµν . The divergent, singular field can only be found

approximately, and even this is a tedious and lengthy task. An additional challenge arises

because far from the particle one wishes to have the retarded field, which contains relevant

information such as the gravitational waveform. Therefore, one typically uses a “window

function” which transitions from the locally used regular field to the retarded field used

further away. Choosing an appropriate window function is a subtle task. For more details

see [44].

The gauge problem

As I have emphasized, the self-force is not a gauge-invariant quantity. The MiSaTaQuWa

equations are formulated in Lorenz gauge, and the regularization procedure is also Lorenz

gauge dependent. However, it is not always convenient to solve the field equation in Lorenz

gauge. As discussed in Chapter 2, significant simplification can be achieved on Schwarzschild

by choosing Regge-Wheeler gauge. And, until about seven years ago [45] nearly all work on

Schwarzschild was done in Regge-Wheeler gauge. The challenges entailed in transforming

from Regge-Wheeler to Lorenz gauge are covered in depth in Chapter 5.

One method of avoiding the gauge problem is to compute gauge-invariant quantities.

Physically measurable values such as the waveform are gauge-invariant. The mass and angu-

lar momentum of an orbiting body are gauge-invariants. Of particular interest is a quantity

introduced by Detweiler [46], commonly referred to as the Detweiler redshift invariant. It
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was introduced for circular orbits on Schwarzschild and has since been generalized to ec-

centric orbits [47]. For a small body in orbit about a Schwarzschild black hole the local

observer will measure one value for the period of radial motion (local total proper time).

A distant observer will measure a different value for the period of the orbit. The ratio of

these two periods is Detweiler’s gauge-invariant quantity. Having such a quantity is useful

because one can compute the way it changes under a self-force correction in any gauge.

This is not only computationally convenient, but also good for checking results by taking

different routes to the same solution.

1.5 Original work: eccentric orbits on Schwarzschild

The previous sections of this introduction should give an overview of the current state of

research into the EMRI problem. Here I will give an overview of the contributions that I

have made to the field. My research has centered on eccentric orbits on a Schwarzschild

background. I will present some background on that specific problem and then summarize

the new pieces I have added. For more detail, see Chapters 4 and 5.

1.5.1 Background

Generic eccentric orbits on Schwarzschild were first studied numerically by Tanaka, Shibata,

Sasaki, Tagoshi, and Nakamura [48] and subsequently by Cutler, Kennefick, and Poisson

[49]. They used frequency domain (FD) methods to compute energy and angular momentum

fluxes from particles in a variety of orbits. FD codes have the benefit of converging very

quickly for mildly eccentric orbits, but as eccentricities grow they get less and less efficient.

Spurred largely by the work of Martel [50] and Haas [51], time domain (TD) codes have

gained great popularity in recent years. Additionally, until recently (see below) it was

impossible to accurately represent the gravitational field of a point particle in eccentric orbit

through FD calculations. This is due to the Gibbs phenomenon, which crops up because

of the singular nature of the source. A standard Fourier synthesis of the gravitational field

will lead to slow (algebraic as opposed to exponential) convergence, if it converges at all.
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Therefore, TD codes seemed necessary for local self-force calculations.

An additional change has taken place in recent years. Traditionally, most work on

Schwarzschild has been done in Regge-Wheeler (RW) gauge. RW gauge is attractive mainly

because it reduces the number of equations that must be solved for each mode from ten to

two. (This equation counting is a bit of a simplification, but the point is that RW gauge

makes it efficient to solve the Einstein equations.) The problem with RW gauge, as discussed

above, is that it is not ideal for self-force calculations. The MiSaTaQuWa equations, and

the mode-sum regularization scheme, are both formulated in Lorenz gauge.

There are two ways around the gauge problem. One is to solve the Einstein equations

directly in Lorenz gauge, as proposed by Barack and Lousto [45]. This adds its own compli-

cations, but does have the benefit that it gives the gravitational field in the desired gauge.

The other option is to solve the Einstein equations in RW gauge, as done usually, but then

transform the solution into Lorenz gauge, by solving the gauge transformation equations.

We have chosen the second option. We work in the FD and in RW gauge. Then, we

perform the gauge transformation to find the metric in Lorenz gauge.

1.5.2 Contributions of this thesis project

As mentioned, a major problem with FD work on eccentric orbits was the Gibbs phe-

nomenon. In 2008, Barack, Ori and Sago [1] showed how to circumvent the Gibbs phe-

nomenon with the method of extended homogeneous solutions (EHS). They demonstrated

the method using the monopole term in a scalar field model problem. The standard Fourier

synthesis provides algebraic convergence for this field, and its derivative does not converge

at all. The EHS method allows exponential convergence of both the field and its derivative,

including right up to the particle’s location.

In our 2010 paper [52], we showed how to extend the EHS method to all radiative

gravitational modes. Working in RW gauge, the source term has not only a delta function,

but also a derivative of a delta function term. We found that the EHS method was applicable

even with this more singular source term. From this we were able to reconstruct the metric

perturbation in RW gauge at all locations, including the very location of the particle.
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In finding the metric perturbation, we also examined the singular nature of RW gauge

in depth for the first time. We found the spherical harmonic amplitudes of the metric

perturbation to be discontinuous (C−1) in all cases and in some cases to contain time-

dependent delta function contributions. We were able to compute the time dependent

magnitudes of these jumps and the time dependent coefficients of the delta functions for

the first time.

Our work in the FD is noteworthy for two practical reasons. First, our results are far

more accurate (relative errors of ∼10−12) than those of standard TD codes (relative errors

of ∼10−7). Given the subtraction that takes place during the regularization procedure, one

wishes to have as much accuracy as possible when computing the retarded field. Secondly,

our code is very fast, especially for low eccentricities. Simulations which could take days

on TD codes run in hours or minutes. Further, even relatively high eccentricities (e ∼ .9)

appear to give competitive runtimes to TD codes, especially when the benefit of the FD

accuracy is taken into account. Lastly, all this is based on single processor calculations.

Yet, our FD-based computations are easily ported to run on parallel computers.

Following this, we have begun work moving from RW to Lorenz gauge. Formally, the

gauge transformation is clear. The infinitesimal coordinate transformation is presented in

standard relativity texts (e.g. [53]), and is only a few lines. However, the specifics are

far more subtle. Moving from RW to Lorenz gauge involves solving a set of coupled wave

equations for each harmonic mode. This is further complicated by the singular nature of the

source (which in this case is the divergence of the trace-reversed metric perturbation). The

problem was examined in some detail by Sago, Nakano, and Sasaki [54]. We have decided

to use their decomposition as a starting point and perform the transformation numerically

for the first time. Though we have not completed the entire task, there are a few details

worth noting here.

First, a FD solution to the gauge transformation equations is not a straightforward

application of the EHS method. We have had to develop new techniques to treat the types

of differential equations we encounter in this gauge transformation. The first technique is

called the method of partial annihilators and the second is the method of extended particular
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solutions. Both are covered in depth in Chapter 5. We have completed the odd-parity part

of the gauge transformation, and have seen that as expected the C−1 behavior in the

amplitudes is transformed to C0 behavior at r = rp(t) in Lorenz gauge. Also, the RW

metric is non-asymptotically flat. In Lorenz gauge, we find that proper asymptotic flatness

is recovered.

The completion of the gauge transformation will leave us in an ideal situation for com-

puting the self-force. We will have a highly accurate computation of the retarded metric

perturbation in Lorenz gauge at all locations, including the location of the particle. This last

part is key, as it is there where we must take the divergence and perform the regularization.

There are several paths forward from this point, as discussed in Chapter 6.

1.6 Thesis organization

This thesis is organized into five additional chapters. In Chapter 2, I provide an overview

of first-order black hole perturbation theory. I start with linearizing the Einstein equations

around a Minkowski background and then generalize to a curved background. Finally, I

present the M2 × S2 decomposition of Martel and Poisson [55], lay out the techniques

of tensor spherical harmonics, and give the field equations for the metric perturbation

amplitudes in both Regge-Wheeler and Lorenz gauge.

Chapter 3 contains work on a scalar field model problem. The scalar field is an excellent

testing ground for work before jumping into gravity. Here I present the multipole decom-

position of a scalar field produced by a charged particle moving in flat space and show how

this is equivalent to an exact solution to that problem. Finally, I move to curved space and

derive the field equations that must be solved for a scalar charge in eccentric orbit about a

Schwarzschild black hole.

Chapter 4 is taken from our first paper, Ref. [52]. It shows how we solved for the

radiative parts of a first-order metric perturbation due to a small mass in eccentric orbit

about a Schwarzschild black hole. In so doing we computed the metric perturbation to high

accuracy all the way up to the location of the particle and presented the exact local singular
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nature of the metric in Regge-Wheeler gauge.

Chapter 5 is a thorough discussion of subsequent results that will appear in a second

paper. It goes into the details of performing the first-order gauge transformation to take the

metric perturbation from Regge-Wheeler to Lorenz gauge. We give results there showing the

completed odd-parity transformation, as well as a significant component of the even-parity

part of the transformation.

Chapter 6 is a conclusion. I summarize the work presented in this thesis and give

potential future directions for research on the EMRI problem.
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Chapter 2

Mathematical preliminaries: gravitational
waves and black hole perturbation theory

The nonlinearity of general relativity makes finding exact solutions to the Einstein equa-

tions formidable and often impossible. Therefore, perturbative approaches are important

for finding approximate solutions of all but the simplest physical systems. One approach

is post-Newtonian (PN) theory, wherein one expands the Einstein equations in powers of

v/c. PN has been very successful in checking the predictions of general relativity through

solar system [56] and binary pulsar experiments [57]. However, it fails in the strong field,

fast motion regime, which is where other perturbative methods must be employed. As an

alternative, one can consider a system wherein the mass-ratio µ/M of a two-body system

is very small. An expansion of the Einstein equations in this parameter yields equations

which are valid even as the small body is deep in the gravitational field of a black hole, and

traveling at speeds v . c.

Along with Chapter 3, this chapter sets the stage for my original research in Chapters 4

and 5. I start by reviewing how perturbing a flat metric leads to gravitational wave equations

in the context of linearized gravity. Using this as a model, I expand the Einstein equations on

a curved background and find wave equations for the first-order metric perturbation. This

expansion sets the theoretical foundation for finding the gravitational radiation emitted by

a small body in motion around a black hole. At this point I specialize to a Schwarzschild

spacetime, and use a decomposition introduced by Martel and Poisson [55] to separate

the metric into two submanifolds. This allows for a convenient way to decompose the



first-order Einstein equations in spherical harmonics. Further, I examine how those field

equations change under a gauge transformation. I end by giving the field equations for the

metric perturbation amplitudes in both Regge-Wheeler and Lorenz gauge, both of which

will be useful in subsequent chapters.

2.1 Linearized gravity

The presentation here follows closely that of [58, 53]. In the linearized theory of gravity, we

define our metric as

gµν = ηµν + pµν , |pµν | � |ηµν |, (2.1.1)

and assume that space is asymptotically flat. All our work will be to first-order in pµν .

Using the Minkowski metric and its inverse to raise and lower indices, we define the inverse

of the metric perturbation as pµν ≡ ηµαηνβpαβ. A natural assumption is that the inverse

metric will vary from flat space by only a small amount, gµν = ηµν + kµν , |kµν | � |ηµν |.

Then, we demand that gµαgαν = δµ
ν , and find

δµ
ν = gµαgαν = (ηµα + pµα) (ηαν + kαν) = δµ

ν + kµ
ν + pµ

ν . (2.1.2)

(Note that the pµαkαν is dropped for being second-order.) So, evidently kµν = −pµν , and

the inverse metric is gµν = ηµν − pµν .

In a coordinate basis, the connection coefficients are, to first-order

Γαβγ =
1
2
ηαδ (pδγ,β + pδβ,γ − pβγ,δ) . (2.1.3)

We form the linearized Riemann tensor in the standard way. After dropping terms quadratic

in the connection coefficients, this is

Rαµβν =
1
2

(pαν,µβ + pµβ,να − pµν,αβ − pαβ,µν) . (2.1.4)

Now we move on and consider gauge transformations of the form xµ → x′µ = xµ +

Ξµ, |Ξµ| ∼ |pµν | � 1. Note that Ξµ is on the same order as the metric perturbation, so
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we will drop any second-order terms. In order to transform geometric objects we need the

Jacobian matrix,
∂x′µ

∂xν
=
∂xµ

∂xν
+
∂Ξµ

∂xν
= δµν + Ξµ,ν . (2.1.5)

The inverse transformation is also needed. We use the same logic that got us the inverse

metric perturbation. Demanding

∂xµ

∂x′α
∂x′α

∂xν
= δµν (2.1.6)

and assuming the inverse transformation has a similar form to Eq. (2.1.5) we get

δµν =
∂xµ

∂x′α
∂x′α

∂xν
= (δµα + fµα) (δαν + Ξα,ν) . (2.1.7)

This defines fµν which is on the same order as Ξµ,ν . Expanding out the product, we find

fµν = −Ξµ,ν , and so the inverse gauge transformation is

∂xµ

∂x′ν
= δµν − Ξµ,ν . (2.1.8)

From this we can compute the transformation law for the metric (to first-order):

g′µν = η′µν + p′µν = (δαµ − Ξα,µ)
(
δβν − Ξβ,ν

)
(ηαβ + pαβ) (2.1.9)

= ηµν + pµν − Ξν,µ − Ξµ,ν (2.1.10)

p′µν = pµν − 2Ξ(µ,ν). (2.1.11)

Note that this works because the Minkowski metric is gauge-invariant (ηµν = η′µν). The

Riemann tensor changes under a gauge transformation as

R′αµβν = (δγα − Ξγ,α) (δρµ − Ξρ,µ)
(
δδβ − Ξδ,β

)
(δσν − Ξσ,ν) Rγρδσ. (2.1.12)
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Once again, we discard terms of higher than linear-order, so

R′αµβν = Rαµβν −
(
δγαδ

ρ
µδ
δ
βΞσ,ν + δγαδ

ρ
µδ
σ
νΞδ,β

+ δγαδ
δ
βδ
σ
νΞρ,µ + δρµδ

σ
νδ
δ
βΞγ,α

)
Rγρδσ (2.1.13)

= Rαµβν −
(

RαµβσΞσ,ν + RαµδνΞδ,β + RαρβνΞρ,µ + RγµβνΞγ,α
)

(2.1.14)

Up to now, we have considered a general, first-order gauge transformation for any form of the

Riemann tensor. Now, looking at Eq. (2.1.4) we see that this specific form of the Riemann

tensor has no zeroth-order terms (because we are using flat space as our background).

Each term in it is linear in derivatives of the metric perturbation. Therefore, the terms

in Eq. (2.1.14) that involve products of Rαµβν and Ξµ,ν are all second-order. Hence, to

first-order the Riemann tensor (and therefore, each of its contractions) is gauge-invariant:

R′αµβν = Rαµβν .

The Ricci tensor (which, as a contraction of the Riemann tensor, is also a gauge-

invariant) is

Rµν ≡ gαβRαµβν =
1
2
(
pαν,µ

α + p α
µ ,να − pµν,αα − pαα,µν

)
. (2.1.15)

The Ricci scalar is

R =
1
2

(ηµν − pµν)
(
pαν,µ

α + p α
µ ,να − pµν,αα − pαα,µν

)
= pαµ,

αµ − pµ α
µ, α. (2.1.16)

Defining p ≡ pαα, we now form the Einstein tensor

Gµν ≡ Rµν −
1
2

gµνR (2.1.17)

=
1
2

(pαν,µα + pαµ,ν
α − pµν,αα − p,µν)− 1

2
(ηµν + pµν)

(
pαβ,

αβ − p,αα
)
. (2.1.18)

Then, the linearized field equations are (from Gµν = 8πTµν)

pαν,µ
α + pαµ,ν

α − pµν,αα − p,µν − ηµν
(
pαβ,

αβ − p,αα
)

= 16πTµν . (2.1.19)
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This simplifies if we express the metric perturbation in its trace-reversed form

p̄µν ≡ pµν −
1
2
ηµνp ⇒ p = −p̄ ≡ p̄αα. (2.1.20)

We use the overbar to represent a trace reversal in any tensor. Therefore Gµν = R̄µν and

pµν = ¯̄pµν . Plugging in pµν = p̄µν − 1
2ηµν p̄ we have

p̄αν,µ
α − 1

2
ηαν p̄,µ

α + p̄αµ,ν
α − 1

2
ηαµp̄,ν

α − p̄µν,αα

+
1
2
ηµν p̄,α

α + p̄,µν − ηµν
(
p̄αβ,

αβ − 1
2
ηαβ p̄

αβ
, + p̄,α

α

)
= 16πTµν (2.1.21)

p̄αν,µ
α + p̄αµ,ν

α − p̄µν,αα − ηµν p̄αβ,αβ = 16πTµν . (2.1.22)

From here it is standard [53] to choose the Lorenz gauge condition p̄µν,ν = 0. Three of the

four terms on the left side vanish and we get the linearized Einstein equations in Lorenz

gauge,

2p̄µν = −16πTµν . (2.1.23)

It is instructive to show that one can always find a gauge that satisfies the Lorenz gauge

condition. First, the trace of the metric perturbation transform as p′µµ = pµµ − Ξµ,µ −

Ξµ,µ ⇒ p′ = p − 2Ξµ,µ. From this we can compute the transformation of the trace-reverse

of the metric perturbation,

p̄′µν = p′µν −
1
2
ηµνp

′ = pµν − 2Ξ(µ,ν) −
1
2
ηµν (p− 2Ξα,α) = p̄µν − 2Ξ(µ,ν) + ηµνΞα,α (2.1.24)

Now, suppose that ∂ν p̄µν 6= 0. Perform a gauge transformation as described by Eq. (2.1.24),

and take the divergence of both sides:

∂ν p̄′µν = ∂ν
(
p̄µν − 2Ξ(µ,ν) + ηµνΞα,α

)
. (2.1.25)

Demand that the left side equal zero, so that the Lorenz gauge is satisfied in our new
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coordinates

0 = p̄µν,
ν − Ξµ,νν − Ξν,µν + ηµνΞα,αν . (2.1.26)

The last two terms cancel because partial derivatives commute and we are left with an

inhomogeneous wave equation,

2Ξµ = p̄µν,
ν . (2.1.27)

We can reduce the full linear field equations (2.1.22) to the form of Eq. (2.1.23) by finding

any 4-vector Ξµ that satisfies Eq. (2.1.27). While this puts restrictions on the form of

Ξµ, there is still residual gauge freedom because Eq. (2.1.27) is inhomogeneous. Given a

solution to an inhomogeneous differential equation, we can add any homogeneous solution

to it and get another inhomogeneous solution. To see this, assume the Lorenz gauge is

already satisfied. Then consider another linear-order gauge transformation

p̄′µν → p̄′′µν = p̄′µν − 2Ξ′(µ,ν) + ηµνΞ′α,α. (2.1.28)

Again, take the divergence of both sides and demand the left side vanish:

p̄′′µν,
ν = 0 = p̄′µν,

ν − Ξ′µ,ν
ν − Ξ′ν,µ

ν + ηµνΞ′α,
αν
. (2.1.29)

Again the last two terms cancel. Now, recall that we’ve already demanded that the Lorenz

gauge be satisfied, so the first term on the right side vanishes also. Therefore, we are

left with the following source-free wave equation that expresses the residual gauge freedom

2Ξ′µ = 0.

Relation of the Lorenz gauge to the Bianchi identities

There are 10 algebraically independent Einstein field equations. Conservation of energy-

momentum is expressed by the Bianchi identities,

∇νGµν = 8π∇νTµν = 0. (2.1.30)
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This is a set of four equations that limits the degrees of freedom inherent in the theory

down from 10 to 6. Consider now the linearized field equations in the Lorenz gauge (2.1.23).

Taking the divergence of both sides gives (note that in linearized gravity we take derivatives

with respect to the flat spacetime: ∇µ → ∂µ)

∂ν2p̄µν = 2
(
p̄µν,

ν
)

= 0 = −16πTµν,ν = 0. (2.1.31)

This equation is satisfied identically. The left side is an expression of the gauge condition,

while the right is conservation of energy-momentum. Therefore, using the freedom of a

linear-order gauge transformation to remove four of the degrees of freedom from the full

equations of linear gravity is equivalent to removing the same four degrees of freedom by

imposing the Bianchi identities.

2.2 Perturbed Einstein equations in curved space

This section also draws heavily upon [53]. As an extension of the previous section, we now

consider small changes from a curved background. Consider a known, background solution

to the Einstein equations gµν . A first-order perturbation to that metric, pµν yields

gµν = gµν + pµν |pµν | � |gµν |. (2.2.1)

We denote covariant derivatives with respect to the background metric gµν with ∇µ or |µ.

At first-order we raise and lower indices with the background metric. For the inverse metric

we find

δµν = (gµα + kµα) (gαν + pαν) = δµν + kµν + pµν +O(p2), (2.2.2)

and so as in flat space kµν = −pµν , implying gµν = gµν − pµν .

Now, consider the transformation law for the connection coefficients,

Γ′αβγ =
∂xµ

∂x′β
∂xν

∂x′γ
∂x′α

∂xσ
Γσµν −

∂xµ

∂x′β
∂xν

∂x′γ
∂2x′α

∂xµ∂xν
. (2.2.3)
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The first term is the standard tensor transformation law, but the second term breaks the

tensor relation. However, notice that this term only depends on the coordinates (it is not

traced over any geometrical objects). So, if we take the difference between two covariant

derivatives, these terms cancel out and we find

S′αβγ = Γ′αβγ − Γ′αβγ =
∂xµ

∂x′β
∂xν

∂x′γ
∂x′α

∂xσ
(Γσµν − Γσµν) =

∂xµ

∂x′β
∂xν

∂x′γ
∂x′α

∂xσ
Sσµν , (2.2.4)

where we use a sans-serif Γαβγ to represent the connection coefficient of the perturbed

spacetime Therefore, Sαβγ obeys the tensor transformation law and is indeed a tensor.

We now compute Sαβγ by using the standard connection coefficient expression to get

Sαβγ =
1
2

gαµ (gµγ,β + gβµ,γ − gβγ,µ + pµγ,β + pβµ,γ − pβγ,µ)

− 1
2
gαµ (gµγ,β + gβµ,γ − gβγ,µ) . (2.2.5)

Now, if we are in a locally Lorentz frame the background metric gµν = ηµν and its derivative

vanishes. Also, in that frame since connection terms (though not their derivatives) vanish

partial derivatives can be written as covariant derivatives (,µ =|µ). Therefore we have in the

locally Lorentz frame (we indicate an equality in a locally Lorentz frame with the symbol
∗=)

Sαβγ
∗=

1
2

gαµ
(
pµγ|β + pβµ|γ − pβγ|µ

)
. (2.2.6)

At this point, recognize that this is a tensor equation (note the importance of proving the

tensor nature of Sαβγ), and thus it must be true in all frames, so

Sαβγ =
1
2

gαµ
(
pµγ|β + pβµ|γ − pβγ|µ

)
. (2.2.7)

Using the standard Riemann tensor formula, we write down the difference between the
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perturbed Riemann tensor (Rαβγδ) and the background Riemann tensor,

Rαβγδ −Rαβγδ =
[
∂γΓαβδ − ∂δΓαβγ + ΓµβδΓ

α
µγ − ΓµβγΓαµδ

]

−
[
∂γΓαβδ − ∂δΓαβγ + ΓµβδΓαµγ − ΓµβγΓαµδ

]
. (2.2.8)

Again consider a locally Lorentz frame where the background connection terms vanish.

There, grouping terms we have

Rαβγδ −Rαβγδ ∗= ∂γ (Γαβδ − Γαβδ)− ∂δ (Γαβγ − Γαβγ) + ΓµβδΓ
α
µγ − ΓµβγΓαµδ. (2.2.9)

Because the background connections vanish, in this Lorentz frame we have Sαβγ = Γαβγ .

Also, as before ,µ =|µ, and so

Rαβγδ −Rαβγδ ∗= ∇γSαβδ −∇δSαβγ + SµβδS
α
µγ − SµβγSαµδ. (2.2.10)

Again, we notice that this is a tensor equation, and so it must be true in all frames,

Rαβγδ −Rαβγδ = Sαβδ|γ − Sαβγ|δ + SµβδS
α
µγ − SµβγSαµδ. (2.2.11)

Contracting over the first and third indices gives the difference in the Ricci tensors

Rβδ −Rβδ = Sαβδ|α − Sαβα|δ + SµβδS
α
µα − SµβαSαµδ. (2.2.12)

Direct calculations from Eqs. (2.2.7) and (2.2.12) give

Rβδ −Rβδ = ∇α
[

1
2

gαµ
(
pµδ|β + pβµ|δ − pβδ|µ

)]
−∇δ

[
1
2

gαµ
(
pµα|β + pβµ|α − pβα|µ

)]

+
1
4

gµνgαλ
(
pνδ|β + pβν|δ − pβδ|ν

) (
pλα|µ + pµλ|α − pµα|λ

)

− 1
4

gµζgασ
(
pζα|β + pβζ|α − pβα|ζ

) (
pσδ|µ + pµσ|δ − pµδ|σ

)
. (2.2.13)

Keeping terms up to linear-order (noting that they will be multiplying other factors of pαβ)
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in pαβ, we plug in for gαβ, and get (neglecting terms of order p3)

Rβδ −Rβδ = ∇α
[

1
2

(gαµ − pαµ)
(
pµδ|β + pβµ|δ − pβδ|µ

)]

−∇δ
[

1
2

(gαµ − pαµ)
(
pµα|β + pβµ|α − pβα|µ

)]

+
1
4

(gµν − pµν)
(
gαλ − pαλ

) (
pνδ|β + pβν|δ − pβδ|ν

) (
pλα|µ + pµλ|α − pµα|λ

)

− 1
4

(
gµζ − pµζ

)
(gασ − pασ)

(
pζα|β + pβζ|α − pβα|ζ

) (
pσδ|µ + pµσ|δ − pµδ|σ

)
. (2.2.14)

The first-order contribution is (defining 2 ≡ |αα and p ≡ pαα)

1Rµν =
1
2

(
−2pµν − p|µν + pαν|µα + p α

µ |να

)
= 8πTµν . (2.2.15)

As in flat space, it is convenient to introduce the trace-reverse of the metric perturbation

p̄µν = pµν − 1
2gµνp. Then Eq. (2.2.15) are written

2p̄µν + gµν p̄
αβ
|αβ − 2p̄ α

α(µ| ν) + 2Rαµβν p̄αβ − 2Rα(µp̄ν)
α = −16πTµν , (2.2.16)

where the Riemann and Ricci tensor terms result from commuting covariant derivatives.

This seems to have only complicated matters, but if we impose the Lorenz gauge condition,

p̄µν|
ν = 0, we see a vast simplification. The second and third terms vanish due to the gauge

condition. In addition, the last term also vanishes because Rµν = 0. Thus, the first-order

Einstein equations, in Lorenz gauge are

2p̄µν + 2Rαµβν p̄αβ = −16πTµν . (2.2.17)

2.3 The M2 × S2 decomposition in a spherically symmetric
spacetime

Now we specialize to a spherically symmetric background. In this section we introduce

formalism from [55] for doing a harmonic decomposition of scalar, vectors, and tensors in

such a spacetime. We specialize to Schwarzschild spacetime with Schwarzschild coordinates
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and decompose its metric gµν on two submanifolds, yielding gab and gAB = r2ΩAB. Here

a, b, . . . ∈ {0, 1} and A,B, . . . ∈ {θ, φ}. The xa coordinates span the “(t, r) plane” while xA

are the standard two-sphere polar and azimuthal coordinates. In matrix form we have

gµν
.=




g00 g01 0 0

g10 g11 0 0

0 0 r2Ωθθ r2Ωθφ

0 0 r2Ωφθ r2Ωφφ




=




g00 g01 0 0

g10 g11 0 0

0 0 r2 0

0 0 0 r2 sin2 θ



. (2.3.1)

Specifically, we are interested in an expression of the Schwarzschild metric that is covariant

under two-dimensional transformations: xa → x′a. The line element can be written as

ds2 = gab dx
adxb + r2ΩAB dxAdxB. (2.3.2)

In Schwarzschild coordinates, the submanifold M2 has a metric and inverse

gab
.=



−f 0

0 1/f


 , gab

.=



−1/f 0

0 f


 , f ≡ 1− 2M

r
. (2.3.3)

The unit two-sphere has a metric and inverse

ΩAB
.=




1 0

0 sin2 θ


 , ΩAB .=




1 0

0 1/ sin2 θ


 . (2.3.4)

Note that in general (off the unit two-sphere) we use the metric gAB ≡ r2ΩAB.

2.3.1 The Submanifold M2

The connection coefficients on M2 are computed in the standard way

Γabc =
1
2
gad (gcd,b + gdb,c − gbc,d) . (2.3.5)
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In Schwarzschild coordinates, the submanifold M2 has a metric and inverse given by

Eq. (2.3.3). From these expressions, we see that the only derivatives of the metric that

survive are

∂rgtt = −∂rf = −2M
r2

, ∂rgrr = ∂r
(
f−1

)
= −f−2∂rf = − 1

f2

2M
r2

= − 2M
(r − 2M)2 .

(2.3.6)

Then, the non-vanishing connection coefficients are

Γrrr =
1
2
grr (grr,r + grr,r − grr,r) =

1
2
r − 2M

r

−2M
(r − 2M)2 = − 1

f

M

r2
, (2.3.7)

Γrtt =
1
2
grr (gtr,t + grt,t − gtt,r) =

1
2
r − 2M

r

2M
r2

= f
M

r2
, (2.3.8)

Γtrt = Γttr =
1
2
gtt (grt,t + gtt,r − gtr,t) =

1
2
−r

r − 2M
−2M
r2

=
1
f

M

r2
. (2.3.9)

With the connection coefficients calculated, we can compute the form of the wave op-

erator on this submanifold. Use h(xa) to represent a scalar test function on which the box

operator will act. Then, we have

2h ≡ gab∇a∇bh = gab∇a∂bh = − 1
f
∂2
t h+ f∂2

rh+ 2
M

r2
∂rh. (2.3.10)

Introducing the tortoise coordinate, defined through the differential equation dr/dr∗ = f ,

we change this expression to

2h = − 1
f
∂2
t h+ f∂r

[
dr∗
dr

∂r∗h

]
+ 2

M

r2

dr∗
dr

∂r∗h =
1
f

(
−∂2

t + ∂2
r∗

)
h. (2.3.11)

Additionally, we will need the Levi-Civta tensor on M2, which is

εab
.=




0 1

−1 0


 εab

.=




0 −1

1 0


 (2.3.12)

32



in Schwarzschild coordinates. Also, we define

ra ≡
∂r

∂xa
.=




0

1


 and ta ≡ −εabrb .=




1

0


 , (2.3.13)

which serve as a basis for vectors on M2.

2.3.2 The Submanifold S2

We define a compatible covariant derivative from DAgBC = r2DAΩBC ≡ 0. Note the r2

which connects the definitions of ΩAB and gAB pulls through the covariant derivative, as r

is constant on any given two-sphere. In order to use the covariant derivative we will need

connection coefficients, found in the standard way

ΓABC =
1

2r2
ΩADr2 (ΩCD,B + ΩDB,C − ΩBC,D) . (2.3.14)

Clearly, the only partial derivative of the metric that will not vanish is Ωφφ,θ = 2 sin θ cos θ.

With this in mind, we find that the only non-vanishing coefficients are

Γθφφ =
1
2

Ωθθ (Ωφθ,φ + Ωθφ,φ − Ωφφ,θ) = − sin θ cos θ (2.3.15)

Γφφθ = Γφθφ =
1
2

Ωφφ (Ωφθ,φ + Ωθφ,φ − Ωφφ,θ) =
cos θ
sin θ

. (2.3.16)

The Riemann tensor is computed in the normal way, through

RABCD = ∂CΓABD − ∂DΓABC + ΓEBDΓAEC − ΓEBCΓAED. (2.3.17)

We contract over the first and third indices to find the Ricci tensor

RBD = RABAD = ∂AΓABD − ∂DΓABA + ΓEBDΓAEA − ΓEBAΓAED. (2.3.18)

33



Finally, the Ricci scalar is found by contracting over the two remaining indices,

R = gBDRBD =
1
r2

ΩBD
(
∂AΓABD − ∂DΓABA + ΓEBDΓAEA − ΓEBAΓAED

)
. (2.3.19)

Now, we plug in the non-vanishing connection coefficients to find

R =
2
r2
. (2.3.20)

Recall, finally that the Riemann tensor on a maximally symmetric two-dimensional space

is written as [59]

RABCD =
R

2
(gACgBD − gADgBC) , (2.3.21)

which means for our case that

RABCD =
1
r2

(gACgBD − gADgBC) = r2 (ΩACΩBD − ΩADΩBC) , (2.3.22)

and the Ricci tensor is

RBD =
1
r2

ΩACRABCD =
1
r2

ΩACr2 (ΩACΩBD − ΩADΩBC) = ΩBD. (2.3.23)

Now, consider spherical harmonics, starting with the scalar case. They are eigenfunc-

tions, satisfying the equation

[
1

sin θ
∂θ (sin θ · ∂θ) +

1
sin2 θ

∂2
φ + ` (`+ 1)

]
Y`m(θ, φ) = 0. (2.3.24)

Acting on a test scalar function f we have

ΩABDADBf = ΩAB
(
∂A∂B − ΓCAB∂C

)
f (2.3.25)

= ∂2
θf − ΓCθθ∂Cf +

1
sin2 θ

∂2
φf −

1
sin2 θ

ΓCφφ∂Cf (2.3.26)

=
(

1
sin θ

∂θ (sin θ · ∂θ) +
1

sin2 θ
∂2
φ

)
f. (2.3.27)
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So, we can write Eq. (2.3.24) in the compact form

[
ΩABDADB + ` (`+ 1)

]
Y`m(θ, φ) = 0. (2.3.28)

The solution to this equation with standard normalization [31] is

Y`m =

√
2`+ 1

4π
(`−m)!
(`+m)!

Pm` (cos θ)eimφ (2.3.29)

where Pm` are the associated Legendre functions. These are an orthonormal set of functions,

∫
Y`m(θ, φ)Ȳ`′m′(θ, φ)dΩ = δ``′δmm′ . (2.3.30)

Here dΩ = sin θ dθ dφ and the overbar represents complex conjugation.

We can use the covariant derivativeDA to take derivatives of this scalar function to define

vector and tensor spherical harmonics. There are even- and odd-parity vector spherical

harmonics. We define the even ones as the covariant derivative of the scalar harmonics:

Y `m
A (θ, φ) ≡ DAY

`m (θ, φ) .=



∂θY`m

∂φY`m


 . (2.3.31)

In order to create the odd-parity vectorial harmonics we need to define the Levi-Civita

tensor on the two-sphere:

εAB
.=




0 sin θ

− sin θ 0


 . (2.3.32)

Using this, the odd-parity harmonics are

X`m
A (θ, φ) ≡ −εABDBY

`m (θ, φ) = −ΩCBεACY
`m
B (θ, φ) . (2.3.33)
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Switching to matrices we can calculate the components:

X`m
A (θ, φ) .= −




0 sin θ

− sin θ 0







1 0

0 1/ sin2 θ






∂θY`m

∂φY`m


 (2.3.34)

.=



−∂φY`m/ sin θ

sin θ ∂θY`m


 . (2.3.35)

The tensor spherical harmonics also are either even- and odd-parity. There are two

even-parity ones,

Y`mΩAB
.=



Y`m 0

0 sin2 θY`m


 (2.3.36)

and the more complicated

Y `m
AB ≡

[
DADB +

1
2
` (`+ 1) ΩAB

]
Y`m (2.3.37)

= ∂A∂BY`m − ΓCAB∂CY`m +
1
2
` (`+ 1) ΩABY`m. (2.3.38)

We’ve already calculated the connection coefficients, so evaluating this is straightforward,

leaving us with the components

Y `m
AB

.=




(
∂2
θ + `(`+1)

2

)
Y`m (∂θ∂φ − cot θ ∂φ)Y`m

(∂θ∂φ − cot θ ∂φ)Y`m
(
∂2
φ + sin θ cos θ ∂θ + `(`+1)

2 sin2 θ
)
Y`m


 . (2.3.39)

The odd-parity tensor harmonics are

X`m
AB = −1

2
[
εA

CDB + εB
CDA

]
DCY`m (2.3.40)

= −1
2

[
εA

θDBDθ + εA
φDBDφ + εB

φDADθ + εB
φDADφ

]
Y`m. (2.3.41)
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In matrix form we have

X`m
AB

.=




(
− 1

sin θ∂θ∂φ + cos θ
sin2 θ

∂φ

)
Y`m −1

2

(
∂2
φ

sin θ + cos θ ∂θ − sin θ ∂2
θ

)
Y`m

−1
2

(
∂2
φ

sin θ + cos θ ∂θ − sin θ ∂2
θ

)
Y`m (sin θ ∂φ∂θ − cos θ ∂φ)Y`m


 .

(2.3.42)

Now we look at some identities involving these spherical harmonics. We have already

seen in Eq. (2.3.30) that the scalar spherical harmonics are orthonormal. Now consider

∫
Y A
`mȲ

`′m′
A dΩ =

1
r2

∫
ΩABDAY`mDBȲ`′m′dΩ (2.3.43)

=
1
r2

∫ (
∂θY`m∂θȲ`′m′ +

1
sin2 θ

∂φY`m∂φȲ`′m′

)
sin θ dθ dφ. (2.3.44)

We integrate by parts (note that surface terms vanish by periodicity as we integrate of the

full 4π steradians) and find

∫
Y A
`mȲ

`′m′
A dΩ =

1
r2

∫ [
− 1

sin θ
∂θ (sin θ ∂θY`m) Ȳ`′m′

− 1
sin2 θ

∂2
φY`mȲ`′m′

]
sin θ dθ dφ (2.3.45)

=
1
r2
`(`+ 1)δ``′δmm′ . (2.3.46)

The odd-parity equivalent is

∫
XA
`mX̄

`′m′
A dΩ =

∫
εACY

C
`mεA

BȲ `′m′
B dΩ. (2.3.47)

This 2D contraction of the Levi-Civita tensor gives the negative of the Kronecker delta, and

therefore

∫
XA
`mX̄

`′m′
A dΩ =

∫
δBCY

C
`mȲ

`′m′
B dΩ =

∫
Y A
`mȲ

`′m′
A dΩ =

1
r2
`(`+ 1)δ``′δmm′ . (2.3.48)
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Now, when we contract the even and odd-parity vector harmonics we get

∫
Y A
`mX̄

`′m′
A dΩ = −

∫
DAY

`mεABDBȲ
`′m′dΩ. (2.3.49)

By parts integration we have

∫
Y A
`mX̄

`′m′
A dΩ =

∫
εABDADBY

`mȲ `′m′dΩ = 0 =
∫
Ȳ A
`mX

`′m′
A dΩ, (2.3.50)

because of the derivatives commute while the Levi-Civita tensor is antisymmetric. Consider

nowΩABDADBY
`m
C = ΩABDADBDCY

`m. The two closest covariant derivatives commute,

but we have to use the rule

[DA, DB]V C = RCDABV
D ⇒ [DA, DB]VC = R D

C ABVD (2.3.51)

to commute the outer two, and therefore

ΩABDADBY
`m
C = ΩABDADCDBY

`m (2.3.52)

= ΩAB
(
DCDADB +R D

B ACDD

)
Y `m. (2.3.53)

Using the differential equation for the scalar harmonics, we get

ΩABDADBY
`m
C = −`(`+ 1)Y `m

C + ΩAB 1
r2

ΩDE (ΩBAΩEC − ΩBCΩEA)Y `m
D (2.3.54)

=
[
1− `(`+ 1)

]
Y `m
C . (2.3.55)

Additionally, we have

ΩABDADBX
`m
C = −εCDΩABDADBY

`m
D =

[
1− `(`+ 1)

]
X`m
C . (2.3.56)
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Taking the divergence Y A
`m and XA

`m gives

DAY
A
`m =

1
r2

ΩABDADBY`m = −`(`+ 1)
r2

Y`m (2.3.57)

DAX
A
`m = − 1

r2
ΩABDAεB

CDCY`m = − 1
r2
εACDADCY`m = 0. (2.3.58)

Now we consider contractions of the tensor harmonics. First of all, because they are

each trace free, we have

ΩABY `m
AB = ΩABX`m

AB = 0. (2.3.59)

This is clear from inspecting the matrix forms of these harmonics above. Note that this

implies that both Y `m
AB and X`m

AB are orthogonal to ΩABY`m. Now, we consider

∫
Y AB
`m Ȳ `′m′

AB dΩ

=
∫
gACgBD

[
DCDD +

` (`+ 1)
2

ΩDC

]
Y`m

[
DADB +

`′ (`′ + 1)
2

ΩAB

]
Ȳ `′m′dΩ (2.3.60)

=
1
r4

∫ [
−ΩACΩBDDADCDDY`mDBȲ

`′m′ − 1
2
`′
(
`′ + 1

)
` (`+ 1)Y`mȲ `′m′

]
dΩ (2.3.61)

So, in order to evaluate this we need the harmonic operator (ΩABDADB) acting on YC ,

which we calculated above. Using it and the completeness of the scalar harmonics gives

∫
Y AB
`m Ȳ `′m′

AB dΩ

=
1
r4

∫ [
−ΩBD

[
1− `(`+ 1)

]
DDY`mDBȲ

`′m′
]
dΩ− 1

2r4
`2 (`+ 1)2 δ``′δmm′ (2.3.62)

=
1

2r4
(`− 1)` (`+ 1) (`+ 2)δ``′δmm′ . (2.3.63)

A similar, though slightly longer calculation for the odd-parity case gives

∫
XAB
`m X̄`′m′

AB dΩ =
1

2r4
(`− 1)` (`+ 1) (`+ 2)δ``′δmm′ . (2.3.64)
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For the divergence of the tensor harmonics we first consider the even-parity case,

DBY `m
AB =

1
r2

ΩBCDC

[
DADBY

`m +
1
2
` (`+ 1) ΩABY

`m

]
, (2.3.65)

=
1
r2

ΩBC
(
DADCDBY

`m +R D
B CADDY

`m
)

+
1

2r2
` (`+ 1)DAY

`m, (2.3.66)

=
1
r2

[
1− 1

2
` (`+ 1)

]
Y `m
A . (2.3.67)

For the odd-parity harmonics we have

DBX`m
AB =

1
2

1
r2

ΩBDDD

[
DBX

`m
A +DAX

`m
B

]
, (2.3.68)

=
1

2r2

[
1− `(`+ 1)

]
X`m
A +

1
2r2

ΩBD
(
DADDX

`m
B +RBCDAX

C
`m

)
. (2.3.69)

The divergence of X`m
B vanishes, so we are left with

DBX`m
AB =

1
2r2

[
1− `(`+ 1)

]
X`m
A +

1
2r2

ΩBDr2 (ΩBDΩCA − ΩBAΩCD)XC
`m, (2.3.70)

=
1
r2

[
1− 1

2
` (`+ 1)

]
X`m
A . (2.3.71)

Recurrence relation

Here we present a recurrence relation for the harmonics, which is useful when doing numer-

ical calculations. First, we separate them into functions of θ and φ alone

Y`m(θ, φ) = Am` (x)eimφ, x ≡ cos θ (2.3.72)

with

Am` (x) =

√
2`+ 1

4π
(`−m)!
(`+m)!

Pm` (x). (2.3.73)

Next, consider the recursion relation for the associated Legendre functions

(`−m)Pm` (x) = (2`− 1)xPm`−1(x)− (`+m− 1)Pm`−2(x). (2.3.74)
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We’ll use this to develop a recursion relation for our functions Am` , and then extend that

to the spherical harmonics. Now, using Eq. (2.3.73) to express the associated Legendre

functions in terms of Am` , we have

Pm` (x) =

√
4π

2`+ 1
(`+m)!
(`−m)!

Am` (x) (2.3.75)

Pm`−1(x) =

√
4π

2`− 1
(`+m− 1)!
(`−m− 1)!

Am`−1(x) (2.3.76)

Pm`−2(x) =

√
4π

2`− 3
(`+m− 2)!
(`−m− 2)!

Am`−2(x). (2.3.77)

Plugging into Eq. (2.3.74) we get

Am` (x) = x

√
(2`+ 1)(2`− 1)
(`+m)(`−m)

Am`−1(x)−
√

2`+ 1
2`− 3

(`+m− 1)(`−m− 1)
(`+m)(`−m)

Am`−2(x). (2.3.78)

Then, multiplying through by eimφ and recalling that x ≡ cos θ we have our recursion

relation

Y`m = cos θ

√
(2`+ 1)(2`− 1)
(`+m)(`−m)

Y`−1,m −
√

2`+ 1
2`− 3

(`+m− 1)(`−m− 1)
(`+m)(`−m)

Y`−2,m. (2.3.79)

This is a bit strange as recursion relations go. One might expect for a given `, to start with

Y`0 and then calculate Y`1, then Y`2, up to Y``, but this is not what we have found. Rather,

for a given value of m, we can calculate the next value of `.

In order to use the recursion relation, we need a way to get started. This is provided

by the identity

Pmm (x) = (−1)m(2m− 1)!!
(
1− x2

)m/2
. (2.3.80)

Absorbing the coefficient from Eq. (2.3.72) this becomes

Amm(x) = (−1)m
√

2m+ 1
4π

(m−m)!
(m+m)!

(2m− 1)!!
(
1− x2

)m/2
. (2.3.81)

This is a perfectly valid expression, but if we manipulate it, we can put it in a form that will
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be much easier to use numerically. Expanding out the factorials and multiplying through

by exp(imφ) .

Ymm =
(−1)m√

4π

√(
2m+ 1

2m

)(
2m− 1
2m− 2

)
· · ·
(

5
4

)(
3
2

)
(sin θ)m eimφ. (2.3.82)

This is a useful form of this equation because each of the terms under the radical is on the

order of one.

To calculate the derivatives of the spherical harmonics we need another recursion rela-

tion. The φ derivatives are easy. From Eq. (2.3.72) we see

∂Y`m
∂φ

= imY`m. (2.3.83)

For the θ derivatives, we return to Eq. (2.3.79), giving

∂Y`m
∂θ

=

√
(2`+ 1)(2`− 1)
(`+m)(`−m)

(cos θ ∂θ (Y`−1,m)− sin θ Y`−1,m)

−
√

2`+ 1
2`− 3

(`+m− 1)(`−m− 1)
(`+m)(`−m)

∂θ (Y`−2,m) (2.3.84)

If we want to use these recursion relations, we need somewhere to start. Returning to look

at Eq. (2.3.82), we see that

∂Ymm
∂θ

=
(−1)m√

4π

√(
2m+ 1

2m

)(
2m− 1
2m− 2

)
· · ·
(

5
4

)(
3
2

)
(m · sinm θ · cos θ) eimφ. (2.3.85)

The benefit of this expression is that, although the total numerator and the total denomina-

tor under the radical can be very large numbers, if we group the terms wisely, the quotient

can be computed with no numerical trouble.

Now, let’s consider second derivatives. The φ derivatives are simpler again. First, we

have
∂2Y`m
∂φ2

= −m2 Y`m. (2.3.86)
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Also, we have, for both of the mixed partials

∂2Y`m
∂φ ∂θ

=
∂2Y`m
∂θ ∂φ

= im
∂Y`m
∂θ

(2.3.87)

The plot gets more interesting with the second θ derivative of Y`m. Returning to Eq. (2.3.84),

we directly differentiate to get

∂2Y`m
∂θ2

=

√
(2`+ 1)(2`− 1)
(`+m)(`−m)

(
cos θ ∂2

θ (Y`−1,m)− 2 sin θ ∂θY`−1,m − cos θ Y`−1,m

)

−
√

2`+ 1
2`− 3

(`+m− 1)(`−m− 1)
(`+m)(`−m)

∂2
θ (Y`−2,m) . (2.3.88)

This section has provided a practical way of computing spherical harmonics for arbi-

trarily high `,m values. The recurrence relation is useful because the standard textbook

expressions (e.g. [31]) are not practical numerically, as the factorial terms grow inconve-

niently large.

2.4 First-order field equations

2.4.1 Harmonic decomposition

Martel and Poisson [55] give covariant and gauge-invariant field equations. Following their

lead, we decompose the metric perturbation pµν as

pab (xµ) =
∑

`,m

h`mab Y
`m,

paB (xµ) =
∑

`,m

[
j`ma Y `m

B + h`ma X`m
B

]
,

pAB (xµ) =
∑

`,m

[
r2
(
K`mΩABY

`m +G`mY `m
AB

)
+ h`m2 X`m

AB

]
.

(2.4.1)

We refer to the coefficients of the spherical harmonics (h`mab , j
`m
a , h`ma ,K`m, G`m, h`m2 ) as the

metric perturbation amplitudes (or just amplitudes for short). They are functions of only

t and r. Inserting Eq. (2.4.1) into the first-order Einstein equations (2.2.17), yields field
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equations for the amplitudes. Martel and Poisson give the details of how the equations are

derived. We follow their lead and start by writing the field equations for gauge-invariant

quantities in Schwarzschild coordinates. We show how this is equivalent to writing the field

equations in Regge-Wheeler gauge. We then write them in a gauge-undefined way and

eventually Lorenz gauge. Through the rest of this section we suppress ` and m indices for

brevity.

Even-parity sector

In the even-parity sector there are four gauge-invariant fields, formed from linear combina-

tions of the metric perturbation amplitudes and their first derivatives [55]

h̃tt = htt − 2∂tjt +
2Mf

r2
jr + r2∂2

tG−Mf∂rG

h̃tr = htr − ∂rjt − ∂tjr +
2M
fr2

jt + r2∂t∂rG+
r − 3M

f
∂tG

h̃rr = hrr − 2∂rjr −
2M
fr2

jr + r2∂2
rG+

2r − 3M
f

∂rG

K̃ = K − 2f
r
jr + rf∂rG+ (λ+ 1)G.

(2.4.2)

Written in terms of those gauge-invariant fields, the seven field equations are

−∂2
r K̃ −

3r − 5M
r2f

∂rK̃ +
f

r
∂rh̃rr +

(λ+ 2) r + 2M
r3

h̃rr +
λ

r2f
K̃ = Qtt, (2.4.3)

∂t∂rK̃ +
r − 3M
r2f

∂tK̃ −
f

r
∂th̃rr −

λ+ 1
r2

h̃tr = Qtr, (2.4.4)

−∂2
t K̃ +

(r −M)f
r2

∂rK̃ +
2f
r
∂th̃tr −

f

r
∂rh̃tt

+
(λ+ 1)r + 2M

r3
h̃tt −

f2

r2
h̃rr −

λf

r2
K̃ = Qrr,

(2.4.5)

∂th̃rr − ∂rh̃tr +
1
f
∂tK̃ −

2M
r2f

h̃tr = Qt, (2.4.6)

−∂th̃tr + ∂rh̃tt − f∂rK̃ −
r −M
r2f

h̃tt +
(r −M)f

r2
h̃rr = Qr, (2.4.7)
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−∂2
t h̃rr + 2∂t∂rh̃tr − ∂2

r h̃tt −
1
f
∂2
t K̃ + f∂2

r K̃

+
2(r −M)
r2f

∂th̃tr −
r − 3M
r2f

∂rh̃tt −
(r −M)f

r2
∂rh̃rr +

2(r −M)
r2

∂rK̃

+
(λ+ 1)r2 − 2(λ+ 2)Mr + 2M2

r4f2
h̃tt −

(λ+ 1)r2 − 2λMr − 2M2

r4
h̃rr = Q[,

(2.4.8)

1
f
h̃tt − fh̃rr = Q], (2.4.9)

which have source terms

Qab(t, r) ≡ 8π
∫
T abY ∗ dΩ, Qa(t, r) ≡ 16πr2

`(`+ 1)

∫
T aBY ∗B dΩ,

Q[(t, r) ≡ 8πr2

∫
TABΩABY

∗ dΩ, Q](t, r) ≡ 32πr4 (`− 2)!
(`+ 2)!

∫
TABY ∗AB dΩ.

(2.4.10)

Odd-parity sector

In the odd-parity sector there are two gauge-invariant fields, formed from linear combina-

tions of the metric perturbation amplitudes and their first derivatives [55]

h̃t ≡ ht −
1
2
∂h2

∂t
, h̃r ≡ hr −

1
2
∂h2

∂r
+
h2

r
. (2.4.11)

Written in terms of those gauge-invariant fields, the three field equations are

−∂t∂rh̃r + ∂2
r h̃t −

2
r
∂th̃r −

2(λ+ 1)r − 4M
r3f

h̃t = P t, (2.4.12)

∂2
t h̃r − ∂t∂rh̃t +

2
r
∂th̃t +

2λf
r2

h̃r = P r, (2.4.13)

− 1
f
∂th̃t + f∂rh̃r +

2M
r2

h̃r = P, (2.4.14)

which have source terms

P a(t, r) ≡ 16πr2

`(`+ 1)

∫
T aBX∗B dΩ, P (t, r) ≡ 16πr4 (`− 2)!

(`+ 2)!

∫
TABX∗AB dΩ. (2.4.15)
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2.4.2 Regge-Wheeler gauge

Regge-Wheeler is an algebraic gauge in which four of the ten components of the metric

perturbation are set to zero. This leads to a dramatic simplification of the field equations,

but introduces some gauge artifacts which must be dealt with carefully (see Chapter 5).

Even-parity sector

We use our gauge freedom to set G = jt = jr = 0. Examining the gauge invariant quantities,

we find

h̃tt = htt, h̃tr = htr, h̃rr = hrr, K̃ = K. (2.4.16)

Therefore, the fields in RW gauge are the gauge-invariant fields themselves, and the field

equations in RW gauge are simply those given above with all the tildes removed. Inciden-

tally, note that if one has the metric perturbation in another gauge, it is trivial to obtain

it in RW: simply form the gauge-invariant fields; those are the fields in RW gauge. This is

a powerful and straightforward way of checking if two first-order answers to the Einstein

equations, computed in different gauges, are indeed the same solutions.

At this point, it is common to reduce the even-parity field equations to one master

equation. After solving the master equation, the metric perturbation can be reconstructed.

Details of this can be found in Chapter 4.

Odd-parity sector

We use our gauge freedom to set h2. Examining the gauge invariant quantities, we find

h̃t = ht, h̃r = hr. (2.4.17)

Therefore, the fields in RW gauge are the gauge-invariant fields themselves, and the field

equations in RW gauge are simply those given above with all the tildes removed. Again, if

one has the metric perturbation in another gauge, it is trivial to obtain it in RW: simply

form the gauge-invariant fields; those are the fields in RW gauge.
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At this point, it is also common to reduce the odd-parity field equations to one master

equation. After solving the master equation, the metric perturbation can be reconstructed.

Details of this can also be found in Chapter 4.

2.4.3 Lorenz gauge

We now form the Lorenz gauge field equations in a number of steps. We start by deriving

the four Lorenz gauge conditions for each mode. Three of these are in the even-parity

sector and one is odd. Then, we insert the gauge-invariant equations above into the gauge-

invariant fields. This gives a set of “gauge-undefined” equations. Finally, we impose the

Lorenz gauge condition and obtain the field equations in Lorenz gauge.

The Lorenz gauge condition is p̄µν |ν = 0, which we expand as

p̄µν |ν = p̄µν,ν + 4Γµαβ p̄αβ + 4Γαβαp̄µβ = 0. (2.4.18)

Now, after the divergence is taken we are left with a vector. The part on the M2 sector is

p̄aν |ν = p̄ab,b + p̄aB,B + 4Γabcp̄bc + 4ΓaBC p̄BC + 4ΓabC p̄bC + 4ΓaBcp̄Bc

+ 4Γbcbp̄ac + 4ΓbBbp̄aB + 4ΓAbAp̄ab + 4ΓABAp̄aB = 0. (2.4.19)

When we write the connection coefficients with a pre-superscript 4, it indicates that this is

a connection coefficient of the full 4D spacetime. These are related to the connection terms

on M2 and S2 by [recall the definition of ra in Eq. (2.3.13)]

4Γabc = Γabc, 4ΓABC = ΓABC , 4ΓaBc = 4ΓacB = 0,

4ΓaBC = −rraΩBC ,
4ΓABc = 4ΓAcB =

1
r
rcδ

A
B,

4ΓAbc = 0.
(2.4.20)

Then, Eq. (2.4.19) becomes

p̄aν |ν = p̄ab,b + p̄aB,B + Γabcp̄bc − rraΩBC p̄
BC + Γbcbp̄ac +

1
r
rbδ

A
Ap̄

ab + ΓABAp̄aB, (2.4.21)

= ∇bp̄ab +DB p̄
aB − rraΩBC p̄

BC +
2
r
rbp̄

ab = 0. (2.4.22)
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Lowering indices we have

gacp̄
aν
|ν = gac∇bp̄ab + gacg

BCDB p̄
a
C − gac

1
r
ragBDgCEgBC p̄DE + gac

2
r
rbp̄ab, (2.4.23)

= ∇bp̄cb +
1
r2

ΩBCDB p̄cC − rc
1
r3

ΩDE p̄DE +
2
r
rbp̄cb = 0. (2.4.24)

The part of the vector on the two-sphere is

p̄Aν |ν = p̄Ab,b + p̄AB,B + 4ΓAbcp̄bc + 4ΓABC p̄BC + 4ΓAbC p̄bC + 4ΓABcp̄Bc

+ 4Γbcbp̄Ac + 4ΓbBbp̄AB + 4ΓBbB p̄Ab + 4ΓCBC p̄AB = 0. (2.4.25)

Substituting for the full, 4D connections we have

p̄Aν |ν = p̄Ab,b + p̄AB,B + ΓABC p̄BC +
1
r
rbp̄

bA

+
1
r
rcp̄

Ac + Γbcbp̄Ac +
2
r
rbp̄

Ab + ΓCBC p̄AB, (2.4.26)

= ∇bp̄Ab +DB p̄
AB +

4
r
rbp̄

Ab = 0. (2.4.27)

Again, we lower indices, giving

gAC p̄
Aν
|ν = r2ΩAC∇bp̄Ab +DB p̄CB +

4
r
rbp̄Cb, (2.4.28)

= ∇b
(
r2ΩAC p̄

Ab
)
−∇b

(
r2
)

ΩAC p̄
Ab +DB p̄CB +

4
r
rbp̄Cb, (2.4.29)

= ∇bp̄Cb +DB p̄CB +
2
r
rbp̄Cb = 0. (2.4.30)

The metric perturbation expands as given in Eq. (2.4.1), so its trace-reverse is

p̄µν = pµν −
1
2
gµν

[
gabhabY + gAB

(
r2 (KΩABY +GYAB) + h2XAB

)]
. (2.4.31)

Both YAB and XAB are trace-free, and therefore

p̄µν = pµν −
1
2
gµν

(
gabhab + 2K

)
Y. (2.4.32)
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The trace-reverse for the different sectors is

p̄ab =
(
hab −

1
2
gab (hcc + 2K)

)
Y, (2.4.33)

p̄aB = jaYB + haXB, (2.4.34)

p̄AB = r2
(
KΩABY +GYAB

)
+ h2XAB −

1
2
gAB (hcc + 2K)Y, (2.4.35)

= r2

(
−1

2
hccΩABY +GYAB

)
+ h2XAB. (2.4.36)

Inserting these in Eq. (2.4.24) yields

gab∇a
[
hcb −

1
2
gcb

(
hdd + 2K

)]
Y +

1
r2

ΩBCDB (jcYC + hcXC)

− rc
1
r3

ΩDE

[
r2

(
−1

2
hddΩDEY +GYDE

)
+ h2XDE

]

+
2
r
rb
[
hcb −

1
2
gcb

(
hdd + 2K

)]
Y = 0. (2.4.37)

The tensor harmonics YAB and XAB are trace-free, so (using the completeness of the scalar

harmonics and simplifying)

gab∇a
[
hcb −

1
2
gcb

(
hdd + 2K

)]
− jc
r2
`(`+ 1) +

2
r
rbhcb −

2
r
rcK = 0. (2.4.38)

The part of the vector on the two-sphere is

p̄Aν |ν =
(
∇b +

4
r
rb

)(
jbY A + hbXA

)

+DB

[
r2

(
−1

2
hccΩABY +GY AB

)
+ h2X

AB

]
= 0. (2.4.39)

Using identities derived in Sec. 2.3.2 to rewrite the divergences of the tensor harmonics,

p̄Aν |ν =
(
∇b +

4
r
rb

)(
jbY A + hbXA

)
−
(

1
2
hcc − λG

)
Y A − λ

r2
h2X

A = 0. (2.4.40)

Now, we use the orthogonality of the vector harmonics. First, multiplying by the even-

parity vector harmonic kills off the odd-parity terms and leaves behind an equation in only
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t and r,

∇b
(
jb

1
r2

)
+

4
r
rbj

b 1
r2

+ r2

[
− 1

2r2
hcc +

1
r2

(
1− 1

2
` (`+ 1)

)
G

]
1
r2

= 0. (2.4.41)

Now, simplifying and defining λ ≡ (`+ 2)(`− 1)/2,

(
∇b +

2
r
rb

)
jb − 1

2
hcc − λG = 0. (2.4.42)

For the odd parity we return to Eq. (2.4.40). The orthogonality condition for the XA will

create a r−2 term that modifies the 4rb/r. In the end, the scalar equation we are left with

is

(
∇b +

2
r
rb

)
hb − λ

r2
h2 = 0. (2.4.43)

Even-parity field equations

First, for the gauge conditions on the M2 sector

gab
(
∂ahcb − Γdabhcd − Γdachdb

)
− 1

2
∂ch

d
d

− ∂cK −
jc
r2
`(`+ 1) +

2
r
rbhcb −

rc
r

2K = 0. (2.4.44)

Plugging in for the connection terms, we get two equations,

− 1
2f
∂thtt −

f

2
∂thrr + f∂rhtr − ∂tK +

2
r2

(r −M)hrt −
`(`+ 1)
r2

jt = 0, (2.4.45)

− 1
f
∂thrt +

f

2
∂rhrr +

1
2f
∂rhtt − ∂rK −

`(`+ 1)
r2

jr +
2
r2

(r −M)hrr −
2
r
K = 0. (2.4.46)

The even-parity gauge condition on the two-sphere reduces to

− 1
f
∂tjt + f∂rjr +

2
r2

(r −M) jr +
1

2f
htt −

f

2
hrr − λG = 0. (2.4.47)

50



Plugging in the gauge-invariant fields, we obtain a set of gauge-undefined Einstein equa-

tions,

−∂2
rK −

3r − 5M
r2f

∂rK +
f

r
∂rhrr − 2

(λ+ 1)
r2

∂rjr + 2
(λ+ 1)(M − r)

r4f
jr

+
λ(λ+ 1)
r2f

G+
(λ+ 2) r + 2M

r3
hrr +

λ

r2f
K = Qtt,

(2.4.48)

∂t∂rK +
r − 3M
r2f

∂tK −
f

r
∂thrr +

λ+ 1
r2

∂tjr +
λ+ 1
r2

∂rjt

−λ+ 1
r2

htr −
2M(λ+ 1)

r4f
jt = Qtr,

(2.4.49)

−∂2
tK +

(r −M)f
r2

∂rK +
2f
r
∂thtr −

f

r
∂rhtt

−2
λ+ 1
r2

∂tjt +
(λ+ 1)r + 2M

r3
htt −

f2

r2
hrr

−λf
r2
K − fλ(λ+ 1)

r2
G+ 2

f(r −M)(λ+ 1)
r4

jr = Qrr,

(2.4.50)

∂thrr − ∂rhtr +
1
f
∂tK +

λ

f
∂tG− ∂t∂rjr + ∂2

r jt −
2
r
∂tjr −

2M
r2f

htr +
4M
r3f

jt = Qt, (2.4.51)

−∂thtr + ∂rhtt − f∂rK + ∂2
t jr − ∂t∂rjt +

2
r
∂tjt

−λf∂rG−
r −M
r2f

htt +
(r −M)f

r2
hrr − 2

f

r2
jr = Qr,

(2.4.52)

− ∂2
t hrr + 2∂t∂rhtr − ∂2

rhtt −
1
f
∂2
tK + f∂2

rK −
r − 3M
r2f

∂rhtt +
2(r −M)
r2f

∂thtr

− (r −M)f
r2

∂rhrr +
2(r −M)

r2
∂rK + 2

(λ+ 1)f
r2

∂rjr − 2
(λ+ 1)
r2f

∂tjt + 4
(λ+ 1)M

r4
jr

+
(λ+ 1)r2 − 2(λ+ 2)Mr + 2M2

r4f2
htt −

(λ+ 1)r2 − 2λMr − 2M2

r4
hrr = Q[, (2.4.53)

r2

f
∂2
tG− r2f∂2

rG− 2(r −M)∂rG−
2
f
∂tjt + 2f∂rjr +

4M
r2

jr +
htt
f
− fhrr = Q]. (2.4.54)

We can then impose the Lorenz gauge condition by incorporating Eqs. (2.4.45 - 2.4.47)

equations into these field equations (2.4.48 - 2.4.54). There are many ways to do this.
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Indeed, one could simply solve these seven field equations in parallel with the gauge equa-

tions. However, we find it more efficient to plug those conditions in and manipulate the

field equations to put them into a simpler form. In the end, we leave the equations on the

M2 sector untouched, and rewrite the other four equations. Those four Lorenz gauge field

equations are

− 1
f2
∂2
t jt + ∂2

r jt +
1

2f2
∂thtt +

1
2
∂thrr − ∂rhtr +

1
f
∂tK +

2M
r2f

∂tjr

− 2M
r2f

htr +
4M
r3f

jt = Qt, (2.4.55)

∂2
t jr − f2∂2

r jr −
2f
r2

(r +M)∂rjr +
2
r
∂tjt − ∂thtr +

1
2
∂rhtt +

f2

2
∂rhrr − f∂rK

− r −M
r2f

htt +
f

r2
(r +M)hrr −

4M
r4

(2r − 3M) jr + λ
2M
r2

G = Qr, (2.4.56)

r2

f
∂2
tG− r2f∂2

rG− 2(r −M)∂rG+ 2λG− 4f
r
jr = Q], (2.4.57)

− 1
f
∂2
tK + f∂2

rK − ∂2
t hrr + 2∂t∂rhtr − ∂2

rhtt +
2M
r2f

∂rhtt + 2
(2r − 3M)(r −M)

r4
hrr

+ 2M
M − 2r
r4f2

htt + 4
(λ+ 1)
r4

(3M − 2r) jr + 2
λ(λ+ 1)

r2
G− 4(r −M)

r3
K = Q[. (2.4.58)

Odd-parity field equation

The one odd-parity gauge condition reduces to

− 1
f
∂tht + f∂rhr +

2M
r2

hr +
2f
r
hr −

λ

r2
h2 = 0. (2.4.59)
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The gauge-undefined field equations are

−∂t∂rhr + ∂2
rht −

2
r
∂thr −

1
r2
∂th2 −

2(λ+ 1)r − 4M
r3f

(
ht −

1
2
∂th2

)
= P t, (2.4.60)

∂2
t hr − ∂t∂rht +

2
r
∂tht +

2λf
r2

hr −
λf

r2
∂rh2 +

2λf
r3

h2 = P r, (2.4.61)

1
2f
∂2
t h2 −

f

2
∂2
rh2 −

1
f
∂tht + ∂r (fhr) + ∂r

(
f

r
h2

)
− M

r2
∂rh2 = P. (2.4.62)

Imposing the Lorenz gauge condition in Eq. (2.4.59), we get the Lorenz gauge field equations

−∂2
t ht + ∂2

r∗ht − f
2M
r2

∂rht + f
2M
r2

∂thr +
f

r2
∂th2 − f

2(λ+ 1)r − 4M
r3

ht = f2P t, (2.4.63)

−∂2
t hr + ∂2

r∗hr +
2f
r
∂rhr −

2
r4

[
r2 − 6M(r −M)

]
hr

−2Mλ

r4
h2 −

2
r
∂tht −

2λf
r2

hr = −P r, (2.4.64)

−∂2
t h2 + ∂2

r∗h2 − f
`(`+ 1)
r2

h2 + 4
f2

r

(
hr −

1
2
∂rh2 +

h2

r

)
= −2fP. (2.4.65)

2.5 Chapter summary

In this chapter I have introduced much of the theoretical foundation for the original work

that follows in Chapters 4 and 5. Starting from the full Einstein equations, I have shown

how the first-order field equations are derived. Then, I used the spherical symmetry of

the Schwarzschild spacetime to decompose the field equations into equations for spherical

harmonic amplitudes. I have given these equations in both Regge-Wheeler gauge and Lorenz

gauge (in addition to a gauge-undefined form). These field equations will be important in

the chapters to come.

53



Chapter 3

A scalar field model problem

In our attempt to understand gravitational waves, it is instructive to study first a simpler

problem: the dynamics of a scalar field. The purpose of this model problem is to is to

introduce many of the concepts that will be important in Chapters 4 and 5. I start by

examining the scalar field sourced by a charged particle in circular motion in flat space.

The charge will radiate scalar waves which can be analyzed in multipolar form. After

performing the multipole expansion, I show how this model problem can be solved exactly,

by introducing a spherical harmonic decomposition of the field. Getting the solution for

each harmonic mode requires appropriate inner and outer boundary conditions, which I

explain how to choose. I expand the exact solutions and show that in the slow motion, far

field limit, they agree with the multipole expansion.

I then extend this to circular orbits around a Schwarzschild black hole. I show how the

source term is chosen in curved space, and then show how the field and source decompose

into harmonics. This leads to an introduction of the Regge-Wheeler equation for the first

time. At this point I show how the inner boundary condition must be changed to a horizon

boundary condition to account for radiation that falls into the black hole. For the outer

boundary condition I introduce the asymptotic expansion which must be used to achieve

accurate numerical results. Finally, I extend my analysis to include eccentric orbits on

Schwarzschild. Moving to the frequency domain, this allows me to introduce extended

sources and the method of homogeneous solutions, both of which will be important in later

chapters.



3.1 The multipole expansion

Here we will consider a model problem, just to show how the multipolar field manifests

itself, without being encumbered by the mathematics of curved space. For a thorough

presentation of the multipole expansion of the gravitational field in relativity see [10].

A moving charged particle will pull up a scalar field around it that is found by solving

the wave equation with a source,

2Ψ (xµ) =
(
−∂2

t +∇2
)

Ψ (xµ) = −4πρ (xµ) . (3.1.1)

For the moment, we will leave the orbit (which is determined by ρ) undefined, and solve

Eq. (3.1.1) in general. The Green function for this equation [31] on flat space is

G
(
t,x, t′,x′) =

δ (t′ − [t− |x− x′|])
|x− x′| . (3.1.2)

The delta function demands retarded time causality. Integrating the Green function over

the source provides a solution to Eq. (3.1.1):

Ψ (xµ) =
∫
d3x′

∫
dt′G

(
t,x, t′,x′) ρ

(
t′,x′) (3.1.3)

=
∫
d3x′

∫
dt′
δ (t′ − [t− |x− x′|])

|x− x′| ρ
(
t′,x′) (3.1.4)

=
∫
d3x′

ρ (t− |x− x′| ,x′)
|x− x′| (3.1.5)

Even for a known function ρ, we cannot perform integral in Eq. (3.1.5) in general. But,

we can perform a far field expansion of 1/ |x− x′| and |x− x′| and find Ψ in terms of

its multipoles. We start with the definition (we will be switching back and forth between

component xi and vector x notation)

f(xi, x′i) ≡
∣∣x− x′∣∣ =

[(
xi − x′i

) (
xi − x′i

)]1/2
. (3.1.6)

Note that f(xi, x′i) is a function of both xi and x′i. We are performing our expansion around
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x′i = 0, which is

f(xi, x′i) = f (xi, 0) +
∂f

∂x′j
(xi, 0) · x′j +

1
2!

∂2f

∂x′j∂x
′
k

(xi, 0) · x′jx′k

+
1
3!

∂3f

∂x′j∂x
′
k∂x

′
`

(xi, 0) · x′jx′kx′` + · · · . (3.1.7)

We define

r ≡ √xixi, r′ ≡
√
x′ix
′
i ni ≡

xi
r

n′i ≡
x′i
r′
. (3.1.8)

The coefficients we will need are

f (xi, 0) = r,
∂f

∂x′j
(xi, 0) = −xj

r
,

∂2f

∂x′j∂x
′
k

(xi, 0) = −xjxk
r3

+
δjk
r
,

∂3f

∂x′j∂x
′
k∂x

′
`

(xi, 0) = −3
xjxkxm
r5

+
xjδkm + xkδjm + xmδjk

r3
.

(3.1.9)

Putting these different expressions together, we get the expansion

∣∣x− x′∣∣ = r−n · x′ − 1
2r

[(
n · x′)2 − r′2

]
− (n · x′)

2r2

[(
n · x′)2 − r′2

]
+O

(
r′4

r3

)
(3.1.10)

We also need the expansion of the inverse,

g(xi, x′i) ≡
1

|x− x′| =
[(
xi − x′i

) (
xi − x′i

)]−1/2
, (3.1.11)

which is

g
(
xi, x

′
i

)
= g (xi, 0) +

∂g

∂x′j
(xi, 0) · x′j +

1
2!

∂2g

∂x′j∂x
′
k

(xi, 0) · x′jx′k+

1
3!

∂3g

∂x′j∂x
′
k∂x

′
`

(xi, 0) · x′jx′kx′` + · · · . (3.1.12)
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This will require

g (xi, 0) =
1
r
,

∂g

∂x′j
(xi, 0) =

xj
r3
,

∂2g

∂x′j∂x
′
k

(xi, 0) = 3
xjxk
r5
− δjk
r3
,

∂3g

∂x′j∂x
′
k∂x

′
`

(xi, 0) = 15
xjxkx`
r7

+ 3
xjδkl + xkδjl + x`δjk

r5
,

(3.1.13)

which allows us to write down the expansion

1
|x− x′| =

1
r

+
n · x′

r2
+

1
2r3

[
3
(
n · x′)2 − r′2

]
+

(n · x′)
2r4

[
5
(
n · x′)2 − 3r′2

]
+O

(
r′4

r5

)
. (3.1.14)

The last expansion we will need is ρ itself. For the sake of simplicity, let us temporarily

abbreviate t− |x− x′| as y. Then, the Taylor expansion around a point y◦ in the first slot

of ρ will be

ρ
(
y,x′) = ρ

(
y◦,x

′)+
∂ρ

∂y

(
y◦,x

′) · (y − y◦) +
1
2!
∂2ρ

∂y2

(
y◦,x

′) · (y − y◦)2

+
1
3!
∂3ρ

∂y3

(
y◦,x

′) · (y − y◦)3 + · · · (3.1.15)

We can change the variable with which we differentiate from y to t by

∂ρ

∂y
=
dt

dy

∂ρ

∂t
=
∂ρ

∂t
. (3.1.16)

So, using dots to denote differentiation with respect to time, we have

ρ
(
y,x′) = ρ

(
y◦,x

′)+ ρ̇
(
y◦,x

′) · (y − y◦) +
1
2
ρ̈
(
y◦,x

′) · (y − y◦)2

+
1
6

...
ρ
(
y◦,x

′) · (y − y◦)3 + · · · (3.1.17)
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Now, plugging in for y and letting y◦ = t− r gives

ρ
(
t−

∣∣x− x′∣∣ ,x′) = ρ
(
t− r,x′)+ ρ̇

(
t− r,x′) ·

[
r −

∣∣x− x′∣∣]

+
1
2
ρ̈
(
t− r,x′) ·

[
r −

∣∣x− x′∣∣]2 +
1
6

...
ρ
(
t− r,x′) ·

[
r −

∣∣x− x′∣∣]3 + · · · (3.1.18)

Using Eq. (3.1.10) to expand the |x− x′| terms,

ρ
(
t−

∣∣x− x′∣∣ ,x′) = ρ
(
t− r,x′)

+ ρ̇
(
t− r,x′) ·

[
n · x′ +

1
2r

[(
n · x′)2 − r′2

]
+

(n · x′)
2r2

[(
n · x′)2 − r′2

]
+O

(
r′4

r3

)]

+
1
2
ρ̈
(
t− r,x′) ·

[
n · x′ +

1
2r

[(
n · x′)2 − r′2

]
+O

(
r′3

r2

)]2

+
1
6

...
ρ
(
t− r,x′) ·

[
n · x′ +O

(
r′2

r

)]3

+O
(
r′4
)

(3.1.19)

We have kept terms with at most three powers of r′, indicating that we will be performing

the expansion through octupole (` = 3) order.

Now we can consider the expansion of the full Green function for the wave equation

using Eqn. (3.1.14) and (3.1.19). Here, for brevity I will suppress the arguments for ρ on

the right side of the equation, which are understood to be (t− r,x′).

ρ (t− |x− x′| ,x′)
|x− x′| =

[
ρ+ ρ̇ ·

[
n · x′ +

1
2r

[(
n · x′)2 − r′2

]
+

(n · x′)
2r2

[(
n · x′)2 − r′2

]]

+
1
2
ρ̈ ·
[
n · x′ +

1
2r

[(
n · x′)2 − r′2

]]2

+
1
6

...
ρ ·
[
n · x′]3

]

×
[

1
r

+
n · x′

r2
+

1
2r3

[
3
(
n · x′)2 − r′2

]
+

(n · x′)
2r4

[
5
(
n · x′)2 − 3r′2

]]
+ · · · (3.1.20)

The multipole expansion is in powers of n. After performing some factorization, we define
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terms based on the power of n, which in component notation are

T0 =
ρ

r
+

ρ̈

6r
r′2

T1 =
[
ρ̇

r
+

ρ

r2
+

...
ρ

10r
r′2 +

ρ̈

10r2
r′2
]
njx

′
j

T2 =
1
2

[
ρ̈

r
+

3ρ̇
r2

+
3ρ
r3

] [
x′jx
′
k −

r′2

3
δjk

]
njnk

T3 =
1
6

[ ...
ρ

r
+ 6

ρ̈

r2
+ 15

ρ̇

r3
+ 15

ρ

r4

] [
x′jx
′
kx
′
` −

r′2

5
(
x′jδkl + x′kδjl + x′`δjk

)]
njnkn`,

(3.1.21)

so up to octupole order the expansion is

ρ (t− |x− x′| ,x′)
|x− x′| = T0 + T1 + T2 + T3 + · · · . (3.1.22)

These terms will all go into the integral in Eq. (3.1.5). To that end, we define the various

multipole moment tensors (which are in powers of x′j), up through octupole order.

Name Symbol Value

Monopole M (t− r) =
∫
d3x′ρ (t− r,x′)

Moment of Inertia I (t− r) =
∫
d3x′ρ (t− r,x′) r′2

Dipole Dj (t− r) =
∫
d3x′ρ (t− r,x′)x′j

Octupole Trace Oj (t− r) =
∫
d3x′ρ (t− r,x′) r′2x′j

Traceless Quadrupole Ijk (t− r) =
∫
d3x′ρ (t− r,x′)

(
x′jx
′
k − r′2

3 δjk

)

Traceless Octupole Ojkl (t− r) =
∫
d3x′ρ (t− r,x′)

(
x′jx
′
kx
′
` − r′2

5

(
x′jδkl + x′kδjl + x′`δjk

))

With these definitions, we can write the expression for the field concisely as

Ψ (xµ) =
1
r

(
M +

Ï

6

)
+

(
Ḋj

r
+

Dj

r2
+

...
Oj

10r
+

Öj

10r2

)
nj+

1
2

(
Ïjk

r
+ 3

˙Ijk

r2
+ 3

Ijk

r3

)
njnk

+
1
6

( ...
Ojkl

r
+ 6

Öjkl

r2
+ 15

Ȯjkl

r3
+ 15

Ojkl

r4

)
njnkn` +O

(
n4
)
. (3.1.23)
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3.1.1 Circular motion

We are interested in a point mass with charge q traveling in a circular orbit of radius r◦.

Recall that there is no gravity in this system, but special relativity does apply. For this

case, the charge density ρ is

ρ(t,x) =
q

γr2 sin θ
δ (r − r◦) δ

(
θ − π

2

)
δ (φ− Ωt) . (3.1.24)

This charge density describes circular motion in the equatorial plane with an angular fre-

quency Ω at a radius r◦. Furthermore, γ is the Lorentz factor and q is the charge carried

by the particle.

In this section we will compute the moment tensors and their derivatives for the specific

case of this charge density.

Moment tensors

With the specific source in Eq. (3.1.24) we can perform these integrals to get an expression

for the field. Starting with the monopole term we have the unsurprising result

M (t− r) =
q

γ

∫
d3x′

r′2 sin θ′
δ
(
r′ − r◦

)
δ
(
θ′ − π

2

)
δ
(
φ′ − Ω (t− r)

)
=
q

γ
. (3.1.25)

The moment of inertia is also an expected constant:

I (t− r) =
q

γ

∫
d3x′

r′2 sin θ′
δ
(
r′ − r◦

)
δ
(
θ′ − π

2

)
δ
(
φ′ − Ω (t− r)

)
r′2 =

q r2
◦
γ
. (3.1.26)

For the dipole term, we have

Dj (t− r) =
qr◦
γ

∫
dΩ′

sin θ′
δ
(
θ′ − π

2

)
δ
(
φ′ − Ω (t− r)

)
n′j

=
qr◦
γ
nj [θ = π/2, φ = Ω (t− r)] . (3.1.27)
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The directional vector has components

nj [π/2,Ω (t− r)] .=




sin (π/2) cos [Ω (t− r)]

sin (π/2) sin [Ω (t− r)]

cos (π/2)




=




cos [Ω (t− r)]

sin [Ω (t− r)]

0



, (3.1.28)

so, in cartesian coordinates the dipole vector is

Dj (t− r) .=
qr◦
γ




cos [Ω (t− r)]

sin [Ω (t− r)]

0



. (3.1.29)

Next comes the trace of the octupole tensor, which will be exactly like the dipole vector,

except with an extra factor of r2
◦:

Oj (t− r) .=
qr3
◦
γ




cos [Ω (t− r)]

sin [Ω (t− r)]

0



. (3.1.30)

The traceless quadrupole tensor is

Ijk (t− r)

=
q

γ

∫
d3x′

r′2 sin θ′
δ
(
r′ − r◦

)
δ
(
θ′ − π

2

)
δ
(
φ′ − Ω (t− r)

)(
x′jx
′
k −

r′2

3
δjk

)
, (3.1.31)

which has cartesian coordinates

Ijk (t− r)

.=
qr2
◦
γ




cos2 [Ω (t− r)]− 1
3 cos [Ω (t− r)] · sin [Ω (t− r)] 0

cos [Ω (t− r)] · sin [Ω (t− r)] sin2 [Ω (t− r)]− 1
3 0

0 0 −1
3



. (3.1.32)
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Derivatives of moment tensors

In order to write down the field we need time derivatives of these moment tensors. For a

circular orbit, the moment of inertia is a constant, so those derivatives vanish. The first

time derivative of the dipole term is

Ḋj (t− r) .=
qr◦
γ

Ω




− sin [Ω (t− r)]

cos [Ω (t− r)]

0



. (3.1.33)

The first and second time derivatives of the traceless quadrupole tensor are

˙Ijk (t− r) .=
qr2
◦
γ

Ω




− sin [2Ω (t− r)] cos [2Ω (t− r)] 0

cos [2Ω (t− r)] sin [2Ω (t− r)] 0

0 0 0




(3.1.34)

Ïjk (t− r) .= −2
qr2
◦ Ω2

γ




cos [2Ω (t− r)] sin [2Ω (t− r)] 0

sin [2Ω (t− r)] − cos [2Ω (t− r)] 0

0 0 0




(3.1.35)

The Dipole Terms

Now we can compute the products between these tensors and the directional vectors.

Djnj =
qr◦
γ




cos [Ω (t− r)]

sin [Ω (t− r)]

0



·




sin θ cosφ

sin θ sinφ

cos θ




=
qr◦
γ

sin θ cos [φ− Ω (t− r)] (3.1.36)

Likewise,

Ḋjnj =
qr◦
γ

Ω sin θ sin [φ− Ω (t− r)] (3.1.37)
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The Quadrupole Terms

Ijknjnk =
qr2
◦
γ




cos2 [Ω (t− r)]− 1
3 cos [Ω (t− r)] · sin [Ω (t− r)] 0

cos [Ω (t− r)] · sin [Ω (t− r)] sin2 [Ω (t− r)]− 1
3 0

0 0 −1
3




·




sin θ cosφ

sin θ sinφ

cos θ



·




sin θ cosφ

sin θ sinφ

cos θ




(3.1.38)

Ijknjnk =
qr2
◦

6γ
[
3 sin2 θ cos [2 (φ− Ω (t− r))]− 3 cos2 θ + 1

]
(3.1.39)

Similarly,

˙Ijknjnk =
qr2
◦
γ

Ω sin2 θ sin [2 (φ− Ω (t− r))] (3.1.40)

and

Ïjknjnk = −2qr2
◦

γ
Ω2 sin2 θ cos [2 (φ− Ω (t− r))] (3.1.41)

Putting these terms together, we get, through quadrupole order, in the slow motion limit,

the asymptotic field of a particle in circular orbit,

Ψ (xµ) =
q

γr
+
qr◦
γr

Ω sin θ sin [φ− Ω (t− r)] +
qr◦
γr2

sin θ cos [φ− Ω (t− r)]

− qr2
◦

γr
Ω2 sin2 θ cos [2 (φ− Ω (t− r))] +

3qr2
◦

2γr2
Ω sin2 θ sin [2 (φ− Ω (t− r))]

+
3qr2
◦

4γr3
sin2 θ cos [2 (φ− Ω (t− r))]− qr2

◦
4γr3

[
3 cos2 θ − 1

]
. (3.1.42)
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3.2 Exact solution to scalar charge motion in flat space

We now look to solve the wave equation (3.1.1) exactly. Expressing the Laplacian in spher-

ical coordinates, we have (suppressing the argument xµ)

−∂2
t Ψ +

1
r2
∂r
(
r2∂rΨ

)
+

1
r2 sin θ

∂θ (sin θ ∂θΨ) +
1

r2 sin2 θ
∂2
φΨ = −4πρ. (3.2.1)

Now we decompose Ψ in spherical harmonics as

Ψ (t, r, θ, φ) =
∞∑

`=0

∑̀

m=−`
Ψ`m (t, r)Y`m (θ, φ) . (3.2.2)

Plugging this in, the left side of Eq. (3.2.1) gives

2Ψ =
1
r2

∑

`,m

[
− r2∂2

t + ∂r
(
r2∂r

)
− ` (`+ 1)

]
Ψ`m (t, r)Y`m (θ, φ) , (3.2.3)

where we have used the fact that the spherical harmonics are eigenfunctions of the angular

operator with eigenvalues −` (`+ 1). Meanwhile, a point particle with charge q moving

along a circular orbit worldline x′µ(τ) will produce a charge density

ρ =
q

γr2 sin θ
δ (r − r◦) δ (φ− Ωts) δ

(
θ − π

2

)
, (3.2.4)

where γ is the Lorentz factor. Now, recall that the spherical harmonics are complete in the

sense that

∞∑

`=0

∑̀

m=−`
Y ∗`m(θ′, φ′) ·Y`m(θ, φ) = δ(φ−φ′)δ(cos θ− cos θ′) =

1
sin θ

δ(φ−φ′)δ(θ− θ′), (3.2.5)
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so ρ can be written as (we drop the subscript s on the coordinate time parameter from here

on)

ρ =
q

γr2 sin θ
δ(r − r◦) sin θ

∑

`,m

Y ∗`m(π/2,Ωt)Y`m(θ, φ), (3.2.6)

=
q

γr2
δ(r − r◦)

∑

`,m

e−imΩtY`m(π/2, 0)Y`m(θ, φ). (3.2.7)

In the last line we used the fact that

Y`m(θ, φ) = eimφY`m(θ, 0) ⇒ Y ∗`m(θ, φ) = e−imφY ∗`m(θ, 0) = e−imφY`m(θ, 0). (3.2.8)

We define ωm ≡ mΩ and write

1
r2

∑

`,m

[
− r2∂2

t + ∂r
(
r2∂r

)
− ` (`+ 1)

]
Ψ`m (t, r)Y`m (θ, φ)

= −4π
q

γr2
δ(r − r◦)

∑

`,m

e−iωmtY`m(π/2, 0)Y`m(θ, φ). (3.2.9)

Using the spherical harmonics’ orthonormality,

[
− r2∂2

t + ∂r
(
r2∂r

)
− ` (`+ 1)

]
Ψ`m (t, r) = −4πq

γ
e−iωmtY`m(π/2, 0) δ(r − r◦). (3.2.10)

The time dependence on the right side of this equation implies that we can separate the t

and r pieces of Ψ`m as

Ψ`m (t, r) = e−iωmtR`m(r), (3.2.11)

and therefore, in the frequency domain

d2R`m
dr2

(r) +
2
r

dR`m
dr

(r) +
[
ω2
m −

` (`+ 1)
r2

]
R`m(r) = −4πq

γr2
Y`m(π/2, 0) δ(r − r◦). (3.2.12)

Note that for this circular case there is only one frequency mode, whereas in an elliptic

orbit case, for example, there would be a countably infinite set of harmonics.

This is now an ordinary differential equation which we are capable of solving analytically
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mode-by-mode. Away from r = r◦, the right side of the equation vanishes. Therefore, we

look for homogeneous solutions to Eq. (3.2.12). We will enforce a causal boundary condition

at r → ∞ and a regular boundary condition at r → 0. Finally, we apply the appropriate

jump condition at r = r◦ as demanded by the singular source.

The homogeneous solutions to Eq. (3.2.12) are the spherical Bessel functions

Rh`m(r) = C1
`mj` (ωmr) + C2

`mn` (ωmr) . (3.2.13)

As r → 0, n` → −∞, so C2
`m = 0 for the inner solution. As r → ∞, we expect to see an

outward traveling wave. The correct linear combination of the two Bessel functions is the

first Hankel function

h1
` (x) = j`(x) + in`(x), (3.2.14)

which, to leading order at large x is

h1
` (x) ∼ eix

x
, (3.2.15)

for all `. So, R`m and its derivative are

R`m(r) =





A`mj`(ωmr) r ≤ r◦,

B`mh
1
` (ωmr) r ≥ r◦,

(3.2.16)

dR`m
dr

(r) =





A`m
dj`
dr (ωmr) r < r◦,

B`m
dh1
`

dr (ωmr) r > r◦.
(3.2.17)

We integrate the differential equation to get the discontinuity in the slope

∫ r◦+ε

r◦−ε

[
d2R`m
dr2

(r) +
2
r

dR`m
dr

(r) +
(
ω2
m −

` (`+ 1)
r2

)
R`m(r)

]
dr

= −
∫ r◦+ε

r◦−ε

[
4πq
γr2

Y`m(π/2, 0) δ(r − r◦)
]
dr, (3.2.18)
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which gives an expression for the jump in the derivative of R`m,

dR`m
dr

(r)
∣∣∣∣
r◦+ε

r◦−ε
= −4πq

γr2
◦
Y`m(π/2, 0). (3.2.19)

We use this expression along with Eqs. (3.2.16) and (3.2.17) to solve for the normalization

constants A`m and B`m, which we find to be

A`m =
4πiωmq

γ
Y`m(π/2, 0)h1

` (ωmr◦), (3.2.20)

B`m =
4πiωmq

γ
Y`m(π/2, 0)j`(ωmr◦). (3.2.21)

Note that we used the fact that the Wronskian is

W`m

[
j` (ωmr◦) , h1

` (ωmr◦)
]

= − 1
iω2
mr

2
◦
. (3.2.22)

Now, plugging in for ωm = mΩ, where Ω is the angular velocity and γ =
(
1− β2

)−1/2,

where β is the coordinate velocity (note that c = 1 here), we get

A`m = 4πimΩq Y`m(π/2, 0)
√

1− β2 h1
` (mΩr◦), (3.2.23)

B`m = 4πimΩq Y`m(π/2, 0)
√

1− β2 j`(mΩr◦). (3.2.24)

We can rewrite the angular velocity in terms of the velocity β. Note that this system does

not require that we obey Kepler’s third law, but we still have to obey special relativity.

Setting Ω = β/r◦ we get

A`m =
4πimq
r◦

Y`m(π/2, 0)β
√

1− β2 h1
` (mβ), (3.2.25)

B`m =
4πimq
r◦

Y`m(π/2, 0)β
√

1− β2 j`(mβ), (3.2.26)
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which finally yields

R`m(r) =
4πimq
r◦

Y`m(π/2, 0)β
√

1− β2





h1
` (mβ) · j` (mβr/r◦) r ≤ r◦,

j`(mβ) · h1
` (mβr/r◦) r ≥ r◦.

(3.2.27)

If we define

q`m ≡ 4π
q

r◦
Y`m(π/2, 0)

√
1− β2, (3.2.28)

then this becomes

R`m(r) = imβq`m





h1
` (mβ) · j` (mβr/r◦) r ≤ r◦,

j`(mβ) · h1
` (mβr/r◦) r ≥ r◦.

(3.2.29)

Now, we can write down an expression for the full scalar field. Recalling that our decom-

position was

Ψ (t, r, θ, φ) =
∑

`,m

e−iωmtR`m(r)Y`m(θ, φ), (3.2.30)

we have

Ψ (t, r, θ, φ) =
∑

`,m

imβq`me
−iωmtY`m(θ, φ)





h1
` (mβ) · j` (mβr/r◦) r ≤ r◦,

j`(mβ) · h1
` (mβr/r◦) r ≥ r◦.

(3.2.31)

3.2.1 Multipole terms

We can expand the Bessel and Hankel functions to compare the solution in Eq. (3.2.31) to

that obtained with the multipole expansion in the previous section.

The monopole term

Consider first l = 0,m = 0. The Bessel and Hankel functions are

j0(x) =
sinx
x

, h1
0(x) = −ie

ix

x
=

sinx
x
− icosx

x
. (3.2.32)
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Evaluated in the limit as m→ 0 we have

lim
m→0

m j`(mΩr◦)h1
` (mΩr) = lim

m→0
m

sin(mΩr◦)
mΩr◦

[
sin(mΩr)
mΩr

− icos(mΩr)
mΩr

]
, (3.2.33)

= − i

Ωr
(3.2.34)

Then, the full field, evaluated at ` = 0,m = 0 is

Ψ00 (xµ) = i
4πqΩ
γ

Y00 (π/2, 0)Y00(θ, φ) · −i
Ωr

=
q

γr
, (3.2.35)

in agreement with the monopole term in Eq. (3.1.42).

The dipole terms

To calculate the dipole terms, we will need the ` = 1 versions of the Bessel and Hankel

functions. They are

j1(x) =
sinx
x2
− cosx

x
, h1

1(x) = −e
ix

x

[
1 +

i

x

]
. (3.2.36)

With these, we write down the ` = 1,m = 1 part of the field

Ψ11 = i
4πqΩ
γ

eiΩtY11 (π/2, 0)Y11 (θ, φ) · j1 (Ωr◦) · h1
1 (Ωr) , (3.2.37)

= −i 3q
2γr

sin θei[φ−Ω(t−r)]
[

sin (Ωr◦)
(Ωr◦)

2 −
cos (Ωr◦)

Ωr◦

] [
1 +

i

Ωr

]
. (3.2.38)

The harmonic amplitudes of the field obey the same relations as the spherical harmonics:

Ψ`,−m = Ψ∗`m for all ` and m. Therefore, Ψ1,−1 = Ψ∗1,1. The ` = 1,m = 0 mode will not

contribute because Y10 (π/2, 0) = 0. So, the sum of the two ` = 1 modes is

Ψ`=1 = Ψ1,−1 + Ψ11 = Ψ11 + Ψ∗11 = 2< [Ψ11] , (3.2.39)

=
3q
γr

sin θ
[

sin (Ωr◦)
(Ωr◦)

2 −
cos (Ωr◦)

Ωr◦

][
sin [φ− Ω (t− r)] +

cos [φ− Ω (t− r)]
Ωr

]
. (3.2.40)
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The first term in the square brackets is a function of Ωr◦ = β, the speed of the particle. We

can compute the Taylor expansion of this term in the slow motion limit,

sinx
x2
− cosx

x
=

1
x
− x

6
− 1
x

+
x

2
+O

(
x3
)

=
x

3
+O

(
x3
)
, (3.2.41)

Plugging this in, we get

Ψ`=1 (xµ) =
3q
γr

sin θ
[

Ωr◦
3

] [
sin [φ− Ω (t− r)] +

cos [φ− Ω (t− r)]
Ωr

]
, (3.2.42)

=
qΩr◦
γr

sin θ
[
sin [φ− Ω (t− r)] +

cos [φ− Ω (t− r)]
Ωr

]
, (3.2.43)

which agrees with the dipole terms in Eq. (3.1.42) in the slow motion limit.

The quadrupole terms

The quadrupole terms will only include Ψ22,Ψ20, and Ψ2,−2. The Ψ22 term is

Ψ22 (xµ) = i
4πqΩ
γ

e−2iΩtY22 (π/2, 0)Y22(θ, φ) · 2 · j2(2Ωr◦) · h2
2 (2Ωr) , (3.2.44)

= i
15qΩ

4γ
sin2 θe2i(φ−Ωt)j2(2Ωr◦) · h2

2 (2Ωr) . (3.2.45)

The needed special functions are

j2(x) =
[

3
x2
− 1
]

sinx
x
− 3

cosx
x2

, h1
2(x) = i

eix

x

[
1 +

3i
x
− 3
x2

]
, (3.2.46)

so

Ψ22 (xµ) = −15q
8γr

sin2 θe2i(φ−Ω(t−r))
[(

3
(2Ωr◦)

2 − 1
)

sin (2Ωr◦)
2Ωr◦

− 3
cos (2Ωr◦)
(2Ωr◦)

2

]

×
[
1 +

3i
2Ωr

− 3
(2Ωr)2

]
. (3.2.47)
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Again, we expand the first term in the square brackets in the slow motion limit:

(
3
x2
− 1
)

sinx
x
− 3

cosx
x2

=
3
x2
− 1− 3

6
+

3x2

120
+
x2

6
− 3

(
1
x2
− 1

2
+
x2

24

)
+O

(
x4
)
, (3.2.48)

=
x2

15
+O

(
x4
)
. (3.2.49)

Plugging this in we have, in the slow motion limit

Ψ22 (xµ) = −15q
8γr

sin2 θe2i(φ−Ω(t−r))

(
(2Ωr◦)

2

15

)[
1 +

3i
2Ωr

− 3
(2Ωr)2

]
, (3.2.50)

= −qΩ
2r2
◦

2γr
sin2 θ

[
cos [2 (φ− Ω (t− r))]

+ i sin [2 (φ− Ω (t− r))]
] [

1 +
3i

2Ωr
− 3

(2Ωr)2

]
, (3.2.51)

while the real part of this is

< [Ψ22 (xµ)] = −1
2
qr2
◦

γr
Ω2 sin2 θ cos [2 (φ− Ω (t− r))]

+
3
4
qr2
◦

γr2
Ω sin2 θ sin [2 (φ− Ω (t− r))] +

3
8
qr2
◦

γr3
sin2 θ cos [2 (φ− Ω (t− r))] . (3.2.52)

Now, consider the Ψ20 mode,

Ψ20 (xµ) = i
4πqΩ
γ

Y20 (π/2, 0)Y20 (θ, φ)
[
mj2 (mΩr◦) · h2

1 (mΩr)
]
m=0

. (3.2.53)

In order to evaluate this, we must expand the special functions. We have already seen that

the leading order term in j2(x) is x2/15. The Hankel function expands as follows,

h2
1(x) = i

eix

x

(
1 +

3i
x
− 3
x2

)
, (3.2.54)

=
i

x

[
− 3
x2
− 1

2
+O

(
x2
)]

= − 3i
x3
− i

2x
+O (x) . (3.2.55)
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Now we can use these expansions to find the m = 0 term.

lim
m→0

mj2 (mΩr◦) · h2
2 (mΩ) = lim

m→0
m

(mΩr◦)
2

15

(
− 3i

(mΩr)3

)
+ · · · = − ir2

◦
5Ωr3

. (3.2.56)

This goes into Eq. (3.2.53) to give

Ψ20 (xµ) = i
4πqΩ
γ

Y20 (π/2, 0)Y20 (θ, φ)
(
− ir2

◦
5Ωr3

)
, (3.2.57)

= − qr2
◦

4γr3

(
3 cos2 θ − 1

)
. (3.2.58)

Finally, we can put together all of the modes to give the quadrupole contribution to the

field. Noting that Ψ21 = Ψ2,−1 = 0, we have Ψ`=2 = 2< [Ψ22] + Ψ20, and so

Ψ`=2 (xµ) = −qr
2
◦

γr
Ω2 sin2 θ cos [2 (φ− Ω (t− r))] +

3
2
qr2
◦

γr2
Ω sin2 θ sin [2 (φ− Ω (t− r))]

+
3
4
qr2
◦

γr3
sin2 θ cos [2 (φ− Ω (t− r))]− qr2

◦
4γr3

[
3 cos2 θ − 1

]
. (3.2.59)

Once again, this agrees with the multipole expansion within the slow motion limit.

In this section we have introduced the spherical harmonic decomposition of the scalar

field. This led to radial mode equations for each ` and m. We found exact solutions to

these mode functions, and then we imposed causal interior (jump) conditions and exterior

boundary conditions. We will see in the next section that many of these features extend

directly to the curved space wave equation.

3.3 Scalar fields in curved space

We turn now to the wave equation in curved space

2Ψ (xµ) = −4πρ, (3.3.1)

with 2 ≡ ∇µ∇µ and Ψ as the retarded field. Let’s consider a particle in circular orbit with

radius r◦ and angular frequency Ω, around a Schwarzschild black hole, with θ constant at
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π/2. We begin by forming the appropriate charge density to source this wave equation.

3.3.1 Current conservation and source term

Let’s start with a four-current Jµ. Charge conservation demands

∇µJµ = ∂µJ
µ +

1
2

(
gµβgβµ,ν + gµβgβν,µ − gµβgµν,β

)
Jν (3.3.2)

= ∂µJ
µ +

1
2
gµβgβµ,νJ

ν = 0. (3.3.3)

In order to proceed further we must rewrite the term gµβgβµ,ν . We can write this as

gµβgβµ,ν = gµβ∂νgβµ = Tr
(
g−1∂νg

)
, (3.3.4)

where g is the matrix representation of the metric and g−1 is its inverse. In this form we

can use the matrix identity1 detA = eTr(lnA). Varying both sides gives

δ detA = eTr(lnA) δTr (lnA) = detA Tr
(
A−1δA

)
, ⇒ Tr

(
A−1δA

)
=
δ detA
detA

. (3.3.5)

Hence, if we let g ≡ det g we can rewrite the right hand side of Eq. (3.3.4) so we have

gµβgβµ,ν = Tr
(
g−1∂νg

)
=
∂ν (−g)
−g = ∂ν (ln (−g)) , (3.3.6)

where the minus sign has been introduced since the determinant of the metric is negative.

Plugging this back into Eq. (3.3.3) gives

∇µJµ = ∂µJ
µ +

1
2
∂µ (ln (−g)) Jµ =

1√−g∂µ
(√−g Jµ

)
= 0. (3.3.7)

1For a matrix A, the exponential is defined by the power series and the ln is the inverse of that exponential.
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Integrating over all spacetime we have2

∫
d4x
√−g∇µJµ =

∫
d4x
√−g 1√−g∂µ

(√−g Jµ
)

=
∫
d4x ∂µ

(√−g Jµ
)

= 0. (3.3.8)

Separating into space and time components yields

∫
dt d3x ∂0

(√−g J0
)

= −
∫
dt d3x ∂i

(√−g J i
)
. (3.3.9)

We then use the generalized Stokes’ theorem, which allows us to write

∫
d3x
√−gJ0

∣∣∣∣
t1

t0

= −
∫
dt
√−g dσiJ i. (3.3.10)

This statement says that whatever charge is inside our volume at t0 will also be there at t1

unless it has passed through a surface σ, as is displayed in Fig. (3.1). If we now integrate

i
t

x

y, z

t

t

o

1

dσ

Figure 3.1: With the inclusion of time to our diagram, we must compress y and z into one
dimension. Hence, each sheet of time represents a three dimensional snapshot.

over all space, there will be no flux through the surface σ, since it will be at infinity. Now,

2Note that d4x = dx0dx1dx2dx3. Multiplying this by
√
−g gives the appropriate four dimensional volume

element.
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the four-current is defined as Jµ ≡ ρuµ for some four-velocity uµ, so Eq. (3.3.10) becomes

∫
d3x
√−gρu0

∣∣∣∣
t1

t0

= 0. (3.3.11)

Clearly this integral does not change value between any two times t0 and t1. At any given

point t, we expect it to give us the total charge in space

q =
∫
d3x
√−gρu0. (3.3.12)

From this we can work backward to construct ρ, such that it will give us the correct charge.

If all we have is a point charge (as we’ll be considering), we will need a three dimensional

delta function multiplied by the value q itself to localize the charge. We also need factors

of 1/
√−g and 1/u0 in order to cancel those factors in Eq. (3.3.12). Putting these together

gives3

ρ =
qδ3
(
xi − x′i

)
√−gu0

. (3.3.13)

In order to localize our charge in time we can introduce a temporal delta function as

well. Then we have to integrate over all time. Letting the integration variable be ts, the

Schwarzschild time coordinate, we have

ρ = q

∫
δ3
(
xi − x′i

)
δ (t− ts)√−gu0

dts. (3.3.14)

The time portion of the four-velocity is dts/dτ , which allows us to change our variable of

integration.

ρ = q

∫
δ4 (xµ − x′µ)√−g dτ. (3.3.15)

We leave this equation with the comment that it is specifically constructed to give the

charge q of a point particle when it is plugged into an integral over all space.

3Note that here δ3
`
xi − x′i

´
≡ δ

`
x1 − x′1

´
δ

`
x2 − x′2

´
δ

`
x3 − x′3

´
with no Jacobian factor. The same

is true in Cartesian or Minkowski spatial coordinates.
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Plugging this source term into the wave equation in spherical coordinates gives

2Ψ = −4π
q

r2 sin θ

(
dts
dτ

)−1

δ (r − r◦) δ (φ− Ωts) δ
(
θ − π

2

)
. (3.3.16)

The 1/(r2 sin θ) term comes from 1/
√−g and (dts/dτ)−1 = u0. Now, if we use a dot to

express differentiation with respect to proper time, then (dts/dτ)−1 is 1/ṫs. We can calculate

this value by using the variational method for geodesics.

Variational methods

The quantity K is defined by

2K = gµν ẋ
µẋν =





0 lightlike geodesic,

−1 timelike geodesic,

+1 spacelike geodesic,

(3.3.17)

and satisfies the Euler-Lagrange equations

∂K

∂xµ
− d

dτ

[
∂K

∂ẋµ

]
= 0. (3.3.18)

On Schwarzschild Eq. (3.3.17) becomes, for our timelike, massive particle

2K = −
(

1− 2M
r

)
ṫ2s +

(
1− 2M

r

)−1

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2 = −1. (3.3.19)

In our case of a circular orbit, θ = π/2 and ṙ = θ̇ = 0, so we have

K = −1
2

(
1− 2M

r

)
ṫ2s +

1
2
r2φ̇2 = −1

2
. (3.3.20)
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Plugging this into Eq. (3.3.18) gives

∂K

∂ts
− d

dτ

[
∂K

∂ṫs

]
=

d

dτ

[(
1− 2M

r

)
ṫs

]
= 0 (3.3.21)

∂K

∂φ
− d

dτ

[
∂K

∂φ̇

]
= − d

dτ

[
r2φ̇
]

= 0 (3.3.22)

∂K

∂r
− d

dτ

[
∂K

∂ṙ

]
= −M

r2
ṫ2s + rφ̇2 = 0, (3.3.23)

so for constants A and B,

ṫs =
A

1− 2M
r

, φ̇ =
B

r2
, r2φ̇2 =

M

r
ṫ2s. (3.3.24)

For our purposes we only need the last of these expressions. Plugging it into Eq. (3.3.20)

gives

−1
2

(
1− 2M

r

)
ṫ2s +

1
2
M

r
ṫ2s = −1

2
, (3.3.25)

which we can solve for ṫs

ṫs =
1√

1− 3M
r

. (3.3.26)

Returning to Eq. (3.3.16) and, plugging in for (dts/dτ)−1 gives

2Ψ = −4π
q

r2 sin θ

√
1− 3M

r
δ (r − r◦) δ (φ− Ωts) δ

(
θ − π

2

)
. (3.3.27)

Harmonic decomposition of source

Now, using the completeness of the spherical harmonics, we find

−4πρ = −4π
q

r2

√
1− 3M

r
δ(r − r◦)

∑

`,m

e−imΩtsY ∗`m(π/2, 0) · Y`m(θ, φ). (3.3.28)

If we define

q`m ≡ 4π
q

r◦
Y ∗`m(π/2, 0)

√
1− 3M

r◦
, ωm ≡ mΩ, (3.3.29)
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then

−4πρ = −
∑

`,m

δ(r − r◦)
r◦

q`m e−iωmts Y`m(θ, φ). (3.3.30)

3.3.2 The wave equation

Having expanded the right side of the wave equation, we now turn to the left. Looking at

Eq. (3.3.7) we see that if we plug in ∇µΨ for Jµ, then

2Ψ = ∇µ∇µΨ =
1√−g∂µ

(√−g ∇µΨ
)
. (3.3.31)

But, for a scalar, by definition ∇µΨ = ∂µΨ, so lowering the index µ with the metric, we

have

1√−g∂µ
(√−g gµν∂νΨ

)
= −4π

q

r2 sin θ

√
1− 3M

r
δ (r − r◦) δ (φ− Ωts) δ

(
θ − π

2

)
. (3.3.32)

Expanding the wave operator,

[
− 1

1− 2M/r
∂2
ts +

1
r2
∂r
[(
r2 − 2Mr

)
∂r
]

+
1

sin θ
∂θ (sin θ · ∂θ) +

1
r2 sin2 θ

∂2
φ

]
Ψ

= −4π
q

r2 sin θ

√
1− 3M

r
δ (r − r◦) δ (φ− Ωts) δ

(
θ − π

2

)
. (3.3.33)

Harmonic decomposition of the retarded field

Let us now decompose the retarded field into spherical harmonics as we did with the source:

Ψ(ts, r, θ, φ) =
∑

`,m

Ψ`m(r)e−iωmtsY`m(θ, φ). (3.3.34)

So, using the wave operator on this expansion yields

2Ψ =
∑

`,m

[
ω2
m

1− 2M/r
+

1
r2
∂r
((
r2 − 2Mr

)
∂r
)
− ` (`+ 1)

r2

]
Ψ`m(r)e−iωmtsY`m. (3.3.35)
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We can combine this with the source term from the right side to get

∑

`,m

[
ω2
m

1− 2M/r
+

1
r2
∂r
((
r2 − 2Mr

)
∂r
)
− ` (`+ 1)

r2

]
Ψ`m(r)e−iωmtsY`m(θ, φ)

= −
∑

`,m

δ(r − r◦)
r◦

q`m e−iωmts Y`m(θ, φ) (3.3.36)

The orthonormality of the spherical harmonics allows us to write

[
ω2
m

1− 2M/r
+
∂r
((
r2 − 2Mr

)
∂r
)

r2
− ` (`+ 1)

r2

]
Ψ`m(r) = −q`m

r◦
δ(r − r◦), (3.3.37)

or

d2Ψ`m

dr2
+

2 (r −M)
r (r − 2M)

dΨ`m

dr
+
[

ω2
mr

2

(r − 2M)2 −
` (`+ 1)
r (r − 2M)

]
Ψ`m

= − q`m
r◦ − 2M

δ(r − r◦). (3.3.38)

It is common practice to switch independent variables, from the Schwarzschild radius r to

the tortoise coordinate r∗, defined by the differential equation

dr

dr∗
= 1− 2M

r
. (3.3.39)

Then, making the definitions

V`(r) ≡ f
(
` (`+ 1)
r2

+
2M
r3

)
, f ≡ 1− 2M

r
, ψ`m(r) ≡ rΨ`m(r), (3.3.40)

Eq. (3.3.38) reduces to the Regge-Wheeler equation

d2

dr2
∗
ψ`m (r) +

[
ω2
m − V` (r)

]
ψ`m (r) = −q`mfδ(r − r◦). (3.3.41)

This equation does not admit analytic solutions for general `,m modes, and therefore must

solve it numerically. We begin by setting boundary conditions at the event horizon and

spatial infinity. At the horizon, when r∗ becomes large and negative, the potential falls off
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exponentially and we can choose a traveling wave going down into the black hole, e−iωmnr∗ .

At large r∗ the potential falls off only algebraically and we must use an asymptotic expansion

to set an accurate boundary condition.

3.3.3 Asymptotic expansion as r, r∗ →∞

Now we turn to the subject of the asymptotic expansion. Though many of the details here

can be found in standard differential equations texts (e.g. [60]), we give the details here

for completeness. In later chapters, though we will perform asymptotic expansions more

tersely, the logic will follow that presented here.

Consider a general potential

V` = f

(
` (`+ 1)
r2

+
2M
r3

(
1− j2

))
, (3.3.42)

where j determines the potential for scalar (j = 0), vector (j = 1), and tensor (j = 2)

waves. Now, as r and r∗ tend toward infinity, the potential goes to zero, and we will have

plane wave solutions

ψ`m ∼ eiωmr∗ (r∗ →∞) . (3.3.43)

As r and r∗ get big, but finite, let’s assume that the solutions to Eq. (3.3.41) are of the

form

ψ`m = eiωmr∗J`m (r) , (3.3.44)

where J`m goes to 1 as r∗ becomes infinite. Plugging this into Eq. (3.3.41) gives

d2

dr2
∗

(
eiωmr∗J`m (ωm, r)

)
+
(
ω2
m − V` (r)

)
eiωmr∗J`m = 0, (3.3.45)

d2

dr2
∗
J`m + 2iωm

d

dr∗
J`m − V` (r) J`m = 0. (3.3.46)

Changing the derivatives to be with respect to r and plugging in the potential,

f
d2

dr2
J`m +

(
2M
r2

+ 2iωm

)
d

dr
J`m −

(
` (`+ 1)
r2

+
2M
r3

(
1− j2

))
J`m = 0. (3.3.47)
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At this point we find it helpful to define the dimensionless variables z ≡ ωmr and σ ≡Mωm,

so

f = 1− 2M
r

= 1− 2σ
z

⇒ d

dr
=
dz

dr

d

dz
= ωm

d

dz
. (3.3.48)

This changes the differential equation to

f
d2

dz2
J`m +

(
2σ
z2

+ 2i
)
d

dz
J`m −

(
` (`+ 1)
z2

+
2σ
z3

(
1− j2

))
J`m = 0. (3.3.49)

Now, let’s assume an asymptotic series solution of J`m of the form

J`m =
∞∑

n=0

an
zn
, (3.3.50)

Plugging this in Eq. (3.3.49) yields

∞∑

n=1

n (n+ 1)
an
zn−2

− 2σ
∞∑

n=1

n (n+ 1)
an
zn−1

− 2σ
∞∑

n=1

n
an
zn−1

− 2i
∞∑

n=1

n
an
zn−3

− ` (`+ 1)
∞∑

n=0

an
zn−2

− 2σ
(
1− j2

) ∞∑

n=0

an
zn−1

= 0. (3.3.51)

Now, let’s redefine our values of n so that all our terms scale as z−n, which yields

∞∑

n=−1

(n+ 2) (n+ 3)
an+2

zn
− 2σ

∞∑

n=0

(n+ 1) (n+ 2)
an+1

zn
− 2σ

∞∑

n=0

(n+ 1)
an+1

zn

− 2i
∞∑

n=−2

(n+ 3)
an+3

zn
− ` (`+ 1)

∞∑

n=−2

an+2

zn
− 2σ

(
1− j2

) ∞∑

n=−1

an+1

zn
= 0. (3.3.52)

In order to make this one summation, all the sums have to start at the same value of n, so

we now pull out the leading terms to even things out, giving

(−2ia1 − ` (`+ 1) a0) z2 +
(
2a1 − 4ia2 − ` (`+ 1) a1 − 2σ

(
1− j2

)
a0

)
z

+
∞∑

n=0

[
(n+ 2) (n+ 3) an+2 − 2σ (n+ 1) (n+ 2) an+1 − 2σ (n+ 1) an+1

− 2i (n+ 3) an+3 − ` (`+ 1) an+2 − 2σ
(
1− j2

)
an+1

] 1
zn

= 0. (3.3.53)
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Since this expression vanishes order-by-order, each coefficient must equal zero. The z2 term

gives us

a1 =
i` (`+ 1)

2
a0. (3.3.54)

Note that we can pick the value of a0, which corresponds to the freedom to scale homoge-

neous solutions. The coefficient of the z term in Eq. (3.3.53) gives us the formula for a2 in

terms of a1 and a0,

a2 =
i

4
(
(` (`+ 1)− 2) a1 + 2σ

(
1− j2

)
a0

)
. (3.3.55)

We can plug in Eq. (3.3.54) for a1 to get this all in terms of a0,

a2 =
(
iσ

2
(
1− j2

)
− 1

8
` (`+ 1) (`+ 2) (`− 1)

)
a0 (3.3.56)

The same logic works for every power of z in the summation in Eq. (3.3.53). In fact, we

can solve for a recursion relation for the nth component as follows:

2nian = −2σ
[ (

1− j2
)

+ n (n− 2)
]
an−2 −

[
` (`+ 1)− n (n− 1)

]
an−1. (3.3.57)

Note that if we define an = 0 for all n < 0, we can acquire the a0 and a1 identities given

above.

3.3.4 Scalar field jump condition

We integrate the equation of motion to calculate the jump condition,

∫ r◦+ε

r◦−ε

{
d2Ψ`m

dr2
+

2 (r −M)
r (r − 2M)

dΨ`m

dr
+
[

ω2
mr

2

(r − 2M)2 −
` (`+ 1)
r (r − 2M)

]
Ψ`m

}
dr

= −
∫ r◦+ε

r◦−ε

[
q`m

r◦ − 2M
δ(r − r◦)

]
dr. (3.3.58)
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We integrate by parts, and since the field itself is continuous across the location of the

particle, we see that

∫ r◦+ε

r◦−ε

d

dr

[
dΨ`m

dr

]
dr =

dΨ`m

dr

∣∣∣∣∣

r◦+ε

r◦−ε

= − q`m
r◦ − 2M

. (3.3.59)

Let the value of the field and its derivative be

Ψ`m(r) =





A`mΨH
`m r ≤ r◦,

B`mΨ∞`m r ≥ r◦,
(3.3.60)

and

dΨ`m

dr
(r) =





A`m
dΨH

`m
dr r < r◦,

B`m
dΨ∞`m
dr r > r◦.

(3.3.61)

Then, from the continuity in the field and discontinuity of its derivative at the particle, we

have the pair of equations

B`mΨ∞`m(r◦)−A`mΨH
`m(r◦) = 0, (3.3.62)

B`m
dΨ∞`m
dr

(r◦)−A`m
dΨH

`m

dr
(r◦) = − q`m

r◦ − 2M
. (3.3.63)

We solve for A`m and B`m, giving

A`m = −q`m
r◦

Ψ∞`m(r◦)

ΨH
`m(r◦)

dΨ∞`m
dr∗

(r◦)− dΨH
`m

dr∗
(r◦)Ψ∞`m(r◦)

, (3.3.64)

B`m = −q`m
r◦

ΨH
`m(r◦)

ΨH
`m(r◦)

dΨ∞`m
dr∗

(r◦)− dΨH
`m

dr∗
(r◦)Ψ∞`m(r◦)

. (3.3.65)

If we write this in terms of ψ`m = rΨ`m, we get

A`m = −q`m
ψ∞`m (r◦)
W`m

, B`m = −q`m
ψH
`m (r◦)
W`m

, (3.3.66)
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where we have defined the Wronskian as

W`m

(
ψH
`m, ψ

∞
`m

)
= ψH

`m

dψ∞`m
dr∗

− dψH
`m

dr∗
ψ∞`m. (3.3.67)

Then, the field is

ψ`m(r) = − q`m
W`m





ψ∞`m (r◦)ψH
`m (r) r ≤ r◦,

ψH
`m (r◦)ψ∞`m (r) r ≥ r◦.

(3.3.68)

Now, we can write out an explicit expression for the whole scalar field,

Ψ (ts, r, θ, φ) =
∑

l,m

q`m
W`m

Y`m(θ, φ)e−iωmts

r





ψ∞`m (r◦)ψH
`m (r) r ≤ r◦,

ψH
`m (r◦)ψ∞`m (r) r ≥ r◦.

(3.3.69)

3.4 Eccentric orbits on Schwarzschild

Next, we extend our investigation of scalar fields to include those induced by a particle in

eccentric orbit. As usual, this field is found by solving the wave equation

2Ψ (xµ) = −4πρ (xµ) . (3.4.1)

As we have seen, this can be decomposed in spherical harmonics. For the eccentric case we

write the Regge-Wheeler equation

− ∂2

∂t2
ψ`m +

∂2

∂r2
∗
ψ`m − V`(r)ψ`m = −4πfrρ`m. (3.4.2)

Now we consider the specific form of the source term in our wave equation. We take the

scalar charge density ρ to be a Dirac delta function

−4πρ (xµ) = −4πq
∫
δ4 (xµ − xµp )√−g dτ. (3.4.3)

The determinant of the metric g, in Schwarzschild coordinates, is −r4 sin2 θ. We take the

proper time τ to be the affine parameter of the orbit of our particle. With this in mind we
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change the variable of integration to coordinate time t, giving

−4πρ (xµ) = −4πq
∫
δ4 (xµ − xµp (τ))

r2 sin θ
dτ

dt
dt, (3.4.4)

= − 4πq
utr2 sin θ

δ [r − rp(t)] δ [φ− φp(t)] δ [θ − π/2] . (3.4.5)

Here we have defined the time component of the four-velocity ut ≡ dtp/dτ , and restricted

(without loss of generality) the motion of the particle to the equatorial plane. In order to

use Eq. (3.4.2) we need a specific form of ρ`m. The spherical harmonic amplitudes of the

source are found from

−4πρ`m(t, r) = −4π
∫
ρ(xµ)Y ∗`m(θ, φ)dΩ. (3.4.6)

Plugging in Eq. (3.4.5) gives

−4πρ`m(t, r) = − 4πq
utr2

∫
1

sin θ
δ [r − rp(t)] δ [φ− φp(t)] δ [θ − π/2]Y ∗`m(θ, φ)dΩ, (3.4.7)

= − 4πq
utr2

δ [r − rp(t)]Y`m(π/2, 0)e−imφp(t). (3.4.8)

3.4.1 The frequency domain

We now decompose the partial differential equations (3.4.2) into ordinary differential equa-

tions by moving from the time domain into the frequency domain. In the case of a circular

orbit, this is simple. There is only one time scale that the physical problem depends on,

and therefore all relevant frequencies are multiples of the fundamental: ωm ≡ m · 2π/Tφ.

When our particle is in an eccentric orbit, however, the situation is more complicated. Now

there are two fundamental frequencies of the motion, Ωφ and Ωr as the particle oscillates

in φ and r. The Fourier transform of the radial function is

ψ`m(t, r) =
∫
dωRlmω(r)e−iωt, (3.4.9)
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while the source term decomposes as

−4πrfρ`m(t, r) =
∫
dωZ`mω(r)e−iωt. (3.4.10)

Plugging these into Eq. (3.4.2) we have

−∂2
t

[∫
dωR`mω(r)e−iωt

]
+ ∂2

r∗

[∫
dωR`mω(r)e−iωt

]

−V`(r)
∫
dωR`mω(r)e−iωt =

∫
dωZ`mω(r)e−iωt, (3.4.11)

d2R`mω
dr2
∗

(r)−
(
V`(r)− ω2

)
R`mω(r) = Z`mω. (3.4.12)

Because the problem we are considering has two fundamental periods, the frequency depen-

dence will be doubly periodic. That is, we will find that

ω = ωmn ≡ mΩφ + nΩr, m, n ∈ Z, (3.4.13)

where Ωr ≡ 2π/Tr and

Ωφ ≡
1
Tr

∫ Tr

0

(
dφp
dt

)
dt. (3.4.14)

Now, in order to calculate the source term in the frequency domain we use the inverse

Fourier transform:

Z`mn = −4π
Tr

∫ Tr

0
frρ`m(t, r)eiωmntdt. (3.4.15)

We can plug in for the source from Eq. (3.4.8) to get our specific form of Z`mn,

Z`mn = −4πq
Tr

Y`m(π/2, 0)
∫ Tr

0

f

utr
δ [r − rp(t)] e−imφp(t)eiωmntpdt, (3.4.16)

= −2
4πq
Tr

Y`m(π/2, 0)
f(rp)
urrp

e−imφp(rp)eiωmnt(rp). (3.4.17)
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Figure 3.2: In red on the left we plot the azimuthal advance of a particle in eccentric orbit
around a Schwarzschild black hole. Its average advance Ωφt is plotted in green. Subtracting
off this average advance leaves the right panel. Note that this oscillation about the mean
value of φ has a period of Tr, corresponding to the radial motion of the particle.

We can decompose φp(t) as a part that grows linearly with time, and a part, ∆φ(t), that

has a periodicity of Tr,

φp(t) = Ωφt+ ∆φ(t). (3.4.18)

Now we solve the ODE (3.4.12). We set unit normalized boundary conditions at the horizon

and at infinity,

R̂−`mn(r∗ → −∞) = e−iωmnr∗ , R̂+
`mn(r∗ → +∞) = eiωmnr∗ . (3.4.19)

The method of variation of parameters gives the solution to the inhomogeneous equation,

R`mn(r) = c+
`mn(r)R̂+

`mn(r) + c−`mn(r)R̂−`mn(r), (3.4.20)

where

c+
`mn(r) ≡ 1

W`mn

∫ r

rmin

dr′
R̂−`mn(r′)Z`mn(r′)

f(r′)
,

c−`mn(r) ≡ 1
W`mn

∫ rmax

r
dr′

R̂+
`mn(r′)Z`mn(r′)

f(r′)
,

(3.4.21)
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and

W`mn ≡ R̂−`mn
dR̂+

`mn

dr∗
− R̂+

`mn

dR̂−`mn
dr∗

, (3.4.22)

is the Wronskian. Outside the source libration region, Eq. (3.4.20) reduces to the normalized

homogeneous solutions that are properly connected through the source region,

R+
`mn(r) = C+

`mnR̂
+
`mn(r), r ≥ rmax, R−`mn(r) = C−`mnR̂

−
`mn(r), r ≤ rmin, (3.4.23)

where C±`mn are the values of c±`mn(r) evaluated at the ends of the range of the source,

C+
`mn ≡ c+

`mn (rmax) , C−`mn ≡ c−`mn (rmin) . (3.4.24)

From here, the standard approach is to return to the time domain with the Fourier synthesis

Ψ`m(t, r) =
∑

n

R`mn(r)e−iωmnt. (3.4.25)

Because our source has a singularity, the function we are trying to reconstruct will have

a lack of differentiability, and this reconstruction will therefore suffer from the Gibbs phe-

nomenon.

3.4.2 Extended homogeneous solutions

We can regain the exponential convergence we want by turning to the method of extended

homogeneous solutions (EHS) developed by Barack, Ori, and Sago [1]. We start by defining

the frequency domain EHS, which are valid for all r,

R±`mn(r) ≡ C±`mnR̂±`mn(r), r > 2M. (3.4.26)

Next, we define the time domain EHS, which (given that they are homogeneous solutions

to the differential equation) are again formally valid everywhere,

Ψ±`m(t, r) ≡
∑

n

R±`mn(r)e−iωmnt. (3.4.27)
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Now, we claim that the true solution to Eq. (3.4.2) is

ΨEHS
`m (t, r) ≡ Ψ+

`m(t, r) θ [r − rp(t)] + Ψ−`m(t, r) θ [rp(t)− r] . (3.4.28)

That this is the actual time domain scalar field is not obvious. In Chapter 4 we will discuss

this method more thoroughly (including more general source terms).

3.5 Chapter summary

In the next chapter we will solve the field equations for the gravitational perturbation due to

a particle in eccentric orbit about a Schwarzschild black hole. This chapter has introduced

several ideas that will be important to that task. After examining scalar fields in flat space,

we derived the Regge-Wheeler equation. This is the equation (with a different potential and

source), that we will have to solve to find the metric perturbation amplitudes in Chapter 4.

We saw how to choose causally appropriate boundary conditions, including performing the

asymptotic expansion on the large r side. Then, considering a particle in eccentric orbit,

we noted that the system exhibits two fundamental frequencies. Thus, upon moving to

the frequency domain, we found that Regge-Wheeler equation must be solved for a doubly-

infinite countable set of modes. Additionally, the source (which was point singular in the

time domain) becomes a function of r, confined to the region rmin to rmax. This leads to

the Gibbs phenomenon, when a standard Fourier synthesis is used to return to the time

domain. To circumvent this, we introduced the method of extended homogeneous solutions,

which will be an important part of our work on gravitational fields in Chapters 4 and 5.
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Chapter 4

Gravitational perturbations and metric
reconstruction: Method of extended

homogeneous solutions applied to
eccentric orbits on a

Schwarzschild black hole

Chapters 2 and 3 have set the stage for us to solve the perturbed Einstein equations for a

particle in eccentric orbit about a Schwarzschild black hole. In Chapter 2 we saw how the

first-order Einstein equations are derived on a curved background, and then subsequently

how they are decomposed into equations for the spherical harmonic amplitudes when work-

ing in the Schwarzschild spacetime. We also introduced the Regge-Wheeler (RW) gauge,

which we will be using in this chapter. We will see that solving the field equations in RW

gauge reduces to solving a wave equation for one master function for each harmonic mode.

In Chapter 3 we introduced many of the necessary concepts for solving the type of wave

equation we will solve in this chapter. We saw horizon and infinity boundary conditions, ec-

centric orbit bi-periodicity, singular source terms, and the method of extended homogeneous

solutions.

This chapter contains two noteworthy contributions to the field of EMRI research. First,

we have applied the method of extended homogeneous solutions to all radiative gravitational

modes. This allows for the fast and accurate frequency domain calculation of the radiative

gravitational field at the point of the particle for the first time. Our second original result

is the detailed analysis of the local singular nature of the metric perturbation in RW gauge.



We find that the six nonzero perturbation amplitudes are all discontinuous (C−1) and three

of them are additionally singular (∼ δ(z)) at the location of the particle. We compute the

time dependent magnitudes of these jumps and delta functions analytically.

4.1 Introduction

Considerable research on the two-body problem in general relativity has been fostered over

the past decade by the prospects of detecting gravitational radiation from extreme-mass-

ratio binaries. The general relativistic two-body problem is notoriously difficult, as it in-

volves dynamics of the motion of the bodies and of the gravitational field itself. Gravita-

tional wave emission carries away energy and angular momentum from the orbit, leading to

inspiral and eventual merger. The future joint NASA-ESA LISA mission [61] is expected to

detect between tens and thousands of such extreme-mass-ratio inspirals (EMRIs)–binaries

composed of a compact object (µ ∼ 1 − 50M�) in orbit about a supermassive Kerr black

hole (M ∼ 105 − 107M�) out to cosmological distances (z ∼ 1) [62]. The small mass ra-

tio 10−7 . µ/M . 10−3 of expected astrophysical sources [12] implies a gradual change

in orbital parameters, with & 105 wave periods as the binary evolves through the LISA

passband (10−4 − 10−2 Hz). Detailed theoretical calculations will aid in both detection of

EMRI gravitational wave signals and in determination of the source’s physical parameters.

Quite apart from the prospects of astrophysical observation, this problem is one of in-

trinsic interest in theoretical physics. Of the various possibilities, the physically simplest

compact binary is one composed of two black holes. Such a system eliminates the com-

plications of stellar microphysics and reduces the problem to a minimum parameter set.

In approaching the problem mathematically, the extreme mass-ratio and gradual orbital

evolution is of benefit theoretically, allowing black hole perturbation theory to be used.

Furthermore, the small mass ratio allows even the black hole structure of the small mass to

be ignored (at lowest order), restoring a point-like (particle) behavior [36] on length scales

that are large compared to µ and thereby simplifying the perturbation problem.

The perturbation problem proceeds in stages. At the outset the motion of the particle
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is taken as a geodesic (µ/M → 0, or zeroth order) on the background spacetime. The first-

order (in µ/M) gravitational field perturbation is then computed, yielding a new metric

gµν = gµν + pµν that corrects the background metric gµν . The gravitational waves in the

perturbation pµν carry energy and angular momentum to infinity and down the black hole

event horizon, giving rise to a back reaction or local self-force (SF) on the particle that has

both conservative and dissipative terms. Formally, the SF depends on gradients of pµν and

acts locally on the particle to accelerate it off its background geodesic. Once the first-order

correction to the motion is successfully computed, the calculation may proceed to second

order in the field perturbation (see Pound [63] for a recent background discussion and an

alternative formulation).

Yet having idealized the small body as a point particle, the metric perturbation and

SF are found to diverge at the location of the particle, and the formal perturbation to the

equation of motion is meaningless without careful regularization. This problem is similar to

the classic SF problem of an accelerating, radiating charge in electromagnetic theory in flat

spacetime [32]. Two pivotal papers, by Mino, Sasaki, and Tanaka [37] and Quinn and Wald

[38], showed how the metric perturbation may be separated into a divergent, direct part

pdir
µν and a finite tail term ptail

µν , with the latter providing the regularized field that makes the

SF finite. As an alternative, Detweiler and Whiting [35] proposed decomposing the metric

perturbation into regular pRµν and singular pSµν parts. Under this interpretation, pRµν is a

solution to the vacuum field equations, but gives rise to the same SF as ptail
µν .

Since then, SF calculations have been made in certain special cases [64, 65, 46, 66, 2].

See the review by Barack [62]. Ultimately, the theory aims to provide self-consistent SF

calculations of arbitrary orbits about Kerr black holes. In this chapter, we concern ourselves

with a more modest goal: demonstrating a complete computation of the radiative gravita-

tional perturbations produced by a mass in eccentric orbit on a Schwarzschild black hole

and reconstruction of the corresponding parts of the perturbed metric in Regge-Wheeler

gauge. While we leave for another occasion computation of both the nonradiative pertur-

bations and the SF, the accurate reconstruction of the radiative parts of the metric, at all

locations up to and including the point mass, should serve as a starting point for a further
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gauge transformation or alternative regularization technique.

We note in passing that most work to date computing EMRI evolution has not made

use of local SF calculation. Sufficiently adiabatic changes in an orbit on Schwarzschild

spacetime allow a balance calculation approach [49], where orbital energy and angular mo-

mentum are “evolved” (acausally) to match corresponding gravitational wave fluxes through

bounding surfaces at large radius and near the horizon. Much effort is ongoing to extend

the reach of adiabatic calculations [67, 68, 69]. Unfortunately, the approach only approx-

imates dissipative SF terms and cannot account for conservative SF effects. In any event,

the more self-consistent SF approach should serve to confirm the validity of these or other

approximations.

Perturbation theory for Schwarzschild black holes has a traditional formalism pioneered

by Regge and Wheeler [14], Zerilli [15], and Vishveshwara [70] that uses spherical harmon-

ics and the Regge-Wheeler gauge to simplify algebraically the form of the metric pertur-

bation. At each spherical harmonic order there are just two master functions, Ψeven
`m (t, r)

and Ψodd
`m (t, r), one for each parity or gravitational degree of freedom, which satisfy linear

inhomogeneous wave equations in t and r. The formalism was improved by Moncrief [16]

and colleagues [17, 18], making use instead of gauge-invariant master functions that satisfy

similar wave equations. Recently Martel and Poisson [55] have placed the theory in both a

gauge-invariant and covariant form.

For perturbations of Kerr black holes, Teukolsky [20] developed a formalism based on

Newman-Penrose curvature scalars and spin-weighted spheroidal harmonics. In the fre-

quency domain the radial part is a single (complex) master equation [71], which can, of

course, be applied to a Schwarzschild hole as well [49, 72].

An alternative to the Regge-Wheeler-Zerilli (RWZ) approach has recently been advanced

by Barack and Lousto [45]. They propose directly evolving the ten spherical harmonic am-

plitudes that describe the metric perturbation in Lorenz (or harmonic) gauge. In this direct

metric perturbation approach, the equations separate into even- and odd-parity sectors, yet

still involve systems of seven and three coupled equations, respectively. Barack and Sago

[65, 2] have used the formalism to compute the time evolution of metric perturbations
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generated by circular and eccentric orbits on Schwarzschild, along with the resulting SF

components.

The RWZ and direct metric perturbation approaches each have advantages and disad-

vantages. The direct metric perturbation formalism yields directly what one wants as an

input to a SF calculation, namely the metric itself in Lorenz gauge. In a time domain

calculation, as so far employed, it has the disadvantage of requiring simultaneous solution

of a large set of coupled partial differential equations (PDE’s). Anticipating the subtrac-

tion involved in the SF regularization, Barack, Lousto, and Sago have built a fourth-order

convergent finite difference code to compute the modes to sufficient accuracy. In contrast,

the RWZ approach has the advantage that only a single uncoupled wave equation need be

solved for each mode and parity. Unfortunately, an added step is required to reconstruct the

metric from the mode solutions. Moreover, the reconstruction involves terms that are sin-

gular at the particle location and the simplest reconstruction yields the metric perturbation

in Regge-Wheeler gauge [50, 73]. Finally, the RWZ approach provides only the radiative

(` ≥ 2) parts of the perturbation and the nonradiative modes (` = 0, 1) must be derived by

separate means.

In this chapter we opt for using the gauge-invariant RWZ approach detailed by Martel

and Poisson [55], and adopt the Zerilli-Moncrief ΨZM
`m = Ψeven

`m and Cunningham-Price-

Moncrief ΨCPM
`m = Ψodd

`m master functions for even and odd-parity, respectively. Our use

of this relatively standard method is augmented, though, by a new technique that enables

accurate reconstruction of the corresponding parts of the metric in Regge-Wheeler gauge.

We leave for a later occasion our own consideration of the monopole and dipole terms (which

are essential to a SF calculation) and instead direct attention to discussion by Detweiler

and Poisson [30] and recent successful numerical implementation by Barack and Sago [2].

The master functions can be obtained directly by numerical evolution (solution of

PDE’s) in the time domain (TD) (see e.g., [74, 64, 50, 51, 65, 75, 66, 2]) or by numerical in-

tegration of ordinary differential equations (ODE’s) for the Fourier modes in the frequency

domain (FD) (see e.g., [49, 76, 77, 1]). Each method has strengths and weaknesses. TD

calculations require solving just one equation for each `,m mode and time dependence of
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the subsequently reconstructed metric and SF is of direct interest. Disadvantages of TD

calculations include (1) modeling the discontinuous source movement through the finite

difference grid [45, 2]; (2) numerical stability of PDE evolution; (3) difficulty devising nu-

merical schemes of adequately small truncation error; and (4) challenges in posing outgoing

wave boundary conditions at finite radius. In contrast, in FD calculations (1) the numerical

errors tend to be much smaller (i.e., by solving ODE’s); (2) outgoing wave boundary con-

ditions are handled mode-by-mode and extrapolated to infinity and to the black hole event

horizon; and (3) the discontinuous source presents few difficulties in computing (at least)

the Fourier mode functions R`mn(r). However, FD methods require, for eccentric orbits,

computing and summing over numerous harmonics n of the radial libration frequency Ωr

for each `,m and transformation to the TD is nontrivial given the singular source terms.

Barack, Ori, and Sago (BOS) [1] highlighted the latter difficulty. They used the model

problem of a scalar field Φ(t, r, θ, ϕ) generated by a scalar point charge in eccentric orbit on

Schwarzschild. The spherical harmonic modes φ`m(t, r) = rΦ`m(t, r) satisfy a wave equation

with a singular source, Sscalar
`m (t, r) = C`m(t, r) δ[r − rp(t)]. Here C`m(t, r) is some smooth

function and r = rp(t) describes the radial libration of the particle’s worldline between

two turning points. In the FD, ODE’s are solved for the Fourier-harmonic modes R`mn(r).

These mode functions are, at each point r, Fourier series coefficients. The resulting Fourier

series converges for the piecewise continuous (C0) φ`m(t, r) but the singular nature of the

source S makes φ`m(t, r) converge slowly in the region traversed by the point charge. The

radial derivative ∂rφ`m is however discontinuous at r = rp(t) and its Fourier series only

converges, in the usual sense [78], almost everywhere. The attempt to assemble the radial

derivative from the Fourier series is plagued by the Gibbs phenomenon; the series converges

to the mean value at the discontinuity and the series “overshoots” and fails to converge

properly in the limit as both n→∞ and r → rp(t)±.

BOS circumvented the difficulty with a new method of extended homogeneous solutions.

In brief, they use FD analysis to find Fourier-harmonic mode solutions to the homogeneous

equation, valid outside and on either side of the source libration region. The associated
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Fourier series converge exponentially fast to homogeneous solutions of the TD wave equa-

tion. They then analytically extend both homogeneous TD solutions into the source libra-

tion region up to the instantaneous position of the point charge. Summed to adequately

high order, the two homogeneous solutions match in value at rp(t), as expected. With the

field represented in this way, the left and right derivatives can be accurately determined.

BOS argued that the method should work for other problems with similar wave equations,

including the Teukolsky equation.

We show in this chapter that the method can indeed be extended to the case of gravi-

tational perturbations computed in the RWZ formalism, and apply the method to a large

set of Fourier-harmonic modes stemming from a mass in eccentric orbit on Schwarzschild.

(Note that Barack and Sago [2] previously implemented this method in the gravitational

case but only for the ` = 0, 1 modes in Lorenz gauge.) An important distinction arises:

in the gravitational case the source distribution in the Regge-Wheeler gauge contains both

delta function and derivative-of-delta function terms,

S`m(t, r) = G`m(t, r) δ[r − rp(t)] + F`m(t, r) δ′[r − rp(t)], (4.1.1)

with G`m(t, r) and F`m(t, r) being smooth functions. As a consequence the master functions

have a jump discontinuity at r = rp(t) (referred to sometimes as a C−1 function). The

resulting extension of the homogeneous solutions, Ψ+
`m and Ψ−`m, written as

Ψ`m(t, r) = Ψ+
`m(t, r) θ[r − rp(t)] + Ψ−`m(t, r) θ[rp(t)− r], (4.1.2)

where θ[r−rp(t)] is the Heaviside function, is a type of weak solution to the inhomogeneous

master equation. Thus in the gravitational case in RWZ gauge the difficulty with local

convergence occurs with the master function itself. We show that the use of distributions,

or generalized functions [79], makes possible separate analytic calculation of the expected

jumps in value and slope of Ψ`m. We further demonstrate that the metric perturbation

can be accurately numerically computed, including the time dependent magnitudes of delta

function terms that appear in some of the metric amplitudes in Regge-Wheeler gauge.
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This chapter is organized as follows. In Sec. 4.2 we briefly outline the general mathe-

matical problem of using FD techniques to solve for perturbations in the RWZ formalism.

We also review the standard parameterization of eccentric orbits. Sec. 4.3 concerns the

method of extended homogeneous solutions. We first review BOS’s solution for the scalar

field case. We show then our treatment of more general source terms and extension of the

method to gravitational perturbations. Sec. 4.4 provides numerical results on the computed

Fourier-harmonic mode functions, including convergence tests and calculation of radiated

gravitational wave energy and angular momentum. In particular, the energy and angular

momentum fluxes are shown to agree with past published values. More importantly, the

method is shown to provide a solution to the field and its derivatives that is convergent

exponentially fast everywhere. Then in Sec. 4.5, we show that the equations which allow

the metric to be obtained from the master functions, along with an understanding of the

form of the weak solutions for Ψeven
`m and Ψodd

`m , can be used to determine both the smooth

and distributional parts of the metric. App. 4.A discusses fully evaluated forms of distribu-

tional source terms. App. 4.B gives the details of such source terms for our case of eccentric

orbits on Schwarzschild. In App. 4.C we concisely summarize the metric perturbation for-

malism in the Regge-Wheeler gauge. We show the construction of gauge-invariant master

functions of each parity, and provide the spherical harmonic decomposition of the Einstein

equations and Bianchi identities. App. 4.D concludes this chapter with a brief discussion of

asymptotic expansions used to set boundary conditions on the mode functions at large r.

Throughout this chapter we use the sign conventions and notation of Misner, Thorne,

and Wheeler [53] and use units in which c = G = 1. We use Schwarzschild coordinates

xµ = (t, r, θ, ϕ) except as otherwise indicated.

4.2 Background on the standard RWZ approach to gravita-
tional perturbations in the frequency domain

In this section we briefly summarize both the standard notation for parameterizing bound

orbits on Schwarzschild and the usual approach to computing gravitational perturbations
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using the Regge-Wheeler-Zerilli (RWZ) formalism in the frequency domain (FD). The de-

scription of the geodesic motion on the background, in terms of various curve functions, is

used throughout the rest of the chapter. The standard FD analysis provides the notation

for describing the Fourier-harmonic modes, and their normalization, and sets the stage for

discussion in Sec. 4.3 of how gravitational perturbations can be returned successfully to

the time domain (TD). Here, and throughout this chapter, we use a subscript p to indicate

evaluation along the worldline of the particle.

4.2.1 Bound orbits on a Schwarzschild black hole

Consider bound timelike geodesic motion around a Schwarzschild black hole (i.e., µ →

0). We may for the nonce use proper time τ to parameterize the geodesic, xµp (τ) =

[tp(τ), rp(τ), θp(τ), ϕp(τ)], with the associated four-velocity uµ = dxµp/dτ . On Schwarzschild

we take θp(τ) = π/2 without loss of generality. The geodesic equations yield immediate first

integrals and allow the trajectory to be described by the conserved energy E and angular

momentum L per unit mass. Alternatively, we can choose the (dimensionless) semi-latus

rectum p and the eccentricity e as orbital parameters (c.f., [49, 2]). A third choice would

be use of the periapsis and apapsis, rmin and rmax. We will find all of these useful in what

follows. The latter two parameter pairs are related to each other by

p ≡ 2rmaxrmin

M(rmax + rmin)
, e ≡ rmax − rmin

rmax + rmin
, (4.2.1)

or inversely

rmax =
pM

1− e, rmin =
pM

1 + e
. (4.2.2)

The specific energy and angular momentum are related to p and e by [49]

E2 =
(p− 2− 2e)(p− 2 + 2e)

p(p− 3− e2)
, L2 =

p2M2

p− 3− e2
. (4.2.3)
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The geodesic equations provide the following differential equations for the orbital motion

and for the time dependence of the four-velocity,

dtp
dτ

= ut =
E
fp
,

dϕp
dτ

= uϕ =
L
r2
p

,

(
drp
dτ

)2

= (ur)2 = E2 − U2
p , (4.2.4)

where

f(r) ≡ 1− 2M
r
, U2(r,L2) ≡ f

(
1 +
L2

r2

)
. (4.2.5)

For purposes of numerical integration there is another curve parameter, originally de-

vised by Darwin [80], that proves useful. Here one introduces a phase angle χ that is related

to the radial position on the orbit by the Keplerian-appearing form

rp (χ) =
pM

1 + e cosχ
. (4.2.6)

Of course, in the relativistic case χ differs from the true anomaly ϕ. The orbit goes through

one radial libration for each change ∆χ = 2π. The use of χ eliminates singularities in the

differential equations at the turning points [49]. Note that at χ = 0, rp = rmin and at

χ = π, rp = rmax. (Also note that in this section we are content with making a slight abuse

of notation in jumping from rp(τ) to rp(χ), before ultimately settling on rp(t).) In terms of

χ the equations are

dtp
dχ

=
p2M

(p− 2− 2e cosχ)(1 + e cosχ)2

[
(p− 2)2 − 4e2

p− 6− 2e cosχ

]1/2

, (4.2.7)

dϕp
dχ

=
[

p

p− 6− 2e cosχ

]1/2

, (4.2.8)

and
dτp
dχ

=
Mp3/2

(1 + e cosχ)2

[
p− 3− e2

p− 6− 2e cosχ

]1/2

. (4.2.9)

We use Eq. (4.2.7) to derive the fundamental frequency and period of radial motion,

Ωr ≡
2π
Tr
, Tr ≡

∫ 2π

0

(
dtp
dχ

)
dχ. (4.2.10)
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It is also of importance to have the average rate at which the azimuthal angle advances,

found by averaging the angular frequency dϕp/dt over a radial libration via

Ωϕ ≡
1
Tr

∫ Tr

0

(
dϕp
dt

)
dt. (4.2.11)

While Tr represents the lapse of coordinate time in a radial libration, the time Tϕ = 2π/Ωϕ

has no particular physical significance [81]. Finally, because wave equation source functions

contain terms like δ[r − rp(t)] and δ′[r − rp(t)], we have need of derivatives of rp(t),

ṙ2
p(t) = f2

p −
f2
p

E2
U2
p , r̈p(t) =

2Mfp
r2
p

−
f2
p

E2r2
p

[
3M − L

2

rp
+

5ML2

r2
p

]
, (4.2.12)

where we let a dot signify differentiation with respect to coordinate time.

4.2.2 The Regge-Wheeler-Zerilli formalism in the frequency domain

As discussed in the Introduction, we use the RWZ approach to gravitational perturbations

and use specifically the even-parity Zerilli-Moncrief function Ψeven
`m [16] and the odd-parity

Cunningham-Price-Moncrief function Ψodd
`m [18]. See Martel and Poisson [55] for recent

discussion and references therein. Both of these functions satisfy wave equations of the

form [
− ∂2

∂t2
+

∂2

∂r2
∗
− V`(r)

]
Ψ`m(t, r) = S`m(t, r), (4.2.13)

where r∗ = r + 2M ln(r/2M − 1) is the usual tortoise coordinate. The potential used in

Eq. (4.2.13) is either the Zerilli or Regge-Wheeler potential depending on whether the parity

is even or odd, respectively.

The source terms also depend upon parity but further depend on which specific mas-

ter functions are chosen. Martel and Poisson gave the covariant form of Seven
`m and Sodd

`m

(see App. 4.C for these in Schwarzschild coordinates) that are associated with the Zerilli-

Moncrief and Cunningham-Price-Moncrief functions. Martel [50] derived the detailed form

of Seven
`m for a point mass in eccentric orbit. Sopuerta and Laguna [75] derived the detailed

form of Sodd
`m for eccentric orbits (see also Field et al. [82]). We give in App. 4.B detailed
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expressions for these sources in a form that is useful for both mode integrations and metric

reconstruction.

In each case the source term has the following general form

S`m(t, r) = G̃`m(t) δ[r − rp(t)] + F̃`m(t) δ′[r − rp(t)], (4.2.14)

where G̃`m(t) and F̃`m(t) are smooth (differentiable) functions. Note that the source, as

written here, differs from notation originally used by Martel [50] (who retained smooth

functions of r and t, as in Eq. (4.1.1)). Our expression uses the delta function, and parts

integration, to yield a fully evaluated form along the worldline of the particle (see App. 4.A),

making G̃`m(t) and F̃`m(t) unique functions of time only.

Eq. (4.2.13) can be solved directly in the TD–an approach that has received much

attention lately. In this chapter we are interested instead in extending the reach of FD

analysis, and the balance of this section provides a brief review of the standard FD solution.

We note in passing that a hybrid approach is possible–using FD analysis for low ` and m

modes while using TD calculation for high order modes [83].

On Schwarzschild, eccentric orbits are typically not closed and therefore the motion is

not simply periodic as seen by an asymptotic static observer. The radial libration is periodic

(but not typically sinusoidal) with fundamental frequency Ωr. The smooth functions G̃`m(t)

and F̃`m(t), which depend upon the particle’s radial and angular motion, have terms that

are periodic with fundamental frequency Ωr, but also involve a term that is proportional to

exp[−imϕp(t)]. This latter term comes from restricting the spherical harmonics Y ∗`m(θ, ϕ)

with δ[ϕ− ϕp(t)]. The function ϕp(t) advances with an average rate Ωϕ, but is modulated

(in an eccentric orbit) by a function ∆ϕ(t) that is periodic with fundamental frequency

Ωr. Hence, the source S`m(t, r), and therefore the field Ψ`m(t, r), can be represented by

a Fourier series with fundamental frequency Ωr, but multiplied by a phase factor that

advances linearly with rate Ωϕ. These fields would appear simply periodic to an observer

whose frame rotates at rate Ωϕ [49]. To a static observer, a given mode ` and m will have

a spectrum of harmonics offset by mΩϕ; taken together the full field will have a two-fold
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countably infinite frequency spectrum,

ω = ωmn ≡ mΩϕ + nΩr, m, n ∈ Z. (4.2.15)

Accordingly, the wave equation (4.2.13) Fourier transforms into a set of ODE’s,

[
d2

dr2
∗
− V`(r) + ω2

mn

]
R`mn(r) = Z`mn(r), (4.2.16)

where R`mn(r) and Z`mn(r) are Fourier harmonic amplitudes

R`mn(r) ≡ 1
Tr

∫ Tr

0
dt Ψ`m(t, r) eiωmnt, Z`mn(r) ≡ 1

Tr

∫ Tr

0
dt S`m(t, r) eiωmnt. (4.2.17)

The series representations of Ψ`m(t, r) and S`m(t, r) are

Ψ`m(t, r) =
∞∑

n=−∞
R`mn(r) e−iωmnt, S`m(t, r) =

∞∑

n=−∞
Z`mn(r) e−iωmnt, (4.2.18)

and are subject to the usual provisos of Fourier theory regarding for what r Eqs. (4.2.18)

converge to the original functions.

In order to find the solution to Eq. (4.2.16), we start by solving the homogeneous version

of that equation, obtaining two independent solutions. Using the terminology of Galt’sov

[84] (see also [85] for a clear presentation of basis modes), the R−`mn(r) solution is computed

by setting a unit normalized “in” wave boundary condition of

R̂−`mn(r∗ → −∞) = e−iωmnr∗ , (4.2.19)

near the horizon. Similarly, the R+
`mn(r) solution arises from setting a unit normalized “up”

boundary condition of

R̂+
`mn(r∗ → +∞) = eiωmnr∗ , (4.2.20)

at large r∗. Formally, these homogeneous solutions are both valid in the entire range 2M <

r <∞. The standard method of integrating the Green function and source (the method of
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variation of parameters) gives the solution to the inhomogeneous equation (4.2.16),

R`mn(r) = c+
`mn(r)R̂+

`mn(r) + c−`mn(r)R̂−`mn(r), (4.2.21)

where

c+
`mn(r) ≡ 1

W`mn

∫ r

rmin

dr′
R̂−`mn(r′)Z`mn(r′)

f(r′)
,

c−`mn(r) ≡ 1
W`mn

∫ rmax

r
dr′

R̂+
`mn(r′)Z`mn(r′)

f(r′)
,

(4.2.22)

and

W`mn ≡ R̂−`mn
dR̂+

`mn

dr∗
− R̂+

`mn

dR̂−`mn
dr∗

, (4.2.23)

is the Wronskian. Outside the source libration region, Eq. (4.2.21) reduces to the normalized

homogeneous solutions that are properly connected through the source region,

R+
`mn(r) = C+

`mnR̂
+
`mn(r), r ≥ rmax,

R−`mn(r) = C−`mnR̂
−
`mn(r), r ≤ rmin,

(4.2.24)

where C±`mn are the values of c±`mn(r) evaluated at the ends of the range of the source,

C+
`mn ≡ c+

`mn (rmax) , C−`mn ≡ c−`mn (rmin) . (4.2.25)

4.3 The method of extended homogeneous solutions in the
gravitational case

4.3.1 Brief review of Barack, Ori, and Sago’s method of extended homo-
geneous solutions

As a model problem, Barack, Ori, and Sago (BOS) considered the scalar field Φ produced

by a scalar point charge in an eccentric orbit on a Schwarzschild background. The spherical

harmonic amplitudes φ`m(t, r) = rΦ`m(t, r) of the scalar field satisfy RWZ-like equations

fully analogous to Eq. (4.2.13) but with source functions that only depend upon a Dirac
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delta function,

Sscalar
`m = C`m(t, r) δ[r − rp(t)]. (4.3.1)

Here C`m(t, r) is a smooth function that is derived from the particle’s point-like charge

density ρ.

With a delta function source the amplitudes φ`m(t, r) are left piecewise continuous (C0)

at the instantaneous particle location rp(t) but lose all differentiability there. BOS ar-

gued that this behavior, while surmountable in TD calculations, would cause difficulties for

Fourier synthesis in FD calculations. As they convincingly demonstrated with their first

two figures, while φ`m(t, r) converges exponentially fast outside the radial libration region,

the Gibbs phenomenon is responsible for a very slow convergence of φ`m(t, r) between rmin

and rmax. Furthermore, the radial derivative ∂rφ`m is discontinuous at rp(t) and suffers the

full effects of the Gibbs phenomenon–the Fourier series converges to the mean value at the

discontinuity and partial sums (−N ≤ n ≤ N) overshoot in the limit as both N →∞ and

r → rp(t)±. This behavior is a serious obstacle to straightforward use of FD calculations in

SF regularization.

As a solution to this problem, BOS developed the method of extended homogeneous

solutions (EHS). Their method involves using the Fourier-harmonic modes of the homoge-

neous equation in the FD to synthesize homogeneous solutions φ−`m(t, r) and φ+
`m(t, r) to

the TD wave equation. The Fourier convergence of these homogeneous solutions is expo-

nentially rapid. While these solutions exist in the entire radial domain (2M < r < ∞),

ordinarily φ−`m(t, r) and φ+
`m(t, r) would be viewed as meaningful in their respective source-

free regions, r < rmin and r > rmax. The heart of the BOS method lies in extending both

of these solutions into the region of radial libration up to the instantaneous position of the

particle.

BOS demonstrated the method numerically using the monopole term of Φ. A key

condition for success of the method is that, as N →∞ in the partial sums, one finds

lim
r→rp(t)

φ−`m(t, r) = lim
r→rp(t)

φ+
`m(t, r), (4.3.2)
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as expected analytically. This was observed numerically and the method as a whole con-

verges rapidly since the FD solution of the inhomogeneous equation is never summed. BOS

went on to argue that the method could be extended to any ` and m for scalar, electromag-

netic, or gravitational fields.

4.3.2 Application to gravitational perturbations

In this section we detail our application of the method to the gravitational case in RWZ

gauge. It is worth first observing the magnitude of the problem to be circumvented. Given

the gravitational source (4.2.14), and the solution to Eq. (4.2.16) afforded by Eq. (4.2.21),

the standard approach would represent the inhomogeneous solution to the master equation

(4.2.13) by

Ψ`m(t, r) ∼ Ψstd
`m(t, r) =

+N∑

n=−N
R`mn(r) e−iωmnt, N →∞, (4.3.3)

where we use the ∼ to indicate that the equality between the actual solution Ψ`m and Ψstd
`m

holds almost everywhere for N →∞.

Looking ahead somewhat, we use our numerical code to obtain a particular spherical

harmonic amplitude, Ψ22(t, r) (` = 2, m = 2), and its radial derivative, ∂rΨ22(t, r). We

can also use the code to assemble the standard partial Fourier sums (see FIGs. 4.1 and

4.2). We find that the Gibbs problem with the standard approach is significantly worse in

the gravitational case (in Regge-Wheeler gauge) than it is for the scalar field. In the present

case the field itself has a discontinuity and the radial derivative is both discontinuous as

r → rp(t) and also has a delta function singularity at rp(t). The left panels of FIGs. 4.1

and 4.2 are familiar; the partial sums have difficulty representing the jump discontinuity

and overshoot the exact solution (solid curve). In the right panels, the singularity at rp(t)

wreaks havoc on the ability of the Fourier synthesis to represent the exact solution.

On a bright note, outside the range of the source, the standard solution converges

exponentially fast. Nevertheless, in the source region between rmin and rmax the convergence

will be algebraic in general and disastrous at the location of the particle. A discontinuous

(or worse, singular) function cannot be accurately represented by a finite sum of smooth
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Figure 4.1: The standard FD approach to reconstructing the TD master function and its
r derivative. The left panel shows Ψstd

22 and the right shows ∂rΨstd
22 at t = 51.78M for a

particle orbiting with p = 7.50478 and e = 0.188917. This figure is analogous to FIG. 1
of BOS [1]. Partial sums are computed with Eq. (4.3.3) and shown for different N . For
contrast we plot the converged solution from the new method with a solid curve (see FIG.
4.3). The arrow in the right panel gives a notional representation of the delta function
singularity present in ∂rΨ22; the amplitude of this singular term is related to the jump in
Ψ22 seen in the left panel.
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Figure 4.2: An alternate view of the behavior presented in FIG. 4.1. A change in the scale
in the left panel emphasizes the Gibbs overshoots in Ψ22. On the right, a zoom-out of the
vertical scale more clearly indicates the attempt of the Fourier synthesis to capture the
delta function at rp(t).

functions.

We now generalize the EHS method to the gravitational case. We start by recognizing
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that R±`mn from Eq. (4.2.24) are valid solutions to the homogeneous version of Eq. (4.2.16)

throughout the entire domain outside the black hole,

R±`mn(r) = C±`mnR̂
±
`mn(r), r > 2M. (4.3.4)

Next, we use these to define the time-domain extended homogeneous solutions,

Ψ±`m(t, r) ≡
∑

n

R±`mn(r) e−iωmnt, r > 2M, (4.3.5)

which result from inserting R±`mn into Eq. (4.2.18). The central claim is then that for any

t and r the actual solution to the inhomogeneous wave equation (4.2.13) is given by

Ψ`m(t, r) = ΨEHS
`m (t, r) ≡ Ψ+

`m(t, r) θ [r − rp(t)] + Ψ−`m(t, r) θ [rp(t)− r] . (4.3.6)

The argument made by BOS can be extended to the gravitational case and goes as follows:

• We denote the desired true solution of the inhomogeneous wave equation as Ψ`m.

Outside the domain of the source (r < rmin, rmax < r) Ψ`m = Ψstd
`m = ΨEHS

`m because

there R`mn = R±`mn.

• It is assumed that Ψ`m(t, r) is analytic in the entirety of the two regions 2M < r <

rp(t) and rp(t) < r (excluding only a neighborhood of rp(t)).

• Because the homogeneous solutions Ψ±`m are expected to be analytic everywhere,

ΨEHS
`m (t, r) will be analytic in the two regions discussed above (excluding only a neigh-

borhood of rp(t)). (See the extended discussion BOS have about this.)

• Because Ψ`m and ΨEHS
`m are identical outside the region of libration, and they are both

analytic everywhere up to the location of the source, they must be equal over that

entire domain.

Here we provide an additional justification for the assumed form of the solution given

in Eq. (4.3.6). The source term of the wave equation is a distribution, or generalized
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Figure 4.3: The EHS approach to reconstructing the TD master function and its radial
derivative. As in FIG. 4.1, we give ΨEHS

22 and ∂rΨEHS
22 at t = 51.78M for a particle orbiting

with p = 7.50478 and e = 0.188917. Partial sums of ΨEHS
22 are computed from Eq. (4.3.5),

with a range of −N ≤ n ≤ N . The full ΨEHS
22 and its r derivative result from N = 10,

which gives agreement in the jumps in ΨEHS
22 and ∂rΨEHS

22 to a relative error of 10−10. On
the right, the presence of a delta function singularity is notionally depicted with an arrow.
The time dependent amplitude of this singularity is separately computable from the jump
in Ψ22.

function [79]. Accordingly, any solution of Eq. (4.2.13) will be a weak solution–a generalized

function itself–with loss of (classic) differentiability at the singular point rp(t). To determine

the suitability of Eq. (4.3.6) as a solution of Eq. (4.2.13), we generalize the concept of

differentiation to encompass distributions. Thus, for example, dθ(z)/dz = δ(z). We can

then take Eq. (4.3.6) as an ansatz, substitute in Eq. (4.2.13), and determine what conditions

are required that it be a (weak) solution. For clarity, in the rest of this section we suppress

the ` and m indices.

Rather than use the RWZ equation as it stands, we introduce a coordinate transfor-

mation to fix the position of the singularity. Defining z ≡ r − rp(t), t̄ ≡ t, the derivatives

transform as ∂r∗ = f(r)∂z and ∂t = ∂t̄ − ṙp∂z, and the wave equation (4.2.13) becomes

L(Ψ) = −∂2
t̄ Ψ +

(
f2 − ṙ2

p

)
∂2
zΨ + 2ṙp∂t̄∂zΨ

+
(
r̈p + (f∂zf)

)
∂zΨ− VΨ = G̃ δ(z) + F̃ δ′(z). (4.3.7)
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Now we assume that Ψ has the form given in Eq. (4.3.6) and substitute it into Eq. (4.3.7).

The functions Ψ+ and Ψ− are differentiable and satisfy the homogeneous equation, L(Ψ±) =

0. A term of the form L(Ψ+) θ(z) + L(Ψ−) θ(−z) appears in (4.3.7) and drops out. Other

singular terms remain, created by derivatives of the Heaviside function, and we are left with

(
f2 − ṙ2

p

) (
J∂rΨKp δ(z) + JΨKp δ′(z)

)
+ 2ṙp∂t̄

(
JΨKp δ(z)

)

+
(
r̈p + (f∂zf)

)
JΨKp δ(z) = G̃ δ(z) + F̃ δ′(z). (4.3.8)

where

JΨKp(t) ≡ Ψ+ (t, rp(t))−Ψ− (t, rp(t)) ,

J∂rΨKp(t) ≡ ∂rΨ+ (t, rp(t))− ∂rΨ− (t, rp(t))
(4.3.9)

are the jumps in Ψ and ∂rΨ at z = 0. Näıvely, we might expect that we can simply

equate the coefficients of δ on the two sides of Eq. 4.3.8, while doing the same with the

δ′ coefficients. However, the δ′ term on the left hand side must first be fully evaluated

(as a function of time) at the location of the particle. To do this, we use the identities in

Eqs. (4.A.1) and (4.A.5), which leaves

(
f2
p − ṙ2

p

)
J∂rΨKp δ(z) +

(
f2
p − ṙ2

p

)
JΨKp δ′(z)− 2 (fp∂zfp) JΨKp δ(z)

+ 2ṙp∂t̄
(
JΨKp

)
δ(z) +

(
r̈p + (fp∂zfp)

)
JΨKp δ(z) = G̃ δ(z) + F̃ δ′(z), (4.3.10)

where fp ≡ f(rp(t)). Note that there is no comparable expansion on the right side from

the F̃ δ′(z) term because F̃ is already fully evaluated at r = rp(t), by design. From here,

we read off the jumps in Ψ and its r derivative at rp(t) from the coefficients of δ′ and δ,

respectively. Returning to Schwarzschild coordinates and using Eqs. (4.2.12) to remove r̈p
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and ṙ2
p terms, we find

JΨKp(t) =
E2

f2
pU

2
p

F̃ (t),

J∂rΨKp(t) =
E2

f2
pU

2
p

[
G̃(t) +

1
U2
p r

2
p

(
3M − L

2

rp
+

5ML2

r2
p

)
F̃ (t)− 2ṙp

d

dt

(
JΨKp

)]
.

(4.3.11)

From the standpoint of the original coordinates, the partial time derivative ∂t̄ becomes the

convective, or total, time derivative along the particle worldline.

These jump conditions amount to internal boundary conditions that are necessary con-

ditions on a solution to the inhomogeneous wave equation in the TD. They were discussed

by Sopuerta and Laguna [75] and also later, with corrections, by Field et al. [82]. In our

FD-based calculations, they provide a powerful check on our transformation of the solutions

back to the TD. Given the indirect way in which the Fourier transform of the source S`m

determines the Fourier coefficients of the extended homogeneous solutions, considerable cre-

dence is lent to the method in seeing the partial sums of ΨEHS
`m converge toward satisfying

these jump conditions. Secondarily, the jump conditions provide useful stopping criteria in

the numerical method (see Sec. 4.4.3).

While not a focus of this chapter, we consider briefly TD simulations. There, to find

a unique solution the internal boundary conditions must be augmented with initial data

on a Cauchy surface and, potentially, outer boundary conditions. Care must be exercised

to switch on the source smoothly in the (near) future of the initial value surface [82] (also

Lau, private communication). Additionally, imposed initial data will not typically match

long term periodic behavior induced by the source, and transients will sweep through the

system for several dynamical times. In contrast, in the FD approach, the proper outgoing

and downgoing behavior at the outer boundaries is built in from the outset and only the

steady state, periodic behavior is obtained.

4.3.3 Computing normalization coefficients in the gravitational case

Finally, we provide some details on how the singular source is integrated to provide the

matching normalization coefficients C+
`mn and C−`mn that are used in Eq. (4.3.4). BOS
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detail the calculation of normalization coefficients for the scalar monopole in their App. C.

The gravitational case follows the same general idea, but involves some technical differences

and challenges. We start by combining Eqs. (4.2.25) and (4.2.22), giving

C±`mn =
1

W`mn

∫ rmax

rmin

dr
R̂∓`mn(r)Z`mn(r)

f(r)
. (4.3.12)

The FD source term Z`mn(r) comes from plugging Eq. (4.2.14) into Eq. (4.2.17), yielding

Z`mn(r) =
1
Tr

∫ Tr

0
dt
(
G̃`m(t) δ[r − rp(t)] + F̃`m(t) δ′[r − rp(t)]

)
eiωmnt. (4.3.13)

The equivalent integral BOS present for the scalar monopole is their Eq. (C2), which they

evaluate immediately by changing the integration variable from t to rp. Here, with a

derivative-of-the-delta function present (in RWZ gauge), the immediate evaluation of this

integral produces terms that are singular at the turning points (ṙp = 0). These terms are

no problem analytically, but they are troublesome when performing the final numerical

integration. We therefore find it is advantageous to delay this integration. Plugging our

expression for Z`mn in above, we have

C±`mn =
1

W`mnTr

∫ rmax

rmin

[
dr

R̂∓`mn(r)
f(r)

∫ Tr

0
dt
(
G̃`m(t) δ[r − rp(t)] + F̃`m(t) δ′[r − rp(t)]

)
eiωmnt

]
. (4.3.14)

In order to avoid the singularity at the turning points, we switch the order of integration.

The integration of the delta function itself is then straightforward. The derivative of δ term

requires an integration by parts. Because of the compact support of the source term, we

can extend the range of integration and no surface terms appear. We are left with

C±`mn =
1

W`mnTr

∫ Tr

0

[
1
fp
R̂∓`mn(rp)G̃`m(t)

+

(
2M
r2
pf

2
p

R̂∓`mn(rp)−
1
fp

dR̂∓`mn(rp)
dr

)
F̃`m(t)

]
eiωmnt dt, (4.3.15)
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where we use a p subscript to indicate evaluation of a quantity at r = rp(t). Our final

integral is analogous to Eq. (C7) in BOS.

Here is a summary of key details of the application of the method in the gravitational

case:

• The EHS method, applied to the gravitational case, gives exponentially converging

solutions to Eq. (4.2.13) everywhere, including the location of the particle. (See

FIG. 4.4.)

• Working in Regge-Wheeler gauge, the gravitational TD source term contains a delta

function and a derivative-of-the-delta function, which cause Ψ`m to exhibit a jump

and ∂rΨ`m to exhibit both a jump and a delta function singularity at the particle’s

location. (See FIG. 4.3.) In the scalar case, the field is piecewise continuous at the

particle, with a jump in the r derivative. (See FIG. 3 in BOS.)

• Eq. (4.3.15) is valid for all radiative multipoles (` ≥ 2). The ` = 0, 1, modes must be

handled separately.

• Martel’s [50] G`m(t, r) and F`m(t, r) from Eq. (4.1.1) are not in fully evaluated form.

As discussed in App. 4.A, for a given multipole, unique functions of time F̃`m(t) ≡

F`m (t, rp(t)) and G̃`m(t) ≡ G`m (t, rp(t))−∂rF`m (t, rp(t)) emerge after fully applying

the delta function constraint. We use the tilde to distinguish fully evaluated coeffi-

cients.

• In practice, we take advantage of the fact that some of the functions in the integrand

of Eq. (4.3.15) are even over the period of radial libration, while others are odd. Then,

rather than integrating over t from 0 → Tr, we can limit the range of integration to

0 → Tr/2. Further, we change variables to χ, as shown in Sec. 4.2.1 and integrate

from 0→ π.

• For Ψeven
`m we use the Zerilli-Moncrief master function, and for Ψodd

`m we use the

Cunningham-Price-Moncrief master function. This formulation works for any master
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function that obeys a Regge-Wheeler-like equation and has a source term that can be

written in the form of Eq. (4.2.14).

4.4 Numerical method and results from mode integrations

4.4.1 Algorithmic roadmap

Here, we explain the specific steps our code takes to solve the inhomogeneous wave equation

(4.2.13). There are several stages to the process, and at each step we compute at least one

more order of magnitude accuracy than is needed at the subsequent step. The code is

written in C, and we use the Numerical Recipes adaptive step size fourth order Runge-

Kutta integrator [86].

1. Specify an orbit through a choice of the semi-latus rectum p and eccentricity e.

2. Numerically integrate Eqs. (4.2.10) and (4.2.11) to get the fundamental frequencies

of the system, Ωr and Ωϕ, and hence ωmn = mΩϕ + nΩr.

3. Choose a specific ` and m. If `+m is even (odd), use even (odd) parity potential and

source terms. Choose starting n. (See Sec. 4.4.3.)

4. Solve the homogeneous version of Eq. (4.2.16) to get unit normalized radial mode

functions, R̂±`mn, in the source-free region:

• Use the asymptotic expansion (see App. 4.D) to set an “up” plane wave boundary

condition at r∗ → +∞, as in Eq. (4.2.20). Numerically integrate up to the region

of the source at rmax
∗ to get R̂+

`mn. (We let rmin/max
∗ be the r∗ value corresponding

to rmin/max.)

• Use a convergent Taylor expansion to set an “in” plane wave boundary condition

(Eq. (4.2.19)) at modestly negative r∗. Numerically integrate up to the region

of the source at rmin
∗ to get R̂−`mn.

5. Solve the homogeneous version of Eq. (4.2.16) to continue the unit normalized radial

mode functions, R̂±`mn, into the source region, while also computing the normalization
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coefficients C±`mn:

• Simultaneously integrate Eqs. (4.2.16) and (4.3.15) from χ = 0→ π (equivalently

t = 0→ Tr/2 and r = rmin → rmax). This gives R̂−`mn in the region of the source

and C+
`mn.

• Simultaneously integrate Eqs. (4.2.16) and (4.3.15) from χ = −π → 0 (equiva-

lently t = −Tr/2 → 0 and r = rmax → rmin). This gives R̂+
`mn in the region of

the source and C−`mn.

As discussed in Sec. 4.3.3, the integrand in Eq. (4.3.15) contains parts which are even

and parts which are odd over the radial period. By keeping the correct terms, we can

get away with efficiently integrating over only half the period.

6. Use the coefficients to normalize the homogeneous solutions outside and inside the

range of the source, as in Eq. (4.3.4).

7. Assess whether there is convergence of the partial sum over n. (Again, see Sec. 4.4.3.)

• If yes, we are finished with this `,m mode.

• If no, return to Step 4 with the next n.

4.4.2 Energy and angular momentum fluxes at r∗ = ±∞

To evaluate the energy and angular momentum fluxes at r∗ = ±∞ we use the Isaacson

stress-energy tensor. The energy and angular momentum fluxes, for each `,m mode, can

be written as [87]

Ė±`m =
1

64π
(`+ 2)!
(`− 2)!

∣∣∣Ψ̇±`m(t, r)
∣∣∣
2
, L̇±`m =

im

64π
(`+ 2)!
(`− 2)!

Ψ̇±`m(t, r)Ψ±∗`m (t, r). (4.4.1)

Here, an asterisk signifies complex conjugation. (We use Ψeven
`m when `+m is even and Ψodd

`m

when `+m is odd. In general there would be contributions from both Ψeven
`m and Ψodd

`m for

each mode, but our choice of θp = π/2 leads to one of these functions vanishing for each `
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and m combination.) In terms of FD amplitudes the expressions become

Ė±`m =
1

64π
(`+ 2)!
(`− 2)!

∑

n,n′

ωmnωmn′R
±
`mnR

±∗
`mn′e

−i(ωmn−ωmn′ )t,

L̇±`m =
m

64π
(`+ 2)!
(`− 2)!

∑

n,n′

ωmnR
±
`mnR

±∗
`mn′e

−i(ωmn−ωmn′ )t.

(4.4.2)

As is well known, the fluxes must be suitably averaged over time or space to obtain mean-

ingful, invariant results. We average these quantities in time over one radial oscillation,

which yields

〈
Ė±`m

〉
=

1
64π

(`+ 2)!
(`− 2)!

∑

n

ω2
mn

∣∣∣C±`mnR̂±`mn
∣∣∣
2
,

〈
L̇±`m

〉
=

m

64π
(`+ 2)!
(`− 2)!

∑

n

ωmn

∣∣∣C±`mnR̂±`mn
∣∣∣
2
.

(4.4.3)

Here, we have also introduced R±`mn = C±`mnR̂
±
`mn. As discussed in App. 4.D, we can

write the radial function as R̂±`mn(r) = J±`mn(r)e±iωmnr∗ , where J±`mn(r) → 1 as r∗ → ±∞.

Therefore, if we set J±`mn = 1, we can evaluate the fluxes at r∗ = ±∞, leaving

〈
Ė±∞`m

〉
=

1
64π

(`+ 2)!
(`− 2)!

∑

n

ω2
mn

∣∣C±`mn
∣∣2 ,

〈
L̇±∞`m

〉
=

m

64π
(`+ 2)!
(`− 2)!

∑

n

ωmn
∣∣C±`mn

∣∣2 .
(4.4.4)

4.4.3 Code validation

To compute the total energy and angular momentum fluxes, we must sum Eqs. (4.4.4) over

` and m. The resulting expressions are formally over the ranges 2 ≤ ` ≤ ∞, −` ≤ m ≤ `,

−∞ ≤ n ≤ ∞. When computing Ė and L̇ numerically, we put limits on each of these sums.

To begin with, the low ` modes matter more than the high ones. But, the more eccentric

an orbit, the more `’s must be computed to achieve the same precision in our final values.

For the orbits we considered in Table 4.1, in order to achieve a relative precision of 10−12

in our final flux values, the highest ` necessary was ` = 29. (See Sec. 4.4.4.) In Table 4.2

we truncate the ` modes at ` = 20, as done by Fujita et al. [3].
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Because of the symmetry of the spherical harmonics, the fluxes from any given −m

mode are equal to those from the corresponding +m mode. Therefore, we fold the negative

m modes over onto the positive ones, and simply multiply each positive m mode by two.

Additionally, as ` gets larger, it is no longer necessary to compute all m values. As can be

seen in Table 4.3, for a given `, the largest Ė∞/H`m and L̇
∞/H
`m contributions come from the

m = ` mode. We start at m = ` and decrement m until the fluxes are no longer significant.

For low ` values we still wind up computing all 0 ≤ m ≤ `, but as ` increases, we need

progressively fewer m modes.

Determining the necessary n’s is a bit more involved. For a given ` and m, there is a

range, nmin to nmax, over which we sum in order to achieve our desired precision. Looking

at Table 4.3, it is evident that when m = 0, the range of n is essentially centered on 0. For

these modes, we start with n = 0, and compute fluxes for all positive modes. When we have

seen no change to any of the flux values (at a pre-specified level of precision) for several

consecutive modes, we stop and repeat the process for the negative n’s. As m increases,

this range of n’s shifts more and more into the positive. For any `, the m = ` mode has far

more positive n modes than negative. Eventually, ` becomes so large that nmin > 0 for the

m = ` mode. For modes where we suspect that nmin > 0, we find it advantageous to start

with a rough sweep of a large range of possible n values. We calculate Ė∞`mn (the energy

flux at r = +∞ from one n mode) to low precision for a small number of n, spaced out over

this range. The n for which we find the largest Ė`mn will be near the center of the nmin

to nmax range. We then perform our high precision mode integrations for all significant n

values above and below this n.

If we are interested in a local calculation (as one would perform for a SF evaluation), we

have a different method for determining which n’s are significant. We still use the energy

fluxes to find the approximate center of the significant n range, but for the “breaking

condition” we compute n’s until the jumps in Ψ`m and ∂rΨ`m converge properly, as follows:

• Use Eq. (4.3.5) to compute a partial mode sum approximation of both Ψ±`m(t, rp) and

∂rΨ±`m(t, rp) for a large number of times tk throughout the orbit.
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• Numerically evaluate the jumps in those partial sums

q
ΨN
`m

y
p
≡ Ψ+

`m (t, rp)−Ψ−`m (t, rp) ,
q
∂rΨN

`m

y
p
≡ ∂rΨ+

`m (t, rp)− ∂rΨ−`m (t, rp) ,
(4.4.5)

for those times tk.

• Compute the analytical values of
q
ΨA
`m

y
p

and
q
∂rΨA

`m

y
p

derived in Sec. 4.3.2 for those

times tk.

• If
q
ΨN
`m

y
p

=
q
ΨA
`m

y
p

and
q
∂rΨN

`m

y
p

=
q
∂rΨA

`m

y
p

at all times tk, to a chosen precision,

we have computed enough n modes.

• Otherwise more n modes are needed. As in the flux computation case above, we

perform the mode calculations for the n values above our starting n, and once that

partial sum has converged to our desired precision, we solve for the n’s below our

starting n until the jump values agree.

4.4.4 Results

One of our most important results is the exponential convergence of ΨEHS
`m and its r deriva-

tive at the location of the particle. FIG. 4.3 shows a partial sum of these two quantities

converging after only a few modes. Compare this to FIGs. 4.1 and 4.2, which shows the

standard FD approach. In particular, note in those figures the failure of the standard ap-

proach to accurately represent ∂rΨ`m, even after a large number of modes. This function

is particularly badly behaved in the standard approach as smooth functions attempt to

capture a delta function.

Also of note is FIG. 4.4, which shows that the convergence from the method of extended

homogeneous solutions is indeed exponential, all the way up to the location of the particle.

Fast and accurate computation of Ψ`m and ∂rΨ`m at rp(t) will eventually be critical for

reliable local SF calculations.

In order to check our code’s accuracy, we computed energy and angular momentum

fluxes for circular and eccentric orbits. Our circular orbit fluxes agree, mode-by-mode, with
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Figure 4.4: A plot of the convergence of the master function using the two methods. For
a particle orbiting with p = 7.50478 and e = 0.188917 at t = 51.78M we compute the
master function Ψ22(nmax) by summing over modes ranging from −nmax ≤ n ≤ nmax for
nmax = 15. We plot the log of the difference between Ψ22(nmax) and the partial sum Ψ22(N),
for different N < nmax. For the standard approach (left), we see exponential convergence
in the homogeneous region, but only algebraic convergence in the region of the source. The
method of extended homogeneous solutions (right) yields exponentially converging results at
all points outside and inside the region of the source. The method of extended homogeneous
solutions gives exponential convergence for ∂rΨEHS

`m as well.

published results (e.g. Cutler et al. [88]) to high precision. For eccentric orbits, we are

only aware that total energy and angular momentum fluxes have been published. Our FD

results agree with the fluxes at r → ∞ of Fujita et al., published in [2] to at least 10−9.

These are included in Table 4.1. Fujita et al. have also published horizon energy fluxes [3],

which we agree with, to at least 10−9 for a range of eccentricities. These are given in Table

4.2.

For those wishing to reproduce our results, in Table 4.3 we give mode-by-mode fluxes

up to ` = 5 at r = ∞ and down the black hole at r = 2M for a particle in orbit with

p = 8.75455 and e = 0.764124. Included are the ranges of n modes summed over to achieve

these results.

As expected, our code is more efficient for low eccentricities. The first orbit in Table

4.1 (p = 7.50478, e = 0.188917), runs in under a half hour on a single processor machine,

giving the total flux for all 2 ≤ ` ≤ 23 (although note the limits on m and n mentioned in

the previous subsection) to a fractional error of 10−12. As e increases, though, run times
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increase greatly. The second orbit in that table (p = 8.75455, e = 0.764124) takes six hours

to achieve the same accuracy for all necessary 2 ≤ ` ≤ 29. And, when e = 0.9 for 2 ≤ ` ≤ 20

in the last row of Table 4.2, we had to raise our fractional error to 10−10 in order to get a

run time of eighteen hours.

Clearly, as e gets close to 1, FD methods will lose out to TD codes, which handle high

eccentricities with more ease. Still for 0 ≤ e . 0.9, our run times are not unreasonable

when considering the high accuracy we achieve.

4.5 Reconstruction of the metric perturbation amplitudes

The full benefit of having complete and highly converged solutions for the master functions

lies in using them to reconstruct the metric. Ultimately, one wants to use the information,

along with an appropriate regularization scheme, to compute the self force. A developed

approach to doing this is the mode-sum regularization method [89], which makes use of

Lorenz gauge. Here we use the information encoded in the master functions to compute

accurately the spherical harmonic amplitudes of the metric perturbation in Regge-Wheeler

gauge. The ability to determine the metric at all locations, including at the particle lo-

cation, should serve as a useful starting point for computing the SF, either via a gauge

transformation or an alternative regularization technique.

We summarize the metric perturbation (MP) formalism in App. 4.C, where the defi-

nitions of the master functions, Ψeven
`m and Ψodd

`m , are given in terms of spherical harmonic

amplitudes of the metric and their radial derivatives. We reserve for this section giving the

equations, (4.5.5) and (4.5.15), for reconstructing the metric amplitudes in Regge-Wheeler

gauge from the master functions. These equations involve first derivatives, and in some

cases second derivatives, of the master functions. They also involve spherical harmonic

projections of the stress-energy tensor. Based on the form (4.1.2) anticipated in a master

function, both of the abovementioned facts contribute to an expectation that the MP am-

plitudes might have point-singular behavior at rp(t) in the form of both δ and δ′ terms.

We show that all potential δ′ terms cancel out. However, in general a MP amplitude might
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have a functional form

M(t, r) = M+(t, r) θ(z) +M−(t, r) θ(−z) +MS(t) δ(z), z ≡ r − rp(t), (4.5.1)

where M+ (M−) represents a smooth function in the region r > rp (r < rp), and MS is a

smooth function of t alone, giving the magnitude of the singularity. We examine MS for

all six non-zero MP amplitudes in the Regge-Wheeler gauge, and find three such terms to

be nonvanishing. Throughout the rest of this section we again suppress spherical harmonic

labels ` and m.

As mentioned the metric reconstruction equations, of each parity, require spherical har-

monic projections of the stress-energy tensor. For a particle of mass µ, traveling on a

geodesic of the background spacetime, with four-velocity uµ, it is

Tµν (xα) = µ

∫
dτ√−gu

µ(τ)uν(τ) δ4 [x− xp(τ)] . (4.5.2)

In Schwarzschild coordinates the determinant of the metric is g = −r4 sin2 θ. After changing

the variable of integration to coordinate time t, we have

Tµν (xα) =
µuµ(t)uν(t)
ut(t) rp(t)2

δ[r − rp(t)] δ[ϕ− ϕp(t)] δ[θ − π/2]. (4.5.3)

Spherical harmonic projections of Tµν appear as source terms in the decomposed Einstein

equations (App. 4.C) and these are in turn combined to produce the source terms for

the master equations (App. 4.B). In the subsections that follow, we evaluate the time

dependence of all of the stress-energy tensor projections. We use the definitions

Λ(r) ≡ λ+
3M
r
, λ ≡ (`+ 2) (`− 1)

2
. (4.5.4)
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4.5.1 Even parity

The even parity MP amplitudes are expressed in terms of Ψeven and the source terms by

(see [50])

K(t, r) = f∂rΨeven +AΨeven −
r2f2

(λ+ 1)Λ
Qtt,

hrr(t, r) =
Λ
f2

[
λ+ 1
r

Ψeven −K
]

+
r

f
∂rK,

htr(t, r) = r∂t∂rΨeven + rB ∂tΨeven −
r2

λ+ 1

[
Qtr +

rf

Λ
∂tQ

tt

]
,

htt(t, r) = f2hrr + fQ],

(4.5.5)

where

A(r) ≡ 1
rΛ

[
λ(λ+ 1) +

3M
r

(
λ+

2M
r

)]
, B(r) ≡ 1

rfΛ

[
λ

(
1− 3M

r

)
− 3M2

r2

]
. (4.5.6)

These equations result from the definition (4.C.6) of Ψeven and its substitution into the

even-parity field equations (4.C.3). The even-parity projections of the stress-energy tensor

that appear in the equations above are defined by Eqs. (4.C.4). By enforcing the delta

function constraints, they can be written in fully evaluated form (see App. 4.B), with each

having a time dependent magnitude multiplying the radial delta function

Qab(t, r) ≡ qab(t) δ[r − rp(t)], Qa(t, r) ≡ qa(t) δ[r − rp(t)],

Q[(t, r) ≡ q[(t) δ[r − rp(t)], Q](t, r) ≡ q](t) δ[r − rp(t)],
(4.5.7)

where we use a lowercase q as the base symbol of the corresponding magnitude. With

Eq. (4.2.4) giving the four-velocity uµ, the stress-energy tensor and Eqs. (4.C.4) can be
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used to find

qtt(t) = 8πµ
E
r2
pfp

Y ∗, qrr(t) = 8πµ
fp
Er2

p

(
E2 − U2

p

)
Y ∗, qtr(t) = 8πµ

ur

r2
p

Y ∗,

qt(t) =
16πµ
`(`+ 1)

L
r2
p

Y ∗ϕ , qr(t) =
16πµ
`(`+ 1)

L
E
fp
r2
p

urY ∗ϕ ,

q[(t) = 8πµ
L2

E
fp
r4
p

Y ∗, q](t) = 32πµ
(`− 2)!
(`+ 2)!

L2

E
fp
r2
p

Y ∗ϕϕ.

(4.5.8)

Here, Y , Yϕ, and Yϕϕ are shorthand for the even-parity scalar, vector, and tensor spherical

harmonics, respectively, evaluated along the worldline at θ = π/2 and ϕ = ϕp(t).

Now consider the reconstruction of the MP amplitude K, given in Eq. (4.5.5). Using

the expected functional form of Ψ given in Eq. (4.1.2), K obviously does fit the general

form (4.5.1) claimed above. In fact, we find

K±(t, r) = f∂rΨ± +AΨ±, KS(t) = fpJΨKp −
r2
pf

2
p

(λ+ 1)Λp
qtt = 0, (4.5.9)

where the vanishing of KS follows from use of Eq. (4.3.11) for JΨKp, and qtt from Eq. (4.5.8).

Therefore, we see that the even-parity metric function K in Regge-Wheeler gauge is (only)

a C−1 function at the location of the particle.

Using the same approach to evaluate hrr in Eq. (4.5.5) we have

h±rr(t, r) =
Λ
f2

[
λ+ 1
r

Ψ± −K±
]

+
r

f
∂rK

±,

hSrr(t) =
rp
fp

JKKp = rpJ∂rΨKp +
rpAp
fp

JΨKp.
(4.5.10)

Here, we have extended in a natural way the use of the J Kp notation to let JKKp represent

the jump in K at z = 0. We find that the Regge-Wheeler metric function hrr is not

only discontinuous across rp(t) but also has a point-singular term, which is an artifact of

Regge-Wheeler gauge.

The htr function is more subtle than the previous two. Looking at Eq. (4.5.5), we need

122



the following terms involving Ψ,

rB ∂tΨ = rB ∂tΨ+ θ(z) + rB ∂tΨ− θ(−z)− rpBpṙpJΨKp δ(z),

r∂t∂rΨ = r∂t∂rΨ+θ(z) + r∂t∂rΨ−θ(−z)

+
[
rp
d

dt

(
JΨKp

)
+ ṙpJΨKp − rpṙpJ∂rΨKp

]
δ(z)− rpṙpJΨKp δ′(z).

(4.5.11)

On the right side of these equations we have evaluated all the δ and δ′ coefficients at z = 0

with Eqs. (4.A.1) and (4.A.5) (fully evaluated form). The singular terms that arise in these

expressions can be grouped with the similarly singular contributions from the source terms,

r2

λ+ 1
Qtr =

r2
p

λ+ 1
qtrδ(z),

r3f

(λ+ 1)Λ
∂tQ

tt =
1

(λ+ 1)Λp

[
r3
pfp

dqtt

dt
+

3λr2
p + 12Mrp − 4λMrp − 18M2

Λp
ṙpq

tt

]
δ(z)

−
r3
pfp

(λ+ 1)Λp
ṙpq

tt δ′(z).

(4.5.12)

Upon carefully checking the time dependence of qtt and the jump in Ψ, we find that the

δ′ terms cancel out. There are multiple δ terms, but after using the expressions for JΨKp,

J∂rΨKp in (4.3.11) and the relevant q’s in (4.5.8), most of the terms cancel and we are left

with

h±tr(t, r) = r∂t∂rΨ± + rB ∂tΨ±, hStr(t) = E2 ṙp
fpU2

p

q]. (4.5.13)

Finally, the htt term is simple. We insert Eq. (4.5.10) into the field equation for htt and

get

h±tt(t, r) = f2h±rr, hStt(t) = f2
ph

S
rr + fpq

]. (4.5.14)

So, we see that in Regge-Wheeler gauge K is C−1 with no singularity along the worldline of

the particle, but the three even-parity MP amplitudes in the “t, r sector” have point-singular
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artifacts given by Eqs. (4.5.10), (4.5.13), (4.5.14).

4.5.2 Odd parity

Once Ψodd has been computed, the odd-parity MP amplitudes can be reconstructed via

ht(t, r) =
f

2
∂r (rΨodd)− r2f

2λ
P t, hr(t, r) =

r

2f
∂tΨodd +

r2

2λf
P r, (4.5.15)

(see [73]). These equations follow from the definition (4.C.14) and its substitution into the

odd-parity field equations (4.C.11). Similar to before, we define the lowercase p’s to be the

time-dependent magnitudes of the radial delta function after fully evaluating the odd-parity

projections of the stress-energy tensor

P a(t, r) ≡ pa(t) δ[r − rp(t)], P (t, r) ≡ p(t) δ[r − rp(t)]. (4.5.16)

Also as before, we use the time dependence of the four-velocity and the stress-energy tensor

to determine these magnitudes for eccentric motion on Schwarzschild,

pt(t) =
16πµ
`(`+ 1)

L
r2
p

X∗ϕ, pr(t) =
16πµ
`(`+ 1)

L
E
fp
r2
p

urX∗ϕ, p(t) = 16πµ
(`− 2)!
(`+ 2)!

L2

E
fp
r2
p

X∗ϕϕ.

(4.5.17)

Here, Xϕ and Xϕϕ are shorthand for the odd-parity vector and tensor spherical harmonics

evaluated along the worldline at θ = π/2 and ϕ = ϕp(t).

Now, as in the even-parity case we can analyze the local structure of the MP amplitudes.

We again assume Ψ to have the form Eq. (4.1.2). Plugging the relevant expressions into

Eq. (4.5.15) for the odd-parity MP amplitude reconstruction, we find that all the point-

singular parts cancel out exactly, leaving

h±t (t, r) =
f

2
∂r
(
rΨ±

)
, hS

t (t) = 0,

h±r (t, r) =
r

2f
∂tΨ±, hS

r (t) = 0.
(4.5.18)

So, we see that the odd-parity MP functions in Regge-Wheeler gauge are smooth as they
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approach rp(t) with only a finite jump at that point.

FIG. 4.5 summarizes these findings graphically, for both even and odd parity, using

several specific spherical harmonic modes.
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Figure 4.5: The EHS approach to reconstructing the TD MP amplitudes. We consider a
particle orbiting with p = 7.50478 and e = 0.188917 at t = 80.62M . The left plot shows the
odd-parity MP amplitudes h21

r and h21
t . The right shows the even-parity h22

tt , h22
rr , h

22
tr , and

K22. Note that the amplitudes h22
tt , h22

rr , and h22
tr are singular along the particle’s worldline,

as indicated by arrows in the plot on the right. The magnitude of these singularities are
given in Eqs. (4.5.10), (4.5.13), (4.5.14). The remaining three MP amplitudes approach the
particle location smoothly, and have only a finite jump at that point.

4.6 Conclusion

We have achieved two main results in this chapter. First, we have shown successful ap-

plication of the method of extended homogeneous solutions to gravitational perturbations

from a small mass in eccentric orbit about a massive Schwarzschild black hole. In doing so,

we accurately computed the master functions in the Regge-Wheeler-Zerilli formalism in the

frequency domain and transformed these fields back to the time domain. With this method

we achieved exponential convergence of the master functions and their derivatives for all r

including the instantaneous particle location r = rp(t).

Our second important result is the reconstruction of the metric perturbation ampli-

tudes in Regge-Wheeler gauge for arbitrary radiative modes. In addition to computing
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the smooth parts of these amplitudes, we have derived the time dependent magnitudes of

point-singular terms that reside at rp(t) in some components of the metric. This full and

accurate knowledge of the spherical harmonic amplitudes of the metric at, and near, rp(t)

lays the groundwork for one or more subsequent approaches to local computation of the

self-force.

4.A The fully evaluated form of distributional source terms

In the RWZ formalism for perturbations generated by an orbiting point mass, the master

equations have distributional sources with both delta function and derivative-of-delta func-

tion terms. Reduced by spherical harmonic decomposition, these distributions have support

only along a one-dimensional timelike worldline r = rp(t) within a two dimensional domain.

The delta function’s behavior is still elementary,

α(t, r) δ[r − rp(t)] = α (t, rp(t)) δ[r − rp(t)] ≡ α̃(t) δ[r − rp(t)], (4.A.1)

where α(t, r) is assumed to be a smooth function and we use the notation α̃(t) to indicate

the one-dimensional function that results from restricting (or fully evaluating) α(t, r) with

the delta function. At any stage in a calculation a delta function can be used to fully

evaluate all smooth functions that multiply it. Under an integral the result is obvious

∫
α(t, r) δ[r − rp(t)] dr = α̃(t), (4.A.2)

with the resulting function of time being unique. Occasionally, there is need to differentiate

such a function. The total derivative is related to derivatives of the original function by

dα̃

dt
=
[
∂tα(t, r) + ṙp∂rα(t, r)

]
r=rp(t)

, (4.A.3)

where on the right hand side we differentiate first and evaluate second.

Of more interest is the behavior of δ′ [79]. Differentiating Eq. (4.A.1) with respect to r,
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we obtain

α(t, r) δ′[r − rp(t)] + ∂rα(t, r) δ[r − rp(t)] = α̃(t) δ′[r − rp(t)]. (4.A.4)

Rearranging terms and using the rule of fully evaluating whenever possible, we find

α(t, r) δ′[r − rp(t)] = α̃(t) δ′[r − rp(t)]− β̃(t) δ[r − rp(t)], (4.A.5)

where

β̃(t) ≡ ∂rα(t, rp(t)) =
[
∂rα(t, r)

]
r=rp(t)

, (4.A.6)

which is the analogous fully evaluated form. Upon integration,

∫
α(t, r) δ′[r − rp(t)] dr = −β̃(t) = −∂rα(t, rp(t)). (4.A.7)

Since the first term on the right of Eq. (4.A.5) disappears upon integration, why retain

it? The answer is that we may multiply Eq. (4.A.5) by another smooth (test) function,

γ(t, r). We can then proceed to thew fully evaluated form by reducing the smooth function

γ(t, r)α(t, r) on the left or use the same reduction on the first term on the right. In either

case the result is

γ(t, r)α(t, r) δ′[r − rp(t)] = γ̃(t) α̃(t) δ′[r − rp(t)]− α̃(t) ∂rγ(t, rp(t)) δ[r − rp(t)]

− γ̃(t) ∂rα(t, rp(t)) δ[r − rp(t)]. (4.A.8)

From this it is evident that we can partially evaluate a coefficient of δ′ in a number of

different ways.

Martel [50] introduced the notation found in Eq. (4.1.1) for gravitational master function

source terms, with two-dimensional functions G`m(t, r) and F`m(t, r) multiplying δ and δ′,

respectively. In examining the Zerilli-Moncrief master function, he left these coefficients

partially evaluated. Sopuerta and Laguna [75] started with the same notation for G`m(t, r)

and F`m(t, r) in the case of the Cunningham-Price-Moncrief master function, and fully

evaluated these coefficients at r = rp(t). A difficulty with the G`m(t, r) and F`m(t, r)

127



notation is that there is no unique form of these functions if partially evaluated. Any solution

of the RWZ wave equation will require a full evaluation of the source. The procedure should

not matter but we prefer the clarity afforded by using the identities found in Eqs. (4.A.1)

and (4.A.5) to write Eq. (4.1.1) in fully evaluated form from the outset

S`m(t, r) = G̃`m(t) δ[r − rp(t)] + F̃`m(t) δ′[r − rp(t)], (4.A.9)

where

G̃`m(t) ≡
[
G`m(t, r)− ∂rF`m(t, r)

]
r=rp(t)

, F̃`m(t) ≡
[
F`m(t, r)

]
r=rp(t)

. (4.A.10)

4.B Source terms for eccentric motion on Schwarzschild

Here we give the unambiguous expressions for G̃`m and F̃`m for the even-parity Zerilli-

Moncrief and odd-parity Cunningham-Price-Moncrief master functions fully evaluated at

r = rp(t). We introduce new notation for constituent parts of G̃`m and F̃`m based upon the

projections of the stress-energy tensor defined in App. 4.C and the fully evaluated time-

dependent magnitudes of δ[r− rp(t)] given by Eqs. (4.5.8) and (4.5.17). Note that we use G

and F to denote additional time-dependent factors that multiply the various stress-energy

magnitudes. The indices on these G and F factors are not tensor indices.

4.B.1 Even parity

In the even-parity case, we examine the terms first published by Martel [50], but now fully

evaluate them at r = rp(t). We find,

G̃`m(t) = Grr` qrr`m + Gtt` qtt`m + Gr` qr`m + G[` q[`m + G]` q
]
`m

F̃`m(t) = Frr` qrr`m + F tt` qtt`m,
(4.B.1)
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where

Grr` (t) ≡ 1
(λ+ 1) rpΛ2

p

[
(λ+ 1) (λrp + 6M) rp + 3M2

]
,

Gtt` (t) ≡ −
f2
p

(λ+ 1)rpΛ2
p

[
λ (λ+ 1) r2

p + 6λMrp + 15M2
]
,

Gr` (t) ≡ 2fp
Λp

, G[`(t) ≡
rpf

2
p

(λ+ 1)Λp
, G]`(t) ≡ −

fp
rp
,

Frr` (t) ≡ −
r2
pfp

(λ+ 1) Λp
, F tt` (t) ≡

r2
pf

3
p

(λ+ 1) Λp
,

(4.B.2)

with the q’s given in Eq. (4.5.8).

4.B.2 Odd parity

In the odd-parity case, the fully evaluated source magnitudes are equivalent to those first

published by Sopuerta and Laguna [75] and later with more detail by Field, Hesthaven, and

Lau [82]. We find,

G̃`m(t) = Gr1` pr`m + Gr2`
dpr`m
dt

+ Gt` pt`m, F̃`m(t) = Fr` pr`m + F t` pt`m, (4.B.3)

where

Gr1` (t) ≡ ṙp
λ
, Gr2` (t) ≡ rp

λ
, Gt`(t) ≡ −

fp
λ
, Fr` (t) ≡ −rpṙp

λ
, F t`(t) ≡

rpf
2
p

λ
, (4.B.4)

and the p’s are given by Eq. (4.5.17).

4.C Metric perturbation formalism in the Regge-Wheeler
gauge

Here we briefly summarize the definitions of metric perturbation (MP) amplitudes (on a

common tensor spherical harmonic basis) for both even and odd parities. The field equa-

tions and Bianchi identities are given in terms of the MP amplitudes and spherical harmonic

projected source terms. The specific gauge-invariant master functions we use in our simu-

lations are expressed in terms of the MP amplitudes and their associated master equations,
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potentials, and source terms are summarized. In what follows, lowercase Latin indices will

run over (t, r), while uppercase Latin indices will run over (θ, ϕ). This section draws heavily

from Martel and Poisson [55]. The material here serves as a basis for discussing in Sec. 4.5

how the MP can be numerically reconstructed from the master functions.

4.C.1 Even parity

Of the ten MP amplitudes, seven are in the even-parity sector. Using the decomposition of

Martel and Poisson [55], they are

pab (xµ) =
∑

`,m

h`mab Y
`m,

paB (xµ) =
∑

`,m

j`ma Y `m
B ,

pAB (xµ) = r2
∑

`,m

(
K`mΩABY

`m +G`mY `m
AB

)
.

(4.C.1)

The tensor ΩAB is the metric on the unit two-sphere,

ds2 = ΩABdx
AdxB = dθ2 + sin2 θ dϕ2. (4.C.2)

The even-parity scalar (Y `m), vector (Y `m
A ), and tensor (Y `m

AB and ΩABY
`m) spherical har-

monics are defined in [55]. Note that Y `m
AB is the trace-free tensor spherical harmonic, which

differs from what Regge and Wheeler used in their original work [14]. For the remainder of

this section, we drop ` and m indices for the sake of brevity.

In Schwarzschild coordinates, the amplitudes defined here are related to Regge and

Wheeler’s original quantities. In the “t, r sector,” htt = fH0, htr = H1, and hrr = H2/f .

For the off-diagonal elements, jt = h0 and jr = h1. Finally, on the two-sphere Ghere = GRW,

while Khere = KRW − `(` + 1)G/2. We use the Regge-Wheeler gauge, where ja = G = 0.
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In this gauge and in Schwarzschild coordinates, the even-parity field equations are

−∂2
rK −

3r − 5M
r2f

∂rK +
f

r
∂rhrr +

(λ+ 2) r + 2M
r3

hrr +
λ

r2f
K = Qtt,

∂t∂rK +
r − 3M
r2f

∂tK −
f

r
∂thrr −

λ+ 1
r2

htr = Qtr,

−∂2
tK +

(r −M)f
r2

∂rK +
2f
r
∂thtr −

f

r
∂rhtt

+
(λ+ 1)r + 2M

r3
htt −

f2

r2
hrr −

λf

r2
K = Qrr,

∂thrr − ∂rhtr +
1
f
∂tK −

2M
r2f

htr = Qt,

−∂thtr + ∂rhtt − f∂rK −
r −M
r2f

htt +
(r −M)f

r2
hrr = Qr,

−∂2
t hrr + 2∂t∂rhtr − ∂2

rhtt −
1
f
∂2
tK + f∂2

rK +
2(r −M)
r2f

∂thtr

−r − 3M
r2f

∂rhtt −
(r −M)f

r2
∂rhrr +

2(r −M)
r2

∂rK

+
(λ+ 1)r2 − 2(λ+ 2)Mr + 2M2

r4f2
htt −

(λ+ 1)r2 − 2λMr − 2M2

r4
hrr = Q[,

1
f
htt − fhrr = Q],

(4.C.3)

which rely upon the following source terms

Qab(t, r) ≡ 8π
∫
T abY ∗ dΩ, Qa(t, r) ≡ 16πr2

`(`+ 1)

∫
T aBY ∗B dΩ,

Q[(t, r) ≡ 8πr2

∫
TABΩABY

∗ dΩ, Q](t, r) ≡ 32πr4 (`− 2)!
(`+ 2)!

∫
TABY ∗AB dΩ.

(4.C.4)

The conservation (Bianchi) identities are

∂tQ
tt + ∂rQ

tr + 2
(r −M)
r2f

Qtr − λ+ 1
r2

Qt = 0,

∂tQ
tr + ∂rQ

rr +
Mf

r2
Qtt +

2r − 5M
r2f

Qrr − λ+ 1
r2

Qr − f

r
Q[ = 0,

∂tQ
t + ∂rQ

r +
2
r
Qr +Q[ − λ

r2
Q] = 0.

(4.C.5)

We use the gauge-invariant Zerilli-Moncrief master function (see [16, 18], modifying the
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approach of [15]), which is

Ψeven(t, r) ≡ 2r
`(`+ 1)

[
K +

1
Λ
(
f2hrr − rf∂rK

)]
, (4.C.6)

in Schwarzschild coordinates. It satisfies the wave equation

[
− ∂2

∂t2
+

∂2

∂r2
∗
− Veven

]
Ψeven = Seven, (4.C.7)

with source term

Seven(t, r) ≡ 1
(λ+ 1) Λ

[
r2f

(
f2∂rQ

tt − ∂rQrr
)

+ r(Λ− f)Qrr + rf2Q[

− f2

rΛ

(
λ(λ− 1)r2 + (4λ− 9)Mr + 15M2

)
Qtt
]

+
2f
Λ
Qr − f

r
Q], (4.C.8)

and standard Zerilli potential

Veven(r) ≡ f

r2Λ2

[
2λ2

(
λ+ 1 +

3M
r

)
+

18M2

r2

(
λ+

M

r

)]
. (4.C.9)

4.C.2 Odd parity

The remaining three MP amplitudes belong to the odd-parity sector,

pab (xµ) = 0, paB (xµ) =
∑

`,m

h`ma X`m
B , pAB (xµ) =

∑

`,m

h`m2 X`m
AB. (4.C.10)

The vector (X`m
B ) and tensor (X`m

AB) spherical harmonics are those defined in [55]. Note

that the tensor spherical harmonics differ from those used by Regge and Wheeler by a minus

sign. For the remainder of this section, we again drop ` and m indices.

These MP amplitudes are related to Regge and Wheeler’s quantities through ht = h0,

hr = h1, and hhere
2 = −hRW

2 . We use Regge-Wheeler gauge, in which h2 = 0. In this gauge
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and in Schwarzschild coordinates, the odd-parity field equations are

−∂t∂rhr + ∂2
rht −

2
r
∂thr −

2(λ+ 1)r − 4M
r3f

ht = P t,

∂2
t hr − ∂t∂rht +

2
r
∂tht +

2λf
r2

hr = P r,

− 1
f
∂tht + f∂rhr +

2M
r2

hr = P,

(4.C.11)

with source terms given by

P a(t, r) ≡ 16πr2

`(`+ 1)

∫
T aBX∗B dΩ, P (t, r) ≡ 16πr4 (`− 2)!

(`+ 2)!

∫
TABX∗AB dΩ. (4.C.12)

The conservation (Bianchi) identity is

∂tP
t + ∂rP

r +
2
r
P r − 2λ

r2
P = 0. (4.C.13)

In the odd-parity sector, we use the gauge-invariant Cunningham-Price-Moncrief master

function [17], which in Schwarzschild coordinates is

Ψodd(t, r) ≡ r

λ

[
∂rht − ∂thr −

2
r
ht

]
. (4.C.14)

It satisfies the wave equation

[
− ∂2

∂t2
+

∂2

∂r2
∗
− Vodd

]
Ψodd = Sodd, (4.C.15)

with source term

Sodd(t, r) ≡ rf

λ

[
1
f
∂tP

r + f∂rP
t +

2M
r2

P t
]
, (4.C.16)

and standard Regge-Wheeler potential

Vodd(r) ≡ f

r2

[
` (`+ 1)− 6M

r

]
. (4.C.17)
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4.D Asymptotic expansions for Jost functions at r∗ →∞

We examine here the asymptotic expansions that we use to set boundary conditions far

from the black hole. The unit normalized solution to Eq. (4.2.16) is factored into the form

R̂+
`mn(r) = J+

`mn(r)eiωmnr∗ , (4.D.1)

where J+
`mn is the “Jost function” [71], which goes to 1 as r∗ → +∞. (We can similarly

define the horizon side Jost function through R̂−`mn = J−`mne
−iωmnr∗ , which goes to 1 as

r∗ → −∞.) Plugging this into the source free version of Eq. (4.2.16) and changing to r

derivatives, we have

f
d2J+

`mn

dr2
+
[

2M
r2

+ 2iωmn

]
dJ+

`mn

dr
− V`
f
J+
`mn = 0. (4.D.2)

From here we assume an asymptotic series solution of J+
`mn of the form

J+
`mn(r) =

∞∑

j=0

aj

(ωmnr)
j

(4.D.3)

Note that contrary to a Taylor expansion which converges for fixed r with increasing j,

this series converges for fixed j with increasing r. When a specific potential is chosen, the

method of Frobenius can be used to find the coefficients aj . Plugging in the even-parity

potential from Eq. (4.C.9) a recurrence relation for the aj is

2iλ2j aj = λ
[
λ (j − 1) j − 12iσ (j − 1)− 2λ (λ+ 1)

]
aj−1

+ 2σ
[
λ (3− λ) (j − 2) (j − 1)−

(
λ2 + 9iσ

)
(j − 2)− 3λ2

]
aj−2

+ 3σ2
[

(3− 4λ) (j − 3) (j − 2)− 4λ (j − 3)− 6λ
]
aj−3 − 18σ3 (j − 3)2 aj−4 (4.D.4)
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where σ ≡ Mωmn. For the odd-parity expansion, we plug in the potential in Eq. (4.C.17).

The resulting recurrence relation is

2ij aj = −2σ
[

(j + 1) (j − 3)
]
aj−2 −

[
` (`+ 1)− j (j − 1)

]
aj−1. (4.D.5)

In order to use these recurrence relations, the first few terms a0, a1, . . . are needed. The

recurrence relations actually provides them if one assumes that aj = 0 for all negative j.
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Chapter 5

Eccentric EMRI orbits on a Schwarzschild
black hole: Transformation of the

Regge-Wheeler gauge solutions to Lorenz
gauge using new frequency domain based

methods

In Chapter 4 we considered a point mass in an eccentric orbit about a Schwarzschild

black hole. The particle pulls up a first-order gravitational field which can be found by

solving the perturbed Einstein equations. We showed how we solved those equations in

Regge-Wheeler (RW) gauge using the Regge-Wheeler-Zerilli (RWZ) formalism. Working in

the frequency domain (FD), we obtained high accuracy solutions to the field equations and

transformed the fields back to the time domain (TD). Our FD code is very efficient, largely

thanks to the exponentially convergent method of extended homogeneous solutions (EHS),

which we applied to radiative gravitational modes for the first time. We reconstructed

the metric perturbation at all locations, including the location of the particle itself. We

presented, for the first time, a detailed analysis of the singular nature of the metric in RW

gauge, showing that the perturbation amplitudes are discontinuous (C−1) in all cases and

sometimes singular (∼δ(z)).

Having solved for the metric perturbation, we would like to correct the particle’s motion.

Though there are alternatives (see below), the most common technique is to calculate the

self-force in Lorenz gauge. Hence, we now present work in progress on how to transform

the metric perturbation from RW to Lorenz gauge.



5.1 Introduction

Attempts to evolve EMRI orbits have been made for many years. The primary method

for performing these evolutions has been to use adiabatic approximations (e.g. [90]). The

adiabatic approximation entails computing the energy and angular momentum fluxes of the

gravitational radiation over a sufficiently long time scale, and then using those values to

evolve the orbital parameters. The adiabatic approximation is based on the assumption of

two fundamental timescales. The first is the orbital timescale T , or how long it takes the

particle to orbit the black hole. The second is the radiation reaction timescale τ , the time it

takes the orbital separation to make a fractional change of order unity. If the mass-ratio of

the particle to the SMBH is µ/M , then ratio of the the radiation reaction timescale to the

orbital period will be its inverse, τ/T ∼ M/µ. The adiabatic approximation fails when we

no longer have τ � T . Whenever the particle is deep in the gravitational well of the SMBH

it will radiate more strongly. This can happen when it is in a highly eccentric zoom-whirl

orbit. It will also occur toward the end of any orbit. In the late stages of orbit evolution, the

particle will spiral quickly toward the event horizon and the assumption of two, disparate

timescales will be broken.

Another problem with the traditional adiabatic approximation is that it cannot incor-

porate the conservative effects of the self-force. As shown by Pound, Poisson and Nickel

[91], neglecting the conservative piece of the self-force can lead to significant measurable

differences in the particle’s evolution.

Due largely to the inherent limitations of the adiabatic approximation, much research

on EMRIs has focused on performing self-consistent orbit evolutions. In order to perform

such a calculation, one needs to solve first for the metric at first-order, which we showed

in Chapter 4 can be done to high accuracy in RW gauge. In principle one then has an

entire knowledge of the first-order gravitational field. Evolution of the orbit comes down to

examining how this perturbation affects zeroth-order motion. This becomes quite subtle in

practice, largely because the divergent field must be regularized and some gauges are more

convenient than others. Although it may be possible to evolve an orbit self-consistently in
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RW gauge, the vast majority of work on self-consistent orbit evolution has been done in

Lorenz gauge.

Lorenz gauge is appealing for several reasons. The field equations simplify greatly when

the gauge condition p̄µν |ν = 0 is imposed. For those wishing to solve the field equations

through time domain (TD) methods (e.g. [45]), Lorenz gauge has the benefit that one can

put all ten field equations in hyperbolic form. From the point of view of computing the

self-force, the Lorenz gauge metric perturbation amplitudes are much better behaved that

those of RW gauge. Locally, the amplitudes are C0, as opposed to C−1, or singular, in RW

gauge. Asymptotically, the metric in Lorenz gauge is flat, as opposed to non-asymptotically

flat in RW gauge. We will discuss this more in detail below. Finally, the metric perturbation

in Lorenz gauge is locally isotropic, which is why the mode-sum regularization scheme [41]

and the MiSaTaQuWa equations of motion (1.4.7) were formulated there.

Given these benefits of Lorenz gauge, and that we possess the metric perturbation in RW

gauge, we have begun the process of transforming between the two. We follow largely the

work of Sago, Nakano, and Sasaki (SNS) [54], who presented one possible method for doing

this exact gauge transformation. Below we show how the gauge transformation equations

decouple and explain the benefit of the SNS decomposition.

Our work thus far has led to some noteworthy developments. Primary among these are

two new solution techniques we have used to solve the types of equations encountered in

this gauge transformation. The transformation equations decouple in harmonics into a set

of wave equations at every mode. These equations have source terms with local singular

parts at the particle’s location. These source terms are precisely of the form we handled in

Chapter 4, and present no trouble. But, in addition to these point singular sources, there are

extended sources which are nonzero everywhere, and discontinuous at the particle’s location.

To find solutions to differential equations with source terms of this type, we developed the

method of partial annihilators and the method of extended particular solutions. Each of

these methods is discussed at length in what follows.

At this point we have completed numerical solutions for the odd-parity transformation

and the scalar part of the even-parity transformation. Work in the near future will entail
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computation of the remaining vector part of the even-parity gauge transformation. With

these results in hand, we will be able to compute the self-force and compare with other

similar work [47].

5.2 Benefits and drawbacks of Regge-Wheeler gauge

We previously considered bound geodesic motion on a Schwarzschild background. As de-

scribed in Sec. 4.2.1, an eccentric orbit can be specified by a pair of parameters. Where

useful we use either the energy E and angular momentum L per unit mass, the dimensionless

semi-latus rectum p and eccentricity e, or the periapsis rmin and apapsis rmax.

Using the RWZ formalism (see Sec. 4.2.2), we solved the first-order field equations.

This formalism has the benefit of reducing the perturbed Einstein equations to one wave

equation for each `,m mode. When ` + m is even we solve for the Zerilli-Moncrief master

function (Ψ`m
even), and when `+m is odd we solve for the Cunningham-Price-Moncrief master

function (Ψ`m
odd). We used a FD approach to find the Fourier harmonic modes (the Fourier

transforms of Ψ`m
even and Ψ`m

odd) and transformed back to the TD using the method of extended

homogeneous solutions (EHS). This produced a weak solution form of the master functions,

Ψ`m(t, r) = Ψ+
`m(t, r)θ [r − rp(t)] + Ψ−`m(t, r)θ [rp(t)− r]. From there we reconstructed the

metric perturbation amplitudes in RW gauge, as described in Sec. 4.5.

The troubling local nature of the RW gauge metric perturbation amplitudes was cov-

ered in detail in Sec. 4.5. Even beyond these discontinuities and singularities, RW gauge

exhibits undesirable features asymptotically as well. For example, consider the odd-parity

amplitudes h`mt and h`mr (note that the remaining odd-parity amplitude h`m2 is set to zero

in RW gauge). By looking at the expressions in Eq. (4.5.15) we can see how the amplitudes

behave at large r. Given that Ψ`m
odd ∼ F (t− r∗) (where F (t− r∗) is any constant amplitude

outgoing wave), we see that

h`mt ∼ r · F (t− r∗), h`mr ∼ r · F (t− r∗). (5.2.1)

Figs. 5.1 and 5.2 demonstrate both of these problems graphically for the ` = 2,m = 1
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Figure 5.1: The Regge-Wheeler gauge metric perturbation amplitude h21
t . As the particle

orbits between periapsis and apapsis, we examine the real and imaginary parts of this
amplitude at a moment in time. In the left panel, note the (very slight) discontinuity at
the location of the particle. In the right panel, note the lack of asymptotic flatness.

mode. The left panels of those figures show a discontinuous field at the particle’s location,

r = rp(t), while the right panels show a lack of asymptotic flatness.

These problems with RW gauge can be circumvented by transforming to Lorenz gauge.

Because the Lorenz gauge condition is differential (as opposed to the algebraic RW con-

dition), we must solve a set of differential equations to perform the transformation. We

examine this transformation in detail in the remainder of this chapter.

5.3 Transformation from RW to Lorenz gauge

The gauge transformation from Regge-Wheeler (RW) to Lorenz (L) involves a coordinate

change of the form

xµRW → xµL = xµRW + Ξµ, (5.3.1)

where the gauge generator Ξµ is of the same order of magnitude as the metric perturbation

pµν , that is |Ξµ| ∼ |pµν | � 1. Given Eq. (5.3.1), the metric perturbation transforms as

pRW
µν → pL

µν = pRW
µν − Ξµ|ν − Ξν|µ, (5.3.2)
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Figure 5.2: The Regge-Wheeler gauge metric perturbation amplitude h21
r . As the particle

orbits between periapsis and apapsis, we examine the real and imaginary parts of this
amplitude at a moment in time. In the left panel, note the discontinuity at the location of
the particle. In the right panel, note the lack of asymptotic flatness.

where we are using a stroke |µ or 4∇µ to indicate covariant differentiation with respect

to the background metric. Now, we plug Eq. (5.3.2) into the Lorenz gauge condition (as

introduced in Chapter 2), p̄µν |ν = 0, which gives

42Ξµ = Ξµ|ν
ν = p̄µν|

ν = pµν|
ν − 1

2
gαβpαβ|µ. (5.3.3)

On the spherically symmetric Schwarzschild background, we make use of the M2 × S2

decomposition of Martel and Poisson [55]. We perform a harmonic decomposition of the

gauge vector in these two sectors as

Ξa =
∑

`,m

ξ`ma Y`m, ΞA =
∑

`,m

[
ξ`mevenY

`m
A + ξ`moddX

`m
A

]
. (5.3.4)

There are four scalar amplitudes here which depend only on t and r; they are ξt, ξr, ξeven,

and ξodd.

Recall that lower case latin indices a, b, . . . are on the sectorM2 = {t, r}, and upper case

latin indices A,B, . . . are on the two sphere, or sector S2 = {θ, φ}. The line element can be

written in terms of the two metrics of these sub-manifolds, ds2 = gabdx
adxb + gABdx

AdxB.
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The covariant derivative on M2 is ∇a and on S2 is DA. They are defined by demanding

that ∇agbc = 0 and DAgBC = 0. For more details on the M2 × S2 decomposition, see

Chapter 2.

5.3.1 Gauge transformations on the M2 sector

First we consider the gauge transformation equation on theM2 sector. The four dimensional

wave operator can be written in terms of ∇a and DA as

42Ξa = 2Ξa + gBCDCDBΞa −
2
r
rag

ABDBΞA +
2
r
rb∇bΞa −

2
r2
rar

bΞb. (5.3.5)

Here 42 ≡ 4∇µ4∇µ and 2 ≡ ∇a∇a. We plug in the expanded forms of Ξa and ΞA from

Eq. (5.3.4) and this simplifies to

42Ξa = 2ξaY −
2 (λ+ 1)

r2
ξaY +

2
r
rb∇bξaY −

2f
r2
raξrY + 4ra

λ+ 1
r3

ξevenY, (5.3.6)

where λ ≡ (`+ 2)(`− 1)/2. Note that in this equation we have suppressed `,m indices on

the spherical harmonics Y , and on the scalar amplitudes. Also, there is an implied sum

over these indices, as shown explicitly in Eq. (5.3.4). Now, this is set equal to p̄aµ|µ, which,

as we saw in Eq. (2.4.24) is

p̄aµ
|µ = ∇bp̄ab + gBCDB p̄aC − ra

1
r
gDE p̄DE +

2
r
rbp̄ab. (5.3.7)

Plugging in for the metric from Eq. (2.4.1)

p̄aµ
|µ =

[
gbc∇c

(
hab −

1
2
gab

(
hdd + 2K

))
− ja
r2
`(`+ 1)

+ ra
1
r
hdd +

2
r
rb
(
hab −

1
2
gab

(
hdd + 2K

))]
Y. (5.3.8)

In RW gauge we set ja = 0, so after simplifying we find

p̄aν
|ν =

[
gbc∇c

(
hab −

1
2
gab

(
hdd + 2K

))
+

2
r
rb (hab − gabK)

]
Y. (5.3.9)
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Furthermore, we know from the field equations in RW gauge (4.C.3) that hdd = −Q], so

equating Eqs. (5.3.9) and (5.3.6) and using the completeness of the scalar harmonics, we

get

2ξa −
2 (λ+ 1)

r2
ξa +

2
r
rb (∂bξa − Γcabξc)−

2f
r2
raξr + 4ra

λ+ 1
r3

ξeven

= gcb∇chab − ∂aK +
2
r
rbhab −

2
r
raK +

1
2
∂aQ

]. (5.3.10)

Note that the implied summation has vanished with the use of the orthogonality of the

spherical harmonics. Therefore, there is one of these equations for each ` and m. After

some lengthy algebra (in which we must expand theM2 box operator), this reduces to two

coupled partial differential equations involving the gauge generator amplitudes ξt, ξr, and

ξeven. They are

− 1
f
∂2
t ξt + f∂2

r ξt +
2f
r
∂rξt −

2 (λ+ 1)
r2

ξt +
2M
r2

∂tξr

= − 1
f
∂thtt + f∂rhtr − ∂tK +

2
r2

(r −M)htr +
1
2
∂tQ

], (5.3.11)

and

− 1
f
∂2
t ξr + f∂2

r ξr +
2
r
∂rξr −

2f
r2
ξr +

2
f2

M

r2
∂tξt −

2 (λ+ 1)
r2

ξr + 4
λ+ 1
r3

ξeven

= − 1
f
∂thrt + f∂rhrr − ∂rK +

1
f2

M

r2
htt +

2r −M
r2

hrr −
2
r
K +

1
2
∂rQ

]. (5.3.12)

5.3.2 Gauge transformations on the S2 sector

On the S2 sector we can write the four dimensional box operator as

42ΞA = 2ΞA + gBCDCDBΞA −
1
r2

ΞA +
2
r
rbΞb,A (5.3.13)
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Plugging in our expressions for ΞA and Ξa from Eq. (5.3.4), we find

42ΞA =
(
− 1
f
∂2
t + ∂r (f∂r)

)
ξevenYA +

(
− 1
f
∂2
t + ∂r (f∂r)

)
ξoddXA

− ξeven
2 (λ+ 1)

r2
YA − ξodd

2 (λ+ 1)
r2

XA +
2f
r
ξrYA (5.3.14)

As we saw in Eq. (2.4.40) (recall the suppressed `,m indices which we sum over)

p̄Aν |ν =
(
∇b +

4
r
rb

)(
jbY A + hbXA

)
− 1

2
gabhabY

A − λGY A − λ

r2
h2X

A. (5.3.15)

This simplifies dramatically in RW gauge since h2 = ja = G = 0. Then, after lowering the

A index (which creates a counter term) we equate this with 42ΞA from Eq. (5.3.14), giving

(
− 1
f
∂2
t + ∂r (f∂r)

)
ξevenYA +

(
− 1
f
∂2
t + ∂r (f∂r)

)
ξoddXA −

2
r2

(λ+ 1) ξevenYA

− 2
r2

(λ+ 1) ξoddXA +
2f
r
ξrYA = ∇bhbXA +

2
r
hrXA −

1
2
gabhabYA. (5.3.16)

Note that from the field equations (4.C.3) we have gabhab = −Q], and ∇bhb = P . Now, we

multiply through by Y A (with implied indices `′m′) and integrate over the two-sphere. The

orthogonality picks out the even-parity terms and we are left with the even-parity equation

(
− 1
f
∂2
t + ∂r (f∂r)

)
ξeven −

2
r2

(λ+ 1) ξeven +
2f
r
ξr = −1

2
Q]. (5.3.17)

Likewise, we use the orthogonality of the odd-parity harmonics XA, which leaves us with

the odd-parity equation

(
− 1
f
∂2
t + ∂r (f∂r)

)
ξodd −

2
r2

(λ+ 1) ξodd = P +
2
r
hr. (5.3.18)

Note that the odd-parity equation (5.3.18) decouples entirely, but the even-parity equation

(5.3.17) is coupled with Eqs. (5.3.11) and (5.3.12). Finally, note that Eqs. (5.3.18) and

(5.3.17) have implied indices ` and m.

146



5.3.3 The Sago, Nakano, Sasaki decomposition

Rather than using the decomposition derived in the previous subsections, Sago, Nakano,

and Sasaki (SNS) [54] take a different approach which leads to a full separation of the

even-parity equations. They start by splitting the gauge vector into even- and odd-parity

parts

Ξµ = Ξµeven + Ξµodd. (5.3.19)

There is a single harmonic amplitude ξ`modd that represents Ξµodd, as can be seen in Eq. (5.3.4).

Our odd-parity equation (5.3.18) is entirely equivalent to that of SNS.

The difference lies in the treatment of the even-parity part, Ξµeven. As before, three

spherical harmonic amplitudes represent the four components of Ξµeven. SNS use a four

dimensional generalization of the Helmholtz decomposition (the Hodge decomposition [92])

and choose to express these three degrees of freedom through a scalar Ξeven(s) (which con-

tains one degree of freedom) and a divergence-free vector Ξµeven(v) (which contains the other

two). The even-parity gauge vector is then

Ξµeven = Ξµeven(v) + 4∇µΞeven(s). (5.3.20)

Taking Eq. (5.3.3) and inserting this expression gives

42

(
Ξµeven(v) + 4∇µΞeven(s)

)
= 4∇ν p̄µνeven. (5.3.21)

Taking the divergence, the divergence-free vector part vanishes, so

42
(

42Ξeven(s)

)
= 4∇µ4∇ν p̄µνeven. (5.3.22)

Note that we are able to move the covariant derivatives past one another because they are

traced out and Rµν = 0 on the background spacetime. Now, we make the implicit definition

of Jeven(s) through

42Ξeven(s) = Jeven(s). (5.3.23)
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Then Eq. (5.3.22) reduces to

42Jeven(s) = 4∇µ4∇ν p̄µνeven. (5.3.24)

This latter equation is a second-order inhomogeneous wave equation, which can be solved

to find the source Jeven(s) for Eq. (5.3.23). Then, solving Eq. (5.3.23) yields the even-parity

scalar part Ξeven(s). Returning to Eq. (5.3.21), and using Eq. (5.3.23), we see that we can

write

42Ξµeven(v) + 4∇µJeven(s) = 4∇ν p̄µνeven. (5.3.25)

We combine the two source terms to define

Jµeven(v) ≡
4∇ν p̄µνeven − 4∇µJeven(s). (5.3.26)

Then, we have a wave equation for the divergence-free vector piece of the even-parity gauge

generator,

42Ξµeven(v) = Jµeven(v). (5.3.27)

This summarizes the SNS decomposition in terms of tensor components. We next turn to

examining two new solution techniques for equations of the type we encounter here. We

will then return to the specifics of solving the equations of the SNS formalism in Secs. 5.5

and 5.6, where these equations are further decomposed into spherical harmonics.

5.4 Solution techniques for extended sources

Here we present two new FD methods for solving the types of PDEs we are presented with

during the gauge transformation.
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5.4.1 Partial annihilators and higher order EHS: general considerations

Consider a PDE of the form

Wa
`mψ`m(t, r) = S`mext(t, r), (5.4.1)

where Wa
`m is an ath order partial differential operator in t and r, which is acting on a

scalar field ψ`m. The source S`mext(t, r) is non-compact, and therefore not amenable to the

EHS method. The annihilator method is a standard technique [60] for solving differential

equations, wherein we search for a differential operator for which S`mext is a homogeneous

solution. Then, we could act on both sides of Eq. (5.4.1) and produce a homogeneous

differential equation, albeit of a higher order. Given the singular nature of the source in

our problem, it is unlikely that we will be able to find such an operator. However, it turns

out in practice with such sources to be possible to find an operator that nearly annihilates

S`mext, e.g.

Wb
`mS

`m
ext(t, r) = S`msing(t, rp(t)). (5.4.2)

Here Wb
`m is an bth order partial differential operator in t and r, and S`msing(t, rp(t)) only has

support at the location of the particle. We refer to this as a partial annihilator. Therefore,

acting with Wb
`m on Eq. (5.4.1) we have

Wb
`mWa

`mψ`m(t, r) = S`msing(t, rp(t)). (5.4.3)

We now have an equation with a point-singular source, which we can solve using the EHS

method, but at the price of having raised it from order a to order a+ b.

Moving into the FD, we Fourier transform Eq. (5.4.3) to get

Lb`mnLa`mnψ̃`mn(r) = Z`mnsing (r). (5.4.4)

The effect of the partial annihilator in the FD, Lb`mn, is to make a non-compact source

Z`mext(r) into a compact source Z`mnsing (r), confined between rmin and rmax. Through the end

149



of this subsection we will suppress the mode indices. Recall that the tilde over a symbol

indicates a quantity which has been Fourier transformed into the FD.

The ODE (5.4.4) in r will have a+ b linearly independent homogeneous solutions. (We

have in mind systems where a and b are even integers.) We can specify them by demanding

that half of them are purely down-going at the event horizon and the other half are purely

out-going at spatial infinity. We denote the former by ψ̃−j and the latter by ψ̃+
j , where j

runs from 1 to (a + b)/2. Now, the causally appropriate particular solution to Eq. (5.4.4)

will be a linear combination of the homogeneous solutions,

ψ̃p(r) = c−1 (r)ψ̃−1 (r) + · · · c−(a+b)/2(r)ψ̃−(a+b)/2(r)

+ c+
1 (r)ψ̃+

1 (r) + · · · c+
(a+b)/2(r)ψ̃+

(a+b)/2(r). (5.4.5)

We get the various normalization functions c±j (r) by the general method of variation of

parameters [60]. This entails solving the equations

dc±j
dr∗

(r) = Zsing(r)
W±j (r)
W (r)

(5.4.6)

where W (r) is the Wronskian and W±j (r) is the “modified Wronskian,” which is the Wron-

skian with the column corresponding to the ψ±j homogeneous solution replaced by the

column vector (0, 0, . . . , 1). Having solved Eq. (5.4.6) for the normalization functions, we

can return to the TD via the standard Fourier synthesis (recall that we have suppressed

`,m, n indices on ψ̃p)

ψp(t, r) =
∑

n

ψ̃p(r)e−iωmnt. (5.4.7)

This will yield a causally appropriate solution to Eq. (5.4.1).

In our system though, the source Ssing will have some degree of lack of differentiability,

and the sum above will converge in the TD only algebraically (if at all) at the location of

the particle, due to the Gibbs phenomenon. Therefore, we seek to use the EHS method to
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find exponentially-convergent solutions. To that end, we define

C−j ≡ c−j (rmin), C+
j ≡ c+

j (rmax), (5.4.8)

which are referred to as the normalization coefficients and are the result of integrating

Eq. (5.4.6) through the entire source region. Then, we define the EHS in the FD to be

ψ̃±(r) ≡
(a+b)/2∑

j

C±j ψ̃
±
j (r), (5.4.9)

and the EHS in the TD are defined as

ψ±(t, r) ≡
∑

n

ψ̃±(r)e−iωmnt. (5.4.10)

Then, as before with the original EHS method [1], the weak solution representation

ψEHS ≡ ψ+(t, r) θ [r − rp(t)] + ψ−(t, r) θ [rp(t)− r] (5.4.11)

expresses the solution to Eq. (5.4.1).

5.4.2 Extended particular solutions method

As an alternative to the partial annihilator method we consider solving Eq. (5.4.1) without

promoting it to a higher-order equation. We start by moving Eq. (5.4.1) to the FD, yielding

La`mnψ̃`mn(r) = Z`mnext (r). (5.4.12)

With its non-compact source, the EHS method is not immediately applicable to solve

Eq. (5.4.12). As usual, we expect ψ̃`mn to consist of both a particular solution and ho-

mogeneous solutions. We inspect the asymptotic nature of Z`mnext (r) at infinity and the

event horizon. Between this and our differential operator La`mn we should be able to find

the leading order nature of the causal particular solution. On the large r side, we denote this

solution as ψ̃∞p (r), and near the horizon we express it as ψ̃Hp (r). Here we have suppressed
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the `,m, n indices, and will continue to do so for the remainder of this subsection.

We first take ψ̃∞p (r), (though the opposite choice would work as well) as a boundary con-

dition at infinity to begin our ODE integration of Eq. (5.4.12). We integrate this differential

equation inward, through the region of the source and on to the horizon. At this point, in

addition to having obtained a particular solution, we will have excited all a homogeneous

solutions, which will be evident in the behavior near the horizon. Half of these homogeneous

terms will be causal waves traveling down into the black hole, and the other a/2 will be

acausal waves coming up from the black hole. We eliminate this acausal behavior by solving

the homogeneous version of Eq. (5.4.12) for the a/2 acausal pieces and subtracting them

off. The homogeneous solutions on the infinity side are ψ̃+
h,j where j runs from 1 to a/2.

Likewise, there are a/2 homogeneous solutions on the horizon side, which we denote ψ̃−h,j .

We sum up the scaled homogeneous solutions and return to the TD via

ψ±h (t, r) =
∞∑

n=−∞



a/2∑

j=1

ψ̃±h,j(r)


 e−iωmnt. (5.4.13)

This is a fairly straightforward process if Eq. (5.4.1) has a source term which is differ-

entiable everywhere. Unfortunately, the system we work with does not have such a source,

and we must be careful. The source Sext will be a linear combination of singular pieces

(δ, δ′, etc.) and the master function Ψ (either Ψeven or Ψodd) and its derivatives. Since

we are working with linear equations, we can always solve for the singular parts with the

EHS method, and we therefore consider only the extended source pieces which come from

Ψ. When we Fourier transform Eq. (5.4.1) to get Eq. (5.4.12) there is an ambiguity that

arises. Because the TD source of Eq. (5.4.1) contains Ψ, the FD source of Eq. (5.4.12) will

contain R, which has two forms,

Rstd(r) = c+(r)R̂+(r) + c−(r)R̂−(r), and R±(r) = C±R̂±(r). (5.4.14)

The particular solution that we get from using Rstd as the source we call the standard

particular solution and denote as ψ̃∞/Hp . The superscript ∞/H is to distinguish between
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whether the integration starts at infinity or the horizon. On the other hand, when using

using R± as the source we compute the extended particular solution (EPS) which we denote

as ψ̃±p . The superscript ± is to distinguish between whether the integration starts at infinity

or the horizon.

Because Rstd is the Fourier transform of Ψ, it must be used when solving for the correct

homogeneous solutions, as described above. Returning ψ̃∞/Hp to the TD produces ψ∞/Hp ,

which will exhibit the usual Gibbs phenomenon that is always present when the source

is singular. The convergence will be algebraic at best. The way around this rests on

generalizing the EHS method and using the extended particular solutions (EPS).

Having computed the EPS, we have in hand what it takes to form the true solution to

Eq. (5.4.1). We use the Fourier synthesis to take the EPS to the TD,

ψ±p (t, r) =
∑

n

ψ̃±p (r)e−iωmnt. (5.4.15)

By the same continuity arguments that apply to the EHS method, we claim that the causally

appropriate solution to the inhomogeneous equation with non-compact source (5.4.1) is

ψ(t, r) =
(
ψ+
p (t, r) + ψ+

h (t, r)
)
θ [r − rp(t)] +

(
ψ−p (t, r) + ψ−h (t, r)

)
θ [rp(t)− r] . (5.4.16)

We have verified this claim by demonstrating numerically that this approach is entirely

equivalent to the partial annihilator method. The new higher-order homogeneous solu-

tions introduced by the annihilator are precisely the same as the particular solutions found

here. Note that those homogeneous solutions come in standard and EHS form, just as the

particular solutions here come in standard and EPS form.

5.5 Odd-parity gauge generator

As seen in Eq. (5.3.18), the odd-parity gauge generator satisfies the equation

[
− ∂2

∂t2
+

∂2

∂r2
∗
− V1(r)

]
ξodd(t, r) = 2f(r)ΨRW + fpp(t)δ [r − rp(t)] . (5.5.1)
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In this expression, on the left we have introduced the tortoise coordinate and the spin-1

odd-parity potential V1 = 2f(λ + 1)/r2. On the right we have noted that fhr/r = ΨRW

and factored the delta function out of the P term as in Sec. 4.5.2. Now we discuss the

application of the two methods introduced in the previous section to this equation.

5.5.1 Partial annihilator method

Equation (5.5.1) is linear, so we can split off the singular part and define two functions,

ξext
odd and ξsing

odd that satisfy two separate equations,

[
− ∂2

∂t2
+

∂2

∂r2
∗
− V1(r)

]
ξsing

odd (t, r) = fpp(t)δ [r − rp(t)] , (5.5.2)
[
− ∂2

∂t2
+

∂2

∂r2
∗
− V1(r)

]
ξext

odd(t, r) = 2f(r)ΨRW. (5.5.3)

The equation for ξsing
odd can be solved using the standard EHS approach. We are then left with

finding a partial annihilator for the ξext
odd equation. Naturally, the Regge-Wheeler variable

satisfies its own wave equation with a point singular source. Therefore, dividing by f and

acting with the Regge-Wheeler operator, we have (where, for the remainder of this section

we will drop the ext
odd tags for notational simplicity)

[
− ∂2

∂t2
+

∂2

∂r2
∗
− V2(r)

]
1
f

[
− ∂2

∂t2
+

∂2

∂r2
∗
− V1(r)

]
ξ = 2SRW(t, rp(t)), (5.5.4)

where V2 = f
(
2(λ+ 1)/r2 − 6M/r3

)
is the spin-2 odd-parity RW potential and SRW is the

fully evaluated source term for the master function ΨRW, which can be found (though not

in fully evaluated form) in Martel [50]. Now we have a source which is point-singular. The

trade off is that the differential equation (5.5.4) is now fourth order.

We Fourier transform Eq. (5.5.4) to obtain the FD equation

[
d2

dr2
∗

+ ω2
mn − V2(r)

]
1
f

[
d2

dr2
∗

+ ω2
mn − V1(r)

]
ξ̃(r) = 2ZRW(r), (5.5.5)

The Fourier transformed source ZRW is no longer in general point singular, but it is compact

(confined to the region rmin − rmax). There are four linearly independent homogeneous
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solutions to Eq. (5.5.5). Two of these are the solutions to the second order equation, which

behave asymptotically like running waves going out to spatial infinity and down the black

hole,

ξ̃−h2 ∼ e−iωmnr∗ (r → 2M), ξ̃+
h2 ∼ eiωmnr∗ (r →∞). (5.5.6)

Then, there are solutions that are only homogeneous solutions to full the fourth-order

equation,

ξ̃−h4 ∼ f(r)e−iωmnr∗ (r → 2M), ξ̃+
h4 ∼ reiωmnr∗ (r →∞). (5.5.7)

These four solutions form a fundamental set, spanning the space of homogeneous solutions

of Eq. (5.5.5). The particular solution will be a linear combination of these,

ξ̃p(r) = c−h2(r)ξ̃−h2(r) + c+
h2(r)ξ̃+

h2(r) + c−h4(r)ξ̃−h4(r) + c+
h4(r)ξ̃+

h4(r). (5.5.8)

The four normalization functions c±h2/h4(r) come from the method of variation of parameters,

which entails solving the equations

dc±h2/h4

dr∗
= 2ZRW(r)

W±h2/h4(r)

W (r)
, (5.5.9)

as described in Sec. 5.4.1. For the two “+” equations, the integral form of Eq. (5.5.9) is

c+
h2/h4(r) =

∫ r

rmin

[
1
Tr

∫ Tr

0

(
G̃RW(t)δ

[
r′ − rp(t)

]

+ F̃RW(t)δ′
[
r′ − rp(t)

] )
eiωmntdt

]W+
h2/h4(r′)

W (r′)
dr′. (5.5.10)

Likewise, for the two “−” equations,

c−h2/h4(r) =
∫ rmax

r

[
1
Tr

∫ Tr

0

(
G̃RW(t)δ

[
r′ − rp(t)

]

+ F̃RW(t)δ′
[
r′ − rp(t)

] )
eiωmntdt

]W−h2/h4(r′)

W (r′)
dr′. (5.5.11)

The EHS method requires knowing the values of the four functions c±h2/h4(r) only at the
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turning points of the particle’s motion rmin and rmax. Therefore, switching the order of

integration and integrating by parts, we find

C±h2/h4 =
1
Tr

∫ Tr

0

{
G̃RW(t)

W±h2/h4(rp)

W (rp)

− F̃RW(t)

[
−
W±h2/h4(rp)

W (rp)2
∂rW (rp) +

∂rW
±
h2/h4(rp)

W (rp)

]}
eiωmntdt. (5.5.12)

At this point we define the EHS in the FD to be

ξ̃−h (r) ≡ C−h2ξ̃
−
h2(r) + C−h4ξ̃

−
h4(r), ξ̃+

h (r) ≡ C+
h2ξ̃

+
h2(r) + C+

h4ξ̃
+
h4(r), (5.5.13)

and the EHS in the TD are defined are defined by the Fourier sums

ξ±(t, r) ≡
∑

n

ξ̃±h (r)e−iωmnt. (5.5.14)

The extension of these solutions to r = rp(t) then gives the desired solution to Eq. (5.5.3),

ξext
odd(t, r) = ξ+(t, r)θ [r − rp(t)] + ξ−(t, r)θ [rp(t)− r] . (5.5.15)

5.5.2 Second order approach, using the method of extended particular
solutions

Now we look for a solution for ξext
odd that does not require a partial annihilator. In the FD

its equation transforms to

[
d2

dr2
∗

+ ω2
mn − V1(r)

]
ξ̃ext

odd = 2fRRW. (5.5.16)

Again, for notational simplicity we drop the ext
odd tags for the remainder of this section.

Asymptotically the RW function goes like R±RW ∼ e±iωmnr∗ as r∗ → ±∞. The potential

dies away at large positive and negative r∗. We make the ansatz that ξ̃+
p ∼ reiωmnr∗ as

r → +∞ We can plug this into Eq. (5.5.16) above and find a constant factor that will tell
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us the scaling between ξ̃∞p and RRW at large r,

(
d2

dr2
∗

+ ω2
mn

)(
A+reiωmnr∗

)
= 2eiωmnr∗ ⇒ A+ =

1
iωmn

. (5.5.17)

Therefore, the asymptotic form of ξ̃∞p is (assuming we take a unit amplitude on R+
RW)

ξ̃∞p = − i

ωmn
reiωmnr∗ , r → +∞. (5.5.18)

Similarly, on the horizon side, by analyzing the source we assume a form of ξ̃Hp ∼ f(r)e−iωmnr∗

as r → 2M , which implies

(
d2

dr2
∗

+ ω2
mn

)(
A−feiωmnr∗

)
= 2fe−iωmnr∗ ⇒ A− = 2

(
1

4M2
− iωmn

M

)−1

. (5.5.19)

Therefore, the asymptotic form of ξ̃Hp is (assuming we take a unit amplitude on R−RW)

ξ̃Hp = 2
(

1
4M2

− iωmn
M

)−1

fe−iωmnr∗ , r → 2M. (5.5.20)

The source term RRW is itself the solution to the differential equation

[
d2

dr2
∗

+ ω2
mn − V2

]
RRW(r) = ZRW(r). (5.5.21)

We find it from the method of variation of parameters, which yields

Rstd
RW(r) = c+(r)R̂+(r) + c−(r)R̂−(r), (5.5.22)

where R±(r) are homogeneous solutions to Eq. (5.5.21). It is key in what follows that we

use Rstd
RW(r) in the source term to Eq. (5.5.16), as opposed to

REHS,±
RW (r) ≡ C±R̂±(r), (5.5.23)

which we will use later for a separate purpose.

We solve Eq. (5.5.16) in a series of steps. We start by computing the particular solutions.
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• Set a boundary condition at large, positive r∗ of [noting Eq. (5.5.17)] ξ̃∞p = A+reiωmnr∗ .

Integrate the inhomogeneous equation (5.5.16), through the source libration region

[using Eq. (5.5.22) in the source] to large, negative r∗. At this point it will be of the

form [noting Eq. (5.5.19)] ξ̃∞p = A−fe−iωmnr∗ − κ+eiωmnr∗ − κ−e−iωmnr∗ .

• Set a boundary condition at large, negative r∗ of ξ̃Hp = A−fe−iωmnr∗ . Integrate the in-

homogeneous equation (5.5.16), through the source libration region [using Eq. (5.5.22)

in the source] to large, positive r∗. At this point it will be of the form ξ̃Hp =

A+reiωmnr∗ − λ−e−iωmnr∗ − λ+eiωmnr∗ .

In order to find a solution with the correct causal behavior, we must add homogeneous

solutions to these particular solutions.

• Set a boundary condition at large, positive r∗ of ξ̃+
h ≈ Teiωmnr∗ . Integrate the ho-

mogeneous version of Eq. (5.5.16) to large, negative r∗. At this point it will be of

the form ξ̃+
h ≈ Re−iωmnr∗ + eiωmnr∗ . Note that if we set the boundary condition with

unit amplitude we have on the large r∗ side ξ̃+
h ≈ eiωmnr∗ , and on the horizon side

ξ̃+
h ≈ (R/T )e−iωmnr∗ + (1/T )eiωmnr∗ . Here R and T are reflection and transmission

amplitudes, respectively [71].

• Set a boundary condition at large, negative r∗ of ξ̃−h ≈ T ∗e−iωmnr∗ . Integrate the

homogeneous version of Eq. (5.5.16) to large, positive r∗. At this point it will be of

the form ξ̃−h ≈ R∗eiωmnr∗ + e−iωmnr∗ . Note that if we set the boundary condition with

unit amplitude we have on the horizon side ξ̃−h ≈ e−iωmnr∗ , and on the large r∗ side

ξ̃−h ≈ (R∗/T ∗)eiωmnr∗ + (1/T ∗)e−iωmnr∗ .

Now, we wish to cancel out the acausal pieces of the particular solutions. Therefore, we

form ξ̃∞ = ξ̃∞p + κ+ξ̃+
h . In the two asymptotic regions this is

ξ̃+ ≈ C+reiωmnr∗ + κ+Teiωmnr∗ r∗ → +∞, (5.5.24)

ξ̃+ ≈ C−fe−iωmnr∗ − κ−e−iωmnr∗ +Re−iωmnr∗ r∗ → −∞. (5.5.25)
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On the horizon side, we form ξ̃H = ξ̃Hp + λ−ξ̃−h . In the two asymptotic regions this is

ξ̃− ≈ C−fe−iωmnr∗ + λ−T ∗e−iωmnr∗ r∗ → −∞, (5.5.26)

ξ̃− ≈ C+reiωmnr∗ − λ+eiωmnr∗ +R∗eiωmnr∗ r∗ → +∞. (5.5.27)

Now, we have two solutions to the differential equation that both satisfy the causal nature

of the problem. Therefore they must be equal, so we set them, with their derivatives, equal

at any point,

ξ̃Hp + λ−ξ̃−h = ξ̃∞p + κ+ξ̃+
h (5.5.28)

∂r∗ ξ̃
H
p + λ−∂r∗ ξ̃

−
h = ∂r∗ ξ̃

∞
p + κ+∂r∗ ξ̃

+
h . (5.5.29)

Solving these equations for κ+ and λ− we find

κ+ = − 1
Wh

[(
∂r∗ ξ̃

∞
p − ∂r∗ ξ̃Hp

)
ξ̃−h +

(
ξ̃Hp − ξ̃∞p

)
∂r∗ ξ̃

−
h

]
, (5.5.30)

λ− = − 1
Wh

[ (
∂r∗ ξ̃

∞
p − ∂r∗ ξ̃Hp

)
ξ̃+
h +

(
ξ̃Hp − ξ̃∞p

)
∂r∗ ξ̃

+
h

]
, (5.5.31)

where

Wh ≡ ξ̃−h ∂r∗ ξ̃+
h − ξ̃+

h ∂r∗ ξ̃
−
h . (5.5.32)

The constants κ+ and λ− tell us how to scale our homogeneous solutions so we can enforce

causality. The functions ξ̃Hp +λ−ξ̃−h and ξ̃∞p +κ+ξ̃+
h (which are entirely equivalent), represent

the standard solution to Eq. (5.5.16). If our TD source were differentiable everywhere, we

would be able to take this solution back to the TD with an exponentially converging Fourier

synthesis. However, given our source’s lack of differentiability, we must use a different

method to obtain exponential convergence in the transition to the TD.

We define the FD EPS of Eq. (5.5.16) to be ξ̃±p . They are found by integrating

Eq. (5.5.16) the source term REHS
RW , given in Eq. (5.5.23). The EPS are made causally
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Figure 5.3: The odd-parity RW → Lorenz gauge generator amplitude ξodd
21 . This differs

from the Lorenz gauge metric amplitude h21
2 (where the 21 are `,m indices on the amplitude

h2) by a factor of −2. Note that the field h21
2 grows asymptotically because it is a metric

perturbation amplitude on the two-sphere, where an extra factor of r2 is present in spherical
coordinates. Transforming to an orthonormal frame would produce a field which falls off
like 1/r, as radiation.

correct by adding the correctly scaled homogeneous solutions, which define

ξ̃+ ≡ ξ̃+
p + κ+ξ̃+

h ξ̃− ≡ ξ̃−p + λ−ξ̃−h . (5.5.33)

When we return to the TD, we define

ξ± ≡
∑

n

ξ̃±e−iωmnt. (5.5.34)

And we claim the true solution to Eq. (5.5.3) is the weak solution,

ξ(t, r) = ξ+θ [r − rp(t)] + ξ−θ [rp(t)− r] . (5.5.35)

We have used this solution to obtain the exact same solutions as those given by the partial

annihilator method. These results are shown in Figs. 5.3, 5.4, and 5.5.
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5.6 Even-parity gauge generator

5.6.1 Scalar part

The pair of equations (5.3.23) and (5.3.24) each have a curved space wave operator acting

on a scalar. This yields the Regge-Wheeler spin-0 operator, which gives

[
− 1
f
∂2
t +

1
r2
∂r
(
r2f∂r

)
+

1
r2 sin θ

∂θ (sin θ ∂θ) +
1

r2 sin2 θ
∂2
φ

]
Ξeven(s) = Jeven(s), (5.6.1)

[
− 1
f
∂2
t +

1
r2
∂r
(
r2f∂r

)
+

1
r2 sin θ

∂θ (sin θ ∂θ) +
1

r2 sin2 θ
∂2
φ

]
Jeven(s) = 4∇µ4∇ν p̄µνeven. (5.6.2)

We decompose Ξeven(s) and Jeven(s) in scalar spherical harmonics,

Ξeven(s) =
∑

`,m

1
r
ξ`meven(s)(t, r)Y`m (θ, φ) , Jeven(s) =

∑

`,m

1
r
j`meven(s)(t, r)Y`m (θ, φ) . (5.6.3)

We have already computed one divergence of p̄µν . To take the second, we need the divergence

of a vector V µ,

4∇µVµ = gabVb|a + gABVB|A, (5.6.4)

where the stroke (|) is the full, four dimensional covariant derivative on the background

manifold. The connection terms it creates sum over all four spacetime indices. In the

Martel and Poisson [55] formalism the expression expands to

4∇µVµ = gab∇aVb + gAB
(
DAVB +

1
r
rbVbgAB

)
, (5.6.5)

Using this, the second divergence of p̄µν is (with implied `,m and a summation)

4∇µ4∇ν p̄µν =
[
− 1

2
2Q] − 2

r
∂thtr + 2

f2

r
∂rhrr − f∂rK

+
2
f

M

r3
htt +

(
6f
M

r3
+

2f2

r2

)
hrr −

(
4
r2
f +

2M
r2

)
K − 2M

r3
Q] −Q[

]
Y ≡ S. (5.6.6)
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Plugging in these expansions, we use the orthonormality of the spherical harmonics to write

[
− 1
f

∂2

∂t2
+

∂

∂r

(
f
∂

∂r

)
−
(

2(λ+ 1)
r2

+
2M
r3

)]
ξeven(s) = jeven(s), (5.6.7)

1
r

[
− 1
f

∂2

∂t2
+

∂

∂r

(
f
∂

∂r

)
−
(

2(λ+ 1)
r2

+
2M
r3

)]
jeven(s) = S. (5.6.8)

After further simplification, the source term becomes

S = fW0K + Ssing, W0 ≡ −
∂2

∂t2
+

∂2

∂r2
∗
− V0, V0 ≡ f

(
2(λ+ 1)

r2
+

2M
r3

)
, (5.6.9)

where we have combined all the singular terms together into Ssing. Then we can combine

the two differential equations into one fourth-order expression,

W0

(
1
rf
W0ξeven(s)

)
= fW0K + Ssing, (5.6.10)

Given our definition of K in terms of the master function, we get

W0K(t, r) = α(r)Ψ(t, r) + β(r)
dΨ(t, r)
dr∗

+ G̃K(t)δ(z) + F̃K(t)δ′(z), (5.6.11)

where

α(r) = −2
f

r6Λ

(
λ(λ+ 1)r3 + λM (λ+ 1) r2 + 3M2 (3λ− 1) r + 24M3

)
,

β(r) = −2
f2

r3

(
r (λ+ 1) + 4M

)
,

(5.6.12)

and G̃Kδ(z) + F̃Kδ
′(z) get absorbed into Ssing.

The Ssing term can be found by using fourth order EHS. For the remainder of this section

we focus on solving the part of the equation with the extended source. Additionally, for the

remainder of this section we will suppress the even,s tags.

At this point we are ready to solve Eq. (5.6.10) using the EPS method. Neglecting the

singular terms and moving to the FD gives

L0
1
rf
L0ξ̃ = α(r)R+ β(r)

dR

dr∗
, L0 ≡

d2

dr2
∗

+ ω2
mn − V0. (5.6.13)
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We first need the particular solutions to this equation. The boundary conditions for these

particular solutions are given in App. 5.B.2. On the right side of Eq. (5.6.13) there are two

different forms of R which we consider. The first is the standard solution, which we denote

as

RZM(r) = c+(r)R̂+(r) + c−(r)R̂−(r), (5.6.14)

and the second is the pair of EHS

R±(r) = C±R̂±(r). (5.6.15)

Therefore, there will be two different particular solutions we can compute. We denote them

by

ξ̃Hp , ξ̃
∞
p ⇐⇒ RZM, ξ̃−p , ξ̃

+
p ⇐⇒ R±. (5.6.16)

To simplify solving the fourth-order equation (5.6.13), we make the following definitions

u ≡ 1
ωmn

dξ̃

dr∗
, v ≡ 1

ω3
mn

1
rf

[
ωmn

du

dr∗
+
(
ω2
mn − V0

)
ξ̃

]
, w ≡ 1

ωmn

dv

dr∗
. (5.6.17)

In addition to the particular solutions to Eq. (5.6.13), there are the homogeneous solutions

as well. There are two on the horizon side; one is annihilated by the second order operator,

and the other is annihilated by the full fourth-order operator. Respectively, these are ξ̃−h2

and ξ̃−h4. Similarly, there are two on the infinity side, which we denote as ξ̃+
h2 and ξ̃+

h4. Now,

in order to get the causally appropriate solution, we must add homogeneous solutions. On

the two sides we have

ξ̃H = ξ̃Hp + λ−h2ξ̃
−
h2 + λ−h4ξ̃

−
h4, ξ̃∞ = ξ̃∞p + κ+

h2ξ̃
+
h2 + κ+

h4ξ̃
+
h4. (5.6.18)

Removing the acausal pieces is equivalent to demanding these two solutions and their three
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derivatives be identical. The four conditions are

ξ̃Hp + λ−h2ξ̃
−
h2 + λ−h4ξ̃

−
h4 = ξ̃∞p + κ+

h2ξ̃
+
h2 + κ+

h4ξ̃
+
h4, (5.6.19)

1
ωmn

d

dr∗

(
ξ̃s,Hp + λ−h2ξ̃

−
h2 + λ−h4ξ̃

−
h4

)
=

1
ωmn

d

dr∗

(
ξ̃s,∞p + κ+

h2ξ̃
+
h2 + κ+

h4ξ̃
+
h4

)
, (5.6.20)

and

vHp + λ−h2v
−
h2 + λ−h4v

−
h4 = v∞p + κ+

h2v
+
h2 + κ+

h4v
+
h4, (5.6.21)

1
ωmn

d

dr∗

(
vHp + λ−h2v

−
h2 + λ−h4v

−
h4

)
=

1
ωmn

d

dr∗

(
v∞p + κ+

h2v
+
h2 + κ+

h4v
+
h4

)
. (5.6.22)

Note that for the second-order equations v±h4 = w±h4 = 0, so in matrix form



v−h4 −v+

h4

w−h4 −w+
h4






λ−h4

κ+
h4


 =




v∞p − vHp
w∞p − wHp


 , (5.6.23)



ξ̃−h2 −ξ̃+

h2

u−h2 −u+
h2






λ−h2

κ+
h2


 =



ξ̃s,∞p − ξ̃s,Hp
u∞p − uHp


−



ξ̃−h4 −ξ̃+

h4

u−h4 −u+
h4






λ−h4

κ+
h4


 . (5.6.24)

We use Cramer’s rule to solve Eq. (5.6.23) for λ−h4 and κ+
h4. Then, the right side of

Eq. (5.6.24) boils down to one column vector, and we solve for the remaining two unknowns

λ−h2 and κ+
h2.

At this point we have the coefficients to scale the homogeneous solutions properly. Then,

the standard solution to Eq. (5.6.13) is either of the (equivalent) expressions in Eq. (5.6.18).

This solution can be returned to the TD by using the standard Fourier synthesis. However,

as expected, it will exhibit Gibbs behavior. This can be circumvented by using the EPS

method, wherein we form

ξ̃− = ξ̃−p + λ−h2ξ̃
−
h2 + λ−h4ξ̃

−
h4, ξ̃+ = ξ̃+

p + κ+
h2ξ̃

+
h2 + κ+

h4ξ̃
+
h4, (5.6.25)
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which we return to the TD through the Fourier sum,

ξ±even(s)(t, r) =
∑

n

ξ̃±(r)e−iωmnt. (5.6.26)

Then, the weak form of the solution to Eq. (5.6.10) (without the singular term) is

ξeven(s)(t, r) = ξ+
even(s)(t, r) θ [r − rp(t)] + ξ−even(s)(t, r) θ [rp(t)− r] . (5.6.27)

5.6.2 Divergence-free vector part

We briefly provide here an outline of the remaining task of solving for the divergence-free

part of the even-parity gauge generator. We start by defining the antisymmetric gradient

Fµν ≡ 4∇µξνeven(v) − 4∇νξµeven(v). (5.6.28)

Then, taking the divergence we have

Fµν |ν = −4∇ν4∇νξµeven(v) = −Jµeven(v), (5.6.29)

where we have used the vanishing of Rµν on the background to commute the covariant

derivatives and applied the divergence-free property of Ξµeven(v). The source term Jeven(v)

is given previously in Eq. (5.3.26). Now, we recognize Eq. (5.6.29) as analogous to the

Maxwell equations. The approach of SNS [54] is to apply the Newman-Penrose formalism

to decompose Eq. (5.6.29) to find two separate equations for the tetrad scalars φ0 and

φ2. Then a final second-order wave equation must be solved to find the spherical harmonic

amplitudes of Ξµeven(v). The equations all decouple, and the price we have to pay is more

equations to solve. We see no outstanding issues with being able to straightforwardly apply

our new methods to solve these remaining equations numerically.
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5.7 Conclusion

At this point, we have finished the gauge transformation for the odd-parity sector and for

the even-parity scalar part. Results for the odd-parity can be seen in Figs. 5.3, 5.4 and

5.5. Note that the gauge transformation removes the jump at the particle’s location and

corrects the asymptotic behavior, leaving it flat. In solving these equations we developed two

new techniques, the method of partial annihilators, and the method of extended particular

solutions, which are entirely equivalent. Results for the even-parity divergent-free vector

part are forthcoming.

Following completion of the gauge transformation, the stage will be set for self-force

calculations. We will be able to compute conservative shifts in gauge-invariant quantities

such as the energy, angular momentum and generalized redshift invariant. Some of these

have already been computed in the time domain. We should be able to add significantly

more accuracy with our frequency domain based approach.

5.A Gauge transformation of metric perturbation amplitudes

Once the gauge vector is found by solving the equations laid out in this chapter, the metric

perturbation is pushed to a new gauge via Eq. (5.3.2). This equation can be decomposed

into spherical harmonics, at which point it reveals how the metric perturbation amplitudes

are pushed under a gauge transformation. The even-parity amplitudes change as (e.g.
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hL
tt = hRW

tt + ∆htt)

∆htt = −2∂tξt + f
2M
r2

ξr,

∆htr = −∂rξt − ∂tξr +
2M
fr2

ξt,

∆hrr = −2∂rξr −
2M
fr2

ξr,

∆jt = −∂tξeven − ξt,

∆jr = −∂rξeven − ξr +
2
r
ξeven,

∆K = −2f
r
ξr +

2(λ+ 1)
r2

ξeven,

∆G = − 2
r2
ξeven.

(5.A.1)

The odd-parity amplitudes change as (e.g. hL
t = hRW

t + ∆ht)

∆ht = −∂ξodd

∂t
,

∆hr = −∂ξodd

∂r
+

2
r
ξodd,

∆h2 = −2ξodd.

(5.A.2)

Note that `,m indices are suppressed in these expressions.

5.B Asymptotic expansions and boundary conditions

In this appendix we present boundary conditions necessary for starting numerical integra-

tions. On the large r side this involves asymptotic expansions. On the horizon side we can

perform a convergent Taylor expansion, but because the potential falls off exponentially, in

practice it is only necessary go to a moderately large and negative r∗ and find an appropriate

scaling factor.

5.B.1 Boundary conditions for the odd-parity gauge generator amplitude

We need an asymptotic expansion in order to set the appropriate boundary conditions

for ξ̃odd. For the particular solution, we start by writing the asymptotic form of ξ̃odd
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as rJξ(r)eiωmnr∗ . Given that we expect RCPM (note that RCPM and RRW are related

asymptotically by a factor of −iωmn/2) to go like JR(r)eiωmnr∗ , we plug in to Eq. (5.5.16)

and obtain

rf
d2

dr2
Jξ + 2

[
1 + iωmnr −

M

r

]
d

dr
Jξ +

[
2iωmn +

2M
r2
− `(`+ 1)

r

]
Jξ = −iωmnJR (5.B.1)

Now, we change to the dimensionless variables, z ≡ ωmnr and σ ≡ Mωmn, which changes

the differential equation to

(z − 2σ)
d2

dz2
Jξ + 2

(
iz + 1− σ

z

) d

dz
Jξ +

(
2i+

2σ
z2
− `(`+ 1)

z

)
Jξ = −iJR (5.B.2)

Now, we assume the following forms of Jξ, and JR,

Jξ(r) =
∞∑

j=0

aξj
zj
, JR(r) =

∞∑

j=0

aRj
zj
. (5.B.3)

Plugging these in and assuming the equation is satisfied order-by-order gives the inhomo-

geneous recurrence formula

2i(j − 1)aξj =
[
(j − 2)(j − 1)− `(`+ 1)

]
aξj−1 + 2σ

[
1− (j − 2)2

]
aξj−2 + iaRj . (5.B.4)

Note that the coefficients aRj are found in Eq. (4.D.5).

On the horizon side, where the potential falls away exponentially, it is enough to use the

expression in Eq. (5.5.19) and a sufficiently negative r∗ starting location for integration.

5.B.2 Boundary conditions for the even-parity scalar gauge generator
amplitude

We need boundary conditions for the particular solution as well as the two homogeneous

solutions.
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Second-order homogeneous solutions

For the second-order homogeneous solutions, at large r we assume a form of ξ̃even(s) of

Jξ(r)eiωmnr∗ . Then we get (in terms of the dimensionless variables defined above)

(
1− 2σ

z

)
d2Jξ
dz2

+
(

2σ
z2

+ 2i
)
dJξ
dz
−
(

2
λ+ 1
z2

+
2σ
z3

)
Jξ = 0. (5.B.5)

Assuming a form of

Jξ(r) =
∞∑

j=0

aξj
zj
, (5.B.6)

we find

2ijaξj =
[
j(j − 1)− 2(λ+ 1)

]
aξj−1 − 2σ(j − 1)2aξj−2. (5.B.7)

On the horizon side, the boundary condition is the typical ξ̃even(s) = e−iωmnr∗ , and an

expansion is not necessary.

Fourth-order homogeneous solutions

For the fourth-order homogeneous solutions, we make the assumptions ξeven(s) = Jξ(r)eiωmnr∗

and v = Jv(r)eiωmnr∗ . These satisfy the two equations,

(
1− 2σ

z

)
d2Jξ
dz2

+
(

2σ
z2

+ 2i
)
dJξ
dz
−
(

2
λ+ 1
z2

+
2σ
z3

)
Jξ = zJv, (5.B.8)

(
1− 2σ

z

)
d2Jv
dz2

+
(

2σ
z2

+ 2i
)
dJv
dz
−
(

2
λ+ 1
z2

+
2σ
z3

)
Jv = 0 (5.B.9)

The equation for Jv is exactly the same as that for Jξ Eq. (5.B.5). Therefore, it will have

the same expansion,

Jv(r) =
∞∑

j=0

avj
zj
, 2ijavj =

[
j(j − 1)− 2(λ+ 1)

]
avj−1 − 2σ(j − 1)2avj−2. (5.B.10)
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This serves as a source to the Jξ equation, (5.B.8). Assuming a form of

Jξ =
∑

j=0

aξj
zj−2

+
∑

j=0

bξj
zj−2

ln(z), (5.B.11)

we find the coupled recurrences

2i(j − 2)bξj −
[
(j − 2)(j − 3)− 2(λ+ 1)

]
bξj−1 + 2σ(j − 3)2bξj−2 = 0, (5.B.12)

and

2i(j − 2)aξj −
[
(j − 2)(j − 3)− 2(λ+ 1)

]
aξj−1 + 2σ(j − 3)2aξj−2

− 2ibξj − (−2j + 5) bξj−1 − 4σ(j − 3)bξj−2 + avj = 0. (5.B.13)

Note that the ln(z) term is necessary as the indicial equation for this asymptotic expansion

has two roots, with the indicial exponents differing by an integer. In these circumstances

[93] a single expansion of the Frobenius type is insufficient.

On the horizon side we do not need to perform an expansion because the potential falls

off exponentially. There, we set

ξeven(s) =
8M3ω3

mn

1− 4iωmnM
fe−iωmnr∗ , v = e−iωmnr∗ . (5.B.14)

Particular solutions

For the particular solutions we make the assumptions ξeven(s) = Jξ(r)eiωmnr∗ , and v =

Jv(r)eiωmnr∗ and we have the equations

(
1− 2σ

z

)
d2Jξ
dz2

+
(

2σ
z2

+ 2i
)
dJξ
dz
−
(

2
λ+ 1
z2

+
2σ
z3

)
Jξ = zJv, (5.B.15)

(
1− 2σ

z

)
d2Jv
dz2

+
(

2σ
z2

+ 2i
)
dJv
dz
−
(

2
λ+ 1
z2

+
2σ
z3

)
Jv

=
1

ω5
mnf(z)

(
α+ iωmnβ

)
JR +

β

ω4
mn

dJR
dz

, (5.B.16)
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where α and β are given in Eq. (5.6.12). We assume the following forms for the three

unknowns

JR =
∑

j=0

aRj
zj
, Jξ =

∑

j=0

aξj
zj−1

+
∑

j=0

bξj
zj−1

ln(z), Jv =
∑

j=0

avj
zj+1

. (5.B.17)

The recurrence for the coefficients aRj is given in Eq. (4.D.4). Plugging in these summations

leads to the coupled recurrences

2i(j − 1)bξj −
[
(j − 1)(j − 2)− 2(λ+ 1)

]
bξj−1 + 2σ(j − 2)2bξj−2 = 0, (5.B.18)

2i(j − 1)aξj −
[
(j − 1)(j − 2)− 2(λ+ 1)

]
aξj−1 + 2σ(j − 2)2aξj−2

− 2ibξj − (−2j + 3) bξj−1 − 4σ(j − 2) + avj = 0, (5.B.19)

and

2iλ(j + 1)avj −
(
λj(j + 1)− 6iσj − 2λ(λ+ 1)

)
avj−1

−
(

(3− 2λ)σj(j − 1)− 2σλ(j − 1)− (8λ+ 6)σ
)
avj−2 + 6σ2(j − 1)2avj−3

+
[
− 2iλ(λ+ 1)aRj +

(
− 2λ(λ+ 1) + 2i(2λ+ 1)(λ− 3)σ + 2λ(λ+ 1)(j − 1)

)
aRj−1

+
(
− 2λ (λ+ 1)σ + 4i (7λ− 3)σ2 + 2(−4λ2 + 3λ+ 3)σ(j − 2)

)
aRj−2

+
(
− 6 (3λ− 1)σ2 + 48iσ3 + 8λ(λ− 6)σ2(j − 3)

)
aRj−3

+
(
− 48σ3 + 8(7λ− 9)σ3(j − 4)

)
aRj−4 + 96σ4(j − 5)aRj−5

]
1

ω2
mn

= 0. (5.B.20)

Note that a ln(z) term is again necessary.

On the horizon side we do not need to perform an expansion because the potential

falls off exponentially. By analyzing the horizon side nature of the source, we see that the
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particular solution has leading order behavior

ξeven(s) = − 3 (λ+ 1)
(1− 4Miωmn)

M2

(1− 2Miωmn)
f2e−iωmnr∗ , (5.B.21)

v = − 3 (λ+ 1)
2Mω3

mn (1− 4Miωmn)
fe−iωmnr∗ . (5.B.22)
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Chapter 6

Conclusions and future directions

In this thesis I have given a brief summary of the current state of EMRI research. With

the increasing prospects of detecting gravity waves, this already active field is growing

quickly. Though in the introduction I have sketched out the work done by others in the

broader problem of general orbits on a Kerr background, for the bulk of this thesis I have

focused on eccentric orbits around a Schwarzschild black hole. Chapter 2 presents a review

of black hole perturbation theory and associated mathematical formalism. Chapter 3 intro-

duces some new ideas, but applied to a scalar field model problem. It is Chapters 4 and 5

that present my original research on gravitational perturbations and metric reconstruction.

6.1 Summary of original contributions

Chapter 4, which is taken from Ref. [52] contains two significant new results. The first

of these is that we applied the method of extended homogeneous solutions to all radiative

gravitational modes. This was an extension of the method originally introduced by Barack,

Ori, and Sago [1], who used it for the monopole term of a field pulled up by a scalar charge

in eccentric orbit in the Schwarzschild spacetime. Working in the frequency domain, in

Regge-Wheeler (RW) gauge, the method of extended homogeneous solutions allows us to

compute an exponentially convergent Fourier synthesis to obtain time domain solutions

to the Regge-Wheeler and Zerilli equations at all locations, including the position of the

particle. Our code allows us to compute energy and angular momentum fluxes to a high

accuracy (fractional errors ∼10−12). Its efficiency is such that our results rival time domain



codes for orbital eccentricities approaching e ∼ 0.9.

The second noteworthy result from Chapter 4 concerns the reconstruction of the metric

perturbation from the master functions. We present the exact singular nature of the metric

perturbation in RW gauge, finding that the metric perturbation amplitudes at the location of

the particle are discontinuous and, in the case of some components, point-wise singular. The

singular nature of the metric amplitudes apparently was not widely understood before our

work. The time dependence of the singularities, of the discontinuities, and of the derivatives

of the metric amplitudes are now readily computable with our code. The singularities

present in RW gauge may be a challenge to attempts to compute the self-force directly in

this gauge.

In Chapter 5 I address the question of how to transform the metric perturbation in

RW gauge to Lorenz gauge. This is desirable because the first-order corrected equations of

motion are formulated only in Lorenz gauge. Additionally, the standard mode-sum regu-

larization procedure is designed to be used in Lorenz gauge. Lorenz gauge was chosen for

these formulations because it has many nice features. (As in electrodynamics, Lorenz gauge

simplifies the field equations dramatically.) For those wishing to perform time domain cal-

culations, the Lorenz gauge field equations can be put into a fully hyperbolic form [45].

Additionally, regularization (removal of the Coulomb part of the field) is more straightfor-

ward in Lorenz gauge because it is locally isotropic. As opposed to RW gauge, the metric

perturbation amplitudes are C0 at the location of the particle and they are asymptotically

flat.

Our approach to transforming the metric perturbation to Lorenz gauge follows work

by Sago, Nakano, and Sasaki [54]. An elegant aspect of their approach to transforming

between the two gauges is that the system of partial differential equations fully separates.

Though their formulation has existed for some time, no one before this work had actually

performed the gauge transformation. In Chapter 5, I give the current state of our work on

implementing their technique. We have developed two new techniques for solving the types

of equations one encounters while doing these transformations. The first is the method of

partial annihilators, which entails an application of the method of extended homogeneous
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solutions to higher-order differential equations. Our second new technique is the method

of extended particular solutions. This is entirely equivalent to the former, but allows one

to solve the types of differential equations one encounters during the gauge transformation

without promoting those differential equations to higher-order. Thus far, we have fully

completed the odd-parity transformation. Our results show that, as expected the Lorenz

gauge amplitudes at C0 and asymptotically flat. We have also completed part of the even-

parity transformation, specifically the even-parity scalar piece. We are currently working

on the even-parity divergence-free vector part of the gauge transformation.

6.2 Future directions

Following the completion of the numerical method to make the gauge transformation from

RW to Lorenz, we will be capable of finding the metric to a high degree of accuracy at all

locations, including the very position of the particle. Our code will be able to make such

transformations for nearly arbitrarily eccentric orbits about a Schwarzschild black hole. At

that point there will be several different next steps we can take.

The first step will be to compute the self-force and compare it with the results of

Barack and Sago [2], derived from their time domain code. We should be able to compute

conservative shifts to gauge-invariant quantities. Two such quantities are the energy and

angular momentum of the particle, as functions of the observable orbital frequency. An

additional observable is the eccentric orbit generalization of Detweiler’s redshift invariant

[46, 47]. Once the observable first-order self-force corrections have been computed in Lorenz

gauge, we can examine whether any or all of these effects can be computed directly in RW

gauge. This provides a powerful check on the accuracy of the transformation.

Next, we can compare first-order black hole perturbation theory calculations with post-

Newtonian theory. Our work rests on an expansion in the mass-ratio between the particle

and the SMBH. Post-Newtonian theory relies on an expansion in the small quantity v/c, for

slowly moving bodies. In the region where these two expansions overlap, we can compare

results. Further, following the work of Blanchet, Detweiler, Le Tiec, and Whiting [94] (who
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worked on circular orbits), we should be able to use our results to find previously unknown

post-Newtonian coefficients.

With the computation of the conservative and dissipative pieces of the self-force, one

would like to evolve orbits away from their background geodesic. This is subtle task, and

has not been performed in a self-consistent manner at this time. In principle, with the

self-force in hand, one ought to be able to simply solve the MiSaTaQuWa equations and

compute a geodesic of the perturbed spacetime. In practice, this is not straightforward.

First, Eq. (1.4.7) depends on the “tail” of the metric perturbation. The tail field

is defined in Eq. (1.4.6) as an integration over the entire past history of the particle’s

worldline. It is not clear a priori how far back one must go in order to compute an accurate

deviation from background motion.

Second, the MiSaTaQuWa equations are Lorenz gauge dependent. At first-order their

gauge condition ∇ν p̄µν = 0 is self-consistent with the vanishing of the divergence of the

zeroth-order stress energy tensor ∇νTµν = 0. Once the particle leaves the background

geodesic, the zeroth order stress energy tensor will not be divergence free and the Lorenz

gauge condition will not be satisfied. One must therefore find a way to “relax” the Lorenz

gauge condition in a way consistent with the current order of perturbation theory.

Another natural extension of this work is to move to higher orders in perturbation

theory. There is a practical need to go to at least second order in the mass-ratio parameter.

For concreteness, consider a mass-ratio of µ/M = 10−6. If we evolve the particle through

one orbit, the error in the phase of the particle’s motion will be of order 10−6. If we wish

to model 106 orbits, which we suspect may be necessary for a LISA detection, the error in

the accumulated phase will be on the order of unity. Therefore, we need to go to at least

second-order in perturbation theory if we wish to have sufficiently accurate waveforms.

Astrophysical EMRI sources are expected to come from small bodies orbiting high spin-

ning Kerr black holes. Therefore, both the long-term orbit evolution and higher-order

perturbation theory discussed here will eventually have to be applied to particles moving

on the Kerr background. There is much progress being made there already (e.g. [95, 26]),

but the prospect of generic orbital evolution on Kerr is even more daunting than it is for
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Schwarzschild. Because of this we feel that Schwarzschild will remain a worthwhile first

testing-ground for some time.

Eventually, though we would like to apply our techniques to the Kerr spacetime. The

traditional approach to working on Kerr (the Teukolsky formalism) is best used in the

frequency domain. Additionally, given our experience with singular source terms, we feel

that we should be able to solve the Teukolsky equation with a high degree of accuracy.

With new features of the spacetime still being discovered [96], it promises to be a fertile

area for research for some time.
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