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ABSTRACT 

VANESSA CAROLYN DEROCCO: Biochemical and single-molecule fluorescence 
characterization of MutS and MutS homolog protein-DNA interactions 

(Under the direction of Dr. Dorothy A. Erie) 

 

MutS and MutS homologs are the proteins within the prokaryote and eukaryote 

DNA mismatch repair pathways that are the responsible for recognizing single base-base 

mismatches or insertion/deletion errors in newly replicated DNA. Specific interactions 

between MutS and these DNA defects trigger a cascade of protein-protein interactions 

that ultimately results in repair of the DNA error. Mutations in the homologs of the MutS 

and MutL repair proteins involved the recognition and initiation of post replicative DNA 

mismatch repair are associated with ~80% of Hereditary Nonpolyposis Colorectal Cancer 

(HNPCC) occurrences. The mechanism by which MutS recognizes mismatch DNA and 

initiates of downstream repair is not well understood. In this dissertation, I present 

biochemical and single molecule fluorescence studies of Thermus aquaticus (Taq) MutS 

as well as human and yeast MutS heterodimer homologs (hMSH2-MSH6 and yMsh2-

Msh6) protein-DNA interactions in an effort to better understand DNA mismatch 

recognition and repair. 

Single molecule fluorescence methodologies were employed to compare the 

MutS-DNA interactions of wild type Taq MutS with a mutant of Taq MutS, E41A. 

Previous work has shown that Taq MutS adopts a complex series of conformations when 

interacting with mismatch DNA where a bent state and an unbent state being the 
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dominant states. In this work, the kinetics of interconversion among bending states was 

determined to vary widely for different mismatches. Further, the E41A mutant, which is 

known to have specific deficiencies in repair capability, demonstrates altered DNA 

bending kinetics on DNA mismatches that correlate with its repair deficiencies. 

Despite structural similarities, the biochemical properties of prokaryotic MutS and 

eukaryotic MSH2-MSH6 (MutSα) have been shown to vary. Characterization of MutSα-

DNA interactions has been limited. In order to compare the prokaryote and eukaryote, the 

protein-DNA interactions of wild type human MutSα (hMutSα) protein as well as two 

HNPCC separation-of-function mutants, MSH2WT-MSH6T1219D and MSH2G674A-MSH6WT 

were characterized. In contrast to Taq MutS-DNA interactions, I observed few hMutSα-

DNA conformational changes suggesting a difference in the mechanism of MMR 

initiation between prokaryotes and eukaryotes. I further determined singular trapped 

conformational states for each HNPCC mutant that may be linked to MMR deficiency for 

each.  
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 Chapter 1  

 

INTRODUCTION 

DNA mismatch repair and single-molecule fluorescence techniques. 

 

Introduction 

The fidelity of any genome relies on the ability of the involved DNA polymerases 

to correctly replicate the genetic code. Despite the relatively high fidelity of the 

replicative DNA polymerases (Pol α and Pol δ in eukaryotes and Pol III in prokaryotes), 

approximately 1 in every 107 base pairs synthesized result in an error being generated in 

the DNA per round of replication (Kunkel and Erie 2005; Iyer, Pluciennik et al. 2006; 

Kunz, Saito et al. 2009). These errors consist of base-base mismatches, insertion/deletion 

loops (IDLs) that result from polymerase slippages, and DNA lesions as a result of 

damaged templates and nucleotide triphosphate (NTP) pools (Schofield and Hsieh 2003; 

Iyer, Pluciennik et al. 2006; Hsieh and Yamane 2008; Kunz, Saito et al. 2009). Errors in 

the genetic code must be corrected to prevent carcinogenesis and disease. Fortunately, 

there are various repair pathways that post-replicatively repair DNA errors. DNA 

mismatch repair (MMR), base excision repair, and nucleotide excision repair are the three 

predominant pathways that deal with DNA mispairs, IDLs, and DNA base damage 

(Kunz, Saito et al. 2009). After post-replicative repair, the mutation rate of DNA 
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replication decreases 100 fold to about 1 in every 109 bases synthesized (Schofield and 

Hsieh 2003; Kunkel and Erie 2005; Iyer, Pluciennik et al. 2006; Jiricny 2006; Kunz, 

Saito et al. 2009). The focus of this work is to characterize the initiation of one of the 

three mentioned DNA repair pathways, MMR. 

DNA Mismatch Repair 

DNA mismatch repair is a bi-directional, post-replicative process that repairs the 

afore mentioned base-base mismatches and IDLs (Haber and Walker 1991; Schofield and 

Hsieh 2003; Kunkel and Erie 2005; Iyer, Pluciennik et al. 2006; Hsieh and Yamane 

2008). MMR is a highly conserved process across both prokaryotes and eukaryotes 

(Table 1.1) (Kunkel and Erie 2005).  

Prokaryotic Mismatch Repair 

In Escherichia coli (E. coli), MMR is performed by MMR proteins MutS, MutL, 

MutH, UvrD, SSB, an exonuclease (Exo I, Exo VII, RecJ, or Exo X), DNA polymerase 

III (Pol III), and DNA ligase. MutS recognizes an error in newly synthesized DNA and 

initiates the repair process via an ATP dependent interaction with MutL. Together, MutS 

and MutL (homodimers in prokaryotes)  activate the latent endonuclease activity of 

MutH, which nicks the DNA at a hemi-methylated GATC site 5’ or 3’ from the 

mismatch. In E. coli, methylation serves as a strand discrimination signal, where the 

template DNA strand has been methylated and the daughter strand remains unmethylated 

until after replication. UvrD helicase unwinds the DNA and the single stranded DNA 

(ssDNA) binding protein (SSB) binds and stabilizes any ssDNA sections. Exonuclease 

excises the 
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Table 1.1– Mismatch repair proteins and their eukaryotic homologs 

E. coli Protein Function Eukaryotic 
Homolog 

Function 

MutS Recognizes base-base 
mismatches and IDLs  

MSH2-MSH6 
(MutSα) 

Recognizes base-base 
mismatches and 1-2 base IDLs 
and initiates MMR 

MSH2-MSH3 
(MutSβ) 

Recognizes 2 or more base 
IDLs and initiates repair 

MSH4-MSH5 Involved in meiosis 

MutL Interacts in an ATP 
dependent manner with 
MutS once a mismatch has 
been identified.  

Increases MutS specificity 

Together, MutL and MutS 
initiate MMR. 

MLH1-PMS2 
(MutLα) 

(yeast Mlh1-
Pms1) 

Interacts in an ATP dependent 
manner with MutSα once a 
mismatch has been identified.  

Together, MutLα and MutSα 
initiate MMR. 

MLH1-PMS1 

(MutLβ) 

(yeast Mlh1-
Mlh2) 

Human function unknown 

Minor role in frameshift 
suppression 

MLH1-MLH3 
(MutLγ) 

Involved in repair of some 
IDLs. Functions in meiosis 

MutH Nicks the daughter strand 
at a hemi-methylated 
GATC site 

No known 
homolog 

 

Helicase II 
(UvrD) 

Unwinds the DNA for 
MMR 

No known 
homolog 

 

(Table Continued Next Page) 
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β-clamp Participates in DNA 
replication and repair 
synthesis 

Increases processivity of 
Pol III during replication 

 

Proliferating 
cell nuclear 
antigen 
(PCNA) 

Participates in DNA 
replication and repair synthesis 

Has known interactions with 
MutSα, MutSβ, MutLα, Exo I, 
Pol δ, and Pol ε.  

Recruits MMR proteins to 
DNA 

Increases mismatch DNA 
binding specificity of Msh2-
Msh6 

Participates in DNA excision  

γ – δ complex Loads β clamp onto the 
DNA  

Replication 
Factor C  

(RFC complex) 

Loads PCNA onto the DNA 

Exo I  

Exo X 

Required for 3′ to 5′ 
excision  

EXO 1 5′ to 3′ exonuclease involved 
in MMR excision 

Deletion of EXO I results in 
only a mild mutator phenotype 

Exo VII, 

RecJ 

Required for 5′ to 3′ 
excision 

Single 
stranded DNA 
Binding 
Protein (SSB) 

Binds ssDNA 

Prevents self annealing of 
ssDNA 

Participates in both DNA 
synthesis and repair 

Replication 
Protein A 
(RPA) 

Binds ssDNA in the gap 

Prevents self annealing of 
ssDNA 

Participates in both DNA 
synthesis and repair 

Pol III DNA polymerase required 
for DNA resynthesis after 
excision 

Polδ/ε DNA polymerase required for 
DNA resynthesis after excision 

Ligase Seals any nicks in the 
DNA after resynthesis 

Ligase Seals any nicks in the DNA 
after resynthesis 

	
  



 

 5 

DNA beyond the error. Pol III resynthesizes a new DNA strand to fill the DNA gap, and 

DNA ligase seals any nicks. This process is bidirectional, meaning that MMR proceeds in 

both the 5′ to 3′ and the 3′ to 5′ directions (Hsieh 2001; Schofield and Hsieh 2003; 

Kunkel and Erie 2005; Iyer, Pluciennik et al. 2006; Jiricny 2006; Hsieh and Yamane 

2008). 

Eukaryotic Mismatch Repair 

Eukaryotic MMR is conserved from the prokaryotic system with almost every 

prokaryotic MMR protein having a eukaryotic homolog (Table 1.1). Unlike prokaryotic 

MMR, however, there is no known MutH or UvrD homologs in the eukaryotic repair 

pathway. Mismatch recognition responsibilities are shared by the MutS homolog 

heterodimers, MSH2-MSH6 (MutSα) and MSH2-MSH3 (MutSβ). MutSα is responsible 

for recognizing base-base mismatches as well as small  (1-2 nucleotide) IDLs. MutSβ is 

responsible for recognizing larger IDLs comprised of up to 16 nucleotides. MMR is 

initiated by MutSα or MutSβ recognizing a base-base mismatch or IDL error in the newly 

synthesized DNA strand. MutSα then interacts with the MutL homolog heterodimer 

MutLα (MLH1-PMS2 in humans or Mlh1-Pms1 in yeast) in an ATP dependent manner.  

MutLα has been shown to have its own endonuclease activity that is mismatch dependent 

(Kadyrov, Dzantiev et al. 2006; Kadyrov, Holmes et al. 2007; Kadyrov, Genschel et al. 

2009). MutLα nicks the daughter strand and the MutSα-MutLα complex initiates MMR. 

How the protein complex differentiates the nascent DNA strand from the newly 

replicated strand is yet unknown. Once the daughter strand has been identified and the 

MutSα-MutLα complex has initiated repair, the region of DNA containing the mismatch 

is excised by EXO I or other (unknown) nuclease. An SSB homolog, replication protein 
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A (RPA) binds and stabilizes the ssDNA-gapped region, and the DNA is resynthesized 

by Pol δ. Finally, DNA ligase seals any nicks in the new DNA strand. 

MutS in MMR Recognition and Initiation 

Unfortunately, there is no clearly defined mechanism by which MutS or MutSα 

(MutS(α) when referring to both the prokaryote and eukaryote) recognizes a mismatch 

and initiates repair of the DNA. Recognition of DNA mismatches is speculated to be 

related to the local flexibility of the DNA at the mismatch due to the local distortion 

effects of the incorrect pairing (Rajski, Jackson et al. 2000; Hsieh 2001; Schofield and 

Hsieh 2003; Kunkel and Erie 2005). The local flexibility of the DNA would differ at a 

mismatch versus homoduplex DNA. However, the thermodynamic stability of each 

mismatch does not correlate well with the relative repair efficiency of each mismatch. In 

fact, there is an apparent inverse correlation in the repair efficiency of a mismatch and the 

stability of that mismatch such that the more thermodynamically stable mismatches 

appear to be better repaired than the less stable mismatches (Peyret, Seneviratne et al. 

1999; Wang, Yang et al. 2003; Kunkel and Erie 2005). The most stable mismatches, 

guanine-guanine (GG) or guanine-thymine (GT) mismatch, are the most efficiently 

repaired, with the least stable mismatch, cytosine-cytosine (CC) mismatch, being the least 

efficiently repaired (Su and Modrich 1986; Peyret, Seneviratne et al. 1999). This inverse 

correlation would suggest that structural factors must play role in mismatch 

discrimination. 

 An atomic force microscopy (AFM) study in our lab led to the suggestion of a 

DNA bending model for mismatch recognition. Wang et al. evaluated the DNA 
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Figure 1.1- Human DNA mismatch repair pathway.  

MSH2-MSH6 recognizes a mismatch in the DNA. MSH2-MSH6 interacts with MLH1-

PMS2 in an ATP dependent manner. MLH1-PMS2 nicks the daughter strand. Together, 

MSH2-MSH6 and MLH1-PMS2 initiate the downstream mismatch repair process. EXO I 

excises the DNA beyond the mismatch. RPA binds all of the exposed ssDNA in the 

excised gap. Pol δ together with PCNA and RFC resynthesize the excised DNA section. 

The resynthesized DNA is noted as a red line. DNA ligase seals any nicks left in the 

DNA. 
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binding properties of E. coli and Thermus aquaticus (Taq) MutS in the presence of a 

single thymine insertion (T bulge), or a GT mismatch, and homoduplex DNA (Wang, 

Yang et al. 2003). The AFM results indicated the presence of both bent (~42° bend for 

Taq and ~74° bend for E. coli) and unbent (a ~0° bend for both Taq and E. coli) 

populations on heteroduplex DNA with MutS localized at the DNA bend (Wang, Yang et 

al. 2003). The unbent population was only observed at the position of the mismatch or 

IDL (Wang, Yang et al. 2003). The distribution of states in the presence of homoduplex 

DNA indicated the presence of a single bent population comparable to the bent 

population observed in the presence of heteroduplex DNA (a ~40-60° bend) (Wang, 

Yang et al. 2003). Given that there is no crystal structure of MutSα in complex with 

homoduplex DNA, this is one of the first structural insights into the interaction 

differences between MutSα and mismatch or homoduplex DNA. 

The observation of the bent and unbent populations coupled with the kinked 

complex observed in the crystal structure led to a model in which MutSα bends the DNA 

as it searches for a mismatch. The searching conformation is represented by the bent 

population observed in AFM images of MutS bound to homoduplex DNA (Wang, Yang 

et al. 2003; Kunkel and Erie 2005). Upon interacting with a mismatch or IDL, MutS(α) 

kinks the DNA to form the initial recognition complex (IRC) (Wang, Yang et al. 2003; 

Kunkel and Erie 2005). This kinked IRC conformation is the observed conformation in 

the crystal structures. MutS(α) then unbends the DNA into the ultimate recognition 

complex (URC). The URC is the unbent DNA conformation observed in AFM studies 

that was specific for a mismatch or IDL (Wang, Yang et al. 2003; Kunkel and Erie 2005). 

From the URC, MutS(α) adopts the sliding clamp conformation and signals downstream 
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repair of the identified mismatch or IDL (Wang, Yang et al. 2003; Kunkel and Erie 

2005). Recent fluorescence resonance energy transfer (FRET) studies of MutS DNA 

bending dynamics and their associated kinetics lends further support to this DNA bending 

model as the discriminatory mechanism between homoduplex and heteroduplex DNA 

(DeRocco, Anderson et al. 2010; Sass, Lanyi et al. 2010). 

The steps following DNA error recognition remain unclear. Three models have 

been proposed to explain the MMR initiation mechanism. The translocation model 

suggests that upon recognizing a mismatch, ATP hydrolysis by MutS(α) drives the 

protein to travel along the DNA bidirectionally away from the mismatch (Allen, Makhov 

et al. 1997; Blackwell, Bjornson et al. 1998; Gradia, Subramanian et al. 1999; Blackwell, 

Bjornson et al. 2001; Acharya, Foster et al. 2003; Gorman, Chowdhury et al. 2007). The 

function of MutS traveling away from the mismatch is proposed to be the recruitment of 

other mismatch repair proteins and the coordination of downstream repair events (Allen, 

Makhov et al. 1997; Blackwell, Bjornson et al. 1998; Gradia, Subramanian et al. 1999; 

Blackwell, Bjornson et al. 2001; Acharya, Foster et al. 2003; Gorman, Plys et al. 2010). 

The molecular switch model suggests that a combination of factors must occur prior to 

MutS(α) initiated repair. MutS(α) must recognize a mismatch and then bind ATP into 

both subunits. The rate limiting exchange of ADP to ATP in Msh2 (or subunit 2 in Taq 

and E. coli) is the final step before MutS undergoes a conformational change to form a 

sliding clamp which would similarly recruit MMR proteins and coordinate downstream 

repair (Gradia, Acharya et al. 1997; Gradia, Subramanian et al. 1999; Gradia, Acharya et 

al. 2000; Acharya, Foster et al. 2003). The third model proposes that MutS(α) requires 

ATP binding and hydrolysis to control interactions with DNA while also remaining at the 
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mismatch site (Habraken, Sung et al. 1998; Wang, Lawrence et al. 1999; Junop, 

Obmolova et al. 2001; Schofield, Nayak et al. 2001; Selmane, Schofield et al. 2003; 

Geng, Sakato et al. 2012).  There is evidence to support each of the proposed MMR 

initiation models. The mechanism of MutS(α) action remains an area of great interest in 

the MMR field. 

MutS and its Homologs:  A Structural Comparison 

MutS exists as a homodimer in prokaryotes and a heterodimer of MSH2 and 

MSH6 (MutSα) or MSH2 and MSH3 (MutSβ) in eukaryotes. For the purpose of this 

work, we will exclude MutSβ from this discussion. MutS(α) contains a DNA binding 

domain at the N terminus and an ATPase domain at the C terminus of each subunit 

(Lamers, Perrakis et al. 2000; Obmolova, Ban et al. 2000; Natrajan, Lamers et al. 2003). 

The overall structure of the protein is conserved from E. coli to Taq (Figure 1.2) (Lamers, 

Perrakis et al. 2000; Obmolova, Ban et al. 2000; Warren, Pohlhaus et al. 2007). Human 

MSH2-MSH6 has also been crystallized (Figure 1.3) as a truncation mutant with a 

deletion of 341 residues at the N terminus of MSH6 (Warren, Pohlhaus et al. 2007). The 

truncated structure is remarkably similar to that of the prokaryotic protein structures. In 

all structures, the DNA is kinked in the DNA binding domains of the MutS(α) protein 

[60o angle in Taq (Obmolova, Ban et al. 2000) and E. coli (Lamers, Perrakis et al. 2000; 

Natrajan, Lamers et al. 2003), 45o angle in human MutSα (Warren, Pohlhaus et al. 

2007)]. 

There are five homologous domains within each subunit of the protein (Figure 

1.2a).  Domains I and IV of the protein act as the DNA binding region where the DNA is 

threaded through an open channel between the two domains. Domain I contains the only 
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residue contacts that are specific to a mismatch in the DNA. The mismatch interaction 

motif will be discussed in detail within the next section of this chapter. Domain IV is 

often referred to as the clamp region since it is the region that encircles the DNA.  

Domain III is considered the core of the protein, as it maintains direct contacts with 

domains II, IV, and V. Domain II connects domain I to the core domain, domain III. 

Domain V acts as the dimerization interface for the two subunits. Once the two subunits 

dimerize, domain V forms the ATPase domain of each subunit. The ATPase sites require 

the two domains to be interfaced to be active (Obmolova, Ban et al. 2000; Junop, 

Obmolova et al. 2001; Selmane, Schofield et al. 2003). Prior to DNA binding, domains I 

and IV exist as an unstructured globular region. Upon DNA binding, the domains I and 

IV form the structured DNA clamp region (Obmolova, Ban et al. 2000). Eukaryotic 

MutSα also has an additional 340 amino acid region located at the N-terminus of the 

MSH6 subunit. This additional region in MSH6 contains a PCNA interaction peptide 

motif (PIP box) (Gu, Hong et al. 1998; Clark, Valle et al. 2000; Bowers, Tran et al. 2001; 

Kleczkowska, Marra et al. 2001; Lau and Kolodner 2003; Lee and Alani 2006; Shell, 

Putnam et al. 2007; Iyer, Pohlhaus et al. 2008). 

MutS(α) Mismatch DNA Binding – The Phe-X-Glu Motif 

In all crystal structures, MutS(α) is shown to bind heteroduplex DNA in an 

asymmetric manner making specific contacts with the mismatch site only within a 

conserved phenylalanine-X-glutamic acid (Phe-X-Glu) DNA binding motif (Lamers, 

Perrakis et al. 2000; Obmolova, Ban et al. 2000; Warren, Pohlhaus et al. 2007). This 

specific interaction site is located in domain I of Chain A in the homodimer (Figure 1.2a 
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Figure 1.2 - Crystal Structure of T. aquaticus MutS.  

(A) Front view of the MutS homodimer structure in complex with a single thymine insert 

(PDB ID: 1FW6). Subunit A contains the only specific contacts with the DNA mismatch. 

ADP is noted in the ATPase domains of each subunit in red stick representations. 

Magnesium ligands involved in coordinating ADP binding in the ATPase domains are 

represented as yellow spheres. (B) Structural representation of each domain within each 

subunit of the MutS homodimer. Domain I, II, III, IV, and V are noted in blue, green, 

yellow, orange, and red respectively. 

B

C-term

N-term

Domain I

Domain II

Domain III

Domain IV

Domain V

Thermus Aquaticase MutS Homodimer

A

Subunit B Subunit A



 

 14 

 

 

Figure 1.3 - Crystal Structure of human Msh2-Msh6.  

(A) The crystal structure of the human heterodimer, MSH2 (in green) and MSH6 (in 

blue), is shown bound to a GT mismatched DNA and ADP (PDB ID: 2O8B).  ADP is 

noted in the ATPase domains of each subunit in stick representation (pink). Magnesium 

ligands involved in coordinating ADP binding in the ATPase domains are represented as 

yellow spheres. (B) Inset of the ABC ATPase domain of MSH2-MSH6. (C) Inset of the 

DNA binding region of MSH6. The guanine and thymine that forms the GT mismatch are 

noted in blue and green respectively. The phenylalanine and glutamate residues in the 

Phe-X-Glu binding motif on MSH6 that forms the only specific contacts with the 
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mismatch are represented in pink and red respectively. Note the stacking of the 

phenylalanine with the mispaired thymine. 
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subunit shown in green) and in domain I of MSH6 in the heterodimer (Figure 1.3). The 

Phe-X-Glu motif is evolutionarily conserved in the N terminus of the MutS protein 

family with the exception of Msh2, Msh3, Msh4, and Msh5 (Sachadyn 2010). The lack of 

the motif in Msh2 and presence in Msh6 is consistent with the asymmetric DNA binding 

observed in the Msh2-Msh6 protein. The lack of the motif in the DNA binding domain of 

Msh3 suggests the Msh2-Msh3 recognition mechanism of large IDLs differs from that of 

MSh2-Msh6. Msh4 and Msh5 have been shown to be actively involved in the meiotic 

DNA repair pathway, homologous recombination (HR) (Malkov, Biswas et al. 1997; 

Sachadyn 2010). Therefore, Msh4 and Msh5 may not have evolutionarily conserved the 

Phe-X-Glu contact due to the nature of their roles in DNA repair.  

The exact roles of each residue in the Phe-X-Glu motif have been the subject of 

debate within the MMR field. However, there is no refuting the conserved stacking of the 

phenylalanine upon the mismatched thymine observed in the crystal structures of E. coli 

MutS, Taq MutS, and human MSH2-MSH6 (Lamers, Perrakis et al. 2000; Obmolova, 

Ban et al. 2000; Warren, Pohlhaus et al. 2007). In each structure, the glutamate residue 

appears to form a hydrogen bond with the N3 of a mismatched thymine or the N7 of 

mismatched purines. Mutations in either Phe or Glu of the Phe-X-Glu motif result in 

significant changes in the MMR capabilities of each protein. 

Mutation of the phenylalanine residue results in the elimination of both DNA 

binding by the protein and mismatch repair as a whole in E. coli (MutS F36A), Taq 

(MutS F39A), S. cerevisiae (Msh2-Msh6F337A), and human (MSH2-MSH6F432A) model 

systems (Malkov, Biswas et al. 1997; Bowers, Sokolsky et al. 1999; Das Gupta and 

Kolodner 2000; Dufner, Marra et al. 2000; Yamamoto, Schofield et al. 2000; 
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Drotschmann, Yang et al. 2001; Tessmer, Yang et al. 2008). Each phenylalanine to 

alanine (FA) mutant MutS(α) exhibits dimerization stability and ATPase activity in the 

absence of DNA that is consistent with wild type MutS. In each case, the overall DNA 

binding affinity of FA MutS(α) is significantly weaker than that of wild type MutS(α) for 

both hetero- and homoduplex DNA substrates. Interestingly, the weakened FA MutS(α) 

binding affinity for heteroduplex DNA is on the same order of the FA MutS(α) binding 

affinity for homoduplex DNA indicating that the FA mutant is unable to discriminate 

between hetero- and homoduplex DNA. The combination of weakened DNA binding and 

loss of specificity would explain the elimination of MMR as a whole. (Malkov, Biswas et 

al. 1997; Bowers, Sokolsky et al. 1999; Das Gupta and Kolodner 2000; Dufner, Marra et 

al. 2000; Yamamoto, Schofield et al. 2000; Drotschmann, Yang et al. 2001; Tessmer, 

Yang et al. 2008) 

Similar mutational analyses of the glutamate residue in the E. coli, Taq, and S. 

cerevisiae yielded inconclusive results. The glutamate residue has been proposed to 

facilitate DNA kinking via electrostatic repulsion of the DNA phosphate backbone. 

Various mutations to abolish both hydrogen bonding and charge repulsion have resulted 

in genome-wide mutation rates similar to that of a MutS null system in prokaryotes 

(Holmes, Scarpinato et al. 2007) and a weak mutator phenotype in S. cerevisiae (Das 

Gupta and Kolodner 2000; Drotschmann, Yang et al. 2001; Holmes, Scarpinato et al. 

2007).   

Despite the striking phenotype in prokaryotes, glutamate to alanine (EA) mutants 

of E. coli (MutS E38A) and Taq (MutS E41A) exhibit little change in binding affinity for 

heteroduplex substrates as compared to wild type (WT) MutS (Schofield, Brownewell et 
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al. 2001; Lebbink, Georgijevic et al. 2006; Tessmer, Yang et al. 2008). Notably, DNA 

binding affinities of the EA mutants for homoduplex DNA show improvement to almost 

that of the heteroduplex substrates. Studies using DNA analogs that have no hydrogen 

bond capabilities indicate that hydrogen bonding at the glutamate residue is not required 

for DNA binding (Schofield, Brownewell et al. 2001; Drotschmann, Topping et al. 2004). 

MutS EA mutants in the presence of DNA containing base analogs exhibited similar 

binding affinities to that of typical heteroduplex DNA (Schofield, Brownewell et al. 

2001; Drotschmann, Topping et al. 2004).  This is consistent with a decreased 

discrimination between homo- and heteroduplex DNA similar to that observed with the 

FA mutants.  

ATPase studies of EA mutants in the presence of homoduplex, T bulge, and GT 

mismatch DNA exhibit a loss of the biphasic ATPase activity profile that is characteristic 

of WT MutS in the presence of DNA. Typically, WT MutS pre-steady state ATPase 

activity includes an initial fast burst phase followed by a slower linear phase. The slow 

ATPase phase is believed to be a result of rate-limiting ADP exchange. The EA mutants 

only exhibit the fast ATPase phase. There is no inhibition of ATPase due to ADP 

exchange. This, coupled with the observation that the EA mutant dissociates from DNA 

faster than WT MutS, suggests that while the EA mutants are able to bind DNA with a 

near wild type affinity, they are unable to adopt a secondary signaling conformation 

(largely believed to be the sliding clamp) as a result of ATP hydrolysis or ADP release 

(Lebbink, Georgijevic et al. 2006; Tessmer, Yang et al. 2008). 

To date, the only data on the function of the glutamate in the Phe-X-Glu motif in 

eukaryotes has been studies in yeast (Drotschmann, Topping et al. 2004; Holmes, 
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Scarpinato et al. 2007). The glutamate to alanine mutation in Msh2-Msh6 (Msh2-

Msh6E339A) exhibits a weak mutator phenotype such that the mutant results in only an 8-

fold increase in mutation rate over WT as compared to the 1000 fold increase in mutation 

rate seen in the Msh6 null strain (Drotschmann, Topping et al. 2004). This is 

accompanied with both a slight loss in DNA binding affinity and a loss of mispair 

specificity (Drotschmann, Topping et al. 2004). In depth characterization of the mutation 

spectrum of Msh2-Msh6E339A indicates that the glutamate residue is dispensable for repair 

of IDLs while remaining important in the repair of base-base mismatches (Holmes, 

Scarpinato et al. 2007). Interestingly, evaluation of Msh2-Msh6E339A in an oxidative 

damage (8-oxo-guanine DNA damage) prone cell line indicates a specific role for the 

glutamate residue in recognizing 8-oxo-G:A mispairs (Holmes, Scarpinato et al. 2007). 

Overall, the differences in EA mutant phenotypes from prokaryotes to eukaryotes suggest 

a much more mismatch specific repair system is at work in the higher organism.  

While the importance of phenylalanine in the Phe-X-Glu mismatch binding motif 

is not disputed, the role it plays in mismatch recognition remains a question. It has been 

suggested that the phenylalanine is involved in kinking the DNA as seen in each crystal 

structure and/or in stabilizing the MutS(α)-DNA or MutS(α)-DNA-ATP complex. An 

atomic force microscopy (AFM) study by Tessmer et al. may have shed some light on the 

role phenylalanine plays in DNA mismatch recognition. Tessmer et al. performed AFM 

on Taq WT MutS, MutS F39A, and MutS E41A in the presence of a GT mispairs and a 

single thymine insert (T Bulge) as well as homoduplex DNA (Tessmer, Yang et al. 

2008). DNA binding affinities for each protein were similar to those previously published 

such that the F39A mutant exhibits a much weaker binding affinity for heteroduplex 
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DNA as compared to wild type while E41A exhibited comparable DNA binding affinities 

to wild type for homo- and heteroduplex DNA substrates (Malkov, Biswas et al. 1997; 

Yamamoto, Schofield et al. 2000; Tessmer, Yang et al. 2008). However, when the DNA 

conformations at a bound MutS protein were evaluated, differences between each mutant 

and wild type were observed.  

As previously described in this chapter, wild type MutS bends homoduplex DNA 

into a single bend angle population (~60°) while MutS bends heteroduplex DNA into two 

populations (0° and ~40°). The unbent conformation is hypothesized to be the signaling 

conformation for downstream repair. In contrast, the bend angle distributions for F39A 

on homoduplex, GT mismatch, and T bulge DNA are each single populations centered on 

the same ~60° angle as is seen with WT MutS on homoduplex DNA. This result is 

consistent with the F39A mutant being unable to discriminate between homo- and 

heteroduplex DNA. Neither the F39A GT mispair distribution nor the T bulge 

distribution exhibits the 0° bend angle population seen with WT MutS on the same DNA 

substrates. The loss of the 0° bend angle suggests that the phenylalanine residue plays a 

role in either forming or stabilizing the unbent DNA conformation that is unique to MMR 

DNA substrates (Tessmer, Yang et al. 2008).  

MutS and DNA Damage Response 

Mutations in MMR proteins have been identified in HNPCC patients. 

Specifically, ~80% of HNPCC occurrences are related the MMR protein mutations. A 

majority of those occurrences are due to mutations in the factors that recognize and 

initiate repair (MSH2 and MLH1) (Peltomäki 2001). 
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MutSα is believed to play a role in the initiation of DNA damage induced 

apoptosis as a result of the presence of alkylated or cisplatinated nucleic acids in newly 

replicated DNA. Patients with mutations in the MMR protein alleles often display a 

resistance to the affectivity of certain chemotherapeutic agents such as N-methyl-N’-

nitro-N-nitrosoguanidine (MNNG) and cisplatin.  

MMR deficient cells were found to resist the effects of methylating agents used 

for chemotherapy while MMR proficient cells did not have the same resistive phenotype 

(Stojic, Brun et al. 2004). These methylating agents include such active components as 

temozolomide (TMZ), dacarbazine and procarbazine, and MNNG. MNNG exposure 

results in the most common DNA damage, O6-methylguanine (O6-MeG) (Stojic, Brun et 

al. 2004). In general, the presence of O6-MeGT mismatches is believed to trigger 

apoptosis (Fishel 1999; Karran 2001; Kunkel and Erie 2005).  

The mechanism by which apoptosis is signaled is not conclusively known. 

However, two theories have been proposed (Fishel 1999; Karran 2001). The “futile 

repair” hypothesis proposes that MutSα binds to the O6-MeGT mismatch and signals 

MMR. If the parent strand contains the methylated base, MMR results in the removal of 

the thymine. DNA resynthesis results in a reinsertion of a thymine opposite to the O6-

MeG. This process continually repeats because the damaged portion of the DNA resides 

in the parent strand. Eventually, this excision and resynthesis leads to apoptosis triggered 

by double strand breaks formed in the DNA during replication. Alternately, the 

“signaling” hypothesis suggests that there is a mechanism by which the binding of 

MutS(α) transmits a damage signal to the checkpoint machinery that activates apoptosis.  

By characterizing the binding dynamics of MutSα on the O6-MeG/T mismatch, the 
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mechanism by which MutS(α) signals apoptosis rather than repair may be better 

understood. 

MutS(α) ATPase activity and the sliding clamp 

The ATPase domains of MutS located in domain V of each subunit are essential 

for DNA repair (Haber and Walker 1991; Wu and Marinus 1994; Studamire, Quach et al. 

1998; Drotschmann, Clark et al. 1999; Lamers, Perrakis et al. 2000; Biswas, Obmolova et 

al. 2001). Each ATPase site is comprised of a highly conserved Walker A and Walker B 

nucleotide binding motif as well as a set of six motifs that are a signature of ATP-binding 

cassette transporters (ABC transporters) at the C terminus of the subunit (Gorbalenya and 

Koonin 1990; Lamers, Perrakis et al. 2000; Obmolova, Ban et al. 2000; Junop, Obmolova 

et al. 2001; Alani, Lee et al. 2003). MutS and its homologs therefore belong to the ABC 

ATPase superfamily (Gorbalenya and Koonin 1990). The two ATPase regions of the 

protein exist at the interface between subunits as is characteristic of this superfamily. 

Each subunit of MutS(α) site contains five of the ABC motifs while the sixth ABC 

ATPase motif is provided by the interfacing subunit. The MutS(α) subunit dimerization 

results in two functional composite ATPase sites (Junop, Obmolova et al. 2001).  

Many studies have shown that MutS(α) undergoes conformational changes in the 

presence of ATP (Allen, Makhov et al. 1997; Blackwell, Martik et al. 1998; Studamire, 

Quach et al. 1998; Gradia, Subramanian et al. 1999; Blackwell, Bjornson et al. 2001; 

Kato, Kataoka et al. 2001; Hess, Gupta et al. 2002; Joshi and Rao 2002; Jiang, Bai et al. 

2005; Mendillo, Mazur et al. 2005; Gorman, Chowdhury et al. 2007; Pluciennik and 

Modrich 2007; Qiu, DeRocco et al. 2012). The ATPase activity and the nucleotide 

occupancy requirements for such a conformational change have been the focus of many 
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studies (Haber and Walker 1991; Gradia, Acharya et al. 1997; Blackwell, Bjornson et al. 

1998; Blackwell, Martik et al. 1998; Gradia, Subramanian et al. 1999; Gradia, Acharya et 

al. 2000; Drotschmann, Hall et al. 2002; Joshi and Rao 2002; Antony and Hingorani 

2003; Selmane, Schofield et al. 2003; Lamers, Georgijevic et al. 2004; Antony, 

Khubchandani et al. 2006; Mazur, Mendillo et al. 2006; Jacobs-Palmer and Hingorani 

2007; Cyr 2008; Zhai and Hingorani 2010; Heinen, Cyr et al. 2011). Progress has been 

made in understanding the role of nucleotide occupancy in the formation of MutS(α)-

MutL(α) ternary complexes and signaling downstream repair. Studies have shown that 

while the presence of ATP is a requirement for MutS(α)-MutL(α)-mismatch DNA 

(mmDNA) complex formation, ATP hydrolysis by either protein is not necessary 

(Selmane, Schofield et al. 2003). Given the importance of ATP binding and/or hydrolysis 

in the activation of the MMR process, it is not surprising to note that many types of 

mutations in the ATPase domain of either subunit are part of the human nonpolyposis 

colorectal cancer (HNPCC) (also referred to as Lynch Syndrome) mutation spectrum. 

Interestingly, each ATPase domain of MutS(α) exhibits very different binding 

affinities for nucleotide. In yeast, Msh2 exhibits a stronger binding affinity for ADP 

while Msh6 preferentially binds ATP (Antony and Hingorani 2003; Bjornson and 

Modrich 2003; Antony, Khubchandani et al. 2006; Mazur, Mendillo et al. 2006; 

Hargreaves, Shell et al. 2010). Mutations in either ATPase site have varying results on 

the MMR activity of the protein. In fact, certain mutations in the Walker A and Walker B 

motifs that abolish the ATPase activity of the protein, result in deficient MMR. Such 

mutations involve the lysine residue of the Walker A motif  (GXXGGK(S/T)) which is 

involved in coordinating the phosphate groups of the ATP in the ATPase active site. 
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Remarkably, MMR deficiency is not a result of loss of ATP hydrolysis or of a loss in 

ternary complex formation with MutL. Rather, MMR deficiency has been shown to be a 

result of loss of downstream signaling effects.  

Other mutations in the ATPase domains result in separation-of-function mutant 

MutSα proteins which are deficient in MMR but are able to participate in apoptotic 

responses due to DNA damage. For example, a mutation of a glycine residue in the 

Walker A motif of Msh2 (GXXXGK(S/T)) (MSH2G674A-MSH6WT in mouse and human 

systems) results in a deficiency in MMR while maintaining DNA damage response 

(Yang, Scherer et al. 2004; Geng, Sakato et al. 2012). Mouse embryonic fibrobalsts 

(MEFs) containing the Msh2G674A-Msh6 protein exhibit the same mutagenic spectrum of 

cancer development as that of MutSα null cells (Yang, Scherer et al. 2004). However, the 

Msh2G674A-Msh6 MEFs have a longer lifespan than that of the Msh2 null mice and 

exhibit the same susceptibility to chemotherapeutic treatment that WT Msh2-Msh6 mice 

had (Yang, Scherer et al. 2004) suggesting that the Msh2G674A-Msh6 cells are inducing 

apoptosis in a similar manner to that of WT Msh2-Msh6 cells.  

Another separation of function mutant of interest involves a mutation of an amino 

acid residue in Msh6 at the interface between Msh2 and Msh6 near the p-loop of the 

Msh2 ATPase site (Msh2WT-Msh6G1067D in S. cerevisiae and the analogous mutations 

MSH2WT-MSH6T1219D in humans and Msh2WT-Msh6T1217D in mice) (Berends, Wu et al. 

2002; Hess, Gupta et al. 2002; Yang, Scherer et al. 2004). Similar cell survival studies in 

MEFs to those performed with Msh2G674A-Msh6WT yielded the same inability to activate 

MMR (observed in a higher occurrence of microsatellite instabilities (MSIs) which are a 
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hallmark of cancer susceptibility) while maintaining wild type-like cellular vulnerability 

to DNA damage (Yang, Scherer et al. 2004).  

Interestingly, both separation-of-function mutants described above have been 

shown in vitro to be able to bind mmDNA like wild type protein, but are unable to form 

the ternary complex with MutLα that is required for MMR to proceed (Hess, Gupta et al. 

2002; Hess, Mendillo et al. 2006; Geng, Sakato et al. 2012) suggesting a role for the 

MutSα-MutLα ternary complex in MMR signaling and some divergent function of 

MutSα in apoptotic response.  

Bulk and Single-Molecule Fluorescence Techniques – The Biophysical Tools 

More and more, fluorescence-based techniques are being used to answer 

biological questions. The low-noise characteristic of fluorescence spectroscopy is 

attractive for use with complicated biological systems. The ability to use fluorescence at 

little to no risk to the integrity of the biological systems being probed is also highly 

appealing. The improvement of detection methods for fluorescence systems, in 

conjunction with the discovery of fluorescent proteins and the engineering of new, longer 

lifetime fluorescent proteins and organic dyes has pushed fluorescent technologies to the 

forefront of biological application. Technologies such as fluorescence resonance energy 

transfer (FRET), photoactivated light microscopy (PALM), fluorescence recovery after 

photobleaching (FRAP), and multi-photon fluorescence microscopy have allowed for 

high resolution of biological processes both in vivo and in vitro.  

Single-Molecule Fluorescence Resonance Energy Transfer (smFRET) 

Often bulk techniques are utilized to study biochemical interactions like protein-

protein and protein-DNA interactions. These techniques are very useful in gaining insight 
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about the average of all states present. However, bulk studies do not provide information 

about the individual characteristics of subpopulations of conformations which may be 

present but unresolvable within the ensemble average (Gell, Brockwell et al. 2006). 

Based on these same principles, if two states exist in approximately equal occurrence in 

bulk then both states are averaged to converge on a single mean value that may not 

actually represent either of the major states. These bulk experiments, therefore, disregard 

the heterogeneity of a sample by either assuming that the dominant states are the only 

states involved in a process or by not representing two equal states at all (Gell, Brockwell 

et al. 2006; Roy, Hohng et al. 2008). Single-molecule experiments allow an experimenter 

to distinguish between conformations that may be present at any given point in time 

given the time resolution of the technique being utilized.  

Single-molecule fluorescence is a low noise technique that allows for detection 

limits on the order of 1.66 x 10-24 mole (or molecule) of the analyte of interest (Gell, 

Brockwell et al. 2006; Lakowicz 2006). In addition to very low limits of detection, 

single-molecule fluorescence techniques allow for very high spatial resolution of the 

probe of interest and the environment surrounding that probe (Gell, Brockwell et al. 

2006; Lakowicz 2006; Roy, Hohng et al. 2008). The combination of low limits of 

detection, high resolution, and current advances in nanotechnology and electronics has 

advanced techniques like single-molecule FRET (Gell, Brockwell et al. 2006). 

Forster and Perrin first described FRET as being a non-radiative, long-range 

dipole-dipole transfer of energy from a donor molecule to an acceptor molecule over a 

10-100Å range (Forster 1959; Gell, Brockwell et al. 2006; Lakowicz 2006; Roy, Hohng 

et al. 2008). FRET is typically reported in terms of FRET efficiency, which is defined as 
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the ratio of the energy transfer rate to the sum of all processes resulting in the relaxation 

of the donor molecule (Gell, Brockwell et al. 2006; Lakowicz 2006). Efficiency of energy 

transfer is dependent on several properties of the donor and acceptor dye pair selected: 

(1) the degree of spectral overlap between the donor emission spectrum and the acceptor 

absorption spectrum, (2) the quantum yield of the donor molecule, which is defined as the 

number of photons emitted relative to the number of photons absorbed by the molecule, 

(3) the relative orientation of the donor and acceptor transition dipoles, and (4) the 

physical distance between the donor and acceptor molecules (Lakowicz 2006). Energy 

transfer efficiency (FRET efficiency, E) is defined as Eq. 1.1:  

	
   𝐸 =
1

1+ 𝑟!
𝑅!!

 	
  

Eq. 1.1 

where r is the distance between the donor and acceptor probe and Ro is the Forster 

distance (Gell, Brockwell et al. 2006; Lakowicz 2006). The Forster distance is the 

distance between the acceptor and donor chromophores at which 50% of the excitation 

energy from the donor is transferred to the acceptor (Forster 1959; Gell, Brockwell et al. 

2006; Lakowicz 2006; Roy, Hohng et al. 2008). The Forster distance for every dye pair is 

unique given that it depends on the quantum efficiency of the donor dye, the spectral 

overlap of the two dyes involved, and the orientation of the dyes. Forster distance may 

also vary for the same dye pair from environment to environment as it is also dependent 

on the refractive index of the experimental system.  Notably, FRET efficiency has a 1/r6 

dependence on the distance between the acceptor and donor, which results in the 

technique being highly sensitive to relatively small changes in the positions of the donor 
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and acceptor dye (Figure 1.4). Measureable changes in positions are typically on the 

order of 10-9 m. 

 In single-molecule experiments, FRET efficiency can be expressed (Eq. 1.2) as 

an intensity ratio such that 

	
   𝐸 =
𝐼!

𝐼! + 𝐼!
 	
  

Eq. 1.2 

where IA is the intensity of fluorescence being emitted by the acceptor molecule and ID is 

the intensity of the donor fluorescence (Gell, Brockwell et al. 2006). In this case, only the 

donor molecule is excited and the transfer to the acceptor molecule is monitored in terms 

of fluorescence intensity. More correctly, experimental FRET efficiency is expressed as 

Eq. 1.3: 

	
   𝐸 =
𝐼!

𝛾𝐼! + 𝐼!
 	
  

Eq. 1.3  

where γ is a correction factor that accounts for quantum yields and detection efficiencies 

of each dye for a particular experimental system. The γ factor (Eq. 1.4) allows 

experimental normalization of results from microscope to microscope where 

	
   𝛾 =
Φ!𝜂!
Φ!𝜂!

 	
  

Eq. 1.4 

ΦA and ΦD are the quantum yields of the acceptor and donor respectively and ηA and ηD 

are the detection efficiencies of the acceptor and donor respectively (Gell, Brockwell et 

al. 2006; Mccann, Choi et al. 2010).  
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Total Internal Reflection Fluorescence Microscopy – TIRFing For Single-

molecule Detection 

Single-molecule detection has been made possible because of low noise excitation 

methods such as total internal reflection fluorescence (TIRF) as well as the improvement 

in electronic systems for detection. The increase in the number of researchers performing 

single-molecule fluorescence methodologies is due to the rise of commercially available 

(and relatively inexpensive) microscope systems for TIRF based excitation. There are 

two modes of TIRF excitation – through objective and through prism (Figure 1.5). Both 

utilize the same principle of total internal reflection to generate an evanescent wave in 

order to excite a sample.  For the purpose of this work, I will describe TIR as it applies to 

the through prism instrument design shown in Figure 1.5.  

Total internal reflection occurs when the angle of incidence (θ1) of a beam at the 

interface between two materials with different refractive indices (n1 and n2) is equal to or 

greater than the critical angle (θc) (Figure 1.5) (Gell, Brockwell et al. 2006; Lakowicz 

2006). The critical angle is defined as the angle at which all incident light is reflected and 

is calculated by Snell’s law as (Eq. 1.5) 

  𝜃! = sin!!
𝑛!
𝑛!

 

Eq. 1.5 

The intensity of the reflected light is also somewhat dependent on the polarization of the 

incident light. 

When θ1 is equal to or greater than θc, TIR occurs and an electric field, called the 

evanescent field, is propagated through the side of the interface with the lower refractive 
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index (n2 in Figure 1.5). The propagation intensity decay has a z direction dependence 

described by Eq. 1.6: 

  𝐼 𝑧 = 𝐼 0 𝑒𝑥𝑝 −
𝑧
𝑑  

Eq. 1.6 

where I(z) is the field intensity in the z direction into the lower refractive index material 

(n2), I(0) is the intensity of the evanescent field at the interface, and d is the penetration 

depth of the evanescent field. The penetration depth of the field is dependent on the 

wavelength of the incident beam (λ), the angle of incidence, and the refractive indices of 

the two materials at the interface. This relationship is described by Eq. 1.7. 

𝑑 =
𝜆

4𝜋 𝑛!! sin! 𝜃! − 𝑛!!
 

Eq. 1.7 

It is therefore important to choose material of appropriate refractive indices in order to 

have optimum penetration depth of the evanescent field. For example, consider the 

diagram of through-prism TIRF shown in Figure 1.5. Typically, a quartz prism and slide 

are used (n1=1.55) and a sample is in some aqueous environment (assume n2 of water, 

n2=1.33). The θc of such an experimental system would be ~60°. Now if you use an 

excitation wavelength of 532 nm at θc, the penetration depth of the evanescent wave 

would be at most ~233 nm. The same experimental system using an excitation 

wavelength of 635 nm would yield a penetration depth of ~278 nm. However, only a 

fraction of the penetration depth is sufficiently excited due to the decay profile of the 

evanescent wave in the z direction.  
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Figure 1.4 - Distance dependence of donor to acceptor fluorescence resonance 
energy transfer.  

The dependence of the efficiency of fluorescence resonance energy transfer (E) on the 

distance (r) between the donor (D) and Acceptor (A) chromaphores and the Forster 

distance associated with the dye pair used (Ro) is demonstrated (blue line). The Förster 

distance or the distance at which the system has a 50% efficiency in energy transfer is 

noted (red dotted line). Adapted from (Lakowicz 2006)
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Regardless of the excitation wavelength used, the overall sample excitation is 

restricted to ~200 nm at the interface between the two materials. This limited excitation 

range allows for low noise, single-molecule detection at the interface as only the 

fluorophores within this 200 nm range will be excited. The use of through-prism TIRF 

microscopy for smFRET excitation and detection of the DNA binding and bending 

properties of Taq, S. cerevisiae, and human MutS(α) for homoduplex, GT, T bulge, and 

O6MeGT DNA will be extensively discussed in this dissertation. 

Fluorescence Anisotropy – Bulk Measurements at Their Best 

Fluorescence anisotropy is a standard bulk fluorescence technique capable of 

measuring the binding of a fluorescent ligand or substrate by biological macromolecules. 

The technique takes advantage of principles of light polarization. When a fluorescent 

sample is excited with a polarized light, the sample emission is also polarized. The degree 

of polarization of the sample emission is described as anisotropy. Changes in the degree 

of polarization of a sample emission result in changes in the sample anisotropy, which 

reflect the overall heterogeneity of that sample. 

Measurement of anisotropy values in an L-format fluorimeter is depicted in  

Figure 1.6. Excitation with both vertically and horizontally polarized light yields two 

emission components, 𝐼∥ (intensity of emission parallel to excitation polarization) and 

𝐼!(intensity of emission perpendicular to excitation polarization). Anisotropy is a 

ratiometric measurement of 𝐼∥ and 𝐼! with respect to the total intensity (𝐼!) of the sample 

emission. 

𝐼! = 𝐼∥ + 2𝐼! 
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Eq. 1.8 

The 𝐼! term accounts for intensity of the sample in the x direction (𝐼!), the y 

direction (𝐼!), and the z direction (𝐼∥). Anisotropy is therefore expressed as shown in Eq. 

1.9 

𝑎 =
𝐼∥ − 𝐼!
𝐼∥ + 2𝐼!

 

Eq. 1.9 

where a is the anisotropy of the sample. This is not the same as a polarization 

measurement. Polarization of a sample and anisotropy of a sample are related, but not 

directly interchangeable terms. Polarization of a sample is not measured with respect to 

the total sample emission intensity as it does not account for both x and y 𝐼! terms (Eq. 

1.10).  

𝑃 =
𝐼∥ − 𝐼!
𝐼∥ + 𝐼!

 

Eq. 1.10 

In terms of experimental measurements, anisotropy is calculated from four 

measureable intensities: 𝐼!! (excitation with vertically polarized light resulting in 

vertically polarized emission intensity), 𝐼!" (excitation with vertically polarized light 

resulting in horizontally polarized emission intensity), 𝐼!" (excitation with horizontally 
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Figure 1.5 – Through Prism Total Internal Reflectance Fluorescence (TIRF) 
Microscopy.  

TIRF is generated at the interface between a quartz prism of refractive index, n1, and a 

sample with refractive index, n2. Upon TIR of a laser light source with an angle of 

incidence, θ1, an evanescent wave with an intensity dependent on the z direction is 

generated. The evanescent wave traverses through the sample with a typical depth of 200 

nm. Surface immobilized fluorophores are excited by the evanescent wave. The emission 

of the fluorophore is transmitted through a water immersion objective followed by a 

series of dichroics and emission filters. The signal is finally recorded by an EMCCD 

camera. Figure adapted from (Lakowicz 2006). 
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 polarized light resulting in vertically polarized emission intensity), and 𝐼!! (excitation 

with horizontally polarized light resulting in horizontally polarized emission intensity) ( 

Figure 1.6). Experimental anisotropy is calculated as: 

𝑎 =
𝐼!! − 𝐺𝐼!"
𝐼!! + 2𝐺𝐼!"

 

Eq. 1.11 

where 𝐺 is a factor that accounts for differences in the efficiency of instrumental 

detection of vertical or horizontally polarized light. 

𝐺 =
𝑆!
𝑆!

=
𝐼!"
𝐼!!

 

Eq. 1.12 

where 𝑆! and 𝑆! are the detection efficiencies of vertical and horizontal light 

respectively. The G factor can also be expressed in terms of 𝐼!" and 𝐼!! as shown in Eq. 

1.12.  

Changes in anisotropy values as one titrates protein into a sample containing a 

fluorescent ligand are due to differences in rotational diffusion of bound ligand molecules 

and unbound ligand. When a fluorescent ligand is excited with polarized light, the extent 

of excitation is dependent on the alignment of the dipole of the fluorescent molecule with 

that light. Each sample of fluorescent molecules therefore has an innate anisotropy value 

associated with it due to the rotational diffusion of that particular molecule. The rate of 

rotation of a fluorescent molecule will dictate the frequency at which the fluorescent 

dipole is aligned with the polarization of the excitation source, and therefore the average 

emission intensity of 𝐼!!, 𝐼!", 𝐼!", and 𝐼!!. As protein is titrated in, the rate of rotation of 

bound substrate is changed such that the frequency of dipole alignment with the 

excitation wavelength is increased resulting in changes in the anisotropy of the 
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population of protein-bound ligand. As the sample becomes a heterogeneous mixture 

containing protein-bound and unbound fluorescent ligand, the ensemble average 

anisotropy of the sample shifts away from the innate anisotropy of fluorescent ligand 

alone until the sample becomes a homogenous mixture of protein bound ligand. These 

changes in anisotropy can be used to construct a binding isotherm, which can be fit with 

the appropriate binding model to determine a protein binding affinity for the fluorescent 

ligand. We take advantage of this system to measure the DNA binding affinity of human 

MutSα for homoduplex DNA, a GT mismatch, and O6MeGT damaged DNA substrate. 

Research Scope and Objectives 

The work described in this dissertation began as a follow-up to a previous study 

of the kinetics of the Taq MutS mismatch recognition mechanism. We wanted to explore 

the binding dynamics described for Taq MutS binding to a GT mismatch (Sass, Lanyi et 

al. 2010) as they related to the Phe-X-Glu mismatch binding motif, as well as expand 

upon the prokaryotic studies in similar analyses of a simple eukaryotic system in S. 

cerevisiae. The project evolved into the development of a multi-color TIRF detection 
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Figure 1.6 - Bulk Fluorescence Anisotropy L-format Instrumentation.  

The instrumental diagrams indicated on the left display the experimental method used to 

measure 𝐼!!, 𝐼!", 𝐼!", and 𝐼!!. Insets depicted on the right are excitation direction 

profiles measured in the corresponding instrument design on the left. Adapted from 

(Lakowicz 2006). Eq. 1.9, Eq. 1.11, and Eq. 1.12 are displayed for reference. 
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system partially due to the need to explore both DNA bending and protein colocalization 

at the mismatch simultaneously in the eukaryotic system. Finally, through a collaboration 

established with Peggy Hsieh at the NIDDK (NIH, Bethesda), we were given the 

opportunity to explore the DNA binding properties of higher eukaryotes in analyses of 

human MutSα for both base-base mismatched DNA and the damaged DNA substrate 

O6MeGT. The latter work also includes analyses of two separation-of-function mutant 

proteins (MSH2WT-MSH6T1219D and MSH2G674A-MSH6WT) that have been shown to be 

deficient in MMR but proficient in apoptotic response to DNA damage.  

During my research tenure, I have used smFRET in conjunction with bulk 

fluorescence anisotropy to characterize the DNA binding and bending interactions of Taq 

(described in Chapter 2) and human MutS(α) (described in Chapter 5) with a variety of 

DNA substrates including homoduplex, GT mismatch, single thymine IDL, and O6MeGT 

damaged DNA. I have optimized a multi-color TIRF microscope and dye labeling system 

for simultaneous excitation and detection of up to four laser lines (described in Chapter 

3). I have disassembled and assembled a two-color TIRF and a four-color TIRF 

microscope system, and also re-designed the four-color system for use in both smFRET 

studies and epifluorescence studies in vivo. Finally, I have characterized the nucleotide 

binding properties of human MutSα in the absence of DNA and presence of homoduplex, 

GT, or O6MeGT DNA (described in Chapter 4). Appendices A and B contain specific 

protocols for engineering a 500 base pair (bp) DNA substrate for smFRET and for 

performing smFRET data analysis respectively. 
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 Chapter 2  

	
  

DISTINCT DNA BENDING DYNAMICS ALLOW MUTS TO DISTINGUISH 
DIFFERENT DNA MISMATCHES 

 

Introduction 

The DNA mismatch repair (MMR) pathway plays a critical role in prevention of 

undesirable genomic drift during cell division. The importance of this process has led to 

strong evolutionary conservation of the proteins that initiate MMR throughout both 

prokaryotes and eukaryotes (Au, Welsh et al. 1992; Drummond, Li et al. 1995; 

Buermeyer, Deschenes et al. 1999; Jiricny and Marra 2003). Mutations of this family of 

genes in humans are associated with a proclivity toward tumor development.  In 

particular, such mutations have been linked to more than 80% of hereditary non-

polyposis colorectal cancer (HNPCC) as well as other sporadic cancers (Modrich 1989; 

Loeb, Loeb et al. 2003; Peltomaki 2003). 

The specific molecular events that initiate DNA MMR have not been determined.  

The first enzymes in the MMR pathway, MutS homodimers in prokaryotes and the 

eukaryotic homologs Msh2-Msh6 (MutSα) and Msh2-Msh3 (MutSβ), have the 

particularly difficult task of locating a single Watson-Crick base-base mismatch or base 

insertion/deletion over the millions of DNA base pairs in the cell. Moreover, mismatches 

do not significantly distort the DNA, and often the difference in the stability of a normal 
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Watson-Crick base pairing (for example, a GC base pair) and a mismatch (for example, a 

GT mismatch) is small (~3 kcal/mol) (Isaacs, Rayens et al. 2002; Natrajan, Lamers et al. 

2003). 

Crystal structures of Thermus aquaticus (Taq) MutS and human MutSα bound to 

a number of different mismatched DNA bases and base insertion/deletions (Lamers, 

Perrakis et al. 2000; Obmolova, Ban et al. 2000; Natrajan, Lamers et al. 2003; Warren, 

Pohlhaus et al. 2007) reveal that only two specific amino acid contacts are made between 

MutS or MutSα and the mismatched base. These contacts are located in a conserved 

phenylalanine-X-glutamate (Phe-X-Glu) motif at the DNA binding domain (F36/E38 in E. 

coli, F39/E41 in Taq MutS, F337/E339 in yeast Msh6, and F432/E434 in human MSH6) 

where the phenylalanine stacks with the mismatched base and the glutamate forms a 

hydrogen bond with the N3 of the mismatched thymine or N7 of the mismatched purine 

(Lamers, Perrakis et al. 2000; Obmolova, Ban et al. 2000; Natrajan, Lamers et al. 2003; 

Warren, Pohlhaus et al. 2007).  All other interactions between MutS and the DNA are 

nonspecific backbone contacts.  The primary observation in these structures is that the 

DNA is sharply bent at the mismatch site, stabilized both by the specific amino acid 

interactions with the mismatch as well as the nonspecific contacts along the backbone.   

Structural heterogeneity in mismatched DNA-MutS complexes was revealed by 

atomic force microscopy (AFM) measurements. Two unique DNA conformations were 

induced by MutS at the mismatched base:  bent and unbent (Wang, Yang et al. 2003; 

Tessmer, Yang et al. 2008).  This finding inspired the proposal that MutS first locates a 

mismatch in a configuration with sharp DNA bending (Wang, Yang et al. 2003; Kunkel 

and Erie 2005), and then undergoes a conformational change to generate an unbent DNA-
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MutS conformation.  The unbent DNA conformation was proposed to permit ATP 

hydrolysis or nucleotide exchange and generate a new state that signals downstream 

repair processes (Wang, Yang et al. 2003).   

Further structural studies using AFM and crystallography examining mutations of 

the Phe-X-Glu motif have suggested connections between some of these MutS-DNA 

interactions and degrees of DNA bending. A series of nonspecific contacts along the 

DNA backbone combined with the electrostatic repulsion of the glutamate residue in the 

DNA binding domain is suggested to facilitate smooth bending in the DNA while MutS 

‘scans’ homoduplex DNA in search of a mismatch (Wang, Yang et al. 2003; Kunkel and 

Erie 2005; Tessmer, Yang et al. 2008). Upon locating a mismatch base pair, smooth 

bending in the DNA is converted to a sharp kink due to the local flexibility in the DNA at 

the mismatch, which allows Phe to stack and the Glu to form a hydrogen bond with the 

mismatched base (Lamers, Perrakis et al. 2000; Obmolova, Ban et al. 2000; Junop, 

Obmolova et al. 2001; Schofield, Brownewell et al. 2001; Selmane, Schofield et al. 2003; 

Wang, Yang et al. 2003; Kunkel and Erie 2005; Tessmer, Yang et al. 2008).  The 

importance of the conserved Phe in mismatch recognition is underscored by studies 

indicating that a mutation of this residue to alanine reduces mismatch binding specificity 

by three orders of magnitude (Malkov, Biswas et al. 1997; Yamamoto, Schofield et al. 

2000; Drotschmann, Yang et al. 2001; Tessmer, Yang et al. 2008) and increases mutation 

frequency in vivo to that of an MMR null (Das Gupta and Kolodner 2000; Drotschmann, 

Yang et al. 2001).   

The role of the Glu contact is less clear.  The Glu hydrogen bonding has been 

proposed to stabilize the formation of MutS-DNA complexes, to stabilize the kinked 
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DNA conformation observed in crystal structures (Drotschmann, Yang et al. 2001; 

Schofield, Brownewell et al. 2001), and also to facilitate unbending of the DNA at the 

mismatch (Wang, Yang et al. 2003; Tessmer, Yang et al. 2008). Studies in vivo using 

mutations of the conserved Glu in MutS point to functional roles for this residue in 

signaling for repair after mismatch identification.  In E. coli, mutation of Glu38 to alanine 

resulted in complete loss of repair of both base-base mismatches and insertion/deletion 

loop mismatches (Schofield, Brownewell et al. 2001; Lebbink, Georgijevic et al. 2006; 

Holmes, Scarpinato et al. 2007).  In contrast, mutating E339 to alanine in Msh6 of 

Saccharomyces cerevisiae (S. cerevisiae) conferred a mutator phenotype for base-base 

mismatches, but the residue appeared to be expendable for repair of single base 

insertion/deletion mismatches (Holmes, Scarpinato et al. 2007).  Structural observations 

of Taq MutS (E41A)-mismatched DNA complexes with AFM in conjunction with 

ATPase assays determined wild type binding and bending at an insertion/deletion 

mismatch (T bulge) but non-wild type behavior at GT mismatches (Tessmer, Yang et al. 

2008), suggesting the yeast and Taq systems could share a common phenotype.   

 Based on this accumulated evidence, DNA bending at the mismatch has been 

proposed to play a fundamental role in mismatch recognition or subsequent repair 

signaling (Jiricny and Marra 2003; Kunkel and Erie 2005), yet a mechanistic connection 

between DNA bending and DNA MMR initation remains elusive.  The hypothesis 

connecting DNA bending and repair initiation is challenged by the observation that each 

crystal structure reveals the same contacts and approximately the same degree of DNA 

bending at every type of mismatch even though different mismatches are repaired with 

different efficiencies in vivo (Kramer, Kramer et al. 1984).  In addition, there seems to be 
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an inverse correlation between the facility for a mismatch to bend and its repair efficiency 

(Wang, Yang et al. 2003).  In fact, the DNA mismatches most efficiently repaired in the 

cell induce the least amount of distortion in the DNA (Kunkel and Erie 2005). 

Single-molecule fluorescence resonance energy transfer (smFRET) measurements 

of MutS induced DNA bending have suggested a kinetic aspect of DNA bending may be 

involved in MutS MMR function (DeRocco, Anderson et al. 2010; Sass, Lanyi et al. 

2010).  These studies found that MutS-GT mismatched DNA complexes are significantly 

dynamic and sample a number of different conformations with a variety of kinetic rates 

(Sass, Lanyi et al. 2010).  The smFRET measurements found that MutS bound GT 

mismatched DNA initially in the sharply bent state (similar to that seen in the crystal 

structures) and then proceeded into an equilibrium conformational landscape with several 

bent and unbent states that is significantly more complex than a simple two state 

equilibrium (Sass, Lanyi et al. 2010).   

Here we report smFRET studies of conformational dynamics for MutS bound to a 

number of different DNA mismatches. These studies are discussed in conjunction with 

data acquired by Dr. Lauryn E. Sass of our laboratory. We also investigated how the 

DNA conformations sampled and the dynamics between these conformations are affected 

by removal of the conserved Glu residue in the DNA binding motif of MutS.  We have 

found that the kinetics of switching between distinct DNA bending states varies over 

orders of magnitude for MutS bound to different mismatched substrates.  Despite the 

distinct equilibrium kinetics, we determined, by direct observation,  that the first DNA 

conformation sampled upon MutS binding a mismatch is a bent state for all mismatches.  

The unbent state is sampled later for wild type MutS:DNA complexes, but the E41A 
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mutant does not progress to the unbent state.  These observations support a model in 

which the initial recognition complex is a bent DNA-MutS conformation and that the Glu 

residue facilitates the formation of an unbent MutS-DNA complex.  Further, we suggest 

that the varied dynamics for MutS bound to different mismatches may control its ability 

to signal repair and thus influence the relative differences in the ability of MutS to repair 

certain types of mismatches. 

Results  

We used smFRET to study the DNA conformations sampled when Taq MutS, 

both wild type and E41A, binds three different DNA lesions:  a single thymine insertion 

(T bulge), a GT mismatch (repaired efficiently in vivo), and a CC mismatch (deficient 

repair in vivo).  Similar to the method we used to previously measure DNA bending 

dynamics of MutS bound to GT mismatched DNA (Sass, Lanyi et al. 2010), we created 

50 base pair double stranded DNA substrates that were labeled with an acceptor dye 

(Cy5) on one end and a donor dye (TAMRA) 19 bases 3′ of the acceptor dye.  A 

mismatch was located midway between the dyes and the 5′ end of the DNA was 

biotinylated to allow immobilization on a quartz substrate (see Fig. 2C and methods for 

additional details). smFRET signals were obtained from MutS bound to these complexes 

as described previously, as DNA bending results in smaller dye separation and increased 

FRET (Sass, Lanyi et al. 2010).   

Wild type MutS-DNA conformations and conformational dynamics vary 
significantly from mismatch to mismatch 

 FRET signals reporting DNA bending from individual MutS-mismatched DNA 

complexes were dramatically different in both FRET efficiency, indicating bending, as 
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well as in kinetic switching among efficiencies for the three mismatches we examined: T 

bulge, GT, and CC. The differences between substrates are shown in individual smFRET 

traces (Figure 2.1), histograms representing distributions of all DNA conformations 

sampled (Figure 2.2), and transition density plots (TDPs) (Figure 2.3) displaying 

transitions between different conformational states. 

Figure 2.1 shows representative FRET traces for T bulge, GT, and CC DNA 

mismatches in the presence of wild type MutS (top panel) and E41A MutS (bottom 

panel). MutS-T bulge smFRET traces display a dominant population of single, long-lived 

FRET efficiencies (or DNA conformations) (Figure 2.1). Conformational changes were 

observed in a subset of molecules (~ 20% of the thousands of molecules measured), but 

transitions appeared to be infrequent compared to other mismatches. Overall, T bulge 

transitions proceeded from a lower FRET state (~0.36) to the higher FRET state (~0.46) 

(Figure 2.1).  

As previously described, the conformational profile of MutS-GT complexes is 

very intricate (Sass, Lanyi et al. 2010). A number of different conformational states are 

sampled and are readily interchanged during a single MutS binding event at the GT 

mismatch (Sass, Lanyi et al. 2010). In MutS-GT complexes, although six conformations 

are isolated, the dominant conformational pathway is between a stable bent state (FRET ~ 

0.65) and a stable unbent state (FRET ~ 0.30) (Sass, Lanyi et al. 2010) The majority of 
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Figure 2.1 – Example WT MutS and E41A MutS FRET traces in the presence of 
DNA substrates. 

Example FRET traces for T Bulge (left column), GT mispair (middle column), and CC 

mispair (right column) DNA in the presence of either wild type Taq MutS (top row) or 

E41A Taq MutS (bottom row) are shown in their respective panels. (T-bulge and GT 

wild type experiments performed by Lauryn Sass.) 
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these transitions proceed from the more stable high FRET state (~0.65) to the shorter-

lived lower FRET state (~0.30) (Figure 2.1).  

Of the three mismatches studied, the most extensive difference is observed when 

looking at the conformations of CC mismatch DNA in the presence of MutS. When MutS 

does bind the CC, the bound state is short-lived and is typically an intermediately bent 

conformational state. Representative MutS-CC mismatch FRET traces reveal that MutS-

CC complexes proceed from the lower FRET state (~0.21) to the intermediate FRET state 

(~0.5) and back (Figure 2.1). Due to the rapid dynamic change between the lower FRET 

state to the intermediate FRET state, a subset of smFRET data was collected at a faster 

collection rate of 15 ms-1 (rather than the 100 ms-1 rate used with GT and T bulge) in 

order to better resolve the short lived states (Figure 2.1 – top right)[15 ms-1 data collected 

by Ruoyi Qiu]. Analysis of the 15 ms-1 data reveals a short-lived (83 ms), intermediately 

bent state (data not shown). The faster collection rate allowed the resolution of the 

intermediately bent state centered at FRET ~0.42 using the Cy3-Cy5 dye pair. Although 

we cannot make direct quantitative comparisons between the 100 ms-1 Cy5-TAMRA 

used with the other mismatches described here and the 15 ms-1 Cy5-Cy3 data, we can 

identify a general trend regarding the MutS-CC interaction. The MutS-CC complex 

rapidly samples an intermediate FRET state consistently and, based on the TDP 

generated (discussed below), we can say that the MutS-CC complex transitions between 

unbound DNA and the intermediate FRET state directly. 

Histograms of the populations of FRET states sampled for MutS-homoduplex, 

MutS-T bulge, MutS-GT, and MutS-CC complexes are shown in Figure 2.2. Each  
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Figure 2.2 – WT MutS and E41A MutS smFRET histogram distributions  

Binding data acquired by flowing protein for wild type Taq MutS on a T Bulge 

insertion/deletion (A) and a GT mispair (B). Each binding TDP is accompanied by its 

respective histogram of FRET states (above). A cartoon representation of the DNA 

substrate and slide functionalization is shown (C). Histogram distributions of observed 

FRET states for T Bulge DNA in the presence of wild type Taq MutS (D) and E41A 

MutS (G), for GT mispair DNA in the presence of wild type Taq MutS (E) and E41A 

MutS (F), for homoduplex DNA in the presence of wt MutS (F), and for CC mispair 

DNA in the presence of wild type MutS (I). For each histogram, black cityscapes indicate 

the distribution of the observed innate FRET state of DNA in the absence of protein and 

colored bars represent the distribution of FRET states in the presence of the indicated 

protein. Due to the rapid nature of the transitions on the CC mispair, the data shown (I) is 
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collected at a 50 ms frame rate using the Cy3-Cy5 dye pair.
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histogram displays the innate FRET states associated with the unbound (free) DNA in 

cityscape and the FRET states associated with the formation of MutS-DNA complexes in  

shaded bars. The MutS-homoduplex DNA complexes do not exhibit a significant shift 

away from the innate DNA FRET distribution (shown in black cityscape) consistent with 

the low binding affinity and low specificity for MutS to homoduplex DNA.   

The histogram distributions of FRET states vary widely between MutS-T bulge, 

MutS-GT, and MutS-CC complexes (Figure 2.2 panels D, E, and I).  MutS-T bulge 

complexes sample FRET values centered around ~0.41 resulting in a single peak 

significantly shifted away from the free DNA distribution.  Note the limited amount of 

overlap between the free DNA and MutS-T bulge distributions. The majority of the T 

bulge DNA is bound by MutS, where as free, unbound DNA is very infrequently 

observed.  This result is not surprising given that Taq MutS binds T bulge with an affinity 

of 5 nM, vs. 40 nM Kd for Taq MutS to a GT mismatch (Jiricny, Su et al. 1988; Yang, 

Sass et al. 2005; Sass, Lanyi et al. 2010). The overall distribution spans a wide FRET 

range from 0.14 to 0.82. The breadth of this distribution is indicative of multiple 

populations. 

The distribution of MutS-GT FRET states has been extensively discussed 

previously (Sass, Lanyi et al. 2010).  However, it is important to note two clear peaks 

centered at FRET ~0.30 and FRET ~0.65. Unlike the MutS-T bulge complex, there is a 

more significant overlap of the MutS-GT distribution with the free DNA. This 

observation is consistent with the lower binding affinity of MutS for a GT mismatch (40 

nM) versus a T bulge (5 nM) (Yang, Sass et al. 2005).  
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In the case of the CC mismatch, there is a higher presence of free DNA in the 

majority of smFRET traces, which is not surprising given the low affinity of MutS for a 

CC mismatch (Brown, Brown et al. 2001; Cho, Chung et al. 2007). The overlap of the 

MutS-CC distribution with the free DNA profile is greater than that seen in either the T 

bulge or the GT mismatch distributions. The overall distribution is shifted toward higher 

FRET states with a median FRET at ~ 0.53, which is a more bent FRET state than that 

observed in the binding of MutS to T bulge. However, the MutS-GT bent states tend to 

sample even higher FRET. 

To better explain the populations of FRET levels observed in the FRET efficiency 

histograms and the role each level might play in mismatch binding dynamics, it is 

necessary to evaluate not only the FRET level but also the transitions to and from each 

level. Transition density plots (TDPs) are three-dimensional histograms displaying a 

matrix of populations for each transition from FRET value Y to FRET value X and vice 

versa. Histogram distributions of the FRET states sampled in the presence of protein 

(Figure 2.2 panels D, E, G, H, and I), in conjunction with the TDPs (Figure 2.3), showing 

the conformational changes from one state to another determined from a population of 

smFRET trajectories, reveal distinct conformational states and dynamics between those 

states for MutS bound to different mismatches. MutS-T bulge, MutS-GT, and MutS-CC 

complexes differ in the extremity of the bent and unbent states, where the differences 

between the bent and unbent states are more exaggerated in the MutS-GT complexes (at 

opposite ends of the FRET histogram) and more subtle in the MutS-T bulge complexes 

and the MutS-CC complexes (closer in the mid-range of the FRET histogram).   



 

 61 

 

Figure 2.3 - Transition density plots for WT MutS and E41A MutS in the presence 
of GT, T bulge, and CC mismatch DNA. 

TDPs of observed conformational or binding/unbinding FRET changes for wild type Taq 

MutS in the presence of a GT mispair (A), a T bulge IDL (C), or a CC mispair (E), and 

for E41A MutS in the presence of a GT mispair (B) or a T bulge IDL (D). Due to the 

rapid nature of the transitions on the CC mispair, the TDP shown (E) is collected at a 50 

ms frame rate using the Cy3-Cy5 dye pair. 



 

 62 

The relative stabilities of these states are significantly different between the 

mismatches, where the unbent state is stable but has a short lifetime in MutS-GT 

complexes, but is significantly stable in MutS-T bulge complexes (lifetimes were longer 

than could be identified in the experiments). In contrast, the MutS-CC complexes exhibit 

a stable, long lived unbent state and short, intermediate bent states. TDPs reveal 

interesting conformational differences in the dynamics of a MutS-T bulge complex 

versus a MutS-GT complex. Notably, the binding of MutS to a T bulge mismatch results 

in a conformational “walk” from the lower observed FRET state (~0.36) to the higher 

observed FRET state (0.46).  

MutS-T bulge complexes preferentially sampled two FRET states centered at 

FRET ~ 0.36 and FRET ~ 0.46 (Figure 2.2D). Two additional conformations are isolated 

at higher FRET levels, indicating higher degrees of DNA bending, although these are less 

frequently sampled and are not the dominant states in these complexes. This result is in 

contrast to the MutS-GT complex whose most frequently sampled states are at FRET 

~0.30 and FRET ~0.65 (Figure 2.2E). MutS-CC complexes sampled from a less bent 

state (FRET ~ 0.2) coinciding with the innate FRET of the free DNA to a medium bent 

state (FRET ~0.41) (Figure 2.2I) with a low relative stability of the bent state. 

MutS binds the mismatch and directly induces unique conformational changes in 
the DNA 

All of the conformational dynamics observed and shown in Figure 2.1 were 

determined from steady-state studies, where MutS was pre-incubated with the DNA prior 

to single-molecule imaging.  As a result, embedded in these data are all DNA binding, 

DNA unbinding, and MutS-DNA bound conformational transitions. We performed MutS 
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flow experiments to directly measure the first DNA conformation induced at the 

mismatch upon MutS binding by imaging immobilized DNA in a flow chamber while 

adding MutS in real-time.  This allowed direct measurement of the change in FRET 

signal upon immediate MutS binding.  These results for two mismatches, T bulge and 

GT, are shown in Figure 2.2 panels A and B. 

The overall distribution of FRET states for MutS binding T bulge (Figure 2.2A) is 

consistent with the distribution of all states observed in the steady state experiments 

(Figure 2.2D). A dominant peak is observed at FRET ~0.36 with a secondary shoulder at 

FRET ~0.46. The overall shift away from the free DNA (FRET ~ 0.2) is consistent with 

that observed in the steady state experiments. A TDP of MutS binding to T bulge 

indicates that two distinct conformations are induced immediately upon binding. These 

two states are the two most stable states at FRET ~ 0.46 and FRET ~ 0.36. The lesser 

bent state at FRET ~ 0.36 is the more likely binding state. Binding of MutS to form the 

MutS-T bulge complex in the lower FRET state (~ 0.36) is consistent with the observed 

conformational progression from low FRET (unbent or mildly bent DNA) to high FRET 

(bent DNA).  

In contrast, the distribution of FRET states adopted upon MutS binding to the GT 

mismatch (Figure 2.2B) indicates a preferential binding directly into the higher FRET 

~0.65 observed in the steady state experiments (Figure 2.2E). The MutS-GT binding 

distribution indicates very little observed overlap with the region associated with free 

DNA. The TDP reveals more specifically that when MutS binds the GT mismatch, at 

least three or more different unique conformations may be induced.  The most frequently 

observed DNA conformations are the stably bent state at FRET ~ 0.65 and the 
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intermediately bent state at FRET ~ 0.50.  These two states being the most stable binding 

states are consistent with the steady state observations (Sass, Lanyi et al. 2010).  The 

distribution of FRET states observed upon MutS binding the GT is overall very broad, 

supporting the idea that at least three unique FRET states are induced in these complexes, 

as previously described (Sass, Lanyi et al. 2010). 

Taq E41A MutS-DNA complex adopts wild type-like conformations on a T bulge 
and intermediately bent conformations on a GT mismatch 

smFRET reveals similarities between the observed conformational states of E41A 

MutS bound to a T bulge and the conformational states observed for wild type MutS-T 

bulge complexes. For the E41A MutS-T bulge complexes (Figure 2.2G), there is a higher 

population of free DNA than compared to the wt MutS-T bulge complexes (Figure 2.2D); 

however, the E41A-T bulge complexes have a similar distribution of FRET states (Figure 

2.2G) in comparison to the wt MutS-T bulge complexes (Figure 2.2D). Interestingly, the 

E41A MutS-T bulge complexes are more dynamic (observed in FRET traces of 

individual molecules (Figure 2.1)) and sample the higher level bent states with a greater 

frequency than observed in the wt MutS-T bulge complexes.  However, the overall 

distribution of FRET states and transition density plots for wild type (Figure 2.3C) and 

E41A MutS (Figure 2.3D) bound to the T bulge are very similar. 

In contrast, differences in the conformational states of Taq E41A MutS and wild 

type MutS bound to a GT mismatch are observed. The results for the E41A-GT 

complexes provide a very different conformational profile in comparison to wt MutS-GT 

complexes.  Like the E41A-T bulge complex, there is a higher percentage of free GT 

DNA in the presence of E41A MutS than wild type MutS, consistent with the reduced 
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binding affinity previously reported (Tessmer, Yang et al. 2008). When E41A MutS does 

bind the GT mismatch, there is a reduced population of the two most frequently sampled 

FRET states observed with wild type MutS (the bent and unbent states previously 

mentioned), and there is an increased population of the intermediately bent states.  Most 

of the transitions observed in GT-E41A molecules are binding and unbinding transitions 

directly into these intermediately bent conformational states similar to those observed in 

the wild type MutS-CC complexes. 

Discussion 

Overall, using smFRET, we are able to observe that the conformational states for 

MutS-T bulge, MutS-GT, and MutS-CC complexes exhibit very different general trends 

in observed states, in relative stabilities of each state, and in time-scales for transitions 

from state to state. MutS-T bulge complexes exhibit a single broad FRET population 

centered around FRET efficiency of 0.4 with a general step-wise walk transitioning from 

lower to higher FRET states. The time scales of transitions from lower to higher FRET 

states are slower than those observed in either MutS-GT or MutS-CC complexes and 

each resulting state sampled by the MutS-T bulge complex is long-lived suggesting a 

greater relative stability of the higher FRET state.  MutS-GT complexes exhibit dynamic 

behaviors already discussed elsewhere (Sass, Lanyi et al. 2010) not observed in either 

MutS-T bulge or MutS-CC complexes. The most dominant state in MutS-GT complexes 

is a stable bent conformation (FRET ~ 0.65), and the primary conformational pathway is 

an equilibrium between this state and a stable unbent state (FRET ~ 0.30), although at 

least 4 other DNA conformations were identified (Sass, Lanyi et al. 2010). In contrast, 

when MutS is bound at a T bulge base-insertion or a CC mismatch, the DNA 
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conformational profile, including the number of DNA conformational states sampled, the 

kinetic exchange between those states, and the overall lifetime of MutS bound to the 

DNA, are significantly different from those observed in MutS-GT complexes.   

This difference in transition trends between those observed for the MutS-T bulge 

complex and the MutS-GT complex can be explained by the relative stabilities of the 

different conformational states uniquely sampled by each complex upon DNA binding 

(Figure 2.2 panels D and E).  Based on the long lifetime of the MutS-T bulge complex 

(we rarely observed dissociation transitions of MutS unbinding the DNA in steady state 

studies (Figure 2.1)), we estimate that this MutS-DNA complex is ~ 2.4 kcal/mol more 

stable than the MutS-GT complex. The lifetime of the unbent MutS-T bulge complex 

(FRET ~ 0.36) is significantly longer than the relative lifetime of the comparable state in 

the GT-MutS complex (stable unbent state at FRET ~ 0.30). In fact, the two stable MutS-

T bulge conformations appear to have similar relative stabilities (roughly based on the 

long lifetimes of both states). As a result, there is a lower energy barrier for the transition 

between the bent state and the unbent state in MutS-T bulge complexes than those 

observed in MutS-GT complexes.   

This suggestion is supported by a study with Uracil DNA Glycosylase, where it 

was noted that the energy barrier for a transition from a bent DNA state to an unbent 

DNA state at an unpaired base is ~ 3 kcal/mol lower than for paired DNA bases (Krosky, 

Song et al. 2005). This result is not surprising given the inherent differences in the local 

properties of a base-base mismatch which contains intact base pairing and hydrogen 

bonding versus those of an unpaired base which has little to no interactions with the 

surrounding residues in the DNA. It is likely that MutS is binding the T bulge directly 
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into the stable bent state, but the transition to the unbent state is faster than our data 

acquisition rate in these experiments.  The ease in which the unbent state is formed, 

particularly here for Taq MutS-T bulge complexes, supports a model that DNA 

unbending signals repair, particularly in line with the high repair efficiency of base 

insertion and deletion mismatches in prokaryotes. 

Glu41 stabilizes the MutS-mismatch DNA complex and also stabilizes DNA 
bending and unbending  

An intermediately bent state observed in E41A MutS-GT complex dynamics was 

observed as an unstable, briefly sampled state in the wt MutS-GT FRET traces (Sass, 

Lanyi et al. 2010). These observations are also consistent with AFM observations that 

showed a shift in the unbent DNA population to a more intermediately bent state 

(Tessmer, Yang et al. 2008). However, what are lost in the AFM data are the rapid 

transitions observed into and out of this intermediately bent state. Near exclusive 

formation of this intermediately bent state in the E41A-GT complexes suggests that the 

Glu residue is essential in the formation of a bent DNA conformation. However, the rapid 

transitions observed suggest that the Glu residue is also essential in driving the DNA to 

an unbent state and stabilizing the unbent state once formed. In vivo studies indicate that 

the glutamate to alanine mutation in E. coli (E38A) results in mutation rates similar to a 

MutS null cell line and a deficiency in repair of both single base-base mismatches and 

single base IDLs (Holmes, Scarpinato et al. 2007). However, the homologous mutation in 

S. cerevisiae (yMsh2-Msh6E339A) results in competent in vivo repair of single base 

insertion/deletion and a loss of in vivo repair of single base-base mismatches (Holmes, 

Scarpinato et al. 2007).  
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Interestingly, while the conformational dynamics of the MutS-T bulge and the 

MutS-GT complexes differ so greatly, the opposite can be said of the MutS-CC and the 

E41A-GT complexes. Both MutS-CC and E41A-GT complexes sample rapid 

conformational transitions from a low, long lived FRET state corresponding with free 

DNA (~0.3) into short-lived, medium FRET states (~0.6-0.8). The histogram distribution 

of these sampled conformational states indicates an increase in overlap with the free 

DNA distribution for both complexes as a well as a decrease in the number of times a 

high FRET value (FRET 0.65) corresponding with the bent state observed for MutS-GT 

complexes is observed. In both data sets we observe a dominance of those FRET states 

associated with intermediate transition states in the MutS-GT complexes.  

Overall, the FRET results for the E41A mutant on both the base-base mismatch 

and the insertion/deletion mismatch and the results for wild type MutS on a CC mismatch 

have interesting implications regarding the differential in vivo mutator phenotypes of the 

homologous yMsh2-Msh6E339A for repair of base-base mismatches versus repair of base 

insertions/deletions in (Holmes, Scarpinato et al. 2007).  Our results suggest a 

requirement for MutS-DNA complexes to undergo specific conformational sampling of 

states to signal repair. It is likely that it is necessary to sample both a stable bent state and 

a stable unbent state with some frequency in order for the MutS-DNA complexes to get 

on to proper conformational path to signal repair. Because the MutS-DNA complexes for 

the E41A mutant bound to a GT mismatch and wt MutS bound to a CC mismatch are 

unable to induce the necessary conformations to initiate the downstream repair effects, 

these systems cannot efficiently undergo MMR. 
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DNA bending and unbending are essential in the ability for MutS to signal repair  

The DNA conformational dynamics studied for wild type MutS and E41A MutS, 

in comparison with in vivo repair of different mismatches by the wild type and mutated 

MutS proteins, support a dynamic DNA bending and unbending mechanism necessary to 

signal mismatch repair. There is a high degree of correlation between particular DNA 

conformations sampled in these dynamic studies and the ability for specific mismatches 

to be repaired. The T bulge and GT mismatches, in the presence of wild type MutS, 

sample several different DNA conformations, but do exhibit two dominant states that are 

clearly more stable than the others and interchange directly between each other as the 

prevalent conformational transitions in the complexes. The CC mismatch is poorly bound 

by wild type MutS in general, but when binding occurs, an intermediately bent state is 

formed, and unbinding is not far behind. The inability for MutS to induce appropriate 

DNA conformations at this mismatch is consistent with this mismatch being deficiently 

repaired in vivo. 

The conformational dynamics of Taq E41A MutS are especially interesting and 

also support a dynamic kinetic sampling mechanism for mismatch repair initiation by 

MutS.  Specifically, E41A MutS-T bulge complexes behave very similar to the wild type 

MutS-T bulge complexes, sampling identical bent and unbent states and exhibiting 

similar transitions between those states.  The E41A MutS-T bulge complexes are 

certainly more dynamic, supporting the role of the Glu residue in the binding motif to 

stabilize these states. However, the complexes are able to sample the proposed 

conformations essential for repair. On the contrary, the E41A MutS-GT complexes 

behave differently from the wild type MutS-GT complexes. The E41A MutS-GT 

complex is not very stable, and the most stable state is an intermediately bent state 
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considered to be off of the preferred bent to unbent conformational pathway.  These 

results support the necessity of the Glu residue to stabilize both bending and unbending at 

a base-base mismatch. These results are supported by the in vivo observations in yMutSα 

that the Glu-to-Ala mutation only displays a mutator phenotype for repair of base-base 

mismatches (Holmes, Scarpinato et al. 2007).  All of these results combined support the 

DNA bending model and the hypothesis that the delicate balance of conformational 

dynamics and transitions between stable bent and stable unbent states is necessary for the 

signaling of repair. 

Can DNA bending dynamics tell us something about mismatch repair in vivo? 

Genetic studies revealed that S. cerevisiae MutSα (yMutSα) maintains nearly 

complete functionality in frameshift repair (represented by the T bulge substrate) with 

loss of repair of base-base mismatches with the Msh2-Msh6E339A mutation (Holmes, 

Scarpinato et al. 2007). Our results reveal that this mutant in Taq behaves differently 

when bound to base-base mismatches in comparison to base insertion/deletions.  There 

are two elements, the stability of the MutS-DNA complex itself and the conformational 

dynamics of these DNA-MutS complexes.  It has been previously suggested that the 

stability of the MutS-mismatched DNA complex itself does not necessarily dictate repair 

efficiency because even mismatches bound weakly by MutS are repaired in vivo (Sass, 

Lanyi et al. 2010).  The work presented here evokes questions regarding the role DNA 

conformational dynamics may serve in DNA mismatch repair. 

The DNA bending model hypothesizes that DNA bending and unbending serve as 

signaling strategies employed by MutS to get repair underway (Wang, Yang et al. 2003). 

Detailed results of MutS-GT complexes, combined with the results presented here for 
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MutS bound to two other mismatches, leads to the proposition that dynamic 

conformational sampling of MutS-DNA complexes could also have a part in governing 

mismatch repair initiation, and perhaps significant occupancy in a stable unbent 

conformation is necessary for efficient signaling of mismatch repair. 

Although E41A-T bulge complexes frequently occupy bent DNA conformations, 

these complexes are very dynamic and continue to sample the unbent DNA conformation 

with reasonable frequency (for several seconds or longer). If similar conformational 

dynamics occur for the homologous mutation in yMutSα, this observation may explain 

why this Glu-to-Ala mutation does not eliminate repair of frameshifts in vivo (Holmes, 

Scarpinato et al. 2007). 

We observe very different DNA conformational dynamics for E41A-GT 

complexes.  These complexes were very unstable and did not appear to occupy the 

unbent conformation that we observe in the wild type MutS-GT complexes.  Once again, 

if we hypothesize that similar conformational dynamics occur for the homologous 

mutation in yMutSα, this observation may explain why the Glu-to-Ala mutation 

eliminates repair of base-base mismatches in vivo (Holmes, Scarpinato et al. 2007). 

Lebbink and coworkers suggested that the hydrogen bond between the glutamate 

and the GT mismatch in E. coli was essential in inducing a conformational change in 

MutS to an ATP-bound sliding clamp MutS conformation that functions in signaling 

repair (Sass, Lanyi et al. 2010).  The DNA bending model suggests that DNA unbending 

also facilitates the formation of this MutS sliding clamp, thus signaling the ATPase 

activity of MutS and repair initiation.  Therefore, the inability of Taq MutS (E41A)-GT 

complexes to sample the unbent DNA conformation is consistent with all of these 
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previous in vitro and in vivo observations (Wang, Yang et al. 2003; Lebbink, Georgijevic 

et al. 2006; Holmes, Scarpinato et al. 2007; Sass, Lanyi et al. 2010). 

Conclusions 

We used smFRET to measure mismatched DNA binding and bending by MutS at 

multiple mismatches and to determine what effect, if any, the mutation of a conserved 

Glu in the DNA binding motif would have on mismatch recognition and DNA 

conformational flexibility and dynamics. The results revealed that DNA conformations, 

and the dynamics between them, play an important role in mismatch recognition and the 

ability to signal repair. Well-repaired mismatches sample a number of different states but 

follow a clearly preferred pathway between a stable bent and a stable unbent state.  

Mismatches that are poorly repaired, such as the CC mismatch here, are not able to form 

these stable on-path states. 

Studies of the E41A MutS mutant and its interactions with both an 

insertion/deletion mismatch and a base-base mismatch reveal that the Glu residue helps to 

form a stable MutS-GT complex but is less necessary in stabilizing the MutS-T bulge 

complex given the lifetime of the mutated protein on the DNA for both of these 

mismatches.  These results complement in vivo observations (Lebbink, Georgijevic et al. 

2006; Holmes, Scarpinato et al. 2007) and suggest that formation of a stable MutS-

mismatch complex, while important to in mismatch recognition, cannot be the only factor 

in initiating DNA mismatch repair in vivo (Jiricny, Su et al. 1988). 

Our results show that mismatched E41A MutS-DNA complexes are very 

dynamic, with DNA conformational fluctuations increased considerably relative to the 

wild type MutS-DNA complexes.  The dynamics of mismatched DNA-MutS complexes 



 

 73 

may govern mismatch repair signaling and offer a link between MutS-DNA structures 

and mismatch repair efficiency that is not revealed in crystal structures alone.  We 

propose, in line with the DNA bending model, that the ability to sample an unbent DNA 

conformation may be fundamental in initiating mismatch repair.  As a result, more 

dynamic MutS-DNA complexes may sample the unbent conformation less frequently and 

still be repaired (e.g. E41A-T bulge) while others are incapable of sampling the unbent 

conformation and are less able to signal repair efficiently (e.g. E41A-GT), resulting in 

refractory or decreased mismatch repair in vivo. 

If protein-DNA dynamics play an essential role in signaling important 

downstream effects like DNA MMR, what other protein-DNA systems may also utilize 

such a dynamic system? Static techniques like AFM and X-ray crystallography give 

researchers an insightful snapshot of protein-DNA interactions in potentially the most 

stable of conformations, but dynamic techniques such as smFRET are excellent tools in 

revealing the dynamic nature in which these interactions actually exist. We can 

potentially gain insight into intermediate conformational states such as the states 

described in this work, the kinetics of conformational state transitions, and 

conformational state transition pathways. The results described here lead one to speculate 

about the potential dynamics associated with other known dynamic systems such as the 

DNA base-flipping systems like the MutY system or transcription factor binding. 

Experimental Procedures 
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Protein and DNA substrates 

Wild type MutS and E41A MutS from Thermus aquaticus were over-expressed in 

Escherichia coli and purified as previously described (Biswas and Hsieh 1996).  HPLC-

purified labeled and unlabeled single-stranded oligonucleotides were purchased from 

Integrated DNA Technologies.  DNA substrates contained a TAMRA-labeled 

oligonucleotide (5′-Biotin-TGT CGG GGC TGG CTT AAG GTG TGA AAT ACC TCA 

TCT CGA GCG TGC CGA TA-TAMRA-3′) annealed to a Cy5-labeled oligonucleotide 

(5′-TAT CGG CAC GTT CGA GATG-Cy5-3′) to create a duplex DNA fragment 

containing a GT base-base mismatch (Figure 2.2C).  Oligonucleotides were annealed in 

buffer containing 20 mM Tris-HCl pH 7.8, 100 mM sodium acetate, and 5 mM 

magnesium chlordie in a 1:1 ratio at 65°C for 20 minutes followed by slow cooling.  

When the temperature reached 55°C, an additional complementary strand (5′-AGG TAT 

TTC ACA CCT TAA GCC AGC CCC GACA-3′) was added and annealed to complete 

the duplex DNA substrate.  The substrate was allowed to slowly cool to room 

temperature and was stored on ice or at 4°C. 

Fluorescence microscopy 

Quartz microscope slides and flow channels were prepared as previously 

described (Li, Augustine et al. 2007).  Slides were thoroughly cleaned by 15 minute 

incubations in a bath sonicator in the following series of solvents:  H2O/detergent 

(Alconox), acetone, ethanol, 1 M potassium hydroxide, ethanol, 1 M potassium 

hydroxide.   Slides were rinsed and stored in water and flamed under a propane torch to 

dry immediately before use.  Flow channels were created in the slides by adhering a No. 
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1.5 coverslip to the slide using Scotch double-sided tape as a spacer.  Edges were sealed 

with epoxy.  DNA samples were inserted into the channels through small holes drilled in 

the quartz slide prior to cleaning. 

The quartz surface was treated first with biotinylated-BSA (Sigma, 1 mg/mL, 5 

minute incubation) followed by streptavidin (Invitrogen, 0.1 mg/mL, 5 minute 

incubation), similar to methods previously described (McKinney, Freeman et al. 2005).  

Annealed, biotinylated, fluorescently-labeled, mismatched DNA was added to the treated 

surfaces at a concentration ranging between 10 and 30 pM for 5 minutes, and the 

unbound DNA was removed by rinsing with chilled buffer (20 mM Tris-HCl pH 7.8, 100 

mM NaOAc, and 5 mM MgCl2).  Samples were imaged at room temperature in the above 

rinsing buffer with the addition of enzymatic oxygen scavenging components (2% 

glucose (Sigma), 1% β-mercaptoethanol (Fluka), 0.1 mg/mL glucose oxidase (Sigma), 

and 0.025 mg/mL catalase (Sigma)) to enhance fluorophore lifetime and with the addition 

of triplet state quencher cyclooctatetraene (Aldrich) (~50 µM) to reduce dye blinking.  

Images were collected both in the presence and absence of MutS.  Protein was allowed to 

bind the DNA for at least 5 minutes prior to image collection for steady state 

experiments.  Protein was added through a flow-cell apparatus for flow-binding 

experiments, with imaging in real-time. 

Data were collected using a prism-type total internal reflection fluorescence 

(TIRF) laser microscope as described (Li, Augustine et al. 2007).  Two lasers were 

directed onto the prism, one at 532 nm to directly excite the donor dye (TAMRA) and 

one at 635 nm in an alternating sequence to directly excite the acceptor dye (Cy5) at the 

quartz-solution interface.  Fluorescence emission was collected through a 60x 1.2 NA 
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water immersion objective and split by a 645dcrx dichroic mirror (Chroma) into short 

and long wavelength paths.  These paths were filtered for TAMRA and Cy5 emissions 

using HQ 585/70 and HQ 700/75 bandpass filters (Chroma), respectively.  The 

spectrally-resolved emissions were relayed as side-by-side images onto a charge-coupled 

device camera (Cascade 512B, Roper Scientific).  Images were exposed at 10 frames per 

second and collected using software written in-house. 

Observed intensities of single molecules were integrated with software written in-

house to obtain individual fluorescence emission time traces as described previously (Li, 

Augustine et al. 2007). Emission traces were background subtracted and corrected for 

leakage of the donor signal into the acceptor channel (~ 5%).  Molecules not confirmed to 

contain exactly one donor and one acceptor fluorophore were excluded from further 

analysis.  FRET efficiencies were calculated from the respective donor and acceptor 

emissions as E = (IA)/(ID + IA), where ID and IA are the corrected intensities of the donor 

fluorophore and acceptor fluorophore, respectively. 

FRET data analysis 

We apply a Gaussian derivative kernel algorithm to isolate FRET transitions in 

single-molecule traces (Canny 1986). This algorithm (as previously described and 

available at 

http://www.cs.unc.edu/~nanowork/cismm/download/edgedetector/index.html) yields 

each FRET efficiency sampled in a given FRET trace as well the time the molecule 

spends at that FRET efficiency (‘dwell time’, or Δt) and the transition sequence (Sass, 

Lanyi et al. 2010). FRET transitions are used to generate transition density plots (TDPs) 

and lifetimes are used to assess the kinetics of the different conformations sampled for a 
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given MutS-DNA complex. Details of this analytical approach have been previously 

described (Sass, Lanyi et al. 2010). 
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 Chapter 3  

 

FOUR-COLOR SINGLE MOLECULE FLUORESCENCE WITH 
NONCOVALENT DYE LABELING TO MONITOR DYNAMIC 

MULTIMOLECULAR COMPLEXES 
 

The work described the following chapter was originally published as an article1 in 
BioTechniques and is reproduced with permission. © 2009 BioTechniques. 

Introduction 

Single molecule fluorescence techniques, including single-molecule Förster 

resonance energy transfer (smFRET), allow measurements of molecular associations and 

conformational changes during protein-protein and protein-nucleic acid interactions (Ha, 

Ting et al. 1999).  Many important biological processes are amenable to single molecule 

studies by fluorescently labeling the molecules of interest and recording fluorescence 

emissions.  Detection of three distinct single molecule fluorescence signals for 

multimeric colocalization or multiple FRET couplings have been demonstrated (Bowen, 

Weninger et al. 2004; Hohng, Joo et al. 2004; Clamme and Deniz 2005; Friedman, Chung 

et al. 2006; Lee, Kapanidis et al. 2007; Ross, Buschkamp et al. 2007; Roy, Kozlov et al. 

2009; Munro, Altman et al. 2010). Discrimination of single molecule fluorescence from 4 

distinct dyes is used in a commercial DNA sequencing instrument employing zero mode 

waveguide sample chambers and prism-based spectral dispersion (Lundquist, Zhong et al. 

                                                

1 DeRocco, V., T. Anderson, et al. (2010). "Four-color single-molecule fluorescence with noncovalent dye 
labeling to monitor dynamic multimolecular complexes." BioTechniques 49(5): 807-816. 
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2008; Eid, Fehr et al. 2009).  This sophisticated instrument has not quantified FRET 

efficiency at single molecule level for four dyes.  FRET interactions among four dyes on 

DNA have been recorded with a confocal microscope employing photodiodes for single 

point detection (Heilemann, Tinnefeld et al. 2004). Here, we present a simple 

modification of the typical two-color total internal reflection microscope (TIRM) that 

provides detection of single molecule fluorescence in four distinct spectral channels 

simultaneously using wide-field imaging, and we demonstrate its capabilities for 

quantitative FRET studies (Figure 3.1). Instrument construction is related to that used to 

characterize polarization and two-color FRET simultaneously (Webb, Rolfe et al. 2008).  

We combine this instrument with a tris-nitrilotriacetic acid (tris-NTA) dye-labeling to 

introduce a flexible approach for studying dynamics of multimeric complexes. 

To dye-label proteins while preserving function, we use the recently developed 

tris-NTA-fluorophores (Lata, Reichel et al. 2005; Lata, Gavutis et al. 2006).  Ensemble 

FRET studies (Kapanidis, Ebright et al. 2001) used similar mono- and bis-NTA dyes, 

which bind 6-histidine tagged (6-his) proteins with micromolar affinities.  In contrast, 

tris-NTA- fluorophores have subnanomolar to nanomolar binding constants for 6-his-

proteins and dissociation rates on the order of 10-3 to 10-4 s-1 (Lata, Reichel et al. 2005).  

The dye-bound state lifetimes of thousands of seconds are sufficient for most single 

molecule fluorescence experiments. A fluorescent dye is attached to the tris-NTA moiety 

via a 6-carbon linker (Lata, Reichel et al. 2005) similar to the linker in commonly used 

covalently-linked dyes.  This linker allows rotational flexibility for the dye, which is 

important for quantitative FRET applications. The non-covalent labeling is versatile, 

easily performed, and allows labeling proteins that do not tolerate more common labeling 
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Figure 3.1 – Four-color single molecule TIRF microscope schematic. 

Simultaneous FRET and colocalization experiments were performed using the prism-type 

total internal reflection configuration.  An Olympus IX51 inverted microscope with a 60x 

PlanApo water immersion objective and a Quadview image splitter (550dcxr, 645dcxr, 

750 dcxr) relayed the emitted fluorescence to a Cascade 512B emCCD camera.  Laser 
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excitation was shutter controlled.  ND = neutral density filter; P= polarization dependent 

beamsplitter; λ/2 = half wave plate; λ/4=quarterwave plate. 
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approaches. We demonstrate colocalization of a transient binding partner via its tris-

NTA-fluorophore while simultaneously measuring conformational changes in the 

substrate using a FRET pair spectrally distinct from the tris-NTA dye with single 

molecule sensitivity for two different biological systems: one monitoring protein-induced 

DNA bending (yMutSα-mismatched DNA complexes) and the other monitoring protein-

induced conformational changes in another protein (SNARE complexes).  Both of these 

systems involve protein-induced conformational changes in the substrate that can be 

monitored by smFRET; however, independently colocalizing the binding partner 

confirms assembly of the complex. 

Materials and Methods 

Oligonucleotides 

We purchased dye- and biotin-labeled oligonucleotides from Integrated DNA 

Technologies (Coralville, IA). The 50-bp Biotin/TAMRA-labeled oligonucleotide was 5′-

Biotin-

TGTCGGGGCTGGCTTAAGGTGTGAAATACCTCATCTCGAGCGTGCCGATA-

TAMRA–3′. The Cy5-labeled 19-bp complement was 5′-

TATCGGCACCCTCGAGATG-Cy5-3′ (underlined indicates CC base-base mispair). 

The unlabeled 31-bp complement was 5′-AGGTATTTCACACCTTAAGCCAGCCCC 

GACA–3′. The 50-bp and 19-bp oligonucleotides were annealed at ~65 oC for 20 min 

and slowly cooled to 55 oC. At 55 oC, the 31 bp complement was added and the mixture 

was cooled to room temperature (Figure 3.2A,B). 

yMsh2-Msh6 protein 
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Expression and purification of 6-his tagged yMsh2-Msh6 (yMutSα) was 

performed as described (Clark, Cook et al. 1999).  Dr. Thomas Kunkel (NIEHS, Research  

Triangle Park, NC) provided yMsh2 (pAC12 His-Msh2) and yMsh6 (yEpspGal Msh6) 

plasmids.  

SNARE proteins 

Expression and purification of full-length syntaxin-1A, soluble syntaxin-1A (1-

263), SNAP-25, and soluble synaptobrevin(1-96) were as described (Weninger, Bowen et 

al. 2003; Bowen, Weninger et al. 2004; Weninger, Bowen et al. 2008).  Unless indicated 

that 6-his tags were retained, 6-his tags were removed with thrombin as verified by SDS-

PAGE. Munc-18 was expressed and purified as described (Weninger, Bowen et al. 2008) 

without 6-his tag removal. 

SNARE proteins with combinations of indicated cysteine mutations introduced 

into cysteine free templates (syntaxin- e35c, s249c; synaptobrevin-s61c, a72c; SNAP-25-

q20c-n139c) and Munc-18 (containing all native cysteines) were labeled by mixing with 

10-fold excess maleimide dyes (Alexa Fluors 488, 555 and 647; all Invitrogen, Carlsbad, 

CA) in 20 mM phosphate, 200 mM NaCl, 100 µM TCEP, pH 7.4, overnight at 4°C.  

Labeling efficiencies were 30% (syntaxin), 50% (synaptobrevin), >80% (SNAP-25) and 

200% (Munc-18).  Wild-type synaptobrevin(1-96) was labeled with Cy7-NHS (GE 

Healthcare, Piscataway, NJ) by incubating with equimolar dye in 20 mM Phosphate, 200 

mM NaCl, pH 8, overnight at 4°C, yielding 50% labeling.  Synaptobrevin contains 2 

central lysines (residues 52 and 59) and 5 C-terminal lysines (residues 83,85,87,91 and 

94).  Thus, we expect >70% of the Cy7-synaptobrevin to carry a C-terminally located 
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dye.  Note, optimization of labeling is important because the total four-color labeling 

efficiency of a multimeric complex is the product of individual efficiencies. 

Parallel SNARE complex was formed from SNAP-25, His6-synaptobrevin, and 

syntaxin as described elsewhere, including the 7M urea-buffer wash (Weninger, Bowen 

et al. 2003).  

DNA Sample Preparation 

Biotinylated dsDNA was incubated for 10 min at 10 pM on biotinylated-BSA 

(Sigma-aldrich, St. Louis, MO)-streptavidin (Invitrogen) coated quartz slides as described 

elsewhere (Li, Augustine et al. 2007; Sass, Lanyi et al. 2010).  All experiments were 

performed at room temperature in 20 mM Tris HCl, 100 mM sodium acetate, 5 mM 

magnesium chloride, 2% glucose, 0.1 mg mL-1 glucose oxidase, 0.025 mg mL-1 catalase, 

2 mM 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and 50 µM 

cyclooctotetraene all at pH 7.8 (all Sigma-Aldrich). No reducing agents were used to 

preserve the 6-His-Ni2+-NTA complex. 

SNARE Sample Preparation 

Soluble SNARE complex was encapsulated at 33 nM per 3 mg ml-1 lipids in 100 

nm egg phosphatidylcholine liposomes with 5% biotin-phosphatidylethanolamine lipids 

(Rhoades, Gussakovsky et al. 2003; Choi, Strop et al. 2010) (Avanti Polar Lipids, 

Alabaster, AL). The liposomes were formed with a syringe mini-extruder using 100 nm 

filters.  The protein-containing liposomes were separated from free protein using gel 

filtration (SepharoseCL-4B) (GE Healthcare).  Liposomes were tethered to biotinylated-

BSA/streptavidin-coated quartz slides as described for the DNA samples.  SNARE 
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complex containing full-length syntaxin was reconstituted into supported bilayers as 

detailed elsewhere (Weninger, Bowen et al. 2008).   

tris-NTA-Oregon Green Labeling 

tris-NTA fluorescent dye conjugates were prepared as described elsewhere (Lata, 

Reichel et al. 2005; Lata, Gavutis et al. 2006).  We dye-labeled yMsh2-Msh6 by first 

incubating 10 nM tris-NTA-Oregon Green (NTA-OG) with 30 nM NiCl2 for ~1 hr at 

room temperature.  yMsh2-Msh6 (5 nM) was then incubated with 5 nM NTA-OG/15 nM 

NiCl2(Ni3NTA-OG) for ~1 hr on ice.  Protein was not purified from unbound dye.  6His 

SNARE complexes were labeled with Tris-NTA-OG (Figure 3.3) as described in the 

results and discussion section below. 

Microscope 

Fluorescence experiments were performed using a prism-type TIRM (Figure 3.1) 

consisting of an IX51 microscope with a 60x 1.2 NA PlanApo water immersion objective 

(Olympus, Tokyo, Japan) and four collinear lasers for illumination (blue-473nm-50mW 

exciting OG or Alexa488; green-532nm – 50mW exciting TAMRA or Alexa555; red-

635nm-40mW exciting Cy5 or Alexa647; infrared-690nm-50mW exciting Cy7).  The 

lasers were individually shuttered to allow all combinations of simultaneous and 

sequential illumination.  The microscope image was split into four distinct spectral bands 

by a Quadview imager (Photometrics, Tucson, AZ) and relayed onto quadrants of a 

Cascade 512B/emCCD (Photometrics). The Quadview contained three dichroic mirrors 

(550dcxr, 645dcxr, 750dcxr, Chroma, Brattleboro, VT) and band pass filters to define the 

spectral bands:  blue channel (513x17, Semrock, Rochester, NY), green channel (585x70, 

Chroma), red channel (685x70, Chroma), and infrared channel (794x160, Chroma).  
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When the 690 nm laser was used, a 640x100 nm filter (Chroma) was added to the red 

channel.  Movies were collected at 10 Hz. A mapping function to align the four distinct 

spectral images was derived from images of TetraSpeck fluorescent microspheres 

(Invitrogen), which were visible in all channels.  This mapping function was used to 

extract the other three dye emission intensities from locations pre-identified to contain the 

acceptor. Data was analyzed with custom MatLab routines (Mathworks, Inc. Natick, 

MA). 

Backgrounds and leakages between channels were corrected during analysis as 

described elsewhere (Hohng, Joo et al. 2004; Clamme and Deniz 2005; Lee, Kapanidis et 

al. 2007; Ross, Buschkamp et al. 2007). Traces in Figure 3.2C-E were corrected for 

background and leakage but not for gamma.  We determined gamma factors from anti-

correlated donor and acceptor photobleaching events using γ=ΔIA/ΔID (where ΔIA=IA
before 

bleach - IA
after bleach, and ΔID=ID

after bleach – ID
before bleach) as described elsewhere (Ha, Ting et 

al. 1999; Choi, Strop et al. 2010; McCann, Choi et al. 2010). Gamma was determined 

from the data for Figure 3.2F to be 2.16 for the Quadview.  We confirmed that the same 

sample when measured with our 2-color single molecule FRET microscope yielded 

consistent FRET efficiency results (0.31) when using gamma specific for that instrument 

(0.94).  Emission leakage between spectral channels was measured using single-labeled 

DNA samples.  Transmission efficiencies of the blue, green, red, red with an extra 

640x100 filter, and infrared channels in our Quad-view system are 60%, 49%, 66%, 50%, 

and 65%, respectively of their value without the Quad-view dichroics and filters in place 

(bypass mode). Forty percent of Alexa488 signal level leaked into the green channel, 9% 

leaked into the red channel and none leaked into the infrared channel. No TAMRA signal 
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was detected in the blue or infrared channels, and 15% of the TAMRA signal leaked into 

the red channel. No Alexa555 emission was detected in the blue or infrared channels but 

9% leaked into the red channel. There was no detectable emission from Alexa 647 in the 

blue, green, and infrared channels or from Cy7 in the blue, green, and red channels.   

Observation protocols 

Because blue dye photobleaching was limiting, we sometimes used a time-lapsed, 

shuttered blue illumination.  This illumination scheme simplified interpretation of FRET 

between Alexa555 (or TAMRA) and Alexa647 because we could calculate FRET when 

the blue laser was not active.  Undesired direct excitation of TAMRA and Alexa555 by 

blue light can complicate FRET measurements (Hohng, Joo et al. 2004; Clamme and 

Deniz 2005; Lee, Kapanidis et al. 2007; Ross, Buschkamp et al. 2007).   

Figure 3.4 illustrates several excitation patterns. Sequential excitation is used first 

to excite Alexa647 (635 nm) followed by the excitation of Alexa488 (473 nm) to 

colocalize the acceptor and the auxiliary molecule (Figure 3.4B).  Next, the donor 

Alexa555 is excited (532 nm) to observe FRET between the SNARE domains of 

Syntaxin 1A as reported by the high Alexa647 emission.  In Figure 3.4C, a laser sequence 

that allows for semi-continuous monitoring of Alexa488 labeled Munc-18 is used. The 

635 nm laser is used to identify the acceptor Alexa647 dye and then is shuttered off at 

frame 5. The donor Alexa555 dye is excited (532 nm) at frame 10 and FRET to the 

acceptor is observed.  The 473 nm laser is shuttered on for one frame at every 15th frame.  

The flashing laser pattern allows periodic monitoring of the Munc-18 colocalization 

while both prolonging the life of the blue dye and leaving frames for FRET calculation 

that are unaffected by the blue laser.  The frames with 473 nm illumination are omitted 
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from display in the red and green signals.  Note the bleaching of Alexa488 after 8 

seconds. 

Results and Discussion 

The sequential and simultaneous FRET and colocalization experiments were 

performed with a prism-type TIRM, a Quadview splitter containing three dichroic 

mirrors, and an emCCD, allowing the simultaneous excitation and detection of the 

fluorescence from 4 dyes with emission spectra characteristic of Cy2, Cy3, Cy5 and Cy7 

(Figure 3.1 and methods). We first demonstrated this instrument by examining DNA 

bending induced by yMutSα.  MutS homologs are responsible for recognizing and 

signaling repair of base-base mismatches and insertion-deletions in newly replicated 

DNA (Kunkel and Erie 2005).  MutS-mismatch complexes adopt multiple conformations 

with different degrees of DNA bending (from unbent to bend angles of ~ 90°) (Wang, 

Yang et al. 2003; Tessmer, Yang et al. 2008; Sass, Lanyi et al.).  It has been suggested 

that each bending state may have a different repair signaling potential (Kunkel and Erie 

2005; Tessmer, Yang et al. 2008; Sass, Lanyi et al.). 

Biotinylated DNA (50 base pairs) labeled with a FRET donor (TAMRA) and 

acceptor (Cy5) separated by 19 base pairs with a CC mismatch approximately halfway 

between the two fluorophores was tethered to a streptavidin-coated quartz surface (Figure 

3.2A,B). Because yMutSα contains over 30 cysteines, site-specific labeling using 

maleimide dye methodology is not feasible.  Consequently, 6His-tagged-yMutSα (tagged 

on the N-terminus of Msh2) was non-covalently labeled using tris-NTA-OG (OG-

yMutSα) (Lata, Gavutis et al. 2006).  OG-yMutSα complexes were prepared before  



 

 92 

 



 

 93 

Figure 3.2 - yMutSα smFRET experiments. 

(A) DNA sequence of CC mismatch DNA containing a biotin tag, Cy5 label, and 

TAMRA label.  (B) Cartoon describing the DNA functionalized quartz surface in the 

presence of tris-NTA Oregon Green labeled MutSα. (C) Emission from surface 

immobilized CC DNA labeled with Cy5 (red trace) and TAMRA (green trace). No 

colocalization is observed in the blue channel. (D) Emission from Cy5-TAMRA CC 

DNA exposed to unlabeled yMutSα. No colocalization is observed in the blue channel. 

(E) Emission from Cy5-TAMRA CC DNA bound by NTA-OG labeled yMutSα (blue 

trace). (F) Three-dimensional histograms of Cy5-TAM FRET efficiency versus yMutSα-

OG intensity in the presence and absence of 5 nM unlabeled yMutSα or tris-NTA-OG 

labeled yMutSα. The z-axis is the number of occurrences. Laser illumination pattern is 

indicated above each graph (blue=473nm, green=532nm, red=635nm). 
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addition to CC-mismatch-DNA coated surfaces (methods).  DNA bending was monitored 

by continuously exciting TAMRA with 532 nm illumination and measuring FRET to 

Cy5.  The presence of OG-yMutSα was monitored by measuring OG emission under 

either continuous (data not shown) or pulsed (Figure 3.2C-E) 473 nm illumination. 

Despite using an oxygen scavenging system, a shutter-pulsed scheme was required to 

allow longer observation intervals before OG photobleached. 

After leakage subtraction and gamma correction (Methods), free CC-mismatch 

DNA molecules exhibit constant FRET efficiencies (Figure 3.2C), with an average FRET 

~ 0.35 (Figure 3.2F). Unlabeled yMutSα binding increases FRET between TAMRA and 

Cy5, but yields no blue emission (Figure 3.2D); whereas, binding of OG-yMutSα 

increases both FRET and the blue emission, consistent with the presence of the NTA-OG 

moiety (Figure 3.2E).  In addition, using a shuttered excitation (Figure 3.2E), the 

presence of OG-yMutSα can be observed for long times indicating that the OG-NTA 

moiety remains stably bound to MutSα during the time course of the experiment. These 

long bound state lifetimes for tris-NTA dyes are consistent with ensemble experiments 

using NTA-dyes (Lata, Gavutis et al. 2006). In the absence of MutSα, the histogram of 

CC-DNA FRET efficiency vs. OG-yMutSα emission intensity for many molecules 

(Figure 3.2F) shows FRET efficiencies around 0.35 and OG emission near zero.  In the 

presence of OG-MutSα, one FRET emission peak overlaps with free DNA and another 

population shifted to higher FRET values (~0.6 gamma corrected) indicating yMutSα-

induced DNA bending.  A significant population of DNA without bound protein is 

expected because yMutSα is present at 5 nM, well below the 54 nM KD (determined by 

fluorescence anisotropy).  The higher FRET population can be divided into those with 
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low or high OG emission.  Those higher FRET events with low blue intensities suggest 

that unlabeled yMutSα is bound, and those with higher blue (15% of molecules) 

intensities confirm bound OG-yMutSα.  To assess if tris-NTA-dye-labeling affects DNA 

bending, we compared DNA bending distributions for labeled and unlabeled MutSα and 

found no significant differences (Figure 3.2F). These data demonstrate that fluorescently 

tagged yMutSα is active. 

To demonstrate the method’s flexibility, we examined interactions among 

neuronal SNARE proteins, which mediate membrane fusion (Rizo and Rosenmund 

2008).  For neuronal SNAREs, two membrane proteins (syntaxin and synaptobrevin) on 

distinct cellular compartments assemble with a third SNARE protein (SNAP-25) to form 

a heteromeric complex of 4 parallel α-helices called the SNARE complex, which 

crosslinks the fusing membranes through the transmembrane domains of the proteins 

(Figure 3.3A).  

Noncovalent labeling allows dyes to be added to samples in situ, as we 

demonstrated for membrane-incorporated SNARE complexes.  30 nM Ni3-tris-NTA-OG 

was introduced above a phosphatidylcholine bilayer that contained SNARE complexes 

tethered by syntaxin’s transmembrane domain (Figure 3.3B).  The complexes were 

tagged before assembly with Alexa647-maleimide covalently linked to S61C of 

synaptobrevin. We used simultaneous 473 nm and 635 nm illumination to identify 

individual Alexa647 labeled complexes by red emission, while NTA-OG binding was 

assessed by blue emission (Figure 3.3C).  NTA-OG colocalized with over 25% of 

SNARE complexes when the 6His was present on synaptobrevin, and was reduced to 

background levels (1-4%) in controls (Figure 3.3D).
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Figure 3.3 - In situ labeling of SNARE proteins reconstituted in a supported lipid 
bilayer using tris-NTA dyes. 

(A) Schematic descriptions of syntaxin and the SNARE complex. (B) SNARE complex 

labeled by Alexa 647 at a cysteine mutation in synaptobrevin (s61c) is reconstituted into 

a 100% phosphatidylcholine supported lipid bilayer by the transmembrane domain of 

syntaxin.  Tris-NTA-OG dye is added above the bilayer. (C) Simultaneous 473nm and 

635nm illumination is used to colocalize the OG dye on synaptobrevin's 6-His tag with 

the covalently attached Alexa647.  Synaptobrevin (1-96) is required to be incorporated in 

SNARE complex with SNAP-25 and syntaxin in order for it to localize to the bilayer.  

(D) Population analysis of colocalization (percentages) of Ni:NTA-OG from solution at 

sites preidentified to contain membrane incorporated SNARE complexes labeled with  

Alexa 647 (synaptobrevin a72c).  Experiments using 6His-tagged synaptobrevin are 

compared to controls omitting the 6His-tag, Ni:NTA-OG, or SNARE complex as 

indicated. 
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Alternately, covalent labeling with four dyes can be used to structurally 

characterize this multiprotein complex.   We prepared SNARE complexes with one 

donor-acceptor pair (Alexa 488/Alexa 555) at the N-terminal end of the α-helical bundle 

and a distinct donor-acceptor pair (Alexa 647/Cy7) at the C-terminal end.  The SNARE 

complex is a 2 nm x 10 nm rod-like structure, so high FRET is expected from each pair, 

but little coupling is expected between the two pairs.  Under continuous illumination with 

both blue and red lasers, we simultaneously observed two independent FRET pairs on 

individual complexes (Figure 3.4A).   

The SNARE complex is also a binding platform for other proteins that regulate 

membrane fusion. We investigated Munc-18 binding to both syntaxin and to the SNARE 

complex (Dulubova, Khvotchev et al. 2007; Rizo and Rosenmund 2008).  In the first 

SNARE experiment (Figure 3.3A), syntaxin was covalently labeled with dyes at cysteine 

mutations in the C-terminal end of the SNARE domain and the N-terminal end of the 3-

helix bundle that were designed to yield low (but non-zero) FRET (Margittai, Widengren 

et al. 2003) when the two domains connected by a flexible linker are unbound (open 

syntaxin) and high FRET when they bind (closed syntaxin).  Syntaxin was reconstituted 

into supported lipid bilayers and Alexa488 labeled Munc-18 was added in solution above 

the bilayer.  Using sequential red-blue-green laser illumination (top axis, Figure 3.4B), 

we observed complexes where blue emission indicated the presence of Munc-18 and 

FRET in the green and red channels reported the conformational state of syntaxin.  We 

confirmed that Munc18 binds to syntaxin in the closed conformation, as expected 

(Margittai, Widengren et al. 2003) (Figure 3.4B). 
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Figure 3.4 - SNARE smFRET experiments. 

(A) SNARE complex lacking transmembrane domains was immobilized inside 

tethered liposomes and labeled with Alexa488 and Alexa555 on SNAP-25 (residues 20 

and 139 – both near the SNARE complex N-terminus), Alexa 647 on syntaxin (residue 

249 – near the SNARE complex C-terminus) and Cy7 on synaptobrevin (on a lysine, 
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~70% near the C-terminus).  Two distinct FRET pairs on the same protein complex are 

simultaneously measured.  (B) Emission from bilayer reconstituted, full-length syntaxin 

labeled with Alexa555 (green trace) and Alexa647 (red trace) (labels at residues 35 and 

249) co-localized with Alexa488 labeled Munc-18 (blue trace).  (C) Emission from 

liposome encapsulated SNARE complex lacking transmembrane domains labeled with 

Alexa555 (syntaxin-e35c) and Alexa647 (synaptobrevin-a72c) is co-localized with 

Alexa488 labeled Munc-18 (blue). Note, the 473 nm laser is pulsed.  In all panels, traces 

were selected to show anticorrelated bleaching events to confirm single molecule FRET 

interactions.  Laser illumination pattern is indicated above the graphs (blue=473nm, 

green=532nm, red=635nm, black=690nm). 
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We also observed Munc-18 interacting with the full SNARE complex (Dulubova, 

Khvotchev et al. 2007).  Soluble SNARE complex was co-encapsulated with Alexa488-

Munc-18 in surface-tethered, 100 nm liposomes (Fig. 4C).  The structure of this 4-protein 

complex is as yet undetermined.  For this experiment, the SNARE complex was labeled 

with a donor dye (Alexa 555) in the 3-helix bundle of syntaxin and with an acceptor dye 

on synaptobrevin in the central region of the SNARE bundle.  We screened liposomes for 

the presence of Alexa488-Munc-18 through blue dye emission under pulsed illumination 

and then used FRET in only those liposomes to examine the spacing between syntaxin’s 

3-helix bundle and the core SNARE complex (Figure 3.4C).  Measuring FRET from 

additional label attachment locations will allow us to put constraints on the overall 

conformation of the Munc18:SNARE complex. 

Our development of a 4-color, single molecule fluorescence instrument for 

measurements on immobilized biomolecules with wide-field imaging will allow single 

molecule studies of increasingly complex systems.  The ability to colocalize binding 

partners at complexes while also monitoring conformational changes in other parts of the 

complex via FRET, or to simultaneously monitor two FRET pairs on a single complex, 

will enable studies of more complicated molecular assemblies than current approaches. 

This ability to directly correlate transient accessory binding to dynamic conformational 

transitions provides a new avenue for studies of biological signaling pathways.  

Simultaneous quantification of fluorescence emission from four dyes interacting through 

FRET has the potential to report six distinct distances on a single molecular complex. 

Furthermore, the demonstration that tris-NTA dye conjugates can label 6His-

tagged proteins for single molecule studies significantly expands the capability for 
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labeling proteins.  Non-covalent labeling at a terminally located affinity tag can minimize 

the possibility of destroying function in proteins that are susceptible to structural 

perturbation by point mutations for dye attachment.  The tris-NTA labeling approach also 

avoids the long incubation times required for most covalent labeling strategies and allows 

in situ labeling.  The bound state lifetimes of the tris-NTA dyes to the 6His-tagged 

proteins are sufficiently long to permit monitoring of many protein-protein and protein-

DNA interactions.  

The ease of modifying an existing two-color TIRM by using a commercially 

available four color splitting device and its affordability, as well as the flexibility of non-

covalent dye labeling, suggest this method could be adopted by many research groups. 
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 Chapter 4  

 

CHARACTERIZATION OF HUMAN MSH2-MSH6 NUCLEOTIDE 
OCCUPANCY 

 

Introduction 

An important aspect of the function of MutS(α) is the formation of the sliding 

clamp. Most data suggest that a MutS(α) sliding clamp forms in the presence of ATP. 

However, the circumstances that lead to formation of the sliding clamp remain unclear. 

Experimental evidence has shown that MutS(α) undergoes conformational changes in the 

presence of ATP (Allen, Makhov et al. 1997; Studamire, Quach et al. 1998; Gradia, 

Subramanian et al. 1999; Blackwell, Bjornson et al. 2001; Kato, Kataoka et al. 2001; 

Hess, Gupta et al. 2002; Joshi and Rao 2002; Jiang, Bai et al. 2005; Mendillo, Mazur et 

al. 2005; Gorman, Chowdhury et al. 2007; Pluciennik and Modrich 2007; Qiu, DeRocco 

et al. 2012). The ATPase activity and the nucleotide occupancy requirement for such a 

conformational change has been the focus of many studies (Haber and Walker 1991; 

Gradia, Acharya et al. 1997; Blackwell, Bjornson et al. 1998; Blackwell, Martik et al. 

1998; Gradia, Subramanian et al. 1999; Gradia, Acharya et al. 2000; Drotschmann, Hall 

et al. 2002; Joshi and Rao 2002; Antony and Hingorani 2003; Selmane, Schofield et al. 

2003; Lamers, Georgijevic et al. 2004; Antony, Khubchandani et al. 2006; Mazur, 

Mendillo et al. 2006; Jacobs-Palmer and Hingorani 2007; Cyr 2008; Zhai and Hingorani 
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2010; Heinen, Cyr et al. 2011). Progress has been made in understanding the role of 

nucleotide occupancy in the formation of MutS-MutL (prokaryotes) and MutSα-MutLα 

(eukaryotes) ternary complexes and signaling downstream repair. Studies have shown 

that while the presence of ATP is a requirement for MutS-MutL-mismatch DNA 

(mmDNA) complex formation, ATP hydrolysis by either protein is not necessary 

(Selmane, Schofield et al. 2003). Given the importance of ATP binding and hydrolysis in 

the activation of the MMR process, it is not surprising to note that many of the mutations 

in the ATPase domain of either subunit are part of the human nonpolyposis colorectal 

cancer (HNPCC) mutation spectrum. 

Three models have been proposed to try to explain the MMR initiation 

mechanism: the translocation model, the molecular switch model, and the static 

modulation model. The translocation model suggests that upon recognizing a mismatch, 

ATP hydrolysis by MutS(α) drives the protein to travel along the DNA away from the 

mismatch (Allen, Makhov et al. 1997; Blackwell, Bjornson et al. 1998; Gradia, 

Subramanian et al. 1999; Blackwell, Bjornson et al. 2001; Acharya, Foster et al. 2003; 

Gorman, Chowdhury et al. 2007) to recruit other MMR proteins and the coordinate 

downstream repair events (Allen, Makhov et al. 1997; Blackwell, Bjornson et al. 1998; 

Gradia, Subramanian et al. 1999; Blackwell, Bjornson et al. 2001; Acharya, Foster et al. 

2003; Gorman, Plys et al. 2010). The molecular switch model suggests that a 

combination of factors must occur prior to MutS(α) initiated repair. MutS(α) must 

recognize a mismatch and then bind a total of two ATP molecules, one into each subunit. 

The rate-limiting step is thought to be the exchange of ADP for ATP in MSH2 (or 

subunit 2 in Taq and E. coli) is the final step before MutS undergoes a conformational 
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change to form the sliding clamp, which would subsequently recruit MMR proteins and 

coordinate downstream repair (Gradia, Acharya et al. 1997; Gradia, Subramanian et al. 

1999; Gradia, Acharya et al. 2000; Acharya, Foster et al. 2003). The static modulation 

model proposes that MutS(α) requires ATP binding and hydrolysis in order to control 

interactions with DNA while also remaining at the mismatch site (Habraken, Sung et al. 

1998; Wang, Lawrence et al. 1999; Junop, Obmolova et al. 2001; Schofield, Nayak et al. 

2001; Selmane, Schofield et al. 2003; Geng, Sakato et al. 2012). There is evidence to 

support each of the proposed MMR initiation models, but it unclear which model(s) is 

correct. It is important to determine the mechanism of MMR initiation as it may be useful 

for the development of targeted therapeutics or treatments.  

Certain mutations in the ATPase domains of MSH2-MSH6 result in a separation-

of-function mutant MutSα complex, which is deficient in MMR but able to participate in 

apoptotic responses due to DNA damage. For example, a mutation of the glycine residue 

in the Walker A motif of Msh2 (GXXXGK(S/T)) (MSH2G674A-MSH6WT in mouse and 

human) results in a mutator phenotype due to a deficiency in MMR (Drotschmann, 

Topping et al. 2004; Lin, Wang et al. 2004; Lützen, de Wind et al. 2008; Ollila, Dermadi 

Bebek et al. 2008; Geng, Sakato et al. 2012). Msh2G674A/G674A mice exhibit the same 

mutagenic spectrum of cancer development as that of a MutSα null system (Lin, Wang et 

al. 2004). However, the Msh2G674A/G674A mice have a longer lifespan than that of the 

Msh2 null mice. Interestingly Msh2G674A/G674A mouse embryonic fibroblasts (MEFs) 

exhibit the same susceptibility to cisplatin treatment that Msh2+/+ mice had (Yang, 

Scherer et al. 2004) which is contrary to studies showing cells deficient in Msh2 are 

resistant to chemotherapeutic treatments. This discrepancy suggests that the 
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Msh2G674A/G674A cells are inducing DNA damage dependent apoptosis in a similar manner 

to that of Msh2+/+ cells (Lin, Wang et al. 2004).  

Biochemical analyses suggest that the G674A mutation in MSH2 does not affect 

the protein stability. Mismatch binding by MSH2G674A-MSH6WT is unaffected; however, 

ATP dependent release of a mismatch is inefficient compared to MSH2WT-MSH6WT 

(Drotschmann, Topping et al. 2004; Lützen, de Wind et al. 2008; Ollila, Dermadi Bebek 

et al. 2008; Geng, Sakato et al. 2012). It has been hypothesized that due to the high 

binding affinity for a mismatch and slow ATP dependent release of the mismatch, that 

Msh2G674A-MSH6WT mutant might prevent MMR by blocking access to the mismatch 

(Drotschmann, Topping et al. 2004; Ollila, Dermadi Bebek et al. 2008). 

A second interesting separation-of-function mutant involves a point mutation in 

Msh6 at the interface between Msh2 and Msh6 near the p-loop of the Msh2 ATPase site 

(Msh2WT-Msh6G1067D in S. cerevisiae and the homologous mutations MSH2WT-

MSH6T1219D in humans and Msh2WT-Msh6T1217D in mice) (Berends, Wu et al. 2002; Hess, 

Gupta et al. 2002; Yang, Scherer et al. 2004). Similar cell survival studies of 

Msh6T1217D/T1217D mice to those performed with Msh2G674A/G674A mice yielded the same 

inability to activate MMR (observed by a higher occurrence of microsatellite instabilities 

(MSIs) which are a hallmark of cancer susceptibility) while maintaining wild type-like 

cellular vulnerability to DNA damage (Yang, Scherer et al. 2004). Studies of nucleotide 

binding for a homologous mutation in Saccharomyces cerevisiae (S. cerevisiae) 

(yMsh2WT-Msh6G1067D), suggest that the protein is deficient for nucleotide binding in the 

Msh2 subunit. However, the homologous mutation in the yeast system is not a conserved 

residue. 
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Interestingly, both MSH2G674A-MSH6WT and MSH2WT-MSH6T1219D mutants were 

shown in vitro to be able to bind mmDNA similar to wild type MSH2WT-MSH6WT. 

However, neither protein was unable to form the ternary complex with MutLα that is 

required for MMR initiation (Hess, Gupta et al. 2002; Hess, Mendillo et al. 2006; Geng, 

Sakato et al. 2012). Combined, these data support a role for the MutSα-MutLα ternary 

complex in MMR signaling and suggest some divergent function of MutSα in apoptotic 

response. To better characterize the conditions required for sliding clamp formation in 

hMutSα and potential differences in hMutSα induced apoptosis, we evaluated the 

nucleotide binding properties of wild type hMSH2WT-hMSH6WT (WT), hMSH2G674A-

hMSH6WT (G674A), and hMSH2WT-hMSH6T1219D (T1219D). 

Materials and Methods 

Preparation of human MSH2-MSH6 and its mutants 

MSH2-MSH6 and its mutants were prepared and purified as described previously 

(Geng, Du et al. 2011; Geng, Sakato et al. 2012).  Briefly, recombinant hMutSα was 

expressed in insect cells using the baculovirus system. Each protein was purified over a 

6-ml ResourceTM Q anion exchange column (GE Healthcare), a 5-ml HiTrapTM Heparin 

affinity column (GE Healthcare), and a HiLoad 16/60 Superdex 200 sizing column (GE 

Healthcare) as described in (Geng, Du et al. 2011; Geng, Sakato et al. 2012). Wild type 

hMutSα and hMSH2G674A-hMSH6WT were eluted in buffer A (25 mM HEPES, pH 7.5, 

0.1 mM EDTA, 10% glycerol, 1 mM DTT, 1× Complete proteinase inhibitor mixture 

(Roche Applied Science) and 0.1% PMSF) containing 100 mM KCl. MSH2wt-

MSH6T1219D was eluted in buffer A containing 300 mM KCl as described in (Geng, Du et 
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al. 2011; Geng, Sakato et al. 2012). Concentrations of MutSα were determined with a 

modified Bradford protein assay (Bio-Rad) using BSA as the standard. 

DNA substrates  

ssDNA oligonucleotides used to create DNA substrates were purchased from 

either Integrated DNA Technologies (IDT) (Coralville, IA) or TriLink Biotechnologies 

(San Diego, CA). Oligonucleotide (oligo) sequences used to make DNA substrates for 

DNA cross-linking experiments are given in Table 4.1. DNA substrates for cross-linking 

were previously used in biochemical studies by Geng et al (Geng, Sakato et al. 2012). 

Briefly, to create AT, GT, and O6MeGT substrates, Oligo 1 was annealed to Oligo 2, 

Oligo 3, or Oligo 4 respectively. Appropriate oligonucleotides were annealed at ~70°C 

for 20 min and slowly cooled to room temperature at ~1°C min-1. 

UV-crosslinking of Nucleotide 

Nucleotide occupancy was determined by UV cross-linking α or γ labeled 32P-

ATP into the ATPase domains of hMSH2-MSH6 and resolving the two bound subunits 

on a 10% SDS-PAGE similar to previously performed experiments on S. cerevisiae and 

human MSH2-MSH6 (Hess, Gupta et al. 2002; Mazur, Mendillo et al. 2006; Hargreaves, 

Shell et al. 2010; Heinen, Cyr et al. 2011). UV-crosslinking experimental design is 

depicted in Figure 4.1. Reactions were performed in 96 well plates at 4°C. Each 20 µL 

reaction mixture contained 10 µCi of 3000 Ci/mmol [γ-32P]-ATP or of 800 Ci/mmol [α-

32P]-ATP, reaction buffer with or without magnesium chloride (25 mM Tris HCl (pH 

7.8), 100 mM sodium acetate, 5 mM magnesium chloride, 2 mM dithiothreitol (DTT), 

200 µg/mL BSA, and 5% glycerol), 4 pmol hMSH2-MSH6 or appropriate mutant 
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Table 4.1 - DNA oligonucleotide sequences used for cross-linking DNA substrate 
construction. 

Oligonucleotide	
   Sequence	
  (5’	
  to	
  3’)	
  

1	
   CGG	
  ATC	
  CGA	
  CTC	
  ATT	
  CCT	
  GCA	
  GCG	
  ACT	
  CCA	
  TGG	
  GA	
  

2	
   TCC	
  CAT	
  GGA	
  GTC	
  GCT	
  GCA	
  GGA	
  ATG	
  AGT	
  CGG	
  ATC	
  CG	
  

3	
   TCC	
  CAT	
  GGA	
  GTC	
  GCT	
  GCG	
  GGA	
  ATG	
  AGT	
  CGG	
  ATC	
  CG	
  

4	
   TCC	
  CAT	
  GGA	
  GTC	
  GCT	
  GC(meG)	
  GGA	
  ATG	
  AGT	
  CGG	
  ATC	
  CG	
  

 



 

 113 

 

 

Figure 4.1 – UV cross-linking experimental design. 

A cartoon representation of the UV-crosslinking experiments is shown with the MSH2 

subunit represented in blue and the MSH6 subunit represented in green. Radiolabeled 

nucleotide is depicted in yellow. UV crosslinking was preformed at 254 nm for 20 min. 

Radiolabeled subunits of MSH2WT-MSH6WT, MSH2G674A-MSH6WT, or MSH2WT-

MSH6T1219D were resolved on a 10% SDS-PAGE. Experiments were performed in the 

presence and absence of DNA as well as the presence and absence of Mg2+. 
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protein, and enough unlabeled ATP to bring the total ATP concentration to 100 µM. 

Reactants were incubated on ice 10 min prior to UV cross-linking. UV cross-linking was 

performed at 254 nm for 20 min in a Stratagene UV Crosslinker 1800. Samples were then 

boiled in SDS load dye and subunits were resolved on a 10% SDS-PAGE with a 4% 

stacking gel. Gels were Coomassie stained, destained, and exposed to phosopho-imaging 

screens overnight. 

The intensities of phosphoimage bands were quantified using NIH ImageJ 

software (v1.46J) (Rasband 1997-2012). Nucleotide occupancy percentages are 

calculated as a percent of total radiation detected within the MSH2 and MSH6 bands of a 

particular lane.  

Results 

To better understand the mechanism by which the MSH2WT-MSH6T1219D and the 

MSH2G674A-MSH6WT behave as separation-of-function mutants, we evaluated the 

nucleotide occupancy for each protein in the presence and absence of DNA and Mg2+. 

The absence of Mg2+ has been previously used as a means to prevent ATP hydrolysis 

(Mazur, Mendillo et al. 2006). In addition, results in the absence of Mg2+ are similar to 

those performed using γ-S35-ATP in the presence of Mg2+. The requirement of nucleotide 

binding (but not necessarily nucleotide hydrolysis) by hMutS(α) in order to initiate DNA 

mismatch repair has been a topic of much interest (Gradia, Acharya et al. 1997; Gradia, 

Subramanian et al. 1999; Gradia, Acharya et al. 2000; Junop, Obmolova et al. 2001; 

Kato, Kataoka et al. 2001; Jiang, Bai et al. 2005; Jacobs-Palmer and Hingorani 2007; 

Heinen, Cyr et al. 2011; Monti, Cohen et al. 2011; Geng, Sakato et al. 2012; Qiu, 

DeRocco et al. 2012). Evidence suggests that in the presence of a DNA mismatch, a 
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specific nucleotide occupancy combination may be involved in the signaling mechanism 

for repair. However, little is known regarding the behavior of the protein with respect to 

DNA damage and apoptotic signaling. The work presented here is an attempt to further 

understand the apoptotic signaling involvement of hMutSα by using mutant proteins 

shown to be deficient in the mismatch repair pathway, but retain their ability initiate 

apoptosis in response to DNA damaging agents. These particular proteins contain 

mutations in the ATPase domains. 

Nucleotide cross-linking studies have been used previously to determine both 

nucleotide binding constants and differences between subunit affinity for nucleotide prior 

to binding and while bound to the mismatch DNA (Hess, Mendillo et al. 2006; Mazur, 

Mendillo et al. 2006; Heinen, Cyr et al. 2011). These studies in conjunction with 

traditional ATPase assays give further insight to the workings of the composite ATPase 

sites of MutS(α). Cross-linking ATP nucleotide into WT, G674A, and T1219D under 

hydrolyzing conditions in the absence of DNA yields similar occupancy results in WT 

and T1219D (Figure 4.2). Lanes containing [α-32P]-ATP will display protein bands that 

are a combination of [α-32P]-ATP and [α-32P]-ADP given that hydrolysis will not affect 

the radioactivity present. Lanes containing [γ-32P]-ATP will only display bands 

containing [γ-32P]-ATP. By evaluating both [α-32P]-ATP and [γ-32P]-ATP, we can get a 

qualitative idea regarding binding of ADP vs. that of ATP in each subunit.  

WT and T1219D preferentially bind ATP into MSH2 over MSH6 

Both WT and T1219D exhibit a strong preference for nucleotide binding into 

MSH2 (93% and 99% respectively) in the absence of DNA and presence of Mg2+ (Figure 

4.2). Interestingly, while the WT protein has a clear preference for binding nucleotide 
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Figure 4.2 – SDS-PAGE of UV cross-linked nucleotide into subunits of WT, G674A, 
and T1219D in the absence of DNA under hydrolyzing conditions. 

SDS-PAGE results of UV cross-linked [α-32P]-ATP or [γ-32P]-ATP into the MSH2 and 

MSH6 ATPase sites of WT, T1219D, or G674A in the presence of excess ATP (100 µM) 

and Mg2+ (5 mM). Each 20 µL reaction contained 10 µCi of 3000 Ci/mmol [γ-32P]-ATP 

or of 800 Ci/mmol [α-32P]-ATP, reaction buffer (25 mM Tris HCl (pH 7.8), 100 mM 

sodium acetate, 5 mM magnesium chloride, 2 mM dithiothreitol (DTT), 200 µg/mL BSA, 

and 5% glycerol), and 4 pmol hMSH2-MSH6 or appropriate mutant protein. Cross-

linking was performed on ice for 20 min at 254 nm. MSH2-MSH6 subunits were 

resolved on a 10% SDS-PAGE. 
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into MSH2 over MSH6, it still binds a measureable fraction of nucleotide into MSH6 

(7%), and the majority of that nucleotide appears to be ADP not ATP (comparing [α-32P]- 

ATP to [γ-32P]-ATP lanes) (Figure 4.2). T1219D on the other hand, does not appear to 

bind any measureable amount of nucleotide into MSH6 (Figure 4.2). The majority of 

nucleotide bound into MSH2 appears to be ATP given the amount of [γ-32P]-ATP bound 

into WT and T1219D (77% and 81% respectively). This result is consistent with S. 

cerevisiae studies (Mazur, Mendillo et al. 2006). The G674A mutant displays no 

detectable nucleotide binding into either subunit in the absence of DNA and presence of 

Mg2+. In these experiments we observe little nucleotide binding to G674A, but the 

binding observed is 42% and 58% into MSH2 and MSH6 respectively in the [α-32P]-ATP 

lanes. Due to the minimal detection, these measurements have a large error associated 

with them (±17%). We cannot, therefore, say that the protein does not bind nucleotide at 

all, but that if the protein is binding nucleotide, the bound complex may not be 

sufficiently stable for efficient cross-linking. 

WT, T1219D, and G674A preferentially bind ATP into MSH6 over MSH2 under 
non-hydrolyzing conditions 

To gain some insight about the nucleotide occupancy in the absence of DNA and 

prior to hydrolysis, we evaluated the nucleotide cross-linking the absence of Mg2+ 

(Figure 4.3). Because we are looking at non-hydrolyzing conditions, the inspection of [α-

32P]-ATP and [γ-32P]-ATP would be redundant. We therefore evaluated ATP binding via 

[α-32P]-ATP cross-linking and ADP binding by using unlabeled ADP as a competitor in 

an equimolar concentration to that of ATP.  
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Figure 4.3 - SDS-PAGE of UV cross-linked nucleotide into subunits of WT, G674A, 
and T1219D in the absence of DNA under non-hydrolyzing conditions. 

SDS-PAGE results of UV cross-linked [α-32P]-ATP or [γ-32P]-ATP into the MSH2 and 

MSH6 ATPase sites of WT, T1219D, or G674A in the presence of excess ATP (100 

µM). Mg2+ was not present in these reactions. Each 20 µL reaction contained 10 µCi of 

3000 Ci/mmol [γ-32P]-ATP or of 800 Ci/mmol [α-32P]-ATP, reaction buffer without Mg2+ 

(25 mM Tris HCl (pH 7.8), 100 mM sodium acetate, 2 mM dithiothreitol (DTT), 200 

µg/mL BSA, and 5% glycerol), and 4 pmol hMSH2-MSH6 or appropriate mutant protein. 

Cross-linking was performed on ice for 20 min at 254 nm. MSH2-MSH6 subunits were 

resolved on a 10% SDS-PAGE. 
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Under non-hydrolyzing conditions, we observe a shift in the dominant nucleotide 

bound subunit (Figure 4.3). WT, T1219D, and G674A exhibit strong preferences for 

binding nucleotide into the MSH6 subunit over MSH2 (Figure 4.3; lanes 1, 3, and 5 

respectively) with 83%, 87%, and 98% of nucleotide residing in MSH6 respectively. 

Interestingly, the addition of ADP does not appear to alter ATP binding significantly for 

WT (87%) or G674A (99%) (Figure 4.3, lanes 2 and 6 respectively). In contrast, ADP 

addition competes with ATP binding into MSH2 of the T1219D mutant (~three fold 

decrease in apparent binding into MSH2) (Figure 4.3, lane 4). This result suggests that 

the T1219D mutant has a higher affinity for ADP in MSH2 than either WT or G674A. 

The measureable binding of nucleotide into MSH6 of the G674A mutant in the absence 

of hydrolysis is in direct contrast with the lack of binding observed in the presence of 

hydrolysis. This difference suggests that the G674A mutant may bind and hydrolyze ATP 

so rapidly in MSH6 that the nucleotide cross-linking efficiency under hydrolyzing 

conditions is dramatically decreased. Consistent with ATP hydrolysis data, independent 

of hydrolyzing vs. non-hydrolyzing conditions, the G674A mutant appears to be impaired 

for nucleotide binding in MSH2 in the absence of DNA. 

DNA induces equal nucleotide binding into MSH2 and MSH6 of WT under 
hydrolyzing conditions 

Geng et al. determined the steady state ATP hydrolysis rates for WT, G674A, and 

T1219D in the absence of DNA and presence of homoduplex and heteroduplex DNA 

(Geng, Sakato et al. 2012). The steady state hydrolysis rate of WT human MutSα in the 

absence of DNA was determined to be ~0.03 s-1 and ~0.68 s-1 in the presence of a GT 

mismatch. The steady state hydrolysis rates for the G674A and T1219D mutant proteins 



 

 120 

exhibited an opposite trend in hydrolysis. G674A and T1219D exhibited hydrolysis rates 

of ~0.26 s-1 and 0.39 s-1 respectively in the absence of DNA. Similar hydrolysis rates 

were determined for G674A and T1219D in the presence of homoduplex DNA (kcat = 

0.42 s-1 and 0.89 s-1 respectively). However, in the presence of a GT mismatch the 

hydrolysis rates of the two proteins decrease ~10-fold (kcat = 0.03 s-1 and 0.02 s-1 

respectively) (Geng, Sakato et al. 2012). We therefore sought to characterize the 

nucleotide occupancy of WT, T1219D, and G674A in the presence of homoduplex (AT), 

base-base mismatched (GT), and damaged (O6MeGT) DNA. 

Under hydrolyzing conditions in the presence of DNA (Figure 4.4), WT no longer 

exhibits a preference for nucleotide binding into MSH2 over MSH6. In fact, the 

nucleotide occupancy in MSH2 and MSH6 of WT is about equal between the two 

subunits and quite similar when comparing AT, GT, and O6MeGT (Figure 4.4 – Lanes 1, 

5, 9 respectively) where we observe 47, 58, and 45% of nucleotide bound into MSH2 

respectively. The addition of ADP to system does little to alter WT nucleotide occupancy 

for AT, GT, or O6MeGT (50%, 48%, 46% binding into MSH2 respectively). These 

observations are consistent with a requirement for nucleotide binding into both subunits 

for MMR initiation (Acharya, Foster et al. 2003; Antony and Hingorani 2003; Antony, 

Khubchandani et al. 2006; Heinen, Cyr et al. 2011; Monti, Cohen et al. 2011; Qiu, 

DeRocco et al. 2012). 

DNA induces a preferential binding of nucleotide into MSH2 for T1219D but into 
MSH6 for G674A under hydrolyzing conditions 

In contrast to wild type, the T1219D and G674A mutants do not exhibit equal 

occupancy of ATP for each subunit. Under hydrolyzing conditions, T1219D maintains a 
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Figure 4.4 - SDS-PAGE of UV cross-linked nucleotide into subunits of WT, G674A, 
and T1219D in the presence of 10 nM of the appropriate DNA under hydrolyzing 
conditions. 

SDS-PAGE results of UV cross-linked [α-32P]-ATP or [γ-32P]-ATP into the MSH2 and 

MSH6 ATPase sites of WT, T1219D, or G674A in the presence of excess ATP (100 

µM), Mg2+ (5 mM), and 10 nM of homoduplex, GT, or O6MeGT DNA. Each 20 µL 

reaction contained 10 µCi of 3000 Ci/mmol [γ-32P]-ATP or of 800 Ci/mmol [α-32P]-ATP, 

reaction buffer (25 mM Tris HCl (pH 7.8), 100 mM sodium acetate, 5 mM magnesium 

chloride, 2 mM dithiothreitol (DTT), 200 µg/mL BSA, and 5% glycerol), 4 pmol 

hMSH2-MSH6, or appropriate mutant protein, and 10 nM DNA. Cross-linking was 

performed as described in Materials and Methods. 
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preference for binding nucleotide into MSH2 over MSH6 in the presence of homoduplex 

DNA (90% in MSH2), GT DNA (89% in MSH2), and O6MeGT (80% in MSH2) (Figure 

4.4 – Middle panel, Lanes 1, 5, and 9 respectively). Again there is very little difference in 

nucleotide preference for the different DNA substrates. The addition of ADP to the 

reaction alters the nucleotide binding occupancies in T1219D where AT, GT, and 

O6MeGT exhibit nucleotide binding at 56%, 43%, and 46% respectively in the MSH2 

subunit (Figure 4.4 – Middle panel, Lanes 2, 6, and 10 respectively). This occupancy is 

roughly half of the nucleotide binding in MSH2 observed in the absence of unlabeled 

ADP reinforcing the proposed affinity of MSH2 for ADP in contrast to WT and G674A. 

Under hydrolyzing conditions, G674A exhibits nucleotide occupancies opposite 

from that of T1219D. In the presence of AT, GT, and O6MeGT, G674A exhibits a 

preference for nucleotide binding into the MSH6 subunit over the MSH2 subunit (only 

13%, 9%, and 9% respectively being bound into MSH2) (Figure 4.4- Bottom panel, 

Lanes 1, 5, and 9 respectively). The addition of ADP into the system does not alter the 

nucleotide occupancies in the presence of AT (19% in MSH2), GT (10% in MSH2), or 

O6MeGT (10% in MSH2) (Figure 4.4- Bottom panel, Lanes 2, 6, and 10 respectively). In 

this respect, the lack of an ADP competitive effect on nucleotide occupancy is similar in 

WT and G674A. 

WT, T1219D, and G674A bind ATP preferentially in MSH6 over MSH2 under 
non-hydrolyzing conditions 

Pre-steady state nucleotide occupancies were also probed in the presence of AT, 

GT, and O6MeGT DNA substrates by withholding magnesium (Mg2+), thereby 

preventing ATP hydrolysis. Under non-hydrolyzing conditions, WT (Figure 4.5 - Top 
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Figure 4.5 - SDS-PAGE of UV cross-linked nucleotide into subunits of WT, G674A, 
and T1219D in the presence of 10 nM of the appropriate DNA under non-
hydrolyzing conditions. 

SDS-PAGE results of UV cross-linked [α-32P]-ATP or [γ-32P]-ATP into the MSH2 and 

MSH6 ATPase sites of WT, T1219D, or G674A in the presence of excess ATP (100 µM) 

and 10 nM of homoduplex, GT, or O6MeGT DNA. Mg2+ was not present in these 

reactions. Each 20 µL reaction contained 10 µCi of 3000 Ci/mmol [γ-32P]-ATP or of 800 

Ci/mmol [α-32P]-ATP, reaction buffer (25 mM Tris HCl (pH 7.8), 100 mM sodium 

acetate, 2 mM dithiothreitol (DTT), 200 µg/mL BSA, and 5% glycerol), 4 pmol hMSH2-

MSH6, or appropriate mutant protein, and 10 nM DNA. Cross-linking was performed as 

described in Materials and Methods.
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panel) and T1219D (Figure 4.5 - Middle panel) again behave similarly. In the presence of 

AT and O6MeGT DNA substrates we observe a preference for nucleotide binding into 

MSH6 with WT binding into MSH2 at 23% and 24% respectively (Figure 4.5 - Top 

panel, Lanes 1 and 9) and T1219D binding into MSH2 at 20% and 28% respectively 

(Figure 4.5 - Middle panel, Lanes 2 and 10). There is some discrepancy between the 

binding affinities of WT and T1219D in the presence of a GT mismatch (25% and 47% 

respectively) (Figure 4.5 - Top panel, Lane 5 and Middle panel, Lane 5 respectively), 

however, given the error associated with each calculation, (±7% and ±17% respectively) 

there is no statistical difference between the two data sets using the student’s T-Test 

(T(4)=1.540, p>0.05). Therefore, WT and T1219D share similarities in the presence of 

AT, GT, and O6MeGT with a nucleotide binding preference for MSH6 over MSH2.  

However, upon addition of ADP to the reaction, WT remains unaltered in its 

nucleotide binding properties with binding into MSH2 remaining at 17%, 23% and 16% 

for AT, GT, and O6MeGT DNA substrates respectively (Figure 4.5 - Top panel, Lanes 2, 

6, and 10). In contrast, T1219D binding into MSH2 decreases to 4%, 13%, and 10% for 

AT, GT, and O6MeGT DNA substrates respectively (Figure 4.5 - Middle panel, Lanes 2, 

6, and 10). This 2 to 4 fold change in nucleotide binding into MSH2 is consistent with the 

decreased nucleotide binding occupancy observed under hydrolyzing conditions in the 

presence of DNA and non-hydrolyzing conditions in the absence of DNA. Together, the 

data reinforce a higher affinity for ADP binding in MSH2 of the T1219D mutant. 

Under non-hydrolyzing conditions, the G674A mutant maintains a preference for 

binding nucleotide into MSH6 in the presence of AT (3% MSH2), GT (4% MSH2), and 

O6MeGT (4% into MSH2) DNA (Figure 4.5 - Bottom panel, Lanes 1, 5, and 9). Addition 
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of ADP does not alter this preference for MSH6 nucleotide binding with 4%, 5%, and 3% 

for AT, GT, and O6MeGT DNA substrates respectively (Figure 4.5 - Bottom panel, 

Lanes 2, 6, and 10). Because these experiments were performed in the absence of 

hydrolysis, we can reasonably propose that the G674A mutant is defective for nucleotide 

binding into the MSH2 subunit. 

Discussion 

Our recent studies in collaboration with Geng et al revealed that the mechanism 

of action of WT hMutSα and the two mutant hMutSα proteins discussed here differ 

greatly in biochemical assays of MMR activity, ATPase activity, and ternary complex 

formation with hMutLα (Geng, Sakato et al. 2012). The G674A and the T1219D mutants 

were shown to be defective in initiation of both 3′ and 5′ nick-directed repair. Both 

mutants exhibit a strong binding affinity for the mismatch and block MMR-dependent 

excision. The two mutants have faster ATPase activities than wild type in the absence of 

DNA and much slower ATPase activities than WT in the presence of DNA. The two 

separation-of-function mutants were shown to both be competent for mismatch binding 

but defective in MMR at the mismatch. However, on closer inspection, it was shown that 

G674A mutant was able to form a ternary complex with MutLα to a lesser extent than 

that of WT while the T1219D mutant was shown to be completely defective in ternary 

complex formation with MutLα.  

Overall, in our study we observe similar nucleotide occupancies for WT, T1219D, 

and G674A in non-hydrolyzing conditions regardless of the presence or absence of DNA. 

All proteins exhibit a higher affinity for MSH6 occupancy in the absence of hydrolysis. 

The extent of binding varies somewhat, but the general trend is clear. In fact, under 
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hydrolyzing conditions and in the absence of DNA, we again observe similarities in 

nucleotide occupancy between WT and T1219D where MSH2 is the subunit exhibiting 

the highest nucleotide occupancy. Given that the G674A mutant appears to be completely 

deficient in nucleotide binding in MSH2, it is not surprising that we do not observe the 

same nucleotide occupancy as WT and T1219D in the absence of DNA under 

hydrolyzing conditions. Interestingly, despite the separation-of-function behavior of the 

two mutants, we observe no differences in nucleotide occupancy in the presence of AT, 

GT, or O6MeGT DNA for WT, T1219D, or G674A suggesting that the role of MutSα in 

apoptotic response to DNA damage is not dependent on nucleotide occupancy. However, 

the apoptotic role of MutSα may be dependent on conformational differences of the 

protein-DNA complex. 

The mechanisms by which the three proteins act diverge under hydrolyzing 

conditions in the presence of DNA. WT exhibits almost equal nucleotide occupancy of 

the two subunits while T1219D occupancy resembles that of T1219D under non-

hydrolyzing conditions and in the absence of DNA again exhibiting an MSH2 preference. 

The G674A mutant exhibits a clear nucleotide binding preference in MSH6 which is 

opposite of that of T1219D. Interestingly, under all conditions, the addition of ADP to the 

system only affects the nucleotide occupancy of the T1219D mutant resulting in 

decreased nucleotide occupancy of MSH2. These results reinforce the requirement for 

two functional ATPase domains for MMR to occur. We suggest that the G674A mutant is 

unable to induce MMR because it is completely unable to bind nucleotide into MSH2.  

T1219D is not deficient for nucleotide binding 
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In our studies, the T1219D mutant appears to be competent for nucleotide binding 

in both subunits regardless of conditions. This result differs from the conclusions from 

similar cross-linking studies with the analogous mutations in S. cerevisiae (yMsh2WT-

Msh6G1067D) (Hess, Gupta et al. 2002). Previous cross-linking results of yMsh2WT-

Msh6G1067D under non-hydrolyzing conditions suggested that the mutation eliminates 

ATP binding into Msh2. However, under non-hydrolyzing conditions we observe wild 

type-like cross-linking of ATP into MSH2 for T1219D in the absence of additional ADP. 

Because the analogous mutation in yeast is not of a conserved residue in human (glycine 

in yeast, threonine in human), the disparities between the nucleotide occupancy studies 

may be attributed to evolutionary differences between the two systems. Regardless, the 

T1219D mutant is able to bind nucleotide into both MSH2 and MSH6. 

We observe a competitive effect of ADP suggesting that the T1219D mutant has a 

much higher affinity for ADP binding into MSH2. It has been proposed that the T1219D 

mutant is unable to undergo the ADP to ATP exchange required for conformational 

changes into the MutSα sliding clamp (Hess, Mendillo et al. 2006; Geng, Sakato et al. 

2012). The inability of the T1219D protein to form the sliding clamp has been 

demonstrated in both yeast and human systems using SPR analyses (Hess, Mendillo et al. 

2006; Hargreaves, Shell et al. 2010; Geng, Sakato et al. 2012). Our result is consistent 

with an inability to exchange ADP for ATP in MSH2. T1219D would therefore exist 

predominantly in an MSH2-ADP liganded state where only MSH6 would be able to 

hydrolyze ATP. It has also been suggested that the T1219D mutation prevents the 

formation of the sliding clamp either by altering the MSH2 nucleotide-binding pocket or 

by blocking conformational changes at the ATPase interface. The MSH2 binding pocket 
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could certainly be molded such that the binding of ATP is unlikely, but that of ADP is 

unaltered. The proximity of the T1219D mutation to the interface between the two 

ATPase domains suggests that conformation shifts around the domain may be inhibited. 

While we cannot rule out either of these hypotheses, we further suggest that the T1219D 

mutation prevents either an ADP to ATP exchange in MSH2 or an exchange of the 

MSH2-bound ADP for the MSH6-released ADP either of which could be required for 

sliding clamp formation. This liganded state is consistent with the proposed dead end 

complex of the molecular switch model (Heinen, Cyr et al. 2011).  

G674A is a nucleotide binding deficient in MSH2 

The G674A mutation appears to be somewhat more complicated. The data from 

these studies suggest that the G674A mutant is defective for nucleotide binding into 

MSH2. However, the data from Geng et al suggests that the G674A mutant has some 

ability to form a ternary complex with MutLα (Geng, Sakato et al. 2012). If nucleotide 

binding into MSH2 is necessary for sliding clamp formation, and therefore ternary 

complex formation, a population of G674A that forms the ternary complex with MutLα 

would not be observed. However, if this competent G674A population is short-lived upon 

addition of ATP, the nucleotide occupancy would not necessarily be observed, given the 

time frame of the experiments presented here. These results would be consistent with a 

predominantly defective population for sliding clamp formation. The inability of the 

G674A mutant to form the sliding clamp is therefore similar to that of the T1219D 

mutation. G674A cannot bind nucleotide into MSH2 and therefore has the same difficulty 

performing the ADP to ATP exchange or the MSH2-bound ADP to MSH6-released ADP 

as discussed for the T1219D mutation.  
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Conclusions 

The nucleotide binding defects observed for the G674A and T1219D mutants and 

the phenotypes observed in other studies (Berends, Wu et al. 2002; Lin, Wang et al. 

2004; Yang, Scherer et al. 2004; Hess, Mendillo et al. 2006; Geng, Sakato et al. 2012) are 

consistent with an inability of either protein to undergo the conformational change to the 

sliding clamp required in MMR. The work presented here emphasizes the need for 

nucleotide binding capabilities in both ATPase domains of hMutSα. Specifically, we 

have shown that the inability of MSH2 to perform an ADP to ATP exchange or an 

MSH2-bound ADP to MSH6-released ADP exchange prevents the protein from forming 

the sliding clamp. Given the mismatch affinity of the G674A and T1219D mutants, the 

defective proteins remain at the mismatch and block excision and MMR. Because we do 

not observe differences between the nucleotide occupancies of the proteins in the 

presence of AT, GT, or O6MeGT DNA substrates, we cannot speculate on the role of 

nucleotide occupancy in apoptotic response to DNA damage.  

Given the similar mutagenic phenotypes of the G674A and T1219D mutants in 

vivo, it is interesting that the nucleotide binding properties of these mutants should be so 

different. The observations presented here have interesting implications for the points in 

the MutSα ATPase processing pathway these mutants may be trapped in. If these mutants 

are in fact being trapped in different stages of the ATP processing pathway, further 

characterization of each mutant may lead to a better understanding of both the MutSα 

mechanism of recognition and initiation and the involvement of MutSα in the DNA 

damage induced apoptosis.  
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 Chapter 5  

 

CHARACTERIZATION OF THE PROTEIN-DNA INTERACTIONS OF HUMAN 
MSH2-MSH6 

 

Introduction 

The crystal structures of both the prokaryotic MutS (E. coli and T. aquaticus) and 

human MSH2-MSH6 (hMutSα) suggests DNA binding by the protein is asymmetric 

(Lamers, Perrakis et al. 2000; Obmolova, Ban et al. 2000; Alani, Lee et al. 2003; Warren, 

Pohlhaus et al. 2007). This asymmetric nature is also observed in the ATP binding 

properties of the protein (Bjornson and Modrich 2003; Antony and Hingorani 2004; 

Martik, Baitinger et al. 2004; Antony, Khubchandani et al. 2006; Monti, Cohen et al. 

2011). Biochemical data evaluating the nucleotide binding properties for human MSH2-

MSH6 (or yeast Msh2-Msh6) consistently suggest a higher affinity for ATP in the MSH6 

subunit and for ADP in the MSH2 subunit (Blackwell, Martik et al. 1998; Drotschmann, 

Yang et al. 2002; Antony and Hingorani 2003; Antony and Hingorani 2004; Martik, 

Baitinger et al. 2004; Antony, Khubchandani et al. 2006; Mazur, Mendillo et al. 2006).  

The relationship between ATP processing and conformational changes in the 

MSH2-MSH6 protein has been evaluated using both biochemical and biophysical means. 

Most biochemical and biophysical data strongly suggests a requirement for an ATP:ATP 

ligand state in the two subunits of MutS or MutSα (MutS(α)) in order to induce the 
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protein conformational change believed to be the MutS(α) DNA sliding clamp (Acharya, 

Foster et al. 2003; Antony and Hingorani 2003; Antony, Khubchandani et al. 2006; 

Lebbink, Fish et al. 2010; Mendillo, Putnam et al. 2010; Heinen, Cyr et al. 2011; Monti, 

Cohen et al. 2011; Qiu, DeRocco et al. 2012). However the order of events leading up to 

the ATP:ATP ligand state have been a matter of debate. The conformations associated 

with the different ligand-state possibilities have been explored in a limited number of 

studies (Mendillo, Putnam et al. 2010; Qiu, DeRocco et al. 2012).  

The work in Chapter 4 describes the nucleotide binding properties of human 

MSH2-MSH6 (WT) and two hereditary non-polyposis colorectal cancer (HNPCC) 

mutant proteins, MSH2G674A-MSH6 (G674A) and MSH2-MSH6T1219D (T1219D). We 

have shown that the nucleotide binding properties for WT, G674A, and T1219D do not 

vary with DNA substrate (homoduplex, GT mismatch, or O6MeGT DNA damage). The 

nucleotide binding data suggest that G674A is deficient for nucleotide binding into the 

MSH2 subunit. The T1219D mutant is competent for binding nucleotide in both MSH2 

and MSH6 subunits; however, the MSH2 subunit of T1219D exhibits a strong binding 

preference for ADP over ATP. The observed nucleotide binding deficiencies in G674A 

and T1219D present an opportunity to explore potential MSH2-MSH6 protein-DNA 

conformations of proteins in two different trapped ligand states. Specifically, G674A 

appears to be trapped in an MSH2-empty:MSH6-ATP ligand state and T1219D appears 

to be trapped in an MSH2-ADP:MSH6-ATP liganded state. These mutants allow us to 

evaluate the protein-DNA conformations in different ligand states and compare with that 

of WT.  
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Previous smFRET experiments evaluating the protein-DNA interactions of 

Thermus aquaticus (Taq) MutS with a GT mismatch DNA substrate have shown that the 

interaction is dynamic in nature (DeRocco, Anderson et al. 2010; Sass, Lanyi et al. 2010; 

Qiu, DeRocco et al. 2012). We have also demonstrated dynamic conformational changes 

in the mismatch binding region (Domain I) of the Taq MutS homodimer that are 

dependent on the presence of a mismatch and the nucleotide conditions (Qiu, DeRocco et 

al. 2012). These results are consistent with deuterium exchange studies showing changes 

in solvent accessibility in the presence of ATP and a mismatch versus absence of ATP for 

both the mismatch binding region (Domain I) and DNA clamp region (Domain IV) of 

yMutSα (Mendillo, Putnam et al. 2010). Little has been demonstrated regarding the 

protein-DNA interactions of the eukaryotic form of MutS (Msh2-Msh6 in yeast and 

MSH2-MSH6 in human). While we have a thorough report of the nucleotide binding 

preferences for each protein, the DNA binding conformational properties of either WT or 

the mutants have not been characterized. 

The single-molecule FRET (smFRET) study presented here demonstrates that the 

prokaryotic MutS and the eukaryotic MutSα-DNA complexes exhibit different 

conformational properties. In contrast to the prokaryotic MutS-DNA complexes, we 

observe few dynamic, MutSα dependent conformational changes in the presence of GT 

mismatch DNA for WT, T1219D, and G674A. However, we do observe differences in 

protein-dependent DNA bending conformations for WT-GT, T1219D-GT, and G674A-

GT complexes, which depend on the nucleotide conditions. Specifically, the largest 

conformational differences are observed in nucleotide conditions that promote sliding 

clamp formation of MutSα. These data taken with the nucleotide binding data presented 
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in Chapter 4 suggest different mechanisms for MMR deficiency and potentially DNA 

apoptotic response in the two HNPCC mutants, G674A and T1219D. 

Materials and Methods 

Preparation of human MSH2-MSH6 and its mutants 

MSH2-MSH6 and the HNPCC mutants were prepared and purified as described 

previously (Geng, Du et al. 2011; Geng, Sakato et al. 2012).  Briefly, recombinant 

hMutSα was expressed in insect cells using the baculovirus system. Each protein was 

purified over a 6-ml ResourceTM Q anion exchange column (GE Healthcare), a 5-ml 

HiTrapTM Heparin affinity column (GE Healthcare), and a HiLoad 16/60 Superdex 200 

sizing column (GE Healthcare) as described in (Geng, Du et al. 2011; Geng, Sakato et al. 

2012). Wild type hMutSα and hMSH2G674A-hMSH6WT were eluted in buffer A (25 mM 

HEPES, pH 7.5, 0.1 mM EDTA, 10% glycerol, 1 mM DTT, 1× Complete proteinase 

inhibitor mixture (Roche Applied Science) and 0.1% PMSF) containing 100 mM KCl. 

MSH2WT-MSH6T1219D was eluted in buffer A containing 300 mM KCl as described in 

(Geng, Du et al. 2011; Geng, Sakato et al. 2012). Concentrations of MutSα were 

determined with a modified Bradford protein assay (Bio-Rad) using BSA as the standard. 

Protein was generously provided to us by Dr. Peggy Hsieh (NIDDK, Bethesda, MD). 

DNA Substrates 

The 500 bp DNA substrates were constructed as described previously (Qiu, 

DeRocco et al. 2012) by first PCR amplifying a 500 bp linear DNA strand from the pUC-

19 VSR plasmid . The forward primer was labeled with biotin and the reverse primer 

unlabeled. Primer sequences used in PCR are shown in Table 5.1. The linear DNA was 
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Table 5.1 - PCR primers used in 500mer DNA substrate construction. 

Name	
   Pri

mer	
  

Sequence	
  
pUC19-­‐vsr	
  FRET	
  PROBE	
  R1	
   R1	
   5’-­‐/GAG	
  TCA	
  GTG	
  AGC	
  GAG	
  GAA	
  GC-­‐3’	
  

FRET	
  Probe	
  F1-­‐	
  Biotin	
   F1-­‐

Biotin	
  

5’-­‐/biotin/CGG	
  CAT	
  CAG	
  AGC	
  AGA	
  TTC	
  TA-­‐3’	
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nicked at four sites nick sites with Nt Bbv CI (New England Biolabs) at 37˚C overnight. 

A 37 bp gap in the PCR product was formed by heating the nicked DNA at 80˚C for 30 

minutes. While still warm, small DNA fragments and enzymes were removed from the 

reaction using the PCR Clean-up Kit (Qiagen). An oligo containing the desired mismatch 

(GT) and the Forster dye pairs (Cy3 and Cy5) was mixed with the gapped DNA in 1:1 

ratio and annealed to form complete double stranded DNA. The oligo sequence was TCA 

GCA ATC CTC A/iCy3/GC CAG GTC TCA GCT G/iCy5/GC CTC AGC G where the 

underlined base is the site of the generated GT mismatch and iCy5 and iCy3 denote the 

internal positions of the Cy3 and Cy5 dyes. Finally, the DNA was ligated using T4 DNA 

ligase. All oligos and primers were purchased from Integrated DNA Technologies 

(Coralville, IA). 

Fluorescence Anisotropy 

Anisotropy binding curves were acquired by titrating hMutSα or the appropriate 

mutant into a 3 mm quartz cuvette (Starna Cells, Inc., Atascadero, CA) containing 5 or 10 

nM TAMRA labeled DNA, 20 mM Tris HCl pH 7.8, 100 mM sodium acetate, 5 mM 

magnesium chloride. Binding curves performed in the presence of ADP or ATP included 

1 mM of the desired nucleotide in the binding buffer. Anisotropy was monitored using 

553 nm excitation and 574 nm emission on a Horiba Yvon Fluorolog-3 fluorimeter. The 

DNA sequence used in these binding experiments was: 5′- TAC CTC ATC TCG AGC 

GTG CCG ATA- (TAMRA)-3′ and the corresponding complement oligonucleotide 

containing the mismatch site (noted as the underline base): 5′-TAT CGG CAC GTT CGA 

GAT GAG GTA–3′. All oligonucleotides were purchased from IDT (Coralville, IA). 

Curves were fit using a previously described equation (Yang, Sass et al. 2005). 
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TIRF Microscope 

smFRET experiments were performed using a prism-type TIRM configuration 

described previously (Sass, Lanyi et al. 2010). Briefly the TIRM configuration consisted 

of an IX51 microscope with a 60x 1.2 NA PlanApo water immersion objective 

(Olympus, Tokyo, Japan) and 2 collinear lasers for illumination (green: 532nm, 100mW 

laser exciting Cy3 and red: 635nm, 40mW laser exciting Cy5).  The lasers were 

individually shuttered to allow sequential illumination.  The microscope image was split 

into 2 distinct spectral bands by a Dualview imager (Photometrics, Tucson, AZ) and 

relayed onto a Cascade 512B emCCD (Photometrics). The dualview contained one 

dichroic mirror (645dcxr Chroma, Brattleboro, VT) and band pass filters to define the 

spectral bands:  green channel (585x70, Chroma) and red channel (700x75, Chroma). 

Movies were collected at 10 Hz. A mapping function to align the two distinct spectral 

images was derived from images of red fluorescent microspheres (Duke Scientific, Palo 

Alto, California), which were visible in both channels.  This mapping function was used 

to extract the dye emission intensities from locations pre-identified to contain the 

acceptor. Data was analyzed with custom MatLab programs (Mathworks, Inc. Natick, 

MA). 

Backgrounds and leakages between channels were corrected during analysis as 

described elsewhere (Hohng, Joo et al. 2004; Clamme and Deniz 2005; Lee, Kapanidis et 

al. 2007; Ross, Buschkamp et al. 2007). Gamma factors were determined from anti-

correlated donor and acceptor photobleaching events using γ=ΔIA/ΔID (where ΔIA=IA
before 

bleach - IA
after bleach, and ΔID=ID

after bleach – ID
before bleach) as described elsewhere (Ha, Ting et 

al. 1999; Choi, Strop et al. 2010; McCann, Choi et al. 2010). Gamma was determined 
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from the data to be 0.9 for the Dualview. We determined a 9% leakage of the Cy3 signal 

into the red channel.  

Results 

Anisotropy binding constants support sliding clamp deficiency in T1219D and 

G674A 

In order to evaluate the DNA binding properties of WT, T1219D, and G674A, we 

began by first determining the DNA binding constants for each protein to a GT mismatch 

in the presence and absence of nucleotide (reported in Table 5.2). WT exhibits a high 

affinity for the GT mismatch in the absence of nucleotide (KD = 7.5 nM) and in the 

presence of ADP (KD = 8.9 nM) is consistent with similar results acquired by Martik et 

al. (KD = 19 nM and 27 nM respectively). WT exhibited a weaker affinity for the GT 

mismatch in the presence of ATP (KD = 107.9 nM) again consistent with similar results 

acquired by Martik et al. (KD = 109 nM) (Martik, Baitinger et al. 2004). 

Similar to WT, T1219D and G674A exhibited high affinities for the GT mismatch 

in the absence of nucleotide (KD = 5.2 nM and 15.4 nM respectively) and in the presence 

of ADP (KD = 10.8 nM and 6.2 nM respectively) (Table 5.2). Unlike WT, however, both 

T1219D and G674A maintain a high affinity for the GT mismatch in the presence of ATP 

(KD = 6.3 nM and 6.6 nM respectively). The observed binding affinity for T1219D is 

consistent with results suggesting the analogous mutant in Saccharomyces cerevisiae is 

unable to adopt the sliding clamp conformation (Hess, Mendillo et al. 2006; Hargreaves, 

Shell et al. 2010), as well as  our studies with the Hsieh lab (NIDDK, Bethesda) showing 

that both T1219D and G674A are unable to adopt the sliding clamp conformation in the 

presence of ATP (Geng, Sakato et al. 2012).
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Table 5.2 - Dissociation constants derived from anisotropy binding curves for WT 
hMutSα and the T1219D and G674A mutants.  

The error indicated is the standard deviation of at least three independent experiments.  

 

Protein	
   DNA	
   Nucleotide	
   KD	
  (nM)	
  

wt	
  hMutSα	
  

GT	
  	
  

ATP	
   107.9	
  ±	
  26	
  

ADP	
   8.9	
  ±	
  8.8	
  

None	
   7.5	
  ±	
  7	
  

O6MeGT	
  
ATP	
   121.1	
  ±	
  92	
  

ADP	
   24.8	
  ±	
  4	
  

T1219D	
  hMutSα	
  

GT	
  

ATP	
   6.3	
  ±	
  3	
  

ADP	
   10.8	
  ±	
  3	
  

None	
   5.2	
  ±	
  1	
  

O6MeGT	
  
ATP	
   21.8	
  ±	
  3	
  

ADP	
   28.4	
  ±	
  6	
  

G674A	
  hMutSα	
  

GT	
  

ATP	
   6.6	
  ±	
  4	
  

ADP	
   6.2	
  ±	
  8	
  

None	
   15.4	
  ±	
  14	
  

O6MeGT	
  
ATP	
   42.8	
  ±	
  6	
  

ADP	
   74.9	
  ±	
  72	
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We further measured the DNA binding affinities of WT for an O6MeGT DNA 

substrate (Table 5.2). WT exhibited a three fold weaker binding affinity for the O6MeGT 

in the presence of ADP (KD = 24.8 nM) than that observed for the GT mismatch in the 

presence of ADP (KD = 8.9 nM). However, the binding affinity of WT for the O6MeGT 

lesion in the presence of ATP (KD = 121 nM) was consistent with that of WT for the GT 

mismatch (KD = 107.9 nM). Differences in DNA binding affinities between the GT 

mismatch and the O6MeGT DNA lesion may be linked to differences in recognition 

mechanisms. 

Consistent with the GT mismatch results (Table 5.2), T1219D exhibits similar 

binding affinities for O6MeGT in the presence of ADP and ATP (KD = 28.4 nM and 21.8 

nM respectively). However, T1219D exhibits a 2-3 fold weaker binding affinity for 

O6MeGT than for GT. Similarly G674A exhibits comparable binding affinities for 

O6MeGT in the presence of ADP and ATP. G674A exhibits a 12 fold weaker affinity for 

O6MeGT (KD = 74.9 nM) than for GT (KD = 6.2 nM) in the presence of ADP. G674A 

displays a six fold weaker affinity for O6MeGT (KD = 42.8 nM) than for GT (KD = 6.6 

nM) in the presence of ATP. The weaker binding affinities for an O6MeGT lesion than 

for a GT mismatch of both separation-of-function mutations may play a role in their 

ability to recognize DNA damage but not signal for repair.  

Single Molecule FRET 

After determining the differences in DNA binding between WT and the 

separation-of-function mutants, T1219D and G674A, we sought to determine if there 

were corresponding differences in protein-DNA interaction or dynamics. In order to 

better understand the conformational properties of WT, T1219D, and G674A, we utilized 
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smFRET to monitor MutS-induced DNA bending as we had done for Taq MutS 

(Chapters 2 and 3). Using donor and acceptor dyes on either side of a DNA mismatch we 

observe single molecule fluorescence emission intensities (Figure 5.1a). Fluorescent 

emission intensities of the acceptor (IA) and donor (ID) are used to calculate smFRET as a 

function of time shown as smFRET traces (Figure 5.1a). smFRET is calculated as shown 

in Eq. 5.1. 

𝐹𝑅𝐸𝑇 =   
(𝐼! − 𝛽𝐼!)

((𝐼! − 𝛽𝐼!)+ 𝛾𝐼!)
 

Eq. 5.1 

Where β accounts for leakage of the donor emission into the acceptor channel and 

γ is a factor used to correct for differences in quantum efficiencies between the donor and 

acceptor dyes as described previously (Mccann, Choi et al. 2010). A simplified version of 

Eq. 5.1 is shown in Figure 5.1A. Example smFRET traces of DNA in the absence of 

protein are shown in (Figure 5.1B). Free DNA traces typically exhibited FRET values 

centered on 0.2. FRET states deviating from that observed in the absence of protein are 

characteristic of DNA bend states induced by the protein upon binding the mismatch or 

lesion similar to the DNA bending analysis described in Chapters 2 and 3.  

WT binding to a GT mismatch induces static DNA bending  

We measured smFRET for WT hMutSα binding to a GT mismatch in the absence 

of nucleotide and presence of ADP, ATP, or ATPγS (example traces shown in Figure 

5.2). In the absence of nucleotide, we observe FRET traces that do not appear to be 

dynamic in nature, which we have termed “constant” traces (92% of molecules evaluated 

were constant) (Figure 5.2). Only a small population of traces exhibited a transition. 

Histogram 
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Figure 5.1 - Example of single-molecule fluorescent intensities and FRET 
efficiencies. 

A) Fluorescent intensities for single molecule observation of an acceptor molecule 

(shown in red) and a donor molecule (shown in green). The laser excitation scheme for 

smFRET experiments is shown above the fluorescent emission trace. An example 

smFRET trace of a DNA molecule in the absence of protein is shown (in blue) and is 

calculated as IA/IA+ID as a function of time. B) Additional examples of smFRET traces in 

the absence of protein are shown (in blue) with a five point box smooth overlaid (yellow 

line)
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distributions of the FRET values in the absence of nucleotide (Figure 5.3A) show a single 

population centered on a FRET value of 0.35. This value is clearly shifted away from the 

free DNA FRET value (shown in black cityscape in each histogram of Figure 5.3A) 

indicating that the protein is bound at the mismatch and is actively bending the DNA in 

the absence of nucleotide. This result is consistent with the high mismatch binding 

affinity WT has for a GT mismatch (KD = 7.5 nM) (Table 5.2). 

Upon addition of ADP, WT exhibits a similar FRET profile where 81% of 

molecules evaluated are categorized as constant molecules (Figure 5.2). The histogram 

distribution of the FRET values for a GT mismatch in the presence of WT MutSα and 

ADP exhibits a single population centered on 0.35 (Figure 5.4A), which is similar to WT-

GT in the absence of nucleotide. The dynamic traces we observed show FRET values 

consistent with the bent DNA conformation observed in the constant traces (0.35) and a 

FRET value consistent with our free DNA distributions (FRET 0.2) (Figure 5.2). 

Dynamic traces may be evidence for WT binding DNA and dissociation or DNA binding, 

bending, and unbending. As discussed in Chapter 3, we cannot distinguish between free 

DNA and DNA unbending in our experiments. 

Similar to WT in the presence of a GT mismatch and ATP exhibits predominantly 

constant FRET traces (85%) (Figure 5.2). However, the FRET distribution of these traces 

exhibit a single population centered on FRET 0.23 (Figure 5.5A). This result is consistent 

with the free DNA population centered on FRET 0.2. WT in the presence of a GT 

mismatch and ATP is known to adopt a sliding clamp conformation. Again dynamic 

traces 
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Figure 5.2 - Example WT MutSα smFRET traces. 

FRET traces of MutSα in the presence of a 500mer bp DNA Cy3-Cy5 substrate in the 

absence of nucleotide and presence of ADP, ATP, or ATPγS. Raw FRET traces are 

shown in blue. A 5-point box smooth of the raw FRET data is shown in yellow for each 

trace. 
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Figure 5.3 - Histogram distributions of smFRET states for WT, T1219D, and G674A 
in the absence of nucleotide. 

Histogram distributions of the smFRET states (50 bins at a bin size of FRET 0.02) 

observed in single-molecule time-dependent traces are shown for (A) WT, (B) T1219D, 

and (C) G674A in the absence of nucleotide. Filled bars indicate the smFRET distribution 

of DNA in the presence of the appropriate protein (WT in green, T1219D in red, and 
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G674A in blue). The smFRET distribution of DNA in the absence of protein is shown 

(black cityscape) for each set of experiments. Cartoon representations for the DNA 

unbent and bent states are displayed above the corresponding FRET states.  
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Figure 5.4 - Histogram distributions of smFRET values for WT, T1219D, and 
G674A in the presence of 1 mM ADP. 

Histogram distributions of the smFRET states (50 bins at a bin size of FRET 0.02) 

observed in single-molecule time-dependent traces are shown for (A) WT, (B) T1219D, 

and (C) G674A in the presence of  1 mM ADP. Filled bars indicate the smFRET 

distribution of DNA in the presence of the appropriate protein (WT in green, T1219D in 
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red, and G674A in blue). The smFRET distribution of DNA in the absence of protein is 

shown (black cityscape) for each set of experiments. Cartoon representations for the 

DNA unbent and bent states are displayed above the corresponding FRET states. 
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resemble binding (FRET 0.35) and unbinding (0.2) FRET values. Because our DNA 

substrate is unblocked on the end, it is likely that the protein forms a sliding clamp and 

dissociates from the end of the DNA. We therefore measured the FRET of WT in the 

presence of a GT mismatch and ATPγS to prevent ATP hydrolysis and sliding clamp 

formation. 

In the presence of ATPγS, WT again exhibits predominantly constant FRET 

traces (84% of measured molecules) (Figure 5.2). However, the histogram of FRET states 

results in a distribution that fits to two Gaussian populations. The first population centers 

on FRET 0.2 while the second population centers on FRET 0.32  (Figure 5.6A) consistent 

with an unbound population and the bound and bent population as observed in the 

absence of nucleotide and presence of ADP. Given the weaker binding affinity of WT for 

a GT mismatch in the presence of ATPγS (KD = 150 nM as determined previously 

(Martik, Baitinger et al. 2004)), it is not surprising to observe an unbound population. 

HNPCC mutant T1219D does not dissociate from a GT mismatch. 

We set out to determine if the differences in nucleotide binding between WT and 

the HNPCC mutants discussed in Chapter 5 had effects on the protein-DNA 

conformational states observed in smFRET. We performed smFRET bending 

experiments on the T1219D and G674A HNPCC separation-of-function mutant proteins 

in the absence of nucleotide and presence of ADP, ATP and ATPγS. 

In the absence of nucleotide, T1219D traces maintain a similar trend to that of 

WT. We observed predominantly constant FRET traces (92% of molecules measured) 

(Figure 5.7). A histogram of the FRET values measured result in a distribution that fits to 

two Gaussian populations. The first population centers on FRET of 0.21 and the second 
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Figure 5.5 - Histogram distributions of smFRET values for WT, T1219D, and 
G674A in the presence of 1 mM ATP. 

Histogram distributions of the smFRET states (50 bins at a bin size of FRET 0.02) 

observed in single-molecule time-dependent traces are shown for (A) WT, (B) T1219D, 

and (C) G674A in the presence of 1 mM ATP. Filled bars indicate the smFRET 
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distribution of DNA in the presence of the appropriate protein (WT in green, T1219D in 

red, and G674A in blue). The smFRET distribution of DNA in the absence of protein is 

shown (black cityscape) for each set of experiments. Cartoon representations for the 

DNA unbent and bent states are displayed above the corresponding FRET states. 
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Figure 5.6 - Histogram distributions of smFRET values for WT, T1219D, and 
G674A in the presence of 1 mM ATPγS. 

Histogram distributions of the smFRET states (50 bins at a bin size of FRET 0.02) 

observed in single-molecule time-dependent traces are shown for (A) WT, (B) T1219D, 

and (C) G674A in the presence of 1 mM ATPγS. Filled bars indicate the smFRET 

distribution of DNA in the presence of the appropriate protein (WT in green, T1219D in 
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red, and G674A in blue). The smFRET distribution of DNA in the absence of protein is 

shown (black cityscape) for each set of experiments. Cartoon representations for the 

DNA unbent and bent states are displayed above the corresponding FRET states. 
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population centers on FRET 0.35 (Figure 5.3B). This multiple population profile is 

similar to that observed for WT in the presence of the GT mismatch and ATPγS. 

In the presence of ADP, we continued to observe predominantly constant FRET 

traces (93% of molecules measured) (Figure 5.7). The histogram of FRET values 

associated with a GT mismatch in the presence of T1219D and ADP shows a distribution 

of a single population centered on FRET of 0.35 (Figure 5.4B). This result is consistent 

with the shift in FRET states from free DNA (FRET 0.2) to a bent DNA conformation 

(FRET 0.35) observed for WT in the same conditions, suggesting that T1219D is bound 

in a similar conformation at the mismatch and actively bending the DNA. 

In the presence of ATP, we again observe constant FRET traces (88% of 

molecules measured) (Figure 5.7). The histogram of FRET values measured shows a 

distribution of a single population centered on a FRET of 0.34 (Figure 5.5B). Under the 

same conditions, WT FRET traces exhibit distributions characteristic of sliding clamp 

formation and protein dissociation. In the presence of a GT mismatch and ATP, the 

T1219D mutant appears to remain stably bound at the mismatch with the DNA in a bent 

conformation despite being under conditions sufficient for sliding clamp formation for 

WT. This result is consistent with the high binding affinity T1219D maintains in the 

presence of ATP (KD = 6.3 nM) (Table 5.2) and with SPR results suggesting an inability 

for the T1219D mutant to form a sliding clamp (Hess, Mendillo et al. 2006; Hargreaves, 

Shell et al. 2010; Geng, Sakato et al. 2012). Our smFRET result demonstrates that 

T1219D remains stably bound to the mismatch site with the DNA conformed to a bent 

state in the presence of ATP. 
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Figure 5.7 - Example T1219D MutSα smFRET traces. 

FRET traces of T1219D MutSα in the presence of a 500mer bp DNA Cy3-Cy5 substrate 

in the absence of nucleotide and presence of ADP, ATP, or ATPγS. Raw FRET traces are 

shown in blue. A 5-point box smooth of the raw FRET data is shown in yellow for each 

trace. A dye bleach event is noted in the constant ATP example trace. The data from 

bleach events are not included in smFRET histogram distributions.
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We further evaluated T1219D in the presence of a GT mismatch and ATPγS. The 

T1219D FRET traces were consistently constant in nature (89% of molecules measured) 

(Figure 5.7). The histogram of FRET values results in a distribution that fits to two 

Gaussian populations. The first conformational population centered on FRET 0.2 and the 

second population centered on FRET 0.33 (Figure 5.6B). These populations are 

consistent with a free DNA population and a bent DNA population. This result is also 

consistent with a similar distribution observed for WT in the presence on the GT 

mismatch and ATPγS. 

Under all nucleotide conditions, the small population of dynamic traces observed 

for T1219D in the presence of a GT mismatch resembled those already discussed for WT 

under all nucleotide conditions. We consistently observed a state similar to free DNA 

(FRET 0.2) and a state comparable to bound and bent DNA (FRET ~0.35). 

HNPCC mutant G674A adopts a conformation similar to that of sliding clamp in 

WT in the presence of a GT mismatch 

In the absence of nucleotide, G674A exhibits predominantly constant FRET 

traces (93% of measured molecules) (Figure 5.8). A histogram of the FRET values results 

in a distribution of a single population centered on FRET 0.34 (Figure 5.3C). This is 

similar to the same FRET shift from free DNA (FRET 0.2) to bound and bent DNA 

(FRET 0.34) observed for both WT and T1219D in the absence of nucleotide. 
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Figure 5.8 - Example G674A MutSα smFRET traces. 

FRET traces of G674A MutSα in the presence of a 500mer bp DNA Cy3-Cy5 substrate 

in the absence of nucleotide and presence of ADP, ATP, or ATPγS. Raw FRET traces are 

shown in blue. A 5-point box smooth of the raw FRET data is shown in yellow for each 

trace. A dye bleach event is noted in the dynamic example trace for G674A in the 

absence of nucleotide. The data from bleach events are not included in smFRET 

histogram distributions.
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FRET traces collected for G674A in the presence of a GT mismatch and ADP 

were predominantly constant (91% of measured molecules) (Figure 5.8). The histogram 

of FRET values results in a distribution of a single population centered on FRET 0.35 

(Figure 5.4C). This result is consistent with a similar trend observed for both WT and 

T1219D in the presence of the GT mismatch and ADP. G674A therefore binds to the 

mismatch and actively bends the DNA as seen with both WT and T1219D. 

Remarkably, G674A exhibited similar characteristics to WT in the presence of 

GT mismatch DNA and ATP. FRET traces were typically constant (86% of molecules 

measured) (Figure 5.8). The histogram of FRET values shows a distribution that fits to 

two Gaussian populations. The first population centers on FRET 0.21 and the second 

population centers on FRET 0.31 (Figure 5.5C). The larger of the two populations 

correlates with a free DNA population suggesting a larger proportion of G674A protein 

which is able to either adopt a specific conformation and slide off the end of the DNA, 

directly dissociate from the DNA, or alter the conformation of the protein on the DNA to 

an unbent conformation. Given the binding affinity of G674A for a GT mismatch in the 

presence of ATP (6.6 nM; Table 5.2), it is likely that the G674A mutant remains bound at 

the mismatch but adopts an unbent conformation because the G674A concentration is 150 

nM in these experiments. 

FRET traces for a GT mismatch in the presence of G674A and ATPγS are 

predominantly constant (85% of molecules measured) (Figure 5.8). This histogram of 

FRET values shows a distribution with a single population centered on FRET 0.34 

(Figure 5.6C). Interestingly, this observation of a bent DNA conformational state in the 
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presence of a GT mismatch and ATPγS is not a two population distribution as seen for 

WT and T1219D under similar conditions. This may be due to the inability of G674A to 

bind nucleotide into the MSH2 ATPase site as demonstrated in Chapter 5. 

Discussion 

Static DNA binding of wild type MSH2-MSH6 may be stabilized by the N-

terminal region of MSH6 

In the crystal structure of WT human MSH2-MSH6, the protein is observed to 

bind mismatch DNA into a 45° bend angle (Warren, Pohlhaus et al. 2007). Based on our 

DNA substrate, we calculate a Förster distance of ~47Å for the Cy3-Cy5 dyes. The 

degree of DNA bending observed in our smFRET experiments results in a bent 

population centered on FRET 0.35. We calculate the bend angle observed in the smFRET 

data to be a ~46° bend. Our smFRET measurements are therefore consistent with the 

bend angle observed in the crystal structure. 

Regardless of nucleotide condition, WT MSH2-MSH6 appears to maintain a 

stably bent DNA conformation when bound to a GT mismatch in conditions that prevent 

DNA sliding clamp conformation (no nucleotide, ADP, and ATPγS). We do not observe 

the DNA binding dynamics seen in similar smFRET based bending studies with WT Taq 

MutS in the absence of nucleotide (Sass, Lanyi et al. 2010). There may be several 

explanations for the discrepancy between the MutS proteins of the two organisms. 

 One possibility for the discrepancy lies in the sensitivity of the smFRET bending 

studies. Given the difference in the extent of bending observed in the crystal structures of 

Taq MutS and human MutSα (60° bend angle and 45° bend angle respectively) it is 

possible that the dye pair chosen do not have a Förster distance that allows sensitive 
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detection of small conformational changes in the DNA. However, our attempts to 

characterize this system using a dye pair (Alexa 568 as the donor and Cy5 as the 

acceptor) with a longer Forster distance (~63 Å) yielded similar results (data not shown). 

We were unable to observe dynamic conformational changes as seen with Taq MutS on 

the GT mismatch. 

A second possibility for the discrepancy between Taq MutS and human MutSα 

dynamics may be evolutionary differences. The prokaryotic system may require MutS to 

undergo the series of conformational changes described by Sass et al to initiate the 

mismatch repair (Sass, Lanyi et al. 2010). The eukaryotic system may have evolved to 

eliminate the need for multiple conformational steps before signaling repair. The 

evolutionary variances between the prokaryotic and the eukaryotic systems have already 

been demonstrated in the varied mismatch repair efficiencies between organisms as well 

as the apparent role of the Phe-X-Glu mismatch-binding motif already discussed in 

Chapter 2. As previously discussed, the glutamate of the Phe-x-Glu motif appears to play 

different roles in E. coli where the alanine mutation (E38A) results in a mutator 

phenotype versus in S. cerevisiae where the alanine mutation in Msh6 (Msh2-Msh6E339A) 

results in a reduction in MMR, but not completely abolishing it (Holmes, Scarpinato et al. 

2007). The disparities in protein-DNA dynamics may be another result of evolutionary 

differences. 

A third possibility may have to do with the role of the N-terminus of MSH6 in 

DNA binding. Approximately 300 amino acid residues at the N-terminus of MSH6 are 

truncated in the MutS variant that was used for the crystal structure of human MSH2-

MSH6 (Warren, Pohlhaus et al. 2007). These residues share no homology with the 
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subunits of prokaryotic MutS. The N-terminal region (NTR) contains a proliferating cell 

nuclear antigen (PCNA) interaction peptide (PIP box) shown to be important in MMR 

(Chen, Merrill et al. 1999; Clark, Valle et al. 2000; Flores-Rozas, Clark et al. 2000; 

Clark, Deterding et al. 2007; Shell, Putnam et al. 2007). Previous studies suggest that the 

NTR of MSH6 also has the ability to independently bind DNA (Clark, Deterding et al. 

2007). Evidence suggests that the NTR contributes to mismatch repair as well as DNA 

damage response to alkyl lesions such as O6MeGT lesion. A portion of the NTR consists 

of a largely negatively charged region (49% of residues 192 to 230) which has been 

suggested to act as a DNA mimic (Clark, Deterding et al. 2007). In the context of our 

smFRET results, it is possible that the negative region of the NTR acts to stabilize DNA 

bending via charge repulsion. The regions of the NTR that bind DNA may act to stabilize 

the protein-DNA interactions such that the rapid conformational dynamics seen in Taq 

MutS without an NTR are prevented. Further characterization of the DNA binding 

properties of NTR deletion mutants using smFRET may confirm its importance in 

stabilizing MutSα-DNA interactions.  

G674A and T1219D are trapped in separate points in the nucleotide processing 

mechanism prior to sliding clamp formation. 

Conformational dynamics for both G674A and T1219D binding to a GT 

mismatch resemble that of WT. We consistently observe stable, non-dynamic smFRET 

traces regardless of the nucleotide conditions used in our experiments. We observe 

similar distributions of FRET states for G674A, T1219D, and WT in the absence of 

nucleotide and presence of ADP. Remarkably, G674A and WT exhibit similar smFRET 

distributions in the presence of ATP.  
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In the presence of ATP, WT is expected to adopt a DNA sliding clamp 

conformation and diffuse off of the DNA end. The smFRET distribution for G674A and 

WT both exhibit an overlap with the FRET values associated with unbound DNA 

consistent with a sliding clamp diffusing off the DNA. Given that G674A is unable to 

bind nucleotide stably into MSH2, it is somewhat surprising to observe a profile similar 

to that of WT sliding clamp in the presence of ATP. Evidence from multiple studies 

suggests that nucleotide binding into both subunits is required for sliding clamp 

formation (Acharya, Foster et al. 2003; Antony and Hingorani 2003; Antony, 

Khubchandani et al. 2006; Lebbink, Fish et al. 2010; Mendillo, Putnam et al. 2010; 

Heinen, Cyr et al. 2011; Monti, Cohen et al. 2011; Qiu, DeRocco et al. 2012). However, 

the smFRET distribution for G674A in the presence of ATP may be consistent with three 

different possibilities: 1) direct dissociation, 2) dissociation due to sliding off the end of 

the DNA, or 3) DNA unbending resulting in a FRET consistent with free DNA. Given 

the DNA binding affinity G674A has for a GT mismatch (KD = 6.6 ± 4 nM), it is unlikely 

that the conformational state being observed is that of unbound DNA. This observation 

eliminates both the direct dissociation and the sliding clamp formation scenarios. 

Therefore, the state being observed is likely to be G674A bound to the mismatch with the 

DNA in an unbent conformation. We plan further experiments to confirm this result. 

Previous AFM and smFRET studies suggest a DNA binding and bending 

mechanism for MutS mismatch recognition and initiation of repair (Wang, Yang et al. 

2003; Tessmer, Yang et al. 2008; Sass, Lanyi et al. 2010). MutS binds to the DNA and 

bends it as it scans for a mismatch. Upon locating a mismatch, MutS kinks the DNA and 

then unbends the DNA. The unbending of the DNA is the step before MMR initiation. In 
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this model, MutS only adopts an unbent DNA conformation in the presence of 

heteroduplex DNA substrates appropriate for MMR. G674A is able to adopt two of the 

DNA binding conformations associated with mismatch DNA recognition and MMR 

initiation (bent and unbent). Because G674A is deficient for nucleotide binding into 

MSH2, the MSH2G674A-Empty:MSH6-ATP liganded protein is unable to further adopt the 

sliding clamp conformation required for downstream MMR initiation. The G674A 

bound-unbent DNA state has the potential to act as a replication block and thereby induce 

apoptosis via double strand breaks. This model would account for the separation-of-

function phenotype observed with Msh2G674A/G674A mice and mouse embryonic 

fibroblasts (Lin, Wang et al. 2004).  

The T1219D mutant consistently maintains a mismatch bound and bent DNA 

conformation regardless of nucleotide condition (no nucleotide, ADP, ATP, and ATPγS). 

The most striking difference between T1219D and WT is exhibited in the histogram 

distribution of smFRET states observed in the presence of the GT mismatch and ATP 

(Figure 5.5A and B). Unlike the WT and G674A proteins, the T1219D smFRET 

distribution in the presence of ATP remains centered on a FRET 0.34 (Figure 5.5B). The 

T1219D mutant, therefore, appears to remain stably bound at the mismatch with the DNA 

conformed to a bent state regardless of conditions suitable for sliding clamp formation. 

These smFRET results are consistent with anisotropy binding affinities determined for 

T1219D in the presence of a GT mismatch and ATP (KD = 6.3 ± 3 nM). Together, these 

results are consistent with biochemical data indicating that the T1219D (Geng, Sakato et 

al. 2012) and the analogous S. cerevisiae mutant (yMsh2-Msh6G1067D) (Hess, Mendillo et 

al. 2006) are unable to form sliding clamp and dissociate from DNA. 
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Given the nucleotide binding data discussed in Chapter 4, T1219D is likely that it 

is bound in a MSH2-ADP:MSH6T1219D-ATP liganded state for the smFRET traces in the 

presence of ATP. A similar MSH2-ADP:MSH6-ATP liganded state has previously been 

proposed as a “dead end” complex for WT human MSH2-MSH6 (Heinen, Cyr et al. 

2011). The T1219D mutant may be a suitable mimic of the proposed dead end complex. 

The high binding affinity for ADP in MSH2 of T1219D may prevent ADP to ATP 

exchange resulting in a trapped T1219D-mismatch DNA complex.  

Both G674A and T1219D appear to form trapped complexes at a mismatch. We 

have previously proposed a model for MutS(α) nucleotide processing as it relates to the 

steps in MMR initiation (searching, recognition of a mismatch, and downstream MMR 

initiation). Figure 5.9 (adapted from (Qiu, DeRocco et al. 2012) displays a variation on 

the proposed model including the positions of the G674A and T1219D trapped states. 

The formation of either the T1219D or the G674A trapped conformation results in a 

protein-DNA complex unable to proceed to the last step of MutS(α) ATP processing: the 

sliding clamp formation. Interestingly, the conformations of each trapped complex differ 

while the observed phenotypes for each mutant are similar. Both G674A and T1219D 

separation-of-function mutants exhibit phenotypes where MMR is defective but MutSα 

dependent apoptotic response is maintained (Lin, Wang et al. 2004; Yang, Scherer et al. 

2004). The trapped protein-complexes are likely to remain bound at the mismatch 

forming a block to MMR and additional replicative and repair processes. Such a block 

would result in double stranded break, which would in turn signal for apoptotic response. 

Hence, the two separation-of-function mutants would be defective for MMR, but able to 

induce apoptosis.  
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Conclusions 

Overall, the smFRET data presented here indicate clear differences between the 

protein-DNA interaction dynamics of the prokaryotic homodimer, MutS, and the 

eukaryotic heterodimer, MSH2-MSH6. Previous Taq MutS smFRET studies suggest a 

complex, rapidly fluctuating, dynamic protein-DNA interactions. However, smFRET 

traces for hMutSα in the presence of a GT mismatch display few transitions between 

FRET states indicating a stable protein-DNA complex. Given the striking similarities 

between the proteins seen in the crystal structures, these differences in protein-DNA 

dynamics are unexpected. However, the two proteins appear similar in the absence of the 

NTR of MSH6 in the hMSH2-MSH6 crystal structure. We propose the stable hMutSα-

DNA interactions observed in smFRET traces to be a function of the NTR of MSH6. 

Future smFRET characterization of the protein-DNA interactions for the crystallized 

hMutSα protein (truncation of 300 residues of the MSH6 NTR) will test this hypothesis. 

The nucleotide binding data presented in Chapter 4 in conjunction with smFRET 

data suggests separate mechanisms of MutSα induced apoptosis for the two HNPCC 

separation-of-function mutants, G674A and T1219D. Nucleotide binding studies suggest 

difference ligand states to be likely for the G674A and the T1219D mutants. Both G674A 

and T1219D appear to form trapped complexes. However, smFRET data suggests G674A 

binds a mismatch and forms an unbent protein-DNA complex in the presence of ATP. 

Given the nucleotide binding data, this complex is likely to be in a MSH2G674A-

empty:MSH6-ATP ligand state. smFRET data suggests T1219D binds a mismatch and 

maintains a stably bent protein-DNA complex in the presence of ATP. Given the 

nucleotide binding data, this complex is likely to be in a MSH2-ADP:MSH6T1219D-ATP 
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ligand state. The two mutants, therefore, become trapped at separate steps in the MutSα 

nucleotide processing mechanism (Figure 5.9). Both trapped protein-complexes are likely 

to remain bound at the mismatch forming a block to MMR and additional replicative and 

repair processes resulting in apoptotic response. In this way the two separation-of-

function mutants are defective for MMR, but able to induce apoptosis.  
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Figure 5.9 – MutS(α) MMR initiation model with trapped G674A and T1219D states 
(Adapted from (Qiu, DeRocco et al. 2012)). 

Schematic representation indicates states addressing each step in MutS(α) nucleotide 

processing as they relate to the MMR activities of MutS(α) including scanning 

homoduplex DNA, recognizing mismatches, and adopting the mismatch activated sliding 

clamp. The proposed steps where G674A and T1219D mutant protein become trapped 

are displayed (T1219D in green and violet, G674A in orange and blue) with their 

respective liganded stated noted.  
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APPENDIX A 

SINGLE-MOLECULE FRET DATA ANALYSIS PROTOCOL 

We typically generate large quantities of smFRET data in any given data set. The 

key to efficiency with the data is organization. It’s better to organize your data when you 

have relatively few data files to deal with. Each step of the analysis will amplify the 

number of data files exponentially. 

The first thing to do is to keep your movie files (.pma files)  and later .traces files 

in separate folders based on: 1. Date of experiment, 2. Lane, and 3. Experimental 

conditions (DNA vs. DNA + Protein…or whatever the case may be for your 

experiments). 

Part 1 –  Conversion of .pma files to .traces files 

In this part of the analysis, we are taking the movie files collected on the EMCCD 

camera, mapping the acceptor and donor molecules, and saving only the time traces 

associated with the molecules of interest. The .traces files are much smaller and more 

portable than .pma because you are eliminating of all of the background/surface 

information contained in the pixels between the molecules of interest in your .pma files. 

1.) Open MatLab 

2.) Call mapping program: complexingui2 

a. PMA viewer will open as a separate window. (As seen below) 
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3.) Click the “OPEN” button (circled in blue) 

a. Select a mapping bead movie collected on the day of data collection 

i. VERY important to have collected bead movies on the day of data 

collection for accurate data analysis 

1. Different users touch/use different optics 

a. This will affect day-to-day pixel mapping 

ii. You want to have the most accurate map for the data you collected 

b. After selecting bead movie, click “open” 

i. An image of your beads will show up in the PMA viewer  

ii. You can adjust the brightness of the image with the slider on the 

right side of the image. 

iii. You can also choose different color maps using the Colormap 

option on the top menu (circled in red). 
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1. I personally like the contrast between molecule and 

background that I get using the “Jet” colormap adjusted 

until the molecules are red and background is yellow. 

4.) Click drop down menu on the right (shown below) 

 

a. Select “Find Offset” (noted by red arrow) 

i. An (x,y) pixel offset will a appear in the command menu 

1. I usually check all my beads to make see if I’m getting a 

consistent x,y pixel offset. 

b. Select “locate left side molecules” (noted by blue arrow) 

i. The program will encircle each molecule on the left-hand side of 

the movie (red/acceptor channel) in yellow and the corresponding 

molecules on the right-hand side (green/donor channel) in white 
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1. Note that the molecule on the outer area of the field of view 

are not included in this function 

a. This is to avoid partial molecules being included in 

the data analysis 

2. Clumps of molecules (within 5 pixels of one another) are 

also left out of this calculation.  

a. To limit number of multiple molecules in the data 

analysis. 

ii. Confirm that each molecule is located in the center or at least very 

close to the center of each circle 

1. Verify across entire field of view. 

c. If you are satisfied with the map, continue to Step 5 

d. If you are not satisfied with the map REPEAT STEPS 3 and 4 with a new 

bead movie. 

5.) Check the “Use current mapping function” box. (circled in red) 

6.) Click “Open” button again 

a. Open another bead movie 

i. We’re checking the mapping offset that the program is holding 

b. On drop-down menu 

i. Select “Locate left-side” molecules 

1. DO NOT select “Find Offset” button again 

a. You will have to start over again if you do this. 

ii. Verify that map is good on second movie. 
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1. Move on to Step 7. 

7.) If saving only a single movie  

a. On drop-down menu select “Save Traces” (noted by green arrow) 

i. This will only generate the .trace file for the movie you’re 

currently mapping. 

8.) If doing a large batch of movie analyses  

a. On drop-down menu select “Batch analysis left-side” (noted by yellow 

arrow) 

i. This will go through and perform a left-side batch analysis for each 

movie in the directory and the sub-directories 

9.) Type ctrl-c to exit the mapping program. 

a. You’re done generating your .traces files. 

b. I would suggest moving your .pma files into their own folder. You’re done 

working with them. 
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Part 2 – Conversion of .trace files to an .itx file 

Your .trace file contains the donor and acceptor intensities over time for all 

molecules regardless of quality.  The next step is to go through your molecules and only 

save those of good quality. Parts of this program have been altered by Cherie Lanyi to 

allow us to organize the molecules you save while you’re weeding out the bad traces 

rather than having to do the weeding and organizing as two separate steps. This is a 

priceless improvement! 

1.) Create four new folders named as follows for each of your experimental 

conditions: 

a. Constant 

b. Switching 

c. Other 

d. Junk 

2.) In Matlab 

a. Call the program: new_keith_folder_view_tir 

i. It would be a good idea to check your gamma values and 

leakage values used in the script of this program. 

1. Make sure these values are appropriate for the dyes that 

you are using in your experiments. 

b. A browser window will pop up (see below) 

i. Select a .trace file 
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c. A GUI will pop up (as shown below): 

 

d. The directory information should reflect the directory of the .traces file 

you have chosen 

e. Leave the prefix of file as “cascade” unless you have changed the 

naming  of your .traces file to something besides cascade#.trace 

f. Enter the number for the first movie you will be analyzing…that 

would the # in Cascade#.trace 

g. Enter the number for the last movie in the folder 
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i. Make sure that this is a number larger than that of the movie 

you’re starting on…even if you have no higher number in your 

folder. The program will error otherwise. 

h. Click OK 

i. The following will appear in your command window and a Figure will 

pop up (shown next page). 

i. The command window will show 

1. The directory 

2. A counter 

a. Keeps track of how many molecules you’ve 

gone through (this can be deceiving because if 

you go backwards and then forwards through 

the molecules…you’ll be counting twice.) 

3. Working on – whichever trace file you’ve opened. 

4. The length of the trace file – in frames 

5. Ntraces – number of total traces (acceptor and donor) 

6. Number of molecules – total number of molecules in 

the trace file. 

7. Leakage – this is the leakage value set in the 

program…make sure this corresponds with your dye 

pair. 
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j. Now you will save and sort through your molecules 

i. Press “s” and enter to save a molecule you deem good quality 
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1. The program will prompt you asking where you want to 

save the molecule. 

a. Press “c” and enter if the molecule is constant 

b. Press “s” and enter if the molecule is switching 

c. Press “o” and enter if you are unsure how you 

want to classify the molecule but think it is 

interesting. (other) 

d. Press “j” and enter if you didn’t mean to save. 

(junk) 

2. This function will place your .itx files directly into the 

folder within the directory that you’ve selected. 

ii. Press enter to pass on a molecule and go onto the next one. 

iii. Press “b” if you need to go back to the previous molecule. 

1. Depending on which version you are using…the back 

command will either go back one molecule or two 

molecules. Just be aware. 

3.) Go through each molecule for all of the .trace files in your folder in this way. 

4.) Exit MatLab when done. 

 

Tips on saving molecules: 

1.) Determine a cutoff for high intensities. Each day of experiments will be different, 

but by going through your molecules you get a feel for what intensities are 

reasonably single molecules and what intensities constitute multiples. Typically 
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you’ll see anywhere from 500 to 1500 as a single molecule. The variation depends 

on the laser intensity and TIRF spot density on the day of experimentation. 

2.) Determine a cutoff for low intensities. This will be based on the noise in the data. 

I will typically not use molecules whose excited intensities are below 200. Use 

your best judgment. 

3.) Switching molecules are only those molecules that undergo ANTI-

CORRELATED changes in their signals. This is a REQUIREMENT for your 

molecules. If the green signal increases, a corresponding decrease in the red signal 

must be observed and vice versa. If you are not seeing anti-correlated changes 

then something is very wrong with that molecule or you are observing an artifact 

like a lint particle. Don’t save that molecule. 

4.) Dye blinks and photobleaches are NOT switches. You will typically see blinks 

and bleaches in the red channel the most. IF the red molecule goes to zero and 

then recovers, that is more than likely a blink. Keep in mind that blinks will also 

have an anti-correlated change in the donor channel. If the molecule goes to zero 

and does not recover, you have observed a bleach. 

5.) Don’t bother saving molecules that bleach in less than 100 frames. The amount of 

useful data there is not worth it. You’re bound to have better molecules. 

6.) If the Donor is excited when only the red laser is on (the beginning and the end of 

the trace) the molecule is probably just a fluorescent contaminant. Don’t save. 

7.) If you observe what appear to be switches buried in the noise of the data, be 

careful. I would personally find it more worthwhile to repeat the experiment at a 
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faster collection rate to temporally resolve those events rather than clump 

questionable noisy data in with good data. 

8.) The program is NOT built so that you can leave off on a molecule, close out of 

the program, and pick up where you left off. Make sure that you note which 

molecule you leave off on if you have to stop analysis before the last molecule in 

the .trace file. Then you can open the .trace file and skip through to where you left 

off.  
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Part 3 – Analyzing the .itx files 

Now your data is in its most useful format. The .itx files can be used for both the 

constant and the switching analyses. 

1.) Constant Molecule analysis 

a. Open Igor Pro 

i. Open the .itx files you are in interested in analyzing 

1. Opening more than 150-200 files at once is not 

advisable…unless Igor improves significantly from the 

time this protocol was written. 

2. Your computer will start to lag with large numbers of files. 

ii. Click  “Windows” on your top menu. (circled in red) 

iii. Scroll down to “Panel Macros” (circled in green) 

iv. Select  “FRETprocessPANEL” (circled in blue) 
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v. A Panel GUI will pop up on your screen (shown below) 
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vi. Click “Display FRET” (circled in red) 

1. A program will run and do each of the following: 

a. Open each set of traces (acceptor and donor) 

b. Plot the traces in a graph 

c. Calculate the FRET efficiency for each 

Acceptor/Donor trace 

d. Average the first 15 or 50 frames (after the switch 

from red to green excitation) of the FRET trace. 

e. Generate a histogram of 50 bins with a 0.02 bin size. 

vii. Assuming you have little to no background issues…the files 

generated by the program are suitable for further analysis. 

1. FretHist 

a. The histogram file containing the y values for each 

bin of your histogram 

2. 15frameAvgfret or 50frameAvgfret (depending on the 

number of frames you’ve decided to average) 

a. Contains the 15 or 50 frame average of each FRET 

trace you’ve opened. 

b. This is the most useful data file generate by the 

program 

c. 15Frettime 
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i. Used when converting frames to time in 

seconds. Usually commented out so the data 

file should be empty. 

3. CorCy5 and CorCy3 

a. Both are used as a temporary data files 

i. The intensity values for acceptor and donor 

are temporarily loaded into these files for 

the frame averaging. They are overwritten 

with the intensity values of the next trace 

being opened. 

viii. Select “Data” from the top menu (circled in red) 

 

ix. Select “Rename…” (circled in green) 

x. Select the 15frameAvgfret or 50frameAvgfret file 
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1. Rename the file  

a. I like to rename the file based on the day, lane, and 

movie  

i. Let’s say you’ve opened all .itx files for 

Cascade1, which was in Lane 1 of your 

experiments on 08/10/11. I would name the 

file  “081011_L1C1”. 

2. Click “Do it” 

xi. Select “Data” from the top menu again (circled in red) 

xii. Select “Saves Waves” (circled in yellow) 

xiii. Select “Save Igor Text” (circled in blue) 

1. Save the renamed file. 

a. It is more useful to save the Avgfret files rather than 

the histogram files because you can play with bin 

sizes readily. 

i. You can also use this file to re-generate the 

histogram and plot the data with the free 

DNA or DNA + Protein complement. 

ii. You can combine multiple Avgfret files and 

then generate a histogram of a much larger 

data set without bogging down the computer. 

xiv. Repeat these steps for all movies within an experimental condition. 

You will be combining the Avgfret files. 
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b. Combining Avgfret files 

 

i. Open each of the saved Avgfret files that you generated according 

to the previous section. 

ii. Select “Table” on the top menu (circled in green) 

iii. Select “Append Columns to Table…” (circled in blue) 

iv. Select all of your Avgfret files and select “Do it” 

1. All of the files should be added to the columns of your 

table. 

v. To combine the Avgfret files you will individually add each data 

set to a single column. 

1. Be sure to rename that column (wave) appropriately 

c. Histogram distributions (see image below) 

i. Select “Analysis” (circled in red) 
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ii. Select “Histogram” (circled in green above) 

iii. The histogram menu will pop up (shown below) 

1. Select the source wave you wish to generate a histogram of 

a. This is the combined Avgfret wave 

b. An example wave is circled in red. 

2. The default for histogram generation is manual set bins.  

a. Typically, we generate histograms of 50 bins 

(circled in green) with a bin size of FRET 0.02 

(circled in yellow). 

b. Bin sizes and number of bins will depend on the 

data set you are  working on. 
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c. Select “Display Output Wave” (circled in blue) 

i. The program will automatically generate a 

graph with your histogram data. 

d. Click “Do It” 

 

 

You have successfully generated a histogram of smFRET values for your 

experiment. Compare the histogram distribution to that of free DNA for a frame of 

reference.  
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