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Abstract 
 

Keith T. Thornley:  Studies of Exocytosis at Single Cells 
(Under the direction of Dr. R. Mark Wightman) 

 
 

 Intercellular communication via chemical signaling is vital to the healthy functioning 

of multicellular organisms.  In exocytosis, intracellular vesicles undergo Ca2+-triggered fusion 

with the cell plasma membrane, releasing their chemical messengers into the extracellular 

space.  As exocytosis serves as the primary mechanism of communication at neuronal 

synapses, great emphasis has been placed on understanding the complex cellular 

regulation of this process.  This dissertation focused on the use of amperometry and fast 

scan cyclic voltammetry at carbon-fiber microelectrodes to monitor exocytosis in real-time at 

both isolated neurons and chromaffin cells, well-characterized model cells for neuronal 

exocytosis.  These techniques provide the necessary temporal resolution and sensitivity 

required to detect the chemical signals resulting from individual vesicular release events.  

Amperometric recordings at midbrain dopamine neurons showed that somatodendritic 

dopamine release is exocytotic, with a bimodal distribution of vesicular events.  A 

combinatorial approach was used to demonstrate alterations in biogenic amine exocytosis in 

mice lacking the mitochondrial uncoupling protein UCP2 or the hormone leptin.  Conversely, 

a mouse model of fragile X syndrome revealed no deficiencies in vesicular release 

mechanisms.  Electrochemical methodologies were developed to distinguish catecholamine 

transmitters from the L-tyrosine-derived trace amines.  Application of these methods 

revealed poor vesicular accumulation of trace amines precludes their function as false 

transmitters.  Finally, vesicular quantal size in chromaffin cells was shown to be resistant to 

exogenous application of catecholamine precursors.  
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Chapter 1 
 

Techniques for the Study of Exocytosis 
 
 

Introduction 

 Chemical signaling forms the basis of intercellular communication in multicellular 

organisms.  Following triggered secretion, chemical messengers diffuse to their site of action 

where they are specifically detected by target cells.  Exocytosis is a secretory process in 

which intracellular vesicles containing chemical messengers fuse with the cell's plasma 

membrane extruding the vesicular content into the extracellular space.  Exocytosis is the 

primary cellular mechanism for the triggered release of chemical messengers, and has been 

the object of intense study as it represents the principle method of communication at the 

neuronal synapse. 

 In the mammalian nervous system, information is transmitted in pathways via 

specialized cells called neurons (Figure 1.1).  Neurons are excitable cells that communicate 

with each other through a combination of electrical and chemical signals.  Through strict 

regulation of intracellular and extracellular ion concentrations (mainly Na+, K+, and Cl-), 

neurons maintain a negative resting potential across the plasma membrane of 

approximately 70 mV (with the intracellular compartment being more negative) (Squire, 

2008).  Neurons receive inputs at their dendrites, where the action of chemical messengers 

on ionotropic receptors produces changes in ion concentration gradients that manifest as 

fluctuations in membrane potential.  These fluctuations can be excitatory or inhibitory, with 

excitatory responses corresponding to positive deflections in the membrane potential and 

inhibitory responses to negative deflections.  Responses from the entire dendritic field are 



 

 

 

 

Figure 1.1.  Schematic drawing of a neuron.  Neurons receive inputs at the dendrites.  
Inputs are summed at the cell body, or soma.  If the inputs are significant , the neuron will 
fire an action potential that propagates down the axon to the axon terminals, which form 
specialized specialized connections called synapses (black box) on the dendrites of target 
neurons.  
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summed at the cell body, or soma.  If the membrane potential is deflected above the 

threshold, the neuron will fire an action potential.  During an action potential, the positive 

deflections in membrane potential trigger the opening of voltage-gated Na+ channels and the 

influx of Na+ ions into the cell along their concentration gradient, further depolarizing the 

membrane.  As voltage-gated K+ channels open, prompting efflux of K+ ions out of the cell 

along their concentration gradient, and the Na+ channels begin to inactive, the cell returns to 

its resting membrane potential.  The action potential propagates down the axon as local 

depolarization stimulates the opening of neighboring Na+ and K+ channels, ultimately 

reaching the synapse, a specialized connection between axon terminals and the dendrites 

of their target neurons.  At the synapse, the invading action potential causes voltage-gated 

calcium channels (VGCCs) to open, and the resulting Ca2+ influx triggers the exocytosis of 

chemical neurotransmitters (Llinas et al., 1992; Borst and Sakmann, 1996).  The 

transmitters diffuse across the synaptic cleft, a 20-50 nm gap ensuring the electrical 

depolarization isn't transferred to the next cell, and their actions on postsynaptic receptors 

begin the signal transduction process anew. 

Exocytosis 

 Figure 1.2 shows a drawing that outlines some of the major steps in the exocytotic 

process.  Vesicles are packaged with neurotransmitters via active transport and then are 

localized in clusters/pools near the presynaptic active zone.  Prior to release, vesicles must 

be physically relocated to the plasma membrane.  In a series of ATP-dependent steps, 

vesicles are recruited, tethered, and docked to the plasma membrane (Burgoyne and 

Morgan, 2003).  A final priming step renders vesicles competent for Ca2+-triggered formation 

of the fusion pore and secretion of their contents into the extracellular space.  Following 

release, vesicles are recycled for further rounds of exocytosis through three primary routes 

depending on whether full fusion and incorporation of the vesicular membrane into the 

plasma membrane occurred.  Vesicles that do not undergo full fusion may be recycled  
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Figure 1.2.  The synaptic vesicle cycle.  Red arrows indicate steps in exocytosis and yellow 
arrows indicate steps in endocytosis.  Synaptic vesicles are filled with neurotransmitters via 
active transport (1).  Prior to release, vesicles are mobilized from clusters/pools (2) to dock 
at the plasma membrane (3).  Following a priming step (4), vesicles are capable of 
undergoing Ca2+-triggered fusion (5).  Vesicles are recycled via several pathways including 
local reuse (6), fast recycling without an endosomal intermediate (7), and clathrin-mediated 
endocytosis with or without an endosomal intermediate (8-9).  (Sudhof, 2004) 
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without undocking, leaving them available for immediate release (sometimes termed "kiss 

and stay" exocytosis), or can undock and undergo local repackaging ("kiss and run" 

exocytosis) (Harata et al., 2006).  After full fusion, vesicles undergo a slower endocytosis 

pathway via clathrin-coated pits that may or may not involve an endosomal intermediate 

(Smith et al., 2008). 

Points of Regulation 

 Neurotransmitters are packaged at high concentrations into vesicles via active 

transport.  Biochemical studies have revealed seven transporter proteins for the classical 

neurotransmitters:  three differentially-expressed transporters for glutamate (Bellocchio et 

al., 2000; Fremeau et al., 2001; Fremeau et al., 2002), two differentially expressed 

transporters for all the monoamines (Erickson et al., 1992; Liu et al., 1992), a single 

transporter for gamma-aminobutyric acid (GABA) and glycine (McIntire et al., 1997; Sagne 

et al., 1997), and a single transporter for acetylcholine (Roghani et al., 1994).  Active 

transport is driven by a vacuolar-type proton pump that couples hydrolysis of ATP to the 

movement of H+ from the cytosol to the vesicle interior, generating an electrochemical 

gradient (Maycox et al., 1988).  The vesicular transporters then couple translocation of 

transmitter against its concentration gradient with the exchange of H+ running down its 

electrochemical gradient (Chaudhry et al., 2008).  Transporters play two important roles in 

chemical communication.  First, expression of a particular vesicular transporter is a major 

determinant in the type of neurotransmitter used at a synapse.  As an example, GABAergic 

neurons transfected with a vesicular glutamate transmitter became capable of releasing 

glutamate in addition to GABA (Takamori et al., 2000).  Second, vesicular transporters help 

regulate the amount of neurotransmitter released during exocytosis.  For instance, 

overexpression of the vesicular monoamine transporter (VMAT2) has been shown to 

increase vesicular dopamine content (Pothos et al., 2000), while hemizygous deletion of the 
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VMAT2 gene lead to significantly reduced dopamine levels in the striatum (Wang et al., 

1997). 

 A second concept crucial to understanding the regulated process of exocytosis is 

that of vesicle pools.  Within a presynaptic terminal, the population of vesicles can be 

divided into two separate vesicle pools based on morphological and physiological criteria: 

the readily releasable pool (RRP), consisting of those vesicles docked at the active zone 

and immediately available for exocytosis, and the reserve pool (RP), consisting of those 

vesicles clustered at a distance from the plasma membrane and not immediately available 

for release (Rizzoli and Betz, 2005).  Directly following stimulation of the nerve terminal, 

vesicles in the RRP are released, leading to a depletion of the pool.  In response to 

prolonged or intense stimuli, continued release is dependent on the recycling of vesicles 

back into the RRP and/or the mobilization of vesicles from the RP to the RRP for 

subsequent release.  The cellular mechanisms responsible for sequestering the RP and 

controlling vesicle mobilization are still under investigation, but most work to date has 

focused on synapsins, peripheral membrane proteins associated with synaptic vesicles 

(Schiebler et al., 1986; Benfenati et al., 1989a; Benfenati et al., 1989b).  Mammals express 

three synapsin genes, with most neuronal synapses expressing synapsins 1 and 2 (De 

Camilli et al., 1990; Hosaka and Sudhof, 1998a).  Conserved among all synapsins are a N-

terminal domain containing phosphorylation sites for cAMP-dependent protein kinase and 

Ca2+/calmodulin-dependent kinases and a large, central domain with a high affinity ATP-

binding site (Hosaka and Sudhof, 1998b).  Research showing that synapsins bind to 

cytoskeletal components, particularly actin, as well as synaptic vesicles, and that 

phosphorylation of synapsins eliminates vesicle binding suggests that synapsin could be 

involved in regulating the availability of the RP vesicles via a reversible cross-linking 

between vesicles and/or vesicles and the cytoskeleton (Bahler and Greengard, 1987; 

Benfenati et al., 1992). 
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 The final point of regulation prior to release of neurotransmitters is the actual fusion 

of the vesicular membrane with the cell plasma membrane.  Four classes of proteins have 

been identified as the core machinery controlling this process:  SNARE proteins, SNARE 

regulators, Rab proteins, and Rab effectors (Jahn et al., 2003).  Rab proteins belong to a 

family of small guanosine triphosphate (GTP)-binding proteins, and interact with effectors 

and vesicles in a GTP-dependent manner (Araki et al., 1990; Johnston et al., 1991).  Rab 

proteins are presumed to act as switches, with the active, GTP-bound state rendering 

vesicles competent for docking to the plasma membrane (Rybin et al., 1996).  The 

phospholipid bilayers comprising the vesicular and plasma membrane are both negatively 

charged, resulting in an energy barrier to fusion.  Soluble NSF attachment protein receptor 

(SNARE) proteins are membrane-associated proteins that contain a characteristic residue 

sequence called the SNARE motif.  There are three SNARE proteins linked to exocytosis: 

synaptobrevin located on the vesicular membrane and syntaxin and SNAP-25 on the 

plasma membrane (Sollner et al., 1993).  Synaptobrevin and syntaxin each contain a single 

SNARE motif, while SNAP-25 contains two SNARE motifs.  Association of the four SNARE 

motifs into a "trans complex," a parallel four helical bundle, overcomes the repulsion energy 

barrier and forces the vesicular and plasma membrane together (Hanson et al., 1997; 

Weber et al., 1998).  This results in an unstable intermediate from which the fusion pore can 

form by mixing of the destabilized phospholipid bilayers.  SNARE proteins are additionally 

regulated by the Sec1/Munc18-like proteins.  While necessary for fusion, the exact roles of 

these proteins remain unclear.  To date, evidence suggests that these proteins play a role in 

controlling the availability of syntaxin for SNARE complex formation and the vesicle priming 

step following establishment of the SNARE complex (Hata et al., 1993; Deak et al., 2009). 

Ca2+-Dependence 

 As mentioned earlier, exocytosis of neurotransmitters is a Ca2+-mediated process.  

As the action potential reaches the synapse, depolarization of the cell membrane opens 
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VGCCs, and the resulting influx of Ca2+ ions serves as the ultimate trigger for release.  The 

extent to which Ca2+ elicits vesicular release is then dependent on two factors:  the 

efficiency of the cellular mechanisms for translating increases in intracellular Ca2+ 

concentration ([Ca2+]i) to vesicle fusion and the time course of the Ca2+ signal in the 

synapse.  The putative cellular Ca2+ sensor is synaptotagmin, a synaptic vesicle-associated 

protein with two Ca2+-binding C2 domains (Perin et al., 1990).  Multiple synaptotagmin 

isoforms have been identified in the brain, with synaptotagmin-1,-2, and -9 implicated as the 

Ca2+ sensors in exocytosis (Xu et al., 2007).  The current model suggests that through Ca2+-

dependent interactions with phospholipids and the SNARE proteins, synaptotagmins 

promote fusion pore formation by pulling the SNARE complexes apart (Sudhof, 2004).  

Supporting the role of synaptotagmins in exocytosis, the micromolar Ca2+ affinity of 

synaptotagmins is consistent with the Ca2+ affinity of release measured at the Calyx of Held 

synapse (Meinrenken et al., 2003), and genetic alterations of synaptotagmin Ca2+ affinity 

produce proportional changes in the Ca2+ affinity of release (Fernandez-Chacon et al., 

2001).  In addition to triggering vesicle fusion via synaptotagmin, Ca2+ influx also facilitates 

vesicle mobilization.  Increases in [Ca2+]i have been shown to relocate docked vesicles 

closer to Ca2+ entry sites (Becherer et al., 2003) and to activate the protein scinderin, which 

severs F-actin filaments (Rodriguez Del Castillo et al., 1990).  Disruption of the cortical actin 

cytoskeleton serves as a first step in the recruitment of vesicles to the plasma membrane for 

exocytosis (Burgoyne and Cheek, 1987).  Similarly, the mobilization of RP vesicles is 

thought to depend on Ca2+-mediated phosphorylation of synapsin (Chi et al., 2003). 

 The Ca2+ dynamics in a synapse can be simply represented as a series of fluxes 

between the extracellular medium, the cytosol, and intracellular organelles (chiefly 

mitochondria and the endoplasmic reticulum (ER)) (Figure 1.3).  At rest these fluxes are 

minimal, with the [Ca2+] in the cytosol and mitochondrial matrix in the 100 nM range and the 

[Ca2+] in the extracellular medium and inside the ER above 1 mM.  As the action potential  

8 
 



 

 

 

 

 

Figure 1.3.  Intracellular Ca2+ regulation in an adrenal chromaffin cell.  Ca2+ entry through 
voltage-gated calcium channels (VOCC) and/or release from the ER generates a local 
microdomain of high [Ca2+].  Cytosolic Ca2+ is cleared by ATP-driven pumps (white circles) 
on the plasma and ER membranes or mitochondrial uptake via the uniporter (U).  Spatial 
organization of the intracellular organelles helps define the boundaries of the microdomain 
and limit global cytosolic Ca2+ increases.  (Garcia et al., 2006)  
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invades the synapse, VGCCs open and Ca2+ rushes from the extracellular medium down its 

concentration gradient into the cytosol.  The spatial distribution of the VGCCs coupled with 

the limited diffusion of Ca2+ due to endogenous cytosolic Ca2+ buffers produces localized 

concentration microdomains in the tens of micromolar (Neher, 1998).  Ca2+ release from the 

ER, triggered via either the Ca2+-gated ryanodine receptors or second messenger inositol 

1,4,5-trisphosphate-gated channels, may also contribute to cytosolic [Ca2+] (Verkhratsky, 

2004).  Clearance of cytosolic Ca2+ occurs at the plasma membrane through the 

combination of a Na+/Ca2+ exchanger and an ATP-driven Ca2+ pump.  Cytosolic Ca2+ may 

also be cleared by uptake into intracellular organelles.  An ATP-driven Ca2+ pump resides on 

the ER membrane, and mitochondria uptake Ca2+ through a low affinity uniporter driven by 

the mitochondrial membrane potential (Gunter and Pfeiffer, 1990).  At basal levels of 

stimulation, the cytosolic Ca2+ transient is shaped primarily by diffusion and the endogenous 

buffers (Neher, 1998).  Global cytosolic [Ca2+] reaches levels around 1 µM, and clearance is 

dominated by the ATP-driven Ca2+ pumps on the plasma and ER membranes (Meinrenken 

et al., 2003; Garcia et al., 2006).  During intense stimulation, cytosolic [Ca2+] may reach 

levels high enough to facilitate uptake through the mitochondrial uniporter.  Mitochondrial 

Ca2+ uptake stimulates cellular respiration (Rizzuto et al., 2000), and Ca2+ clearance via this 

mechanism may provide the necessary energy to restore Ca2+ to resting levels. 

Systems of Interest 

 Regulated secretory vesicle exocytosis has been documented in a vast array of cell 

types including neurons, neuroendocrine cells, exocrine cells, hemopoietic cells, endothelial 

cells, and even sperm.  The primary focus of this work is to better understand the cellular 

mechanisms responsible for neuronal communication, and hence studies have been 

conducted at individual neurons and chromaffin cells, a well-characterized model system for 

neuronal exocytosis. 
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Midbrain Dopamine Neurons 

 Dopamine, along with serotonin and norepinephrine (NE), belongs to the biogenic 

amine class of neurotransmitters.  Dopamine modulates a wide variety of physiological 

functions in the brain from control of locomotion to reward seeking behavior.  The particular 

involvement of dopamine in the brain chemistry of addiction and of motor movement 

disorders such as Parkinson's and Huntington's disease makes the regulated exocytosis of 

dopamine an especially attractive system for study.  The term midbrain refers specifically to 

those dopamine neurons whose cell bodies are located in the substantia nigra (SN) and the 

ventral tegmental area (VTA).  Dopamine neurons in the SN project to the striatum to form 

the nigrostriatal pathway, while dopamine neurons in the VTA project to the nucleus 

accumbens to form the mesolimbic pathway.   

Chromaffin Cells 

 Adrenal medullary chromaffin cells, members of the neuroendocrine system, have 

been widely used in biochemical studies of vesicular exocytosis owing to their common 

origin with sympathetic neurons in the neural crest and their relative ease of isolation as 

homogenous populations in primary culture (Fujita, 1977; Livett, 1984).  Chromaffin cells 

help modulate the body's "fight or flight" response by releasing the catecholamine hormones 

epinephrine (E) and NE into the bloodstream.  A wealth of experimental evidence has 

revealed that the Ca2+ dependence of release and the protein machinery of vesicular 

docking and fusion are conserved in the chromaffin cell and the synapse (Morgan and 

Burgoyne, 1997; Burgoyne and Morgan, 2003).  Chromaffin cells are an especially useful 

model of dopaminergic neurons as they both contain the same catecholamine synthesis 

enzymes and package transmitter into vesicles with VMAT, although via different isoforms 

(Erickson et al., 1996).  The primary distinction between exocytosis at chromaffin cells and 

neurons is the size of the vesicles.  In contrast to the small synaptic vesicles (diameter ≤ 50 

nm) found predominantly at presynaptic active zones, chromaffin cells store catecholamine 
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in large dense core vesicles (LDCVs) with diameters near 300 nm.  The greater capacity of 

LDCVs facilitates measurements of individual vesicular release events.  

Techniques for Study of Exocytosis 

 Real time monitoring of exocytosis is subject to several challenging experimental 

constraints.  First, measurement at spatially resolved regions of isolated cells requires a 

sensor with physical dimensions in the micron range.  Second, observation of individual 

vesicular events requires a technique with extreme sensitivity.  For even though vesicles can 

contain high concentrations of transmitter (up to 0.5 M), their small size necessitates limits of 

detection in the zeptomole to attomole range.  Third, the rapid time course of vesicular 

fusion and release requires a technique with microsecond to millisecond resolution.  And 

finally, a cell that releases multiple transmitters or a transmitter of unknown identity requires 

a technique with chemical selectivity.  When used with carbon-fiber microelectrodes, the 

electrochemical techniques of constant potential amperometry (referred to hereafter as 

amperometry) and fast scan cyclic voltammetry (FSCV) provide the necessary spatial, 

temporal, sensitivity, and selectivity characteristics for accurate recordings of the exocytotic 

process.  These techniques take advantage of the fact that several important secreted 

chemical messengers, including the catecholamines dopamine, NE, and E, are easily 

oxidized.   

 Carbon-fiber microelectrodes provide distinct advantages over conventional-sized 

electrodes for measurements of exocytosis at single cells.  The small size of 

microelectrodes decreases double layer capacitance at the electrode tip, reducing the time 

constant of the electrode and allowing measurements down to the sub-microsecond time 

scale (Amatore and Maisonhaute, 2005).  As the spatial dimensions of the carbon-fiber 

microelectrode approximate that of a single cell, the signal to noise ratio is enhanced over 

sensors with extraneous electroactive surface area (Schroeder et al., 1994).  The use of 

disk geometries is particularly advantageous for single cell recordings.  Disk microelectrodes 
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(Figure 1.4) are fabricated by insulating a carbon fiber (6-10 µm in diameter) in a pulled 

glass capillary and beveling the tip at 45 degrees to create a flat, elliptical sensor surface 

(Kawagoe et al., 1993).  Disk microelectrodes can be positioned flush with the membrane of 

a cell, creating an "artificial synapse" configuration where the restricted extracellular volume 

into which transmitters are released minimizes signal loss due to diffusion and allows the 

release of a small number of molecules in the local vicinity of the sensor/receptor to be 

detected with a high signal to noise ratio (Amatore et al., 2008).  This same approach is 

used by nature at the biological synapse. 

Constant Potential Amperometry 

 In amperometry, the electrode is held at a constant potential sufficient to oxidize or 

reduce an analyte of interest.  Analytes are immediately electrolyzed upon contact with the 

electrode surface, resulting in a measurable current.  Unlike FSCV, in which the electrode 

response is slowed by adsorption and desorption of the analyte to the electrode surface 

(Bath et al., 2000), the temporal response of amperometry is limited only by mass transport 

and electron transfer kinetics.  Thus, amperometry offers superior temporal resolution 

compared to FSCV.  However, amperometry does not allow for positive analyte 

identification.  If multiple electroactive species are present that can undergo oxidation or 

reduction at the electrode holding potential, it is impossible to distinguish their corresponding 

components of the recorded signal.  For this reason, precaution must be taken with 

amperometric measurements in mixed samples to ensure the identity of the released 

species through knowledge of cell type and neurotransmitter content from complementary 

techniques such as FSCV and liquid chromatography.  Amperometry at carbon-fiber 

microelectrodes was first used at bovine chromaffin cells, providing the first direct chemical 

evidence of exocytosis (Leszczyszyn et al., 1990, 1991).  The technique has since been 

applied to directly observe exocytosis at many cell types ranging from pancreatic β-cells to  
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Figure 1.4.  Electron micrograph of a disk carbon-fiber microelectrode.  The carbon fiber is 
sealed in a glass capillary, and the electrode is beveled at 45 degrees to create a flat 
electroactive surface that can be positioned flush with the cell membrane. 
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neurons (Chen et al., 1994; Bruns and Jahn, 1995; Huang et al., 1995; Zhou and Misler, 

1995). 

 Figure 1.5 (top panel) shows a typical experimental setup for amperometry at a 

single cell.  The disk electrode is positioned flush with cell membrane, and exocytosis is 

induced via pressure ejection of chemical secretagogues from a nearby stimulating pipette.  

If the electrode is held at a potential sufficient to oxidize the released transmitter, a series of 

discrete current spikes are recorded (Figure 1.5, bottom panel).  The individual spikes have 

been shown to correspond to the oxidation of molecules released from single vesicles 

(Wightman et al., 1991).  By examining the number and frequency of current spikes along 

with the individual spike characteristics, much information can be revealed about the 

vesicular release mechanisms at target cells.  For example, the total number and frequency 

of events in response to a stimulus can be used to probe the size of the RRP, efficiency of 

vesicle docking and fusion, the recycling of vesicles back into the RRP, and the mobilization 

of vesicles from the RP to the RRP. 

 Figure 1.6 shows an expanded view of an individual amperometric current spike.  

Spikes are generally characterized by a sharp rise in current, corresponding to a rapid flux 

of transmitter intro the extracellular space following vesicular fusion, and a more gradual 

decay to baseline (Schroeder et al., 1996).  Additionally, pre-spike features known as feet 

may sometimes be observed (Chow et al., 1992).  These features have been attributed to 

the leak of transmitter through the fusion pore intermediate that precedes full vesicular 

fusion.  Individual spike characteristics that are commonly measured include the amplitude 

(Imax), halfwidth (t1/2), rise time (tr), decay time (td), and area (or quantal size, Q).  Spike Imax 

values can be related to the maximal flux of transmitter during a fusion event.  The kinetic 

parameters t1/2, tr, and td provide information on the time course of the extrusion of vesicular 

content following fusion.  Spike area is directly related to the number of molecules 

electrolyzed at the electrode surface.  For each spike, the integral of current with respect to  
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Figure 1.5.  Amperometric measurements of exocytosis.  Top panel: transmitted light 
micrograph showing typical experimental setup.  The microelectrode (right) is lowered until it 
contacts the cell membrane.  Exocytosis is triggered by pressure ejection of chemical 
secretagogues from a stim pipette (left) located 20 to 60 µm from the cell.  Scale bar = 20 
µm.  Bottom panel: following stimulation, a series of discrete current spikes are observed at 
the electrode.  Each spike represents the fusion of a single secretory vesicle.  Trace is taken 
from a mouse chromaffin cell stimmed with 60 mM K+.   
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Figure 1.6.  Individual amperometric spike characteristics.  Imax is the peak current or 
amplitude of the spike.  t1/2 is the width at half height.  tr and td are the rise time and decay 
time, respectively.  The area of the spike corresponds to the amount of transmitter released, 
also known as the quantal size (Q).  
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time yields the measured charge (Q, in coulombs), which is proportional to moles of analyte 

(m) by Faraday's law, Q = nFm, where n is the number of electrons involved in the 

electrochemical reaction and F is Faraday's constant. 

 Contrary to the expectations from the quantal hypothesis of neurotransmission, direct 

measurement of exocytosis with amperometry reveals that individual vesicular events are 

surprisingly nonuniform.  Histograms of raw amperometric spike Q and t1/2 data reveal non-

Gaussian distributions heavily skewed towards smaller values with the means being larger 

than the modes (Finnegan et al., 1996; Pothos et al., 1998; Villanueva et al., 2006).  If one 

assumes a uniform concentration of transmitter in the spherical vesicles, then the 

amperometric spike characteristics should depend on vesicular volume (Bekkers et al., 

1990).  Vesicle radii (volume1/3) show a normal Gaussian distribution in most cells, 

suggesting that histograms of the cube roots of Q and t1/2 should also show a Gaussian 

distribution.  These cube root distributions are indeed Gaussian, with relative standard 

deviations approximating those for the vesicle radii (Finnegan et al., 1996). 

Fast Scan Cyclic Voltammetry 

 In FSCV, the electrode potential is periodically scanned in a triangle waveform 

(Figure 1.7).  Voltage limits are chosen such that oxidation and reduction of the analyte of 

interest occur within the potential window.  The fast scan rates result in large background 

currents associated with charging of the double layer capacitance.  Fortunately, these 

background currents are stable over short time periods, allowing the use of digital 

background subtraction to reveal the comparatively small Faradaic current resulting from 

oxidation and reduction of the analyte (Howell et al., 1986).  The current amplitude is directly 

proportional to the local concentration of analyte at the electrode surface, with FSCV at 

carbon-fiber microelectrodes demonstrating nanomolar limits of detection (Cahill et al., 

1996).  The background-subtracted cyclic voltammogram (CV) is characteristic of the 

detected species, and the positions of the peak currents for oxidation and reduction and the  
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Figure 1.7.  Fast scan cyclic voltammetry technique.  In FSCV, a triangular waveform is 
applied to the electrode.  In this example, the electrode is ramped linearly from -0.4 V to 1.3 
V and back at 600 V/s.  The waveform is applied at a frequency of 60 Hz.  The analyte 
(norepinephrine in this case) is oxidized on the positive sweep and reduced on the negative 
sweep.  By scanning at such fast rates, a large charging current is generated (top right).  
The small Faradaic currents generated from analyte oxidation and reduction are hard to 
distinguish in the presence of the charging current (middle right, red ovals).  However, the 
charging background is stable over the time course of our experiments, and can be digitally 
subtracted to give the characteristic CV of the analyte (bottom right).  
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peak shapes can be used to distinguish between analytes (Heien et al., 2004).  This 

chemical selectivity of FSCV has been exploited in studies of exocytosis at single cells 

where multiple chemical messengers are released.  FSCV at carbon-fiber microelectrodes 

has been used to discriminate between vesicular release of E and NE at chromaffin cells 

(Pihel et al., 1994) and to detect release of histamine and serotonin at mast cells (Pihel et 

al., 1995).  The latter providing the first direct evidence for corelease of chemical 

messengers from a single vesicle. 

 Figure 1.8 shows an example of the data obtained by monitoring exocytosis at single 

cells with FSCV.  In this example, the potential at the electrode was scanned from -0.4 V to 

1.3 V and back at 600 V/s to measure the secretion of NE and E from a chromaffin cell.  

With this waveform, the CVs for the two catecholamines are indistinguishable and the peak 

oxidation and reduction currents occur at 0.6 V and -0.2 V, respectively.  In order to view 

multiple CVs simultaneously, FSCV data is generally presented in false color plots (Michael 

et al., 1998).  By extracting the current at the peak oxidation potential from successive CVs, 

a current vs. time trace very similar to those from amperometric measurements can be 

obtained.  As Figure 1.8 clearly shows, FSCV has sufficient temporal resolution to observe 

individual exocytotic events.  However, when compared to an amperometric trace (Figure 

1.5), it is obvious that the resolution is significantly diminished.  This, again, is due to the fact 

that the temporal response in amperometry is limited only by mass transport and electron 

transfer kinetics.  In FSCV, the temporal response is ultimately limited by the frequency at 

which the waveform is applied to the electrode.  In this case, the frequency is 60 Hz, or one 

data point every 16.7 ms.  Despite poorer kinetic information, the advantage to FSCV 

measurements of exocytosis is that the CV can be used to verify the chemical identity of the 

secreted species for each vesicular event.  Thus, amperometry and FSCV can be viewed as 

complementary techniques, each vital to the study of exocytosis at single cells. 
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Figure 1.8.  FSCV measurements of exocytosis.  A 3 s time window of release from a 
mouse chromaffin cell stimulated with 60 mM K+ is shown.  The color plot (bottom) displays 
time on the x axis, voltage on the y axis and current in false color.  Individual events are 
detectable by the color changes at the oxidation and reduction potentials of the analytes (in 
this case the catecholamines epinephrine and norepinephrine).  From the color plot, a 
current versus time trace (top) can be extracted from the peak oxidation potential (dashed 
black line).  CVs for individual events can be used to confirm the identity of the analyte 
(arrow).  
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Fluorescent Ca2+ Imaging 

 The fundamental role of Ca2+ in vesicular release makes real time monitoring of 

changes in [Ca2+]i vital for a complete understanding of exocytosis.  The development of the 

fura family of fluorescent Ca2+ indicators in the lab of Dr. Tsien has provided researchers 

with a simple tool for such measurements (Grynkiewicz et al., 1985).  One of the primary 

advantages of fura dyes is their ability to be prepared as acetoxymethyl ester derivitives, 

rendering the hydrophillic dyes membrane permeable for easy loading into cells.  In the 

cytosol, endogenous cellular esterases cleave the ester linkages effectively trapping the 

indicator inside the cell in its active form.  Figure 1.9A shows the active forms of fura-2 and 

fura-FF.  The addition of two fluorine atoms produces a near 40-fold decrease in Ca2+ affinity 

for fura-FF relative to fura-2.  With Ca2+ dissociation constants (Kd) of 0.14 and 5.5 µM, 

respectively, both fura-2 and fura-FF are suitable for studying the transient changes in 

[Ca2+]i accompanying exocytosis, where resting levels near 100 nM are rapidly increased to 

micromolar levels.  However, fura-2 does exhibit limited sensitivity to [Ca2+]i greater than 1 

µM as these concentrations approach the edge of the dye's linear response window 

(approximately 0.1 to 10 x Kd). 

 Fura dyes bind Ca2+ in a 1:1 manner.  The unbound indicator has a peak 

fluorescence excitation wavelength of 380 nm and a peak fluorescence emission 

wavelength of 510 nm (Figure 1.9B).  Upon Ca2+ binding, the dye undergoes an absorption 

shift to 340 nm, while maintaining peak fluorescence emission at 510 nm (Figure 1.9B).  

Thus, by rapidly switching the excitation wavelength between 340 and 380 nm and 

monitoring emission at 510 nm, it is possible to obtain dynamic information on the ratio of 

bound to unbound dye inside the cell.  The ability to perform ratiometric measurements 

significantly reduces the effects of differing cell thickness, uneven dye loading, dye leakage, 

photobleaching, and intensity of the excitation source; variables the must be accounted for 

in dyes utilizing only changes in fluorescence intensity upon binding (Moore et al., 1990).   
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Figure 1.9.  Structure and excitation spectra of fura Ca2+ dyes.  A.  Molecular structure of 
the active, cell-impermeant forms of fura-2 and fura-FF.  B.  Fluorescence excitation and 
emission spectra for fura-2 (fura-FF spectra are identical).  Peak excitation wavelength for 
the Ca2+-bound dye (trace A) is 340 nm.  Peak excitation wavelength for the free dye (trace 
B) is 380 nm.  Both species exhibit a peak emission wavelength of 510 nm.  Images 
adapted from product manuals available via the manufacturer's website 
(http://www.invitrogen.com/site/us/en/home/brands/Molecular-Probes.html).   
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By calibrating the indicator in solutions of known [Ca2+], experimentally determined ratio 

values can be calibrated to 2+] t ing ation: [Ca i using he follow  equ

                                                (1) 

where Kd is the dissociation constant, R is the experimentally observed ratio, Rmin is the ratio 

measured in a Ca2+-free solution, Rmax is the ratio measured in a solution of dye-saturating 

[Ca2+], F380max is the fluorescence observed with 380 nm excitation in a Ca2+-free solution, 

and F380min is the fluorescence observed with 380 nm excitation in a solution of dye-

saturating [Ca2+].  This equation assumes that the fluorescent properties and the Ca2+ 

affinity of the dye are similar in both the calibration solutions and the cell cytosol. 

 Several important limitations have been addressed in the use of fura dyes for 

measurement of [Ca2+]i (Roe et al., 1990).  These include incomplete hydrolysis of 

acetoxymethyl ester bonds by cytosolic esterases, sequestration of fura dyes in intracellular 

organelles, quenching of fluorescence by heavy metals, active and passive dye loss from 

loaded cells, enhanced cytosolic Ca2+ buffering at high concentrations of the dye (≥100 µM), 

and shifts in the Kd for Ca2+ as a function of the viscosity, ionic strength, and temperature of 

the dye environment.  However, through careful control of experimental conditions and dye 

concentrations, fura dyes can be readily used for accurate determinations of real time 

changes in [Ca2+]i during exocytosis. 

High Performance Liquid Chromatography 

 High performance liquid chromatography (HPLC) with electrochemical detection can 

be used as a valuable supplement to the real time measurement of vesicular release events 

at single cells with amperometry or FSCV.  The high selectivity and sensitivity of this 

separation method allow for the simultaneous determination of multiple neurotransmitters 

and metabolites in biologically complex mixtures such as tissue samples, individual cells, 

and extracellular media.  The initial experiments in this field used open tubular liquid 
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chromatography with electrochemical detection to quantitatively determine the presence of 

dopamine, serotonin, tyrosine, and tryptophan at the femtomolar level in single cells of the 

land snail, Helix aspersa (Kennedy and Jorgenson, 1989).  Further experiments utilized 

reverse phase HPLC with packed microcolumns to quantitate both the E and NE content of 

and secretion from individual bovine chromaffin cells and to measure the histamine and 

serotonin content of single rat peritoneal mast cells (Cooper et al., 1992; Cooper et al., 

1994; Pihel et al., 1995).  The switch from open tubular columns to packed microcolumns 

permitted greater retention and separation, of polar compounds like the catecholamines.  

Combining HPLC determination of cellular neurotransmitter content with amperometric or 

FSCV measurement of vesicular events at single cells provides a more complete 

understanding of the related processes of transmitter synthesis, storage, and release by 

exocytosis.  

Dissertation Overview 

  The following chapters discuss the use of the electrochemical and supporting 

techniques described above to study exocytosis at single cells.  In Chapter 2, amperometry 

and fluorescent Ca2+ imaging at isolated midbrain dopamine neurons were used to examine 

the cellular mechanisms behind somatodendritic dopamine release.  Chapters 3 and 4 both 

describe collaborative efforts to investigate potential changes in regulated exocytosis at 

several transgenic mouse lines.  FSCV, amperometry, and fluorescent Ca2+ imaging were 

used to characterize biogenic amine release in mice lacking the mitochondrial uncoupling 

protein UCP2 and in mouse models of obesity and fragile X syndrome.  Chapter 5 describes 

the electrochemistry of three trace amines at carbon-fiber microelectrodes using FSCV.  The 

FSCV techniques developed in Chapter 5 were then employed in Chapter 6 to explore the 

potential utility of these trace amines as false catecholamine transmitters.  
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Chapter 2 

Origins of Extrasynaptic Dopamine Release 
 
 
 

Introduction 

 In the classical model of neurotransmission, electrochemical signals are propagated 

in a unidirectional manner:  a neuron receives information from incoming synaptic terminals 

at its dendrites, processes the information at the cell body, and then passes the information 

down its axon to terminals that form synapses with the next cell in the pathway.  Over the 

past few decades the classical model has been shown to be incomplete, as a wealth of 

evidence has accumulated demonstrating that the somatodendritic region of neurons is 

capable of synthesizing, storing, and releasing chemical neurotransmitters. 

 As far back as 1975, glyoxylic acid-induced histofluorescence was used to show the 

accumulation and storage of dopamine in the dendrites of substantia nigra (SN) neurons 

(Bjorklund and Lindvall, 1975).  Similar to the storage of dopamine at axon terminals, this 

accumulation was blocked by reserpine, an inhibitor of the vesicular monoamine transporter 

(VMAT2).  Shortly thereafter, experiments with radio-labeled dopamine revealed both 

spontaneous and depolarization-evoked release in the SN from in vivo and in vitro 

preparations (Geffen et al., 1976; Nieoullon et al., 1977).  More recently, electrochemical 

techniques have been used to make direct, real-time measurements of dopamine release in 

somatodendritic regions.  Amperometry has been used to detect quantal release events 

from the cell bodies of SN neurons in slices of rat brain (Jaffe et al., 1998), while  fast scan 

cyclic voltammetry (FSCV) has been used to characterize dopamine release in the ventral 



tegmental area (VTA) of anesthetized rats and in the SN and VTA of rodent brain slices 

(Rice et al., 1994; Rice et al., 1997; John and Jones, 2006; Kita et al., 2009).   

 Much effort has been put into understanding the mechanisms that control 

somatodendritic dopamine release.  At this point, however, debate remains as to whether 

the well-studied, Ca2+-dependent exocytotic release of neurotransmitters from axon 

terminals is also responsible for transmitter release in somatodendritic regions.  Compared 

to axon terminals, the cell bodies and dendrites of dopaminergic neurons contain a sparse 

number of vesicles (Wilson et al., 1977; Wassef et al., 1981; Groves and Linder, 1983; 

Nirenberg et al., 1996b, 1997).  Somatodendritic dopamine may be stored primarily in the 

smooth endoplasmic reticulum (SER) (Mercer et al., 1979).  Supporting this notion, in 

dendrites of dopamine neurons VMAT2 has been shown to localize primarily to 

tubulovesicles resembling saccules of SER and to a lesser extent to synaptic vesicles 

(Nirenberg et al., 1996b). 

 At axon terminals, invading axon potentials trigger exocytosis via the opening of 

voltage-gated calcium channels (VGCCs).  Similarly, somatodendritic release of dopamine 

has been shown to depend on an influx of extracellular Ca2+ (Rice et al., 1997; Bergquist et 

al., 1998; Chen and Rice, 2001; Beckstead et al., 2004).  Interestingly though, 

somatodendritic release persists at low extracellular Ca2+ levels insufficient to support 

release at axon terminals (Hoffman and Gerhardt, 1999; Chen and Rice, 2001).  In addition, 

while dopamine release at axon terminals appears to be mainly dependent on N- and P/Q-

type VGCCs, release at dendrites seems to be supported by either R-type or minimal Ca2+ 

entry through multiple VGCCs (Bergquist et al., 1998; Bergquist and Nissbrandt, 2003; Chen 

et al., 2006).  Backpropagation of action potentials through the dendritic tree has been 

demonstrated for dopaminergic neurons in vitro (Hausser et al., 1995), and may serve as 

the primary trigger for Ca2+ influx.  However, reports have also shown the existence of Ca2+ 

conductances in dopaminergic dendrites that occur independent of Na+ channels opening 
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(Llinas et al., 1984; Hounsgaard et al., 1992); thus clouding the dependence of 

somatodendritic release on dopamine neuron firing. 

 One alternative to a vesicular, Ca2+-mediated mechanism of somatodendritic release 

is reversal of the dopamine transporter (DAT).  DAT has been shown to localize to both the 

plasma membrane and SER in dendrites of dopamine neurons in the SN (Nirenberg et al., 

1996a).  Several findings suggest that at least a portion of somatodendritic dopamine 

release arises from the Ca2+-independent reversal of DAT (Elverfors et al., 1997; Hoffman 

and Gerhardt, 1999; Falkenburger et al., 2001).  However, there are also literature examples 

showing that inhibition of DAT leads to increased dendritic release of dopamine (Cragg et 

al., 1997; Hoffman et al., 1998).  Furthermore, basal and stimulus-induced dendritic 

dopamine release has been shown to depend on SNARE proteins (Bergquist et al., 2002; 

Fortin et al., 2006).  SNAREs mediate fusion of intracellular vesicles with the plasma 

membrane, and their involvement would naturally suggest an exocytotic mechanism as 

opposed to reversal of DAT. 

 This chapter describes an investigation of the biochemical origin of somatodendritic 

dopamine release via amperometric measurements at isolated neurons.  To aid in the 

identification of dopaminergic neurons, cells were harvested from transgenic mice that 

coexpress enhanced green fluorescent protein (GFP) in all cells that express tyrosine 

hydroxlase (TH), the rate-limiting enzyme in dopamine synthesis.  Amperometric recordings 

from the cell bodies of acutely dissociated midbrain dopamine neurons revealed discrete 

current spikes that were dependent on extracellular Ca2+, hallmark indications of exocytosis.   

Two vesicular populations were observed, with a majority of very rapid quantal events 

having single rising and falling phases and a minority of broader events sometimes having 

multiple rising and/or falling phases.  Amperometric recordings at chromaffin cells from both 

wild type (WT) and TH-GFP mice suggest that the exocytotic machinery was not significantly 

affected by expression of the GFP reporter gene. 
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Materials and Methods 

Animals 

 Mice were handled in accordance with the guidelines set forth by the Institutional 

Animal Care and Use Committee (IACUC) at UNC-Chapel Hill.  C57BL/6J mice (WT) were 

obtained from The Jackson Library (Bar Harbor, ME).  A TH-GFP breeding pair was 

generously provided by Dr. Lorraine Iacovitti at Thomas Jefferson University, and a colony 

was maintained locally.  These mice were generated on a C57BL/6J background and 

coexpress GFP in TH-positive cells (Kessler et al., 2003). 

Preparation Acutely Dissociated Midbrain Neurons 

 Acutely dissociated midbrain dopaminergic neurons were prepared as previously 

described (Puopolo et al., 2007), with slight modification.  A P12-P18 mouse pup was 

deeply anesthetized with ether, decapitated, and the brain rapidly removed into ice-cold, 

oxygenated dissociation medium containing (in mM): 82 Na2SO4, 30 K2SO4, 5 MgCl2, 10 

glucose, 10 HEPES, and 0.001 % phenol red, pH adjusted to 7.4 with NaOH.  400 µm thick 

coronal sections containing the midbrain were obtained using a vibrating tissue slicer (World 

Precision Instruments, Sarasota, FL).  Regions containing the SN and VTA were dissected 

out, and the pooled tissue was digested for 40 min at 37 oC in dissociation medium with 3 

mg/mL protease type XXIII.  Digested tissue was washed and triturated with fire-polished 

Pasteur pipette tips of decreasing bore size in dissociation medium with 1 mg/mL each BSA 

and trypsin inhibitor.  Cells were pelleted at 1000 rpm for 5 min, resuspended in 300 µL 

Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham (DMEM/F12), and 

distributed evenly to 3 concanavalin A-coated (1 mg/mL) 25 mm round glass coverslips.  

After 15 min attachment plates were fed with 2 mL DMEM/F12 and maintained in a 

humidified, 5 % CO2 atmosphere at 37 oC for at least 1 h prior to experimentation.  For 

neuronal preps seeded on glial monolayers, preparation of cortical astrocyte monolayers 
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was performed as previously described (Pothos et al., 1998).  Glial cells were maintained in 

culture for 2-3 weeks prior to use. 

Preparation Adrenal Medullary Chromaffin Cells 

 Murine chromaffin cells were prepared as previously described (Kolski-Andreaco et 

al., 2007) with some modifications.  A female mouse, 4-8 weeks old, was deeply 

anesthetized with ether, decapitated, and the adrenal glands rapidly removed into ice-cold, 

oxygenated Ca2+ and Mg2+-free Locke's buffer containing (in mM): 154 NaCl, 3.6 KCl, 5.6 

NaHCO3, 5.6 glucose, and 10 HEPES, pH adjusted to 7.2 with NaOH.  The medullae were 

isolated via gentle removal of cortical tissue and digested for 20 min at 37 oC in DMEM/F12 

with 25 U/mL papain.  The digestion media was replaced with a fresh aliquot, followed by a 

second 20 min digestion period.  Digested tissue was washed and triturated with pipette tips 

of decreasing bore size in 500 µL DMEM/F12 with 10 % fetal bovine serum and 2 % horse 

serum.  The resulting cell suspension was distributed evenly to 3 poly-L-lysine-coated (0.1 

mg/mL) 25 mm round glass coverslips.  After 15 min attachment plates were fed with 2 mL 

DMEM/F12 containing 100 U/mL penicillin, 0.1 mg/mL streptomycin, 50 U/mL nystatin, and 

40 µg/mL gentamicin.  Plates were maintained in a humidified, 5 % CO2 atmosphere at 37 

oC for at least 24 h prior to experimentation. 

Electrodes and Electrochemistry 

 Disk carbon-fiber microelectrodes were prepared using T650 carbon fibers (6 µm 

diameter, Amoco, Greenville, SC) as previously described (Kawagoe et al., 1993).  Fibers 

were aspirated into glass capillaries (A-M Systems, Sequim, WA), and a vertical pipette 

puller (Narishige, Long Island, NY) was used to seal the glass around the carbon fiber.  

Carbon fibers were cut at the glass seal, which was then reinforced with epoxy (15 % m-

phenylenediamine in Epon 828 resin (Miller-Stephenson, Danbury, CT) heated to between 

80 and 90 oC).  Electrodes were kept at room temperature overnight, and then the epoxy 

was cured via sequential heating at 100 and 150 oC for 8 h and overnight, respectively.  
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Prior to use, electrodes were beveled at 45 degrees on a diamond dust-embedded polishing 

wheel (Sutter Instruments, Novato, CA) and soaked in isopropyl alcohol for at least 20 min 

(Bath et al., 2000). 

 Amperometric recordings were made using a GeneClamp 500B amplifier (Axon 

Instruments, Molecular Devices, Union City, CA).  Electrodes were held at 0.650 V vs. a 

Ag/AgCl reference electrode (BASi, West Lafayette, IN), a potential sufficient to oxidize 

catecholamines.  For measurements at neurons, the output current was collected at 100 

kHz and filtered at 10 kHz with a low-pass Bessel filter.  Post-collection, traces were further 

digitally filtered using a 3 kHz low-pass Bessel filter.  For measurements at chromaffin cells, 

the output current was collected at 20 kHz and filtered at 5 kHz with a low-pass Bessel filter.  

Post-collection, traces were further digitally filtered using a 400 Hz low-pass Bessel filter.  

Data collection and filtering were controlled via the pClamp software provided with the 

amplifier.  Amperometric spike analysis was performed using MiniAnalysis software 

(Synaptosoft, Decatur, GA).  For inclusion, spike amplitude was required to be 5 times 

greater than the root-mean-squared current noise. 

Single Cell Experiments 

 Glass coverslips containing plated cells were secured in a stainless steel coverslip 

holder and mounted on the stage of an inverted microscope (Eclipse TE300, Nikon 

Instruments, Melville, NY).  A temperature controller (Warner Instruments, Hamden, CT) 

connected to the stage maintained cells at 37 oC throughout the experiments.  In all 

experiments, the extracellular recording buffer contained (in mM): 145 NaCl, 3 KCl, 1.2 

MgCl2, 2.4 CaCl2, 1.2 NaH2PO4, 11 glucose, and 10 HEPES, pH adjusted to 7.4 with NaOH.  

Exocytosis/Ca2+ influx was triggered via pressure ejection of high K+ buffer (80 mM for 

neurons, 60 mM for chromaffin cells) from a stimulating pipette located 20 to 60 µm from the 

cell.  Stimulating pipettes with 6 to 10 µm tip diameters were fabricated using a horizontal 

pipette puller (Sutter Instruments, Novato, CA) and a microforge (Narishige, Long Island, 
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NY).  Pressure ejection was controlled via a multi-channel Picospritzer (General Valve 

Corporation, Parker Hannifin, Fairfield, NJ).  Positioning of both the electrode and 

stimulating pipette was controlled using piezoelectric micromanipulators (Burleigh 

Instruments, Exfo, Plano, TX).  For neuronal experiments, GFP-positive dopamine neurons 

were identified via epifluorescence using a Xe arc lamp and Nikon endow GFP bandpass 

filter set. 

Fluorescent Measurements of Intracellular Ca2+ 

 Intracellular Ca2+ dynamics were monitored using the ratiometric dye fura-FF 

(Invitrogen, Carlsbad, CA).  Plated cells were incubated for 20 min at 25 oC in extracellular 

recording buffer with 1 µg/mL esterified fura dye and 0.1 % (w/v) BSA, washed twice with 

buffer without dye, and then incubated for 20 min at 25 oC in buffer without dye for 

deesterification.  Ca2+ bound and unbound dye were excited at 340 and 380 nm, 

respectively, using a computer-controlled high speed wavelength switcher (Sutter 

Instruments, Novato, CA).  Emission was monitored at 510 nm using a CCD camera and 

acquisition software (Empix Imaging, Mississauga, ON, Canada). 

HPLC Determination of Dopamine Content 

 Tissue samples were dissected from a slice (300 - 500 μm in thickness) containing 

the region of interest.  The tissue was weighed and homogenized with a wand sonicator 

(Fisher Scientific, Hampton, NH) in 200 µL 0.1 N perchloric acid spiked with 1 µM 

hydroquinone (HQ).  Following centrifugation at 6,000 rpm for 10 min, the supernatant was 

removed and filtered with a 0.2 µm syringe filter unit (Millex-LG).  Injections (50 µL) were 

made onto a reverse phase column (C-18, 5 µm, 4.6 x 250 mm, Waters symmetry 300 or 

Waters Atlantis T3).  The mobile phase (prepared in HPLC grade water) contained 0.1 M 

citric acid, 0.1 mM EDTA, and 1 mM hexyl sodium sulfate, pH 3.5.  Methanol was added as 

the organic modifier at a concentration of 10 % to shorten analyte elution times.  

Catecholamines were detected with a thin-layer radial electrochemical flowcell (BASi, West 
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Lafayette, IN), with the working electrode at 700 mV vs. a Ag/AgCl reference electrode 

(BASi, West Lafayette, IN).  The HQ (1 μM) was used as an internal standard for analyte 

quantification and recovery.  All analyte response ratios were taken with respect to the 

internal standard to account for differential electrode responses.  The determination of peak 

areas for HPLC measurements was performed using custom written Igor programs.  These 

programs were a gift from the Jorgenson lab at UNC-CH.  Peak area determination was 

performed using statistical moments regression theory (Hsieh and Jorgenson, 1996).  The 

peak area of the analyte was taken as a ratio to that of an internal standard at a known 

concentration, adjusted for differential detector response.  The ratio was then used to 

calculate a mass of analyte in the extraction solution which was normalized by the mass of 

tissue taken. 

Histochemistry 

 Dopamine neurons were identified by visualization of TH or dopamine.  Detection of 

dopamine was performed using the sucrose-potassium phosphate-glyoxylic acid (SPG) 

histofluorescence method (De la Torre, 1980).  Plates were incubated in ice-cold SPG 

solution (1 % glyoxylic acid, 6.8 % sucrose, 3.2 % KH2PO4, pH 7.4) for 5 min, dried in a 

laminar flow hood, covered with mineral oil, and heated at 95 oC for 5 min.  Plates were 

cooled by replacing the mineral oil and visualized with fluorescein epifluorescence.  For TH 

immunohistochemistry, plates were fixed with 3.7 % formaldehyde in PBS for 30 min.  

Following a 2 h treatment with a pre-blocking solution (1 % BSA, 10 % goat serum, and 0.3 

% Triton X-100 in PBS), cells were incubated overnight at 4 oC in PBS with 5 % goat serum 

and 1:1000 rabbit anti-TH (Chemicon AB152).  Plates were incubated for 1 h in PBS with 5 

% goat serum and 5 µg/mL biotinylated goat anti-rabbit (Vector BA-1000), then for 30 min in 

R.T.U. Horseradish Peroxidase Avidin D (Vector A2704), and visualized with 

diaminobenzidine (DAB). 
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Chemicals 

 Unless noted, all chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and 

used as received.  All solutions were prepared using doubly-distilled, deionized water. 

Results 

Properties of Acutely Dissociated Midbrain Dopamine Neurons 

 A procedure for the study of Na+ and Ca2+ currents in isolated SN neurons (Puopolo 

et al., 2007) was modified to produce acutely dissociated midbrain dopamine neurons from 

both the SN and VTA.  TH staining revealed that 38 % of neurons (31/81) in these 

preparations were dopaminergic (Figure 2.1A).  Consistent with the staining, 35 % of live 

cells (30/86) harvested from TH-GFP mice demonstrated GFP fluorescence (Figure 2.1B).  

In contrast to the diverse morphologies and dense axodendritic networks observed in the 

postnatal midbrain in vivo (Domesick et al., 1983; Tepper et al., 1987), acutely dissociated 

midbrain dopamine neurons resembled the immature shapes of cells cultured from fetal 

tissue.  With no glial scaffold to support process outgrowth and only hours of recovery time, 

dopaminergic cells generally possessed only a few small neurites at experimentation (Figure 

2.1), and on occasion were spherical and devoid of processes. 

 As an exocytotic mechanism of extrasynaptic dopamine release would be Ca2+-

dependent, the dynamics of depolarization-induced [Ca2+]i changes at cell bodies of 

dissociated dopamine neurons were monitored with the fluorescent dye fura-FF.  GFP 

fluorescence has been shown to significantly interfere with the use of fura dyes (Bolsover et 

al., 2001), so measurements were made at cells isolated from WT mice.  TH staining was 

performed after experimentation to identify dopaminergic neurons.  Figure 2.2A shows 

representative [Ca2+]i responses from the cell body of a dopamine neuron to a 1 s pressure 

ejection of 80 mM K+ at both 25 oC and 37 oC.  As expected, cellular Ca2+ buffering capacity 

is enhanced at physiological temperature relative to room temperature recordings.  At both 

temperatures, no detectable increase in [Ca2+]i was observed upon removal of Ca2+ from the  
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Figure 2.1.  Identification of dissociated midbrain dopamine neurons.  (A)  TH labeling of a 
fixed cell visualized with the peroxidase/DAB method.  The characteristic dark brown 
precipitate is clearly visible at the cell body.  (B)  Brightfield (left panel) and fluorescent (right 
panel) image of a live cell isolated from a TH-GFP mouse.  All images taken at total 
magnification of 400X.  Scale bar = 20 µm.  
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Figure 2.2.  Intracellular Ca2+ transients at midbrain dopamine neurons.  (A)  Time course of 
[Ca2+]i changes measured at the cell body in response to a 1 s stimulation with 80 mM K+ 
(arrow).  Responses are shown at both room (RT) and physiological temperatures (37 oC).  
(B)  Comparison of [Ca2+]i dynamics at the cell body of TH positive (n = 18) and TH negative 
(n = 21) neurons.  No significant difference (p > 0.05, Student’s t-test) was observed in the 
area (in arbitrary units) or halfwidth (in s) of the Ca2+ transient between cell types at 37 oC.
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extracellular buffer and stim.  The intracellular Ca2+ transients measured at TH-positive cells 

(n = 18) were statistically identical (p > 0.05, Student's t-test) to those from TH-negative cells 

(n = 21) at 37 oC (Figure 2.2B).  The [Ca2+]i peak had an area of 2.0 ± 0.2 arbitrary units in 

TH-positive cells, with a halfwidth of 5.2 ± 0.3 s.  In TH-negative cells, the [Ca2+]i spike had 

an area of 2.1 ± 0.2 arbitrary units and a halfwidth of 4.7 ± 0.4 s. 

Vesicular Release at Cell Bodies of Dissociated Midbrain Neurons 

 Initial amperometric recordings at the cell bodies of acutely dissociated midbrain 

dopamine neurons revealed no current changes either spontaneously or in response to 

depolarizing stimulations with 80 mM K+.  To enhance dopamine synthesis, cells were 

incubated with 100 µM L-3,4-dihydroxy-phenylalanine (L-DOPA) for 30 min at 37 oC prior to 

experimentation (Pothos et al., 2000).  After incubation, amperometric traces obtained at the 

cell body of GFP-positive neurons revealed a number of discrete current spikes 

characteristic of the vesicular release of dopamine (Figure 2.3).  These spikes were 

dependent on the presence of extracellular Ca2+ and were only observed if the electrode 

was held at a potential sufficient to oxidize catecholamines.  The frequency of vesicular 

events was very low, and no spontaneous release was ever observed prior to stimulation.  

Relative to the fast coupling of depolarization and secretion at chromaffin cells and axon 

terminals, the latencies between stimulation and the first detectable events were unusually 

long and variable at dopamine neuron cell bodies, ranging from 5 to 20 s. 

 In the bottom panel of Figure 2.3, individual amperometric spikes are shown on an 

expanded time axis.  Unlike events recorded at chromaffin cells, the spikes measured at the 

cell body of acutely dissociated dopamine neurons were not uniform in shape.  A subset of 

spikes (like those labeled 1 and 3) displayed single, rapid rising and falling phases.  A 

second subset (like those labeled 2 and 4) exhibited significantly broader time courses and 

were occasionally marked by multiple rising and/or falling phases.  The distribution of 

amperometric spike halfwidth (t1/2) reinforces the visual classification of events into two  
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Figure 2.3.  Vesicular release of dopamine from the cell body of an acutely dissociated 
midbrain dopamine neuron.  Upper trace shows multiple exocytotic events detected with 
amperometry following 10 s pressure ejection of high K+.  Individual spikes are shown below 
on an expanded timescale.  
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subtypes.  Figure 2.4A shows a histogram of the t1/2 values, adjusted to normalize the 

distribution by taking the cube root (Finnegan et al., 1996; Pothos et al., 1998; Villanueva et 

al., 2006).  The plot shows two distinct populations (best fit line is sum of two Gaussians, R2 

= 0.95).  Quantal events were officially divided into two subtypes, narrow and wide, based 

on whether their adjusted halfwidth was below or above, respectively, the population 

intersection value of 0.8 ms1/3.  Of the recorded events, 65 % of spikes were classified as 

narrow, with an average t1/2 of 0.19 ± 0.01 ms, and 35 % of spikes were classified as wide, 

with an average t1/2 of 1.33 ± 0.09 ms.  On average, the wide subset of events resulted in 

the release of substantially more dopamine than narrow events (Figure 2.4B).  Narrow 

spikes had an average quantal size (Q) of 5.3 ± 0.6 zmol dopamine (3190 molecules per 

vesicle), while wide spikes had an average Q of 49 ± 4 zmol dopamine (29500 molecules 

per vesicle).   

Effects of Axodendritic Differentiation on Release at Cell Bodies 

 To ensure the vesicular release recorded at cell bodies of acutely dissociated 

midbrain dopamine neurons was not an artifact of the immature cellular morphologies, 

neurons were seeded on glial monolayers and given a 2 week recovery period prior to 

amperometric measurements.  After 2 weeks, neuronal shapes were consistent with in vivo 

observations, and cells extended vast axodendritic networks (Figure 2.5).  The additional 

recovery period had no effect on the proportion of isolated cells that were dopaminergic, as 

37 % of the cells (29/78) on plates from TH-GFP mice were GFP-positive (Figure 2.5B).  

Glyoxylic acid-induced dopamine histofluorescence was confirmed in 39 % of cells (34/87) 

as well (Figure 2.5A).  As before, amperometric traces obtained at the cell bodies of these 

neurons displayed a series of discrete current spikes in response to depolarizing stimulation 

with 80 mM K+.  Release again required preincubation with L-DOPA and was dependent on 

the presence of extracellular Ca2+.  Spikes were only observed with electrode holding 

potentials sufficient to oxidize catecholamines, confirming the released substance was  
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Figure 2.4.  Amperometric spike distributions reveal two vesicle pools.  (A)  Distribution of 
the cube root of t1/2.  Distribution was best fit by sum of two gaussians (dashed red line).  (B)  
Distribution of Q1/3.  Vesicular events were classified as narrow or wide using a cutoff value 
of 0.8 ms1/3 determined from the t1/2 distribution.   
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Figure 2.5  Identificaiton of dissociated midbrain dopamine neurons grown on glial 
monolayers.  (A)  Fixed cell exhibiting glyoxylic acid-induced dopamine histofluoresence.  
(B)  Fluorescent image of live cells isolated from a TH-GFP mouse.  Both images taken at 
total magnification of 400X.  Scale bar = 20 um.   
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dopamine.  The frequency of events was again very low, and spontaneous events were 

never recorded.  Latencies between stimulation and detected events were still long and 

variable, ranging from 3 to 20 s. 

 Visual inspection of the amperometric spikes revealed the same two subtypes: 

spikes with single, rapid rising and falling phases and broader spikes with occasional 

multiple rising and/or falling phases.  Figure 2.6A shows the adjusted halfwidth distribution, 

indicating two populations (best fit line is sum of two Gaussians, R2 = 0.91).  Events were 

divided into two subtypes, narrow and wide, based on whether their adjusted halfwidth was 

below or above, respectively, the population intersection value of 0.9 ms1/3.  Of the 

measured events, 76 % of spikes were classified as narrow, with an average t1/2 of 0.23 ± 

0.02 ms, and 24 % of spikes were classified as wide, with an average t1/2 of 1.2 ± 0.1 ms.  

The wide subset of events resulted, on average, in the release of more dopamine than 

narrow events (Figure 2.6B).  Narrow spikes had an average Q of 9 ± 1 zmol dopamine 

(5420 molecules per vesicle), while wide spikes had an average Q of 47 ± 6 zmol dopamine 

(28300 molecules per vesicle).  All in all, release measured at the cell bodies of acutely 

dissociated midbrain dopamine neurons was remarkably similar after allowing time for 

axodendritic differentiation.  Ca2+-dependence, spike frequency, and spike latency were 

unaffected and two populations of vesicular events were discovered in both preparations.  

Only minor differences were observed in the percentages of narrow and wide events and 

the spike characteristics of those events.  Figure 2.7 summarizes the t1/2 and Q values for 

spikes recorded from acutely dissociated dopamine neurons with and without a two week 

recovery on a glial monolayer.  The t1/2 and Q values for wide events from both preps are the 

same (p > 0.05, Student's t-test).  For narrow events, neurons grown on glial monolayers 

showed a small but statistically significant (p < 0.05) increase in t1/2 and Q. 
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Figure 2.6.  Amperometric spike distributions remain bimodal.  (A)  Distribution of the cube 
root of t1/2.  Distribution was best fit by sum of two gaussians (dashed red line).  (B)  
Distribution of Q1/3.  Vesicular events were classified as narrow or wide using a cutoff value 
of 0.9 ms1/3 determined from the t1/2 distribution. 
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Figure 2.7.  Differences in amperometric spike characteristics between neuron isolation 
procedures.  Average t1/2 and Q values were compared for acutely dissociated midbrain 
dopamine neurons and those grown on glial monolayers.  Acutely dissociated neurons 
grown on glial monolayers showed a statistically significant increase (* p < 0.05, Student's t-
test) in t1/2 and Q for spikes classified as narrow, while no significant change (p > 0.05) was 
observed for spikes classified as wide.  
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TH-GFP Mice as Suitable Models for Midbrain Studies 

 To assess whether the exocytotic mechanism is affected in the genetically altered 

TH-GFP mice, vesicular release at murine chromaffin cells was compared for WT and TH-

GFP animals.  As both dopamine neurons and chromaffin cells express TH, potential side 

effects of the TH-linked transgene should be similar in these cells.  Amperometry was used 

to record vesicular events at chromaffin cells from both mice following a single 1 s 

stimulation with 60 mM K+.  The results of these experiments are displayed in Figure 2.8.  

An average of 38 ± 9 amperometric spikes were detected per stimulation at WT cells (n = 

10).  These events occurred at a frequency of 8.2 ± 0.9 Hz and had an average t1/2 of 5.0 ± 

0.2 ms.  No significant differences (p > 0.05, Student's t-test) in these parameters were 

observed at TH-GFP cells (n = 22).  An average of 32 ± 3 spikes were detected per 

stimulation.  These events occurred at a frequency of 7.2 ± 0.6 Hz and had an average t1/2 of 

5.4 ± 0.1 ms.  Taken together, these results suggest that the size of the readily releasable 

pool, the efficiency of vesicular docking, and the kinetics of vesicular extrusion are 

unchanged in TH-GFP mice.  One difference was observed, however, between the WT and 

TH-GFP cells.  In WT cells, the average Q was 1.7 ± 0.1 amol catecholamine.  TH-GFP cells 

showed a significant reduction (p < 0.05) in quantal size to 1.38 ± 0.06 amol catecholamine. 

 As a further test of potentially altered dopamine release in TH-GFP mice, HPLC with 

electrochemical detection was used to determine total dopamine content in the cell body 

and terminal region of midbrain dopamine neurons for both WT and TH-GFP animals.  As 

can be seen in Table 2.1, dopamine content in the VTA was identical for WT and TH-GFP 

mice at 0.7 ± 0.1 and 0.7 ± 0.2 µg dopamine/g tissue, respectively.  In the caudate putamen, 

dopamine content was 9.6 ± 1.7 µg/g in WT mice and 7.3 ± 0.8 µg/g in TH-GFP mice.  While 

the difference was not statistically significant (p > 0.05), the 24 % decrease in dopamine 

content in the terminal region of TH-GFP mice relative to WT mice matches in magnitude 

the 21 % reduction in Q observed at chromaffin cells.   
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Figure 2.8.  Comparison of exocytosis between WT and TH-GFP mice.  Vesicular release 
was recorded at isolated murine chromaffin cells following a 1 s stimulation with 60 mM K+.  
Spikes observed at TH-GFP cells (n = 22) showed a statistically significant reduction (* p < 
0.05, Student's t-test) in Q relative to WT cells (n = 10).  No significant difference (p > 0.05) 
was noted in the number of spikes, spike frequency, and average t1/2 between cell types.
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Table 2.1.  Comparison of total dopamine content in WT and TH-GFP mice.  HPLC with 
electrochemical detection was used to evaluate the amount of dopamine per gram of tissue 
in the caudate putamen and VTA of adult mice.  No statistically significant differences (p > 
0.05, Student's t-test) were detected between WT and TH-GFP mice.  
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Discussion 

 The work described here demonstrates the successful development of a procedure 

for the isolation of mammalian midbrain dopaminergic neurons.  Utilizing this technique with 

TH-GFP mice, freshly dissociated dopamine neurons can be identified in vitro for 

amperometric recordings of dopamine release.  In response to depolarizing stimulations of 

high K+, amperometric traces from the cell bodies of these neurons displayed a number of 

current spikes that meet the criteria for exocytosis of dopamine.  First, spikes were only 

observed at TH-positive cells (identified by GFP fluorescence) and only when holding the 

electrode at a potential sufficient to oxidize catecholamines.  Together, these observations 

are strong evidence that the substance being detected is indeed dopamine.  Second, events 

were only detected in the presence of extracellular Ca2+.  While intracellular Ca2+ stores may 

play a role in the release process, the requirement of depolarization-induced influx of 

extracellular Ca2+ as a first step is a consistent marker of vesicular exocytosis across all cell 

types (Burgoyne and Morgan, 2003).  Third, the current spikes were rapid, discrete 

phenomena consistent with the delivery of individual packets of molecules to the electrode 

surface.  Individual release events demonstrated a rapid outward flux of dopamine (~3x106 

molecules/s), significantly higher than what has been observed experimentally for 

monoamine transporters (Galli et al., 1998).  In sum, the experiments in this work argue 

strongly that the extrasynaptic release of dopamine occurs through a Ca2+-mediated 

exocytosis, not reversal of DAT. 

 One of the more striking features of the extrasynaptic release was the prolonged 

latency from the onset of depolarization to the first detectable vesicular events (Figure 2.3).  

This observation establishes an important distinction between synaptic and extrasynaptic 

transmission in midbrain dopamine neurons.  At neuronal synapses, the close physical 

association of VGCCs and the exocytosis machinery (Ca2+ sensors, vesicles, SNARE 

proteins, etc…) helps establish a very tight correlation between depolarization and vesicular 
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fusion and release.  One potential explanation for the long latencies observed in these 

experiments could be a less dense population of VGCCs at the cell body.  It has previously 

been observed in neuroendocrine cells that delays between stimulation and secretion can 

be explained by prolonged Ca2+ diffusion (Chow et al., 1996).  This diffusional delay could 

depend not only on VGCC density, but also vesicle location.  Unlike nerve terminals, cell 

bodies lack presynaptic active zones characterized by a pool of vesicles docked at the cell 

membrane and primed for release.  VMAT2 staining of retinal dopamine neurons labeled 

vesicles that were randomly distributed throughout the cell body (Puopolo et al., 2001).  

These vesicles were spaced at a considerable distance from each other and the cell 

membrane.  Coincidentally, amperometric measurements at the cell bodies of these cells 

displayed similar release latencies of 0.5 – 30 s.  Therefore, the observed delay in vesicular 

events could likely stem from the time required to recruit and mobilize vesicles to the plasma 

membrane for fusion.  As the intracellular movement of vesicles is thought to occur via Ca2+-

dependent interactions with the cytoskeletal network (Burgoyne and Morgan, 2003), 

differences in these interactions at the cell body compared to the nerve terminals could also 

influence the observed delay in amperometric spikes following depolarization. 

 The vesicular events observed at the cell bodies of midbrain dopamine neurons were 

heterogeneous in nature.  Visually, spikes could easily be separated into two classes based 

on their time course.  While the narrow events always consisted of a single rising and falling 

phase, the wide events sometimes displayed multiple rising and/or falling phases.  

Distributions of the raw amperometric t1/2 and Q values were broad and skewed to the right, 

such that the means were greater than the modes.  Similar distributions have been 

previously observed in secretory cells (Finnegan et al., 1996; Pothos et al., 1998; Villanueva 

et al., 2006).  Plotting the cube roots resulted in normalized distributions.  The explanation 

being that vesicle radii are normally distributed, and since the amperometric spike 

characteristics depend on vesicular volume (r3) their cube root should also be normally 
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distributed (Bekkers et al., 1990).  Transformed distributions of the extrasynaptic release t1/2 

and Q values were normalized and the t1/2 distribution was described by two Gaussians, 

consistent with the visual classification of events (Figure 2.4 and Figure 2.6).  Individually, 

both subtypes of events showed amperometric spike characteristics on the same order of 

magnitude as events previously recorded from other dopamine neuron preparations (Jaffe et 

al., 1998; Pothos et al., 1998; Puopolo et al., 2001; Kim et al., 2008). 

 The fundamental question raised by these studies involves the biological origin of the 

two vesicular populations.  Two subpopulations of amperometric spikes have been observed 

previously in release from the cell body of both the leech Retzius cell and a dopamine 

neuron in the pond snail (Bruns and Jahn, 1995; Chen and Ewing, 1995).  In each case the 

two populations could be attributed to release from small synaptic vesicles (SSVs) and large 

dense-core vesicles (LDCVs).  VMAT has been localized to numerous intracellular 

compartments in the somatodendritic region of midbrain dopamine neurons: tubulovesicles 

resembling saccules of SER, SSVs, LDCVs, and multivesicular bodies (Nirenberg et al., 

1996b).  Similarly, three types of secretory organelles were observed at the cell body of 

retinal dopamine neurons, including SSVs and LDCVs (Puopolo et al., 2001).  Thus, it's 

plausible that the two observed vesicular populations arise from the exocytosis of two 

different secretory organelles.  A second possibility is that the two populations correspond to 

the exocytosis of one type of vesicle, but via two different fusion mechanisms.  

Amperometric spikes detected at axonal varicosities of midbrain dopamine neurons have 

shown a bimodal distribution of this type (Staal et al., 2004).  Events with single rising and 

falling phases or with multiple rising and falling phases of decreasing amplitude were 

attributed to dopamine release through a fusion pore that flickers either once or multiple 

times in succession.  As not all of the wide events from this study exhibited multiple rising 

and/or falling phases, such a mechanism could not, however, be the sole explanation for the 

two vesicular populations.   
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 As all of the amperometric measurements were made at cells from transgenic mice, 

it was necessary to confirm that the genetic manipulations had not resulted in significant 

deviations from the vesicular release that would have been observed in WT animals.  As 

direct comparisons between neuronal release were unfeasible, a common model cell for 

neuronal exocytosis was employed: the chromaffin cell.  Unlike midbrain dopamine neurons, 

homogenous populations of morphologically identifiable chromaffin cells can easily be 

obtained from WT animals.  Chromaffin cells are an especially valid model for our 

experiments, as they express TH.  Vesicular release measured at chromaffin cells was 

predominantly unchanged between WT and TH-GFP mice.  The size of the readily 

releasable pool, efficiency of vesicle docking with the plasma membrane, and kinetics of 

vesicular extrusion were similar in both animals.  One deficiency was observed, though, in 

the release from TH-GFP cells: a 21 % reduction in vesicular content.  As a second check of 

potential transgenic side effects, total brain dopamine content as determined by HPLC was 

compared between WT and TH-GFP mice.  Dopamine content was statistically equivalent in 

the cell body and synaptic terminal regions of both mice, although the raw content values for 

TH-GFP mice were reduced by 24 % at the terminals.  Taken with the release data from the 

MAMC cells, the HPLC analysis suggests that, at worse, the amperometric data obtained 

from the cell bodies of dopamine neurons is underreporting the average vesicular content by 

about 20 %.  Potential explanations for a lower vesicular content in TH-GFP mice include 

reduced catecholamine synthesis and impaired vesicular packaging.  As the reporter gene 

in the transgenic mouse is linked to TH expression, reduced synthesis seems the most likely 

candidate.  Insertion of the GFP gene downstream of the TH promoter could negatively 

impact TH transcription leading to lower protein levels and lower catecholamine synthesis.  
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Chapter 3 

Energy Stores in Regulated Exocytosis 

 
Introduction 

 The hormone leptin operates as a negative feedback signal in the brain, helping to 

regulate an organism's body weight (specifically, the adipose tissue mass) by modulating 

the activity of neuronal circuits controlling food intake and energy expenditure (Friedman, 

2009).  Leptin is a 16 kD protein secreted into the bloodstream primarily by white adipose 

tissue.  The hormone binds to leptin receptors in the arcuate nucleus of the hypothalamus, 

inhibiting orexigenic neurons that express neuropeptide Y and Agouti gene-related peptide 

and activating anorexigenic neurons that express pro-opiomelanocortin (Broberger, 2005).  

Plasma concentrations of leptin have been shown to mimic increases and decreases in 

adipose tissue (Maffei et al., 1995), and infusions of leptin have reduced food intake and 

body weight in both normal and obese mice (Halaas et al., 1995).  A striking example of 

leptin's physiological importance is the ob/ob mouse, in which a nonsense mutation renders 

the protein nonfunctional (Ingalls et al., 1950).  These animals are grossly obese and  

exhibit overeating, hypometabolism, and decreased locomotor activity (Coleman, 1978). 

 Recently, novel roles for leptin regulation outside the hypothalamus have been 

documented.  Leptin-deficient ob/ob mice show a substantial decrease in stimulated 

dopamine release in the nucleus accumbens (NAc) and impaired vesicular somatodendritic 

dopamine stores in the ventral tegmental area (VTA) and the substantia nigra compacta 

(SNc) (Fulton et al., 2006; Roseberry et al., 2007).  A potential action of leptin on vesicular 

release from midbrain dopamine neurons is fitting given the well-documented roles they play 



in regulating movement and in mediating the rewarding properties of natural stimuli such as 

food (Roitman et al., 2004).  Leptin has also been shown to act outside the central nervous 

system, as it induces an acute, Ca2+-dependant increase in tyrosine hydroxylase (TH) 

activity and catecholamine secretion from chromaffin cells (Takekoshi et al., 1999; 

Takekoshi et al., 2001).  Taken together, these findings suggest that one of the pathways 

through which leptin regulates food intake and energy expenditure could be via a largely 

unexplored role in the exocytosis of chemical messengers, particularly in catecholaminergic 

cells. 

 Uncoupling protein 2 (UCP2) is a carrier protein located at the inner mitochondrial 

membrane with ubiquitous expression in mammalian tissues (Fleury et al., 1997).  UCP2 is 

one of five UCP homologues that, despite isoform-specific tissue distributions (Alan et al., 

2009), all function as dissipaters of the inner mitochondrial membrane potential.  This 

electrochemical potential is generated via the coupling of the electron transport chain to the 

active pumping of protons from the matrix into the intermembrane space, and serves as the 

primary driving force for the phosphorylation of ADP by ATP synthase.  By leaking protons 

back into the mitochondrial matrix, UCP2 dissipates the electrochemical gradient and 

uncouples oxidative phosphorylation (Andrews et al., 2005). 

 Through disruption of the mitochondrial membrane potential, and its subsequent 

effect on cellular ATP levels, UCP2 could influence vesicular exocytosis via several 

mechanisms.  The packaging of chemical messengers into vesicles is dependent on an 

ATP-driven pump that shuttles protons from the cytosol to the vesicle interior (Maycox et al., 

1988).  In addition, several other steps in exocytosis are ATP-dependent, including the 

recruitment and mobilization of vesicles to the plasma membrane and the priming of docked 

vesicles for Ca2+-triggered fusion (Burgoyne and Morgan, 2003; Keating, 2008).  Cellular 

ATP levels can also help shape the intracellular Ca2+ signal, which acts as the ultimate 

trigger for vesicular exocytosis, as ATP-dependent Ca2+ pumps on the endoplasmic 
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reticulum (ER) and plasma membranes help restore cytosolic Ca2+ to resting levels (Garcia 

et al., 2006).  Finally, UCP2 can also affect cellular Ca2+ handling directly through dissipation 

of the mitochondrial membrane potential.  This potential is the main driving force for 

clearance of cytosolic Ca2+ through the uniporter on the outer mitochondrial membrane 

(Gunter and Pfeiffer, 1990).  An additional, and rather surprising, role for UCP2 in exocytosis 

has recently been proposed.  UCP2 mRNA levels were significantly increased in two models 

of obesity: WT mice fed a high fat diet and leptin-deficient ob/ob mice (Parton et al., 2007).  

This finding suggests that some of the locomotor activity and transmitter release deficits in 

ob/ob mice could stem from a UCP2-induced decrease in cellular ATP levels. 

 To investigate the individual roles of leptin and UCP2 in vesicular release a multi-

dimensional approach was used to study exocytosis in mice lacking the two proteins.  

Vesicular release in ob/ob and UCP2 KO mice was monitored using fast scan cyclic 

voltammetry (FSCV) in brain slices and amperometry and fluorescent Ca2+ imaging at 

isolated chromaffin cells.  This combinatorial method has been used successfully in this lab 

to elucidate the mechanism responsible for the impaired dopamine release in a mouse 

model of Huntington's disease (Johnson et al., 2006; Johnson et al., 2007), and provides a 

complete description of transmitter release, from release and uptake from multiple 

exocytosis sites down to the individual vesicular event characteristics.  Brain slice 

measurements in ob/ob mice revealed significant decreases in both dopamine release and 

uptake relative to WT mice.  Measurements at individual chromaffin cells suggest the 

impaired release is due to Ca2+-independent decreases in both vesicle mobilization and 

packaging.  In slices from UCP2 KO mice, dopamine release and uptake were significantly 

increased compared to WT mice.  However, no changes were observed in the individual 

vesicular events or intracellular Ca2+ dynamics at chromaffin cells, hindering identification of 

the mechanism responsible for the changes observed in slices. 
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Disclaimer 

 The experiments on exocytosis in UCP2 KO and ob/ob mice were undertaken in 

collaboration with the lab of Dr. Brad Lowell at Beth Israel Deaconess Hospital at Harvard 

University.  The individual in this lab responsible for providing the genotypes of mice used in 

the study has recently been removed from his/her position as part of an investigation into 

academic misconduct.  The genotypes of all mice used in this study have since been 

independently confirmed, and the results presented here are considered valid.  However, 

many of the initial hypotheses driving this collaboration/study were based on data that is 

now in question.  Much care has been taken so that the results and discussions included in 

this chapter are presented independently of these previous theories. 

Materials and Methods 

Animals 

 Mice were handled in accordance with the guidelines set forth by the Institutional 

Animal Care and Use Committee (IACUC) at UNC-Chapel Hill.  UCP2 KO, ob/ob, and their 

littermate WT mice were generously provided by the lab of Dr. Brad Lowell at Harvard 

Unversity.  

Preparation of Adrenal Medullary Chromaffin Cells 

 Murine chromaffin cells were prepared as previously described (Kolski-Andreaco et 

al., 2007) with some modifications.  Mice were deeply anesthetized with ether, decapitated, 

and the adrenal glands rapidly removed into ice-cold, oxygenated Ca2+ and Mg2+-free 

Locke's buffer containing (in mM): 154 NaCl, 3.6 KCl, 5.6 NaHCO3, 5.6 glucose, and 10 

HEPES, pH adjusted to 7.2 with NaOH.  The medullae were isolated via gentle removal of 

cortical tissue and digested for 20 min at 37 oC in Dulbecco's Modified Eagle's 

Medium/Nutrient Mixture F-12 Ham (DMEM/F12) with 25 U/mL papain.  The digestion media 

was replaced with a fresh aliquot, followed by a second 20 min digestion period.  Digested 

tissue was washed and triturated with pipette tips of decreasing bore size in 500 µL 
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DMEM/F12 with 10 % fetal bovine serum and 2 % horse serum.  The resulting cell 

suspension was distributed evenly to 3 poly-L-lysine-coated (0.1 mg/mL) 25 mm round glass 

coverslips.  After 15 min attachment plates were fed with 2 mL DMEM/F12 containing 100 

U/mL penicillin, 0.1 mg/mL streptomycin, 50 U/mL nystatin, and 40 µg/mL gentamicin.  

Plates were maintained in a humidified, 5 % CO2 atmosphere at 37 oC for at least 24 h prior 

to experimentation. 

Preparation of Brain Slices 

 Mice were anesthetized with ether and decapitated.  The brain was rapidly removed 

and placed on ice.  Coronal brain slices (300 µm thick) containing the caudate putamen or 

substantia nigra pars reticulata (SNr) were prepared in ice cold artificial cerebral spinal fluid 

(aCSF) using a Lancer Vibratome (World Precision Instruments, Sarasota, Fl.).  The aCSF 

contained (in mM): 20 HEPES, 2.4 CaCl2, 1.2 MgCl2, 1.2 NaH2PO4, 2.45 KCl, 126 NaCl, 11 

glucose, and 25 NaHCO3.  The pH was adjusted to pH 7.4 and the aCSF was saturated with 

95 % O2/5 % CO2.  Slices were superfused in aCSF at 37 oC for 35-40 minutes prior to 

recording. 

Electrodes and Electrochemistry 

 Carbon-fiber microelectrodes were prepared using T650 carbon fibers (6 µm 

diameter, Amoco, Greenville, SC) as previously described (Kawagoe et al., 1993).  Fibers 

were aspirated into glass capillaries (A-M Systems, Sequim, WA), and a vertical pipette 

puller (Narishige, Long Island, NY) was used to seal the glass around the carbon fiber.  For 

cylinder electrodes, the exposed carbon fiber was trimmed to a length of 50 µm.  For disk 

electrodes, the carbon fibers were cut at the glass seal, which was then reinforced with 

epoxy (15 % m-phenylenediamine in Epon 828 resin (Miller-Stephenson, Danbury, CT) 

heated to between 80 and 90 oC).  Electrodes were kept at room temperature overnight, and 

then the epoxy was cured via sequential heating at 100 and 150 oC for 8 h and overnight, 

respectively.  Disks were generated by beveling electrodes at 45 degrees on a diamond 
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dust-embedded polishing wheel (Sutter Instruments, Novato, CA).  Prior to use, all 

electrodes were soaked in isopropyl alcohol for at least 20 min (Bath et al., 2000). 

 Amperometric recordings at single cells were made using a GeneClamp 500B 

amplifier (Axon Instruments, Molecular Devices, Union City, CA).  Disk electrodes were held 

at 0.650 V vs. a Ag/AgCl reference electrode (BASi, West Lafayette, IN), a potential 

sufficient to oxidize catecholamines.  The output current was analog filtered at 5 kHz with a 

low-pass Bessel filter and acquired at 20 kHz.  Post-collection, traces were further digitally 

filtered using a 400 Hz low-pass Bessel filter.  Data collection and filtering were controlled 

via the pClamp software provided with the amplifier. 

 Measurements of dopamine and serotonin (5-HT) release in brain slices were made 

using FSCV at cylinder electrodes.  Waveform application, current monitoring, and stimulus 

application were all controlled by locally written software (Tarheel CV, Labview) through a 

home built potentiostat (UEI, UNC electronics shop).  For dopamine detection, the potential 

at the electrode was scanned from -0.4 V to 1 V and back at 600 V/s, with the ramp 

repeated at 60 Hz.  For 5-HT, the electrode was scanned from 0.2 V to 1 V down to -0.1 V 

and back to 0.2 V at 1000 V/s, with the waveform repeated at 10 Hz (Jackson et al., 1995).  

After an experiment, electrodes were calibrated in a flow injection system with a 1 µM bolus 

of analyte. 

Single Cell Experiments 

 Glass coverslips containing plated cells were secured in a stainless steel coverslip 

holder and mounted on the stage of an inverted microscope (Eclipse TE300, Nikon 

Instruments, Melville, NY).  A temperature controller (Warner Instruments, Hamden, CT) 

connected to the stage maintained cells at 37 oC throughout the experiments.  The 

extracellular recording buffer contained (in mM): 145 NaCl, 3 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 

NaH2PO4, 11 glucose, and 10 HEPES, pH adjusted to 7.4 with NaOH.  Exocytosis was 

triggered via a 0.5 s pressure ejection of 60 mM K+ buffer from a stimulating pipette located 
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30 µm from the cell.  Cells were stimmed every 30 s for 10 total stimulations.  Stimulating 

pipettes with 6 to 10 µm tip diameters were fabricated using a horizontal pipette puller 

(Sutter Instruments, Novato, CA) and a microforge (Narishige, Long Island, NY).  Pressure 

ejection was controlled via a multi-channel Picospritzer (General Valve Corporation, Parker 

Hannifin, Fairfield, NJ).  Positioning of both the electrode and stimulating pipette was 

controlled using piezoelectric micromanipulators (Burleigh Instruments, Exfo, Plano, TX). 

Slice Experiments 

Recordings were performed on a microscope (Nikon FN1, Gibraltar Stage) fitted with 

a slice perfusion chamber (Warner Instruments, Hamden CT).  Neurotransmitter release 

was evoked by local electrical stimulation delivered through a tungsten bipolar stimulating 

electrode placed on the surface of the slice (Frederick Haer Co., Bowdoinham, ME).  The 

stimulation consisted of a computer generated, biphasic (2 ms per phase), constant-current 

(350 µA) pulse.  A single stimulation pulse was used to evoke striatal dopamine release in 

the caudate putamen (Jones et al., 1995) and a 20 pulse 100 Hz stimulation train was used 

to evoke 5-HT release in the SNr (Bunin et al., 1998).  The current pulse was optically 

isolated from the preparation (NL 800, Neurolog, Medical Systems, Great Neck, NY).  

Stimulations were performed at regular 3-5 min intervals to maintain consistent release.  

Neurotransmitter release was detected at a microelectrode placed 75-100 µm into the slice 

at a distance of 100-200 µm from the stimulating electrode. 

Data Analysis 

 Amperometric spike analysis was performed using MiniAnalysis software 

(Synaptosoft, Decatur, GA).  For inclusion, spike amplitude was required to be 5 times 

greater than the root-mean-squared current noise.  Overlapping peaks were included in 

frequency and foot analysis, but excluded from individual spike analysis.  Visual examination 

of the peaks was used to determine presence of pre- and post-spike feet.  For frequency 

analysis, the first observed spike following stimulation marked the burst start time.  Burst 
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end time was denoted by the first interspike interval > 1s.  Individual amperometric spike 

characteristics such as quantal size (Q), t1/2, and amplitude were averaged for an individual 

cell.  The cumulative mean for an experimental group was then determined using the cell 

averages (Colliver et al., 2000). 

 Release values reported from the slice experiments are the maximal 

neurotransmitter concentrations obtained following stimulation.  Values were averaged 

across multiple locations in each slice, and then pooled for each genotype.  For 

determination of kinetic constants such as maximal uptake rate (Vmax), concentration traces 

were fit to a Michaelis-Menten-based regression model (Wightman et al., 1988).  Kinetic 

parameters were fixed, creating a simulated trace.  This trace is then convoluted by the 

electrode time constant and compared to the experimental data (Wu et al., 2001). 

 All data are presented as means ± standard errors of the mean.  Statistical 

comparisons were performed using a one-way ANOVA or a Student's t-test, as appropriate. 

Fluorescent Measurements of Intracellular Ca2+ 

 Intracellular Ca2+ dynamics were monitored using the ratiometric dye fura-FF 

(Invitrogen, Carlsbad, CA).  Plated cells were incubated for 20 min at 25 oC in extracellular 

recording buffer with 1 µg/mL esterified fura dye and 0.1 % (w/v) BSA, washed twice with 

buffer without dye, and then incubated for 20 min at 25 oC in buffer without dye for 

deesterification.  Ca2+ bound and unbound dye were excited at 340 and 380 nm, 

respectively, using a computer-controlled high speed wavelength switcher (Sutter 

Instruments, Novato, CA).  Emission was monitored at 510 nm using a CCD camera and 

acquisition software (Empix Imaging, Mississauga, ON, Canada). 

Results 

Stimulated Release in Brain Slices from ob/ob Animals 

 The effect of leptin deficiency on stimulated dopamine release was examined using 

brain slices containing the caudate putamen from both WT and ob/ob mice (Figure 3.1A).   
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Figure 3.1.  Leptin deficiency affects striatal dopamine release but not stimulated 5-HT 
release in the substantia nigra.  (A) Stimulated dopamine release in the caudate putamen of 
ob/ob mice is significantly reduced (n = 9, *** p < 0.001, one-way ANOVA).  Similarly, the 
Vmax of dopamine uptake is significantly diminished in ob/ob mice compared to WT animals 
(*** p < 0.001, n = 5 both genotypes).  (B) There is no significant difference in stimulated 5-
HT release between WT animals or ob/ob animals ( p > 0.05, n = 9).  
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Dopamine release was evoked with a single pulse electrical stimulation and detected with 

FSCV.  Leptin deficiency resulted in significantly reduced (p < 0.001, one-way ANOVA, n = 

9 for both genotypes) stimulated dopamine release, with the average maximal dopamine 

concentration measured at 1.74 ± 0.08 µM in WT slices and 1.23 ± 0.05 µM in ob/ob slices.  

In addition to decreased release of dopamine, clearance of the neurotransmitter was also 

significantly impaired (p < 0.001, n = 5 for both genotypes) in the leptin deficient animals, 

with the average Vmax observed at 5.5 ± 0.4 µM/s in WT slices and 3.3 ± 0.2 µM/s in ob/ob 

slices.  These alterations in transmitter release and uptake appear to be specific to 

dopamine neurons, as no significant difference (p > 0.05, n = 9 for both genotypes) was 

measured in electrically stimulated 5-HT release in the SNr of slices from WT and ob/ob 

mice (Figure 3.1B).  Average maximal 5-HT concentrations were an equivalent 155 ± 8 nM 

and 151 ± 5 nM in WT and ob/ob animals, respectively. 

Exocytosis at Chromaffin Cells from ob/ob Mice 

 Amperometric recordings of exocytosis were performed at isolated chromaffin cells 

from both WT (n = 18 cells) and ob/ob (n = 23 cells) mice.  Vesicular release was triggered 

with a 0.5 s application of 60 mM K+, spaced every 30 s, for a total of 10 stimulations.  

Figure 3.2 shows a representative amperometric trace following a single stimulation for both 

cell types.  The amperometric spike characteristics for both genotypes are summarized in 

Table 3.1.  On average, significantly fewer (p < 0.05, one-way ANOVA) vesicular events 

were detected at ob/ob cells (240 ± 16) compared to WT (310 ± 20).  This difference was 

due to the frequency of events during each stimulated exocytotic burst, not the length.  In 

WT cells, the average burst was 4.0 ± 0.3 s long with a spike frequency of 7.3 ± 0.4 Hz.  In 

cells from the leptin-deficient mice, the burst length was unchanged (p > 0.05) at 3.9 ± 0.2 s, 

but the frequency of spikes was significantly reduced (p < 0.001) to 5.4 ± 0.2 Hz.  The 

diminished spike frequency in ob/ob cells indicates an impaired vesicle mobilization process. 
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Figure 3.2.  Vesicular release at WT and ob/ob cells.  Representative amperometric traces 
(lower, solid line) and changes in [Ca2+]i (upper, dotted line) measured in response to a 0.5 s 
stimulation with 60 mM K+ at chromaffin cells from WT (A) and ob/ob (B) mice.  
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Table 3.1.  Amperometric spike characteristics of WT, ob/ob, and UCP2 KO mice.  Table 
shows the average number of spikes recorded during a trace (10 stimulations) and the 
average length of and frequency of spikes within an individual burst of exocytosis following a 
0.5 s stimulation with 60 mM K+.  Individual spike characteristics, including % of events with 
a foot feature, amplitude (Imax, in pA), quantal size (Q, in molecules of catecholamine), and 
halfwidth (t1/2, in ms), were averaged over the entire trace.  No significant differences were 
observed between WT and UCP2 KO cells (p > 0.05, one-way ANOVA).  Several measures 
of exocytosis were significantly reduced in ob/ob cells relative to WT (* = p < 0.05, ** = p < 
0.01, *** = p < 0.001). 
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 While the mobilization of vesicles was altered in ob/ob cells, the efficiency of vesicle 

docking and the kinetics of catecholamine extrusion following fusion were both unchanged.  

There was no significant difference (p > 0.05) between WT (6.5 ± 0.5 %) and ob/ob cells 

(5.7 ± 0.6 %) in the percentage of events exhibiting a pre- and/or post-spike foot, and the 

average t1/2 for events from WT (5.8 ± 0.3 ms) and ob/ob cells (6.3 ± 0.3 ms) was similar.  

However, the size of individual vesicular events was affected in the leptin-deficient mice.  

Spike amplitude was significantly reduced (p < 0.01) in ob/ob cells (40 ± 4 pA) compared to 

WT (62 ± 4 pA).  In addition, the average spike Q was only (5.9 ± 0.3) x 105 molecules in 

ob/ob cells, significantly smaller (p < 0.05) than the Q of (8.1 ± 0.6) x 105 molecules 

observed in WT cells.  The decreased content suggests that leptin-deficient mice have 

deficits in vesicular packaging, storage, and/or catecholamine synthesis. 

 As previous reports have implicated leptin acts via a Ca2+-mediated pathway 

(Takekoshi et al., 2001), the ratiometric dye fura-FF was used to monitor intracellular Ca2+ 

concentrations ([Ca2+]i) in WT (n = 28) and ob/ob (n = 21) cells following depolarization with 

60 mM K+.  Figure 3.2 shows a representative trace of [Ca2+]i for each cell type following a 

single stimulation.  The properties of the intracellular Ca2+ transient for both genotypes are 

summarized in Table 3.2.  No significant difference (p > 0.05, one-way ANOVA) was 

observed in the [Ca2+]i response between WT and ob/ob cells.  The area under the [Ca2+]i 

peak was 1.37 ± 0.09 arbitrary units in WT cells and 1.54 ± 0.17 in ob/ob cells.  The duration 

of the Ca2+ increase was also unchanged, with a t1/2 in WT cells of 3.0 ± 0.2 s and a t1/2 in 

ob/ob cells of 2.8 ± 0.2 s.  These results indicate that the differences in vesicular release in 

leptin-deficient mice can't be attributed to changes in depolarization-induced Ca2+ influx.  

Stimulated Release in Brain Slices from UCP2 KO Animals 

 Potential changes in the release and uptake of dopamine were evaluated in brain 

slices containing the caudate putamen from both WT and UCP2 KO mice (Figure 3.3A).  

Dopamine release was evoked with a single pulse electrical stimulation and monitored with  
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Table 3.2.  Intracellular Ca2+ dynamics in WT, ob/ob, and UCP2 KO mice.  Table shows the 
average area (in arbitrary units), halfwidth (t1/2, in s), and decay time (td, in s) of the increase 
in [Ca2+]i following a 0.5 s stimulation with 60 mM K+.  No significant difference is observed 
between WT and ob/ob or UCP2 KO mice for any of the measures (p > 0.05, one-way 
ANOVA).  
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Figure 3.3.  Lack of UCP2 affects striatal dopamine release but not stimulated 5-HT release 
in the substantia nigra.  (A) Stimulated dopamine release in the caudate putamen of UCP2 
KO mice is significantly enhanced relative to WT animals (** p < 0.01, one-way ANOVA, n = 
9 both genotypes).  Likewise, the Vmax of dopamine uptake is significantly increased in UCP2 
KO mice compared to WT animals (** p < 0.01, n = 5 both genotypes).  (B) There is no 
significant difference in stimulated 5-HT release between WT animals or UCP2 KO animals 
(p > 0.05, n ≥ 9, both genotypes).  
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FSCV.  Animals lacking UCP2 demonstrated significantly increased (p < 0.01, one-way 

ANOVA, n = 9 for both genotypes) stimulated dopamine release, with average maximal 

dopamine concentrations of 1.74 ± 0.08 µM in WT slices and 2.06 ± 0.07 µM in UCP2 KO 

slices. Similar to the ob/ob animals, this change in release was mirrored by a corresponding 

change in uptake.  The maximal uptake rate of dopamine was significantly enhanced (p < 

0.01, n = 5 for both genotypes) in UCP2 deficient mice, with an average Vmax of 5.5 ± 0.4 

µM/s in WT slices and 7.0 ± 0.2 µM/s in UCP2 KO mice.  These alterations in dopamine 

signaling are apparently the result of long-term or adaptive changes at the terminals, as 

attempts to mimic the UCP2 KO phenotype with acute treatment of a UCP2 inhibitor were 

unsuccessful.  A 35 min incubation with 20 µM genipin, which cross-links UCP2 and 

prevents proton shuttling (Zhang et al., 2006), did not significantly alter (p > 0.05, n = 5 for 

both genotypes) the maximal dopamine concentration or uptake rate in WT slices (Figure 

3.4).  This dosage and time frame had previously been shown to acutely modulate ATP 

levels in dopamine synaptosomes (Lowell lab, unpublished) and glucose sensing in slices of 

hypothalamus (Parton et al., 2007).  Interestingly, the effects of UCP2 KO appear specific to 

dopaminergic neurons.  No significant difference (p > 0.05, n = 9 for both genotypes) was 

observed in electrically stimulated 5-HT release in the SNr, with average maximal 5-HT 

concentrations of 155 ± 8 nM in WT slices and 164 ± 4 nM in UCP2 KO slices (Figure 3.3B). 

Exocytosis at Chromaffin Cells from UCP2 KO Mice 

 Amperometric recordings of exocytosis were also compared at isolated chromaffin 

cells from WT (n = 18 cells) and UCP2 KO (n = 20 cells) mice.  As before, vesicular release 

was triggered with a 0.5 s application of 60 mM K+, spaced every 30 s, for a total of 10 

stimulations.  Figure 3.5 shows a representative amperometric trace following a single 

stimulation for both cell types.  The amperometric spike characteristics for both genotypes 

are summarized in Table 3.1.  Despite the ATP-dependence of virtually all phases of the 

vesicle cycle, vesicular release observed at UCP2 KO cells was completely unaffected (p >  
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Figure 3.4.  Genipin modulation of dopamine release and uptake in mouse brain slices.  
The addition of 20 μM genipin to striatal brain slices for 35 minutes does not significantly 
alter (p > 0.05, n = 5 both genotypes) [DA]max or Vmax in WT mice when compared to UCP2 
KO mice.  In this experiment, the UCP2 KO mouse is the control animal because UCP2 KO 
mice are insensitive to genipin.  
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Figure 3.5.  Vesicular release at WT and UCP2 KO cells.  Representative amperometric 
traces (lower, solid line) and changes in [Ca2+]i (upper, dotted line) measured in response to 
a 0.5 s stimulation with 60 mM K+ at chromaffin cells from WT (A) and UCP2 KO (B) mice.  
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0.05 for all characteristics, one-way ANOVA) in reference to WT cells.  An average of 310 ± 

20 events were detected at WT cells, with individual bursts lasting 4.0 ± 0.3 s and having a 

spike frequency of 7.3 ± 0.4 Hz.  Similarly, an average of 280 ± 20 events were detected at 

UCP2 KO cells, with each burst lasting 4.0 ± 0.2 s and having a spike frequency of 6.4 ± 0.3 

Hz.  The percentage of WT cells exhibiting a pre- and/or post-spike foot was 6.5 ± 0.5 %, 

equivalent to the 6.4 ± 0.6 % noted for UCP2 KO cells.  The average amperometric spike for 

WT cells had an Imax of 62 ± 4 pA, t1/2 of 5.8 ± 0.3 ms, and Q of (8.1 ± 0.6) x 105 molecules.  

Likewise, the average spike for UCP2 KO cells had an Imax of 55 ± 5 pA, t1/2 of 6.5 ± 0.4 ms, 

and Q of (8.5 ± 0.8) x 105 molecules. 

 As cellular ATP levels and the mitochondrial membrane potential are involved in 

controlling the clearance of Ca2+ from the cytosol, the ratiometric dye fura-FF was used to 

monitor [Ca2+]i in WT (n = 28) and UCP2 KO (n = 23) cells following depolarization with 60 

mM K+.  Figure 3.5 shows a representative trace of [Ca2+]i for each cell type following a 

single stimulation.  The properties of the intracellular Ca2+ transient for both genotypes are 

summarized in Table 3.2.  Surprisingly, no significant differences (p > 0.05, one-way 

ANOVA) were observed in the [Ca2+]i response between WT and UCP2 KO cells.  The area 

under the [Ca2+]i peak was 1.37 ± 0.09 arbitrary units in WT cells and 1.30 ± 0.09 in UCP2 

KO cells.  The cytosolic Ca2+ influx in WT cells had a t1/2 of 3.0 ± 0.2 s and took 3.7 ± 0.2 s to 

return to resting levels from peak [Ca2+]i.  In UCP2 KO cells, the cytosolic Ca2+ influx had a 

t1/2 of 2.9 ± 0.1 s and took 3.4 ± 0.2 s to return to resting levels from peak [Ca2+]i. 

Discussion 

 FSCV recordings of stimulated neurotransmitter release in brain slices of leptin-

deficient animals revealed dopamine-specific alterations in transmission (Figure 3.1).  

Dopamine release in the caudate putamen was reduced by approximately 30 % in ob/ob 

mice, a finding consistent with previous reports showing decreased dopamine release in the 

NAc and impaired dopamine stores in the VTA and SNc (Fulton et al., 2006; Roseberry et 
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al., 2007). This reduction in release was coincident with a near 40 % decrease in the 

maximal uptake rate, suggesting a natural adaptive mechanism in which the brain attempts 

to maintain extracellular dopamine tone by modulating uptake in response to release.  For a 

more detailed examination of vesicular release in leptin-deficient animals, single cell studies 

were also performed.  Amperometric measurements of exocytosis at chromaffin cells from 

ob/ob mice showed a 26 % decrease in the frequency of vesicular events and a 27 % 

reduction in Q, or vesicular catecholamine content (Figure 3.2 and Table 3.1).  These results 

strongly suggest that the observed changes in dopamine release result from  impairments in 

vesicle mobilization upon depolarizing stimulation and either vesicular packaging, storage, 

or catecholamine synthesis, or some combination thereof.  Separate studies have shown 

that acute leptin application facilitates a Ca2+-dependent increase in catecholamine 

secretion and TH activity (Takekoshi et al., 1999; Takekoshi et al., 2001).  However, the 

diminished vesicular release observed here was independent of changes in [Ca2+]i dynamics 

(Figure 3.2 and Table 3.2), suggesting that the leptin-induced Ca2+ currents are not a 

substantial contributor to the endogenous exocytosis-triggering Ca2+ influx.  As a whole, 

these data support a model whereby leptin signaling outside the hypothalamus is important 

in its regulation of metabolism and energy expenditure.  In ob/ob animals the absence of 

basal leptin tone results in reduced catecholaminergic transmission.  One component of this 

reduction is a decrease in vesicular catecholamine stores, which current evidence suggests 

could be due to a depressed state of synthesis via TH (Takekoshi et al., 2001). 

 One final but crucial point to make in regards to leptin deficiency is the inherent 

complexity in analyzing the phenotype of the ob/ob mouse.  The genetic loss of a functional 

leptin protein leads to behaviors that make the animals grossly obese.  The obese state 

itself is associated with wide-ranging deficits in physiological function.  Thus, while the 

results reported here are consistent with a leptin effect, it's impossible to separate the 

hormone deficit from the obesity and assign a direct causal relationship.  Illustrating this 
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difficulty, work on a separate mouse model of obesity also observed impairments in tyrosine 

hydroxylase expression and K+-stimulated catecholamine secretion in chromaffin cells 

(Martins et al., 2004).  In addition, high fat diet-induced obesity has been shown to reduce 

dopamine transporter density in the caudate putamen (South and Huang, 2008), consistent 

with the decrease in Vmax observed in this study.  Future experiments in WT mice fed an 

obesity-inducing, high fat diet could help illuminate the true origin of these alterations in 

catecholamine exocytosis. 

 By dissipating the proton gradient across the inner mitochondrial membrane, UCP2 

effectively limits the maximal rate of cellular ATP production.  UCP2 KO animals would then 

be expected to exist in a hyperenergetic state.  Increased cellular ATP levels would exert 

competing effects on vesicular release through several ATP-dependent processes.  

Packaging of transmitters through vesicular transporters, mobilization of vesicles to plasma 

membrane, and priming of docked vesicles would theoretically be facilitated (Burgoyne and 

Morgan, 2003; Keating, 2008).  However, clearance of cytosolic Ca2+ by pumps on the 

plasma and ER membranes would also be facilitated, limiting the elevations in [Ca2+]i that 

trigger exocytosis (Garcia et al., 2006).  In brain slices of UCP2 KO mice, FSCV recordings 

in the caudate putamen suggest that, at least for dopamine release, the facilitation of steps 

in the vesicle cycle overrides the increase in Ca2+ clearance (Figure 3.3A).  Dopamine 

release is enhanced by approximately 20 % in UCP2 KO animals, and accompanied by a 

similar 27 % increase in maximal uptake rate.  The time course necessary for increased 

ATP production to impact exocytosis is apparently greater than 35 min, as acute blockade of 

UCP2 with genipin did not alter dopamine release (Figure 3.4).  By contrast, 5-HT release in 

the SNr was completely unaffected by UCP2 removal (Figure 3.3B); somewhat surprising 

given the multitude of potential ATP effects.  However, this null result was repeated in 

studies of exocytosis at single chromaffin cells.  Amperometric measurements showed no 

changes in frequency of spikes or average vesicular content (Figure 3.5 and Table 3.1), 
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indicating no increase in vesicular packaging, mobilization, or priming.  The size and 

duration of the depolarization-induced intracellular Ca2+ transient were equal in both cell 

types (Figure 3.5 and Table 3.2), indicating no alterations in cytosolic Ca2+ clearance 

through ATP-driven Ca2+ pumps or uptake via the mitochondrial uniporter. 

 The varied effects observed in the vesicular release of chemical messengers in 

UCP2 KO mice prevent a straightforward description of the protein's role in exocytosis.  One 

partial explanation for these contradictory results is that the uncoupling mechanism of UCP2 

isn't constitutively active.  A recently emerging hypothesis proposes that UCP2 does not 

contribute to a basal proton conductance, but is activated by reactive oxygen species 

generated by the leak of electrons from the electron transport chain (Cannon et al., 2006; 

Echtay, 2007).  The activity-dependent uncoupling of oxidative phosphorylation would then 

protect the cell from damage.  Such a mechanism would help explain the absence of 

significant changes in individual vesicular events and Ca2+ handling at chromaffin cells, in 5-

HT release in brain slices containing the SNr, and in dopamine release in the caudate 

putamen following acute inhibition of UCP2 with genipin.  However, the enhanced dopamine 

release and uptake in UCP2 KO animals doesn't fit with this explanation.  A protective role 

for UCP2 in response to reactive oxygen species would predict either no effect on dopamine 

release in UCP2 KO mice or a decrease in release owing to greater dopaminergic cell 

degeneration.  A second possible reason for the diverse responses could be cell-type 

specific differences in the expression of UCP2 or in the endogenous activity of the protein.  

The release measurements would indicate that, relative to 5-HT neurons and chromaffin 

cells, dopamine neurons express either a greater amount of UCP2 or a variant with higher 

basal proton conductance.  Although, the failure of genipin to acutely alter dopamine release 

would argue that even with higher expression/activity UCP2 does not effectively couple 

vesicular release to short term changes in oxidative phosphorylation.  Future measurements 

of exocytosis from WT and UCP2 KO cells/slices under conditions of oxidative stress and 
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extension of the genipin treatment to SNr slices and chromaffin cells could help elucidate 

the function of UCP2 in regulating vesicular release. 
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Chapter 4 
 

Exocytosis in a Mouse Model of Fragile X Syndrome 
 
 

Introduction 

 Fragile X syndrome (FXS) is the most commonly inherited form of mental retardation, 

often presenting as an autism spectrum disorder (Garber et al., 2008).  FXS is an X 

chromosome-linked disorder with an unusual inheritance pattern, in which intellectually 

normal male carriers pass the relevant alleles through their unaffected carrier daughters and 

on to their affected sons (Sherman et al., 1985).  The gene responsible for FXS is Fragile X 

Mental Retardation 1 gene (Fmr1), which encodes an mRNA-binding protein termed fragile 

X mental retardation protein (FMRP) (Verkerk et al., 1991; Ashley et al., 1993).  FMRP 

selectively binds about 4 % of the mRNA in the mammalian brain, and is hypothesized to 

play a role in synaptic plasticity through negative regulation of local protein synthesis at the 

synapse (Bassell and Warren, 2008).  In FXS, expansion of a CGG repeat in the 5'-

untranslated region of Fmr1 leads to hypermethylation-induced silencing of the gene and the 

absence of FMRP (Sutcliffe et al., 1992; Coffee et al., 1999). 

 A common phenotype of human FXS patients and a mouse model of the disease, in 

which the Fmr1 gene is knocked out (1994), is the prevalence of long, thin dendritic spines 

of immature morphology (Comery et al., 1997; Irwin et al., 2000).  Naturally, most 

investigations of the role of FMRP in FXS have thus focused on a postsynaptic mechanism.  

These studies suggest that the cognitive deficits in FXS arise from excess protein synthesis 

in the basal state and a loss of stimulus-induced translation upon activation of metabotropic 

glutamate receptors (Muddashetty et al., 2007).  Dysregulation of mRNA translation at the 



synapse would have significant consequences on dendritic spine development and long-

term synaptic plasticity, processes crucial to learning and memory.  While most work to date 

has focused on the postsynaptic role of FMRP, evidence for a presynaptic mechanism has 

also surfaced.  Cortical neurons in Fmr1 KO mice show diminished levels of several 

presynaptic proteins associated with the exocytotic machinery, including Rab and 

synaptotagmin isoforms and Munc-13 (Liao et al., 2008).  The putative down regulation of 

Rab isoforms in FXS is particularly compelling as Rab3A has been shown to be essential for 

the expression of LTP in the hippocampus (Castillo et al., 1997).  Further evidence for 

presynaptic mechanisms in FXS comes from observed deficiencies in the release of 

neuropeptides from large dense core vesicles (LDCVs) in Fmr1 KO mice (Dr. Jonathan 

Sweedler, personal communication).  Additionally, impairments in object recognition have 

been noted in Fmr1 KO mice (Ventura et al., 2004).  These impairments were coincident 

with lower basal levels of dopamine in the caudate putamen and altered amphetamine-

induced dopamine release in the prefrontal cortex and caudate putamen. 

 This chapter explores a potential presynaptic role of FMRP in regulating exocytosis 

by studying vesicular release in Fmr1 KO mice in two complementary preparations: fast 

scan cyclic voltammetry (FSCV) monitoring of transmitter release in brain slices and 

amperometric recordings at isolated chromaffin cells.  Measurements at single cells allow for 

characteristics of individual exocytotic events to be evaluated while measurements in the 

intact tissue slices can probe the summated release from multiple exocytosis sites as well as 

the diffusion, uptake, and receptor interactions of neurotransmitters following release.  

Together, these two techniques have previously been utilized in this lab to attribute the 

diminished dopamine release in a mouse model of Huntington's disease to impaired vesicle 

packaging (Johnson et al., 2006; Johnson et al., 2007).  Presently, both techniques were 

unable to detect any alterations in the presynaptic release of chemical messengers in Fmr1 

KO mice, supporting a role for FMRP that is predominantly postsynaptic. 
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Materials and Methods 

Animals 

 Mice were handled in accordance with the guidelines set forth by the Institutional 

Animal Care and Use Committee (IACUC) at UNC-Chapel Hill.  Fmr1 KO mice and their 

littermate WT mice were provided by the lab of Jonathan Sweedler at the University of 

Illinois at Urbana Champaign. 

Preparation of Adrenal Medullary Chromaffin Cells 

 Murine chromaffin cells were prepared as previously described (Kolski-Andreaco et 

al., 2007) with some modifications.  Mice were deeply anesthetized with ether, decapitated, 

and the adrenal glands rapidly removed into ice-cold, oxygenated Ca2+ and Mg2+-free 

Locke's buffer containing (in mM): 154 NaCl, 3.6 KCl, 5.6 NaHCO3, 5.6 glucose, and 10 

HEPES, pH adjusted to 7.2 with NaOH.  The medullae were isolated via gentle removal of 

cortical tissue and digested for 20 min at 37 oC in Dulbecco's Modified Eagle's 

Medium/Nutrient Mixture F-12 Ham (DMEM/F12) with 25 U/mL papain.  The digestion media 

was replaced with a fresh aliquot, followed by a second 20 min digestion period.  Digested 

tissue was washed and triturated with pipette tips of decreasing bore size in 500 µL 

DMEM/F12 with 10 % fetal bovine serum and 2 % horse serum.  The resulting cell 

suspension was distributed evenly to 3 poly-L-lysine-coated (0.1 mg/mL) 25 mm round glass 

coverslips.  After 15 min attachment plates were fed with 2 mL DMEM/F12 containing 100 

U/mL penicillin, 0.1 mg/mL streptomycin, 50 U/mL nystatin, and 40 µg/mL gentamicin.  

Plates were maintained in a humidified, 5 % CO2 atmosphere at 37 oC for at least 24 h prior 

to experimentation. 

Preparation of Brain Slices 

 Mice were anesthetized with ether and decapitated.  The brain was rapidly removed 

and placed on ice.  Coronal brain slices (300 µm thick) containing the caudate putamen, 

substantia nigra pars reticulata (SNr), or ventral bed nucleus of the stria terminalis (vBNST) 
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were prepared in ice cold artificial cerebral spinal fluid (aCSF) using a Lancer Vibratome 

(World Precision Instruments, Sarasota, Fl.).  The aCSF contained (in mM): 20 HEPES, 2.4 

CaCl2, 1.2 MgCl2, 1.2 NaH2PO4, 2.45 KCl, 126 NaCl, 11 glucose, and 25 NaHCO3.  The pH 

was adjusted to pH 7.4 and the aCSF was saturated with 95 % O2/5 % CO2.  Slices were 

superfused in aCSF at 37 oC for 35-40 minutes prior to recording. 

Electrodes and Electrochemistry 

 Carbon-fiber microelectrodes were prepared using T650 carbon fibers (6 µm 

diameter, Amoco, Greenville, SC) as previously described (Kawagoe et al., 1993).  Fibers 

were aspirated into glass capillaries (A-M Systems, Sequim, WA), and a vertical pipette 

puller (Narishige, Long Island, NY) was used to seal the glass around the carbon fiber.  For 

cylinder electrodes, the exposed carbon fiber was trimmed to a length of 50 µm.  For disk 

electrodes, the carbon fibers were cut at the glass seal, which was then reinforced with 

epoxy (15 % m-phenylenediamine in Epon 828 resin (Miller-Stephenson, Danbury, CT) 

heated to between 80 and 90 oC).  Electrodes were kept at room temperature overnight, and 

then the epoxy was cured via sequential heating at 100 and 150 oC for 8 h and overnight, 

respectively.  Disks were generated by beveling electrodes at 45 degrees on a diamond 

dust-embedded polishing wheel (Sutter Instruments, Novato, CA).  Prior to use, all 

electrodes were soaked in isopropyl alcohol for at least 20 min (Bath et al., 2000). 

 Amperometric recordings at single cells were made using a GeneClamp 500B 

amplifier (Axon Instruments, Molecular Devices, Union City, CA).  Disk electrodes were held 

at 0.650 V vs. a Ag/AgCl reference electrode (BASi, West Lafayette, IN), a potential 

sufficient to oxidize catecholamines.  The output current was analog filtered at 5 kHz with a 

low-pass Bessel filter and acquired at 20 kHz.  Post-collection, traces were further digitally 

filtered using a 400 Hz low-pass Bessel filter.  Data collection and filtering were controlled 

via the pClamp software provided with the amplifier. 
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 Measurements of dopamine, norepinephrine (NE) and serotonin (5-HT) release in 

brain slices were made using FSCV at cylinder electrodes.  Waveform application, current 

monitoring, and stimulus application were all controlled by locally written software (Tarheel 

CV, Labview) through a home built potentiostat (UEI, UNC electronics shop).  For dopamine 

and NE detection, the potential at the electrode was scanned from -0.4 V to 1 V and back at 

600 V/s, with the ramp repeated at 60 Hz.  For 5-HT, the electrode was scanned from 0.2 V 

to 1 V down to -0.1 V and back to 0.2 V at 1000 V/s, with the waveform repeated at 10 Hz 

(Jackson et al., 1995).  After an experiment, electrodes were calibrated in a flow injection 

system with a 1 µM bolus of analyte. 

Single Cell Experiments 

 Glass coverslips containing plated cells were secured in a stainless steel coverslip 

holder and mounted on the stage of an inverted microscope (Eclipse TE300, Nikon 

Instruments, Melville, NY).  A temperature controller (Warner Instruments, Hamden, CT) 

connected to the stage maintained cells at 37 oC throughout the experiments.  The 

extracellular recording buffer contained (in mM): 145 NaCl, 3 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 

NaH2PO4, 11 glucose, and 10 HEPES, pH adjusted to 7.4 with NaOH.  Exocytosis was 

triggered via a 0.5 s pressure ejection of 60 mM K+ buffer from a stimulating pipette located 

30 µm from the cell.  Cells were stimmed every 30 s for 10 total stimulations.  Stimulating 

pipettes with 6 to 10 µm tip diameters were fabricated using a horizontal pipette puller 

(Sutter Instruments, Novato, CA) and a microforge (Narishige, Long Island, NY).  Pressure 

ejection was controlled via a multi-channel Picospritzer (General Valve Corporation, Parker 

Hannifin, Fairfield, NJ).  Positioning of both the electrode and stimulating pipette was 

controlled using piezoelectric micromanipulators (Burleigh Instruments, Exfo, Plano, TX). 

Slice Experiments 

Recordings were performed on a microscope (Nikon FN1, Gibraltar Stage) fitted with 

a slice perfusion chamber (Warner Instruments, Hamden CT).  Neurotransmitter release 
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was evoked by local electrical stimulation delivered through a tungsten bipolar stimulating 

electrode placed on the surface of the slice (Frederick Haer Co., Bowdoinham, ME).  The 

stimulation consisted of a computer generated, biphasic (2 ms per phase), constant-current 

(350 µA) pulse.  A single stimulation pulse was used to evoke striatal dopamine release in 

the caudate putamen (Jones et al., 1995), a 20 pulse 100 Hz stimulation train was used to 

evoke 5-HT release in the SNr (Bunin et al., 1998), and a 60 pulse 60 Hz stimulation was 

used to evoke NE release in the vBNST (Miles et al., 2002).  The current pulse was optically 

isolated from the preparation (NL 800, Neurolog, Medical Systems, Great Neck, NY).  

Stimulations were performed at regular 3-5 min intervals to maintain consistent release.  

Neurotransmitter release was detected at a microelectrode placed 75-100 µm into the slice 

at a distance of 100-200 µm from the stimulating electrode. 

Data Analysis 

 Amperometric spike analysis was performed using MiniAnalysis software 

(Synaptosoft, Decatur, GA).  For inclusion, spike amplitude was required to be 5 times 

greater than the root-mean-squared current noise.  Overlapping peaks were included in 

frequency and foot analysis, but excluded from individual spike analysis.  Visual examination 

of the peaks was used to determine presence of pre- and post-spike feet.  For frequency 

analysis, the first observed spike following stimulation marked the burst start time.  Burst 

end time was denoted by the first interspike interval > 1s.  Individual amperometric spike 

characteristics such as quantal size (Q), t1/2, and amplitude were averaged for an individual 

cell.  The cumulative mean for an experimental group was then determined using the cell 

averages (Colliver et al., 2000).  Release values reported from the slice experiments are the 

maximal neurotransmitter concentrations obtained following stimulation.  Values were 

averaged across multiple locations in each slice, and then pooled for each genotype.  All 

data are presented as means ± standard errors of the mean.  Statistical comparisons were 

performed using a Student's t-test. 
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Results 

Presynaptic Release of Biogenic Amines in Brain Slices 

 Possible presynaptic alterations in FXS were evaluated using brain slices containing 

the caudate putamen, vBNST, or SNr from both WT and Fmr1 KO mice (n = 6 animals for 

both genotypes) (Figure 4.1).  No discernible deficits in the presynaptic release mechanism 

were observed as electrically stimulated neurotransmitter release monitored by FSCV was 

unchanged in Fmr1 KO mice when compared to WT mice (p > 0.05 for all three regions, 

Student's t-test).  The maximum dopamine concentration measured in the caudate following 

stimulation was 1.50 ± 0.08 µM in WT slices and 1.61 ± 0.09 µM in Fmr1 KO slices.  NE 

release in the vBNST was equivalent in slices from WT and Fmr1 KO mice at 0.95 ± 0.14 

µM and 1.02 ± 0.14 µM, respectively.  Additionally, no differences were detected in the SNr, 

where electrically stimulated 5-HT release reached a maximal concentration of 133 ± 9 nM 

in WT slices and 127 ± 6 nM in Fmr1 KO slices. 

Vesicular Release at Chromaffin Cells 

 To further investigate the role of FMRP in modulating presynaptic secretory proteins, 

the vesicular release machinery was examined in isolated chromaffin cells from WT (n = 53 

cells) and Fmr1 KO (n = 43 cells) mice.  Amperometry was used to measure the exocytosis 

stimulated by 10 successive 0.5 s applications of 60 mM K+, spaced 30 s apart.  Figure 4.2 

shows a representative amperometric trace following a single stimulation for both cell types.  

The amperometric spike characteristics for both genotypes are summarized in Table 4.1.  

The mouse model of FXS showed no effects on the exocytotic protein machinery as 

vesicular release observed at Fmr1 KO cells was unchanged (p > 0.05 for all characteristics, 

Student's t-test) compared to WT cells.  An average of 310 ± 20 events were detected at WT 

cells, with individual bursts lasting 3.4 ± 0.2 s and having a spike frequency of 8.4 ± 0.3 Hz.  

Similarly, an average of 320 ± 20 events were detected at Fmr1 KO cells, with each burst 

lasting 3.5 ± 0.2 s and having a spike frequency of 9.1 ± 0.4 Hz.  The percentage of WT and  
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Figure 4.1.  Stimulated neurotransmitter release in three regions of the adult mouse brain.  
Brain slices containing the caudate putamen, vBNST, or SNr were taken from WT mice and 
Fmr1 KO mice.  Dopamine release evoked by a single pulse electrical stimulation was 
unchanged in Fmr1 KO mice compared to WT mice (p > 0.05, n = 6 both genotypes).  The 
same can be said for 5-HT release evoked by a 20 pulse 100 Hz stimulation in the SNr and 
NE release evoked by a 60 pulse 60 Hz stimulation in the vBNST (p > 0.05, n = 6 both 
genotypes).  
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Figure 4.2.  Vesicular release at WT and Fmr1 KO cells.  Representative amperometric 
traces measured in response to a 0.5 s stimulation with 60 mM K+ at chromaffin cells from 
WT (A) and Fmr1 KO (B) mice.   

96 
 



Table 4.1.  Amperometric spike characteristics of WT and Fmr1 KO mice.  Table shows the 
average number of spikes recorded during a trace (10 stimulations) and the average length 
of and frequency of spikes within an individual burst of exocytosis following a 0.5 s 
stimulation with 60 mM K+.  Individual spike characteristics, including % of events with a foot 
feature, amplitude (Imax, in pA), quantal size (Q, in molecules of catecholamine), and 
halfwidth (t1/2, in ms), were averaged over the entire trace.  No significant differences were 
observed between WT and Fmr1 KO cells (p > 0.05, one-way ANOVA). 
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Fmr1 cells exhibiting a pre- and/or post-spike foot was an identical 11.1 ± 0.4 %.  The 

average amperometric spike for WT cells had an Imax of 76 ± 4 pA, t1/2 of 5.3 ± 0.2 ms, and Q 

of (8.0 ± 0.4) x 105 molecules.  Likewise, the average spike for Fmr1 KO cells had an Imax of 

78 ± 4 pA, t1/2 of 5.5 ± 0.2 ms, and Q of (8.9 ± 0.6) x 105 molecules. 

Discussion 

 Of the many mRNA cargoes of FMRP, several presynaptic proteins involved in the 

secretory pathway have been identified (Brown et al., 2001; Miyashiro et al., 2003).  In the 

brains of Fmr1 KO mice, the lack of FMRP is associated with the down regulation of 

numerous presynaptic proteins linked to vesicle exocytosis (Liao et al., 2008).  Most notable 

among the mRNA and protein targets is Rab3A, a small GTPase implicated in the GTP-

dependent docking and fusion of vesicles with the plasma membrane (Geppert et al., 1997; 

Leenders et al., 2001).  Dysregulation of Rab3A expression, and that of other presynaptic 

mRNA cargoes of FMRP, is proposed to contribute to the observed mental deficits in FXS 

through alterations in the vesicular release of neurotransmitters.  This theorized link has 

recently been observed.  Cortical synaptoneurosomes from Fmr1 KO mice exhibit a 90 % 

reduction in stimulation-dependent release of neuropeptides from LDCVs (Dr. Jonathan 

Sweedler, personal communication).  This deficit in exocytosis was coincident with a 50 % 

decrease in Rab3A expression. 

 To further examine the role of FMRP in regulating the presynaptic release of 

chemical messengers, electrochemical monitoring of neurotransmitter release with FSCV 

and amperometry has been performed in Fmr1 KO animals.  Electrically stimulated 

dopamine release in the caudate putamen, NE release in the vBNST, and 5-HT release in 

the SNr are all unchanged in brain slices from Fmr1 KO mice relative to WT mice (Figure 

4.1).  Similarly, no significant differences were measured in the frequency of vesicular 

events or individual amperometric spike characteristics between WT and Fmr1 KO 

chromaffin cells (Figure 4.2 and Table 4.1).  Taken together, these results suggest that 
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presynaptic regulation of biogenic amine release is largely intact in Fmr1 KO mice.  In light 

of the evidence for vesicular release deficiencies discussed above, these results imply that 

the presynaptic regulation of exocytosis by FMRP may be specific to cortical brain regions or 

to the release of neuropeptides.  Future experiments assessing the presynaptic release 

mechanism in different brain locations or of other neurotransmitters could help elucidate the 

function of FMRP in the expression of FXS symptoms. 
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Chapter 5 
 

Fast Scan Cyclic Voltammetry of Trace Amines 
 
 

Introduction 

 The trace amines are a family of endogenous amines closely related in structure and 

metabolism to the classical monoamine neurotransmitters (Philips et al., 1974; Axelrod and 

Saavedra, 1977).  As the name suggests, these compounds are present at trace amounts 

(0.1 – 100 ng/g tissue) in the mammalian brain, several hundred-fold lower than the 

classical monoamines (Berry, 2004).  Trace amines are distributed heterogeneously in the 

brain, although this distribution closely mimics the cell body and projection regions of the 

dopamine, norepinephrine (NE), and serotonin systems (Philips, 1984).  Synthesis and 

turnover rates for the trace amines are equivalent or greater than those for dopamine and 

NE (Durden and Philips, 1980; Durden et al., 1988), with oxidative deamination by the 

monoamine oxidase enzymes primarily responsible for the high turnover rates (Philips and 

Boulton, 1979).  Though initially considered simple metabolic byproducts of the classical 

monoamine transmitters, renewed interest in the physiological role of these compounds was 

triggered by discovery of a family of mammalian trace amine receptors (Borowsky et al., 

2001).  As summarized in recent reviews, current opinion holds that trace amines function 

mainly as modulators of monoamine neurotransmission, affecting both presynaptic release 

and uptake and postsynaptic sensitivity. (Berry, 2004; Burchett and Hicks, 2006). 

 Although the label extends to derivatives of L-phenylalanine and L-tryptophan as 

well, this work will focus only on those trace amines derived from the precursor amino acid 

L-tyrosine: tyramine, octopamine, and synephrine.  These molecules are structurally similar 



to dopamine, NE, and epinephrine (E), respectively, but are phenolamines rather than 

catecholamines (Figure 5.1).  Over the years, several methods have been employed for the 

detection and quantification of trace amines including radioenzymatic assays (Axelrod and 

Saavedra, 1977), immunohistochemistry (Kitahama et al., 2005), mass spectrometry (Philips 

et al., 1974), and high performance liquid chromatography (D'Andrea et al., 2003).  

However, none of these methods permit measurement of concentration changes on the 

subsecond time scale of vesicular release of monoamine transmitters in the brain.  Fast 

scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes is one technique that would 

provide the necessary temporal resolution for real-time measurements while still maintaining 

the sensitivity required to monitor such low concentrations (Robinson et al., 2008).  To date 

though, little is known about the electrochemistry of phenolamines at carbon-fiber 

microelectrodes.  The electrochemistry of tyramine has been investigated at gold, platinum, 

and graphite electrodes (Tenreiro et al., 2007; de Castro et al., 2008; Luczak, 2008), but at 

scan rates significantly lower than those used for FSCV recordings of neurotransmission.  

Like other phenols, these studies show that oxidation of tyramine produces phenoxy radicals 

that react with other tyramine molecules to yield a para-linked dimer.  Subsequent oxidation 

leads to polymerization, which could form a passivating, insulating film on the electrode 

surface.  The electrochemistry of octopamine and synephrine is likely very similar, and the 

potential fouling of the electrode through film formation will need to be addressed for the 

electrochemical detection of phenolamines to prove viable. 

 This chapter reports the development of FSCV techniques for the real-time 

monitoring of tyramine, octopamine, and synephrine concentration changes.  The 

electrochemistry of the trace amines is described using two FSCV waveforms.  While the 

generation of polymerized films was diminished with higher holding potentials, no significant 

evidence for fouling was observed with either waveform.  Both waveforms qualitatively 

distinguish trace amines from their catecholamine counterparts, but show a limited time  
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Figure 5.1.  Chemical structures of the catecholamines and trace amines.  Left hand column 
shows the classical catecholamine transmitters derived from the precursor amino acid l-
tyrosine.  Right hand column shows the structurally related trace amines.  These 
compounds are also derived from l-tyrosine, but as phenolamines possess only one ring 
hydroxyl group.  
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course for simultaneous quantitative measurements.  These techniques could serve as 

valuable tools for future studies of trace amine modulation of the classical monoamine 

neurotransmitters. 

Materials and Methods 

Electrodes and Electrochemistry 

 Carbon-fiber microelectrodes were prepared using P55 carbon fibers (10 µm 

diameter, Amoco, Greenville, SC) as previously described (Kawagoe et al., 1993).  Fibers 

were aspirated into glass capillaries (A-M Systems, Sequim, WA), and a vertical pipette 

puller (Narishige, Long Island, NY) was used to seal the glass around the carbon fiber.  

Carbon fibers were cut at the glass seal, which was then reinforced with epoxy (15 % m-

phenylenediamine in Epon 828 resin (Miller-Stephenson, Danbury, CT) heated to between 

80 and 90 oC).  Electrodes were kept at room temperature overnight, and then the epoxy 

was cured via sequential heating at 100 and 150 oC for 8 h and overnight, respectively.  

Prior to use, electrodes were beveled at 45 degrees on a diamond dust-embedded polishing 

wheel (Sutter Instruments, Novato, CA) and soaked in isopropyl alcohol for at least 20 min 

(Bath et al., 2000).  FSCV measurements were made using an EI-400 biopotentiostat (ESA, 

Chelmsford, MA).  Waveform application, data acquisition, and post-collection digital filtering 

at 2 kHz were controlled by locally written software (Tarheel CV, Labview).  A Ag/AgCl 

reference electrode (BASi, West Lafayette, IN) was used for all experiments. 

Flow Injection Experiments 

 Carbon-fiber disk microelectrodes were situated in an electrochemical cell at the 

output of a flow injection system (Kristensen et al., 1986; Zachek et al., 2008).  A six-port 

high performance liquid chromatography injection valve (Upchurch Scientific, Oak Harbor, 

WA) was mounted on a two-position pneumatic actuator (Rheodyne, Rohnert Park, CA).  

The actuator was used in conjunction with a 12 V solenoid valve kit (Rheodyne) at 50 psi to 

precisely control the introduction of analytes to the electrode surface.  Solvent flow (2 
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mL/min) was driven with a variable-resistance infusion pump (Harvard Apparatus, Holliston, 

MA) through the valve and into the electrochemical cell. 

Chemicals 

 All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used as 

received.  Aqueous solutions were prepared in doubly-distilled, deionized water.  The 

running buffer for flow injection experiments contained (in mM): 140 NaCl, 4 KCl, 1 MgCl2, 2 

CaCl2, 10 glucose, and 20 Tris-HCl, pH adjusted to 7.4 with NaOH.  Stock solutions of 

catecholamines and trace amines were prepared in 0.1 N HClO4 and diluted in running 

buffer on the day of each experiment.  All solutions were deoxygenated prior to use with at 

least 20 min of N2 bubbling. 

Results 

Characterization of Trace Amine Electrochemistry 

 For catecholamine detection in brain slices, the potential at the carbon-fiber 

microelectrode is generally scanned from -0.4 V to 1.0 V and back at 600 V/s, with the ramp 

repeated at 60 Hz (see Chapters 3 and 4).  As the oxidation potentials of the trace amines 

were predicted to be higher than those of the catecholamines (de Castro et al., 2008; 

Luczak, 2008), the switching potential was increased to 1.3 V (referred to hereafter as the 

extended waveform).  Application of the extended waveform to a disk carbon-fiber 

microelectrode during a 1 s flow injection of 10 µM tyramine, octopamine, or synephrine 

resulted in the background-subtracted cyclic voltammograms (CVs) and current versus time 

traces shown in Figure 5.2.  The CVs for all three trace amines were largely similar.  A main 

oxidation peak was observed at 0.98 ± 0.02 V for tyramine, 1.03 ± 0.02 V for octopamine, 

and 1.02 ± 0.02 V for synephrine (n = 3 electrodes for all compounds).  Initially, the main 

oxidation peak was the primary feature of the CV, along with a small reduction peak at -0.2 

V and a small oxidative current near the switching potential (Figure 5.2A-C).  However, a 

second oxidation peak at 0.6 V slowly grew in over the time course of the injection and was  
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Figure 5.2.  Electrochemical characterization of tyramine, octopamine, and synephrine with 
the extended waveform.  Top panel (A, B, C) shows the first background-subtracted cyclic 
voltammogram (CV) obtained after exposure to 10 µM tyramine, octopamine, or synephrine.  
All three compounds exhibit a main oxidation peak around 1.0 V.  Middle panel (D, E, F) 
shows the 20th CV of the injection, approximately 0.33 s after initial exposure to the trace 
amine.  All three compounds now exhibit a pronounced secondary oxidation peak around 
0.6 V.  The bottom panel (G, H, I) shows the current (I) measured at the electrode as a 
function of time (t) at the potential of both the main (filled circles) and secondary (open 
triangles) oxidation peaks.  The bar indicates when the electrode was exposed to each 
compound.   
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clearly visible after only 0.33 s of exposure (Figure 5.2D-F).  The growth of this oxidation 

peak coincided with an increase in the size of the reduction peak at -0.2 V.  Additionally, the 

oxidative current near the switching potential increased with time, but only for tyramine.  The 

current versus time traces show that the secondary oxidation peak continued to increase in 

current throughout the 1 s injection and returned to baseline much slower than the main 

peak after the trace amine had been washed out of the flow cell (Figure 5.2G-I).  For 

tyramine, this secondary peak reached 76 ± 2 % of the amplitude of the main oxidation peak 

by the end of the injection.  For octopamine it reached 120 ± 4 % of the amplitude and for 

synephrine 105 ± 3 %.   

 FSCV detection with the extended waveform displayed minimal sensitivity 

differences for the three trace amines.  On average, peak currents of 1.56 ± 0.07 nA, 1.48 ± 

0.02 nA, and 1.22 ± 0.07 nA were observed for the main oxidation peak of 10 µM tyramine, 

octopamine, and synephrine, respectively.  The square pulse of analyte resulted in a square 

current response at the main oxidation peak (Figure 5.2G-I), suggesting no short-term 

fouling of the electrode surface.  There was also no evidence for long-term fouling of the 

electrode.  No decrease was observed in the measured current at the main oxidation 

potential during six successive flow injections of the three trace amines.  Further, the 

electrode response to a 10 µM injection of NE was unaltered (p > 0.05, Student's t-test) 

following exposure to trace amine.  After six successive tyramine injections the current 

measured in response to NE oxidation was 103 ± 4 % of pre-exposure levels.  After 

octopamine exposure the response was 99 ± 5 % of pre-exposure levels and for synephrine 

103 ± 3 %. 

Discrimination from Catecholamines with the Extended Waveform 

 With use of the extended waveform, the CVs for dopamine, NE, and E are 

indistinguishable.  The catecholamines all exhibit an oxidation peak at 0.6 V and a reduction 

peak at -0.2 V.  Unfortunately, these potentials are identical to those of the secondary peak 
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and reduction peak that arise during oxidation of the trace amines.  As such, the extended 

waveform had a limited time window for distinguishing catecholamine and phenolamine 

species.  Flow cell injection of mixtures containing 10 µM NE and 10 µM tyramine, 

octopamine, or synephrine are summarized in Figure 5.3.  The first CVs collected upon 

exposure to these mixtures showed an oxidation peak at 0.6 V that can be attributed solely 

to the presence of NE (Fig 5.3A-C).  The magnitude of the current at this potential was 

significantly increased (p < 0.05, Student's t-test, n = 3 electrodes) within 3 to 5 CVs from 

the initial scan for all three trace amines, owing to the appearance of the secondary 

oxidation peak.  These data suggest that simultaneous measures of catecholamine and 

trace amine concentration can only be made accurately for very brief exposures (less than 

100 ms) using the extended waveform. 

The Effect of Holding Potential on the Secondary Oxidation Peak 

 The lag between trace amine washout and the current at the secondary oxidation 

potential returning to baseline indicate that this peak stems from a species adsorbed to the 

electrode surface.  Presumably, like the trace amines themselves, these secondary products 

contain protonated amines at pH 7.4.  In an attempt to reduce adsorption of these species, 

the holding potential of the FSCV waveform was increased from -0.4 V to 0.1 V (referred to 

hereafter as the short waveform) (Bath et al., 2000).  Application of the short waveform to a 

disk carbon-fiber microelectrode during 1 s flow injections of 10 µM tyramine, octopamine, or 

synephrine resulted in the CVs and current versus time traces shown in Figure 5.4.  Minus 

the reductive wave, the initial CVs for all three trace amines were nearly identical to those 

obtained with the extended waveform (Figure 5.4A-C).  A main oxidation peak was observed 

at 0.97 ± 0.02 V for tyramine, 0.99 ± 0.03 V for octopamine, and 0.98 ± 0.03 V for 

synephrine (n = 3 electrodes for all compounds).  The small oxidative current near the 

switching potential was also still present, and again showed an increase in size during the 

injection that was specific to tyramine oxidation.  Though its size was greatly diminished, the  
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Figure 5.3. Discrimination of catecholamines and trace amines with the extended waveform.  
Top panel (A, B, C) shows the first background-subtracted cyclic voltammogram (CV) 
obtained after exposure to a mixture of 10 µM norepinephrine (NE) and 10 µM tyramine, 
octopamine, or synephrine.  Two oxidation peaks are clearly visible: one for the trace amine 
around 1.0 V and one for NE around 0.6 V.  Middle panel (D, E, F) shows the 20th CV of the 
injection, approximately 0.33 s after initial exposure to the mixture.  The secondary oxidation 
peak for the trace amines overlaps with the NE oxidation peak, leading to an increase in 
signal as it grows in.  The bottom panel (G, H, I) shows the current (I) measured at the 
electrode as a function of time (t) at the potential of both the main (filled circles) and 
secondary (open triangles) oxidation peaks.  The bar indicates when the electrode was 
exposed to the mixture.   
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Figure 5.4.  Electrochemical characterization of tyramine, octopamine, and synephrine with 
the short waveform.  Top panel (A, B, C) shows the first background-subtracted cyclic 
voltammogram (CV) obtained after exposure to 10 µM tyramine, octopamine, or synephrine.  
All three compounds exhibit a main oxidation peak around 1.0 V.  Middle panel (D, E, F) 
shows the 20th CV of the injection, approximately 0.33 s after initial exposure to the trace 
amine.  While still present, the secondary oxidation peak around 0.6 V is significantly 
reduced compared to the extended waveform.  The bottom panel (G, H, I) shows the current 
(I) measured at the electrode as a function of time (t) at the potential of both the main (filled 
circles) and secondary (open triangles) oxidation peaks.  The bar indicates when the 
electrode was exposed to each compound.  
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secondary oxidation peak persisted with application of the short waveform and was readily 

identifiable within 0.33 s of exposure to trace amine (Figure 5.4D-F).  The shape of the 

current response at the secondary oxidation potential was unchanged, exhibiting a slow, 

continual increase in current throughout the 1 s injection and a prolonged return to baseline 

(Figure 5.4G-I).  For tyramine, the secondary peak reached 33 ± 2 % of the amplitude of the 

main oxidation peak by the end of the injection.  For octopamine it reached 51 ± 4 % of the 

amplitude and for synephrine 38 ± 3 %.   

 Increasing the holding potential diminished the electrode sensitivity for the three 

trace amines.  On average, peak currents of 1.00 ± 0.02 nA, 1.01 ± 0.03 nA, and 1.06 ± 0.02 

nA were observed for the main oxidation peak of 10 µM tyramine, octopamine, and 

synephrine, respectively.  The square pulse of analyte resulted in a square current response 

at the main oxidation peak for octopamine and synephrine (Figure 5.4H,I), suggesting no 

short-term fouling of the electrode surface.  For tyramine injection, a gradual decrease in 

peak current was observed (Figure 5.4G), indicating a small but immediate loss of sensitivity 

during exposure.  This change in sensitivity was temporary, as both the background and 

peak currents fully recovered by the next injection.  Similarly, no decrease was observed in 

the measured current at the main oxidation potential during six successive flow injections of 

octopamine and synephrine.  As with the extended waveform, the electrode response to a 

10 µM injection of NE was unaltered (p > 0.05, Student's t-test) following exposure to trace 

amine.  After six successive tyramine injections the current measured in response to NE 

oxidation was 94 ± 5 % of pre-exposure levels.  After octopamine exposure the response 

was 97 ± 2 % of pre-exposure levels and for synephrine 97 ± 3 %. 

Discrimination from Catecholamines with the Short Waveform 

 With the continued presence of the secondary oxidation peak, the short waveform is 

subject to comparable time limitations as the extended waveform when it comes to 

distinguishing catecholamines from phenolamines.  Flow cell injection of mixtures containing 
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10 µM NE and 10 µM tyramine, octopamine, or synephrine are summarized in Figure 5.5.  

As before, the first CVs collected upon exposure to these mixtures show an oxidation peak 

at 0.6 V that can be attributed solely to the presence of NE (Fig 5.5A-C).  Owing to the 

reduced size of the secondary oxidation peak, the magnitude of the current at this potential 

increases slower than was observed with the extended waveform, with the current response 

at 0.6 V for tyramine even staying flat throughout the injection (Figure 5.5D-I).  The peak 

current during octopamine and synephrine injection was still significantly increased (p < 

0.05, Student's t-test, n = 3 electrodes) within 5 CVs of the initial scan, suggesting 

quantitative measures of catecholamine and trace amine concentration would remain limited 

to very brief exposures (less than 100 ms). 

Discussion 

 The electrochemistry of the trace amines tyramine, octopamine, and synephrine at 

disk carbon-fiber microelectrodes has been described using two FSCV waveforms.  With 

both the extended and the short waveforms, all three trace amines exhibit a primary 

oxidation wave around 1.0 V.  In contrast, the primary oxidation wave for catecholamines 

with these waveforms occurs at 0.6 V, demonstrating a higher energy barrier for electron 

removal from the phenol moiety.  While the oxidation potentials of the catecholamines and 

trace amines are sufficiently resolved from each other by FSCV, selective detection of 

individual trace amines is not feasible due to their nearly identical CVs (Figure 5.2A-C and 

Figure 5.4A-C).  Thus, like the catecholamines, positive analyte identification of an unknown 

trace amine cannot be performed solely by electrochemistry.  Other analytical or 

pharmacological approaches would be necessary for confirmation. 

 In addition to displaying analogous CV shapes, the trace amines also demonstrated 

similar sensitivities for detection at the electrode surface.  With the extended waveform, 

peak currents at the primary oxidation potential were equal for 10 µM tyramine and 

octopamine injections, and those for synephrine injections were only slightly lower (Figure  
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Figure 5.5.  Discrimination of catecholamines and trace amines with the short waveform.  
Top panel (A, B, C) shows the first background-subtracted cyclic voltammogram (CV) 
obtained after exposure to a mixture of 10 µM norepinephrine (NE) and 10 µM tyramine, 
octopamine, or synephrine.  Two oxidation peaks are clearly visible: one for the trace amine 
around 1.0 V and one for NE around 0.6 V.  Middle panel (D, E, F) shows the 20th CV of the 
injection, approximately 0.33 s after initial exposure to the mixture.  The increase in the NE 
signal at 0.6 V is less pronounced than with the extended waveform, owing to a decrease in 
formation of the trace amine secondary oxidation product.  The bottom panel (G, H, I) shows 
the current (I) measured at the electrode as a function of time (t) at the potential of both the 
main (filled circles) and secondary (open triangles) oxidation peaks.  The bar indicates when 
the electrode was exposed to the mixture.  
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5.2G-I).  By shifting the holding potential from a negative to a positive value, the short 

waveform resulted in diminished sensitivities for all three compounds (Figure 5.4G-I).  This 

decrease could result from less adsorption of the trace amines, with their positively charged 

amine groups, to the electrode surface during the time between voltage scans (Bath et al., 

2000).  The adsorption deficits are evidently greater for primary amines, as synephrine 

sensitivity was equal to that of tyramine and octopamine when using the short waveform. 

 It is well documented that tyramine, like other phenols, polymerizes following 

oxidation, generating a film on electrode surfaces (Pham et al., 1982; Tenreiro et al., 2007; 

de Castro et al., 2008).  The electrodeposition of polytyramine films by cyclic voltammetry 

has even been used to immobilize enzymes for the fabrication of enzyme-modified 

electrodes (Manihar et al., 2001).  As the polymerization reaction is driven by formation of 

phenoxy radicals, it is predicted that octopamine and synephrine would behave similarly.  

The formation of these films is generally observed as electrode passivation and the 

disappearance of tyramine oxidative currents over successive scans.  In one instance, 

however, the deposited film was electroactive and accompanied by the appearance of a 

broad oxidative current between 0.2 and 0.7 V and a corresponding reduction peak (de 

Castro et al., 2008).  This finding is in line with the electrochemistry observed during the 

present experiments.  With the extended waveform, trace amine oxidation results in the 

formation of a secondary product from side reactions of the initial oxidized species.  

Generation of the secondary product is measured as a slow, continual increase in oxidative 

current at 0.6 V throughout the injection and coincides with the growth of a reduction peak at 

-0.2 V (Figure 5.2D-I).  This trend is repeated with the short waveform, although the 

potential window precludes observation of the reduction peak (Figure 5.4D-I).  Considering 

the identical oxidation potentials, the secondary products could be catechol molecules 

generated from side reactions of the phenoxy radicals.  However, both the previous 

literature reports and the persistence of the secondary peak oxidation current after the end 
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of the injection strongly support that these oxidative and reductive waves correspond to an 

electroactive film at the electrode surface resulting from polymerization of the trace amines. 

 The rates of polymerization differed between the three trace amines, but were 

consistent under both waveforms.  The current at the secondary oxidation peak grew in 

fastest for octopamine, followed by synephrine, then tyramine (Figure 5.2G-I and Figure 

5.4G-I).  The extent of polymerization was significantly diminished upon shift of the holding 

potential from -0.4 to 0.1 V, as evident from the sharp decrease in current response at the 

secondary peak.  This result is consistent with the proposed oxidation and polymerization 

schemes for tyramine (Pham et al., 1984; Tenreiro et al., 2007), and suggests that 

adsorption of the monomeric and polymeric species to the electrode surface via electrostatic 

interactions with the protonated free amino groups may provide a significant driving force for 

film formation at physiological pH.  At the end of trace amine injection, the current at the 

secondary oxidation peak begins a prolonged return to baseline.  Though the time course is 

slow (30 – 60 s), the current returning to pre-exposure levels suggests that, at least under 

these FSCV conditions, either the polymerization mechanism or attachment of the film to the 

electrode surface is reversible and dependent on continued oxidation of the trace amine.  

This would help explain why no evidence for long-term fouling of the electrode was 

observed during successive trace amine injections or for NE sensitivity following trace amine 

exposure.  Additionally, no evidence for short-term fouling of the electrode during actual 

trace amine injection and film formation was noted in all but one case.  This is not surprising, 

as the permeability of thin polytyramine films has been demonstrated (Situmorang et al., 

1998; Zhou et al., 2009).  For tyramine injections monitored with the short waveform, where 

a gradual decrease in current of the primary oxidation peak was observed, an additional 

feature is noted on the CV: an increase in the oxidative current near the switching potential 

(Figure 5.4D).  This current response could represent the generation of additional side 

products or alternate polymer structures that do affect electrode sensitivity.  However, this 
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same feature can be seen during tyramine injections monitored with the extended waveform 

(Figure 5.2D), where no change in current of the primary oxidation peak was observed 

throughout exposure.   

 As the trace amines are thought to act predominantly as modulators of monoamine 

neurotransmission (Berry, 2004; Burchett and Hicks, 2006), the ideal FSCV waveform would 

be able to simultaneously detect both classes of compound.  The short and extended 

waveforms described in this chapter would allow for the qualitative distinction between 

experimental measurements in the presence of catecholamines or trace amines alone and 

those in the presence of both catecholamines and trace amines (Figure 5.3 and 5.5).  Both 

waveforms would also allow real-time monitoring of concentration changes for either 

catecholamines or trace amines.  However, quantitative measurements of catecholamine 

concentration changes when both species are present are temporally limited to a very brief 

window (100 ms) due to the overlapping trace amine secondary oxidation peak at 0.6 V.  

While this timescale would be sufficient for the observation of individual vesicular events at 

single cells, it is most likely too brief for in vivo or brain slice recordings.  Of course, this limit 

is derived from mixtures of equal concentration.  In the mammalian brain, endogenous 

concentrations of trace amines are over a hundred-fold lower than the catecholamines 

(Berry, 2004).  The oxidative current from the electroactive trace amine films could prove 

negligible in these conditions, permitting accurate measurements over greater timescales. 

 One approach for improving the utility of these FSCV techniques could be through 

lowering the repetition rate.  During collection of the data presented in this chapter, a paper 

was published on the electrochemistry of tyramine and octopamine at cylindrical carbon-

fiber microelectrodes (Cooper and Venton, 2009).  Using identical waveforms, only with a 

repetition rate of 10 Hz instead of 60 Hz, the authors obtained virtually the same results 

described here.  Polymerization of tyramine and octopamine at the electrode surface 

coincided with the growth of an oxidation current at 0.5 V and a reduction current at -0.2 V.  
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This film was associated with only a minimal loss of tyramine sensitivity after successive 

injections (12%).  However, at 10 Hz, raising the holding potential from -0.4 to 0.1 V 

completely eliminated the secondary oxidation peak rather than just diminishing the 

amplitude.  Though the authors did not extend their studies to trace amine and 

catecholamine discrimination, by preventing generation of the polymer film they developed a 

technique that would allow for simultaneous and accurate measures of concentration 

changes for both species.  In sum, the findings from both this chapter and the recent 

publication establish FSCV at carbon-fiber microelectrodes as a viable technique for 

monitoring real-time changes in trace amine concentration and as a tool that should prove 

useful in future experiments exploring the role trace amines play in neurotransmission. 
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Chapter 6 
 

The Plasticity of Vesicular Content 
 
 

Introduction 

 The original recordings of postsynaptic responses at the neuromuscular junction 

indicated that neurotransmitter release was built upon a fundamental unit, or quantum, of 

synaptic transmission (Fatt and Katz, 1952; Del Castillo and Katz, 1954).  The quantal 

hypothesis identified single presynaptic vesicles filled with neurotransmitter as these 

fundamental units (Katz, 1971), and vesicular quantal size (Q) has classically been modeled 

as invariant.  However, considerable evidence has accumulated that indicates the amount of 

transmitter released per vesicle is not uniform (Edwards, 2007).  While Q can be regulated 

at steps following vesicle fusion (Harata et al., 2006), this chapter will focus on pre-fusion 

mechanisms that impact the vesicular packing and storage of transmitter. 

 Chemical messengers are packaged into vesicles via active transport by transporter 

proteins located on the vesicle membrane.  For catecholamines, this packaging is controlled 

by two differentially expressed isoforms of the vesicular monoamine transporter (VMAT): 

VMAT1 in chromaffin cells and VMAT2 in neuronal cells (Erickson et al., 1992; Liu et al., 

1992).  Like all vesicular transporters, the extent to which VMAT loads catecholamines into 

vesicles is dependent on both an electrochemical proton gradient and the cytoplasmic 

concentration of substrate (Chaudhry et al., 2008).  Thus, the biosynthesis of transmitters is 

directly tied to Q.  For catecholamines, the rate-limiting step in synthesis is the conversion of 

tyrosine into L-3,4-dihydroxy-phenylalanine (L-DOPA) by tyrosine hydroxylase (TH).  

Accordingly, bypassing this rate-limiting step in synthesis through the incubation of cells with 



L-DOPA has been shown to increase Q in isolated midbrain dopamine neurons (Pothos et 

al., 1998), rat phaeochromocytoma (PC12) cells (Pothos et al., 1996; Colliver et al., 2000a), 

and bovine chromaffin cells (Pothos et al., 2002).  This effect has not yet been 

demonstrated in rodent chromaffin cells. 

 In addition to the extent of catecholamine packaging by VMAT, Q is also dependent 

on the ability of vesicles to store the loaded transmitters.  One class of compounds that has 

been shown to affect vesicular storage is the amphetamines.  In the brain, amphetamine 

treatment results in the redistribution of vesicular catecholamine to the cytosol, followed by 

an increase in extracellular catecholamine concentration via reverse transport (Jones et al., 

1998).  This redistribution of vesicular catecholamine has been shown to decrease Q in both 

isolated PC12 and bovine chromaffin cells following amphetamine incubation (Sulzer et al., 

1995; Mundorf et al., 1999).  Though considered to function primarily as neuromodulators of 

monoamine transmission at their low physiological concentrations (tens of nM), doses of 

trace amine at levels significantly higher than endogenous concentrations have 

demonstrated amphetamine-like properties (Berry, 2004; Burchett and Hicks, 2006).  Given 

their amphetamine-like actions on vesicular catecholamine stores, and their activity as 

substrates for VMAT (Knoth et al., 1984; Romanenko et al., 1998), a potential function for 

trace amines as false transmitters has been suggested.  In this scenario, packaging of trace 

amines by VMAT would lead to the displacement of catecholamine and the vesicular release 

of trace amines instead.  However, the replacement of catecholamine exocytosis with that of 

trace amines has not been directly observed.  

 This chapter describes experiments designed to explore the plasticity of vesicular 

content at murine chromaffin cells.  Amperometric measurements of exocytosis showed no 

change in Q following preincubation with L-DOPA, norepinephrine (NE), or epinephrine (E).  

High performance liquid chromatography (HPLC) suggests that despite bypassing the rate-

limiting step in catecholamine synthesis, these treatments do not increase cytosolic 
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concentrations of catecholamine.  Fast scan cyclic voltammetry (FSCV) recordings of 

release after trace amine exposure revealed large deficits in both the size and number of 

vesicular events.  However, no evidence for the exocytosis of these putative false 

transmitters was detected.  HPLC measurements of total cellular catecholamine content 

indicate that in addition to the redistribution of vesicular stores to the cytoplasm, trace amine 

treatment also stimulates catecholamine synthesis. 

Materials and Methods 

Animals 

 Mice were handled in accordance with the guidelines set forth by the Institutional 

Animal Care and Use Committee (IACUC) at UNC-Chapel Hill.  C57BL/6J mice were 

obtained from The Jackson Library (Bar Harbor, ME). 

Preparation of Adrenal Medullary Chromaffin Cells 

 Murine chromaffin cells were prepared as previously described (Kolski-Andreaco et 

al., 2007) with some modifications.  A female mouse, 4-8 weeks old, was deeply 

anesthetized with ether, decapitated, and the adrenal glands rapidly removed into ice-cold, 

oxygenated Ca2+ and Mg2+-free Locke's buffer containing (in mM): 154 NaCl, 3.6 KCl, 5.6 

NaHCO3, 5.6 glucose, and 10 HEPES, pH adjusted to 7.2 with NaOH.  The medullae were 

isolated via gentle removal of cortical tissue and digested for 20 min at 37 oC in DMEM/F12 

with 25 U/mL papain.  The digestion media was replaced with a fresh aliquot, followed by a 

second 20 min digestion period.  Digested tissue was washed and triturated with pipette tips 

of decreasing bore size in 500 µL DMEM/F12 with 10 % fetal bovine serum and 2 % horse 

serum.  The resulting cell suspension was distributed evenly to 3 poly-L-lysine-coated (0.1 

mg/mL) 25 mm round glass coverslips.  After 15 min attachment plates were fed with 2 mL 

DMEM/F12 containing 100 U/mL penicillin, 0.1 mg/mL streptomycin, 50 U/mL nystatin, and 

40 µg/mL gentamicin.  Plates were maintained in a humidified, 5 % CO2 atmosphere at 37 

oC.  Experiments were carried out the following day. 
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Electrodes and Electrochemistry 

 Disk carbon-fiber microelectrodes were prepared using T650 (6 µm diameter, 

Amoco, Greenville, SC) or P55 carbon fibers (10 µm diameter, Amoco) as previously 

described (Kawagoe et al., 1993).  Fibers were aspirated into glass capillaries (A-M 

Systems, Sequim, WA), and a vertical pipette puller (Narishige, Long Island, NY) was used 

to seal the glass around the carbon fiber.  Carbon fibers were cut at the glass seal, which 

was then reinforced with epoxy (15 % m-phenylenediamine in Epon 828 resin (Miller-

Stephenson, Danbury, CT) heated to between 80 and 90 oC).  Electrodes were kept at room 

temperature overnight, and then the epoxy was cured via sequential heating at 100 and 150 

oC for 8 h and overnight, respectively.  Prior to use, electrodes were beveled at 45 degrees 

on a diamond dust-embedded polishing wheel (Sutter Instruments, Novato, CA) and soaked 

in isopropyl alcohol for at least 20 min (Bath et al., 2000). 

 Amperometric and FSCV recordings at single cells were made using a GeneClamp 

500B amplifier (Axon Instruments, Molecular Devices, Union City, CA).  For amperometry, 

electrodes were held at 0.650 V vs. a Ag/AgCl reference electrode (BASi, West Lafayette, 

IN), a potential sufficient to oxidize catecholamines.  The output current was analog filtered 

at 5 kHz with a low-pass Bessel filter and acquired at 20 kHz.  Post-collection, traces were 

further digitally filtered using a 400 Hz low-pass Bessel filter.  Data collection and filtering 

were controlled via the pClamp software provided with the amplifier.  For FSCV detection of 

catecholamines, the potential at the electrode was scanned from either -0.4 V or 0.1 V to 1.3 

V and back at 600 V/s, with the ramp repeated at 60 Hz.  Waveform application and current 

monitoring were controlled by locally written software (Tarheel CV, Labview). 

Single Cell Experiments 

 Glass coverslips containing plated cells were secured in a stainless steel coverslip 

holder and mounted on the stage of an inverted microscope (Eclipse TE300, Nikon 

Instruments, Melville, NY).  A temperature controller (Warner Instruments, Hamden, CT) 
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connected to the stage maintained cells at 37 oC throughout the experiments.  The 

extracellular recording buffer for amperometry contained (in mM): 145 NaCl, 3 KCl, 1.2 

MgCl2, 2.4 CaCl2, 1.2 NaH2PO4, 11 glucose, and 10 HEPES, pH adjusted to 7.4 with NaOH.  

For FSCV, the extracellular recording buffer contained (in mM): 140 NaCl, 4 KCl, 1 MgCl2, 2 

CaCl2, 10 glucose, and 20 Tris-HCl, pH adjusted to 7.4 with NaOH.  Exocytosis was 

triggered via pressure ejection of 60 mM K+ buffer from a stimulating pipette located 30 µm 

from the cell.  Stimulating pipettes with 6 to 10 µm tip diameters were fabricated using a 

horizontal pipette puller (Sutter Instruments, Novato, CA) and a microforge (Narishige, Long 

Island, NY).  Pressure ejection was controlled via a multi-channel Picospritzer (General 

Valve Corporation, Parker Hannifin, Fairfield, NJ).  Positioning of both the electrode and 

stimulating pipette was controlled using piezoelectric micromanipulators (Burleigh 

Instruments, Exfo, Plano, TX). 

Data Analysis 

 FSCV current versus time traces were extracted from the peak catecholamine 

oxidation potential.  Current was converted to concentration by post calibration in a flow 

injection system with a 10 µM bolus of NE and E.  Analysis of amperometric and FSCV 

traces was performed using MiniAnalysis software (Synaptosoft, Decatur, GA).  For 

inclusion, spike amplitude was required to be 5 times greater than the root-mean-squared 

current noise.  For frequency analysis, the first observed spike following stimulation marked 

the burst start time.  Burst end time was denoted by the first interspike interval > 1s.  

Individual spike characteristics such as quantal size (Q), amplitude, and t1/2 were averaged 

for an individual cell.  The cumulative mean for an experimental group was then determined 

using the cell averages (Colliver et al., 2000b).  All data are presented as means ± standard 

errors of the mean.  Statistical comparisons were performed using a Student's t-test. 
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HPLC Determination Cellular Catecholamine Content 

 Total content from all cells on one 25 mm coverslip was extracted via sonication in 

ice-cold 0.1 N perchloric acid spiked with 1 µM hydroquinone (HQ).  The extract was 

centrifuged at 6,000 rpm for 10 min, and the supernatant was removed and filtered with a 

0.2 µm syringe filter unit (Millex-LG).  The Lowry assay (Bio-Rad, Hercules, CA) was used to 

normalize extractions from different cell plates.  Injections (50 µL) were made onto a reverse 

phase column (C-18, 5 µm, 4.6 x 250 mm, Waters symmetry 300 or Waters Atlantis T3).  

For detection of catecholamines only, the mobile phase (prepared in HPLC grade water) 

contained 0.1 M citric acid, 0.1 mM EDTA, and 1 mM hexyl sodium sulfate, pH 3.5.  

Methanol was added as the organic modifier at a concentration of 10 % to shorten analyte 

elution times.  Catecholamines were detected with a thin-layer radial electrochemical 

flowcell (BASi, West Lafayette, IN), with the working electrode at 700 mV vs. a Ag/AgCl 

reference electrode (BASi, West Lafayette, IN).  For detection of catecholamines and trace 

amines, the mobile phased contained 7:3 0.02 M citric acid:0.02 M NaH2PO4, pH 3 (Pellati 

and Benvenuti, 2007).  The working electrode was held at 1.2 V.  The HQ (1 μM) was used 

as an internal standard for analyte quantification and recovery.  All analyte response ratios 

were taken with respect to the internal standard to account for differential electrode 

responses.  The determination of peak areas for HPLC measurements was performed 

using custom written Igor programs.  These programs were a gift from the Jorgenson lab at 

UNC-CH.  Peak area determination was performed using statistical moments regression 

theory (Hsieh and Jorgenson, 1996). 

Chemicals 

 All chemicals were purchased from Sigma Aldrich (St. Louis, MO) and used as 

received.  Aqueous solutions were prepared in doubly-distilled, deionized water.  Stock 

solutions of catecholamines and trace amines were prepared in 0.1 N HClO4 and diluted in 
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buffer on the day of each experiment.  All solutions were deoxygenated prior to use with at 

least 20 min of N2 bubbling. 

Results 

Vesicular Loading and Quantal Size at Chromaffin Cells 

 To examine the flexibility of vesicular Q, amperometric recordings of exocytosis were 

made at isolated murine chromaffin cells after treatments intended to increase cytosolic 

concentrations of NE and E.  Vesicular release was triggered with a single 3 s application of 

60 mM K+ from cells following a 1 h preincubation of plates at 37 oC with extracellular 

recording buffer or buffer containing 100 µM L-DOPA, NE, or E.  The average changes in 

amperometric spike characteristics are shown in Figure 6.1.  Treatment with L-DOPA 

produced no significant change (p > 0.05, Student's t-test) in any of the measures of 

exocytosis.  Events recorded at cells loaded with L-DOPA (n = 18) occurred at a frequency 

102 ± 12 % of that at untreated cells (n = 18).  Average Q was 97 ± 13 % and average t1/2 

was 100 ± 5 % of the unloaded levels.  Likewise, incubation with NE did not significantly 

alter (p > 0.05) vesicular release.  In cells loaded with NE (n = 15), the frequency of 

amperometric events was 92 ± 9 % of that in unloaded cells (n = 12), and the average Q 

and t1/2 for individual spikes were 100 ± 15 % and 97 ± 7 % of untreated levels, respectively.  

Finally, cells loaded with E (n = 14) also showed no significant changes (p > 0.05), with 

vesicular events having a frequency at 74 ± 12 %, average Q at 93 ± 16 %, and average t1/2 

at 107 ± 9 % of values from unloaded cells (n =10). 

  As L-DOPA, NE, and E loading had no affect on vesicular Q, HPLC with 

electrochemical detection was used to test if cytosolic concentrations of catecholamine were 

increasing.  Total intracellular NE and E content was determined from plated cells exposed 

to 50 µM or 100 µM L-DOPA for 1 h at 37 oC.  Consistent with the amperometric results, no 

changes were observed in catecholamine concentration after L-DOPA loading (Figure 6.2).  

Relative to untreated cells (n = 2 plates), NE and E levels were both at 101 % in cells  
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Figure 6.1.  Exocytosis following L-DOPA, NE, and E loading.  Vesicular release was 
measured by amperometry at murine chromaffin cells following a 3 s stimulation with 60 mM 
K+.  Release was measured at untreated cells and cells incubated for 1 h at 37 oC in 100 µM 
L-DOPA (n = 18), NE (n = 15), or E (n = 14).  The frequency of events and average spike 
quantal size and halfwidth after loading are shown as fractions of the unloaded values.  After 
loading, no significant differences (p > 0.05, Student’s t-test) were observed in any 
measures of exocytosis for all compounds.  
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Figure 6.2.  Cellular catecholamine content following L-DOPA loading.  HPLC with 
electrochemical detection was used to determine total NE and E content in untreated murine 
chromaffin cells and cells incubated for 1 h at 37 oC with 50 µM or 100 µM L-DOPA.  
Contents measured after loading are shown as a fraction of the unloaded values.  Data 
points are the averages from two 25 mm coverslips, one each from two separate 
preparations.  
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treated with 50 µM L-DOPA (n = 2 plates).  In cells loaded with 100 µM L-DOPA (n = 2 

plates), NE and E concentrations were at 98 % and 105 % of their values from unloaded 

cells, respectively. 

Trace Amines and Vesicular Content at Chromaffin Cells 

 As high concentrations of trace amine are proposed to displace vesicular 

catecholamines, FSCV was used to monitor exocytosis at individual chromaffin cells before 

and after a 20 min exposure at 37 oC to 1 mM tyramine, 1 mM octopamine, or 100 µM 

synephrine.  Vesicular release was initiated via a 0.5 s pressure ejection of 60 mM K+.  

Representative color plots and concentration versus time traces from cells incubated with 

the three trace amines are shown in Figures 6.3 through 6.5.  In all three cases, trace amine 

treatment produced a noticeable decrease in the number and/or size of detectable peaks.  

As a control, incubations were performed with normal extracellular recording buffer.  At 

these cells (n = 2), the number of peaks observed following treatment was reduced to 72 % 

of initial values, but peak size was unaffected at 104 %.  For cells exposed to tyramine (n = 

4), only 34 ± 12 % as many spikes were detected after incubation, with average amplitudes 

56 ± 16 % of pre-exposure values.  Similar decreases were seen for treatment with 

octopamine, where peak number and size were reduced to 39 ± 4 % and 61 ± 11 % of 

original levels, respectively.  Unlike tyramine and octopamine, synephrine incubation (n = 4 

cells) did not affect a greater reduction in observed spikes (63 ± 27 %) than control 

conditions, but did show a marked decrease in spike amplitude (41 ± 15 %).  Despite the 

obvious effects of trace amine treatment on the catecholamine content of vesicles, no 

evidence was observed for their replacement of catecholamines and subsequent vesicular 

release.  Examination of the cyclic voltammograms (CVs) recorded during the concentration 

spikes following incubation revealed no measurable currents at the characteristic trace 

amine oxidation potential of 1.0 V. 
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Figure 6.3.  Exocytosis following tyramine treatment.  FSCV was used to measure the K+-
stimulated vesicular release from a chromaffin cell prior to (A) and after (B) a 20 min 
incubation with 1 mM tyramine.  Color plots, concentration versus time traces, and 
representative cyclic voltammograms (from peaks marked with an asterisk) are shown for 
both conditions. Concentrations extracted from peak catecholamine oxidation current.  
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Figure 6.4.  Exocytosis following octopamine treatment.  FSCV was used to measure the 
K+-stimulated vesicular release from a chromaffin cell prior to (A) and after (B) a 20 min 
incubation with 1 mM octopamine.  Color plots, concentration versus time traces, and 
representative cyclic voltammograms (from peaks marked with an asterisk) are shown for 
both conditions. Concentrations extracted from peak catecholamine oxidation current.  
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Figure 6.5.  Exocytosis following synephrine treatment.  FSCV was used to measure the K+-
stimulated vesicular release from a chromaffin cell prior to (A) and after (B) a 20 min 
incubation with 100 µM synephrine.  Color plots, concentration versus time traces, and 
representative cyclic voltammograms (from peaks marked with an asterisk) are shown for 
both conditions.   Concentrations extracted from peak catecholamine oxidation current.  
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 To further investigate the fate of both the newly introduced trace amine and the 

displaced vesicular catecholamine, HPLC with electrochemical detection was used to probe 

any changes in non-vesicular stores.  Total intracellular catecholamine and trace amine 

contents were determined from plated cells exposed to 1 mM tyramine or octopamine for 30 

min at 37 oC.  Surprisingly, both treatments resulted in a large enhancement of cellular 

catecholamine concentration (Figure 6.6).  In cells incubated with tyramine (n = 2 plates), 

NE and E levels were 197 % and 161 %, respectively, of their values in untreated cells (n = 

2 plates).  Octopamine exposure (n = 2 plates) produced a comparable increase, with 

concentrations of NE raised to 173 % of original levels and E to 154 %.  In both cases, the 

growth in catecholamine stores was accompanied by only modest accumulation of trace 

amine.  Following tyramine incubation, tyramine levels were less than 6 % of the total 

catecholamine concentration.  Octopamine was also present, but at less than 1 %.  After 

octopamine treatment, cellular octopamine concentration was 1 % of the combined NE and 

E values.  No other trace amines were detected. 

Discussion 

 Incubation of isolated midbrain dopaminergic neurons, PC12 cells, and bovine 

chromaffin cells with L-DOPA has been shown to result in significant increases in Q (Pothos 

et al., 1996; Pothos et al., 1998; Colliver et al., 2000a; Pothos et al., 2002).  Through 

application of exogenous L-DOPA, the rate-limiting step in catecholamine synthesis is 

bypassed and the driving force for vesicular packaging by VMAT is increased due to the 

resulting enhancement of cytosolic catecholamine concentration.  This property of L-DOPA 

was even exploited in Chapter 2 to raise cellular dopamine levels at acutely dissociated 

midbrain neurons and facilitate the observation of exocytosis.  Therefore, it was rather 

surprising that L-DOPA treatment of mouse chromaffin cells produced no significant change 

in Q as measured by amperometry (Figure 6.1).  HPLC measurements of total cellular 

catecholamine content were also unaffected by L-DOPA treatment (Figure 6.2), confirming  
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Figure 6.6.  Cellular catecholamine content following trace amine treatment.  HPLC with 
electrochemical detection was used to determine total NE and E content in untreated murine 
chromaffin cells and cells incubated for 30 min at 37 oC with 1 mM tyramine or octopamine.  
Contents measured post-incubation are shown as a fraction of the unloaded values.  Data 
points are the averages from two 25 mm coverslips, one each from two separate 
preparations.  
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that neither the vesicular or cytosolic pools of catecholamine had been augmented.  Moving 

further down the biosynthetic pathway, incubations with the endogenously-released 

catecholamines NE and E also proved ineffective at increasing Q (Figure 6.1).  As a whole, 

the results from these loading experiments indicate that in murine chromaffin cells the 

vesicular pool of catecholamine is filled to a maximal capacity. 

 A previous report has shown L-DOPA-induced increases in Q at bovine chromaffin 

cells (Pothos et al., 2002), suggesting the results obtained here could be due to species-

specific regulation of catecholamine synthesis and packaging.  However, the vesicular 

events measured after L-DOPA treatment in this earlier study are slightly smaller than 

events observed in this laboratory at untreated bovine and mouse chromaffin cells.  Thus, 

it's proposed that the previous work was actually measuring rescue of an artificially-induced 

deficit and that chromaffin cell vesicles, unlike those from catecholamine-releasing neurons 

or PC12 cells, are largely insensitive to L-DOPA loading in the native state.  Recent 

experiments using intracellular patch electrochemistry to directly measure cytosolic 

catecholamine concentrations in chromaffin cells support this hypothesis (Mosharov et al., 

2003).  While resting cytosolic catecholamine concentrations were increased to roughly two-

fold during a 1 h exposure to 100 µM L-DOPA, they returned to control levels within 10 min 

of L-DOPA withdrawal.  This time course is comparable to the length of the washing and 

electrode placement steps used in the present study after the incubation step.  Given the 

current results that both vesicular and cytosolic levels of catecholamine are at control levels 

after roughly 10 min of withdrawal, the L-DOPA-induced rise in cytosolic catecholamine 

must either fail to produce a corresponding increase in Q or produce a temporary increase 

in vesicular catecholamine levels that dissipates in unison with those in the cytosol.  

Research showing that loaded dopamine in PC12 cells is preferentially located to the clear 

halo portion of the vesicle (Sombers et al., 2005), largely absent in chromaffin cell vesicles, 

indicates the former as a distinct possibility.  
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 Although chromaffin cell vesicles proved resistant to manipulations intended to 

increase Q, treatments expected to disrupt vesicular stores produced mostly anticipated 

results.  At high concentrations, the trace amines are thought to mimic the actions of 

amphetamine and redistribute catecholamines from the vesicular compartment to the cytosol 

(Berry, 2004; Burchett and Hicks, 2006).  Accordingly, exposure of chromaffin cells to 1 mM 

tyramine, 1 mM octopamine, or 100 µM synephrine noticeably reduced the number and 

amplitude of vesicular events measured by FSCV during K+-stimulated exocytosis (Figure 

6.3 and Table 6.1).  Unlike amperometry, the area under the spikes observed by FSCV is 

not directly related to the total number of molecules detected.  However, as the extracellular 

volume between the cell and the electrode is mostly confined, the peak concentration 

(amplitude) reached following a vesicular release event can be used as a suitable indicator 

of Q.  Thus, similar to amphetamine treatment (Sulzer et al., 1995; Mundorf et al., 1999), 

incubation with high concentrations of trace amine decreases Q at chromaffin cells. 

 Prior to trace amine exposure, every single CV recorded during vesicular release 

events displayed the characteristic shape of catecholamine oxidation and reduction (Figure 

6.3).  Following exposure, the oxidative current at 1.0 V indicative of trace amine presence 

was not distinguishable in any of the CVs (Figure 6.3).  The ability of FSCV to 

simultaneously measure trace amine-induced disruption of vesicular catecholamine stores 

despite no vesicular release of the trace amines themselves provides strong evidence that 

these molecules don't accumulate sufficiently to function as false transmitters.  Although the 

trace amines are transported by VMAT with an affinity and velocity comparable to the 

catecholamines (Romanenko et al., 1998; Partilla et al., 2006), the lack of a second ring 

hydroxyl (Figure 5.1) renders them more lipophilic.  This increased lipophilicity has been 

demonstrated to result in the permeation of tyramine in its unprotonated form across the 

chromaffin vesicle membrane (Johnson et al., 1982; Knoth et al., 1984).  The current results 

would then suggest that high concentrations of trace amine promote depletion of vesicular 
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stores through competitive inhibition of catecholamine transport at VMAT.  In the presence 

of extracellular trace amine, the transport and permeation processes most likely reach a 

steady state.  Upon removal of extracellular trace amine, the rate of active transport is 

rapidly diminished and permeation of trace amine from the vesicle interior prohibits the 

observation of these compounds in vesicles undergoing exocytosis. 

 HPLC measurements of total cellular catecholamine content were used to gain 

greater insight into the redistribution of vesicular stores triggered by trace amine treatment.  

Following incubations of plated cells with tyramine and octopamine, only very low levels of 

the trace amines were detected.  This result is consistent with both the lipid permeability 

discussed above and the greater metabolic turnover of trace amines relative to 

catecholamines (Durden et al., 1988).  Importantly, the presence of measurable octopamine 

levels following tyramine exposure confirms that the trace amines are gaining access to the 

vesicle interior, as the enzyme that catalyzes this conversion, dopamine β-hydroxylase, is 

located on the inside of the vesicular membrane.  As for the fate of the displaced 

catecholamines, HPLC showed substantial increases in total cellular catecholamine content 

(Figure 6.4).  This finding is rather counterintuitive.  Cytosolic regulation of catecholamine 

concentration is tightly controlled through rapid metabolism via monoamine oxidase (MAO) 

(Mosharov et al., 2003).  That total cellular content is greatly enhanced indicates trace 

amine treatment is not only preventing the metabolism of catecholamine, but actively 

stimulating synthesis.  Tyramine has demonstrated a higher affinity than NE and E for MAO 

in chromaffin cells (Youdim et al., 1986), so the lack of catecholamine degradation could be 

attributed to competitive inhibition by the trace amines.  The increased synthesis is a novel 

finding, however, and less easily explained.  Amphetamine has been shown to stimulate 

dopamine synthesis by TH (Kuczenski, 1975; Larsen et al., 2002).  As high trace amine 

concentrations mimic several of amphetamine's effects on vesicular catecholamine stores, it 

is possible they might also share the ability to activate TH.  Alternatively, liver microsomes 
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have been shown to catalyze the synthesis of catecholamines from the direct hydroxylation 

of the corresponding trace amines (Axelrod, 1963; Hiroi et al., 1998).  If the cytochrome 

P450 isoforms responsible for this reaction are expressed in chromaffin cells, this pathway 

could also be an explanation for the measured increase in cellular catecholamine content.  

Future investigations will certainly be necessary to shed more light on this exciting new role 

for trace amine modulation of catecholamine transmission.   
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Appendix 1 
 

Exploring the Origin of Post-Spike Feet 
 
 

Introduction 

 The final steps in vesicular exocytosis are the Ca2+-triggered fusion of secretory 

vesicles with the cell plasma membrane and the extrusion of the packaged chemical 

messengers into the extracellular space.  Mediating this fusion are SNARE proteins on the 

vesicle and plasma membranes, whose interactions provide the necessary driving force for 

destabilization and subsequent mixing of the two phospholipid bilayers (Hanson et al., 1997; 

Weber et al., 1998).  The initial mixing of the two membranes generates a fusion pore, a thin 

channel connecting the vesicle interior and the cell exterior.  Expansion of the fusion pore 

leads to a rapid flux of transmitter into the extracellular space, resulting in the sharp current 

spikes generally observed during amperometric studies of exocytosis (Figures 1.5 and 1.6).  

Occasionally, amperometric events will also exhibit pre-spike features termed feet, resulting 

from a slower efflux or leak of transmitter through the fusion pore prior to expansion (Chow 

et al., 1992).  In addition, work in this lab has noted the previously undocumented 

occurrence of post-spike features that closely resemble pre-spike feet (Figure A1.1) 

(Haynes, unpublished results).  These post-spike feet are hypothesized to result from the 

fast endocytosis of vesicles.  In a simple vesicle fusion event, the entire transmitter content 

is released and the vesicle membrane completely incorporates into the plasma membrane.  

Vesicles then recycle via the slow endocytosis pathway through formation of clathrin-coated 

pits (Smith et al., 2008).  In contrast, fast endocytosis recycles vesicles via reclosure of the 

expanded fusion pore, resulting in intact vesicles that may or may not undock from the 



 

 

 

Figure A1.1.  Examples of pre- and post-spike feet.  Individual vesicular events recorded 
with amperometry at bovine chromaffin cells are shown to demonstrate the appearance of 
pre-spike feet (left trace) and post-spike feet (right trace).  Pre-spike feet are observed as a 
result of the slow flux of chemical messengers through a narrow fusion pore intermediate 
prior to expansion.  Post-spike feet are hypothesized to result from a similar intermediate 
formed during the fast endocytosis pathway.  
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plasma membrane (Harata et al., 2006).  The natural assumption is that resealing the 

vesicle membrane would produce a second fusion pore intermediate through which the 

slower efflux or leak of transmitter could be detected by amperometry. 

 This appendix describes a single pharmacological attempt at understanding the 

origin of the observed post-spike feet.  Amperometric recordings of exocytosis were made at 

isolated bovine chromaffin cells exposed to wortmannin, a furanosteroid produced by the 

fungus Penicillium funiculosum.  Wortmannin is a potent inhibitor of phosphatidylinositol 3-

kinase (PI3K) (Arcaro and Wymann, 1993), and has been demonstrated to selectively inhibit 

the slow endocytosis of reserve pool (RP) vesicles (Richards et al., 2004).  This inhibition is 

tentatively attributed to disruption of clathrin-coat-dependent mechanisms, which are 

regulated by PI molecules (Cremona and De Camilli, 2001).  Treatment of chromaffin cells 

with wortmannin produced no measurable change in RP exocytosis.  The occurrence of 

post-spike feet was also unchanged, suggesting these features indeed result from the fast 

endocytosis pathway. 

Materials and Methods 

Preparation of Bovine Adrenal Medullary Chromaffin Cells 

 Bovine chromaffin cells were prepared from adrenal glands obtained at a local 

abattoir as previously described (Wilson and Viveros, 1981; Leszczyszyn et al., 1990). 

Chromaffin cells were isolated from the adrenal medulla via digestion with collagenase 

(Worthington Biochemical Corporation, Lakewood, NJ), followed by density gradient 

centrifugation in Renografin (Bracco Diagnostics, Princeton, NJ).  The resulting cell 

suspension was plated at a density of 300,000 cells/25 mm round glass coverslip.  Plates 

were maintained in a humidified, 5 % CO2 atmosphere at 37 oC, and used for experiments 

between 3 and 7 days post-plating. 
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Electrodes and Electrochemistry 

 Disk carbon-fiber microelectrodes were prepared using T650 carbon fibers (6 µm 

diameter, Amoco, Greenville, SC) as previously described (Kawagoe et al., 1993).  Fibers 

were aspirated into glass capillaries (A-M Systems, Sequim, WA), and a vertical pipette 

puller (Narishige, Long Island, NY) was used to seal the glass around the carbon fiber.  The 

carbon fibers were cut at the glass seal, which was then reinforced with epoxy (15 % m-

phenylenediamine in Epon 828 resin (Miller-Stephenson, Danbury, CT) heated to between 

80 and 90 oC).  Electrodes were kept at room temperature overnight, and then the epoxy 

was cured via sequential heating at 100 and 150 oC for 8 h and overnight, respectively.  

Prior to use, electrodes were beveled at 45 degrees on a diamond dust-embedded polishing 

wheel (Sutter Instruments, Novato, CA) and soaked in isopropyl alcohol for at least 20 min 

(Bath et al., 2000). 

 Amperometric recordings at single cells were made using an Axopatch 200B 

amplifier (Axon Instruments, Molecular Devices, Union City, CA).  Electrodes were held at 

0.650 V vs. a Ag/AgCl reference electrode (BASi, West Lafayette, IN), a potential sufficient 

to oxidize catecholamines.  The output current was analog filtered at 5 kHz with a low-pass 

Bessel filter and acquired at 20 kHz.  Post-collection, traces were further digitally filtered 

using a 250 Hz low-pass Bessel filter.  Data collection and filtering were controlled by locally 

written software (Tarheel CV, Labview). 

Single Cell Experiments 

 Glass coverslips containing plated cells were secured in a stainless steel coverslip 

holder and mounted on the stage of an inverted microscope (Eclipse TE300, Nikon 

Instruments, Melville, NY).  A temperature controller (Warner Instruments, Hamden, CT) 

connected to the stage maintained cells at 37 oC throughout the experiments.  The 

extracellular recording buffer contained (in mM): 145 NaCl, 3 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 

NaH2PO4, 11 glucose, and 10 HEPES, pH adjusted to 7.4 with NaOH.  Exocytosis was 
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triggered via a single 5 s pressure ejection of 5 mM Ba2+ buffer from a stimulating pipette 

located 30 µm from the cell.  Stimulating pipettes with 6 to 10 µm tip diameters were 

fabricated using a horizontal pipette puller (Sutter Instruments, Novato, CA) and a 

microforge (Narishige, Long Island, NY).  Pressure ejection was controlled via a multi-

channel Picospritzer (General Valve Corporation, Parker Hannifin, Fairfield, NJ).  Positioning 

of both the electrode and stimulating pipette was controlled using piezoelectric 

micromanipulators (Burleigh Instruments, Exfo, Plano, TX). 

Data Analysis 

 Amperometric spike analysis was performed using MiniAnalysis software 

(Synaptosoft, Decatur, GA).  For inclusion, spike amplitude was required to be 5 times 

greater than the root-mean-squared current noise.  Overlapping peaks were included in 

frequency and foot analysis, but excluded from individual spike analysis.  Visual examination 

of the peaks was used to determine presence of post-spike feet.  Individual amperometric 

spike characteristics such as quantal size (Q) and t1/2 were averaged for an individual cell.  

The cumulative mean for an experimental group was then determined using the cell 

averages (Colliver et al., 2000).  All data are presented as means ± standard errors of the 

mean.  Statistical comparisons were performed using a Student's t-test. 

Results 

 To investigate potential wortmannin-induced changes in post-spike foot behavior, 

amperometry was used to measure vesicular release at isolated bovine chromaffin cells.  As 

wortmannin acts selectively on RP endocytosis (Richards et al., 2004), stimulated 

exocytosis of the RP was isolated from that of the readily releasable pool (RRP) using a 5 s 

application of 5 mM Ba2+ (Seward et al., 1996; Duncan et al., 2003).  Figure A1.2 shows 

representative amperometric traces obtained at control cells (n =19) and cells incubated with 

1 µM wortmannin for 15 min prior to recording (n =25).  Wortmannin treatment produced no 

significant changes (p > 0.05, Student's t-test) in any of the baseline measures of RP  

148 
 



 

 

 

 

Figure A1.2.  Vesicular release after wortmannin treatment.  Representative amperometric 
traces measured in response to a 5 s stimulation with 5 mM Ba2+ at bovine chromaffin cells 
following a 15 min incubation in normal recording buffer (A) or 1 µM wortmannin (B).
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Figure A1.3.  Amperometric spike characteristics following wortmannin treatment.  Bar 
graphs show the average frequency of vesicular events and individual spike characteristics, 
including halfwidth (t1/2, in ms), quantal size (Q, in amol of catecholamine), and % of events 
with a post-spike foot.  No significant differences (p > 0.05, Student’s t-test) were observed 
between control cells (n = 19) and cells treated with 1 µM wortmannin (n = 25) in any 
measures of exocytosis.  
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exocytosis (Figure A1.3).  In control cells, individual vesicular events occurred at a 

frequency of 1.6 ± 0.2 Hz, and the average amperometric spike had a t1/2 of 29 ± 2 ms and 

Q of 2.5 ± 0.3 amol of catecholamine.  Similarly, events at wortmannin treated cells occurred 

at a frequency of 2.3 ± 0.3 Hz with an average t1/2 of 26 ± 2 ms and Q of 3.5 ± 0.5 amol of 

catecholamine.  Most importantly, wortmannin incubation didn't alter the prevalence of post-

spike feet, with 2.1 ± 0.2 % and 2.9 ± 0.7 % of exocytotic spikes exhibiting these features in 

control and treated cells, respectively (Figure A1.3). 

Discussion 

 The fungal metabolite wortmannin, an inhibitor of PI3K, has been shown to 

selectively halt the slow endocytosis of RP vesicles (Richards et al., 2004).  Amperometric 

measurements at isolated chromaffin cells were conducted to determine if wortmannin 

treatment resulted in changes in the exocytosis of RP vesicles, specifically the occurrence of 

post-spike feet believed to represent fusion pore behavior solely during fast endocytosis 

pathways.  To isolate RP exocytosis from that involving both the RRP and RP, release was 

stimulated using Ba2+ as a secretagogue (Seward et al., 1996; Duncan et al., 2003).  As has 

been reported previously (Heldman et al., 1989; von Ruden et al., 1993), Ba2+-induced 

vesicular release is slower and longer lasting relative to K+-stimulated release (compare 

Figure A1.2 to Figure 4.2).  A 15 min incubation with 1 µM wortmannin did not significantly 

alter the prevalence of post-spike feet (Figure A1.3), supporting the hypothesis that these 

features arise when vesicles are recycled via a fast endocytosis pathway.  Inhibition of the 

slow endocytosis pathway produced no side effects on vesicular exocytosis, as wortmannin-

treated cells showed no changes in the frequency, Q, or t1/2 of Ba2+-stimulated events 

(Figure A1.3).  While the continued presence of post-spike feet following wortmannin 

incubation supports a fast endocytosis origin, it was initially surprising that no measures of 

exocytosis were affected.  By shutting down the slow pathway, it was assumed that more 

vesicles would undergo fast recycling and the frequency of events and/or the prevalence of 
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post-spike feet would increase.  That no changes were measured suggests that vesicle 

recycling via the slow endocytosis pathway is not a major component of Ba2+-induced RP 

exocytosis.  Future experiments with multiple stimulations could address the extent and time 

course to which slow endocytosis contributes to the release of RP vesicles.  

152 
 



References 

Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase 
inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. 
Biochem J 296 ( Pt 2):297-301. 

Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM (2000) Subsecond 
adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal Chem 
72:5994-6002. 

Chow RH, von Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical 
monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60-63. 

Colliver TL, Hess EJ, Pothos EN, Sulzer D, Ewing AG (2000) Quantitative and statistical 
analysis of the shape of amperometric spikes recorded from two populations of cells. 
J Neurochem 74:1086-1097. 

Cremona O, De Camilli P (2001) Phosphoinositides in membrane traffic at the synapse. J 
Cell Sci 114:1041-1052. 

Duncan RR, Greaves J, Wiegand UK, Matskevich I, Bodammer G, Apps DK, Shipston MJ, 
Chow RH (2003) Functional and spatial segregation of secretory vesicle pools 
according to vesicle age. Nature 422:176-180. 

Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE (1997) Structure and conformational 
changes in NSF and its membrane receptor complexes visualized by quick-
freeze/deep-etch electron microscopy. Cell 90:523-535. 

Harata NC, Aravanis AM, Tsien RW (2006) Kiss-and-run and full-collapse fusion as modes 
of exo-endocytosis in neurosecretion. J Neurochem 97:1546-1570. 

Heldman E, Levine M, Raveh L, Pollard HB (1989) Barium ions enter chromaffin cells via 
voltage-dependent calcium channels and induce secretion by a mechanism 
independent of calcium. J Biol Chem 264:7914-7920. 

Kawagoe KT, Zimmerman JB, Wightman RM (1993) Principles of voltammetry and 
microelectrode surface states. J Neurosci Methods 48:225-240. 

Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ, Jr., Near JA, Wightman RM 
(1990) Nicotinic receptor-mediated catecholamine secretion from individual 
chromaffin cells. Chemical evidence for exocytosis. J Biol Chem 265:14736-14737. 

Richards DA, Rizzoli SO, Betz WJ (2004) Effects of wortmannin and latrunculin A on slow 
endocytosis at the frog neuromuscular junction. J Physiol 557:77-91. 

Seward EP, Chernevskaya NI, Nowycky MC (1996) Ba2+ ions evoke two kinetically distinct 
patterns of exocytosis in chromaffin cells, but not in neurohypophysial nerve 
terminals. J Neurosci 16:1370-1379. 

Smith SM, Renden R, von Gersdorff H (2008) Synaptic vesicle endocytosis: fast and slow 
modes of membrane retrieval. Trends Neurosci 31:559-568. 

153 
 



154 
 

von Ruden L, Garcia AG, Lopez MG (1993) The mechanism of Ba(2+)-induced exocytosis 
from single chromaffin cells. FEBS Lett 336:48-52. 

Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, 
Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 
92:759-772. 

Wilson SP, Viveros OH (1981) Primary culture of adrenal medullary chromaffin cells in a 
chemically defined medium. Exp Cell Res 133:159-169. 

 
 



Appendix 2 
 

Pressure Ejection, Extracellular Calcium, and Exocytosis 
 
 

Introduction 

 The ultimate trigger for synaptic vesicle exocytosis is the influx of Ca2+ ions through 

voltage-gated calcium channels (VGCCs) (Llinas et al., 1992; Borst and Sakmann, 1996).  

These channels open in response to depolarization of the plasma membrane as an action 

potential invades the synapse.  Neurotransmitter release is dependent on the appropriate 

timing of the Ca2+ influx relative to the action potential and proportional to the resulting 

increase in [Ca2+]i.  This Ca2+-based mechanism of stimulus-secretion coupling is conserved 

in most excitable cells, including chromaffin cells (Douglas and Rubin, 1961; Holz et al., 

1982).  The development of fluorescent Ca2+ indicators (Grynkiewicz et al., 1985) provided 

researchers the necessary tools to monitor this coupling in real time (Finnegan and 

Wightman, 1995).  In these experiments, Ca2+ influx is generally triggered via pressure 

ejection of depolarizing agents.  Ideally, these agents are dissolved in the extracellular 

recording buffer to ensure the secretagogue effect is distinct from any other changes in the 

local cell environment.  For experiments where such controls aren't possible, it is necessary 

to understand the extracellular Ca2+ ion concentration dynamics that result from mixing of 

the stimulus volume with the stationary recording buffer. 

 To examine the interplay between extracellular Ca2+ levels, pressure ejection-

mediated alterations in the cellular environment, and exocytosis-triggering Ca2+ influx, the 

fluorescent dye fura-2 was used to record changes in [Ca2+]i at bovine chromaffin cells 

following pressure ejection of a high [K+] secretagogue.  To isolate the role of Ca2+ ion 



dynamics, the only variable in these experiments was the presence or absence of Ca2+ in 

the recording buffer and the stim.  The presence of Ca2+ in the stim solution was sufficient to 

support K+-induced Ca2+ influx, suggesting a significant contribution of the stim to the local 

extracellular ion concentrations sensed by cells during pressure ejection.  However, the 

significantly diminished amplitude of this Ca2+ transient combined with the normal Ca2+ 

responses observed with Ca2+-free stims indicate that dilution of secretagogue ions by the 

extracellular buffer occurs on a timescale relevant to VGCC activation and exocytosis. 

Materials and Methods 

Preparation of Bovine Adrenal Medullary Chromaffin Cells 

 Bovine chromaffin cells were prepared from adrenal glands obtained at a local 

abattoir as previously described (Wilson and Viveros, 1981; Leszczyszyn et al., 1990). 

Chromaffin cells were isolated from the adrenal medulla via digestion with collagenase 

(Worthington Biochemical Corporation, Lakewood, NJ), followed by density gradient 

centrifugation in Renografin (Bracco Diagnostics, Princeton, NJ).  The resulting cell 

suspension was plated at a density of 300,000 cells/25 mm round glass coverslip.  Plates 

were maintained in a humidified, 5 % CO2 atmosphere at 37 oC, and used for experiments 

between 3 and 7 days post-plating. 

Fluorescent Measurements of Intracellular Ca2+ 

 Intracellular Ca2+ dynamics were monitored using the ratiometric dye fura-2 

(Invitrogen, Carlsbad, CA).  Plated cells were incubated for 20 min at 25 oC in extracellular 

recording buffer with 1 µg/mL esterified fura dye and 0.1 % (w/v) BSA, washed twice with 

buffer without dye, and then incubated for 20 min at 25 oC in buffer without dye for 

deesterification.  Ca2+ bound and unbound dye were excited at 340 and 380 nm, 

respectively, using a computer-controlled high speed wavelength switcher (Sutter 

Instruments, Novato, CA).  Emission was monitored at 510 nm using a CCD camera and 

acquisition software (Empix Imaging, Mississauga, ON, Canada). 
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Single Cell Experiments 

 Glass coverslips containing plated cells were secured in a stainless steel coverslip 

holder and mounted on the stage of an inverted microscope (Eclipse TE300, Nikon 

Instruments, Melville, NY).  A temperature controller (Warner Instruments, Hamden, CT) 

connected to the stage maintained cells at 37 oC throughout the experiments.  The 

extracellular recording buffer contained (in mM): 145 NaCl, 3 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 

NaH2PO4, 11 glucose, and 10 HEPES, pH adjusted to 7.4 with NaOH.  Ca2+ influx was 

triggered via a single 3 s pressure ejection of 60 mM K+ buffer from a stimulating pipette 

located 30 µm from the cell.  Stimulating pipettes with 6 to 10 µm tip diameters were 

fabricated using a horizontal pipette puller (Sutter Instruments, Novato, CA) and a 

microforge (Narishige, Long Island, NY).  Pressure ejection was controlled via a multi-

channel Picospritzer (General Valve Corporation, Parker Hannifin, Fairfield, NJ).  Positioning 

of both the electrode and stimulating pipette was controlled using piezoelectric 

micromanipulators (Burleigh Instruments, Exfo, Plano, TX). 

Results 

 The ratiometric dye fura-2 was used to measure changes in [Ca2+]i at isolated bovine 

chromaffin cells following depolarization of the plasma membrane with a 3 s pressure 

ejection of 60 mM K+.  Three experimental conditions were tested.  Serving as the control, 

Ca2+ influx was recorded in cells (n =19) where both the extracellular buffer and the stim 

solution contained physiological Ca2+ levels (2.4 mM).  Additionally, responses were 

monitored when Ca2+ was completely removed from the extracellular buffer (n = 14 cells), 

the stim solution (n = 5 cells), or both (n = 5 cells).  As expected, depolarization of cells in 

the absence of both stim and buffer Ca2+ resulted in no increase in [Ca2+]i as measured by 

Fura-2 (data not shown).  Representative rises in [Ca2+]i for the other three conditions are 

shown in Figure A2.1.  Several key properties of the intracellular Ca2+ transients are 

summarized in Figure A2.2.  Under control conditions, the K+-triggered influx raised [Ca2+]i  
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Figure A2.1.  Effect of extracellular Ca2+ on intracellular Ca2+ responses.  Fura-2 was used 
to monitor increases in [Ca2+]i at bovine chromaffin cells after 3 s pressure ejection of 60 mM 
K+.  Representative traces from three different extracellular Ca2+ conditions are shown: Ca2+ 
in both the buffer and stim solution, in the stim solution only, or in the buffer only.  
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Figure A2.2. Intracellular Ca2+ dynamics depend on buffer Ca2+.  Graphs show the average 
amplitude (in µM), area (in arbitrary units), and halfwidth (t1/2, in s) of the increase in [Ca2+]i 
at isolated bovine chromaffin cells following a 3 s stimulation with 60 mM K+.  Experiments 
were performed with Ca2+ present in both the buffer and stim solutions (n = 19 cells), stim 
only (n = 14 cells), or buffer only (n = 5 cells).  No significant difference (p > 0.5 for all 
measures, one-way ANOVA) was observed upon removal of Ca2+ from the stim solution.  
Removal of Ca2+ from the extracellular buffer resulted in a significant decrease (p < 0.01) in 
the amplitude of the  [Ca2+]i signal, but  did not affect (p > 0.05) the overall size or time 
course.  
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by an average of 1.50 ± 0.10 µM.  Removal of Ca2+ from the extracellular buffer significantly 

depressed (p < 0.01, one-way ANOVA) this amplitude to 0.92 ± 0.12 µM, while no significant 

difference (p > 0.05) was observed upon removal of Ca2+ from the stim solution (1.42 ± 0.19 

µM).  However, the total area and t1/2 of the intracellular Ca2+ responses were unchanged (p 

> 0.05) relative to control values at cells were extracellular Ca2+ was present only in the 

buffer or stim solution. 

Discussion 

 The influx of extracellular Ca2+ ions through VGCCs on the plasma membrane is 

necessary for generation of the rapid increases in [Ca2+]i that trigger exocytosis.  

Demonstrating this, depolarization of chromaffin cells with 60 mM K+ produced no rise in 

[Ca2+]i, as measured by fura-2, when Ca2+ was removed from both the extracellular 

recording buffer and the stim solution.  Removal of Ca2+ from only one of these solutions 

produced more subtle effects (Figures A2.1 and A2.2).  The intracellular Ca2+ transients 

observed when Ca2+ was present only in the extracellular buffer were statistically 

indistinguishable from those in control conditions, suggesting that the small stim volume 

minimally impacts the local cell environment.  However, with the exception of a decrease in 

amplitude, the responses at cells where Ca2+ was present only in the stim solution were also 

unchanged from control conditions.  These results would indicate that the effective 

extracellular [Ca2+] at a cell during pressure ejection is largely due to the [Ca2+] in the stim 

solution, not the recording buffer.  Both data can be explained by a model of pressure 

ejection in which the effects of rapid mixing of the two solutions are equal or greater to 

volume displacement.  Thus, the Ca2+-containing stim is rapidly diluted by the Ca2+-free 

buffer, resulting in a lower effective extracellular [Ca2+] at the cell, a smaller driving force for 

Ca2+ influx, and smaller rise in [Ca2+]i.  Similarly, the absence of Ca2+ from the stim is 

overwhelmed by the larger volume of Ca2+-containing buffer, resulting in no change in the 

effective extracellular [Ca2+] sensed by the cell.  This initial mixing must occur on a timescale 
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comparable to the depolarization-induced opening of VGCCs, in the ms regime.  Future 

experiments in which the [Ca2+] in the recording buffer and stim, duration of pressure 

ejection, and distance of the stimulating pipette from the cell are varied would provide 

valuable insight into the kinetics of extracellular ion equilibration occurring at the local cell 

environment.  Additionally, simultaneous detection of [Ca2+]i with fluorescent dyes and 

exocytosis with amperometry could be used to demonstrate how changes in the intracellular 

Ca2+ transient impact vesicular release. 
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