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ABSTRACT 

 
Rachael Marie Liesman: Impact of the Non-structural 2 Protein on  

Respiratory Syncytial Virus Pathogenesis 
(Under the direction of Raymond Pickles) 

 
 

Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in 

young children. The factors contributing to increased propensity of RSV-induced distal 

airway disease compared to other commonly encountered respiratory viruses are unknown. 

Using a model of the well-differentiated airway epithelium, we characterized the 

consequences of RSV infection of ciliated epithelial cells, the primary cellular targets of RSV 

infection in vivo. These studies show that RSV infection results in cell rounding and 

degradation of the cilia apparatus, followed by active extrusion of infected cells from the 

epithelium, eventually resulting in a decline in the ability of the airway epithelium to perform 

mucociliary transport. Using recombinant respiratory viruses, we attribute these 

consequences to the RSV non-structural 2 (NS2) protein. Using parainfluenza virus 3 (PIV3) 

to deliver and express RSV NS2 in the ciliated epithelium of hamster airways, we assessed 

the impact of NS2 on respiratory viral pathogenesis. These studies identified the RSV NS2 

protein as a unique viral genetic determinant for RSV-induced pathogenesis, resulting in two 

distinct effects in vivo. First, NS2 promoted epithelial cell extrusion and accelerated 

clearance of whole lung virus titers, presumably by clearing virus-infected cells from the 

airway mucosa. Second, epithelial cell extrusion promoted by NS2 resulted in accumulation 

of detached, pleomorphic epithelial cells in the narrow diameter bronchiolar airway lumen, 

resulting in acute distal airway obstruction. Finally, we identify a role for NS2 in mediating 
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early and robust neutrophilic influx, which may contribute to distal airway obstruction and 

constriction. These studies reveal a novel consequence of RSV infection of the airway 

epithelium, where NS2-promoted epithelial cell shedding and morphologic changes 

accelerate viral clearance but also cause acute distal airway obstruction. NS2-promoted 

epithelial cell shedding in the distal airways and the resulting obstruction of these airways 

represent a mechanism that may explain why RSV is the dominant virus causing 

bronchiolitis in young children. We identify for the first time NS2 as a pathogenesis factor for 

increasing the likelihood for small airway obstruction during RSV infection. 
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CHAPTER I 

INTRODUCTION 

 

Epidemiology and Disease Burden 

Human respiratory syncytial virus is the most important etiological agent of 

respiratory disease in children worldwide and by age 2, over 95% of individuals have 

experienced at least one RSV infection (1, 2). Seasonal infections of RSV generally begin in 

autumn and, in the US, range in duration from 13 – 23 weeks (3). Infection of adults and 

children most frequently results in upper respiratory tract illness (URTI) causing common 

cold-like symptoms, which may progress to lower repiratory tract illness (LRTI).  

It has recently been estimated that 34 million new cases of RSV-associated lower 

airway disease occur globally in children less than 5 years of age, resulting in 66,000 – 

199,000 deaths per year (4). The majority of these deaths occur in underdeveloped 

countries with limited access to standardized healthcare. Each year in the United States, an 

estimated 1.5 million outpatient visits are attributable to RSV infections in children <5 years 

old, resulting in 75,000-125,000 hospitalizations, of which 1.5% require admission to the 

pediatric intensive care unit (5-7). Average length of hospital stay for infants diagnosed with 

RSV bronchiolitis is 3.5 days (8-10) and hospitalization due to RSV-associated bronchiolitis 

results in total estimated costs of up to 700 million US dollars annually (11). RSV infections 

clearly represent a significant economic and health burden both globally and in the United 

States. 
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Clinical Features of RSV Infection 

RSV infection results in a range of symptoms, varying from upper respiratory tract 

illness characterized by rhinorrhea to severe lower respiratory tract illness characterized by 

labored breathing necessitating oxygen supplementation. Although RSV infection often 

causes only URTI, 1 to 2% of infected individuals progress to severe lower respiratory tract 

infection, which can result in hospitalization with bronchiolitis being the most common 

clinical diagnosis (5, 12). RSV-associated bronchiolitis is known to be more severe and 

results in prolonged hospitalization compared to non-RSV associated bronchiolitis, resulting 

in a mortality rate of 0.01 – 0.5% annually (6, 9, 10, 13, 14). Studies of young children found 

that RSV infection results in twice as many visits to the emergency department, six times as 

many hospitalizations, and nine times as many deaths compared to seasonal influenza 

infections (15, 16). The most important risk factor for the development of RSV bronchiolitis is 

very young age (< 6 months).  Other risk factors include congenital heart defects, 

immunodeficiency, neurodevelopmental deficits, familial history of atopy, chronic lung 

disease, and bronchopulmonary dysplasia (7, 9, 17, 18). Low body weight at time of 

hospitalization is most significantly associated with all measures of severe disease, with 

premature infants being the largest at-risk population (19). Despite identification of 

numerous factors associated with elevated rates of hospitalization, ~50% of RSV-associated 

hospitalizations occur in healthy children born at term with no additional identifiable risk 

factors (17). 

Natural infection by RSV does not induce lifelong immunity to reinfection and 

recurring infections are common despite no significant antigenic change of the virus (1). 

RSV infection among the elderly and immunocompromised populations is recognized as a 

significant health problem. In community-dwelling US adults over age 65, RSV is the 

etiological agent in 3-15% of incidences of acute respiratory illness per year (20-23). Among 

elderly patients admitted to the hospital with acute cardiopulmonary disease, 7 – 10% were 
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identified as RSV-induced illness and, in one study, 18% of RSV-infected patients were 

admitted to the intensive care unit (24, 25). RSV associated mortality rates are higher in the 

elderly population than among young children (16). Additionally, RSV causes increased 

morbidity and mortality in immunocompromised patients, particularly in transplant patients 

(especially lung and bone marrow transplants) and patients with leukemia. In nosocomial 

outbreaks among bone marrow transplant patients, RSV has been detected in 2 – 20% of 

patients, resulting in a pneumonia-associated mortality rate of 55 – 80% (26-28). Aggressive 

treatment using aerosolized ribavirin and intravenous immunoglobulin (IVIG) is frequently 

initiated at the onset of upper respiratory tract illness, although this treatment regime is 

costly and cumbersome (29, 30). Recently, clinical efficacy and tolerance of oral ribavirin 

has demonstrated, representing a promising, cost-effective therapeutic strategy for RSV 

infection in immunocompromisd patients (31, 32). 

 Although the majority of infants infected by RSV eventually resolve infection and 

disease, history of RSV infection can be associated with long-term abnormalities in 

pulmonary function, including asthma, airway hypersensitivity, and recurrent wheezing (33-

35). It is well accepted that severe LRTI is associated with an increased risk of wheezing, 

though a causal relationship to RSV infection remains controversial. An RSV-neutralizing 

antibody treatment (Palivizumab) used as prophylaxis for RSV infection also reduces 

recurrent wheeze in preterm infants, implicating RSV infection as an important cause of 

post-bronchiolitis wheeze (36, 37). Risk factors for development of wheeze following RSV 

infection include severity of disease as well as allergic risk factors, such as familial history of 

atopy or asthma, and predisposition to airway hypersensitivity (33, 35, 38-40). The 

association of severe RSV disease to long-term airway morbidity further highlights the need 

for effective treatment strategies to reduce the severity of clinical disease. 
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Treatment Strategies and Vaccine Development 

Despite the significant impact of RSV bronchiolitis on infant health, therapeutic 

treatment options to reduce the severity of distal airway disease are limited to poorly 

efficacious anti-viral and anti-inflammatory therapies, supplemental oxygen, or mechanical 

ventilation. There remains a significant clinical need to reduce the severity of RSV-induced 

distal airway disease in infants and young children as well as elderly and 

immunocompromised populations. 

Treatment with the RSV-neutralizing monoclonal antibodies palivizumab or 

motavizumab caused a slight reduction in viral shedding, yet no clear clinical benefit has 

been demonstrated (41-43). Prophylactic use of these antibodies, however, has shown to 

significantly reduce the severity of disease, although treatment as prophylaxis relies on 

expensive monthly injections and is therefore restricted to at-risk populations (14, 44-48).  

Ribavirin is the only anti-viral drug currently approved for treatment of RSV infection. 

Although exhibiting anti-viral efficacy in tissue culture models and experimentally infected 

animals (49), studies of clinical use of ribavirin in RSV-infected infants and young children 

have failed to show significant reduction in disease outcome (50-53).  Due to efficacy 

concerns, difficulty of delivery (aerosol), and potential side-effects in neonates, ribavirin is 

not currently used for routine clinical treatment of RSV in infants and young children (54). 

Clinical efficacy, however, has been shown for treatment of RSV infection in 

immunocompromised patients and nebulized, oral, or intravenous ribavirin treatment 

remains widely used, despite concerns for tolerance and safety (31, 32, 55). 

 In the absence of efficacious anti-viral therapies, bronchodilators and anti-

inflammatory steroids remain widely used to dampen the inflammatory consequences of 

RSV bronchiolitis despite sufficient evidence these treatments provide no clinical benefit. 

Meta-analysis of corticosteroid use in hospitalized non-intubated patients demonstrated only 

at 0.5-day decrease in duration of hospital stay with steroid use (56). Steroids have also 
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shown no clinical effect on hospital admission rates, concentration of proinflammatory 

cytokines in tracheal aspirates, or length of mechanical ventilation (57-59). A more 

comprehensive, multi-center placebo controlled trial demonstrated no effect of 

dexamethasone on clinical outcome of disease (60). In spite of these studies, corticosteroid 

treatment for RSV infection is still used in conjunction with bronchodilators.  

Despite decades of study and an obvious need, licensed RSV vaccines are currently 

unavailable. Because of the early age of first RSV infection, vaccination should occur within 

the first weeks of life. The likely need for multiple doses at such an early age further 

complicates the development of a pediatric RSV vaccine. In the 1960s, a formalin-

inactivated RSV vaccine (FI-RSV) was developed and evaluated. Though immunogenic, this 

vaccine demonstrated poor protection against natural RSV infection and vaccinated 

individuals experienced immune-mediated enhancement of disease resulting in 

hospitalization of nearly 80% of infected vaccinated individuals, including two fatalities (61). 

The failure of this vaccine has been attributed to an aberrant immune response to FI-RSV 

that did not result in the production of neutralizing antibodies and induced an immune 

response inherently different to that induced by a natural RSV infection (61-63). As a result, 

inactivated whole-virus vaccine development has largely been abandoned and current 

vaccine development strategies are focused on live-attenuated vaccines, subunit vaccines, 

and virus-like particle vaccines.  Biologically-derived RSV vaccines, such as vaccines based 

on cold-passaged viruses and temperature sensitive mutants, have been evaluated clinically 

but discontinued due to insufficient attenuation in infants (64). Live-attenuated vaccines 

were revisited with the introduction of RSV reverse genetics technology, and novel 

combinatorial mutations in several different RSV genes have yielded promising vaccine 

candidates currently in pre-clinical and clinical trials (65-69). 
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RSV Virology 

RSV is classified within the family Paramyxoviridae, subfamily Pneumovirinae, and 

has a negative-sense, single-stranded RNA genome with 10 genes encoding 11 proteins.  

RSV encodes for 3 transmembrane glycoproteins: the fusion protein F, the attachment 

protein G, and the small hydrophobic protein SH. The matrix M protein is essential for the 

structure and assembly of the virion. The RNA genome associates with 4 proteins within the 

virion: the nucleoprotein N, the phosphoprotein P, the transcription processivity factor M2-1, 

and the large polymerase protein L. M2-2 is encoded by a small ORF within the M2 mRNA 

and may play a role in RNA synthesis. Two non-structural proteins, NS1 and NS2, are 

encoded by the virus and are not packaged within the virus particle. Replication occurs in 

the cytoplasm and the RNA genome is transcribed sequentially to produce 10 separate 5’ 

capped mRNAs. Each individual gene begins with a highly conserved gene start signal that 

initiates mRNA synthesis and ends with a semi-conserved gene end signal that directs 

termination and polyadenylation of the mRNA. Dissociation of the viral polymerase after the 

gene end signal results in a gradient of transcription, whereby genes proximal to the 3’ 

region are transcribed first and at a greater abundance than genes more distal to the leader 

sequence. RSV assembly and budding occur at the plasma membrane resulting in spread of 

infection.  

 

Attachment and Entry: G Glycoprotein 

 The RSV glycoprotein (G) and fusion protein (F) mediate attachment and entry of 

RSV to the target cell. RSV binding and entry is a two-step process, whereby the virion first 

attaches to the cell membrane followed by a fusion event. In cell line models of infection, the 

F protein is sufficient for binding and entry of RSV and, although the G protein enhances 

attachment and syncytia formation, G is not considered required for entry (70-73). 

Attachment and entry of RSV likely involves interactions between cellular proteins and the 
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RSV F and G protein. A specific cellular receptor for RSV has yet to be identified, though the 

discovery of interactions between the cell surface nucleolin protein and RSV F suggest 

promising avenues of research (74, 75). G-mediated attachment to cultured cells is 

dependent on glycosaminoglycans (GAGs) on the cell surface (76, 77). GAGs are repeating 

disaccharide units of hexuronic acid and hexosamine that form unbranched polysaccharide 

chains. Heparan sulfate (HS) is the GAG most commonly associated RSV entry into HEp2 

cells, and G-mediated attachment likely involves electrostatic interaction between G and HS, 

though requirements for GAG structural elements have been noted (76-79). Although 

interactions between G and HS have been well documented, HS is not detectable on the 

surface of primary well-differentiated models of the human airway epithelium (80, 81). 

Several other GAGs have been detected on the surface of the airway epithelium, including 

keratan sulfate, chondroitin / dermatan sulfate, and hyaluronan (82), though it is unclear 

what the role of GAGs are for attachment of RSV to target cells in the human airway 

epithelium. 

A small hydrophobic region near the N-terminus of the G protein serves as a 

membrane anchor, resulting in insertion of G into the cell membrane and incorporation into 

the viral envelope. G is an extensively glycosylated protein, with the external component of 

the protein containing 4 predicted N-linked glycosylation sites and 24-25 predicted O-linked 

glycosylation sites (83). N-linked carbohydrate groups are added first in the ER, increasing 

to size of G from 32 kDa to an apparent 45 kDa processing intermediate form, which are 

then converted to complex sugars in the trans-Golgi network. O-linked oligosaccharides are 

also added in the Golgi compartment and O-linked sugars are estimated to comprise ~50% 

of the total mature 90 kDa form of G (84, 85). The glycosylation profile is cell-type specific, 

as G produced in different cells lines exhibits different electrophoretic mobility (86, 87). Due 

to heavy glycosylation and a lack of secondary structure, the ectodomain is referred to as 
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having a “mucin-like” structure, which may help shield the virion from antibody recognition 

(84).  

Translation from a second initiation site within the G open reading frame results in a 

truncated G that is further cleaved to completely lack the membrane anchor, and this 

truncated protein is secreted (88, 89). Secreted G (sG) is rapidly secreted in cell culture, 

comprising 80% of total G protein released within 24h post inoculation (88). While the 

contributions of sG in productive infection remains to be fully elucidated, evidence indicates 

a role for immune evasion and antibody decoy (90, 91).  

 

Immune Evasion Strategies: NS Proteins 

RSV encodes 2 non-structural proteins, NS1 and NS2, at the 3’ beginning of the 

genome immediately following the leader sequence. These genes are expressed to high 

levels immediately upon infection, with both proteins being detectable 5h post-infection of 

A549 cells (92). NS1 and NS2 have primary roles as type I and III interferon (IFN) 

antagonists and deletion of one or both of these genes from recombinant RSV resulted in a 

large increase in type I IFN expression and signaling in infected human epithelial cell 

cultures and macrophages (93, 94). The magnitude of increase was greater following 

deletion of the NS1 gene as compared to deletion of NS2, though deletion of both genes 

produced the greatest effect (93). Co-immunoprecipitation studies indicate these proteins 

form a heterodimer, although expression of both proteins together does not appear to be 

essential to function (95).  The mechanisms by which these proteins inhibit type-I interferon 

are complex, involving both coordinated and independent functions.  

The signal transduction pathways involving IRF3 activation are significant targets for 

antagonism by both NS1 and NS2. IRF3 is a major interferon regulatory factor which, upon 

activation, dimerizers and transports to the nucleus to activate transcription at IFN-response 

elements (ISREs). Activation of IRF3 can occur downstream of Toll-like receptor (TLR) and 
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RIG-I-like receptor (RLR) activation, including TLR3 and RIG-I which are known to activate 

upon RSV infection (96, 97). NS2 has been shown to bind RIG-I, preventing interactions 

between RIG-I and MAVS to block signal transduction and prevent activation of IRF3 (98). 

Additionally, expression of either NS1 or NS2 resulted in a decrease in TRAF3 protein 

levels, which is downstream of MAVS along the signal transduction pathway leading to IRF3 

activation (95). In the same study, NS1, but not NS2, was shown to decrease activation of 

IKKε, a protein kinase involved in activation of IRF3 (95). 

Type I IFN-mediated signal transduction is also strongly suppressed by RSV through 

the JAK/STAT pathway. Both NS1 and NS2 have been shown to decrease protein levels of 

STAT2 (99, 100), likely via the proteosomal degradation pathway. Indeed, NS1 can function 

as an E3 ligase due to the presence of an elongin C and cullin 2 binding domain, resulting in 

ubiquitination and degradation of STAT2, and mutation of this domain results in degradation 

of the NS1 protein and attenuation of the virus (101, 102). Additional studies, however, 

indicate a primary role of NS2 in degradation of STAT2, where expression of both NS1 and 

NS2 together enhanced STAT2 degradation over NS2 expression alone, though expression 

of NS1 had no effect on STAT2 degradation (95, 99, 100). 

RSV also inhibits activation of the type III IFN pathway in human epithelial cells and 

macrophages (93). The observed effects of NS1 and NS2 on type III IFN induction were 

similar to those demonstrated for type I IFN induction (93). The induction of the type I and III 

pathways occurs through different receptors, though both receptors signal through the 

JAK/STAT pathway and utilize STAT2 (103), which may account for similar effects of NS1 

and NS2 on type I and III IFN induction. Type III IFN receptors are expressed primarily in 

epithelial cell types, suggesting a potentially important role for immune regulation in 

pulmonary epithelial cells (103). 

Pro-survival roles via activation of NF-kB by the NS proteins have also been 

demonstrated in cell lines. Deletion of NS1 or NS2 reduced RSV-mediated activation of NF-
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kB (104). Knockdown of NS1 or NS2 using siRNA also resulted in a reduction in several 

anti-apoptotic functions, including activated forms of NF-kB and phosphorylation of AKT, 

leading to early apoptosis (92). Suppression of apoptosis by the NS proteins also occurs in 

Vero cells which lack IFN-α and –β genes, suggesting anti-apoptotic functions of the NS 

proteins may be IFN independent (92).  

Predictably, deletion of the NS1 or NS2 genes from a recombinant RSV results in 

reduced titer in cultured interferon-competent cell lines (93). In seronegative chimpanzees, 

NS1 and NS2 deletion mutants are highly attenuated (105-107), further emphasizing the 

role of NS1 and NS2 in RSV replication and pathogenesis. 

 

Human Airway Epithelia 

The human respiratory epithelium is the primary target of RSV infection. The 

conducting airways extend from the nose to the terminal and respiratory bronchioles and 

serve as a protective physical barrier between the external environment and host tissues as 

well as controlling the temperature and humidity of inspired air. The alveolar regions occupy 

the greatest internal surface area of the lung and facilitate gas exchange. 

The cartilaginous conducting airways are lined by a pseudostratified ciliated 

epithelium consisting of basal, ciliated, and secretory cell types. The columnar cell 

superficial epithelium attaches to a sublayer of cuboidal basal epithelial cells, which serve as 

an attachment point to the basement membrane and function as progenitor cells (108, 109). 

Ciliated cells are the predominant columnar cell-types throughout the conducting airways 

(110). Goblet cells can extend into but not distal to the bronchiolar regions and secrete 

mucus into the airway essential for mucociliary clearance. Club (Clara) columnar cells are 

located predominately in the distal airways in humans, although regional distribution of this 

cell type is species dependent (111, 112). Club cells play important roles in detoxifying 
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noxious inhalants and maintaining distal airway defense by secreting proteases, anti-

microbial peptides, surfactants, anti-proteases, and anti-inflammatory proteins (113).  

In vitro models of well-differentiated airway epithelia indicate that RSV primarily 

infects columnar ciliated cells while sparing goblet and basal cells (114, 115). RSV infection 

of ciliated epithelial cells, but not basal cells, was noted throughout the respiratory tract of 

RSV-infected individuals post-autopsy and in calves experimentally infected with bovine 

RSV (116, 117). In the smaller, non-cartilaginous airways, RSV infection was also noted in 

non-ciliated columnar and cuboidal cells. In the larger airways, infection was evident in non-

contiguous clumps of epithelium, while circumferential airway infection was often noted in 

smaller airways (117). Infection did not cause overt cytopathogenesis, as intact RSV-

positive epithelial layers are found in vivo and airway epithelial models note no obvious 

deterioration of the epithelium (115, 117-119). In polarized models of epithelial cells, RSV 

sheds from the apical surface of infected cells into the apical lumenal space with no 

infectious virus detectable in the basolateral compartment (8, 114, 115).  

Due to constant contact with the external environment, including insults from 

environmental toxicants, allergens, and pathogens, the respiratory mucosa employs a 

multitude of innate defense mechanisms, both physical and biological, to preserve the 

integrity of the epithelium and ensure efficient gas exchange. Epithelial cells play a critical 

role in regulating the immunological homeostasis of the airway. These cell types are also 

are common targets of respiratory viruses and these viruses have evolved diverse 

mechanisms to subvert the inter- and extracellular levels of innate airway defense. Our 

current knowledge of innate airway defense mechanisms and the methods by which RSV 

subverts these to establish respiratory infection are summarized in the following section. 
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Airway Defense Mechanisms: Protective Barrier 

 The columnar airway epithelium, existing at the interface of the external environment 

and the internal milieu, serves a critical role in airway defense by providing a physical barrier 

to systemic penetration of pathogens crucial to maintaining lung sterility. Barrier integrity is 

established and maintained by tight junction proteins, the most apically located of the 

epithelial junction complexes. Occludin, claudin, and junctional adhesion molecule (JAM) 

proteins form tight junctions, in addition to the family of scaffold PDZ-domain expression 

proteins, including zonula occludens (ZO)-1 (120). Tight junctions primarily serve to inhibit 

water and solute flow through intercellular spaces between cells and to establish the polarity 

of columnar epithelial cells (121-123). 

Studies of the effects of RSV infection on membrane barrier integrity have largely 

concluded that RSV does not have a gross cytopathic impact on barrier integrity of the 

epithelial membrane. Infection of well-differentiated models of the columnar airway 

demonstrate no changes in staining intensity or location of ZO-1, a protein integral to tight 

junctions of airway epithelial cells (114). Measurements of transepithelial electrical 

resistance (TEER), an index of tight junction and barrier integrity, in well-differentiated 

cultures infected with RSV show only modest decreases in TEER compared to control, 

indicating no significant compromise of barrier integrity (124, 125).  

 

Airway Defense Mechanisms: Epithelial Cell Response 

 The ciliated cell is the site of first contact with invading pathogens and acts as both a 

target and an effector cell to mediate the cellular response to viral infection. This response 

includes production of anti-viral and pro-inflammatory cytokines but may lead to the initiation 

of apoptosis and eventual extrusion of the infected cell from the epithelium into the airway 

lumen. 
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 Interferon: Interferon (IFN) production and release is an integral component to the 

cellular antiviral response. Three classes of IFN have been described and are designated 

type I, type II, and type III. Type I inteferons include IFN-α, IFN-β, and IFN-ω and are the 

major class of IFN expressed in mammalian cells. Type II IFN, or IFN-γ, is produced by 

natural killer cells and activated T cells. Type III interferons include the IFN-λ family and 

signal via downstream pathways similar to the type I IFN signal transduction pathway, 

though the type III IFN receptor is restricted to epithelial cell types (103). Ciliated columnar 

cells signal through both the type I and type III IFN, though the type I IFN signal transduction 

pathway is thought to be more important. Secretion of type I IFN from virally infected cells 

acts in both autocrine and paracrine fashion by binding the type I IFN receptor at the cell 

surface and stimulating signaling through the JAK/STAT pathway, whereby STAT signaling 

complexes translocate to the nucleus to initiate transcription at numerous IFN-stimulated 

response elements (ISREs). The RSV NS proteins subvert type I IFN signaling via 

interactions with the JAK/STAT arm of the signaling pathway and IFN-α/β secretion is 

significantly reduced or absent in infants and adults infected with RSV (93, 95, 99, 100, 126-

128). Interestingly, a recent study identified type III IFN as the predominant IFN secreted in 

nasal epithelial cells infected with RSV and demonstrated suppression of viral replication in 

the presence of IFN-λ (129). 

 Cytokines: Virally infected epithelial cells also release a diverse array of cytokines 

and chemokines that function as both pro- and anti-inflammatory mediators to modulate the 

pulmonary immune response. Production of cytokines following RSV infection has been 

characterized in epithelial cell lines and well-differentiated models of the airway epithelium, 

as well as in vivo in nasal aspirates, bronchoalveolar lavages, and blood from RSV-infected 

infants.  

 IL-1β, IL-6, and TNF-α release mediate a wide range of proinflammatory processes 

and are implicated in the immunoregulation of RSV disease. IL-1β is secreted from RSV 
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infected epithelial cells and well-differentiated models of RSV infection (130, 131) and is 

detectable in infants experiencing RSV bronchiolitis (118, 132). Elevated IL-1β levels in 

nasopharyngeal secretions have been directly associated with severity of RSV disease 

(133). TNF-α is increased in tissue culture models of infection as well as infants with RSV-

induced bronchiolitis (104, 118, 132, 134-136). IL-6 is also detected in cell lines and airway 

epithelium models infected with RSV (114, 124, 131, 137) and in nasophyngeal secretions 

and bronchoalveolar lavage fluid from RSV-infected infants (118, 132, 134-136, 138). 

 Cytokine secretion is an important mechanism for recruitment of immune effector 

cells to sites of infection. IL-8 and CXCL10 are a major chemoattactants for neutrophils and 

are produced by both epithelial cells and macrophages in response to RSV infection (104, 

114, 124, 131, 137, 139, 140). IL-8 levels are elevated in serum, nasophyngeal secretions, 

and bronchoalveolar lavage samples from infants with severe RSV bronchiolitis (118, 132, 

138, 141-143). Elevated IL-8 levels in nasophyngeal aspirates are also associated with RSV 

disease severity (144). RANTES is a major chemoattractant for eosinophils and expression 

is upregulated following RSV infection of cell lines (104, 145) and airway models of infection 

(114, 124, 131, 140), and is detectable in RSV-infected infants (138, 143, 146). 

 The list of cytokines reviewed in this section is not exhaustive and many other 

cytokines have been detected in studies of RSV infection of cell lines, airway models, animal 

models, and humans. Emphasis was placed on cytokines secreted from airway epithelial 

cells, cytokines associated with leukocyte recruitment at early times after infection, and 

cytokines associated in increased severity of RSV disease.  

Club cell secretory proteins: In human airways, club (Clara) cells are located in the 

terminal-respiratory bronchiolar regions and are the major type of non-ciliated secretory cells 

in the bronchial region, comprising10 – 25% of cells in the human epithelia (113, 147, 148). 

RSV-positive club cells have been observed in the distal airways of calves, lambs, and 

infants infected with RSV, suggesting that RSV can target this cell type for infection and 
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replication (116, 117, 149). Club cells participate in the innate defense of the airway by 

secreting several anti-inflammatory proteins, including CC10 (also known as CCSP, 

secretoglobin, and uteroglobin), surfactant protein A (SP-A), and surfactant protein-D (SP-

D). Damage to club cells is associated with exacerbated lung injury and inflammation after 

exposure to irritants (150). Few studies have investigated the role of club cells in the context 

of RSV infection. CC10- and SP-D-deficient mice, when challenged with RSV, show 

increased viral persistence and lung inflammation (151, 152). SP-A and SP-D gene 

expression was increased in RSV-infected neonatal lambs, suggesting an important role for 

club cells during RSV infection (153).  

 Apoptosis and cell extrusion: Though infected epithelial cells initiate numerous 

anti-viral and pro-inflammatory signaling cascades, cell death can be the final outcome of 

viral infection. Cell shedding induces anoikis, a process defined as induction of apoptosis by 

disruption of cell-cell interactions (154, 155). Induction of anoikis serves to limit both viral 

replication and cytokine release, ridding the epithelium of cytokine-producing infected cells 

to dampen pro-inflammatory signals (156, 157). Furthermore, regulation of cell death and 

shedding helps to preserve the integrity of the epithelial barrier and reduce damage caused 

by infiltrating immune cells (158). Shed cells are then available for clearance from the airway 

lumen by mucociliary clearance mechanisms.  

 Anoikis and cell shedding are likely consequences of RSV infection of the airway 

epithelium. Increased numbers of cells are detected in the apical compartment of RSV 

infection of well-differentiated airway epithelial cell cultures, suggesting that infected cells 

are sloughed from the epithelium (114, 124, 125). Sloughed, antigen positive cells have 

been noted in the airway lumen of experimentally infected animals and, in addition to 

inflammatory debris, these cells contribute to airway obstruction and narrowing of the airway 

lumen, suggesting a potential role for cell shedding in RSV pathogenesis (116, 153, 159, 

160).  Histological examination of tissue sections from infants infected with RSV have also 
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documented RSV-antigen positive epithelial cells within the airway lumen (117, 118, 161). 

Despite the frequent appearance of RSV-infected cells in the airway lumen, the process of 

airway epithelial cell death and shedding following RSV infection has yet to be fully 

characterized and the importance of this process in development or limitation of RSV-

associated disease is unknown. 

 

Airway Defense Mechanisms: Mechanical Clearance 

Several types of mechanisms mediate clearance of airway debris following viral 

infection, including immune-cell mediated and mechanical clearance, and these 

mechanisms work in tandem to facilitate clearance of viral infection and resolution of 

disease. In immune-cell mediated clearance, macrophages, dendritic cells, T cells and 

neutrophils migrate to the airway parenchyma to kill and clear infected cells via 

phagocytosis. Mechanical clearance includes both mucociliary clearance and cough 

clearance mechanisms. Cough clearance, including cough and sneeze, occurs when 

sensory nerves imbedded in the tracheobronchial region are stimulated, either by 

mechanical or inflammatory stimulation (162, 163). During periods of viral replication and 

shedding, coughing or sneezing likely aids the dissemination of viral particles to subsequent 

hosts.  

Pathogens that settle on the airway surface encounter a complex mesh of mucins, 

decorated with a diverse library of carbohydrate side chains that are able to interact non-

specifically with particles within the respiratory tract. Mechanical clearance of mucus serves 

to clear material trapped in the mucus gel via mucociliary transport. Mucociliary clearance is 

dependent upon tight regulation of the viscoelastic properties of the mucin layer and rapid, 

unidirectional, coordinated cilia beat, resulting in an “escalator” function to clear particles 

deposited in the mucus layer from the small airways to the proximal airways and larynx 

(164-167). Disruption of either of these clearance mechanisms has profound impact on the 
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ability of the host to clear respiratory pathogens. Maintenance of a hydrated airway surface 

is crucial to the function of cilia and individuals with diseases characterized by depletion in 

airway surface liquid volume, such as cystic fibrosis (CF), suffer impaired cilia beat. The 

dehydrated and static mucus layer may then adhere to the epithelial cell surface, resulting in 

impaired mucociliary clearance and contributing to increased bacterial infections and airway 

obstruction (168-170). Individuals primary ciliary dyskinesia (PCD), characterized by defects 

in cilia beat and coordination, experience increased respiratory tract infection and sinusitis 

resulting from a significant reduction in cilia dependent mucus clearance (171, 172). Cough 

clearance remains normal in these patients, possibly accounting for the less severe disease 

pathogenesis of PCD compared to CF (173).  

Pathogenic effects of RSV infection on cilia structure and function have been noted 

in well-differentiated models of the human airway epithelium, animal models of infection, and 

infants naturally infected with RSV. RSV infection of airway models results in an overall 

decrease of cilia, as determined by β-tubulin staining, and increase in ciliary dyskinesia 

(114, 174, 175). RSV-infected ciliated cells demonstrate abnormal beat pattern as early as 

24 hours pi and uninfected cells show no changes in cilia structure or function, suggesting 

that cilia degradation is a direct effect of RSV infection, rather than resulting from release of 

a soluble factor (175). Studies of calves infected with bovine RSV noted disruption of the 

cilia apparatus, where infected ciliated cells have fewer intact cilia than uninfected cells, 

basal bodies are disorganized within infected ciliated cells, and ciliary fragments are present 

in the airway lumen (116). Nasal biopsies from infants with RSV-associated bronchiolitis 

showed decreased numbers of ciliated cells within the epithelium, increased numbers of 

cells detached from the epithelium, and abnormalities in ultrastructural features of cilia as 

compared to uninfected controls (176). 

Disruptions in cilia function may impair mucociliary clearance of shed cells and 

debris in the airways, potentially leading to acute airway obstruction. Air-trapping and 
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reduced pulmonary function are characteristic of acute obstructive disease and are 

associated with severe RSV disease in both infants and animals models (5, 177). Effective 

mechanical clearance mechanisms are important for clearance of shed cells and debris in 

the distal airways of infants or animals experiencing RSV infection. Impairment of 

mucociliary clearance may contribute to the distal airway obstruction noted in experimental 

models of RSV disease, which likely contributes to early pulmonary function changes 

following RSV infection. Although the clinical implications of RSV-mediated disruptions in 

mucociliary clearance are not yet defined, the inability to clear infection may be associated 

with more severe disease. In otherwise healthy infants with naturally occurring RSV 

infection, inability to clear RSV, as measured by higher viral loads in nasal washes at later 

timepoints, was associated with prolonged hospitalization, increased disease severity, and 

increased risk of requiring intensive care in RSV infected infants (19). In experimentally 

infected adults, viral load correlated with symptom severity, intranasal cytokine secretion, 

and nasal mucus output, further highlighting the importance of viral clearance on disease 

outcome (178).  

 

Airway Defense Mechanisms: Cellular Immune Response 

In addition to mediating infection through both biological and physical mechanisms, 

the columnar airway epithelium plays a major role in recruitment of inflammatory cells that 

contribute to the antiviral response of the airway. Neutrophils are the most common 

leukocyte associated with RSV bronchiolitis and, in RSV infected infants, neutrophils 

represent 80 – 93% of cells in upper airway aspirates (nasalphyrangeal aspirates) and 76 – 

83% of cells in lower airway lavage fluid (bronchial lavage) (179-182). Neutrophilic infiltrates 

have also been noted in animal models of RSV infection. Histological examination of calves 

infected with bovine RSV demonstrated neutrophils associated and occasionally fused with 

infected epithelial cells (116). The recently developed neonatal lamb model for RSV 
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infection has also demonstrated neutrophil influx into the airway lumen following infection 

with RSV, with neutrophils located below the basement membrane as well as within the 

infected airway lumen (153, 183, 184). IL-8, the major chemoattractant of neutrophils, is 

released by airway epithelial cells in vitro and is detectable in prenatal lambs and infants 

infected with RSV (143, 184-187). 

To arrive in the airway lumen, neutrophils leave systemic circulation and must 

migrate across the respiratory mucosa (188, 189). Adherence to the epithelium is mediated 

by interaction between CD11b/CD18 on the surface of neutrophils with ICAM-1 on the apical 

surface of epithelial cells and is important in neutrophil mediated cytotoxicity and 

phagocytosis (190, 191). Upregulation of ICAM-1 has been noted in epithelial cells infected 

with RSV and increased neutrophil adherence has been demonstrated on epithelial cell 

monolayers infected with RSV (191-194). Release of soluble mediators following neutrophil-

epithelial cell interactions, such as neutrophil elastase and matrix metalloproteinases, 

contribute to neutrophil mediated epithelial damage. Although neutrophils are present in 

large numbers following RSV infection, the impact of the dual functions of viral clearance 

and epithelial damage on development and severity of RSV-mediated disease is not yet 

completely understood.  

 

Dissertation Objectives 

Respiratory syncytial virus is the most frequent cause of bronchiolitis and severe 

lower respiratory tract illness in infants and children. Despite being first identified in 1955, 

treatment options to reduce severity of disease remain limited and no vaccine currently 

exists. Although epidemiologic risk factors of RSV disease have been well characterized, an 

understanding of the underlying mechanisms of severe disease remains elusive. 

Specifically, the role of the columnar airway epithelium in modulating RSV disease and the 
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underlying viral and epithelial processes responsible for initiation of bronchiolitis remain to 

be explored. 

Tissue culture cell line models have provided valuable information on RSV virology 

and pathogenesis, however, these cells are non-polarized and may not accurately reflect 

interaction of RSV with the polarized, pseudostratified airway epithelium, the host target of 

RSV infection. Rodent models of RSV infection, especially mice, show limited 

permissiveness to RSV lower airway infection and pathological and immunological changes 

can differ from clinical observations of RSV infected infants. Infection with closely related, 

species-specific pneumoviruses such as bovine RSV (bRSV) or ovine RSV (oRSV) has 

provided valuable information on pathology, but these studies are severely limited by 

expense, space, and ethical concerns.  Autopsy and biopsy studies of human RSV infection 

are often confounded by co-morbidity with additional respiratory illness (e.g. viral or bacterial 

coinfection or underlying genetic disease) and treatment (e.g. mechanical ventilation) that 

greatly impact histopathological findings of these studies. As a result, we currently have a 

poor understanding of the pathogenic mechanisms of lower respiratory tract infection that 

lead to severe disease outcomes. The use of a well-differentiated polarized airway model of 

RSV infection is integral to understanding the response of ciliated airway epithelial cells to 

RSV infection. Connecting mechanisms of epithelial cell pathogenesis to pathogenic 

findings of early RSV infection in an in vivo model will contribute to an understanding of the 

early features of RSV mediated disease.  

The purpose of this dissertation was to explore interactions between RSV infection 

and ciliated airway epithelia. The overarching goals of these studies were to understand the 

interaction of the RSV virion with the ciliated cell, determine the consequences of RSV 

infection of the ciliated cell, track the fate of ciliated cells following RSV infection, and 

explore the role of the NS2 protein in RSV infection of ciliated cells. To that end, we utilized 

recombinant RSV and PIV3 viruses and in vitro well-differentiated airway model and in vivo 
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hamster model of infection. We demonstrate the importance of ciliated cells in mediating 

RSV infection, as the ciliated cell upregulated pro-inflammatory and anti-viral modulators 

and participated in controlled extrusion from the airway epithelium to clear viral infection 

while maintaining the integrity of the epithelium. We identify a novel function of the NS2 

protein to cause morphological rounding of columnar epithelial cells upon infection with 

RSV. Using an in vivo model, we demonstrate two consequences of NS2 induced cell 

rounding and shedding. In the larger airways, NS2 enhances clearance of viral titer and 

infected cells from the airway. In the smaller airways, NS2-mediated cell rounding and 

shedding causes acute bronchiolar obstruction, which may play a role in initiation of 

bronchiolitis.  

 

 

 



  

 

CHAPTER II 

THE ROLE OF THE G GLYCOPROTEIN IN EFFICIENT RSV INFECTION 

 OF HUMAN CILIATED AIRWAY CELLS  

 

2.1 Overview 

The G glycoprotein on the surface of human respiratory syncytial virus serves as an 

attachment protein to enhance infectivity of RSV in cell line monolayers. Here, we 

demonstrate a requirement for the G protein for efficient RSV infection of a primary, well-

differentiated model of the human airway epithelium (HAE). We also describe differences in 

electrophoretic mobility of G produced in different cell lines, where virions grown in Vero 

cells primarily display a 55 kDa G protein, likely representing a processing intermediate, 

while virions grown in HEp2 cells display a 90 kDa protein. A novel, 180 kDa form of G is 

identified from virions grown in ciliated cells of HAE. Vero-cell grown virus infected HAE 600-

fold less efficiently than HEp2 grown virus, suggesting an important role G glycosylation and 

processing in infection of ciliated cells. Finally, we report on the generation of a HEp2 cell 

line that expresses a viral IFN antagonist and cannot respond to IFN. This HEp2-V cell line 

supports replication of attenuated viruses to high yields and practical applications of this 

reagent are discussed. 

 

 

 
__________________________ 
Sections of this chapter previously appeared in the Journal of Virology. Copyright © American Society 
for Microbiology, J Virol. 2009 Oct; 83(20): 10710-8. doi: 10.1128/JVI.00986-09 
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2.2 Introduction 

Human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA 

virus in the family Paramyxoviridae, subfamily Pneumovirinae. RSV causes mild-to-

moderate upper respiratory disease, which can progress to severe or fatal lower respiratory 

tract disease primarily in infants and the elderly population. Currently no licensed vaccine is 

available and treatment generally consists of anti-viral and anti-inflammatory therapies with 

limited efficacy and supportive therapy. 

RSV expresses three glycoproteins on the virion surface. The large glycoprotein (G) 

plays a role in attachment (195), the fusion (F) glycoprotein mediates virion fusion to the 

target cell membrane (196), and the small hydrophobic (SH) glycoprotein may attenuate 

apoptosis (197). Of these glycoproteins, only the F protein is absolutely required for infection 

of cell-lines, although the G protein enhances infection and syncytia formation (77, 198). G 

functions by attaching to glycosaminoglycans (GAGs) on the surface of immortalized cells 

(76, 199, 200). GAGs are repeating disaccharide units of hexuronic acid and hexosamine 

that form unbranched polysaccharide chains and are expressed on the surface of most 

mammalian cells. Several types of GAGs have been characterized and heparan sulfate (HS) 

is the most important GAG for RSV infection of HEp2 cells (78, 79). 

The G protein is a type II integral membrane protein with a cytoplasmic N-terminus 

and an extracellular C-terminal ectodomain. A small hydrophobic region near the N-terminus 

serves as a membrane anchor. The ectodomain of G contains several predicted N- and O-

linked glycosylation sites. The unglycosylated protein is predicted to be 32 kDa in size and is 

modified by addition of N-linked sugars while in the endoplasmic reticulum, increasing the 

predicted size of G to 45 – 60 kDa (84). G proteins of this size are likely partially 

glycosylated processing intermediates and are found in cell lines and on virions at low 

levels. Within the Golgi compartment, maturation of N-linked sugars and addition of O-linked 
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carbohydrates result in a predicted 84-92kDa fully maturated protein (201). Given the 

extensive glycosylation of the G protein, it is unsurprising that the carbohydrate groups 

influence virus infectivity (85, 202) and cell-type specific glycosylation of G has been 

documented to affect the electrophoretic mobility of the G protein (86, 87).  

In the present study, we determine the requirement for G for efficient infection of a 

primary, well-differentiated human airway epithelial culture (HAE) and show that deletion of 

G impairs infectivity and spread of RSV. Next, we examine virus produced in HEp2 and Vero 

cells, both of which are commonly used to amplify RSV in the laboratory. We show that 

ability to infect HAE cultures differs greatly based upon cell line used to amplify virus. 

Biochemical comparison of virus grown in these two cell lines reveals a smaller form of the 

RSV G protein in virions produced by Vero cells. These results demonstrate the importance 

of the G protein and suggest that the cell lines used to produce a virus can alter its 

infectivity. Because Vero cells are necessary for growth of RSV mutants, yet virions derived 

from Vero cells are less able to infect HAE, we produced a HEp-2 cell line stably expressing 

an interferon antagonist and show that RSV mutants grow to high titers in this cell line. 

 

2.3 Results 

Requirement for RSV G in infection of human airway epithelial cultures 

 We and others have demonstrated that the RSV glycoprotein (G) is not required for 

infectivity in tissue culture cell lines (70). Because deletion of G has been shown to 

attenuate RSV in vivo (203), we determined the requirement of G for RSV infection of a 

primary well-differentiated model of the human airway epithelium (HAE). RSVΔG infected 

fewer numbers of cells at 24 hours pi compared to RSV and analysis of percentage of GFP-

positive epithelium demonstrated a 20-fold decrease in initial infection of HAE (Figure 2.1). 

RSVΔG was also attenuated for secondary infection and spread in HAE, reaching peak 
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titers at a later time compared to RSV (4 days vs 3 days, respectively) and infecting only 

37% of the surface epithelium at the time of peak infection compared to 83% GFP positive 

epithelium at peak infection with RSV (Figure 2.1B).  

Impact of G phenotype on infection of HAE 

 Post-translational processing and glycosylation is important for the attachment 

functions of G and processing intermediates ranging from an immature 45 kDa form to the 

fully O-glycosylated, mature 90 kDa form of G have been described in infected cells (86, 87). 

To assess the size of G on virus grown in HAE, we purified virus from apical washes of HAE 

infected with RSV and compared the electrophoretic mobility to virus grown in HEp2 or Vero 

cells. As predicted, the mature 90 kDa form of G was detectable on HEp2-derived virus. 

Vero-derived virus, however, primarily contained the 55 kDa G protein.  Western blotting of 

HAE-grown virions reveals a novel form of G migrating at approximately 180 kDa, in addition 

to a smaller amount of the 90 kDa form found in HEp2-derived virus (Figure 2.2A). This 

larger form of G is likely either a dimer of the 90 kDa form found in HEp2 cells or represents 

additional post-translational modification and more extensive glycosylation unique to the 

maturation of G in ciliated cells.  

 Differences in post-translational modification of G have been noted in in cell lines to 

affect the attachment function of G and infectivity of RSV (85, 202). HEp2 and Vero cell lines 

are most frequently used to amplify RSV, although the size of G is smaller from Vero-

derived virus compared to HEp2-derived virus. To assess if this difference in G impacts RSV 

infection of HAE, we infected HAE cultures with equal inoculums of RSV amplified in HEp2 

cells or Vero cells. Initial infection of HAE with Vero-derived RSV was significantly 

decreased compared to HEp2-derived RSV (Figure 2.2B). At 1 day pi, <1% of the HAE 

surface infected with Vero-derived RSV was GFP positive, compared to 40% GFP positive 

surface epithelium infected with HEp2-derived RSV at the same timepoint. After a single 
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round of infection, however, Vero-derived RSV replicated and spread with kinetics similar to 

HEp2-derived RSV. Although attenuated at 1 day pi, Vero-derived RSV reached infection 

levels almost equal to HEp2-derived RSV, resulting in ~70% GFP positivity of the HAE 

apical surface at the time of peak infection compared to ~80% GFP positive epithelium at 

the time of peak infection with HEp2-derived RSV (Figure 2.2B). Similar infection kinetics 

following the first round of infection is expected, as the form of G on the virion surface of 

virus produced by HAE cells would be similar, regardless of the cell line used to amplify the 

original inoculum. 

Development and characterization of HEp2-V cell line 

 Vero cells, which lack the genes encoding IFN-α and –β, are frequently used to grow 

viruses containing attenuating mutations. RSV encodes two major IFN antagonist proteins, 

NS1 and NS2, and deletion of either or both of these genes results in severe attenuation of 

the virus in cell lines (104). Similarly, infection of HAE with these viruses results in severe 

attenuation of replication and spread (Figure 2.3). RSVΔNS1 infection results in only 1-4% 

of GFP positive apical surface area during 8 days of infection, while 16% of the airway 

surface was GFP positive at peak infection of RSVΔNS2. In contrast, RSV infected and 

replicated efficiently in HAE, resulting in 73% GFP positive surface area at 3 days pi, the 

time of peak infection. 

Vero cells are commonly used to amplify the RSVΔNS1 and RSVΔNS2 mutant 

viruses to sufficiently high titer for study. However, we have demonstrated that amplification 

of virus in Vero cells results in initial attenuation of infection. We have therefore identified a 

need for a cell line capable of producing virus with the mature form of G while also able to 

amplify RSV lacking the type I IFN antagonism genes to high titers. To this end, we stably 

transformed HEp2 cells with the IFN antagonist V protein from SV5. HEp2 cells stably 

expressing SV5 V (HEp2-V cells) were assessed for V expression and inhibition of type I 
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IFN signal transduction. V was detected at high levels in whole cell lysates of HEp2-V cells, 

confirming robust expression (Figure 2.4A). To characterize type I IFN signal transduction in 

HEp2-V cells, we measured IFNβ gene message levels following treatment of HEp2 and 

HEp2-V cells with exogenous recombinant IFNβ for 24 hours. Exogenous IFNβ treatment 

stimulated a 8-fold increase in IFNβ message in HEp2 cells, while no changes were 

detected in HEp2-V cells (Figure 2.4B). To assess the type I IFN response of HEp2-V cells 

to viral infection, we infected HEp2 and HEp2-V cells with Sendai virus (SeV), a virus known 

to stimulate a robust type I IFN response. SeV infection resulted in a 30-fold increase IFNβ 

gene expression in HEp2 cells compared to mock inoculated cells (Figure 2.4C). Type I IFN 

secretion following SeV infection was also measured by bioassay (Figure 2.4D). HEp2 cells 

secreted high levels of type I IFN 24h following SeV inoculation, while no significant 

increases in IFN secretion from SeV-infected HEp2-V cells was detected. SeV infection 

resulted in equal numbers of infected cells in both HEp2 and HEp2-V cells (data not shown). 

We therefore conclude that stable expression of V in HEp2 cells significantly reduces the 

type I IFN response of this cell line. 

RSV and RSV deleted for the NS1 and NS2 genes, individually (RSVΔNS1 and 

RSVΔNS2) and together (RSVΔNS1/2), were amplified in HEp2 cells, HEp2-V cells, and 

Vero cells and concentration of virus recovered, expressed as plaque forming units (PFU) 

per ml, was assessed for each cell line (Table 2.1). In HEp2 cells, RSVΔNS2 replicated to 

titers 1.5 logs lower than RSV. RSVΔNS1 and RSVΔNS1/2 grew to even lower titers and 

>103 PFU/ml was recovered in HEp2 cells. In Vero cells, all viruses were amplified to 

roughly equal levels, producing 2-6 x106 PFU/ml. In HEp2-V cells, all viruses were amplified 

to ~1-log greater concentration compared to amplification in Vero cells. RSV was recovered 

at the highest titer in HEp2-V cells (9x107 PFU/ml). Greater than 4 logs more virus was 

recovered when RSVΔNS1 and RSVΔNS1/2 were amplified in HEp2-V cells compared to 
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HEp2 cells. The ability to amplify attenuated RSV mutants to high titers in a cell line that 

produces a G protein conducive to efficient initial infection will allow for future studies with 

attenuated RSV mutants in HAE. Importantly, these findings confirm that inactivation of the 

type I IFN response is essential for productive RSV infection and that the NS1 and NS2 

proteins are required for attenuation of this response. 

 

2.4 Discussion 

The RSV glycoprotein (G) and fusion protein (F) mediate attachment and entry of 

RSV to the target ciliated cell. RSV binding and entry is a two-step process, whereby the 

virion first attaches to the cell membrane followed by a fusion event. In cell line models of 

infection, the F protein is sufficient for binding and entry of RSV and, although the G protein 

enhances attachment, G is not considered required (71). In HAE, we demonstrated that 

RSV deleted for the G protein is significantly attenuated for initial infection and subsequent 

spread throughout the culture, suggesting a heightened requirement for RSV G for efficient 

in vivo infection. G-mediated attachment to cultured cells is dependent on 

glycosaminoglycans (GAGs) on the cell surface, most notably heparan sulfate (HS), and 

likely involves electrostatic interaction between G and GAGs, though requirements for GAG 

structural elements have been noted (76-79). Although interactions between G and HS have 

been well documented, HS is not detectable on the surface of primary well-differentiated 

models of the human airway epithelium (81), suggesting that G may interact with other 

GAGs present at the apical cell surface, such as keratan sulfate, or that GAG binding is not 

important for the attachment function of G in vivo.  

In these studies, biochemical characterization of G on the surface of virus produced 

by Vero cells, HEp2 cells, and HAE cultures demonstrated different electrophoretic mobility 

of G, suggesting differences in the maturity and processing of G during infection of these 
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cell-types. G contains 7 N-linked glycosylation sites and 24-25 O-linked glycosylation sites 

and it has been estimated that approximately half of the final 90 kDa molecular mass of 

mature G is due to O-linked glycosylation (85). Cell-type specific differences in 

electrophoretic mobility of G have been documented and associated with differences in 

glycosylation patterns (86, 87). We found that the 55 kDa form of G is predominant on virus 

derived from Vero cells and likely represents a processing intermediate, although differential 

cleavage of G may also result in this form. The 90 kDa protein on virus derived from HEp2 

cells is the mature, fully glycosylated form. Interesting, these studies reveal a larger form of 

G on virus produced by ciliated cells in HAE cultures. This 180 kDa form of G may be a 

homodimer of the same form of G found on HEp2-grown virus. An unglycosylated region in 

G contains four cysteines held together by disulfide bonds followed by a predicted heparin-

binding domain (204-206). Dimerization via this region may make the G homodimer resistant 

to reduction during Western blot analysis, allowing for electrophoretic mobility in the 180 

kDa range. Alternatively, the 180 kDa form of G may have additional or more extensive O-

linked carbohydrate chains added during processing of G in the ciliated cell. 

Maturation of G is associated with infectivity in cell lines (76, 85). Similarly, we found 

that the size of G greatly impacted RSV infectivity of HAE cultures, as viruses containing 

mature G derived from HEp2 cells are more infectious than viruses containing the smaller 

form of G derived from Vero cells. The impact of the increased size of G from viruses grown 

in HAE was not evaluated and future studies will aim to determine the glycosylation pattern 

of G and infectivity of virus from HAE. 

Vero cells are the only cell line approved by the World Health Organization for 

production of live-attenuated or inactivated vaccines. However, we found that infectivity HAE 

with RSV grown in Vero cells was significantly reduced compared to that of RSV grown in 

HEp2 cells. It is reasonable to speculate that attenuated vaccine candidates amplified in 
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Vero cells might infect humans inefficiently as well. In trials of attenuated vaccine 

candidates, escalating doses are used to identify the lowest dose that induces an adequate 

antibody response. Although Vero cell-grown attenuated vaccine candidates induce 

neutralizing antibodies in infants, we predict that vaccine candidates produced in a different 

cell line would require less inoculum to induce an equal antibody response. A lower 

inoculum may reduce side effects and respiratory symptoms that have plagued similar 

vaccine candidates and resulted in discontinuation. Lower inoculum would reduce exposure 

to non-replicating viral antigens, cell culture derived cytokines and chemokines, and other 

possible contaminants that may contribute to inflammation and respiratory symptoms of 

vaccinated infants. Attenuating changes in processing and glycosylation of viral attachment 

proteins of viruses produced in Vero cells may impact infectivity and immunogenicity of 

additional respiratory viral vaccine candidates as well.   

Due to the absence of IFN-α and –β genes, Vero cells are also extensively used in 

the laboratory to amplify viruses containing attenuating mutations. Indeed, we use Vero cells 

to amplify RSVΔNS1, RSVΔNS2, and RSVΔNS1/2 to sufficiently high inoculum for study in 

cell lines and HAE. These studies, however, indicate that RSV gene deletion mutants 

derived from Vero cell may be doubly attenuated. First, the G protein on these viruses does 

not allow for efficient initial infection of HAE cultures, resulting in fewer cells infected at day 

1 pi. Second, deletion of the NS proteins results in attenuated replication due to loss of type 

I IFN antagonism, leading to decreased replication and spread. Such low numbers of 

infected cells hamper studies of these deletion mutants in HAE. Thus, a cell line that would 

result in proper processing of G, allowing for efficient initial infection, while also supporting 

replication of attenuated viruses to high titers is needed.  

To address this need, we engineered Hep2 cells to be nonresponsive to IFN by 

stable expression of the IFN antagonist V protein of SV5, which blocks type I IFN signaling 
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by promoting degradation of STAT1 (207, 208). The engineered cell line HEp2-V 

demonstrated decreased IFN responses to exogenous recombinant IFNβ or infection with 

Sendai virus and supported viral replication, producing high viral yields of all RSV mutant 

viruses. 

Generation of cell lines which cannot respond to IFN may have direct relevance for 

vaccine development and laboratory amplification of viruses. Such IFN-nonresponder cell 

lines yield significantly higher titers of viruses, especially those that grow poorly in tissue 

culture due to attenuating mutations, and may be useful for production of live attenuated 

vaccine candidates. While Vero cells are currently used for this purpose, generation of an 

alternative cell line may produce higher yields and more infectious virus. Additionally, the 

IFN response is a major constraint preventing animal viruses from replicating in human cells, 

where function of IFN resistance genes is hindered due to species differences. For example, 

bovine RSV (bRSV) shows increased sensitivity to human IFN compared to human RSV 

and functional differences have been identified in the IFN antagonist proteins of bRSV 

compared to human RSV (209, 210). Therefore, cell lines nonresponsive to IFN may be 

used to isolate and amplify animal viruses or cultivate viruses that grow suboptimally in 

currently available cell lines. 

In summary, optimal RSV infection of the human airway epithelium requires the 

mature G protein and initial infection of HAE with viruses derived from Vero cells is 

inefficient due the predominance of a smaller form of G on the virus surface. To facilitate 

efficient infection of attenuated mutants of RSV, we engineered the HEp2-V cell line, which 

produced high yields of RSV NS deletion viruses and may be used to effectively amplify 

IFN-sensitive viruses for future study. Finally, these studies confirmed the importance of the 

RSV NS1 and NS2 proteins in circumventing the type I IFN response during the RSV life-
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cycle, as the attenuated replication phenotype of RSV NS1 or NS2 deletion mutants was 

almost completely rescued in IFN nonresponsive cell lines. 

2.5 Materials and Methods 

Cells 

Human airway epithelial cells were isolated by the UNC Cystic Fibrosis Center Cell Culture 

and Tissue Procurement Core from tracheobronchial airway specimens obtained from 

patients provided by the National Disease Research Interchange (NDRI, Philadelphia, PA) 

or as excess tissue following lung transplantation. All protocols were approved by the 

University of North Carolina at Chapel Hill Institutional Review Board. Primary epithelial cells 

derived from single patient sources were plated on permeable Transwell-Col supports (12-

mm diameter, Corning, Inc.) and grown in custom media at an air-liquid interface for 8 to 10 

weeks to form differentiated, polarized cultures as previously described  (211). HEp-2 

(ATCC, Manasass, VA) cell lines were grown in MEM (Gibco), 10% fetal bovine serum 

(FBS) and Vero cell lines in DMEM (Gibco), 10% FBS. Cells were incubated at 37oC in 5% 

CO2. 

Viruses  

Recombinant GFP-expressing RSV used in these experiments were RSV (strain A2) 

and mutants of this virus lacking the G glycoprotein genes designated RSVΔG (71). These 

viruses were provided by Drs. Mark Peeples and Steve Kwilas. Recombinant RSVΔNS1, 

RSVΔNS2, and RSVΔNS1/2 are derivatives of the A2 strain and were constructed and 

described previously (105, 106, 212, 213). These viruses were provided by Dr. Peter 

Collins. Each of these constructs express the green fluorescent protein (GFP) gene as an 

additional gene inserted between the RSV phosphoprotein (P) and matrix (M) genes. 

Recombinant Sendai virus (SeV) expressing GFP were described previously (214). All virus 

stocks and cells tested negative for mycoplasma by PCR (Intronbio, Seongnam-Si, Korea).  
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Virus inoculation and titer 

HAE cultures were rinsed with PBS 3 times over a 30 min period to remove apical 

secretions, and supplied with fresh basolateral media prior to inoculation. The virus 

inoculum was diluted to 6.2 x 106 pfu in100 μl HBSS (MOI ~10), applied to the apical surface 

of the HAE cultures for 2 hr at 37oC, after which the inoculum was removed by aspiration 

and cultures were incubated at 37oC. At indicated times post-inoculation, images were 

obtained using a Leica DMIRB inverted fluorescence microscope equipped with a cooled-

color charge-coupled-device digital camera (Retiga 1300; QImaging, Burnaby, BC, Canada). 

The proportion of the epithelium positive for GFP was determined by pixilating a black and 

white image, inverting the image, and calculating the percent black pixels by computer for 5 

images per culture and averaging. 

For growth of viruses in different cell types, monolayers of Vero, HEp2, or HEp2-V 

cells in 10cm dishes were washed with PBS and infected at a multiplicity of infection of 0.01 

PFU per cell for 2 hours at 37oC. Inoculum was aspirated, cells were washed and 10ml fresh 

media was added, and cells were incubated at 37oC for 3 days. To harvest virus, cell 

monolayers were scraped and combined with cell supernatant and vortexed at high speed to 

release cell-bound virus. Supernatant was clarified of cell debris by centrifugation and 

concentration of virus was determined on Vero cells by titration and counting GFP-positive 

cells 24 h post-inoculation. 

Construction of HEp2-V cells 

HEK 293 cells were transfected with the plasmids pdlNot1’SV5V’IRESpuro 

(described in (210)), pCMVR8.91, and pMD.G and, after 2 days, lentivirus in the supernatant 

was collected and purified by centrifugation. HEp2 cells were transformed with SV5V 

lentivirus and cultured in the presence of 1.25ug/ml puromycin to select for transformed 
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cells. HEp2-V cells were maintained in MEM (Gibco) supplemented with 10% FBS and 

1ug/ml puromycin. Plasmids were provided by Drs. Richard Randall and Daniel Young. 

Western blot 

 Virus produced from HEp2 and Vero cells was collected in tissue culture 

supernatants. Virus produced from HAE cultures was collected by performing apical surface 

washes with 300 μl of serum-free DMEM (Gibco) harvested at 30 min at 37oC. Samples 

were cleared of cell debris by low speed centrifugation, then lysed and reduced. Proteins 

were separated by electrophoresis on a 10% polyacrylamide gel containing sodium dodecyl 

sulfate (SDS-PAGE) (Invitrogen). Proteins were transferred to a nitrocellulose membrane 

(Invitrogen) and blocked with 5% non-fat milk-0.1% Tween 20. G protein was visualized by 

probing with the L9 antibody that recognizes the conserved central region of the G protein 

(215), followed by HRP-conjugated secondary (Jackson ImmunoResearch) and developed 

with SuperSignal West Pico Chemiluminescent Substrate (Pierce) and exposed to film. The 

L9 antibody was provided by Dr. Edward Walsh. 

IFN bioassay 

Type I IFN secretion produced by HEp2 and HEp2-V cells was determined by IFN 

bioassay as previously described (125). Briefly, clarified cell culture supernatants were 

treated at pH 2.0 at 4oC for 24h to inactivate virus and acid-labile type II IFN, and the pH 

was adjusted to 7.0. Type I IFN concentration was determined by measuring the restriction 

of replication of EMCV on A549 cell line monolayers after 24h in comparison to a known 

concentration of recombinant human IFNβ (Invitrogen). IFNβ standard and supernatants 

were serially diluted in duplicate in 96-well plate of A549 cells. At 24h pi, cells were washed 

and infected with EMCV at MOI = 5. After 24h of infection, bioassay plates were scored for 

50% cytopathic effect as an indicator of IFN concentration. The deduced IFN concentrations 

in test samples were expressed as international unit (IU) per ml. 
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qRT-PCR 

The levels of IFNβ mRNA in cells infected with SeV or treated with rhIFNβ were 

determined by quantitative reverse transcription (qRT)-PCR. Total intracellular RNA was 

extracted using the RNAeasy total RNA cell isolation kit (Qiagen). RNA was reverse 

transcribed using an oligo (dT) primers and SuperScript II reverse transcriptase (Invitrogen). 

Real-time PCR was performed using Taqman gene expression assays and an Applied 

Biosystems 7500 Fast Real-Time PCR System (Applied Biosystems). Each sample was 

internally normalized to GAPDH housekeeping gene. Signals from virus-infected or IFNβ-

treated samples were expressed as fold change over mock-inoculated or untreated 

samples. 

Statistical analysis 

Unpaired t-test and one-way analysis of variance (ANOVA) with Tukey’s post-test 

was performed as indicated. Statistical significance was defined as P<0.05 unless otherwise 

noted. 

 

 

 

 

 

 

 

 

 

 

 



36 
 

 

Figure 2.1. RSV requires the G protein for efficient infection of HAE. (A) Representative 

en face fluorescent images of HAE infected with RSVΔG (i) or RSV (ii) at 1 day pi. Both 

viruses express GFP. Scale bar represents 10 µm. (B) The number of cells in HAE infected 

over time by RSV (closed circles) or RSVΔG (open triangles), quantified as the percentage 

of the epithelium surface area positive for GFP fluorescence. Data (mean ± SEM) are n = 4 

cultures. 
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Figure 2.2 Infection of HAE with RSV amplified in Vero cells or HEp2 cells. (A) Western 

blot assay of virus released from HEp2 cells, Vero cells, or HAE cultures, probed with the L9 

antibody to detect G. (B) The number of cells in HAE infected over time by RSV amplified in 

HEp2 cells (closed circles) or RSV amplified in Vero cells (open squares), quantified as the 

percentage of the epithelium surface area positive for GFP fluorescence. Data (mean ± 

SEM) are n = 4 cultures. 
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Figure 2.3 Infection of HAE with RSV NS deletion mutants. The number of infected cells 

over time was quantified as the percentage of the epithelium surface area positive for GFP 

fluorescence in HAE inoculated with RSV (circles), RSVΔNS1 (squares), or RSVΔNS2 

(triangles). All viruses express GFP. Data (mean ± SEM) are representative of independent 

experiments utilizing n = 3-4 cultures per donor obtained from 3 different donors. 
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Figure 2.4 Characterization of HEp2-V cells. HEp2 cells were stably transfected with V 

from SV5. (A) Western blot analysis of whole cell lysates from HEp2 cells or HEp2-V cells 

probed with an antibody to detect the V protein. Detection of actin was used as a loading 

control. (B) Expression levels of IFNβ from HEp2 and HEp2-V cells treated with exogenous 

recombinant human IFNβ (rhIFNβ). Total RNA was extracted from cells without treatment or 

treated for 24 hours with 1000 IU rhIFNβ and gene expression levels were measured by 

qRT-PCR. Each sample was normalized to GAPDH and is expressed as fold change 

compared to untreated samples. Data (mean ± SD) represent n = 3 experiments. (C) IFNβ 

expression was measured as in (A) following infection with Sendai virus (SeV) at 24h pi. 

Data (mean ± SD) represent n = 3 experiments. (D) Type I IFN secretion from HEp2 and 

HEp2-V cells was determined by IFN bioassay following infection with SeV at 24h pi. Data 

(mean ± SD) represent n = 2 experiments For (B) – (D) significant changes in mRNA or 

secreted type I IFN between treated HEp2 compared to treated HEp2-V cells were 

determined by unpaired t test. *P<0.05 
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Table 2.1 Amount of infectious virus produced from HEp2, Vero, or HEp2-V cells.  

 

Virus 
Concentration of virus (PFU/ml) produced from: 

HEp2 Vero    HEp2-V 

  RSV 5 x 106 2 x 106 9 x 107 

  RSVΔNS1 < 103 6 x 106 3 x 107 

  RSVΔNS2 2.5 x 105 5 x 106 5 x 107 

  RSVΔNS1/2 < 103 2 x 106 3 x 107 
 

 

 

 

 

 

 

 

 

 



  

 

CHAPTER III 

THE RSV NS2 PROTEIN PROMOTES CYTOPATHIC EFFECT OF COLUMNAR CILIATED 

AIRWAY EPITHELIAL CELLS FOLLOWING RSV INFECTION  

 

3.1 Overview 

Respiratory syncytial virus (RSV) infection is the most important cause of 

bronchiolitis in infants and young children worldwide. However, the mechanisms by which 

RSV causes more severe disease compared to other commonly encountered respiratory 

viruses are poorly understood. In this study, we use a primary well-differentiated model of 

the human airway epithelium (HAE) to investigate the consequences of RSV infection of 

ciliated cells, the target cell population in HAE. These results show striking resemblance to 

RSV infection in infant lungs. Namely, infection was restricted to ciliated cell types, induced 

gene transcription of antiviral cytokines, caused rounding of infected cells, and resulted in 

shedding of infected cells from the airway epithelium. We further identify the RSV non-

structural 2 (NS2) protein as a unique viral genetic determinant for RSV-induced cell 

rounding, cilia degradation, and cell shedding. Sloughing of infected cells has been noted in 

infants with severe RSV-bronchiolitis, indicating that cell shedding occurs in vivo to enhance 

RSV disease and suggesting a previously unrecognized role for NS2 in RSV pathogenesis. 

 
 
 
 
 
 
 
___________________________ 
Sections of this chapter are under review for publication in the Journal of Clinical Investigation. 
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3.2 Introduction 

RSV is the most common virus causing acute and severe lower airway disease in 

infants and young children. RSV infection is responsible for spectrum of diseases ranging 

from upper respiratory tract illness resulting in common cold-like symptoms to severe lower 

respiratory tract illness resulting in bronchiolitis and pneumonia. In ~2% of cases, lower 

airway disease is severe enough to require hospitalization (5). Globally, an estimated 34 

million new pediatric cases of RSV-associated lower airway disease occur annually 

accounting for approximately 200,000 deaths, almost all occurring in developing countries 

with reduced access to standardized care (4). Despite the obvious impact of RSV infection 

on infant morbidity and mortality, treatment options remain limited to supportive care and no 

licensed RSV vaccine is currently available. The high incidence of RSV infection and the 

potential for severe distal airway disease in vulnerable young children combined with limited 

availability of therapeutic options identifies a significant clinical global need to reduce the 

burden of RSV-associated disease. 

RSV infects the mucosal epithelium lining the human respiratory tract, predominantly 

targeting the columnar epithelial cells of the conducting airways. In addition to providing a 

physical barrier to prevent penetration of pathogens, the columnar airway epithelium serves 

a mechanical innate defense function for clearing airways of inhaled pathogens by 

generating unidirectional mucus transport out of the airways, facilitated by synchronous cilia 

beat and regulated mucin secretion.  Precisely how RSV infection affects innate function of 

the columnar airway epithelium and how infection of columnar epithelial cells relates to 

subsequent RSV-associated disease is poorly defined.  

Severe RSV-associated bronchiolitis is characterized by wheezing, increased airway 

resistance, atelectasis, and hyperinflation (216). Increased proinflammatory cytokines, 

especially IL-8 and IL-1β, in nasophyngeal secretions and bronchoalveolar washes 
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positively correlated with disease severity (118, 133, 144). Histologic analyses of autopsy 

lung tissues from RSV-infected infants described epithelial cells sloughed into the airway 

lumen (117, 119, 161). Although the contribution of these sloughed cells to exacerbation of 

RSV-associated bronchiolitis was unclear, it was speculated that these intralumenal 

accumulations of infected and necrotic epithelial cells could contribute to airway obstruction 

and inflammation. 

The majority of studies on RSV pathogenesis utilized tissue culture cell lines or small 

animal models. Although these studies have provided valuable insight into RSV biology, the 

majority of animal models are only semi-permissive to RSV infection and cell lines do not 

accurately represent the highly polarized and structured nature of the ciliated cell, the target 

of RSV infection. Therefore, there is a need for a more complete understanding of the 

effects of RSV on the human airway epithelium. We have previously described an in vitro 

model of RSV infection of human cartilaginous airway epithelium (HAE) that recapitulates 

the cellular distribution and physiology of the human differentiated airway epithelium. Using 

this model, we and others have shown that RSV preferentially infects ciliated epithelial cells 

in HAE yet we are unable to detect infection of mucin-containing Goblet cells and basal cells 

(114, 115). Histologic studies of upper airways from RSV-infected patients also demonstrate 

the preferential tropism of RSV for ciliated cells, supporting our in vitro findings (117).  

Our previous studies demonstrated RSV infection of human ciliated cells in HAE was 

minimally cytopathic, at least within the first 48h of infection (115). The lack of direct RSV-

induced cytopathology was in contrast to the rapid and robust cytopathology documented in 

HAE infected by influenza viruses (217). We now expand our earlier studies with RSV to 

track the fate of RSV-infected ciliated cells over time to determine consequences of infection 

potentially important for pathogenesis. By determining the fate of RSV-infected ciliated cells 

in vitro, we identify a unique consequence of RSV infection whereby infected ciliated cells 
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rapidly transition from a columnar to a rounded cell morphology and are then extruded from 

the otherwise intact epithelium, resulting in detached, viable, virus-infected epithelial cells in 

the lumenal secretions of HAE. Using RSV gene deletion mutants, we attribute the function 

of cell rounding to the RSV non-structural 2 (NS2) protein. Gain-of-function experiments 

using recombinant parainfluenza virus (PIV3-GFP) engineered to express RSV NS2 (PIV3-

NS2) demonstrated that ciliated cells infected by PIV3-NS2, but not PIV3, became rounded 

and morphologically indistinguishable from RSV-infected ciliated cells. These studies 

provide the first description of the unique fate of RSV-infected columnar airway epithelial 

cells and identify the expression of a single RSV protein, RSV NS2, as promoting this event.  

 

3.3 Results 

Kinetics of RSV replication in HAE  

The kinetics of RSV infection of HAE were measured by inoculating the apical 

surface of cultures with a recombinant RSV expressing GFP inserted between the P and M 

genes (3x105 PFU; MOI ~1), and the numbers of GFP-positive cells and titers of released 

virus were determined every 24 h for 8 days. Representative en face images of GFP-

positive cells and quantification of the percentage of epithelium surface area positive for 

GFP across HAE obtained from multiple tissue donors are shown in Figure 3.1A and 3.1C, 

respectively. At 1 day post-inoculation (pi), RSV infection resulted in 5% of the epithelium 

surface area positive for GFP and over time the extent of infection steadily increased as 

virus infection spread, with 53% of the epithelium surface area being GFP-positive by day 4 

pi. Beyond 4 days pi, the numbers of GFP-positive cells declined rapidly and by day 8 pi, the 

extent of infection approximated the level of infection at 1 day pi. In agreement with previous 

studies, throughout infection, only ciliated cells expressed GFP, confirming RSV tropism for 

ciliated cells in this model. On average, ciliated cells represented ~90% of the surface 
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columnar epithelial cells in HAE, indicating ~60% of available ciliated cells were infected by 

RSV at the time of maximal infection (day 4).  

RSV titers in washes harvested from the apical surfaces of HAE paralleled the 

numbers of GFP-positive cells (Figure 3.1D). RSV titers steadily increased proportionate to 

the numbers of GFP-positive cells during the first 3 days of infection, reaching maximal titers 

by 4 days pi (2.6x106 PFU/ml). Once maximal, virus titers declined proportionate to the loss 

of GFP-positive cells and, by 8 days pi, virus titers had fallen by 2 logs compared to those at 

4 days pi (Figure 3.1D). The rapid net loss of RSV infection from HAE between 4 and 8 days 

pi suggests most of the RSV-infected ciliated cells were cleared from the epithelium during 

this period and, as HAE are pure populations of epithelial cells, that clearance of infected 

ciliated cells occurred in the absence of immune cell-mediated clearance mechanisms. 

HAE cultures remained intact based on gross visual inspection, as previously 

described (115, 125).  ZO-1 staining on uninfected and RSV infected ciliated cells indicated 

that tight juctions and membrane barrier integrity remained intact (Figure 3.1B). 

IFN and cytokine message following RSV infection  

 To characterize the innate immune response of the ciliated airway epithelium, we 

analyzed IFNβ and cytokine message levels over time following RSV infection of HAE 

compared to inoculation with UV-inactivated RSV. Because these cytokines are increased in 

RSV infection of both tissue culture cells lines as well as infants with severe disease (118, 

136, 142, 143), we chose to analyze IFNβ, CXCL10, IL-1β, IL-8, RANTES, and TNF-α 

(Figure 3.2). At 1 day pi, IFNβ, CXCL10, and RANTES were significantly increased 

compared to UV RSV, and by day 2 pi, all genes except IL-1β were significantly 

upregulated. Transcription of all genes analyzed peaked at 4 days pi, correlating with the 

time of peak infection of HAE, and began to decrease by 5 days pi, correlating with the 

decline in GFP positive epithelium. 
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A distinctive morphologic change in RSV-infected columnar airway cells 

To investigate how RSV-infected (GFP-positive) ciliated cells were cleared from 

HAE, we tracked the fate of infected ciliated cells over time in histologic sections of cultures. 

These studies revealed that RSV-infected ciliated cells underwent a distinctive morphologic 

transition from the native columnar cell morphology to a rounded cell morphology, with 

infected rounded ciliated cells visibly embedded among non-infected columnar cells (Figure 

3.3A). Ciliated epithelial cells in human cartilaginous airway epithelium and in HAE cultures 

are characteristically columnar with individual ciliated cells spanning the depth of the 

epithelium and the ciliated cell tail intercalating into the underlying basal epithelial cell 

layers. We speculate that transition of RSV-infected ciliated cells from columnar to rounded 

cell morphology likely involves release of the ciliated cell tail from the basal epithelial cell 

layer, resulting in the infected cell assuming a rounded shape. Only those ciliated cells that 

were GFP-positive (i.e., infected with RSV) exhibited rounded cell morphology, and no GFP-

positive cells were observed that retained the native columnar shape of ciliated cells, 

suggesting that ciliated cell rounding was a direct consequence of RSV infection. 

Ciliated cells infected by RSV also, over time, began to bulge from the epithelial layer 

into the lumenal compartment (Figure 3.3A). The bulging apical membranes of RSV-infected 

cells also progressively lost apical structural markers characteristic of ciliated cells, including 

cilia, as demonstrated by loss of beta-tubulin IV immunoreactivity (Figure 3.3Aiv-vi) and a 

marked thinning of the cytoskeletal terminal web of ciliated cells (see arrows, Figure 3.3Ai 

and iii).  Despite significant disruption of apical membrane structures in these bulging 

ciliated cells, the cells retained GFP fluorescence, suggesting plasma membrane 

permeability was not overtly compromised (Figure 3.3Aiv-vi).  High power transmission 

electron microscopy (TEM) studies of non-infected and RSV-infected HAE, fixed to preserve 

the hydrated external environment of the HAE lumenal surface, confirmed that RSV infection 
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resulted in the disintegration of apical membrane structures, most notably cilia shafts and 

microvilli (Figure 3.3B). Cytoplasmic cilia basal bodies, usually organized directly below 

emerging cilia shafts, were often disorganized in RSV-infected ciliated cells (Figure 3.3Biii, 

star).  Clouds of particulate matter in the external lumenal environment were composed of 

fragmented cilia and microvilli directly above bulging RSV-infected ciliated cells (Figure 

3.3Bii). It is reasonable to presume that these particulate clouds also contain progeny RSV 

virions and, on occasion, structures resembling RSV virions could be detected (Figure 

3.3Biii, arrow). More direct identification of RSV virions in these clouds was technically 

challenging, as immunogold labeling of virus proteins would not discriminate between 

infectious progeny virions and virus proteins associated with fragmented cellular debris. 

Shedding of epithelial cells from RSV-infected HAE 

To assess the fate of cells extruded from the epithelium, we examined histologic 

sections of non-infected and RSV-infected HAE fixed to preserve airway surface secretions 

that had accumulated over a 5-day period. These studies revealed that accumulated mucus 

secretions in non-infected HAE contained only low numbers of detached epithelial cells 

(Figure 3.4Ai). In contrast, RSV-infected cultures displayed a marked increase in the 

numbers of detached epithelial cells that were embedded in an increased layer of lumenal 

surface mucus secretions (Figure 3.4Aii). Although rounded and extruding epithelial cells 

showed no obvious morphologic evidence of cell death while associated with the epithelium, 

upon becoming fully detached from the epithelium shed cells showed evidence of apoptosis, 

characterized by morphologic criteria including pyknosis, karyorrhexis, and karyolysis. In 

addition to the increased cell content of the lumenal secretions, the epithelium of RSV-

infected cultures became irregular in appearance, largely due to the rounded morphology of 

infected ciliated cells remaining in the intact epithelium. An overall decrease in cilia also was 

noted in the RSV-infected epithelium.  
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We quantified the extent and kinetics of epithelial cell shedding from RSV-infected 

HAE cultures by determining the amount of double-stranded DNA (dsDNA) present in daily 

washes of the lumenal surfaces of non-infected and RSV-infected HAE (Figure 3.4B). Apical 

washes consistently contained an increased amount of dsDNA at day 1 pi for both non-

infected (mock-inoculated) and RSV-infected HAE, which we attribute to consequences of 

the inoculation procedure. However, by day 3 pi, there was a clear separation in the amount 

of dsDNA present in apical washes between RSV-infected and non-infected HAE, with 

amounts of dsDNA consistently increasing in the RSV-infected HAE cultures and reaching 

maximal levels at 5-7 days pi. In contrast, the amounts of dsDNA in apical washes from non-

infected HAE remained low and constant over the same time period. The increased dsDNA 

in apical washes closely correlated with the loss of GFP-positive epithelial cells from HAE 

(Figure 3.1B), indicating the usefulness of dsDNA as a marker for the numbers of shed 

epithelial cells in airway secretions in vitro.   

Overall, these observations suggest that the loss of GFP-positive cells from RSV-

infected HAE is predominately due to extrusion or shedding of the infected ciliated cells from 

the airway mucosa. While our studies clearly show that epithelial cells display signs of cell 

death after being shed, we were unable to determine the precise kinetics of cell death upon 

detachment of individual cells from the epithelium. We propose that RSV-infected ciliated 

cells remain viable during the shedding process and, once shed, undergo the process of 

detachment-induced apoptosis known as anoikis. Since the reduction of RSV titers in HAE 

paralleled the loss of GFP-positive cells, we propose that RSV-induced shedding of ciliated 

cells represents a primary mechanism for clearing RSV infection from a differentiated airway 

epithelium, at least in vitro. 
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Effects of RSV infection on mucociliary transport 

Extensive shedding of cells onto the lumenal surface of RSV-infected HAE suggests 

that, in vivo, this cellular material may be cleared from the airway lumen by mechanical 

clearance mechanisms, such as mucociliary transport and cough clearance. In vitro, we 

often observed GFP-positive cells shed into the HAE lumenal secretions being be 

transported across the surface of cultures. Since directional transport of airway secretions in 

HAE is dependent on coordinated cilia beat, the potential impact of RSV infection on the 

effectiveness of cilia function is an important consideration when assessing the contribution 

of mechanical clearance to resolution of infection. We tested the ability of HAE to perform 

directional transport of particulates present in airway secretions by measuring mucociliary 

transport (MCT) rates of 1 µm fluorescent beads transported across the lumenal surface of 

HAE (Figure 3.4C). For non-infected HAE, MCT rates of ~40 µm/sec were maintained for 6 

consecutive days of experimental analysis. For RSV-infected HAE, MCT rates approximated 

those of non-infected HAE during the first 2 days of RSV infection, despite infection of ~20% 

of the epithelium surface. However, by 3 days pi, RSV-infected HAE demonstrated a 

significant decline in MCT rate and by day 4 pi, when typically ~60% of the epithelium 

surface was infected, MCT rates had fallen drastically to below 5 µm/sec. By 5 days pi, bead 

transport in RSV-infected HAE had ceased.  

To determine whether loss of MCT after RSV infection was directly associated with 

loss of cilia function, we also quantified the percentage of the epithelium surface which 

displayed beating cilia at each time-point (Figure 3.4D). In non-infected HAE, ~90% of the 

epithelium surface displayed active cilia and this level was maintained over 6 consecutive 

days of analysis. A similar extent of cilia activity was measured during the first 2 days of 

RSV infection, indicating that cilia activity of infected cells was not affected early during 

infection, similar to our previous findings (115). However, beginning at 3 days pi, the area of 
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active cilia progressively declined, resulting in only 38% of the epithelium surface displaying 

active cilia by 5 days pi and 10% by 6 days pi. Combined, these results show that within the 

first few days of infection, RSV does not significantly impact the ability of the ciliated 

epithelium to perform MCT. However, as increased numbers of cells were infected and 

infection of individual cells resulted in apical membrane cytopathology, RSV infection can 

abolish MCT. We noted that at 3 and 4 days pi, although the area of cilia activity was high, 

MCT rates had rapidly declined. Such declines in MCT rate prior to significant losses in cilia 

activity may be explained by subtle but deleterious effects of RSV infection on coordinated 

cilia beat, such as cilia beat asynchrony in infected ciliated cells, and subsequent disruption 

of unidirectional transport. Taken together, these data suggest that, at least up until 3 days 

pi, RSV-infected HAE cultures maintain sufficient MCT to transport infected cells shed on to 

the airway surface and that cell shedding followed by MCT may represent a previously 

unidentified mechanism by which RSV infection is cleared from the airways. 

Cell rounding is unique to RSV among a number of common paramyxoviruses 

We also investigated whether the rounding of ciliated cells following RSV infection 

occurs following infection with other respiratory viruses known to infect ciliated cells in HAE. 

Ciliated cells infected by parainfluenza virus (PIV) serotypes 1, 2, 3, or 5, Sendai virus 

(SeV), or human metapneumovirus (HMPV) failed to exhibit ciliated cell rounding (Figure 

3.5A and data not shown). As an index of cell rounding, we measured the height of GFP-

positive cells using confocal microscopy xz sections. Ciliated cells infected by RSV were 

significantly shorter, due to cell rounding, than those infected by the other GFP-expressing 

respiratory viruses that were tested (Figure 3.5Aiv). Although we noted ciliated cells infected 

with PIV3 were somewhat shorter than those infected with PIV5, SeV, or HMPV, PIV3-

infected cells did not exhibit RSV-like rounding of infected cells, and instead appeared to 

remain associated with the underlying basal epithelial cells. Since our studies utilized a 
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recombinant RSV A2 strain expressing GFP, we confirmed that cell rounding was not an 

artifact of the recombinant virus or expression of GFP, as a recombinant RSV without GFP 

(GP1), the biologically-derived RSV from which the recombinant was generated (HEp-4), 

and a wild-type RSV strain of subgroup B all caused rounding of infected ciliated cells 

identical to the recombinant GFP-expressing virus (data not shown). Because studies have 

described phenotypic differences between highly passaged RSV strains and clinical 

isolates, we confirmed that a recently isolated, minimally passaged, clinical strain of RSV 

(RSV Memphis 37) caused infected ciliated cells to round with morphology indistinguishable 

from those cells infected by recombinant GFP-expressing RSV (Figure 3.5Ai and ii). Overall, 

these data suggest ciliated cell rounding is a unique consequence of RSV infection. 

Columnar cell rounding is associated with expression of the NS2 gene 

 We speculated that the unique morphologic phenotype induced in ciliated cells by 

RSV infection might be due to the expression of specific RSV genes. We explored this 

possibility by infecting human ciliated cells with recombinant, GFP-expressing RSVs from 

which individual viral genes had been deleted. These studies revealed that infection of 

ciliated cells by a mutant RSV with deletion of the two non-structural genes, NS1 and NS2 

(RSVΔNS1/2), failed to cause rounding of infected ciliated cells (Figure 3.5Biv). Instead, 

ciliated cells infected with this mutant retained the native columnar morphology and 

resembled the morphology of ciliated cells infected by other respiratory viruses, such as 

PIV3. Evaluation of RSV mutants deleted individually of NS1 or NS2 genes (RSVΔNS1 and 

RSVΔNS2) showed that RSVΔNS1 infection induced ciliated cell rounding in a manner 

indistinguishable from that of RSV expressing a full complement of RSV genes, suggesting 

NS1 was not responsible for the cell rounding phenotype (Figure 3.5Bii and iv). In contrast, 

ciliated cells infected by RSVΔNS2 did not round and instead maintained a columnar 

morphology identical to that after RSVΔNS1/2 infection (Figure 3.5Biii and iv).  These 
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differential effects of the NS deleted viruses were not due to significant differences in mutant 

virus replication, as both RSVΔNS1 and RSVΔNS2 were similarly attenuated for replication 

compared to RSV in cell-lines (104)  and HAE (Figure 2.3). Overall, these experiments 

indicate that expression of NS2, in the context of RSV infection, is necessary for RSV-

induced ciliated cell rounding.  

 To determine if a specific, known domain in the NS2 protein was associated with 

rounding, we infected HAE with a series of mutants containing deletions in the NS2 protein. 

Serial 5 – 10 amino acid deletions were introduced into the NS2 protein, and an N-terminal 

HA tag was added to facilitate detection of the NS2 protein (Figure 3.6B). Deletion of the 

first 20 amino acids of the N-terminus of NS2 had no effect on the ability of the virus to 

cause cell rounding, and cells infected by these mutants were morphologically identical to 

cells infected by wild-type RSV (Figure 3.6A, C NΔ10, NΔ20, NΔ10-20). However, deletion 

of the first 5 amino acids of the C-terminus or deletions within the internal section of NS2 

ablated the ability of RSV to cause infected cell rounding, and the morphology of cells 

infected by these mutants resembled RSVΔNS2-infected cells (Figure 3.6A, C NΔ30-40, 

NΔ40-50, NΔ50-60, NΔ84-94, CΔ10, CΔ5). All deletion mutants were attenuated for 

replication in HAE. Expression of NS2 was confirmed in HEp-2 cells by western blot (data 

not shown). 

Expression of NS2 by recombinant PIV3 mimics RSV-induced cell morphology 

To investigate whether RSV NS2, in the absence of other RSV genes, was sufficient 

to induce rounding of virus-infected ciliated cells, we took advantage of our findings that 

ciliated cells infected by PIV3 retained columnar morphology. Since PIV3, like RSV, 

exclusively infects ciliated cells in HAE cultures, we used PIV3 to deliver RSV NS1, NS2, or 

both genes to ciliated cells in the absence of other RSV genes. We engineered recombinant 

PIV3 containing the GFP gene to express NS2 (PIV3-NS2), NS1 (PIV3-NS1), or both NS1 
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and NS2 (PIV3-NS1/2) and assessed consequences of infection compared to PIV3 

expressing GFP alone.  In each case, GFP was inserted between the P and M genes, and 

the RSV gene(s) were inserted between the HN and L genes. These recombinants were 

readily recovered, and infection and growth was assessed in non-polarized epithelial cell-

lines and HAE cultures. In non-polarized epithelial cell-lines, recombinant PIV3 viruses 

expressing RSV NS genes and GFP were slightly attenuated for growth compared to PIV3 

expressing GFP alone (data not shown). Similar to the phenotype observed in cell lines, in 

HAE, all 3 PIV3 viruses expressing RSV NS genes exhibited modest growth attenuation 

compared to PIV3, despite similar levels of infection at 1 day pi (Figure 3.7A). PIV3-NS2 and 

PIV3-NS1 exhibited similar growth attenuation in HAE, replicating to ~1-log lower titers than 

PIV3 at 3 days pi, the time of peak replication. PIV3-NS1/2 was more severely attenuated, 

producing 2-logs lower titers than PIV3 at the time of peak replication. This observed 

attenuation presumably reflected the increased genome length and gene number of the 

PIV3 viruses with inserted RSV NS genes, although the formal possibility exists that the 

RSV NS proteins had direct inhibitory effects on replication.  

 In HAE cultures, ciliated cells infected by PIV3 or PIV3-NS1 maintained native 

columnar morphology, whereas ciliated cells infected by PIV3-NS2 or PIV3-NS1/2 

underwent cell rounding, with significantly shortened cell heights (Figure 3.7B, C). The 

observation that PIV3-NS1/2 and PIV3-NS2 caused cell rounding indistinguishable from that 

caused by RSV suggested NS2 mediated this effect independent of the expression of NS1 

or other RSV proteins.  

NS2 expression adversely affects lumenal surface structures and functions of ciliated 

cells  

Closer examination of ciliated cells infected by PIV3-NS2 or PIV3-NS1/2 showed that 

the ultrastructural features of the apical domains of infected ciliated cells were altered in a 
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manner similar to RSV-infected cells. Characteristics of RSV-infected ciliated cells such as 

bulging apical membranes, thinning of the terminal web, and loss of cilia and microvilli were 

evident in, and indistinguishable between, cells infected with RSV, PIV3-NS2, and PIV3-

NS1/2 (Figure 3.8A).  

Functional studies were performed to measure the extent of cilia activity in HAE 

infected by recombinant viruses. These results demonstrated that, for the first 4 days pi, 

PIV3-NS2 and PIV3-NS1/2 infection resulted in a marked decline in the surface area of 

epithelium displaying cilia activity (Figure 3.8B). In contrast, PIV3 infection did not cause a 

decline in cilia activity until 5 days pi. PIV3-NS1, despite robust replication, had little effect 

on cilia activity within the 6 days of experimental analysis. These data suggest PIV3 

infection is not as cytopathic to cilia activity as PIV3-NS2, indicating NS2-promoted cell 

rounding may also be associated with disruption of cilia or cilia scaffolding complexes in 

infected cells.  We also noted the reduced cilia cytopathology observed with PIV3-NS1 

infection compared to PIV3, suggesting NS1 may further reduce even the moderate 

cytopathology evident after PIV3 infection. These findings are intriguing as they point to 

divergent effects of RSV NS1 and NS2 on ciliated cell cytopathology.    

IFNβ and cytokine changes in HAE infected by PIV3, PIV3-NS1, and PIV3-NS2 

 PIV3 encodes viral proteins to block cellular innate immune responses, although 

infection of HAE induces cytokine secretion at later timepoints (218). We therefore 

determined if addition of NS1 or NS2 into wild-type PIV3 would have an additive effect on 

suppression of IFN and cytokine expression. Due to subtle but potentially significant 

differences in replication and spread of these viruses, we focused on the early timepoint 18 

hours pi, accounting for changes in gene expression in cells infected prior to several rounds 

of replication and spread.   
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 At 18 hours pi, message for PIV3-N was detectable in HAE infected by PIV3, PIV3-

NS1, and PIV3-NS2, confirming active replication of the virus (Figure 3.9A). Interesting, N 

levels were significantly higher in PIV3-NS2 infected cultures compared to PIV3 despite 

equal inoculum. It is unclear from these studies whether greater numbers of cells were 

infected by PIV3-NS2 or whether PIV3-NS2 message is expressed at greater levels within 

individual cells compared to PIV3 or PIV3-NS1. Infection with each virus resulted in IFNβ 

message levels elevated over mock-infected cultures, although there were no significant 

differences between PIV3, PIV3-NS1, or PIV3-NS2 (Figure 3.9B). IL-8 message levels were 

not elevated over mock-inoculated cultures following infection with PIV3 or PIV3-NS1 

(Figure 3.9C). However, PIV3-NS2 infection resulted in a 15-fold increase in IL-8 message. 

While it is possible that the increase in IL-8 message was a direct result of increased PIV3-

NS2 replication, normalization of IL-8 signal to PIV3 N signal in PIV3-NS2 infected cultures 

resulted in over a 6-fold increase in message. We also found CXCL10 message levels were 

increased following infection with all viruses, though PIV3-NS2 resulted in increased 

message levels compared to PIV3 or PIV3-NS1 (Figure 3.9D) 

 

3.4 Discussion 

In this study, we used cultures of primary human pseudostratified airway epithelial 

cells (HAE), which closely resemble the epithelium of authentic airway tissue, and show that 

RSV infection of human ciliated cells resulted in the development of a rounded cell 

morphology and distinct apical surface cytopathology, followed by extrusion of the infected 

cells from the epithelium. This effect was not observed with PIV3 or several other respiratory 

paramyxoviruses that target ciliated cells. Once shed, RSV-infected epithelial cells became 

incorporated into airway secretions, underwent apoptosis, and were then transported across 

the airway surface by coordinated cilia beat.  
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The use of RSV gene-deletion mutants demonstrated that these effects were 

dependent on the expression of the RSV NS2 protein. Specifically, whereas ciliated cells 

infected by RSV became rounded, ciliated cells infected with RSVΔNS2 remained columnar 

and embedded within the intact epithelium. Because PIV3 also targeted ciliated cells but did 

not cause the cell rounding phenotype, we used PIV3 as a vector to express RSV genes in 

ciliated cells. Infection of ciliated cells in vitro with PIV3 engineered to express RSV NS2 

(PIV3-NS2) resulted in infected cell morphologic changes indistinguishable from ciliated 

cells infected by RSV, whereas cells infected with PIV3 or PIV3-NS1 remained columnar. 

Findings from both RSV deletion mutants and PIV3 expressing individual RSV genes 

indicated that the induction of this novel ciliated cell morphologic phenotype was unique to 

RSV, and that expression of RSV NS2 in the context of an RSV or PIV3 infection was 

sufficient to induce this phenotype in ciliated cells.  

To identify the functional domain within NS2 responsible for cell rounding, we 

infected HAE with RSV containing sequential deletion mutations within the NS2 protein. 

Viruses with deletion of amino acids 30-40, 40-50, 50-60, and 84-94, relative to the N-

terminus of NS2, are unable to induce cell rounding and retain the native columnar 

morphology, identical to cells infected with RSVΔNS2. Although NS2 expression following 

infection of HEp2 cells with these RSV deletion mutants has been confirmed by western 

blot, we have not yet confirmed expression in ciliated cells. Thus, it is also possible that 

deletion of internal sections of the NS2 protein resulted in protein degradation or 

malfunction, resulting in complete loss of NS2 function. Deletion of the first 5 or 10 amino 

acids from the C-terminus of NS2 also results in a loss of cell rounding. Little is known about 

the functional domains within the NS2 protein, although Swedan and coworkers 

demonstrated that deletion of the C-terminal 10 amino acid residues of NS2 abrogated the 

ability of NS2 to decrease STAT2 levels and impaired the NS2-mediated response to 
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exogenous IFNβ (95). Because the C-terminus of NS1 and NS2 are relatively well 

conserved, with both containing the same DNLP amino acid tetramer followed by an 

aromatic residue (F/Y), it would be interesting if these regions had differing signaling 

functions in the context of infection. Future studies of these mutants to determine 

differences in NS2 expression, viral replication, and NS2 function will contribute to the 

understanding of the functions of NS2 in infected ciliated cells.  

Previous studies have demonstrated that the RSV NS proteins enhance viral 

replication. Recombinant RSV deleted for one or both NS genes resulted in viruses with 

severely attenuated growth in vitro and in vivo (93, 107, 219). Deletion of either the NS1 or 

NS2 gene attenuated human RSV in chimpanzees (106, 107). The NS proteins have also 

been shown to interfere with a number of antiviral host responses aimed at reducing the 

extent of virus replication, most notably type I and III interferon (IFN) pathways. The 

mechanisms by which NS1 and NS2 inhibit IFN responses are complex, involving both 

coordinated and independent functions of the NS proteins (93-95, 98, 100). Both proteins 

have also been implicated in inhibiting apoptosis (92) and RSV NS2 was reported to 

enhance induction of NF-kB (104). Although some effects of the NS proteins appear to 

involve synergy between NS1 and NS2, this did not appear to be the case in the present 

study. Here, the cell morphologic and shedding phenotype attributed to RSV NS2 appeared 

to be independent of, and unaffected by, NS1. While the precise mechanism of NS2-

induced morphologic consequences remains unknown, we speculate that these events are 

not directly related to the ability of NS2 to modify interferon responses.   

Destruction of apical cilia structures and shedding of infected cells following RSV 

infection resulted in a net decline in the epithelial surface area with active cilia. Coordinated 

cilia beat is required for effective transport of particles across the airway surface and, as 

expected, a marked decline in mucociliary transport (MCT) rate was observed following RSV 
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infection. Interestingly, MCT rate began to decline prior to loss of ciliated epithelium, where, 

at day 4 pi, although ~60% of the epithelium displayed active cilia, MCT rate was drastically 

reduced. We therefore suggest that two processes modulated the RSV-mediated decline in 

MCT rate. First, RSV infection of an individual ciliated cell leads to degradation of the cilia 

apparatus before the infected cell is extruded from the epithelium. Ciliary dyskinesia and 

asynchronous cilia beat of infected cells disrupt unidirectional flow, resulting in local 

decreases in mucociliary transport. Second, as infection spreads, increased numbers of 

cells experience ciliary dyskinesia and the process of cell shedding removes ciliated cells 

from the epithelium. As fewer uninfected ciliated cells are available to provide for cilia beat, 

noted by a decrease in percentage of ciliated epithelium, MCT is abolished and RSV-

infected HAE are unable to transport shed cells across the airway epithelium. These factors 

are also likely to impair mucociliary clearance in vivo. 

 Unusual epithelial cell morphology and sloughing of virus antigen positive cells has 

been described for RSV-infected humans and bovine RSV-infected calves (116, 119, 161). 

The loss of cilia and disorganization of cilia basal bodies was reported in a bovine model of 

RSV infection, as we have noted in human ciliated cells infected by RSV and PIV3-NS2 

(116).  Ciliary dyskinesia and damage have also been reported in RSV-infected primary 

human ciliated cultures (175). Thus, in in vivo models of RSV infection and retrospective 

analysis of RSV-infected human lung tissue, shedding of virus infected epithelial cells and 

degradation of the cilia apparatus appear to be a characteristic of RSV infection.  

The mechanism by which RSV NS2 exerts its effects on epithelial cell rounding and 

shedding remains to be explored. Comparison of PIV3-NS2 infection of epithelial cell-line 

monolayers with PIV3 or PIV3-NS1 did not reveal a morphological phenotype specific to 

RSV NS2 (data not shown), suggesting the differentiated state of the columnar airway 

epithelial cells is a critical component of RSV N2-induced cell rounding. The use of 
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differentiated airway models such as HAE will therefore be critical in understanding how 

RSV NS2 modifies airway epithelial cells, resulting in shedding of infected cells into the 

airway lumen.  

The innate inflammatory response plays a critical role in RSV disease and 

recruitment of leukocytes to regions of infection occurs following secretion of 

chemoattractants, including IL-8, CXCL10, and RANTES. These cytokines are detected at 

elevated levels in nasophyngeal secretion and bronchoalveolar aspirates of infants 

experiencing RSV-associated bronchiolitis (143, 181). Elevated IL-8 levels in nasal washes 

are associated with more severe disease (144) and neutrophils, recruited by IL-8, are the 

major type of leukocyte detected in the airway of RSV-infected infants (180). Although these 

cytokines are secreted by a number of cell types, upreglation of IL-8, CXCL10, and 

RANTES gene expression in HAE following RSV infection suggests that ciliated cells play 

an important role in the recruitment of leukocytes. Interestingly, PIV3-NS2 infection of HAE 

results in more robust upregulation of IL-8 gene expression compared to PIV3 at 18 hours 

pi, suggesting a role for RSV NS2 in upregulation of IL-8. IL-1β secretion in nasophryngeal 

washes has also been positively correlated with RSV disease severity (133). In HAE, IL-1β 

gene transcription is elevated only a single timepoint, 4 days pi, suggesting other cell types, 

such as macrophages, may responsible for this increase. However, because we determined 

gene transcription, rather than protein secretion, cleavage of endogenous IL-1β precursor 

and secretion of mature IL-1β from the epithelium may occur in the absence of gene signal 

changes. In infected HAE, proinflammatory cytokine secretion may occur from infected cells 

as a direct result of viral replication or following paracrine activation of uninfected 

surrounding cells. These message studies do not differentiate between gene transcription in 

infected versus uninfected cells and we therefore cannot unequivocally determine the 

infection status and cell type responsible for driving cytokine secretion following RSV 
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infection. Regardless, these findings provide addition evidence for the central role of airway 

epithelial cells in modulating the inflammatory response following RSV infection. 

 In summary, we present evidence that infection of ciliated cells in a model of the 

human airway epithelium by RSV, but not by several other common respiratory 

paramyxoviruses, results in cell rounding, disruption of the cilia apparatus, active shedding 

of individual infected cells, and delay of apoptosis until infected cells are shed from the 

epithelium. We also demonstrate that infection of HAE results in increased gene 

transcription of proinflammatory cytokines associated with severe RSV-associated 

bronchiolitis. Thus, the consequences of RSV infection of HAE reflect several important 

characteristic hallmarks of RSV disease in infants. By performing loss-of-function and gain-

of-function experiments, we attribute these consequences of infection to the RSV NS2 

protein. We suggest that the NS2 protein is an important pathogenesis factor for RSV 

disease and may represent a therapeutic target to dampen disease severity. 

 

3.5 Materials and Methods 

Cells 

Human airway epithelial cells were isolated by the UNC Cystic Fibrosis Center Cell 

Culture and Tissue Procurement Core from tracheobronchial airway specimens obtained 

from patients provided by the National Disease Research Interchange (NDRI, Philadelphia, 

PA) or as excess tissue following lung transplantation. All protocols were approved by the 

University of North Carolina at Chapel Hill Institutional Review Board. Primary epithelial cells 

derived from single patient sources were plated on permeable Transwell-Col supports (12-

mm diameter, Corning, Inc.) and grown in custom media at an air-liquid interface for 8 to 10 

weeks to form differentiated, polarized cultures as previously described (211). HEp2 cells 

(ATCC) were maintain in MEM (Gibco) supplemented with 10% fetal bovine serum. LLC-
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MK2 cells (ATCC) were maintained in DMEM (Gibco) supplemented with 10% fetal bovine 

serum. 

Viruses  

All viruses used in this study were derived from cDNA (recombinant) and contain a 

GFP insertion as an additional gene unless otherwise stated.  

Recombinant human metapneumovirus (HMPV; strain CAN97-83), parainfluenza 

virus 5 (PIV5; strain W3A), and Sendai virus (SeV) were described previously (214, 220, 

221) and were provided by Drs. Peter Collins, Robert Lamb, and Daniel Kolakofsky, 

respectively. RSV Memphis 37 strain was isolated from a pediatric case of bronchiolitis and 

has been described previously (178). This virus is a primary low-passage clinical isolate, not 

a recombinant virus, and does not express GFP. This virus was provided by Dr. John 

DeVincenzo. 

Wild-type RSV, RSVΔNS1, RSVΔNS2, and RSVΔNS1/2 are derivatives of the A2 

strain and were constructed and described previously (105, 106, 212, 213). These viruses 

were provided by Dr. Peter Collins. Each of these RSV constructs express the green 

fluorescent protein (GFP) gene as an additional gene inserted between the RSV 

phosphoprotein (P) and matrix (M) genes. Wild-type RSV and all mutants were amplified in 

HEp2 cells stably expressing the V gene from SV5 (210). 

RSV viruses containing deletions of the NS2 gene are derivatives of the A2 strain 

and were constructed and provided by Michael Teng. An HA tag has been added to the N-

terminus of the NS2 gene in each of these constructs. These viruses were amplified in HEp2 

cells and do not contain a GFP gene insertion. 

PIV3 is a derivative of the JS strain engineered to express the GFP gene as an 

additional gene inserted between the PIV3 phosphoprotein (P) and matrix (M) genes, as has 

been described previously (81, 222). Codon-optimized RSV NS1 or NS2 genes were 
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synthesized (DNA2.0) and inserted into the PIV3 viral genome between the hemagglutinin-

neuraminidase (HN) and viral polymerase (L) genes using cloning methods similar to those 

previously used to express CFTR and rhAFP in this genome region (223, 224). A unique 

EagI restriction site was generated in the non-coding region downstream of the HN gene in 

the PIV3 subgenomic cDNA. The NS1 or NS2 coding sequence was amplified by RT-PCR 

from plasmids expressing codon-optimized NS1 or NS2 , cloned into a pCR-Blunt II-TOPO 

vector (Invitrogen), and sequenced. The following primer sets were used: NS1 sense (5’-

CCGCGGCCACCATGGGCAGCAATAGTCTC-3’), NS1 antisense (5’-

GGGCCCGAGTTATGGGTTCAGGTCAA-3’), NS2 sense (5’-

CCGCGGCCACAATGGATACCACGC-3’), and NS2 antisense (5’-

GGGCCCCTCGAGTCAAGGGTTCAA-3’). The underlined portions represent SacII and ApaI 

restriction sites. Using the SacII and ApaI restriction sites, NS1 or NS2 was inserted into a 

vector following a linker sequence consisting of the PIV3 gene-end, intergenic, and gene-

start transcription regions, flanked at both ends by EagI sites. This cassette was then 

inserted using the EagI sites into the full-length PIV3GFP antigenomic cDNA and the 

resulting genomes were designated PIV3-NS1 or PIV3-NS2. A PIV3 genome expressing 

both NS1 and NS2 was also generated by inserting the RSV NS1 and NS2 genes together 

into PIV3 between the HN and L genes using similar methods. From the linker vector 

containing NS1, a sequence consisting of the EagI restriction site, PIV3 linker region, and 

NS1 gene was PCR amplified using the NS1 sense primer (5’-

CGAATTGGCGGCCGAAAATA-3’) and the NS1 antisense primer (5’-

CAGGAGTTCAGCACGATGGGGGCCCGAGTTATGGGT-3’), destroying the 3’ EagI site 

and creating an 18bp overhang. From the linker vector containing NS2, a sequence 

consisting of the PIV3 linker region, the NS2 gene, and the EagI restriction site was 

amplified using the NS2 sense primer (5’-
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GCTGAACTCCTGCATCGTAAAATAAGAAAAACTTAG-3’)  and the NS2 antisense primer 

(5’-ACTTGGCCCAAGCTTGAGTA-3’), destroying the 5’ EagI site and adding the 

complementary 18bp overhang. These 2 fragments were combined in a fusion reaction 

using the NS1 sense and NS2 antisense primers and the resulting fragment was cloned into 

a pCRBluntII TOPO vector (Invitrogen) and sequenced. The final fragment consisted of a 

PIV3 linker region, the RSV NS1 gene, a second PIV3 linker region, and the RSV NS2 

gene, flanked by EagI sites. This cassette was then inserted using the EagI sites into the 

full-length PIV3GFP antigenomic cDNA, creating PIV3-NS1/2. Each insert was designed to 

retain the “rule of six” required for PIV3 genome replication. All viruses were rescued and 

amplified in LLC-MK2 cells using methods described previously (222) and sequenced.  

Viral inoculations and growth 

The apical surfaces of HAE were rinsed with PBS to remove excess airway 

secretions. Virus inoculum diluted in serum-free DMEM (Gibco; 100 µl per 12 mm well) was 

applied to the apical surface of HAE for 2 hrs at 37°C then removed by aspiration and the 

apical surfaces rinsed with PBS, and cultures incubated at 37°C. Viral growth kinetics were 

determined by performing apical surface washes with 300 µl of serum-free DMEM which 

were harvested after 30 min at 37oC and stored at −80°C until analysis. RSV viral titers in 

the apical washes were determined on HEp2 cells by titration and counting GFP-positive 

cells 24 h post-inoculation. PIV3 viral titers were determined by a 50% tissue culture 

infectious dose (TCID50) assay on LLC-MK2 cell monolayers, with positive wells scored by 

GFP expression. En face fluorescent images of GFP-positive cells in HAE were captured 

using a Leica DMIRB Inverted Fluorescent Microscope equipped with a Retiga 1300 CCD 

camera (Q-Imaging). The proportion of the surface area of epithelium positive for GFP was 

determined by pixilating a black-and-white image and calculating the percentage of black 

pixels using ImageJ software (NIH) for five fields per culture and averaging the results. 
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Histology and immunoprotocols  

Tight junctions were visualized by fixing HAE in 4% paraformaldehyde in PBS 

followed by permeabilization with 1.5% Triton-X100 in PBS. Immunodetection of ZO-1 was 

performed by blocking cultures in 3% bovine serum albumin (BSA) in PBS followed by 

incubation with a primary antibody against ZO-1 (mouse monoclonal, Invitrogen). 

Immunoreactivity was detected using an anti-mouse secondary conjugated to Alexafluor 594 

(Molecular Probes). En face images were captured on a Leica SP5 confocal microscope.  

For histological analysis, HAE fixed in 4% paraformaldehyde in PBS were paraffin 

embedded and 5 µm thick histological sections prepared. Sections were stained with 

hematoxylin and eosin (H&E) or Richardson’s stain. Immunodetection of RSV antigen and 

β-tubulin IV was performed by blocking sections in 3% bovine serum albumin (BSA) in PBS 

followed by incubation with primary antibodies against GFP (rabbit polyclonal; Abcam) and 

β-tubulin IV (mouse monoclonal; Sigma).  Immunoreactivity was detected using an anti-

rabbit IgG conjugated to Alexafluor 488 and an anti-mouse IgG conjugated to Alexafluor 594 

(Molecular Probes). In cases when we wished to preserve and visualize apical secretions of 

HAE, cultures were fixed in the alcohol-based fixative Omnifix (FR Chemical) as previously 

described (225) and stained with H&E. Immunohistochemistry for viral antigen were 

performed by blocking sections in 3% BSA and incubation with primary antibodies against 

RSV (anti-RSV goat polyclonal; Meridian Life Sciences) or PIV3 (anti-PIV3 rabbit serum 

raised against sucrose-gradient-purified PIV3; (226)). Immunoreactivity was detected using 

anti-goat or anti-rabbit secondary antibodies conjugated to horseradish peroxidase (HRP), 

visualized using 3,3’-diaminobenzidine (Sigma), and counterstained with hematoxylin. For 

transmission electron microscopy studies, HAE were fixed in glutaraldehyde solution 

followed by an osmium tetroxide solution to preserve the hydrated external environment of 

the HAE, as previously described (225), and visualized using standard TEM techniques. 
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Morphometric analysis of cell height and airway occlusion 

XZ confocal images were acquired using a Leica SP5 confocal microscope. XZ 

images through the tallest region of a GFP-positive infected cell in fixed but unprocessed 

HAE cultures were imported into ImageJ software (NIH) where pixel height was measured 

and converted to microns using the electronic magnification measurement bar from the 

confocal image. A minimum of 100 infected cells were measured from at least 3 individual 

donors. 

qRT-PCR 

 Cytokine gene expression at the mRNA level was determined by quantitative reverse 

transcription PCR (qRT-PCR). HAE were harvested at time points indicated and stored in 

RNAzol at −80°C until analysis. Total intracellular RNA was isolated from HAE samples 

using the RNeasy RNA Isolation kit (Qiagen). Complimentary DNA was generated using 

Oligo(dT) primers and SuperScript II reverse transcriptase (Invitrogen). Real-time PCR was 

performed using Taqman gene expression assays and an Applied Biosystems 7500 Fast 

Real-Time PCR System (Applied Biosystems). Input cDNA was normalized to GAPDH and 

signals were expressed as a ratio to mock-infected HAE signals.  

Cell shedding 

Cell shedding was quantified by determining the amount of double-stranded DNA 

(dsDNA) in apical washes of HAE using the Quant-It PicoGreen dsDNA kit (Invitrogen). 

Apical washes were performed with 300 μl serum-free DMEM for 30 min at 37°C. Washes 

were harvested and stored at −80°C prior to analysis. Samples were diluted five-fold in Tris-

EDTA buffer and dsDNA was measured in duplicate following manufacturer’s instructions 

using a 96-well plate format. dsDNA concentration per sample was calculated based on 

fluorescence of a titrated dsDNA standard. 
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Percentage area ciliated  

Following removal of apical washes for titer and cell shedding assays, HAE were 

allowed to come to room temperature for 15 min to normalize cilia beat frequency and 100 μl 

PBS was added apically. HAE were placed on an inverted phase contrast microscope 

(TE2000; Nikon) using a 20x objective and high speed (125Hz) video images were captured 

with an eight-bit b/w camera (GS-310 Turbo; Megaplus). The analog signal was digitized via 

an analog-to-digital converter board (A/D; National Instruments). A digital computerized 

analysis system was used to analyze the acquired video images, using software based on 

Sisson-Ammons Video Analysis (227).   

Mucociliary transport rates 

Following removal of apical washed for titer and shedding assays, green fluorescent 

microspheres (0.02% v/v, 1μm; Invitrogen) were added to the apical surface and HAE were 

incubated at 37oC. Time-lapse fluorescent images were obtained for 3 s using a Leica 

DMIRB Inverted Fluorescent Microscope equipped with a Retiga 1300 CCD camera (Q-

Imaging). The rate of microsphere displacement was calculated as previously described 

(223).  

Statistical analysis 

Unpaired t-test and one-way analysis of variance (ANOVA) with Tukey’s post-test 

was performed as indicated. Statistical significance was defined as P<0.05 unless otherwise 

noted. 
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Figure 3.1. RSV-GFP infection, replication, and clearance in HAE cultures. (A) 

Representative en face fluorescent images of GFP-positive cells in HAE infected with RSV 

expressing GFP at 1 (i), 3 (ii), 5 (iii), and 7 (iv) days post-inoculation. Scale bar represents 

200 µm. (B) Representative en face images of uninfected (i) or RSV infected (ii) HAE at 1d 

pi. Infected cells are detected by GFP fluorescence (green) and tight junctions are detected 

using an antibody against ZO-1 (red). Scale bar represents 10 µm. (C) The number of RSV 

infected cells in HAE over time quantified as the percentage of the epithelium surface area 

positive for GFP fluorescence. (D) Virus titers present in the airway surface fluid over time. 

Data (mean ± SEM) are representative of independent experiments utilizing at least n = 4 

cultures per donor obtained from 3 different donors.  
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Figure 3.2. IFN and cytokine production in HAE following infection with RSV-GFP. 

Expression levels of IFNβ (A), IL-1β (B), IL-8 (C), CXCL10 (D), RANTES (E), and TNFα (F) 

were determined in RSV and UV-inactivated RSV infected HAE. Total RNA was extracted 

from infected HAE at 12h pi and days 1, 2, 4, and 5 pi and gene expression levels were 

measured by qRT-PCR. Each sample was internally normalized to GAPDH and is 

expressed as fold change compared to mock-inoculated culture. Data (mean ± SD) 

represent n=3 cultures. Significant changes in mRNA levels of RSV relative to UV-

inactivated RSV were determined for each time point by unpaired t test. Unmarked: not 

significant; *P<0.05, **P<0.01, ***P < 0.001.  
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Figure 3.3. Morphologic and structural changes in RSV-infected ciliated columnar 

cells.  (A) Representative histologic sections of HAE inoculated with RSV expressing GFP 

and counterstained with H&E (i-iii) or immunoprobed for GFP (green) and beta-tubulin IV 

(red) (iv-vi) at 1 (i, iv), 3 (ii, v), and 5 (iii, vi) days pi. Yellow outlines in (Ai) depict the different 

ciliated cell morphologies seen in RSV infected HAE, where non-infected ciliated cells are 

columnar and RSV infected ciliated cells exhibit rounded morphology.  Arrowheads indicate 

robust apical terminal web in non-infected ciliated cells (i) which thins in RSV-infected 

ciliated cells with rounded morphology (iii). Images are representative of independent 

experiments with 4 different donor cultures. Scale bar represents 10 µm. (B) Representative 

transmission electron micrographs of cross-sections of the apical surfaces of non-infected (i) 

and RSV-GFP-infected (ii, iii) HAE. Arrowhead indicates particulates showing virus-like 

morphology. Star indicates disorganized basal bodies. Scale bar represents 1 µm. 
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Figure 3.4. Ciliated cell shedding and loss of cilia activity during RSV-GFP infection of 

HAE. (A) Representative images of histological cross-sections of non-infected (i) or HAE 

infected with RSV expressing GFP (ii) fixed at 5 days pi using a fixation protocol to preserve 

the content and depth of airway surface secretions. Scale bar represents 20 µm. (B) 

Concentration of dsDNA as an index for numbers of shed cells present in apical washes 

harvested every 24 h from non-infected (open circles) or RSV-infected (closed squares) 

HAE. Data (mean ± SEM) are derived from n = 4 cultures per donor for 4 different donors. 

(C) Fluorescent bead velocity as an index of mucus transport rates on the apical surfaces of 

non-infected (open circles) or RSV-infected (closed squares) HAE at indicated times post-

inoculation. Data (mean ± SEM) represent n = 3-6 cultures per donor for 3 different donors. 

(D) Surface area of active cilia beat on non-infected (open circles) or RSV-infected (closed 

squares) HAE. Data (mean ± SEM) represent n = 4. Data in panels (B) – (D) show 

significant differences at 3d pi (P<0.05) and at all time-points thereafter (P<0.001), as 

determined by unpaired t test.  
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Figure 3.5. RSV-induced ciliated cell rounding is unique to RSV infection and due to 

expression of the RSV NS2 protein. (A) Representative images of histologic cross-

sections of fixed and paraffin embedded HAE infected with recombinant RSV-GFP (i), low 

passage clinical isolate RSV Memphis 37 (ii), or recombinant PIV3-GFP (iii). Infected cells 

were detected at 3 days pi using an anti-RSV antibody (i, ii) or anti-PIV3 antibody (iii). Scale 

bar represents 10 µm. Height of infected ciliated cells (mean ± SD) was determined by 

confocal microscopy of fixed but unprocessed HAE infected with RSV, PIV3, human 

metapneumovirus (HMPV), parainfluenza virus 5 (PIV5), or Sendai virus (SeV) (iv). All 

viruses express GFP. At least 100 infected cells in cultures obtained from 3 different donors 

were measured. (B) Representative images of histologic cross-sections of HAE infected with 

RSV (i), or gene deletion mutants RSVΔNS1 (ii) and RSVΔNS2 (iii). All viruses express 

GFP. Height of infected cells (mean ± SD) was determined as in (Aiv). *P<0.05, **P<0.01, 

***P < 0.001, one-way ANOVA with Tukey’s post-test. 
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Figure 3.6. RSV-induced cell rounding is ablated by mutations within the NS2 protein. 

(A) Representative images of histologic cross sections of HAE infected with RSV or 

RSVΔNS2. (B) Schematic of sequential deletions of the NS2 protein. The NS2 ORF of RSV 

rA2 strain was replaced by a codon-optimized NS2 ORF with an N-terminal HA tag. 

Deletions were synthesized into the NS2 ORF, cloned into the RSV antigenome (A2 strain), 

and virus was rescued as previously described (105). Virus nomenclature indicates amino 

acid deletions in NS2 relative to the indicated C- or N-terminus. All viruses were amplified in 

HEp2 cells. (C) Representative images of histologic cross sections of HAE infected with the 

indicated RSV mutant virus.  Infected cells were detected at 3 days pi using an antibody 

against RSV. Equal levels of NS2, N, P, and M proteins were detectable by western blot of 

lysates from HEp2 cells infected with each virus (not shown). 
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Figure 3.7. Expression of RSV NS2 in HAE ciliated cells using PIV3 results in infected 

cell rounding. (A) Growth kinetics of recombinant PIV3 (open circles) and PIV3 expressing 

either RSV NS1 (PIV3-NS1, closed squares), NS2 (PIV3-NS2, open triangles) or both NS1 

and NS2 (PIV3-NS1/2, closed triangles). All viruses express GFP. Virus titers in apical 

washes were assessed at 24 h intervals. Data (mean ± SEM) represent n = 4 cultures per 

donor with cultures from 3 different donors. (B) Representative images of histologic cross-

sections of HAE infected with PIV3 (i), PIV3-NS1 (ii), PIV3-NS2 (iii), or PIV3-NS1/2 (iv). 

Infected cells were detected with an anti-PIV3 antibody. Scale bar indicates 10 µm. (C) 

Height of infected cells (mean ± SD) was determined as described in Figure 4. *P<0.05, 

**P<0.01, one-way ANOVA with Tukey’s post-test. 
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Figure  3.8. Expression of RSV NS2 by PIV3 in HAE cultures mimics RSV-induced 

cytopathology at the apical surface of ciliated cells. (A) Representative images of 

histologic sections of non-infected HAE (i), or HAE fixed 2d post-inoculation by RSV (ii), 

PIV3 (iii), PIV3-NS1 (iv), PIV3-NS2 (v), or PIV3-NS1/2 (vi) showing similar apical membrane 

disruption in ciliated cells infected by RSV, PIV3-NS2, and PIV3-NS1/2. Richardson’s 

counter stain. Scale bar represents 10 µm. (B) Surface area of active cilia beat on non-

infected (closed circles, dotted line), PIV3 (open circles), PIV3-NS1 (closed squares), PIV3-

NS2 (open triangles), or PIV3-NS1/2 (closed triangles) infected HAE. Data (mean ± SEM) 

represent quadruplicate cultures. All viruses express GFP. 
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Figure 3.9. IFN and cytokine changes following infection of HAE with PIV3, PIV3-NS1, 

or PIV3-NS2. HAE were mock inoculated or infected with PIV3, PIV3-NS1, or PIV3-NS2. At 

18 hours pi, cultures were harvested and message levels were determined by qRT-PCR for 

PIV3 N (A), IFN-β (B), IL-8 (C), and CXCL10 (D). Each sample was internally normalized to 

GAPDH and are expressed as fold change over mock inoculated culture. Data (mean ± SD) 

represent n=4 cultures. ns: not significant, *P<0.05, ***P<0.001, one way ANOVA with 

Tukey’s post-test. 



  

 

CHAPTER IV 

RSV NS2 PROTEIN PROMOTES EPITHELIAL CELL SHEDDING  

AND DISTAL AIRWAY OBSTRUCTION 

4.1 Overview 

Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in 

young children. The factors contributing to an increased propensity of RSV-induced distal 

airway disease compared to other commonly encountered respiratory viruses remain 

unclear. Here, we identify the RSV non-structural 2 (NS2) protein as a unique viral genetic 

determinant for initiating RSV-induced distal airway obstruction. Using recombinant 

respiratory viruses and the hamster in vivo model of infection, we show RSV NS2 promotes 

shedding of infected cells, resulting in two effects. First, epithelial cell shedding accelerated 

clearance of virus titers, presumably by clearing virus-infected cells from airway mucosa. 

Second, epithelial cell shedding resulted in accumulation of detached, pleomorphic epithelial 

cells in the narrow diameter bronchiolar airway lumen, resulting in acute distal airway 

obstruction.  We propose that this study reveals a novel consequence of RSV infection of 

the airway epithelium, where NS2-promoted epithelial cell shedding accelerates viral 

clearance but also causes acute distal airway obstruction, possibly serving as the initiating 

event for bronchiolitis. Our studies identify a mechanism that may explain why RSV is the 

dominant virus causing bronchiolitis in young children and identify RSV NS2 as a novel 

therapeutic target for reducing the severity of disease.  

 

___________________________ 
Sections of this chapter are under review for publication in the Journal of Clinical Investigation. 
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4.2 Introduction 

Human respiratory syncytial virus (RSV) is a nonsegmented, negative-sense, single-

stranded RNA virus belonging to the family Paramyxoviridae, subfamily Pneumovirinae. 

RSV is the most common virus causing acute and severe lower airway disease in infants 

and young children, with nearly all children experiencing at least one RSV infection by the 

age of 2 years (1). While most RSV infections present with mild to moderate self-limiting 

pulmonary symptoms, in ~2% of cases, especially in infants who are very young (< 3 

months), premature, or who have underlying immunodeficiency or cardiopulmonary disease, 

lower airway disease is severe enough to require hospitalization (5). Worldwide, an 

estimated 34 million new pediatric cases of RSV-associated lower airway disease occur 

annually accounting for approximately 200,000 deaths, almost all occurring in developing 

countries with reduced access to standardized care (4).  

Despite significant impact of RSV infection on infant morbidity and mortality, 

treatment options remain limited to supportive care, poorly efficacious pharmacologic 

agents, and passively administered neutralizing antibodies. Supportive care including 

supplemental oxygen and ultimately, mechanical ventilation, remains the best available 

therapeutic approach. Ribavirin is the only anti-viral drug currently approved for treating 

RSV infections, but issues of efficacy, delivery, and potential side-effects in neonates restrict 

its use to immunocompromised patients (54). Bronchodilators and anti-inflammatory steroids 

are widely used to dampen inflammatory consequences of RSV infection despite evidence 

these treatments provide little to no clinical benefit (56, 57, 60). Passively administered 

neutralizing antibodies against RSV are used prophylactically to reduce the severity of RSV-

induced pulmonary disease in susceptible populations (47). However, these antibody 

treatments rely on expensive monthly injections and therefore are restricted to at-risk infants 

(228). Licensed RSV vaccines are currently unavailable, although actively under 

development. The high incidence of RSV infection and the potential for severe distal airway 
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disease in vulnerable young children combined with limited availability of therapeutic options 

identifies a significant clinical global need to reduce the burden of RSV infection and disease 

in infants and young children. 

RSV infects the mucosal epithelium lining the human respiratory tract, predominantly 

targeting the columnar epithelial cells of the conducting airways. The columnar airway 

epithelium serves a critical role in maintaining lung sterility by providing a physical barrier to 

systemic penetration of pathogens and generating and secreting antimicrobials. Additionally, 

the airway epithelium regulates mucus content, viscosity, and hydration to facilitate 

mechanical clearance of inhaled pathogens. Air-trapping and increased airway resistance 

are hallmarks of severe RSV-associated disease in the infant, although the factors 

contributing to these symptoms are unclear. Histologic analyses of lung tissues obtained 

post-mortem from RSV-infected infants describe epithelial cells positive for RSV antigen 

sloughed into the lumens of the infected airways (117, 119, 161). It was speculated that 

these intralumenal accumulations of infected and necrotic epithelial cells could contribute to 

airway obstruction and inflammation, exacerbating airway disease. Whether sloughing of 

airway epithelial cells was a direct consequence of RSV-induced epithelial cell 

cytopathology or a bystander effect of the robust infiltration and activation of inflammatory 

cells into the infected airways has been difficult to decipher in the complex in vivo 

environment of the lung. 

We have previously described an in vitro model of RSV infection of human 

cartilaginous airway epithelium (HAE) that recapitulates the cellular distribution and 

physiology of the human differentiated airway epithelium. Using this model, we and others 

have shown that RSV infects and spreads in HAE by preferentially infecting ciliated 

epithelial cells while sparing mucin-containing Goblet cells and the underlying basal 

epithelial cells (114, 115). These in vitro findings are supported by histologic studies of 

cartilaginous airways from RSV-infected patients that also demonstrate the preferential 
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tropism of RSV for ciliated cells (117). Tropism for ciliated cells is not unique to RSV, as 

other RNA viruses including paramyxoviruses, coronaviruses, and avian influenza viruses 

have been shown to preferentially infect ciliated cells in the HAE model (125, 229, 230).   

Previous studies have sought to determine the fate of RSV-infected ciliated cells 

over time in an in vitro primary differentiated model of the human airway epithelium. We 

demonstrated that infection of ciliated cells with RSV results in rounding of the infected cell, 

a unique consequence we attributed to expression of the RSV NS2 protein. Following a 

transition from a columnar to a rounded cell morphology, RSV infection of ciliated cells 

resulted in destruction of the cilia apparatus, loss of cilia function, and extrusion of the 

infected cell from the airway epithelium into lumenal secretions of HAE. Gain of function 

experiment using recombinant parainfluenza virus (PIV3-GFP) engineered to express RSV 

NS2 protein (PIV3-NS2) demonstrated that ciliated cells infected by PIV3-NS2, but not PIV3, 

became rounded and morphologically indistinguishable from RSV-infected ciliated cells. 

We now expand our in vitro studies to explore potential in vivo functions of RSV NS2 

expression. In this study, we compared the consequences of infection in the airways of 

Golden Syrian hamsters and show that PIV3-NS2, but not PIV3, caused rapid shedding of 

infected epithelial cells from the airway epithelium and accelerated clearance of virus 

infection from the lung. However, these studies also revealed PIV3-NS2 induced shedding 

of infected cells into the narrower diameter bronchiolar airways resulted in acute obstruction 

of the small airway lumens. Further, PIV3-NS2 infection causes earlier and more robust 

neutrophil influx in the lower airways of infected animals. These findings suggest the acute, 

distal airway obstruction, a common feature of RSV infection in infants, may be due to the 

rapid shedding of bronchiolar epithelial cells into the airway lumen and that this event is a 

direct consequence of RSV NS2 expression. These studies provide the first description of 

the unique fate of RSV-infected columnar airway epithelial cells and identify the expression 

of a single RSV protein, RSV NS2, as promoting this event.  
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4.3 Results 

Effects of PIV3-NS2 on the infection of the hamster nasal cavity and lower airways 

To determine the effects of RSV NS proteins in vivo, we used PIV3 as a vector to 

express NS1 and NS2. Among the convenient experimental animal models available, mice 

are not useful for PIV3 because of very poor virus replication in the airway epithelium, 

whereas Golden Syrian hamsters are semi-permissive to PIV3 infection and provide a useful 

model for infection. For these studies, we first focused on the airway epithelium of the 

hamster nasal cavity, as the nasal respiratory epithelium is a pseudostratified columnar 

epithelium with densities of ciliated and mucin-containing (Goblet) cells similar to those of 

HAE cultures and human cartilaginous airway epithelium in vivo. Hamsters were inoculated 

intranasally with PIV3, PIV3-NS2, or PIV3-NS1 (106 PFU). Maximal virus titers were reached 

in the nasal tissue by 3 days pi and revealed PIV3-NS1 and PIV3-NS2 were equally, but 

modestly, attenuated for growth compared to PIV3 (Figure 4.1A), similar to attenuation in 

HAE.  

We next identified virus-infected epithelial cells in histologic sections of hamster 

nasal epithelium by immunodetection of PIV3 antigen at the time point of maximal nasal 

titers, day 3 pi (Figure 4.1B). As predicted by our HAE studies, all recombinant PIV3 viruses 

infected ciliated cells but not mucin-containing Goblet cells of the hamster nasal respiratory 

epithelium. While ciliated cells infected by PIV3 or PIV3-NS1 retained the native columnar 

cell morphology, cells infected by PIV3-NS2 were rounded and resembled human ciliated 

cells infected by PIV3-NS2 or RSV in vitro. Morphometric analysis of infected ciliated cell 

height in histologic sections of hamster nasal respiratory epithelium revealed a significant 

shortening of ciliated cell infected by PIV3-NS2 compared to those infected by PIV3 or PIV3-

NS1 (Figure 4.1C), a phenotype remarkably similar to that seen in human cells in vitro.  

Occasionally in PIV3-NS2 infected hamster nasal cavities, virus antigen-positive cells were 

seen extruding from the epithelium and into the airway lumen but, unlike in HAE studies, 
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accumulations of shed, virus-infected epithelial cells after PIV3-NS2 infection were rarely 

noted in the nasal cavity, suggesting epithelial cells shed from the epithelium were rapidly 

and effectively cleared from the nasal cavity airway lumen, presumably by mechanical 

clearance mechanisms.  

Next, we explored the effects of RSV NS2 on PIV3 infection of the lungs of hamsters 

by comparing the consequences of infection with PIV3 or PIV3-NS2. Because PIV3-NS1-

infected cells showed no morphologic differences in HAE cultures or hamster nasal 

epithelium when compared to PIV3, we focused lung studies solely on the comparison of 

PIV3 versus PIV3-NS2 infection of hamster lower airways. For PIV3, histologic analysis of 

whole lungs after 3 days of infection showed viral antigen distributed throughout the 

conducting airways, predominately in the epithelial cells of the large bronchial and small 

bronchiolar airway regions (Figure 4.2Ai and 4.2Bi, respectively). Although virus antigen was 

occasionally detected in cells of the alveolar regions, the majority of infected cells were 

epithelial cells of the conducting airways. PIV3-infected epithelial cells of large and small 

airways retained columnar morphology and remained embedded in the epithelium, similar to 

PIV3-infected epithelial cells in HAE cultures. 

In contrast, in PIV3-NS2 inoculated hamsters at 3 days pi, all virus antigen-positive 

cells detected in the larger diameter airways were rounded and either shedding from or fully 

detached from the underlying intact epithelium (Figure 4.2Aiii). The smaller-diameter 

bronchiolar airways similarly showed extensive cell rounding and detachment (Figure 

4.2Biii). Remarkably, the narrow lumens of the bronchioles contained large accumulations of 

shed, virus antigen-positive cells (Figure 4.2Biii). This revealed an intriguing and 

unpredicted consequence of PIV3-NS2 infection. However, by 5 days pi, almost all evidence 

of infection and small airway occlusion was gone, suggesting effective clearance of the cell 

accumulations from the airway lumens (Figure 4.2Biv). The rapid clearance of virus-infected 

cells from within the bronchiolar airway lumen was also noted in the bronchial airways at 5 
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days pi (Figure 4.2Aiv). In contrast, the robust infection of the bronchial and bronchiolar 

airway epithelium in hamsters infected by PIV3 at 3 days pi was largely unaltered by 5 days 

pi, indicating PIV3-infected cells were not cleared as effectively from the epithelium as PIV3-

NS2 infected cells (Figure 4.2Aii and 4.2Bii).  

To determine if more effective clearance of virus-infected cells following PIV3-NS2 

infection influenced viral load in the lung, we harvested hamster lung tissues inoculated with 

PIV3-NS2 or PIV3 at 1, 2, 3, 5, and 7 days pi and measured whole lung virus titers. These 

data revealed a strong temporal correlation between the extent of virus antigen-positive cells 

and lung viral titers. Specifically, although the lung titers of PIV3 and PIV3-NS2 were very 

similar at 1 and 2 days pi, PIV3 titers declined by less than 1-log between 3 and 5 days pi, 

whereas the reduction in PIV3-NS2 titers was markedly accelerated, dropping almost 3-logs 

during the same 2-day period (Figure 4.3A).  Both viruses were completely cleared by 7 

days pi. Throughout the experiments, the hamsters showed no clinical signs of illness, as 

reported in previous studies of PIV3 infection of hamster airways (231). This is not surprising 

given the semi-permissive nature of PIV3 infection in this non-native host. To determine if 

infection impacted activity of hamsters, we measured the distance hamsters ran in a 24h 

period over 6 days of infection. Despite robust infection, neither PIV3 nor PIV3-NS2 infected 

hamsters ran significantly shorter distances as compared to control animals (Figure 4.3B).  

Neutrophil dominated inflammation in PIV3 and PIV3-NS2 infected animals 

We next characterized the inflammatory cell profile in both PIV3 and PIV3-NS2 

infected animals. Because these studies aim to determine early effects of infection on the 

ciliated airway epithelium, we focused only on immune cell infiltrates at 3 days pi. Cuffing of 

airways resulting from inflammatory cell infiltration into the parenchyma surrounding infected 

airways was evident in PIV3-NS2 infected animals, though such severe cuffing was rarely 

noted in PIV3 infected animals (Figure 4.4A). To determine the cell types present in the 

airway lumen, we performed bronchoalveolar lavage (BAL) on mock, PIV3, and PIV3-NS2 
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infected animals at 3 days pi. Consistent with observed increases in cellularity of PIV3-NS2 

infected airway lumens, BAL fluid from PIV3-NS2 infected animals contained roughly twice 

as many cells as mock or PIV3 infected animals (Figure 4.4 B). The cell types in BAL fluid 

were determined by morphological criteria and significantly elevated numbers of 

macrophages and neutrophils were retrieved from PIV3-NS2 infected animals as compared 

to mock or PIV3-infected animals (Figure 4.4C). Activated neutrophils release numerous 

effector proteins that contribute to neutrophil-mediated cytoxicity and, in proteomic analysis 

of cell-free BAL fluid, we detected elevated levels of neutrophil effector proteins. Neutrophil 

elastase was not detected in either mock or PIV3-infected animals but was present in PIV3-

NS2 infected animals (Figure 4.4D). Myeloperoxidase (MPO) was detected in low amounts 

in mock and PIV3 infected animals and, although not statistically significant, increased MPO 

was detected in BAL fluid of PIV3-NS2 infected animals (Figure 4.4E). Interestingly, 

histological analysis of the location of neutrophils in PIV3 or PIV3-NS2 infected animals 

indicated that, while in PIV3-infected animals neutrophils were associated with the airway 

epithelium, neutrophils in PIV3-NS2 infected animals were most frequently noted below the 

basement membrane or within the airway lumen (Figure 4.4F, arrow heads). 

Accumulation of shed cells in the distal airway of PIV3-NS2 infected hamsters 

In contrast to HAE and hamster nasal epithelium studies in which PIV3 only infected 

ciliated cells, we noted that PIV3 and PIV3-NS2 infected both ciliated and non-ciliated 

columnar cells of the small conducting airway regions. We also noted that PIV3-NS2-

infected cells shed into the small airways exhibited an unusual pleomorphic morphology 

compared to cells shed from HAE or the hamster nasal respiratory epithelium. PIV3-NS2-

infected cells shedding from small airway epithelium were swollen and at times bi-nucleated, 

with cell bodies extending from the intact epithelium into the airway lumen (Figure 4.5iv). 

Using cytokeratin 18 as an immunomarker for epithelial cells, we confirmed that the infected, 

shedding, and accumulated cells were epithelial cells, as expected (Figure 4.5Avi). The 
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accumulation of these detached, virus antigen-positive cells in the bronchioles infected by 

PIV3-NS2 was dramatic and sufficient to cause partial to complete occlusion of the 

bronchiolar lumens (Figure 4.5C). 

To determine the viability of shed cells, we stained airway sections for DNA 

fragmentation using TUNEL. In PIV3 infected airways, no TUNEL signal was noted in the 

airway, associated with the epithelium, or in the surrounding parenchyma. In contrast, 

TUNEL positivity was noted in the lumen and surrounding parenchyma of PIV3-NS2 infected 

airways, although the relative numbers of TUNEL positive cells were low. The majority of 

infected cells within the airway lumen were TUNEL negative, consistent with histological 

observation that the nuclei of shed cells in the airway lumen were morphologically intact. 

While we did not identify the cell type displaying TUNEL positivity, the location of staining 

suggests a combination of neutrophils and epithelial cells account for the TUNEL-positive 

cells of these airways. Additionally, we detected keratin 19 and 8, two major keratin 

components of the cytoskeletal scaffold of epithelial cells, in proteomic analysis of cell-free 

BAL fluid from PIV3 and PIV3-NS2 infected hamsters (Figure 4.5D, E). No keratins were 

detected in mock-inoculated animals. Although both keratins were detected in PIV3 animals, 

comparison of keratins detected in PIV3 versus PIV3-NS2 revealed a 3-fold increase in 

keratin 8 and an 8-fold increase in keratin 19 in BAL fluid from PIV3-NS2 infected animals. 

Analysis was undertaken on cell-free samples, thus the keratins detected in BAL fluid were 

likely released following necrosis of epithelial cells within the airway lumen. Consistent with 

this, necrotic debris was noted in histological sections of airway accumulations in the distal 

airways of PIV3-NS2 infected animals. 

Accumulation of infected cells in the distal airways of RSV infected infants 

To ascertain whether the morphologic consequences of PIV3-NS2 infection of 

hamster lower airways were predictive of events in lower airways of humans infected by 

RSV, we probed histologic sections of autopsy lung tissues obtained from RSV-infected 
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patients for viral antigen. Assessment of pseudostratified columnar airway epithelium, 

indicative of larger airway regions, showed clear evidence of RSV antigen-positive epithelial 

cells embedded in the epithelium, displaying shortened, rounded cell morphology (data not 

shown). Occasionally, RSV antigen-positive cells were also detected detached in the airway 

lumen, suggestive of shed, virus-infected cells which had not fully cleared from the airway. 

Examination of the distal bronchiolar airways revealed bronchiolar lumens partially or fully 

occluded by pleomorphic epithelial cells positive for RSV antigen and in some cases in the 

process of shedding into the airway lumen (Figure 4.6).  Swollen and bi-nucleated cells were 

also observed in the airway lumen of these regions. These observations indicated that the 

morphologic changes, cell shedding, and small airway occlusions observed in hamster distal 

airways infected by PIV3-NS2 resembled the consequences of RSV infection of human 

lower airways detected in post-mortem samples. 

 

4.4 Discussion 

RSV is the most important viral agent of lower airway disease in infants and young 

children and is commonly associated with severe bronchiolitis in these populations. In the 

very young, bronchiolitis caused by RSV is documented to be more severe and prolonged 

than bronchiolitis caused by other etiologies, including parainfluenza viruses (PIV) or 

rhinoviruses (9, 10). A recent study of young children with acute respiratory illness found 

those infected with RSV had twice as many emergency room visits and six times more 

hospitalizations than those with seasonal influenza virus infections (15). Why RSV has a 

tendency towards increased frequency and severity of distal small airway disease in infants 

amongst other etiologies was unknown.  

In vitro and in vivo studies have established that ciliated cells of the human large 

cartilaginous airways are an important target for RSV infection. The ciliated airway 

epithelium serves an important role in maintaining lung health, as it provides a mechanical 
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barrier against inhaled pathogens and contributes to clearance by facilitating mucociliary 

transport. Precisely how RSV infection of the airway epithelium causes disease was poorly 

defined, but it has previously been attributed to both direct virus-mediated epithelial cell 

cytopathology and exaggerated host immune responses, especially excessive neutrophil-

associated inflammation (181). Other consequences of RSV infection, such as incidence of 

wheezing and possible skewing of future immune responses, have been reported (34, 36). 

Although clinical and preclinical studies have increased our understanding of factors 

involved in RSV disease, the early, initiating aspects of RSV infection of the airway 

epithelium and the relationship to subsequent airway pathology remained poorly defined.  

Investigating the role of the airway epithelium in RSV pathogenesis has been 

impeded by the scarcity of representative models of polarized and differentiated airway 

epithelium that are both susceptible to human RSV infection and mimic the outcomes of 

infection observed in RSV-infected human airways in vivo. Indeed, most experiments 

modeling RSV infection of the airway epithelium rely on transformed epithelial cell-line 

monolayers, which do not resemble the differentiated architecture of airway epithelium in 

vivo. The widely available in vivo models, particularly small rodents, also poorly reproduce 

the consequences of RSV infection observed in human airways, largely due to low infectivity 

of the conducting airway epithelial cells. Species-specific RSV equivalents used in 

appropriate permissive hosts, such as bovine RSV in calves, are useful models for 

understanding RSV pathogenesis, but differences between the human and animal viruses 

and the human and animal hosts have been documented and complicate such analyses 

(209). 

In the previous chapter, we assessed the impact of RSV NS2 on the function of the 

airway epithelium using RSV gene-deletion mutants to infect cultures of primary human 

pseudostratified airway epithelial cells (HAE) that closely resemble the epithelium of 

authentic airway tissue. These studies demonstrated that cell rounding and shedding were 
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dependent on expression of the RSV NS2 protein. However, these gene-deletion mutants 

lacked the major RSV type I interferon antagonist proteins and are severely attenuated in 

HAE. Because PIV3 also targets ciliated cells but does not cause the cell rounding 

phenotype, we used PIV3 as a vector to express RSV genes in ciliated cells. Infection of 

ciliated cells in vitro with PIV3 engineered to express RSV NS2 (PIV3-NS2) resulted in 

infected cell morphologic changes indistinguishable from ciliated cells infected by RSV.  

In this present study, we used PIV3-NS2 and control viruses to investigate the 

significance of our in vitro HAE findings in an in vivo hamster model. Evaluation of infection 

by PIV3-NS2 and control viruses in the hamster nasal respiratory epithelium, which mimics 

HAE in its distribution of ciliated and non-ciliated Goblet cells, showed that PIV3 

recombinant viruses infected only ciliated cells in the respiratory epithelium and that PIV3-

NS2 caused the same cell rounding, membrane cytopathology, and shedding phenotypes 

associated with the expression of RSV NS2 in ciliated cells of HAE. 

Similar to outcomes in HAE and hamster nasal ciliated cells, infection of hamster 

lower airway epithelial cells with PIV3-NS2, but not PIV3, resulted in rounding and shedding 

of the infected cells from the epithelium into the airway lumen. In contrast, PIV3-infected 

epithelial cells remained columnar and embedded within the intact epithelium. In the large 

airways of hamsters infected with PIV3-NS2, infected cells that shed from the epithelium 

rarely accumulated in the airway lumen, suggesting that the majority of shed cells were 

rapidly and effectively cleared from the lumen, presumably by mechanical airway clearance 

mechanisms. In the narrower diameter small airways, shed cells accumulated in the airway 

lumen, suggesting clearance of shed cells from the small airway lumens was delayed. 

These effects were most pronounced in the small airways of hamsters 2-3 days after 

infection by PIV3-NS2, and accumulations of detached virus-antigen-positive cells were 

easily detected as occlusions in the small airway lumens, reminiscent of bronchiolar airway 

occlusions frequently observed in the small airways of young infants infected by RSV. We 
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also note studies with RSV-infected infants describe infection of the larger airways as 

patches or clusters of infected cells compared to more robust circumferential infection of 

distal airway epithelial cells (117, 118). Our in vivo studies with PIV3-NS2 suggest patchy 

infection in the large airways may represent continuous shedding and clearance of infected 

cells in these regions, while shedding and accumulation may perpetuate infection in the 

distal airways. 

Despite histological evidence of epithelial cells in the airway lumen, few epithelial 

cells were noted in lavage fluid of PIV3-NS2 infected hamsters. It is possible that occlusions 

containing epithelial cells are not easily flushed from the airways and were not collected 

using the lavage technique. Histological sections of lungs post-BAL showed some evidence 

of occlusions remaining in the airway. Alteranatively, morphologic changes of epithelial cells 

following infection with PIV3-NS2, especially cell swelling, may have resulted in some 

epithelial cells being misidentified and counted as macrophages, since cell types were 

determined by morphological characteristics. Immunodetection of specific cell type markers 

could be used to complement future analysis of the cell types present in BAL fluid. 

The narrower diameter of the small airway lumens likely is a significant factor in the 

development of airway occlusions. Similarly, narrow airway lumen size is suggested to 

contribute to the increased frequency of small airway obstruction associated with infants 

infected by RSV. However, we also noted that cells shedding into the hamster or human 

small airways exhibited an unusual swollen and pleomorphic morphology compared to cells 

shedding from HAE, the hamster nasal respiratory epithelium, or the hamster larger airways. 

These airway region-dependent consequences of PIV3-NS2 infection may reflect a 

difference in the responses of ciliated cells distributed in the small airways compared to 

those in the large airways. Alternatively, the swollen pleomorphic cells may represent other 

epithelial cell-types present in the small airways which are susceptible to PIV3-NS2 

infection, such as the non-ciliated columnar club (Clara) cell. In human and hamster lower 
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airways, club cell numbers increase in density as the conducting airways descend into the 

distal bronchiolar airway regions (113, 232). Indeed, in our studies in hamster airways, we 

noted PIV3 and PIV3-NS2 infection of both ciliated and non-ciliated columnar epithelial cells 

of the distal airways, the latter likely representing club cells. RSV infects both ciliated and 

non-ciliated cells in the small airways of humans (117, 119) and both cell types are infected 

in the small airways of calves and lambs experimentally infected with RSV (116, 149). Thus, 

the apparent morphologic differences in the cells shed into the smaller compared to larger 

airways might reflect the increased frequency of PIV3-NS2 infection of club cells in the small 

airways versus infection of ciliated cells in the larger airways. Regardless of the specific 

epithelial cell-types infected by PIV3-NS2 in the different airway regions, we suggest that the 

combination of narrower diameter airway lumens in the bronchioles and the expanded 

volume of cells shed into these airway regions enhances the likelihood that shed cells would 

accumulate and occlude the smaller diameter airway lumens. 

 Unusual epithelial cell morphology has been described for RSV-infected humans and 

bovine RSV-infected calves (116, 119, 161) and sloughing of virus antigen-positive cells 

caused small airways occlusion in ovine and baboon models of RSV infection (149, 153). In 

contrast, unusual airway epithelial cell morphologies are rarely noted after RSV inoculation 

of small animal models, most notably the mouse. Thus, in several appropriate large animal 

models of RSV infection as well as retrospective analysis of human cases of RSV infection, 

shedding of pleomorphic, virus antigen-positive epithelial cells, especially in the smaller 

diameter distal airways, appears to be a characteristic hallmark of RSV infection.  

 The appearance of cell accumulations and airway lumen occlusions in the small 

airways of hamsters infected with PIV3-NS2 suggests that the phenomenon of RSV NS2-

induced cell shedding might have importance for RSV disease. RSV bronchiolitis has long 

been associated with small airway obstruction resulting in air-trapping distal to the 

obstruction, leading to increased airway resistance (233, 234). Classically, the composition 
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of the obstructive material has been considered to be a mixture of necrotic epithelial cells, 

mucus secretions, and inflammatory cell exudate. However, the limited number of autopsy 

specimens now available from RSV-infected patients, including those described in this 

study, reveal unusual pleomorphic epithelial cells shedding from the airway epithelium and 

RSV antigen-positive debris accumulating in the lumen of infected airways, with only rare 

examples of mucus-related airway plugging, further emphasizing the potential significance 

of shed and accumulated epithelial cells as a major contributor to small airway obstruction 

after RSV infection.   

 The present study suggests that RSV, compared to other common respiratory 

paramyxoviruses, has an unusual ability to induce epithelial cell shedding, and that NS2-

induced cell shedding may be an important factor in RSV pathogenesis by contributing to 

plugging of small airway lumens. However, in the hamster model, the small airway plugging 

observed in association with PIV3-NS2 infection was transient, as maximal occlusion 

occurred at 3 days pi but was cleared by 5 days pi. Obstruction of small airways was also 

not associated with increased clinical disease in hamsters. The lack of disease associated 

with PIV3 (and RSV) infection in rodent models largely reflects their semi-permissive nature 

for virus replication, with relatively low whole lung viral titers and relatively short durations of 

infection. In contrast, RSV infection of humans results in substantially higher virus titers and 

virus shedding can continue for one or several weeks (178, 235). Primary RSV infection in 

humans is nearly always symptomatic and, in this more permissive setting, it is reasonable 

to expect that RSV NS2-promoted occlusion of the small airways would be longer-lived and 

contribute to disease severity. It also is likely that RSV-induced cytopathology leading to 

inhibition of mucociliary activity would have a greater effect on mechanical clearance in a 

more permissive setting, due to longer duration and increased extent of infection, which 

would further reduce clearance of shed cells. 
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 Interestingly, we also noted an additional effect associated with NS2-induced cell 

shedding.  Specifically, PIV3-NS2 infection was cleared from hamster lungs more rapidly 

than PIV3. This was evident by histologic analysis, which showed that, despite the extensive 

infection and airway occlusions associated with PIV3-NS2 on day 3, the infected cells were 

largely cleared by day 5. In contrast, in animals infected with PIV3, there were abundant 

infected cells on both days 3 and 5 pi. Consistent with this, quantification of whole lung viral 

titers confirmed that PIV3-NS2 was cleared more rapidly than PIV3, even though both 

viruses reached similar peak titers by days 2-3. These data raise the possibility that the cell 

shedding promoted by RSV NS2 might have a potential beneficial effect for the host, namely 

to accelerate clearance of virus-infected cells and infection from the airways. This 

observation, however, is based on indirect evidence, specifically the impact of RSV NS2 on 

the clearance of PIV3 rather than RSV. 

Neutrophils are the primary immune cell type notes in bronchial washes of RSV 

infected infants (180). Similarly, we noted a large influx of neutrophils at 3 days pi in PIV3-

NS2 infected hamsters. At this timepoint, inflammation was minimal around PIV3 infected 

airways, though present at later timepoints (5 days pi) in these animals. In agreement with 

histological findings, increased numbers of neutrophils and macrophages were also noted in 

BAL fluid collected from hamsters infected with PIV3-NS2 at 3 days pi and the neutrophil 

effector proteins MPO and neutrophil elastase were present in cell-free BAL fluid. While 

neutrophils were present in and around the airways of both PIV3 and PIV3-NS2 infected 

airways, albeit at differing levels, histologic examination suggests differential location of 

neutophils in the distal airway regions of infected animals. Specifically, neutrophils in PIV3 

infected airways appeared to be directly associated with the lumenal surface of the airway 

epithelium. In contrast, neutrophils in PIV3-NS2 infected airways were frequently noted 

either below the basement membrane, having not yet migrated across the airway 

epithelium, or within the airway lumen not in contact with the intact airway epithelium. The 
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presence of neutrophils in the airway lumen, rather than directly associated with the 

epithelium suggests that neutrophils are associating with the infected, shed cells in PIV3-

NS2 infected animals rather than cells within the airway epithelium. Differences in neutrophil 

location may reflect a protective response of the host, whereby neutrophils associate with 

shed cells rather than cells within the epithelium, protecting the epithelium from neutrophil-

mediated cytotoxicity. Alternatively, cell shedding may represent an immune evasion 

mechanism of the virus, where removal of the infected cells from the epithelium might 

decrease the likelihood that infected cells will directly encounter inflammatory cells recruited 

to site of infection.  

 At this time, it is not possible to assess the relative importance of the seemingly 

contrasting effects demonstrated in this study, namely shedding resulting in clogged airways 

and potentially enhanced disease versus shedding resulting in accelerated clearance and 

reduced disease. Unfortunately, it is not feasible to evaluate obstruction versus clearance of 

RSV using NS gene deletion mutants because, as noted, deletion of these proteins has 

drastic effects on host antiviral responses and causes severe attenuation of the mutants in 

vivo, which would confound this analysis. However, the central role of airway plugging in 

RSV pathogenesis in humans suggests that NS2-induced cell shedding and morphological 

changes are important to the development RSV disease in vivo.  

 In summary, using PIV3 as a vector for RSV NS2, we confirm the previous in vitro 

finding that NS2 mediated cell rounding in an in vivo hamster model of infection. We then 

expand on the previous in vitro studies by demonstrating that expression of RSV NS2 in vivo 

resulted in accelerated clearance of infection. We propose that NS2-induced cell shedding 

acts as a novel clearance mechanism to remove infected cells from both the airway 

epithelium and the lumen. In the narrow diameter distal airways, however, NS2-induced 

shedding contributed to acute airway obstruction which was strikingly reminiscent of airway 

plugging that occurs during RSV bronchiolitis in infants. The notion that RSV NS2 may be a 
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pathogenesis factor increasing the likelihood of small airway obstruction as a precursor to 

bronchiolitis identifies NS2 as a potential therapeutic target for limiting the severity and 

frequency of RSV bronchiolitis, particularly in infants. It also suggests that deletion of the 

NS2 gene may be desirable in live-attenuated RSV vaccine candidates (69). Future studies 

will be needed to explore how RSV NS2-mediated shedding of infected cells affects the 

development of immunity to RSV infection and whether manipulation of NS2-promoted 

epithelial cell shedding in response to RSV infection may serve as a therapeutic target for 

reducing the severity of distal airway disease in RSV-infected infants.    

 

4.5 Materials and Methods 

Animals 

In vivo animal studies used Golden Syrian hamsters (Harlan) and all procedures 

were conducted in accordance with the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals and using animal study protocols approved by the Animal Care 

and Use Committee of the National Institute of Allergy and Infectious Diseases and the 

Institutional Animal Care and Use Committee of the University of North Carolina at Chapel 

Hill.  

Viruses  

All viruses used in this study were derived from cDNA (recombinant) and contain a 

GFP insertion as an additional gene unless otherwise mentioned.  

Wild-type RSV is a derivative of the A2 strain and was constructed and described 

previously (212). This virus expresses the green fluorescent protein (GFP) gene as an 

additional gene inserted between the RSV phosphoprotein (P) and matrix (M) genes. Wild-

type RSV and all mutants were amplified in HEp2 cells stably expressing the V gene from 

SV5 (210). 
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PIV3 is a derivative of the JS strain engineered to express the GFP gene as an 

additional gene inserted between the PIV3 phosphoprotein (P) and matrix (M) genes, as has 

been described previously (81, 222). Codon-optimized RSV NS1 or NS2 genes were 

synthesized (DNA2.0) and inserted into the PIV3 viral genome between the hemagglutinin-

neuraminidase (HN) and viral polymerase (L) genes using cloning methods similar to those 

previously used to express CFTR and rhAFP in this genome region (223, 224). A unique 

EagI restriction site was generated in the non-coding region downstream of the HN gene in 

the PIV3 subgenomic cDNA. The NS1 or NS2 coding sequence was amplified by RT-PCR 

from plasmids expressing codon-optimized NS1 or NS2 , cloned into a pCR-Blunt II-TOPO 

vector (Invitrogen), and sequenced. The following primer sets were used: NS1 sense (5’-

CCGCGGCCACCATGGGCAGCAATAGTCTC-3’), NS1 antisense (5’-

GGGCCCGAGTTATGGGTTCAGGTCAA-3’), NS2 sense (5’-

CCGCGGCCACAATGGATACCACGC-3’), and NS2 antisense (5’-

GGGCCCCTCGAGTCAAGGGTTCAA-3’). The underlined portions represent SacII and ApaI 

restriction sites. Using the SacII and ApaI restriction sites, NS1 or NS2 was inserted into a 

vector following a linker sequence consisting of the PIV3 gene-end, intergenic, and gene-

start transcription regions, flanked at both ends by EagI sites. This cassette was then 

inserted using the EagI sites into the full-length PIV3GFP antigenomic cDNA and the 

resulting genomes were designated PIV3-NS1 or PIV3-NS2. A PIV3 genome expressing 

both NS1 and NS2 was also generated by inserting the RSV NS1 and NS2 genes together 

into PIV3 between the HN and L genes using similar methods. From the linker vector 

containing NS1, a sequence consisting of the EagI restriction site, PIV3 linker region, and 

NS1 gene was PCR amplified using the NS1 sense primer (5’-

CGAATTGGCGGCCGAAAATA-3’) and the NS1 antisense primer (5’-

CAGGAGTTCAGCACGATGGGGGCCCGAGTTATGGGT-3’), destroying the 3’ EagI site 

and creating an 18bp overhang. From the linker vector containing NS2, a sequence 
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consisting of the PIV3 linker region, the NS2 gene, and the EagI restriction site was 

amplified using the NS2 sense primer (5’-

GCTGAACTCCTGCATCGTAAAATAAGAAAAACTTAG-3’)  and the NS2 antisense primer 

(5’-ACTTGGCCCAAGCTTGAGTA-3’), destroying the 5’ EagI site and adding the 

complementary 18bp overhang. These 2 fragments were combined in a fusion reaction 

using the NS1 sense and NS2 antisense primers and the resulting fragment was cloned into 

a pCRBluntII TOPO vector (Invitrogen) and sequenced. The final fragment consisted of a 

PIV3 linker region, the RSV NS1 gene, a second PIV3 linker region, and the RSV NS2 

gene, flanked by EagI sites. This cassette was then inserted using the EagI sites into the 

full-length PIV3GFP antigenomic cDNA, creating PIV3-NS1/2. Each insert was designed to 

retain the “rule of six” required for PIV3 genome replication. All viruses were rescued and 

amplified in LLC-MK2 cells using methods described previously (222) and sequenced.  

Viral inoculations and growth 

Ten- to twelve-week-old female Golden Syrian hamsters (Harlan) were transiently 

anesthetized (methoxyflurane) and inoculated intranasally with 106 pfu of PIV3, PIV3-NS1, 

or PIV3-NS2 in 100 μl serum-free L-15 Leibovitz medium (Gibco).  Animals were euthanized 

and respiratory tissues harvested at indicated times post-inoculation for analysis of virus 

titers or histologic assessment.  For virus titrations, whole lungs or nasal turbinates were 

weighed and homogenized in PBS. Viral titers were determined by standard plaque assay of 

the clarified supernatants as previously described (236). 

Histology and immunoprotocols  

For histologic examination of hamster tissues, excised nasal turbinates or whole 

lungs were immersion-fixed in 10% neutral-buffered formalin, embedded in paraffin, and 

histological sections generated for examination and staining. Sections were stained with 

H&E. Immunohistochemistry for viral antigen was performed by blocking sections in 3% BSA 

and incubation with primary antibodies against PIV3 (anti-PIV3 rabbit serum raised against 
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sucrose-gradient-purified PIV3; (226)). To identify epithelial cells, a cytokeratin 18 antibody 

was used (mouse monoclonal; Abcam). Immunoreactivity was detected using anti-goat or 

anti-rabbit secondary antibodies conjugated to horseradish peroxidase (HRP), visualized 

using 3,3’-diaminobenzidine (Sigma), and counterstained with hematoxylin.  

RSV infection in human airways was determined in lung tissue obtained from a 

patient naturally infected by RSV provided by Dr. Alan Proia is association with the Duke 

University Pathology Specimen Repository in accordance with Duke University IRB 

protocols. RSV and cytokeratin 8/18 immunoreactivity was performed on histological 

sections using a Leica Bond-III automated stainers (Leica Microsystems Inc.).  Following 

antigen retrieval with Novocastra Bond Epitope Retrieval 1 solution (Leica Microsystems), 

sections were incubated with a primary antibody against RSV antigen (clones 5H5N, 2G12, 

5A6, IC3; Vector Laboratories) and detected with the Novocastra Bond Polymer Refine 

Detection system (Leica Microsystems). Immunostaining for CK 8/18 used a proteinase K 

epitope retrieval solution (Dako North America, Inc.), the primary antibody Novocastra CK 

8/18 monoclonal antibody (clone 5D3, Leica Microsystems), and detection with the 

Novocastra Bond Polymer Refine Detection system.   

Morphometric analysis of cell height and airway occlusion 

Height of infected cells in the nasal respiratory tissue was determined by measuring 

pixel height of infected cells in images from fixed, viral-antigen stained sections using 

ImageJ software (NIH) and converting to microns.  

Occlusion of airways was determined by imaging infected airway regions from fixed, 

viral-antigen stained sections, converting to black-and-white images, pixilating, and 

calculating the percentage of black pixels within the airway lumen using ImageJ software. 

Airway occlusions were measured from 3 individual animals harvested at 3days pi. 
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Bronchoalveolar lavage 

Bronchoalveolar lavages were performed using standardized procedures (237). 

Hamsters were euthanized by exsanguination under deep Avertin anesthesia. The left main 

stem bronchus was ligated to perform BAL on the right lobe only. Two ml cold sterile PBS 

was instilled and retrieved via the trachea three times before collection and cell counting.  

BAL cells were pelleted by centrifugation at 1000xg for 5min at 4°C and the cell-free fluid 

(BALF) was collected and stored at -80°C for future analysis. BAL cells were resuspended in 

PBS and cytospin slides of 30,000-60,000 cells/slide were obtained (StatSpin CytoFuge 2), 

air dried, and stained with Newcomer’s stain for differential cell counts.  

Proteomics of BALF 

 LC-MS/MS identification of proteins in cell-free BAL fluid (BALF) was performed as 

described previously (238). A total of 100 μl of BALF from each hamster was denatured with 

300 μl GuHCL (pH8.0) and proteins were reduced with 20mM dithiothreitol for 30m at 60oC 

and alkylated with iodoacetamide (Sigma) for 1h at 25oC. Reduced and alkylated BAL 

samples were buffer-exchanged into a pH 8.0 digestion buffer using a HiTrap Desalting 

column (GE Healthcare) and digested with 2 μg trypsin at 37oC overnight. The final digest 

was vacuum dried to remove bicarbonate salts and resolubilized in 20 μl 0.1% formic acid 

water.  

 The LC-MS/MS was performed with a Dionex ultimate 3000 RSLCnano system 

coupled to a hybid quadrupole orbitrap mass spectrometer with a Nano spray source (Q 

Exactive, Thermo Fisher).  For liquid chromatography, one microliter of the sample was 

loaded into a trap column Acclaim PepMap 2 cm × 75 μm i.d., C18, 3 μm, 100 A (Dionex) at 

5 µl/min with aqueous solution containing 0.05 % (v/v) trifluoroacetic acid and 2 % 

acetonitrile. After 7 minutes, the trap column was set on line with an analytical column 

Acclaim PepMap RSLC 15 cm × 75 μm i.d., C18, 2 μm, 100 A (Dionex) with a linear 

gradient of 4-30 % solvent B (99.9% acetonitrile with 0.1% formic acid) over 157 min with a 
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constant flow of 300 nL/min. Eluted Peptides were analyzed by a data-dependent top 10 

method dynamically choosing the most abundant precursor ions from the survey scan (300–

1650 Th) for HCD fragmentation. For MS scan, data were acquired at resolution of 70,000 at 

m/z 200, target AGC value of 1e6, maximum fill times of 80 ms. For the MS/MS scan, data 

were acquired at resolution of 17,500 at m/z 200, target AGC value of 1e5, maximum fill 

times of 80 ms. Dynamic exclusion was set to 20 second. 

Proteins identified from the BALF were quantified using a label-free method termed 

the normalized spectral index (SIN) (239). SIN is defined as the cumulative fragment ion 

intensities for all spectra counted for a protein (SI) normalized by the sum of SI over all 

proteins and by the length of the protein.  

Running wheels 

 To determine if infection results in decreased activity, a Nalgene activity wheel 

(Nalge Nunc International) was placed in each hamster cage, equipped with a magnetic 

switch with an LCD counter that records revolutions, with water and food available ad 

libitum. Running wheels were place in each cage for 2 days prior to inoculations for baseline 

recording of activity and to allow for exploration and acclimation. Following inoculation, 

activity was recorded as number of revolutions per 24 hour period and reported as distance 

run per day. 

Statistical analysis 

Unpaired t-test and one-way analysis of variance (ANOVA) with Tukey’s post-test 

was performed as indicated. Statistical significance was defined as P<0.05 unless otherwise 

noted. 
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Figure 4.1. PIV3-NS2 causes ciliated cell rounding in the hamster nasal respiratory 

epithelium in vivo. (A) The nasal epithelium of Golden Syrian hamsters was inoculated 

with 106 PFU of PIV3 (closed circles), PIV3-NS1 (open squares), or PIV3-NS2 (closed 

triangles) and virus titers in the nasal turbinates was determined at 3 days pi. Data (mean ± 

SEM) represent 3 independent experiments with total of 9 - 12 animals. (B) Representative 

images of histologic cross-sections of hamster nasal respiratory epithelium infected by PIV3 

(i), PIV3-NS1 (ii), or PIV3-NS2 (iii). Virus antigen was detected at 3 days pi with an anti-PIV3 

antibody. Scale bar represents 10 µm. (C) Height of infected ciliated cells (mean ± SD) was 

determined by measuring height of virus-antigen positive cells from fixed tissue sections with 

at least 200 cells analyzed across 3 individual animals. All viruses express GFP. ***P 

<0.001, one-way ANOVA with Tukey’s post test. 



107 
 

 

 

 



108 
 

Figure 4.2. Accelerated clearance of virus-infected cells in hamsters infected by PIV3-

NS2. (A, B) Representative images of histologic cross-sections of hamster large airways (A) 

and small airways (B) 3 days (i, iii) and 5 days (ii, iv) after infection with PIV3 (i, ii) or PIV3-

NS2 (iii, iv). Note the rapid loss of PIV3-NS2 infected cells from airways at 5 days pi, a time 

when PIV3 infection remained robust.  Scale bar represents 100 µm.  
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Figure 4.3 Accelerated clearance of viral load in hamsters infected by PIV3-NS2. (A) 

Whole lung virus loads in hamsters infected with PIV3 (closed circles) or PIV3-NS2 (open 

squares) measured over time, demonstrating a more rapid clearance of PIV3 infection when 

the virus expresses RSV NS2.  Data (mean ± SEM) represent 3 independent experiments 

with total of 4 – 9 animals per timepoint. All viruses express GFP. ***P <0.0001, unpaired t 

test. (B) Daily running wheel distance in hamsters mock inoculated (closed triangles, dotted 

line) or inoculated with PIV3 (closed circles, solid line) or PIV3-NS2 (open squares, solid 

line). Despite differences in whole lung viral load and lower airway infection, no difference in 

running distance, an index of clinical disease, was evident. Data represent 2 – 3 animals per 

timepoint. 
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Figure 4.4. Neutrophilic inflammation in distal airways of PIV3-NS2 infected hamsters. 

(A) Representative images of H&E stained histologic cross-sections of the smaller airways 

in hamsters mock inoculated (i) or infected with PIV3 (ii) or PIV3-NS2 (iii) at 3 days pi. Scale 

bar represents 100 µm. (B) Total cell counts in bronchoalveolar lavage (BAL) fluid of 

infected hamsters at 3 days pi. (C) Cytospins of cells from BAL of mock-inoculated hamsters 

(black bar) or hamsters infected with PIV3 (dotted bar) or PIV3-NS2 (striped bar) were 

Giemsa stained and cell types (macrophages, neutrophils, eosinophils, lymphocytes, and 

epithelial cells) were differentiated by morphologic criteria and counted. (D, E) Identification 

and relative abundance of the neutrophil effector proteins neutrophil elastase (D) and 

myeloperoxidase (E) were determined in cell free BAL fluid at 3 days pi by LC-MS/MS based 

identification and label-free quantification using the normalized spectral index method (239). 

(F) Representative images of neutrophils in the lumen of PIV3-infected animals (i) at 5 days 

pi or PIV3-NS2 infected animals (ii) at 3 days pi, the respective times of peak neutrophil 

influx. Arrow heads denote examples of neutrophils. Scale bar represents 50 µm. All 

quantitative data (mean ± SEM) represent n = 4 animals. n.d. not detected *P<0.05, one-

way ANOVA with Tukey’s post-test. 
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Figure 4.5. Shedding of cells infected by PIV3-NS2 but not PIV3 into hamster lower 

conducting airways. (A) Representative images from histologic cross-sections of hamster 

distal airways infected with PIV3 (i - iii) and PIV3-NS2 (iv - vi). Sections were stained with 

H&E (i, iv), or with antibody against PIV3 to identify PIV3-infected cells (ii, v), or with an 

antibody against cytokeratin 18 to identify epithelial cells (iii, vi) at 3 days pi. Scale bar 

represents 50 µm. (B) Representative images from histologic cross-sections of hamster 

distal airways infected with PIV3 (i) and PIV3-NS2 (ii). Sections were stained for viral 

antigen (green) and nuclei (blue). Apoptotic cells were identified by TUNEL staining (red). 

Note the majority of infected cells in the airway lumen are negative for TUNEL staining. (C) 

Morphometric quantitative analysis of distal airway cell accumulation in hamsters infected 

with PIV3 or PIV3-NS2 by measuring the percentage of cross-sectional airway lumen 

surface area occupied by virus antigen-positive cells at 3 days pi. Histologic, antigen-stained 

whole lung sections from 3 animals were measured and each symbol represents occlusion 

of an individual airway. ***P <0.0001, unpaired t test. (D, E) Identification and relative 

abundance of the epithelial cell specific proteins keratin 19 (D) and keratin 8 (E) were 

determined in cell free bronchoalveolar lavage fluid (BALF) at 3 days pi by LC-MS/MS 

based identification and label-free quantification using the normalized spectral index method 

(239). Keratins in cell-free BALF likely originate from apoptotic or necrotic epithelial cells in 

the airway lumen. Data (mean ± SEM) represent n = 4 animals. n.d. not detected, **P<0.01, 

one-way ANOVA with Tukey’s post-test. 
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Figure 4.6. Shedding of cells infected by RSV into lower airways of human. 

Representative images of histologic cross-sections of human lower airways obtained post-

mortem from a patient naturally infected by RSV. Sections were stained with H&E (i), or with 

an RSV-specific antibody to detect infected cells (ii), or with a cytokeratin 8/18 antibody to 

detect epithelial cells (iii). Scale bar represents 50 µm. Note the smaller diameter distal 

airways of humans demonstrate virus antigen-positive cells shedding and accumulation in 

the lumen, often sufficient to cause airway occlusion, similar to accumulations noted in the 

hamster distal airways.   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 

CHAPTER V 

CONCLUSIONS 

Respiratory syncytial virus is a significant pathogen that targets the respiratory 

mucosa and, in infants, is the most frequent cause of severe lower respiratory tract illness, 

often presenting as bronchiolitis. The goal of this dissertation was to understand the 

interactions between RSV and the airway epithelium and to define the cytopathogenic 

effects of RSV on the primary target of infection, the ciliated cell. 

From the studies presented in this dissertation, we conclude the following: 

I. RSV infection of human ciliated cells is resolved in vitro by a ciliated cell shedding 

response. 

A. RSV targets columnar ciliated cells of the human airway epithelium and induces 

cytokine expression associated with severe RSV disease.   

RSV demonstrated tropism for ciliated cells in a primary, well-differentiated model of 

the pseudostratified human airway epithelium (HAE) and infection was not documented in 

any other cell type, including Goblet cells and basal cells. Efficient initial infection of HAE 

was dependent upon the presence of the mature form of the RSV glycoprotein protein G, 

emphasizing the requirement for G in attachment and entry. HAE cultures supported RSV 

replication and spread, though clearance of infected cells and viral titer was noted at later 

times after infection. Replication induced increases in gene transcription of common antiviral 

genes, including IFNβ, IL-1β, IL-8, CXCL10, RANTES, and TNF-α, in a time dependent 

manner.  
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RSV tropism for ciliated cells has been previously documented by our group and 

others (114, 115, 131) and ciliated cell tropism has also been demonstrated a number of 

additional respiratory viruses, including other myxoviruses (125, 230, 240, 241). As the 

primary target of RSV infection, ciliated cells are uniquely positioned to initiate and modulate 

the antiviral response of the airway epithelium. Initiation of antiviral gene transcription likely 

contributes to limitation of viral replication and recruitment of infiltrating immune cells in the 

context of in vivo infection.  

The innate inflammatory response plays a critical role in RSV disease and 

proinflammatory cytokines, such as IL-1β and TNF-α, and chemoattractants, such as IL-8, 

CXCL10, and RANTES, are elevated in nasophryngeal secretions and bronchoalveolar 

washes of infants with RSV-associated bronchiolitis (132, 136, 142, 143), with increased 

levels of IL-1β and IL-8 being independently associated with severe disease (118, 133, 144). 

We provide evidence that airway cells play a central role in modulating the inflammatory 

response by regulating these cytokines following RSV infection, though the relative 

contribution of in vivo cytokine secretion from the infected epithelia compared to other cell 

types such as airway macrophages is unclear. 

 Interestingly, our studies suggested a role for the RSV NS2 protein in upregulation of 

IL-8. Consistent with this, previous work has shown that infection of A549 cells with RSV 

deleted for the NS2 gene resulted in reduced secretion of IL-8 compared to wild-type virus 

or RSV deleted for the NS1 gene alone (104). The promotor region of the IL-8 gene contains 

binding site for p65 (242) and NS2 has been previously shown to play a role in p65 

translocation to the nucleus (92, 104), suggesting a possible mechanism for NS2-mediated 

IL-8 upregulation. Furthermore, IL-8 is a major chemoattractant for neutrophils, which are 

the most predominate type of leukocyte detected in the airways of RSV-infected infants 

(180). The notion that neutrophilic inflammation may be enhanced by NS2 identifies NS2 as 

a major pathogenesis factor contributing to disease severity. 
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B. RSV infection of ciliated cells results in destruction of the cilia apparatus, ciliated 

cells shedding, and impairment of mucociliary clearance.  

Previous studies of ciliated airway epithelial cultures have documented RSV-induced 

ciliary dyskinesia, a decline in the presence of cilia following RSV infection, and sloughing of 

cells from infected cultures (114, 124, 175). We confirm these features of RSV infection and 

expand on previous studies with several important findings. First, we attribute damage to the 

cilia and cilia structures following RSV infection to expression of the NS2 protein, further 

emphasizing the role of NS2 in RSV pathogenesis. Next, we demonstrate that clearance of 

viral infection in vitro is driven by active shedding of infected cells from the epithelium and 

that, based on histologic criteria, apoptosis of infected cells is delayed until complete 

extrusion of the cell from the epithelium into the apical compartment. Finally, we 

demonstrate that the combined effects of cilia degradation and infected cell shedding 

abolished the ability of the epithelium to perform mucociliary transport following RSV 

infection and these factors are likely to significantly impair mucociliary clearance in vivo.  

We speculate that delay of apoptosis until cells are fully detached from the 

epithelium is an important ciliated cell response that, in vivo, serves to dampen the 

inflammatory response and decrease potential damage to the barrier function of the airway 

epithelium. Apoptotic cells shed from the epithelium are subsequently available for 

phagocytosis or mechanical clearance. Viruses frequently evade or delay apoptosis to allow 

for enhanced replication and the RSV life-cycle likely benefits from delay of cell shedding 

and retention of the ciliated cell in the airway epithelium. The RSV NS1 and NS2 proteins 

delay apoptosis in tissue culture cells lines through activation of cellular anti-apoptotic NF-

kB and AKT pathways and these same pathways may be important for suppression of 

apoptosis in ciliated epithelial cells (92). Interestingly, infection of ciliated cells with PIV3 

expressing NS1 results in no visible effect on apical surface structures and minimal cell 
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shedding, despite robust infection, potentially identifying a more important role in the pro-

survival pathway for the NS1 protein as compared to NS2.  

Mucociliary clearance is a critical innate defense mechanism of the airway epithelium 

and coordinated cilia beat is of utmost importance to maintenance of the mucociliary 

escalator function of the human airway. Therefore, the cytopathogenic effects of RSV on 

cilia function and mucociliary clearance likely have profound clinical implications. Shedding 

of cells into the airway lumen combined with impaired mucociliary clearance may contribute 

to the accumulation of antigen-positive cells noted in the airway lumen of RSV infected 

animals and infants (116-118, 153). In the large airways, where patchy and noncontiguous 

infection is often noted, mucociliary clearance may be maintained by surrounding regions of 

airways with healthy epithelia, allowing for clearance of infected cell debris. However, in the 

smaller airways where ciliated cells are fewer in number and infection is often noted as 

circumferential (117), it is possible that RSV infection leads to greater loss of ciliated cells 

and a more significant decline in mucotransport ability that may result in accumulation of 

infected cells in the airway lumen. Intralumenal accumulations of cells and debris likely 

contribute to airway obstruction and inflammation, potentially exacerbating RSV disease.  

II. RSV-induced retraction of the ciliated cell tail is attributable to the RSV NS2 

protein. 

In the pseudostratified airway epithelium of the cartilaginous airway regions, ciliated 

cells are columnar in morphology, spanning the length of epithelium with the cilia on the 

apical surface extending into the airway lumen while the ciliated cell tail remains embedded 

within the underlying basal cell layer. Infection of ciliated columnar cells with RSV results in 

a transition from the native columnar morphology to a rounded morphology and this 

morphologic phenotype is unique to RSV, as no other viruses tested in our airway model 

underwent cell rounding as a result of infection. Because recent studies have identified 

phenotypic differences between highly passaged laboratory strains of RSV, such as the A2 
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strain used in these studies, and clinical isolates (243), we confirmed that the recently 

isolated clinical strain of RSV (Memphis 37) caused morphological changes in infected cells 

similar to cells infected with the recombinant GFP-expressing RSV. Cell rounding also 

occurred following infection of HAE with a recombinant RSV without GFP, the biological-

derived RSV from which the recombinant was generated, and a wild-type subgroup B RSV, 

identifying cell rounding as unique consequence specific to RSV infection of ciliated cells. 

Using gene deletion mutants, we attribute the rounding function to the RSV NS2 protein.  

Morphological changes in RSV infected cells have been frequently noted in animal 

models of RSV disease and histological examination of tissue from RSV-infected infants 

(116, 119, 153, 161, 244). Retrospective investigation of tissue sections from children with 

lower respiratory illness demonstrated RSV antigen-positive multi-nucleated epithelial cells 

and giant cell proliferation in the airway lumen (161). The earliest studies describe these 

lesions as a “bizarre derangement of the epithelium” and note a “mass of cytoplasm 

attached by a thread to the epithelial basement” (161). Similarly, in calves infected with 

bovine RSV, large irregular cytoplasmic projects and hyperplastic epithelial cells were 

described (116). We suggest that the rounding morphology of RSV infected ciliated cells in 

vitro, driven by expression of the NS2 protein, directly correlates to the abnormal 

morphological changes noted in previous studies of RSV infection in vivo. 

The mechanism of NS2-induced ciliated cell rounding is currently unclear. 

Comparison of cell monolayers infected with RSV, RSVΔNS2, PIV3, and PIV3-NS2 did not 

reveal a morphological phenotype specific to the NS2 protein (data not shown), suggesting 

the polarized and differentiated state of the ciliated airway epithelium is a critical component 

of RSV-mediated cell rounding. Cellular pathways known to modulate morphological 

features of polarized cells are future avenues of exploration and represent a potentially 

unidentified pathway of interaction with the RSV NS2 protein. Notably, RSV has been shown 

to modify actin filaments and keratin intermediate filaments during viral assembly and egress 
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(245-248). Cytoskeletal scaffolds comprised of keratin intermediate filaments (KIFs) are 

essential for the cell-cell adhesion and structural integrity of cells, and post-translational 

modification of KIFs, by phosphorylation or O-glycosylation, occurs in response to cellular 

stress. Cleavage and reorganization of keratin 18 (K18), a primary KIF of ciliated cells, 

occurs during apoptosis (249) and increased phosphorylation of K18 leads to keratin 

reorganization, differential localization, and changes in protein association (250-252). A role 

for NS2-mediated modification of keratin intermediate filaments to promote or enable 

epithelial cell shedding represents an intriguing hypothesis. 

III. Expression of RSV NS2 dramatically alters PIV3 infection kinetics in vivo. 

A. RSV NS2 enhances shedding of PIV3-infected cells into the airway lumen and 

accelerates mechanical airway clearance of infection in vivo. 

We next used the hamster model of paramyxovirus infection to evaluate the 

significance of in vitro findings related to the cytopathic effect of NS2 on ciliated cells. The 

hamster nasal respiratory epithelium is comprised of similar cell types as HAE and similar 

outcomes were observed in this region following infection with PIV3-NS2. Both PIV3 and 

PIV3-NS2 specifically target ciliated cells for infection and no viral antigen was noted in 

goblet or basal cells. As in HAE, PIV3-NS2 infection of ciliated cells resulted in rounding, 

cilia cytopathology, and shedding of infected cells, leaving the underlying epithelium intact. 

In contrast, PIV3-infected cells retained the native columnar morphology and remained 

embedded within the epithelium. Similarly, in the larger airways, PIV3-NS2 infection resulted 

in cell rounding and shedding, and viral antigen positive cells were most frequently located 

within the airway lumen. Over time, shed cells in large airways of PIV3-NS2 infected animals 

were likely cleared by mucociliary clearance mechanisms. PIV3 infected similar numbers of 

cells, although cells remained columnar and embedded in the epithelium, with viral-antigen 

positive cells or cellular debris rarely noted in the airway lumen. Additionally, we found that 

PIV3-NS2 was cleared from the hamster lungs more rapidly than PIV3. These data raise the 
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possibility that cell shedding may accelerate clearance of virus-infected cells and viral 

antigen from the airways, representing a protective cellular response triggered by the NS2 

protein. 

B. RSV NS2 enhanced shedding of infected cells in the small airways results in acute 

airway obstruction. 

 Although cell shedding may promote accelerated clearance in the large airways, 

shedding of infected cells into the narrower diameter distal airways resulted in accumulation 

of cells in the airway lumen. In many airways, sufficient cell accumulation resulted in partial 

to complete obstruction of the airway lumen and occlusions were composed primarily of 

intact antigen positive epithelial cells, with little contribution of necrotic debris and immune 

infiltrates. PIV3-NS2 infected cells in the small airways of hamsters displayed an unusual 

swollen and pleomorphic morphology, exaggerating the morphological changes noted in 

infected cells in HAE, the hamster nasal epithelium, and the hamster larger airways. 

Notably, distal airway obstruction associated with PIV3-NS2 was transient and was not 

associated with clinical signs of disease.  

We suggest that enlarged and pleomorphic infected cells in the distal airway may 

reveal cell-type specific differences in NS2-mediated morphological phenotype. These 

swollen pleomorphic cells may represent infection of another cell type present in the smaller 

airway regions, such as the non-ciliated club (Clara) cell. In the human and hamster airways, 

club cells increase in density as the conducting airways descend into the distal airway 

region (113, 232). Infection of both ciliated and non-ciliated epithelial cells was noted in the 

hamster distal airways, the latter likely representing club cells. Similarly, RSV infection of 

both ciliated and non-ciliated cells has been observed in the small airways of humans, 

calves, and lambs (116-119, 153). The apparent morphologic difference in shed cells within 

different regions of the airway may reflect the increased frequency of PIV3-NS2 infection of 

club cells in the smaller airway compared to ciliated cells in the larger airway. We suggest 
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that the combination of narrower diameter airway lumens and expanded volume of cells 

shed into these regions enhances the likelihood that shed cells would accumulate and 

occlude the smaller diameter airway lumens.  

Distal airway obstructions in PIV3-NS2 infected animals were strikingly reminiscent 

of bronchiolar airway occlusions observed in the small airways of infects with RSV-

associated bronchiolitis and we speculate that RSV NS2-induced cell shedding has 

important implications for RSV disease. RSV bronchiolitis has long been associated with 

small airway obstruction resulting in air-trapping distal to the regions of obstruction, leading 

to decreased pulmonary function and increased airway resistance. Tissue sections from 

RSV-infected patients and studies of large animal models of infection reveal accumulation of 

RSV antigen-positive debris in the lumen of infected airways, further emphasizing the 

potential significance of shed and accumulated epithelial cells as a major contributor to 

small airway obstruction after RSV infection. Furthermore, RSV-associated bronchiolitis is 

known to be more severe than bronchiolitis associated with other respiratory pathogens 

such as rhinovirus and parainfluenza viruses (9, 10).  Non-RSV bronchiolitis is characterized 

by pulmonary edema and inflammatory infiltrates, resulting in constriction of the bronchiolar 

airways. Additional bronchiolar involvement and occlusion due to accumulation of shed 

RSV-infected cells may account for the more severe consequences associated with RSV 

bronchiolitis.  

We speculate that epithelial cell shedding promoted by NS2 may also provide unique 

evolutionary benefits to the RSV life-cycle. Shedding of virus-infected cells may, for 

example, contribute to the spread of infection throughout the respiratory tract, such as by 

pulmonary aspiration of upper airway secretions laden with shed infected cells into the lower 

respiratory tract. Shed cells in the large and small airways appear viable and viral replication 

and shedding may continue as these cells are transported within the respiratory tract. It is 



123 
 

also possible that occlusion of airways may contribute to prolonging disease, thereby 

increasing the opportunity for viral transmission to secondary contacts.  

C. RSV NS2 exaggerates neutrophil recruitment to distal airways. 

In hamsters infected with PIV3-NS2, histological evidence indicated earlier and more 

robust neutrophil recruitment to infected airways, and both neutrophils and proteins secreted 

by neutrophils were elevated bronchoalveolar lavage fluid of PIV3-NS2 infected animals at 3 

days pi. Furthermore, analysis of inflammation in histological sections revealed an intriguing 

difference in the location of neutrophils in airways of PIV3 and PIV3-NS2 infected animals. 

PIV3 infection resulted in neutrophil recruitment into the airway lumen at later time points (5 

days pi), and neutrophils were frequently noted to be associated with the epithelium, 

presumably at locations of infection. In contrast, although PIV3-NS2 animals had larger 

numbers of inflammatory cells at earlier time points (3 days pi), neutrophils were often 

observed below the basement membrane, having not yet migrated across the airway 

epithelium, or within the airway lumen, not directly associated with the respiratory 

epithelium, suggesting that neutrophils are associating with the infected, shed cells in PIV3-

NS2 infected animals rather than the airway epithelium.  

Neutrophil infiltration is characteristic of RSV infection and neutrophils make up a 

high percentage of infiltrating leuokocytes in both human studies and animal models of 

infection (116, 180). Studies in mice suggested that neutrophils were recruited by CD8+ T 

lymphocytes (253), however more recent evidence indicated that neutrophil recruitment is 

mediated by cytokine release from the infected airway epithelium. In HAE, we found that 

airway epithelial cells upregulated IL-8 and CXCL10, major neutrophil recruitment cytokines, 

in response to RSV and PIV3-NS2 infection, suggesting that infected epithelial cells play a 

significant role in recruitment of neutrophils to site of infection.  

Neutrophil location may have several implications for RSV pathogenesis. RSV 

infected cells display the neutrophil adhesion protein ICAM-1 at the cell surface (191, 193, 
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194) and shedding of these infected cells may have a protective effect for the host, where 

neutrophils in the airway lumen adhere to shed cells, rather than cells within the airway 

epithelium. In this case, release of cytotoxic neutrophil effector proteins, such as elastase 

and MPO, in the lumen, rather than directly at the epithelium, may decrease damage to the 

epithelium and help maintain barrier integrity. Conversely, cell shedding may represent an 

immune evasion mechanism of the virus, where removal of the infected cell from the 

epithelium might decrease the likelihood that infected cells will directly encounter 

inflammatory cells recruited to site of infection. In this scenario, shedding of the infected cell 

into the airway lumen might reduce neutrophil migration across the respiratory epithelium, as 

neutrophils in the parenchyma can no longer interact with ICAM-1 on the infected cell to 

facilitate migration across the respiratory mucosa. Clearance of shed cells would further 

dampen recruitment signals to site of infection. Virus infected cells that remain in the 

epithelium, such as occurs in PIV3 infection, likely recruit inflammatory infiltrates and enable 

direct interactions between infiltrates and infected cells. In the context of RSV, cell shedding 

resulting in reduction of interactions between immune cells and virus-infected cells may 

significantly impact the development of immunity to RSV.  

Summary 

These studies present evidence for a critical role of ciliated cells in development of 

RSV disease. The observations reported in this dissertation provide new insight into the viral 

and cellular mechanisms of RSV infection of ciliated cells and define a novel role for the 

RSV NS2 protein in modulating key pathogenic changes in RSV-infected cells. Use of a 

well-differentiated model of the human airway allowed for identification of morphological 

consequence of RSV infection not present in cell line monolayers, namely transition of 

infected ciliated cells from the native columnar morphology to a rounded morphology. 

Further, we identify in vivo correlates of in vitro observations using recombinant viruses and 

the hamster model of infection. In the hamster, we identify two key outcomes of NS2-
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mediated morphological changes and cell shedding. In the larger airways, RSV NS2 

promotes enhanced clearance of viral infection mediated by clearance of virally infected, 

shed cells. In the smaller airways, RSV NS2 enhances acute airway obstruction due to 

narrower airway diameter and increased size of shed cells. Addtionally, we demonstrate 

early and robust neutrophil influx in the distal airway regions, mediated by the NS2 protein in 

the context of a viral infection. Acute airway obstruction is a key feature in severe RSV-

associated bronchiolitis and these studies identify the NS2 protein as the primary mediator 

of early airway obstruction. We suggest that NS2-mediated cell shedding and obstruction 

represent a critical initiating event that contributes to airway pathology associated with 

severe RSV-mediated bronchiolitis. 
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