
Privacy-Preserving Regular Expression Evaluation on Encrypted Data

Lei Wei

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill

2013

Approved by:

Christian Cachin

Philip Mackenzie

Fabian Monrose

Michael Reiter, Chair

Gene Tsudik

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210603779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

©2013

Lei Wei

ALL RIGHTS RESERVED

ii

ABSTRACT

LEI WEI: Privacy-preserving Regular-Expression Evaluation on Encrypted Data

(Under the direction of Michael K. Reiter)

Motivated by the need to outsource file storage to untrusted clouds while still permitting con-

trolled use of that data by authorized third parties, in this dissertation we present a family of proto-

cols by which a client can evaluate a regular expression on an encrypted file stored at a server (the

cloud), once authorized to do so by the file owner. We present a protocol that provably protects the

privacy of the regular expression and the file contents from a malicious server and the privacy of

the file contents (except for the evaluation result) from an honest-but-curious client. We then extend

this protocol in two primary directions. In one direction, we develop a strengthened protocol that

enables the client to detect any misbehavior of the server; in particular, the client can verify that

the result of its regular-expression evaluation is based on the authentic file stored there by the data

owner, and in this sense the file and evaluation result are authenticated to the client.

The second direction in which we extend our initial protocol is motivated by the vast adoption

of resource-constrained mobile devices, and the fact that our protocols involve relatively intensive

client-server interaction and computation on the searching client. We therefore investigate an alter-

native in which the client (e.g., via her mobile device) can submit her encrypted regular expression

to a partially trusted proxy, which then interacts with the server hosting the encrypted data and re-

ports the encrypted evaluation result to the client. Neither the search query nor the result is revealed

to an honest-but-curious proxy or malicious server during the process. We demonstrate the practi-

cality of the protocol by prototyping a system to perform regular-expression searches on encrypted

emails and evaluate its performance using a real-world email dataset.

iii

To my parents, and Shih.

iv

ACKNOWLEDGEMENTS

The completion of this dissertation would not have been possible without the guidance of my

advisor, Prof. Mike Reiter, whom I feel extremely fortunate to have worked with and owe all my

gratitude to. Looking back 6 years ago when I accidentally stepped into this field as a newcomer, he

has been instrumental in my personal development and helped shape who I am today. Throughout

the years, I have been immensely impressed by and benefited from his masterful understanding of

the field, endless source of wisdom, careful direction and advise, and sometimes brutal demands to

lift me up to his high standards. There is still so much I can learn from him everyday, but I feel like

it is time for me to carry with all these qualities learned from him going forward, hopefully to have

a positive impact on others.

I would also like to thank Dr. Christian Cachin, Dr. Fabian Monrose, Dr. Philip Mackenzie and

Dr. Gene Tsudik for serving on my dissertation committee. I am very grateful for all of them to

take time from their busy schedules to hold meetings with me and providing invaluable feedbacks,

especially considering the challenge of scheduling across 9 time zones.

Special thanks to Fabian, who is always available for encouragement, a fun chat or simply a

game of foosball or pingpong to distract myself from the stress in graduate school.

I would also like to thank my friend, Hao Xu, for his generosity for providing many insightful

discussions and assistance on fighting bugs in my code from time to time. I would also like to thank

all my friends in the security lab, from whom I benefited through inspiring discussions, helpful

critiques to my work and feedbacks that helped me improve my presentation skills.

My gratitude for my girlfriend, Shih Ku, who has accompanied and supported me throughout

my time in graduate school, though not always physically close, but always close in heart.

Of course, I would not have reached to this point without the love and care from my parents. It

was them who gave me all of my gifts, and who I can always count on no matter what happens.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1

1.1 Third-Party Private DFA Evaluation on Encrypted Files in the Cloud 2

1.2 Ensuring File Authenticity in Private DFA Evaluation on Encrypted Files

in the Cloud. 4

1.3 Toward Practical Encrypted Email That Supports Private, Regular-Expression

Searches . 5

1.4 Contributions . 7

2 Related Work . 9

2.1 General Techniques for Secure Computation . 9

2.2 Specialized Protocols for DFA Evaluation . 10

2.3 Specialized Protocols for Searching on Encrypted Data . 11

2.4 Input Authenticity in Secure Computation . 12

2.5 Implementations of Systems That Allow Searching on Encrypted Data 12

3 Third-Party Private DFA Evaluation on Encrypted Files in the Cloud . 13

3.1 Problem Description . 13

3.2 A Secure DFA Evaluation Protocol . 15

3.2.1 Construction . 15

3.2.2 Security Against Server Adversaries . 19

3.2.3 Security Against Client Adversaries . 25

3.3 An Alternative Protocol . 28

vi

3.4 Heuristics to Detect Misbehavior . 32

4 Ensuring File Authenticity in Private DFA Evaluation on Encrypted Files in the Cloud 34

4.1 Goals . 34

4.2 Private DFA Evaluation on Signed and Encrypted Data . 35

4.2.1 Preliminaries . 35

4.2.2 Initial Construction Without File Encryption . 37

4.2.3 Adding File Encryption . 39

4.2.4 Complexity . 42

4.2.5 Security Against Server Adversaries . 42

4.2.6 Security Against Client Adversaries . 53

4.3 On File Updates . 56

4.4 Extensions . 57

5 Toward Practical Encrypted Email That Supports Private, Regular-Expression Searches . . . 59

5.1 Protocol Design . 59

5.1.1 Our Starting Point . 61

5.1.2 Our Initial Construction . 61

5.2 Optimizations . 67

5.2.1 File Representation . 67

5.2.2 Pairing Operations . 67

5.2.3 Shifting . 70

5.2.4 Packing the Result Ciphertexts . 71

5.3 Protocol Security . 73

5.3.1 Security Against Server Adversaries . 73

5.3.2 Security Against Proxy Adversaries . 79

5.4 Performance Evaluation . 83

5.4.1 Implementation. 83

5.4.2 Microbenchmarks . 84

vii

5.4.3 Case Study: Regular Expression Search on Encrypted Emails 87

5.4.3.1 Header Information . 87

5.4.3.2 Encoding . 88

5.4.3.3 Evaluations . 89

6 Conclusion . 92

BIBLIOGRAPHY . 94

viii

LIST OF TABLES

5.1 Average time spent per email in seconds (numbers in braces are when

pairing preprocessing is applied on email ciphertexts in advance) 90

ix

LIST OF FIGURES

1.1 Overall framework: data owner stores encrypted data at the server, with

which an authorized client performs private searches. 2

3.1 Protocol Π1(E), described in Section 3.2 . 18

3.2 Experiments for proving DFA privacy of Π1(E) against server adversaries 20

3.3 Experiment for IND-CPA security . 21

3.4 Experiments for proving file privacy of Π1(E) against server adversaries 22

3.5 Experiment for proving file privacy of Π1(E) against client adversaries 25

3.6 Protocol Π2(E), described in Section 3.3 . 29

4.1 Protocol Π3(E), described in Section 4.2 . 40

4.2 Experiments for proving DFA and file privacy of Π3(E) against server

adversaries . 43

4.3 Experiment for proving result authenticity against server adversaries 48

4.4 Experiment for defining BCDH problem . 49

4.5 Experiment for proving file privacy against client adversaries . 54

5.1 Protocol Π
′

1(E), described in Section 5.1.1 . 60

5.2 Protocol Π4(E), described in Section 5.1.2 . 65

5.3 Optimized protocol Π5(E), described in Section 5.2 . 72

5.4 Experiments for proving DFA privacy of Π5(E) against server adversaries 74

5.5 Experiments for proving file privacy of Π5(E) against server adversaries 77

5.6 Experiments for proving DFA privacy of Π5(E) against proxy adversaries 79

5.7 Experiments for proving file privacy of Π5(E) against proxy adversaries 82

5.8 Time spent per file character in milliseconds, with pairing preprocessing

disabled . 85

5.9 Time spent per file character in milliseconds, with pairing preprocessing

enabled . 85

5.10 CPU time and network bandwidth measurements . 86

x

CHAPTER 1

Introduction

Outsourcing file storage to storage service providers (SSPs) and “clouds” can provide signifi-

cant savings to file owners in terms of management costs and capital investments (e.g., [58]). How-

ever, because cloud storage can heighten the risk of file disclosure, prudent file owners encrypt

their cloud-resident files to protect their confidentiality. This encryption introduces difficulties in

managing access to these files by third parties, however. For example:

• Third-party service providers who are contracted to analyze files stored in the cloud generally

cannot do so if the files are encrypted. For example, periodically “scanning” files to detect new

malware, as is common today for PC platforms, cannot presently be performed on encrypted

files by a third party.

• With some exceptions (see Chapter 2), third-party customers generally cannot search the

files if they are encrypted. Searches on genome datasets, pharmaceutical databases, document

corpora, or network logs are critical for research in various fields, but the privacy constraints

of these datasets may mandate their encryption, particularly when stored in the cloud.

These difficulties are compounded when the third party views its queries on the files to be

sensitive, as well. New malware signatures may be sensitive since releasing them enables attackers

to design malware to evade them (e.g., [75]). Customers of datasets in numerous domains (e.g.,

pharmaceutical research) may view their research interests, and hence their queries, as private.

As a step toward resolving this tension among file protection, search access by authorized third

parties, and privacy for third-party queries, in this dissertation we develop a family of protocols by

which a third-party (called the “client”) can perform private searches on encrypted files (stored at

the “server”), once it is authorized to do so by the file owner, with various security properties. The

overall framework is demonstrated in Fig. 1.1. The type of searches that our protocols enable is

 Data Owner

 Cloud Provider

 (Server)

Service Provider

(Client)

Figure 1.1: Overall framework: data owner stores encrypted data at the server, with which an

authorized client performs private searches.

motivated by the scenarios above, which in many cases involve pattern matching a file against one

or more regular expressions. Regular-expression searches are a widely adopted search primitive

in many languages and programming frameworks1 (e.g., see [38]). Multi-pattern string matching

is especially common in analysis of content for malware (e.g., [64, 50]) and also is commonplace

in searches on genome data, for example. In fact, there are now a number of available genome

databases (e.g., [2, 5]) and accompanying tools for multi-pattern matching against them (e.g., [12]).

1.1 Third-Party Private DFA Evaluation on Encrypted Files in the

Cloud

With the goal of improving privacy in such applications above, in Chapter 3 we develop novel

protocols to evaluate a deterministic finite automaton (DFA) of the client’s choice on the plaintext

of the encrypted file and to return the final state to the client to indicate which, if any, of the patterns

encoded in the DFA were matched. We stress that while there is much work on secure two-party

1To be more precise, the term “regular expression” is used in some frameworks in a way that follows but deviates

somewhat from its original definition. Our system supports searches using regular expressions as originally defined, i.e.,

searches that can be expressed as deterministic finite automata [43].

2

computation including the specific case of private DFA evaluation on a private file, very few works

have anticipated the possibility that the file is available only in encrypted form. This setting will

become more common as data-storage outsourcing grows.

The security properties we prove for our protocols include privacy of the DFA and file contents

against arbitrary server adversaries, and privacy of the file (except what is revealed by the evaluation

result) against honest-but-curious client adversaries. Though our proofs are limited to only honest-

but-curious client adversaries, we also provide heuristic justification for the security of our protocols

against arbitrary client adversaries. Our protocols appear to be extensible with standard techniques

to provably protect file privacy against arbitrary client adversaries, but we stop short of doing so in

light of the substantially greater cost it would impose and our motivating scenarios involving third

parties that the file owner must authorize and so presumably trusts to some extent. We do, however,

discuss efficient heuristics to detect a misbehaving client or server that highlight new opportunities

in the cloud storage setting.

A central observation that facilitates our protocols is that a DFA transition function can be

encoded as a bivariate polynomial over the ring of an additively homomorphic encryption scheme

with which the file characters are encrypted. In our protocols, the client, who has this polynomial as

input, and the server, who has the encrypted file as input, obliviously perform DFA state transitions

by jointly evaluating this polynomial. Neither party learns the current state at any point of the

protocol execution; instead, they share the current state at each step, requiring that the polynomial

be adapted in each round to accommodate this sharing.

We believe our protocols will be efficient enough for many practical scenarios. They support

evaluation of any DFA over an alphabet Σ on any file consisting of ℓ symbols drawn from Σ, and

require the file to be stored using ℓm ciphertexts where m = |Σ|. Since m is a multiplicative

factor in the storage cost, our protocols are best suited small alphabets Σ, e.g., bits (m = 2), bytes

(m = 256), alphanumeric characters (m = 36), or DNA nucleotides (m = 4 for “A”, “C”, “G”, and

“T”). Specifically, in Chapter 3, we first present a protocol that leverages additively homomorphic

encryption (e.g., [59]) and transmits (nm+3)ℓ+3 ciphertexts to evaluate a DFA of n states. We then

leverage additively homomorphic encryption that also supports one homomorphic multiplication of

ciphertexts (e.g., [17]) to construct an improved protocol that transmits only (n + m + 1)ℓ + 3

ciphertexts. Our techniques could also be utilized with fully homomorphic encryption to produce a

3

noninteractive protocol with a communication cost of O(nm) fully homomorphic ciphertexts and,

in particular, that is independent of the file length ℓ.

1.2 Ensuring File Authenticity in Private DFA Evaluation on Encrypted

Files in the Cloud

Even though our protocols provide provable privacy guarantees for both the DFA query and file

content against arbitrarily malicious server adversaries, a malicious server could still try to tamper

with the evaluation result by deviating from the protocol specification, or even input fraudulent en-

crypted files into the protocol to fool the client. Indeed, though the traditional notion of a protocol

secure against an arbitrarily malicious adversary prevent any misbehaviors during protocol execu-

tion, it provides no guarantees on what input a malicious party may use in the protocol. Protocols

for a third-party client to perform private searches on encrypted data in the cloud, while revealing

nothing to the cloud server and nothing but the search result to the client, do exist for some types

of searches (e.g., [67, 28, 73]). To our knowledge, however, none also enforce that the cloud server

employs the data that the data owner stored at the cloud server.

Motivated by this, in Chapter 4 we present a strengthened protocol that allows the client to

detect any misbehavior of the server, and in particular, to tell whether the server input the authentic

encrypted file stored there by the data owner. In that sense, the authenticity of the file input by the

server and the integrity of the computation result are both enforced. At the same time, the protocol

provably protects the file contents (except for the result of the computation) from an honest-but-

curious client (and heuristically from even a malicious client) and provably protects both the file

contents and DFA from an arbitrarily malicious server. To our knowledge, our protocol is the first

example of performing secure DFA computation on both encrypted and authenticated data.

Traditionally, one needs to know the file content and the signature to verify the authenticity

of a file, and so the main technical difficulty in our case is to ensure computation on authenticated

(signed) data without disclosing the plaintext to either party. The most common approach one might

first consider to solve this problem is to leverage zero-knowledge proof techniques. By asking the

data owner to publish commitments of the file character signatures, the server might then prove that

his input used in the protocol is consistent with the published commitments. In the ways we see to

4

instantiate this intuition, however, it would require much higher computation and communication

costs than our protocol. Instead, we introduce a new technique to enforce correct server behavior and

the authenticity of the input on which it is allowed to operate, without relying on zero-knowledge

proofs at all. At a high level, the protocol takes advantage of the verifiability of the computation

result to check the correctness of the server behavior. The protocol is designed so that that legitimate

outputs are encoded in a small space only known to the client, and any malicious behavior by the

server will result in the final output lying outside this space, which is then easily detected by the

client. We prove this property (in the random oracle model) and the privacy of both the file and the

DFA against an arbitrarily malicious server. We also prove the privacy of the file (except for the

result of the DFA evaluation) against an honest-but-curious client.

1.3 Toward Practical Encrypted Email That Supports Private, Regular-

Expression Searches

As a practical application of private regular expression searches on encrypted data, in Chapter 5

we report a case study of a prototype implementation using our protocol to perform private regular

expression searches on encrypted emails. In particular, the protocol developed there suffices to sup-

port the search options (including Boolean combinations) offered by the Thunderbird email client

for the text and numeric email fields, for example. Our system is thus able to support range queries

on the date field and various types of substring queries on the source, destination, and subject fields

of emails.

Our attention on the application of searchable encrypted emails was drawn from the numerous

designs of socalled searchable encryption schemes that have been proposed with it as one of the

main application. Unfortunately, to our knowledge few have made it to practical use. We believe that

this state of affairs is due in part due to inflexibility, in the sense that such schemes typically require

the document creator to tag it by the keywords on which searches will be supported in the future.

Even though one can imagine tagging and encrypting all the words in an document to allow for all

searches on any word, anything from a typo in the document to different forms of word stemming

will render the search results unsatisfactory. For example, a document tagged with the keyword

“meetings” would not be returned in the search results for the queries “meet” or “meeting”. A recent

5

study of user email query patterns [40] showed that many queries that users create are only partial

words, and so substring searching capability is important to provide an adequate user experience.

Furthermore, very few searchable encryption schemes offer the capabilities of performing substring,

conjunctive, disjunctive and range queries, and we are aware of none that offers all them at the same

time.

Our protocol for regular-expression searching gains computational efficiency by using interac-

tion, in fact requiring data transfer between the searching client and the server holding the ciphertext

of a volume larger than the searchable ciphertext itself. This obviously begs the question of whether

a more suitable solution would be to download each email to the client and decrypt it there, to be

searched locally. With the widespread use of volume-priced networking (i.e., over cellular data

plans), however, neither design is particularly appealing. So, we instead explore a different design

in which the user (e.g., via her mobile device) submits her encrypted regular expression (or suitable

representation thereof) to a proxy, which then interacts with the server hosting the encrypted data

using our protocol. After this interaction, the proxy reports information back to the user that permits

her to determine whether there was a match, so she can retrieve the file from the server in that case.

We stress that the interaction between the user and the proxy is independent of the lengths and num-

ber of ciphertexts stored at the server, and that the proxy is untrusted for the privacy of the search or

the file contents (provided that it does not collaborate maliciously with the server). So, for example,

the proxy could be run in a cloud distinct from that where the server is run.

The task of constructing such a protocol to be efficient is, as we found, very challenging. Start-

ing from a protocol that implements the above functionality, we detail a series of optimizations

that resulted in an optimized protocol with more than an order of magnitude improvement in the

performance. At a high level, the optimizations involve careful redesign of the protocol in order

to take advantage of well known algebraic optimization techniques (e.g., preprocessing to optimize

pairing operations) and a few novel algebraic techniques to reduce the online computational costs.

After detailing these protocol optimizations, we then explore additional optimizations that leverage

specifics of the email setting. These optimizations pertain to the specific regular expression alpha-

bet that should be utilized for each type of searchable field (i.e., source email address, sender name,

date, and subject).

6

Following these optimizations, we detail an implementation of our protocol and its performance

when searching emails from a real-world email dataset. We show, for example, that our implemen-

tation incurs average latencies of 0.89 seconds per email for performing a 9-character substring

search on the sender email address field, and 0.17 seconds per email for performing a range query

spanning about 6 months on the email date field. These numbers were obtained from a proxy and

server each having 8 physical cores with simultaneous multithreading enabled, yielding 16 logical

cores. We also evaluate options for exploiting parallelism with our protocol, ranging from very

coarse (i.e., one server thread and one proxy thread per server-proxy protocol instance, but running

16 protocols instances in parallel) to very fine (i.e., 16 server threads and 16 proxy threads in one

protocol instance).

1.4 Contributions

In summary, the contributions of this dissertation are:

• We developed protocols (in Chapter 3) that enable a client having a private regular expression

to evaluate on the encrypted file stored at a server, once authorized to do so by the file owner.

Our protocols contribute over prior work by offering the protection of the privacy of the file

content against both server and client. More precisely, the protocols protect privacy of the

query and file content against arbitrarily malicious server adversaries and honest-but-curious

client adversaries.

• In Chapter 4, we present a extension of the protocol developed in Chapter 3 so that, in addition

to offering the security guarantees already provided by the original protocol, the client is able

to detect any misbehavior of a server adversary. Furthermore, it can even tell whether the

server input the authentic encrypted file stored there by the file owner during the protocol

execution. Consequently, the input and the evaluation result are both authenticated to the

client. To our knowledge, this is the first protocol published that considers secure computation

on both encrypted and authenticated data in the context of DFA evaluation.

• To demonstrate the usefulness of private DFA evaluation in the real world, in Chapter 5 we

prototype a system using our protocol to perform private regular expression searches on en-

7

crypted emails. Toward that goal, we developed another protocol, along with several optimiza-

tions that allows a user to securely delegate the search query to a proxy, which will interact

with the server where the encrypted email is stored to perform the search and return the result

to the user. The privacy of the query and the data are both protected against an arbitrarily

malicious server and an honest-but-curious proxy. We provide extensive evaluations on the

implementation and report its performance using a real world email data set.

8

CHAPTER 2

Related Work

In this chapter, we discuss research that is related to this dissertation. We discuss general

techniques for secure computation in Section 2.1 and then protocols specifically tailored to private

DFA evaluation in Section 2.2. Protocols specifically targeted other types of search functionality are

discussed in Section 2.3. Previous work on research to ensure that authentic inputs are employed in

secure computation protocols is discussed in Section 2.4, and some previous implementation efforts

for searching on encrypted data are briefly surveyed in Section 2.5.

2.1 General Techniques for Secure Computation

The problem we study in this dissertation — i.e., privately evaluating a regular expression on

the plaintext of an encrypted file stored at a server — could be implemented with general techniques

for “computing on encrypted data” [63] or two-party secure computation [74, 37]. These general

techniques tend to yield less efficient protocols than one designed for a specific purpose, and our

case will be no exception. In particular, the former achieves computations non-interactively using

fully homomorphic encryption, for which existing implementations [33, 71, 66, 69] are dramatically

more costly than the techniques we use.

The latter utilizes a “garbled circuit” construction that is of size linear in the circuit repre-

sentation of the function to be computed. Despite progress on practical implementations of this

technique [54, 11, 60], this limitation renders it substantially more communication-intensive for the

problem we consider. In particular, in Chapter 5 we study the setting in which a user wishes to

outsource her (encrypted) search query to a partially trusted proxy machine; the proxy will interact

with the server hosting the encrypted data and report the encrypted results back to the user. One

requirement of the protocol is that the communication between the user and the proxy should be

minimized. Using our protocol, the communication cost in the direction from the user to the proxy

is only dependent on the size of the search query, and is independent of the number and size of the

file ciphertexts. We are unaware of how to achieve this property using garbled circuits, however.

Since the garbled circuit and its inputs are “unreusable” across different runs of the protocol, the

user would need to provide a number of inputs (in this case, encrypted queries) to the proxy that

equals to the number of files to be searched. Furthermore, the fact that in our construction, the

user-generated encrypted query can be used an unlimited number of times enables a subscription

service such that the proxy holds the encrypted query and periodically informs the user of the arrival

of matched emails, without any further communication from the user to the proxy. Again, we are

unaware of how to implement this functionality using generic garbled-circuit techniques.

An ingredient of our protocols in Chapter 3 and Chapter 5 is a two-party sharing of the data

owner’s file-decryption key between a client holding the search query and the server holding the

encrypted file. By two-party secret-sharing the file-decryption key and using this to compute on

encrypted data, our protocols are related to those of Choi et al. [24]. This work developed a pro-

tocol based on garbled circuits by which two parties can evaluate a general function after a private

decryption key has been shared between them. This protocol can be used to solve the problem we

propose, but inherits the aforementioned limitations of garbled circuits.

2.2 Specialized Protocols for DFA Evaluation

Two-party private DFA evaluation, in which a server has a file and a client has a DFA to evaluate

on that file, has been a topic of recent focus. To our knowledge, Troncoso-Pastoriza et al. [70] were

the first to present such a protocol, which they proved secure in the honest-but-curious setting.

Frikken [31] presented a protocol for the same setting that improved on the round complexity and

computational costs. Gennaro et al. [32] gave a two-party DFA evaluation protocol that they proved

secure against arbitrary adversaries. Our work differs from these in that in all of our protocols, the

file is made available to the parties only in ciphertext form, and in our protocols in Chapter 5, even

the DFA is made available only in ciphertext form to a proxy to which the user delegates the search

to, so that the proxy need not be trusted with the privacy of the search query. In this respect, the

10

protocol of Blanton and Aliasgari [13] is relevant; they adapted the Troncoso-Pasoriza et al. protocol

to an “outsourcing” model in which the client and server secret-share the DFA and file, respectively,

between two additional hosts that interactively evaluate the DFA on the file without reconstructing

either one. While our protocols utilize secret sharing, as well — in our case, of the file owner’s

file-decryption key — our protocol shares much less data and does not share the client’s DFA (or

thus require two parties between which to share it) at all. Furthermore, their protocol does not

support the asymmetric encryption of the file, which in the encrypted email application we consider

in Chapter 5 is the predominant method for preparing a private email for its intended recipient.

2.3 Specialized Protocols for Searching on Encrypted Data

Specialized protocols for performing searches on encrypted files or database relations have

also been developed. For example, searchable encryption [67, 36, 16, 22, 28, 6, 19, 9, 49, 62, 47]

enables a party holding a file-decryption key to search for attribute values in the ciphertext file

stored at an untrusted server. These techniques have been generalized to support more complex

queries, notably conjunctive [19], disjunctive [49] and range queries [65] and inner products [49].

Searchable encryption schemes typically achieve non-interactive queries on encrypted files, in part

by attaching “tag” information to the ciphertext of each file to enable the query operation. However,

broadening the supported search attributes typically requires expanding the tags, and so the sizes of

the tags are determined by the richness of the supported queries. In contrast, in our work the file

ciphertexts are independent of the DFA(s) to be evaluated (assuming a fixed alphabet Σ over which

the DFAs are defined), and the computation is performed interactively between the two parties.

Richer forms of pattern-matching and search (though still not encompassing DFA evaluation)

have also been studied in the two-party setting, e.g., by Jha et al. [45], Hazay and Lindell [41], Katz

and Malka [48], and Hazay and Toft [42]. Again, these works input the plaintext file to one party

and so do not directly apply to our setting.

Still other works have explored storing database relations at an untrusted server in a form that

hides sensitive attributes or associations between attributes while supporting rich queries, e.g., range

queries [44, 23] or SQL queries [39, 25]. The security properties offered by these techniques are

11

usually heuristic, without formal definitions and proofs, and we are unaware of any designed to

support DFA searches.

2.4 Input Authenticity in Secure Computation

Most work in the area of secure computation generally does not consider the authenticity of

the inputs to the protocol. Indeed, the standard definition of security against arbitrarily malicious

adversaries for general two-party protocols provides no restrictions on what input a malicious party

may use in the protocol as long as he does not deviate from the protocol. The protocol we present

in Chapter 4 allows the client to tell whether the server actually uses the authentic encrypted data

of the data owner as input, in addition to the ability to detect any misbehavior by the server. In this

sense, our protocol provides an authenticated evaluation result to the client. To our knowledge, ours

is the first protocol to consider secure computation on authenticated data in the context of private

DFA evaluation. The main area of specialized protocols in which input authenticity has previously

been treated has been private intersection of certified sets [20, 27, 26, 68], in which the set elements

of each party much be certified by a trusted third party for use in performing the intersection.

2.5 Implementations of Systems That Allow Searching on Encrypted

Data

There have been some implementation efforts to prototype systems that support search oper-

ations on encrypted data. Kamara et al. [46] implemented a encrypted storage system using a

symmetric searchable encryption scheme that supports keyword search. Waters et al. [72] built a

searchable encrypted audit log system using an asymmetric searchable encryption scheme. Popa et

al. [61] presented a scheme supporting SQL queries on encrypted data and provided an implementa-

tion of an encrypted database using that scheme. The system we developed, described in Chapter 5,

enables private regular expression searches in an encrypted email system. To our knowledge, ours

is the first implementation supporting private regular expression queries on encrypted files.

12

CHAPTER 3

Third-Party Private DFA Evaluation on Encrypted

Files in the Cloud

Motivated by the need to outsource file storage to untrusted clouds while still permitting limited

use of that data by third parties, in this chapter, we present practical protocols by which a client can

evaluate a DFA on an encrypted file stored at a cloud server, once authorized to do so by the file

owner. Our protocols provably protect the privacy of the DFA and the file contents from a malicious

server and the privacy of the file contents (except for the result of the evaluation) from an honest-

but-curious client (and, heuristically, from a malicious client). We introduce our main protocol

in Section 3.2 and an improved protocol in Section 3.3. We further present simple techniques to

detect client or server misbehavior in Section 3.4. Before that, we first define the studied problem

in Section 3.1.

3.1 Problem Description

A deterministic finite automaton M is a tuple 〈Q, Σ, δ, qinit〉 where Q is a set of |Q| = n states;

Σ is a set (alphabet) of |Σ| = m symbols; δ : Q × Σ → Q is a transition function; and qinit is the

initial state. (A DFA can also specify a function ∆ : Q → {0, 1}, for which ∆(q) = 1 indicates

that q is an accepting state. We will discuss extensions of our protocols to this case.)

Our goal is to enable a client holding a DFA M to interact with a server holding the ciphertext

of a file to evaluate M on the file plaintext. More specifically, the client should output the final state

to which the file plaintext drives the DFA; i.e., if the plaintext file is a sequence 〈σk〉k∈[ℓ] where [ℓ]

denotes the set {0, 1, . . . , ℓ−1} and where each σk ∈ Σ, then the client should output δ(. . . δ(δ(qinit,

σ0), σ1), . . . , σℓ−1). We also permit the client to learn the file length ℓ and the server to learn both ℓ

and the number of states n in the client’s DFA.1 The client should learn nothing else about the file,

however, and the server should learn nothing else about the file or the client’s DFA.

Because the file exists in the system only in encrypted form, some private-key information

must be injected into the protocol to enable a DFA to be evaluated on the file plaintext. Since

(only) the data owner holds the private key, one approach would be to involve the data owner in

the protocol. However, in keeping with the goals of cloud outsourcing, our protocols require the

data owner only to authorize the client to perform DFA evaluations with the server — but not

to participate in those evaluations herself. In our protocols, this authorization occurs by the data

owner sharing the private file-decryption key between the client and server. As a result, a client

and server that collude could pool their information to decrypt the file. Here we assume no such

collusion, however, for two reasons. First, we are primarily motivated by scenarios in which the

client represents a partially trusted service provider or customer, and so even if the cloud server

were to be compromised, we presume this party would not be the cause. So, we prove security

against only a client or server acting in isolation and with primary attention to only an honest-but-

curious client (though we also heuristically justify the security of our protocol against an arbitrary

client). Second, even without sharing the file decryption key between the client and server, the

functionality offered by our protocol (i.e., evaluating a DFA on the file) would enable a colluding

client and server to evaluate arbitrary (and arbitrarily many) DFAs on the file, eventually permitting

its decryption anyway. The only defense against collusion that we see would be to involve the data

owner in the protocol; again, we do not explore this possibility here.

Another potential form of collusion that we do not explicitly consider here is collusion between

the data owner and the server, presumably to learn the DFA used by the client. In our protocol,

however, the protection of DFA privacy does not depend on the security of the data owner’s file-

decryption key. Since the data owner is not involved in the protocol, it does not offer the server any

additional leverage in learning the client’s DFA.

1Since exposing the final state reduces file entropy by log2 n bits, presumably the server should learn n so as to

monitor for excessive exposure or to charge for the information learned by the client. Moreover, the client can arbitrarily

inflate n by adding unreachable states. As such, we consider disclosing n to the server to be practically necessary but of

little threat to the client. This stands in contrast to some other two-party private computation scenarios in which input-size

hiding has been a priority, e.g., private set intersection [8].

14

Our protocols do not retrieve the file based on the DFA evaluation results, e.g., in a way that

hides from the server what file is being retrieved. However, once the client learns the final state

of the DFA evaluation, it can employ various techniques to retrieve the file privately (e.g., [35]).

Moreover, some of our motivating scenarios in Chapter 1, e.g., malware scans of cloud-resident

files by a third party, may not require file retrieval but only that matches be reported to the file

owner.

3.2 A Secure DFA Evaluation Protocol

In this section we present a protocol that meets the goals described in Section 3.1. We give

the construction in Section 3.2.1, and then we define and prove security against server and client

adversaries in Section 3.2.2 and Section 3.2.3, respectively.

3.2.1 Construction

Let “←” denote assignment and “s
$← S” denote the assignment to s of a randomly chosen

element of set S. Let κ denote a security parameter.

Encryption scheme Our scheme is built using an additively homomorphic encryption scheme with

plaintext space R where 〈R,+
R
, ·

R
〉 denotes a commutative ring. Specifically, an encryption scheme

E includes algorithms Gen, Enc, and Dec where: Gen is a randomized algorithm that on input 1κ

outputs a public-key/private-key pair (pk , sk) ← Gen(1κ); Enc is a randomized algorithm that on

input public key pk and plaintext m ∈ R (where R can be determined as a function of pk) produces

a ciphertext c ← Encpk (m), where c ∈ Cpk and Cpk is the ciphertext space determined by pk ; and

Dec is a deterministic algorithm that on input a private key sk and ciphertext c ∈ Cpk produces a

plaintext m ← Decsk (c) where m ∈ R. In addition, E supports an operation +pk on ciphertexts

such that for any public-key/private-key pair (pk , sk), Decsk (Encpk (m1)+pk Encpk (m2)) = m1+R

m2. Using +pk , it is possible to implement ·pk for which Decsk (m2 ·pk Encpk (m1)) = m1 ·R m2.

We also require E to support two-party decryption. Specifically, we assume there is an efficient

randomized algorithm Share that on input a private key sk outputs shares (sk1, sk2) ← Share(sk),

and that there are efficient deterministic algorithms Dec1 and Dec2 such that Decsk (c) = Dec2sk2
(c,

Dec1sk1
(c)).

15

An example of an encryption scheme E that meets the above requirements is due to Paillier [59]

with modifications by Damgård and Jurik [29]; we henceforth refer to this scheme as “Pai”. In this

scheme, the ring R is ZN where N = pp′ and p, p′ are primes, and the ciphertext space Cpk is Z∗
N2 .

We use pk

∑

to denote summation using +pk ; R

∑

to denote summation using +
R
; and R

∏

to

denote the product using ·
R

of a sequence. For any operation op, we use top to denote the time

required to perform op; e.g., tDec is the time to perform a Dec operation.

Encoding δ in a Bivariate Polynomial over R A second ingredient for our protocol is a method for

encoding a DFA 〈Q,Σ, δ, qinit〉, and specifically the transition function δ, as a bivariate polynomial

f(x, y) over R where x is the variable representing a DFA state and y is the variable representing

an input symbol. That is, if we treat each state q ∈ Q and each σ ∈ Σ as distinct elements of R,

then we would like f(q, σ) = δ(q, σ). We can achieve this by choosing f to be the interpolation

polynomial

f(x, y) = R

∑

σ∈Σ

(fσ(x) ·R Λσ(y)) where Λσ(y) = R

∏

σ′∈Σ
σ′ 6=σ

y −
R
σ′

σ −
R
σ′

(3.1)

is a Lagrange basis polynomial and fσ(q) = δ(q, σ) for each q ∈ Q. Note that Λσ(σ) = 1 and

Λσ(σ
′) = 0 for any σ′ ∈ Σ \ {σ}.

Calculating Eqn. 3.1 requires taking multiplicative inverses in R. While not every element of a

ring has a multiplicative inverse in the ring, fortunately the ring ZN used in Paillier encryption, for

example, has negligibly few elements with no inverses, and so there is little risk of encountering an

element with no inverse. Using Eqn. 3.1, we can calculate coefficients 〈λσj〉j∈[m] so that Λσ(y) =

R

∑m−1
j=0 λσj ·R yj . For our algorithm descriptions, we encapsulate this calculation in the procedure

〈λσj〉σ∈Σ,j∈[m] ← Lagrange(Σ).

Each fσ needed to compute f(x, y) can again be determined as a Lagrange interpolating poly-

nomial and then expressed as fσ(x) = R

∑n−1
i=0 aσi ·R xi. In our pseudocode, we encapsulate this

calculation as 〈aσi〉σ∈Σ,i∈[n] ← ToPoly(Q,Σ, δ).

Protocol steps Our protocol, denoted Π1(E), is shown in Fig. 3.1. Pseudocode for the client is

aligned on the left of the figure and labeled c101–c116; the server pseudocode is on the right of

the figure and labeled s101–s112; and messages exchanged between them are aligned in the center

16

and labeled m101–m106. The client receives as input a public key pk under which the file (at the

server) is encrypted; a share sk1 of the private key sk corresponding to pk ; another public key pk ′;

and the DFA 〈Q,Σ, δ, qinit〉. The server receives as input the public key pk ; a share sk2 of the private

key sk ; the alphabet Σ; and ciphertexts ckj ← Encpk ((σk)
j) of the k-th file symbol σk, for each

j ∈ [m] and for each k ∈ [ℓ] where ℓ denotes the file length in symbols. We assume that sk1 and

sk2 were generated as (sk1, sk2) ← Share(sk). Note that no information about sk ′ (the private key

corresponding to pk ′) is given to either party, and so pk ′ ciphertexts (ρ created in c107 and c115

and sent in m103 and m105, respectively) are indecipherable and ignored in the protocol. These

ciphertexts are included to simplify the proof of privacy against client adversaries (Section 3.2.3)

and can be elided in practice. We do not discuss these values further in this section.

The protocol is structured as matching for loops executed by the client (c105–c113) and server

(s103–s111). The client begins the k-th loop iteration with an encryption α of the current DFA state

after being blinded by a random injection π1 : Q → R it chose in the (k − 1)-th loop at line c109

(or, if k = 0, then in line c103), where Injs(Q → R) denotes the set of injections from Q to R. The

client uses its share sk1 of sk to create the “partial decryption” β of α (c106) and sends α, β to the

server (m103). The server uses its share sk2 to complete the decryption of α to obtain the blinded

state γ (s104). We stress that because γ is blinded by π1, γ reveals no information about the current

DFA state to the server. The server then computes, for each σ ∈ Σ (s105), a value Ψσ such that

Λσ(σk) = Decsk (Ψσ) (s106) by utilizing coefficients 〈λσj〉σ∈Σ,j∈[m] output from Lagrange (s102).

The server then returns (in m104) values 〈µσi〉σ∈Σ,i∈[n] created so that Decsk (µσi) = γi ·
R
Λσ(σk)

(s108).

Meanwhile, the client selects a new random injection π1
$← Injs(Q → R) (c109). The

client then constructs a new DFA transition function δ′ reflecting the injection it chose in the last

round (now denoted π0, see line c108) and the new injection π1 it chose for this round. Specifically,

it creates a new DFA state transition function δ′ defined as δ′(q, σ) = π1(δ(π
−1
0 (q), σ)) for all

σ ∈ Σ and q ∈ π0(Q) where π0(Q) = {π0(q)}q∈Q; we denote this step as δ′ ← Blind(δ, π0, π1)

in line c110. That is, δ′ “undoes” the previous injection π0, applies δ, and then applies the new

injection π1. The client then interpolates a bivariate polynomial f(x, y) such that f(q, σ) = δ′(q, σ)

in line c111, using the algorithm described previously. The client then uses these coefficients and

17

client(pk , sk1, pk
′, 〈Q,Σ, δ, qinit〉) server(pk , sk 2,Σ, 〈ckj〉k∈[ℓ],j∈[m])

c101. n ← |Q|,m ← |Σ| s101. m ← |Σ|
c102. π0 ← I s102. 〈λσj〉σ∈Σ,j∈[m]

c103. π1
$← Injs(Q → R) ← Lagrange(Σ)

c104. α ← Encpk (π1(qinit))

m101.
n

✲

m102.
ℓ

✛

c105. for k ← 0 . . . ℓ− 1 s103. for k ← 0 . . . ℓ− 1

c106. β ← Dec1sk1
(α)

c107. ρ ← Encpk ′(π1)

m103.
α,β,ρ

✲

s104. γ ← Dec2sk2
(α, β)

c108. π0 ← π1 s105. for σ ∈ Σ

c109. π1
$← Injs(Q → R) s106. Ψσ ← pk

m−1
∑

j=0

λσj ·pk ckj

c110. δ′ ← Blind(δ, π0, π1) s107. for i ∈ [n]
c111. 〈aσi〉σ∈Σ,i∈[n] s108. µσi ← γi ·pk Ψσ

← ToPoly(Q,Σ, δ′) s109. endfor

s110. endfor

m104.
〈µσi〉σ∈Σ,i∈[n]

✛

c112. α ← pk

∑

σ∈Σ

pk

n−1
∑

i=0

aσi ·pk µσi

c113. endfor s111. endfor

c114. β ← Dec1sk1
(α)

c115. ρ ← Encpk ′(π1)

m105.
α,β,ρ

✲

s112. γ∗ ← Dec2sk2
(α, β)

m106.
γ∗

✛

c116. return π−1
1 (γ∗)

Figure 3.1: Protocol Π1(E), described in Section 3.2

18

〈µσi〉σ∈Σ,i∈[n] sent from the server (message m103) to assemble a ciphertext α of the new DFA state

under the injection π1 (c112).

After ℓ loop iterations, the client interacts with the server once more to decrypt the final state.

It sends α and its partial decryption β to the server (m105), for which the server completes the

decryption (s112) and returns the result (m106).

Protocol Π1(E) can be modified to return only a binary indication of whether the DFA’s final

state is an accepting one, if the DFA specifies a function ∆ indicating whether a state is an accepting

state. Specifically, the client can construct a polynomial F (x) such that F (q) = 1 if ∆(q) = 1 and

F (q) = 0 otherwise, for q ∈ Q. Then, rather than interacting with the server to decrypt the final

state, the client can interact with the server once to evaluate F (x) on the (unknown) final state and

again to decrypt this result.

For brevity, Fig. 3.1 omits numerous checks that the client and server should perform to confirm

that the values each receives are well-formed. For example, the client should confirm that µσi ∈ Cpk

for each σ ∈ Σ and i ∈ [n], upon receiving these in m104. The server should similarly confirm the

well-formedness of the values it receives.

An Alternative Using Fully Homomorphic Encryption Our technique of encoding the DFA

transition function δ using a bivariate polynomial f(x, y) over R could also be used with fully

homomorphic encryption [33, 71] to create a noninteractive protocol. The client could encrypt each

coefficient aσi of f under the public key pk and send these ciphertexts to the server, enabling the

server to perform computations c112 by itself. At the end, the server could send a half decrypted

final state back to the client, who would complete the decryption to obtain the result. This protocol

achieves communication costs of O(nm), which is independent of the file length. That said, existing

fully homomorphic schemes are far less efficient than additively homomorphic schemes, and so the

resulting protocol will be less communication-efficient than Π1(E) for many practical file lengths

and DFA sizes.

3.2.2 Security Against Server Adversaries

In this section we show that the server, by executing this protocol (even arbitrarily maliciously),

gains no advantage in either determining the DFA the client is evaluating or the plaintext of the

19

file in its possession. That is, we show only the privacy of the file and DFA inputs against server

adversaries. In this section, we are not concerned with showing that a client can detect server

misbehavior, a property often called correctness. Π1(E) could be augmented using standard tools

to enforce correctness, with an impact on performance; we do not explore this here. Instead, in

Section 3.4 we describe novel extensions to Π1(E) that could be used to detect server misbehavior.

We formalize our claims against server compromise by defining two separate server adversaries.

The first server adversary S = (S1, S2) attacks the DFA M = 〈Q, Σ, δ, qinit〉 held by the client, as

described in experiment Expts-dfaΠ1(E)
in Fig. 3.2. S1 first generates a file 〈σk〉k∈[ℓ] and two DFAs M0,

M1. (Note that we use, e.g., “M0.Q” and “M1.Q” to disambiguate their state sets.) S2 then receives

the ciphertexts 〈ckj〉k∈[ℓ],j∈[m] of its file, information φ created for it by S1, and oracle access to

clientOr(pk , sk1, pk ′, Mb) for b chosen randomly.

Experiment Expts-dfaΠ1(E)
(S1, S2)

(pk , sk) ← Gen(1κ)
(sk 1, sk2) ← Share(sk)
(pk ′, sk ′) ← Gen(1κ)
(ℓ, 〈σk〉k∈[ℓ],M0,M1, φ) ← S1(pk , sk2)

if M0.Q 6= M1.Q or M0.Σ 6= M1.Σ
then return 0

b
$← {0, 1}

m ← |Mb.Σ|
for k ∈ [ℓ], j ∈ [m]

ckj ← Encpk ((σk)
j)

b′ ← S
clientOr(pk ,sk1,pk

′,Mb)
2 (φ, 〈ckj〉k∈[ℓ],j∈[m])

if b′ = b
then return 1
else return 0

Figure 3.2: Experiments for proving DFA privacy of Π1(E) against server adversaries

clientOr responds to queries from S2 as follows, ignoring malformed queries. The first query

(say, consisting of simply “start”) causes clientOr to begin the protocol; clientOr responds with a

message of the form n (i.e., of the form of m101). The second invocation by S2 must include a

single integer ℓ (i.e., of the form of m102); clientOr responds with a message of the form α, β,

ρ, i.e., three values as in m103. The next ℓ − 1 queries by S2 must contain nm elements of Cpk ,

i.e., 〈µσi〉σ∈Σ,i∈[n] as in m104, to which clientOr responds with three values as in message m103.

The next query to clientOr again must contain nm elements of Cpk as in m104, to which clientOr

20

Experiment Expt
ind-cpa
E (U)

(p̂k , ŝk) ← Gen(1κ)

b̂
$← {0, 1}

b̂′ ← U
Encb̂

p̂k
(·,·)

(p̂k)

if b̂′ = b̂
then return 1
else return 0

Figure 3.3: Experiment for IND-CPA security

responds with three values as in m105. The next (and last) query by S2 can consist simply of a value

in R, as in message m106.

Eventually S2 outputs a bit b′, and Expts-dfaΠ1(E)
(S) = 1 only if b′ = b. We say the advan-

tage of S is Advs-dfa
Π1(E)

(S) = 2 · P
(

Expts-dfaΠ1(E)
(S) = 1

)

− 1 and define Advs-dfa
Π1(E)

(t, ℓ, n,m) =

maxS Advs-dfa
Π1(E)

(S) where the maximum is taken over all adversaries S taking time t and selecting

a file of length ℓ and DFAs containing n states and an alphabet of m symbols.

We reduce DFA privacy against server attacks to the IND-CPA [10] security of the encryption

scheme. IND-CPA security is defined using the experiment in Fig. 3.3, in which an adversary U

is provided a public key p̂k and access to an oracle Encb̂
p̂k
(·, ·) that consistently encrypts either

the first of its two inputs (if b̂ = 0) or the second of those inputs (if b̂ = 1). Eventually U out-

puts a guess b̂′ at b̂, and Expt
ind-cpa
E (U) = 1 only if b̂′ = b̂. The IND-CPA advantage of U

is defined as Adv
ind-cpa
E (U) = 2 · P

(

Expt
ind-cpa
E (U) = 1

)

− 1. Then, Adv
ind-cpa
E (t, w) =

maxU Adv
ind-cpa
E (U) where the maximum is taken over all adversaries U executing in time t and

making w queries to Encb̂
p̂k
(·, ·).

Our theorem statements throughout this paper omit terms that are negligible as a function of the

security parameter κ.

Theorem 1. For t′ = t + tGen + tShare + ℓm · tEnc ,

Advs-dfa
Π1(E)

(t, ℓ, n,m) ≤ 2Adv
ind-cpa
E (t′, ℓ+ 1)

Proof. Let S be an adversary meeting the parameters t, ℓ, n, and m. Consider a simulation

Sims-dfa
Π1(E)

for Expts-dfaΠ1(E)
that differs only by simulating clientOr so as to substitute all cipher-

texts produced with pk ′ with encryptions of a random injection π independent of π1 it chose as in

21

Experiment Expts-fileΠ1(E)
(S1, S2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk ′, sk ′) ← Gen(1κ)
(ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ],M, φ) ← S1(pk , sk2)

b
$← {0, 1}

m ← |M.Σ|
for k ∈ [ℓ], j ∈ [m]

ckj ← Encpk ((σbk)
j)

b′ ← S
clientOr(pk ,sk1,pk

′,M)
2 (φ, 〈ckj〉k∈[ℓ],j∈[m])

if b′ = b
then return 1
else return 0

Figure 3.4: Experiments for proving file privacy of Π1(E) against server adversaries

c109 (i.e., ρ ← Encpk ′(π), π
$← Injs(Q → R) in c107 and c115). Then b is hidden information-

theoretically from S in Sims-dfa
Π1(E)

, since γ is a random element of R in s104 and since γ∗ is a

random element of R (see c109). As a result, P
(

Sims-dfa
Π1(E)

(S) = 1
)

= 1
2 and for Advs-dfa

Π1(E)
(S) to

be nonzero, S must distinguish Sims-dfa
Π1(E)

from Expts-dfaΠ1(E)
.

We construct an IND-CPA adversary U that, on input p̂k , sets pk ′ ← p̂k and uses its own oracle

Encb̂
p̂k

to choose between running Expts-dfaΠ1(E)
and Sims-dfa

Π1(E)
for S by setting ρ ← Encb̂

p̂k
(0, r) in

c107 and c115. (Aside from this, U performs Expts-dfaΠ1(E)
faithfully, using (pk , sk) ← Gen(1κ) and

(sk1, sk2) ← Share(sk) it generates itself.) U then returns b̂′ = 1 if S2 outputs b′ = b and b̂′ = 0,

otherwise. Then,

P

(

Expt
ind-cpa
E (U) = 1

)

=
1

2
P

(

Expts-dfaΠ1(E)
(S) = 1

)

+
1

2
P

(

Sims-dfa
Π1(E)

(S) = 0
)

=
1

2

(

1

2
+

1

2
Advs-dfa

Π1(E)
(S)

)

+
1

4

=
1

2
+

1

4
Advs-dfa

Π1(E)
(S)

and so Adv
ind-cpa
E (U) = 1

2Advs-dfa
Π1(E)

(S).

Note that U makes ℓ+ 1 oracle queries and runs in time t′ = t + tGen + tShare + ℓm · tEnc , due

to the need to generate (pk , sk), sk2 and create the file ciphertexts 〈ckj〉k∈[ℓ],j∈[m].

22

The second server adversary S = (S1, S2) attacks the file ciphertexts 〈ckj〉k∈[ℓ],j∈[m] as in

experiment Expts-fileΠ1(E)
shown in Fig. 3.4. S1 produces two equal-length plaintext files 〈σ0k〉k∈[ℓ],

〈σ1k〉k∈[ℓ] and a DFA M. S2 receives the ciphertexts 〈ckj〉k∈[ℓ],j∈[m] for file 〈σbk〉k∈[ℓ] where b

is chosen randomly. S2 is also given oracle access to clientOr(pk , sk1, pk ′, M). Eventually S2

outputs a bit b′, and Expts-fileΠ1(E)
(S) = 1 iff b′ = b. We say the advantage of S is Advs-file

Π1(E)
(S) =

2 · P
(

Expts-fileΠ1(E)
(S) = 1

)

− 1 and then Advs-file
Π1(E)

(t, ℓ, n,m) = maxS Advs-file
Π1(E)

(S) where the

maximum is taken over all adversaries S = (S1, S2) taking time t and producing (from S1) files of

ℓ symbols and a DFA of n states and alphabet of size m. We prove the following theorem:

Theorem 2. For t′ = t + tGen + tShare + ℓm · tEnc ,

Advs-file
Π1(Pai)

(t, ℓ, n,m) ≤ 2Adv
ind-cpa
Pai (t′, ℓ+ 1) +Adv

ind-cpa
Pai (t′, ℓm)

Proof. LetExpts-file-0Π1(Pai)
denote experiment Expts-fileΠ1(Pai)

with b fixed at b = 0, and let Expts-file-1Π1(Pai)

denote the experiment Expts-fileΠ1(Pai)
with b fixed at b = 1. Consider a simulation Sims-file-0

Π1(Pai)
for

Expts-file-0Π1(Pai)
that differs only by simulating clientOr so as to substitute all ciphertexts produced

with pk ′ with encryptions of a random injection π independent of π1 it chose as in c109 (i.e.,

ρ ← Encpk ′(π), π
$← Injs(Q → R) in c107 and c115). Proceeding as in the proof of Theo-

rem 1, we construct an IND-CPA adversary U0 that uses its own oracle Encb̂
p̂k

to choose between

running Expts-file-0Π1(Pai)
and Sims-file-0

Π1(Pai)
for S, i.e., by setting pk ′ ← p̂k and ρ ← Encb̂

p̂k
(π1, π) in

c107 and c115. (Aside from this, U0 performs Expts-file-0Π1(Pai)
faithfully, using (pk , sk) ← Gen(1κ)

and (sk1, sk2) ← Share(sk) it generates itself.) U0 returns b̂′ = 0 if b′ = b and b̂′ = 1, otherwise.

Then,

1 +Adv
ind-cpa
Pai (U0) = 2 · P

(

Expt
ind-cpa
Pai (U0) = 1

)

=

P

(

Expts-file-0Π1(Pai)
(S) = 1

)

+ P

(

Sims-file-0
Π1(Pai)

(S) = 0
)

(3.2)

Now consider a simulation Sims-file-1
Π1(Pai)

for Expts-file-1Π1(Pai)
that again differs only by simulating

clientOr so as to substitute all ciphertexts produced with pk ′ with encryptions of a random injection.

As above, we construct an IND-CPA adversary U1 that uses its own oracle Encb̂
p̂k

to choose between

running Expts-file-1Π1(Pai)
and Sims-file-1

Π1(Pai)
for S, i.e., by setting pk ′ ← p̂k and ρ ← Encb̂

p̂k
(π, π1),

23

where π
$← Injs(Q → R) in c107 and c115. U1 returns b̂′ = 1 if b′ = b and b̂′ = 0, otherwise.

Then,

1 +Adv
ind-cpa
Pai (U1) = 2 · P

(

Expt
ind-cpa
Pai (U1) = 1

)

=

P

(

Sims-file-1
Π1(Pai)

(S) = 0
)

+ P

(

Expts-file-1Π1(Pai)
(S) = 1

)

(3.3)

Finally, consider an adversary U that uses its oracle Encb̂
p̂k

to choose between running Sims-file-0
Π1(Pai)

and Sims-file-1
Π1(Pai)

for S. Specifically, on input p̂k = 〈N, g〉, U generates d2
$← ZN2 and invokes

S1(p̂k , sk2) where sk2 = 〈N, g, d2〉. Upon receiving 〈σ0k〉k∈[ℓ] and 〈σ1k〉k∈[ℓ] from S1, U sets

ckj ← Encb̂
p̂k
((σ0k)

j, (σ1k)
j). Additionally, in the simulation of clientOr, U selects r

$← R

and sets α ← Enc
p̂k
(r) in c104 and c112 and β ← grα−d2 mod N2 in c106 and c114, so that

αd2β ≡ gr mod N2. (U also generates pk ′ itself and constructs all encryptions for pk ′ as encryp-

tions of a random injection.) When S2 outputs b′, U outputs b′ as b̂′. Then,

1 +Adv
ind-cpa
Pai (U) =

2 · P
(

Expt
ind-cpa
Pai (U) = 1

)

= 2 · P
(

Sims-file
Π1(Pai)

(S) = 1
)

=

P

(

Sims-file-0
Π1(Pai)

(S) = 1
)

+ P

(

Sims-file-1
Π1(Pai)

(S) = 1
)

(3.4)

Adding (3.2), (3.3) and (3.4), we get

3 +Adv
ind-cpa
Pai (U0) +Adv

ind-cpa
Pai (U) +Adv

ind-cpa
Pai (U1)

= P

(

Expts-file-0Π1(Pai)
(S) = 1

)

+ P

(

Sims-file-0
Π1(Pai)

(S) = 0
)

+ P

(

Sims-file-0
Π1(Pai)

(S) = 1
)

+ P

(

Sims-file-1
Π1(Pai)

(S) = 1
)

+ P

(

Sims-file-1
Π1(Pai)

(S) = 0
)

+ P

(

Expts-file-1Π1(Pai)
(S) = 1

)

= 2 · P
(

Expts-fileΠ1(Pai)
(S) = 1

)

+ 2

= 3 +Advs-file
Π1(Pai)

(S)

The result then follows because each of U0 and U1 makes ℓ + 1 oracle queries and runs in time

t′ = t + tGen + tShare + ℓm · tEnc due to the need to generate (pk , sk) and sk2, and create the file

24

Experiment Exptc-fileΠ1(E)
(C1, C2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk ′, sk ′) ← Gen(1κ+2)
(ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ],M, φ) ← C1(pk , sk1, pk

′)

if M(〈σ0k〉k∈[ℓ]) 6= M(〈σ1k〉k∈[ℓ]) then return 0

b
$← {0, 1}

m ← |M.Σ|
for k ∈ [ℓ], j ∈ [m]

ckj ← Encpk ((σbk)
j)

b′ ← C
serverOr(pk ,sk2,M.Σ,〈ckj〉k∈[ℓ],j∈[m])

2 (φ)
if b′ = b

then return 1
else return 0

Figure 3.5: Experiment for proving file privacy of Π1(E) against client adversaries

ciphertexts 〈ckj〉k∈[ℓ],j∈[m]. U makes ℓm oracle queries and runs in time t+ tGen+ tShare+ ℓm · tEnc
for the same reason.

3.2.3 Security Against Client Adversaries

In this section we show security of Π1(E) against honest-but-curious client adversaries and

heuristically justify its security against malicious ones. Since the client has the DFA in its posses-

sion, privacy of the DFA against a client adversary is not a concern. The proof of security against

the client therefore is concerned with the privacy of only the file. However, by the nature of what

the protocol computes for the client — i.e., the final state of a DFA match on the file — the client

can easily distinguish two files of its choosing simply by running the protocol correctly using a DFA

that distinguishes between the two files it chose.

For this reason, we adapt the notion of indistinguishability to apply only to files that produce

the same final state for the client’s DFA. So, in the experiment Exptc-fileΠ1(E)
(Fig. 3.5) that we

use to define file security against client adversaries, the adversary C = (C1, C2) succeeds (i.e.,

Exptc-fileΠ1(E)
(C) returns 1) only if the two files 〈σ0k〉k∈[ℓ] and 〈σ1k〉k∈[ℓ] output by C1 both drive the

DFA M, also output by C1, to the same final state (denoted M(〈σ0k〉k∈[ℓ]) = M(〈σ1k〉k∈[ℓ])).

This caveat aside, the experiment is straightforward: C1 receives public key pk , private-key

share sk1, and another public key pk ′, and returns the two ℓ-symbol files (for ℓ of its choosing)

25

〈σ0k〉k∈[ℓ] and 〈σ1k〉k∈[ℓ] and a DFA M. Depending on how b is then chosen, one of these files is

encrypted using pk and then provided to the server, to which C2 is given oracle access (denoted

serverOr(pk , sk 2,M.Σ, 〈ckj〉k∈[ℓ],j∈[m])).

Adversary C2 can invoke serverOr first with a message containing an integer n (i.e., with a

message of the form m101), to which serverOr returns ℓ (m102). C2 can then invoke serverOr up

to ℓ+ 1 times. The first ℓ such invocations take the form α, β, ρ and correspond to messages of the

form m103. Each such invocation elicits a response 〈µσi〉σ∈Σ,i∈[n] (i.e., of the form m104). The last

client invocation is of the form α, β, ρ and corresponds to m105. This invocation elicits a response

γ∗ (i.e., m106). Malformed or extra queries are rejected by serverOr.

We show file privacy against honest-but-curious client adversaries C = (C1, C2), i.e., C2 in-

vokes serverOr exactly as Π1(E) prescribes, using DFA M output by C1. We define the advantage

of C to be hbcAdvc-file
Π1(E)

(C) = 2 ·P
(

Exptc-fileΠ1(E)
(C) = 1

)

−1 and hbcAdvc-file
Π1(E)

(t, ℓ, n,m) =

maxC Advc-file
Π1(E)

(C) where the maximum is taken over honest-but-curious client adversaries C

running in total time t and producing files of length ℓ and a DFA of n states over an alphabet of m

symbols. We prove:

Theorem 3. For t′ = t + tGen + ℓm · tEnc + (ℓ+ 1) · tDec ,

hbcAdvc-file
Π1(Pai)

(t, ℓ, n,m) ≤ Adv
ind-cpa
Pai (t′, ℓm(1 + n))

Proof. Given an adversary C = (C1, C2) running in time t and selecting files of length ℓ symbols

and a DFA of n states over an alphabet of m symbols, we construct an IND-CPA adversary U that

demonstrates the theorem as follows. On input p̂k = 〈N, g〉, U generates (pk ′, sk ′) ← Gen(1κ+2)

and d1
$← ZN2 , and invokes C1(p̂k , sk 1, pk

′) where sk1 = 〈N, g, d1〉 to obtain (ℓ, 〈σ0k〉k∈[ℓ],

〈σ1k〉k∈[ℓ], M, φ), where M = 〈Q, Σ, qinit, δ〉 is a DFA. Note that d1 is chosen from a distribution

that is statistically indistinguishable from that from which d1 is chosen in the real system. For

k ∈ [ℓ] and j ∈ [m], U sets ckj ← Encb̂
p̂k
((σ0k)

j, (σ1k)
j).

U then invokes C2(φ) and simulates responses to C2’s queries to serverOr as follows (ignor-

ing malformed invocations). In response to the initial query n, the adversary U returns ℓ and, in

preparation for the subsequent serverOr invocations by C2, sets q0 ← qinit and q1 ← qinit. For the

k-th query of the form α, β, ρ (0 ≤ k < ℓ), the adversary U sets π ← Decsk ′(ρ), γ0 ← π(q0), and

26

γ1 ← π(q1), and then sets µσi ← Encb̂
p̂k
(((γ0)

i ·
R
Λσ(σ0k), ((γ1)

i ·
R
Λσ(σ1k)) for σ ∈ Σ and i ∈ [n].

After this, U updates q0 ← δ(q0, σ0k) and q1 ← δ(q1, σ1k), and returns 〈µσi, 〉σ∈Σ,k∈[n] to C2. For

the last query α, β, ρ, adversary U computes π ← Decsk ′(ρ) and returns γ∗ = π(q0) (= π(q1)) to

C2. When C2 outputs b′, U outputs b′, as well.

This simulation is statistically indistinguishable from the real system provided that C is honest-

but-curious, and so ignoring terms that are negligible in κ, hbcAdvc-file
Π1(Pai)

(C) = Adv
ind-cpa
Pai (U).

Note that U runs in t′ = t + tGen + ℓm · tEnc + (ℓ+ 1) · tDec due to the need to generate (pk ′, sk ′)

and sk1, to create the file ciphertexts 〈ckj〉k∈[ℓ],j∈[m], and to perform ℓ + 1 Pai decryption in the

simulation. U makes nm oracle queries in order to respond to each of the ℓ oracle queries following

the first, plus an additional ℓm queries to create 〈ckj〉k∈[ℓ],j∈[m].

We have found extending this result to fully malicious client adversaries to be difficult for two

reasons. First, Exptc-fileΠ1(E)
does not make sense for a malicious client, since C2 is not bound to use

the DFA M output by C1. As such, C2 can use a different DFA — in particular, one that enables it

to distinguish between the files output by C1. Second, even ignoring the final state γ∗ sent back to

the client, we have been unable to reduce the ability of the client adversary to distinguish between

two files on the basis of m104 messages to breaking the IND-CPA security of E ; intuitively, the

difficulty derives from the simulator’s inability to decrypt α values provided by C2. (The ciphertext

ρ enables the simulator to “track” the plaintext of α in the honest-but-curious case, but ρ might

contain useless information in the malicious case.)

Nevertheless, since only ciphertexts for which the client does not hold the decryption key are

sent to the client in those messages, we are confident in conjecturing that our protocol leaks no in-

formation to even a malicious client about the file, beyond what it gains from the protocol output γ∗,

assuming E is IND-CPA secure. Of course, the above proof difficulties for a malicious client could

be ameliorated by introducing zero-knowledge proofs to the protocol to enforce correct behavior,

but with considerable added expense to the protocol. Instead, in Section 3.4 we introduce more

novel (albeit still heuristic) approaches to detecting client (or server) misbehavior in our setting.

27

3.3 An Alternative Protocol

The second protocol we present has the same goals as Π1(E) but incurs less communication

costs. Specifically, whereas the communication cost of Π1(E) is O(κℓnm) bits, the protocol we

present in this section, called Π2(E), sends only O(κℓ(n + m)) bits. Π2(E) accomplishes this

in part by exploiting a cryptosystem that is additively homomorphic and that offers the ability to

homomorphically “multiply” ciphertexts once. That is, the cryptosystem supports a new operator

⊙pk that satisfies Decsk (Encpk (m1)⊙pk Encpk (m2)) = m1 ·R m2, but the result of a ⊙pk operation

(or any other ciphertext resulting from +pk or ·pk operations in which it is used) cannot be used in a

⊙pk operation. After we present our protocol, we will discuss various options for instantiating this

encryption scheme within it.

Protocol Π2(E) is shown in Fig. 3.6. Note that the input arguments to both the client and the

server are identical to those in Π1(E). The structure of the protocol is also very similar to Π1(E),

with the only differences being in how the server performs each loop iteration (s204–s212) and

how the client forms the new encrypted DFA state α (c212–c216). We now summarize the primary

innovations represented by these differences.

After the k-th m203 message, the server constructs an encryption Ψσ of Λσ(σk) (s206). Rather

than computing µσi ← γi ·pk Ψσ, however, the server sends 〈Ψσ〉σ∈Σ to the client in m204. Each

µσi is then built at the client, instead (c212–c214), which is the main reason we get better commu-

nication efficiency.

Since each µσi is built at the client, the server must send γ in m204. To hide the current DFA

state from the client, the server blinds γ with a random r ∈ R (s208–s209) before returning it. So,

the client needs to accommodate r without knowing it when performing the DFA state transition.

The client cannot perform the polynomial evaluation using the f(x, y) it constructed (c211) on the

〈µσi〉σ∈Σ,i∈[n] as in Π1(E) since f(x, y) is designed for an input q ∈ π0(Q), not q+ r. To overcome

this, the client constructs a shifted polynomial f ′(x, y) such that f ′(q + r, σ) = f(q, σ) for all

q ∈ π0(Q), and so f ′(x, y) will correctly translate the blinded input to the next DFA state. What is

left to describe is how to construct f ′(x, y).

28

client(pk , sk1, pk
′, 〈Q,Σ, δ, qinit〉) server(pk , sk2,Σ, 〈ckj〉k∈[ℓ],j∈[m])

c201. n ← |Q|,m ← |Σ| s201. m ← |Σ|
c202. π0 ← I s202. 〈λσj〉σ∈Σ,j∈[m]

c203. π1
$← Injs(Q → R) ← Lagrange(Σ)

c204. α ← Encpk (π1(qinit))

m201.
n

✲

m202.
ℓ

✛

c205. for k ← 0 . . . ℓ− 1 s203. for k ← 0 . . . ℓ− 1

c206. β ← Dec1sk1
(α)

c207. ρ ← Encpk ′(π1)

m203.
α,β,ρ

✲

s204. γ ← Dec2sk2
(α, β)

c208. π0 ← π1 s205. for σ ∈ Σ

c209. π1
$← Injs(Q → R) s206. Ψσ ← pk

m−1
∑

j=0

λσj ·pk ckj

c210. δ′ ← Blind(δ, π0, π1) s207. endfor

c211. 〈aσi〉σ∈Σ,i∈[n] s208. r
$← R

← ToPoly(Q,Σ, δ′) s209. γ ← γ +
R
r

s210. for i ∈ [n]
s211. νi ← Encpk (r

i)
s212. endfor

m204.
γ,〈Ψσ〉σ∈Σ,〈νi〉i∈[n]
✛

c212. for σ ∈ Σ, i ∈ [n]
c213. µσi ← γi ·pk Ψσ

c214. endfor

c215. 〈â′σi〉σ∈Σ,i∈[n]

← Shift(〈νi〉i∈[n], 〈aσi〉σ∈Σ,i∈[n])

c216. α ← pk

∑

σ∈Σ

pk

n−1
∑

i=0

â′σi ⊙pk µσi

c217. endfor s213. endfor

c218. β ← Dec1sk1
(α)

c219. ρ ← Encpk ′(π1)

m205.
α,β,ρ

✲

s214. γ∗ ← Dec2sk2
(α, β)

m206.
γ∗

✛

c220. return π−1
1 (γ∗)

Figure 3.6: Protocol Π2(E), described in Section 3.3

29

If we set f ′(x, y) = R

∑

σ∈Σ (f ′
σ(x) ·R Λσ(y)) where f ′

σ(x) = R

∑n−1
i=0 a′σi ·R xi, then it suffices

if f ′
σ(x+

R
r) = fσ(x) for all σ ∈ Σ. Note that

fσ(x−
R
r) = R

n−1
∑

i=0

aσi ·R (x−
R
r)i = R

n−1
∑

i=0

aσi ·R R

i
∑

i′=0

(

i

i′

)

·
R
xi−i′ ·

R
(−

R
r)i

′
(3.5)

= R

n−1
∑

i=0

(

R

n−1−i
∑

i′=0

aσ(i+i′) ·R
(

i+ i′

i′

)

·
R
(−

R
r)i

′

)

·
R
xi

where Eqn. 3.5 follows from the binomial theorem. Therefore, setting

a′σi ← R

n−1−i
∑

i′=0

aσ(i+i′) ·R
(

i+ i′

i′

)

·
R
(−

R
1)i

′ ·
R
ri

′
(3.6)

ensures f ′
σ(x+

R
r) = fσ(x) and so f ′(x+

R
r, σ) = f(x, σ).

The client knows all the terms in Eqn. 3.6 except ri
′
. That is exactly the reason the server

sends in m204 the ciphertext νi of ri, for each i ∈ [n] (see s211). The client can then calculate

a ciphertext â′σi of the coefficient of xi in f ′
σ by using the additive homomorphic property of the

encryption scheme :

â′σi ← pk

n−1−i
∑

i′=0

(

aσ(i+i′) ·R
(

i+ i′

i′

)

·
R
(−

R
1)i

′

)

·pk νi′ (3.7)

In our pseudocode, the calculations Eqn. 3.7 are encapsulated within the operation 〈â′σi〉σ∈Σ,i∈[n]

← Shift(〈νi〉i∈[n], 〈aσi〉σ∈Σ,i∈[n]) on line c215.

After the client obtains 〈â′σi〉σ∈Σ,i∈[n] and 〈µσi〉σ∈Σ,i∈[n], it performs polynomial evaluation at

step c216 to assemble the ciphertext of the next DFA state by taking advantage of the one multipli-

cation homomorphism of the cryptosystem. This is where the additional homomorphism helps to

achieve much better communication complexity.

The privacy of the file and DFA from server adversaries and the privacy of the file from client

adversaries can be proved for Π2(E) very similarly to how they are proved for Π1(E). In fact,

Theorems 1–3 hold for Π2(E) unchanged, once instantiated with a suitable encryption scheme E .

That said, certain choices of E can require that the protocol be adapted, as discussed below.

30

Instantiating E Protocol Π2(E) requires an additively homomorphic encryption scheme E that

also supports the “one time” homomorphic multiplication operator ⊙pk . Perhaps the most well-

known such cryptosystem is due to Boneh, Goh and Nissim [17], and moreover, this cryptosystem

also supports two-party decryption with a cost comparable to regular decryption [17]. The primary

difficulty in instantiating E with this cryptosystem, however, is that decryption — and specifically

in Π2(E), the operation Dec2sk2
— requires computing a discrete logarithm in a large group, which

is generally intractable. That said, if the ciphertext is known to encode one of a small number of

possible plaintexts, then Dec2sk2
can be adapted to test the ciphertext for each of these plaintexts

efficiently. As such, to adapt Π2(E) to employ this cryptosystem, we can augment messages m203

and m205 with π1(Q) (listed in random order), for the injection π1 at the time the message is sent.

This would permit the server to perform Dec2sk2
(α, β) in lines s204, s214 by testing for these n

possible plaintexts. It does, however, have the unfortunate side effect of enabling our proofs for the

analogs of Theorems 1 and 2 for Π2(E) to go through only for honest-but-curious server adversaries.

Π2(E) instantiated in this way still appears to be secure even against malicious server adversaries,

though at this point we can claim this only heuristically.

Two other possibilities for instantiating E in Π2(E) are due to Gentry, Halevi and Vaikun-

tanathan [34]2 and Lauter, Naehrig, and Vaikuntanathan [51]. The primary challenge posed by

these cryptosystems is that two-party decryption algorithms for them have not been investigated.

Each of these schemes is amenable to sharing its private key securely, after which decryption can

be performed using generic two-party computation [74, 7]. These instantiations retain Π2(E)’s

provable security against malicious server adversaries (i.e., the analogs of Theorems 1 and 2), but

Π2(E) instantiated this way may be less cost-efficient than Π1(Pai) for many values of n and m.3

Of course, customized two-party decryption algorithms for these cryptosystems could restore the

efficiency of Π2(E), suggesting a useful open problem for the community.

2Because we require the plaintext ring to be commutative, we would restrict the plaintext space of the Gentry et al.

cryptosystem to diagonal square matrices, versus the arbitrary square matrices over which it is defined.

3For example, for the Gentry et al. scheme, a “garbled” arithmetic circuit [7] for secure two-party decryption using

additively shared keys would be of size O(κ6 log5(n+m)) bits.

31

3.4 Heuristics to Detect Misbehavior

In this section we describe simple extensions to our protocols to detect client or server mis-

behavior. The detection ability offered by these techniques is only heuristic, but they provide a

practical deterrent to misbehavior and, at least as importantly, highlight possibilities outside stan-

dard techniques (zero-knowledge proofs) that might be brought to bear to detect misbehavior in data

outsourcing situations.

Detecting server misbehavior We showed in Section 3.2.2 that both the file privacy and the

client’s DFA privacy are protected against an arbitrarily malicious server. That said, a malicious

server could cause the protocol to return an incorrect result by undetectably executing the protocol

incorrectly. Here we describe a defense that, while offering weak guarantees, gives insight into new

opportunities provided in the cloud outsourcing setting studied in this paper.

The central idea is that in addition to the authentic encrypted file, the data owner also stores

at the server (i) another “decoy” encrypted file of the same length as the authentic file and (ii) the

plaintext of the decoy file, digitally signed by the data owner. However, the server is not told which

one of the two encrypted files is the decoy. When a client wants to evaluate a DFA M on the

(authentic) file, it executes two instances of the protocol in parallel with the server on each of the

two encrypted files, while also retrieving (and authenticating, by its digital signature) the plaintext

of the decoy file. If the client’s DFA when applied to the plaintext of the decoy file evaluates to

state q, then the client checks that at least one of the two protocol executions results in q. If neither

outcome is q, then it detects that the server has behaved incorrectly. (Of course, if the client divulges

when it has detected the server misbehaving, then this might enable the server to infer which of the

encrypted files is the decoy, though the client could nevertheless report the misbehavior to the data

owner outside the view of the server.)

A malicious server could try to guess which file is the decoy and execute the protocol faithfully

on that file, while misbehaving on the other one to alter the result. Obviously the chance it guesses

correctly is 1
2 . A server could also misbehave for both files, hoping that one of the protocol execu-

tions results in the correct final state for the decoy file. The probability of succeeding in this attack

is a function of the decoy file and of the specific DFA that the client is evaluating. To improve

the probability of detecting a misbehaving server, the client could also create more DFA queries to

32

evaluate on both files. Moreover, additional decoy files could be stored at the server to increase the

chance that a misbehaving server is detected.

Detecting client misbehavior A similar but slightly more involved technique could be used to

heuristically detect client misbehavior in our protocols. In this technique, at the beginning of the

protocol in which the client will use DFA 〈Q, Σ, δ, qinit〉, the server creates and sends to the client

another DFA 〈Q, Σ′, δ′, qinit〉 where Σ′∩Σ = ∅, i.e., another DFA with the same states and the same

initial state but a different (and nonoverlapping) alphabet. Note that to create this DFA, the server

need only know Q and qinit, which in the absence of δ reveal nothing about the pattern for which

the client is searching (aside from the number n, which is conveyed to the server in the protocol

already). The client then executes the protocol using the combined DFA 〈Q, Σ ∪ Σ′, δ ∪ δ′, qinit〉.4

As above, the client runs two instances of the protocol in parallel: the server uses the authentic file

in one instance; in the other, it creates and uses another file of the same length but consisting of

characters in Σ′. After the protocol completes, the client sends the final states back to the server,

which checks to be sure that the pair of final states include the result of applying 〈Q, Σ′, δ′, qinit〉 to

the file it created before telling the client which of the pair of states is the correct result.5

This technique for detecting client misbehavior relies on the inability of the client to detect

which of the two files consists of elements of Σ and which consists of elements of Σ′— a property

that we argued heuristically in Section 3.2.3 holds against a malicious client. It also depends on the

file and DFA created by the server; as in the defense against server misbehavior above, this can be

strengthened with multiple DFAs and files.

4Because doing so requires the server to hold ciphertexts 〈ckj〉k∈[ℓ],j∈[|Σ|+|Σ′|]\[|Σ|], the data owner must additionally

provide these ciphertexts when it stores the file.

5Divulging the final states to the server reveals minimal information about the pattern for which the client was search-

ing (assuming the elements of Q are encoded as random elements of R), specifically whether the final state was qinit.
Even this leakage can be avoided by designing the DFA so it never returns to qinit.

33

CHAPTER 4

Ensuring File Authenticity in Private DFA

Evaluation on Encrypted Files in the Cloud

In Section 3.4, we provided a heuristic method to detect server misbehavior in the protocols

developed in Chapter 3. Aside from its heuristic nature, this method offers a weak detection proba-

bility that can be amplified only at the expense of running more protocol instances in parallel. In this

chapter, we instead present a strengthened protocol, with rigorous security proofs (in the random

oracle model), that allows the client to detect any misbehavior of the server within a single protocol

run; in particular, the client can verify that the result of its DFA evaluation is based on the file stored

there by the data owner, and in this sense the file and protocol result are authenticated to the client.

Our protocol also protects the privacy of the file and the DFA from the server, and the privacy of the

file (except the result of evaluating the DFA on it) from the client. A special case of our protocol

solves private DFA evaluation on a private and authenticated file in the traditional two-party model,

in which the file contents are known to the server. Our protocol provably achieves these properties

for an arbitrarily malicious server and an honest-but-curious client, in the random oracle model.

The rest of this chapter is structured as follows. We review our goals in Section 4.1 and detail our

protocol and its security proof in Section 4.2. We then discuss extensions in Section 4.4.

4.1 Goals

Recall that a deterministic finite automaton M is a tuple 〈Q, Σ, δ, qinit〉 where Q is a set of

|Q| = n states; Σ is a set (alphabet) of |Σ| = m symbols; δ : Q× Σ → Q is a transition function;

and qinit is the initial state. (A DFA can also specify a function ∆ indicating whether a state is an

accepting state or not, like we defined in Chapter 3, although we ignore it in this chapter.) Our

goal is to enable a client holding a DFA M to interact with a server holding a file ciphertext to

evaluate M on the file plaintext. More specifically, the client should output the final state to which

the file plaintext drives the DFA; i.e., if the plaintext file is a sequence 〈σk〉k∈[ℓ] where [ℓ] denotes

the set {0, 1, . . . , ℓ − 1} and where each σk ∈ Σ, then the client should output δ(. . . δ(δ(qinit, σ0),

σ1), . . . , σℓ−1). We also permit the client to learn the file length ℓ and the server to learn the number

of states n in the client’s DFA. (Indeed, because the DFA output leaks log n bits about the file to the

client, the server should know n to measure the leakage to the client and to limit the number of DFA

queries the client is allowed, accordingly.) However, the client should learn nothing else about the

file; the server should learn nothing else about the client’s DFA and nothing about the file plaintext.

An additional goal of our protocols — and their main contribution over prior work — is to

ensure that the client detects if the server deviates from the protocol. More specifically, we presume

that a data owner stores the file ciphertext at the server, together with accompanying authentication

data. We require that the client return the result of evaluating its DFA on the file stored by the data

owner or else that the client detect the misbehavior of the server. We do not explicitly concern

ourselves with misbehavior of the client, owing to the use cases outlined in Section 1.2 that involve

a partially trusted third-party customer or service provider (e.g., antivirus vendor). That said, we

believe our protocol to be heuristically secure against an arbitrarily malicious client.

4.2 Private DFA Evaluation on Signed and Encrypted Data

In this section we present a protocol meeting the goals described in Section 4.1: the client learns

only the length of the file and the output of his DFA evaluation on the file stored at the server; the

server learns only the number of states in the client’s DFA and the length of the file; and the client

detects any misbehavior by the server that would cause him to return an incorrect result. Again, we

do not consider misbehavior of the client here; the client is honest-but-curious only. In this section

we consider the file as static. The impact of file updates will be discussed in Section 4.3.

4.2.1 Preliminaries

Let “←” denote assignment and “s
$← S” denote the assignment to s of a randomly chosen

element of set S. Let κ be a security parameter. Let ParamGen be an algorithm that, on input 1κ,

35

produces (p, G1, G2, g, e) ← ParamGen(1κ) where p is a prime; G1 and G2 are multiplicative

groups of order p; g is a generator of G1; and e : G1 × G1 → G2 is an efficiently computable

bilinear map such that e(P u, Qv) = e(P,Q)uv for any P,Q ∈ G1 and any u, v ∈ Z
∗
p.

BLS Signatures Our protocol makes use of the Boneh-Lynn-Shacham (BLS) signature scheme [18].

Suppose (p,G1,G2, g, e) ← ParamGen(1κ) and let H1 be a hash function H1 : {0, 1}∗ → G1. The

BLS scheme consists of a triple of algorithms (BLSKeyGen,BLSSign,BLSVerify), defined as fol-

lows.

BLSKeyGen(p,G1,G2, g, e): Select x
$← Z

∗
p. Return private signing key 〈G1, x〉 and public

verification key 〈p,G1,G2, g, e, h〉 where h ← gx.

BLSSign〈G1,x〉(m): Return the signature H1(m)x.

BLSVerify〈p,G1,G2,g,e,h〉(m, s): Return true if e(H1(m), h) = e(s, g) and false otherwise.

Paillier encryption Our scheme is built using the additively homomorphic encryption scheme due

to Paillier [59]. This cryptosystem has a plaintext space R where 〈R,+
R
, ·

R
〉 denotes a commutative

ring. Specifically, this encryption scheme includes algorithms PGen, PEnc, and PDec where: PGen

is a randomized algorithm that on input 1κ outputs a public-key/private-key pair (pek , pdk) ←

PGen(1κ); PEnc is a randomized algorithm that on input public key pek and plaintext m ∈ R

(where R can be determined as a function of pek) produces a ciphertext c ← PEncpek (m), where

c ∈ Cpek and Cpek is the ciphertext space determined by pek ; and PDec is a deterministic algorithm

that on input a private key pdk and ciphertext c ∈ Cpek produces a plaintext m ← PDecpdk (c)

where m ∈ R. In addition, E supports an operation +pek on ciphertexts such that for any public-

key/private-key pair (pek , pdk), PDecpdk (PEncpek (m1) +pek PEncpek (m2)) = m1 +R
m2. Using

+pek , it is possible to implement ·pek for which PDecpdk (m2 ·pek PEncpek (m1)) = m1 ·R m2.

In Paillier encryption, the ring R is ZN , the ciphertext space C〈N,g〉 is Z
∗
N2 , and the relevant

algorithms are as follows.

PGen(1κ): Choose random κ/2-bit strong primes p, p′; set N ← pp′; choose g ∈ Z
∗
N2 with order

a multiple of N ; and return the public key 〈N, g〉 and private key 〈N, g, λ(N)〉 where λ(N) is the

Carmichael function of N .

PEnc〈N,g〉(m): Select x
$← Z

∗
N and return gmxN mod N2.

PDec〈N,g,λ(N)〉(c): Return m = L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N , where L is a function that takes input

36

elements from the set {u < N2 | u ≡ 1 mod N} and returns L(u) = u−1
N .

c1 +〈N,g〉 c2: Return c1c2 mod N2.

m ·〈N,g〉 c: Return cm mod N2.

We use pek

∑

to denote summation using +pek ; R

∑

to denote summation using +
R
; and R

∏

to denote

the product using ·
R

of a sequence.

4.2.2 Initial Construction Without File Encryption

We denote the file stored at the server as consisting of characters σ0, . . ., σℓ−1, where each σk ∈

Σ. Prior to storing this file at the server, however, the data owner uses its private BLS signing key

〈G1, x〉 to produce sk ← BLSSign〈G1,x〉(σk||k) for each k ∈ [ℓ] — i.e., a per-file-character signature

that incorporates the position of the character in the file1 — and stores these signed characters at

the server, instead. (Here, “||” denotes concatenation.) Note that since sk = H1(σk||k)x, anyone

knowing the corresponding verification key 〈p,G1,G2, g, e, h〉 cannot only verify sk but can also

extract σk and k, by simply testing for each σ ∈ Σ and k ∈ [ℓ] whether e(H1(σ||k), h) = e(sk, g).

As such, while in our initial protocol description, the data owner stores s0, . . ., sℓ−1 at the server,

this implicitly conveys σ0, . . ., σℓ−1, as well.

The basic structure of the protocol, which is similar to Π1(E) in Fig. 3.1, involves the client

encoding its DFA transition function δ as a bivariate polynomial f(x, y) over R where x is the

variable representing a DFA state and y is the variable representing an input symbol. In our protocol,

the client and server then evaluate this polynomial together, using a single round of interaction per

state transition (i.e., per file character), in such a way that the client observes only ciphertexts of

states and file characters and the server observes only a randomly blinded state. More specifically,

in our protocol, if the current DFA state is q, then the server observes only π(q) +
R
ϕ for ϕ

$← R

chosen by the client and where π : Q → R maps DFA states to distinct ring elements. The client,

with knowledge of π and ϕ, can calculate f(x, y) so that f(π(q) +
R
ϕ, σ) = π(δ(q, σ)) for each

q ∈ Q and σ ∈ Σ. Then, starting with a ciphertext of π(q) for the DFA state q resulting from

1The file name or other identifier could be included along with the character position, to detect the exchange of

characters between files. Similarly, the length ℓ can be included to detect file truncation. These issues are discussed

further in Section 4.3.

37

processing file characters σ0, . . ., σk−1, the client can interact with the server to obtain a ciphertext

of f(π(q) +
R
ϕ, σk) [73].

The central innovation in our protocol is a technique by which the client, without knowing

sk, can compute an encoding of the file character σk that the server must use in round k of the

evaluation. If the server does not, it “throws off” the evaluation in a way that the server cannot

predict. As a result, if the server deviates from the protocol, the end result of the evaluation will

be an unpredictable element of the ring R, which will not correspond to any state of the DFA with

overwhelming probability. To accomplish this, the client defines the encoding of character σ ∈ Σ

and position k ∈ [ℓ] to be τ(σ, k, ψk) = H2(e(H1(σ||k)ψk , h)), where H2 is a hash function H2 :

G2 → R (modeled as a random oracle) and where ψk
$← Z

∗
p is selected by the client in the round

for the k-th character. If the client sends Ψk ← gψk to the server in the round for the k-th character,

then the server can compute τ(σk, k, ψk) for the file character σk as τ(σk, k, ψk) = H2(e(sk,Ψk)).

However, without ψk the server will be unable to compute the encoding τ(σ, k, ψk) for any σ 6= σk.

The final difficulty to overcome lies in the fact that the client, by altering the encoding of each

character σ ∈ Σ per round k, must also recompute f(x, y) to account for this new encoding. As

such, the client recomputes f(x, y) to satisfy f(π(q) +
R
ϕk, τ(σ, k, ψk)) = π(δ(q, σ)) per round k,

for every q ∈ Q and σ ∈ Σ. In our algorithm, we encapsulate this calculation as 〈aij〉i∈[n],j∈[m] ←

ToPoly(Q,Σ, δ, π,k, ϕk, βk, ψk) where 〈aij〉i∈[n],j∈[m] are the coefficients forming f, i.e., so that

f(x, y) = R

∑n−1
i=0 R

∑m−1
j=0 aij ·R xi ·

R
yj . (The value βk will become relevant in Section 4.2.3 and

can be ignored for now.)

This protocol is shown in Fig. 4.1. The protocol is written with the steps performed by the

client listed on the left (lines c301–c320), with those performed by the server on the right (lines

s301–s313), and with the messages exchanged between them in the middle (lines m301–m306). The

client takes as input the data owner’s public verification key 〈p,G1,G2, g, e, h〉, a public encryption

key ek ′, and its DFA 〈Q,Σ, δ, qinit〉. (For the moment, ignore the additional input dk , which will

be discussed in Section 4.2.3.) The server takes as input 〈p,G1,G2, g, e, h〉, the DFA alphabet Σ,

and the signed file characters s0, . . ., sℓ−1, i.e., signed with the data owner’s private key 〈G1, x〉

corresponding to 〈p,G1,G2, g, e, h〉. (Again, please ignore the bk values for now. These will be

discussed in Section 4.2.3.) Note that neither the client nor the server receives any information

about the private key dk ′, and so values encrypted under ek ′ (θ in line c304, and ρ in line c309) are

38

never decrypted or otherwise used in the protocol. These values are included in the protocol only to

simplify its proof and need not be included in a real implementation of the protocol.

At the beginning of the protocol, the server generates the public/private key pair (pek , pdk)

(line s302) that defines the ring R for the protocol run. The server conveys pek and the file length

ℓ to the client (m301). Upon receiving this message, the client selects an injection π : Q → R

at random from the set of all such injections, denoted Injs(Q → R) (c303). The client sends the

number n of states in his DFA in message m302. (To simplify our proofs, the client also sends the

chosen injection π encrypted under ek ′ to server, denoted by θ. We will not discuss this further

here.)

The heart of the protocol is the loop represented by lines c306–c317 for the client and lines

s304–s312 for the server. The client begins each iteration of this loop with a ciphertext α of the

current DFA state, which it blinds with the blinding term ϕk (c307) using the additive homomorphic

property of Paillier encryption (c308). The client also selects ψk (c310) and creates Ψk (c311)

as described above, and sends the now-blinded ciphertext α and Ψk to the server (m303). After

decrypting the blinded state γ (s305) and using Ψk and sk to create the encoding η = τ(σ, k, ψk)

for the character σk being processed in this loop iteration (s306), the server creates the encryption

of γi ·
R
ηj for each i ∈ [n] and j ∈ [m] (s307–s311). After the server sends these values back to the

client (m304), the client uses them together with the coefficients of f that it computed as described

above (c313) to assemble a ciphertext of the new DFA state (c316).

After this loop iterates ℓ times, the client sends the state ciphertext to the server (m305). The

server decrypts the (random) state (s313) and returns it (m306). The client checks to be sure that the

result represents a valid state (c318) and, if so, returns the corresponding state as the result (c320).

4.2.3 Adding File Encryption

As presented so far, our protocol guarantees the integrity of the DFA evaluation against a mali-

cious server. However, the confidentiality of the file content is not protected from the server because

the signatures of the file characters are known to the server. With cloud outsourcing becoming in-

creasingly popular, there is need to enable a data owner to outsource her file to the cloud while

protecting its privacy, as well, against a potentially untrusted cloud provider. So, in this section, we

39

client(〈p,G1,G2, g, e, h〉, server(〈p,G1,G2, g, e, h〉,
dk , ek ′, 〈Q,Σ, δ, qinit〉) Σ, 〈sk, bk〉k∈[ℓ])

c301. n ← |Q|,m ← |Σ| s301. m ← |Σ|
s302. (pek , pdk) ← PGen(1κ)

m301.
pek ,ℓ

✛

c302. 〈N, g〉 ← pek , R ← ZN s303. 〈N, g〉 ← pek , R ← ZN

c303. π
$← Injs(Q → R)

c304. θ ← Encek ′(π)

m302.
n,θ

✲

c305. α ← PEncpek (π(qinit))
c306. for k ← 0 . . . ℓ− 1 s304. for k ← 0 . . . ℓ− 1

c307. ϕk
$← R

c308. α ← α+pek PEncpek (ϕk)
c309. ρ ← Encek ′(ϕk)

c310. ψk
$← Z

∗
p

c311. Ψk ← gψk

m303.
α,ρ,Ψk

✲

s305. γ ← PDecpdk (α)
s306. η ← H2(e(sk,Ψk))
s307. for i ∈ [n]
s308. for j ∈ [m]
s309. µij ← PEncpek (γ

i ·
R
ηj)

s310. endfor

s311. endfor

m304.
〈µij 〉i∈[n],j∈[m],bk
✛

c312. βk ← Decdk (bk)
c313. 〈aij〉i∈[n],j∈[m]

← ToPoly(Q,Σ, δ, π,k, ϕk, βk, ψk)
c314. if ∃i, j : aij 6= 0 ∧ gcd(aij , N) > 1
c315. then abort

c316. α ← pek

n−1
∑

i=0

pek

m−1
∑

j=0

aij ·pek µij

c317. endfor s312. endfor

m305.
α

✲

s313. γ∗ ← PDecpdk (α)

m306.
γ∗

✛

c318. if γ∗ 6∈ π(Q)
c319. then abort

c320. else return π−1(γ∗)

Figure 4.1: Protocol Π3(E), described in Section 4.2

40

refine our protocol so that it provides the same guarantees while also protecting the confidentiality

of the file content from the server.

As we described our protocol so far, the server holds the BLS signature sk = H1(σk||k)x, which

enables him to learn σk by testing for each σ ∈ Σ whether e(H1(σ||k), h) = e(sk, g). So, to hide

σk from the server, it is necessary to change the signature sk to prevent the server from confirming

a guess at the value of σk.

To do so, in our full protocol the data owner randomizes the signature by raising it to a random

power, i.e., sk ← H1(σ||k)x·βk where βk
$← Z

∗
p. sk then does not leak information about σk to the

server because it is randomly distributed in G1. However, this randomization also introduces new

difficulties for the server and client to perform the DFA evaluation, since both of them need to be

able to compute the same encoding for each σk despite sk being randomized in this way.

To facilitate this evaluation, the data owner encrypts βk under a public key ek of an encryption

scheme whose plaintext space includes Z
∗
p and provides its ciphertext, denoted bk, along with sk

to the server; see the input arguments to server in Fig. 4.1. Of course, the server should not be

able to decrypt bk, since this would again enable him to reconstruct σk. As such, the data owner

provides the corresponding private decryption key dk only to the client; see the input arguments to

the client. Analogous to previous protocols [73], conveying dk can serve as a step by which the data

owner authorizes a client to perform DFA queries on its file stored at the server. (In Section 4.4, we

summarize an alternative approach that does not disclose dk or 〈βk〉k∈[ℓ] to the client.)

Given this setup, the full protocol Π3(E) thus executes the following additional steps. First,

the client defines the encoding of character σ ∈ Σ and position k ∈ [ℓ] to be τ(σ, k, βk, ψk) =

H2(e(H1(σ||k)βkψk , h)), where again H2 is a hash function H2 : G2 → R (modeled as a random or-

acle) and where ψk
$← Z

∗
p is selected by the client in the round for character k. Note that the client

needs to know βk to compute τ(σ, k, βk, ψk), and recall that the client needs to know τ(σ, k, βk , ψk)

for each σ ∈ Σ in order to compute f(x, y) to satisfy f(π(q) +
R
ϕk, τ(σ, k, βk , ψk)) = π(δ(q, σ))

for every q ∈ Q and σ ∈ Σ. Therefore, it is necessary for the client to include βk as an argument

to the ToPoly call (i.e., ToPoly(Q,Σ, δ, π, k, ϕk , βk, ψk) in c313) and to delay that call until after

receiving bk in m304 and using it to obtain βk (c312).

41

4.2.4 Complexity

Protocol Π3(E) has a communication complexity of O(ℓmnκ2) bits, dominated by the message

m304 sent by the server in each round. The storage cost on the server depends on the number of

BLS signatures of each character of the file. Assuming a BLS signature of length roughly 170 bits

[18], it results in total 170ℓ bits for a file with ℓ characters. When using byte as character unit of a

file, that amounts to about 21 times blow up in terms of storage compared against the original file.

4.2.5 Security Against Server Adversaries

In this section we prove the security of the protocol against server adversaries. We separately

consider the DFA privacy, file privacy and the result authenticity against server adversaries.

DFA privacy against malicious server adversaries. Following the security definitions defined in

Chapter 3, we formalize our claims against server compromise by defining server adversary S =

(S1, S2) who attacks the DFA M = 〈Q, Σ, δ, qinit〉 held by the client, as described in experiment

Expts-dfaΠ3(E)
in Fig. 4.2a. S1 is given the BLS signature verification key vk = 〈p,G1,G2, g, e, h〉

and a public key ek of an IND-CPA secure encryption scheme, and generates a file 〈σk〉k∈[ℓ] and

two DFAs M0 and M1. S2 then receives vk, the ciphertexts 〈sk, bk〉k∈[ℓ] of its file, information φ

created for it by S1, and oracle access to clientOr(vk, dk , ek ′,Mb) for b chosen randomly.

clientOr responds to queries from S2 as follows, ignoring malformed queries. S2 initiates by

sending a paillier encryption public key pek and an integer ℓ (as in m301). clientOr responds with a

message containing an integer n and a ciphertext θ (i.e., of the form of m302). In addition, clientOr

sends a message of the form α, ρ, Ψk, where α ∈ Cpek , ρ ∈ Cek ′ and Ψk ∈ G1, i.e., three values

as in m303. The next ℓ queries by S2 must contain nm elements of Cpek and an element of Cek ,

i.e., 〈µij〉i∈[n],j∈[m] and bk as in m304, to which clientOr responds with three values as in message

m303. After that, clientOr sends another ciphertext α of Cpek as in m305. The next (and last) query

by S2 can consist simply of a value in R, as in message m306.

Eventually S2 outputs a bit b′, and Expts-dfaΠ3(E)
(S) = 1 only if b′ = b. We say the advan-

tage of S is Advs-dfa
Π3(E)

(S) = 2 · P
(

Expts-dfaΠ3(E)
(S) = 1

)

− 1 and define Advs-dfa
Π3(E)

(t, ℓ, n,m) =

maxS Advs-dfa
Π3(E)

(S) where the maximum is taken over all adversaries S taking time t, selecting a

file of length ℓ and DFAs containing n states and an alphabet of m symbols.

42

Experiment Expts-dfaΠ3(E)
(S1, S2)

(p,G1,G2, g, e) ← ParamGen(1κ)
(〈p,G1,G2, g, e, h〉, 〈G1 , x〉) ← BLSKeyGen(p,G1,G2, g, e)
vk ← 〈p,G1,G2, g, e, h〉
(ek , dk) ← Gen(1κ)
(ek ′, dk ′) ← Gen(1κ+2)
(ℓ, 〈σk〉k∈[ℓ],M0,M1, φ) ← S1(vk, ek)

if |M0.Q| 6= |M1.Q| or M0.Σ 6= M1.Σ then return 0

b
$← {0, 1}

for k ∈ [ℓ]
sk ← BLSSign〈G1,x〉(σk||k)
βk

$← Z
∗
p

sk ← sβk

k
bk ← Encek (βk)

b′ ← S
clientOr(vk,dk ,ek ′,Mb)
2 (φ, vk,Mb.Σ, 〈sk, bk〉k∈[ℓ])

if b′ = b
then return 1
else return 0

(a) Experiment Expts-dfaΠ3(E)

Experiment Expts-fileΠ3(E)
(S1, S2)

(p,G1,G2, g, e) ← ParamGen(1κ)
(〈p,G1,G2, g, e, h〉, 〈G1 , x〉) ← BLSKeyGen(p,G1,G2, g, e)
vk ← 〈p,G1,G2, g, e, h〉
(ek , dk) ← Gen(1κ)
(ek ′, dk ′) ← Gen(1κ+2)
(ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ],M, φ) ← S1(vk, ek)

b
$← {0, 1}

for k ∈ [ℓ]
sk ← BLSSign〈G1,x〉(σbk||k)
βk

$← Z
∗
p

sk ← sβk

k
bk ← Encek (βk)

b′ ← S
clientOr(vk,dk ,ek ′,M),H1(·)
2 (φ, vk,M.Σ, 〈sk , bk〉k∈[ℓ])

if b′ = b
then return 1
else return 0

(b) Experiment Expts-fileΠ3(E)

Figure 4.2: Experiments for proving DFA and file privacy of Π3(E) against server adversaries

43

We reduce DFA privacy against server attacks to the IND-CPA [10] security of the encryption

scheme. IND-CPA security is defined using the experiment in Fig. 3.3 in Chapter 3, in which an

adversary U is provided a public key p̂k and access to an oracle Encb̂
p̂k
(·, ·) that consistently encrypts

either the first of its two inputs (if b̂ = 0) or the second of those inputs (if b̂ = 1). Eventually U

outputs a guess b̂′ at b̂, and Expt
ind-cpa
E (U) = 1 only if b̂′ = b̂. The IND-CPA advantage of

U is defined as Adv
ind-cpa
E (U) = 2 · P

(

Expt
ind-cpa
E (U) = 1

)

− 1. Then, Adv
ind-cpa
E (t, w) =

maxU Adv
ind-cpa
E (U) where the maximum is taken over all adversaries U executing in time t and

making w queries to Encb̂
p̂k
(·, ·).

We now prove the DFA privacy of the protocol.

Theorem 4. For t′ = t + tParamGen + tBLSKeyGen + tGen + ℓ · (tBLSSign + tEnc),

Advs-dfa
Π3(E)

(t, ℓ, n,m) ≤ 2Adv
ind-cpa
E (t′, ℓ+ 1)

Proof. Let S be an adversary meeting the parameters t, ℓ, n, m. Consider a simulation Sims-dfa
Π3(E)

for Expts-dfaΠ3(E)
that differs only by simulating clientOr so as to substitute the ciphertext produced

with ek ′ in c304 with encryptions of a random injection π′ independent of π it chose as in c303

(i.e., ρ ← Encpk ′(π′), π′ $← Injs(Q → R)) and to substitute all ciphertexts created in c309 with

encryptions of zero. Then b is hidden information-theoretically from S in Sims-dfa
Π3(E)

, since γ is a

random element of R in s305 (see c308) and Ψk is a random element in G1 (see c310), and since γ∗

is a random element of R (see c303). As a result, P
(

Sims-dfa
Π3(E)

(S) = 1
)

= 1
2 and for Advs-dfa

Π3(E)
(S)

to be nonzero, S must distinguish Sims-dfa
Π3(E)

from Expts-dfaΠ3(E)
.

We construct an IND-CPA adversary U that, on input p̂k , sets ek ′ ← p̂k and uses its own oracle

Encb̂
p̂k

to choose between running Expts-dfaΠ3(E)
and Sims-dfa

Π3(E)
for S by setting θ ← Encb̂

p̂k
(π, π′) in

c304 and ρ ← Encb̂
p̂k
(r, 0) in c307. (Aside from this, U performs Expts-dfaΠ3(E)

faithfully, generating

the BLS signature signing key 〈G1, x〉 and using (ek , dk) ← Gen(1κ) it generates itself.) U then

44

returns b̂′ = 0 if S2 outputs b′ = b and b̂′ = 1, otherwise. Then,

P

(

Expt
ind-cpa
E (U) = 1

)

=
1

2
P

(

Expts-dfaΠ3(E)
(S) = 1

)

+
1

2
P

(

Sims-dfa
Π3(E)

(S) = 0
)

=
1

2

(

1

2
+

1

2
Advs-dfa

Π3(E)
(S)

)

+
1

4

=
1

2
+

1

4
Advs-dfa

Π3(E)
(S)

and so Adv
ind-cpa
E (U) = 1

2Advs-dfa
Π3(E)

(S).

Note that U makes ℓ+1 oracle queries and runs in time t′ = t+ tParamGen+ tBLSKeyGen+ tGen+

ℓ · (tBLSSign + tEnc), due to the need to generate BLS signature signing key, (ek , dk) and encrypt ℓ

file characters.

File privacy against malicious server adversary. Next, we prove that the protocol protects the

file privacy against an arbitrarily malicious server adversary. We define the server adversary S =

(S1, S2) attacking the file ciphertexts 〈sk, bk〉k∈[ℓ] as in experiment Expts-fileΠ3(E)
shown in Fig. 4.2b.

S1 produces two equal-length plaintext files 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ] and a DFA M. S2 receives

the ciphertexts 〈sk, bk〉k∈[ℓ] for file 〈σbk〉k∈[ℓ] where b is chosen randomly. S2 is also given or-

acle access to clientOr(vk, dk , ek ′,M) and hash oracle access to H1(·). Eventually S2 outputs

a bit b′, and Expts-fileΠ3(E)
(S) = 1 iff b′ = b. We say the advantage of S is Advs-file

Π3(E)
(S) =

2 · P
(

Expts-fileΠ3(E)
(S) = 1

)

− 1 and then Advs-file
Π3(E)

(t, ℓ, n,m, h1) = maxS Advs-file
Π3(E)

(S) where

the maximum is taken over all adversaries S = (S1, S2) taking time t, producing (from S1) files of

ℓ symbols and a DFA of n states and alphabet of size m and making h1 queries to H1(·).

We now prove the following theorem:

Theorem 5. Let H1(·) be a random oracle. For t′ = t+tParamGen+tBLSKeyGen+tGen+ℓ·(tBLSSign+

tEnc),

Advs-file
Π3(E)

(t, ℓ, n,m, h1) ≤ 2Adv
ind-cpa
E (t′, ℓ+ 1) +Adv

ind-cpa
E (t′, ℓ)

Proof. Let Expts-file-0Π3(E)
denote experiment Expts-fileΠ3(E)

with b fixed at b = 0, and let Expts-file-1Π3(E)

denote the experiment Expts-fileΠ3(E)
with b fixed at b = 1. Consider a simulation Sims-file-0

Π3(E)
for

Expts-file-0Π3(E)
that differs only by simulating clientOr so as to substitute the ciphertext produced

45

with ek ′ in c304 with encryptions of a random injection π′ independent of π it chose as in c303

(i.e., ρ ← Encpk ′(π′), π′ $← Injs(Q → R)) and to substitute all ciphertexts created in c309 with

encryptions of zero. Proceeding as in the proof of Theorem 4, we construct an IND-CPA adversary

U0 that, on input p̂k of an encryption scheme E ′, sets ek ′ ← p̂k and uses its own oracle Encb̂
p̂k

to

choose between running Expts-file-0Π3(E)
and Sims-file-0

Π3(E)
for S, i.e., by setting θ ← Encb̂

p̂k
(π, π′)

in c304 and ρ ← Encb̂
p̂k
(r, 0) in c307. (Aside from this, U performs Expts-dfaΠ3(E)

faithfully, using

(ek , dk) ← Gen(1κ) it generates itself). Finally, U0 returns b̂′ = 0 if b′ = b and b̂′ = 1, otherwise.

Then,

1 +Adv
ind-cpa
E (U0) = 2 · P

(

Expt
ind-cpa
E (U0) = 1

)

=

P

(

Expts-file-0Π3(E)
(S) = 1

)

+ P

(

Sims-file-0
Π3(E)

(S) = 0
)

(4.1)

Now consider a simulation Sims-file-1
Π3(E)

for Expts-file-1Π3(E)
that again differs only by simulating

clientOr so as to substitute all ciphertexts produced with ek ′ with encryptions of a random injection

π′ independent of π it chose as in c303 (i.e., ρ ← Encpk ′(π′), π′ $← Injs(Q → R)) and to

substitute all ciphertexts created in c309 with encryptions of zero. As above, we construct an IND-

CPA adversary U1 that, on input p̂k of an encryption scheme E ′, sets ek ′ ← p̂k and uses its own

oracle Encb̂
p̂k

to choose between running Expts-file-1Π3(E)
and Sims-file-1

Π3(E)
for S, i.e., by setting θ ←

Encb̂
p̂k
(π′, π) in c304 and ρ ← Encb̂

p̂k
(0, r) in c307. (Aside from this, U performs Expts-file-1Π3(E)

faithfully, using (ek , dk) ← Gen(1κ) it generates itself). Finally, U1 returns b̂′ = 1 if b′ = b and

b̂′ = 0, otherwise. Then,

1 +Adv
ind-cpa
E (U1) = 2 · P

(

Expt
ind-cpa
E (U1) = 1

)

=

P

(

Sims-file-1
Π3(E)

(S) = 0
)

+ P

(

Expts-file-1Π3(E)
(S) = 1

)

(4.2)

Finally, consider an adversary U that uses its oracle Encb̂
p̂k

to choose between running Sims-file-0
Π3(E)

and Sims-file-1
Π3(E)

for S. Specifically, on input p̂k of an encryption scheme E , U generates (p,G1,G2,

g, e) ← ParamGen(1κ), (vk = 〈p,G1,G2, g, e, h〉, 〈G1 , x〉) ← BLSKeyGen(p,G1,G2, g, e) and

invokes S1(vk, p̂k). Upon receiving 〈σ0k〉k∈[ℓ] and 〈σ1k〉k∈[ℓ] from S1, for each k ∈ [ℓ], U sets

H1(σ0k||k) ← guk for uk
$← Z

∗
p and H1(σ1k||k) ← gvk for vk

$← Z
∗
p. U computes sk ← gx·βk for

46

βk
$← Z

∗
p and sets bk ← Encb̂

p̂k
(uk ·β−1

k mod p, vk ·β−1
k mod p). Note that the way that bk is com-

puted determined whether σ0k or σ1k is encrypted. U then invokes S2(φ, vk,M.Σ, 〈sk , bk〉k∈[ℓ]). In

the simulation of clientOr, U selects r
$← R and sets α ← Encpek (r) in c305 and c316 using the

Paillier public key pek it received from S2 in the first query (as in m301). (U also generates ek ′

itself and constructs an encryption of a random injection as in c304 and encryptions of zero as in

c309). For S2’s other queries to H1(·), for any query that was previously posed to H1, U returns the

value returned to that previous query, and for new queries, U generates a random element from G1.

Finally when S2 outputs b′, U outputs b′ as b̂′. Then,

1 +Adv
ind-cpa
E (U) =

2 · P
(

Expt
ind-cpa
E (U) = 1

)

= 2 · P
(

Sims-file
Π3(E)

(S) = 1
)

=

P

(

Sims-file-0
Π3(E)

(S) = 1
)

+ P

(

Sims-file-1
Π3(E)

(S) = 1
)

(4.3)

Adding (4.1), (4.2) and (4.3), we get

3 +Adv
ind-cpa
E (U0) +Adv

ind-cpa
E (U) +Adv

ind-cpa
E (U1)

= P

(

Expts-file-0Π3(E)
(S) = 1

)

+ P

(

Sims-file-0
Π3(E)

(S) = 0
)

+ P

(

Sims-file-0
Π3(E)

(S) = 1
)

+ P

(

Sims-file-1
Π3(E)

(S) = 1
)

+ P

(

Sims-file-1
Π3(E)

(S) = 0
)

+ P

(

Expts-file-1Π3(E)
(S) = 1

)

= 2 · P
(

Expts-fileΠ3(E)
(S) = 1

)

+ 2

= 3 +Advs-file
Π3(E)

(S)

The result then follows because each of U0 and U1 makes ℓ + 1 oracle queries and runs in time

t′ = t + tParamGen + tBLSKeyGen + tGen + ℓ · (tBLSSign + tEnc) due to the need to generate the BLS

signature signing key, (ek , dk) and encrypt ℓ file characters. U makes ℓ oracle queries in order to

create the file ciphertexts and runs in time t′ for similar reasons.

Detection of server misbehavior We first formally define what it means for a client to be able to

detect any server misbehavior. Such an experiment is shown in Fig. 4.3. In this experiment, S2

47

Experiment Expts-authΠ3(E)
(S)

(p,G1,G2, g, e) ← ParamGen(1κ)
(〈p,G1,G2, g, e, h〉, 〈G1 , x〉) ← BLSKeyGen(p,G1,G2, g, e)
vk ← 〈p,G1,G2, g, e, h〉
(ek , dk) ← Gen(1κ)
(ek ′, dk ′) ← Gen(1κ+2)
(ℓ, 〈σk〉k∈[ℓ],M, φ) ← S1(〈p,G1,G2, g, e, h〉, ek)
for k ∈ [ℓ]

sk ← BLSSign〈G1,x〉(σk||k)
βk

$← Z
∗
p

sk ← sβk

k
bk ← Encek (βk)

π
$← Injs(Q → R)

γ∗ ← S
clientOr(vk,dk ,M,π),H1(·),H2(·)
2 (vk,M.Σ, 〈sk , bk〉k∈[ℓ])

if γ∗ ∈ π(Q) ∧ γ∗ 6= π(M(〈σk〉k∈[ℓ]))
then return 1
else return 0

Figure 4.3: Experiment for proving result authenticity against server adversaries

is invoked with the public verification key 〈p,G1,G2, g, e, h〉 of the BLS signature and and file

ciphertexts 〈sk, bk〉k∈[ℓ]. S2 can then invoke clientOr first with a Paillier public key pek and an

integer ℓ (as in m301) and receives n and θ in response (as in m302). S2 can then invoke clientOr ℓ

times, each time with ciphertexts α, ρ and Ψk (as in m303), and receives ciphertexts 〈µij〉i∈[n],j∈[m],

and bk in response (as in m304). Finally, S2 outputs a ring element γ∗ as in m306. The experiment

outputs 1 if and only if γ∗ ∈ π(Q) and γ∗ 6= π(M(〈σk〉k∈[ℓ])), where π is a random injection that

was given to clientOr as input so that it will not need to select one by itself as in c303. This means

that the protocol outputs an erroneous final state to the client and goes undetected by the client. For

an arbitrarily malicious server adversary S, we define its advantage as:

Advs-auth
Π3(E)

(S) = P

(

Expts-authΠ3(E)
(S) = 1

)

and define Advs-auth
Π3(E)

(t, ℓ, n,m, h1, h2) = maxS Advs-auth
Π3(E)

(S) where the maximum is taken over

all adversaries S executing in time t and selecting a file of length ℓ and a DFA of n states and

alphabet of size m and making h1 hash queries to H1(·) and h2 queries to H2(·).

We reduce the result authenticity against a server adversary to the bilinear computational Diffie-

Hellman problem (BCDH) [18]. The BCDH problem is defined using the experiment in Fig. 4.4, in

48

which an adversary A is given two bilinear groups G1 and G2 both of order p, a random generator

g of G1 and gz1 , gz2 , gz3 where z1, z2, z3
$← Z

∗
p. The experiment outputs 1 if and only if A is able

to compute e(g, g)z1z2z3 . The BCDH advantage of A is defined as

Advbcdh(A) = P
(

Exptbcdh(A) = 1
)

and then Advbcdh(t) = maxAAdvbcdh(A) where the maximum is taken over all adversaries A

executing in time t.

Experiment Exptbcdh(A)
(p,G1,G2, g, e) ← ParamGen(1κ)

z1, z2, z3
$← Z

∗
p

v ← A(p,G1,G2, g, e, g
z1 , gz2 , gz3)

if v = e(g, g)z1z2z3

then return 1
else return 0

Figure 4.4: Experiment for defining BCDH problem

We now prove that the protocol guarantees the authenticity of the evaluation result against an

arbitrarily malicious server adversary.

Theorem 6. Let H1(·) and H2(·) be random oracles. For t1 = t + tParamGen + tBLSKeyGen + tGen +

ℓ · (tBLSSign + tEnc) and t2 = t + 2 · tGen + ℓ · (tBLSSign + tEnc)

Advs-auth
Π3(E)

(t, ℓ, n,m, h1, h2) ≤ Adv
ind-cpa
E (t1, ℓ+ 1) + (m− 1) · ℓ · h2 ·Advbcdh(t2)

Proof. Given a server adversary S, there are essentially two avenues by which a S might attempt to

misbehave while escaping detection. The first is to create τ(σ, k, βk , ψk) = H2(e(H1(σ||k)βkψk , h))

for some σ 6= σk, and to use τ(σ, k, βk , ψk) as η in the protocol. The second is to cause the client to

execute a state transition into an erroneous state in Q without computing τ(σ, k, βk , ψk) for some

σ 6= σk. Let event1 denote the fact that the former event happens, and ¬event1 denote that the latter

case happens. We prove in Lemma 1 that ¬event1 can only happen in probability negligible with

respect to the security parameter. Here we show that the occurrence of event1 implies the ability to

solve the BCDH problem.

49

Given an adversary S = (S1, S2) for which event1 happens, and that runs in time t, produces

a file of length ℓ, and produces a DFA of n states over an alphabet of m symbols, while making

h1 and h2 hash queries to H1(·) and H2(·) respectively, we construct a BCDH attacker A to at-

tack the BCDH assumption. Consider the following simulation Sims-auth
Π3(E)

(S) for Expts-authΠ3(E)
(S).

On input two bilinear groups G1 and G2 both of order p, a random generator g of G1 and Z1 =

gz1 , Z2 = gz2 , Z3 = gz3 where z1, z2, z3
$← Z

∗
p, A generates two public/private key pairs (ek , dk)

and (ek ′, dk ′) for an IND-CPA encryption scheme and then invokes S1(〈p,G1,G2, g, e, Z1〉, ek)

to obtain (ℓ, 〈σk〉k∈[ℓ],M, φ). Let |M.Q| = n and |M.Σ| = m. A then sets H1(σk||k) ← guk

where uk
$← Z

∗
p and then computes the encrypted file sequence 〈sk, bk〉k∈[ℓ] such that sk ←

Zukβk

1 for βk
$← Z

∗
p and bk ← Encek (βk). Note that the file ciphertext 〈sk, bk〉k∈[ℓ] is well

formed because e(sk, g) = e(Zukβk

1 , g) = e(gz1ukβk , g) = e(g, g)z1ukβk = e(guk , gz1)βk =

e(H1(σk||k), Z1)
βk , as in the real protocol. A then chooses k∗

$← [ℓ] and σ∗ $← Σ \ {σk∗} as

its guesses on the round k∗ and the input symbol σ∗ that S2 will attempt forgery. Finally, A invokes

S2(〈p,G1,G2, g, e, Z1〉,M.Σ, 〈sk, bk〉k∈[ℓ]) and simulates responses to S2’s queries to clientOr as

follows.

After receiving pek and ℓ from S2 (m301), A sets θ ← Encek ′(π
′), π′ $← Injs(Q → R) and

sends n and θ to S2 (as in m302). In round k ∈ [ℓ], A sets α ← Encpek (r), r
$← ZN and sets

ρ ← Encek(0). If k 6= k∗, then A generates the random challenge Ψk exactly as specified in c310–

c311. If k = k∗, then A sets Ψk ← Z3. In either case, A then sends α, ρ and Ψk to S2 (m303).

After ℓ such rounds, A computes α to be the ciphertext of a random element of R, and sends it to S

(m305).

Meanwhile, A answers S2’s queries to the random oracle H1(·) as follows. For any query that

was previously posed to H1, A returns the value returned to that previous query, and for new queries,

A generates a return value as follows. If the query is σ∗||k∗, then A returns Z2. For all other queries,

A picks u
$← Z

∗
p and returns gu. For S2’s queries to H2(·), for any query that was previously posed

to H2, A returns the value returned to that previous query. For new queries, A picks r
$← ZN and

returns r to S2.

50

If S2 computes

τ(σ∗, k∗, βk∗ , ψk∗) = H2(e(H1(σ
∗||k∗)βk∗ψk∗ , Z1))

= H2(e(Z
βk∗z3
2 , Z1))

= H2(e(g, g)
z1z2z3βk∗)

then A can output e(g, g)z1z2z3 by selecting a random query χ that S2 made of H2 and returning

χβ−1
k∗

mod p. The probability that A outputs e(g, g)z1z2z3 is then 1
(m−1)·ℓ·h2

times the probability that

S produces τ(σ, k, βk, ψk) for some σ 6= σk, where h2 is the number of queries that S2 poses to

H2.

So we have:

P
(

Exptbcdh(A) = 1
)

= P

(

Sims-auth
Π3(E)

(S) = 1 | event1
)

· P (event1)+

P

(

Sims-auth
Π3(E)

(S) = 1 | ¬event1
)

· P (¬event1)

We prove in Lemma 1 that P (¬event1) is negligible as a function of the security parameter. So,

ignoring terms that are negligible as a function of the security parameter, we have:

P
(

Exptbcdh(A) = 1
)

≥ 1

(m− 1) · ℓ · h2
· P

(

Sims-auth
Π3(E)

(S) = 1
)

(4.4)

The only difference between the above described Sims-auth
Π3(E)

(S) and Expts-authΠ3(E)
(S) is the way

that θ and ρ are created. To show that this difference does not affect S’s ability to succeed in its

attack, we reduce its ability to distinguish Sims-auth
Π3(E)

(S) from Expts-authΠ3(E)
(S) to the IND-CPA secu-

rity of the encryption scheme from which ek ′ is generated. We create an IND-CPA adversary U that,

on input p̂k of an encryption scheme E ′, uses his encryption oracle to select between Sims-auth
Π3(E)

(S)

and Expts-authΠ3(E)
(S) by setting θ ← Encb̂

p̂k
(π′, π) as in c304 and ρ ← Encb̂

p̂k
(0, r) as in c307. Aside

from this, U performs the simulation exactly the same as described above for A. U returns b̂′ = 1 if

51

S2 succeeds in its attack and returns b̂′ = 0 otherwise. So we have,

Adv
ind-cpa
E (U) = 2 · P

(

Expt
ind-cpa
E (U) = 1

)

− 1

= P

(

Expt
ind-cpa-0
E (U) = 1

)

+ P

(

Expt
ind-cpa-1
E (U) = 1

)

− 1

= P

(

Sims-auth
Π3(E)

(S) = 0
)

+ P

(

Expts-authΠ3(E)
(S) = 1

)

− 1

= 1− P

(

Sims-auth
Π3(E)

(S) = 1
)

+ P

(

Expts-authΠ3(E)
(S) = 1

)

− 1

(4.5)

Substituting in Eqn. 4.4, we have:

Adv
ind-cpa
E (U) ≥ Advs-auth

Π3(E)
(S)− (m− 1) · ℓ · h2 ·Advbcdh(A)

thus completing the proof. U takes time t1 = t+ tParamGen+ tBLSKeyGen+ tGen+ℓ ·(tBLSSign+ tEnc)

due to the need to generate a BLS signing key, the encryption key (ek , dk) and to encrypt ℓ file

characters. U also needs to make ℓ+ 1 encryption oracle queries. A takes time t2 = t + 2 · tGen +

ℓ · (tBLSSign + tEnc) due to the need to generate both (ek , dk) and (ek ′, dk ′) and to encrypt ℓ file

characters.

Lemma 1. Let H2 be a random oracle, and let S2 be a server-compromising adversary. If in no

round k does S2 compute τ(σ, k, βk, ψk) for some σ 6= σk, then the client outputs an incorrect

state q ∈ Q with probability at most negligibly more than n−1
N .

Proof. In round k, the client transitions to the next DFA state by encoding the DFA transition

function using a polynomial f satisfying f(π(q) +
R
ϕk, τ(σ, k, βk, ψk)) = π(δ(q, σ)) for every

q ∈ Q and σ ∈ Σ; let f(x, y) = R

∑n−1
i=0 R

∑m−1
j=0 aij ·R xi ·

R
yj . To cause a state transition to an

erroneous state q′ ∈ Q, a server adversary must therefore produce ciphertexts 〈µij〉i∈[n],j∈[m] with

corresponding plaintexts 〈νij〉i∈[n],j∈[m] so that

π(q′) = R

n−1
∑

i=0

R

m−1
∑

j=0

aij ·R νij (4.6)

52

without having any information about the injection π or τ(σ, k, βk, ψk) for any σ 6= σk (since H2 is a

random oracle). Note that the distribution of 〈aij〉i∈[n],j∈[m] is not independent of the DFA transition

function δ and the injection π. That is, once π is fixed, only certain values for 〈aij〉i∈[n],j∈[m] are

possible.

We argue the result under the conservative assumption that δ and π uniquely determine 〈aij〉i∈[n],j∈[m]

(which in general they do not). Even then, for any i′ ∈ [n] and j′ ∈ [m] such that ai′j′ 6= 0 and

gcd(ai′j′ , N) = 1 (lines c314–c315 abort the protocol if gcd(aij , N) > 1 for some aij 6= 0), and for

any choices of 〈νij〉i∈[n],j∈[m] excepting νi′j′ , there is exactly one value for νi′j′ in ZN that satisfies

Eqn. 4.6. Moreover, prior to the last message sent by the client (m305), the random injection π is

hidden information theoretically from S2, and so π(q) for each q ∈ Q is uniformly distributed from

S2’s perspective. So, the probability S2 succeeds in selecting 〈νij〉i∈[n],j∈[m] to satisfy Eqn. 4.6 is

1
N , and since there are n − 1 possible erroneous states q′, the probability S succeeds in causing an

erroneous state transition to any q′ ∈ Q is at most n−1
N .

Finally, while the server learns π(q) for one q ∈ Q in the last client-to-server message (m305)

— if it behaved thus far — it does so only for the correct state q at this point. Again, it can then

guess π(q′) for an incorrect q′ ∈ Q to return as γ∗ with probability only n−1
N .

4.2.6 Security Against Client Adversaries

In this section we show security of Π3(E) against honest-but-curious client adversaries. Since

the client has the DFA in its possession, privacy of the DFA against a client adversary is not a

concern. Therefore we only focus on the privacy of the file. However, by the nature of what the

protocol computes for the client — i.e., the final state of a DFA match on the file — the client

can easily distinguish two files of its choosing simply by running the protocol correctly using a

DFA that distinguishes between the two files it chose. For this reason, we adapt the notion of

indistinguishability to apply only to files that produce the same final state for the client’s DFA. So, in

the experiment Exptc-fileΠ3(E)
(Fig. 4.5) that we use to define file security against client adversaries, the

adversary C = (C1, C2) succeeds (i.e., Exptc-fileΠ3(E)
(C) returns 1) only if the two files 〈σ0k〉k∈[ℓ] and

〈σ1k〉k∈[ℓ] output by C1 both drive the DFA M, also output by C1, to the same final state (denoted

M(〈σ0k〉k∈[ℓ]) = M(〈σ1k〉k∈[ℓ])). Otherwise, the experiment is straightforward: C1 receives the

BLS signature verification key vk, a private decryption key dk and a public key ek ′, and returns

53

Experiment Exptc-fileΠ3(E)
(C1, C2)

(p,G1,G2, g, e) ← ParamGen(1κ)
(〈p,G1,G2, g, e, h〉, 〈G1 , x〉) ← BLSKeyGen(p,G1,G2, g, e)
vk ← 〈p,G1,G2, g, e, h〉
(ek , dk) ← Gen(1κ)
(ek ′, dk ′) ← Gen(1κ+2)
(ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ],M, φ) ← C1(vk, dk , ek

′)

if M(〈σ0k〉k∈[ℓ]) 6= M(〈σ1k〉k∈[ℓ]) then return 0

b
$← {0, 1}

for k ∈ [ℓ]
sk ← BLSSign〈G1,x〉(σbk||k)
βk

$← Z
∗
p

sk ← sβk

k

bk ← Encek (βk)

b′ ← C
serverOr(vk,M.Σ,〈sk,bk〉k∈[ℓ])

2 (φ, vk, dk , ek ′,M)
if b′ = b

then return 1
else return 0

Figure 4.5: Experiment for proving file privacy against client adversaries

the two ℓ-symbol files (for ℓ of its choosing) 〈σ0k〉k∈[ℓ] and 〈σ1k〉k∈[ℓ] and a DFA M. Depending

on how b is then chosen, one of these files is encrypted and then provided to the server. C2 is then

invoked with vk, dk , ek ′ and M, and oracle access to serverOr(vk,M.Σ, 〈sk , bk〉k∈[ℓ]).

serverOr then responds to C2’s queries as follows, ignoring malformed queries. The first query

(could be simply “start”) initiates serverOr to begin the protocol. serverOr responds first with a

Paillier public key pek and an integer ℓ (as in m301), to which serverOr returns n and θ (as in

m302). C2 can then invoke serverOr up to ℓ+ 1 times. The first ℓ such invocations take the form α,

ρ, Ψk and correspond to messages of the form m303. For each such invocation, serverOr responds

with 〈µσi〉σ∈Σ,i∈[n] and bk (i.e., of the form m304). The last C2’s invocation contains one ciphertext

α corresponding to m305. This invocation elicits a response γ∗ (i.e., m306). Malformed or extra

queries are rejected by serverOr.

We prove file privacy against honest-but-curious client adversaries C = (C1, C2), i.e., C2

invokes serverOr exactly as Π3(E) prescribes, using DFA M output by C1. We define the advantage

of C to be hbcAdvc-file
Π3(E)

(C) = 2 · P
(

Exptc-fileΠ3(E)
(C) = 1

)

− 1 and hbcAdvc-file
Π3(E)

(t, ℓ, n,m)

= maxC Advc-file
Π3(E)

(C) where the maximum is taken over honest-but-curious client adversaries C

54

running in total time t and producing files of length ℓ and a DFA of n states over an alphabet of m

symbols. We now prove:

Theorem 7. For t′ = t + tParamGen + tBLSKeyGen +2 · tGen + ℓ ∗ (tBLSSign + tEnc) + (ℓ+ 1) · tDec ,

hbcAdvc-file
Π3(E)

(t, ℓ, n,m) ≤ Adv
ind-cpa
Pai (t′, ℓmn)

Proof. Given an adversary C = (C1, C2) running in time t and selecting files of length ℓ and

a DFA of n states over an alphabet of m symbols, we construct an IND-CPA adversary U that

demonstrates the theorem as follows. On input a Paillier public key p̂k = 〈N, g〉, U sets pek ←

p̂k and generates (p,G1,G2, g, e) ← ParamGen(1κ) and (vk ← 〈p,G1,G2, g, e, h〉, 〈G1 , x〉) ←

BLSKeyGen(p,G1,G2, g, e). U also sets (ek , dk) ← Gen(1κ) and (ek ′, dk ′) ← Gen(1κ+2) , and

then invokes C1(vk, dk , ek
′) to obtain (ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ], M, φ), where M = 〈Q, Σ, qinit,

δ〉 is a DFA. For each k ∈ [ℓ], U computes s0k ← H1(σ0k||k)x·βk for βk
$← Z

∗
p, and sets

b0k ← Encek(βk). Similarly, U sets s1k ← H1(σ1k||k)x·βk and sets b1k ← Encek (βk). Note that

the same βk is assigned to both s0k and s1k, thus resulting in b0k and b1k encrypting the same

plaintext value.

U then invokes C2(φ, vk, dk , ek
′,M) and simulates responses to C2’s queries to serverOr as

follows (ignoring malformed invocations). In response to the initial “start” query from C1, U returns

p̂k and ℓ and gets n and θ in return. U decrypts the ciphertext θ and sets π ← Decdk ′(θ). U sets

m ← |M.Σ| and in preparation for the subsequent serverOr invocations by C2, U sets q0 ← M.qinit

and q1 ← M.qinit. For the k-th query of the form α, ρ,Ψk (0 ≤ k < ℓ), the adversary U sets ϕk ←

Decdk ′(ρ), γ0 ← π(q0) +R
ϕk, and γ1 ← π(q1) +R

ϕk. U computes η0 ← H2(e(s0k,Ψk)), and

η1 ← H2(e(s1k,Ψk)) exactly as done in s306 and then sets µij ← Encb̂
p̂k
((γ0)

i·
R
(η0)

j , (γ1)
i·

R
(η1)

j)

for i ∈ [n], j ∈ [m]. After this, U updates q0 ← δ(q0, σ0k) and q1 ← δ(q1, σ1k), and returns

〈µij〉i∈[n],j∈[m] and b0k (= b1k) to C2. For the last query α, adversary U returns γ∗ = π(q0) to C2.

When C2 outputs b′, U outputs b′, as well.

This simulation is distributed identically with the real system provided that C is honest-but-

curious, and so ignoring terms that are negligible in κ, hbcAdvc-file
Π3(Pai)

(C) = Adv
ind-cpa
Pai (U).

Note that U runs in t′ = t+ tParamGen+ tBLSKeyGen+2 · tGen+ ℓ ∗ (tBLSSign + tEnc)+ (ℓ+1) · tDec

where 2 · tGen, due to the need to generate a BLS signing key, to generate (ek , dk) and (ek ′, dk ′),

55

and to encrypt ℓ file characters, and to perform one decryption of a ciphertext produced by ek ′ in

each round. U makes nm oracle queries in order to respond to each of the ℓ oracle queries following

the first.

4.3 On File Updates

Protocol Π3(E) is presented for a static file, and so in this section we consider the impact of file

updates. As we discuss below, these impacts are nontrivial, and so our protocol is arguably most

useful for static files.

To enable protocol Π3(E), the data owner signs the file position k along with σk when producing

sk to detect the server reordering file characters, i.e., sk ← H1(σ||k)x·βk where βk
$← Z

∗
p. Such

a representation would require any character insertion or deletion at position k to further require

updating the signature sk′ for all k′ > k. If the total file length ℓ is also included as an input to

H1 to detect file truncation, then insertions and deletions may require updating the signatures sk′

for all k′ < k, as well. This latter cost can be eliminated by not including ℓ as an input to H1 but

rather to have the data owner sign ℓ and the server to forward this signature along with ℓ to the

client in message m301. The former cost can be mitigated somewhat by breaking each file into

blocks (essentially smaller files) so that insertions and deletions require only the affected blocks to

be rewritten. In this case, the block index within the file should presumably also be included as an

input to H1 to detect block reorderings by the server.

Even with these modifications, there remain other complexities in handling file updates, in

that a server could simply use a stale version of the file when performing protocol Π3(E) with the

client, ignoring any earlier updates to the file by the data owner. Detecting a server that selectively

suppresses updates seems to require additional interaction between the data owner and the client

and has been the subject of much study (for file stores subject to reads and updates only) under

the banner of fork consistency [55]. We leave as future work the integration of our DFA evaluation

techniques with these ideas, i.e., so that DFA evaluations performed against stale files are efficiently

detected when the client subsequently interacts with the data owner.

56

4.4 Extensions

The protocol Π3(E) can be extended in various ways that may be of interest and that we will

discuss here. The first “extension” is simply the removal of the file encryption step described in

Section 4.2.3, which is suitable for the standard two-party model where the server’s input need not

be kept secret from the server himself. This simplification eliminates the dk , βk and bk values from

the protocol, implicitly setting βk = 1.

A more interesting variant of the protocol addresses the concern that the protocol as stated in

Fig. 4.1 discloses the decryption key dk and the values 〈βk〉k∈[ℓ] to the client, either of which can be

used to decrypt the file from its ciphertext 〈sk, bk〉k∈[ℓ]. While this file ciphertext is not disclosed to

the client during the protocol, it seems unnecessarily permissive to disclose its decryption key to ev-

ery client that performs a DFA evaluation on the file: if the file ciphertext were ever unintentionally

disclosed, then any such client could decrypt the file if it retained the key. In the rest of this section

we discuss an extension to the protocol in Fig. 4.1 to avoid disclosing dk and the values 〈βk〉k∈[ℓ] to

the client.

In order to avoid disclosing dk to the client, one alternative is for the data owner to provide

shares of dk to both the client and the server, so as to enable a two-party decryption of each bk. Then,

rather than sending only bk to the client in message m304, the server can also send its contribution

to the decryption of bk, enabling the client to complete the decryption of bk without learning dk

itself.

Still, however, this alternative would disclose βk to the client, which would enable it to deter-

mine σk if sk were ever disclosed. To avoid disclosing βk, one strategy is for the server to first

blind βk with another random value tk, i.e., to execute the protocol with βktk in place of just βk. Of

course, this factor tk would also then need to be reflected in k-th file character used in the protocol,

i.e., so the server would use stkk = H1(σk||k)xβktk in place of sk in the protocol. Because the server

does not have access to βk but rather has access only to its ciphertext bk, it is necessary that the

encryption scheme used to construct bk enable the computation of a ciphertext b̂k from bk and tk

such that Decdk (b̂k) = βktk mod N ′ for some value N ′ such that p | N ′. In this case, selecting

tk
$← ZN ′ suffices to ensure that βktk mod N ′ is distributed independently of βk and so hides βk

from the client when it learns βktk mod N ′.

57

An encryption scheme meeting our requirements (supporting two-party decryption and homo-

morphism on ciphertexts) is ElGamal encryption [30] in a subgroup of Z∗
N ′ . However, note that

setting N ′ = p is inefficient: the security parameter κ and so the size of p required for security is

an order of magnitude less for BLS signing than it would be for ElGamal encryption in a subgroup

of Z∗
p [52], and so setting N ′ = p would add considerable expense to the protocol. As such, a more

efficient construction would be to choose N ′ = pp′ for another prime p′. ElGamal encryption is

believed to be secure with a composite modulus even if its factorization is known [14].

58

CHAPTER 5

Toward Practical Encrypted Email That Supports

Private, Regular-Expression Searches

In this chapter, we prototype a system to perform private regular expression searches on en-

crypted emails and evaluate its performance. Toward this goal, we develop new protocols to enable

private regular expression searches on encrypted data stored at a server. The novelty of the protocol

lies in allowing a user to securely delegate an encrypted regular-expression search query to a proxy,

which interacts with the server where user’s data is stored encrypted to produce the search result for

the user. The privacy of the query and the data are both provably protected against an arbitrarily

malicious server and a partially trusted proxy under rigorous security definitions. We then develop

a working implementation of this protocol together with several optimizations to make it perform

well and then evaluate the performance of this implementation on a real-world email data set. We

describe our initial protocol design in Section 5.1 and detail a series of optimizations we employed

in Section 5.2, and finally present the implementation and its performance evaluation in Section 5.4.

5.1 Protocol Design

In this chapter, we define a deterministic finite automaton M to be a tuple 〈Q, Σ, δ, qinit, ∆〉

where Q is a set of |Q| = n states; Σ is a set (alphabet) of |Σ| = m symbols; δ : Q × Σ → Q

is a transition function; and qinit is the initial state; and ∆ : Q → {0, 1} is a function for which

∆(q) = 1 indicates that q is an accepting state.

client(pk , sk1, 〈Q,Σ, δ, qinit,∆〉) server(pk , sk 2,Σ, 〈ckj〉k∈[ℓ],j∈[m])

c401. n ← |Q|,m ← |Σ| s401. m ← |Σ|
c402. π0 ← I s402. 〈λσj〉σ∈Σ,j∈[m]

c403. π1
$← Injs(Q → R) ← Lagrange(Σ)

c404. α ← Encpk (π1(qinit))

m401.
n

✲

m402.
ℓ

✛

c405. for k ← 0 . . . ℓ− 1 s403. for k ← 0 . . . ℓ− 1
c406. β ← Dec1sk1

(α)

m403.
α,β

✲

s404. γ ← Dec2sk2
(α, β)

c407. π0 ← π1 s405. for σ ∈ Σ

c408. π1
$← Injs(Q → R) s406. Ψσ ← pk

m−1
∑

j=0

λσj ·pk ckj

c409. δ′ ← Blind(δ, π0, π1) s407. for i ∈ [n]
c410. 〈aσi〉σ∈Σ,i∈[n] s408. µσi ← γi ·pk Ψσ

← ToPoly(Q,Σ, δ′) s409. endfor

s410. endfor

m404.
〈µσi〉σ∈Σ,i∈[n]

✛

c411. α ← pk

∑

σ∈Σ

pk

n−1
∑

i=0

aσi ·pk µσi

c412. endfor s411. endfor

c413. β ← Dec1sk1
(α)

m405.
α,β

✲

c414. π0 ← π1 s412. γ ← Dec2sk2
(α, β)

c415. π1
$←Injs({0,1} → {0,1}) s413. for i ∈ [n]

c416. ∆′ ← Blind(∆, π0, π1) s414. µi ← Encpk (γ
i)

c417. 〈zi〉i∈[n] s415. endfor

← ToPoly(Q,Σ,∆′)

m406.
〈µi〉i∈[n]

✛

c418. Θ ← pk

n−1
∑

i=0

zi ·pk µi

c419. β ← Dec1sk1
(Θ)

m407.
Θ,β

✲

s416. θ ← Dec2sk2
(Θ, β)

m408.
θ

✛

c420. return π−1
1 (θ)

Figure 5.1: Protocol Π
′

1(E), described in Section 5.1.1

60

5.1.1 Our Starting Point

Our starting point is the protocol Π1(E) that we built in Chapter 3. The goal of the protocol is to

enable a client having a DFA M as input to interact with a server storing the ciphertext and a file to

obtain the result as though M was evaluated on the file plaintext. We first modify the protocol Π1(E)

so that at the end only a binary answer is returned to the client, as opposed to the final state of the

evaluation as originally designed. More precisely, the client should output a bit indicating whether

the final state to which the file plaintext drives the DFA is accepting or not; i.e., if the plaintext of

the file is a sequence 〈σk〉k∈[ℓ] where [ℓ] denotes the set {0, 1, . . . , ℓ − 1} and where each σk ∈ Σ,

then the client should output ∆(δ(. . . δ(δ(qinit, σ0), σ1), . . . , σℓ−1)). We also permit the client to

learn the file length ℓ and the server to learn both ℓ and the number of states n in the client’s DFA.

The client should learn nothing else about the file, however, and the server should learn nothing else

about the file or the client’s DFA.

We show the modified protocol Π
′

1(E) in Fig. 5.1. It follows Π1(E) in Fig. 3.1 except for the

additional two rounds of interaction (m405-m408) at the end in order to obtain a binary answer

of whether the final state is an accepting state or not. For that purpose, the client creates another

polynomial F (x) = R

∑n−1
i=0 zi ·R xi such that F (q) = 1 if and only if ∆(q) = 1 and F (q) = 0

otherwise. That is, F (x) “converges” all accepting states to 1 and all non-accepting states to 0.

Since the client needs help from the server to decrypt the final result (s416), it applies another

random injection π1
$← Injs({0, 1} → {0, 1}) on the output of the function ∆ to hide the results

from the server. In the protocol, we use ∆′ ← Blind(∆, π0, π1) (c416) to denote the step to generate

the blinded function that maps the accepting state to a random number between 0 and 1. The client

then uses the polynomial interpolation procedure to obtain the coefficients of F (x) in c417. After

“evaluating” F (x) in c418 and obtaining the encrypted binary output Θ, the client interacts with the

server one last time to decrypt it and returns the final result in c420.

5.1.2 Our Initial Construction

Starting from the protocol of the previous section, we develop a protocol in this section that

replaces the client with two parties: a user that holds the the DFA 〈Q, Σ, δ, qinit, ∆〉 and a proxy

that the user invokes to conduct a protocol to evaluate this DFA on a file stored at the server. Notably,

61

the protocol we develop here protects the secrecy of the DFA 〈Q, Σ, δ, qinit, ∆〉 and the evaluation

result from the proxy, and so this modification enables the proxy to execute the protocol on behalf

of others who do not trust it with knowledge of the DFA. One scenario in which this protection

is desirable is if the user does not have the bandwidth or processing available for performing the

evaluation herself.

The protocol, denoted Π4(E), protects the DFA privacy by giving to the proxy the encryptions

of the coefficients of the DFA polynomial f, denoted 〈âσi〉σ∈Σ,i∈[n] where âσi ← Encpk (aσi) and

〈aσi〉σ∈Σ,i∈[n] ← ToPoly(Q,Σ, δ), and the encryptions of the coefficients of the converging polyno-

mial F , i.e., 〈ẑi〉i∈[n] where ẑi ← Encpk (zi) and 〈ẑi〉i∈[n] ← ToPoly(Q,Σ,∆). The implications of

this change to the protocol are far-reaching, due to the operations that the proxy needs to perform

using these now-encrypted coefficients.

In the original protocol, in order to hide the current state transition from the server, the client

blinds the current transition state by choosing a random injection π1 of the state encodings in each

round so that the server obtains a random ring element γ in s404 every time. A new DFA polynomial

is then interpolated to accommodate the injections chosen in the last and current round (c407–c410)

to continue state transitions consistently. When the coefficients are encrypted, however, the proxy

will not be able to interpolate new polynomials because it does not have access to δ. We thus need

another strategy to achieve these “blinding” and “unblinding” effects. Rather than blinding with a

random injection, the new protocol does so by additively adding in a random ring element r to the

ciphertext representing the current state (c503–c504). The consequence of this additive blinding

operation is that the proxy needs a way to “shift” f (and its encrypted coefficients) to produce a

polynomial f ′(x, y) satisfying f ′(q +
R
r, σ) = δ(q, σ) for each q ∈ Q and σ ∈ Σ, for a specified

r ∈ R. We observe that if we set

f ′(x, y) = R

∑

σ∈Σ

(

f ′
σ(x) ·R Λσ(y)

)

62

where f ′
σ(x) = R

∑n−1
i=0 a′σi ·R xi, then it suffices if f ′

σ(x+
R
r) = fσ(x) for all σ ∈ Σ. Note that

fσ(x−
R
r) = R

n−1
∑

i=0

aσi ·R (x−
R
r)i

= R

n−1
∑

i=0

aσi ·R R

i
∑

i′=0

(

i

i′

)

·
R
xi−i′ ·

R
(−

R
r)i

′
(5.1)

= R

n−1
∑

i=0

(

R

n−1−i
∑

i′=0

aσ(i+i′) ·R
(

i+ i′

i′

)

·
R
(−

R
r)i

′

)

·
R
xi

where (5.1) follows from the binomial theorem. As such, setting

a′σi ← R

n−1−i
∑

i′=0

aσ(i+i′) ·R
(

i+ i′

i′

)

·
R
(−

R
r)i

′
(5.2)

ensures f ′
σ(x +

R
r) = fσ(x) and, therefore, f(x +

R
r, σ) = f ′(x, σ). When the proxy has access

to only the encrypted coefficients, represented by 〈âσi〉σ∈Σ,i∈[n], the operation in (5.2) needs to be

changed to

â′σi ← pk

n−1−i
∑

i′=0

((

i+ i′

i′

)

·
R
(−

R
r)i

′

)

·pk âσ(i+i′) (5.3)

In our pseudocode, we encapsulate calculations (Eqn. 5.3) in the invocation 〈â′σi〉σ∈Σ,i∈[n]← Shift(r,

〈âσi〉σ∈Σ,i∈[n]).

Now that the coefficients are encrypted, the operation by the client to combine coefficients with

ciphertexts as was done in line c411 in Fig. 5.1 no longer works for the proxy. For this reason, we

need to expand the properties we require of the encryption system we use, to include the ability to

homomorphically “multiply” ciphertexts once. We emphasize that we do not require fully homomor-

phic encryption. Our construction can be instantiated with any additively homomorphic encryption

scheme that allows a single homomorphic multiplication of two ciphertexts (e.g., [17, 34]), pro-

vided that it also supports two-party decryption. Here we build from the more well-studied scheme

of Boneh, Goh and Nissim [17], which we denote by BGN.

Encryption scheme Specifically, BGN uses an algorithm BGNInit that, on input 1κ, outputs (p, p′,

G, G′, e) where p, p′ are random κ/2-bit primes, G and G
′ are cyclic groups of order N = pp′, and

63

e : G×G → G
′ is a bilinear map. In this encryption scheme, the ring R is ZN , the ciphertext space

C〈N,G,G′,e,g,h,ĝ〉 is G ∪G
′, and the relevant algorithms are defined as follows. Note that we assume

that elements of G and G
′ are encoded distinctly.

Gen(1κ): Generate (p, p′,G,G′, e) ← BGNInit(1κ); select random generators g, u
$← G; set

N ← pp′, h ← up
′
, and ĝ ← e(g, g)p; and return public key 〈N,G,G′, e, g, h, ĝ〉 and private key

〈N , G, G′, e, g, ĝ, p〉.

Enc〈N,G,G′,e,g,h,ĝ〉(m): Select x
$← ZN and return gmhx.

Dec〈N,G,G′,e,g,ĝ,p〉(c): If c ∈ G, then return the discrete logarithm of e(c, g)p with respect to base ĝ.

If c ∈ G
′, then return the discrete logarithm of cp with respect to base ĝ.

c1 +〈N,G,G′,e,g,h,ĝ〉 c2: If c1 and c2 are in the same group (i.e., both are in G or both are in G
′), then

return c1c2. Otherwise, if c1 ∈ G and c2 ∈ G
′, then return e(c1, g)c2.

m ·〈N,G,G′,e,g,h,ĝ〉 c: Return cm .

c1 ⊙〈N,G,G′,e,g,h,ĝ〉 c2: If c1, c2 ∈ G, then return e(c1, c2). Otherwise, return ⊥.

Share(〈N,G,G′, e, g, ĝ, p〉): Return sk1 = 〈G,G′, d1〉 and sk2 = 〈G,G′, e, g, ĝ, d2〉 where d1
$←

ZN and d2 ← p− d1 mod N .

Dec1〈G,G′,d1〉
(c): Return cd1 .

Dec2〈G,G′,e,g,ĝ,d2〉
(c1, c2): If c1, c2 ∈ G, then return the discrete logarithm of e(c2c

d2
1 , g) with respect

to base ĝ. If c1, c2 ∈ G
′, then return the discrete logarithm of c2c

d2
1 with respect to base ĝ.

Note the new operator ⊙pk that homomorphically multiplies two ciphertexts in G. Since the result

is in G
′, it is not possible to use the result as an argument to ⊙pk . This is the sense in which this

scheme permits homomorphic multiplication “once”. Also note that though the basic scheme of

Boneh et al. did not include ĝ = e(g, g)p in the public key, Boneh et al. proposed an extension

supporting multiparty threshold decryption [17, Section 5] that did so1; it is this extension that we

adopt here.

A complication of using BGN is the need to compute a discrete logarithm to decrypt in Dec〈N,G,G′,e,g,ĝ,p〉

and Dec2〈G,G′,e,g,ĝ,d2〉
. We thus need to design our protocol so that any ciphertext that a party attempts

to decrypt should hold a plaintext from a small range 0 . . . L. Then, Pollard’s lambda method [56, p.

1The exact construction supporting threshold decryption was left implicit by Boneh et al. [17], but we have confirmed

that including ĝ = e(g, g)p in the public key is what they intended [15].

64

128] enables recovery of the plaintext in O(
√
L) time. Alternatively, a precomputed table that maps

ĝm to the plaintext m ∈ {0 . . . L} enables decryption to be performed by table lookup.

proxy(pk , sk1,Σ, n, αinit server(pk , sk2,Σ,
〈âσi〉σ∈Σ,i∈[n], 〈ẑi〉i∈[n]) 〈ckj〉k∈[ℓ],j∈[m])

c501. α ← αinit s501. m ← |Σ|
s502. 〈λσj〉σ∈Σ,j∈[m]

← Lagrange(Σ)

m501.
n

✲

m502.
ℓ

✛

c502. for k ← 0 . . . ℓ− 1 s503. for k ← 0 . . . ℓ− 1

c503. r
$← {0, 1}κ′

c504. α ← α+pk Encpk (r)

c505. β ← Dec1sk1
(α)

m503.
α,β

✲

s504. γ ← Dec2sk2
(α, β)

s505. for σ ∈ Σ

s506. Ψσ ← pk

m−1
∑

j=0

λσj ·pk ckj

c506. 〈â′σi〉σ∈Σ,i∈[n] s507. for i ∈ [n]

← Shift(r, 〈âσi〉σ∈Σ,i∈[n]) s508. µσi ← γi ·pk Ψσ

s509. endfor

s510. endfor

m504.
〈µσi〉σ∈Σ,i∈[n]

✛

c507. α ← pk

∑

σ∈Σ

pk

n−1
∑

i=0

â′σi ⊙pk µσi

c508. endfor s511. endfor

c509. r
$← {0, 1}κ′

c510. α ← α+pk Encpk (r)

c511. β ← Dec1sk1
(α)

m505.
α,β

✲

s512. γ ← Dec2sk2
(α, β)

c512. 〈ẑi′〉i∈[n] s513. for i ∈ [n]

← Shift(r, 〈ẑi〉i∈[n]) s514. µi ← Encpk (γ
i)

s515. endfor

m506.
〈µi〉i∈[n]

✛

c513. Θ ← pk

n−1
∑

i=0

ẑi
′ ⊙pk µi

c514. return Θ

Figure 5.2: Protocol Π4(E), described in Section 5.1.2

65

Protocol steps Protocol Π4(E) is shown in Fig. 5.2. It has a similar structure to Π1(E), but differs

in many respects.

• Rather than taking 〈Q, Σ, δ, qinit, ∆〉 as input, the proxy takes αinit ← Encpk (qinit) and

encrypted coefficients 〈âσi〉σ∈Σ,i∈[n] and 〈ẑi〉i∈[n] as input. Fig. 5.2 presumes that these

coefficients are created by performing 〈aσi〉σ∈Σ,i∈[n] ← ToPoly(Q,Σ, δ) and 〈zi〉i∈[n] ←

ToPoly(Q,Σ,∆) and then encrypting each coefficient using pk , i.e., âσi ← Encpk (aσi) for

each σ ∈ Σ and i ∈ [n], and ẑi ← Encpk (zi) for each i ∈ [n].

• Because server decrypts the (blinded) DFA state in line s504, the plaintext should be ade-

quately small so that decryption — which as discussed above, involves computing (or looking

up) a discrete logarithm if BGN encryption is in use — is not too costly. For this reason, and

assuming R = ZN (as it is in BGN) and Q = [n], the blinding term r is drawn from {0, 1}κ′

instead of R, where κ′ ≪ κ is another security parameter. Then, the statistical distance be-

tween the distribution of γ seen by server in line s504 when the blinded state is q (i.e., when

γ = q +
R
r) and uniformly random choices from {0, 1}κ′

is

∑

x

∣

∣

∣

∣

∣

∣

∣

P(q + r = x | r $← {0, 1}κ′
)

−P(r = x | r $← {0, 1}κ′
)

∣

∣

∣

∣

∣

∣

∣

=
∑

0≤x<q

1

2κ′ +
∑

2κ′≤x<q+2κ′

1

2κ′

=
q

2κ′−1

Since q ∈ [n], we anticipate setting κ′ ≈ log2 n+15 to achieve a reasonable balance between

decryption cost and security for moderately sized n. It is important to note, however, that

generally κ′ will need to grow with n (though only logarithmically so).

• The fact that each âσi is a ciphertext necessitates using the “one-time multiplication” operator

⊙pk in line c507 to produce the ciphertext of the new state, versus ·pk as in line c411. The

same is true for each ẑi in c513.

• The protocol returns an encrypted evaluation result Θ to the proxy (c514), and so the original

round to decrypt the result (m407–m408) is omitted.

66

Protocol security We are able to prove Π4(E) protects DFA privacy and file content privacy against

arbitrarily malicious server adversaries, and DFA privacy and file privacy against honest-but-curious

proxy adversaries. We do not present the proofs here, but in the next section we develop an optimized

protocol that has better efficiency and achieves similar security properties. We will formally define

the security notions and prove that protocol secure in Section 5.3.

5.2 Optimizations

In this section, we detail a series of optimizations that we developed for our protocol that, in

our implementation, achieved an order of magnitude improvement in performance.

5.2.1 File Representation

We first observe that, in protocol Π4(E), the computation done by the server in s506 using

the Lagrange coefficients it computed in s502 is effectively evaluating the ciphertext of Λσ(σk) for

each σ ∈ Σ, using the values 〈ckj〉j∈[m] provided as input to the server where ckj ← Encpk ((σk)
j).

Recall that only for σ = σk does Λσ(σk) = 1; otherwise, Λσ(σk) = 0. Since this calculation only

depends on the ciphertexts of the current file character, the result of it, i.e., 〈Encpk (Λσ(σk))〉σ∈Σ,

could have been provided by the data owner as the ciphertext of file character σk so that the server

would not need to compute it itself.

With this observation, our first optimization is to eliminate the use of the Lagrange polyno-

mial Λσ(y) completely and decompose the original bivariate polynomial f(x, y) to m univariate

polynomials fσ(x) for each σ ∈ Σ. The encryption of a file character σk now becomes a vector

of encryptions of 0’s and one 1. Specifically, σk is provided to the server as ciphertexts 〈ckσ〉σ∈Σ
where ckσ ← Encpk (1) if σ = σk and ckσ ← Encpk (0) otherwise. This representation has the

same storage costs per file character as the original protocol, i.e., m ciphertexts per encrypted file

character.

5.2.2 Pairing Operations

During the implementation of our protocol, we noticed that the pairing operations performed

by the proxy in c507 are very costly and became the bottleneck of the overall performance. Accel-

67

erating pairing operations is a research area of substantial interest and any progress made would

be beneficial to protocols such as ours that utilize pairing. Our focus here, however, is twofold.

One is to adapt the protocol to reduce the number of pairing operations. In particular, mn pairing

operations are needed in c507 in each round. In this section, we redesign the protocol to reduce the

number of pairing operation down to m. The other focus is to make the protocol design amenable

to pairing preprocessing [53].

Informally, given a bilinear map e : G × G → G
′, if it is known in advance that a particular

value c ∈ G will be paired with other elements multiple times, then preprocessing on c can be

performed in advance to achieve a significant reduction in pairing time. For example, for the class

of machines used in our experiments in Section 5.4, a pairing operation for a 1024-bit BGN scheme

costs around 35ms without preprocessing but only 10ms after preprocessing. In c507, the pairing

operation performed is e(â′σi, µσi). Unfortunately, both â′σi and µσi change in each round, which

prohibits preprocessing. This suggests that performing pairing operations on the proxy side may not

be the best choice in terms of the potential for optimization.

We therefore redesigned the protocol with the goals of reducing the number of pairing opera-

tions and making pairing preprocessing possible. Fortunately, we were able to achieve both goals by

shifting the pairing operations to the server side. The resulting protocol Π5(E) is shown in Fig. 5.3.

The new protocol essentially switches the roles of the proxy and server (though not entirely, since

each still receives the same inputs). Note that the directions of the messages m603 and m604 are

reversed from those in Fig. 5.2. The values α and β, which used to be produced by the proxy in

c504 and c505, are now produced by the server in s604 and s605. This role reversal imposes some

significant changes in the computations done by the proxy and server.

We now describe the changes made in the protocol. We ask the readers to ignore the operations

c603 and s606 for the time being; these will be discussed in Section 5.2.3. The proxy now obtains

γ in c602, which is equal to q + r, where q is the current DFA state and r was chosen by the server

in s603. It now uses γ as input (as opposed to r in Π4(E)) into the Shift procedure first described in

Section 5.1.2, i.e., computing new coefficients as:

68

â′σi ← pk

n−1−i
∑

i′=0

âσ(i+i′) ·pk
(

i+ i′

i′

)

·pk γi
′

(5.4)

As a consequence of this “shift”, the plaintexts of the coefficients 〈â′σi〉σ∈Σ,i∈[n] define a new

polynomial f ′
σ(x) such that f ′

σ(x) = fσ(x +
R
(q +

R
r)). The proxy then sends 〈â′σi〉σ∈Σ,i∈[n] to

the server in m604. The server, knowing r, blindly “evaluates” the polynomial f ′
σ(x) on value

(−
R
r) for each σ ∈ Σ, in lines s607–s609. Specifically, it computes a ciphertext of f ′

σ(−R
r) =

fσ(−R
r +

R
(q +

R
r)) = fσ(q) as:

ωσ ← pk

n−1
∑

i=0

â′σi ·pk (−R
r)i (5.5)

A naive way to compute Eqn. 5.5 requires O(n2) exponentiations, but by leveraging Horner’s rule it

can be reduced to O(n) exponentiations. Once the server obtains {ωσ}σ∈Σ, it calculates a ciphertext

α of the correct next DFA state in line s610, i.e., by homomorphically summing ωσ ⊙pk ckσ over

all σ ∈ Σ. (Recall from Section 5.2.1 that, for fixed k, exactly one of 〈ckσ〉σ∈Σ is a ciphertext of 1

and the rest are ciphertexts of 0.) The key point to notice here is that, by rearranging the protocol

messages and letting the proxy send over the shifted coefficients, the number of pairing operations

are chopped down to only m from nm, a major improvement.

We have already alluded the potential benefit of pairing preprocessing to reduce the online cost

of pairing operations. The only question left is how to adapt the protocol so that it is amenable to

using this technique. Fortunately, the changes we have just made to the protocol also makes pairing

preprocessing possible. The pairing operation that the server needs to perform in s610 is e(ωσ, ckσ),

for σ ∈ Σ and k ∈ [ℓ]. The ciphertext ckσ is fixed and known even before the protocol starts. This

allows the server to perform pairing preprocessing using these ciphertexts offline and store them to

stable storage for future use. During the protocol run, the preprocessing information can be retrieved

and used to greatly reduce the online costs of the pairing operations.

69

5.2.3 Shifting

After the above optimizations, a remaining computation in the protocol that is especially ex-

pensive is the Shift procedure, i.e., Eqn. 5.4, which is performed as part of c604 (and c608). Com-

puting each â′σi requires O(n) exponentiations with exponents being powers of γ. Since γ is κ′

bits, this exponentiation is increasingly expensive as κ′ grows, and is one of the performance bot-

tlenecks of our implementation for the κ′ values we employ. (As discussed in Section 5.1.2, we

take κ′ ≈ log2 n+15 in our present implementation, though this setting is an artifact of using BGN

encryption and could be larger with another encryption scheme.) Our next target is thus to find ways

to optimize this operation.

One possibility is to use a smaller κ′ to speed up the exponentiations. However, κ′ cannot be

arbitrarily reduced without compromising the security of the protocol. Instead, here we propose

letting the proxy reduce γ modulo n before feeding it into the Shift procedure, i.e., to compute:

â′σi ← pk

n−1−i
∑

i′=0

âσ(i+i′) ·pk
(

i+ i′

i′

)

·pk (γ mod n)i
′

(5.6)

in Shift, instead. (See c603 and c607.) By reducing γ, the exponents that used to be O(nκ′) bits

long are now reduced to O(n log n) bits, after taking into account the exponentiations on γ itself.

However, this change does have implications for the correctness of the computation. Referring to the

derivation in Eqn. 5.5, now that the proxy shifted the polynomial by γ mod n , the server needs to

adapt to this change accordingly. Intuitively, it should evaluate the new polynomial on (−r mod n)

as opposed to on −
R
r in Eqn. 5.5, in which case it computes a ciphertext ωσ of

f ′
σ(−r mod n) = fσ((−r mod n) +

R
((q +

R
r) mod n))

=











fσ(q) if n | r or q + (r mod n) ≥ n

fσ(q + n) otherwise

assuming that κ′ + 1 < κ. (See lines s606 and s615.) However, as indicated, there are two possible

outcomes from this calculation. One is exactly what we want, i.e., a ciphertext of fσ(q). The other

possibility is a ciphertext of fσ(q + n), which is problematic because fσ(q + n) is arbitrary. The

server unfortunately cannot tell which case happened because everything it operates on is encrypted.

70

Our solution to this problem is to add constraints when constructing fσ(x) so that fσ(q + n) =

fσ(q) for all q ∈ Q and σ ∈ Σ. These additional constraints guarantee the correct state transition

regardless of which case happens. However, the price we pay is that the degree of fσ(x) increases to

2n−1 since additional n constraints need to be added to define the polynomial. But the performance

gains we achieve outweigh this loss.

Another key insight to draw from this technique is the fact that γ mod n can only take on n

different values and so there can be at most n different sets of coefficients 〈â′σi〉σ∈Σ,i∈[2n] from the

calculation of the Shift procedure in Eqn. 5.6. This allows the proxy to precompute all possible sets

of 〈â′σi〉σ∈Σ,i∈[2n] for each γ mod n ∈ [n] and store them in a table before the start of the protocol.

It can then simply perform table lookups depending on which value of γ mod n it obtains in c603

(or c607). This way, the proxy does not need to perform the computations in Eqn. 5.6 during the

protocol except for randomizing the ciphertexts before sending them back to the server. This offers

tremendous performance gains for the protocol: Without applying this optimization, the cost for the

proxy to calculate Eqn. 5.6 for all 〈â′σi〉σ∈Σ,i∈[2n] involves O(mn2) exponentiations in each round.

After applying this optimization, it is reduced to only O(mn) exponentiations, due to the need for

ciphertext randomizations.

5.2.4 Packing the Result Ciphertexts

When using Π5(E) to evaluate a DFA on k files, k encrypted evaluation results Θ0, . . . ,Θk−1

— each the ciphertext of a 0 or 1 — need to be communicated back to the user. Sending these k

ciphertexts individually to the user introduces an undesirably high communication cost between the

proxy and the user. A better approach is for the proxy to aggregate multiple such results into a single

ciphertext before sending these results back to the user. Specifically, the proxy can aggregate these

k ciphertexts into ciphertexts ~Θ0, . . . , ~Θ⌈k/z⌉−1 where

~Θi ← pk

z−1
∑

j=0

2j ·pk Θiz+j

for each i ∈ [⌈k/z⌉]. This aggregation is omitted from Fig. 5.3. The user can then decrypt each

~Θi to recover all the evaluation results. The value of z is upper bounded by the bit length of the

71

proxy(pk , sk1,Σ, n, αinit, server(pk , sk2,Σ, 〈ckσ〉k∈[ℓ],σ∈Σ)
〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n])

m601.
n,αinit

✲

s601. α ← αinit

m602.
ℓ

✛

c601. for k ← 0 . . . ℓ− 1 s602. for k ← 0 . . . ℓ− 1

s603. r
$← {0, 1}κ′

s604. α ← α+pk Encpk (r)
s605. β ← Dec1sk2

(α)

m603.
α,β

✛

c602. γ ← Dec2sk1
(α, β)

c603. γ ← γ mod n s606. r ← −r mod n
c604. 〈â′σi〉σ∈Σ,i∈[2n]

← Shift(γ, 〈âσi〉σ∈Σ,i∈[2n])

m604.
〈â′σi〉σ∈Σ,i∈[2n]

✲

s607. for σ ∈ Σ

s608. ωσ ← pk

2n−1
∑

i=0

â′σi ·pk ri

s609. endfor

s610. α ← pk

∑

σ∈Σ

ωσ ⊙pk ckσ

c605. endfor s611. endfor

s612. r
$← {0, 1}κ′

s613. α ← α+pk Encpk (r)
s614. β ← Dec1sk2

(α)

m605.
α,β

✛

c606. γ ← Dec2sk1
(α, β)

c607. γ ← γ mod n s615. r ← −r mod n
c608. 〈ẑi′〉i∈[2n]

← Shift(γ, 〈ẑi〉i∈[2n])
m606.

〈ẑi
′〉i∈[2n]

✲

s616. Θ ← pk

2n−1
∑

i=0

ẑi
′ ·pk ri

m607.
Θ

✛

c609. return Θ

Figure 5.3: Optimized protocol Π5(E), described in Section 5.2

72

plaintext space of the cryptosystem E in general, and in the case of BGN, z must be restricted to a

small value such as κ′ to enable efficient decryption by the user.

This packing technique generalizes nicely to support evaluating conjunctions or disjunctions of

d DFAs on k files. That is, after the proxy interacts with the server to evaluate DFAs M0, . . ., Md

on each of k files, yielding encrypted results Θ0,0, . . ., Θk−1,d−1, the proxy can aggregate these kd

ciphertexts into ciphertexts ~Θ0, . . . , ~Θ⌈k/z′⌉−1 where z′ = ⌊z/⌈log2(d+ 1)⌉⌋ and

~Θi ← pk

z′−1
∑

j=0

(

2j⌈log2(d+1)⌉ ·pk pk

d−1
∑

d′=0

Θiz′+j,d′

)

for each i ∈ [⌈k/z′⌉]. Upon decrypting each such aggregate ciphertext, each ⌈log2(d + 1)⌉-length

sequence of bits represents the number of DFAs M0, . . . Md−1 that the corresponding file matched.

That is, the file satisfies the disjunction of these DFAs if that count is nonzero, and it satisfies the

conjunction of these DFAs if that count is d.

To evaluate other Boolean combinations of d DFAs on files, it suffices for the proxy and server

to evaluate each DFA individually on each file and communicate the results per DFA to the user,

and the user can herself determine which files match the Boolean combination she is interested in.

While less communication-efficient than the above approach for conjunctions and disjunctions, this

approach is more computationally efficient for the proxy and server than combining all d DFAs into

a single large DFA that represents the Boolean combination of interest.

5.3 Protocol Security

In this section, we prove the security of Π5(E). We show that the protocol provably protects

the privacy of both the DFA and file contents from either arbitrarily malicious proxy or arbitrarily

malicious server adversaries.

5.3.1 Security Against Server Adversaries

In this section we bound the advantage that an arbitrarily malicious server gains by executing

this protocol, in terms of its ability to determine either the DFA that the proxy is evaluating or the

73

Experiment Expts-dfaΠ5(E)
(S1, S2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(ℓ, 〈σk〉k∈[ℓ],M0,M1, φ) ← S1(pk , sk2)

if |M0.Q| 6= |M1.Q| or M0.Σ 6= M1.Σ then return 0

b
$← {0, 1}

〈Q,Σ, δ, qinit,∆〉 ← Mb

n ← |Q|, m ← |Σ|
for k ∈ [ℓ], σ ∈ Σ

if σ = σk then ckσ ← Encpk (1)
else ckσ ← Encpk (0)

〈aσi〉σ∈Σ,i∈[2n] ← ToPoly(Q,Σ, δ)

〈zi〉i∈[2n] ← ToPoly(Q,Σ,∆)

for σ ∈ Σ, i ∈ [2n]
âσi ← Encpk (aσi)

for i ∈ [2n]
ẑi ← Encpk (zi)

αinit ← Encpk (qinit)

b′ ← S
proxyOr

(

pk , sk1,Σ, n, αinit,
〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n]

)

2 (φ, 〈ckσ〉k∈[ℓ],σ∈Σ)
if b′ = b then return 1

else return 0

Figure 5.4: Experiments for proving DFA privacy of Π5(E) against server adversaries

plaintext of the file in its possession. That is, we prove the privacy of the file and DFA inputs against

server adversaries.

Following the security definitions in Chapter 3, we formalize our security claims against server

compromise by defining two separate server adversaries. The first server adversary S = (S1, S2)

attacks the encrypted DFA M = 〈Q, Σ, δ, qinit, ∆〉, i.e., 〈âσi〉σ∈Σ,i∈[n] held by the proxy, as

described in experiment Expts-dfaΠ5(E)
in Fig. 5.4. S1 first generates a file 〈σk〉k∈[ℓ] and two DFAs

M0, M1. (Note that we use, e.g., “M0.Q” and “M1.Q” to disambiguate their state sets.) S2 is then

invoked with the ciphertexts 〈ckσ〉k∈[ℓ],σ∈Σ of its file and information φ created for it by S1, and is

given oracle access to proxyOr. proxyOr is given input arguments pertaining to one of the two DFAs

output by S1, selected at random (as indicated by b).

proxyOr responds to queries from S2 as follows, ignoring malformed queries. The first query

(say, consisting of simply “start”) causes proxyOr to begin the protocol; proxyOr responds with a

message of the form n, αinit (i.e., of the form of message m601). The second invocation by S2 must

74

include a single integer ℓ (i.e., of the form of message m602). The next ℓ queries by S2 must be

the form α and β, i.e., two values as in message m603, to which proxyOr responds by sending 2nm

elements of Cpk , i.e., 〈â′σi〉σ∈Σ,i∈[2n] as in m604. S2’s next query to proxyOr again must contain two

values of the form α and β (as in m605), to which proxyOr responds with 2n ciphertexts 〈ẑi′〉i∈[2n]
as in m606. The next (and last) query by S2 can consist one element of Cpk as in m607.

Eventually S2 outputs a bit b′, and Expts-dfaΠ5(E)
(S) = 1 only if b′ = b. We say the advantage of

an arbitrarily malicious S is

Advs-dfa
Π5(E)

(S) = 2 · P
(

Expts-dfaΠ5(E)
(S) = 1

)

− 1

and define Advs-dfa
Π5(E)

(t, ℓ, n,m) = maxS Advs-dfa
Π5(E)

(S) where the maximum is taken over all ad-

versaries S taking time t and selecting a file of length ℓ and DFAs containing n states and an alphabet

of m symbols.

We reduce DFA privacy against server attacks to the IND-CPA [10] security of the encryption

scheme, which was defined in the experiment in Fig. 3.3 in Chapter 3, in which an adversary U is

provided a public key p̂k and access to an oracle Encb̂
p̂k
(·, ·) that consistently encrypts either the first

of its two inputs (if b̂ = 0) or the second of those inputs (if b̂ = 1). Eventually U outputs a guess b̂′

at b̂, and Expt
ind-cpa
E (U) = 1 only if b̂′ = b̂. The IND-CPA advantage of U is defined as

Adv
ind-cpa
E (U) = 2 · P

(

Expt
ind-cpa
E (U) = 1

)

− 1

and then Adv
ind-cpa
E (t, w) = maxU Adv

ind-cpa
E (U) where the maximum is taken over all adver-

saries U executing in time t and making w queries to Encb̂
p̂k
(·, ·).

In our theorem statements, we omit terms that are negligible as a function of the security pa-

rameters κ and κ′. For any E operation op, we use top to denote the time required to perform op;

e.g., tDec is the time to perform a Dec operation.

Theorem 8. For t′ = t + tShare + (ℓm+ 2nm+ 2n + 1) · tEnc ,

Advs-dfa
Π5(BGN)(t, ℓ, n,m) ≤ nℓ+1Adv

ind-cpa
BGN (t′, 2nm+ 2n+ 1)

75

Proof. Given an adversary S = (S1, S2) for Π5(BGN) that runs in time t, produces a file of length ℓ,

and produces DFAs of n states over an alphabet of m symbols, we construct an IND-CPA attacker U

for BGN to demonstrate the theorem as follows. On input a BGN public key p̂k = 〈N , G, G′, e, g, h,

ĝ〉, U sets d2
$← ZN , and invokes S1(p̂k , sk2) where sk2 = 〈G,G′, d2〉 to obtain (ℓ, 〈σk〉k∈[ℓ], M0,

M1, φ). Note that d2 is chosen from a distribution that is perfectly indistinguishable from that from

which d2 is chosen in the real system. If |M0.Q| 6= |M1.Q| or M0.Σ 6= M1.Σ, then U aborts the

simulation. Otherwise, letting Σ = M0.Σ, m = |Σ| and n = |M0.Q|, U computes 〈a0σi〉σ∈Σ,i∈[2n]

← ToPoly(M0.Q, Σ, M0.δ) and 〈a1σi〉σ∈Σ,i∈[2n] ← ToPoly(M1.Q,Σ,M1.δ), and it sets âσi ←

Encb̂
p̂k
(a0σi, a1σi) for σ ∈ Σ and i ∈ [n]. It then computes 〈z0i〉i∈[2n] ← ToPoly(M0.Q,Σ,M0.∆)

and 〈z1i〉i∈[2n] ← ToPoly(M1.Q,Σ,M1.∆), and it sets ẑi ← Encb̂
p̂k
(z0i, z1i) for i ∈ [n]. U finally

sets αinit ← Encb̂
p̂k
(M0.qinit,M1.qinit), and then for all k ∈ [ℓ], σ ∈ Σ, it sets ckσ ← Encpk (1) if

σ = σk and ckσ ← Encpk (0) otherwise.

U then invokes S2(φ, 〈ckσ〉k∈[ℓ],σ∈Σ) and simulates responses to S2’s queries to proxyOr as fol-

lows (ignoring malformed invocations). Upon initializing S2, U sends n, αinit to S2 and gets ℓ in re-

turn. For the k-th query of the form α, β (0 ≤ k < ℓ), U selects γ
$← [n], as opposed to decrypting

it as in a real execution (see c602 and c603). It computes 〈â′σi〉σ∈Σ,i∈[2n] ← Shift(γ, 〈âσi〉σ∈Σ,i∈[2n])

as in c604 and returns 〈â′σi〉σ∈Σ,i∈[2n] to S2. For the (ℓ+ 1)-th query of the form α, β, U again ran-

domly sets γ
$← [n] and 〈ẑi′〉i∈[2n] ← Shift(γ, 〈ẑi〉i∈[2n]) and then sends 〈ẑi′〉i∈[2n] to S2. Finally,

when S2 outputs b′, U outputs b′, as well.

U’s simulation is perfectly indistinguishable from the real system to an arbitrarily malicious

server adversary S if and only if U made the correct guesses on γ in each round. When that hap-

pens, the advantage of U winning his game is the same with that of S. So, Adv
ind-cpa
BGN (U) ≥

(1n)
ℓ+1Advs-dfa

Π5(BGN)(S). Note that U runs in time t′ = t+tShare+ℓm·tEnc+(2nm+2n+1)·tEnc due

to the need to generate a secret key share for S, to generate 〈ckj〉k∈[ℓ],j∈[m], and to make 2nm+2n+1

encryption oracle queries to create 〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n] and αinit.

The second server adversary S = (S1, S2) attacks the file for which it holds the per-symbol

ciphertexts 〈ckσ〉k∈[ℓ],σ∈Σ as in experiment Expts-fileΠ5(E)
shown in Fig. 5.5. Here, S1 produces two

separate, equal-length plaintext files 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ] and a DFA M. S2 then receives the

ciphertexts 〈ckσ〉k∈[ℓ],σ∈Σ for file 〈σbk〉k∈[ℓ] where b is chosen randomly. S2 is also given oracle

76

Experiment Expts-fileΠ5(E)
(S1, S2)

(pk , sk) ← Gen(1κ)
(sk1, sk 2) ← Share(sk)
(ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ],M, φ) ← S1(pk , sk2)

b
$← {0, 1}

〈Q,Σ, δ, qinit,∆〉 ← M
n ← |Q|, m ← |Σ|
for k ∈ [ℓ], σ ∈ Σ

if σ = σbk then ckσ ← Encpk (1)
else ckσ ← Encpk (0)

〈aσi〉σ∈Σ,i∈[2n] ← ToPoly(Q,Σ, δ)

〈zi〉i∈[2n] ← ToPoly(Q,Σ,∆)

for σ ∈ Σ, i ∈ [2n]
âσi ← Encpk (aσi)

for i ∈ [2n]
ẑi ← Encpk (zi)

αinit ← Encpk (qinit)

b′ ← S
proxyOr

(

pk , sk1,Σ, n, αinit,
〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n]

)

2 (φ, 〈ckσ〉k∈[ℓ],σ∈Σ)
if b′ = b then return 1

else return 0

Figure 5.5: Experiments for proving file privacy of Π5(E) against server adversaries

access to proxyOr(pk , sk 1,Σ, n, αinit, 〈âσi〉σ∈Σ,i∈[2n], 〈ẑi′〉i∈[2n]). The interaction between S2 and

proxyOr is similar to what was described for the server DFA adversary. Eventually S2 outputs a bit

b′, and Expts-fileΠ5(E)
(S) = 1 iff b′ = b. The advantage of S is

Advs-file
Π5(E)

(S) = 2 · P
(

Expts-fileΠ5(E)
(S) = 1

)

− 1

and then Advs-file
Π5(E)

(t, ℓ, n,m) = maxS Advs-file
Π5(E)

(S) where the maximum is taken over all ad-

versaries S = (S1, S2) taking time t and producing (from S1) files of ℓ symbols and a DFA of n

states and alphabet of size m.

Theorem 9. For t′ = t + tShare + (ℓm+ 2nm+ 2n + 1) · tEnc ,

Advs-file
Π5(BGN)(t, ℓ, n,m) ≤ nℓ+1Adv

ind-cpa
BGN (t′, ℓm)

77

Proof. Given an adversary S = (S1, S2) running in time t and selecting files of length ℓ symbols

and a DFA of n states over an alphabet of m symbols, we construct an IND-CPA adversary U. On

input a BGN public key p̂k = 〈N , G, G′, e, g, h, ĝ〉, U sets d2
$← ZN , and invokes S1(p̂k , sk2)

where sk2 = 〈G,G′, d2〉 to obtain (ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ], M, φ), where M = 〈Q, Σ, qinit, δ,

∆〉 is a DFA. Note that d2 is chosen from a distribution that is perfectly indistinguishable from that

from which d2 is chosen in the real system. For k ∈ [ℓ] and σ ∈ Σ, U sets ckj ← Encb̂
p̂k
(I0, I1)

where

I0 ←











1 if σ = σ0k

0 otherwise

I1 ←











1 if σ = σ1k

0 otherwise

U also sets αinit ← Enc
p̂k
(qinit), 〈aσi〉σ∈Σ,i∈[2n] ← ToPoly(Q,Σ, δ), and 〈zi〉i∈[2n] ← ToPoly(Q,

Σ,∆). U then computes âσi ← Enc
p̂k
(aσi) and ẑi ← Enc

p̂k
(zi) for all σ ∈ Σ and i ∈ [2n].

U then invokes S2(φ, 〈ckσ〉k∈[ℓ],σ∈Σ) and simulates responses to S2’s queries to proxyOr as fol-

lows (ignoring malformed invocations). Upon initializing S2, U sends n, αinit to S2 and gets ℓ in

return. For the k-th query of the form α, β (0 ≤ k < ℓ), U selects γ
$← [n], as opposed to decrypt-

ing it as in a real execution c602 and c603. U then sets 〈â′σi〉σ∈Σ,i∈[2n] ← Shift(γ, 〈âσi〉σ∈Σ,i∈[2n])

as done in c604 and returns 〈â′σi〉σ∈Σ,i∈[2n] to S2. For the (ℓ+1)-th query of the form α, β, U again

randomly sets γ
$← [n] and then computes 〈ẑi′〉i∈[2n] ← Shift(γ, 〈ẑi〉i∈[2n]) and sends 〈ẑi′〉i∈[2n]

to S2. Finally when S2 outputs b′, U outputs b′, as well.

This simulation is perfectly indistinguishable from the real system provided that U made correct

guesses for γ on each round of the simulation. When that happens, U wins his game if and only

if S wins his. So we have Adv
ind-cpa
BGN (U) ≥ (1n)

ℓ+1Advs-file
Π5(BGN)(S). U runs in time t′ = t +

tShare + (2nm + 2n + 1) · tEnc + ℓm · tEnc due to the need to generate a secret key share for S,

to generate αinit, 〈âσi〉σ∈Σ,i∈[2n] and 〈ẑi〉i∈[2n], and to make ℓm queries to its encryption oracle to

create 〈ckσ〉k∈[ℓ],σ∈Σ.

The multiplicative factor of nℓ+1 that appears in Thm. 8 and Thm. 9, while independent of the

security parameters κ and κ′, nevertheless renders these theorems of limited practical use. That said,

we have no reason to believe that the actual security of Π5(BGN) against server adversaries decays

so dramatically as a function of ℓ. Rather, this factor is simply an artifact of our proof method,

and since the server in Π5(BGN) receives (aside from the value n) only ciphertexts from the proxy

78

Experiment Expt
p-dfa
Π5(E)

(P1, P2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(ℓ, 〈σk〉k∈[ℓ],M0,M1, φ) ← P1(pk , sk 1)

if |M0.Q| 6= |M1.Q| or M0.Σ 6= M1.Σ, then return 0

b
$← {0, 1}

〈Q,Σ, δ, qinit,∆〉 ← Mb

n ← |Q|, m ← |Σ|
for k ∈ [ℓ], σ ∈ Σ

if σ = σk then ckσ ← Encpk (1)
else ckσ ← Encpk (0)

〈aσi〉σ∈Σ,i∈[2n] ← ToPoly(Q,Σ, δ)

〈zi〉i∈[2n] ← ToPoly(Q,Σ,∆)

for σ ∈ Σ, i ∈ [2n]
âσi ← Encpk (aσi)

for i ∈ [2n]
ẑi ← Encpk (zi)

αinit ← Encpk (qinit)

b′ ← P
serverOr

(

pk , sk2,Σ,
〈ckσ〉k∈[ℓ],σ∈Σ

)

2 (φ, αinit, 〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n])
if b′ = b then return 1

else return 0

Figure 5.6: Experiments for proving DFA privacy of Π5(E) against proxy adversaries

created using a public key for which it does not hold the private key, we believe these theorems to

be overwhelmingly conservative.

5.3.2 Security Against Proxy Adversaries

In this section we analyze the privacy of the DFA and file from proxy adversaries, specifically

honest-but-curious ones. Our protocol’s security is limited to honest-but-curious proxies as an ar-

tifact of using BGN encryption, specifically because this forces us to employ κ′ ≪ κ. Advances

in additively homomorphic encryption that also supports “one-time” homomorphic multiplication,

and that also permits us to employ κ′ ≈ κ, would permit us to prove security against malicious

proxy adversaries, as well.

The case of proxy adversaries in Π5(E) differs more substantially from that in Chapter 3. For

one, we need to formalize and prove a result about the degree to which the DFA is protected from the

proxy. Such an experiment for defining this type of security is shown in Fig. 5.6. In this experiment,

79

P2 is invoked with encrypted coefficients 〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n] and the encrypted initial state

αinit for one of two DFAs output by P1 (determined by random selection of b). P2 can invoke

serverOr first with an integer n and a ciphertext (as in m601), in response to which serverOr returns

ℓ (as in m602). In the next ℓ rounds, each time serverOr sends ciphertexts α and β (as in m603),

to P2. P2 then responds with ciphertexts 〈â′σi〉σ∈Σ,i∈[2n] in response (as in m604). The next round,

serverOr again sends α and β (as in m605) to S2, who responds with ciphertexts 〈ẑi′〉i∈[2n] as in

m606. serverOr sends one last message consisting one element in Cpk to S2 as in m607. Finally,

P2 outputs a bit b′, and Expt
p-dfa
Π5(E)

(P) = 1 only if b′ = b.

We prove DFA privacy against honest-but-curious proxy adversaries. A proxy adversary (P1, P2)

is honest-but-curious if P2 invokes serverOr exactly as Π5(E) prescribes. The honest-but-curious

advantage hbcAdv
p-dfa
Π5(E)

(P) of P = (P1, P2) is

hbcAdv
p-dfa
Π5(E)

(P) = 2 · P
(

Expt
p-file
Π5(E)

(P) = 1
)

− 1

and hbcAdv
p-dfa
Π5(E)

(t, ℓ, n,m) = maxP Adv
p-dfa
Π5(E)

(P) where the maximum is taken over all honest-

but-curious client adversaries P running in total time t and producing files of length ℓ and a DFA of

n over an alphabet of m symbols.

We now prove the DFA privacy against an honest-but-curious proxy adversary.

Theorem 10. For t′ = t + tShare + (ℓm+ 2nm+ 2n+ 2) · tEnc ,

hbcAdv
p-dfa
Π5(BGN)(t, ℓ, n,m) ≤ Adv

ind-cpa
BGN (t′, 2(nm+ n+ 1))

Proof. Given an adversary P = (P1, P2) running in time t and selecting files of length ℓ and a

DFA of n states over an alphabet of m symbols, we construct an IND-CPA adversary U. On input

a BGN public key p̂k = 〈N , G, G′, e, g, h, ĝ〉, U sets d1
$← ZN , and invokes P1(p̂k , sk1) where

sk1 = 〈G,G′, d1〉 to obtain (ℓ, 〈σk〉k∈[ℓ], M0, M1, φ). Note that d1 is chosen from a distribution that

is perfectly indistinguishable from that from which d1 is chosen in the real system. If |M0.Q| 6=

|M1.Q| or M0.Σ 6= M1.Σ, then U aborts the simulation. Letting Σ = M0.Σ, m = |Σ| and

n = |M0.Q|, U computes 〈a0σi〉σ∈Σ,i∈[2n] ← ToPoly(M0.Q, Σ, M0.δ) and 〈a1σi〉σ∈Σ,i∈[2n] ←

ToPoly(M1.Q,Σ,M1.δ), and then sets âσi ← Encb̂
p̂k
(a0σi, a1σi) for σ ∈ Σ and i ∈ [2n]. It also

80

computes 〈z0i〉i∈[2n] ← ToPoly(M0.Q,Σ,M0.∆) and 〈z1i〉i∈[2n] ← ToPoly(M1.Q,Σ,M1.∆), and

then sets ẑi ← Encb̂
p̂k
(z0i, z1i) for i ∈ [2n]. U then sets αinit ← Encb̂

p̂k
(M0.qinit,M1.qinit). For all

k ∈ [ℓ], σ ∈ Σ, U also sets ckσ ← Encpk (1) if σ = σk and ckσ ← Encpk (0) otherwise.

U invokes P2(φ, αinit, 〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n]) and simulates responses to P2’s queries to

serverOr as follows. Upon receiving the first message from P2, U sends back ℓ. In each round,

U sets r
$← {0, 1}κ′

, α ← Enc
p̂k
(r) and β ← grα−d1 so that αd1β = gr . It then sends α and

β to P2. In the last round, upon receiving 〈ẑi〉i∈[n] as in m606, U sets Θ ← Encb̂
p̂k
(M0(〈σk〉k∈[ℓ]),

M1(〈σk〉k∈[ℓ])) where M0(〈σk〉k∈[ℓ]) denotes the evaluation result of M0 on the file and similarly

for M1(〈σk〉k∈[ℓ]). U then sends Θ to P2. Finally, when P2 outputs b′, U outputs b′ as well.

U’s simulation is statistically indistinguishable (as a function of κ′) from a real protocol exe-

cution as long as P2 is honest-but-curious. So Adv
ind-cpa
BGN (U) ≥ hbcAdv

p-dfa
Π5(BGN)(P). U runs in

time t′ = t + tShare + ℓm · tEnc + (2nm + 2n + 2) · tEnc due to the need to generate a secret key

share for P, to create 〈ckσ〉k∈[ℓ],σ∈Σ, and to make 2nm+ 2n+ 2 queries to its encryption oracle in

order to generate 〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n], αinit and Θ in the final round.

Next, we consider security against attacks on the encrypted files from a proxy adversary. Since

the proxy no longer learns the final state of the DFA evaluation, we do not require the proxy ad-

versary to choose two files that produce the same final result for the user’s DFA, compared to the

definition defined in Fig. 3.5 in Chapter 3. The experiment that we use to define file security against

proxy adversaries Expt
p-file
Π5(E)

is shown in Fig. 5.7. There, P1 produces two separate, equal-length

plaintext files 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ] and a DFA M. P2 then receives the ciphertexts 〈ckσ〉k∈[ℓ],σ∈Σ
for file 〈σbk〉k∈[ℓ] where b is chosen randomly. P2 is also given oracle access to serverOr and finally

P2 outputs a bit b′, and Expt
p-file
Π5(E)

(P) = 1 iff b′ = b. The advantage of an honest-but-curious

adversary P = (P1, P2) is defined as:

hbcAdv
p-file
Π5(E)

(P) = 2 · P
(

Expt
p-file
Π5(E)

(P) = 1
)

− 1

and hbcAdv
p-file
Π5(E)

(t, ℓ, n,m) = maxP hbcAdv
p-file
Π5(E)

(P) where the maximum is taken over all

honest-but-curious proxy adversaries P running in total time t and producing files of length ℓ and a

DFA of n over an alphabet of m symbols. We now prove:

81

Experiment Expt
p-file
Π5(E)

(P1, P2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ],M, φ) ← P1(pk , sk1)

b
$← {0, 1}

〈Q,Σ, δ, qinit,∆〉 ← M
n ← |Q|, m ← |Σ|
for k ∈ [ℓ], σ ∈ Σ

if σ = σbk then ckσ ← Encpk (1)
else ckσ ← Encpk (0)

〈aσi〉σ∈Σ,i∈[2n] ← ToPoly(Q,Σ, δ)

〈zi〉i∈[2n] ← ToPoly(Q,Σ, δ)

for σ ∈ Σ, i ∈ [2n]
âσi ← Encpk (aσi)

for i ∈ [2n]
ẑi ← Encpk (zi)

αinit ← Encpk (qinit)

b′ ← P
serverOr

(

pk , sk2,Σ,
〈ckσ〉k∈[ℓ],σ∈Σ

)

2 (φ, αinit, 〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n])
if b′ = b then return 1

else return 0

Figure 5.7: Experiments for proving file privacy of Π5(E) against proxy adversaries

Theorem 11. For t′ = t + tShare + (2nm+ 2n+ ℓm+ 2) · tEnc ,

hbcAdv
p-file
Π5(BGN)(t, ℓ, n,m) ≤ Adv

ind-cpa
BGN (t′, ℓm+ 1)

Proof. Given an adversary P = (P1, P2) running in time t and selecting files of length ℓ and a

DFA of n states over an alphabet of m symbols, we construct an IND-CPA adversary U. On input

a BGN public key p̂k = 〈N , G, G′, e, g, h, ĝ〉, U sets d1
$← ZN , and invokes P1(p̂k , sk1)

where sk1 = 〈G,G′, d1〉 to obtain (ℓ, 〈σ0k〉k∈[ℓ], 〈σ1k〉k∈[ℓ],M, φ). Note that d1 is chosen from a

distribution that is perfectly indistinguishable from that from which d1 is chosen in the real system.

Let Σ = M.Σ, Q = M.Q, ∆ = M.∆, m = |Σ| and n = |Q|. For k ∈ [ℓ] and σ ∈ Σ, U sets

ckj ← Encb̂
p̂k
(I0, I1) where

I0 ←











1 if σ = σ0k

0 otherwise
I1 ←











1 if σ = σ1k

0 otherwise

82

U also sets αinit ← Enc
p̂k
(qinit), 〈aσi〉σ∈Σ,i∈[2n] ← ToPoly(Q,Σ, δ), and 〈zi〉i∈[2n] ← ToPoly(Q,

Σ,∆). U then computes âσi ← Enc
p̂k
(aσi) and ẑi ← Enc

p̂k
(zi) for all σ ∈ Σ and i ∈ [2n].

U invokes P2(φ, αinit, 〈âσi〉σ∈Σ,i∈[2n], 〈ẑi〉i∈[2n]) and simulates responses to P2’s queries to

serverOr as follows. Upon receiving the first message from P2, U sends back ℓ. In each round,

U sets r
$← {0, 1}κ′

, α ← Enc
p̂k
(r) and β ← grα−d1 so that αd1β = gr . It then sends α and

β to P2. In the last round, upon receiving 〈ẑi〉i∈[n] as in m606, U sets Θ ← Encb̂
p̂k
(M(〈σ0k〉k∈[ℓ]),

M(〈σ1k〉k∈[ℓ])). U then sends Θ to P2. Finally, when P2 outputs b′, U outputs b′ as well.

U’s simulation is statistically indistinguishable (as a function of κ′) from a real protocol exe-

cution as long as P2 is honest-but-curious. So Adv
ind-cpa
BGN (U) ≥ hbcAdv

p-file
Π5(BGN)(P). U runs in

time t′ = t + tShare + (2nm+ 2n+ 1) · tEnc + (ℓm+ 1) · tEnc due to the need to generate a secret

key share for P, to generate 〈âσi〉σ∈Σ,i∈[2n] , 〈ẑi〉i∈[2n] and αinit, and to make ℓm+ 1 queries to its

encryption oracle in order to create 〈ckσ〉k∈[ℓ],σ∈Σ and Θ in the last round.

5.4 Performance Evaluation

5.4.1 Implementation

We implemented our optimized protocol Π5(E) in Java using an open source Java pairing based

cryptography library jPBC [21], which is built on the original C pairing library PBC [53]. Our

regular-expression-to-DFA conversion engine is built around the Java dk.brics.automaton library

[57]. The complete implementation contains about 5000 physical source lines of code.

For the evaluation we report here, we chose a BGN public key of size κ = 1024 and a secondary

security parameter of κ′ = 22. To further improve performance, we utilized a fixed-base window-

ing exponentiation technique [56] to accelerate exponentiation operations on the proxy side. We

also take advantage of pairing preprocessing at the server (see Section 5.2.2) and compare the per-

formance with and without this optimization. In particular, pairing preprocessing produces approxi-

mately 600KB of information per BGN ciphertext and so increases the required storage dramatically.

As such, it may not be appropriate for use in some environments.

To exploit parallelisms available in the protocol computation and the physical hardware, we

implemented two levels of parallelization for the server and proxy programs. The first level is a

83

thread pool of workers each running a single server or proxy instance. Each server worker grabs

an encrypted email from a shared queue of all the encrypted emails being searched and runs a

protocol instance with its paired proxy worker independently. Each server or proxy worker can

further spawn up to m threads to assist in its computation. This level of parallelization is designed

to take advantage of the computational independence found in many calculations in the protocol.

For example, for server workers, the calculation in line s608 can be split among up to m threads

before combining the results to obtain α. Similarly for client workers, the Shift procedure in line

c604 can also be dispatched to up to m threads.

5.4.2 Microbenchmarks

We first report microbenchmarks for our implementation. The experiments reported below were

conducted using two machines, each equipped with 2 quad-core Intel(R) Xeon(R) 2.67GHz CPUs

with simultaneous multithreading enabled. All proxy workers ran on one of these machines, and all

server workers ran on the other.

To understand the performance cost of the protocol and the impact of its two parameters, i.e.,

the number of DFA states n and the alphabet size m, we conducted experiments measuring the

average time spent by the server and proxy for processing one character (or one round of protocol

execution) for various combinations of n and m. For this purpose, we generated encrypted files

each consisting of 20 characters for m = 1 to m = 50. We then created random DFAs with number

of states n ranging from 1 to 50 and ran them against the files. We computed the average time

spent per character by dividing the total time spent processing a file by 20. The results, with pairing

preprocessing disabled, are presented in contour graphs in Fig. 5.8 where the times are binned into

ranges, each shown as a band representing the range indicated in the sidebar legend.

To demonstrate that the computation of the protocol is highly parallelizable, in this experiment

we launched a single worker on both server and proxy machines and tested its performance when

1, 4 and 16 threads are spawned by each worker to assist in their computations, shown in Fig. 5.8a,

Fig. 5.8b, and Fig. 5.8c, respectively. It is clear from all three graphs that the protocol performance

scales much better with the increase of n than with m. This phenomenon is due to the fact that the

number of expensive pairing operations performed by the server in each round is equal to m, and

the cost resulted from the increase of m significantly outweighs that resulting from the increase of

84

n. These results also show that the protocol is highly amenable to parallelization, with dramatically

decreased processing time as the number of threads increases.

n

m

1 10 20 30 40 50
1

10

20

30

40

50

100

200

400

600

800

1000

>1200
(ms)

(a) 1 thread per worker

n

m

1 10 20 30 40 50
1

10

20

30

40

50

0

200

400

600

800

1000

>1200
(ms)

(b) 4 threads per worker

n

m

1 10 20 30 40 50
1

10

20

30

40

50

0

200

400

600

800

1111
(ms)

(c) 16 threads per worker

Figure 5.8: Time spent per file character in milliseconds, with pairing preprocessing disabled

n

m

1 10 20 30 40 50
1

10

20

30

40

50

100
200

400

600

800

1000

>1200
(ms)

(a) 1 thread per worker

n

m

1 10 20 30 40 50
1

10

20

30

40

50

0

100

200

400

600

800

996
(ms)

(b) 4 threads per worker

n

m

1 10 20 30 40 50
1

10

20

30

40

50

0

50

100

150

200

250

306
(ms)

(c) 16 threads per worker

Figure 5.9: Time spent per file character in milliseconds, with pairing preprocessing enabled

Since Fig. 5.8 clearly shows the impact of the pairing operations on the overall performance of

the protocol, we went on to evaluate how much improvement pairing preprocessing can provide. In

these experiments, we applied pairing processing on the file ciphertexts before conducting the same

experiments as described above. The results are shown in Fig. 5.9. As expected, the overall protocol

performance improves significantly in each of the multi-threading cases, with darker bands reduced

dramatically in size. More importantly, the protocol performance now scales much better with the

increase of m because of the significantly reduced cost of pairing operations on the server side.

In order to better understand the relative computational burden imposed on the server and proxy

by the protocol, we also conducted experiments measuring the average CPU time spent processing

one character for the server and proxy processes for each combination of n and m. To perform

these tests, we instantiated one server worker and one proxy worker, each with a single thread. The

CPU time takes into account the amount of time spent in both user and kernel modes. The results

85

n

m

1 10 20 30 40 50
1

10

20

30

40

50

100
200

400

600

800

1000

>1200
(ms)

(a) server CPU time per file character, with pairing prepro-

cessing disabled

n

m

1 10 20 30 40 50
1

10

20

30

40

50

100
200

400

600

800

1000

>1200
(ms)

(b) server CPU time per file character, with pairing prepro-

cessing enabled

n

m

1 10 20 30 40 50
1

10

20

30

40

50

100
200

400

600

800

1000

>1200
(ms)

(c) proxy CPU time per file character

n

m

1 10 20 30 40 50
1

10

20

30

40

50

50
100

200

300

400

500

640
(KB)

(d) Network bandwidth per file character

Figure 5.10: CPU time and network bandwidth measurements

for the server and proxy are plotted in Fig. 5.10a and Fig. 5.10c respectively. For the server side, it

generally takes below or around 100ms for one round of computation when m is less than 10. The

proxy side enjoys a slightly lighter computational cost and spends around or below 100ms even for

m as high as 50 with n less than 15. The results reveal that the server side takes more hit when

m increases due to the need to perform the pairing operations, while the proxy achieves a more

balanced degradation with the increasing of n or m.

We also conducted the same experiments when pairing preprocessing is used on the file cipher-

texts in advance. Since it does not affect the proxy side processing time, we only show the server

side CPU time in Fig. 5.10b. Compared with Fig. 5.10a, the CPU time spent is reduced significantly

and the performance scales better as m increases.

86

Since the protocol is interactive, we also measured the aggregate network bandwidth consump-

tion between the server and proxy in one round of protocol execution. As shown in Fig. 5.10d, the

bandwidth usage ranges from about 15KB per round (i.e., per file character) for moderate n and m

to as much as 640KB per round when n and m are 50.

5.4.3 Case Study: Regular Expression Search on Encrypted Emails

To further provide insight into the expected performance when using our protocol in real-world

application, we conducted a case study for performing regular expression search on public-key

encrypted emails. We envision an email system in which the sender encrypts the email body using

a traditional hybrid encryption scheme, in which the email body is encrypted using a symmetric

encryption key which itself is encrypted by the receiver’s public key. To enable search operations,

however, the sender also attaches an encrypted searchable “header” to the encrypted email body that

consists of all the information from the email that allows searching. We now detail the design of

this header.

5.4.3.1 Header Information

Our current design allows searching on selected header fields of the email that are most com-

monly searched: (1) date; (2) sender email address; (3) sender name; and (4) subject line. The

character-by-character encryption of the four headers are attached to the encrypted email body to

enable searches. Since characters in each header are usually drawn from different distributions, we

define the dictionary of a header as the set containing all possible characters and field-specific words

that can be used in that header. Each header-field text is encoded using the dictionary before encryp-

tion, including sanitizing any characters not present in the dictionary (e.g., converting uppercase

letters to lowercase, if only lowercase are included in the dictionary). We stress that this sanitization

is only applied to the encrypted header that facilitates the search operations. The original field value

in the email body is left intact.

The benefit of defining different dictionaries for different header fields is that adding field-

specific words provides an opportunity for compressing the header fields, which is reminiscent of

dictionary-based compression schemes. In addition, we envision dictionaries to be receiver-specific,

87

e.g., distributed within the public-key certificate for the receiver. Below we describe how each

dictionary is defined for each header in our evaluation.

Date: Date is converted into YYMMDD, where year, month and day each consists of two digits

of numerical values. For years, we expect to store emails dated from 1990 to 2050. So we included

“90” to “50”, as words, in the dictionary to encode the year. Similarly for months and days, we also

added “01” to “31” into the dictionary. So the dictionary is defined as {00, 01, 02, . . ., 49, 50 } ∪

{90, 91, . . ., 99 }.

Sender address: The sender email address is represented in the usual format, e.g., “alice@abc.com”,

where the dictionary consists of “a” through “z”, “0” through “9”, “.”, “@”, “ ” and “−”. We also

added into the dictionary several common email service names like “gmail”, domain names like

“com”, and “enron” because the email dataset used in our evaluation (see Section 5.4.3.3) was from

Enron. (Again, dictionaries can be receiver-specific). In total, the dictionary for this field is {a, . . .,

z } ∪ {0, . . ., 9 } ∪ {@, ., , − } ∪ {gmail, yahoo, aol, hotmail, enron, com, edu, net, org }.

Sender name: The sender name field represents the sender’s name with first name followed by

the last name, separated by a space. The name dictionary consists of “a” through “z” and the space

character.

Subject line: The subject line is allowed to include arbitrary characters that can be typed from a

keyboard. However, in practice, users rarely create search queries including special characters [40].

So in our design we restrict the dictionary to include “a” through “z”, “0” through “9”, and selected

special characters including “@”, “!”, “%”, “.” and the space character.

5.4.3.2 Encoding

To enable DFA evaluations, we need to define the input alphabet Σ that drives the DFA state

transitions. The simplest way is to define it as the union of all the dictionaries defined for all header

fields, which would result in an m well above 50. However, the experiment results in Section 5.4.2

suggested that the protocol performance is very sensitive to a large m. So we make the DFA alphabet

Σ and its size m a user defined parameter and designed a method to encode each word in the

dictionary into a representation using the input symbols in Σ. Since the exact representation of

the input symbols in Σ is not important, for simplicity we use numerical values to represent each

88

symbol. For example, a size m alphabet will consists of Σ = {0, 1, . . . ,m − 1}. Then, each word

in a dictionary is represented using a distinct sequence of symbols from Σ. Each of the header fields

is first encoded using this method and then encrypted symbol by symbol. The regular expression

query is encoded in the same way before converting it into a DFA.

5.4.3.3 Evaluations

In order to shed light on the expected performance when using our protocol to perform search

operations in real-world email systems, we implemented a prototype search system and evaluated

its performance based on the Enron email dataset [1], which is a publicly available real-world email

corpus that contains roughly 0.6 million messages from about 150 then-employees of Enron. For

privacy reasons, the attachments on the original emails were excluded from the data set. Since our

implementation does not support searches on email bodies or attachments, this has no effect on

our evaluation except to exaggerate the average multiplicative increase in email size resulting from

the encryption needed to support our search (in comparison to email encryption using standard

tools). We randomly sampled 1000 emails from the inboxes of all the users in the dataset and

performed evaluations using selected representative search queries. In the experiments, we fixed a

DFA alphabet of size m = 4.

Motivated by the email search features found in ThunderBird [4], we selected four different

queries to evaluate the protocol efficiency. For the date field, we selected a range query to search

for all emails with date stamps between 2001/09/10 and 2002/04/20. The corresponding regular

expression is

(0109(10|11| . . . |31)) | (01(10|11|12)(01| . . . |31)) |

(02|(01|02|03)(01| . . . |31)) | (0204(01|02| . . . |20))

which results in a DFA of 23 states using our conversion engine. For the sender address field, we

selected a query to search for emails with sender address ending with the string “enron.com”. The

resulting regular expression is ∗enron.com where ∗ denotes zero or more occurrences of dictionary

words, which converts into a DFA with 9 states. For the name field, we selected the query to search

for sender name containing the word “John”, which translates into the regular expression ∗John∗

89

,with a corresponding DFA containing 17 states. Lastly for the subject line field, we chose to search

for emails with subject lines containing the word “meet” followed by “Jan” followed by a space

and two arbitrary characters. This translates into a regular expression of ∗meet Jan ??∗ where ?

denotes exactly one occurrence of a dictionary word, which results in a DFA of 36 states.

We encrypted the bodies of 1000 randomly selected emails using GnuPG [3], which results in

an average size of 1.5KB per email. We wrote our own tool to generate the encrypted searchable

headers, which take up about 185KB per email. To understand the performance impact when us-

ing the two parallelization techniques described in Section 5.4.1, we report performance numbers

for various combinations of the number of workers and the number of threads that each worker

spawns. The average time spent processing each email is shown in Table 5.1, which was calculated

by dividing the total time to finish processing all 1000 emails by 1000. In order to demonstrate

the performance improvement when pairing preprocessing is applied on email ciphertexts, we also

precomputed pairing-preprocessing information of the email ciphertexts and stored them on disk.

The numbers are shown in the same table inside braces. The performance gain is very compelling,

as it offers an approximately 30% improvement over the version without preprocessing. However,

the downside is that it needs significantly more storage space to store the pairing-preprocessing

information.

Date query (2001/09/10 − 2002/04/20) Sender address query (. ∗ enron.com)
❳
❳
❳
❳
❳
❳
❳
❳❳

Workers

Threads
1 2 4 1 2 4

1 3.55 (2.38) 2.03 (1.39) 1.23 (0.99) 13.09 (6.95) 8.00 (4.69) 6.75 (5.26)

2 1.68 (1.17) 0.96 (0.71) 0.63 (0.50) 6.68 (3.58) 3.97 (2.72) 3.45 (2.68)

4 0.84 (0.57) 0.49 (0.36) 0.42 (0.28) 3.31 (1.81) 2.01 (1.51) 2.01 (1.44)

8 0.43 (0.30) 0.30 (0.20) 0.29 (0.19) 1.70 (0.98) 1.40 (0.93) 1.34 (0.89)

16 0.27 (0.18) 0.26 (0.18) 0.25 (0.17) 1.27 (0.94) 1.25 (0.94) 1.26 (0.95)

Sender name query (“. ∗ John.∗”) Subject line query (. ∗meet Jan ??.∗)
❳
❳
❳
❳
❳
❳
❳
❳❳

Workers

Threads
1 2 4 1 2 4

1 12.34 (7.93) 7.55 (4.84) 4.84 (3.50) 35.97 (27.17) 20.17 (15.02) 11.38 (9.52)

2 6.47 (3.99) 3.56 (2.40) 2.40 (1.96) 17.68 (12.85) 9.49 (7.41) 5.75 (4.80)

4 3.13 (1.98) 1.82 (1.28) 1.56 (1.16) 8.59 (6.30) 4.81 (3.71) 4.20 (2.97)

8 1.62 (1.05) 1.25 (0.80) 1.15 (0.77) 4.41 (3.21) 2.81 (2.10) 3.04 (1.91)

16 1.09 (0.79) 1.06 (0.81) 1.06 (0.81) 2.49 (1.93) 2.55 (1.75) 2.39 (1.77)

Table 5.1: Average time spent per email in seconds (numbers in braces are when pairing preprocess-

ing is applied on email ciphertexts in advance)

90

The experiment results also demonstrate the benefit of concurrently processing multiple emails

by instantiating multiple workers. In most cases, doubling the number of workers results in a de-

crease of the timing results by a factor of two. Meanwhile, spawning multiple threads for each

worker has similar effect, although to a lesser extent. This can be seen by reading the entries hor-

izontally, where the timing results are typically reduced by about 40% as the number of threads

per worker doubles. The date query records the fastest time to finish, averaging only a quarter of

a second to process one email and 0.17 second when pairing preprocessing is used. This is due to

the fact that the date field is very short for all emails. The sender name query came at second with

1.06 second per email and 0.76 second with pairing preprocessing. This is followed by the sender

address query, which achieves a 1.25 second and 0.89 second respectively. The subject line query

is the slowest, mainly due to the fact that subject lines in the email corpus are usually much longer

in length than the other fields.

91

CHAPTER 6

Conclusion

With the growth of cloud storage due to the cost savings it offers, it is imperative that we de-

velop efficient techniques for enabling the same sorts of third-party access to cloud-resident files

that is commonplace today for privately stored files — e.g., malware scans or searches by autho-

rized partners. The fact that cloud-resident files are generally at greater risk of exposure, however,

mandates their encryption, hindering these sorts of third-party access.

In this dissertation, we have developed a family of protocols for enabling regular expression

evaluation on encrypted files by third parties authorized by the file owner. Our protocols developed

in Chapter 3 provably protect the privacy of the DFA from an arbitrarily malicious server holding the

ciphertext file, as well as the privacy of the file from the server and from an honest-but-curious client

performing the DFA evaluation. We further developed a strengthened protocol in Chapter 4 that

allows the client to detect any malicious behavior of the server. In addition, the client is also able to

tell if the server used the real encrypted file from the data owner as the input of the protocol. In that

sense, the evaluation result is authenticated to the client. The design of the protocol deviates from

the traditional paradigm of using zero-knowledge proof techniques to enforce the correct behavior

of the participants. Instead, we leveraged novel algebraic techniques that make the evaluation result

verifiable so that any misbehavior by the server would be easily detected by the client, without

resorting to zero-knowledge techniques. This results in the first published protocol that we are

aware to perform secure DFA evaluation on both encrypted and authenticated data.

Motivated by the growing trend of outsourcing computation from resource-constrained devices

(e.g., smartphones) to more powerful proxy servers to assist in its computation, in Chapter 5 we

presented a protocol that allows a user to outsource her DFA evaluations to a proxy server by sending

an “encrypted” DFA to the proxy, which then interacts with the server hosting the encrypted file to

obtain an encrypted evaluation result for the user. This protocol differs from the one developed

in Chapter 3 in that it additionally protects the privacy of the DFA from an honest-but-curious

proxy (or client), thus allowing a user to outsource the computation without divulging the query

to the proxy. We then went on to develop an optimized protocol that offers an order-of-magnitude

of improvement on the protocol efficiency with similar security properties. We detailed a series

of optimization techniques we employed and proved the protocol protects the privacy of the DFA

and file contents from arbitrarily malicious server and honest-but-curious proxy adversaries. To

provide insight on the performance of our protocol in a real world application, we implemented our

optimized protocol and a prototype for an encrypted email system. We evaluated its performance

using a real-world email datasets and demonstrated the practicality of the protocol.

93

BIBLIOGRAPHY

[1] Enron email dataset. http://www.cs.cmu.edu/˜enron/.

[2] GenBank. http://www.ncbi.nlm.nih.gov/genbank/.

[3] The gnu privacy guard. http://www.gnupg.org/.

[4] Mozilla thunderbird. https://www.mozilla.org/en-US/thunderbird/.

[5] United Kingdom National DNA Database. http://www.npia.police.uk/en/8934.

htm.

[6] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven,

P. Paillier, and H. Shi. Searchable encryption revisited: Consistency properties, relation to

anonymous IBE, and extensions. Journal of Cryptology, 21(3):350–391, July 2008.

[7] B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits. In 52nd IEEE

Symposium on Foundations of Computer Science, pages 120–129, 2011.

[8] G. Ateniese, E. De Cristofaro, and G. Tsudik. (If) size matters: Size-hiding private set inter-

section. In 14th International Conference on Practice and Theory of Public Key Cryptography,

pages 156–173, 2011.

[9] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption with keyword search revisited.

In Computational Science and Its Applications – ICCSA 2008, volume 5072 of Lecture Notes

in Computer Science, pages 1249–1259, 2008.

[10] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security

for public-key encryption schemes. In Advances in Cryptology – Crypto ’98, pages 26–45,

August 1998.

[11] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A system for secure multi-party compu-

tation. In 15th ACM Conference on Computer and Communications Security, pages 257–266,

2008.

[12] D. Betel and C. Hogue. Kangaroo – a pattern-matching program for biological sequences.

BMC Bioinformatics, 3, 2002.

[13] M. Blanton and M. Aliasgari. Secure outsourcing of DNA searching via finite automata. In

Data and Applications Security and Privacy XXIV, pages 49–64, June 2010.

[14] D. Boneh. The decision Diffie-Hellman problem. In 3rd International Symposium on Number

Theory, pages 48–63, June 1998.

[15] D. Boneh. Personal communication, July 2011.

[16] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with key-

word search. In Advances in Cryptology – Eurocrypt ’04, volume 3027 of Lecture Notes in

Computer Science, pages 506–522, 2004.

[17] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In 2nd

Theory of Cryptography Conference, pages 325–342, 2005.

94

http://www.cs.cmu.edu/~enron/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.gnupg.org/
https://www.mozilla.org/en-US/thunderbird/
http://www.npia.police.uk/en/8934.htm
http://www.npia.police.uk/en/8934.htm

[18] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In Advances in

Cryptology – Asiacrypt ’01, pages 514–532, 2001.

[19] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In 4th

Theory of Cryptography Conference, pages 535–554, February 2007.

[20] J. Camenisch and G. M. Zaverucha. Private intersection of certified sets. In 13th International

Conference on Financial Cryptography and Data Security, pages 108–127, 2009.

[21] A. De Caro. Java pairing based cryptography library. http://gas.dia.unisa.it/

projects/jpbc/.

[22] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted

data. In Applied Cryptography and Network Security, 3rd International Conference, pages

442–455, 2005.

[23] K. Chen, R. Kavuluru, and S. Guo. RASP: Efficient multidimensional range query on attack-

resilient encrypted databases. In 1st ACM Conference on Data and Application Security and

Privacy, February 2011.

[24] S. G. Choi, A. Elbaz, A. Juels, T. Malkin, and M. Yung. Two-party computing with encrypted

data. In Advances in Crypotology – Asiacrypt 2007, pages 298–314, 2007.

[25] V. Ciriani, S. De Capitani Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

Combining fragmentation and encryption to protect privacy in data storage. ACM Transactions

on Information and System Security, 13(3), July 2010.

[26] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols

secure in malicious model. In Advances in Cryptology – Asiacrypt ’10, pages 213–231, 2010.

[27] E. De Cristofaro, J. Kim, and G. Tsudik. Practical private set intersection protocols with linear

complexity. In 14th International Conference on Financial Cryptography and Data Security,

pages 143–159, 2010.

[28] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Im-

proved definitions and efficient constructions. In 13th ACM Conference on Computer and

Communications Security, pages 79–88, 2006.

[29] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of Paillier’s

probabilistic public-key system. In Public Key Cryptography, 4th International Workshop on

Practice and Theory in Public Key Cryptosystems, pages 119–136, February 2001.

[30] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[31] K. B. Frikken. Practical private DNA string searching and matching through efficient oblivious

automata evaluation. In Data and Applications Security XXIII, pages 81–94, July 2009.

[32] R. Gennaro, C. Hazay, and J. S. Sorensen. Text search protocols with simulation based security.

In 13th International Conference on Practice and Theory in Public Key Cryptography, pages

332–350, 2010.

[33] C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM Symposium on

Theory of Computing, pages 169–178, 2009.

95

http://gas.dia.unisa.it/projects/jpbc/
http://gas.dia.unisa.it/projects/jpbc/

[34] C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple BGN-type cryptosystem from LWE. In

Advances in Cryptology – Eurocrypt ’10, pages 506–522, May 2010.

[35] C. Gentry and Z. Ramzan. Single-database private information retrieval with constant com-

munication rate. In Automata, Languages and Programming, 32nd International Colloquium,

pages 803–815, July 2005.

[36] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http://

eprint.iacr.org/.

[37] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In 19th ACM

Symposium on Theory of Computing, pages 218–229, 1987.

[38] J. Goyvaerts and S. Levithan. Regular Expressions Cookbook. O’Reilly Media, Inc., second

edition, 2012.

[39] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the

database-service-provider model. In 2002 ACM SIGMOD International Conference on Man-

agement of Data, pages 216–227, June 2002.

[40] M. Harvey and D. Elsweiler. Exploring query patterns in email search. In 34th European

Conference on Advances in Information Retrieval, pages 25–36, 2012.

[41] C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with se-

curity against malicious and covert adversaries. Journal of Cryptology, 23(3):422–456, 2010.

[42] C. Hazay and T. Toft. Computationally secure pattern matching in the presence of malicious

adversaries. In Advances in Cryptology – Asiacrypt 2010, pages 195–212, 2010.

[43] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley, 1979.

[44] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In 30th

International Conference on Very Large Data Bases, pages 720–731, August 2004.

[45] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic computation. In

29th IEEE Symposium on Security and Privacy, pages 216–230, 2008.

[46] S. Kamara, C. Papamanthou, and T. Roeder. Cs2: A searchable cryptographic cloud storage

system. Technical Report MSR-TR-2011-58, Microsoft, 2011.

[47] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In

19th ACM Conference on Computer and Communications Security, pages 965–976, October

2012.

[48] J. Katz and L. Malka. Secure text processing with applications to private DNA matching. In

17th ACM Conference on Computer and Communications Security, pages 485–492, 2010.

[49] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial

equations, and inner products. In Advances in Cryptology – Eurocrypt ’08, pages 146–162,

April 2008.

[50] T. Kojm. ClamAV. http://www.clamav.net.

96

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.clamav.net

[51] K. Lauter, M. Naehrig, and V. Vaikuntanathan. Can homomorphic encryption be practical? In

3rd ACM Workshop on Cloud Computing Security, October 2011.

[52] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology,

14(4):255–293, 2001.

[53] B. Lynn. The pairing based cryptography library. http://crypto.stanford.edu/

pbc/.

[54] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a secure two-party computation

system. In 13th USENIX Security Symposium, pages 287–302, August 2004.

[55] D. Mazières and D. Shasha. Building secure file systems out of Byzantine storage. In 21st

Symposium on Principles of Distributed Computing, pages 108–117, July 2002.

[56] A. J. Menezes, P. C. Van Oorschot, and S. A Vanstone. Handbook of Applied Cryptography.

CRC Press, 1997.

[57] A. Moller. dk.brics.automaton. http://www.brics.dk/automaton/.

[58] D. Needle. Cloud storage poised to save enterprises money: Report. http://

itmanagement.earthweb.com/datbus/article.php/3896116/Cloud-

Storage-Poised-to-Save-Enterprises-Money-Report.htm, July 30, 2010.

[59] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Ad-

vances in Cryptology – Eurocrypt ’99, pages 223–238, May 1999.

[60] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is practical.

In Advances in Cryptology – Asiacrypt ’09, pages 250–267, December 2009.

[61] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: protecting con-

fidentiality with encrypted query processing. In 23rd ACM Symposium on Operating Systems

Principles, pages 85–100, 2011.

[62] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee. Improved searchable public key encryption

with designated tester. In 4th ACM Conference on Information, Computer, and Communica-

tions Security, pages 376–379, March 2009.

[63] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. Foun-

dations of Secure Computation, pages 169–177, 1978.

[64] M. Roesch. Snort – lightweight intrusion detection for networks. In 13th USENIX Conference

on System Administration, pages 229–238, 1999.

[65] E. Shi, J. Bethencourt, T-H. Chan, D. Song, and A. Perrig. Multi-dimensional range query

over encrypted data. In 28th IEEE Symposium on Security and Privacy, pages 350–364, May

2007.

[66] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key

and ciphertext sizes. In 13th International Conference on Practice and Theory in Public Key

Cryptography, pages 420–443, May 2010.

[67] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In

2000 IEEE Symposium on Security and Privacy, 2000.

97

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://www.brics.dk/automaton/
http://itmanagement.earthweb.com/datbus/article.php/3896116/Cloud-Storage-Poised-to-Save-Enterprises-Money-Report.htm
http://itmanagement.earthweb.com/datbus/article.php/3896116/Cloud-Storage-Poised-to-Save-Enterprises-Money-Report.htm
http://itmanagement.earthweb.com/datbus/article.php/3896116/Cloud-Storage-Poised-to-Save-Enterprises-Money-Report.htm

[68] E. Stefanov, E. Shi, and D. Song. Policy-enhanced private set intersection: sharing information

while enforcing privacy policies. In 15th International Conference on Practice and Theory in

Public Key Cryptography, pages 413–430, 2012.

[69] D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In Advances in Cryptology

– Asiacrypt ’10, pages 377–394, December 2010.

[70] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error resilient

DNA searching through oblivious automata. In 14th ACM Conference on Computer and Com-

munications Security, pages 519–528, 2007.

[71] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption

over the integers. In Advances in Cryptology – EUROCRYPT 2010, pages 24–43, 2010.

[72] B. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an encrypted and searchable

audit log. In 11th Annual Network and Distributed System Security Symposium, 2004.

[73] L. Wei and M. K. Reiter. Third-party private DFA evaluation on encrypted files in the cloud.

In Computer Security – ESORICS 2012: 17th European Symposium on Research in Computer

Security, 2012.

[74] A. C. Yao. Protocols for secure computations. In 23rd IEEE Symposium on Foundations of

Computer Science, pages 160–164, 1982.

[75] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou. Studying malicious websites and

the underground economy on the Chinese web. In Workshop on the Economics of Information

Security, June 2008.

98

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Third-Party Private DFA Evaluation on Encrypted Files in the Cloud
	Ensuring File Authenticity in Private DFA Evaluation on Encrypted Files in the Cloud
	Toward Practical Encrypted Email That Supports Private, Regular-Expression Searches
	Contributions

	Related Work
	General Techniques for Secure Computation
	Specialized Protocols for DFA Evaluation
	Specialized Protocols for Searching on Encrypted Data
	Input Authenticity in Secure Computation
	Implementations of Systems That Allow Searching on Encrypted Data

	Third-Party Private DFA Evaluation on Encrypted Files in the Cloud
	Problem Description
	A Secure DFA Evaluation Protocol
	Construction
	Security Against Server Adversaries
	Security Against Client Adversaries

	An Alternative Protocol
	Heuristics to Detect Misbehavior

	Ensuring File Authenticity in Private DFA Evaluation on Encrypted Files in the Cloud
	Goals
	Private DFA Evaluation on Signed and Encrypted Data
	Preliminaries
	Initial Construction Without File Encryption
	Adding File Encryption
	Complexity
	Security Against Server Adversaries
	Security Against Client Adversaries

	On File Updates
	Extensions

	Toward Practical Encrypted Email That Supports Private, Regular-Expression Searches
	Protocol Design
	Our Starting Point
	Our Initial Construction

	Optimizations
	File Representation
	Pairing Operations
	Shifting
	Packing the Result Ciphertexts

	Protocol Security
	Security Against Server Adversaries
	Security Against Proxy Adversaries

	Performance Evaluation
	Implementation
	Microbenchmarks
	Case Study: Regular Expression Search on Encrypted Emails
	Header Information
	Encoding
	Evaluations

	Conclusion
	BIBLIOGRAPHY

