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ABSTRACT 
 

DEBJIT DUTTA: CHEMOSELECTIVE LIPOSOME FUSION FOR CELL-SURFACE 

AND TISSUE ENGINEERING APPLICATIONS 

(Under the direction of Dr. Muhammad Yousaf) 

 

Proper cell-cell communication through physical contact is crucial for a range of 

fundamental biological processes including, cell proliferation, migration, differentiation, 

and apoptosis and for the correct function of organs and other multi-cellular tissues. The 

spatial and temporal arrangements of these cellular interactions in vivo are dynamic and 

lead to higher-order function that is extremely difficult to recapitulate in vitro. The 

development of 3-dimensional (3D), in vitro model systems to investigate these complex, 

in vivo interconnectivities would generate novel methods to study the biochemical 

signaling of these processes, as well as provide platforms for tissue engineering 

technologies. Herein, we develop and employ a strategy to induce specific and stable 

cell-cell contacts in 3D through chemoselective cell-surface engineering based on 

liposome delivery and fusion to display bio-orthogonal functional groups from cell 

membranes. This strategy uses liposome fusion for the delivery of ketone or oxyamine 

groups to different populations of cells for subsequent cell assembly via oxime ligation. 

We demonstrate how this method can be used for several applications including, the 

delivery of reagents to cells for fluorescent labeling, the formation of small, 3D spheroid 

cell assemblies, and the generation of large and dense, 3D multi-layered tissue-like 

structures. We were also able to create dynamic and switchable cell tissue assemblies 

through chemoselective conjugation and release chemistry. Cell membranes are 
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decorated with a range of molecules that can be released in vitro for subsequent rounds of 

molecular conjugation and release. Each step to modify the cell surface: activation, 

conjugation, release, and regeneration can be monitored and modulated by non-invasive, 

label-free analytical techniques. Additionally, we also develop and demonstrate a novel 

liposome fusion based delivery strategy to incorporate a unique bio-orthogonal lipid that 

has the dual ability to serve as a receptor for chemoselective cell surface tailoring and as 

a reporter to track cell behavior. 
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CHAPTER 1 

 

Literature Review on Cell-Surface Engineering and it’s Applications 
 

1.1 Introduction 

 

Cell surfaces are fertile grounds for scientists to manipulate cell phenotypes and 

biological fates. These manipulations not only help to answer basic biological questions, 

but also serve roles in diagnostic and therapeutic applications. A number of synergistic 

approaches combining chemistry, material science and biology have been applied for 

direct engineering and manipulation of living cells. Desirable chemical functionalities 

and materials can be introduced onto the cell surface by covalent and noncovalent 

chemistry, as well as through specific biological recognition events, including 

antibody/antigen and ligand/receptor interactions. These strategies have been used in 

various applications that include designing biomaterial scaffolds1,2 to control cell fate, 

labeling cells with molecular and nanoparticle probes to image and visualize cellular 

processes and molecular pathways3-5, delivering diverse species into cells6,7, and 

patterning cells for drug discovery8-10. To date, cell-surface engineering has been 

primarily been achieved through the use of molecular biology and genetic engineering. 

However, perturbations of cellular physiology that are inherent to such strategies may 

interfere with significant cellular functions. Thus, there is a need of developing tools that 

will provide simple alternatives to genetic and biosynthetic pathways.  

Cell-surface modifications have been generally achieved using three methods: (1) 

covalent conjugation of surface protein amino groups, (2) incorporation of amphiphilic  
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Table 1. Cell-Surface Modification techniques 

polymers into the lipid bilayer membrane of cells by hydrophobic interactions, and (3) 

electrostatic interactions between cationic polymers and a negatively charged surface.  

   Attempts have been made with various types of synthetic and natural polymers for the 

surface modifications of cells and biomaterials. Such methods are summarized in table 1. 

 

 Modification sites Treatment Cell Introduced functional 

groups or polymers 

Covalent bond Amino groups of 

membrane protein 

Membrane protein 

Chemical 

reaction 

 

 

Metabolic 

reaction 

Red blood cells, 

islets, peripheral 

blood 

mononuclear 

cells, murine 

splenocytes. 

Jurkat cells, 

HeLa cells, 

CHO cells 

PEG-NHS 

Biotin-NHS 

PEG-cyanuric 

chloride, Phosphine 

by Staudinger 

ligation 

Azide, biotin and 

ketone groups 

Electrostatic 

interaction 

Negatively charged cell 

surface 

Non-covalent 

reaction 

Islets, human 

fibroblasts, 

MCF-7 breast 

cancer cells, 

Mouse MSC 

Poly(diallyl dimethyl 

ammonium chlrode), 

Poly-L-lysine (PLL), 

Poly(ethyleneimine)  

Hydrophobic 

interaction 

Lipid bilayer membrane Non-covalent 

reaction 

Islets, HEK293, 

CCRF-CEM 

PEG-lipid 

PVA-alkyl 
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1.2 Covalent bond method 

     For the covalent conjugation of polymers, surface modifications of living cells have 

been achieved through chemical or enzymatic treatment or by metabolic introduction.10-19 

N-hydroxyl-succinimidyl (NHS) ester groups and cyanuric chloride are frequently used 

to chemically form covalent bonds to membrane protein amino groups. However, 

potential toxic effects may be exerted on membrane proteins.15-19 Enzymatic treatment 

and metabolic introduction have also been employed to add various functional groups, 

such as biotin, azido, and ketone groups to living cell surfaces.10-11 However, these 

technologies are limited to the introduction of specified small molecules to cells and may 

perturb cell physiology.12,13 Although covalent immobilization is expected to resist 

chemical degradation and be stable for long time periods, because of the covalent bond is 

formed with membrane proteins, the introduced polymer and functional groups disappear 

from the cell surface over time.14,16,22 

1.3 Hdrophobic interactions and cell-surface modification 

         Amphiphilic polymers, such as PEG-conjugated phospholipids (PEG-lipid) and 

poly(vinyl alcohol) bearing hydrophobic alkyl side chains (PVA-alkyl), have been used 

in cell-surface modification.12,13,20-26 In these methods, the hydrophobic alkyl chains of 

amphiphilic polymers are spontaneously anchored into the lipid bilayer membranes 

through hydrophobic interactions. These spontaneous insertions can be monitored by a 

surface plasmon resonance (SPR) when a PEG lipid solution is applied to supported lipid 

membranes that are formed on a SPR sensor. The spontaneous incorporation is greatly 

affected by the length of phospholipid alkyl chains, that is, their hydrophobicity. 
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1.4 Electrostatic interactions 

    Several groups have explored the possibility of constructing thin polymer membranes 

on the surface of cells through electrostatic interactions between negatively charged cell 

surfaces and cationic polymers and then further modified them using a layer-by-layer 

technique of anionic and cationic polymers.27-31 The ionic polymers that have been 

employed are poly(allylamine hydrochloride), poly(styrene sulfate), poly-L-lysine and 

poly(ethyleneimine). A layer-by-layer method is a simple and attractive technique to 

modify cell surfaces.32 The outermost layer of the polymer controls the surface properties. 

The thickness of the layer is also controllable by the number of polymer solution 

applications. Unfortunately, most polycations, such as PLL and PEI, were found to be 

extremely cytotoxic and severely damaged the treated cells. PEI, which interacts with 

cells, were not degraded and not excluded from the cell because PEI immediately 

destroyed the cell membrane after interaction with the cell surface. 

1.5 Bioactive substances immobilized through an intermediary molecule  

     Bioactive substances have been immobilized on cell surfaces. Two classifications of 

this method exist. The first strategy includes the immobilization of substances through an 

intermediary molecule, which is covalently bound to membrane proteins on the surface 

via amide bonding with hetero- or homo-bifunctional crosslinkers. In one example, biotin 

molecules were covalently bound to the amino groups of the proteins through 

crosslinkers. The surface was then sequentially treated with avidin and heparin solutions. 

Heparin was immobilized to the surface through an electrostatic interaction with avidin 

(isoelectric point of avidin, pI = 10). Phosphine molecules have also been covalently 

conjugated to amino groups of membrane proteins and then thrombomodulin was 
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immobilized using Staudinger ligation. The immobilization of serum albumin has been 

performed using PEG that was functionalized with NHS groups at both ends; was used 

for anchoring to the membrane protein amino groups and for the immobilization of serum 

albumin. These covalent modification methods have been reported to exert minor toxic 

effects on cell viability and cell functions.33 

The other method is formation of an intermediary polymer layer through hydrophobic 

interactions using amphiphilic polymers, such as PEG-lipid and PVA-alkyl, which bear 

various functional groups. The functional groups that are introduced on the cell surfaces 

through the amphiphilic polymers can be used for the immobilization of bioactive 

substances. In one example, PVA-alkyl presenting SH groups were used for the 

immobilization of bioactive substances displaying maleimide groups. By the same means, 

PEG-lipids presenting maleimide at the end of the PEG chain was also used for the 

immobilization of bioactive substances tethering SH groups without cytotoxicity.  

1.6 Dynamic surfaces for cell studies 

      Surface chemistry provides a useful approach to prepare customized model 

substrates.34,35 By using self-assembled monolayers (SAMs), it is possible to design 

model substrates36 with sufficient control over surface properties to potentially mimic 

cell-extracellular matrix (ECM) interactions.37-39 Introducing a dynamic aspect (i.e. the 

ability to modify the surface with an external stimulus) enables many further 

opportunities in designing surfaces for cell culture and the reversible control over surface 

properties.  

Dynamic control over SAMs for cell adhesion might provide an additional handle to 

direct and study the attachment of cells to surfaces. For example, SAMs would enable the 
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study of cell spreading from a predetermined pattern to screen the cytotoxicity of drug 

candidates.40 However, how to reversibly control the adhesion of cells to a dynamic 

substrates is not well understood. 

1.7 SAMs for cell adhesion 

         SAMs are spontaneously organized assemblies of molecules, formed by adsorption 

from the solution or the gas phase onto the surface of the solids.41-43 The molecules bear a 

terminus that has a specific affinity for a substrate, which is sufficient to displace 

preadsorbed materials. An extensive variety of functional groups that bind to specific 

metals, metal oxides, SiO2, and semiconductors are available.  

In vivo, most cells adhere to the ECM;44 conversely, in vitro, SAMs present a method to 

generate and study model substrates presenting specific ligands via which cells can 

adhere.45 The most important benefit of using SAMs for these studies, compared to 

methods that involve polymer films or adsorbed proteins, is the level of control over the 

exact composition of the substrate achievable via a predetermined approach. These are 

key aspects that are necessary for conducting mechanistic studies of cell immobilization 

and investigating intracellular signaling upon binding.  

1.8 Bioinert SAMs 

        Surfaces that are able to resist the nonspecific (physical) adsorption of biomolecules 

and cells are generally referred to as ‘bio-inert’ surfaces. Self-assembling compounds 

terminated with oligo- or poly(ethylene glycol) (OEG or PEG) units are used extensively 

to render surfaces inert to cell adhesion.46-50 However, the specific essential structural 

requirements to resist the adsorption of proteins and cells remain unclear.51 Nevertheless, 

there are several classes of SAMs that inhibit the adhesion of proteins and cells 
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effectively, including SAMs terminated with oligosarcosines, oligosulfoxides, 

perfluoroalkyls, or oligo(phosphorylcholine) groups.51-54 

Dynamic surfaces for immobilizing cells on-demand present new possibilities for 

studying the mechanistic pathways involved in responses to alterations in the cells’ 

immediate environment. Dynamic changes in the ECM affect cell behavior in several 

critical stages. Among these are the migration and differentiation of cells during the 

growth and spread of cancer. Our understanding of the dynamic processes, which occur 

in the ECM is limited due to their complexity, and hence, studying dynamic substrates 

that allow for explicit control over changes in the cell-adhesion properties may lead to 

improved understanding of the ECM as well as cell adhesion to surfaces. 

1.9 Cell-surface engineering: Applications and recent developments 

1.9.1 Cell Targeting: Delivery of systemically infused cells, particularly stem/progenitor 

cells, into damaged or diseased tissue holds enormous promise for treatment of a variety 

of disease worldwide.57 For instance, hematopoietic stem cell (HSC) transplantation (i.e. 

bone marrow transplantation), which has been used in clinic for several decades to treat 

blood diseases and cancer, requires systemically infused HSCs to home to the bone 

marrow from the blood. Mesenchymal stem cells (MSCs) are similarly believed to be 

home to various sites of inflammation and injury in the body after being systemically 

infused. MSCs are capable of differentiating into connective tissue cells types that can 

produce bone, cartilage, and fat, and produce immunomodulatory cytokines and are 

currently being tested in clinical trials for treatment of various diseases, including graft 

versus host disease, myocardial infarction, multiple sclerosis, and skeletal tissue repair. 

Unfortunately systemically administered therapeutic cells that are home to the target sites 
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at low efficiencies (typically < 1%), due to, at least in part, the lack of expression (or loss 

during culture expansion) of key homing receptors.58 Therefore, efforts have been made 

to introduce cell homing ligands onto cell membranes. Cell homing ligands (on the 

homing cell) and receptors (on the endothelium) allow homing cells to tether, roll, 

adhere, and then transmigrate on endothelium as part of the cell homing cascade. 

Methods include genetic59-61 and enzymatic engineering62 treatment with cytokines63 and 

chemical approaches.64,65 The Karp lab has recently developed a simple technology to 

chemically attach cell adhesion molecules to MSC surface to improve the homing 

efficiency of inflamed tissues. Their chemical approach involves the stepwise process 

listed below. 

1) Treat the cell amine groups with sulfonated biotinyl-NHS to introduce biotin 

groups on the cell surface; 

2) Add streptavidin, which binds to the biotin on the cell surface and presents 

unoccupied binding sites, and  

3) attach biotinylated homing ligands.  

In this model system, biotinylated sialyl Lewis X (SLeX), is a ligand that binds to P and 

E selectins, which are expressed on the inflamed endothelium and allows cells to roll on 

the endothelial layer. This ligand was conjugated on the MSC surface. The SLeX 

modified MSCs demonstrated a robust rolling response on a P-selectin coated substrate 

under shear stress conditions in vitro and on inflamed endothelium in vivo. In addition, 

homing ligands can be introduced onto the cell membrane using non-covalent chemical 

modification.66 In a recent work from Dennis and co-workers, MSCs were treated with 

palmitated protein G where the palmitate chain was incorporated into lipid bilayer  
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Figure 1.1 a) Schematic showing the targeting of cells from blood to inflamed 

endothelium expressing receptors that bind to ligands engineered on the cell surface. Two 

methods of engineering the homing ligand onto the cell surfaces, using covalent and 

noncovalent chemistry are shown in b) and c), respectively. b) A stepwise process of 

attaching SLeX to MSCs using biotin-streptavidin linkers and, c) incorporation of 

palmitated protein G into the cell membrane and subsequent conjugation with an ICAM-1 

antibody. 
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via hydrophobic interactions and protein G provides generic binding sites for antibodies. 

In a proof-of-concept work, intercellular cell adhesion molecule-1 (ICAM-1) was 

conjugated onto MSCs, which enabled the cells to bind to ICAM-1, a critical adhesion 

molecule expressed on activated endothelium. These chemical approaches to modify cell 

surfaces and immobilize required ligands are not limited to MSCs and the above-

mentioned ligands and should have broad implications on cell therapies that utilize 

systemic administration and require targeting of cells to specific tissues. Presumably, if 

we know which receptors are present on the endothelium in a targeted anatomical site, we 

could deliver cells specifically to that site by engineering the complementary ligands to 

the cell surface.  

1.9.2 Programmed cell-substrate and cell-cell assembly: The precise 3D arrangements 

and orientation of cells and their substrate (e.g., extracellular matrix) are key criterion in 

cell-based assays and microfluidic devices, as well as tissue engineering where one goal 

is to mimic the 3D complexity of native tissues.67 Towards this end, chemists and 

material scientists have begun to engineer cells with biorecognition moieties that are not 

possessed by native cells to control cell-cell and cell-substrate interactions.68,69 Francis 

and colleagues demonstrated the use of single-stranded DNA (ssDNA) to mediate cell 

adhesion on a substrate.70 In their work, ssDNA was attached onto cells via a Staudinger 

ligation reaction between azido (delivered to cell surface glycans via a metabolism 

process)71 and phosphine groups modified on ssDNA or by a simple NHS ester (on DNA) 

and NH2 (on cell surface).72 The ssDNAs attached on cells directed the assembly of cells 

on complementary DNA-attached substrate via DNA hybridization. Such DNA-modified 



 11!

cells can also be assembled on single cell level on microfabricated patterned sensor 

devices that may be used for single cell analyses, such as measuring cellular electrical 

and metabolic activation. In a more recent work from Mathies and co-workers,73 iridium 

oxide pH microelectrode arrays were patterned using lithography. The array was enclosed 

within a microfluidic channel on which ssDNA was attached using silane chemistry. 

Such devices could then capture complementary DNA-modified cells and measure the 

single cell metabolism using pH as an indicator. They demonstrated that such devices are 

able to discriminate between healthy primary T cells and cancerous jurkat T cells that 

have a higher metabolism.  

 The DNA-based approach can also be used for the programmable assembly of 3-D cell 

structure, which may find applications in synthesizing artificial tissues.74,75 Recently, 

Gartner and Bertozzi demonstrated the assembly of DNA-modified cells into 

microtissues in a well defined manner (i.e., structures were controlled by varying the 

DNA site density on the cell surface, cell concentration and DNA sequence). Briefly, by 

adjusting the stoichiometry (i.e., 1:50) of two Jurkat cell population that were modified 

with complementary DNA strands, single cell clusters were produced where the limiting 

cell type was surrounded by cells added in excess. Interestingly, using fluorescently 

labeled DNA, they showed that DNA strands are clustered at the cell-cell interface, 

confirming their specific role in cell-cell assembly. Significantly, such assembled cell 

clusters could be isolated and purified using flow cytometry and subsequently used as the 

core for further iterative cell assembly (i.e., adding another layer of DNA-modified cells). 

More importantly, the authors demonstrated that cells within the assembled microtissues 

communicate via a paracrine mechanism, which is a prerequisite for the development of 
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the therapeutically functional tissues. Specifically, in a proof-of-concept model, a CHO 

cell line engineered to express growth factor interleukin-3 (IL-3) was used as a first 

building block and the second was an untransformed hematopoietic progenitor cell line 

(FL5.12) whose survival and replication depends on the presence of IL-3. Cell 

composites were assembled using the above-mentioned and DNA and then embedded  

 

 
 

Figure 1.2 a) General schematic of multilayered cell assembly using DNA hybridization. 

b) Schematic of DNA hybridization between two cells (shown in red and green). c) 

Fluorescence image of a cluster of assembled cells (blue) with intercellular DNA linkages 

(green). Clustering of DNA crosslinkers cellular interfaces can be observed. d) Gating of 

assembled cells in fluorescence activated flow cytometry. e) Fluorescence image showing 

assembled cells isolated by flow cytometry. f) Fluorescence image of an assembled cell 

cluster from which (e)  a second assembly step occurred to acquire another layer of cells. 

 

within a 3-dimensional agarose matrix. After 16 h, the cell structures underwent 

accelerated growth due to the presence of IL-3. By contrast, when CHO cells lacking the 
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gene coding in IL-3 were used in the microtissue, FL5.12 cells showed no growth and 

instead underwent a morphological change corresponding to the absence of IL-3 induced 

apoptosis. Finally, other advantages of using DNA assembly in such systems include 

their reversibility and versatility with respect to engineering multiple orthogonal cell-cell 

interactions. In addition to ssDNA, self-assembled cargo-carrying DNA arrays can also 

be attached to cell surfaces. Reiche and colleagues attached hexagonal DNA arrays on 

cells using streptavidin and antibody as bridges.76 In their study, it was observed that one 

or two DNA array patches often attached to one cell, and that single DNA arrays often 

bridged cells. Occasionally, micron-sized DNA arrays seemed capable of binding to and 

enveloping multiple cells into larger cellular structures. These larger structures may have 

the potential to form the foundation for the construction of tissues or organs for 

transplantation in tissue engineering. 

Engineered cell-cell interactions in a bottom-up tissue engineering approach can also be 

achieved by attaching cell-adhesive polyelectrolyte patches on the cell surface. Swiston et 

al. recently used a photolithographic-patterning technique to engineer multilayer polymer 

patches containing a payload component (i.e., super-paramagnetic nanoparticles) onto T 

cell surfaces.77 The magnetic nanoparticles allowed cells to be spatially manipulated 

using an external magnetic field. Importantly, patch-functionalized cells could be 

programmed to assemble into sheets, rings, or cluster structures. Patches that are cell-

adhesive may allow the polymerization of cellular species, with individual cells being the 

monomers and the patches serving as bifunctional linkages, for construction of 

macroscopic, functional tissues. 
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1.9.3 Bioimaging and Sensing: One particularly important application of cell-surface 

engineering is to introduce sensing and imaging probes to visualize cellular and 

molecular events both in cells and living organisms. The Bertozzi group has pioneered 

the use of chemical reporters for such purposes with a focus on those that can be 

incorporated through metabolic pathways.78 

  
 

Figure 1.3 Overview of a cell functionalization scheme, using cell adhesive 

polyelectrolyte patches. In this particular example, cell adhesive region, payload region 

and release region are chitosan-hyaluronic acid, FITC-poly(allylamine hydrochloride), 

poly(methacrylic acid)-poly(N-isopropylacrylamide) respectively. a) A regular array of 

surface-bound patches spaced 50 µm apart. Payload regions are labeled green. After cell 

incubation and attachment, (b) a majority of the surface bound patches are occupied. Cell 

cytoplasm is labeled red. (c) After the temperature is reduced to 4 °C for 30 min, the 

patches are released from the surface while remaining attached to the cell membrane. 

Scale bars represent 25 µm.  
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An example of their technology is the engineering of chromatic polydiacetylene (PDA) 

polymer patches onto cell surfaces for imaging structural perturbations of the membrane 

bilayer.79 Specifically, vesicles comprising of diacetylene and lipid molecules including 

1,2-dimyristoyl-sn-glycero-phosphoethanolamine and 1,2-dimyristoyl-sn-glycero-3-

[phospho-rac-(1-glycerol)] were first formed in solution. These lipid vesicles were then 

fused with cell membrane and PDA was formed in situ upon UV-mediated 

polymerization. The conjugated PDA nanopatches on cells exhibited an intense blue 

color and underwent a blue-to-red color change upon structural perturbations of the cell 

membrane due to conformational transitions in the conjugated (ene-yne) polymer 

backbone. During this blue-to-red color transition, the initial non-fluorescent PDA also 

emitted fluorescence at 560 nm and 640 nm. The PDA nanopatches can therefore be used 

to visualize the cell bilayer perturbations induced by, for example, lidocaine, polymyxin-

B, cholesterol, and oleic acid and to screen toxic pesticides and other environmentally 

toxic small molecules.80 

1.9.4 Manipulating cell biological fate: One ultimate goal of engineering the cell surface 

is to use externally applied chemical moieties and materials to control cell biology. As an 

initial effort, Ingber and co-workers demonstrated the use of magnetic nanoparticles on 

cell membrane to regulate cellular signaling pathways.81 Specifically, mast cells express 

membrane Fc!RI receptors that can bind t the Fc region of IgE molecules. Multivalent 

antigens (dinitrophenyl DNP) that bind to IgE can then induce Fc!RI receptor 

oligomerization on cell membrane whereas monovalent antigens do not. The Fc!RI 

receptor clustering quickly triggers an intracellular signaling response characterized by a 

rapid rise of cytosolic Ca2+, which in turn leads to the local inflammatory response of 
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mast cells. Instead of using antigen ligand to induce such signaling pathway, Ingber and 

colleagues immobilized DNP-attached magnetic nanoparticles on IgE-tethered mast 

cells.82 The authors ensured that only one DNP molecule was attached on each particle so 

that receptor clustering did not occur. When an external magnetic field is applied, 

magnetic nanoparticles clustered on the cell membrane, which caused the oligomerization 

of Fc!RI receptors, a process that could be visualized by the local Ca2+ concentration 

change. Significantly, such magnetic nanoparticles mediated cellular signaling is 

reversible, switching on and off the magnetic field directly corresponds to a local Ca2+ 

concentration oscillation. 

 

 
 

Figure 1.4 Nanomagnetic control of receptor signal transduction. a) The biochemical 

mechanism that stimulates downstream signaling (left) involves the binding of multi-

valent ligands (represented by green hexagons) that induce oligomerization of individual 

IgE/Fc!RI receptor complexes. In the magnetic switch, monovalent ligand-coated 

magnetic nanobeads (dark grey circles), similar in size to individual Fc!RI receptors bind 

individual IgE/Fc!RI receptor complexes without inducing receptor clustering (centre). 

However, applying a magnetic field that magnetizes the beads and pulls them into tight 

clusters (right) rapidly switches on receptor oligomerization and calcium signaling. b) 



 17!

The pseudocolored microfluorimetric image shows the local induction of calcium 

signaling (yellow) in cells near the tip of the electromagnet within 20 s of the field being 

applied. Scale bar represents 50 µm. c) Quantification of peak changes in intracellular 

calcium relative to time 0 measured within individual cells during a 1-min pulse of 

applied magnetic force as a function of the distance of the tip from the cell surface. d) 

Effect of a rapid cyclical magnetic stimulation regimen (40 s on, 20 s off) on intracellular 

calcium signaling. 

 

1.10 Membrane Fusion 

       Membrane fusion, one of the most fundamental processes of life, occurs when two 

separate lipid membranes merge into a single continuous bilayer. Experimental and 

theoretical studies83,84 concur that membrane fusion proceeds at least through two steps: 

membrane docking and actual fusion, resulting in the mixing of membrane lipids and 

membrane-bound contents. Fusion may occur upon close (1-2 nm2) docking of target 

membranes, driven by the binding of surface groups. Docking ‘strains’ the surfaces, 

allowing the lipids from the two membranes to mix and ultimately form a fusion pore that 

connects the two compartments. Insertion of a hydrophobic anchor into the lipid matrix 

can frustrate efficient lipid packing and activate the membrane toward noncovalent 

reactions, such as lysis and fusion. These reactions are essentially lipidic85 and are 

precisely controlled in nature by molecular recognition events. Much of our experimental 

data on selective membrane fusion has been gathered in studies of synaptic86 vesicle 

fusion machinery, as well as in viral membrane fusion machinery.87-89 Physical membrane 

deformation or insertion of a hydrophobic fusion peptide enables the formation of a high-

energy intermediate nonbilayer lipid surface90 that fuses with its target membrane when 

drawn into apposition by surface binding. Native membrane recognition elements are 

proteins and in class I viral fusion and synaptic vesicle fusion are coiled-coils. Helical 

bundle formation draws the membranes into apposition; this binding is thought to locally 
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dehydrate and mechanically deform the membrane, lowering the activation energy for 

lipid mixing and fusion. Notably, enveloped viruses such as HIV and influenza similarly 

employ coiled-coil recognition to guide fusion with the host membrane. While 

considerable advances have furthered our understanding of membrane fusion, fusion has 

proven difficult to study in living systems. Thus, the mechanism of vesicle fusion 

remains largely unknown. As a result, efforts have been made to interrogate whether 

recognition strategies between small molecules would also be fusion competent.91,92 Such 

a minimal fusogenic molecular system would be useful for determining the fundamental 

requirements for membrane fusion catalysis. A simple synthetic model system of specific 

fusion via molecular recognition would allow physical organic methods to be applied to 

rigorously probe the scope and limitations of controlled lipid membrane fusion.  In my 

work lipid vesicles, functionalized with ketone and oxyamine molecules, display 

complementary chemistry and undergo recognition, docking, and subsequent fusion upon 

covalent oxime bond formation. Liposome fusion was characterized by several 

techniques including, matrix-assissted laser-desorption/ionization mass spectrometry 

(MALDI-MS), light scattering, Fourier resonance energy transfer (FRET), isothermal 

calorimetry (ITC), and transmission electron microscopy (TEM). When cultured with 

cells, ketone- and oxyamine-containing liposomes undergo spontaneous membrane 

fusion to present the respective molecules from cell surfaces. The synthetic ketone and 

oxyamine molecules fused on the cell membrane serve as cell-surface receptors, 

providing tools for the attachment of other functional materials, biomolecules, and probes 

on cell surfaces. 

 



 19!

1.11 Conclusions 

        Phospholipid vesicles (liposomes) are widely used for applications in cell tracking, 

nonviral gene transfer (transfection), and drug delivery. On the basis of their 

compositions, liposomes are more bioavailable than synthetic polymer capsules or 

quantum dots. Their cellular uptake has been intensely investigated and shows a strong 

preference for endocytotic cellular uptake over fusion or lipid-mediated poration. As 

discussed earlier, a continuous effort has been extended toward replacing genetic and 

molecular biology tools with simple chemical methods to modify cell surfaces with 

various probes, furthering applications in tissue engineering. Our liposome fusion 

strategy to engineer cell surfaces was inspired by the work of Wilson et al. and Csiszar et 

al. who reported a noncovalent cell-surface engineering strategy via cationic graft 

copolymer adsorption and a fluorescent cell labeling technique via cationic and aromatic 

lipid fusion, respectively. These methods are general and do not perturb the cellular 

machinery of the cells. Liposome fusion can serve as a very important tool among many 

other techniques that have been previously described to modify and tailor cell surfaces 

with biologically relevant molecules, significantly contributing to tissue engineering 

fields in generating 3D tissue constructs.  

1.12 Dissertation Organization 

  This dissertation is organized into seven chapters. Chapter I provides a general 

discussion of cell-surface engineering techniques and their biomedical applications. 

Chapter II describes the development of a chemoselective and electroactive fluid lipid 

bilayer system, which serves as a platform for studying ligand-receptor interactions. 

Chapter III reports the development of a chemoselective synthetic cell receptor system 
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based on a liposome delivery and fusion strategy. Chapter IV focuses on the application 

of the liposome delivery and fusion strategy to generate 3D spheroid cellular assemblies 

with controlled interconnectivity and patterned multi-layered tissue-like structures. 

Chapter V describes the development of a novel general and straightforward liposome 

fusion-based methodology to deliver dynamic and switchable bio-orthogonal chemistries 

to tailor cell membranes and direct the formation of 3D co-culture tissue structures. 

Chapter VI discusses the development and demonstration of a novel liposome fusion 

based delivery strategy to incorporate a unique bio-orthogonal lipid that has the dual 

ability to serve as a receptor for chemoselective cell-surface tailoring and as a reporter to 

track cell behavior. Chapter VII describes the general conclusions and future research 

projects.  
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CHAPTER 2 

 

Selective Tethering of Ligands and Proteins to a Microfluidically 

Patterned Electroactive Fluid Lipid Bilayer Array 

 
2.1 Introduction: 

 

The formation of supported fluid lipid bilayers on surfaces has generated 

tremendous research interest due to their ability to model the natural cell plasma and 

organelle membranes. As a result, these platforms have been used for a range of 

application from the design of biosensor technologies, the investigation of fundamental 

biomembrane properties1, intermembrane interactions2 to cell adhesion and migration.  To 

characterize lipid raft clustering and ligand-binding interactions at supported membranes 

several analytical tools have been employed, including atomic force microscopy (AFM),3 

surface plasmon resonance (SPR),4 and microfabricated microfluidic cassettes. To form 

patterns and arrays of bilayers on surfaces several strategies have been developed ranging 

from microcontact printing5, microfluidics6, nanoshaving7, mechanical scratching8, 

photolithography9 to photopolymerization10. Formation of these patterns and arrays serve 

as a platform to study a number of biomolecular and binding interactions11 to the lipid 

bilayer.  Ultimately, the information gathered from evaluating membrane interactions, 

may lead to the development of membrane based biomedical devices for conducting 

novel cell-based assays12 and potentially high throughput drug screens targeting 

membranes or membrane associated components13.  
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Various materials have been used as a support to form fluid bilayer membranes, 

including glass surfaces, metal oxide surfaces, flexible polymer cushions, self-assembled 

monolayers (SAMs), and SAM-supported polycationic layers.14-16 Among these 

platforms, SAMs of alkanethiols on gold, provide a well-defined conducting surface that 

is amenable to several analytical surface techniques to characterize and monitor the 

formation of bilayer membranes.17,18 Alkanethiols are synthetically flexible and/or 

commercially available, providing diverse opportunities for tailoring materials for a range 

of applications.19    

Many previous studies have used planar supported fluid lipid bilayers to evaluate 

ligand-receptor binding interactions where one component, usually the protein, was 

assembled with a vesicle formation prior to forming planar bilayers.20,,21 To our 

knowledge, there has been no quantitative and general chemoselective immobilization 

strategy to tailor and pattern fluid lipid bilayers with a variety of ligands for bio-

interfacial studies. 

Herein, we use a microfluidic lithography strategy to pattern two different SAMs 

on gold followed by the addition of electroactive vesicles for the generation of patterned 

fluid lipid bilayers capable of immobilizing a variety of ligands and biomolecules.  In 

order to support a fluid lipid bilayer on gold, a patterned siloxane-alkanethiol SAM was 

used to mimic the properties of glass siloxane surfaces.22 A SAM of mercaptopropyl 

trimethoxysilane (HO3SiSH) was formed, and a solution containing hydroquinone-

tethered alkane (H2Q) lipid vesicles was ruptured, generating a fluid bilayer surface. H2Q 

molecules were incorporated into the lipid vesicles prior to the formation of the bilayer.  

Upon formation of a bilayer the electroactive H2Q molecules can be electrochemically 
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oxidized to the corresponding quinone (Q), where the gold substrate is a working 

electrode. The resulting Q molecules permit the selective coupling of soluble oxyamine-

containing (RONH2) ligands.23,24 As demonstrations of this strategy, oxyamine-rhodamine 

and glucose-oxyamine ligands were immobilized to electroactive lipid bilayers and 

characterized by electrochemistry and fluorescence microscopy.  Ultimately, this system 

provides an excellent platform for the chemoselective and biospecific immobilization of 

ligands to patterned fluid lipid bilayers for studying a variety of biomolecular interactions 

for a range of biotechnology and cell based applications. 

2.2 Materials and Methods 

2.2.1 Materials 

Egg palmitoyl-oleoyl phosphatidylcholine (egg-POPC) was purchased from Avanti Polar 

Lipids (Alabaster, AL), ConA-TRITC was obtained from Invitrogen (Carlsbad, CA), and 

all other chemicals were obtained from Sigma Aldrich. 
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!
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Figure 2.1. List of molecules used in this study. (1) Hydroquinone-tethered alkane 
(H2Q); (2) egg palmitoyl-oleoyl phosphatidylcholine (egg-POPC); (3) 3-mercaptopropyl 
siloxane or siloxane-tethered alkanethiol (HO3SiSH); (4) tetra(ethylene glycol)-tethered 
alkanethiol (EG4SH); (5) Rhodamine-oxyamine (Rhod-ONH2); (6) Glucose-oxyamine 
(Glc-ONH2). 

!
2.2.2 Synthesis of 1,4-bis(tetrahydro-2H-pyran-2-yloxy)benzene (7) 

To a solution of hydroquinone (6.0 g, 54.5 mmol) in THF (40 mL) was added 2,3-

dihydropuran (44.0 mL, 245.3 mmol, 4.5 eq) and 3 drops of concentrated HCl. The 

mixture was stirred at room temperature for 8h, diluted with EtOAc (40 mL), washed 

with NaHCO3 (3 x 50 mL) and brine (1 x 25 mL), dried over MgSO4, and concentrated to 

a white solid. The solid was then dissolved in EtOAc and recyrstallized with hexanes to 

afford a white solid 7 (10. 02 g, 66%), 1H NMR (400 Hz, CDCl3, !): 1.67-1.58 (m, 6H, 

J=36; -CH2-), 1.88-1.85 (m, 4H, J=12; -CH2-), 2.03-2.00 (m, 2H, J=12; -CH2-), 3.62-3.60 
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(m, 2H, J=8; -CH2-), 3.98-3.96 (m, 2H, J=8; -CH2-), 5.34-5.32 (t, 2H, J=7; -CH-), 7.00 (s, 

4H; Ar-H).   

2.2.3 Synthesis of 2,2'-(2-dodecyl-1,4-phenylene)bis(oxy)bis(tetrahydro-2H-pyran) 

(8) 

To a solution of 7 (2.00 g, 7.0 mmol) in dry THF (40 mL) at 0°C was added tert-

butyllithium (4.6 mL of a 1.7 M solution, 9.1 mmol, 1.3 eq) dropwise over 15 min. The 

mixture was stirred at 0°C for 60 min and then slowly warmed to room temperature over 

3h. At this time, 1-bromododecane (5.08 mL, 21.0 mmol, 3 eq) was added and stirred for 

12h. The mixture was diluted with DCM (40 mL) and washed with NH4Cl (3 x 50 mL) 

and brine (1 x 25 mL), dried over MgSO4, and concentrated to afford a yellow oil. The 

mixture was purified by flash chromatography 95:5 Hex:EtOAc to elute a yellow oil 8 

(2.23 g, 71%), 1H NMR (400 Hz, CDCl3, !): 0.91-0.89 (t, 3H, J=8; -CH3), 1.27-1.23 (m, 

18H, J=16; -CH2-), 1.72-1.68 (m, 10H, J=16; -CH2-), 2.61-2.58 (t, 2H, J=12; -CH2-), 

3.65-3.63 (m, 4H, J=8; -CH2-), 5.80-5.78 (t, 2H, J=8; -CH-), 6.68 (s, 1H; Ar-H), 6.81 (s, 

1H; Ar-H), 6.84 (s, 1H; Ar-H). 

2.2.4 Synthesis of 2-dodecylbenzene-1,4-diol (hydroquinone-tethered alkane, H2Q) 

(1)  

To a solution of 8 (2.0 g, 4.5 mmol) in 40 mL of a 3:1:1 mixture of AcOH/THF/H2O was 

stirred for 16h. The mixture was then concentrated, diluted in EtOAc (20 mL) and 

washed with 1 mM NaOH (2 x 10 mL), dried over MgSO4, and concentrated to afford a 

white solid 1 (1.12 g, 90%), 1H NMR (400 Hz, CDCl3, !): 0.89-0.87 (t, 3H, J=8; -CH3), 

1.30-1.25 (m, 18H, J=20; -CH2-), 1.57-1.55 (m, 2H, J=7; -CH2-), 2.58-2.55 (t, 2H, J=12; -
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CH2-), 6.57-6.56 (m, 1H, J=4; Ar-H), 6.67-6.65 (m, 2H, J=7; Ar-H); LRMS (ESI) (m/z) 

[M-Na]+ calcd for C18H30O2, 301.56, found 301.15. 

!
!

!

!
Scheme 2.1. Synthetic route to hydroquinone-tethered alkane (H2Q, 1). Reagents and 
conditions: (i) 2,3-dihydropuran (4.5 eq), HCl (cat), THF, 8h, 66%; (ii) tert-butyllithium 
(1.3 eq), 1-bromododecane (3 eq), THF, 0°C, 3h, then 25°C, 12h, 71%; (iii) 3:1:1 
AcOH/THF/H2O, 16h, 90%. 

!

!

!
2.2.5 Synthesis of 1,2,3,4,6-Penta-O-acetyl-!-D-glucopyranose (9) 

To a solution of acetic anhydride (50mL) was added sodium acetate (5.40 g, 66.6 mmol, 

3 eq.). The mixture was refluxed at 90°C for 20 minutes to which D-glucose (4.00 g, 22.2 

mmol) was added and stirred for 4 hours. The mixture was then concentrated, dissolved 

in methanol, and recrystallized with cold water. A white solid was then filtered and dried 

to afford (9) (7.44 g, 85%), 1H NMR (400 Hz, CDCl3, !): 2.01, 2.03, 2.07, 2.09, 2.13 (s, 

15H; CH3), 4.17-4.14 (m, 2H, J=12; CH2), 4.40-4.38 (2xm, 1H, J=7; CH), 4.71-4.69 (d, 

1H, J=8; CH), 5.32-5.31 (t, 1H, J=4; CH), 5.37-5.36 (t, 1H, J=4; CH), 5.41-4.40 (d, 1H, 

J=4; CH). 

2.2.6 Synthesis of O-(2,3,4,6-tetra-O-acetyl)-!-D-glucopyranosyl-bromoethyloxy (10) 
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To a solution of 9 (1.00 g, 2.56 mmol, 1 eq.) and ZnCl2 (catalytic) in anhydrous 

dichloromethane (15 mL) was added 2-bromoethanol (0.24 mL, 3.33 mmol, 1.3 eq.), 

followed by the addition of boron trifluoride diethyl etherate (0.41 mL, 3.33 mmol, 1.3 

eq.) dropwise at 0°C. The mixture was stirred under inert atmosphere (N2) for 6h at room 

temperature. Upon completion, the mixture was then washed with water (2x50mL), 

sodium bicarbonate (1M) (2x50mL), concentrated, and recrystallized in hexanes to afford 

a white solid 10 (0.93 g, 80%), 1H NMR (400 Hz, CDCl3, !): 2.01, 2.03, 2.07, 2.09 (s, 

12H; CH3), 3.50-3.49, 3.53-3.51 (2xm, 2H, J=8; CH2), 3.51-3.49 (m, 2H, J=8; CH2), 

4.11-4.08 (m, 2H, J=12; CH2), 4.30-4.28 (2xd, 2H, J=8; CH2), 4.58-4.57 (d, 1H, J=4; 

CH), 4.99-4.98 (t, 1H, J=4; CH), 5.13-5.12 (t, 1H, J=4; CH), 5.21-5.20 (t, 1H, J=4; CH), 

(ESI) (m/z) [M + H+]: 454.05. 

 

 

Scheme 2.2. Synthetic route to glucose-oxyamine (Glc-ONH2, 6). Reagents and 
conditions: (i) Ac2O, NaOAc (3 eq), ZnCl2 (cat), 90°C, 4h, 95%; (ii) 2-bromoethanol (1.3 
eq), ZnCl2 (cat), boron trifluoro diethyletherate (1.3 eq), DCM, 0°C-rt, 6h, 80%; (iii) N-
hydroxyphthalimide (1.5 eq), NaHCO3 (1.5 eq), DMF, 65°C, 8h, 76%; (iv) hydrazine (6 
eq), EtOH, rt, 48h, 67%. 
 



 33!

2.2.7 Synthesis of O-(2,3,4,6-tetra-O-acetyl)-!-D-glucopyranosyl-ethyloxy-N-   

oxyphthalimide (11)  

To a solution of N-hydroxyphthalimide (1.07 g, 6.59 mmol, 1.5 eq.) in DMF (20 mL) at 

65°C was added sodium bicarbonate (0.55 g, 6.59 mmol, 1.5 eq.). The mixture was then 

stirred for 30 min until fully deprotonated (brown in color) to which 10 (2.00 g, 4.39 

mmol, 1 eq.) was added. The solution was stirred under inert atmosphere (N2) for 8 hours. 

After completion, the mixture was diluted with dichloromethane and washed with water 

(8x100mL) and 1 M NaHCO3 (3x25mL) or until the excess N-hydroxyphthalimide was 

completely taken up into the aqueous layer. The organic layer was concentrated and 

purified by flash chromatography (Hex/EtOAc, 3.5:6.5) to afford a pale yellow oil 11 

(1.49 g, 63%), 1H NMR (400 Hz, CDCl3, !): 2.09-2.00 (4xs, 12H; CH3), 3.78-3.76 (m, 

2H, J=8; CH2), 4.04-4.02, 4.4.39-4.37 (2xm, 2H, J=8; CH2), 4.09-4.06 (m, 2H, J=12; 

CH2), 3.50-3.48 ( 2xd, 2H, J=8; CH), 4.78-4.77 (d, 1H, J=4; CH), 4.97-4.95 (t, 1H, J=7; 

CH), 5.09-5.07 (t, 1H, J=7; CH), 5.31-5.29 (t, 1H, J=7; CH), 7.78-7.76 (2xm, 4H, J=8; 

4H), (ESI) (m/z) [M + H+]: 537.15.  

2.2.8 Synthesis of !-D-glucopyranosyl-propyloxy-N-oxyamine (Glucose-oxyamine, 

Glc-ONH2) (6)  

To a solution of 11 (0.912 g, 1.70 mmol) in ethanol (15 mL) was added hydrazine (0.327 

mL, 10.2 mmol, 6 eq). The mixture was stirred under inert atmosphere for up 48h. The 

mixture was then concentrated and purified by flash chromatography (MeOH/DCM, 3:7) 

to afford a white solid 6 (0.213 g, 52%), 1H NMR (400 Hz, CDCl3, !): 3.18-3.16 (t, 1H, 

J=7; CH), 3.27-3.24 (t, 1H, J=12; CH), 3.36-3.34 (m, 2H, J=8; CH2), 3.60-3.59, 3.57-3.56 
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(2xd, 1H, J=4, J=16; CH), 3.75-3.72 (2xm, 2H, J=12; CH2), 3.78-3.77 (m, 2H, J=8; CH2), 

3.93-3.91 (m, 1H, J=8; CH), 4.36-4.34 (d, 1H, J=8; CH); (ESI) (m/z) [M+H+]: 239.10. 

2.2.9 Formation of electroactive lipid vesicles  

Hydroquinone-tethered alkane (H2Q) (160 !L at 10 mol %) was reacted with egg-POPC 

(410 !L at 90 mol %) in chloroform for 4 h, followed by concentration under high 

vacuum. The dried lipid sample was then reconstituted in 2.43 mL of tris buffer, pH 7.4. 

The contents of the vial were warmed to 50˚C and sonicated at a 70% output for 15 min, 

with a tip sonifier, until the solution was clear. Large and small unilamelar vesicles 

(LUVs and SUVs, respectively) were then centrifuged for 30 min at 30,000g to pellet the 

LUVs, leaving the SUVs suspended in solution.  

2.2.10 Preparation of monolayers 

Gold substrates were prepared by electron beam deposition of titanium (6 nm) and gold 

(12-18 nm) on 24 mm " 100 mm glass microscope slides. The slides were cut into 2 " 2 

cm2 pieces and washed with absolute ethanol before use. The slides were then immersed 

in 1mM solution of 3-mercaptopropyl trimethoxysilane in EtOH for ~12 h.       

2.2.11 Generation of solid-supported electroactive lipid bilayers 

 A 3 mM solution of SUV (egg-POPC/H2Q, 9:1) in Tris buffer was added to a SAM-

modified gold substrate. Lipid bilayers formed by spontaneous fusion on the surface, and 

the non-adsorbed vesicles were removed by washing with PBS buffer (10 volumes). 
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2.2.12 Electrochemical characterization 

 All electrochemical measurements were performed using the Bioanalytical Systems 

Epsilon potentiostat. An Ag/AgCl electrode (Bioanalytical systems) served as the 

reference, the Au monolayer acted as the working electrode, and a Pt wire served as the 

counter electrode. The electrolyte was 1 M HClO4 and the scan rate was 100mV s-1. 

Measurements were performed in a standard electrochemical cell. 

2.2.13 Fluorescence Recovery After Photobleaching (FRAP)  

For FRAP experiments, a fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl phosphocoline 

(NBD-PC) lipid, H2Q and egg-POPC (3:10:87) ratio bilayer on gold was excited by a 

Argon laser (488 nm) for a period of 2 min to induce photobleaching. The shutter was 

then closed after photobleaching and the observed fluorescence recovery was recorded at 

periodic intervals. To analyze the images to determine fluorescence recovery after 

photobleaching rates, processing software (LSM 510 Meta, Germany) was used. 

Approximately >95% of the fluorescence was recovered after 6 min the photobleaching 

step indicating an electroactive fluid lipid bilayer. 

2.2.14 Fluorescence microscopy characterization  

Fluorescent and brightfield microscopy was performed using a Nikon TE2000-E inverted 

microscope. Image acquisition and processing was performed using Metamorph software.  

2.2.15 Patterning of SAMs  

A polydimethylsilane (PDMS) microfluidic cassette was reversibly sealed to a bare gold 

surface. In order to pattern a SAM by microfluidic lithography (!FL), a 1 mM solution of 
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tetra(ethylene) glycol-terminated alkanethiol (EG4SH) in ethanol was flowed through the 

channels for 60 s. Without removing the cassette, ethanol was flowed through the 

channels and suction evacuated to clean the surface. The same cassette was then placed 

perpendicular to the newly patterned  EG4SH SAM, and !FL was performed with the 

exact same conditions for a second time, as previously described. The substrate was then 

rinsed with ethanol, dried, and immersed into a 1 mM solution of HO3SiSH in EtOH for 

16 h, in order to backfill the remaining gold with a SAM. 

2.2.16 Electroactive bilayer patterning and ligand immobilization 

!!To generate bilayer patterns, gold surfaces with pre-patterned EG4SH and HO3SiSH 

SAMs were immersed into a 3 mM solution of egg-POPC:H2Q (9:1) in Tris buffer for 1 

h. Substrates were then rinsed with PBS, dried with air, and oxidized electrochemically to 

present Q-terminated patterned bilayers. Rhod-ONH2 was reacted with the Q-terminated 

bilayers (7 mM in MeOH, rt, 4 h). Similarly, glucose-oxyamine (glc-ONH2) was also 

immobilized to microarrays of Q-terminated bilayers (20 mM in MeOH, rt, 4 h), and 

TRITC-conjuagted Concanavalin A (ConA) was added (1 mg/mL in DMSO, rt, 2 h). The 

resultant microarrays displaying Rhod and ConA were imaged by fluorescence 

microscopy. 

2.3 Results and Discussion 

2.3.1 Liposome preparation 

The general schematic illustrating the formation of embedded H2Q (Scheme 1, 1) lipid 

vesicles is shown in Figure 1. A solution of H2Q (1 mg/mL) and egg-POPC (10 mg/mL, 

2) in chloroform (CHCl3) was reacted for 4 h. During mixing, the alkane chain of the H2Q 

molecules behaved like lipid tails and spontaneously inserted within the lipid vesicle 
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membrane. The lipid mixture was then concentrated by speed vacuum for 4 h and 

reconstituted in Tris buffer, pH 7.4, 3 mM.  This solution was then ultrasonicated for 20 

min, generating a mixture of small and large unilamellar vesicles (SUVs and LUVs, 

respectively). The resultant solution was centrifuged (30,000g, 30 min) to pellet out the 

LUVs, leaving a suspension of H2Q-containing SUVs. 

 

Figure 2.2 General schematic for the formation of chemoselective, electroactive lipid 
vesicles. Hydroquinone-tethered alkane (H2Q) was reacted with egg palmitoyl-oleoyl 
phosphatidylcholine (egg-POPC). The mixture was then concentrated, reconstituted, 
ultrasonicated, and centrifuged to generate H2Q containing small unilamellar vesicles 
(H2Q-SUVs). 
 
2.3.2 Electroactive bilayer formation 

!
The SUV solution was then ruptured on a SAM of HO3SiSH generating a fluid bilayer 

with H2Q presented from the bilayer surface (Figure 2). Experimentally, a gold substrate 

was immersed in 1 mM solution of HO3SiSH (3) for 16 h to form a uniform SAM. This 

particular alkanethiol was selected due to its generation of a 2-dimensional network of 

silica when assembled on a surface in the presence of water. This in turn produces a 

model system where the Si-OH head group aids in maintaining bilayer fluidity. The 

SUV-containing suspension was then added to the SAM surface, resulting in spontaneous 
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fusion to form a planar bilayer. We have shown previously on gold and indium tin oxide 

surfaces that the H2Q molecules are redox active and can be oxidized to the 

corresponding Q by applying a mild electrochemical potential via the gold supporting 

electrode. The Q serves as a chemoselective site for ligand conjugation when reacted with 

an oxyamine-tethered (RONH2) ligand. The resulting oxime linkage is also redox active 

but with distinct and diagnostic peaks and can be monitored precisely by 

electrochemistry.25,26  

 

Figure 2.3. Schematic illustrating the formation of a self-assembled monolayer (SAM) 
supported, electroactive fluid bilayer for chemoselective ligand immobilization. (A) A 
thin layer of titanium then gold was evaporated onto a glass coverslip. (B) The substrate 
was immersed in a solution of 3-mercaptopropyl siloxane (HO3SiSH) in ethanol (EtOH) 
for ~16 h to form a SAM. (C) To generate a supported planar bilayer, a solution of lipid 
vesicles containing H2Q was added to the surface. The H2Q is electroactive and can 
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undergo a reversible electrochemical oxidation to generate the corresponding quinone 
(Q). (D) Addition of an oxyamine-tethered ligand (RONH2) reacts with the Q, generating 
a covalent interfacial oxime linkage (QOx).  The resultant oxime product is also redox 
active and provides a diagnostic electrochemical signal characterizing the amount or 
yield of reaction to the bilayer. 
 

2.3.3 Electrochemical characterization 

Ligand immobilization to H2Q-containing bilayers was characterized by electrochemistry 

and specifically cyclic voltammetry (CV) (Figure 3). The H2Q/Q redox couple, as seen 

from the blue trace showed unique oxidation and reduction peaks at 500 and 335 mV, 

respectively. After the surface was oxidized to Q, Rhod-ONH2 (5) was reacted (7 mM in 

H2O, 4 h), and the oxime-product (H2Qox/Qox) couple (red trace) displayed redox peaks at 

195 mV and 328 mV, respectively. There is a distinct peak potential shift from the H2Q/Q 

to the H2Qox/Qox redox couple, indicating that the ligand immobilization had occurred on 

the fluid lipid bilayer.27 Electrochemical measurements were performed in PBS pH 7.4, 

with a scan rate of 100 mV/s, versus a Ag/AgCl reference electrode. 
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Figure 2.4 Electrochemical characterization of the coupling reaction between a Q-
functionalized fluid lipid bilayer and soluble rhodamine-oxyamine (Rhod-ONH2) by 
cyclic voltammetry (CV). (A) A CV displaying the diagnostic peak potentials of the 
H2Q/Q (blue) redox couple with oxidation [O] at 500 mV and reduction [R] at 335 mV. 
(B) The resultant CV showing the oxime-product (QOx/H2QOx) couple of immobilized 
Rhod-ONH2 with peaks at [O] 328 mV and [R] 195 mV (red). 

 

2.3.4 Fluorescence Recovery After Photobleaching 

The electroactive bilayer fluidity was confirmed by conducting a fluorescence recovery 

after photobleaching (FRAP) experiment.28 Figure 4 shows the sequence of FRAP 

epifluorescent micrographs obtained after a small area (921 !m x 921 !m) was bleached 

(Argon laser, 488 nm) from 0 to 6 min. The exposed area was completely dark after 

photobleaching and gradually recovered its fluorescence (>95%) by 6 min. The extent of 
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recovery was quantified by comparing the fluorescence intensity of the exposed region 

normalized to the intensity of the unexposed region. 

! !

Figure 2.5 Fluorescence recovery after photobleaching (FRAP) experiment of H2Q 
containing bilayers to show bilayer fluidity on a HO3SiSH SAM.  (A) t = 1 min after 
photobleaching; (B) t = 2 min, with partial fluorescence recovery; and (C) t = 6 min, with 
almost complete recovery (>95%). (D) The recovery profile corresponding to the FRAP 
data as shown in A-C. Scale bar 200 µm.  
 

2.3.5 Ligand immobilization 

In order to spatially control the immobilization of oxyamine-tethered ligands from lipid 

bilayers on gold, tetra(ethylene glycol)-terminated alkanethiol29 (EG4SH, 4) was 

patterned by microfluidic lithography (!FL)30,31 and a SAM of HO3SiSH was backfilled 

in the regions containing bare gold (Figure 5). EG4SH is known to resist nonspecific 

protein adsorption and also prohibits bilayer formation. Therefore, a microfluidic casette 

was reversibly sealed to a gold surface, and a solution of EG4SH (1 mM in EtOH, 60 s) 

was flowed through the microchannels. The same cassette was then placed perpendicular 

to the newly patterned EG4SH SAM, and !FL was performed a second time. 
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Figure 2.6 Schematic for the generation of a chemoselective, electroactive, and patterned 

fluid lipid bilayer surface. (A) A PDMS microfluidic cassette was reversibly sealed to a 

bare gold substrate. (B) A solution of tetra(ethylene) glycol-terminated alkanethiol 

(EG4SH) in EtOH was flowed through the channels, forming a patterned EG4SH SAM by 

microfluidic lithography (!FL). (C) The same cassette was then removed and placed 

perpendicular to the newly patterned EG4SH SAM, and !FL was performed a second 

time to generate an intersecting EG4SH pattern. (D) The substrate was then immersed in a 

solution of HO3SiSH in EtOH for ~16h, in order to backfill the remaining bare gold 

regions. (E) A solution of lipid vesicles containing H2Q (H2Q-SUVs) was then added to 

the surface and underwent spontaneous fusion to form fluid bilayers only on the regions 

containing HO3SiSH. (F) The H2Q groups were electrochemically oxidized to Q groups, 

and an oxyamine-containing ligand (RONH2) was reacted to form a covalent oxime bond, 

resulting in a chemoselectively, electroactive, and  patterned ligand fluid bilayer. 

 

 The patterned gold substrate was then rinsed with ethanol, dried, and immersed into a 1 

mM solution of HO3SiSH in EtOH for 16 h, in order to backfill the remaining gold with a 

siloxane terminated SAM. To generate patterned, fluid bilayers, a pre-patterned surface 
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with EG4SH and HO3SiSH SAMs was immersed into a 3 mM solution of egg-POPC:H2Q 

(9:1) in Tris buffer for 1 h. The substrate was then rinsed with PBS, dried in air, and 

oxidized electrochemically to present a Q-terminated, patterned bilayer. To this surface a 

Rhod-ONH2 liagnd was reacted and immobilized (7 mM in MeOH, rt, 4 h). The resultant 

microarray displaying rhodamine was imaged by fluorescence microscopy (Figure 6). 

Control experiments were conducted to determine the fidelity of using the H2Q bilayer 

immobiliztion strategy. First, a patterned substrate was reacted with rhod-ONH2 without 

electrochemical oxidation to Q. A patterned, oxidized surface was also reacted with a 

non-functionalized rhodamine (does not contain an oxyamine group).  For both of these 

experiments, no fluorescence was observed.      

2.3.6 Protein immobilization 

This patterning strategy was also shown to be compatible with the chemoselective 

immobilization of a biospecific ligand to investigate protein-ligand interactions on the 

bilayer. After patterning an electroactive, fluid lipid bilayer, glucose-oxyamine (glc-

ONH2, Scheme 2, 6) was immobilized to Q-terminated bilayers (20 mM in MeOH, rt, 4 

h).32 After confirmation of the presence of a gluocose oxime-product by CV, TRITC-

conjuagted Concanavalin A (ConA) was added to the surface (1 mg/mL in DMSO, rt, 2 

h). ConA is a lectin, or carbohydrate-binding protein, that specifically recognizes and 

binds to glucose groups.33 As shown by the fluorescent image in figure 6, glc-ONH2 was 

successfully conjugated to patterned bilayers followed by biospecific recognition after 

treatment with ConA.  As a control, no fluorescence was observed when ConA was 

added to a patterned bilayer, not presenting bound glucose.  Importantly, the µFL formed 

EG4SH SAMs not only allow for patterning the bilayer but also renders the non-bilayer 



 44!

regions inert to non specific protein adsorption.34,35 This feature is critical for extending 

this system to generate multicomponent ligand bilayers for proteomic and cell adhesion 

based studies.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

Figure 2.7 Fluorescent micrographs of ligand immobilization on patterned electroactive 

fluid bilayers. For all surfaces, EG4SH was first patterned by !FL then the remaining 

bare gold regions were backfilled with HO3SiSH.  To these surfaces, H2Q containing 

lipid vesicles were fused, electrochemically oxidized [O], and then reacted with an 

oxyamine-tethered ligands (RONH2). (Top) Glucose-oxyamine (Glc-ONH2) was 

immobilized to patterned fluid lipid bilayer surfaces, followed by the addition of 

fluorescent ConA-TRITC. (Bottom) Rhod-ONH2 was immobilized to patterned fluid lipid 

bilayers. 

 

 

2.4 Conclusions 

 In summary, we have developed a general method to pattern electroactive and 

chemoselective fluid lipid bilayers on gold surfaces for a range of biospecific ligand-

receptor interaction studies on model membranes.  To our knowledge, the described 
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methodology allows for the first time the tailoring of a patterned fluid lipid bilayer post 

bilayer formation with a range of ligands and/or proteins that can be characterized in situ 

electrochemically. Importantly, the !FL strategy is rapid and provides the ability to 

pattern a variety of shapes and feature sizes to generate unique bilayer microarrays.36 The 

Si-OH network, as generated by the presence of a HO3SiSH SAM, aids in maintaining 

bilayer fluidity, which is important in mimicking the natural cell membrane. The ability 

to generate fluid bilayer arrays on gold allows for several analytical surface spectroscopy 

techniques to characterize interfacial associations. In this study, a variety of oxyamine-

tethered ligands were successfully immobilized in arrays, indicating that a number of 

biomolecules can be presented from the surface for subsequent interrogation by other 

biologically-relevant compounds (proteins, nucleic acids, small molecules). Since the 

immobilization of ligands results in the formation of an electroactive oxime bond, ligand 

density and extent of reaction can be quantified and monitored by CV on a fluid lipid 

bilayer.  Since the interfacial reaction is electroactive and quantitative, multiple different 

ligands may also be immobilized to a single bilayer array.  By incorporating existing 

electrophoretic methods to generate fluid bilayer gradients, a method to generate ligand 

gradients for cell polarity and cell migration studies may be feasible.37 Furthermore, the 

immobilization strategy provides a method to conjugate other materials including, carbon 

nanotubes, quantum dots, colloids, polymer based nanoparticles and liposomes for a 

variety of optoelectronic and material applications.38-41 This platform is rapid and flexible 

and may be extended to many areas in biochemistry, cell biology and material science to 

study fundamental membrane activity (lipid microdomains) and enzymology, as well as 
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provide a high-throughput biotechnology platform for the development of highly 

integrated biosensors for small molecule screens or cell behavior based assays. 
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CHAPTER 3 

Cell-Surface Engineering by Liposome Fusion 

3.1 Introduction 

         Membrane fusion processes are ubiquitous in biology and span multi-cellular 

communication, extracellular signaling, the reconstruction of damaged organelles, and 

integration of cells into complex tissues and organs.
1
 As a result, there has been much 

interest in developing model systems to mimic biological membranes to investigate the 

mechanisms of fusion and for use in various biotechnological applications. For example, 

cells secrete and display proteins and lipids during vesicle trafficking events that either 

diffuse into the ECM or become components of the cell membrane after fusion.
2
 

Naturally, lipid vesicles provide an ideal platform for such studies and have been widely 

used to examine various membrane-related processes, including fusion.
3-5

 In order for 

fusion to occur, the membranes must be brought into close proximity, followed by bilayer 

destabilization.
6
 Fusion of such lipid vesicles or liposomes can be initiated by using 

divalent cations, polycations,
7 

positively charged amino acids
8
 and membrane-disrupting 

peptides.
9,10

  Historically, synthetic chemical agents have also been employed to fuse 

vesicle membranes
11-14

 through non-specific interactions. However, recent exciting 

efforts to improve selectivity and control over vesicle fusion have been achieved through 

the use of small, synthetic molecular recognition pairs.
15-16

 Since vesicle fusion is a 

natural process and has been shown to influence the construction of cells into 

multicellular organisms, much research has focused on using liposomes to deliver 
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cargoes, reagents, nanomaterials, and therapeutic agents to cells. To our knowledge, there 

have been very few reports of employing liposome fusion to cell membranes as a method 

to deliver small chemical functional groups in order to tailor the cell membrane for 

subsequent bio-orthogonal and chemoselective ligation reactions.
17,18

 This platform 

would find wide use in studying fundamental cell behavior, tissue engineering, and 

biomedical applications. 

Cell-surface receptors that decorate the cell membrane influence a number of 

biological processes, such as cell adhesion, differentiation, intercellular communication, 

and tissue formation.19 As such, methods that selectively engineer the cell surface by 

introducing chemoselective functional groups will have a significant role in directing and 

influencing many biological processes for applications in cell-based therapies, drug 

delivery, and tissue engineering.20-24 Previous cell-surface modification strategies involve 

the introduction of chemoselective functional groups through metabolic and genetic 

engineering approaches.25-27 However, such strategies may perturb cellular processes by 

altering cellular physiology.28  

In this chapter, we present a method to tether chemoselective ketone and oxyamine 

groups from cell surfaces by liposome delivery toward the goal of rewiring the cell 

surface. Alkyl ketone and oxyamine molecules spontaneously insert into lipid vesicles 

upon synthesis. When mixed, chemical recongnition occurs, producing stable oxime 

bonds under physiological conditions. The reaction is also bio-orthogonal and thus, does 

not interfere with any other chemical moieties in its cellular surroundings.29-32 The 

synthetic ketone and oxyamine molecules fused on the cell membrane serve as cell-

surface receptors, providing tools for the attachment of other functional materials, 
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biomolecules, and probes on the cell surface. Liposome fusion was characterized by 

matrix-assisted laser-desorption/ionization mass spectrometry (MALDI-MS), dynamic 

light scattering (DLS), Fourier resonance energy transfer (FRET), isothermal calorimetry 

(ITC), transmission electron microscopy (TEM), fluorescene-activated cell sorting 

(FACS), and fluorescene microscopy analyses.  

3.2 Materials and Methods 

3.2.1 Materials 

 All chemical reagents were of analytical grade and used without further purification. 

Lipids egg palmitoyl-oleoyl phosphatidylcholine (POPC), egg 1-palmitoyl-2-oleoyl-

phosphatidylglycerol (POPG), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 

egg 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-

4-yl) (ammonium salt) (NBD-PE), and egg 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (Rhod-PE) 

were purchased from Avanti Polar Lipids (Alabaster, AL). Antibodies and fluorescent 

dyes were obtained from Invitrogen (Carlsbad, CA). FITC labeled beads were purchased 

from Spherotech, Inc. (Forest Lake, IL) and all other chemicals were obtained from 

Sigma-Aldrich or Fisher. Swiss 3T3 albino mouse fibroblasts (fbs) were obtained from 

the Tissue Culture Facility at the University of North Carolina (UNC). 

Transmission electron microscopy images were acquired using a TF30He Polara G2 (FEI 

company) electron cryo microscope, operating at 300 keV. Images were recorded using a 

Tietz single port model 415 4k!4k CCD camera with a 15-µm pixel size. Fourier 

resonance energy transfer measurements were performed using a SPEX Fluorolog-3 

Research T-format Spectrofluorometer with an excitation wavelength of 471 nm. 
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Dynamic light scattering was performed using a Nikomp model 200-laser particle sizer 

with a 5 mW HeNe laser at an excitation wavelength of 632.8 nm and using a Wyatt 

DynoPro plate reader. Flow cytometry was performed using a Dako CyAn ADP 

(Beckman-Coulter, Brea, CA), and the data was analyzed with Summit 4.3 software. 

Phase contrast and fluorescent imaging was performed and processed using a Nikon 

TE2000-E inverted microscope and Metamorph software, respectively. Scanning electron 

microscopy images were obtained using a Hitachi S-4700 field emission scanning 

electron microscope (Hitachi High Technologies America, Inc., Schaumburg, Illinois).  

 

Scheme 3.1. List of liposomes, molecules, and cells used in this study. (1) Keto-LUV; (2) 
oxy-LUV; (3) keto-NBD-PE LUV; (4) oxy-rhod-PE LUV; (5) ketone-functionalized 
liposomes; (6) oxyamine-functionalized liposomes; (7) fluorescein-ketone; (8) rhod-
oxyamine; (9) ketone-functionalized fbs; and (10) oxyamine-functionalized fbs. 
 
3.2.2  2-(dodecyloxy)isoindoline-1,3-dione Synthesis (B) 

To a solution of N-hydroxyphthalimide (1.96 g, 12.04 mmol, 1.5 eq) and sodium 

bicarbonate (10.11 g, 12.04 mmol, 1.5) in DMF (20 mL) at 80°C was added 1-

bromododecane (1.93 mL, 8.02 mmol). The mixture was refluxed and stirred for 12 h. 

The reaction was diluted with DCM and washed with H2O (6 x 50 mL), 1 M NaHCO3 (3 

x 50 mL), and H2O (2 x 50 mL), dried over MgSO4, and concentrated to afford a white 

solid, B (2.66 g, 87 %). 1H NMR (400 MHz, CDCl3, !): 1.02 (s, 3H; CH3), 1.31-1.29 (m, 

14H, J = 8; CH2), 1.47-1.45 (m, 4H, J = 8; CH2), 1.60-1.57 (m, 2H, J = 12; CH2), 3.72-

3.70 (t, 2H, J = 8; CH2), 7.80-7.78, 7.85-7.83 (2 x m, 4H, J = 8; Ar-H). 
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3.2.3 O-dodecyloxyamine Synthesis (A) 

To a solution of B (2.65 g, 8.00 mmol) in dry DCM (30 mL) under inert atmosphere 

(Ar) was slowly added hydrazine (1.53 mL, 48.00 mmol, 6 eq). Upon addition, a white 

precipitate immediately formed. The mixture was stirred for 12 h. The reaction was 

diluted with DCM and washed with H2O (6 x 50 mL), dried over MgSO4, and 

concentrated to afford a pale yellow oil, A (1.18 g, 74 %). 1H NMR (400 MHz, CDCl3, 

!): 1.03 (s, 3H; CH3), 1.33-1.31 (m, 14H, J = 8; CH2), 1.43-1.41 (m, 4H, J = 8; CH2), 

1.50-1.46 (m, 2H, J = 16; CH2), 3.64-3.62 (t, 2H, J = 7; CH2). (ESI) (m/z) [M + H+]: 

201.22.  

 

Scheme 3.2. Synthesis of O-dodecyloxyamine
a
 (A)"!

a
 Reagents and conditions. (i) N-

hydroxyphthalimide (1.5 eq), NaHCO3 (1.5 eq), DMF, reflux, 80 °C, 12 h; 87 % and (ii) 

hydrazine (6 eq), dry DCM, N2, 12 h; 74 %. 

3.2.4 (N-(4-(tert-butoxycarbonylamino)butyl)sulfamoyl)-2-(6-(diethylamino)-3-

(diethyliminio)-3H-xanthen-9-yl)benzenesulfonate Synthesis (C) 

To a solution of rhodamine lissamine (0.880 g, 1.53 mmol) in chloroform (CHCl3, 30 

mL) at room temperature (RT) was added N-BOC-1,4-diaminobutane (0.431 g, 2.29 

mmol, 1.5 eq) and TEA (0.305 mL, 2.29, 1.5 eq). The mixture was stirred for 8 h and 

then extracted with H2O (6 x 25 mL). The organic layers were concentrated to afford a 

dark purple solid 4. H1NMR was taken in CDCl3 to confirm C (1.045 g, 95 %). TLC 
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conditions for entire synthesis: CHCl3:MeOH (7.5:2.5). 1H NMR (400 MHz, MeOD, !): 

1.09-1.07 (t, 6H, J = 8; CH3), 1.36-1.33 (m, 15H, J = 12; CH3), 1.66-1.64 (m, 4H, J = 8; 

CH2), 3.47-3.44 (m, 6H, J = 12; CH2), 4.20-4.18 (q, 4H, J = 7; CH2), 5.66 (s, 1H; Ar-H), 

5.77 (d, 1H; Ar-H), 6.01 (d, 1H; Ar-H), 6.34-6.30 (m, 2H, J = 16; Ar-H), 7.21 (d, 1H; Ar-

H), 7.29 (d, 1H; Ar-H), 7.98 (d, 1H; Ar-H), 8.04 (d, 1H; Ar-H). (ESI) (m/z) [M + H+]: 

716.31. 

3.2.5 5-(N-(4-aminobutyl)sulfamoyl)-2-(6-(diethylamino)-3-(diethyliminio)-3H-

xanthen-9-yl)benzenesulfonate Synthesis (D) 

To C (0.600 g, 0.837 mmol) was added a solution of TFA, H2O, and triisopropylsilane 

(TIPS) in a ratio of 95: 2.5: 2.5 (10 mL). The mixture was stirred at RT under N2 for 3 h 

and was then extracted with CHCl3 and H2O (4 x 25 mL). The organic layers were dried 

and concentrated to afford a purple solid, D (0.45 g, 85 %). 1H NMR (400 MHz, MeOD, 

!): 1.11-1.09 (t, 6H, J = 8; CH3), 1.33-1.31 (m, 6H, J = 7; CH3), 1.70-1.67 (m, 4H, J = 12; 

CH2), 2.63-2.62 (m, 2H, J = 4; CH2), 3.51-3.49 (m, 6H, J = 8; CH2), 4.20-4.18 (q, 4H, J = 

7; CH2), 5.64 (s, 1H; Ar-H), 5.71 (d, 1H; Ar-H), 6.02 (d, 1H; Ar-H), 6.32-6.30 (m, 2H, J 

= 8; Ar-H), 7.24 (d, 1H; Ar-H), 7.30 (d, 1H; Ar-H), 7.98 (d, 1H; Ar-H), 8.04 (d, 1H; Ar-

H). (ESI) (m/z) [M + H+]: 628.27. 

3.2.6 2-(6-(diethylamino)-3-(diethyliminio)-3H-xanthen-9-yl)-5-(N-(2,2-dimethyl-4,8-

dioxo-3,6-dioxa-5,9-diazatridecan-13-yl)sulfamoyl)benzenesulfonate Synthesis (E) 

 To a solution containing N,N’-dicyclohexylcarbodiimide (DCC, 0.394 g, 1.91 mmol, 2 

eq), N-hydroxysuccinimide (NHS, 0.220 g, 1.91 mmol 2 eq), and aminooxy acetic acid 

(0.356 g, 1.91 mmol, 2 eq) in DMF was stirred under N2 for 0.5 h. D (0.43 g, 0.684 
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mmol) was then added in DMF (20 mL), followed by TEA (excess). The mixture was 

strirred for 4 h and then concentrated. Flash chromatography was performed using 

CHCl3:MeOH (8:2) to elute, E. The product was concentrated to afford a purple solid 6 

(0.32 g, 60 %). 1H NMR (400 MHz, MeOD, !): 1.10-1.08 (t, 6H, J = 8; CH3), 1.39-1.36 

(m, 15H, J = 12; CH3), 1.65-1.63 (m, 4H, J = 7; CH2), 3.08-3.06 (m, 2H, J = 8; CH2), 

3.48-3.46 (m, 6H, J = 8; CH2), 4.17-4.15 (q, 4H, J = 7; CH2), 4.38 (s, 2H; CH2), 5.61 (s, 

1H; Ar-H), 5.73 (d, 1H; Ar-H), 6.02 (d, 1H; Ar-H), 6.31-6.30 (m, 2H, J = 4; Ar-H), 7.24 

(d, 1H; Ar-H), 7.32 (d, 1H; Ar-H), 7.96 (d, 1H; Ar-H), 8.09 (d, 1H; Ar-H). (ESI) (m/z) 

[M + H+]: 801.31. 

 

Scheme 3.3. Synthesis of rhod-oxyaminea (8). a
 Reagents and conditions. (i) N-BOC-1,4-

diaminobutane (1.5 eq), TEA (1.5 eq), CHCl3, N2, 25 ºC, 8 h; 95 %, (ii) triisopropylsilane 
(TIPS)/H2O/TFA (2.5 : 2.5 : 95), N2, 25 ºC, 3 h; 85 %, (iii) N-hydroxysuccinimide (NHS, 
2 eq), N,N’-dicyclohexylcarbodiimide (DCC, 2 eq), aminooxy acetic acid (2 eq), TEA 
(excess), DMF, N2, 25 ºC, 4 h; 60 %, and (iv) TIPS/H2O/TFA (2.5 : 2.5 : 95), N2, 25 ºC, 3 
h; 81 %. 
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3.2.7 5-(N-(4-(2-(aminooxy)acetamido)butyl)sulfamoyl)-2-(6-(diethylamino)-3-

(diethyliminio)-3H-xanthen-9-yl)benzenesulfonate (rhod-oxyamine, 7) Synthesis  

    To E (0.30 g, 0.374 mmol) was added a solution of TFA, H2O, and triisopropylsilane 

(TIPS) in a ratio of 95: 2.5: 2.5 (10 mL). The mixture was stirred at RT under N2 for 3 h 

and was then extracted with CHCl3 and H2O (4 x 25 mL). The organic layers were dried 

and concentrated to afford a purple solid and flash chromatography was performed using 

CHCl3:MeOH (8:2) to elute, 7 (0.21 g, 81 %) 1H NMR (400 MHz, CDCl3, !): 1.12-1.00 

(t, 6H, J = 8; CH3), 1.42-1.40 (m, 6H, J = 7; CH3), 1.62-1.60 (m, 4H, J = 7; CH2), 3.07-

3.05 (m, 2H, J = 8; CH2), 3.45-3.42 (m, 6H, J = 12; CH2), 4.11-4.09 (q, 4H, J = 8; CH2), 

4.24 (s, 2H; CH2), 5.64 (s, 1H; Ar-H), 5.75 (d, 1H; Ar-H), 6.02 (d, 1H; Ar-H), 6.29-6.27 

(m, 2H, J = 4; Ar-H), 7.28 (d, 1H; Ar-H), 7.31 (d, 1H; Ar-H), 7.92 (d, 1H; Ar-H), 8.05 (d, 

1H; Ar-H). (ESI) (m/z) [M + H+]: 701.28. 

3.2.8 Formation of Lipid Vesicles. Liposome Fusion Studies 

Dodecanone (55 "L, 10 mM in CHCl3 at 5 mol %) was dissolved with egg palmitoyl-

oleoyl phosphatidylcholine (POPC) (430 "L, 10 mg/mL in CHCl3, at 95 mol %) and O-

dodecyloxyamine (60 "L, 10 mM in CHCl3 at 5 mol %) was mixed with POPC (410 "L, 

10 mg/mL in CHCl3 at 75 mol %), and egg 1-palmitoyl-2-oleoyl-phosphatidylglycerol 

(POPG) (92 "L, 10 mg/mL in CHCl3 at 20 mol %). Both lipid sample mixtures were then 

concentrated under high vacuum for 4 h. The dried lipid samples were reconstituted and 

brought to a final volume of 3 mL in PBS buffer, pH 7.4. The contents of the vial were 

warmed to 50˚C and sonicated for 20 min, in a tip sonicator, until the solution became 

clear and large unilamelar vesicles (LUVs) containing ketone (keto-LUV, 1) or oxyamine 
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(oxy-LUV, 2) groups were formed. Fourier resonance energy transfer (FRET) fusion 

studies. NBD-PE and rhod-PE were added to two separate vials at 2 mol %. The dried 

lipid samples were then reconstituted in 2.43 mL of PBS buffer, pH 7.4. The contents of 

the vial were warmed to 50˚C and sonicated for 20 min, in a tip sonicator, until the 

solution became clear, and LUVs containing ketone (keto-NBD-PE LUVs, 3) or 

oxyamine (oxy-rhod-PE LUVs, 4) groups were formed. Liposome fusion to cells. To 

generate ketone- and oxyamine-containing liposomes for cell fusion studies, dodecanone 

(55 !L, 10 mM solution in CHCl3 at 5 mol %) and O-dododecyloxyamine (60 !L, 10 

mM solution in CHCl3 at 5 mol %) were dissolved with egg-POPC (424 !L, 10 mg/mL in 

CHCl3 at 93 mol %) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP, 10 !L, 

10 mg/mL in CHCl3 at 2 mol %) in chloroform followed by concentration under high 

vacuum for 4 h. The dried lipid samples were then reconstituted and brought to a final 

volume of 3 mL in PBS buffer, pH 7.4. The contents of the vial were warmed to 50 ˚C 

and sonicated for 20 min, in a tip sonicator, until the solution became clear, and LUVs 

containing ketone (5) or oxyamine (6) groups were formed. 

3.2.9 Matrix-Assissted Laser-Desorption/Ionization Mass Spectrometry (MALDI-

MS) 

Preparation of gold-coated MALDI sample plates. Gold-coated MALDI sample plates 

(123 x 81 mm) (Applied Biosystems, Foster City, CA) were prepared by electron-beam 

deposition (Thermionics Laboratory Inc, Hayward, CA) of titanium (5 nm) and then gold 

(12 nm). In order to form self-assembled monolayers (SAM) of alkanethiolates on the 

plates, the slides were immersed in a 1-mM solution of aminooxyundecanethiol in EtOH 



 59!

for approximately 1 min, rinsed with EtOH and dried, and then backfilled with a 1-mM 

solution of mercaptoundecanol in EtOH for 1 h. Once removed from solution, the 

surfaces were rinsed with EtOH and dried before use. Liposome preparation. Keto-

LUVs (1) were generated as previously described and were then delivered and allowed to 

react with the oxyamine-terminated MALDI sample plate (90 min). The plates were then 

washed with water (3 x 3 mL) and EtOH (2 x 3 mL) and dried before use. MALDI 

Analysis. MS analysis was carried out using an AB SCIEX TOF/TOF
TM

 5800 System 

(Applied Biosystems, Foster City, CA). 

3.2.10 Dynamic Light Scattering (DLS) 

Keto- (1) and oxy- (2) LUVs were generated as previously described and tested by 

DLS for monodispersity and uniformity. Light scattering experiments were performed 

using a Nikomp Model 200 Laser Particle Sizer with a 5 mW Helium-Neon Laser at an 

exciting wavelength of 632.8 nm. Standard deviation determinations were made using 

Gaussian analysis. A Wyatt DynoPro Dynamic Scattering Plate Reader was used to 

collect the light scattering data.  

3.2.11 Fourier Resonance Energy Transfer (FRET) 

Keto- (3) and oxy- (4) LUVs containing NBD-PE and rhod-PE, respectively, were 

generated as previously described and tested by FRET. All fluorescence measurements 

were performed in a SPEX Fluorolog-3 Research T-format Spectrofluorometer. NBD 

fluorescence was measured at 471 nm (excitation) and 531 nm (emission), maintaining 

narrow excitation slits to reduce light scattering interference. To obtain FRET 
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measurements, the NBD dye was excited at 471 nm, and the emission was scanned 

through 600 nm, and the emission signal for rhod-PE was observed at 578 nm. 

Fluorescence was followed immediately after mixing oxy-rhod-PE LUV (4, 3 mM in 

PBS, 100 µL) with keto-NBD-PE LUV (3, 3 mM in PBS, 100 µL) for approximately 2 h 

at 2 min intervals. The total lipid concentrations were adjusted to 0.2 mM, and the two 

LUV populations were had a 1:1 molar ratio. A constant flow of water was passed 

through the cuvette holder for temperature control. The temperature was maintained at 25 

°C. 

3.2.12 Isothermal Titration Calorimetry (ITC) 

Oxy- (2) and keto- (1) LUVs were made as previously described. Samples and PBS 

were degassed before use. Keto-LUV solutions were diluted to 0.02 mM in PBS at pH = 

7.4 and were placed in the cell. The oxy-LUV solution was then injected into the cell 

using a syringe. ITC was performed at 25 °C. No significant heat flow was detected when 

injecting PBS buffer into keto-LUV or injecting oxy-LUV into PBS buffer. ITC was 

performed on a MicroCal VP-ITC and data were fit to a single-site binding model using 

Origin. 

3.2.13 Transmission Electron Microscopy (TEM) 

Keto- (1) and oxy- (2) LUVs were made as previously described (0.2 mM in PBS, pH = 

7.4). The two vesicle solutions (1:1) were mixed at room temperature for 30 min. 4 µL of 

vesicles suspended in buffer were applied to standard lacey carbon EM grids were 

prepared according to published methods. The specimens were blotted from behind and 
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then submerged into aurenyl acetate solution for staining. The hydrated specimens were 

then placed into a TF30He Polara G2 (FEI company) electron cryo microscope operating 

at 300 keV. Images were recorded using a Tietz single port model 415 4k ! 4k CCD 

camera with a 15 micron pixel size on the chip. Pixel sizes at the specimen level were 

used to calculate accurate dimensions for the specimen. 

3.2.14 Rewiring Cell Adhesion 

Briefly, mixed self-assembled monolayers (SAMs) presenting oxyamine (OA) or 

aldehyde (Ald) and tetra (ethylene glycol) (EG4) groups were patterned using 

microfluidic lithography and microfluidic oxidation, respectively.39,40 The percentage of 

OA and Ald groups were minimal (1/9 OA:EG4, 1 mM in EtOH total) to ensure 

resistance to nonspecific protein and cell adhesion and determined by reaction of redox 

groups by electrochemistry.44 Swiss 3T3 albino mouse fbs were cultured with keto- (5) or 

oxy- (6) LUVs (previously described), separately, and were then seeded (~104 cells/mL) 

to surfaces patterned with OA or Ald, respectively. Over the course of 4 days, cells 

adhered, spread, and proliferated, filling out the patterned regions of the surface due to 

the interfacial oxime reaction. Cells cultured with liposomes, not containing the key 

functional groups, did not attach to the patterned surfaces. Substrates were then stained 

and imaged by fluorescence microscopy. An exposure time of 400 and 1200 ms were 

used to image nuclei and actin, respectively. 

3.2.15 Fibroblast (Fb) Culture 
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Swiss 3T3 albino mouse fbs and Rat2 fbs were cultured in Dulbecco’s Modified Eagle 

Medium (Gibco) containing 10 % calf bovine serum (CBS) and 1 % 

penicillin/streptomycin at 37 °C in 5 % CO2. Delivery of functionalized liposomes to 

cells. Cells were seeded onto a tissue culture plate and allowed to grow for 48 h at 37 °C 

in 5 % CO2 in CBS media. Solutions of keto-LUV (5) were reacted with rhod-oxyamine 

(7, 7 mM in H2O, 100 µL added to 4 mL) for 30 min and then added to cells for 4 h. The 

cells were then washed with PBS (4 x 4 mL) and imaged under a fluorescence 

microscope with an exposure time of 1/1200 s. Cell-surface reaction to ketone-

presenting cells. Solutions of keto-LUV (5, 1 mg/mL) were added to the culture to give 

the desired final ketone concentration of 100 µg/mL in a total volume of 2 mL. The cells 

were incubated with the keto-LUVs for 4 h and washed with PBS (4 x 25 mL), followed 

by addition of rhod-oxyamine (7, 7 mM in H2O, 100 µL added to 4 mL) dye and 

incubation for 30 min. The cells were then washed with PBS (4 x 4 mL) and removed 

with a solution of 0.05 % trypsin 0.53 mM EDTA and re-suspended in serum-free 

medium (~104 cells/mL). The cells were then seeded to a fibronectin-coated surface for 2 

h. After 2 h, serum-containing media was added for cell growth and imaged after 3 days. 

3.2.16 Flow Cytometry 

Fluorescence activated cell sorting (FACS) analysis was performed in order to 

quantify the approximate number of ketone and oxyamine groups at the cell surface after 

membrane fusion. Liposomes (5) were prepared as described above and were delivered to 

Swiss 3T3 albino mouse fbs in culture (3 mM in tris buffer, 400 µL added to 4 mL, 16 h). 

A time course assay was also conducted using FACS to determine whether the chemistry 
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was being carried on after cell growth and division. Fbs (8) were reacted with hydrazine-

conjugated biotin (3 mM in CBS, 1 mL added to 4 mL CBS in cell culture, 1 h) after 

culture with keto-containing liposome for 1, 3, 5, and 7 d. Fluorescein-conjugated 

streptavidin (1 mM in CBS, 0.5 mL added to 4 mL CBS in cell culture, 1 h). A control 

cell population (not displaying ketone groups) was only incubated with biotin-hydrazide 

and streptavidin-fluorescein for 1 h each, under the same conditions. Cells were then 

centrifuged (5 min, 1000 rpm), resuspended in RMPI (without phenol red), centrifuged (5 

min, 1000 rpm), and resuspended in RPMI (~107 cells/2 mL). Fluorescence 

measurements were calibrated using RCP-5-30 beads (~107 beads/mL, Spherotech, Inc., 

Lake Forest, IL) of known fluorescein equivalent molecule density. Fluorescent 

intensities based on number of cells counted were compared to the standard bead and 

control cells lacking fluorescent molecule conjugation and approximate numbers of 

fluorescent compound bound to the surface was calculated. Flow cytometry was carried 

out using a Dako CyAn ADP (Beckman-Coulter, Brea, CA), and data was analyzed with 

Summit 4.3 software.   

3.3 Results and Discussion 

3.3.1 Fusion Methodology and Dynamic Light Scattering 

In previous studies, we have shown how chemoselective oxime chemistry can be used 

to present biospecific ligands from supported, model fluid lipid bilayer membranes for 

subsequent recognition by protein receptors.
38

 Using this oxime ligation strategy, we 

generated a number of large unilamellar vesicles (LUVs) that present ketone or oxyamine 

functional groups and employed them in liposome-liposome fusion, Fourier resonance 

energy transfer (FRET), and liposome-cell fusion studies. For liposome-liposome fusion 
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analyses that include matrix-assisted laser-desorption/ionization mass spectrometry 

(MADLI-MS), dynamic light scattering (DLS), and transmission electron microscopy 

(TEM), dodecanone and dodecyloxyamine molecules were incorporated, separately, into 

neutral, egg palmitoyl-oleoyl phosphatidylcholine (POPC) at a ratio of 5:95 to form keto-

LUVs (1) and oxy-LUVs (2), respectively (Figure 1a and 1b). Dodecanone molecules 

were mixed with POPC and fluorescence donor, egg 1,2-diphytanoyl-sn-glycero-3-

phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE) at a ratio of 

5:93:2 to form keto-NBD-PE-LUVs (3), while dodecyloxyamine molecules were 

incorporated into POPC, negatively charged, egg 1-palmitoyl-2-oleoyl-

phosphatidylglycerol (POPG), and fluorescence acceptor, egg 1,2-dipalmitoyl-sn-

glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (rhod-PE) at a ratio 

of 5:73:20:2 to form oxy-rhod-PE-LUVs (4). These chemoselectively tailored liposomes 

(3 and 4) were used to conduct Fourier resonance energy transfer (FRET) studies (Figure 

1c). Finally, liposomes that contained dodecanone, POPC, and cationic lipid, 1,2-

dioleoyl-3-trimethylammonium-propane (DOTAP) (5:93:2, 5) and liposomes that 

composed of dodecyloxyamine, POPC, and DOTAP (5:93:2, 6) were generated to 

investigate liposome-cell fusion processes (Figure 1d). Cationic lipid, DOTAP, was 

incorporated to induce membrane fusion.39,40 Our general fusion methodology is 

described in Figure 1a. Two liposome populations (1 & 2, 3 & 4, or 5 & 6) were mixed, 

resulting in liposome docking, adhesion, and finally fusion due to the formation of stable, 

interfacial oxime bonds. Depending on the application, liposomes to each other, forming 

larger liposomal structures or to cell surfaces, demonstrating non-invasive, cell-surface 

engineering. Mixing 1 and 2 resulted in a gradual increase in size over a period of 2 h,  
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Figure 3.1 General schematic and corresponding lipid components for the formation of 
fused and adhered liposomes based on chemoselective oxime conjugation. (a) When 
mixed, ketone- and oxyamine-tethered liposomes react chemoselectively to form an 
interfacial, covalent oxime linkage, resulting in liposome docking and adhesion. Docked 
liposomes either fuse or form multi-adherent structures. (b) Dodecanone molecules were 
incorporated into neutral, POPC at a ratio of 5:95 to form keto-LUVs (1), while O-
dodecyloxyamine molecules were incorporated into POPC and negatively charged, 
POPG at a ratio of 5:75:20 to form oxy-LUVs (2). These liposomes were used for 
liposome-liposome fusion studies. (c) Dodecanone molecules were incorporated into 
POPC and fluorescence donor, NBD-PE at a ratio of 5:93:2 to form keto-NBD-PE LUVs 
(3). O-Dodecyloxyamine molecules were incorporated into POPC, POPG, and 
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fluorescence acceptor, rhod-PE at a ratio of 5:73:20:2 to form oxy-rhod-PE LUVs (4). 
These liposomes were used for FRET studies. (d) Dodecanone molecules were 
incorporated into POPC and positively charged, DOTAP at a ratio of 5:97:2 to form 
ketone-presenting liposomes (5). O-Dodecyloxyamine molecules were incorporated into 
POPC and DOTAP at a ratio of 5:93:2 to form oxyamine-presenting liposomes (6). These 
liposomes were used for cell-liposome fusion studies. 

 

followed by no change in size (Figure 2d). In a control reaction, LUVs not presenting 

ketones were reacted with LUVs containing oxyamines (1). Likewise, LUVs containing 

ketone groups (2) were mixed with LUVs that did not display oxyamines. For both of 

these control experiments, no size change was observed over time. This result strongly 

supports that liposome adhesion and fusion are driven by chemoselective oxime bond 

formation between the ketone- and oxyamine-alkanes.  

3.3.2 MALDI-MS 

Oxime conjugation, after keto-LUV (1) fusion, was confirmed by MALDI-MS analysis. 

Self-assembled monolayers (SAMs) of aminooxyundecanethiol were formed on a gold-

coated, sample plate. A solution containing keto-LUVs (1) was then allowed to fuse and 

react with the surface for 90 min, followed by MALDI-MS examination. A mass of 387 

units was detected, confirming successful oxime conjugation, resulting from liposome 

fusion on the surface (Figure 2a). 

3.3.3 TEM  

Structural insight into the formation of different adhered and fused liposomes was 

observed through TEM (Figure 2b).
41

 Vesicles of different sizes and shapes result after 2 

h of liposome mixing (keto-LUV, 1 and oxy-LUV, 2). The liposome size gradually 

increases with time and is consistent with the data collected from other sizing 

experiments (e.g., DLS). Upon reaction, the following three structures were observed: 
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multi-adherent liposomes that were not fused, partially fused liposomes, and completely 

fused, large uni- and multi-lamellar liposomes (Figure 2b). 

3.3.4 DLS 

DLS was performed upon mixing liposomes (1 and 2) to monitor vesicle size change as a 

function of time. Increases in vesicle size were observed due to aggregation, adhesion, or 

fusion (blue trace, Figure 2d). Liposome saturation was reached ~80 min after mixing. 

Without the presence of ketone and oxyamine functional groups, the LUV size remains 

constant (red trace, Figure 2d). 

 

Figure 3.2 Characterization of the formation of fused and adhered liposomes based on 
chemoselective oxime conjugation. (a) Mass spectrometry (MS) data representing the 
oxime ligation of keto-LUVs to self-assembled monolayers (SAMs) of oxyamine-
terminated alkanethiol on a gold surface is displayed. Matrix-assisted laser 
desorption/ionization (MALDI) was performed after keto-LUVs were delivered to the 
surface, and a mass of 387 units was detected, confirming oxime conjugation. (b) 
Structural analyses using transmission electron microscopy (TEM), representing the 
adhesion and fusion of keto- (1) and oxy- (2) LUVs over time. The following images are 
shown from left to right: multi-adherent liposomes that are not fused; partially fused 
liposomes; and a single, large liposome after complete fusion. The scale bars represent 60 
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nm. (c) Fourier resonance energy transfer (FRET) analysis of liposome adhesion and 
fusion was monitored over 2 h. Fluorescence emission of keto-NBD-PE/PC LUVs (3), 
excited at 460 nm, was observed by scanning 475-600 nm (green trace). Fluorescence 
emission of keto-NBD-PE/PC LUVs (3) mixed with oxy-rhod-PE/PC/POPG LUVs (4) is 
represented (purple trace). A new FRET emission peak is observed at 578 nm showing 
mixed liposome adhesion. (d) Dynamic light scattering (DLS) was performed upon 
mixing liposomes (1 and 2) to monitor vesicle size change as a function of time. 
Increases in vesicle size were observed due to aggregation, adhesion, or fusion (blue 
trace). Liposome saturation was reached ~80 min after mixing. Without the presence of 
ketone and oxyamine functional groups, the LUV size remains constant (red trace). 
 

3.3.5 FRET 

 Figure 2c shows a liposome fusion assay involving FRET characterization. A lipid-

bound FRET pair, NBD-PE (donor) and rhod-PE (acceptor), were incorporated at 2 mol 

% concentration during liposome generation to produce keto-NBD-PE LUVs (3) and 

oxy-rhod-PE LUVs (4), respectively. Hypothetically, fusion of these vesicles should 

result in a gradual decrease in the donor emission peak and an increase in acceptor 

emission peak
40

 due to the close proximity of these dyes. As shown, vesicle mixing 

resulted in this FRET fusion signature. Fusion was observed immediately upon mixing 3 

and 4, slowing within 2 h to a stable population, which is similar to earlier sizing results. 

An emission peak was not observed for the acceptor rhodamine dye when performing 

control experiments that tested the energy transfer with an LUV that did not contain 

oxyamines. Similar results were observed when LUVs that did not contain ketones or 

oxyamines were mixed. This data further supports that liposome aggregation and fusion 

is based on chemoselective oxime bond formation.  

3.3.6 Cell-Surface Labeling 

Chemical approaches to engineer cell surfaces have emerged as powerful tools for a 

variety of biomedical and biotechnological applications, including tissue engineering, 

drug delivery, and cell-based therapies.24 Several metabolic and genetic approaches to 
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display small molecular recognition pairs at cell surfaces for further covalent 

modification have been achieved through Click chemistry42 and Staudinger ligation.20 

However, such strategies may alter cellular physiology and interfere with normal 

biochemical pathways.28 In this report, we use oxime chemistry to tailor and fluorescently 

label cell surfaces via a novel liposome fusion strategy. As mentioned, cationic lipid, 

DOTAP, was incorporated within keto- and oxy-LUVs to initiate electrostatic 

destabilization and subsequent fusion to the cell membrane.
39

 As such, the minimum 

DOTAP concentration required to facilitate liposome-cell fusion was determined to be 2 

% through fluorescence labeling optimization. Keto-LUVs were generated using DOTAP 

and POPC concentrations that ranged from 0.5 % to 5 % and 90 % to 94.5 %, 

respectively, while maintaining a 5-% ketone concentration. These liposomes were 

incubated with fibroblasts (fbs) for 4 h, conjugated with an oxyamine-tethered rhodamine 

(rhod-oxyamine, 8) (0.7 mM, 2 h), and the cell fluorescence intensities were then 

compared. From 2 % to 5 % DOTAP, the intensities were almost identical, indicating that 

2 % DOTAP is sufficient to initiate fusion.  

Given this optimized lipid ratio (POPC/ketone or oxyamine/DOTAP at 93:5:2), two cell-

surface engineering methods were employed to fluorescently label fbs. Similar to our 

optimization experiments, a solution of keto-LUVs (5, 200 µL, 0.6 mM) was added to fbs 

in culture for 2 h, resulting in membrane fusion and subsequent display of ketones from 

the cell surface (9) (Figure 3d). Rhod-oxyamine (8, 100 µL, 0.7 mM in H2O) was then 

added the cells for 2 h. After oxime formation, the fbs were washed with PBS, 

trypsinized, diluted with CBS-containing media (~102/mL), seeded to a glass substrate, 

and imaged under a fluorescent microscope. As observed in figure 3f, the conjugation of 
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rhod-oxyamine with ketone-presenting fbs resulted in the red fluorescence labeling of 

cells. When the control fbs (i.e., no ketone groups present) were reacted with rhod-

oxyamine (8) and then imaged, no fluorescence was observed (Figure 3e). Demonstrating 

the flexibility of this liposome-based surface labeling strategy, we modified fb surfaces to 

present a ketone-functionalized fluorescein dye (7) after oxy-LUV-ketone-fluorescein 

conjugation and subsequent membrane fusion (Figure 3a). A solution of oxy-LUVs (6, 3 

mM) was incubated with a ketone-functionalized fluorescein (7, 0.15 mM, 1 eq, 2 h), 

generating fluorescently labeled liposomes. The liposomes were then added to fbs in 

culture for 2 h. After fusion, the cells were washed with PBS, trypsinized, diluted with 

CBS-containing media (~102/mL), seeded to a glass substrate, and imaged under a 

fluorescent microscope. Figure 3c presents green fluorescently labeled fbs after fusion 

with fluorescein-functionalized LUVs. When liposomes, not containing oxyamine groups 

were incubated with fluorescein-ketone and added to fbs in culture for 2 h, no 

fluorescence was observed (Figure 3b). Thus, our control images indicated that reaction 

and labeling does not occur without the proper oxime recognition pair (Figure 3b and 3e). 

Furthermore, under these conditions, we observed no changes in cell behavior upon 

liposome fusion to cells. This is a very important feature for future in vivo applications. 

Thus, by combining liposome fusion and oxime chemistry, we were able to tailor the cell 

surface with either ketone groups or oxyamine groups, which may act as chemoselective 

cell-surface receptors for a range of small molecules, ligands, biomolecules, and 

nanoparticles. 
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Figure 3.3 (Top) Schematic describing the delivery and subsequent fusion of fluorescent 
liposomes to cell surfaces with corresponding brightfield and fluorescent images. (a) 
Oxy-LUVs (6, 3 mM) were reacted with fluorescein-ketone (7, 0.15 mM, 2 h) to generate 
green fluorescent liposomes. The fluorescent liposomes were then added to fbs in culture, 
resulting in the fluorescent labeling of cells after liposome fusion to the cell membrane. 
Micrographs show (b) control cells where liposomes not containing oxyamine groups 
were incubated with fluorescein-ketone and added to fbs in culture for 2 h. and (c) green 
fluorescently labeled cells after oxyamine-functionalized liposomes were incubated with 
fluorescein-ketone and delivered to fbs (2 h). (Bottom) General schematic and images for 
cell-surface tailoring using liposome fusion and chemoselective oxime chemistry. (d) 
Keto-LUVs (5, 3 mM) were added and fused with the cells to display these groups from 
the cell surface (9). Addition of rhod-oxyamine (8, 0.7 mM in H2O, 2 min) resulted in 
chemoselective oxime formation and red fluorescent labeling of the cells. Images display 
(e) control fbs where liposomes not displaying ketones were fused to the membrane (2 h) 
and rhod-oxyamine was added and no fluorescence was observed and (f) fluorescently 
labeled cells after ketone-functionalized liposomes were fused to fbs (2 h) and cells were 
-incubated with rhod-oxyamine. Scale bars for b and c and d and e represent 50 and 30 
µm, respectively. 
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3.3.7 Cell Patterning: Rewiring Adhesion 

 The ability to pattern and adhere cells to different materials, such as thin metal films, 

polymer scaffolds, and nanoparticles, with a simple and straightforward chemoselective 

and bio-orthogonal approach would be beneficial for cell biology, tissue engineering, and 

biotechnology. Thus, we employed our liposome fusion-based toward cell-surface 

engineering to modify and rewire cell surface to adhere to patterned 2D substrates, 

directed through stable oxime bond conjugation. Figure 4a and 4b illustrate the strategy 

to rewire cell surfaces for the goal of cell adhesion to self-assembled monolayers (SAMs) 

of alkanethiolates on gold substrates. Employing microfluidic oxidation34 and 

lithography,35 aldehyde and oxyamine SAMs, respectively, were patterned at a ratio of 10 

%. The remaining 90 % of the surface was backfilled with tetra(ethylene glycol) 

alkanethiol, which is known to pacify biomaterials against nonspecific protein adsorption 

and cell adhesion.36 Meanwhile, fbs were cultured separately with keto- (5) and oxy-

LUVs (6, 3 mM, 4 h), resulting in membrane fusion and subsequent display of ketones 

(9) and oxyamines (10) from cell surfaces. The resulting ketone- and oxyamine-

presenting fbs were then seeded (~102 cells/mL, 2 h) to the patterned oxyamine and 

aldehyde substrates, respectively, and allowed to react and form stable oxime linkages in 

the patterned regions. The cells were cultured for 4 d on these substrates, growing and 

proliferating in the patterned regions. The results of patterned keto-fbs on oxyamine 

SAMs are shown in figure 4c; patterned oxy-fbs on aldehyde SAMs are displayed in 

figure 4d and 4e. Furthermore, unmodified cells did not attach to the surface. Thus, this 

strategy allows for a bottom-up, bio-orthogonal synthetic approach to rewire how cells 

adhere to materials and does not require metabolic or genetic cell manipulations.  
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Figure 3.4 Schematics and fluorescent micrographs of rewired cells adhered to patterned 

self-assembled monolayers (SAMs) of alkanethiolates on gold substrates. (a and b) Keto- 

(5) and oxy-LUVs (6, 3 mM, 4 h) were cultured with separate fb populations, producing 

ketone- and oxyamine-presenting fbs (9 and 10, respectively). These cells were then 

seeded (~10
2
 per mL, 2 h) to patterned, oxyamine- and aldehyde-terminated SAMs (10 

%), respectively, and allowed to adhere through stable oxime conjugation. The 

unpatterned surface regions present tetra(ethylene glycol), which resists cell and protein 

adsorption. The cells then grew and proliferated only filling out the oxyamine- and 

aldehyde-tethered surface regions, respectively. (c) A fluorescent micrograph of 

patterned ketone-fbs (9), adhered to an oxyamine-terminated SAM is shown. (d and e) 

Fluorescent micrographs of patterned oxyamine-fbs (10), adhered to an aldehyde-

terminated SAM are demonstrated. Cells were stained with DAPI (blue, nucleus) and 

phalloidin (red, actin). 

 

3.3.8 Flow Cytometry 

 Flow cytometry was performed to further verify the ability of tailoring small molecules 

to cell surfaces through covalent oxime bond formation. This method also enables the 

quantification of ketone and oxyamine molecules that are present at the cell surface after 

liposome delivery and subsequent membrane fusion. Liposomes that incorporated  
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Figure 3.5 Cell surface molecule quantification using flow cytometry. (a) Oxy-LUVs (6, 
3 mM) were added to fbs in culture (4 h), resulting in membrane fusion and subsequent 
display of oxyamine groups from cell surfaces (10). Ketone-functionalized fluorescein (7, 
0.15 mM 2 h) was then reacted with the fbs, generating fluorescently labeled cells. (b) 
Liposomes with varying oxyamine mol % (0 %, 1 %, 5 %, and 10 %) were generated and 
cultured with separate populations of fbs. After reacting with ketone-fluorescein, the cell 
populations were washed with PBS, trypsinized, centrifuged, resuspended in RPMI 
media, and tested using FACS analyses. As shown, the fluorescence intensity increased 
with increasing oxyamine concentration. (c) The number of present molecules at the cell 
surface with respect to oxyamine concentration was quantified using flow cytometry. A 
bead with a known FITC molecule density was employed as a standard comparison to 
calculate the number of oxyamines after oxy-LUVs (6) with 0 %, 1 %, 5 %, and 10 % 
oxyamine was cultured with cells. As the oxyamine concentration increased, the 
molecules per cell increased linearly (0 %, 128; 1 %, 1600; 5 %, 9800; and 10 %, 17400). 
Twenty thousand cells were counted for each sampling. 

 

varying oxyamine concentrations of (i.e., 0, 1, 5, and 10 mol %) were generated (6, 3 

mM) cultured with separate fb populations for 4 h, resulting in membrane fusion and 

oxyamine display (10, Figure 5a). A ketone-modified fluorescein dye (7, 0.15 mM, 2 h) 

was then conjugated to the cell surfaces in each population, producing green 

fluorescently labeled fbs. The FACS analyses results are demonstrated in figure 5b. 

Twenty thousand cells were counted for all samples. As shown, the fluorescence intensity 
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increases with increasing number of oxyamine molecules present for fluorescein 

conjugation. Additionally, the control cell population that was fused with unmodified 

liposomes and reacted with ketone-fluorescein (7) demonstrated the lowest intensity. 

Furthermore, a bead with known FITC molecule density was calibrated and used as a 

standard comparison to quantify the number of oxyamine molecules present at the cell 

surface after fusion.
37

 Figure 5c displays the correlation between oxyamine mol % and 

oxyamine molecules per cell counted by FACS analyses. The calculated molecules per 

cell for the control fbs and oxyamine-presenting fbs that were fused with 1 %, 5 %, and 

10 % oxyamine were approximately 128, 1300, 9800, and 17400, respectively. A linear 

trend was observed; as the molecule concentration increased, the fluorescence intensity 

and number of molecules at the cell surface increased. Thus, the density of molecules that 

decorate cell surfaces can be controlled and quantified using this liposome fusion-based 

methodology for cell-surface engineering.  

3.4 Conclusion 

In summary, we developed a chemoselective synthetic cell receptor system based on a 

liposome delivery and fusion strategy. Ketone and oxyamine groups were introduced to a 

liposomal system and chemoselective vesicle fusion was achieved using molecular 

recognition and interfacial oxime bond formation. Subsequent delivery of the decorated 

liposomes to cells lead to fusion and modification of a cell surface by bio-orthogonal 

reactive groups that serve as synthetic chemoselective cell receptors. Ketone and 

oxyamine modified cells were patterned on solid surfaces, displaying oxyamine and 

ketone groups respectively. Thus, rewiring cell adhesion was achieved using 

chemoselective oxime bond formation and without using any cell adhesive ligands, such 
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as Arg-Gly-Asp (RGD) and fibronectin. Since no biomolecules are used with this 

strategy, no long-term stability and degradation issues in complex cell culture media or in 

vivo will affect cell targeting or cell assembly. This methodology may have diverse 

applications in biomedical technologies including tissue engineering and regenerative 

medicine. Cells displaying ketone and oxyamine groups can react chemoselectively to 

form three-dimensional (3D) and tissue-like structures as directed through in situ oxime 

bond formation. This method can be extended to generate 3D cell co-culture systems and 

study cell-cell interactions. The ketone- and oxyamine-functionalized liposomes may 

have extensive applications in drug delivery and diagnostic applications, in which the 

interior of the liposome contains cargo while the exterior surface can be simultaneously 

functionalized with the tracking agent. 
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CHAPTER 4 

Synthetic Chemoselective Rewiring of Cell-Surfaces: Generation of 

Three-Dimensional Tissue Structures 
 

4.1 Introduction 

Cells that make up tissues and organs exist and communicate within a complex, three-

dimensional (3D) environment. The spatial orientation and distribution of extracellular 

matrix (ECM) components directly influences the manner in which cells receive, 

integrate, and respond to a range of input signals.
1
 As such, cellular interactions with 

ECM molecules and/or other cells have been extensively investigated for fundamental 

studies in development, cell motility, differentiation, apoptosis, paracrine signaling, and 

applications in tissue engineering.
2,3

 There has been tremendous effort toward the design 

and fabrication of 3D scaffolds that mimic ECM properties and induce tissue formation 

in vitro, utilizing various biomaterials, biodegradable polymers,
4  

collagen,
5
 and 

hydrogels.
6,7

 Among the major challenges facing the use of these technologies for tissue 

engineering are the abilities to force contact between multiple cell types in 3D to control 

the spatial and temporal arrangement of cellular interactions and tailor and mold the 

biomaterial to recapitulate the 3D, in vivo environment under laboratory constraints. 

Without the use of engineered scaffolds in culture, most cells are unable to form the 

necessary higher-order 3D structure required for the anatomical mimicry of tissue and are 

limited to random migration, generating two-dimensional (2D) monolayers. As a result, 

several approaches, including the use of dielectrophoretic forces,
8,9

 laser-guided 
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writing,
10-12

 surface manipulation,
13

 and a number of lithographic printing techniques
14-17

 

have been integrated with 3D scaffold designs to produce multi-type cellular arrays
9,11,17

 

or 3D cell clusters or spheroids.
7,8,13

 In a recent pioneering study by Bertozzi and Gartner, 

3D aggregates consisting of multiple cell types were formed within a hydrogel matrix 

through DNA hybridization after cell surfaces were engineered with complementary short 

oligonucleotides via a metabolic labeling approach.
7
 However, for some applications, the 

presentation of cell-surface DNA may not be stable for extended time periods in cell 

culture or in vivo.
18

  

Other approaches to cell-surface engineering have also been undertaken to 

incorporate a functional group into a target biomolecule, such as an endogenous protein, 

utilizing a cell’s biosynthetic machinery.
19,20

 These strategies aim to produce a site that 

can then be covalently modified with its delivered counterpart or probe. However, most 

of these protein-based tags are large and bulky and become problematic when interacting 

with the other glycans and biomolecules on the cell suface.
21,22

 Additionally, the 

perturbation of cellular physiology with biomolecules at the cell surface may result in the 

interference of significant biochemical pathways or cellular functions.
23,24

 Thus, a 

methodology that combines cell-surface modification, without the use of molecular 

biology techniques or biomolecules, and a simple, stable bio-orthogonal conjugation 

bottom-up approach that is capable of directing tissue formation would greatly benefit a 

range of medical applications such as wound healing and burn treatment.  

Herein, we develop and employ a novel strategy to induce specific and stable cell-cell 

contacts through chemoselective cell-surface engineering based on liposome delivery and 

fusion of bio-orthogonal functional groups to cell membranes.
25

 Using a cationic lipid, 
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membrane fusion,
26,27

 rather than the endocytotic cellular uptake of vesicle contents, is 

induced. This enables the presentation of bio-orthogonal ketone and oxyamine molecules 

from cell surfaces for subsequent chemoselective oxime ligation. No proteins or large 

biomolecules are used in this strategy, and therefore, cellular physiology is not perturbed. 

We demonstrate how this method may be used in several applications including, the 

delivery of reagents to cell surfaces, formation of 3D spheroid assemblies of cells with 

controlled inter-connectivity, and patterned multi-layered cell tissues. Furthermore, 3D 

multi-layered stem cell and fbroblast (fb) co-cultures were generated, and differentiation 

was induced to form tissue-like structures of adipocytes and fbs. To our knowledge, this 

is the first report utilizing tailored liposomes to modify a living cells surface through 

membrane fusion for subsequent bio-orthogonal tailoring to generate 3D tissue-like 

structures. 

4.2 Materials and Methods 

4.2.1 Materials 

All chemical reagents were of analytical grade and used without further purification. 

Lipids egg palmitoyl-oleoyl phosphatidylcholine (POPC) and 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP), egg were purchased from Avanti Polar Lipids 

(Alabaster, AL). Antibodies and fluorescent dyes were obtained from Invitrogen 

(Carlsbad, CA). Trypan blue viability dye was obtained from Hyclone (Fisher Sci, 

Pittsburgh, PA), and all other chemicals were obtained from Sigma-Aldrich or Fisher. 

Swiss 3T3 albino mouse fibroblasts (fb) were obtained from the Tissue Culture Facility at 

the University of North Carolina (UNC). Rat2 fb transfected with m-cherry were 
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obtained from the Bear Lab (UNC Chapel Hill, NC). Human Mesenchymal stem cells 

(hMSCs) were purchased from Lonza (Basel, Switzerland). 

Phase contrast and fluorescent imaging was performed and processed using a Nikon 

TE2000-E inverted microscope and Metamorph software, respectively. Scanning electron 

microscopy images were obtained using a Hitachi S-4700 field emission scanning 

electron microscope (Hitachi High Technologies America, Inc., Schaumburg, Illinois). 

Confocal micrographs were taken and processed using a Nikon Eclipse TE2000-E 

inverted microscope (Nikon USA, Inc., Melville, NY) and Volocity software, 

respectively.  

4.2.2 2-(dodecyloxy)isoindoline-1,3-dione Synthesis 

To a solution of N-hydroxyphthalimide (1.96 g, 12.04 mmol, 1.5 eq) and sodium 

bicarbonate (10.11 g, 12.04 mmol, 1.5) in DMF (20 mL) at 80°C was added 1-

bromododecane (1.93 mL, 8.02 mmol). The mixture was refluxed and stirred for 12 h. 

The reaction was diluted with DCM and washed with H2O (6 x 50 mL), 1 M NaHCO3 (3 

x 50 mL), and H2O (2 x 50 mL), dried over MgSO4, and concentrated to afford a white 

solid (2.66 g, 87 %). 1H NMR (400 MHz, CDCl3, !): 1.02 (s, 3H; CH3), 1.31-1.29 (m, 

14H, J = 8; CH2), 1.47-1.45 (m, 4H, J = 8; CH2), 1.60-1.57 (m, 2H, J = 12; CH2), 3.72-

3.70 (t, 2H, J = 8; CH2), 7.80-7.78, 7.85-7.83 (2 x m, 4H, J = 8; Ar-H). 

4.2.3 O-dodecyloxyamine Synthesis 

To a solution of 2-(dodecyloxy)isoindoline-1,3-dione (2.65 g, 8.00 mmol) in dry DCM 

(30 mL) under inert atmosphere (Ar) was slowly added hydrazine (1.53 mL, 48.00 mmol, 

6 eq). Upon addition, a white precipitate immediately formed. The mixture was stirred for 

12 h. The reaction was diluted with DCM and washed with H2O (6 x 50 mL), dried over 
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MgSO4, and concentrated to afford a pale yellow oil (1.18 g, 74 %). 1H NMR (400 MHz, 

CDCl3, !): 1.03 (s, 3H; CH3), 1.33-1.31 (m, 14H, J = 8; CH2), 1.43-1.41 (m, 4H, J = 8; 

CH2), 1.50-1.46 (m, 2H, J = 16; CH2), 3.64-3.62 (t, 2H, J = 7; CH2). (ESI) (m/z) [M + 

H+]: 201.22. 

4.2.4 Liposome Fusion to Cells 

To generate keto-LUV and oxy-LUV, dodecanone (55 "L, 10 mM solution in CHCl3 

at 5 mol %) and alkane-tethered oxyamine (60 "L, 10 mM solution in CHCl3 at 5 mol %) 

were dissolved with egg-POPC (424 "L, 10 mg/mL in CHCl3 at 93 mol %) and 1,2-

dioleoyl-3-trimethylammonium-propane (DOTAP, 10 "L, 10 mg/mL in CHCl3 at 2 mol 

%) in chloroform followed by concentration under high vacuum for 4 h. The dried lipid 

samples were then reconstituted and brought to a final volume of 3 mL in PBS buffer, pH 

7.4. The contents of the vial were warmed to 50˚C and sonicated for 20 min, in a tip 

sonicator, until the solution became clear, and LUVs containing ketone or oxyamine 

groups were formed. 

4.2.5 3D Spheroid Generation 

Keto-LUV and oxy-LUV were added to two separate fb populations in culture for (3 mM 

in tris buffer, 400 µL added to 4 mL, 16 h), resulting in fusion and display of ketones and 

oxyamines from the cell surface. Oxyamine-presenting Rat2 fb contained an m-cherry 

label (nucleus) for enhanced visualization, while the ketone-presenting Swiss 3T3 albino 

mouse fb contained no fluorescent label. These two cell populations were then 

trypsinized and mixed together (~204 cells/mL, 4 mL total) in serum containing (10 % 

CBS, pH of 7.4) media in a 10 mL-flask and incubated at 37 °C and 5 % CO2 for 3 h. 
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After mixing, the cells were seeded on a glass surface (~204 cells/mL, 1 mL) and 

visualized under a Nikon TE2000-E inverted microscope or by scanning electron 

microscopy. Image acquisition and processing was performed using Metamorph 

software. An exposure time of 75 ms was used to image all spheroids. 

4.2.6 Scanning Electron Microscopy (SEM) of 3D Spheroids 

After spheroids were assembled in solution (reaction for 3 h as described above) and 

delivered to a glass slide (~204 cells/mL, 1 mL, 0.8 x 0.8 cm2) and the fixed with 10 % 

formalin in PBS for 15 min. The substrate was then washed with water (15 min), and 

cells were then dehydrated stepwise in 30, 50, 70, 90, and 100 % ethanolic solutions for 

15 min each. After critical point drying and sputtering 2 nm of gold, the sample was 

ready for imaging using a Hitachi S-4700 field emission scanning electron microscope 

(Hitachi High Technologies America, Inc., Schaumburg, Illinois). 

4.2.7 Fibroblast (Fb) Culture 

Swiss 3T3 albino mouse fb and Rat2 fb were cultured in Dulbecco’s Modified Eagle 

Medium (Gibco) containing 10 % calf bovine serum (CBS) and 1 % 

penicillin/streptomycin at 37 °C in 5 % CO2. Delivery of functionalized liposomes to 

cells. Cells were seeded onto a tissue culture plate and allowed to grow for 48 h at 37 °C 

in 5 % CO2 in CBS media. Solutions of keto-LUV were reacted with rhod-oxyamine (7 

mM in H2O, 100 µL added to 4 mL) for 30 min and then added to cells for 4 h. The cells 

were then washed with PBS (4 x 4 mL) and imaged under a fluorescence microscope 

with an exposure time of 1/1200 s. 
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4.2.8 hMSC (human mesenchymal stem cell) culture 

hMSCs and basic, growth, and differentiation media were obtained from Lonza (Basel, 

Switzerland). hMSCs were cultured in Dulbecco’s Modified Eagle Medium (Gibco) 

containing 10 % fetal bovine serum (FBS) and 1 % penicillin/streptomycin at 37°C in 5 

% CO2. Adipogenic differentiation was induced by culturing with induction medium as 

described in the Lonza protocol. 

4.2.9 Immunhistochemistry 

After the growth of 3D tissue-like structures and co-culture with Swiss 3T3 albino 

mouse fb, surfaces were fixed with formaldehyde (4 % in PBS, 30 min). Substrates were 

then immersed in a solution containing water and 60 % isopropyl alcohol (3-5 min), 

followed by staining with Oil Red O (5 min) and Harris Hemotoxylin (1 min) (6,7). 

Substrates were visualized by phase contrast microscopy using a Nikon TE2000-E 

inverted microscope. Image acquisition and processing was performed using Metamorph 

software. An exposure time of 75 ms was used to image all HMSCs.  

4.2.10 Directed 3D Tissue-like Multi-Layers 

Ketone-functionalized fibroblast cells were seeded (~104 cells/mL) to microcontact 

printed patterned (1 mM hexadecanethiol in EtOH, printed on gold 5 s, backfilled with 1 

mM EG4 in EtOH, 16 h) surfaces presenting fibronectin (10 mg/mL, 2 h) for 2 h. The 

cells were allowed to grow for 3 days (serum-free media, 37 ºC in 5 % CO2).
29 

Oxyamine-functionalized fibroblast cells (~104 cells/mL) were then seeded to surfaces for 

2 h followed by addition of serum-containing (10 % CBS) media to promote cell growth. 



 87!

The cells were cultured for 3 more days before imaging. Controls showed no multi-layer 

formation when oxyamine or ketone groups were not presented on the cell surfaces or 

when two ketone-presenting cells interacted with each other or when two oxyamine-

presenting cells interacted with each together. Only when the correct oxime pair is 

combined do multi-layers of cells form. After generation, substrates were fixed, stained, 

and imaged by confocal microscopy as described below. 

4.2.11 Cell Staining for Imaging 

Cells were fixed with formaldehyde (4 % in PBS) and permeated (PBS containing 0.1 % 

Triton X–100). A fluorescent dye mixture, containing phalloidin-TRITC (actin) and 

DAPI (nucleus) was then made in PBS containing 5 % normal goat serum and 0.1 % 

Triton X –100. Cells were incubated with the dye solution for 2 h. The substrates were 

then secured in fluorescence mounting medium (Dako, Carpinteria, CA, USA), which 

enhances the visualization of cells when viewed under a fluorescent microscope on a 

glass cover slip. An exposure time of 400 and 1200 ms were used to image nuclei and 

actin, respectively. 

4.2.12 Confocal Microscopy 

Cell clusters and tissue formation were visualized with a Nikon Eclipse TE2000-E 

inverted microscope (Nikon USA, Inc., Melville, NY). Data was analyzed by Leica 

software and a spectral confocal microscope (LeicaMicrosystems, Bannockburn, IL). An 

average of 84 image scans were used to generate the 3D reconstructions with Volocity 

software. 



 88!

4.2.13 3D Co-Culture Spheroid and Multi-Layer Generation 

Spheroids: Keto- and oxy-LUVs were generated as previously reported and were added 

to hMSC and Swiss 3T3 albino mouse fb (3 mM in tris buffer, 400 µL added to 4 mL, 16 

h), respectively, and were cultured, resulting in fusion and display of ketones and 

oxyamines from the cell surface. These two cell populations were then trypsinized and 

mixed together in serum containing (10 %  FCS, pH of 7.4) media in a 10 mL flask and 

incubated at 37 °C and 5 % CO2 for 1, 2, 3, and 5 h. After mixing for the allotted time, 

cells were seeded onto a glass surface and visualized under a Nikon TE2000-E inverted 

microscope under the brightfield setting (75 ms exposure time). Controls were also 

performed where hMSCs displaying ketone groups were co-cultured with fbs (not 

displaying oxyamine groups) for each of the corresponding time points, 1, 2, 3, and 5 h, 

seeded onto glass, and imaged under the brightfield setting (75 ms). Image acquisition 

and processing was performed using Metamorph software. Multi-layers: Ket- and oxy-

LUVs were added to hMSC and Swiss 3T3 albino mouse fb (3 mM in tris buffer, 400 µL 

added to 4 mL, 16 h), respectively, and were cultured, resulting in fusion and display of 

ketones and oxyamines from the cell surface. hMSCs displaying ketone groups were 

trypsinized and cultured on glass slides (105 cells/mL) and allowed to grow for 2 days. 

Fibroblasts presenting oxyamines were then trypsinized and added (105 cells/mL) to the 

hMSCs. These cells were co-cultured in media (10 % FCS) for 3, 5, and 7 d, resulting in 

the formation of 3D multi-layered, tissue-like structures of hMSC and fb. 
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4.2.14 Cell Viability Assay 

Cell viability of 3D spheroid and multi-layered tissue-like structures was assessed by 

performing a trypan blue viability assay (Hyclone, Fisher Sci, Pittsburgh, PA). Fb 

spheroid and multi-layer structures were prepared as previously described. A solution of 

0.4 % trypan blue in PBS was made and diluted in CBS (1:1) containing the spheroids (1, 

3, and 5 h after mixing, 204 cells/mL) in solution and multi-layer cell sheets (3, 5, and 7 d 

after a second fb population was added, 105 cells/mL) on a glass slide. Trypan blue was 

allowed to react with the cells for 2 min, at which time spheroids and surfaces were 

imaged and false colored with blue for enhanced visualization using a Nikon TE2000-E 

inverted microscope. As a control, cells were cultured for 7 days to generate a multilayer 

and were then fixed as mentioned above. Trypan blue was allowed to react for 2 min, and 

cells were imaged. For phase contrast and fluorescent imaging, exposure times of 75 and 

400 ms were used, respectively.  

4.3 Results and Discussion 

4.3.1 Overview of the Method 

Vesicle fusion was directed through the use of molecular recognition and 

chemoselective ligation toward the goal of rewiring cell adhesion to generate 3D multi-

layers of cells. Using liposomes as the simplest model of a cell, we previsouly 

demonstrated and extensively characterized the parameters for chemoselectively driven 

liposome fusion. Vesicles were tailored with ketone (dodecanone) or oxyamine (O-

dodecyloxyamine) molecules. The resulting two populations of vesicles were used to  
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Figure 4.1 General schematic describing 3D tissue formation via liposome fusion and 
chemoselective cell-surface tailoring. (A) Dodecanone molecules were incorporated into 
neutral, egg palmitoyl-oleoyl phosphatidylcholine (POPC) and positively charged, 1,2-
dioleoyl-3-trimethylammonium-propane (DOTAP) at a ratio of 5:93:2 to form ketone-
presenting liposomes (1). (B) Dodecyloxyamine molecules were incorporated into POPC 
and DOTAP at a ratio of 5:93:2 to form oxyamine-presenting liposomes (2). (C) Two 
fibroblast (fb) populations were cultured separately with ketone- (1) or oxyamine- (2) 
containing liposomes. Due to the presence of a positively charged liposome fusion 
occurs, producing ketone- (3) and oxyamine- (4) tethered fbs. Upon mixing these cell 
populations, clustering and tissue-like formation, based on chemoselective oxime 
conjugation, occurred.  

      

study liposome adhesion or fusion to one another via oxime conjugation. This system was 

then integrated with mammalian cells in culture to fuse liposomes to cell membranes for 

applications in small molecule delivery and cell-surface engineering. In this study, we 

used this membrane modification strategy to direct the assembly of 3D spheroid clusters 

and tissue-like structures by culturing two cell populations functionalized with oxyamine- 

and ketone-containing groups. Since this method is general, bio-orthogonal, chemically 

stable (oxime bond), and non-cytotoxic, patterned multi-layered tissue-like structures of 

different geometric shapes could also be fabricated without the use of 3D scaffolds to 
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confine the cell populations. We also show that this method has promising use in stem 

cell transplantation by co-culturing human mesenchymal stem cells (hMSCs) with 

fibroblasts (fbs) and inducing adipocyte differentian while in a 3D multi-layered tissue-

like structure.  

For membrane fusion studies, dodecanone and dodecyloxyamine were incorporated 

separately into netual, egg palmitoyl-oleoyl phosphatidylcholine (POPC) and cationic, 

1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) lipids at a ratio of 5:93:2 (Figure 

1A and 1B). The alkane-tethered ketone and oxyamine molecules spontaneously insert 

themselves into the vesicles during syntheses.28 Cationic lipid, DOTAP, was added to 

favor and enhance membrane fusion, and subsequent display of lipid components at the 

cell surface, rather than endocytosis of the vesicle contents.26,27 Our general fusion 

strategy to generate 3D tissue-like structures is represented in figure 1C. When cells are 

incubated with ketone- (1) or oyamine- (2) containing liposomes, membrane fusion 

occurs, resulting in the presentation of ketone and oyamine groups from cell surfaces (3 

and 4). When these cell populations are cultured together, interconnected, 3D tissue-like 

structures form, mediated through chemoselective oxime conjugation. These stable tissue 

stuctures can be generated in solution or on a solid support. 

4.3.2 3D Spheroid Assembly 

The ability to generate multicellular connected tissues of multiple cell types in vitro is 

crucial for studying the complex interplay of cells in a range of organs in vivo and for 

developing strategies for synthetic tissue transplantation. With varying successes, a 

number of current strategies to generate 3D cell connections rely on forcing mixed cell 
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populations into complex microfabricated wells or vessels. Therefore, we extended this 

liposome fusion, oxime-based strategy to generate 3D spheroid assemblies of 

interconnected cells using two different cell-type populations (Figure 2). The oxyamine-

presenting rat2 fbs (4) contained a nuclear m-cherry fluorescent label so that the cell 

clustering to non-fluorescent ketone-tethered cells (3) could be easily observed. During a 

3-hour period of mixed-culturing (~10
4
 cells/mL) in solution, cells formed spheroid 

structures due to the presence of complementary recognition groups (Figure 2B and 2C). 

Furthermore, when oxyamine-presenting fbs (4) were cultured with control fbs (cells not 

functionlized with ketone groups), spheroid assembly did not occur (Figure 2A). Studies 

were also performed to test whether spheroid size and cell composition could be 

controlled (Supporting Information, Figure S1). Ketone-presenting hMSCs (6) were co-

cultured with oxyamine-functionalized fbs (5) for 1, 2, 3, and 5 h. After 1 h, clusters 

comprised with only a few cells were observed. As the co-culturing duration increased, 

larger spheroid structures were seen. Notably, control experiments were performed 

simultaneously to ensure that spheroid generation was being directed through 

chemoselective oxime conjugation. Shown as insets in figure S1A-D, tissue structure 

formation did not occur without the proper complementary pair displayed from cell 

surfaces, regardless of the mixing duration (1-5 h). Thus, size and composition of 3D cell 

assemblies in solution could be controlled, showing great promise for applications in 

stem cell transplantation and regenerative medicine.  

Spheroid formation was also characterized by scanning electron microscopy (SEM) 

(Figure 2E-G and S2). Cells functionalized with oxyamine (5) and ketone (3) groups were 

able to generate clusters when mixed in solution as displayed in figure 4F and 4G 
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(Supporting Information, Figure S2). However, spheroid assemblies were not observed 

when ketone-presenting fibroblasts were reacted with non-functionalized cells; fbs spread 

out on the surface, migrated, but remained alone (Figure 4E). It is important to note that 

cells were able to form stable, interconnected 3D structures in solution simply upon 

mixing two tailored cell populations. Currently, methods to generate these structures 

require the support of a 3D hydrogel matrix and/or assisted assembly through an external 

stimulus.
5,7-9,13

 

Figure 4.2 Fluorescent, phase contrast, and scanning electron micrographs (SEM) 
describing 3D spheroid formation via liposome fusion and chemoselective cell-surface 
tailoring. Two fibroblast populations were cultured separately with ketone- (1) or 
oxyamine- (2) containing liposomes, resulting in membrane fusion and subsequent 
tethering of ketones and oxyamines from the cell surface. The oxyamine-tethered rat2 fbs 
(4) contained a fluorescent m-cherry nuclear label. The ketone-presenting Swiss albino 
3T3 fbs (3) were not fluorescently labeled. (A) Control experiments (overlay image) 
demonstrate no spheroid formation for cells that did not contain either ketone or 
oxyamine groups. (B and C) However, when two cell populations displaying ketone (3) 
and oxyamine (4) recognition groups are mixed, interconnected spheroid assemblies form 
(overlay images). (D-F) Representative SEM images of control cells and (E and F) 
spheroid assemblies, as described above, are displayed. For all spheroid assemblies 
depicted, cell populations were mixed and cultured together for 3 h before imaging at 
~104 cells/mL. 
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4.3.3 3D Multi-Layered Tissues 

In addition to forming small, 3D cell clusters or spheroid structures in solution, this 

strategy may be employed to direct larger, dense 3D tissue-like networks on a surface 

with geometric control (Figure 3). We used full substrates, as well as surfaces that were 

patterned with cell adhesive and non-adhesive regions to generate multi-layered sheets 

and patterned tissue structures, respectively.
43

 Ketone- (1) and oxyamine- (2) tailored 

liposomes were cultured with separate fb populations, resulting in membrane fusion and 

subsequent presentation of chemoselective sites for oxime conjugation from the surface 

(3 and 5, respectively) (Figure 3A). Culturing these groups on a solid support (~10
5
 

cells/mL), in a layer-by-layer deposition manner, gave rise to multi-layered, tissue-like 

cell sheets, which were characterized by confocal microscopy as shown in figure 3E and 

3F. Fbs naturally only form a single monolayer once they become contact-inhibited. 

However, we have successfully induced fb-fb clustering though oxime-mediated, cell-

surface engineering based on liposome fusion.  

To ensure that oxime chemistry was aiding in the formation of 3D tissue-like 

structures, several control experiments were performed. Cells that did not present ketone 

or oxyamine functionality were seeded onto separate surfaces. A second cell population 

presenting oxyamine (5) or ketone (3) groups from the cell surface was added, resulting 

in the formation of only a 2D monolayer of cells (Figure 3B- and 2C). Similarly, two 

different cell populations that were tethered with oxyamine (5) groups were mixed 

together, and only a 2D monolayer was generated after 4 d of culture. The same results 

were observed after culturing two different ketone-functionalized cell populations for 4 d. 

These results further support the hypothesis that multi-layered cell interconnectivity is 
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driven by complementary, oxime chemistry. We also extended this strategy toward the 

generation of 3D multi-layered co-cultures with hMSCs and fbs (Supporting Information, 

Figure S3). Ketone-functionalized hMSCs (6) were first cultured on a substrate (~105 

cells/mL), and the stem cells were allowed to spread out and grow for 2 d. Oxyamine-

presenting fbs (5) were then added (~105 cells/mL) and co-cultured for an additional 2 d. 

As shown by the confocal images in figure S3B and S3C, 3D multi-layered cell sheets (4  
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Figure 4.3 General schematic and images of oxime-mediated, 3D tissue-like structure 
formation with controlled interconnectivity. (A) Ketone- (1) and oxyamine- (2) 
containing liposomes were added to two separate fb populations, resulting in membrane 
fusion and subsequent presentation of the ketone (3) and oxyamine (5) groups from cell 
surfaces. By culturing these cells on substrates, alternating cell population seeding layer-
by-layer, gave rise to multi-layered, tissue-like cell sheets through stable oxime 
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chemistry. (B) A 3D reconstruction and (C) confocal micrograph showing only a 
monolayer of cells after oxyamine-presenting cells (5) were cultured with adhered non-
functionalized cells. (D) A 3D reconstruction and (E) confocal micrograph of multiple 
cell layers after oxyamine-presenting cells (5) were added to substrates presenting 
ketone-containing cells (3). (H and I) Intact, 3D multi-layered cell sheets can be removed 
from the surface by gentle agitation as displayed by brightfield and fluorescent images. 
The insets in B and E show a z-plane cross-section that indicates the thickness of the cell 
layers. Cells were stained with DAPI (blue, nucleus) and phalloidin (red, actin).  

 

layers) were formed. The proper controls were conducted; without the oxime pair, only a 

2D monolayer of stem cells and fbs was formed (Supporting Information, Figure S3A). 

4.3.4 3D Tissue Release and Cell Viability 

During multi-layer culture, it was possible to control the release of the tissues from the 

surface with gentle agitation (Figure 3D and 5G). The ability to release tissue after 

surface-supported growth in vitro shows great potential for applications in tissue 

engineering and cellular transplantation. Cell viability was also tested for 3D spheroid 

and multi-layered structures of fbs and hMSC/fibroblast co-cultures using the trypan blue 

assay (Supporting Information, Figure S4).
29

 After spheroid (1, 2, 3, and 5 hours of 

mixing in solution) and multi-layer (3, 5, and 7 days on a surface) formation, cells were 

incubated with trypan blue (0.4 %, 2 min). No cells were observed dead in spheroid (1-5 

hours) and multi-layers (3 days). However, after 5 and 7 days of multi-layer generation, 

cells showed an approximate viability of 91 % and 84 %, respectively. The blue intensity 

(fluorescence false colored for enhanced visualization) was compared to a control cell 

population by linescan analysis (Figure S4). The control cells were cultured for 7 days to 

generate a 3D multi-layer and were then fixed. Trypan blue was allowed to react for 2 

min, followed by imaging and quantification. Overall, the viability of cells in conducting 
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membrane fusion to generate 3D tissue-like structures in solution and on a solid support 

is high. Therefore, this method may be very useful for applications in tissue engineering 

and stem cell transplantation. 

4.3.5 3D Tissue Patches with Geometrical Control 

We further demonstrated spatial control by generating a number of 3D multicellular 

micropatterns. Microcontact printing
30

 was used to produce a variety of patterns and 

geometries on a gold substrate. Employing SAM and microfabrication technologies, 

hexadecanethiol (1 mM in EtOH) was printed on a gold surface for 5 s using a 

patterened, polydiemthylsiloxane (PDMS) stamp. The surface was then backfilled with 

tetra(ethylene glycol)-alkanethiol (EG4) (1 mM in EtOH, 16 h) to render the remaining 

regions inert to nonspecific protein absorption. Fibronetin, a cell-adhesive protein was 

then added (10 mg/mL in CBS, 2 h), adhering only to the hydrophobic, patterned areas. 

As shown by the confocal image in figure 4A, only a 2D, circular cell pattern arises after 

ketone-presenting fbs (3) were cultured with fbs, not functionalized with oxyamine 

molecules. However, when liposome fusion occurs to display complementary ketone and 

oxyamine groups from cell surfaces (3 and 5, respectively), multi-layered 3D cell patterns 

were formed (Figure 4B-D). Bar, square, and circular tissue-like structures are depicted 

in figure 4B-D. The ability to generate 3D tissues with controlled geometry would find 

great use in tissue transplantation, in which specifically tailored patches are required.  
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Figure 4.4 Confocal images representing 2D monolayer and 3D multi-layered tissue-like 
structures of fbs with spatial control. (A) A circular, 2D monolayer of fbs (control) result 
after ketone-functionalized fbs (3) and fbs (not functionalized with oxyamines) are 
patterned on a circular, microcontact printed region, presenting fibronectin and allowed 
to grow for 5 days. (B-D) Fbs, functionalized with ketone groups (3) were seeded onto 
microcontact printed regions containing fibronectin and allowed to grow for 2 days. Fbs, 
functionalized with oxyamine groups (5) were then seeded and allowed to grow for 2-3 
more days. Confocal images demonstrating 3D tissue formation in (B) bar, (C) square, 
and (C) circle geometries are depicted. The corresponding z-plane cross-sections that 
indicate the thickness of the cell layers are shown as an inset. Cells were stained with 
DAPI (blue, nucleus) and phalloidin (red, actin).  

 

4.3.6 3D Stem Cell Co-Cultures with Induced Adipocyte Differentiation 

We have explored the general use of this liposome fusion method and have delivered 

ketone and oxyamine groups to a range of cell lines and have demonstrated that 3D 

spheroid and multi-layer can be generated using co-cultures of human mesenchymal stem 

cells (hMSCs) and fibroblasts (Supporting Information, Figures S1 and S3, respectively). 

We next extended our methodology toward stem cell differentiation to determine whether 

3D multi-layered co-cultures could be induced to generate tissues of differentiated 

hMSCs and fbs. As shown in figure 5A, ketone-functionalized hMSCs (6) were first 

cultured on a substrate for 3 d, producing a 2D monolayer of cells (Figure 5B). 
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Oxyamine-tethered fbs (5) were then co-cultured with the hMSCs, and the cells were 

allowed to grow and proliferate for 2 d (Figure 5C). Adipogenic induction media was 

then added, the 3D multi-layered co-culture was stained for nuclei (purple) and lipid 

vacuoles (red), which are characteristic of adipocytes (fat cells). The phase contrast 

images in figure 5D and 5E demonstrate the successful generation of tissue-like 

structures, comprising induced adipocytes and fbs. The ability to co-culture stem cells 

with many other cell types and induce differentiation shows great promise in the field of 

regenerative medicine and stem cell transplantation. 

 

Figure 4.5 General schematic and brightfield images representing oxime-mediated, 3D 

tissue-like structure formation with hMSC/fb co-cultures and subsequent induced 

adipocyte differentiation to generate 3D adipocyte/fb co-culture structures. (A) Ketone-

tethered hMSCs (6) were seeded onto a surface, followed by the addition of oxyamine-

functionalized fbs (5). The co-culture was allowed to grow and divide for 3 d at which 

point, adipogenic differentiation was induced with the addition of the appropriate media. 

This resulted in a 3D multi-layer of adipocytes and fb. (B) A confluent 2D monolayer of 

ketone-presenting hMSCs is represented. (C) A brightfield image displaying a 3D multi-

layer co-culture of hMSCs (6) and oxyamine-functionalized fbs (5) is shown. (D) 

Adipogenic differentiation was induced with media resulting in 3D multi-layered 

adipocyte and fb co-culture structures, represented by low and (E) high-resolution 

brightfield images (after 10 days in culture). Adipocytes were stained with Oil Red O 

(lipid vacuoles) and Harris Hemotoxylin (nucleus). 
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4.4 Conclusions 

In summary, we developed a liposome delivery and fusion method to display ketone 

or oxyamine functional groups from cell surfaces for applications in bio-orthogonal 

ligand conjugation, rewiring cell adhesion, and the generation of stable, 3D spheroid 

assemblies and multi-layered tissue-like structures. This strategy may have diverse 

applications in the field of tissue engineering and regenerative medicine, from growing 

biocompatible tissues and organs in vitro to their cellular transplantation in vivo.
31,32

 For 

example, assembled tissue patches with geometrically defined shape can be grown in 

culture and transplanted or grafted to specific locations.
33

 Furthermore, this strategy may 

allow for time-lapse observation of cell movement in vivo by using a pulse (delivery of 

labeled cells via liposome fusion) followed by a chase (bio-orthogonal reagent to target 

only the labeled cells). When applied in vivo, this method may allow for the monitoring 

of many spatio-temporal developmental events and tumor metastasis. Since the liposome 

fusion method is general, many other types of chemistries in a single liposome can be 

delivered to the membrane surface simultaneously. For example, liposomes containing 

ketones, alkynes, dienes, azides, hydrazides, or dienophiles in varying combinations may 

be delivered to a cell surface for iterative or simultaneous post-functionalization via bio-

orthogonal ligation reactions. 

We have also been able to perform liposome fusion to the same cells several times, 

which may be important to tailor the membrane with multiple groups or to increase the 

concentration of a particular surface functional group (data not shown). By rewiring cell 

adhesion, a number of materials, surfaces, nanoparticles, and biomedical devices for 

various biotechnological applications may be decorated with cells. Since, no 
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biomolecules are used with this strategy, no long-term stability and degradation issues in 

complex cell culture media or in vivo will affect cell targeting or cell assembly. By 

combining this strategy with polymer scaffolds, 3D tissues and organs may be generated 

for paracrine signaling studies, tissue replacement therapies, stem cell plasticity studies, 

or as a model platform for various high-throughput screening studies.34-37 Finally, 

integrating this strategy with traditional liposome delivery, where the interior of the 

liposome contains small molecules or nanoparticle cargoes, a multiplex system where the 

delivery of reagents to the interior of cells and simultaneous labeling of the exterior of the 

cells may be possible for entirely new diagnostic and biomedical applications. 
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CHAPTER 5 

 

Dynamic Control on Cell-Tissue Interactions. 
 

 

5.1 Introduction 

 

Controlling cell-cell interactions and cellular architecture in three-dimensional 

(3D) space and time is critical for the proper development (1) and survival of higher-

order organisms (2). These dynamic interactions are complex but essential for correct cell 

behavior and tissue function based on a myriad of physical, mechanical, and 

hydroynamic forces, as well as autocrine and paracrine signaling (3,4). However, to 

recapitulate these processes in vitro while maintaining these dynamic and discrete cell-

cell contacts is difficult and requires a multidisciplinary coordinated effort, intersecting 

several research fields (5). Thus, the ability to modulate cell-cell interactions in space and 

time would in turn allow for unprecedented control of cell behavior and enable the design 

and utility of new dynamic tissue engineering scaffolds, in vivo imaging capabilities, 

high-throughput tissue-based screening assays, and drug delivery therapies (6,7).  

Several recent approaches to generate co-culture tissue structures in 2D and 3D 

have been developed and employed, including dielectrophoresis (8), microfabrication 

(9,10), hydrogel (11,12), and cell patterning techniques (13,14). Tailoring cell 

membranes by cell-surface engineering methods have also proven to be important for the 

development of co-culture and multicellular micro-tissues (15). In particular, the 

integration of bio-orthogonal chemical strategies (16) with cell surfaces may allow for a 
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range of cell-surface modifications for control of lignd presentation, ligand density, and 

potentially spatio-temporal control of cell-cell interactions. Bio-orthogonal chemical 

reactions have been extensively developed and utilized due to their ability to be 

performed at physiological conditions (Diels-Alder, Oxime, Huisgen cycloaddition, 

Staudinger, etc…), without side reactions, and in complex protein mixtures, cell lysates, 

and in vivo. Furthermore, these chemistries have been applied in many fundamental cell 

studies (17), drug delivery therapies (18), and diagnostic measuring applications (19). 

However, the delivery and incorporation of a range of these chemical groups to a cells 

surface for a variety of cell types remains challenging and not straightforward (20).    

The development of synthetic liposomes and liposome fusion methods have 

proven very useful for numerous studies as cell membrane model systems and as 

microarray platforms to study cell membrane dynamics and for biotechnology 

applications (21,22). Additionally, liposome-to-liposome and liposome-to-cell fusion 

methods have also been developed to deliver therapeutic agents to cells and organelles, 

and to study cellular interactions (23). However, until now, there has been no report 

utilizing liposome-to-cell fusion to deliver dynamic and bio-orthogonal groups directly to 

cell surfaces for subsequent chemoselective conjugation and release of ligands or for the 

temporal programming of controlled cell-cell assembly. A strategy that combines cell-

surface modification, without the use of molecular biology techniques or biomolecules, 

with a stable, dynamic, and switchable bio-orthogonal ligand conjugation and release 

approach to direct tissue formation and subsequent disassembly, would greatly benefit 

fundamental cell behavioral studies and tissue engineering research. 
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Herein, we report a novel liposome fusion based methodology to tailor cell 

surfaces with dynamic and switchable bio-orthogonal chemistries and to direct the 

assembly and disassembly of 3D tissues for applications in stem cell differentiation and 

tissue engineering. We show that this strategy is redox responsive and allows for multiple 

rounds of the controlled conjugation and release of molecules to and from cell surfaces in 

situ. This chemical methodology can simultaneously be used as an analytical probe for 

monitoring cellular interactions, as well as a trigger to alter cell-surface ligands and cell-

cell contacts. 

5.2 Materials and Methods 

5.2.1 Materials 

All chemical reagents were of analytical grade and used without further purification. 

Lipids egg palmitoyl-oleoyl phosphatidylcholine (POPC), egg 1-palmitoyl-2-oleoyl-

phosphatidylglycerol (POPG), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 

egg 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-

4-yl) (ammonium salt) (NBD-PE), and egg 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (Rhod-PE) 

were purchased from Avanti Polar Lipids (Alabaster, AL). Antibodies and fluorescent 

dyes were obtained from Invitrogen (Carlsbad, CA). FITC labeled beads were purchased 

from Spherotech, Inc. (Forest Lake, IL), trypan blue viability dye was obtained from 

Hyclone (Fisher Sci, Pittsburgh, PA), and all other chemicals were obtained from Sigma-

Aldrich or Fisher. Swiss 3T3 albino mouse fibroblasts (Fb) were obtained from the 

Tissue Culture Facility at the University of North Carolina (UNC). Rat2 Fb transfected 
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with m-cherry were obtained from the Bear Lab (UNC Chapel Hill, NC). Human 

Mesenchymal stem cells (hMSCs) were purchased from Lonza (Basel, Switzerland). 

 

5.2.2 2-dodecylbenzene-1,4-diol (Hydroquinone Alkane, HQ, A) Synthesis.  

1,4-bis(tetrahydro-2H-pyran-2-yloxy)benzene (B): To a solution of hydroquinone (6.0 g, 

54.5 mmol) in THF (40 mL) was added 2,3-dihydropuran (44.0 mL, 245.3 mmol, 4.5 eq) 

and 3 drops of concentrated HCl. The mixture was stirred at room temperature for 8h, 

diluted with EtOAc (40 mL), washed with NaHCO3 (3 x 50 mL) and brine (1 x 25 mL), 

dried over MgSO4, and concentrated to a white solid. The solid was then dissolved in 

EtOAc and recyrstallized with hexanes to afford a white solid B (10. 02 g, 66 %), 
1
H 

NMR (400 Hz, CDCl3, !): 1.67-1.58 (m, 6H, J = 36; -CH2-), 1.88-1.85 (m, 4H, J = 12; -

CH2-), 2.03-2.00 (m, 2H, J = 12; -CH2-), 3.62-3.60 (m, 2H, J = 8; -CH2-), 3.98-3.96 (m, 

2H, J = 8; -CH2-), 5.34-5.32 (t, 2H, J = 7; -CH-), 7.00 (s, 4H; Ar-H). 

2,2'-(2-dodecyl-1,4-phenylene)bis(oxy)bis(tetrahydro-2H-pyran) (C): To a solution of B 

(2.00 g, 7.0 mmol) in dry THF (40 mL) at 0°C was added tert-butyllithium (4.6 mL of a 

1.7 M solution, 9.1 mmol, 1.3 eq) dropwise over 15 min. The mixture was stirred at 0°C 

for 60 min and then slowly warmed to room temperature over 3h. At this time, 1-

bromododecane (5.08 mL, 21.0 mmol, 3 eq) was added and stirred for 12h. The mixture 

was diluted with DCM (40 mL) and washed with NH4Cl (3 x 50 mL) and brine (1 x 25 

mL), dried over MgSO4, and concentrated to afford a yellow oil. The mixture was 

purified by flash chromatography 95:5 Hex:EtOAc to elute a yellow oil C (2.23 g, 71 %), 
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1
H NMR (400 Hz, CDCl3, !): 0.91-0.89 (t, 3H, J = 8; -CH3), 1.27-1.23 (m, 18H, J = 16; -

CH2-), 1.72-1.68 (m, 10H, J = 16; -CH2-), 2.61-2.58 (t, 2H, J = 12; -CH2-), 3.65-3.63 (m, 

4H, J = 8; -CH2-), 5.80-5.78 (t, 2H, J = 8; -CH-), 6.68 (s, 1H; Ar-H), 6.81 (s, 1H; Ar-H), 

6.84 (s, 1H; Ar-H). 

2-dodecylbenzene-1,4-diol (A): To a solution of C (2.0 g, 4.5 mmol) in 40 mL of a 3:1:1 

mixture of AcOH/THF/H2O was stirred for 16h. The mixture was then concentrated, 

diluted in EtOAc (20 mL) and washed with 1 mM NaOH (2 x 10 mL), dried over 

MgSO4, and concentrated to afford a white solid A (1.12 g, 90 %), 
1
H NMR (400 Hz, 

CDCl3, !): 0.89-0.87 (t, 3H, J = 8; -CH3), 1.30-1.25 (m, 18H, J = 20; -CH2-), 1.57-1.55 

(m, 2H, J = 7; -CH2-), 2.58-2.55 (t, 2H, J = 12; -CH2-), 6.57-6.56 (m, 1H, J = 4; Ar-H), 

6.67-6.65 (m, 2H, J = 7; Ar-H); (ESI) (m/z) [M + Na]
+ 

= 301.15. 

5.2.3 O-dodecyloxyamine (Aminooxy Alkane, AO, D) Synthesis.  

2-(dodecyloxy)isoindoline-1,3-dione (E). To a solution of N-hydroxyphthalimide (1.96 g, 

12.04 mmol, 1.5 eq) and sodium bicarbonate (10.11 g, 12.04 mmol, 1.5) in DMF (20 mL) 

at 80°C was added 1-bromododecane (1.93 mL, 8.02 mmol). The mixture was refluxed 

and stirred for 12 h. The reaction was diluted with DCM and washed with H2O (6 x 50 

mL), 1 M NaHCO3 (3 x 50 mL), and H2O (2 x 50 mL), dried over MgSO4, and 

concentrated to afford a white solid (2.66 g, 87 %). 
1
H NMR (400 MHz, CDCl3, !): 1.02 

(s, 3H; CH3), 1.31-1.29 (m, 14H, J = 8; CH2), 1.47-1.45 (m, 4H, J = 8; CH2), 1.60-1.57 

(m, 2H, J = 12; CH2), 3.72-3.70 (t, 2H, J = 8; CH2), 7.80-7.78, 7.85-7.83 (2 x m, 4H, J = 

8; Ar-H).  

O-dodecyloxyamine (D). To a solution of E (2.65 g, 8.00 mmol) in dry DCM (30 mL) 

under inert atmosphere (Ar) was slowly added hydrazine (1.53 mL, 48.00 mmol, 6 eq). 
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Upon addition, a white precipitate immediately formed. The mixture was stirred for 12 h. 

The reaction was diluted with DCM and washed with H2O (6 x 50 mL), dried over 

MgSO4, and concentrated to afford a pale yellow oil (1.18 g, 74 %). 
1
H NMR (400 MHz, 

CDCl3, !): 1.03 (s, 3H; CH3), 1.33-1.31 (m, 14H, J = 8; CH2), 1.43-1.41 (m, 4H, J = 8; 

CH2), 1.50-1.46 (m, 2H, J = 16; CH2), 3.64-3.62 (t, 2H, J = 7; CH2). (ESI) (m/z) [M + 

H
+
]: 201.22.  

5.2.4 Lipid Vesicle Formation for Fusion Studies 

HQ-tethered alkane (160 µL, 10 mM in CHCl3 at 10 mol %, (A)) and POPC (410 µL, 10 

mg/mL in CHCl3 at 90 mol %) were mixed and then concentrated for 4 hours under high 

vacuum. Likewise, OA-tethered alkane (60 µL, 10 mM in CHCl3 at 5 mol %, (D)), POPG 

(92 µL, 10 mg/mL in CHCl3 at 20 mol %), and POPC (410 µL, 10 mg/mL in CHCl3 at 75 

mol %) were mixed and then concentrated for 4 hours at high vacuum. The dried lipid 

samples were then reconstituted in 3 mL in PBS buffer, pH 7.4. The contents of the vial 

were warmed to 50˚C and then sonicated for 15 min with a tip sonicator until the solution 

became clear, forming small and large and small unilamelar vesicles (LUVs and SUVs, 

respectively). Vesicle-containing solutions were then centrifuged at 30,000 rpm for 30 

min, pelleting out the LUVs and leaving the SUVs in solution. The HQ- or OA-SUVs 

((1) and (3), respectively) were then used in further vesicle (liposome) fusion studies. 

5.2.5 Chemical Oxidative Activation of HQ-SUVs  

HQ-SUVs were prepared as previously described. To a solution of HQ-SUVs (3 mM in 

PBS, 4 mL) was added CuSO4·5H2O (20 "L, 5 "M in PBS) for 5 min, producing 

quinone-tethered vesicles (Q-SUVs, (2)). 
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5.2.6 Transmission Electron Microscopy 

HQ- (1) and Q- (2) SUVs were prepared and activated, respectively, as previously 

mentioned OA- (3) SUVs were also made as described above. Q- (2) and OA-(3) SUVs 

(0.2 mM in PBS) were mixed in a 1:1 ratio at room temperature for 30 min. A 4-!L 

vesicle suspension mixture was then applied to standard lacey carbon EM grid as 

prepared according to published methods. The specimens were blotted from behind and 

then submerged into aurenyl acetate solution for staining. The hydrated specimens were 

then placed into a TF30He Polara G2 (FEI company) electron cryo microscope operating 

at 300 keV. Images were recorded using a Tietz single port model 415 4k " 4k CCD 

camera with a 15 micron pixel size on the chip. Pixel sizes at the specimen level were 

used to calculate accurate dimensions for the specimen. 

5.2.7 Fourier Resonance Energy Transfer (FRET) Characterization 

HQ- (16) and OA- (17) SUVs were prepared as described above with the addition of 

NBD-PE (20 !L, 10 mg/mL in CHCl3 at 2 mol %) and Rhod-PE (28 !L, 10 mg/mL in 

CHCl3 at 2 mol %), respectively. HQ-SUVs were then activated to Q-SUVs as reported. 

NBD fluorescence was measured at 471 nm (excitation) and 531 nm (emission) 

maintaining narrow excitation slits to reduce light scattering interference. Q- and OA-

SUVs containing NBD-PE and Rhod-PE, respectively, were then mixed (1:1) to obtain 

FRET measurements. The NBD dye was excited at 471 nm, and the emission was 

scanned through 600 nm. An emission signal for Rhod-PE was observed at 578 nm. All 

fluorescence measurements were performed in a SPEX Fluorolog-3 Research T-format 

Spectrofluorometer. Fluorescence was followed immediately after mixing OA-SUV (17) 
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with Q-SUV (16) for approximately 2 hours at 2 min intervals. A constant flow of water 

was passed through the cuvette holder for temperature control. The temperature was 

maintained at 25°C. 

5.2.8 Dynamic Light Scattering (DLS) Characterization 

Q- (2) and OA- (3) SUVs were prepared as described and mixed at a 1:1 ratio and were 

monitored over 80 min. DLS experiments were performed using a Nikomp model 200 

laser particle sizer with a 5mW HeNe laser at an excitation wavelength of 632.8 nm. 

Standard deviation determinations were made using Gaussian analysis. A Wyatt DynoPro 

dynamic scattering plate reader was used to collect the data. 

5.2.9 Liposome Fusion to Cells (Cell-Surface Engineering) 

HQ-tethered alkane (160 µL, 10 mM in CHCl3 at 10 mol %, (A)), DOTAP (10 µL, 10 

mg/mL in CHCl3 at 2 mol %), and POPC (398 µL, 10 mg/mL in CHCl3 at 88 mol %) 

were mixed and then concentrated for 4 hours under high vacuum. Similarly, OA-

tethered alkane (60 µL, 10 mM solution in CHCl3 at 5 mol %, (D)), DOTAP (10 µL, 10 

mg/mL in CHCl3 at 2 mol %), and POPC (424 µL, 10 mg/mL in CHCl3 at 93 mol %) 

were mixed and then concentrated for 4 hours under high vacuum. The above-mentioned 

procedure for forming HQ- (4) and Q- (12) SUVs was then performed. A 400-!L aliquot 

of HQ- (4) and OA- (12) SUVs were then added separate populations of Fbs, m-cherry 

labeled Fbs, and hMSCs (3 mM in PBS, 400 µL added to 4 mL cells in culture) and were 

cultured for 16 hours, resulting in vesicle fusion to the cell membrane and subsequent 

presentation of HQ (A) and OA (D) groups from the cell surface ((5), (13), (14), and 

(15)).    

5.2.10 Chemical Oxidative Activation of HQ-Presenting Cells 
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HQ-SUVs (4) were prepared and fused to cells as previously described. CuSO4·5H2O (20 

!L, 5 !M in PBS) was then added to cells in culture (4 mL of CBS-containing media) for 

5 min, producing Q-presenting cells ((6) and (11)). 

5.2.11 Flow Cytometry Characterization and Quantification of HQ (A) and OA (D) 

on the Cell Surface 

Fluorescence activated cell sorting (FACS) analysis was performed in order to quantify 

the approximate number of HQ (A) and OA (D) groups on the cell surface after 

membrane fusion. HQ-SUVs were generated as previously mentioned and cultured with 

Fbs (3 mM in PBS, 400 µL added to 4 mL cells in culture) for 1, 3, 5, and 7 days, 

resulting in the fusion and display of HQ (A) from the cell surface (5). HQ (A) was 

activated to Q, as mentioned, before testing. Q-presenting Fbs (6) were then reacted with 

hydrazide-conjugated biotin (3 mM in CBS, 1 mL added to 4 mL CBS in cell culture, 1 h, 

(9 and 10)). Fluorescein- conjugated streptavidin (1 mM in CBS, 0.5 mL added to 4 mL 

CBS in cell culture, 1 h) was then added. A control cell population (not functionalized 

with HQ groups) was only incubated with biotin-hydrazide and streptavidin-FITC for 1 h, 

respectively, under the same conditions as described above. Cells were then centrifuged 

(5 min, 1000 rpm), re-suspended in RMPI (without phenol red), centrifuged (5 min, 1000 

rpm), and re-suspended in RPMI (10
7
 cells in 2 mL). Fluorescence measurements were 

calibrated using RCP-5-30 beads (10
7
 beads/mL, Spherotech, Inc., Lake Forest, IL) of 

known fluorescein equivalent molecule density (4). Fluorescent intensities based on 

number of cells counted (at least 10
5
/sample) were compared to the standard bead and 

control cells lacking fluorescent molecule conjugation and approximate numbers of 

fluorescent compound bound to the surface was calculated. Flow cytometry was carried 
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out using a Dako CyAn ADP (Beckman-Coulter, Brea, CA), and data was analyzed with 

Summit 4.3 software. 

5.2.12 Electrochemical Oxidative Activation, Conjugation, and Release of HQ-

Presenting Cells (5 and 13) 

HQ-SUVs (4) were prepared and fused to cells (5) as previously described. These cells 

were then treated with trypsin (1 mL, 2 min, 37 °C) and seeded onto a gold surface (10
5
 

cells, 2 x 2 cm
2
) for 2 h in serum-free-containing media, and then 16 h in CBS-containing 

media. Linear sweep voltammetry (LSV) was then performed to oxidize HQ to Q using 

an Ag/AgCl reference, Pt wire auxiliary, and the gold surface containing the HQ-

presenting cells (5) as the working electrode (-100 to 650 mV). PBS was used as the 

electrolyte solution (10 mM, pH 7.4), and the scan rate was 100 mVs
-1

. OA-tethered 

ligands were then reacted with Q-presenting cells (6) to form an interfacial oxime linkage 

on the cell surface. This reaction can be monitored using cyclic voltammetry (CV) with a 

sweeping potential of -100 to 650 mV at 100 mVs
-1

. To release ligands or cells, the 

working electrode was subject to a reducing potential (-100 mV, 10 s, PBS, pH = 7.4), 

resulting in a cleavage of oxime bond. Measurements were performed in a standard 

electrochemical cell. All electrochemical measurements were performed using a 

Bioanalytical Systems potentiostat. 

5.2.13 Fluorescent Characterization of Liposome Fusion to Cells (Cell-Surface 

Engineering).  

A solution of HQ-SUV (4) (1 mg/mL) was added Fbs in culture to give the desired final 

HQ concentration of 100 µg/mL in a total volume of 2 mL and were incubated 4 h. The 

cells (5) were then washed with PBS, followed by activation of HQ to Q as mentioned. 
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Rhod-OA (100 !L added to 4 mL cell culture, 7 mM in H2O) was added to Q-displaying 

cells (6) in culture and was incubated at 37 °C for 30 min, resulting in oxime bond 

formation and Rhod-presenting Fbs (7 and 8). The cells were then washed with PBS 

buffer and removed with a solution of 0.05 % trypsin 0.53 mM EDTA and re-suspended 

in serum-free medium (10
5
 cells/mL). The cells were then seeded to a fibronectin-coated 

surface for 2 h and visualized by fluorescence microscopy under the Texas Red channel 

with an exposure time of 1200 ms. Similarly, a solution containing biotin-hyrdazide (1 

mg/mL in PBS, 0.5 mL added to 2 mL CBS) was added to Q-presenting Fbs (6) for 2 h, 

followed by addition of FITC-streptavidin for 1 h to produce biotin/streptavidin-

presenting Fbs (9 and 10). After 1 h, serum-containing media was added for cell growth 

and imaged after 3 days under the FITC channel with an exposure time of 600 ms.  

5.2.14 Electrochemical Characterization of Ligand Conjugation and Release to Cell 

Surfaces (cell-surface engineering). 

Rhod-OA was conjugated to Q-presenting Fbs (6) as described above. CV was performed 

to determine the presence of the oxime bond (7 and 8), scanning from -100 to 650 mV, 

with a scan rate of 100 mVs
-1

, in PBS (pH = 7.4). To release Rhod-OA, a constant 

reducing potential (-100 mV, 10 s) was applied, and CV was then used to determine the 

regeneration of HQ and Q redox peaks (-100 to 650 mV). The cells were then activated to 

Q by conducting LSV, and biotin-hydrazide was conjugated as reported above (9 and 10). 

CV was again performed after conjugation to determine the presence of the hydrazide 

bond (-100 to 650 mV, 100 mVs
-1

).  
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5.2.15 Fibroblast (Fb) Culture 

Swiss 3T3 albino mouse Fbs and m-cherry labeled, Rat2 Fbs were cultured in Dulbecco’s 

Modified Eagle Medium (Gibco) containing 10 % calf bovine serum (CBS) and 1 % 

penicillin/streptomycin at 37°C in 5 % CO2. When ready for experimentation, cells are 

removed from the tissue culture plastic using a solution of 0.05 % trypsin 0.53 mM 

EDTA and re-suspended in serum-free medium (10
5
 cells/mL).   

5.2.16 Cell Patterning Characterization of Liposome Fusion to Cell Surfaces 

Mixed self-assembled monolayers (SAMs) presenting OA and EG4 alkanethiolates were 

patterned using microfluidic lithography (5). The percentage of OA groups was minimal 

(1/9 OA:EG4, 1 mM n EtOH total) to ensure resistance to nonspecific protein and cell 

adhesion. Fbs were first cultured with HQ-SUVs (4) and then activated to Q (6) as 

previously described. Cells were then treated with trypsin (1 mL) and seeded on the OA-

patterned surface (10
5
 cells/mL) in serum-free medium for 2 h and then CBS-containing 

medium for 3 days. During this time, cells adhered, spread, and proliferated, filling out 

the patterned regions of the surface due to the interfacial oxime reaction and were then 

stained and imaged. As a control, Fbs were cultured with SUVs, not displaying HQ, and 

were then seeded to OA-patterned substrates (1:9 OA/EG4); the cells did not attach. Fbs 

were then released from the surface by application of a reductive potential (-100 mV, 10 

s, PBS, pH = 7.4), which cleaves the interfacial oxime linkage. Substrates were then 

stained and imaged by fluorescence microscopy. 

5.2.17 Mass Spectrometry (MS) Characterization 

Preparation of gold-coated MALDI sample plates. Gold-coated MALDI sample plates 

(123 x 81 mm) (Applied Biosystems, Foster City, CA) were prepared by electron-beam 
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deposition (Thermionics Laboratory Inc, Hayward, CA) of titanium (5 nm) and then gold 

(12 nm). In order to form self-assembled monolayers (SAM) of alkanethiolates on the 

plates, the slides were immersed in a 1-mM solution of aminooxyundecanethiol in EtOH 

for approximately 1 min, rinsed with EtOH and dried, and then backfilled with a 1-mM 

solution of mercaptoundecanol in EtOH for 1 h. Once removed from solution, the 

surfaces were rinsed with EtOH and dried before use. Liposome preparation. HQ-

containing liposomes (4) were generated as previously described, activated to Q (5) (10 

!L, 5 !M CuSO4·5H2O in PBS added to 2 mL), and were then delivered to and allowed 

to react with the AO-terminated MALDI sample plate (90 min). The plates were then 

washed with water (3 x 3 mL) and EtOH (2 x 3 mL) and dried before use. Cell 

preparation. Swiss 3T3 albino mouse Fbs were incubated with HQ-LUVs (3 mM in tris 

buffer, 1 mL added to 4 mL culture media, 37 °C in 5 % CO2, 16 h, 4). HQ-presenting 

Fbs (5) were then treated with trypsin (1 mL) and seeded (10
7
 cells/mL) to the MALDI 

sample plates in serum-free medium (droplet on the surface). HQ was then oxidized (2 

!L, 5 !M CuSO4·5H2O in PBS) to Q (5) and cells were allowed to react with the surface 

for 3 h. Plates were then rinsed thoroughly with 0.1 % SDS in PBS (2 x 3 mL) and EtOH 

(2 x 3 mL) and dried before testing to remove the cells and proteins. MALDI Analysis. 

MS analysis was carried out using an AB SCIEX TOF/TOF
TM

 5800 System (Applied 

Biosystems, Foster City, CA). 

5.2.18 human Mesenchymal Stem Cell (hMSC) Culture 

hMSCs and basic, growth, and differentiation media were obtained from Lonza (Basel, 

Switzerland). hMSCs were cultured in Dulbecco’s Modified Eagle Medium (Gibco) 

containing 10 % fetal bovine serum (FBS) and 1 % penicillin/streptomycin at 37°C in 5 
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% CO2. Adipogenic differentiation was induced by culturing with induction medium as 

described in the Lonza protocol.  

5.2.19 3D Spheroid Co-Culture Generation 

HQ-SUVs (4) and OA-SUV (12) were added to two separate Fb or hMSC populations in 

culture for 16 h, resulting in fusion and display of HQ and OA groups from the cell 

surface (5, 13, 14, and 15). The HQ-displaying cells (5 and 13) were activated by 

chemical oxidation as previously described before co-culturing. Fluorescence imaging. 

OA-presenting Rat2 Fbs (14) contained an m-cherry label (nucleus) for enhanced 

visualization, while the Q-presenting Swiss 3T3 albino mouse Fbs (6) contained no 

fluorescent label. These two cell populations were treated with trypsin and mixed 

together (100 µL, 1:1) in serum-containing (10 % CBS) media in a 10 mL-flask and 

incubated at 37 °C and 5 % CO2 for 1, 2, 3, and 5 h. After mixing, the cells were seeded 

on a glass surface and visualized under a Nikon TE2000-E inverted microscope in the 

Texas Red channel with an exposure time of 1200 ms. Image acquisition and processing 

was performed using Metamorph software. 

5.2.20 Co-Culture Spheroids for Phase Contrast and SEM Imaging 

Similarly, activated Q-presenting hMSCs (11) were co-cultured with OA-displaying Fbs 

(15) in solution. These two cell populations were treated with trypsin and mixed together 

(100 µL, 1:1) in serum-containing (10 % FBS) media in a 10 mL-flask and incubated at 

37 °C and 5 % CO2 for 1, 2, 3, and 5 h. After mixing, the cells were seeded on a glass 

surface and visualized under a Nikon TE2000-E inverted microscope (Brightfield 

channel, 75 ms) or by scanning electron microscopy (described below). Control 

experiments were also performed in which Q-hMSCs (11) were mixed and co-cultured 
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with Fbs (not functionalized with OA groups) under the same conditions as described 

above, and images were taken. Image acquisition and processing was performed using 

Metamorph software.    

5.2.21 Scanning Electron Microscopy (SEM) of 3D Spheroids 

After spheroids co-cultures of Fbs (15) and hMSCs (11) were generated in solution as 

described above, cells were delivered to a glass slide (0.8 x 0.8 cm
2
) and then fixed with 

10 % formalin in PBS for 15 min. The substrate was then washed with water (15 min), 

and cells were then dehydrated stepwise in 30, 50, 70, 90, and 100 % ethanolic solutions 

for 15 min each. After critical point drying and sputtering 2 nm of gold, the sample was 

ready for imaging using a Hitachi S-4700 field emission scanning electron microscope 

(Hitachi High Technologies America, Inc., Schaumburg, Illinois). 

5.2.22 3D Multi-Layered Co-Culture Cell Tissue Generation 

HQ-SUVs (4) were cultured with hMSCs (3 mM in PBS, 400 µL added to 4 mL cells in 

culture, 16 h), resulting in membrane fusion and display of HQ from the cell surface (13). 

HQ-hMSCs (13) were then treated with trypsin (1 mL), seeded on a gold surface as 

mentioned above (10
5
 cells/mL), and were allowed to grow and proliferate for 3 days. 

The HQ groups were then activated to Q by performing LSV (-100 to 650 mV) and were 

incubated for 4 hours before adding OA-functionalized Fbs (10
5
 cells/mL) (15) that had 

been treated with trypsin (1 mL). The Fbs (15) were seeded to Q-presenting hMSCs (11) 

for 2 h in serum-free medium, followed by the addition of serum-containing media (4 

mL) to promote cell growth. The cells were cultured for 3, 5, and 7 days before staining 

and confocal imaging. Controls showed no multi-layer formation when OA or Q groups 

were not presented on the cell surfaces or when two Q- or OA-displaying cells interacted 
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with one another. Only when the correct oxime pair is combined do multi-layered co-

cultures. After generation, substrates were fixed, stained, and imaged by confocal 

microscopy as described below. 

5.2.23 3D Spheroid and Multi-Layered Co-Culture Generation and Release. 

Spheroids. HQ- (4) and OA- (12) SUVs were generated as previously reported, added to 

hMSCs and Fbs (3 mM in PBS, 400 µL added to 4 mL cells in culture), respectively, and 

cultured for 16 h. After activation, these two cell populations (11 and 15) were then 

treated with trypsin (1 mL) and mixed together (100 µL, 1:1) in serum containing (10 % 

FCS) media in a 10 mL flask and incubated at 37 °C and 5 % CO2 for 1, 2, 3, and 5 h. 

After mixing for the allotted time, cells were seeded onto a gold surface and visualized 

under a Nikon TE2000-E inverted microscope under the brightfield setting (75 ms). 

Image acquisition and processing was performed using Metamorph software. Multi-

layers: HQ- (4) and OA- (12) SUVs were added to hMSC and Fb (3 mM in PBS, 400 µL 

added to 4 mL cells in culture), respectively, and were cultured for 16 h. hMSCs 

displaying HQ (13) groups were treated with trypsin (1 mL) and cultured on gold slides 

(10
5 

cells/mL) and allowed to grow for 2 days and then activated by conducting LSV (-

100 to 650 mV). OA-presenting Fbs (15) were then treated with trypsin (1 mL) and added 

(10
5 

cells/mL) to Q-hMSCs (11). These cells were co-cultured for 3, 5, and 7 d, resulting 

in the formation of 3D multi-layered co-cultured structures of hMSC and Fb. To 

selectively release cells in either spheroid or multi-layered tissue structures, a reduction 

potential of -100 mV was applied for 1 min in serum-free medium and cells were imaged 

by phase contrast or confocal microscopy as described. 
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5.2.24 Cell Staining for Imaging.  

Cells were fixed with formaldehyde (4 % in PBS, 10 min), permeated (PBS containing 

0.1 % Triton X–100, 10 min), and rinsed in PBS (2 x 5 min). Fluorescence imaging-  A 

fluorescent dye mixture containing phalloidin-TRITC (red, actin) and anti-vinculin 

(green, focal adhesions) was made in PBS with 5 % normal goat serum and 0.1 % Triton 

X –100. Cells were incubated with the dye solution for 1 h and were then rinsed in PBS 

for 5 min. A second fluorescent dye mixture consisting of phalloidin-TRITC (red, actin), 

DAPI (blue, nucleus), and Cy-2 (green, focal adhesions) was then made in PBS with 5 % 

normal goat serum and 0.1 % Triton X –100. Cells were incubated with the dye solution 

for 1 h and were then rinsed in PBS for 5 min. The substrates were secured in 

fluorescence mounting medium (Dako, Carpinteria, CA, USA), which enhances the 

visualization of cells when viewed under a fluorescent microscope on a glass cover slip. 

Exposure times for imaging DAPI, actin, and focal adhesions were 400, 1200, and 600 

ms, respectively. Confocal imaging- A fluorescent dye mixture containing phalloidin-

TRITC (red, actin) and DAPI (blue, nucleus) was then made in PBS containing 5% 

normal goat serum and 0.1% Triton X –100. Cells were incubated with the dye solution 

for 2 h. The substrates were then secured in fluorescence mounting medium (Dako, 

Carpinteria, CA, USA), which enhances the visualization of cells when viewed under a 

fluorescent microscope on a glass cover slip. An average of 84 scans were taken to 

generate 3D reconstruction images. 

5.2.25 hMSC Differ5entiation and Immunhistochemistry 

 Adipogenic differentiation of Q-hMSCs (11) was induced after the growth of 3D tissue-

like structures and co-culture with AO-Fb (15) by culturing substrates with induction 
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medium as described in the Lonza protocol. Surfaces were then fixed with formaldehyde 

(4 % in PBS, 30 min), immersed in a solution containing water and 60 % isopropyl 

alcohol (3-5 min) and stained with Oil Red O (red, lipid vacuoles, 5 min) and Harris 

Hemotoxylin (purple, nucleus, 1 min). Substrates were visualized by phase contrast 

microscopy using a Nikon TE2000-E inverted microscope. Image acquisition and 

processing was performed using Metamorph software. 

5.2.26 Confocal Microscopy 

 Cell clusters and tissue formation were generated, stained, and secured on a glass slide as 

previously described above and were visualized with a Nikon Eclipse TE2000-E inverted 

microscope (Nikon USA, Inc., Melville, NY). Data was analyzed by Metamorph software 

and a spectral confocal microscope (LeicaMicrosystems, Bannockburn, IL). 3D 

reconstructions of fluorescent images were generated using Volocity software with an 

average of 84 scans/image. 

5.2.27 Cell viability assay of 3D spheroid and multi-layered co-culture structures 

Cell viability of 3D spheroid and multi-layered tissue-like structures was assessed by 

performing a trypan blue viability assay (Hyclone, Fisher Sci, Pittsburgh, PA). Fb (15) 

and hMSC (11) spheroid and multi-layer co-culture structures were prepared as 

previously described. A solution of 0.4 % trypan blue in PBS was made and diluted in 

CBS (1:1) containing the spheroids (1, 2, 3, and 5 h after mixing) in solution and multi-

layer cell sheets (3, 5, and 7 d after a second cell population was added) on a glass slide. 

Trypan blue was allowed to react with the cells for 2 min, at which time spheroids and 

surfaces were imaged for blue fluorescence using a Nikon TE2000-E inverted 

microscope. A control experiment was performed in which 3D multilayered hMSC and 
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Fb co-cultures were generated for 7 days and then fixed with paraformaldehye and 

stained with trypan blue as described above. Images were compared to the control to 

approximate the % viability of cells in multilayers.   

5.2.28 Cell Viability Assay of Cells After Potential Application 

 HMSCs and Fbs were cultured with HQ-functionalized liposomes for 1, 3, 5, and 7 d as 

mentioned (5 and 13) and tested for viability after being subject to varying potentials. All 

cell populations maintained viability > 95 %. Measurements were performed in PBS, pH 

= 7.4. Each potential was held for 10 s, ranging from -100 to 650 mV, in ~185 mV 

increments. Cell viability was approximated by conducting a trypan blue assay after 

being subject to different potentials.    

5.3 Results and Discussion 

5.3.1 Overview of the Method 

In order to deliver and tailor cell surfaces with dynamic and bio-orthogonal 

chemical groups for cell membrane manipulation and control of cell-cell interactions, we 

first developed a liposome fusion-based model system. Hydroquinone (1, HQ) and 

aminooxy alkanes (3, AO) were synthesized and incorporated into liposomes (fig. S1-

S5). We have previously shown in solution and on conducting substrates how HQ is in 

the ‘off state’ and can be activated to the ‘on state’ quinone (Q) by mild chemical or 

electrochemical oxidation. Q can then chemoselectively react with AO-tethered ligands 

to form stable oxime linkages at physiological conditions (fig. S1) (24-26). The oxime 

linkage can then be selectively cleaved under reductive conditions to regenerate HQ with 

simultaneous release of the AO-tethered groups. This redox-active, oxime-based 

conjugation and release chemistry is bio-orthogonal and can be carried out in complex 
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protein mixtures, cell lysates, and in cell culture (26). Thus, our rationale was to combine 

this dynamic, switchable, and bio-orthogonal conjugation and release strategy with 

liposome fusion to tailor cell surfaces in vitro for studies in cell-surface manipulation and 

tissue engineering.   

 

Figure 5.1 Schematic and transmission electron micrographs (TEM) demonstrating 

dynamic liposome-liposome fusion and liposome-cell fusion for tailoring cell surfaces. 

(A) Hydroquinone (HQ)-containing liposomes (1) (3 mM in tris buffer, pH 7.4) are in the 

‘off state’ and are thus, activated to the ‘on state’ quinone (Q) (2) by mild chemical 

oxidation (20 µL, 5 µM CuSO4!5H2O in PBS at 10 mol %, 5 min) and mixed with 

aminooxy (AO)-containing liposomes (3). Mixing these two populations (0.2 mM total in 

PBS, 1:1) over 2 hours results in the formation of (B) multi-adherent, partially fused, and 

completely fused liposomal structures driven by oxime bond formation. Over time, the 

liposomes grow in size due to fusion. (C) General schematic representing the dynamic 

control of cell surfaces based on liposome-cell fusion for the delivery and tailoring of 

bio-orthogonal groups. POPC (398 µL, 10 mg/mL in CHCl3 at 88 mol %), DOTAP (10 

µL, 10 mg/mL in CHCl3 at 2 mol %), and HQ-functionalized alkane (160 µL, 10 mM in 

CHCl3 at 10 mol %) are mixed to form liposomes (3 mM in tris buffer, pH 7.4). The HQ-

tethered liposomes (4) are then added to cells in culture (400 µL to 4 mL, 16 h), resulting 

in fusion and subsequent presentation of HQ groups from the cell surface (5). HQ is then 

activated to Q (6), which reacts chemoselectively with a range of AO (or RONH2)-

tethered ligands or cells via a covalent and stable oxime linkage (7). Upon a mild change 

in redox environment, the oxime bond is cleaved (-100 mV, 10 s, pH 7.4) to release the 

ligand or cell, followed by regeneration of the HQ-presenting cell (5) for subsequent 

rounds of dynamic and controlled conjugation and release. 
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5.3.2 Biophysical Characterization 

To evaluate if liposome-to-liposome fusion can occur via oxime chemistry,  we 

activated HQ- (1) to Q-containing liposomes (2) and then mixed them with AO-

containing liposomes (3) (fig. S5). We observed rapid liposome aggregation and fusion 

(Fig. 1A) as shown by transimission electron microscopy (TEM) image analysis (Fig. 

1B). It was demonstrated that over time, an oxime-driven process directed liposomes to 

first aggregate and then fuse, forming larger assemblies (Fig. 1B). Fluorescence 

resonance energy transfer (FRET) characterization of liposome fusion displays a clear 

FRET signal, only when the complimentary oxime pair is present in the liposomes (fig. 

S6).  Furthermore, dynamic light scattering (DLS) analysis shows the spontaneous 

liposomal growth due to this oxime-driven liposomal fusion (fig. S7). Aggregated or 

fused liposomal structures were not observed  in control experiments where HQ-

containing liposomes were not activated or when either oxime pair was missing.  
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Figure 5.2 Biophysical characterization of liposome adhesion and fusion based on 

chemoselective oxime formation between Q- and AO-containing liposomes. Top- FRET 

studies: Q- (160 µL, 10 mM in CHCl3 at 10 mol %) and NBD-PE- (20 µL, 10 mg/mL in 

CHCl3 at 2 mol %) containing liposomes (16) were excited at 471 nm, producing light 

emission at 531 nm (green trace). When these liposomes (200 µL, 1:1) were mixed with 

AO- (60 µL, 10 mM in CHCl3 at 5 mol %) and rhodamine-PE/POPG- (28 µL, 10 mM in 

CHCl3 at 2 mol %) functionalized liposomes (17), a FRET emission peak is observed at 

578 nm indicating oxime-mediated liposomal adhesion and fusion. No FRET signal is 

observed with non-activated HQ liposomes or when liposomes without AO groups are 

mixed. Fluorescence was monitored for 2 h at 2 min intervals, and the temperature was 

maintained at 25 °C. Bottom left: DLS characterization of liposome adhesion and fusion 

based on chemoselective oxime formation between Q- and AO-containing liposomes. Q- 

and AO-containing liposomes (2 and 3, respectively) were mixed (0.2 mM in PBS, 100 

µL, 1:1) and monitored by DLS to observe the changes in liposome size over reaction 

time. Over a period of 80 min of mixing, liposomes grew in size due to adhesion, partial, 

or complete fusion (red trace). As a control, liposome size remained constant when Q-

containing liposomes (2) were added to liposomes not functionalized with AO groups or 

un-activated, HQ liposomes (1) with AO liposomes (3) (black trace). Bottom right: Mass 
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spectrometry characterization of oxime bond formation at the cell surface. (A) Self-

assembled monolayers (SAMs) of AO-terminated alkanethiol (1 mM in EtOH, 1 min, 

backfilled with 1 mM mercaptoundecanol in EtOH, 1 h) were formed on gold-coated (12 

nm) MALDI sample plates (123 x 81 mm). MALDI analysis was performed directly on 

the surface to display mass [M + H]
+
 of 437 corresponding to the AO-terminated 

alkanethiol connected by disulfide linkage. (B) Q-displaying Fbs (6) were seeded (10
7
 

cells/mL, 3 h in serum-free conditions) on gold-coated MALDI sample plates presenting 

AO-terminated alkanethiol. The cells were then washed several times (0.1% SDS in PBS, 

2 x 3 mL and EtOH, 2 x 3 mL) and dried before testing to result in (C) oxime conjugation 

on the surface. MALDI was again performed, and a mass [M + H]
+ 

of 478 corresponding 

to the product of Q and AO conjugation was observed. 

 

5.3.3 Dynamic Cell-Surface 

After the successful characterization of liposome-to-liposome fusion, we aimed to 

employ a similar strategy to generate electroactive, dynamic, and switchable cell 

surfaces. Therefore, we applied our liposome fusion method to deliver the bio-orthogonal 

HQ (4) and AO (12) groups for subsequent fusion and presentation from cell membranes. 

For these studies, HQ alkane was mixed with POPC, and DOTAP (a cationic lipid) in a 

10:88:2 ratio, and AO alkane with POPC, and DOTAP (5:93:2) (fig. S5). After addition 

to cells (swiss 3T3 fibroblasts (Fbs)) in culture, the liposomes first fuse, delivering the 

chemical groups to cell surfaces  (Fig. 1C). HQ can then be activated to generate Q, 

which will conjugate chemoselectively with AO-tethered ligands or cells to form a stable, 

interfacial oxime linkage. The oxime bond at the cell membrane can then be selectively 

cleaved with the simultaneous release of the ligand or cell and regenerate the HQ-

presenting cell. This dynamic cycle is non-cytotoxic (fig. S8), redox triggered and 

switchable (fig. S1), performed in situ and under physiological conditions, and provides 

unprecedented control of cell-cell and cell membrane interactions through the 

conjugation and release of ligands and cells. 
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Figure 5.3 (Top) Fluorescent and electrochemical characterization of cyclical cell-

surface tailoring and the release of ligands based on redox responsive chemoselective 

chemistry. (A) Fibroblasts (Fb), not fused with liposomes presenting HQ groups show no 

redox signal or fluorescence. (B) HQ-containing liposomes (4) are added to Fbs (3 mM in 

tris buffer, 400 µL to 4 mL, 16 h), resulting in membrane fusion and presentation of HQ 

from the surface (5). The stable HQ (5) to Q (6) interconversion can be monitored by 

cyclic voltammetry (CV) (-100 to 650 mV, pH 0, 100 mVs
-1

) due to its diagnostic redox 

peaks (black trace, HQ = 130 mV, Q = 258 mV). (C) Activated Q-presenting Fbs (6) can 

be chemoselectively reacted with rhodamine-AO (7 mM in H2O, 100 µL to 4 mL, 30 

min) for cell-surface tailoring (7 and 8). This results in stable, fluorescently labeled cells 
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(red) and a diagnostic shift in redox signal (red trace, 252 mv, 284 mV). (D) In a 

reductive environment (-100 mV, 10 s, pH 7.4), the oxime bond is cleaved with the 

release of rhodamine and the regeneration of HQ-presenting Fbs (5) as indicated by a loss 

in fluorescence and the redox peaks of the HQ to Q cycle (black trace). (E) Cell surfaces 

can once again be conjugated for a second time with hydrazide-tethered biotin (9 and 10) 

and fluorescein-presenting streptavidin (1 mg/mL in PBS, 0.5 mL to 2 mL, 1 h each), 

resulting in fluorescently labeled cells (green) and a shift in redox peaks (green trace). 

(Bottom) A general schematic and corresponding fluorescent images demonstrating 

dynamic control of cell adhesion and release from patterned substrates (F). Fbs were 

cultured with HQ-containing liposomes (4), resulting in membrane fusion and subsequent 

display of HQ from cell surfaces (5). Mild chemical oxidation (20 µL, 5 µM 

CuSO4!5H2O in PBS at 10 mol %, 5 min) converts the HQ to Q groups on the cell surface 

(6). Q-presenting Fbs (6) (10
4
 cells/mL, 2 h) were then added to a substrate patterned 

with AO-terminated ligands (1 mM in EtOH, 1:9 AO/EG4). Cells adhered to the substrate 

due to a biospecific interfacial oxime ligation and then proliferated (4 d) within the 

patterned region as shown in lower (G) and higher (H) magnified fluorescent 

micrographs. Upon electrochemical reduction, the interfacial oxime is cleaved and the 

cells are released from the substrate (I). Cells were stained for actin (red, phalloidin), 

nucleus (blue, DAPI), and anti-vinculin (green, Cy-2). 

 

 

Figure 3 demonstrates the dynamic and switchable conjugation and release of ligands to 

and from the cell membrane. After HQ-containing liposomes (4) were fused with Fbs (5) 

on a conductive substrate, cyclic voltammetry (CV) was performed, and distinct HQ to Q 

redox peaks were observed (Fig. 2A) (27). Upon activation to Q (6) (400 mV, 10 s) and 

conjugation of AO-tethered rhodamine (7 and 8) to cells, a shift in CV peaks, 

characterisitic of oxime formation (27), was observed. The rhodamine-labeled Fbs were 

also imaged, and red fluorescence was observed (Fig. 2B). After application of a non-

cytotoxic, reductive potential (-100 mV, 10 s, fig. S10), rhodamine was released from the 

cells, and HQ was regenerated on the cell surface as indicated by CV and fluorescence 

microscopy (Fig. 2C). We then re-activated the HQ-presenting Fbs to Q and conjugated 

biotin-hydrazide, followed by FITC-streptavidin. It was found that the cells could once 

again conjugate and release molecules from the cell surface shown by CV and 
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fluorescence microscopy (Fig. 2D). The oxime linkage is stable, and only upon 

application of a mild reductive potential does the oxime cleave and release ligands (27). 

In general, this dynamic strategy can be used for controlling the chemical structure of cell 

surfaces in 3D space and time with micro- or nanoelectrode arrays, where the cell surface 

ligands can be replaced with any biomolecule of interest, creating a new tool for the 

modulation of cell interactions.  

5.3.4 Cell Viability and Flow Cytometry  

Several assays were performed to evaluate cell viability as a function of applied 

redox potential (fig. 4). As a result, no change in cell viability was observed after 

applying different electrochemical potentials (-100 to 650 mV, 10 s) on cells cultured 

with HQ for up to 7 days. Other control experiments concluded that removing either HQ 

or AO from the fusion liposomes resulted in no ligand conjugation at the cell surface. 

When AO-alkane or HQ-alkane  was added directly to cells in culture but not in liposome 

form no incorporation of AO or HQ groups in cell surfaces were observed.  Additionally, 

when chemical or electrochemical activation does not occur, conjugation and release of 

ligands was not observed. Furthermore, we determined the amount of HQ molecules at 

the cell membrane upon initial liposome fusion by FACS analysis. FACS analysis also 

demonstrated that HQ remains incorporated in the membrane after several rounds of cell 

growth and division and that HQ can still be actived for conjugation and release of 

ligands (fig. 4). These results may lead to new ways to tailor and monitor in vitro and in  
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Figure 5.4 Fluorescence activated cell-sorting (FACS) analysis to determine the number 

of HQ molecules per cell. HQ-containing liposomes (4) were added to Fbs in culture (3 

mM in tris buffer, 400 µL to 4 mL, 1, 3, 5, and 7 d). The amount of HQ on cell surfaces 

as delivered by membrane fusion was determined after 1, 3, 5, and 7 days. Before 

conducting FACs, cells were chemically (20 µL, 5 µM CuSO4!5H2O in PBS at 10 mol %, 

5 min) activated to Q (6), followed by conjugation of biotin-hydrazide (9) (3 mM in CBS, 

1 mL added to 4 mL CBS in cell culture, 37ºC in 5% CO2, 1 h) and fluorescein-

streptavidin (1 mM in CBS, 0.5 mL added to 4 mL CBS in cell culture, 37ºC in 5% CO2, 

1 h). A control population in which Fbs (not functionalized with HQ groups) were 

reacted with biotin-hydrazide and FITC-streptavidin under the same conditions was also 

tested. All sample populations were centrifuged (5 min, 1000 rpm), resuspended in RPMI 

(10
7
 cells/mL), centrifuged, and resuspended in RPMI. 1-mL samples were tested against 

a standard bead (10
7

 beads/mL) with known fluorescein molecule density. (A) The 

relationship between the number of cells scanned (~10
5
) and fluorescence intensity of 

control population and cells incubated with HQ-functionalized liposomes for 1, 3, 5, and 

7 days as determined by flow cytometry analysis is reported. The fluorescence intensities 

decrease over time, indicating that cells are able to carry the HQ moiety through division 

and growth. The control cells show little to no fluorescence. (B) The number of 

fluorescein molecules was calculated by comparing the relative mean intensity to a 

standard bead with known FITC equivalent molecule density. The numbers of HQ 

molecules per cell are listed, showing a decrease in density on the cell surface over time. 

(C) The relationship between the mean fluorescence intensity (3 trials per day, error bars) 

and liposome incubation day is shown as a linear decrease from 1 to 7 days. Cell viability 

assay of hMSCs and Fbs when subjected to mild redox potentials. HMSCs and Fbs were 

cultured with HQ-functionalized liposomes (4) (3 mM in tris buffer, 400 µL to 4 mL) for 

1 (blue triangle), 3 (red circle), 5 (green square), and 7 (black star) days and tested for 

viability after being subject to varying redox potentials (-100 to 650 mV, 10 s, ~185 mV 

increments, PBS, pH 7.4). All cell populations (13 and 15) maintained viability >95% 

(trypan blue viability assay, 0.4 % in PBS, 2 min) and were indistinguishable from 

control populations not exposed to redox potentials. 

 

 

vivo events that occur at cell membranes and allow for new types of pulse and chase type 

experiments for cell imaging and for tracking cell movement (28,29). 
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5.3.5 Dynamic Cell Adhesion 

The incorporation and utility of HQ on the cell surface was further investigated by 

attaching and releasing cells from an OA-patterned substrate (Fig. 2C). HQ-presenting 

Fbs (5) were activated to Q (6) and then seeded onto an inert substrate, presenting AO 

groups (30). The Q groups on the cell surface (6) reacted biospecifically with the 

patterned OA ligands to form an interfacial oxime linkage. The cells attached and then 

proliferated, filling out the patterned regions. An electrochemcial trigger was then applied 

to cleave the oxime linkage, and cells released from the substrate. Furthermore, a novel 

MALDI mass spectrometry analysis of cell membrane incorporation shows oxime 

conjugation between Q presenting cells and OA terminated surfaces (Fig. S11) (31). This 

strategy allows for spatial and temporal control of cell interactions in 2D and may be 

extended to other materials and nanoparticles for designing new cell-based assays and 

renewable microarray platforms (32,33).  

5.3.6 Dynamic 3D Cell Assembly 

We extended this methodology to demonstrate the dynamic control over cell-cell 

interactions by co-culturing HQ-presenting human mesenchymal stem cells (hMSC) (13) 

with AO-displaying Fbs (15) to form 3D tissue structures. Upon chemical activation (see 

Supp. Info.) and mixing in solution, 3D spheroid assemblies were able to be rapidly 

generated (Fig. 3A). By increasing the mixing duration, control of the spheroid size could 

be achieved (fig. S12). The interconnected cells that make up the spheroids could then be 

disassembled, back to individual cells by mild electrochemical reduction (-100 mV, 10 s) 

(Fig. 3C). Additionally, spheroids were formed when Swiss 3T3 albino mouse Fbs 
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presenting HQ groups were activated (6) and co-cultured with nuclear m-cherry-labeled 

Rat2 Fbs displaying AO groups (14) (Fig. 3B). Figure 3D exhibits a cryo scanning  

 

Figure 5.5 Schematic and corresponding images of 3D dynamic spheroid and multi-

layered tissue assembly and disassembly via liposome fusion and chemoselective cell-

surface tailoring. (A) Human mesenchymal stem cells (hMSCs) are functionalized with 

HQ groups (13) (3 mM in tris buffer, 400 µL to 4 mL, 16 h) after liposome fusion and are 

then activated to Q (11). Fbs presenting AO groups (14) are then co-cultured (1 mL, 1:1, 

3 h) with Q-displaying hMSCs (11), producing (B and C) 3D spheroid assemblies, 
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interconnected through chemoselective oxime chemistry. Mild electrochemical reduction 

(-100 mV, 10 s, pH 7.4) causes oxime cleavage and the dynamic disassembly of cells as 

shown in (D). (E) Activated, Q-tethered hMSCs (11) are cultured on a substrate (10
5
 

cells/mL, 3 d), resulting in a 2D cell monolayer (F). AO-presenting Fbs (15) are added 

(10
5
 cells/mL, 2 d) to the hMSCs (11), and a 3D interconnected multi-layered structures 

(G). A reductive potential applied to the substrate cleaves the oxime bond and induces 

the dynamic release of Fbs from the multi-layer, regenerating the 2D monolayer of 

hMSCs (H). The nuclei of OA-tethered Fbs (14) shown in C are stained with m-cherry 

for enhanced visualization. HMSCs (11) and Fbs (15) displayed in F-H are stained for 

actin (red, phalloidin) and nucleus (blue, DAPI).     

 

electron micrograph (SEM) of an oxime ligated, spheroid assembly of  hMSC (15) and 

Fbs (13) attached to a substrate. Viability for the cells in the spheroids was analyzed over 

time (1 to 5 hours, trypan blue assay, blue false colored) and found to be > 99%. Control 

experiments when no activation occurs or when one of the oxime compliments is not 

present in a cell type showed no spheroid formation. These results indicate that 3D co-

culture assemblies in solution can be generated in a straightforward manner with the 

ability to control both the size, compostion, and the duration of cell-cell interactions. This 

strategy is general and may be used for numerous studies, including autocrine and 

paracrine signaling events and when combined with microfabricated scaffolds as a tissue 

engineering platform.   

5.3.7 Dynamic 3D Tissue on Solid Surface 

In addition to forming spheroid assemblies, we demonstrate that 3D multi-layered co-

culture tissue structures are able to be generated on a solid support. We cultured 

activated, Q-presenting hMSCs (11) on a substrate to form a 2D monolayer (Fig. 5E-F) 

and  then added AO-displaying Fbs (15). Chemoselective ligation occurs between the two 

cell populations followed by 3D multi-layer tissue growth after 3 days (Fig. 5G). When 

the proper oxime pair is not present, only a single monolayer of hMSC is observed with 
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no Fbs adhering. We found that cells were viable for many days (> 7 days) and that the 

HQ and AO could be carried forward on the cell surface (FACS analysis over time, fig. 

S4) even through cell growth and proliferation. The multi-layers were able to be 

disassembled by applying a mild reductive potential to the substrate (-100 mV, 10 s, pH = 

7.4), which cleaved the oxime linkage and released the interactions between cells. 

Overall, this dynamic method to generate 3D multi-layer tissue structures may be used to 

control cell-cell interactions for many co-culture-based cell behavioral and cell tissue 

applications (34). 

5.3.8 Dynamic Platform for Stem Cell Differentiation 

We further employed this dynamic strategy to study stem cell differentiation by 

applying our liposome fusion-based delivery of activatable bio-orthogonal groups to cell 

surfaces to generate 3D multi-layered cell tissues and induce adipocyte differentiation 

(Fig. 6). HQ-presenting hMSCs were activated and co-cultured with Fbs as described 

previously. This tissue was grown in media that induced adipocyte differentiation after 10 

days, resulting in 3D multi-layered co-culture tissues of adipocytes and Fbs (Fig. 6D). 

Application of a mild reductive potential disassembled the 3D tissue, leaving a relatively 

pure, 2D adipocyte monolayer (Fig. 6E-F). The dynamic and controlled 3D multi-layer 

cell disassembly indicates that cell-cell interactions, even for complex stem cell 

differentiation processes over long time periods, can be precisely manipulated. By 

assembling and disassembling the co-cultures on demand, a time course of cell behavior, 

due to length of cell-cell interactions, is able to be determined for a range of cell lines and 

co-culture-based applications (35,36). 
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Figure 5.6 Schematic and corresponding phase contrast images displaying the formation, 

differentiation, and release of 3D dynamic tissues using a Fb/hMSC co-culture. (A) 

Activated, Q-tethered hMSCs (11) are cultured on a substrate (10
5
 cells/mL, 3 d) and 

form a 2D monolayer as shown by the image in (B). AO-presenting Fbs (15) are then 

added (10
5
 cells/mL, 2 d), producing a 3D multi-layered, interconnected co-culture (C). 

When the appropriate induction media is delivered to the co-culture, hMSCs differentiate 

into adipocytes, resulting in a 3D multi-layered co-culture of Fbs and adipocytes (D). A 

reductive potential (-100 mV, 10 s, pH 7.4) applied to the substrate results in oxime 

cleavage and the dynamic release of Fbs, leaving only the adhered adipocytes on the 

surface as a 2D monolayer shown by lower (E) and higher (F) magnified images. 

Adipocytes were stained for lipid vacuoles (red, Oil Red O) and nucleus (purple, Harris 

Hemotoxylin). 

 

 

5.4 Conclusions 

In summary, we have developed a new general and straightforward liposome 

fusion based methodology to deliver dynamic and switchable bio-orthogonal chemistries 

to tailor cell membranes and direct the formation of 3D co-culture tissue structures. We 

demonstrated and extensively characterized the conjugation and release of molecules to 

and from cell surfaces in situ, as well as the triggered assembly and disassembly of 3D 

spheroid and multi-layered tissues. Additionally, dynamic co-cultures of hMSCs and Fbs 

were able to be generated and differentiated with this redox oxime strategy.    

 The dynamic and bio-orthogonal oxime chemistry reported has several key 

advantages to serve as a cell-surface engineering and cell-tissue generating system. First, 
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the oxime complimentary pair is synthetically straightforward, and ketone-, hydrazide, 

and AO-tethered ligands are commericially available. Second, oxime reactivity can be 

switched ‘on’ and ‘off’ with a change in the redox environment and therefore, can be 

used to monitor cell-surface incorporation of moleucles and cell-surface interactions. 

Third, the oxime bond forms rapidly and is stable under physiological conditions until 

subject to a chemical or electrochemical reducing potential. Fourth, the redox 

manipulation is non-cytotoxic. Fifth, this liposome fusion-based method is general and 

can be used to deliver the oxime pair to a range of cell lines for a variety of applications. 

Lastly, this methodology can be used to deliver a variety of other bio-orthogonal ‘click’ 

chemistries to cell surfaces. 

Future applications of this strategy may be extended to study and manipulate stem cell 

fate of 3D multi-layered co-culture tissues and for controlling stem cell plasticity. 

Integration of this approach with 3D polymer scaffolds may lead to the design of new 

tissue enginering and regenerative medical therapies, devices, and applications. 

Theranostic applications, where simultaneous delivery of therapies and diagnostic 

monitoring, may also be possible for a variety of in vitro and in vivo imaging and cell 

tracking studies. With the introduction of an electroactive cell surface, it may be possible 

to track dynamic biophysical events, such as lipid diffusion and endo- and exocytosis. By 

generating a photo-inducible linker within the bio-orthogonal pair lipids a light sensitive 

cleavable system may also be generated for spatial and temporal control of cell-cell 

interactions (11,37). By altering the lipid composition and mix of bio-orthogonal groups 

in cell membranes via liposome fusion and delivery, potential cell to cell fusion 

experiments and the generation of tailored giant unilamellar vesicles may be possible. 
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Finally, by tailoring and controlling cell surfaces and cell-cell interactions, new types of 

autocrine and paracrine signaling studies for fundamental cell behavior and tissue 

regeneration applications may be explored (38,39). 
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CHAPTER 6 

A Dual Receptor and Reporter for Multi-Modal Cell-Surface 

Engineering 

 
6.1 Introduction 

Proper understanding of biological system is the key for any therapeutic and medical 

based research and technology. Visualizing and quantifying the signaling molecules and 

events with spatial and temporal control in cellular processes goes a long way in serving 

the purpose. Advances on genetic engineering producing new variants in green 

fluorescent proteins coupled with development in fluorescence microscopy has provided 

the basic tools to investigate the complex processes in cell biology.1 The fluorescent 

protein based indicators can be designed to target sub-cellular compartments, whole 

organisms and tissues and can respond to a variety of biological signals and events. 

Although GFP and its variants2-6 are extremely useful for tracking the localization and 

expression of proteins and investigate important cellular processes, small-molecule 

probes like organic dyes7, quantum dots8 and different class of nanoparticles9 with less 

steric bulk, faster rates of labeling and the ability to provide readouts in addition to, or 

other than fluorescence is desired.  

Cell-surface modification can facilitate the characterization of a number of cellular 

processes and signal transduction pathways in terms of identifying key proteins and 

signaling molecules.10 One major application of engineering cell surfaces can be in 

modifying the cell membrane with molecular and detection probes for subsequent 
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tracking and chasing in cell based therapy.11 Cell based therapy has been widely used as a 

therapeutic approach towards regenerative medicine. In particular, stem cells can be used 

to restore tissue functions either as integrated participants in the target tissue or as 

vehicles that deliver complex signals to a target tissue without actually participating into 

the tissue itself.12 So any fluorescence based reporter system that can provide us with a 

spatial and temporal control in tracking the delivered cell from its injection through 

transport inside the body will be highly beneficial to the field of tissue engineering and 

drug delivery. 

Calcein dye is a polyanionic derivative of fluorescein that exhibits fluorescence that is 

essentially independent of pH between 6.5 and 12. It is well retained in cells. These 

features have made it a popular and versatile dye for various applications, including cell 

volume changes in neurons and other cells, endocytosis, gap junctional communication, 

membrane integrity and permeability, angiography, etc. 13-17 Dabcyl has been routinely 

used as a general-purpose dark quencher for many commonly used fluorophores 

including calcein. It quenches the fluorphores by FRET (Fluorescence Resonance Energy 

Transfer) which is a dynamic quenching mechanism that does not affect the probe’s 

absorption spectrum.18 FRET is a highly distance dependent interaction between a 

reporter dye in an excited state and a quencher in its ground state. Energy is transferred 

from one molecule (fluorophore) to the other (the quencher) without the emission of a 

photon. In order for efficient FRET quenching to take place the fluorophore and the 

quencher molecules must be closer to each other (10 – 100 A°). In this study we have 

developed a liposome fusion based dual receptor-reporter system where cell surfaces 

were tailored and made fluorescent with a lipid tail conjugated calcein dye. Spatial and 
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temporal control on the cell-surface fluorescence was achieved by coupling the dye with 

its FRET quenching partner dabcyl using oxyamine exchange chemistry. We also applied 

the methodology to make three dimensional fluorescent tissue spheroids. Delivering the 

fluorescent tissue patches can not only have potential uses in surgery and regenerative 

medicine, particularly in wound healing applications but might also enable us to answer 

many fundamental questions in cell and molecular biology. 

6.2 Materials and Methods 

6.2.1 Materials 

All chemical reagents were of analytical grade and used without further purification. 

Lipids egg palmitoyl-oleoyl phosphatidylcholine (POPC) and 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) were purchased from Avanti Polar Lipids 

(Alabaster, AL). Antibodies and fluorescent dyes were obtained from Invitrogen 

(Carlsbad, CA). FITC labeled beads were purchased from Spherotech, Inc. (Forest Lake, 

IL) and all other chemicals were obtained from Sigma-Aldrich or Fisher. Swiss 3T3 

albino mouse fibroblasts (fbs) were obtained from the Tissue Culture Facility at the 

University of North Carolina (UNC). 

6.2.2 Formation of Lipid Vesicles 

 To generate ketocalcein-containing liposomes for cell fusion studies, ketocalcein (46 

!L, 10 mM solution in CHCl3 at 10 mol %) was dissolved with egg-POPC (424 !L, 10 

mg/mL in CHCl3 at 93 mol %) and 1,2-dioleoyl-3-trimethylammonium-propane 

(DOTAP, 10 !L, 10 mg/mL in CHCl3 at 2 mol %) in chloroform followed by 

concentration under high vacuum for 4 h. The dried lipid samples were then reconstituted 



 146!

and brought to a final volume of 3 mL in PBS buffer, pH 7.4. The contents of the vial 

were warmed to 50 ˚C and sonicated for 20 min, in a tip sonicator, until the solution 

became clear, and LUVs containing ketocalcein groups were formed. 

6.2.3 Fluorimetry 

 Liposomes were made starting with 2.7 mM of DOTAP and POPC and 0.3 mM of 1 

dissolved in chloroform. Following literature procedure, the liposomes were synthesized 

and size selected for a distribution of 60-100 nm, which was verified by TEM. After the 

liposomes were made, they were diluted 1:10 into 2 mL of pH 7 phosphate buffer, and a 

fluorescent scan from 500 – 600 nm with excitation at 495 nm was made. To monitor the 

quenching reaction, dabcyl hydrazide was saturated into the solution and the fluorescence 

was monitored at 520 nm with 495 nm excitation over 12h. To measure recovery, 

liposomes were synthesized using 2.7 mM of DOTAP and POPC and 0.3 mM of 5. To 

measure recovery, liposomes were synthesized using 2.7 mM of DOTAP and POPC and 

0.3 mM of 5. These quenched liposomes were then diluted 1:10 into 2 mL of pH 7 

phosphate buffer and 50 mg of methyloxyamine was added. To monitor the exchange 

reaction, the fluorescence was measured at 525 nm with 495 nm excitation over 12h. 

6.2.4 Flow Cytometry 

 Fluorescence activated cell sorting (FACS) analysis was performed in order to 

quantify the approximate number of ketone and oxyamine groups at the cell surface after 

membrane fusion. Liposomes (5) were prepared as described above and were delivered to 

Swiss 3T3 albino mouse fbs in culture (3 mM in tris buffer, 400 µL added to 4 mL, 16 h). 
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A time course assay was also conducted using FACS to determine whether the chemistry 

was being carried on after cell growth and division. Fbs were cultured with ketocalcein-

containing liposome for 2, 4, and 6 d followed by fluorescein-conjugated streptavidin (1 

mM in CBS, 0.5 mL added to 4 mL CBS in cell culture, 1 h). A control cell population 

(not displaying ketone groups) was only incubated with biotin-hydrazide and 

streptavidin-fluorescein for 1 h each, under the same conditions. Cells were then 

centrifuged (5 min, 1000 rpm), resuspended in RPMI (without phenol red), centrifuged (5 

min, 1000 rpm), and resuspended in RPMI (~107 cells/2 mL). Fluorescence 

measurements were calibrated using RCP-5-30 beads (~107 beads/mL, Spherotech, Inc., 

Lake Forest, IL) of known fluorescein equivalent molecule density. Fluorescent 

intensities based on number of cells counted were compared to the standard bead and 

control cells lacking fluorescent molecule conjugation and approximate numbers of 

fluorescent compound bound to the surface was calculated. Flow cytometry was carried 

out using a Dako CyAn ADP (Beckman-Coulter, Brea, CA), and data was analyzed with 

Summit 4.3 software.   

6.2.5 Fibroblast (Fb) Culture 

 Swiss 3T3 albino mouse fbs and Rat2 fbs were cultured in Dulbecco’s Modified 

Eagle Medium (Gibco) containing 10 % calf bovine serum (CBS) and 1 % 

penicillin/streptomycin at 37 °C in 5 % CO2. Delivery of functionalized liposomes to 

cells. Cells were seeded onto a tissue culture plate and allowed to grow for 48 h at 37 °C 

in 5 % CO2 in CBS media. Solutions of ketocalcein-LUV (5) were added to cells for 4 h. 

The cells were then washed with PBS (4 x 4 mL) and imaged under a fluorescence 



 148!

microscope with an exposure time of 1/1200 s. Cell-surface reaction to ketoncalcein-

presenting cells. Solutions of ketocalcein-LUV were reacted with dabcyl hydrazide (1 

mg/mL) for 3 h and then added to the culture to give the desired final ketocalcein 

concentration of 100 µg/mL in a total volume of 2 mL. The cells were incubated with the 

keto-LUVs for 4 h and washed with PBS (4 x 25 mL. The cells were then removed with a 

solution of 0.05 % trypsin 0.53 mM EDTA and re-suspended in serum-free medium 

(~104 cells/mL). The cells were then seeded to a fibronectin-coated surface for 2 h. After 

2 h, serum-containing media was added for cell growth and imaged after 3 days.  

Fluorescence recovery of quenched cells. Cells treated with quenched ketocalcein-

LUVs were treated with biotin hydrazide (3mg/mL, 1:20 v/v) for 16 h. The conjugated 

dabcyl hydrazide was exchanged by biotin over time and the green fluorescence was 

recovered. The presence of biotin on cell-surface was confirmed by adding rhodamine 

conjugated streptavidin (1 mg/mL) which has high affinity towards biotin and turns the 

cells fluorescent red. 

6.2.6 3D Co-Culture Spheroid Generation 

 Ketocalcein-LUVs were generated as previously reported and added to Swiss 3T3 

albino mouse fb (3 mM in tris buffer, 400 µL added to 4 mL, 16 h) and were cultured, 

resulting in fusion and display of ketones from the cell surface and also making the cells 

fluorescent green. 200 µL of 10 mM RGD-oxyamine was added to 4 mL of the 

fluorescent cell. After 3 h the cells were trypsinized and added to a Swiss 3T3 albino 

mouse fb solution. These two cell populations were then trypsinized and mixed together 

in serum containing (10 %  FCS, pH of 7.4) media in a 10 mL flask and incubated at 37 
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°C and 5 % CO2 for 1, 2, 3, and 5 h. After mixing for the allotted time, cells were seeded 

onto a glass surface and visualized under a Nikon TE2000-E inverted microscope under 

the brightfield setting (75 ms exposure time). Controls were also performed where fbs 

displaying ketone groups were reacted with RGD with no oxyamines and scrambled 

RGD with oxyamines and co-cultured with fbs (not displaying ketones groups) for each 

of the corresponding time points, 1, 2, 3, and 4 h, seeded onto glass, and imaged under 

the brightfield setting (75 ms). Image acquisition and processing was performed using 

Metamorph software.  

6.3 Results & Discussion 

6.3.1 Motivation of Work 

In order to create our cell surface receptor/reporter system, we pooled many different 

features from divergent fields. For our studies, we sought the simplest molecule that was 

both fluorescent, had a handle for cell surface immobilization, and could be act as a lipid. 

To combine these functionalities into one molecule, we used a calcein derivative 1. 

Calcein is a cell impermeable fluorescent dye used for live/dead cell assays and is highly 

charged, and when coupled with a 12 carbon chain, it acts like a lipid where the calcein 

serves as the charged head and the dodecyl chain serves as the greasy tail. This feature 

makes 1 prefer the surface of the lipid instead of its hydrophobic core and stay on 

membrane surfaces. At pH 7, calcein forms a tautomer that contains a ketone, which 

provides a handle for functionalization. Despite previous studies that have synthesized 

both the ketone and oxyamine derivatives of fluorescein, we reasoned we could directly 

couple hydrazines and oxyamines to this ketone. Additionally, this molecule is simple to 

synthesize requiring only one step to generate 1 from inexpensive starting materials. In 
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order to functionalize the cell surface with a cell surface receptor, we wanted to combine 

a cell labeling methodology with oxyamine/ketone chemistry to gain access to a 

chemoselective bio-orthogonal reaction strategy, thereby creating a fluorescent cell 

surface receptor. To functionalize the cell surface and introduce the fluorescent cell 

surface receptor, liposome fusion was used. Positively charge liposomes have been 

shown to fuse non-specifically to cells surfaces. In previous studies, these liposomes were 

doped to contain synthetic fluorescent lipids to label cell surfaces and mark certain 

populations in cell culture.19 For our studies, POPC 2 served as the background lipid, 

DOTAP 3 served as the cationic lipid used to initiate cell surface fusion, and we mixed in 

a fluorescent lipid containing a ketone. For the immobilization strategy, oxime and 

hydrazone formation from a ketone was chosen. These chemistries offer several 

significant advantages as an immobilization strategy. They are bio-orthoganol, take place 

in the presence of cells, they do not require catalyst, they can be exchanged in the 

precence of other oxyamines and hydrazines, and synthesizing oxyamines and hydrazides 

is relatively simple.20 To create the cell surface reporter/receptor, we leveraged 

oxyamine/hydrazine exchange reaction. Many groups have harnessed the ability for an 

oxyamine to exchange for another for enzymatic labeling and small molecule library 

synthesis. For our studies, the initial ligand was dabcyl hydrazide, 4, a broad-spectrum 

fluorescent quencher. Here, we coupled the hydrazide derivative to the calcein dye to 

synthesize calcein derivative 5. With the dabcyl coupled to the calcein, the fluorescence 

was effectively quenched. However, when another oxyamine or hydrazide ligand was 

exchanged for the dabcyl hydrazide on the cell surface, the fluorescence was recovered, 

thereby providing signal that the ligand of interest had bound the receptor on the cell 
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surface. Before undertaking liposome studies, we synthesized both 1 and 5 in solution 

and were able to exchange the dabcyl hydrazide from 5. We verified this with NMR and 

mass spectrometry.  

6.3.2 Fluorimetry Studies  

After the solution studies, flouremetry was used to monitor both the quenching and 

exchange reactions on the liposomes. Liposomes were made starting with 2.7 mM of 

DOTAP and POPC and 0.3 mM of 1 dissolved in chloroform. Following literature 

procedure, the liposomes were synthesized and size selected for a distribution of 60-100 

nm, which was verified by TEM. After the liposomes were made, they were diluted 1:10 

into 2 mL of pH 7 phosphate buffer, and a fluorescent scan from 500 – 600 nm with 

excitation at 495 nm was made. The scan showed the presence of the calcein derivative in 

the liposome. To monitor the quenching reaction, dabcyl hydrazide was saturated into the 

solution and the fluorescence was monitored at 520 nm with 495 nm excitation over 12h. 

Before the addition of dabcyl hydrazide, the liposomes were highly fluorescent with a 

peak at 525 nm. However, as 4 reacted with the calcein on the liposome surface, the 

fluorescence decreased and was fully quenched after 10h. After the quenching reaction, a 

scan was made from 500-600 nm with an excitation at 495 nm, and it was observed the 

fluorescence was reduced by a factor of 5. To measure recovery, liposomes were 

synthesized using 2.7 mM of DOTAP and POPC and 0.3 mM of 5. A scan of these 

liposomes showed they were similar in fluorescence to the liposomes quenched by 

reaction. These quenched liposomes were then diluted 1:10 into 2 mL of pH 7 phosphate 

buffer and 50 mg of methyloxyamine was added. To monitor the exchange reaction, the 

fluorescence was measured at 525 nm with 495 nm excitation over 12h. As the exchange 
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took place and the dabcyl hydrazide was removed from the molecule, fluorescence was 

recovered leading to an increase in signal. The exchange reaction took 12h to fully 

recover and after the exchange reaction had gone to completion, another scan with the 

same parameters as before showed the fluorescence had fully recovered and was 

comparable to the fluorescence before the quenched reaction.    

 

Figure 6.1 Design and Characterization of Cell Surface Fluorescent Receptor/Reportor 
system. A) List of molecules used in this study. B) Fluorescent liposomes were 
synthesized by sonication containing 1. C) These fluorescent liposomes were quenched 
via a chemoselective and bio-orthogonal reaction with dabcyl hydrazide. D) The 
fluorescence was recovered by oxyamine exchange in the cell dye. E) Graph of 
fluorescent intensity vs. wavelength. Both the recovered and initial fluorescent liposomes 
were highly fluorescent. However, once reacted with the dabcyl hydrazide, a efficient 
quencher, the fluorescence from the liposomes was significantly reduced. F) Graph of 
fluorescent intensity vs. time for the liposome quenching reaction measured at 525 nm 
with 495 nm excitation. G) Graph of fluorescent intensity vs. time for the fluorescent 
recovery reaction measured at 525 nm with 495 nm excitation. 
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6.3.3 Flow Cytometry and Cell Viability 

Once the solution and liposome studies were successful, we moved onto 

integrating this methodology with cells. Liposomes containing 1,2,3 were synthesized 

and fused with fibroblasts for 4h. The cells were allowed to culture for 1, 4, and 6d and 

their fluorescence was measured by FACS analysis. FACS analysis allowed for the cell 

fluorescence to be measured. As a control, liposomes were not fused to a certain cell 

population. Compared to the control, there was a large increase in fluorescence after 

fluorescent liposome fusion. As the cells were allowed to grow in the cell culture, the 

fluorescence decreased over time, most likely due to the dilution and degradation of the 

lipids. These results verified the introduction of fluorescence to the cells. Next, the 

quench and recover was verified on the cell surface. Liposomes were synthesized using 

5,3,2 and then fused to cell surfaces as before. Once the liposomes were fused to the 

surface, FACS analysis demonstrated similar fluorescence to the control. To verify the 

fluorescence recovery on the cell surface, the cell media was exchanged for media that 

had 1 mg/mL of methyloxyamine. The cells were allowed to culture for 12h and then the 

media was exchanged again. These cells were allowed to grow for 1, 4, and 6d and then 

analyzed by FACS. The fluorescence intensity matches that of the cells containing 1 

demonstrating recovery of the fluorescence after the oxyamine exchange reaction on the 

cell surface. Next, the viability of fibroblasts was verified with the trypan blue assay. 

Cells were fused with both fluorescent and quenched liposomes and their viability was 

measured after 1, 3 and 5 d. The cells were found to be >90% viable and were 

comparable to control cell populations not fused with the liposomes.  
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6.3.4 Fluorescence Recovery by Cell Surface Exchange Reaction 

After the cell fluorescence and viability were verified, the fluorescent recovery on 

the cell surface was verified with fluorescence microscopy. Fibroblasts were fused with 

quenched lipids. Fluorescent microscopy revealed the cells had no appreciable 

fluorescence. After this, 1 mg/mL of methyl oxyamine was added to the media. The cells 

were imaged after 6h and cells were becoming fluorescent. After 12h, the cells were fully 

fluorescent and were comparable with cells fused with non-quenched lipids. This data 

demonstrates the ability of the exchange reaction to take place on the cell surface even in 

the presence of other cells without harming cell viability. No recovery was observed 

without an oxyamine-terminated ligand or in the presence of an amine one. 
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Figure 6.2. Cell viability and fluorescent recovery. A) Lipsomes containing 1 were fused 
to fibroblast surfaces resulting in fluorescent labeling of the cell surface. B) Bar graph of 
the fluorescence intensity of the cells vs. time determine by FACS. No liposomes were 
fused to the control. C) FACS analysis of the cells showed an increase in fluorescence vs. 
the control, which decreased over time as the lipids were diluted by cell division. No 
liposomes were fused to the control D) Quenched Liposomes were fused to fibroblast 
surfaces to study fluorescent recovery by oxyamine exchange. After the quenched 
liposomes were fused to the cell surface, an oxyamine was added to the cell media and as 
the oxyamine exchanged the dabcyl , the fuorescence was recovered. E) Cell viability 
studies of cell fused with liposomes, both fluorescent and quenched. Cells were found to 
be >90% viable using the trypan blue assay. F) FACS analysis after the cells had 
recovered their fluorescence after 1,4, and 6d. As control, cells were fused with 
liposomes and cells were fed quenched liposomes, but no oxyamine exchange reaction 
took place. G) A series of fluorescent images taken after methyloxymine was added to 
the cell media. After 12h of oxyamine exchange, the cells were fluorescent.  
 

 

 Figure 6.3 Cell surface ligand immobilization and  protein surface functionalization. A) 
Cells were fused with quenched liposomes and biotin hydrazide was added to the media 
to exchange the dabcyl and functionalize the cell surface with biotin. Then, TRITC 
labeled streptavidin was immobilized to the biotin on the cell surface. B) Fluorescent 
Micrograph of the cells fused with the quenched liposomes. C) Fluorescence recovery 
12h after media containing 1 mg/mL of biotin hydrazide was added to the cells to label 
cell surfaces with biotin. D) Biotin presenting cells after 4h of exposure to media 
containing 1 mg/mL of TRITC labeled streptavidin. The streptavidin had bound the cell 
surface and made them fluoresce red. 
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6.3.5 Cell-Surface Receptor 

      Once the cell compatibility and cell surface exchange reaction were verified, we 

wanted to demonstrate the ability to modify the cell surface with proteins using the 

ligands introduced to the cell surface. For these experiments, we chose the biotin 

streptavidin complex. Biotin-streptavidin has one of the highest affinities in nature and 

has been used to modify a variety of materials. After quenched liposomes containing 5 

were fused to cells, the cell media was exchanged to contain 1 mg/mL of biotin 

hydrazide. After 12h, the cells were imaged and observed to be fluorescent, signifying the 

exchange reaction has taken place on the surface. Next, the media was changed to 1 

mg/mL of TRITC streptavidin and allowed to react with the surface for 4h. The TRITC 

streptavidin recognized and bound the biotin on the cell surface and the cells became 

fluorescently red, demonstrating streptavidin binding to the cell surface. As controls, the 

cells did not become fluorescent when biotin was added to the media instead of biotin 

hydrazide and TRITC streptavidin did not bind the cells when methyloxyamine was 

present instead of biotin hydrazide.  

6.3.6 3D Cellular Assembly  

      For the final experiment, the cell surface receptors were used to create cell 

assemblies. Quenched liposomes containing 5 were fused to the cell surface using the 

same procedure as above. Then, the tripeptide RGD was reacted to the cell surface. RGD 

is a tripeptide that has been shown to act as an epitope for fibronectin. It activates the 

integrin receptors on the cell surface that mediate cell adhesion to the extracellular 

matrix. A second cell population was added to the first and recognized the RGD ligand 

on the cell surface and bound to it, leading to the formation of cell assemblies. As a 
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control, the cell surfaces were reacted with the scrambled peptide DRG instead of RGD 

and the cell became fluorescent, but did not form cell assemblies. Once fed RGD, the 

cells became fluorescent and formed tissue-like structures demonstrating the ability of 

these cell receptors to occur in the presence of cells. A timecourse showed an increase in 

the diameter of the assemblies. Additionally, it was observed not all the cell are 

fluorescent demonstrating the ability of the methodology to not only modify the cell 

surface, but mark which cells have been modified with a cell ligand. The largest structure 

formed was several hundred microns wide and contained multiple layers of cells 

demonstrating the ability of this methodology to generate large 3D structure from simple 

materials. 
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Figure 6.4 Formation of cell assemblies by cell surface engineering. A) Cells were fed 
quenched liposomes. These cells were reacted with RGD oxyamine to both recover the 
fluorescence and generate RGD presenting cells. These cells were mixed with another 
population of cells bound and recognized these RGD presenting cells forming cell 
assemblies. B) Brightfield image of fibroblasts fed quenched liposomes then reacted with 
a scrambled oxyamine peptide. C) Fluorescent micrograph of the same cells 
demonstrating the fluorescence had been recovered, but no assemblies formed due to the 
lack of a bio specific interaction. D) Overlay of both brightfield and fluorescent images 
of cells fed quenched liposomes then reacted with RGD and mixed with another 
population of non-labeled cells. Cells were allowed 1h to form in solution. The same 
experiment repeated for E) 2h, F) 4h, and G) 8h. The cell clusters grew in size and the 
RGD cells are marked by their fluorescence. 
 

6.4 Conclusions  

In conclusion, we have developed a general methodology based on simple chemistry to 

modify cell surfaces with a fluorescent molecule capable of not only marking cells, but 

fluoresces when a molecule binds the surface. The cell surfaces were modified with 
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liposomes driven by positively charged lipids. Both the quenching and exchange 

reactions were studied on the liposomes using fluoremetry and took place in about 12h. 

The liposomes were then characterized on the cells. Cell viability and FACS 

demonstrated the cells remained viable after fusion and were fluorescent. Additionally, 

the dabcyl could be exchanged on the cell surface to recover the fluorescence. Next, the 

availability of the ligand was verified using biotin hydrazide-TRITC-streptavidin. 

Finally, cell assemblies were synthesized using RGD ligand. However, the method is 

general. These quenched fluorescent pairs are simple to synthesize in solution and there 

are more than 20 dyes with similar structures that could be applied to. In future, we hope 

to study other quenched and two color FRET pairs.  
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CHAPETER 7 

 

General Conclusions and Future Directions 

 

7.1 General Conclusions 

 

       This dissertation focused on the use of chemoselective liposome fusion as a tool for 

engineering cell-surface and it’s further application in tissue engineering. Chapter II 

discussed the development of a general method to pattern electroactive and 

chemoselective fluid lipid bilayers on gold surfaces for a range of biospecific ligand-

receptor interaction studies on model membranes. In this study, a variety of oxyamine-

tethered ligands (fluorescent dye, sugar) were successfully immobilized in arrays using 

microfluidic lithography. This platform is rapid and flexible and can be extended to many 

areas in biochemistry, cell biology and material science to study fundamental membrane 

activity and enzymology. 

   Chapter III described the development of a chemoselective synthetic cell receptor 

system based on liposome delivery and fusion strategy. Ketone and oxyamine groups 

were introduced to a liposomal system and chemoselective vesicle fusion was achieved 

using molecular recognition and interfacial oxime bond formation. Subsequent delivery 

of the decorated liposomes to cells lead to fusion and modification of a cell surface by 

bio-orthogonal reactive groups that serve as synthetic chemoselective cell receptors. 

Ketone and oxyamine modified cells were patterned on solid surfaces, displaying 

oxyamine and ketone groups respectively. 
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   Chapter IV focused on the application of the liposome delivery and fusion strategy to 

generate 3D spheroid cellular assembly with controlled interconnectivity and patterned  

multi-layered tissue like structures. Furthermore, 3D multi-layered stem cell and 

fibroblast (fb) co-cultures were generated, and differentiation was induced to form tissue-

like structures of adipocytes and fbs.  

    Chapter V described the development of a new general and straightforward 

liposome fusion based methodology to deliver dynamic and switchable bio-orthogonal 

chemistries to tailor cell membranes and direct the formation of 3D co-culture tissue 

structures. We demonstrated and extensively characterized the conjugation and release of 

molecules to and from cell surfaces in situ, as well as the triggered assembly and 

disassembly of 3D spheroid and multi-layered tissues. Additionally, dynamic co-cultures 

of hMSCs and Fbs were able to be generated and differentiated with this redox oxime 

strategy.    

Chapetr VI described the development of a general methodology based on simple 

chemistry to modify cell surfaces with a fluorescent molecule capable of not only 

marking cells, but fluoresces when a molecule binds the surface. The cell surfaces were 

modified with liposomes driven by positively charged lipids. Both the quenching and 

exchange reactions were studied on the liposomes using fluoremetry and took place in 

about 12h. The liposomes were then characterized on the cells. Cell viability and FACS 

demonstrated the cells remained viable after fusion and were fluorescent. Additionally, 

the dabcyl could be exchanged on the cell surface to recover the fluorescence. Next, the 

availability of the ligand was verified using biotin hydrazide-TRITC-streptavidin. 

Finally, cell assemblies were synthesized using RGD ligand. 
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7.2 Future Directions 

     As discussed in the dissertation cell-surface engineering has a prominent role to play 

in the field of tissue engineering and other biomedical applications. In future I plan to 

extend the liposome fusion strategy to deliver bioorthogonal chemoslective functional 

groups to other biologically and medically important cell lines. Specifically I want to 

couple microfabrication and other surface chemistry tool with the liposome delivery 

method with study the spatial aspects of T cell costimulation in a three dimensional 

environment1. It is increasingly clear that the spatial organization of CD28 and TCR 

signaling influences the activation of CD4 T cell activation2. Efforts have been there to 

develop patterning techniques to identify the molecular mechanisms that allow T cells to 

read these patterns. My future goals will be to make these surfaces dynamic and 

chemically active which will lead to the better understanding of the kinetics of T cell 

signaling. 
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