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ABSTRACT 

 

CHARLES A. THIGPEN: Effects Of Forward Head And Rounded Shoulder Posture On 

Scapular Kinematics, Muscle Activity, And Shoulder Coordination 

(Under the direction of Dr. Darin A. Padua) 

 

Forward head and rounded shoulder posture (FHRSP) has been identified as a 

potential risk factor for the development of shoulder pain.  The mechanism through which 

forward head and rounded shoulder can facilitate shoulder injury is not well understood.  

Altered scapular kinematics, muscle activity, and shoulder joint coordination due to FHRSP 

may lead to the development of shoulder pain.  However, there is little evidence to support 

the influence of FHRSP on scapular kinematics, muscle activity, and shoulder joint 

coordination.  Therefore, the purpose of this study was to compare scapular kinematics, 

muscle activity, and shoulder joint coordination in individuals with and without FHRSP.   

Eighty volunteers without shoulder pain were classified as having FHRSP or ideal 

posture.  An electromagnetic tracking system together with hard-wired surface 

electromyography was used to collect three-dimensional scapular kinematics concurrently 

with muscle activity of the upper and lower trapezius as well as the serratus anterior during 
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loaded shoulder flexion and an overhead reaching task.  Separate mixed model analyses of 

variance were used to compare three dimensional scapular kinematics, muscle activity, and 

shoulder joint coordination during the ascending and descending phases of the loaded flexion 

and overhead reaching tasks.  

Individuals with FHRSP displayed significant increases in scapular upward rotation, 

internal rotation, and anterior tipping during the loaded flexion and reaching tasks.  

Significant decreases in serratus anterior muscle activation during the ascending phase of the 

flexion and reaching tasks were also noted.  These scapular kinematic and muscle activation 

patterns are similar to those reported in individuals with shoulder pain.  Additionally, 

uncoupled scapulohumeral coordination strategies were also observed for scapular upward 

rotation and anterior tipping.  The observed uncoupling suggests an out-of-phase relationship 

between the humerus and these scapular rotations in individuals with FHRSP.  Considered 

together, these results suggest FHRSP influences scapular kinematics, muscle activity, and 

shoulder joint coordination.  FHRSP and its effects on shoulder kinematics, muscle activity, 

and shoulder coordination should be examined as a potential risk factor in the development 

of shoulder pain.  Assessment and treatment of FHRSP should be considered in the 

prevention and interventions of shoulder pain.  
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CHAPTER I 

Introduction 
 

1.1 The Problem of Shoulder Pain 

Shoulder pain is a significant health problem. The prevalence of shoulder pain in the 

general population is reported to range from 16% to 21%.(Urwin, Symmons et al. 1998; 

Bongers 2001) Shoulder pain related to work injury is reported between 8% and 41% 

depending on exposure rates and is second only to low back pain in worker’s 

compensation claims.(Stone 1983; McDermott 1986; Leclerc, Chastang et al. 2004; 

Punnett, Gold et al. 2004)  More troubling is that 40% of all shoulder pain persists for at 

least 12 months.(Van der Heijden 1999)  The cost and burden of occupational shoulder 

injury on society is estimated from $10-15 billion/year.(Washington State 1996) These 

costs are only reflective of the impact on health care resources and do not reflect costs 

due to time lost, retraining, and long-term disability associated with shoulder pain.  The 

prevalence, cost, and associated disability due to shoulder injury may be decreased 

through effective prevention and intervention programs.  

1.2 Influence of Postural Alignment on the Shoulder 

Posture has been postulated as a risk factor for upper quarter musculoskeletal injuries 

such as shoulder impingement, nerve entrapments, and thoracic outlet syndrome.(Punnett 

1998; Szeto, Straker et al. 2002; Punnett, Gold et al. 2004)  Individuals with increased 

forward head and rounded shoulder posture are thought to be at greater risk to develop 

shoulder impingement syndrome.(Lukasiewicz 1999; Ludewig and Cook 2000)  
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Clinicians have postulated that increases in forward head and rounded shoulder 

posture lead to muscle imbalances which in turn contribute to altered biomechanics and 

neuromuscular control of the upper extremity.(Kendall, Kendall et al. 1952; Sahrmann 

2001) It is also possible that altered and adaptive mechanics cause muscle imbalances.  

However, the mechanisms contributing to these imbalances are unclear.  

A limiting factor in studies examining postural alignment, is that there is no clear 

definition of ideal or poor head and shoulder posture.(Cureton 1941; Braun 1991; Raine 

and Twomey 1997)  This is due in part to differences in methodology which limit 

comparison among studies and the establishment of normative postural values.  However, 

general conclusions can be drawn from the literature for what is considered “ideal 

posture”.   

Increases in forward head and rounded shoulder posture are related to an increased 

incidence and severity of shoulder, neck, and interscapular pain.(Greigel-Morris 1992; 

Greenfield, Catlin et al. 1995)  Postural malalignment is thought to facilitate impairments 

of scapular dysfunction such as altered scapular kinematics, muscle activity, 

coordination, and strength.  Poor postural alignment is often hypothesized to contribute to 

changes in scapula kinematics and muscle activation.  It is theorized that poor postural 

alignment alters the surrounding musculature’s length-tension relationship, thereby 

altering scapular muscle function and disrupting normal scapular kinematics, strength, 

muscle activation patterns, and coordination.  Individuals who were positioned in a 

slouched sitting posture have displayed decreases in scapular muscle strength (Kebaetse, 

McClure et al. 1999), where as protracted and forward scapular positions alone are not 

associated with decreased strength.(Diveta, Walker et al. 1990)  Recently, it has been 
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shown that collegiate swimmers display increased forward head and rounded shoulder 

posture, increased shoulder pain, decreased self-reported shoulder function, and 

decreased shoulder strength when compared to healthy college students.(Layton, Padua et 

al. 2005)  Altered scapular kinematics have also been noted in individuals with forward 

head and rounded shoulder posture.(Kebaetse, McClure et al. 1999; Finley and Lee 2003)  

Similar alterations in scapular kinematics and scapulohumeral rhythm (ratio of humeral 

elevation to scapular upward rotation) are consistently reported in patients with shoulder 

injuries when compared to healthy shoulders. (Lukasiewicz 1999; Ludewig and Cook 

2000; Hebert, Moffet et al. 2002)  However, the exact mechanisms of these relationships 

remain unknown. 

Scapular kinematics, muscle activity, and scapulohumeral rhythm (a basic measure of 

shoulder coordination) have been considered potential risk factors for shoulder injury. 

(Lukasiewicz 1999; Ludewig and Cook 2000; Hebert, Moffet et al. 2002)   Alterations in 

scapular kinematics have been consistently reported in patients with shoulder 

impingement syndrome, adhesive capsulitis, and rotator cuff disease.(Paletta, Warner et 

al. 1997; Lukasiewicz 1999; Ludewig and Cook 2000; Rundquist, Anderson et al. 2003; 

McClure, Bialker et al. 2004) Decreases in scapular upward rotation, external rotation, 

and posterior tipping have been reported in patients with shoulder impingement 

syndrome.(Lukasiewicz 1999; Ludewig and Cook 2000)  One proposed mechanism 

contributing to these changes is increases in FHRSP.  Increases in FHRSP are thought to 

alter scapulothoracic length tension relationships of peri-scapular muscles thereby 

impairing normal scapular kinematics.  This is supported by observed changes in scapular 

muscle activation patterns and muscle balance in individuals diagnosed with shoulder 
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impingement syndrome when compared to healthy shoulders.(Ludewig and Cook 2000; 

Cools, Witvrouw et al. 2003) Similar changes in scapular kinematics concurrent with 

altered muscle activity in patients with non-traumatic, multidirectional shoulder 

instability.(Thigpen, Padua et al. 2005; Thigpen, Padua et al. 2005)  Alterations in 

scapulohumeral rhythm concurrent with altered scapular muscle activity in individuals 

diagnosed with shoulder impingement syndrome suggest that deficits in shoulder 

coordination may play a role in the development of shoulder pain.(Ludewig and Cook 

2000; Hebert, Moffet et al. 2002)   

Altered shoulder joint coordination is considered a clinical manifestation of shoulder 

pain and dysfunction.  Clinically, this coordination deficit is termed scapular dyskinesis 

and described as uneven and uncoordinated scapular movement.(Kibler 1998; Sahrmann 

2001) Traditionally, shoulder coordination has been assessed by scapulohumeral rhythm, 

defined as the relationship of humeral elevation to scapular upward rotation.  These 

measurements have identified alterations in scapulohumeral rhythm in some patients with 

shoulder impingement.(Ludewig and Cook 2000; Hebert, Moffet et al. 2002)  However, 

this measure only reflects one plane of scapular motion (upward rotation).  Recent 

evidence suggests individuals with shoulder impingement also have deficits in scapular 

internal/external rotation and anterior/posterior tipping.(Lukasiewicz 1999; Ludewig and 

Cook 2000)  Therefore, examination of the relationship of humeral elevation to all three 

planes of scapular movement should be examined.   

1.3 A Unique Approach to Shoulder Coordination 

Shoulder coordination analyses based on Dynamical Systems Theory tenets may 

provide important and unique information to fill this void of knowledge.  Using this 
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approach coordination among the knee and ankle joints has been shown in patients with 

lower extremity musculoskeletal injuries.(Hamill, van Emmerik et al. 1999; Heiderscheit, 

Hamill et al. 2002; Kurz, Stergiou et al. 2004; Stergiou, Moraiti et al. 2004)  The 

observed uncoupling (bony segments moving out-of-phase) of knee joint motion in 

pathologic knees may contribute to the development of knee osteoarthritis.(Kurz, 

Stergiou et al. 2004)  Increased wear and tear on the articular cartilage may occur as a 

result of decreased neuromuscular control which creates unequal joint loading.  Similar 

coordination deficits may impact shoulder injury given the repetitive nature of activities 

that cause many shoulder injuries. Epidemiological research has shown that increased 

exposure to repetitive upper extremity tasks that are above shoulder height increase the 

risk of shoulder injury.(NIOSH 1997; Punnett, Gold et al. 2004)  It is thought that the risk 

of injury increases when increased exposure is combined with postural 

malalignment.(Borstad and Ludewig 2005; Borstad 2006)  Forward head and rounded 

shoulder posture changes the normal mechanical relationships of muscles and bony 

structures.  Dynamical systems theorists’ have shown that altering the initial conditions 

of the human movement system influence neuromuscular control and coordinative 

patterns of that system.(Kurz and Stergiou 2004)  It is likely then, that shoulder injury 

and pain are related to changes in shoulder coordinative patterns that reflect alterations in 

neuromuscular control.  Given the demonstrated importance of three dimensional 

scapular motions in shoulder injury, investigation of shoulder coordination patterns of the 

humerus at all three scapular motions is warranted.(Ludewig and Cook 2000; McClure, 

Michener et al. 2001)   
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Therefore, the overall goal of this study was to compare scapular kinematics, muscle 

activity, and shoulder joint coordination between individuals with and without forward 

head and rounded shoulder postural alignment.  This was accomplished by identifying 40 

individuals with ideal postural alignment and comparing them with 40 individuals with 

increased forward head and rounded shoulder posture.  Selected scapular kinematic, 

muscle activation, and shoulder joint coordination variables were compared between 

groups during a loaded shoulder elevation and a forward/overhead, reaching task. 

1.4 Operational Definitions 

Forward Head Angle: The angle formed between the parallel line extending from C7 to 

the line connecting C7 to the tragus as measured using Adobe® Photoshop from a lateral 

view (Figure 1).  

Forward Shoulder Angle: The angle formed between the parallel line extending from C7 

to the line connecting C7 to the acromion as measured using Adobe® Photoshop from a 

lateral view (Figure 1). 

Ideal posture: Individuals whose forward head angle is less than or equal to 36º and 

forward should angle less than or equal to 22º was assigned to this group (Figure 2).   

Forward head and rounded shoulder posture: Individuals whose forward head angle is 

greater than or equal to 46º and forward should angle is greater than 52º was assigned to 

this group (Figure 3). 

Loaded Condition: A weight equal to 2% of the participant’s body weight was used 

during each humeral elevation task. 



7 

Forward flexion task:  The participant stood and lift a weight equal to 2% of their body 

weight with their arm aligned in the sagittal plane beginning with the arm at rest by their 

side and proceeding to greater than 150º angle of humeral elevation. 

Forward reaching task: The participant stood and lifted a weight equal to 2% of their 

body weight to a standard shelf position.  The shelf was positioned so that the goal for the 

task is to move the weight from a height equal to their greater trochanter to a shelf at the 

height of their head.  Additionally, the target was anterior measured to the length of their 

arm and perpendicular to their midline. 

Baseline humeral elevation: The angle of humeral elevation when the arm is at rest beside 

the participant. 

Ascending phase of motion: Humeral motion from baseline humeral elevation until the 

participant’s maximum humeral elevation angle. 

Descending phase of motion: Humeral motion from the participant’s maximum humeral 

elevation angle until the baseline humeral elevation angle. 

Beginning of phase: Is defined as the point when the humeral elevation angle is greater 

than the baseline humeral elevation angle for 10 consecutive frames. 

End of phase: Is defined as the point when the humeral elevation angle is equal to the 

baseline humeral elevation angle for 10 consecutive frames. 

60°, 90°, 120° of shoulder elevation: The sampled humeral elevation angles at 30° 

intervals beginning at the baseline humeral elevation angle and ending when humeral 

elevation returns to baseline. 
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60°, 90°, 110° of functional reaching task: The sampled humeral elevation angles at 30° 

intervals beginning at the baseline humeral elevation angle and ending when humeral 

elevation returns to baseline. 

Scapular upward/downward rotation: Scapular motion approximately in the frontal plane 

that occurs about an axis approximately perpendicular to the scapula.  Upward rotation 

moves toward a position so that the glenoid faces superiorly during humeral elevation 

and downward rotation moves toward a position where the glenoid faces inferiorly during 

the descending phase of humeral elevation.  Previous research consistently reports 

increasing angles of upward rotation during the ascending phase of humeral elevation and 

a reversal of this path during the descending phase.(McClure, Michener et al. 2001) 

Scapular internal/external rotation: Scapular motion approximately in the transverse 

plane that occurs about the long axis of the scapula.  Internal rotation is motion which 

moves toward a position where the face of the glenoid faces anteriorly and external 

rotation moves toward a position where the glenoid faces posteriorly.  Previous research 

generally reports increasing scapular rotation until humeral elevation angles greater than 

110°, then increasing external rotation through maximum humeral elevation and a 

reversal of this pattern during descending phase of humeral elevation.  Differences in 

previous research are attributed to methodological differences in the plane of humeral 

elevation, definition of local and reference axes systems, and Euler angle sequence. (van 

der Helm 1997; Karduna, McClure et al. 2000; McClure, Michener et al. 2001) 

Scapular anterior/posterior tipping: Scapular motion approximately in the sagittal plane 

that occurs about an axis through the scapular spine.  Posterior tipping rotates so that the 

anterior acromion moves upwards during humeral elevation and reverses this path during 
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descending humeral elevation.  Previous research agrees on the direction and pattern of 

scapular anterior/posterior tipping but there are minor differences reported on the range 

of posterior tipping during humeral elevation.  These differences are attributed to plane of 

humeral elevation and the definition of the local and reference axes systems.(van der 

Helm 1997; Karduna, McClure et al. 2000; McClure, Michener et al. 2001) 

Scapular protraction/retraction: Scapular translation forward around the thorax 

(protraction) or backwards toward the spine (retraction). Scapular protraction is 

essentially a combination of scapular internal rotation and anterior tipping.(Borstad and 

Ludewig 2005) 

Scapular elevation/depression: Scapular translation superiorly or inferiorly where the 

acromion and medial border of the scapula move the same linear distance. 

Surface Electromyography (EMG) Mean Amplitude: The average amplitude of electrical 

activity for a given muscle expressed as a percentage of maximum activation.  This value 

is representative of the rate and amount of neuromuscular input to a muscle.  Alterations 

in EMG activation are suggestive of changes in muscle function. 

Phase Angle: This angle is calculated from the displacement(x axis)/velocity (y axis) 

phase portrait. It quantifies the behavior of a segment and is used to calculate the 

continuous relative phase.  The phase angle (Θ) derived by translating the phase portrait 

Cartesian coordinates (x,y) to polar coordinates (r, Θ). 

Continuous relative phase: The difference between the distal phase angle and the 

proximal phase angle that quantifies coordination between two segments. 

Mean absolute relative phase (MARP): MARP is calculated from the ensemble average 

of the continuous relative phase curve. MARP is the average absolute value of all the 
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points of the mean ensemble curve.  MARP values range from 0º - 180º with lower 

values representing a more in phase relationship between the two segments and higher 

values an out of phase relationship. 

Deviation phase (DP): DP is the average of the standard deviations of all the points of the 

ensemble curve.  DP is a measure of stability of the organization of the neuromuscular 

system.  A low DP value suggests a more stable neuromuscular system while a high DP 

suggests less stability in the neuromuscular system. 

1.5 Limitations/Assumptions 

The following limitations and assumptions apply to this study: 

1. Forward head and shoulder angles calculated from reflective markers on bony 

landmarks were representative of head and shoulder girdle postural alignment. 

2. Subjects assumed a standing posture that was representative of their normal 

posture during the postural evaluation. 

3. Gender bias between postural groups did not affect the results of the study. 

4. Kinematic data obtained from the skin mounted sensors on the scapula and 

humerus were representative of the true motion of these segments. 

5. EMG data obtained from a specific part of a muscle was representative of the 

muscle activity for the entire muscle. 

6. Subjects provided a true maximal voluntary isometric contraction during EMG 

data normalization. 
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1.6 Delimitations 

The following are delimitations apply to this study: 

1. Eighty subjects (40 assigned to the ideal postural alignment group and 40 

assigned to the forward head and rounded shoulder group) were recruited from the 

university community. 

2. All subjects were healthy and free from shoulder injury in the past 6 months prior 

to data collection. 

3. Kinematic data was collected from the thorax, scapula, and humerus using an 

electromagnetic tracking system. 

4. EMG data was collected for the upper trapezius, lower trapezius, and serratus 

anterior muscles.  

1.7 Statement of the problem 

The overall goal of this study was to compare scapular kinematics, muscle activity, 

and shoulder joint coordination between individuals with and without forward head and 

rounded shoulder posture.  This was accomplished by comparing 40 individuals with 

ideal postural alignment to 40 individuals with increased forward head and rounded 

shoulder posture.  Selected scapular kinematic, muscle activation, and shoulder joint 

coordination variables were compared between groups during two loaded humeral 

elevation tasks. 

Understanding of the relationship between postural alignment and shoulder 

kinematics and neuromuscular control is important in developing clinical assessments, 

identifying individuals who may be at risk for injury, and guiding interventions to prevent 

shoulder pain and injury.  The results of this study suggest that forward head and rounded 
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shoulder posture contribute to alterations in scapular kinematics, muscle activity, and 

shoulder coordination patterns.  It is likely that these altered mechanics may increase the 

risk of suffering shoulder pain and injury.  These results are the first to demonstrate the 

influence of altered postural alignment on scapular kinematics, muscle activity, and 

shoulder coordination during overhead/forward reaching tasks.  Finally, these results lay 

the foundation for future research aimed at the prevention and treatment of shoulder pain 

and injury.  

1.8 Independent Variables 

Three independent variables used during this study were: 

1. Posture (Ideal forward head and shoulder posture vs. Forward head and rounded 

shoulder posture) 

2. Phase of humeral elevation (Ascending vs. Descending) 

3. Arc of humeral elevation 60-90° and 91-120°  

1.9 Dependent Variables 

Twelve dependent variables used during this study were: 

Scapular Kinematics 

1. Upward/downward rotation angles 

2. Internal/external rotation angles 

3. Posterior/anterior tipping angles 

4. Upward/downward rotation range of motion 

5. Internal/external rotation range of motion 

6. Posterior/anterior tipping range of motion 
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Mean Amplitude EMG for  

7. Upper trapezius 

8. Lower trapezius  

9. Serratus anterior  

Coordination Analyses 

10. Mean absolute relative phase (MARP) angles for loaded forward flexion and 

for the forward reaching task. 

11. Deviation phase (DP) angles for loaded forward flexion and for the forward 

reaching task. 

1.10 Research Questions 

1. Are there differences between individuals with and without forward head and 

rounded shoulder postural alignment for scapular kinematics during loaded 

forward flexion and a forward reaching task? 

a. Compare scapular ranges of motion for upward rotation, internal rotation, and 

posterior tipping between groups for the ascending and descending phases of 

loaded forward flexion.  

b. Compare scapular ranges of motion for upward rotation, internal rotation, and 

posterior tipping between groups for the ascending and descending phases of a 

loaded forward reaching task. 

c. Compare scapular angles upward rotation, internal rotation, and posterior 

tipping angles between groups at 60°, 90°, and 120° for the ascending and 

descending phases of loaded forward flexion.  
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d. Compare scapular upward rotation, internal rotation, and posterior tipping 

angles between groups at 60°, 90°, and 110° for the ascending and descending 

phases of a loaded forward reaching task. 

2. Are there differences between individuals with ideal and forward head and 

rounded shoulder postural alignment for scapular muscle activation during loaded 

forward flexion and a forward reaching task? 

a. Compare mean amplitude EMG of the upper trapezius (UT), lower trapezius 

(LT), and serratus anterior (SA) between groups for the ascending and 

descending phases of loaded forward flexion.  

b. Compare mean amplitude EMG of the upper trapezius (UT), lower trapezius 

(LT), and serratus anterior (SA) between groups for the ascending and 

descending phases of a loaded forward reaching task. 

3. Are there differences between individuals with ideal and forward head and 

rounded shoulder postural alignment for measures of shoulder joint coordination? 

a. Compare mean absolute relative phase (MARP) values and deviation phase 

(DP) values of the relative humeral and scapular movement patterns between 

groups during the ascending and descending phases of loaded forward flexion. 

b. Compare mean absolute relative phase (MARP) values and deviation phase 

(DP) values of the relative humeral and scapular between groups during the 

ascending and descending phases of loaded forward reaching task. 



15 

1.11 Hypotheses 

Scapular Kinematics 

1. Individuals with forward head and rounded shoulders will exhibit less scapular 

upward rotation, greater internal rotation, and less posterior tipping angles for 60-

90° and 90-120° arcs of motion during the ascending and descending phases of 

loaded forward flexion compared to the ideal posture group.  

2. Individuals with forward head and rounded shoulders will exhibit less scapular 

upward rotation, greater internal rotation, and less posterior tipping angles for 60-

90° and 90-110° during the ascending and descending phases of a loaded forward 

reaching task compared to the ideal posture group.  

3. Individuals with forward head and rounded shoulders will exhibit less scapular 

upward rotation, greater internal rotation, and less posterior tipping angles at 60°, 

90°, and 120° of humeral elevation during the ascending and descending phases 

of loaded forward flexion compared to the ideal posture group.  

4. Individuals with forward head and rounded shoulders will exhibit less scapular 

upward rotation, greater internal rotation, and less posterior tipping angles at 60°, 

90°, and 110° of humeral elevation during the ascending and descending phases 

during loaded reaching task compared to the ideal posture group.  

EMG  

4. Individuals with forward head and rounded shoulders will exhibit increased mean 

amplitude EMG of the upper trapezius and decreased mean amplitude EMG for 

the lower trapezius, and serratus anterior for the ascending and descending phases 

of loaded forward flexion compared to the ideal posture group.  
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5. Individuals with forward head and rounded shoulders will exhibit increased mean 

amplitude EMG of the upper trapezius and decreased mean amplitude EMG for 

the lower trapezius, and serratus anterior during the ascending and descending 

phases of loaded reaching task compared to the ideal posture group.  

Coordination Analyses 

9. Individuals with forward head and rounded shoulders will exhibit altered mean 

absolute relative phase angles and increased deviation phase angles of the 

humerus and scapula movement patterns between groups during the ascending 

and descending phases of loaded forward flexion compared to the ideal posture 

group. 

10. Individuals with forward head and rounded shoulders will exhibit altered mean 

absolute relative phase angles and increased deviation phase angles of the 

humerus and scapula movement patterns between groups during the ascending 

and descending phases of loaded forward reaching task compared to the ideal 

posture group 



CHAPTER II 

Literature Review 
 

2.1 Introduction 

Shoulder pain is a significant source of musculoskeletal pain and disability.  

Postural evaluation has historically been an integral component of the musculoskeletal 

evaluation based on the assumed link between postural deviations and the development of 

shoulder pain. (Kendall, Kendall et al. 1952)  Assessment of scapular and head 

positioning relative to the thorax has been emphasized in the treatment of shoulder 

pain.(Sahrmann 2001)  However, research has failed to clearly establish a link between 

upper quarter postural dysfunction and the development of shoulder pain.  There is 

emerging evidence that these changes in scapular motion are due to altered scapular 

positioning caused by adaptive shortening of the pectoralis minor.(Borstad 2004) 

Additionally, altered scapular kinematics and muscle activity have been identified in 

patients with shoulder pain.(Ludewig and Cook 2000; Hebert, Moffet et al. 2002)  

Increased glenohumeral and scapular strength as well as normalization of scapular 

kinematics has been demonstrated with improvements in head and shoulder 

posture.(Kebaetse, McClure et al. 1999; Wang, McClure et al. 1999; Smith, Kotajarvi et 

al. 2002) These strides in understanding the importance of the three dimensional scapular 

motions in normal shoulder function are tempered by recent evidence suggesting that 

resolution of shoulder impingement syndrome is not the result of improved scapular 
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kinematics. (McClure, Bialker et al. 2004) Therefore, the link between altered scapular 

kinematics and postural malalignment is much needed evidence guiding the prevention 

and treatment of shoulder pain.  Additionally, the ability to objectively assess scapular 

dyskinesia is limited to research settings.  Unique analyses may clarify the nature of 

scapular dyskinesia and its role in the development of shoulder pain contributing to the 

development of new methods of clinically assessing scapular dysfunction.  One such 

method is a coordination analysis based on the tenets of dynamical systems theory.  This 

analysis will allow for the examination of the inherent coupling between the scapula and 

humerus during shoulder movements. In addition, this approach provides a theoretical 

framework to understand motor behavior as it relates to coordination and variability in 

movement. 

Therefore the purpose of this literature review is to establish the scope and 

problem that is shoulder pain, suggest possible modifiable risk factors, describe the 

proposed relationship between altered posture and shoulder pain, discuss the current 

understanding of scapular kinematics and muscle function, as well as highlight the 

limitations to the traditional biomechanical analyses of shoulder motion. Finally, a brief 

historical perspective on dynamical systems theory is provided as it relates to variability 

in human movement, the role of movement variability and musculoskeletal injury, and 

the examination of issues and techniques important to the application of coordination 

analyses.   
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2.2 Posture and Shoulder Pain 

2.2.1 Incidence, Prevalence, and Cost of Shoulder Pain 

Shoulder pain is a significant musculoskeletal problem affecting as many as 2.5% 

of the population at any one time and up to 67% of the population will suffer shoulder 

pain in their lifetime. (Luime, Koes et al. 2004)   Higher point prevalence rates of 

approximately 21% in the general population in the Netherlands (Bongers 2001) as 

opposed to lower rates of 16% in Britain have been reported.(Urwin, Symmons et al. 

1998)  The prevalence of shoulder pain is self-reported at 15% in the automobile 

manufacturing industry with rates decreasing to 11% when confirmed by clinical signs 

and symptoms.(Punnett 1998; Punnett, Gold et al. 2004)  Similar to other cross-sectional 

studies investigating the occurrence rate and risk factors impacting shoulder pain, the 

narrow scope of the industry studied (automobile manufacturing) limits the generalization 

to the larger population due to the variation in exposure type and rate.  This observation 

is supported by the wide range of shoulder pain incidence from 8% to 41% in workers 

across several occupations.(Leclerc, Chastang et al. 2004)  Across all occupations the 

exposure to sustained and repetitive shoulder tasks has been shown to be predictive of an 

increased risk of developing shoulder pain.  These results suggest that exposure is an 

important determinant in the development of shoulder pain.   

The exact cost of work related upper extremity musculoskeletal disorders is not 

clear due to the aforementioned limitations in assessing injury rates. Musculoskeletal pain 

accounts for $193 billion dollars in direct costs each year, this is 2.5% of the United 

States gross domestic product.(Yelin, Herrndorf et al. 2001)  Shoulder pain accounts for 

19% of this cost, approximately $39 billion dollars.  This is consistent with recent 
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evidence suggesting $7 billion of direct health care expenses spent in the treatment of 

shoulder pain.(Johnson, Crosley et al. 2005)  These values are based on the general 

population.  More conservative estimates suggest that approximately $166.8 million is 

spent on work related upper extremity disorders in the working population of the United 

States.(Washington State 1996) Extrapolating these data to the entire population, only $5 

billion per year is spent on upper extremity disorders with shoulder pain accounting for 

approximately $1-1.5 billion of this total.   

However, these costs are only reflective of the impact on direct health care costs 

and do not reflect the indirect costs associated with the time lost from work, retraining, 

and long-term disability effects associated with shoulder pain.(Washington State 1996)   

Additionally, these costs are from a workman’s compensation database and only reflect 

shoulder pain attributable and paid for by the worker’s compensation agency.  The actual 

costs of shoulder pain are likely significantly greater when considering both the direct 

and indirect costs.  It is important to note that in both general population studies shoulder 

pain was second only to low back pain in injury rates, which were 20-22%.(Stone 1983; 

McDermott 1986; Leclerc, Chastang et al. 2004; Punnett, Gold et al. 2004; Johnson, 

Crosley et al. 2005)  This is consistent with work-related injury rates in the United States 

where upper extremity disorders are second only to low back pain in injury prevalence 

and incidence.(NIOSH 1997)  More troubling is that shoulder pain does not appear to be 

self-limiting with less than 40% of patients having shoulder pain persisting for at least 1 

year.(Van der Heijden 1999) The poor recovery from shoulder pain is due to a number of 

factors including use of tests and measures with undemonstrated validity, specificity, and 

sensitivity limiting the accuracy of clinical diagnoses. (Van der Heijden 1999; Ludewig 
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and Borstad 2003; McClure, Bialker et al. 2004; Michener, Walsworth et al. 2004)   

Furthermore there is a lack of evidence to promote a consensus in the treatment of 

shoulder pain, lack of follow up, limited number of studies identifying physical 

impairments associated with shoulder pain, and even fewer effective interventions based 

on these impairments. The cost, rate of occurrence, and difficult resolution of shoulder 

pain combined with the current deficits in the body of knowledge highlight the 

importance of identifying risk factors in order to develop effective preventative and 

treatment programs.  

2.2.2 Risk Factors for the Development of Shoulder Pain 

The development of shoulder pain is multifactorial in nature and the risk factors 

can broadly be classified into those related to exposure, biomechanical, psychosocial, and 

other confounding factors.  There are a number of investigations which have utilized 

cross-sectional designs to examine workplace factors and the development of shoulder 

pain.(Bjelle, Hagberg et al. 1981; Hagberg and Wegman 1987; Punnett 1998; Nahit, 

Macfarlane et al. 2001)  These studies have consistently shown moderate to strong 

associations between the development of shoulder pain and sustained and repetitive 

overhead work, holding tools while working with the arms raised, as well as time spent in 

awkward postures.  Combinations of these biomechanical factors increase the strength of 

the associations between groups of risk factors and the development of shoulder pain, 

especially the combination of high repetition and work above acromial height. (Hagberg 

and Wegman 1987; NIOSH 1997)   Additionally, combinations of these mechanical 

factors have been strongly associated with pain at multiple sites. (Nahit, Macfarlane et al. 

2001)  This suggests that the impact of these biomechanical factors not only affect the 
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shoulder, but contribute to the development of pain up and down the kinetic chain.  

Together, these results support prevention and intervention strategies aimed at addressing 

multiple factors and sites of pain throughout the kinetic chain.   

These conclusions are somewhat tempered because of the cross-sectional study 

design used in the identification of the aforementioned risk factors.  Cross-sectional 

studies are limited by the likelihood of survival bias, meaning that only the individuals 

who tolerate a given job or with a set of risk factors remain in a given job. (Gerr, Marcus 

et al. 2004)  However, there are a few prospective longitudinal studies which concur with 

the results of cross-sectional studies. (Marcus, Gerr et al. 2002; Andersen, Kaergaard et 

al. 2003; Leclerc, Chastang et al. 2004)  These studies have established that there is an 

exposure-response relationship for shoulder pain by showing that any non-neutral 

working posture (whether dynamic or static) increases the likelihood of developing 

shoulder pain.  Finally, the longitudinal study design controls for the effect of age on the 

relationship of these mechanical risk factors in the development of shoulder pain.  A 

series of investigations in the automobile manufacturing industry have been extremely 

valuable in confirming the aforementioned cross-sectional and longitudinal results. 

(Punnett 1998; Punnett and van der Beck 2000; Punnett, Gold et al. 2004)  The large 

sample of observations with excellent follow up and control of confounders allowed the 

identification of a combination of biomechanical factors, defined broadly as postural 

strain, to be the most important predictor for shoulder pain development.   These factors 

together can be described as working in a non-neutral posture during a repetitive 

overhead task.  Increased postural strain is exemplified by a more forward head and 

slouched posture resulting in increased activity of the upper trapezius. (Kleine, Schumann 
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et al. 1999) Similar increases in upper trapezius activity have been noted in individuals 

who are experiencing shoulder pain. (Bjelle, Hagberg et al. 1981; Ludewig and Cook 

2000)  Treatment programs with components aimed at improving head and shoulder 

posture have been shown to be effective in resolving shoulder pain.  (Bang and Deyle 

2000; Ludewig and Borstad 2003; McClure, Bialker et al. 2004; Haahr, Ostergaard et al. 

2005)   Also, preventative measures have decreased the complaints of neck and shoulder 

pain while increasing productivity. (Lutz, Starr et al. 2001 ) While the current evidence 

points to the repetitive nature of overhead work in the development of shoulder pain, not 

every person exposed to these risk factors develops shoulder pain. More specific 

modifiable biomechanical risk factors such as postural alignment, faulty movement 

patterns, strength, and endurance may yield insight into the mechanisms underlying the 

development of shoulder pain.  For effective prevention and treatment programs to 

succeed, they must be based on addressing established modifiable risk factors associated 

with the development of shoulder pain.  Otherwise we are left to trial and error with 

moderately effective or ineffective prevention and intervention programs. 

2.2.3 Proposed Effects of Altered Posture 

Historically, the examination of postural alignment has been proposed as an 

essential part of the basic musculoskeletal evaluation. (Kendall, Kendall et al. 1952; 

Magee 1987) Several authors have suggested an integrated, logical paradigm detailing the 

influence of altered postural alignment on musculoskeletal pain and function.(Kendall, 

Kendall et al. 1952; Janda 1965; Sahrmann 2003)  Assumed relationships between the 

articular, neural, and myofascial systems are thought to influence the ability of the 

movement system to function at an optimal level.  Optimal function is described as the 
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ability to use the body with minimal energy expenditure, stress, and strain on the articular 

and myofascial structures.(Kendall, Kendall et al. 1952)  Ideal postural alignment has 

been defined as skeletal alignment which facilitates minimal energy, stress, and strain on 

the body during a given task.(Kendall, Kendall et al. 1952)  Clinical theory suggests that 

postural alignment changes the length-tension relationships of muscles, thus altering the 

force producing capabilities.  This in turn decreases the effectiveness of the required 

force couples and subsequent altered movement system kinematics, muscle function, and 

coordination.  Specific impairments thought to develop from altered postural alignment 

include stretch induced muscle weakness and adaptive muscle length changes, which in 

turn result in substitution and compensation patterns by other muscles in order to 

accomplish a given task. (Kendall, Kendall et al. 1952; Janda 1965; Sahrmann 2003)  

These compensations are thought to result in less efficient movement patterns that when 

repeated enough predispose the body to injury.  Based on these assumptions expert 

clinicians recommend the inclusion of postural alignment assessment during the 

musculoskeletal evaluation. 

 The musculoskeletal system is mutable by nature and is therefore prone to 

adaptation.  Alterations in postural alignment as the result of or in conjunction with 

repeated movement patterns are thought to facilitate length associated adaptations in the 

musculotendinous complex having mechanical and neural consequences.  Resting posture 

is thought to effect the biomechanical system just as initial positioning effects the 

constraints of any mechanical system.(Sahrmann 2002)  Alterations in head and shoulder 

posture are proposed to change the length tension relationship of the shoulder girdle 

muscles leading to changes in normal shoulder mechanics and neuromuscular 
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function.(Kendall, Kendall et al. 1952; Janda 1965) These changes in the movement 

system are required because initial positioning of segments within a mechanical system 

alter the moment requirements needed in order to initiate movement as well as control 

segmental motion.  Resulting length associated changes to the muscular and neural 

systems include: altered moment arm length, potential for cross bridge formation, passive 

contributions from the myofascial unit, as well as possible inhibitions from reflex 

arcs.(Gossman, Sahrmann et al. 1982)  Changes in moment arm length and cross bridge 

formation will directly impact the amount of force needed at any given instance to 

generate the required moment for the movement system.  Passive contributions from the 

musculotendinous complex, ligaments, and fascial components may increase or decrease 

the required force at different positions within a given task.  Finally, the ability of an 

individual muscle to recruit an adequate number of motor units as well as modulate the 

rate of firing for proper coordinative patterns may be impacted by changes in the length 

of the muscle spindles and force transmitted through the Golgi Tendon Organs.(Sordberg 

1983) These basic physiological principles are the foundation for the clinical relevance of 

postural assessment.  

Postural alignment is thought to be the result of habitual and repetitive posturing 

suggesting there is an adaptive nature to postural malalignment. Certain postures of the 

upper extremities assumed at home, work, and during sleep place anterior muscles in 

shortened positions so that adaptive muscle shortening and antagonist muscle lengthening 

create a cycle of relative muscle strength imbalance.(Novak and Mackinnon 1997)  It is 

proposed that this muscle length and strength imbalances will alter the efficiency of 

normal muscle contraction and cause muscles to be used at a mechanical 
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disadvantage.(Kendall, Kendall et al. 1952)  These authors attribute pectoralis minor 

tightness to several factors, including forward head posture, thoracic flexion, and scapular 

abduction (protraction).  Others have cited lower trapezius weakness and scapular 

instability as significant contributors to altered postural alignment of the 

scapula.(Sahrmann 2001; Magarey and Jones 2003)  Several studies have investigated 

these hypothesized mechanisms in an effort to improve preventative and intervention 

shoulder rehabilitation programs.(Gossman, Sahrmann et al. 1982; Diveta, Walker et al. 

1990; Wang, McClure et al. 1999; Roddey 2002) 

2.3 Evidence Relating Postural Dysfunction and Shoulder Pain 

2.3.1 Postural Alignment, Impairments, and Clinical Correlates 

Several studies have investigated postural alignment, proposed impairments, and 

clinical correlates.  Patients with shoulder pain have demonstrated a scapular rest position 

of increased protraction (lateral and anterior motion of the scapula around the thorax) and 

downward rotation compared to healthy controls in the clinical setting.(Greenfield, Catlin 

et al. 1995)  It has been hypothesized that in response to the observed alterations in 

scapular resting position, peri-scapular muscle imbalances result and may lead to 

alterations neuromuscular control, scapular winging (internal rotation), and scapular 

dysrhythmia during upper extremity elevation. This study compared thirty subjects with 

unilateral or bilateral shoulder pain and thirty pain-free subjects.  The results showed 

greater forward head position and less passive humeral elevation ROM in the patient 

group when compared to the healthy group.  Passive humeral elevation ROM was 

significantly greater in the uninvolved extremity compared to the involved extremity in 
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the patient group.  There were no observed differences between groups for scapular 

protraction, scapular rotation, scapular symmetry, or mid-thoracic kyphosis.  Scapular 

protraction and scapular upward/downward rotation in the patient group were correlated 

among the postural variables.  No other within-group comparisons were statistically 

significant.   

There are several limitations that should be considered when evaluating these 

results.  Several potential confounding variables were the broad age range of subjects (17 

to 65 years), the occupational or recreational activities of subjects, heterogeneous patient 

diagnoses which included bursitis, adhesive capsulitis, instability, and subacromial 

impingement. Additionally, there was no mention of statistical power to detect a 

meaningful difference if one had existed.  Furthermore, limitations of 2-D analysis of the 

3-D scapular position and orientation have been previously demonstrated, possibly 

introducing angular projection errors.(de Groot 1999)  Finally, the scapular 

measurements also were not normalized to the size of each subjects’ scapula, nor does the 

formula for scapular upward rotation necessarily measure that variable.  A true lateral 

translation of the scapula would be falsely calculated as an increase in upward 

rotation.(Borstad 2004) 

Other studies have attempted to determine the relationship between forward head 

and rounded shoulder posture with upper quadrant musculoskeletal disorders.  The 

incidence and severity of postural abnormalities in two age groups of healthy subjects 

were determined and then analyzed for associations with pain.(Griegel-Morris, Larson et 

al. 1992)  The convenience sample of eighty-eight healthy volunteers was divided into 

two age groups: 20 to 35 year-old (n=58) and 36 to 50 year-old (n=30).  Each subject 
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answered a pain questionnaire to determine the location, frequency, and perceived 

severity of pain in the thoraco-cervical-shoulder region.  Forward head, thoracic 

kyphosis, and rounded shoulders were operationally defined as the outcome measures 

using criteria established by Kendall and McCreary (1993).  Then, frequency counts and 

percentages of abnormalities were calculated.  These analyses demonstrated no 

significant difference between the groups in the incidence of postural faults.  There were 

no significant group differences observed between severity of postural abnormality 

(based on a 6-point severity scale) or pain frequency and severity.  The incidence of pain 

however, did significantly increase in patients with more severe postural abnormalities.  

Severe kyphosis, forward head, and rounded shoulders were significantly related to the 

incidence of interscapular pain.  No relationships were found between severe rounded 

shoulders and either pectoral or shoulder pain. 

This analysis included only healthy volunteers and attempted to correlate postural 

deviations with musculoskeletal pain.(Griegel-Morris, Larson et al. 1992)  Comparison of 

their findings to a population of individuals with upper quarter musculoskeletal pain may 

have provided better insight into the posture/pain relationship.  The findings of this study 

cannot make inference into cause and effect because of the use of the healthy population.  

Another limitation of the study is the potential for recall bias and subjectivity in 

answering the pain questionnaire, which could result in either under- or over-reporting of 

pain.  The finding that the reported incidence of pain increased significantly in those with 

more severe postural abnormalities may suggest that only with extreme postural faults do 

tissues become pain producing.  Another possibility is that postural abnormalities in 

addition to other factors, such as previous injury or occupational demands, may influence 
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the incidence of pain.  None of these other factors were analyzed as covariates in this 

study. 

Other authors have investigated the relationship of postural measures and the 

effects of postural alignment on specific impairments such as strength.(Culham and Peat 

1994)   The relationship of thoracic sagittal plane alignment to shoulder complex position 

was compared between individuals classified as normal and with increased 

kyphosis.(Culham and Peat 1994)  The authors hypothesized that increased kyphosis 

would cause the scapula to protract and tip forward by following the contour of the 

thorax.  Fifty-seven women, aged 50 to 85 years, were examined for thoracic posture and 

classified into normal, thoracic, or thoraco-lumbar kyphotic groups.  Shoulder complex 

measures were made by comparing lines connecting anatomical landmarks to lines in one 

of the three cardinal planes.  Sagittal plane measures included scapular forward tipping 

angle relative to the vertical and to the upper thoracic spine, and the angle formed by the 

long axis of the humerus relative to vertical and to the medial border of the scapula.  

Transverse plane measures were the protraction angle of the scapular spine relative to the 

coronal axis, the retraction angle of the clavicle relative to the coronal axis and to the 

scapular spine, humeral internal rotation relative to the coronal plane and to the scapular 

spine.  Frontal plane measurements included scapular abduction (medial border relative 

to horizontal), medial to lateral elevation of the clavicle, humeral abduction relative to 

vertical and to the medial border of the scapula.  All measures were normalized to 

account for size differences among subjects.   

Results showed increased anterior tilting of the scapula relative to vertical in the 

kyphotic groups compared to the normal group.  However, when examining the tilt angle 



30 

relative to the thoracic spine, only the thoracic kyphosis group was significantly different.  

Scapular abduction angle, equivalent to the amount of upward rotation, was not 

significantly different between the groups.  In the transverse plane, the thoracic kyphosis 

group had a significant increase in scapular protraction compared to the other groups.  

The authors proposed that the changes seen in shoulder complex position are related to 

thoracic spine curvature, but are more highly related to thoracic cage shape changes as a 

result of increased thoracic sagittal spine curvature.  This conclusion is based on the 

findings that the thoracic kyphosis group demonstrated significantly increased upper 

(slope of T1downward) and lower (slope of T12 upward) thoracic spine measures in 

addition to a significantly greater kyphosis angle.  The same group also demonstrated all 

the scapular position changes, including the relative position findings that were not 

demonstrated in the other non-normal group.  Baseline differences in mean values of age, 

height, and mass were analyzed, with no significant differences demonstrated between 

the groups.   

The measurement method used comparing lines created by joining palpated 

anatomical landmarks to the cardinal planes may introduce projection error as this 2-D 

method attempts to quantify 3-D position and orientation.(de Groot 1999)  Validity and 

reliability of these measures were also not reported.  Finally, power and effect sizes were 

not reported for the non-significant differences.       

The relationship of scapular muscle force production and resting position has 

been investigated by examining the effects of forward shoulder position on scapular 

protractor and retractor strength. (Diveta, Walker et al. 1990) Isometric peak muscular 

force was measured with a calibrated hand-held dynamometer on sixty healthy subjects. 



31 

Normalized scapular abduction (protraction) measurements were performed by palpating 

three scapular and thoracic spine landmarks, connecting the landmarks with an unmarked 

string, and subsequently measuring the string with a tape measure.  Pearson product-

moment correlations were determined between normalized muscular forces and the 

scapular abduction measurements.  

Correlation between scapular abduction and scapular retractor force (rhomboids 

and middle trapezius) was calculated at r = .20, while scapular abduction and protractor 

force (pectoralis minor and serratus anterior) correlation was calculated at r = .14.  Ratios 

of protractor to retractor force were calculated to evaluate the presence of muscle 

imbalances and their relationship was calculated at r = .01.  The authors conclude that a 

strong, direct relationship between the measured variables does not exist and that the 

assumption relating isometric muscle force and posture may be incorrect. 

Several limitations should be considered when interpreting the results of this 

study.  The sample studied was made up of fairly young (age 22 to 35 years) subjects 

with no exposure to occupations or activities that may lead to the postulated muscle 

adaptations.  Additionally, peak isometric muscle force was used for comparison.  Peak 

force production is likely not representative of the actual function of these muscles as 

these muscles are considered stabilizing muscles, not prime mover muscles.  Large 

standard deviations for muscle force measurements observed with small standard 

deviations for scapular abduction measurements may have contributed to the low 

correlation values.  The measurement of scapular abduction alone is likely not reflective 

of the positional and rotational changes caused by forward shoulder.  This measurement 

only quantifies lateral movement around the thorax.  Actual anterior and inferior 
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positioning or scapula or scapular rotations would not be reflected in this measure.  

Recent studies have shown the importance of 3-D scapular motion related to decreased 

excursion of the pectoralis minor.(Borstad 2004) The muscle force measurements were 

made in the positions which placed the muscle in an advantageous position where 

optimum muscle length should produce near maximum values.  It is possible that if the 

pectoralis minor and middle trapezius were tested in a shortened or lengthened position, 

respectively, the force values and correlations would be stronger.  Finally, the position 

used to test the middle trapezius has recently been shown to recruit more muscle activity 

for the lower trapezius than the middle trapezius, thereby bringing into question the 

validity of this test for middle trapezius strength.(Michener, Boardman et al. 2004)  

Furthermore, no significant differences were observed between lower and middle 

trapezius muscle activity when traditional manual muscle testing positions were 

compared.(Ekstrom, Donatelli et al. 2003) Future studies should use multiple 

measurements of scapular positioning, consider the role of the lower trapezius, and 

investigate other impairments that may result for postural malalignment of the upper 

quarter. 

2.3.2 Effects of Interventions on Postural Dysfunction 

Interventions to correct forward head and rounded shoulder posture have been 

investigated in both clinical and laboratory settings.(Kebaetse, McClure et al. 1999; 

Wang, McClure et al. 1999; Roddey 2002)  A sample of 38 healthy subjects were 

classified by resting head and shoulder posture as defined by Kendall(1952) as either 

normal, mild forward head and rounded shoulder posture, or marked forward head and 

rounded shoulder posture.  Then scapular abduction was measured as described by Diveta 
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et al.(1990). Subjects were randomly assigned to either a treatment or control group then 

given common pectoral stretching exercises.  Each group’s posture was reassessed after 2 

weeks by measuring their forward head angle and scapular abduction. 

Forward head angle and scapular abduction improved following the treatment for 

the moderate forward head and rounded shoulder group.  The authors concluded that 

clinicians may expect individuals with the greatest forward head and rounded shoulder 

posture to respond the most from a stretching intervention.  Additionally, the authors 

noted limitations of mostly female, young (18-25), and healthy sample.  Finally, while 

the change scores presented were less than 3% of the scapular abduction measure a 

moderate (.61) effect size was observed.  This suggests that in a healthy, young 

population posture can be improved as measured by scapular abduction.   

The effects of exercise interventions and shoulder posture have also been 

examined on three-dimensional scapular kinematics. (Wang, McClure et al. 1999)  

Twenty subjects asymptomatic for shoulder pain but with forward shoulder posture were 

analyzed for scapular kinematics.  At entry into the study, anatomical landmarks from the 

subjects’ scapula, and spine, as well as two points from a plastic bar strapped to the 

humerus were digitized with an electromechanical digitizer.  These digitized points gave 

position and orientation coordinates for the landmarks, which were then processed to give 

segmental position and orientation.  Data were collected at rest (arm at side), abducted in 

the scapular plane to horizontal, and at maximum abduction in the scapular plane.  After 

the initial data collection, subjects were instructed in a six-week home exercise program.  

The program was designed to mimic a clinical regimen aimed at restoring muscle balance 

around the shoulder girdle.  The program included resisted strengthening exercises using 
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thera-band, as well as a corner stretch for the pectoralis muscles.  The exercise program 

was performed three times per week for six weeks.  Ten repetitions of pectoralis stretches 

were performed and were held for ten seconds each, with five repetitions added every 

two weeks. 

 Decreased scapular upward rotation and increased scapular internal rotation at 

horizontal were observed following the intervention.  There was also a decrease in 

scapular superior translation at horizontal and a decrease in upper thoracic inclination at 

all three positions.  The authors discuss the decreased scapular upward rotation in light of 

previous work that has shown that decreased upward rotation was demonstrated in 

subjects with subacromial impingement.(Lukasiewicz 1999)  They propose that perhaps 

the strengthening program created stronger muscles to stabilize the scapula on the thorax, 

allowing improved efficiency of motion.  Another possible explanation proposed is 

stronger rotator cuff muscles to facilitate glenohumeral motion.  The explanation for 

increased internal rotation given is that increased strength of the upper portion of the 

serratus anterior promoted this motion. 

 Limitations include the use of three static, rather than continuous measurements. 

Repeating palpation and digitization at these three positions may introduce error.  In 

addition, the group was not symptomatic for shoulder pain so patient motivation may 

have been limited.  No occupational or recreational activities were considered as 

covariates.  It was also a relatively young population and results might not be similar with 

an older population. 

 Ludewig and Borstad(2000) examined the effects of a home exercise program on 

shoulder pain and function in construction workers.  Workers with shoulder pain 
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consistent with shoulder impingement and confirmed with a clinical examination were 

randomized into an exercise group or control group.  The exercise intervention consisted 

of two stretching exercises, two strengthening exercises, and one relaxation exercise.  A 

daily bilateral pectoralis minor stretch was included in the eight-week exercise program.  

A subjective survey determined the effects of the exercises on shoulder pain and function.  

There was a statistically significant interaction of group and time.  Subjects in the 

intervention group demonstrated significant improvements in pain and satisfaction with 

their shoulder, and improvements in work-related pain and disability scores at post-test. 

 McClure et al (2004) completed a similar study evaluating the effects of a 

supervised exercise program on three-dimensional scapular kinematics, physical 

impairments, and functional limitations in patients diagnosed with shoulder impingement 

syndrome. Thirty-nine patients completed the 6-week program which consisted of 

strengthening and stretching of both the glenohumeral and scapular impairments often 

reported in patients with shoulder impingement syndrome.  Three-dimensional scapular 

kinematics, glenohumeral range of motion, thoracic posture, glenohumeral isometric 

strength, and self-reported pain and function were recorded pre and post intervention.   

 Increases in glenohumeral muscle force for internal and external rotation, 

glenohumeral internal and external rotation, concurrent with decreases in self reported 

pain, increased function, and increased satisfaction. No differences were observed for 

scapular kinematics or thoracic posture.  Glenohumeral internal rotation range of motion 

and external rotation strength were significantly correlated with increases in self report 

scores. It was concluded that these physical impairments are important to address in 

patients with shoulder impingement syndrome.   
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While the exercise program seems be effective, these results are limited by the 

lack of control group, dropout rate, and progression of the exercise program.  The authors 

note the limitations as a result of no control group and dropout rate constraining 

conclusions by the unknown natural history of shoulder pain.   The absence of observed 

changes in scapular kinematics is likely due to the lack of emphasis on humeral elevation 

in the exercise program.  Passive humeral elevation did not increase during the treatment 

program.  Therefore given the coupled nature of humeral and scapular motion it is not 

surprising that not differences were observed in scapular kinematics.  The difficulty in 

observing differences in scapular kinematics has been noted by several authors and is due 

to high between subject variability and the measurement error associated with skin 

motion.(van der Helm 1997; Ludewig and Cook 2000)    

2.3.3 Effects of Thoracic Posture on the Shoulder 

The effects of thoracic position on shoulder range of motion, strength, and three-

dimensional scapular kinematics has also been examined.(Kebaetse, McClure et al. 1999)  

Three-dimensional scapular position and orientation at rest, abducted to horizontal, and at 

maximum abduction were recorded in thirty-four subjects in both a slouched and an erect 

sitting position.  A computerized measuring system with potentiometers was used to 

digitize skeletal landmarks and define the three-dimensional position and orientation of 

the scapula.  The Euler or Cardan angle sequence used for determining scapular 

orientations was not reported.  

There were significant differences in the scapular kinematic variables between the 

two thoracic postures.  There was less scapular upward rotation and posterior tipping 

between 90° and maximum abduction in the slouched posture concurrent with increased 
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internal rotation from rest to 90° and 90° to maximum in the slouched posture when 

compared to the erect posture.  There was also a decrease in maximum abduction range 

of motion in the slouched posture, which the authors contribute to the decreased scapular 

upward rotation and posterior tilt. 

The scapular kinematics in this study was measured with the arm actively held in 

a static position, rather than during a continuous active movement.  This may have 

influenced the kinematics due to the influence of fatigue and by the subjects holding or 

“setting” their position and using a different muscle pattern than the one used during 

active elevation.  In addition, the subjects were all healthy and without recognized 

postural deviations.  The results of this analysis cannot be assumed to be consistent in 

those individuals who possess postural deviations of the thoracic spine. 

Similar results were reported by Finley and Lee(2003) using comparable methods 

except their measurements were during active arm elevation in the scapular plane.  They 

evaluated sixteen healthy adult volunteers performing arm elevation in the scapular plane 

while sitting erect and again while slouched.  Three-dimensional orientation data from 

the scapula, humerus and trunk were recorded during these elevations for later 

comparison.  The rotation sequences were not reported for the scapular and humeral 

rotations, but only that reported values were described relative to a 0° reference position. 

There were no statistically significant interactions, but the main effect of posture 

was statistically significant for scapular posterior tipping and internal rotation.  

Consistent with Kebaeste (1999) the scapula demonstrated less posterior tipping and 

greater internal rotation in the slouched position.  The authors also report that at rest, the 
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scapula demonstrated significantly less posterior tipping and upward rotation in the 

slouched posture. 

The methodology used in this study was unique in that the scapular motions were 

determined relative to a 0° reference position, rather than relative to the trunk.  This 

methodology is inconsistent with other analyses in that no local anatomical coordinate 

systems are established and no Cardan sequences are used.  The scapular rotations as 

described may be misleading because no local axis system about which rotations take 

place is defined. Comparing the motion values with other analyses should be done with 

caution.  Another limitation was that angles above 90° humeral elevation were not 

analyzed.  Further, the amount of thoracic kyphosis was not quantified.  

 Collectively, the literature is unable to conclusively demonstrate a consistent 

relationship or effect of postural adaptations to muscle strength, shoulder function, or 

pain.  The conclusions that are warranted based on the epidemiological and 

biomechanical studies available are: 

1. There is a relationship between the incidence of pain and increased 

severity of postural deviations in healthy individuals and those with 

shoulder pain. 

2. Exposure to multiple risk factors including increased repetition, 

awkward postures, and shoulder motion over acromial height places an 

individual at increased risk of developing shoulder pain. 

3. Changes in head and shoulder posture affect three-dimensional 

kinematics. 



39 

4. The mechanisms linking postural deviations and shoulder pain is 

unclear. 

2.4 Evaluation of Forward Head and Rounded Shoulder Posture 

The perceived role of posture has not changed over the last 70 years.  In 1932 the 

Orthopedics and Body Mechanics Subcommittee of the Hoover White House Conference 

on Child Health and Protection defined posture as; "The mechanical correlation of the 

various systems of the body with special references to the skeletal, muscular, and visceral 

systems and their neurological associations.”(Hoover White House Conference 1932) In 

other words, good posture and body mechanics were viewed as the foundations of motor 

development and normal human movement.  Classical evaluation of postural alignment 

evolved from this view and is performed with patient standing while the clinician 

assesses the skeletal alignment of the kinetic chain in the sagittal and frontal plane. 

(Kendall, Kendall et al. 1952)  Variations of this model have been proposed but no real 

change from the original model proposed by Kendall and associates has occurred. This 

model is based on the assumption that goal of optimal skeletal alignment is to perfectly 

balance about a midline through the center of mass both in the sagittal and frontal plane. 

Optimal skeletal alignment about the center of mass would allow for minimal force 

production and therefore minimal energy expenditure for postural stabilization.  Elderly 

individuals with poor sagittal plane posture demonstrate an increased incidence of falls, 

greater center of mass sway area, and sway velocity when compared to matched 

controls.(Sinaki, Brey et al. 2004)  Patients with increased forward head angles also have 

decreased endurance of their cervical extensor muscles. These functional deficits and 

decreased postural stability yields evidence to support the construct validity of this 
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model.  Furthermore, the head and neck account for approximately 8-10% of body mass 

which would significantly alter the balance of moments requiring other postural 

compensations requiring more force to maintain postural stability.(Leveau 1992)  This is 

a likely explanation for the observed increase electromyographic (EMG) activity in 

posterior neck muscles and upper trapezius concurrent with increasing forward head 

posture even while at rest.(Hagberg, Harms-Ringdahl et al. 2000)  Additionally, 

decreased endurance of the cervical extensors appears to be associated with forward head 

posture in patients with cervical pain. (Grimmer and Trott 1998) 

While postural alignment is defined as the relationship of all the segments as a 

whole, adjacent segments are often considered in smaller groups during the 

musculoskeletal evaluation.  Specifically, head and shoulder posture is proposed to be 

associated with the development and persistence of neck and shoulder pain(Kendall, 

Kendall et al. 1952; Sahrmann 2001).  It is unclear however, what normal values of 

resting head and shoulder posture are for a given population of patients given their age, 

gender, and lifestyle. 

Given the prominence of postural evaluation during the musculoskeletal 

examination, there are relatively few studies that have attempted to establish baselines 

and normative values for head and shoulder posture. The majority of investigations have 

focused on the validity and reliability of clinical measures but with little attention to the 

range of normal values and their relationship to pathology.(Diveta, Walker et al. 1990; 

Garrett 1993; Gibson, Goebel et al. 1995)  Comparisons of head and shoulder posture 

have been made between limited samples of asymptomatic and symptomatic individuals, 

men and women, and under various conditions thought to influence posture(Diveta, 
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Walker et al. 1990; Greigel-Morris 1992; Kebaetse, McClure et al. 1999).  Gender is 

suggested to influence head and shoulder posture, but is inconclusive given the small 

sample sizes of these methods.(Hanten, Lucio et al. 1991; Raine and Twomey 1997; 

Hanten, Olson et al. 2000)    

Two different approaches have been taken to assess head and shoulder posture. 

One is based on some variation of Kendall’s classic model (Cureton 1941; Kendall, 

Kendall et al. 1952), while the other has attempted to look at resting posture in view of 

total range of cervical motion available.(Hanten, Lucio et al. 1991; Grimmer 1997) 

Several authors have recommended the evaluation of the head and shoulder girdle to the 

thorax in the evaluation and treatment of shoulder pain. (Kendall, Kendall et al. 1952; 

Kibler 1998; Sahrmann 2001) Ideal postural alignment of the head and shoulder is 

suggested to be when the tragus and the acromion are aligned over a vertical plumbline 

extending superiorly from the fifth metatarsal head.  While this is proposed as the “ideal” 

alignment, it is acknowledged that no one has perfect postural alignment. (Kendall, 

Kendall et al. 1952)  Head and shoulder girdle “normal” resting posture in fact seem to be 

slightly anterior to the vertical plumbline. (Hanten, Lucio et al. 1991; Peterson, 

Blankenship et al. 1997; Raine and Twomey 1997; Lukasiewicz 1999)  Each of these 

studies observed natural resting posture of the head and shoulder to be anterior to the 

thorax.  While definition of “ideal” posture requires the head to be centered over the 

shoulders, hips, and feet, this postural alignment is not reported in the literature.  Even so, 

head and shoulder posture seem to be a stable measure over time demonstrating good to 

excellent ICC values.(Braun 1991; Raine and Twomey 1997; Hanten, Olson et al. 2000)  

This is supported when results are compared on a similar scale.  While each study used 
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different assessment methods of head and shoulder posture, mean and standard deviations 

are comparable when adjusted to the same scale (Figure 1 and Table 1).  This observation 

suggests that forward head and shoulder posture is a real phenomenon and not a function 

of study design or measurement methodology.  

 Head and shoulder posture has classically been defined in relation to the thorax.  

Forward head posture has been described as having a “poke neck” concurrent with a 

forward shoulder thrust and is thought to be reflective of overall musculoskeletal health 

and fitness. (Cureton 1941)  The descriptive statistics and distribution of the large sample 

(644) of college males provides a valuable picture of posture in a young population.  

Posture does not seem to significantly change with age with mean values falling well 

within 1 standard deviation within single studies comparing age groups and across 

studies. (Table 1) Among all of the studies reviewed, group means for forward head angle 

ranged from 41˚ to 54˚ ± 4˚ to 7˚.  The consistency of forward head angle among studies 

as well as across different populations suggests that it is a valid measure of forward head 

posture.   

 Hanten (1991; 2000) and Grimmer (1997; 1998) have approached head posture in 

a different manner.  They have suggested that it is important to assess an individuals 

resting posture in relation to their total available range of linear or angular excursion.  

This is generally performed by having the patient completely retract (posterior) and 

protract (anterior) their head. Then, comparisons of the resting posture are made as a 

percentage or at the end ranges of the motion.  Differences in linear excursion has been 

reported between gender and cervical pain.(Hanten, Olson et al. 2000)  Additionally, 

differences in upper and lower cervical excursion angles have been noted in patients with 
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cervical pain with no differences noted between genders.(Grimmer and Trott 1998)  

While these studies have demonstrated differences between patients with and without 

cervical pain, they have not been studied in patients with shoulder pain.  The relationship 

of excursion measures to the development of shoulder pain is unclear.  Based on the 

limited research using these measures, it is difficult to interpret and apply these measures 

to delineate postural groups.   

Several limitations of the previously described studies should be noted.  The 

values reported were converted to a standard scale and were not originally calculated as 

such.  Many of the studies’ procedures are not fully described limiting their 

reproducibility. The use of homogenous samples for any one study limits the 

generalizability of these values.  It is not clear comparing these results if males and 

females have different head and shoulder posture.  However, even with these limitations 

it is likely that increasing computer use and sedentary lifestyles result in an increased 

forward head and rounded shoulder posture.  

There is a limited amount of literature and overall lack of controlled studies 

evaluating the effect of posture on shoulder function.  Finley et al(2003) and Kebaetse et 

al(1999) are the only two studies to specifically address the effects of altered head and 

shoulder posture.  While these studies have the advantage of a within subjects design, 

they are limited by the nature of the adaptive changes due to postural malalignment.  It is 

likely that these changes are not immediate but instead impact movement patterns over a 

period of time.  The observed changes in these studies are similar to altered patterns of 

scapular kinematics in patients diagnosed with shoulder impingement syndrome.  These 

results suggest that the development of shoulder pain is at the very least related to the 
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development of shoulder pain.  It is likely that these changes may even be a component 

of underlying mechanism directly attributable to changes in shoulder girdle movement 

patterns and in turn shoulder pain.   However, there is no research giving direct support 

for the proposed relationship between postural malalignment, alterations in movement 

patterns, and the eventual development of shoulder pain.  The relationship between 

postural alignment and altered movement patterns, muscle function, and coordination 

must first be established before investigations examining the relationship of postural 

alignment, altered movement patterns, and shoulder pain can be explored.  In conclusion,  

1. Many methods have been proposed to evaluate forward head and rounded 

shoulder posture but few have been replicated in multiple studies limiting their 

usefulness..   

2. While some methods have been shown to be less reliable, no single method has 

been demonstrated to be superior in assessing forward head and rounded shoulder 

posture. 

3. Forward head angle and forward shoulder angle offer good measures of head and 

shoulder posture with several benefits: 

a. Demonstrated reliability 

b. Do not need to be normalized to height as with translations 

c. Previous studies large sample sizes indicate possible normative values 

d. Observed differences for both measures in the same study in individuals 

with neck and shoulder pain 

4. Forward head and rounded shoulder posture has not been consistently observed in 

individuals with shoulder pain. 
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2.5 Scapular Kinematics 

2.5.1 Normal Scapular Kinematics 

Normal shoulder motion is dependent on synchronous movement of the scapula, 

clavicle, and humerus on the thorax.  The shoulder is able to achieve maximal mobility 

while maintaining stability by the complex interaction of its active and passive 

components. (Warner 1993) The scapula is stabilized and rotated on the thorax by the 

axioscapular musculature providing the humeral head a stable platform on which to 

function. This dynamic coordination between the scapula and humerus also positions the 

rotator cuff muscles at an optimal length for maximum contraction to further stabilize the 

humeral head in the glenoid fossa during shoulder movement. (Paine and Voight 1993) 

For these reasons synchronous motion of the scapula is thought to be vital to normal 

shoulder function. 

Scapular motion is described by three rotations and two positions/translations.  

The three rotations are scapular upward/downward rotation, internal/external rotation, 

and anterior/posterior tipping (Figure 2).  The two translations are protraction/retraction 

and elevation/depression (Figure 2).  Scapular motion has been studied for some 80 years 

beginning with two–dimensional (2D) methods such as goniometry(Doody, Freedman et 

al. 1970), radiography(Inman, Saunders et al. 1944; Bagg and Forrest 1988; Paletta, 

Warner et al. 1997), and Moire'  topography.(Warner, Michelli et al. 1992) These studies 

have assessed scapular motion during humeral elevation in the scapular plane (humerus 

positioned 30°-40° anterior of frontal plane), (Inman, Saunders et al. 1944; Bagg and 

Forrest 1988; Paletta, Warner et al. 1997) frontal plane, (Stookey 1920; Inman, Saunders 

et al. 1944; Koh, Grabiner et al. 1998) sagittal plane, (Inman, Saunders et al. 1944; Koh, 
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Grabiner et al. 1998; McClure, Michener et al. 2001), and wheelchair transfers (Finley, 

McQuade et al. 2005) (Table 2).  These results have most often been reported as the 

scapulohumeral rhythm, which is defined as the ratio of scapula upward rotation relative 

to humeral elevation. (Codman 1934)  Stookey (1920) first investigated scapulohumeral 

rhythm defining three distinct phases of humeral elevation: from 0-60°, 60°-115°, and 

115° to maximum shoulder elevation.  During the initial phase of humeral elevation large 

variations in the amount of scapular upward rotation were observed.  The middle phase 

was described as the classic idea of scapulohumeral rhythm 2° of humeral elevation for 

every 1° of scapular upward rotation.  Then, during the last phase progressively more 

scapular rotation contributed to the overall elevation of the humerus.  Inman et al.(1944) 

observed that the scapulohumeral rhythm was 2:1 over the entire arc of humeral elevation 

in the frontal plane.  In agreement with previous reports they observed that during the 

first 30°-60° of elevation, scapular upward rotation was highly variable among subjects 

and termed this the “setting phase”. Other investigators have reported the scapulohumeral 

rhythm to be anywhere from 1.25:1 to 3:2 depending on the plane of humeral elevation 

(frontal, scapular, sagittal) and arc of elevation evaluated.(Freedman and Munro 1966; 

Bagg and Forrest 1988)  Differences in methodology make it difficult to compare results 

across studies to gain an appreciation of why there are such large discrepancies in their 

observations. The literature, however, seems to support a non-linear pattern of scapular 

upward rotation relative to glenohumeral elevation progressing from 2:1 in the early 

phases (30°-100°) and 3:2 (100°-max)in successive phases.(Paletta, Warner et al. 1997) 

Until recently, specific patterns of scapular motion had only been defined using 

2D analyses as humeral elevation was performed in the scapular and frontal planes. 
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Three-dimensional (3D) kinematics have now been described for shoulder motion during 

elevation in the frontal, scapular, and sagittal plane,(Ludewig, Cook et al. 1996; Hebert, 

Moffet et al. 2000; McClure, Michener et al. 2001) as well as during wheelchair 

transfers.(Finley, McQuade et al. 2005)   Patterns of increasing scapular internal rotation 

followed by external rotation above 90º of humeral elevation, posterior tipping and 

upward rotation of the scapula are reported during humeral elevation in all planes. The 

increase in scapular external rotation seems to be some what abrupt and may be related to 

the range of humeral rotation.(van der Helm and Pronk 1995)  In contrast, several authors 

have reported scapular internal rotation during elevation ranging from 0° to 34°. 

(McQuade and Smidt 1998; Meskers, Vermeulen et al. 1998) Discrepancies in the 

literature when comparing absolute values of scapular internal/external rotation are due to 

definition of local axis systems, choice of Euler angle rotations, arc of elevation, and 

plane of humeral elevation evaluated.  (van der Helm and Pronk 1995; Koh, Grabiner et 

al. 1998)  However, a pattern of increasing scapular internal rotation during initial stages 

of humeral elevation followed by scapular external rotation above 90° of humeral 

elevation is supported across the literature. In conclusion, 

1. Normal scapular motion during the first 80°-90° humeral elevation is  

a. Increasing upward rotation, posterior tipping and internal rotation 

b. Protraction, and elevation  

2. Above 90° the scapula 

a. Continues to upwardly rotate and posteriorly tip 

b. Begins to externally rotate 

c. Maintains the amount of protraction and continues to elevate 
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2.5.2 Alterations in Scapular Kinematics 

Altered scapula kinematics are reported in patients with instability (Ozaki 1989; 

Warner, Michelli et al. 1992; Paletta, Warner et al. 1997), impingement(Lukasiewicz 

1999; Ludewig and Cook 2000; Hebert, Moffet et al. 2002), rotator cuff tears(Warner, 

Michelli et al. 1992; Paletta, Warner et al. 1997) , and adhesive capsulitis(Vermeulen, 

Stokdijk et al. 2002; Rundquist, Anderson et al. 2003). Early initiation of upward rotation 

has been documented in patients with adhesive capsulitis,(Vermeulen, Stokdijk et al. 

2002; Rundquist, Anderson et al. 2003) shoulder impingement, and rotator cuff 

tears.(Inman, Saunders et al. 1944; Paletta, Warner et al. 1997)  Irregular and 

uncontrolled upward rotation during elevation has been reported in patients with 

glenohumeral instability. (Poppen and Walker 1976; Warner, Michelli et al. 1992) It is 

now apparent that decreases in scapular external rotation and posterior tipping may 

contribute to shoulder impingement.(Lukasiewicz 1999; Ludewig and Cook 2000; 

McClure, Bialker et al. 2004) Together these changes in scapular motion are thought to 

reflect compensatory movement strategies related to the underlying shoulder pathology.   

These results support the historical emphasis on the clinical evaluation of patterns 

of scapular motion and postural position during examination of the shoulder used to 

guide the treatment of shoulder dysfunction.(Codman 1934; Kibler 1998)  Altered 

scapular motion may increase stress on the muscular, capsular, and ligamentous 

structures, placing the shoulder at risk for atraumatic instability(Warner and Boardman 

III 1999; Weiser, Lee et al. 1999), impingement, or other types of shoulder 

pathology.(Sahrmann 2001; Wilk, Meister et al. 2002) It remains unclear whether 

scapular dysfunction is a contributing factor or compensatory mechanism to shoulder 



49 

pathology.  It has been suggested that atraumatic shoulder instability and impingement 

are the result of scapular dysfunction while rotator cuff tears and adhesive capsulitis are 

compensatory dysfunctions.(Paletta, Warner et al. 1997)  Pink et al.(1996) suggests that 

by detecting asynchronous scapular motion before symptoms present in overhead 

athletes, clinicians can prevent shoulder impingement and glenohumeral instability. For 

effective prevention and treatment programs to be implemented understanding the 

prognostic value of evaluating altered scapular motion and the mechanism(s) which lead 

to this dysfunction is important.   

Examination of the scapula during the evaluation of patient’s shoulder pain is 

supported by recent studies demonstrating the effectiveness in decreasing associated 

symptoms with an exercise regimen.(Ludewig and Borstad 2003; McClure, Bialker et al. 

2004)  These studies demonstrated exercise programs with components to normalize 

scapular strength, flexibility, and motion are effective in reducing the signs and 

symptoms associated with shoulder impingement syndrome.  What is not clear is if 

scapular kinematics change as a result of treatment.  McClure et al(2004) did not observe 

changes in scapular kinematics in a group of patients diagnosed with shoulder 

impingement syndrome. While others have observed scapular kinematics become more 

like normal movement patterns following interventions for loss of glenohumeral range of 

motion and stretching of the anterior chest wall. (Wang, McClure et al. 1999; Vermeulen, 

Stokdijk et al. 2002)  Aside from source of the shoulder pathology differences in 

variables compared may be important.  Vermeulen et al (2002) compared the slope of the 

scapulohumeral rhythm for all three motions while McClure et al (2004) compared angles 

at different arcs of humeral elevation.    This may be important as changes in 
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scapulohumeral rhythm would be sensitive to how the motion changed during arcs of 

humeral elevation where comparisons made at multiple levels of humeral elevation 

would not reflect the pattern of scapular motion.  Regardless, it seems that the evaluation 

of scapular motion and related impairments is important in the treatment of shoulder 

dysfunction. 

Another significant void in the current literature is the evaluation of scapular 

kinematics during functional tasks.  Finely et al(2005) is the only study to evaluate a 

functional task.  This task is important for individuals confined to a wheelchair. However 

no studies to date have evaluated scapular kinematics during functional tasks associated 

with shoulder pain such as reaching or overhead throwing type motions. The use of single 

plane elevation motions is important when evaluating the shoulder in that it allows for 

standard comparison of scapular motions.  However, it may be a limitation of previous 

research given the tightly coupled nature of humeral elevation and scapular motion.  Such 

a controlled type of motion may drastically reduce an individual’s degrees of freedom 

and force people to move in a similar fashion.  This may explain why such small 

differences in scapular angles are reported between individuals with and without shoulder 

pain.  Given the evidence implicating forward reaching as a significant risk factor in the 

development of shoulder pain it is important to understand how the scapula moves during 

a functional movement pattern.  Additionally, a forward reaching task is similar to 

symptom provoking maneuvers used in an musculoskeletal exam of the shoulder.  A 

functional reaching task therefore, may provide a good model to investigate for 

mechanisms associated with the development of shoulder pain. In conclusion, 
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1. Altered scapular motion is  

a. Decreases in upward rotation, posterior tipping, and external 

rotation. 

b. Decreases in protraction coupled with increases in elevation 

2.5.3 Validity and Reliability Of Three Dimensional Scapular Kinematics 

Scapular motion has been evaluated for criterion validity for elevation in the 

sagittal, frontal, and scapular planes, as well as internal/external rotation at 90o of 

abduction.  (Karduna, McClure et al. 2001; Vermeulen, Stokdijk et al. 2002) Only 8 and 

10 subjects were used in each study while reliability data was only reported for the 

scapular plane by Karduna et al (2001), while Vermeulen et al (2002) did not report any 

reliability data.   As these methods have become more widespread in use the results from 

different researchers and across diverse populations suggest face validity to these 

methods.  Despite the limited studies evaluating the validity of non-invasive scapular 

tracking, these methods seem to offer reasonable representations of dynamic scapular 

motion.   

Reliability is important in the interpretation and use of any kinematic data.  Several 

authors have used different methods to evaluate reliability with good to excellent results 

depending on the humeral elevation task evaluated.  Ludewig and Cook (1996) reported 

between trial reliability with ICC(2,1) values ranging from 0.89-0.94.  Reliability measures 

were only reported from trial to trial for motions other than elevation in the scapular 

plane. Wang et al (1999) has reported ICC(2,k) values of 0.6 to 0.85 with scapular internal 

rotation being the least reliable during elevation in the scapular plane as compared 

between days.  Thigpen et al(2005) results are in agreement with Wang et al (1999)and 
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Finley and Lee (2003) reporting good to excellent repeatability of scapular rotation 

curves for humeral elevation in the frontal, scapular, and sagittal planes.  Comparison of 

coefficient of multiple correlation (CMC) values suggested that scapular rotation 

measures are repeatable between trials within the same testing session, but less repeatable 

between testing sessions and days. Sagittal plane elevation consistently yielded the 

highest CMC values for all scapular rotations. Scapular internal rotation yielded the 

lowest CMC values for all planes of humeral elevation.  These results suggest sagittal 

plane elevation should be considered for the evaluation of scapular rotations, especially 

scapular internal rotation.  

2.5.4 Methodological Considerations for Collection of Kinematic Data  

International Society of Biomechanics-Shoulder Group Recommendations 
 

The International shoulder group was formed in 1996 in an effort to create 

standards for data collection and processing techniques for those studying the shoulder.  

This group is made up of the leading researchers in the field of shoulder biomechanics.  

They have published a series of recommendations for defining bony segments, Euler 

angle sequences for segmental and joint rotations, as well as suggestions for world and 

segment axes systems.(International Society of Biomechanics Shoulder Group 1998; 

International Society of Biomechanics Shoulder Group 2002)  The main discrepancies 

between different research groups investigating scapular kinematics remain in definition 

of the glenohumeral joint and proximal end of the humerus, Euler angle sequence, and 

definition of bony segments.  A series of investigations from the Delft Shoulder Group in 

the Netherlands have shown the helical axes method to be the best at predicting the 

instant center of rotation during shoulder movement.(Meskers, van der Helm et al. 1998; 
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Veeger 2000)  The methods used in this project will follow the latest recommendations 

(2002) for definition of bony segments, global and local axes systems, and Euler angles 

sequences. 

Acromial Method  

 The acromial method is a dynamic method collecting the data throughout the 

range of active motion in contrast to the static methods that sample scapular landmarks at 

multiple static positions throughout the range of motion.  The electromagnetic sensor is 

placed on the broad flat surface of the postero-lateral acromion of the subject.  Bony 

landmarks (posterior-lateral acromion, root of the spine at the medial border, inferior 

angle) are then digitized to represent the scapula.  Movement of the acromion is detected 

by the attached electromagnetic sensor is then used to represent scapular rotation and 

translation.    

The acromial method has been used to investigate shoulder kinematics (Ludewig 

et al., 2002;Ludewig and Cook, 2000;McQuade and Smidt,1998; McQuade et al., 1998). 

The acromial method is advantageous because shoulder kinematics can be dynamically 

assessed.  Results from Johnson et al (2001) and Graichen et al (2000) suggest that static 

methods report smaller amount of motion when compared to dynamic methods.  While 

these static measures have differentiated between shoulder pathologies, dynamic motion 

analysis may be able to differentiate better between populations as well as describe more 

completely shoulder motion in symptomatic and asymptomatic pathological groups. 

Dynamic motion analysis allows for the integration of kinematic data with 

electromyographic (EMG) and kinetic data to evaluate the difference in patterns of 

muscle activation and joint function in shoulder pathologies.  Dynamic motion analysis 
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also allows for the simulation of functional activities that have been implicated in 

contributing to shoulder dysfunction. 

Several studies offer precautions when collecting and interpreting data using 

dynamic motion analysis of scapular motions (Karduna et al., 2001).  Many studies have 

used electromagnetic sensor systems to evaluate shoulder kinematics both in vivo and in 

vitro.(Harryman II, Sidles et al. 1990; van der Helm and Pronk 1995; Ludewig, Cook et 

al. 1996; McClure, Michener et al. 2001)  Reliability and validity have been reported for 

measurement of humeral and scapular motion both in vitro and in vivo. (An, Jacobsen et 

al. 1988; Harryman II, Sidles et al. 1990; van der Helm and Pronk 1995; Ludewig, Cook 

et al. 1996; McClure, Michener et al. 2001) Electromagnetic devices have been used to 

monitor glenohumeral translation in three-dimensional fashion both in vitro and in 

vivo.(Harryman II, Sidles et al. 1992; Borsa, Sauers et al. 2001; Sauers, Borsa et al. 2001) 

Criterion validity has been reported for techniques by which the sensors are attached to 

the skin measuring planar translation and three-dimensional scapular motion (Borsa et 

al., 2001;McClure et al., 2001;Karduna et al. 2000)  Accuracy has been reported for 

sensor to skin methods to be within 0.5° to 4° and 2.5-10 mm (Johnson et al., 2001; 

McClure et al., 2001; Sauers et al., 2001; Meskers et al., 1999) with accuracy increasing 

with smaller testing spaces (1 m3) and velocities are kept relatively slow. (Meskers et al., 

1999; Ludewig et al., 2002; McQuade et al., 2002)  Methods to estimate the instant 

center of rotation of the glenohumeral joint have been proposed by Veeger (2000) and 

Meskers et al (1998) with reported measurement errors less than 1° and 2-3 mm per axis.   

Digitizing is an important part of utilizing the Motion Monitor System ® 

(Innovative Sports Training, Inc. Chicago, IL).  Several authors have reported reliability 
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using the digitizing procedures as described by the International Society of Biomechanics 

shoulder protocol.(Ludewig 1996; Meskers, Vermeulen et al. 1998; de Groot 1999)  

Three-dimensional kinematic analysis using the acromial method offers a relatively 

simple and efficient tool to investigate shoulder pathology in a clinical or research 

setting.  Dynamic evaluation of motions outside of the scapular plane may offer greater 

insight into the mechanisms of shoulder pathology.  

Velocity and Load 

 The effects of velocity of humeral elevation and load lifted during humeral 

elevation on scapular kinematics have received limited attention.(de Groot, Valstar et al. 

1998; McQuade and Smidt 1998) To date, investigations examining scapular kinematics 

have controlled the velocity of humeral elevation.  However, no rationale has been given 

for this methodological consideration.  While controlling velocity may decrease the 

variability between subjects, it also may limit the ability to observe alterations in scapular 

kinematics. De Groot (de Groot, Valstar et al. 1998) has reported no differences in 

scapulohumeral rhythm with changes in velocity.  This suggests that there is no need to 

control velocity when examining scapular kinematics.  Increases in scapulohumeral 

rhythm have been reported due to increased load during humeral elevation.(McQuade and 

Smidt 1998; Pascoal, van der Helm et al. 2000)  The observed increases in upward 

rotation over 30˚ humeral elevation arcs suggests greater scapular motion is required to 

achieve equal levels of humeral elevation when lifting a load.  This may enhance the 

ability to see differences in scapular kinematics as it would place higher demands on the 

scapular muscles and require larger ranges of scapular motion for a given motion or task.  

Finally, examining a task with no load and controlled velocity is not reflective of how the 
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upper extremity functions.  The shoulder’s main function is to place the hand in space in 

order to move and manipulate objects. Evaluation of scapular kinematics should reflect 

this loaded, self selected velocity condition of functional shoulder tasks.  

2.5.5 Kinematic Data Processing 

 As with any 3-D biomechanical study not using bone pins, skin movement artifact 

introduces error into the data signal.  While studies have shown this error to be 

consistent, increased noise in any data signal is not desirable especially when derivatives 

of the original signal are calculated.(Karduna, McClure et al. 2001)  Skin movement 

artifact is of concern at the shoulder and especially the scapula, given the increased 

amounts of muscle and skin between the electromagnetic sensor and the bony segment.  

Following previous researchers(van der Helm and Pronk 1995; Ludewig 1996; McClure, 

Michener et al. 2001), kinematic data in this project was sampled @ 50Hz.  Then, they 

were smoothed using a recursive Butterworth (4th order) low pass filter set at 6.79 Hz 

based on sampling frequency.  However, upon evaluation of the scapular velocities it 

became clear that in order for appropriate analyses of the coordination data to take place 

this was not clean enough.  Therefore, a spectral analysis was performed and subsequent 

residual analysis which revealed 99.9% of the signal to be present @ 11-12 Hz.  

Following Giakas’s (Giakas and Stergiou 2004) recommendations of 4-times this number 

for sampling frequency affirms that 50Hz is appropriate.  Residual analyses revealed a 

significant change in the slope of the curves at 2.5 to 3.0 Hz. (Figure 8). Therefore, 

subsequent coordinate data has been filtered at 3.5 Hz before calculation of angular and 

velocity data. 
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2.6 Electromyography  

2.6.1 Rationale of Surface Electromyography  

Surface electromyography (EMG) provides a window into the muscle recruitment 

strategies and therefore muscle function used to generate the segmental motion required 

for a given motor task.(Edgerton, Wolf et al. 1996)  Patterns of EMG activity reflect the 

neural inputs to the motor neuron pool and are indicative of neuromuscular control 

strategies for a given movement task.  Alterations in EMG patterns for a muscle or set of 

muscles are used to identify deficits in muscle function and help to fully understand 

human movement strategies.  Neural adaptations due to pathology and/or over stretching 

of the musculotendinous unit are thought to influence the force-length-velocity 

relationships thereby decreasing the load capacity of that muscle or muscles.  Hypotheses 

for both hyperactivity and hypoactivity have been suggested as a result of these neural 

adaptations. (Edgerton, Wolf et al. 1996) Neural adaptations of the phasic muscles (e.g., 

upper trapezius and pectoralis major: responsible for force and velocity generation) are 

thought to become hyperactive while tonic muscles (e.g., serratus anterior and rotator 

cuff: responsible for postural stabilization) become hypoactive. (Janda 1965)  

Understanding alterations in these muscles individually as well as their relationship to 

each other provide valuable insights into normal and adaptive neuromuscular control 

strategies.  Ratios of EMG activity allow for these relationships to be quantitatively 

expressed and compared between motor tasks and individuals with and without shoulder 

pain. (Edgerton, Wolf et al. 1996; Cools, Witvrouw et al. 2003)   Examination of scapular 

muscle function by analyzing patterns of EMG activity and muscle balance ratios have 

laid the foundation for the fundamental understanding of normal and abnormal shoulder 
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mechanics.(Inman, Saunders et al. 1944; Glousman, Jobe et al. 1988; Ludewig and Cook 

2000; Cools, Witvrouw et al. 2003) 

2.6.2 Normal Scapular Muscle Function  

Normal scapular muscle function facilitates a smooth, coordinated rotation and 

lateral translation of the scapula on the thoracic wall during humeral elevation.  During 

overhead activities such as reaching and throwing normal scapular muscle force couples 

stabilize the scapula allowing for the absorption and transference of forces and moments 

from the upper extremity to and from the trunk and lower extremity. (Kibler 1998)  These 

force couples work in synergies with one another facilitating optimal shoulder function. 

(Pink, Scenar et al. 1996)  Proper scapular positioning is crucial for normal glenohumeral 

mechanics because the muscles forming the glenohumeral force couples originate from 

the scapula.  The deltoid works in concert with the rotator cuff to center the humeral head 

in the glenoid fossa and prevent excessive superior migration as well as to stabilize the 

humerus in the sagittal plane restricting excessive anterior-posterior translation.  (Warner 

1993)  Alterations in scapular positioning have been shown to result in increased stress 

on the anterior/inferior glenohumeral ligaments and cause superior migration of the 

humeral head.(Graichen, Bonel et al. 1999; Weiser, Lee et al. 1999) Scapular positioning 

apparently alters the ability of the rotator cuff to keep the humeral head centered in the 

glenoid.  It is thought that this contributes to acquired anterior glenohumeral instability 

and shoulder impingement syndrome.(Jobe, Giangarra et al. 1991; Kibler 1998)   

Dynamic scapular stabilization and neuromuscular control therefore, is required 

for optimal shoulder function. This stabilization and control is accomplished by scapular 

muscle force couples interacting in different combinations with the degree of scapular 
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elevation, rotation and protraction. These force couples tether the scapula from every 

corner preventing any scapular lag or winging. (Pink, Scenar et al. 1996)  The trapezius 

muscle forms a force couple with the serratus anterior. As the serratus anterior contracts, 

its force tends to draw the scapula laterally around the chest wall. This displacement is 

resisted by the lower trapezius fibers, which seem to operate at a constant length to 

stabilize the scapular axis of rotation. The upper fibers of the trapezius simultaneously 

exert an upward rotation moment about the frontal plane axis, complementing the 

downward moment created by the serratus anterior. However, the upper trapezius is 

suggested to be more important in acromial elevation than scapular upward rotation.  The 

lower trapezius together with the serratus anterior are thought to produce the needed 

moment for scapular upward rotation or resisting scapular downward rotation during 

humeral elevation.(Bagg and Forrest 1986; Pink, Scenar et al. 1996)  The middle 

trapezius fibers have a very short moment arm due to their close proximity to the frontal 

plane axis of rotation, especially during the early phases of humeral elevation thereby 

limiting their ability to generate an upward rotary moment.  However, as the scapula 

translates  laterally and upwardly rotates its moment arm increases as the axis of rotation 

moves laterally along the spine of the scapula.(Bagg and Forrest 1986; Bagg and Forrest 

1988)  The middle and lower fibers are positioned to control and stabilize the scapula in 

the transverse and sagittal planes.  Normal activation ratios and temporal recruitment 

patterns between the different parts of the trapezius are thought to be essential in 

maintaining the proper scapular position during elevation.(Edgerton, Wolf et al. 1996) 

The upper and lower fibers work together in the frontal plane preventing excessive 

scapular elevation or depression, while the middle and lower fibers control scapular 
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upward rotation produced by the upper fibers.  Scapular stabilization seems to be 

accomplished by working concurrently with the force couple with the serratus anterior 

and pectoralis minor. (Cools, Witvrouw et al. 2003)  Scapular muscle patterns of EMG 

activity during humeral elevation have consistently affirmed Inman et al.’s (1944) initial 

observations of increasing scapular muscle activity with increasing humeral elevation up 

to about 70˚ - 90˚ then a plateau through 120˚ -130˚ followed by another increase in 

scapular muscle activity through maximum elevation.(Bagg and Forrest 1986; Ludewig, 

Cook et al. 1996)  Each of the scapular stabilizers (upper and lower trapezius as well as 

serratus anterior) demonstrates a similar pattern of muscle activity during elevation 

across the planes of humeral elevation.  These scapular force couples also show a similar 

pattern of increasing activity up to about 80˚ of shoulder elevation then plateauing 

through 120˚ of elevation then increasing again through maximum shoulder 

elevation.(Inman, Saunders et al. 1944; Bagg and Forrest 1986)  Scapular stabilizers are 

thought to respond to the torque about the shoulder joint regardless of the shoulder 

motion. (Pearl, Perry et al. 1992)  To date no studies have evaluated scapular muscle 

activity during a functional task, therefore it is unknown what the response of the 

scapular stabilizers are during functional activities. In conclusion,  

Normal scapular muscle activity is characterized by: 

1. Concurrent increases in amplitude of the serratus anterior and upper 

trapezius up through maximum humeral elevation. 

2. Increased activity of the middle and lower trapezius beginning at 90˚ of 

humeral elevation and continuing through maximum elevation. 
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3. Decreasing upper trapezius activity throughout the descending phase of 

humeral elevation. 

4. Continued high levels of lower trapezius and serratus anterior activity 

through 120˚ of humeral elevation then decreasing pattern of activity. 

2.6.3 Alterations in Scapular Muscle Function 

Alterations in scapular muscle activity have been evaluated after fatigue and 

shoulder injury.  Scapular muscle activity has proven difficult to fatigue in isolation. 

Therefore, studies have used methods which with global shoulder fatigue protocols.  

Shoulder fatigue elicited by repeated humeral elevation and humeral external rotation 

have yielded similar results with decreases in scapular posterior tipping and upward 

rotation.(McQuade, Dawson et al. 1998; Tsai, McClure et al. 2003)  The decreases is 

upward rotation yield an overall decrease in scapulohumeral rhythm.(McQuade and 

Smidt 1998)  Muscle activation patterns also change following fatigue of the shoulder 

girdle as evidence by alterations latency times of the trapezius following shoulder fatigue. 

(Cools, Witvrouw et al. 2003)  These latency patterns are similar to those seen in patients 

with shoulder impingement syndrome. (Cools, Witvrouw et al. 2003)  Latent onset of the 

middle and lower trapezius to an arm perturbation suggests altered function of the middle 

and lower trapezius following fatigue and due to shoulder pathology.  This is consistent 

with observed alterations in scapular muscle activity during arm elevation in patients with 

shoulder impingement syndrome. (Ludewig and Cook 2000)  Increased upper trapezius 

and lower trapezius activity and decreased activity of the serratus anterior were reported 

concurrent with decreases in scapular posterior tipping, upward and external rotation.   
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Decreases in serratus anterior activity have also been reported in patients diagnosed with 

anterior shoulder instability.(Glousman, Jobe et al. 1988; McMahon, Jobe et al. 1996)  

Abnormal scapular muscle function has been associated with individuals with 

shoulder pathology and following shoulder fatigue.  These changes in muscle function 

have been observed concurrent with changes in scapular kinematics and scapulohumeral 

rhythm.(McQuade, Dawson et al. 1998; Ludewig and Cook 2000)  In summary, shoulder 

pathology and fatigue seem to affect scapular muscle patterns in a similar manner, 

including increases in upper and lower trapezius activity and decreases in serratus 

anterior activity.  These effects seem to be clearer while lifting a load and at higher 

angles of arm elevation.  This is reasonable considering the increased moment 

requirements placed on the shoulder by a load and the increasing scapular stabilization 

required at higher ranges of shoulder elevation.   

The characteristics of abnormal scapular muscle activity are: 

1. Increased upper trapezius activity during humeral elevation concurrent 

with early onset of activation. 

2. Decreased activity of the lower trapezius and serratus anterior concurrent 

with late onset of activation. 

2.7 Coordination Analyses based on Dynamical Systems Theory 

2.7.1 Background and Rationale of Application to the Shoulder 

The current framework for understanding the musculoskeletal and neuromuscular 

mechanisms of the shoulder are based on traditional biomechanics.  Glenohumeral and 

scapulothoracic joint kinematics as well as electromyographic analyses have been used to 

examine the mechanisms of shoulder movement patterns.(Inman, Saunders et al. 1944; 
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Karduna, McClure et al. 2001)  These traditional approaches are limited in their ability to 

capture the complexity of the shoulder girdle due to an almost infinite number of degrees 

of freedom available to create movement patterns.  Understanding the organization of 

these components therefore, is limited to descriptions and comparisons of isolated 

humeral, scapular, and clavicular kinematics as well as electromyographic studies. Most 

previous research (Freedman and Munro 1966; van der Helm and Pronk 1995; Hebert, 

Moffet et al. 2000; Karduna, McClure et al. 2001) has controlled the plane of shoulder 

motion when assessing the shoulder complex and only analyzed humeral elevation.  

Research demonstrates a strong linear relationship between scapula and humeral joint 

motions during humeral elevations tasks performed in a single plane.  These studies have 

developed a foundation for understanding shoulder movement but restrict a complete 

understanding of shoulder movement patterns.  Due to the strong linear relationship 

between scapula and humeral motions it may be necessary to investigate multi-planar, 

functional tasks to better understand the relationship between scapula and humeral joint 

motions.  Only Finley et al.(2005) has examined the shoulder complex during a 

functional task by evaluating scapular kinematics over arcs of humeral elevation during a 

wheel chair transfer.  Research has not investigated scapula and humeral joint motions 

during other functional tasks that are commonly associated with shoulder pain, such as 

overhead reaching.   

The lack of fully understanding of the relationship between scapula and humeral 

motions is highlighted by recent studies that have shown no change in scapula 

positioning following a training program even though individuals demonstrated 

significant improvements in shoulder function.(McClure, Bialker et al. 2004)   It seems 
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that new measures are needed to assess neuromuscular control of the shoulder girdle.  

New techniques and measures such as coordination analyses based on Dynamical 

Systems Theory tenets may provide a unique, low dimensional (one number representing 

several constructs) measure of shoulder neuromuscular control.  In addition, these 

measures based on dynamical systems theory can be used to examine the shoulder during 

traditional planar elevations as well as functional shoulder movement patterns that are 

associated with shoulder pain development. 

The application of dynamical systems theory to complex human movement 

systems has challenged traditional views of variability as only random noise and 

movement error. (Davids, Glazier et al. 2003)   Variation in movement patterns are now 

recognized to provide a source for self organization.(Van Emmerik and van Wegen 2000; 

Davids, Glazier et al. 2003) Research examining postural control and gait patterns has 

shown that movement pattern variability is normal and that alterations in movement 

variability are associated with neural and musculoskeletal pathology.  (Kurz and Stergiou 

2004)  Decreases in variability over an entire movement pattern may place an individual 

at risk for repetitive strain injuries while increases in variability during transitional points 

(e.g. from shoulder flexion to extension at the peak shoulder elevation) of a movement 

pattern indicates a loss of neuromuscular control.(Hamill, Van Emmerik et al. 1999; Kurz 

and Stergiou 2004; Stergiou, Moraiti et al. 2004)   

2.7.2 Principles of Dynamical Systems Theory in Human Movement 

Application of dynamical systems theory represents a paradigm shift in how the 

role of variability in human movement is considered when attempting to understand 

normal and pathological movement patterns.  This paradigm shift seeks to evaluate the 
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variability in contrast to the traditional biomechanical approach that assumes variability 

is evidence for incorrect human movement patterns.  Dynamical systems theory has been 

applied in research investigating postural control and gait patterns and has been shown to 

provide a valuable window into the complex interactions between the skeletal, muscular, 

and neural sub-systems as they interface with the environment.(Hamill, Van Emmerik et 

al. 1999; Davids, Glazier et al. 2003; Kurz and Stergiou 2004)  Movement patterns are 

thought to develop synergistic organizations of these sub-systems which represent 

multiple degrees of freedom.  This organization arises from anatomical (skeletal 

alignment) and biomechanical factors (length-tension relationships) as well as 

environmental and task constraints. (Kurz and Stergiou 2004) Specifically, a window into 

the neuromuscular sub-system is provided by modeling segments as oscillating 

pendulums.  Use of this model is based on the assumption that there is energy transferred 

with each oscillation.  If this assumption is met then the principles of thermodynamics 

govern segment behavior over time.  Energy transfer during segmental oscillations 

indicates that the segment is in a limit cycle system and was attracted to a closed, 

periodic orbit.  Therefore, perturbations affecting energy transfer will determine the path 

of the segment.  The path of motion that a segment returns to is termed an attractor 

state.(Kurz and Stergiou 2004) 

 While multiple degrees of freedom can be coupled in slightly different ways, the 

neuromuscular system is drawn toward an equilibrium state. (Kurz and Stergiou 2004)  

Dynamical systems theory defines this state of equilibrium as an attractor state.  Preferred 

movement patterns of the lower extremity during gait have been shown to have a limit 

cycle shape and exhibit the properties of an attractor state.(Stergiou, Bates et al. 2003)  
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As the shape of this limit cycle changes it reflects alterations in the trajectory of the 

segment’s path of motion.  The plot of a segment’s displacement on the x-axis and 

velocity on the y-axis can reveal the dynamics of the attractor (i.e., limit cycle shape) and 

is termed a phase plot.  Humeral and scapular motion can be described in a similar 

fashion during repetitive movement such as shoulder flexion/extension. It is evident from 

the plots that there is variability in every cycle.  Traditionally this has been described as 

biological noise within a movement system.  However, dynamical systems theory 

embraces this variability as evidence of the neuromuscular system’s flexibility and 

adaptability to explore new solutions based on a given situation’s constraints.(Kurz and 

Stergiou 2004)    

 Simultaneous evaluation of two limit cycles provides unique information as to the 

coupling or uncoupling of two oscillating segments during a movement cycle since the 

neuromuscular system synergistically organizes itself across many joints.  Phase locking, 

entrainment, and structural stability are three properties of coupled limit cycles and have 

been described as the “intrinsic dynamics” of an oscillator.  Phase locking is the state 

where the two limit cycle oscillators are coupled and stable.  Entrainment describes the 

interaction between the two limit cycles characterized by instability and discontinuity and 

may include a possible phase shift.  The ability or inability of an individual to remain in 

its preferred phase locking relationship despite perturbations or changes in the initial 

conditions of the system is a movement system’s structural stability.  (Kurz and Stergiou 

2004)  

For example, one would expect scapular upward rotation and humeral elevation to 

be a coupled and phase locked pattern unless there was a significant perturbation.  Let’s 
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assume the scapular upward rotators (serratus anterior and upper trapezius) become 

fatigued, we would expect a change in the phase locking relationship.  This change will 

be manifested in the respective phase plots.  If this change in shape was very uneven and 

discontinuous, then it would be described as entrainment.   In contrast, if the phase 

locking pattern remained unchanged after fatigue, the scapular to humeral phasing 

relationship would be described as demonstrating increased structural stability.  These 

characterizations of shoulder movement patterns may be valuable in describing the 

shoulder’s response to changes in initial conditions such as altered skeletal alignment or 

pathology. 

 The coupling between two segments’ oscillations during repetitive movements 

can be represented by relative phase measures.(Kurz and Stergiou 2004)  These measures 

provide a quantitative measure of the coordinative patterns of the segments analyzed.  

Relative phase measures can be evaluated to examine the stability and organization of the 

neuromuscular system.  Deficiencies in the neuromuscular system may also be 

characterized by differences in relative phasing patterns between healthy and pathological 

shoulders.  Increases in variability during a movement cycle are thought to be indicative 

of an unstable movement patterns.(Kurz and Stergiou 2004)  Decreases in variability in 

the relative phasing relationships about transition states have been identified in patients 

with low back pain, patellofemoral pain, post anterior cruciate ligament repair, and 

Parkinson’s disease.(Heiderscheit, Hamill et al. 2002; Kurz and Stergiou 2004; Kurz, 

Stergiou et al. 2004)  The ability of the relative phase measure capture the interplay 

between moving segments by compounding both their displacements and velocities in a 
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single variable highlights the advantage of this approach over traditional biomechanical 

methodology. 

The relative phase measure is defined as an order parameter by dynamical 

systems theory.  This parameter now expresses in one value the same type of input that 

the joint receptors respond after and during a perturbation.  It has been suggested that the 

relative phase value is superior to traditional biomechanical variables and is more 

sensitive to changes in the neuromuscular system.(Kurz and Stergiou 2004)  Changes in 

relative phasing relationships tend to be discontinuous and can be the result of changing 

the constraints of the task such as velocity, obstacle height, shoe surface, or additional 

weight.(Stergiou, Jensen et al. 2001; 2003; Kurz and Stergiou 2004; Kurz and Stergiou 

2004)  The mechanism facilitating this phase shift is termed a control parameter.  Natural 

motor development and neuromuscular dysfunction have been examined as control 

parameters when investigating phasing relationships.(Kurz and Stergiou 2003; Kurz and 

Stergiou 2004)  Alterations in postural alignment change the initial conditions for a given 

movement pattern thereby representing a control parameter.  Thus, individuals 

demonstrating increases in forward head and rounded shoulders posture may exhibit an 

altered relative phasing relationship between the scapula and humerus in comparison to 

individuals with ideal postural alignment.  Relative phase measures should capture the 

changes imposed by the control parameter and provide valuable information regarding 

the neuromuscular system’s organization that controls the shoulder girdle. 

2.7.3 Coordination Analyses in Human Movement 

Comparing healthy individuals to those with diagnosed neural and 

musculoskeletal pathology has shown alterations in joint coordination between these 
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groups(Heiderscheit, Hamill et al. 2002; Davids, Glazier et al. 2003; Kurz and Stergiou 

2003; Kurz, Stergiou et al. 2004; Stergiou, Moraiti et al. 2004)   Specifically, 

coordination analyses based on the principles of dynamical systems has provided new 

insights into the effect of musculoskeletal pathology on human movement 

patterns.(Heiderscheit, Hamill et al. 2002; Kurz, Stergiou et al. 2004) Recent evidence 

has established a framework for understanding the role of altered coordinative patterns in 

chronic lower extremity injuries. (Stergiou and Bates 1997; Hamill, Van Emmerik et al. 

1999; DeLeo, Dierks et al. 2004)  Alterations in coordinative patterns of the ankle and 

knee have been identified in individuals with patellofemoral pain and following anterior 

cruciate ligament reconstruction. (Stergiou and Bates 1997; Hamill, Van Emmerik et al. 

1999; Heiderscheit, Hamill et al. 2002; DeLeo, Dierks et al. 2004; Kurz, Stergiou et al. 

2004)  These differences have been demonstrated between legs in the same individual 

and between healthy individuals and those with lower extremity pathology.  The 

observed uncoupling of the segmental movements in pathologic knees is suggested to 

contribute to the development of knee osteoarthritis.  It is thought that increased wear and 

tear on the articular cartilage occurs as a result of decreased neuromuscular control which 

allows unequal joint loading.   

These observed alterations in lower extremity coordinative patterns may have 

significant implications for shoulder injury given the nature of many activities that are 

risk factors for shoulder injury.  Epidemiological research has shown increased exposure 

to repetitive overhead tasks as a risk factor for shoulder injury.(Punnett 1998; Punnett and 

van der Beck 2000; Punnett, Gold et al. 2004)  It is likely then that shoulder injury and 

pain are related to changes in shoulder coordinative patterns reflecting alterations in 
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neuromuscular control of the shoulder.  Given the role of repetitive functional tasks in the 

development of shoulder pain, coordination analyses would seem to provide a valuable 

methodology for understanding normal and pathological shoulder movement patterns. 

The shoulder has a tremendous number of degrees of freedom among its 

neuromuscular and musculoskeletal components.  This yields a very robust 

neuromuscular system that is able to respond to the many constraints placed on it while 

retaining its function. This may allow for compensatory movement patterns to go 

undetected by current biomechanical measures.  Relatively small mean group differences 

in scapular kinematics are seen with the presence of shoulder pathology.(Ludewig and 

Cook 2000; Hebert, Moffet et al. 2002) These differences do not seem to resolve as 

symptoms and shoulder pain improve.(McClure, Bialker et al. 2004)  Therefore, 

application of dynamical systems theory paradigm which embraces the inherent 

variability during shoulder movement may provide new insights into the coordinative 

patterns of the shoulder.   

2.7.4 Shoulder Joint Coordination Analyses 

Coordination analyses of shoulder movement patterns seek to identify and 

quantify the relationship between the scapula and the humerus.  First a qualitative 

assessment of the organization of the neuromuscular system controlling the shoulder 

should be performed by plotting a phase portrait.  As previously mentioned, a phase 

portrait (or plot) is created by graphing the angular displacement (x-axis) versus its 

angular velocity (y-axis).  Examination of this plot allows for identification of changes in 

the control mechanisms of shoulder motion.  The path of the curve (or trajectory) can be 

followed clockwise from zero to assess the behavior of the segment.  Changes in the 
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dynamics of the system are indicated by the number of times the path crosses zero and 

cusps (sudden changes) in the path.  Increasing crosses of zero and the number of cusps 

provide initial evidence of decreased or less neuromuscular control of the shoulder. (Kurz 

and Stergiou 2004) 

The phase angle for a given segment is calculated from the phase portrait by 

transforming the Cartesian (x,y) coordinates to polar (r,θ) coordinates with a radius r and 

a phase angle θ.(Kurz and Stergiou 2004) 

θi = tan-1  ⎟
⎠
⎞

⎜
⎝
⎛

Xi
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The angle formed between the horizontal and r for each point i is the phase angle at this 

point. 

Relative phase is reflective of the coordination or interaction between two 

adjacent segments.  To calculate the relative phase, the phase angle for every point ith 

data point of the proximal segment from the corresponding ith point of the distal segment 

over the movement cycle.(Kurz and Stergiou 2004) 

Φi relative phase angle = θi proximal phase angle – θi distal phase angle 

Plotting the relative phase of two segments over a movement cycle is termed a 

continuous relative phase plot.(Kurz and Stergiou 2004)  This plot can be inspected for 

changes coordination by examining the slope.  Relative phase values closer to 0˚ suggest 

a more coupled or in-phase relationship between two segments while values closer to 

180˚ suggest an uncoupled or out-of-phase relationship.  In-phase means that the two 

segments move in the same fashion and in the same direction, while out-of-phase means 

the segments move in a different fashion in the opposite direction.  Positive values 
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indicate the distal segment is leading the proximal segment and negative values the 

converse.  A positive slope indicates the distal segment is moving faster than the 

proximal segment while a negative slope indicates the distal segment is moving slower.  

Similar to the phase portraits visual inspection of the continuous relative phase curve 

allows identification of local minima, maxima, cusps, and the number of reversals during 

a movement cycle.  This qualitative information can help better differentiate between 

normal and pathological movement patterns.(Kurz and Stergiou 2004) 

Calculation of mean absolute relative phase (MARP) and deviation phase (DP) 

allow for statistical comparison of differences between relative phase angles.  Each 

continuous relative phase curve can be quantified in one term, the mean absolute relative 

phase (MARP).  This value reflects whether the oscillating segments are in or out of 

phase during a movement cycle.  The MARP value is calculated by averaging the 

absolute value of all the points of the mean ensemble curve.(Kurz and Stergiou 2004) 

MARP = ∑ =

N
i N

aserelativeph
1
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Additionally, the deviation phase (DP) can be calculated to determine the 

variation over the entire relative phase curve. This value is reflective of the stability of 

the neuromuscular system during a movement pattern.  DP is calculated by averaging the 

standard deviations (SD) of all the points over the entire mean ensemble curve.(Kurz and 

Stergiou 2004)  

DP = 
N

SDiN
i∑=1  
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The mean ensemble curve is the curve generated by averaging all single cycle 

relative phase curves.  This will require normalization of all single cycle relative phase 

curves to a fixed number of points (i.e., 100). 

2.7.5 Normalization of Phase Portraits 

 Questions have been raised as to whether kinematic data should be normalized 

when using coordination analyses to examine human movement.(Kurz and Stergiou 

2004)  Additionally, the ability of the relative phase angle to capture the collective state 

of the neuromuscular system has been discussed in the literature.  When two segments 

are not oscillating in a 1:1 frequency there are observed integer multiple peaks in the 

power spectrum.  As the difference in oscillating frequency grew larger conclusions were 

drawn that relative phase by itself does not adequately capture the coordination between 

two segments.  However, using nonlinear differential equations relative phase measures 

were shown to quantify coordination between two oscillators. Further analyses showed 

that the dominant frequency components were an order magnitude larger and therefore 

able to capture the nature of coordinative patterns.  Based on this no normalization is 

recommended to remove integer artifacts when calculating relative phase angles to 

determine in or out of phase relationships between segments.(Kurz and Stergiou 2004) 

Others have suggested that normalization to the amplitudes of each phase portrait 

are necessary prior to calculating the relative phase angle. (Hamill, Haddad et al. 2000)  It 

is thought that the segment with the largest amplitude will dominate the relative phase 

measure thereby biasing the coordination analysis.  The dynamic qualities of the phase 

portrait should be kept after normalizing which would produce a scalar multiple of the 

original phase portrait.(Hamill, Haddad et al. 2000) However, normalizing in this fashion 
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has been shown to alter the dynamic qualities of the oscillating lower extremity 

segment.(Kurz and Stergiou 2002)  This is due to different scaling factors applied to the 

velocity and displacement data distorting the original phase portrait.  Since alterations in 

phase portraits are thought to be indicative of changes in the organization or stability of 

the neuromuscular system these normalization techniques should be used with caution.  

Additionally, it does not appear that amplitude differences would result in skewed 

relative phase angles.  Since the arctan function is a ratio, differences in amplitude are 

removed with the phase angle calculation.  When differences in oscillating frequencies 

are present between two segments artifacts in the relative phase measures are produced.  

Unfortunately, current normalization routines alter the original data when removing the 

artifacts.  Therefore use of MARP and DP are recommended as normalization does not 

seem to be required for these values. (Kurz and Stergiou 2004)  

2.7.6 Clinical Implications of Coordination Analyses 

Forward head and rounded shoulder posture changes the normal mechanical 

relationships of muscles and bony structures.  Dynamical systems theorists’ have shown 

that altering the initial conditions of the human movement system influence 

neuromuscular control and coordinative patterns of that system.(Kurz and Stergiou 2004)  

It is likely then, that shoulder injury and pain are related to changes in shoulder 

coordinative patterns that reflect alterations in neuromuscular control.  Alterations in 

shoulder joint coordination are cited as a clinical manifestation of shoulder 

dysfunction.(Kibler 1998; Voight 2000)  Clinically, this is often termed scapular 

dyskinesis and described as uneven and uncoordinated scapular movement. However, 

devising a valid and reliable movement classification system has proven difficult.(Kibler, 
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Uhl et al. 2002)  Traditional measures of shoulder coordination have been assessed by 

scapulohumeral rhythm, defined as the relationship of humeral elevation to scapular 

upward rotation.  Alterations in scapulohumeral rhythm following shoulder fatigue and 

concurrent with shoulder impingement and rotator cuff tears have been 

reported.(McQuade, Dawson et al. 1998; Ludewig and Cook 2000; Hebert, Moffet et al. 

2002; Mell, LaScalaza et al. 2005) However, alterations in scapulohumeral rhythm are 

not noted in all patients with following shoulder pathology.  

This is likely due to the fact that the most consistent reports in the literature are 

with alterations in scapular internal rotation and posterior tipping and not upward 

rotation.  Examination of the relationship of humeral motion to scapular internal/external 

rotation and anterior/posterior tipping is therefore important.  Additionally, changes in 

the measures used in the application of coordination analyses based on dynamical 

systems theory has been shown to be visually perceptible for upper extremity 

motion.(Zaal and Bingham 2000)  This is important considering that scapular dyskinesis 

is evaluated clinically using simple visual procedures.  Also supporting the use of this 

approach for this project is the influence of mechanical impairments due to faulty upper 

quarter posture.  In the dynamical systems paradigm this would decrease the degrees of 

freedom and alter the demands on the movement system.  It is likely then that these 

changes in movement patterns were reflected in alterations in coordinative patterns of the 

shoulder.  The importance of 3-D shoulder kinematics, clinical visual evaluation of 

scapular dyskinesis, and the likely impact of mechanical constraints on the shoulder 

suggest examining shoulder movements using a coordination analysis, is likely to provide 

new and valuable insights into the mechanisms of shoulder function.   



CHAPTER III 

Methods 

3.1 Procedures 

3.1.1 Recruitment and Population 

Participants were recruited from the university population at The University of North 

Carolina-Chapel Hill.  Participants were recruited through two informational mass emails 

sent to the university population.  Participants were included if they are between the ages 

of 18 and 60 and met specific postural alignment criteria to be included into either the 

ideal posture or forward head and shoulder posture groups.  Subjects were excluded if 

they had a history of shoulder surgery, humeral, clavicular, scapular, cervical, or thoracic 

fracture, if they were currently receiving any treatment for shoulder or neck pain, or other 

upper extremity injury that limited use of their dominant upper extremity. The dominant 

arm (arm they would throw a ball with) was used for testing in all subjects.   

Prior to testing participants completed an informed consent form and underwent a 

postural screening using the BioPrint® postural analysis system (Biotonix Inc., Montreal).  

Postural screening was performed to ensure that participants meet the inclusion criteria 

for the ideal posture and forward head and shoulder posture groups.  Postural screening 

included measurement of forward head and forward shoulder angles.  Forty participants 

were assigned to the ideal posture group (FHA) < 36˚ and a forward shoulder angle 

(FSA) < 22˚ (Figure 1 & 2) and 40 participants to the forward head and rounded shoulder 

posture group (FHA) > 46˚ and a forward shoulder angle (FSA) > 52˚ (Figure 1 & 3).  
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Participants were excluded if their postural measures did not fall within the stated 

criteria for either the ideal posture or forward head and shoulder posture groups.  

3.1.1 Postural Alignment Grouping Criteria 

The postural alignment criteria were based on forward head and shoulder angles 

collected from an initial postural screening of 310 individuals from the university 

population.  Descriptive characteristics of these individuals appear in Table 5.   

Frequency histograms were plotted and measures of skewness and kurtosis assessed for 

forward head and shoulder angles to confirm normality of these measures.  Head and 

shoulder angles approximately displayed a normal distribution therefore, the mean and 

standard deviations were used to represent the data.  Cutoffs for each group were 

determined as the mean ± 1 standard deviation for the head angle (41°) and shoulder 

angle (37°) and represent an attempt to create two distinctly separate postural alignment 

groups.  Ninety-two of the three hundred-ten individuals screened met these criteria 

(29%). Forty-seven individuals were assigned to the ideal posture group and 45 to the 

forward head and rounded shoulder posture group. Twelve individuals did not schedule a 

return appointment yielding 40 participants in each group. All Participants were 

scheduled for a 90 minute testing session within 1 month of the initial screening.  

Participants were asked to avoid upper extremity weight lifting and overhead activities on 

either day of testing.  All biomechanical data was collected and stored in the Sports 

Medicine Research Laboratory at the University of North Carolina at Chapel Hill.  Initial 

screening took 10 minutes. Participants were then scheduled for a 90 minute testing 

session within 1 month. 
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Testing during the second session occurred at the Sports Medicine Research 

Laboratory.  Three dimensional shoulder kinematic and EMG analyses was conducted to 

assess humeral and scapular angles as well as scapular muscle activity during the 

ascending (up) and descending (down) phases of arm elevation tasks.  Specifically, 

humeral elevation, scapular upward/downward rotation (UR), scapular external/internal 

rotation (IR), and scapular posterior/anterior tipping (PT) were collected.  Scapular 

angles were compared at the 60°, 90°, and 120° of humeral elevation for the ascending 

and descending phases of the flexion task.  Scapular angles were compared at the 60°, 

90°, and 110° of humeral elevation for the ascending and descending phases of the 

reaching task.  Scapular ranges of motion and mean amplitude EMG was also compared 

during the ascending and descending phases of humeral elevation for both tasks.   

Each of these dependent variables was examined during a loaded arm elevation 

flexion task (arm in front of body) and a forward-overhead reaching task. Participants 

were asked to perform 25 cycles of arm elevation or forward reaching task at a self 

selected speed during testing.  The tasks were counterbalanced and participants rested 5 

minutes between each task to reduce the effects of fatigue, possible learning effects, and 

task order.  During testing the participants were asked to rate their level of exertion using 

the Borg’s rating of perceived exertion (RPE) scale.(Borg 1998)  This scale has been 

used in both reaching and overhead throwing tasks to quantify fatigue.(Snook and 

Ciriello 1991; Tripp, Bowell et al. 2004)  Each subject was asked to report their RPE 

during each task after the 15th, 20th, and 25th repetitions. 
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3.2 Data Collection 

3.2.1 Postural Analyses 

The BioPrint postural analysis system was used for postural assessments.  Reflective 

markers were placed over the right tragus (ear), chin, labella (between eyes), acromion, 

C7, T7, posterior superior iliac spine, and anterior superior iliac spine.  Participants then 

stood 40 cm in front of the scaled backdrop and were given standard instructions to 

increase reliability of their normal resting postural alignment.  High resolution (5.0 mega 

pixels) digital images were taken then uploaded to a personal computer for analysis.   

3.2.2 Measurement of Shoulder Kinematics 

A Flock of Birds® (Ascension Technologies, Inc., Burlington, VT) 

electromagnetic motion analysis system controlled by the Motion Monitor® (Innovative 

Sports Training, Inc. Chicago, IL) software was used to assess scapular kinematics at a 

sampling rate of 50 Hz.  The primary component of the electromagnetic tracking system 

is a standard range DC transmitter containing three orthogonal coils that generates an 

electromagnetic field.  The system incorporates a series of three sensors/receivers that 

record the electromagnetic flux in the field generated by the transmitter and conveys the 

signals to a recording computer via hard wiring.   

Three electromagnetic tracking sensors were attached to: 1.) The thorax over the 

spinous process of T3,  2.) The dominant shoulder over the broad flat surface of the 

scapular acromion, 3.) The posterior one third of the upper arm with the sensor over the 

area of least muscle mass to minimize potential sensor movement.  In order to assess the 

shoulder kinematics, reconstruction of the bony segments were performed following the 

International Society of Biomechanics-Shoulder Group Recommendations and have been 
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used in previous studies.(International Society of Biomechanics Shoulder Group 2002) 

The bony landmarks were: T12, medial and lateral epicondyle of the humerus, T8, xyphoid 

process, C7, sternal notch, spine of the scapula at the medial border, posterior-acromion 

of the scapula, inferior angle of the scapula, and the glenohumeral joint rotation center.  

The glenohumeral joint center was defined by the point that moves least with respect to 

the scapula when the humerus is moved through short arcs (< 45°) as calculated by a least 

squares algorithm and has been shown to best represent the glenohumeral joint center. 

(Veeger 2000)   

The electromagnetic transmitter was positioned on a custom stand allowing for the 

establishment of a global reference system.  The global reference system axes were 

defined such that the Y-axis was designated as positive in the superior direction, the X-

axis was designated as positive to the left, and the Z-axis was designated as negative, all 

relative to the participant.  The local axes systems all aligned with the reference axes of 

the electromagnetic system to simplify data reduction. (Figures 5-7) 

3.2.3 Measurement of Muscle Activity 

EMG analyses were performed to measure the muscle activation amplitude of 

serratus anterior, upper trapezius, and lower trapezius muscles using a Delsys Bagnoli-8 

EMG System (Boston, MA), with differential amplification, CMRR >80 dB, input 

impedance >1015//0.2 ohm//pF, SNR >40 dB using an 8 channel amplifier.  The EMG 

signal was amplified by a factor of 1000 over a bandwith of 0.01 to 2,000 Hz, passed via 

an A/D converter (National Instruments, Austin, TX) sampling at 1000 Hz then corrected 

for DC  

bias.  The raw EMG data was collected by the Motion Monitor® software and stored for 
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analysis.  The electrodes were 19.8 mm wide and 35 mm long with 10 mm between 

contacts.  

Before applying surface electrodes, the participant’s skin was shaved, cleaned 

with alcohol and lightly abraded to ensure good electrode contact and transmission.  We 

fixed a bar Ag/AgCl single differential surface electrode (Delsys Inc., Boston, MA) on 

the midpoint of each muscle belly perpendicular to the muscle fiber direction using 

surgical tape and adhesive stickers. Electrodes were placed according to previously 

published guidelines in of the serratus anterior, upper trapezius, and lower trapezius 

muscles’ fibers in the following arrangement.   

Serratus anterior: below the axilla, anterior to latissimus dorsi, placed over 4th 

through 6th ribs angled at 30° above the nipple line 

Upper trapezius: one half the distance from the mastoid process to the root of the 

spine approximately at the angle of the neck and shoulder 

Lower trapezius: two finger widths lateral to the inferior angle of the scapula on a 

45° angle towards T10.   

The specified electrode placement has been used in a number of 

studies.(Glousman, Jobe et al. 1988; Cools, Witvrouw et al. 2003; Michener, Boardman 

et al. 2005) A carbon reference electrode was placed over the non-involved acromion. 

Isometric manual muscle tests were performed to ensure accurate placement of electrodes 

and to measure and record maximal voluntary isometric contraction (MVIC) EMG.  The 

MVIC measures were taken for 3 trials and averaged for normalization of muscle activity 

during each task.   
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 Manual muscle tests to determine MVIC was performed according to the 

procedures described by Michener et al.(2005)  using a hand-held dynamometer (HHD) 

(CDS 300 strength dynamometer, Chatillion®, Largo, FL).  Prior to testing, participants 

performed one sub-maximal contraction to familiarize themselves with proper form for 

each manual muscle test.  Following this warm-up and learning session, participants 

performed three maximal voluntary isometric contractions measured with a HHD for 

each muscle with 1 minute rest between each muscle and 30 seconds between each trial.  

The peak mean force for a 5 second period was recorded.    Mean amplitude values for 

the three trials demonstrated good reliability for each muscle with ICC(2,1) values ranging 

from 0.74 to 0.87 therefore, mean amplitude EMG data was expressed as a percentage of 

MVIC (%MVIC).  

Serratus Anterior MVIC Assessment 
 
 Testing of the serratus anterior were performed with the participant in the sitting 

position with their arm elevated in the scapular plane to approximately 120° degrees.  

The tester was positioned standing beside the participant and gave the instructions to "lift 

your arm out and up, don't let me push you down".  The tester gave a downward force on 

the superior aspect of the arm at the elbow while providing pressure at the lateral, inferior 

angle of the scapula inwards for 5 seconds.  The participant was then be instructed to 

"relax".  This position has been shown to yield the most reliable and highest MVIC 

values for the serratus anterior.(Ekstrom, Donatelli et al. 2003; Ludewig, Hoff et al. 2004; 

Michener, Boardman et al. 2005) 
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Upper Trapezius MVIC Assessment 
 
 Testing of the upper trapezius was performed with the participant seated with 

their arms at their side.  The tester stood behind the participant and gave the instructions 

to "shrug their shoulders straight up" and hold that position.  The tester provided a 

downward force on the superior aspect of the acromion and back of the head for 5 

seconds.  The participant was then be instructed to "relax".(Ekstrom, Donatelli et al. 

2003; Ludewig, Hoff et al. 2004) 

Lower Trapezius MVIC Assessment 
 

Testing of the lower trapezius was performed with the participant lying supine on 

a table with their arms extended over their head.  The tester stood on the dominant 

shoulder and gave the instructions to "lift both arms up placing your shoulder blades in 

your opposite back pocket”.  The tester provided a downward force on the superior aspect 

of the acromion for 5 seconds.  The participant will then be instructed to 

"relax".(Ludewig, Hoff et al. 2004; Michener, Boardman et al. 2005) 

After the setup was completed, participants completed the humeral elevation and 

forward reaching tasks.  The humeral elevation task required the participant to lift a 

weight equal to 3% of their body weight while following a 2-inch target on the wall with 

their hand (Figure 9). The 3% loading rate was selected through pilot testing which 

allowed all subjects to complete 25 repetitions of each task.  Loads greater than 3% 

limited heavier subjects from achieving this goal.  The target was placed in the sagittal 

plane in line with their dominant arm acromion.  The sagittal plane was be defined as the 

plane perpendicular to a line through their fifth metatarsal head.  Participants were asked 

to complete their full range of motion at a self selected speed.   
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The forward reaching task required the participant placing a weight equal to 2% of 

their body weight from a stool adjusted to the height of the greater trochanter (hip) on 

their dominant side to a customized shelf equal to their height plus 20% (Figure 10 & 

11).  The target was placed perpendicular to the dominant AC joint, the length of their 

ulnar styloid anterior to the participant.  Participants placed their weight on the target and 

a standard goniometer was used to ensure humeral elevation relative to their trunk was 

greater than 120°.  Participants performed 5 practice trails to become familiar with the 

procedures before testing.  Each task was performed 25 times in a random order in an 

attempt to prevent an order effect.  Participants rested 5 minutes between tasks to prevent 

fatigue.  

3.3 Data Reduction and Processing 

3.3.1 Kinematic Data 

 Three-dimensional coordinates of the digitized bony landmarks were calculated 

using the Motion Monitor® software (Innovative Sports Training, Inc. Chicago, IL).  

Segment reference frames were defined according to the recommendations set forth by 

the Shoulder Group of the International Society of Biomechanics.(Wu, van der Helm et 

al. 2005) Humeral motions were calculated as the Euler angles of the humerus relative to 

the thorax reference frame in the following order of rotations:  internal-external rotation 

about Y axis, elevation about the Z’ axis, and internal-external rotation about the Y” 

axis(An, Browne et al. 1991).  Scapular motions were calculated as the Euler angles of 

the scapula relative to the thorax reference frames in the following order of rotations:  

internal/external rotation about the Y axis, upward-downward rotation about the Z’ axis, 

and posterior-anterior tilting about the X” axis(Karduna, McClure et al. 2000; Wu, van 
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der Helm et al. 2005).  Kinematic data were smoothed through a Butterworth a low pass 

digital-filter (4th order, recursive, zero phase lag) at an estimated optimum cutoff 

frequency of 3.5 Hz.  The estimated optimum cutoff was determined after performing a 

spectral analysis for each kinematic variable.  All humeral and scapular rotation spectral 

plots were similar (Figure 8). 

 
3.3.2 EMG Data 

Post-acquisition, all EMG data was band-pass filtered (10 – 350 Hz) using a 

Butterworth filter (4th order, recursive, zero-phase lag).  The data was rectified then the 

root mean square error (RMS) of the EMG signal over a 20 ms time constant was taken 

to further smooth the data.   

3.4 Data Processing  

3.4.1 Reduction for Scapular Kinematic and Electromyographic Analyses 

The average of trials 2-6 of each task were used for assessment of mean scapular 

angles.  Scapular upward rotation, internal rotation, and posterior tilting angles were 

selected using custom Matlab (Mathworks, Natick, MA) code to identify angles at 60°, 

90°, and 120° of humeral elevation during the ascending and descending phases of the 

forward flexion task. Scapular angles were identified at 60°, 90°, and 110° of the forward 

reaching task.  Each of the scapular and humeral kinematic variables demonstrated 

excellent reliability with ICC(2,1) values ranging from 0.92 to 0.99. Scapular ranges of 

motion (ROM) were calculated from 30° to 120° of humeral elevation for the ascending 

and descending phases of humeral elevation.  

Mean amplitude EMG was used to represent muscle activation over the ascending 

and descending phases of humeral elevation for the upper trapezius, lower trapezius, and 
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serratus anterior.  These were the same arcs used to calculate the scapular ROM for the 

ascending and descending phases of shoulder motion.  The mean amplitude EMG over 

each phase of motion was averaged across each of the 5 trials and used for statistical 

analyses.  Each of the scapular EMG variables demonstrated good reliability with ICC(2,1) 

values ranging from 0.68 to 0.85. 

3.4.2 Reduction for Coordination Analyses 

The humeral and scapular kinematic data was analyzed using custom Matlab code 

to calculate mean relative phase (MARP) and deviation phase (DP) values. Shoulder 

kinematic data was further smoothed using a cubic spline routine.  The tolerance of the 

spline routine was set at .7 where 0 is a perfect least squares fit between the first and last 

point of the data sequence, and 1 is the natural spline. 

Shoulder kinematic data then was fit to 101 points for 15 repetitions for humeral 

elevation and each scapular motion. Only 15 repetitions were selected based on the 

potential effects of fatigue.  This was supported by a significant increase in PRE values 

from 13 at the 15th repetition, to 15 at the 20th repetition, to 17 at the 25th repetition.  

Angular position and angular velocity was plotted to create phase portraits for humeral 

elevation, scapular upward rotation, internal rotation, and posterior tipping.  The relative 

phase was calculated between humeral elevation and each scapular motion.  Relative 

phase for a given segment was calculated from the phase angle of each phase portrait. 

The phase portrait path was transformed from Cartesian (x,y) to polar (r,θ) with a radius r 

and a phase angle θ.  The angle formed by the radius was calculated as: (Kurz and 

Stergiou 2004) 

Θi = tan-1  ⎟
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The angle formed between the horizontal and r for each point i was the phase angle.   

The relative phase angle between each of the scapular rotations and humeral 

elevation was then calculated as the difference between the proximal segment’s phase 

angle and the distal segment’s phase angle:(Kurz and Stergiou 2004) 

Φi relative phase angle = θi proximal phase angle – θi distal phase angle 

Calculation of mean absolute relative phase (MARP) and deviation phase (DP) 

allowed for statistical comparison of differences between relative phases.  Each 

continuous relative phase curve was quantified in one term, the mean absolute relative 

phase (MARP).  This value reflects whether the oscillating segments are in or out of 

phase during a movement cycle.  The MARP value was calculated by averaging the 

absolute value of all the points of the mean ensemble curve.(Kurz and Stergiou 2004) 

MARP = ∑ =

N
i N

aserelativeph
1

φ
 

Additionally, the deviation phase (DP) was calculated to determine the variation 

over the entire relative phase curve. This value is reflective of the stability of the 

neuromuscular system during a movement pattern.  DP was calculated by averaging the 

standard deviations (SD) of all the points over the entire mean ensemble curve.(Kurz and 

Stergiou 2004)  

DP = 
N

SDiN
i∑=1  

The mean ensemble curve is the curve generated by averaging all single cycle 

relative phase curves.  This required normalization of all single cycle relative phase 

curves to a fixed number of points (i.e., 101) for each task. 
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3.5 Statistical Analysis 

3.5.1 Study Power 

Based on the values presented in Table 3 a moderate to large effect size (Cohen’s d) 

ranging from .5 to 1.55 may be observed.  This will allow for clinically meaningful 

conclusions to be drawn from any observed differences in scapular kinematics, muscle 

activity, and shoulder joint coordination.  These power calculations assume a two-sided 

Type I error rate of 0.05 in 

a dependent t-test.  Table 

3 shows the study’s 

power, displaying the 

mean difference, standard 

deviation, and power for 

each dependent variable 

based on pilot data.  The 

table shows the most 

conservative values for 

each of the dependent 

variables. These values are 

consistent with previous work using the same methodology.(Thigpen, Padua et al. 2005; 

Thigpen, Padua et al. 2005).  The pilot data was collected on 10 participants, 6 with forward 

head and rounded shoulder (FHA = 51°, FSA = 114°) compared with 4 participants with 

ideal posture (FHA = 41°, FSA = 154°). These calculations suggest sufficient power to 

detect differences for all dependent variables between groups for each research question.  

Table 3. Estimated study power for each dependent 
variable (n = 80) 

Dependent Variable Mean Difference Stdev. Power 
Scapular Upward 
Rotation 

10° 15° .80 

Scapular Internal 
Rotation 

7° 10° .80 

Scapular Posterior 
Tipping 

10° 15° 80 

Upper Trapezius 
(% of Max muscle 
activity) 

60% 80% .90 

Lower Trapezius 
(% of Max muscle 
activity) 

50% 80% .90 

Serratus Anterior 
(% of Max muscle 
activity) 

55% 80% .90 

MARP for UR, IR, 
PT 

4° 7° .70 

DP for UR, IR, PT 18° 25° .70 



89 

3.5.2 Analysis Plan: 

Separate mixed model 2 (phase) X 2 (arc of motion) X 2 (group) ANOVAs for 

were performed for scapular upward rotation, internal rotation, posterior tipping angles 

during the loaded flexion and reaching tasks. Separate mixed model 2 (phase) X 2 

(group) ANOVAs were performed for scapular upward rotation, internal rotation, 

posterior tipping range of motion as well as serratus anterior, upper trapezius, and lower 

trapezius mean amplitude EMG (Table 4). Separate mixed model 2 (phase) X 2 (group) 

ANOVAs were performed for scapular upward rotation, internal rotation, posterior 

tipping MARP and DP values.  Tukey’s post hoc analysis was preformed for each 

significant main and interaction effects to assess which scapular kinematic, EMG, or 

coordination dependent variables differed over each phase or arc of motion during both 

tasks (tasks were not compared). Statistical significance for all comparisons was set a 

priori at α = 0.05.   



CHAPTER IV 

Summary of Results 
 

4.10 Introduction 

The results of each research question are briefly summarized in this chapter.  

Minimal interpretation is provided as the two included manuscripts have addressed all 

research questions.  The results are organized by Research Question. A brief 

interpretation follows each question.  To determine differences between groups, p-values 

and effect sizes were used.  I have also included 95% confidence intervals (CI) to add to 

the statistical evidence for the conclusions to the questions posed.  Main and interaction 

effects not involving group are not reported or discussed as they did not pertain to the 

research questions. 

 The most important finding in this study is that individuals with forward head and 

rounded shoulder posture displayed altered scapular kinematic, muscle activation, and 

shoulder coordination patterns in comparison to individuals with ideal posture.  This was 

observed in individuals with reported healthy shoulders.  These results support the theory 

that FHRSP alters shoulder movement in potentially negative ways.  Additionally, these 

results suggest that a simple clinical measure of head and shoulder posture provides 

important information about shoulder function.  Prevention and intervention programs for 

the shoulder girdle should include examination and treatments aimed at FHRSP.  Future 
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studies should investigate the influence of FHRSP on the development of shoulder pain 

and if improving FHRSP normalizes shoulder movement patterns. 

4.20 Participants 

Volunteers were recruited from the university population through informational mass 

emails.  The postural alignment criteria were based on data collected from during 

screening of 310 individuals on head and shoulder postural alignment.  Descriptive 

characteristics of these individuals appear in Table 5.   Frequency histograms were 

plotted and measures of skewness and kurtosis assessed for forward head and shoulder 

angles to confirm normality of these measures.  Head and shoulder angles approximately 

displayed a normal distribution. Therefore, the mean and standard deviations were used 

to represent the data.  Cutoffs for each group were determined as the mean ± 1 standard 

deviation for the head and shoulder angle (Table 5). The FHRSP was 1 standard 

deviation above the mean and the ideal posture group was 1 standard deviation below the 

mean (Table 6).  Thus these groups represent two distinctly different postural alignment 

groups. 

Excessive kyphosis was defined in a similar manner.  The mean thoracic angle plus 

one standard deviation was 50˚.  These data represent a similarly aged sample of 300 

subjects.(Vialle, Levassor et al. 2005)  One standard deviation is also similar to the 

average increase in thoracic kyphosis reported to induce changes in scapular 

kinematics.(Kebaetse, McClure et al. 1999)  

Participants were excluded if their postural measures did not fall within the stated 

group criteria.  Ninety-two of the 310 individuals screened met these criteria (29%). 

Forty-seven individuals were assigned to the ideal posture group and 45 to the FHRSP 
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group. Twelve individuals did not schedule a return appointment yielding 40 participants 

in each group.  

Reflective markers were placed over the right tragus (ear), chin, labella (between 

eyes), acromion, C7, T7, posterior superior iliac spine, and anterior superior iliac spine.  

Participants then stood 40 cm in front of the scaled backdrop and were given standard 

instructions to increase reliability of their normal resting postural alignment.  High 

resolution (5.0 mega pixels) digital images were then uploaded to a personal computer for 

processing. Adobe Photoshop® was used to measure head and shoulder angles. FHA and 

FSA demonstrated excellent intrasession reliability (FHA =   ICC(2,1)= 0.92, SEM = 2° 

and FSA ICC(2,1)= 0.89, SEM = 5°) and between day reliability (FHA =   ICC(2,k)= 0.78, 

SEM = 4° and FSA ICC(2,k)= 0.72, SEM = 7°). 

Based on these criteria 80 individuals were tested and data was analyzed as detailed in 

the methods chapter. Their results and brief interpretation follow. 

4.30 Research Question 1 

4. Are there differences between individuals with and forward head and rounded 

shoulder postural alignment for scapular kinematics during loaded forward 

flexion and a forward reaching task? 

e. Compare scapular ranges of motion for upward rotation, internal 

rotation, and posterior tipping between groups for the ascending and 

descending phases of loaded forward flexion.  

There was not a significant difference between postural groups for scapular 

internal/external rotation or scapular posterior/anterior tipping range of motion (Table 7).  

There was a significant difference between postural groups for scapular upward rotation 
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range of motion.  These results indicate that on average individuals in the FHRSP group 

displayed greater scapular upward rotation range of motion in comparison to the ideal 

posture group.  The mean difference of scapular upward rotation range of motion 

between groups was 5° (ES = 0.34) (Figure 12). 

f. Compare scapular ranges of motion for upward rotation, internal 

rotation, and posterior tipping between groups for the ascending and 

descending phases of a loaded forward reaching task. 

There was not a significant difference between postural groups for scapular 

internal/external rotation or scapular upward rotation range of motion (Table 7).  There 

was a significant difference between postural groups for scapular posterior/anterior 

tipping range of motion.     These results indicate that on average individuals in the 

FHRSP group displayed less scapular anterior tipping range of motion in comparison to 

the ideal posture group.  The mean difference of scapular anterior tipping range of motion 

between groups was 2° (ES = 0.36) (Figure 13). 

g. Compare scapular angles upward rotation, internal rotation, and 

posterior tipping angles between groups at 60°, 90°, and 120° for the 

ascending and descending phases of loaded forward flexion.  

Scapular Internal/External Rotation Angles 

There was a significant main effect for group on scapular internal rotation (p = 

0.02) (Table 8).  There was not a significant interaction effect between humeral elevation 

angle and postural group on scapular internal rotation angle. There was not a significant 

interaction effect between phase of humeral elevation and postural group on scapular 

internal rotation angle.   There was not a significant interaction effect between phase of 
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humeral elevation, angle of humeral elevation and postural group on scapular internal 

rotation angle.  These results indicate that on average individuals in the FHRSP group 

displayed greater scapular internal rotation in comparison to the ideal posture group 

(Figure 14).  The mean difference of scapular internal rotation between groups was 8° 

(ES = 0.52). 

Scapular Upward/Downward Rotation Angles 

There was no significant main effect for postural group on scapular upward 

rotation (Table 8). There was not a significant interaction effect between phase of 

humeral elevation and postural group on scapular internal rotation angle.  There was a 

significant interaction effect between postural groups on humeral elevation angle (p < 

0.001).  Tukey’s post hoc test revealed significant differences between groups and 

individual humeral elevation angles (Mean Significant Difference (MSD) = 2.8°).  These 

results indicate that the scapula was more upwardly rotated for the FHRSP group at 120° 

during the ascending and descending phases of humeral elevation in comparison to the 

ideal posture group.  The mean difference between postural groups for scapular 

upward/downward rotation was 5° (ES = 0.51) (Figure 15). 

Scapular Anterior/Posterior Tipping Angles 

There was no significant main effect for postural group on scapular 

anterior/posterior tipping (Table 8). There was not a significant interaction effect between 

humeral elevation angle and postural group.  There was a significant interaction effect 

between phase of humeral elevation and postural group on scapular internal rotation 

angle (p = 0.019).  Tukey’s post hoc test revealed significant differences between groups 

and individual humeral elevation angles (Mean Significant Difference (MSD) = 1.3°).  
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These results indicate that on average during ascending and descending phases of 

humeral elevation the scapula was more anteriorly tipped for the FHRSP group in 

comparison to the ideal posture group.  The mean difference between postural groups for 

scapular anterior/posterior tipping was 3° for the ascending phase and 4° for the 

descending phase (ES = .32) (Figure 16). 

h. Compare scapular upward rotation, internal rotation, and posterior 

tipping angles between groups at 60°, 90°, and 110° for the ascending and 

descending phases of a loaded forward reaching task. 

Scapular Internal/External Rotation Angles 

There was a significant main effect for group on scapular internal rotation (p < 

0.001) (Table 9).  There was not a significant interaction effect between humeral 

elevation angle and postural group on scapular internal rotation angle. There was not a 

significant interaction effect between phase of humeral elevation and postural group on 

scapular internal rotation angle.  These results indicate that on average individuals in the 

FHRSP group displayed greater scapular internal rotation in comparison to the ideal 

posture group.  The mean difference of scapular internal rotation between groups was 10° 

(ES = 0.60) (Figure 17). 

Scapular Upward/Downward Rotation Angles 

There was no significant main effect for postural group on scapular upward 

rotation (Table 9). There was not a significant interaction effect between humeral 

elevation angle and postural group on scapular internal rotation angle. There was not a 

significant interaction effect between phase of humeral elevation and postural group on 



96 

scapular internal rotation angle.  These results indicate there were no significant 

differences in scapular upward rotation during the reaching task.  

Scapular Anterior/Posterior Tipping Angles 

There was no significant main effect for postural group on scapular 

anterior/posterior tipping (Table 9). There was not a significant interaction effect between 

humeral elevation angle and postural group on scapular anterior/posterior tipping angle. 

There was not a significant interaction effect between phase of humeral elevation and 

postural group on scapular anterior/posterior tipping angle. These results indicate there 

were no significant differences in scapular anterior/posterior tipping angles during the 

reaching task. 

Interpretation  

Our results suggest that individuals with FHRSP display altered scapular 

kinematic patterns during shoulder flexion and overhead reaching tasks.  Individuals with 

FHRSP remained in more scapular internal rotation throughout the flexion and reaching 

tasks.  These subjects also displayed greater scapular upward rotation range of motion 

during the ascending phase of both tasks.  Additionally, individuals with FRHSP showed 

increases in scapular anterior tipping during the shoulder flexion task.  Increases in 

scapular upward rotation angles were also observed at 120° of the ascending and 

descending phases of the shoulder flexion task.  These alterations in scapular kinematics 

were observed with concurrent decreases in serratus anterior activity during the 

ascending phase of the overhead tasks.  These results support the clinical theory that 

FHRSP impacts shoulder mechanics.  These alterations were observed in healthy 

shoulders without shoulder pain suggesting that FHRSP alone may influence scapular 
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mechanics.  Head and shoulder posture, scapular kinematics, and muscle activity should 

be examined as potential risk factors in the development of shoulder pain. 

The observed increases in scapular internal rotation and anterior tipping in 

individuals with FHRSP are consistent with previous reports examining the effects of 

posture on three-dimensional scapular kinematics.(Kebaetse, McClure et al. 1999; Finley 

and Lee 2003; Borstad 2004)  Individuals with FHRSP displayed greater scapular 

anterior tipping angles when compared to individuals with ideal posture.  The increase of 

3°-4° is similar to increases in scapular anterior tipping following increases in thoracic 

kyphosis(Kebaetse, McClure et al. 1999; Finley and Lee 2003) and short pectoralis minor 

length.(Borstad 2004)  In the current study the FHRSP group demonstrated scapula 

internal rotation angles that were 8º and 10º greater than the ideal posture group during 

the reaching and flexion tasks, respectively.  The increase in scapular internal rotation are 

similar to alterations reported in healthy shoulders with short pectoralis minor 

length(Borstad 2004) but smaller than increases reported concurrent with increased in 

thoracic kyphosis.(Kebaetse, McClure et al. 1999; Finley and Lee 2003)  The greater 

scapular internal rotation angles may have been the result of study design plane of 

humeral elevation.  Previous studies acutely altered spinal alignment to facilitate a more 

FHRSP.(Kebaetse, McClure et al. 1999; Finley and Lee 2003) In contrast, we created two 

distinct postural groups to examine the effects of FHRSP on scapular kinematics.  By 

limiting the amount of excessive thoracic kyphosis our results reflect changes in the 

scapular position upon the thorax. The plane of humeral elevation also has been reported 

to influence the contribution of scapular rotations to total shoulder motion.  The tasks in 

this study were more anterior to scapular plane elevation used in previous studies.(Koh, 
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Grabiner et al. 1998; Hebert, Moffet et al. 2002)  These factors likely combined to 

influence the magnitude of differences in scapular internal rotation between studies. 

Considering these studies together(Kebaetse, McClure et al. 1999; Finley and Lee 2003; 

Borstad 2004), increasing thoracic kyphosis seems to affect scapular internal rotation less 

than FHRSP or short pectoralis minor length.(Borstad 2004) 

These studies also reported decreases in scapular upward rotation as the result of 

increasing thoracic kyphosis(Kebaetse, McClure et al. 1999; Finley and Lee 2003) or no 

difference in individuals with short pectoralis minor lengths.(Borstad 2004)  We observed 

increases in scapular upward rotation angle and range of motion in individuals with 

FHRSP.   Previous reports of decreased scapular upward rotation are most likely due to 

methods of inducing postural malalignment.(Kebaetse, McClure et al. 1999; Finley and 

Lee 2003)  Acutely increasing thoracic kyphosis would increase the length of levator 

scapulae by positioning the scapula more anterior and inferior on the thorax.  Increasing 

the length and orientation of the upper trapezius may have limited the ability of the 

scapula to upwardly rotate during humeral elevation.  In contrast, FHRSP would shorten 

the levator scapulae and upper trapezius allowing for increased scapular upward rotation.  

However, since thoracic kyphosis was controlled in this study the scapular position was 

most different in the transverse plane.  Our results are also inconsistent with the absence 

of changes in scapular upward rotation in healthy shoulder with pectoralis minor 

tightness.(Borstad 2004)  Apparently, pectoralis minor tightness does not result in 

changes in scapular upward/downward rotation.  This suggests that FHRSP has a more 

global effect on scapular kinematics while pectoralis minor tightness primarily affects 

scapular tipping and internal rotation. 
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4.40 Research Question 2 

5. Are there differences between individuals with ideal and forward head and 

rounded shoulder postural alignment for scapular muscle activation during 

loaded forward flexion and a forward reaching task? 

c. Compare mean amplitude EMG of the upper trapezius (UT), lower 

trapezius (LT), and serratus anterior (SA) between groups for the 

ascending and descending phases of loaded forward flexion.  

Serratus Anterior 

There was no significant main effect for postural group on the serratus anterior 

(Table 10).  There was a significant interaction effect between humeral elevation phase 

by postural group on serratus anterior activity (p = 0.02).  Tukey’s post hoc test revealed 

significant differences between groups and individual humeral elevation angles (MSD = 

6%).  These results indicate that the serratus anterior in the FHRSP group was less active 

during the ascending phase of humeral elevation in comparison to the ideal posture 

group.  The mean difference between postural groups for serratus anterior activity was 

12% during the flexion task (ES = 0.26) (Figure 18). 

Upper Trapezius 

There was no significant main effect for postural group on upper trapezius activity 

(Table 10). There was not a significant interaction effect between humeral elevation 

angle and postural group on scapular upper trapezius activity.  These results indicate 

there were no significant differences in upper trapezius activity during the flexion task.  
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Lower Trapezius 

There was no significant main effect for postural group on lower trapezius activity 

(Table 10). There was not a significant interaction effect between humeral elevation 

angle and postural group on scapular lower trapezius activity.  These results indicate 

there were no significant differences in lower trapezius activity during the flexion task.  

d. Compare mean amplitude EMG of the upper trapezius (UT), lower 

trapezius (LT), and serratus anterior (SA) between groups for the 

ascending and descending phases of a loaded forward reaching task. 

Serratus Anterior 

There was no significant main effect for postural group on the serratus anterior 

(Table 10).  There was a significant interaction effect between humeral elevation phase 

by postural group on serratus anterior activity (p = 0.041).  Tukey’s post hoc test revealed 

significant differences between groups and individual humeral elevation angles (MSD = 

5%).  These results indicate that the serratus anterior in the FHRSP group was less active 

during the ascending phase of humeral elevation in comparison to the ideal posture 

group.  The mean difference between postural groups for serratus anterior activity was 

5% during the flexion task (ES = 0.33) (Figure 19). 

Upper Trapezius 

There was no significant main effect for postural group on upper trapezius activity 

(Table 10). There was not a significant interaction effect between humeral elevation 

angle and postural group on scapular upper trapezius activity.  These results indicate 

there were no significant differences in upper trapezius activity during the flexion task.  
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Lower Trapezius 

There was no significant main effect for postural group on lower trapezius activity 

(Table 10). There was not a significant interaction effect between humeral elevation 

angle and postural group on scapular lower trapezius activity.  These results indicate 

there were no significant differences in lower trapezius activity during the flexion task. 

Interpretation 

Individuals with FHRSP displayed decreases in serratus anterior activity during 

the ascending phase of overhead tasks in comparison to individuals with ideal posture.  

This may explain concurrent observations of altered patterns of scapular kinematics.  The 

serratus anterior is the only scapular muscle with the potential to participate in force-

couples to control all three scapular rotations.  Therefore, decreased serratus anterior 

activity is thought to contribute to alterations in scapular kinematics.(Ludewig and Cook 

2000)  This is supported by the differences in serratus activation and observed kinematic 

changes during each task.  During the flexion task a 12% decrease in serratus activation 

occurred with an increase in scapular anterior tipping and upward rotation.  However, 

serratus activation decreased to 5% and no kinematic changes occurred specific to the 

ascending phase of the reaching task. The maximum angle compared for the reaching 

task was 110°, while the maximum angle was 120° for the flexion task.  The observed 

differences in scapular kinematics and serratus anterior activity suggest that at higher 

ranges of humeral elevation the serratus anterior controls scapular anterior/posterior 

tipping and may actually limit scapular upward rotation.  This seems paradoxical until 

one considers the role of the serratus anterior in its force couple with upper trapezius.  

The upper trapezius has more fibers with longer moment arms positioned to create 
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upward rotation. Therefore, the role of the serratus may be to prevent excessive upward 

rotation maintaining optimal length-tension relationships of other muscles.  These results 

support rehabilitative focus on the serratus anterior in individuals with FHRSP, especially 

in the higher ranges of humeral elevation.  Focus on facilitating serratus anterior activity 

during the higher ranges of humeral elevation may facilitate normal scapular upward 

rotation and posterior tipping. 

The absence of differences observed in trapezius activity may be due to the 

population tested, task performed, or measure of muscle activity selected.  The 

population tested reported healthy shoulders with no positive tests for shoulder pain.  

Alterations in upper and lower trapezius timing and activity have only been reported in 

patients diagnosed with shoulder pain.(Ludewig and Cook 2000; Cools, Witvrouw et al. 

2003; Matias and Pascoal 2006)  It is possible that alterations in trapezius function are 

related to the presence of shoulder pain.  Alterations in trapezius activity may be a 

compensatory mechanism to avoid pain or a contributing factor to the development of 

shoulder pain.   

The observed similarities in trapezius activity also may have been the result of 

task selection.  The trapezius increases its activity as the plane of humeral elevation 

moves from the sagittal plane to the frontal plane.(Inman, Saunders et al. 1944; Bagg and 

Forrest 1986)  It is possible that the forward nature of these activities did not require high 

levels of recruitment of the trapezius muscles.  Decreased requirements in trapezius 

activity during overhead elevation tasks may not have elicited differences in these healthy 

shoulders.  Additionally, mean amplitude of each phase of the overhead reaching tasks 

were used as dependent variables.  Given that there was very little activity in both groups 
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during the descending phases, it is possible that any differences were blurred by 

analyzing the entire ascending phase.  Future studies should use multi-planar tasks, 

examine smaller arcs of motion for differences in muscle activity, and prospectively 

evaluate trapezius activity between healthy and painful shoulders. 

We are not aware of any published literature examining scapular muscle activity in 

relation to alterations in head and shoulder posture.  Our results are in agreement with 

reports of increased scapular muscle activity during the ascending phase of humeral 

elevation for all scapular muscles.(Bagg and Forrest 1986; Ekstrom, Donatelli et al. 

2003) Decreases in serratus anterior activity has also been reported in patients diagnosed 

with shoulder impingement and instability.(Ludewig and Cook 2000; Matias and Pascoal 

2006) 

4.50 Research Question 3 

6. Are there differences between individuals with ideal and forward head and 

rounded shoulder postural alignment for measures of shoulder joint 

coordination? 

c. Compare mean absolute relative phase (MARP) values and deviation 

phase (DP) values of the relative humeral and scapular movement 

patterns between groups during the ascending and descending phases of 

loaded forward flexion. 

Mean Absolute Phase Values 

Scapular Upward/Downward Rotation and Humeral Elevation 

There was not a significant main effect involving group (Table 11) or a group by 

phase interaction for scapular upward/downward rotation-humeral elevation MARP 
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values.  These results indicate that on average the FHRSP and ideal posture groups 

displayed similar coordinative patterns between scapula upward/downward rotation and 

humeral elevation during the ascending and descending phases of the flexion task (Figure 

20). 

Scapular Internal/External Rotation and Humeral Elevation 

The coordinative patterns between scapula internal/external rotation and humeral 

elevation during the flexion task were also not affected by posture group or phase of 

motion.  Statistical analyses revealed no significant main effects for postural group 

(Table 11) and phase of humeral elevation, as well as, no significant group by phase 

interaction for scapular internal/external rotation-humeral elevation MARP values 

(Figure 21).  

Scapular Anterior/Posterior Tipping and Humeral Elevation 

Scapula anterior/posterior tipping and humeral elevation MARP values were 

influenced by posture group and phase of humeral elevation.  There were significant main 

effects for group (p = 0.01ES = 0.42).  However, there was no significant interaction 

between phase of humeral elevation and postural group on scapular anterior/posterior 

tipping-humeral elevation MARP values. These results indicate that on average 

individuals in the FHRSP group displayed greater uncoupling between the humerus and 

scapular anterior/posterior tipping during humeral elevation in comparison to the ideal 

posture group (Figure 22).  The mean difference of scapular anterior/posterior tipping-

humeral elevation MARP values between groups was 14° (Figure 23).   
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Deviation Phase Values 

Scapular Upward/Downward Rotation and Humeral Elevation 

There was not a significant main effect for group on scapular upward/downward 

rotation-humeral elevation DP values (Table 12).  There was not a significant interaction 

effect between phases of humeral elevation on scapular upward/downward rotation-

humeral elevation DP values. There was not a significant main effect for phase of 

humeral elevation on scapular upward/downward rotation-humeral elevation DP values.  

These results indicate that on average the stability of the scapular upward/downward 

rotation-humeral elevation coordinative pattern was similar when comparing individuals 

with forward head and rounded shoulder posture and those with ideal posture (Figure 25).  

Scapular Internal/External Rotation and Humeral Elevation 

There was a significant main effect for postural group on scapular 

internal/external rotation-humeral elevation DP values (Table 12).  There was not a 

significant interaction effect between phase of humeral elevation and postural group on 

scapular internal/external rotation-humeral elevation DP values.  These results indicate 

that on average the FHRSP group displayed more stable coordinative patterns for 

scapular internal/external rotation and humeral elevation.   

Scapular Anterior/Posterior Tipping and Humeral Elevation 

There was not a significant main effect for group on scapular anterior/posterior 

tipping-humeral elevation DP values (Table 12).  There was not a significant interaction 

effect between phase of humeral elevation and postural group on scapular 

anterior/posterior tipping-humeral elevation DP values. These results indicate that on 

average the stability of the scapular anterior/posterior tipping-humeral elevation 
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coordinative pattern was similar when comparing individuals with forward head and 

rounded shoulder posture and those with ideal posture. 

d. Compare mean absolute relative phase (MARP) values and deviation 

phase (DP) values of the relative humeral and scapular between groups 

during the ascending and descending phases of loaded overhead reaching 

task. 

Mean Absolute Relative Phase Values 

Scapular Upward/Downward Rotation and Humeral Elevation 

There were no a significant main effects involving group (Table 11) or phase 

however, there was a significant interaction effect between phase of humeral elevation on 

scapular upward/downward rotation-humeral elevation MARP values (p = 0.05, ES = 

0.45). Tukey’s post hoc test revealed that the FHRSP group displayed greater scapular 

upward/downward rotation-humeral elevation MARP values during the ascending phase 

of the reaching task(MSD = 2°).  These results suggest that on average, the FHRSP 

displayed a less coupled coordinative pattern between the humerus and scapula upward 

rotation during the ascending phase of the reaching task (Figure 25). 

Scapular Internal/External Rotation and Humeral Elevation 

The scapulohumeral coordinative patterns between the humerus and scapula 

internal/external rotation were similar during the overhead reaching task between the 

FHRSP and ideal posture groups.  There were no significant main effects for postural 

group (Table 12) or phase of humeral elevation on scapular internal/external rotation 

MARP values as well as, no significant interaction effect between phase of humeral 
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elevation and postural group on scapular internal/external rotation MARP values (Figure 

26). 

Scapular Anterior/Posterior Tipping and Humeral Elevation 

There was not a significant main effect for group on scapular anterior/posterior 

tipping-humeral elevation MARP values (Table 11).  There was not a significant 

interaction effect between phase of humeral elevation and postural group on scapular 

anterior/posterior tipping-humeral elevation MARP values (Figure 27). 

Deviation Phase Values 

Scapular Upward/Downward Rotation and Humeral Elevation 

There was not a significant main effect for group on scapular anterior/posterior 

tipping-humeral elevation DP values (Table 12).  There was not a significant interaction 

effect between phase of humeral elevation and postural group on scapular 

anterior/posterior tipping-humeral elevation DP values. These results indicate that on 

average the stability of the scapular upward/downward rotation-humeral elevation 

coordinative pattern was similar when comparing individuals with forward head and 

rounded shoulder posture and those with ideal posture.  

Scapular Internal/External Rotation and Humeral Elevation 

There was not a significant main effect for postural group on scapular 

internal/external rotation DP values (Table 12). There was not a significant interaction 

effect between phase of humeral elevation and postural group on scapular 

internal/external rotation DP values.  These results indicate that on average the stability 

of the scapular internal/external rotation-humeral elevation coordinative pattern was 
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similar when comparing individuals with forward head and rounded shoulder posture and 

those with ideal posture. 

Scapular Anterior/Posterior Tipping and Humeral Elevation 

There was not a significant main effect for group on scapular anterior/posterior 

tipping-humeral elevation DP values (Table 12).  There was not a significant interaction 

effect between phase of humeral elevation and postural group on scapular 

anterior/posterior tipping-humeral elevation DP values. These results indicate that on 

average the stability of the scapular anterior/posterior tipping-humeral elevation 

coordinative pattern was similar when comparing individuals with forward head and 

rounded shoulder posture and those with ideal posture. 

Interpretation 
 

The observed increases in MARP values indicate that individuals with FHRSP 

display less coupled scapulohumeral coordinative patterns for scapular 

upward/downward rotation during the ascending phase of the reaching task.  Individuals 

with FHRSP also displayed less coupled scapular anterior/posterior tipping during the 

entire flexion task.  Decreased DP values for scapular internal/external rotation during the 

flexion task indicate a less variable scapulohumeral coordinative pattern for individuals 

with FHRSP during the flexion task.   Together, these differences suggest altered 

scapular control strategies between individuals with and without FHRSP.   

Individuals with FHRSP increased MARP values indicate a less coupled 

coordinative pattern between scapular upward/downward rotation and humeral elevation 

during the ascending phase of the overhead reaching task.  Visual inspection reveals the 

observed increases in MARP values were the result of a negative shift in relative phase 
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during the first 25% of the overhead reaching task (Figure 3).  The negative shifts in 

relative phase during the early and late phases of both tasks indicate the humeral phase 

angles were greater than those of the scapula.  However, humeral velocity between 

groups was not different between groups.  Therefore, differences in relative phase angles 

between groups were due to altered control of scapula.  This negative shift by the FHRSP 

group may reflect a more distal control strategy for scapular upward/downward rotation 

during the early and late portions of the reaching task. 

The out-of-phase and more distal control strategy in individuals with FHRSP may 

represent a loss of dynamic scapular stability during the early and late phases of humeral 

elevation. The scapula is almost entirely stabilized by peri-scapular musculature.  In the 

upper ranges of humeral elevation muscles and joints moving toward their end range may 

provide passive scapular stability.  The lack of passive stability in the mid-ranges of 

humeral elevation would require increased dynamic stability and neuromuscular control.  

This is supported by examining the relative phase curves for scapular upward/downward 

rotation during the reaching task (Figure 7).  Scapular upward rotation-humeral elevation 

relative phase show increased coupling during the middle portion of the reaching task.  

This is supported by the shift in scapulohumeral rhythm (SHR) from 2:1 in the mid-

ranges, to 1:1 in the upper ranges of humeral elevation.(Inman, Saunders et al. 1944; 

Bagg and Forrest 1988)   The shift in SHR indicates an increase in the rate of scapular 

upward rotation in the upper ranges of humeral elevation which is similar to the observed 

increase in coupling during the middle of the reaching task.   

The decrease in SHR is likely the result of the capsuloligamentous and 

musculature about the shoulder girdle engaging the scapula at higher ranges of humeral 
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elevation.  The increase in passive tension as tissues are pulled taut necessitates humeral 

elevation and scapular upward rotation becomes more coupled by decreasing the degrees 

of freedom available to the movement system.  The taut tissues also increase the passive 

stability about the scapula requiring less dynamic stability required to facilitate humeral 

elevation.   The less coupled scapulohumeral coordination for upward/downward rotation 

suggests a decrease in dynamic stability and control during the early and late phases of 

the reaching task. 

Increased MARP values for the FRHSP group were also observed for scapular 

anterior/posterior tipping and humeral elevation during the flexion task. The increase in 

the FHRSP group’s MARP values indicates scapular anterior/posterior tipping and 

humeral elevation were less coupled during the flexion task.  The FHRSP also displayed 

a negative shift in the relative phase curve indicating a more distal control strategy over 

the entire movement cycle of both tasks (Figure 7).  The increase in humeral elevation 

and more anteriorly tipped resting position are possible explanations for the less coupled 

and distal control strategy by individuals with FHRSP.  The plane of humeral elevation 

influences the contribution of scapular rotations to total shoulder elevation, and sagittal 

plane humeral elevation elicits a greater contribution of scapular anterior/posterior 

tipping.(van der Helm and Pronk 1995; Hebert, Moffet et al. 2000)  Furthermore, as 

humeral elevation angles increase the rate of scapular posterior tipping 

increases.(Karduna, McClure et al. 2001; McClure, Michener et al. 2001)  Since all 

individuals used more humeral elevation during the flexion task compared to the reaching 

task (31°), it is reasonable to conclude that these differences occurred during the upper 

ranges of humeral elevation.  This is supported by the visual separation of the ideal and 
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FHRSP relative phase curves during the middle portion of the flexion task.  Individuals in 

the FHRSP group also presented with an increase in resting scapular anterior tipping 

position (9°).  This would place the posterior structures in a lengthened position thereby 

engaging scapular posterior tipping at a lower humeral elevation angle during the 

reaching task.  Similar to scapular upward/downward rotation during the reaching task 

the altered passive tension may contribute to the altered scapular control strategy. 

A decrease in the FHRSP group’s DP values for scapular internal/external 

rotation indicates a more stable movement pattern during the reaching task.  The smaller 

DP values suggest individuals with FHRSP scapular internal/external rotation pattern 

used a less variable scapular movement pattern when compared to individuals with ideal 

posture.  This more stable movement pattern is likely the result of the smaller range of 

available scapular internal/external rotation to each group.  The FHRSP group was in a 

more internally rotated position at rest (14°).  The physiological limits of the scapula to 

protract and internally rotate around the thorax are limited by the posterior musculature. 

Since the FHRSP group was much farther into this range there were less degrees of 

freedom available to the movement system.  The flexion task was standardized to the 

sagittal plane perpendicular to the 5th metatarsal of the testing arm.  This task required 

minimal shoulder girdle horizontal adduction compared to the reaching task.  Shoulder 

girdle horizontal adduction was likely accomplished by combining humeral adduction, 

scapular protraction, and scapular internal rotation. Since thoracic motion was 

minimized, the ideal posture group would have more degrees of freedom available 

compared to the FHRSP group.  Considered together, the results across all three scapular 
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rotations suggest that the demands of each task highlighted scapulohumeral coordination 

strategy differences between individuals with and without FHRSP. 
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Table 2.  Scapulothoracic rotations reported by various authors adapted from  
McClure et al (2001). 

 
Author Method 

Plane 
Shoulder 

ROM 
Mean Scapular Motion 

Inman et al (1944) 2 D Radiographs Flexion 
30°-150° 

 
 50° Upward Rotation 

Doody et al (1970) 2-D Goniometry 
 
 

Abduction 
30°-150° 

 
 40° Upward Rotation 

Poppen and Walker (1976) 2-D Radiographs Scaption  
5°-176° 

 

 
 59° Upward Rotation 

Bagg and Forrest (1988) 2-D Photographic Scaption  
0°-168° 

 

 
 64° Upward Rotation 

 32° Upward Rotation 
 31° Posterior Tilt 

McQuade et al (1995) 3-D Electromagnetic  
(Static) 

Scaption 
0°-135° 

 67° Medial Rotation 
 60o Upward Rotation 
 30o Posterior Tilt 

Flexion  
0°-180° 

 -25o Medial Rotation 
 60o Upward Rotation 
 30o Posterior Tilt 

van der Helm and Pronk 
(1995) 

3-D Electromagnetic 
(Static) 

Abduction 
0o-180o 

 -25o Medial Rotation  
 34o Upward Rotation 
 15o Posterior Tilt 

Ludewig et al (1996) 3-D Electromagnetic 
(Static) 

Scaption 
0o-140o 

 -13o Medial Rotation 
 58o Upward Rotation 
 24o Posterior Tilt 

Flexion 
0o-150o 

 0o Medial Rotation  
 60o Upward Rotation 
 13o Posterior Tilt 

Meskers et al (1998) 3-D Electromagnetic 
(Quasi-static) 

Abduction 
0o-150o 

 3o Medial Rotation  
 46o Upward Rotation 
 31o Posterior Tilt 

Flexion 
16o-153o 

 -26o Medial Rotation 
 50o Upward Rotation 
 30o Posterior Tilt 
 -24o Medial Rotation 

McClure et al (2001) 3-D Electromagnetic 
(Dynamic) 

Scaption 
11o-147o 

 -24o Medial Rotation 
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Table 4. Instructions for Borg Rating of Perceived Exertion (RPE) Scale (Borg 1998) 

While doing physical activity, we want you to rate your perception of exertion. This feeling 
should reflect how heavy and strenuous the exercise feels to you, combining all sensations 
and feelings of physical stress, effort, and fatigue. Do not concern yourself with any one 
factor such as leg pain or shortness of breath, but try to focus on your total feeling of 
exertion. Look at the rating scale below while you are engaging in an activity; it ranges from 
6 to 20, where 6 means "no exertion at all" and 20 means "maximal exertion." Choose the 
number from below that best describes your level of exertion. This will give you a good idea 
of the intensity level of your activity, and you can use this information to speed up or slow 
down your movements to reach your desired range. 

Try to appraise your feeling of exertion as honestly as possible, without thinking about what 
the actual physical load is. Your own feeling of effort and exertion is important, not how it 
compares to other people's. Look at the scales and the expressions and then give a number. 

6  No exertion at all 

7 
    Extremely light (7.5) 
8 

9  Very light 

10 

11  Light 

12 

13  Somewhat hard 

14 

15  Hard (heavy) 

16 

17  Very hard 

18 

19  Extremely hard 

20  Maximal exertion 

Interpretation: 

9 corresponds to "very light" exercise. For a healthy person, it is like walking slowly at 
his or her own pace for some minutes 

13 on the scale is "somewhat hard" exercise, but it still feels OK to continue. 

17 "very hard" is very strenuous. A healthy person can still go on, but he or she really has 
to push him- or herself. It feels very heavy, and the person is very tired. 

19 on the scale is an extremely strenuous exercise level. For most people this is the most 
strenuous exercise they have ever experienced. 

Borg RPE scale 
© Gunnar Borg, 1970, 1985, 1994, 1998 



 

120 

Table 5. Descriptive statistics for screened volunteers (n=310) 
 

Characteristics Mean SD 

Male (n= 132)        Age (years) 30.8 17.3 

Forward Head Angle 42.4 4.9 

Forward Shoulder Angle 32.6 14.3 

Female (n= 178)     Age (years) 36.6 16.4 

Forward Head Angle 44.6 5.4 

Forward Shoulder Angle 40.3 17.7 

All (n=310)                      Age (years) 34.2 11.9 

Forward Head Angle 41.1 5.2 

Forward Shoulder Angle 37.4 15.3 
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Table 6. Descriptive statistics for study participants (n=80) 
 

Group Characteristics Mean SD 

Ideal Posture Male (n= 21)        Age (years) 32.6 13.3 
 Height (cm) 178.4 7.6 
 Mass (kg) 72.5 11.3 
 Female (n= 19)     Age (years) 34.4 12.6 
 Height (cm) 165.8 6.9 
 Mass (kg) 60.1 11.2 

Forward Head and 
Rounded Shoulder Posture Male (n= 15)        Age (years) 39.1 12.5 

 Height (cm) 177.0 7.3 
 Mass (kg) 95.1 19.5 
 Female (n= 25)     Age (years) 35.0 11.3 
 Height (cm) 161.7 6.7 
 Mass (kg) 77.3 15.4 
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Appednix B. Figures 
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Figure 1. Forward head angle (FHA) measured from the vertical anteriorly to a line 

connecting the tragus and the C7 marker. Forward shoulder angle (FSA) 
measured from the vertical posteriorly to a line connecting the C7 marker and 
the acromial marker. 

FSA 

FHA
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Figure 2. Three rotations and two translations used to completely describe scapular 

motion. (from McClure et al. (2004)) 
A. Scapular Posterior/ Anterior Tipping 
B. Scapular Upward/ Downward Rotation 
C. Scapular Internal/ External Rotation 
D. Scapular Elevation/ Depression 
E. Scapular Protraction/ Retraction 
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Forward Head Angle

Figure 3. Example of ideal forward 
head and shoulder posture  
Forward Head Angle = 38˚ 
Forward Shoulder Angle = 20˚ 

Forward Shoulder Angle

Forward Head Angle

Forward Shoulder Angle

Figure 4. Example of forward head 
and shoulder postural posture 
Forward Head Angle = 55˚  
Forward Shoulder Angle = 60˚ 
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Figure 5. Scapular local axis system and bony landmarks 
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Figure 6. Humeral local axis system and bony landmarks 
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Figure 7. Thoracic local axis system and bony landmarks 



 

136 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.00

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11

Frequency

R
es

id
ua

l S
ig

na
l A

m
pl

itu
de

 R
M

S

Figure 8. Residual analyses for humeral coordinate data 
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Figure 9. Posterior view of the 
flexion task showing the arm in line 
with the target 

Figure 10. Posterior view of the 
reaching task showing the target on 
the shelf to be on the midline and in 
front of the participant 

Figure 11. Sagittal view of reaching 
task with participant arms length (to 
ulnar styloid) back from the shelf. 
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Figure 12. Individuals with forward head and rounded shoulder posture 
(FHRSP) used a greater range of scapular upward rotation during the 
flexion task. 
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Figure 13. Individuals with forward head and rounded shoulder posture 
(FHRSP) displayed a less scapular anterior tipping range of 
motion during the descending phase of the reaching task. 
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Figure 14 Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed a greater average scapular internal rotation angle during the flexion 
task. 
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Figure 15. Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed a greater scapular upward rotation angle at 120° of 
humeral elevation during the ascending and descending phases of the 
flexion task. 
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 Figure 16. Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed greater average scapular anterior tipping angles 
during the ascending and descending phases of humeral elevation 
during the flexion task. 
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Figure 17. Individuals with forward head and rounded shoulder posture 
(FHRSP) displayed a greater average scapular internal rotation angle 
during the reaching task. 
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Figure 18. Individuals with forward head and rounded shoulder posture 
(FHRSP) displayed less serratus anterior activity during the 
ascending phase of the flexion task. 
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Figure 19. Individuals with forward head and rounded shoulder posture 
(FHRSP) displayed less serratus anterior activity during the 
ascending phase of the reaching task. 
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 Figure 20. Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed similar scapular upward/downward rotation-humeral 
elevation continuous relative phase curves during the flexion task. 

 
 

-50

-25

0

25

50

0 25 50 75 100

Percent Flexion Task

Ideal FHRSP

 
 

R
el

at
iv

e 
Ph

as
e 

A
ng

le
 (d

eg
) 



 

147 

Figure 21. Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed similar scapular internal/external rotation-humeral 
elevation continuous relative phase curves during the flexion task. 
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Figure 22. Individuals displaying forward head and rounded shoulder 
posture (FHRSP) displayed similar scapular anterior/posterior tipping-
humeral elevation continuous relative phase curves during the flexion task. 
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Figure 23. Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed larger scapular anterior/posterior tipping-humeral elevation 
mean absolute relative phase values during the flexion task. 
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 Figure 24. Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed smaller scapular internal/external rotation-humeral elevation 
deviation phase values during the flexion task. 
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Figure 25. Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed similar scapular upward/downward rotation-humeral 
elevation continuous relative phase curves during the reaching task. 
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Figure 26. Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed larger scapular upward/downward rotation-humeral elevation 
mean absolute relative phase values during ascending phase of the 
reaching task. 
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Figure 27. Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed similar scapular internal/external rotation-humeral 
elevation continuous relative phase curves during the reaching task. 
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 Figure 28. Individuals displaying forward head and rounded shoulder posture (FHRSP) 
displayed similar scapular anterior/posterior tipping-humeral elevation continuous 
relative phase curves during the reaching task. 
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Appendix C. Manuscript One 
 

Effects of Forward Head and Rounded Shoulder Posture on Scapular Kinematics 

and Muscle Activity in Healthy Shoulders 
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Abstract 

Study Design: Two group comparison 

Objective: The purpose of this study was to compare scapular kinematics and muscle 

activity between individuals with and without forward head and rounded shoulder posture 

(FHRSP). 

Background: FHRSP, altered scapular kinematics, and muscle activity have been 

reported in patients with shoulder pain.  However, it is unclear if alterations in scapular 

kinematics are the result of alterations in posture or in response to shoulder pain. 

Methods and Measures: Eighty volunteers without shoulder pain were classified as 

having FHRSP or ideal posture.  Scapular kinematics were collected concurrently with 

upper and lower trapezius as well as the serratus anterior muscle activity using an 

electromagnetic tracking system together with electromyography. Separate mixed model 

analyses of variance were used to compare three dimensional scapular kinematics and 

muscle activity between individuals with and without FHRSP during the ascending and 

descending phases of a loaded flexion and overhead reaching task.  

Results: There were significant main effects for group on scapular internal rotation 

angle.  There were also significant interaction effects between group and phase of task 

showing differences in upward rotation, anterior tipping, and decreased serratus anterior. 

The FHRSP group displayed increased scapular internal and upward rotation, as well as 

increased anterior tipping with decreases in serratus anterior activity during the flexion 

and reaching tasks. 

Conclusions:  Individuals with FHRSP displayed alterations in scapular kinematic and 

serratus anterior muscle activation patterns similar to those reported in individuals with 
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shoulder pain.  These results suggest FHRSP should be considered in the prevention and 

treatment of shoulder pain.   
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Introduction 

Shoulder pain is reported to occur in up to 21% of the general population1, 2 and cost 

an estimated $39 billion annually.3  These costs reflect the impact on health care 

resources, but do not include the costs due to time lost, retraining, and long-term 

disability associated with shoulder pain.  Shoulder injury rates are reported to increase to 

41% in occupational settings.4-7  In addition, 40% of all shoulder pain is reported to 

persist for at least one year.8  Due to the high incidence, cost, and long term disability of 

shoulder pain it is necessary to identify potential risk factors for developing shoulder 

pain.   

Occupational risk factors for shoulder pain include repetitive overhead use (> 60° of 

shoulder elevation), prolonged overhead work, and increased loads raised above shoulder 

height.9  However, these factors are difficult to modify based on the demands of many 

occupational settings.  Therefore, research investigating the role of modifiable risk 

factors associated with shoulder pain is needed to develop intervention strategies that 

may be implemented to reduce the occurrence, cost, and disability of shoulder pain. 

Forward head and rounded shoulder posture (FHRSP), altered scapular kinematics 

and muscle activity are suggested as potential risk factors in the development of shoulder 

pain.6, 10-14  This is based on observed alterations in scapular kinematics and muscle 

activity in patients with shoulder impingement syndrome and  rotator cuff disease.12-14 

FHRSP is thought to alter the length-tension relationships of the shoulder girdle muscles, 

thereby altering muscle function and disrupting normal shoulder kinematics and muscle 

activation patterns.15, 16  This is supported by increases in scapular internal rotation and 

anterior tipping during humeral elevation in healthy shoulders with shortened pectoralis 



159 

minor length.17  Additionally, improving shoulder posture has been shown to normalized 

scapular kinematics.11 Increasing thoracic kyphosis and forward neck angle has been 

shown to decrease scapular upward rotation, internal rotation, and posterior tipping.5, 7  

Increases in forward neck angle has also been shown to increase upper trapezius and 

levator scapulae muscle activity.7  Together these studies suggest that head and shoulder 

posture influence scapular kinematics and muscle activity. 

 These studies have focused on acute alterations in spinal alignment and its indirect 

effect on scapular kinematics.1, 5, 7 This may not reflect the adaptive changes in that are 

hypothesized to occur as the result of altered posture.6, 9  Additionally, there is limited 

research demonstrating the effect of posture on scapular kinematics.11 Increases in 

scapular external rotation and posterior tipping have been reported following a stretching 

program but there was no comparison group in this study.11  Therefore, it is unclear if 

individuals with FHRSP display alterations in scapular kinematics and muscle activity. 

Furthermore, research examining the presence FHRSP, alterations in scapular 

kinemtics, and muscle activity has occurred in patients with shoulder pain.18-21 The 

presence of shoulder pain during testing is a major limitation in these studies.  It is 

unclear if observed differences in posture, scapular kinematics, or muscle activity are 

related to the underlying shoulder pain or are the result of FHRSP.  Additionally, it is 

unlikely that all patients with overuse shoulder pain display FHRSP.  Based on these 

limitations, a cross-sectional case control study comparing healthy shoulders in 

individuals with or without FHRSP is warranted.  

Therefore, the purpose of this study was to compare scapular kinematics and muscle 

activity between healthy shoulders in individuals with and without FHRSP.  We 
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hypothesized that individuals with FHRSP would display decreases in scapular upward 

rotation, external rotation, posterior tipping, serratus anterior activity, and lower trapezius 

activity as well as increased upper trapezius activity when compared to individuals with 

ideal head and shoulder posture. 

Methods 

Participants were recruited from the university population at The University of North 

Carolina-Chapel Hill through two informational mass emails sent to the university 

population.  Inclusion criteria for the study included being aged between 18 and 60 and 

meeting the specific postural alignment criteria.  Subjects were excluded if they reported 

a history of shoulder surgery, current shoulder pain limiting activities, upper extremity 

injury limiting activites, cervical or thoracic fracture, displayed functional or structural 

scoliosis, excessive thoracic kyphosis22. The dominant arm (arm used to throw a ball) 

was used for testing in all subjects.   

Postural Analysis 

Prior to testing participants completed an informed consent form and underwent a 

postural screening using the BioPrint® postural analysis system (Biotonix Inc., Montreal)  

to ensure that participants met the inclusion criteria for the ideal posture and forward 

head and shoulder posture groups.  Postural screening included measurement of forward 

head angle (FHA) and forward shoulder angle (FSA).     

Postural Alignment Criteria 

The postural alignment criteria were based on data collected from during a pilot study 

of 310 individuals.  Descriptive characteristics of these individuals appear in Table 2.   

Frequency histograms were plotted and measures of skewness and kurtosis assessed for 
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forward head and shoulder angles to confirm normality of these measures.  Head and 

shoulder angles approximately displayed a normal distribution. Therefore, the mean and 

standard deviations were used to represent the data.  Cutoffs for each group were 

determined as the mean ± 1 standard deviation for the head and shoulder angle (Table 1). 

The FHRSP was 1 standard deviation above the mean and the ideal posture group was 1 

standard deviation below the mean (Table 2).  The ideal posture group criteria was 

defined as FHA < 36˚ and FSA < 22˚ (Figure 1 & 2).  The FHRSP group criteria was 

defined as FHA  > 46˚ and FSA > 52˚ (Figure 1 & 3).  Subject demographics for the ideal 

posture group (n=40) and the FHRSP group (n=40) are listed in Table 1.  Thus these 

groups represent an attempt to create two distinctly different postural alignment groups. 

Excessive kyphosis was defined in a similar manner.  The mean thoracic angle plus 

one standard deviation was 50˚.  These data represent a similarly aged sample of 300 

subjects.22 One standard deviation is also similar to the average increase in thoracic 

kyphosis reported to induce changes in scapular kinematics.23  

Participants were excluded if their postural measures did not fall within the stated 

group criteria.  Ninety-two of the 310 individuals screened met these criteria (29%). 

Forty-seven individuals were assigned to the ideal posture group and 45 to the FHRSP 

group. Twelve individuals did not schedule a return appointment yielding 40 participants 

in each group.  

Reflective markers were placed over the right tragus (ear), chin, labella (between 

eyes), acromion, C7, T7, posterior superior iliac spine, and anterior superior iliac spine.  

Participants then stood 40 cm in front of the scaled backdrop and were given standard 

instructions to increase reliability of their normal resting postural alignment.  High 
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resolution (5.0 mega pixels) digital images were then uploaded to a personal computer for 

processing. Adobe Photoshop® was used to measure head and shoulder angles. FHA and 

FSA demonstrated excellent intrasession reliability (FHA =   ICC(2,1)= 0.92, SEM = 2° 

and FSA ICC(2,1)= 0.89, SEM = 5°) and between day reliability (FHA =   ICC(2,k)= 0.78, 

SEM = 4° and FSA ICC(2,k)= 0.72, SEM = 7°).   

Kinematic Assessment 

All Participants were scheduled for a 90 minute testing session within 1 month of the 

initial screening.  Participants were asked to avoid upper extremity weight lifting and 

overhead activities on either day of testing.  During this testing session three-dimensional 

shoulder kinematic and EMG data were collected to assess humeral and scapular angles 

as well as scapular muscle activity during the ascending (>29° to >119°) and descending 

(<120° to >30°) phases of loaded shoulder flexion and reaching tasks. 

A Flock of Birds® (Ascension Technologies, Inc., Burlington, VT) 

electromagnetic motion analysis system controlled by the Motion Monitor® (Innovative 

Sports Training, Inc. Chicago, IL) software was used to assess scapular kinematics at a 

sampling rate of 50 Hz.  The primary component of the electromagnetic tracking system 

is a standard range DC transmitter containing three orthogonal coils that generates an 

electromagnetic field.  The system incorporates a series of three sensors/receivers that 

record the electromagnetic flux in the field generated by the transmitter and conveys the 

signals to a recording computer via hard wiring.   

Three electromagnetic tracking sensors were attached to: 1.) The thorax over the 

spinous process of T3, 2.) The dominant shoulder over the broad flat surface of the 

scapular acromion, 3.) The posterior one third of the upper arm with the sensor over the 
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area of least muscle mass to minimize potential sensor movement.  In order to assess the 

shoulder kinematics, reconstruction of the bony segments was performed following the 

International Society of Biomechanics-Shoulder Group Recommendations. 24 The bony 

landmarks were: T12, medial and lateral epicondyle of the humerus, T8, xyphoid process, 

C7, sternal notch, spine of the scapula at the medial border, posterior-acromion of the 

scapula, inferior angle of the scapula, and the glenohumeral joint rotation center.  The 

glenohumeral joint center was defined by the point that moves least with respect to the 

scapula when the humerus is moved through short arcs (< 45°) as calculated by a least 

squares algorithm and has been shown to best represent the glenohumeral joint center. 25   

The electromagnetic transmitter was positioned on a custom stand allowing for the 

establishment of a global reference system.  The global reference system axes were 

defined such that the Y-axis was designated as positive in the superior direction, the Z-

axis was designated as positive to the right, and the X-axis was designated as positive 

anterior, all relative to the participant.  The local axes systems all aligned with the 

reference axes of the electromagnetic system to simplify data reduction. 

Humeral elevation, scapular upward/downward rotation (UR), scapular 

external/internal rotation (IR), and scapular posterior/anterior tipping (PT) were collected 

for later comparison. Scapular angles were compared at the 60°, 90°, and 120° of humeral 

elevation for the ascending and descending phases of the flexion task.  Scapular angles 

were compared at the 60°, 90°, and 110° of humeral elevation for the ascending and 

descending phases of the reaching task.  Each of the scapular and humeral kinematic 

variables demonstrated excellent between trial reliability with ICC(2,1) values ranging 

from 0.92 to 0.99.  Scapular ranges of motion and mean amplitude EMG were also 
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compared during the ascending and descending phases of humeral elevation for both 

tasks.   

Each of these dependent variables was examined during a loaded arm elevation 

flexion task (arm in front of body) and a forward-overhead reaching task. Participants 

were asked to perform 25 cycles of arm elevation or forward reaching task at a self 

selected speed during testing.  The tasks were counterbalanced and participants rested 5 

minutes between each task to reduce the effects of fatigue, possible learning effects, and 

task order.   

Muscle Activity Assessment 

EMG analyses were performed to measure the muscle activation amplitude of 

serratus anterior, upper trapezius, and lower trapezius muscles using a Delsys Bagnoli-8 

EMG System (Boston, MA), with differential amplification, Common Mode Rejection 

Ration >80 dB, input impedance >1015//0.2 ohm//pF, Signal to Noise Ratio >40 dB 

using an 8 channel amplifier.  The EMG signal was amplified by a factor of 1,000 over a 

bandwidth of 0.01 to 2,000 Hz, passed via an A/D converter (National Instruments, 

Austin, TX) sampling at 1000 Hz then corrected for DC bias.  The raw EMG data was 

collected by the Motion Monitor® software and stored for analysis.   

Before applying surface electrodes the participant’s skin was cleaned with alcohol 

then a bar Ag/AgCl single differential surface electrode (Delsys Inc., Boston, MA) on the 

midpoint of each muscle belly perpendicular to the muscle fiber direction using surgical 

tape and adhesive stickers.  The electrodes were 19.8 mm wide and 35 mm long with 10 

mm between contacts.  Electrodes were placed in the following arrangement: 
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Serratus anterior: below the axilla, anterior to latissimus dorsi, placed over 4th 

through 6th ribs angled at 30° above the nipple line 

Upper trapezius: one half the distance from the mastoid process to the root of the 

spine approximately at the angle of the neck and shoulder 

Lower trapezius: two finger widths lateral to the inferior angle of the scapula on a 

45° angle towards T10.   

The specified electrode placement has been used in a number of studies.26-28 A carbon 

reference electrode was placed over the non-involved acromion.  

Separate maximal voluntary isometric contractions (MVIC) were performed using 

a hand-held dynamometer (HHD) (CDS 300 strength dynamometer, Chatillion®, Largo, 

FL) for the serratus anterior, upper trapezius, and lower trapezius.28  EMG activity was 

recorded for each muscle as subjects performed the MVIC.  During MVIC testing the 

subjects were instructed to push with maximal effort against the HHD for 5-seconds.  The 

average EMG amplitude during middle 1-second time period was determined for each of 

the three trials performed for each MVIC test.  The data from the middle 1-second time 

period was then averaged across the three trials and used to normalize the EMG data 

recorded during the loading flexion and reaching tasks.  Thus, EMG data during the 

loaded flexion and reaching tasks are expressed as a percentage of MVIC (% MVIC).  

There was a 30-second rest period allowed between each trial during MVIC testing for a 

given muscle.  A 1-minute rest period was allowed between MVIC testing for each 

muscle group.  Prior to MVIC testing all subjects performed practice trials of each test to 

familiarize them with the testing procedures.  Mean EMG amplitude values for the three 
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trials demonstrated good reliability for each muscle with ICC(2,1) values ranging from 

0.74 to 0.87.  

After the setup was completed, participants completed the humeral elevation and 

forward reaching tasks.  The humeral elevation task required the participant to lift a 

weight equal to 3% of their body weight in the sagittal plane in line with the acromion of 

their dominant arm.  The sagittal plane was be defined as the plane perpendicular to a line 

through their fifth metatarsal head.  Participants were asked to complete their full range 

of motion at a self selected speed.   

The overhead reaching task required the participant placing a weight equal to 3% of 

their body weight from a resting position at their side up to a customized shelf equal to 

their height plus 15%.  This height and weight reflect a moderate overhead task as 

defined by the National Institute of Occupational Safety and Health’s reaching 

guidelines.8  The target was placed perpendicular to the dominant AC joint, the length of 

their ulnar styloid anterior to the participant.  Participants performed 5 practice trials to 

become familiar with the procedures before performing 25 repetitions of each task.  Task 

order was randomized and subjects rested 5 minutes between tasks to prevent fatigue. 

Data Reduction and Processing 

Kinematic Data 

 Three-dimensional coordinates of the digitized bony landmarks were calculated 

using the Motion Monitor® software (Innovative Sports Training, Inc. Chicago, IL).  

Segment reference frames were defined according to the recommendations set forth by 

the Shoulder Group of the International Society of Biomechanics.24  Humeral motions 

were calculated as the Euler angles of the humerus relative to the thorax reference frame 
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in the following order of rotations:  internal-external rotation about Y axis, elevation 

about the Z’ axis, and internal-external rotation about the Y” axis.29  Scapular motions 

were calculated as the Euler angles of the scapula relative to the thorax reference frames 

in the following order of rotations:  internal/external rotation about the Y axis, upward-

downward rotation about the X’ axis, and posterior-anterior tilting about the Z” axis.24, 30  

Kinematic data were smoothed through a Butterworth a low pass digital-filter (4th order, 

recursive, zero phase lag) at an estimated optimum cutoff frequency of 3.5 Hz. 

The average of trials 2-6 of each task were used for assessment of mean scapular 

angles.  Scapular upward rotation, internal rotation, and posterior tipping angles were 

selected using custom Matlab (Mathworks, Natick, MA) code to identify angles at 60°, 

90°, and 120° of humeral elevation during the ascending and descending phases of the 

flexion task and the overhead reaching task.  Scapular ranges of motion (ROM) were 

calculated from 30° to 120° of humeral elevation for the ascending and descending 

phases of humeral elevation for the flexion task and from 30° to 110° for the reaching 

task.  

EMG Data 

Post-acquisition, all EMG data were band-pass filtered (10 – 350 Hz) using a 

Butterworth filter (4th order, recursive, zero-phase lag).  The data were further smoothed 

and rectified by taking the root mean square error (RMS) of the EMG signal over a 20 ms 

time constant.   

Mean EMG amplitude were used to represent muscle activation over the 

ascending and descending phases of humeral elevation for the upper trapezius, lower 

trapezius, and serratus anterior.  These were the same arcs used to calculate the scapular 
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ROM for the ascending and descending phases of shoulder motion.  The mean EMG 

amplitude over each phase of motion was averaged across the 5 trials and used for 

statistical analyses.  Each of the scapular EMG variables demonstrated good reliability 

with ICC(2,1) values ranging from 0.73 to 0.85. 

Statistical Analysis 

Scapular Rotation Angles 

Separate mixed model ANOVA (group x angle x phase) were used to compare 

scapular upward rotation, internal rotation, and posterior tipping angles (dependent 

variables) between the ideal and forward head and rounded shoulder groups (independent 

variable).  Each analyses involved angles (60°, 90°, and 120°) and phases (ascending and 

descending) of humeral elevation as within participant factors.  Statistical significance 

was set a priori at α < .05 for all analyses.  Tukey’s post hoc analyses were performed to 

investigate significant main effects and interactions.   

Scapular Range of Motion and Muscle Activity 

Separate mixed model ANOVA (group x phase) were used to compare scapular 

upward rotation, internal rotation, and posterior tipping range of motion as well as were 

used to compare upper trapezius, lower trapezius, and serratus anterior muscle activity 

(dependent variables) between the ideal and FHRSP groups (independent variable).  Each 

analysis involved two phases (ascending and descending) of humeral elevation as within 

participant factors. Statistical significance was set a priori at α < .05 for all analyses.  

SPSS for Windows software (version 13.0, SPSS Inc, Chicago, IL) was used for all 

statistical analyses.   

Results 
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Scapular Rotation Angles 

There were significant differences between postural groups for scapular internal 

rotation angle during the flexion task (Table 3) and reaching task (Table 4).  These results 

indicate that on average individuals in the FHRSP group displayed greater scapular 

internal rotation angles in comparison to the ideal posture group during both tasks (Figure 

4 & 5).  The mean difference of scapular internal rotation angles between groups was 8° 

(Effect Size (ES) = 0.52) for the flexion task and 10° (ES = 0.60) the reaching task. 

There was also a significant difference in scapular upward/downward rotation and 

scapular anterior/posterior tipping angle during the flexion task (Table 3).  Tukey’s post 

hoc test revealed the FHRSP group displayed greater upward rotation angles at 120° 

during the ascending and descending phases of humeral elevation in comparison to the 

ideal posture group (Mean Significant Difference (MSD) = 2.8°).  The mean difference 

between postural groups for scapular upward/downward rotation was 5° (ES = 0.51) 

(Figure 6). 

Tukey’s post hoc test also revealed that on average during ascending and 

descending phases of humeral elevation the scapula was more anteriorly tipped for the 

FHRSP group in comparison to the ideal posture group (MSD = 1.3°).  The mean 

difference between postural groups for scapular anterior/posterior tipping angles was 3° 

for the ascending phase and 4° for the descending phase of the flexion task. (ES = .32) 

(Figure 7). 

There were no significant main or interaction effects involving postural group on 

scapular upward rotation angles or anterior/posterior tipping angles during the reaching 

task (Table 4).  
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Scapular Range of Motion  

There was a significant difference between postural groups for scapular upward 

rotation range of motion during the flexion task and scapular anterior/posterior tipping 

range of motion during the descending phase of the reaching task (Table 5). These results 

indicate that on average individuals in the FHRSP group displayed greater scapular 

upward rotation range of motion in comparison to the ideal posture group during the 

flexion task.  The mean difference of scapular upward rotation range of motion between 

groups was 5° (ES = 0.45) (Figure 8).  Additionally, individuals with FHRSP used less 

anterior tipping range of motion during the descending phase of the reaching task.  The 

mean difference for scapular anterior/posterior tipping range of motion between groups 

was 2° during the descending phase of the reaching task (ES = 0.36) (Figure 9). 

There was not a significant difference between postural groups for scapular 

upward/downward rotation during the reaching task, scapular posterior/anterior tipping 

range of motion during the flexion task or for scapular internal/external rotation range of 

motion during either task (Table 5). 

Muscle Activity 

Serratus Anterior 

There was a significant interaction effect between humeral elevation phase by 

postural group on serratus anterior activity during the flexion task and the reaching task.  

Tukey’s post hoc test revealed that the serratus anterior in the FHRSP group was less 

active during the ascending phase of flexion task (MSD = 5%) and the reaching task 

(MSD = 6%) in comparison to the ideal posture group.  The mean difference between 
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postural groups for serratus anterior activity was 12% during the flexion task (ES = 0.38) 

and 6% during the reaching task (ES = 0.33) (Figure 10 &11). 

Upper Trapezius and Lower Trapezius 

There were no significant main or interaction effects for postural group on upper 

trapezius or lower trapezius activity during the flexion or reaching tasks (Table 5).   

These results indicate there were no significant differences in upper or lower trapezius 

activity during these tasks.  

Discussion 

The purpose of this study was to compare scapular kinematics and muscle activity 

between healthy shoulders in individuals with and without FHRSP.  Our results suggest 

individuals with FHRSP display altered scapular kinematic patterns during shoulder 

flexion and overhead reaching tasks.  Individuals with FHRSP remained in more scapular 

internal rotation throughout the flexion and reaching tasks.  These subjects also displayed 

greater scapular upward rotation range of motion during the ascending phase of both 

tasks.  Additionally, individuals with FRHSP showed increases in scapular anterior 

tipping during the shoulder flexion task.  Increases in scapular upward rotation angles 

were also observed at 120° of the shoulder flexion task.  These alterations in scapular 

kinematics were observed with concurrent decreases in serratus anterior activity during 

the ascending phase of the overhead tasks.  These results support the clinical theory that 

FHRSP impacts shoulder mechanics.  These alterations were observed in healthy 

shoulders without shoulder pain suggesting that FHRSP alone may influence scapular 

mechanics.  Head and shoulder posture, scapular kinematics, and muscle activity should 

be examined as potential risk factors in the development of shoulder pain. 
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The observed increases in scapular internal rotation and anterior tipping in 

individuals with FHRSP are consistent with previous reports examining the effects of 

posture on three-dimensional scapular kinematics.17, 23, 31  Individuals with FHRSP 

displayed greater scapular anterior tipping angles when compared to individuals with 

ideal posture.  The increase of 3°-4° is similar to increases in scapular anterior tipping 

following increases in thoracic kyphosis23, 31 and short pectoralis minor length.17  In the 

current study the FHRSP group demonstrated scapula internal rotation angles that were 8º 

and 10º greater than the ideal posture group during the reaching and flexion tasks, 

respectively.  The increase in scapular internal rotation are similar to alterations reported 

in healthy shoulders with short pectoralis minor length17 but smaller than increases 

reported concurrent with increased in thoracic kyphosis.23, 31  The greater scapular 

internal rotation angles may have been the result of study design plane of humeral 

elevation.  Previous studies acutely altered spinal alignment to facilitate a more 

FHRSP.23, 31 In contrast, we created two distinct postural groups to examine the effects of 

FHRSP on scapular kinematics.  By limiting the amount of excessive thoracic kyphosis 

our results reflect changes in the scapular position upon the thorax. The plane of humeral 

elevation and method of data collection also has been reported to influence the 

contribution of scapular rotations to total shoulder motion.3, 4, 10  The tasks in this study 

were more anterior to scapular plane elevation used in previous studies.11, 32  These 

factors likely combined to influence the magnitude of differences in scapular internal 

rotation between studies. Considering these studies together17, 23, 31, increasing thoracic 

kyphosis seems to affect scapular internal rotation less than FHRSP or short pectoralis 

minor length.17 
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These studies also reported decreases in scapular upward rotation as the result of 

increasing thoracic kyphosis23, 31 or no difference in individuals with short pectoralis 

minor lengths.17  We observed increases in scapular upward rotation angle and range of 

motion in individuals with FHRSP.   Previous reports of decreased scapular upward 

rotation are most likely due to methods of inducing postural malalignment or data 

collection and reduction methodolgy.23, 31  Since thoracic kyphosis was controlled in this 

study the scapular position was most different in the transverse plane. This may 

contribute to the discrepancies between our results and previous studies acutely altering 

thoracic posture.  Additionally, differences in the use of Cardan vs. Euler angle 

sequencing and static vs. dynamic methods of data collection have been suggested to 

contribute to varying results in scapular kinematics during similar tasks.3, 4, 10   Our results 

are also inconsistent with the absence of changes in scapular upward rotation in healthy 

shoulder with pectoralis minor tightness.17  Apparently, pectoralis minor tightness does 

not result in changes in scapular upward/downward rotation.  This suggests that FHRSP 

has a more global effect on scapular kinematics while pectoralis minor tightness 

primarily affects scapular tipping and internal rotation. 

The combined effects of the observed scapular kinematic patterns during the 

overhead tasks likely decreased the subacromial space in individuals with FHRSP.  The 

pattern of scapular kinematics in those with FHRSP is thought to carry significant clinical 

importance as similar scapula kinematic patterns have been shown to decrease the size of 

the subacromial space and therefore the volume of the supraspinatus outlet.33-38   Scapular 

protraction is essentially a combination of scapular internal rotation and anterior tipping33  

Increases in scapular protraction have been shown to decrease the size of the subacromial 
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space, thereby decreasing the volume of the rotator cuff outlet.33  Increases in the 

subacromial space have also been reported with increases in scapular retraction, which is 

analogous to scapular external rotation.38  Furthermore, decreases in the subacromial 

space have been shown to be concurrent with increases in acromial tilt, which is 

analogous to anterior tipping.37  This concept is further supported by associated changes 

in acromiohumeral distance as a result of altered scapular motion in individuals with 

shoulder impingement.36  While these changes are relatively small decreases in 

acromiohumeral distance (3-8 mm) in individuals with symptomatic shoulder 

impingement syndrome34, 35, the decreased subacromial space seems to have clinical 

importance.  Graichen and co-authors36  noted that even small decreases (3 mm) in  

acromiohumeral distance resulted in a concomitant 68% decrease of the subacromial 

space. This significant decrease in the subacromial space is thought to contribute to 

compression of the underlying structures.  When considered together, these studies 

suggest that even small changes in scapular motion may significantly decrease the 

supraspinatus outlet volume.  Based on these studies it has been suggested that a 12°-17° 

of change in scapular position (difference in scapular internal rotation + anterior tipping) 

is important.17, 33, 37  On average, individuals with FHRSP displayed increased a change in 

scapular position across these two rotations ranging from 11°-14° for the two tasks.  

Considering our results in light of previous research it is likely then that the subacromial 

space was decreased in individuals with FHRSP. 

  The observed increases in scapular upward rotation may have been a 

compensatory mechanism aimed at maintaining the length-tension relationships of the 

deltoid-rotator cuff force couple.  Observed increases in scapular internal rotation and 
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anterior tipping would lengthen the posterior rotator cuff potentially pulling the muscle 

into the descending limb of the length tension curve.  Increases in upward rotation would 

shorten the posterior cuff and shift the length tension curve back within a more favorable 

range.  This would allow for more optimal force generation patterns by the posterior 

rotator cuff and deltoid thereby maintaining this force couple.  This is supported by 

observed decreases in shoulder strength in response alterations in scapular position.23, 39   

These increases in scapular upward rotation may have compounded the decrease 

in the subacromial space and increase forces on subacromial tissues.40, 41  Increases in 

upward rotation have been shown to increase superior humeral head migration and 

contact forces within the subacromial space 40, 41.  This would likely increase the 

compression and shear stress placed upon the subacromial contents.   

While the subacromial space was likely decreased in individuals with FRHSP, 

they did not exhibit signs or symptoms of shoulder impingement syndrome.  A possible 

explanation is the limited exposure to overhead activities in this population. Only 3 

subjects reported participating in overhead activities greater than 3 hours per week.  It is 

probable that increased rates of exposure to overhead activities for individuals with 

FHRSP would lead to the development of shoulder pain. 

Decreased serratus anterior activity during the ascending phase of overhead tasks 

may help explain the alterations in scapular kinematics.  The serratus anterior is the only 

scapular muscle with the potential to participate in force-couples to control all three 

scapular rotations.  Therefore, decreased serratus anterior activity is thought to contribute 

to alterations in scapular kinematics.13  This is supported by the differences in serratus 

activation and observed kinematic changes during each task.  During the flexion task a 
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12% decrease in serratus activation occurred with an increase in scapular anterior tipping 

and upward rotation.  However, serratus activation decreased to 5% and no kinematic 

changes occurred specific to the ascending phase of the reaching task. The maximum 

angle compared for the reaching task was 110°, while the maximum angle was 120° for 

the flexion task.  The observed differences in scapular kinematics and serratus anterior 

activity suggest at higher ranges of humeral elevation the serratus anterior controls 

scapular anterior/posterior tipping and may actually limit scapular upward rotation.  This 

seems paradoxical until one considers the role of the serratus anterior in its force couple 

with upper trapezius.  The upper trapezius has more fibers with longer moment arms 

positioned to create upward rotation. Therefore, the role of the serratus may be to prevent 

excessive upward rotation maintaining optimal length-tension relationships of other 

muscles.  These results support rehabilitative focus on the serratus anterior in individuals 

with FHRSP, especially in the higher ranges of humeral elevation.  Focus on facilitating 

serratus anterior activity during the higher ranges of humeral elevation may facilitate 

normal scapular upward rotation and posterior tipping. 

The absence of differences observed in trapezius activity may be due to the 

population tested, task performed, or measure of muscle activity selected.  The 

population tested reported healthy shoulders with no positive tests for shoulder pain.  

Alterations in upper and lower trapezius timing and activity have only been reported in 

patients diagnosed with shoulder pain.13, 27, 42  It is possible that alterations in trapezius 

function is related to the presence of shoulder pain.  Alterations in trapezius activity may 

be a compensatory mechanism to avoid pain or a contributing factor to the development 

of shoulder pain.   
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The observed similarities in trapezius activity also may have been the result of 

task selection.  The trapezius increases its activity as the plane of humeral elevation 

moves from the sagittal plane to the frontal plane.43, 44  It is possible that the forward 

nature of these activities did not require high levels of recruitment of the trapezius 

muscles.  Decreased requirements in trapezius activity during overhead elevation tasks 

may not have elicited differences in these healthy shoulders.  Additionally, mean 

amplitude of each phase of the overhead reaching tasks were used as dependent variables.  

Given that there was very little activity in both groups during the descending phases, it is 

possible that any differences were blurred by analyzing the entire ascending phase.  

Future studies should use multi-planar tasks, examine smaller arcs of motion for 

differences in muscle activity, and prospectively evaluate trapezius activity between 

healthy and painful shoulders. 

Our results do not agree with previous reports of increased upper trapezius and 

decreased lower trapezius activity concurrent with increased forward neck angle.7 This 

study used a repeated measures design to examine the effects of increasing forward neck 

angle on scapular kinematics and muscle activity.  The discrepancy between these results 

and our observations may be due to task selection (flexion vs. scapula plane elevation).  

As mentioned previously, different planes of shoulder elevation challenge the scapula in 

different ways.2 The more frontal plane activity may have stressed the trapezius muscles 

more elicting differences better than in our study. 2   These differences in results may also 

be the result of the design of the study. Our study used a between subjects, case control 

design allowing us to compare apparently healthy shoulders’ scapular muscle activity and 

likely reflecting the chronic effects of FHRSP.  Previous research has used a repeated 
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measures design, which would better reflect the acute effects of altering head posture.  

Finally, our subjects displayed alterations in head and shoulder posture while Ludewig et 

al7 only reported the change in neck angle.  It is possible that alterations in neck posture 

effect scapular muscle activity differently than the concurrent alterations in head and 

shoulder posture used in our study.   

Observed alterations in scapular kinematics and muscle activity in individuals 

with FHRSP have important clinical implications in the prevention and treatment of 

shoulder pain.  Our results suggest FHRSP should be considered in the prevention and 

treatment of shoulder pain.  FHRSP appears to negatively influence scapular kinematics 

and scapular muscle activity.  It is unclear if improving FHRSP will yield concurrent 

changes in scapular kinematics and muscle activity.  Recent work by Lewis et al46 has 

shown changing one or more postural components improves symptoms and increases 

shoulder elevation in patients diagnosed with shoulder impingement syndrome.  

However, they did not show a difference in head and shoulder posture between patients 

with shoulder impingement and healthy controls. Additionally, McClure et al14 has 

shown that generally scapular kinematics do not change in patients with resolved 

subacromial impingement syndrome.  These results suggest not all patients with shoulder 

impingement syndrome present with altered head and shoulder posture or scapular 

kinematics.  Likewise, the large standard deviations observed in this study suggest that 

not all individuals with FHRSP displayed abnormal patterns of scapular kinematic and 

muscle activity.  Together these studies suggest that they may be subgroups of 

individuals who have differing etiology and mechanisms contributing to their shoulder 

impingement.   
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Therefore, when evaluating patients with overuse shoulder pain it is important to 

be cognizant that their symptoms may be due to FHRSP, short pectoralis minor length, 

altered scapular kinematics, tight posterior capsule, and/or rotator cuff weakness.  Future 

research should seek to establish these subgroups of clinical correlates to improve 

prevention and treatment of shoulder pain.  Prospective studies should also examine 

potential risk factors for shoulder pain allowing for the most effective clinical algorithms 

and prevention programs.   

Several limitations should be considered in the interpretation and application of 

these results.  The cross sectional-case control design limits a cause and effect 

relationship to be drawn between alterations in scapular kinematics, muscle activity and 

FHRSP. Additionally, all subjects reported no current shoulder pain limiting the 

application of these results to healthy shoulders.  There was a female gender bias for the 

FHRSP group despite a concerted effort to control for this factor.  Comparisons were 

reanalyzed using an analysis of covariance on gender and no changes in statistical values 

were noted.  Therefore, the gender bias did not affect these results. 

The skin based sensors used in this study only give a representation of scapular 

and humeral kinematics.  However, this method has been validated and shown to be 

reliable within humeral elevation ranges from 30°-120°.47-49  The sampled ranges of 

humeral elevation were within these limits, thus we are confident they are an accurate 

representation of scapular motion.  The lack of a direct measure of supraspinatus outlet 

volume limits absolute conclusions based on our results.  However, our conclusions are 

based on integration of our results with the current literature available and it is reasonable 
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to conclude that the supraspinatus outlet volume is likely decreased in individuals with 

FHRSP.36, 50, 51   

Conclusions 

The results of this study suggest that healthy shoulders in individuals with FRHSP 

display altered scapular kinematics and serratus anterior muscle activity.  This supports 

the clinical theory assuming changes in shoulder function in the presence of FHRSP.  

Prevention and rehabilitation programs aimed at treating shoulder pain should include 

assessment and interventions to improve head and shoulder posture. Future studies should 

examine the influence of pain on FHRSP and scapular kinematics and muscle activity.  

Prospective studies should also seek to evaluate establish posture, scapular kinematics, 

muscle activity, and strength as potential risk factors for the development of shoulder 

pain. 
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Table 1. Descriptive statistics for screened volunteers (n=310) 
 

Characteristics Mean SD 

Male (n= 132)        Age (years) 30.8 17.3 

Forward Head Angle 42.4 4.9 

Forward Shoulder Angle 32.6 14.3 

Female (n= 178)     Age (years) 36.6 16.4 

Forward Head Angle 44.6 5.4 

Forward Shoulder Angle 40.3 17.7 

All (n=310)                      Age (years) 34.2 11.9 

Forward Head Angle 41.1 5.2 

Forward Shoulder Angle 37.4 15.3 
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Table 2. Descriptive statistics for study participants (n=80) 
 

Group Characteristics Mean SD 

Ideal Posture Male (n= 21)        Age (years) 32.6 13.3
 Height (cm) 178.4 7.6
 Mass (kg) 72.5 11.3
 Female (n= 19)     Age (years) 34.4 12.6
 Height (cm) 165.8 6.9
 Mass (kg) 60.1 11.2

Forward Head and 
Rounded Shoulder Posture Male (n= 15)        Age (years) 39.1 12.5

 Height (cm) 177.0 7.3
 Mass (kg) 95.1 19.5
 Female (n= 25)     Age (years) 35.0 11.3
 Height (cm) 161.7 6.7
 Mass (kg) 77.3 15.4
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Figure 1. Forward head angle (FHA) measured from the vertical anteriorly to a line 

connecting the tragus and the C7 marker. Forward shoulder angle (FSA) 
measured from the vertical posteriorly to a line connecting the C7 marker 
and the acromial marker.
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Figure 2. Example of ideal forward 

head and shoulder posture  
 
Forward Head Angle = 38˚ 
Forward Shoulder Angle = 22˚ 

Figure 3. Example of forward head 
and shoulder posture 

 
Forward Head Angle = 55˚  
Forward Shoulder Angle = 60 ˚

Forward Head Angle

Forward Shoulder Angle

Forward Head Angle

Forward Shoulder Angle
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Figure 4 Individuals with forward head and rounded shoulder posture (FHRSP) displayed a 
greater average scapular internal rotation angle during the flexion task. 
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Figure 5 Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed a greater scapular upward rotation angle at 120° of 
humeral elevation during the ascending and descending phases of the 
flexion task. 
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Figure 6 Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed greater average scapular anterior tipping angles during 
the ascending and descending phases of humeral elevation during the 
flexion task. 
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Figure 7. Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed a greater average scapular internal rotation angle during the 
reaching task. 
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Figure 8. Individuals with forward head and rounded shoulder posture (FHRSP) 
used a greater range of scapular upward rotation during the flexion task. 
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Figure 9. Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed a less scapular anterior tipping range of motion during the 
descending phase of the reaching task. 
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Figure 10. Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed less serratus anterior activity during the ascending phase of the 
flexion task. 
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Figure 11. Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed less serratus anterior activity during the ascending phase of the 
reaching task. 
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Effects of Forward Head and Rounded Shoulder Posture  

On Three-Dimensional Scapulohumeral Coordination 
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Abstract 

Background: Forward head and rounded shoulder posture (FHRSP) and deficits in 

scapular kinematics are associated with the development of shoulder pain.  Three-

dimensional scapulohumeral coordination may provide valuable insight into shoulder 

function.  Therefore, the purpose of this study was to compare three-dimensional 

scapulohumeral coordination between individuals with and without FHRSP during repetitive 

shoulder flexion and a standardized overhead reaching task. 

Methods: Eighty volunteers without shoulder pain were classified as having FHRSP or 

ideal posture.  Scapular kinematics was collected using an electromagnetic tracking system 

during a loaded shoulder flexion and an overhead reaching task.  Coordination analysis based 

on Dynamical System’s Theory tenets was used to quantify the coupling and the variability 

between three-dimensional scapular rotations and humeral elevation.  Separate mixed model 

analyses of variance were used to compare three dimensional scapulohumeral coordination 

measures between individuals with and without FHRSP during the ascending and descending 

phases of a loaded flexion and overhead reaching task. 

Findings: There were significant changes in the coupling relationships suggesting a more 

out-of-phase coordination between the humerus and scapular upward/downward rotation 

during the reaching task and anterior/posterior tipping during the flexion task.  The FHRSP 

group also displayed less variable patterns of scapular internal/external rotation coordination 

with humeral elevation during the flexion task. 

Interpretation: Individuals with FHRSP displayed scapulohumeral coordination patterns 

that were less coupled for upward/downward rotation and anterior/posterior tipping when 
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compared to the ideal posture group. These findings suggest altered scapulohumeral 

neuromuscular control due to FHRSP. 

Relevance: Given the association of FHRSP and repetition with the development of shoulder 

pain, future studies should examine three-dimensional scapulohumeral coordination as a risk 

factor for the development of shoulder pain.
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Introduction  

Shoulder pain is reported to occur in as many as 21% of the general population1, 2 and 

cost an estimated $39 billion annually.3  These costs only reflect the impact on health care 

resources and do not reflect costs due to time lost, retraining, and long-term disability 

associated with shoulder pain.  Reports also indicate that shoulder injury rates increase to 

41% in occupational settings4-7 and 40% of all shoulder pain persists for at least one year.8  

Due to the high incidence, cost, and long term disability it is necessary to understand 

potential risk factors for developing shoulder pain.   

Identified risk factors for shoulder pain include repetitive overhead use (> 60° of shoulder 

elevation), prolonged overhead work, and increased loads raised above shoulder height.9  

However, these factors are difficult to modify based on the demands of many occupational 

settings.  Therefore, research investigating the role of modifiable risk factors associated with 

shoulder pain is needed to develop intervention strategies that may be implemented to reduce 

the occurrence, cost, and disability associated with shoulder pain. 

Forward head and rounded shoulder posture is suggested to be a risk factor for the 

development of shoulder pain.6, 10  Forward head and rounded shoulder posture is theorized 

to alter the length-tension relationships of the shoulder girdle muscles, thereby altering 

muscle function and disrupting normal shoulder kinematics, muscle activation patterns, and 

coordination.11, 12  The associated changes to the neuromuscular system that occur with 

forward head and rounded shoulder posture are believed to ultimately lead to the 

development of shoulder pain.  However, research has not established a clear link between 

postural malalignment and the development of shoulder pain.   
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Scapular kinematics, muscle activity, and shoulder coordination are also potential risk 

factors for shoulder injury.13-16   Altered scapular kinematics and muscle activity have been 

reported in patients with shoulder impingement syndrome and rotator cuff disease.14-16   The 

observed alterations in scapular kinematics and scapular muscle activity in those diagnosed 

with shoulder impingement syndrome suggest that deficits in scapulohumeral coordination 

may play a role in the development of shoulder pain.13, 15  However, traditional measures of 

scapulohumeral rhythm involve only one plane of scapular motion (upward rotation) and 

therefore provide a very limited insight into scapulohumeral coordination.  Recent evidence 

suggests that individuals with shoulder impingement also have deficits in scapular 

internal/external rotation and anterior/posterior tipping.14, 15  Therefore, research examining 

scapulohumeral coordination should involve all three planes of motion as  research involving 

three-dimensional scapulohumeral coordination measures that can improve our 

understanding of factors that may influence the development of shoulder pain. 

An alternative method for quantifying joint coordination rather than scapulohumeral 

rhythm is coordination analysis based on the tenets of Dynamical Systems Theory, which 

evaluates movement patterns as synergistic organizations of sub-systems which represent 

multiple degrees of freedom.  This organization arises based on anatomical (skeletal 

alignment) and biomechanical factors (length-tension relationships) as well as environmental 

and task constraints.17 Specifically, a window into the function of the neuromuscular system 

is provided by modeling segments as oscillating pendulums.  The coupling (in-time) or 

uncoupling(out-of-time) between the two segments’ oscillations during repetitive movements 

are representative of the coordination between those two segments.17   
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Coordination analyses of the lower extremity has demonstrated uncoupled joint motions 

in individuals suffering from lower extremity injury as compared to healthy controls.18-20  

The differences in joint coupling were demonstrated between legs of the same individual and 

between healthy individuals and those with lower extremity pathology.  Furthermore, it has 

been suggested that uncoupling of the segmental movements in pathologic knees may 

contribute to the development of knee osteoarthritis.  It is thought that increased wear and 

tear on the articular cartilage occurs as a result of decreased neuromuscular control which 

results in unequal joint loading. 

Similar coordination changes may impact shoulder injury given the repetitive nature of 

activities that are associated with the development of rotator cuff disease, shoulder 

impingement, and glenohumeral osteoarthritis.  Scapulohumeral coordination analyses that 

investigate the coupling between the scapula and humerus in all three planes of motion may 

provide important information to fill this void of knowledge. For instance, uncoupled 

scapular posterior tipping during humeral elevation may be indicative of the inability of the 

scapula at the appropriate time during humeral elevation.  Current analyses only quantify the 

amount or range of scapular motion not how these motions are altered by pathology.  Thus, 

characterizations of shoulder movement patterns may be valuable in describing the 

shoulder’s response to changes in initial conditions such as FHRSP. 

Therefore, the purpose of this study was to compare three-dimensional scapulohumeral 

coordination between individuals with and without forward head and rounded shoulder 

posture (FHRSP) during repetitive shoulder flexion and a standardized overhead reaching 

task.  We hypothesized that individuals with FRHSP would display altered scapulohumeral 

coordination patterns in comparison to individuals with ideal head and shoulder posture.   
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Methods 

Procedures 

Participants were recruited from the university population at The University of North 

Carolina-Chapel Hill through two informational mass emails sent to the university 

population.  Inclusion criteria for the study included being aged between 18 and 60 and 

meeting the specific postural alignment criteria.  Subjects were excluded if they reported a 

history of shoulder surgery, upper extremity, cervical or thoracic fracture, displayed 

functional or structural scoliosis, excessive thoracic kyphosis21, or if they were currently 

receiving any treatment for shoulder or neck pain which limited use of their dominant upper 

extremity. The dominant arm (arm used to throw a ball) was used for testing in all subjects.   

Prior to testing participants completed an informed consent form and underwent a 

postural screening using the BioPrint® postural analysis system (Biotonix Inc., Montreal)  to 

ensure that participants met the inclusion criteria for the ideal posture and forward head and 

shoulder posture groups.  Postural screening included measurement of forward head angle 

(FHA) and forward shoulder angle (FSA).  The ideal posture group criteria was defined as 

FHA < 36˚ and FSA < 22˚ (Figure 1 and 2).  The FHRSP group criteria was defined as FHA  

> 46˚ and FSA > 52˚ (Figure 1 and 3).  Subject demographics for the ideal posture group 

(n=40) and the FHRSP group (n-40) are listed in Table 1.   

All participants meeting the inclusion criteria were scheduled for a 90 minute testing 

session within 1 month of the initial screening.  Participants were asked to avoid upper 

extremity weight lifting and overhead activities on either day of testing. 

During the second testing session three dimensional shoulder kinematic analyses were 

conducted to assess humeral and scapular angles during the ascending (up) and descending 
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(down) phases of loaded shoulder flexion and reaching tasks.  Specifically, humeral 

elevation, scapular upward/downward rotation (UR), scapular external/internal rotation (IR), 

and scapular posterior/anterior tipping (PT) were evaluated during a loaded arm elevation 

flexion task (arm in front of body) and a forward-overhead reaching task. Participants were 

asked to perform 25 cycles of both arm elevation and forward reaching task at a self selected 

speed during testing.  Ratings of perceived exertion based on Borg’s modified scale 

suggested subject’s experienced fatigue during repetitions 15-25. Based on these ratings, 

only the first 15 repetitions were used for analysis due to the likely effects of fatigue.  The 

order in which the elevation and reaching tasks were performed was counterbalanced and 

participants rested 5 minutes between each task to reduce the potential effects of fatigue, 

learning, and task order.   

Postural Alignment Criteria 

The postural alignment criteria were based on data collected during a pilot study of 310 

individuals.  Descriptive characteristics of these individuals appear in Table 2.   Frequency 

histograms were plotted and measures of skewness and kurtosis were assessed for forward 

head and shoulder angles to confirm normality of these measures.  Head and shoulder angles 

approximately displayed a normal distribution. Therefore, the mean and standard deviations 

were used to represent the data.  Cutoffs for each group were determined as the mean ± 1 

standard deviation for the head and shoulder angle (Table 1). The FHRSP was 1 standard 

deviation above the mean and the ideal posture group was 1 standard deviation below the 

mean (Table 2).  Thus these groups represent an attempt to create two distinctly different 

postural alignment groups.     
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Excessive kyphosis was defined in a similar manner.  The mean thoracic angle plus one 

standard deviation was 50˚.  These data represent a similarly aged sample of 300 subjects.21  

One standard deviation is also similar to the average increase in thoracic kyphosis reported to 

induce changes in scapular kinematics.22 Participants were excluded if their postural 

measures did not fall within the stated group criteria.  Ninety-two of the 310 individuals 

screened met these criteria (29%). Forty-seven individuals were assigned to the ideal posture 

group and 45 to the forward head and rounded shoulder posture group. Twelve individuals 

did not schedule a return appointment yielding 40 participants in each group.   

Data Collection 

Postural Analysis 

Reflective markers were placed over the right tragus (ear), chin, labella (between eyes), 

acromion, C7, T7, posterior superior iliac spine, and anterior superior iliac spine.  Participants 

then stood 40 cm in front of the scaled backdrop and were given standard instructions to 

increase reliability of their normal resting postural alignment.  High resolution (5.0 mega 

pixels) digital images were then uploaded to a personal computer for processing. Adobe 

Photoshop® was used to measure head and shoulder angles.   

Kinematic Assessment 

A Flock of Birds® (Ascension Technologies, Inc., Burlington, VT) electromagnetic 

motion analysis system controlled by the Motion Monitor® (Innovative Sports Training, Inc. 

Chicago, IL) software was used to assess scapular kinematics at a sampling rate of 50 Hz.  

The primary component of the electromagnetic tracking system is a standard range DC 

transmitter containing three orthogonal coils that generates an electromagnetic field.  The 

system incorporates a series of three sensors/receivers that record the electromagnetic flux in 
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the field generated by the transmitter and conveys the signals to a recording computer via 

hard wiring.   

Three electromagnetic tracking sensors were attached to: 1.) The thorax over the 

spinous process of T3, 2.) The dominant shoulder over the broad flat surface of the scapular 

acromion, 3.) The posterior one third of the upper arm with the sensor over the area of least 

muscle mass to minimize potential sensor movement.  In order to assess the shoulder 

kinematics, reconstruction of the bony segments was performed following the International 

Society of Biomechanics-Shoulder Group Recommendations.23 The bony landmarks were: 

T12, medial and lateral epicondyle of the humerus, T8, xyphoid process, C7, sternal notch, 

spine of the scapula at the medial border, posterior-acromion of the scapula, inferior angle of 

the scapula, and the glenohumeral joint rotation center.  The glenohumeral joint center was 

defined by the point that moves least with respect to the scapula when the humerus is moved 

through short arcs (< 45°) as calculated by a least squares algorithm and has been shown to 

best represent the glenohumeral joint center.24   

The electromagnetic transmitter was positioned on a custom stand allowing for the 

establishment of a global reference system.  The global reference system axes were defined 

such that the Y-axis was designated as positive in the superior direction, the Z-axis was 

designated as positive to the right, and the X-axis was designated as positive anterior, all 

relative to the participant.  The local axes systems all aligned with the reference axes of the 

electromagnetic system to simplify data reduction. 

Data Reduction and Processing 

Kinematic Data 



210 

 Three-dimensional coordinates of the digitized bony landmarks were calculated using 

the Motion Monitor® software (Innovative Sports Training, Inc. Chicago, IL).  Segment 

reference frames were defined according to the recommendations set forth by the Shoulder 

Group of the International Society of Biomechanics.23 Humeral motions were calculated as 

the Euler angles of the humerus relative to the world reference frame in the following order 

of rotations:  internal-external rotation about Y axis, elevation about the Z’ axis, and internal-

external rotation about the Y” axis.25  Scapular motions were calculated as the Euler angles 

of the scapula relative to the world reference frames in the following order of rotations:  

internal/external rotation about the Y axis, upward-downward rotation about the X’ axis, and 

posterior-anterior tilting about the Z” axis.23, 26  Kinematic data were smoothed through a 

Butterworth a low pass digital-filter (4th order, recursive, zero phase lag) at an estimated 

optimum cutoff frequency of 3.5 Hz.  The estimated optimum cutoff was determined after 

performing a spectral analysis for each kinematic variable.  All humeral and scapular rotation 

spectral plots were similar. 

Coordination Measures 

The humeral and scapular kinematic data were analyzed using custom Matlab 

(Mathworks, Natick, MA) code to calculate the coordination measures.  Shoulder kinematic 

data was smoothed further using a cubic spline routine with of 0.9.  The tolerance of the 

cubic spline routine can be set from 0 to 1 where 0 is a perfect least squares fit between the 

first and last point of the data sequence, and 1 is the natural spline.  The tolerance of the 

spline routine was set at .7 where 0 is a perfect least squares fit between the first and last 

point of the data sequence, and 1 is the natural spline. 
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The mean ensemble curve is the curve generated by averaging all single cycle relative 

phase curves.  This required normalization of all single cycle relative phase curves to a fixed 

number of points (i.e., 101) for each task. Shoulder kinematic data from each repetition of 

both elevation and reaching tasks were spline fit to 101 points for 15 repetitions for humeral 

elevation and each scapular motion. Only 15 repetitions were selected based on the potential 

effects of fatigue.  This was supported by a significant increase in PRE values from 13 at the 

15th repetition, to 15 at the 20th repetition, to 17 at the 25th repetition.  Angular position and 

angular velocity was plotted to create phase portraits for humeral elevation, scapular upward 

rotation, internal rotation, and posterior tipping.  The relative phase was calculated between 

humeral elevation and each scapular motion.  Relative phase for a given segment was 

calculated from the phase angle of each phase portrait. The phase portrait path was 

transformed from Cartesian (x,y) to polar (r,θ) with a radius r and a phase angle θ.  The angle 

formed by the radius was calculated as: 17 

Θi = tan-1  ⎟
⎠
⎞

⎜
⎝
⎛

Xi
Yi

 

The angle formed between the horizontal and r for each point i was the phase angle.   

The relative phase angle between each of the scapular rotations and humeral elevation 

was then calculated as the difference between the proximal segment’s phase angle and the 

distal segment’s phase angle:17 

Φi relative phase angle = θi proximal phase angle – θi distal phase angle 

Calculation of mean absolute relative phase (MARP) and deviation phase (DP) 

allowed for statistical comparison of differences between relative phases.  Each continuous 

relative phase curve was quantified in one term, the mean absolute relative phase (MARP).  
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This value reflects whether the oscillating segments are in or out of phase during a movement 

cycle.  The MARP value was calculated by averaging the absolute value of all the points of 

the mean ensemble curve.17 

MARP = ∑ =

N
i N

aserelativeph
1

φ
 

Additionally, the deviation phase (DP) was calculated to determine the variation over 

the entire relative phase curve. This value is reflective of the stability of the neuromuscular 

system during a movement pattern.  DP was calculated by averaging the standard deviations 

(SD) of all the points over the entire mean ensemble curve.17  

DP = 
N

SDiN
i∑=1   

Statistical Analysis 

Separate mixed model ANOVA (group x phase) were used to compare for scapular 

upward/downward rotation-humeral elevation, internal/external rotation-humeral elevation, 

and posterior/anterior tipping-humeral elevation MARP and DP values (dependent variables) 

between the ideal and forward head and rounded shoulder groups (independent variable).  

Each analyses involved phases (ascending and descending) of humeral elevation as within 

participant factors.  Statistical significance was set a priori at α < .05 for all analyses.  

Tukey’s post hoc analyses were performed to investigate significant and interactions effects.   

Alterations in coordinative patterns were graphically analyzed by plotting the relative 

phase angles over each movement cycle.  Changes in slope, minima, maxima, cusps, and the 

number of reversals within each continuous relative phase plot were noted.17  Relative phase 

values were also qualitatively assessed.  Relative phase values closer to 0˚ suggest a more 

coupled relationship between two segments while values closer to 180˚ suggest an uncoupled 
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relationship.  Positive relative phase angles indicate the distal segment is leading the 

proximal segment and negative angles the converse. 

Results 

Flexion Task  

Mean Absolute Relative Phase 

The scapular internal/external rotation and humeral elevation MARP values during 

the flexion task were not affected by postural group (Table 3).  There was not a significant 

main effect involving group or a group by phase interaction for scapular upward/downward 

rotation-humeral elevation or scapular internal/external rotation-humeral elevation MARP 

values during the flexion task (Table 3).  These results indicate that on average the FHRSP 

and ideal posture groups displayed similar coordinative patterns between scapula 

upward/downward rotation and humeral elevation during the ascending and descending 

phases of the flexion task. 

Scapular anterior/posterior tipping and humeral elevation MARP values were 

influenced by posture group and phase of humeral elevation.  There was a significant main 

effects for group (p = 0.01, ES = 0.42). However, there was no significant interaction 

between phase of humeral elevation and postural group on scapular anterior/posterior 

tipping-humeral elevation MARP values (Table 3). These results indicate that on average 

individuals in the FHRSP group displayed greater MARP values.  This indicates the FHRSP 

group displayed a more out-of-phase relationship with greater uncoupling between the 

humerus and scapular anterior/posterior tipping with humeral elevation during the flexion 

task in comparison to the ideal posture group (Figure 11).  The mean difference of scapular 

anterior/posterior tipping-humeral elevation MARP values between groups was 14°.   
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Deviation Phase Values 

There were no significant main or interaction effects involving group on scapular 

upward/downward rotation-humeral elevation or scapular anterior/posterior tipping-humeral 

elevation DP values (Table 4). These results indicate that on average the stability of scapular 

upward/downward rotation and anterior/posterior tipping-humeral elevation coordinative 

patterns were similar when comparing individuals with forward head and rounded shoulder 

posture and those with ideal posture.  

However, there was a significant main effect for group on scapular internal/external 

rotation-humeral elevation DP values (p = 0.044, ES = .56).  These results show that on 

average the FHRSP group displayed smaller DP values indicating a less flexible coordinative 

pattern for scapular internal/external rotation and humeral elevation (Figure 12). 

Reaching Task 

Mean Absolute Relative Phase 

Postural group had an effect on scapular upward/downward rotation-humeral 

elevation coupling during the reaching task.  There was a significant interaction effect 

between postural group and phase of humeral elevation (p = 0.011) (Table 3).  Tukey’s post 

hoc testing revealed significant differences in MARP values between groups during the 

ascending phase (MSD = 3°).  The increase in MARP values during the ascending phase 

suggests decreased coupling between scapular upward rotation and humeral elevation (Figure 

13).   

 Postural group did not have an effect on scapular internal/external rotation or 

anterior/posterior tipping-humeral elevation MARP values during the reaching task.  There 

were no significant main or interaction effects for group or group by phase for these scapular 
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rotations (Table 3).  These results indicate that scapular internal/external and anterior 

posterior tipping displayed similar coordinative patterns with the humerus during the 

reaching task. 

Deviation Phase 

Postural group also did not have an effect on scapular upward/downward rotation, 

internal/external, or anterior/posterior tipping DP values during the reaching task.  There was 

not a significant main or interaction effect involving group on these dependent variables 

(Table 4).  These results indicate that on average the stability of the scapular coordinative 

patterns between postural groups was similar during an overhead reaching task.   

Graphical Analyses 

Graphical differences were noted in the shapes of the scapular upward/downward 

rotation-humeral elevation relative phase plots between postural groups (Figures 5and6). The 

FHRSP group displayed a more out-of-phase coordinative pattern, since the relative phase 

curve for this group exhibited values further away from zero. This suggests less coupling 

between the humerus and scapula during the flexion and reaching tasks for the FHRSP 

group. This difference was mostly evident in the first and last 25% of both tasks.  

Comparison of scapular internal/external rotation-humeral elevation relative phase plots 

revealed differences in the coordinative patterns between the two groups. Specifically, the 

FHRSP group showed a positive shift in the values of the relative phase (Figures 7and8). 

This was evident over the entire movement cycle of both tasks. Furthermore, the flexion task 

showed larger changes in the coordinative coupling between the scapula internal/external 

rotation and the humeral elevation than the reaching task. This is shown by the larger range 

of values presented in Figure 8 when compared with Figure 7. This suggests that the 
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coordinative relationships between the humerus and scapula changed more often during the 

reaching task.     

The FHRSP group displayed a negative shift in the scapular anterior/posterior 

tipping-humeral elevation phase plot (Figures 9and10). This shift suggests a more out-of-

phase coordinative relationship between the scapular anterior/posterior tipping and humeral 

elevation for the FHRSP group. This was present for both tasks. Specifically, during the 

reaching task this difference was most apparent during the end of the ascending phase and 

beginning of the descending phase.  It was most apparent for the flexion task during the 

ascending phase. Furthermore, distinct differences in the overall coordinative patterns 

between humeral elevation and scapular anterior/posterior were noted between tasks. The 

reaching task exhibited much larger values indicating a more pronounced out-of-phase 

coordinative relationship. 

Discussion 

The purpose of this study was to compare shoulder joint coordination between 

individuals with and without FHRSP during repetitive overhead tasks.  The observed 

increases in MARP values indicate that individuals with FHRSP display uncoupled or out-of-

phase scapulohumeral coordinative patterns for scapular upward/downward rotation during 

the ascending phase of the reaching task.  Individuals with FHRSP also displayed uncoupled 

or out-of-phase scapular anterior/posterior tipping during the entire flexion task.  Decreased 

DP values for scapular internal/external rotation during the flexion task indicate a less 

flexible scapulohumeral coordinative pattern for individuals with FHRSP during the flexion 

task.   Together, these differences suggest altered scapular control strategies between 

individuals with and without FHRSP.   
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Individuals with FHRSP increased MARP values indicate an uncoupled or out-of-

phase coordinative pattern between scapular upward/downward rotation and humeral 

elevation during the ascending phase of the overhead reaching task.  Visual inspection 

reveals the observed increases in MARP values were the result of a negative shift in the 

relative phase angles during the first 25% of the overhead reaching task (Figure 3).  The 

negative shift in relative phase angles during the early and late phases of both tasks indicate 

the larger proximal phase angles during these portions of each tasks. This negative shift by 

the FHRSP group may reflect a humeral control strategy for scapular upward/downward 

rotation during the early and late portions of the reaching task. 

The out-of-phase humeral control strategy in individuals with FHRSP may represent 

a loss of dynamic scapular stability during the early and late phases of humeral elevation. 

The scapula is almost entirely stabilized by peri-scapular musculature.  In the upper ranges of 

humeral elevation muscles and joints moving toward their end range may provide passive 

scapular stability.  The lack of passive stability in the mid-ranges of humeral elevation would 

require increased dynamic stability and neuromuscular control.  This is supported by 

examining the relative phase curves for scapular upward/downward rotation during the 

reaching task (Figure 7).  Scapular upward rotation-humeral elevation relative phase angles 

show increased coupling during the middle portion of the reaching task.  This is supported by 

the shift in scapulohumeral rhythm (SHR) from 2:1 in the mid-ranges, to 1:1 in the upper 

ranges of humeral elevation.27, 28   The shift in SHR indicates an increase in the rate of 

scapular upward rotation in the upper ranges of humeral elevation which is similar to the 

observed increase in coupling (or in-phase relationship) during the middle of the reaching 

task.   
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The decrease in SHR is likely the result of the capsuloligamentous and musculature 

about the shoulder girdle engaging the scapula at higher ranges of humeral elevation.  The 

increase in passive tension as tissues are pulled taut necessitates humeral elevation and 

scapular upward rotation becomes more coupled by decreasing the degrees of freedom 

available to the movement system.  The taut tissues also increase the passive stability about 

the scapula requiring less dynamic stability required to facilitate humeral elevation.   The 

more uncoupled and out-of-phase scapulohumeral coordination for upward/downward 

rotation suggests a decrease in dynamic scapular stability and control during the early and 

late phases of the reaching task. 

Increased MARP values for the FRHSP group were also observed for scapular 

anterior/posterior tipping and humeral elevation during the flexion task. The increase in the 

FHRSP group’s MARP values indicates scapular anterior/posterior tipping and humeral 

elevation were more uncoupled and out-of-phase during the flexion task.  The FHRSP also 

displayed a negative shift in the relative phase curve indicating a humeral control strategy 

over the entire movement cycle of both tasks (Figure 7).  The increase in humeral elevation 

and more anteriorly tipped resting position are possible explanations for the uncoupled and 

out-of-phase humeral control strategy by individuals with FHRSP.  The plane of humeral 

elevation influences the contribution of scapular rotations to total shoulder elevation, and 

sagittal plane humeral elevation elicits a greater contribution of scapular anterior/posterior 

tipping.29, 30  Furthermore, as humeral elevation angles increase the rate of scapular posterior 

tipping increases.31, 32  Since all individuals used more humeral elevation during the flexion 

task compared to the reaching task (31°), it is reasonable to conclude that these differences 

occurred during the upper ranges of humeral elevation.  This is supported by the visual 
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separation of the ideal and FHRSP relative phase curves during the middle portion of the 

flexion task.  Individuals in the FHRSP group also presented with an increase in resting 

scapular anterior tipping position (9°).  This would place the posterior structures in a 

lengthened position thereby engaging scapular posterior tipping at a lower humeral elevation 

angle during the reaching task.  Similar to scapular upward/downward rotation during the 

reaching task the altered passive tension may contribute to the altered scapular control 

strategy. 

A decrease in the FHRSP group’s DP values for scapular internal/external rotation 

indicates a less flexible movement pattern during the reaching task.  The smaller DP values 

suggest individuals with FHRSP scapular internal/external rotation pattern used a less 

variable scapular movement pattern when compared to individuals with ideal posture.  The 

less flexible movement pattern is likely the result of the smaller range of available scapular 

internal/external rotation to each group.  The FHRSP group was in a more internally rotated 

position at rest (14°).  The physiological limits of the scapula to protract and internally rotate 

around the thorax are limited by the posterior musculature. Since the FHRSP group was 

much farther into this range there were fewer degrees of freedom available to the movement 

system resulting in a loss of flexibility of the movement system.  Additionally, the flexion 

task was also standardized to the sagittal plane defined as perpendicular to the 5th metatarsal 

on the testing side.  This task required minimal shoulder girdle horizontal adduction 

compared to the reaching task.  Shoulder girdle horizontal adduction was likely 

accomplished by combining humeral adduction, scapular protraction, and scapular internal 

rotation. Since thoracic motion was minimized, the ideal posture group would have more 

degrees of freedom available compared to the FHRSP group.  Considered together, the 
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results across all three scapular rotations suggest that the demands of each task highlighted 

scapulohumeral coordination strategy differences between individuals with and without 

FHRSP.  

The observed alterations in shoulder coordination may have important implications 

on shoulder function.  Postural malalignments, such as increased forward head and shoulder 

angle, are analogous to altering the initial conditions of a mechanical system. Dynamical 

Systems Theory (DST) hypothesizes that changes in the initial conditions predicate changes 

in neuromuscular control strategies.17  Increased MARP values indicate more uncoupled and 

out-of-phase coordination between the scapula and humerus.  Smaller DP values indicate less 

variable coordination between the scapula and humerus.  Scapulohumeral coordination of 

upward/downward rotation during the early and late phases of shoulder elevation is important 

to shoulder function.  The scapula must be stabilized to allow for optimal force generation by 

muscles creating shoulder elevation to achieve the goals of the overhead task.  

The loss of scapular stability may increase the demands on the shoulder elevators and 

potentially increase stress to the glenohumeral joint tissues.  This is supported by reports of 

decreased shoulder strength due to alterations in scapular position.22, 33  Therefore, in order to 

increase overall force production either more muscles must be used or increased motor units 

recruited from those muscles to achieve the overhead task. This may lead to fatigue and/or 

compensatory muscle synergies placing increased stress on muscles such as the long head of 

the biceps and supraspinatus.  Alterations in scapular upward/downward rotation 

coordination patterns during the early phases of elevation may lead to superior humeral head 

migration and increased compressive forces on the tissues within the subacromial space 34, 35.   

Additionally, the loss of coupling between the humerus and scapular downward rotation 
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during the descending phase may place greater tensile stress on the rotator cuff, especially in 

light of recent evidence showing the greatest stress on the rotator cuff occurs as the arm is 

lowered from an elevated position due to the rotator cuff’s length-tension curve.36  Greater 

stress may be placed on the rotator cuff due to increased force requirements, increase in 

subacromial forces, decreased as well as subacromial clearance and overtime may contribute 

to repetitive overuse injuries associated with neck and shoulder disability such as 

degenerative rotator cuff disease.   

Interestingly, alterations in scapular angles or ranges of motion have not been noted 

in the lower ranges of humeral elevation when comparing individuals with shoulder 

impingement.13-15, 37 Coordination measures used in this study reflect the velocity and angular 

position interaction of the humerus and scapula. Traditional kinematic analysis of the 

shoulder controls for velocity of movement and references scapular motion to humeral 

elevation thereby limiting the amount of information available to detect differences.  The 

more uncoupled and out-of-phase scapula upward/downward rotation-humeral elevation 

coordinative patterns displayed by individuals with FHRSP may be a risk factor for the 

development of shoulder pain.   

The observed increase in MARP values in those with FHRSP also indicates a more 

uncoupled and out-of-phase scapular anterior/posterior tipping coordinative pattern. 

Increases in scapular anterior tipping are the most consistent finding reported in individuals 

with shoulder pain.13-15, 37  Research has shown that increases in scapular anterior tipping 

decrease the subacromial space, which is thought to contribute to mechanical impingement of 

the rotator cuff based on Neer’s model of impingement 38.  The observed uncoupled and out-
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of-phase scapular anterior/posterior tipping coordinative patterns may place individuals with 

FHRSP at risk of extrinsic mechanical rotator cuff impingement.   

Smaller DP values suggesting decreased variability in scapular internal/external 

rotation coordinative patterns may also have important implications for shoulder function.  

Individuals with FHRSP may be at risk for the development of shoulder pain given the loss 

of variability during repetitive reaching task.  Repetitive arm elevation is a known risk factor 

for the development of shoulder pain.6, 9  The loss of variability displayed by scapular 

internal/external rotation coordination patterns may limit the time available for normal stress 

adaptations by musculoskeletal tissues.  Decreased variability for a given movement pattern 

also limits the ability of the body to distribute stress efficiently across tissues thereby placing 

the tissue at risk for injury.39  This may be particularly harmful for scapular internal/external 

rotation coordination patterns as increases in scapular internal rotation are associated with 

increased strain on the anterior-inferior glenohumeral ligament 40 and decreases in shoulder 

strength.33  Chronic increases of strain on the anterior-inferior glenohumeral ligament could 

lead to excessive glenohumeral translation during overhead activities.   Additionally, 

sustained overhead activities in the more internally rotated position may increase stress on 

the shoulder elevators leading to fatigue and potentially overuse tendonitis.  These alterations 

in neuromuscular control of the shoulder in healthy individuals with FHRSP may capture a 

potential risk factor for the development of chronic shoulder pain and should be further 

investigated. 

Our results support the clinical observation that individuals with FHRSP display 

altered shoulder joint coordination.41, 42  Clinically, this is often termed scapular dyskinesis 

and described as uneven and uncoordinated scapular movement. Design and implementation 
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of a valid and reliable scapular movement classification system has proven difficult.43  Our 

results suggest examining shoulder movements using a coordination analyses may provide 

new and valuable information in the development of clinical assessments aimed at 

identifying alterations in shoulder joint coordination.  Alterations in relative phase dynamics 

has been shown to be visually perceptible for upper extremity motion.44  This is important 

considering that scapular dyskinesis is most often evaluated clinically by visual analysis of 

the scapula during humeral elevation.  Future studies should identify valid and reliable 

clinical correlates with changes in shoulder coordination.   

Three-dimensional scapulohumeral coordination patterns should be examined as a 

potential risk factor for injury based on reported alterations in lower extremity coordination 

patterns.19, 39, 45  Lower extremity coordination patterns indicated by changes in MARP 

values suggest patients two years post anterior cruciate ligament (ACL) reconstruction 

displayed altered locomotive strategies during walking and running. 45  Following ACL 

reconstruction, these patients displayed less coupled coordinative patterns between the foot 

and shank as well as the shank and thigh.  The magnitudes of these differences are similar to 

those reported in this study (4°-14°).   

Decreased variability and lower extremity couplings have also been reported in 

patients diagnosed with patellofemoral pain syndrome.19, 46 In contrast to the results of our 

study, individuals with altered lower extremity posture (Q-angle) did not display altered 

lower extremity coordination patterns.47  This may suggest that the underlying neuromuscular 

control strategies for the upper and lower extremities may respond differently to variations in 

postural alignment.  The discrepancy between our results and the effects of lower extremity 

postural alignment on coordination may be a reflection on the specific coordination measures 
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used to compare postural alignment groups.  Our results reflect alterations in angular position 

and velocity while the aforementioned studies only analyzed relative angular position 

between segments.19, 46 Altered patterns of lower extremity joint kinetic variability also have 

been reported in individuals with self-reported history of overuse injury proneness.39  While a 

linear combination of ankle, knee, and hip joint kinetics were associated with injury 

proneness these patterns were not clear.  The variability of forces and moments acting on the 

lower extremity were examined but not the rate of loading or unloading.  This may suggest 

the role of velocity and its derivative in understanding human movement coordination 

patterns.  Considered together, coordination analyses based on Dynamical Systems theory 

analyzing changes in segment coupling and movement system variability may provide 

valuable insights into human movement.   

Several limitations should be considered in the interpretation and application of these 

results. The cross sectional-case control design limits direct cause and effect relationships to 

be drawn between alterations in scapulohumeral coordination and FHRSP. Additionally, all 

subjects reported no current shoulder pain limiting the application of these results to healthy 

shoulders.  There was also a significant difference in humeral elevation between groups for 

the flexion task (FHRSP = 138° ± 8, Ideal = 145°± 11, t = 2.9, p =0.004) but not for the 

reaching task (Reaching:  FHRSP = 108° ± 7, Ideal = 111°± 9, t = 1.5, p =0.13).  Given the 

stated importance of humeral elevation as a mechanism facilitating changes in 

scapulohumeral coordination all comparisons for the flexion task were reanalyzed using 

humeral elevation angle and humeral elevation range of motion as covariates. These results 

did not change the conclusions therefore; differences in humeral elevation did not seem to 

drive the differences between groups.  Finally, there were more females in the FHRSP group 



225 

compared to the normal posture group.  The dependent variables were re-analyzed using 

gender as a covariate however, the inclusion of gender as a covariate did not influence the 

statistical findings.   

Conclusions 

Coordination analyses based on dynamical systems theory seems valuable in 

describing the shoulder’s response to changes in initial conditions such as altered skeletal 

alignment.  The coordination analysis presented is a unique approach to understanding the 

robust neuromuscular control of the shoulder girdle.  This analysis seems to offer unique 

information concerning shoulder function by embracing movement variability as evidence of 

the neuromuscular system’s flexibility and adaptability to explore new solutions based on a 

given situation’s constraints.17    
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Table 1. Descriptive statistics for screened volunteers (n=310) 
 

Characteristics Mean SD 

Male (n= 132)        Age (years) 30.8 17.3 

Forward Head Posture 42.4 4.9 

Forward Shoulder Posture 32.6 14.3 

Female (n= 178)     Age (years) 36.6 16.4 

Forward Head Posture 44.6 5.4 

Forward Shoulder Posture 40.3 17.7 

All (n=310)                      Age (years) 34.2 11.9 

Forward Head Posture 41.1 5.2 

Forward Shoulder Posture 37.4 15.3 
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Table 2. Descriptive statistics for study participants (n=80) 

Group Characteristics Mean SD 

Ideal Posture Male (n= 21)        Age (years) 32.6 13.3
 Height (cm) 178.4 7.6
 Mass (kg) 72.5 11.3
 Female (n= 19)     Age (years) 34.4 12.6
 Height (cm) 165.8 6.9
 Mass (kg) 60.1 11.2

Forward Head and 
Rounded Shoulder Posture Male (n= 15)        Age (years) 39.1 12.5

 Height (cm) 177.0 7.3
 Mass (kg) 95.1 19.5
 Female (n= 25)     Age (years) 35.0 11.3
 Height (cm) 161.7 6.7
 Mass (kg) 77.3 15.4
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FSA 

Figure 1. Forward head angle (FHA) measured from the vertical anteriorly to a 
line connecting the tragus and the C7 marker. Forward shoulder angle 
(FSA) measured from the vertical posteriorly to a line connecting the 
C7 marker and the acromial marker. 

 

FHA
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Forward Head Angle

Figure 2. Example of ideal forward 
head and shoulder posture  
Forward Head Angle = 38˚ 
Forward Shoulder Angle = 22˚ 

Forward Shoulder Angle

Forward Head Angle

Forward Shoulder Angle

Figure 3. Example of forward head 
and shoulder postural posture 
Forward Head Angle = 55˚  
Forward Shoulder Angle = 60 ˚ 
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Θi 

= tan-1  

Θ

Figure 4. Representative phase plot of humeral elevation during the flexion task. 
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Figure 5. Individuals displaying forward head and rounded shoulder 
posture (FHRSP) displayed similar scapular upward/downward rotation-
humeral elevation continuous relative phase curves during the reaching 
task. 
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Figure 6. Individuals displaying forward head and rounded shoulder 
posture (FHRSP) displayed similar scapular upward/downward rotation-
humeral elevation continuous relative phase curves during the flexion task. 
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Figure 7. Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed similar scapular internal/external rotation-humeral 
elevation continuous relative phase curves during the reaching task. 

-50

-25

0

25

50

75

0 25 50 75 100
Percent Reaching Task

Ideal FHRSP

R
el

at
iv

e 
Ph

as
e 

A
ng

le
 (d

eg
) 



236 

Figure 8. Individuals displaying forward head and rounded shoulder posture 
(FHRSP) displayed similar scapular internal/external rotation-humeral 
elevation continuous relative phase curves during the flexion task. 
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Figure 9. Individuals displaying forward head and rounded shoulder 
posture (FHRSP) displayed similar scapular anterior/posterior tipping-
humeral elevation continuous relative phase curves during the reaching 
task. 
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Figure 10. Individuals displaying forward head and rounded shoulder 
posture (FHRSP) displayed similar scapular anterior/posterior tipping-
humeral elevation continuous relative phase curves during the flexion task. 
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Figure 11 Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed larger scapular anterior/posterior tipping-humeral elevation 
mean absolute relative phase values during the flexion task. 
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Figure 12. Individuals with forward head and rounded shoulder posture (FHRSP) 

displayed smaller scapular internal/external rotation-humeral elevation 
deviation phase values during the flexion task. 
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Figure 13. Individuals with forward head and rounded shoulder posture (FHRSP) 
displayed larger scapular upward/downward rotation-humeral elevation 
mean absolute relative phase values during ascending phase of the 
reaching task. 
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