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ABSTRACT

Baiming Zou: Robust and Efficient Statistical Inference for Clustered
Observational Data in Comparative Effectiveness Research

(Under the direction of Professor Haibo Zhou)

Treatment allocations in observational studies are nonrandom and result in the

confounding problem and potentially biase treatment effect estimates. Propensity score

(PS) methods are commonly used in practice to address the confounding problem.

Among different PS methods, PS regression is frequently used in clinical research. Even

though the treatment effect estimate from the PS regression model is unbiased under

the strongly ignorable treatment assignment assumption, the default variance estimate

is biased. In the first topic of this dissertation, an improved variance estimator for the

treatment effect estimate is proposed.

Many observational data are clustered, for example, by physicians, and are there-

fore, not independent. A few PS methods consider correlated or clustered samples

using mixed effects models with a strong normality assumption on the cluster effects.

In the second part of this dissertation, a robust semi-nonparametric propensity score

(SNP-PS) regression model is proposed. We relax the normality assumption and model

the complex heterogeneity structure in treatment allocation process nonparametrically.

The proposed SNP-PS model is robust and provides unbiased treatment effect esti-

mates while parametric mixed effects PS models fail to do so when the cluster effects

are non-normally distributed. We establish the asymptotic result for the treatment

effect estimate and propose an unbiased variance estimator for it. Computationally, we

propose an adaptive quadrature integration EM (expectation-maximization) algorithm

to avoid potential large Monte Carlo errors of existing Monte Carlo EM algorithms.
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Many real world medical record data are not only clustered but also multilevel

clustered with millions of samples and hundreds of thousands of clusters. The SNP-PS

framework is in theory applicable to these large datasets. However, in practice, it is

computationally prohibited. In the third topic of this dissertation, we propose a flexible

mixed effects PS model (FM-PS) that is computationally efficient for large multilevel

clustered data. The FM-PS model relaxes a critical independence assumption that

the random effects are independent of the fixed effect covariates made in the standard

mixed effects PS (SM-PS) models. The FM-PS model provides an unbiased treatment

effect estimate regardless whether the independence assumption holds or not. Though

the treatment effect estimate from the SM-PS model is biased when the independence

assumption does not hold, it is unbiased and more efficient than the estimate from the

FM-PS model when the independence assumption holds. We propose a likelihood ratio

statistics for testing the independence assumption which allows us to choose between

the FM-PS and SM-PS models. A cluster bootstrapping procedure to estimate the

variance of treatment effect estimate is proposed. The FM-PS model is robust to

various model misspecifications as demonstrated by our extensive simulations.
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Chapter 1

Introduction

1.1 Medical Record Data

1.1.1 Features of Medical Record Data and Its Applications

Randomized controlled trial (RCT) is routinely used in clinical research for esti-

mating treatment efficacy in drug development and is considered as the gold standard

to establish causal effects of drugs. In randomized controlled trials, treatments are

randomly assigned by researchers. Proper randomization procedures guarantee that

there exists no systematic difference among subjects for their baseline features in dif-

ferent treatment groups. Therefore, valid treatment effects can be estimated easily by

comparing the outcomes from different treatment groups directly without the need to

adjust for any other covariates.

Even though RCTs are regarded as one of the best designs to evaluate efficacy of

drug therapies or other medical interventions, RCTs have their limitations (e.g. Kramer

and Shapiro 1984). First, RCTs are expensive to conduct and thus small sample sizes

are commonly observed in RCTs (Johnston et al. 2006). Second, experiments in RCTs

may have involved a specific group of people and conducted under certain situations

within a short time period. Third, the conduction of a randomized controlled trial

usually is time consuming (e.g. for recruiting enough participants). Fourth, RCT is not

always applicable due to ethical considerations. Fifth, some side effects of medications



may not be able to be fully detected in RCTs due to short time period, small sample

size, and/or limited participants. With all these limitations of RCTs, observational

data, including the medical record data, have been extensively used as alternatives for

the evaluation of therapy effectiveness or even drug efficacy.

Medical record data is a systematic collection of medical information for individual

patients. A medical record usually contains various information, including personal

and physical information like age, weight and blood pressure, family disease history,

treatment assignment, demographics, medical history, medication and allergies, im-

munization status, laboratory test results, radiology images, vital signs, and billing

information, etc for each patient. Rich information included in medical record data can

be used for various purposes including statistical reporting on quality improvement,

resource management and public health communicable disease surveillance, etc.

In recent years, medical record data have been increasingly used for comparative

effectiveness research (e.g. Cebul et al. 2011; Schneeweiss and Avorn 2005; Suissa

and Garbe 2007; Lau et al. 2011). The advantage of using medical record data for

treatment effect estimate is that it offers broader population spectrum than the tra-

ditional randomized controlled trials (RCTs) because often participating subjects are

highly heterogeneous in terms of their medical and social backgrounds. In addition,

in practical medical record data, the treatments are assigned based on patients’ clin-

ical needs. Therefore, treatment effects from medical record data more closely reflect

daily clinical practice than randomized controlled trials and provide clinically relevant

information that may not be provided by RCTs (Yang et al. 2010). Treatment effects

estimates using practical medical record data may supplement the evidence obtained

from randomized controlled trials. Furthermore, comparative effectiveness research us-

ing medical record data and conducted with well-established statistical methods can

improve causal inference of treatment effects (Berger et al. 2009). The retrospective
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analysis of medical record data can bridge the inferential gap between what is proved to

be effective for the selected groups of patients versus the complicated clinical decisions

required for individual patients (Stewart 2006). Large medical record database can

help to identify the rare adverse event for medications that was not able to be detected

in RCTs. Medical record data have become a valuable resource for comparative effec-

tiveness research that allows researchers to determine the inferiority, equivalence, or

superiority of various interventions when compared with each other (e.g. Mitka 2010).

However, there exist controversy and challenges on whether the medical record

data can provide reliable information on treatment effect estimate (e.g. Pocock and

Elbourne 2000; Ioannidis and Lau 2001). Some studies reveal reasonable results compa-

rable to that from randomized controlled trials. On the other hand, some comparisons

identify inconsistent results with RCTs. For example, statin therapy was found to de-

crease the overall mortality and myocardial infarction based on Weiner et al. (2008)

research. Weiner et al. (2008) used medical record data from the United Kingdom

General Practice Research Database (GPRD) which includes the compiled information

for over 8 million patients. These results were reasonably comparable to that from

other RCTs. But, in the same study, they found disparity between the results based on

GPRD database and that from RCTs about the effect of statin therapy for coronary

revascularization. Another example, prophylaxis is shown to reduce the occurrence of

venous thromboembolism among critically ill patients (The PROTECT Investigators

2011) in the randomized controlled trial. However, the trial findings extended to real

world patients have been inconclusive (Sharpe et al. 2002). While some studies found

that observational studies and RCTs are overall comparable and produced similar re-

sults (e.g. Benson and Hartz 2000; Concato et al. 2000), other research identified that

discrepancies beyond chance do occur and differences in estimating the magnitude of

treatment effect do often exist (e.g. Ioannidis et al. 2001).
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Even though one could attribute some of the inconsistent results between obser-

vational studies and randomized controlled trials to the lack of rigorous inclusion and

exclusion criteria, exposure definitions and outcomes identical to the RCT (Tannen et

al. 2008), the key difference between RCT and the real world medical record data is

that the treatment assignment in real world medical data is not random. In medical

record data, the treatment allocation of each patient is primarily made by physicians

according to the patient’s physical condition, disease severity, the physician’s preference

of a therapy, etc. Nonrandom treatment assignment of medical record data could result

in large differences in the baseline covariates between the treated and untreated groups.

The imbalanced baseline covariates distributions may twist the treatment effect, i.e. a

problem known as confounding.

Apart from its distinctive observational feature, another key feature of medical

record data is the clustering feature, for example, by physicians, clinics, hospitals, and

insurance agencies. The clustering feature of medical record data often reflects the

heterogeneity in patients’ health conditions, social economical status, and so on, which

not only plays important roles in treatment assignment decision but also affect the

disease outcomes. To obtain valid treatment effect estimate for clustered observational

data, it is critical to take into consideration of confounding and sample heterogeneity

features. The following two subsections review existing statistical methods for clustered

observational data.

1.1.2 Review of Confounding Adjustment Methods

The large and heterogeneous populations included in medical record datasets pro-

vide ideal resources to examine treatment effects and outcomes under real world condi-

tions over long periods. However, the bias induced by the confounding factors restricts
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medical records’ capacity to distinguish treatment effects from the effects of patient-

related, disease-related, and provider-related factors, etc. Ignoring or inappropriately

adjusting the confounding may result in biased treatment effect estimate and erroneous

conclusions. A large number of confounding adjustment methods have been proposed

in the literature to assess the treatment effects for non-randomized data which usu-

ally fall into the following categories: matching, stratification, instrumental variable,

multiple regression, and various versions of propensity score methods.

Matching

Matching is the simplest and most intuitive confounding adjustment method to

account for selection bias under non-randomized design (e.g. Rubin 1973; Wacholder

1992; Greenland et al. 1981; Miettinen 1968; Kupper et al. 1981; McKinlay 1977;

Rose and van der Laan 2009). The idea is similar to that of randomized trials in

making the confounding factors balanced as much as possible between treated and

untreated groups. Basically, matching procedure first identifies a set of confounding

covariates , i.e. the factors that are potentially related to both the dependent outcomes

and the independent variable of interest (i.e. the treatment assignment). For each

covariate in the set of identified confounding covariates, a subject in the treated group

is matched with another subject in the untreated group with (nearly) identical value of

the confounding covariate considered. Then, by doing this way, the subjects matched

will be almost balanced with respect of the confounding covariates between the treated

and untreated groups. In this sense, matching can be viewed as a manually created

RCT.

Matching is simple and straightforward to implement. In many cases, it provides

reasonable solutions to control confounding factors and reduce bias in treatment effect

estimates (Wunsch et al. 2006). Matching can also reach a balanced number of treated
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and untreated across the levels of the selected matching variables. This balance can

reduce the variance in the parameter estimates of interest and improves statistical

efficiency (Kupper et al. 1981; Rothman and Greenland 1998). However, intrinsic

limitations exist for matching which restrict its practical applications. In situations

where many confounding factors exist, matching can be difficult, and result in low

sample overlap. Matching with low sample overlap will cause inefficiency because those

unmatched subjects have to be thrown away without including in the analysis. More

importantly, how to select a “right” set of confounding variables is tricky but important.

Inappropriately selecting the covariates to match over will lead to overmatching issue.

Overmatching could severely lower the statistical analysis power and lead to a new bias

(Day et al. 1980).

Stratification

Stratification is another simple approach for confounding adjustment (Cochran

1968; Miettinen 1976). Similar to matching procedure, stratification procedure also

identifies a list of potential confounding variables first. It identifies two or more mu-

tually exclusive subgroups or strata within which the confounding variables are largely

constant. For each of the identified confounding covariates, a set of subgroups are

created such that the covariate is similar within each of the subgroup, for example

classifying age into decades, or weight into quartiles. Subgrouping will be subsequently

performed within each subgroup based on another remaining confounding factor from

the list. The subgrouping process continues till no more remaining confounding vari-

ables left in the list or there is no more subjects to be classified. Stratification process

usually generates a tree and the height of the tree and the number of nodes created

depending on the number of confounding covariates and the number of samples. The

order of nodes created from stratification depends on the order of confounding factors

6



used in the subgrouping procedure. This means that different stratification order on the

confounding variables could lead to different treatment effect estimate. After subgroups

are created, stratify analysis is performed.

After the intervention effect is estimated within each stratum, a pooled estimate is

calculated across strata to generate the final overall estimate. Weighting is commonly

used for combining each stratum’s estimate to obtain the overall estimate (noted as

adjusted estimate). Mantel-Haenszel method (Mantel and Haenszel 1959) is the most

popular approach for this purpose. It uses a weighted average of the stratum-specific

estimates to obtain the overall estimate. The weights are inversely proportional to the

variances of the stratum-specific estimates, i.e. the more precise the estimates are, the

greater weights they get. Homogeneity of stratum-specific estimates can be tested via,

for example χ2 test. In this sense, stratification method is similar to the meta-analysis

where the goal is to combine treatment effect estimates from different studies.

The algorithm of stratification is simple to implement and robust without specific

assumptions for the distributions of confounding variables and no linear relationship

between the outcome and confounding factors is assumed (Cochran 1968). Results

based on stratification are clear and easy to interpret (Klungel et al. 2004). However,

several limitations exist for this method. First, the computational workload could be

intensive since the number of subgroups can increase exponentially with the increase

of the number of confounding covariates and the number of subjects. Second, grouping

based on continuous variables would be subjective where the original continuous con-

founder is replaced by a less accurate, categorical version. This may lead to residual

confounding if the strata is not fine enough (Becher 1992). As a result, stratification

usually is restricted to categorical variables. All these make stratification method less

practical for large datasets with a number of confounders, such as medical record data.
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Instrumental Variable

Instrumental variable (IV) method is another well-known confounding controlling

approach and has been widely used in economical research (e.g. Angrist and Krueger

2001; Heckman 1997; Miguel et al. 2004). It is later introduced into clinical research

(e.g. McClellan 1994; Permutt and Hebel 1989; Vansteelandt et al. 2011). Even though

it is mainly used for confounding adjustment purpose under observational design, it is

used for causal inference as well (Angrist et al. 1996). An instrumental variable is

an observed covariate that is associated with the independent variable of interest (e.g.

treatment assignment) but not with the random measurement error term. In other

words, the instrumental variable is associated with the independent variable of interest

but NOT associated with the outcome directly. That is the effect of an instrumental

variable on the dependent variable is indirectly through another independent variable.

IV approach can be demonstrated by the following regression model:

yi = β0 + β1xi + εi (1.1)

A variable z is called an instrumental variable of the regressors x if z is uncorrelated

with the error term ε but correlated with x. A simple example can demonstrate how

this scenario can happen. Suppose y has the following true linear relationship with x∗:

yi = β0 + β1x
∗
i + ε∗i (1.2)

Suppose x is observed via x∗ with an error ξ such that xi = x∗i + ξi, where x∗i and ξi are

independent. Then the true regression equation (1.2) for regressor x∗ can be rewritten

by using its proxy x as equation (1.1) with εi = ε∗i − β1ξi. Therefore, regressor x is

correlated with the error term ε since Cov(x, ε) = Cov(x∗ + ξ, ε∗ − β1ξ) = −β1var(ξ).

In the above regression equation (1.1), β̂ from OLS is biased and inconsistent.
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Suppose now we have another variable z which equals x∗. By the definition of IV, it is

easy to prove that z is an IV of x. Based on z, we can get the instrumental variable

estimator for β as:β̂IV = (z′x)−1z
′
y. It can be shown that E(β̂IV ) = β, thus β̂IV is an

unbiased estimator of β.

In practice, the IV estimator is obtained via two-stage linear regression. That is,

for each confounding covariate x, identify the corresponding instrumental variable and

do the first stage linear regression for the confounding covariate as dependent variable

against the instrumental variable and obtain the prediction for x, i.e. x̂. Substitute x

with x̂ in the original regression model and conduct the second stage linear regression

to obtain the parameter estimate.

The IV estimator is consistent and the procedure to obtain IV estimate is simple

and straightforward. Studies by Brookhart et al. (2006) show that the instrumental

variable method could substantially reduce the bias due to unobserved confounding.

However, there exist limitations for this method also. For example, the requirements

for IV are difficult to satisfy and test in practice, such as the independent assumption

on the instrumental variables with respect to the error term (Klungel et al. 2004).

Therefore, it is not an easy task to identify an instrumental variable. In practice, the

determination of an instrumental variable is subjective. Therefore, the generalization

of the findings from the IV method is questionable (Klungel et al. 2004). As such, the

validity of using IV for treatment effect estimate under non-randomized design remains

debatable.

Multiple Regression

Multiple regression can be used to adjust the effects of confounding factors directly.

Advantages of regression methods include allowing many confounding variables being

9



included in the model and the possibility of incorporating quantitative continuous fac-

tors without categorization and the possibility of modeling trends in confounders mea-

sured on an ordinal scale. Multiple regression method is regarded as the gold standard

method for adjusting confounding factors since it would provide the best linear unbi-

ased estimates (BLUE) when the assumptions for the regression model hold. However,

such efficiency gains would be at the risk, for examples when the number of confounding

variables is not small (with respect to the number of samples) and the regression model

is incorrect (such as covariate functional form misspecified). Furthermore, in regression

analysis, limited overlapping of confounding covariates between treatment groups may

lead to multicollinearity.

Propensity Score

As an alternative for multiple regression method, propensity score (PS) method by

Rosenbaum and Rubin (1983) is often used in practice (e.g. Seeger et al. 2005; Huang

et al. 2005; Sturmer et al. 2006; Hong and Yu 2008; Wyse et al. 2008; Staff et al. 2008;

Lunt et al. 2009; Ye and Kaskutas 2009) to adjust for confounding factors and estimate

the treatment effect under non-randomized design via stratification, matching, inverse

probability weighting, or covariate adjustment.

A propensity score is defined as the conditional probability of a unit (e.g. person)

being assigned to a particular treatment in a study given a set of known covariates.

Let the binary variable trt refer the treatment assignment (with 1 for treated and 0 for

untreated) and x refer the vector of the covariates.

PS = Pr(trt = 1 | x)

In randomized controlled trial, this probability is known and independent of covariates

or the observed features x, i.e. trt ⊥ x or Pr(trt = 1 | x) is a constant (usually

10



it is set as 0.5) regardless of x. In observational studies, the propensity of receiving

treatment is unknown but depends on x, i.e. the treatment allocation depends on other

covariates. Imbalance of propensity score indicates an imbalance in covariates between

the two comparison groups. The goal of propensity score analysis is to balance two

non-equivalent groups based on their propensity scores to reduce the selection bias in

the treatment effect estimate.

The validity of the PS method is built on the following two fundamental assump-

tions:

(y(1), y(0)) ⊥ trt|x (1.3)

0 < P (trt = 1|x) < 1. (1.4)

where y(1) and y(0) are the potential outcomes of a particular unit under the treated

and untreated, respectively. That is, y(1) and y(0) are the outcomes if the unit had

been assigned to the treated and untreated group, respectively. They are never ob-

served simultaneously in reality. Their relationship with the observed outcome y and

the treatment assignment trt can be expressed as y = trt ∗ y(1) + (1− trt) ∗ y(0). The

first condition (1.3) says that treatment assignment is independent of the potential out-

comes conditional on the observed baseline covariates. Rosenbaum and Rubin (1983)

had shown that conditional on the propensity score, the distribution of measured base-

line covariates is similar between the treated and untreated subjects. Thus, for a set of

subjects who have the same propensity scores, the distributions of the baseline covari-

ates will be the same between the treated and untreated groups. They demonstrated

that if treatment assignment is strongly ignorable(i.e. conditions (1.3) and (1.4) hold),

conditioning on the propensity score allows one to obtain unbiased estimates of the

treatment effects. This condition is also referred to as the no-unmeasured confounders

assumption,i.e., all confounding variables that affect the treatment assignment and the
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outcome have been measured and included in x. Under this assumption it has been

shown that adjustment made with the propensity score is sufficient to remove the bias

due to the non-random treatment assignment in both large and small sample scenarios

(Rubin 1997).

In practice, the propensity score is unknown and commonly estimated via the logistic

regression model:

logit(Pr(trti = 1 | xi)) = β0 + xiβ (i = 1, · · · , n) (1.5)

where xi represents all the observed covariates other than the treatment assignment

trti (1 for treated and 0 for untreated) of subject i. Denote the parameter estimates of

β0 and β (i.e. maximum likelihood estimates (MLE)) as β̂0 and β̂. Then, PS can be

estimated as:

P̂Si = exp(β̂0 + xiβ̂)/[1 + exp(β̂0 + xiβ̂)]

A critical aspect of PS based method is to obtain valid PS estimation which often

involves model and variable selection (e.g. Brookhart et al. 2006). Even though

the prevailing propensity score estimation method is logistic regression, several other

propensity score estimation methods have been proposed such as boosting and bagging

(Lee et al. 2010; McCaffrey et al. 2004), random forests (Lee et al. 2010), neural

networks (Setoguchi et al. 2008), and regression tree or partitioning methods (Lee et

al. 2010; Setoguchi et al. 2008).

Based on the estimated propensity scores from equation (1.5), the treatment ef-

fect can be estimated via matching (Dehejia and Wahba 2002), stratification (Rosen-

baum and Rubin 1984; He and McDermott 2012), inverse-probability-weighting (IPW)

(Rosenbaum 1998), or covariate adjustment (Shepardson et al. 1999; Perkins et al.

2000).
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In practice, an often used propensity score matching is one-to-one match which

matches each treated (i.e. trt = 1) subject to an untreated (i.e. trt = 0) subject with

identical propensity score. However, since the propensity score is a continuous variable,

it is difficult to match a treated with an untreated with exactly identical propensity

score. Several propensity score matching algorithms have been proposed in this re-

gard. Commonly used propensity score matching algorithms include nearest neighbor

matching and clipper matching (Dehejia and Wahba 1999). Propensity score matching

is simple. In practice, PS matching is often used by researchers in various observa-

tional studies designs. However, shortcomings with propensity score matching include

(Shadish et al. 2002): large samples are required and overlap must be substantial. In

the case of low overlapping, a large number of samples will not be matched and have

to be discarded which could result in low estimation efficiency. In addition, low overlap

of propensity scores between the two groups may result in some severely imbalanced

covariates after matching. Propensity score matching could also match two dissimilar

subjects if the propensity score range used for matching is too broad and thus lead

to inexact matching. In practice, matching by propensity score may fail to remove all

bias due to confounders because samples may not be able to be matched sufficiently

closely (Hill 2008) and the within-pair differences in covariate values may still be large

(Rosenbaum and Rubin 1985).

Compared to the conventional stratified analysis method described previously, strat-

ification using propensity score becomes straightforward since all the samples are strat-

ified according to only ONE variable, i.e. the estimated propensity score, instead of

stratifyin all possible confounding variables one by one. This process greatly reduces

the complication and thus improves computation efficiency. If the treatment assignment

is strongly ignorable, then conditional on propensity scores by stratification will allow

us to obtain unbiased treatment effect estimate. By combining the stratum-specific
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treatment effect estimate, the weighting algorithm as shown below produces an overall

adjusted estimate of treatment effect:

α̂trt =
K∑
j=1

nj
n
{ 1

n1j

n∑
i=1

trtiyiI(P̂Si ∈ Qj)−
1

n0j

n∑
i=1

(1− trti)yiI(P̂Si ∈ Qj)}

where K is the total number of strata n1j and n0j are the number of subjects in treated

and untreated groups within stratum j, respectively. nj = n1j + n0j is the number

of subjects in stratum j, and Qj denotes the propensity score range of stratum j.

Identifying individuals having exactly the same propensity value may be infeasible in

practice, stratification attempts to achieve groups where this at least holds approxi-

mately. Consequently, the treatment effect estimator via PS stratification may be a

biased estimator of the treatment effect, as some residual confounding within strata

may remain.

One benefit of propensity score stratification over matching is that it allows samples

who might not have a close enough matching mates on their propensity scores to be

included in some strata and not be discarded for the treatment effect estimation. No

matter propensity score matching or stratification, both methods need to determine the

propensity score cutoff for declaring participants and nonparticipants having exactly

“identical” propensity scores which is subjective. In practice, researchers often use

these two schemes due to their simplicity and easy to understand.

Inverse probability weighting (IPW) is another approach that weighs observations

from each group (i.e. treated and untreated) by the inverse of the probability of being

in that group (Rosenbaum 1998). Specifically, IPW estimates treatment effect as the

following:

α̂trt =
1

n

n∑
i=1

{trti ∗ yi
P̂Si

− (1− trti) ∗ yi
1− P̂Si

}
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where w1i = trti
nP̂Si

and w0i = 1−trti
n(1−P̂ Si)

are corresponding weights. One problem in prac-

tice with this estimator is that the weights do not necessarily add up to 1. Therefore,

another normalized version of IPW is used in practice:

α̂(trt,norm) =
n∑
i=1

{trti ∗ yi
w1P̂Si

− (1− trti) ∗ yi
w0(1− P̂Si)

}

where w1 =
∑n

i=1
trti
P̂ Si

and w0 =
∑n

i=1
1−trti
1−P̂ Si

. The IPW estimators, no matter nor-

malized or not, are unbiased and consistent estimator of the treatment effect ∆ =

E(y(1))−E(y(0)) with y(1) and y(0) being the potential outcomes if the subjects have

had been assigned to the treated and untreated groups, respectively. In addition, these

estimators are also asymptotically normal under certain regularity conditions. Com-

pared with the stratification estimator, IPW estimator is more efficient (Lunceford and

Davidian 2004). In practice, in addition to being used as a confounding adjustment

tool, IPW is also often used by researchers to describe missing and censoring data.

Another convenient approach using the propensity score for confounding adjustment

is the covariate adjustment approach (e.g. D’Agostino 1998) by including the propensity

score as a covariate in the following regression model

y = α0 + αtrttrt + αPSP̂S + ε (1.6)

Rosenbaum and Rubin (1983) had shown that the treatment effect estimate obtained

via the PS regression (1.6) is unbiased under the strongly ignorable treatment assign-

ment assumptions (1.3) and (1.4).

Propensity score regression is less sensitive to the misspecification of the functional

form (i.e. linear or quadratic) of the covariates as compared to the multiple regres-

sion method (Rubin 1997). Compared with other versions propensity score methods,

propensity score regression needs more restrictive assumption on the linearity between

15



response and propensity score in addition to the strongly ignorable treatment assign-

ment assumption that the other propensity score methods also made. In contrast to

the regression model where all covariates are incorporated in the regression analysis,

propensity score regression reduces baseline information to a single composite sum-

mary of the covariates. In this sense, PS regression can be viewed as a dimension

reduction technique also. As compared with propensity score matching and stratifica-

tion, propensity score regression is simpler to use without the tedious procedure and

burden to match samples with close propensity scores. Propensity score regression re-

sults in increased precision for continuous outcomes and increased statistical power for

continuous, binary, and time-to-event outcomes (Steyerberg 2009). In the perspective

of applications, PS matching, stratification, and inverse probability weighting can be

used for observational study design and analysis while PS regression is mainly used

for the analysis. There exists many review literatures on propensity score methods

(e.g. D’Agostino 1998; P.C. Austin 2011). A review and comparison between different

versions of PS methods and multiple regression method can be found in Sturmer et al.

(2006).

1.1.3 Review of Clustered Data Analysis Methods

Besides the observational feature of medical record data where the treatment is

not randomly assigned, another distinctive characteristic of medical record data is that

they are clustered e.g. by physicians, clinics, hospitals, or insurance agencies. Further-

more, medical record data are not only clustered but also they could be multi-lever or

hierarchically clustered. For example, patients are clustered with physicians who are

also clustered by hospitals. As such, in the analysis of medical record data, both the

observational and clustering features should be taken into account to obtain the valid

treatment effect inference. The confounding control methods reviewed in the previous
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section are all for independent samples rather than clustered data.

The degree of clustering can be delineated in terms of correlation among the mea-

surements on units within the same cluster. Appropriate statistical models for clustered

data must explicitly describe and account for this correlation. With more and more

repeated measurements and longitudinal designs being used in various biomedical and

social economical studies, the interest in the analysis of clustered data continuously

grows. Many clustered data analysis techniques have been developed to deal with

different challenges. Mixed effects model (e.g. linear mixed effects model, general-

ized linear mixed effects model, etc) and the generalized estimating equations (GEE)

method are the two most widely used methods for the analysis of correlated data, which

we review below.

Mixed Effects Model

As noted in previous section, multiple regression model is a very versatile approach

in describing the relationship between the mean response and a set of independent co-

variates. However, the straightforward application of general regression method to the

clustered data like medical record data is not appropriate due to the lack of indepen-

dence among samples.

Many researchers have incorporated random effects into a wide variety of regression

models to account for dependent structures of responses and multiple sources of vari-

ations. A frequently used model for describing clustered continuous data is the linear

mixed effects model (e.g. Laird and Ware 1982; Lindstrom and Bates 1988) where

random effects are used to model the correlations among samples within each cluster:

yij = α0 + αtrttrtij + xijαx + ηi + εij (1.7)
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where xij and yij represent the covariates and the response outcome of subject j in clus-

ter i, respectively. The random variable ηis are independent and identically distributed

as N(0, σ2
η) which denotes the cluster specific effect to account for mean differences

amongst clusters and the random error εij ∼ N(0, σ2) is assumed to be independent of

the ηis.

Examples of using mixed effects model for clustered data analysis can be found in

many biomedical and life science research (e.g. Petkova and Teresi 2002; Vaida and

Xu 2000). The above linear mixed model can be easily extended to generalized linear

mixed models (GLMMs) (Schall 1991; Zeger and Karim 1991; Breslow and Clayton

1993; Davidian and Giltinan (1995,2003); McCulloch and Searle 2001) for other types

of responses such as binary outcomes or count data.

Many real world data usually includes more than one level of clusters. For example,

in medical record data, many patients are treated by a physician and many physicians

work in a clinic/hospital. This leads to physicians as the first layer cluster who are

nested in the second layer cluster, i.e. clinics or hospitals. In the scenario of multilevel

or hierarchical clustering, a more complex mixed effects model is needed to account for

the heterogeneity of each cluster level. Conventionally, the following multilevel mixed

effects model (e.g. Sullivan et al. 1999; Goldstein et al. 2002) is used to model the

clustered data structures:

yijk = α0 + αtrttrtijk + xijkαx + ηi + ξij + εijk (1.8)

where xijk and yijk represent the observed covariates and the response outcome for

subject k nested in sub-cluster ij which is further nested in cluster i, respectively.

Cluster effects ηi, ξij, and random error εijk are mutually independent with each other

and are assumed to be normally distributed with mean 0. Each level cluster effect

accounts for the mean differences amongst clusters of the corresponding clustering
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level.

To obtain the parameters estimates, maximum likelihood estimate is routinely used.

However, in the mixed effects model, besides the fixed effects covariates (i.e. trtij

and xij) which are observed, there exists random effects terms (i.e. ηi, ξij) which are

unobserved. Therefore, parameter estimates in mixed effects model can be treated as

a missing data problem, and the expectation-maximization (EM) algorithm (Dempster

et al. 1977), a well-known algorithm for maximum likelihood estimation based on

incomplete data, can be used for parameter estimates.

In addition to the routine normality assumption made on the random effect, it

is also assumed that the random effect is independent of other fixed effects terms.

All these assumptions are made for the simplicity of statistical analysis and may not

hold for many real applications including the medical record data where the treatment

assignments are clustered. However, violations of these assumptions can result in severe

biased estimates and invalid statistical inferences (Verbeke and Lesaffre 1996).

Generalized Estimating Equations

Another frequently used method for dealing with dependent observations is through

what has become generally known as generalized estimating equations (GEEs) (e.g.

Liang and Zeger 1986; Hardin and Hilbe 2003). GEEs can be regarded as an extension

of quasi-likelihood models for independent measurements. This modeling scheme has

often been applied in biomedical research (e.g. Cologne et al. 1993; Hanley et al. 2003).

A notable characteristic of GEE approach is that under mild regularity conditions,

the parameter estimates from the GEE are consistent even when the covariance struc-

ture is misspecified. The primary interest of GEE is on estimating the average response

over the population (i.e. marginal response) rather than the regression parameters that

would enable the estimation of the effect of changing one or more covariates on a given
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individual. The parameter β estimates, i.e. β̂, of GEE are obtained by solving the

following equation:
n∑
i=1

D
′

iV
−1
i (yi − µi) = 0 (1.9)

where Di is the ni × p matrix of derivatives of µi with respect to β and Vi is treated

as known up to certain parameters (referred as working covariance matrix) and µi is

the vector of mean responses with elements of µij(β) = g−1(xijβ). The covariance

estimates for β estimates, i.e. Ĉov(β̂) can be obtained via the sandwich estimator.

Apart from the aforementioned commonly used methods for dealing with clustered

data, there exists few research using mixed effects PS model by including the unobserved

cluster effect in the logistic regression model to adjust for the treatment assignment

heterogeneity confounding factors (e.g. Thoemmes and West 2011) where the normality

is assumed for the cluster effects.

1.2 Proposed Research for Medical Record Data

1.2.1 Robust Two-Stage Variance Estimation for PS Regression Models

Propensity score (PS) is commonly used in observational studies for adjusting con-

founding factors when comparing the effectiveness of different treatments. Among

different PS-based methods, the PS covariate adjustment (a.k.a. PS regression) which

uses the estimated PS as a covariate in the second stage regression model has been fre-

quently used in clinical research. In practice, researchers tend to make their inference

on the treatment effect based on the default variance estimate from the second stage

regression model. This variance estimate, however, does not take into consideration

of the fact that the propensity score itself is an estimated quantity. Without proper

correction, the default variance estimate could be biased. To address this problem, we

jointly model the treatment assignment and the response variable under a two-stage
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regression framework. The asymptotic results for the treatment effect estimator are

established, based on which a robust variance estimator is developed.

Specifically, we regard the propensity score regression models as a two-stage proce-

dure shown below:

Stage 1: trti | xi ∼ f(trti | xi,θ1) (1.10)

Stage 2: (yi, trti) | PS(xi,θ1) ∼ f(yi | trti, PS(xi,θ1),θ2)f(trti | PS(xi,θ1)) (1.11)

where yi is the response variable, trti is the treatment assignment (1 for treated and

0 for untreated), and xi is the covariate vector for the ith individual (i = 1, 2 · · · , n),

respectively. θ1 and θ2 are the parameter sets associated with Stage 1 and 2 models.

The unknown PS score, PS(x,θ1)(= Pr(trt = 1 | x,θ1)), is a function of x and θ1.

Based on this two-stage regression framework, we establish the asymptotic result for

θ̂2, i.e. the parameter estimate for Stage 2 model which includes the treatment effect

estimate, our primary interest. From the asymptotic distribution of θ̂2, we propose the

covariance estimator.

1.2.2 A Semi-Nonparametric PS (SNP-PS) Model for Clustered Data

The treatment allocation in medical record data is non-randomly made by physi-

cians according to various factors observed and/or unobserved (e.g. physician’s factor,

etc.), these factors could also completely or partially impact the disease outcomes.

Consequently, samples in medical record data are clustered with respect to physicians.

As a result, the mixed effects model is a natural approach for medical record data

with the heterogeneity being included as a random effect term. With the attractive
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features of propensity score adjustment approach for confounding adjustment, we pro-

pose a generalized mixed effect propensity score model to deal with the heterogeneity

in treatment assignment process. Few current literatures deal with the random effects

in logistic regression model (e.g., Thoemmes and West 2011) for propensity score esti-

mation. However, a critical assumption made for the conventional mixed effects model

is that the cluster effect term is normally distributed which may be too restrictive for

real world medical record data. The validity of this assumption is hard to check for

real applications and violation of the assumption will lead to invalid propensity score

estimation and result in biased treatment effect estimate. Indeed, the normality as-

sumption often does not hold in practice due to many confounding factors and complex

heterogeneity involving in the treatment allocation process. To be more flexible in

capturing the heterogeneity structure in the treatment allocation process for medical

record data, we relax the normality assumption on the random effect in the generalized

mixed effects model with an unspecified random effect term. With the PS regression

framework, the estimated PS from the proposed model is incorporated to adjust the

heterogeneity confounding and obtain the treatment effect estimate that could be bi-

ased if the conventional statistical methods are used where the treatment assignment

heterogeneity is incorrectly modeled.

Specifically, we consider the following semi-nonparametric (SNP) logistic regression

model for the propensity score estimation:

logit(Pr(trtij = 1 | xij)) = β0 + xijβx + ηi (1.12)

Instead of assuming that the ηis are normally distributed, we make no specific assump-

tion on the form of the distribution of the ηis except that it is a smooth density function

f(η). We approximate the density function f(η) by K+1 terms of Hermite polynomial

multiplied by a normal density (Gallant and Nychka 1987). Once the PS scores are
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estimated from the above model, then the rest of the analysis will follow the traditional

PS regression procedure.

Estimation of propensity score based on the SNP-PS model is challenging. The

primary difficulty results from the fact that the likelihood function of model (1.12) is

complicated without closed analytic form since it involves the integration over a nonlin-

ear integrand. To resolve this problem, various approximation techniques (e.g. Laplace

approximation) were developed to avoid the integration (Schall 1991; Breslow and Clay-

ton 1993). However, several research (Breslow and Lin 1995; Lin and Breslow 1996)

shows that approximations based approaches may yield biased fixed effect estimates,

particularly for the binary responses. Alternative approaches (Lee and Nelder 1996;

Jiang 1999) were proposed to resolve this difficulty. On the other hand, methods were

developed to conduct the integrations via the Markov chain Monte Carlo techniques

(Zeger and Karim, 1991) and Monte Carlo EM (MCEM) algorithms (McCulloch 1997;

Booth and Hobert 1999). For example, an approach proposed by Booth and Hobert

(1999) is based on using rejection sampling technique to generate samples from the

appropriate conditional distribution. The advantage of this approach is that it allows

to evaluate the Monte Carlo error at each iteration and automatically increase the

Monte Carlo sample size accordingly and thus reduce the unnecessary computational

workload.

Chen et al. (2002) extend the rejection sampling scheme of Booth and Hobert (1999)

with a double rejection Monte Carlo sampling approach for accessing the conditional

likelihood for the generalized mixed effects model. However, the Monte Carlo sampling

suffers with Monte Carlo errors if the random sample number is not large enough (Booth

and Hobert 1999; Chen et al. 2002). Heavy computation workload associated with the

large Monte Carlo sample size prohibits the application of the MCEM sampling to the

medical record data with hundreds of thousands observations. Furthermore, the second
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rejection sampling component may suffer a low acceptance rate in some applications,

particularly for binary data when the proportions of 0 and 1 responses within a cluster

are severely imbalanced (Chen et al. 2002). To avoid these difficulties, alternatively,

we propose a numerical integration approach, i.e. adaptive quadrature integration,

to calculate the conditional likelihood for the proposed SNP-PS model (1.12). It can

be shown that under the assumption of no other unmeasured confounding covariates,

the treatment effect estimate from the proposed SNP-PS framework is unbiased and

asymptotic normal.

1.2.3 A Flexible Mixed Effects PS (FM-PS) Model for Clustered Data

When medical record data are multilevel clustered, the robust SNP-PS model pro-

posed above is computationally too intensive to be applied to huge multilevel clustered

data. More computationally efficient PS models are needed. Note that in the SNP-PS

model, the heterogeneity cluster effects are dealt with in the mixed effects PS model

which is computationally expensive. Alternatively, we propose a flexible linear mixed

effects propensity score (FM-PS) model which does not take into account the hetero-

geneity cluster effects in the PS model but instead leaves the heterogeneity adjustment

to the subsequent PS covariate adjustment model.

Extra covariates are introduced in FM-PS models based on the observed treatment

assignment and the estimated PS to model the correlation structures between the ran-

dom cluster effects and the fixed effect terms such that only the standard simple mixed

effect model is needed to fit and obtain the treatment effect estimate. The treatment

effect estimate equivalence is established between FM-PS model and the fixed effects

PS model (FE-PS) where the cluster effect is treated as the fixed effect by using dummy

variables. The equivalence of treatment effect estimate provides the justification that

the proposed FM-PS relaxes both the independence and normality assumptions for the
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random cluster effects that the traditional clustered data modeling frameworks made

but are generally not held by the real world medical record data. Therefore, the pro-

posed FM-PS is not only robust for the random effect density structure due to clustering

but also flexible to the correlation between the random effects and other fixed effects

confounding covariates. More importantly it is applicable for huge dataset like medical

record data for practical use.

As all other propensity score based methods, the standard variance estimation for

FM-PS models are not valid either. Accordingly, we propose a cluster bootstrapping

procedure to obtain the valid variance estimate empirically.

1.3 Innovation of Proposed Research

1.3.1 Significance of Two-Stage Variance Estimation

Even though the treatment effect estimate from the PS regression model (1.6) is un-

biased, the variance estimation directly from the PS regression model could be severely

biased. In contrast, the proposed two-stage variance estimation scheme for propensity

score regression models provides a valid variance estimation approach that corrects the

bias of the commonly used default variance estimate from the second stage PS regres-

sion model. The default variance estimation ignores the fact that the propensity score

is an estimated quantity instead of the observed covariate. Without jointly modeling

the response and the treatment assignment will lead to the default variance estimation

which could be severely biased as we will see in our simulation studies. The essence of

the proposed two-stage variance estimation is the jointly modeling of the response and

the treatment assignment given the propensity score. This modeling scheme takes the

consideration of the estimation error for the parameters of the first stage model and

thus the estimation error of the propensity score.
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1.3.2 Significance of SNP-PS

The proposed SNP-PS model for dealing with the heterogeneity of treatment al-

location provides a uniform approach to adjust the nonparametric heterogeneity con-

founding in a robust fashion without the restrictive assumptions. Unlike many existing

statistical methods, we extend the prevailing propensity score adjustment approach by

including a random effect term without specifying any density distribution in the PS

model such that only a simple linear regression is needed to assess the treatment effect.

Therefore, SNP-PS is more robust to the distribution misspecification of the random

effects.

One challenge with the generalized mixed effects model is that there exists no an-

alytic closed form for the log-likelihood function. The double rejection Monte Carlo

sampling EM algorithm of Chen et al. (2002) suffers slow convergence and high Monte

Carlo errors, which prevents its practical usage for large medical record datasets. Fur-

thermore, the double-rejection sampling scheme of Chen et al. (2002) may have low

acceptance rate for binary data when the cluster cell size is imbalanced. Alternatively,

we propose a computationally efficient numerical integration approach, i.e. adaptive

quadrature integration, to avoid the large Monte Carlo errors if the sampling scheme is

used and the potential low acceptance rate of the second rejection sampling component.

In summary, the innovations of the proposed SNP-PS framework for the treatment

effect estimate purpose of medical record data includes: First, the proposed SNP-PS ap-

proach robustly models the heterogeneity of treatment allocation process and includes

the traditional normality assumption as a special case. Second, the proposed adaptive

quadrature integration scheme significantly reduces the computational workload and

the potential large Monte Carlo errors in the sampling based method for the parameter

estimates in generalized mixed effects model. Third, we propose a valid variance esti-

mator for SNP-PS regression model that corrects the biased variance estimation based
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on the default variance estimator.

1.3.3 Significance of FM-PS

Medical record data could include hundreds of thousands or even millions of medical

records integrated from various resources with the treatments assigned by a number of

doctors and patients treated at many different clinics or hospitals. The multilevel clus-

tering feature of medical record data further complicates their analysis when treatment

effect is intended since it invalidates the crucial independence assumption for the out-

comes that many statistical models make. Mixed effects model is the most widely used

statistical tool to deal with the clustered and correlated data. However, two impor-

tant assumptions for the random effects terms made in the conventional mixed effects

models are the independence with respective to other fixed effect terms including the

treatment assignment and the normality. These assumptions could be too restrictive for

the real world medical record data. We propose a flexible linear mixed effects propen-

sity score model to deal with the complicated correlation structures of medical record

data conveniently and relax these two assumptions by establishing the equivalence of

treatment effect estimates obtained from FM-PS and the dummy variable fixed effects

PS (FE-PS) regression model. This equivalence not only relaxes the assumption on

the independence between the random effect terms and the fixed effect terms in linear

mixed effects model but also the normality assumption for the random effect term.

The novelties of the proposed FM-PS model include: First, it relaxes the very

restrictive independence assumption made in mixed effects model for the random effects

terms with respect to other fixed effect terms in modeling the clustered data. Second,

it flexibly models the complicated correlation among the confounding covariates of

medical record data by incorporating them in the propensity score model and including

the proportion of subjects in the treated group and the mean of the estimated propensity
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score of each cluster in a simple linear mixed effects model without the burdens to model

the details of the covariance structure among the random effect and other covariates.

Third, FM-PS is computationally efficient as compared to the FE-PS method which

is prohibited in the existence of hundreds thousands clusters like many medical record

data. Therefore, FM-PS is applicable in practice for the huge clustered dataset. Fourth,

a novel cluster bootstrapping procedure to obtain the valid variance estimation for the

treatment effect estimate from FM-PS is proposed. Furthermore, a likelihood ratio test

statistic is proposed to allow for selecting the efficient and unbiased treatment effect

estimate from between FM-PS and SM-PS models.

1.4 Outline of The Remaining of Dissertation

Due to the limitations of existing statistical methods, in this dissertation, new

statistical methods are developed for treatment effectiveness inference. The methods

focus on addressing some issues of heterogeneity in treatment assignment and multilevel

clustering settings for medical record data in comparative effectiveness research. It is

the goal to develop robust and efficient statistical methods to deal with these limitations

under these scenarios by considering the complicated data structures and relaxing some

unrealistic assumptions for real applications. In addition, the statistical properties for

the proposed methods and models are extensively explored. Overall, the structure of

this dissertation is arranged as the following:

Chapter One: provides the introduction of medical record data, the existing statistical

methods for the analysis of these data, and the proposed methods due to the limitations

of existing methods.

Chapter Two: describes the details of the proposed two-stage variance estimator for

PS regression models and its performance under finite sample settings via simulation
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studies. The asymptotic results of PS regression models are established in this chapter.

Chapter Three: delineates the details of the proposed semi-nonparametric propensity

score (SNP-PS) approach for clustered observational data and its performance under

finite sample settings. Practical application of SNP-PS regression method is demon-

strated via a real data analysis. In addition, the mathematical derivations for the

properties of SNP-PS under large sample scenarios are given in this chapter.

Chapter Four: presents a flexible linear mixed effects propensity score (FM-PS)

model for multilevel clustered data. Simulation studies are used to demonstrate FM-PS

performance under finite sample setups and different model misspecification settings.

Justification for FM-PS approach to model the multilevel clustered data for treatment

effectiveness inference is given via cluster bootstrap resampling scheme.

Chapter Five: discuss the future research for the proposed methods and the potential

extensions.
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Chapter 2

A Robust Two-Stage Variance Estimation for PS Regression Analysis

2.1 Introduction

Randomized controlled trial (RCT) is regarded as the gold standard to establish

causal effects of drug efficacy. In completely randomized clinical trials, treatments

are randomly assigned and the proper randomization procedure guarantees that there

exists no systematic difference among subjects for their baseline features in different

treatment groups. However, RCTs have their limitations and can not always be con-

ducted in practice (e.g. Kramer and Shapiro, 1984; Johnston et al, 2006). Data from

observational studies or electronic medical records, on the other hand, are readily avail-

able and often used as alternatives for the evaluation of therapy effectiveness and drug

efficacy.

The key difference between data from the observational study and RCT is that the

treatment assignment under the real world observational design is not random. Instead,

the treatment allocation of each subject is primarily made by researchers according

to the subject’s characteristics (e.g. physical condition, disease severity, etc). The

non-random treatment assignment could lead to imbalanced baseline characteristics. If

unaccounted for, this could bias the treatment effect estimate and result in the problem

known as confounding issue that could lead to erroneous scientific conclusions. Among

proposed methods for confounding adjustment, multiple regression and various version



of propensity score (PS) methods are commonly used in practice.

If the multiple regression model is correctly specified, the treatment effect estimator,

i.e. least square estimate (LSE), provides the best linear unbiased estimate (BLUE)

for the treatment effect, which can be regarded as the benchmark for evaluating the

efficacy of different interventions and procedures in comparative effectiveness research.

Alternatively, the PS method (Rosenbaum and Rubin 1983) provides a simple and

straightforward way to control confounding factors in non-randomized settings. PS

methods are increasingly used as alternatives of multiple regression (e.g. Czajka et al.

1992; Schneeweiss et al. 2002; Bang and Robins 2005) due to its simplicity and robust-

ness. A propensity score is defined as the conditional probability of a subject being

assigned to a particular treatment in a study given a set of observed covariates. Rosen-

baum and Rubin (1983) had shown that under certain conditions, the distributions of

measured baseline covariates for the treated and untreated subjects are similar condi-

tional on any given propensity score. That is, subjects with the same propensity scores,

they have the same distributions for the baseline covariates no matter if they come from

the treated or untreated groups. They demonstrated that if the treatment assignment

is strongly ignorable (i.e. condition (1.3) of Rosenbaum and Rubin, 1983), conditional

on propensity scores allows one to obtain an unbiased treatment effect estimate.

In practice, the propensity score is unknown and commonly estimated via the logistic

regression model. Once the propensity scores are estimated, the treatment effect can

be estimated via matching (e.g. Tanasescu et al. 2002; Neily et al. 2010; Rothberg et

al. 2010), stratification (e.g. Rosenbaum and Rubin 1984; He and McDermott 2012),

inverse-probability-weighting (IPW) (e.g. Do and Finch 2008), or covariate adjustment

(e.g. D’Agostino 1998). PS regression analysis where the estimated propensity score

used as a covariate in the second stage regression model is frequently used in clinical

research (e.g. Wang and Donnan 2001; Weitzen et al. 2004). Analysis results based
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on the PS regression constantly appear in top scientific journals such as JAMA and

NEJM (e.g. Koch et al. 2008; Shaw et al. 2008; Eklind-Cervenka et al. 2011; Jackson

et al. 2012; Bangalore et al. 2012).

While the PS covariate adjustment provides an efficient and robust treatment effect

estimate, the variance estimation of the treatment effect estimate from the standard

PS regression model is biased. In practice, researchers routinely base their inference

on the default variance estimate from the second stage regression model, ignoring the

fact that the PS is a estimated quantity. We recognize that the PS regression approach

can be viewed as a two-stage procedure used in a wide class of empirical applications

where unobserved regressors, such as expectations, are estimated from an auxiliary

statistical model. It is well known that the second-step estimated standard errors

and related test statistics based on these procedures are incorrect (Murphy and Topel

1985). In this chapter, we jointly model the distribution of the response and treatment

assignment given the propensity scores and develop a simple yet general method for

calculating asymptotic standard errors in two-stage models for PS regression analysis.

The joint modeling scheme resolves the biased variance estimation issue in the standard

PS regression model by taking into account the stochastic errors in the parameter

estimates when the propensity scores are estimated.

Similar concerns on the variance estimates have been noticed for other PS-based

methods and improved variance estimators have been proposed for PS inverse prob-

ability weighting (e.g. Lunceford and Davidian 2004; Williamson et al. 2012), and

matching (e.g. Abadie and Imbens 2011). This chapter fills in a gap in variance esti-

mation for the PS regression method. Our simulation results further demonstrate the

importance of using the proposed two-stage regression model in practical comparative

effectiveness research.

The rest of this chapter is organized as follows. In Section 2, we provide some
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background introductions on existing PS methods. In Section 3, we introduce the PS

regression model under the two-stage analysis framework. We then derive the asymp-

totic result under the proposed two-stage PS regression scheme. Based on the asymp-

totic result, we propose a robust and improved variance estimator. In Section 4, we

conduct simulations to evaluate the finite sample performance of the proposed variance

estimator under various confounding settings and model misspecification scenarios. In

addition, to appreciate the usefulness of PS regression method in comparative effec-

tiveness research, we compare the performance of our proposed two-stage PS regression

method with other existing PS methods, in along with the benchmark method, i.e.

multiple regression. We then apply the proposed method to a real data analysis in Sec-

tion 5 to demonstrate the practical application. We end the chapter with discussions

in Section 6.

2.2 Existing Methods

We first introduce some notations. Let yi be the response variable, trti be the

binary treatment assignment status (1 for treated and 0 for untreated), and xi be other

observed covariates with dimension of p for individual i (i = 1, · · · , n). The observation

for each subject consists of (yi, trti,xi). In this chapter, we focus on the situation where

the response variable is continuous and depends on treatment assignment with effect

of αtrt and other observed covariates x:

E(y | trt,x) = α0 + αtrt ∗ trt+ x ∗αx

Our primary interest is the treatment effect, αtrt, estimate and its variance estimation.

Under the counterfactual framework of Rosenbaum and Rubin (1983), the primary

interest is the so-call average treatment effect ∆ ≡ E(y(1)) − E(y(0)) where y(1) and
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y(0) are the potential outcomes if the subject had been assigned to the treated and un-

treated group, respectively. In reality, y(1) and y(0) can not be observed simultaneously.

Instead, they are related to the observed response y as: y = trt ∗ y(1) + (1− trt) ∗ y(0).

Under the strongly ignorable treatment assignment assumption of Rosenbaum and Ru-

bin (1983), i.e. (y(1), y(0)) ⊥ trt | x, there exist equivalence between ∆ and αtrt which

can be easily checked: αtrt = E(y | trt = 1,x) − E(y | trt = 0,x) ⇒ αtrt = E(αtrt) =

E(E(y | trt = 1,x)) − E(E(y | trt = 0,x)) = E(E(y(1) | x)) − E(E(y(0) | x)) =

E(y(1) | x)− E(y(0) | x) = ∆.

With the strongly ignorable assumption, the confounding factors can be controlled

via a simple statistic, i.e. the propensity score (PS). PS is defined as the conditional

probability for a unit to receive the treatment given all other observed covariates, i.e.

PSi ≡ Pr(trti = 1 | xi). That is, under the strongly ignorable assumption, we have:

(y(1), y(0)) ⊥ trt | PS(x) as shown by Rosenbaum and Rubin (1983). In practice, the

propensity score is unknown and usually estimated by the logistic regression model:

logit(PS) = xβ. With the parameters β estimated, the propensity score can be esti-

mated as:

P̂Si =
exp (xiβ̂)

1 + exp (xiβ̂)

and the treatment effect can be estimated via PS matching, stratification, IPW, or

covariate adjustment.

Under the standard PS regression framework, the treatment effect estimate and its

corresponding variance estimation are obtained by fitting the following simple linear

regression model:

yi = α0 + αtrttrti + α1P̂Si + εi (2.1)

where P̂Si is the estimated propensity scores. We denote the treatment effect estimator

from the standard PS regression model (2.1) as α̂trt,PSR. Even though α̂trt,PSR is
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unbiased under the strongly ignorable and linearity assumptions, the default variance

estimate (denoted as V̂ ar(α̂trt,PSR)) from the standard PS regression model (2.1) is

biased as will be demonstrated by the extensive simulation studies in Section 2.4.

2.3 Two-Stage Framework for PS Regression

To delineate the proposed variance estimator, we first express the PS regression

analysis as a two-stage regression model shown below:

Stage 1 Model: trti | xi ∼ f(trti | xi,θ1)

Stage 2 Model: (yi, trti) | PS(xi,θ1) ∼ f(yi | trti, PS(xi,θ1),θ2)f(trti | PS(xi,θ1))

where θ1 and θ2 are the parameter sets associated with Stage 1 and 2 models. The

unknown PS score, PS(x,θ1)(= Pr(trt = 1 | x,θ1)), is a function of x and θ1.

The log-likelihood of Stage 1 model is

l1(θ1) =
n∑
i=1

l1,i(θ1) =
n∑
i=1

log f(trti | xi)

=
n∑
i=1

{trti ∗ log(PSi) + (1− trti) ∗ log(1− PSi)} (2.2)

where PSi = Pr(trti = 1 | xi,θ1). If the logistic regression model is used in Stage 1

model, then PSi =
exp(β0+xiβ)

1+exp(β0+xiβ)
and θ1 = (β0,β)

′
.

The log-likelihood of Stage 2 model is

l2(θ1,θ2) =
n∑
i=1

l2,i(θ1,θ2) =
n∑
i=1

log f(yi, trti | PSi)

=
n∑
i=1

log {f(yi | trti, PSi,θ2)f(trti | PSi)}

=
n∑
i=1

log f(yi | trti, PSi,θ2) +
n∑
i=1

l1,i(θ1). (2.3)
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f(yi | trti, PSi,θ2) = φ(yi;α0 + αtrttrti + α1PSi, σ
2) where function φ(y;µ, σ2) is the

normal density function with mean µ and variance σ2. Thus, θ2 = (α0, αtrt, α1, σ
2)
′
.

In Stage 1 model, the parameter θ1 and PS score, PSi, are first estimated via

equation (2.2) as θ̂1 = argmaxθ1
l1(θ1) and P̂Si = PS(xi, θ̂1), respectively. Then the

estimated PS scores are plugged into equation (2.3) for estimating θ2, which contains

the treatment effect αtrt, our primary interest. Specifically, in the second stage analysis,

θ̂2 = argmaxθ2
l2(θ̂1,θ2). Note that when PSis are replaced by P̂Sis, maximizing the

likelihood l2(θ1,θ2) reduces to maximizing the likelihood of the following simple linear

regression model:

yi = α0 + αtrttrti + α1P̂Si + εi,

i.e., the standard PS regression model. We note that the term l1,i(θ1) in l2,i(θ1,θ2) plays

no role in estimating θ2 but it is a critical term for the variance estimation. Ignoring

this term will result in variance estimate very close to the one given by the standard

PS regression model (2.1), i.e. V̂ ar(α̂trt,PSR), which tends to be biased. We denote the

treatment effect estimator for parameter αtrt as α̂trt,P under our proposed two-stage

framework. Under some regularity conditions, we have the following asymptotic results

for the treatment effect estimate α̂trt,P :

Theorem 2.3.1. The treatment effect estimator α̂trt,P is asymptotically normally dis-

tributed with,
√
n(α̂trt,P − α∗trt)→ N(0, σ2

22)

where σ2
22 is the second diagonal element of the covariance matrix Σ given as the fol-

lowing:

Σ = V2 + V2[CV1C
T −RV1C

T −CV1R
T ]V2

with V −11 = E

{(
∂l1
∂θ1

)(
∂l1

∂θT

1

)}
, V −12 = E

{(
∂l2
∂θ2

)(
∂l2

∂θT

2

)}
, C = E

{(
∂l2
∂θ2

)(
∂l2

∂θT

1

)}
,
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and R = E

{(
∂l2
∂θ2

)(
∂l1

∂θT

1

)}
. Under the strongly ignorable condition (1.3) and the lin-

earity assumption in COROLLARY 4.3 of Rosenbaum and Rubin (1983), α∗trt can be

replaced by αtrt, the true marginal treatment effect.

The proof of Theorem 2.3.1 can be found in Appendix I. The above theorem provides

us a basis for a modified variance estimator. To estimate the covariance matrix Σ, we

propose a sample estimate of Σ as the following:

Σ̂ = V̂ 2 + V̂ 2[ĈV̂ 1Ĉ
T
− R̂V̂ 1Ĉ

T
− ĈV̂ 1R̂

T
]V̂ 2

where V̂
−1
1 = 1

n

∑n
i=1

∂l1,i

∂θ1

∂l1,i

∂θT

1

| ˆθ1
, V̂

−1
2 = 1

n

∑n
i=1

∂l2,i

∂θ2

∂l2,i

∂θT

2

| ˆθ1,
ˆθ2
, Ĉ =

1
n

∑n
i=1

∂l2,i

∂θ2

∂l2,i

∂θT

1

| ˆθ1,
ˆθ2

and R̂ = 1
n

∑n
i=1

∂l2,i

∂θ2

∂l1,i

∂θT

1

| ˆθ1,
ˆθ2

, respectively. Matrix Σ̂ provides

a good estimate to Σ as can be demonstrated by the simulation studies below. The

proposed variance estimator of the treatment effect estimate α̂trt,P is σ̂2
22 which is the

second diagonal element of covariance matrix Σ̂.

2.4 Simulation Studies

To evaluate the performance of the proposed two-stage regression estimator versus

other existing estimators, we conduct simulation studies under various confounding

settings as described in the following. Specifically, we compare the treatment effect

estimator using the proposed two-stage model, i.e. α̂trt,P , versus the estimates from PS

stratification (α̂trt,S), IPW (α̂trt,IPW ), multiple regression (α̂trt,LSE), and the standard

PS regression (α̂trt,PSR).

Treatment allocation model: In our first set of simulations, the treatment assign-

ment is based on the following mechanism:

logit{PSi(= P (trti = 1 | x1i))} = x1iβx, (2.4)
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where the confounding covariate vectors x1i = (x1i,1, · · · ,x1i,p)
T have p independent

covariates. We let half of the confounding covariates be binary and the other half

be continuous. For the binary variables, they follow Bern(0.5) and the continuous

variables are simulated from N(0, 1). For the ease of description, we let each parameter

βx,j in βx = (βx,1, · · · , βx,p)
′

be randomly generated from N(0, 1) but they are fixed for

all the subsequent simulations.

Data generating model: The responses are generated based on the following data

generating process:

yi = αtrttrti + x1iαx + εi, (i = 1, · · · , n) (2.5)

where εi ∼ N(0, 1) and is independent of trti and x1i. The true treatment effect αtrt

is fixed at 0.5. The effect of each confounding covariate, αx,j (j = 1, · · · , p), is also

generated from N(0, 1).

In observational studies, there may exist many covariates and we may not know

which are the true confounding factors and which are not. It is common to include

most if not all of them in the analysis. To mimic the real world observational data,

in addition to the (true) confounding covariates x1i, we also simulate an additional set

of q (q ≥ 0) nuisance variables, x2i. Again, among the q nuisance variables, half of

them are generated from Bern(0.5) and the other half follow N(0, 1). These nuisance

variables have no effects on either the response variable y or the treatment assignment

trt. However, we include the observed covariates xi = (xT1i,x
T
2i)

T in all analysis to

mimic the data analysis in practice. For cases where q = 0, only the true confounding

covariates are included, the best scenario that could happen in practice.

Table 2.1 summarizes simulation results with varying sample size n, the number
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of confounding covariates p and the number of nuisance variables q. For each simu-

lation setup, the results are based on 1000 simulations. Column “Mean(α̂trt)” repre-

sents the average treatment effect estimate, column “Monte Carlo SD(α̂trt)” shows the

Monte Carlo standard deviation of the treatment effect estimate, and column “Average

SE(α̂trt)” presents the average standard error for the treatment effect estimate.

Inspecting Table 2.1 reveals that the treatment effect estimate is very close to the

true effect size 0.5 in all situations indicating the unbiasedness of treatment effect es-

timate under different analysis schemes. The value in column “Monte Carlo SD(α̂trt)”

can be viewed as the true error of treatment effect estimate for each estimator. A closer

inspection of this column for the first part of Table 2.1 clearly shows that the stan-

dard deviations for the LSE, the standard PS regression and the proposed two-stage

regression are all close to each other. This indicates that the PS regression based treat-

ment effect estimators can be almost as efficient as the one from the multiple regression

method. A further inspection of this column reveals that both PS stratification and

IPW methods provide less efficient estimates.

Most importantly, comparing the column of “Average SE(α̂trt)” with the column

of “Monte Carlo SD(α̂trt)” for the standard PS regression estimator, i.e. α̂trt,PSR, we

notice that there exist big differences. The former is consistently larger than the latter,

indicating the variance estimation from the standard PS regression is upwardly biased.

This problem remains unchanged even when the sample size increases. For example, in

the scenario of sample size 500, p = 10, and q = 0, the mean standard error 0.276 is more

than doubled from the standard deviation 0.119. When the sample size is increased to

5000, the mean standard error 0.086 is still more than double of the standard deviation

0.037. The invalid variance estimation of the standard PS regression model is also

reflected in the 95% confidence interval (CI) coverage which is always far away from

95% in all simulation settings. In contrast, the standard error based on the proposed
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two-stage framework is always very close to the standard deviation in all simulation

settings no matter if the sample size is large or not. Furthermore, the corresponding

95% CI coverage for the proposed two-stage estimator, i.e. α̂trt,P is close to 95% in all

simulation settings and further confirms the unbiased variance estimation.

To further investigate the robustness property of the proposed variance estimator,

we conducted two additional simulations by varying the data generating model and the

treatment allocation model. Specifically, we consider the following two model misspec-

ification scenarios:

Misspecification of PS model: we keep the data generating model (2.5) the same

but change the treatment assignment from the logistic regression model (2.4) to the

following allocation mechanism:

logit{PSi(= P (trti = 1 | x1i))} = β0 + β1x
2
1i,1 + x1iβx

where βx = (βx,1, βx,2, · · · , βx,p)
′

and x1i = (x1i,1, x1i,2, · · · , x1i,p), respectively. That is,

the first continuous covariates x1i,1s affect the treatment assignment trt both linearly

and quadratically. However, when estimating the propensity scores, we only include

the linear terms of all observed covariates xi in our analysis. In this sense, the PS

model is misspecified but not the multiple regression model.

Misspecification of multiple regression model: we keep the treatment allocation

mechanism (2.4) but change the data generating model as follows:

yi = αttrti + α1x
2
1i,1 + x1iαx + εi.

Here αx = (αx,1, αx,2, · · · , αx,p)
′

and x1i = (x1i,1, x1i,2, · · · , x1i,p), respectively. In this

simulation, the first continuous covariates x1i,1s affect the response yi both linearly and

quadratically. When fitting the multiple regression model, we still use the linear term of
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all observed covariates. That is the multiple regression model is misspecified. However,

the PS model is not misspecified. For each of the model misspecification scenario, we

consider two sample size scenarios, i.e. 500 and 5, 000. The simulation results are

presented in Table 2.2.

From the first half of Table 2.2 where the PS model is misfitted, we note that the

treatment effect estimates based on different estimators are quite close to the true effect

size except the PS stratification estimator. This observation keeps unchanged when the

sample size increases from 500 to 5000. It is evident from Table 2.2 that the variance

estimation via the standard PS regression is far away from the true variance. However,

the variance estimate based on the proposed two-stage method is always close to the

true variance.

In the second half of Table 2.2 where one of the covariates affects the response

quadratically, we notice that the treatment effect estimates from PS stratification,

IPW, and multiple regression methods all suffer biasness. The biasness from IPW gets

reduced when the sample size increases while the biasness does not get improved for PS

stratification and multiple regression. On the other hand, the treatment effect estimates

from the standard PS regression and the proposed two-stage regression framework are

unbiased. However, the variance estimation via the standard PS regression is severely

upward biased from the true one. In contrast, our proposed method always provides

an accurate variance estimate for the true variance.

With the extensive simulation studies, our overall observation is that the treatment

effect estimators based on both the standard PS regression method and the proposed

two-stage regression scheme provide very accurate treatment effect estimate even when

the model is misspecified. They can be as efficient as that of BLUE based on the

multiple regression model when the model is correctly specified. However, the variance

estimation of the treatment effect estimate under the standard PS regression scheme
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is always biased. In contrast, the proposed variance estimation based on the two-stage

framework is consistently close to the true variance in all scenarios considered.

2.5 Real Data Analysis

To demonstrate the usage of the proposed method, we applied it to the analysis of

a breast cancer study by the German Breast Cancer Study Group (Rauschecker et al.

1995). The study originally was intended as a randomized trial but it had to be changed

to an observational study due to the low randomization rate. The primary objective for

this study was to compare two breast cancer treatment procedures, i.e. the mastectomy

(trt = 0) versus lumpectomy (breast conservation, trt = 1), on the effect of quality of

life (QoL) for the breast cancer patients after the surgery. A subset of the data for this

study can be obtained from “nonrandom” R package with 646 subjects. The primary

outcome was the performance status (PST) 9 months after surgery, which is quantified

as a score between 0 and 100 based on the 25 QoL questionnaire responses, where

higher scores reflect better QoL. Covariates other than the therapies (i.e. mastectomy

vs. lumpectomy) including patient age (Age : ranges from 23 to 82) and tumor size

(ts : 1mm ∼ 22mm) are considered as potential confounding factors.

We categorized age as young (age: ≤ 55) and old (age: > 55) and tumor size

as small (ts: ≤ 10mm) and large (ts: > 10mm), respectively as did in Senn et al

(2007). Distribution of baseline characteristics for these two covariates among the two

treatment groups and each stratum of age and tumor size combination are given in

Table 2.3.

First part of Table 2.3 suggests that age and tumor size are somewhat imbalanced

between the two treatment groups (59.4 yr v.s. 52.0 yr for mean age and 14.5mm v.s.

13.5mm for mean tumor size). Closer inspection of the second part of Table 2.3 reveals

that older patients with larger tumor size favor mastectomy procedure while younger
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patients with larger tumor size prefer lumpectomy procedure. This suggests that the

interaction of age and tumor size plays a role on the treatment assignment process.

Thus, we use the following logistic regression model to estimate the propensity score:

logit{PSi(= Pr(trti = 1 | (agei, tsi)))} = β0 + β1 ∗ agei + β2 ∗ tsi + β3 ∗ agei ∗ tsi

Analysis results using different analysis schemes are presented in Table 2.4.

First row of Table 2.4 presents the crude treatment effect estimate of 1.589 without

adjusting any confounding covariate. However, after adjusting the confounding factors,

the standard PS covariate adjustment, the proposed two-stage framework, and the mul-

tiple regression all end up with a sharply reduced treatment effect estimate as 0.793.

The treatment effect estimates using the PS stratification (with 4 strata) and IPW

scheme are even more sharply reduced to 0.013. All methods give us positive treat-

ment effect estimate indicating that the QoL for patients in the breast conservation

group is better than that of mastectomy group. However, this conclusion is not statis-

tically significant which can be easily checked from the corresponding 95% confidence

intervals. A further inspection of the standard error from each confounding adjustment

scheme also reveals that the standard error based on the proposed two-stage regression

framework is the smallest one among all methods compared.

2.6 Discussion

In this chapter, we proposed a new two-stage variance estimator for the treatment

effect estimate under the PS regression framework. We jointly modeled the response

and treatment assignment under the two-stage analysis framework which is different

from the standard PS regression scheme. We established the asymptotic result for the

treatment effect estimator based on the two-stage joint modeling scheme. An improved
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variance estimator was proposed based on the asymptotic result. As shown by our

simulations, the variance estimator from the standard PS regression model is biased in

general and this will lead to dramatically reduced power for hypothesis testings. This

variance estimator did not take into consideration the fact that the PSs used in the

second stage regression were estimated with errors. In contrast, the proposed two-stage

regression framework took this into consideration and provided an accurate variance

estimate.

Our simulation studies showed that both the standard PS regression and the pro-

posed two-stage methods can provide as efficient estimate as the multiple regression

can. We further demonstrated that the proposed variance estimator is robust under

various model misspecification settings. Accurate treatment effect estimate can still

be obtained using both the standard PS regression and the proposed two-stage frame-

work even when the model is misspecified while other methods including the multiple

regression may fail. These simulation results demonstrated the importance of using

the proposed variance estimator in practical comparative effectiveness research. The

proposed method has been implemented in a simple R function which can be freely

available from our website at http://www.bios.unc.edu/∼bzou/TwoStagePS/.
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Table 2.1: Simulation Results Under Settings (2.4) & (2.5)

# of covariates Monte Carlo Average 95% CI
p q Estimator Mean(α̂trt) SD(α̂trt) SE(α̂trt) Coverage

Sample Size n=500

10 0 α̂trt,S 0.501 0.273 0.301 94.7
α̂trt,IPW 0.496 0.341 0.245 92.0
α̂trt,LSE 0.498 0.115 0.114 94.2
α̂trt,PSR 0.500 0.119 0.276 100.0
α̂trt,P 0.497 0.119 0.117 94.6

10 10 α̂trt,S 0.499 0.279 0.305 95.4
α̂trt,IPW 0.487 0.319 0.250 92.6
α̂trt,LSE 0.499 0.113 0.115 95.9
α̂trt,PSR 0.499 0.115 0.279 100.0
α̂trt,P 0.499 0.115 0.115 94.0

Sample Size n=5000

10 0 α̂trt,S 0.506 0.070 0.103 99.9
α̂trt,IPW 0.501 0.104 0.095 95.6
α̂trt,LSE 0.500 0.036 0.036 94.5
α̂trt,PSR 0.500 0.037 0.086 100.0
α̂trt,P 0.500 0.037 0.036 93.7

10 10 α̂trt,S 0.503 0.076 0.103 99.4
α̂trt,IPW 0.499 0.103 0.093 93.5
α̂trt,LSE 0.498 0.036 0.036 94.4
α̂trt,PSR 0.498 0.037 0.086 100.0
α̂trt,P 0.498 0.037 0.036 94.0

Note: p is the # of confounding covariates
q is the # of nuisance covariates
α̂trt,S is PS stratification estimator with 5 equally divided strata
α̂trt,IPW is IPW estimator
α̂trt,LSE is the least square estimator
α̂trt,PSR is PS regression estimator
α̂trt,P is proposed estimator
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Table 2.2: Simulation Results Under Model Misspecification

Monte Carlo Average 95% CI
Estimator Mean(α̂trt) SD(α̂trt) SE(α̂trt) Coverage

Quadratic term in treatment assignment but PS misfitted with linear term only
Sample Size n=500

α̂trt,S 0.462 0.268 0.293 93.5
α̂trt,IPW 0.491 0.305 0.244 91.7
α̂trt,LSE 0.497 0.112 0.115 95.3
α̂trt,PSR 0.497 0.114 0.276 100.0
α̂trt,P 0.497 0.114 0.126 96.4

Sample Size n=5000

α̂trt,S 0.460 0.075 0.103 99.1
α̂trt,IPW 0.493 0.105 0.090 93.2
α̂trt,LSE 0.499 0.035 0.036 95.4
α̂trt,PSR 0.498 0.036 0.086 100.0
α̂trt,P 0.498 0.036 0.039 96.6

Quadratic term in response but multiple regression misfitted with linear term only
Sample Size n=500

α̂trt,S 0.449 0.374 0.341 92.3
α̂trt,IPW 0.468 0.454 0.342 91.2
α̂trt,LSE 0.449 0.239 0.247 95.2
α̂trt,PSR 0.483 0.246 0.316 98.6
α̂trt,P 0.483 0.246 0.252 95.1

Sample Size n=5000

α̂trt,S 0.459 0.106 0.118 97.0
α̂trt,IPW 0.501 0.147 0.134 95.8
α̂trt,LSE 0.467 0.076 0.078 93.1
α̂trt,PSR 0.501 0.077 0.098 99.0
α̂trt,P 0.501 0.077 0.079 95.5

Note: see Table 2.1 for the table legends
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Table 2.3: Baseline Characteristics for German Breast Cancer Study Data

Mastectomy Lumpectomy
N Mean SD N Mean SD

Age (year) 167 59.4 10.4 479 52.0 11.5

Tumor Size (mm) 167 14.5 3.6 479 13.5 4.4

Mastectomy Lumpectomy
N Proportion N Proportion

Young (≤ 55 yr) Small (≤ 10 mm) 7 0.042 88 0.184

Young (≤ 55 yr) Large (> 10 mm) 49 0.293 206 0.430

Old (> 55 yr) Small (≤ 10 mm) 23 0.138 42 0.088

Old (> 55 yr) Large (> 10 mm) 88 0.527 143 0.298

Total 167 1.000 479 1.000
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Table 2.4: Analysis Results for German Breast Cancer Study Data

Estimator α̂trt SE(α̂trt) 95% CI

α̂trt,Unadj 1.589 1.261 (-0.883,4.061)

α̂trt,S 0.013 1.408 (-2.747,2.773)

α̂trt,IPW 0.013 1.417 (-2.764,2.790)

α̂trt,LSE 0.793 1.299 (-1.753,3.339)

α̂trt,PSR 0.793 1.302 (-1.759,3.345)

α̂trt,P 0.793 1.248 (-1.653,3.239)

Note: α̂trt,Unadj is the estimator without adjusting any confounding factor
see Table 2.1 for the table legends
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Chapter 3

A Semi-Nonparametric PS Model for Clustered Observational Data

3.1 Introduction

In completely randomized clinical trials (RCT), treatments are randomly assigned.

Proper randomization procedures guarantee that there exists no systematic baseline

difference among subjects from different treatment groups. Therefore, RCT is regarded

as the scientific standard to establish the causal effect for a treatment and routinely used

in clinical trials for assessing drug efficacy. However, RCTs have their limitations (e.g.

Kramer and Shapiro 1984; Johnston et al. 2006) and can not always be conducted

in practice. With the ever readily availability of large clinical datasets, especially

the electronic medical record data, various efforts have been made to look into those

datasets in comparing the effectiveness of different treatments. Real world clinical data

offer a broader population spectrum as well as longer time-intervals than a typical

RCT data (e.g. Benson and Hartz 2000). They tend to reflect daily clinical practice

more closely and provide more clinically relevant information than RCTs (e.g. Yang

et al. 2010). The cost of using observational clinical data for comparative effectiveness

research (CER) is often much lower than that of using RCTs. Furthermore, large

medical record database provide an important resource to detect rare adverse events

that can not be detected during randomized controlled trials. Proper use of medical

record data for the comparative effectiveness research provides investigators an effective



way to compare various interventions for the inferiority, equivalence, or superiority (e.g.

Mitka 2010).

However, treatment allocation in practical clinical data tends to be not random.

Rather, the treatment assignment could be influenced by several factors that could

include patient’s, physician’s, and health care system’s factors. This nonrandomness

in treatment assignment could create imbalanced baseline covariates, i.e. confounding

variables, and result in severe biased treatment effect estimate if the confounding factors

are not appropriately adjusted. Several methods have been proposed to address the

confounding problems in observational studies, such as matching (e.g. Miettinen 1968),

stratification (e.g. Cochran 1968), the instrumental variable approach (e.g. Angrist et

al. 1996) and the propensity score method (e.g. Rosenbaum and Rubin 1983). Among

these methods, the propensity score (PS) approach is one of the leading ones commonly

used in practice.

For real world medical record data, the treatment assignment is clustered by physi-

cians, clinics and so on. They come from various sources that include insurance claim

data, hospital and clinic prescription records, etc. Generally, the particular treatment

a patient assigned depends on many factors which include but are not limited to: (1)

physician’s factors which include physician’s professional training, experience, practice

style and his/her determination on each patient’s reception to a particular treatment;

(2) patient’s factors which include patient’s prognostic status, his/her personal prefer-

ence on different treatments; and (3) system’s factors which include insurance policy,

hospital policy, etc. All these factors may reflect samples heterogeneity, for example,

in terms of patients’ health condition, social economical status which may affect both

treatment allocation process and disease outcomes.

In current statistical literature, there are a few methods dealing with the hetero-

geneity cluster effects in PS models based on a parametric mixed effects model where
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the cluster effects are assumed normally distributed (e.g. Thoemmes and West 2011).

This heterogeneity could be complex enough to be fully tracked, and existing simple

PS regression models may not be flexible enough to address the underlying hetero-

geneity. For electronic medical data, the normality assumption may not hold and the

heterogeneity caused by the incomplete measuring of the underlying dynamics in the

real world treatment assignment process could be too complex to be described by a

parametric model. Even worse, the heterogeneity is hidden and cannot be observed

directly, making model misspecification hard to be diagnosed. Such cluster effect mis-

specification could lead to invalid estimation of PS scores and subsequently result in

biased estimate of the treatment effect and erroneous conclusions.

To better capture the heterogeneity in treatment allocation process and reflect the

clustering feature of treatment assignment for real world medical data, we propose

a generalized mixed effect propensity score model to deal with the heterogeneity of

treatment allocations. We relax the normality assumption on the cluster effect in the

generalized mixed effects model with an unspecified cluster effect term. We refer the

proposed PS model as “SNP-PS” model (a.k.a. semi-nonparametric PS model).

The proposed SNP-PS model deals with the heterogeneity of treatment allocation in

a robust fashion without the parametric assumptions on the random effects. It jointly

models the heterogeneity structure in treatment allocation process and the outcome

under non-randomized designs. We establish the asymptotic results for the treatment

effect estimator under semi-nonparametric propensity score regression framework that

allows us to develop an improved variance estimator for the treatment effect estimate.

Simulation results reveal that our proposed variance estimator for the treatment ef-

fect estimate is unbiased while the commonly used default variance estimator by PS

regression method is biased. A new and efficient adaptive integration algorithm is de-

veloped to avoid the potential large Monte Carlo errors in assessing the non-closed form
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log-likelihood function of SNP-PS model for parameters estimation.

The rest of the chapter is arranged as follows. We present the mathematical de-

scription of the proposed SNP-PS approach in Section 2. Detailed procedures for the

parameter estimates and propensity score estimations are given in Section 3. Asymp-

totic results for the proposed SNP-PS estimator are outlined in Section 4. We present

the simulation studies under different heterogeneity structures in Section 5. We demon-

strate the real application of the proposed SNP-PS method in Section 6. Final remarks

are given in Section 7. In Appendix II, we present the mathematical derivation for

the asymptotic results of SNP-PS estimator. Furthermore, since the sampling from

SNP density is not readily available in the existing statistical software package, we also

provide the sampling scheme from SNP density in Appendix III.

3.2 Semi-Nonparametric PS Model

Before introducing our semi-nonparametric propensity score model, we first briefly

describe the standard propensity score model below.

3.2.1 Standard PS Model

Let yi, trti and xi represent the outcome, treatment assignment, and observed

baseline covariates of subject i (i = 1, . . . , n), respectively. Furthermore, yis are inde-

pendently identically distributed (iid).

The validity of the PS approach was established by Rosenbaum and Rubin (1983)

who showed that under the following conditions,

(y(1), y(0)) ⊥ trt|x and 0 < Pr(trt = 1|x) < 1, (3.1)

the measured baseline covariates will be similar between the treated and untreated
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subjects with similar propensity scores (PS ≡ Pr(trt = 1|x)). Here x are the observed

covariates. y(1) and y(0) are the potential outcomes of a particular unit if it had been

assigned to the treated and untreated group, respectively. They are never observed

simultaneously in reality. Their relationship with the observed outcome y and the

treatment assignment trt (1 and 0 for treated and untreated assignment, respectively)

can be expressed as y = trt× y(1) + (1− trt)× y(0). The first condition in (3.1) says

that the treatment assignment is independent of the potential outcomes conditional on

the observed baseline covariates. Based on PS, the treatment effect can be estimated

via matching (e.g. Tanasescu et al. 2002; Dehejia and Wahba 2002), stratification (e.g.

Rosenbaum and Rubin 1984; He and McDermott 2012), inverse-probability-weighting

(IPW) (e.g. Do and Finch 2008), or covariate adjustment (e.g. Koch et al. 2008; Shaw

et al. 2008). In practice, the propensity score is not observed and the following logistic

regression model:

logit(Pr(trt = 1 | x)) = β0 + xβ, (3.2)

is often used to estimate the PS as the following:

P̂S = exp(β̂0 + xβ̂)/[1 + exp(β̂0 + xβ̂)].

where β̂0 and β̂ are parameters estimates of β0 and β in model (3.2).

In the above standard PS model, the treatment assignment heterogeneity is not

taken into consideration. As described earlier, in practical medical record data, the

treatments are non-randomly assigned and clustered, for example, by physician, and/or

clinics, etc. To capture the complex heterogeneity structures of treatment assignment

process in practical medical record data, we propose the following semi-nonparametric

propensity score model.
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3.2.2 First Stage Semi-Nonparametric PS Model

Let yij, trtij and xij represent the outcome, the treatment assignment, and the

observed covariates of subject j nested in cluster i (j = 1, . . . , ni; i = 1, . . . , n), respec-

tively.

We extend the standard PS model (3.2) to the following mixed effects logistic re-

gression model:

logit(Pr(trtij = 1 | xij)) = β0 + xijβ + ηi (3.3)

where ηi is a random cluster effect. Instead of restricting η to follow a normal distri-

bution, we assume that it follows an unknown smooth density function f(η).

Estimation of f(η), can be done through various density estimation methods (e.g.

Rosenblatt 1956; Parzen 1962; Wahba 1975; Scott 1979; Sheather and Jones 1991;

Botev et al. 2010). We adopt Gallant and Nychka (1987) method that uses a truncated

Hermite series multiplied by a normal density to estimate f(η).

SNP representation: Specifically, we approximate f(η) by the following trun-

cated K + 1 terms of Hermite polynomial multiplied by a normal density (e.g. Gallant

and Nychka 1987; Davidian and Gallant 1993; Zhang and Davidian 2001; Chen et al.

2002) as shown below:

f(η;ψ, µ, σ2) ≈ fK(η;ψ, µ, σ2) = H2
K(
η − µ
σ

;ψ)φ(η;µ, σ2)

where φ(η;µ, σ2) is the density function of the normal distribution with mean µ and vari-

ance σ2. HK(z;ψ) is a Hermite polynomial with K+1 terms. In practice, most data in-

cluding skewed, fat, and t-like tail densities can be approximated well by fK(η;ψ, µ, σ2)

with K ≤ 2 (Gallant and Nychka 1987). The first three Hermite polynomials are given

below (details on higher order Hermite polynomials can be found in Gallant and Nychka
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1987).

HK(z;ψ) =


1 if K = 0

cos(ψ) + zsin(ψ) if K = 1

(cos(ψ1)− sin(ψ1)sin(ψ2)√
2

) + zsin(ψ1)cos(ψ2) + z2 sin(ψ1)sin(ψ2)√
2

if K = 2

where parameters (ψ, ψ1, ψ2) ∈ (−π
2
, π
2
]. This approximation provides a fully parametric

representation for the completely nonparametric specifications and is termed by Gallant

and Nychka (1987) as semi-nonparametric (SNP) representation. Let ω = (µ, σ2) (for

K = 0), or ω = (ψ, µ, σ2) (for K = 1) or ω = (ψ1, ψ2, µ, σ
2) (for K = 2) be the set of

parameters used for characterizing the density of η under SNP representation. When

K = 0, fK(η;ω) reduces to a normal distribution.

SNP-PS log-likelihood: With the use of SNP representation for the density

function, the log-likelihood of the semi-nonparametric logistic regression model (3.3)

can be written as:

l(β,ω) =
n∑
i=1

li(β,ω) =
n∑
i=1

log

[∫ ∞
−∞

ni∏
j=1

f(trtij | xij, ηi;β)f(ηi;ω)dηi

]
(3.4)

where f(trt | x, η;β) is the logistic density function given by the following:

f(trt | x, η;β) =
exp(trt ∗ [xβ + η])

1 + exp(xβ + η)

Note that in the proposed SNP-PS model (3.3), we do not restrict the cluster effect

term η to have mean 0. Thus, parameters β0 and E(η) cann’t be separated and only

β0 + E(η) is estimable. For model identifiability purpose, we set β0 = 0. No analytic

closed form for this log-likelihood is available. To get the maximum likelihood estimate

(MLE) of the parameters θ = (β,ω), we adopt EM algorithm (Dempster et al. 1977)

based on an adaptive integration mechanism to evaluate the non-analytic closed form
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log-likelihood function (detailed in Section 3).

3.2.3 Second Stage Semi-Nonparametric PS Regression Model

After the parameters of SNP-PS model (3.3) are estimated, we estimate the propen-

sity score for each subject used for the subsequent treatment effect estimate. Specifi-

cally, we predict the cluster effect of cluster i, i.e. ηi as:

η̂i = Eηi|{trt ij }j (ηi | {trt ij}j ; θ̂) =

∫ ∞
−∞

ηi f (ηi | {trt ij}j ; θ̂)dηi

Based on it, we get the estimated propensity score of subject j in cluster i as:

P̂Sij = Pr(trtij = 1 | xij; θ̂) =
exp(xijβ̂ + η̂i)

1 + exp(xijβ̂ + η̂i)
(3.5)

With the propensity scores estimated (i.e. P̂Sij), we estimate the treatment effect via

the following regression model:

yij = α0 + αtrttrtij + α1P̂Sij + εij (3.6)

with εij ∼ N(0, σ2) being the random measurement error.

3.3 An EM Procedure for Parameter Estimation

To obtain the estimation of the parameters θ = (β,ω) in (3.4), we adopt EM

algorithm by treating the cluster effect η as missing, resulting in the full data as (trt,

x, η). The full data likelihood is then given by:

f({trt ij}j , {xij}j , ηi ;θ) = f({trt ij}j , {xij}j | ηi ;β)f (ηi ;ω)

= [

ni∏
j=1

f(trtij | xij, ηi;β)]f(ηi;ω)
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where f(ηi;ω) is the unspecified heterogeneity density that can be represented via

semi-nonparametric method given in the previous section. This leads to the full data

log-likelihood given below:

l(θ) =
n∑
i=1

li(θ) =
n∑
i=1

{[
ni∑
j=1

log f(trtij | xij, ηi;β)] + log f(ηi;ω)}.

E-step: Along with the above full data log-likelihood, the (r+ 1)th E-step of EM

algorithm for SNP-PS is to evaluate the following conditional expectation of full data

log-likelihood:

Q(θ | θ(r)) = Eη|trt(l(θ)) =
n∑
i=1

Eηi|{trtij}j (li(θ))

=

n∑
i=1

∫ ∞
−∞
{[

ni∑
j=1

log f(trtij | xij , ηi;β)] + log f(ηi;ω)} ×

f(ηi | {trt ij }j , {xij }j ;θ(r))dηi

where θ(r) is the estimates from the (r)th M-step or the initial values of the parameters.

The evaluation of the above conditional expectation is not trivial since there is no

analytic closed form. Chen et al. (2002) has proposed a double-rejection Monte Carlo

sampling scheme to replace the integration over the cluster effect by the summation

over the samples from the conditional density f(ηi | {trt ij}j , {xij}j ;θ(r)). However, the

double-rejection sampling approach is not efficient for the SNP-PS model due to its

potentially large Monte Carlo error and low acceptance rate for binary data. Alterna-

tively, we adopt the numerical integration scheme. By Bayes’ law, we can rewrite the

conditional density f(ηi | {trt ij}j , {xij}j ; θ(r)) as the following:

f(ηi | {trt ij}j , {xij}j ;θ(r)) =
[
∏ni

j=1 f (trtij | xij , ηi ;β
(r))]f (ηi ;ω

(r))∫∞
−∞[
∏ni

j=1 f (trtij | xij , ηi ;β(r))]f (ηi ;ω(r))dηi
.
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Based on this new expression of f(ηi | {trt ij}j , {xij}j ;θ(r)), we can obtain the numer-

ical evaluation for quantity Q(θ | θ(r)) since the analytic expression for [
∏ni

j=1 f(trtij |

xij, ηi;β
(r))]f(ηi;ω

(r)) is available with a given Hermite expansion term K.

M-step: Once Q(θ | θ(r)) is estimated, in M-step, we maximize it to obtain

the (r + 1)th step parameter estimate of θ = (β,ω) = (β, ψ, µ, σ2). Notice that

the parameters related to the fixed effects part, i.e. β, and the cluster effects part,

i.e. ψ, µ, σ2, can be separated and optimized separately. That is, we perform the

optimization on the following two functions evaluated in the E-step separately:

QF (β | θ(r)) =
n∑
i=1

∫ ∞
−∞

[

ni∑
j=1

log f(trtij | xij, ηi;β)]f(ηi | {trt ij}j , {xij}j ;θ(r))dηi

QR(ω | θ(r)) =
n∑
i=1

∫ ∞
−∞

[logPK(zi;ω) + log φ(ηi;µ, σ
2)]f(ηi | {trt ij}j , {xij}j ;θ(r))dηi

where zi = ηi−µ
σ

and PK(zi;ω) = H2
K(zi;ω).

Specifically, we optimize QF (β | θ(r)) using the L-BFGS-B algorithm (Byrd et al.

1995). The L-BFGS-B algorithm is an extension of the L-BFGS algorithm to handle

simple bounds on the model (Zhu et al. 1997). The L-BFGS algorithm is an efficient

algorithm and particularly suited for optimization problems with a large number of

variables. L-BFGS-B uses the ideas from the trust region methods while keeping the

L-BFGS update of the Hessian and line search algorithms.

However, there exists singularity for the derivatives of the cluster effect with respect

to ω when K > 0. Therefore, we use Nelder-Mead algorithm (Nelder and Mead 1965)

to maximize QR(ω | θ(r)). Nelder-Mead algorithm uses only function values and works

reasonably well for non-differentiable functions.

In practice, the Hermit expansion term K for the SNP representation is unknown

and needs to be determined. Commonly used model selection criteria, for example,

AIC (Akaike 1974) or BIC (Schwarz 1978) can be used for this purpose (Zhang and
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Davidian 2001). Specifically, we select the model that minimizes − logL(θ̂; trt,x)+cK ,

where

− logL(θ̂; trt,x) = −
n∑
i=1

{
∫ ∞
−∞

[

ni∏
j=1

f(trtij | xij, ηi; β̂)]f(ηi; ω̂)dηi},

and cK = DK or 1
2
(logN)DK (for AIC and BIC, respectively) is a penalization term

on the number of parameters used in the model with DK denoting the dimension of θ

and N =
∑n

i=1 ni representing the total number of subjects in the dataset.

In summary, the following procedure summarizes the proposed SNP-PS regression

model to obtain the treatment effect estimate for the clustered data:

Step 1: Fit a set of SNP-PS models with different Hermite expansion terms (e.g.

K = 0, 1, and 2) via the above EM algorithm.

Step 2: Use the model selection criteria AIC or BIC to select the optimum SNP-PS

model and estimate the PS for the selected model.

Step 3: Plug in the estimated PS scores into PS regression model (3.6) to obtain the

treatment effect estimate α̂trt.

To obtain the valid variance estimator for α̂trt, we first establish the asymptotic

results for α̂trt in the below section. From which we propose an improved variance

estimator for the treatment effect estimate under SNP-PS regression framework.

3.4 Asymptotic Results

Before presenting the details of the theoretical results for SNP-PS model, we first

introduce the following assumptions:

For samples within each cluster, (y(1), y(0)) ⊥ trt|x and 0 < Pr(trt = 1|x) < 1
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These assumptions are similar to the strongly ignorable treatment assignment assump-

tions of Rosenbaum and Rubin (1983). The strongly ignorable assumptions in Rosen-

baum and Rubin (1983) are conditional on x for all samples while ours are conditional

on x restricted for samples within each cluster and refered as the modified strongly ig-

norable treatment assignment assumption. In order words, the cluster effect is treated

as an unobserved confounding covariate.

Following the similar argument of Rosenbaum and Rubin (1983), under the above

modified strongly ignorable treatment assignment assumptions, α̂trt in model (3.6) can

be shown to approximate the true treatment effect well.

However, the default variance estimate of α̂trt obtained directly from model (3.6),

on the other hand, is a biased estimate for the (unknown true) variance of α̂trt since

it ignores the fact that the PS used in (3.6) are estimated quantities with random

errors instead of the observed covariates. It turns out that the PS regression can

be viewed as a two-stage procedure that commonly used in a wide class of empirical

applications where unobserved regressors, such as expectations, are estimated from

auxiliary statistical models. It is well-known that the estimated standard errors and

related test statistics directly from the second-step regression are incorrect (Murphy and

Topel 1985). With the joint modeling scheme, under the SNP-PS regression framework,

we develop the asymptotic result for α̂trt as described below. Based on it, we propose

a variance estimator with good finite sample performance as shown in our subsequent

simulation studies.

First, we write the log-likelihood for the first stage SNP-PS model (3.3) as the

following:

l1(θ1) =
n∑
i=1

l1i(θ1) =
n∑
i=1

log

{∫ ∞
−∞

ni∏
j=1

f(trtij | xij, ηi;β)f(ηi;ω)dηi

}
with θ1 = (β,ω).
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For the second stage analysis, we have

l2(θ1,θ2) =
n∑
i=1

l2i(θ1,θ2) ≡
n∑
i=1

log f({yij}j; {trt ij}j | {PSij}j)

=
n∑
i=1

log {f({yij}j | {PSij}j; {trt ij}j)f({trt ij}j | {PSij}j)}

=
n∑
i=1

log {f({yij}j | {PSij}j; {trt ij}j)}+
n∑
i=1

log {f({trt ij}j | {PSij}j)}

with θ2 = (α0, αtrt, α1, σ
2)T .

Given the (unknown) true PS score PSij of each sample and the strong ignorable

assumptions, the above log-likelihood can be approximated as

l2i(θ1,θ2) = l2i,a(θ1,θ2) + l2i,b(θ1)

where l2i,a(θ1,θ2) = −ni

2
log(2π)− ni

2
log(σ2)− 1

2σ2

∑ni

j=1(yij −α0−αtrttrtij −α1PSij)
2

and l2i,b(θ1) =
∑ni

j=1 log
(
PS

trtij
ij (1− PSij)1−trtij

)
In PS regression model, the PS scores are first estimated via model (3.5), then the

estimated PS scores are plugged into model (3.6) to obtain α̂trt, the parameter of the

primary interest. Note that when PSijs are replaced by P̂Sijs, maximizing the likeli-

hood l2(θ1,θ2) reduces to maximizing the log-likelihood of the simple linear regression

model (3.6) for the purpose of the treatment effect estimates. The term l2i,b(θ1) in the

above expression for l2i(θ1,θ2) plays a critical role for the variance estimation. Ignoring

this term will lead to the biased variance estimate for the parameter estimators. With

these preparations, under some regularity conditions, we have the following asymptotic

result for α̂trt within the SNP-PS regression framework:
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Theorem 3.4.1. (Asymptoticness) The treatment effect estimator α̂trt is asymptoti-

cally normally distributed with:

√
n(α̂trt − α∗trt)→ N(0, σ2

22)

where σ2
22 is the second diagonal element of the covariance matrix Σ = V2+V2[CV1C

T−

RV1C
T −CV1R

T ]V2 with V −11 = E

{(
∂l1
∂θ1

)(
∂l1

∂θT

1

)}
, V −12 = E

{(
∂l2
∂θ2

)(
∂l2

∂θT

2

)}
,

C = E

{(
∂l2
∂θ2

)(
∂l2

∂θT

1

)}
, and R = E

{(
∂l2
∂θ2

)(
∂l1

∂θT

1

)}
. Under the strongly ignorable

condition (3.7) and the linearity assumption in COROLLARY 4.3 of Rosenbaum and

Rubin (1983), α∗trt can be replaced by αtrt, the true marginal treatment effect.

The detailed proof is outlined in Appendix II. The above theorem provides us a basis

for a modified variance estimator. To estimate the covariance matrix Σ, we propose a

sample estimate of Σ as follows:

Σ̂ = V̂ 2 + V̂ 2[ĈV̂ 1Ĉ
T
− R̂V̂ 1Ĉ

T
− ĈV̂ 1R̂

T
]V̂ 2

where V̂
−1
1 = 1

n

∑n
i=1

∂l1,i

∂θ1

∂l1,i

∂θT

1

| ˆθ1
, V̂

−1
2 = 1

n

∑n
i=1

∂l2,i

∂θ2

∂l2,i

∂θT

2

| ˆθ1,
ˆθ2
, Ĉ =

1
n

∑n
i=1

∂l2,i

∂θ2

∂l2,i

∂θT

1

| ˆθ1,
ˆθ2

and R̂ = 1
n

∑n
i=1

∂l2,i

∂θ2

∂l1,i

∂θT

1

| ˆθ1,
ˆθ2

, respectively. Matrix Σ̂ provides

a good estimate to Σ as can be demonstrated by the simulation studies below.

3.5 Simulation Studies

We evaluate the finite sample performance of the proposed SNP-PS estimator by

conducting extensive Monte Carlo simulation studies under various heterogeneity struc-

tures. The simulation studies are conducted according to the following treatment as-

signment mechanism:

logit(PSij = Pr(trtij = 1 | xij)) = β1x1,ij + β2x2,ij + ηi, (3.7)
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where j = 1, · · · , ni indexes subjects nested in cluster i, (β1, β2) = (−0.5, 0.15), x1,ij ∼

Bern(0.5), and x2,ij ∼ N(0, 1). We let the cluster effect η to follow the following

distribution:

η ∼ fK(η;ψ, µ, σ2) = f1(η;−π
3
, 0.3, 1.5).

This is a SNP density with Hermite expansion terms truncated at K=1 corresponding

to a non-normal distribution (i.e. bio-mode distribution).

The responses are generated based on the following data generating process:

yij = α0 + αtrttrtij + αx1x1,ij + αx2x2,ij + bξi + εij, (3.8)

where (α0, αtrt, αx1 , αx2) = (0.3, 0.5, 1.5, 0.5). εij ∼ N(0, 1.0) is independent of trtij,

xij, and ξi. Distribution of ξi will be discussed in next paragraph. The overall cluster

effect on the response is set as b = 0 and −0.3, respectively. For b = 0, it corresponds

to the scenario of no cluster effect on the response.

To mimic the real world data, we also generate two additional covariates x3 ∼

Unif(−1, 1) and x4 ∼ Exp(1) which do not affect the treatment assignment and

the response. We refer these covariates as nuisance variables. We include both the

confounding covariates and nuisance variables in the SNP-PS model to estimate the

propensity scores.

In addition to the above various configurations for the parameter values, we also

investigate the performance of the proposed estimator α̂trt under different cluster effects

settings for ξ in the response with respect to the cluster effects η in the treatment

assignment process including no cluster effects, i.e. b = 0 (Case 1), ξ = η (Case 2), and

ξ = 0.65 ∗ η + 0.35 ∗N(0, 1) (Case 3).

Under each setting, we compare the proposed SNP-PS regression method with three

other methods. The first method is the unadjusted model where the treatment effect
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estimate is obtained by comparing the differences between the two treatment groups

without adjusting any other confounding factors. The other two methods are PS re-

gression based methods where the propensity scores are estimated using the following

logistic regression models:

logit(PSij = Pr(trtij = 1 | xij)) = γ0 + γ1x1,ij + γ2x2,ij + γ3x3,ij + γ4x4,ij, (3.9)

where the cluster effect is completely ignored in the treatment assignment process and

we refer this method as Naive-PS method.

Instead of ignoring the cluster effect, a normal cluster effect is taken into consider-

ation in the following mixed effects logistic regression model:

logit(PSij = Pr(trtij = 1 | xij)) = γ0 + γ1x1,ij + γ2x2,ij + γ3x3,ij + γ4x4,ij + ζi, (3.10)

where the mixed effects logistic regression model with a normally distributed cluster

effects ζi ∼ N(0, σ2
ζ ) is used to estimate the PS. We refer this PS estimation method

as Normal-PS method.

For all methods compared, the treatment effect estimate α̂trt is obtained from the

PS regression model (3.6) by plugging in the estimated PS. We first start with sample

size of 1000 and the cluster cell size fixed at 5. Results for this simulation setting

are presented in Table 3.1. We then increase the sample size to 5000 and results for

this setting are given in Table 3.2. Column “Mean(α̂trt)” represents the average of

the estimated treatment effect, α̂trt. Column “Monte Carlo SD(α̂trt)” represents the

Monte Carlo standard deviation of α̂trt based on 500 simulations which can be viewed

as the true error of the treatment effect estimate. Column “Average ŜED(α̂trt)” is the

average of the default standard errors of α̂trt output from the second stage PS regression

model (3.6). Column “Average ŜEP (α̂trt)” is the average of the standard errors of α̂trt
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calculated based on our proposed variance estimator, i.e. ŜEP (α̂trt) =
√

Σ̂[2,2], with

Σ̂[2,2] being the second diagonal element of covariance matrix Σ̂ given in Theorem 3.4.1.

Comparing Tables 3.1 and 3.2, we notice that the unadjusted model always produces

severely biased treatment effect estimates in all simulation settings. Naive-PS regression

approach which ignores the treatment assignment heterogeneity also produces severely

biased treatment effect estimates when there exists the cluster effects in the response

(Case 2 & 3). Naive-PS is only acceptable when there is no cluster effects in the

response (Case 1). A further examining Tables 3.1 and 3.2 also show that the normal-

PS estimator also exhibited consistent bias in estimating αtrt. The proposed SNP-PS

estimator is the only estimator that unbiasedly estimates αtrt. This demonstrated the

robustness of the proposed SNP-PS model in both the point estimate and variance

estimate when data is not following a normal heterogeneity distribution.

Tables 3.1 and 3.2 also show that the default standard error ŜED(α̂trt) output

directly from the PS regression model is biased in all simulation settings no matter

which propensity score regression scheme is used. In contrast, the proposed variance

estimator ŜEP (α̂trt) performs very well in all situations considered regardless if normal

or SNP-PS regression approach is used.

To investigate the efficiency of SNP-PS regression in the scenario of normal cluster

effect in the treatment assignment process, we conduct another set of simulation by

setting the cluster effect η in the treatment allocation model (3.7) to follow N(−0.2, 1)

and the setting of the cluster effect ξ in response model (3.8) for Case 3 is set as

ξ = 0.65 ∗ η + 0.35 ∗N(0, 1). Results for this setting of sample size 5000 are presented

in Table 3.3.

Similar observations can be obtained from Table 3.3: there exists a large difference

between the treatment effect estimate based on the unadjusted model and the true

effect size. Naive-PS regression model results in biased treatment effect estimates in

65



the situations of clustered data. Normal-PS and SNP-PS regression models provide

unbiased treatment effect estimates regardless whether there are the cluster effects in

response or not. Again, the proposed variance estimator provides very accurate variance

estimates in all simulation settings. Also, the SNP-PS regression estimator and the

normal PS regression estimator have identical efficiency in all simulation settings. This

is expected since SNP-PS model includes the normal-PS model as a special case. That

is the proposed SNP-PS method won’t lose efficiency when the true model is normal.

The price to pay is the extra computational workload.

In summary, the proposed SNP-PS regression model provides unbiased point esti-

mate for αtrt regardless if there is cluster effect in response, or if heterogeneity in cluster

effect is normally distributed. Furthermore, the proposed variance estimator provides

accurate variance estimate for the variance of α̂trt under the SNP-PS regression frame-

work in all simulation settings. In contrast, the default variance estimator provides

biased variance estimate.

3.6 Real Data Analysis

To demonstrate the practical use of the proposed SNP-PS regression model, we

applied it to a multi-center breast cancer study conducted by German Breast Can-

cer Study Group (Rauschecker et al. 1995). The study originally was intended as

a randomized trial but had to be changed to an observational study due to the low

randomization rate. The primary objective of this study was to compare the simple

mastectomy (trt = 0) versus lumpectomy (BC, breast conservation, trt = 1) on the

effect of quality of life (QoL) for 1036 breast cancer patients. The primary outcome

was the performance status 9 months after surgery, which is scored between 0 and

100 based on the 25 QoL questionnaire responses, with higher scores reflecting better

QoL. Covariates other than the therapies (i.e. mastectomy vs. lumpectomy) including
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patient age (ranges from 23 to 82) and tumor size (1mm ∼ 22mm) were considered as

the potential confounding factors.

Our analysis was based on a sub-data set of this study from “nonrandom” R package

with 646 patients and 63 clinics. We categorized age as young (age: ≤ 55) and old (age:

> 55) and tumor size as small (ts: ≤ 10mm) and large (ts: > 10mm), respectively

as done by Senn et al. (2007). Distribution of baseline characteristics for these two

covariates among the two treatment groups and each stratum of age and tumor size

combination are presented in Table 3.4.

First part of Table 3.4 suggests that both age and tumor size are somewhat imbal-

anced between the two treatment groups. The mean age for the two groups are 59.4

yr and 52.0 yr with the corresponding standard deviation 10.4 and 11.5, respectively.

The mean tumor size for the two groups are 14.5 mm and 13.5mm with standard devi-

ation of 3.6 and 4.4. Taking a closer inspection of the second part of Table 3.4 reveals

that older patients with larger tumor size favor mastectomy procedure while younger

patients with larger tumor size prefer lumpectomy procedure. This suggests that the

interaction of age and tumor size plays a role on the treatment assignment process.

Furthermore, our likelihood ratio test showed that the cluster effect due to the clinic

is significant (p < 10−10) in determining the treatment assignment. Based on it, we

include age, ts, and their interactions as the observed confounding covariates in the

corresponding logistic regression models considered. Analysis results based on different

analysis schemes are summarized in Table 3.5.

An evident observation from Table 3.5 is that the treatment effect estimate based on

the unadjusted model is much larger than that based on all other methods compared.

However, after adjusting the confounding factors via the propensity score regression

method based on different versions of propensity score models, the treatment effect

estimates are appreciably reduced. Different estimation schemes give us quite different
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but all positive treatment effect estimates. The positive number indicates that the

QoL for the breast conservation patients is on average better than that of mastectomy

patients. However, this conclusion is not statistically significant. This can be confirmed

by checking the corresponding 95% confidence interval. Per our model selection criteria,

SNP-PS regression model with Hermite expansion term K = 1 best fit this multicenter

observational dataset and results based on it should be used.

Overall, based on the data collected for this multi-center study, there exists no

statistically significant difference on the QoLs of breast cancer patients between the

two treatment procedures after adjusting the patient age, tumor size, their interaction

and the cluster effect.

3.7 Discussions

In this chapter, we proposed a semi-nonparametric propensity score model to deal

with the treatment allocation heterogeneity that is commonly observed in real world

medical data. The proposed SNP-PS model is robust to the parametric assumption

for the heterogeneity distribution without making any specific parametric distribution

assumption. Instead, a truncated Hermite polynomial along with the normal density

is used to approximate the unspecified heterogeneity density. The Hermite expansion

term can be determined via the frequently used model selection criteria, i.e. AIC or

BIC etc. Numerically, we propose an adaptive quadrature integration algorithm to

assess the non-closed form log-likelihood function for the proposed SNP-PS parameter

estimates to avoid the large Monte Carlo errors of existing sampling based methods

and reduce the computational workload. Furthermore, the biased variance estimate for

the commonly used PS regression model is identified and corrected by our proposed

robust variance estimator. Our proposed variance estimator for the SNP-PS regression
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model is critical in practice, as it will allow us to conduct valid statistical inference

and lead to correct scientific conclusions that could be erroneous if the default variance

estimator was used.

In addition to the propensity score estimation method described in equation (3.5),

we have also studied another estimation method, the posterior mode method. In this

method, P̂Sij =
exp(xij β̂+η̂Mi)

1+exp(xij β̂+η̂Mi)
with η̂Mi = arg maxηi li(ηi | trti,xi; β̂). This prediction

method is the default one in the generalized linear mixed model packages in both SAS

and R. However, this prediction does not perform nearly as good as the empirical

Bayesian based prediction method (3.5).

The proposed SNP-PS for treatment allocation heterogeneity and their perfor-

mances are all based on continuous responses. In real applications, there exists other

type of responses commonly observed in CER studies, such as the binary (e.g. cure vs

non-cure) events, and time to event (e.g. cure or death) data. Extending the proposed

SNP-PS model to these data types under heterogeneous treatment assignment deserves

further research and investigations. For example, longitudinal data where patients are

followed up over years of medical interventions frequently exist in real world medical

data. Such longitudinal resources would pose additional challenges in dealing with the

time-dependent confounding.
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Table 3.1: Non-Normal Cluster Effects in Treatment Allocation (Sample Size 1000)

Average Monte Carlo Average Average

Method α̂trt SD(α̂trt) ŜED(α̂trt) ŜEP (α̂trt)

Case 1: ξ = 0

Unadjusted 0.426 0.095 0.093
Naive-PS 0.498 0.073 0.087 0.073
Normal-PS 0.539 0.107 0.127 0.100
SNP-PS 0.524 0.098 0.124 0.096

Case 2: ξ = η

Unadjusted -0.165 0.108 0.096
Naive-PS -0.098 0.093 0.092 0.078
Normal-PS 0.536 0.106 0.128 0.105
SNP-PS 0.503 0.098 0.125 0.102

Case 3: ξ = 0.65 ∗ η + 0.35 ∗N(0, 1)

Unadjusted 0.041 0.108 0.096
Naive-PS 0.110 0.093 0.092 0.078
Normal-PS 0.537 0.106 0.131 0.107
SNP-PS 0.509 0.098 0.127 0.103

Note: Results are based on 500 simulations
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Table 3.2: Non-Normal Cluster Effects in Treatment Allocation (Sample Size 5000)

Average Monte Carlo Average Average

Method α̂trt SD(α̂trt) ŜED(α̂trt) ŜEP (α̂trt)

Case 1: ξ = 0

Unadjusted 0.426 0.041 0.041
Naive-PS 0.502 0.030 0.040 0.031
Normal-PS 0.546 0.048 0.057 0.044
SNP-PS 0.529 0.043 0.055 0.042

Case 2: ξ = η

Unadjusted -0.168 0.050 0.043
Naive-PS -0.097 0.041 0.041 0.033
Normal-PS 0.545 0.047 0.057 0.046
SNP-PS 0.508 0.043 0.055 0.044

Case 3: ξ = 0.65 ∗ η + 0.35 ∗N(0, 1)

Unadjusted 0.040 0.047 0.043
Naive-PS 0.113 0.038 0.042 0.033
Normal-PS 0.546 0.047 0.058 0.047
SNP-PS 0.515 0.044 0.057 0.045

Note: Results are based on 500 simulations
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Table 3.3: Normal Cluster Effects in Treatment Allocation (Sample Size 5000)

Average Monte Carlo Average Average

Method α̂trt SD(α̂trt) ŜED(α̂trt) ŜEP (α̂trt)

Case 1: ξ = 0

Unadjusted 0.424 0.037 0.040
Naive-PS 0.501 0.030 0.039 0.030
Normal-PS 0.505 0.037 0.049 0.037
SNP-PS 0.505 0.037 0.049 0.037

Case 2: ξ = η

Unadjusted -0.108 0.069 0.042
Naive-PS -0.036 0.068 0.041 0.033
Normal-PS 0.502 0.037 0.049 0.039
SNP-PS 0.502 0.037 0.049 0.039

Case 3: ξ = 0.65 ∗ η + 0.35 ∗N(0, 1)

Unadjusted 0.078 0.067 0.042
Naive-PS 0.152 0.065 0.041 0.033
Normal-PS 0.503 0.037 0.050 0.040
SNP-PS 0.503 0.037 0.050 0.040

Note: Results are based on 500 simulations
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Table 3.4: Baseline Distribution for German Breast Cancer Study Data

Mastectomy Lumpectomy
N Mean SD N Mean SD

Age (year) 167 59.4 10.4 479 52.0 11.5

Tumor Size (mm) 167 14.5 3.6 479 13.5 4.4

Mastectomy Lumpectomy
N Proportion N Proportion

Young (≤ 55 yr) Small (≤ 10 mm) 7 0.042 88 0.184

Young (≤ 55 yr) Large (> 10 mm) 49 0.293 206 0.430

Old (> 55 yr) Small (≤ 10 mm) 23 0.138 42 0.088

Old (> 55 yr) Large (> 10 mm) 88 0.527 143 0.298

Total 167 1.000 479 1.000
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Table 3.5: Analysis of German Breast Cancer Study Data with Cluster Effects

Method α̂trt SE(α̂trt) 95% CI

Unadjusted 1.589 1.261 (-0.883,4.061)

Naive-PS 0.793 1.248 (-1.653,3.239)

Normal-PS 0.560 1.645 (-2.664,3.784)

SNP-PS 0.715 1.636 (-2.492,3.922)

Note: model selection criteria indicates K = 1 for SNP-PS best fit this dataset
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Chapter 4

A Flexible Mixed Effects PS Model for Clustered Data

4.1 Introduction

With the ever readily availability of large clinical datasets, especially the electronic

medical record data, various efforts have been made to look into those datasets in com-

paring the effectiveness of different treatments. Real world clinical data offer a broader

population spectrum as well as longer time-intervals than a typical RCT data (e.g.

Benson and Hartz 2000). They tend to reflect daily clinical practice more closely and

provide more clinically relevant information than RCTs (e.g. Yang et al. 2010). The

cost of collecting observational clinical data for conducting comparative effectiveness

research (CER) is often much lower than that of conducting RCTs. Proper use of

medical record data for the comparative effectiveness research provides investigators

an effective way to compare various interventions for the inferiority, equivalence, or

superiority (e.g. Mitka 2010).

As a kind of observational data, a key feature of medical record data is that the

treatment allocation is not random. Rather, the treatment assignment could be in-

fluenced by many factors related to patients, physicians, and health care systems etc.

This non-randomness in treatment assignment could create imbalanced baseline covari-

ates, i.e. confounding variables, and result in severe biased treatment effect estimate

if the confounding factors are not appropriately adjusted. Several methods have been



proposed to address the confounding problems in observational studies, such as match-

ing (e.g. Miettinen 1968), stratification (e.g. Cochran 1968), the instrumental variable

approach (e.g. Angrist et al. 1996) and various versions of propensity score methods

(e.g. Rosenbaum and Rubin 1983). Among them, the propensity score (PS) is one of

the most commonly used in practice.

Apart from its distinctive observational feature, another key feature of medical

record data is that treatment assignments are clustered. For example, the medical

record data are highly clustered by physicians, clinics, hospitals, and insurance agencies.

Real world medical data come from various sources that include insurance claim data,

hospital, and clinic prescription records, etc. Generally, a treatment that a patient

eventually receives depends on many factors which include but are not limited to: (1)

physician’s factors which include physician’s professional trainings, practice styles etc;

(2) patient’s factors which include patient’s age, gender, social economic status etc;

(3) system’s factors which include insurance policies, hospital policies , etc. All these

factors can create potential biases toward certain type of treatments. The clustering

feature of medical record data may reflect sample heterogeneity due to these factors

that can influence both the treatment allocation process as well as the disease outcomes.

Practical medical record data is not only clustered but also multilevel or hierar-

chically clustered. For example, patients are clustered within physicians who are also

further clustered within hospitals or clinics. As shown in the previous chapter, for med-

ical record data, both the observational and clustering features should be taken into

consideration for unbiased treatment effect estimates. In Chapter 3, we have developed

a robust propensity score model, i.e. SNP-PS, for single layer clustered data. Though

the proposed method is computationally more efficient than the existing Monte Carlo

sampling based semi-nonparametric approaches (e.g. Chen et al. 2002), it is not scaled

to handle large clustered medical record data. Typical medical record data contains
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medical records for a large number of patients, ranging from personal information like

age, demographics, social status to medical information such as blood pressure, family

disease history, medical history, medication and allergies, to immunization status for

each patient. Digitization of these records promotes the integration of hundreds of

thousands or even millions of patients into a large database from different resources

(e.g. Tinetti and Studenski 2011; Tannen et al. 2008; Weiner et al. 2008) such as

insurance claim data, hospital records, prescription records, and observational studies,

etc. It would be very computationally challenging to apply the method developed in

Chapter 3 to large clustered data directly. The computational challenge arises from

the facts that 1) we model the cluster effect in the logistic PS model where the MLEs

have no analytic closed form; and 2) the random effect in the logistic PS model is

non-parametrically modeled, making maximization on the likelihood even more com-

plicated. Developing computationally efficient statistical methods to properly handle

the heterogeneity structure of medical record data is more important than ever for

making valid statistical inferences.

To ease the computational workload, in this chapter, we propose to not model the

heterogeneity structure in the first stage logistic PS model and instead try to resolve the

heterogeneity problem in the second stage PS regression model. Specifically, we propose

two PS regression approaches, one based on the multiple regression model and the other

on the mixed effects model. The first one is a flexible multilevel propensity score (FM-

PS) regression approach based on mixed effects models. In traditional mixed effects

models, there is a critical independence assumption between fixed effects covariates

and random effects. However, this assumption is unrealistic and rarely holds for real

medical record data. For example, when patients make decisions where and which

clinic to visit, the physicians’ specialties, and insurance coverages play important roles.

These factors don’t act independently but jointly. They affect the treatment allocation
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process and disease outcomes as well. Furthermore, the independence assumption is not

easy to check since the cluster effects are unobserved. If the assumption does not hold,

the estimates for the fixed effects parameters could be biased (Verbeke and Lesaffre

1996) and the degree of biasness depends on the degree of the correlation between the

fixed effect covariates and the cluster effects. We proposed FM-PS models to relax

the independence assumption between the treatment assignment and the heterogeneity

cluster effects for large clustered datasets. Under this modeling scheme, the cluster

effect is not necessarily independent of the fixed effects covariates or the cluster effects

from other clustering levels.

The remaining of this chapter is organized as follows. In Section 2, we describe the

details of FM-PS model. The theoretical properties of the treatment effect estimator

based on FM-PS are presented in this section also. A cluster bootstrapping procedure

is described in Section 3 for variance estimation of treatment effect estimate. We

provide a statistics to test the hypothesis of independence of the cluster effect terms

(with respect to other fixed effects terms) in Section 4 to select the optimal model for

treatment effect estimate. Extensive simulation studies and results are presented in

Section 5. The robustness property of FM-PS for dealing with model mis-specifications

and the capability/limitation to handle unobserved confounding covariates are also

investigated and presented in Section 5. The practical use of FM-PS is demonstrated

via a real multi-center observational dataset in Section 6. This chapter ends with

discussions and future research for FM-PS in Section 7.

4.2 Proposed Methods

4.2.1 Data Types

Before presenting the details of our proposed models, we first introduce three types

of clustered data (i.e. single level, multilevel, and hierarchical) that we consider in this
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chapter.

Single level clustered data (Type 1): for the jth sample nested in the cluster unit

i(j = 1, · · · , ni; i = 1, · · · , n), we define its outcome as yij, treatment assignment trtij,

and all other observed covariates as xij.

Multilevel clustered data (Type 2): for the kth sample in the ith level of clus-

ter 1 (e.g. physicians) and the jth level of cluster 2 (e.g. insurance policies) (k =

1, · · · , nij; i = 1, · · · , ni; j = 1, · · · , nj), we denote outcome as yijk, treatment assign-

ment trtijk and observed covariates xijk. Here the two clusters, i.e. 1 and 2, are not

nested one in another and potentially overlap. For example, the same physician may

see patients with all sorts of health insurances, and the same policy holders could visit

different physicians.

Hierarchical clustered data (Type 3): for the kth sample in the ith level of clus-

ter 1 (such as clinics/hospitals) and the jth level of cluster 2 (such as physicians)

(k = 1, · · · , nij; j = 1, · · · , ni; i = 1, · · · , n), we again have outcome yijk, treatment

assignment trtijk and observed covariates xijk. In contrast to Type 2 data, here units

of cluster 2 (e.g. physicians) are completely nested in units of cluster 1 (e.g. clinics).

Even though we only consider clustered data with single level or two levels for ease

of presentations, the proposed methods below can be straightforwardly extended to

higher level clustered data.

PS Model: For all types of data, we first fit the following logistic regression model

with only all the observed covariates included without any cluster effect terms

logit(Pr(trt = 1 | x)) = β0 + xβx, (4.1)

79



from which we get the estimated PS score given by the following:

P̂S =
exp(β̂0 + xβ̂x)

1 + exp(β̂0 + xβ̂x)

where β̂0 and β̂x are the MLE from model (4.1). That is we don’t deal with the cluster

effects in (4.1) and instead we take care of the clustering heterogeneity of treatment

assignment in the downstream PS regression analysis. Several random and fixed effects

PS regression models can be used for the above three types of clustered data to obtain

the treatment effect estimate as we describe in the following.

Standard Mixed Effects PS (SM-PS) Models: once PS are estimated from (4.1),

it is natural to fit the following mixed effects PS regression models:

Type 1 : yij = α0 + αtrttrtij + αPSP̂Sij + ηi + εij (4.2)

Type 2 : yijk = α0 + αtrttrtijk + αPSP̂Sijk + ηi + ξj + εijk (4.3)

Type 3 : yijk = α0 + αtrttrtijk + αPSP̂Sijk + ηij + εijk (4.4)

and obtain the corresponding treatment effect estimate, α̂trt. However, the above mod-

els have a strong independence assumption imposed on the random effects. That is, all

cluster effect terms, i.e. ηi(j) and ξj, are independent of the fixed effects covariates, i.e.

trtij(k) and P̂Sij(k). Specifically, the SM-PS models assume the following:


Type 1: ηi | (trtij, P̂ Sij) ∼ N(0, σ2

η)

Type 2: ηi | (trtijk, P̂ Sijk) ∼ N(0, σ2
η) and ξj | (trtijk, P̂ Sijk) ∼ N(0, σ2

ξ )

Type 3: ηij | (trtijk, P̂ Sijk) ∼ N(0, σ2
η)

However, the above independence assumptions between the random cluster effects

and other fixed effects covariates including the treatment assignment seldom hold for
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many real world medical record data due to various confounding factors and complexity

of cluster heterogeneity structures in the treatment assignment process. If the inde-

pendence assumptions are violated, treatment effect estimate could be severely biased.

To relax the stringent independence assumptions made in the SM-PS models (4.2) ∼

(4.4), we propose a set of novel models as given in the following subsection. Specifi-

cally, we propose the following set of mixed effects propensity score regression models

for the above three types of data under the above corresponding assumptions. However,

it should be noted that the proposed method is not necessary restricted to the three

types of clustering. It is straightforward to extend the method to other higher level

clustering scenarios.

4.2.2 Flexible Mixed Effects PS (FM-PS) Models

For each of the three types of clustered data, we impose a dependence condition

between the random effects and fixed effects covariates:

Type 1: ηi | (trtij, P̂ Sij) ∼ N(αtrttrti + αPSPSi, σ
2
η)

Type 2:


ηi | (trtijk, P̂ Sijk) ∼ N(α(trt,1)trti + α(PS,1)PSi, σ

2
η)

ξj | (trtijk, P̂ Sijk) ∼ N(α(trt,2)trtj + α(PS,2)PSj, σ
2
ξ )

Type 3: ηij | (trtijk, P̂ Sijk) ∼ N(α(trt,2)trtij + α(PS,2)PSij, σ
2
η)

where the trts and PSs are the proportion of subjects receiving one given treatment

and the average propensity scores within each cluster/sub-cluster unit indicated by the

subscript, respectively. These conditions relieve the unrealistic independence assump-

tions and lead us to the following three flexible mixed effects PS (FM-PS) models, one
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for each data type.

Type 1 : yij = α0 + αtrttrtij + αPSP̂Sij + αtrttrti + αPSPSi + ηi + εij (4.5)

Type 2 : yijk = α0 + αtrttrtijk + αPSP̂Sijk + α(trt,1)trti + α(PS,1)PSi + α(trt,2)trtj

+α(PS,2)PSj + ηi + ξj + εijk (4.6)

Type 3 : yijk = α0 + αtrttrtijk + αPSP̂Sijk + αtrttrtij + αPSPSij + ηij + εijk (4.7)

where ηi(j) ∼ N(0, σ2
η), ξj ∼ N(0, σ2

ξ ), and ε ∼ N(0, σ2), respectively. We refer the

new procedures as FM-PS which stands for Flexible Mixed effects Propensity Score

approaches. The new cluster effect terms η and ξ now follow the regular assumptions

in the standard mixed effects models (i.e. normality and independence, e.g. Laird and

Ware 1982; Schall 1991; Zeger and Karim 1991; Breslow and Clayton 1993).

The proposed approach is computationally efficient as will be shown by our simula-

tions. It can handle large medical record datasets with almost no constrains if memory

is of no concern. Modeling the single layer clustered or multilevel clustered data via

mixed effects model is not new (Diggle et al. 2002; Fitzmaurice et al. 2004). In prac-

tice, it is also common to use fixed effect models alternatively to analyze such kinds

of data with cluster effects modeled with dummy variables (Suits 1957). Alternatively,

we propose the following fixed effect models using dummy variables for the three types

of clustered data.

Fixed Effect PS (FE-PS) Models:

Type 1: yij = α0 + αtrttrtij + αPSP̂Sij + DViαDV + εij (4.8)

Type 2: yijk = α0 + αtrttrtijk + αPSP̂Sijk + DViαDV1 + DVjαDV2 + εijk (4.9)

Type 3: yijk = α0 + αtrttrtijk + αPSP̂Sijk + DVijαDV + εijk (4.10)

where the DVis and DVj are dummy variables created to represent units in cluster
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1 and cluster 2, respectively. In (4.10), for hierarchical clustered data, the dummy

variables DVij are created for units in cluster 2, which are nested in cluster 1.

The relationship between fixed effect models with dummy variables and mixed ef-

fects models have been well studied and the equivalence between the fixed effect esti-

mates from the two model strategies have been established by Mundlak (1978). The

following theorem summarizes the equivalence between the treatment effect estimates

from the FE-PS and FM-PS models. The proof can be found in Mundlak (1978).

Theorem 4.2.1. (Equivalence) The treatment effect estimate, denoted as α̂trt, for

parameter αtrt in FM-PS models (4.5) and (4.7) are identical to the OLS estimate of

αtrt in models (4.8) and (4.10), respectively.

Though the above theorem has established the equivalence of the two PS procedures,

in practice, fitting the FE-PS models with ordinary linear regression using standard

software packages, e.g. R or SAS, might be computationally prohibited for large medical

data. However, FM-PS models have no such issues. Furthermore, the mixed effects

models are more flexible in extending the conclusions to patients from, for example

clinics and physicians not in the data analyzed. In contrast, conclusions based on fixed

effect models are restricted to the clinics and physicians included in the original data

analysis.

4.3 Variance Estimate of α̂trt

As noted in the previous chapters, PS is an estimated quantity instead of an observed

covariate. Ignoring this fact will result in biased variance estimation for α̂trt. In chapters

2 and 3, we proposed a two-stage variance estimator for PS regression models. The

validity of the two-stage variance estimator is based on the consistency of parameters

estimated from the first stage PS models. In the proposed FM-PS models, the first

stage PS models ignore the cluster effects and thus the parameter estimates may not
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be consistent and the two-stage variance estimators may not be applicable for the FM-

PS models. In this section, we propose a cluster bootstrapping procedure to estimate

the variance of α̂trt for the proposed FM-PS models as we describe in the following.

The bootstrap technique by Efron (1979) has been often used in practice for infer-

encing on a population distribution based on the sample data (sample → population)

by resampling the sample data and performing inference on the resampled data (resam-

ple → sample). However, for the clustered data, the standard bootstrap resampling or

residual resampling procedure will not work (e.g. Liu and Chen 1998; Whitley 1994),

since it is not able to replicate the correlation structure in the data. Alternatively,

cluster bootstrapping (e.g. Davison and Hinkley 1997; McCullagh 2000; Andersson

and Karlsson 2001; Ukoumunne et al. 2003; Carpenter et al. 2003; Butar and Lahiri

2003; Monaco et al. 2005; Field and Welsh 2007) procedures have been proposed which

we adopt here for our purpose.

The idea of cluster bootstrapping is to treat each cluster unit as an independent

sample and randomly draw the n cluster units with replacement. All subjects within a

selected cluster unit will be included as bootstrapped samples and used for the boot-

strapping analysis. The cluster bootstrapping replicates the correlation structure by

resampling based on the “basic” cluster units. For single level clustered data, the “ba-

sic” sampling units are the original cluster units. Similarly, for hierarchical clustered

data, the sampling units are the cluster units in cluster 2, i.e. the lowest (finest) level

of clustering units (e.g. physicians in the clinics versus physicians hierarchical cluster-

ing relationship). For multilevel clustered data, we construct new cluster units as the

“basic” bootstrapping units. Specifically, each new cluster unit, ij, is the joint sub-unit

of ith level in cluster 1 and jth level in cluster 2. Cluster bootstrapping for multilevel

FM-PS model (4.6) is based on these reconstructed new cluster units. Simulations will

be used to investigate the performance of the proposed cluster bootstrapping approach.
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4.4 Testing of Cluster Effects

If the cluster effect is independent of the fixed effect covariates, the SM-PS models

are expected to be more efficient than the FM-PS models. We propose the following

test statistic for comparing the SM-PS and FM-PS models. For the ease of illustration,

we use ζ to represent all the cluster effects (e.g. ζ = ({ηi}, {ξj}) in the outcome for the

multilevel cluster data) in each of the three FM-PS models. We refer the log-likelihood

from each of the FM-PS models as lFM−PS. Similarly, we refer the log-likelihood from

each of the SM-PS models as lSM−PS. Then, testing for independence is equivalent to

test

H0 : ζ ⊥ trt Ha : ζ 6⊥ trt (4.11)

To test the hypothesis (4.11), we introduce the following likelihood ratio test statistic:

LRTindep = −2 log
Likelihood of SM-PS model

Likelihood of FM-PS model

= 2(lFM−PS − lSM−PS) (4.12)

∼H0 χ2(df)

where df , the degree of freedoms of the χ2 distribution, equals the difference between

the numbers of fixed covariates in the FM-PS and SM-PS models. More specifically,

df = 2, 4, and 2, respectively for the single level, multilevel, and hierarchical cluster

data. Statistics LRTindep provides a tool for us to select between the SM-PS and FM-PS

models.

In summary, the following are the procedures proposed to estimate treatment effects

for the clustered observational data:

Step 1: Fit the data with both SM-PS and FM-PS models.

Step 2: Use the test statistics LRTindep to select between SM-PS and FM-PS models.
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Step 3: Based on the selected model, estimate αtrt.

Step 4: Conduct the cluster bootstrapping procedure to obtain a valid variance estimate

of α̂trt.

4.5 Monte Carlo Simulations

To evaluate the finite sample performance of the proposed FM-PS models and the

cluster bootstrapping procedure, we conduct intensive simulation studies under various

settings with varying sample size and heterogeneity correlation structures. We start

the simulation studies with the following settings for the three types of clustered data:

Treatment allocation model: In our first set of simulations, the treatment assign-

ments are generated for single, multilevel, and hierarchical clustered data through the

following mechanisms

Type 1: trtij =

 1 if 0.2 + x(1,ij)βx + wi + εij > 0

0 if 0.2 + x(1,ij)βx + wi + εij ≤ 0

Type 2: trtijk =

 1 if 0.2 + x(1,ijk)βx + wi + εijk > 0

0 if 0.2 + x(1,ijk)βx + wi + εijk ≤ 0

Type 3: trtijk =

 1 if 0.2 + x(1,ijk)βx + wij + εijk > 0

0 if 0.2 + x(1,ijk)βx + wij + εijk ≤ 0

respectively, where confounding covariate vectors x(1,ij(k)) = (x(1,ij(k),1), · · · ,x(1,ij(k),8))
′

consists 8 covariates. Pairs of confounding covariates are generated from binary, normal,

exponential, and uniform distributions as Bern(0.5), N(0, 1), Exp(1), and Unif(−1, 1),

respectively. Parameter βx,js in βx = (βx,1, · · · , βx,8)
′

are randomly generated from

Unif(−1, 1) first and then fixed for all the subsequent simulations. The random mea-

surement error ε ∼ N(0, 1). The distribution of cluster effects wi(j) will be described
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later.

Data generating model: The responses are generated based on the following mech-

anisms for the three types of clustered data:

Type 1: yij = 0.3 + αtrttrtij + x(1,ij)αx + ηi + εij (4.13)

Type 2: yijk = 0.3 + αtrttrtijk + x(1,ijk)αx + ηi + ξj + εijk (4.14)

Type 3: yijk = 0.3 + αtrttrtijk + x(1,ijk)αx + ηij + εijk (4.15)

where the random measurement error εij(k) ∼ N(0, 1) which is independent of trtij(k),

x(1,ij(k) and cluster effects ηi(j) and ξj. The true treatment effect αtrt is fixed at 0.5.

The effect of each confounding covariate, αx,j (j = 1, · · · , 8), is also randomly generated

from Unif(−1, 1) and fixed for all subsequent simulations.

The cluster effects in the treatment assignment models and the response generating

models are sampled from non-normal distributions, and are correlated or independent

of each other. Specifically, we let the cluster effect wi in the treatment assignments and

the cluster effect ηi in outcome responses (4.13) and (4.14) be correlated as follows:

ηi ∼

 wi if wi ≥ 0

−Exp(1) if wi < 0

where wi ∼ 1
2
Exp(2) + 1

2
N(−0.5, 1).

The cluster effects wijs and ηijs are simulated similarly as above where the subscript

i is replaced by the subscript ij. For the case where wi(j)s are independent of ηi(j)s, ηi(j)

are simulated from 1
2
Exp(1) + 1

2
N(−1, 1) while wi(j) is generated the same as above.

For multilevel clustering, we further simulate the cluster effects ξj from 1
2
N(2, 1) +
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1
2
N(−2, 1).

To mimic the real world observational data, in addition to the true confounding

covariates x(1,ij(k)), we also simulate an additional set of 8 nuisance variables, x(2,ij(k)).

Again, pairs of the 8 nuisance variables are generated from Bern(0.5), N(0, 1), Exp(1),

and Unif(−1, 1), respectively. These nuisance variables have no effects on either the

response variable y or the treatment assignment trt. However, we include them in our

analysis. That is we include all of the 16 covariates xij(k) = (x
′

(1,ij(k)),x
′

(2,ij(k)))
′

in our

analysis to obtain the estimation for PS.

To evaluate the performance of the proposed FM-PS models, we compare them

with several other competing models, which include 1) unadjusted model where the

treatment effect estimate equals the response difference between the two treatment

groups without any confounding covariate adjustment; 2) non-random PS (NR-PS)

model where the treatment effect estimate is obtained via the simple PS regression

in which propensity scores are estimated by the PS model (4.1) without considering

unobserved heterogeneity; 3) the SM-PS models; and 4) the FE-PS models.

For the single level clustering data, we simulate samples with size n of 1000 or 5000.

The cluster cell sizes vary from 5, 10, or 15 with total cluster units of 100 and 500

respectively for the two sample sizes. Simulation results for these two sample sizes are

summarized in Table (4.1) and (4.2), respectively for correlated and independent clus-

ter effects between treatment assignments and outcomes. For each simulation setup,

the results are based on 500 simulations and the cluster bootstrapping is conducted

with 500 resampling. Column “Independence” indicates if the cluster effect in treat-

ment assignment and the cluster effect in outcome are independent or not. Column

“Average(α̂trt)” represents the average treatment effect estimate, column “Monte Carlo

SD(α̂trt)” shows the Monte Carlo standard deviation of the treatment effect estimate,
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column “Average ŜED(α̂trt)” presents the average standard error for the treatment

effect estimate output directly from the corresponding model fitting, and column “Av-

erage ŜEB(α̂trt)” displays the average standard error for the treatment effect estimate

via the cluster bootstrapping procedure.

Tables (4.1) and (4.2) show that when cluster effect wis in treatment assignment

and that in response ηis are independent of each other, the treatment effect estimated

by all methods except the unadjusted model are close to the true treatment effect size,

indicating the effectiveness of all the PS based methods in adjusting the confounding

factors. However, a closer examining the second part of both tables reveals that when

wis and ηis are correlated, only the FE-PS model and the proposed FM-PS model

can provide unbiased treatment effect estimates. Furthermore, the estimates from the

two models are identical which is consistent with the conclusion of Theorem 4.2.1. In

contrast, the treatment effect estimates from the NR-PS model and the SM-PS model

are biased.

Comparing the columns Monte Carlo SD(α̂trt) and ŜED(α̂trt), we conclude that for

the proposed FM-PS model, the default variance estimates are biased. For example,

when sample size n = 1000, the Monte Carlo standard deviation from the FM-PS model

is 0.117 while the default standard error is 0.159 where the later number is more than

30% larger than the former one. This observation holds for n = 5000 (i.e. 0.054 vs

0.070). In contrast, numbers in column Monte Carlo SD(α̂trt) and column ŜEB(α̂trt)

are close to each other for all models and sample sizes, demonstrating the superior

performance of the cluster bootstrapping procedure.

For multilevel clustering data, we fix cluster cell size of cluster 1 as 5 with total

1000 cluster units while we let the cluster cell size for cluster 2 varies from 100 to 900

among total 10 cluster units. For hierarchical clustering data, again we set cluster cell

size for cluster 1 to 5 with total 1000 cluster units which are nested within 500 units in
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cluster 2 with cell size 10. Simulation results for multilevel and hierarchical clustering

scenarios with sample size n = 5000 are presented in Tables (4.3) and (4.4) respectively.

Table (4.3) and (4.4) demonstrate that when wi (or wij) and ηi (or ηij) are indepen-

dent of each other for multilevel and hierarchical clustered data, we again can obtain

unbiased treatment effect estimates from all the four PS procedures, though the un-

adjusted model fails. For data with correlated cluster effects, only estimates from the

FE-PS and FM-PS models are unbiased. Similarly, the default variance estimates are

biased which can be drastically improved by the cluster bootstrapping procedure.

All four tables consistently demonstrate that when the cluster effects in treatment

assignments are independent of the cluster effects in the responses, the treatment effect

estimate from SM-PS model is more efficient than the proposed FM-PS (or FE-PS)

models. Thus, the SM-PS model is preferred for data where the cluster effects are

independent of the fixed effect covariates. The proposed likelihood ratio test statistic,

i.e. LRTindep, serves the purpose to select the optimum model by testing the indepen-

dence assumption. To investigate the performance of LRTindep, we generate several

Q-Q plots of the empirical LRTindep against the theoretical χ2 distribution for the data

with independent cluster effects for the three types of clustered data with sample size

n = 5000 in Figures (4.1) ∼ (4.3).

All Q-Q plots clearly indicate that the empirical test statistics follow the asymptotic

χ2 distribution well. For all data simulated with correlated cluster effects, we also

plot the observed LRTindep across the 500 simulations. In addition, we add the 500

LRTindep observed values for the data with independent cluster effects. Clearly, the

empirical LRTindep from the data under the null (i.e. independent situations) and

under the alternative (i.e. correlated situations) are well separated, indicating that for

the simulated correlated data, the proposed LRTindep has very good power to detect

the correlation.
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In summary, the proposed FM-PS models (or equivalent FE-PS models) provide

unbiased treatment effect estimates no matter if the cluster effects in treatment as-

signments are independent of the cluster effects in the responses or not. Traditional

SM-PS models provide more efficient and unbiased treatment effect estimates than the

proposed models when the cluster effects in treatment allocations are independent of

the cluster effects in the responses. However, when the cluster effects are correlated,

the treatment effect estimates from SM-PS models are biased. The empirical cluster

bootstrapping procedure provides good variance estimation to α̂trt.

The above simulations have shown that the proposed FM-PS models are robust to

the departure of cluster effects η and ξ from normality distributions, because in all our

simulations, the cluster effects are non-normally distributed. Next, we further investi-

gate the robustness property of the FM-PS models with other model misspecification

scenarios under the single level clustering setting. The conclusions hold for other two

types of data and are omitted.

Link function misspecification: we first design the following simulation setting

where the treatment allocation does not follow linear logit link functions. Specifically,

we simulate trt from

logit(Pr(trtij = 1 | xij)) ∼


(τij+1)1.5−1

1.5
if τij ≥ 0

− (τij+1)1.2−1
1.2

if τij < 0

with τij = −0.5x(1,ij) + 0.3x(2,ij) + wi, x(1,ij) ∼ Bern(0.5) and x(2,ij) ∼ N(0, 1).

The responses are generated from the following model:

yij = 0.3 + 0.5trtij + 0.3x(1,ij) + 0.2x(2,ij) + ηi + εij

91



where εij ∼ N(0, 1). ηi = bκi where κi ∼ N(0.5, 1) and we set b to 0 or 0.3. The cluster

effect wi in treatment assignments is correlated with κi in responses as the following:

wi ∼

 N(0.55, 1) if κi ≥ 0

N(−0.45, 1) if κi < 0.

Covariate functional form misspecification: To further demonstrate the robust-

ness of FM-PS model, we design the following simulation setting:

yij = 0.3 + 0.5trtij + 0.3x(1,ij) + 0.2x2(2,ij) + ηi + εij

where εij, x(1,ij), x(2,ij), and ηi are simulated the same way as the above link func-

tion misspecification scenario. Treatment is allocated via the following thresholding

mechanism:

trtij =

 1 if −0.5x(1,ij) + 0.3x3(2,ij) + wi + δij > 0

0 if −0.5x(1,ij) + 0.3x3(2,ij) + wi + δij ≤ 0

with δij ∼ N(0, 1) and wi is set the same as in the above link function misspecification

scenario. Note, in this simulation setting, covariate x2,ij affects both the response and

the treatment allocation nonlinearly.

In all four propensity score based models we compared (i.e. NR-PS, SM-PS, FE-PS

and FM-PS models), the propensity scores are estimated by the propensity score model

(4.1) where only the linear covariate terms are included. Simulation results with sample

size n = 10000 are summarized in Tables (4.5) and (4.6). Both tables show that the

proposed FM-PS models are robust to data that are generated from the non-linear logit

link function or the non-linear confounding covariate functional form. Furthermore, the

cluster bootstrapping procedure gives valid variance estimation for α̂trt in these model

misspecification scenarios.
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The existence of unobserved confounding covariatesis likely to result in biased pa-

rameter estimates. Various methods have been proposed to deal with the unobserved

confounding covariate from different aspects (e.g. Rosenbaum and Rubin 1983b; Lin

et al. 1998; Sturmer et al. 2005). We investigate the performance of the proposed

FM-PS models in handling hidden confounding covariates that are at cluster level, or

at sample individual level under the single level clustering scenario.

Cluster level unobserved (hidden) confounding covariate: The treatment as-

signment trtij is generated via the following mechanism:

trtij =

 1 if 0.2− 0.7x(1,ij) − 0.4x(2,ij) + 0.7x(3,ij) + 0.4x(4,i) + wi + υij > 0

0 if 0.2− 0.7x(1,ij) − 0.4x(2,ij) + 0.7x(3,ij) + 0.4x(4,i) + wi + υij ≤ 0

where υij ∼ N(0, 1) is a random measurement error. The response yij is generated

from the following model:

yij = 0.3 + 0.5trtij − 0.6x(1,ij) − 0.3x(2,ij) + 0.6x(3,ij) + 0.3x(4,i) + ηi + εij

where εij ∼ N(0, 1), x(1,ij) ∼ Bern(0.5), x(2,ij) ∼ N(0, 1) and x(3,ij) ∼ Exp(1). Cluster

effect wi is correlated with ηi as follows:

wi ∼

 ηi if ηi ≥ 0

−Exp(1) if ηi < 0

where ηi ∼ 1
2
Exp(2) + 1

2
N(−0.5, 1).

When wi and ηi are independent, we have wi ∼ 1
2
Exp(1) + 1

2
N(−1, 1) and ηi ∼

1
2
(−Exp(2)) + 1

2
Exp(1.5).

The confounding variable x(4,i) ∼ 1
2
Unif(−1, 1) + 1

2
N(0, 1) is assumed to be unob-

served and not included as a covariate in the PS models investigated.
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Subject level unobserved confounding covariate: The simulation settings under

this scenario for treatment assignment and response are nearly the same as above except

that the unobserved confounding covariate, x4,i now varies at the subject level, and we

indexed this variable as x(4,ij) which follows Unif(−0.5, 1).

Again, four nuisance covariates, from Bern(0.5), N(0, 1), Exp(1), and Unif(−1, 1)

are generated. When estimating propensity scores, only covariates, x(1,ij), · · · , x(3,ij),

and the nuisance covariates are included in Model (4.1). Simulation results for the

unobserved confounding covariate at the cluster level and subject level are given in

Table (4.7) and (4.8), respectively.

Table (4.7) demonstrates that FM-PS and FE-PS can provide unbiased treatment

effect estimates in the existence of cluster level unobserved confounding covariate. Un-

der this setting, no matter if the cluster effect in treatment assignment is independent

of or correlated with the cluster effect in response, the treatment effects estimated by

other PS based models, i.e. NR-PS and SM-PS, are severely biased. Checking this table

also reveals that the cluster bootstrapping procedure provides valid variance estimate

for α̂trt. This observation indeed matches what we observed earlier. This makes sense

since the random cluster effects in the FM-PS and FE-PS automatically account for the

effects of the cluster level unobserved confounding covariates. In contrast, the treatment

effects estimated by NR-PS and SM-PS models are all biased in all situations. How-

ever, Table (4.8) indicates that the treatment effects estimated by all models including

FM-PS and FE-PS are biased in the existence of subject level unobserved confounding

covariates since the strongly ignorable treatment assignment assumption is violated and

no any PS approach is powerful enough to handle this confounding problem.

In summary, for unobserved confounding covariates, if they are highly correlated

with other observed covariates and/or cluster effects then the treatment effect estimated

by our proposed FM-PS model will be unbiased. But this conclusion may not hold for
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NR-PS and SM-PS models. However, if the unobserved confounding covariate(s) is

at the subject level and not highly correlated with any other observed covariates and

cluster effects, the strongly ignorable treatment assignment assumption can not hold

and none of the methods gives unbiased treatment effect estimates.

4.6 Real Data Analysis

To demonstrate the practical use of the proposed FM-PS regression model, we

applied it to a multi-center breast cancer study conducted by the German Breast Cancer

Study Group (Rauschecker et al. 1995) that we described in details in Section 3.6 of

Chapter 3. Based on the preliminary analysis there, the observed covariates include

age (i.e. Age), tumor size (i.e. TS), and their interactions. Therefore, we use the

following logistic regression model to estimate the propensity scores for the downstream

PS regression analysis with analysis results presented in Table 4.9:

logit{PSi(= Pr(trti = 1 | (Agei, TSi)))} = γ0 + γ1 ∗ Agei + γ2 ∗ TSi + γ3 ∗ Agei ∗ TSi

From Table 4.9, an evident observation is that the treatment effect estimate based

on the unadjusted model is larger than that based on other methods. After adjusting

the confounding factors based on different versions of PS methods, the treatment effect

estimates are reduced. Different estimation schemes give us quite different but positive

treatment effect estimates. The positive number indicates that the QoL for the breast

conservation group patients is on average better than that of mastectomy group pa-

tients. However, this conclusion is not statistically significant. This can be confirmed

by checking the corresponding 95% confidence interval (i.e. column 95% CI).

Overall, based on the data collected for this multi-center study, there exists no

statistically significant difference on the QoLs of breast cancer patients between the
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two treatment procedures after adjusting the patient age, tumor size, their interaction

and the cluster effect.

4.7 Discussions

In this chapter, we have developed a flexible mixed effects propensity score (FM-PS)

approach to model the hidden heterogeneity structure of medical record data. The FM-

PS models relax the unrealistic independence assumption made by traditional mixed

effects models between the random effects and the fixed effect covariates. Due to treat-

ment allocation dynamics in real world data, this assumption rarely holds, especially

for clustered medical record data. The heterogeneity across cluster units may influence

both treatment allocations as well as disease outcomes. The proposed FM-PS frame-

work relaxes the independence assumption by incorporating the proportion of patients

assigned to one of the two treatment groups and the average of propensity scores for

each cluster unit as additional covariates into traditional mixed effects models. Includ-

ing these additional covariates effectively captures complicated correlation structures

between the cluster effects and fixed effect covariates. We further show that there ex-

ists equivalence between the FM-PS and the FE-PS models for estimating treatment

effects. However, our investigations (not shown) have indicated that the FM-PS models

are more computationally efficient for handling large medical data. We have repeated

another set of simulations with the simulation setting of Table (4.1) where sample size

n is increased to 500,000 with the number of cluster units 100,000. This number is

not unrealistic for electronic medical data. Interestingly, the FM-PS models run well

with R function of lmer in package lme4 for this simulation but the FE-PS models

fail in R with the lm function due to a large number of dummy variables that need

to be created. The FM-PS models require much less computational workload for data
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with a large number of cluster units and thus is more practically useful for large data

like electronic medical record data where there exist hundreds and thousands of cluster

units (i.e. physicians and/or clinics).

Our simulation results demonstrated that when the independence assumption for

the cluster effects does not hold, the treatment effect estimated from SM-PS model and

NR-PS model can be severely biased. However, both the proposed FM-PS and the FE-

PS approach provide unbiased treatment effect estimates. Additionally, we demonstrate

the robustness of FM-PS approach under various model misspecification. The proposed

FM-PS approach can be extended to higher level clustered data straightforwardly but

further research is needed to check the performance of extended methods in this regard.

Even though the proposed FM-PS approach can provide unbiased treatment effect

estimate no matter if the independence assumption for the cluster effect term holds or

not, the estimate is not as efficient as that from the SM-PS model when the indepen-

dence assumption does hold. We propose a likelihood ratio test statistic to test the

independence, which provides us a guidance on selecting an appropriate PS approach

for each data.

Under the propensity score adjustment framework, Rosenbaum and Rubin (1983)

have shown that the treatment effect estimate is unbiased if there is no unobserved

confounding (i.e. strongly ignorable treatment assignment assumption). In real world

observational data, due to the complexity in treatment allocation and factors influ-

encing the outcome, the strong ignorable treatment assignment assumption may not

hold. Our simulation studies further show that the proposed FM-PS models can handle

unobserved confounding covariates reasonably well under certain simple circumstances.

The performance of FM-PS with more complicated unobserved confounding factors is

very critical and deserve further investigations.
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Figure 4.1: Single Level Clustering with Sample Size=5000
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Figure 4.2: Multilevel Clustering with Sample Size=5000
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Figure 4.3: Hierarchical Clustering with Sample Size=5000
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Table 4.1: Single Level Clustering with Sample Size=1000

Monte Carlo Average Average

Model Independence Average(α̂trt) SD(α̂trt) ŜED(α̂trt) ŜEB(α̂trt)

Unadjusted

Yes

0.754 0.111 0.112 0.111

NR-PS 0.498 0.083 0.137 0.085

SM-PS 0.500 0.087 0.144 0.093

FE-PS 0.503 0.117 0.159 0.120

FM-PS 0.503 0.117 0.159 0.120

Unadjusted

No

0.754 0.111 0.112 0.111

NR-PS 0.747 0.085 0.137 0.087

SM-PS 0.636 0.094 0.144 0.098

FE-PS 0.503 0.117 0.159 0.120

FM-PS 0.503 0.117 0.159 0.120

Note: Results are based on 500 simulations & true αtrt = 0.5
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Table 4.2: Single Level Clustering with Sample Size=5000

Monte Carlo Average Average

Model Independence Average(α̂trt) SD(α̂trt) ŜED(α̂trt) ŜEB(α̂trt)

Unadjusted

Yes

0.759 0.047 0.050 0.050

NR-PS 0.501 0.037 0.060 0.038

SM-PS 0.502 0.040 0.064 0.042

FE-PS 0.500 0.054 0.070 0.054

FM-PS 0.500 0.054 0.070 0.054

Unadjusted

No

0.759 0.047 0.050 0.050

NR-PS 0.754 0.038 0.060 0.039

SM-PS 0.636 0.042 0.064 0.044

FE-PS 0.500 0.054 0.070 0.054

FM-PS 0.500 0.054 0.070 0.054

Note: Results are based on 500 simulations & true αtrt = 0.5
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Table 4.3: Multilevel Clustering with Sample Size=5000

Monte Carlo Average Average

Model Independence Average(α̂trt) SD(α̂trt) ŜED(α̂trt) ŜEB(α̂trt)

Unadjusted

Yes

1.263 0.067 0.052 0.049

NR-PS 0.509 0.074 0.081 0.064

SM-PS 0.503 0.036 0.053 0.038

FE-PS 0.505 0.061 0.066 0.058

FM-PS 0.505 0.061 0.066 0.058

Unadjusted

No

1.265 0.082 0.075 0.068

NR-PS 0.937 0.079 0.082 0.064

SM-PS 0.801 0.059 0.056 0.058

FE-PS 0.505 0.061 0.066 0.058

FM-PS 0.505 0.061 0.066 0.058

Note: Results are based on 500 simulations & true αtrt = 0.5
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Table 4.4: Hierarchical Clustering with Sample Size=5000

Monte Carlo Average Average

Model Independence Average(α̂trt) SD(α̂trt) ŜED(α̂trt) ŜEB(α̂trt)

Unadjusted

Yes

1.173 0.060 0.056 0.059

NR-PS 0.503 0.057 0.064 0.058

SM-PS 0.502 0.042 0.062 0.044

FE-PS 0.502 0.067 0.074 0.067

FM-PS 0.502 0.067 0.074 0.067

Unadjusted

No

1.259 0.053 0.064 0.052

NR-PS 0.803 0.046 0.062 0.046

SM-PS 0.636 0.042 0.064 0.044

FE-PS 0.502 0.067 0.074 0.067

FM-PS 0.502 0.067 0.074 0.067

Note: Results are based on 500 simulations & true αtrt = 0.5
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Table 4.5: Link Function Misspecification with Sample Size=10000

Monte Carlo Average Average

Model Independence Average(α̂trt) SD(α̂trt) ŜED(α̂trt) ŜEB(α̂trt)

Unadjusted

Yes (i.e. b = 0)

0.519 0.020 0.021 0.021

NR-PS 0.500 0.020 0.021 0.020

SM-PS 0.500 0.021 0.022 0.021

FE-PS 0.499 0.027 0.026 0.027

FM-PS 0.499 0.027 0.026 0.027

Unadjusted

No (i.e. b 6= 0)

0.612 0.022 0.021 0.022

NR-PS 0.596 0.022 0.022 0.022

SM-PS 0.549 0.022 0.023 0.022

FE-PS 0.499 0.027 0.026 0.027

FM-PS 0.499 0.027 0.026 0.027

Note: Results are based on 500 simulations & true αtrt = 0.5
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Table 4.6: Covariate Functional Form Misspecification with Sample Size=10000

Monte Carlo Average Average

Model Independence Average(α̂trt) SD(α̂trt) ŜED(α̂trt) ŜEB(α̂trt)

Unadjusted

Yes (i.e. b = 0)

1.173 0.060 0.056 0.059

NR-PS 0.503 0.057 0.064 0.058

SM-PS 0.502 0.042 0.062 0.044

FE-PS 0.502 0.067 0.074 0.067

FM-PS 0.502 0.067 0.074 0.067

Unadjusted

No (i.e. b 6= 0)

1.259 0.053 0.064 0.052

NR-PS 0.803 0.046 0.062 0.046

SM-PS 0.636 0.042 0.064 0.044

FE-PS 0.502 0.067 0.074 0.067

FM-PS 0.502 0.067 0.074 0.067

Note: Results are based on 500 simulations & true αtrt = 0.5
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Table 4.7: Cluster Level Unobserved Confounding with Sample Size=5000

Monte Carlo Average Average

Model Independence Average(α̂trt) SD(α̂trt) ŜED(α̂trt) ŜEB(α̂trt)

Unadjusted

Yes

1.131 0.042 0.036 0.039

NR-PS 0.593 0.039 0.034 0.038

SM-PS 0.552 0.037 0.036 0.036

FE-PS 0.501 0.042 0.040 0.040

FM-PS 0.501 0.042 0.040 0.040

Unadjusted

No

1.360 0.040 0.036 0.039

NR-PS 0.862 0.041 0.034 0.040

SM-PS 0.687 0.039 0.036 0.038

FE-PS 0.501 0.042 0.040 0.040

FM-PS 0.501 0.042 0.040 0.040

Note: Results are based on 500 simulations & true αtrt = 0.5
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Table 4.8: Subject Level Unobserved Confounding with Sample Size=5000

Monte Carlo Average Average

Model Independence Average(α̂trt) SD(α̂trt) ŜED(α̂trt) ŜEB(α̂trt)

Unadjusted

Yes

1.074 0.039 0.037 0.038

NR-PS 0.522 0.036 0.034 0.036

SM-PS 0.526 0.034 0.035 0.035

FE-PS 0.534 0.040 0.041 0.040

FM-PS 0.534 0.040 0.041 0.040

Unadjusted

No

1.311 0.037 0.036 0.037

NR-PS 0.800 0.037 0.034 0.037

SM-PS 0.701 0.036 0.036 0.037

FE-PS 0.534 0.040 0.041 0.040

FM-PS 0.534 0.040 0.041 0.040

Note: Results are based on 500 simulations & true αtrt = 0.5
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Table 4.9: Multilevel Analysis for German Breast Cancer Study Data

Average Average

Model α̂trt ŜED(α̂trt) ŜEB(α̂trt) 95% CI

Unadjusted 1.533 1.279 1.527 (-1.460,4.526)

NR-PS 0.725 1.322 1.507 (-2.229,3.679)

SM-PS 1.076 1.374 1.326 (-1.523,3.675)

FE-PS 1.213 1.436 1.402 (-1.535,3.961)

FM-PS 1.213 1.436 1.402 (-1.535,3.961)

Note: Results based on 500 cluster bootstrap resampling
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Chapter 5

Future Research

In this dissertation, we have proposed a two-stage variance estimation scheme for

PS regression models and different PS methods for dealing with the heterogeneity in

treatment assignment process for clustered data. Even though we have conducted

research under various settings for the proposed methods, they are all based on the

continuous response data type. Potential extensions for the proposed methods and

other related research include the following:

5.1 Extending the Proposed Methods to Other Types of Data

In the future research, we plan to extend our PS models from continuous response

variables to other types of response variables commonly observed in CER studies, such

as the binary cure versus non-cure events, and time to event data (i.e. cure or death).

We plan to combine techniques such as multinomial or ordered logit, parametric and

non-parametric survival analysis with the proposed PS models where the treatment

assignment is heterogeneous. Longitudinal resources where patients are followed up

over years of medical interventions, which frequently exist in observational data, would

provide us with great opportunities to assess true treatment effects yet at the same time

pose more challenges in dealing with time-dependent confounding. Developing robust

PS models that adjust time-dependent confounding will be one of our future research

focus.



5.2 Developing New Methods with Missing Confounding Factors

Missing data is a commonly occurring complication in scientific investigations. In

CER studies, missing important confounding covariates could have a significant impact

on the validity of the estimation of the true treatment effect. Determining the appro-

priate analytic approach in the presence of incomplete observations is a major problem

for data analysts. The development of statistical methods to address missing data has

been an active area of research. For heterogeneous observational data, we plan to com-

bine nonparametric kernel regression methods for missing important variable with the

proposed PS models under various data missing mechanisms.

In addition, for CER studies with missing important confounding covariates, often

there exist some readily available auxiliary covariates information. Auxiliary informa-

tion can also be obtained from inaccurate measures of the confounding variables. For

example, it is found that the self reported height is often inflated in males. Other situa-

tions where auxiliary confounding information arises are where the exposure assessment

relies on the subjects responses to questionnaires, or the exposure of interest may be

too difficult or expensive to obtain. In such situations, a related variable may be used

as an auxiliary variable for the exposure of interest. There are some existing methods

in the statistical literatures on using auxiliary variables, however, there is few research

on using the auxiliary variable in sharpening the estimation of the treatment effects,

not to mention under the intractable heterogeneity found in the treatment assignment.

We plan to extend the proposed PS methods to data with auxiliary covariates.
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APPENDIX I: PROOF OF THEOREM 2.3.1

Proof. Denote θ?1 and θ?2 as the true parameter values of θ1 and θ2 under the models

(2.2) and (2.3). Following similar procedures of Murphy and Topel (1985), with the

notations defined in Section 2.3, the MLE of θ1 and θ2, i.e. θ̂1 and θ̂2 derived from

Stage 1 and 2 models satisfy the following score equations:

n∑
i=1

∂l1,i(θ̂1)

∂θ1
= 0

n∑
i=1

∂l2,i(θ̂1, θ̂2)

∂θ2
= 0

Under the standard regularity conditions, θ̂1 is consistent. Therefore, the maximiza-

tion of quantity 1
n

∑n
i=1 l2,i(θ̂1,θ2) is asymptotically equivalent to the maximization of

1
n

∑n
i=1 l2,i(θ

?
1,θ2). Thus, θ̂2 is consistent.

Taking Taylor expansions on
∂l1,i(

ˆθ1)

∂θ1
and

∂l2,i(
ˆθ1,

ˆθ2)

∂θ2
at θ? = (θ?1,θ

?
2), we obtain the

following approximations:

∂l1,i(θ̂1)

∂θ1
≈ ∂l1,i(θ

?
1)

∂θ1
+
∂2l1,i(θ

?
1)

∂θ1∂θ
T
1

(θ̂1 − θ?1)

∂l2,i(θ̂1, θ̂2)

∂θ2
≈ ∂l2,i(θ

?
1,θ

?
2)

∂θ2
+
∂2l2,i(θ

?
1,θ

?
2)

∂θ2∂θ
T
1

(θ̂1 − θ?1) +
∂2l2,i(θ

?
1,θ

?
2)

∂θ2∂θ
T
2

(θ̂2 − θ?2)

Plugging the above two terms into the score equations, we immediately obtain the
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following:

− 1√
n

n∑
i=1

∂l1,i(θ
?
1)

∂θ1
≈ 1

n
{

n∑
i=1

∂2l1,i(θ
?
1)

∂θ1∂θ
T
1

}
√
n(θ̂1 − θ?1) (5.1)

− 1√
n

n∑
i=1

∂l2,i(θ
?
1,θ

?
2)

∂θ2
≈ 1

n
{

n∑
i=1

∂2l2,i(θ
?
1,θ

?
2)

∂θ2∂θ
T
1

}
√
n(θ̂1 − θ?1)

+
1

n
{

n∑
i=1

∂2l2,i(θ
?
1,θ

?
2)

∂θ2∂θ
T
2

}
√
n(θ̂2 − θ?2) (5.2)

By the central limit theorem, we conclude that the joint distribution of statistics

− 1√
n

∑n
i=1

∂l1,i(θ
?

1)

∂θ1
and − 1√

n

∑n
i=1

∂l2,i(θ
?

1,θ
?

2)

∂θ2
is normal and given by the following:

 − 1√
n

∑n
i=1

∂l1,i(θ
?

1)

∂θ1

− 1√
n

∑n
i=1

∂l2,i(θ
?

1,θ
?

2)

∂θ2

→ N(0,V)

where V =
( V−1

1 (θ1) R(θ1,θ2)

R(θ1,θ2) V−1
2 (θ2)

)
.

By the law of large number theorem, the asymptotic equivalence of (5.1) can be

written as the following:

√
n(θ̂1 − θ?1) ≈ V1(θ1)

1√
n

n∑
i=1

∂l1,i(θ
?
1)

∂θ1
(5.3)

Plugging (5.3) into (5.2) and applying the law of large number theorem again, we

have:

√
n(θ̂2 − θ?2) ≈ V2(θ2)C(θ1,θ2)V1(θ1)

1√
n

n∑
i=1

∂l1,i(θ
?
1)

∂θ1
+ V2(θ2)

1√
n

n∑
i=1

∂l2,i(θ
?
1,θ

?
2)

∂θ2

By the joint distribution of − 1√
n

∑n
i=1

∂l1,i(θ
?

1)

∂θ1
& − 1√

n

∑n
i=1

∂l2,i(θ
?

1,θ
?

2)

∂θ2
, we obtain
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the asymptotic distribution of θ̂2:

√
n(θ̂2 − θ?2)→ N(0,Σ)

where Σ = V2+V2[CV1C
T−RV1C

T−CV1R
T ]V2 and conclusions follow immediately.
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APPENDIX II: PROOF OF THEOREM 3.4.1

Proof. Denote θ?1 and θ?2 as the true parameter values of θ1 and θ2 under the models

(3.3) and (3.6). Following similar procedures of Murphy and Topel (1985), with the

notations defined in Section 3.4, the MLE of θ1 and θ2, i.e. θ̂1 and θ̂2 derived from

models (3.3) and (3.6) satisfy the following score equations:

n∑
i=1

∂l1,i(θ̂1)

∂θ1
= 0

n∑
i=1

∂l2,i(θ̂1, θ̂2)

∂θ2
= 0

Under the standard regularity conditions, θ̂1 is consistent. Therefore, the maximiza-

tion of quantity 1
n

∑n
i=1 l2,i(θ̂1,θ2) is asymptotically equivalent to the maximization of

1
n

∑n
i=1 l2,i(θ

?
1,θ2). Thus, θ̂2 is consistent.

Taking Taylor expansions on
∂l1,i(

ˆθ1)

∂θ1
and

∂l2,i(
ˆθ1,

ˆθ2)

∂θ2
at θ? = (θ?1,θ

?
2), we obtain the

following approximations:

∂l1,i(θ̂1)

∂θ1
≈ ∂l1,i(θ

?
1)

∂θ1
+
∂2l1,i(θ

?
1)

∂θ1∂θ
T
1

(θ̂1 − θ?1)

∂l2,i(θ̂1, θ̂2)

∂θ2
≈ ∂l2,i(θ

?
1,θ

?
2)

∂θ2
+
∂2l2,i(θ

?
1,θ

?
2)

∂θ2∂θ
T
1

(θ̂1 − θ?1) +
∂2l2,i(θ

?
1,θ

?
2)

∂θ2∂θ
T
2

(θ̂2 − θ?2)

Plugging the above two terms into the score equations, we immediately obtain the
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following:

− 1√
n

n∑
i=1

∂l1,i(θ
?
1)

∂θ1
≈ 1

n
{

n∑
i=1

∂2l1,i(θ
?
1)

∂θ1∂θ
T
1

}
√
n(θ̂1 − θ?1) (5.4)

− 1√
n

n∑
i=1

∂l2,i(θ
?
1,θ

?
2)

∂θ2
≈ 1

n
{

n∑
i=1

∂2l2,i(θ
?
1,θ

?
2)

∂θ2∂θ
T
1

}
√
n(θ̂1 − θ?1)

+
1

n
{

n∑
i=1

∂2l2,i(θ
?
1,θ

?
2)

∂θ2∂θ
T
2

}
√
n(θ̂2 − θ?2) (5.5)

Following the central limit theorem, we conclude that the joint distribution of statis-

tics − 1√
n

∑n
i=1

∂l1,i(θ
?

1)

∂θ1
and − 1√

n

∑n
i=1

∂l2,i(θ
?

1,θ
?

2)

∂θ2
is normal and given by:

 − 1√
n

∑n
i=1

∂l1,i(θ
?

1)

∂θ1

− 1√
n

∑n
i=1

∂l2,i(θ
?

1,θ
?

2)

∂θ2

→ N(0,V)

where V =
( V−1

1 (θ1) R(θ1,θ2)

R(θ1,θ2) V−1
2 (θ2)

)
, V −11 = E

{(
∂l1
∂θ1

)(
∂l1

∂θT

1

)}
, V −12 = E

{(
∂l2
∂θ2

)(
∂l2

∂θT

2

)}
,

and R = E

{(
∂l2
∂θ2

)(
∂l1

∂θT

1

)}
.

Furthermore, by the law of large number theorem, the asymptotic equivalence of

(5.4) can be written as the following:

√
n(θ̂1 − θ?1) ≈ V1(θ1)

1√
n

n∑
i=1

∂l1,i(θ
?
1)

∂θ1
(5.6)

Plugging (5.6) into (5.5) and applying the law of large number theorem again, we

have:

√
n(θ̂2 − θ?2) ≈ V2(θ2)C(θ1,θ2)V1(θ1)

1√
n

n∑
i=1

∂l1,i(θ
?
1)

∂θ1
+ V2(θ2)

1√
n

n∑
i=1

∂l2,i(θ
?
1,θ

?
2)

∂θ2
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where C = E

{(
∂l2
∂θ2

)(
∂l2

∂θT

1

)}
.

By the joint distribution of − 1√
n

∑n
i=1

∂l1,i(θ
?

1)

∂θ1
& − 1√

n

∑n
i=1

∂l2,i(θ
?

1,θ
?

2)

∂θ2
, we obtain

the asymptotic distribution of θ̂2:

√
n(θ̂2 − θ?2)→ N(0,Σ)

where Σ = V2+V2[CV1C
T−RV1C

T−CV1R
T ]V2 and conclusions follow immediately.
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APPENDIX III: SAMPLING UNDER SNP DENSITY

Since the density under SNP representation is not standard, the sampling from SNP

density, fK(z;ψ), is not straightforward and cannot be called within the existing statis-

tical software packages. Below we provide detailed sampling procedures to sample from

SNP density for K ≤ 2, and more details can be found in Gallant and Tauchen (1992).

Obviously, for the case of K = 0, the distribution reduces to a normal distribution

and thus can be easily sampled. For K > 0 we need to use rejection sampling proce-

dure which requires an envelope (say dK(z;ψ)) that is easy to sample and dominates

fK(z;ψ).

SNP sampling (K=1): For K = 1, we have the density function as the following:

f1(z;ψ) = (a+ zb)2φ(z) ≤ (|a|+ |zb|)2φ(z)

where a = cos(ψ), b = sin(ψ) and φ(z) is the standard normal density. Therefore, we

construct the envelope as d1(z;ψ) = a2φ(z) + b2z2φ(z) + 2|ab||z|φ(z). Before moving

on to obtain the samples from density of d1(z;ψ), we establish a useful equation that

connects the density of random variable Z, i.e. fZ(z) and that of the random variable

U = Z2, i.e. fU(u), given as the following:

fU(u) =
1

2
u−

1
2 [fZ(

√
u) + fZ(−

√
u)]

If fZ(z) is a symmetric function, the above equation can be further simplified as

fU(u) = u−
1
2fZ(
√
u)

Therefore, if random variable Z follows f(z) = c|z|φ(z), then U = Z2 ∼ fU(u) =

c√
2π
e−

u
2 . However, 1

2
e−

u
2 is recognized as a χ2

2 density. Thus, random variable Z ∼
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f(z) =
√
2π
2
|z|φ(z) follows χ2 distribution. Following similar derivations, we conclude

that Z ∼ f(z) = z2φ(z) follows a χ3 distribution. It is evident that φ(z) is a χ1

density. Therefore, we conclude d1(z;ψ) = a2φ(z)+b2z2φ(z)+2|ab||z|φ(z) is a weighted

mixture of χ density with weight a2

w
from χ1,

b2

w
from χ3 and 4|ab|

w
√
2π

from χ2 where

w = a2 + b2 + 4|ab|√
2π

. A χ distribution can be sampled from χ2 distribution with 50%

chance to be positive and negative, respectively. In summary, the procedures to draw

samples from f1(z;ψ) density are:

Step 1: Draw samples from density d1(z;ψ) = a2φ(z) + b2z2φ(z) + 2|ab||z|φ(z) which

is a weighted mixture of χ density with weights given above.

Step 2: Use rejection sampling to determine to accept or reject the sample obtained

from Step 1.

Step 3: If sample is accepted, then the sample is from f1(z;ψ). Otherwise, start from

Step 1 again. Repeat these procedures till the desired number of samples are drawn.

The envelope is composed of three parts and each follows a χ distribution. To see

this clearly, Let f(z) = c|z|φ(z) be the density of random variable Z. Furthermore,

let U = Z2 then the density of U , i.e. fU(u), and Z, i.e. fZ(z), is given by fU(u) =

1
2
u−

1
2 [fZ(

√
u) + fZ(−

√
u)]. If fZ(z) is symmetric, then it can be simplified as fU(u) =

u−
1
2fZ(
√
u). Therefore, if Z ∼ f(z) = c|z|φ(z), then U = Z2 ∼ fU(u) = c√

2π
e−

u
2

where 1
2
e−

u
2 is recognized as a χ2

2 density and this leads to c =
√
2π
2

. That is random

variable Z ∼ f(z) =
√
2π
2
|z|φ(z) follows χ2 distribution which can be sampled from χ2

2

and taking square root with probability of 0.5 being positive and negative due to the

symmetry about 0. Similarly, for random variable Z ∼ f(z) = cz2φ(z), then U = Z2 ∼

fU(u) = c√
2π
u

1
2 e−

u
2 and 1√

2π
u

1
2 e−

u
2 is a χ2

3 density. Thus, Z ∼ f(z) = z2φ(z) follows a χ3

distribution which can be drawn from a χ2
3 and taking square root with probability 0.5

being positive and negative due to symmetric about 0. Therefore, d1(z;ψ) is a weighted

χ mixture with weight a2

w
from χ1,

b2

w
from χ3 and 4|ab|

w
√
2π

from χ2 where w = a2+b2+ 4|ab|√
2π

.
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SNP sampling (K=2): For K = 2, we have the following:

f2(z;ψ) = (a+ zb+ z2c)2φ(z) ≤ (|a|+ |zb|+ z2|c|)2φ(z)

where a = cos(ψ1) − sin(ψ1)sin(ψ2)√
2

, b = sin(ψ1)cos(ψ2) and c = sin(ψ1)sin(ψ2)√
2

. Therefore,

we construct the envelope as:

d2(z;ψ) = a2φ(z) + 2|ab||z|φ(z) + (b2 + |2ac|)z2φ(z) + |2bc||z3|φ(z) + c2z4φ(z)

Following similar tedious derivations as above, we conclude d2(z;ψ) is also a mixture

of χ density with weight a2

w
of χ1,

4|ab|
w
√
2π

being χ2,
b2+|2ac|

w
from χ3,

8|bc|
w
√
2π

being χ4 and

weight 3c2

w
from χ5 with w = a2 + 4|ab|√

2π
+ b2 + |2ac| + 8|bc|√

2π
+ 3c2. Therefore, similar

procedures as above can be used to draw samples from density f2(z;ψ).

To see this clearly, we let f(z) = c|z3|φ(z) be the density of random variable Z and

U = Z2. Thus, fU(u) = u−
1
2 [ c√

2π
u

3
2 e−

u
2 ] and u

4
e−

u
2 is the density of χ2

4. Thus, Z ∼
√
2π
4
|z3|φ(z) can be sampled from χ4 distribution by taking the square root of a random

sample from χ2
4 distribution with the probability of 0.5 being positive and negative,

respectively. Similarly, Z ∼ f(z) = cz4φ(z) and U = Z2 lead to fU(u) = c√
2π
u

3
2 e−

u
2 .

If c = 1
3
, then fU(u) is the χ2

5 density and we conclude that Z ∼ f(z) = 1
3
z4φ(z)

can be drawn from χ2
5 distribution and take square root with 0.5 probability being

positive and negative. Therefore, d2(z;ψ) is a weighted χ density with weight a2

w
of

χ1,
4|ab|
w
√
2π

being χ2,
b2+|2ac|

w
from χ3,

8|bc|
w
√
2π

being χ4 and weight 3c2

w
from χ5 with w =

a2 + 4|ab|√
2π

+ b2 + |2ac|+ 8|bc|√
2π

+ 3c2.
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